Citation
A monograph of Eucharis and Caliphruria (Amaryllidaceae)

Material Information

Title:
A monograph of Eucharis and Caliphruria (Amaryllidaceae)
Creator:
Meerow, Alan W
Publication Date:
Language:
English
Physical Description:
viii, 497 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Genera ( jstor )
Genetics ( jstor )
Internet search systems ( jstor )
Ovaries ( jstor )
Ovules ( jstor )
Perianths ( jstor )
Pollen ( jstor )
Species ( jstor )
Stamens ( jstor )
Taxa ( jstor )
Amaryllidaceae ( lcsh )
Caliphruria ( lcsh )
Dissertations, Academic -- Horticultural Science -- UF
Eucharis ( lcsh )
Horticultural Science thesis Ph. D
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1986.
Bibliography:
Bibliography: leaves 450-469.
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Alan W. Meerow.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000898244 ( ALEPH )
15625180 ( OCLC )
AEK6943 ( NOTIS )
AA00004867_00001 ( sobekcm )

Downloads

This item has the following downloads:


Full Text


A MONOGRAPH OF Eucharis AND Caliphruria (AMARYLLIDACEAE)
By
ALAN W. MEEROW
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1986


Copyright 1986
by
Alan W. Meerow


ACKNOWLEDGMENTS
Many individuals have facilitated the execution of this
dissertation. Grateful appreciation is extended to my graduate
committee chairman, Bijan Dehgan, for his unwavering support throughout
my graduate program. Thanks are also extended to the remaining members
of my graduate committee, Charles L. Guy, Walter S. Judd, Thomas J.
Sheehan, and Norris H. Williams. In particular, I thank Walter Judd for
his advice and assistance throughout the course of my work, and Charles
Guy for the generous use of his laboratory and materials for my
electrophoretic investigations. Grateful appreciation is extended to
the curators of the herbaria cited in Chapter XII for the loan of
specimens, and the individuals and institutions, also cited in Chapter
XII, who provided living material of various genera of Amaryl1idaceae.
Bart Schutzman provided fellowship, comraderie, and much assistance with
computer problems throughout the past five years. Kent Perkins,
collections manager at FLAS, dealt effectively and patiently with a
complex herbarium loan history. Much of the work detailed herein was
supported by National Science Foundation Dissertation Improvement Grant
BSR 8401208, and a Garden Club of America/World Wildlife Fund Fellowship
in Tropical Biology. I thank both granting organizations for this
material support. Gratitude is also extended to the Florida Federation
of Garden Clubs, and the Garden Writers Association of America, for
their respective scholarship awards. Above all, I thank my wife, Linda


Fisher-Meerow, for the love, support, and patience that has sustained me
during the completion of this work; for her excellent illustrations of a
number of Eucharis species; and her welcome companionship in the field.
TV


TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ill
ABSTRACT vi i
CHAPTERS
I INTRODUCTION 1
II TAXONOMIC HISTORY 5
III VEGETATIVE MORPHOLOGY 8
Materials and Methods 8
Results and Discussion 9
IV FLORAL MORPHOLOGY 46
Materials and Methods 46
Results and Discussion 46
V POLLEN MORPHOLOGY 73
Materials and Methods 73
Results 74
Discussion 78
Conclusions 82
VI PHENETIC ANALYSES 95
Materials and Methods 96
Results 99
Discussion 105
Conclusions 107
VII CHROMOSOME CYTOLOGY 142
Materials and Methods 142
Results 144
Discussion and Conclusions 149
VIII ELECTROPHORETIC ANALYSES OF ISOZYME VARIATION 186
Materials and Methods 188
v


Results 195
Discussion 202
Conclusions 211
IX ECOLOGY, PHENOLOGY, AND PHYTOGEOGRAPHY 239
Ecology 239
Phenology 241
Dispersal 244
Phytogeography 245
X REPRODUCTIVE BIOLOGY 255
Pollination Biology 255
Breeding System 258
XI PHYLOGENETIC RELATIONSHIPS AND EVOLUTIONARY HISTORY .... 262
A Review of Urceolina 263
Phylogenetic Analysis 266
XII TAXONOMIC TREATMENT 303
Materials and Methods 303
Taxonomic Treatment 307
LITERATURE CITED 450
APPENDIX 470
BIOGRAPHICAL SKETCH 497
vi


Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
A MONOGRAPH OF Eucharis AND Caliphruria (AMARYLLIDACEAE)
By
Alan W. Meerow
December, 1986
Chairman: Bijan Dehgan
Major Department: Horticultural Science
Eucharis and Caliphruria are neotropical genera of petiolate-
leaved, white-flowered Amaryl1idaceae found in the understory of primary
tropical rainforest. Together with the Peruvian endemic Urceolina,
Eucharis and Caliphruria form a monophyletic group on the basis of leaf
and seed morphology and ecological specialization. Sixteen species and
two natural hybrids within two subgenera are recognized in Eucharis.
Subgenus Eucharis, marked by its crateriform flowers, curved perianth
tube, well-developed staminal cup, and unicellular stigmatic papillae,
is distributed from Guatemala to Bolivia, chiefly in the western Amazon
basin and adjacent lower slopes of the eastern Andes. Subgenus
Heterocharis represents three relict species with many ancestral
characters of the genus. Caliphruria (4 species, 3 of which are endemic
to Colombia) has funnel form flowers, straight perianth tube, reduced
staminal connation, and multicellular stigmatic papillae. Abaxial leaf
surfaces of both genera have dense cuticular striations. Undulate
anticlinal cell walls are characteristic. A distinct palisade layer is


absent from the mesophyll. Eucharis subg. Eucharis has the least
derived pollen morphology, with characteristics in common with other
putatively ancestral genera of pancratioid Amaryllidaceae. Caliphruria
exhibits reduction trends in pollen grain size and exine sculpturing.
With the exception of two tetraploid species, all species are
characterized by 2n = 46. Karyomorphological change may be an important
factor in species divergence. Phenetic analyses achieve only fair
results in resolving phenetic relationships among Eucharis species, many
of which are highly variable morphologically. Analysis of isozyme
variation within two species complexes of Eucharis indicates high levels
of heterozygosity. Founder effects and hybridization are respectively
considered two important factors in the speciation of these groups.
Modern-day distribution of Eucharis and Caliphruria is related to
Pleistocene refugia theories. Phylogenetic analysis supports certain
species relationships hypothesized on the basis of phenetic data, but
indicates possible paraphyly for Eucharis if Caliphruria and Urceolina
are segregated as a distinct genera. Acceptance of paraphylly in
Eucharis is argued on the basis of degree of divergence of Caliphruria
and Urceolina. The relationship between these genera is paralleled
within other lineages of "infrafamily" Pancratioidinae. Keys and
descriptions are provided for all species of Eucharis and Caliphruria.
vi i1


CHAPTER I
INTRODUCTION
The closely-related genera Eucharis Planchn and Caliphruria
Herbert (Amaryllidaceae), the Amazon lilies, comprise, respectively, 16
and 4 species of bulbous, rainforest geophytes, adapted to the low-light
conditions of the forest understory. Together with the Peruvian endemic
Urecolina Reichb., Eucharis and Caliphruria form a monophyletic group
delimited by petiolate leaves with distinctive cuticular striation; a
turgid seed with a lustrous, usually black, testa; and complete fidelity
to the rainforest understory niche. The species are distributed from
Guatemala to Bolivia. The major center of diversity for Eucharis is
located in the western Amazon basin (inclusive of major tributary
systems, e.g., the Napo, Pastaza and Huallaga) and the adjoining lower
slopes of the eastern Andean cordillera. With the exception of single
Peruvian species, Caliphruria is restricted to the Cordilleras
Occidental and Central of Colombia. The species of both genera are no
where abundant, and are found growing only in primary, rarely secondary,
forest from ca. 50-1800 m elevation on soils of high fertility. The
latter factor is probably important in limiting their distribution in
the wild, and may also account for the highly localized population
demographics of many of the species. Large scale deforestation has
proven catastrophic to these plants. The plants are unable to adapt to
the higher light intensity of the clearings and soon perish. At least
several species are likely near extinction.


2
The Amazon lilies are marked by their evergreen, petiolate leaves;
white, often pendent, sometimes fragrant flowers with a frequently
conspicuous stamina! cup or false corona formed by the basal connation
of the staminal filaments; obtusely tri-lobed stigma; and large, turgid,
ellipsoid seeds with a black, brown or metallic blue testa. A single
species of Eucharis, _E. amazonica Linden ex Planchn, is widely known in
horticulture [erroneously as JE. grandiflora Planchn and Linden (Meerow
and Dehgan, 1984a)], but neither genus has never been critically treated
in the taxonomic literature. Baker (1888) provided a key and
descriptions for all species known at the time in his Handbook of the
Amaryllideae, and Macbride (1936) treated the known Peruvian species of
Eucharis for the Flora of Peru. Though species of Eucharis have
continued to be described well into the present decade, the delimitation
of these species from previously described taxa has consistently
remained vague. No assessments of variation at either the population or
species level have been attempted.
My study of these genera began in 1980. Both were combined with
the closely related Urceolina by Traub (1971) without any supporting
data, the investigation of which formed the basis of my unpublished
master's thesis (Meerow, 1983). I refuted Traub's combination, and
Eucharis was re-established as a distinct genus with three subgenera:
Eucharis, Caliphruria (Herbert) Meerow ined. and Heterocharis Meerow
ined. On the basis of my continuous work since that time, I now believe
that Cali phruria is best retained as a distinct genus as well. This is
discussed in Chapter XI. Species delimitations and associated
systematic studies form the basis of this present work.


3
Neither Eucharis nor Caliphruria is not well represented in
herbarium collections, and critical morphological characters are often
obscured by the drying process. Consequently, a living collection of
over 100 accessions representing one dozen species was accumulated from
botanical gardens, individuals, and field collections by myself and
various colleagues. Study of living material not only clarified aspects
of floral and vegetative morphology, but allowed detailed study of
vegetative and seed anatomy, chromosome cytology, and electrophoretic
analysis of allozyme variation, as well as permitting the start of a
hybridization program. Populations were observed and sampled in
Colombia, Ecuador and Peru.
As two of only three genera of neotropical Amaryllidaceae (the
other being the related Urceolina) exhibiting complete fidelity to a
primary rainforest niche, systematic understanding of Eucharis and
Caliphruria offers important information relating to the evolution of
the pancratioid Amaryllidaceae ["infrafamily" Pancratioidinae sensu
Traub (1963)], centered in the central Andean region of South America.
As coadapted plants of the world's most complex and threatened
ecosystem, their scarcity in the wild will only increase to the point of
extinction if tropical deforestation continues at the present rate.
No taxonomic scheme can encompass all of the information about the
group of organisms under study (Ornduff, 1969; Raven, 1976; Holsinger,
1984, 1985). In genera such as Eucharis and Caliphruria, rare in the
wild and often accessible only with difficulty, and which often exhibits
cryptic patterns of variation, this observation becomes that much more
acute. By accumulating data from as many diverse sources as possible, I
have attempted to construct a classification of the Amazon lilies that


4
reflects their phylogeny and inter-relationships as accurately as these
data allow.


CHAPTER II
TAXONOMIC HISTORY
Herbert (1844) described the new genus Caliphruria from
collections made in New Granada (Colombia) near Guaduas by Hartweg,
placing Cali phruri a in the section" Pancratiformes of "suborder"
Amaryllideae. Genera of this section were united by the single
character of stamina! connation. The small, white, funnelform flowers
were marked by the presence of a bristle or slender tooth at either side
of the filament. Herbert (1844) made no mention of basal connation of
the filaments. The orthography of the name, a single '1' in the Greek
stem "calli-," was emended by subsequent workers (e.g. Baker, 1877), but
was returned to Herbert's original by Meerow and Dehgan (1984b).
Planchn (1852) introduced another new pancratioid genus,
Eucharis. The first species described, _E. candi da Planchn and Linden,
collected in New Granada by M. Schlim, was characterized by its
crateriform flowers with a conspicuous staminal cup and a widely
spreading perianth limb. If Planchn was aware of Caliphruria, he did
not note any relationship between it and Eucharis.
Noting the relationship between the two genera, Bentham and Hooker
(1883) placed Caliphruria and Eucharis in the tribe Cyathiferae.
Caliphruria subedentata Bak. was combined with Eucharis in their
treatment, while _C. hartwegiana Herb, was retained. Baker (1888)
accepted this treatment, and described another new species as C. teera.
He described Caliphruria as "nearly allied to Eucharis."


6
Baillon (1894) described the species £. caste!naeana and declared
it precisely intermediate between Caliphruria and Eucharis. He further
suggested that Eucharis should be treated as a section of Caliphruria.
Macbride (1931) later transferred _C. caste!naeana to Eucharis.
Nicholson (1884) transferred £. hartwegiana (the type species of
Caliphruria) to Eucharis, ignoring the fact of the former's
nomenclatura! priority. Traub (1967) made the formal transfer of the
remaining species of Caliphruria, £. teera Baker, to Eucharis and also
combined the monotypic genus Plagiolirion Baker (1883) with Eucharis.
He had previously listed Caliphruria, Plagiolirion, and Mathieua
Klotzsch [another monotypic genus (Meerow, MS in subm.)] as synonyms for
Eucharis in his Genera of the Amaryllidaceae, citing Baillon (1894) as a
"special reference" (Traub 1963, p. 74). The nomenclatura! priority of
Caliphruria Herbert was overlooked. No proposal for the conservation of
Eucharis Planchn over Caliphruria Herbert has ever been proposed
previous to that of Meerow and Dehgan (1984b).
Traub (1971) later combined Eucharis with Urceolina Reich, (nom.
cons.), a small Andean genus with petiolate leaves and markedly
urceolate, brightly colored flowers. He designated five subgenera:
Urceolina, Eucharis, Caliphruria, Mathieua, and PIagioirion. Traub
(1971) offered no explanation for the combination of Eucharis and
Urceolina, but presumably his decision was prompted in part by reports
in the literature of two intergeneric hybrids between Eucharis and
Urceoli na: X Urceocharis clibranii Masters, an artificial hybrid, and X
U. edentata C. H. Wright, putatively discovered in the wild state in
Peru.


7
In my preliminary work (Meerow, 1983; Meerow and Dehgan, 1984a,
b), I refuted Traub's unsupported combination, re-establishing Eucharis
(including Caliphruria), Plagiolirion, and Mathiuea as distinct genera.
Plagiolirion and Mathieua are monotypic genera allied to Hymenocal1is
Salisb. and Stenomesson Herbert respectively (Meerow, MS in subm.). On
the basis of the work detailed in the following chapters, I prefer to
treat Caliphruria as a distinct genus as well.


CHAPTER III
VEGETATIVE MORPHOLOGY
Materials and Methods
Leaf Surface Morphology [Scanning Electron Microscopy (SEM)]
Fresh material was fixed in FAA for a minimum of 24 hrs. Leaf
sections were always taken from midpoint of the lamina. Samples were
EtOH-dehydrated, critically point dried with a Denton DCP-1 apparatus,
mounted, and coated with 600 $ of gold-palladium mixture with a Technics
Hummer V sputter coater. Specimens were observed and photographed on an
Hitachi S-450 scanning electron microscope at 20 kv.
Anatomical Studies
Petioles were freehand sectioned with teflon coated razor blades,
and lightly stained with toludidine blue. Leaf clearings were prepared
by immersing fresh, medial lamina sections in 85% lactic acid at 45 C
for 5-7 days. Abaxial and adaxial epidermal layers were then separated
using diluted Jeffrey's (1917) solution. Epidermal tissue was stained
in 1% safranin, and mounted in 1:1 glycerol 95% EtOH mixture. Leaf
tissue (medial lamina) fixed in FAA was processed for paraffin block
sectioning with an American Optical T/P 8000 tissue processor.
Dehydration began with 50% EtOH, and continued through 50-100% tert-
butyl alcohol. Dehydrated material was then transfered to a 1% solution
of safranin, followed by a 1:1 mixture of absolute tert-butyl alcohol
8


9
and mineral oil, a 3:1 mixture of Paraplast and mineral oil, and finally
100% Paraplast. Embedded material was sectioned with an American
Optical No. 820 rotary microtome set at 10 /irn. Sections were further
stained with toluidine blue. Sections were mounted using Pro-Texx
mounting medium. All material was examined and photographed on a Nikon
Labophot photomicroscope with AFX-II photographic attachment.
Terminology is referable to Stace (1965) and Dilcher (1973).
Statistical Procedures
Statistical tests were performed with SAS Release 5.08 (SAS
Institute, INC.) on the Northeast Regional Data Center (NERDC) of the
University of Florida.
Results and Discussion
Bulbs
The globose or subglobose bulbs of Eucharis and Caliphruria,
composed of concentric and modified leaf bases (scales), are
characteristic of most members of the Amaryllidaceae. The outer scales
of Eucharis and Caliphruria bulbs are modified into a papery tunic,
either brown or tan in color. On the whole, little systematic
information can be derived from bulb morphology. Size of mature bulbs
is variable and proportional to the whole plant size range of each
species.
The bulb scales of most species of Eucharis and Caliphruria are
apically articulated into a neck or pseudostem of variable length.
Distally, the pseudostem grades into the petiole of individual leaves.


10
Unlike species of Hymenocal1 is subg. Ismene, the neck of Eucharis and
Caliphruria bulbs always remains below the soil surface. Length of the
neck may therefore be more a factor of bulb depth in the substrate
rather than of any phylogenetic significance.
Van Bragt et al. (1985) found flower initiation will not occur in
bulbs of _E. amazonica less than 35 mm diameter. This species
characteristically produces among the largest bulbs of any in the genus.
Irmisch (1850) recognized the existance of both monopodial and
sympodial shoot structure in bulbs of Amaryllidaceae. Pax (1888) and
Troll (1937) followed these same concepts, but other workers, (e.g.
Church, 1919; Peter, 1971; Brunard and Tulier, 1971; U. and D. MUller-
Doblies (1978), Dzidziguri, 1978; Akensova and Sedovi, 1981; and Arroyo,
1984) have not always been in agreement as to which shoot structure was
applicable to various taxa. Most recently, Arroyo (1984) characterized
only four South African taxa as possessing true monopodial organization.
She is now in accord (Arroyo, pers. comm.) with Mller-Doblies and
Mller-Doblies (1972) who suggest that only sympodial structure occurs
in bulbs of Amaryllidaceae.
Bulbs of Eucharis and Caliphruria are, without controversy, true
sympodia (Arroyo, 1984; van Bragt et al., 1985). Each bulb has a single
terminal vegetative meristem. After its transformation to a floral
apex, a new vegetative growing point is formed laterally.
Bulbs of most species of Eucharis and Caliphruria offset regularly
and vigorously, forming sizable clumps in time if undisturbed. Offset
bulbs are at first usually tightly joined at the basal plate to the
parent bulb. Only very rarely does an elongated rhizome develop from
which a new shoot system can arise at some distance from the parent


11
plant, a mode of vegetative reproduction characteristic of some species
of Hymenocallis (pers. obs.; T. Howard, pers. com.).
Leaf Gross Morphology
Leaves of Eucharis and Caliphruria are uniformly long-petioate,
with a well-developed elliptic, ovate or lanceolate lamina. Petiolate
leaves are characteristic of a number of genera of Amaryllidaceae,
either completely or in part, and have undoubtedly evolved independently
several times from the linear or 1 orate leaf morphology typical of the
family. In most of these cases, the petiolate leaf appears to be
primarily an adaptation to reduced levels of light concurrent with
colonization of forest understory (e.g. Eucharis, Caliphruria,
Urceolina, Eurycles Salisb., Scadoxus (Raj.) F. Nordal, Hymenocal1 is
tubiflora Salisb. and allied species.). Foilage of petiolate-leaved
genera occurring in more open situations (e.g. Phaedranassa Herbert,
Rauhia Traub), is generally marked by increased succulence and/or
pruinosity [leaf surface wax is capable of reflecting light and heat
(Cutler et al., 1980)].
The petiole of the leaf of Eucharis and Caliphruria is usually as
long or longer than the lamina. It is subterete in cross-section (Fig.
1-2), rounded abaxially, and flattened adaxially, becoming slightly
channelled proximal to the sinus. The petiole is winged proximal to the
sinus by the attenuation of the lamina. The midrib is pronounced
abaxially along the entire length of the lamina, and slightly channelled
adaxially, continuous with the petiole.
Leaf shape only rarely provides taxonomically useful information.
Length : width ratios are subject to considerable variation even among


12
the leaves of a single bulb. Herbarium specimens will frequently
include only a single leaf, with no indication of its developmental age.
Taxonomic consistency of leaf shape is exceptional, but useful in the
few cases where it occurs. For example, leaves of E_. ulei are
consistently narrowly elliptic. Eucharis amaznica (leaf length/width
ratio greater than 2) may be delimited from from JE. anmala (1 : w less
than 2).
The leaves of Eucharis and Caliphruria are completely glabrous and
non-glaucous with a single exception. Eucharis bonplandii (Kunth)
Traub, a rare tetraploid species from central Colombia, develops a
glaucous bloom in strong light that gives the leaf a blue cast.
The leaves of Caliphruria are slightly thicker than those of subg.
Eucharis and Heterocharis. This may reflect adaptation to slight water
stress, as the species of Caliphruria sometimes inhabit slightly drier
forest associations than characteristic of the Eucharis (see Chapter
IX). Eucharis bouchei Woodson and Allen and E,. bonplandii (both subg.
Eucharis), however, have thickened leaves, possibly a consequence of
their tetraploid constitution (see Stebbins, 1950).
The leaf apex of all species is shortly acuminate, the base
attenuate. Coarse undulation of the margin will sometimes make the
lamina appear cordate at the base. Leaf margins of Caliphruria are
uniformly non-undulate.
Venation of the leaf of Eucharis and Caliphruria is
parallelodromus (Hickey, 1973), with a great number of transverse,
commisseral veins inter-connecting the primary vasculature. Whether the
leaf is plicate along the primary veins can be a taxonomically useful
character. Unfortunately, this, and many other leaf characters (e.g.,


marginal undulation, the color and luster of the epidermis), readily
observed in live material, are completely obscured in herbarium
specimens.
All species of Caliphruria have smooth, non-plicate leaves.
Eucharis is variable for this character, but the majority of species of
have plicate leaves.
The adaxial epidermis of most species of both genera is a
lustrous, dark green; the abaxial surface appears lighter, or silvery-
green. Only E_. astrophiala (Ravenna) Ravenna has diverged markedly from
the typical morphology, and has a uniquely non-1ustrous, bullate-
pustulate leaf texture.
Leaf Surface Features
Cutiele. Cuticular striation is prominent on the abaxial leaf
surfaces of most Eucharis and Caliphruria species (Fig. 3-7, 9-13, 15-
18). Striae are thickest in _C. subedentata (Fig. 6). Arroyo and Cutler
(1984) recognized eight cuticular sculpturing classes in a survey of 25
genera of Amaryllidaceae. The most common cuticular morphology of
Eucharis and Caliphruria fits their class VII; "thick striae, parallel
or not, interlocking, _+ transverse" (Arroyo and Cutler, 1984, p. 471), a
type they reported only for the few species of Phaedranassa, Scadoxus,
and Griffinia Ker-Gawl. that they examined, all three genera with
petiolate leaves, but not closely related. Phaedranassa is, however,
rather variable in its cuticular morphology (Meerow, unpubl.). Eucrosia
Ker-Gawl., a close ally of Phaedranassa, also has cuticular striation
similar to that of Arroyo and Cutler's type VII (Meerow and Dehgan,
1985), but differs in the orientation, thickness and pattern of the


14
striae. Urceolina, a small genus very closely related to Eucharis and
Caliphruria, has cuticular morphology much like that of the latter
genera.
In a few species of Eucharis (_E. amazonica, E_. anmala (Fig. 3; Z.
bouchei, Fig. 18) the striation is much less pronounced. Caliphruria
korsakoffii (the sole representative of Caliphruria outside Colombia)
has the most aberrant cuticle morphology (Fig. 7), correspond'ng more or
less to type V of Arroyo and Cutler (1984): "central, thick axial
striation with less pronounced striae running from it, directly to
anticlinal walls" (Arroyo and Cutler, 1984, p. 471). The adaxial
cuticle of Eucharis and Caliphruria is either smooth or rarely much more
finely striate than the abaxial surface, the striations entirely axial.
The adaxial cuticle of _C. korsakof fi i (Fig. 8) has several, thick,
transverse striations across each cell, and the epidermis is unusually
flat in topography.
Stomata. Leaves of Eucharis and Caliphruria are predominently
hypostomatic. Stomata occur adaxially only along the midrib and
vicinity (Fig. 19A), and also occasionally in the proximity of primary
veins. Stomata are usually absent from the abaxial midrib (Fig. 19B).
Intercalary stomata were regularly observed only in E. cyaneosperma
Meerow (Fig. 14 1 21C). A survey of leaf surfaces in "infrafamily"
Pancratioidinae (Meerow, unpubl.) suggests that loss or reduction of
adaxial stomata frequently accompanies the evolution of petiolate leaves
in Amaryllidaceae. Most linear or lorate-leaved genera are
amphistomatic. The stomata of Eucharis and Caliphruria are anomocytic,
as is typical for Amaryllidaceae (Arroyo and Cutler, 1984; Dahlgren and
Clifford, 1982), though E. astrophiala exhibits at least slight


15
differentiation of ce?ls neighboring the stomata (Fig. 9-10) from other
epidermal cells. These cells are more densely and regularly striate
than other epidermal cells, as well as slightly more upraised. The
guard cells of Eucharis and Caliphruria are oriented with their longest
axis parallel to that of the leaf. Wide variation in stomatal index
{[no. of stomata / (no. of stomata + no. of epidermal cells)] X 100
(Salisbury, 1927)} is evident (Table 2). Infraspecific variation in SI
can be as wide as that between species, however, and seems to have
little taxonomic significance. Correlations between SI and leaf width,
length and length:width ratios were tested for all plants examined.
Pearson correlation coeffcients for the three comparisons were 0.249
(width), 0.421 (length) and 0.232 (length:width). Greatest correlation
of SI was with leaf length, but none of the three tested factors are
very significant. Salisbury (1927) reported that humidity affects
stomatal index, and other workers (Yapp, 1912; Gupta, 1961) have
suggested that SI may not be as invariant as has been claimed. The
great morphological variation of Eucharis species (subg. Eucharis in
particular) in characters of floral morphology (Chaper IV) is also
present in vegetative characters.
Epidermal cells. The epidermal cells of all species of E^ subg.
Eucharis have strongly undulate anticlinal walls (Fig. 20-23A), as as
noted by Asatrian (1984) for the few species he surveyed. Abaxial
cells are more strongly undulate than those of the adaxial surface.
Abaxial epidermal cells of Caliphruria (Fig. B-C) are more weakly
undulate, and the adaxial cells of _C. korsakoffii (Fig. 24C) are
completely straight. Eucharis subg. Heterocharis is polymorphic for
anticlinal wall morphology. Eucharis amaznica (Fig. 23A) and E.


16
sanderi (not illustrated) have strongly undulate walls, while E_. anmala
(Fig. 23B) has essentially straight walls. I have surveyed the leaf
surface morphology of all genera in "infrafamily" Pancratioidinae with
the exception of Pucara Ravenna (Meerow, unpubl.). Strongly undulate
anticlinal walls are very rare among these genera. Arroyo and Cutler
(1984) report similar findings for the genera of pancratioid
Amaryllidaceae that they surveyed. Arroyo and Cutler (1984) and
Artushenko (1980) consider undulate anticlinal walls to be primitive for
the family. No detailed reasons are given by these authors for this
assessment, though reference is made to Scadoxus, a putatively primitive
bulbless genus of African Amaryllidaceae with undulate anticlinal walls
and Type VIII striation. This genus is often considered close to the
ancestral complex that gave rise to the Amaryllidaceae (Arroyo, 1982;
Arroyo and Cutler, 1984; Nordal and Duncan, 1984). Yet Scadoxus has a
baccate fruit, "brush" type inflorescence morphology, and petiolate
leaves (Nordal and Duncan, 1984), all derived characters in relation to
the rest of the family (Meerow, 1985a). Consequently, there seems
little evidence to suggest that the undulate anticlinal walls of
Scadoxus represent the primitive condition for the Amaryllidaceae.
Eucharis anmala, putatively the most primitive species of Eucharis (see
Chapter XI) has straight anticlinal walls (Fig. 23B). Taking this fact
into consideration, along with the relative rarity of undulate
anticlinal walls throughout the Pancratioidinae, I believe the undulate
condition is more likely the derived state. End walls of the both the
abaxial and adaxial cells of all species range from oblique to rounded.
Abaxial epidermal cells range from rectangular to irregular in
shape. Adaxial epidermal cells are, in almost all cases, rectangular.


17
Eucharis astrophiala (Fig. 20A) has the most irregularly shaped cells of
both the abaxial and adaxial surfaces. In the vicinity of the midrib on
both surfaces of the leaf (Fig. 19), epidermal cells become
conspicuously elongated, and anticlinal walls are straight. Epidermal
cells of the midrib are extremely long and narrow.
Leaf Anatomy
In petiolar transverse section, a single arc of vascular bundles
is usually observed (Fig. 1-2). Median bundles are the largest. In
petioles of E. anmala Meerow (Fig.2B) and the closely related _E.
amazonica (Fig. 2C), both in subg. Heterocharis, small secondary bundles
were observed near the adaxial surface. These bundles are most
conspicuous in E. anmala; they are markedly smaller in E. amazonica.
These secondary vascular traces disappear above the middle of the
petiole. Asatrian (1984), who reported on petiole anatomy of three
Eucharis and Caliphruria species, did not observe these bundles in _E.
amazoni ca (cited as _E. grandiflora).
The internal morphology of leaves of Eucharis and Caliphruria
(Fig. 25-31) is largely invariant across both genus. No well defined
palisade layer is evident, a characteristic of most genera of
"infrafamily" Pancratioidinae (Arroyo and Cutler, 1984; Meerow, unpubl.
data). Mucilage cells, common throughout the family (Arroyo and Cutler,
1984), are often present near the leaf surface, and raphides are
occasionally observed in epidermal cells. The mesophyll consists of
several layers of chlorenchyma both ad- and abaxially, and a thicker
region of spongy, slightly aerenchymous tissue. Small air cavities
occur regularly only directly below stomata. Vascular bundles are


18
surrounded by a sheath of 1-2 layers of parenchymous cells. The only
xylem elements present are tracheids with annular thickenings (Fig. 28).


Table 3.1. Leaf length, width, length : width ratio, and stomatal index of Eucharis and Caliphruria
species. All voucher specimens are deposited at FLAS unless otherwise indicated.
TAXON
VOUCHER
LEAF
LENGTH
(cm)
LEAF
WIDTH
(cm)
L : W
STOMATAL INDEX
Eucharis subg.
Eucharis
E. astrophiala
Meerow 1140
19.0
8.0
2.38
10.42
E. bonplandii
Bauml 686 (HUNT)
17.5
8.5
2.06
12.70
E. bouchei var.
bouchei
Meerow 1125
24.0
8.5
2.82
14.74
E. bouchei var.
dressleri
Meerow 1107
24.0
10.0
2.40
11.61
E. candida
Meerow 1144
27.0
9.0
3.00
24.79
Schunke 14155-B
32.5
9.1
3.57
15.72
E. castelnaeana
Schunke 14156
17.5
7.0
2.50
9.33
E. cyaneosperma
Meerow 1032
31.5
7.5
2.36
17.21
E. formosa
Meerow 1099
51.0
15.0
3.40
18.18
Meerow 1103
35.0
10.0
3.50
16.34
Schunke 14157
35.0
10.5
3.33
14.45


Table 3.1continued
TAXON
VOUCHER
LEAF
LENGTH
(cm)
Schunke 14171
37.5
Schunke 14174
42.0
E. plicata
pi i cata
subsp.
Meerow 1025
26.0
E. plicata
subsp.
Meerow 1143
19.5
brevulentata
Eucharis subg. Heterocharis
E. amazonica Schunke 14179 35.0.
E^. anmala Meerow 1141 22.5
X Cali chan's Meerow 1110 22.0
butcheri
Meerow 1127 27.0
LEAF
WIDTH
(cm)
15.0
14.8
12.0
10.0
13.5
12.5
10.5
14.5
E. X grandiflora
L : W
STOMATAL INDEX
2.50 18.57
2.94 12.95
2.17 9.92
1.95 20.79
2.59 12.29
1.89 12.36
2.10 16.01
1.86 14.00
PO
o


Table 3.1continued
TAXON
VOUCHER
LEAF
LENGTH
(cm)
LEAF
WIDTH
(cm)
L : W
STOMATAL INDEX
Caliphruria
C. korsakoffii
Meerow 1096
13.5
3.8
3.55
10.15
C. subedentata
Meerow 1109
16.8
6.8
2.47
14.21
Meerow 1123
16.5
8.0
2.06
9.36
Meerow 1159
15.7
7.5
2.09
10.11
Pearson correlation
coefficients
(significance
is indicated
by proximity
of value to 1)
Stomatal index and leaf length = 0.421
Stomatal index and leaf width = 0.249
Stomatal index and leaf length/width ratios = 0.232


Figure 3.1. Petiole transverse sections of Eucharis species. A. E. astrophiala (Madison 3792, SEL).
. E. bouchei var. dressleri (Meerow 1108, FLAS). C. E. pi i cata subsp. plicata (Meerow 1025,
FLAS). p = proximal, m = medial, d = distal.


'
23


Figure 3.2. Petiole transverse sections of Eucharis and Caliphruria species.
(Meerow 1156, FLAS). B. E. anmala (Meerow 1141, FLAS). C. E. amaznica
p = proximal, m = medial, d = distal.
A. C. subedentata
(ScfTunke 14179, FLAS).


rv>
en


Figures 3.3-3.8. SEM photomicrographs of Eucharis and Caliphrun'a leaf
surfaces. 3-7. Abaxial surfaces. 3. E. anmala (Meerow 1141,
FLAS). 4. E. X grandiflora (Madison et al. s. n., SEL), b. X
Calicharis Titchen (Meerow 1110, FLA3J. 6. C. subedentata
(Meerow 1109, FLA8J. 7. C. korsakoffii (Meerow 1096, FLAS). 8.
Adaxial surface of C. korsakotrn (Meerow oyb, HA5). All scales
= 25 yum.


27
l


Figures 3.9-3.14. SEM photomicrographs of Eucharis leaf surfaces. 9-
n. Abaxial leaf surfaces. 9-10. E. astrophiala (Meerow lili,
FLAS). 11-12. E. plicata subsp. pTicata (Meerow 1025, FLA$).
13. E. cyaneosperma (Meerow 1032, FLAS). ITT ftcTaxial leaf
surface, E. cyane~o?perma (Meerow 1032, FLAS). All scales = 25/jm.


29


Figures 3.15-3.18. SEM photomicrographs of Eucharis abaxial leaf
surfaces. 15. E. bakeriana (Meerow 1108, FLAS). 16. E. formosa
(Meerow 1103, FTASTH 1 /. L. bonplandii (Bauml 686, HUTTT)~ 18.
E. bouchei var. dressleri TMeerow 1107, FLAS). TCTl scales = 25
/jm.


31
I


Figure 3.19. Leaf epidermal cell configurations of representative
Eucharis species in the vicinity of the midrib. A. E. formosa
(Schunke 14174, FLAS), adaxial surface. B. E. pi i cata subsp.
pi i cata (Meerow 1025, FLAS).


33


Figure 3.20. Leaf epidermal configurations of Eucharis species in the
inter-costal area of the leaf. A. E. astrophiala (Madison 3792,
SEL). B. E. bonplandii (Bauml 686,HliN'r). C. E. bouchei var.
bouchei (Mee row 1125, FLAS).


35


Figure 3.21. Leaf epidermal configurations of Eucharis species in the
Tnter-costal area of the leaf. A. E. candida (Meerow 1144, FLAS).
B. E_. caste! naeana (Schunke 14156, TLAlTT"! CT E_. cyaneosperma
(Meerow 1032, FLAS).


37


Figure 3.22. Leaf epidermal configurations of Eucharis species in the
fnter-costal area of the leaf. A. E. formosa (Schunke 14174,
FLAS). B. E. pi i cata subsp. brevidentata (Meerow 1143, I- LAS). C.
E. ulei (ScFunke 14153, FLAS).


39
c


Figure 3.23. Leaf epidermal configurations of Eucharis species in the
inter-costal area of the leaf. A. E. amaznica (Schunke 14179,
FLAS). B. E. anmala (Meerow 1141 XT C. E. \ grandiflora (Meerow
1127, FLAS).




Figure 3.24. Leaf epidermal configurations of Eucharis and Caliphruria
species and hybrid in the inter-costal area of the leaT\ A. X
Calicharis butcheri (Meerow 1110, FLAS). B. C. subedentata
(Meerow 1123, HAS). C. C. korsakoffii (Meerow 1096, FLAS).


43


Figures 3.25-3.31. Transverse sections of Eucharis and Caliphruria
leaves. 25. E. bonplandii (Bauml 686, HUNT). 26. E. astrophiala
(Madison 3792, SEL). 27-28. E. formosa (Meerow 1107, FLS). 277
Tracheid with annular thi ckenTngs"! 277 E. bouchei var. dressleri
(Meerow 1107, FLAS). 30. C. subedentata (Meerow I~123, FLAS). 3T.
C. korsakoffii (Meerow 1096, FLAS). Al 1 scales = 100 /jm except 25
/am in Fig. 2.


45


CHAPTER IV
FLORAL MORPHOLOGY
Materials and Methods
Scanning Electron Microscopy (SEM)
Stigmas and seeds preserved in FAA were prepared and examined as
described in Chapter III.
Anatomical Studies
Seeds preserved in FAA were prepared for parafin block sectioning
as described for leaves in Chapter III. Scape sections were prepared
freehand as described for petioles in Chapter III.
Results and Discussion
Inflorescence
The inflorescence of Eucharis and Caliphruria is a naked scape
typical of Amaryllidaceae. The scape is sub-terete in cross-sectional
outline (Fig. 1), and has a solid pith. Vascular bundles are
distributed in several concentric rings within the pith (Fig. 1). A
layer of collenchyma cells occurs just below the epidermis of the scape.
The scape is terminated by two valvate-imbricate, ovate-lanceolate
bracts that enclose several secondary bracts and the flower buds before
anthesis. These bracts vary from green (_E. subg. Heterocharis) to
greenish-white (most species of subg. Eucharis) and are soon marcescent


47
after opening and spreading laterally. Each flower is subtended by a
linear-lanceolate bracteole.
The inflorescence of the Amaryllidaceae is traditionally described
as "umbellate". Developmental work by Mann (1959) on Al 1ium, and Stout
(1944) on Hippeastrum suggests that the superficially simple umbel of
Amaryllidaceae actually represents a complex series of reduced, helicoid
cymes. Anthesis occurs in a strict sequence within each cyme from the
developmentally oldest flower to the youngest. The peripheral cymes
flower first; the central cymes flower last.
Flower number varies in Eucharis and Caliphruria from 2-10, rarely
as many as 12 (_C. korsakoffii). Number of flowers is often a
taxonomically useful character, though any species characterized by 8-10
flowers is capable of producing a depauperate inflorescence with fewer
florets. An increase in flower number generally does not occur. In
some species of subg. Eucharis (E_. astrophiala, _E. bouchei, _E. ulei), a
flower number of 5 has become virtually fixed. Reduction in flower
number is usually considered the derived state in Amaryllidaceae (Traub
1962, 1963).
Flower Size and Fragrance
Flower size. The largest flowers in Eucharis are found in subg.
Heterocharis, flowers of which average 7-8 cm in length. Flowers of
Caliphruria are the smallest, never exceeding 4 cm in length. Subgenus
Eucharis, the largest of the two subgenera of Eucharis, is variable,
with flowers ranging from 3-7 cm in length. Within a fairly broad
range, flower size can be used to distinguish phenetic species complexes
within subg. Eucharis (see Chapters VI and XII), however, most species


48
of this subgenus are quite variable in size. Flower size may also be a
factor of plant vigor and soil fertility. I have repeatedly noted
differences from year to year in the size of flowers of greenhouse
collections, depending on the relative health of the plant.
Floral fragrance. Subgenus Heterocharis is the only subgenus of
Eucharis that is uniformly fragrant. The fragrance of all species of
subg. Heterocharis is intense and sweet. Flowers of Caliphruria do not
emit any detectable fragrance. Most species of _E. subg. Eucharis are
also without noticeable fragrance. In the few species of this subgenus
that are fragrant (_E. bakeriana, _E. caste!naeana, _E. formosa, and E_.
pi i cata subsp. brevidentata), the odor is not intense. In one case (_E.
formosa), the fragrance is slightly fetid. The significance of floral
fragrance in Eucharis is discussed further in Chapter X.
Perianth
The perianth of Eucharis and Caliphruria consists of six tepals in
two whorls, basally connate into a tube of varying length and
morphology. The tube of _E. subg. Eucharis (Fig. 2E) is cylindrical for
almost its entire length, abruptly dilating near the perianth throat.
The tube of subg. Eucharis is also strongly curved, either abruptly just
above the ovary (_E. bakeriana, _E. cyaneopserma), or gradually throughout
the proximal half of its length (all other species). The curving of the
tube results in the pendent habit of most species of subg. Eucharis.
The tube is white for its entire length.
The tube of subg. Heterocharis (Fig. 2C, D) is tinted green
proximally (for at least half its length). The tube is curved, though
not as markedly as that of subg. Eucharis, and the habit of the flowers


49
is either declnate (_E. anmala, _E. sanderi) or sub-pendulous (_E.
amaznica). The tube is cylindrical for 1/2 to 2/3 of its length; it
abruptly dilates in the distal half to 1/3. The tube morphology of X
Calicharis butcheri (Fig. 2B), putatively an inter-subgeneric hybrid
between E. sanderi and _C. subedentata, is intermediate between
Caliphruria (Fig. 2A) and _E. subg. Heterocharis (Fig. 2C, D).
The tube of Cali phruri a (Fig. 2A) is straight, and dilates
gradually from base to throat. It is either sub-cylindrical (_C.
korsakoffii) or funnelform in shape (all other species). The tube is
tinted green proximally (in _C. subedentata, for 1/2 to 2/3 of its
length).
The tepals of Eucharis and Caliphruria flowers are white. Those
of the outer series are almost always longer and narrower than the inner
tepals. The outer tepals are apiculate. The apiculum frequently has a
small, papillate horn on the adaxial surface in _E. subg. Eucharis. The
inner tepals vary from acute to obtuse, sometimes minutely apiculate, at
the apex.
The tepals of most species of subg. Eucharis spread at an angle of
90 or more from the throat. Perianth morphology of subg. Eucharis is
thus predominantly crateriform. At times the tepals may be reflexed
strongly above the midpoint of their length, or rarely for their entire
length. Tepal habit varies even among flowers of the same inflorescence
and shows no taxonomic consistancy. If exposed to strong light, the
abaxial midrib of the tepals of some species of subg. Eucharis may be
lightly pigmented yellow.
The perianth of Caliphruria is infundibular. The tepals remain
imbricate for half their length and spread distally at an angle of only


50
45-60. The tepals of subg. Heterocharis are also, for the most part,
imbricate proximally, and spread at 45-60 from the throat. The
perianth is more or less campanulate in morphology. One species, E.
amazonica, has the crateriform perianth character!-stic of subg. Eucharis
with a wide-spreading (ca. 90) limb.
Androecium
Staminal connation is one of the major characterise"cs of
"infrafamily" Pancratioidinae. Some taxonomic workers have mistakenly
considered the staminal cup of pancratioid genera homologous to the
corona of Narcissus (e.g., Pax, 1888). The corona of Narcissus is of
perianthal origin (Eichler, 1875; Arber, 1937), while the staminal cup
of pancratioid taxa is composed entirely of androecial tissue (Arber,
1937; Singh, 1972).
The stamens of Eucharis and Caliphruria are variously connate
proximally. In most species of subg. Eucharis and several species of
subg. Heterocharis (E_. anmala and _E. amazoni ca), a conspicuous staminal
cup or false corona is present (Fig. 3-4). In Caliphruria, the cup is
reduced to a short, membranous, connate portion of the filaments near
the perianth throat (Fig. 5). Eucharis sanderi (subg. Heterocharis) has
a reduced staminal cup similar to that of Caliphruria.
Stamens of Eucharis and Caliphruria may be dentate, edentate or
irregularly toothed. Both types of staminal morphology may occur in the
same species, and variation may occur even among flowers of a single
clone. The presence or absence of staminal dentation has frequently
been overweighted in the alpha-taxonomic literature relating to these
genera (e.g., Ravenna, 1982), but only occasionally has profound


51
taxonomic significance [e.g., _E. astrophiala (Fig. 3), the only species
of subg. Eucharis that always has an edentate staminal cup].
A variable pattern of green or yellow pigmentation is present in
the androecium of all species of subg. Eucharis and Heterocharis.
Stamens of Caliphruria are completely white. In subg. Heterocharis, the
green (rarely yellowish) pigmentation is largely restricted to the
interior of the cup, and extends into the dilated portion of the tube as
well (Fig. 4). The coloration is concentrated along the filamenta!
traces, but the tissue between the traces is suffused with green as
well. In subg. Eucharis, pigmentation is present on both the exterior
and interior surfaces of the cup, does not extend into the dilated
portion of the tube, and takes the form of either broad spots below each
free filament, or a uniform band of color at the basal 1/2 to 1/3 of the
cup. In subg. Eucharis, the pattern is of limited taxonomic
significance. Whether this pigmentation functions as nectar guides for
pollinating animals is unknown.
The stamens of most species of subg. Eucharis constrict distally
into a broadly subulate portion (> 1 mm wide for most of its length) of
varying length. Only in two species, E. astrophiala (Fig. 3) and E.
bouchei (in part), do the stamens constrict gradually from the rim of
the staminal cup to the apex of the filament. The free filaments of
Caliphruria are narrowly subulate (< 1 mm wide for most of their length,
Fig. 5). The free filaments of E_. sanderi (subg. Heterocharis) are
narrowly subulate and slightly incurved. Those of _E. anmala and E.
amazonica are broadly subulate.
Anthers of Eucharis are introrse, dehiscing longitudinally and
either dorsifixed or sub-basifixed in attachment. They are most


52
frequently oblong in shape, but are linear in subg. Heterocharis. At
anthesis, the anthers of Caliphruria and E_. subg. Eucharis are erect,
but become versatile as they age. In subg. Heterocharis the anthers are
versatile at anthesis.
Gynoeciurn
Stigma and style. The flowers of almost all Eucharis and
Caliphruria species are protandrous. Stigma receptivity does not occur
until the second or third day following anthesis. In some cases, the
stigma does not fully expand until the perianth has begun to senesce.
The styles of Eucharis and Caliphruria are usually exserted beyond
the anthers, most frequently from 0.5-1 cm. In subg. Heterocharis, the
styles are somewhat assurgent away from the stamens, and are exserted
well over 1 cm past the anthers. In two species of subg. Eucharis, _E.
castelnaeana and E_. plicata, the style is included within the cup. In
the former species, autogamy seems to occur with regularity, and stigma
receptivity coincides with anthesis.
The stigma of Eucharis and Caliphruria (Fig. 6, 8-9, 11-12) is
obtusely triblobed. Trilobed stigmas are relatively rare in the
Pancratioidinae, and Urceolina, sister group to Eucharis and
Caliphruria, has a capitate, entire stigma. Traub and Moldenke (1949)
and Traub (1963) considered a trilobed or trifid stigma the ancestral
state in the Amaryllidaceae.
The stigmas of Eucharis and Caliphruria are papillate. The
papillae of Eucharis are unicellular (Fig. 7, 13-16), while those of
subg. Caliphruria (Fig. 10) are multicellular, consisting of both a
stalk cell and globose head cell. X Calicharis butcheri, putatively a


53
natural hybrid of _E. sanderi and £. subedentata has the multicellular
stigmatic papillae (Fig. 17-18) characteristic of Caliphruria.
Heslop-Harrison and Shivanna (1977) characterized the stigmas of
Eucharis and Caliphruria as dry-type, and suggested a correlation
between this type of stigma morphology and sporophytic self
incompatibility. According to a number of workers (Heslop-Harrison,
1976; Kress, 1983; Larsen, 1977), however, gametophytic incompatibility
is characterise'c of monocots. At present, the incompatibility system
of Eucharis and Caliphruria, though apparently present, is unknown (see
Chapter X).
Ovary and ovules. The ovary of Eucharis and Caliphruria is
inferior and contains septal nectaries. It is green, with the exception
of two species, E. astrophiala and E. caste! naeana (subg. Eucharis) in
which the ovary is white at anthesis. Ovaries of Eucharis and
Caliphruria range from oblong-ellipsoid (subg. Heterocharis) to globose
or sub-globose (subg. Eucharis and Caliphruria). The ovary of subg.
Heterocharis is both trigonous and rostellate after senescence of the
perianth. Ovaries of Caliphruria and subg. Eucharis are non-rostellate
and smooth, with three exceptions: Eucharis bouchei var. bouchei, var.
darienensis, and E. cyaneosperma have a trigonous ovary at anthesis.
The ovules of Eucharis and Caliphruria are globose, anatropous,
and axile in placentation. Ovule number is quite variable throughout
both genera. Within limits, however, ovule number is character!'Stic of
species or species complexes. Subgenus Heterocharis has the largest
ovule number in Eucharis, generally 16-20 per locule, but occasionally
as low as 7 in E. sanderi (which otherwise has 16-20 throughout most of
its range) and 9-12 in E. amaznica. In both subg. Eucharis and


54
Caliphruria, ovules do not number more than 10 per locule. Eucharis
astrophiala, E. bouchei, _E. bonplandi i, _E. cyaneopserma and _E. ulei
characteristically have 2 ovules per locule, but rarely as many as 5.
In these species, there is a positive correlation between reduction in
flower number and ovule number.
Traub and Moldenke (1949) and Traub (1962, 1963) considered
numerous ovules an ancestral character in the Amaryllidaceae. In the
Pancratioidinae, an ovule number of ca. 20 per locule characterizes the
putatively ancestral complex of genera with typical, crateriform,
pancratioid floral morphology, heavy floral fragrance and well-developed
staminal cups (Meerow, 1985). Reduced ovule number is therefore likely
a derived character state.
Fruit and Seed
Fruit. The mature fruit of Eucharis and Caliphruria is a tri-
loculicidal capsule typical of the non-baccate fruited Amaryllidaceae.
In fruit, the pedicel elongates to 2 or more times its length at
anthesis. In Caliphruria and E. subg. Heterocharis (_E. anmala), the
capsule is thin-walled and green, sometimes turning yellow or brown at
dehiscence. In subg. Eucharis, however, the capsule is leathery and
bright orange (Fig. 19), contrasting vividly with the shiny black or
blue seeds at dehiscence. It is probable, though unsubstantiated, that
the combination of fruit and seed color functions mimetically to attract
avian dispersal agents (sensu van der Pijl, 1982). This type of fruit
morphology is unique among neotropical Amaryllidaceae. There is a
single known exception to this characterisec fruit morphology in subg.
Eucharis. Eucharis castelnaeana (Fig. 20) produces a capsule much like


55
that of Caliphruria. The fruit of this species is often tardily
dehiscent, and sometimes abscises before opening, though the seeds
within are ripe. The infructescence of E. caste!naeana bends to the
ground (in all other species it remains erect), a habit noted in many
Crinum species (Hannibal, 1972). In this manner, an indehiscent fruit
might rot in contact with the substrate, thereby releasing the seeds.
Seed. Regardless of the number of ovules per locule in any
species of Eucharis and Caliphruria, all but a few abort as the fruit
matures. Generally 1-2 seeds are present per locule in mature capsules,
but as many as four have been observed.
The seed of both Eucharis and Caliphruria is usually globose or
ellipsoid and turgid, the consequence of copious endosperm and a high
moisture content. Left at room temperature, the seeds will shrink away
from the testa somewhat as moisture is lost, but are still capable of
germination in this condition. Long-term viability has not been tested.
The seed of subg. Eucharis (Fig. 21) is characteristically
ellipsoid, and has a shiny, smooth black (blue in _E. cyaneosperma)
testa. The single exception so far known is again E. caste!naeana (Fig.
22). The seed of this species is wedge-shaped by compression in the
capsule, is less turgid than seeds of con-subgeneric species, and has a
dull, rugose testa. The seed of _E. anmala (subg. Heterocharis) is
globose to very slightly compressed, and has a brown, slightly rugose
testa.
In Cali phruria, the seeds of only _C. korsakof fii and _C.
subedentata are known. Seeds of C_. korsakoffii are globose, turgid,
and have a smooth, lustrous brown testa. Seed of C. subedentata is
slightly compressed, with a lustrous black, but rugose, testa.


56
Seed surface morphology (Fig. 23-28) does not reveal much
taxonomically useful information. The testa is alveolate in all species
examined. In E.. bouchei var. dressleri (Fig. 24), abundant wax
extrusions are found across the surface.
The testa of Eucharis and Caliphruria seeds is composed of
phytomelan (Huber, 1969), a simple, largely inert, carbonaceous compound
characteristically present in the seed coat of non-baccate fruited
Amaryllidaceae (Huber, 1969; Darlgren and Clifford, 1982). Werker and
Fahn (1975) reported the occurrence of phenolic quiones in the
phytomelan layer of Pancratium seeds. In most species of Eucharis and
Caliphruria, the phytomelan layer is all that remains of the integuments
(Fig. 30, 36). In _E. bouchei, however, there is an additional layer of
integument tissue, ca. five cells thick, interposed between the
phytomelan and the endosperm (Fig. 34). Whether this may be a
consequence of the tetraploid condition of this species is unknown.
Most of the seed body of Eucharis and Caliphruria is taken up by a
copious quantity of endosperm characterized by abundant transfer cells
(Fig. 35). At maturity, no remnants of the nucellus were observed.
Most workers (e.g., Baker, 1888; Traub, 1963; Hutchinson, 1959;
Dahlgren et al. 1985) have allied Eucharis and Caliphruria with
Hymenoca11 is, Eurycles and Calostemma (i.e., tribe Euchareae) on the
basis of "fleshy seeds." The latter three genera do indeed have fleshy,
bulbiform seeds that are sometimes viviparous, but they are not
homologous structures.
The large, green seed of Hymenocal1is is unique in a number of
respects. The bulk of the seed body consists of two large, fleshy
integuments with a well-developed vascular system and abundant


57
chlorenchymous tissue (Rendle, 1901; Whitehead and Brown, 1940). The
embryo contains a large amount of stored starch (Whitehead and Brown,
1940). Whitehead and Brown (1940) characterized the seed, which does
not undergo any period of dormancy, as intermediate between true
vivipary and dormancy. Additionally, polyembryony has been observed
frequently in seeds of Hymenocallis (Bauml, 1979; Rendle, 1901; Traub,
1966).
The seeds of Calostemma and Eurycles superficially resemble seeds
of Hymenocallis, though they never achieve the size of the latter.
According to a much-overlooked review of bulbiform seeds in
Amaryllidaceae by Rendle (1901), the propagule of these two closely
related Australasian genera is not actually a true seed, but represents
an adventitious vegetative growth. After fertilization, at the chalazal
end of a normal ovule, adventitious shoot and root growth occur and a
true bulbil is formed. The integuments and the remnants of the nucellus
form the bulbil's outer coat.
The turgid seed of Eucharis and Caliphrupia, despite a high
moisture content when first ripe, cannot be accurately described as
fleshy. This becomes evident if the seed is allowed to dehydrate
slightly at room temperature, and is most apparent in the hard seeds of
_E. caste!naeana, which, at capsule dehiscence, are less turgid than
seeds of other species of subg. Eucharis. Seeds of Eucharis and
Caliphruria have a reduced integument, represented in most cases only by
the compressed phytomelan layer, and have never been observed to
germinate viviparously. Phytomelan is absent from the testa of the
pseudoseeds of Eurycles and Calostemma. It is present in only a single
species of Hymenocallis, H_. quitoensis Herbert (and possibly H.


58
heliantha Ravenna), which has been segregated into a separate genus,
Lepidochiton Sealy (1937), on this basis.
Seeds of Pancratium are structurally most similar to those of
Eucharis and Caliphruria. Though variable in morphology (Werker and
Fahn, 1975), several species of Pancratium have a hard, turgid,
compressed seed body with copious endosperm (Meerow, unpubl. data;
Werker and Fahn, 1975). All species of Pancratium that I have examined
have a phytomelanous testa with an alveolate testa. Seeds of Eucharis
and Caliphruria do, however, have a higher moisture content than those
of Pancratium, all species of which occur in xeric to seasonally dry
habitats.


Figure 4.1. Serial tranverse sections through the scape of Eucharis
caste!naeana (Schunke 14156, FLAS). p = proximal, m = medial, d
distal.


60
d
P


Figure 4.2. Perianth tube morphology of Eucharis and Caliphruria species or hybrids. A. C.
subedentata (Meerow 1098, FLAS). B. X Calicharis butcheri (Meerow 1110, FLAS). C. E7 sanderi
(Cuatrecasas 16380, F). D. E. amaznica (Schunke 14179, FLAS). . E. astrophiala (Madison
3792, SEL).


62


Figures 4.3-4.5. Androecial morphology of Eucharis and Caliphruria
species. 3. E. astrophiala (Madison 3792, SEL). 4. E. amaznica
(Schunke 1417F, FLAS). subedentata (Meerow 110*5, FLAS).




Figures 4.6-4.18. SEM photomicrographs of Eucharis and Caliphruria
stigmas. 6-7. _E. astrophiala (Meerow 1111, FLAS). 8. E. pi i cata
(Plowman 13941, FLAS). 9-10. C. subedentata (Meerow 1152). 11.
C. korsakoffii (Meerow 1096, FTrAST 12-13. E. X grandiflora
TMeerow 1127, FLAS). 14. E. anmala (Meerow 1141, ELAS). 15. E.
sanden (Cuatrecasas 16350, FT TT E. amaznica (Schunke 14171T,
FLAS). 17-18. i< Cali chan's butcheri, Meerow 1110, FLAS). TTI
scales = 50 /im.


66


Figures 4.19-4.22. Fruits and seeds of Eucharis subg. Eucharis. 19-20.
Mature capsules. 19. E. formosa (Schunke 14174, FLAS). ?0. E_.
castelnaeana (Schunke T41f>6, FLAS) 21-22 Seeds. 21. E.
bouchei var. bouchei (Meerow 1125, FLAS). 22. E. castelnaeana
(Schunke 14156, FLAS).


68
21
22


Figures 4.23-4.28. SEM photomicrographs of Eucharis and Caliphruria
seed surfaces. 23. E_. astrophiala (Meerow 1111, FLAS). 24. E_.
bouchei var. dressleri (Meerow 1107, FLAS). 75. E. formosa
(Meerow 1103)~ 26. _L. caste]naeana (Schunke 14166, FLAS). 27.
C. korsakoffii (Meerow 1096, ElAS). 28. C. subedentata (Meerow
1152, FLAS).


70


Figures 4.29-4.37. Photomicrographs of Eucharis and Caliphruria seed
anatomy. 29-33. C. korsakoffii (Meerow 1096, FLAS). 29~.
Longitudinal sectTon through whole seed. 3TT. Transverse section
through testa and part of endosperm. 31. Longitudinal section
through radicle of embryo. 32. Longitudinal section through apex
of embryo. 33. Longitudinal section through vascular initial of
embryo. Scale = 40 ytim. 34-35. E_. bouchei var. bouchei (Meerow
1125, FLAS). 34. Transverse section through testa. Note several
layers of additional integument cells below outer phytomelan
layer. 35. Endosperm. Note transfer tissue with pitted walls and
plasmodesmata. 36-37. E_. caste!naeana (Schunke 14156, FLAS). 36.
Transverse section through testa and part of endosperm. 37.
Tranverse section through embryo. All scales = 100 jum unless
otherwise indicated, em = embryo, en = endosperm, t = testa.


72


CHAPTER V
POLLEN MORPHOLOGY
Materials and Methods
Scanning Electron Microscopy (SEM)
Fresh, dehisced anthers were removed from living collections,
fixed in FAA, and pollen extracted. Pollen from herbarium specimens was
treated according to the process of Lynch and Webster (1975). Samples
were treated for and examined with SEM as described for leaf surfaces in
Chapter III. Measurements of muri and lumina were derived from SEM
photomicrographs.
Transmission Electron Microscopy (TEM)
Pollen grains were fixed for 12 hr in 3% glutaraldehyde in 0.1 M
Na-cacodylate at pH 7.4, washed three times for 10 min with 7.5%
solution of sucrose in 0.1 M Na-cacodylate at pH 7.4, post-fixed for 1
hr in 2% OsO^ -¡n 0.1 M Na-cacodylate, washed as above three times for 10
min, and brought through an EtOH dehydration series. Dehydrated pollen
was placed through two pure propylene oxide baths, then placed in 1:1
propylene oxide:epon for 1 hr, 1:2 propylene oxide:epon for 12 hr, and
pure epon for 2-3 hr. Pollen was polymerized for 48 hr at 60 C,
sectioned, and viewed on a Zeiss 10A electron microscope at 80 kv.
73


74
Light Microscopy
Pollen size measurements were averaged for twenty grains examined
with a Nikon Lapophot photomicroscope.
Pollen Viability
Pollen was stained with Alexander's (1969) stain for 24 hrs at 50
C. Percentages given are based on the number of grains staining from a
200 grain sample.
Statistical analysis
Correlations of pollen size with style length were performed with
SAS release 5.08 on the Northeast Regional Data Center (NERDC) of the
Universtity of Florida.
Terminology
Terminology follows Erdtman (1969) and Walker and Doyle (1975).
Results
Pollen grains of all species of Eucharis and Caliphruria (Fig. 1-
19) are boat-shaped elliptic, monosulcate, heteropolar, and bilateral in
symmetry. The germination furrow (sulcus) runs the length of the
presumed distal face of the grain (Fig. 12, 15). Exine sculpturing is
semi-tectate-columellate and reticulate in all species examined (Fig. 1-
19), composed of a network of muri (reticulum walls) and lumina
(intervening gaps).


75
Pollen Grain Size (Table 1)
Pollen grain size is quite variable in Eucharis and Caliphruria ,
and a notable size class (sensu Walker and Doyle, 1975) differential
occurs between Eucharis and Cali phruria. Pollen of Eucharis falls into
the large size class of Walker and Doyle (longest equatorial diameter
50-100 ^m). Pollen of Eucharis has average longest equatorial diameters
greater than 60 yum, with two exceptions: _E. caste! naeana and _E. pi i cata
subsp. brevidentata. Pollen of Caliphruria falls into the medium size
class of Walker and Doyle (1975) with average longest equatorial
diameters of near 50 ^m.
The greatest number of species of Eucharis have pollen grains with
longest equatorial diameters between 65 and 75 /jm. Eucharis astrophiala
(subg. Eucharis) has the largest pollen grains in the genus, with
longest equatorial diameters of 83-86/Urn.
Polar diameter of pollen of Eucharis ranges from (39-) 45-60.6 /urn.
Polar diameter less than 40 /um is rare in these subgenera. Polar
diameter of pollen of Caliphruria is always less than 40 ^m.
Considerable infraspecific variation pollen size is evident in
some species of Eucharis (Table 1). Eucharis formosa is a wide-ranging
and morphologially variable species (see Chapter XII). Longest average
equatorial diameter among the populations sampled of this species shows
a 12.7% difference between the smallest and largest value. The two
subspecies of _E. pi i cata show a 15% differential in pollen size. Other
species are much more uniform in pollen grain size. Eucharis
astrophiala is a narrow endemic restricted to western Ecuador with
distinctive leaf and androecial morphology that is consistent among all
populations. Three populations of this species sampled show only a 3.8%


76
difference. Eucharis bouchei, a tetraploid species also of limited
distribution, but highly polymorphic, shows only a 2.4% difference
between the largest and smallest values.
The smallest pollen grains in Eucharis and Caliphruria are found
in species with the smallest flowers (Table 1), i.e., all species of
Cali phruri a and, in _E. subg. Eucharis, E_. caste! naeana. Nonetheless,
one of the largest flowered species, _E. sanderi (subg. Heterocharis) has
small pollen grains relative to other large-f1owered species. The
largest pollen grains in the genus are found in E_. astrophiala, a
species at the smaller end of flower size range in the genus. Since
style length is directly correlated with perianth size in Eucharis and
Caliphruria, style length was tested for correlation with longest
equatorial diameter of pollen of species in Table 1. Pearson
correlation coefficient for style length with pollen size of 29 Eucharis
and Caliphruria collections representing 16 species was only 0.379, and
therefore not significant (significance is indicated by proximity of
value to 1.000).
Exine Sculpturing (Fig. 1-19, Table 1)
The semi-tectate, reticulate exine sculpturing pattern of Eucharis
and Caliphruria may be subdivided into three classes on the basis of
lumia width. The first, designated Type 1 in Table 1, is characteristic
of most species of Eucharis (Fig. 1-11, 13, 15-16).. The reticulum of
Type 1 exine is coarse, with largest lumina widths equal to or greater
than 5 ^m. Type 1 exine can be further subdivided on the basis of muri
width. In Type 1-A (Fig. 3-11, 13, 15-16), the muri are equal to or
greater than 1 /jm wide. This is the most common exine morphology of


77
Eucharis. In Type 1-B exine, the muri are less than 1 jum wide. This is
characteristic of a single species of subg. Eucharis: E_. astrophiala
(muri ca. 0.6 yum wide, Fig. 1-2).
In Type 2 exine, lumina are 2-3 /im wide, and a marked reduction in
reticulum coarseness occurs at the meridional faces of the grain. Only
two species of Eucharis have Type 2 morphology, E_. oxyandra (subg.
Eucharis, Fig. 12), _E. sanderi (subg. Heterocharis, Fig. 14), and one
species of Caliphruria, _C. korsakoffi (Fig. 19). Width of the muri,
however, is variable among the species with Type 2 sculpturing, ranging
from less than 0.4 yum in E_. oxyandra, to ca. 0.75 ^m wide in E_. sanderi,
and ca. 1 yum wide in _C. korsakoffi.
Type 3 exine sculpturing is only characteristic of the Colombian
species of Caliphruria (Fig. 17-18). Type 3 sculpturing is finely
reticulate with lumina only 1-2 ym wide, and the muri 0.5-0.6 yum wide.
As in Type 1 sculpturing, the reticulum is predominantly consistent in
coarseness throughout the grain surface.
Pollen Wall Ultrastructure (Fig. 20-31)
Eucharis and Caliphruria pollen grains are remarkably uniform in
their exine stratification patterns. They are completely ektexinous in
composition. The columellae arise from a thin foot-layer (usually ca. 2
/jm thick), and the intine is as thick or thicker than the exine. The
tectum is quite fragile, and usually ca. 5 yum thick. No channelling is
apparent in either the exine or intine.


78
Discussi on
Large, boat-shaped-elli pti c, monosulcate pollen grains with
reticulate exine morphology are the most common type of pollen found in
the Amaryllidaceae (Erdtman, 1952; Meerow and Dehgan, 1985; Walker and
Doyle, 1975). Similar morphology has been reported for many Liliaceae
sensu lato (Erdtman, 1952; Walker and Doyle, 1975; Zavada, 1983), and
conforms to the fossil form genus Liliacidites Couper, one of the major
angiosperm pollen types described from early Cretaceous deposits (Doyle,
1973; Walker and Walker, 1984). This type of pollen morphology appears
to be basic to the monocotyledonous orders in general (Doyle, 1973).
Among the Amaryllidaceae, only one group of genera show a radical
departure from this basic pollen morphology. Crinum and its allies
[tribes Crineae (Pax) Traub and Strumarieae Salisb. sensu Traub (1963)],
all have bisulculate pollen and spinulose exine sculpturing (Dahlgren
and Clifford, 1982; Erdtman, 1952; Nordal et al., 1977; Meerow, unpubl.
data). With the exception of Crinum, these genera are restricted to
Africa, many of them endemic to South Africa. In a remarkable example
of convergence, Donoghue (1985) reported a similar divergence in
Caprifoliaceae.
The Type 1 exine morphology that is characteristic of most
Eucharis pollen seems to have phylogenetic significance within
"infrafamily" Pancratioidinae (Meerow, 1985; Meerow and Dehgan, 1985).
All or some of the species of each of the genera with putatively
primitive pancratioid floral morphology (i.e. Eucharis, Hymenocallis,
Pamianthe Stapf, Pancratium, and Paramongaia Velarde) have large to very
large, coarsely reticulate pollen. The pollen of related genera with


79
divergent floral morphology shows reduction trends in both size and
reticulum coarseness (Meerow, 1985; Meerow and Dehgan, 1985).
Reduction in size and reticulum coarseness have been considered
evolutionary trends for angiosperm pollen in general (Walker and Doyle,
1975). Colombian species of Caliphruria (Fig. 17-18) show the greatest
degree of divergence for these pollen characters in comparison with
Eucharis.
The differentiation of the reticulum into coarse and fine areas,
characteristic of species with Type 2 exine, is restricted to monocot
pollen (Doyle, 1973; Walker and Walker, 1984), and has been observed in
some Li 1iacidi tes pollen from the early Cretaceous (Walker and Walker,
1984). The evolutionary polarity of this character is unclear, however.
Meerow and Dehgan (1985) described a transformation series from
auriculate pollen through dimorphic reticulum to homogeneous reticulum
among the subgenera of Hymenocallis (sensu Traub, 1962, 1980), which
would suggest that the homogeneous reticulum is an advanced character
state. The three species with dimorphic exine sculpturing (_E.
oxyandra, Fig. 12; E. sanderi, Fig. 14; and _C. korsakoffi, Fig. 19)
each represent isolated taxa of their respective genus or subgenera (see
Chapter XI). The dimorphic reticulum in these three species may thus be
symplesiomorphous. On the other hand, each of three species differ in
muri width, thus the Type 2 exine morphology may have had an
independent, and thus derived, origin in each of the three.
In width of both muri and lumina, the pollen of E_. oxyandra (Fig.
12) resembles that of Urceolina, sister group to Eucharis, though pollen
of the latter genus fits the medium size class of Walker and Doyle, and
does not exhibit a substantial differentiation of the reticulum into


80
coarse and fine areas (Fig. 1 in Chapter XI). Eucharis oxyandra is a
problematic species morphologically as well, with certain characters of
intermediacy between Eucharis and Urceolina, particularly in androecial
morphology (see Chapter XII). I have suggested that _E. oxyandra may
represent a relict taxon related to the ancestor of Urceolina, or a
possible intergeneric hybrid (see Chapter XII), but this species is at
present too poorly known to confirm any of several hypotheses concerning
its origins.
Zavada (1984) associates reticulate exine sculpturing with
sporphytic self-incompatabi1ity (SSI). Though the SI system of Eucharis
and Caliphruria, if present, is unknown, two morphological characters of
the genus pollen sculpturing, and stigma type (Heslop-Harrison and
Shivanna, 1979) have been correlated with sporophytic SI, despite the
fact that only gametophytic SI has been reported for monocots (Heslop-
Harrison, 1976; Kress, 1981; Larsen, 1977).
Kress and Stone (1982) reviewed pollen wall ultrastructure of
monocots. The lack of endexine in the pollen grain wall appears to be a
virtually universal characteristic of monocot pollen. The thin foot-
layer and columellate structure of the exine found in Eucharis and
Caliphruria is common to all other genera of the Pancratioidinae that I
have examined (Meerow, unpubl. data; Meerow and Dehgan, 1985), and may
be basic to the Liliflorae in general (Doyle, 1973; Walker and Walker,
1984). The pattern of exine stratification in the pancratioid
Amaryllidaceae thus appears highly conserved.
Pollen grain size and style length has been correlated in some
investigations (Baker and Baker, 1979; Lee, 1978; Plitmann and Levin,
1983; Schnack and Covas, 1945; Taylor and Levin, 1975) but not in others


81
(Cruden and Miller-Ward, 1981; Darwin, 1896; Germeraad et al., 1968;
Ganders, 1979; Hammer, 1978). Cruden and Lyon (1985) observed that all
studies which showed a strong correlation involved related species,
while non-correlating studies involved unrelated taxa. They tested
correlations between both style length and stigma depth (an
approximation of the distance a pollen tube must grow to reach exogenous
resources in the transmission tissue of the style) and pollen grain
volume among species of several genera in several families. Cruden and
Lyon concluded that style length has little correlation with pollen
size, while stigma depth was highly correlated with style length. Where
style length and pollen grain volume do correlate, i.e., among related
species, they suggest that phylogeny, rather than function, is
represented. They further conclude that pollen grains need not contain
sufficient endogenous resources to reach the ovules, but only enough for
pollen tubes to grow through the stigma and reach exogenous substances
in the stylar transmission tissue.
In Eucharis and Caliphruria as a whole, little correlation between
style length and pollen grain size (as represented by longest equatorial
diameter, rather than volume) is evident (Table 1). Stigma depth, in so
far as I understand Cruden and Lyon's determination of this measure,
does not seem to vary appreciably among species of Eucharis. The stigma
of _E. astrophiala, the species with the largest pollen grains in
Eucharis, is no larger or "deeper" than that of E_. pi i cata, the species
of subg. Eucharis with the smallest pollen grain.


82
Cone!usions
In characteristics of pollen grain size (medium size class), and
exine sculpturing (Type 3), Caliphruria shows the greatest degree of
divergence from the putatively ancestral, large, coarsely reticulate
pollen grain characteristic of most species of Eucharis. The Type 1
exine sculpturing of Eucharis shows relationship to the pollen
morphology of other genera of infra family Pancratioidinae with similar
floral morphology, i.e., Hymenocallis, Pamianthe, Pancratiurn and
Paramongaia (Meerow, 1985; Meerow and Dehgan, 1985).
Pollen grain size in Eucharis does not demonstrate any obvious
correlation with flower size (= style length). The large amount of
variation in pollen grain size in a few species of Eucharis may suggest
that this character, under certain conditions, is subject to as much
infraspecific variation as characters of vegetative and floral
morphology.


Table 5.1. Pollen morphology and style length of Eucharis and Caliphruria species. All voucher specimens
are deposited at FLAS unless otherwise stated.
TAXON
VOUCHER
POLAR
DIAMETER
(jum)
LONGEST
EQUATORIAL
DIAMETER
(/Jm)
EXINE3
TYPE
STYLE LENGTH
(mm)
Eucharis subg.
Eucharis
E. astrophiala
Meerow 1152
60.64
(+ 4.83)
84.43
(+ 4.72)
1-B
37.0
Madison 3792 (SEL)
58.62
(+ 4.16)
86.19
(+ 4.90)
46.8
Dodson et al. 7182
(3TT)
60.55
(+ 2.87)
83.05
( + 4.71)
50.0
E. bakeriana
Meerow 1108
50.70
(+ 2.24)
76.85
(+ 3.32)
1-A
52.0
E. bonplandii
Bauml 686 (HUNT)
43.50
(+ 3.01)
62.95
(+ 2.73)
1-A
44.5
E. bouchei var.
bouchei
Meerow 1125
48.93
(+ 4.70)
68.43
(+ 4.22)
1-A
38.0
Meerow 1157
45.70
(+ 4.30)
66.80
(+ 3.14)
50.0
E. bouchei var.
dressleri
Meerow 1107
49.65
(+ 1.11)
68.30
(+ 2.10)
1-A
59.5


Table 5.1continued
TAXON VOUCHER POLAR
DIAMETER
(yum)
E. candida
Meerow 1144
49.75
(+ 1.09)
Meerow 1158
46.75
(+ 3.06)
Dodson et al. 14095
(my
52.30
(+ 3.35)
Schunke 14155-B
50.00
(+ 2.39)
E. castelnaeana
Schunke 14156
39.45
(+ 1.28)
E. cyaneosperma
Meerow 1032
47.95
( + 2.38)
E. formosa
Meerow 1099
47.70
( + 2.45
Meerow 1103
47.70
(+ 2.95)
Meerow 1159
51.11
(+ 1.89)
LONGEST EXINE3 STYLE LENGTH
EQUATORIAL TYPE
DIAMETER
(yum) (mm)
69.50
(+ 2.69)
1-A
37.0
68.70
(+ 1.82)
49.3
72.15
(+ 3.17)
-
73.00
(+ 2.51)
40.0
55.80
(+ 2.73)
1-A
23.5
67.55
(+ 2.06)
1-A
50.0
65.50
(+ 3.07)
60.5
69.00
(+ 3.00)
1-A
51.0
73.84
(+ 2.58)
56.8


Table 5.1continued
TAXON VOUCHER POLAR
DIAMETER
(/um)
Besse et al. s. n.
TSFLT"
48.50
(+ 3.04)
Schunke 14157
47.75
(+ 2.19)
Schunke 14171
52.00
(+ 2.15)
E. oxyandra
Hutchison et al.
5983 (UCT
42.36
(+ 3.48)
E. plicata subsp.
pii cata
Plowman 13951
43.45
(+ 3.50)
E. plicata subsp.
brevidentata
Meerow 1143
41.30
(+ 3.10)
E. ulei
Meerow 1024
49.35
(+ 2.61)
LONGEST EXINE3 STYLE LENGTH
EQUATORIAL TYPE
DIAMETER
(/im) (mm)
70.65
( + 3.15)
59.8
72.50
(+ 2.80)
52.8
71.50
(+ 2.66)
49.6
68.36
(+ 3.53)
2
32.8
68.90
(+ 1.84)
1-A
27.5
59.90
(+ 3.01)
1-A
32.0
69.85
(+ 3.04)
1-A
44.6
Co
<_n


Table 5.1continued
TAXON
VOUCHER
POLAR
DIAMETER
(/Jm)
LONGEST
EQUATORIAL
DIAMETER
(>im)
EXINE3
TYPE
STYLE LENGTH
(mm)
Eucharis subg.
Heterocharis
E. amaznica
Schunke 14179
51.65
(+ 2.67)
78.25
{+ 3.39)
1-A
71.4
E. anmala
Meerow 1141
48.55
( + 2.89)
71.15
(+ 3.69)
1-A
58.5
E. sanderi
Caliphruria
Cuatrecasas 16380
(F) 39.75
(+ 3.01)
61.15
(+ 2.13)
2
76.0
C. korsakoffi
Meerow 1096
32.30
( + 2.47)
50.35
(+ 2.94)
2
16.0
C. subedentata
Meerow 1152
39.25
(+ 3.63)
50.95
(+ 3.28)
3
31.0
C. teera
Triana 1289 (COL)
35.20b
53.70b
3
-
aSee text for explanation.
bValues without standard deviations were derived from statistically insignificant quantities of pollen.
00


Figures 5.1-5.6. SEM photomicrographs of Eucharis pollen grains. 1-2.
E_. astrophiala (Madison 3792, SEL). 1. Whole grain, proximal
polar view. 2. Exine sculpturing. 3-6. Whole grains, proximal
polar views. 3. E. bonplandii (Bauml 686, HUNT). 4.. E_. bouchei
var. dressleri (Meerow 1107, FLAS). 5.. E. candi da (Asplund
19120, S). 57 _E. caste!naeana (Schunke 1T156, FLAS). All scales
= ca. 5 yum.


88
atV*i
atz&i
iwSSiwP'
0(> J/*V tJl>'.
i 'UwS^y-7'
kr3&
>
**
Sfcin
<3&ZmECe
$%!&$&

;i
>w
4


Figures 5.7-5.12. SEM photomicrographs of Eucharis pollen grains. 7-8.
Whole grains, proximal polar view. 7. E. corynandra (Ravenna
2090, K). 8. E. cyaneosperma (Seibert 7145, US). F-lUT ET-
tormosa (Meerow 1108, I-LA5). 9. Whole grain, proximal polar view.
10. Exine sculpturing. 11-12. Whole grains, proximal polar view.
11. E. plicata (Meerow 1025, FLAS). 12. E. oxyandra (Hutchison et
al. T983, UC), oMT'qU dTStal polar view.- ATTT£TT5s =' 'a 5"yUlfl.


90


Figu res 5.13-5.19. SEM photomicrographs of Eucharis and Caliphruria
pollen grains. 13-17. Whole grains. 13. . amaznica (Asplund
13214, S), proximal polar view. 14. E. sanderi (Killip 35401,
US), oblique lateral longitudinal view. 15. X Calicharis butcheri
(Meerow 1110, FLAS), oblique distal polar view. 16. _E. X
grandiflora (Meerow 1127, FLAS), lateral longitudinal view. 17-
18. C. subedentata (ex hort s. n., K). 17. Distal polar view.
18. Exine sculpturing. 19. Z. Eorsakoffi (Meerow 1096, FLAS).
Al 1 scales = ca 5 yum.


