Citation
Availability, movement, and retention of copper in selected Florida and Vietnamese soils

Material Information

Title:
Availability, movement, and retention of copper in selected Florida and Vietnamese soils
Creator:
Ho, Van Lam, 1943-
Publication Date:
Language:
English
Physical Description:
xiii, 130 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Electrodes ( jstor )
Ions ( jstor )
Micronutrients ( jstor )
Nutrients ( jstor )
Orchards ( jstor )
pH ( jstor )
Plant roots ( jstor )
Soil science ( jstor )
Soil solution ( jstor )
Soils ( jstor )
Dissertations, Academic -- Soil Science -- UF
Soil Science thesis Ph. D
Soils -- Vietnam ( lcsh )
Soils -- Copper content ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Bibliography: leaves 120-128.
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Ho Van Lam.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000355623 ( ALEPH )
02343965 ( OCLC )
ABZ3864 ( NOTIS )
AA00004920_00001 ( sobekcm )

Downloads

This item has the following downloads:


Full Text












AVAILABIL ITY. A.ND RKTENTEON OF COPPER
Jt SELECTED FLORIDA AND VIETNAMESE SOILS









By

HO VAN TAM


A DISSEPRATION PRESENTED TO THE RAD'ATE CO,"CLfT, OF
THE UNIVERSITY F FLG RIDA
IN PARTIAL FULF"'LII.NT WF THU RE ll;i. :I S X'R THE
i... ... -, OF DOCTOR UOF FL iLO-IOPHY

















P1 ,v. i f O:' LJ.ORIO.


i- /6




AVAILABILITY.
IN SELECT!
MOVEMENT
D FLORIDA
AND RETENTION OF COPPER
AND VIETNAMESE SOILS
By
HO VAN TAM
A DISSERTATION PRESENTED TO
THE UNIVERSITY
THE GRADUATE
OF FLORIDA
ART.LAL fulfillment of the requirements
DEGREE OF DOCTOR OF PHILOSOPHY
T'CIT. OF
>R THE
JNIVERSITY
i 5 76
FLORID!


DEDICATION
This Dissertation is dedicated to
the author's mother who passed away
before her only son attained the
academic goals that she had
encouraged him to seek.


ACKNOWLEDGEMENTS
The author wishes to express his sincere appreciation to Dr.
N. Gammon, Jr., Chairman of the Supervisory Committee, for his valuable
counsel, guidance, and assistance during the entire course of this
investigation, and in preparation of this manuscript.
Sincere thanks are also expressed to Dus, J.G.A. Fiskell, R.C.
Stoufer, T.L. Yuan,and B.G. Volk for their recommendations, and con
structive help in gathering research information and manuscript review.
My appreciation is given to Dr. M.E. Marvel, whc initiated the adminis
trative work and was instrumental in providing the opportunity for the
author to attend the University of Florida and who served on the Super
visory Committee until resuming an overseas assignment. Also aiy
expressed gratitude is extended to Dr. L.W. Zelazny, who participated
as a member of the Supervisory Committee until the last phase of the
author's research program. It is regretted that Dr3. Marvel and Zelazn
in their well-deserved positions were prevented from being able to
actively review the final dissertation.
The author would like to thank Drs. C.F, Eno and D.F. Rothwell,
Chairman and Graduate Coordinator of Soil Science Department, respec
tively for their administrative assistance; the ford Foundation and the
Agency for International Development (AID) for their financial, support.
To Dr. H.L. Breland and his staff, who gave valuable help with
microelement analyses; to Mr. Harry Johnson, Mr. A.D. Waller, and Mr.
iii


Nguyen Gia Hai for their assistance on sample collections, routine plant
and soil analyses; to Mrs. Adele Koehler for her excellence in typing
and proofing the final copy of this dissertation, the author is most
grateful.
The author would also like to gratefully recognize his dearly
beloved wife, Phuong, who through the lonely years when the author was
away from home, has taken care of his daughter. To his father and his
sisters for their continuous encouragement which guided him to the
present achievement, the author i.e deeply indebted.


TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS iii
LIST OF TABLES viii
LIST OF FIGURES x
ABSTRACT xi
INTRODUCTION 1
LITERATURE REVIEW 4
Physiological Function of Cu in Plants .... 4
Mechanisms of Cu Movement in Soil Prior to Uptake by
Plant Roots 4
Convection 5
Diffusion 5
Root Interception 6
Factors Controlling Cu Availability in the Soil. ...... 7
Total Cu Reserve and Supply 7
Soil Acidity (pH) 10
Crystalline and Amorphous Clay Materials 11
Soil Organic Matter 12
2+
Complexation of Soil Cu with Synthetic Chelating
Agents 20
Chelated Cu to Total Cu Ratio in the Soil Solution. . 20
Copper Absorption by Plants. ... 22
Interaction Between Cu and Other Elements 23
2+ 2+
Measurement of Cu by Cu -Selective Electrode
25


TABLE OF CONTENTS
(continued)
Page
MATERIALS AND METHODS 28
Field Experiments 28
Apopka Fine Sand (HawthorneOrchard) 29
Fuquay Fine Sand (Earleton Orchard) 29
Greenhouse Experiments. 30
Plant Tissue Sampling, Preparation, and Analyses 32
Sampling and Preparation 32
Analyses 33
Soil Sampling, Preparation, and Analyses 34
Sampling and Preparation 34
Analyses 34
Statistical Analyses 41
RESULTS AND DISCUSSION 42
Field Experiments 42
Response of Pecan Trees to Cu Application 45
Distribution of Applied Cu in Surface Layers of
Fuquay Fine Sand 51
Availability of Applied Cu to Plants 59
Greenhouse Trial 59
Laboratory Study 65
Solution Studies 66
Saturated Soil Solution Extract Studies 71
SUMMARY AND CONCLUSIONS 107
APPENDICES ........ 110
I Synthetic chelating agents which have been used for Cu
complexation (Norvell, 1972) Ill
vi


TABLE OF CONTENTS
(continued)
Page
2
II Determination coefficients (R ) of linear curves in
Fig. 2 112
III Linear regression analyses of curves in Fig. 8 and
Fig. 9 113
IV Linear regression analyses of curves in Fig. 12 and
Fig. 13 114
VLinear regression analyses of curves in Fig. 15 115
VI Effect of supporting electrolyte on chromatograms of
1^0 extract from Fuquay fine sand 116
VII Areas of chromatographical peaks shown in Appendix VI . 118
VIII Selected list of chromophoric groups (Boltz, 1966). . 119
LITERATURE CITED 120
BIOGRAPHICAL SKETCH 129
vii


LIST OF TABLES
Table Page
1. Estimated amounts of micronutrients supplied by three
mechanisms to corn roots growing in a heavily fertilized
silt loam soil at pH 6.8 (Barber, 1966) 8
2. The occurrence of Cu in rocks and soils (Krauskopf, 1972) . 8
3. General chemical properties of humic and fulvic acid
(Stevenson and Ardakani, 1972) 14
4. Basic fertilization applied to Vietnamese soils 31
5. Some properties of the soils selected for investigation ... 43
6. Levels of Cu in soil at Hawthorne and Earleton orchards one
year after CuSO^ application 44
7. Copper levels in leaves of different pecan cultivars in
Hawthorne orchard in the first year after CuSO^ application,
average of all treatments 46
8. Effect of cultivar and treatment on Cu levels in pecan leaves
in Hawthorne orchard 47
9. Copper levels in pecan leaves in Earleton orchard 50
10. Growth responses of pecans to CuSO^ application 52
11. Analysis of variance for growth responses of pecans 53
12. Distribution of Cu and other nutrients in 0-15 cm of the soil
profile in the Earleton orchard 56
13. Copper in 0-15 cm of the soil profile of the Earleton orchard
27.5 months after CuSO^ application 58
14. Copper levels in blades of Pensacola bahiagrass (Paspalum
notatum, Flugge) as influenced by CuSO^ application in the
Earleton orchard 60
15. Correlation coefficients between Cu levels in Pensacola
bahiagrass and various soil extracts 61
16. Level of Cu in selected Vietnamese soils with and without
CuSO^ applications 63
viii


LIST OF TABLES
(continued)
Table Page
17 Copper (Cu) content and dry weight (DW) of corn grown in
Vietnamese soils 64
18. Chelating ability of EDTA and DTPA 69
19* Formation constants for EDTA and DTPA (Norvell, 1972) .... 70
21
20- Chelated Cu to total added Cu ^ ratio (CTR), at different
organic matter and soil Cu levels in Apopka fine sand .... 72
2+
21. Quantity of Cu complexed by soil extracts from Apopka fine
sand 84
2+
22. Chelated Cu to total added Cu ratio (CTR), at different
organic matter and soil Cu levels in Fuquay fine sand .... 85
23. Quantity of Cu complexed by soil extracts from Fuquay
fine sand 93
2+
24. Chelated Cu to total added Cu ratio (CTR) in selected
Vietnamese soils 95
2+
25* Quantity of Cu complexed by soil extracts from Vietnamese
soils 98
26 Effect of supporting electrolyte on complexing ability of
1^0 extract from Fuquay fine sand 102
2+
27. Summary of Cu availability in H2O extracts from selected
soils 103
28 Approximate wavelength corresponding to maximum and minimum
absorbance in the range from 250 to 300 nm of two chelating
agents and H2O extracts from selected Florida and Vietnamese
soils
106


LIST OF FIGURES
Figure Page
1. Comparison of Cu^+ chelating abilities of 11 chelating
agents in soil solution (Norvell, 1972) 21
2. Effect of Cu^+ addition on 0.01 M CaSO,; and two chelating
agents 68
3. Chromatograms of some organic compounds 74
4. Chromatograms of 0.01 M CaSO^ extracts from Apopka
fine sand 75
5. Chromatograms of H2O extracts from Apopka fine sand. ... 76
6. Effect of K2SO4 on H2O extracts of Florida soils 77
7. Effect of i^SO^ on H2O extracts of Vietnamese soils. ... 78
8. Effect of Cu^+ Addition on 0.01 M CaSO^ extracts of Apopka
fine sand 81
O 1
9. Effect of Cu*- addition on H2O extracts of Apopka fine
sand 82
10. Chromatograms of 0.01 M CaSO^ extracts of Fuquay fine
sand 87
11. Chromatograms of H2O extracts of Fuquay fine sand 89
12. Effect of Cu^+ addition on 0.01 M CaSO^ extracts of
Fuquay fine sand 91
13. Effect of Cu^+ addition on H2O extracts of Fuquay fine
sand 92
14. Chromatograms of H2O extracts from Vietnamese soils. ... 97
15. Effect of Cu^+ addition on H2O extracts from Vietnamese
soils
x
99


Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy
AVAILABILITY, MOVEMENT, AND RETENTION OF COPPER
IN SELECTED FLORIDA AND VIETNAMESE SOILS
By
Ho Van Lam
June, 1976
Chairman: Dr. Nathan Gammon, Jr.
Major Department: Soil Science
The response of pecans (Carya illinoensis, L.) grown in two
Florida soils and of corn (Zea mays, L.) grown in selected Vietnamese
soils to copper (Cu) application was observed. The Cu content of
saturated soil solution extracts, the nature of the organic matter (OM)
21-
in these extracts, and their ability to complex additional Cu were
also investigated.
The Cu treatments for pecans were 0, 1, and 3 ppm in a Hawthorne
orchard (Apopka fine sand) and 0 and 3 ppm in an Earleton orchard
(Fuquay fine sand). Parameters measured were Cu levels in leaves and
growth (tree circumference at 120-cm height). Data on both parameters
were collected yearly. Levels of Cu in leaves from pecans grown at the
3-ppm Cu rate on Fuquay fine sand were significantly higher than the
check during the first year of the experiment but not in later years.
The 3-ppm Cu treatment on the Apopka fine sand produced a steady in
crease in the Cu levels in the leaves but it was not significant until
xi


the third year. Similarly, the analysis of variance (ANOVA) for tree
growth showed steadily increasing F values in successive years but the
5% level of statistical significance was not achieved. Evidently, a
rather long period is required for surface applied Cu to reach the
active rooting zone of pecans. The downward movement of Cu in the soil
profile was very slow. In Fuquay fine sand, Cu moved ca. 7.5 cm after
27.5 months. It was determined that the Cu applied to the Fuquay fine
sand remained available for root uptake since the Cu level in Pensacola
bahiagrass (Paspalum notatum, Flugge) under pecan trees fertilized with
3 ppm Cu was increased significantly.
Significant differences were observed in the Cu levels in leaves of
different pecan cultivars.
In a greenhouse experiment to test the response of corn to Cu appli
cations to Vietnamese soils, there was a trend for increased Cu in the
tissue with increased Cu applications which was significant for Ninh-Chu
and Eakmat soils, but not for Trang-Bang, Thu-Duc and Dalat soils.
Total dry weight production did not indicate a consistent response to Cu
application.
Copper in saturated soil solution extracts was very low and the
2+ 24-
ionic Cu measured by Cu -selective electrode, provided such a low
electrode potential that it could not be detected accurately. Saturated
soil solution extracts removed from 1 to 5% of the soil OM. Water
extracts contained more OM than did 0.01 M CaSO^ extracts. By liquid
chromatography, it was found that most of OM in the extracts was small
size compounds, characteristic of fulvie and simple organic acids. The
24-
Cu complexation by organic ligands in soil extracts depended upon
their nature and quantity.
xii


O I
Chelated Cu to total added Cu ratio (CTR) of soil extracts was
determined. It was low in CaSO^ extracts and higher in H^O extracts.
The CTR of CaSO^ extracts ranged from 16.1 to 39.6% in Apopka fine sand
and from 54.7 to 85.3% in Fuquay fine sand. For H^O extracts, CTR
ranged from 60.7 to 92.1% and from 91.8 to 94.0% for Apopka fine sand
and Fuquay fine sand, respectively. The CTR values for Vietnamese
soils, were 69.5 to 82.7% for Ultisols and was about 90% for the Oxisol.
24-
The quantity of Cu needed to complete the complexation in indi
vidual soil extracts was computed and compared to synthetic chelating
, 2+ 2+ 34-
agents sucn as EDTA and DTPA. The presence of Ca Mg or A1 in
24-
soil extracts reduced the quantity of Cu complexed by the soil ex
tract.


INTRODUCTION
Copper (Cu) deficiency in crops has been known in Florida for many
years. It was observed that an economic crop could not be grown in the
Everglades peat soils without application of Cu fertilizers (Allison
et^ a^L. 1927). An abnormal condition of growth in Florida citrus, known
as "exanthema" or "die-back" was fully overcome by application of Cu to
both organic soils (Allison, 1931) and mineral soils (Fudge, 1936).
This provides additional evidence of the early need for Cu on many
Florida soils.
Ranges of 63.9-128 ppm Cu for carrot, 79.8-176 ppm Cu for onion or
spinach, and 102-236 ppm Cu for cauliflower or lettuce were optimum for
these five crops on acid sphagnum peat soil (McKay j2t jrl., 1966). Al
though levels of applied Cu were high, they found that Cu content in plant
tissues ranged from 8.1 to 10.9 ppm, 10.0-10.8 ppm, 19.0-26.8 ppm, 4.7-
6.3 ppm, and 6.6-7.8 ppm for carrot, onion, spinach, cauliflower, and
lettuce, respectively. The need for Cu on some of the sandy soils was
also established (Locascio et tLL. 1964; Locascio and Fiskell, 1966;
Robertson et al., 1973; Navarro, 1975). Locascio and Fiskell (1966) have
observed 10-fold increases in yield of watermelon (from 270 to 2,410
fruits per acre) by applying 2.5 lb/A Cu in the fertilizer. Robertson
et_ ail. (1973) found that the highest yields of soybean (1,767 kg/ha)
occurred when Cu contents of leaves and seeds were 3 and 9 ppm, respec
tively. An increase in Cu applications from 0 to 8.96 kg/ha increased the
-1-


total yields of cucumber from 3.59 to 15.22 ton/ha (Navarro, 1975).
Copper deficiency has not been reported on commercial pecan
orchards, probably because Cu-containiog sprays such as Bordeaux mixture
were used for leaf diseases and scab in the past. A normal range of 21
to 28 ppm Cu in pecan leaves was reported by Alben and Hammer (1939).
However, a recent survey showed that where Bordeaux sprays had not been
used, Cu levels in pecan leaves could be as low as 6.2 ppm although no
Cu defficiency symptoms have been observed (Gammon and Lam, 1974). In
view of the declining use of Bordeaux sprays, there is a need to estab
lish with greater certainty the Cu requirement of pecans.
In Vietnam, the need for Cu has been studied very little. However,
some Vietnamese soils are very sandy and in this respect, very similar
to Florida soils, while others are very fine-textured. The warm climate
and high rainfall along with low pH of many Vietnamese soils should
enhance the leaching of Cu froia these soils. Thus, there is good reason
to suspect the need for Cu in at least some of these soils.
The availability of Cu to a plant depends upon many soil character
istics such as pH, quantity and quality of soil organic matter (CM),
nature of the clay mineral, forms of Cu present, rainfall and related
climatic factors. Hodgson et ad.. (1965, 1966) reported that more than
98% of Cu in solution was in an organic complexed form, suggesting that
21-
in neutral soils, very small quantities or rree or equated Cu are
available for adsorption reactions. The importance of soil organic
matter in maintaining adequate Cu levels in the soil solution for plant
growth is emphasized by this observation.
Our present investigation was designed to study response of pecans
to Cu applications on two Florida soils and the response of corn to Cu


-3-
applications on five Vietnamese soils. An evaluation of Cu availability
in these soils was limited to crop responses and to Cu in HO and CaSO,
2 4
soil solution extracts. The complexation ability of organic ligands
found in these extracts was studied and compared to that of two syn
thetic chelating agents, EDTA and DTPA.


LI IF.RATI) RE REVIEW
ological Function of Cu In ?1 cines
Copper is an essential element in plant growth. The roles of Cu
in plant metabolism are. numerous, varied, and complex. Biochemical
research has established that Cu is the prosthetic group in several
xsetalloprotein enz/ues such as cytochrome oxidase, polyphenol oxidase
(tyrosiuase), ascorbic acid oxidase, lactase, and butyryl Co--A dehydro
genase (Arnon and Stout, 190?; Keilin arid Mann, 1933. Dawson, 1956;
Gilbert, 1357; Meyer, Anderson and Bohning, 1966; Sauchelli, 1969;
Tisdale and Nelson, 1971: Epstein, 1972). Arnon (1949) reported that
polyphenol oxidase is localized in the chlorop.last, thus confirming
that Cu is necessary in photosynthesis. Other workers reported the
association of Cu with many enzymes involved in the electron transport
system and the Kreb cycle (Evans and Sorger, 1966). Salisbury and Ross
(1969) stated that Cu is a necessary component of plastocyanin. Further
more, they believe that Cu may be a part of nitrate reductase and per
forms a catalytic role in nitrogen fixation.
Mechanisms of Cu Movement in Soil Prior to Uptake by Plant Roots
Wilkinson (1972) described the supply of micronutrients (Cu, Zn,
Fe, Mo, and Co) to roots by combinations of three processes: convection,
diffusion, and root interception.


-a
Convection
Convection is the movement of water in soils, carrying those ions
that are freely mobile in soil solution. Movement may occur as a result
of a suction gradient, generated at the root surface by transpiration,
or as a gravitational gradient when water moves downward in the profile.
The percentage of nutrient requirement which can be satisfied by
convection, according to Corey and Schulte (1973), depends on:
1) the plant requirements for the nutrient
2) the concentration of the nutrient in the soil solution
3) the amount of water transpired per unit weight of tissue
4) the effective volume of water, moving in response to potential
gradient, which comes in contact with the root surface.
The contribution of the last process is difficult to determine so
that estimates of the nutrient contribution from convection are usually
based on the concentration of the nutrient and the amount of water trans
pired per unit weight of tissue (Barber, 1966). Such estimates showed
that. Cu was supplied almost entirely by convection (Table 1).
Diffusion
Diffusion of ions may be caused by their concentration gradient.
This gradient is developed as the result of removal of ions from the
soil solution in close proximity to a root and/or by addition of fresh
water to the soil solution, as from rainfall. The following equation
illustrates the factors which are important in determining the rate at
which a soluble nutrient will diffuse to a root surface (Corey and
Schulte, 1973):
dq/dt = DA?(C1 C,)/L
CD


-b"
>
where
C
1
dq/dt represents the rate of diffusion to the root surface
D is the diffusion coefficient of the nutrient species in
water
A represents total absorbing surface of a plant root
P is the fraction of the soil volume occupied by water (it
also includes a tortuosity factor)
and are the concentrations of the soluble nutrient at a distance
1 from the root surface and at the. root surface, respec
tively.
2+
Ellis e_t al. (1970) found that the D value of Cu in soil is
affected by the type of clay as well as accompanying anion. They re
ported that montmorillonite at a concentration of 0.5 tneq/g had a D
_ 6 2 1
value of approximately 1 x 10 cm sec while kaolinite at the same
~ 6 2 "I
concentration had a value of 5.2 x 10 cm sec The D values were
greater with CuC^ than CuiNO^)^ CuSO^, and Cu(OAc)^ in. the mentioned
order. Values of D for other clays at various concentrations w^ere also
reported. These slow rates of diffusion of Cu indeed restrict their
ability to supply this nutrient to plant roots.
Root Interception
Roots in growing through soil, establish contact with the mineral
surface; nutrients acquired in this manner are attributed to root inter
ception (a modification of Jenny's contact exchange concept). The uptake
of nutrients by such contact is net dependent on the processes of con
vection or diffusion in the usual sense, although water must b-a present
(Passioura, 1968).


-7-
An estimate of the possible contribution of root interception to
satisfy the nutrient requirement of a plant can be made on the basis of
the following assumptions (Barber, 1966):
1) The maximum amount of nutrient intercepted is presumed to be
"available" in the soil volume occupied by the roots.
2) Roots occupy ail average of 1% of total soil volume.
3) About 50% of the total soil volume is composed of pores; there
fore, the roots occupy about 2% of the total pore space.
Table 1 presented the amounts of micronutrients supplied by the
above three mechanisms on the basis of these assumptions. The accuracy
of the estimates based on such assumptions is questionable in view of
the fact that the combined amount of the nutrients supposedly supplied
by the interception and convection mechanisms as in the case of Cu and
Zn far exceeded the amount of the total uptake. Nevertheless, the data
show that the convection mechanism contributes a major part of nutrients
of plant requirements.
In soil, all these three mechanisms may be influenced by the ex
change capacity, pH of the soil, solubility of some minerals, and the
activities of crystalline and amorphous clay materials and OM components.
Fa c t ors Controlling Cu Aval lab ility in the S o_ii_
Total Cu Reserve and Supply
Reserve
Krauskopf (1972) reported the Cu contents in soils and in rocks,
Table 2. In nature, Cu occurs chiefly as simple and/or complex sulfide
minerals. By far, the most abundant of Cu minerals is ehalcopyrite.


Table 1. Estimated amounts of micronutrients supplied by three mech
anisms to corn roots growing in a heavily fertilized silt loam
soil at pH 6.8 (barber, 1966).
Element
To tal
uptake
Amount
supplied by
Root interception
Convection
Diffusion*
.. kg/ha -
Cu
0.16
0.01
0.35

Zn
0.23
0.10
0.53

Mn
0.23
0.10
0.05
0.08
Ee
0.80
0.10
0.53
0.17
k
Diffusion is assumed to provide the plant requirements not satis
fied by convection and interception.
Table 2. The occurrence of Cu in rocks and soils (Krauskopf, 1972).
Igneous rocks Sedimentary rocks
Crust Soils
Granite Basalt Limestone Sandstone Shale
ppm
55 10 100 4 30 45 10-80


-9-
CuFeS^* Several other sulfide minerals may accompany chalcopyrite.
Basic carbonates such as malachite, Cu^COHi^CO^ or azurite,
Cu^ (OH) ^ (CO^) ^ and the hydrous silicate chrysocolla (CuSiO^ 211^0) may
be found in an oxidized environment. If anions are scarce, CuO can
exist, although it is not a common mineral. Under reducing conditions,
sulfides were found to be mostly compounded as Cu^S rather than CuS.
From calculated values for standard free energies of formation, Garrels
2+ +
and Christ (1965) reported the reduction of Cu to Cu took place when
standard redox potential at pH 7.0 reached -153 mv.
Whatever might be the form of Cu in primary rocks, it dissolves in
2+
water during weathering primarily as Cu as long as the solution re
mains slightly acidic and in the oxidized state. This ionic form is
found in many stable complex ions and molecules as well as organic
complexes.
2+
If Cu is present in solution as a cuprous complex, or if a Cu
solution moves into a reducing environment, CU2O or even Cu metal may
precipitate when the solution becomes alkaline. Generally, however,
enough H^S is present in a reducing environment to precipitate Cu as
CuS or CU2S, both of which are so very insoluble that they can form even
under moderately acidic conditions. Reactions of this sort leading to
the precipitation of definite compounds are probably not common in soil
formation, and almost certainly are less effective than adsorption as
a general mechanism for removing Cu from solution, a characteristic that
can be correlated with the tendency of Cu atoms to form strong covalent
bonds (Northmore, 1959).
Copper fertilizers
Copper fertilizers are available in both organic and inorganic


-10-
forms. Common sources of Cu for fertilization consist of CuSO^'Sl^O,
CuO, Cu-EDTA, Cu lignin-sulfonate, and Cu polyflavonoids (Murphy and
Walsh, 1972). Rate of application varies and depends on both crops and
methods of application. Generally, 2.2 7.0 kg/ha of inorganic com
pound has been used if broadcast or 1.1 4.5 kg/ha if banded. Organic
compounds required smaller rates, 0.8 2.4 kg/ha and 0.2 0.8 kg/ha
for broadcasting and banding, respectively.
In most cases, single applications ofCu to soils persist and
produce good responses of crop yield. Smith, Rasmussen, and Hrnciar
(1962) have shown that the mobility of Cu in the soil is relatively
slight, thus explaining its persistence. Reith (1968) pointed out that
residual effects of Cu treatments are long lasting and under field con
ditions, may be adequate for at least 8 years, depending on the magni
tude of the application and the soil type. In agreement with Reith,
Berger (1965) pointed out the persistence of Cu in the soil and sug
gested a halt to Cu treatment after a few years to avoid accumulations
of toxic levels.
Soil Acidity (pH)
Lindsay (1972) in his excellent review of inorganic phase equili
brium of micronutrients in soil, expressed the solubility of soil Cu by
the equation:
2+
Cu + soil ^
Cu-soil + 2H
(2)
The log K value for this equilibrium was found to be -3.2 (Norvell and
Lindsay, 1969). This relationship can be expressed as


-11-
2+ 3.2 4- 2
(Cu ) = 10 (hV (3)
2-
At high pH, because of the increasing concentration of CO^ and
OH in the soil solution, Cu is likely to precipitate (Fried and Broes-
hart, 1967). As a consequence, excessive liming causes the formation
of Cu(0H)o and CuCO^ which are not readily available to plants (Purvis
and Davidson, 1948; Menzel and Jackson, 1950; Adam and Pearson, 1967).
2+ 4-
Copper in the exchange sices may exist as Cu or as CuOH depend
ing upon the pH of the soil solution (Truog and Bower, 1940). In mildly
acidic systems, however, hydrolysis of copper is relatively unimportant.
2+ +
At pH 6.0, the Cu /CuOH ratio is approximately 100:1 and this ratio
increased 10-fold when pH of solution decreased one unit (DeMumbrum and
Jackson, 1957). It can be inferred from the observation of Krauskopf
(1972) that in the pH range at which most economic crops are grown, Cu
24-
in soils is probably present chiefly as the adsorbed Cu or in soil
solution as the ion and various complexes.
Crystalline and Amorphous Clay Materials
Effect of clay type on Cu diffusion coefficient has already been
discussed (Ellis et al., 1970).
Copper as well as other cationic micronutrients such as Zn, Fe,
and Mn can be held near the negatively charged soil surface by electro
static attraction. They can also enter into specific adsorption pro
cesses through covalent bonding on the clay surface (Ellis and Knezek,
1972). Isomorphic substitution in the crystal lattice of layer silicates
may also be possible. Hodgson (1963) suggested that solid-state dif
fusion into the relatively open crystal structure of clay minerals could


-12-
account for adsorption of micronutrients by these minerals. Heydermann
2+
(1959) found that Cu is adsorbed appreciably even by quartz, and of
course, much more strongly by clays. The adsorption capacity of dif
ferent clay minerals increases in the order kaolinite < illite < mont-
morillonite. Adsorption increases as the pH rises. Ferric hydroxide
2+
is also an adsorbent for Cu provided the pH is above the isoelectric
point of CuiOH)^ (Hem, 1960).
DeMumbrum and Jackson (1956a) observed that Ca-montmorillonite and
Ca-peat could accumulate Cu or Zn from very dilute, neutral solutions
2+
either in the presence or absence of excess Ca They felt that mont-
morillonite and peat had specific exchange sites for Cu as well as Zn.
In another paper (1956b), they reported that Cu or Zn saturation de
creased the intensity of the 2.8-p infrared absorption band of the
hydroxyl ions in montmorillonite, vermiculite, and kaolinite, indicating
a reaction or bonding with the octahedral OH in layer silicates. This
H
bond could be visualized as a Cu-O-Al or Cu--Al in positions where
access by the Cu or Zn ions is possible because of silica net openings,
crystal defects, or at broken edges.
Soil Organic Matter
In a recent review, Stevenson and Ardakani (1972) classified or
ganic compounds in soil that form stable complexes with metallic ions
into two main groups:
1) biochemicals of the types known to occur in living organisms; and
2) a series of complex polymers formed by secondary synthesis
reactions.
Included in the first group are the organic acids, polyphenols,


-13-
amino acids, peptides, proteins, and polysaccharides. The second group
includes humic and fulvic acids.
The organic acids most effective in forming stable chelate com
plexes with metallic ions are those of the di- and tricarboxylic hydroxy
types such as citric, tartaric, and malic acid. Sugar acids such as
gluconic, glucuronic, and galacturonic acids may also be important as
solubilizers of mineral matter.
In classical terminology, humic acid (HA) is the material extracted
from soil by alkaline solutions and precipitated upon acidification;
fulvic acid (FA) is the material soluble both in alkali and acid. Num
erous attempts have been made to devise structural formulas for HA and
FA but as Dubach and Mehta (1963) pointed out, no two humus molecules
may have the precisely identical structure. Contemporary investigators
(Stevenson and Ardakani, 1972) favor a type of HA consisting of micelles
of a polymeric nature, the basic structure of which is an aromatic ring
of the di- or trihydroxyphenol type bridged by -0-, -NH-, -N=, -S-, and
other groups. These compounds contain both free OH groups and the
double linkages of quiones. The overall chemical properties of HA and
FA were reported by Scheffer and Ulrich (1960) and summarized by Steven
son and Ardakani (1972) as presented in Table 3. The latter workers
reported that in the natural state, HA and FA are intimately bound to
clay, to one another, and to other organic constituents. A variety of
intermolecular bonding forces are involved, including H-bonding, ester
linkages, van der Waals forces, and salt linkages. Dubach and Mehta
(1963) pointed out that even after extraction, it is difficult to free
humic substances from inorganic components such as cations and clay or
organic impurities such as carbohydrate and proteins.


-14-
Table 3. General chemical properties of humic and fulvic acid (Stevenson
and Ardakani, 1972).
Fulvic acid
Humic acid
Crenic Apocrenic Brown Humic Gray humic
acid acid acid acid
(Light yellow) (Yellow-brown) (Dark brown) (Gray-black)
2,000?
45
48
1,400
increase in degree of polymerization >
increase in molecular weight > 3000,000?
increase in carbon content, % >- 62
decrease in oxygen content, % 30
decrease in exchange acidity, meq/100 g * 500


Soil OM forms complexes witn metals by coagulation, peptization,
ion-exchange, surface adsorption, and chelation (Mortensen, 1963).
Schnitzer and Skinner (1965^) reported that the stable organometal-
lic complex is obtained from the formation of electrostatic and/oi
covalent bonding between the metallic ions and the ligands.
Coagulation peptization
Ong and Bisque (1968), in a study of the coagulation of humic col
loids by metallic ions, reported that the stability of metal-organic
matter association is due to the Fuoss effect or coiling of the linear
polymers chain as coulombic repulsive forces are reduced by electrostati
binding.
The coagulation of HA depends upon the pH and the ionic strength
(y) of the solutions (Schnitzer and Khan, 1972). In the absence of
salts, virtually complete peptization occurred at pH 3.0; an increase in
p raised the pH of peptization to pH 4.5- 5.0. Peptization usually
occurs at a somewhat higher pH than coagulation, possibly because of
association of HA particles by hydrogen-bonding (Schnitzer and DeLong,
1955).
Trivalent ions were more effective in coagulating HA than were di
valent ones. The order of increasing effectiveness of metal ions for
2-f 24 2+ 2-f- 2*4 34
coagulating HA was Mn < Co < Ni < Zn < Cu~ < Fe < Al (Khan,
1969).
Wright and Schnitzer (1963) found that the capacity of a number of
metals to coagulate FA at pH 3.5 and 7 decreased in the following order:
3+ 3+ 2+ 2+
Al > Fe > Ca = Mg .
Hodgson (1963) noticed that organic soils are among those most
commonly deficient in Cu. This occurs because their total Cu content


-16-
is frequently low and their capacity to fix Cu is high.
In a later work, however, Hodgson et al. (1966) found that organic
complexing increased the total concentration of Cu in the soil solution
by a factor of about 100. Gupta (1971) demonstrated that the addition
of OM to soil increases exchangeable Cu. The concept of chelation or
complexation therefore, replaces the concept of coagulation and provides
a second way to interpret metal-OM interactions.
Chelation complexation
Geering and Hodgson (1969) calculated the metal to ligand ratio
from the increase in the proportion of metal complexed as the concen
tration of ligand increased and reported that complexing agents in soil
solution form 1:1 complexes with Cu. When an equilibrium between the
metal-ligand complex and the dissociated metal and ligand is established,
they estimated a value of 5.5 X 0.1 for the log^Q formation constant
There are various factors which contribute to the stability of a
metal chelate. Corvin (1950) cited the importance of atomic radius on
the formation of complexes. Radius ratio of electron-rich group/metal
2+ 2+
ion governs the coordination number of Cu Commonly, Cu coordinates
2+
with four ligands. In some cases, coordination of Cu with two ligands
was observed, but very rarely with three or five. Lehman (1963) re
ported that the number of rings formed by one molecule of chelating
agent with metallic ion, the size of the chelate rings, and the nature
of the donor atoms are of prime importance. He also found that pH of
the solution plays an important role in chelation reactions.
Rashid (1971) extracted HA from marine sediments and fractionate


-17-
these on Sephadex gels into different molecular weight (MW) fractions.
He determined the ability of a number of di~ and trivalent metallic ions
to complex with each of these HA fractions at pH 7.0. He found that
under his experimental conditions and on MW basis, the lowest MW frac
tions complexed two to six times more metals than did the high MW
fractions, and that the amounts of divalent metals complexed were three
to four times higher than those of trivalent metals. He also reported
that one-third of the total cation exchange capacity of HA exists in the
non-chelating form indicating that not all acidic groups in the HA par
ticipated in metal complexing.
In a spectrophotometric investigation of the FA fraction from peat,
Mitchell (1967) reported at least one Cu chelate was observed. He
suggested that to complex Cu, both -SH and -C00H groups are required
although the -InT0 group may also be involved. He further found that
the optimum acidity.for complex formation with HA is pH 2.5 to 3.5 and
with FA, pH 6,0. Broadbent and Bradford (1952) used the technique of
functional group methylation with diazomethane and dimethyl sulfate to
show that carboxyl and phenolic groups attached to heterocyclic com
pounds in soil OM extracts are the important functional groups for Cu
bonding. In a later work, Broadbent (1957) used soil as an ion exchange
column for elutriation of OM that was Cu-saturated or Ca-saturated.
Four elutriation peaks were obtained with the Cu-saturated column while
only 2 peaks were obtained with the Ca-saturated one. He concluded that
carboxyl groups complexed both Cu and Ca, but that other functional
groups reacted selectively with Cu to the exclusion of Ca,
Lewis and Broadbent (1961a) used a series of phenolic and carboxylic
acids as model compounds to show that Cu was adsorbed as CuOH+ by


-18-
carboxyl groups whereas Cu was complexed by the phenolic groups.
Results of their sibsequent research (1951b) indicated that carboxyl
and phenolic groups were important in the organic coinplexing of Cu in
soils, but noted that the forms of Cu bound were not as clearly differ
entiated as in the model compounds. Varying acidity of the carboxyl
and phenolic functional groups in the heterogeneous soil system was
suggested as a factor preventing results similar to those obtained for
model compounds. Similar research by Schnitzer (1969) confirmed such a
conclusion.
Wei (1959), indicated that Cu was preferentially adsorbed by OM
until its exchange capacity was satisfied and then by clay minerals.
Davies e_t al. (1969) reported that the bonding strength of Cu by HA
increased as applied Cu content decreased.
Himes and Barber (1957) noticed that where more than one chelating
agent is present, the one which forms the most stable complex will
chelate the most metallic ion until its chelation capacity is reached.
On the other hand, a cation must satisfy two requirements enabling it
to combine appreciably with a chelating ligand. First, an adequate
quantity of the cation must be present in solution or in equilibrium
with the soil solution to permit formation of a significant concentra
tion of metal chelate. Secondly, the chelate of this cation must
possess sufficient stability to exist in equilibrium with the concen
tration of the cation and free ligand in soil solution (Norvell, 1972).
Gamble e_t aJ. (1970) proposed two mechanisms to account for the
2+
Cu -fulvic acid equilibrium:


O OH
In equation 4, the reacting carboxyl is ortho to a reacting phenolic OH
group. In equation 5, two carboxyl groups are adjacent for Cu complex-
ing. The reactions produce a proton which reduces pH of the soil
solution. Schnitzer and Khan (1972) remarked that it is difficult to
decide at this time whether metal humates and fulvates are simple or
chelate complexes. The formal distinction between simple and chelate
complex is often arbitrary, and it is difficult to differentiate between
the two, especially when the same kind of donor groups are involved.
What is important, however, is that humic substances have the capacity
of binding substantial amounts of metals and thus exert considerable
control over the supply and availability of nutrient elements to plants.
Stevenson and Ardakani (1972) have clarified some of the conflict
ing views on roles of OM regarding availability of micronutrients.
According to these workers, metals in the soil that occur in insoluble
combinations with OM are largely those that are bound to components of
the HA fraction while the metals found in soluble complexes are mainly
those associated with FA and/or with individual biochemical molecules
such as organic acids.


-20-
Complexation of Soil Cu with Synthe tic Che la ting Agen ts
Norvell (1972) reported that in calcareous soils the stability of
the Cu-chelates decreases in the order Cu-DITA > Cu-HEDTA= Cu-CDTA >
Cu-EDTA, Cu-EDDKA > Cu-EGTA =Cu-NTA > Cu-CIT Cu-F^ = Cu-P 0 =
Cu-OX.
In more acidic soils, he noticed that the stability of all the
Cu-chelates is reduced because of the decline in free ligand concentra
tions. The relative stability of different Cu-chelates also changes
with pH so that at slightly acid pH values their stability follows the
order of: Cu-HEDTA > Cu-EGTA Cu-DTPA Cu-EDTA = Cu-NTA = Cu-CDTA >
Cu-EDDHA > Cu-?207 Cu-P 01Q = Cu-OX.
-4
By comparison, he estimated that at 10 M concentrations, the
three least effective chelating agents, P207 P310 axid 0X should have
?4
no significant influence on complexation of Cu" in soil solutions. The
2+
effect of CIT on complexation of Cu is not as- clear. DITA, HEDTA,
2+
CDTA, EDTA, EGTA, EDDHA, and NTA would increase complexation of Cu
well above levels characteristic of natural Cu-complexes in soil solu
tion. However, the magnitude of the increase differs greatly among
these chelating agents (Fig. 1).
Chelated Cu to Total Cu Ratio in the Soil Solution
The dominance of organic complexed form of Cu in soil solution and
the very high ratio of chelated Cu to total Cu in the soil solution have
already been discussed (Hodgson _et al. 1965 and 1966). Metal ccmplex-
ing is higher in soil solutions from surface horizons than from sub
surface horizon.
Hodgson et al. (1965) based their studies with coil complexation


LOG RATIO OF CHELATED CU TO CU
pH
p H
i
ho
I
Fig. 1.
Comparison of Cu chelating abilities of 11 chelating agents in
soil solution (Norvell, 1972).


-22-
on eight assumptions of which the most important were:
1) The soil solution, when removed from its native environment,
gives a good representation of the complexing found under
natural conditions.
2) Adsorption of cationic micronutrients onto particulate matter
is not significant.
3) Changes in cation concentration in the soil solution by addi
tion of a radioactive isotope does not measurably alter the
degree of complexing in the soil solution.
4) Dilution of the soil solution during the assay does not change
results appreciably.
Copper Absorption by Plants
2+
Copper is absorbed by plants as the Cu and may be absorbed as
a salt of an organic complex such as EDTA (Tisdale and Nelson, 1971).
When chelated nutrient reaches the root surface, the plant may be
able to liberate the nutrient ion from the chelating agent and absorb
the nutrient (Hodgson, 1968; Chaney et> al., 1972). If, after absorption
of the micronutrient by the plant, the chelating agent does not combine
2+ 2+
with other ions, e.g. Ca and Mg at the root surface, it is postu
lated that the chelate may build up to such a concentration that the
chelating agent and the plant compete for the nutrient (Hodgson, 1968).
Bowen (1969) reported that both Cu and Zn absorption by sugarcane
leaf tissue were characteristic of an active process. Uptake of Cu and
3-
Zn was reduced by low temperature, 2-3-dinitrophenol, N CN and
3-
AsO^ and was completely inhibited by amytal (5-ethyl-5-(3-methylbutyl)-
barbituric acid, Na salt) and nembutal (5-ethyl-5-(2-pentyl)-barbituric


-23-
acid, Na salt). Absorption was found to be a steady-state process over
a period of at least two hours. The absorption rate of both Cu and Zn
-4
increased with concentrations up to about 10 M where the mechanism
became completely saturated.
Interaction Between Cu and Other Elements
3+
Hiatt e_t _al. (1963) reported that A1 at concentrations as low as
0.1 ppm markedly reduced total Cu uptake of wheat roots. This inhibi
tion is caused by the competition between these two ions for adsorption
sites associated with the roots.
On the other hand, when the Cu content in plants reached its opti
mum level, the addition of Cu became toxic to plants (Locascio and
Fiskell, 1966). Fiskell and Leonard (1967) recorded that soluble Cu
in. excess of 0.1 ppm is toxic to citrus roots. Increased rates of
applied Cu resulted in a significant decrease in B, Fe, K and P content,
whereas Ca, Mn, and Mg were not significantly affected.
One of the earliest studies relating to Cu-P interactions was
conducted in Florida by Forsee and Allison (1944). They reported that
Cu contents of leaves and fruit juice of citrus was decreased as the
level of applied superphosphate was increased. The observation that
excessive application of P induced Cu deficiency in many crops has been
confirmed by many workers (Ervin, 1945; Bingham and Martin, 1956;
Bingham and Garber, 1960; Spencer, I960).
Locascio ert al. (1968) provided additional information related to
Cu-P interaction. They reported that the nature of the P source also
contributed to this interaction. Phosphorus from diammonium phosphate
depressed Cu uptake more than that from either concentrated


-24-
superphosphate or ordinary superphosphate. The mechanism of P-induced
Cu deficiency is not unique. Jamison (1944) reported that when P was
present in large amounts, it would fix Cu, so that Cu became less
available to plants. The idea of P-induced Cu fixation was disputed
by other workers. DeKock et al. (1971) studied the Cu-P interaction
in oats. They reported that aggravation of Cu deficiency with the appli
cation of P was due to increasing growth of plants and therefore induced
a higher demand for Cu. They also found that N application could en
hance Cu deficiency.
Fiskell and Westgate (1955) noted that iron chlorosis of crops grown
on sandy soils of Florida was usually a danger signal warning that Cu
was too high and a decrease of P^O^/Cu ratio had taken place. In the
Sanford area, soils having only one pound of available Cu per acre
exhibited Cu-induced iron chlorosis in several crops. Excessively
available Cu in the soil resulted in a stubby root system and the root
surface which was poisoned by excess Cu had reduced ability to absorb
other nutrients. Moore e_t al. (1957) observed that growth of lettuce
at any one level of Cu was influenced by the Fe supply. The toxic
effects of Cu at high levels of supply were decreased by additions of
Fe, but the adverse effect of high Cu was never completely overcome by
Fe additions.
The antagonism between Cu and Mo was also reported. MacKay et al.
(1966) found that a mutual antagonism existed between Cu and Mo for five
crops. Application of Cu aggravated Mo deficiency in spinach and cauli
flower, and apparently the application of Mo enhanced Cu deficiency in
carrot, spinach and lettuce. Giordano et^ al. (1966) reported evidence
indicating that Cu interfered with the role of Mo in the enzymatic
reduction of NO^ in tomato plants.