Full Text

PAGE 2

$ 0212*5$3+ 2) (XFKDULV $1' &DOLSKUXULD $0$5
PAGE 3

&RS\ULJKW E\ $ODQ : 0HHURZ

PAGE 4

$&.12:/('*0(176 0DQ\ LQGLYLGXDOV KDYH IDFLOLWDWHG WKH H[HFXWLRQ RI WKLV GLVVHUWDWLRQ *UDWHIXO DSSUHFLDWLRQ LV H[WHQGHG WR P\ JUDGXDWH FRPPLWWHH FKDLUPDQ %LMDQ 'HKJDQ IRU KLV XQZDYHULQJ VXSSRUW WKURXJKRXW P\ JUDGXDWH SURJUDP 7KDQNV DUH DOVR H[WHQGHG WR WKH UHPDLQLQJ PHPEHUV RI P\ JUDGXDWH FRPPLWWHH &KDUOHV / *X\ :DOWHU 6 -XGG 7KRPDV 6KHHKDQ DQG 1RUULV + :LOOLDPV ,Q SDUWLFXODU WKDQN :DOWHU -XGG IRU KLV DGYLFH DQG DVVLVWDQFH WKURXJKRXW WKH FRXUVH RI P\ ZRUN DQG &KDUOHV *X\ IRU WKH JHQHURXV XVH RI KLV ODERUDWRU\ DQG PDWHULDOV IRU P\ HOHFWURSKRUHWLF LQYHVWLJDWLRQV *UDWHIXO DSSUHFLDWLRQ LV H[WHQGHG WR WKH FXUDWRUV RI WKH KHUEDULD FLWHG LQ &KDSWHU ;,, IRU WKH ORDQ RI VSHFLPHQV DQG WKH LQGLYLGXDOV DQG LQVWLWXWLRQV DOVR FLWHG LQ &KDSWHU ;,, ZKR SURYLGHG OLYLQJ PDWHULDO RI YDULRXV JHQHUD RI $PDU\OLGDFHDH %DUW 6FKXW]PDQ SURYLGHG IHOORZVKLS FRPUDGHULH DQG PXFK DVVLVWDQFH ZLWK FRPSXWHU SUREOHPV WKURXJKRXW WKH SDVW ILYH \HDUV .HQW 3HUNLQV FROOHFWLRQV PDQDJHU DW )/$6 GHDOW HIIHFWLYHO\ DQG SDWLHQWO\ ZLWK D FRPSOH[ KHUEDULXP ORDQ KLVWRU\ 0XFK RI WKH ZRUN GHWDLOHG KHUHLQ ZDV VXSSRUWHG E\ 1DWLRQDO 6FLHQFH )RXQGDWLRQ 'LVVHUWDWLRQ ,PSURYHPHQW *UDQW %65 DQG D *DUGHQ &OXE RI $PHULFD:RUOG :LOGOLIH )XQG )HOORZVKLS LQ 7URSLFDO %LRORJ\ WKDQN ERWK JUDQWLQJ RUJDQL]DWLRQV IRU WKLV PDWHULDO VXSSRUW *UDWLWXGH LV DOVR H[WHQGHG WR WKH )ORULGD )HGHUDWLRQ RI *DUGHQ &OXEV DQG WKH *DUGHQ :ULWHUV $VVRFLDWLRQ RI $PHULFD IRU WKHLU UHVSHFWLYH VFKRODUVKLS DZDUGV $ERYH DOO WKDQN P\ ZLIH /LQGD

PAGE 5

)LVKHU0HHURZ IRU WKH ORYH VXSSRUW DQG SDWLHQFH WKDW KDV VXVWDLQHG PH GXULQJ WKH FRPSOHWLRQ RI WKLV ZRUN IRU KHU H[FHOOHQW LOOXVWUDWLRQV RI D QXPEHU RI (XFKDULV VSHFLHV DQG KHU ZHOFRPH FRPSDQLRQVKLS LQ WKH ILHOG 79

PAGE 6

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LOO $%675$&7 YL L &+$37(56 ,1752'8&7,21 ,, 7$;2120,& +,6725< ,,, 9(*(7$7,9( 0253+2/2*< 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ ,9 )/25$/ 0253+2/2*< 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ 9 32//(1 0253+2/2*< 0DWHULDOV DQG 0HWKRGV 5HVXOWV 'LVFXVVLRQ &RQFOXVLRQV 9, 3+(1(7,& $1$/<6(6 0DWHULDOV DQG 0HWKRGV 5HVXOWV 'LVFXVVLRQ &RQFOXVLRQV 9,, &+5202620( &<72/2*< 0DWHULDOV DQG 0HWKRGV 5HVXOWV 'LVFXVVLRQ DQG &RQFOXVLRQV 9,,, (/(&7523+25(7,& $1$/<6(6 2) ,62=<0( 9$5,$7,21 0DWHULDOV DQG 0HWKRGV Y

PAGE 7

5HVXOWV 'LVFXVVLRQ &RQFOXVLRQV ,; (&2/2*< 3+(12/2*< $1' 3+<72*(2*5$3+< (FRORJ\ 3KHQRORJ\ 'LVSHUVDO 3K\WRJHRJUDSK\ ; 5(352'8&7,9( %,2/2*< 3ROOLQDWLRQ %LRORJ\ %UHHGLQJ 6\VWHP ;, 3+
PAGE 8

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 0212*5$3+ 2) (XFKDULV $1' &DOLSKUXULD $0$5
PAGE 9

DEVHQW IURP WKH PHVRSK\OO (XFKDULV VXEJ (XFKDULV KDV WKH OHDVW GHULYHG SROOHQ PRUSKRORJ\ ZLWK FKDUDFWHULVWLFV LQ FRPPRQ ZLWK RWKHU SXWDWLYHO\ DQFHVWUDO JHQHUD RI SDQFUDWLRLG $PDU\OOLGDFHDH &DOLSKUXULD H[KLELWV UHGXFWLRQ WUHQGV LQ SROOHQ JUDLQ VL]H DQG H[LQH VFXOSWXULQJ :LWK WKH H[FHSWLRQ RI WZR WHWUDSORLG VSHFLHV DOO VSHFLHV DUH FKDUDFWHUL]HG E\ Q .DU\RPRUSKRORJLFDO FKDQJH PD\ EH DQ LPSRUWDQW IDFWRU LQ VSHFLHV GLYHUJHQFH 3KHQHWLF DQDO\VHV DFKLHYH RQO\ IDLU UHVXOWV LQ UHVROYLQJ SKHQHWLF UHODWLRQVKLSV DPRQJ (XFKDULV VSHFLHV PDQ\ RI ZKLFK DUH KLJKO\ YDULDEOH PRUSKRORJLFDOO\ $QDO\VLV RI LVR]\PH YDULDWLRQ ZLWKLQ WZR VSHFLHV FRPSOH[HV RI (XFKDULV LQGLFDWHV KLJK OHYHOV RI KHWHUR]\JRVLW\ )RXQGHU HIIHFWV DQG K\EULGL]DWLRQ DUH UHVSHFWLYHO\ FRQVLGHUHG WZR LPSRUWDQW IDFWRUV LQ WKH VSHFLDWLRQ RI WKHVH JURXSV 0RGHUQGD\ GLVWULEXWLRQ RI (XFKDULV DQG &DOLSKUXULD LV UHODWHG WR 3OHLVWRFHQH UHIXJLD WKHRULHV 3K\ORJHQHWLF DQDO\VLV VXSSRUWV FHUWDLQ VSHFLHV UHODWLRQVKLSV K\SRWKHVL]HG RQ WKH EDVLV RI SKHQHWLF GDWD EXW LQGLFDWHV SRVVLEOH SDUDSK\O\ IRU (XFKDULV LI &DOLSKUXULD DQG 8UFHROLQD DUH VHJUHJDWHG DV D GLVWLQFW JHQHUD $FFHSWDQFH RI SDUDSK\OO\ LQ (XFKDULV LV DUJXHG RQ WKH EDVLV RI GHJUHH RI GLYHUJHQFH RI &DOLSKUXULD DQG 8UFHROLQD 7KH UHODWLRQVKLS EHWZHHQ WKHVH JHQHUD LV SDUDOOHOHG ZLWKLQ RWKHU OLQHDJHV RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH .H\V DQG GHVFULSWLRQV DUH SURYLGHG IRU DOO VSHFLHV RI (XFKDULV DQG &DOLSKUXULD YL L

PAGE 10

&+$37(5 ,1752'8&7,21 7KH FORVHO\UHODWHG JHQHUD (XFKDULV 3ODQFKQ DQG &DOLSKUXULD +HUEHUW $PDU\OOLGDFHDHf WKH $PD]RQ OLOLHV FRPSULVH UHVSHFWLYHO\ DQG VSHFLHV RI EXOERXV UDLQIRUHVW JHRSK\WHV DGDSWHG WR WKH ORZOLJKW FRQGLWLRQV RI WKH IRUHVW XQGHUVWRU\ 7RJHWKHU ZLWK WKH 3HUXYLDQ HQGHPLF 8UHFROLQD 5HLFKE (XFKDULV DQG &DOLSKUXULD IRUP D PRQRSK\OHWLF JURXS GHOLPLWHG E\ SHWLRODWH OHDYHV ZLWK GLVWLQFWLYH FXWLFXODU VWULDWLRQ D WXUJLG VHHG ZLWK D OXVWURXV XVXDOO\ EODFN WHVWD DQG FRPSOHWH ILGHOLW\ WR WKH UDLQIRUHVW XQGHUVWRU\ QLFKH 7KH VSHFLHV DUH GLVWULEXWHG IURP *XDWHPDOD WR %ROLYLD 7KH PDMRU FHQWHU RI GLYHUVLW\ IRU (XFKDULV LV ORFDWHG LQ WKH ZHVWHUQ $PD]RQ EDVLQ LQFOXVLYH RI PDMRU WULEXWDU\ V\VWHPV HJ WKH 1DSR 3DVWD]D DQG +XDOODJDf DQG WKH DGMRLQLQJ ORZHU VORSHV RI WKH HDVWHUQ $QGHDQ FRUGLOOHUD :LWK WKH H[FHSWLRQ RI VLQJOH 3HUXYLDQ VSHFLHV &DOLSKUXULD LV UHVWULFWHG WR WKH &RUGLOOHUDV 2FFLGHQWDO DQG &HQWUDO RI &RORPELD 7KH VSHFLHV RI ERWK JHQHUD DUH QR ZKHUH DEXQGDQW DQG DUH IRXQG JURZLQJ RQO\ LQ SULPDU\ UDUHO\ VHFRQGDU\ IRUHVW IURP FD P HOHYDWLRQ RQ VRLOV RI KLJK IHUWLOLW\ 7KH ODWWHU IDFWRU LV SUREDEO\ LPSRUWDQW LQ OLPLWLQJ WKHLU GLVWULEXWLRQ LQ WKH ZLOG DQG PD\ DOVR DFFRXQW IRU WKH KLJKO\ ORFDOL]HG SRSXODWLRQ GHPRJUDSKLFV RI PDQ\ RI WKH VSHFLHV /DUJH VFDOH GHIRUHVWDWLRQ KDV SURYHQ FDWDVWURSKLF WR WKHVH SODQWV 7KH SODQWV DUH XQDEOH WR DGDSW WR WKH KLJKHU OLJKW LQWHQVLW\ RI WKH FOHDULQJV DQG VRRQ SHULVK $W OHDVW VHYHUDO VSHFLHV DUH OLNHO\ QHDU H[WLQFWLRQ

PAGE 11

7KH $PD]RQ OLOLHV DUH PDUNHG E\ WKHLU HYHUJUHHQ SHWLRODWH OHDYHV ZKLWH RIWHQ SHQGHQW VRPHWLPHV IUDJUDQW IORZHUV ZLWK D IUHTXHQWO\ FRQVSLFXRXV VWDPLQD FXS RU IDOVH FRURQD IRUPHG E\ WKH EDVDO FRQQDWLRQ RI WKH VWDPLQDO ILODPHQWV REWXVHO\ WULOREHG VWLJPD DQG ODUJH WXUJLG HOOLSVRLG VHHGV ZLWK D EODFN EURZQ RU PHWDOOLF EOXH WHVWD $ VLQJOH VSHFLHV RI (XFKDULV B( DPD]RQLFD /LQGHQ H[ 3ODQFKQ LV ZLGHO\ NQRZQ LQ KRUWLFXOWXUH >HUURQHRXVO\ DV -( JUDQGLIORUD 3ODQFKQ DQG /LQGHQ 0HHURZ DQG 'HKJDQ Df@ EXW QHLWKHU JHQXV KDV QHYHU EHHQ FULWLFDOO\ WUHDWHG LQ WKH WD[RQRPLF OLWHUDWXUH %DNHU f SURYLGHG D NH\ DQG GHVFULSWLRQV IRU DOO VSHFLHV NQRZQ DW WKH WLPH LQ KLV +DQGERRN RI WKH $PDU\OOLGHDH DQG 0DFEULGH f WUHDWHG WKH NQRZQ 3HUXYLDQ VSHFLHV RI (XFKDULV IRU WKH )ORUD RI 3HUX 7KRXJK VSHFLHV RI (XFKDULV KDYH FRQWLQXHG WR EH GHVFULEHG ZHOO LQWR WKH SUHVHQW GHFDGH WKH GHOLPLWDWLRQ RI WKHVH VSHFLHV IURP SUHYLRXVO\ GHVFULEHG WD[D KDV FRQVLVWHQWO\ UHPDLQHG YDJXH 1R DVVHVVPHQWV RI YDULDWLRQ DW HLWKHU WKH SRSXODWLRQ RU VSHFLHV OHYHO KDYH EHHQ DWWHPSWHG 0\ VWXG\ RI WKHVH JHQHUD EHJDQ LQ %RWK ZHUH FRPELQHG ZLWK WKH FORVHO\ UHODWHG 8UFHROLQD E\ 7UDXE f ZLWKRXW DQ\ VXSSRUWLQJ GDWD WKH LQYHVWLJDWLRQ RI ZKLFK IRUPHG WKH EDVLV RI P\ XQSXEOLVKHG PDVWHUnV WKHVLV 0HHURZ f UHIXWHG 7UDXEnV FRPELQDWLRQ DQG (XFKDULV ZDV UHHVWDEOLVKHG DV D GLVWLQFW JHQXV ZLWK WKUHH VXEJHQHUD (XFKDULV &DOLSKUXULD +HUEHUWf 0HHURZ LQHG DQG +HWHURFKDULV 0HHURZ LQHG 2Q WKH EDVLV RI P\ FRQWLQXRXV ZRUN VLQFH WKDW WLPH QRZ EHOLHYH WKDW &DOL SKUXULD LV EHVW UHWDLQHG DV D GLVWLQFW JHQXV DV ZHOO 7KLV LV GLVFXVVHG LQ &KDSWHU ;, 6SHFLHV GHOLPLWDWLRQV DQG DVVRFLDWHG V\VWHPDWLF VWXGLHV IRUP WKH EDVLV RI WKLV SUHVHQW ZRUN

PAGE 12

1HLWKHU (XFKDULV QRU &DOLSKUXULD LV QRW ZHOO UHSUHVHQWHG LQ KHUEDULXP FROOHFWLRQV DQG FULWLFDO PRUSKRORJLFDO FKDUDFWHUV DUH RIWHQ REVFXUHG E\ WKH GU\LQJ SURFHVV &RQVHTXHQWO\ D OLYLQJ FROOHFWLRQ RI RYHU DFFHVVLRQV UHSUHVHQWLQJ RQH GR]HQ VSHFLHV ZDV DFFXPXODWHG IURP ERWDQLFDO JDUGHQV LQGLYLGXDOV DQG ILHOG FROOHFWLRQV E\ P\VHOI DQG YDULRXV FROOHDJXHV 6WXG\ RI OLYLQJ PDWHULDO QRW RQO\ FODULILHG DVSHFWV RI IORUDO DQG YHJHWDWLYH PRUSKRORJ\ EXW DOORZHG GHWDLOHG VWXG\ RI YHJHWDWLYH DQG VHHG DQDWRP\ FKURPRVRPH F\WRORJ\ DQG HOHFWURSKRUHWLF DQDO\VLV RI DOOR]\PH YDULDWLRQ DV ZHOO DV SHUPLWWLQJ WKH VWDUW RI D K\EULGL]DWLRQ SURJUDP 3RSXODWLRQV ZHUH REVHUYHG DQG VDPSOHG LQ &RORPELD (FXDGRU DQG 3HUX $V WZR RI RQO\ WKUHH JHQHUD RI QHRWURSLFDO $PDU\OOLGDFHDH WKH RWKHU EHLQJ WKH UHODWHG 8UFHROLQDf H[KLELWLQJ FRPSOHWH ILGHOLW\ WR D SULPDU\ UDLQIRUHVW QLFKH V\VWHPDWLF XQGHUVWDQGLQJ RI (XFKDULV DQG &DOLSKUXULD RIIHUV LPSRUWDQW LQIRUPDWLRQ UHODWLQJ WR WKH HYROXWLRQ RI WKH SDQFUDWLRLG $PDU\OOLGDFHDH >LQIUDIDPLO\ 3DQFUDWLRLGLQDH VHQVX 7UDXE f@ FHQWHUHG LQ WKH FHQWUDO $QGHDQ UHJLRQ RI 6RXWK $PHULFD $V FRDGDSWHG SODQWV RI WKH ZRUOGnV PRVW FRPSOH[ DQG WKUHDWHQHG HFRV\VWHP WKHLU VFDUFLW\ LQ WKH ZLOG ZLOO RQO\ LQFUHDVH WR WKH SRLQW RI H[WLQFWLRQ LI WURSLFDO GHIRUHVWDWLRQ FRQWLQXHV DW WKH SUHVHQW UDWH 1R WD[RQRPLF VFKHPH FDQ HQFRPSDVV DOO RI WKH LQIRUPDWLRQ DERXW WKH JURXS RI RUJDQLVPV XQGHU VWXG\ 2UQGXII 5DYHQ +ROVLQJHU f ,Q JHQHUD VXFK DV (XFKDULV DQG &DOLSKUXULD UDUH LQ WKH ZLOG DQG RIWHQ DFFHVVLEOH RQO\ ZLWK GLIILFXOW\ DQG ZKLFK RIWHQ H[KLELWV FU\SWLF SDWWHUQV RI YDULDWLRQ WKLV REVHUYDWLRQ EHFRPHV WKDW PXFK PRUH DFXWH %\ DFFXPXODWLQJ GDWD IURP DV PDQ\ GLYHUVH VRXUFHV DV SRVVLEOH KDYH DWWHPSWHG WR FRQVWUXFW D FODVVLILFDWLRQ RI WKH $PD]RQ OLOLHV WKDW

PAGE 13

UHIOHFWV WKHLU SK\ORJHQ\ DQG LQWHUUHODWLRQVKLSV DV DFFXUDWHO\ DV WKHVH GDWD DOORZ

PAGE 14

&+$37(5 ,, 7$;2120,& +,6725< +HUEHUW f GHVFULEHG WKH QHZ JHQXV &DOLSKUXULD IURP FROOHFWLRQV PDGH LQ 1HZ *UDQDGD &RORPELDf QHDU *XDGXDV E\ +DUWZHJ SODFLQJ &DOL SKUXUL D LQ WKH fVHFWLRQ 3DQFUDWLIRUPHV RI VXERUGHU $PDU\OOLGHDH *HQHUD RI WKLV VHFWLRQ ZHUH XQLWHG E\ WKH VLQJOH FKDUDFWHU RI VWDPLQD FRQQDWLRQ 7KH VPDOO ZKLWH IXQQHOIRUP IORZHUV ZHUH PDUNHG E\ WKH SUHVHQFH RI D EULVWOH RU VOHQGHU WRRWK DW HLWKHU VLGH RI WKH ILODPHQW +HUEHUW f PDGH QR PHQWLRQ RI EDVDO FRQQDWLRQ RI WKH ILODPHQWV 7KH RUWKRJUDSK\ RI WKH QDPH D VLQJOH nn LQ WKH *UHHN VWHP FDOOL ZDV HPHQGHG E\ VXEVHTXHQW ZRUNHUV HJ %DNHU f EXW ZDV UHWXUQHG WR +HUEHUWnV RULJLQDO E\ 0HHURZ DQG 'HKJDQ Ef 3ODQFKQ f LQWURGXFHG DQRWKHU QHZ SDQFUDWLRLG JHQXV (XFKDULV 7KH ILUVW VSHFLHV GHVFULEHG B( FDQGL GD 3ODQFKQ DQG /LQGHQ FROOHFWHG LQ 1HZ *UDQDGD E\ 0 6FKOLP ZDV FKDUDFWHUL]HG E\ LWV FUDWHULIRUP IORZHUV ZLWK D FRQVSLFXRXV VWDPLQDO FXS DQG D ZLGHO\ VSUHDGLQJ SHULDQWK OLPE ,I 3ODQFKQ ZDV DZDUH RI &DOLSKUXULD KH GLG QRW QRWH DQ\ UHODWLRQVKLS EHWZHHQ LW DQG (XFKDULV 1RWLQJ WKH UHODWLRQVKLS EHWZHHQ WKH WZR JHQHUD %HQWKDP DQG +RRNHU f SODFHG &DOLSKUXULD DQG (XFKDULV LQ WKH WULEH &\DWKLIHUDH &DOLSKUXULD VXEHGHQWDWD %DN ZDV FRPELQHG ZLWK (XFKDULV LQ WKHLU WUHDWPHQW ZKLOH B& KDUWZHJLDQD +HUE ZDV UHWDLQHG %DNHU f DFFHSWHG WKLV WUHDWPHQW DQG GHVFULEHG DQRWKHU QHZ VSHFLHV DV & WHHUD +H GHVFULEHG &DOLSKUXULD DV QHDUO\ DOOLHG WR (XFKDULV

PAGE 15

%DLOORQ f GHVFULEHG WKH VSHFLHV e FDVWHQDHDQD DQG GHFODUHG LW SUHFLVHO\ LQWHUPHGLDWH EHWZHHQ &DOLSKUXULD DQG (XFKDULV +H IXUWKHU VXJJHVWHG WKDW (XFKDULV VKRXOG EH WUHDWHG DV D VHFWLRQ RI &DOLSKUXULD 0DFEULGH f ODWHU WUDQVIHUUHG B& FDVWHQDHDQD WR (XFKDULV 1LFKROVRQ f WUDQVIHUUHG e KDUWZHJLDQD WKH W\SH VSHFLHV RI &DOLSKUXULDf WR (XFKDULV LJQRULQJ WKH IDFW RI WKH IRUPHUnV QRPHQFODWXUD SULRULW\ 7UDXE f PDGH WKH IRUPDO WUDQVIHU RI WKH UHPDLQLQJ VSHFLHV RI &DOLSKUXULD e WHHUD %DNHU WR (XFKDULV DQG DOVR FRPELQHG WKH PRQRW\SLF JHQXV 3ODJLROLULRQ %DNHU f ZLWK (XFKDULV +H KDG SUHYLRXVO\ OLVWHG &DOLSKUXULD 3ODJLROLULRQ DQG 0DWKLHXD .ORW]VFK >DQRWKHU PRQRW\SLF JHQXV 0HHURZ 06 LQ VXEPf@ DV V\QRQ\PV IRU (XFKDULV LQ KLV *HQHUD RI WKH $PDU\OOLGDFHDH FLWLQJ %DLOORQ f DV D VSHFLDO UHIHUHQFH 7UDXE S f 7KH QRPHQFODWXUD SULRULW\ RI &DOLSKUXULD +HUEHUW ZDV RYHUORRNHG 1R SURSRVDO IRU WKH FRQVHUYDWLRQ RI (XFKDULV 3ODQFKQ RYHU &DOLSKUXULD +HUEHUW KDV HYHU EHHQ SURSRVHG SUHYLRXV WR WKDW RI 0HHURZ DQG 'HKJDQ Ef 7UDXE f ODWHU FRPELQHG (XFKDULV ZLWK 8UFHROLQD 5HLFK QRP FRQVf D VPDOO $QGHDQ JHQXV ZLWK SHWLRODWH OHDYHV DQG PDUNHGO\ XUFHRODWH EULJKWO\ FRORUHG IORZHUV +H GHVLJQDWHG ILYH VXEJHQHUD 8UFHROLQD (XFKDULV &DOLSKUXULD 0DWKLHXD DQG 3,DJLRLULRQ 7UDXE f RIIHUHG QR H[SODQDWLRQ IRU WKH FRPELQDWLRQ RI (XFKDULV DQG 8UFHROLQD EXW SUHVXPDEO\ KLV GHFLVLRQ ZDV SURPSWHG LQ SDUW E\ UHSRUWV LQ WKH OLWHUDWXUH RI WZR LQWHUJHQHULF K\EULGV EHWZHHQ (XFKDULV DQG 8UFHROL QD ; 8UFHRFKDULV FOLEUDQLL 0DVWHUV DQ DUWLILFLDO K\EULG DQG ; 8 HGHQWDWD & + :ULJKW SXWDWLYHO\ GLVFRYHUHG LQ WKH ZLOG VWDWH LQ 3HUX

PAGE 16

,Q P\ SUHOLPLQDU\ ZRUN 0HHURZ 0HHURZ DQG 'HKJDQ D Ef UHIXWHG 7UDXEnV XQVXSSRUWHG FRPELQDWLRQ UHHVWDEOLVKLQJ (XFKDULV LQFOXGLQJ &DOLSKUXULDf 3ODJLROLULRQ DQG 0DWKLXHD DV GLVWLQFW JHQHUD 3ODJLROLULRQ DQG 0DWKLHXD DUH PRQRW\SLF JHQHUD DOOLHG WR +\PHQRFDOLV 6DOLVE DQG 6WHQRPHVVRQ +HUEHUW UHVSHFWLYHO\ 0HHURZ 06 LQ VXEPf 2Q WKH EDVLV RI WKH ZRUN GHWDLOHG LQ WKH IROORZLQJ FKDSWHUV SUHIHU WR WUHDW &DOLSKUXULD DV D GLVWLQFW JHQXV DV ZHOO

PAGE 17

&+$37(5 ,,, 9(*(7$7,9( 0253+2/2*< 0DWHULDOV DQG 0HWKRGV /HDI 6XUIDFH 0RUSKRORJ\ >6FDQQLQJ (OHFWURQ 0LFURVFRS\ 6(0f@ )UHVK PDWHULDO ZDV IL[HG LQ )$$ IRU D PLQLPXP RI KUV /HDI VHFWLRQV ZHUH DOZD\V WDNHQ IURP PLGSRLQW RI WKH ODPLQD 6DPSOHV ZHUH (W2+GHK\GUDWHG FULWLFDOO\ SRLQW GULHG ZLWK D 'HQWRQ '&3 DSSDUDWXV PRXQWHG DQG FRDWHG ZLWK RI JROGSDOODGLXP PL[WXUH ZLWK D 7HFKQLFV +XPPHU 9 VSXWWHU FRDWHU 6SHFLPHQV ZHUH REVHUYHG DQG SKRWRJUDSKHG RQ DQ +LWDFKL 6 VFDQQLQJ HOHFWURQ PLFURVFRSH DW NY $QDWRPLFDO 6WXGLHV 3HWLROHV ZHUH IUHHKDQG VHFWLRQHG ZLWK WHIORQ FRDWHG UD]RU EODGHV DQG OLJKWO\ VWDLQHG ZLWK WROXGLGLQH EOXH /HDI FOHDULQJV ZHUH SUHSDUHG E\ LPPHUVLQJ IUHVK PHGLDO ODPLQD VHFWLRQV LQ b ODFWLF DFLG DW r & IRU GD\V $ED[LDO DQG DGD[LDO HSLGHUPDO OD\HUV ZHUH WKHQ VHSDUDWHG XVLQJ GLOXWHG -HIIUH\nV f VROXWLRQ (SLGHUPDO WLVVXH ZDV VWDLQHG LQ b VDIUDQLQ DQG PRXQWHG LQ JO\FHURO b (W2+ PL[WXUH /HDI WLVVXH PHGLDO ODPLQDf IL[HG LQ )$$ ZDV SURFHVVHG IRU SDUDIILQ EORFN VHFWLRQLQJ ZLWK DQ $PHULFDQ 2SWLFDO 73 WLVVXH SURFHVVRU 'HK\GUDWLRQ EHJDQ ZLWK b (W2+ DQG FRQWLQXHG WKURXJK b WHUW EXW\O DOFRKRO 'HK\GUDWHG PDWHULDO ZDV WKHQ WUDQVIHUHG WR D b VROXWLRQ RI VDIUDQLQ IROORZHG E\ D PL[WXUH RI DEVROXWH WHUWEXW\O DOFRKRO

PAGE 18

DQG PLQHUDO RLO D PL[WXUH RI 3DUDSODVW DQG PLQHUDO RLO DQG ILQDOO\ b 3DUDSODVW (PEHGGHG PDWHULDO ZDV VHFWLRQHG ZLWK DQ $PHULFDQ 2SWLFDO 1R URWDU\ PLFURWRPH VHW DW LUQ 6HFWLRQV ZHUH IXUWKHU VWDLQHG ZLWK WROXLGLQH EOXH 6HFWLRQV ZHUH PRXQWHG XVLQJ 3UR7H[[ PRXQWLQJ PHGLXP $OO PDWHULDO ZDV H[DPLQHG DQG SKRWRJUDSKHG RQ D 1LNRQ /DERSKRW SKRWRPLFURVFRSH ZLWK $);,, SKRWRJUDSKLF DWWDFKPHQW 7HUPLQRORJ\ LV UHIHUDEOH WR 6WDFH f DQG 'LOFKHU f 6WDWLVWLFDO 3URFHGXUHV 6WDWLVWLFDO WHVWV ZHUH SHUIRUPHG ZLWK 6$6 5HOHDVH 6$6 ,QVWLWXWH ,1&f RQ WKH 1RUWKHDVW 5HJLRQDO 'DWD &HQWHU 1(5'&f RI WKH 8QLYHUVLW\ RI )ORULGD 5HVXOWV DQG 'LVFXVVLRQ %XOEV 7KH JORERVH RU VXEJORERVH EXOEV RI (XFKDULV DQG &DOLSKUXULD FRPSRVHG RI FRQFHQWULF DQG PRGLILHG OHDI EDVHV VFDOHVf DUH FKDUDFWHULVWLF RI PRVW PHPEHUV RI WKH $PDU\OOLGDFHDH 7KH RXWHU VFDOHV RI (XFKDULV DQG &DOLSKUXULD EXOEV DUH PRGLILHG LQWR D SDSHU\ WXQLF HLWKHU EURZQ RU WDQ LQ FRORU 2Q WKH ZKROH OLWWOH V\VWHPDWLF LQIRUPDWLRQ FDQ EH GHULYHG IURP EXOE PRUSKRORJ\ 6L]H RI PDWXUH EXOEV LV YDULDEOH DQG SURSRUWLRQDO WR WKH ZKROH SODQW VL]H UDQJH RI HDFK VSHFLHV 7KH EXOE VFDOHV RI PRVW VSHFLHV RI (XFKDULV DQG &DOLSKUXULD DUH DSLFDOO\ DUWLFXODWHG LQWR D QHFN RU SVHXGRVWHP RI YDULDEOH OHQJWK 'LVWDOO\ WKH SVHXGRVWHP JUDGHV LQWR WKH SHWLROH RI LQGLYLGXDO OHDYHV

PAGE 19

8QOLNH VSHFLHV RI +\PHQRFDO LV VXEJ ,VPHQH WKH QHFN RI (XFKDULV DQG &DOLSKUXULD EXOEV DOZD\V UHPDLQV EHORZ WKH VRLO VXUIDFH /HQJWK RI WKH QHFN PD\ WKHUHIRUH EH PRUH D IDFWRU RI EXOE GHSWK LQ WKH VXEVWUDWH UDWKHU WKDQ RI DQ\ SK\ORJHQHWLF VLJQLILFDQFH 9DQ %UDJW HW DO f IRXQG IORZHU LQLWLDWLRQ ZLOO QRW RFFXU LQ EXOEV RI B( DPD]RQLFD OHVV WKDQ PP GLDPHWHU 7KLV VSHFLHV FKDUDFWHULVWLFDOO\ SURGXFHV DPRQJ WKH ODUJHVW EXOEV RI DQ\ LQ WKH JHQXV ,UPLVFK f UHFRJQL]HG WKH H[LVWDQFH RI ERWK PRQRSRGLDO DQG V\PSRGLDO VKRRW VWUXFWXUH LQ EXOEV RI $PDU\OOLGDFHDH 3D[ f DQG 7UROO f IROORZHG WKHVH VDPH FRQFHSWV EXW RWKHU ZRUNHUV HJ &KXUFK 3HWHU %UXQDUG DQG 7XOLHU 8 DQG 08OOHU 'REOLHV f ']LG]LJXUL $NHQVRYD DQG 6HGRYL DQG $UUR\R f KDYH QRW DOZD\V EHHQ LQ DJUHHPHQW DV WR ZKLFK VKRRW VWUXFWXUH ZDV DSSOLFDEOH WR YDULRXV WD[D 0RVW UHFHQWO\ $UUR\R f FKDUDFWHUL]HG RQO\ IRXU 6RXWK $IULFDQ WD[D DV SRVVHVVLQJ WUXH PRQRSRGLDO RUJDQL]DWLRQ 6KH LV QRZ LQ DFFRUG $UUR\R SHUV FRPPf ZLWK 0OOHU'REOLHV DQG 0OOHU'REOLHV f ZKR VXJJHVW WKDW RQO\ V\PSRGLDO VWUXFWXUH RFFXUV LQ EXOEV RI $PDU\OOLGDFHDH %XOEV RI (XFKDULV DQG &DOLSKUXULD DUH ZLWKRXW FRQWURYHUV\ WUXH V\PSRGLD $UUR\R YDQ %UDJW HW DO f (DFK EXOE KDV D VLQJOH WHUPLQDO YHJHWDWLYH PHULVWHP $IWHU LWV WUDQVIRUPDWLRQ WR D IORUDO DSH[ D QHZ YHJHWDWLYH JURZLQJ SRLQW LV IRUPHG ODWHUDOO\ %XOEV RI PRVW VSHFLHV RI (XFKDULV DQG &DOLSKUXULD RIIVHW UHJXODUO\ DQG YLJRURXVO\ IRUPLQJ VL]DEOH FOXPSV LQ WLPH LI XQGLVWXUEHG 2IIVHW EXOEV DUH DW ILUVW XVXDOO\ WLJKWO\ MRLQHG DW WKH EDVDO SODWH WR WKH SDUHQW EXOE 2QO\ YHU\ UDUHO\ GRHV DQ HORQJDWHG UKL]RPH GHYHORS IURP ZKLFK D QHZ VKRRW V\VWHP FDQ DULVH DW VRPH GLVWDQFH IURP WKH SDUHQW

PAGE 20

SODQW D PRGH RI YHJHWDWLYH UHSURGXFWLRQ FKDUDFWHULVWLF RI VRPH VSHFLHV RI +\PHQRFDOOLV SHUV REV 7 +RZDUG SHUV FRPf /HDI *URVV 0RUSKRORJ\ /HDYHV RI (XFKDULV DQG &DOLSKUXULD DUH XQLIRUPO\ ORQJSHWLRDWH ZLWK D ZHOOGHYHORSHG HOOLSWLF RYDWH RU ODQFHRODWH ODPLQD 3HWLRODWH OHDYHV DUH FKDUDFWHULVWLF RI D QXPEHU RI JHQHUD RI $PDU\OOLGDFHDH HLWKHU FRPSOHWHO\ RU LQ SDUW DQG KDYH XQGRXEWHGO\ HYROYHG LQGHSHQGHQWO\ VHYHUDO WLPHV IURP WKH OLQHDU RU RUDWH OHDI PRUSKRORJ\ W\SLFDO RI WKH IDPLO\ ,Q PRVW RI WKHVH FDVHV WKH SHWLRODWH OHDI DSSHDUV WR EH SULPDULO\ DQ DGDSWDWLRQ WR UHGXFHG OHYHOV RI OLJKW FRQFXUUHQW ZLWK FRORQL]DWLRQ RI IRUHVW XQGHUVWRU\ HJ (XFKDULV &DOLSKUXULD 8UFHROLQD (XU\FOHV 6DOLVE 6FDGR[XV 5DMf ) 1RUGDO +\PHQRFDO LV WXELIORUD 6DOLVE DQG DOOLHG VSHFLHVf )RLODJH RI SHWLRODWHOHDYHG JHQHUD RFFXUULQJ LQ PRUH RSHQ VLWXDWLRQV HJ 3KDHGUDQDVVD +HUEHUW 5DXKLD 7UDXEf LV JHQHUDOO\ PDUNHG E\ LQFUHDVHG VXFFXOHQFH DQGRU SUXLQRVLW\ >OHDI VXUIDFH ZD[ LV FDSDEOH RI UHIOHFWLQJ OLJKW DQG KHDW &XWOHU HW DO f@ 7KH SHWLROH RI WKH OHDI RI (XFKDULV DQG &DOLSKUXULD LV XVXDOO\ DV ORQJ RU ORQJHU WKDQ WKH ODPLQD ,W LV VXEWHUHWH LQ FURVVVHFWLRQ )LJ f URXQGHG DED[LDOO\ DQG IODWWHQHG DGD[LDOO\ EHFRPLQJ VOLJKWO\ FKDQQHOOHG SUR[LPDO WR WKH VLQXV 7KH SHWLROH LV ZLQJHG SUR[LPDO WR WKH VLQXV E\ WKH DWWHQXDWLRQ RI WKH ODPLQD 7KH PLGULE LV SURQRXQFHG DED[LDOO\ DORQJ WKH HQWLUH OHQJWK RI WKH ODPLQD DQG VOLJKWO\ FKDQQHOOHG DGD[LDOO\ FRQWLQXRXV ZLWK WKH SHWLROH /HDI VKDSH RQO\ UDUHO\ SURYLGHV WD[RQRPLFDOO\ XVHIXO LQIRUPDWLRQ /HQJWK ZLGWK UDWLRV DUH VXEMHFW WR FRQVLGHUDEOH YDULDWLRQ HYHQ DPRQJ

PAGE 21

WKH OHDYHV RI D VLQJOH EXOE +HUEDULXP VSHFLPHQV ZLOO IUHTXHQWO\ LQFOXGH RQO\ D VLQJOH OHDI ZLWK QR LQGLFDWLRQ RI LWV GHYHORSPHQWDO DJH 7D[RQRPLF FRQVLVWHQF\ RI OHDI VKDSH LV H[FHSWLRQDO EXW XVHIXO LQ WKH IHZ FDVHV ZKHUH LW RFFXUV )RU H[DPSOH OHDYHV RI (B XOHL DUH FRQVLVWHQWO\ QDUURZO\ HOOLSWLF (XFKDULV DPD]QLFD OHDI OHQJWKZLGWK UDWLR JUHDWHU WKDQ f PD\ EH GHOLPLWHG IURP IURP -( DQPDOD Z OHVV WKDQ f 7KH OHDYHV RI (XFKDULV DQG &DOLSKUXULD DUH FRPSOHWHO\ JODEURXV DQG QRQJODXFRXV ZLWK D VLQJOH H[FHSWLRQ (XFKDULV ERQSODQGLL .XQWKf 7UDXE D UDUH WHWUDSORLG VSHFLHV IURP FHQWUDO &RORPELD GHYHORSV D JODXFRXV EORRP LQ VWURQJ OLJKW WKDW JLYHV WKH OHDI D EOXH FDVW 7KH OHDYHV RI &DOLSKUXULD DUH VOLJKWO\ WKLFNHU WKDQ WKRVH RI VXEJ (XFKDULV DQG +HWHURFKDULV 7KLV PD\ UHIOHFW DGDSWDWLRQ WR VOLJKW ZDWHU VWUHVV DV WKH VSHFLHV RI &DOLSKUXULD VRPHWLPHV LQKDELW VOLJKWO\ GULHU IRUHVW DVVRFLDWLRQV WKDQ FKDUDFWHULVWLF RI WKH (XFKDULV VHH &KDSWHU ,;f (XFKDULV ERXFKHL :RRGVRQ DQG $OOHQ DQG ( ERQSODQGLL ERWK VXEJ (XFKDULVf KRZHYHU KDYH WKLFNHQHG OHDYHV SRVVLEO\ D FRQVHTXHQFH RI WKHLU WHWUDSORLG FRQVWLWXWLRQ VHH 6WHEELQV f 7KH OHDI DSH[ RI DOO VSHFLHV LV VKRUWO\ DFXPLQDWH WKH EDVH DWWHQXDWH &RDUVH XQGXODWLRQ RI WKH PDUJLQ ZLOO VRPHWLPHV PDNH WKH ODPLQD DSSHDU FRUGDWH DW WKH EDVH /HDI PDUJLQV RI &DOLSKUXULD DUH XQLIRUPO\ QRQXQGXODWH 9HQDWLRQ RI WKH OHDI RI (XFKDULV DQG &DOLSKUXULD LV SDUDOOHORGURPXV +LFNH\ f ZLWK D JUHDW QXPEHU RI WUDQVYHUVH FRPPLVVHUDO YHLQV LQWHUFRQQHFWLQJ WKH SULPDU\ YDVFXODWXUH :KHWKHU WKH OHDI LV SOLFDWH DORQJ WKH SULPDU\ YHLQV FDQ EH D WD[RQRPLFDOO\ XVHIXO FKDUDFWHU 8QIRUWXQDWHO\ WKLV DQG PDQ\ RWKHU OHDI FKDUDFWHUV HJ

PAGE 22

PDUJLQDO XQGXODWLRQ WKH FRORU DQG OXVWHU RI WKH HSLGHUPLVf UHDGLO\ REVHUYHG LQ OLYH PDWHULDO DUH FRPSOHWHO\ REVFXUHG LQ KHUEDULXP VSHFLPHQV $OO VSHFLHV RI &DOLSKUXULD KDYH VPRRWK QRQSOLFDWH OHDYHV (XFKDULV LV YDULDEOH IRU WKLV FKDUDFWHU EXW WKH PDMRULW\ RI VSHFLHV RI KDYH SOLFDWH OHDYHV 7KH DGD[LDO HSLGHUPLV RI PRVW VSHFLHV RI ERWK JHQHUD LV D OXVWURXV GDUN JUHHQ WKH DED[LDO VXUIDFH DSSHDUV OLJKWHU RU VLOYHU\ JUHHQ 2QO\ (B DVWURSKLDOD 5DYHQQDf 5DYHQQD KDV GLYHUJHG PDUNHGO\ IURP WKH W\SLFDO PRUSKRORJ\ DQG KDV D XQLTXHO\ QRQXVWURXV EXOODWH SXVWXODWH OHDI WH[WXUH /HDI 6XUIDFH )HDWXUHV &XWLHOH &XWLFXODU VWULDWLRQ LV SURPLQHQW RQ WKH DED[LDO OHDI VXUIDFHV RI PRVW (XFKDULV DQG &DOLSKUXULD VSHFLHV )LJ f 6WULDH DUH WKLFNHVW LQ B& VXEHGHQWDWD )LJ f $UUR\R DQG &XWOHU f UHFRJQL]HG HLJKW FXWLFXODU VFXOSWXULQJ FODVVHV LQ D VXUYH\ RI JHQHUD RI $PDU\OOLGDFHDH 7KH PRVW FRPPRQ FXWLFXODU PRUSKRORJ\ RI (XFKDULV DQG &DOLSKUXULD ILWV WKHLU FODVV 9,, WKLFN VWULDH SDUDOOHO RU QRW LQWHUORFNLQJ B WUDQVYHUVH $UUR\R DQG &XWOHU S f D W\SH WKH\ UHSRUWHG RQO\ IRU WKH IHZ VSHFLHV RI 3KDHGUDQDVVD 6FDGR[XV DQG *ULIILQLD .HU*DZO WKDW WKH\ H[DPLQHG DOO WKUHH JHQHUD ZLWK SHWLRODWH OHDYHV EXW QRW FORVHO\ UHODWHG 3KDHGUDQDVVD LV KRZHYHU UDWKHU YDULDEOH LQ LWV FXWLFXODU PRUSKRORJ\ 0HHURZ XQSXEOf (XFURVLD .HU*DZO D FORVH DOO\ RI 3KDHGUDQDVVD DOVR KDV FXWLFXODU VWULDWLRQ VLPLODU WR WKDW RI $UUR\R DQG &XWOHUnV W\SH 9,, 0HHURZ DQG 'HKJDQ f EXW GLIIHUV LQ WKH RULHQWDWLRQ WKLFNQHVV DQG SDWWHUQ RI WKH

PAGE 23

VWULDH 8UFHROLQD D VPDOO JHQXV YHU\ FORVHO\ UHODWHG WR (XFKDULV DQG &DOLSKUXULD KDV FXWLFXODU PRUSKRORJ\ PXFK OLNH WKDW RI WKH ODWWHU JHQHUD ,Q D IHZ VSHFLHV RI (XFKDULV B( DPD]RQLFD (B DQPDOD )LJ = ERXFKHL )LJ f WKH VWULDWLRQ LV PXFK OHVV SURQRXQFHG &DOLSKUXULD NRUVDNRIILL WKH VROH UHSUHVHQWDWLYH RI &DOLSKUXULD RXWVLGH &RORPELDf KDV WKH PRVW DEHUUDQW FXWLFOH PRUSKRORJ\ )LJ f FRUUHVSRQGnQJ PRUH RU OHVV WR W\SH 9 RI $UUR\R DQG &XWOHU f FHQWUDO WKLFN D[LDO VWULDWLRQ ZLWK OHVV SURQRXQFHG VWULDH UXQQLQJ IURP LW GLUHFWO\ WR DQWLFOLQDO ZDOOV $UUR\R DQG &XWOHU S f 7KH DGD[LDO FXWLFOH RI (XFKDULV DQG &DOLSKUXULD LV HLWKHU VPRRWK RU UDUHO\ PXFK PRUH ILQHO\ VWULDWH WKDQ WKH DED[LDO VXUIDFH WKH VWULDWLRQV HQWLUHO\ D[LDO 7KH DGD[LDO FXWLFOH RI B& NRUVDNRI IL L )LJ f KDV VHYHUDO WKLFN WUDQVYHUVH VWULDWLRQV DFURVV HDFK FHOO DQG WKH HSLGHUPLV LV XQXVXDOO\ IODW LQ WRSRJUDSK\ 6WRPDWD /HDYHV RI (XFKDULV DQG &DOLSKUXULD DUH SUHGRPLQHQWO\ K\SRVWRPDWLF 6WRPDWD RFFXU DGD[LDOO\ RQO\ DORQJ WKH PLGULE DQG YLFLQLW\ )LJ $f DQG DOVR RFFDVLRQDOO\ LQ WKH SUR[LPLW\ RI SULPDU\ YHLQV 6WRPDWD DUH XVXDOO\ DEVHQW IURP WKH DED[LDO PLGULE )LJ %f ,QWHUFDODU\ VWRPDWD ZHUH UHJXODUO\ REVHUYHG RQO\ LQ ( F\DQHRVSHUPD 0HHURZ )LJ  &f $ VXUYH\ RI OHDI VXUIDFHV LQ LQIUDIDPLO\ 3DQFUDWLRLGLQDH 0HHURZ XQSXEOf VXJJHVWV WKDW ORVV RU UHGXFWLRQ RI DGD[LDO VWRPDWD IUHTXHQWO\ DFFRPSDQLHV WKH HYROXWLRQ RI SHWLRODWH OHDYHV LQ $PDU\OOLGDFHDH 0RVW OLQHDU RU ORUDWHOHDYHG JHQHUD DUH DPSKLVWRPDWLF 7KH VWRPDWD RI (XFKDULV DQG &DOLSKUXULD DUH DQRPRF\WLF DV LV W\SLFDO IRU $PDU\OOLGDFHDH $UUR\R DQG &XWOHU 'DKOJUHQ DQG &OLIIRUG f WKRXJK ( DVWURSKLDOD H[KLELWV DW OHDVW VOLJKW

PAGE 24

GLIIHUHQWLDWLRQ RI FH"OV QHLJKERULQJ WKH VWRPDWD )LJ f IURP RWKHU HSLGHUPDO FHOOV 7KHVH FHOOV DUH PRUH GHQVHO\ DQG UHJXODUO\ VWULDWH WKDQ RWKHU HSLGHUPDO FHOOV DV ZHOO DV VOLJKWO\ PRUH XSUDLVHG 7KH JXDUG FHOOV RI (XFKDULV DQG &DOLSKUXULD DUH RULHQWHG ZLWK WKHLU ORQJHVW D[LV SDUDOOHO WR WKDW RI WKH OHDI :LGH YDULDWLRQ LQ VWRPDWDO LQGH[ ^>QR RI VWRPDWD QR RI VWRPDWD QR RI HSLGHUPDO FHOOVf@ ; 6DOLVEXU\ f` LV HYLGHQW 7DEOH f ,QIUDVSHFLILF YDULDWLRQ LQ 6, FDQ EH DV ZLGH DV WKDW EHWZHHQ VSHFLHV KRZHYHU DQG VHHPV WR KDYH OLWWOH WD[RQRPLF VLJQLILFDQFH &RUUHODWLRQV EHWZHHQ 6, DQG OHDI ZLGWK OHQJWK DQG OHQJWKZLGWK UDWLRV ZHUH WHVWHG IRU DOO SODQWV H[DPLQHG 3HDUVRQ FRUUHODWLRQ FRHIIFLHQWV IRU WKH WKUHH FRPSDULVRQV ZHUH ZLGWKf OHQJWKf DQG OHQJWKZLGWKf *UHDWHVW FRUUHODWLRQ RI 6, ZDV ZLWK OHDI OHQJWK EXW QRQH RI WKH WKUHH WHVWHG IDFWRUV DUH YHU\ VLJQLILFDQW 6DOLVEXU\ f UHSRUWHG WKDW KXPLGLW\ DIIHFWV VWRPDWDO LQGH[ DQG RWKHU ZRUNHUV
PAGE 25

VDQGHUL QRW LOOXVWUDWHGf KDYH VWURQJO\ XQGXODWH ZDOOV ZKLOH (B DQPDOD )LJ %f KDV HVVHQWLDOO\ VWUDLJKW ZDOOV KDYH VXUYH\HG WKH OHDI VXUIDFH PRUSKRORJ\ RI DOO JHQHUD LQ LQIUDIDPLO\ 3DQFUDWLRLGLQDH ZLWK WKH H[FHSWLRQ RI 3XFDUD 5DYHQQD 0HHURZ XQSXEOf 6WURQJO\ XQGXODWH DQWLFOLQDO ZDOOV DUH YHU\ UDUH DPRQJ WKHVH JHQHUD $UUR\R DQG &XWOHU f UHSRUW VLPLODU ILQGLQJV IRU WKH JHQHUD RI SDQFUDWLRLG $PDU\OOLGDFHDH WKDW WKH\ VXUYH\HG $UUR\R DQG &XWOHU f DQG $UWXVKHQNR f FRQVLGHU XQGXODWH DQWLFOLQDO ZDOOV WR EH SULPLWLYH IRU WKH IDPLO\ 1R GHWDLOHG UHDVRQV DUH JLYHQ E\ WKHVH DXWKRUV IRU WKLV DVVHVVPHQW WKRXJK UHIHUHQFH LV PDGH WR 6FDGR[XV D SXWDWLYHO\ SULPLWLYH EXOEOHVV JHQXV RI $IULFDQ $PDU\OOLGDFHDH ZLWK XQGXODWH DQWLFOLQDO ZDOOV DQG 7\SH 9,,, VWULDWLRQ 7KLV JHQXV LV RIWHQ FRQVLGHUHG FORVH WR WKH DQFHVWUDO FRPSOH[ WKDW JDYH ULVH WR WKH $PDU\OOLGDFHDH $UUR\R $UUR\R DQG &XWOHU 1RUGDO DQG 'XQFDQ f
PAGE 26

(XFKDULV DVWURSKLDOD )LJ $f KDV WKH PRVW LUUHJXODUO\ VKDSHG FHOOV RI ERWK WKH DED[LDO DQG DGD[LDO VXUIDFHV ,Q WKH YLFLQLW\ RI WKH PLGULE RQ ERWK VXUIDFHV RI WKH OHDI )LJ f HSLGHUPDO FHOOV EHFRPH FRQVSLFXRXVO\ HORQJDWHG DQG DQWLFOLQDO ZDOOV DUH VWUDLJKW (SLGHUPDO FHOOV RI WKH PLGULE DUH H[WUHPHO\ ORQJ DQG QDUURZ /HDI $QDWRP\ ,Q SHWLRODU WUDQVYHUVH VHFWLRQ D VLQJOH DUF RI YDVFXODU EXQGOHV LV XVXDOO\ REVHUYHG )LJ f 0HGLDQ EXQGOHV DUH WKH ODUJHVW ,Q SHWLROHV RI ( DQPDOD 0HHURZ )LJ%f DQG WKH FORVHO\ UHODWHG B( DPD]RQLFD )LJ &f ERWK LQ VXEJ +HWHURFKDULV VPDOO VHFRQGDU\ EXQGOHV ZHUH REVHUYHG QHDU WKH DGD[LDO VXUIDFH 7KHVH EXQGOHV DUH PRVW FRQVSLFXRXV LQ ( DQPDOD WKH\ DUH PDUNHGO\ VPDOOHU LQ ( DPD]RQLFD 7KHVH VHFRQGDU\ YDVFXODU WUDFHV GLVDSSHDU DERYH WKH PLGGOH RI WKH SHWLROH $VDWULDQ f ZKR UHSRUWHG RQ SHWLROH DQDWRP\ RI WKUHH (XFKDULV DQG &DOLSKUXULD VSHFLHV GLG QRW REVHUYH WKHVH EXQGOHV LQ B( DPD]RQL FD FLWHG DV B( JUDQGLIORUDf 7KH LQWHUQDO PRUSKRORJ\ RI OHDYHV RI (XFKDULV DQG &DOLSKUXULD )LJ f LV ODUJHO\ LQYDULDQW DFURVV ERWK JHQXV 1R ZHOO GHILQHG SDOLVDGH OD\HU LV HYLGHQW D FKDUDFWHULVWLF RI PRVW JHQHUD RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH $UUR\R DQG &XWOHU 0HHURZ XQSXEO GDWDf 0XFLODJH FHOOV FRPPRQ WKURXJKRXW WKH IDPLO\ $UUR\R DQG &XWOHU f DUH RIWHQ SUHVHQW QHDU WKH OHDI VXUIDFH DQG UDSKLGHV DUH RFFDVLRQDOO\ REVHUYHG LQ HSLGHUPDO FHOOV 7KH PHVRSK\OO FRQVLVWV RI VHYHUDO OD\HUV RI FKORUHQFK\PD ERWK DG DQG DED[LDOO\ DQG D WKLFNHU UHJLRQ RI VSRQJ\ VOLJKWO\ DHUHQFK\PRXV WLVVXH 6PDOO DLU FDYLWLHV RFFXU UHJXODUO\ RQO\ GLUHFWO\ EHORZ VWRPDWD 9DVFXODU EXQGOHV DUH

PAGE 27

VXUURXQGHG E\ D VKHDWK RI OD\HUV RI SDUHQFK\PRXV FHOOV 7KH RQO\ [\OHP HOHPHQWV SUHVHQW DUH WUDFKHLGV ZLWK DQQXODU WKLFNHQLQJV )LJ f

PAGE 28

7DEOH /HDI OHQJWK ZLGWK OHQJWK ZLGWK UDWLR DQG VWRPDWDO LQGH[ RI (XFKDULV DQG &DOLSKUXULD VSHFLHV $OO YRXFKHU VSHFLPHQV DUH GHSRVLWHG DW )/$6 XQOHVV RWKHUZLVH LQGLFDWHG 7$;21 928&+(5 /($) /(1*7+ FPf /($) :,'7+ FPf / : 6720$7$/ ,1'(; (XFKDULV VXEJ (XFKDULV ( DVWURSKLDOD 0HHURZ ( ERQSODQGLL %DXPO +817f ( ERXFKHL YDU ERXFKHL 0HHURZ ( ERXFKHL YDU GUHVVOHUL 0HHURZ ( FDQGLGD 0HHURZ 6FKXQNH % ( FDVWHOQDHDQD 6FKXQNH ( F\DQHRVSHUPD 0HHURZ ( IRUPRVD 0HHURZ 0HHURZ 6FKXQNH

PAGE 29

7DEOH f§FRQWLQXHG 7$;21 928&+(5 /($) /(1*7+ FPf 6FKXQNH 6FKXQNH ( SOLFDWD SL L FDWD VXEVS 0HHURZ ( SOLFDWD VXEVS 0HHURZ EUHYXOHQWDWD (XFKDULV VXEJ +HWHURFKDULV ( DPD]RQLFD 6FKXQNH (A DQPDOD 0HHURZ ; &DOL FKDQnV 0HHURZ EXWFKHUL 0HHURZ /($) :,'7+ FPf ( ; JUDQGLIORUD / : 6720$7$/ ,1'(; 32 R

PAGE 30

7DEOH f§FRQWLQXHG 7$;21 928&+(5 /($) /(1*7+ FPf /($) :,'7+ FPf / : 6720$7$/ ,1'(; &DOLSKUXULD & NRUVDNRIILL 0HHURZ & VXEHGHQWDWD 0HHURZ 0HHURZ 0HHURZ 3HDUVRQ FRUUHODWLRQ FRHIILFLHQWV VLJQLILFDQFH LV LQGLFDWHG E\ SUR[LPLW\ RI YDOXH WR f 6WRPDWDO LQGH[ DQG OHDI OHQJWK 6WRPDWDO LQGH[ DQG OHDI ZLGWK 6WRPDWDO LQGH[ DQG OHDI OHQJWKZLGWK UDWLRV

PAGE 31

)LJXUH 3HWLROH WUDQVYHUVH VHFWLRQV RI (XFKDULV VSHFLHV $ ( DVWURSKLDOD 0DGLVRQ 6(/f ( ERXFKHL YDU GUHVVOHUL 0HHURZ )/$6f & ( SL L FDWD VXEVS SOLFDWD 0HHURZ )/$6f S SUR[LPDO P PHGLDO G GLVWDO

PAGE 32

n}m

PAGE 33

)LJXUH 3HWLROH WUDQVYHUVH VHFWLRQV RI (XFKDULV DQG &DOLSKUXULD VSHFLHV 0HHURZ )/$6f % ( DQPDOD 0HHURZ )/$6f & ( DPD]QLFD S SUR[LPDO P PHGLDO G GLVWDO $ & VXEHGHQWDWD 6FI7XQNH )/$6f

PAGE 34

UY! HQ

PAGE 35

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV DQG &DOLSKUXQnD OHDI VXUIDFHV $ED[LDO VXUIDFHV ( DQPDOD 0HHURZ )/$6f ( ; JUDQGLIORUD 0DGLVRQ HW DO V Q 6(/f E ; &DOLFKDULV 7LWFKHQ 0HHURZ )/$& VXEHGHQWDWD 0HHURZ )/$& NRUVDNRIILL 0HHURZ )/$6f $GD[LDO VXUIDFH RI & NRUVDNRWUQ 0HHURZ R\E +$f $OO VFDOHV \XP

PAGE 36

O

PAGE 37

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV OHDI VXUIDFHV Q $ED[LDO OHDI VXUIDFHV ( DVWURSKLDOD 0HHURZ OLOL )/$6f ( SOLFDWD VXEVS S7LFDWD 0HHURZ )/$f ( F\DQHRVSHUPD 0HHURZ )/$6f ,77 IWF7D[LDO OHDI VXUIDFH ( F\DQHaR"SHUPD 0HHURZ )/$6f $OO VFDOHV MP

PAGE 39

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV DED[LDO OHDI VXUIDFHV ( EDNHULDQD 0HHURZ )/$6f ( IRUPRVD 0HHURZ )7$67+ / ERQSODQGLL %DXPO +8777fa ( ERXFKHL YDU GUHVVOHUL 70HHURZ )/$6f 7&7O VFDOHV MP

PAGE 40

,

PAGE 41

)LJXUH /HDI HSLGHUPDO FHOO FRQILJXUDWLRQV RI UHSUHVHQWDWLYH (XFKDULV VSHFLHV LQ WKH YLFLQLW\ RI WKH PLGULE $ ( IRUPRVD 6FKXQNH )/$6f DGD[LDO VXUIDFH % ( SL L FDWD VXEVS SL L FDWD 0HHURZ )/$6f

PAGE 43

)LJXUH /HDI HSLGHUPDO FRQILJXUDWLRQV RI (XFKDULV VSHFLHV LQ WKH LQWHUFRVWDO DUHD RI WKH OHDI $ ( DVWURSKLDOD 0DGLVRQ 6(/f % ( ERQSODQGLL %DXPO f+OL1nUf & ( ERXFKHL YDU ERXFKHL 0HH URZ )/$6f

PAGE 45

)LJXUH /HDI HSLGHUPDO FRQILJXUDWLRQV RI (XFKDULV VSHFLHV LQ WKH 7QWHUFRVWDO DUHD RI WKH OHDI $ ( FDQGLGD 0HHURZ )/$6f % (B FDVWH QDHDQD 6FKXQNH 7/$O77 &7 (B F\DQHRVSHUPD 0HHURZ )/$6f

PAGE 47

)LJXUH /HDI HSLGHUPDO FRQILJXUDWLRQV RI (XFKDULV VSHFLHV LQ WKH IQWHUFRVWDO DUHD RI WKH OHDI $ ( IRUPRVD 6FKXQNH )/$6f % ( SL L FDWD VXEVS EUHYLGHQWDWD 0HHURZ /$6f & ( XOHL 6F)XQNH )/$6f

PAGE 48

F

PAGE 49

)LJXUH /HDI HSLGHUPDO FRQILJXUDWLRQV RI (XFKDULV VSHFLHV LQ WKH LQWHUFRVWDO DUHD RI WKH OHDI $ ( DPD]QLFD 6FKXQNH )/$6f % ( DQPDOD 0HHURZ ;7 & ( ? JUDQGLIORUD 0HHURZ )/$6f

PAGE 51

)LJXUH /HDI HSLGHUPDO FRQILJXUDWLRQV RI (XFKDULV DQG &DOLSKUXULD VSHFLHV DQG K\EULG LQ WKH LQWHUFRVWDO DUHD RI WKH OHD7? $ ; &DOLFKDULV EXWFKHUL 0HHURZ )/$6f % & VXEHGHQWDWD 0HHURZ +$6f & & NRUVDNRIILL 0HHURZ )/$6f

PAGE 53

)LJXUHV 7UDQVYHUVH VHFWLRQV RI (XFKDULV DQG &DOLSKUXULD OHDYHV ( ERQSODQGLL %DXPO +817f ( DVWURSKLDOD 0DGLVRQ 6(/f ( IRUPRVD 0HHURZ )/ƒ6f 7UDFKHLG ZLWK DQQXODU WKL FNHQ7QJV ( ERXFKHL YDU GUHVVOHUL 0HHURZ )/$6f & VXEHGHQWDWD 0HHURZ ,a )/$6f 7 & NRUVDNRIILL 0HHURZ )/$6f $O VFDOHV MP H[FHSW DP LQ )LJ •

PAGE 55

&+$37(5 ,9 )/25$/ 0253+2/2*< 0DWHULDOV DQG 0HWKRGV 6FDQQLQJ (OHFWURQ 0LFURVFRS\ 6(0f 6WLJPDV DQG VHHGV SUHVHUYHG LQ )$$ ZHUH SUHSDUHG DQG H[DPLQHG DV GHVFULEHG LQ &KDSWHU ,,, $QDWRPLFDO 6WXGLHV 6HHGV SUHVHUYHG LQ )$$ ZHUH SUHSDUHG IRU SDUDILQ EORFN VHFWLRQLQJ DV GHVFULEHG IRU OHDYHV LQ &KDSWHU ,,, 6FDSH VHFWLRQV ZHUH SUHSDUHG IUHHKDQG DV GHVFULEHG IRU SHWLROHV LQ &KDSWHU ,,, 5HVXOWV DQG 'LVFXVVLRQ ,QIORUHVFHQFH 7KH LQIORUHVFHQFH RI (XFKDULV DQG &DOLSKUXULD LV D QDNHG VFDSH W\SLFDO RI $PDU\OOLGDFHDH 7KH VFDSH LV VXEWHUHWH LQ FURVVVHFWLRQDO RXWOLQH )LJ f DQG KDV D VROLG SLWK 9DVFXODU EXQGOHV DUH GLVWULEXWHG LQ VHYHUDO FRQFHQWULF ULQJV ZLWKLQ WKH SLWK )LJ f $ OD\HU RI FROOHQFK\PD FHOOV RFFXUV MXVW EHORZ WKH HSLGHUPLV RI WKH VFDSH 7KH VFDSH LV WHUPLQDWHG E\ WZR YDOYDWHLPEULFDWH RYDWHODQFHRODWH EUDFWV WKDW HQFORVH VHYHUDO VHFRQGDU\ EUDFWV DQG WKH IORZHU EXGV EHIRUH DQWKHVLV 7KHVH EUDFWV YDU\ IURP JUHHQ B( VXEJ +HWHURFKDULVf WR JUHHQLVKZKLWH PRVW VSHFLHV RI VXEJ (XFKDULVf DQG DUH VRRQ PDUFHVFHQW

PAGE 56

DIWHU RSHQLQJ DQG VSUHDGLQJ ODWHUDOO\ (DFK IORZHU LV VXEWHQGHG E\ D OLQHDUODQFHRODWH EUDFWHROH 7KH LQIORUHVFHQFH RI WKH $PDU\OOLGDFHDH LV WUDGLWLRQDOO\ GHVFULEHG DV XPEHOODWH 'HYHORSPHQWDO ZRUN E\ 0DQQ f RQ $O LXP DQG 6WRXW f RQ +LSSHDVWUXP VXJJHVWV WKDW WKH VXSHUILFLDOO\ VLPSOH XPEHO RI $PDU\OOLGDFHDH DFWXDOO\ UHSUHVHQWV D FRPSOH[ VHULHV RI UHGXFHG KHOLFRLG F\PHV $QWKHVLV RFFXUV LQ D VWULFW VHTXHQFH ZLWKLQ HDFK F\PH IURP WKH GHYHORSPHQWDOO\ ROGHVW IORZHU WR WKH \RXQJHVW 7KH SHULSKHUDO F\PHV IORZHU ILUVW WKH FHQWUDO F\PHV IORZHU ODVW )ORZHU QXPEHU YDULHV LQ (XFKDULV DQG &DOLSKUXULD IURP UDUHO\ DV PDQ\ DV B& NRUVDNRIILLf 1XPEHU RI IORZHUV LV RIWHQ D WD[RQRPLFDOO\ XVHIXO FKDUDFWHU WKRXJK DQ\ VSHFLHV FKDUDFWHUL]HG E\ IORZHUV LV FDSDEOH RI SURGXFLQJ D GHSDXSHUDWH LQIORUHVFHQFH ZLWK IHZHU IORUHWV $Q LQFUHDVH LQ IORZHU QXPEHU JHQHUDOO\ GRHV QRW RFFXU ,Q VRPH VSHFLHV RI VXEJ (XFKDULV (B DVWURSKLDOD B( ERXFKHL B( XOHLf D IORZHU QXPEHU RI KDV EHFRPH YLUWXDOO\ IL[HG 5HGXFWLRQ LQ IORZHU QXPEHU LV XVXDOO\ FRQVLGHUHG WKH GHULYHG VWDWH LQ $PDU\OOLGDFHDH 7UDXE f )ORZHU 6L]H DQG )UDJUDQFH )ORZHU VL]H 7KH ODUJHVW IORZHUV LQ (XFKDULV DUH IRXQG LQ VXEJ +HWHURFKDULV IORZHUV RI ZKLFK DYHUDJH FP LQ OHQJWK )ORZHUV RI &DOLSKUXULD DUH WKH VPDOOHVW QHYHU H[FHHGLQJ FP LQ OHQJWK 6XEJHQXV (XFKDULV WKH ODUJHVW RI WKH WZR VXEJHQHUD RI (XFKDULV LV YDULDEOH ZLWK IORZHUV UDQJLQJ IURP FP LQ OHQJWK :LWKLQ D IDLUO\ EURDG UDQJH IORZHU VL]H FDQ EH XVHG WR GLVWLQJXLVK SKHQHWLF VSHFLHV FRPSOH[HV ZLWKLQ VXEJ (XFKDULV VHH &KDSWHUV 9, DQG ;,,f KRZHYHU PRVW VSHFLHV

PAGE 57

RI WKLV VXEJHQXV DUH TXLWH YDULDEOH LQ VL]H )ORZHU VL]H PD\ DOVR EH D IDFWRU RI SODQW YLJRU DQG VRLO IHUWLOLW\ KDYH UHSHDWHGO\ QRWHG GLIIHUHQFHV IURP \HDU WR \HDU LQ WKH VL]H RI IORZHUV RI JUHHQKRXVH FROOHFWLRQV GHSHQGLQJ RQ WKH UHODWLYH KHDOWK RI WKH SODQW )ORUDO IUDJUDQFH 6XEJHQXV +HWHURFKDULV LV WKH RQO\ VXEJHQXV RI (XFKDULV WKDW LV XQLIRUPO\ IUDJUDQW 7KH IUDJUDQFH RI DOO VSHFLHV RI VXEJ +HWHURFKDULV LV LQWHQVH DQG VZHHW )ORZHUV RI &DOLSKUXULD GR QRW HPLW DQ\ GHWHFWDEOH IUDJUDQFH 0RVW VSHFLHV RI B( VXEJ (XFKDULV DUH DOVR ZLWKRXW QRWLFHDEOH IUDJUDQFH ,Q WKH IHZ VSHFLHV RI WKLV VXEJHQXV WKDW DUH IUDJUDQW B( EDNHULDQD B( FDVWHQDHDQD B( IRUPRVD DQG (B SL L FDWD VXEVS EUHYLGHQWDWDf WKH RGRU LV QRW LQWHQVH ,Q RQH FDVH B( IRUPRVDf WKH IUDJUDQFH LV VOLJKWO\ IHWLG 7KH VLJQLILFDQFH RI IORUDO IUDJUDQFH LQ (XFKDULV LV GLVFXVVHG IXUWKHU LQ &KDSWHU ; 3HULDQWK 7KH SHULDQWK RI (XFKDULV DQG &DOLSKUXULD FRQVLVWV RI VL[ WHSDOV LQ WZR ZKRUOV EDVDOO\ FRQQDWH LQWR D WXEH RI YDU\LQJ OHQJWK DQG PRUSKRORJ\ 7KH WXEH RI B( VXEJ (XFKDULV )LJ (f LV F\OLQGULFDO IRU DOPRVW LWV HQWLUH OHQJWK DEUXSWO\ GLODWLQJ QHDU WKH SHULDQWK WKURDW 7KH WXEH RI VXEJ (XFKDULV LV DOVR VWURQJO\ FXUYHG HLWKHU DEUXSWO\ MXVW DERYH WKH RYDU\ B( EDNHULDQD B( F\DQHRSVHUPDf RU JUDGXDOO\ WKURXJKRXW WKH SUR[LPDO KDOI RI LWV OHQJWK DOO RWKHU VSHFLHVf 7KH FXUYLQJ RI WKH WXEH UHVXOWV LQ WKH SHQGHQW KDELW RI PRVW VSHFLHV RI VXEJ (XFKDULV 7KH WXEH LV ZKLWH IRU LWV HQWLUH OHQJWK 7KH WXEH RI VXEJ +HWHURFKDULV )LJ & 'f LV WLQWHG JUHHQ SUR[LPDOO\ IRU DW OHDVW KDOI LWV OHQJWKf 7KH WXEH LV FXUYHG WKRXJK QRW DV PDUNHGO\ DV WKDW RI VXEJ (XFKDULV DQG WKH KDELW RI WKH IORZHUV

PAGE 58

LV HLWKHU GHFOQDWH B( DQPDOD B( VDQGHULf RU VXESHQGXORXV B( DPD]QLFDf 7KH WXEH LV F\OLQGULFDO IRU WR RI LWV OHQJWK LW DEUXSWO\ GLODWHV LQ WKH GLVWDO KDOI WR 7KH WXEH PRUSKRORJ\ RI ; &DOLFKDULV EXWFKHUL )LJ %f SXWDWLYHO\ DQ LQWHUVXEJHQHULF K\EULG EHWZHHQ ( VDQGHUL DQG B& VXEHGHQWDWD LV LQWHUPHGLDWH EHWZHHQ &DOLSKUXULD )LJ $f DQG B( VXEJ +HWHURFKDULV )LJ & 'f 7KH WXEH RI &DOL SKUXUL D )LJ $f LV VWUDLJKW DQG GLODWHV JUDGXDOO\ IURP EDVH WR WKURDW ,W LV HLWKHU VXEF\OLQGULFDO B& NRUVDNRIILLf RU IXQQHOIRUP LQ VKDSH DOO RWKHU VSHFLHVf 7KH WXEH LV WLQWHG JUHHQ SUR[LPDOO\ LQ B& VXEHGHQWDWD IRU WR RI LWV OHQJWKf 7KH WHSDOV RI (XFKDULV DQG &DOLSKUXULD IORZHUV DUH ZKLWH 7KRVH RI WKH RXWHU VHULHV DUH DOPRVW DOZD\V ORQJHU DQG QDUURZHU WKDQ WKH LQQHU WHSDOV 7KH RXWHU WHSDOV DUH DSLFXODWH 7KH DSLFXOXP IUHTXHQWO\ KDV D VPDOO SDSLOODWH KRUQ RQ WKH DGD[LDO VXUIDFH LQ B( VXEJ (XFKDULV 7KH LQQHU WHSDOV YDU\ IURP DFXWH WR REWXVH VRPHWLPHV PLQXWHO\ DSLFXODWH DW WKH DSH[ 7KH WHSDOV RI PRVW VSHFLHV RI VXEJ (XFKDULV VSUHDG DW DQ DQJOH RI r RU PRUH IURP WKH WKURDW 3HULDQWK PRUSKRORJ\ RI VXEJ (XFKDULV LV WKXV SUHGRPLQDQWO\ FUDWHULIRUP $W WLPHV WKH WHSDOV PD\ EH UHIOH[HG VWURQJO\ DERYH WKH PLGSRLQW RI WKHLU OHQJWK RU UDUHO\ IRU WKHLU HQWLUH OHQJWK 7HSDO KDELW YDULHV HYHQ DPRQJ IORZHUV RI WKH VDPH LQIORUHVFHQFH DQG VKRZV QR WD[RQRPLF FRQVLVWDQF\ ,I H[SRVHG WR VWURQJ OLJKW WKH DED[LDO PLGULE RI WKH WHSDOV RI VRPH VSHFLHV RI VXEJ (XFKDULV PD\ EH OLJKWO\ SLJPHQWHG \HOORZ 7KH SHULDQWK RI &DOLSKUXULD LV LQIXQGLEXODU 7KH WHSDOV UHPDLQ LPEULFDWH IRU KDOI WKHLU OHQJWK DQG VSUHDG GLVWDOO\ DW DQ DQJOH RI RQO\

PAGE 59

r 7KH WHSDOV RI VXEJ +HWHURFKDULV DUH DOVR IRU WKH PRVW SDUW LPEULFDWH SUR[LPDOO\ DQG VSUHDG DW r IURP WKH WKURDW 7KH SHULDQWK LV PRUH RU OHVV FDPSDQXODWH LQ PRUSKRORJ\ 2QH VSHFLHV ( DPD]RQLFD KDV WKH FUDWHULIRUP SHULDQWK FKDUDFWHUVWLF RI VXEJ (XFKDULV ZLWK D ZLGHVSUHDGLQJ FD rf OLPE $QGURHFLXP 6WDPLQDO FRQQDWLRQ LV RQH RI WKH PDMRU FKDUDFWHULVHFV RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH 6RPH WD[RQRPLF ZRUNHUV KDYH PLVWDNHQO\ FRQVLGHUHG WKH VWDPLQDO FXS RI SDQFUDWLRLG JHQHUD KRPRORJRXV WR WKH FRURQD RI 1DUFLVVXV HJ 3D[ f 7KH FRURQD RI 1DUFLVVXV LV RI SHULDQWKDO RULJLQ (LFKOHU $UEHU f ZKLOH WKH VWDPLQDO FXS RI SDQFUDWLRLG WD[D LV FRPSRVHG HQWLUHO\ RI DQGURHFLDO WLVVXH $UEHU 6LQJK f 7KH VWDPHQV RI (XFKDULV DQG &DOLSKUXULD DUH YDULRXVO\ FRQQDWH SUR[LPDOO\ ,Q PRVW VSHFLHV RI VXEJ (XFKDULV DQG VHYHUDO VSHFLHV RI VXEJ +HWHURFKDULV (B DQPDOD DQG B( DPD]RQL FDf D FRQVSLFXRXV VWDPLQDO FXS RU IDOVH FRURQD LV SUHVHQW )LJ f ,Q &DOLSKUXULD WKH FXS LV UHGXFHG WR D VKRUW PHPEUDQRXV FRQQDWH SRUWLRQ RI WKH ILODPHQWV QHDU WKH SHULDQWK WKURDW )LJ f (XFKDULV VDQGHUL VXEJ +HWHURFKDULVf KDV D UHGXFHG VWDPLQDO FXS VLPLODU WR WKDW RI &DOLSKUXULD 6WDPHQV RI (XFKDULV DQG &DOLSKUXULD PD\ EH GHQWDWH HGHQWDWH RU LUUHJXODUO\ WRRWKHG %RWK W\SHV RI VWDPLQDO PRUSKRORJ\ PD\ RFFXU LQ WKH VDPH VSHFLHV DQG YDULDWLRQ PD\ RFFXU HYHQ DPRQJ IORZHUV RI D VLQJOH FORQH 7KH SUHVHQFH RU DEVHQFH RI VWDPLQDO GHQWDWLRQ KDV IUHTXHQWO\ EHHQ RYHUZHLJKWHG LQ WKH DOSKDWD[RQRPLF OLWHUDWXUH UHODWLQJ WR WKHVH JHQHUD HJ 5DYHQQD f EXW RQO\ RFFDVLRQDOO\ KDV SURIRXQG

PAGE 60

WD[RQRPLF VLJQLILFDQFH >HJ B( DVWURSKLDOD )LJ f WKH RQO\ VSHFLHV RI VXEJ (XFKDULV WKDW DOZD\V KDV DQ HGHQWDWH VWDPLQDO FXS@ $ YDULDEOH SDWWHUQ RI JUHHQ RU \HOORZ SLJPHQWDWLRQ LV SUHVHQW LQ WKH DQGURHFLXP RI DOO VSHFLHV RI VXEJ (XFKDULV DQG +HWHURFKDULV 6WDPHQV RI &DOLSKUXULD DUH FRPSOHWHO\ ZKLWH ,Q VXEJ +HWHURFKDULV WKH JUHHQ UDUHO\ \HOORZLVKf SLJPHQWDWLRQ LV ODUJHO\ UHVWULFWHG WR WKH LQWHULRU RI WKH FXS DQG H[WHQGV LQWR WKH GLODWHG SRUWLRQ RI WKH WXEH DV ZHOO )LJ f 7KH FRORUDWLRQ LV FRQFHQWUDWHG DORQJ WKH ILODPHQWD WUDFHV EXW WKH WLVVXH EHWZHHQ WKH WUDFHV LV VXIIXVHG ZLWK JUHHQ DV ZHOO ,Q VXEJ (XFKDULV SLJPHQWDWLRQ LV SUHVHQW RQ ERWK WKH H[WHULRU DQG LQWHULRU VXUIDFHV RI WKH FXS GRHV QRW H[WHQG LQWR WKH GLODWHG SRUWLRQ RI WKH WXEH DQG WDNHV WKH IRUP RI HLWKHU EURDG VSRWV EHORZ HDFK IUHH ILODPHQW RU D XQLIRUP EDQG RI FRORU DW WKH EDVDO WR RI WKH FXS ,Q VXEJ (XFKDULV WKH SDWWHUQ LV RI OLPLWHG WD[RQRPLF VLJQLILFDQFH :KHWKHU WKLV SLJPHQWDWLRQ IXQFWLRQV DV QHFWDU JXLGHV IRU SROOLQDWLQJ DQLPDOV LV XQNQRZQ 7KH VWDPHQV RI PRVW VSHFLHV RI VXEJ (XFKDULV FRQVWULFW GLVWDOO\ LQWR D EURDGO\ VXEXODWH SRUWLRQ PP ZLGH IRU PRVW RI LWV OHQJWKf RI YDU\LQJ OHQJWK 2QO\ LQ WZR VSHFLHV ( DVWURSKLDOD )LJ f DQG ( ERXFKHL LQ SDUWf GR WKH VWDPHQV FRQVWULFW JUDGXDOO\ IURP WKH ULP RI WKH VWDPLQDO FXS WR WKH DSH[ RI WKH ILODPHQW 7KH IUHH ILODPHQWV RI &DOLSKUXULD DUH QDUURZO\ VXEXODWH PP ZLGH IRU PRVW RI WKHLU OHQJWK )LJ f 7KH IUHH ILODPHQWV RI (B VDQGHUL VXEJ +HWHURFKDULVf DUH QDUURZO\ VXEXODWH DQG VOLJKWO\ LQFXUYHG 7KRVH RI B( DQPDOD DQG ( DPD]RQLFD DUH EURDGO\ VXEXODWH $QWKHUV RI (XFKDULV DUH LQWURUVH GHKLVFLQJ ORQJLWXGLQDOO\ DQG HLWKHU GRUVLIL[HG RU VXEEDVLIL[HG LQ DWWDFKPHQW 7KH\ DUH PRVW

PAGE 61

IUHTXHQWO\ REORQJ LQ VKDSH EXW DUH OLQHDU LQ VXEJ +HWHURFKDULV $W DQWKHVLV WKH DQWKHUV RI &DOLSKUXULD DQG (B VXEJ (XFKDULV DUH HUHFW EXW EHFRPH YHUVDWLOH DV WKH\ DJH ,Q VXEJ +HWHURFKDULV WKH DQWKHUV DUH YHUVDWLOH DW DQWKHVLV *\QRHFLXUQ 6WLJPD DQG VW\OH 7KH IORZHUV RI DOPRVW DOO (XFKDULV DQG &DOLSKUXULD VSHFLHV DUH SURWDQGURXV 6WLJPD UHFHSWLYLW\ GRHV QRW RFFXU XQWLO WKH VHFRQG RU WKLUG GD\ IROORZLQJ DQWKHVLV ,Q VRPH FDVHV WKH VWLJPD GRHV QRW IXOO\ H[SDQG XQWLO WKH SHULDQWK KDV EHJXQ WR VHQHVFH 7KH VW\OHV RI (XFKDULV DQG &DOLSKUXULD DUH XVXDOO\ H[VHUWHG EH\RQG WKH DQWKHUV PRVW IUHTXHQWO\ IURP FP ,Q VXEJ +HWHURFKDULV WKH VW\OHV DUH VRPHZKDW DVVXUJHQW DZD\ IURP WKH VWDPHQV DQG DUH H[VHUWHG ZHOO RYHU FP SDVW WKH DQWKHUV ,Q WZR VSHFLHV RI VXEJ (XFKDULV B( FDVWHOQDHDQD DQG (B SOLFDWD WKH VW\OH LV LQFOXGHG ZLWKLQ WKH FXS ,Q WKH IRUPHU VSHFLHV DXWRJDP\ VHHPV WR RFFXU ZLWK UHJXODULW\ DQG VWLJPD UHFHSWLYLW\ FRLQFLGHV ZLWK DQWKHVLV 7KH VWLJPD RI (XFKDULV DQG &DOLSKUXULD )LJ f LV REWXVHO\ WULEOREHG 7ULOREHG VWLJPDV DUH UHODWLYHO\ UDUH LQ WKH 3DQFUDWLRLGLQDH DQG 8UFHROLQD VLVWHU JURXS WR (XFKDULV DQG &DOLSKUXULD KDV D FDSLWDWH HQWLUH VWLJPD 7UDXE DQG 0ROGHQNH f DQG 7UDXE f FRQVLGHUHG D WULOREHG RU WULILG VWLJPD WKH DQFHVWUDO VWDWH LQ WKH $PDU\OOLGDFHDH 7KH VWLJPDV RI (XFKDULV DQG &DOLSKUXULD DUH SDSLOODWH 7KH SDSLOODH RI (XFKDULV DUH XQLFHOOXODU )LJ f ZKLOH WKRVH RI VXEJ &DOLSKUXULD )LJ f DUH PXOWLFHOOXODU FRQVLVWLQJ RI ERWK D VWDON FHOO DQG JORERVH KHDG FHOO ; &DOLFKDULV EXWFKHUL SXWDWLYHO\ D

PAGE 62

QDWXUDO K\EULG RI B( VDQGHUL DQG e VXEHGHQWDWD KDV WKH PXOWLFHOOXODU VWLJPDWLF SDSLOODH )LJ f FKDUDFWHULVWLF RI &DOLSKUXULD +HVORS+DUULVRQ DQG 6KLYDQQD f FKDUDFWHUL]HG WKH VWLJPDV RI (XFKDULV DQG &DOLSKUXULD DV GU\W\SH DQG VXJJHVWHG D FRUUHODWLRQ EHWZHHQ WKLV W\SH RI VWLJPD PRUSKRORJ\ DQG VSRURSK\WLF VHOIn LQFRPSDWLELOLW\ $FFRUGLQJ WR D QXPEHU RI ZRUNHUV +HVORS+DUULVRQ .UHVV /DUVHQ f KRZHYHU JDPHWRSK\WLF LQFRPSDWLELOLW\ LV FKDUDFWHULVHnF RI PRQRFRWV $W SUHVHQW WKH LQFRPSDWLELOLW\ V\VWHP RI (XFKDULV DQG &DOLSKUXULD WKRXJK DSSDUHQWO\ SUHVHQW LV XQNQRZQ VHH &KDSWHU ;f 2YDU\ DQG RYXOHV 7KH RYDU\ RI (XFKDULV DQG &DOLSKUXULD LV LQIHULRU DQG FRQWDLQV VHSWDO QHFWDULHV ,W LV JUHHQ ZLWK WKH H[FHSWLRQ RI WZR VSHFLHV ( DVWURSKLDOD DQG ( FDVWH QDHDQD VXEJ (XFKDULVf LQ ZKLFK WKH RYDU\ LV ZKLWH DW DQWKHVLV 2YDULHV RI (XFKDULV DQG &DOLSKUXULD UDQJH IURP REORQJHOOLSVRLG VXEJ +HWHURFKDULVf WR JORERVH RU VXEJORERVH VXEJ (XFKDULV DQG &DOLSKUXULDf 7KH RYDU\ RI VXEJ +HWHURFKDULV LV ERWK WULJRQRXV DQG URVWHOODWH DIWHU VHQHVFHQFH RI WKH SHULDQWK 2YDULHV RI &DOLSKUXULD DQG VXEJ (XFKDULV DUH QRQURVWHOODWH DQG VPRRWK ZLWK WKUHH H[FHSWLRQV (XFKDULV ERXFKHL YDU ERXFKHL YDU GDULHQHQVLV DQG ( F\DQHRVSHUPD KDYH D WULJRQRXV RYDU\ DW DQWKHVLV 7KH RYXOHV RI (XFKDULV DQG &DOLSKUXULD DUH JORERVH DQDWURSRXV DQG D[LOH LQ SODFHQWDWLRQ 2YXOH QXPEHU LV TXLWH YDULDEOH WKURXJKRXW ERWK JHQHUD :LWKLQ OLPLWV KRZHYHU RYXOH QXPEHU LV FKDUDFWHUn6WLF RI VSHFLHV RU VSHFLHV FRPSOH[HV 6XEJHQXV +HWHURFKDULV KDV WKH ODUJHVW RYXOH QXPEHU LQ (XFKDULV JHQHUDOO\ SHU ORFXOH EXW RFFDVLRQDOO\ DV ORZ DV LQ ( VDQGHUL ZKLFK RWKHUZLVH KDV WKURXJKRXW PRVW RI LWV UDQJHf DQG LQ ( DPD]QLFD ,Q ERWK VXEJ (XFKDULV DQG

PAGE 63

&DOLSKUXULD RYXOHV GR QRW QXPEHU PRUH WKDQ SHU ORFXOH (XFKDULV DVWURSKLDOD ( ERXFKHL B( ERQSODQGL L B( F\DQHRSVHUPD DQG B( XOHL FKDUDFWHULVWLFDOO\ KDYH RYXOHV SHU ORFXOH EXW UDUHO\ DV PDQ\ DV ,Q WKHVH VSHFLHV WKHUH LV D SRVLWLYH FRUUHODWLRQ EHWZHHQ UHGXFWLRQ LQ IORZHU QXPEHU DQG RYXOH QXPEHU 7UDXE DQG 0ROGHQNH f DQG 7UDXE f FRQVLGHUHG QXPHURXV RYXOHV DQ DQFHVWUDO FKDUDFWHU LQ WKH $PDU\OOLGDFHDH ,Q WKH 3DQFUDWLRLGLQDH DQ RYXOH QXPEHU RI FD SHU ORFXOH FKDUDFWHUL]HV WKH SXWDWLYHO\ DQFHVWUDO FRPSOH[ RI JHQHUD ZLWK W\SLFDO FUDWHULIRUP SDQFUDWLRLG IORUDO PRUSKRORJ\ KHDY\ IORUDO IUDJUDQFH DQG ZHOOGHYHORSHG VWDPLQDO FXSV 0HHURZ f 5HGXFHG RYXOH QXPEHU LV WKHUHIRUH OLNHO\ D GHULYHG FKDUDFWHU VWDWH )UXLW DQG 6HHG )UXLW 7KH PDWXUH IUXLW RI (XFKDULV DQG &DOLSKUXULD LV D WUL ORFXOLFLGDO FDSVXOH W\SLFDO RI WKH QRQEDFFDWH IUXLWHG $PDU\OOLGDFHDH ,Q IUXLW WKH SHGLFHO HORQJDWHV WR RU PRUH WLPHV LWV OHQJWK DW DQWKHVLV ,Q &DOLSKUXULD DQG ( VXEJ +HWHURFKDULV B( DQPDODf WKH FDSVXOH LV WKLQZDOOHG DQG JUHHQ VRPHWLPHV WXUQLQJ \HOORZ RU EURZQ DW GHKLVFHQFH ,Q VXEJ (XFKDULV KRZHYHU WKH FDSVXOH LV OHDWKHU\ DQG EULJKW RUDQJH )LJ f FRQWUDVWLQJ YLYLGO\ ZLWK WKH VKLQ\ EODFN RU EOXH VHHGV DW GHKLVFHQFH ,W LV SUREDEOH WKRXJK XQVXEVWDQWLDWHG WKDW WKH FRPELQDWLRQ RI IUXLW DQG VHHG FRORU IXQFWLRQV PLPHWLFDOO\ WR DWWUDFW DYLDQ GLVSHUVDO DJHQWV VHQVX YDQ GHU 3LMO f 7KLV W\SH RI IUXLW PRUSKRORJ\ LV XQLTXH DPRQJ QHRWURSLFDO $PDU\OOLGDFHDH 7KHUH LV D VLQJOH NQRZQ H[FHSWLRQ WR WKLV FKDUDFWHULVHF IUXLW PRUSKRORJ\ LQ VXEJ (XFKDULV (XFKDULV FDVWHOQDHDQD )LJ f SURGXFHV D FDSVXOH PXFK OLNH

PAGE 64

WKDW RI &DOLSKUXULD 7KH IUXLW RI WKLV VSHFLHV LV RIWHQ WDUGLO\ GHKLVFHQW DQG VRPHWLPHV DEVFLVHV EHIRUH RSHQLQJ WKRXJK WKH VHHGV ZLWKLQ DUH ULSH 7KH LQIUXFWHVFHQFH RI ( FDVWHQDHDQD EHQGV WR WKH JURXQG LQ DOO RWKHU VSHFLHV LW UHPDLQV HUHFWf D KDELW QRWHG LQ PDQ\ &ULQXP VSHFLHV +DQQLEDO f ,Q WKLV PDQQHU DQ LQGHKLVFHQW IUXLW PLJKW URW LQ FRQWDFW ZLWK WKH VXEVWUDWH WKHUHE\ UHOHDVLQJ WKH VHHGV 6HHG 5HJDUGOHVV RI WKH QXPEHU RI RYXOHV SHU ORFXOH LQ DQ\ VSHFLHV RI (XFKDULV DQG &DOLSKUXULD DOO EXW D IHZ DERUW DV WKH IUXLW PDWXUHV *HQHUDOO\ VHHGV DUH SUHVHQW SHU ORFXOH LQ PDWXUH FDSVXOHV EXW DV PDQ\ DV IRXU KDYH EHHQ REVHUYHG 7KH VHHG RI ERWK (XFKDULV DQG &DOLSKUXULD LV XVXDOO\ JORERVH RU HOOLSVRLG DQG WXUJLG WKH FRQVHTXHQFH RI FRSLRXV HQGRVSHUP DQG D KLJK PRLVWXUH FRQWHQW /HIW DW URRP WHPSHUDWXUH WKH VHHGV ZLOO VKULQN DZD\ IURP WKH WHVWD VRPHZKDW DV PRLVWXUH LV ORVW EXW DUH VWLOO FDSDEOH RI JHUPLQDWLRQ LQ WKLV FRQGLWLRQ /RQJWHUP YLDELOLW\ KDV QRW EHHQ WHVWHG 7KH VHHG RI VXEJ (XFKDULV )LJ f LV FKDUDFWHULVWLFDOO\ HOOLSVRLG DQG KDV D VKLQ\ VPRRWK EODFN EOXH LQ B( F\DQHRVSHUPDf WHVWD 7KH VLQJOH H[FHSWLRQ VR IDU NQRZQ LV DJDLQ ( FDVWHQDHDQD )LJ f 7KH VHHG RI WKLV VSHFLHV LV ZHGJHVKDSHG E\ FRPSUHVVLRQ LQ WKH FDSVXOH LV OHVV WXUJLG WKDQ VHHGV RI FRQVXEJHQHULF VSHFLHV DQG KDV D GXOO UXJRVH WHVWD 7KH VHHG RI B( DQPDOD VXEJ +HWHURFKDULVf LV JORERVH WR YHU\ VOLJKWO\ FRPSUHVVHG DQG KDV D EURZQ VOLJKWO\ UXJRVH WHVWD ,Q &DOL SKUXULD WKH VHHGV RI RQO\ B& NRUVDNRI ILL DQG B& VXEHGHQWDWD DUH NQRZQ 6HHGV RI &B NRUVDNRIILL DUH JORERVH WXUJLG DQG KDYH D VPRRWK OXVWURXV EURZQ WHVWD 6HHG RI & VXEHGHQWDWD LV VOLJKWO\ FRPSUHVVHG ZLWK D OXVWURXV EODFN EXW UXJRVH WHVWD

PAGE 65

6HHG VXUIDFH PRUSKRORJ\ )LJ f GRHV QRW UHYHDO PXFK WD[RQRPLFDOO\ XVHIXO LQIRUPDWLRQ 7KH WHVWD LV DOYHRODWH LQ DOO VSHFLHV H[DPLQHG ,Q ( ERXFKHL YDU GUHVVOHUL )LJ f DEXQGDQW ZD[ H[WUXVLRQV DUH IRXQG DFURVV WKH VXUIDFH 7KH WHVWD RI (XFKDULV DQG &DOLSKUXULD VHHGV LV FRPSRVHG RI SK\WRPHODQ +XEHU f D VLPSOH ODUJHO\ LQHUW FDUERQDFHRXV FRPSRXQG FKDUDFWHULVWLFDOO\ SUHVHQW LQ WKH VHHG FRDW RI QRQEDFFDWH IUXLWHG $PDU\OOLGDFHDH +XEHU 'DUOJUHQ DQG &OLIIRUG f :HUNHU DQG )DKQ f UHSRUWHG WKH RFFXUUHQFH RI SKHQROLF TXLRQHV LQ WKH SK\WRPHODQ OD\HU RI 3DQFUDWLXP VHHGV ,Q PRVW VSHFLHV RI (XFKDULV DQG &DOLSKUXULD WKH SK\WRPHODQ OD\HU LV DOO WKDW UHPDLQV RI WKH LQWHJXPHQWV )LJ f ,Q B( ERXFKHL KRZHYHU WKHUH LV DQ DGGLWLRQDO OD\HU RI LQWHJXPHQW WLVVXH FD ILYH FHOOV WKLFN LQWHUSRVHG EHWZHHQ WKH SK\WRPHODQ DQG WKH HQGRVSHUP )LJ f :KHWKHU WKLV PD\ EH D FRQVHTXHQFH RI WKH WHWUDSORLG FRQGLWLRQ RI WKLV VSHFLHV LV XQNQRZQ 0RVW RI WKH VHHG ERG\ RI (XFKDULV DQG &DOLSKUXULD LV WDNHQ XS E\ D FRSLRXV TXDQWLW\ RI HQGRVSHUP FKDUDFWHUL]HG E\ DEXQGDQW WUDQVIHU FHOOV )LJ f $W PDWXULW\ QR UHPQDQWV RI WKH QXFHOOXV ZHUH REVHUYHG 0RVW ZRUNHUV HJ %DNHU 7UDXE +XWFKLQVRQ 'DKOJUHQ HW DO f KDYH DOOLHG (XFKDULV DQG &DOLSKUXULD ZLWK +\PHQRFD LV (XU\FOHV DQG &DORVWHPPD LH WULEH (XFKDUHDHf RQ WKH EDVLV RI IOHVK\ VHHGV 7KH ODWWHU WKUHH JHQHUD GR LQGHHG KDYH IOHVK\ EXOELIRUP VHHGV WKDW DUH VRPHWLPHV YLYLSDURXV EXW WKH\ DUH QRW KRPRORJRXV VWUXFWXUHV 7KH ODUJH JUHHQ VHHG RI +\PHQRFDOLV LV XQLTXH LQ D QXPEHU RI UHVSHFWV 7KH EXON RI WKH VHHG ERG\ FRQVLVWV RI WZR ODUJH IOHVK\ LQWHJXPHQWV ZLWK D ZHOOGHYHORSHG YDVFXODU V\VWHP DQG DEXQGDQW

PAGE 66

FKORUHQFK\PRXV WLVVXH 5HQGOH :KLWHKHDG DQG %URZQ f 7KH HPEU\R FRQWDLQV D ODUJH DPRXQW RI VWRUHG VWDUFK :KLWHKHDG DQG %URZQ f :KLWHKHDG DQG %URZQ f FKDUDFWHUL]HG WKH VHHG ZKLFK GRHV QRW XQGHUJR DQ\ SHULRG RI GRUPDQF\ DV LQWHUPHGLDWH EHWZHHQ WUXH YLYLSDU\ DQG GRUPDQF\ $GGLWLRQDOO\ SRO\HPEU\RQ\ KDV EHHQ REVHUYHG IUHTXHQWO\ LQ VHHGV RI +\PHQRFDOOLV %DXPO 5HQGOH 7UDXE f 7KH VHHGV RI &DORVWHPPD DQG (XU\FOHV VXSHUILFLDOO\ UHVHPEOH VHHGV RI +\PHQRFDOOLV WKRXJK WKH\ QHYHU DFKLHYH WKH VL]H RI WKH ODWWHU $FFRUGLQJ WR D PXFKRYHUORRNHG UHYLHZ RI EXOELIRUP VHHGV LQ $PDU\OOLGDFHDH E\ 5HQGOH f WKH SURSDJXOH RI WKHVH WZR FORVHO\ UHODWHG $XVWUDODVLDQ JHQHUD LV QRW DFWXDOO\ D WUXH VHHG EXW UHSUHVHQWV DQ DGYHQWLWLRXV YHJHWDWLYH JURZWK $IWHU IHUWLOL]DWLRQ DW WKH FKDOD]DO HQG RI D QRUPDO RYXOH DGYHQWLWLRXV VKRRW DQG URRW JURZWK RFFXU DQG D WUXH EXOELO LV IRUPHG 7KH LQWHJXPHQWV DQG WKH UHPQDQWV RI WKH QXFHOOXV IRUP WKH EXOELOnV RXWHU FRDW 7KH WXUJLG VHHG RI (XFKDULV DQG &DOLSKUXSLD GHVSLWH D KLJK PRLVWXUH FRQWHQW ZKHQ ILUVW ULSH FDQQRW EH DFFXUDWHO\ GHVFULEHG DV IOHVK\ 7KLV EHFRPHV HYLGHQW LI WKH VHHG LV DOORZHG WR GHK\GUDWH VOLJKWO\ DW URRP WHPSHUDWXUH DQG LV PRVW DSSDUHQW LQ WKH KDUG VHHGV RI B( FDVWHQDHDQD ZKLFK DW FDSVXOH GHKLVFHQFH DUH OHVV WXUJLG WKDQ VHHGV RI RWKHU VSHFLHV RI VXEJ (XFKDULV 6HHGV RI (XFKDULV DQG &DOLSKUXULD KDYH D UHGXFHG LQWHJXPHQW UHSUHVHQWHG LQ PRVW FDVHV RQO\ E\ WKH FRPSUHVVHG SK\WRPHODQ OD\HU DQG KDYH QHYHU EHHQ REVHUYHG WR JHUPLQDWH YLYLSDURXVO\ 3K\WRPHODQ LV DEVHQW IURP WKH WHVWD RI WKH SVHXGRVHHGV RI (XU\FOHV DQG &DORVWHPPD ,W LV SUHVHQW LQ RQO\ D VLQJOH VSHFLHV RI +\PHQRFDOOLV +B TXLWRHQVLV +HUEHUW DQG SRVVLEO\ +

PAGE 67

KHOLDQWKD 5DYHQQDf ZKLFK KDV EHHQ VHJUHJDWHG LQWR D VHSDUDWH JHQXV /HSLGRFKLWRQ 6HDO\ f RQ WKLV EDVLV 6HHGV RI 3DQFUDWLXP DUH VWUXFWXUDOO\ PRVW VLPLODU WR WKRVH RI (XFKDULV DQG &DOLSKUXULD 7KRXJK YDULDEOH LQ PRUSKRORJ\ :HUNHU DQG )DKQ f VHYHUDO VSHFLHV RI 3DQFUDWLXP KDYH D KDUG WXUJLG FRPSUHVVHG VHHG ERG\ ZLWK FRSLRXV HQGRVSHUP 0HHURZ XQSXEO GDWD :HUNHU DQG )DKQ f $OO VSHFLHV RI 3DQFUDWLXP WKDW KDYH H[DPLQHG KDYH D SK\WRPHODQRXV WHVWD ZLWK DQ DOYHRODWH WHVWD 6HHGV RI (XFKDULV DQG &DOLSKUXULD GR KRZHYHU KDYH D KLJKHU PRLVWXUH FRQWHQW WKDQ WKRVH RI 3DQFUDWLXP DOO VSHFLHV RI ZKLFK RFFXU LQ [HULF WR VHDVRQDOO\ GU\ KDELWDWV

PAGE 68

)LJXUH 6HULDO WUDQYHUVH VHFWLRQV WKURXJK WKH VFDSH RI (XFKDULV FDVWHQDHDQD 6FKXQNH )/$6f S SUR[LPDO P PHGLDO G GLVWDO

PAGE 69

G 3

PAGE 70

)LJXUH 3HULDQWK WXEH PRUSKRORJ\ RI (XFKDULV DQG &DOLSKUXULD VSHFLHV RU K\EULGV $ & VXEHGHQWDWD 0HHURZ )/$6f % ; &DOLFKDULV EXWFKHUL 0HHURZ )/$6f & ( VDQGHUL &XDWUHFDVDV )f ( DPD]QLFD 6FKXQNH )/$6f ‹ ( DVWURSKLDOD 0DGLVRQ 6(/f f

PAGE 72

)LJXUHV $QGURHFLDO PRUSKRORJ\ RI (XFKDULV DQG &DOLSKUXULD VSHFLHV ( DVWURSKLDOD 0DGLVRQ 6(/f ( DPD]QLFD 6FKXQNH ) )/$6f VXEHGHQWDWD 0HHURZ r )/$6f

PAGE 74

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV DQG &DOLSKUXULD VWLJPDV B( DVWURSKLDOD 0HHURZ )/$6f ( SL L FDWD 3ORZPDQ )/$6f & VXEHGHQWDWD 0HHURZ f & NRUVDNRIILL 0HHURZ )7U$67 ( ; JUDQGLIORUD 70HHURZ )/$6f ( DQPDOD 0HHURZ (/$6f ( VDQGHQ &XDWUHFDVDV )7 77 ( DPD]QLFD 6FKXQNH 7 )/$6f L &DOL FKDQnV EXWFKHUL 0HHURZ )/$6f 77, VFDOHV LP

PAGE 76

)LJXUHV )UXLWV DQG VHHGV RI (XFKDULV VXEJ (XFKDULV 0DWXUH FDSVXOHV ( IRUPRVD 6FKXQNH )/$6f (B FDVWHOQDHDQD 6FKXQNH 7I! )/$6ff f 6HHGV ( ERXFKHL YDU ERXFKHL 0HHURZ )/$6f ( FDVWHOQDHDQD 6FKXQNH )/$6f

PAGE 78

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV DQG &DOLSKUXULD VHHG VXUIDFHV (B DVWURSKLDOD 0HHURZ )/$6f (B ERXFKHL YDU GUHVVOHUL 0HHURZ )/$6f ( IRUPRVD 0HHURZ fa B/ FDVWH@QDHDQD 6FKXQNH f )/$6f & NRUVDNRIILL 0HHURZ (O$6f & VXEHGHQWDWD 0HHURZ )/$6f

PAGE 80

)LJXUHV 3KRWRPLFURJUDSKV RI (XFKDULV DQG &DOLSKUXULD VHHG DQDWRP\ & NRUVDNRIILL 0HHURZ )/$6f a /RQJLWXGLQDO VHFW7RQ WKURXJK ZKROH VHHG 77 7UDQVYHUVH VHFWLRQ WKURXJK WHVWD DQG SDUW RI HQGRVSHUP /RQJLWXGLQDO VHFWLRQ WKURXJK UDGLFOH RI HPEU\R /RQJLWXGLQDO VHFWLRQ WKURXJK DSH[ RI HPEU\R /RQJLWXGLQDO VHFWLRQ WKURXJK YDVFXODU LQLWLDO RI HPEU\R 6FDOH \WLP (B ERXFKHL YDU ERXFKHL 0HHURZ )/$6f 7UDQVYHUVH VHFWLRQ WKURXJK WHVWD 1RWH VHYHUDO OD\HUV RI DGGLWLRQDO LQWHJXPHQW FHOOV EHORZ RXWHU SK\WRPHODQ OD\HU (QGRVSHUP 1RWH WUDQVIHU WLVVXH ZLWK SLWWHG ZDOOV DQG SODVPRGHVPDWD (B FDVWHQDHDQD 6FKXQNH )/$6f 7UDQVYHUVH VHFWLRQ WKURXJK WHVWD DQG SDUW RI HQGRVSHUP 7UDQYHUVH VHFWLRQ WKURXJK HPEU\R $OO VFDOHV MXP XQOHVV RWKHUZLVH LQGLFDWHG HP HPEU\R HQ HQGRVSHUP W WHVWD

PAGE 82

&+$37(5 9 32//(1 0253+2/2*< 0DWHULDOV DQG 0HWKRGV 6FDQQLQJ (OHFWURQ 0LFURVFRS\ 6(0f )UHVK GHKLVFHG DQWKHUV ZHUH UHPRYHG IURP OLYLQJ FROOHFWLRQV IL[HG LQ )$$ DQG SROOHQ H[WUDFWHG 3ROOHQ IURP KHUEDULXP VSHFLPHQV ZDV WUHDWHG DFFRUGLQJ WR WKH SURFHVV RI /\QFK DQG :HEVWHU f 6DPSOHV ZHUH WUHDWHG IRU DQG H[DPLQHG ZLWK 6(0 DV GHVFULEHG IRU OHDI VXUIDFHV LQ &KDSWHU ,,, 0HDVXUHPHQWV RI PXUL DQG OXPLQD ZHUH GHULYHG IURP 6(0 SKRWRPLFURJUDSKV 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ 7(0f 3ROOHQ JUDLQV ZHUH IL[HG IRU KU LQ b JOXWDUDOGHK\GH LQ 0 1DFDFRG\ODWH DW S+ ZDVKHG WKUHH WLPHV IRU PLQ ZLWK b VROXWLRQ RI VXFURVH LQ 0 1DFDFRG\ODWH DW S+ SRVWIL[HG IRU KU LQ b 2V2A cQ 0 1DFDFRG\ODWH ZDVKHG DV DERYH WKUHH WLPHV IRU PLQ DQG EURXJKW WKURXJK DQ (W2+ GHK\GUDWLRQ VHULHV 'HK\GUDWHG SROOHQ ZDV SODFHG WKURXJK WZR SXUH SURS\OHQH R[LGH EDWKV WKHQ SODFHG LQ SURS\OHQH R[LGHHSRQ IRU KU SURS\OHQH R[LGHHSRQ IRU KU DQG SXUH HSRQ IRU KU 3ROOHQ ZDV SRO\PHUL]HG IRU KU DW r & VHFWLRQHG DQG YLHZHG RQ D =HLVV $ HOHFWURQ PLFURVFRSH DW NY

PAGE 83

/LJKW 0LFURVFRS\ 3ROOHQ VL]H PHDVXUHPHQWV ZHUH DYHUDJHG IRU WZHQW\ JUDLQV H[DPLQHG ZLWK D 1LNRQ /DSRSKRW SKRWRPLFURVFRSH 3ROOHQ 9LDELOLW\ 3ROOHQ ZDV VWDLQHG ZLWK $OH[DQGHUnV f VWDLQ IRU KUV DW r & 3HUFHQWDJHV JLYHQ DUH EDVHG RQ WKH QXPEHU RI JUDLQV VWDLQLQJ IURP D JUDLQ VDPSOH 6WDWLVWLFDO DQDO\VLV &RUUHODWLRQV RI SROOHQ VL]H ZLWK VW\OH OHQJWK ZHUH SHUIRUPHG ZLWK 6$6 UHOHDVH RQ WKH 1RUWKHDVW 5HJLRQDO 'DWD &HQWHU 1(5'&f RI WKH 8QLYHUVWLW\ RI )ORULGD 7HUPLQRORJ\ 7HUPLQRORJ\ IROORZV (UGWPDQ f DQG :DONHU DQG 'R\OH f 5HVXOWV 3ROOHQ JUDLQV RI DOO VSHFLHV RI (XFKDULV DQG &DOLSKUXULD )LJ f DUH ERDWVKDSHG HOOLSWLF PRQRVXOFDWH KHWHURSRODU DQG ELODWHUDO LQ V\PPHWU\ 7KH JHUPLQDWLRQ IXUURZ VXOFXVf UXQV WKH OHQJWK RI WKH SUHVXPHG GLVWDO IDFH RI WKH JUDLQ )LJ f ([LQH VFXOSWXULQJ LV VHPLWHFWDWHFROXPHOODWH DQG UHWLFXODWH LQ DOO VSHFLHV H[DPLQHG )LJ f FRPSRVHG RI D QHWZRUN RI PXUL UHWLFXOXP ZDOOVf DQG OXPLQD LQWHUYHQLQJ JDSVf

PAGE 84

3ROOHQ *UDLQ 6L]H 7DEOH f 3ROOHQ JUDLQ VL]H LV TXLWH YDULDEOH LQ (XFKDULV DQG &DOLSKUXULD DQG D QRWDEOH VL]H FODVV VHQVX :DONHU DQG 'R\OH f GLIIHUHQWLDO RFFXUV EHWZHHQ (XFKDULV DQG &DOL SKUXULD 3ROOHQ RI (XFKDULV IDOOV LQWR WKH ODUJH VL]H FODVV RI :DONHU DQG 'R\OH ORQJHVW HTXDWRULDO GLDPHWHU APf 3ROOHQ RI (XFKDULV KDV DYHUDJH ORQJHVW HTXDWRULDO GLDPHWHUV JUHDWHU WKDQ \XP ZLWK WZR H[FHSWLRQV B( FDVWH QDHDQD DQG B( SL L FDWD VXEVS EUHYLGHQWDWD 3ROOHQ RI &DOLSKUXULD IDOOV LQWR WKH PHGLXP VL]H FODVV RI :DONHU DQG 'R\OH f ZLWK DYHUDJH ORQJHVW HTXDWRULDO GLDPHWHUV RI QHDU AP 7KH JUHDWHVW QXPEHU RI VSHFLHV RI (XFKDULV KDYH SROOHQ JUDLQV ZLWK ORQJHVW HTXDWRULDO GLDPHWHUV EHWZHHQ DQG MP (XFKDULV DVWURSKLDOD VXEJ (XFKDULVf KDV WKH ODUJHVW SROOHQ JUDLQV LQ WKH JHQXV ZLWK ORQJHVW HTXDWRULDO GLDPHWHUV RI 8UQ 3RODU GLDPHWHU RI SROOHQ RI (XFKDULV UDQJHV IURP f XUQ 3RODU GLDPHWHU OHVV WKDQ XP LV UDUH LQ WKHVH VXEJHQHUD 3RODU GLDPHWHU RI SROOHQ RI &DOLSKUXULD LV DOZD\V OHVV WKDQ AP &RQVLGHUDEOH LQIUDVSHFLILF YDULDWLRQ SROOHQ VL]H LV HYLGHQW LQ VRPH VSHFLHV RI (XFKDULV 7DEOH f (XFKDULV IRUPRVD LV D ZLGHUDQJLQJ DQG PRUSKRORJLDOO\ YDULDEOH VSHFLHV VHH &KDSWHU ;,,f /RQJHVW DYHUDJH HTXDWRULDO GLDPHWHU DPRQJ WKH SRSXODWLRQV VDPSOHG RI WKLV VSHFLHV VKRZV D b GLIIHUHQFH EHWZHHQ WKH VPDOOHVW DQG ODUJHVW YDOXH 7KH WZR VXEVSHFLHV RI B( SL L FDWD VKRZ D b GLIIHUHQWLDO LQ SROOHQ VL]H 2WKHU VSHFLHV DUH PXFK PRUH XQLIRUP LQ SROOHQ JUDLQ VL]H (XFKDULV DVWURSKLDOD LV D QDUURZ HQGHPLF UHVWULFWHG WR ZHVWHUQ (FXDGRU ZLWK GLVWLQFWLYH OHDI DQG DQGURHFLDO PRUSKRORJ\ WKDW LV FRQVLVWHQW DPRQJ DOO SRSXODWLRQV 7KUHH SRSXODWLRQV RI WKLV VSHFLHV VDPSOHG VKRZ RQO\ D b

PAGE 85

GLIIHUHQFH (XFKDULV ERXFKHL D WHWUDSORLG VSHFLHV DOVR RI OLPLWHG GLVWULEXWLRQ EXW KLJKO\ SRO\PRUSKLF VKRZV RQO\ D b GLIIHUHQFH EHWZHHQ WKH ODUJHVW DQG VPDOOHVW YDOXHV 7KH VPDOOHVW SROOHQ JUDLQV LQ (XFKDULV DQG &DOLSKUXULD DUH IRXQG LQ VSHFLHV ZLWK WKH VPDOOHVW IORZHUV 7DEOH f LH DOO VSHFLHV RI &DOL SKUXUL D DQG LQ B( VXEJ (XFKDULV (B FDVWH QDHDQD 1RQHWKHOHVV RQH RI WKH ODUJHVW IORZHUHG VSHFLHV B( VDQGHUL VXEJ +HWHURFKDULVf KDV VPDOO SROOHQ JUDLQV UHODWLYH WR RWKHU ODUJHIRZHUHG VSHFLHV 7KH ODUJHVW SROOHQ JUDLQV LQ WKH JHQXV DUH IRXQG LQ (B DVWURSKLDOD D VSHFLHV DW WKH VPDOOHU HQG RI IORZHU VL]H UDQJH LQ WKH JHQXV 6LQFH VW\OH OHQJWK LV GLUHFWO\ FRUUHODWHG ZLWK SHULDQWK VL]H LQ (XFKDULV DQG &DOLSKUXULD VW\OH OHQJWK ZDV WHVWHG IRU FRUUHODWLRQ ZLWK ORQJHVW HTXDWRULDO GLDPHWHU RI SROOHQ RI VSHFLHV LQ 7DEOH 3HDUVRQ FRUUHODWLRQ FRHIILFLHQW IRU VW\OH OHQJWK ZLWK SROOHQ VL]H RI (XFKDULV DQG &DOLSKUXULD FROOHFWLRQV UHSUHVHQWLQJ VSHFLHV ZDV RQO\ DQG WKHUHIRUH QRW VLJQLILFDQW VLJQLILFDQFH LV LQGLFDWHG E\ SUR[LPLW\ RI YDOXH WR f ([LQH 6FXOSWXULQJ )LJ 7DEOH f 7KH VHPLWHFWDWH UHWLFXODWH H[LQH VFXOSWXULQJ SDWWHUQ RI (XFKDULV DQG &DOLSKUXULD PD\ EH VXEGLYLGHG LQWR WKUHH FODVVHV RQ WKH EDVLV RI OXPLD ZLGWK 7KH ILUVW GHVLJQDWHG 7\SH LQ 7DEOH LV FKDUDFWHULVWLF RI PRVW VSHFLHV RI (XFKDULV )LJ f 7KH UHWLFXOXP RI 7\SH H[LQH LV FRDUVH ZLWK ODUJHVW OXPLQD ZLGWKV HTXDO WR RU JUHDWHU WKDQ AP 7\SH H[LQH FDQ EH IXUWKHU VXEGLYLGHG RQ WKH EDVLV RI PXUL ZLGWK ,Q 7\SH $ )LJ f WKH PXUL DUH HTXDO WR RU JUHDWHU WKDQ MP ZLGH 7KLV LV WKH PRVW FRPPRQ H[LQH PRUSKRORJ\ RI

PAGE 86

(XFKDULV ,Q 7\SH % H[LQH WKH PXUL DUH OHVV WKDQ MXP ZLGH 7KLV LV FKDUDFWHULVWLF RI D VLQJOH VSHFLHV RI VXEJ (XFKDULV (B DVWURSKLDOD PXUL FD \XP ZLGH )LJ f ,Q 7\SH H[LQH OXPLQD DUH LP ZLGH DQG D PDUNHG UHGXFWLRQ LQ UHWLFXOXP FRDUVHQHVV RFFXUV DW WKH PHULGLRQDO IDFHV RI WKH JUDLQ 2QO\ WZR VSHFLHV RI (XFKDULV KDYH 7\SH PRUSKRORJ\ (B R[\DQGUD VXEJ (XFKDULV )LJ f B( VDQGHUL VXEJ +HWHURFKDULV )LJ f DQG RQH VSHFLHV RI &DOLSKUXULD B& NRUVDNRIIL )LJ f :LGWK RI WKH PXUL KRZHYHU LV YDULDEOH DPRQJ WKH VSHFLHV ZLWK 7\SH VFXOSWXULQJ UDQJLQJ IURP OHVV WKDQ \XP LQ (B R[\DQGUD WR FD AP ZLGH LQ (B VDQGHUL DQG FD \XP ZLGH LQ B& NRUVDNRIIL 7\SH H[LQH VFXOSWXULQJ LV RQO\ FKDUDFWHULVWLF RI WKH &RORPELDQ VSHFLHV RI &DOLSKUXULD )LJ f 7\SH VFXOSWXULQJ LV ILQHO\ UHWLFXODWH ZLWK OXPLQD RQO\ \P ZLGH DQG WKH PXUL \XP ZLGH $V LQ 7\SH VFXOSWXULQJ WKH UHWLFXOXP LV SUHGRPLQDQWO\ FRQVLVWHQW LQ FRDUVHQHVV WKURXJKRXW WKH JUDLQ VXUIDFH 3ROOHQ :DOO 8OWUDVWUXFWXUH )LJ f (XFKDULV DQG &DOLSKUXULD SROOHQ JUDLQV DUH UHPDUNDEO\ XQLIRUP LQ WKHLU H[LQH VWUDWLILFDWLRQ SDWWHUQV 7KH\ DUH FRPSOHWHO\ HNWH[LQRXV LQ FRPSRVLWLRQ 7KH FROXPHOODH DULVH IURP D WKLQ IRRWOD\HU XVXDOO\ FD MP WKLFNf DQG WKH LQWLQH LV DV WKLFN RU WKLFNHU WKDQ WKH H[LQH 7KH WHFWXP LV TXLWH IUDJLOH DQG XVXDOO\ FD \XP WKLFN 1R FKDQQHOOLQJ LV DSSDUHQW LQ HLWKHU WKH H[LQH RU LQWLQH

PAGE 87

'LVFXVVL RQ /DUJH ERDWVKDSHGHOOL SWL F PRQRVXOFDWH SROOHQ JUDLQV ZLWK UHWLFXODWH H[LQH PRUSKRORJ\ DUH WKH PRVW FRPPRQ W\SH RI SROOHQ IRXQG LQ WKH $PDU\OOLGDFHDH (UGWPDQ 0HHURZ DQG 'HKJDQ :DONHU DQG 'R\OH f 6LPLODU PRUSKRORJ\ KDV EHHQ UHSRUWHG IRU PDQ\ /LOLDFHDH VHQVX ODWR (UGWPDQ :DONHU DQG 'R\OH =DYDGD f DQG FRQIRUPV WR WKH IRVVLO IRUP JHQXV /LOLDFLGLWHV &RXSHU RQH RI WKH PDMRU DQJLRVSHUP SROOHQ W\SHV GHVFULEHG IURP HDUO\ &UHWDFHRXV GHSRVLWV 'R\OH :DONHU DQG :DONHU f 7KLV W\SH RI SROOHQ PRUSKRORJ\ DSSHDUV WR EH EDVLF WR WKH PRQRFRW\OHGRQRXV RUGHUV LQ JHQHUDO 'R\OH f $PRQJ WKH $PDU\OOLGDFHDH RQO\ RQH JURXS RI JHQHUD VKRZ D UDGLFDO GHSDUWXUH IURP WKLV EDVLF SROOHQ PRUSKRORJ\ &ULQXP DQG LWV DOOLHV >WULEHV &ULQHDH 3D[f 7UDXE DQG 6WUXPDULHDH 6DOLVE VHQVX 7UDXE f@ DOO KDYH ELVXOFXODWH SROOHQ DQG VSLQXORVH H[LQH VFXOSWXULQJ 'DKOJUHQ DQG &OLIIRUG (UGWPDQ 1RUGDO HW DO 0HHURZ XQSXEO GDWDf :LWK WKH H[FHSWLRQ RI &ULQXP WKHVH JHQHUD DUH UHVWULFWHG WR $IULFD PDQ\ RI WKHP HQGHPLF WR 6RXWK $IULFD ,Q D UHPDUNDEOH H[DPSOH RI FRQYHUJHQFH 'RQRJKXH f UHSRUWHG D VLPLODU GLYHUJHQFH LQ &DSULIROLDFHDH 7KH 7\SH H[LQH PRUSKRORJ\ WKDW LV FKDUDFWHULVWLF RI PRVW (XFKDULV SROOHQ VHHPV WR KDYH SK\ORJHQHWLF VLJQLILFDQFH ZLWKLQ LQIUDIDPLO\ 3DQFUDWLRLGLQDH 0HHURZ 0HHURZ DQG 'HKJDQ f $OO RU VRPH RI WKH VSHFLHV RI HDFK RI WKH JHQHUD ZLWK SXWDWLYHO\ SULPLWLYH SDQFUDWLRLG IORUDO PRUSKRORJ\ LH (XFKDULV +\PHQRFDOOLV 3DPLDQWKH 6WDSI 3DQFUDWLXP DQG 3DUDPRQJDLD 9HODUGHf KDYH ODUJH WR YHU\ ODUJH FRDUVHO\ UHWLFXODWH SROOHQ 7KH SROOHQ RI UHODWHG JHQHUD ZLWK

PAGE 88

GLYHUJHQW IORUDO PRUSKRORJ\ VKRZV UHGXFWLRQ WUHQGV LQ ERWK VL]H DQG UHWLFXOXP FRDUVHQHVV 0HHURZ 0HHURZ DQG 'HKJDQ f 5HGXFWLRQ LQ VL]H DQG UHWLFXOXP FRDUVHQHVV KDYH EHHQ FRQVLGHUHG HYROXWLRQDU\ WUHQGV IRU DQJLRVSHUP SROOHQ LQ JHQHUDO :DONHU DQG 'R\OH f &RORPELDQ VSHFLHV RI &DOLSKUXULD )LJ f VKRZ WKH JUHDWHVW GHJUHH RI GLYHUJHQFH IRU WKHVH SROOHQ FKDUDFWHUV LQ FRPSDULVRQ ZLWK (XFKDULV 7KH GLIIHUHQWLDWLRQ RI WKH UHWLFXOXP LQWR FRDUVH DQG ILQH DUHDV FKDUDFWHULVWLF RI VSHFLHV ZLWK 7\SH H[LQH LV UHVWULFWHG WR PRQRFRW SROOHQ 'R\OH :DONHU DQG :DONHU f DQG KDV EHHQ REVHUYHG LQ VRPH /L LDFLGL WHV SROOHQ IURP WKH HDUO\ &UHWDFHRXV :DONHU DQG :DONHU f 7KH HYROXWLRQDU\ SRODULW\ RI WKLV FKDUDFWHU LV XQFOHDU KRZHYHU 0HHURZ DQG 'HKJDQ f GHVFULEHG D WUDQVIRUPDWLRQ VHULHV IURP DXULFXODWH SROOHQ WKURXJK GLPRUSKLF UHWLFXOXP WR KRPRJHQHRXV UHWLFXOXP DPRQJ WKH VXEJHQHUD RI +\PHQRFDOOLV VHQVX 7UDXE f ZKLFK ZRXOG VXJJHVW WKDW WKH KRPRJHQHRXV UHWLFXOXP LV DQ DGYDQFHG FKDUDFWHU VWDWH 7KH WKUHH VSHFLHV ZLWK GLPRUSKLF H[LQH VFXOSWXULQJ B( R[\DQGUD )LJ ( VDQGHUL )LJ DQG B& NRUVDNRIIL )LJ f HDFK UHSUHVHQW LVRODWHG WD[D RI WKHLU UHVSHFWLYH JHQXV RU VXEJHQHUD VHH &KDSWHU ;,f 7KH GLPRUSKLF UHWLFXOXP LQ WKHVH WKUHH VSHFLHV PD\ WKXV EH V\PSOHVLRPRUSKRXV 2Q WKH RWKHU KDQG HDFK RI WKUHH VSHFLHV GLIIHU LQ PXUL ZLGWK WKXV WKH 7\SH H[LQH PRUSKRORJ\ PD\ KDYH KDG DQ LQGHSHQGHQW DQG WKXV GHULYHG RULJLQ LQ HDFK RI WKH WKUHH ,Q ZLGWK RI ERWK PXUL DQG OXPLQD WKH SROOHQ RI (B R[\DQGUD )LJ f UHVHPEOHV WKDW RI 8UFHROLQD VLVWHU JURXS WR (XFKDULV WKRXJK SROOHQ RI WKH ODWWHU JHQXV ILWV WKH PHGLXP VL]H FODVV RI :DONHU DQG 'R\OH DQG GRHV QRW H[KLELW D VXEVWDQWLDO GLIIHUHQWLDWLRQ RI WKH UHWLFXOXP LQWR

PAGE 89

FRDUVH DQG ILQH DUHDV )LJ LQ &KDSWHU ;,f (XFKDULV R[\DQGUD LV D SUREOHPDWLF VSHFLHV PRUSKRORJLFDOO\ DV ZHOO ZLWK FHUWDLQ FKDUDFWHUV RI LQWHUPHGLDF\ EHWZHHQ (XFKDULV DQG 8UFHROLQD SDUWLFXODUO\ LQ DQGURHFLDO PRUSKRORJ\ VHH &KDSWHU ;,,f KDYH VXJJHVWHG WKDW B( R[\DQGUD PD\ UHSUHVHQW D UHOLFW WD[RQ UHODWHG WR WKH DQFHVWRU RI 8UFHROLQD RU D SRVVLEOH LQWHUJHQHULF K\EULG VHH &KDSWHU ;,,f EXW WKLV VSHFLHV LV DW SUHVHQW WRR SRRUO\ NQRZQ WR FRQILUP DQ\ RI VHYHUDO K\SRWKHVHV FRQFHUQLQJ LWV RULJLQV =DYDGD f DVVRFLDWHV UHWLFXODWH H[LQH VFXOSWXULQJ ZLWK VSRUSK\WLF VHOILQFRPSDWDELLW\ 66,f 7KRXJK WKH 6, V\VWHP RI (XFKDULV DQG &DOLSKUXULD LI SUHVHQW LV XQNQRZQ WZR PRUSKRORJLFDO FKDUDFWHUV RI WKH JHQXVf§ SROOHQ VFXOSWXULQJ DQG VWLJPD W\SH +HVORS+DUULVRQ DQG 6KLYDQQD ff§ KDYH EHHQ FRUUHODWHG ZLWK VSRURSK\WLF 6, GHVSLWH WKH IDFW WKDW RQO\ JDPHWRSK\WLF 6, KDV EHHQ UHSRUWHG IRU PRQRFRWV +HVORS +DUULVRQ .UHVV /DUVHQ f .UHVV DQG 6WRQH f UHYLHZHG SROOHQ ZDOO XOWUDVWUXFWXUH RI PRQRFRWV 7KH ODFN RI HQGH[LQH LQ WKH SROOHQ JUDLQ ZDOO DSSHDUV WR EH D YLUWXDOO\ XQLYHUVDO FKDUDFWHULVWLF RI PRQRFRW SROOHQ 7KH WKLQ IRRW OD\HU DQG FROXPHOODWH VWUXFWXUH RI WKH H[LQH IRXQG LQ (XFKDULV DQG &DOLSKUXULD LV FRPPRQ WR DOO RWKHU JHQHUD RI WKH 3DQFUDWLRLGLQDH WKDW KDYH H[DPLQHG 0HHURZ XQSXEO GDWD 0HHURZ DQG 'HKJDQ f DQG PD\ EH EDVLF WR WKH /LOLIORUDH LQ JHQHUDO 'R\OH :DONHU DQG :DONHU f 7KH SDWWHUQ RI H[LQH VWUDWLILFDWLRQ LQ WKH SDQFUDWLRLG $PDU\OOLGDFHDH WKXV DSSHDUV KLJKO\ FRQVHUYHG 3ROOHQ JUDLQ VL]H DQG VW\OH OHQJWK KDV EHHQ FRUUHODWHG LQ VRPH LQYHVWLJDWLRQV %DNHU DQG %DNHU /HH 3OLWPDQQ DQG /HYLQ 6FKQDFN DQG &RYDV 7D\ORU DQG /HYLQ f EXW QRW LQ RWKHUV

PAGE 90

&UXGHQ DQG 0LOOHU:DUG 'DUZLQ *HUPHUDDG HW DO *DQGHUV +DPPHU f &UXGHQ DQG /\RQ f REVHUYHG WKDW DOO VWXGLHV ZKLFK VKRZHG D VWURQJ FRUUHODWLRQ LQYROYHG UHODWHG VSHFLHV ZKLOH QRQFRUUHODWLQJ VWXGLHV LQYROYHG XQUHODWHG WD[D 7KH\ WHVWHG FRUUHODWLRQV EHWZHHQ ERWK VW\OH OHQJWK DQG VWLJPD GHSWK DQ DSSUR[LPDWLRQ RI WKH GLVWDQFH D SROOHQ WXEH PXVW JURZ WR UHDFK H[RJHQRXV UHVRXUFHV LQ WKH WUDQVPLVVLRQ WLVVXH RI WKH VW\OHf DQG SROOHQ JUDLQ YROXPH DPRQJ VSHFLHV RI VHYHUDO JHQHUD LQ VHYHUDO IDPLOLHV &UXGHQ DQG /\RQ FRQFOXGHG WKDW VW\OH OHQJWK KDV OLWWOH FRUUHODWLRQ ZLWK SROOHQ VL]H ZKLOH VWLJPD GHSWK ZDV KLJKO\ FRUUHODWHG ZLWK VW\OH OHQJWK :KHUH VW\OH OHQJWK DQG SROOHQ JUDLQ YROXPH GR FRUUHODWH LH DPRQJ UHODWHG VSHFLHV WKH\ VXJJHVW WKDW SK\ORJHQ\ UDWKHU WKDQ IXQFWLRQ LV UHSUHVHQWHG 7KH\ IXUWKHU FRQFOXGH WKDW SROOHQ JUDLQV QHHG QRW FRQWDLQ VXIILFLHQW HQGRJHQRXV UHVRXUFHV WR UHDFK WKH RYXOHV EXW RQO\ HQRXJK IRU SROOHQ WXEHV WR JURZ WKURXJK WKH VWLJPD DQG UHDFK H[RJHQRXV VXEVWDQFHV LQ WKH VW\ODU WUDQVPLVVLRQ WLVVXH ,Q (XFKDULV DQG &DOLSKUXULD DV D ZKROH OLWWOH FRUUHODWLRQ EHWZHHQ VW\OH OHQJWK DQG SROOHQ JUDLQ VL]H DV UHSUHVHQWHG E\ ORQJHVW HTXDWRULDO GLDPHWHU UDWKHU WKDQ YROXPHf LV HYLGHQW 7DEOH f 6WLJPD GHSWK LQ VR IDU DV XQGHUVWDQG &UXGHQ DQG /\RQnV GHWHUPLQDWLRQ RI WKLV PHDVXUH GRHV QRW VHHP WR YDU\ DSSUHFLDEO\ DPRQJ VSHFLHV RI (XFKDULV 7KH VWLJPD RI B( DVWURSKLDOD WKH VSHFLHV ZLWK WKH ODUJHVW SROOHQ JUDLQV LQ (XFKDULV LV QR ODUJHU RU GHHSHU WKDQ WKDW RI (B SL L FDWD WKH VSHFLHV RI VXEJ (XFKDULV ZLWK WKH VPDOOHVW SROOHQ JUDLQ

PAGE 91

&RQHXVLRQV ,Q FKDUDFWHULVWLFV RI SROOHQ JUDLQ VL]H PHGLXP VL]H FODVVf DQG H[LQH VFXOSWXULQJ 7\SH f &DOLSKUXULD VKRZV WKH JUHDWHVW GHJUHH RI GLYHUJHQFH IURP WKH SXWDWLYHO\ DQFHVWUDO ODUJH FRDUVHO\ UHWLFXODWH SROOHQ JUDLQ FKDUDFWHULVWLF RI PRVW VSHFLHV RI (XFKDULV 7KH 7\SH H[LQH VFXOSWXULQJ RI (XFKDULV VKRZV UHODWLRQVKLS WR WKH SROOHQ PRUSKRORJ\ RI RWKHU JHQHUD RI LQIUD IDPLO\ 3DQFUDWLRLGLQDH ZLWK VLPLODU IORUDO PRUSKRORJ\ LH +\PHQRFDOOLV 3DPLDQWKH 3DQFUDWLXUQ DQG 3DUDPRQJDLD 0HHURZ 0HHURZ DQG 'HKJDQ f 3ROOHQ JUDLQ VL]H LQ (XFKDULV GRHV QRW GHPRQVWUDWH DQ\ REYLRXV FRUUHODWLRQ ZLWK IORZHU VL]H VW\OH OHQJWKf 7KH ODUJH DPRXQW RI YDULDWLRQ LQ SROOHQ JUDLQ VL]H LQ D IHZ VSHFLHV RI (XFKDULV PD\ VXJJHVW WKDW WKLV FKDUDFWHU XQGHU FHUWDLQ FRQGLWLRQV LV VXEMHFW WR DV PXFK LQIUDVSHFLILF YDULDWLRQ DV FKDUDFWHUV RI YHJHWDWLYH DQG IORUDO PRUSKRORJ\

PAGE 92

7DEOH 3ROOHQ PRUSKRORJ\ DQG VW\OH OHQJWK RI (XFKDULV DQG &DOLSKUXULD VSHFLHV $OO YRXFKHU VSHFLPHQV DUH GHSRVLWHG DW )/$6 XQOHVV RWKHUZLVH VWDWHG 7$;21 928&+(5 32/$5 ',$0(7(5 MXPf /21*(67 (48$725,$/ ',$0(7(5 -Pf (;,1( 7<3( 67
PAGE 93

7DEOH f§FRQWLQXHG 7$;21 928&+(5 32/$5 ',$0(7(5 \XPf ( FDQGLGD 0HHURZ f 0HHURZ f 'RGVRQ HW DO f§P\ f 6FKXQNH % f ( FDVWHOQDHDQD 6FKXQNH f ( F\DQHRVSHUPD 0HHURZ f ( IRUPRVD 0HHURZ 0HHURZ f 0HHURZ f /21*(67 (;,1( 67
PAGE 94

7DEOH f§FRQWLQXHG 7$;21 928&+(5 32/$5 ',$0(7(5 XPf %HVVH HW DO V Q 76)/7 f 6FKXQNH f 6FKXQNH f ( R[\DQGUD +XWFKLVRQ HW DO 8&7 f ( SOLFDWD VXEVS SLL FDWD 3ORZPDQ f ( SOLFDWD VXEVS EUHYLGHQWDWD 0HHURZ f ( XOHL 0HHURZ f /21*(67 (;,1( 67
PAGE 95

7DEOH f§FRQWLQXHG 7$;21 928&+(5 32/$5 ',$0(7(5 -Pf /21*(67 (48$725,$/ ',$0(7(5 !LPf (;,1( 7<3( 67
PAGE 96

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV SROOHQ JUDLQV (B DVWURSKLDOD 0DGLVRQ 6(/f :KROH JUDLQ SUR[LPDO SRODU YLHZ ([LQH VFXOSWXULQJ :KROH JUDLQV SUR[LPDO SRODU YLHZV ( ERQSODQGLL %DXPO +817f (B ERXFKHL YDU GUHVVOHUL 0HHURZ )/$6f ( FDQGL GD $VSOXQG 6f B( FDVWHQDHDQD 6FKXQNH 7 )/$6f $OO VFDOHV FD \XP

PAGE 97

DW9rL DW]tL LZ66LZ3n -r9 W}-O!n L n8Z6A\n NU‹t rr £6IFLQ t=P(&H ‘btt ‘ ‘} L !Z

PAGE 98

)LJXUHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV SROOHQ JUDLQV :KROH JUDLQV SUR[LPDO SRODU YLHZ ( FRU\QDQGUD 5DYHQQD .f ( F\DQHRVSHUPD 6HLEHUW 86f )O87 (7 WRUPRVD 0HHURZ ,/$f :KROH JUDLQ SUR[LPDO SRODU YLHZ ([LQH VFXOSWXULQJ :KROH JUDLQV SUR[LPDO SRODU YLHZ ( SOLFDWD 0HHURZ )/$6f ( R[\DQGUD +XWFKLVRQ HW DO 7 8&f R07nT8 G76WDO SRODU YLHZ $777e77V n nD \8OIO

PAGE 100

)LJX UHV 6(0 SKRWRPLFURJUDSKV RI (XFKDULV DQG &DOLSKUXULD SROOHQ JUDLQV :KROH JUDLQV ‹ DPD]QLFD $VSOXQG 6f SUR[LPDO SRODU YLHZ ( VDQGHUL .LOOLS 86f REOLTXH ODWHUDO ORQJLWXGLQDO YLHZ ; &DOLFKDULV EXWFKHUL 0HHURZ )/$6f REOLTXH GLVWDO SRODU YLHZ B( ; JUDQGLIORUD 0HHURZ )/$6f ODWHUDO ORQJLWXGLQDO YLHZ & VXEHGHQWDWD H[ KRUW V Q .f 'LVWDO SRODU YLHZ ([LQH VFXOSWXULQJ = f(RUVDNRIIL 0HHURZ )/$6f $O VFDOHV FD \XP

PAGE 101

9tVL

PAGE 102

)LJXUHV 7(0 SKRWRPLFURJUDSKV RI (XFKDULV DQG &DOLSKUXULD SROOHQ JUDLQ VHFWLRQV DQG :KROH JUDLQ VHFWLRQV 6FDOH MP f§ 6HFWLRQV WKURXJK SROOHQ JUDLQ ZDOO 6FDOH LP ( DVWURSKLDOD 0HHURZ )/$6f ( ERXFKHL YDU ERXF77HL 0HHURZ ),$6ff ( SOLFDWD YDU SOLFDWD 0HHURZ 7 7 & VXEHGHQWDWD 0HHURZ L/$6f , DQPDOD 0HHURZ 7 77$677 =)U B( VDQGHUL &XDWUHFDVDV )f %ODFN JOREXOHV DUH H[WUXGHG OLSLGV ( DPD]QLFD 0HHURZ )/$6f B( ; JUDQGLIORUD 0HHURZ )/$6f

PAGE 104

&+$37(5 9, 3+(1(7,& $1$/<6(6 7KH JHQXV (XFKDULV SUHVHQWV D EHZLOGHULQJ PRVDLF RI PRUSKRORJLFDO YDULDWLRQ ZKLFK VHYHUHO\ OLPLWV WKH DFFXUDF\ RI DOSKDWD[RQRPLF VSHFLHV GHOLPLWDWLRQV )RU H[DPSOH FKDUDFWHUV VXFK DV IORZHU VL]H DQG DQGURHFLDO GHQWDWLRQ KDYH EHHQ XWLOL]HG WR GLVWLQJXLVK VSHFLHV ZLWKRXW DQ\ UHIHUHQFH WR KRZ VXFK FKDUDFWHUV PLJKW YDU\ ZLWKLQ SRSXODWLRQV DQG WKURXJKRXW D VSHFLHVn UDQJH 3ULQFLSOH &RPSRQHQW DQDO\VLV 3&$f LV D ZLGHO\ HPSOR\HG RUGLQDWLRQ PHWKRGRORJ\ DVVHVVHG DV FRPSOHPHQWDU\ WR KLHUDUFKLFDO FOXVWHU DQDO\VLV &ULVFL HW DO 6QHDWK DQG 6RNDO f %RWK 3&$ DQG FOXVWHU DQDO\VLV DOORZ TXDQWLWDWLYH DQDO\VLV RI FRQWLQXRXV YDULDWLRQ DFURVV QXPHURXV PRUSKRORJLFDO FKDUDFWHUV DPRQJ D QXPEHU RI RSHUDWLRQDO WD[RQRPLF XQLWV 278nVf 7KH 3&$ DOJRULWKP URWDWHV WKH D[HV UHSUHVHQWLQJ WKH FKDUDFWHUV WR SRVLWLRQV WKDW ZLOO FRQFHQWUDWH PD[LPXP YDULDQFH LQ WKH OHDVW QXPEHU RI D[HV 7KH D[HV DUH FDOOHG SULQFLSOH FRPSRQHQWV 6FDWWHUJUDPV PD\ EH JHQHUDWHG IURP SULQFLSOH FRPSRQHQWV DQG KHXULVWLF UHODWLRQVKLSV RI WKH 278nV WKXV YLVXDOL]HG &OLIIRUG DQG 6WHSKHQVRQ f ZDUQ DJDLQVW WKH XWLOL]DWLRQ RI 3&$ DV D FODVVLILFDWLRQ GHYLFH SDUWLFXODUO\ ZKHQ LQVXIILFLHQW FXPXODWLYH YDULDWLRQ LV UHSUHVHQWHG LQ WKH ILUVW IHZ SULQFLSOH FRPSRQHQWV 3&$ DQG DVVRFLDWHG FOXVWHULQJ DOJRULWKPV SURYLGH D PHDQV WR f TXDQWLI\ VXFK SDWWHUQV RI YDULDWLRQ DQG f JUDSKLFDOO\ UHSUHVHQW UHODWLRQVKLSV EDVHG

PAGE 105

RQ RYHUDOO VLPLODULW\ LQ D PDQQHU WKDW PD\ DLG LQ WKH ILQDO DVVHVVPHQWV RI WD[RQRPLF UHODWLRQVKLSV 0DWHULDOV DQG 0HWKRGV 3ULQFLSOH FRPSRQHQW DQG KLHUDUFKLFDO FOXVWHU DQDO\VHV RI VHOHFWHG KHUEDULXP VSHFLPHQV ZHUH FRQGXFWHG ZLWK &/867$1 YHUV RULJLQDWHG E\ WKH FRPSXWLQJ ODERUDWRU\ RI WKH 8QLYHUVLW\ RI 6W $QGUHZV 6FRWODQG RQ WKH 1RUWK )ORULGD 5HJLRQDO 'DWD &HQWHU 1(5'&f V\VWHP RI WKH 8QLYHUVLW\ RI )ORULGD 7KUHH GLPHQVLRQDO VFDWWHUJUDPV ZHUH FRQVWUXFWHG IURP 3&$ IDFWRU VFRUHV XWLOL]LQJ D SURJUDP ZULWWHQ E\ %DUW 6FKXW]PDQ 8QLYHUVLW\ RI )ORULGDf 5DZ GDWD ZDV VWDQGDUGL]HG XVLQJ WKH ]VFRUH PHWKRG 6QHDWK t 6RNDO f E\ ZKLFK LQLWLDO YDOXHV IRU HDFK FKDUDFWHU ZHUH UHSODFHG E\ VWDQGDUG GHYLDWLRQV IURP WKH PHDQ YDOXH IRU WKDW FKDUDFWHU $ GLVWDQFH PDWUL[ ZDV WKHQ FDOFXODWHG XVLQJ VTXDUHG HXFOLGHDQ GLVWDQFH &RUPDFN f 7ZHQW\VHYHQ FKDUDFWHUV ZHUH LQLWLDOO\ XVHG LQ WKH DQDO\VHV ([DPLQDWLRQ RI WKH UHVXOWV VXJJHVWHG WKDW VRPH RI WKHVH FKDUDFWHUV HJ DOO IROLDJH FKDUDFWHUV VFDSH KHLJKW RYDU\ OHQJWKf ZHUH XQUHOLDEOH GXH WR HQYLURQPHQWDO SODVWLFLW\ GHYHORSPHQWDO YDULDWLRQ RU VSHFLPHQ SUHSDUDWLRQ 7KRXJK OLYLQJ PDWHULDO SURYLGHV DGGLWLRQDO FKDUDFWHUV RI SRWHQWLDO XWLOLW\ HJ OHDI VXUIDFH WH[WXUH SLJPHQWDWLRQ SDWWHUQ RI WKH VWDPLQD FXSf WKH LQDELOLW\ WR FRQVLVWHQWO\ GHWHUPLQH WKHVH FKDUDFWHUV LQ GULHG VSHFLPHQV SUHFOXGHG WKHLU LQFOXVLRQ :KHUH DQ\ WZR FKDUDFWHUV ZHUH KLJKO\ FRUUHODWHG PRUH WKDQ b FRUUHODWLRQf ZKLFK FDQ UHVXOW LQ GDWD UHGXQGDQF\ 6QHDWK DQG 6RNDO f RQH RI WKH

PAGE 106

WZR FKDUDFWHUV ZDV UHPRYHG IURP WKH GDWD PDWUL[ H[FHSW ZKHUH IHOW WKHLU UHPRYDO ZRXOG UHVXOW LQ ORVV RI LQIRUPDWLRQ ,Q WKH ILQDO DQDO\VHV IORUDO FKDUDFWHUV 7DEOH f ZHUH VHOHFWHG DV WKH EDVLF GDWD VHW RI ZKLFK IRXUWHHQ ZHUH FRQWLQXRXV TXDQWLWDWLYH FKDUDFWHUV 7KH UHPDLQLQJ WKUHH TXDOLWDWLYH FKDUDFWHUV ZHUH WUHDWHG E\ DVVLJQLQJ D QXPHULFDO YDOXH IRU HDFK VWDWH RI WKH FKDUDFWHU 6LQFH &+,67$1 ZRXOG WUHDW WKHVH YDOXHV DV FRQWLQXRXV HYHU\ DWWHPSW ZDV PDGH WR QXPEHU WKH FKDUDFWHU VWDWHV LQ D SURJUHVVLYH WUDQVIRUPDWLRQ VHULHV VXFK WKDW DQ\ WZR VXFFHVVLYH QXPEHUV ZRXOG UHIOHFW SXWDWLYH FKDUDFWHU VWDWH UHODWLRQVKLS 7KHVH WUDQVIRUPDWLRQ VHULHV ZHUH FRQVWUXFWHG E\ FDUHIXO VWXG\ RI PRUSKRORJLFDO SDWWHUQV DQG WUHQGV LQ WKH JHQXV (XFKDULV DQG FRPSDUDWLYH VWXG\ ZLWK FORVHO\ UHODWHG JHQHUD RI $PDU\OOLGDFHDH $W WKH OHYHO RI VSHFLHV GHOLPLWDWLRQ DQDO\VLV QHHGV WR EHJLQ ZLWK LQGLYLGXDOV 6QHDWK DQG 6RNDO f $ UHSUHVHQWDWLYH VDPSOLQJ RI SRSXODWLRQV LV GHVLUDEOH :LOOLDPV DQG /DQFH f EXW LQ D ZLGHO\ GLVSHUVHG JHQXV VXFK DV (XFKDULV ZLWK PDQ\ UDUH DQG LQDFFHVVLEOH VSHFLHV LQ ZKLFK D VLQJOH JHQHW LQ QDWXUH PD\ IXQFWLRQ HIIHFWLYHO\ DW WKH OHYHO RI D SRSXODWLRQ RU ZKHUH DQ HQWLUH VSHFLHV LV UHSUHVHQWHG E\ D VLQJOH FROOHFWLRQ D ORJLFDO VWDUWLQJ SRLQW LV WKH XVH RI DOO DYDLODEOH LQGLYLGXDOV 3UREOHPV RI WD[RQRPLF GHOLPLWDWLRQ LQ (XFKDULV DUH FRQFHQWUDWHG LQ $PD]RQLDQ SRSXODWLRQV RI VXEJ (XFKDULV $Q DGGLWLRQDO DUHD RI GLIILFXOW\ LV WKH KLJKO\ SRO\PRUSKLF WHWUDSORLG B( ERXFKHL FRPSOH[ RI &HQWUDO $PHULFD $QDO\VHV RI WKHVH WZR JURXSV XWLOL]HG DQG 278nV UHVSHFWLYHO\ 7KH LQFOXVLRQ LQ WKHVH DQDO\VHV RI ZHOOPDUNHG VSHFLHV RU VSHFLHV JURXSV ZKRVH GHOLPLWDWLRQV DUH UHVROYHG E\ PRUH WUDGLWLRQDO V\VWHPDWLF PHWKRGRORJLHV ZDV GHHPHG VXSHUIOXRXV 7KH LQFOXVLRQ RI VXFK

PAGE 107

278nV FDQ GLVWRUW WKH DQDO\VLV E\ LQWURGXFLQJ ODUJH DGGLWLRQDO YDULDQFH RYHU VRPH RI WKH FKDUDFWHUV 6QHDWK DQG 6RNDO f ,Q DGGLWLRQ WR WKH ODUJHU DQDO\VLV RI DOO $PD]RQLDQ SRSXODWLRQV LQFOXGLQJ LQ WKLV JURXS D IHZ 278nV IURP FHQWUDO &RORPELDf VXEMHFWHG RQH VXEVHW RI WKLV ODUJH PDWUL[ WR DGGLWLRQDO DQDO\VHV 7KLV VPDOOHU JURXS UHSUHVHQWV SRSXODWLRQV RI B( FDQGL GD DQG B( IRUPRVD IURP HDVWHUQ (FXDGRU D PRQRSK\OHWLF VSHFLHV FRPSOH[ WKDW DSSHDUHG WD[RQRPLFDOO\ LQVROXEOH IURP H[DPLQDWLRQ RI KHUEDULXP VSHFLPHQV DORQH 7KHVH SRSXODWLRQV DUH QRW RQO\ ZHOOFROOHFWHG EXW WKH VSHFLPHQV DUH RI KLJK TXDLW\ 6WDPLQDO GHQWDWLRQ LQ (XFKDULV KDV KLVWRULFDOO\ EHHQ DQ LPSRUWDQW FUWLHULRQ IURP ZKLFK VSHFLHV OLQHV KDYH EHHQ GUDZQ $QDO\VHV RI WKH $PD]RQLDQ SRSXODWLRQV DQG WKH 1DSR3DVWD]D SRSXODWLRQV ZHUH UHSHDWHG ZLWK FKDUDFWHUV RI DQGURHFLDO GHQWDWLRQ UHPRYHG IURP WKH PDWUL[ $V RYHUDOO DQGURHFLDO PRUSKRORJ\ KDV EHHQ XVHG IUHTXHQWO\ WR GHOLPLW VSHFLHV RI (XFKDULV D ILQDO DQDO\VLV RI 278nV UHSUHVHQWLQJ $PD]RQLDQ SRSXODWLRQV ZDV FRQGXFWHG XVLQJ RQO\ WKH HLJKW DQGURHFLDO FKDUDFWHUV RI WKH RULJLQDO FKDUDFWHU VHW FKDUDFWHUV f 278 OLVWV DQG GDWD PDWULFHV IRU DOO DQDO\VHV FDQ EH IRXQG LQ $SSHQGL[ $ QXPEHU RI VHTXHQWLDO DJJORPHUDWLYH KLHUDUFKLDO QRQn RYHUODSSLQJ 6$+1f FOXVWHULQJ PHWKRGV 6QHDWK DQG 6RNDO f KDYH EHHQ GHYLVHG IRU DQDO\]LQJ SKHQHWLF GDWD HJ /DQFH DQG :LOOLDPVn f FRPSOHWH OLQNDJH 6RNDO DQG 0LFKHQHUnV f DYHUDJH OLQNDJH >XQZHLJKWHG SDLU JURXS PHWKRG RI DQDO\VLV 83*0$f RI 6QHDWK DQG 6RNDO @ DQG :DUGnV f PLQLPXP YDULDQFH PHWKRG :KLOH WKH VDPH GLVWDQFH PDWUL[ LV XVHG E\ DOO WKUHH PHWKRGV HDFK GLIIHUV IURP WKH RWKHUV E\ LWV SURFHGXUH IRU GHWHUPLQJ FOXVWHUV EHWZHHQ GLVWDQFHV

PAGE 108

&RPSOHWH OLQNDJH LQFUHDVHV WKH GLVWDQFH EHWZHHQ H[LVWLQJ FOXVWHUV PDNLQJ LW GLIILFXOW IRU 278nV WR MRLQ WKXV WHQGLQJ WR FUHDWH QHZ FOXVWHUV &RUPDFN 6QHDWK DQG 6RNDO &OLIIRUG DQG 6WHSKHQVRQ f $YHUDJH OLQNDJH GRHV QRW DIIHFW WKH DELOLW\ RI LQGLYLGXDOV WR MRLQ H[WDQW FOXVWHUV :DUGnV PHWKRG XVHV OHDVW LQIUDn JURXS DQG JUHDWHVW LQWHUJURXS YDULDQFH LQ GHWHUPLQLQJ ZKHUH WR IXVH FOXVWHUV $YHUDJH OLQNDJH 83*0$f ZDV FKRVHQ IRU WKH FOXVWHU DQDO\VHV RI (XFKDULV RQ WKH EDVLV RI SUHOLPLQDU\ DQDO\VHV RI YDULRXV GDWD VHWV XVLQJ DOO WKUHH PHWKRGV GHVFULEHG /LWWOH GLIIHUHQFH ZDV DSSDUHQW DPRQJ WKH GHQGURJUDPV JHQHUDWHG E\ WKH WKUHH DOJRULWKPV ,Q HDFK FDVH KRZHYHU DYHUDJH OLQNDJH VHHPHG WR SURYLGH WKH PRVW SDUVLPRQLRXV FOXVWHULQJ RI VSHFLHV JURXSV 5HVXOWV $PD]RQLDQ (XFKDULV 3RSXODWLRQV 7DEOH )LJV f 3&$ )LJV f &XPXODWLYH YDULDQFH RI b LQ FKDUDFWHUV DFURVV 278nV 7DEOH f ZDV UHVROYHG ZLWKLQ WKH ILUVW WKUHH SULQFLSOH FRPSRQHQWV 3&nVf &KDUDFWHUV OLPE VSUHDGf VWDPHQ ZLGWKf WXEH ZLGWK DW WKURDWf DQG LQQHU WHSDO OHQJWKf FRQWULEXWHG WKH PRVW YDULDQFH WR 3&, WKH FRPSRQHQW ZLWK WKH KLJKHVW SHUFHQWDJH YDULDQFH bf &KDUDFWHUV IORZHU QXPEHUf VWDPLQD FXS ZLGWKf DQG FOHIW RI VWDPLQDO FXSf FRQWULEXWHG PRVW RI WKH YDULDQFH WR 3& HVSHFLDOO\ FKDUDFWHU &KDUDFWHUV WXEH OHQJWKf DQG WRRWKLQJf ZHUH PRVW VWURQJO\ UHSUHVHQWHG LQ 3& 5HPRYDO RI FKDUDFWHUV DQG DQGURHFLDO WRRWKLQJf UDLVHG WKH FXPXODWLYH YDULDQFH ZLWKLQ WKH ILUVW WKUHH 3&nV E\ RQO\ b WR b

PAGE 109

5HPRYDO RI WKHVH WZR FKDUDFWHUV VOLJKWO\ FKDQJHG WKH FKDUDFWHU FRPSRQHQWV RI WKH 3&nV 7DEOH f &KDUDFWHU WXEH OHQJWKf UHSODFHG LQ 3&, DQG FKDUDFWHUV RXWHU WHSDO OHQJWKf DQG FXS OHQJWKf ZHUH PRUH LPSRUWDQW FRQWULEXWRUV WKDQ DQG LQ 3& &KDUDFWHU DOVR UHSODFHG WKH GHOHWHG FKDUDFWHU LQ UHODWLYH FRQWULEXWLRQ WR 3& 7KH VFDWWHUJUDPV JHQHUDWHG E\ WKHVH 3& VFRUHV )LJV f DUH QRW DSSUHFLDEO\ GLIIHUHQW ,Q ERWK WZR PDLQ SKHQHWLF JURXSV FDQ EH GLVWLQJXLVKHG B( IRUPRVD DQG B( FDVWHQDHQDSOLFDWDf EXW QHLWKHU ZLWK DEVROXWH FODULW\ $Q HYHQ PRUH DPRUSKRXV JURXS FRPSULVHV WKH UHPDLQLQJ IRXU VSHFLHV (XFKDULV IRUPRVD DQG (B FDVWH QDHDQD DQG SL L FDWDf UHSUHVHQW WKH H[WUHPHV RI IORZHU VL]H ODUJHVW DQG VPDOOHVW UHVSHFWLYHO\f DPRQJ WKH 278nV 7KH (B IRUPRVD DJJUHJDWLRQ VHJUHJDWHV LQWR WZR VPDOOHU JURXSV LQ )LJ RQ WKH EDVLV RI VWDPLQDO GHQWDWLRQ :KHQ WKLV FKDUDFWHU LV UHPRYHG IURP WKH DQDO\VLV B( IRUPRVD EHFRPHV D PRUH KRPRJHQHRXV SKHQHWLF JURXS $PRQJ 278nV UHSUHVHQWLQJ ( FDQGL GD UHPRYDO RI FKDUDFWHUV DQG KDG OHVV LPSDFW 7KH VLQJOH RXWO\LQJ 278 UHSUHVHQWLQJ WKH UDUH B( EDNHULDQD PRYHV FORVHU WR WKH B( IRUPRVD JURXS ZKHQ FKDUDFWHUV RI VWDPLQDO GHQWDWLRQ DUH UHPRYHG IURP WKH GDWD VHW )LJ f 3KHQHWLF UHVROXWLRQ RI B( ERQSODQGL L B( FDQGL GD B( F\QDHRVSHUPD DQG ( XOHL LV SRRU LQ ERWK )LJV DQG 7KHVH VSHFLHV RYHUODS WR D ODUJH H[WHQW LQ IORZHU VL]H (XFKDULV FDQGLGD LQ SDUWLFXODU VKRZV H[WUHPH KHWHURJHQHLW\ 2UGLQDWLRQ ZLWK RQO\ WKH HLJKW DQGURHFLDO FKDUDFWHUV f UHVROYHG b RI WRWDO YDULDQFH LQ 3&nV 7DEOH f &KDUDFWHUV OHQJWK RI IUHH ILODPHQWf ZLGWK RI VWDPHQf DQG FXS ZLGWKf FRQWULEXWHG WKH JUHDWHVW DPRXQW RI YDULDQFH WR 3&, FXS OHQJWKf

PAGE 110

DQG WRRWKLQJf WR 3& DQG DQG UHODWLYH OHQJWK RI WRRWKf WR 3& 7KRXJK WKH B( FDVWHQDHDQDSOL FDWD DQG ( IRUPRVD JURXSV VKRZ D WHQGDQF\ WR VHJUHJDWH WKHUH LV D JUHDWHU GHJUHH RI EUHDNGRZQ EHWZHHQ WKHVH WZR ODUJH SKHQHWLF JURXSV 7KH SRRUO\ UHVROYHG DVVHPEODJH RI 278nV UHSUHVHQWLQJ B( ERQSODQGL L FDQGL GD B( F\DQHRVSHUPD DQG (B XOHL DUH ZHOOGLVSHUVHG DPRQJ WKH WZR ODUJHU SKHQHWLF JURXSV (XFKDULV EDNHULDQD LV LVRODWHG IURP DOO RWKHU 278nV &OXVWHU DQDO\VHV )LJV f 'HQGURJUDPV JHQHUDWHG E\ KLHUDUFKLFDO FOXVWHU DQDO\VLV ODUJHO\ FRQILUP WKH UHVXOWV RI 3&$ 8VLQJ WKH FRPSOHWH GDWD VHW )LJ f WKH DYHUDJH OLQNDJH DOJRULWKP UHVROYHG WKUHH ODUJH FOXVWHUV $OO 278nV UHSUHVHQWLQJ B( FDVWHQDHQD FOXVWHU DW D GLVWDQFH FRHIILFLHQW '&f RI 278nV UHSUHVHQWn QJ (B SL L FDWD VXEVS SL L FDWD MRLQ WKLV FOXVWHU DW D '& RI $OPRVW DOO 278nV UHSUHVHQWLQJ B( IRUPRVD FOXVWHU DW D '& RI 7KLV ODUJH FOXVWHU LQFOXGHV WKH VROLWDU\ 278 UHSUHVHQWLQJ B( EDNHUL DQD RQH SXWDWLYH K\EULG EHWZHHQ B( FDQGL GD DQG B( IRUPVRD DQG WZR 278nV UHSUHVHQWLQJ B( FDQGL GD 2QH RI WKH ODWWHU 278 f KRZHYHU LV DQ RXWO\LQJ DGGLWLRQ WR RQH RI WKH VPDOOHU FRPSRQHQW FOXVWHUV $OO RWKHU VSHFLHV GLG QRW IDUH DV ZHOO 3DUDOOHOLQJ WKH UHVXOWV RI 3&$ PRVW 278nV UHSUHVHQWLQJ B( ERQSODQGL L B( FDQGL GD B( F\DQHRVSHUPD DQG (B XOHL IRUP D ODUJH KHWHURJHQHRXV FOXVWHU DW D '& RI ZLWKLQ ZKLFK PD\ RFFXU VPDOOHU FOXVWHUV RI FRQVSHFLILF 2786nV 7KLV KHWHURJHQHRXV JURXS MRLQV WKH B( IRUPRVD FOXVWHU DW '& 5HPRYDO RI VWDPLQD WRRWKLQJ FKDUDFWHUV )LJ f GLG QRW DOWHU WKH LQQHUPRVW WRSRORJ\ RI WKH GHQGURJUDP DSSUHFLDEO\ +RZHYHU WKH (B FDVWHQDHDQD JURXS UDWKHU WKDQ IRUPLQJ D GLVWLQFW FOXVWHU LQGHSHQGHQW

PAGE 111

RI WKH RWKHU FOXVWHUV LV MRLQHG WR WKH KHWHURJHQHRXV VSHFLHV FOXVWHU DW '& 7KH GHQGURJUDP EDVHG RQ DQDO\VLV RI RQO\ VWDPLQDO FKDUDFWHUV )LJ f LV ODUJHO\ LQ FRQFRUGDQFH ZLWK WKDW SURGXFHG E\ WKH ODUJHU GDWD VHW ZLWK B( IRUPRVD GRPLQDWLQJ RQH PDLQ FOXVWHU DQG DOO RWKHU VSHFLHV DQRWKHU 7KH WZR 278nV UHSUHVHQWLQJ B( SL L FDWD VXEVS SL L FDWD KRZHYHU GR QRW MRLQ ZLWK B( FDVWHQDHDQD XQWLO WKH ODWWHU KDV FOXVWHUHG ZLWK WKH KHWHURJHQHRXV 278nV '& f 0RVW HGHQWDWH 278nV RI ( IRUPRVD IRUP D GLVWLQFW VXEJURXS ZLWKLQ WKH ILUVW ODUJH FOXVWHU (DVWHUQ (FXDGRUHDQ (XFKDULV 7DEOH )LJV f 3&$ &XPXODWLYH YDULDQFH RI b LQ FKDUDFWHUV ZDV UHVROYHG ZLWKLQ WKH ILUVW WKUHH 3&nV DFURVV 278nV &KDUDFWHU WXEH OHQJWKf FRQWULEXWHG WKH PRVW YDULDQFH WR 3&, IROORZHG E\ OLPE VSUHDGf FXS OHQJWKf DQG FOHIW RI WKH VWDPLQDO FXSf &KDUDFWHUV IORZHU QXPEHUf ZLGWK RI LQQHU WHSDOf FXS ZLGWKf DQG WRRWKLQJf DUH PRVWO\ H[SUHVVHG LQ 3& &KDUDFWHUV OHQJWK RI IUHH ILODPHQWf LQQHU WHSDO OHQJWKf DQG DUH WKH PRVW LPSRUWDQW FRQWULEXWRUnV WR 3& 5HPRYDO RI FKDUDFWHUV DQG VWDPLQDO GHQWDWLRQf UDLVHG WKH FXPXODWLYH YDULDQFH RQO\ b 7DEOH f 0DMRU FRQWULEXWRUV WR WKH YDULDQFH RI HDFK 3& ZHUH FKDUDFWHUV DQG 3&,f DQG 3&f DQG DQG 3&f 7KH VFDWWHUJUDPV JHQHUDWHG E\ WKHVH 3& VFRUHV )LJV f DUH VLPLODU (XFKDULV IRUPRVD DQG B( FDQGL GD IRUP GLVWLQFW SKHQHWLF JURXSV ODUJHO\ RQ WKH EDVLV RI IORZHU VL]H ZLWK WZR SXWDWLYH K\EULGV IDOOLQJ EHWZHHQ WKH WZR VSHFLHV JURXSV 6WDPLQDO GHQWDWLRQ VHSDUDWHV WZR

PAGE 112

VXEJURXSV LQ ERWK VSHFLHV )LJ f D GLVWLQFWLRQ WKDW GLVDSSHDUV LI WKHVH FKDUDFWHUV DUH HOLPLQDWHG IURP WKH GDWD PDWUL[ )LJ f ,Q ERWK VFDWWHUJUDPV D VLQJOH RXWO\LQJ 278 QR LQ 7DEOH $SSHQGL[ f LV IRXQG DPRQJ WKH B( FDQGL GD JURXS DORQJ 3& 7KLV VSHFLPHQ KDV VKDUSO\ DFXWH VWDPLQDO WHHWK UDUH LQ B( FDQGL GD DQG YHU\ VKRUW LQQHU WHSDOV PPf &OXVWHU DQDO\VHV )LJV f +LHUDUFKLFDO FOXVWHU DQDO\VLV ODUJHO\ FRQIRUPV WR WKH UHVXOWV RI 3&$ IRU WKLV JURXS ,Q WKH GHQGURJUDP SURGXFHG ZLWK DOO FKDUDFWHUV WZR PDLQ FOXVWHUV DUH IRUPHG B( IRUPRVD DW '& DQG B( FDQGL GD DW '& +RZHYHU ERWK VSHFLHV JURXSV FOXVWHU VRRQ DIWHU DW '& $ VLQJOH RXWO\LQJ 278 RFFXUV LQ HDFK VSHFLHV JURXS 278 B( IRUPRVDf DQG e FDQGL GDf :LWKLQ HDFK VSHFLHV JURXS IXUWKHU FOXVWHULQJ RQ WKH EDVLV RI SUHVHQFH RU DEVHQFH RI VWDPLQDO WHHWK LV HYLGHQW 7KH B( FDQGL GD RXWO\LQJ 278 GRHV QRW IXVH ZLWK WKH RWKHU 278nV XQWLO DIWHU ERWK VSHFLHV JURXSV KDYH IRUPHG D VLQJOH FOXVWHU '& f 2QH RI WKH SXWDWLYH K\EULGV FOXVWHUV ZLWK WKH B( IRUPRVD 278nV WKH RWKHU ZLWK B( FDQGL GD 7KH GHQGURJUDP IRU WKH UHGXFHG GDWD PDWUL[ LV PXFK WKH VDPH LQ WRSRORJ\ ZLWK DQ H[SHFWHG GHFUHDVH LQ WKH DPRXQW RI FOXVWHULQJ RI WRRWKHG RU HGHQWDWH IRUPV RI HDFK VSHFLHV (XFKDULV ERXFKHL FRPSOH[ 7DEOH )LJV f 3&$ )LJV f &XPXODWLYH YDULDQFH RI b SHUFHQW DFURVV 278nV ZDV UHVROYHG LQ WKH ILUVW WKUHH 3&nV &KDUDFWHUV VWDPHQ ZLGWKf WXEH OHQJWKf LQQHU WHSDO OHQJWKf DQG WRRWKLQJf FRQWLEXWHG WKH JUHDWHVW PDJQLWXGH RI YDULDQFH WR 3&, HVSHFLDOO\ FKDUDFWHU 3& LV ODUJHO\ D PHDVXUH RI RXWHU WHSDO OHQJWK FKDUDFWHU

PAGE 113

f LQQHU WHSDO ZLGWK f VWDPLQDO FXS ZLGWK f DQG WRRWKLQJ f &KDUDFWHUV DQG DOVR VXEVWDQWLDOO\ FRQWULEXWHG WR WKH YDULDQFH UHIOHFWHG LQ 3& &KDUDFWHUV OLPE VSUHDGf OHQJWK RI IUHH ILODPHQWf VWDPLQDO FXS ZLGWKf DQG WRRWKLQJf ZHUH WKH PRVW LPSRUWDQW VRXUFHV RI YDULDQFH LQ 3& 7KH WKUHH YDULHWLHV RI ( ERXFKHL GR QRW FOHDUO\ UHVROYH LQWR WKUHH SKHQHWLF JURXSV LQ )LJ 7KRXJK YDU ERXFKHL VKRZV D WHQGDQF\ WR DVVHPEOH DORQJ 3& b WRWDO YDULDQFHf WKLV YDULHW\ LV VWLOO ZLGHO\ GLVWULEXWHG DORQJ 3&, b WRWDO YDULDQFHf 2QH 278 HDFK RI YDU GDULHQHQVLV QR f DQG GUHVVOHUL QR f IRUP DQ RXWO\LQJ JURXS DV GR 278nV DQG RI YDU ERXFKHL 9DULHW\ GDULHQHQVLV VKRZV D PHDVXUH RI SKHQHWLF FRQJUXHQFH EXW LQWHUJUDGDWLRQ EHWZHHQ LW DQG YDULHW\ ERXFKHL LV VWLOO HYLGHQW ,I WKH VFDWWHUJUDP IRU WKH B( ERXFKHL FRPSOH[ LV UHIRUPDWWHG VR WKDW 3& DQG 3& DUH YLVXDOO\ DFFHQWXDWHG )LJ f JURXSLQJ RI 278nV EHFRPHV ODUJHO\ D PHDVXUH RI DQGURHFLDO YDULDQFH ,Q WKLV VFDWWHUJUDP WKH WKUHH YDULHWLHV DUH UHVROYHG PRUH FOHDUO\ SDUWLFXODUO\ YDU ERXFKHL 9DULHW\ GDULHQHQVLV KRZHYHU VWLOO LQWHUJUDGHV ZLWK VHYHUDO 278nV RI YDU ERXFKHL 2QH RI WKHVH 278nV f KRZHYHU ZDV FROOHFWHG IURP &HUUR &DPSDQD LQ 3DQDPD 3URYLQFH DQ DUHD RI V\PSDWU\ EHWZHHQ WKHVH WZR YDULHWLHV 7KH WKLUG QR f LV D &RVWD 5LFDQ FROOHFWLRQ &OXVWHU DQDO\VLV )LJ f 7ZR PDMRU FOXVWHUV DUH UHVROYHG LQ WKH 830*$ GHQGURJUDP HDFK IDLUO\ KHWHURJHQHRXV 7KH ILUVW FOXVWHUV DW D '& RI $Q RXWO\LQJ 278 RQH RI WZR UHSUHVHQWLQJ YDU GDULHQHQVLVf IXVHV ZLWK WKLV FOXVWHU DW '& :LWKLQ WKLV ILUVW FOXVWHU WZR VXEJURXSV HPHUJH DW '&nV DQG UHVSHFWLYHO\ 7KH IRUPHU LV PDGH XS HQWLUHO\ RI 278nV UHSUHVHQWLQJ YDU GDULHQHQVLV 7KH

PAGE 114

VHFRQG LV UHSUHVHQWV YDU ERXFKHL ZLWK WKH VLQJOH H[FHSWLRQ RI 278 YDU GDULHQHQVLVf 278 IRUPV WRJHWKHU ZLWK 278 YDU ERXFKHLf DQ RXWO\LQJ FOXVWHU WR WKLV VHFRQG VXEJURXS 7KH VHFRQG PDMRU FOXVWHU LV IRUPHG DW D '& RI QHDU ZKHUH DOO FOXVWHUV ILQDOO\ PHUJH '& f 7KLV VPDOOHU FOXVWHU LV PRUH KHWHURJHQRXV WKDQ WKH ILUVW EXW IRXU 278nV RI YDU ERXFKHL FOXVWHU DW D '& RI $V LQ 3&$ 278nV DQG YDU GUHVVOHUL DQG GDULHQHQVLV UHVSHFWLYHO\f IRUP D SKHQHWLF JURXS 'LVFXVVL RQ +RVW VSHFLHV RI (XFKDULV SDUWLFXODUO\ WKRVH ZLWK WKH ZLGHVW GLVWULEXWLRQV H[KLELW D KLJK OHYHO RI PRUSKRORJLFDO GLYHUVLW\ 0RVW VSHFLHV IRXQG LQ WKH $PD]RQ EDVLQ IRU H[DPSOH RYHUODS WR VRPH GHJUHH LQ TXDQWLWDWLYH IORUDO FKDUDFWHUV VHH &KDSWHU ;,,f 6XFK FKDUDFWHUV DUH RIWHQ WKH RQO\ RQHV DYDLODEOH IURP KHUEDULXP PDWHULDO XQOHVV WKH FROOHFWRUV WHFKQLTXHV DQG ILHOG QRWHV KDYH EHHQ PHWLFXORXV 7KH UHVXOWV RI WKHVH SKHQHWLF VWXGLHV QRW RQO\ FRQILUP WKLV YDULDELOLW\ EXW DOVR UHVROYH VRPH PRUSKRORJLFDO SDWWHUQV LQ WKH JHQXV 7KH SUHVHQFH RU DEVHQFH RI VWDPLQDO GHQWDWLRQ DPRQJ $PD]RQLDQ VSHFLHV RI WKH JHQXV LV D FKDUDFWHU RI OLWWOH RU QR WD[RQRPLF YDOXH 7KLV LV HYLGHQW LQ WKH 3&$ VFDWWHUJUDPV )LJV f RI $PD]RQLDQ DQG HDVWHUQ (FXDGRUHDQ SRSXODWLRQV 5HPRYDO RI WKHVH FKDUDFWHUV IURP WKH DQDO\VLV FDXVHV WKH LPPHGLDWH LQWHUJUDGDWLRQ RI DQ\ SKHQHWLF JURXSV EDVHG ODUJHO\ RQ WKLV FKDUDFWHU 7KH XVH RI HLJKW DQGURHFLDO FKDUDFWHUV E\ WKHPVHOYHV GLG QRW VXFFHVVIXOO\ UHVROYH SKHQHWLF JURXSV DPRQJ 278nV IURP $PD]RQLDQ SRSXODWLRQV

PAGE 115

,Q WHUPV RI UHVROYLQJ SKHQHWLF JURXSV RQ WKH EDVLV RI IORUDO FKDUDFWHUV 3&$ DQG 830*$ ZHUH OHDVW VXFFHVVIXO ZLWK WKH ODUJH VHW RI 278nV UHSUHVHQWLQJ $PD]RQLDQ SRSXODWLRQV 2QO\ B( FDVWHQDHDQD WKH VPDOOHVWIORZHUHG VSHFLHV RI (XFKDULV VXEJ (XFKDULV DQG PRVW 278nV RI B( IRUPRVD WKH ODUJHVW ZHUH UHVROYHG SKHQHWLFDOO\ DV GLVWLQFW JURXSV 6SHFLHV RI LQWHUPHGLDWH IORZHU VL]H B( ERQSODQGL L B( FDQGL GD B( F\DQHRVSHUPD DQG (B XOHLf IRUP D ODUJH KHWHURJHQRXV PRVDLF 6QHDWK DQG 6RNDO f ZDUQ RI WKLV SUREOHP ZKHQ ODUJH KHWHURPRUSKLF 278 VHWV DUH FKRVHQ IRU DQDO\VLV 3KHQHWLF DQDO\VLV ZDV PRUH VXFFHVVIXO ZLWK VPDOOHU JURXSV RI 278nV UHSUHVHQWLQJ RQO\ VSHFLHV RU D VLQJOH SRO\PRUSKLF VSHFLHV FRPSOH[ 7KH UHVXOWV RI SKHQHWLF DQDO\VHV RI WKHVH WZR VPDOOHU JURXSV FDQ DOVR EH FRPSDUHG ZLWK UHVXOWV RI HOHFWURSKRUHWLF DQDO\VLV RI WKH VDPH JURXSV IRU DQ\ FRUUHODWLYH SDWWHUQV 3RSXODWLRQV RI B( FDQGL GD DQG B( IRUPRVD LQ WKH 2ULHQWH RI (FXDGRU VHJUHJDWH DV GLVWLQFW SKHQHWLF JURXSV 7KH UHVXOWLQJ VFDWWHUJUDPV )LJV f DQG GHQGURJUDPV )LJV f DOVR VXJJHVW WKDW K\EULGL]DWLRQ KDV RFFXUHG EHWZHHQ WKHVH V\PSDWULF VSHFLHV 3DWWHUQV RI JHQHWLF YDULDWLRQ &KDSWHU 9,,,f VXJJHVW D SRVVLEOH PRQRSK\OHWLF RULJLQ RI ERWK VSHFLHV LQ WKH 3DVWD]D YDOOH\ RI (FXDGRU ZLWK VXEVHTXHQW UDGLDWLRQ LQWR DGMRLQLQJ DUHDV 5DGLDWLRQ DQG VHFRQGDU\ FRQWDFW PD\ KDYH RFFXUUHG PRUH WKDQ RQFH ,QIUDFOXVWHU YDULDWLRQ GRHV QRW VKRZ DQ\ JHRJUDSKLF FRQJUXHQFH DPRQJ WKH WZR VSHFLHV JURXSV 7KH &HQWUDO $PHULFDQ B( ERXFKHL VHPLVSHFLHV FRPSOH[ GRHV QRW UHVROYH SKHQHWLFDOO\ DV FOHDQO\ DV WKH FDQGLGDIRUPRVD JURXS 6WDPLQDO FXS PRUSKRORJ\ KRZHYHU GRHV VHSDUDWH YDULHWLHV WR D IDLU GHJUHH )LJ f )ORUDO VL]H FKDUDFWHUV LQ WKLV JURXS )LJ f GR QRW VXFFHHG DV

PAGE 116

ZHOO LQ UHVROYLQJ SKHQHWLF JURXSV 7KXV WKH VLWXDWLRQ LV H[DFWO\ RSSRVLWH WKDW RI WKH HDVWHUQ (FXDGRUHDQ VSHFLHV 7KH WD[D RI WKH (B ERXFKHL JURXS DUH WHWUDSORLG SXWDWLYHO\ DOORWHWUDSORLG DQG KDYH HYHQ KLJKHU OHYHOV RI KHWHUR]\JRVLW\ WKDQ WKH GLSORLG (FXDGRUHDQ WD[D &KDSWHU 9,,,f *HRJUDSKLF LVRODWLRQ KDV SUREDEO\ EHHQ DQ LPSRUWDQW IDFWRU UHVWULFWLQJ JHQH IORZ EHWZHHQ SRSXODWLRQV DQG FRQVHTXHQWO\ VRPH YDULHWLHVf RI B( ERXFKHL %\ FRQWUDVW SRSXODWLRQV RI B( FDQGL GD DQG (B IRUPRVD LQ HDVWHUQ (FDXGRU DUH RIWHQ V\PSDWULF &RQFOXVLRQV 3DWWHUQV RI PRUSKRORJLFDO YDULDWLRQ LQ (XFKDULV DUH EHVW UHVROYHG E\ SKHQHWLF DQDO\VHV ZKHQ WKH 278 SRSXODWLRQ UHSUHVHQWV RQO\ D IHZ FORVHO\ UHODWHG WD[D 7KH GHJUHH RI SKHQRW\SLF SODVWLFLW\ LQ FRQWLQXRXV FKDUDFWHUV RI IORUDO VL]H UHVXOWV LQ SRRU FOXVWHULQJ RI WD[RQRPLF JURXSV RQ WKH EDVLV RI VXFK GDWD SDUWLFXODUO\ ZKHQ WKH 278 SRSXODWLRQ LV KLJKO\ KHWHURPRUSKLF 7KH SUHVHQFH RU DEVHQFH RI VWDPLQD GHQWDWLRQ LV QRW D WD[RQRPLFDOO\ VLJQLILFDQW FKDUDFWHU DPRQJ $PD]RQLDQ VSHFLHV RI (XFKDULV $QDO\VLV RI WKH HDVWHUQ (FXDGRUHDQ SRSXODWLRQV RI B( FDQGL GD DQG B( IRUPRVD VXSSRUWV WKHLU WUHDWPHQW DV GLVWLQFW VSHFLHV DQG VXJJHVWV WKDW K\EULGL]DWLRQ KDV RFFXUHG EHWZHHQ WKHP 9DULHWLHV RI B( ERXFKHL UHVROYH LQWR UHODWLYHO\ GLVWLQFW SKHQHWLF JURXSV RQO\ ZKHQ DQGURHFLDO FKDUDFWHUV DUH HPSKDVL]HG 6SHFLHV RI (XFKDULV DUH XVXDOO\ UDUH ZLGHO\ GLVSHUVHG LQ WKHLU QDWXUDO KDELWDWV DQG FKDUDFWHULVWLFDOO\ IRUP VPDOO SRSXODWLRQV ,I PRVW VSHFLHV DUH SROOLQDWHG E\ IHPDOH HXJORVVLQH EHHV IO\LQJ ORQJ

PAGE 117

GLVWDQFHV EHWZHHQ SRSXODWLRQV WKH SRWHQWLDO IRU JHQH IORZ PDLQWHQDQFH RI KHWHUR]\JRVLW\ DQG FRQVHTXHQW PRUSKRORJLFDO GLYHUVLW\ LV ODUJH 7KH SRRU UHVROXWLRQ RI SKHQHWLF JURXSV SDUWLFXODUO\ DPRQJ VSHFLHV RI LQWHUPHGLDWH IORUDO VL]H LV SUREDEO\ D UHIOHFWLRQ RI WKHVH IDFWRUV ,Q D UHFHQW UHYLHZ RI PRUSKRORJLFDO YDULDWLRQ DQG VSHFLDWLRQ 'DYLV DQG *LOPDUWLQ f FLWH GHYHORSPHQWDO IDFWRUV HJ FDQDOL]DWLRQ SODVWLFLW\ HSLVWDVLVf ZKLFK ZHDNHQ WKH FRUUHODWLRQ RI JHQHWLF DQG PRUSKRORJLFDO GLYHUJHQFH 7KH\ IXUWKHU FRQFOXGH WKDW PRUSKRORJLFDO GLYHUJHQFH FDQ SURFHHG LQ UDQGRP GLUHFWLRQ DPRQJ SODQWV 7KH WHQGHQF\ WR UHFRJQL]H WD[RQRPLF VSHFLHV LQ (XFKDULV EDVHG RQ QDUURZ FRQFHSWV RI PRUSKRORJLFDO GLVFRQWLQXLW\ LV DW YDULDQFH ZLWK PXFK RI WKH SKHQHWLF SDWWHUQV WKDW RFFXU ZLWKLQ WKH JHQXV DQG LV IXUWKHU ZHDNHQHG E\ ZKDW LV NQRZQ DERXW WKH JHQHWLFV FKURPRVRPH F\WRORJ\ DQG UHSURGXFWLYH ELRORJ\ RI WKH JURXS 0RUSKRORJLFDO GLYHUJHQFH LQ (XFKDULV PD\ EH PRVWO\ D IDFWRU RI UDSLG FKURPRVRPDO FKDQJH VHH &KDSWHU 9,,f DQG SHULSKHUDO LVRODWLRQ &KDSWHU ,;f :KHUH WKHVH HYROXWLRQDU\ IRUFHV DUH OHVV DFXWH DV DPRQJ WKH WD[D RI WKH $PD]RQ EDVLQ SKHQHWLF JURXSV DUH PXFK PRUH GLIILFXOW WR GLVWLQJXLVK

PAGE 118

7DEOH &KDUDFWHUV XVHG IRU PXOWLYDULDWH DQDO\VLV RI (XFKDULV VSHFLHV )ORZHU QXPEHU /LPE VSUHDG PPf /HQJWK RI IUHH ILODPHQW PPf :LGWK RI IUHH ILODPHQW PPf :LGWK RI VWDPHQ PPf /HQJWK RI WXEH PPf :LGWK RI WXEH DW WKURDW PPf /HQJWK RI RXWHU WHSDO PPf /HQJWK RI LQQHU WHSDO PPf :LGWK RI RXWHU WHSDO PPf :LGWK RI LQQHU WHSDO PPf 6WDPLQDO FXS OHQJWK PPf 6WDPLQDO FXS ZLGWK PPf 7RRWKLQJ RI VWDPLQDO FXS ELGHQWDWH WHHWK DFXWH ELGHQWDWH WHHWK REWXVH LUUHJXODUO\ WRRWKHG TXDGUDWH HGHQWDWH &OHIW RI VWDPLQDO FXS QRQH OHQJWK RI FXS OHQJWK RI FXS OHQJWK RI FXS OHQJWK RI FXS 5HODWLYH OHQJWK RI WHHWK HGHQWDWH OHQJWK RI ILODPHQW OHQJWK RI ILODPHQW OHQJWK RI ILODPHQW OHQJWK RI ILODPHQW 1R RYXOHV SHU ORFXOH OREHG

PAGE 119

7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI $PD]RQLDQ (XFKDULV &20321(17 180%(5 &+$5$&7(5 180%(5 3(5&(17 2) 9$5,$1&(

PAGE 120

,OO 7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI $PD]RQLDQ (XFKDULV FKDUDFWHUV RI VWDPLQDO GHQWDWLRQ UHPRYHGf &20321(17 180%(5 &+$5$&7(5 180%(5 3(5&(17 2) 9$5,$1&(

PAGE 121

7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI $PD]RQLDQ (XFKDULV DQGURHFLDO FKDUDFWHUV RQO\f &20321(17 180%(5 &+$5$&7(5 180%(5 3(5&(17 2) 9$5,$1&(

PAGE 122

7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI HDVWHUQ (FXDGRUHDQ (XFKDULV &20321(17 180%(5 &+$5$&7(5 180%(5 3(5&(17 2) 9$5,$1&(

PAGE 123

7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI HDVWHUQ (FXDGRUHDQ (XFKDULV FKDUDFWHUV RI VWDPLQD GHQWDWLRQ UHPRYHGf &20321(17 180%(5 &+$5$&7(5 180%(5 3(5&(17 2) 9$5,$1&(

PAGE 124

7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI WKH (XFKDULV ERXFKHL FRPSOH[ &20321(17 180%(5 &+$5$&7(5 180%(5 3(5&(17 2) 9$5,$1&(

PAGE 125

)LJXUH 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ $PD]RQLDQ (XFKDULV

PAGE 126

WAJ/=OA2G S&9b f (XFKDUOD EDNHUODQD r ( ERQSODQGOO ( FDQGLGD GHQWDWHf A HGHQWDWHf LA( FDVWDOQDDDQD r‘ ( F\DQDRVSHUPD ( IRUPRVD k GHQWDWHf 2 HGHQWDWHf ; ( FDQGLGD [ IRUPRVD ‘N( SOOFDWD ( XOH GHQWDWHf 2 HGHQWDWHf