-2"<-
24-
24-
Measurement of Cu by Cu -Selective Electrode
The use of specific ion electrodes in the study of the soil-water-
plant system is not an entirely new experimental approach. Carlson and
Keeney (1971) cited the works in this field of study of pioneer scien
tists dated back in the 1940's.
2+
At the present time, Cu -selective electrode is considered as a
2+
useful analytical tool such as in the determination of Cu activity
(Orion Research, 1971).
24-
An especially attractive fact is that Cu -selective electrode
24-
measures only the activit}T of unassociated Cu therefore it can be
used directly and elegantly in the study of Cu complexation. Reehnitz
24-
(1969) proposed measurements of Cu activity under noncompiexing
solution conditions and then again in the presence of the complexing
agent. From these measurements and knowledge of the initial concentra
tions of the reagents involved, the formation constant of the resulting
complex could be obtained. He also remarked that situations involving
a series of complexes, additional equilibria, kinetic complications,
etc., can also be handled through proper design of experiments and use
of appropriate computational techniques.
Carlson and Keeney (1971) reported that the potential of the elec-
24-
trochemical cell created by insertion of Cu' -selective electrode and a
reference electrode into a sample solution is the sum of a number of
individual potentials:
hell + h + EJ
(6)
where
is a constant which includes the internal potential of the


-26-
two electrodes and the asymmetry potential of the membrane
E^ is the potential across the membrane
Ej is the liquid junction potential.
The Nernst equation relates the potential across the membrane to the
.2+
activity of Cu :
, RT i s
EM 23 2F 108 A.
1
(7)
where
2.3 RT/2F is Nernst factor (29.58 mv at 25C)
2+
is Cu activity in the sample solution
2+
A^ is Cu activity of the CuS/Ag^S membrane (electrode
membrane).
Since A^ is constant, its contribution to the membrane potential can be
combined with so that
01 RT
E = E + 2.3 ^ log A + E7
cell 2F s J
(8)
As long as E^ does not change as the electrodes are moved from sample
to sample, the change in cell potential will depend only on changes of
2+
Cu activity.
2+ 2+
The limit of detection of Cu activity by Cu -selective elec-
-7 -2 -17
trode is ca. 10 M (about 10 ppm) in unbuffered and ca. 10 M in
buffered solutions (Carlson and Keeney, 1971). Electrode malfunction
-f- 2+ 2+
occurs with Ag and Hg ; and Fe must be held below one tenth of Cu
concentration (Durst, 1969; Orion Research, 1971). The latter is easily
accomplished by adjusting the sample pH to above 4. In some cases, Cl
and Br interfere with electrode operation. Interference is dependent


-27-
on their levels relative to the level of Cu xn the sample, and occurs
only if (Orion Research, 1971):
(Cu2+)(C1 )2 > 1,6 x 10
(Cu2+)(Br~)2 > 1.3 x 10
Because of the fact that activity coefficient of Cu depends on total
ionic strength of the medium (Orion Research, 1971), the maintenance of
a constant ionic strength is necessary if comparable results are to be
obtained. Ionic strength of the sample solution can be controlled by
using supporting electrolyte (Blaedel and Dinwiddie, 1974).


MATERIALS AND METHODS
Field Experiments
Two young Florida pecan orchards were chosen as experiment sites.
One orchard was planted on a Fuquay fine sand (Arenic Plinthic Paleudult)
in Earleton immediately adjacent to an old pecan orchard. The old
pecan orchard had been sprayed with Bordeaux mixture in 1960 and 1967.
Copper treatments prior to 1950 are unknown. The second was planted on
an Apopka fine sand (Grossarenic Paleudult) in Hawthorne that had been
in sporadic cultivation for more than 75 years. At least once in the
past 20 years, a complete micronutrient frit (including Cu) had been
applied to the area.
Yearly background fertilization was not the same in the two or
chards. At Earleton, rate of yearly fertilization during the last 5
years varied from 300 pounds to 500 pounds per acre of a fertilizer in
which, percentage of each component was changed from year to year but
averaged 70 lb N, 16 lb P^O,., an<^ ^0 lb K^O per acre annually. The
orchard was last limed (2000 lb/A of dolomite) in November 1965.
In the Hawthorne orchard, 300 lb/A of 15-4-15 fertilizer was broad
cast every spring and 150 lb/A NH^NO^ every July. In addition, about
4 lb/tree of NH^NO^, depending upon tree size, were applied to the
pecans in February 1974. This orchard had also been limed with 1 ton/A
of dolomite in November 1965.
The effect of Cu fertilization on these two orchards was observed
-28-


-29-
over a period of three growing seasons, from March 1973 to December
1975.
Apopka Fine Sand (Hawthorne Orchard)
Pecan trees (Carya illinoensis L.) in this orchard were grouped
into 7 blocks. Each block consisted of 6 trees of the same kind, either
grafted cultivars or open pollenated seedlings of a cultivar. Tree
circumferences which ranged from 20 to 50 cm were measured at a
120-cm height with a flexible steel tape prior to grouping the trees
for the experiment. These measurements were used to divide each block
of 6 trees into two groups of three of approximately the same size.
Copper was applied as CuSO 5H0 (25.45% Cu) to the soil surface
4 2
2
around the tree covering an area of about 12.6 m at rates to provide
the equivalent of 0, 1, and 3 ppm per 15 cm depth of soil. The small
amount of Cu applied was first mixed with soil in order to insure a more
even distribution spread over the soil surface. Copper application was
made on March 3, 1973.
Tree growth was determined by remeasuring the circumference of each
tree during the winters of 1973, 1974, and 1975 at 120-cm height when
pecan trees were dormant. Leaf and soil samples were collected for
laboratory analyses, details for which are described later.
Fuquay Fine Sand (Earleton Orchard)
Although the experiments in both orchards were designed in a simi
lar manner, only two rates of Cu, 0 and 3 ppm, were used in the Earleton
orchard and the trees were grouped into four 6-tree blocks. The trees
of each block were about the same size, but they were not necessarily


-30-
of the same cultivar. All trees were grafted and ranged in size from
25 to 65 cm in circumference at 120-cm height. The culture of the two
orchards was also different. The Hawthorn orchard was disked regularly
to control weeds while the Earleton orchard was planted to Pensacola
bahiagrass (Paspalum notatum, Flugge) and mixed clovers that were grazed
by cattle or mowed without ever disturbing the soil.
Greenhouse Experiments
Five different soil types from Vietnam were used in this study.
Pots containing 800 g soil were given a uniform basic fertilization,
Table 4. Macronutrients (N, P, K) in powdery or crystalline forms were
mixed thoroughly with soils by using a revolving drum. Micronutrients
were applied to the soil surface in the form of a solution prior to
planting.
Copper was applied at 3 rates: 0, 0.3, and 1.8 ppm (0, 0.67, and
4.04 kg/ha Cu or 0, 2.63, and 15.78 kg/ha CuSO^-SH^O) by applying Cu
solution to the soil surface.
The soils studied and the number of replications (limited by the
quantities of soil available) were as follows:
1) Ninh-Chu sand (Typic Psammaquent), 6 replications;
2) Trang-Bang sandy loam (Aerie Paleaquult), 3 replications;
3) Thu-Duc loamy fine sand (Typic Paleustult), 2 replications;
4) Dalat clay (Aquic Haplohumox), 2 replications; and
5) Eakmat clay (Typic Haplustox), 2 replications.
Onion (Allium sp.), a crop known to have a high Cu requirement
(Anon., 1966), was planted in all pots but was discontinued because of
fungal diseases. The soils were then permitted to dry before replanting


Table. 4. Basic fertilization applied to Vietnamese soils.
Material
Rate (Elemental basis)
Source
Flement
Field
Pet
kg/ha
ppm
NH.N0o
4 j
N
135
36.5
(NH4)2nro4
N
} 135
23.5
(NH4)2Hp04
P
26.0
K2S04
K
135
50.0
MnSO.*H0
4 2
Mn
0.94
0.4
FeSO,7H0
4 2
Fe
0.65
0.4
ZnSO 7H 0
4 2
Zn
0.65
0.3
H BO
B
0.26
0.1
3 3
*
Florida Cooperation Extension Service, Institute of Food and
Agricultural Sciences, University of Florida, Circular 176B.


-32-
Lo corn (Zea mays, L.). Two seeds, of 'Pioneer 3369A', pretreated with
captan and malathion, were placed in each pet. Four days after germina
tion all pots were tninned to one plant each. Two weeks after seeding,
20 ml of a nutrient solution containing the equivalent of 53 ppm N,
26 ppm P, 49 ppm K, 50 ppm Ca, 30 ppm Mg, and 40 ppm S was added to
each pot.
Plant Tissue Sampling, Preparation, and Analyses
Sampling and Preparation
1. Pecan
Pecan leaf samples were collected from the two experiments in July
of 1973, 1974, and 1975. Each foliar sample consisted of about 100
mature and healthy leaflets selected from the median leaflet and the
median leaf on each twig.
The freshly picked leaves were dried at 65C for a period of 7
days, then ground in a stainless steel mill using a 60-mesh stainless
steel screen. Finely ground samples were stored in capped glass jars
in the laboratory prior to analysis.
2. Grass
Pensacola bahiagrass was sampled from beneath the trees at the
Earleton orchard, in the zone where either 0 or 3 ppm Cu had been
applied. The grass was in leafy vegetative stage, 20 to 25 cm tall at
the time of harvest. It was selectively cut juSt above the soil sur
face, contamination with other plant species being carefully avoided.
No attempt was made to measure grass yield. Technique of sample pre
paration was the same as that for pecan leaves.


-33-
3. Corn
Eight weeks after planting, the entire above-ground portion of each
plant was collected, washed with distilled water, dried and ground in
the same manner as the pecan leaves and bahiagrass.
Analyses
All plant tissues were redried in an oven at 65C for at least 2
hours before weighing for laboratory analysis (Jones and Steyn, 1973).
Five grams of dried, ground samples placed in 50-ml Pyrex glass beakers,
were ashed in a muffle furnace(Type 1600 Thermolyne) at 475 15C for
8 hours (Issac and Jones, 1972). The ash samples were treated with
20 ml of 5 N HC1 plus 5 ml of concentrated HNO^ and taken to dryness
on an electric hot plate. Excess carbon was removed from samples by
adding 5 ml of 30% and evaporating on the hot plate.This step was
repeated if significant quantities of carbon persisted. Then, 10 ml of
5 N HC1 were added and following evaporation, the residue was dried to
dehydrate silica. The residue was treated with 0.1 N HC1, warmed to
dissolve salts, and filtered through a Nalgene funnel, using No. 42
Whatman paper. Quantity of Cu, Zn, Mn, Fe, Ca, and Mg were determined
on the filtrate by atomic absorption spectroscopy (AA). A model B,
Beckman flame emission spectrophotometer was used to determine K in the
filtrate and P was determined by the ammonium molybdate-ascorbic acid
procedure (Watanabe and Olsen, 1965) using a Model 20, Bausch and Lorab
colorimeter at 660 nm.


-34-
Soil Sampling, Preparation, and Analyses
Sampling and Preparation
In Hawthorneand Earleton orchards, four 15-cm deep soil cores,
taken from the Cu treated zone of individual pecan trees, were mixed
thoroughly and used as a composite sample. Soil samples were taken
from 6 replications at Hawthorneand 4 at Earleton, 1 year after Cu
application.
Twenty-seven and a half months after Cu fertilization (June 18,
1975), the top 15 cm of the soil profile in Earleton orchard were
sampled in 2.5-cm increments. Six replications were collected. Five
months following that (November 11, 1975), samples were again taken to
represent the 0 7.5 and 0 15 cm depths from Earleton and Hawthorne
orchard, respectively. These samples were taken from treatments with
the highest and lowest OM contents based on analysis of earlier sam
ples. These samples were to be used in Cu coraplexation studies.
In the greenhouse study with Vietnamese soils, after the corn
harvest, the whole soil in each pot was air dried, screened through a
2-mm aluminum seive and stored in paper bags under laboratory atmos
pheric conditions for various studies.
Analyses
Preliminary chemical analyses
Soil pH in H^O and extractable Ca, Mg, K, and P by 0.7 N NH^OAc in
0.45 N HOAc buffered at pH 4.8, were determined by the procedures given
in Bulletin No. 102 Southern Cooperative Series (Page, 1965). Soil OM
was determined by the K^Cr^O^-H.^S)^ wet combustion method (Jackson, 1958).


-35-
Micronutrient analyses
Aqua Regia Dissolution
Micronutrients reported in this dissertation are Cu, Mn, Zn, and
Fe. Value representing the total content of each of these micronu-
trients was obtained from aqua regia dissolution (Gammon, 1976).
Duplicate 2-g samples, treated with 10 ml concentrated HC1 plus
5 ml concentrated HNO^, were brought to dryness on a hot plate. Mineral
salts were dissolved in 0.1 N HC1 and filtered through a Nalgene funnel
and No. 42 Whatman paper. The filtrates were analyzed by AA for Cu, Zn,
Mn, and Fe.
Chelating Agent Extraction
Duplicate 20-g samples and 40 ml EDTA-triethanolamine extractant,
consisting of 0.05 M EDTA, 0.01 M CaCl^ and 0.23 M triethanolamine (TEA)
buffered at pH 8.5, were placed in a 125-ml Pyrex Erlenmeyer flask and
shaken on an Eberbach shaker at 140 reciprocations per minute with a
stroke length of 4.5 cm for 30 minutes (Lam and Gammon, 1976). The
suspensions were centrifuged at 2000 rpm for 10 minutes and filtered
through No. 42 Whatman paper. Copper was determined on the filtrate
by AA.
Dilute Hydrochloric Acid Extraction
1. Extraction by 0.1 N HC1
Duplicate 2.5-g soil samples and 25 ml 0.1 N HC1 were placed in
50-ml Pyrex Erlenmeyer flasks and shaken for 15 minutes. The extracts
after filtration were analyzed for Cu by AA. The results represented
the amount of Cu held by OM (Fiskell, 1965).


2. Extraction by 1.0 N HC1
The use of this IIC1 concentration in the extraction was an attempt
to obtain a better correlation between *-he data of soil and plant analy
ses than had been observed with more dilute acid extracts.
Saturation Extraction
Six replicates of 100-g soil samples were placed in plastic 0.2-p
filter units (Nalgene). Deionized water or 0.01 M CaSO. solution was
4
added to produce a saturated condition. The unit was capped to prevent
evaporation and left overnight. Suction (ca. 62 cm Hg) was then applied
to remove ca. 10 ml of soil solution. Additional 10 ml of H?0 or 0.01 M
CaSO^ was added and the suction reapplied. This step was repeated until
a total volume of soil extracts which was slightly less than the original
volume added to the soil sample was collected (Gammon, 1576). The soil
solutions extracted from the same soil were combined and mixed thoroughly
in order to have a sample large enough for the following determinations:
2+
1) Copper titrimetric analysis, using Cu -selective electrode;
2) Total cation concentration by conductivity bridgei
3) Organic matter in the soil solution by carbon analyzer $
4) Fraction size separation by gel permeation chromatography$ and
5) Total Cu in the soil solution by AA.
Copper Titrimetric Analysis
1. Apparatus
2+
A commercial Cu -selective electrode (Model 94-29, Orion Research)
and a double junction reference electrode (Model 90-20, Orion Research)
were used in these determinations. The electrode leads were connected


-37-
to a digital pH meter (Model 701, Orion Research). All electrode poten
tials were read at room temperature. Reproducible stirring was achieved
by using a heat insulated magnetic stirrer and Teflon-covered bar.
2. Reagents
Copper solutions were prepared by successive 10-fold dilutions,
24-
beginning with a primary standard 1000 ppm Cu solution (Matheson
2 -1
Coleman and Bell). Solutions ranged in concentrations from 10 to 10
24
ppm Cu were stored in new 100-ml Nalgene plastic volumetric flasks to
24
prevent the loss of Cu through adsorption on the inner walls of con
tainers (Blaedel and Dinwiddie, 1974).
In order to maintain a constant ionic strength in the working range
24
of the standard curve, a series of Cu standards in the supporting
electrolyte were prepared by mixing 10 ml Cu solution of various con
centrations and 90 ml 0.01 M CaSO^ in 100-ml plastic Nalgene volumetric
2 -2
flasks to provide a Cu concentration range of 10 to 10 ppm.
3. Procedure
Preparation of standard curve
A 25-ml aliquot of each standard solution was placed in a 100-ml
plastic Nalgene beaker, which was put on the heat insulated magnetic
stirrer and the electrode potential was measured. The plot of electrode
potentials of standards vs. log.^ of standard concentrations was used
as a standard curve. This curve was redetermined daily prior to the
titration of unknown samples.
Solution studies
The effects of two chelating agents (EDTA and DTPA) and 0.01 M


-38-
CaSO^ (a soil extractant) on the activity of Cu^' were studied.
A 25-ml aliquot of 5 x 10 M EDTA or 5 x 10 ^ M DTPA plus 1 ml of
0.5 N K^SO^ (a supporting electrolyte) was placed in a 100-ml plastic
2+
Nalgene beaker and the potential for Cu -selective electrode read,
2+
followed by a titration with 100 ppm Cu solution without the support
ing electrolyte until the increase of electrode potential indicated a
24-
recovery of added Cu from the standard curve, identical to that
observed in the presence of the electrolyte alone.
No supporting electrolyte was necessary in the 0.01 M CaSO. solu-
4
24-
tion because added CuCNO^)^ from 100 ppm Cu standard was too low to
cause a significant change in the ionic strength of the sample solution.
Between titrations, the electrodes were cleaned by rinsing with a
stream of distilled water from a squeeze bottle, followed by immersion
in 0.025 M H?S0^, which was stirred until the electrode response reached
a constant value, a value which was determined daily. The electrodes
were then removed from the acid, rinsed with distilled water, blotted
dry with a tissue and then immersed in the solution to be measured.
When not in use, the electrodes were stored dry in air as specified by
the manufacturer.
When the electrode potential of 0.025 M HS0. did not reach con-
4
24-
stant value, the Cu -selective electrode surface was wet polished by
hand with a piece of abrasive plastic ca. 2.5 x 2.5 cm (Orion Research)
for 30 seconds. This was repeated, if necessary, until a constant value
was obtained.
The pH of the solutions before and after titration were checked by
using a combination pH electrode (Fisher, Model Microprobe No. 13-639-
92) connected to a Beckman Zeromatic pH meter.


-39-
Saturated soil solution extract studies
A 25-ml aliquot of the saturated soil solution extract plus 1 ml
0.5 N K^SO^ was utilized for potential reading and titration, using
the same technique as described above.
2+ 2+
Total Cu added was plotted against Cu remaining in the soil extract
by using linear regression analysis. Each curve consisted of two por-
2+
tions: the top portion of the curve showed the normal response to Cu
not complexed while the lower portion showed the effect of complexing
agent(s). The breakpoint of the curve was obtained by extrapolating
its two portions. Points near the breakpoint were omitted since this
2+
portion is curvilinear. The percentage of Cu complexed from total
2+ 2+
added Cu at the breakpoint was termed chelated Cu to total added
2d" ,
Cu ratio (CTR).
The complexation ability of the soil extract could be compared with
that of EDTA or DTPA by use of the equation:
L x Cu,
Complexation ability of the soil extract, mole =
Cu.
(9)
where
L is the quantity of synthetic chelating agent in 25 ml solu
tion, in mole
2+
Cu is the quantity of Cu complexed by L, in mole
Li
2+
Cu is the quantity of Cu complexed by ligands in 25 ml soil
u
extract, in mole.
Total Cation Concentration in the Soil Extract
Total cation concentration in the soil extract was calculated from


electrical conductivity (EC) of soluble salts in the sample solution
which, in turn, was calculated from cell resistances (Bower and Wilcox,
1965) obtained by use of a conductivity bridge (Beckman, Model RC 16B2):
0.0014118 x R
EC, mho/'cm (at 25C) = (10)
R
ext
Total cation concentration, meq/1 = 10 x EC, mmho/cm (11)
where
0.0014118 is the EC of the standard 0.01 N KC1 solution in mho/cm
at 25cC
R is the cell resistance when the conductivity cell filled
std J
with standard 0.01 N KC1 solution
R ^ is the cell resistance when the conductivity cell filled
ext J
with sample solution.
Organic Matter Measurement
Duplicate 75-ml aliquots of saturation extract were brought to
dryness. Dry weights of the residues were recorded prior to the C
measurement which was determined by dry combustion method and performed
on a high-temperature induction furnace (Leco, Model 100) using iron
and tin accelerators (Allison e_t al. 1965). The %0M was calculated
from the equation:
%0M = %C x 1.724 (12)
Fractionation by Gel Permeation Chromatography
Chromatograms of the soil extracts were obtained from a liquid
chromatograph (Water Associates, Model ALC-202) under the following


-41-
operating conditions:
1) Length of column : 122 cm.
2) Stationary phase : Porasil EX (75 125 p).
3) Mobile phase : dionized, degased water.
4) Flow rate : 0.4 ml per minute.
5) Detector : UV absorption detector. The UV detector was de
signed for operation at one of two constant wavelengths: 254
or 280 nm. All chromatograms reported in this study were
obtained at the 280 nm setting.
Total Cu in the Soil Extract
The total Cu was obtained directly from the saturation extract by
use of an atomic absorption spectrophotometer (Model 503, Perkin Elmer).
Statistical Analyses
Data collected from the field experiments and greenhouse trial
were subjected to statistical analyses by analysis of variance (ANOVA)
and Duncan's multiple range test (DMRT).
All statistical analyses were executed under the Statistical
Analysis System (Barr and Goodnight, 1972). Linear regression analysis
which was used in the titration study was performed by using a program
mable hand calculator (Model 25, Hewlett-Packard), following the pro
cedure outlined by the manufacturer (Hewlett-Packard, 1975).


RESULTS AND DISCUSSION
Field Experiments
Fuquay fine sand contained mere extractable nutrients than did
Apopka fine sand. The nutrient contents of both soils were within the
moderate range for Florida soils (Table 5) In soil samples collected
under individual trees, the Fuquay fine sand OM content in the top
15-cm surface horizon ranged from 2.07 to 3.14% averaging 2.36%. The
top 7.5 cm of the soil is considerably higher in OM content and ranged
2.60 to 4.30% as compared to a range of 1.29 to 2.06% of the next 7.5 cm
layer. This accumulation of OM in the surface is in direct contrast to
the Apopka fine sand which was disked regularly and hence the 0 15 cm
horizon was of uniform OM content, ranging from 0.92 to 1.97%, averag
ing 1.39%. The significance of these OM differences will be discussed
later.
The extractable Cu values of soil samples taken 12 months after
CuSO, treatment are given in Table 6. The values would appear to be
adequate based on the minimum level for sensitive crops of 0.2 ppm for
DTPA-TEA extraction at pH 7.3 established by Follett and Lindsay (1970).
Use of EDTA-TEA pH 8.5 extractant is apparently a stronger extractant
for Cu as it extracted about twice as much Cu as the DTPA-TEA at pH 7.3
(Lam and Gammon, 1976). However, a 10-fold difference between extract
ants would be necessary if the values in Table 6 were to indicate an
inadequate Cu level by the Follett and Lindsay (1970) standards. The
-42-


Table 5. Some properties of the soils selected for investigation.
Soil
Classification
pH(H20)
Organic
matter
NH

^OAc extractable
N HC1 extractab
Ca
Mg
K
P
Cu
Zn
Mn
%
*
ppm
Florida soils
Apopka
Grossarenic Paleudult
5.8
1.39
332
34.6
28.3
7.8
2.3
22.7
35.1
Fuquay
Arenic Plinthic Paleudult 5.5
2.36
391
62.8
68.8
6.2
2.3
13.4
22.0
4-
Vietnamese soils'
Ninh-Chu
Typic Psammaquent
7.8
0.19
32800
1590.0
83.9
112.0
1.1
2.8
58.5
Trang-Bang
Aerie Palaquult
5.1
0.96
136
16.2
13.3
9.4
1.0
2.4
9.8
Thu-Duc
Typic Paleustult
5.2
0.33
52
12.5
11.2
5.1
0.5
0.6
0.7
Dalat
Aquic Haplohumox
5.2
3.92
38
71.2
23.0
2.9
2.5
0.9
0.8
Eakmat
Typic Haplustox
5.5
1.42
62
172.0
118.0
6.0
7.3
2.7
12.0
£
Each value is the average of 4-6 determinations from separate but nearby sites.
.L
Each value is the average of 2-7 determinations from one composite sample.


-44-
Table 6. Levels of Cu in soil at Hawthorne and Earleton orchards one
year after CuSO^ application.
Soil extractant
Treatment
Aqua regia
0.1 N HC1 1.0N HC1
EDTA-TEA
Cu, ppm
0
1.7b+
k
Apopka fine sand
1.0c
2.3b
1.5c
1
3.4a
1.4b
2.4b
2.5b
3
3.8a
2.9a
3.6a
3.1a
0
3.7b
Fuquay fine sand^"
1.3b
2.3b
1.3b
3
6.3a
2.5a
3.6a
4.2a
k
Each value is the average of 6 determinations, Hawthorne orchard.
4-
Values in column for each location not followed by the same
letter are significantly different at 5% level according to
DMRT. -
Each value is the average of 4 determinations, Earleton orchard.


-45-
data show the Cu level increased following Cu treatments and also tend
to confirm, within the variation error, that most of the Cu added is
present in the 0 15 cm soil depth.
Response of Pecan Trees to Cu Application
Response of pecan trees to Cu treatments was examined by using two
parameters: Cu level in leaves and tree growth.
Copper levels in leaves
Hawthorne Orchard
No significant response to treatment was found 1 year after Cu
application. There was evidence that Cu levels in the leaves varied
with the cultivar (Table 7). Grafted 'Kernodle' had consistently higher
levels of Cu in the leaves throughout the 3-year experiment, whereas
'President' seedlings were usually the lowest. However in subsequent
years, there was a marked increase in the Cu level of President seed
lings grown on soils receiving 3 ppm Cu (Table 8). The delayed response
to soil application of Cu is shown by the increasing level of leaf Cu
with time. Only during the third year, did the overall Cu level in the
leaves of trees receiving 3 ppm Cu on the soil become significantly
higher than that of the first year.
Earleton Orchard
'Desirable' grafts made up 58% of the trees in this experiment.
The remaining trees consisted of 7 different cultivars. No attempt was
made to group the trees by cultivar. Only O-and 3-ppm treatments were
used, because of the limited number of trees available at this site.


-46-
Table 7. Copper levels in leaves of different pecan cultivars in
Hawthorne orchard in the first year after CuSO^ application,
average of all treatments.
Cultivar
Cu in leaves*
ppm
Kernodle graft
10.3aT
Desirable graft
8.7ab
Moreland graft
9.2a
Desirable seedling
9.4a
Cape Feare seedling
8.7ab
Moreland seedling
8.6ab
President seedling
7.3b
k
Each value is the average of 6 determinations.
Values not followed by the same letter are significantly
different at 5% level according to DMRT.


-47-
Table 8.
Effect of cultivar and treatment on Cu levels in pecan leaves
in Hawthorne orchard.
Cultivar
Year sampled
1973
1974
1975
Control
Kernodle graft
10.8a1'
9.5abcd
9.5ab
Desirable graft
8.8a
9.8abcd
8.8ab
Moreland graft
9.3a
9.8abcd
9.3ab
Desirable seedling
10.8a
9.8abcd
9. Oab
Cape Feare seedling
8.0a
10.Oabc
9.3ab
Moreland seedling
7.8a
7.5cd
9.8ab
President seedling
7.0a
7.3d
8.0b
Overall mean
8.9B*
9. IB
9.IB
1 ppm Cu application
Kernodle graft
10.0a
9.5abcd
10.Oab
Desirable graft
8.0a
8.3abcd
9.3b
Moreland graft
9.0a
8.8abcd
8.0b
Desirable seedling
9.3a
9.Oabcd
8.0b
Cape Feare seedling
9.3a
9.5abcd
8.5b
Moreland seedling
8.5a
7.8bcd
8.0b
President seedling
7.5a
7.5cd
7.3b
Overall mean
8.8B
8.6B
8.4B


Table 3 (Continued)
Cultivar
Year sampled
1973
1974
1975
3 ppm Cu
application
Keraodle graft
10.3a
10.8a
lO.Oab
Desirable graft
9.3a
9. Gabcd
14.8a
Moreland graft
9.3a
10.5a
9. Oab
Desirable seedling
8.3a
9.Oabcd
8.5b
Cape Feare seedling
8.8a
9.8abcd
10.Cab
Moreland seedling
9.5a
9.3abcd
10.8ab
President seedling
7.3a
10.3ab
12.8ab
Overall mean
8.9S
9.8AB
10.8A
*
Each value is the average of 2 determinations.
+
Values in column not followed by the same letter are significantly
different at 5% level according to DMRT.
TOverall means not followed by the same letter are significantly
different at 5% level according to DMRT.


-ny-
Reported Cu levels in the leaves of this orchard are shown in Table 9.
The significant difference in leaf Cu attributed to treatment in the
first year after Cu application may have been a response to favorable
moisture conditions which promoted root growth near the soil surface.
The following 2 springs were unusually dry and no significant difference
was observed. A similar response to soil moisture has influenced Mg
levels in pecan leaves (Gammon et al., 1960). Although the level of Cu
in the leaves increased in the succeeding year and the average Cu level
in the third year was significantly higher than that of the two previous
years, this increase was attributed to factors influencing growth other
than the Cu applications since the Cu level in the leaves without Cu
treatment was also increasing.
In general, the Cu level in the leaves from both orchards, even
3 years after Cu fertilization, was low when compared to the normal
range (21 28 ppm) reported by Alben and Hammer (1939). Broadcast Cu
on the soil surface appeared not to reach the active root zone under
most conditions and as a consequence there was little increase in the
levels of Cu in the pecan leaves.
C-rowth response
The. growth response was evaluated by percentage increase in trunk
circumference (IC) measured at approximately 120-cm height which was
measured annually during the dormant season. The IC value was computed
as follows:
Circumference at n
J. L>
th
year Circumference before Cu application
Circumference before Cu application
x 100
(13)
This parameter wTas considered to be indicative of tree growth with a


Table 9.
Copper levels in pecan leaves in Earleton orchard.
Treatment
Year sampled
1973 1974 1975
Cu, ppm
+
0
6.2b'
6,9a
7.4a
3
7.1a
7.2a
7.9a
Mean
6.6B*
7. OB
7.7A
Each value is average of 12 determinations
4-
Average values in column not followed by the same letter are
significantly different at 5% level according to DMRT.
+Average values in line not followed by the same letter are
significantly different at 5% level according to D?-GIT.


-51-
correction for the differences in tree size at the time the experiment
was initiated.
The IC values are reported in Table 10. Although there is some
indication of responses to the Cu fertilization, the increase of IC is
not significant. Differences in rate of growth are also noted for dif
ferent cultivars and probably are the result of general vigor of the
cultivar, leaf disease resistance, and size of nut crop set. A lower
N supply and larger nut crops (Table 10) could well be factors slowing
growth in the Earleton orchard.
The ANOVA for the growth response is presented in Table 11. None
of the treatments reached the 5% level of significant difference but
there is a consistent increase in the probability of tree response to
Cu treatment in both orchards from the first to the third year of the
experiment. This trend, plus the fact that the Cu level in the leaves
from soil receiving 3 ppm Cu (Table 8) was significantly higher in the
third year, posed two questions:
1) How much time was required for Cu to move from the soil surface
to the active root zone?
2) Was the applied Cu readily available for plant absorption?
The following sections will provide information on the data col
lected to help answer these questions.
Distribution of Applied Cu in Surface Layers of Fuquay Fine Sand
The distribution of Cu in Fuquay fine sand (Earleton orchard) 27.5
months after CuSO^ application was studied, using soil samples taken in
2.5-cm increments from the surface to a depth of 15.0 cm. This kind of
study could not be made at Hawthorne because the soil was regularly


-52-
Table 10. Growth responses of pecans to CuSO^ application.
Cu Increase in trunk circumference (IC)
Cultivar Treatment
First year
Second year
Third year
ppm
<7
Hawthorne orchard
All
0
60
110
140
All
1
70
130
170
All
3
60
120
180
Kernodle graft
All
70
140
190
Desirable graft
All
70
140
190
Moreland graft
All
70
140
170
Desirable seedling
All
40
70
100
Cape Feare seedling
All
70
140
190
Moreland seedling
All
50
110
140
President seedling
All
60
120
160
Earleton orchard
All
0
30
40
70
All
3
20
50
80


-53-
Table 11. Analysis of variance for growth responses of pecans.
Source of
variation
df
Sum of Mean
squares square
F
value
Prob > F
Hawthorne Orchard
First
year
Treatment
2
0.021
0.010
Residual
21
0.981
0.047
Cultivar
6
0.205
0.034
Residual
21
0.981
0.047
Second
year
Treatment
2
0.062
0.031
Residual
21
1.427
0.068
Cultivar
6
0.812
0.135
Residual
21
1.427
0.068
Third
year
Treatment
2
0.352
0.176
Residual
21
2.936
0.140
Cultivar
6
1.747
0.291
Residual
21
2.936
0.140
0.22
0.73
0.46
1.99
1.26
0.80
0.63
0.65
0.11
0.30
2.08
0.10


*54-
Table 11 (Continued)
Source of
variation
df
Sum of
squares
Mean
square
F
value
P rob > F
Earleton orchard
Fir
st year
Treatment
-t
X
0.003
0.003
0.65
0.56
Residual
22
0.102
0,005
Second year
Treatment
1
0.005
0.005
1.05
0.33
Residua]
22
0.107
0.005
Third year
Treatment
1
0.052
0.052
1.15
0.30
Residual
22.
1.002
0.046


-55-
disked to a depth of 10 to 15 cm in order to control weeds. At Earleton,
the soil was not disturbed and weed and grass growth was controlled by
grazing or regular mowing. The data are presented in Table 12.
In all cases, Cu in the top 5.0 cm accounted for about 60% of Cu
content of the first 15.0 cm of the soil profile and the top 7.5 cm
accounted for approximately 80% of this Cu. Although the level of Cu
in each 2.5 cm layer was higher in the treated than in the untreated
soils, the differences were statistically significant only to a depth
of 7.5 cm (Table 13). It is evident that most of the applied Cu has
remained very near the soil surface and hence it would remain largely
unavailable to tree roots. In the top 7.5 cm of the surface soil, only
old pecan roots, which did not bear any root hairs were found. Such
roots would not absorb nutrients.
Distribution of other nutrients in this soil is also of interest.
The distribution of Zn is similar to that of Cu although Zn is more
mobile than Cu (Hawkes and Webb, 1962). This response is attributed to
the small quantities that have been applied from time to time in the
mixed fertilizer (Table 12). The accumulation of Mn near or in the soil
surface may be related to the slightly higher soil pH and to the reduc-
4+ 24-
tion of Mn to Mn when the soil becomes saturated with water. Under
2+
such conditions, Mn may be carried to the surface by evaporation and
4+
reoxidized to insoluble Mn (Amir and Gammon, 1976). Other elements
applied as fertilizer Ca, Mg, K, and P have accumulated in the soil
surface to some extent but these retentions are probably more closely
linked to the higher OM and the ability of this material to retain ions
by its properties of exchange capacity. Annual leaf drops will also
contribute to the accumulation of nutrients at the soil surface.


Table 12. Distribution of Cu and other nutrients in 0-15 cm of the soil
profile in the Earleton orchard.
Soil pH
depth (^0)
OM
0.1 N HC1 extractable
Cu Zn Mn Fe Ca Mg K P
cm 7o ppm
Control
0- 2.5
5.9
4.12
1.4
34.6
33.3
39.3
998
113
179
98
2.5-5.0
5.8
3.40
1.3
29.6
29.8
48.2
818
92
96
90
5.0-7.5
5.7
2.55
0.8
16.8
16.7
64.3
1146
47
51
65
7.5-10.0
5.7
2.00
0.4
7.8
7.8
72.4
411
30
37
55
10.0-12.5
5.7
1.50
0.1
4.1
5.1
68.6
291
20
28
47
12.5-15.0
5.7
1.46
0.1
3 ppm
6.0 5.3
Cu application
55.8
266
21
27
33
0- 2.5
5.9
4.72
6.6
33.8
37.4
33.7
1089
134
203
68
2.5-5.0
5.8
3.45
6.1
25.8
26.4
43.6
914
90
89
78
5.0-7.5
5.8
2.53
3.8
13.4
16.0
55.1
672
53
50
61
7.5-10.0
5.7
2.11
2.0
8.3
8.2
51.1
456
33
34
43
10.0-12.5
5.7
1.65
1.3
4.9
5.3
43.2
39S
21
33
27
12.5-15.0
5.7
1.43
0.8
5.3
4.3
35.9
213
16
31
15
*
Each
value
represents the
average
from 6
pi'of iles.


Table 12 (Extended)
,.S7-
1.0 N HC1 extractable NH.OAc extractable
~ 4_
Cu Zn Mn Fe Ca Mg K P Ca Mg K P
ppm
Control
2.5
35.3
54.6
268
939
104
150
118
536
141
150
5.4
1.7
27.2
43.5
278
789
75
84
109
462
97
86
4.3
1.2
16.3
21.0
297
505
45
50
90
346
54
52
3.6
0.5
6.2
10.3
304
399
30
35
77
248
35
35
4.2
0.2
4.0
7.4
320
284
20
32
68
188
26
29
3.9
0.1
3.5
7.8
321
263
18
30
51
153
22
27
2.9
3 ppm
Cu applicati.
OTl
11.1
31.7
49.6
256
1082
132
174
99
708
174
181
5.6
9.3
22.8
34.7
265
£82
81
84
87
549
91
87
3.3
5.3
11.3
15.7
283
665
53
47
73
406
56
47
3.2
2.8
6.2
10.9
296
490
33
34
60
302
38
36
3.4
1.6
3.2
7.7
312
314
22
29
38
203
26
31
2.4
1.1
3.7
7.0
315
210
17
30
24
146
21
31
1.6


- JQ
Table 13.
Copper ira 0-15 cm of the soil profile of the Earleton orchard
27.5 months after CuSO^ .application.*
Soil depth
Method of extraction
Aqua regia
0.1 N HCi
3.0 K HCI
EDIA-TEA
n..
Control
0-2.5
3.3bc^
1.4cd
2.5c
2.7cq
2.5-5.0
2.3c
1.3cd
1.7c
1.8c.d
5.0-7.5
1, Sc
0.8cd
1.2c
1.2d
7.5-10.0
1.2c
0.4c d
0.5c
0.5d
10.0-12.5
0.8c
0. Id
0.2c
0.5d
12.5-15.0
0.7c
0. Id
0.1c.
0.5d
Overall mean
1.8
0.7
1.0
1.2
3 ppm Cu application
0-2.5
13.3a
6.6a
11.1a
10.3a
2.5-5.0
11.0a
6. la
9.3a
7.7b
5.0-7.5
6.3b
3.8b
5.3 b
4.3c
7.5-10.0
3.8bc
2.0c
2.8c
2.2cd
10.0-12.5
2.7c
1.3cd
1.6c
1. Id
12.5-15.0
2.3c
0.8cd
1.1c
0.8d
Overall mean
6.6
3.4
5.2
4.A
k
Each value is the average of 6 determinations.
*r
Values in column not followed by the same letter are significantly
different at 5% level according to DMRT.


-59-
Availability of Applied Cu to Plants
Samples of Pensacola bahiagrass were taken in the Earleton orchard
under pecan trees fertilized with 0 and 3 ppm Cu to determine if in
fact the applied Cu was available for root uptake. Analysis of the
grass for Cu (Table 14) showed that the applied Cu was available and
increased the total Cu in plant tissue. Although this grass is capable
of rooting to great depth, most of the roots are concentrated near the
soil surface, where most of the applied Cu was found. This is taken as
additional evidence that the lack of a significant response in the pecan
trees was because of the strong retention of Cu in the surface soil
above the main tree rooting zone. The apparent response to 3-ppm Cu in
the Hawthorne orchard during the third season may have been accentuated
by physical movement of Cu to the rooting zone from the disking opera
tion .
Data from the bahiagrass analysis were used to examine the correla
tion between the Cu content of the grass and the different methods of
soil extraction (Table 15). All methods of soil extraction proved to
be significantly correlated with the Cu level in the bahiagrass at 0 -
2.5 cm and 2.5 5.0 cm depth. The HC1 extractions seemed to be slightly
better correlated than aqua regia and EDTA-TEA pH 8.5. These correla
tions provide more evidence that the grass roots were actively taking up
Cu from the surface soil, an area not likely to be utilized by the pecan
tree roots.
Greenhouse Trial
In studying plant response to a nutrient application, a field
experiment would be preferred to a greenhouse trial because many


6U-
Table 14. Copper levels in blades of Pensacola bahiagrass (Paspalum
notatum, Flugge) as influenced by CuSO^ application in the
Earleton orchard.
Cu
Treatment
Cu level
in grass*
ppm
ppm
0
5.2bf
3
6.9a
*
Each value is the average of 6 determinations.
4.
Values not followed by the same letter are significantly dif
ferent at 5% level according to DMRT.


Table 15. Correlation coefficients between Cu levels in Pensacola
ba'niagrass and various soil extracts.
Soil
depth
Method of soil
extraction
Aqua regia
0.1 N HC1
1.0 N HC1
EDTA-TEA
0- 2.5
0.73**
0.81**
0.80**
0.73**
2.5-5.0
0.68**
0.77**
0.76**
0.68**
5.0-7.5
0.59*
0.55NS
0.49NS
0.50NS
** Significant at the 1% level.
* Significant at the 5% level.
NS Non-significant


-62-
artifacts would be involved in the latter study. The limited quantity
of Vietnamese soils restricted even the extent of the greenhouse trials.
The data obtained from these soils is indicative rather than conclusive.
Chemical analysis of the five soils utilized in this experiment was
reported in Table 5. Ninh-Chu soil (Typic Psammaquent) was alkaline,
very low in OM, low Cu and Zn. Three of the other soils were acidic,
variable in OM, and low in micronutrients (Cu, Zn, Mn). Eakmat soil
(Typic Haplustox) had a medium level of OM and contained considerably
more Cu (Table 16), but this level was well within the normal Cu range
found in soils (Fiskell, 1965).
Responses of corn growing in these Vietnamese soils to different
levels of applied Cu are reported in Table 17. Copper content of corn
grown in untreated soils was consistently lower than the normal range
of 7 20 ppm, reported by Jones and Eck (1973) for whole corn plants
at 3- to 4-leaf stage. An increase in plant Cu in response to Cu
application was observed; however, this was statistically significant
only for the Ninh-Chu soil. Because of the high variation among indi
vidual treatments the number of replications for the other soils was
insufficient for statistical significance. Although the Eakmat soil
had a sizable Cu reserve, there was an increase in tissue Cu and dry
weight production from the Cu treatments. Evidently the small amount
of added Cu was much more available to the plant than the large reserve
of soil Cu. Only corn grown in Trang-Bang soil exhibited normal vege
tative growth. Corn grown in the four other soils developed nutrient
deficiency symptoms which definitely influenced plant development.
Phosphate deficiency was observed on the plants grown in Ninh-Chu and
Eakmat soils, Ca deficiency appeared in plants on Dalat soil and N


yvj J
Table 16. Level of Cu in selected Vietnamese soils with and without
CuSC^ applications.
Treatment
Extractant
Aqua regia
0.1 N HC1 l.ON HC1
EDTA-TEA
Cu, ppm
0
1.0c"'
Ninb-Chu
0.6b
1.1b
0.5b
0.3
2.Cb
0.5b
1.0b
0.5b
1.8
3.5a
0.8a
2.6a
2.0a
0
1.0b
Trarg-Bang^
0.8b
1.0c
1.5b
0.3
2. Oab
0.8fc
1.5b
1.5b
1.8
2.5a
1. £a
2.5a
2.5a
0
1.0b
Thu-Duc§
0. 5 b
0. 5b
0.5b
0.3
1.0b
0.5b
0.5b
0.5b
1.8
2.0a
1.5a
2.0a
1.5a
0
9.5b
§
Daiat
1.5b
2.5 b
1.5c
0.3
11.Gab
1.8b
2.8b
2.5b
1.8
1.2.5a
2.8a
A. 3a
3.5a
0
53.5a
§
Eaknat
5.3a
7.3b
5.0a
0.3
56.5a
5.0a
7.0b
5.0a
1.8
57.5a
5.8a
8.8a
5.5a
*
Each value is the average of 7 determinations.
Values in column for each location not followed by the same letter
are significantly different: at 5% level, according to DMRT.
+
Each value is the average of 3 determinations.
§
Each value is the average of 2 determinations.


Table 17. Copper (Cu) content and dry weight (DW) of corn grown In Vietnamese soils.
Cu
Treatment
Soil
Ninh
*
-Chu
Trang-
-Bang+
Thu
-Duc^
Dalat^
Eakmat1
Cu
DW
Cu
DW
Cu
DW
Cu
DW
Cu
DW
ppm
ppm
g
ppm
cr
o
ppm
R
ppm
8
ppm
g
0
3.5b§
3.03a
2.8a
13.20a
5.5a
4. 44b
3.8a
9.10a
5.7b
0.28a
0.3
5.8b
1.91a
2.7a
12.35a
5.7a
9.45a
3.8a
6.49a
11.9a
3.18a
1.8
9.6a
2.30a
3.5a
13.18a
6.3a
10.03a
6.3a
6.05a
11.3a
3.61a
*
Each value is the average of 7 determinations.
^Each value is the average of 3 determinations.
^Each value is the average of 2 determinations.
§
Values in column not followed by the same letter are significantly different at 5% level
according to DMRT.