PAGE 127

)LJXUH 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ $PD]RQLDQ (XFKDULV FKDUDFWHUV RI VWDPLQD GHQWDWLRQ UHPRYHGf

PAGE 128

3&b

PAGE 129

)LJXUH 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV DQGURHFLDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ $PD]RQLDQ (XFKDULV

PAGE 130

3&A 3& b

PAGE 131

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ $PD]RQLDQ (XFKDULV 5HIHU WR $SSHQGL[ 7DEOH IRU LGHQWLILFDWLRQ RI 278nV

PAGE 132

',67$1&(

PAGE 133

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ $PD]RQLDQ (XFKDULV FKDUDFWHUV RI VWDPLQDO GHQWDWLRQ UHPRYHGf 5HIHU WR $SSHQGL[ 7DEOH IRU LGHQWLILFDWLRQ RI 278nV

PAGE 134

',67$1&(

PAGE 135

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP EDVHG RQ VWDPLQDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ 5HIHU WR $SSHQGL[ 7DEOH IRU LGHQWLILFDWLRQ YDULDQFH DFURVV $PD]RQLDQ (XFKDULV RI 278nV

PAGE 136

',67$1&(

PAGE 137

)LJXUH 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ (FXDGRUHDQ SRSXODWLRQV RI (XFKDULV FDQGLGD DQG ( IRUPRVD

PAGE 138

(XFKDULV FDQGLGD GHQWDWHf Â’ m ?HG HQWD W Hf b ( IRUPRVD kGHQWDWHf kHGHQWDWHf [ ( FDQGLGD [ IRUPRVD QR N4

PAGE 139

)LJXUH 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ (FXDGRUHDQ SRSXODWLRQV RI (XFKDULV FDQGLGD DQG MO IRUPRVD FKDUDFWHUV RI VWDPLQDO GHQWDWLRQ UHPRYHGf

PAGE 140

b

PAGE 141

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ LQ 278nV UHSUHVHQWLQJ (FXDGRUHDQ SRSXODWLRQV RI (XFKDULV FDQGLGD DQG ( IRUPRVD 5HIHU WR $SSHQGL[ 7DEOH IRU LGHQWLQFDWLRQ RU XL8nV

PAGE 142

',67$1&(

PAGE 143

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ (FXDGRUHDQ SRSXODWLRQV RI (XFKDULV FDQGLGD DQG ( IRUPRVD FKDUDFWHUV RI VWDPLQD GHQWDWLRQ UHPRYHGf 5HIHU WR $SSHQGL[ 7DEOH IRU LGHQWLILFDWLRQ RI 278nV

PAGE 144

',67$1&(

PAGE 145

)LJXUH (XFKDULV 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ ERXFKHL

PAGE 146

(XFKDULV ERXFKHL YDU ERXFKHL YDU GUHVVOHUL ‘-IYDU GDULHQHQVLV

PAGE 147

)LJXUH 3&$ VFDWWHUJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ 278nV UHSUHVHQWLQJ UXFKDQnV ERXFKHL ZLWK 3& HPSKDVL]HG

PAGE 149

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP EDVHG RQ YDULDQFH DFURVV IORUDO FKDUDFWHUV LQ LQ 278nV UHSUHVHQWLQJ (XFKDULV ERXFKHL 5HIHU WR $SSHQGL[ 7DEOH IRU LGHQWLILFDWLRQ RI 27O7V

PAGE 150

',67$1&(

PAGE 151

&+$37(5 9,, &+5202620( &<72/2*< &KURPRVRPH F\WRORJ\ RI $PDU\OLGDFHDH KDV EHHQ D IDYRUHG VXEMHFW IRU LQYHVWLJDWLRQ FKLHIO\ GXH WR WKH ODUJH VL]H RI WKH FKURPRVRPHV DQG DYDLODELOLW\ RI PDWHULDO 6KDUPD DQG %DO f 7KH VXEMHFW KDV EHHQ UHYLHZHG E\ )ORU\ f DQG 0HHURZ f 0LWRWLF VWXGLHV KDYH GRPLQDWHG WKH OLWHUDWXUH 0LFURVSRUHJHQVLV RFFXUV FRPSOHWHO\ LQVLGH WKH EXOE ZKHQ WKH LQIORUHVFHQFH LV QDVFHQW DQG QXPHURXV EXOEV PXVW WKHUHIRUH EH VDFULILFHG IRU PHLRWLF DQDO\VLV ZLWKRXW JXDUDQWHH WKDW QHFHVVDU\ VWDJHV ZLOO EH REWDLQHG 1DJDOOD 3RQDPPD :LOOLDPV f 1RQHWKHOHVV FKURPRVRPH F\WRORJ\ RI RQO\ D VLQJOH VSHFLHV RI (XFKDULV ( DPD]RQLFD KDV EHHQ UHSRUWHG LQ WKH OLWHUDWXUH 0RRNHUMHD 1DJDOOD 6DWR f $ ODUJH OLYLQJ FROOHFWLRQ RI (XFKDULV DQG &DOLSKUXULD VSHFLHV KDV DOORZHG D QHDUO\ FRPSOHWH LQYHVWLJDWLRQ RI VRPDWLF FKURPRPH F\WRORJ\ LQ WKH JHQXV 7KH UHVXOWLQJ GDWD FDQ EH DSSOLHG WR SUREOHPV RI VSHFLHV GHOLPLWDWLRQ LQ (XFKDULV DQG &DOLSKUXULD DV ZHOO DV WR ZLGHU TXHVWLRQV RI SK\ORJHQHWLF LQWHUHVW 0DWHULDOV DQG 0HWKRGV 5RRW WLSV ZHUH FROOHFWHG IURP OLYLQJ FROOHFWLRQV SUHWUHDWHG IRU KRXUV DW URRP WHPSHUDWXUH LQ SSP VROXWLRQ RI RLVRSURS\O1

PAGE 152

SKHQ\OFDUEDPDWH 6WRUH\ DQG 0DQQ f ULQVHG LQ GLVWLOOHG ZDWHU IL[HG LQ PL[WXUH RI b (72+ DQG FKORURIRUP &DUQR\nV VROXWLRQf DW r& IRU KU WKHQ VWRUHG DIWHU IL[DWLRQ LQ b (72+ DW r& 5RRW WLSV ZHUH K\GURO\]HG LQ ,1 +&/ DW r& IRU PLQXWHV VTXDVKHG DQG VWDLQHG ZLWK LURQ DFHWRFDUPLQH 2QO\ WHPSRUDU\ VOLGHV ZHUH PDGH 0HWDSKDVH FRQILJXUDWLRQV ZHUH SKRWRJUDSKHG RQ D 1LNRQ /DERSKRW SKRWRPLFURVFRSH ZLWK $); FDPHUD DWWDFKPHQW DQG KDSORLG LGLRJUDPV FRQVWUXFWHG IURP SKRWRPLFURJUDSKV &RXQWV ZHUH PDGH IRU D PLQLPXP RI WHQ FHOOV RI HDFK DFFHVVLRQ UHSRUWHG )LYH PHWDSKDVH FRQILJXUDWLRQV RI HDFK DFFHVVLRQ ZHUH DQDO\]HG PRUSKRORJLFDOO\ IRU GLSORLG VSHFLHV WZR IRU WHWUDSORLGV $V DEVROXWH FKURPRVRPH OHQJWK FDQ YDU\ DSSUHFLDEO\ IURP FHOO WR FHOO GXH WR GLIIHUHQWLDO DIIHFWV RI SUHWUHDWPHQW 7MLR DQG +DJEHUJ 6FKODUEDXP DQG 7VFXFKL\D f UHODWLYH OHQJWK EDVHG RQ D YDOXH RI IRU WKH KDSORLG FRPSOHPHQW ZDV XVHG WR GHVLJQDWH VL]H FODVV 5HODWLYH VL]H FODVVHV DUH EDVHG RQ FRUUHODWLRQV EHWZHHQ DEVROXWH VL]H FODVV >PRGLILHG IURP %DWWDJOLD f@ DQG UHODWLYH OHQJWK 5/f RI PLWRWLF PHWDSKDVH SUHSDUDWLRQV RI YDULRXV VSHFLHV RI (XFKDULV (XFURVLD 3KDHGUDQDVVD DQG RWKHU $PDU\OOLGDFHDH ZLWK QB DOO RI ZKLFK KDYH VLPLODU UHODWLYH OHQJWK UDQJHV 5/ B! ODUJH PRGHUDWHO\ ODUJH PHGLXP B VPDOO )RU WHWUDSORLG WD[D WKHVH YDOXHV ZHUH KDOYHG )RU WKH VLQJOH SXWDWLYHO\ WULSLRLGGHULYHG VSHFLHV B( DPD]QLFDf WZRWKLUGV RI WKH GLSORLG 5/ YDOXHV ZHUH XVHG WR DVVLJQ VL]H FODVV &KURPRVRPH PRUSKRORJ\ PRGLILHG IURP %DWWDJOLD f LV GHILQHG DV IROORZV PHWDFHQWULF $UP 5DWLR $5 ORQJ DUPVKRUW DUPf QHDUPHWDFHQWULF $5 VXEPHWDFHQWULF $5 VXEWHORFHQWULF $5

PAGE 153

.DU\RW\SH PRUSKRORJ\ ZDV DQDO\]HG E\ 3ULQFLSOH &RPSRQHQW 3&$f DQG XQZHLJKWHG SDLUJURXS FOXVWHU DQDO\VLV 830*$ RI 6QHDWK DQG 6RNDO f ZLWK &/867$1 YHUV RQ WKH 1(5'& FRPSXWHU V\VWHP RI WKH 8QLYHUVLW\ RI )ORULGD VHH &KDSWHU 9,f )LIWHHQ 278nV UHSUHVHQWLQJ QRQK\EULG GLSORLG WD[D RI (XFKDULV &DOLSKUXULD DQG 8UFHROLQD ZHUH DQDO\]HG IRU YDULDQFH DFURVV WKLUWHHQ FKDUDFWHUV 7KH FKDUDFWHUV ZHUH IRUPHG E\ QHVWLQJ FKURPRVRPH PRUSKRORJ\ ZLWKLQ VL]H FODVVHV HJ ODUJHPHWD RU QHDUPHWDFHQWULF ODUJHVXEPHWDFHQWULF HWFf (DFK 278 ZDV WKHQ VFRUHG IRU WKH QXPEHU RI FKURPRVRPHV ZLWKLQ HDFK QHVWHG JURXS UHIHU WR 7DEOH f )RU WKH SXUSRVHV RI WKHVH DQDO\VHV PHWD DQG QHDU PHWDFHQWULF PRUSKRORJLHV ZHUH FRPELQHG LQWR D VLQJOH FDWHJRU\ DV WKH GLVWLQFWLRQ EHWZHHQ WKHVH WZR FDWHJRULHV LV RIWHQWLPHV VOLJKW DQG WKHUHIRUH PRVW VXEMHFW WR HUURU 5HVXOWV $ VRPDWLF FKURPRVRPH QXPEHU RI BQ LV FKDUDFWHULVWLF RI (XFKDULV DQG &DOLSKUXULD DV ZHOO DV WKH VLQJOH VSHFLHV RI 8UFHROLQD H[DPLQHG 7DEOH f 7ZR WHWUDSORLG VSHFLHV ( ERXFKHL IURP &HQWUDO $PHULFD DQG B( ERQSODQGLL IURP &RORPELD KDYH BQ (XFKDULV DPD]QLFD ZLWK QB LV WKH RQO\ NQRZQ GHSDUWXUH IURP WKHVH Q RU Q NDU\RW\SHV .DU\RW\SHV RI DOO WD[D VWXGLHG DUH VWURQJO\ ELPRGDO )LJV 7DEOH f $SSUR[LPDWHO\ KDOI WKH FKURPRVRPHV DUH ODUJH WR PHGLXP LQ VL]H WKH UHPDLQGHU DUH VPDOO 0HDQ QXPEHUV RI FKURPRVRPHV ZLWKLQ HDFK VL]H FODVV DFURVV DOO GLSORLG QRQK\EULG (XFKDULV DQG &DOLSKUXULD WD[D H[DPLQHG DUH ODUJH 6( f PRGHUDWHO\ ODUJH 6(

PAGE 154

f PHGLXP 6( f VPDOO 6( f ,I ODUJH DQG PRGHUDWHO\ ODUJH DUH FRPELQHG LQWR D VLQJOH VL]H FODVV ODUJHf DOO WD[D LQFOXGLQJ ERWK 8UFHROLQD PLFURFUDWHUf KDYH HLWKHU RU ODUJH FKURPRVRPHV ,Q PRVW VSHFLHV RI (XFKDULV )LJV ( $ & & )f WKH WZR ODUJHVW FKURPRVRPH SDLUV DUH PHWDFHQWULF RU QHDUPHWDFHQWULF ,Q D VLQJOH VSHFLHV ( DVWURSKLDOD )LJV $f WKH ODUJHVW SDLU LV VXEPHWDFHQWULF DV LV WKH FDVH LQ 8UFHROLQD PLFURFUDWHU )LJ f 7KH VHFRQG ODUJHVW SDLU RI (B DVWURSKLDOD LV VXEWHORFHQWULF 7KLV VSHFLHV LV D SHULSKHUDO LVRODWH RI VXEJ (XFKDULV WKH RQO\ VSHFLHV RI WKLV VXEJHQXV RQ WKH ZHVWHUQ $QGHDQ VORSHV VRXWK RI &RORPELD ,W KDV XQLTXHO\ EXOODWHSXVWXODWH OHDI PRUSKRORJ\ DQG WKH ODUJHVW SROOHQ JUDLQ LQ WKH JHQXV &DOLSKUXULD VXEHGHQWDWD LV KHWHURPRUSKLF IRU WKH ODUJHVW FKURPRVRPH SDLU )LJV $f 2QH RI WKH KRPRORJV LV PHWDFHQWULF ZKLOH WKH RWKHU LV VXEPHWDFHQWULF )LYH GLIIHUHQW FROOHFWLRQV RI WKLV VSHFLHV DOO H[KLELW WKLV KHWHURPRUSKLVP 3ROOHQ RI WKLV VSHFLHV VWDLQV RQO\ b ZLWK $OH[DQGHUnV f VWDLQ ZKLFK PD\ EH D FRQVHTXHQFH RI WKLV KHWHURPRUSKLVP 7KH VHFRQG ODUJHVW FKURPRVRPH SDLU RI ; &DOLFKDULV EXWFKHUL SXWDWLYHO\ DQ LQWHUJHQHULF K\EULG EHWZHHQ c( VDQGHUL DQG B& VXEHGHQWDWD LV VXEPHWDFHQWULF DQG PD\ FRQFHLYHDEO\ EH KRPRORJRXV WR WKH VXEPHWDFHQWULF PHPEHU RI WKH ODUJHVW SDLU LQ B& VXEHGHQWDWD 7KH VHFRQG ODUJHVW FKURPRVRPH SDLU LV DOVR VXEPHWDFHQWULF LQ D IHZ VSHFLHV RI (XFKDULV DQG &DOLSKUXULD B( EDNHULDQD )LJV %f VRPH SRSXODWLRQV RI ( ERXFKHL )LJV %f ( ERQSODQGLL )LJV &f DQG & NRUVDNRIILL )LJV %f

PAGE 155

7HORFHQWULF FKURPRVRPHV ZHUH REVHUYHG LQ RQO\ WZR VSHFLHV (B DQPDOD VXEJ +HWHURFKDULV )LJV &f DQG B( FDVWHQDHDQD VXEJ (XFKDULV )LJV 'f 7KH QXPEHU RI VXEWHORFHQWULF FKURPRVRPHV KRZHYHU LV D PDMRU VRXUFH RI NDU\RW\SLF YDULDWLRQ DPRQJ WKH VSHFLHV 6HFRQGDU\ FRQVWULFWLRQV ZHUH UHVROYHG RQO\ LQ D VLQJOH FKURPRVRPH RI B( EDNHULDQD VXEJ (XFKDULV )LJV %f DQG IRXU FKURPRVRPHV RI ( DPD]RQLFD VXEJ +HWHURFKDULV )LJV )f 7HUPLQDO VDWHOOLWHV ZHUH QRW UHVROYHG LQ DQ\ VSHFLHV H[DPLQHG HYHQ WKRXJK 0RRNHUMHD f 1DJDOOD f DQG 6DWR f DOO UHSRUWHG WKHLU RFFXUHQFH LQ (B DPD]RQLFD 0LWRWLF PHWDSKDVH FRQILJXUDWLRQV RI FXOWLYDWHG PDWHULDO UHFHLYHG ZLWKRXW SURYHQDQFHf RI ( DPD]RQLFD GLG UHVROYH VHYHUDO 6$7 FKURPRVRPHV KRZHYHU ,Q QHZ FROOHFWLRQV IURP 3HUX IURP ZKLFK NDU\RW\SHV UHSRUWHG KHUH ZHUH SUHSDUHG VDWHOOLWHV ZHUH QRW DSSDUHQW 7HWUDSORLG\ LQ (XFKDULV LV OLPLWHG WR WZR VSHFLHV ( ERQSODQGLL D UDUH &RORPELDQ VSHFLHV DQG -( ERXFKHL IURP &HQWUDO $PHULFD .DU\RW\SLFDOO\ WKH WHWUDSORLG (XFKDULV VSHFLHV DUH FRQVLGHUDEO\ KHWHURPRUSKLF )LJ f .DU\RW\SHV RI WZR JHRJUDSKLFDOO\ LVRODWHG DQG PRUSKRORJLFDOO\ GLVWLQFW SRSXODWLRQV RI (B ERXFKHL YDU ERXFKHL )LJV $% 7DEOH f DUH TXLWH GLIIHUHQW (XFKDULV ERXFKHL YDU GUHVVOHUL LV DQ XQVWDEOH WHWUDSORLG )LJV &f )LIWHHQ SHUFHQW RI DOO URRW FHOOV IURP ZKLFK PHWDSKDVH FRXQWV ZHUH REWDLQHG KDG FKURPRVRPHV 3KHQHWLF DQDO\VHV RI NDU\RW\SH YDULDWLRQ 3&$ 2UGLQDWLRQ RI GLSORLG NDU\RW\SHV E\ SULQFLSOH FRPSRQHQWV UHVROYHG DOPRVW b RI WRWDO YDULDQFH LQ WKH ILUVW WKUHH SULQFLSOH FRPSRQHQWV %\ H[SORULQJ WKH YDULDQFH FRPSRQHQWV RI HDFK RI WKH WKUHH

PAGE 156

3&nV 7DEOH f LW LV SRVVLEOH WR GHWHUPLQH ZKLFK FDWHJRULHV RI FKURPRVRPH PRUSKRORJ\ DUH WKH PRVW YDULDEOH )URP WKLV RQH FDQ SHUKDSV LQIHU WKH SDWWHUQV RI NDU\RW\SLF FKDQJH WKDW KDV RFFXUHG DPRQJ VSHFLHV DQG EHWZHHQ JHQHUD &KDUDFWHUV DUJHVXEPHWDFHQWULFf PRGHUDWHO\ ODUJHVXEPHWDFHQWULFf PHGLXPVXEWHORFHQWLFf DQG VPDOOVXEWHORFHQWULFf ZHUH WKH PRVW LPSRUWDQW FRQWULEXWRUV WR WRWDO YDULDQFH RI 3&, &KDUDFWHUV ODUJHVXEWHORFHQWULFf PRGHUDWHO\ DUJHPHWDFHQWULFf DQG VPDOVXEPHWDFHQWULFf DUH ODUJHO\ UHSUHVHQWHG LQ 3& 3& LV ZHLJKWHG IRU FKDUDFWHUV PRGHUDWHO\ ODUJHVXEWHORFHQWULFf PHGLXPPHWDFHQWULFf DQG VPDOPHWDFHQWULFf 2UGLQDWLRQ E\ WKH ILUVW WKUHH 3&nV SURGXFHV WKH VFDWWHUJUDP LQ )LJ $ORQJ 3&, WKH FRPSRQHQW RI JUHDWHVW YDULDQFH DOPRVW DOO WKH NDU\RW\SHV DUH IRXQG LQ WKH VDPH JHQHUDO DUHD RI WKH VFDWWHUJUDP LQGLFDWLQJ WKDW LQ WHUPV RI FKURPRVRPH FDWHJRULHV ODUJHVXEPHWDFHQWULF PRGHUDWHO\ DUJHVXEPHWDFHQWULF PHGLXPVXEWHORFHQWULF DQG VPDOO VXEWHORFHQWULF WKH WD[D GR QRW YDU\ DSSUHFLDEO\ IURP HDFK RWKHU $ QRWDEOH H[FHSWLRQ LV ( EDNHULDQD 7KLV VSHFLHV KDV PRGHUDWHO\ ODUJHVXEWHORFHQWULF FKURPRVRPHV VL[ LV WKH KLJKHVW QXPEHU WR RFFXU LQ DOO RWKHU WD[D DQDO\]HGf DQG WKH RQO\ VSHFLHV WR KDYH DQ\ VPDOO VXEWHORFHQWULF FKURPRVRPHV *UHDWHVW SKHQHWLF GLIIHUHQWLDWLRQ LQ NDU\RW\SH RFFXUV DORQJ 3& (XFKDULV DVWURSKLDOD LV WKH PRVW LVRODWHG WD[RQ DORQJ WKLV FRPSRQHQW 7KLV VSHFLHV KDV WKH ODUJHVW QXPEHU RI PRGHUDWHO\ ODUJHVXEPHWDFHQWULF FKURPRVRPHV f WKH FDWHJRU\ ZKLFK FRQWULEXWHG WKH JUHDWHVW YDULDQFH WR 3& (LJKW WD[D ( DQPDOD ( ERXFKHL YDU GUHVVOHUL ( FDVWHQDHDQD ( F\DQHRVSHUPD ( IRUPRVD IURP (FXDGRU ( XOHL &

PAGE 157

VXEHGHQWDWD DQG 8UFHROLQD PLFURFUDWHUf IRUP D UHODWLYHO\ GLVWLQFW SKHQHWLF JURXS DORQJ 3& 7KH VLPLODULW\ RI NDU\RW\SH RI WKH VLEOLQJ VSHFLHV ( F\DQHRVSHUPD DQG (B XOHL LV HYLGHQW E\ WKHLU FORVH SUR[LPLW\ LQ WKH VFDWWHUJUDP 7KH UHPDLQLQJ WD[D LQ WKLV SKHQHWLF JURXS DUH D KHWHURJHQHRXV DVVHPEODJH RI ZLGHO\ UHODWHG VSHFLHV (XFKDULV DQPDOD DQG ( FDVWHQDHDQD VHSDUDWH IURP DOO RWKHU WD[D DORQJ 3& RQ WKH EDVLV RI WKHLU WZR VPDOO WHORFHQWULF FKURPRVRPHV 7KH UHPDLQLQJ WD[D B( FDQGL GD ( I RUPRVD IURP 3HUX (B SL L FDWD DQG & NRUVDNRIIL Lf DUH XQLWHG DORQJ 3& EXW VHSDUDWH DORQJ WKH OHQJWK RI 3&, 7KH NDU\RW\SH UHODWLRQVKLS RI ERWK VXEVSHFLHV RI ( SL L FDWD )LJV &' WDEOH f LV HYLGHQW E\ WKHLU SUR[LPLW\ LQ WKH VFDWWHUJUDP 7KH NDU\W\SH GLYHUJHQFH RI 3HUXYLDQ B( IRUPRVD IURP (FXDGRUHDQ SRSXODWLRQV LV HYLGHQW DV ZHOO E\ WKH GLVWDQFH EHWZHHQ WKHVH WZR NDU\RW\SHV LQ WKH VFDWWHUJUDP &OXVWHU DQDO\VLV 7KH GHQGURJUDP JHQHUDWHG E\ WKH 83*0$ DOJRULWKP )LJ f VXSSRUWV PDQ\ RI WKH UHVXOWV RI 3&$ 7KH NDU\RW\SH RI (B EDNHULDQD LV D GLVWDQW RXWO\HU WR DOO RWKHU 278nV IXVLQJ ZLWK WKH UHVW RI WKH JURXS DW D GLVWDQFH FRHIILFLHQW '&f RI (XFKDULV DVWURSKLDOD LV DOVR DQ RXWO\HU EXW DW D '& RI RQO\ 2WKHU WKDQ WKHVH WZR 278nV WKUHH PDLQ FOXVWHUV DUH IRUPHG LQ WKH GHQGURJUDP 7KH WZR SRSXODWLRQV RI B( IRUPRVD GR IRUP D FOXVWHU DW '& EXW QRW XQWLO DIWHU WKH WZR VXEVSHFLHV RI (B SL L FDWD MRLQ ZLWK 3HUXYLDQ (B IRUPRVD (XFKDULV XOHL DQG LWV VLEOLQJ VSHFLHV ( F\DQHRVSHUPD MRLQ DW D '& RI RQO\ 7KH GLSORLG NDU\RW\SH RI -( ERXFKHL YDU GUHVVOHUL MRLQV WKLV FOXVWHU DW '& &DOLSKUXULD NRUVDNRIILL DQG 8UFHROLQD PLFURFUDWHU IXVH DW D '& &DOLSKUXULD VXEHGHQWDWD LV DQ RXWO\HU WR WKLV FHQWHU FOXVWHU 7KH WKLUG FOXVWHU LV D KHWHURJHQHRXV RQH (XFKDULV DQPDOD DQG ( FDVWHQDHDQD IXVH DW D UHODWLYHO\ KLJK '& RI

PAGE 158

SUREDEO\ PRUH RQ WKH EDVLV RI WKHLU VPDOOWHORFHQWULF FKURPRVRPHV WKDQ DQ\ RWKHU IHDWXUH RI WKHLU NDU\RW\SHV (XFKDULV FDQGLGD MRLQV WKHP DW D '& RI 'LVFXVVLRQ DQG &RQFOXVLRQV $ VRPDWLF FKURPRVRPH QXPEHU RI e RU GHULYDWLRQV WKHUHRIf LV FKDUDFWHULVWLF RI PRVW JHQHUD RI QHRWURSLFDO 3DQFUDWL RL GLQDH 'L )XO YLR )ORU\ 0HHURZ XQSXEO GDWD :LOOLDPV f $OO SDOHRWURSLFDO JHQHUD KDYH QB RU 0HHURZ XQSXEO GDWD 3RQQDPPD =DPDQ DQG &KDNUDERUW\ f 7KLV VXJJHVWV D SRO\SORLG RULJLQ IRU WKH QHRWURSLFDO JHQHUD RI WKH LQIUDIDPLO\ IURP DQ DQFHVWRU ZLWK BQ FI 3DQFUDWLXP /f YLD FKURPRVRPH IUDJPHQWDWLRQ DQG VXEVHTXHQW GRXEOLQJ /DNVKPL 6DWR f 7KH PRVW FRPPRQ EDVH QXPEHU RFFXUULQJ LQ WKH $PDU\OOLGDFHDH LV [ )ORU\ *ROGEODWW 7UDXE f DQG BQ FKDUDFWHUL]HV PDQ\ ZLGHO\ XQUHODWHG JHQHUD 7ZR PDMRU WUHQGV FKDUDFWHUL]H DPDU\OOLGDFHRXV NDU\RW\SH HYROXWLRQ 0HHURZ f &HUWDLQ JHQHUD H[KLELW JUHDW NDU\RW\SLF VWDELOLW\ ZLWK ORZ IUHTXHQF\ RI SRO\SORLG\ >HJ &ULQXP / -RQHV DQG 6PLWK 5DLQD f +LSSHDVWUXP +HUEHUW 1DUDQMR DQG $QGUDGD f@ 6LPLODU FKURPRVRPH PRUSKRORJ\ DPRQJ WKH VSHFLHV RI VXFK JHQHUD LV FKDUDFWHULVWLF 7KHLU SRO\SORLGV WHQG WR EH DXWRSORLG LQ RULJLQ $W WKH RWKHU H[WUHPH D JHQXV PD\ H[KLELW JUHDW YDULDWLRQ LQ ERWK FKURPRVRPH QXPEHU DQG PRUSKRORJ\ >HJ +\PHQRFDOLV 6DOLVE )ORU\ )ORU\ DQG 6FKPLGKDXVHU /DNVKPL f /\FRULV +HUEHUW ,QDUL\DPD %RVH DQG )ORU\ f@ ,Q VXFK

PAGE 159

JHQHUD DOORSRO\SORLG\ KDV EHHQ LPSOLFDWHG DV DQ LPSRUWDQW IDFWRU LQ VSHFLDWLRQ (XFKDULV DQG UHODWHG JHQHUD DUH VRPHZKDW LQWHUPHGLDWH EHWZHHQ WKHVH WZR H[WUHPHV &KURPRVRPH QXPEHU LV YHU\ VWDEOH LQ (XFKDULV DQG LQFLGHQFHV RI SRO\SORLG\ DUH ORZ 7KH RULJLQV RI WKH SRO\SORLGV LH ZKHWKHU DXWR RU DOORSORLGf DUH LQFRQFOXVLYH DWWHPSWV WR VHFXUH PHLRWLF ILJXUHV KDYH EHHQ XQVXFFHVVIXOf %XW FKDQJHV LQ FKURPRVRPH PRUSKRORJ\ DPRQJ WKH VSHFLHV KDV EHHQ H[WHQVLYH HQRXJK WKDW D JHQHUDO NDU\RW\SLF IRUPXOD FDQQRW EH FRQVWUXFWHG DV KDV EHHQ GRQH IRU &ULQXP -RQHV DQG 6PLWK 5DLQD f DQG +LSSHDVWUXP 1DUDQMR DQG $QGUDGD f &KURPRVRPDO V\PPHWU\ KDV FODVVLFDOO\ EHHQ FLWHG DV HYLGHQFH RI NDU\RW\SLF HYROXWLRQ /HYLWVN\ 6WHEELQV f LH NDU\RW\SH RI JUHDWHVW V\PPHWU\ LQ D SDUWLFXODU SK\ORJHQ\ LV WKH PRVW SULPLWLYH DQG WKDW RI OHDVW V\PPHWU\ WKH PRUH GHULYHG -RQHV f KDV FKDOOHQJHG WKLV WHQHW WKRXJK WKH HYLGHQFH IRU WKH UHYHUVH SURFHVV LV LQH[WULFDEO\ OLQNHG WR DFFRPSDQ\LQJ FKDQJHV LQ FKURPRVRPH QXPEHU >LH 5REHUWVRQLDQ FKDQJHV 5REHUWVRQ f@ &HQWULF IXVLRQ DQG FHQWULF ILVVLRQ KDYH UHVSHFWLYHO\ EHHQ LPSOLFDWHG LQ WKH HYROXWLRQ RI /\FRULV UHYLHZHG E\ -RQHV f DQG +\PHQRFDOOLV )ORU\ f ,Q (XFKDULV DQG &DOLSKUXULD QR VXFK FKDQJH LQ QXPEHU LV LQ HYLGHQFH 7KXV SHULFHQWULF LQYHUVLRQ FHQWULF VKLIW RU XQHTXDO WUDQVORFDWLRQV *UDQW -DFNVRQ f ZRXOG EH WKH PRVW OLNHO\ FDXVDWLYH IDFWRUV JHQHUDWLQJ WUDQVIRUPDWLRQV LQ FKURPRVRPH PRUSKRORJ\ RI (XFKDULV DQG &DOLSKUXULD 0RUSKRORJLFDO FKDQJH LQ WKH ODUJHVW FKURPRVRPH SDLU LQ (XFKDULV DQG UHODWHG JHQHUD LV UDUH EXW LQ ERWK FDVHV (XFKDULV DVWURSKLDOD DQG

PAGE 160

8UFHROLQD PLFURFUDWHUf ODUJHVFDOH SKHQHWLF GLYHUJHQFH LV FRUUHODWHG ZLWK VXFK FKDQJH LQ RQH FDVH DW WKH JHQHULF OHYHO 6OLJKWO\ PRUH FRPPRQ WD[Df LV WKH FKDQJH LQ WKH VHFRQG ODUJHVW FKURPRVRPH SDLU IURP PHWDFHQWULF WR VXEPHWDFHQWULF $JDLQ D OHYHO RI PRUSKRORJLFDO GLYHUJHQFH FRUUHODWHV LQ WKHVH WD[D B( ERQSODQGLL ( ERXFKHL (B EDNHULDQD DQG B& NRUVDNRIILLf 7KH FDVH RI B( EDNHULDQD LV SDUWLFXODUO\ LQWHUHVWLQJ 7KLV UDUH VSHFLHV RFFXUV LQ WKH VDPH DUHD DV VRPH 3HUXYLDQ SRSXODWLRQV RI (B IRUPRVD $ PHDVXUH RI NDURW\SLF UHODWLRQVKLS EHWZHHQ WKHVH WZR VSHFLHV LQ 3HUX PD\ EH WKH PRGHUDWHO\ ODUJH VXEWHORFHQWULF FKURPRVRPH QR LQ )LJV % DQG %f ZLWK D YHU\ VKRUW DUP ([FHSW IRU WKH VXEPHWDFHQWULF VHFRQGODUJHVW SDLU LQ B( EDNHULDQD DORQJ ZLWK JHQHUDOO\ LQFUHDVHG DV\PPHWU\f WKHVH WZR NDU\RW\SHV DUH YHU\ VLPLODU 7KH VSHFLHV DUH FODGLVWLFDOO\ YHU\ FORVH DV ZHOO VHH &KDSWHU ,;f (XFKDULV EDNHULDQD PD\ UHSUHVHQW D FDVH RI UDSLG SKHQHWLF GLYHUJHQFH YLD FKURPRVRPDO FKDQJH 7KH ODUJH KHWHURJHQRXV JURXS LQ WKH VFDWWHUJUDP )LJ f PD\ UHSUHVHQW WD[D ZLWK PRUH DQFHVWUDO NDU\RW\SH PRUSKRORJ\ LH PRUH V\PPHWULFDOf VLQFH LW LQFOXGHV WD[D RI GLIIHUHQW JHQHUD DV ZHOO DV (XFKDULV VSHFLHV 7KH SXWDWLYHO\ PRVW SULPLWLYH VSHFLHV RI (XFKDULV B( DQPDOD LV LQFOXGHG ZLWKLQ WKLV JURXS 1XPEHU RI VXEWHORFHQWULF FKURPRVRPHV LV WKH EHVW LQGLFDWRU RI V\PPHWU\ YDULDQFH LQ (XFKDULV NDU\RW\SHV DQG WKHVH WD[D GR KDYH WKH ORZHVW QXPEHUV RI VXEWHORFHQWULFV f $PRQJ WKH NDU\RW\SHV RI WKLV JURXS WKH ODUJH FKURPRVRPH VL]H FODVV DQG WKH PHWDFHQWULF VXEFODVV RI PRGHUDWHO\ ODUJH FKURPRVRPHV VKRZ WKH OHDVW YDULDQFH 7DEOH f (QRXJK YDULDQFH LV H[SUHVVHG LQ DOO RWKHU FDWHJRULHV WR PDNH JHQHUDWLRQ RI D NDU\RW\SH IRUPXOD IRU (XFKDULV GLIILFXOW

PAGE 161

.DU\RW\SHV RI &DOLSKUXULD NRUVDNRIIL DQG 8UFHROLQD PLFURFUDWHU DSSHDU WR KDYH VRPH SKHQHWLF VLPLODULW\ RQ WKH EDVLV RI FOXVWHU DQDO\VLV )LJ f 7KLV LV DOO WKH PRUH LQWHUHVWLQJ GXH WR WKH IDFW WKDW e NRUVDNRIILL LV WKH RQO\ VSHFLHV RI &DOLSKUXULD IRXQG LQ 3HUX 8UFHROLQD LV FRPSOHWHO\ HQGHPLF WR 3HUX 6LQFH ERWK DUH GLYHUJHQW WD[D ZRXOG VXVSHFW WKDW NDU\RORJLFDO IHDWXUHV FRPPRQ WR ERWK VSHFLHV UHSUHVHQW V\PSOHVLRPRUSKLHV 7KH SUHVHQFH RI WHORFHQWULF FKURPRVRPHV LQ ERWK B( DQPDOD DQG B( FDVWHQDHDQD DUH SUREDEO\ LQGHSHQGHQW RFFXUUHQFHV FRQVLGHULQJ WKH SKHQHWLF DQG FODGLVWLF GLVWDQFH EHWZHHQ WKHVH VSHFLHV 7KH SUHVHQFH RI WHORFHQWULFV KRZHYHU FRUUHODWHV ZLWK JUHHQ WKLQZDOOHG IUXLWV LQ ERWK VSHFLHV (XFKDULV DPD]QLFD ZLWK BQ LV DQ XQXVXDO VSHFLHV .QRZQ LQ WKH ZLOG RQO\ IURP WKH +XDOODJD YDOOH\ RI 3HUX B( DPD]RQLFD KDV QHYHU EHHQ FROOHFWHG LQ IUXLW DQG ZLOO QRW VHW FDSVXOHV ZLWK VHOI VLEOLQJ RU LQWHUVSHFLILF SROOHQ 3ROOHQ VWDLQV RQO\ b ZLWK $OH[DQGHUnV f VWDLQ 2Q WKH EDVLV RI PHLRWLF VWXG\ 1DJDOOD f FRQVLGHUHG -( DPD]RQL FD DQ DQHXSORLG ZLWK D B[ FRQVWLWXWLRQ $W PHWDSKDVH VKH REVHUYHG XQLYDOHQWV ELYDOHQWV WULYDOHQWV TXDGULYDOHQWV SHQWDYDOHQWV DQG KH[DYDOHQWV LQ WKH FHOOV DQDO\]HG 2FFXUUHQFH RI EULGJH IUDJPHQW FRQILJXUDWLRQV DW DQDSKDVH VXJJHVWHG LQYHUVLRQ KHWHUR]\JRVLW\ 1DJDOOD f FRQFOXGHG WKDW WKH VSHFLHV LV D VHJPHQWDO DOORKH[DDQHXSORLG EHOLHYH (B DPD]RQL FD LV D WULSORLG GHULYHG LVRODWH RI WKH JHQXV [B f ZLWK PDQ\ DQFHVWUDO RU GHULYHG LQ WKH FDVH RI VHFRQGDU\ SHWLRODU EXQGOHVf FKDUDFWHUV VKDUHG ZLWK ( DQPDOD $ VLPLODU FDVH KDV RFFXUHG LQ (XFURVLD 0HHURZ f DQRWKHU $QGHDQ JHQXV RI SDQFUDWLRLG $PDU\OOLGDFHDH (XFURVLD ELFRORU

PAGE 162

.HU *DZOHU KDV BQ WKH UHVW RI WKH JHQXV KDV BQ f ,Q (B ELFRORU KRZHYHU SROOHQ VWDLQDELOLW\ LV QRW UHGXFHG DQG SODQWV KDYH EHHQ FROOHFWHG LQ IUXLW (XFKDULV ERXFKHL YDU GUHVVOHUL LV DQ XQVWDEOH WHWUDSORLG 6RPDWLF FHOOV RI WKH URRW WLSV KDYH ERWK WHWUDSORLG f DQG GLSORLG f FRXQWV 6QRDG f UHSRUWHG NDURW\SH LQVWDELOLW\ LQ +\PHQRFDOOLV QDUFLVVLI RUD EXW DQHXSORLG QXPEHUV DV ZHOO DV SRO\SORLG FRXQWV ZHUH REVHUYHG LQ WKH FHOOV RI WKH ODWWHU VSHFLHV 3RO\SORLG VSHFLHV RI (XFKDULV GR QRW VKRZ DQ\ PDUNHG HIIHFWV RI LQFUHDVHG FKURPRVRPH QXPEHU EH\RQG DQ LQFUHDVH LQ VL]H RI URRW FHOOV DQG D VOLJKW WKLFNHQLQJ RI WKH OHDI ODPLQDH (XFKDULV ERQSODQGLL LQ DGGLWLRQ GHYHORSV D JODXFRXV EORRP RQ WKH OHDYHV LQ VWURQJ OLJKW 7HWUDSORLG\ PD\ KRZHYHU KDYH DLGHG WKH VXFFHVVIXO FRORQL]DWLRQ RI &HQWUDO $PHULFD E\ WKH ( ERXFKHL FRPSOH[ FI 6WHEELQV VHH &KDSWHU ,;f 3DWWHUQV RI FKURPRVRPDO YDULDWLRQ )LJV f FRQILUP SDWWHUQV RI SKHQHWLF YDULDWLRQ &KDSWHU 9,f DQG FODGLVWLF UHODWLRQVKLS &KDSWHU ;,f .DU\RW\SHV RI B( SLL FDWD DQG VLEOLQJ VSHFLHV ( XOHL DQG ( F\DQHRVSHUPD UHVSHFWLYHO\ DUH YHU\ VLPLODU &OXVWHU DQDO\VLV LQGLFDWHV WKDW WKH NDU\RW\SHV RI (B ERXFKHL B( F\DQHRVSHUPD DQG B( XOHL DUH VLPLODU &ODGLVWLF DQDO\VLV LQGLFDWHV WKDW WKHVH WKUHH WD[D FRPSULVH D PRQRSK\OHWLF JURXS .DU\RW\SH GLYHUJHQFH LV HYLGHQW EHWZHHQ ( FDQGL GD DQG B( IRUPRVD PLUURULQJ PRUSKRORJLFDO GLYHUJHQFH &KDSWHU 9,f ,VR]\PH YDULDWLRQ &KDSWHU 9,,,f KRZHYHU REVFXUHV WKH UHODWLRQVKLS EHWZHHQ WKHVH WZR VLEOLQJ VSHFLHV ,Q FRQFOXVLRQ NDU\RW\SH GLYHUVLW\ KDV XQGRXEWHGO\ FRQWULEXWHG WR VSHFLHV DQG JHQHULF GLYHUJHQFH LQ (XFKDULV &DOLSKUXULD DQG 8UFHROLQD

PAGE 163

&KURPRVRPDO FKDQJH KDV QRW EHHQ WKURXJK GUDPDWLF UHRUJDQL]DWLRQ RI WKH JHQRPH WKURXJK 5REHUWVRQLDQ FKDQJHV EXW SUREDEO\ YLD QRQUHFLSURFDO LQWHUFKDQJHV EHWZHHQ FKURPRVRPHV LQIUDFKURPRVRPDO VWUXFWXUDO FKDQJH DQG PXWDWLRQ (YLGHQFH RI PXWDWLRQ LV WKH SUHVHQFH RI UDUH DOOHOHV LQ DOO VSHFLHV FRPSOH[HV WKDW KDYH EHHQ HOHFWURSKRUHWLFDOO\ DQDO\]HG &KDSWHU 9,,,f ,Q VRPH FDVHV UDSLG V\PSDWULF VSHFLDWLRQ PD\ KDYH EHHQ IDFLOLWDWHG E\ FKURPRVRPDO VWUXFWXUDO FKDQJH

PAGE 164

7DEOH .DU\RW\SH GDWD (XFKDULV &DOLSKUXULD DQG 8UFHROLQD $OO YRXFKHUV GHSRVLWHG DW )/$6 XQOHVV RWKHUZLVH VWDWHG 7$;21 &+5202620( &+5202620( 6,=( &+5202620( 6,=(E &+5202620( 928&+(5 t 180%(5 5$1*( *52836 0253+2/2*< ),* 12 UHODWLYH OHQJWKf / 0/ 06 / 0/ 06 (8&+$5,6 68%* (8&+$5,6 ( DVWURSKLDOD 0HHURZ f )LJV $ ( FDQGLGD 6FKXQNH %f )LJV % ( EDNHULDQD 0HHURZ f )LJV & P QP VP VW P QP VP VW P QP VP 278 12 t /$%(/ )25 3&$ t &/867(5 $1$/<6,6 $6752 &$12 %$. VW FQ BQ

PAGE 165

7DEOH f§FRQWLQXHG 7$;21 &+5202620( &+5202620( 6,=( &+5202620( 6,=(E 928&+(5  180%(5 5$1*( *52836 ),* 12 UHODWLYH OHQJWKf / 0/ 0 6 FDVWHOQDHDQD 6FKXQNH f )LJV ( F\DQHRVSHUPD 0HHURZ f )LJV ( ( IRUPRVD 6FKXQNH f )LJV % &+5202620( 278 12 t 0253+2/2*< /$%(/ )25 3&$ t / 0/ 0 6 &/867(5 $1$/<6,6 P QP VP VW W P QP VP VW P QP VP VW &$67 &<$1 )2503 FQ FU!

PAGE 166

7DEOH f§FRQWLQXHG 7$;21 &+5202620( &+5202620( 6,=( &+5202620( 6,=(E &+5202620( 278 12 t 928&+(5 t 180%(5 5$1*( *52836 0253+2/2*< /$%(/ )25 3&$ t ),* 12 UHODWLYH OHQJWKf / 0/ 06 / 0/ 06 &/867(5 $1$/<6,6 ( IRUPRVD P )250( 0HHURZ f QP )LJV $ VP VW ( SOLFDWD VXEVS P 3/,&3 SL L FDWD QP 0HHURZ f VP )LJV & VW ( SOLFDWD VXEVS P 3/,&% EUHYLGHQWDWD QP 0HHURZ f VP )LJV VW

PAGE 167

7DEOH f§FRQWLQXHG 7$;21 &+5202620( 928&+(5 t 180%(5 ),* 12 ML XOHL 6FKXQNH f )LJV ( e ERXFKHL YDU GUHVVOHULG 0HHURZ f )LJV & W ERXFKHL YDU ERXFKHL 0HHURZ f &+5202620( 6,=( &+5202620( 6,=(E &+5202620( 5$1*( *52836 0253+2/2*< UHODWLYH OHQJWKf / 0/ 06 / 0/ 06 P QP VP VW P QP VP VW P QP VP VW 278 12 t /$%(/ )25 3&$ t &/867(5 $1$/<6,6 8/(, %28&+(, )LJV % &

PAGE 168

7DEOH f§FRQWLQXHG 7$;21 &+5202620( &+5202620( 6,=( &+5202620( 6,=(E &+5202620( 278 12 t 928&+(5 t 180%(5 5$1*( *52836 0253+2/2*< /$%(/ )25 3&$ t ),* 12 UHODWLYH OHQJWKf / 0/ 06 / 0/ 06 &/867(5 $1$/<6,6 ( ERXFKHL YDU P ERXFKHL QP 0HHURZ f VP )LJV $ VW ( ERQSODQGLL P %DXPO +817f QP )LJV VP VW (8&+$5,6 68%* +(7(52&+$5,6 ( DQPDOD P $120$/$ 0HHURZ f QP )LJV & VP VW

PAGE 169

7DEOH f§FRQWLQXHG 7$;21 &+5202620( 928&+(5 t 180%(5 ),* 12 (B DPD]RQL FD 6FKXQNH f )LJV ) ( ; JUDQGLIORUD 0HHURZ f )LJV ; &DOLFKDULV EXWFKHUL &+5202620( 6,=( &+5202620( 6,=( &+5202620( 5$1*( *52836 0253+2/2*< UHODWLYH OHQJWKf / 0/ 06 / 0/ 06 W P QP VP VW P QP VP VW P QP VP VW 278 12 t /$%(/ )25 3&$ t &/867(5 $1$/<6,6 0HHURZ f )LJV ( &7! 2

PAGE 170

7DEOH f§FRQWLQXHG 7$;21 &+5202620( &+5202620( 6,=( 928&+(5 t 180%(5 5$1*( ),* 12 UHODWLYH OHQJWKf &$/,3+585,$ & NRUVDNRIILL 0HHURZ f )LJV % & VXEHGHQWDWD 0HHURZ f &+5202620( 6,=( *52836 / 0/ 0 6 )LJV $ &+5202620( 278 12 t 0253+2/2*< /$%(/ )25 3&$ t / 0/ 0 6 &/867(5 $1$/<6,6 P QP VP VW P QP VP VW .256 68%(

PAGE 171

7DEOH f§FRQWLQXHG 7$;21 &+5202620( 928&+(5 t 180%(5 ),* 12 &+5202620( 6,=( 5$1*( UHODWLYH OHQJWKf &+5202620( 6,=(E *52836 / 0/ 0 6 &+5202620( 0253+2/2*< / 0/ F 0 6 278 12 t /$%(/ )25 3&$ t &/867(5 $1$/<6,6 85&(2/,1$ 8 PLFURFUDWHU P 85&( 6FKXQNH f QP )LJ VP VW DEDVHG RQ D YDOXH RI IRU WKH KDSORLG FRPSOHPHQW E/ ORQJ 0/ PRGHUDWHO\ ORQJ 0 PHGLXP 6 VPDOO FP PHWDFHQWULF QP QHDUPHWDFHQWULF VP VXEPHWDFHQWULF VW VXEWHORFHQWULF W WHORFHQWULF GGLSORLG FHOO DQDO\]HG HKHWHURPRUSKLF SDLU FRXQWHG DV PHWDFHQWULF

PAGE 172

7DEOH )LUVW WKUHH SULQFLSOH FRPSRQHQWV IRU PXOWLYDULDWH DQDO\VLV RI NDU\RW\SHV RI (XFKDULV &DOLSKUXULD DQG 8UFHROLQD &20321(17 180%(5 &+$5$&7(5 180%(5

PAGE 173

)LJXUHV 5RRWWLS FHOO PLWRWLF PHWDSKDVH FRQILJXUDWLRQV RI ‹FKDULV VSHFLHV ( DVWURSKLDOD ( FDQGLGD ( EDNHULDQD ( FDVWHQDHDQD $UURZV LQGLFDWH WHORFHQWULF FKURPRVRPHV W F\DQHRVSHUPD $OO VFDOHV XUQ

PAGE 175

)LJXUHV 5RRWWLS FHOO PLWRWLF PHWDSKDVH FRQILJXUDWLRQV RI (XFKDULV VSHFLHV ( IRUPRVD IURP 3HUX ( IRUPRVD IURP (FXDGRU ( SL L FDWD VXEVS SOLFDWD ( X7HLa ( SL L FDWD VXEVS EUHYL GHQWDWD $OO VFDOHV ILP

PAGE 177

)LJXUHV 5RRWWLS FHOO PLWRWLF PHWDSKDVH FRQILJXUDWLRQV RI (XFKDULV VSHFLHV ( ERXFKHL YDU GUHVVOHUL 'LSORLG FHOO 7HWUDSORLG FHOO ‹ ERXFKHL YDU ERXFKHL IURP &ROQ SURYLQFH LQ 3DQDPD (fERXFKHL YDU ERXFKHL IURP &RFL SURYLQFH LQ 3DQDPD ( ERQSODQGLL 7ZR VPDOO FKURPRVRPHV DUH RXWVLGH WKH ILJXUH IUDPH $, VFDOHV XUQ

PAGE 179

)LJXUHV DQG K\EULGV ( DQPDOD JUDQG7IORUD O 5RRWWLS FHOO PLWRWLF PHWDSKDVH FRQILJXUDWLRQV RI & VXEHGHQWDWD $UURZV LQGLFDWH KHWHURPRUSKLF $UURZV LQGLFDWH WHORFHQWULF FKURPRVRPHV ; &DOLFKDULV EXWFKHUL $OO VFDOHV \XP (XFKDULV DQG &DOLSKUXULD VSHFLHV KRPRORJV & NRUVDNRIILL DPD]QLFD ( ;

PAGE 181

)LJXUH +DSORLG LGLRJUDPV RI (XFKDULV NDU\RW\SHV $ ( DVWURSKLDOD % B( EDNHULDQD & ( FDQGLGD B( f§ FDVWHQDHDQD ( ( F\QDHQRVSHUPD

PAGE 182

8 OO =O 6, + e OO = 6 IU  O ‘‘‘‘‘‘OOOOOOOOOOO ‘‘‘‘‘‘‘‘‘OOOO++J+ D +L ,%LOOOOOOOOOOO PLOO ‘+%+LOOO+ ‘‘‘‘‘‘ %, ‘n‘‘‘LO 9 ,EO.OOO LQ

PAGE 183

)LJXUH +DSORLG LGLRJUDPV RI (XFKDULV NDU\RW\SHV $ ( IRUPRVD IURP 3HUX % (B IRUPRVD IURP (FXDGRU & B( SL L FDWD VXEVS SL L FDWD ( SL L FDWD VXEVS EUHYLGHQWDWD ( ( XOHL

PAGE 184

WL OO 2, /, 6, + Q =O ,, / IU W O O >L+K5%%,+,+ LLPLLLLOLOO D KL,EE,,E%,%,,,,,L,,,K,, %L+LLDDL%%L LOOOOOOOO ‘‘‘‘%%%%DD%%%%a%%%____ D E%%EEE%%%,%,,, ‘‘‘EEEEELEKEEE++%%%% ,OOOOOOOO ‘%LO%O5 ‘LOOOOOOOO LL__ 6=,

PAGE 185

)LJXUH +DSORLG LGLRJUDPV RI (XFKDULV NDU\RW\SHV $ ( ERXFKHL YDU ERXFKHL IURP &ROQ SURYLQFH LQ 3DQDPD % ( ERXFKHL YDU ERXFKHL IURP &RFL SURYLQFH LQ 3DQDPD & (B ERXFKHL YDU GUHVVOHUL GLSORLG F7HO7, ( ERQSODQGLL

PAGE 186

(OOOOO6LOO ‘‘‘LODO‘‘%DOOe‘‘‘D‘‘‘‘‘ +,+,,8 M(_OO_O_OOO_O_O_LDOOO_,,(__% ‘ ‘%%% OOOOLOOOO ‘,O}%ODL+%5DOD%)DDDO%LDDD OMOLMOOOOOOOOOOOO LOOOO ‘‘‘%D(OOO%D%++%DDD ,,cL_L_O_OLOOO%L%L%% O0D 0

PAGE 187

)LJXUH +DSORLG LGLRJUDPV RI (XFKDULV DQG &DOLSKUXULD NDU\RW\SHV $ B& VXEHGHQWDWD /HWWHUV $ DQG % LQGLFDWH KHWHURPRUSKLF KRPRORJ % & NRUVDNRIILL & ( DQPDOD ( DPD]QLFD ( ( ; JUDQGL7ORUD ( ; &DOLFKDU7V EXWFKHUL

PAGE 188

OOOOOLOLO ‘,+K,,%LL,,%% cOOOOLr0,,,,,%%%%%r1 $ % A %L%LE,K,L OOOOOLOLOn LOO%O(O%OL%IO+%%.%Q(DD 0OOOO E,,E,%E,%%%%%%E%EE% DXFD ,+,,,,,%LO%+ LO 8OOOLXQ ,Q __O_LL_OnO_!!LQDLn OLVO %LQX0 LE%E,%E%P%EEEEEPE ,% %%E+%E+%%+%+K ‘‘‘‘‘‘‘ A%%%%%%IO%IOIOD

PAGE 189

)LJXUH 5RRWWLS FHOO PLWRWLF PHWDSKDVH FRQILJXUDWLRQ DQG KDSORLG IGLRJUDP RI 8UFHROLQD PLFURFUDWHU

PAGE 190

OLOL 2 2

PAGE 191

)LJXUH 3&$ VFDWWHUJUDP RI NDU\RW\SH YDULDQFH DPRQJ ILIWHHQ (XFKDULV &DOLSKUXULD DQG 8UFHROLQD VSHFLHV 5HIHU WR 7DEOH IRU GDWD PDWUL[ DQG 278 GHVLJQDWLRQV

PAGE 192

&2

PAGE 193

)LJXUH 83*0$ GHQGURJUDP RI NDU\RW\SH YDULDQFH DPRQJ ILIWHHQ 7XFKDULV &DOLSKUXULD DQG 8UFHROLQD VSHFLHV 5HIHU WR 7DEOH IRU GDWD PDWUL[ DQG •78 GHVLJQDWLRQV

PAGE 194

',67$1&( ‘‘ ‘ f ‘ ‘‘

PAGE 195

&+$37(5 9,,, (/(&7523+25(7,& $1$/<6(6 2) ,62=<0( 9$5,$7,21 7KH XVH RI HOHFWURSKRUHWLF DQDO\VHV RI LVR]\PH YDULDWLRQ LQ SODQW V\VWHPDWLFV KDV UHFHQWO\ EHJXQ WR EH DSSOLHG ZLGHO\ DQG KDV EHHQ WKH VXEMHFW RI VHYHUDO UHYLHZV *RWWOLHE D &UDZIRUG f $ QXPEHU RI LQYHVWLJDWLRQV HJ *UD\ HW DO /HH DQG )DLUEURWKHUV 6FRJLQ f RU UHYLHZV 7XUQHU f RI WKLV DSSOLFDWLRQ RI HOHFWURSKRUHVLV FRQFOXGHG WKDW LVR]\PH YDULDWLRQ LQ SODQWV ZDV WRR H[WHQVLYH WR EH VXFFHVVIXOO\ DSSOLHG WR V\VWHPDWLF DQG SK\ORJHQHWLF TXHVWLRQV 8QIRUWXQDWHO\ PRVW RI WKHVH HDUO\ DQG HYHQ VRPH PRUH UHFHQW VWXGLHV HJ 3D\QH DQG )DLUEURWKHUV f IRFXVHG RQ QRQVSHFLILF HQ]\PH V\VWHPV VXFK DV HVWHUDVHV SHUR[LGDVHV DQG SKRVSKDWDVHV ZKLFK KDYH ODUJH QXPEHUV RI LVR]\PLF IRUPV DQG WKXV JHQHUDWH FRPSOH[ HOHFWURSKRUHWLF SKHQRW\SHV FRQVLVWLQJ RI QXPHURXV EDQGV *RWWOLHE &UDZIRUG f ,QWHUSUHWDWLRQ RI VXFK FRPSOH[ EDQGLQJ SDWWHUQV UHTXLUHV IRUPDO JHQHWLF DQDO\VLV ZLWK D ODUJH SRSXODWLRQ RI VHJUHJDWLQJ SURJHQ\ &UDZIRUG f DV KDV EHHQ HIIHFWLYHO\ GHPRQVWUDWHG E\ 5LFN DQG FRZRUNHUV HJ 5LFN HW DO 5LFN DQG 7DQNVOH\ f IRU /\FRVSHUVLFRQ 6RODQDFHDHf *HO HOHFWURSKRUHVLV FDQ EH DSSOLHG WR D ZLGH YDULHW\ RI SK\ORJHQHWLF DQG V\VWHPDWLF SUREOHPV ZKLFK PRUH WUDGLWLRQDO PRUSKRORJLFDO FULWHULD IDLO WR UHVROYH &UDZIRUG *RWWOLHE 6\WVPD DQG 6FKDDO f 8QOLNH PDQ\ PRUSKRORJLFDO FKDUDFWHUV ZKLFK PD\ GHPRQVWUDWH D JUHDW GHDO RI HQYLURQPHQWDO RU GHYHORSPHQWDO

PAGE 196

SODVWLFLW\ WKH HOHFWURSKRUHWLF SKHQRW\SH LV PRUH GLUHFWO\ HTXDWDEOH ZLWK JHQRW\SH (OHFWURSKRUHWLF HYLGHQFH FDQ EH XWLOL]HG WR DGGUHVV f JHQHWLF YDULDWLRQ DPRQJ FRQVSHFLILF SRSXODWLRQV HJ &UDZIRUG DQG %D\HU &UDZIRUG DQG 6PLWK *RWWOLHE 6ROWLV VHH &UDZIRUG DQG *RWWOLHE D IRU DGGLWLRQDO UHIHUHQFHVf f JHQHWLF GLYHUJHQFH DPRQJ FRQJHQHULF VSHFLHV ZLWK DWWHQGHQW IRFXV RQ WKH JHQHWLF SURFHVVHV RI VSHFLDWLRQ HJ &UDZIRUG DQG 6PLWK D E *RWWOLHE D E +H\ZRRG DQG /HYLQ +DXOIOHU /RZUH\ DQG &UDZIRUG 6ROWLV 6\WVPD DQG 6FKDDO :HUWK HW DO VHH &UDZIRUG DQG *RWWOLHE D IRU RWKHU UHIHUHQFHVf f UHVROXWLRQ RI SRO\SORLG WD[D DQG LQVLJKW LQWR WKHLU RULJLQV HJ %D\HU DQG &UDZIRUG &UDZIRUG DQG 6PLWK *RWWOLHE F E 5RRVH DQG *RWWOLHE 6ROWLV f f RULJLQV RI FXOWLYDWHG SODQWV HJ 'HFNHU 'RHEOH\ HW DO 5LFN DQG )REHV D 7RUUHV HW DO f DQG f WHVWLQJ K\SRWKHVHV RI EURDG V\VWHPDWLF RU HYROXWLRQDU\ VLJQLILFDQFH HJ JHQHWLF YDULDWLRQ LQ UHODWLRQ WR EUHHGLQJ V\VWHP $OODUG $OODUG DQG .DKOHU f HGDSKLF VSHFLDOL]DWLRQ %DEEHO t 6HODQGHU f LQWHUVSHFLILF /HYLQ f RU LQWHUJHQHULF 6ROWLV DQG 6ROWLV f K\EULGL]DWLRQ $ JUHDW GHDO RI WKH UHFHQW ZRUN DSSO\LQJ JHO HOHFWURSKRUHVLV WR SUREOHPV LQ SODQW V\VWHPDWLFV KDV EHHQ FRQGXFWHG E\ &UDZIRUG RU *RWWOLHE DQG WKHLU FRZRUNHUV VHH &UDZIRUG DQG *RWWOLHE D IRU H[WHQVLYH OLWHUDWXUH UHYLHZVf 0XFK RI WKLV ZRUN KDV IRFXVHG RQ DQQXDO RU KHUEDFHRXV SHUHQQLDO WHPSHUDWH ]RQH SODQWV LQ D IHZ IDPLOLHV HJ $VWHUDFHDH 2QDJUDFHDH PRVW RI ZKLFK RFFXU LQ ODUJH SRSXODWLRQV (OHFWURSKRUHWLF VWXGLHV RI ERWK ZRRG\ DQG WURSLFDO SODQWV

PAGE 197

DUH QRW SOHQWLIXO 6\WVPD DQG 6FKDDO f 3ODQWV ZLWK OLPLWHG RU UDUH GLVWULEXWLRQV LQ WKH ZLOG KDYH DOVR QRW EHHQ ZLGHO\ LQYHVWLJDWHG 0DOD\VLDQ 'LSWHURFDUSDFHDH KDYH EHHQ VXEMHFWV RI OLPLWHG LVR]\PH VWXGLHV *DQ HW DO *DQ HW DO $VKWRQ HW DO f *HQHWLF YDULDWLRQ LQ 6RXWK $PHULFDQ /\FRSHUVLFRQ VSHFLHV KDV EHHQ VWXGLHG LQ GHWDLO 5LFN DQG )REHV D E 5LFN HW DO f +XQ]LNHU DQG 6FKDDO f LQYHVWLJDWHG LVR]\PH YDULDWLRQ LQ WKUHH VSHFLHV RI %XOQHVLD D ZRRG\ JHQXV RI 6RXWK $PHULFDQ =\JRSK\OODFHDH $ SK\ORJHQ\ RI 6RODQXP VHFW /DVLRFDUSD 6RODQDFHDHf RI QRUWKHUQ 6RXWK $PHULFD EDVHG KHDYLO\ RQ LVR]\PH GDWD ZDV GHWDLOHG E\ :KDOHQ DQG &DUXVR f +DZDLLDQ VSHFLHV RI 7HWUDPRORSLXP $VWHUDFHDHf ZHUH VXUYH\HG IRU HYLGHQFH RI DOOR]\PH GLYHUJHQFH /RZUH\ DQG &UDZIRUG f 6\WVPD DQG 6FKDDO f VWXGLHG JHQHWLF YDULDWLRQ LQ WKH VKUXEE\ VSHFLHV RI /LVLDQWKXV *HQWLDQDFHDHf LQ 3DQDPD (XFKDULV DUH H[FOXVLYHO\ WURSLFDO SODQWV RI UDLQIRUHVW XQGHUVWRU\ 7KH\ DUH UDUH DQG ZLGHO\ GLVSHUVHG LQ WKH ZLOG DQG DUH SHWDORLG PRQRFRWV 6WXGLHV RI JHQHWLF YDULDWLRQ RI DQ\ SODQW JURXS ILWWLQJ MXVW RQH RI WKHVH WKUHH FKDUDFWHULVWLFV DUH YHU\ OLPLWHG 7KXV DQ DWWHPSW WR TXDQWLI\ LVR]\PH YDULDWLRQ LQ (XFKDULV ZKLFK ILWV DOO WKUHH FRQGLWLRQV VHHPHG D ZRUWK\ DYHQXH RI LQYHVWLJDWLRQ 0DWHULDOV DQG 0HWKRGV 3RSXODWLRQ DQG 0DWHULDO 6HOHFWLRQ 7ZR FRPSOH[HV RI SRSXODWLRQV ZHUH VHOHFWHG IRU DQDO\VLV RI LVR]\PH YDULDWLRQ f WKH ( ERXFKHL WHWUDSORLG FRPSOH[ RI 3DQDPD DQG f WKH

PAGE 198

( FDQGLGDIRUPRVD FRPSOH[ RI $PD]RQLDQ (FXDGRU WZR SKHQHWLFDOO\ GLVWLQFW EXW RIWHQ V\PSDWULF VSHFLHV (XFKDULV ERXFKHL FRPSOH[ 7DEOH )LJOf (XFKDULV ERXFKHL LV D WHWUDSORLG DQG KLJKO\ SRO\PRUSKLF FRPSOH[ RI &HQWUDO $PHULFDQ (XFKDULV 7KH VSHFLHV LV FRQFHQWUDWHG LQ 3DQDPD EXW FROOHFWLRQV KDYH EHHQ PDGH LQ &RVWD 5LFD DQG *XDWHPDOD UHFRJQL]H WKUHH YDULHWLHV FKLHIO\ RQ WKH EDVLV RI VWDPLQDO FXS PRUSKRORJ\ &KDSWHU ;,,f )LYH SRSXODWLRQV ZHUH LQFOXGHG LQ WKLV DQDO\VLV 7KHVH LQFOXGHG WKUHH SRSXODWLRQV RI (B ERXFKHL YDU ERXFKHL RQH IURP (O 9DOOH GH $QWQ LQ &RFL SURYLQFH RI 3DQDPD DQG RQH HDFK IURP &HUUR %UXMR DQG 5LR ,JXDQLWDV UHVSHFWLYHO\ LQ &ROQ SURYLQFH DQG RQH SRSXODWLRQ RI YDU GUHVVOHUL DOVR IURP (O 9DOOH 7KH ILIWK SRSXODWLRQ UHSUHVHQWHG B( ERQSODQGLL D UDUH VSHFLHV IURP &RORPELD DOVR WHWUDSORLG 7KHVH WD[D DUH WKH RQO\ WHWUDSORLG VSHFLHV VR IDU HQFRXQWHUHG LQ (XFKDULV 6DPSOH VL]H YDULHG IURP SRSXODWLRQ WR SRSXODWLRQ 7DEOH f EXW GLG QRW H[FHHG WKUHH SODQWV LQ DQ\ RQH SRSXODWLRQ (XFKDULV FDQGLGDIRUPRVD FRPSOH[ 7DEOH )LJ f (XFKDULV FDQGL GD DQG B( IRUPRVD DUH WKH RQO\ VSHFLHV IRXQG LQ $PD]RQLDQ (FXDGRU QRUWK RI WKH 5LR 3DVWD]D YDOOH\ )URP KHUEDULXP VWXG\ DORQH WKHVH VSHFLHV IRUP D PRVDLF RI IORZHU VL]H DQG VWDPLQDO FXS PRUSKRORJ\ WKDW VHHPHG WD[RQRPLFDOO\ LQVROXEOH XQWLO OLYLQJ PDWHULDO ZDV IORZHUHG LQ FXOWLYDWLRQ 7KH\ RIWHQ JURZ V\PSDWULFDOO\ DQG VHYHUDO SXWDWLYH K\EULGV KDYH EHHQ FROOHFWHG %RWK VSHFLHV RFFXU LQ $PD]RQLDQ 3HUX DQG &RORPELD DV ZHOO EXW DUH UDUHU RXWVLGH RI (FXDGRU )RXU SRSXODWLRQV RI L IRUPRVD DQG WZR RI (B FDQGL GD ZHUH LQYROYHG LQ WKH DQDO\VLV 7KH IRXUWK SRSXODWLRQ RI (B IRUPRVD UHSUHVHQWHG D 3HUXYLDQ SRSXODWLRQ RI WKH VSHFLHV 7ZR SXWDWLYH K\EULG SRSXODWLRQV ZHUH DOVR LQFOXGHG LQ WKH

PAGE 199

DQDO\VLV 6DPSOH VL]H ZDV RQH LQ DOO EXW WKH /LPRQFRFKD SRSXODWLRQ RI B( IRUPRVD ZKHUH Q $ QRWH RQ SRSXODWLRQ QXPEHU DQG VDPSOH VL]H ,Q HDFK RI WKHVH VWXGLHV KDYH LQFOXGHG DV PDQ\ SRSXODWLRQV RI D SDUWLFXODU WD[RQ DV ZHUH DYDLODEOH DQG DVVLJQDEOH WR VSHFLHVf LQ OLYLQJ SODQW FROOHFWLRQV &UDZIRUG f DQG *RWWOLHE Df KDYH VXUYH\HG JHQHWLF LGHQWLWLHV DPRQJ FRQVSHFLILF SODQW SRSXODWLRQV *HQHWLF LGHQWLWHV UDQJH IURP ZLWK WKH JUHDWHVW QXPEHU DERYH *RWWOLHE Df VWUHVVHG SODQW EUHHGLQJ V\VWHP DV DQ LPSRUWDQW IDFWRU E\ ZKLFK WR UHJXODWH VDPSOH VL]H IRU LVR]\PH VWXGLHV ,QEUHHGLQJ SODQWV HLWKHU H[KLELW YHU\ OLWWOH JHQHWLF YDULDWLRQ DPRQJ SRSXODWLRQV RU HOVH ZLGH YDULDWLRQ GXH WR WR ODUJH GLIIHUHQFHV LQ DOOHOLF IUHTXHQF\ &UDZIRUG &UDZIRUG DQG :LOVRQ 1HYR HW DO f 7KLV XQFHUWDLQW\ VXJJHVWV WKDW D JUHDWHU QXPEHU RI SRSXODWLRQV VKRXOG EH VDPSOHG IRU DXWRJDPRXV VSHFLHV *RWWOLHE Df FRQWHQGV WKDW RQH SRSXODWLRQ RI D SDUWLFXODU VSHFLHV HVSHFLDOO\ LI LW LV DQ RXWFURVVHU SURYLGHV PRVW RI WKH LVR]\PH YDULDWLRQ HQFRXQWHUHG LQ WKH VSHFLHV DV D ZKROH 7KH SUHVHQFH RI LQWHUVSHFLILF DQG LQWHUVXEJHQHULF K\EULGV LQ QDWXUH DQG HYLGHQFH IURP JUHHQKRXVH SROOLQDWLRQ DQG K\EULGL]DWLRQ WHVWV VXJJHWV WKDW PRVW (XFKDULV DUH RXW FURVVHUV VHH &KDSWHU ;f 7KHUH LV QR SDUWLFXODU FRQVHQXV RQ WKH QXPEHU RI LQGLYLGXDO SODQWV RI HDFK SRSXODWLRQ WR VDPSOH IRU HOHFWURSKRUHWLF DQDO\VHV %URZQ DQG :HLU &UDZIRUG *RWWOLHE f *RWWOLHE f VXJJHVWV WKDW WKH QXPEHU RI LQGLYLGXDOV WR VDPSOH LV EHVW DSSURDFKHG IURP WKH SHUVSHFWLYH RI KRZ PDQ\ DUH UHTXLUHG WR KDYH D b FHUWDLQW\ RI REVHUYLQJ DOO WKH DOOHOHV DW D ORFXV ZKLFK KDYH IUHTXHQFLHV JUHDWHU WKDQ HDFK 1HL f VWDWHV WKDW ODUJHU VDPSOH VL]HV DUH QHFHVVDU\

PAGE 200

ZKHQ WKH QXPEHU RI ORFL DVVD\HG LV ORZ DQG PD\ EH DSUHFLDEO\ VPDOOHU ZKHQ QXPHURXV ORFL DUH DQDO\]HG 0XFK RI WKH HOHFWURSKRUHWLF VWXGLHV LQ SODQW V\VWHPDWLFV KDYH LQYROYHG WD[D RI FKDUDFWHULVWLFDOO\ ODUJH SRSXODWLRQ VL]H LQ QDWXUH 3RSXODWLRQV RI (XFKDULV KRZHYHU DUH FKDUDFWHULVWLFDOO\ VPDOO 7KH ODUJHVW SRSXODWLRQ KDYH HQFRXQWHUHG LQ WKH ILHOG B( DQPDODf FRQVLVWHG RI DERXW ILIWHHQ LQGLYLGXDO FOXPSV RI EXOEV LQ DQ DSSUR[LPDWH KDOIKHFWDUH DUHD 7KURXJKRXW HDVWHUQ (FXDGRU SRSXODWLRQV RI RQO\ JHQHWV DQG IUHTXHQWO\ DV ORZ DV RQHf RI ( FDQGL GD ( I RUPRVD DQG (B DQPDOD DUH WKH QRUP ,Q HDVWHUQ 3HUX D FDUHIXO VHDUFK WKURXJK D ILYH KHFWDUH DUHD WXUQHG XS RQO\ WZR SODQWV RI B( F\DQHRVSHUPD (XFKDULV DVWURSKLDOD HQGHPLF WR QRUWK DQG FHQWUDO ZHVWHUQ (FXDGRU DOVR IUHTXHQWO\ RFFXUV DV VLQJOH ZLGHO\ GLVSHUVHG FOXPSV +HUEDULXP VSHFLPHQV RI (XFKDULV UHJXODUO\ LQFOXGH VRPH QRWDWLRQ LQGLFDWLQJ WKH UDULW\ RI WKH SODQWV HQFRXQWHUHG +RZHYHU LI (XFKDULV DUH SULPDULO\ YLVLWHG E\ WUDSOLQLQJ LQVHFWV IO\LQJ ORQJ GLVWDQFHV DV K\SRWKHVL]H VHH &KDSWHU ;f SRSXODWLRQ VL]H IURP WKH SHUVSHFWLYH RI SRWHQWLDO JHQH H[FKDQJH PD\ LQ IDFW EH JUHDWHU WKDQ RWKHUZLVH H[SHFWHG IURP NQRZQ SRSXODWLRQ GHQVLWLHV ,VR]\PH ([WUDFWLRQ DQG (OHFWURSKRUHVLV &UXGH H[WUDFWV IRU LVR]\PH HOHFWURSKRUHVLV ZHUH SUHSDUHG E\ JULQGLQJ WHQ PP GLDPHWHU OHDI GLVFV LQ PO RI H[WUDFWLRQ EXIIHU > P0 7ULV+&O P0 '77 b JO\FHURO DQG P0 306) DGMXVWHG WR S+ +DPHV DQG 5LFNZRRG f@ ([WUDFWV ZHUH FHQWULIXJHG WZLFH IRU PLQXWHV DQG PLQXWHV UHVSHFWLYHO\ DQG WKH VXSHUQDWDQW ZDV GHFDQWHG E\ SLSHWWH DIWHU HDFK FHQWULIXJDWLRQ

PAGE 201

(OHFWURSKRUHVLV ZDV SHUIRUPHG RQ D %,25$' 3URWHDQ ,, SRO\DFU\ODPLGH JHO DSSDUDWXV *HO UHFLSHV ZHUH DGRSWHG IURP +DPHV DQG 5LFNZRRG f 5XQQLQJ JHOV ZHUH PP WKLFN DQG b DFU\ODPLGH PO b DFU\ODPLGHELV DFU\ODPLGH PO WULV+&O DW SK PO +AR XO b DPPRQLXP SHUVXOIDWH DQG XO 7(0('f $ b DFU\ODPLGH VWDFNLQJ JHO PO b DFU\ODPLGHELV DFU\ODPLGH PO 0 WULV+&O DW S+ PO +AR XO DPPRQLXP SHUVXOIDWH DQG XO 7(0('f ZDV HPSOR\HG 5XQQLQJ EXIIHU ZDV P0 WULVJO\FLQH DW S+ +DPHV DQG 5LFNZRRG f $ XO VDPSOH RI WKH VXSHUQDWDQW ZDV ORDGHG LQWR HDFK VWDFNLQJ JHO FROXPQ *HOV ZHUH HOHFWURSKRUHVHG DW D FRQVWDQW FXUUHQW RI P$ XQWLO D EOXH LQGLFDWRU OLQH XO RI EURPRSKHQRO EOXH DGGHG WR FDWKRGDO EXIIHUf PLJUDWHG RII WKH DQRGDO HQG RI WKH JHO JHQHUDOO\ KRXUV 6HYHQ HQ]\PH V\VWHPV LQ WRWDO ZHUH DVVD\HG DOFRKRO GHK\GURJHQDVH $'+f DVSDUWDWH GHK\GURJHQDVH $$7f JOXFRVHSKRVSKDWH GHK\GURJHQDVH *3'+f JOXWDWKLRQH UHGXFWDVH *66*5f PDO DWH GHK\GURJHQDVH 0'+f SKRVSKRJOXFRLVRPHUDVH 3*,f DQG VKLNLPDWH GHK\GURJHQDVH 6.'+f 6WDLQLQJ UHFLSHV RI 9DOOHMRV f ZHUH IROORZHG IRU $'+ $$7 *3'+ 3*, DQG 6.'+ $OO EXW $$7 GLD]RQLXP V\VWHPf XWLOL]H WKH WHWUD]ROLXP V\VWHP IRU VWDLQLQJ DFWLYLW\ 7KH WHWUD]ROLXP V\VWHP VWDLQ IRU 0'+ ZDV WKDW RI 6KDZ DQG 3UDVDG f 7KH WHWUD]ROLXP V\VWHP VWDLQ IRU *66*5 ZDV WKDW RI .DSODQ f 5HVROXWLRQ RI DGGLWLRQDO HQ]\PH V\VWHPV JDODFWRVH GHK\GURJHQDVH JOXWDPDWH GHK\GURJHQDVH KH[RNLQDVH DQG LVRFLWUDWH GHK\GURJHQDVHf XVLQJ WKH VDPH EXIIHU V\VWHP ZHUH XQVXFFHVIXO ([WUDFWV RI (XFKDULV OHDI WLVVXH DUH FKDUDFWHULVWLFDOO\ PXFLODJLQRXV ZKLFK PD\ LPSHGH HOHFWURSKRUHWLF VHSDUDWLRQ RU FRQWULEXWH WR WKH GHJUDGDWLRQ RI VRPH

PAGE 202

HQ]\PHV DIWHU H[WUDFWLRQ $OVR FDWKRGDOO\ PLJUDWLQJ LVR]\PHV FDQQRW EH UHVROYHG LQ WKH VDPH YHUWLFDO DFU\ODPLGH JHO DV DQRGDOO\ PLJUDWLQJ LVR]\PHV )XWXUH ZRUN LV SODQQHG ZLWK VWDUFK JHOV DQG DOWHUQDWLYH EXIIHU V\VWHPV ,QIHUULQJ *HQRW\SHV :LWKRXW WKH EHQHILWV RI HOHFWURSKRUHWLF SKHQRW\SHV RI VHJUHJDWLQJ SURJHQ\ JHQRW\SHV PXVW EH LQIHUUHG GLUHFWO\ IURP WKH HOHFWURPRUSK SDWWHUQV RI WKH SODQWV VDPSOHG 7KH SHUHQQLDO JURZWK KDELW DQQXDO IORZHULQJ SKHQRORJ\ ORZ VHHG \LHOG RI (XFKDULV IUXLWV SOXV WKH GLIILFXOW\ LQ IORZHULQJ VRPH VSHFLHV LQ FXOWLYDWLRQ DUH REVWDFOHV WR JHQHUDWLQJ D VXEVWDQWLDO SRSXODWLRQ $UWLILFDO K\EULGL]DWLRQ RI JUHHQKRXVH FROOHFWLRQV RI (XFKDULV KDV RQO\ UHFHQWO\ EHHQ VXFFHVVIXOO\ DFFRPSOLVKHG DQG ZLOO DLG LPPHDVXUDEO\ LQ IXWXUH HOHFWURSKRUHWLF VWXGLHV $LGLQJ LQ WKH SUREOHP RI JHQRW\SH LQIHUHQFH ZHUH f WKH KLJKO\ FRQVHUYHG QDWXUH RI ERWK HQ]\PH VXEVWUXFWXUH *RWWOLHE Ff DQG QXPEHU DQG FRPSDUWPHQWDOL]DWLRQ RI ORFL FRGLQJ IRU HQ]\PH V\VWHPV RI KLJK VSHFLILFLW\ *RWWOLHE f %DQGLQJ SDWWHUQV REVHUYHG LQ LQ WKH SRSXODWLRQV SUHVHQWHG KHUHLQ ZHUH FRQVLVWHQW ZLWK SDWWHUQV REVHUYHG LQ SRSXODWLRQV RI RWKHU (XFKDULV VSHFLHV IRU ZKLFK GDWD DUH QRW SUHVHQWHG :KHUH HOHFWURPRUSKV ZHUH UHVROYHG LQ WZR ZHOOVHSDUDWHG UHJLRQV RI WKH JHO HJ $$7f SDWWHUQV ZLWKLQ HDFK UHJLRQ DPRQJ SRO\PRUSKLF SRSXODWLRQV VXJJHVWHG WKDW D VLQJOH ORFXV ZDV UHSUHVHQWHG DW HDFK UHJLRQ ,Q 0'+ ORFL DUH QRW ZHOVHSDUDWHG RQ WKH JHOV 7KLV HQ]\PH V\VWHP FKDUDFWHULVWLFDOO\ \LHOGV FRPSOH[ SKHQRW\SHV ZLWK IRUPDWLRQ RI LQWHUORFXV KHWHURGLPHUV DQG DW WLPHV RYHUODS RI LVR]\PHV .LUNSDWULFN

PAGE 203

HW DO 7RUUHV f 0\ LQWHUSUHWDWLRQ RI IRXU GLVFUHWH ORFL IRU 0'+ LV GUDZQ IURP SDWWHUQV RI SRO\PRUSKLVPV REVHUYHG LQ D QXPEHU RI RWKHU (XFKDULV VSHFLHV DQG LV FRQVLVWHQW ZLWK UHSRUWV RI LVR]\PHV RI 0'+ IRU PRVW GLSORLG SODQWV VXUYH\HG *RWWOLHE f :KHUH VHYHUDO SXWDWLYH LVR]\PHV ZHUH REVHUYHG WKH PRVW DQRGDOO\ PLJUDWLQJ LVR]\PH ZDV QXPEHUHG 6ORZHU LVR]\PHV WKHQ ZHUH QXPEHUHG VXFFHVVLYHO\ WRZDUGV WKH FDWKRGDO HQG RI WKH JHO 7KH PRVW DQRGDO DOOR]\PH ZDV GHVLJQDWHG D ZLWK VORZHU IRUPV VXFFHVVLYHO\ DVVLJQHG WKH ODEHOV E F HWF 'DWD $QDO\VLV *HQRW\SH GDWD ZDV DQDO\]HG XVLQJ %,26<6 UHOHDVH E\ 'DYLG / 6ZRIIRUG DQG 5LFKDUG % 6HODQGHU 8QLYHUVLW\ RI ,OOLQRLV DW 8UEDQD &KDPSDLJQf RQ WKH 1(5'& FRPSXWHU V\VWHP RI WKH 8QLYHUVLW\ RI )ORULGD $ QXPEHU RI VWDWLVWLFDO FRHIILFLHQWV KDYH EHHQ GHYLVHG WR SODFH DOOHOH IUHTXHQF\ GDWD LQWR D VLQJOH VWDWLVWLF RI HLWKHU JHQHWLF VLPLODULW\ RU GLVWDQFH &DYDOOL6IRU]D DQG (GZDUGV (GZDUGV +HGULFN 1HL 5RJHUV :ULJKW f $YLVH f DQG :ULJKW f UHYLHZHG WKHVH PHDVXUHV LQ GHWDLO $OO DSSHDU WR SURYLGH VLPLODU HVWLPDWHV $YLVH *RWWOLHE f 7KH JHQHWLF LGHQWLW\ ,f DQG GLVWDQFH 'f FRHIILFLHQWV RI 1HL f DUH WKH PRVW ZLGHO\ XVHG VWDWLVWLFDO PHDVXUH LQ WKH OLWHUDWXUH 6PDOO VDPSOH VL]H DQG ORZ QXPEHU RI ORFL H[DPLQHG LQFUHDVHV WKH ELDV RI HVWLPDWHV RI ERWK DYHUDJH KHWHUR]\JRVLW\ DQG JHQHWLF GLVWDQFH 1HL f 1HL f SUHVHQWHG PRGLILHG IRUPXODH IRU XQELDVHG JHQHWLF LGHQWLWLHV DQG GLVWDQFHV WKDW FRXOG EH XVHG IRU VPDOO VDPSOH VL]H 1HL VWUHVVHG WKDW ZLWK D OLPLWHG SRSXODWLRQ VDPSOH D ODUJH QXPEHU RI ORFL PXVW EH

PAGE 204

DQDO\]HG KDYH RSWHG WR XVH WKH XQELDVHG DQG YDOXHV IRU P\ DQDO\VLV ZKHUH VDPSOH VL]H ZDV JUHDWHU WKDQ RQH 1HL f YDOXHV ZHUH XVHG IRU DOO SRSXODWLRQV RI D VDPSOH VL]H RI RQH $W DOO WD[RQRPLF OHYHOV ZLWKLQ (XFKDULV XQELDVHG 1HL f YDOXHV ZHUH FORVHU WKDQ ELDVHG YDOXHV 1HL f WR DYHUDJH LGHQWLWLHV DQG GLVWDQFHV UHSRUWHG IRU QXPHURXV JHQHUD RI SODQWV DQDO\]HG DW WKH VDPH WD[RQRPLF OHYHOV VHH UHYLHZV RI *RWWOLHE D DQG &UDZIRUG f 1HL DOVR VWDWHG WKDW WKH PDJQLWXGH RI VDPSOLQJ ELDV LV OHVV VHYHUH LI JHQHWLF GLVWDQFHV DUH KLJK DPRQJ WKH RUJDQLVPV XQGHU VWXG\ f 0RVW RI WKH YDOXHV IRU EHWZHHQ WKH (XFKDULV SRSXODWLRQV DVVD\HG DUH ZHOO DERYH 0HDQ KHWHUR]\JRVLW\ KRZHYHU LV KLJK LQ (XFKDULV JHQHUDOO\ RYHU f ZKLFK DOVR FDQ ELDV HVWLPDWHV RI JHQHWLF LGHQWLW\ DQG GLVWDQFH LQ FDVHV RI ERWK VPDOO ORFXV DQG VPDOO VDPSOH VL]H 1HL f &RQVHTXHQWO\ WKH GDWD RQ JHQHWLF YDULDWLRQ SUHVHQWHG EHORZ VKRXOG EH LQWHUSUHWHG ZLWK FDXWLRQ XQWLO D ODUJHU QXPEHU RI HLWKHU LQGLYLGXDOV ZLWKLQ SRSXODWLRQV RU ORFL DUH DVVD\HG $ ODUJHU GDWD EDVH ZLOO DOVR DOORZ VWDWLVWLFDOO\ VLJQLILFDQW WHVWV RI FRQIRUPDWLRQ WR +DUG\:HLQEHUJ HTXLOLEULXP >HJ WKH )L[DWLRQ ,QGH[ -DLQ DQG :RUNPDQ :ULJKW f ZKLFK PHDVXUHV H[FHVV RU GHILFLHQF\ RI KHWHUR]\JRWH SURSRUWLRQV IURP +DUG\ :HL QEHUJ HVWLPDWLRQV@ 5HVXOWV (XFKDULV ERXFKHL FRPSOH[ )LJV 7DEOH f (Q]\PH V\VWHPV DVVD\HG ZHUH $$7 0'+ *66*5 3*, DQG 6.'+ 1LQH SXWDWLYH ORFL ZHUH LQIHUUHG IURP WKH HOHFWURSKRUHWLF SKHQRW\SHV FRGHG E\ DOOHOHV 7DEOH f 2QO\ 6.'+ ZDV PRQRPRUSKLF DFURVV DOO

PAGE 205

SRSXODWLRQV RI B( ERXFKHL DQG (B ERQSODQGLL 2QO\ SRO\PRUSKLF ORFL DUH GLVFXVVHG EHORZ LQ GHWDLO DQG GLDJUDPPHG LQ )LJ $$7 )LJV $ f 7ZR ZHOOVHSDUDWHG LVR]\PHV ZHUH UHVROYHG IRU $$7 RQH UDSLGO\ PLJUDWLQJ DQRGDOO\ $$7f DQG WKH RWKHU $$7f FRQVLGHUDEO\ VORZHU (OHFWURPRUSKV DW ERWK ORFL ZHUH FRQVLGHUDEO\ PRUH FRPSOH[ WKDQ LQ GLSORLG VSHFLHV RI (XFKDULV 7KUHH DOOHOHV ZHUH LQIHUUHG IURP WKH SKHQRW\SHV RI $$7 LQ WKH (B ERXFKHL FRPSOH[ (DFK DOOHOH RI $$7 LQ DOO (XFKDULV FKDUDFWHULVWLFDOO\ UHVROYHV DV WZR YHU\ FORVHO\ VSDFHG EDQGV )LJ f 7KLV LV OLNHO\ WKH UHVXOW RI EUHDNGRZQ SURGXFWV IRUPLQJ DIWHU H[WUDFWLRQ )LJ LQ 6KLHOGV HW DO f (OHFWURPRUSKV RI SROOHQ RI GLSORLG (XFKDULV 0HHURZ XQSXEO GDWDf DOVR VKRZHG WKLV EDQGLQJ SDWWHUQ :HUH HDFK FRPSRQHQW EDQG RI WKH GRXEOHW D GLVWLQFW DOOHOH SROOHQ ZRXOG EH H[SHFWHG WR VKRZ RQO\ RQH RI WKH WZR *RWWOLHE f $OOHOH D ZDV WKH PRVW FRPPRQ DOOHOH RI $$7 IRXQG LQ DOO LQGLYLGXDOV DQDO\]HG H[FHSW IRU WZR KRPR]\JRWHV IRU DOOHOH F WKH &HUUR %UXMR SRSXODWLRQ DQG RQH LQGLYLGXDO RI WKH (O 9DOOH SRSXODWLRQ RI YDU ERXFKHLf 9DULHW\ GUHVVOHUL DQG (B ERQSODQGLL DUH KRPR]\JRXV IRU DOOHOH D 7KH 5LR ,JXDQLWDV LQGLYLGXDO RI YDU ERXFKHL LV KHWHUR]\JRXV IRU DOOHOHV D DQG E ZKLOH WZR LQGLYLGXDOV RI WKH (O 9DOOH SRSXODWLRQ KDYH DOO WKUHH DOOHOHV 6HYHQ GLIIHUHQW DOOHOHV ZHUH LQIHUUHG IURP SKHQRW\SHV RI $$7 DQG IRXU B( ERXFKHL LQGLYLGXDOV UHVROYHG D IRXUEDQGHG HOHFWURPRUSK 'LSORLG VSHFLHV RI (XFKDULV UHVROYH RQO\ D RQH RU WZREDQGHG HOHFWURPRUSK IRU WKLV LVR]\PH $OOHOHV I DQG J ZHUH IRXQG RQO\ LQ (B ERQSODQGLL 2QO\ WZR EDQGV ZHUH REVHUYHG LQ YDU GUHVVOHUL DQ XQVWDEOH WHWUDSORLGf UHSUHVHQWLQJ DOOHOHV D DQG E RU E DQG F DQG RQH LQGLYLGXDO

PAGE 206

RI YDU ERXFKHL IURP (O 9DOOH DOOHOHV F DQG Gf $OO RWKHU LQGLYLGXDOV RI ( ERXFKHL UHVROYHG D IRXUEDQGHG HOHFWURPRUSK IRU $$7 $OOHOH H ZDV IRXQG RQO\ LQ RQH LQGLYLGXDO RI YDU ERXFKHL IURP (O 9DOOH $V DOO GLSORLG VSHFLHV RI (XFKDULV VSHFLHV UHVROYH RQO\ D RQH RU WZREDQGHG HOHFWURPRUSK IRU WKLV LVR]\PH LW ZDV LQIHUUHG WKDW WKH SUROLIHUDWLRQ RI DOOHOHV ZLWKLQ (B ERXFKHL UHSUHVHQWHG WKH DGGLWLYH HIIHFWV RI WHWUDSORLG\ &UDZIRUG *RWWOLHE f ,Q RUGHU WR GHWHUPLQH DOOHOH IUHTXHQFLHV RI WKHVH WHWUDSORLG SKHQRW\SHV SXWDWLYH JHRQW\SHV KDG WR EH LQIHUUHG LQ WKH DEVHQFH RI VHJUHJDWLQJ SURJHQ\ KDYH RSWHG WR FRQVLGHU DOO DOOHOHV SUHVHQW LQ WKH WHWUDSORLG KHWHUR]\JRXV JHQRW\SHV RI $$7 WR EH UHSUHVHQWHG HTXDOO\ 1R REYLRXV GRVDJH HIIHFWV ZHUH YLVLEOH LQ WKH HOHFWURPRUSK SDWWHUQV 1RQHWKHOHVV XQHTXDO UHSUHVHQWDWLRQ RI DQ\ RQH DOOHOH LQ WKHVH WHWUDSORLG JHQRW\SHV UHPDLQV D SRVVLELOLW\ $OWHUQDWLYH JHQRW\SHV HJ DDDE LQVWHDG RI DEDEf ZHUH DQDO\]HG ZLWK %,26<6 DQG JHQHWLF LGHQWLWLHV GLG QRW IOXFWXDWH ZLGHO\ IURP WKH YDOXHV UHSRUWHG EHORZ 0'+ )LJV % f )RXU ORFL ZHUH LQIHUUHG IURP WKH SKHQRW\SHV RI 0'+ FRGHG E\ DOOHOHV 0'+ 0'+ DQG 0'+ HDFK UHVROYHG WZR DOOHOHV 7KUHH RU IRXU LVR]\PHV RI 0'+ DUH FKDUDFWHULVWLFDOO\ IRXQG SODQWV *RWWOLHE f 0'+ WKH PRVW DQRGDO LV PRQRPRUSKLF LQ DOO SRSXODWLRQV RI (B ERXFKHL EXW UHVROYHG WZR DOOHOHV DQG WKHLU KHWHURGLPHU LQ B( ERQSODQGLL >SROOHQ RI WKLV VSHFLHV UHVROYHG RQO\ D VLQJOH EDQG DW WKLV ORFXV LQ D UHSHWLWLYH UXQ XQSXEO GDWDf VXSSRUWLQJ WKLV LQWHUSUHWDWLRQ@ 0'+ LV KHWHUR]\JRXV DFURVV DOO SRSXODWLRQV 'RVDJH HIIHFWV ZHUH DSSDUHQW LQ KRPR]\JRXV SKHQRW\SHV IRU DOOHOH D LQ 0'+ DQG DOOHOH E LQ 0'+ )LJ f (XFKDULV ERQSODQGLL LV KHWHUR]\JRXV DW DOO IRXU ORFL

PAGE 207

3*, )LJ f 2QO\ D VLQJOH UHJLRQ RI DFWLYLW\ ZDV UHVROYHG IRU 3*, 7ZR DOOHOHV ZHUH REVHUYHG EXW DOOHOH D ZDV IRXQG RQO\ LQ WKH KHWHUR]\JRWHV LQGLYLGXDOV RI B( ERXFKHL YDU GUHVVOHUL DQG RQH RI YDU ERXFKHL IURP (O 9DOOHf *66*5 )LJ f 7ZR DOOHOHV ZHUH REVHUYHG LQ WKH VLQJOH ORFXV UHVROYHG IRU *66*5 1R KHWHUR]\JRWH SKHQRW\SHV ZHUH IRXQG *HQHWLF YDULDWLRQ 7DEOH f 3HUFHQWDJH RI SRO\PRUSKLF ORFL 3f UDQJHV IURP b 3HUFHQWDJH RI SRO\PRUSKLF ORFL LQ B( ERXFKHL DORQH LV b IRU ( ERQSODQGLL 3 b 0HDQ QXPEHU RI DOOHOHV SHU ORFXV Nf UDQJHV IURP 0HDQ KHWHUR]\JRVLW\ SHU ORFXV +f DFURVV DOO SRSXODWLRQV UDQJHV IURP $YHUDJH KHWHUR]\JRVLW\ LV LQ SRSXODWLRQV RI B( ERXFKHL DORQH DQG LQ B( ERQSODQGLL 7KH (O 9DOOH SRSXODWLRQ RI B( ERXFKHL YDU ERXFKHL LQ SDUWLFXODU LV H[WUHPHO\ KHWHUR]\JRXV 3 b + f *RWWOLHE Df UHSRUWHG DYHUDJH YDOXHV IRU RXWFURVVLQJ VSHFLHV RI 3 b DQG + LQ D VXUYH\ RI LVR]\PH YDULDELOLW\ RI SODQW SRSXODWLRQV *RWWOLHEnV UHSRUW LV IRU GLSORLG VSHFLHV KRZHYHU ,QFUHDVHG KHWHUR]\JRVLW\ LV DQ H[SHFWHG FRQVHTXHQFH RI DOORSRO\SORLG\ &UDZIRUG *RWWOLHE 6ROWLV DQG 5LHVHEHUJ f $ FHUWDLQ GHJUHH RI IL[HG KHWHUR]\JRVLW\ ZRXOG DOVR EH H[SHFWHG LQ DQ DOORSRO\SORLG *RWWOLHE 6ROWLV DQG 5LHVHEHUJ f GXH WR WKH SUHVHQFH RI WZR JHQRPHV LQ WKH DOORWHWUDSORLG 7KH KHWHUR]\JRXV VWDWH IRU $$7 DQG 0'+ LV IL[HG DFURVV DOO IRXU SRSXODWLRQV RI (XFKDULV ERXFKHL *HQHWLF LGHQWLWLHV 7DEOH f ZHUH ORZHVW EHWZHHQ DOO SDLUZLVH FRPSDULVRQV RI B( ERXFKHL SRSXODWLRQV DQG B( ERQSO DQGL L f *HQHWLF LGHQWLW\ LV DOVR ORZ f EHWZHHQ ( ERXFKHL YDU GUHVVOHUL DQG DOO SRSXODWLRQV RI YDU ERXFKHL *HQHWLF

PAGE 208

LGHQWLW\ EHWZHHQ WKH (O 9DOOH &RFL SURYLQFHf DQG 5LR ,JXDQLWDV &ROQf SRSXODWLRQV RI YDU ERXFKHL LV KLJK f 7KHVH SRSXODWLRQV ZKLOH JHRJUDSKLFDOO\ VHSDUDWH DUH VLPLODU LQ IORUDO PRUSKRORJ\ 7KH &HUUR %UXMR SRSXODWLRQ RI YDU ERXFKHL &ROQ SURYLQFHf VKRZV D PHDVXUH RI JHQHWLF GLYHUJHQFH IURP WKH WKH (O 9DOOH DQG 5LR ,JXDQWLWRV SRSXODWLRQV ZLWK DWWHQGHQW ORZHUHG LGHQWLW\ YDOXHV DQG UHVSHFWLYHO\f 7KH YHU\ ORZ YDOXH RI EHWZHHQ WKH 5LR ,JXDQLWDV SRSXODWLRQ DQG WKH &HUUR %UXMR SRSXODWLRQ f LV FORVHU WR WKH UDQJH XVXDOO\ IRXQG EHWZHHQ FRQJHQHULF VSHFLHV &UDZIRUG *RWWOLHE Df $ VDPSOH VL]H RI RQH KRZHYHU IRU ERWK WKH 5LR ,JXDQLWDV DQG &HUUR %UXMR SRSXODWLRQV XQGRXEWHGO\ PDNH WKHVH YDOXHV ELDVHG WR VRPH GHJUHH 1HL f 1RQHWKHOHVV WKH SKHQHWLF KHWHURPRUSKLVP RI (B ERXFKHL LV SDUDOOHOHG LQ LVR]\PH UHODWLRQVKLSV DV ZHOO 0HDQ LQIUDVSHFLILF JHQHWLF LGHQWLW\ DPRQJ DOO SRSXODWLRQV RI B( ERXFKHL LV RQO\ 0HDQ LQIUDYDULHWDO JHQHWLF LGHQWLW\ LQ B( ERXFKHL YDU ERXFKHL LV (XFKDULV FDQGLGDIRUPRVD FRPSOH[ )LJV 7DEOH f (Q]\PH V\VWHPV DVVD\HG ZHUH $$7 $'+ 0'+ *66*5 DQG 6.'+ (LJKW SXWDWLYH ORFL FRGHG E\ DOOHOHV ZHUH LQIHUUHG IURP WKH HOHFWURSKRUHWLF SKHQRW\SHV 7DEOH f 2QO\ $'+ ZDV PRQRPRUSKLF DFURVV DOO SRSXODWLRQV RI WKH WZR VSHFLHV DQG SXWDWLYH K\EULGV 2QO\ SRO\PRUSKLF ORFL DUH GLDJUDPPHG LQ )LJ DQG GLVFXVVHG EHORZ LQ GHWDLO $$7 )LJV $ f 7ZR ZHOOVHSDUDWHG LVR]\PHV ZHUH UHVROYHG IRU $$7 RQH UDSLGO\ PLJUDWLQJ DQRGDOO\ $$7f DQG WKH RWKHU $$7f FRQVLGHUDEO\ VORZHU (DFK RI WKUHH DOOHOHV D E DQG Ff RI $$7 UHVROYHG DV D WZREDQGHG HOHFWURPRUSK 7KLV LV OLNHO\ WKH UHVXOW RI

PAGE 209

EUHDNGRZQ SURGXFWV IRUPLQJ DIWHU H[WUDFWLRQ VHH )LJ LQ 6KLHOGV HW DO f 7KUHH DE KHWHUR]\JRWHV ZHUH REVHUYHG WKH 3X\R SRSXODWLRQ RI ( FDQGLGD WKH 5LR &RFD K\EULG DQG WKH 3HUXYLDQ SRSXODWLRQ RI (B IRUPRVD $ VLQJOH LQGLYLGXDO RI WKH /LPRQFRFKD SRSXODWLRQ RI (B IRUPRVD ZDV D EH KHWHUR]\JRWH $OO RWKHU LQGLYLGXDOV ZHUH KRPR]\JRXV IRU DOOHOH E 7KUHH DOOHOHV ZHUH LQIHUUHG IURP WKH HOHFWURPRUSKV RI $$7 $OOHOH E ZDV WKH PRVW FRPPRQ IRXQG LQ WKH KHWHUR]\JRXV VWDWH ZLWK HLWKHU DOOHOH D /LPRQFRFKD ( IRUPRVD 5LR &RFD (B FDQGL GD DQG WKH /DJR $JULR K\EULGf RU F DOO RWKHU LQGLYLGXDOVf n0'+ )LJV % f 7KUHH ORFL FRGHG E\ VL[ DOOHOHV ZHUH LQIHUUHG IURP WKH SKHQRW\SHV $ IRXUWK FDWKRGDO ORFXV ZDV DSSDUHQW EXW FRXOG QRW EH DGHTXDWHO\ UHVROYHG 0'+ WKH PRVW DQRGDO LVR]\PH ZDV DOVR WKH PRVW SRO\PRUSKLF ZLWK WKUHH DOOHOHV REVHUYHG $OOHOH F ZDV WKH PRVW FRPPRQ UHSUHVHQWHG LQ DOO SRSXODWLRQV +RPR]\JRWHV IRU DOOHOH F DUH DOO SRSXODWLRQV RI (B IRUPRVD DQG WKH SXWDWLYH K\EULG IURP 5LR &RFD $OOHOH E ZDV WKH UDUHVW DOOHOH REVHUYHG RQO\ LQ WKH KHWHR]\JRXV B( FDQGLGD IURP 3X\R JHQRW\SH EHf 7KH SXWDWLYH K\EULG IURP /DJR $JULR DQG (B FDQGL GD IURP 5LR &RFD DUH KHWHUR]\JRWHV ZLWK WKH JHQRW\SH DF ZLWK KHWHURGLPHUL]DWLRQ EHWZHHQ F DQG WKH UDUH DOOHOH D 7ZR DOOHOHV ZHUH REVHUYHG IRU 0'+ D DQG E 7KH PRVW FRPPRQ DOOHOH LV E +HWHUR]JRWHV DUH ERWK K\EULGV WKH 7HQD SRSXODWLRQ RI (B IRUPRVD DQG WKH 3X\R SRSXODWLRQ RI ( FDQGL GD 2QO\ WZR KRPR]\JRWHV IRU D ZHUH REVHUYHG WZR LQGLYLGXDOV RI (B IRUPRVD IURP /LPRQFRFKD 7ZR DOOHOHV ZHUH DOVR UHVROYHG IRU 0'+ $OOHOH E LV IRXQG LQ RQO\ WZR LQGLYLGXDOV KRPR]\JRXV ( FDQGL GD IURP 3X\R DQG KHWHUR]\JRXV ( IRUPRVD IURP 7HQD $OO RWKHU SRSXODWLRQV ZHUH KRPR]\JRXV IRU D

PAGE 210

*66*5 )LJ f 2QO\ D VLQJOH DQRGDO ORFXV ZDV VXFFHVVIXO\ UHVROYHG IRU WKLV HQ]\PH 7ZR DOOHOHV ZHUH REVHUYHG $OOHOH E LV SUHVHQW RQO\ LQ WKH WZR KHWHUR]\JRWHV ERWK ( FDQGL GD IURP 3X\R DQG 5LR &RFD UHVSHFWLYHO\ 6.'+ )LJ f $OO SRSXODWLRQV H[FHSW 3HUXYLDQ (B IRUPRVD ZHUH KRPR]\JRXV IRU WKLV PRQRPRUSKLF HQ]\PH *HQHWLF YDULDWLRQ 7DEOH f 3HUFHQWDJH RI SRO\PRUSKLF ORFL 3f UDQJHV IURP b )RU B( FDQGL GD 3 b DQG LQ B( IRUPRVD b 0HDQ QXPEHU RI DOOHOHV SHU ORFXV NBf UDQJHV IURP 0HDQ KHWHUR]\JRVLW\ SHU ORFXV +f DFURVV DOO SRSXODWLRQV UDQJHV IURP $YHUDJH KHWHUR]\JRVLW\ IRU SRSXODWLRQV RI (B FDQGL GD LV DQG IRU (B IRUPRVD 7KHVH YDOXHV RI + DUH KLJK LQ FRPSDULVRQ WR *RWWOLHEnV Df UHSRUWHG DYHUDJH IRU RXWFURVVLQJ GLSORLG VSHFLHV f HVSHFLDOO\ WKH DYHUDJH YDOXH RI FDQGL GD EXW 3 IRU B( IRUPRVD DJUHHV FORVHO\ ZLWK KLV YDOXH bf 7KH (XFKDULV SRSXODWLRQV DUH DOVR GHSDXSHUDWH LQ PHDQ QXPEHU RI DOOHOHV SHU ORFXV EDVHG RQ *RWWOLHEnV Df DYHUDJHV +HWHUR]\JRVLW\ DW WKH $$7 ORFXV DSSHDUV IL[HG DFURVV DOO SRSXODWLRQV DQDO\]HG 7KH 3DVWD]D SRSXODWLRQ RI ( IRUPRVD LV KRPR]\JRXV DW DOO ORFL H[FHSW $$7 +HWHUR]\JRVLW\ HVWLPDWHV RI WKHVH (XFKDULV SRSXODWLRQV DUH KRZHYHU ELDVHG WR DQ XQFHUWDLQ GHJUHH E\ WKH VPDOO VDPSOH VL]H 1HL f 0HDQ JHQHWLF LGHQWLW\ 7DEOH f DPRQJ DOO SDLUZLVH FRPELQDWLRQV RI = IRUPRVD SRSXODWLRQV LV $PRQJ RQO\ (FXDGRUHDQ SRSXODWLRQV RI (B IRUPRVD ,GHQWLW\ EHWZHHQ WKH WZR B( FDQGL GD SRSXODWLRQV LV YHU\ ORZ $YHUDJH LGHQWLW\ EHWZHHQ B( FDQGL GD DQG = IRUPRVD LV 7KH 3X\R SRSXODWLRQ RI B( FDQGL GD KDV WKH ORZHVW UDQJH RI JHQHWLF LGHQWLWLHV ZLWK DOO SRSXODWLRQV DQDO\]HG f DQG

PAGE 211

VKRZV ORZHU JHQHWLF LGHQWLW\ ZLWK WKH VLQJOH RWKHU FRQVSHFLILF SRSXODWLRQ f WKDQ ZLWK WKH 7HQD SRSXODWLRQ RI B( IRUPRVD f 7KH LQGLYLGXDO UHSUHVHQWnQJ B( IRUPRVD IURP 3DVWD]D KDV KLJK JHQHWLF LGHQWLWLHV ZLWK DOO SRSXODWLRQV RI HLWKHU VSHFLHV f H[FHSW B( FDQGL GD IURP 3X\R f 7KH SXWDWLYH K\EULGV JHQHUDOO\ KDYH YDOXHV RI JHQHWLF LGHQWLW\ LQWHUPHGLDWH EHWZHHQ WKRVH RI ERWK VSHFLHV f EXW ERWK KDYH YHU\ KLJK YDOXHV ZLWK WKH /LPRQFRFKD SRSXODWLRQ RI B( IRUPRVD f 7KHVH YDOXHV DUH KLJKHU WKDQ DQ\ EHWZHHQ WKH (FXDGRUHDQ SRSXODWLRQV RI ( IRUPRVD f 'LVFXVVLRQ 6WXGLHV RI LVR]\PH YDULDWLRQ LQ SODQWV DOORZ VHYHUDO JHQHUDOL]DWLRQV WR EH PDGH FRQFHUQLQJ GHJUHHV RI JHQHWLF GLYHUJHQFH DW YDULRXV WD[RQRPLF OHYHOV *RWWOLHE D &UDZIRUG f 0HDQ JHQHWLF LGHQWLWLHV DPRQJ FRQVSHFLILF SODQW SRSXODWLRQV RI GLYHUVH WD[D IURP ZLGHO\ XQUHODWHG IDPLOLHV UDQJH IURP ZLWK WKH JUHDWHVW SHUHFHQWDJH DERYH $W WKLV OHYHO RI WKH WD[RQRPLF KLHUDUFK\ DXWRJDPRXV VSHFLHV XVXDOO\ VKRZ KLJKHU YDOXHV WKDQ RXWFURVVLQJ VSHFLHV *RWWOLHE Df *HQHWLF VLPLODULW\ DPRQJ VXEVSHFLILF WD[D LV JHQHUDOO\ WKH VDPH DV IRU FRQVSHFLILF SRSXODWLRQV RI WKH VDPH WD[RQ &UDZIRUG f %\ FRQWUDVW JHQHWLF LGHQWLWLHV DPRQJ FRQJHQHULF VSHFLHV DUH PXFK ORZHU &UDZIRUG *RWWOLHE Df ZLWK D PHDQ YDOXH FD ,Q WKHVH FRQWH[WV YDOXHV RI 1HL f JHQHWLF LGHQWLWLHV DQG GLVWDQFHV DPRQJ SRSXODWLRQV RI WZR VSHFLHV FRPSOH[HV RI (XFKDULV RQH GLSORLG WKH RWKHU WHWUDSORLG RIIHU LQVLJKW LQWR WKHLU UHODWLRQVKLSV

PAGE 212

(XFKDULV ERXFKHL FRPSOH[ &OXVWHU DQDO\VLV RI WKH WHWUDSORLG (XFKDULV SRSXODWLRQV E\ WKH XQZHLJKWHG SDLU JURXS PHWKRG 83*0$ 6QHDWK DQG 6RNDO f XVLQJ YDOXHV RI 1HL f JHQHWLF GLVWDQFH JUDSKLFDOO\ LOOXVWUDWHV WKH LVR]\PH UHODWLRQVKLSV DPRQJ WKHVH WD[D )LJ f 7KH &HUUR %UXMR &ROQ SURYLQFHf SRSXODWLRQ RI YDU ERXFKHL VKRZV JUHDWHU LVR]\PH GLYHUJHQFH IURP (O 9DOOH SRSXODWLRQV WKDQ GRHV YDU GUHVVOHUL DOVR IURP (O 9DOOH 7KH &HUUR %UXMR SRSXODWLRQ DOVR H[KLELWV NDU\RW\SH GLYHUJHQFH IURP WKH (O 9DOOH SRSXODWLRQ &KDSWHU 9,,f 7KRXJK IORUDO PRUSKRORJLFDO GLIIHUHQFHV H[LVW EHWZHHQ WKH (O 9DOOH DQG &HUUR %UXMR SRSXODWLRQV RI ( ERXFKHL YDU ERXFKHL )LJ LQ &KDSWHU ;,,f WKH\ DUH QRW GLVFRQWLQXRXV HQRXJK WR ZDUUDQW D FOHDUFXW GLIIHUHQWLDWLRQ RI D IRXUWK YDULHW\ LQ WKH VSHFLHV )XUWKHUPRUH DW OHDVW RQH &ROQ SRSXODWLRQ 5LR ,JXDQLWDVf KDV D KLJK YDOXH RI JHQHWLF LGHQWLW\ f ZLWK WKH (O 9DOOH SRSXODWLRQ 'LYHUJHQFH EHWZHHQ WKH &RFL SRSXODWLRQV DQG WKRVH LQ &ROQ SURYLQFH RI ZKLFK WKH &HUUR %UXMR SRSXODWLRQ LV RQHf SUHVXPDEO\ PHGLDWHG E\ JHRJUDSKLF LVRODWLRQ PD\ WKXV EH DQ DFWLYHO\ RQJRLQJ SURFHVV (XFKDULV ERXFKHL YDU GUHVVOHUL RFFXUV V\PSDWULFDOO\ DV D UDUH PRUSK ZLWK SRSXODWLRQV RI YDU ERXFKHL 7KLV YDULHW\ LV DQ XQVWDEOH WHWUDSORLG VHH &KDSWHU 9,,f )LIWHHQ SHUFHQW RI DOO FKURPRVRPH FRXQWV RI URRW WLS FHOO PLWRWLF PHWDSKDVH FRQILJXUDWLRQV KDYH BQ WKH W\SLFDO GLSORLG FKURPRVRPH QXPEHU LQ (XFKDULV 9DULHW\ GUHVVOHUL ODFNV WKH DGGLWLYH EDQGLQJ SDWWHUQV REVHUYHG LQ ERWK ORFL RI $$7 LQ DOO RWKHU SRSXODWLRQV RI ( ERXFKHL D IDFWRU SHUKDSV RI WKLV NDU\RW\SLF LQVWDELOLW\ $GGLWLYH HQ]\PH EDQGLQJ SDWWHUQV KDYH EHHQ REVHUYHG LQ D

PAGE 213

QXPEHU RI WHWUDSORLG WD[D RI *RVV\SLXP &KHUU\ HW DO f 1LFRWLDQD 5HGG\ DQG *DUEHU 6KHHQ 6PLWK HW DO f 7ULWLFXP DHVWLYXP +DUW -DDVND 7RUUHV DQG +DUW f DQG 6WHSKDQRPHULD *RWWOLHE Ff DQG DUH XVXDOO\ LQWHUSUHWHG DV LQGLFDWLYH RI DOORSRO\SORLG RULJLQV &UDZIRUG *RWWOLHE 6ROWLV DQG 5LHVHEHUJ f 3ROOHQ VWDLQDELOLW\ RI YDU GUHVVOHUL LV b ZLWK $OH[DQGHUnV f VWDLQ VXJJHVWLQJ WKDW JDPHWH IRUPDWLRQ LV QRW LPSDLUHG E\ WKH FKURPRVRPH QXPEHU LQVWDELOLW\ 1RQHWKHOHVV KDYH QRW VXFFHVVIXOO\ FURVVHG WKLV YDULHW\ ZLWK (O 9DOOH SRSXODWLRQV RI YDU ERXFKHL 7KH UDUH &RORPELDQ WHWUDSORLG ( ERQSODQGLL DOVR ODFNV DGGLWLYH EDQGLQJ SDWWHUQV IRU $$7 7KLV PD\ LQGLFDWH DQ DXWRSRO\SORLG RULJLQ IRU WKLV VSHFLHV &UDZIRUG 6ROWLV DQG 5LHVHEHUJ f
PAGE 214

ZKLFK LV LWVHOI JRRG HYLGHQFH IRU DQ DOORSRO\SORLG RULJLQ RI WKH VSHFLHV *HQHWLF LGHQWLW\ SDWWHUQV VLPLODU WR WKRVH IRXQG EHWZHHQ WKH SRSXODWLRQV RI YDU ERXFKHL 7DEOH f ZHUH UHSRUWHG E\ :DLQ f IRU WKUHH VXEVSHFLHV RI WKH GLSORLG +HOLDQWKXV GHELOLV $VWHUDFHDHf 0HDQ JHQHWLF LGHQWLWLHV DPRQJ SRSXODWLRQV RI HDFK RI WKH WKUHH VXEVSHFLHV ZHUH KLJK FD f 3DLUZLVH FRPSDULVRQV EHWZHHQ SRSXODWLRQV RI VXEVSS YHVWLWXV DQG WDUGLI7RUXV \LHOGHG WKH VDPH PHDQ LGHQWLW\ :KHQ VXEVSS YHVWLWXV DQG WDUGLI7RUXV ZHUH FRPSDUHG WR SRSXODWLRQV RI VXEVS GHELOLV >FRQVLGHUHG WKH PRVW PRUSKRORJLFDOO\ GLVWLQFW RI WKH WKUHH VXEVSHFLHV E\ +HLVHU f@ PHDQ LGHQWLWLHV GURSSHG WR DQG UHVSHFWLYHO\ :DLQ f K\SRWKHVL]HG D UHFHQW GLYHUJHQFH RI VXEVS YHVLWL WXV DQG WDUGLI7RUXV IURP DQ DQFHVWUDO SRSXODWLRQ &UDZIRUG f UHYLHZLQJ WKH VDPH GDWD DORQJ ZLWK FRQFRUGDQW GDWD RQ WZR DGGLWLRQDO VXEVSHFLHV RI +B GHEL LV :DLQ f VXJJHVWHG LQVWHDG WKDW VXEVS GHELLV KDV EHHQ LVRODWHG JHRJUDSKLFDOO\ IRU D ORQJHU SHULRG RI WLPH WKDQ DQ\ RI WKH RWKHU VXEVSHFLHV 2Q WKH EDVLV RI VWDPLQDO FXS PRUSKRORJ\ K\SRWKHVL] WKDW (XFKDULV ERXFKHL KDV EHHQ VWHDGLO\ PLJUDWLQJ DZD\ IURP WKH &RORPELDQ ERUGHU VHH &KDSWHU ,; DQG ;,,f 7KH &HUUR %UXMR SRSXODWLRQ RI ( ERXFKHL YDU ERXFKHL PD\ ILW &UDZIRUGVnV f PRGHO RI + GHELOLV VXEVS GHEL LV 7KH &HUUR %UXMR SRSXODWLRQ PD\ UHSUHVHQW DQ LQWHUPHGLDWH SRLQW LQ WKH GLYHUJHQFH RI D QHZ JHRJUDSKLFDO UDFH RI B( ERXFKHL 7KH EHVW WHVW RI WKLV K\SRWKHVLV ZRXOG EH WKH UHVXOWV RI LVR]\PH DQDO\VLV RI (B ERXFKHL YDU GDULHQHQVLV WKH RQH YDULHW\ IRU ZKLFK PDWHULDO LV QRW SUHVHQWO\ DYDLODEOH 9DULHW\ GDULHQHQVLV LV IRXQG FORVHU WR WKH &RORPELDQ ERUGHU WKDQ DQ\ RWKHU SRSXODWLRQ RI ( ERXFKHL DQG KDV WKH PRVW JHQHUDOL]HG

PAGE 215

VWDPLQDO FXS PRUSKRORJ\ UHODWLYH WR (XFKDULV DV D ZKROH ,I P\ K\SRWKHVLV LV FRUUHFW YDU GDULHQHQVLV VKRXOG KDYH WKH ORZHVW JHQHWLF LGHQWLW\ ZLWK SRSXODWLRQV RI HLWKHU YDU ERXFKHL RU YDU GUHVVOHUL IURP &RFL SURYLQFH DQG KLJKHU LGHQWLW\ ZLWK SRSXODWLRQV RI YDU ERXFKHL IURP &ROQ SURYLQFH +RZHYHU WKH 5LR ,JXDQLWDV DQG &HUUR %UXMR SRSXODWLRQV RI YDU ERXFKHL ERWK IURP &ROQ SURYLQFH KDYH D SDUWLFXODUO\ ORZ YDOXH RI JHQHWLF LGHQWLW\ f EHWZHHQ WKHP &ROQ SRSXODWLRQV RI B( ERXFKHL DUH JHRJUDSKLFDOO\ LQWHUPHGLDWH EHWZHHQ PRVW SRSXODWLRQV RI YDU GDULHQHQVLV DQG WKH &RFL SRSXODWLRQV RI YDU ERXFKHL VHH )LJ &KDSWHU ;,,f 7KH WZR YDULHWLHV FRPH LQWR FORVH SUR[LPLW\ LQ WKH &HUUR &DPSDQD DUHD LQ 3DQDPD SURYLQFH &ROQ SRSXODWLRQV PD\ WKHUHIRUH DOVR EH JHQHWLFDOO\ LQWHUPHGLDWH EHWZHHQ WKH WZR YDULHWLHV 6HJUHJDWLQJ JHQRW\SHV LQ VXFK D FDVH FRXOG SURGXFH SRSXODWLRQV H[KLELWLQJ D PRVDLF RI YDU\LQJ JHQHWLF LGHQWLW\ VRPH FORVH WR &RFL YDU ERXFKHL RWKHUV SHUKDSV FORVHU WR YDU GDULHQHQVLV )XUWKHU WHVWLQJ RI WKLV K\SRWKHVLV ZLWK YDU GDULHQHQVLV DQG ODUJHU QXPEHUV RI SRSXODWLRQV DQG LQGLYLGXDOV LV QHFHVVDU\ 7KH RULJLQ RI ( ERXFKHL YDU GUHVVOHUL KRZHYHU PD\ EH WKH ILUVW VWHS LQ V\PSDWULF VSHFLDWLRQ 7KLV YDULHW\ VKRZV KLJKHVW JHQHWLF LGHQWLW\ ZLWK WKH &RFL SRSXODWLRQ RI YDU ERXFKHL f $YHUDJH JHQHWLF LGHQWLW\ EHWZHHQ B( ERQSO DQGL L L DQG ( ERXFKHL f LV QRW IDU EHORZ WKH H[SHFWHG YDOXHV IRU FRQJHQHULF VSHFLHV &UDZIRUG *RWWOLHE Df 7KH TXHVWLRQ RI ZKHWKHU WKHVH WZR VSHFLHV UHSUHVHQW D PRQRSK\OHWLF JURXS RQ WKH EDVLV RI WKHLU WHWUDSORLG RULJLQ LV QRW FRQFOXVLYH (XFKDULV ERQSODQGLL GRHV QRW VKRZ DQ\ DGGLWLYH EDQGLQJ SDWWHUQ DW HLWKHU ORFXV RI $$7 VXJJHVWLQJ WKDW LWV JHQRPLF FRQVWLWXWLRQ PD\ EH DXWRSORLG 7KH IDFW WKDW ( ERQSODQGLL LV

PAGE 216

WKH QRUWKHUQPRVW VSHFLHV RI (XFKDULV VXEJ (XFKDULV LQ 6RXWK $PHULFD DQG LV DOVR WHWUDSORLG OHQGV DW OHDVW FLUFXPVWDQWLDO FUHHGHQFH WR WKH K\SRWKHVLV WKDW ERWK B( ERXFKHL DQG (B ERQ SL DQ GL L UHSUHVHQW GLYHUJHQFHV IURP D FRPPRQ WHWUDSORLG DQFHVWRU 7KH UDUH RFFXUHQFH RI SRO\SORLG\ LQ (XFKDULV VWUHQJWKHQV WKLV SRVVLELOLW\ DV ZHOO 7KH GLIILFXOW\ LQ REWDLQLQJ VXFFHVVIXO PHLRWLF ILJXUHV IURP EXOEV RI (XFKDULV PLFURVSRURJHQHVLV RFFXUV FRPSOHWHO\ LQVLGH WKH EXOEf EORFNV WKH UHVROXWLRQ RI WKLV TXHVWLRQ 7KHUH LV LQVXIILFLHQW LQIRUPDWLRQ RQ WKH EUHHGLQJ V\VWHP DQG SROOLQDWLRQ ELRORJ\ RI (XFKDULV WR VXSSRUW PRUH WKDQ DG KRF K\SRWKHVHV RI PRVW VSHFLHVn RULJLQV 7KH FKDUDFWHULVWLFDOO\ VPDOO SRSXODWLRQ VL]HV WKDW DUH HQFRXQWHUHG WKURXJKRXW WKH UDQJH RI WKH JHQXV PD\ LQGLFDWH WKDW IRXQGHU HIIHFWV 0D\U 7HPSOHWRQ D Ef KDYH SOD\HG DQ LPSRUWDQW UROH LQ WKH PRYHPHQW RI B( ERXFKHL DFURVV WKH ,VWKPXV RI 3DQDPD ZLWK VXEVHTXHQW LVRODWLRQ UHVWULFWLQJ JHQH IORZ EHWZHHQ ORFDOL]HG SRSXODWLRQV 7KH SXWDWLYHO\ DOORWHWUDSORLG JHQRW\SH RI (B ERXFKHL ZRXOG IDYRU WKH K\EULG UHFRPELQDWLRQ W\SH RI JHQHWLF WUDQVLOLHQFH D PRGH RI VSHFLDWLRQ K\SRWKHVL]HG E\ 7HPSOHWRQ D Ef 7KLV LV FRQVLVWHQW ZLWK WKH ORZ JHQHWLF LGHQWLWLHV EHWZHHQ VRPH SRSXODWLRQV RI B( ERXFKHL DOO RI ZKLFK DUH JHRJUDSKLFDOO\ LVRODWHG VHH &KDSWHU ;,,f $GGLWLRQDO VXSSRUW DUH WKH PRUSKRORJLFDO QRYHOWLHV H[SUHVVHG ZLWKLQ HDFK JHRJUDSKLFDO YDULHW\ RU UDFH LQ WKH FDVH RI YDU ERXFKHLf 5HGXFWLRQ LQ KHWHUR]\JRVLW\ GRHV QRW QHFHVVDULO\ IROORZ IRXQGHU HIIHFWV 1HL HW DO 7HPSOHWRQ D Ef EXW ORVV RI DOOHOHV RIWHQ GRHV RFFXU (XFKDULV ERXFKHL LV KLJKO\ KHWHUR]\JRXV 7DEOH f EXW PRVW SRSXODWLRQV DUH VRPHZKDW GHSDXSHUDWH LQ PHDQ QXPEHU RI DOOHOHV SHU ORFXV 7DEOH f LQ FRPSDULVRQ ZLWK RXWFURVVLQJ 1RUWK

PAGE 217

$PHULFDQ VSHFLHV *RWWOLHE Df 6\WVPD DQG 6FKDDO f UHSRUWHG VLPLODU ILQGLQJV DQG FRQFOXVLRQV IURP LVR]\PH DQDO\VLV RI WKH WHWUDSORLG /LVLDQWKXV VNLQQHUL *HQWLDQDFHDHf FRPSOH[ IURP 3DQDPD (XFKDULV FDQGLGDIRUPRVD FRPSOH[ &OXVWHU DQDO\VLV RI WKH (B FDQGL GDIRUPRVD FRPSOH[ E\ WKH XQZHLJKWHG SDLU JURXS PHWKRG >83*0$ 6QHDWK DQG 6RNDO f@ XVLQJ YDOXHV RI 1HL f JHQHWLF GLVWDQFH JUDSKLFDOO\ LOOXVWUDWHV WKH LVR]\PH UHODWLRQVKLSV DPRQJ WKHVH WD[D )LJ f /RZHU JHQHWLF LGHQWLWLHV EHWZHHQ DOO SDLUZLVH FRPELQDWLRQV RI ( IRUPRVD DQG -( FDQGLGD f WKDQ DPRQJ SRSXODWLRQV RI B( IRUPRVD DORQH f VXJJHVW WKDW WKHVH PRUSKRORJLFDO VSHFLHV KDYH GLYHUJHG JHQHWLFDOO\ WR VRPH H[WHQW 7KLV EHWZHHQVSHFLHV DYHUDJH YDOXH RI LGHQWLW\ KRZHYHU LV KLJKHU WKDQ XVXDOO\ FKDUDFWHULVWLF RI RXWFURVVLQJ SODQWV *RWWOLHE Df 7KH GHJUHH RI GLYHUJHQFH RI WKH 3X\R SRSXODWLRQ RI (B FDQGL GD IURP DOO SRSXODWLRQV RI HLWKHU VSHFLHV LV PRVW VWULNLQJ 7KHUH LV QR REYLRXV SKHQHWLF FRUURERUDWLRQ RI WKLV OHYHO RI JHQHWLF GLYHUJHQFH DQG FKURPRVRPH PRUSKRORJ\ RI WKLV SRSXODWLRQ KDV QRW EHHQ H[DPLQHG 7KLV SRSXODWLRQ LV DOVR H[WUHPHO\ KHWHUR]\JRXV + f +LJKHVW YDOXH RI f IRU WKLV SRSXODWLRQ LV ZLWK WKH 7HQD SRSXODWLRQ RI B( IRUPRVD WKH SRSXODWLRQ RI HLWKHU VSHFLHV WR ZKLFK 3X\R (B FDQGLGD LV JHRJUDSKLFDOO\ FORVHVW )LJ f 7KH SXWDWLYH K\EULGV FOXVWHU ZLWK SRSXODWLRQV RI B( IRUPRVD WKH SDUHQW ZKLFK WKH\ PRVW UHVHPEOH PRUSKRORJLFDOO\ 7KHLU DYHUDJH JHQHWLF LGHQWLW\ f LV LQWHUPHGLDWH EHWZHHQ RI B( IRUPRVD f DQG B( FDQGL GD f EXW WKHLU FORVH JHQHWLF UHODWLRQVKLS WR ( IRUPRVD RFFOXGHV WKH K\SRWKHVLV RI K\EULGL]DWLRQ EHWZHHQ ( IRUPRVD DQG (

PAGE 218

FDQGLGD VXJJHVWHG E\ SKHQHWLF DQDO\VLV &KDSWHU 9,f 7KH /DJR $JULR K\EULG LQ SDUWLFXODU ZKLFK SKHQWLFDOO\ LV PXFK FORVHU WR B( IRUPRVD DQG ZKRVH SROOHQ VWDLQV b H[KLELWV KLJKHVW YDOXHV RI LGHQWLW\ ZLWK (FXDGRUHDQ B( IRUPRVD f VXJJHVW &KDSWHU ;,,f WKDW WKLV FROOHFWLRQ LQ IDFW PD\ EH D JHQHW DW WKH ORZVL]H HQG IRU (B IRUPRVD DQG QRW D K\EULG 7KH FKURPRVRPDO GLYHUJHQFH RI 3HUXYLDQ B( IRUPRVD &KDSWHU 9,,f LV UHIOHFWHG JHQHWLFDOO\ DV ZHOO *HQHWLF LGHQWLWLHV EHWZHHQ 3HUXYLDQ DQG (FXDGRULDQ ( IRUPRVD UDQJH IURP LQ FRQWUDVW WR D UDQJH RI DPRQJ RQO\ (FXDGRUHDQ SRSXODWLRQV $OWKRXJK 3HUXYLDQ -( IRUPRVD GRHV QRW REYLRXVO\ GLIIHU PRUSKRORJLFDOO\ IURP (FXDGRUHDQ SRSXODWLRQV RI WKH VSHFLHV LW DSSHDUV WKDW ERWK FKURPRVRPDO DQG LVR]\PLF GLYHUJHQFH PHGLDWHG E\ JHRJUDSKLFDO LVRODWLRQ FDQ SUHFHGH SKHQHWLF GLYHUJHQFH LQ (XFKDULV 7KH QHDUO\ KRPR]\JRXV B( IRUPRVD IURP WKH 3DVWD]D YDOOH\ KDV KLJK JHQHWLF LGHQWLWLHV ZLWK SRSXODWLRQV RI ERWK B( IRUPRVD DQG B( FDQGL GD 2I DOO SRSXODWLRQV LW DOVR KDV WKH KLJKHVW LGHQWLW\ ZLWK 3HUXYLDQ B( IRUPRVD f RI DQ\ (FXDGRUHDQ SRSXODWLRQ 7KH 3DVWD]D YDOOH\ PD\ WKHUHIRUH EH WKH VLWH RI RULJLQ IRU ERWK VSHFLHV IURP ZKLFK WKH\ KDYH UDGLDWHG SHUKDSV PRUH WKDQ RQFH &ODGLVWLF DQDO\VLV VXSSRUWV D SURJHQLWRUGHVFHQGHQW UHODWLRQVKLS IRU WKHVH WZR VSHFLHV DQG LVR]\PH GDWD VXJJHVW WKDW VSHFLHV OHYHO JHQHWLF GLYHUJHQFH KDV QRW \HW DGYDQFHG EH\RQG WKH OHYHO XVXDOO\ FKDUDFWHULVLQnF RI VXEVSHFLILF WD[D )XUWKHU LVR]\PH DQDO\VHV RI SRSXODWLRQV RI ERWK RI WKHVH V\PSDWULF VSHFLHV PD\ LQGLFDWH D JUHDWHU PRVDLF RI JHQHWLF LGHQWLW\ YDOXHV WKDQ SUHVHQWO\ UHSRUWHG

PAGE 219

7KH UHODWLRQVKLS RI B( FDQGLGD DQG (B IRUPRVD LV FRPSOLFDWHG E\ WKH OLNHO\ SURVSHFW WKDW ERWK KDYH EHHQ FXOWLYDWHG IRU PDQ\ \HDUV E\ WKH QDWLYH SHRSOH RI HDVWHUQ (FXDGRU VHH &KDSWHU ;,,f 3UHVHQWGD\ SRSXODWLRQV PD\ WKHUHIRUH QRW EH QDWXUDO SRSXODWLRQV EXW UDWKHU UHPQHQWV RI VKLIWLQJ FXOWLYDWLRQ RYHU ORQJ SHULRGV RI WLPH $ ORQJ KLVWRU\ RI FXOWLYDWLRQ RI WKHVH WZR VLEOLQJ VSHFLHV WKURXJKRXW WKH $PD]RQ EDVLQ RI (FXDGRU PD\ KDYH DUWLILFDOO\ UHLQIRUFHG JHQH IORZ EHWZHHQ WKHP E\ FRQWLQXRXVO\ EUHDNLQJ GRZQ JHRJUDSKLF EDUULHUV DQG YLD QDWXUDO K\EULGL]DWLRQ ZLWKLQ PL[HG FXOWLYDWHG SRSXODWLRQV 7KH 3X\R SRSXODWLRQ RI B( FDQGL GD ZLWK LWV ODUJH JHQHWLF GLVWDQFH IURP DOO RWKHU SRSXODWLRQV PD\ KDYH UHPDLQHG LVRODWHG HQRXJK WR HVFDSH WKLV SDWWHUQ 7KHUH LV DQ DOWHUQDWLYH H[SODQDWLRQ IRU WKH SDWWHUQV RI LVR]\PH YDULDWLRQ IRXQG LQ WKLV FRPSOH[ 6XFFHVVLYH IUDJPHQWDWLRQ DQG H[SDQVLRQ ZLWK VHFRQGDU\ FRQWDFWf RI DQFHVWUDO SDQPLFWLF SRSXODWLRQV DV LV QRZ ODUJHO\ DFFHSWHG DV KDYLQJ RFFXUUHG LQ WKH $PD]RQ EDVLQ GXULQJ WKH 3OHLVWRFHQH VHH 3UDQFH IRU H[WHQVLYH UHYLHZf FRXOG DOVR KDYH SUHVHUYHG JHQHWLF VLPLODULWLHV EHWZHHQ WKHVH WZR FORVHO\ UHODWHG VSHFLHV 7KH GLVSDUDWH JHQHWLF LGHQWLWLHV RI WKH WZR (B FDQGLGD SRSXODWLRQV ZLWK DOO RWKHU SRSXODWLRQV DQG WKHLU ORZ SDLUZLVH LGHQWLW\ PD\ HYHQ VXJJHVW WKDW B( FDQGL GD LV SRO\SK\OHWLF $ ODUJHU QXPEHU RI SRSXODWLRQV RI ERWK VSHFLHV EXW SDUWLFXODUO\ B( FDQGL GD QHHG WR EH DQDO\]HG HOHFWURSKRUHWLFDOO\ EHIRUH D ILUP DQVZHU LV JLYHQ &UDZIRUG f RIIHUV WKUHH K\SRWKHVHV WR H[SODLQ WD[RQRPLFDOO\ GLIILFXOW JURXSV LQ ZKLFK VSHFLHV ERXQGDULHV DUH EOXUUHG PRUSKRORJLFDOO\ DQG SUHVHQWV H[SHFWHG YDOXHV RI JHQHWLF LGHQWLW\ LQ HDFK FDVH f WD[D KDYH RULJLQDWHG UHFHQWO\ DQG GLYHUJHQFH LV QRW \HW DSSUHFLDEOH KLJK JHQHWLF LGHQWLWLHVf f SKHQRW\SLF SODVWLFLW\ LV KLJK

PAGE 220

HQRXJK WKDW GLYHUHJHQW JHQRPHV FRQYHUJH SKHQRW\SLFDOO\ XQGHU VLPLODU FRQGLWLRQV ORZ JHQHWLF LGHQWLWLHVf DQG f LQWHUVSHFLILF K\EULGL]DWLRQ RFFXUV EHWZHHQ VRPH SRSXODWLRQV RI HDFK VSHFLHV ORZ JHQHWLF LGHQWLWLHV EHWZHHQ WUXH VSHFLHV SRSXODWLRQV LQWHUPHGLDWH YDOXHV DPRQJ WKH K\EULGV DQG EHWZHHQ WKHP DQG WUXH VSHFLHVf ,Q WKH FDVH RI WKH ( FDQGLGDIRUPRVD FRPSOH[ DOO WKUHH SURFHVVHV PD\ EH DW ZRUN &RQFOXVLRQV ,VR]\PH DQDO\VLV RI WZR VSHFLHV FRPSOH[HV RI (XFKDULV LQGLFDWHV WKDW WKH JHQXV LV VWLOO DFWLYHO\ HYROYLQJ 7KH &HQWUDO $PHULFDQ e ERXFKHL FRPSOH[ LV D WHWUDSORLG SXWDWLYHO\ DOO RSLRLG VHPLVSHFLHV FRPSOH[ RI PRUSKRORJLFDOO\ GLVWLQFW HQWLWLHV WKDW VKRZV ORZ JHQHWLF LGHQWLWLHV EHWZHHQ VRPH JHRJUDSKLFDOO\ LVRODWHG SRSXODWLRQV )RXQGHU HIIHFWV DQG JHRJUDSKLF LVRODWLRQ SUREDEO\ ZHUH DQG VWLOO DUH LPSRUWDQW IRUFHV LQIOXHQFLQJ WKH FRQWLQXHG HYROXWLRQ RI ( ERXFKHL ,Q RQH FDVH e ERXFKHL YDU GUHVVHULf V\PSDWULF GLYHUJHQFH VHHPV WR EH LQ SURFHVV 7KH e FDQGLGDIRUPRVD JURXS VKRZV D PRUH FRPSOH[ SDWWHUQ RI LVR]\PH YDULDWLRQ (XFKDULV IRUPRVD WKH PRUH DQFHVWUDO VSHFLHV FODGLVWLFDOO\ VKRZV KLJK JHQHWLF LGHQWLWLHV EHWZHHQ SRSXODWLRQV $ 3HUXYLDQ LVRODWH RI (B IRUPRVD WKRXJK QRW PRUSKRORJLFDOO\ GLVWLQFW VKRZV ERWK FKURPRVRPDO DQG LVR]\PLF GLYHUJHQFH IURP (FXDGRUHDQ SRSXODWLRQV (XFKDULV FDQGLGD WKH PRUH GHULYHG VSHFLHV DSSHDUV JHQHWLFDOO\ GLYHUVH RQ WKH EDVLV RI WKH OLPLWHG SRSXODWLRQV VXUYH\HG +\EULGL]DWLRQ DQG JHQH IORZ EHWZHHQ ERWK VSHFLHV KDV DSSDUHQWO\ RFFXUHG PHGLDWHG HLWKHU E\ DUWLILFLDO SRSXODWLRQ VWUXFWXUHV GXH WR D SUREDEOH ORQJ KLVWRU\ RI FXOWLYDWLRQ RU YLD 3OHLVWRFHQH UHIXJLD HIIHFWV %RWK

PAGE 221

VSHFLHV PD\ KDYH RULJLQDWHG LQ WKH 3DVWD]D YDOOH\ IURP D FRPPRQ DQFHVWUDO SRSXODWLRQ ZKLFK KDV VLQFH UDGLDWHG QRUWK DQG VRXWK SHUKDSV VHYHUDO WLPHV 7KH KLJK OHYHO RI KHWHUR]\JRVLW\ H[KLELWHG E\ (XFKDULV VSHFLHV ERWK GLSORLG DQG WHWUDSORLG UDLVHV DQ LQWHUHVWLQJ TXHVWLRQ FRQFHUQLQJ SORLG\ OHYHO RI WKH SDQFUDWLRLG $PDU\OOLGDFHDH DV D ZKROH 3DOHRWURSLFDO JHQHUD RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH FKDUDFWHULVWLFDOO\ KDYH BQ RU FKURPRVRPHV ZKLOH DOPRVW DOO QHRWURSLFDO JHQHUD KDYH XB 7KH ODWWHU QXPEHU LV OLNHO\ GHULYHG WKURXJK IUDJPHQWDWLRQ RU GXSOLFDWLRQ RI D VLQJOH FKURPRVRPH IROORZHG E\ GRXEOLQJ RI WKH JHQRPH /DNVKPL 6DWR f ,QFUHDVHG KHWHUR]\JRVLW\ PD\ WKHUHIRUH KDYH DFFRPSDQLHG D WHWUDSORLG RULJLQ RI WKH QHRWURSLFDO WULEHV RI WKH 3DQFUDWLRLGLQDH IURP DQ DQFHVWRU ZLWK BQ 7KH KLJK JHQHULF GLYHUVLW\ RI QHRWURSLFDO SDQFUDWLRLGV FD JHQHUDf LQ FRPSDULVRQ WR WKH SDOHRWURSLFDO WD[D JHQHUDf PD\ LWVHOI EH SDUWLDOO\ D FRQVHTXHQFH RI JUHDWHU JHQHWLF YDULDELOLW\ &RPSDUDWLYH DQDO\VLV RI LVR]\PH SKHQRW\SHV EHWZHHQ SDOHRWURSLFDO DQG QHRWURSLFDO JHQHUD LV SODQQHG DQG PD\ SURYLGH LQVLJKW LQWR WKH HYROXWLRQ RI WKH 3DQFUDWLRLGLQDH

PAGE 222

7DEOH (XFKDQnV ERXFKHL DQG ( ERQSODQGLL SRSXODWLRQV H[DPLQHG HOHFWURSKRUHWLFDOO\ 7$;21 '(6,*1$7,21 &2//(&7,21 ,1)250$7,21 928&+(5 (XFKDULV ERXFKHL YDU GUHVVOHUL (%' 3DQDPD &RFL (O 9DOOH GH $QWQ 0HHURZ ( ERXFKHL YDU ERXFKHL (%% 3DQDPD &RFL (O 9DOOH GH $QWQ 0HHURZ ( ERXFKHL YDU ERXFKHL (%% 3DQDPD &ROQ 5LR *XDQFKH &HUUR %UXMR 0HHURZ ( ERXFKHL YDU ERXFKHL (%% 3DQDPD &ROQ 5LR ,JXDQLWDV 0HHURZ ( ERQSODQGLL (%1 &RORPELD &XQGLQDPDUFD YLFLQLW\ RI %RJRW£ %DXP +817f D$OO YRXFKHUV GHSRVLWHG DW )/$6 XQOHVV RWKHUZLVH LQGLFDWHG

PAGE 223

7DEOH (XFKDULV FDQGLGD ( IRUPRVD DQG K\EULG SRSXODWLRQV H[DPLQHG HOHFWURSKRUHWLFDOO\ 7$;21 '(6,*1$7,21 &2//(&7,21 ,1)250$7,21 928&+(5 (XFKDULV IRUPRVD () (FXDGRU 1DSR /LPRQFRFKD 0HHURZ ( IRUPRVD () (FXDGRU 1DSR YLH 7HQD %HVVH HW DO 7)/7 V Q ( IRUPRVD () 3HUX 6DQ L 0DUWLQ /DPDV 6FKXQNH ( IRUPRVD () (FXDGRU $JRVWR 3DVWD]D 'LH] GH 0HHURZ t 0HHURZ ( FDQGLGD (& (FXDGRU 1DSR 5LR &RFD %HVVH HW DO WVHOW V Q ( FDQGLGD (& (FXDGRU 3DVWD]D 3X\R 0HHURZ ( FDQGLGD ; IRUPRVD (; (FXDGRU 1DSR 5LR &RFD %HVVH HW DO 7)/7 ( FDQGLGD ; IRUPRVD (; (FXDGRU 1DSR /DJR $JULR %HVVH HW DO a7e/7 D$OO YRXFKHUV GHSRVLWHG DW )/$6 XQOHVV RWKHUZLVH LQGLFDWHG

PAGE 224

7DEOH $OOHOH IUHTXHQFLHV LQ SRSXODWLRQV RI (XFKDULV ERXFKHL DQG ( ERQSODQGL L 1 VDPSOH VL]Hf 3238/$7,21 (%' (%% (%% (%% (%1 /2&86 $1' $//(/(6 )5(48(1&,(6 1 $$7 D E F $$7 D E F G H I 0'+ D E 0'+ D E 0'+ D E 0'+ D E 6'+ D *66*5 D E

PAGE 225

7DEOH f§FRQWLQXHG (%' 3238/$7,21 (%% (%% (%% (%1 /2&86 $1' $//(/(6 )5(48(1&,(6 1 3*, D E

PAGE 226

7DEOH *HQHWLF YDULDELOLW\ PHDVXUHV DFURVV DOO ORFL LQ SRSXODWLRQV RI (XFKDULV ERXFKHL DQG ( ERQSODQGLL Q VDPSOH VL]H N PHDQ QXPEHU RI DOOHOHV SHU ORFXV 3 SHUFHQWDJH RI SRO\PRUSKLF ORFL + PHDQ KHWHUR]\JRVLW\ VWDQGDUG HUURUV LQ SDUHQWKHVHVf 3238/$7,21 Q 3D + (%' f f (%% f f (%% f f (%% f f (%1 f f D D $ ORFXV LV FRQVLGHUHG SRO\PRUSKLF LI WKH PRUH WKDQ GHWHFWHG

PAGE 227

7DEOH 0DWUL[ RI JHQHWLF LGHQWLW\ DQG GLVWDQFH FRHIILFLHQWV EHWZHHQ SRSXODWLRQV RI (XFKDULV ERXFKHL DQG ( ERQSODQGLL %HORZ GLDJRQDO 1HL f JHQHWLF LGHQWLW\ DERYH GLDJRQDO 1HL f JHQHWLF GLVWDQFH 3238/$7,21 (%' (%% (%% (%% (%1 (%' rrrrr (%% rrrrr (%% rrrrr (%% rrrrr (%1 rrrrr

PAGE 228

7DEOH $OOHOH IUHTXHQFLHV LQ SRSXODWLRQV RI (XFKDQnV FDQGLGD ( IRUPRVD DQG K\EULGV 1 VDPSOH VL]Hf () () 3238/$7,21 () () (& (& (; (; /2&86 $1' $//(/(6 )5(48(1&,(6 1 $$7 D E F $$7 D E F 0'+ D E F 0'+ D E UR rf§

PAGE 229

7DEOH f§FRQWLQXHG () () () 3238/$7,21 () (& (& (; (; /2&86 $1' $//(/(6 )5(48(1&,(6 0'+ D E $'+ D 6'+ D E *66*5 D E UR UR R

PAGE 230

7DEOH *HQHWLF YDULDELOLW\ PHDVXUHV DFURVV DOO ORFL LQ SRSXODWLRQV RI (XFKDULV FDQGLGD ( IRUPRVD DQG K\EULGV Q VDPSOH VL]Hc N PHDQ QXPEHU RI DOOHOHV SHU ORFXV 3 SHUFHQWDJH RI SRO\PRUSKLF ORFL + PHDQ KHWHUR]\JRVLW\ VWDQGDUG HUURUV LQ SDUHQWKHVHVf 3238/$7,21 Q U + () f f () f f () f f () f f (& f f (& f f (; f f (; f f D$ ORFXV LV FRQVLGHUHG SRO\PRUSKLF LI PRUH WKDQ RQH DOOHOH ZDV GHWHFWHG

PAGE 231

7DEOH 0DWUL[ RI JHQHWLF LGHQWLW\ DQG GLVWDQFH FRHIILFLHQWV EHWZHQ SRSXODWLRQ RI (XFKDULV FDQGLGD ( IRUPRVD DQG K\EULGV %HORZ GLDJRQDO 1HL f JHQHWL LGHQWLW\ DERYH GLDJRQDO 1HL f JHQHWLF GLVWDQFH 3238/$7,21 () () () () (& (& (; (; () rrrrr () rrrrr () rrrrr () rrrrr (& rrrrr (& rrrrr (; rrrrr (; rrrrr

PAGE 232

)LTXUH 'LVWULEXWLRQ RI (XFKDULV ERXFKHL 3DQDPDf DQG ( ERQSODQGLL &RORPELD LQVHWf SRSXODWLRQV DQDO\]HG HOHFWURSKRUHWLFDOO\ 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV

PAGE 233

UR QR

PAGE 234

)LJXUH 'LVWULEXWLRQ LQ (FXDGRU DQG 3HUX LQVHWf RI (XFKDULV FDQGL GD B( IRUPRVD DQG K\EULG SRSXODWLRQV DQDO\]HG HOHFWURSKRUHWLFDOO\ 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV

PAGE 236

)LJXUH 5HSUHVHQWDWLYH JHOV IRU HOHFWURSKRUHWLF DQDO\VLV RI (XFKDULV ERXFKHL FRPSOH[ $ $VSDUWDWH DPLQR WUDQVIHUDVH $$7f % 0DL DWH GHK\GURJHQDVH 0'+f :KHUH QR DFWLYLW\ LV DSSDUHQW LW ZDV VXEVHTXHQWO\ UHVROYHG LQ UHSHWLWLYH UXQV 1XPEHUV DQG ORZHU FDVH OHWWHUV WR ULJKW UHIHU WR ORFL DQG DOOHOHV UHVSHFWLYHO\ 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV

PAGE 238

)LJXUH (OHFWURSKRUHWLF SKHQRW\SHV DW DOO SRO\PRUSKLF ORFL LQ WKH (XFKDULV ERXFKHL FRPSOH[ 1XPEHUV DQG ORZHU FDVH OHWWHUV WR ULJKW UHIHU WR ORFL DQG DOOHOHV UHVSHFWLYHO\ 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV $$7 DVSDUWDWH DPLQR WUDQVIHUDVH 0'+ PDODWH GHK\GURJHQDVH *66*5 JOXWDWKLRQH UHGXFWDVH 3*, 3 JOXFRVH LVRPHUDVH

PAGE 239

OD LE OH (%' (%' (%' (%% (%% (%% (%% (%% (%1 $ $7 D E F G H J (%' (%' (%' (%% (%% (%% (%% (%% (%1 0'+ (%' (%' (%' (%% (%% (33 (%% (%% (31 *66*5 (%' (%' (%% (%% (%% (%% (31 3*, /

PAGE 240

)LJXUH 5HSUHVHQWDWLYH JHOV IRU HOHFWURSKRUHWLF DQDO\VLV RI (XFKDULV FDQGLGDIRUPRVD FRPSOH[ $ $VSDUWDWH DPLQR WUDQVIHUDVH $$7f % 0DODWH GHK\GURJHQDVH 0'+f :KHUH QR DFWLYLW\ LV DSSDUHQW LW ZDV VXEVHTXHQWO\ UHVROYHG LQ UHSHWLWLYH UXQV 1XPEHUV DQG ORZHU FDVH OHWWHUV WR ULJKW UHIHU WR ORFL DQG DOOHOHV UHVSHFWLYHO\ 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV

PAGE 241

() L () () (; () (& (; O (& L () L () O

PAGE 242

)LJXUH (OHFWURSKRUHWLF SKHQRW\SHV DW DOO SRO\PRUSKLF ORFL LQ WKH (XFKDULV FDQGLGDIRUPRVD FRPSOH[ 1XPEHUV DQG ORZHU FDVH OHWWHUV WR ULJKW UHIHU WR ORFL DQG DOOHOHV UHVSHFWLYHO\ 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV $$7 DVSDUWDWH DPLQR WUDQVIHUDVH 0'+ PDODWH GHK\GURJHQDVH *66*5 JOXWDWKLRQH UHGXFWDVH 6.'+ VKLNLPDWH GHK\GURJHQDVH

PAGE 243

D E F $$7 D LE F D E D E 0'+ f§‘ L PPP ‘ ‘ ‘f§ PPPPPP D *66*5 ()O () () () () () (& (& (; (; 6.'+ D E

PAGE 244

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP RI (XFKDULV ERXFKHL FRPSOH[ EDVHG RQ 1HL f GLVWDQFHV 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV

PAGE 245

(%' (%% (%% (%% (%1 + L K ',67$1&( W I? &2 &7!

PAGE 246

)LJXUH &OXVWHU DQDO\VLV GHQGURJUDP RI (XFKDULV FDQGLGDIRUPRVD FRPSOH[ EDVHG RQ 1HL f GLVWDQFHV 5HIHU WR 7DEOH IRU SRSXODWLRQ GHVLJQDWLRQV

PAGE 247

()f§ (; () () (& () (; (& IU I I I ',67$1&( QR *

PAGE 248

&+$37(5 ,; (&2/2*< 3+(12/2*< $1' 3+<72*(2*5$3+< (FRORJ\ (XFKDULV DQG &DOLSKUXULD DUH ERWK VWURQJO\ PHVRSK\WLF $OO VSHFLHV H[KLELW KLJK ILGHOLW\ WR D SULPDU\ IRUHVW QLFKH DQG VHYHUH GLVWXUEDQFH RI WKH IRUHVW FDQRS\ LV SUREDEO\ FDWDVWURSKLF WR WKHVH SODQWV ,Q UHFHQWO\ FOHDUHG IRUHVW VLWHV WKH EXOEV SHUVLVW IRU D IHZ VHDVRQV EXW WKH OHDYHV GHYHORSHG LQ VXQOLJKW H[KLELW FKORURVLV DQG QHFURVLV SHUV REVf :LONLQV SHUV FRPPf UHSRUWV WKDW OHDYHV RI ( DPD]QLFD DUH GDPDJHG DW OLJKW OHYHOV DERYH IRRW FDQGOHV DQ REVHUYDWLRQ FRQILUPHG E\ 5HHV f )LGHOLW\ RI WKHVH JHQHUD WR PHVLF ORZOLJKW KDELWDWV VXJJHVW D VWURQJO\ HYROYHG DGDSWLYH FRPSOH[ ,QLWLDO FRORQL]DWLRQ RI WKHVH KDELWDWV PD\ KDYH EHHQ WKH SULPDU\ IDFWRU LQ GLYHUJHQFH RI WKH DQFHVWUDO HXFKDURLG FRPSOH[ IURP WKH UHVW RI WKH 3DQFUDWLRLGLQDH 2QO\ WZR RWKHU JHQHUD RI SDQFUDWLRLG $PDU\OOLGDFHDH DUH FRPSOHWHO\ DGDSWHG WR IRUHVW XQGHUVWRU\ (XU\FOHV D VPDOO $XVWUDODVLDQ JHQXV DQG 8UFHROLQD VLVWHU JURXS WR (XFKDULV DQG &DOLSKUXULD VHH &KDSWHU ;,f (XFKDULV LV RIWHQ SUHYDOHQW LQ ORZO\LQJ IORRG SODLQ VLWHV RU FUHHN EHGV ZKHUH IUHTXHQW VKRUWWHUP LQXQGDWLRQ LV OLNHO\ (XFKDULV FDVWHQDHDQD LV DOPRVW DOZD\V HQFRXQWHUHG RQ VHDVRQDOO\ LQXQGDWHG VRLOV $FFHVV WR D SRSXODWLRQ RI -( SL L FDWD LQ WKH YLFLQLW\ RI 7RFDFKH 1XHYR 3HUX ZKLFK VWXGLHG LQ -XO\ ZDV SUHFOXGHG RQ RQH RFFDVLRQ E\

PAGE 249

IORRGLQJ /DUJHVW SRSXODWLRQV RI DQ\ VSHFLHV DUH XVXDOO\ DVVRFLDWHG ZLWK IORRG SODLQ FRORQL]DWLRQ WKRXJK PDQ\ VSHFLHV DUH IRXQG LQ PRUH XSODQG VLWHV LQ OHV PDEXQGDQFH 1R IXOO\ GHFLGXRXV VSHFLHV RI VXEJ (XFKDULV KDYH EHHQ REVHUYHG WKRXJK -( DVWURSKLDOD HQGHPLF WR WKH ZHVWHUQ VORSHV RI QRUWKFHQWUDO (FXDGRU GRHV HQWHU D VHDVRQ RI GRUPDQF\ ZKHQ JURZWK FHDVHV +RZHYHU VHYHUDO OHDYHV PD\ SHUVLVW IRU WKH GXUDWLRQ 7KH UDULW\ RI (XFKDULV DQG &DOLSKUXULD VSHFLHV WKURXJKRXW WKHLU UDQJH LV D VWULNLQJ FKDUDFWHULVWLF RI WKHLU GLVWULEXWLRQ 6LQJOH ZLGHO\GLVSHUVHG FOXPSV RI EXOEV DUH PRUH WKH UXOH WKDQ WKH H[FHSWLRQ +HUEDULXP VSHFLPHQV DUH XVXDOO\ XQLFDWH FROOHFWLRQV DQG RIWHQ LQGLFDWH WKH UHODWLYH LQIUHTXHQF\ ZLWK ZKLFK WKH SODQWV ZHUH HQFRXQWHUHG LQ WKH IRUHVW 7KH ODUJHVW SRSXODWLRQ RI (XFKDULV WKDW KDYH REVHUYHG FRQVLVWHG RI DERXW ILIWHHQ FOXPSV RI EXOEV RI (B DQPDOD LQ DQ DSSUR[LPDWH KDOIKHFWDUH DUHD 7KURXJKRXW HDVWHUQ (FXDGRU SRSXODWLRQV RI RQO\ JHQHWV DQG IUHTXHQWO\ DV ORZ DV RQHf RI (B FDQGL GD B( IRUPRVD DQG B( DQPDOD DUH WKH QRUP ,Q HDVWHUQ 3HUX D FDUHIXO VHDUFK WKURXJK D ILYH KHFWDUH DUHD WXUQHG XS RQO\ WZR SODQWV RI ( F\DQHRVSHUPD (GDSKLF FRQGLWLRQV DUH SUREDEO\ LPSRUWDQW IDFWRUV OLPLWLQJ FRORQL]DWLRQ DQG HVWDEOLVKPHQW RI (XFKDULV VSHFLHV 5HVWULFWLRQ WR VLWHV RI KLJK IHUWLOLW\ LV HYLGHQW IRU DOO VSHFLHV RI (XFKDULV DQG KDV EHHQ QRWHG E\ IORULVWLF ZRUNHUV LQ WKH $PD]RQ EDVLQ DQG &KRF UHJLRQ RI &RORPELD *HQWU\ SHUV FRPPf 7KH ORZ SHUFHQWDJH RI IHUWLOH UDLQIRUHVW VRLOV LV D ZHOO NQRZQ IDFW RI WURSLFDO HFRORJ\ 5LFKDUGV f ,Q PRVW XSODQG VLWHV ZKHUH WKH UHFXUUHQW VLOW GHSRVLWLRQ FKDUDFWHULVWLF RI IORRG SODLQV LV DEVHQW (XFKDULV DUH PXFK PRUH ZLGHO\ GLVSHUVHG VLQJOHEXOE FOXPSV DUH PRUH IUHTXHQWO\

PAGE 250

HQFRXQWHUHG DQG WKHVH DUH XVXDOO\ UHVWULFWHG WR SRFNHWV RI KXPXV DFFXPXODWLRQ DW WKH EDVHV RI WUHHV /DUJH SRSXODWLRQV RI (XFKDULV PD\ WKHUHIRUH EH SRWHQWLDO LQGLFDWRUV RI VRLO IHUWLOLW\ LQ WKH $PD]RQ EDVLQ 7KH RYHUZKHOPLQJ PDMRULW\ RI FROOHFWLRQV RI VXEJ (XFKDULV LV IURP HOHYDWLRQV EHORZ P DQG RI WKHVH PRUH WKDQ KDOI DUH EHORZ P (FRORJ\ RI VXEJ +HWHURFKDULV VXJJHVWV DIILQLW\ ZLWK WKDW RI VXEJ (XFKDULV &ROOHFWLRQV RI (B VDQGHUL DUH IURP VLWHV EHWZHHQ DQG PHWHUV LQ YHU\ ZHW ORZODQG UDLQ IRUHVW (XFKDULV DQPDOD DQG B( DPD]QLFD RFFXU DW KLJKHU HOHYDWLRQ EHWZHHQ DQG P &DOLSKUXULD LV SULPDULO\ FROOHFWHG DW VLWHV DERYH P VHOYD VXEDQGLQDn RI &XDWUHFDVDV f 0RVW FROOHFWLRQV RI &DOL SKUXUL D e VXEHGHQWDWDf ZHUH IURP WKH 5LR &DXFD 5LYHU YDOOH\ RI ZHVWHUQ &RORPELD DQ DUHD QRZ ODUJHO\ GHIRUHVWHG ,Q -XO\ ZDV QRW DEOH WR ILQG PHPEHUV RI WKLV JHQXV LQ DQ\ RI LWV KLVWRULFDO RFDOLWLWHV 7KH OHDYHV RI &DOLSKUXULD DSSHDU VPDOOHU DQG VOLJKWO\ WKLFNHU WKDQ WKRVH RI PRVW VSHFLHV RI (XFKDULV $W OHDVW RQH VSHFLHV & WHHUD LV GHFLGXRXV VXJJHVWLQJ SRVVLEOH DGDSWDWLRQ WR ZDWHU VWUHVV 7KLV PD\ UHIOHFW DGDSWDWLRQ WR WKH OHHZDUG PRQWDQH IRUHVWV RI WKH &RORPELDQ FRUGLOOHUDV ZKLFK DUH GULHU WKDQ WKHLU FRXQWHUSDUWV RQ WKH $PD]RQLDQ DQG 3DFLILF VORSHV &XDWUHFDVDV f 3KHQRORJ\ (XFKDULV DQG &DOLSKUXULD VSHFLHV VKRZ D GHJUHH RI VHDVRQDOLW\ LQ IORZHULQJ 9HU\ ZHOOFROOHFWHG VSHFLHV VXFK DV B( FDQGL GD RU (B IRUPRVD VKRZ IORZHULQJ SDWWHUQV VNHZHG WRZDUG FHUWDLQ PRQWKV -DQXDU\ WR 0DUFKf EXW DW OHDVW VHYHUDO IORZHULQJ FROOHFWLRQV KDYH EHHQ PDGH

PAGE 251

WKURXJKRXW WKH \HDU 6SHFLHV LQ $PD]RQLDQ 3HUX KDYH EHHQ FROOHFWHG LQ IORZHU PRVW IUHTXHQWO\ IURP -XQH WR 6HSWHPEHU (DFK LQIORUHVFHQFH LV PRGHUDWHO\ ORQJOLYHG IURP ZHHNV EXW XVXDOO\ QR PRUH WKDQ IORZHUV DUH RSHQ DW DQ\ RQH WLPH $QWKHVLV RFFXUV WKH ILUVW GD\ WKH IORZHU RSHQV $OO EXW RQH VSHFLHV B( FDVWHODQDHDQDf DUH SURWDQGURXV 7KH VW\OH FRQWLQXHV WR HORQJDWH GXULQJ WKH ILUVW DQG VHFRQG GD\ IROORZLQJ DQWKHVLV 6WLJPD H[SDQVLRQ DQG UHFHSWLYLW\ GRHV QRW RFFXU XQWLO ODWH LQ WKH VHFRQG GD\ DIWHU DQWKHVLV RU RQ WKH WKLUG GD\ %\ WKLV WLPH DQWKHUV KDYH EHJXQ WR VHQH VHH 7KH SHULDQWK PD\ UHPDLQ LQ JRRG FRQGLWLRQ IRU IRXU GD\V IROORZLQJ DQWKHVLV EXW WKH RQVHW RI VHQHVFHQFH KDV EHHQ REVHUYHG WR FRLQFLGH ZLWK VWLJPD UHFHSWLYLW\ LQ D QXPEHU RI VSHFLHV 6XFFHVVIXO JUHHQKRXVH SROOLQDWLRQV KDYH EHHQ DFFRPSOLVKHG DIWHU WKH RQVHW RI SHULDQWK VHQHVFHQFH 0DVV IORZHULQJ LQ QDWXUH LV FKDUDFWHULVWLF RI D VLQJOH VSHFLHV B( FDVWHOQDHDQD 7KLV VSHFLHV LV DOVR WKH RQO\ DXWRJDPRXV VSHFLHV \HW NQRZQ (XFKDULV FDVWHOQDHDQD IRUPV ODUJH FRORQLHV RI RIIVHW EXOEV PRVW RI ZKLFK IORZHU V\QFKURQRXVO\ 0RVW RWKHU VSHFLHV HYHQ LI ODUJH QXPEHUV RI RIIVHW EXOEV KDYH IRUPHG SURGXFH WKHLU LQIORUHVFHQFHV VSRUDGLFDOO\ RU VXFFHVVLYHO\ LQ WKHLU QDWXUDO KDELWDW ,Q FXOWLYDWLRQ KRZHYHU VRPH FORQHV RI WKHVH VDPH VSHFLHV ZLOO RFDVVLRQDOO\ IORZHU V\QFKURQRXVO\ 2Q WKH EDVLV RI REVHUYLQJ JUHHQKRXVH FROOHFWLRQV RYHU D ILYH \HDU SHULRG DQ DQQXDO IORZHULQJ SDWWHUQ DSSHDUV FKDUDFWHULVWLF RI PRVW (XFKDULV DQG &DOLSKUXULD VSHFLHV (XFKDULV DPD]QLFD KRZHYHU IORZHUV WLPHV GXULQJ WKH \HDU 9DQ %UDJW DQG 6SUHQNHOV f KDYH UHJXODUO\ LQGXFHG IORZHULQJ LQ WKLV VSHFLHV DW DQ\ WLPH RI WKH \HDU DIWHU WUHDWPHQW DW r & IRU DW OHDVW ZHHNV &ROOHFWLRQ GDWD IRU WKLV

PAGE 252

VSHFLHV WKURXJKRXW LWV QDUURZ UDQJH LQGLFDWHV WKDW WKLV SKHQRORJ\ PD\ RFFXU LQ KDELWDW DV ZHOO (XFKDULV FDVWHQDHDQD PDVVIORZHUV LQ WKH JUHHQKRXVH WZLFH SHU \HDU EXW LWV EHKDYLRU LQ KDELWDW LV XQNQRZQ 2WKHU ZHO FROOHFWHG VSHFLHV HJ B( FDQGL GD DQG B( I RUPRVDf ZKLFK VKRZ D SHDN SHULRG RI IORZHULQJ LQ FHUWDLQ PRQWKV DUH SUREDEO\ DQQXDO IORZHULQJ ZLWK VRPH SRSXODWLRQV RU LQGLYLGXDOV LQ D SRSXODWLRQ IORZHULQJ HDUOLHU RU ODWHU :KHUH DEXQGDQW RIIVHW EXOEV KDYH IRUPHG VXFFHVVLYH UHSODFHPHQW ZLWK VRPH RYHUODSf RI RQH LQIORUHVFHQFH ZLWK DQRWKHU PD\ FUHDWH D IORZHULQJ GXUDWLRQ RI PRQWKV IRU DQ\ RQH LQGLYLGXDO FOXPS RI EXOEV $ SRSXODWLRQ RI (B SL L FDWD DQG SXWDWLYH K\EULGV ZLWK ( XOHL ZDV VXUYH\HG LQ WKH PLGGOH 5LR +XDOODJD YDOOH\ RI 3HUX 2XW RI WKLUWHHQ FOXPSV RI EXOEV HQFRXQWHUHG RQO\ WZR ZHUH LQ IORZHU RQH QHDU WKH HQG RI LWV F\FOH WKH RWKHU QHDU WKH EHJLQQLQJ $ VLQJOH LQIORUHVFHQFH ZDV SUHVHQW LQ ERWK IORZHULQJ LQGLYLGXDOV HYHQ WKRXJK HDFK FRQVLVWHG RI DW OHDVW IRXU EXOEV DV ODUJH DV WKH IORZHULQJ RIIVHW )LYH LQGLYLGXDOV ZHUH LQ IUXLW WKH FDSVXOHV IXOO\ PDWXUH DQG GHKLVFHQW 7KH UHPDLQLQJ LQGLYLGXDOV ZHUH VWHULOH 7KLV KHWHURJHQHLW\ PD\ EH D UHIOHFWLRQ RI WKH K\EULGLW\ RI WKLV SRSXODWLRQ DQG WKHUHIRUH DW\SLFDO %DZD f UHYLHZHG WKH VXEMHFW RI IORZHULQJ SKHQRORJ\ LQ WURSLFDO SODQWV 0RVW RI WKH ZRUN WR GDWH RQ WKLV VXEMHFW LQYROYHG ZRRG\ FDQRS\ VSHFLHV SDUWLFXODUO\ LQ WKH VHDVRQDOO\ GU\ WURSLFV 5DLQIRUHVW XQGHUVWRU\ SODQWV KDYH EHHQ WKH VXEMHFW RI RQO\ D IHZ VWXGLHV >HJ 6WLOHV IRU +HLFRQL D +HOLFRQLDFHDHf@ )RU ORZODQG ZHW IRUHVW VSHFLHV RI WKH WURSLFV ELRWLF IDFWRUV VXFK DV DYDLODELOLW\ RI SROOLQDWRUV DUH SUREDEO\ PRUH LPSRUWDQW VHOHFWLYH IRUFHV RQ SKHQRORJ\ WKDQ DELRWLF IDFWRUV HJ SKRWRSHULRG VHDVRQDOLW\ RI SUHFLSLWDWLRQf

PAGE 253

%DZD f VWDWHV WKDW UDUH RU SDWFKLO\ GLVWULEXWHG SODQWV VKRXOG KDYH RQH RI WZR IORZHULQJ SDWWHUQV 7KH\ PD\ HLWKHU IORZHU PDVVLYHO\ FI (B FDVWHOQDHDQDf RU HOVH HDFK LQGLYLGXDO PD\ SURGXFH D IHZ IORZHUV DW RQH WLPH EXW V\QFKURQRXVO\ ZLWK RWKHU FRQVSHFLILF LQGLYLGXDOV 7KH ODWWHU SDWWHUQ PD\ EH FKDUDFWHULVWLF RI WKH PRUH FRPPRQ $PD]RQLDQ VSHFLHV RI VXEJ (XFKDULV HJ B( FDQGL GD B( IRUPRVD B( XOHLf 7KH ODWWHU SDWWHUQ ZRXOG ILW WKH K\SRWKHVLV WKDW PRVW VSHFLHV RI VXEJ (XFKDULV DUH WUDSOLQHG E\ IHPDOH HXJORVVLQH EHHV &KDSWHU ;f 'LVSHUVDO 7KH OHDWKHU\ EULJKW RUDQJH IUXLW RI (XFKDULV VXEJ (XFKDULV LV D PDMRU DSRPRUSK\ WKDW GHILQHV WKH VXEJHQXV $W GHKLVHQFH WKH FRQWUDVW EHWZHHQ WKH FDSVXOH DQG WKH OXVWURXV EODFN RU EOXH VHHGV FUHDWHV D VWULNLQJ YLVXDO GLVSOD\ 7KLV W\SH RI GLVSOD\ VXJJHVWV WKDW IUXLW DQG VHHG IXQFWLRQ PLPHWLFDOO\ WR DWWUDFW DYLDQ GLVSHUVDO DJHQWV VHQVX YDQ GHU 3LMO f EXW QR FRQILUPLQJ REVHUYDWLRQV KDYH EHHQ UHFRUGHG 9LDEOH VHHGV RI (XFKDULV DOVR IORDW SHUV REVf DQG IORRG SODLQV DUH FRQVSLFXRXV VLWHV RI VXFFHVVIXO FRORQL]DWLRQ RI D QXPEHU RI $PD]RQLDQ VSHFLHV 6SHFLHV GLVWULEXWLRQ SDWWHUQV VHH &KDSWHU ;,,f VKRZ D PDUNHG GHFOLQH LQ FROOHFWLRQV XSVWUHDP IURP FHQWHUV RI GLVWULEXWLRQ 7KXV PHFKDQLFDO GLVSHUVDO RI VHHGV DORQJ ZDWHUFRXUVHV PD\ DOVR EH DQ LPSRUWDQW DJHQW RI VSHFLHV SURPXOJDWLRQ )RU VSHFLHV RI B( VXEJ +HWHURFKDULV DQG &DOLSKUXULD DQG WKH VLQJOH VSHFLHV RI VXEJ (XFKDULV B( FDVWHO QDHDQDf WKDW ODFN WKH PLPHWLF IUXLW PRUSKRORJ\ WKLV IRUP RI SDVVLYH GLVSHUVDO PD\ EH WKH PDMRU PHWKRG E\ ZKLFK VHHGV DUH GLVWULEXWHG %XOEV PD\ IXQFWLRQ DV SURSDJXOHV LQ WKLV PDQQHU DV ZHOO

PAGE 254

, FROOHFWHG VHYHUDO EXOEV RI ( FDQGLGD LQ WKH 2ULHQWH RI (FXDGRU ZKLFK ZHUH ORRVHO\ HVWDEOLVKHG LQ WKH EHG RI D VPDOO FUHHN 7KH EXOEV ZHUH IXOO\ H[SRVHG EXW URRWV KDG SHQHWUDWHG D VKRUW GLVWDQFH LQWR WKH VLOW RI WKH FUHHN ERWWRP 0DQ KDV XQGRXEWHGO\ FRQWULEXWHG WR WKH GLVWULEXWLRQ RI VHYHUDO VSHFLHV LQ WKH $PD]RQ EDVLQ VHH &KDSWHU ;,,f ,Q RQH FDVH RI V\PSDWULF VSHFLHV B( FDQGL GD DQG ( IRUPRVDf SRSXODWLRQ VWUXFWXUH PD\ ODUJHO\ EH D UHVXOW RI KXPDQ DJHQF\ 3K\WRJHRJUDSK\ (XFKDULV VXEJ (XFKDULV RFFXUV LQ ORZODQG UDLQ IRUHVW VLWHV SULPDULO\ RQ WKH HDVWHUQ VORSH RI WKH $QGHV 7KH PDMRULW\ RI VSHFLHV DUH FRQFHQWUDWHG DORQJ WKH $PD]RQ DQG LWV PDLQ WULEXWDULHV HJ WKH 1DSR DQG 3DVWD]D V\VWHP LQ (FXDGRU DQG WKH +XDOODJD RI 3HUX &KDSWHU ;,,f (LJKW RI WKH WKLUWHHQ H[WDQW VSHFLHV RI VXEJ (XFKDULV DUH HQGHPLF WR WKH SUHPRQWDQH $QGHDQ$PD]RQDV LQWHUIDFH EXW QR VSHFLHV KDV EHHQ UHSRUWHG HDVW RI r : ORQJLWXGH 7KXV WKH JHQXV DSSHDUV WR EH DEVHQW IURP WKH JUHDW ODUJHO\ %UD]LOLDQ H[SDQVH RI ORZODQG $PD]RQDV )RXU VSHFLHV DUH SHULSKHUDO LVRODWHV IURP WKH SUHPRQWDQH $QGHDQ $PD]RQLDQ FHQWHU RI GLVWULEXWLRQ (XFKDULV FRU\QDQGUD YHU\ FORVHO\ UHODWHG WR B( FDVWHDQHDQD DQG ( SLLFDWD DQG B( R[\DQGUD RI XQFHUWDLQ SK\ORJHQHWLF UHODWLRQVKLS DUH ERWK NQRZQ RQO\ IURP WKH FHMD GH PRQWDD IRUHVW IRUPDWLRQV RI QRUWKFHQWUDO HDVWHUQ 3HUX (XFKDULV DVWURSKLDOD LV HQGHPLF WR D UHODWLYHO\ VPDOO DUHD RI ZHVWHUQ (FXDGRU (XFKDULV OHKPDQQLL DOVR RI XQFHUWDLQ SK\ORJHQHWLF UHODWLRQVKLS LV UHVWULFWHG WR ZHVWHUQ &RORPELD $OO SHULSKHUDO LVRODWHV RI VXEJ (XFKDULV VKRZ VRPH GHJUHH RI PRUSKRORJLFDO QRYHOW\ VHH &KDSWHU ;,,f

PAGE 255

7KH WZR VSHFLHV RI VXEJ (XFKDULV ZKLFK RFFXU DERYH r Q ODWLWXGH DUH ERWK WHWUDSORLG (XFKDULV ERQSODQGLL HQGHPLF WR WKH &RUGLOOHUDV 2ULHQWDO DQG &HQWUDO RI &RORPELD LV UDUH DQG LQIUHTXHQWO\ FROOHFWHG 7KH (XFKDULV ERXFKHL FRPSOH[ D VHULHV RI JHRJUDSKLFDOO\ LVRODWHG DQG PRUSKRORJLFDOO\ GLVWLQFW SRSXODWLRQ FOXVWHUV LV HQGHPLF WR &HQWUDO $PHULFD FKLHIO\ 3DQDPD 6WHEELQV f LQ D UHFHQW UHYLHZ RI SRO\SORLG\ IRXQG D FRUUHODWLRQ EHWZHHQ KLJK IUHTXHQF\ RI SRO\SORLG\ DQG SDWFK\ JHRJUDSKLFDO RU HFRORJLFDOf GLVWULEXWLRQV FRXSOHG ZLWK WKH RFFXUHQFH RI VHFRQGDU\ FRQWDFW EHWZHHQ WKHVH GLIIHUHQWLDWHG SRSXODWLRQV /HYLQ f GLVFXVVHG KRZ FKURPRVRPH GRXEOLQJ PD\ nSURSHOn D SRSXODWLRQ LQWR D QHZ DGDSWLYH VSKHUH 7KRXJK B( ERXFKHL GRHV QRW H[KLELW DQ\ QRWLFHDEO\ QRYHO HFRORJLFDO DGDSWDWLRQV LWV VXFFHVV LQ FRORQL]LQJ WKH ,VWKPXV PD\ KDYH EHHQ DLGHG E\ LWV SRO\SORLGUHODWHG JHQHWLF GLYHUVLW\ ,VR]\PH SDWWHUQV UHYHDO D YHU\ KLJK OHYHO RI KHWHUR]\JRVLW\ DPRQJ WHWUDSORLG (XFKDULV &KDSWHU 9,,,f &HQWUDO $PHULFDQ (XFKDULV DUH GLVFXVVHG IXUWKHU LQ D VHSDUDWH VXEVHFWLRQ RI WKLV FKDSWHU 6XEJHQXV +HWHURFKDULV LV ZLGHO\ GLVSHUVHG IURP &RORPELD WR 3HUX EXW HDFK RI WKUHH VSHFLHV DUH QDUURZO\ GLVWULEXWHG :LWK WKH H[FHSWLRQ RI D VLQJOH FROOHFWLRQ IURP QRUWKHUQ 3HUX ( DQPDOD LV QRW IRXQG RXWVLGH RI (FXDGRU ,W LV WKH RQO\ VSHFLHV RI (XFKDULV IRXQG RQ ERWK VLGHV RI WKH $QGHV 7KLV ODWWHU IDFW LV SDUWLFXODUO\ VLJQLILFDQW LQ YLHZ RI WKH FODGLVWLF K\SRWKHVLV WKDW ( DQPDOD LV WKH PRVW SULPLWLYH VSHFLHV LQ WKH JHQXV (XFKDULV DPD]QLFD LV IRXQG QDWLYHO\ ZLWKLQ D QDUURZ DUHD RI WKH 5LR +XDOODJD YDOOH\ LQ 3HUX (XFKDULV VDQGHUL LV HQGHPLF WR WKH &KRF UHJLRQ RI &RORPELD