-65-
deficiency on the Thu-Duc soil. These hunger signs were corrected by
using supplemental nutrition solutions, but as Epstein (1972) pointed
out, even after the correction, plants still did not resume full normal
growth. No deficiency symptom was observed on corn grown in Trang-Bang
soil, but the limited soil volume in the pots was inadequate for an
8-week corn plant. Because of this problem, pot size rather than Cu
become the critical factor limiting growth on this soil. The relation
ship between Cu content in the whole plant and dry-weight did not show
any particular pattern. Corn grown in Trang-Bang soil produced the most
dry-weight but Cu content was among the lowest. Correlation coefficient
(data not presented) of Cu content and plant size was very low even for
Cu treatments on the same soil.
Unusual fertility problems and small volume of soil available for
each plant probably masked any possible Cu limitations in these soils.
Laboratory Study
The Cu content of the soil solution is of direct importance in Cu
2+
absorption by plants. This section deals with Cu in the saturated soil
2+
solution extracts and the complexing of Cu by these extracts. The
complexation ability of the extracts will be compared to those of syn
thetic chelating agents, EDTA and DTPA. Since the total Cu in the soil
solution is reported to be more than 98% complexed (Hodgson et. al. 1965),
knowledge of some of the factors which influence complexation should be
beneficial in determining the most efficient manner in which to supply
crops with supplemental Cu. The purpose of this study was to approximate
the natural condition of the soil solution in the field, therefore very
simple extractant solutions, H00 and 0.01 M CaSO were used.


-66-
Solution Studies
Synthetic chelating agents for soil extraction in micronutrient
analyses as well as for supplying micronutrients to plant roots have
come into general use in commercial agriculture. Two of the agents in
common use are EDTA and DTPA. Since these agents have been successfully
used to transport micronutrients to plant roots in the soil, they were
selected for preliminary study. The CaSO^ solution used in the satu
rated soil solution extracts was selected as the third material to study
2+
for possible interaction with Cu
The effects of CaSO^ and two chelating agents, EDTA and DTPA, on
2+
the activity of Cu are shown in Fig. 2. As expected, 0.01 M CaSO^
2+
did not reduce Cu activity.
In order to avoid the possible effect of dipositive ions on the
chelating agents (EDTA and DTPA), 0.5 N K^SO^ was used to provide the
supporting electrolyte instead of 0.01 M CaSO^. With EDTA, the addition
2+
of Cu did not significantly increase the electrode potential to indi-
2+ 24-
cate the presence of Cu until Cu had been added in the quantities
shown in Fig. 2 and Table 18. Beyond this point, the electrode poten-
24-
tial increased directly with the amount of Cu indicating no chelating
24-
of additional Cu However, with DTPA, the electrode potential did
2+
not increase directly with Cu additions until the breakpoints on the
curves were reached indicating that more than one functional group was
involved in the chelation reaction and that the efficiency was not as
great as EDTA. These differences were due to the differences in the
two chelates. Norvell (1972), Table 19, reported up to three chelation
reactions of DTPA with Cu as well as chelation of Ca in acidic medium.
Although the formation constant of CuL is high, the presence of two


Legend:
1 0.01 M CaS04
2
5
X
10-5
M
EDTA
3
5
X
10"5
M
EDTA
+
18
X
10-8
mole
Al3+,
from
ai2(so4)2
h
5
X
10~5
M
EDTA
+
18
X
10-8
mole
Ca2+,
from
CaS04
5
5
X
10-5
M
EDTA
+
18
X
10-8
mole
Mg2+,
from
MgSO
6
5
X
10"3
M
DTPA
7
5
X
lo-5
M
DTPA
+
18
X
10-8
mole
A15t
from
A12(S04)3
8
5
X
lo-5
M
DTPA
+
20
X
lo-8
mole
Ca2+,
from
CaS04
9
5
X
IQ"5
M
DTPA
+
17
X
IQ"8
mole
Mg2+,
from
MgSOA
Fig. 2. Effect of Cu2+ addition on 0.01 M CaSO^ and two chelating agents.




Table 18. Chelating ability of EDTA and DTPA.
Chelating
Quantity of metal
at breakpoint
*
Vol.
CTR
Initial
agent
A1
Ca
Mg
Cu
PH
00
o
rH
!
mole

ml
%
EDTA
125
0
0
0
121
26.7
100
4.85
125
18
0
0
76
28.5
100
4.50
125
0
18
0
116
32.7
100
4.60
125
0
0
16
115
30.7
100
4.75
DTPA
125
0
0
0
210
27.4
96
4.15
125
18
0
0
203
29.3
95
4.00
125
0
20
0
200
33.3
94
4.10
125
0
0
17
193
31.2
94
4.10
Volume of solution at breakpoint.


Table 19. Formation constants for EDTA and DTPA (Norvell, 1972).
Reaction
Log of
k
formation constant
EDTA
DTPA
+
Cu + L CuL
19.7
22.6
CuL + H CuHL
3.3
5.2
CuL + Cu -* CU2L

6.2
Al + L -* AIL
17.6
20.3
AIL + H -* A1HL

4.7
Ca + L CaL
11.5
11.9
CaL + H CaHL
3.5
6.6
CaL 4- Ca -* Ca2L

2.7
Mg + L -* MgL
9.6
10.4
*
All values were adjusted to an ionic strength of 0.01 M using
the DeBye-Huckel equation.
L Ligand, EDTA or DTPA.


-71-
other chelates (CuHL and Cu^L) with low formation constants resulted in
an equilibrium which provided a CTR < 100%. In case of EDTA, the forma
tion constant of CuHL was too low to influence the CTR provided by the
first chelation reaction (Table 19).
3+ 2+ 2+ 2+
Addition of A1 Ca or Mg reduced the quantity of Cu neces
sary to saturate the chelating agents. This tends to disagree with the
work of Pfeiffer and Schmitz as cited by Martell and Calvin (1952).
These workers reported that the stability of chelates of EDTA with Cu
and other metallic ions was greatly dependent on the nature of the
2+ 2+
remaining positive ions in the solution (e.g. Ca Mg ). However,
2+ 2+
they showed that the interference of Ca was not the result of Cu
displacement but caused a weakening of the chelates.
Under the conditions of the experiment, additional metallic ions
did not change the CTR of EDTA, but that of DTPA slightly decreased
(Table 18). Perhaps, the concentration of metallic ions used in this
study was too low to affect the CTR for EDTA.
2+
Saturated Soil Solution Extract Studies
Apopka fine sand
Samples were selected from the 0, 1, and 3 ppm Cu treatments to
represent sites of the highest and the lowest soil OM contents at each
treatment level.
It was not necessary to add supporting electrolyte to CaSO^ extracts,
Table 20. The 0.5 N K^SO^ was used to raise the total ionic strength of
H^O extracts and avoid the possible effect of dipositive ions (from
CaSO^, if it were used) on ligands in the saturated soil solution ex
tracts. The total cation concentration in the soil extract which was
calculated from electrical conductivity, was used as an indication of


2+
Table 20. Chelated Cu to total added Cu ratio (CTR), at different organic matter and soil Cu
levels in Apopka fine sand.
Cu
Treat
ment
Soil
OM
0.1 N HC1
ext. Cu
0.01 M CaS04 extraction
h2o
extraction
Cu
CTR
*
Cation cone.
pH1'
OM
Cu
*
CTR Cation cone.
PH+
OM
ppm
%
ppm
ppm
%
10 3 meq/1
%
ppm
%
10 3 meq/1
%
0
0.92
1.00
Trace
26.6
21.1
4.75
0.01
Trace
81.6
25.8
5.40
0.01
0
1.97
1.00
0.04
35.8
18.9
4.80
0.01
0.01
85.5
26.0
5.55
0.02
1
1.15
1.30
0.03
34.1
18.3
4.50
Trace
Trace
60.7
28.4
5.25
0.01
1
1.76
1.50
0.01
28.0
19.8
4.75
Trace
0.01
76.5
29.3
4.95
0.02
3
1.09
3.30
0.02
16.1
18.5
4.65
Trace
0.01
64.5
26.5
4.95
0.01
3
1.69
2.50
0.03
39.6
19.2
5.10
Trace
0.02
92.1
25.1
5.55
0.02
*
Total cation concentration of each extract was calculated from electrical conductivity after
supporting electrolyte was added.
pH of the extract before titration.


the total ionic strength. At the present time, there is no available
technique for direct measurement of the total ionic strength of soil
extract.
Approximately 1% of the soil OM was removed in the saturated soil
solution extraction. The extraction with 0.01 M CaSO^ released a very
small quantity of OM to the extract probably because of the coagulation
2+
effect of Ca which would precipitate a portion of water-soluble OM.
The Cu treatments further reduced the OM in the soil extract. The OM
in the water extracts was higher than that in CaSO^ and was not influ
enced by Cu treatment, Table 20. The extracted OM was examined by the
gel permeation chromatography technique to establish the approximate
fraction sizes of these compounds. In this procedure, the longer the
retention time, the smaller the fraction. A comparison of chromato
grams of known compounds (Fig. 3) to those of the soil extracts (Fig. 4,
5) indicated that the major fraction of OM in CaSO^ extracts was of
smaller size than that of H-bonded, agglomerated EDTA and DTPA (Fig. 4).
Organic compounds from water extracts contained fractions of larger size.
The dominant components had a retention time of 8 to 11 minutes (Fig. 5)
indicating a fraction size in the range of agglomerated EDTA and DTPA.
The difference in fraction size of organic compounds from CaSO^ extracts
2-
and water extracts is probably caused by the effect of the SO^ present
in the CaSO^ extracts. In aqueous solution, organic compounds tend to
link together by H-bonding and/or H^O bridges, and in gel permeation
chromatography, would have the appearance of larger molecules. However,
2-
in the presence of SO^ these H-bonding and ^0 bridges are broken,
producing smaller size components (Fig. 6, 7) which was eluted at the end
of the selective permeation. The organic compounds in the H^O extracts,
2-
in the presence of SO^ from the supporting electrolyte (K^SO^) were
also less influenced by H-gonding and H2O bridges.


Recorder response
18 16 14 12 10 8 6 4*
Retention time, minutes
ACETONE
1. Acetone 2. H-DTPA 3. H-DTPA in the presence of
0.02 N K2S04
4. Na-EDTA 5. Na-EDTA in the presence of 0.02 N KS0,
* f 2 4
Begin selective permeation. End selective permeation.
Fig. 3. Chromatograms ol some organic compounds.


Recorder response
-75-
1. Control, soil OM = 0.92%
2. Control, soil OM = 1.97%
3. Soil treated with 1 ppm Cu in 1973, soil OM = 1.15%
4. Soil treated with 1 ppm Cu in 1973, soil OM = 1.76%
5. Soil treated with 3 ppm Cu in 1973, soil OM = 1.09%
6. Soil treated with 3 ppm Cu in 1973, soil OM = 1.69%
J.
Begin selective permeation.
Fig. 4. Chromatograms of 0.01 M CaSO^ extracts from Apopka fine
sand.


Recorder respon
-76-
Control, soil OM = 0.92%
Control, soil OM = 1.97%
Soil treated with 1 ppm Cu in 1973, soil OM = 1.15%
Soil treated with 1 ppm Cu in 1973, soil OM = 1.76%
Soil treated with 3 ppm Cu in 1973, soil OM = 1.09%
Soil treated with 3 ppm Cu in 1973, soil OM = 1.69%
1.
2.
3.
4.
5.
6.
&
Begin selective permeation.
Fig. 5
Chromatograms of K^O extracts from Apopka fine sand.


Recorder response
Retention time, minutes
a H20 extract in the presence of 0.02 N K0SO4
b H20 extract alone Z 4
A
Begin selective permeation.
Fig. 6. Effect of K2S0^ on H20 extracts of Florida soils.


Recorder response
DALAT SOIL
Retention time, minutes
a F^O extract in the presence of 0.02 N K2SO4
b HoO extract alone
* .
Begin selective permeation.
Fig. 7. Effect of K2SO4 on H2O extracts of Vietnamese soils.


-79-
The chromatographic patterns of H^O extracts of control samples
were identical. Note the stronger instrument response in sample #2
which had the highest OM content, Fig. 5. Extracts from Cu treated
soils provided a more distinct peak with a retention time of about 6.5
minutes. Evidently, most organic compounds extracted by both extrac
tants were of relative low molecular size. Such materials would be
expected to be simple organic acids which could be found in the fulvic
acid fraction of soil OM.
Total Cu in saturated soil solution extracts was very low and un-
2+ 2+
complexed Cu was not detectable by Cu -selective electrode under the
described operating conditions. This made the comparison of the two Cu
values impossible. The CTR for CaSO^ extracts ranged from 16.1 to
39.6% while those for H^O extracts ranged from 60.7 to 92.1% (Table 19).
This could be expected from the competition between Ca and Cu for com-
plexation with OM. Total content of OM in soil extracts seemed to have
little effect on the CTR which again reflects the type of OM in the
extract. The three samples which provided the highest CTR (samples #1,
2, and 6) had about the same chromatographic pattern (Fig. 5) and indi
cated a higher fraction size than those in the other 3 extracts.
2d"
Effects of Cu additions on electrode potential of soil extracts
are depicted in Fig. 8 and 9. Slopes of the curves from CaSO^ extracts,
prior to breakpoints were very steep indicating that the complexation
reaction was not predominant. Since the extracts were dilute solutions
(Table 20), ions present in the extract might be considered as indepen
dent of one another in the solution (ion interactions were not signifi-
2+
cant) (Hunt, 1963). The hydrolysis of Cu was negligible in the acidic
medium. Taking these two factors into consideration, the quantity of


Legend:
1
2
3
4
5
6
Control, soil OM = 0.92%
Control, soil OM = 1.97%
Soil treated with 1 ppm Cu in 1973,
Soil treated with 1 ppm Cu in 1973,
Soil treated with 3 ppm Cu in 1973,
Soil treated with 3 ppm Cu in 1973,
soil OM = 1.15%
soil OM = 1.76%
soil OM = 1.09%
soil OM = 1.69%
Fig. 8.
2+
Effect of Cu addition on 0.01 M CaSO^ extracts of
Apopka fine sand.


-81-


1
Control,
soil OM = 0.92%
4
Soil
treated
with
1
ppm
Cu
(1973),
soil
OM =
2
Control,
soil OM = 1.97%
5
Soil
treated
with
3
ppm
Cu
(1973),
soil
OM =
3
Soil treated with 1 ppm Cu (1973), soil 0M=1.15%
6
Soil
treated
with
3
ppm
Cu
(1973),
soil
OM =
2+
Fig. 9. Effect of Cu addition on H^O extracts of Apopka fine sand.
1.76%
1.09%
1.69%
70


-83-
2+
Cu complexed by organic compounds in the soil extracts was reported
in Table 21. The presence of Ca and Mg in CaSO^ extracts at relatively
high concentrations reduced the quantity of available ligands for Cu.
The effect of A1 was small and uniform except for two confirmed varia-
2+
tions. The total quantity of added Cu removed from its ionic state
_8 g
by the OM was equivalent either to 3 x 10 to 89 x 10 mole of EDTA
8 8
or to 2 x 10 to 51 x 10 mole of DTPA.
2+ 2+
The response of Cu -selective electrode to the applied Cu in the
H^O extracts had rather flat slopes (Fig. 9) indicating that the water-
extractable OM was highly active in complexing Cu when Ca and Mg concen
trations were in the normal range of these soils. The values of Cu
_8 g
coraplexation ability of HO extracts ranged from 22 x 10 to 329 x 10
8 8
mole of EDTA or from 13 x 10 to 189 x 10 mole of DTPA.
Fuquay fine sand
Total OM in Fuquay fine sand was higher than that of Apopka fine
sand, as was the OM in the soil extracts (Table 22). Effects of 0.01 M
CaSO, and water on the OM in saturation extracts were similar to those
4
observed for the Apopka fine sand. Chromatographically, CaSO^ extracts
had similar patterns but peak heights were much greater (Fig. 10), indi
cating that the amount of OM was larger. This was confirmed by the car
bon analysis. The organic components in the l^O extracts of Fuquay fine
sand were larger in quantity and lower in fraction size than those of
Apopka fine sand (Fig. 11). Retention time in the chromatographic column
of most organic compounds in H^O extracts ranged from 10 to 13 minutes
which corresponded to a molecular size smaller than agglomerated EDTA.
Extracts of samples //I and #3 (Fig. 11) presented a small peak at about


-84-
Table 21.
Quantity of
fine sand.
2+
Cu complexed by
soil extract
s from Apopka
Cu
Soil
Metal in
, *
the extract
Treatment
OM
A1
Ca
Mg
X
Cu'
ppm
%
~8 i
10 moles'
0.01 M CaSO. extraction
4
0
0.92
21
4904
976
79
0
1.97
21
4832
1042
86
1
1.15
21
4508
791
33
1
1.76
21
4957
1215
30
3
1.09
43
4742
646
3
3
1.69
Trace
4095
1373
28
Water extraction
0
0.92
21
244
82
137
0
1.97
21
291
111
288
1
1.15
21
102
53
70
1
1.76
21
313
129
63
3
1.09
21


21
3
1.69
21
255
102
318
k
Micronutrients were not computed,
t 2+ 2+
Total Cu added less the Cu detected by ion selective electrode.

'Quantity of cation in the 25 ml aliquot.


ratio (CTR), at different organic matter and soil Cu
21-
Table 22. Chelated Cu to total added Cu
levels in Fuquay fine sand.
Cu
Treat
ment
Soil
OM
0.1 N HC1
ext. Cu
0.01 M CaSO. extraction
4
H^O extraction
Cu
CTR
k
Cation cone.
pH+
OM
Cu
CTR Cation cone.
* t
pH
OM
ppm
%
ppm
ppm
%
10 meq/1
%
ppm
%
10 ^ meq/1
%
0
2.44
1.00
0.03
85.3
19.7
5.50
0.02
0.01
92.7
28.2
5.90
0.02
0
4.30
1.83
0.05
82.3
22.0
5.00
0.05
0.05
94.0
29.7
5.20
0.07
3
2.77
3.67
0.02
54.7
19.8
4.45
0.01
0.03
92.7
28.6
5.00
0.02
3
4.21
3.67
0.04
80.7
21.9
5.60
0.01
0.03
91.8
26.6
5.70
C. 06
k
Total cation concentration of each extract was calculated from electrical conductivity after
supporting electrolyte was added.
of the extract before titration.


Legend:
1. Control, soil OM = 2.44%
2. Control, soil OM = 4.30%
3. Soil treated with 3 ppm Cu in 1973, soil OM = 2.77%
4. Soil treated with 3 ppm Cu in 1973, soil OM = 4.21%
*
Begin selective permeation.
Fig. 10. Chromatograms of 0.01 M CaSO^ extracts of Fuquay fine
sand.


Full Text

PAGE 1

$9$,/$%,/,7< ,1 6(/(&7 029(0(17 )/25,'$ $1' 5(7(17,21 2) &233(5 $1' 9,(71$0(6( 62,/6 %\ +2 9$1 7$0 $ ',66(57$7,21 35(6(17(' 72 7+( 81,9(56,7< 7+( *5$'8$7( 2) )/25,'$ f$57/$/ IXOILOOPHQW RI WKH UHTXLUHPHQWV '(*5(( 2) '2&725 2) 3+,/2623+< 7n&,7 2) !5 7+( -1,9(56,7< L )/25,'

PAGE 2

'(',&$7,21 7KLV 'LVVHUWDWLRQ LV GHGLFDWHG WR WKH DXWKRUnV PRWKHU ZKR SDVVHG DZD\ EHIRUH KHU RQO\ VRQ DWWDLQHG WKH DFDGHPLF JRDOV WKDW VKH KDG HQFRXUDJHG KLP WR VHHN

PAGE 3

$&.12:/('*(0(176 7KH DXWKRU ZLVKHV WR H[SUHVV KLV VLQFHUH DSSUHFLDWLRQ WR 'U 1 *DPPRQ -U &KDLUPDQ RI WKH 6XSHUYLVRU\ &RPPLWWHH IRU KLV YDOXDEOH FRXQVHO JXLGDQFH DQG DVVLVWDQFH GXULQJ WKH HQWLUH FRXUVH RI WKLV LQYHVWLJDWLRQ DQG LQ SUHSDUDWLRQ RI WKLV PDQXVFULSW 6LQFHUH WKDQNV DUH DOVR H[SUHVVHG WR 'XV -*$ )LVNHOO 5& 6WRXIHU 7/
PAGE 4

1JX\HQ *LD +DL IRU WKHLU DVVLVWDQFH RQ VDPSOH FROOHFWLRQV URXWLQH SODQW DQG VRLO DQDO\VHV WR 0UV $GHOH .RHKOHU IRU KHU H[FHOOHQFH LQ W\SLQJ DQG SURRILQJ WKH ILQDO FRS\ RI WKLV GLVVHUWDWLRQ WKH DXWKRU LV PRVW JUDWHIXO 7KH DXWKRU ZRXOG DOVR OLNH WR JUDWHIXOO\ UHFRJQL]H KLV GHDUO\ EHORYHG ZLIH 3KXRQJ ZKR WKURXJK WKH ORQHO\ \HDUV ZKHQ WKH DXWKRU ZDV DZD\ IURP KRPH KDV WDNHQ FDUH RI KLV GDXJKWHU 7R KLV IDWKHU DQG KLV VLVWHUV IRU WKHLU FRQWLQXRXV HQFRXUDJHPHQW ZKLFK JXLGHG KLP WR WKH SUHVHQW DFKLHYHPHQW WKH DXWKRU LH GHHSO\ LQGHEWHG

PAGE 5

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YLLL /,67 2) ),*85(6 [ $%675$&7 [L ,1752'8&7,21 /,7(5$785( 5(9,(: 3K\VLRORJLFDO )XQFWLRQ RI &X LQ 3ODQWV 0HFKDQLVPV RI &X 0RYHPHQW LQ 6RLO 3ULRU WR 8SWDNH E\ 3ODQW 5RRWV &RQYHFWLRQ 'LIIXVLRQ 5RRW ,QWHUFHSWLRQ )DFWRUV &RQWUROOLQJ &X $YDLODELOLW\ LQ WKH 6RLO 7RWDO &X 5HVHUYH DQG 6XSSO\ 6RLO $FLGLW\ S+f &U\VWDOOLQH DQG $PRUSKRXV &OD\ 0DWHULDOV 6RLO 2UJDQLF 0DWWHU &RPSOH[DWLRQ RI 6RLO &X ZLWK 6\QWKHWLF &KHODWLQJ $JHQWV &KHODWHG &X WR 7RWDO &X 5DWLR LQ WKH 6RLO 6ROXWLRQ &RSSHU $EVRUSWLRQ E\ 3ODQWV ,QWHUDFWLRQ %HWZHHQ &X DQG 2WKHU (OHPHQWV 0HDVXUHPHQW RI &X E\ &X 6HOHFWLYH (OHFWURGH

PAGE 6

7$%/( 2) &217(176 FRQWLQXHGf 3DJH 0$7(5,$/6 $1' 0(7+2'6 )LHOG ([SHULPHQWV $SRSND )LQH 6DQG +DZWKRUQH2UFKDUGf )XTXD\ )LQH 6DQG (DUOHWRQ 2UFKDUGf *UHHQKRXVH ([SHULPHQWV 3ODQW 7LVVXH 6DPSOLQJ 3UHSDUDWLRQ DQG $QDO\VHV 6DPSOLQJ DQG 3UHSDUDWLRQ $QDO\VHV 6RLO 6DPSOLQJ 3UHSDUDWLRQ DQG $QDO\VHV 6DPSOLQJ DQG 3UHSDUDWLRQ $QDO\VHV 6WDWLVWLFDO $QDO\VHV 5(68/76 $1' ',6&866,21 )LHOG ([SHULPHQWV 5HVSRQVH RI 3HFDQ 7UHHV WR &X $SSOLFDWLRQ 'LVWULEXWLRQ RI $SSOLHG &X LQ 6XUIDFH /D\HUV RI )XTXD\ )LQH 6DQG $YDLODELOLW\ RI $SSOLHG &X WR 3ODQWV *UHHQKRXVH 7ULDO /DERUDWRU\ 6WXG\ 6ROXWLRQ 6WXGLHV 6DWXUDWHG 6RLO 6ROXWLRQ ([WUDFW 6WXGLHV 6800$5< $1' &21&/86,216 $33(1',&(6 6\QWKHWLF FKHODWLQJ DJHQWV ZKLFK KDYH EHHQ XVHG IRU &X FRPSOH[DWLRQ 1RUYHOO f ,OO YL

PAGE 7

7$%/( 2) &217(176 FRQWLQXHGf 3DJH ,, 'HWHUPLQDWLRQ FRHIILFLHQWV 5 f RI OLQHDU FXUYHV LQ )LJ ,,, /LQHDU UHJUHVVLRQ DQDO\VHV RI FXUYHV LQ )LJ DQG )LJ ,9 /LQHDU UHJUHVVLRQ DQDO\VHV RI FXUYHV LQ )LJ DQG )LJ 9/LQHDU UHJUHVVLRQ DQDO\VHV RI FXUYHV LQ )LJ 9, (IIHFW RI VXSSRUWLQJ HOHFWURO\WH RQ FKURPDWRJUDPV RI A H[WUDFW IURP )XTXD\ ILQH VDQG 9,, $UHDV RI FKURPDWRJUDSKLFDO SHDNV VKRZQ LQ $SSHQGL[ 9, 9,,, 6HOHFWHG OLVW RI FKURPRSKRULF JURXSV %ROW] f /,7(5$785( &,7(' %,2*5$3+,&$/ 6.(7&+ YLL

PAGE 8

/,67 2) 7$%/(6 7DEOH 3DJH (VWLPDWHG DPRXQWV RI PLFURQXWULHQWV VXSSOLHG E\ WKUHH PHFKDQLVPV WR FRUQ URRWV JURZLQJ LQ D KHDYLO\ IHUWLOL]HG VLOW ORDP VRLO DW S+ %DUEHU f 7KH RFFXUUHQFH RI &X LQ URFNV DQG VRLOV .UDXVNRSI f *HQHUDO FKHPLFDO SURSHUWLHV RI KXPLF DQG IXOYLF DFLG 6WHYHQVRQ DQG $UGDNDQL f %DVLF IHUWLOL]DWLRQ DSSOLHG WR 9LHWQDPHVH VRLOV 6RPH SURSHUWLHV RI WKH VRLOV VHOHFWHG IRU LQYHVWLJDWLRQ /HYHOV RI &X LQ VRLO DW +DZWKRUQH DQG (DUOHWRQ RUFKDUGV RQH \HDU DIWHU &X62A DSSOLFDWLRQ &RSSHU OHYHOV LQ OHDYHV RI GLIIHUHQW SHFDQ FXOWLYDUV LQ +DZWKRUQH RUFKDUG LQ WKH ILUVW \HDU DIWHU &X62A DSSOLFDWLRQ DYHUDJH RI DOO WUHDWPHQWV (IIHFW RI FXOWLYDU DQG WUHDWPHQW RQ &X OHYHOV LQ SHFDQ OHDYHV LQ +DZWKRUQH RUFKDUG &RSSHU OHYHOV LQ SHFDQ OHDYHV LQ (DUOHWRQ RUFKDUG *URZWK UHVSRQVHV RI SHFDQV WR &X62A DSSOLFDWLRQ $QDO\VLV RI YDULDQFH IRU JURZWK UHVSRQVHV RI SHFDQV 'LVWULEXWLRQ RI &X DQG RWKHU QXWULHQWV LQ FP RI WKH VRLO SURILOH LQ WKH (DUOHWRQ RUFKDUG &RSSHU LQ FP RI WKH VRLO SURILOH RI WKH (DUOHWRQ RUFKDUG PRQWKV DIWHU &X62A DSSOLFDWLRQ &RSSHU OHYHOV LQ EODGHV RI 3HQVDFROD EDKLDJUDVV 3DVSDOXP QRWDWXP )OXJJHf DV LQIOXHQFHG E\ &X62A DSSOLFDWLRQ LQ WKH (DUOHWRQ RUFKDUG &RUUHODWLRQ FRHIILFLHQWV EHWZHHQ &X OHYHOV LQ 3HQVDFROD EDKLDJUDVV DQG YDULRXV VRLO H[WUDFWV /HYHO RI &X LQ VHOHFWHG 9LHWQDPHVH VRLOV ZLWK DQG ZLWKRXW &X62A DSSOLFDWLRQV YLLL

PAGE 9

/,67 2) 7$%/(6 FRQWLQXHGf 7DEOH 3DJH f &RSSHU &Xf FRQWHQW DQG GU\ ZHLJKW ':f RI FRUQ JURZQ LQ 9LHWQDPHVH VRLOV &KHODWLQJ DELOLW\ RI ('7$ DQG '73$ r )RUPDWLRQ FRQVWDQWV IRU ('7$ DQG '73$ 1RUYHOO f &KHODWHG &X WR WRWDO DGGHG &X A UDWLR &75f DW GLIIHUHQW RUJDQLF PDWWHU DQG VRLO &X OHYHOV LQ $SRSND ILQH VDQG 4XDQWLW\ RI &X FRPSOH[HG E\ VRLO H[WUDFWV IURP $SRSND ILQH VDQG &KHODWHG &X WR WRWDO DGGHG &X UDWLR &75f DW GLIIHUHQW RUJDQLF PDWWHU DQG VRLO &X OHYHOV LQ )XTXD\ ILQH VDQG 4XDQWLW\ RI &X FRPSOH[HG E\ VRLO H[WUDFWV IURP )XTXD\ ILQH VDQG &KHODWHG &X WR WRWDO DGGHG &X UDWLR &75f LQ VHOHFWHG 9LHWQDPHVH VRLOV r 4XDQWLW\ RI &X FRPSOH[HG E\ VRLO H[WUDFWV IURP 9LHWQDPHVH VRLOV } (IIHFW RI VXSSRUWLQJ HOHFWURO\WH RQ FRPSOH[LQJ DELOLW\ RI A H[WUDFW IURP )XTXD\ ILQH VDQG 6XPPDU\ RI &X DYDLODELOLW\ LQ +2 H[WUDFWV IURP VHOHFWHG VRLOV f f $SSUR[LPDWH ZDYHOHQJWK FRUUHVSRQGLQJ WR PD[LPXP DQG PLQLPXP DEVRUEDQFH LQ WKH UDQJH IURP WR QP RI WZR FKHODWLQJ DJHQWV DQG +2 H[WUDFWV IURP VHOHFWHG )ORULGD DQG 9LHWQDPHVH VRLOV

PAGE 10

/,67 2) ),*85(6 )LJXUH 3DJH &RPSDULVRQ RI &XA FKHODWLQJ DELOLWLHV RI FKHODWLQJ DJHQWV LQ VRLO VROXWLRQ 1RUYHOO f (IIHFW RI &XA DGGLWLRQ RQ 0 &D62 DQG WZR FKHODWLQJ DJHQWV &KURPDWRJUDPV RI VRPH RUJDQLF FRPSRXQGV &KURPDWRJUDPV RI 0 &D62A H[WUDFWV IURP $SRSND ILQH VDQG &KURPDWRJUDPV RI +2 H[WUDFWV IURP $SRSND ILQH VDQG (IIHFW RI .62 RQ +2 H[WUDFWV RI )ORULGD VRLOV (IIHFW RI LA62A RQ +2 H[WUDFWV RI 9LHWQDPHVH VRLOV (IIHFW RI &XA $GGLWLRQ RQ 0 &D62A H[WUDFWV RI $SRSND ILQH VDQG 2 (IIHFW RI &Xr DGGLWLRQ RQ +2 H[WUDFWV RI $SRSND ILQH VDQG &KURPDWRJUDPV RI 0 &D62A H[WUDFWV RI )XTXD\ ILQH VDQG &KURPDWRJUDPV RI +2 H[WUDFWV RI )XTXD\ ILQH VDQG (IIHFW RI &XA DGGLWLRQ RQ 0 &D62A H[WUDFWV RI )XTXD\ ILQH VDQG (IIHFW RI &XA DGGLWLRQ RQ +2 H[WUDFWV RI )XTXD\ ILQH VDQG &KURPDWRJUDPV RI +2 H[WUDFWV IURP 9LHWQDPHVH VRLOV (IIHFW RI &XA DGGLWLRQ RQ +2 H[WUDFWV IURP 9LHWQDPHVH VRLOV [

PAGE 11

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $9$,/$%,/,7< 029(0(17 $1' 5(7(17,21 2) &233(5 ,1 6(/(&7(' )/25,'$ $1' 9,(71$0(6( 62,/6 %\ +R 9DQ /DP -XQH &KDLUPDQ 'U 1DWKDQ *DPPRQ -U 0DMRU 'HSDUWPHQW 6RLO 6FLHQFH 7KH UHVSRQVH RI SHFDQV &DU\D LOOLQRHQVLV /f JURZQ LQ WZR )ORULGD VRLOV DQG RI FRUQ =HD PD\V /f JURZQ LQ VHOHFWHG 9LHWQDPHVH VRLOV WR FRSSHU &Xf DSSOLFDWLRQ ZDV REVHUYHG 7KH &X FRQWHQW RI VDWXUDWHG VRLO VROXWLRQ H[WUDFWV WKH QDWXUH RI WKH RUJDQLF PDWWHU 20f LQ WKHVH H[WUDFWV DQG WKHLU DELOLW\ WR FRPSOH[ DGGLWLRQDO &X ZHUH DOVR LQYHVWLJDWHG 7KH &X WUHDWPHQWV IRU SHFDQV ZHUH DQG SSP LQ D +DZWKRUQH RUFKDUG $SRSND ILQH VDQGf DQG DQG SSP LQ DQ (DUOHWRQ RUFKDUG )XTXD\ ILQH VDQGf 3DUDPHWHUV PHDVXUHG ZHUH &X OHYHOV LQ OHDYHV DQG JURZWK WUHH FLUFXPIHUHQFH DW FP KHLJKWf 'DWD RQ ERWK SDUDPHWHUV ZHUH FROOHFWHG \HDUO\ /HYHOV RI &X LQ OHDYHV IURP SHFDQV JURZQ DW WKH SSP &X UDWH RQ )XTXD\ ILQH VDQG ZHUH VLJQLILFDQWO\ KLJKHU WKDQ WKH FKHFN GXULQJ WKH ILUVW \HDU RI WKH H[SHULPHQW EXW QRW LQ ODWHU \HDUV 7KH SSP &X WUHDWPHQW RQ WKH $SRSND ILQH VDQG SURGXFHG D VWHDG\ LQn FUHDVH LQ WKH &X OHYHOV LQ WKH OHDYHV EXW LW ZDV QRW VLJQLILFDQW XQWLO [L

PAGE 12

WKH WKLUG \HDU 6LPLODUO\ WKH DQDO\VLV RI YDULDQFH $129$f IRU WUHH JURZWK VKRZHG VWHDGLO\ LQFUHDVLQJ ) YDOXHV LQ VXFFHVVLYH \HDUV EXW WKH b OHYHO RI VWDWLVWLFDO VLJQLILFDQFH ZDV QRW DFKLHYHG (YLGHQWO\ D UDWKHU ORQJ SHULRG LV UHTXLUHG IRU VXUIDFH DSSOLHG &X WR UHDFK WKH DFWLYH URRWLQJ ]RQH RI SHFDQV 7KH GRZQZDUG PRYHPHQW RI &X LQ WKH VRLO SURILOH ZDV YHU\ VORZ ,Q )XTXD\ ILQH VDQG &X PRYHG FD FP DIWHU PRQWKV ,W ZDV GHWHUPLQHG WKDW WKH &X DSSOLHG WR WKH )XTXD\ ILQH VDQG UHPDLQHG DYDLODEOH IRU URRW XSWDNH VLQFH WKH &X OHYHO LQ 3HQVDFROD EDKLDJUDVV 3DVSDOXP QRWDWXP )OXJJHf XQGHU SHFDQ WUHHV IHUWLOL]HG ZLWK SSP &X ZDV LQFUHDVHG VLJQLILFDQWO\ 6LJQLILFDQW GLIIHUHQFHV ZHUH REVHUYHG LQ WKH &X OHYHOV LQ OHDYHV RI GLIIHUHQW SHFDQ FXOWLYDUV ,Q D JUHHQKRXVH H[SHULPHQW WR WHVW WKH UHVSRQVH RI FRUQ WR &X DSSOLn FDWLRQV WR 9LHWQDPHVH VRLOV WKHUH ZDV D WUHQG IRU LQFUHDVHG &X LQ WKH WLVVXH ZLWK LQFUHDVHG &X DSSOLFDWLRQV ZKLFK ZDV VLJQLILFDQW IRU 1LQK&KX DQG (DNPDW VRLOV EXW QRW IRU 7UDQJ%DQJ 7KX'XF DQG 'DODW VRLOV 7RWDO GU\ ZHLJKW SURGXFWLRQ GLG QRW LQGLFDWH D FRQVLVWHQW UHVSRQVH WR &X DSSOLFDWLRQ &RSSHU LQ VDWXUDWHG VRLO VROXWLRQ H[WUDFWV ZDV YHU\ ORZ DQG WKH LRQLF &X PHDVXUHG E\ &X VHOHFWLYH HOHFWURGH SURYLGHG VXFK D ORZ HOHFWURGH SRWHQWLDO WKDW LW FRXOG QRW EH GHWHFWHG DFFXUDWHO\ 6DWXUDWHG VRLO VROXWLRQ H[WUDFWV UHPRYHG IURP WR b RI WKH VRLO 20 :DWHU H[WUDFWV FRQWDLQHG PRUH 20 WKDQ GLG 0 &D62A H[WUDFWV %\ OLTXLG FKURPDWRJUDSK\ LW ZDV IRXQG WKDW PRVW RI 20 LQ WKH H[WUDFWV ZDV VPDOO VL]H FRPSRXQGV FKDUDFWHULVWLF RI IXOYLH DQG VLPSOH RUJDQLF DFLGV 7KH &X FRPSOH[DWLRQ E\ RUJDQLF OLJDQGV LQ VRLO H[WUDFWV GHSHQGHG XSRQ WKHLU QDWXUH DQG TXDQWLW\ [LL

PAGE 13

2 &KHODWHG &X WR WRWDO DGGHG &X UDWLR &75f RI VRLO H[WUDFWV ZDV GHWHUPLQHG ,W ZDV ORZ LQ &D62A H[WUDFWV DQG KLJKHU LQ +A2 H[WUDFWV 7KH &75 RI &D62A H[WUDFWV UDQJHG IURP WR b LQ $SRSND ILQH VDQG DQG IURP WR b LQ )XTXD\ ILQH VDQG )RU +A2 H[WUDFWV &75 UDQJHG IURP WR b DQG IURP WR b IRU $SRSND ILQH VDQG DQG )XTXD\ ILQH VDQG UHVSHFWLYHO\ 7KH &75 YDOXHV IRU 9LHWQDPHVH VRLOV ZHUH WR b IRU 8OWLVROV DQG ZDV DERXW b IRU WKH 2[LVRO 7KH TXDQWLW\ RI &X QHHGHG WR FRPSOHWH WKH FRPSOH[DWLRQ LQ LQGLn YLGXDO VRLO H[WUDFWV ZDV FRPSXWHG DQG FRPSDUHG WR V\QWKHWLF FKHODWLQJ DJHQWV VXFQ DV ('7$ DQG '73$ 7KH SUHVHQFH RI &D 0J RU $ LQ VRLO H[WUDFWV UHGXFHG WKH TXDQWLW\ RI &X FRPSOH[HG E\ WKH VRLO H[n WUDFW

PAGE 14

,1752'8&7,21 &RSSHU &Xf GHILFLHQF\ LQ FURSV KDV EHHQ NQRZQ LQ )ORULGD IRU PDQ\ \HDUV ,W ZDV REVHUYHG WKDW DQ HFRQRPLF FURS FRXOG QRW EH JURZQ LQ WKH (YHUJODGHV SHDW VRLOV ZLWKRXW DSSOLFDWLRQ RI &X IHUWLOL]HUV $OOLVRQ HWA DA/ f $Q DEQRUPDO FRQGLWLRQ RI JURZWK LQ )ORULGD FLWUXV NQRZQ DV H[DQWKHPD RU GLHEDFN ZDV IXOO\ RYHUFRPH E\ DSSOLFDWLRQ RI &X WR ERWK RUJDQLF VRLOV $OOLVRQ f DQG PLQHUDO VRLOV )XGJH f 7KLV SURYLGHV DGGLWLRQDO HYLGHQFH RI WKH HDUO\ QHHG IRU &X RQ PDQ\ )ORULGD VRLOV 5DQJHV RI SSP &X IRU FDUURW SSP &X IRU RQLRQ RU VSLQDFK DQG SSP &X IRU FDXOLIORZHU RU OHWWXFH ZHUH RSWLPXP IRU WKHVH ILYH FURSV RQ DFLG VSKDJQXP SHDW VRLO 0F.D\ MW MUO f $On WKRXJK OHYHOV RI DSSOLHG &X ZHUH KLJK WKH\ IRXQG WKDW &X FRQWHQW LQ SODQW WLVVXHV UDQJHG IURP WR SSP SSP SSP SSP DQG SSP IRU FDUURW RQLRQ VSLQDFK FDXOLIORZHU DQG OHWWXFH UHVSHFWLYHO\ 7KH QHHG IRU &X RQ VRPH RI WKH VDQG\ VRLOV ZDV DOVR HVWDEOLVKHG /RFDVFLR HW W// /RFDVFLR DQG )LVNHOO 5REHUWVRQ HW DO 1DYDUUR f /RFDVFLR DQG )LVNHOO f KDYH REVHUYHG IROG LQFUHDVHV LQ \LHOG RI ZDWHUPHORQ IURP WR IUXLWV SHU DFUHf E\ DSSO\LQJ OE$ &X LQ WKH IHUWLOL]HU 5REHUWVRQ HWB DLO f IRXQG WKDW WKH KLJKHVW \LHOGV RI VR\EHDQ NJKDf RFFXUUHG ZKHQ &X FRQWHQWV RI OHDYHV DQG VHHGV ZHUH DQG SSP UHVSHFn WLYHO\ $Q LQFUHDVH LQ &X DSSOLFDWLRQV IURP WR NJKD LQFUHDVHG WKH

PAGE 15

WRWDO \LHOGV RI FXFXPEHU IURP WR WRQKD 1DYDUUR f &RSSHU GHILFLHQF\ KDV QRW EHHQ UHSRUWHG RQ FRPPHUFLDO SHFDQ RUFKDUGV SUREDEO\ EHFDXVH &XFRQWDLQLRJ VSUD\V VXFK DV %RUGHDX[ PL[WXUH ZHUH XVHG IRU OHDI GLVHDVHV DQG VFDE LQ WKH SDVW $ QRUPDO UDQJH RI WR SSP &X LQ SHFDQ OHDYHV ZDV UHSRUWHG E\ $OEHQ DQG +DPPHU f +RZHYHU D UHFHQW VXUYH\ VKRZHG WKDW ZKHUH %RUGHDX[ VSUD\V KDG QRW EHHQ XVHG &X OHYHOV LQ SHFDQ OHDYHV FRXOG EH DV ORZ DV SSP DOWKRXJK QR &X GHIILFLHQF\ V\PSWRPV KDYH EHHQ REVHUYHG *DPPRQ DQG /DP f ,Q YLHZ RI WKH GHFOLQLQJ XVH RI %RUGHDX[ VSUD\V WKHUH LV D QHHG WR HVWDEn OLVK ZLWK JUHDWHU FHUWDLQW\ WKH &X UHTXLUHPHQW RI SHFDQV ,Q 9LHWQDP WKH QHHG IRU &X KDV EHHQ VWXGLHG YHU\ OLWWOH +RZHYHU VRPH 9LHWQDPHVH VRLOV DUH YHU\ VDQG\ DQG LQ WKLV UHVSHFW YHU\ VLPLODU WR )ORULGD VRLOV ZKLOH RWKHUV DUH YHU\ ILQHWH[WXUHG 7KH ZDUP FOLPDWH DQG KLJK UDLQIDOO DORQJ ZLWK ORZ S+ RI PDQ\ 9LHWQDPHVH VRLOV VKRXOG HQKDQFH WKH OHDFKLQJ RI &X IURLD WKHVH VRLOV 7KXV WKHUH LV JRRG UHDVRQ WR VXVSHFW WKH QHHG IRU &X LQ DW OHDVW VRPH RI WKHVH VRLOV 7KH DYDLODELOLW\ RI &X WR D SODQW GHSHQGV XSRQ PDQ\ VRLO FKDUDFWHUn LVWLFV VXFK DV S+ TXDQWLW\ DQG TXDOLW\ RI VRLO RUJDQLF PDWWHU &0f QDWXUH RI WKH FOD\ PLQHUDO IRUPV RI &X SUHVHQW UDLQIDOO DQG UHODWHG FOLPDWLF IDFWRUV +RGJVRQ HW DG f UHSRUWHG WKDW PRUH WKDQ b RI &X LQ VROXWLRQ ZDV LQ DQ RUJDQLF FRPSOH[HG IRUP VXJJHVWLQJ WKDW LQ QHXWUDO VRLOV YHU\ VPDOO TXDQWLWLHV RU UUHH RU HTXDWHG &X DUH DYDLODEOH IRU DGVRUSWLRQ UHDFWLRQV 7KH LPSRUWDQFH RI VRLO RUJDQLF PDWWHU LQ PDLQWDLQLQJ DGHTXDWH &X OHYHOV LQ WKH VRLO VROXWLRQ IRU SODQW JURZWK LV HPSKDVL]HG E\ WKLV REVHUYDWLRQ 2XU SUHVHQW LQYHVWLJDWLRQ ZDV GHVLJQHG WR VWXG\ UHVSRQVH RI SHFDQV WR &X DSSOLFDWLRQV RQ WZR )ORULGD VRLOV DQG WKH UHVSRQVH RI FRUQ WR &X