PAGE 256

&DO LSKUXULD LV DOPRVW FRPSOHWHO\ ZHVWHUQ &RORPELDQ PRVW SURPLQHQWO\ LQ WKH 5LR &DXFD YDOOH\ ZLWK D VHFRQGDU\ GLVWULEXWLRQ LQ WKH 5LR 0DJGDOHQD YDOOH\ $ VLQJOH VSHFLHV B& NRUVDNRIILL LV 3HUXYLDQ 3K\WRJHRJUDSK\ RI (XFKDULV DQG WKH 3OHLVWRFHQH 5HIXJLD 7KHRU\ 3OHLVWRFHQH HYHQWV QRZ VXEVWDQWLDWHG LQ WKH OLWHUDWXUH KDYH XQGRXWHGO\ LQIOXHQFHG WKH HYROXWLRQ RI (XFKDULV DQG &DOLSKUXULD 6LPSVRQ f 9DQ GHU +DPPHQ f DQG 3UDQFH D Ef VXPPDUL]H PXFK RI WKLV ZRUN 7KHLU FRQVHQVXV LV WKDW ERWK PRQWDQH DQG ORZODQG UDLQ IRUHVW ZHUH IUDJPHQWHG GXULQJ 3OHLVWRFHQH JODFLDO SHULRGV GXH WR SUHYDLOLQJ [HULF FOLPDWLF WUHQGV DQG VXEVHTXHQWO\ UHH[SDQGHG GXULQJ LQWHUJODFLDO SOXYLDO SHULRGV )XUWKHUPRUH PRQWDQH YHJHWDWLRQDO EHOWV ZHUH ORZHUHG GXULQJ JODFLDO SHULRGV 7KH VHFRQG SURFHVV ZRXOG KDYH KDG UHODWLYHO\ OLWWOH HIIHFW RQ WD[D LQ TXHVWLRQ DV QHLWKHU (XFKDULV RU &DOLSKUXULD LQKDELW YHJHWDWLRQ EHOWV DERYH P 7KH VXP HIIHFW RI WKH ORZHULQJ RI $QGHDQ YHJHWDWLRQDO ]RQHV RQ (XFKDULV DQG &DOLSKUXULD ZRXOG KDYH EHHQ UHLQIRUFHPHQW RI LVRODWLRQ SUHYLRXVO\ LPSRVHG E\ LQLWLDO XSOLIW RI WKH $QGHV 7KH IRUPHU SURFHVV KRZHYHU ZRXOG KDYH HQRUPRXV LPSDFW RQ RUJDQLVPV WLHG WR D UDLQIRUHVW KDELWDW 7KH UHVXOW RI PXFK ELRJHRJUDSKLF ZRUN VLQFH WKDW RI +DIIHU f KDV EHHQ WKH FRQVWUXFWLRQ RI DQ HODERUDWH 3OHLVWRFHQH UHIXJLD WKHRU\ IRU WKH 1HRWURSLFV 7KLV ZRUN LV VXPPDUL]HG LQ 3UDQFH D Ef 3UDQFH f SURYLGHG WKH ILUVW SK\WRJHRJUDSKLF VXSSRUW IRU WKH 3OHLVWRFHQH UHIXJLD WKHRU\ LQ WKH $PD]RQ EDVLQ +H IDYRUHG +DIIHUnV f LGHD FRQFHUQLQJ WKH GLVWULEXWLRQ RI UHIXJLD EXW H[SDQGHG WKHLU OLPLWV FRQVLGHUDEO\ )LJ f 3UDQFH Df KDV VLQFH IXUWKHU DPHQGHG VL]H

PAGE 257

OLPLWV DQG GLVWULEXWLRQ RI SURSRVHG UHIXJLD :KHQ GLVWULEXWL RQV RI H[WDQW (XFKDULV DQG &DOLSKUXULD VSHFLHV &KDSWHU ;,,f DUH VXSHULPSRVHG XSRQ SURSRVHG UHIXJLD VLWHV VHYHUDO VWULNLQJ FRUUHODWLRQV EHFRPH HYLGHQW 7KH GLVWULEXWLRQ RI &DOLSKUXULD VXEHGHQWDWD LV LQFOXGHG LQ RU RFFXUV PDUJLQDOO\ WR WKH &KRF UHIXJLXP RI +DIIHU f DQG 3UDQFH Df (XFKDULV VDQGHUL VXEJ +HWHURFKDULVf LV HQGHPLF WR WKH DUHD RI WKH &KRF UHIXJH &DOLSKUXULD LV UHODWLYHO\ VSHFLHV SRRU VSHFLHVf 7KLV PD\ EH SDUWLDOO\ D FRQVHTXHQFH RI SUHVHQW OLPLWV RI ZHW IRUHVW KDELWDWV LQ ZHVWHUQ &RORPELD FRQIRUPLQJ ODUJHO\ WR WKH OLPLWV RI WKH &KRF UHIXJLXP ,Q RWKHU ZRUGV WKH &KRF UHIXJLXP KDV QHYHU H[SHULHQFHG VHFRQGDU\ FRQWDFW ZLWK RWKHU UDLQ IRUHVW UHIXJLD GXULQJ LQWHUJODFLDO H[SDQVLRQ SKDVHV 7KH RFFXUHQFH RI K\EULGL]DWLRQ EHWZHHQ ( VDQGHUL DQG B& VXEHGHQWDWD ; &DOLFKDULV EXWFKHULf PD\ UHIOHFW D SDWWHUQ RI IUDJPHQWDWLRQ DQG FRDOHVFHQFH WKDW RFFXUHG ZLWKLQ WKH OLPLWV RI WKH &KRF UHIXJLXP D K\SRWKHVLV UHFHQWO\ SXW IRUWK E\ *HQWU\ Ef &DOLSKUXULD LV DOVR UHSUHVHQWHG E\ WZR UDUH VSHFLHV LQ WKH 5LR 0DJGDOHQD YDOOH\ RI &RORPELD B& KDUWZHJLDQD DQG B& WHHUDf DQG RQH HTXDOO\ UDUH VSHFLHV LQ QRUWKHUQ 3HUX B& NRUVDNRIILLf 7KH 5LR 0DJGDOHQD VSHFLHV VKRZ FORVH SKHQHWLF UHODWLRQVKLS ZLWK B& VXEHGHQWDWD RI WKH 5LR &DXFD YDOOH\ SDUWLFXODU\ RQ WKH EDVLV RI SROOHQ H[LQH PRUSKRORJ\ VHH &KDSWHU 9f EXW 3HUXYLDQ & NRUVDNRIILL KDV ERWK GLIIHUHQW SROOHQ DQG XQLTXH OHDI VXUIDFH PRUSKRORJ\ ,W LV XQFOHDU LI &DOLSKUXULD ZDV DW RQH WLPH PXFK PRUH ZLGHVSUHDG LQ QRUWKHUQ 6RXWK $PHULFD DQG KDV VLQFH VXIIHUHG GUDVWLF UHGXFWLRQ RU LI B& NRUVDNRIILL UHSUHVHQWV WKH UHVXOW RI D ORQJGLVWDQFH GLVSHUDO HYHQW 7ZR DUHDV RI JUHDWHVW WD[RQRPLF FRPSOH[LW\ LQ VXEJ (XFKDULV DUH HYLGHQW WKH 1DSR3DVWD]D ULYHU V\VWHP RI (FXDGRU DQG 3HUX DQG DQ DUHD

PAGE 258

LQ HDVWFHQWUDO 3HUX FRQVLVWLQJ RI WKH ORZHU 5LR +XDOODJD YDOOH\ EHORZ P 7KH IRUPHU FRQIRUPV WR D UHIXJLXP VR QDPHG E\ +DIIHU f DOWKRXJK 3UDQFHnV f H[SDQGHG FRQFHSW RI WKH 1DSR UHIXJLXP VHHPV WR FRUUHVSRQG EHWWHU WR SK\WRJHRJUDSKLF VWXG\ RI VXEJ (XFKDULV $OO RI WKH 2ULHQWH RI (FXDGRU LV FRQWDLQHG ZLWKLQ WKH OLPLWV RI WKH 1DSR UHIXJLXP (XFKDULV FDQGLGD DQG (B IRUPRVD DUH WKH RQO\ WZR VSHFLHV RI (XFKDULV IRXQG LQ HDVWHUQ (FXDGRU QRUWK RI WKH 3DVWD]D YDOOH\ 0RVW RI WKHLU RFFDVLRQDO RFFXUUHQFHV LQ 3HUX DQG &RORPELD HLWKHU ILW ZLWKLQ HLWKHU RQH RU WKH RWKHU RI 3UDQFHnV Df SURSRVHG OLPLWV RI WKH 1DSR UHIXJLXP RU DUH FORVHO\ SHULSKHUDO $ IHZ RXWO\LQJ FROOHFWLRQV IURP WKH PLGGOH 5LR +XDOODJD YDOOH\ LQ 3HUX GR QRW ILW DQ\ SURSRVHG UHIXJLXP 7KHVH VSHFLHV DUH RIWHQ V\PSDWULF DQG SUHVHQW D FRPSOH[ PRVDLF RI PRUSKRORJLFDO YDULDWLRQ IURP KHUEDULXP VSHFLPHQ H[DPLQDWLRQ DORQH 7KH\ GR VKRZ D PHDVXUH RI SKHQHWLF GLIIHUHQWLDWLRQ &KDSWHU 9,f EXW SDWWHUQV RI JHQHWLF YDULDWLRQ DUH FRPSOLFDWHG &KDSWHU 9,,,f DQG K\EULGL]DWLRQ EHWZHHQ WKHP VHHPV WR KDYH RFFXUUHG 7KLV PD\ UHIOHFW D SDWWHUQ RI VHFRQGDU\ FRQWDFW EHWZHHQ SRSXODWLRQV YHFWRUHG E\ VXFFHVVLYH IUDJPHQWDWLRQ DQG FRDOHVFHQFH RI VXEVLGLDU\ UHIXJLD ZLWKLQ WKH OLPLWV RI WKH 1DSR UHIXJLXP (XFKDULV F\DQHRVSHUPD DQG B( XOHL DUH WZR VLEOLQJ VSHFLHV ERWK PRUSKRORJLFDOO\ DQG F\WRORJLFDOO\ FORVH (XFKDULV XOHL LV FRQFHQWUDWHG LQ QRUWKHUQ 3HUXYLDQ $PD]RQDV ZKLOH ( F\DQHRVSHUPD KDV PRVW IUHTXHQWO\ EHHQ FROOHFWHG LQ WKH VRXWKHUQ KDOI RI 3HUX DQG FRQWLJXRXV %ROLYLD 7KHVH WZR WD[D PD\ UHSUHVHQW WKH UHVXOWV RI DOORSDWULF VSHFLDWLRQ ZLWKLQ D IRUPHUO\ FRQWLQXRXV DQFHVWUDO FRPSOH[ YHFWRUHG E\ LVRODWLRQ ZLWKLQ UHIXJLD 0RVW SUHVHQW GD\ SRSXODWLRQV RI ERWK VSHFLHV DUH IRXQG HLWKHU LQ WKH 1DSR DQG (DVW 3HUX UHIXJLD RI 3UDQFH f RU WKH 3HUX$FUH

PAGE 259

UHIXJLXP RI 3UDQFH Df 7KH OLPLWV RI 3UDQFHnV Df %HQL UHIXJLXP ZRXOG KDYH WR EH H[SDQGHG WR DOORZ FRQJUXHQFH EHWZHHQ LW DQG SUHVHQWGD\ RFFXUHQFH RI ERWK WD[D LQ %ROLYLD +RZHYHU DV ZLWK WKH B( FDQGLGDIRUPRVD FRPSOH[ UDUH RFFXUHQFHV RI ERWK VSHFLHV LQ WKH PLGGOH +XDOODJD YDOOH\ RI 3HUX DUH QRW FRQJUXHQW ZLWK DQ\ SURSRVHG UHIXJLD 7KH WZR VXEVSHFLHV RI (XFKDULV SL L FDWD DOVR VKRZ SK\WRJHRJUDSKLF SDWWHUQV WKDW PD\ KDYH EHHQ LQIOXHQFHG E\ 3OHLVWRFHQH UHIXJLD (XFKDULV SL L FDWD VXEVS EUHYLGHQWDWD WKH OHDVW GHULYHG RI WKH WZR VXEVSHFLHV PRUSKRORJLFDOO\ LV SUHVHQWO\ NQRZQ IURP RQO\ WZR ORFDOLWLHV $PD]RQLDQ %ROLYLD DQG QRUWKFHQWUDO 3HUX $PD]RQDV 'HSDUWPHQWf 7KH 3HUXYLDQ ORFDOLW\ LV DW WKH YHU\ SHULSKHU\ RI 3UDQFHVnV Df 1DSR UHIXJLXP 7KH %ROLYLDQ ORFDOLW\ ZRXOG ILW DQ H[SDQGHG FRQFHSW RI WKH %HQL UHIXJLXP 3UDQFH Df +RZHYHU (XFKDULV SLL FDWD VXEVS SLLFDWD LV D QDUURZ HQGHPLF NQRZQ RQO\ IURP D VPDOO DUHD LQ WKH PLGGOH 5LR +XDOODJD YDOOH\ RI 3HUX ,W LV WKXV DSSDUHQW WKDW WKH PLGGOH 5LR +XDOODJD YDOOH\ RI 3HUX ZKLOH D PDMRU ORFDOLW\ IRU (XFKDULV VSHFLHV DQG ZLWK DW OHDVW WKUHH HQGHPLF WD[D B( DPD]RQL FD B( EDNHULDQD B( SL L FDWD VXEVS SL L FDWDf GRHV QRW ILW WKH OLPLWV RI DQ\ ZRUNHUnV SURSRVHG UHIXJLD VLWHV )XUWKHU HYLGHQFH RI LVRODWLRQ RI +XDOODJD (XFKDULV SRSXODWLRQV IURP RWKHU FOXVWHUV RI VSHFLHV RFFXUHQFH LV WKH F\WRORJLFDO &KDSWHU 9,,f DQG JHQHWLF &KDSWHU 9,,,f GLYHUJHQFH RI +XDOODJD (B IRUPRVD IURP (FXDGRUHDQ SRSXODWLRQV RI WKLV VDPH VSHFLHV 7KHVH GDWD DUH WKXV JRRG HYLGHQFH IRU K\SRWKHVL]LQJ D +XDOODJD UDLQIRUHVW UHIXJLXP LQ HDVWFHQWUDO 3HUX )LJ f

PAGE 260

(XFKDULV LQ &HQWUDO $PHULFD *HQWU\ Df VXJJHVWV WKDW WZR PDMRU RSSRUWXQLWLHV ZLGHO\ VSDFHG LQ WLPH H[LVWHG IRU IORULVWLF LQWHUFKDQJH EHWZHHQ &HQWUDO DQG 6RXWK $PHULFD 7KH ILUVW RFXUULQJ GXULQJ WKH /DWH &UHWDFHRXV ZDV OLPLWHG WR D VHULHV RI YROFDQLF LVODQGV WKH SURWR$QWLOOHV 'HQJR /LOOHJUDYHQ HW DO f 7KH GHJUHH WR ZKLFK WKLV LVODQG DUF UHPDLQHG DERYH ZDWHU LV XQNQRZQ $W WKH EHJLQQLQJ RI WKH 7HUWLDU\ KRZHYHU WKLV OLQN EHWZHHQ WKH FRQWLQHQWV ZDV GLVUXSWHG DV WKH SURWR $QWLOOHV EHJDQ D QRUWKZDUG GLVSODFHPHQW ,W ZDV QRW XQWLO WKH ODWH 7HUWLDU\ WKDW WKH VHFRQG RSSRUWXQLW\ IRU IORULVWLF LQWHUFKDQJH EHJDQ WR FRDOHVFH DV IRUPDWLRQ RI WKH &HQWUDO $PHULFDQ WUHQFK DQG QHZ YROFDQLF DFWLYLW\ JDYH ULVH WR D QHZ VHULHV RI LVODQGV 7KHVH LVODQGV HYHQWXDOO\ IRUPHG ORZHU &HQWUDO $PHULFD ZLWK D ODQG EULGJH DFURVV WKH ,VWKPXV RI 3DQDPD ILUPO\ HVWDEOLVKHG LQ WKH 3OLRFHQH RQO\ FD PLOOLRQ \HDUV DJR .HLJZLQ 0DUVKDOO HW DO f *HQWU\ Df FRQFOXGHV WKDW RQO\ YHU\ ZHOOHVWDEOLVKHG &UHWDFHRXV WD[D ZRXOG KDYH EHHQ DEOH WR WDNH DGYDQWDJH RI WKH HDUOLHU FRQQHFWLRQ YLD LVODQGKRSSLQJ (QWULHV LQWR &HQWUDO $PHULFD GDWLQJ IURP WKLV HDUOLHU FRQQHFWLRQ ZRXOG EH H[SHFWHG WR VKRZ VWURQJ WD[RQRPLF GLIIHUHQWLDWLRQ LQ &HQWUDO $PHULFD *HQWU\ Df FLWHV WULEH &UHVFHQWLHDH RI WKH %LJQRQLDFHDH DV D SXWDWLYH H[DPSOH RI HDUO\ FRORQL]DWLRQ RI &HQWUDO $PHULFD E\ LVODQGKRSSLQJ IROORZHG E\ WD[RQRPLF GLIIHUHQWLDWLRQ 2Q WKH FRQWUDU\ DQ\ PLJUDWLRQ GDWLQJ IURP WKH 3OLRFHQH RU 3OHLVWRFHQH ZRXOG QRW EH H[SHFWHG WR VKRZ PXFK GLIIHUHQWLDWLRQ HLWKHU DW WKH VSHFLILF RU JHQHULF OHYHO KDYH FKDUDFWHUL]HG WKH (XFKDULV ERXFKHL FRPSOH[ DV D VHPLVSHFLHV FRPSOH[ RI JHRJUDSKLFDOO\LVRODWHG UDFHV RU YDULHWLHV QRW \HW VWURQJO\ GLIIHUHQWLDWHG &KDSWHU ;,,f 3DWWHUQV RI JHQHWLF YDULDWLRQ &KDSWHU

PAGE 261

9,,,f FKURPRVRPH F\WRORJ\ &KDSWHU 9,,f DQG PRUSKRORJLFDO YDULDWLRQ &KDSWHUV 9, DQG ;,,f LQ WKLV JURXS VXJJHVW WKDW WKH HQWU\ RI (XFKDULV LQWR &HQWUDO $PHULFD ZDV D IDLUO\ UHFHQW HYHQW 7KH VSHFLHV RI VXEJ (XFKDULV JHRJUDSKLFDOO\ FORVHVW WR B( ERXFKHL LV B( ERQSODQGLL D UDUH WD[RQ RI FHQWUDO &RORPELD DQG DOVR WHWUDSORLG ,W LV LQFRQFOXVLYH ZKHWKHU WKHVH WZR VSHFLHV UHSUHVHQW D PRQRSK\OHWLF WHWUDSORLG JURXS 1RQHWKHOHVV WKH FRQJUXHQFH RI SK\WRJHRJUDSK\ ZLWK FKURPRVRPH QXPEHU LQ WKHVH WZR WD[D VXJJHVWV WKDW WKLV PD\ LQGHHG EH WKH FDVH ,W LV WHPSWLQJ WR VSHFXODWH LI WHWUDSORLG (XFKDULV ZHUH DW RQH WLPH PRUH FRPPRQ LQ QRUWKHUQ &RORPELD DQG WKDW -( ERXFKHL DQG ( ERQSODQGLL UHSUHVHQW WKH UHPQHQW SRSXODWLRQV RI D RQFH PRUH ZLGHVSUHDG DQFHVWUDO WHWUDSORLG FRPSOH[ 3UDQFHnV f PRVW UHFHQW GLVWULEXWLRQ RI 3OHLVWRFHQH UHIXJLD EDVHG RQ SK\WRJHRJUDSKLF SDWWHUQV LQFOXGHV ERWK D 5LR 0DJGDOHQD UHIXJH LQ QRUWKHUQ &RORPELD PRVW FROOHFWLRQV RI (B ERQSODQGLL DUH IURP WKH 5LR 0DJGDOHQD YDOOH\ WKRXJK IXUWKHU VRXWK RI 3UDQFHnV SURSRVHG UHIXJHf DQG D 'DULQ UHIXJH LQ VRXWKZHVWHUQ 3DQDPD )LJ f (XFKDULV ERXFKHL YDU GDULHQLHQVLV LV PRVW FRPPRQ LQ WKH DUHD RI WKH 'DULQ UHIXJH DQG LV SXWDWLYHO\ WKH OHDVW GHULYHG YDULHW\ RI WKH VSHFLHV 7KH DEVHQFH RI FROOHFWLRQV RI (XFKDULV VXEJ (XFKDULV IURP QRUWKHUQ &RORPELD LV VRPHWKLQJ RI D P\VWHU\ EXW PD\ LQGLFDWH WKDW H[WLQFWLRQ RI LQWHUYHQLQJ SRSXODWLRQV EHWZHHQ ( ERQSODQGLL DQG ( ERXFKHL ZDV ZLGHVSUHDG LQ WKH UHFHQW JHRORJLFDO SDVW

PAGE 262

)LJXUH 3OHLVWRFHQH UHIXJLD LQ QRUWKHUQ 6RXWK $PHULFD SURSRVHG E\ 3UDQFH JUD\ D (7ODFNf 'RWWHG OLQH LQGLFDWHV SURSRVHG +XDOODJD UHIXJLXP LQ 3HUX VHH WH[Wf 2QO\ UHIXJLD GLVFXVVHG LQ WKH WH[W DUH ODEHOOHG % %HQL & &KRF 'DULQ (3 (DVW 3HUX + +XDOODJD 0 0DJGDOHQD 1 1DSR

PAGE 264

&+$37(5 ; 5(352'8&7,9( %,2/2*< 3ROOLQDWLRQ %LRORJ\ 'DWD RQ SROOLQDWLRQ HFRORJ\ RI $PDU\OOLGDFHDH LQ JHQHUDO DUH VFDQW DQG UHSUHVHQW DQ DUHD VRUHO\ LQ QHHG RI LQYHVWLJDWLRQ 1R LQIRUPDWLRQ RQ SROOLQDWLRQ RI &DOLSKUXULD LV DYDLODEOH 7KH ODUJH ZKLWH KHDYLO\ DQG VZHHWO\ IUDJUDQW IORZHU RI (B DPD]RQLFD VXEJ +HWHURFKDULVf ZDV FRQVLGHUHG D PRGHO PRWKSROOLQDWHG IORZHU E\ 3HUFLYDO f 6KH QRWHG WKDW WKH QHFWDU OHYHO LQ WKH WXEH ULVHV WR D PD[LPXP KHLJKW RI b WXEH OHQJWK WKXV HIIHFWLYHO\ SUHYHQWLQJ DFFHVV WR DOO EXW ORQJWRQJXHG LQVHFWV 3ROOLQDWLRQ RI IORZHUV RI VXEJ +HWHURFKDULV WKH PRVW DQFHVWUDO FRPSOH[ RI VSHFLHV LQ (XFKDULV E\ VSKLQJLG PRWKV PD\ EH WKH SULPLWLYH VWDWH LQ WKH JHQXV 2WKHU EDVDO JHQHUD VHQVX 0HHURZ f RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH DOVR DUH VSHFLDOL]HG IRU KDZNPRWK SROOLQDWLRQ +\PHQRFDOOLV %DXP *UDQW 3DQFUDWLXP 0RUWRQ f )ORUDO IUDJUDQFH FKDUDFWHULVWLF RI DOO WKUHH VSHFLHV RI VXEJ +HWHURFKDULV LV UDUH LQ VXEJ (XFKDULV RFFXULQJ LQ RQO\ IRXU WD[D B( EDNHUL DQD B( FDVWH QDHDQD B( I RUPRVD DQG ( SL L FDWD VXEVS EUHYLGHQWDWD +RZHYHU IORUDO IUDJUDQFH LV RQO\ ZHDNO\ GHYHORSHG LQ WKHVH VSHFLHV DQG LQ RQH RI WKHP B( IRUPRVDf WKH RGRU LV VOLJKWO\ IHWLG 9RJHO f UHSRUWHG HXJORVVLQH EHHV YLVLWLQJ (XFKDULV EDQNHULDQD EDNHULDQD 1 ( %ULWWRQ"f 9LVLWDWLRQ E\ DQ

PAGE 265

XQLGHQWLILHG HXJORVVLQH KDV EHHQ UHSRUWHG IRU RWKHU XQLGHQWLILHG VSHFLHV RI VXEJ (XFKDULV LQ 3HUX 6FKXQNH SHUV FRPPf ,Q DGGLWLRQ WR WKH PDMRULW\ RI WKH VSHFLHV LQ WKLV VXEJHQXV ODFNLQJ IUDJUDQFH GHWHFWDEOH WR KXPDQV WKH VKRUWHU SHULDQWK WXEHV RI WKHVH VSHFLHV PD\ DOORZ DYDLODELOLW\ RI QHFWDU WR EHHV RU RWKHU LQVHFWV KDYH REVHUYHG WKH QHFWDU OHYHO ULVLQJ WR WKH SHULDQWK WKURDW LQ VPDOO IORZHUHG WD[D RI VXEJ (XFKDULV 7KH VWDPLQDO FXS RI WKH IORZHU H[VHUWHG EH\RQG WKH VSUHDGLQJ OLPE FRXOG FRQFHLYDEO\ SUHVHQW D ODQGLQJ SODWIRUP IRU LQVHFWV LQFDSDEOH RI KRYHULQJ 0 :KLWWHQ SHUV FRPPf :KDW PD\ KDYH EHJXQ DV SXUHO\ IDFXOWDWLYH YLVLWDWLRQ E\ EHHV PD\ LQ WXUQ KDYH EHFRPH D VHOHFWLYH IRUFH ZLWKLQ (XFKDULV IRU VPDOOHU IORZHU VL]H DQG UHGXFWLRQ LQ IUDJUDQFH 0DQ\ EHHV DUH FDSDEOH RI GHWHFWLQJ IORUDO IUDJUDQFHV XQQRWLFHDEOH WR KXPDQV 3HUFLYDO f KRZHYHU DQG WKH\ UHSRUWHGO\ YLVLW 3HUXYLDQ VSHFLHV RI VXEJ (XFKDULV -DQ]HQ f GLVFXVVHG WKH SRWHQWLDO ORQJGLVWDQFH SROOLQDWLRQ DFWLYLWLHV RI IHPDOH HXJORVVLQH EHHV LQ WKH ORZODQG QHRWURSLFV )HPDOHV ZHUH REVHUYHG WR IO\ DV PXFK DV NP LQ VHDUFK RI SROOHQ DQG QHFWDU UHVHUYHV IRU EURRGUHDULQJ -DQ]HQ FRLQHG WKH WHUP WUDSOLQLQJ WR GHVFULEH WKH EHKDYLRU RI WKHVH LQVHFWV ZKHQ IRUDJLQJ +H K\SRWKHVL]HG WKDW IHPDOH HXJORVVLQHV ZRXOG YLVLW VSDWLDOO\ GLVSHUVHG IORZHUV DORQJ D PHPRUL]HG IOLJKW SDWWHUQ WKURXJK WKH IRUHVW HDFK GD\ +H IXUWKHU VXJJHVWHG WKDW VXFK WUDSOLQLQJ EHKDYLRU ZRXOG SURPRWH RXWFURVVLQJ DPRQJ WURSLFDO SODQWV RI ORZ SRSXODWLRQ GHQVLW\ DQG SHUKDSV LQVXUH WKH VXUYLYDO RI VXFK UDUH RU VSDWLDOO\ UHVWULFWHG SODQWV 7KH SKHQRORJ\ RI (XFKDULV UDUHO\ PRUH WKDQ IORZHUV RSHQ SHU LQIORUHVFHQFH DW DQ\ RQH WLPH RYHU D SHULRG RI ZHHNV DQG WKH RIWHQ VXFFHVVLYH DSSHDUDQFH RI LQIORUHVFHQFHV IURP D FORQDO FOXPS RI EXOEVf

PAGE 266

DQG WKH GLVSHUVHG GLVWULEXWLRQ RI SODQWV LQ WKH ZLOG VXJJHVW WKDW WKHVH SODQWV DUH SROOLQDWHG E\ VXFK WUDSOLQLQJ RUJDQLVPV 7KDW WKH RQO\ UHFRUGHG REVHUYDWLRQV RI YLVLWRUV WR (XFKDULV DUH IRU HXJORVVLQH EHHV IXUWKHU VXSSRUWV WKLV K\SRWKHVLV 7KH WHQGDQF\ WRZDUGV V\QFKURQ]LHG EORRPLQJ DPRQJ FRQVSHFLILF SRSXODWLRQV ZRXOG DW OHDVW VWUHQJWKHQ WKH SUREDELOW\ WKDW FRQVSHFLILF IORZHUV ZRXOG EH HQFRXQWHUHG LQ DQ\ RQH IRUDJLQJ ERXW +RZHYHU FRQJUXHQFH RI IORZHULQJ SHULRG EHWZHHQ V\PSDWULF VSHFLHV DV LV WKH FDVH ZLWK ( FDQGL GD DQG B( IRUPRVD LQ (FXDGRU PLJKW UHVXOW LQ LQVWDQFHV RI LQWHUVSHFLILF K\EULGL]DWLRQ 7KLV DSSHDUV WR KDYH RFFXUUHG DW WLPHV QRW RQO\ DPRQJ WKH IRUPHU VSHFLHV EXW EHWZHHQ B( SL L FDWD VXEVS SL L FDWD DQG B( XOHL LQ 3HUX DV ZHOO ,I HFRORJLFDO FRQVWUDLQWV IRUFH FRQYHUJHQFH LQ IORZHULQJ SHULRG DPRQJ V\PSDWULF SRSXODWLRQV RI GLIIHUHQW VSHFLHV RQH PLJKW WKHQ H[SHFW VHOHFWLRQ SUHVVXUHV WR H[HUW WKHPVHOYHV LQ RWKHU ZD\V WKDW PLJKW LQIOXHQFH SROOLQDWRU VSHFLILFLW\ ,Q WKLV UHJDUG FRQVLVWHQW IORZHU VL]H GLIIHUHQFHV EHWZHHQ B( FDQGL GD DQG B( IRUPRVD DV ZHOO DV WKH SUHVHQFH RI IORUDO IUDJUDQFH LQ B( IRUPRVD DQG LWV DEVHQFH LQ (B FDQGL GD PD\ EH VLJQLILFDQW 2QH VSHFLHV RI (XFKDULV VXEJ (XFKDULV H[KLELWV D YHU\ GLIIHUHQW IORZHULQJ SDWWHUQ (XFKDULV FDVWHODQHDQD WKH VPDOOHVWIORZHUHG VSHFLHV LQ WKH VXEJHQXV YLJRURXVO\ IRUPV ODUJH FORQDO FOXPSV ZKLFK PDVVIORZHU SHUKDSV ELDQQXDOO\ 7KH IORZHUV DUH DOVR PLOGO\ DQG VZHHWO\ IUDJUDQW )XWKHUPRUH (B FDVWHQDHDQD DSSHDUV WR EH IXQFWLRQDOO\ DXWRJDPRXV 7KLV VSHFLHV PD\ WKHUHIRUH EH YLVLWHG E\ PRUH ORFDO LQVHFW SROOHQ YHFWRUV DWWUDFWHG E\ WKH PDVV GLVSOD\ DQG ROIDFWRU\ FXHV

PAGE 267

%UHHGLQJ 6\VWHP 0RVW VSHFLHV RI (XFKDULV DQG &DOLSKUXULD DSSHDU WR EH VHOI LQFRPSDWLEOH RQ WKH EDVLV RI JUHHQKRXVH SROOLQDWLRQ VWXGLHV ZLWK ERWK SROOHQ RI WKH VDPH IORZHU DQG LQWHUIORZHU SROOHQ JHLWRQRJDP\f 7KLV REVHUYDWLRQ DQG WKH KLJK OHYHOV RI KHWHUR]JRVLW\ IRXQG LQ WKH JHQXV VHH &KDSWHU 9,,,f VXJJHVW WKDW PRVW VSHFLHV DUH SUHGRPLQDQWO\ RXWFURVVLQJ )XUWKHU HYLGHQFH RI RXWFURVVLQJ LV WKH PDUNHG SURWDQGU\ RI (XFKDULV IORZHUV DQG WKH SUHVHQFH RI QDWXUDO LQWHUVSHFLILF K\EULGV LQ WKH ZLOG 2I DOO VSHFLHV WHVWHG RQO\ B( FDVWHOQDHDQD UHJXODUO\ VHWV FDSVXOHV ZLWK VHOISROOHQ DQG VWLJPD UHFHSWLYLW\ RI WKLV VSHFLHV FRLQFLGHV ZLWK DQWKHVLV &DSVXOHV DUH VHW UHDGLO\ ZLWK VLEOLQJ SROOHQ RQ DOO VSHFLHV LQFOXGLQJ B( FDVWHODQHDQDf ZLWK WKH H[FHSWLRQ RI IXQFWLRQDOO\ VWHULOH K\EULG WD[D B( ; JUDQGLIORUD ; &DOLFKDULV EXWFKHULf DQG ( DPD]QLFD 7KLV ODWWHU VSHFLHV SUREDEO\ WULSORLG GHULYHG DQG ZLWK FD b SROOHQ LQYLDELOLW\ KDV QRW VHW FDSVXOHV ZLWK VHOI VLEOLQJ RU LQWHUVSHFLILF SROOHQ 0 :LOOLDPV SHUV FRPPf UHSRUWHGO\ LQGXFHG IUXLW VHW ZLWK SROOHQ RI +\PHQRFDO OLV DQG +LSSHDVWUXP SROOHQ EXW WKH UHVXOWLQJ VHHG ZDV LQYLDEOH 7KH VHOILQFRPSDWLELOLW\ 6,f V\VWHP RI (XFKDULV LV XQNQRZQ 7ZR FKDUDFWHU VWDWHV RI (XFKDULV GU\W\SH SDSLOODWH VWLJPDV DQG UHWLFXODWH H[LQHf KDYH EHHQ FRUUHODWHG ZLWK VSRURSK\WLF 6, LQ RWKHU SODQWV +HVORS+DUULVRQ DQG 6KLYDQQD =DYDGD f +RZHYHU DFFRUGLQJ WR VHYHUDO ZRUNHUV VSRURSK\WLF LQFRPSDWLELOLW\ LV XQNQRZQ LQ PRQRFRWV +HVORS+DUULVRQ .UHVV /DUVHQ f 7KH SXWDWLYH SUHVHQFH RI 6, LQ (XFKDULV LV QRW LQ FRQFRUGDQFH ZLWK OLPLWHG GDWD IRU RWKHU UDLQIRUHVW XQGHUVWRU\ SODQWV .UHVV f IRXQG

PAGE 268

IXOO VHOIFRPSDWDELLW\ LQ WKH PDMRULW\ RI &RVWD 5LFDQ +HOLFRQL D VSHFLHV WHVWHG DQG FLWHG XQSXEOLVKHG GDWD RI *URYH ZKR IRXQG VLPLODU UHVXOWV LQ D EURDGHU VXUYH\ RI XQGHUVWRU\ SODQWV +RZHYHU %DZD DQG %HDFK f WHVWHG VSHFLHV RI ZRRG\ 5XELDFHDH LQ &RVWD 5LFD PRVW RI ZKLFK ZHUH IRXQG WR EH VHOILQFRPSDWLEOH 6HOILQFRPSDWLELOLW\ LV DOVR FKDUDFWHULVWLF RI PRVW FDQRS\ WUHH VSHFLHV LQ WKH WURSLFV WKDW KDYH EHHQ WHVWHG $UUR\R f .UHVV f VXJJHVWV WKDW WKH DYDLODELOLW\ RI ORQJGLVWDQFH SROOLQDWRUV DQG ORZ GDLO\ RXWSXW RI IORZHUV PD\ HQIRUFH RXWFURVVLQJ DPRQJ RWKHUZLVH VHOIFRPSDWLEOH XQGHUVWRU\ SODQWV LQ WKH WURSLFV (XFKDULV H[KLELW WKLV W\SH RI SKHQRORJ\ DUH SXWDWLYHO\ SROOLQDWHG E\ WUDSOLQLQJ IHPDOH HXJORVVLQH EHHV EXW DUH QRQHWKHOHVV DW OHDVW SDUWLDOO\ VHOILQFRPSDWLEOH 3HUKDSV VHOILQFRPSDWLELOLW\ LV DQ DQFHVWUDO VWDWH LQ (XFKDULV DOO RWKHU JHQHUD RI 3DQFUDWLRLGLQDH WKDW KDYH WHVWHG ZLOO QRW VHOIf DQG KDV SHUVLVWHG LQ DOO RXWFURVVLQJ VSHFLHV GHVSLWH D ODFN RI VHOHFWLYH SUHVVXUH IRU LWV JHQHWLF PDLQWHQDQFH /LQGHU JUHHQKRXVH FXOWLYDWLRQ VRPH VSHFLHV RI (XFKDULV ZKLFK RWKHUZLVH GR QRW VHW IUXLW ZLWK VHOISROOHQ ZLOO VHW FDVSXOHV ODWH LQ WKH IORZHULQJ F\FOH HYHQ ZKHQ QR RWKHU LQIORUHVFHQFHV DUH DYDLODEOH IRU LQVHFWYHFWRUHG SROOHQ WUDQVIHU ,I DQWKHUV DUH UHPRYHG IURP DOO IORZHUV EHIRUH DQWKHVLV IUXLW IRUPDWLRQ ZLOO QRW RFFXU 7KLV VXJJHVWV WKDW RQO\ SDUWLDOLQFRPSDWLELOLW\ /HIIHO 3DQGH\ f PD\ RFFXU LQ (XFKDULV 7KH DELOLW\ WR VHW IUXLW ZLWK VHOISROOHQ SHUKDSV OLPLWHG WR JHLWRQRJDPRXV SROOHQf ODWH LQ WKH IORZHULQJ F\FOH PD\ VHUYH DV D IDLOVDIH PHDVXUH LQ WKH DEVHQFH RI LQWHUSODQW SROOHQ WUDQVIHU 7KRXJK DJDPRVSHUP\ FDQQRW EH UXOHG RXW WHVWV IRU DSRPL[LV KDYH EHHQ LQFRQFOXVLYH )UXLW VHW KDV QHYHU RFFXUHG RQ IORZHUV IURP ZKLFK WKH

PAGE 269

VWLJPD DQG VW\OH KDV EHHQ H[FLVHG +RZHYHU DSRPL[LV FDQ EH SVHXGRJDPRXV )RFNH f WKXV UHTXLULQJ SROOLQDWLRQ $XWRJDP\ LQ ( FDVWHQDHDQD LV DVVRFLDWHG ZLWK D QXPEHU RI RWKHU GLYHUJHQW FKDUDFWHU VWDWHV IRU VXEJ (XFKDULV 7KLV VSHFLHV KDV D PDVVn IORZHULQJ SKHQRORJ\ WKH VPDOOHVW IORZHUV LQ WKH JHQXV D JUHHQ RIWHQ WDUGLO\GHKLVFHQW FDSVXOH D OHVVWXUJLG VHHG ZLWK D GXOO UXJRVH WHVWD DQG WHORFHQWULF FKURPRVRPHV 7KH PRVW LQWHUHVWLQJ FRUUHODWLRQ IURP WKH VWDQGSRLQW RI UHSURGXFWLYH ELRORJ\ LV EHWZHHQ WKH SKHQRORJ\ RI (B FDVWHQDHDQD DQG DXWRJDP\ 7KH PDVVIRZHULQJ KDELW RI WKLV VSHFLHV LV D XQLTXH FKDUDFWHULVLQnF IRU WKH VXEJHQXV DQG VXJJHVWV WKDW SROOLQDWLQJ DJHQWV IRU WKLV VPDOOIORZHUHG WD[RQ DUH RWKHU WKDQ WUDSOLQH IRUDJHUV (XFKDULV FDVWHQDHDQD RFFXUV LQ JHRJUDSKLF V\PSDWU\ ZLWK VHYHUDO RWKHU (XFKDULV VSHFLHV PRVW IUHTXHQWO\ ZLWK B( XOHL DQG (B F\DQHRVSHUPD 7KH RFFXUUHQFH RI B( FDVWHQDHDQD RQ VHDVRQDOO\ LQXQGDWHG VXEVWUDWHV KRZHYHU PD\ LQGLFDWH D GHJUHH RI HFRORJLFDO DOORSDWU\ 7KH HYROXWLRQ RI ERWK QRYHO SKHQRORJ\ DQG EUHHGLQJ V\VWHP PD\ KDYH DULVHQ WKURXJK FRPSHWLWLRQ IRU SROOLQDWRUV DPRQJ V\PSDWULF FRQJHQRUV WKH UHSURGXFWLYH DVVXUDQFH K\RSWKHVLV RI -DLQ f $XWRJDP\ ZRXOG LQVXUH WKDW D QRYHO SKHQRORJLFDO SDWWHUQ ZRXOG EHFRPH IL[HG LQ D VSHFLHV ,I RQO\ SDUWLDO LQFRPSDWDELLW\ H[LVWV DPRQJ (XFKDULV VSHFLHV WKH HYROXWLRQ RI FRPSOHWH DXWRJDP\ LQ B( FDVWHQDHDQD FRXOG KDYH EHHQ UHODWLYHO\ UDSLG $XWRJDP\ ZRXOG DLG WKH IL[DWLRQ RI VWUXFWXUDO UHDUUDQJHPHQWV LQ FKURPRVRPHV DV ZHOO D SRWHQWLDO LVRODWLQJ PHFKDQLVP -DLQ f 7KH SUHVHQFH RI WHORFHQWULFV LQ B( FDVWHQDHDQD LV WKH EHVW HYLGHQFH IRU WKLV &RORQL]DWLRQ RI VHDVRQDOO\ LQXQGDWHG VRLOV DSSHDUV WR EH D PDMRU DGDSWDWLRQ RI ( FDVWHQDHDQD LQ UHODWLRQ WR V\PSDWULF FRQJHQRUV

PAGE 270

,QEUHHGLQJ ZRXOG DOORZ UDSLG PXOWLSOLFDWLRQ RI D VXFFHVVIXO FRORQL]LQJ JHQRW\SH >WKH LQIHFWLYH SULQFLSOH RI 6WHEELQV f@ )HZ EDUULHUV WR DUWLILFDO LQWHUVSHFLILF K\EULGL]DWLRQ KDYH EHHQ HQFRXQWHUHG LQ JUHHQKRXVH WHVWV RI (XFKDULV VSHFLHV +RZHYHU WKH DXWRJDPRXV VSHFLHV B( FDVWHQDHDQD ZRXOG QRW IXQFWLRQ DV PDWHUQDO SDUHQW LQ DQ\ LQWHUVSHFLILF FURVV DWWHPSWHG 6HHGOLQJV RI D QXPEHU RI SXWDWLYH LQWHUVSHFLILF DQG LQWHUJHQHULF FURVVHV ZLWK &DOLSKUXULD DQG 8UFHROLQDf DUH SUHVHQWO\ LQ FXOWLYDWLRQ &XULRXVO\ DOO DWWHPSWV WR FURVV (FXDGRUHDQ (XFKDULV VSHFLHV ZLWK 8UFHROLQD PLFURFUDWHU KDYH IDLOHG 2QO\ D VLQJOH 3HUXYLDQ FROOHFWLRQ RI (B XOHL ZDV VXFFHVVIXOO\ K\EULGL]HG ZLWK B8 PLFURFUDWHU (XFKDULV XOHL DOVR VKRZV D PHDVXUH RI NDU\RW\SLF VLPLODULW\ WR -PL FURFUDWHU VHH &KDSWHU 9,,f 5HSURGXFWLYH ELRORJ\ RI (XFKDULV DQG &DOLSKUXULD LV WKXV VWLOO ODUJHO\ XQNQRZQ 7KH UDULW\ RI WKH SODQWV LV DQ REVWDFOH WR ILHOG VWXGLHV LQ WKLV DUHD 7KH GLVDSSHDUDQFH RI SRSXODWLRQV RI WKHVH JHQHUD DQG WKHLU SROOLQDWLQJ DJHQWV FRQFXUUHQW ZLWK UDLQIRUHVW GHVWUXFWLRQ FDQ RQO\ IXUWKHU LPSHGH LQYHVWLJDWLRQ RI WKLV DVSHFW RI WKHLU ELRORJ\

PAGE 271

&+$37(5 ;, 3+ZLWK WKH H[FHSWLRQ RI WZR VSHFLHV RI +\PHQRFDO OLV +B TXLWRHQVLV +HUEHUW DQG + KH LDQWKD 5DYHQQD /HSLGRFKLWRQ 6HDO\f@ ODFN SK\WRPHODQ LQ WKH VHHG FRDW )XUWKHUPRUH WKH EXOELIRUP VHHGV RI +\PHQRFDOOLV DQG WKRVH RI (XU\FOHV DQG &DORVWHPPD KDYH GLIIHUHQW RQWRJHQHWLF RULJLQV 7KLV LV GLVFXVVHG LQ JUHDWHU GHWDLO LQ &KDSWHU ,9 &RQVHTXHQWO\ WULEH (XFKDUHDH DV SUHVHQWO\ FLUFXPVFULEHG LV SUREDEO\ SRO\SK\OHWLF 7KH (XFKDUHDH ZDV UHFRJQL]HG DV RQH RI IRXU WULEHV FRPSULVLQJ LQIUDIDPLO\ 3DQFUDWLRLGLQDH RI VXEIDPLO\ $PDU\ORLGHDHf E\ 7UDXE f 7UDXEnV f UHPDLQLQJ VXEIDPLOLHV $OOLRLGHDH +HPHURFDOORLGHDH ,[LROLULRLGHDHf DUH UHFRJQL]HG DW WKH IDPLOLDO OHYHO

PAGE 272

LQ UHFHQW FODVVLILFDWLRQV E\ +XEHU f DQG 'DKOJUHQ HW DO f FRQFHSW ZKLFK IROORZ LQ P\ RZQ ZRUN &RQVHTXHQWO\ LQIUDIDPLO\ 3DQFUDWLRLGLQDH FRXOG EH UDLVHG WR WKH VWDWXV RI VXEIDPLO\ $ GHWDLOHG GLVFXVVLRQ RI WKHVH WD[D DV D GLVWLQFW HYROXWLRQDU\ XQLW ZRUWK\ RI WKH UDQN RI VXEIDPLO\ LV LQ SUHSDUDWLRQ 7KH 3DQFUDWLRLGLQDH FRQVLVWV RI IRXU WULEHV VHQVX 7UDXE f (XFKDUHDH (XVWHSKLHDH 3D[f 7UDXE 3DQFUDWLHDH 6DOLVE DQG 6WHQRPHVVHDH 7UDXE 5DYHQQD f KDV VKLIWHG VRPH JHQHUD WR GLIIHUHQW WULEHV 0RVW UHFHQWO\ 'DKOJUHQ HW DO f FRPELQHG WULEHV 6WHQRPHVVHDH DQG (XVWHSKLHDH 7UDXE f WUDQVIHUHG (XFKDULV &DOLSKUXULD 0DWKLHXD DQG 3,DJLROLULRQ LQWR 8UFHROLQD ZLWKRXW DQ\ GLVFXVVLRQ RU VXSSRUWLQJ GDWD 0DWKLHXD DQG 3,DJLRORULRQ DUH WZR YHU\ SRRUO\ NQRZQ PRQRW\SLF JHQHUD UHODWHG WR 6WHQRPHVVRQ DQG +\PHQRFDOOLV UHVSHFWLYHO\ 0HHURZ 06 LQ VXEPLVVLRQf +RZHYHU (XFKDULV &DOLSKUXULD DQG 8UFHROLQD DSSHDU WR IRUP D QDWXUDO SKHQHWLF JURXS GHILQHG E\ FKDUDFWHULVWLFV RI OHDI PRUSKRORJ\ SHWLRDWH OHDI ZLWK FKDUDFWHUL6WLF FXWLFXODU VWULDWLRQ DQG HSLGHUPDO FHOOV ZLWK XQGXODWH DQWLFOLQDO ZDOOVf FKURPRVRPH QXPEHU BQ f PRUSKRORJ\ RI RYXOH DQG VHHG WXUJLG ZLWK SK\WRPHODQRXV WHVWDf DQG HFRORJ\ UDLQIRUHVW XQGHUVWRU\f %HIRUH WHVWLQJ WKLV K\SRWKHVLV FODGLVWLFDOO\ D UHYLHZ RI FKDUDFWHU VWDWHV LQ 8UFHROLQD LV QHFHVVDU\ $ 5HYLHZ RI 8UFHROLQD 7KH JHQXV 8UFHROLQD 5HLFK QRP FRQVf FRQVLVWV RI SHUKDSV HLJKW VSHFLHV DOO UHVWULFWHG WR 3HUX 7KH UHODWLRQVKLSV RI 8UFHROLQD KDYH ORQJ EHHQ PLVXQGHUVWRRG PRVW ZRUNHUV %DNHU 3D[ +XWFKLQVRQ f SODFLQJ 8UFHROLQD QHDU 6WHQRPHVVRQ +HUEHUW 7UDXE

PAGE 273

f ZDV WKH ILUVW WR UHFRJQL]H LWV DIILQLWLHV ZLWK (XFKDULV 7KH SUREOHP QR GRXEW VWHPPHG IURP WKH LQFOXVLRQ RI D VSHFLHV RI 6WHQRPHVVRQ >6 PLQLDWXP +HUEHUWf 5DYHQQD@ LQ 8UFHROL QD DV B8 PL QL DWD +HUEHUWf %HQWK t +RRN 'HVSLWH WKH YHQWULFRVH DVSHFW RI WKH FRUROOD PRUSKRORJ\ RI 6 PLQLDWXP ZKLFK LV VLPLODU WR WKDW RI 8UFHROLQD WKH VSHFLHV FOHDUO\ EHORQJV WR 6WHQRPHVVRQ DV HYLGHQFHG E\ LWV QDUURZ VXESHWLRODWH OHDYHV WKH PRUSKRORJ\ RI LWV VWDPLQD FXS DQG LWV QXPHURXV IODW EODFN VHHGV 5DYHQQD f 7KH PRVW VWULNLQJ GLIIHUHQFH EHWZHHQ (XFKDULV DQG 8UFHROLQD LV LQ IORUDO PRUSKRORJ\ 8UFHROLQD )LJ $f LV HDVLO\ GLVWLQJXLVKHG E\ LWV EULJKWO\ FRORUHG XUFHRODWH FRUROOD IRUPHG E\ WKH FRKHUHQFH RI WKH WHSDOV WKURXJKRXW PRVW RI WKHLU OHQJWK 9DUJDV f GHVFULEHG WKH JHQXV 3VHXGRXUFHROLQD WR DFFRPRGDWH D VSHFLHV RI 8UFHROLQD LQ ZKLFK WKH WHSDOV DUH PRUH OD[O\ FRKHUHQW $V LQ &DOLSKUXULD WKH VWDPLQD FXS RI 8UFHROLQD LV UHGXFHG WR D PLQXWH PHPEUDQRXV EDVDO FRQQDWLRQ RI WKH ILODPHQWV ZKLFK DUH RWKHUZLVH OLQHDU WKURXJKRXW WKHLU FRQVLGHUDEOH OHQJWK 2QH RU VHYHUDO REWXVH WHHWK PD\ EH VLWXDWHG EHWZHHQ HDFK VWDPHQ 7KH OHDYHV RI 8UFHROLQD LQ WKLFNQHVV DQG ODFN RI ERWK VXUIDFH SOLFDWLRQ DQG PDUJLQDO XQGXODWLRQ UHVHPEOH &DOLSKUXULD PRUH FORVHO\ WKDQ (XFKDULV 7KH HSLGHUPDO FHOO DQWLFOLQDO ZDOOV RI ERWK VXUIDFHV DUH VWURQJO\ XQGXODWH )LJ ,% &f $ED[LDO FXWLFXODU VWULDWLRQV RI 8UFHROLQD )LJ ,'f DUH YHU\ PXFK OLNH WKRVH FKDUDFWHULVWLF RI (XFKDULV DQG &DOLSKUXULD &KDSWHU ,,,f EXW WKH VWULDWLRQV DUH WKLQ DQG VOLJKWO\ OHVV GLVWLQFW WKDQ LQ &DOLSKUXULD $ED[LDO HSLGHUPDO FHOOV RI 8UFHROLQD DUH QHDUO\ XQL SODQDU )LJ ,'f ZKHUHDV LQ (XFKDULV DQG &DOLSKUXULD WKH HSLGHUPDO FHOOV DUH VWURQJO\ UDLVHG

PAGE 274

,Q VL]H WKH SROOHQ JUDLQV RI 8UFHROLQD )LJ ,(f DUH VLPLODU WR WKRVH RI VXEJ &DOLSKUXULD 7KH FRDUVHQHVV RI WKH UHWLFXOXP LV LQWHUPHGLDWH EHWZHHQ WKDW RI (XFKDULV DQG &DOLSKUXULD ,Q DOO VSHFLHV RI 8UFHROLQD WKH VPDOO VWLJPD LV FDSLWDWH DQG HQWLUH )LJ ,)f YHUVXV WKH WULOREHG VWLJPD IRXQG LQ (XFKDULV DQG &DOLSKUXULD 6WLJPDWLF SDSLOODH DUH XQLFHOOXODU DV LQ (XFKDULV 8UFHROLQD VSHFLHV KDYH IURP RYXOHV )LJ *f 6HHG PRUSKRORJ\ RI 8UFHROLQD LV DQRWKHU PDMRU DUHD RI PRUSKRORJLFDO GLYHUJHQFH IURP (XFKDULV DQG &DOLSKUXULD )LJ +/f 7KH ULSH IUXLW RI 8UFHROLQD LV D WKLQZDOOHG \HOORZJUHHQ WXUELQDWH FDSVXOH PXFK OLNH WKDW RI &DOLSKUXULD +RZHYHU WKH VHHGV RI B8 PLFURFUDWHU )LJ +f DUH QDUURZO\ REORQJ FD PP ORQJ DQG PP ZLGH DQG FXUYHG 7KH WHVWD LV VPRRWK OXVWURXV EODFN DQG SK\WRPHODQRXV ZLWK DYHRODWH FHOO RXWOLQHV OLNH PRVW (XFKDULV VSHFLHV ,Q ORQJLWXGLQDO WUDQVYHUVH VHFWLRQ DQ DQDWRPLFDO IHDWXUH XQLTXH WR 8UFHROLQD LV UHYHDOHG )LJ /f $W WKH FKDOD]DO HQG RI WKH VHHG D GDP RI SRRUO\ GLIIHUHQWLDWHG WLVVXH VHSDUDWHV D FDS FRPSRVHG RI PDQ\ VPDOO FHOOV IURP WKH HQGRVSHUP 7KH FHOOV RI WKH FDS GR QRW KDYH SLWWHG ZDOOV ZLWK SODVPRGHVPDWD DV LV FKDUDFWHULVHnF RI WKH HQGRVSHUP FHOOV 7KHUH LV QR REYLRXV VXUIDFH IHDWXUH RQ WKH VHHG FRUUHVSRQGnQJ WR WKH DUHD RI WKLV FDS DQG LWV IXQFWLRQ LV XQNQRZQ (ODLVRPHV DUH IRXQG LQ DQW GLVSHUVHG VHHGV RI VRPH VSHFLHV RI 3DQFUDWLXP :HUNHU DQG )DKQ f EXW WKHVH VWUXFWXUHV DSSHDU RQ WKH VHHG VXUIDFH 8UFHROLQD DOVR H[KLELWV GLYHUJHQW NDU\RW\SH PRUSKRORJ\ &KDSWHU 9,,f IURP PRVW VSHFLHV RI (XFKDULV DQG &DOLSKUXULD 7KH ODUJHVW SDLU RI FKURPRVRPHV LQ 8 PLFURFUDWHU DUH VXEPHWDFHQWULF :KHWKHU WKLV FKDUDFWHUL]HV DOO RWKHU VSHFLHV RI 8UFHROLQD LV XQNQRZQ 7KH ODUJHVW

PAGE 275

SDLU RI FKURPRVRPHV DUH VXEPHWDFHQWULF LQ RQO\ D VLQJOH VSHFLHV RI (XFKDULV ( DVWURSKLDOD &KURPRVRPDO FKDQJH FRUUHODWHV ZLWK D JUHDW GHDO RI SKHQHWLF GLYHUJHQFH LQ WKLV VSHFLHV RI (XFKDULV DV ZHOO 7KH GLVWULEXWLRQ RI 8UFHROLQD DSSHDUV WR RYHUODS ZLWK (XFKDULV RQO\ LQ WKH YLFLQLW\ RI 7LQJR 0DULD LQ 'HSW +X£QXFR RI 3HUX )LJ f WKRXJK ( DPD]RQLFD LV WKH RQO\ VSHFLHV RI (XFKDULV IRXQG LQ WKLV DUHD 8UFHROLQD LQKDELWV VLWXDWLRQV RI IDVW GUDLQDJH LQ VKDG\ UDYLQHV DQG URFN RXWFURSV 5DYHQQD 6FKXQNH SHUV FRPP 0HHURZ SHUV REVf $OWLWXGLQDO UDQJH RI 8UFHROLQD LV TXLWH YDULDEOH Pf 7KH OHDYHV RI DW OHDVW RQH VSHFLHV -PLFURFUDWHU .UDQ]Of DUH K\VWHUDQWKRXV 7KH PRUSKRORJ\ RI WKH IORZHU LQ 8UFHROLQD VWURQJO\ VXJJHVWV RUQLWKRSKLO\ VHQVX )DHJUL DQG YDQ GHU 3LMO f LH YLYLG SDUURW FRORUV YHQWULFRVH FRUROOD SHQGXORXV KDELW DQG DEVHQFH RI RGRU ,I WKLV JHQXV LV ELUGSROOLQDWHG PHFKDQLFDO LVRODWLRQ ZRXOG EH DQ LPSRUWDQW EDUULHU EHWZHHQ LW DQG (XFKDULV HYHQ LQ DUHDV RI V\PSDWU\ 3K\ORJHQHWLF $QDO\VLV 3K\ORJHQHWLF DQDO\VLV FODGLVWLFVf KDV EHFRPH WKH VWDQGDUG PHWKRGRORJ\ IRU WHVWLQJ K\SRWKHVHV RI SK\ORJHQ\ DPRQJ RUJDQLVPV LQ V\VWHPDWLF ELRORJ\ 7KH SULQFLSOHV RI SK\ORJHQ\ LQIHUHQFH ZHUH IRUPDOO\ HQXPHUDWHG E\ +HQQLJ f $ VLPLODU PHWKRGRORJ\ WKH :DJQHU JURXQGSODQ GLYHUJHQFH PHWKRG ZDV DSSOLHG LQ ERWDQ\ E\ :DJQHU D E VHH DOVR &KXUFKLOO HW DO f EXW ZDV RYHUVKDGRZHG IRU PDQ\ \HDUV E\ +HQQLJnV ZRUN

PAGE 276

7KH SKLORVRSKLFDO IRXQGDWLRQ RI FODGLVWLFV DV WKLV IRUP RI DQDO\VLV LV FDOOHG LV EDVHG XSRQ FHUWDLQ DVVXPSWLRQV RI HYROXWLRQDU\ WKRXJKW +HQQLJ f WKDW KDYH EHFRPH D[LRPDWLF LQ WKHLU DSSOLFDWLRQ WR WKLV PHWKRGRORJ\ 7KH ILUVW LV WKH FRQFHSW RI PRQRSK\OHWLF JURXSV )URP WKH VWDQGSRLQW RI FODGLVWLF WKRXJKW :LOH\ f DOO UHFRJQL]HG WD[D PXVW EH PRQRSK\OHWLF LH GHULYHG IURP D FRPPRQ DQFHVWRU DQG LQFOXGLQJ DOO GHVFHQGHQWV RI WKLV DQFHVWRU EXW VHH $VKORFN f 0RQRSK\OHWLF JURXSV DUH UHFRJQL]HG E\ WKH SRVVHVVLRQ RI VKDUHG GHULYHG FKDUDFWHUV V\QDSRPRUSKLHVf 6KDUHG SULPLWLYH FKDUDFWHUV V\PSOHVLRPRUSKLHVf FDQQRW EH XVHG DV D EDVLV IRU GHOLPLWLQJ WD[D LQ D FODGLVWLF FODVVLILFDWLRQ 7R GR VR UHVXOWV LQ SDUDSK\OHVLV LH VHJUHJDWLRQ RI RQH RU PRUH GHVFHQGHQW WD[D IURP RWKHU GHVFHQGHQWV RI WKHLU FRPPRQ DQFHVWRU %UHPHU DQG :DQQWRUS +HQQLQJ :LOH\ f 3RO\SK\OHWLF JURXSV PRUH WKDQ RQH DQFHVWU\f FDQ UHVXOW LI WKH FKDUDFWHUV XVHG WR GHILQH WD[D DUH QRQKRPRORJRXV LH FRQYHUJHQFH RU SDUDOHOOLVP KDV UHVXOWHG LQ VLPLODU FKDUDFWHU VWDWHV HYROYLQJ DORQJ GLIIHUHQW RQWRJHQHWLF SDWKZD\V 3RO\SK\OHWLF JURXSV DUH JHQHUDOO\ FRQVLGHUHG DQDHWKHPD WR SK\ORJHQHWLF WKRXJKW E\ FODGLVW DQG QRQFODGLVW DOLNH 2Q WKH RWKHU KDQG VRPH V\VWHPDWLVWV KDYH DUJXHG IRU WKH DFFHSWDQFH RI SDUDSK\OHWLF JURXSV $VKORFN %XFN 'UHVVLHU f $QRWKHU LPSRUWDQW FRQFHSW FHQWUDO WR SK\ORJHQHWLF V\VWHPDWLFV DQG SHUJKDSV WKH PRVW FRQWURYHUVLDO LV WKDW RI SDUVLPRQ\ )DUULV )DUULV HW DO .OXJH DQG )DUULV f ,Q WKH FRQWH[W RI FODGLVWLFV WKH GLFWXP RI SDUVLPRQ\ VWDWHV VLPSO\ WKDW ZKHUH WZR FRQIOLFWLQJ K\SRWKHVHV RI SK\ORJHQ\ RFFXU WKH VKRUWHVW >LH RQH UHTXLULQJ IHZHVW HYROXWLRQDU\ VWHSV RU FKDUDFWHU VWDWH FKDQJHV DQG

PAGE 277

FRQVHTXHQWO\ WKH IHZHVW QXPEHU RI DG KRF K\SRWKHVHV RI HYROXWLRQDU\ FKDQJH :LOH\ f@ LV WKH PRVW SDUVLPRQLRXV DQG WKHUHIRUH WKH SUHIHUDEOH RSWLRQ 5HFHQWO\ DGKHUHQWV RI WKH FKDUDFWHU FRPSDWLELOLW\ PHWKRG RI FODGLVWLF DQDO\VLV VHH 'XQFDQ HW DO DQG 0HDFKDP IRU GLVFXVVLRQ RI WKLV PHWKRGf KDYH DUJXHG WKDW WKH SDUVLPRQ\ PHWKRG RI FODGLVWLF DQDO\VLV LV OHVV LQ DFFRUG ZLWK +HQQLQJnV f SULQFLSOHV WKDQ FKDUDFWHU FRPSDWLELOLW\ RU FOLTXHf DQDO\VLV 'XQFDQ f 3URSRQHQWV RI SDUVLPRQ\ KDYH UHVSRQGHG YRFLIHURXVO\ WR WKH FRQWUDU\ &KXUFKLOO HW DO )DUULV DQG .OXJH f 6LQFH DFFXUDWH FODGLVWLF DQDO\VLV LV FRPSOHWHO\ GHSHQGHQW RQ DFFXUDWH DVVHVVPHQW RI KRPRORJ\ LQ FKDUDFWHUV DQG SRODUL]DWLRQ RI FKDUDFWHU VWDWH FKDQJHV LH ZKLFK LV DQFHVWUDO DQG ZKLFK LVDUH GHULYHGf ULJRURXV DWWHQWLRQ PXVW EH SDLG WR FKRRVLQJ WKH FKDUDFWHUV IRU WKH DQDO\VLV DV ZHOO DV SRODUL]LQJ WKH VWDWH FKDQJHV RI HDFK 7KH RQO\ SK\ORJHQWLFDOO\ DFFHSWDEOH FRQFHSW RI KRPRORJ\ LV JHQHDORJLFDO LH WZR WD[D KDYH WKH VDPH FKDUDFWHU EHFDXVH LW ZDV SUHVHQW LQ WKHLU FRPPRQ DQFHVWRU (OGUHGJH DQG &UDFUDIW f :LWKRXW D FRPSOHWH IRVVLO UHFRUG LQGLUHFW HYLGHQFH DQDWRPLFDO GHYHORSPHQWDOf LV XVXDOO\ DOO WKDW LV DYDLODEOH IRU DVVHVVLQJ TXHVWLRQV RI KRPRORJ\ ,Q FODGLVWLF DQDO\VLV RI VSHFLHV RI D VLQJOH JHQXV KRPRORJ\ RI FKDUDFWHUV LV XVXDOO\ DVVXUHG :DJQHU f ,I WKH FODGRJUDP UHVXOWLQJ IURP DQ DQDO\VLV UHTXLUHV WKDW VRPH FKDUDFWHUV XQGHUJR PXOWLSOH LQGHSHQGHQW RULJLQV RU UHYHUVDOV RQH LQIHUHQFH PD\ EH WKDW WKRVH FKDUDFWHUV DUH QRW KRPRORJRXV 'HVSLWH D ODFN RI FRQVHQVXV RQ JHQHULF DQG VSHFLILF OLPLWV LQ $PDU\OOLGDFHDH FODGLVWLF DQDO\VLV KDV RQO\ WZLFH EHIRUH EHHQ DSSOLHG WR VXFK SUREOHPV LQ WKH IDPLO\ E\ 1RUGDO DQG 'XQFDQ f IRU +DHPDQWKXV

PAGE 278

/ DQG 6FDGR[XV 5DMf ) 1RUGDO WZR FORVHO\ UHODWHG EDFFDWHIUXLWHG $IULFDQ JHQHUD DQG 0HHURZ f IRU (XFURVLD .HU *DZOHU 5HVROXWLRQ RI WKH JHQHULF OLPLWV RI (XFKDULV DQG &DOLSKUXULD LQ UHODWLRQ WR 8UFHROLQD DV ZHOO DV LQWHUVSHFLILF UHODWLRQVKLSV LQ WKH IRUPHU JHQHUD VHHPHG WZR DUHDV WKDW ZRXOG EHQHILW IURP WKH DSSOLFDWLRQ RI FODGLVWLF DQDO\VLV 0DWHULDOV DQG 0HWKRGV &ODGLVWLF DQDO\VHV ZHUH UXQ XVLQJ 3$83 YHUVLRQ E\ 'DYLG / 6ZRIIRUG ,OOLQRLV 1DWXUDO +LVWRU\ 6XUYH\f RQ WKH 1RUWKHDVW 5HJLRQDO 'DWD &HQWHU 1(5'&f FRPSXWHU V\VWHP RI WKH 8QLYHUVLW\ RI )ORULGD 3$83 LV D KLJKO\ YHUVDWLOH SDFNDJH XWLOL]LQJ WKH :DJQHU PHWKRG )DUULV .OXJH DQG )DUULV f RI VLPSOH SDUVLPRQ\ 'XH WR WKH KLJK LQFLGHQFH RI KRPRSODV\ LQ $PDU\OOLGDFHDH 0HHURZ f WKH XVH RI WKH :DJQHU PHWKRG ZKLFK SODFHV QR UHVWULFWLRQV XSRQ FKDUDFWHU VWDWH FKDQJHV VHHPV DGYLVDEOH $OO VSHFLHV DQG RQH VXEVSHFLHVf RI (XFKDULV DQG &DOLSKUXULD > RSHUDWLRQDO WD[RQRPLF XQLWV 278nVf@ H[FOXGLQJ K\EULG WD[D ZHUH DQDO\]HG XVLQJ IRUW\ FKDUDFWHUV 7DEOH f &KDUDFWHU VWDWH SRODULWLHV ZHUH DVVHVVHG YLD RXWJURXS FRPSDULVRQ 0DGGLVRQ HW DO :DWURXV DQG :KHHOHU f 2XW JURXS FRPSDULVRQ LV WKH PRVW ZLGHO\ DFFHSWHG PHWKRGRORJ\ IRU DVVLJQLQJ FKDUDFWHU VWDWH SRODULWLHV LQ FRQMXFWLRQ ZLWK WKH SDUVLPRQ\ PHWKRG RI FODGLVWLF DQDO\VLV 'XH WR WKH PRVDLFLVP RI PRUSKRORJLFDO YDULDWLRQ LQ $QGHDQ $PDU\OOLGDFHDH 0HHURZ f FKDUDFWHU VWDWH SRODUL]DWLRQ LV FRPSOH[ DQG UHTXLUHV VRPH GLVFXVVLRQ 2XWJURXSV FKDUDFWHU VHOHFWLRQ DQG SRODUL]DWLRQ RI VWDWHV &KDUDFWHU VWDWH DQDO\VLV SUHOLPLQDU\ WR D FODGLVWLF WUHDWPHQW RI WKH

PAGE 279

SDQFUDWLRLG $PDU\OOLGDFHDH 0HHURZ f VXJJHVWV WKDW ZLWKLQ WKH 3DQFUDWLRLGLQDH D ODUJH ZKLWH IUDJUDQW FUDWHULIRUP IORZHU ZLWK D FRQVSLFXRXV VWDPLQD FXS SDQFUDWLRLG FI 3DQFUDWLXPf SUHVXPDEO\ LQYROYHG ZLWK VSKLQJLG PRWK SROOLQDWLRQ *UDQW 0RUWRQ f PD\ EH V\PSOHVLRPRUSKLF ,Q RWKHU ZRUGV ZKLOH WKH SDQFUDWLRLG IORZHU ZDV D PDMRU DSRPRUSK\ GHILQLQJ WKH 3DQFUDWLRLGLQDH DV D GLVWLQFW JURXS ZLWKLQ WKH $PDU\OOLGDFHDH LW LV WKH DQFHVWUDO IORUDO PRUSKRORJ\ IURP ZKLFK DOO RWKHU SDQFUDWLRLG WD[D KDYH GLYHUJHG KDYH XVHG WKH WHUP WKH SDQFUDWLRLG EDVH WR GHILQH WKH ILYH JHQHUD RI 3DQFUDWLRLGLQDH ZLWK WKLV W\SH RI IORZHU PRUSKRORJ\ 0HHURZ f 7KHVH ILYH JHQHUD DUH (XFKDULV +\PHQRFDOOLV 6DOLVE VHQV VWU 3DQFUDWLXUQ O 3DPLDQWKH 6WDSI DQG 3DUDPRQJDLD 9HODUGH $OO EXW 3DQFUDWLXP DUH HQWLUHO\ QHRWURSLFDO LQ GLVWULEXWLRQ 7KH JHQXV 3DQFUDWLXUQ FD VSHFLHVf DQG WZR VSHFLHV RI +\PHQRFDOOLV B+ TXLWRHQVLV +HUEHUW DQG B+ KH LDQWKD 5DYHQQDf ZHUH XVHG DV WKH SULPDU\ RXWJURXSV &KDUDFWHU VWDWH GDWD RQ WKHVH WD[D ZHUH DFFXPXODWHG IURP VWXG\ RI OLYLQJ PDWHULDO KHUEDULXP VSHFLPHQV DQG YDULRXV OLWHUDWXUH %MWLUQVWDG 0HHURZ DQG 'HKJDQ 0RUWRQ 3RQQDPPD 5DYHQQD 7UDXE :HUNHU DQG )DKQ f 7KH WZR VSHFLHV RI +\PHQRFDOOLV DUH XQGRXEWHGO\ D PRQRSK\OHWLF JURXS 7KH\ DUH WKH RQO\ WZR VSHFLHV RI WKH JHQXV WKDW KDYH SK\WRPHODQRXV VHHG FRDWV 7KHVH WZR VSHFLHV KDYH EHHQ VHJUHJDWHG LQWR D VHSDUDWH JHQXV /HSLGRFKLWRQ 6HDO\ f RQ WKLV EDVLV KRZHYHU RQO\ B+ TXLWRHQVLV ZDV NQRZQ DW WKDW WLPHf 7KH WZR VSHFLHV DUH HSKHPHUDO FRPSRQHQWV RI WKH [HULF IORUD RI VRXWKZHVWHUQ (FXDGRU DQG QRUWKZHVWHUQ 3HUX DQG GLIIHU RQO\ LQ IORZHU FRORU 7UDXE f FRQVL GHUHG B+ TXLWRHQVLV D UHOLFW WD[RQ DQG WKH PRVW SULPLWLYH VSHFLHV RI

PAGE 280

+\PHQRFDO LV 7KHVH VSHFLHV RI +\PHQRFDOOLV ZLOO EH UHIHUHG WR DV /HSLGRFKLWRQ LQ WKH IROORZLQJ GLVFXVVLRQ 8UFHROLQD SXWDWLYH VLVWHU JURXS WR (XFKDULV DQG &DOLSKUXULD ZDV LQFOXGHG LQ WKH DQDO\VLV WR WHVW LWV SK\ORJHQHWLF UHODWLRQVKLSV WR WKH IRUPHU WZR WD[D ,Q WKLV VHQVH 8UFHROLQD LV EHVW FRQVLGHUHG SDUW RI WKH LQ JURXS IRU WKH DQDO\VLV VLQFH FKDUDFWHU VWDWH SRODULWLHV ZHUH QRW EDVHG RQ WKH VWDWHV RFXUULQJ LQ WKLV JHQXV $W WLPHV HYROXWLRQDU\ WUHQGV LQ LQIUDIDPLO\ 3DQFUDWLRLGLQDH DV D ZKROH ZHUH XVHG WR UHVROYH SRODULWLHV 7KLV LV GLVFXVVHG EHORZ ZKHUHYHU VXFK FULWHULD ZHUH DSSOLHG $OO FKDUDFWHU VWDWHV RFFXUULQJ LQ ERWK 3DQFUDWLXUQ DQG /HSLGRFKLWRQ ZHUH FRGHG DV DQFHVWUDO 2QO\ FKDUDFWHUV IORZHU QXPEHUf IORZHU FRORUf VHHG VKDSHf WHVWD FRORUf DQG FKURPRVRPH QXPEHUf FRXOG QRW EH SRODUL]HG XVLQJ WKLV FULWHULRQ 3DQFUDWLXP LV SXWDWLYHO\ WKH OHDVW GHULYHG JHQXV RI WKH SDQFUDWLRLG EDVH 0HHURZ f :KHUH FKDUDFWHU VWDWHV RI /HSLGRFKLWRQ DQG 3DQFUDWLXUQ ZHUH DW YDULDQFH WKH VWDWH RFFXULQJ LQ 3DQFUDWLXP ZDV ZHLJKWHG LQ MXGJLQJ WKH DQFHVWUDO FRQGLWLRQ IRU WKDW FKDUDFWHU )ORZHU QXPEHU FRXOG QRW EH SRODUL]HG ZLWK FHUWDLQW\ 7KH K\SRWKHVLV WKDW WKH XPEHOODWH LQIORUHVFHQFH RI $PDU\OLGDFHDH UHSUHVHQWV D VHULHV RI UHGXFHG KHOLFRLG F\PHV 0DQQ 6WRXW f ZRXOG VXJJHVW WKDW QXPHURXV IORZHUV LV WKH DQFHVWUDO VWDWH LQ WKH IDPLO\ 5HGXFWLRQ LQ QXPEHU ZRXOG WKXV UHSUHVHQW ORVV RI RQH RU PRUH RI WKH FRPSRQHQW F\PHV 1XPHURXV IORZHUV KDV XVXDOO\ EHHQ FRQVLGHUHG WKH GHULYHG VWDWH LQ WKH IDPLO\ 7UDXE 7UDXE DQG 0ROGHQNH f 1RQHWKHOHVV WR P\ NQRZOHGJH QR RQH KDV SUHVHQWHG DQ\ HYLGHQFH WKDW UHYHUVDOV LQ WKLV FKDUDFWHU DUH GHYHORSPHQWDOA LPSRVVLEOH 8QLIORU\ RFFXUV VSRUDGLFDOO\ WKURXJKRXW WKH IDPLO\ EXW VHYHUDO

PAGE 281

XQLIORURXV WD[D ZLOO RFFDVLRQDOO\ SURGXFH D WZRIORZHUHG VFDSH /HSLGRFKLWRQ LV XQLIORURXV 7ZR XQLIORURXV WD[D DOVR RFFXU LQ 3DQFUDWLXP &RQVHTXHQWO\ ERWK SRODULWLHV IRU IORZHU QXPEHU ZHUH WHVWHG LQ WKH DQDO\VHV $ WULOREHG VWLJPD LV DOVR XVXDOO\ FRQVLGHUHG WKH DQFHVWUDO VWDWH LQ $PDU\OOLGDFHDH 7UDXE 7UDXE DQG 0ROGHQNH f 1RQHWKHOHVV ERWK RXWJURXSV KDYH D FDSLWDWH HQWLUH VWLJPD ,Q WKLV FDVH DV ZHOO ERWK SRVVLELOLWLHV ZHUH WULHG LQ WKH DQDO\VHV $ FKURPRVRPH QXPEHU RI BQ LV XQGRXEWHGO\ DQFHVWUDO DPRQJ H[WDQW SDQFUDWLRLG JHQHUD 0HHURZ f 7KLV QXPEHU RFFXUV DPRQJ ZLGHO\ XQUHODWHG JHQHUD RI $PDU\OOLGDFHDH )ORU\ f %DVH QXPEHU LQ WKH $PDU\OO\GDFHDH LV FRQVLGHUHG E\ PRVW ZRUNHUV WR EH [ )ORU\ *ROGEODWW 0HHURZ f 7KH FKURPRVRPH QXPEHU QA FKDUDFWHULVWLF RI DOO QHRWURSLFDO SDQFUDWLRLG JHQHUD LQ SDUW RU HQWLUHO\ 'L )XOYLR )ORU\ 0HHURZ f LV OLNHO\ GHULYHG YLD GXSOLFDWLRQ RU IUDJPHQWDWLRQ RI D FKURPRVRPH IROORZHG E\ GRXEOLQJ RI WKH JHQRPH /DNVKPL 6DWR f 6QRDG f UHSRUWHG BQ IRU B+ TXLWRHQVLV 0DWHULDO KDYH LQ FXOWLYDWLRQ RI WKLV VSHFLHV IURP ERWK 3HUX DQG (FXDGRU KDV BQ 0HHURZ XQSXEO GDWDf 7KLV QXPEHU PD\ EH WULSORLG GHULYHG IURP WKH DQFHVWUDO QB 2I WKH IRUW\ FKDUDFWHUV XVHG LQ WKH DQDO\VLV ZHUH VLPSOH WZR VWDWH FKDUDFWHUV 2I WKH UHPDLQLQJ PXOWLVWDWH FKDUDFWHUV KDG WKUHH VWDWHV KDG IRXU VWDWHV DQG KDG ILYH VWDWHV 6RPH PXOWLVWDWHV FKDUDFWHUV ZHUH SODFHG LQWR OLQHDU WUDQVIRUPDWLRQ VHULHV FKDUDFWHUV VHH 7DEOH f 6RPH RI WKHVH FKDUDFWHUV ORJLFDOO\ FDOOHG IRU WKLV W\SH RI WUHDWPHQW HJ FKDUDFWHU RYXOH QXPEHUf 2UGHULQJ RI RWKHU PXOWLVWDWH FKDUDFWHUV

PAGE 282

LQWR OLQHDU WUDQVIRUPDWLRQ VHULHV ZDV EDVHG RQ FRUURERUDWLYH WUHQGV RFFXUULQJ LQ RWKHU WULEHV RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH 0HHURZ f RU ZLWKLQ WKH IDPLO\ DV D ZKROH HJ FKDUDFWHU H[LQH PRUSKRORJ\f $ QXPEHU RI WKUHH VWDWH FKDUDFWHUV f DQG RQH IRXUVWDWH FKDUDFWHU f ZHUH SODFHG LQWR ELIXUFDWLQJ WUDQVIRUPDWLRQ VHULHV ZKHUHE\ HDFK RI WKH GHULYHG VWDWHV ZDV FRGHG DV DQ LQGHSHQGHQW GHULYDWLRQ IURP WKH DQFHVWUDO 7DEOH f )LQDOO\ FKDUDFWHU FKURPRVRPH QXPEHUf D ILYH VWDWH FKDUDFWHU VHH 7DEOH f ZDV RUGHUHG RQ WKH EDVLV RI WKH FKURPRVRPH GDWD FLWHG DERYH 5HVXOWV &KDQJLQJ SRODULWLHV RI FKDUDFWHUV IORZHU QXPEHUf DQG VWLJPD PRUSKRORJ\f GLG QRW DIIHFW HLWKHU WKH WRSRORJ\ RU WKH UHVROXWLRQ RI WHUPLQDO WD[D LQ WKH UHVXOWLQJ FODGRJUDPV 7KH FODGRJUDP UHVXOWLQJ IURP WKH FRGLQJ WKH WULOREHG VWLJPD DQG IHZ IORZHUV DV GHULYHG ZDV HYROXWLRQDU\ VWHSV ORQJ DQG KDG D &RQVLVWHQF\ ,QGH[ .OXJH DQG )DUULV &O WRWDO OHQJWK RI FODGRJUDP PLQXV KRPSODVLHV GLYLGHG E\ WRWDO OHQJWKf RI 7KH FODGRJUDP UHVXOWLQJ IURP WKH FRGLQJ RI ERWK WKHVH FKDUDFWHUV DV DQFHVWUDO ZDV VWHSV ORQJ ZLWK D &O )RU WKH FODGRJUDP LOOXVWUDWHG )LJ f PRUH WKDQ IORZHUV DQG WULOREHG VWLJPDV ZHUH FRGHG DV DQFHVWUDO 7KHVH DUH WKH VWDWHV ZKLFK EHOLHYH DUH DQFHVWUDO LQ LQIUDIDPLO\ 3DQFUDWLRLGLQDH DV GLVFXVVHG DERYH 7KLV FODGRJUDP LV VWHSV ORQJ ZLWK D &O ,W LV WKXV WKH PRVW SDUVLPRQLRXV RI WKH WKUHH FODGRJUDPV DOEHLW E\ RQO\ D VLQJOH VWHS 2I WKH FKDUDFWHU VWDWH FKDQJHV LQ )LJ DUH KRPRSODVLHV DQG DUH UHYHUVDOV

PAGE 283

$V LV HYLGHQW IURP WKH FODGRJUDP 3DQFUDWLXP LV RQO\ RQH VWHS UHPRYHG WKH HYROXWLRQ RI D FDSLWDWH VWLJPD KRPRSODVLRXV ZLWK 8UFHROLQDf IURP WKH K\SRWKHWLFDO DQFHVWRU XVHG WR URRW WKH FODGRJUDP 7KLV LV FRQJUXHQW ZLWK PRUSKRORJLFDO DQG NDU\RORJLFDO GDWD WKDW VXJJHVWV WKDW 3DQFUDWLXP LV WKH PRVW SULPLWLYH JHQXV LQ WKH 3DQFUDWLRLGLQDH $FFRUGLQJ WR 7UDXE f D IHZ VSHFLHV RI 3DQFUDWLXUQ GR KDYH DQ REVFXUHO\ WULOREHG VWLJPD /HSLGRFKLWRQ LV WKH QH[W WHUPLQDO WD[RQ WR UHVROYH LQ WKH FODGRJUDP 8QLIORU\ DQG FKURPRVRPHV DUH WKH WZR DSRPRUSKLHV RI /HSLGRFKLWRQ EXW LWV K\SRWKHWLFDO DQFHVWRU LV GHILQHG E\ UHGXFWLRQ LQ IORZHU QXPEHU JORERVH VHHGV DQG D FKDQJH LQ WHVWD FRORU IURP EODFN WR EURZQ 7KH QH[W LQWHUQDO QRGH RI WKH FODGRJUDP LV WKH K\SRWKHWLFDO DQFHVWRU WR (XFKDULV &DOLSKUXULD DQG /OUFHROLQD DOO RI ZKLFK WKXV IRUP D PRQRSK\OHWLF JURXS 7HQ DSRPRUSKLHV RFFXU DW WKLV QRGH 7KH PRVW LPSRUWDQW DUH WKH HYROXWLRQ DQG IL[DWLRQ RI WKH SHWLRODWH OHDI WKH FKDQJHV LQ IORZHU KDELW DQG SHGLFHO OHQJWK WXEH PRUSKRORJ\ SROOHQ VL]H DQG LQFUHDVHG FKURPRVRPH QXPEHU 5DWKHU WKDQ DQ DFWXDO UHYHUVDO WR WULOREHG VWLJPDV WKLQN LW PRUH OLNHO\ WKDW WKH SULPLWLYH VWDWH ZDV UHWDLQHG ZLWKLQ WKLV PRQRSK\OHWLF JURXS XQWLO WKH ODWHU GLYHUJHQFH RI 8UFHROLQD 7KH QH[W ILYH ELIXUFDWLRQV LQ WKH FODGRJUDP DUH YHU\ LQWHUHVWLQJ 7KH WHUPLQDO WD[D LQYROYHG UHSUHVHQW (XFKDULV VXEJ +HWHURFKDULV (B DPD]QLFD ( DQPDOD DQG B( VDQGHULf ,W LV REYLRXV VXEJ +HWHURFKDULV LV SDUDSK\OHWLF 7KLV VLWXDWLRQ LV GLVFXVVHG LQ GHWDLO LQ WKH QH[W VHFWLRQ (XFKDULV DQPDOD DOVR UHVROYHV FODGLVWLFDOO\ DV WKH PRVW SULPLWLYH VSHFLHV RI (XFKDULV ZLWK RQO\ WZR FKDUDFWHU VWDWH FKDQJHV FUDWHULIRUP WR FDPSDQXODWH SHULDQWK VPRRWK WR UXJRVH WHVWDf

PAGE 284

GHILQLQJ WKLV VSHFLHV DV GLVWLQFW IURP WKH K\SRWKHWLFDO DQFHVWRU RI WKH HXFKDURLG JHQHUD (XFKDULV OHKPDQQLL D SRRUO\ NQRZQ VSHFLHV RI XQFHUWDLQ SK\ORJHQHWLF UHODWLRQVKLS LV WKH QH[W WHUPLQDO WD[RQ WR UHVROYH LQ WKH FODGRJUDP 7KH JUHDW DPRXQW RI PLVVLQJ FKDUDFWHU VWDWH LQIRUPDWLRQ IRU ( OHKPDQQLL FRPSURPLVHV LWV SRVLWLRQ LQ WKH FODGRJUDP EXW LQGLFDWLRQV DUH WKDW LW PD\ RFFXS\ DQ LVRODWHG SRVLWLRQ EHWZHHQ WKH PRUH SULPLWLYH DQG DGYDQFHG WD[D RI WKH HXFKDURLG OLQHDJH 7KH UHPDLQGHU RI WKH FODGRJUDP UHSUHVHQWV WZR PRQRSK\OHWLF JURXSV 7KHVH DUH (XFKDULV VXEJ (XFKDULV DQG &DOLSKUXULD DQG 8UFHROLQD UHVSHFWLYHO\ 7KH WZR DSRPRUSKLHV DW WKH DQFHVWUDO QRGH DUH D UHYHUVDO WR QXPHURXV IORZHUV DQG UHYHUVDO WR VKRUWHU VWDPLQDO WHHWK (XFKDULV R[\DQGUD DQRWKHU VSHFLHV RI XQFHUWDLQ SK\ORJHQHWLF UHODWLRQVKLSV DQG D JUHDW GHDO RI PLVVLQJ FKDUDFWHU VWDWH LQIRUPDWLRQ LV SODFHG ZLWKLQ WKH FODGRJUDP DV DQFHVWUDO WR ERWK 8UFHROLQD DQG &DOLSKUXULD 6L[ DSRPRUSKLHV GHILQH WKLV DQFHVWUDO QRGH WKH ORVV RI OHDI PDUJLQ XQGXODWLRQ UHGXFWLRQ LQ IORZHU VL]H ORVV RI IUDJUDQFH DQG DQGURHFLDO SLJPHQWDWLRQ UHGXFWLRQ LQ H[LQH UHWLFXOXP FRDUVHQHVV DQG UHYHUVDO LQ VHHG VKDSH 7KH VWDWH RFFXUULQJ LQ B( R[\DQGUD LV NQRZQ IRU RQO\ WZR RI WKHVH DSRPRUSKLHV IORZHU VL]H DQG H[LQH PRUSKRORJ\f 8UFHROLQD KDV WKH ODUJHVW SDWULVWLF GLVWDQFH RI DOO WHUPLQDO WD[D LQ WKH FODGRJUDP ZLWK QLQH DSRPRUSKLHV OHDYHV K\VWHUDQWKRXV IORZHUV FP ORQJ DQG EULJKWO\ FRORUHG XUFHRODWH SHULDQWK DQWKHUV YHUVDWLOH DW DQWKHVLV ORQJH[VHUWHG VW\OH FDSLWDWH VWLJPD QXPHURXV RYXOHV DQG XQLTXH REORQJ FXUYHG VHHGf IRXU RI ZKLFK DUH UHYHUVDOV 7KH K\SRWKHWLFDO DQFHVWRU RI &DOLSKUXULD UHTXLUHG HLJKW FKDUDFWHU VWDWH FKDQJHV VWUDLJKW DQG JUHHQ WXEH IXQQHO IRUP SHULDQWK ORQJ VWDPLQDO

PAGE 285

WHHWK ILQHO\UHWLFXODWH H[LQH PXOWLFHOOXODU VWLJPDWLF SDSLOODH UHGXFHG RYXOH QXPEHU DQG QRQOXVWURXV WHVWDf WZR RI ZKLFK ZHUH UHYHUVDOV :LWKLQ &DOLSKUXULD WZR VPDOO PRQRSK\OHWLF VXEJURXSV DUH UHVROYHG ZLWK WZR VSHFLHV HDFK 7KH PDMRU GLIIHUHQFHV EHWZHHQ WKHVH WZR VXEJURXSV LV WKH SUHVHQFH e KDUWZHJLDQD DQG e WHHUDf RU DEVHQFH & VXEHGHQWDWD DQG & NRUVDNRIILLf RI VWDPLQDO GHQWDWLRQ DQG QXPEHU RI RYXOHV 7KH ODUJH FODGH FRPSULVLQJ (XFKDULV VXEJ (XFKDULV LV WKH PRQRSK\OHWLF JURXS LQ ZKLFK KDYH WKH JUHDWHVW FRQILGHQFH VLQFH FODGLVWLF UHODWLRQVKLSV DPRQJ WKH FRPSRQHQW VSHFLHV FRQILUP UHODWLRQVKLSV EDVHG RQ SKHQHWLF DQG F\WRORJLFDO GDWD $SRPRUSKLHV DW WKH DQFHVWUDO QRGH DUH WKH UHYHUVDO WR D ZHOOGHYHORSHG VWDPLQDO FXS PRUH OLNHO\ WKH UHWHQWLRQ RI WKH DQFHVWUDO VWDWHf WKH H[WHQWLRQ RI DQGURHFLDO SLJPHQWDWLRQ WR ERWK VXUIDFHV RI WKH VWDPLQDO FXS SOLFDWLRQ RI WKH VWDPLQDO FXS UHYHUVDO WR VKDOORZO\ FOHIW VWDPLQDO FXSV DOVR PRUH OLNHO\ UHWHQWLRQ RI DQ DQFHVWUDO VWDWHf WKH HYROXWLRQ RI VXEXODWH IUHH ILODPHQWV KRPRSODVLRXV ZLWK (B DPD]RQLFDf DQG WKH HYROXWLRQ RI WKH EULJKW RUDQJH PLPHWLF IUXLW 7ZR PDMRU PRQRSK\OHWLF VXEJURXSV UHVROYH ZLWKLQ VXEJ (XFKDULV ODUJHO\ RQ WKH EDVLV RI VWDPLQDO FXS FKDUDFWHUV 7KH ILUVW JURXS RI VSHFLHV DOO KDYH VKDOORZO\ FOHIW SOLFDWH VWDPLQDO FXSV :LWKLQ WKLV FODGH ODUJHIORZHUHG B( EDNHULDQD LV WKH ILUVW WHUPLQDO WD[RQ UHVROYHG 7KH UHPDLQLQJ WD[D ( SL L FDWD B( FDVWHQDHDQD DQG B( FRU\QDQGUD DUH DOO VPDOOIORZHUHG VSHFLHV YHU\ FORVH FODGLVWLFDOO\ DQG SKHQHWLFDOO\ DV ZHOO &KDSWHU 9, DQG ;,,f $FFRUGLQJ WR WKLV FODGRJUDP (XFKDULV FRU\QDQGUD PD\ EH DQFHVWUDO WR WKH IRUPHU WZR VSHFLHV 7KLV LV GRXEWIXO VLQFH WZR LPSRUWDQW DXWDSRPRSKLHV RI ( FRU\QDQGUD VKRUW VWDPLQDO FXS DQG FOXEVKDSHG IUHH ILODPHQWf

PAGE 286

ZHUH QRW LQFOXGHG LQ WKH FKDUDFWHU PDWUL[ $Q DQFHVWRUGHVFHQGHQW UHODWLRQVKLS LV DOVR VXJJHVWHG EHWZHHQ WKH WZR VXEVSHFLHV RI (B SL L FDWD $OO DSRPRUSKLHV H[SUHVVHG LQ ( FDVWHOQDHDQD DUH HLWKHU KRPRSODVLHV UHYHUVDOV RU ERWK 7KH PRVW LQWHUHVWLQJ RI WKHVH LV WKH UHYHUVDO LQ WKLV VSHFLHV WR DQ DQFHVWUDO IUXLW PRUSKRORJ\ $ QXPEHU RI WKH FKDUDFWHU VWDWH UHYHUVDOV WKDW RFFXU LQ WKH FODGRJUDP FRXOG MXVW DV OLNHO\ EH FRQVLGHUHG WR EH WKH UHWHQWLRQ RI WKH DQFHVWUDO VWDWH LQ WKDW SDUWLFXODU FODGH EHOLHYH WKDW WKH JUHHQ WKLQZDOOHG FDSVXOH RI (B FDVWHOQDHDQD PD\ EH D WUXH HYROXWLRQDU\ UHYHUVDO VLQFH WKHUH LV QRW \HW D VLQJOH DGGLWLRQDO VSHFLHV RI VXEJ (XFKDULV WKDW GRHV QRW KDYH WKH RUDQJH FDSVXOH W\SLFDO RI WKH VXEJHQXV 7KH VHFRQG PRQRSK\OHWLF VXEJURXS RI VXEJ (XFKDULV DOVR UHVROYHV VHYUDO SRVVLEOH DQFHVWRUGHVFHQGHQW UHODWLRQVKLSV (XFKDULV IRUPRVD LV UHVROYHG LQ D ]HUROHQJWK EUDQFK IURP WKH DQFHVWUDO QRGH GHILQHG E\ DSRPRUSKLHV RI SOLFDWH OHDI ODPLQD DQG D PRUH GHHSO\ FOHIW VWDPLQDO FXS 7KH SUHVHQFH RI IORUDO IUDJUDQFH LQ WKLV VSHFLHV DQG LWV ODUJH IORZHU VL]H DUH V\PSOHVLRPRUSKLHV ZLWK ( EDNHULDQD WR ZKLFK B( IRUPRVD DOVR EHDUV FORVH SKHQHWLF UHODWLRQVKLS &KDSWHU 9,f 7KH QH[W WHUPLQDO WD[RQ LV B( FDQGL GD DOVR WHUPLQDWLQJ D ]HUROHQJWK FODGH /RVV RI IORUDO IUDJUDQFH DQG D UHGXFWLRQ LQ IORZHU VL]H DUH WKH DSRPRUSKLHV DW WKLV QRGH 7KH UHPDLQLQJ WD[D LQ WKH FODGRJUDP DUH OLQNHG E\ WKH IROORZLQJ DSRPRUSKLHV UHGXFWLRQ LQ IORZHU QXPEHU DQG RYXOH QXPEHU (XFKDULV XOHL LV SRVLWLRQHG DW WKH DQFHVWUDO QRGH 7RJHWKHU ZLWK B( DVWURSKLDOD DQG B( F\DQHRVSHUPD B( XOHL IRUPV DQ XQUHVROYHG WULFKRWRP\ LQ WKH FODGRJUDP 7KH ILQDO PRQRSK\OHWLF JURXS ZLWKLQ VXEJ (XFKDULV LV IRUPHG E\ WKH WZR WHWUDSORLG WD[D ( ERQSODQGLL DQG ( ERXFKHL /RVV RI OHDI

PAGE 287

SOLFDWLRQ DQG PDUJLQDO XQGXODWLRQ DUH WKH DGGLWLRQDO DSRPRUSKLHV DW WKH DQFHVWUDO QRGH 7KH FODGRJUDP SUHVHQWHG LQ )LJ FRQWDLQV KRPRSODVWLF FKDUDFWHU VWDWH FKDQJHV DQG UHYHUVDOV 7KLV PD\ UDLVH TXHVWLRQV FRQFHUQLQJ WKH KRPRORJ\ RI FKDUDFWHUV ZKLFK PDQLIHVW WKHVH FKDQJHV ,QYDULDEO\ LW LV DQGURHFLDO FKDUDFWHUV LQFOXGLQJ SROOHQ VL]Hf LQ ZKLFK D JUHDW GHDO RI KRPRSODV\ KDV RFFXUHG 7KH HYLGHQFH IURP SKHQHWLF VWXGLHV RI (XFKDULV &KDSWHU 9,f DQG IURP VWXG\ RI RWKHU JHQHUD RI WKH 3DQFUDWLRLG $PDU\OOLGDFHDH HJ 0HHURZ f LQGLFDWHV WKDW DQGURHFLDO FKDUDFWHUV DUH DPRQJ WKH PRVW HDVLO\ PRGLILHG PRUSKRORJLFDO FKDUDFWHUV LQ WKLV JURXS 1RW RQO\ FDQ VSHFLHV EH SRO\PRUSKLF IRU VXFK FKDUDFWHUV DV VWDPLQDO GHQWDWLRQ HJ (B FDQGLGD (B IRUPRVD ,( XOHL B( R[\DQGUDf EXW UHGXFWLRQ RI WKH VWDPLQDO FXS KDV RFFXUHG LQGHSHQGHQWO\ LQ HYHU\ SDQFUDWLRLG WULEH DQG VRPHWLPHV PRUH WKDQ RQFH 0HHURZ XQSXEO GDWDf 5HGXFWLRQ RI WKH VWDPLQDO FXS LV RQH RI VHYHQ DSRPRUSKLHV WKDW GHILQH D PRQRSK\OHWLF JURXS LQFOXGLQJ ( VDQGHUL (B OHKPDQQL L ( R[\DQGUD &DOLSKUXULD DQG 8UFHROLQD 6LQFH FKDUDFWHUV DQG DOVR LQFOXGHG WKLV VWDWH WKLV FKDUDFWHU f§SRWHQWLDOO\ QRQKRPRORJRXV DPRQJ WKHVH GLYHUVH WD[D f§ DFWXDOO\ UHSUHVHQWV WKUHH RI WKH VHYHQ DSRPRUSKLHV DW WKLV QRGH 7KH GDWD PDWUL[ ZDV WKHUHIRUH UXQ ZLWK FKDUDFWHUV DQG GHOHWHG 7KH RQO\ FKDQJH LQ WHUPLQDO WD[D RQ WKH UHVXOWLQJ FODGRJUDP ZDV WKDW ( VDQGHUL ZDV UHVROYHG DV VLVWHU WD[RQ WR ( DQPDOD

PAGE 288

'LVFXVVLRQ &ODGLVWLF DQDO\VLV LQGLFDWHV WKDW (XFKDULV &DOLSKUXULD DQG 8UFHROLQD UHSUHVHQW D PRQRSK\OHWLF JURXS ZHOOVXSSRUWHG E\ DSRPRUSKLF FKDUDFWHU VWDWH FKDQJHV :LWKLQ WKLV ODUJH JURXS (XFKDULV VXEJ (XFKDULV IRUPV DQRWKHU FOHDU FXW PRQRSK\OHWLF JURXS &ODGLVWLF UHODWLRQVKLSV DPRQJ WKH VSHFLHV RI VXEJ (XFKDULV ODUJHO\ FRUURERUDWH UHODWLRQVKLSV SRVWXODWHG RQ WKH EDVLV RI SKHQHWLF DQG FKURPRVRPDO GDWD 7KH FODULW\ RI WKLV FODGH LV GXH LQ QR VPDOO PHDVXUH WR WKH FRPSOHWHQHVV RI WKH GDWD PDWUL[ IRU WKH FRPSRQHQW VSHFLHV 7KH VLVWHU JURXS UHODWLRQVKLS EHWZHHQ &DOLSKUXULD DQG 8UFHROLQD VHHPV WR EH D YHU\ UREXVW FODGLVWLF K\SRWKHVLV +RZHYHU WKUHH RI WKH IRXU VSHFLHV RI &DOLSKUXULD DUH UHVWULFWHG WR ZHVWHUQ &RORPELD DV LV (XFKDULV VDQGHUL +\EULGL]DWLRQ EHWZHHQ &DOL SKUXULD DQG -( VDQGHUL DV ZHOO DV D GHJUHH RI SKHQHWLF UHVHPEODQFH EHWZHHQ B( VDQGHUL DQG &DOLSKUXULD OHG PH WR HDUOLHU K\SRWKHVL]H WKDW VXEJ +HWHURFKDULV DQG &DOLSKUXULD ZHUH VLVWHU JURXSV DQG WKDW 8UFHROLQD UHSUHVHQWHG D VHSDUDWH SHUKDSV HYHQ HDUOLHU GLYHUJHQFH IURP WKH DQFHVWUDO HXFKDURLG FRPSOH[ 0HHURZ f 7KLV HDUOLHU K\SRWKHVLV LV QRW VXSSRUWHG E\ WKH FODGRJUDP )LJ f 2I WKH HXFKDURLG WD[D (XFKDULV VXEJ +HWHURFKDULV KDV WKH JUHDWHVW QXPEHU RI SXWDWLYHO\ SULPLWLYH FKDUDFWHUV DQG FOHDUO\ UHSUHVHQWV WKH PRUH DQFHVWUDO VSHFLHV LQ WKH JHQXV 1RQHWKHOHVV P\ FRQFHSW RI WKLV VXEJHQXV LV SDUDSK\OHWLF VLQFH GHVFHQGHQWV RI WKH FRPPRQ DQFHVWRU RI +HWHURFKDULV DUH H[FOXGHG IURP WKH JURXS 6XEJHQXV +HWHURFKDULV LV D IDLUO\ KHWHURJHQRXV JURXS IURP WKH SHUVSHFWLYH RI DSRPRUSKLF FKDUDFWHUV DORQH (DFK RI WKH WKUHH VSHFLHV PD\ EH FKDUDFWHUL]HG E\ DXWDSRPRUSKLHV EXW RQO\ V\PSOHVLRPRUSKLHV MRLQ WKHP

PAGE 289

%\ ,QFOXGLQJ VXEJ +HWHURFKDULV LQ (XFKDULV (XFKDULV EHFRPHV SDUDSK\OHWLF DFFRUGLQJ WR WKLV FODGRJUDP 7KH FODGRJUDP SUHVHQWHG LQ )LJ LV D XVHU JHQHUDWHG WUHH SLFWXULQJ UHODWLRQVKLSV IURP DQ DOWHUQDWLYH SHUVSHFWLYH ,Q WKLV FODGRJUDP KDYH SRVLWLRQHG 8UFHROLQD DV DQ HDUO\ GLYHUJHQFH IURP WKH HXFKDURLG OLQHDJH DQG &DOLSKUXULD DV D VLVWHU JURXS WR VXEJ +HWHURFKDULV 7KH SUREOHPDWLF VSHFLHV ( OHKPDQQL L DQG (B R[\DQGUD ZHUH VLWXDWHG ZLWKLQ WKH FODGH FRQWDLQLQJ VPDOIORZHUHG VSHFLHV RI VXEJ (XFKDULV ZLWK QXPHURXV RYXOHV 7KLV WRSRORJ\ RI WKLV XVHUn JHQHUDWHG WUHH ZDV WKHQ FRGHG DQG VXEPLWWHG WR 3$83 DORQJ ZLWK WKH FKDUDFWHU VWDWH PDWUL[ 7DEOH f IRU DQDO\VLV RI FKDUDFWHU VWDWH FKDQJHV UHTXLUHG WR VXSSRUW WKH WRSRORJ\ 7KLV VHFRQG FODGRJUDP UHTXLUHG HYROXWLRQDU\ VWHSV DQG KDV D &O RI 2I WKH FKDUDFWHU VWDWH FKDQJHV ZHUH KRPRSODVLHV DQG ZHUH UHYHUVDOV 7KXV LW LV OHVV SDUVLPRQLRXV WKDQ WKH FODGRJUDP LQ )LJ 6LQFH GLG QRW DOWHU WKH UHVROXWLRQ RI WKH VSHFLHV RI VXEJ (XFKDULV LQ )LJ IURP WKH UHVXOWV SLFWXUHG LQ )LJ FKDUDFWHU VWDWH FKDQJHV VXSSRUWLQJ LWV WRSRORJ\ DUH HVVHQWLDOO\ WKH VDPH LQ ERWK FODGRJUDPV 7KHUHIRUH GHWDLOHG WRSRORJ\ IRU VXEJ (XFKDULV LV QRW LOOXVWUDWHG LQ )LJ 7KH DUHDV RI H[FHSWLRQDO LQWHUHVW LQ WKLV XVHUn JHQHUDWHG FODGRJUDP DUH WKH UHVROXWLRQ RI 8UFHRO L QD &DOL SKUXULD B( VXEJ +HWHURFKDULV DQG WKH DFFRPSDQ\LQJ FKDUDFWHU VWDWH FKDQJHV ZLWKLQ WKHVH FODGHV 7KH YHU\ HDUO\ EUDQFKLQJ RI 8UFHROLQD IURP WKH UHVW RI WKH HXFKDURLG OLQHDJH LQ )LJ KDV FRQVHTXHQFHV LQ WKH ODWHU EUDQFKLQJ RI WKH PRQRSK\OHWLF JURXS FRPSRVHG RI &DOLSKUXULD DQG +HWHURFKDULV DQG IXUWKHU FRQVHTXHQFHV DW WKH DQFHVWUDO QRGH RI VXEJ +HWHURFKDULV 7KH

PAGE 290

DQFHVWUDO QRGH IURP ZKLFK +HWHURFKDULV DQG &DOLSKUXULD ELIXUFDWH LV GHILQHG E\ DSRPRUSKLHV JUHHQ WXEH FXUYHG WXEH ORQJ VWDPLQDO WHHWK DQG QRQOXVWURXV WHVWDf WKUHH RI ZKLFK DUH UHYHUVDOV 7KH DQFHVWUDO QRGH RI VXEJ +HWHURFKDULV LV GHILQHG E\ QLQH DSRPRUSKLHV ODUJH IORZHUV IUDJUDQW IORZHUV UHGXFHG IORZHU QXPEHU VKRUW SHGLFHOV FDPSDQXODWH SHULDQWK YHUVDWLOH DQWKHUV RQJH[VHUWHG VW\OHV URVWHOODWH RYDULHV DQG LQFUHDVHG RYXOH QXPEHUf VHYHQ RI ZKLFK DUH UHYHUVDOV PRUH OLNHO\ WKH UHWHQWLRQ RI DQFHVWUDO VWDWHVf ,I WKHVH UHYHUVDOV DUH DFWXDOO\ WKH UHWHQWLRQ RI WKH DQFHVWUDO VWDWHV LQ WKH +HWHURFKDULV FODGH 8UFHROLQD ZRXOG QHFHVVDULO\ UHTXLUH HYHQ PRUH DSRPRUSKLHV WKDQ WKH QLQH LQGLFDWHG LQ )LJ ZLWK DQ HYHQ JUHDWHU LQFLGHQFH RI KRPRSODV\ 7KH TXHVWLRQ WKDW PXVW EH DVNHG LV ZKHWKHU WKHUH LV DQ\ HYLGHQFH WR VXSSRUW VXFK DQ HDUO\ GLYHUJHQFH RI WKH 8UFHROLQD FODGH IURP WKH UHVW RI (XFKDULV UDWKHU WKDQ WKH PRUH SDUVLPRQLRXV SK\ORJHQ\ LOOXVWUDWHG LQ )LJ 7KH RQO\ HYLGHQFH HYLGHQFH LV FLUFXPVWDQWLDO WKH YLFDULDQW GLVWULEXWLRQ RI 8UHFROLQD WR WKH VRXWK RI WKH FHQWHU RI GLYHUVLW\ IRU (XFKDULV )LJ f 8UFHROLQD XUFHRODWD WKH VRXWKHUQPRVW GLVWULEXWHG VSHFLHV LQ WKH JHQXV LV WKH ODUJHVW IORZHUHG VSHFLHV RI 8UFHROLQD DQG WKH KDV WKH ODUJHVW QXPEHU RI RYXOHV SHU ORFXOH WKH DQFHVWUDO QXPEHU LQ WKH HXFKDURLG OLQHf $VVXPLQJ WKH VDPH W\SH RI FKDUDFWHU VWDWH FKDQJHV LQ 8UFHROLQD DV LQ (XFKDULV ERWK FKDUDFWHUV RI 8 XUFHRODWD ZRXOG LQGLFDWH WKDW LW LV D OHVV GHULYHG VSHFLHV WKDQ -PL FURF UDWHU VPDOO IORZHUV RYXOHV SHU ORFXOHf WKH QRUWKHUQPRVW GLVWULEXWHG VSHFLHV 7KH JUHDWHVW GLYHUVLW\ RI 8UFHRO LQD LV LQ PRQWDQH VRXWKHDVWHUQ 3HUX 7KLV HYLGHQFH VXJJHVWV WR PH WKDW 8UFHRO LQD HYROYHG LQ WKLV UHJLRQ 5HOLFW DQFHVWUDO WD[D RI (XFKDULV DUH FRQVSLFXRXVO\

PAGE 291

DEVHQW IURP WKLV JHRJUDSKLF UHJLRQ EXW DUH V\PSDWULF ZLWK PRUH GHULYHG VSHFLHV WKURXJKRXW PXFK RI WKH QRUWKHUQ UDQJH RI (XFKDULV )LJ f +RPRSODV\ LQ DQGURHFLDO DQG SROOHQ FKDUDFWHUV LV ZLGHVSUHDG WKURXJKRXW WKH SDQFUDWLRLG $PDU\OOLGDFHDH 0HHURZ f DQG KDV EHHQ FOHDUO\ GRFXPHQWHG ZLWKLQ VXEJ (XFKDULV DORQH 6LVWHU JURXS UHODWLRQVKLSV EDVHG RQ VXFK FKDUDFWHUV DUH WKXV VXVSHFW 2I WKH DSRPRUSKLHV DW WKH DQFHVWUDO QRGH GHILQLQJ &DOLSKUXULD 8UFHROLQD DQG B( R[\DQGUD DV D PRQRSK\OHWLF JURXS LQ )LJ WZR DUH RI WKLV FDWHJRU\ 2WKHU DSRPRUSKLHV DW WKLV QRGH DUH EDVHG RQ FKDUDFWHUV RI GHPRQVWUDWHG SODVWLFLW\ HJ OHDI FKDUDFWHUV IORZHU VL]Hf RU FKDUDFWHUV RI XQNQRZQ JHQHWLF FRPSOH[LW\ VHHG PRUSKRORJ\f 2QO\ WKUHH DSRPRUSKLHV GHILQH &DOLSKUXULD DQG 8UFHROLQD DV D PRQRSK\OHWLF JURXS DIWHU WKH GLYHUJHQFH RI B( R[\DQGUD LQ )LJ WKH KDELW RI WKH IORZHU WKH VWUDLJKW WXEH DQG SROOHQ VL]H 3ROOHQ VL]H DV GLVFXVVHG DERYH DQG HOVHZKHUH LQ WKLV GLVFXVVLRQ LV DFFHSWDEO\ KRPRSODVLRXV )ORZHU KDELW RI ERWK JHQHUD LV DFWXDOO\ GLIIHUHQW GHFOQDWH LQ &DOLSKUXULD SHQGHQW LQ 8UFHROLQDf EXW ZDV FRGHG DV D VLQJOH VWDWH RQ WKH EDVLV RI ZKHWKHU LW LV D IDFWRU RI SHGLFHO KDELW RU WXEH PRUSKRORJ\ VHH 7DEOH f 7KLV OHDYHV WKH VWUDLJKW WXEH D FKDUDFWHU WKDW PD\ EH UHWHQWLRQ RI WKH DQFHVWUDO VWDWH RU D WUXH UHYHUVDO LQ ZKLFK FDVH SRVVLEO\ KRPRSODVLRXVf 7KXV WKHUH DSSHDUV WR EH D GHJUHH RI XQFHUWDLQW\ DVVRFLDWHG ZLWK VRPH SRUWLRQV RI WKH VWURQJHU RI WKH WZR FODGRJUDPV )LJ f +RZHYHU WKH FODGRJUDP LQ )LJ LV PRUH SDUVLPRQLRXV DQG DOVR PRUH FOHDUO\ UHVROYHV WKH VSHFLHV RI VXEJ +HWHURFKDULV DV WKH PRVW SULPLWLYH LQ (XFKDULV 7KRXJK LW LV XQGRXEWHGO\ D FRQWURYHUVLDO GHFLVLRQ IURP DQ RUWKRGR[ FODGLVWLF SHUVSHFWLYH SUHIHU WR UHFRJQL]H 8UFHROLQD DQG &DOLSKUXULD DV GLVWLQFW JHQHUD GHVSLWH WKH DWWHQGHQW ULVN RI D

PAGE 292

SDUDSK\OHWLF (XFKDULV 7KH DQFHVWUDO QRGH LQ )LJ IURP ZKLFK 8UFHROLQD &DOLSKUXULD DQG (XFKDULV VXEJ (XFKDULV IRUPV D PRQRSK\OHWLF JURXS LV GHILQHG E\ RQO\ DSRPRUSKLHV UHYHUVDOV WR QXPHURXV IORZHUV DQG VKRUW VWDPLQD WHHWKf 7KXV WKLV PRQRSK\OHWLF JURXS LV QRW YHU\ ZHOO VXSSRUWHG $VKORFN f SUHVHQWV D YHU\ HORTXHQW DUJXHPHQW IRU DFFHSWDQFH RI SDUDSK\OHWLF JURXSV $VKORFN DUJXHV WKDW DQ HYROXWLRQDU\ V\VWHPDWLF DSSURDFK WR D JURXS RI RUJDQLVPV VKRXOG HTXDOO\ UHIOHFW DQDJHQHVLV >GHJUHH RI GLYHUJHQFH QXPEHU RI DSRPRUSKLHVf@ DV ZHOO DV FODGRJHQHVLV +H GHILQHV WZR VXEFODVVHV RI PRQRSK\OHWLF JURXSV KRLRSK\OHWLF ZKLFK FRQWDLQ DOO GHVFHQGHQWV RI WKH VWHP DQFHVWRU DQG SDUDSK\OHWLF WKRVH ZKLFK GR QRW $VKORFN FODLPV WKDW RUWKRGR[ FODGLVWV E\ LJQRULQJ WKH DQDJHQHWLF DVSHFW RI HYROXWLRQ LH EDVLQJ WKHLU FODVVLILFDWLRQV VWULFWO\ RQ EUDQFKLQJ SDWWHUQf UHGXFH WKH LQIRUPDWLRQ FRQWHQW RI WKHLU FODVVLILFDWLRQ ,Q WKH ILUVW FODGRJUDP )LJ f 8UFHROLQD DQG &DOLSKUXULD DUH GHILQHG E\ DQG DSRPRUSKLHV UHVSHFWLYHO\ 7KH VWHP +78 K\SRWKHWLFDO WD[RQRPLF XQLWf RI VXEJHQXV (XFKDULV LV GHILQHG E\ VL[ DSRPRUSKLHV WZR RI ZKLFK ZHOGHYHORSHG DQG VKDOORZO\ FOHIW VWDPLQDO FXSf DUH SUREDEO\ IDOVH DV WKH\ PRUH WKDQ OLNHO\ UHSUHVHQW UHWHQWLRQ RI WKH DQFHVWUDO VWDWH 7KUHH RI WKH UHPDLQLQJ IRXU DUH DOO DQGURHFLDO FKDUDFWHUV DQ DUHD RI H[WHQVLYH PRUSKRORJLFDO SODVWLFLW\ WKURXJKRXW WKH SDQFUDWLRLG $PDU\OOLGDFHDH 7KXV WKH RQO\ PDMRU DSRPRUSK\ VHSDUDWLQJ VXEJ (XFKDULV IURP DOO RWKHU WD[D LQ WKLV FODGH LV WKH RUDQJH PLPHWLF FDSVXOH ,Q WHUPV RI SDWULVWLF GLVWDQFH (XFKDULV LV PXFK FORVHU WR WKH WKUHH VSHFLHV RI VXEJ +HWHURFKDULV WKDQ HLWKHU &DOLSKUXULD RU

PAGE 293

8UFHROL QD ,Q WKH JHQHUDOL]HG VHQVH WKH GLVWULEXWLRQ RI VXEJ +HWHURFKDULV LV TXLWH EURDG IURP &RORPELD WR 3HUX )LJ f +RZHYHU HDFK RI WKH WKUHH VSHFLHV RI VXEJ +HWHURFKDULV LWVHOI DUH RQO\ QDUURZO\ GLVWULEXWHG (XFKDULV VDQGHUL LV NQRZQ RQO\ IURP WKH &KRF UHJLRQ RI &RORPELD (XFKDULV DPD]QLFD LV IRXQG QDWLYHO\ RQO\ LQ WKH PLGGOH 5LR +XDOODJD YDOOH\ RI 3HUX (XFKDULV DQPDOD FODGLVWLFDOO\ WKH PRVW DQFHVWUDO VSHFLHV LQ WKH JHQXV )LJ f KDV EHHQ FROOHFWHG RXWVLGH RI (FXDGRU RQO\ RQFH 0RUH VLJQLILFDQWO\ -( DQPDOD LV WKH RQO\ VSHFLHV RI (XFKDULV IRXQG RQ ERWK VLGHV RI WKH $QGHV EHOLHYH WKDW DOO WKUHH VSHFLHV RI VXEJ +HWHURFKDULV UHSUHVHQW WKH UHOLFWXDO UHPQHQWV RI WKH DQFHVWUDO HXFKDURLG FRPSOH[ HDFK RI ZKLFK KDV UHPDLQHG LVRODWHG ORQJ HQRXJK WR HYROYH LWV UHVSHFWLYH FRKRUW RI DXWDSRPRUSKLHV (XFKDULV R[\DQGUD LV D WD[RQRPLFDOO\ SHUSOH[LQJ VSHFLHV LQ LWV FKDUDFWHUV RI PRUSKRORJLFDO LQWHUPHGLDF\ EHWZHHQ (XFKDULV DQG 8UFHROLQD ,W LV NQRZQ RQO\ IURP EXOEV IRXQG LQ ORFDO WUDQVLHQW FXOWLYDWLRQ LQ 3HUX QHDU WKH VLQJOH UHFRUGHG SRLQW RI JHRJUDSKLF V\PSDWU\ EHWZHHQ (XFKDULV B( DPD]QLFDf DQG 8UFHRO LQD MPLFURFUDWHUf 7KH DEVHQFH RI GDWD RQ IUXLW DQG VHHG PRUSKRORJ\ RI WKLV VSHFLHV IXUWKHU RFFOXGHV UHVROXWLRQ RI LWV SK\ORJHQ\ (XFKDULV OHKPDQQL SUHVHQWV D VLPLODU SUREOHP ,W LV XQIRUWXQDWH WKDW 7UDXE f QHYHU VDZ ILW WR VXSSO\ VXSSRUWLQJ GDWD IRU KLV EURDG FRQFHSW RI (XFKDULV &DOLSKUXULD DQG 8UFHROLQD DV D VLQJOH SRO\PRUSKLF JHQXV ,W LV D FODGLVWLFDOO\ MXVWLILDEOH FRQFHSW (TXDOO\ VRXQG FODGLVWLFDOO\ LV WKH UHFRJQLWLRQ RI (XFKDULV +HWHURFKDULV &DOLSKUXULD DQG 8UFHROLQD DV GLVWLQFW JHQHUD )URP D SUDFWLFDO VWDQGSRLQW ILQG WKLV XQVDWLVIDFWRU\ GXH WR WKH FORVH

PAGE 294

SKHQHWLF UHODWLRQVKLS EHWZHHQ VXEJ +HWHURFKDULV DQG (XFKDULV 7KLV UHODWLRQVKLS LV PRVW FRQVSLFXRXV LI RQH FRPSDUHV (XFKDULV EDNHULDQD DQG (B IRUPRVD WKH PRVW SULPLWLYH VSHFLHV RI VXEJ (XFKDULVf ZLWK ( DPD]QLFD DQG B( DQPDOD VXEJ +HWHURFKDULVf $OWHUQDWLYHO\ 8UFHROLQD DQG &DOLSKUXULD FRXOG EH WUHDWHG DV WZR VXEJHQHUD RI 8UFHROLQD DFFRUGLQJ WR WKH FODGRJUDP LQ )LJ LI WKHLU VLVWHU JURXS UHODWLRQVKLS LV GHHPHG DFFXUDWH 7KLV UHODWLRQVKLS LV KRZHYHU DUJXDEOH ,Q WKH FRQWH[W RI SDQFUDWLRLG HYROXWLRQ LQ $PDU\OOLGDFHDH 0HHURZ 0HHURZ DQG 'HKJDQ f DQG PRGHUQ FRQFHSWV RI IDPLOLDO OLPLWV LQ PRQRFRWV +XEHU 'DKOJUHQ HW DO f SURSRVH UHFRJQLWLRQ RI (XFKDULV &DOL SKUXULD DQG 8UFHROLQD DV GLVWLQFW JHQHUD ZLWK WKH DFFHSWDQFH RI SDUDSK\OO\ LQ (XFKDULV 8QWLO IXUWKHU GDWD DOORZV D PRUH DFFXUDWH XQGHUVWDQGLQJ RI WKHLU UHODWLRQVKLSV DOVR SUHIHU WR PDLQWDLQ ( OHKPDQQLL DQG (B R[\DQGUD DV VSHFLHV RI (XFKDULV ZLWK WKH QRWDWLRQ LQFHUWDH VHGLV ,Q WKUHH QHRWURSLFDO OLQHDJHV RI WKH 3DQFUDWLRLGLQDH SDUDOOHO WUHQGV LQ WKH HYROXWLRQ RI IORUDO PRUSKRORJ\ KDYH RFFXUUHG 0HHURZ f ,Q HDFK FDVH WD[D ZLWK VPDOOHU WXEXODU RU YHQWULFRVH EULJKWO\ FRORUHG IORZHUV ZLWK UHGXFHG VWDPLQDO FRQQDWLRQ DQG ZLWKRXW QRWLFHDEOH IUDJUDQFH KDYH GLYHUJHG IURP WD[D SRVVHVVLQJ D ODUJH ZKLWH IUDJUDQW FUDWHULIRUP IORZHU ZLWK D VWDPLQDO FXS 0HHURZ f 7KH SDQFUDWLRLG IORZHU FRUUHODWHV UHSHDWHGO\ ZLWK WKH ODUJHVW SROOHQ JUDLQ VL]H ZLWKLQ WKH VXEIDPLO\ 0HHURZ 0HHURZ DQG 'HKJDQ f 3UHVXPHG EDVDO FRPSOH[HV ZLWKLQ HDFK SDQFUDWLRLG OLQHDJH DOVR KDYH QXPHURXV RYXOHV SHU ORFXOH D FKDUDFWHU VWDWH FRQVLGHUHG SULPLWLYH LQ WKH $PDU\OOLGDFHDH 7UDXE f (XFKDULV DQG 8UFHROLQD DV GRFXPHQWHG LQ WKLV SDSHU SUHVHQW RQH VXFK FDVH 3VHXGRVWHQRPHVVRQ 9HODUGH SHUKDSV SUHPDWXUHO\

PAGE 295

VXEPHUJHG E\ 7UDXE f DV VHFWLRQ $UWHPD RI +\PHQRFDOLV RQ WKH EDVLV RI OHDI DQG VHHG PRUSKRORJ\ SUHVHQWV D SDUDOOHO VLWXDWLRQ ZLWKLQ WKH +\PHQRFDOLV OLQHDJH 0HHURZ 0HHURZ DQG 'HKJDQ f 7ULEH 6WHQRPHVVHDH FRQWDLQV WZR VPDOO JHQHUD 3DPLDQWKH DQG 3DUDPRQJDLD ZLWK DQFHVWUDO IORUDO PRUSKRORJ\ DQG D ODUJH JHQXV 6WHQRPHVVRQ ZLWK GHULYHG PRUSKRORJ\ (DFK OLQHDJH DSSHDUV WR EH D PRQRSK\OHWLF JURXS RQ WKH EDVLV RI YHJHWDWLYH DQG RYDULDQ PRUSKRORJ\ DV ZHOO DV FKURPRVRPH QXPEHU 0HHURZ 7UDXE f $ VLPLODU SDWWHUQ RFFXUV LQ DOO WKUHH OLQHDJHV f IORUDO PRUSKRORJ\ RI GHULYHG WD[D VXJJHVWV DQ RUQLWKRSKLORXV SROOLQDWLRQ V\QGURPH DQG f GHULYHG WD[D DUH IRXQG HQWLUHO\ RU LQ SDUW DW KLJKHU HOHYDWLRQV WKDQ SUHVXPHG DQFHVWUDO WD[D ,Q WKH +\PHQRFDO LV DQG (XFKDULV OLQHDJHV WKH SDQFUDWLRLG IORUDO PRUSKRORJ\ KDV UDGLDWHG WR D IDU JUHDWHU H[WHQW WKDQ WKH SXWDWLYHO\ RUQLWKRSKLORXV GLYHUJHQFH 3VHXGRVWHQRPHVVRQ DQG 8UFHROLQD UHVSHFWLYHO\f ,Q WKH 3DPLDQWKH3DUDPRQJDLD 6WHQRPHVVRQ OLQHDJH LW LV WKH GHULYHG JHQXV 6WHQRPHVVRQ VSHFLHVf ZKLFK KDV VSHFLDWHG WR D JUHDWHU GHJUHH WKDQ WD[D ZLWK WKH DQFHVWUDO SDQFUDWLRLG IORZHU 3DPLDQWKH VSHFLHV 3DUDPRQJDLD PRQRW\SLFf $ SDWWHUQ XQLTXH WR WKH QHRWURSLFDO 3DQFUDWLRLGLQDH LV WKH H[LVWDQFH LQ PRGHUQ WLPHV RI VPDOO RU PRQRW\SLF JHQHUD ZLWK FKDUDFWHUV RI LQWHUPHGLDF\ EHWZHHQ PRUH ZLGHO\ GLVWULEXWHG JHQHUD $ QXPEHU RI WKHVH DUH NQRZQ RQO\ IURP WKH W\SH FROOHFWLRQV 3ODJLROLULRQ %DNHU DQG 0DWLXHXD .ORW]VFK DUH WZR VXFK WD[D WKDW 7UDXE f ILUVW PHUJHG ZLWK (XFKDULV DQG ODWHU ZLWK 8UFHROLQD 7UDXE f +RZHYHU IURP DYDLODEOH GDWD WKHLU DIILQLWLHV DSSHDU WR EH ZLWK +\PHQRFDOLV DQG 6WHQRPHVVRQ UHVSHFWLYHO\ 0HHURZ 06 LQ VXEPf (XFKDULV OHKPDQQLL DQG B( R[\DQGUD PD\ UHSUHVHQW WZR VXFK WD[D ZLWKLQ WKH HXFKDURLG SK\ORJHQ\

PAGE 296

7KHUH DUH RQO\ IRXU UHFRJQL]HG 3DOHRWURSLFDO SDQFUDWLRLG JHQHUD 3DQFUDWLXP FD VSHFLHV LV ZLGHO\ GLVWULEXWHG IURP $IULFD 0HGLWWHUDQHDQ (XURSH WR $VLD 7KH JHQXV LV EDGO\ LQ QHHG RI UHYLVLRQ $VLDQ VSHFLHV DUH SDUWLFXODUO\ SRRUO\ NQRZQ 7KH UHODWLRQVKLS RI 9DJDUD FD VSHFLHVf WR 3DQFUDWLXP LV VLPLODU WR WKDW RI &DOLSKUXULD DQG (XFKDULV 'LYHUJHQFH LV FRQFHQWUDWHG LQ DQGURFLDO FKDUDFWHUV (XU\FOHV VSHFLHVf DQG &DORVWHPPD VSHFLHVf DUH WZR $XVWUDODVLDQ JHQHUD YHU\ GLIIHUHQW LQ OHDI DQG IORUDO PRUSKRORJ\ EXW OLQNHG E\ WKH V\QDSRPRUSK\ RI D XQLTXH EXOELIRUP VHHG VHH &KDSWHU ,9f 3DQFUDWLXP DQG 9DJDULD KDYH FKURPRVRPHV 3RQQDPPD 0HHURZ XQSXEO GDWDf (XU\FOHV DQG &DORVWHPPD KDYH =DPDQ DQG &KDNUDERUW\ 0HHURZ XQSXEO GDWDf 1HRWURSLFDO WD[D FKDUDFWHULVH FDOO\ KDYH FKURPRVRPHV 'L )XOYLR )ORU\ 0HHURZ f 7KH PXFK KLJKHU OHYHO RI GLYHUJHQFH LQ QHRWURSLFDO SDQFUDWLRLG OLQHDJHV PD\ WKXV EH SULPDULO\ D IDFWRU RI WZR FDXVHV f WKH XSOLIW RI WKH $QGHV FUHDWLQJ PXFK RSSRUWXQLW\ IRU JHRJUDSKLF LVRODWLRQ DQG f JUHDWHU JHQHWLF DGDSWDELOLW\ YLD WHWUDSORLG\ WR QHZ HFRORJLFDO ]RQHV 1RUWKHUQ 6RXWK $PHULFD KDV KDG D WURSLFDO FOLPDWH VLQFH WKH &UHWDFHRXV 0D 'DUOLQJWRQ f $IWHU WKH LQLWLDO DSSHDUDQFH RI WKH SDQFUDWLRLG FRPSOH[ WKH HXFKDURLG OLQH SUREDEO\ GLYHUJHG IURP RWKHU SDQFUDWLRLG OLQHDJHV SHUKDSV EHFRPLQJ ZHOO UHSUHVHQWHG LQ WKH UDLQIRUHVW XQGHUVWRU\ DFURVV QRUWKHUQ 6RXWK $PHULFD 8SOLIW RI WKH $QGHDQ JHRV\QFOLQH SULRU WR WKH 3OLRFHQH 0Df ZDV QRW SURQRXQFHG 9DQ GHU +DPPHQ f $W WKH EHJLQQLQJ RI WKH 3OLRFHQH WKH SUHVHQWGD\ KLJK SODQH RI %RJRW£ &RORPELD UHPDLQHG LQ WKH WURSLFDO EHOW 9DQ GHU +DPPHQ f 'XULQJ WKH 3OLRFHQH PDVVLYH XSOLIW RI WKH $QGHDQ

PAGE 297

FRUGLOOHUD FORVH WR SUHVHQW HOHYDWLRQDO OLPLW RFFXUHG 9DQ GHU +DPPHQ f (XFKDULV DV SUHVHQWO\ FLUFXPVFULEHG LV UDUHO\ IRXQG LQGLJHQRXV DW HOHYDWLRQV DERYH P ,I VXFK D SURWRHXFKDURLG FRPSOH[ ZDV IRXQG DFURVV WKH QRUWKHUQ 6RXWK $PHULFDQ WURSLFDO EHOW H[SUHVVLQJ WKH VDPH ILGHOLW\ WR PHVLF ORZODQG VLWHV DV H[WDQW WD[D XSOLIW RI WKH $QGHV ZRXOG HIIHFWLYHO\ KDYH VSOLQWHUHG SRSXODWLRQV RI WKLV FRPSOH[ LQWR VHYHUDO VHWV RI SRSXODWLRQV 7KHVH ZRXOG WKHQ KDYH EHHQ VHSDUDWHG E\ WKH SDUDOOHO FKDLQV RI WKH $QGHV DQG WKHLU LQWHUYHQLQJ KLJK YDOOH\V SODWHDXV DQG [HULF ORZODQG YDOOH\V IRUPLGDEOH GLVSHUVDO EDUULHUV WR RUJDQLVPV DGDSWLYHO\ OLQNHG WR ORZODQG UDLQIRUHVW HFRORJ\ 0DVVLYH H[WLQFWLRQ RI LQWHUYHQLQJ SRSXODWLRQV SUREDEO\ RFFXUHG 6XEVHTXHQW WR WKH $QGHDQ XSOLIW WD[D RI WKH HXFKDURLG OLQH ZRXOG KDYH EHHQ UHVWULFWHG WR WZR JHRJUDSKLFDO DUHDV f SUHPRQWDQH UDLQIRUHVWV RI WKH 3DFLILF VORSH RI WKH QRUWKHUQ $QGHV DQG f WKH FRUUHVSRQGLQJ KDELWDW RQ WKH HDVWHUQ VORSHV RI WKH $PD]RQLDQ GUDLQDJH ,W LV ZLWKLQ WKHVH DUHDV WKDW WKH JUHDWHVW GLYHUVLW\ RI WKHVH WD[D LV FRQFHQWUDWHG 7KH FRQWLQXRXV XSOLIW RI WKH $QGHV DQG 3OHLVWRFHQH UHIXJLD HIIHFWV VHH &KDSWHU ,;f KDV KDG IXUWKHU LPSDFW RQ WKH HYROXWLRQ RI WKHVH JURXSV ,I WKH HYROXWLRQ RI &DOLSKUXULD DQG 8UFHROLQD LV DV UHFHQW DV WKLV VFHQDULR PLJKW VXJJHVW WKH RFFXUUHQFHV RI UDUH LQWHUJHQHULF K\EUL]DWLRQ LQ WKH ZLOG PD\ UHIOHFW ODUJHVFDOH PRUSKRORJLFDO GLIIHUHQWLDWLRQ DV D SUHIDFH WR ODUJHVFDOH JHQHWLF GLYHUJHQFH 7KLV LV H[DFWO\ ZKDW 'DYLV DQG *LO PDUWLQ f GLVFXVV LQ WKHLU UHYLHZ RI PRUSKRORJLFDO YDULDWLRQ DQG VSHFLDWLRQ 0XFK EURDGHU EDVHG LVR]\PH VWXGLHV RI WKHVH WD[D WKDQ GHWDLOHG LQ &KDSWHU 9,,, DUH SODQQHG WR DGGUHVV WKLV LVVXH LQ WKH $PDU\LGDFHDH

PAGE 298

+XEHU f UHYROXWLRQL]HG WKRXJKW RQ PRQRFRW SK\ORJHQ\ E\ SRLQWLQJ RXW WKDW PRQRSK\OHWLF JURXSV RI JHQHUD FRXOG EH UHVROYHG ZLWKLQ WUDGLWLRQDOO\ EURDG IDPLO\ FRQFHSWV RI WKH /LOLIORUDH 'DKOJUHQ DQG FRZRUNHUV HJ 'DKOJUHQ DQG &OLIIRUG 'DKOJUHQ HW DO f KDYH DGRSWHG PXFK RI +XEHUnV GDWD LQWR D SK\ORJHQHWLF FODVVLILFDWLRQ RI WKH PRQRFRWV ZLWK PXFK QDUURZHU IDPLO\ OLPLWV WKDQ SUHYLRXVO\ SURSRVHG E\ PRGHUQ WD[RQRPLVWV ZRUNLQJ DERYH WKH IDPLO\ OHYHO 'DKOJUHQ HW DO f KDYH FODVVLILHG WKH SHWDORLG PRQRFRWV RQ WKH VWULFW EDVLV RI DSRPRUSKLHV UDWKHU WKDQ E\ RYHUDOO VLPLODULW\ DQG FRQVHTXHQWO\ WKHLU PDQ\ REYLRXV V\PSOHVLRPRUSKLHV 'HWDLOHG VWXG\ RI (XFKDULV &DOLSKUXULD DQG 8UFHROLQD UHYHDO WKDW HDFK KDV HYROYHG LWV RZQ FRPSOHPHQW RI DXWDSRPRUSKLF FKDUDFWHUV VRPH RI ZKLFK HJ PXOWLFHOOXODU VWLJPDWLF SDSLOODH LQ &DOL SKUXULD PLPHWLF FDSVXOH LQ (XFKDULV XQLTXH VHHG PRUSKRORJ\ DQG DQDWRP\ LQ 8UFHROLQDf GR QRW UHRFFXU LQ WKH $PDU\OOLGDFHDH 5DWKHU WKDQ MRLQ WKHVH WD[D RQ WKH EDVLV RI WKHLU REYLRXV SKHQHWLF VLPLODULWLHV D FRQVHTXHQFH RI WKHLU FRPPRQ DQFHVWU\ SUHIHU WR UHFRJQL]H WKHLU GLYHUVLW\ DW WKH JHQHULF OHYHO DQG WKHLU FRPPRQ DQFHVWU\ DW WKH WULEDO UDQN (XFKDUHDHf

PAGE 299

7DEOH &KDUDFWHUV FKDUDFWHU VWDWHV DQG WUDQVIRUPDWLRQ VHULHV IRU FODGLVWLF DQDO\VLV RI (XFKDULV DQG &DOLSKUXULD )RU VLPSOH WZRVWDWH FKDUDFWHUV WKH WUDQVIRUPDWLRQ LV DOZD\V $ f§! % /HDYHV $ OLQHDU RU ORUDWH VHVVLOH % SHWLRODWH /HDYHV $ GHFLGXRXV % GHFLGXRXV DQG K\VWHUDQWKRXV & SHUVLVWHQW $ f§! % $ f§! & /HDYHV $ SOLFDWH % VPRRWK /HDI PDUJLQV $ QRQXQGXODWH % XQGXODWH 3HWLRODU VHFRQGDU\ EXQGOHV $ DEVHQW % SUHVHQW $ED[LDO FXWLFXODU VWULDWLRQV $ DEVHQW RU QHDUO\ VR % GHQVH ZHOOGHYHORSHG (SLGHUPDO FHOO DQWLFOLQDO ZDOOV $ PRUH RU OHVV VWUDLJKW % XQGXODWH )ORZHUV $ PRUH WKDQ FP ORQJ % FP ORQJ & OHVV WKDQ FP ORQJ $ % f§! & )ORUDO IUDJUDQFH $ KHDY\ % PLOG & DEVHQW $ f§! % f§! & )ORZHU QXPEHU $ PRUH WKDQ % FD & OHVV WKDQ $ f§! % f§! & )ORZHU FRORU $ ZKLWH % ZKLWH RU \HOORZ & \HOORZ RU RUDQJH $ f§! % $ f§! & )ORZHU KDELW $ HUHFW RU VXEHUHFW % GHFOLQDWH RU SHQGHQW E\ FXUYLQJ RI WXEH & GHFOLQDWH RU SHQGHQW E\ OD[QHVV RI SHGLFHO $ f§! % $ f§! & 3HGLFHO OHQJWK $ IORZHU VXEfVHVVLOH % OHVV WKDQ FP & JUHDWHU WKDQ FP ORQJ $ f§! % f§! & 7XEH KDELW $ VWUDLJKW % FXUYHG 7XEH OHQJWK $ ORQJHU WKDQ WHSDOV % HTXDO WR RU VKRUWHU WKDQ WHSDOV 7XEH FRORU $ JUHHQ % FRQFRORURXV ZLWK WHSDOV 7XEH PRUSKRORJ\ $ F\OLQGULFDO SUR[LPDOO\ GLODWLQJ DW WR RI LWV OHQJWK % IXQQHOIRUP GLODWLQJ JUDGXDOO\ IURP WKH EDVH & F\OLQGULFDO IRU PRVW RI LWV OHQJWK GLODWLQJ DEUXSWO\ QHDU WKH WKURDW $ f§! % $ f§! & 3HULDQWK PRUSKRORJ\ $ FUDWHULIRUP % FDPSDQXODWH & IXQQHOIRUP XUHFRODWH $ f§! % $ f§! & $ f§! 6WDPLQDO FXS $ ZHOO GHYHORSHG % UHGXFHG $QGURHFLDO SLJPHQWDWLRQ $ SULPDULO\ RQ LQWHULRU RI FXS % HTXDOO\ RQ LQWHULRU DQG H[WHULRU & DEVHQW $ f§!

PAGE 300

7DEOH f§FRQWLQXHG % $ f§! & 6WDPLQD FXS $ QRQSOLFDWH % SOLFDWH & UHGXFHG $ f§! % $ f§! & 6WDPLQD FXS $ VKDOORZO\ FOHIW EHWZHHQ VWDPHQV PPf % GHHSO\ FOHIW PPf & UHGXFHG $ f§! % $ & )UHH ILODPHQW $ OLQHDU PP ZLGHf % VXEXODWH PP ZLGHf 6WDPLQD GHQWDWLRQ $ SUHVHQW % SRO\PRUSKLF & DEVHQW $ f§! % $ f§! & 6WDPLQD WHHWK $ VKRUWHU WKDQ IUHH ILODPHQW % PRUH RU OHVV HTXDO WR IUHH ILODPHQW & ORQJHU WKDQ IUHH ILODPHQW DEVHQW $ f§! % f§! & $ f§! $QWKHUV $ YHUVDWLOH DW DQWKHVLV % HUHFW DW DQWKHVLV 3ROOHQ ORQJHVW HTXDWRULDO GLDPHWHU $ JUHDWHU WKDQ \XP % DP & \XP \8P ( AP $ f§! % f§! & f§! f§! ( 3ROOHQ H[LQH UHWLFXODWLRQ $ FRDUVH % PRGHUDWHO\ FRDUVH & ILQH $ f§! f§! & 6W\OH D[VHUWHG $ JUHDWHU WKDQ FP EH\RQG DQWKHUV % FP RU OHVV EH\RQG DQWKHUV EXW DERYH WKH ULP RI WKH VWDPLQDO FXS & WR RU EHORZ WKH ULP RI WKH VWDPLQDO FXS $ f§! % f§! & 6WLJPD $ WULOREHG % FDSLWDWH HQWLUH 6WLJPDWLF SDSLOODH $ XQLFHOOXODU % PXOWLFHOOXODU 2YDU\ FRORU $ JUHHQ % ZKLWH 2YDU\ $ URVWHOODWH % QRW URVWHOODWH 2YXOH QXPEHU SHU ORFXOHf $ % & $ f§! % f§! & f§! 5LSH FDSVXOH $ JUHHQ UHODWLYHO\ WKLQZDOOHG OHDWKHU\ RUDQJH 6HHGV $ FRPSUHVVHG % JORERVH RU HOOLSVRLG & QDUURZO\ REORQJ FXUYHG $ f§! % $ f§! & 7HVWD $ EODFN % EOXH & EURZQ $ f§! % $ f§! & 7HVWD $ GXOO % OXVWURXV 7HVWD $ VPRRWK % UXJRVH 6RPDWLF FKURPRVRPH QXPEHU $ % & ( $ f§! % f§! & f§! & (

PAGE 301

7DEOH /LVW RI 278nV DQG ODEHO GHVLJQDWLRQV IRU FODGLVWLF DQDO\VLV RI (XFKDULV DQG &DOLSKUXULD r RXWJURXS 7$;21 '(6,*1$7,21 (XFKDULV DPD]QLFD $0$ ( DQPDOD $12 ( DVWURSKLDOD $67 ( EDNHULDQD %$. ( ERQSODQGLL %21 ( ERXFKHL %28 ( FDQGLGD &$1 ( FDVWHOQDHDQD &$6 ( FRU\QDQGUD &25 ( F\DQHRVSHUPD &<$ ( IRUPRVD )25 ( SL L FDWD VXEVS SL L FDWD 3/,3 ( IRUPRVD VXEVS EUHYLGHQWDWD 3/,% ( OHKPDQQLL /(+ ( R[\DQGUD 2;< ( VDQGHUL 6$1 ( XOHL 8/( &DOLSKUXULD KDUWZHJLDQD +$5 & NRUVDNRIILL .25 & VXEHGHQWDWD 68% & WHHUD 7(1

PAGE 302

7DEOH f§FRQWLQXHG 7$;21 '(6,*1$7,21 r 3$1&5$7,80 3$1 85&(2/,1$ 85& r /(3,'2&+,721 +\PHQRFDO LV /(3 TXLWRHQVLV t +B KHOLDQWKDf $1&(6725 $1&

PAGE 303

7DEOH &KDUDFWHU VWDWH PDWUL[ IRU FODGLVWLF DQDO\VLV RI (XFKDULV DQG &DOLSKUXULD OLHIHU WR 7DEOH IRU NH\ WR 7 DEEUHYLDWLRQV 1R YDOXH LQGLFDWHV XQNQRZQ FKDUDFWHU VWDWH &+$5$&7(5 278 $12 % & $ % % $ $ $ $ $ $ % % % $ $ $ % $ $ $ $ $ $ $ $ & $ $ $ $ $ $ $ $ % & $ % & $0$ % & $ % $ % $ $ % $ % % % $ $ $ $ $ $ $ $ % $ $ $ % $ $ $ $ $ $ $ $ $ % $ $67 % $ % % $ % % & & % $ % F $ % $ $ % $ % % & % $ $ $ $ $ % % % % $ % $ & %$5 % & $ $ $ % % % % & $ % F % $ % % $ $ % % $ % $ $ % % $ % % $ $ % % % % $ % $ & %21 % & $ $ $ % % % & % $ % F % $ % % $ $ % $ % % $ $ % $ % $ $ $ % % % $ % $ ( %28 % & $ $ $ $ % % & % $ % % % $ % % $ $ % $ % % % % % & $ $ $ $ $ % % % $ % $ ( &$1 % & % % $ % % % & & $ % % % $ % % $ $ % $ % % % $ % & $ % $ $ % % F % % $ % $ & &$6 % & $ % $ % % & % & $ % % % $ % % $ $ % % $ % $ $ % ( $ & $ $ % & $ $ $ $ % & &25 % & & F $ $ % & % $ % & $ $ % % $ % $ $ % $ % $ % F &<$ % & % % $ % % % F % $ % & % $ % % $ $ % $ % % % $ % & $ % $ $ $ % % % % % $ & )25 % & % % $ % % % % & $ % & % $ % % $ $ % $ % % % $ % & $ % $ $ $ % % % % $ % $ & +$5 % & $ % & & $ & & $ $ % F % & & $ $ % % ( & % $ % $ % $ .25 % & $ $ $ % $ F & & $ & & $ % $ & % % & & & $ & % ( % % $ $ % % F $ % & $ $ & /(+ % & % & % $ % & % $ & $ % & & $ $ % % % $ $ % 2;< % & $ F F $ % & % $ % % % & & $ % $ % F % $ $ $ % % 3/,3 % & $ % $ % % F & F 9 X F % $ % % $ $ % % $ % $ & % F $ F $ $ $ % % $ % $ % $ & 3/,% % F $ % $ % % F % F $ % F % $ % % $ $ % % $ % $ % % F $ F $ $ $ & $ % $ % $ & 6$1 % F % % $ % % $ $ $ $ % F % $ $ $ & % $ & & $ & $ $ $ $ $ $ $ $ & 68% % F $ $ $ % % & F $ $ & F $ $ $ & % % & & & $ $ % ( & % $ % $ % & $ $ $ $ % & 7(1 % % & & $ $ & ‘ F $ % & % % F & F $ $ F % ( & % $ % $ D $ 8/( % F % % $ % % % F % $ % F % $ % % $ $ % $ % % % $ % & $ % $ $ $ % % % $ % $ & /(3 $ $ $ $ $ $ $ $ $ % % $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ % F $ $ 8 3$1 $ $ $ $ $ $ $ $ $ F $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $ 85& % % $ $ $ % % % F F F & F $ $ % % % F F F $ % $ $ ( % $ % $ $ % $ $ F $ % $ F $1& $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ % $ $ $ $ $ $ $ $ $ $

PAGE 304

)LJXUH &KDUDFWHU VWDWHV RI 8UFHROLQD $OO SKRWRV DUH 8 PL FURFUDWHU .UtQ]O 6FKXQNH )($6f XQOHVV RWKHUZ7VH VWDWHG $ )ORZHUV 37RnZPDQ .HQQHG\ *+f 3KRWR FRXUWHV\ 7 3ORZPDQ %& (SLGHUPDO FHO FRQILJXUDWLRQV % $ED[LDO & $GD[LDO 6FDOHV PP 6(0 SKRWRPLFURJUDSK RI DED[LDO OHDI VXUIDFH 6FDOH XUQ ( 6(0 SKRWRPLFURJUDSK RI 8 XUFHRODWD SROOHQ JUDLQ :HEHUEDXHU 86f SUR[LPDO SRODU Y7HZa 6FDOH XUQ ) 2YDU\7 6(0 SKRWRPLFURJUDSK RI VWLJPD 6FDOH XUQ + 6HHG ,/ /RQJLWXGLQDO WUDQVYHUVH VHFWLRQV RI VHHG 0LFURS\ODU HQG RI VHHG &KDOD]D HQG RI VHHG $SH[ RI HPEU\R 6FDOH XUQ ,QWHUQDO FKDOD]D FDS 6FDOH XUQ HP HPEU\R HQ HQGRVSHUP W WHVWD F FDS

PAGE 306

)LJXUH 8UFHROL QD *HQHUDO L ]HG LQ &HQWUDO GLVWULEXWLRQV RI (XFKDULV DQG 6RXWK $PHULFD &DOLSKUXULD DQG

PAGE 308

)LJXUH &ODGRJUDP RI (XFKDULV DQG &DOLSKUXULD EDVHG RQ GDWD PDWUL[ LQ 7DEOH LQGLFDWHV ]HUROHQJWK EUDQFK %URNHQ OL

PAGE 309

(XFKDULV VXEJ (XFKDULV VXEJ (XFKDULV &DOLSKUXULD +HWHURFKDULV 3$1

PAGE 310

)LJXUH 8VHUJHQHUDWHG FODGRJUDP RI (XFKDULV &DOLSKUXULD DQG 8UFHROLQD %URNHQ OLQH LQGLFDWHV ]HUROHQJWK EUDQFK

PAGE 311

(XFKDULV B f VXEJ +HWHURFKDULV &DLLSKUXULD (XFKDULV VXEJ (XFKDULV 3$1 &2 R UR

PAGE 312

&+$37(5 ;,, 7$;2120,& 75($70(17 0DWHULDOV DQG 0HWKRGV +HUEDULXP 6WXGLHV /RDQV RU JLIWV RI KHUEDULXP VSHFLPHQV ZHUH UHFHLYHG IURP WKH IROORZLQJ KHUEDULD $$8 % %0 &2/ ) )7* *% *+ *2(7 +817 /( 0 0* 0,&+ 02 038 1$ 1< 2;) 3 4&$ 6 6(/ 63 8 8& 86 9(1 /LYLQJ &ROOHFWLRQV 2YHU DFFHVVLRQV RI OLYLQJ PDWHULDO UHSUHVHQWLQJ VSHFLHV RU QDWXUDO K\EULGV RI (XFKDULV DQG &DOLSKUXULD ZHUH DFFXPXODWHG IURP SHUVRQDO ILHOG FROOHFWLRQV DQG IURP WKH IROORZLQJ LQGLYLGXDOV RU LQVWLWXWLRQV -DPHV %DXPO /LEE\ %HVVH &DODZD\ 'RGVRQ 5REHUW 'UHVVLHU 0DUN (OOLRW 7KRPDV )HQQHOO )UHG )XFKV +DUU\ /XWKHU )UHG 0H\HU 7LPRWK\ 3ORZPDQ -DPHV :DWVRQ 0DUN :KLWWHQ 0DUJRW :LOOLDPV 1RUULV :LOOLDPV 0DUFLD :LOVRQ %DLOH\ +RUWRULXP 5R\DO %RWDQLF *DUGHQV DW .HZ DQG (GLQEXUJK /RQJZRRG *DUGHQV 8& %HUNHOH\ %RWDQLFDO *DUGHQ +RQROXOX %RWDQLFDO *DUGHQV +XQWLQJWRQ %RWDQLFDO *DUGHQ )DLUFKLOG 7URSLFDO *DUGHQ 0DULH 6HOE\ %RWDQLFDO *DUGHQ 0LVVRXUL %RWDQLFDO *DUGHQ DQG 6WU\ELQJ $UERUHWXP 9RXFKHU VSHFLPHQV IRU OLYLQJ PDWHULDO XWLOL]HG LQ WKH YDULRXV V\VWHPDWLF LQYHVWLJDWLRQV HQXPHUDWHG LQ SUHYLRXV FKDSWHUV DUH GHSRVLWHG DW )/$6

PAGE 313

)LHOG 6WXGLHV )LHOG ZRUN ZDV FRQGXFWHG LQ 3HUX DQG (FXDGRU LQ -XO\$XJXVW DQG LQ &RORPELD DQG (FXDGRU LQ -XO\$XJXVW +HUEDULXP VSHFLPHQV DQG OLYLQJ PDWHULDO ZHUH FROOHFWHG DQG HFRORJLFDO REVHUYDWLRQV RI QDWXUDO SRSXODWLRQV ZHUH PDGH 1RWHV RQ &ULWLFDO 0HDVXUHPHQWV 0HDVXUHPHQWV RI YHJHWDWLYH DQG IORUDO SDUWV LQ WKH IROORZLQJ VSHFLHV GHVFULSWLRQV DUH GHULYHG IURP H[DPLQDWLRQ RI GULHG PDWHULDO IORUDO SDUWV DIWHU UHK\GUDWLRQ LQ D b VROXWLRQ RI $HURVRO 27 EURXJKW WR ERLOf VXSSOHPHQWHG ZLWK H[DPLQDWLRQ RI IUHVK RU )$$SUHVHUYHG PDWHULDO ZKHQ DYDLODEOH ,Q DOO FDVHV ZKHUH GULHG DQG IUHVK RU VSLULW SUHVHUYHG PDWHULDO RI WKH VDPH FROOHFWLRQ ZDV DYDLODEOH IRXQG OHVV WKDQ b GLIIHUHQFH EHWZHHQ PHDVXUHPHQWV RI UHK\GUDWHG DQG IUHVK RU SUHVHUYHG WLVVXH 0HDVXUHPHQWV RI WKH VWDPLQDO FXS DUH IUHTXHQWO\ FULWLFDO LQ GHOLPLWLQJ WD[D RI (XFKDULV SRVVHVVLQJ D ZHOOGHYHORSHG FXS DQG WKH FULWHULD XVHG LQ DVVHVVLQJ VL]H RI WKH DQGURHFLXP UHTXLUHV VSHFLDO FRQVLGHUDWLRQ /HQJWK PHDVXUHPHQWV RI WKH VWDPLQDO FXS ZHUH PDGH IURP WKH EDVH WR WKH DSH[ RI WKH WHHWK RU OREHV RI WKH FXS QRW LQFOXGLQJ WKH VXEXODWH SRUWLRQ RI WKH ILODPHQW ,Q RQO\ WZR FDVHV B( DVWURSKLDOD DQG (B ERXFKHL YDU ERXFKHLf ZKHUH HDFK VWDPHQ GLODWHV JUDGXDOO\ IURP DSH[ WR EDVH LQ DOO RU VRPH SRSXODWLRQV GR OHQJWK PHDVXUHPHQWV UHIHU WR WKH HQWLUH OHQJWK RI WKH DQGURHFLXP 7KH ZLGWK RI WKH VWDPLQDO FXS ZKHUH UHOHYDQW ZDV PHDVXUHG DW WKH ULP RI WKH FXS LQ WKRVH VSHFLHV ZKHUH WKH VWDPHQV FRQVWULFW GLVWDOO\ LQWR D QDUURZ VXEXODWH SRUWLRQ DQG DW WKH ZLGHVW SRLQW DORQJ WKH VWDPHQV LQ WKRVH WD[D LQ ZKLFK WKH VWDPHQV GLODWH

PAGE 314

JUDGXDOO\ IURP DSH[ WR EDVH 7KHVH PHDVXUHPHQWV DUH JUDSKLFDOO\ LOOXVWUDWHG LQ )LJXUH $ 1RWH RQ WKH .H\V 7D[D RI &DOLSKUXULD DQG (B VXEJ +HWHURFKDULV DUH VHSDUDEOH E\ GLVFUHWH FKDUDFWHUV RU FKDUDFWHU VWDWHV YHU\ DPHQDEOH WR NH\ FRQVWUXFWLRQ 8VLQJ WKH NH\V WR WKHVH WZR VXEJHQHUD DQ\ ZRUNHU VKRXOG EH DEOH WR LGHQWLI\ PDWHULDO UHIHUDEOH WR GHVFULEHG WD[D RI HLWKHU JURXS ZKHWKHU LQ WKH ILHOG RU LQ WKH KHUEDULXP 7KH HQRUPRXV GHJUHH RI SKHQRW\SLF SODVWLFLW\ H[KLELWHG E\ VSHFLHV RI VXEJ (XFKDULV KRZHYHU PDGH NH\ FRQVWUXFWLRQ GLIILFXOW 0RVW VSHFLHV RI VXEJ (XFKDULV RYHUODS WR DW OHDVW VRPH GHJUHH ZLWK RQH RU PRUH RWKHU VSHFLHV LQ YLUWXDOO\ DOO TXDQWLWDWLYH PRUSKRORJLFDO FKDUDFWHUV $V D FRQVHTXHQFH PDMRU GLFKRWRPLHV LQ WKH NH\ WR VXEJ (XFKDULV DUH QRW DV GLVFUHWH DV RQH ZRXOG SUHIHU ,Q VRPH FDVHV KDYH KDG WR UHO\ RQ FKDUDFWHUV REVHUYDEOH RQO\ ZLWK OLYLQJ PDWHULDO :LWK SHUVHUYHUDQFH DQ\ ZRUNHU VKRXOG EH DEOH WR NH\ RXW DOO EXW WKH PRVW GHSDXSHUDWH KHUEDULXP VSHFLPHQV RI VXEJ (XFKDULV 6SHFLHV &RQFHSW 7KH JUHDW GHJUHH RI PRUSKRORJLFDO YDULDWLRQ GHPRQVWUDWHG E\ PDQ\ VSHFLHV RI ,( VXEJ (XFKDULV UHQGHUV D SXUHO\ WD[RQRPLF VSHFLHV FRQFHSW XQZRUNDEOH 1DUURZ FRQFHSWV RI PRUSKRORJLFDO VSHFLHV LQ WKLV JHQXV KDYH OLWWOH ELRORJLFDO EDVLV DQG ZRXOG UHVXOW LQ DQ HQRUPRXV LQFUHDVH LQ WKH QXPEHU RI UHFRJQL]HG VSHFLHV 0D\U S f GHILQHG WKH ELRORJLFDO VSHFLHV DV JURXSV RI LQWHUEUHHGLQJ QDWXUDO SRSXODWLRQV WKDW DUH UHSURGXFWLYHO\ LVRODWHG IURP

PAGE 315

RWKHU VXFK JURXSV $W SUHVHQW WKHUH LV LQVXIILFLHQW GDWD FRQFHUQLQJ SRSXODWLRQ G\QDPLFV DQG EUHHGLQJ EHKDYLRU RI (XFKDULV DQG &DOLSKUXULD WR VXSSRUW DQ H[FOXVLYHO\ ELRORJLFDO VSHFLHV FRQFHSW LQ WKLV JHQXV ,Q DW OHDVW RQH FDVH e SLLFDWD DQG (B XOHLf LQWHUVSHFLILF K\EULGL]DWLRQ DQG SHUKDSV LQWURJUHVVLRQ EHWZHHQ WZR VSHFLHV KDV RFFXUHG ,Q DGGLWLRQ UHFRJQL]H VHYHUDO RWKHU SXWDWLYH QDWXUDO LQWHUVSHFLILF K\EULGV LQ (XFKDULV DQG RQH LQWHUJHQHULF K\EULG ; &DOLFKDULV EXWFKHULf 7KH HYLGHQFH IURP DUWLILFLDO K\EULGL]DWLRQ DWWHPSWV VXJJHVWV WKDW D QXPEHU RI VSHFLHV RI (B VXEJ (XFKDULV DUH FURVVFRPSDWLEOH WKRXJK PRVW QDWXUDO K\EULGV VKRZ UHGXFHG SROOHQ VWDLQDELOLW\ 7KH HYROXWLRQDU\ VSHFLHV FRQFHSW RI 6LPSVRQ f DQG :LOH\ f LV GHILQHG DV D OLQHDJH RI DQFHVWRUGHVFHQGHQW SRSXODWLRQV ZKLFK PDLQWDLQV LWV LGHQWLW\ IURP RWKHU VXFK OLQHDJHV DQG ZKLFK KDV LWV RZQ HYROXWLRQDU\ WHQGDQFLHV DQG KLVWRULFDO IDWH :LOH\ S f 7KRXJK UHSURGXFWLYH LVRODWLRQ PD\ EH QHFHVVDU\ WR PDLQWDLQ WKH LQWHJULW\ RI DQ HYROXWLRQDU\ VSHFLHV LWV LGHQWLW\ DV GHILQHG E\ PRUSKRORJLFDO VLPLODULW\ LV FRQFHLYHG DV WKH UHVXOW RI WKH FRPPRQ DQFHVWU\ RI LWV FRPSRQHQW SRSXODWLRQV KDYH VWULYHQ LQ P\ ZRUN RQ (XFKDULV DQG &DOLSKUXULD WR DGKHUH WR DQ HYROXWLRQDU\ VSHFLHV FRQFHSW XVLQJ DV EURDG D PRUSKRORJLFDO GDWD EDVH DV SRVVLEOH DQG VXEMHFWLQJ WKH GDWD WR ERWK SKHQHWLF DQG SK\ORJHQHWLF DQDO\VHV ,QVLJKWV IURP FKURPRVRPH F\WRORJ\ DQG DQDO\VHV RI JHQHWLF YDULDWLRQ KDYH DW WLPHV SURYLGHG DGGLWLRQDO VXSSRUW IRU VSHFLHV GHOLPLWDWLRQ 7KH UDQN RI VXEVSHFLHV LV XVHG RQFH LQ WKLV WUHDWPHQW (B SL LFDWDf WR GHVLJQDWH VWURQJ PRUSKRORJLFDO GLYHUJHQFH FRXSOHG ZLWK JHRJUDSKLFDO LVRODWLRQ ZKLFK LQ P\ RSLQLRQ LV DFFHSWDEOH ZLWKLQ WKH FRQILQHV RI VSHFLILF OLPLWV 7KH UDQN RI YDULHW\ LV XVHG LQ D FDVH ( ERXFKHLf

PAGE 316

ZKHUH ERWK WKH PRUSKRORJLFDO DQG JHRJUDSKLF FRPSRQHQWV RI GLYHUJHQFH DUH ZHDNHU EXW DSSHDU WR UHSUHVHQW WKH ILUVW VWDJHV RI VSHFLDWLRQ ZLWKLQ D KHWHUR]\JRXV VHPLVSHFLHV FRPSOH[ *UDQW f 7D[RQRPLF 7UHDWPHQW .H\ WR (XFKDULV DQG &DOLSKUXULD /HDI PDUJLQV XVXDOO\ XQGXODWH IORZHUV GHFOLQDWH WR SHQGXORXV YLD WKH FXUYLQJ RI WKH WXEH SHULDQWK IXQQHOIRUPFDPSDQXODWH RU FUDWHULIRUP WXEH F\OLQGULFDO DW OHDVW EHORZ PLGGOH DEUXSWO\ GLODWLQJ DW RU DERYH WKH PLGSRLQW RI LWV OHQJWK FXUYHG PP ORQJ VWDPLQDO FXS FRQVSLFXRXV EDVDOO\ SLJPHQWHG JUHHQ RU \HOORZ H[VHUWHG IURP WKH WKURDW RI WKH SHULDQWK RU DGQDWH WR WKH GLODWHG SRUWLRQ RI WKH WXEH VWLJPDWLF SDSLOODH XQLFHOOXODU (XFKDULV /HDI PDUJLQV QRQXQGXODWH IORZHUV GHFOLQDWH WR VXESHQGXORXV YLD WKH FXUYLQJ RI WKH SHGLFHO SHULDQWK IXQQHO IRUP WXEH IXQQHO IRUP GLODWLQJ JUDGXDOO\ IURP EDVH UDUHO\ VXEF\OLQGULFDOf VWUDLJKW RU RQO\ VOLJKWO\ FHUQXRXV PP RU OHVV ORQJ VWDPLQDO FXS LQFRQVSLFXRXV DQG XQSLJPHQWHG UHGXFHG WR D PHPEUDQRXV EDVDO FRQQDWLRQ RI WKH ILODPHQWV VWLJPDWLF SDSLOODH PXOWLFHOOXODU &DOLSKUXULD (8&+$5,6 3ODQFKQ /LQGHQnV $QQ &DW +RUW ), GHV 6HUUHV 6HU 7<3( 63(&,(6 (XFKDULV FDQGLGD 3ODQFKQ HW /LQGHQ 8UHFROLQD VXEJ (XFKDULV 3ODQFKQf 7UDXE 3, /LIH (YHUJUHHQ RQH VSHFLHV B GHFLGXRXVf EXOERXV JHRSK\WHV %XLE WXQLFDWH XVXDOO\ RIIVHWWLQJ YLJRURXVO\ /HDYHV SHWLRODWH SHUVLVWHQW JODEURXV SHWLROH VXEWHUHWH VRPHZKDW FRQFDYH DGD[LDOO\ SUR[LPDO WR WKH

PAGE 317

VLQXV FRQYH[ DED[LDOO\ OLJKW JUHHQ ZLQJHG GLVWDOO\ E\ WKH DWWHQXDWLRQ RI WKH ODPLQD ODPLQD RYDWH HOOLSWLF RYDWH RU HOOLSWLFODQFHRODWH XVXDOO\ WKLQ SUHGRPLQDWHO\ K\SRVWRPDWLF XVXDOO\ OXVWURXV GDUN JUHHQ DGD[LDOO\ OLJKW RU VLOYHU\ JUHHQ DED[LDOO\ VPRRWK RU SOLFDWH EHWZHHQ WKH SDUDOOHO YHLQV FXWLFOH RI WKH DED[LDO HSLGHUPLV YDULDEO\ VWULDWH PDUJLQV IUHTXHQWO\ XQGXODWH DSLFDOO\ DFXWH RU DFXPLQDWH EDVDOO\ DWWHQXDWH WR WKH SHWLROH UDUHO\ DSSHDULQJ VXEFRUGDWH ,QIORUHVFHQFH VFDSRVH XPEHOODWH FRPSRVHG RI WR VHYHUDO UHGXFHG KHOLFRLG F\PHVf VFDSH VROLG WHUHWH RU VOLJKWO\ FRPSUHVVHG JODXFRXV WHUPLQDWLQJ LQ WZR JUHHQ RU JUHHQLVKZKLWH RYDWHODQFHRODWH YDOYDWHLPEULFDWH PDUFHVFHQW EUDFWV WKDW HQFORVH WKH IORZHUV DQG VHYHUDO VHFRQGDU\ EUDFWV EHIRUH DQWKHVLV )ORZHUV SHGLFHOODWH UDUHO\ VXEVHVVLOHf HDFK VXEWHQGHG E\ D ODQFHRODWH EUDFWHROH SHQGHQW RU GHFOLQDWH VRPHWLPHV IUDJUDQW ZKLWH SURWDQGURXV SHULDQWK FUDWHULIRUP RU FDPSDQXODWH WXEH F\OLQGULFDO GLODWLQJ DEUXSWO\ DERYH LWV PLGSRLQW VRPHWLPHV VWDLQHG JUHHQ SUR[LPDOO\ OLPE RI WHSDOV LQ VHULHV VSUHDGLQJ ZLGHO\ IURP WKH WKURDW RU LPEULFDWH IRU KDOI WKHLU OHQJWK WKH RXWHU VHULHV XVXDOO\ ORQJHU QDUURZHU DQG DSLFXODWH WKH LQQHU VHULHV DFXWH REWXVH RU PLQXWHO\ DSLFXODWH 6WDPHQV YDULRXVO\ FRQQDWH EHORZ SLJPHQWHG \HOORZ RU JUHHQ SUR[LPDOO\ IUHH ILODPHQW OLQHDU VXEXODWH RU RWKHUZLVH SHWDORLG DQWKHUV REORQJ WR OLQHDU VXEEDVLIL[HG RU GRUVLIL[HG HYHQWXDOO\ EHFRPLQJ YHUVDWLOH LQWURUVH GHKLVFLQJ ORQJLWXGLQDOO\ SROOHQ JUDLQ ERDWVKDSHG HOOLSWLF PRQRVXOFDWH H[LQH UHWLFXODWH 6W\OH ILOLIRUP LQFOXGHG ZLWKLQ HTXDO WR RU H[VHUWHG IURP WKH VWDPLQDO FXS VWLJPD REWXVHO\ OREHG JODQGXODUSDSLOORVH 2YDU\ LQIHULRU JUHHQ RU ZKLWH JORERVHHOOLSVRLG REORQJ RFFDVLRQDOO\ WULJRQRXV ORFXODU VHSWDO QHFWDULHV SUHVHQW RYXOHV SHU ORFXOH SODFHQWDWLRQ D[LOH

PAGE 318

JORERVH DQDWURSRXV )UXLW D OREHG ORFXOLFLGDO FDSVXOH WKLQZDOOHG RU OHDWKHU\ JUHHQ RU EULJKW RUDQJH VHHG JORERVH RU HOOLSVRLG VRPHWLPHV DQJOHG E\ SUHVVXUH WXUJLG ZLWK FRSLRXV HQGRVSHUP IHZ SHU ORFXOH WHVWD WKLQ SK\WRPHODQRXV OXVWURXV UDUHO\ GXOOf EODFN GDUN EURZQ RU EOXH XVXDOO\ VPRRWK QB .H\ WR WKH VXEJHQHUD RI (XFKDULV )ORZHUV WR FP ORQJ XVXDOO\ SHQGXORXV RQO\ UDUHO\ DQG PLOGO\ IUDJUDQW FUDWHULIRUP UDUHO\ VRPHZKDW FDPSDQXODWHf SHULDQWK WXEH F\OLQGULFDO EHORZ GLODWHG DEUXSWO\ MXVW EHORZ WKURDW XVXDOO\ VWURQJO\ FXUYHG ZKLWH OLPE XVXDOO\ VHJPHQWV VSUHDGLQJ ZLGHO\ FD rf DW SHULDQWK WKURDW VWDPLQDO FXS LQVHUWHG DW WKURDW RI WXEH SUR[LPDOO\ VSRWWHG RU VWDLQHG \HOORZ JUHHQ RU \HOORZRUDQJH HTXDOO\ RQ WKH H[WHULRU DQG LQWHULRU RI WKH FXS GLVWDO SDUW RI ILODPHQW XVXDOO\ ZLGHO\ VXEXODWH PP ZLGHf RU RWKHUZLVH SHWDORLG DQWKHUV PRUH RU OHVV HUHFW DW DQWKHVLV RYXOHV f SHU ORFXOH VXEJ (XFKDULV )ORZHUV FP ORQJ GHFOLQDWH RU VXESHQGXORXV VWURQJO\ IUDJUDQW IXQQHOIRUPFDPSDQXODWH WR FUDWHULIRUP SHULDQWK WXEH F\OLQGULFDO EHORZ DEUXSWO\ GLODWHG DW LWV OHQJWK JUHHQ DW OHDVW SUR[LPDOO\f OLPE VHJPHQWV XVXDOO\ LPEULFDWH IRU KDOI WKHLU OHQJWK VWDPLQDO FXS SDUWLDOO\ DGQDWH WR XSSHU SRUWLRQ RI WXEH VRPHWLPHV UHGXFHG IOXVKHG \HOORZfJUHHQ SDUWLFXODUO\ DORQJ WKH ILODPHQWDO WUDFHV ZLWK WKH SLJPHQWDWLRQ PRVW LQWHQVH RQ WKH LQWHULRU RI WKH FXS GLVWDO SRUWLRQ RI WKH ILODPHQW XVXDOO\ QDUURZO\ VXEXODWH

PAGE 319

PP RU OHVV ZLGHf DQWKHUV YHUVDWLOH DW DQWKHVLV RYXOHV f SHU ORFXOH VXEJ +HWHURFKDULV (8&+$5,6 VXEJ (8&+$5,6 /HDYHV JODEURXV SHWLRDWH SHUVLVWHQW ODPLQD RYDWH HOOLSWLF RU ODQFHRODWH PRVWO\ WKLQ PDUJLQV XVXDOO\ XQGXODWH YDULDEO\ SOLFDWH EHWZHHQ WKH SDUDOOHO YHLQV DSLFDOO\ DFXWH RU DFXPLQDWH EDVDOO\ DWWHQXDWH WR WKH SHWLROH RU UDUHO\ VXEFRUGDWH PRVWO\ GDUN JUHHQ DQG OXVWURXV DGD[LDOO\ OLJKW RU VLO YHU\JUHHQ DED[LDOO\ WKH DED[LDO HSLGHUPLV YDULRXVO\ VWULDWH SHWLROH VXEWHUHWH VRPHZKDW FKDQQHOOHG DGD[LDOO\ SUR[LPDO WR WKH VLQXV ,QIORUHVFHQFH VFDSRVH XPEHOODWH WHUPLQDWLQJ LQ WZR JUHHQLVKZKLWH PDUFHVFHQW EUDFWV )ORZHUV SHGLFHOODWH f RQO\ UDUHO\ ZLWK QRWLFHDEOH IUDJUDQFH PRVWO\ SHQGXORXV FP ORQJ FUDWHULIRUP UDUHO\ VOLJKWO\ FDPSDQXODWHf SHULDQWK WXEH XVXDOO\ VWURQJO\ FXUYHG F\OLQGULFDO EHORZ GLODWHG MXVW EHORZ WKH WKURDW RU UDUHO\ DW OHQJWK ZKLWH OLPE RI VL[ ZKLWH RYDWH WR RYDWHODQFHRODWH WHSDOV ZKLFK XVXDOO\ VSUHDG ZLGHO\ IURP WKH WKURDW RIWHQ UHFXUYHG DERYH WKH PLGGOH WKH RXWHU WKUHH XVXDOO\ ORQJHU QDUURZHU DQG DSLFDOO\ DSLFXODWH WKH PLGYHLQ RIWHQ IDLQWO\ \HOORZ LQ VWURQJ OLJKW 6WDPHQV FRQQDWH LQWR D FRQVSLFXRXV VWDPLQD FXS XVXDOO\ H[VHUWHG IURP WKH ULP RI WKH WKURDW FXS UDUHO\ UHGXFHG VWDPLQDO FXS DSLFDOO\ ZKLWH PDUNHG JUHHQ RU \HOORZ UDUHO\ \HOORZRUDQJHf EDVDOO\ YDULRXVO\ WRRWKHG OREHG RU HQWLUH GLVWDO SRUWLRQ RI WKH ILODPHQWV SHWDORLG DQG YDULRXVO\ VKDSHG DQWKHUV REORQJ RU OLQHDU VXEGRUVLIL[HG RU VXEEDVLIL[HG PRUH RU OHVV HUHFW DW DQWKHVLV ILQDOO\ EHFRPLQJ YHUVDWLOH SROOHQ JUDLQ \XP SRODU D[LVf MVP ORQJHVW HTXDWRULDO D[LVf WKH H[LQH FRDUVHO\ UHWLFXODWH 6W\OH ILOLIRUP ZKLWH VWLJPD REWXVHO\ WULOREHG JODQGXODU SXEHVFHQW 2YDU\ JORERVH HOOLSWLF

PAGE 320

RU WULJRQRXV JUHHQ RU ZKLWH RYXOHV JORERVH WR HOOLSVRLG D[LOH VXSHUSRVHG SHU ORFXOH PRVW RIWHQ )UXLW D ORFXOLFLGDO FDSVXOH RUDQJH DQG OHDWKHU\ ZKHQ ULSH UDUHO\ UHPDLQLQJ JUHHQf VHHGV f SHU ORFXOH FD FP ORQJ WXUJLG HOOLSVRLG UDUHO\ VRPHZKDW FRPSUHVVHGf ZLWK D OXVWURXV EODFN RU EOXH WHVWD VSHFLHV *XDWHPDODf &RVWD 5LFD WR %ROLYLD FRQFHQWUDWHG RQ WKH ORZHU VORSHV RI WKH QRUWKHDVWHUQ $QGHV DQG LQ ORZODQG $PD]RQDV .H\ WR WKH VSHFLHV RI VXEJ (XFKDULV 3HULDQWK WXEH PP RU PRUH ORQJ )ORZHUV f YHU\ UDUHO\ f RYXOHV SHU ORFXOH YHU\ UDUHO\ f )ORZHUV QRW IUDJUDQW SHULDQWK WXEH f PP ORQJ RXWHU WHSDOV f f PP ORQJ VWDPLQD FXS PP ORQJ WR DSH[ RI WHHWK RU OREHV RYXOHV f f SHU ORFXOH (B FDQGL GD )ORZHUV PLOGO\ IUDJUDQW SHULDQWK WXEH f PP ORQJ RXWHU WHSDOV f f PP ORQJ VWDPLQD FXS PP ORQJ WR DSH[ RI WHHWK RU OREHV RYXOHV f SHU ORFXOH )ORUDO IUDJUDQFH VOLJKWO\ IHWLG IORZHUV SHQGHQW VWDPLQDO FXS OHVV WKDQ PP ORQJ WR DSH[ RI WHHWK RU OREHV FOHIW EHWZHHQ HDFK VWDPHQ PP ORQJ QRQ SOLFDWH VWDPLQDO WHHWK LI SUHVHQW PXFK OHVV WKDQ KDOI WKH OHQJWK RI WKH VXEXODWH SRUWLRQ RI WKH ILODPHQW VW\OH H[VHUWHG FD FP EH\RQG WKH DQWKHUV ( IRUPRVD