PAGE 16

DSSOLFDWLRQV RQ ILYH 9LHWQDPHVH VRLOV $Q HYDOXDWLRQ RI &X DYDLODELOLW\ LQ WKHVH VRLOV ZDV OLPLWHG WR FURS UHVSRQVHV DQG WR &X LQ +2 DQG &D62 VRLO VROXWLRQ H[WUDFWV 7KH FRPSOH[DWLRQ DELOLW\ RI RUJDQLF OLJDQGV IRXQG LQ WKHVH H[WUDFWV ZDV VWXGLHG DQG FRPSDUHG WR WKDW RI WZR V\Qn WKHWLF FKHODWLQJ DJHQWV ('7$ DQG '73$

PAGE 17

/, ,)5$7,f 5( 5(9,(: RORJLFDO )XQFWLRQ RI &X ,Q FLQHV &RSSHU LV DQ HVVHQWLDO HOHPHQW LQ SODQW JURZWK 7KH UROHV RI &X LQ SODQW PHWDEROLVP DUH QXPHURXV YDULHG DQG FRPSOH[ %LRFKHPLFDO UHVHDUFK KDV HVWDEOLVKHG WKDW &X LV WKH SURVWKHWLF JURXS LQ VHYHUDO [VHWDOORSURWHLQ HQ]XHV VXFK DV F\WRFKURPH R[LGDVH SRO\SKHQRO R[LGDVH W\URVLXDVHf DVFRUELF DFLG R[LGDVH ODFWDVH DQG EXW\U\O &R$ GHK\GURn JHQDVH $UQRQ DQG 6WRXW .HLOLQ DULG 0DQQ 'DZVRQ *LOEHUW 0H\HU $QGHUVRQ DQG %RKQLQJ 6DXFKHOOL 7LVGDOH DQG 1HOVRQ (SVWHLQ f $UQRQ f UHSRUWHG WKDW SRO\SKHQRO R[LGDVH LV ORFDOL]HG LQ WKH FKORURSODVW WKXV FRQILUPLQJ WKDW &X LV QHFHVVDU\ LQ SKRWRV\QWKHVLV 2WKHU ZRUNHUV UHSRUWHG WKH DVVRFLDWLRQ RI &X ZLWK PDQ\ HQ]\PHV LQYROYHG LQ WKH HOHFWURQ WUDQVSRUW V\VWHP DQG WKH .UHE F\FOH (YDQV DQG 6RUJHU f 6DOLVEXU\ DQG 5RVV f VWDWHG WKDW &X LV D QHFHVVDU\ FRPSRQHQW RI SODVWRF\DQLQ )XUWKHUn PRUH WKH\ EHOLHYH WKDW &X PD\ EH D SDUW RI QLWUDWH UHGXFWDVH DQG SHUn IRUPV D FDWDO\WLF UROH LQ QLWURJHQ IL[DWLRQ 0HFKDQLVPV RI &X 0RYHPHQW LQ 6RLO 3ULRU WR 8SWDNH E\ 3ODQW 5RRWV :LONLQVRQ f GHVFULEHG WKH VXSSO\ RI PLFURQXWULHQWV &X =Q )H 0R DQG &Rf WR URRWV E\ FRPELQDWLRQV RI WKUHH SURFHVVHV FRQYHFWLRQ GLIIXVLRQ DQG URRW LQWHUFHSWLRQ

PAGE 18

Df§ &RQYHFWLRQ &RQYHFWLRQ LV WKH PRYHPHQW RI ZDWHU LQ VRLOV FDUU\LQJ WKRVH LRQV WKDW DUH IUHHO\ PRELOH LQ VRLO VROXWLRQ 0RYHPHQW PD\ RFFXU DV D UHVXOW RI D VXFWLRQ JUDGLHQW JHQHUDWHG DW WKH URRW VXUIDFH E\ WUDQVSLUDWLRQ RU DV D JUDYLWDWLRQDO JUDGLHQW ZKHQ ZDWHU PRYHV GRZQZDUG LQ WKH SURILOH 7KH SHUFHQWDJH RI QXWULHQW UHTXLUHPHQW ZKLFK FDQ EH VDWLVILHG E\ FRQYHFWLRQ DFFRUGLQJ WR &RUH\ DQG 6FKXOWH f GHSHQGV RQ f WKH SODQW UHTXLUHPHQWV IRU WKH QXWULHQW f WKH FRQFHQWUDWLRQ RI WKH QXWULHQW LQ WKH VRLO VROXWLRQ f WKH DPRXQW RI ZDWHU WUDQVSLUHG SHU XQLW ZHLJKW RI WLVVXH f WKH HIIHFWLYH YROXPH RI ZfDWHU PRYLQJ LQ UHVSRQVH WR SRWHQWLDO JUDGLHQW ZKLFK FRPHV LQ FRQWDFW ZLWK WKH URRW VXUIDFH 7KH FRQWULEXWLRQ RI WKH ODVW SURFHVV LV GLIILFXOW WR GHWHUPLQH VR WKDW HVWLPDWHV RI WKH QXWULHQW FRQWULEXWLRQ IURP FRQYHFWLRQ DUH XVXDOO\ EDVHG RQ WKH FRQFHQWUDWLRQ RI WKH QXWULHQW DQG WKH DPRXQW RI ZDWHU WUDQVn SLUHG SHU XQLW ZHLJKW RI WLVVXH %DUEHU f 6XFK HVWLPDWHV VKRZHG WKDW &X ZDV VXSSOLHG DOPRVW HQWLUHO\ E\ FRQYHFWLRQ 7DEOH f 'LIIXVLRQ 'LIIXVLRQ RI LRQV PD\ EH FDXVHG E\ WKHLU FRQFHQWUDWLRQ JUDGLHQW 7KLV JUDGLHQW LV GHYHORSHG DV WKH UHVXOW RI UHPRYDO RI LRQV IURP WKH VRLO VROXWLRQ LQ FORVH SUR[LPLW\ WR D URRW DQGRU E\ DGGLWLRQ RI IUHVK ZDWHU WR WKH VRLO VROXWLRQ DV IURP UDLQIDOO 7KH IROORZLQJ HTXDWLRQ LOOXVWUDWHV WKH IDFWRUV ZKLFK DUH LPSRUWDQW LQ GHWHUPLQLQJ WKH UDWH DW ZKLFK D VROXEOH QXWULHQW ZLOO GLIIXVH WR D URRW VXUIDFH &RUH\ DQG 6FKXOWH f GTGW '$"& &f/ &'

PAGE 19

E ZKHUH & GTGW UHSUHVHQWV WKH UDWH RI GLIIXVLRQ WR WKH URRW VXUIDFH LV WKH GLIIXVLRQ FRHIILFLHQW RI WKH QXWULHQW VSHFLHV LQ ZDWHU $ UHSUHVHQWV WRWDO DEVRUELQJ VXUIDFH RI D SODQW URRW 3 LV WKH IUDFWLRQ RI WKH VRLO YROXPH RFFXSLHG E\ ZDWHU LW DOVR LQFOXGHV D WRUWXRVLW\ IDFWRUf DQG DUH WKH FRQFHQWUDWLRQV RI WKH VROXEOH QXWULHQW DW D GLVWDQFH IURP WKH URRW VXUIDFH DQG DW WKH URRW VXUIDFH UHVSHFn WLYHO\ (OOLV HBW DO f IRXQG WKDW WKH YDOXH RI &X LQ VRLO LV DIIHFWHG E\ WKH W\SH RI FOD\ DV ZHOO DV DFFRPSDQ\LQJ DQLRQ 7KH\ UHn SRUWHG WKDW PRQWPRULOORQLWH DW D FRQFHQWUDWLRQ RI WQHTJ KDG D B f§ YDOXH RI DSSUR[LPDWHO\ [ FP VHF ZKLOH NDROLQLWH DW WKH VDPH a FRQFHQWUDWLRQ KDG D YDOXH RI [ FP VHF 7KH YDOXHV ZHUH JUHDWHU ZLWK &X&A WKDQ &XL12AfA} &X62A DQG &X2$FfA LQ WKH PHQWLRQHG RUGHU 9DOXHV RI IRU RWKHU FOD\V DW YDULRXV FRQFHQWUDWLRQV ZAHUH DOVR UHSRUWHG 7KHVH VORZ UDWHV RI GLIIXVLRQ RI &X LQGHHG UHVWULFW WKHLU DELOLW\ WR VXSSO\ WKLV QXWULHQW WR SODQW URRWV 5RRW ,QWHUFHSWLRQ 5RRWV LQ JURZLQJ WKURXJK VRLO HVWDEOLVK FRQWDFW ZLWK WKH PLQHUDO VXUIDFH QXWULHQWV DFTXLUHG LQ WKLV PDQQHU DUH DWWULEXWHG WR URRW LQWHUn FHSWLRQ D PRGLILFDWLRQ RI -HQQ\nV FRQWDFW H[FKDQJH FRQFHSWf 7KH XSWDNH RI QXWULHQWV E\ VXFK FRQWDFW LV QHW GHSHQGHQW RQ WKH SURFHVVHV RI FRQn YHFWLRQ RU GLIIXVLRQ LQ WKH XVXDO VHQVH DOWKRXJK ZDWHU PXVW ED SUHVHQW 3DVVLRXUD f

PAGE 20

$Q HVWLPDWH RI WKH SRVVLEOH FRQWULEXWLRQ RI URRW LQWHUFHSWLRQ WR VDWLVI\ WKH QXWULHQW UHTXLUHPHQW RI D SODQW FDQ EH PDGH RQ WKH EDVLV RI WKH IROORZLQJ DVVXPSWLRQV %DUEHU f f 7KH PD[LPXP DPRXQW RI QXWULHQW LQWHUFHSWHG LV SUHVXPHG WR EH DYDLODEOH LQ WKH VRLO YROXPH RFFXSLHG E\ WKH URRWV f 5RRWV RFFXS\ DLO DYHUDJH RI b RI WRWDO VRLO YROXPH f $ERXW b RI WKH WRWDO VRLO YROXPH LV FRPSRVHG RI SRUHV WKHUHn IRUH WKH URRWV RFFXS\ DERXW b RI WKH WRWDO SRUH VSDFH 7DEOH SUHVHQWHG WKH DPRXQWV RI PLFURQXWULHQWV VXSSOLHG E\ WKH DERYH WKUHH PHFKDQLVPV RQ WKH EDVLV RI WKHVH DVVXPSWLRQV 7KH DFFXUDF\ RI WKH HVWLPDWHV EDVHG RQ VXFK DVVXPSWLRQV LV TXHVWLRQDEOH LQ YLHZ RI WKH IDFW WKDW WKH FRPELQHG DPRXQW RI WKH QXWULHQWV VXSSRVHGO\ VXSSOLHG E\ WKH LQWHUFHSWLRQ DQG FRQYHFWLRQ PHFKDQLVPV DV LQ WKH FDVH RI &X DQG =Q IDU H[FHHGHG WKH DPRXQW RI WKH WRWDO XSWDNH 1HYHUWKHOHVV WKH GDWD VKRZ WKDW WKH FRQYHFWLRQ PHFKDQLVP FRQWULEXWHV D PDMRU SDUW RI QXWULHQWV RI SODQW UHTXLUHPHQWV ,Q VRLO DOO WKHVH WKUHH PHFKDQLVPV PD\ EH LQIOXHQFHG E\ WKH H[n FKDQJH FDSDFLW\ S+ RI WKH VRLO VROXELOLW\ RI VRPH PLQHUDOV DQG WKH DFWLYLWLHV RI FU\VWDOOLQH DQG DPRUSKRXV FOD\ PDWHULDOV DQG 20 FRPSRQHQWV )D F W RUV &RQWUROOLQJ &X $YDO ODE LOLW\ LQ WKH 6 RBLLB 7RWDO &X 5HVHUYH DQG 6XSSO\ 5HVHUYH .UDXVNRSI f UHSRUWHG WKH &X FRQWHQWV LQ VRLOV DQG LQ URFNV 7DEOH ,Q QDWXUH &X RFFXUV FKLHIO\ DV VLPSOH DQGRU FRPSOH[ VXOILGH PLQHUDOV %\ IDU WKH PRVW DEXQGDQW RI &X PLQHUDOV LV HKDOFRS\ULWH

PAGE 21

7DEOH (VWLPDWHG DPRXQWV RI PLFURQXWULHQWV VXSSOLHG E\ WKUHH PHFKn DQLVPV WR FRUQ URRWV JURZLQJ LQ D KHDYLO\ IHUWLOL]HG VLOW ORDP VRLO DW S+ EDUEHU f (OHPHQW 7R WDO XSWDNH $PRXQW VXSSOLHG E\ 5RRW LQWHUFHSWLRQ &RQYHFWLRQ 'LIIXVLRQr NJKD &X f§ =Q f§ 0Q (fH N 'LIIXVLRQ LV DVVXPHG WR SURYLGH WKH SODQW UHTXLUHPHQWV QRW VDWLVn ILHG E\ FRQYHFWLRQ DQG LQWHUFHSWLRQ 7DEOH 7KH RFFXUUHQFH RI &X LQ URFNV DQG VRLOV .UDXVNRSI f ,JQHRXV URFNV 6HGLPHQWDU\ URFNV &UXVW 6RLOV *UDQLWH %DVDOW /LPHVWRQH 6DQGVWRQH 6KDOH SSP

PAGE 22

&X)H6Ar 6HYHUDO RWKHU VXOILGH PLQHUDOV PD\ DFFRPSDQ\ FKDOFRS\ULWH %DVLF FDUERQDWHV VXFK DV PDODFKLWH &XA&2+LA&2A RU D]XULWH &XA 2+f A &2Af A DQG WKH K\GURXV VLOLFDWH FKU\VRFROOD &X6L2A f Af PD\ EH IRXQG LQ DQ R[LGL]HG HQYLURQPHQW ,I DQLRQV DUH VFDUFH &X2 FDQ H[LVW DOWKRXJK LW LV QRW D FRPPRQ PLQHUDO 8QGHU UHGXFLQJ FRQGLWLRQV VXOILGHV ZHUH IRXQG WR EH PRVWO\ FRPSRXQGHG DV &XA6 UDWKHU WKDQ &X6 )URP FDOFXODWHG YDOXHV IRU VWDQGDUG IUHH HQHUJLHV RI IRUPDWLRQ *DUUHOV DQG &KULVW f UHSRUWHG WKH UHGXFWLRQ RI &X WR &X WRRN SODFH ZKHQ VWDQGDUG UHGR[ SRWHQWLDO DW S+ UHDFKHG PY :KDWHYHU PLJKW EH WKH IRUP RI &X LQ SULPDU\ URFNV LW GLVVROYHV LQ ZDWHU GXULQJ ZHDWKHULQJ SULPDULO\ DV &X DV ORQJ DV WKH VROXWLRQ UHn PDLQV VOLJKWO\ DFLGLF DQG LQ WKH R[LGL]HG VWDWH 7KLV LRQLF IRUP LV IRXQG LQ PDQ\ VWDEOH FRPSOH[ LRQV DQG PROHFXOHV DV ZHOO DV RUJDQLF FRPSOH[HV ,I &X LV SUHVHQW LQ VROXWLRQ DV D FXSURXV FRPSOH[ RU LI D &X VROXWLRQ PRYHV LQWR D UHGXFLQJ HQYLURQPHQW &82 RU HYHQ &X PHWDO PD\ SUHFLSLWDWH ZKHQ WKH VROXWLRQ EHFRPHV DONDOLQH *HQHUDOO\ KRZHYHU HQRXJK +A6 LV SUHVHQW LQ D UHGXFLQJ HQYLURQPHQW WR SUHFLSLWDWH &X DV &X6 RU &86 ERWK RI ZKLFK DUH VR YHU\ LQVROXEOH WKDW WKH\ FDQ IRUP HYHQ XQGHU PRGHUDWHO\ DFLGLF FRQGLWLRQV 5HDFWLRQV RI WKLV VRUW OHDGLQJ WR WKH SUHFLSLWDWLRQ RI GHILQLWH FRPSRXQGV DUH SUREDEO\ QRW FRPPRQ LQ VRLO IRUPDWLRQ DQG DOPRVW FHUWDLQO\ DUH OHVV HIIHFWLYH WKDQ DGVRUSWLRQ DV D JHQHUDO PHFKDQLVP IRU UHPRYLQJ &X IURP VROXWLRQ D FKDUDFWHULVWLF WKDW FDQ EH FRUUHODWHG ZLWK WKH WHQGHQF\ RI &X DWRPV WR IRUP VWURQJ FRYDOHQW ERQGV 1RUWKPRUH f &RSSHU IHUWLOL]HUV &RSSHU IHUWLOL]HUV DUH DYDLODEOH LQ ERWK RUJDQLF DQG LQRUJDQLF

PAGE 23

IRUPV &RPPRQ VRXUFHV RI &X IRU IHUWLOL]DWLRQ FRQVLVW RI &X62An6OA2 &X2 &X('7$ &X OLJQLQVXOIRQDWH DQG &X SRO\IODYRQRLGV 0XUSK\ DQG :DOVK f 5DWH RI DSSOLFDWLRQ YDULHV DQG GHSHQGV RQ ERWK FURSV DQG PHWKRGV RI DSSOLFDWLRQ *HQHUDOO\ NJKD RI LQRUJDQLF FRPn SRXQG KDV EHHQ XVHG LI EURDGFDVW RU NJKD LI EDQGHG 2UJDQLF FRPSRXQGV UHTXLUHG VPDOOHU UDWHV NJKD DQG NJKD IRU EURDGFDVWLQJ DQG EDQGLQJ UHVSHFWLYHO\ ,Q PRVW FDVHV VLQJOH DSSOLFDWLRQV RI&X WR VRLOV SHUVLVW DQG SURGXFH JRRG UHVSRQVHV RI FURS \LHOG 6PLWK 5DVPXVVHQ DQG +UQFLDU f KDYH VKRZQ WKDW WKH PRELOLW\ RI &X LQ WKH VRLO LV UHODWLYHO\ VOLJKW WKXV H[SODLQLQJ LWV SHUVLVWHQFH 5HLWK f SRLQWHG RXW WKDW UHVLGXDO HIIHFWV RI &X WUHDWPHQWV DUH ORQJ ODVWLQJ DQG XQGHU ILHOG FRQn GLWLRQV PD\ EH DGHTXDWH IRU DW OHDVW \HDUV GHSHQGLQJ RQ WKH PDJQLn WXGH RI WKH DSSOLFDWLRQ DQG WKH VRLO W\SH ,Q DJUHHPHQW ZLWK 5HLWK %HUJHU f SRLQWHG RXW WKH SHUVLVWHQFH RI &X LQ WKH VRLO DQG VXJn JHVWHG D KDOW WR &X WUHDWPHQW DIWHU D IHZ \HDUV WR DYRLG DFFXPXODWLRQV RI WR[LF OHYHOV 6RLO $FLGLW\ S+f /LQGVD\ f LQ KLV H[FHOOHQW UHYLHZ RI LQRUJDQLF SKDVH HTXLOLn EULXP RI PLFURQXWULHQWV LQ VRLO H[SUHVVHG WKH VROXELOLW\ RI VRLO &X E\ WKH HTXDWLRQ &X VRLO A &XVRLO + f 7KH ORJ YDOXH IRU WKLV HTXLOLEULXP ZDV IRXQG WR EH 1RUYHOO DQG /LQGVD\ f 7KLV UHODWLRQVKLS FDQ EH H[SUHVVHG DV

PAGE 24

&X f ff r  K9 f $W KLJK S+ EHFDXVH RI WKH LQFUHDVLQJ FRQFHQWUDWLRQ RI &2A DQG 2+ LQ WKH VRLO VROXWLRQ &X LV OLNHO\ WR SUHFLSLWDWH )ULHG DQG %URHV KDUW f $V D FRQVHTXHQFH H[FHVVLYH OLPLQJ FDXVHV WKH IRUPDWLRQ RI &X+fR DQG &X&2A ZKLFK DUH QRW UHDGLO\ DYDLODEOH WR SODQWV 3XUYLV DQG 'DYLGVRQ 0HQ]HO DQG -DFNVRQ $GDP DQG 3HDUVRQ f &RSSHU LQ WKH H[FKDQJH VLFHV PD\ H[LVW DV &X RU DV &X2+ GHSHQGn LQJ XSRQ WKH S+ RI WKH VRLO VROXWLRQ 7UXRJ DQG %RZHU f ,Q PLOGO\ DFLGLF V\VWHPV KRZHYHU K\GURO\VLV RI FRSSHU LV UHODWLYHO\ XQLPSRUWDQW $W S+ WKH &X &X2+ UDWLR LV DSSUR[LPDWHO\ DQG WKLV UDWLR LQFUHDVHG IROG ZKHQ S+ RI VROXWLRQ GHFUHDVHG RQH XQLW 'H0XPEUXP DQG -DFNVRQ f ,W FDQ EH LQIHUUHG IURP WKH REVHUYDWLRQ RI .UDXVNRSI f WKDW LQ WKH S+ UDQJH DW ZKLFK PRVW HFRQRPLF FURSV DUH JURZQ &X LQ VRLOV LV SUREDEO\ SUHVHQW FKLHIO\ DV WKH DGVRUEHG &X RU LQ VRLO VROXWLRQ DV WKH LRQ DQG YDULRXV FRPSOH[HV &U\VWDOOLQH DQG $PRUSKRXV &OD\ 0DWHULDOV (IIHFW RI FOD\ W\SH RQ &X GLIIXVLRQ FRHIILFLHQW KDV DOUHDG\ EHHQ GLVFXVVHG (OOLV HW DO f &RSSHU DV ZHOO DV RWKHU FDWLRQLF PLFURQXWULHQWV VXFK DV =Q )H DQG 0Q FDQ EH KHOG QHDU WKH QHJDWLYHO\ FKDUJHG VRLO VXUIDFH E\ HOHFWURn VWDWLF DWWUDFWLRQ 7KH\ FDQ DOVR HQWHU LQWR VSHFLILF DGVRUSWLRQ SURn FHVVHV WKURXJK FRYDOHQW ERQGLQJ RQ WKH FOD\ VXUIDFH (OOLV DQG .QH]HN f ,VRPRUSKLF VXEVWLWXWLRQ LQ WKH FU\VWDO ODWWLFH RI OD\HU VLOLFDWHV PD\ DOVR EH SRVVLEOH +RGJVRQ f VXJJHVWHG WKDW VROLGVWDWH GLIn IXVLRQ LQWR WKH UHODWLYHO\ RSHQ FU\VWDO VWUXFWXUH RI FOD\ PLQHUDOV FRXOG

PAGE 25

DFFRXQW IRU DGVRUSWLRQ RI PLFURQXWULHQWV E\ WKHVH PLQHUDOV +H\GHUPDQQ f IRXQG WKDW &X LV DGVRUEHG DSSUHFLDEO\ HYHQ E\ TXDUW] DQG RI FRXUVH PXFK PRUH VWURQJO\ E\ FOD\V 7KH DGVRUSWLRQ FDSDFLW\ RI GLIn IHUHQW FOD\ PLQHUDOV LQFUHDVHV LQ WKH RUGHU NDROLQLWH LOOLWH PRQW PRULOORQLWH $GVRUSWLRQ LQFUHDVHV DV WKH S+ ULVHV )HUULF K\GUR[LGH LV DOVR DQ DGVRUEHQW IRU &X SURYLGHG WKH S+ LV DERYH WKH LVRHOHFWULF SRLQW RI &XL2+fA +HP f 'H0XPEUXP DQG -DFNVRQ Df REVHUYHG WKDW &DPRQWPRULOORQLWH DQG &DSHDW FRXOG DFFXPXODWH &X RU =Q IURP YHU\ GLOXWH QHXWUDO VROXWLRQV HLWKHU LQ WKH SUHVHQFH RU DEVHQFH RI H[FHVV &D 7KH\ IHOW WKDW PRQW PRULOORQLWH DQG SHDW KDG VSHFLILF H[FKDQJH VLWHV IRU &X DV ZHOO DV =Q ,Q DQRWKHU SDSHU Ef WKH\ UHSRUWHG WKDW &X RU =Q VDWXUDWLRQ GHn FUHDVHG WKH LQWHQVLW\ RI WKH S LQIUDUHG DEVRUSWLRQ EDQG RI WKH K\GUR[\O LRQV LQ PRQWPRULOORQLWH YHUPLFXOLWH DQG NDROLQLWH LQGLFDWLQJ D UHDFWLRQ RU ERQGLQJ ZLWK WKH RFWDKHGUDO 2+ LQ OD\HU VLOLFDWHV 7KLV + ERQG FRXOG EH YLVXDOL]HG DV D &X2$O RU &X•$O LQ SRVLWLRQV ZKHUH DFFHVV E\ WKH &X RU =Q LRQV LV SRVVLEOH EHFDXVH RI VLOLFD QHW RSHQLQJV FU\VWDO GHIHFWV RU DW EURNHQ HGJHV 6RLO 2UJDQLF 0DWWHU ,Q D UHFHQW UHYLHZ 6WHYHQVRQ DQG $UGDNDQL f FODVVLILHG RUn JDQLF FRPSRXQGV LQ VRLO WKDW IRUP VWDEOH FRPSOH[HV ZLWK PHWDOOLF LRQV LQWR WZR PDLQ JURXSV f ELRFKHPLFDOV RI WKH W\SHV NQRZQ WR RFFXU LQ OLYLQJ RUJDQLVPV DQG f D VHULHV RI FRPSOH[ SRO\PHUV IRUPHG E\ VHFRQGDU\ V\QWKHVLV UHDFWLRQV ,QFOXGHG LQ WKH ILUVW JURXS DUH WKH RUJDQLF DFLGV SRO\SKHQROV

PAGE 26

DPLQR DFLGV SHSWLGHV SURWHLQV DQG SRO\VDFFKDULGHV 7KH VHFRQG JURXS LQFOXGHV KXPLF DQG IXOYLF DFLGV 7KH RUJDQLF DFLGV PRVW HIIHFWLYH LQ IRUPLQJ VWDEOH FKHODWH FRPn SOH[HV ZLWK PHWDOOLF LRQV DUH WKRVH RI WKH GL DQG WULFDUER[\OLF K\GUR[\ W\SHV VXFK DV FLWULF WDUWDULF DQG PDOLF DFLG 6XJDU DFLGV VXFK DV JOXFRQLF JOXFXURQLF DQG JDODFWXURQLF DFLGV PD\ DOVR EH LPSRUWDQW DV VROXELOL]HUV RI PLQHUDO PDWWHU ,Q FODVVLFDO WHUPLQRORJ\ KXPLF DFLG +$f LV WKH PDWHULDO H[WUDFWHG IURP VRLO E\ DONDOLQH VROXWLRQV DQG SUHFLSLWDWHG XSRQ DFLGLILFDWLRQ IXOYLF DFLG )$f LV WKH PDWHULDO VROXEOH ERWK LQ DONDOL DQG DFLG 1XPn HURXV DWWHPSWV KDYH EHHQ PDGH WR GHYLVH VWUXFWXUDO IRUPXODV IRU +$ DQG )$ EXW DV 'XEDFK DQG 0HKWD f SRLQWHG RXW QR WZR KXPXV PROHFXOHV PD\ KDYH WKH SUHFLVHO\ LGHQWLFDO VWUXFWXUH &RQWHPSRUDU\ LQYHVWLJDWRUV 6WHYHQVRQ DQG $UGDNDQL f IDYRU D W\SH RI +$ FRQVLVWLQJ RI PLFHOOHV RI D SRO\PHULF QDWXUH WKH EDVLF VWUXFWXUH RI ZKLFK LV DQ DURPDWLF ULQJ RI WKH GL RU WULK\GUR[\SKHQRO W\SH EULGJHG E\ 1+ 1 6 DQG RWKHU JURXSV 7KHVH FRPSRXQGV FRQWDLQ ERWK IUHH 2+ JURXSV DQG WKH GRXEOH OLQNDJHV RI TXLRQHV 7KH RYHUDOO FKHPLFDO SURSHUWLHV RI +$ DQG )$ ZHUH UHSRUWHG E\ 6FKHIIHU DQG 8OULFK f DQG VXPPDUL]HG E\ 6WHYHQn VRQ DQG $UGDNDQL f DV SUHVHQWHG LQ 7DEOH 7KH ODWWHU ZRUNHUV UHSRUWHG WKDW LQ WKH QDWXUDO VWDWH +$ DQG )$ DUH LQWLPDWHO\ ERXQG WR FOD\ WR RQH DQRWKHU DQG WR RWKHU RUJDQLF FRQVWLWXHQWV $ YDULHW\ RI LQWHUPROHFXODU ERQGLQJ IRUFHV DUH LQYROYHG LQFOXGLQJ +ERQGLQJ HVWHU OLQNDJHV YDQ GHU :DDOV IRUFHV DQG VDOW OLQNDJHV 'XEDFK DQG 0HKWD f SRLQWHG RXW WKDW HYHQ DIWHU H[WUDFWLRQ LW LV GLIILFXOW WR IUHH KXPLF VXEVWDQFHV IURP LQRUJDQLF FRPSRQHQWV VXFK DV FDWLRQV DQG FOD\ RU RUJDQLF LPSXULWLHV VXFK DV FDUERK\GUDWH DQG SURWHLQV

PAGE 27

7DEOH *HQHUDO FKHPLFDO SURSHUWLHV RI KXPLF DQG IXOYLF DFLG 6WHYHQVRQ DQG $UGDNDQL f )XOYLF DFLG +XPLF DFLG &UHQLF $SRFUHQLF %URZQ +XPLF *UD\ KXPLF DFLG DFLG DFLG DFLG /LJKW \HOORZf
PAGE 28

6RLO 20 IRUPV FRPSOH[HV ZLWQ PHWDOV E\ FRDJXODWLRQ SHSWL]DWLRQ LRQH[FKDQJH VXUIDFH DGVRUSWLRQ DQG FKHODWLRQ 0RUWHQVHQ f 6FKQLW]HU DQG 6NLQQHU Af UHSRUWHG WKDW WKH VWDEOH RUJDQRPHWDO OLF FRPSOH[ LV REWDLQHG IURP WKH IRUPDWLRQ RI HOHFWURVWDWLF DQGRL FRYDOHQW ERQGLQJ EHWZHHQ WKH PHWDOOLF LRQV DQG WKH OLJDQGV &RDJXODWLRQ SHSWL]DWLRQ 2QJ DQG %LVTXH f LQ D VWXG\ RI WKH FRDJXODWLRQ RI KXPLF FROn ORLGV E\ PHWDOOLF LRQV UHSRUWHG WKDW WKH VWDELOLW\ RI PHWDORUJDQLF PDWWHU DVVRFLDWLRQ LV GXH WR WKH )XRVV HIIHFW RU FRLOLQJ RI WKH OLQHDU SRO\PHUV FKDLQ DV FRXORPELF UHSXOVLYH IRUFHV DUH UHGXFHG E\ HOHFWURVWDWL ELQGLQJ 7KH FRDJXODWLRQ RI +$ GHSHQGV XSRQ WKH S+ DQG WKH LRQLF VWUHQJWK \f RI WKH VROXWLRQV 6FKQLW]HU DQG .KDQ f ,Q WKH DEVHQFH RI VDOWV YLUWXDOO\ FRPSOHWH SHSWL]DWLRQ RFFXUUHG DW S+ DQ LQFUHDVH LQ S UDLVHG WKH S+ RI SHSWL]DWLRQ WR S+ 3HSWL]DWLRQ XVXDOO\ RFFXUV DW D VRPHZKDW KLJKHU S+ WKDQ FRDJXODWLRQ SRVVLEO\ EHFDXVH RI DVVRFLDWLRQ RI +$ SDUWLFOHV E\ K\GURJHQERQGLQJ 6FKQLW]HU DQG 'H/RQJ f 7ULYDOHQW LRQV ZHUH PRUH HIIHFWLYH LQ FRDJXODWLQJ +$ WKDQ ZHUH GLn YDOHQW RQHV 7KH RUGHU RI LQFUHDVLQJ HIIHFWLYHQHVV RI PHWDO LRQV IRU I f I rf FRDJXODWLQJ +$ ZDV 0Q &R 1L =Q &Xa )Hf $O .KDQ f :ULJKW DQG 6FKQLW]HU f IRXQG WKDW WKH FDSDFLW\ RI D QXPEHU RI PHWDOV WR FRDJXODWH )$ DW S+ DQG GHFUHDVHG LQ WKH IROORZLQJ RUGHU $O )H &D 0J +RGJVRQ f QRWLFHG WKDW RUJDQLF VRLOV DUH DPRQJ WKRVH PRVW FRPPRQO\ GHILFLHQW LQ &X 7KLV RFFXUV EHFDXVH WKHLU WRWDO &X FRQWHQW

PAGE 29

LV IUHTXHQWO\ ORZ DQG WKHLU FDSDFLW\ WR IL[ &X LV KLJK ,Q D ODWHU ZRUN KRZHYHU +RGJVRQ HW DO f IRXQG WKDW RUJDQLF FRPSOH[LQJ LQFUHDVHG WKH WRWDO FRQFHQWUDWLRQ RI &X LQ WKH VRLO VROXWLRQ E\ D IDFWRU RI DERXW *XSWD f GHPRQVWUDWHG WKDW WKH DGGLWLRQ RI 20 WR VRLO LQFUHDVHV H[FKDQJHDEOH &X 7KH FRQFHSW RI FKHODWLRQ RU FRPSOH[DWLRQ WKHUHIRUH UHSODFHV WKH FRQFHSW RI FRDJXODWLRQ DQG SURYLGHV D VHFRQG ZD\ WR LQWHUSUHW PHWDO20 LQWHUDFWLRQV &KHODWLRQ FRPSOH[DWLRQ *HHULQJ DQG +RGJVRQ f FDOFXODWHG WKH PHWDO WR OLJDQG UDWLR IURP WKH LQFUHDVH LQ WKH SURSRUWLRQ RI PHWDO FRPSOH[HG DV WKH FRQFHQn WUDWLRQ RI OLJDQG LQFUHDVHG DQG UHSRUWHG WKDW FRPSOH[LQJ DJHQWV LQ VRLO VROXWLRQ IRUP FRPSOH[HV ZLWK &X :KHQ DQ HTXLOLEULXP EHWZHHQ WKH PHWDOOLJDQG FRPSOH[ DQG WKH GLVVRFLDWHG PHWDO DQG OLJDQG LV HVWDEOLVKHG WKH\ HVWLPDWHG D YDOXH RI ; IRU WKH ORJA4 IRUPDWLRQ FRQVWDQW 7KHUH DUH YDULRXV IDFWRUV ZKLFK FRQWULEXWH WR WKH VWDELOLW\ RI D PHWDO FKHODWH &RUYLQ f FLWHG WKH LPSRUWDQFH RI DWRPLF UDGLXV RQ WKH IRUPDWLRQ RI FRPSOH[HV 5DGLXV UDWLR RI HOHFWURQULFK JURXSPHWDO LRQ JRYHUQV WKH FRRUGLQDWLRQ QXPEHU RI &X &RPPRQO\ &X FRRUGLQDWHV ZLWK IRXU OLJDQGV ,Q VRPH FDVHV FRRUGLQDWLRQ RI &X ZLWK WZR OLJDQGV ZDV REVHUYHG EXW YHU\ UDUHO\ ZLWK WKUHH RU ILYH /HKPDQ f UHn SRUWHG WKDW WKH QXPEHU RI ULQJV IRUPHG E\ RQH PROHFXOH RI FKHODWLQJ DJHQW ZLWK PHWDOOLF LRQ WKH VL]H RI WKH FKHODWH ULQJV DQG WKH QDWXUH RI WKH GRQRU DWRPV DUH RI SULPH LPSRUWDQFH +H DOVR IRXQG WKDW S+ RI WKH VROXWLRQ SOD\V DQ LPSRUWDQW UROH LQ FKHODWLRQ UHDFWLRQV 5DVKLG f H[WUDFWHG +$ IURP PDULQH VHGLPHQWV DQG IUDFWLRQDWH

PAGE 30

WKHVH RQ 6HSKDGH[ JHOV LQWR GLIIHUHQW PROHFXODU ZHLJKW 0:f IUDFWLRQV +H GHWHUPLQHG WKH DELOLW\ RI D QXPEHU RI GLa DQG WULYDOHQW PHWDOOLF LRQV WR FRPSOH[ ZLWK HDFK RI WKHVH +$ IUDFWLRQV DW S+ +H IRXQG WKDW XQGHU KLV H[SHULPHQWDO FRQGLWLRQV DQG RQ 0: EDVLV WKH ORZHVW 0: IUDFn WLRQV FRPSOH[HG WZR WR VL[ WLPHV PRUH PHWDOV WKDQ GLG WKH KLJK 0: IUDFWLRQV DQG WKDW WKH DPRXQWV RI GLYDOHQW PHWDOV FRPSOH[HG ZHUH WKUHH WR IRXU WLPHV KLJKHU WKDQ WKRVH RI WULYDOHQW PHWDOV +H DOVR UHSRUWHG WKDW RQHWKLUG RI WKH WRWDO FDWLRQ H[FKDQJH FDSDFLW\ RI +$ H[LVWV LQ WKH QRQFKHODWLQJ IRUP LQGLFDWLQJ WKDW QRW DOO DFLGLF JURXSV LQ WKH +$ SDUn WLFLSDWHG LQ PHWDO FRPSOH[LQJ ,Q D VSHFWURSKRWRPHWULF LQYHVWLJDWLRQ RI WKH )$ IUDFWLRQ IURP SHDW 0LWFKHOO f UHSRUWHG DW OHDVW RQH &X FKHODWH ZDV REVHUYHG +H VXJJHVWHG WKDW WR FRPSOH[ &X ERWK 6+ DQG &+ JURXSV DUH UHTXLUHG DOWKRXJK WKH ,Q7 JURXS PD\ DOVR EH LQYROYHG +H IXUWKHU IRXQG WKDW WKH RSWLPXP DFLGLW\IRU FRPSOH[ IRUPDWLRQ ZLWK +$ LV S+ WR DQG ZLWK )$ S+ %URDGEHQW DQG %UDGIRUG f XVHG WKH WHFKQLTXH RI IXQFWLRQDO JURXS PHWK\ODWLRQ ZLWK GLD]RPHWKDQH DQG GLPHWK\O VXOIDWH WR VKRZ WKDW FDUER[\O DQG SKHQROLF JURXSV DWWDFKHG WR KHWHURF\FOLF FRPn SRXQGV LQ VRLO 20 H[WUDFWV DUH WKH LPSRUWDQW IXQFWLRQDO JURXSV IRU &X ERQGLQJ ,Q D ODWHU ZRUN %URDGEHQW f XVHG VRLO DV DQ LRQ H[FKDQJH FROXPQ IRU HOXWULDWLRQ RI 20 WKDW ZDV &XVDWXUDWHG RU &DVDWXUDWHG )RXU HOXWULDWLRQ SHDNV ZHUH REWDLQHG ZLWK WKH &XVDWXUDWHG FROXPQ ZKLOH RQO\ SHDNV ZHUH REWDLQHG ZLWK WKH &DVDWXUDWHG RQH +H FRQFOXGHG WKDW FDUER[\O JURXSV FRPSOH[HG ERWK &X DQG &D EXW WKDW RWKHU IXQFWLRQDO JURXSV UHDFWHG VHOHFWLYHO\ ZLWK &X WR WKH H[FOXVLRQ RI &D /HZLV DQG %URDGEHQW Df XVHG D VHULHV RI SKHQROLF DQG FDUER[\OLF DFLGV DV PRGHO FRPSRXQGV WR VKRZ WKDW &X ZDV DGVRUEHG DV &X2+ E\

PAGE 31

FDUER[\O JURXSV ZKHUHDV &X ZDV FRPSOH[HG E\ WKH SKHQROLF JURXSV 5HVXOWV RI WKHLU VLEVHTXHQW UHVHDUFK Ef LQGLFDWHG WKDW FDUER[\O DQG SKHQROLF JURXSV ZHUH LPSRUWDQW LQ WKH RUJDQLF FRLQSOH[LQJ RI &X LQ VRLOV EXW QRWHG WKDW WKH IRUPV RI &X ERXQG ZHUH QRW DV FOHDUO\ GLIIHUn HQWLDWHG DV LQ WKH PRGHO FRPSRXQGV 9DU\LQJ DFLGLW\ RI WKH FDUER[\O DQG SKHQROLF IXQFWLRQDO JURXSV LQ WKH KHWHURJHQHRXV VRLO V\VWHP ZDV VXJJHVWHG DV D IDFWRU SUHYHQWLQJ UHVXOWV VLPLODU WR WKRVH REWDLQHG IRU PRGHO FRPSRXQGV 6LPLODU UHVHDUFK E\ 6FKQLW]HU f FRQILUPHG VXFK D FRQFOXVLRQ :HL f LQGLFDWHG WKDW &X ZDV SUHIHUHQWLDOO\ DGVRUEHG E\ 20 XQWLO LWV H[FKDQJH FDSDFLW\ ZDV VDWLVILHG DQG WKHQ E\ FOD\ PLQHUDOV 'DYLHV HBW DO f UHSRUWHG WKDW WKH ERQGLQJ VWUHQJWK RI &X E\ +$ LQFUHDVHG DV DSSOLHG &X FRQWHQW GHFUHDVHG +LPHV DQG %DUEHU f QRWLFHG WKDW ZKHUH PRUH WKDQ RQH FKHODWLQJ DJHQW LV SUHVHQW WKH RQH ZKLFK IRUPV WKH PRVW VWDEOH FRPSOH[ ZLOO FKHODWH WKH PRVW PHWDOOLF LRQ XQWLO LWV FKHODWLRQ FDSDFLW\ LV UHDFKHG 2Q WKH RWKHU KDQG D FDWLRQ PXVW VDWLVI\ WZR UHTXLUHPHQWV HQDEOLQJ LW WR FRPELQH DSSUHFLDEO\ ZLWK D FKHODWLQJ OLJDQG )LUVW DQ DGHTXDWH TXDQWLW\ RI WKH FDWLRQ PXVW EH SUHVHQW LQ VROXWLRQ RU LQ HTXLOLEULXP ZLWK WKH VRLO VROXWLRQ WR SHUPLW IRUPDWLRQ RI D VLJQLILFDQW FRQFHQWUDn WLRQ RI PHWDO FKHODWH 6HFRQGO\ WKH FKHODWH RI WKLV FDWLRQ PXVW SRVVHVV VXIILFLHQW VWDELOLW\ WR H[LVW LQ HTXLOLEULXP ZLWK WKH FRQFHQn WUDWLRQ RI WKH FDWLRQ DQG IUHH OLJDQG LQ VRLO VROXWLRQ 1RUYHOO f *DPEOH HBW Df SURSRVHG WZR PHFKDQLVPV WR DFFRXQW IRU WKH &X IXOYLF DFLG HTXLOLEULXP

PAGE 32

2 2+ ,Q HTXDWLRQ WKH UHDFWLQJ FDUER[\O LV RUWKR WR D UHDFWLQJ SKHQROLF 2+ JURXS ,Q HTXDWLRQ WZR FDUER[\O JURXSV DUH DGMDFHQW IRU &X FRPSOH[ LQJ 7KH UHDFWLRQV SURGXFH D SURWRQ ZKLFK UHGXFHV S+ RI WKH VRLO VROXWLRQ 6FKQLW]HU DQG .KDQ f UHPDUNHG WKDW LW LV GLIILFXOW WR GHFLGH DW WKLV WLPH ZKHWKHU PHWDO KXPDWHV DQG IXOYDWHV DUH VLPSOH RU FKHODWH FRPSOH[HV 7KH IRUPDO GLVWLQFWLRQ EHWZHHQ VLPSOH DQG FKHODWH FRPSOH[ LV RIWHQ DUELWUDU\ DQG LW LV GLIILFXOW WR GLIIHUHQWLDWH EHWZHHQ WKH WZR HVSHFLDOO\ ZKHQ WKH VDPH NLQG RI GRQRU JURXSV DUH LQYROYHG :KDW LV LPSRUWDQW KRZHYHU LV WKDW KXPLF VXEVWDQFHV KDYH WKH FDSDFLW\ RI ELQGLQJ VXEVWDQWLDO DPRXQWV RI PHWDOV DQG WKXV H[HUW FRQVLGHUDEOH FRQWURO RYHU WKH VXSSO\ DQG DYDLODELOLW\ RI QXWULHQW HOHPHQWV WR SODQWV 6WHYHQVRQ DQG $UGDNDQL f KDYH FODULILHG VRPH RI WKH FRQIOLFWn LQJ YLHZV RQ UROHV RI 20 UHJDUGLQJ DYDLODELOLW\ RI PLFURQXWULHQWV $FFRUGLQJ WR WKHVH ZRUNHUV PHWDOV LQ WKH VRLO WKDW RFFXU LQ LQVROXEOH FRPELQDWLRQV ZLWK 20 DUH ODUJHO\ WKRVH WKDW DUH ERXQG WR FRPSRQHQWV RI WKH +$ IUDFWLRQ ZKLOH WKH PHWDOV IRXQG LQ VROXEOH FRPSOH[HV DUH PDLQO\ WKRVH DVVRFLDWHG ZLWK )$ DQGRU ZLWK LQGLYLGXDO ELRFKHPLFDO PROHFXOHV VXFK DV RUJDQLF DFLGV

PAGE 33

&RPSOH[DWLRQ RI 6RLO &X n ZLWK 6\QWKH WLF &KH OD WLQJ $JHQ WV 1RUYHOO f UHSRUWHG WKDW LQ FDOFDUHRXV VRLOV WKH VWDELOLW\ RI WKH &XFKHODWHV GHFUHDVHV LQ WKH RUGHU &X',7$ &X+('7$ &X&'7$ &X('7$ &X(''.$ &X(*7$ &X17$ &X&,7 } &X)A &X3 &X2; ,Q PRUH DFLGLF VRLOV KH QRWLFHG WKDW WKH VWDELOLW\ RI DOO WKH &XFKHODWHV LV UHGXFHG EHFDXVH RI WKH GHFOLQH LQ IUHH OLJDQG FRQFHQWUDn WLRQV 7KH UHODWLYH VWDELOLW\ RI GLIIHUHQW &XFKHODWHV DOVR FKDQJHV ZLWK S+ VR WKDW DW VOLJKWO\ DFLG S+ YDOXHV WKHLU VWDELOLW\ IROORZV WKH RUGHU RI &X+('7$ &X(*7$ &X'73$ &X('7$ &X17$ &X&'7$ &X(''+$ &X" r &X3 4 &X2; %\ FRPSDULVRQ KH HVWLPDWHG WKDW DW 0 FRQFHQWUDWLRQV WKH WKUHH OHDVW HIIHFWLYH FKHODWLQJ DJHQWV 3f 3rf D[LG ;f VKRXOG KDYH QR VLJQLILFDQW LQIOXHQFH RQ FRPSOH[DWLRQ RI &X LQ VRLO VROXWLRQV 7KH HIIHFW RI &,7 RQ FRPSOH[DWLRQ RI &X LV QRW DV FOHDU ',7$ +('7$ &'7$ ('7$ (*7$ (''+$ DQG 17$ ZRXOG LQFUHDVH FRPSOH[DWLRQ RI &X ZHOO DERYH OHYHOV FKDUDFWHULVWLF RI QDWXUDO &XFRPSOH[HV LQ VRLO VROXn WLRQ +RZHYHU WKH PDJQLWXGH RI WKH LQFUHDVH GLIIHUV JUHDWO\ DPRQJ WKHVH FKHODWLQJ DJHQWV )LJ f &KHODWHG &X WR 7RWDO &X 5DWLR LQ WKH 6RLO 6ROXWLRQ 7KH GRPLQDQFH RI RUJDQLF FRPSOH[HG IRUP RI &X LQ VRLO VROXWLRQ DQG WKH YHU\ KLJK UDWLR RI FKHODWHG &X WR WRWDO &X LQ WKH VRLO VROXWLRQ KDYH DOUHDG\ EHHQ GLVFXVVHG +RGJVRQ BHW DO DQG f 0HWDO FFPSOH[ LQJ LV KLJKHU LQ VRLO VROXWLRQV IURP VXUIDFH KRUL]RQV WKDQ IURP VXEn VXUIDFH KRUL]RQ +RGJVRQ HW DO f EDVHG WKHLU VWXGLHV ZLWK FRLO FRPSOH[DWLRQ

PAGE 34

/2* 5$7,2 2) &+(/$7(' &8 72 &8 S+ S + L KR )LJ &RPSDULVRQ RI &X FKHODWLQJ DELOLWLHV RI FKHODWLQJ DJHQWV LQ VRLO VROXWLRQ 1RUYHOO f

PAGE 35

RQ HLJKW DVVXPSWLRQV RI ZKLFK WKH PRVW LPSRUWDQW ZHUH f 7KH VRLO VROXWLRQ ZKHQ UHPRYHG IURP LWV QDWLYH HQYLURQPHQW JLYHV D JRRG UHSUHVHQWDWLRQ RI WKH FRPSOH[LQJ IRXQG XQGHU QDWXUDO FRQGLWLRQV f $GVRUSWLRQ RI FDWLRQLF PLFURQXWULHQWV RQWR SDUWLFXODWH PDWWHU LV QRW VLJQLILFDQW f &KDQJHV LQ FDWLRQ FRQFHQWUDWLRQ LQ WKH VRLO VROXWLRQ E\ DGGLn WLRQ RI D UDGLRDFWLYH LVRWRSH GRHV QRW PHDVXUDEO\ DOWHU WKH GHJUHH RI FRPSOH[LQJ LQ WKH VRLO VROXWLRQ f 'LOXWLRQ RI WKH VRLO VROXWLRQ GXULQJ WKH DVVD\ GRHV QRW FKDQJH UHVXOWV DSSUHFLDEO\ &RSSHU $EVRUSWLRQ E\ 3ODQWV &RSSHU LV DEVRUEHG E\ SODQWV DV WKH &X DQG PD\ EH DEVRUEHG DV D VDOW RI DQ RUJDQLF FRPSOH[ VXFK DV ('7$ 7LVGDOH DQG 1HOVRQ f :KHQ FKHODWHG QXWULHQW UHDFKHV WKH URRW VXUIDFH WKH SODQW PD\ EH DEOH WR OLEHUDWH WKH QXWULHQW LRQ IURP WKH FKHODWLQJ DJHQW DQG DEVRUE WKH QXWULHQW +RGJVRQ &KDQH\ HW! DO f ,I DIWHU DEVRUSWLRQ RI WKH PLFURQXWULHQW E\ WKH SODQW WKH FKHODWLQJ DJHQW GRHV QRW FRPELQH ZLWK RWKHU LRQV HJ &D DQG 0J DW WKH URRW VXUIDFH LW LV SRVWXn ODWHG WKDW WKH FKHODWH PD\ EXLOG XS WR VXFK D FRQFHQWUDWLRQ WKDW WKH FKHODWLQJ DJHQW DQG WKH SODQW FRPSHWH IRU WKH QXWULHQW +RGJVRQ f %RZHQ f UHSRUWHG WKDW ERWK &X DQG =Q DEVRUSWLRQ E\ VXJDUFDQH OHDI WLVVXH ZHUH FKDUDFWHULVWLF RI DQ DFWLYH SURFHVV 8SWDNH RI &X DQG =Q ZDV UHGXFHG E\ ORZ WHPSHUDWXUH GLQLWURSKHQRO 1 &1 DQG $V2A DQG ZDV FRPSOHWHO\ LQKLELWHG E\ DP\WDO HWK\OPHWK\OEXW\Of EDUELWXULF DFLG 1D VDOWf DQG QHPEXWDO HWK\OSHQW\OfEDUELWXULF

PAGE 36

DFLG 1D VDOWf $EVRUSWLRQ ZDV IRXQG WR EH D VWHDG\VWDWH SURFHVV RYHU D SHULRG RI DW OHDVW WZR KRXUV 7KH DEVRUSWLRQ UDWH RI ERWK &X DQG =Q LQFUHDVHG ZLWK FRQFHQWUDWLRQV XS WR DERXW n 0 ZKHUH WKH PHFKDQLVP EHFDPH FRPSOHWHO\ VDWXUDWHG ,QWHUDFWLRQ %HWZHHQ &X DQG 2WKHU (OHPHQWV +LDWW HBW BDO f UHSRUWHG WKDW $ DW FRQFHQWUDWLRQV DV ORZ DV SSP PDUNHGO\ UHGXFHG WRWDO &X XSWDNH RI ZKHDW URRWV 7KLV LQKLELn WLRQ LV FDXVHG E\ WKH FRPSHWLWLRQ EHWZHHQ WKHVH WZR LRQV IRU DGVRUSWLRQ VLWHV DVVRFLDWHG ZLWK WKH URRWV 2Q WKH RWKHU KDQG ZKHQ WKH &X FRQWHQW LQ SODQWV UHDFKHG LWV RSWLn PXP OHYHO WKH DGGLWLRQ RI &X EHFDPH WR[LF WR SODQWV /RFDVFLR DQG )LVNHOO f )LVNHOO DQG /HRQDUG f UHFRUGHG WKDW VROXEOH &X LQ H[FHVV RI SSP LV WR[LF WR FLWUXV URRWV ,QFUHDVHG UDWHV RI DSSOLHG &X UHVXOWHG LQ D VLJQLILFDQW GHFUHDVH LQ % )H DQG 3 FRQWHQW ZKHUHDV &D 0Q DQG 0J ZHUH QRW VLJQLILFDQWO\ DIIHFWHG 2QH RI WKH HDUOLHVW VWXGLHV UHODWLQJ WR &X3 LQWHUDFWLRQV ZDV FRQGXFWHG LQ )ORULGD E\ )RUVHH DQG $OOLVRQ f 7KH\ UHSRUWHG WKDW &X FRQWHQWV RI OHDYHV DQG IUXLW MXLFH RI FLWUXV ZDV GHFUHDVHG DV WKH OHYHO RI DSSOLHG VXSHUSKRVSKDWH ZDV LQFUHDVHG 7KH REVHUYDWLRQ WKDW H[FHVVLYH DSSOLFDWLRQ RI 3 LQGXFHG &X GHILFLHQF\ LQ PDQ\ FURSV KDV EHHQ FRQILUPHG E\ PDQ\ ZRUNHUV (UYLQ %LQJKDP DQG 0DUWLQ %LQJKDP DQG *DUEHU 6SHQFHU ,f /RFDVFLR HUW DO f SURYLGHG DGGLWLRQDO LQIRUPDWLRQ UHODWHG WR &X3 LQWHUDFWLRQ 7KH\ UHSRUWHG WKDW WKH QDWXUH RI WKH 3 VRXUFH DOVR FRQWULEXWHG WR WKLV LQWHUDFWLRQ 3KRVSKRUXV IURP GLDPPRQLXP SKRVSKDWH GHSUHVVHG &X XSWDNH PRUH WKDQ WKDW IURP HLWKHU FRQFHQWUDWHG

PAGE 37

VXSHUSKRVSKDWH RU RUGLQDU\ VXSHUSKRVSKDWH 7KH PHFKDQLVP RI 3LQGXFHG &X GHILFLHQF\ LV QRW XQLTXH -DPLVRQ f UHSRUWHG WKDW ZKHQ 3 ZDV SUHVHQW LQ ODUJH DPRXQWV LW ZRXOG IL[ &X VR WKDW &X EHFDPH OHVV DYDLODEOH WR SODQWV 7KH LGHD RI 3LQGXFHG &X IL[DWLRQ ZDV GLVSXWHG E\ RWKHU ZRUNHUV 'H.RFN HW DO f VWXGLHG WKH &X3 LQWHUDFWLRQ LQ RDWV 7KH\ UHSRUWHG WKDW DJJUDYDWLRQ RI &X GHILFLHQF\ ZLWK WKH DSSOLn FDWLRQ RI 3 ZDV GXH WR LQFUHDVLQJ JURZWK RI SODQWV DQG WKHUHIRUH LQGXFHG D KLJKHU GHPDQG IRU &X 7KH\ DOVR IRXQG WKDW 1 DSSOLFDWLRQ FRXOG HQn KDQFH &X GHILFLHQF\ )LVNHOO DQG :HVWJDWH f QRWHG WKDW LURQ FKORURVLV RI FURSV JURZQ RQ VDQG\ VRLOV RI )ORULGD ZDV XVXDOO\ D GDQJHU VLJQDO ZDUQLQJ WKDW &X ZDV WRR KLJK DQG D GHFUHDVH RI 3A2A&X UDWLR KDG WDNHQ SODFH ,Q WKH 6DQIRUG DUHD VRLOV KDYLQJ RQO\ RQH SRXQG RI DYDLODEOH &X SHU DFUH H[KLELWHG &XLQGXFHG LURQ FKORURVLV LQ VHYHUDO FURSV ([FHVVLYHO\ DYDLODEOH &X LQ WKH VRLO UHVXOWHG LQ D VWXEE\ URRW V\VWHP DQG WKH URRW VXUIDFH ZKLFK ZDV SRLVRQHG E\ H[FHVV &X KDG UHGXFHG DELOLW\ WR DEVRUE RWKHU QXWULHQWV 0RRUH HBW DO f REVHUYHG WKDW JURZWK RI OHWWXFH DW DQ\ RQH OHYHO RI &X ZDV LQIOXHQFHG E\ WKH )H VXSSO\ 7KH WR[LF HIIHFWV RI &X DW KLJK OHYHOV RI VXSSO\ ZHUH GHFUHDVHG E\ DGGLWLRQV RI )H EXW WKH DGYHUVH HIIHFW RI KLJK &X ZDV QHYHU FRPSOHWHO\ RYHUFRPH E\ )H DGGLWLRQV 7KH DQWDJRQLVP EHWZHHQ &X DQG 0R ZDV DOVR UHSRUWHG 0DF.D\ HW DO f IRXQG WKDW D PXWXDO DQWDJRQLVP H[LVWHG EHWZHHQ &X DQG 0R IRU ILYH FURSV $SSOLFDWLRQ RI &X DJJUDYDWHG 0R GHILFLHQF\ LQ VSLQDFK DQG FDXOLn IORZHU DQG DSSDUHQWO\ WKH DSSOLFDWLRQ RI 0R HQKDQFHG &X GHILFLHQF\ LQ FDUURW VSLQDFK DQG OHWWXFH *LRUGDQR HWA DO f UHSRUWHG HYLGHQFH LQGLFDWLQJ WKDW &X LQWHUIHUHG ZLWK WKH UROH RI 0R LQ WKH HQ]\PDWLF UHGXFWLRQ RI 12A LQ WRPDWR SODQWV

PAGE 38

0HDVXUHPHQW RI &X E\ &X f 6HOHFWLYH (OHFWURGH 7KH XVH RI VSHFLILF LRQ HOHFWURGHV LQ WKH VWXG\ RI WKH VRLOZDWHU SODQW V\VWHP LV QRW DQ HQWLUHO\ QHZ H[SHULPHQWDO DSSURDFK &DUOVRQ DQG .HHQH\ f FLWHG WKH ZRUNV LQ WKLV ILHOG RI VWXG\ RI SLRQHHU VFLHQn WLVWV GDWHG EDFN LQ WKH nV $W WKH SUHVHQW WLPH &X VHOHFWLYH HOHFWURGH LV FRQVLGHUHG DV D XVHIXO DQDO\WLFDO WRRO VXFK DV LQ WKH GHWHUPLQDWLRQ RI &X DFWLYLW\ 2ULRQ 5HVHDUFK f $Q HVSHFLDOO\ DWWUDFWLYH IDFW LV WKDW &X VHOHFWLYH HOHFWURGH PHDVXUHV RQO\ WKH DFWLYLW`7 RI XQDVVRFLDWHG &X WKHUHIRUH LW FDQ EH XVHG GLUHFWO\ DQG HOHJDQWO\ LQ WKH VWXG\ RI &X FRPSOH[DWLRQ 5HHKQLW] f SURSRVHG PHDVXUHPHQWV RI &X DFWLYLW\ XQGHU QRQFRPSLH[LQJ VROXWLRQ FRQGLWLRQV DQG WKHQ DJDLQ LQ WKH SUHVHQFH RI WKH FRPSOH[LQJ DJHQW )URP WKHVH PHDVXUHPHQWV DQG NQRZOHGJH RI WKH LQLWLDO FRQFHQWUDn WLRQV RI WKH UHDJHQWV LQYROYHG WKH IRUPDWLRQ FRQVWDQW RI WKH UHVXOWLQJ FRPSOH[ FRXOG EH REWDLQHG +H DOVR UHPDUNHG WKDW VLWXDWLRQV LQYROYLQJ D VHULHV RI FRPSOH[HV DGGLWLRQDO HTXLOLEULD NLQHWLF FRPSOLFDWLRQV HWF FDQ DOVR EH KDQGOHG WKURXJK SURSHU GHVLJQ RI H[SHULPHQWV DQG XVH RI DSSURSULDWH FRPSXWDWLRQDO WHFKQLTXHV &DUOVRQ DQG .HHQH\ f UHSRUWHG WKDW WKH SRWHQWLDO RI WKH HOHF WURFKHPLFDO FHOO FUHDWHG E\ LQVHUWLRQ RI &Xn VHOHFWLYH HOHFWURGH DQG D UHIHUHQFH HOHFWURGH LQWR D VDPSOH VROXWLRQ LV WKH VXP RI D QXPEHU RI LQGLYLGXDO SRWHQWLDOV KHOO r f K (f ZKHUH LV D FRQVWDQW ZKLFK LQFOXGHV WKH LQWHUQDO SRWHQWLDO RI WKH

PAGE 39

WZR HOHFWURGHV DQG WKH DV\PPHWU\ SRWHQWLDO RI WKH PHPEUDQH (A LV WKH SRWHQWLDO DFURVV WKH PHPEUDQH (M LV WKH OLTXLG MXQFWLRQ SRWHQWLDO 7KH 1HUQVW HTXDWLRQ UHODWHV WKH SRWHQWLDO DFURVV WKH PHPEUDQH WR WKH DFWLYLW\ RI &X f 57 L V (0 f ) $ f ZKHUH 57) LV 1HUQVW IDFWRU PY DW r&f LV &X DFWLYLW\ LQ WKH VDPSOH VROXWLRQ $A LV &X DFWLYLW\ RI WKH &X6$JA6 PHPEUDQH HOHFWURGH PHPEUDQHf 6LQFH $A LV FRQVWDQW LWV FRQWULEXWLRQ WR WKH PHPEUDQH SRWHQWLDO FDQ EH FRPELQHG ZLWK VR WKDW 57 ( ( A ORJ $ ( FHOO ) V f $V ORQJ DV (A GRHV QRW FKDQJH DV WKH HOHFWURGHV DUH PRYHG IURP VDPSOH WR VDPSOH WKH FKDQJH LQ FHOO SRWHQWLDO ZLOO GHSHQG RQO\ RQ FKDQJHV RI &X DFWLYLW\ 7KH OLPLW RI GHWHFWLRQ RI &X DFWLYLW\ E\ &X VHOHFWLYH HOHF WURGH LV FD 0 DERXW SSPf LQ XQEXIIHUHG DQG FD 0 LQ EXIIHUHG VROXWLRQV &DUOVRQ DQG .HHQH\ f (OHFWURGH PDOIXQFWLRQ I RFFXUV ZLWK $J DQG +J DQG )H PXVW EH KHOG EHORZ RQH WHQWK RI &X FRQFHQWUDWLRQ 'XUVW 2ULRQ 5HVHDUFK f 7KH ODWWHU LV HDVLO\ DFFRPSOLVKHG E\ DGMXVWLQJ WKH VDPSOH S+ WR DERYH ,Q VRPH FDVHV &O DQG %U LQWHUIHUH ZLWK HOHFWURGH RSHUDWLRQ ,QWHUIHUHQFH LV GHSHQGHQW

PAGE 40

RQ WKHLU OHYHOV UHODWLYH WR WKH OHYHO RI &X [Q WKH VDPSOH DQG RFFXUV RQO\ LI 2ULRQ 5HVHDUFK f &Xf& f [ &Xf%Uaf [ %HFDXVH RI WKH IDFW WKDW DFWLYLW\ FRHIILFLHQW RI &X GHSHQGV RQ WRWDO LRQLF VWUHQJWK RI WKH PHGLXP 2ULRQ 5HVHDUFK f WKH PDLQWHQDQFH RI D FRQVWDQW LRQLF VWUHQJWK LV QHFHVVDU\ LI FRPSDUDEOH UHVXOWV DUH WR EH REWDLQHG ,RQLF VWUHQJWK RI WKH VDPSOH VROXWLRQ FDQ EH FRQWUROOHG E\ XVLQJ VXSSRUWLQJ HOHFWURO\WH %ODHGHO DQG 'LQZLGGLH f

PAGE 41

0$7(5,$/6 $1' 0(7+2'6 )LHOG ([SHULPHQWV 7ZR \RXQJ )ORULGD SHFDQ RUFKDUGV ZHUH FKRVHQ DV H[SHULPHQW VLWHV 2QH RUFKDUG ZDV SODQWHG RQ D )XTXD\ ILQH VDQG $UHQLF 3OLQWKLF 3DOHXGXOWf LQ (DUOHWRQ LPPHGLDWHO\ DGMDFHQW WR DQ ROG SHFDQ RUFKDUG 7KH ROG SHFDQ RUFKDUG KDG EHHQ VSUD\HG ZLWK %RUGHDX[ PL[WXUH LQ DQG &RSSHU WUHDWPHQWV SULRU WR DUH XQNQRZQ 7KH VHFRQG ZDV SODQWHG RQ DQ $SRSND ILQH VDQG *URVVDUHQLF 3DOHXGXOWf LQ +DZWKRUQH WKDW KDG EHHQ LQ VSRUDGLF FXOWLYDWLRQ IRU PRUH WKDQ \HDUV $W OHDVW RQFH LQ WKH SDVW \HDUV D FRPSOHWH PLFURQXWULHQW IULW LQFOXGLQJ &Xf KDG EHHQ DSSOLHG WR WKH DUHD
PAGE 42

RYHU D SHULRG RI WKUHH JURZLQJ VHDVRQV IURP 0DUFK WR 'HFHPEHU $SRSND )LQH 6DQG +DZWKRUQH 2UFKDUGf 3HFDQ WUHHV &DU\D LOOLQRHQVLV /f LQ WKLV RUFKDUG ZHUH JURXSHG LQWR EORFNV (DFK EORFN FRQVLVWHG RI WUHHV RI WKH VDPH NLQG HLWKHU JUDIWHG FXOWLYDUV RU RSHQ SROOHQDWHG VHHGOLQJV RI D FXOWLYDU 7UHH FLUFXPIHUHQFHV ZKLFK UDQJHG IURP WR FP ZHUH PHDVXUHG DW D FP KHLJKW ZLWK D IOH[LEOH VWHHO WDSH SULRU WR JURXSLQJ WKH WUHHV IRU WKH H[SHULPHQW 7KHVH PHDVXUHPHQWV ZHUH XVHG WR GLYLGH HDFK EORFN RI WUHHV LQWR WZR JURXSV RI WKUHH RI DSSUR[LPDWHO\ WKH VDPH VL]H &RSSHU ZDV DSSOLHG DV &X62 f+f b &Xf WR WKH VRLO VXUIDFH DURXQG WKH WUHH FRYHULQJ DQ DUHD RI DERXW P DW UDWHV WR SURYLGH WKH HTXLYDOHQW RI DQG SSP SHU FP GHSWK RI VRLO 7KH VPDOO DPRXQW RI &X DSSOLHG ZDV ILUVW PL[HG ZLWK VRLO LQ RUGHU WR LQVXUH D PRUH HYHQ GLVWULEXWLRQ VSUHDG RYHU WKH VRLO VXUIDFH &RSSHU DSSOLFDWLRQ ZDV PDGH RQ 0DUFK 7UHH JURZWK ZDV GHWHUPLQHG E\ UHPHDVXULQJ WKH FLUFXPIHUHQFH RI HDFK WUHH GXULQJ WKH ZLQWHUV RI DQG DW FP KHLJKW ZKHQ SHFDQ WUHHV ZHUH GRUPDQW /HDI DQG VRLO VDPSOHV ZHUH FROOHFWHG IRU ODERUDWRU\ DQDO\VHV GHWDLOV IRU ZKLFK DUH GHVFULEHG ODWHU )XTXD\ )LQH 6DQG (DUOHWRQ 2UFKDUGf $OWKRXJK WKH H[SHULPHQWV LQ ERWK RUFKDUGV ZHUH GHVLJQHG LQ D VLPLn ODU PDQQHU RQO\ WZR UDWHV RI &X DQG SSP ZHUH XVHG LQ WKH (DUOHWRQ RUFKDUG DQG WKH WUHHV ZHUH JURXSHG LQWR IRXU WUHH EORFNV 7KH WUHHV RI HDFK EORFN ZHUH DERXW WKH VDPH VL]H EXW WKH\ ZHUH QRW QHFHVVDULO\

PAGE 43

RI WKH VDPH FXOWLYDU $OO WUHHV ZHUH JUDIWHG DQG UDQJHG LQ VL]H IURP WR FP LQ FLUFXPIHUHQFH DW FP KHLJKW 7KH FXOWXUH RI WKH WZR RUFKDUGV ZDV DOVR GLIIHUHQW 7KH +DZWKRUQ RUFKDUG ZDV GLVNHG UHJXODUO\ WR FRQWURO ZHHGV ZKLOH WKH (DUOHWRQ RUFKDUG ZDV SODQWHG WR 3HQVDFROD EDKLDJUDVV 3DVSDOXP QRWDWXP )OXJJHf DQG PL[HG FORYHUV WKDW ZHUH JUD]HG E\ FDWWOH RU PRZHG ZLWKRXW HYHU GLVWXUELQJ WKH VRLO *UHHQKRXVH ([SHULPHQWV )LYH GLIIHUHQW VRLO W\SHV IURP 9LHWQDP ZHUH XVHG LQ WKLV VWXG\ 3RWV FRQWDLQLQJ J VRLO ZHUH JLYHQ D XQLIRUP EDVLF IHUWLOL]DWLRQ 7DEOH 0DFURQXWULHQWV 1 3 .f LQ SRZGHU\ RU FU\VWDOOLQH IRUPV ZHUH PL[HG WKRURXJKO\ ZLWK VRLOV E\ XVLQJ D UHYROYLQJ GUXP 0LFURQXWULHQWV ZHUH DSSOLHG WR WKH VRLO VXUIDFH LQ WKH IRUP RI D VROXWLRQ SULRU WR SODQWLQJ &RSSHU ZDV DSSOLHG DW UDWHV DQG SSP DQG NJKD &X RU DQG NJKD &X62A6+A2f E\ DSSO\LQJ &X VROXWLRQ WR WKH VRLO VXUIDFH 7KH VRLOV VWXGLHG DQG WKH QXPEHU RI UHSOLFDWLRQV OLPLWHG E\ WKH TXDQWLWLHV RI VRLO DYDLODEOHf ZHUH DV IROORZV f 1LQK&KX VDQG 7\SLF 3VDPPDTXHQWf UHSOLFDWLRQV f 7UDQJ%DQJ VDQG\ ORDP $HULH 3DOHDTXXOWf UHSOLFDWLRQV f 7KX'XF ORDP\ ILQH VDQG 7\SLF 3DOHXVWXOWf UHSOLFDWLRQV f 'DODW FOD\ $TXLF +DSORKXPR[f UHSOLFDWLRQV DQG f (DNPDW FOD\ 7\SLF +DSOXVWR[f UHSOLFDWLRQV 2QLRQ $OOLXP VSf D FURS NQRZQ WR KDYH D KLJK &X UHTXLUHPHQW $QRQ f ZDV SODQWHG LQ DOO SRWV EXW ZDV GLVFRQWLQXHG EHFDXVH RI IXQJDO GLVHDVHV 7KH VRLOV ZHUH WKHQ SHUPLWWHG WR GU\ EHIRUH UHSODQWLQJ

PAGE 44

7DEOH %DVLF IHUWLOL]DWLRQ DSSOLHG WR 9LHWQDPHVH VRLOV 0DWHULDO 5DWH (OHPHQWDO EDVLVf 6RXUFH )OHPHQW )LHOG 3HW NJKD SSP 1+1R M 1 1+fQUR 1 ` 1+f+S 3 .6 0Q62r+f 0Q )H62f+f )H =Q62 f+ =Q + %2 % r )ORULGD &RRSHUDWLRQ ([WHQVLRQ 6HUYLFH ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV 8QLYHUVLW\ RI )ORULGD &LUFXODU %

PAGE 45

/R FRUQ =HD PD\V /f 7ZR VHHGV RI n3LRQHHU $n SUHWUHDWHG ZLWK FDSWDQ DQG PDODWKLRQ ZHUH SODFHG LQ HDFK SHW )RXU GD\V DIWHU JHUPLQDn WLRQ DOO SRWV ZHUH WQLQQHG WR RQH SODQW HDFK 7ZR ZHHNV DIWHU VHHGLQJ PO RI D QXWULHQW VROXWLRQ FRQWDLQLQJ WKH HTXLYDOHQW RI SSP 1 SSP 3 SSP SSP &D SSP 0J DQG SSP 6 ZDV DGGHG WR HDFK SRW 3ODQW 7LVVXH 6DPSOLQJ 3UHSDUDWLRQ DQG $QDO\VHV 6DPSOLQJ DQG 3UHSDUDWLRQ 3HFDQ 3HFDQ OHDI VDPSOHV ZHUH FROOHFWHG IURP WKH WZR H[SHULPHQWV LQ -XO\ RI DQG (DFK IROLDU VDPSOH FRQVLVWHG RI DERXW PDWXUH DQG KHDOWK\ OHDIOHWV VHOHFWHG IURP WKH PHGLDQ OHDIOHW DQG WKH PHGLDQ OHDI RQ HDFK WZLJ 7KH IUHVKO\ SLFNHG OHDYHV ZHUH GULHG DW r& IRU D SHULRG RI GD\V WKHQ JURXQG LQ D VWDLQOHVV VWHHO PLOO XVLQJ D PHVK VWDLQOHVV VWHHO VFUHHQ )LQHO\ JURXQG VDPSOHV ZHUH VWRUHG LQ FDSSHG JODVV MDUV LQ WKH ODERUDWRU\ SULRU WR DQDO\VLV *UDVV 3HQVDFROD EDKLDJUDVV ZDV VDPSOHG IURP EHQHDWK WKH WUHHV DW WKH (DUOHWRQ RUFKDUG LQ WKH ]RQH ZKHUH HLWKHU RU SSP &X KDG EHHQ DSSOLHG 7KH JUDVV ZDV LQ OHDI\ YHJHWDWLYH VWDJH WR FP WDOO DW WKH WLPH RI KDUYHVW ,W ZDV VHOHFWLYHO\ FXW MX6W DERYH WKH VRLO VXUn IDFH FRQWDPLQDWLRQ ZLWK RWKHU SODQW VSHFLHV EHLQJ FDUHIXOO\ DYRLGHG 1R DWWHPSW ZDV PDGH WR PHDVXUH JUDVV \LHOG 7HFKQLTXH RI VDPSOH SUHn SDUDWLRQ ZDV WKH VDPH DV WKDW IRU SHFDQ OHDYHV

PAGE 46

&RUQ (LJKW ZHHNV DIWHU SODQWLQJ WKH HQWLUH DERYHJURXQG SRUWLRQ RI HDFK SODQW ZDV FROOHFWHG ZDVKHG ZLWK GLVWLOOHG ZDWHU GULHG DQG JURXQG LQ WKH VDPH PDQQHU DV WKH SHFDQ OHDYHV DQG EDKLDJUDVV $QDO\VHV $OO SODQW WLVVXHV ZHUH UHGULHG LQ DQ RYHQ DW r& IRU DW OHDVW KRXUV EHIRUH ZHLJKLQJ IRU ODERUDWRU\ DQDO\VLV -RQHV DQG 6WH\Q f )LYH JUDPV RI GULHG JURXQG VDPSOHV SODFHG LQ PO 3\UH[ JODVV EHDNHUV ZHUH DVKHG LQ D PXIIOH IXUQDFH7\SH 7KHUPRO\QHf DW  r& IRU KRXUV ,VVDF DQG -RQHV f 7KH DVK VDPSOHV ZHUH WUHDWHG ZLWK PO RI 1 +& SOXV PO RI FRQFHQWUDWHG +12A DQG WDNHQ WR GU\QHVV RQ DQ HOHFWULF KRW SODWH ([FHVV FDUERQ ZDV UHPRYHG IURP VDPSOHV E\ DGGLQJ PO RI b DQG HYDSRUDWLQJ RQ WKH KRW SODWH7KLV VWHS ZDV UHSHDWHG LI VLJQLILFDQW TXDQWLWLHV RI FDUERQ SHUVLVWHG 7KHQ PO RI 1 +& ZHUH DGGHG DQG IROORZLQJ HYDSRUDWLRQ WKH UHVLGXH ZDV GULHG WR GHK\GUDWH VLOLFD 7KH UHVLGXH ZDV WUHDWHG ZLWK 1 +& ZDUPHG WR GLVVROYH VDOWV DQG ILOWHUHG WKURXJK D 1DOJHQH IXQQHO XVLQJ 1R :KDWPDQ SDSHU 4XDQWLW\ RI &X =Q 0Q )H &D DQG 0J ZHUH GHWHUPLQHG RQ WKH ILOWUDWH E\ DWRPLF DEVRUSWLRQ VSHFWURVFRS\ $$f $ PRGHO % %HFNPDQ IODPH HPLVVLRQ VSHFWURSKRWRPHWHU ZDV XVHG WR GHWHUPLQH LQ WKH ILOWUDWH DQG 3 ZDV GHWHUPLQHG E\ WKH DPPRQLXP PRO\EGDWHDVFRUELF DFLG SURFHGXUH :DWDQDEH DQG 2OVHQ f XVLQJ D 0RGHO %DXVFK DQG /RUDE FRORULPHWHU DW QP

PAGE 47

6RLO 6DPSOLQJ 3UHSDUDWLRQ DQG $QDO\VHV 6DPSOLQJ DQG 3UHSDUDWLRQ ,Q +DZWKRUQHDQG (DUOHWRQ RUFKDUGV IRXU FP GHHS VRLO FRUHV WDNHQ IURP WKH &X WUHDWHG ]RQH RI LQGLYLGXDO SHFDQ WUHHV ZHUH PL[HG WKRURXJKO\ DQG XVHG DV D FRPSRVLWH VDPSOH 6RLO VDPSOHV ZHUH WDNHQ IURP UHSOLFDWLRQV DW +DZWKRUQHDQG DW (DUOHWRQ \HDU DIWHU &X DSSOLFDWLRQ 7ZHQW\VHYHQ DQG D KDOI PRQWKV DIWHU &X IHUWLOL]DWLRQ -XQH f WKH WRS FP RI WKH VRLO SURILOH LQ (DUOHWRQ RUFKDUG ZHUH VDPSOHG LQ FP LQFUHPHQWV 6L[ UHSOLFDWLRQV ZHUH FROOHFWHG )LYH PRQWKV IROORZLQJ WKDW 1RYHPEHU f VDPSOHV ZHUH DJDLQ WDNHQ WR UHSUHVHQW WKH DQG FP GHSWKV IURP (DUOHWRQ DQG +DZWKRUQH RUFKDUG UHVSHFWLYHO\ 7KHVH VDPSOHV ZHUH WDNHQ IURP WUHDWPHQWV ZLWK WKH KLJKHVW DQG ORZHVW 20 FRQWHQWV EDVHG RQ DQDO\VLV RI HDUOLHU VDPn SOHV 7KHVH VDPSOHV ZHUH WR EH XVHG LQ &X FRUDSOH[DWLRQ VWXGLHV ,Q WKH JUHHQKRXVH VWXG\ ZLWK 9LHWQDPHVH VRLOV DIWHU WKH FRUQ KDUYHVW WKH ZKROH VRLO LQ HDFK SRW ZDV DLU GULHG VFUHHQHG WKURXJK D PP DOXPLQXP VHLYH DQG VWRUHG LQ SDSHU EDJV XQGHU ODERUDWRU\ DWPRVn SKHULF FRQGLWLRQV IRU YDULRXV VWXGLHV $QDO\VHV 3UHOLPLQDU\ FKHPLFDO DQDO\VHV 6RLO S+ LQ +A2 DQG H[WUDFWDEOH &D 0J DQG 3 E\ 1 1+A2$F LQ 1 +2$F EXIIHUHG DW S+ ZHUH GHWHUPLQHG E\ WKH SURFHGXUHV JLYHQ LQ %XOOHWLQ 1R 6RXWKHUQ &RRSHUDWLYH 6HULHV 3DJH f 6RLO 20 ZDV GHWHUPLQHG E\ WKH .A&UA2A+A6}fA ZHW FRPEXVWLRQ PHWKRG -DFNVRQ f

PAGE 48

0LFURQXWULHQW DQDO\VHV $TXD 5HJLD 'LVVROXWLRQ 0LFURQXWULHQWV UHSRUWHG LQ WKLV GLVVHUWDWLRQ DUH &X 0Q =Q DQG )H 9DOXH UHSUHVHQWLQJ WKH WRWDO FRQWHQW RI HDFK RI WKHVH PLFURQX WULHQWV ZDV REWDLQHG IURP DTXD UHJLD GLVVROXWLRQ *DPPRQ f 'XSOLFDWH J VDPSOHV WUHDWHG ZLWK PO FRQFHQWUDWHG +& SOXV PO FRQFHQWUDWHG +12A ZHUH EURXJKW WR GU\QHVV RQ D KRW SODWH 0LQHUDO VDOWV ZHUH GLVVROYHG LQ 1 +& DQG ILOWHUHG WKURXJK D 1DOJHQH IXQQHO DQG 1R :KDWPDQ SDSHU 7KH ILOWUDWHV ZHUH DQDO\]HG E\ $$ IRU &X =Q 0Q DQG )H &KHODWLQJ $JHQW ([WUDFWLRQ 'XSOLFDWH J VDPSOHV DQG PO ('7$WULHWKDQRODPLQH H[WUDFWDQW FRQVLVWLQJ RI 0 ('7$ 0 &D&OA DQG 0 WULHWKDQRODPLQH 7($f EXIIHUHG DW S+ ZHUH SODFHG LQ D PO 3\UH[ (UOHQPH\HU IODVN DQG VKDNHQ RQ DQ (EHUEDFK VKDNHU DW UHFLSURFDWLRQV SHU PLQXWH ZLWK D VWURNH OHQJWK RI FP IRU PLQXWHV /DP DQG *DPPRQ f 7KH VXVSHQVLRQV ZHUH FHQWULIXJHG DW USP IRU PLQXWHV DQG ILOWHUHG WKURXJK 1R :KDWPDQ SDSHU &RSSHU ZDV GHWHUPLQHG RQ WKH ILOWUDWH E\ $$ 'LOXWH +\GURFKORULF $FLG ([WUDFWLRQ ([WUDFWLRQ E\ 1 +& 'XSOLFDWH J VRLO VDPSOHV DQG PO 1 +& ZHUH SODFHG LQ PO 3\UH[ (UOHQPH\HU IODVNV DQG VKDNHQ IRU PLQXWHV 7KH H[WUDFWV DIWHU ILOWUDWLRQ ZHUH DQDO\]HG IRU &X E\ $$ 7KH UHVXOWV UHSUHVHQWHG WKH DPRXQW RI &X KHOG E\ 20 )LVNHOO f

PAGE 49

([WUDFWLRQ E\ 1 +& 7KH XVH RI WKLV ,,& FRQFHQWUDWLRQ LQ WKH H[WUDFWLRQ ZDV DQ DWWHPSW WR REWDLQ D EHWWHU FRUUHODWLRQ EHWZHHQ rKH GDWD RI VRLO DQG SODQW DQDO\n VHV WKDQ KDG EHHQ REVHUYHG ZLWK PRUH GLOXWH DFLG H[WUDFWV 6DWXUDWLRQ ([WUDFWLRQ 6L[ UHSOLFDWHV RI J VRLO VDPSOHV ZHUH SODFHG LQ SODVWLF S ILOWHU XQLWV 1DOJHQHf 'HLRQL]HG ZDWHU RU 0 &D62 VROXWLRQ ZDV f§ DGGHG WR SURGXFH D VDWXUDWHG FRQGLWLRQ 7KH XQLW ZDV FDSSHG WR SUHYHQW HYDSRUDWLRQ DQG OHIW RYHUQLJKW 6XFWLRQ FD FP +Jf ZDV WKHQ DSSOLHG WR UHPRYH FD PO RI VRLO VROXWLRQ $GGLWLRQDO PO RI +" RU 0 &D62A ZDV DGGHG DQG WKH VXFWLRQ UHDSSOLHG 7KLV VWHS ZDV UHSHDWHG XQWLO D WRWDO YROXPH RI VRLO H[WUDFWV ZKLFK ZDV VOLJKWO\ OHVV WKDQ WKH RULJLQDO YROXPH DGGHG WR WKH VRLO VDPSOH ZDV FROOHFWHG *DPPRQ f 7KH VRLO VROXWLRQV H[WUDFWHG IURP WKH VDPH VRLO ZHUH FRPELQHG DQG PL[HG WKRURXJKO\ LQ RUGHU WR KDYH D VDPSOH ODUJH HQRXJK IRU WKH IROORZLQJ GHWHUPLQDWLRQV f &RSSHU WLWULPHWULF DQDO\VLV XVLQJ &X VHOHFWLYH HOHFWURGH f 7RWDO FDWLRQ FRQFHQWUDWLRQ E\ FRQGXFWLYLW\ EULGJHL f 2UJDQLF PDWWHU LQ WKH VRLO VROXWLRQ E\ FDUERQ DQDO\]HU f )UDFWLRQ VL]H VHSDUDWLRQ E\ JHO SHUPHDWLRQ FKURPDWRJUDSK\ DQG f 7RWDO &X LQ WKH VRLO VROXWLRQ E\ $$ &RSSHU 7LWULPHWULF $QDO\VLV $SSDUDWXV $ FRPPHUFLDO &X VHOHFWLYH HOHFWURGH 0RGHO 2ULRQ 5HVHDUFKf DQG D GRXEOH MXQFWLRQ UHIHUHQFH HOHFWURGH 0RGHO 2ULRQ 5HVHDUFKf ZHUH XVHG LQ WKHVH GHWHUPLQDWLRQV 7KH HOHFWURGH OHDGV ZHUH FRQQHFWHG

PAGE 50

WR D GLJLWDO S+ PHWHU 0RGHO 2ULRQ 5HVHDUFKf $OO HOHFWURGH SRWHQn WLDOV ZHUH UHDG DW URRP WHPSHUDWXUH 5HSURGXFLEOH VWLUULQJ ZDV DFKLHYHG E\ XVLQJ D KHDW LQVXODWHG PDJQHWLF VWLUUHU DQG 7HIORQFRYHUHG EDU 5HDJHQWV &RSSHU VROXWLRQV ZHUH SUHSDUHG E\ VXFFHVVLYH IROG GLOXWLRQV EHJLQQLQJ ZLWK D SULPDU\ VWDQGDUG SSP &X VROXWLRQ 0DWKHVRQ &ROHPDQ DQG %HOOf 6ROXWLRQV UDQJHG LQ FRQFHQWUDWLRQV IURP WR SSP &X ZHUH VWRUHG LQ QHZ PO 1DOJHQH SODVWLF YROXPHWULF IODVNV WR SUHYHQW WKH ORVV RI &X WKURXJK DGVRUSWLRQ RQ WKH LQQHU ZDOOV RI FRQn WDLQHUV %ODHGHO DQG 'LQZLGGLH f ,Q RUGHU WR PDLQWDLQ D FRQVWDQW LRQLF VWUHQJWK LQ WKH ZRUNLQJ UDQJH RI WKH VWDQGDUG FXUYH D VHULHV RI &X VWDQGDUGV LQ WKH VXSSRUWLQJ HOHFWURO\WH ZHUH SUHSDUHG E\ PL[LQJ PO &X VROXWLRQ RI YDULRXV FRQn FHQWUDWLRQV DQG PO 0 &D62A LQ PO SODVWLF 1DOJHQH YROXPHWULF IODVNV WR SURYLGH D &X FRQFHQWUDWLRQ UDQJH RI WR SSP 3URFHGXUH 3UHSDUDWLRQ RI VWDQGDUG FXUYH $ PO DOLTXRW RI HDFK VWDQGDUG VROXWLRQ ZDV SODFHG LQ D PO SODVWLF 1DOJHQH EHDNHU ZKLFK ZDV SXW RQ WKH KHDW LQVXODWHG PDJQHWLF VWLUUHU DQG WKH HOHFWURGH SRWHQWLDO ZDV PHDVXUHG 7KH SORW RI HOHFWURGH SRWHQWLDOV RI VWDQGDUGV YV ORJA RI VWDQGDUG FRQFHQWUDWLRQV ZDV XVHG DV D VWDQGDUG FXUYH 7KLV FXUYH ZDV UHGHWHUPLQHG GDLO\ SULRU WR WKH WLWUDWLRQ RI XQNQRZQ VDPSOHV 6ROXWLRQ VWXGLHV 7KH HIIHFWV RI WZR FKHODWLQJ DJHQWV ('7$ DQG '73$f DQG 0

PAGE 51

&D62A D VRLO H[WUDFWDQWf RQ WKH DFWLYLW\ RI &XAn ZHUH VWXGLHG $ PO DOLTXRW RI [ 0 ('7$ RU [ A 0 '73$ SOXV PO RI 1 .A62A D VXSSRUWLQJ HOHFWURO\WHf ZDV SODFHG LQ D PO SODVWLF 1DOJHQH EHDNHU DQG WKH SRWHQWLDO IRU &X VHOHFWLYH HOHFWURGH UHDG IROORZHG E\ D WLWUDWLRQ ZLWK SSP &X VROXWLRQ ZLWKRXW WKH VXSSRUWn LQJ HOHFWURO\WH XQWLO WKH LQFUHDVH RI HOHFWURGH SRWHQWLDO LQGLFDWHG D UHFRYHU\ RI DGGHG &X IURP WKH VWDQGDUG FXUYH LGHQWLFDO WR WKDW REVHUYHG LQ WKH SUHVHQFH RI WKH HOHFWURO\WH DORQH 1R VXSSRUWLQJ HOHFWURO\WH ZDV QHFHVVDU\ LQ WKH 0 &D62 VROX f§ WLRQ EHFDXVH DGGHG &X&12AfA IURP SSP &X VWDQGDUG ZDV WRR ORZ WR FDXVH D VLJQLILFDQW FKDQJH LQ WKH LRQLF VWUHQJWK RI WKH VDPSOH VROXWLRQ %HWZHHQ WLWUDWLRQV WKH HOHFWURGHV ZHUH FOHDQHG E\ ULQVLQJ ZLWK D VWUHDP RI GLVWLOOHG ZDWHU IURP D VTXHH]H ERWWOH IROORZHG E\ LPPHUVLRQ LQ 0 +"6A ZKLFK ZDV VWLUUHG XQWLO WKH HOHFWURGH UHVSRQVH UHDFKHG D FRQVWDQW YDOXH D YDOXH ZKLFK ZDV GHWHUPLQHG GDLO\ 7KH HOHFWURGHV ZHUH WKHQ UHPRYHG IURP WKH DFLG ULQVHG ZLWK GLVWLOOHG ZDWHU EORWWHG GU\ ZLWK D WLVVXH DQG WKHQ LPPHUVHG LQ WKH VROXWLRQ WR EH PHDVXUHG :KHQ QRW LQ XVH WKH HOHFWURGHV ZHUH VWRUHG GU\ LQ DLU DV VSHFLILHG E\ WKH PDQXIDFWXUHU :KHQ WKH HOHFWURGH SRWHQWLDO RI 0 +f6 GLG QRW UHDFK FRQ f§ VWDQW YDOXH WKH &X VHOHFWLYH HOHFWURGH VXUIDFH ZDV ZHW SROLVKHG E\ KDQG ZLWK D SLHFH RI DEUDVLYH SODVWLF FD [ FP 2ULRQ 5HVHDUFKf IRU VHFRQGV 7KLV ZDV UHSHDWHG LI QHFHVVDU\ XQWLO D FRQVWDQW YDOXH ZDV REWDLQHG 7KH S+ RI WKH VROXWLRQV EHIRUH DQG DIWHU WLWUDWLRQ ZHUH FKHFNHG E\ XVLQJ D FRPELQDWLRQ S+ HOHFWURGH )LVKHU 0RGHO 0LFURSUREH 1R f FRQQHFWHG WR D %HFNPDQ =HURPDWLF S+ PHWHU

PAGE 52

6DWXUDWHG VRLO VROXWLRQ H[WUDFW VWXGLHV $ PO DOLTXRW RI WKH VDWXUDWHG VRLO VROXWLRQ H[WUDFW SOXV PO 1 .A62A ZDV XWLOL]HG IRU SRWHQWLDO UHDGLQJ DQG WLWUDWLRQ XVLQJ WKH VDPH WHFKQLTXH DV GHVFULEHG DERYH 7RWDO &X DGGHG ZDV SORWWHG DJDLQVW &X UHPDLQLQJ LQ WKH VRLO H[WUDFW E\ XVLQJ OLQHDU UHJUHVVLRQ DQDO\VLV (DFK FXUYH FRQVLVWHG RI WZR SRU WLRQV WKH WRS SRUWLRQ RI WKH FXUYH VKRZHG WKH QRUPDO UHVSRQVH WR &X QRW FRPSOH[HG ZKLOH WKH ORZHU SRUWLRQ VKRZHG WKH HIIHFW RI FRPSOH[LQJ DJHQWVf 7KH EUHDNSRLQW RI WKH FXUYH ZDV REWDLQHG E\ H[WUDSRODWLQJ LWV WZR SRUWLRQV 3RLQWV QHDU WKH EUHDNSRLQW ZHUH RPLWWHG VLQFH WKLV SRUWLRQ LV FXUYLOLQHDU 7KH SHUFHQWDJH RI &X FRPSOH[HG IURP WRWDO DGGHG &X DW WKH EUHDNSRLQW ZDV WHUPHG FKHODWHG &X WR WRWDO DGGHG G &X UDWLR &75f 7KH FRPSOH[DWLRQ DELOLW\ RI WKH VRLO H[WUDFW FRXOG EH FRPSDUHG ZLWK WKDW RI ('7$ RU '73$ E\ XVH RI WKH HTXDWLRQ / [ &X &RPSOH[DWLRQ DELOLW\ RI WKH VRLO H[WUDFW PROH &X f ZKHUH / LV WKH TXDQWLW\ RI V\QWKHWLF FKHODWLQJ DJHQW LQ PO VROXn WLRQ LQ PROH &X LV WKH TXDQWLW\ RI &X FRPSOH[HG E\ / LQ PROH /L &X LV WKH TXDQWLW\ RI &X FRPSOH[HG E\ OLJDQGV LQ PO VRLO X H[WUDFW LQ PROH 7RWDO &DWLRQ &RQFHQWUDWLRQ LQ WKH 6RLO ([WUDFW 7RWDO FDWLRQ FRQFHQWUDWLRQ LQ WKH VRLO H[WUDFW ZDV FDOFXODWHG IURP

PAGE 53

HOHFWULFDO FRQGXFWLYLW\ (&f RI VROXEOH VDOWV LQ WKH VDPSOH VROXWLRQ ZKLFK LQ WXUQ ZDV FDOFXODWHG IURP FHOO UHVLVWDQFHV %RZHU DQG :LOFR[ f REWDLQHG E\ XVH RI D FRQGXFWLYLW\ EULGJH %HFNPDQ 0RGHO 5& %f [ 5 (& PKRnFP DW r&f f§f§ f§ f 5 H[W 7RWDO FDWLRQ FRQFHQWUDWLRQ PHT [ (& PPKRFP f ZKHUH LV WKH (& RI WKH VWDQGDUG 1 .& VROXWLRQ LQ PKRFP DW F& 5 LV WKH FHOO UHVLVWDQFH ZKHQ WKH FRQGXFWLYLW\ FHOO ILOOHG VWG ZLWK VWDQGDUG 1 .& VROXWLRQ 5 A LV WKH FHOO UHVLVWDQFH ZKHQ WKH FRQGXFWLYLW\ FHOO ILOOHG H[W ZLWK VDPSOH VROXWLRQ 2UJDQLF 0DWWHU 0HDVXUHPHQW 'XSOLFDWH PO DOLTXRWV RI VDWXUDWLRQ H[WUDFW ZHUH EURXJKW WR GU\QHVV 'U\ ZHLJKWV RI WKH UHVLGXHV ZHUH UHFRUGHG SULRU WR WKH & PHDVXUHPHQW ZKLFK ZDV GHWHUPLQHG E\ GU\ FRPEXVWLRQ PHWKRG DQG SHUIRUPHG RQ D KLJKWHPSHUDWXUH LQGXFWLRQ IXUQDFH /HFR 0RGHO f XVLQJ LURQ DQG WLQ DFFHOHUDWRUV $OOLVRQ HBW DO f 7KH b0 ZDV FDOFXODWHG IURP WKH HTXDWLRQ b0 b& [ f )UDFWLRQDWLRQ E\ *HO 3HUPHDWLRQ &KURPDWRJUDSK\ &KURPDWRJUDPV RI WKH VRLO H[WUDFWV ZHUH REWDLQHG IURP D OLTXLG FKURPDWRJUDSK :DWHU $VVRFLDWHV 0RGHO $/&f XQGHU WKH IROORZLQJ

PAGE 54

RSHUDWLQJ FRQGLWLRQV f /HQJWK RI FROXPQ FP f 6WDWLRQDU\ SKDVH 3RUDVLO (; Sf f 0RELOH SKDVH GLRQL]HG GHJDVHG ZDWHU f )ORZ UDWH PO SHU PLQXWH f 'HWHFWRU 89 DEVRUSWLRQ GHWHFWRU 7KH 89 GHWHFWRU ZDV GHn VLJQHG IRU RSHUDWLRQ DW RQH RI WZR FRQVWDQW ZDYHOHQJWKV RU QP $OO FKURPDWRJUDPV UHSRUWHG LQ WKLV VWXG\ ZHUH REWDLQHG DW WKH QP VHWWLQJ 7RWDO &X LQ WKH 6RLO ([WUDFW 7KH WRWDO &X ZDV REWDLQHG GLUHFWO\ IURP WKH VDWXUDWLRQ H[WUDFW E\ XVH RI DQ DWRPLF DEVRUSWLRQ VSHFWURSKRWRPHWHU 0RGHO 3HUNLQ (OPHUf 6WDWLVWLFDO $QDO\VHV 'DWD FROOHFWHG IURP WKH ILHOG H[SHULPHQWV DQG JUHHQKRXVH WULDO ZHUH VXEMHFWHG WR VWDWLVWLFDO DQDO\VHV E\ DQDO\VLV RI YDULDQFH $129$f DQG 'XQFDQnV PXOWLSOH UDQJH WHVW '057f $OO VWDWLVWLFDO DQDO\VHV ZHUH H[HFXWHG XQGHU WKH 6WDWLVWLFDO $QDO\VLV 6\VWHP %DUU DQG *RRGQLJKW f /LQHDU UHJUHVVLRQ DQDO\VLV ZKLFK ZDV XVHG LQ WKH WLWUDWLRQ VWXG\ ZDV SHUIRUPHG E\ XVLQJ D SURJUDPn PDEOH KDQG FDOFXODWRU 0RGHO +HZOHWW3DFNDUGf IROORZLQJ WKH SURn FHGXUH RXWOLQHG E\ WKH PDQXIDFWXUHU +HZOHWW3DFNDUG f

PAGE 55

5(68/76 $1' ',6&866,21 )LHOG ([SHULPHQWV )XTXD\ ILQH VDQG FRQWDLQHG PHUH H[WUDFWDEOH QXWULHQWV WKDQ GLG $SRSND ILQH VDQG 7KH QXWULHQW FRQWHQWV RI ERWK VRLOV ZHUH ZLWKLQ WKH PRGHUDWH UDQJH IRU )ORULGD VRLOV 7DEOH f ,Q VRLO VDPSOHV FROOHFWHG XQGHU LQGLYLGXDO WUHHV WKH )XTXD\ ILQH VDQG 20 FRQWHQW LQ WKH WRS FP VXUIDFH KRUL]RQ UDQJHG IURP WR b DYHUDJLQJ b 7KH WRS FP RI WKH VRLO LV FRQVLGHUDEO\ KLJKHU LQ 20 FRQWHQW DQG UDQJHG WR b DV FRPSDUHG WR D UDQJH RI WR b RI WKH QH[W FP OD\HU 7KLV DFFXPXODWLRQ RI 20 LQ WKH VXUIDFH LV LQ GLUHFW FRQWUDVW WR WKH $SRSND ILQH VDQG ZKLFK ZDV GLVNHG UHJXODUO\ DQG KHQFH WKH FP KRUL]RQ ZDV RI XQLIRUP 20 FRQWHQW UDQJLQJ IURP WR b DYHUDJn LQJ b 7KH VLJQLILFDQFH RI WKHVH 20 GLIIHUHQFHV ZLOO EH GLVFXVVHG ODWHU 7KH H[WUDFWDEOH &X YDOXHV RI VRLO VDPSOHV WDNHQ PRQWKV DIWHU &X62 WUHDWPHQW DUH JLYHQ LQ 7DEOH 7KH YDOXHV ZRXOG DSSHDU WR EH DGHTXDWH EDVHG RQ WKH PLQLPXP OHYHO IRU VHQVLWLYH FURSV RI SSP IRU '73$7($ H[WUDFWLRQ DW S+ HVWDEOLVKHG E\ )ROOHWW DQG /LQGVD\ f 8VH RI ('7$7($ S+ H[WUDFWDQW LV DSSDUHQWO\ D VWURQJHU H[WUDFWDQW IRU &X DV LW H[WUDFWHG DERXW WZLFH DV PXFK &X DV WKH '73$7($ DW S+ /DP DQG *DPPRQ f +RZHYHU D IROG GLIIHUHQFH EHWZHHQ H[WUDFWn DQWV ZRXOG EH QHFHVVDU\ LI WKH YDOXHV LQ 7DEOH ZHUH WR LQGLFDWH DQ LQDGHTXDWH &X OHYHO E\ WKH )ROOHWW DQG /LQGVD\ f VWDQGDUGV 7KH

PAGE 56

7DEOH 6RPH SURSHUWLHV RI WKH VRLOV VHOHFWHG IRU LQYHVWLJDWLRQ 6RLO &ODVVLILFDWLRQ S++f 2UJDQLF PDWWHU 1+  A2$F H[WUDFWDEOH 1 +& H[WUDFWDE &D 0J 3 &X =Q 0Q b r SSP )ORULGD VRLOV $SRSND *URVVDUHQLF 3DOHXGXOW )XTXD\ $UHQLF 3OLQWKLF 3DOHXGXOW 9LHWQDPHVH VRLOVn 1LQK&KX 7\SLF 3VDPPDTXHQW 7UDQJ%DQJ $HULH 3DODTXXOW 7KX'XF 7\SLF 3DOHXVWXOW 'DODW $TXLF +DSORKXPR[ (DNPDW 7\SLF +DSOXVWR[ e (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV IURP VHSDUDWH EXW QHDUE\ VLWHV / (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV IURP RQH FRPSRVLWH VDPSOH

PAGE 57

7DEOH /HYHOV RI &X LQ VRLO DW +DZWKRUQH DQG (DUOHWRQ RUFKDUGV RQH \HDU DIWHU &X62A DSSOLFDWLRQ 6RLO H[WUDFWDQW 7UHDWPHQW $TXD UHJLD 1 +& 1 +& ('7$7($ &X SSP E N $SRSND ILQH VDQG F E F D E E E D D D D E )XTXD\ ILQH VDQGA E E E D D D D N (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV +DZWKRUQH RUFKDUG 9DOXHV LQ FROXPQ IRU HDFK ORFDWLRQ QRW IROORZHG E\ WKH VDPH OHWWHU DUH VLJQLILFDQWO\ GLIIHUHQW DW b OHYHO DFFRUGLQJ WR '057 (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV (DUOHWRQ RUFKDUG

PAGE 58

GDWD VKRZ WKH &X OHYHO LQFUHDVHG IROORZLQJ &X WUHDWPHQWV DQG DOVR WHQG WR FRQILUP ZLWKLQ WKH YDULDWLRQ HUURU WKDW PRVW RI WKH &X DGGHG LV SUHVHQW LQ WKH FP VRLO GHSWK 5HVSRQVH RI 3HFDQ 7UHHV WR &X $SSOLFDWLRQ 5HVSRQVH RI SHFDQ WUHHV WR &X WUHDWPHQWV ZDV H[DPLQHG E\ XVLQJ WZR SDUDPHWHUV &X OHYHO LQ OHDYHV DQG WUHH JURZWK &RSSHU OHYHOV LQ OHDYHV +DZWKRUQH 2UFKDUG 1R VLJQLILFDQW UHVSRQVH WR WUHDWPHQW ZDV IRXQG \HDU DIWHU &X DSSOLFDWLRQ 7KHUH ZDV HYLGHQFH WKDW &X OHYHOV LQ WKH OHDYHV YDULHG ZLWK WKH FXOWLYDU 7DEOH f *UDIWHG n.HUQRGOHn KDG FRQVLVWHQWO\ KLJKHU OHYHOV RI &X LQ WKH OHDYHV WKURXJKRXW WKH \HDU H[SHULPHQW ZKHUHDV n3UHVLGHQWn VHHGOLQJV ZHUH XVXDOO\ WKH ORZHVW +RZHYHU LQ VXEVHTXHQW \HDUV WKHUH ZDV D PDUNHG LQFUHDVH LQ WKH &X OHYHO RI 3UHVLGHQW VHHGn OLQJV JURZQ RQ VRLOV UHFHLYLQJ SSP &X 7DEOH f 7KH GHOD\HG UHVSRQVH WR VRLO DSSOLFDWLRQ RI &X LV VKRZQ E\ WKH LQFUHDVLQJ OHYHO RI OHDI &X ZLWK WLPH 2QO\ GXULQJ WKH WKLUG \HDU GLG WKH RYHUDOO &X OHYHO LQ WKH OHDYHV RI WUHHV UHFHLYLQJ SSP &X RQ WKH VRLO EHFRPH VLJQLILFDQWO\ KLJKHU WKDQ WKDW RI WKH ILUVW \HDU (DUOHWRQ 2UFKDUG n'HVLUDEOHn JUDIWV PDGH XS b RI WKH WUHHV LQ WKLV H[SHULPHQW 7KH UHPDLQLQJ WUHHV FRQVLVWHG RI GLIIHUHQW FXOWLYDUV 1R DWWHPSW ZDV PDGH WR JURXS WKH WUHHV E\ FXOWLYDU 2QO\ 2DQG SSP WUHDWPHQWV ZHUH XVHG EHFDXVH RI WKH OLPLWHG QXPEHU RI WUHHV DYDLODEOH DW WKLV VLWH

PAGE 59

7DEOH &RSSHU OHYHOV LQ OHDYHV RI GLIIHUHQW SHFDQ FXOWLYDUV LQ +DZWKRUQH RUFKDUG LQ WKH ILUVW \HDU DIWHU &X62A DSSOLFDWLRQ DYHUDJH RI DOO WUHDWPHQWV &XOWLYDU &X LQ OHDYHVr SSP .HUQRGOH JUDIW D7 'HVLUDEOH JUDIW DE 0RUHODQG JUDIW D 'HVLUDEOH VHHGOLQJ D &DSH )HDUH VHHGOLQJ DE 0RUHODQG VHHGOLQJ DE 3UHVLGHQW VHHGOLQJ E fN (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV 9DOXHV QRW IROORZHG E\ WKH VDPH OHWWHU DUH VLJQLILFDQWO\ GLIIHUHQW DW b OHYHO DFFRUGLQJ WR '057

PAGE 60

7DEOH (IIHFW RI FXOWLYDU DQG WUHDWPHQW RQ &X OHYHOV LQ SHFDQ OHDYHV LQ +DZWKRUQH RUFKDUG &XOWLYDU
PAGE 61

7DEOH &RQWLQXHGf &XOWLYDU
PAGE 62

Q\ 5HSRUWHG &X OHYHOV LQ WKH OHDYHV RI WKLV RUFKDUG DUH VKRZQ LQ 7DEOH 7KH VLJQLILFDQW GLIIHUHQFH LQ OHDI &X DWWULEXWHG WR WUHDWPHQW LQ WKH ILUVW \HDU DIWHU &X DSSOLFDWLRQ PD\ KDYH EHHQ D UHVSRQVH WR IDYRUDEOH PRLVWXUH FRQGLWLRQV ZKLFK SURPRWHG URRW JURZWK QHDU WKH VRLO VXUIDFH 7KH IROORZLQJ VSULQJV ZHUH XQXVXDOO\ GU\ DQG QR VLJQLILFDQW GLIIHUHQFH ZDV REVHUYHG $ VLPLODU UHVSRQVH WR VRLO PRLVWXUH KDV LQIOXHQFHG 0J OHYHOV LQ SHFDQ OHDYHV *DPPRQ HW DO f $OWKRXJK WKH OHYHO RI &X LQ WKH OHDYHV LQFUHDVHG LQ WKH VXFFHHGLQJ \HDU DQG WKH DYHUDJH &X OHYHO LQ WKH WKLUG \HDU ZDV VLJQLILFDQWO\ KLJKHU WKDQ WKDW RI WKH WZR SUHYLRXV \HDUV WKLV LQFUHDVH ZDV DWWULEXWHG WR IDFWRUV LQIOXHQFLQJ JURZWK RWKHU WKDQ WKH &X DSSOLFDWLRQV VLQFH WKH &X OHYHO LQ WKH OHDYHV ZLWKRXW &X WUHDWPHQW ZDV DOVR LQFUHDVLQJ ,Q JHQHUDO WKH &X OHYHO LQ WKH OHDYHV IURP ERWK RUFKDUGV HYHQ \HDUV DIWHU &X IHUWLOL]DWLRQ ZDV ORZ ZKHQ FRPSDUHG WR WKH QRUPDO UDQJH SSPf UHSRUWHG E\ $OEHQ DQG +DPPHU f %URDGFDVW &X RQ WKH VRLO VXUIDFH DSSHDUHG QRW WR UHDFK WKH DFWLYH URRW ]RQH XQGHU PRVW FRQGLWLRQV DQG DV D FRQVHTXHQFH WKHUH ZDV OLWWOH LQFUHDVH LQ WKH OHYHOV RI &X LQ WKH SHFDQ OHDYHV &URZWK UHVSRQVH 7KH JURZWK UHVSRQVH ZDV HYDOXDWHG E\ SHUFHQWDJH LQFUHDVH LQ WUXQN FLUFXPIHUHQFH ,&f PHDVXUHG DW DSSUR[LPDWHO\ FP KHLJKW ZKLFK ZDV PHDVXUHG DQQXDOO\ GXULQJ WKH GRUPDQW VHDVRQ 7KH ,& YDOXH ZDV FRPSXWHG DV IROORZV &LUFXPIHUHQFH DW Q /! f§ WK \HDU &LUFXPIHUHQFH EHIRUH &X DSSOLFDWLRQ &LUFXPIHUHQFH EHIRUH &X DSSOLFDWLRQ [ f 7KLV SDUDPHWHU Z7DV FRQVLGHUHG WR EH LQGLFDWLYH RI WUHH JURZWK ZLWK D

PAGE 63

7DEOH &RSSHU OHYHOV LQ SHFDQ OHDYHV LQ (DUOHWRQ RUFKDUG 7UHDWPHQW
PAGE 64

FRUUHFWLRQ IRU WKH GLIIHUHQFHV LQ WUHH VL]H DW WKH WLPH WKH H[SHULPHQW ZDV LQLWLDWHG 7KH ,& YDOXHV DUH UHSRUWHG LQ 7DEOH $OWKRXJK WKHUH LV VRPH LQGLFDWLRQ RI UHVSRQVHV WR WKH &X IHUWLOL]DWLRQ WKH LQFUHDVH RI ,& LV QRW VLJQLILFDQW 'LIIHUHQFHV LQ UDWH RI JURZWK DUH DOVR QRWHG IRU GLIn IHUHQW FXOWLYDUV DQG SUREDEO\ DUH WKH UHVXOW RI JHQHUDO YLJRU RI WKH FXOWLYDU OHDI GLVHDVH UHVLVWDQFH DQG VL]H RI QXW FURS VHW $ ORZHU 1 VXSSO\ DQG ODUJHU QXW FURSV 7DEOH f FRXOG ZHOO EH IDFWRUV VORZLQJ JURZWK LQ WKH (DUOHWRQ RUFKDUG 7KH $129$ IRU WKH JURZWK UHVSRQVH LV SUHVHQWHG LQ 7DEOH 1RQH RI WKH WUHDWPHQWV UHDFKHG WKH b OHYHO RI VLJQLILFDQW GLIIHUHQFH EXW WKHUH LV D FRQVLVWHQW LQFUHDVH LQ WKH SUREDELOLW\ RI WUHH UHVSRQVH WR &X WUHDWPHQW LQ ERWK RUFKDUGV IURP WKH ILUVW WR WKH WKLUG \HDU RI WKH H[SHULPHQW 7KLV WUHQG SOXV WKH IDFW WKDW WKH &X OHYHO LQ WKH OHDYHV IURP VRLO UHFHLYLQJ SSP &X 7DEOH f ZDV VLJQLILFDQWO\ KLJKHU LQ WKH WKLUG \HDU SRVHG WZR TXHVWLRQV f +RZ PXFK WLPH ZDV UHTXLUHG IRU &X WR PRYH IURP WKH VRLO VXUIDFH WR WKH DFWLYH URRW ]RQH" f :DV WKH DSSOLHG &X UHDGLO\ DYDLODEOH IRU SODQW DEVRUSWLRQ" 7KH IROORZLQJ VHFWLRQV ZLOO SURYLGH LQIRUPDWLRQ RQ WKH GDWD FROn OHFWHG WR KHOS DQVZHU WKHVH TXHVWLRQV 'LVWULEXWLRQ RI $SSOLHG &X LQ 6XUIDFH /D\HUV RI )XTXD\ )LQH 6DQG 7KH GLVWULEXWLRQ RI &X LQ )XTXD\ ILQH VDQG (DUOHWRQ RUFKDUGf PRQWKV DIWHU &X62A DSSOLFDWLRQ ZDV VWXGLHG XVLQJ VRLO VDPSOHV WDNHQ LQ FP LQFUHPHQWV IURP WKH VXUIDFH WR D GHSWK RI FP 7KLV NLQG RI VWXG\ FRXOG QRW EH PDGH DW +DZWKRUQH EHFDXVH WKH VRLO ZDV UHJXODUO\

PAGE 65

7DEOH *URZWK UHVSRQVHV RI SHFDQV WR &X62A DSSOLFDWLRQ &X ,QFUHDVH LQ WUXQN FLUFXPIHUHQFH ,&f &XOWLYDU 7UHDWPHQW )LUVW \HDU 6HFRQG \HDU 7KLUG \HDU SSP +DZWKRUQH RUFKDUG $OO $OO $OO .HUQRGOH JUDIW $OO 'HVLUDEOH JUDIW $OO 0RUHODQG JUDIW $OO 'HVLUDEOH VHHGOLQJ $OO &DSH )HDUH VHHGOLQJ $OO 0RUHODQG VHHGOLQJ $OO 3UHVLGHQW VHHGOLQJ $OO (DUOHWRQ RUFKDUG $OO $OO

PAGE 66

7DEOH $QDO\VLV RI YDULDQFH IRU JURZWK UHVSRQVHV RI SHFDQV 6RXUFH RI YDULDWLRQ GI 6XP RI 0HDQ VTXDUHV VTXDUH ) YDOXH 3URE ) +DZWKRUQH 2UFKDUG )LUVW \HDU 7UHDWPHQW 5HVLGXDO &XOWLYDU 5HVLGXDO 6HFRQG \HDU 7UHDWPHQW 5HVLGXDO &XOWLYDU 5HVLGXDO 7KLUG \HDU 7UHDWPHQW 5HVLGXDO &XOWLYDU 5HVLGXDO

PAGE 67

r 7DEOH &RQWLQXHGf 6RXUFH RI YDULDWLRQ GI 6XP RI VTXDUHV 0HDQ VTXDUH ) YDOXH 3 URE ) (DUOHWRQ RUFKDUG )LU VW \HDU 7UHDWPHQW W ; 5HVLGXDO 6HFRQG \HDU 7UHDWPHQW 5HVLGXD@ 7KLUG \HDU 7UHDWPHQW 5HVLGXDO

PAGE 68

GLVNHG WR D GHSWK RI WR FP LQ RUGHU WR FRQWURO ZHHGV $W (DUOHWRQ WKH VRLO ZDV QRW GLVWXUEHG DQG ZHHG DQG JUDVV JURZWK ZDV FRQWUROOHG E\ JUD]LQJ RU UHJXODU PRZLQJ 7KH GDWD DUH SUHVHQWHG LQ 7DEOH ,Q DOO FDVHV &X LQ WKH WRS FP DFFRXQWHG IRU DERXW b RI &X FRQWHQW RI WKH ILUVW FP RI WKH VRLO SURILOH DQG WKH WRS FP DFFRXQWHG IRU DSSUR[LPDWHO\ b RI WKLV &X $OWKRXJK WKH OHYHO RI &X LQ HDFK FP OD\HU ZDV KLJKHU LQ WKH WUHDWHG WKDQ LQ WKH XQWUHDWHG VRLOV WKH GLIIHUHQFHV ZHUH VWDWLVWLFDOO\ VLJQLILFDQW RQO\ WR D GHSWK RI FP 7DEOH f ,W LV HYLGHQW WKDW PRVW RI WKH DSSOLHG &X KDV UHPDLQHG YHU\ QHDU WKH VRLO VXUIDFH DQG KHQFH LW ZRXOG UHPDLQ ODUJHO\ XQDYDLODEOH WR WUHH URRWV ,Q WKH WRS FP RI WKH VXUIDFH VRLO RQO\ ROG SHFDQ URRWV ZKLFK GLG QRW EHDU DQ\ URRW KDLUV ZHUH IRXQG 6XFK URRWV ZRXOG QRW DEVRUE QXWULHQWV 'LVWULEXWLRQ RI RWKHU QXWULHQWV LQ WKLV VRLO LV DOVR RI LQWHUHVW 7KH GLVWULEXWLRQ RI =Q LV VLPLODU WR WKDW RI &X DOWKRXJK =Q LV PRUH PRELOH WKDQ &X +DZNHV DQG :HEE f 7KLV UHVSRQVH LV DWWULEXWHG WR WKH VPDOO TXDQWLWLHV WKDW KDYH EHHQ DSSOLHG IURP WLPH WR WLPH LQ WKH PL[HG IHUWLOL]HU 7DEOH f 7KH DFFXPXODWLRQ RI 0Q QHDU RU LQ WKH VRLO VXUIDFH PD\ EH UHODWHG WR WKH VOLJKWO\ KLJKHU VRLO S+ DQG WR WKH UHGXF WLRQ RI 0Q WR 0Q ZKHQ WKH VRLO EHFRPHV VDWXUDWHG ZLWK ZDWHU 8QGHU VXFK FRQGLWLRQV 0Q PD\ EH FDUULHG WR WKH VXUIDFH E\ HYDSRUDWLRQ DQG UHR[LGL]HG WR LQVROXEOH 0Q $PLU DQG *DPPRQ f 2WKHU HOHPHQWV DSSOLHG DV IHUWLOL]HU &D 0J DQG 3 KDYH DFFXPXODWHG LQ WKH VRLO VXUIDFH WR VRPH H[WHQW EXW WKHVH UHWHQWLRQV DUH SUREDEO\ PRUH FORVHO\ OLQNHG WR WKH KLJKHU 20 DQG WKH DELOLW\ RI WKLV PDWHULDO WR UHWDLQ LRQV E\ LWV SURSHUWLHV RI H[FKDQJH FDSDFLW\ $QQXDO OHDI GURSV ZLOO DOVR FRQWULEXWH WR WKH DFFXPXODWLRQ RI QXWULHQWV DW WKH VRLO VXUIDFH

PAGE 69

7DEOH 'LVWULEXWLRQ RI &X DQG RWKHU QXWULHQWV LQ FP RI WKH VRLO SURILOH LQ WKH (DUOHWRQ RUFKDUG 6RLO S+ GHSWK Af 20 1 +& H[WUDFWDEOH &X =Q 0Q )H &D 0J 3 FP R SSP &RQWURO SSP &X DSSOLFDWLRQ 6 r (DFK YDOXH UHSUHVHQWV WKH DYHUDJH IURP SLnRI LOHV

PAGE 70

7DEOH ([WHQGHGf 6 1 +& H[WUDFWDEOH 1+2$F H[WUDFWDEOH a B &X =Q 0Q )H &D 0J 3 &D 0J 3 SSP &RQWURO SSP &X DSSOLFDWL 27O e

PAGE 71

-4 f§ 7DEOH &RSSHU LUD FP RI WKH VRLO SURILOH RI WKH (DUOHWRQ RUFKDUG PRQWKV DIWHU &X62A DSSOLFDWLRQr 6RLO GHSWK 0HWKRG RI H[WUDFWLRQ $TXD UHJLD 1 +&L +&, (',$7($ Q &RQWURO EFA FG F FT F FG F FG 6F FG F G F F G F G F ,G F G F ,G F G 2YHUDOO PHDQ SSP &X DSSOLFDWLRQ D D D D D OD D E E E E F EF F F FG F FG F ,G F FG F G 2YHUDOO PHDQ $ N (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV rU 9DOXHV LQ FROXPQ QRW IROORZHG E\ WKH VDPH OHWWHU DUH VLJQLILFDQWO\ GLIIHUHQW DW b OHYHO DFFRUGLQJ WR '057

PAGE 72

$YDLODELOLW\ RI $SSOLHG &X WR 3ODQWV 6DPSOHV RI 3HQVDFROD EDKLDJUDVV ZHUH WDNHQ LQ WKH (DUOHWRQ RUFKDUG XQGHU SHFDQ WUHHV IHUWLOL]HG ZLWK DQG SSP &X WR GHWHUPLQH LI LQ IDFW WKH DSSOLHG &X ZDV DYDLODEOH IRU URRW XSWDNH $QDO\VLV RI WKH JUDVV IRU &X 7DEOH f VKRZHG WKDW WKH DSSOLHG &X ZDV DYDLODEOH DQG LQFUHDVHG WKH WRWDO &X LQ SODQW WLVVXH $OWKRXJK WKLV JUDVV LV FDSDEOH RI URRWLQJ WR JUHDW GHSWK PRVW RI WKH URRWV DUH FRQFHQWUDWHG QHDU WKH VRLO VXUIDFH ZKHUH PRVW RI WKH DSSOLHG &X ZDV IRXQG 7KLV LV WDNHQ DV DGGLWLRQDO HYLGHQFH WKDW WKH ODFN RI D VLJQLILFDQW UHVSRQVH LQ WKH SHFDQ WUHHV ZDV EHFDXVH RI WKH VWURQJ UHWHQWLRQ RI &X LQ WKH VXUIDFH VRLO DERYH WKH PDLQ WUHH URRWLQJ ]RQH 7KH DSSDUHQW UHVSRQVH WR SSP &X LQ WKH +DZWKRUQH RUFKDUG GXULQJ WKH WKLUG VHDVRQ PD\ KDYH EHHQ DFFHQWXDWHG E\ SK\VLFDO PRYHPHQW RI &X WR WKH URRWLQJ ]RQH IURP WKH GLVNLQJ RSHUDn WLRQ 'DWD IURP WKH EDKLDJUDVV DQDO\VLV ZHUH XVHG WR H[DPLQH WKH FRUUHODn WLRQ EHWZHHQ WKH &X FRQWHQW RI WKH JUDVV DQG WKH GLIIHUHQW PHWKRGV RI VRLO H[WUDFWLRQ 7DEOH f $OO PHWKRGV RI VRLO H[WUDFWLRQ SURYHG WR EH VLJQLILFDQWO\ FRUUHODWHG ZLWK WKH &X OHYHO LQ WKH EDKLDJUDVV DW FP DQG FP GHSWK 7KH +& H[WUDFWLRQV VHHPHG WR EH VOLJKWO\ EHWWHU FRUUHODWHG WKDQ DTXD UHJLD DQG ('7$7($ S+ 7KHVH FRUUHODn WLRQV SURYLGH PRUH HYLGHQFH WKDW WKH JUDVV URRWV ZHUH DFWLYHO\ WDNLQJ XS &X IURP WKH VXUIDFH VRLO DQ DUHD QRW OLNHO\ WR EH XWLOL]HG E\ WKH SHFDQ WUHH URRWV *UHHQKRXVH 7ULDO ,Q VWXG\LQJ SODQW UHVSRQVH WR D QXWULHQW DSSOLFDWLRQ D ILHOG H[SHULPHQW ZRXOG EH SUHIHUUHG WR D JUHHQKRXVH WULDO EHFDXVH PDQ\

PAGE 73

m8 7DEOH &RSSHU OHYHOV LQ EODGHV RI 3HQVDFROD EDKLDJUDVV 3DVSDOXP QRWDWXP )OXJJHf DV LQIOXHQFHG E\ &X62A DSSOLFDWLRQ LQ WKH (DUOHWRQ RUFKDUG &X 7UHDWPHQW &X OHYHO LQ JUDVVr SSP SSP EI D r (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV 9DOXHV QRW IROORZHG E\ WKH VDPH OHWWHU DUH VLJQLILFDQWO\ GLIn IHUHQW DW b OHYHO DFFRUGLQJ WR '057

PAGE 74

7DEOH &RUUHODWLRQ FRHIILFLHQWV EHWZHHQ &X OHYHOV LQ 3HQVDFROD EDnQLDJUDVV DQG YDULRXV VRLO H[WUDFWV 6RLO GHSWK 0HWKRG RI VRLO H[WUDFWLRQ $TXD UHJLD 1 +& 1 +& ('7$7($ rr rr rr rr rr rr rr rr r 16 16 16 rr 6LJQLILFDQW DW WKH b OHYHO r 6LJQLILFDQW DW WKH b OHYHO 16 1RQVLJQLILFDQW

PAGE 75

DUWLIDFWV ZRXOG EH LQYROYHG LQ WKH ODWWHU VWXG\ 7KH OLPLWHG TXDQWLW\ RI 9LHWQDPHVH VRLOV UHVWULFWHG HYHQ WKH H[WHQW RI WKH JUHHQKRXVH WULDOV 7KH GDWD REWDLQHG IURP WKHVH VRLOV LV LQGLFDWLYH UDWKHU WKDQ FRQFOXVLYH &KHPLFDO DQDO\VLV RI WKH ILYH VRLOV XWLOL]HG LQ WKLV H[SHULPHQW ZDV UHSRUWHG LQ 7DEOH 1LQK&KX VRLO 7\SLF 3VDPPDTXHQWf ZDV DONDOLQH YHU\ ORZ LQ 20 ORZ &X DQG =Q 7KUHH RI WKH RWKHU VRLOV ZHUH DFLGLF YDULDEOH LQ 20 DQG ORZ LQ PLFURQXWULHQWV &X =Q 0Qf (DNPDW VRLO 7\SLF +DSOXVWR[f KDG D PHGLXP OHYHO RI 20 DQG FRQWDLQHG FRQVLGHUDEO\ PRUH &X 7DEOH f EXW WKLV OHYHO ZDV ZHOO ZLWKLQ WKH QRUPDO &X UDQJH IRXQG LQ VRLOV )LVNHOO f 5HVSRQVHV RI FRUQ JURZLQJ LQ WKHVH 9LHWQDPHVH VRLOV WR GLIIHUHQW OHYHOV RI DSSOLHG &X DUH UHSRUWHG LQ 7DEOH &RSSHU FRQWHQW RI FRUQ JURZQ LQ XQWUHDWHG VRLOV ZDV FRQVLVWHQWO\ ORZHU WKDQ WKH QRUPDO UDQJH RI SSP UHSRUWHG E\ -RQHV DQG (FN f IRU ZKROH FRUQ SODQWV DW WR OHDI VWDJH $Q LQFUHDVH LQ SODQW &X LQ UHVSRQVH WR &X DSSOLFDWLRQ ZDV REVHUYHG KRZHYHU WKLV ZDV VWDWLVWLFDOO\ VLJQLILFDQW RQO\ IRU WKH 1LQK&KX VRLO %HFDXVH RI WKH KLJK YDULDWLRQ DPRQJ LQGLn YLGXDO WUHDWPHQWV WKH QXPEHU RI UHSOLFDWLRQV IRU WKH RWKHU VRLOV ZDV LQVXIILFLHQW IRU VWDWLVWLFDO VLJQLILFDQFH $OWKRXJK WKH (DNPDW VRLO KDG D VL]DEOH &X UHVHUYH WKHUH ZDV DQ LQFUHDVH LQ WLVVXH &X DQG GU\ ZHLJKW SURGXFWLRQ IURP WKH &X WUHDWPHQWV (YLGHQWO\ WKH VPDOO DPRXQW RI DGGHG &X ZDV PXFK PRUH DYDLODEOH WR WKH SODQW WKDQ WKH ODUJH UHVHUYH RI VRLO &X 2QO\ FRUQ JURZQ LQ 7UDQJ%DQJ VRLO H[KLELWHG QRUPDO YHJHn WDWLYH JURZWK &RUQ JURZQ LQ WKH IRXU RWKHU VRLOV GHYHORSHG QXWULHQW GHILFLHQF\ V\PSWRPV ZKLFK GHILQLWHO\ LQIOXHQFHG SODQW GHYHORSPHQW 3KRVSKDWH GHILFLHQF\ ZDV REVHUYHG RQ WKH SODQWV JURZQ LQ 1LQK&KX DQG (DNPDW VRLOV &D GHILFLHQF\ DSSHDUHG LQ SODQWV RQ 'DODW VRLO DQG 1

PAGE 76

\YM 7DEOH /HYHO RI &X LQ VHOHFWHG 9LHWQDPHVH VRLOV ZLWK DQG ZLWKRXW &X6&A DSSOLFDWLRQV 7UHDWPHQW ([WUDFWDQW $TXD UHJLD 1 +& O21 +& ('7$7($ &X SSP Fn 1LQE&KX E E E &E E E E D D D D E 7UDUJ%DQJA E F E 2DE IF E E D eD D D E 7KX'XFi E E E E E E E D D D D E i 'DLDW E E F *DE E E E D D $ D D D i (DNQDW D E D D D E D D D D D r (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV 9DOXHV LQ FROXPQ IRU HDFK ORFDWLRQ QRW IROORZHG E\ WKH VDPH OHWWHU DUH VLJQLILFDQWO\ GLIIHUHQW DW b OHYHO DFFRUGLQJ WR '057 f(DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV i (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV

PAGE 77

7DEOH &RSSHU &Xf FRQWHQW DQG GU\ ZHLJKW ':f RI FRUQ JURZQ ,Q 9LHWQDPHVH VRLOV &X 7UHDWPHQW 6RLO 1LQK r &KX 7UDQJ %DQJ 7KX 'XFA 'DODWA (DNPDW &X ': &X ': &X ': &X ': &X ': SSP SSP J SSP FU R SSP 5 SSP SSP J Ei D D D D E D D E D E D D D D D D D D D D D D D D D D D D D r (DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV A(DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV A(DFK YDOXH LV WKH DYHUDJH RI GHWHUPLQDWLRQV i 9DOXHV LQ FROXPQ QRW IROORZHG E\ WKH VDPH OHWWHU DUH VLJQLILFDQWO\ GLIIHUHQW DW b OHYHO DFFRUGLQJ WR '057

PAGE 78

GHILFLHQF\ RQ WKH 7KX'XF VRLO 7KHVH KXQJHU VLJQV ZHUH FRUUHFWHG E\ XVLQJ VXSSOHPHQWDO QXWULWLRQ VROXWLRQV EXW DV (SVWHLQ f SRLQWHG RXW HYHQ DIWHU WKH FRUUHFWLRQ SODQWV VWLOO GLG QRW UHVXPH IXOO QRUPDO JURZWK 1R GHILFLHQF\ V\PSWRP ZDV REVHUYHG RQ FRUQ JURZQ LQ 7UDQJ%DQJ VRLO EXW WKH OLPLWHG VRLO YROXPH LQ WKH SRWV ZDV LQDGHTXDWH IRU DQ ZHHN FRUQ SODQW %HFDXVH RI WKLV SUREOHP SRW VL]H UDWKHU WKDQ &X EHFRPH WKH FULWLFDO IDFWRU OLPLWLQJ JURZWK RQ WKLV VRLO 7KH UHODWLRQn VKLS EHWZHHQ &X FRQWHQW LQ WKH ZKROH SODQW DQG GU\ZHLJKW GLG QRW VKRZ DQ\ SDUWLFXODU SDWWHUQ &RUQ JURZQ LQ 7UDQJ%DQJ VRLO SURGXFHG WKH PRVW GU\ZHLJKW EXW &X FRQWHQW ZDV DPRQJ WKH ORZHVW &RUUHODWLRQ FRHIILFLHQW GDWD QRW SUHVHQWHGf RI &X FRQWHQW DQG SODQW VL]H ZDV YHU\ ORZ HYHQ IRU &X WUHDWPHQWV RQ WKH VDPH VRLO 8QXVXDO IHUWLOLW\ SUREOHPV DQG VPDOO YROXPH RI VRLO DYDLODEOH IRU HDFK SODQW SUREDEO\ PDVNHG DQ\ SRVVLEOH &X OLPLWDWLRQV LQ WKHVH VRLOV /DERUDWRU\ 6WXG\ 7KH &X FRQWHQW RI WKH VRLO VROXWLRQ LV RI GLUHFW LPSRUWDQFH LQ &X DEVRUSWLRQ E\ SODQWV 7KLV VHFWLRQ GHDOV ZLWK &X LQ WKH VDWXUDWHG VRLO VROXWLRQ H[WUDFWV DQG WKH FRPSOH[LQJ RI &X E\ WKHVH H[WUDFWV 7KH FRPSOH[DWLRQ DELOLW\ RI WKH H[WUDFWV ZLOO EH FRPSDUHG WR WKRVH RI V\Qn WKHWLF FKHODWLQJ DJHQWV ('7$ DQG '73$ 6LQFH WKH WRWDO &X LQ WKH VRLO VROXWLRQ LV UHSRUWHG WR EH PRUH WKDQ b FRPSOH[HG +RGJVRQ HW DO f NQRZOHGJH RI VRPH RI WKH IDFWRUV ZKLFK LQIOXHQFH FRPSOH[DWLRQ VKRXOG EH EHQHILFLDO LQ GHWHUPLQLQJ WKH PRVW HIILFLHQW PDQQHU LQ ZKLFK WR VXSSO\ FURSV ZLWK VXSSOHPHQWDO &X 7KH SXUSRVH RI WKLV VWXG\ ZDV WR DSSUR[LPDWH WKH QDWXUDO FRQGLWLRQ RI WKH VRLO VROXWLRQ LQ WKH ILHOG WKHUHIRUH YHU\ VLPSOH H[WUDFWDQW VROXWLRQV + DQG 0 &D62 ZHUH XVHG

PAGE 79

6ROXWLRQ 6WXGLHV 6\QWKHWLF FKHODWLQJ DJHQWV IRU VRLO H[WUDFWLRQ LQ PLFURQXWULHQW DQDO\VHV DV ZHOO DV IRU VXSSO\LQJ PLFURQXWULHQWV WR SODQW URRWV KDYH FRPH LQWR JHQHUDO XVH LQ FRPPHUFLDO DJULFXOWXUH 7ZR RI WKH DJHQWV LQ FRPPRQ XVH DUH ('7$ DQG '73$ 6LQFH WKHVH DJHQWV KDYH EHHQ VXFFHVVIXOO\ XVHG WR WUDQVSRUW PLFURQXWULHQWV WR SODQW URRWV LQ WKH VRLO WKH\ ZHUH VHOHFWHG IRU SUHOLPLQDU\ VWXG\ 7KH &D62A VROXWLRQ XVHG LQ WKH VDWXn UDWHG VRLO VROXWLRQ H[WUDFWV ZDV VHOHFWHG DV WKH WKLUG PDWHULDO WR VWXG\ IRU SRVVLEOH LQWHUDFWLRQ ZLWK &X 7KH HIIHFWV RI &D62A DQG WZR FKHODWLQJ DJHQWV ('7$ DQG '73$ RQ WKH DFWLYLW\ RI &X DUH VKRZQ LQ )LJ $V H[SHFWHG 0 &D62A GLG QRW UHGXFH &X DFWLYLW\ ,Q RUGHU WR DYRLG WKH SRVVLEOH HIIHFW RI GLSRVLWLYH LRQV RQ WKH FKHODWLQJ DJHQWV ('7$ DQG '73$f 1 .A62A ZDV XVHG WR SURYLGH WKH VXSSRUWLQJ HOHFWURO\WH LQVWHDG RI 0 &D62A :LWK ('7$ WKH DGGLWLRQ RI &X GLG QRW VLJQLILFDQWO\ LQFUHDVH WKH HOHFWURGH SRWHQWLDO WR LQGL FDWH WKH SUHVHQFH RI &X XQWLO &X KDG EHHQ DGGHG LQ WKH TXDQWLWLHV VKRZQ LQ )LJ DQG 7DEOH %H\RQG WKLV SRLQW WKH HOHFWURGH SRWHQ WLDO LQFUHDVHG GLUHFWO\ ZLWK WKH DPRXQW RI &X LQGLFDWLQJ QR FKHODWLQJ RI DGGLWLRQDO &X +RZHYHU ZLWK '73$ WKH HOHFWURGH SRWHQWLDO GLG QRW LQFUHDVH GLUHFWO\ ZLWK &X DGGLWLRQV XQWLO WKH EUHDNSRLQWV RQ WKH FXUYHV ZHUH UHDFKHG LQGLFDWLQJ WKDW PRUH WKDQ RQH IXQFWLRQDO JURXS ZDV LQYROYHG LQ WKH FKHODWLRQ UHDFWLRQ DQG WKDW WKH HIILFLHQF\ ZDV QRW DV JUHDW DV ('7$ 7KHVH GLIIHUHQFHV ZHUH GXH WR WKH GLIIHUHQFHV LQ WKH WZR FKHODWHV 1RUYHOO f 7DEOH UHSRUWHG XS WR WKUHH FKHODWLRQ UHDFWLRQV RI '73$ ZLWK &X DV ZHOO DV FKHODWLRQ RI &D LQ DFLGLF PHGLXP $OWKRXJK WKH IRUPDWLRQ FRQVWDQW RI &X/ LV KLJK WKH SUHVHQFH RI WZR

PAGE 80

/HJHQG 0 &D6 ; 0 ('7$ ; 0 ('7$ ; PROH $O IURP DLVRf K ; a 0 ('7$ ; PROH &D IURP &D6 ; 0 ('7$ ; PROH 0J IURP 0J62 ; 0 '73$ ; OR 0 '73$ ; PROH $Wf IURP $6f ; OR 0 '73$ ; OR PROH &D IURP &D6 ; ,4 0 '73$ ; ,4 PROH 0J IURP 0J62$ )LJ (IIHFW RI &X DGGLWLRQ RQ 0 &D62A DQG WZR FKHODWLQJ DJHQWV

PAGE 82

7DEOH &KHODWLQJ DELOLW\ RI ('7$ DQG '73$ &KHODWLQJ 4XDQWLW\ RI PHWDO DW EUHDNSRLQW r 9RO &75 ,QLWLDO DJHQW $ &D 0J &X 3+ R Uf§+ PROH f§ PO b ('7$ '73$ 9ROXPH RI VROXWLRQ DW EUHDNSRLQW

PAGE 83

7DEOH )RUPDWLRQ FRQVWDQWV IRU ('7$ DQG '73$ 1RUYHOO f 5HDFWLRQ /RJ RI fN IRUPDWLRQ FRQVWDQW ('7$ '73$ &X / &X/ &X/ + &X+/ &X/ &X r‘ &8/ f§ $O / r $,/ $,/ + r $+/ f§ &D / &D/ &D/ + &D+/ &D/ &D r &D/ f§ 0J / r 0J/ r $OO YDOXHV ZHUH DGMXVWHG WR DQ LRQLF VWUHQJWK RI 0 XVLQJ WKH 'H%\H+XFNHO HTXDWLRQ / /LJDQG ('7$ RU '73$

PAGE 84

RWKHU FKHODWHV &X+/ DQG &XA/f ZLWK ORZ IRUPDWLRQ FRQVWDQWV UHVXOWHG LQ DQ HTXLOLEULXP ZKLFK SURYLGHG D &75 b ,Q FDVH RI ('7$ WKH IRUPDn WLRQ FRQVWDQW RI &X+/ ZDV WRR ORZ WR LQIOXHQFH WKH &75 SURYLGHG E\ WKH ILUVW FKHODWLRQ UHDFWLRQ 7DEOH f $GGLWLRQ RI $ &D RU 0J UHGXFHG WKH TXDQWLW\ RI &X QHFHVn VDU\ WR VDWXUDWH WKH FKHODWLQJ DJHQWV 7KLV WHQGV WR GLVDJUHH ZLWK WKH ZRUN RI 3IHLIIHU DQG 6FKPLW] DV FLWHG E\ 0DUWHOO DQG &DOYLQ f 7KHVH ZRUNHUV UHSRUWHG WKDW WKH VWDELOLW\ RI FKHODWHV RI ('7$ ZLWK &X DQG RWKHU PHWDOOLF LRQV ZDV JUHDWO\ GHSHQGHQW RQ WKH QDWXUH RI WKH UHPDLQLQJ SRVLWLYH LRQV LQ WKH VROXWLRQ HJ &D 0J f +RZHYHU WKH\ VKRZHG WKDW WKH LQWHUIHUHQFH RI &D ZDV QRW WKH UHVXOW RI &X GLVSODFHPHQW EXW FDXVHG D ZHDNHQLQJ RI WKH FKHODWHV 8QGHU WKH FRQGLWLRQV RI WKH H[SHULPHQW DGGLWLRQDO PHWDOOLF LRQV GLG QRW FKDQJH WKH &75 RI ('7$ EXW WKDW RI '73$ VOLJKWO\ GHFUHDVHG 7DEOH f 3HUKDSV WKH FRQFHQWUDWLRQ RI PHWDOOLF LRQV XVHG LQ WKLV VWXG\ ZDV WRR ORZ WR DIIHFW WKH &75 IRU ('7$ 6DWXUDWHG 6RLO 6ROXWLRQ ([WUDFW 6WXGLHV $SRSND ILQH VDQG 6DPSOHV ZHUH VHOHFWHG IURP WKH DQG SSP &X WUHDWPHQWV WR UHSUHVHQW VLWHV RI WKH KLJKHVW DQG WKH ORZHVW VRLO 20 FRQWHQWV DW HDFK WUHDWPHQW OHYHO ,W ZDV QRW QHFHVVDU\ WR DGG VXSSRUWLQJ HOHFWURO\WH WR &D62A H[WUDFWV 7DEOH 7KH 1 .A62A ZDV XVHG WR UDLVH WKH WRWDO LRQLF VWUHQJWK RI +A2 H[WUDFWV DQG DYRLG WKH SRVVLEOH HIIHFW RI GLSRVLWLYH LRQV IURP &D62A LI LW ZHUH XVHGf RQ OLJDQGV LQ WKH VDWXUDWHG VRLO VROXWLRQ H[n WUDFWV 7KH WRWDO FDWLRQ FRQFHQWUDWLRQ LQ WKH VRLO H[WUDFW ZKLFK ZDV FDOFXODWHG IURP HOHFWULFDO FRQGXFWLYLW\ ZDV XVHG DV DQ LQGLFDWLRQ RI

PAGE 85

7DEOH &KHODWHG &X WR WRWDO DGGHG &X UDWLR &75f DW GLIIHUHQW RUJDQLF PDWWHU DQG VRLO &X OHYHOV LQ $SRSND ILQH VDQG &X 7UHDWn PHQW 6RLO 20 1 +& H[W &X 0 &D6 H[WUDFWLRQ KR H[WUDFWLRQ &X &75 r &DWLRQ FRQH S+n 20 &X r &75 &DWLRQ FRQH 3+ 20 SSP b SSP SSP b PHT b SSP b PHT b 7UDFH 7UDFH 7UDFH 7UDFH 7UDFH 7UDFH 7UDFH r 7RWDO FDWLRQ FRQFHQWUDWLRQ RI HDFK H[WUDFW ZDV FDOFXODWHG IURP HOHFWULFDO FRQGXFWLYLW\ DIWHU VXSSRUWLQJ HOHFWURO\WH ZDV DGGHG S+ RI WKH H[WUDFW EHIRUH WLWUDWLRQ

PAGE 86

WKH WRWDO LRQLF VWUHQJWK $W WKH SUHVHQW WLPH WKHUH LV QR DYDLODEOH WHFKQLTXH IRU GLUHFW PHDVXUHPHQW RI WKH WRWDO LRQLF VWUHQJWK RI VRLO H[WUDFW $SSUR[LPDWHO\ b RI WKH VRLO 20 ZDV UHPRYHG LQ WKH VDWXUDWHG VRLO VROXWLRQ H[WUDFWLRQ 7KH H[WUDFWLRQ ZLWK 0 &D62A UHOHDVHG D YHU\ VPDOO TXDQWLW\ RI 20 WR WKH H[WUDFW SUREDEO\ EHFDXVH RI WKH FRDJXODWLRQ HIIHFW RI &D ZKLFK ZRXOG SUHFLSLWDWH D SRUWLRQ RI ZDWHUVROXEOH 20 7KH &X WUHDWPHQWV IXUWKHU UHGXFHG WKH 20 LQ WKH VRLO H[WUDFW 7KH 20 LQ WKH ZDWHU H[WUDFWV ZDV KLJKHU WKDQ WKDW LQ &D62A DQG ZDV QRW LQIOXn HQFHG E\ &X WUHDWPHQW 7DEOH 7KH H[WUDFWHG 20 ZDV H[DPLQHG E\ WKH JHO SHUPHDWLRQ FKURPDWRJUDSK\ WHFKQLTXH WR HVWDEOLVK WKH DSSUR[LPDWH IUDFWLRQ VL]HV RI WKHVH FRPSRXQGV ,Q WKLV SURFHGXUH WKH ORQJHU WKH UHWHQWLRQ WLPH WKH VPDOOHU WKH IUDFWLRQ $ FRPSDULVRQ RI FKURPDWRn JUDPV RI NQRZQ FRPSRXQGV )LJ f WR WKRVH RI WKH VRLO H[WUDFWV )LJ f LQGLFDWHG WKDW WKH PDMRU IUDFWLRQ RI 20 LQ &D62A H[WUDFWV ZDV RI VPDOOHU VL]H WKDQ WKDW RI +ERQGHG DJJORPHUDWHG ('7$ DQG '73$ )LJ f 2UJDQLF FRPSRXQGV IURP ZDWHU H[WUDFWV FRQWDLQHG IUDFWLRQV RI ODUJHU VL]H 7KH GRPLQDQW FRPSRQHQWV KDG D UHWHQWLRQ WLPH RI WR PLQXWHV )LJ f LQGLFDWLQJ D IUDFWLRQ VL]H LQ WKH UDQJH RI DJJORPHUDWHG ('7$ DQG '73$ 7KH GLIIHUHQFH LQ IUDFWLRQ VL]H RI RUJDQLF FRPSRXQGV IURP &D62A H[WUDFWV DQG ZDWHU H[WUDFWV LV SUREDEO\ FDXVHG E\ WKH HIIHFW RI WKH 62A SUHVHQW LQ WKH &D62A H[WUDFWV ,Q DTXHRXV VROXWLRQ RUJDQLF FRPSRXQGV WHQG WR OLQN WRJHWKHU E\ +ERQGLQJ DQGRU +A2 EULGJHV DQG LQ JHO SHUPHDWLRQ FKURPDWRJUDSK\ ZRXOG KDYH WKH DSSHDUDQFH RI ODUJHU PROHFXOHV +RZHYHU LQ WKH SUHVHQFH RI 62A WKHVH +ERQGLQJ DQG A EULGJHV DUH EURNHQ SURGXFLQJ VPDOOHU VL]H FRPSRQHQWV )LJ f ZKLFK ZDV HOXWHG DW WKH HQG RI WKH VHOHFWLYH SHUPHDWLRQ 7KH RUJDQLF FRPSRXQGV LQ WKH +A2 H[WUDFWV LQ WKH SUHVHQFH RI 62A IURP WKH VXSSRUWLQJ HOHFWURO\WH .A62Af ZHUH DOVR OHVV LQIOXHQFHG E\ +JRQGLQJ DQG +2 EULGJHV

PAGE 87

5HFRUGHU UHVSRQVH r 5HWHQWLRQ WLPH PLQXWHV $&(721( $FHWRQH +'73$ +'73$ LQ WKH SUHVHQFH RI 1 .6 1D('7$ 1D('7$ LQ WKH SUHVHQFH RI 1 .f6 r I f§ %HJLQ VHOHFWLYH SHUPHDWLRQ (QG VHOHFWLYH SHUPHDWLRQ )LJ &KURPDWRJUDPV RO VRPH RUJDQLF FRPSRXQGV

PAGE 88

5HFRUGHU UHVSRQVH &RQWURO VRLO 20 b &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ &KURPDWRJUDPV RI 0 &D62A H[WUDFWV IURP $SRSND ILQH VDQG

PAGE 89

5HFRUGHU UHVSRQ &RQWURO VRLO 20 b &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b t %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ &KURPDWRJUDPV RI .A2 H[WUDFWV IURP $SRSND ILQH VDQG

PAGE 90

5HFRUGHU UHVSRQVH 5HWHQWLRQ WLPH PLQXWHV D + H[WUDFW LQ WKH SUHVHQFH RI 1 .62 E + H[WUDFW DORQH = $ %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ (IIHFW RI .6A RQ + H[WUDFWV RI )ORULGD VRLOV

PAGE 91

5HFRUGHU UHVSRQVH '$/$7 62,/ 5HWHQWLRQ WLPH PLQXWHV D )A2 H[WUDFW LQ WKH SUHVHQFH RI 1 .62 E +R2 H[WUDFW DORQH r %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ (IIHFW RI .62 RQ +2 H[WUDFWV RI 9LHWQDPHVH VRLOV

PAGE 92

7KH FKURPDWRJUDSKLF SDWWHUQV RI +A2 H[WUDFWV RI FRQWURO VDPSOHV ZHUH LGHQWLFDO 1RWH WKH VWURQJHU LQVWUXPHQW UHVSRQVH LQ VDPSOH ZKLFK KDG WKH KLJKHVW 20 FRQWHQW )LJ ([WUDFWV IURP &X WUHDWHG VRLOV SURYLGHG D PRUH GLVWLQFW SHDN ZLWK D UHWHQWLRQ WLPH RI DERXW PLQXWHV (YLGHQWO\ PRVW RUJDQLF FRPSRXQGV H[WUDFWHG E\ ERWK H[WUDFn WDQWV ZHUH RI UHODWLYH ORZ PROHFXODU VL]H 6XFK PDWHULDOV ZRXOG EH H[SHFWHG WR EH VLPSOH RUJDQLF DFLGV ZKLFK FRXOG EH IRXQG LQ WKH IXOYLF DFLG IUDFWLRQ RI VRLO 20 7RWDO &X LQ VDWXUDWHG VRLO VROXWLRQ H[WUDFWV ZDV YHU\ ORZ DQG XQ FRPSOH[HG &X ZDV QRW GHWHFWDEOH E\ &X VHOHFWLYH HOHFWURGH XQGHU WKH GHVFULEHG RSHUDWLQJ FRQGLWLRQV 7KLV PDGH WKH FRPSDULVRQ RI WKH WZR &X YDOXHV LPSRVVLEOH 7KH &75 IRU &D62A H[WUDFWV UDQJHG IURP WR b ZKLOH WKRVH IRU +A2 H[WUDFWV UDQJHG IURP WR b 7DEOH f 7KLV FRXOG EH H[SHFWHG IURP WKH FRPSHWLWLRQ EHWZHHQ &D DQG &X IRU FRP SOH[DWLRQ ZLWK 20 7RWDO FRQWHQW RI 20 LQ VRLO H[WUDFWV VHHPHG WR KDYH OLWWOH HIIHFW RQ WKH &75 ZKLFK DJDLQ UHIOHFWV WKH W\SH RI 20 LQ WKH H[WUDFW 7KH WKUHH VDPSOHV ZKLFK SURYLGHG WKH KLJKHVW &75 VDPSOHV DQG f KDG DERXW WKH VDPH FKURPDWRJUDSKLF SDWWHUQ )LJ f DQG LQGLn FDWHG D KLJKHU IUDFWLRQ VL]H WKDQ WKRVH LQ WKH RWKHU H[WUDFWV G (IIHFWV RI &X DGGLWLRQV RQ HOHFWURGH SRWHQWLDO RI VRLO H[WUDFWV DUH GHSLFWHG LQ )LJ DQG 6ORSHV RI WKH FXUYHV IURP &D62A H[WUDFWV SULRU WR EUHDNSRLQWV ZHUH YHU\ VWHHS LQGLFDWLQJ WKDW WKH FRPSOH[DWLRQ UHDFWLRQ ZDV QRW SUHGRPLQDQW 6LQFH WKH H[WUDFWV ZHUH GLOXWH VROXWLRQV 7DEOH f LRQV SUHVHQW LQ WKH H[WUDFW PLJKW EH FRQVLGHUHG DV LQGHSHQn GHQW RI RQH DQRWKHU LQ WKH VROXWLRQ LRQ LQWHUDFWLRQV ZHUH QRW VLJQLIL FDQWf +XQW f 7KH K\GURO\VLV RI &X ZDV QHJOLJLEOH LQ WKH DFLGLF PHGLXP 7DNLQJ WKHVH WZR IDFWRUV LQWR FRQVLGHUDWLRQ WKH TXDQWLW\ RI

PAGE 93

/HJHQG &RQWURO VRLO 20 b &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ 6RLO WUHDWHG ZLWK SSP &X LQ 6RLO WUHDWHG ZLWK SSP &X LQ 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b VRLO 20 b VRLO 20 b VRLO 20 b )LJ (IIHFW RI &X DGGLWLRQ RQ 0 &D62A H[WUDFWV RI $SRSND ILQH VDQG

PAGE 95

&RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X f VRLO 20 &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X f VRLO 20 6RLO WUHDWHG ZLWK SSP &X f VRLO 0 b 6RLO WUHDWHG ZLWK SSP &X f VRLO 20 )LJ (IIHFW RI &X DGGLWLRQ RQ +A2 H[WUDFWV RI $SRSND ILQH VDQG b b b

PAGE 96

&X FRPSOH[HG E\ RUJDQLF FRPSRXQGV LQ WKH VRLO H[WUDFWV ZDV UHSRUWHG LQ 7DEOH 7KH SUHVHQFH RI &D DQG 0J LQ &D62A H[WUDFWV DW UHODWLYHO\ KLJK FRQFHQWUDWLRQV UHGXFHG WKH TXDQWLW\ RI DYDLODEOH OLJDQGV IRU &X 7KH HIIHFW RI $ ZDV VPDOO DQG XQLIRUP H[FHSW IRU WZR FRQILUPHG YDULD WLRQV 7KH WRWDO TXDQWLW\ RI DGGHG &X UHPRYHG IURP LWV LRQLF VWDWH B B J E\ WKH 20 ZDV HTXLYDOHQW HLWKHU WR [ WR [ PROH RI ('7$ f§ f§ RU WR [ WR [ PROH RI '73$ 7KH UHVSRQVH RI &X VHOHFWLYH HOHFWURGH WR WKH DSSOLHG &X LQ WKH +A2 H[WUDFWV KDG UDWKHU IODW VORSHV )LJ f LQGLFDWLQJ WKDW WKH ZDWHU H[WUDFWDEOH 20 ZDV KLJKO\ DFWLYH LQ FRPSOH[LQJ &X ZKHQ &D DQG 0J FRQFHQn WUDWLRQV ZHUH LQ WKH QRUPDO UDQJH RI WKHVH VRLOV 7KH YDOXHV RI &X B B J FRUDSOH[DWLRQ DELOLW\ RI +2 H[WUDFWV UDQJHG IURP [ WR [ f§ f§ PROH RI ('7$ RU IURP [ WR [ PROH RI '73$ )XTXD\ ILQH VDQG 7RWDO 20 LQ )XTXD\ ILQH VDQG ZDV KLJKHU WKDQ WKDW RI $SRSND ILQH VDQG DV ZDV WKH 20 LQ WKH VRLO H[WUDFWV 7DEOH f (IIHFWV RI 0 &D62 DQG ZDWHU RQ WKH 20 LQ VDWXUDWLRQ H[WUDFWV ZHUH VLPLODU WR WKRVH REVHUYHG IRU WKH $SRSND ILQH VDQG &KURPDWRJUDSKLFDOO\ &D62A H[WUDFWV KDG VLPLODU SDWWHUQV EXW SHDN KHLJKWV ZHUH PXFK JUHDWHU )LJ f LQGLn FDWLQJ WKDW WKH DPRXQW RI 20 ZDV ODUJHU 7KLV ZDV FRQILUPHG E\ WKH FDUn ERQ DQDO\VLV 7KH RUJDQLF FRPSRQHQWV LQ WKH OA2 H[WUDFWV RI )XTXD\ ILQH VDQG ZHUH ODUJHU LQ TXDQWLW\ DQG ORZHU LQ IUDFWLRQ VL]H WKDQ WKRVH RI $SRSND ILQH VDQG )LJ f 5HWHQWLRQ WLPH LQ WKH FKURPDWRJUDSKLF FROXPQ RI PRVW RUJDQLF FRPSRXQGV LQ +A2 H[WUDFWV UDQJHG IURP WR PLQXWHV ZKLFK FRUUHVSRQGHG WR D PROHFXODU VL]H VPDOOHU WKDQ DJJORPHUDWHG ('7$ ([WUDFWV RI VDPSOHV DQG )LJ f SUHVHQWHG D VPDOO SHDN DW DERXW

PAGE 97

7DEOH 4XDQWLW\ RI ILQH VDQG f &X FRPSOH[HG E\ VRLO H[WUDFW V IURP $SRSND &X 6RLO 0HWDO LQ r WKH H[WUDFW 7UHDWPHQW 20 $ &D 0J ; &Xn SSP b a L ‘ PROHVn 0 &D62 H[WUDFWLRQ f§ 7UDFH :DWHU H[WUDFWLRQ f§ f§ fN 0LFURQXWULHQWV ZHUH QRW FRPSXWHG W 7RWDO &X DGGHG OHVV WKH &X GHWHFWHG E\ LRQ VHOHFWLYH HOHFWURGH s n4XDQWLW\ RI FDWLRQ LQ WKH PO DOLTXRW

PAGE 98

UDWLR &75f DW GLIIHUHQW RUJDQLF PDWWHU DQG VRLO &X 7DEOH &KHODWHG &X WR WRWDO DGGHG &X OHYHOV LQ )XTXD\ ILQH VDQG &X 7UHDWn PHQW 6RLO 20 1 +& H[W &X 0 &D62 H[WUDFWLRQ f§ +A2 H[WUDFWLRQ &X &75 N &DWLRQ FRQH S+ 20 &X &75 &DWLRQ FRQH r W S+ 20 SSP b SSP SSP b PHT b SSP b A PHT b & N 7RWDO FDWLRQ FRQFHQWUDWLRQ RI HDFK H[WUDFW ZDV FDOFXODWHG IURP HOHFWULFDO FRQGXFWLYLW\ DIWHU VXSSRUWLQJ HOHFWURO\WH ZDV DGGHG RI WKH H[WUDFW EHIRUH WLWUDWLRQ

PAGE 99

/HJHQG &RQWURO VRLO 20 b &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b r %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ &KURPDWRJUDPV RI 0 &D62A H[WUDFWV RI )XTXD\ ILQH VDQG

PAGE 100

5HFRUGHU UHVSRQVH 5HWHQWLRQ WLPH PLQXWHV

PAGE 101

/HJHQG &RQWURO VRLO 20 b &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b fN %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ &KURPDWRJUDPV RI +A2 H[WUDFWV RI )XTXD\ ILQH VDQG

PAGE 102

5HWHQWLRQ WLPD PLQXWHV 5HFRUGHU UHVSRQVH .f .f 2 WR r ,

PAGE 103

PLQXWHV ZKLFK LQGLFDWHV D IUDFWLRQ VL]H PXFK JUHDWHU WKDQ WKDW RI '73$ DV REVHUYHG IRU $SRSND ILQH VDQG 7KH XVH RI 0 &D62 DV f§ H[WUDFWDQW UHGXFHG WKH TXDQWLW\ RI 20 LQ WKH H[WUDFWV 7KHUH ZHUH DOVR VRPH LQGLFDWLRQV WKDW WKH VRLO WUHDWPHQWV ZLWK &X DOVR UHGXFHG WKH VROXELOLW\ RI WKH 20 7DEOH f (IIHFWV RI &X DGGLWLRQV RQ WKH HOHFWURGH SRWHQWLDO RI VRLO H[n WUDFWV DUH VKRZQ LQ )LJ DQG DQG 7DEOH 6ORSHV RI FXUYHV IURP &D62A H[WUDFWV EHIRUH EUHDNSRLQWV ZHUH IODWWHU WKDQ WKRVH IURP VLPLODU H[WUDFWV IURP $SRSND ILQH VDQG )LJ $OVR WKH DPRXQW RI &X QHHGHG LQ WKH FRPSOH[DWLRQ ZDV KLJKHU IRU WKH IRUPHU VRLO 7KH H[WUDFWV RI $SRSND ILQH VDQG FRQWDLQHG DERXW WKH VDPH TXDQWLW\ RI 20 DV GLG WKH &D62A H[WUDFWV RI )XTXD\ ILQH VDQG 7KH IRUPHU KRZHYHU FRQWDLQHG 20 ZKLFK KDG D ZHDNHU FRPSOH[DWLRQ DELOLW\ EHFDXVH LW FRPSOH[HG OHVV &X DQG DW WKH VDPH WLPH FRQWDLQHG IHZHU GLVn VROYHG PHWDOOLF LRQV 7KH &75 YDOXH RI +A2 H[WUDFW IURP )XTXD\ ILQH VDQG ZDV VOLJKWO\ OHVV WKDQ WKDW RI '73$ DQG ('7$ LQGLFDWLQJ WKDW IXQFWLRQDO JURXSV RI ZDWHU H[WUDFWDEOH 20 KDG D ZHDNHU DFWLYLW\ WKDQ WKRVH WZR V\QWKHWLF OLJDQGV 7KLV FRPSDULVRQ WHQGV WR DJUHH ZLWK 6FKQLW]HU DQG .KDQ f ZKR UHn SRUWHG ORJ RI &XIXOYLF DFLG UDQJHG IURP WR GHSHQGLQJ XSRQ LWV DFLGLW\ 7KH FRPSOH[DWLRQ DELOLW\ RI &D62A H[WUDFWV ZDV HTXLYDOHQW WR ('7$ B V B J LQ WKH UDQJH RI [ WR [ PROH DQG WR '73$ LQ WKH UDQJH B t B J RI [ WR [ PROH 7KH FRPSOH[DWLRQ DELOLW\ RI WA2 H[ f§ B J WUDFWV ZDV KLJKHU DQG ZDV FRPSDUDEOH WR [ WR [ PROH ('7$ RU [ a WR [ a PROH '73$

PAGE 104

&RQWURO VRLO &RQWURO VRLO 20 b 20 b 6RLO WUHDWHG ZLWK 6RLO WUHDWHG ZLWK SSP &X LQ SSP &X LQ VRLO 20 b VRLO 20 b )LJ (IIHFW RI &X DGGLWLRQ RQ 0 &D62 H[WUDFWV RI )XTXD\ ILQH VDQG L

PAGE 105

&RQWURO VRLO 20 b &RQWURO VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b 6RLO WUHDWHG ZLWK SSP &X LQ VRLO 20 b (IIHFW RI &Xn DGGLWLRQ RQ A H[WUDFWV RI )XTXD\ ILQH VDQG )LJ

PAGE 106

7DEOH 4XDQWLW\ RI &X FRPSOH[HG E\ VRLO H[WUDFWV IURP )XTXD\ ILQH VDQG &X 7UHDWPHQW 6RLO 20 0HWDO $ r LQ WKH H[WUDFW &D 0J &X s SSP 0 &D62 H[WUDFWn RQ f§ :DWHU H[WUDFWLRQ r 0LFURQXWULHQWV ZHUH QRW FRPSXWHG M R R M 7RWDO &X DGGHG OHVV WKH &X GHWHFWHG E\ LRQ VHOHFWLYH HOHFWURGH A4XDQWLW\ RI FDWLRQ LQ WKH PO DOLTXRW

PAGE 107

9LHWQDPHVH VRLOV %HFDXVH RI WKH TXDQWLW\ DYDLODEOH WKH 9LHWQDPHVH VRLOV ZHUH RQO\ H[DPLQHG E\ ZDWHU H[WUDFWLRQV 7KH 20 FRQWHQW LQ WKHVH VRLOV ZDV UHODn WLYHO\ ORZ 7DEOH +RZHYHU ZDWHUVROXEOH RUJDQLF FRPSRXQGV LQ WKH (QWLVRO DQG 8OWLVROV ZHUH KLJKHU WKDQ WKRVH RI )ORULGD VRLOV 5DWLR RI ZDWHUH[WUDFWDEOH 20 WR WRWDO VRLO 20 LQ 1LQK&KX VDQG 7KX'XF ORDP\ ILQH VDQG DQG 7UDQJ%DQJ VDQG\ ORDP ZDV DERXW b 7KH 2[LVROV KDG DERXW WKH VDPH UDWLR DV WKRVH IRXQG LQ WKH )ORULGD VRLOV 7KHVH VRLOV FRQn WDLQHG YHU\ OLWWOH H[WUDFWDEOH &X 7DEOH &KURPDWRJUDSKLFDOO\ WKH 9LHWQDPHVH VRLOV SURYLGHG ZLGH VSUHDG SDWWHUQV ZKLFK FRQWDLQHG VHYHUDO SHDNV EH\RQG WKH PLQXWH WRWDO SHUPHDn WLRQ PDUN )LJ f &RPSRQHQWV HOXWHG DIWHU WKH PLQXWH PDUN VKRXOG UHSUHVHQW HOHFWURVWDWLF UHWHQWLRQ RI D VWDWLRQDU\ SKDVH PDWHULDO (YLn GHQWO\ WKH 3RUDVLO (; XVHG WR SDFN WKH FROXPQ ZDV QRW FRPSOHWHO\ LQHUW 3URPLQHQW FRPSRXQGV ZHUH IRXQG DW PLQXWHV DERXW WKH VDPH DSSDUHQW PROHFXODU VL]H DV 1DA('7$ LQ DTXHRXV VROXWLRQf DQG PLQXWHV HOHFWURn VWDWLFDOO\ DGVRUEHG FRPSRXQGVf IRU 7KX'XF ORDP\ ILQH VDQG WR PLQXWHV DQG WR PLQXWHV IRU 7UDQJ%DQJ VDQG\ ORDP 7KH RWKHU WKUHH VRLOV H[KLELWHG D VPDOOHU QXPEHU RI SHDNV LQ WKH ZDWHUH[WUDFWDEOH RUJDQLF IUDFWLRQ )LJ f 2[LVROV DQG WKH (QWLVRO FRQWDLQHG OHVV HOHFWURVWDWLn FDOO\ DGVRUEHG PDWHULDO WKDQ WKH 8OWLVROV 7KH HIIHFW RI &X DGGLWLRQ WR WKHVH H[WUDFWV H[FHSW WKRVH RI 1LQK&KX VDQG DQG 'DODW FOD\ DUH JLYHQ LQ )LJ DQG 7DEOH (DNPDW FOD\ KDG D &75 RI DERXW b ZKLOH &75 YDOXHV IRU WKH WZR 8OWLVROV 7KX 'XF ORDP\ ILQH VDQG DQG 7UDQJ%DQJ VDQG\ ORDPf UDQJHG IURP WR b f§ &RPSOH[DWLRQ DELOLW\ RI (DNPDW FOD\ ZDV HTXLYDOHQW WR [ WR B 2 B R 2 [ PROH ('7$ RU [ WR [ PROH '73$ &RPSOH[D f§ WLRQ DELOLW\ RI 8OWLVROV ZDV ORZHU ,W ZDV FRPSDUDEOH WR [ WR

PAGE 108

7DEOH &KHODWHG &X WR WRWDO DGGHG &X UDWLR &75f LQ VHOHFWHG 9LHWQDPHVH VRLOV 6RLO &X 7UHDWn PHQW 6RLO 1 +& :DWHU H[WUDFWLRQ 0 H[W &X &X &75 N &DWLRQ FRQH 3+ 20 SSP b SSP SSP b A PHT b 1LQK&KX VDQG f§ 1LQK&KX VDQG f§ 7UDQJ%DQJ VDQG\ ORDP 7UDFH 7UDQJ%DQJ VDQG\ ORDP 7KX'XH ORDP\ ILQH VDQG n 7UDFH 7KX'XF ORDP\ ILQG VDQG 'DODW FOD\ 7UDFH f§ 'DODW FOD\ 7UDFH f§ (DNPDW FOD\ (DNPDW FOD\ 7UDFH r 7RWDO FDWLRQ FRQFHQWUDWLRQ RI HDFK H[WUDFW H[FHSW WKDW IURP 1LQK&KX VDQG DQG (DNPDW FOD\ ZDV FDOFXODWHG IURP HOHFWULFDO FRQGXFWLYLW\ DIWHU VXSSRUWLQJ HOHFWURO\WH ZDV DGGHG 1R VXSSRUWLQJ HOHFWURO\WH ZDV XVHG IRU 1LQK&KX VDQG DQG (DNPDW FOD\ AS+ RI HDFK H[WUDFW H[FHSW WKDW RI 1LQK&KX VDQG ZDV GHWHUPLQHG EHIRUH WLWULPHWULF DQDO\VLV 7KH S+ RI ZDWHU H[WUDFW RI 1LQK&KX VDQG ZDV DGMXVWHG E\ XVLQJ 1 +A62A

PAGE 109

/HJHQG 1LQK&KX VDQG WUHDWHG ZLWK SSP &X 1LQK&KX VDQG QR WUHDWPHQW 'DODW FOD\ WUHDWHG ZLWK SSP &X 'DODW FOD\ QR WUHDWPHQW (DNPDW FOD\ WUHDWHG ZLWK SSP &X (DNPDW FOD\ QR WUHDWPHQW 7UDQJ%DQJ VDQG\ ORDP WUHDWHG ZLWK SSP &X 7UDQJ%DQJ VDQG\ ORDP QR WUHDWPHQW 7KX'XF ORDP\ ILQH VDQG WUHDWHG ZLWK SSP &X 7KX'XF ORDP\ ILQH VDQG QR WUHDWPHQW fN %HJLQ VHOHFWLYH SHUPHDWLRQ )LJ &KURPDWRJUDPV RI +A2 H[WUDFWV IURP 9LHWQDPHVH VRLOV

PAGE 110

5HFRUGHU UHVSRQVH

PAGE 111

7DEOH 4XDQWLW\ RI &X FRPSOH[HG E\ VRLO H[WUDFWV IURP 9LHWQDPHVH VRLOV 6RLO &X 6RLO 0HWDO r LQ WKH H[WUDFW 7UHDWPHQW 20 $ &D 0J &X SSP b LR PROHA 1LQK&KX VDQG 1' f§ 1LQK&KX VDQG 1' f§ 7UDQJ%DQJ VDQG\ ORDP 7UDQJ%DQJ VDQG\ ORDP 7KX'XF ORDP\ ILQH VDQG 7KX 'XH ORDP\ ILQH VDQG 'DODW FOD\ 1' f§ 'DODW FOD\ 1' f§ (DNPDW FOD\ 1' (DNPDW FOD\ 1' r 0LFURQXWULHQWV ZHUH QRW FRPSXWHG ‘W 7RWDO &Xf DGGHG OHVV WKH &X GHWHFWHG E\ LRQVHOHFWLYH HOHFWURGH A4XDQWLW\ RI FDWLRQ LQ WKH PO DOLTXRW i 1RW GHWHFWHG

PAGE 112

R OFF &Xr DGGH 7UDQJ%DQJ VDQG\ ORDP QR WUHDWPHQW 7UDQJ%DQJ VDQG\ ORDP SSP &X WUHDWPHQW 7KX'XF ORDP\ ILQH VDQG QR WUHDWPHQW Â’ , G SSP 7KX'XF ORDP\ ILQH VDQG SSP &X WUHDWPHQW (DNPDW FOD\ QR WUHDWPHQW (DNPDW FOD\ SSP &X WUHDWPHQW )LJ (IIHFW RI &X DGGLWLRQ RQ +A2 H[WUDFWV IURP 9LHWQDPHVH VRLOV L fR 9' ,

PAGE 113

B 2 B R B R [ PROH RI ('7$ RU [ WR [ PROH RI '73$ 1LQK&KX VDQG DQG 'DODW FOD\ H[WUDFWV IDLOHG WR VKRZ WKH H[SHFWHG UHVSRQVH WR &X DGGLWLRQV ZKHQ WKH &X VHOHFWLYH HOHFWURGH ZDV XVHG ,QWHUIHULQJ IDFWRUV UHSRUWHG LQ WKH OLWHUDWXUH ZHUH FKHFNHG FDUHIXOO\ WKH S+ RI WKH H[WUDFWV ZDV DGMXVWHG WR WKH UDQJH WKH SUHVHQFH RI LQWHUIHULQJ LRQV RI +J $J )H ZHUH FKHFNHG E\ $$ 1R +J RU $J ZDV IRXQG )H FRQWHQW ZDV QRW KLJKHU WKDQ WKDW LQ WKH H[WUDFWV RI RWKHU VRLOV WHVWV IRU &O DQG %U ZLWK $J12A VROXWLRQ JDYH QHJDWLYH UHVXOWV $ WHFKQLTXH WR HOLPLQDWH &+A%U D VRLO IXPLJDQW IUHTXHQWO\ XVHG RQ VRLOV DW WKH 8QLWHG 6WDWHV SRUWV RI HQWU\f LI SUHVHQW ZDV HPSOR\HG LQ ZKLFK ZDWHU H[WUDFWV RI 1LQK&KX VDQG DQG 'DODW FOD\ ZHUH HYDSRUDWHG IRU r KRXUV XQGHU UHGXFHG SUHVVXUH DW & 7KLV DWWHPSW KRZHYHU GLG QRW EULQJ DERXW DQ\ FKDQJH LQ WKH REVHUYHG UHVXOWV *HQHUDO GLVFXVVLRQ RI DOO VRLO H[WUDFWV ,Q VWXG\LQJ WKH HIIHFWV RI &X DGGLWLRQ WRWDO FDWLRQ FRQFHQWUDWLRQ B RI WKH PHGLXP ZDV NHSW LQ WKH PHT UDQJH DQG WKH H[WUDFWV SUHVHQWHG D VWDUWLQJ S+ RI DERXW +\GURO\VLV RI &X WKHUHIRUH ZDV LQVLJQLILn FDQW 'H0XPEUXP DQG -DFNVRQ f 7KH &75 YDOXHV RI ZDWHU H[WUDFWHG RUJDQLF FRPSRXQGV ZHUH JHQHUDOO\ ORZHU WKDQ WKDW UHSRUWHG E\ +RGJVRQ HWA BDO f 7KH DSSURDFK XVHG LQ WKLV VWXG\ VKRZHG WKDW WKH &75 GHSHQGV XSRQ WKH VORSHV RI WKH UHVSRQVH FXUYHV SULRU WR WKH EUHDNSRLQW ZKLFK LQ WXUQ GHSHQGV XSRQ 20 FRQWHQW LQ WKH H[WUDFW 7KH ODWWHU ZDV UHODWHG WR WKH WRWDO 20 LQ WKH VRLO WKH DSSDUHQW UDWLR RI WKH ZDWHUVROXEOH FRPSRXQGV WR WRWDO RUJDQLF PDWHULDOV N 7KH WHFKQLTXH ZDV SURSRVHG E\ 'U -*$ )LVNHOO 'HSDUWPHQW RI 6RLO 6FLHQFH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD

PAGE 114

DQG WKH PHWKRG RI H[WUDFWLRQ 7KH SUHVHQFH RI VXSSRUWLQJ HOHFWURO\WH .A62Af VOLJKWO\ LQFUHDVH WKH VORSH RI WKLV FXUYH 7DEOH +RZHYHU WKLV FKDQJH LV SUREDEO\ FDXVHG E\ WKH HIIHFW RI 62A LQ EUHDNLQJ +A2 EULGJHV DQG +ERQGLQJ RI RUJDQLF FRPSRXQGV UDWKHU WKDQ E\ HIIHFW RI EHFDXVH 62A IURP &D62A DW VLPLODU FRQFHQWUDWLRQV SURGXFHG WKH VDPH VORSH 6LQFH WKH TXDQWLW\ RI &X UHTXLUHG LQ WKH FRPSOH[DWLRQ UHDFWLRQ ZDV UHGXFHG E\ WKH &D DGGLWLRQ 7DEOH f LW LV REYLRXV WKDW WKHVH WZR LRQV FRPSHWH IRU WKH VDPH FRPSOH[LQJ VLWHV RQ WKH 20 ,I ZDV QRW LQYROYHG LQ WKH FRPSOH[LQJ UHDFWLRQV WKHQ IURP 7DEOH LW LV HYLGHQW WKDW &D DQG &X DUH QRW FRPSOH[HG WR WKH VDPH GHJUHH LQ WKH V\VWHP &D LV RQO\ DERXW b DV HIILFLHQW DV &X 6LPLODU QRQHTXLYDOHQW VXEVWLWXWLRQV ZHUH QRWHG IRU ('7$ DQG '73$ 7DEOH 7KH VWHHSHU WLWUDn WLRQ FXUYHV REWDLQHG ZLWK &D62A H[WUDFWV )LJ f DUH LQGLFDWLYH WKDW D QXPEHU RI WKHVH VLWHV DUH UHJXODUO\ ILOOHG E\ &D DQG LQ WKH SUHVHQFH RI H[FHVV &D WKHVH VLWHV DUH QRW VXEMHFW WR HDV\ UHSODFHPHQW E\ &X $ JHQHUDO DVVHVVPHQW RI &X DYDLODELOLW\ FRPSOH[LQJ DELOLW\ DQG UHODWHG SDUDPHWHUV RI WKH +A2 H[WUDFWV RI )ORULGD DQG 9LHWQDPHVH VRLOV LV SUHVHQWHG LQ 7DEOH 9LHWQDPHVH 8OWLVROV FRQWDLQHG OHVV 20 EXW WKH UDWLR RI ZDWHU H[n WUDFWHG RUJDQLF FRPSRXQGV WR WRWDO 20 ZDV KLJKHU WKDQ WKRVH IRU )ORULGD 8OWLVROV 7KH ODWWHU VHHPHG WR EH PRUH DFWLYH LQ FRPSOH[LQJ &X 7KH +A2 H[WUDFWV RI 7UDQJ%DQJ VDQG\ ORDP FRQWDLQHG DERXW WKH VDPH WRWDO FDWLRQV $O &D 0Jf DQG 20 DV )XTXD\ ILQH VDQG EXW SURYLGHG D VPDOOHU &75 DQG UHWDLQHG OHVV &X 7KH +A2 H[WUDFWV IURP 7KX'XF ORDP\ ILQH VDQG FRQn WDLQHG VOLJKWO\ OHVV 20 EXW WKH H[WUDFWV DOVR FRQWDLQHG IHZHU FDWLRQV DQG KHQFH UHWDLQHG PRUH &X DW WKH HQG RI FRPSOH[DWLRQ UHDFWLRQ WKDQ WKH

PAGE 115

7DEOH (IIHFW RI VXSSRUWLQJ HOHFWURO\WH RQ FRPSOH[LQJ DELOLW\ RI +A2 H[WUDFW IURP )XTXD\ ILQH VDQG 6XSSRUWLQJ HOHFWURO\WH %HIRUH EUHDNSRLQW 7RWDO &X DGGHG DW EUHDNSRLQW 6DOW 4XDQWLW\ 6ORSH ,QWHUFHSW PHT SSP PHT &D62 .6r 1RQH f§ f§ f§

PAGE 116

7DEOH 6XPPDU\ RI &X DYDLODELOLW\ LQ +A2 H[WUDFWV IURP VHOHFWHG VRLOV 6RLO )ORULGD VRLOV 9LHWQDPHVH VRLOV $SRSND IV )XTXD\ IV 7UDQJ%DQJ VL 7KX'XH OIV (DNPDW FOD\ &ODVVLILFDWLRQ 8OWLVRO 8OWLVRO 8OWLVRO 8OWLVRO 2[LVRO 6ORSH RI WKH UHVSRQVH FXUYHV EHIRUH EUHDNSRLQW 7RWDO &X DGGHG DW EUHDNSRLQW SSP &75 b ,Q OA2 H[WUDFW 7RWDO &X SSP 7UDFH 7UDFH 7UDFH 7UDFH S+ EHIRUH WLWULPHWULF DQDO\VLV 5HODWHG SDUDPHWHU $O PROH &DA PROH 1' 0JA PROH 20 b ,Q WKH VRLO 20 b

PAGE 117

7UDQJ%DQJ VDQG\ ORDP H[WUDFWV 7KXV GHVSLWH WKH ORZHU 20 LQ WKH H[WUDFW WKH WRWDO QXPEHU RI VLWHV RSHQ IRU FRPSOH[DWLRQ RI &X ZDV KLJKHU LQ WKH 7KX'XF H[WUDFW (DNPDW FOD\ DQ 2[LVRO KDG D KLJKHU 20 FRQWHQW WKDQ WKH 8OWLVROV IURP 9LHWQDP EXW OHVV WKDQ RU HTXDO WR WKRVH IURP )ORULGD $OWKRXJK LWV ZDWHUH[WUDFWDEOH 20 ZDV DPRQJ WKH ORZHVW WKH &D DQG 0J ZHUH UHOD WLYHO\ KLJK 7KH DPRXQW RI &X LQ WKH FRPSOH[ IRUP ZDV ODUJHU WKDQ WKDW LQ WKH ZDWHU H[WUDFWV RI RWKHU VRLOV $V D UHVXOW WKH FXUYH SULRU WR EUHDNSRLQW ZDV IODWWHU 7KLV VRLO FRQWDLQHG D ODUJHU UHVHUYH RI &X SSPf EXW FRUQ SODQWV VWLOO UHVSRQGHG WR WKH DSSOLHG &X62A E\ DQ LQFUHDVH LQ &X XSWDNH 7DEOH f ,W ZRXOG DSSHDU WKDW LQ WKH (DNPDW FOD\ D ODUJH SRUWLRQ RI WKH &X20 FRPSOH[ LV VR LQVROXEOH WKDW YHU\ OLWWOH &X LV DYDLODEOH IRU SODQW URRWV ,W ZDV QRW FOHDU IURP SUHVHQW GDWD ZKHWKHU WKH VWURQJ FRPSOH[LQJ DELOLW\ RI WKLV VRLO LV WKH UHVXOW RI H[WUHPHO\ KLJK DFWLYLW\ RI WKH VPDOO TXDQWLW\ RI 20 SUHVHQW RU D UHDFWLRQ ZLWK WKH DPRUSKRXV PDWHULDO LQ WKH FOD\ IUDFWLRQ RI WKLV VRLO ,W ZDV UHSRUWHG WKDW WKH QRQFU\VWDOOLQH FRPSRQHQW RI FOD\ IUDFWLRQ KDG D ZLGH UDQJH RI FDWLRQ H[FKDQJH FDSDFLW\ WR PHT J GHSHQGLQJ XSRQ LWV FRPSRVLWLRQ 'H 9LOOLHUV f VR WKDW &XDPRUSKRXV PDWHULDO LQWHUDFWLRQV FRXOG EH H[SHFWHG 2Q WKH RWKHU KDQG WKH KRW DQG KXPLG FOLPDWHV RI WURSLFDO DUHDV DFFHOHUDWHV WKH GHFRPSRVLWLRQ RI VRLO 20 DQG DOVR SURGXFHV KLJKO\ ZHDWKHUHG FOD\V LQFOXGLQJ PRUH ILQH FOD\ -DFNVRQ f 3RVVLEO\ EXW QRW OLNHO\ VRPH DPRUSKRXV PDWHULDOV FRXOG SDVV WKH S PHPEUDQH ILOn WHU DQG SDUWLFLSDWH LQ WKH WLWULPHWULF DQDO\VLV +RZHYHU WKLV FRXOG QRW EH FRQILUPHG E\ YLVXDO LQVSHFWLRQ 7LQVOH\ f UHSRUWHG FOD\ FRQWHQWV LQ WKH VXUIDFH KRUL]RQV RI WKHVH VDPH 9LHWQDPHVH VRLOV ZHUH

PAGE 118

8 WR b DQG WR b IRU 8OWLVROV DQG 2[LVROV UHVSHFWLYHO\ +H DOVR UHSRUWHG WKDW WKH TXDQWLW\ RI DPRUSKRXV PDWHULDO LQ WKH FOD\ IUDFWLRQ UDQJHG IURP WR b IRU 8OWLVROV DQG IURP WR b IRU 2[LVROV $OO FKURPDWRJUDPV UHSRUWHG LQ WKLV GLVVHUWDWLRQ ZHUH REWDLQHG DW WKH QP VHWWLQJ RQ WKH 89 GHWHFWRU DV PHQWLRQHG HDUOLHU $ ODWHU VFDQQLQJ SURFHGXUH XVLQJ D %HFNPDQ '%* *UDWLQJ 6SHFWURSKRWRPHWHU DFFRPSDQLHG E\ D 0RGHO 65 6DUJHQW UHFRUGHUf VKRZHG WKDW WKH DSSUR[LPDWH ZDYHOHQJWK IRU PD[LPXP DEVRUEDQFH IRU 9LHWQDPHVH VRLOV LV QP DQG WKDW IRU )ORULGD VRLOV LV QP 7DEOH f %ROW] f UHSRUWHG WKDW WKH ZDYHOHQJWK RI PD[LPXP DEVRUEDQFH RI HDFK RUJDQLF IXQFWLRQDO JURXS LV GLIIHUHQW $SSHQGL[ 9,,,f WKXV LW LV REYLRXV WKDW WKH FKDUDFWHULVn WLFV RI 20 SUHVHQW LQ WKHVH WZR VRXUFHV RI VRLOV )ORULGD DQG 9LHWQDPf DUH QRW LGHQWLFDO

PAGE 119

E 7DEOH $SSUR[LPDWH ZDYHOHQJWK FRUUHVSRQGLQJ WR PD[LPXP DQG PLQLPXP DEVRUEDQFH LQ WKH UDQJH IURP WR QP RU WZR FKHODWLQJ DJHQWV DQG +2 H[WUDFWV IURP VHOHFWHG )ORULGD DQG 9LHWQDPHVH VRLOV 6RXUFH $SSUR[LPDWH ZDYHOHQJWK 0LQLPXP DEVRUEDQFH 0D[LPXP DEVRUEDQFH &KHODWLQJ DJHQWV ('7$ '73$ )ORULGD VRLOV $SRSND ILQH VDQG )XTXD\ ILQH VDQG 9LHWQDPHVH VRLOV 7UDQJ%DQJ VDQG\ ORDP 7KX'XF ORDP\ ILQH VDQG (DNPDW FOD\

PAGE 120

6800$5< $1' &21&/86,216 7KH LQYHVWLJDWLRQ ZDV GHVLJQHG WR HYDOXDWH WKH &X DYDLODELOLW\ LQ WZR )ORULGD DQG LQ ILYH 9LHWQDPHVH VRLOV XVLQJ FURS UHVSRQVHV WR &X62A DSSOLFDWLRQ DQG FRPSOH[DWLRQ DELOLW\ RI RUJDQLF OLJDQGV SUHVHQW LQ VDWXUDWHG VRLO VROXWLRQ H[WUDFWV 7KH OHYHO RI &X LQ SHFDQ OHDYHV RI WZR \RXQJ RUFKDUGV ZDV ORZHU WKDQ WKH QRUPDO UDQJH UHSRUWHG LQ WKH OLWHUDWXUH 3ODQW UHVSRQVH WR VXUIDFH EURDGFDVWLQJ RI &X62 DW DQG SSP &X RQ FP VRLO GHSWK EDVLVf LQ WKH (DUOHWRQ RUFKDUG DQG DQG SSP &X LQ WKH +DZWKRUQH RUFKDUG ZHUH JHQHUDOO\ VORZ $ VLJQLILFDQW LQFUHDVH LQ &X LQ WKH OHDYHV ZDV QRWHG RQO\ LQ WKH ILUVW \HDU LQ WKH (DUOHWRQ RUFKDUG ,Q WKH +DZn WKRUQH RUFKDUG D VLJQLILFDQW LQFUHDVH RI WKH &X OHYHO LQ WKH OHDYHV RI SHFDQ WUHHV ZKHUH SSP &X ZDV DSSOLHG WR VRLO ZDV REWDLQHG LQ WKH WKLUG \HDU 6LJQLILFDQW GLIIHUHQFHV LQ WKH OHDI &X OHYHOV ZHUH QRWHG DPRQJ SHFDQ FXOWLYDUV $OWKRXJK \HDUV DIWHU WKH &X DSSOLFDWLRQWKH JURZWK DV PHDVXUHG E\ WUHH FLUFXPIHUHQFHV DW FP KHLJKW GLG QRW VKRZ D VWDWLVWLFDOO\ VLJQLILFDQW UHVSRQVH ) YDOXHV LQFUHDVHG HDFK VXFFHVVLYH \HDU 0RYHPHQW RI WKH VXUIDFH DSSOLHG &X WR WKH ]RQH RI DFWLYH SHFDQ URRWV ZDV YHU\ VORZ $IWHU PRQWKV WKH GRZQZDUG PRYHPHQW LQ )XTXD\ ILQH VDQG KDG SHQHWUDWHG WR FP 7KLV IDFW H[SODLQHG WKH SRRU UHVSRQVH RI SHFDQV WR &X DSSOLFDWLRQV 7KH &X OHYHO LQ EDKLDJUDVV JURZLQJ XQGHU SHFDQ WUHHV IHUWLOL]HG ZLWK SSP RI &X ZDV LQFUHDVHG VLJQLILFDQWO\ ,W ZDV

PAGE 121

H[SUHFWHG WKDW ZKHQ WKH VLQJOH DSSOLFDWLRQ RI &X UHDFKHG WKH DFWLYH URRWn LQJ ]RQH RI WKH SHFDQ D FRQVLGHUDEOH LQFUHDVH LQ WKH &X XSWDNH DQG D VLJQLILFDQW JURZWK UHVSRQVH ZRXOG EH REVHUYHG $ JUHHQKRXVH WULDO XVLQJ 9LHWQDPHVH VRLOV DQG FRUQ ZDV LQGLFDWLYH UDWKHU WKDQ FRQFOXVLYH 7KH &X62A DSSOLFDWLRQV JHQHUDOO\ LQFUHDVHG WKH OHYHO RI &X LQ FRUQ SODQWV DOWKRXJK LQ PRVW VRLOV ODUJH YDULDWLRQV DPRQJ LQGLYLGXDO WUHDWPHQWV DQG WKH VPDOO QXPEHU RI UHSOLFDWLRQV SUHn YHQWHG VWDWLVWLFDOO\ VLJQLILFDQW UHVSRQVH /DERUDWRU\ VWXGLHV SURYLGHG VHYHUDO QHZ IDFWV UHODWHG WR WKH DYDLOn DELOLW\ RI &X LQ VRLOV DQG WKH FKHODWLRQ DELOLW\ RI V\QWKHWLF OLJDQGV f &RSSHU LQ WKH VRLO H[WUDFW ZDV YHU\ ORZ 7KH LRQLF &X ZDV XVXDOO\ PXFK OHVV WKDQ SSP WKH ORZHU GHWHFWDEOH OLPLW RI &X E\ WKH &X VHOHFWLYH HOHFWURGH f )URP WR b RI WRWDO VRLO 20 ZDV IRXQG LQ WKH +A2 H[WUDFWV 7KH &D62A H[WUDFWV UHPRYHG RQO\ DERXW b VRLO 20 7KH FRPSOH[ LQJ DELOLW\ RI 20 LQ VRLO H[WUDFWV GHSHQGHG XSRQ LWV QDWXUH DQG TXDQWLW\ f $PRXQWV RI &X QHHGHG WR VDWLVI\ WKH &D62AH[WUDFWDEOH 20 LQ FRPSOH[ IRUPDWLRQ ZHUH UHODWLYHO\ OHVV WKDQ WKRVH RI +A2 H[WUDFWV &RPSOH[DWLRQ DELOLW\ RI &D62A H[WUDFWV ZDV HTXL B R B F YDOHQW WR ('7$ RU '73$ LQ WKH UDQJH RI PROH :DWHU H[WUDFWV ZHUH WLPHV VWURQJHU LQ WKHLU FRPSOH[DWLRQ DELOLW\ HTXLYDOHQW WR ('7$ RU '73$ LQ WKH UDQJH RI A PROH f 7KH FRPSOH[ IRUPDWLRQ RI DGGHG &X LQ WKH VRLO H[WUDFWV ZDV BOB A BMB I LQIOXHQFHG E\ WKH TXDQWLWLHV RI $ &D DQG 0J SUHVHQW 7KH &75 RI ('7$ ZDV b DQG WKDW RI '73$ ZDV b 7KH SUHVHQFH RI $ &D DQG 0J DW ORZ FRQFHQWUDWLRQ LQIOXHQFHG f

PAGE 122

WKH TXDQWLW\ RI &X UHTXLUHG WR FRPSOHWH WKH FKHODWLRQ UHDFWLRQV DQG UHGXFHG WKH &75 RI '73$ 6SHFLILFDOO\ WKH VRLOV IURP )ORULGD DQG 9LHWQDP LQ WKLV VWXG\ KDYH WKH IROORZLQJ VLPLODULWLHV DQG GLVVLPLODULWLHV f 7KH &X FRPSOH[LQJ DELOLW\ RI VDWXUDWHG VRLO VROXWLRQ H[WUDFWV IURP 8OWLVROV IURP 9LHWQDP 7UDQJ%DQJ VDQG\ ORDP DQG 7KX'XF ORDP\ ILQH VDQGf LV ZHDNHU WKDQ WKDW RI H[WUDFWV IURP WZR 8OWLVROV IURP )ORULGD f 6LPLODU H[WUDFWV IURP (DNPDW FOD\ DQ 2[LVRO IURP 9LHWQDP FRPSOH[HG WKH KLJKHVW TXDQWLW\ RI &X DQG WKLV PD\ EH DWWULEXWHG WR HLWKHU H[WUHPHO\ KLJK DFWLYLW\ RI WKH 20 SUHVHQW RU D UHn DFWLRQ ZLWK WKH DPRUSKRXV PDWHULDO SDVVLQJ WKH S ILOWHU RU D FRPELQDWLRQ RI WKHVH IDFWRUV f 7KH 20 LQ A H[WUDFWV IURP )ORULGD DQG 9LHWQDPHVH VRLOV DUH VRPHZKDW GLIIHUHQW LQ WKHLU 89 DEVRUSWLRQ SDWWHUQV LQGLFDWLQJ D SRVVLEOH GLIIHUHQFH LQ DFWLYH IXQFWLRQDO JURXSV

PAGE 123

$33(1',&(6

PAGE 124

$33(1',; 6\QWKHWLF FKHODWLQJ DJHQWV ZKLFK KDYH EHHQ XVHG IRU &X FRPSOH[DWLRQ 1RUYHOO f 1DPH )RUPXOD $EEUHn YLDWLRQ &LWULF DFLG &\FORKH[DQHGLDPLQHWHWUDDFHWLF DFLG 'LHWK\OHQHWULDPLQHSHQWDDFHWLF DFLG (WK\OHQHGLDPLQHGL2K\GUR[\SKHQ\ODFHWLF DFLG (WK\OHQHGLDPLQHWHWUDDFHWLF DFLG (WK\OHQHJO\FFOELV DPLQRHWK\OHWKHUfWHWUDDFHWLF DFLG +\GUR[\HWK\OHWK\OHQHGLDPLQHWULDFHWLF DFLG 1LWULORWULDFHWLF DFLG 2[DOLF DFLG 3\URSKRVSnQRULF DFLG 7ULSKRVSKRULF DFLG &+r &,7 &+r1 &'7$ &8+r1 '73$ &+r1 (''+$ &+r1 ('7$ &+r1 (*7$ &+r1 +(',$ &+r1 17$ &+r 2; +3r 3r +3r 3r LQ

PAGE 125

$33(1',; ,, 'HWHUPLQDWLRQ FRHIILFLHQWV 9 5 f RI OLQHDU FXUYHV LQ )LJ 1R 6ROXWLRQ 5 &D62 r ('7$ ('7$ $ ('7$ &D ('7$ 0J D '73 $ E '73 $ D '73$ $ E '73$ $ D '73$ &D E '73$ &D D '73$ 0J E '73$ 0J Brf B

PAGE 126

$33(1',; ,,, /LQHDU UHJUHVVLRQ DQDO\VHV RI FXUYHV LQ )LJ DQG )LJ r r 9 DR 1R %HIRUH EUHDNSRLQW Ff $IWHU EUHDNSRLQW Gf 6ORSH WDS ,QWHUFHSW 9 'HWHUPLQDWLRQ FRHIILFLHQW 5f 6ORSH DO! ,QWHUFHSW 9 'HWHUPLQDWLRQ FRHIILFLHQW 5f 0 &D62 f§ H[WUDFWLRQ A H[WUDFWLRQ

PAGE 127

$77(1',; ,9 /LQHDU UHJUHVVLRQ DQDO\VHV RI FXUYHV LQ )LJ DQG )LJ \ rr R 1R %HIRUH EUHDNSRLQW Ff $ IWHU EUHDNSRLQW Gf 6ORSH DO! ,QWHUFHSW 9 'HWHUPLQDWLRQ FRHIILFLHQW 5f 6ORSH DS ,QWHUFHSW 9 'HWHUPLQDWLRQ FRHIILFLHQW 5f 0 &D62 H[WUDFWLRQ +R H[WUDFWLRQ

PAGE 128

$33(1',; 9 /LQHDU UHJUHVVLRQ DQDO\VHV RI FXUYHV LQ )LJ \ DM; DR 1R %HIRUH EUHDNSRLQW Ff $IWHU EUHDNSRLQW Gf 6ORSH DO! ,QWHUFHSW 9 'HWHUPLQDWLRQ FRHIILFLHQW 5f 6ORSH D[f ,QWHUFHSW 'HWHUPLQDWLRQ FRHIILFLHQW 5f &2 UA

PAGE 129

$33(1',; 9, (IIHFW RI VXSSRUWLQJ HOHFWURO\WH RQ FKURPDWRJUDPV RI +A2 H[WUDFW IURP )XTXD\ ILQH VDQG /HJHQG $( $( .62 $ $( .1 $( .& +R H[WUDFW DORQH +A2 H[WUDFW LQ WKH SUHVHQFH RI 1 +A2 H[WUDFW LQ WKH SUHVHQFH RI 1 .12A +A2 H[WUDFW LQ WKH SUHVHQFH RI .&

PAGE 130

IF L m 6 2 5HWHQWLRQ WLPH PLQXWHV

PAGE 131

$33(1',; 9,, $UHDV RI FKURPDWRJUDSKLFDO SHDNV VKRZQ LQ $SSHQGL[ 9, 6XSSRUWLQJ HOHFWURO\WH $UHD r RI SHDN (OXWLRQ DW FD PLQ (OXWLRQ DW FD PLQ NQR s .& s .B62 ‘N 'HWHUPLQHG E\ D 7\SH $$0 DXWRPDWLF DUHD PHWHU +D\DVKL 'HQWf (DFK ILJXUH LV WKH DYHUDJH RI PHDVXUHPHQWV

PAGE 132

$33(1',; 9,,, 6HOHFWHG OLVW RI FKURPRSKRULF JURXSV %ROW] f $SSUR[LPDWH ZDYHOHQJWK RI DEVRUEDQFH PD[LPXP QP & 1 &6& & & & 1 &+ & && & 1 &+a 3KHQ\Of & & 4+ a 1DSKWK\Of &A+A1 4XLQROLQHf & 6 1 1 1

PAGE 133

/,7(5$785( &,7(' $GDPV ) DQG 5: 3HDUVRQ &URS UHVSRQVH WR OLPH LQ WKH 6RXWKHUQ 8QLWHG 6WDWHV DQG 3XHUWR 5LFR -LQ 5: 3HDUVRQ DQG ) $GDPV HGf 6RLO DFLGLW\ DQG OLPLQJ S $PHU 6RF $JURQ 0DGLVRQ :LV $OEHQ $2 DQG +( +DPPHU )HUWLOL]LQJ WKH SHFDQ 7H[DV 3HFDQ *URZHUVn $VVRFLDWLRQ 3URF $OOLVRQ /( :% %ROOHQ DQG &' 0RRGLH 7RWDO FDUERQ ,Q &$ %ODFN HGf 0HWKRGV RI VRLO DQDO\VLV 3DUW S $PHU 6RF $JURQ 0DGLVRQ :LV $OOLVRQ 59 7KH LPSRUWDQFH RI FHUWDLQ VSHFLDO HOHPHQWV LQ WKH DJULFXOWXUH RI VRXWK )ORULGD 3URF )OD 6WDWH +RUW 6RF $OOLVRQ 59 2& %U\DQ DQG 6+ +XQWHU 7KH VWLPXODWLRQ RI SODQW UHVSRQVH RQ WKH UDZ SHDW VRLOV RI WKH )ORULGD (YHUJODGHV WKURXJK WKH XVH RI FRSSHU VXOIDWH DQG RWKHU FKHPLFDOV 8QLY RI )OD $JU ([S 6WD %XOO $PLU $% DQG 1 *DPPRQ -U 5HGLVWULEXWLRQ DV LQGLFDWLRQ RI PRYHPHQW RI PDQJDQHVH IURP GLIIHUHQW VRXUFHV DSSOLHG WR WKH VXUn IDFH RI D /HRQ ILQH VDQG 6RLO DQG &URS 6FL 6RF )OD 3URF LQ SUHVVf $QRQ\PRXV )HUWLOL]HU UHFRPPHQGDWLRQV IRU 0LFKLJDQ YHJHWDEOH DQG ILHOG FURSV 0LFKLJDQ $JU ([S 6WD $QQ 5HS S $UQRQ '7 &RSSHU HQ]\PHV LQ LVRODWHG FKORURSODVWV 3RO\n SKHQRO R[LGDVH LQ %HWD YXOJDULV 3ODQW 3K\VLRO $UQRQ '7 DQG 35 6WRXW 7KH HVVHQWLDOLW\ RI FHUWDLQ HOHPHQWV LQ PLQXWH TXDQWLW\ IRU SODQWV ZLWK VSHFLILF UHIHUHQFH WR FRSSHU 3ODQW 3K\VLRO %DUEHU 6$ 7KH UROH RI URRW LQWHUFHSWLRQ PDVV IORZ DQG GLVWULEXWLRQ LQ UHJXODWLQJ WKH XSWDNH RI LRQV E\ SODQWV IURP VRLO 7HFK 5HS 6HU ,QW $WRP (QHUJ\ $J 1R %DUU $DQG -+ *RRGQLJKW 6WDWLVWLFDO DQDO\VLV V\VWHP 1RUWK &DUROLQD 6WDWH 8QLY 5DOHLJK 1RUWK &DUROLQD %HUJHU .& ,QWURGXFWRU\ VRLOV 7KH 0F0LOODQ &R 1HZ
PAGE 134

f§ /a %ODHGHO :DQG '( 'LQZLGGOH 6WXG\ RI WKH EHKDYLRU RI FRSSHU LRQVHOHFWLYH HOHFWURGHV DW VXEPLFURPRODU FRQFHQWUDWLRQ OHYHOV $QDO &KHP %LQJKDP )7 DQG -0 *DUEHU 6ROXELOLW\ DQG DYDLODELOLW\ RI PLFURQXWULHQWV LQ UHODWLRQ WR SKRVSKRUXV IHUWLOL]DWLRQ 6RLO 6H[ 6RF $PHU 3URF %LQJKDP )7 DQG -3 0DUWLQ (IIHFWV RI VRLO SKRVSKRUXV RQ JURZWK DQG PLQRU HOHPHQW QXWULWLRQ RI FLWUXV 6RLO 6FL 6RF $PHU 3URF %ROW] ') 8OWUDYLROHW VSHFWURPHWU\ ,UL ):HOFKHU HGf 6WDQGDUG PHWKRGV RI FKHPLFDO DQDO\VLV WK HG 9RO S YDQ 1RVWUDQG &R 1HZ
PAGE 135

DQLPDO SODQW DQG VRLO UHODWLRQVKLS S -RKQ +RSNLQV 3UHVV %DOWLPRUH 'H.RFN 3& 09 &KHVKLUH DQG $ +DOO &RPSDULVRQ RI WKH HIIHFW RI SKRVSKRUXV DQG QLWURJHQ RQ FRSSHU GHILFLHQW DQG VXIILFLHQW RDWV 6FL )RRG DQG $JU 'H0XPEUXP /( DQG 0/ -DFNVRQ D &RSSHU DQG ]LQF H[FKDQJH IURP GLOXWH QHXWUDO VROXWLRQV E\ VRLO FROORLGDO HOHFWURO\WHV 6RLO 6FL 'H0XPEUXP /( DQG 0/ -DFNVRQ E ,QIUDUHG DEVRUSWLRQ HYLGHQFH RQ H[FKDQJH UHDFWLRQ PHFKDQLVP RI FRSSHU DQG ]LQF ZLWK OD\HU VLOLFDWH FOD\V DQG SHDW 6RLO 6FL 6RF $PHU 3URF 'H0XPEUXP /( DQG 0/ -DFNVRQ )RUPDWLRQ RI EDVLF FDWLRQV RI FRSSHU ]LQF LURQ DQG DOXPLQXP 6RLO 6FL 6RF $PHU 3URF 'H 9LOOLHUV -0 7KH SUREOHP RI TXDQWLWDWLYH GHWHUPLQDWLRQ RI DOORSKDQH LQ VRLO 6RLO 6FL 'XEDFK 3 DQG 1& 0HKWD 7KH FKHPLVWU\ RI VRLO KXPLF VXEVWDQFHV 6RLO )HUW 'XUVW 5$ $QDO\WLFDO WHFKQLTXHV DQG DSSOLFDWLRQV RI LRQ VHOHFWLYH HOHFWURGHV ,Q 5$ 'XUVW HGf ,RQVHOHFWLYH HOHFWURGHV 1DWLRQDO %XUHDX RI 6WDQGDUGV 6SHFLDO SXEOLFDWLRQ S :DVKLQJWRQ '& (OOLV -+ 5, %DUQKLVHO DQG 5( 3KLOOLSV 7KH GLIn IXVLRQ RI FRSSHU PDQJDQHVH DQG ]LQF DV DIIHFWHG E\ FRQFHQWUDWLRQ FOD\ PLQHUDORJ\ DQG DVVRFLDWHG DQLRQV 6RLO 6FL 6RF $PHU 3URF (OOLV %* DQG %' .QH]HN $GVRUSWLRQ UHDFWLRQV RI PLFURQXWULHQWV LQ VRLOV -Q -0RUWYHGW 30 *LRUGDQR DQG :/ /LQGVD\ HGf 0LFURQXWULHQWV LQ DJULFXOWXUH S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV (SVWHLQ ( 0LQHUDO QXWULWLRQ RI SODQWV SULQFLSOHV DQG SHUVSHFWLYHV -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 136

)LVNHOO -*$ DQG &' /HRQDUG 6RLO DQG URRW FRSSHU (YDOXDWLRQ RI FRSSHU IHUWLOL]DWLRQ E\ DQDO\VLV RI VRLO DQG FLWUXV URRWV $JUL )RRG &KHP )LVNHOO -*$ DQG 3:HVWJDWH &RSSHU DYDLODELOLW\ LQ KLJK FRSSHU VRLOV )OD 6WDWH +RUW 6RF )ORULGD &RRSHUDWLYH 6HUYLFH ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )OD 2QLRQ SURn GXFWLRQ JXLGH &LUFXODU % )ROOHWW 5+ DQG :/ /LQGVD\ 3URILOH GLVWULEXWLRQ RI ]LQF LURQ PDQJDQHVH DQG FRSSHU LQ &RORUDGR VRLOV &RORUDGR ([S 6WD 7HFK %XOO )RUVHH :7 DQG 59 $OOLVRQ (YLGHQFH RI SKRVSKRUXV LQWHUIHUHQFH LQ WKH DVVLPLODWLRQ RI FRSSHU E\ FLWUXV RQ RUJDQLF VRLOV RI ORZHU (DVW &RDVW RI )ORULGD 6RLO 6FL 6RF )OD 3URF )ULHG 0 DQG + %URHVKDUW 7KH VRLO SODQW V\VWHP LQ UHODn WLRQ WR LQRUJDQLF QXWULWLRQ $FDGHPLF 3UHVV 1HZ
PAGE 137

*XSWD 8& ,QIOXHQFHV RI YDULRXV RUJDQLF PDWHULDOV RQ WKH UHFRYHU\ RI PRO\EGHQXP DQG FRSSHU DGGHG WR D VDQG\ FOD\ ORDP VRLO 3ODQW DQG 6RLO +DZNHV +( DQG -6 :HEE *HRFKHPLVWU\ LQ PLQHUDO H[SORUDWLRQ 3 DQG S +DUSHU DQG 5RZ 1HZ
PAGE 138

-/ f§ ]LQF DQG FRSSHU LQ VHYHUDO )ORULGD VRLOV 3URF )OD 6WDWH +RUW 6RF -RQHV -U -% DQG +9 (FN 3ODQW DQDO\VLV DV DQ DLG LQ IHUWLOL]LQJ FRUQ DQG JUDLQ VRUJKXP ,Q /0 :DOVK DQG -' %HDWRQ HGf 6RLO WHVWLQJ DQG SODQW DQDO\VLV S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV -RQHV -U -% DQG :-$ 6WH\Q 6DPSOLQJ KDQGOLQJ DQG DQDO\]LQJ SODQW WLVVXH VDPSOHV ,Q /0 :DOVK DQG -' %HDWRQ HGf 6RLO WHVWLQJ DQG SODQW DQDO\VLV S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV .HLOLQ DQG 7 0DQQ /DFHDVH D EOXH FRSSHU SURWHLQ H[RGDVH IURP WKH ODWH[ RI 5KXV VXFFHGHQHD 1DWXUH .KDQ 68 ,QWHUDFWLRQ EHWZHHQ WKH KXPLF DFLG IUDFWLRQ RI VRLOV DQG FHUWDLQ PHWDOOLF FDWLRQV 6RLO 6FL 6RF $PHU 3URF .UDXVNRSI .% *HRFKHPLVWU\ RI PLFURQXWULHQWV -0RUWYHGW 30 *LRUGDQR DQG :/ /LQGVD\ HGf 0LFURQXWULHQWV LQ DJULFXOWXUH S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV /DP +9 DQG 1 *DPPRQ -U (IIHFW RI FKHODWLRQ DJHQW FKHODWH FRQFHQWUDWLRQ VKDNLQJ WLPH DQG S+ RI H[WUDFWLQJ VROXWLRQ RQ WKH UHPRYDO RI FRSSHU ]LQF PDJQHVLXP DQG LURQ IURP $SRSND ILQH VDQG 6RLO DQG &URS 6FL 6RF )OD 3URF LQ SUHVVf /HKPDQ '6 6RPH SULQFLSOHV RI FKHODWLRQ FKHPLVWU\ 6RLO 6FL 6RF $PHU 3URF /HZLV 7( DQG )( %URDGEHQW D 6RLO RUJDQLF PDWWHU PHWDO FRPSOH[HV ,,, ([FKDQJH UHDFWLRQV RI PRGHO FRPSRXQGV 6RLO 6FL /HZLV 7( DQG )( %URDGEHQW E 6RLO RUJDQLF PDWWHU PHWDO FRPSOH[HV ,9 1DWXUH DQG SURSHUWLHV RI H[FKDQJH VLWHV 6RLO 6FL /LQGVD\ :/ ,QRUJDQLF SKDVH HTXLOLEULD RI PLFURQXWULHQWV LQ WKH VRLOV ,Q -0RUWYHGW 30 *LRUGDQR DQG :/ /LQGVD\ HGf 0LFURQXWULHQWV LQ DJULFXOWXUH S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV /LQGVD\ :/ DQG :$ 1RUYHOO 'HYHORSPHQW RI D '73$ PLFURQXWULHQW VRLO WHVW $JURQ $EVWU S /RFDVFLR 63+ (YHUHWW DQG -*$ )LVNHOO (IIHFW RI SKRVSKRUXV VRXUFHV DQG FRSSHU UDWHV RQ ZDWHUPHORQV 3URF $PHU 6RF +RUW 6FL /RFDVFLR 63+ (YHUHWW DQG -*$ )LVNHOO &RSSHU DV D IDFWRU LQ ZDWHUPHORQ IHUWLOL]DWLRQ 3URF )OD 6WDWH +RUW 6FL 6RF

PAGE 139

/RFDVFLR 6DQG -*$ )LVNHOO &RSSHU UHTXLUHPHQW RI ZDWHUPHORQV 3URF $PHU 6RF +RUW 6FL 0DUWHOO $( DQG 0 &DOYLQ &KHPLVWU\ RI WKH PHWDO FKHODWH FRPSRXQGV S 3UHQWLFH+DOO 1HZ
PAGE 140

2ULRQ 5HVHDUFK ,QVWUXFWLRQ PDQXDO IRU &X VHOHFWLYH HOHFWURGH 0RGHO &DPEULGJH 0DVVDFKXVHWWV 3DJH 15 3URFHGXUHV XVHG E\ VWDWH VRLO WHVWLQJ ODERUDn WRULHV LQ WKH VRXWKHUQ UHJLRQ RI WKH 8QLWHG 6WDWHV %XOO 1R 6RXWKHUQ &RRS 6HULHV 3DVVLRXUD -% /LPLWLQJ VWHSV LQ LRQ XSWDNH E\ SODQWV IURP VRLO ,QW $WRPLF (QHUJ\ $JHQF\ 3DQHO 9LHQQD S 3XUYLV (5 DQG 2: 'DYLGVRQ 5HYLHZ RI WKH UHODWLRQ RI FRSSHU WR DYDLODELOLW\ DQG DEVRUSWLRQ RI FHUWDLQ WUDFH HOHPHQWV E\ SODQWV 6RLO 6FL 5DVKLG 0$ 5ROH RI KXPLF DFLGV RI PDULQH RULJLQ DQG WKHLU GLIIHUHQW PROHFXODU ZHLJKW IUDFWLRQV LQ FRPSOH[LQJ GL DQG WUL YDOHQW LQHWDOV 6RLO 6FL ,OO 5HFKQLW] *$ $QDO\WLFDO VWXGLHV RQ LRQVHOHFWLYH PHPEUDQH HOHFWURGHV ,Q 5$ 'XUVW HGf ,RQVHOHFWLYH HOHFWURGHV S 1DWLRQDO %XUHDX RI 6WDQGDUGV 6SHFLDO SXEOLFDWLRQ :DVKLQJWRQ '& 5HLWK -:6 &RSSHU GHILFLHQF\ LQ FURSV LQ QRUWKHDVW 6FRWODQG $JU 5HV 5REHUWVRQ :5 /* 7KRPSVRQ DQG )* 0DUWLQ 0DQJDQHVH DQG FRSSHU UHTXLUHPHQW IRU VR\EHDQV $JURQ 6DOLVEXU\ )% DQG & 5RVV 3ODQW SK\VLRORJ\ :DGVZRUWK 3XEOLVKLQJ &R %HOPRQW &DOLIRUQLD 6DXFKHOOL 9 7UDFH HOHPHQWV LQ DJULFXOWXUH S 9DQ 1RVWUDQG 5HLQKROG &R 1HZ
PAGE 141

6SHQFHU :) (IHFWV RI KHDY\ DSSOLFDWLRQV RI SKRVSKDWH DQG OLPH RQ QXWULHQW XSWDNH JURZWK IUHH]H LQMXU\ DQG URRW GLVWULn EXWLRQ RQ JUDSHIUXLW WUHHV 6RLO 6FL 6WHYHQVRQ )DQG 06 $UGDNDQL 2UJDQLF PDWWHU UHDFWLRQV LQYROYLQJ PLFURQXWULHQW LQ VRLO ,Q -0RUWYHGW 30 *LRUGDQR DQG :/ /LQGVD\ HGf 0LFURQXWULHQWV LQ DJULFXOWXUH S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV 7LQVOH\ 5/ 6XUIDFH FKHPLVWU\ RI FDOFLXP DQG SKRVSKRUXV UHWHQWLRQ LQ VHOHFWHG DFLG WURSLFDO VRLOV IURP WKH 5HSXEOLF RI 9LHW1DP 3K' GLVVHUWDWLRQ S 8QLY RI )OD *DLQHVn YLOOH )OD 7LVGDOH 6/ DQG :/ 1HOVRQ 6RLO IHUWLOLW\ DQG IHUWLn OL]HUV S 0F0LOODQ &R /RQGRQ 7UXRJ (* DQG &$ %RZHU %DVH H[FKDQJH FDSDFLW\ GHWHUn PLQDWLRQ DV LQIOXHQFHG E\ QDWXUH RI FDWLRQ HPSOR\HG DQG IRUPDWLRQ RI EDVLF H[FKDQJH VLWHV 6RLO 6FL 6RF $PHU 3URF :DWDQDEH )6 DQG 65 2OVHQ 7HVW RI DQ DVFRUELF DFLG PHWKRG IRU GHWHUPLQLQJ 3 LQ ZDWHU DQG 1DOO&2R H[WUDFWV IURP VRLOV 6RLO 6FL 6RF $PHU 3URF :HL /6 7KH FKHPLVWU\ RI VRLO FRSSHU 3K' WKHVLV 8QLY RI ,OOLQRLV 8UEDQD :LONLQVRQ +) 0RYHPHQW RI PLFURQXWULHQWV WR SODQW URRWV ,Q -0RUWYHGW 30 *LRUGDQR DQG :/ /LQGVD\ HGf 0LFURQXn WULHQWV LQ DJULFXOWXUH S 6RLO 6FL 6RF $PHU 0DGLVRQ :LV :ULJKW -5 DQG 0 6FKQLW]HU 0HWDOORRUJDQLF LQWHUn DFWLRQV DVVRFLDWHG ZLWK SRG]ROL]DWLRQ 6RLO 6FL 6RF $PHU 3URF

PAGE 142

%,2*5$3+,&$/ 6.(7&+ +R 9DQ /DP ZDV ERUQ RQ -XO\ LQ &KR/RQ 6RXWK 9LHWQDP +H DWWHQGHG HOHPHQWDU\ VHFRQGDU\ DQG KLJK VFKRRO LQ 6DLJRQ ,Q -XQH KH JUDGXDWHG IURP 3HWUXV .\ +LJK 6FKRRO 7KH VDPH \HDU KH SDVVHG WKH HQWUDQFH H[DPLQDWLRQ DQG HQWHUHG WKH &ROOHJH RI $JULFXOWXUH 1DWLRQDO $JULFXOWXUDO ,QVWLWXWH 1$,f 6DLJRQ ,Q $XJXVW KH ZDV JUDGXDWHG ZLWK WKH GHJUHH .\6X 1RQJ.KRD (QJLQHHU RI $JULFXOWXUHf )URP 2FWREHU XQWLO 'HFHPEHU RI WKH VDPH \HDU KH ZRUNHG IRU WKH 0LQLVWU\ RI $JULFXOWXUH 6DLJRQ ,Q 'HFHPEHU DIWHU WUDQVIHUn ULQJ WR WKH 1$, 0LQLVWU\ RI (GXFDWLRQ KH VHUYHG DV ODERUDWRU\ DQG ILHOG LQVWUXFWRU ,Q $SULO KH ZDV GUDIWHG DQG VHUYHG DV DQ DGPLQLn VWUDWLYH RIILFHU XQWLO 1RYHPEHU ZKHQ KH UHWXUQHG WR 1$, DQG UHVXPHG KLV IRUPHU WHDFKLQJ GXWLHV )ROORZLQJ WKH VHUYLFH WR 1$, &ROOHJH RI $JULFXOWXUH KH UHFHLYHG D VFKRODUVKLS IURP WKH $JHQF\ IRU ,QWHUQDWLRQDO 'HYHORSPHQW $,'f 86 'HSDUWPHQW RI 6WDWH WR SXUVXH D 3K' SURJUDP DW WKH 8QLYHUVLW\ RI )ORULGD +H DUULYHG LQ *DLQHVYLOOH )ORULGD RQ 6HSWHPEHU WK DQG KDV EHHQ ZRUNLQJ VLQFH WKHQ WRZDUG WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $IWHU WKH FKDQJH RI JRYHUQPHQW LQ 9LHWQDP LQ $SULO WKH $,' UHQHJHG RQ LWV SRUWLRQ RI WKH FRQWUDFW ZKLFK ZDV VXSSRVHG WR SURYLGH IXQGV IRU KLV VWXG\ XQWLO 0DUFK :LWK D VXSSRUWLQJ HIIRUW IURP WKH 'HDQ RI &ROOHJH RI $JULFXOWXUH

PAGE 143

OM8 8QLYHUVLW\ RI )ORULGD 'U 0( 0DUYHO ZKR DW WKDW WLPH ZDV $VVLVWDQW 'LUHFWRU RI WKH ,QWHUQDWLRQDO 3URJUDP 'UV &) (QR DQG -*$ )LVNHOO &KDLUPDQ DQG 3URIHVVRU RI 6RLO 6FLHQFH 'HSDUWPHQW UHVSHFWLYHO\ DQG PRVW SDUWLFXODUO\ 3URIHVVRU 1 *DPPRQ -U KLV 0DMRU 3URIHVVRU KH ZDV DZDUGHG D )RUG )RXQGDWLRQ IHOORZVKLS IRU WKH SHULRG 6HSWHPEHU WR -XQH LQ RUGHU WR FRPSOHWH KLV GHJUHH 7KH DXWKRU LV PDUULHG WR WKH IRUPHU /\ 1JRF 3KXRQJ DQG WKH\ KDYH RQH GDXJKWHU +R /\ 3KXRQJ4X\HQ DJH +H ZDV 3UHVLGHQW RI WKH 9LHWQDPHVH $VVRFLDWLRQ DW *DLQHVYLOOH f &KDLUPDQ RI WKH 6RLO 6FLHQFH *UDGXDWH 6WXGHQW $VVRFLDWLRQ f DQG LV D PHPEHU RI 6RLO DQG &URS 6FLHQFH 6RFLHW\ RI )ORULGD 6RLO 6FLHQFH 6RFLHW\ RI $PHULFD $PHULFDQ 6RFLHW\ RI $JURQRP\ DQG *DPPD 6LJPD 'HOWD

PAGE 144

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 1DWKDQ *DPPRQ -U &KDLUPDU 3URIHVVRU RI 6RLO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW & 6WRXIHU &V $VVRFLDWH 3URIHVVRU RI &KHPLVWU\

PAGE 145

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %RE 9RON $VVRFLDWH 3URIHVVRU RI 6RLO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -XQH !0 f LAQ &ROOHJH RI $JULFXOWXUH 'HDQ? *UDGXDWH 6FKRRO

PAGE 146

81,9(56,7< 2) )/25,'$


UNIVERSITY OF FLORIDA
3 1262 08556 7492