PAGE 321

)ORUDO IUDJUDQFH VZHHW IORZHU SHUSHQGLFXODU WR YHUWLFDO D[LV RI VFDSH VWDPLQD FXS PRUH WKDQ PP ORQJ WR DSH[ RI WHHWK FOHIW YHU\ VKDOORZO\ OHVV WKDQ PPf EHWZHHQ HDFK VWDPHQ SOLFDWH VWDPLQDO WHHWK KDOI WKH OHQJWK RI WKH VXEXODWH SRUWLRQ RI WKH ILODPHQW VW\OH H[VHUWHG OHVV WKDQ FP EH\RQG WKH DQWKHUV (B EDNHULDQD )ORZHUV f RYXOHV f SHU ORFXOH /HDYHV QRQSOLFDWH VRPHZKDW VXFFXOHQW PDUJLQV QRQ XQGXODWH OHQJWK ZLGWK UDWLR XVXDOO\ OHVV WKDQ SHWLROH XVXDOO\ VKRUWHU WKDQ WKH ODPLQD SODQWV RI FHQWUDO DQG ZHVWHUQ &RORPELD RU &HQWUDO $PHULFD /HDYHV VOLJKWO\ JODXFRXV DGD[LDOO\ DED[LDO FXWLFOH GHQVHO\ VWULDWH SHULDQWK WXEH PP ORQJ VWDPLQDO FXS LUUHJXODUO\ WRRWKHG SUR[LPDOO\ SLJPHQWHG SDOH \HOORZ VWDPHQV DOZD\V FRQVWULFWHG GLVWDOO\ LQWR D QDUURZ VXEXODWH SRUWLRQ VW\OH H[VHUWHG OHVV WKDQ FP EH\RQG DQWKHUV RYDU\ QRW WULJRQRXV SODQWV RI &RORPELD (B ERQSODQGLL /HDYHV QRW JODXFRXV DED[LDO FXWLFOH ODUJHO\ GHYRLG RI VWULDWLRQV SHULDQWK WXEH f PP ORQJ VWDPLQDO FXS PRVW IUHTXHQWO\ HGHQWDWH SUR[LPDOO\ SLJPHQWHG JUHHQ VWDPHQV RIWHQ GLODWLQJ JUDGXDOO\ IURP DSH[ WR EDVH VW\OH H[VHUWHG FP EH\RQG DQWKHUV RYDU\ RIWHQ WULJRQRXV SODQWV RI &HQWUDO $PHULFD ( ERXFKHL

PAGE 322

/HDYHV SOLFDWH WKLQ PDUJLQV XQGXODWH ODPLQD OHQJWK ZLGWK UDWLR XVXDOO\ JUHDWHU WKDQ SHWLROH XVXDOO\ HTXDO WR RU H[FHHGLQJ WKH ODPLQD LQ OHQJWK SODQWV RI ZHVWHUQ (FXDGRU DQG $PD]RQDV /HDYHV EXOODWHSXVWXODWH LQ WH[WXUH QRQXVWURXV VWDPLQDO FXS DOZD\V HGHQWDWH SLJPHQWHG \HOORZ RUDQJH SUR[LPDOO\ FOHIW EHWZHHQ HDFK VWDPHQ WR DW OHDVW KDOI LWV OHQJWK VWDPHQV GHOWRLG GLODWLQJ JUDGXDOO\ IURP DSH[ WR EDVH RYDU\ ZKLWH SODQWV RI ZHVWHUQ (FXDGRU (B DVWURSKLDOD /HDYHV QRW EXOODWHSXVWXODWH LQ WH[WXUH OXVWURXV VWDPLQDO FXS XVXDOO\ ELGHQWDWH RU TXDGUDWH SLJPHQWHG \HOORZ RU JUHHQ FOHIW EHWZHHQ HDFK VWDPHQ IRU FD PP VWDPHQV QRW GHOWRLG FRQVWULFWHG GLVWDOO\ LQWR D QDUURZ OHVV WKDQ PP ZLGHf VXEXODWH SRUWLRQ RYDU\ JUHHQ SODQWV RI $PD]RQDV 3HULDQWK WXEH FXUYHG JUDGXDOO\ WKURXJKRXW WKH SUR[LPDO KDOI VWDPLQDO FXS VSRWWHG JUHHQ LQ WKH SUR[LPDO KDOI RI HDFK VWDPHQ XVXDOO\ ELGHQWDWH EXW VRPHWLPHV REWXVHO\ OREHG UDUHO\ RQH WR VHYHUDO VWDPHQV TXDGUDWHf WHVWD OXVWURXV EODFN (B XOHL 3HULDQWK WXEH XVXDOO\ FXUYHG DEUXSWO\ DERYH WKH RYDU\ WKHQ PRUH RU OHVV VWUDLJKW IRU WKH UHVW RI LWV OHQJWK VWDPLQDO FXS SLJPHQWHG \HOORZ SUR[LPDOO\ XVXDOO\ TXDGUDWHO\ OREHG EXW RQH

PAGE 323

RU VHYHUDO VWDPHQV RFFDVLRQDOO\ WRRWKHG WHVWD OXVWURXV EOXH (B F\DQHRVSHUPD 3HULDQWK WXEH HTXDO WR RU OHVV WKDQ YHU\ UDUHO\ WR f PP ORQJ 6WDPLQDO FXS XVXDOO\ OHVV WKDQ FP ORQJ WR DSH[ RI WHHWK RU OREHV EXW FRQQDWH SRUWLRQ RI ILODPHQWV DOZD\V PXFK VKRUWHU WKDQ IUHH VXEXODWH SRUWLRQ 7HHWK RI WKH VWDPLQDO FXS DFXWHO\ ORQJODQFHRODWH HTXDOLQJ WKH VXEXODWH SRUWLRQ RI WKH ILODPHQW LQ OHQJWK RYXOHV SHU ORFXOH SODQWV RI ZHVWHUQ &RORPELD e OHKPDQQL L 7HHWK RI WKH VWDPLQDO FXS ZKHQ SUHVHQWf REWXVH PXFK VKRUWHU WKDQ WKH VXEXODWH SRUWLRQ RI WKH ILODPHQWV RYXOHV OHVV WKDQ SHU ORFXOH SODQWV RI $PD]RQDV 3HULDQWK B FDPSDQXODWH VWDPLQDO FXS UHGXFHG WR D EDVDO FRQQDWLRQ RI WKH ILODPHQWV PP ORQJ HGHQWDWH RU REWXVHO\ ELGHQWDWH IUHH ILODPHQWV QDUURZO\ VXEXODWH FD PP ZLGH RYXOHV SHU ORFXOH (B R[\DQGUD 3HULDQWK FUDWHULIRUP VWDPLQDO FXS PP ORQJ WR DSH[ RI WHHWKf REWXVHO\ ELGHQWDWH EHWZHHQ HDFK VWDPHQ IUHH ILODPHQWV FOXEVKDSHG DSSHDULQJ HOOLSWLFODQFHRODWH LQ GULHG PDWHULDOf PP ZLGH RYXOHV SHU ORFXOH (B FRU\QDQGUD 6WDPLQDO FXS XVXDOO\ JUHDWHU WKDQ FP ORQJ WR DSH[ RI WHHWK RU OREHV EXW FRQQDWH SRUWLRQ RI ILODPHQWV DOZD\V ORQJHU WKDQ WKH IUHH VXEXODWH SRUWLRQ

PAGE 324

/HDYHV f FP ZLGH VWDPLQDO FXS FDPSDQXODWH JUDGXDOO\ GLODWLQJ GLVWDOO\ SOLFDWH DORQJ WKH ILODPHQWDO WUDFHV RYDU\ JUHHQ FDSVXOH OHDWKHU\ EULJKW RUDQJH GHKLVFHQW VHHGV HOOLSVRLG ZLWK D OXVWURXV VPRRWK EODFN WHVWD (B SL L FDWD /HDYHV FP ZLGH VWDPLQDO FXS IXQQHO IRUPF\OLQGULFDO WR F\OLQGULFDO RIWHQ DEUXSWO\ GLODWHG GLVWDOO\ DW OHQJWK SOLFDWH EHWZHHQ WKH ILODPHQWDO WUDFHV RYDU\ ZKLWLVK FDSVXOH JUHHQ WKLQZDOOHG RIWHQ WDUGLO\ GHKLVFHQW VHHGV ZHGJHVKDSHG ZLWK D GXOO UXJRVH EODFN WHVWD (B FDVWHOQDHDQD (8&+$5,6 &$1','$ 3ODQFKQ HW /LQGHQ )LJV $f /LQGHQnV $QQ &DW +RUW ), GHV 6HUUHV -DUG (XU 6HU 7<3( H[ KRUW /LQGHQ VXSSRVHGO\ LPSRUWHG IURP &RORPELD QR RWKHU GDWD 3ODQFKQ VQ 038f 8UFHROLQD FDQGLGD 3ODQFK t /LQGf 7UDXE 3, /LIH 3ODQW WR FD GP WDOO %XOE VXEJORERVH f FP ORQJ f FP GLDP QHFN f FP ORQJ FP ZLGH WXQLFV EURZQ /HDYHV SHWLROH f f FP ORQJ FD PP WKLFN SUR[LPDOO\ FD PP WKLFN GLVWDOO\ ODPLQD HOOLSWLF f FP ORQJ f f FP ZLGH DFXPLQDWH GHHSO\ SOLFDWH GDUN JUHHQ EXW RQO\ VOLJKWO\ OXVWURXV DGD[LDOO\ OLJKW JUHHQ DED[LDOO\ DED[LDO FXWLFOH VWULDWH PDUJLQV FRDUVHO\ XQGXODWH 6FDSH f GP WDOO PP GLDP SUR[LPDOO\ PP GLDP GLVWDOO\ EUDFWV f PP ORQJ FD PP ZLGH RYDWHODQFHRODWH )ORZHUV f UDUHO\ DV IHZ DV ZLWKRXW QRWLFHDEOH IUDJUDQFH SHGLFHOV f f PP ORQJ WXEH f PP ORQJ FD PP GLDP IRU PRVW RI LWV OHQJWK DEUXSWO\

PAGE 325

GLODWHG WR f f PP DW WKH WKURDW OLPE VSUHDGLQJ WR FP ZLGH WHSDOV VRPHWLPHV UHFXUYHG GLVWDOO\ RXWHU WHSDOV f f PP ORQJ f f PP ZLGH RYDWHODQFHRODWH DSLFXODWH WKH DSLFXOXP RQO\ VOLJKWO\ RU REVFXUHO\ WXIWHG DGD[LDOO\ LQQHU VHULHV f f PP ORQJ f f PP ZLGH RYDWH DFXWH WR PLQXWHO\ DSLFXODWH 6WDPLQD FXS )LJ $f IXQQHOIRUPF\OLQGULFDO WR VOLJKWO\ FDPSDQXODWH UDUHO\ ZLGHO\ DPSOLDWH GLVWDOO\ f PP ORQJ WR DSH[ RI WHHWK RU OREHVf f f PP ZLGH PRVW IUHTXHQWO\ HGHQWDWH DQG OREHG EHWZHHQ HDFK VWDPHQ EXW DW WLPHV ELGHQWDWH RU LUUHJXODUO\ WRRWKHG ZLGHO\ VSRWWHG JUHHQ WR JUHHQLVK\HOORZ EHORZ HDFK VWDPHQ WHHWK ZKHQ SUHVHQW PP ORQJ PP ZLGH DFXWH RU REWXVH FXS FOHIW IRU f f PP EHWZHHQ HDFK VWDPHQ VWDPHQV f f ZLGH SUR[LPDOO\ GLVWDO VXEXODWH SRUWLRQ f f PP ORQJ PP ZLGH DW WKH EDVH DQWKHUV f f PP ORQJ REORQJ SROOHQ JUDLQ \XP SRODU GLDP c0 ORQJHVW HTXDWRULDO GLDP 6W\OH f PP ORQJ H[VHUWHG FP EH\RQG WKH DQWKHUV VWLJPD PP ZLGH 2YDU\ JORERVHHOOLSVRLG JUHHQ f PP ORQJ f PP GLDP RYXOHV f f SHU ORFXOH &DSVXOH f FP ORQJ f FP ZLGH SHGLFHO FP ORQJ VHHGV f SHU ORFXOH HOOLSVRLG FD FP ORQJ FD FP GLDP ZLWK D OXVWURXV VPRRWK EODFN WHVWD QB ',675,%87,21 $1' (&2/2*< 8QGHUVWRU\ RI SULPDU\ UDLQ IRUHVW FKLHIO\ LQ WKH 2ULHQWH RI (FXDGRU SDUWLFXODUO\ WKH 5LR 1DSR YDOOH\ RFFDVLRQDO LQ QRUWK 3HUX DQG VRXWKHDVW &RORPELD )LJV f f f P IORZHULQJ DW DQ\ WLPH RI WKH \HDU EXW PRVW IUHTXHQWO\ LQ )HEUXDU\0DUFK DQG $XJXVW

PAGE 326

$'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ $PD]RQDV 3XHUWR 1DULR -XO /R]DQR HW DO &2/f 7UDSHFLR DPD]QLFD /RUHWR\DFX 5LYHU FD P 2FW 6FKXOWHV t %ODFN 86f 0HWD 6DEDQDV GH 6DQ -XDQ GH $UDPD PDUJHQ L]TXLHUGD GHO 5LR *HMDU DOUHGHGRUHV GHO DWHUUL]DMH /RV 0LFRV P -DQ ,GURER t 6FKXOWHV &2/ *+ 1< 86f (&8$'25 “DSR 7HQD ZHW IRUHVW 6HS $VSOXQG 6f (O “DSR %HQRLVW 3f NP GRZQVWUHDP IURP &RFD DW $QDQJX P $XJ %HVVH HW DO 6(/f 7HQD3X\R URDG P $XJ %HVVH HW DOA 6(/f &RFD/DJR $JULR URDG NP QRUWK RI &RFD 5LR 3DODQGD
PAGE 327

3(58 $PD]RQDV P DWU£V GH /D 3R]D 5R 6DQWLDJR P $XJ +XDVKLNDW 02f /RUHWR 0D\QDV 5LR $PSL\DFX 3HEDV DQG YLFLQLW\ DSSUR[ R n 1 r n : EHKLQG 3HEDV RQ WUDLO QRUWK RI WRZQ $SULO 3ORZPDQ HW DO )f 0D\QDV 6DQWD 0DULD GH 1DQD\ &RORQLD 6DQ )UDQVLVFR GH ,QGLHV
PAGE 328

KDYH K\EULGL]HG LQ DW OHDVW RQH DUHD RI V\PSDWU\ 3DWWHUQV RI DOOR]\PH YDULDWLRQ VHH &KDSWHU 9,,,f DQG NDU\RW\SH DQDO\VLV &KDSWHU 9,,f IXUWKHU VXSSRUW WKH VHSDUDWLRQ RI WKHVH WZR VSHFLHV 7KH VSHFLHV PD\ EH HFRORJLFDOO\ DOORSDWULF KRZHYHU 3ODQWV RI (B FDQGLGD ZKLFK FROOHFWHG LQ ZHUH JURZLQJ DORQJ WKH EDQN RI D VPDOO FUHHN MXVW DERYH WKH KLJK ZDWHU OLQH 3RSXODWLRQV RI (B IRUPRVD ZHUH HQFRXQWHUHG LQ PRUH XSODQG VLWHV 1RQHWKHOHVV LQ RQH LQVWDQFH WZR VSHFLPHQV +DUOLQJ t $QGHUVVRQ f RQH HDFK RI WKH WZR VSHFLHV ZHUH FROOHFWHG XQGHU WKH VDPH QXPEHU 3DWWHUQV RI JHQHWLF YDULDWLRQ &KDSWHU 9,,,f VXJJHVW D PRQRSK\OHWLF RULJLQ IRU WKHVH VSHFLHV SRVVLEO\ LQ WKH 3DVWD]D YDOOH\ %RWK VSHFLHV KDYH UDGLDWHG RXWZDUG SHUKDSV PRUH WKDQ RQFH EHOLHYH WKH XQSUHFHGHQWHG GHJUHH RI V\PSDWU\ EHWZHHQ WKHVH WZR VSHFLHV LQ (FXDGRU LV LQH[WULFDEO\ UHODWHG WR WKHLU XVH E\ ,QGLDQ SHRSOH RI WKH 1DSR DQG 3DVWD]D EDVLQV 7KH EXOEV DUH QRW RQO\ PDVKHG IRU SRXOWLFHV D JHQHUDO XVH WR ZKLFK PDQ\ 6RXWK $PHULFDQ DPDU\OOLGV DUH DSSOLHG EXW ,QGLDQ ZRPHQ UHSRUWHGO\ FROOHFW WKH SODQWV TXLWH DFWLYHO\ IRU UHDVRQV WKH\ ZRXOG QRW GLVFORVH 1 :KLWWHQ SHUV FRPPf 2I FRXUVH DERULJLQDO SHRSOH DUH QRW ZLWKRXW DQ DHVWKHWLF DQG WKH VSHFLHV RI (XFKDULV KDYH D SOHDVLQJ DVSHFW ZKHQ LQ IORZHU &XOWLYDWLRQ IRU RUQDPHQWDO DV ZHOO DV PHGLFLQDO DQG FHUHPRQLDO XVHV FDQQRW EH GLVFRXQWHG 0RVW ORFDO LQKDELWDQWV ZKRP PHW ZKLOH FROOHFWLQJ (XFKDULV LQ WKH 2ULHQWH ZHUH UHDGLO\ IDPLOLDU ZLWK WKH SODQWV ZKHQ VKRZQ SKRWRJUDSKV ,W LV WKXV PRUH WKDQ OLNHO\ WKDW ERWK VSHFLHV KDYH EHHQ YHFWRUHG DERXW HDVWHUQ (FXDGRU WKURXJK KXPDQ DJHQF\ IRU \HDUV LI QRW FHQWXULHV SHUKDSV HYHQ EHLQJ WUDQVSODQWHG IURP WKH ZLOG LQWR WUDQVLHQW DJULFXOWXUDO VHWWOHPHQWV :KHQ WKHVH VPDOO JDUGHQV ZHUH DEDQGRQHG DIWHU D IHZ \HDUV WKH EXOEV SUREDEO\ UHFRORQL]HG ORFDOO\ DP GRXEWIXO WKDW

PAGE 329

HYHQ ERWDQLFDOO\ DVWXWH DERULJLQDO SHRSOH ZRXOG GLIIHUHQWLDWH EHWZHHQ VXFK VLPLODU VSHFLHV DV e FDQGL GD DQG (B IRUPRVD DQG SODQWV IURP DOORSDWULF SRSXODWLRQV PD\ KDYH EHHQ FROOHFWHG LQGLVFULPLQHQWO\ DQG FXOWLYDWHG WRJHWKHU 6XFFHVLYH SDWWHUQV RI IUDJPHQWDWLRQ DQG FRDOHVFHQFH RI UDLQIRUHVW GXULQJ WKH 3OHLVWRFHQH UHYLHZHG E\ 3UDQFH D Ef PD\ DOVR KDYH LQIOXHQFHG GLVWULEXWLRQ SDWWHUQV RI WKHVH WZR VSHFLHV VHH &KDSWHU ,;f $OWHUQDWLYHO\ (B FDQGLGD DQG (B IRUPRVD PD\ ILW WKH VHPLVSHFLHV PRGHO RI *UDQW f LQ ZKLFK JHQHWLF EDUULRUV KDYH QRW VROLGLILHG EHWZHHQ WZR PRUSKRORJLFDOO\ GLVWLQFW V\PSDWULF UDFHV 3ROOHQ RI RQH SXWDWLYHO\ K\EULG FROOHFWLRQ %HVVH HW DO f VWDLQV b ZLWK $OH[DQGHUnV f VWDLQ ,Q JURVV PRUSKRORJ\ WKH IORZHU RI WKLV FROOHFWLRQ UHVHPEOHV (B IRUPRVD DQG WKXV PD\ UHSUHVHQW D JHQHW DW WKH ORZ HQG RI WKH IORUDO VL]H UDQJH IRU e IRUPRVD DQG QRW D K\EULG EHWZHHQ LW DQG (B FDQGL GD $QRWKHU K\SRWKHVLV PLJKW EH WKDW e FDQGL GD DQG (B IRUPRVD UHSUHVHQW WKH VHJUHJDWLQJ SKHQRW\SHV RI D VLQJOH KLJKO\ KHWHUR]\JRXV VSHFLHV D VLWXDWLRQ SRVVLEO\ H[LVWLQJ LQ WKH e ERXFKHL FRPSOH[ RI &HQWUDO $PHULFD +RZHYHU DOOR]\PH YDULDWLRQ SDWWHUQV VHH &KDSWHU 9,,,f VXJJHVW D IDLU GHJUHH RI JHQHWLF GLYHUJHQFH EHWZHHQ (B FDQGL GD DQG e IRUPRVD DQG KDYH GHFLGHG WR UHFRJQL]H WKHVH WZR GLVWLQFW SKHQHWLF HQWLWLHV DW WKH VSHFLHV OHYHO ZLWK WKH XQGHUVWDQGLQJ WKDW WKHLU ELRORJLFDO UHODWLRQVKLSV PD\ SUHVHQW PRUH WKDQ PHHWV WKH H\H (XFKDULV FDQGLGD PD\ EH VHSDUDWHG IURP (B IRUPRVD E\ LWV VPDOOHU OHDYHV DQG IORZHUV FRPSOHWH DEVHQFH RI IUDJUDQFH (B IRUPRVD SURGXFHV D PLOG VRXU RGRUf DQG JHQHUDOO\ IHZHU RYXOHV SHU ORFXOH WKRXJK ERWK VSHFLHV DUH TXLWH YDULDEOH LQ RYXOH QXPEHUf %RWK VSHFLHV SUREDEO\ RULJLQDWHG LQ WKH 1DSR3DVWD]D GUDLQDJH RI (FXDGRU ZKHUH SUHVHQWGD\

PAGE 330

SRSXODWLRQV DUH QRZ FRQFHQWUDWHG (XFKDULV IRUPRVD LV VOLJKWO\ EHWWHU UHSUHVHQWHG LQ WKH 3DVWD]D YDOOH\ WKDQ (B FDQGL GD 'HVSLWH D IRUPLGDEOH UDQJH RI PRUSKRORJLFDO YDULDWLRQ LQ (B FDQGL GD )LJV $f GR QRW ILQG DQ\ SDWWHUQV WKDW OHQG WKHPVHOYHV WR GHOLPLWLQJ LQIUDVSHFLILF WD[RQRPLF FDWHJRULHV 3HUXYLDQ SRSXODWLRQV RI ( FDQGLGD DUH H[FHSWLRQDOO\ YDULDEOH LQ WKH VKDSH RI WKH VWDPLQDO FXS )LJ f HYHQ DPRQJ IORZHUV RI WKH VDPH LQIORUHVFHQFH 6XFK SKHQRW\SLF SODVWLFLW\ LV FKDUDFWHULVWLF RI (XFKDULV DQG WKH EDQH RI DQ\ SXUHO\ DOSKDWD[RQRPLF DSSURDFK WR WKH JHQXV (XFKDULV IRUPRVD 0HHURZ VS QRY )LJV % f ( FDQGLGD 3ODQFKQ HW /LQGHQ SULPR DGVSHFWX P£[LPH VLPLOH VHG LQ RPQHV SDUWHV JUDQGLRUHV IORULEXV OHQLWHU IUDJUDQWLEXV FXSXOD VWDPLQHD VXEF\OLQGULFD HW RYXOLV SOHUXPTXH LQ TXRTXH ORFXOR SLXULPLRULEXV GLIIHUW SUDHFLSXH D (B EDNHULDQD 1 ( %URZQ FXSXOD VWDPLQHD DQJXVWLRUH LQWHU VWDPLQD ILVVD SURIXQGL XV 7<3( (FXDGRU 0RURQD6DQWLDJR 5RDG /LPQ0DFDV FD NP IURP /LPQ SULPDU\ UDLQ IRUHVW DQG UDVWURMRV P 0DU +DUOLQJ t $QGHUVVRQ KRORW\SH *% LVRW\SH )/$6f 3ODQW WR GP WDOO %XOE VXEJORERVH FP ORQJ FP GLDP QHFN FP ORQJ FD FP WKLFN WXQLFV EURZQ /HDYHV f SHWLROH f FP ORQJ PP WKLFN SUR[LPDOO\ PP WKLFN GLVWDOO\ ODPLQD HOOLSWLF f f FP ORQJ f f FP ZLGH XVXDOO\ FRQVSLFXRXVO\ SOLFDWH GDUN JUHHQ DQG RQO\ VOLJKWO\ OXVWURXV DGD[LDOO\ OLJKW JUHHQ DED[LDOO\ DED[LDO FXWLFOH VWULDWH PDUJLQV FRDUVHO\ XQGXODWH 6FDSH f f GP WDOO FD FP GLDP SUR[LPDOO\ PP GLDP GLVWDOO\ EUDFWV RYDWHODQFHRODWH f f PP ORQJ FP ZLGH DW WKH EDVH )ORZHUV YHU\ UDUHO\

PAGE 331

OHVV SHQGHQW HPLWWLQJ D PLOG VRXU RGRU SHGLFHOV f f PP ORQJ WXEH f PP ORQJ FD PP ZLGH IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG WR f f PP DW WKH WKURDW OLPE VSUHDGLQJ WR f f FP WHSDOV VRPWLPHV UHFXUYHG GLVWDOO\ RXWHU WHSDOV QDUURZO\ RYDWH f f PP ORQJ f f PP ZLGH DSLFXODWH DSLFXOXP FRQVSLFXRXVO\ KRUQHG DGD[LDOO\ (FXDGRUHDQ SRSXODWLRQVf LQQHU WHSDOV RYDWH f f PP ORQJ f f PP ZLGH DFXWH WR PLQXWHO\ DSLFXODWH 6WDPLQDO FXS )LJ %f IXQQHOIRUPF\OLQGULFDO f PP ORQJ WR DSH[ RI WHHWK RU OREHVf f f PP ZLGH IOXVKHG JUHHQLVK\HOORZ SUR[LPDOO\ ZLWK WKH JUHDWHVW FRQFHQWUDWLRQ RI SLJPHQW EHORZ HDFK IUHH ILODPHQW UDUHO\ RQO\ ZLGHO\ SXQFWDWH ELGHQWDWH LUUHJXODUO\ WRRWKHG OREHG RU TXDGUDWH EHWZHHQ WKH GLVWDO SRUWLRQ RI WKH ILODPHQW FXS FOHIW EHWZHHQ HDFK VWDPHQ IRU PP WHHWK ZKHQ SUHVHQW DFXWH RU REWXVH B PP ORQJ HDFK VWDPHQ f f PP ZLGH WRRWKWRWRRWK RU OREHWR OREH GLVWDO SRUWLRQ RI ILODPHQW VXEXODWH f f PP ORQJ f f PP ZLGH DW SRLQW RI GLODWLRQ DQWKHUV REORQJ f PP ORQJ JUH\EURZQ SROOHQ JUDLQ \XP SRODU GLDP _LP ORQJHVW HTXDWRULDO GLDP 6W\OH f FP ORQJ H[VHUWHG FD FP EH\RQG WKH DQWKHUV VWLJPD FD PP ZLGH 2YDU\ JORERVH HOOLSVRLG f PP ORQJ f f PP GLDP JUHHQ RYXOHV f f &DSVXOH FP ORQJ FP ZLGH SHGLFHOV FP ORQJ VHHGV f SHU ORFXOH HOOLSVRLG PP ORQJ PP GLDP ZLWK D OXVWURXV VPRRWK EODFN WHVWD QB (7<02/2*< 7KH HSLWKHW RI WKLV QHZ VSHFLHV UHIHUV WR LWV KDQGVRPH DVSHFW ZKHQ LQ IORZHU

PAGE 332

',675,%87,21 $1' (&2/2*< 5LFK PRLVW VRLO LQ WKH XQGHUVWRU\ RI SUH DQG ORZHU PRQWDQH UDLQ IRUHVW FKLHIO\ LQ WKH 1DSR DQG 3DVWD]D GUDLQDJH RI (FXDGRU )LJ f OHVV IUHTXHQW LQ $PD]RQLDQ 3HUX DQG &RORPELD WKH ORZHU FHMD GH PRQWDD RI QRUWKFHQWUDO 3HUX DQG XSSHU +XDOODJD YDOOH\ RI 3HUX )LJ f UDUH LQ FHQWUDO &RORPELD >D VLQJOH SRRUO\ GRFXPHQWHG FROOHFWLRQ .LOOLS V QB &2/f IURP QHDU 3RSD\DQ PD\ EH RI FXOWLYDWHG RULJLQ@ P IORZHULQJ PRVW FRPPRQO\ -DQXDU\ 0DUFK $ SRXOWLFH RI WKH EXOEV LV XVHG WR WUHDW WXPRUV /DZHVVRQ HW DO f YHUQDFXODU QDPH FHEROOD GH OD VHOYD VXJNLS $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ $PD]RQDV FRQIOXHQFLD GH ORV 5LRV $PD]RQDV \ /RUHWR\DFX $SU &DEUHUD &2/f 7UDSHFLR DPD]QLFR /RUHWR\DFX 5LYHU FD P 6HS 6FKXOWHV t %ODFN >LQ IUXLW@ 86f VDPH ORFDOLW\ DV SUHFHGLQJ 2FW 6FKXOWHV t %ODFN >LQ IUXLW@ *+ 86f &DTXHWD 0RUHOLD P 2FW YRQ 6QHLGHUQ V QB 6f &DXFD 3RSD\DQ -DQ .LOO LS BV QB &2/f (&8$'25 0RURQD6DQWLDJR 5RDG /LPQ0DFDV FD NP IURP /LPQ SULPDU\ UDLQ IRUHVW DQG UDVWURMRV P 0DU +DUOLQJ t $QGHUVVRQ )/$6 *%f 1DSR 1DSR IRUHVW 2FW $VSOXQG 6f 7HQD PDUVK\ IRUHVW 2FW $VSOXQG 6f /LPRQFRFKD P -DQ 'RGVRQ 6(/f PLQXWH ZDON E\ WUDLO IURP 6DQWD &HFHLOLD XS 5LR $JXDULFR FD P 0DU 'Z\HU t 0DF%U\GH >LQ IUXLW@ 02f 6DQWD &HFLOLD UDLQ IRUHVW RII UXQZD\ P 0DU 'Z\HU t 6LPPRQV >LQ IUXLW@ 02f &DQRQ GH ORV 0RQRV FD NP QRUWK RI &RFD P +DUOLQJ t $QGHUVVRQ *% VSHFLPHQ *%f SDWK IURP 5LR %XHQR WR 6DQWD 5RVD +DUOLQJ HW DO *%f 5LR -LYLQR /LPRQFRFKD 0DU +DUOLQJ HW DO )/$6 *%f $UPHQLD 9LHMD DW 5LR 1DSR FD NP VZ RI &RFD -DQ

PAGE 333

+ROJXHU )/$6 *%f &DQRQ GH ORV 0RQRV URDG &RFD/DJR $JULR FD NP QRUWK RI &RFD -DQ +ROJXHU *%f 6DQWD &HFLOLD /DJR $JULR%DH]D FD NP ZHVW RI /DJR $JULR )HE +ROJXHU )/$6 *%f 5LR $JXDULFR ZHVW RI 'HWDFDPHQWR =DQFXGR DW HQWUDQFH RI 5LR =DQFXGR P YHU\ ULFK VRLO $XJ +ROP1LHOVHQ HW DO >LQ IUXLW@ $$8f $DQJX 5LR 1DSR r n : r n 6 P -XQH /DZHVVRQ HW DO $$8f NP ZHVW RI /DJR $JULR NP HDVW RI 5LR &RQHMRf QHDU /DJR $JULR%DH]D 5RDG FD P 0DU 0DF%U\GH t 'Z\HU 0f H[ KRUW YRXFKHU RI 6(/ $FF FROOHFWHG YLFLQLW\ /LPRQFRFKD P 'HF 0HHURZ )/$6f 3DVWD]D 0HUD FD P 0DU $VSOXQG 6f &XUDUD\ -HVV 3LWLVKNDf YLUJLQ UDLQ IRUHVW QHDU WKH SRVWR PLOLWDU FD P 0DU +DUOLQJ t $QGHUVVRQ )/$6 *%f EHWZHHQ 1DO SL Y DQG &DQHOR )HE +ROJXHU )/$6 *%f WUDLO IURP ,QGLOODPD WR &DQHORV P RFFDVLRQDO )HE 0H[LD 8& 86f RQ 1DSR URDG QRUWK RI 3X\R )HE 3UHVFRWW 1LQ IUXLW@ 0f 5LR &HQHSD YLFLQLW\ RI +XDPSDPL FD NP HDVW RI &K£YH] 9DOGLYLD FD r n : r n 6 4XHEUDGD $LQWDPL $XJ .XMLNDW 0f /RUHWR 0D\QDV
PAGE 334

P $XJXVW *HQWU\ HW DO 02f VDPH ORFDOLW\ DV SUHFHGLQJ P )HE *HQWU\ HW DO 02f 0D\QDV cTXLWRV 5LR $PSL\DFX YXHOWDV GH 0RQRQD &RFKD $XJ 5HYL D 02f $OWR $PD]RQDV
PAGE 335

VKRZV VRPH NDU\RW\SLF VHH &KDSWHU 9,,f DQG DOOR]\PH GLYHUJHQFH VHH &KDSWHU 9,,,f IURP (FXDGRUHDQ SRSXODWLRQV ,Q IORUDO PRUSKRORJ\ )LJ )f KRZHYHU LW LV YLUWXDOO\ LQGLVWLQJXLVKDEOH IURP RWKHU (FXDGRUHDQ PDWHULDO $ VHFRQG FROOHFWLRQ 6FKXQNH f IURP WKH VDPH JHQHUDO YLFLQLW\ RI 3HUX DV 6FKXQNH KDV RQO\ VKDOORZO\ SOLFDWH OHDYHV DQG UHGXFHG SLJPHQWDWLRQ RI WKH VWDPLQDO FXS )LJV '(f $W WKH SUHVHQW WLPH GR QRW EHOLHYH WKDW HQRXJK LV NQRZQ DERXW (B IRUPRVD LQ 3HUX WR MXVWLI\ UHFRJQLWLRQ RI VXEVSHFLILF WD[D (8&+$5,6 %$.(5,$1$ 1 ( %URZQ )LJ f *DUG &KURQ )LJ 7<3( H[ KRUW 6DQGHU DQG &R &RORPELD QR RWKHU GDWD e QB LQ SDUW KRORW\SH .f 8UFHROLQD EDNHULDQD 1 ( %URZQf 7UDXE 3, /LIH %XOE WR FD FP GLDP WXQLFV EURZQ /HDYHV SHWLROH FP ORQJ PP ZLGH ODPLQD HOOLSWLF FP ORQJ FP ZLGH VRPHZKDW VXFFXOHQW VPRRWK 6FDSH GP WDOO FD FP GLDP SUR[LPDOO\ PP GLDP GLVWDOO\ EUDFWV RYDWHODQFHRODWH PP ORQJ FD PP ZLGH DW WKH EDVH )ORZHUV ZLWK D PLOG VZHHW IUDJUDQFH SHGLFHOV PP ORQJ WXEH PP ORQJ PP ZLGH IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG QHDU WKH WKURDW WR PP ZLGH FXUYHG DEUXSWO\ MXVW DERYH WKH RYDU\ DQG VWUDLJKW IRU WKH UHVW RI LWV OHQJWK WKXV SHUSHQGLFXODU WR WKH YHUWLFDO D[LV RI WKH VFDSH OLPE VSUHDGLQJ WR PP ZLGH RXWHU WHSDOV PP ORQJ FD f PP ZLGH RYDWHODQFHRODWH WR RYDWH DSLFXODWH LQQHU WHSDOV PP ORQJ f PP ZLGH RYDWH DFXWH WR PLQXWHO\ DSLFXODWH 6WDPLQDO FXS VXEF\OLQGULFDO WR FDPSDQXODWH FD PP ORQJ WR DSH[ RI WHHWKf PP ZLGH VOLJKWO\ SOLFDWH EHWZHHQ WKH ILODPHQWDO WUDFH YHU\ VKDOORZO\ FOHIW EHWZHHQ HDFK VWDPHQ PPf SUR[LPDOO\ PDUNHG

PAGE 336

JUHHQ REWXVHO\ ELGHQWDWH EHWZHHQ HDFK IUHH ILODPHQW WHHWK PP ORQJ KDOI WKH OHQJWK RI WKH VXEXODWH SRUWLRQ RI WKH IUHH ILODPHQW HDFK VWDPHQ PP ZLGH WRRWK WR WRRWK VXEXODWH SRUWLRQ RI WKH ILODPHQW PP ORQJ PP ZLGH DQWKHUV REORQJ PP ORQJ SROOHQ JUDLQ FD ALP SRODU GLDP FD \XP ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ H[VHUWHG MXVW VOLJKWO\ SDVW WKH DQWKHUV VWLJPD PP ZLGH 2YDU\ HOOLSVRLG PP ORQJ PP GLDP RYXOHV SHU ORFXOH &DSVXOH FD FP ORQJ FP ZLGH VHHGV HOOLSVRLG FD FP ORQJ FP GLDP ZLWK D OXVWURXV VPRRWK EODFN WHVWD QB ',675,%87,21 $1' (&2/2*< 9HU\ UDUH LQ WKH XQGHUVWRU\ RI ORZHU PRQWDQH UDLQ IRUHVW LQ WKH PLGGOH 5LR +XDOODJD YDOOH\ RI 3HUX P )LJ f /LYLQJ PDWHULDO IURP ZKLFK WKH W\SH VSHFLPHQ ZDV SUHSDUHG ZDV UHSRUWHGO\ FROOHFWHG LQ &RORPELD )ORZHULQJ VHDVRQ QRW NQRZQ $'',7,21$/ 0$7(5,$/ (;$0,1(' 3(58 6DQ 0DUWLQ NP 1( RI 7DUDSRWR RQ URDG WR LQ IUXLW@ 0f YLFLQLW\ RI 7DUDSRWR QR RWKHU GDWD IORZHUHG LQ FXOWLYDWLRQ IURP PDWHULDO FROOHFWHG E\ / %HVVH 0HHURZ )/$6f 7KH W\SH RI (B EDNHULDQD ZDV SUHSDUHG IURP OLYLQJ PDWHULDO VXSSRVHGO\ FROOHFWHG LQ &RORPELD :KHQ H[DPLQHG WKH W\SH VSHFLPHQ RQO\ WKH VHYHUDO ODUJH IORZHUV SUHVHQW LQ WKH IUDJPHQW SDFNHW UHVHPEOHG WKH ILJXUH ZKLFK DFFRPSDQLHG %URZQnV f GHVFULSWLRQ RI ( EDNHULDQD 7KH PRXQWHG PDWHULDO ZDV UHIHUDEOH WR WKH VPDOOHU IORZHUHG ( FDQGL GD $W WKH WLPH WKRXJKW WKDW ( EDNHULDQD PLJKW UHSUHVHQW DQ DEEHUDQW IRUP RI ( FDQGLGD 6HYHUDO \HDUV ODWHU UHFLYHG EXOE RI D (XFKDULV

PAGE 337

FROOHFWHG QHDU 7DUDSRWR 3HUX E\ /LEE\ %HVVH RI 6(/ :KHQ WKLV SODQW ZDV IORZHUHG WKH IORZHUV ERUH H[DFWLQJ UHVHPEODQFH LQ KDELW DQG VWDPLQDO FXS PRUSKRORJ\ WR (B EDNHULDQD WKRXJK ZLWK FRQVLGHUDEO\ PRUH RYXOHV SHU ORFXOH $W SUHVHQW (B EDNHULDQD LV NQRZQ RQO\ IURP WKH W\SH WKH %HVVH PDWHULDO DQG D IUXLWLQJ VSHFLPHQ UHIHUHG WR WKLV VSHFLHV RQ WKH EDVLV RI OHDI VL]H (XFKDULV EDNHULDQD LV GLVWLQFW IURP (B IRUPRVD LWV FORVHVW SKHQHWLF DQG FODGLVWLF UHODWLYH E\ LWV QRQSHQGHQW IORZHUV ZKLFK DUH SHUSHQGLFXODU WR WKH YHUWLFDO D[LV RI WKH VFDSH YHU\ VKDOORZO\ FOHIW VWDPLQDO FXS PP PP LQ ( IRUPRVDf VKRUW VXEXODWH SRUWLRQ RI WKH VWDPHQ DQG VZHHW IORUDO IUDJUDQFH VOLJKWO\ IHWLG LQ (B IRUPRVDf ,Q OHDI VL]H DQG NDU\RW\SH (B EDNHULDQD LV YHU\ VLPLODU WR 3HUXYLDQ PDWHULDO RI (B IRUPRVD 6FKXQNH VHH &KDSWHU 9,,f EXW GLIIHUV E\ LWV JUHDWHU QXPEHU RI VXEWHORFHQWULF FKURPRVRPHV DQG WKH VXEPHWDFHQWULF PRUSKRORJ\ RI WKH VHFRQGODUJHVW SDLU 7KH OHDYHV DUH RQO\ VKDOORZO\ LI DW DOO SOLFDWH DQG WKLFNHU $V PRUH FROOHFWLRQV RI (XFKDULV DUH PDGH D PRUH UHDOLVWLF LGHD RI WKH UDQJH RI (B EDNHULDQD PD\ HPHUJH (8&+$5,6 %213/$1',, .XQWKf 7UDXE )LJ f 3, /LIH +\PHQRFDOOLV ERQSODQGLL .XQWK (QXP 3, 7<3( &RORPELD 5LR 0DJGDOHQD QHDU 1DUHV %RQSODQG KRORW\SH 3 SKRWR RI W\SH 1
PAGE 338

ZLGH EOXHLVKJUHHQ HVSHFLDOO\ LQ VWURQJ OLJKW DQG VOLJKWO\ JODXFRXV DGD[LDOO\ OLJKWHU JUHHQ DED[LDOO\ WKH DED[LDO FXWLFOH GHQVHO\ VWULDWH DSH[ DFXWH WR VKRUWO\ DFXPLQDWH DWWHQXDWH DW WKH EDVH 6FDSH GP WDOO PP GLDP SUR[LPDOO\ PP GLDP GLVWDOO\ EUDFWV f PP ORQJ RYDWHODQFHRODWH JUHHQLVKZKLWH )ORZHUV QRQ IUDJUDQW SHQGHQW SHGLFHOV PP ORQJ WXEH PP ORQJ PP ZLGH IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG DW WKH WKURDW WR f PP ZLGH OLPE VSUHDGLQJ WR PP ZLGH RXWHU WHSDOV RYDWH ODQFHRODWH PP ORQJ PP ZLGH DSLFXODWH LQQHU WHSDOV PP ORQJ PP ZLGH DFXWH WR PLQXWHO\ DSLFXODWH 6WDPLQD FXS VXEF\OLQGULFDO f PP ORQJ WR DSH[ RI WHHWKf PP ZLGH VWDLQHG SDOH \HOORZ SUR[LPDOO\ LUUHJXODUO\ ELGHQWDWH EHWZHHQ HDFK IUHH ILODPHQW RQH VWDPHQ RFFDVLRQDOO\ RQO\ OREHG RU TXDGUDWH FOHIW PP EHWZHHQ HDFK VWDPHQ WHHWK YDULRXVO\ DFXWH RU REWXVH PP ORQJ HDFK VWDPHQ PP ZLGH WRRWKWRWRRWK IUHH SRUWLRQ QDUURZO\ VXEXODWH f PP ORQJ FD PP ZLGH DQWKHUV PP ORQJ REORQJ JUH\LVKEURZQ SROOHQ JUDLQ FD AXP SRODU GLDP FD \XP ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ H[VHUWHG MXVW EH\RQG WKH DQWKHUV VWLJPD PP ZLGH 2YDU\ VXEJORERVH FD PP GLDP RYXOHV SHU ORFXOH QB &DSVXOH FD FP ORQJ FP ZLGH VHHGV SHU ORFXOH HOOLSVRLG FD FP ORQJ FD PP GLDP ZLWK D OXVWURXV EODFN WHVWD ',675,%87,21 $1' (&2/2*< 5DUH LQ FHQWUDO DQG ZHVWHUQ &RORPELD )LJ f LQ WKH XQGHUVWRU\ RI ORZHU PRQWDQH UDLQ IRUHVW Pf IORZHULQJ )HEUXDU\0DUFK 0D\-XQH $XJXVW $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ 'HSDUWPHQW XQNQRZQ /D 0HMLWD >"@ -XQH *RXGRW V Q 3f &DOGDV &DXFD 9DOOH\

PAGE 339

7DEHMD ZHVW RI $UPHQLD P -XO 3HQQHO HW DO *+ 1< 86f &DXFD >"@ /D 3DLOD 0D\ +ROWRQ V e 1LQ IUXLW@ &2/f (XFKDULV ERQSODQGLL LV RQH RI RQO\ WZR WHWUDSORLG QB f VSHFLHV LQ WKH JHQXV 7KH VSHFLHV LV NQRZQ RQO\ IURP &RORPELD DQG LV UDUHO\ HQFRXQWHUHG 7KH UHODWLYH UDULW\ RI WKLV VSHFLHV PLJKW VXJJHVW DQ DXWRSRO\SORLG RULJLQ IRU (B ERQSODQGLL >YL] 6WHEELQV f K\SRWKHVLV WKDW DXWRSRO\SORLGV UDUHO\ DUH PDUNHGO\ VXFFHVVIXO LQ QDWXUH@ SHUKDSV IURP DQ DQFHVWRU FORVH WR B( XOHL WR ZKLFK DPRQJ $PD]RQLDQ VSHFLHV B( ERQSODQGLL KDV WKH JUHDWHVW SKHQHWLF UHODWLRQVKLS VHH &KDSWHU 9,f 0HLRWLF SDLULQJ UHODWLRQVKLSV ZRXOG EH KHOSIXO LQ FRQILUPLQJ WKLV K\SRWKHVLV EXW XQIRUWXQDWHO\ DUH GLIILFXOW WR REWDLQ IURP LQ WKHVH SODQWV 7KH FODGLVWLF K\SRWKHVLV &KDSWHU ;,f WKDW (B ERQSODQGLL DQG e ERXFKHL IRUP D PRQRSK\OHWLF JURXS ODUJHO\ RQ WKH EDVLV RI WHWUDSORLG\f LV QRW FRQFOXVLYH ,W PD\ VHSDUDWHG IURP e XOHL E\ LWV VXFFXOHQW JODXFRXV OHDYHV DQG VKRUW SHWLROHV 7KH VWDPLQDO FXS RI (B ERQSODQGLL LV SLJPHQWHG SDOH \HOORZ DW LWV EDVH WKDW RI (B XOHL LV PDUNHG JUHHQ (XFKDULV ERQSODQGLL DQG ( OHKPDQLL DUH WKH RQO\ WZR VSHFLHV RI VXEJ (XFKDULV WKDW RFFXU LQ ZHVWHUQ &RORPELD

PAGE 340

(8&+$5,6 %28&+(, :RRGVRQ DQG $OOHQ )LJ f 3ODQW GP WDOO %XOE VXEJORERVH f PP ORQJ f f PP GLDP QHFN VKRUW WR PP ORQJ PP ZLGH WXQLFV EURZQ /HDYHV f SHWLROH f f FP ORQJ PP ZLGH SUR[LPDOO\ PP ZLGH GLVWDOO\ ODPLQD ZLGHO\ RYDWHf HOOLSWLF f f FP ORQJ f f FP ZLGH VKRUWO\ DFXPLQDWH VOLJKWO\ VXFFXOHQW OXVWURXV EULJKW JUHHQ DGD[LDOO\ GXOO SDOH JUHHQ DED[LDOO\ VPRRWK PDUJLQV PRVWO\ QRQXQGXODWH DED[LDO FXWLFOH ODUJHO\ GHYRLG RI VWULDWLRQ 6FDSH FD f GP WDOO FD FP GLDP SUR[LPDOO\ FD PP GLDP GLVWDOO\ EUDFWV RYDWHODQFHRODWH f PP ORQJ f PP ZLGH DW WKH EDVH )ORZHUV f f XVXDOO\ SHQGHQW VRPHWLPHV RQO\ GHFOLQDWH QRW IUDJUDQW SHGLFHOV f PP ORQJ YHU\ UDUHO\ OHVV WKDQ PP WXEH f PP ORQJ F\OLQGULFDO DQG f f PP IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG QHDU WKH WKURDW WR f f PP ZLGH XVXDOO\ FXUYHG JUDGXDOO\ EXW VRPHWLPHV RQO\ FXUYHG DEUXSWO\ DW WKH EDVH LQ ZKLFK FDVH QHDUO\ VWUDLJKW IRU PRVW RI LWV OHQJWK WHSDOV VSUHDGLQJ ZLGHO\ IURP WKH WKURDW FD rf RU VRPHWLPHV RQO\ DW DQ DQJOH RI r RXWHU WHSDOV RYDWH ODQFHRODWH f f PP ORQJ f PP ZLGH DSLFXODWH LQQHU WHSDOV RYDWH f f PP ORQJ f f PP ZLGH REWXVH WR DFXWH 6WDPLQDO FXS VXEF\OLQGULFDO f PP ORQJ WR DSH[ RI ILODPHQW f f PP ZLGH GHHSO\ FOHIW EHWZHHQ HDFK VWDPHQ WR PP XVXDOO\ HGHQWDWH EXW YDULDEO\ OREHG DFXWHO\ RU REWXVHO\ ELGHQWDWH RU LUUHJXODUO\ WRRWKHG EHWZHHQ HDFK VWDPHQ PDUNHG SDOH JUHHQ WR JUHHQLVK\HOORZ SUR[LPDOO\ HDFK VWDPHQ f PP ZLGH DW WKH EDVH f PP ORQJ HLWKHU WUDSH]RLGDO LQ VKDSH LQ ZKLFK FDVH GLODWLQJ JUDGXDOO\ IURP DSH[ WR EDVHf RU DEUXSWO\ GLODWHG DW

PAGE 341

WR RI LWV OHQJWK LQ ZKLFK FDVH WKH XSSHU SRUWLRQ QDUURZO\ VXEXODWH DQG RU PP ORQJ PP ZLGHf DQWKHUV REORQJ PP ORQJ SROOHQ JUDLQ \XP SRODU GLDP \XP ORQJHVW HTXDWRULDO GLDP 6W\OH f PP ORQJ H[VHUWHG FP EH\RQG DQWKHUV VWLJPD PP ZLGH 2YDU\ JORERVH RU HOOLSVRLG DQG GHHSO\ WULJRQRXV UDUHO\ QRW WULJRQRXV PP ORQJ f PP GLDP XVXDOO\ ZLGHU WKDQ ORQJ ZKHQ GHHSO\ WULJRQRXV RYXOHV YHU\ UDUHO\ f SHU ORFXOH VXSHUSRVHG LQ WKH ORZHU KDOI RI WKH FHOO &DSVXOH FP ORQJ FP ZLGH SHGLFHOV PP ORQJ VHHGV SHU ORFXOH HOOLSVRLG FD FP ORQJ FP GLDP ZLWK D OXVWURXV VPRRWK EODFN WHVWD QB .H\ WR WKH YDULHWLHV RI e ERXFKHL 6WDPLQDO FXS HGHQWDWH RU RFFDVLRQDOO\ ZLWK RQH REVFXUH WRRWK DW WKH EDVH RI RQH VWDPHQ VWDPHQV WUDSD]RLGDO DQG JUDGXDOO\ GLODWHG IURP DSH[ WR EDVH RU LI REVFXUHO\ FRQVWULFWHG GLVWDOO\ VXEXODWH SRUWLRQ PP ZLGH &RFL DQG &RORQ SURYLQFHV RI 3DQDPD UDUH LQ 3DQDPD SURYLQFH DQG LQ &RVWD 5LFD DQG *XDWHPDOD D YDU ERXFKHL 6WDPLQDO FXS OREHG RU WRRWKHG VWDPHQV DEUXSWO\ FRQVWULFWHG GLVWDOO\ DW OHQJWK LQWR D VXEXODWH SRUWLRQ PP ZL GH 2XWHU WHSDOV PP ORQJ VWDPLQDO FXS LUUHJXODUO\ WRRWKHG WKH WHHWK DFXWH VXEXODWH SRUWLRQ RI ILODPHQW PP ORQJ RYDU\ QRW GHHSO\ WULJRQRXV RYXOHV SHU ORFXOH &RFL SURYLQFH RI 3DQDPD QHDU (O 9DOOH E YDU GUHVVOHULL

PAGE 342

2XWHU WHSDOV PP ORQJ VWDPLQDO FXS REWXVHO\ ELGHQWDWH RU OREHG VXEXODWH SRUWLRQ RI ILODPHQW e PP ORQJ RYDU\ GHHSO\ WULJRQRXV RYXOHV SHU ORFXOH 3DQDPD DQG 'DULHQ SURYLQFHV RI 3DQDPD UDUH LQ *XDWHPDOD F YDU GDULHQHQVLV D (XFKDULV ERXFKHL YDU ERXFKHL :RRGVRQ DQG $OOHQ )LJV OO$LL LLL %&f $QQ 0LVVRXUL %RW *DUG 7<3( 3DQDPD &RFL (O 9DOOH GH $QWQ P -XO 6HLEHUW KRORW\SH 0f 8UFHROLQD ERXFKHL :RRGVRQ t $OOHQf 7UDXE 3, /LIH 3HULDQWK WXEH f PP ORQJ RXWHU WHSDOV f f PP ORQJ f PP ZLGH LQQHU WHSDOV f PP ORQJ PP ZLGH 6WDPLQDO FXS f f PP ORQJ WR DSH[ RI ILODPHQWVf f f PP ZLGH HGHQWDWH RU UDUHO\ ZLWK D VLQJOH REVFXUH WRRWK EHWZHHQ RQH RU VHYHUDO VWDPHQV HDFK VWDPHQ WUDSH]RLGDO LQ VKDSH GLODWLQJ JUDGXDOO\ IURP WKH DSH[ WR WKH EDVH RU LI REVFXUHO\ FRQVWULFWHG LQ WKH GLVWDO PP WKH VXEXODWH SRUWLRQ ZLGHU WKDQ PP 6W\OH H[VHUWHG FD FP EH\RQG WKH DQWKHUV 2YDU\ WULJRQRXV RYXOHV SHU ORFXOH ',675,%87,21 $1' (&2/2*< 8QGHUVWRU\ RI SULPDU\ SUH DQG ORZHU PRQWDQH UDLQ IRUHVW LQ &RFL DQG &RORQ SURYLQFHV RI 3DQDPD )LJ f SDUWLFXODUO\ LQ WKH YLFLQLW\ RI (O 9DOOH GH $QWQ DQG WKH 5LR *XDQFKH YDOOH\ UDUH LQ 3DQDPD SURYLQFH &RVWD 5LFD DQG *XDWHPDOD )LJ f IUHTXHQWO\ RQ VWHHS VORSHV f P IORZHULQJ 0DUFKf -XQH $XJXVW 2FWREHU'HFHPEHU $'',7,21$/ 0$7(5,$/ (;$0,1(' &267$ 5,&$ 3XQWDUHQDV &DQWRQ GH 2VD KLOOV QHDU 3DOPDU 1RUWH 5LR *UDQGH GH 7HUUDED IW $OOHQ

PAGE 343

) 02 86f FDWDUDWDV GH 6DQ 5DPQ )HE %UHQHV )f 6DQ -RV (O 5RGHR 0DU /DQNHVWHU V QB )f *8$7(0$/$ 6XFKLWHSHTXH] )LQFD 0RF£ VWHHS EXVK\ VORSH IW 2FW 6NXWFK )f 3$1$0$ &RFL ORZHU 5LR $QWQ YLH (O 9DOOH GH $QWQ P 'HF $OOHQ *+ 02f YLH RI (O 9DOOH GH $QWQ P $OOHQ *+ 02f YLH (O 9DOOH GH $QWQ FD P 'HF $OOHQ 02f KLOOV QRUWK RI (O 9DOOH GH $QWQ P $XJ $OOHQ 02f UHJLRQ QRUWK RI (O 9DOOH GH $QWQ FD P $XJ $OOHQ *f /D 0HVD DERYH (O 9DOOH P -DQ 'XNH t 'Z\HU >LQ IUXLW@ 1LQ IUXLW@ ) 02f IRRW RI &HUUR 3LOQ -DQ *HQWU\ t 'Z\HU >LQ IUXLW@ 02f (O 9DOOH GH $QWQ DORQJ 5LR ,QGLR 7UDLO P +XQWHU t $OOHQ >LQ IUXLW@ 02 3 86f (O 9DOOH GH $QWQ IW HGJH RI FORXG IRUHVW DQG URDGVLGH 'HF /HZLV HW DOB 02f H[ KRUW IURP EXOE FROOHFWHG E\ 0 :KLWWHQ DQG 0 (OOLRW YLH (O 9DOOH IORZHUHG LQ FXOWLYDWLRQ -XO 0HHURZ )/$6f &HUUR 3LOQ NP QRUWK RI (O 9DOOH P -XQ 0RUL HW DO $$8f 4XHEUDGD $PDULOOR QRUWK RI (O 9DOOH 2FW :LWKHUVSRRQ t :LWKHUVSRRQ 02f &RORQ 5LR *XDQFKH 1RY 'n$UF\ 02f KLOOV MXVW QRUWK RI 5LR *XDQFKH P 1RY 'DYLGVH t 'n$UF\ >LQ IUXLW@ 02f &HUUR %UXMR H[ KRUW FROOHFWHG E\ 5 'UHVVLHU IORZHUHG LQ FXOWLYDWLRQ -XO 0HHURZ )/$6f WUDLO VRXWK RI 5LR *XDQFKH RQ ULGJH WR &HUUR 3DQ GH $]FDU P 0RUL t .DOOXQNL $$8f 5LR *XDQFKH 1RY 0RUL t .DOOXQNL >LQ IUXLW@ $$8f 3DQDPD PRXQWDLQV DERYH 7RUWL $UULED 'HF )ROVRP HW DO $$8 %0 02f QHDU &HUUR &DPSDQD RQ WUDLOV

PAGE 344

UDGLDWLQJ IURP HQG RI URDG ZKLFK SDVVHV &DPSDQD ZDWHU WDQN $XJ .LUNEULGH t +D\GHQ 02 1
PAGE 345

3HULDQWK WXEH f PP ORQJ RXWHU WHSDOV PP ORQJ PP ZLGH LQQHU WHSDOV PP ORQJ f f PP ZLGH 6WDPLQDO FXS f PP ORQJ WR DSH[ RI ILODPHQWVf f PP ZLGH REWXVHO\ ELGHQWDWH RU OREHG WKH WHHWK ZKHQ SUHVHQW FD PP ORQJ HDFK VWDPHQ GLVWDOO\ FRQVWULFWHG DEUXSWO\ DW OHQJWK WKH VXEXODWH SRUWLRQ FD PP ORQJ PP ZLGH 6W\OH H[VHUWHG OHVV WKDQ FP EH\RQG WKH DQWKHUV 2YDU\ WULJRQRXV RYXOHV SHU ORFXOH (7<02/2*< 7KH YDULHWDO HSLWKHW UHIHUV WR 'DULQ SURYLQFH RI 3DQDPD ZKHUH B( ERXFKHL YDU GDULHQHQVLV LV PRVW IUHTXHQWO\ FROOHFWHG ',675,%87,21 $1' (&2/2*< 8QGHUVWRU\ RI SULPDU\ UDLQIRUHVW LQ 'DULHQ SURYLQFH RI 3DQDPD )LJ f UDUH LQ 3DQDPD SURYLQFH DQG *XDWHPDOD )LJ f P IORZHULQJ -DQXDU\)HEUXDU\ DQG -XQH $XJXVW 1RYHPEHUf $'',7,21$/ 0$7(5,$/ (;$0,1(' *8$7(0$/$ 6ROROD EHWZHHQ 6W 3HGUR DQG 6WD /XFLD -DQ :HQGDQG *(7f 3$1$0$ 'DULHQ /D %RFD GH 3LUUH 2FW %ULVWDQ >LQ IUXLW@ 0f YLFLQLW\ RI DLUVWULS DW &DQD JROG PLQH P GLVWXUEHG IRUHVW -XO\ &URDW $$8f &HUUR 3LUUH FORXG IRUHVW DQGRU PRVV\ IRUHVW IW $XJ 'XNH t (OLDV *+ 0 86f &HUUR 7DFDUFXQD VRXWK VORSH P -DQ *HQWU\ t 0RUL 0f PLOHV HDVW RI 7UHV %RFDV DORQJ VKRUWHVW KHDGZDWHUV RI 5LR &XDVL SUHPRQWDQH UDLQ IRUHVW 0DU .LUNEULGH t 'XNH >LQ IUXLW@ 0f YLFLQLW\ &DQD IW UDUH RQ IRUHVW IORRU -XQH 6WHUQ HW DO *+f JROG PLQH DW &DQD P -XO 6XOOLYDQ >LQ IUXLW@ 0f WUDLO QRUWKZHVW RI &DQD P -XO 6XOOLYDQ >LQ IUXLW@ 0f JROG PLQH DW &DQD P -XO 6XOOLYDQ >LQ

PAGE 346

IUXLW@ 02f &DQD&XDVL WUDLO &KHSLJDQR IW 0DU 7HUU\ t 7HUU\ >LQ IUXLW@ )f 3DQDPD VWUHDP IORZLQJ RXW RI 6HUUDQLD GH 0DMH )HE )ROVRP t &ROOLQV >LQ IUXLW@ 0f 0DMH PLOHV XS 5LR 0DMH VWHHS IRUHVWHG ULGJH DERYH &KRF ,QGLDQ WUDLO P 1RY .HQQHG\ 02 86f ZRRGV DURXQG /D (QHLGD P $XJ /XWH\Q t .HQQHG\ >LQ IUXLW@ )f ORZHU VORSHV DQG WUDLO WR &HUUR &DPSDQD 6HS :LWKHUVSRRQ t :LWKHUVSRRQ 02f (XFKDULV ERXFKHL LV WKH QRUWKHUQPRVW GLVWULEXWHG VSHFLHV RI (XFKDULV DQG WKH RQO\ VSHFLHV IRXQG QRUWK RI WKH 'DULHQ *DS ,W LV DOVR WKH PRVW YDULDEOH VSHFLHV LQ WKH JHQXV LQ FKDUDFWHULVWLFV WKDW HOVHZKHUH MXVWLI\ VSHFLILF GHOLPLWDWLRQ 3DWWHUQV RI YDULDWLRQ LQ IORUDO VL]H DQG WXEH DQG OLPE KDELW IRUP D FRPSOHWH PRVDLF WKURXJKRXW WKH UDQJH RI (B ERXFKHL DQG VKRZ OLWWOH RU QR JHRJUDSKLF FRQVLVWHQF\ 6WDPLQDO FXS PRUSKRORJ\ )LJ &f GRHV KRZHYHU GHPRQVWUDWH D IDLU GHJUHH RI JHRJUDSKLFDO FRQVLVWDQF\ DQG LW LV FKLHIO\ RQ WKLV EDVLV WKDW KDYH UHFRJQL]HG YDU ERXFKHL DQG YDU GDULHQHQVLV 9DULHW\ GUHVVHULL UDUHO\ HQFRXQWHUHG DPRQJ SRSXODWLRQV RI YDU ERXFKHL SUHVHQWV D VSHFLDO FDVH GLVFXVVHG EHORZ 7KH XQSUHFHGHQWHG GHJUHH RI YDULDWLRQ LQ (B ERXFKHL LV OLNHO\ WKH UHVXOW RI WZR PDLQ IDFWRUV f WKH VSHFLHV LV WHWUDSORLG SXWDWLYHO\ DOORWHWUDSORLG VHH &KDSWHUV 9,, DQG 9,,, IRU GHWDLOHG GLVFXVVLRQf DQG f SUREDEO\ UHSUHVHQWV D JHRORJLFDOO\ UHFHQW FRORQL]DWLRQ RI &HQWUDO $PHULFD E\ WKLV SULPDULO\ QRUWKHUQ $QGHDQ DQG $PD]RQLDQ JHQXV VHH &KDSWHU ,; IRU GHWDLOHG GLVFXVVLRQf (XFKDULV ERXFKHL LV WKXV D KLJKO\ KHWHUR]\JRXV DOORWHWUDSORLG VHPLVSHFLHV FRPSOH[ VWLOO LQ WKH SURFHVV RI DFWLYH HYROXWLRQ 7KH ZLGH YDULDWLRQ SUHVHQW LQ ( ERXFKHL OLNHO\ UHSUHVHQWV WKH VHJUHJDWLQJ SKHQRW\SHV RI D ULFKO\ GLYHUVH JHQHWLF EDVH

PAGE 347

2Q WKH EDVLV RI NQRZQ GLVWULEXWLRQV )LJV f LW DSSHDUV WKDW VXEVWDQWLDO JHRJUDSKLF EDUULHUV H[LVW EHWZHHQ JURXSV RI SRSXODWLRQV SUREDEO\ UHVWULFWLQJ JHQH IORZ EHWZHHQ WKHP /HIW XQGLVWXUEHG DV LV QRW WKH FDVH LQ WKH 1HRWURSLFV WRGD\ WKHVH DJJUHJDWHV FRXOG FRQFHLYDEO\ HDFK MXVWLI\ VSHFLILF UHFRJQLWLRQ 1RUWKZHVWHUQQPRVW SRSXODWLRQV UHSUHVHQWLQJ YDU ERXFKHL KDYH WKH PRVW GHULYHG DQGURHFLDO PRUSKRORJ\ )LJV &LLLf UHODWLYH WR VRXWKHDVWHUO\ SRSXODWLRQV YDU GDULHQHQVLV )LJ &LYf 7KH ODWWHU KDYH VWDPLQDO FXSV VLPLODU WR WKH JHQHUDOL]HG PRUSKRORJ\ FKDUDFWHULVWLF RI $QGHDQ DQG $PD]RQLDQ VSHFLHV RI VXEJ (XFKDULV 7KLV VXJJHVWV WR PH WKDW JHQHUDO PRYHPHQW RI (B ERXFKHL LQ &HQWUDO $PHULFD KDV EHHQ DZD\ IURP WKH &RORPELDQ ERUGHU 7KH RFFDVLRQDO SUHVHQFH RI (B ERXFKHL LQ &RVWD 5LFD LV QRW VXUSULVLQJ EXW WKH WZR UHSRUWHG FROOHFWLRQV IURP *XDWHPDOD :HQGODQG DQG 6NXWFK f UHSUHVHQW D VXEVWDQWLDO GLVMXQFW 7KLV LV DOO WKH PRUH LQWHUHVWLQJ GXH WR WKH IDFW WKDW HDFK RI WKH WZR UHSUHVHQWV D GLIIHUHQW YDULHW\ RI WKH VSHFLHV *LYHQ WKH KLVWRU\ RI FXOWLYDWLRQ RI $PD]RQLDQ (XFKDULV E\ ,QGLDQ SHRSOH IRU PHGLFLQDO FHUHPRQLDO DQG SRVVLEO\ RUQDPHQWDO XVH WKH VDPH PD\ KDYH KHOG WUXH LQ &HQWUDO $PHULFD 9DULHW\ ERXFKHL PRVW FRPPRQ DURXQG (O 9DOOH GH $QWQ LQ &RFL SURYLQFH LV UHFRJQL]HG E\ LWV ODUJHO\ HGHQWDWH VWDPLQDO FXS LQ ZKLFK WKH WUDSH]RLGDO IUHH ILODPHQW LV QRW PDUNHGO\ FRQVWULFWHG GLVWDOO\ LQWR D QDUURZ VXEXODWH SRUWLRQ )LJV &LLL &f 7KH VWDPLQDO FXS RI YDULHW\ GDULHQHQLV IRXQG ERWK LQ 3DQDPD DQG 'DULHQ SURYLQFHV LV REWXVHO\ ELGHQWDWH RU OREHG )LJ &LYf 7KH IUHH ILODPHQW FRQVWULFWV GLVWDOO\ LQWR D QDUURZ PPf VXEXODWH SRUWLRQ 7KHVH WZR YDULHWLHV

PAGE 348

RFFXU LQ FORVH SUR[LPLW\ LQ RQH ORFDWLRQ QHDU &HUUR &DPSDQD LQ 3DQDPD SURYLQFH )LJ f 7KH UDUH YDU GUHVVHULL )LJ OO$Lf ZLWK LWV DFXWHO\ WRRWKHG VWDPLQDO FXS )LJ &LLLf DQG QRQWULJRQRXV RYDU\ PD\ EH WKH UHVXOW RI UHFHQW V\PSDWULF GLYHUJHQFH DV LW RFFXUV LQ FORVH JHRJUDSKLF SUR[LPLW\ WR SRSXODWLRQV RI YDU ERXFKHL 7KLV YDULHW\ LV DQ XQVWDEOH WHWUDSORLG SURGXFLQJ DW OHDVW VRPH FHOOV ZLWK GLSORLG QB f FKURPRVRPH QXPEHU VHH &KDSWHU 9,,f 7KLV YDULHW\ DOVR GRHV QRW H[SUHVV DQ DGGLWLYH EDQGLQJ SKHQRW\SH IRU DQ DVSDUWDWH DPLQR WUDQVIHUDVH $$7f ORFXV ZKLFK RWKHUZLVH FKDUDFWHUL]HV HOHFWURSKRUHWLF SKHQRW\SHV RI (B ERXFKHL (OHFWURSKRUHWLF SKHQRW\SHV DOVR VXJJHVW SURIRXQG JHQHWLF GLYHUJHQFH IURP YDU ERXFKHL *HQHWLF LGHQWLW\ 1HL f EHWZHHQ WKH WZR YDULHWLHV LV RQO\ FRQVLGHUDEO\ EHORZ WKDW ZKLFK LV XVXDOO\ FKDUDFWHULVWLF RI FRQVSHFLILF SODQW SRSXODWLRQV *RWWOLHE f (XFKDULV ERXFKHL RIIHUV DQ H[FHOOHQW RSSRUWXQLW\ IRU GHWDLOHG VWXG\ RI WKH HYROXWLRQ RI D WURSLFDO UDLQ IRUHVW RUJDQLVP )XWXUH ZRUN VKRXOG VHHN WR TXDQWLI\ LQ JUHDWHU GHWDLO WKH JHQHWLF YDULDWLRQ SUHVHQW ZLWKLQ DQG DPRQJ SRSXODWLRQV RI WKLV DFWLYHO\ HYROYLQJ VSHFLHV FRPSOH[ KDYH VR IDU EHHQ XQVXFFHVVIXO LQ REWDLQLQJ PHLRWLF SDLULQJ ILJXUHV IURP OLPLWHG GLVVHFWLRQ RI EXOEV LQIRUPDWLRQ WKDW ZRXOG EH KHOSIXO LQ FRQILUPLQJ WKH QDWXUH RI WKLV VSHFLHVn SRO\SORLG RULJLQV (8&+$5,6 $67523+,$/$ 5DYHQQDf 5DYHQQD )LJ f 3K\WRORJLD 8UHFROLQD DVWURSKLDOD 5DYHQQD 3, /LIH 7<3( (FXDGRU &RWRSD[L 4XHYHGR/DWDFXQJD URDG NP IURP 4XHYHGR rn: rf6 P $SU +ROP1LHOVHQ HW DO +/7<3( $$8 ,627<3( 6f

PAGE 349

%XOE JORERVH FP ORQJ FP ZLGH XVXDOO\ ZLWKRXW DQ DSSUHFLDEOH QHFN WXQLFV WDQQLVKEURZQ /HDYHV DW DQWKHVLV HOOLSWLF RU RYDWHODQHFRODWH SHWLROH FP ORQJ PP WKLFN ODPLQD FP ORQJ FP ZLGH WKLQ QRQXVWURXV GHHSO\ SOLFDWH DQG SXVWXODWH DGD[LDO VXUIDFH OLJKW JUHHQ WKH ZKLWH PLGULE FRQVSLFXRXV DED[LDO VXUIDFH ZKLWLVKJUHHQ PDUJLQ VOLJKWO\ XQGXODWH DSLFDOO\ DFXPLQDWH EDVDOO\ DWWHQWXDWH WR WKH SHWLROH 6FDSH f GP WDOO FD PP GLDP EUDFWV f PP ORQJ ODQFHRODWH )ORZHUV f SHGLFHOV PP ORQJ WXEH PP ORQJ FD PP ZLGH IRU PRVW RI LWV OHQJWK GLODWLQJ WR f PP DW WKH WKURDW VWURQJO\ FXUYHG SHULDQWK OLPE VSUHDGLQJ WR FP ZLGH RXWHU WHSDOV PP ORQJ f PP ZLGH ODQFHRODWH DSLFXODWH LQQHU WHSDOV PP ORQJ f PP ZLGH RYDWHODQFHRODWH WR RYDWH DFXWH 6WDPLQD FXS IXQQHOIRUPF\OLQGULFDO f PP ORQJ PP ZLGH HGHQWDWH VWDLQHG RUDQJH\HOORZ EDVDOO\ FOHIW EHWZHHQ HDFK VWDPHQ IRU RI LWV OHQJWK HDFK IUHH ILODPHQW f PP ORQJ FD f PP ZLGH DW WKH EDVH GHOWRLG DQWKHUV REORQJ PP ORQJ DYHUDJH SROOHQ JUDLQ AP SRODU GLDP \P ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ H[VHUWHG PP EH\RQG WKH VWDPLQD FXS VWLJPD OREHG FD PP ZLGH 2YDU\ JORERVHWULJRQRXV PP ORQJ PP ZLGH ZKLWH DW DQWKHVLV RYXOHV f SHU ORFXOH PHGLDOO\ VXSHUSRVHG &DSVXOH FD FP ORQJ FP ZLGH VHHGV SHU ORFXOH HOOLSVRLG FD FP ORQJ FP GLDP ZLWK D OXVWURXV VPRRWK EODFN WHVWD QB ',675,%87,21 $1' (&2/2*< (QGHPLF WR WKH ZHVWHUQ GHFOLYLW\ RI WKH $QGHV LQ QRUWKFHQWUDO (FXDGRU )LJ f SDUWLFXODUO\ LQ FRQWLJXRXV DUHDV RI &RWRSD[L /RV 5LRV DQG 3LFKLQFKD SURYLQFHV RFFXS\LQJ WKH

PAGE 350

XQGHUVWRU\ RI ORZHU PRQWDQH UDLQ IRUHVW IURP ff P HOHYDWLRQ 6SRUDGLF IORZHULQJ PD\ RFFXU DW DQ\ WLPH EXW LV FRQFHQWUDWHG LQ WKH ZHWWHU PRQWKV RI WKH \HDU 8QOLNH WKH VSHFLHV RI VXEJHQXV (XFKDULV IURP $PD]RQDV ( DVWURSKLDOD PDQLIHVWV D GHILQLWH UHVW SHULRG ZKHQ JURZWK FHDVHV WKRXJK WKH OHDYHV PD\ SHUVLVW IRU WKH GXUDWLRQ $'',7,21$/ 63(&,0(16 (;$0,1(' (&8$'25 %ROLYDU /LPQ P 2FW $FRVWD6ROLV )f &KLPERUD]R NP RQ 4XHYHGR /DWDFXQJD URDG 7HQHIXHUVWH 5LR 3LODOR 7HQHIXHUVWH P )HE 'RGVRQ t *HQWU\ 0 6(/f VDPH ORFDOLW\ DV 'RGVRQ tB *HQWU\ 0D\ 'RGVRQ t *HQWU\ 0 6(/f 3XHQWH GH &KLPER P -XQ /HKPDQQ .f &RWRSD[L NP RQ URDG IURP 4XHYHGR WR /DWDFXQJD P 0DU 'RGVRQ 0 6(/ 86f NP HDVW RI (O 3DOPDU RQ 4XHYHGR/DWDFXQJD UG P $SU 'RGVRQ t *HQWU\ 02 6(/f VDPH ORFDOLW\ DV 'RGVRQ t *HQWU\ P VWHULOH $XJ 0HHURZ t 0HHURZ )/$6f /RV 5LRV IRUHVWHG KLOOV NP HDVW RI 3DWULFLD 3LODU P $SU 0DGLVRQ 1
PAGE 351

(XFKDULV DVWURSKLDOD LV HDVLO\ VHSDUDWHG IURP WKH RWKHU VPDOO IORZHUHG VSHFLHV RI VXEJ (XFKDULV E\ LWV XQLTXHO\ EXOODWHSXVWXODWH DQG QRQOXVWURXV RYDWHODQFHRODWH OHDYHV HGHQWDWH DQG GHHSO\ FOHIW VWDPLQDO FXS ZLWK GHOWRLG IUHH ILODPHQWV )LJ %&f DQG ODUJH SROOHQ JUDLQ WKH ODUJHVW LQ WKH JHQXVf ZLWK QDUURZ UHWLFXOXP PXUL 7KH ODUJHVW FKURPRVRPH SDLU RI (B DVWURSKLDOD LV VXEPHWDFHQWULF XQOLNH DOO RWKHU VSHFLHV RI WKH JHQXV KDYH H[DPLQHG ,W LV WKH RQO\ VSHFLHV RI WKH VXEJHQXV IRXQG H[FOXVLYHO\ RQ WKH ZHVWHUQ VORSHV RI WKH $QGHV VRXWK RI &RORPELD ,W RFFXUV V\PSDWULFDOO\ LQ VRPH ORFDOLWLHV ILGH 'RGVRQ t *HQWU\ DQG 0HHURZ tB 0HHURZ f ZLWK e DQPDOD WKRXJK WKH ODWWHU JURZV DW VOLJKWO\ KLJKHU HOHYDWLRQ LQ WKHVH DUHDV (XFKDULV DVWURSKLDOD LV WKH RQO\ VSHFLHV RI VXEJ (XFKDULV WKDW HQWHUV D GHILQLWH UHVW SHULRG GXULQJ WKH VKRUW GU\ VHDVRQ RI WKH QRUWK DQG FHQWUDO ZHVWHUQ (FXDGRUHDQ $QGHV 1HZ JURZWK FRPSOHWHO\ FHDVHV WKRXJK OHDYHV PD\ SHUVLVW IRU WKH GXUDWLRQ (8&+$5,6 8/(, .ULLQ]OLQ )LJ %f %RW -DKUE %HLEO ,OO 7<3( %UD]LO $PD]RQDV -XUXD 0LU\ -XQ 8OH D KRORW\SH %f QRQ 8OH E >LQ IUXLW@ %f YHO 8OH *2(/f 8UFHROLQD XOHL .U£Q]Of 7UDXE 3, /LIH (XFKDULV LSDULHQVLV 5DYHQQDf 5DYHQQD 3K\WRORJLD 8UFHROLQD LSDULHQVLV 5DYHQQD 3, /LIH 7<3( 3HUX +X£QXFR 3DFKLWHD +RQRULD %RVTXH 1DFLRQDO GH ,SDULD 5LR 3DFKLWHD NP DERYH FRQIOXHQFH ZLWK 5LR 8FD\DOL QHDU 0LHO GH $EHMD NP IURP 7XHUQDYLVWD $SU 6FKXQNH KRORW\SH 1< LVRW\SHV ) &2/ 86f (XFKDULV PRDQD 5DYHQQDf 5DYHQQD 3K\WRORJLD 8UFHROLQD PRDQD 5DYHQQD 3, /LIH 7<3( %UD]LO $FUH

PAGE 352

5R 0RD DW 6HUUD GD 0RD YLOODJH $SU 3UDQFH HW DO KRORW\SH 1< LVRW\SHV 0 KHUE 5DYHQQDf 3ODQW WR GP WDOO %XLE VXEJORERVH f f FP ORQJ f FP GLDP QHFN FP ORQJ FD FP ZLGH RXWHUPRVW WXQLFV JUH\EURZQ LQQHU WXQLFV WDQ /HDYHV SHWLROH f f FP ORQJ PP WKLFN ODPLQD QDUURZO\f HOOLSWLF DYHUDJH OHQJWK ZLGWK f FP ORQJ f f FP ZLGH DFXWH WR VKRUWO\ DFXPLQDWH DWWHQXDWH DW WKH EDVH 6FDSH f FP WDOO PP GLDP SUR[LPDOO\ PP GLDP GLVWDOO\ EUDFWV ODQFHRODWH WR RYDWH ODQFHRODWH f f PP ORQJ JUHHQLVKZKLWH )ORZHUV f f SHQGHQW ZLWKRXW IUDJUDQFH SHGLFHOV f f PP ORQJ FD PP GLDP WXEH f f PP ORQJ FXUYHG JUDGXDOO\ IRU PRVW RI LWV OHQJWK f PP ZLGH IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG MXVW EHORZ WKURDW WR f PP OLPE VSUHDGLQJ WR f PP ZLGH RXWHU WHSDOV RYDWHODQFHRODWH f PP ORQJ f f PP ZLGH DSLFXODWH LQQHU WHSDOV RYDWH f PP ORQJ f f PP ZLGH DFXWH 6WDPLQD FXS IXQQHOIRUPF\OLQGULFDO PP ORQJ WR DSH[ RI WHHWK RU OREHVf f PP ZLGH XVXDOO\ ELGHQWDWH EHWZHHQ HDFK IUHH ILODPHQW UDUHO\ HGHQWDWH LUUHJXODUO\ WRRWKHG RU WKH WHHWK REVFXUH LQ ZKLFK FDVH WKH VWDPHQV TXDGUDWHO\ OREHGf FOHIW EHWZHHQ HDFK VWDPHQ IRU f f PP ZLWK D B UHFWDQJXODU JUHHQ ]RQH LQ WKH SUR[LPDO KDOI RI HDFK VWDPHQ WHHWK DFXWH RU REWXVH PP ORQJ HDFK VWDPHQ f PP ZLGH IURP WRRWK WR WRRWK IUHH ILODPHQW VXEXODWH f PP ORQJ f PP ZLGH DW LWV EDVH DQWKHUV REORQJ PP ORQJ SROOHQ JUDLQ FD AP SRODU GLDP FD AP ORQJHVW HTXDWRULDO GLDP 6W\OH f f PP ORQJ VWLJPD PP ZLGH 2YDU\ JORERVHHOOLSVRLG

PAGE 353

f PP ORQJ PP ZLGH RYXOHV f SHU ORFXOH VXSHUSRVHG LQ WKH ORZHU KDOI RI WKH FHOO &DSVXOH FP ORQJ FP ZLGH SHGLFHOV FP ORQJ VHHGV SHU ORFXOH HOOLSVRLG PP ORQJ FD PP ZLGH ZLWK D VPRRWK OXVWURXV EODFN WHVWD ',675,%87,21 $1' (&2/2*< 8QGHUVWRU\ RI SULPDU\ UDLQ IRUHVW LQ WKH $PD]RQ %DVLQ DQG HDVWHUQ $QGHDQ IRRWKLOOV PRVW FRPPRQ LQ 3HUX EXW VSRUDGLFDOO\ HQFRXQWHUHG QRUWK WR &RORPELD DQG VRXWK WR %ROLYLD )LJ f RQ IHUWLOH XVXDOO\ QRQLQXQGDWHG VRLOV f P IORZHULQJ DW DQ\ WLPH RI WKH \HDU EXW PRVW IUHTXHQWO\ IURP -XQH 6HSWHPEHU $'',7,21$/ 0$7(5,$/ (;$0,1(' %2/,9,$ (O %HQL &RYHQGR P $XJ :KLWH 1LQ IUXLW@ *+ 1< 6 86f 5LR 3XUXV 5LR ,WD[L 6HULQJDO -XUXFXD NP VRXWK RI /£EUHD -XQ 3UDQFH HW eOB 0 1"@ QR GDWD )HUUHLUD V QB 3f &2/20%,$ $PD]RQDV 7UDSHFLR FRQIOXHQFLD GH 5LR /RUHWR\DFX FRQ HO 5LR $PD]RQDV 3XHUWR 1DULR 0DU 'LD]0 &2/f 7UDSHFLR DPD]QLFR %RLDXDVV£ 5LYHU P 2FW 6FKXOWHV t %ODFN D 86f 3XHUWR 1DULR PRXWK RI 5LR /RUHWR\DFX P 0D\ 3ORZPDQ >LQ IUXLW@ &2/ .f 3(58 $PD]RQDV YDOOH GH 5LR 6DQWLDJR FD NP QRUWH GH 3LQJOR 4XHEUDGD &DWHUSL]D OP DWU£V VGH OD FRPXQLGDG GH &DWHUSL]D P 2FW +XDVKLNDW >LQ IUXLW@ 02f VDPH ORFDOLW\ DV SUHFHGLQJ 'HF +XDVKLNDW 02f 0RQWH GHO ,VOD OD LVOD NP EDMR GH /D 3R]D 5LR 6DQWLDJR P $XJ /HYHDX >LQ IUXLW@ 02f VDPH ORFDOLW\ DV SUHFHGLQJ $XJ /HYHDX >LQ

PAGE 354

IUXLW@ 02f VDPH ORFDOLW\ DV SUHFHGLQJ $XJ 3HD >LQ IUXLW@ 02f /RUHWR 5LR $PD]RQDV 6( RI ,TXLWRV VZDPS\ IRUHVW $XJ &URDW 02f 5LR 1DSR QHDU (QWUDGD GH ,VOD ,QD\XJD HGJH RI IRUHVW 6HS &URDW >LQ IUXLW@ 02f QHDU %DVH $UDJXDQD XSSHU 5LR 0D]£Q FD GXH QRUWK RI 6DQWD 0DULD GH 1£QD\ QRQLQXQGDWHG IRUHVW -XO *HQWU\ t 5HYLOOD >LQ IUXLW@ 02f 0D\QDV 4XHEUDGD LQ IUXLW@ 02f LQ IUXLW@ 02f 5LR 6DPLULD )ORU GH LQ IUXLW@ )f 3HEDV RQ $PD]RQ -XO :LOOLDPV >LQ IUXLW@ )f /D 9LFWRULD RQ WKH $PD]RQ $XJ :LOOLDPV )f VDPH ORFDOLW\ DV SUHFHGLQJ $XJ :LOOLDPV )f DOWR 5LR ,WD\D 6DQ $QWRQLRf P :LOOLDPV >LQ IUXLW@ )f 3XHUWR $UWXUR LQ IUXLW@ )f 6DQ 0DUWLQ 0DULVFDO &DFHUHV 7RFDFKH 1XHYR 4XHEUDGD GH &DFKL\DFX GH +XDJXLVKD P -XO 0HHURZ HW DO >LQ IUXLW@ )/$6f 0DULVFDO &DFHUHV 7RFDFKH 1XHYR

PAGE 355

4XHEUDGD GH &DFKL\DFX GH +XDJXLVKD P -XO 0HHURZ HW DO )/$6f 0DULVFDO &DFHUHV 0LUDPD QRUWK RI 7RFDFKH 1XHYR DORQJ OHIW EDQN RI 5LR +XDOODJD P 3ORZPDQ t .HQQHG\ *+f 0DULVFDO &DFHUHV 7RFDFKH 1XHYR )XQGR /D &DPSLD NP DEDMR GH 7RFDFKH 1XHYR PDUJHQ GHUHFKD GHO 5LR +X£OODJD P 6HS 6FKXQNH ) 86f 0DULVFDO &DFHUHV 7RFDFKH 1XHYR 4XHEUDGD GH &DFKL\DFX NP DEDMR GH 3XHUWR 3L]DQR PDUJHQ GHUHFKD GHO 5LR +XDOODJDf $SU 8FD\DOL &RURQHO 3RUWLOOR
PAGE 356

PRUSKRORJ\ VHH &KDSWHU 9,,f VXJJHVWV FORVH WR (B F\DQHRVSHUPD ZKLFK KDV GLIIHUHQW WXEH PRUSKRORJ\ DQG EOXHFRDWHG VHHGV 5DYHQQD S f GHVFULEHG 8UFHROLQD PRDQD FLWLQJ WKH DEVHQFH RI OREHV RU WHHWK LQ WKH FXS :KHQ H[DPLQHG WKH VLQJOH SRRUO\ SUHVHUYHG IUDJPHQWDU\ IORZHU RI WKH KRORW\SH KRZHYHU WKH VWDPHQV DSSHDUHG DW OHDVW VKRUWO\ GHQWDWH WR TXDGUDWH $V LQ (B FDQGL GD DQG (B IRUPRVD DQGURHFLDO WRRWKLQJ LQ e XOHL KDV OLWWOH WD[RQRPLF VLJQLILFDQFH 7KH DQGURHFLDO PRUSKRORJ\ RI B( PRDQD LV ZHOOLQFOXGHG ZLWKLQ WKH UDQJH RI YDULDWLRQ IRU WKLV FKDUDFWHU LQ (B XOHL )LJ 'f 6HYHUDO FROOHFWLRQV RI (B XOHL KDYH FRPSOHWHO\ HGHQWDWH VWDPLQDO FXSV HJ 0HHURZ HW DOA 3ORZPDQ .HQQHG\ 3UDQFH HW DO f (XFKDULV LSDULHQVLV LQH[SOLFDEO\ GHVFULEHG E\ 5DYHQQD f DV DOOLHG WR (B PDVWHUVLL e ; JUDQGLIORUD RI VXEJ +HWHURFKDULVf LV LQGLVWLQJXLVKDEOH IURP QXPHURXV FROOHFWLRQV RI ( XOHL %RWK .UFOQ]OLQ f DQG 0DFEULGH f QRWHG WKH GLVVLPLODULW\ RI WKH WZR VSHFLPHQV FRPSULVLQJ WKH KRORW\SH RI ( XOHL 8OH %f RQH LQ IORZHU WKH RWKHU D IUXLWLQJ VSHFLPHQ KDYH DVVLJQHG WKH IUXLWLQJ VSHFLPHQ 8OH Ef ZLWK EOXH VHHGV WR (B F\DQHRVSHUPD 0HHURZ :KHQ D SXWDWLYH LVRW\SH RI 8OH ZDV UHFHLYHG IURP *2(/ LW SURYHG WR UHSUHVHQW (B FDVWHQDHDQD 8OH WKXV FROOHFWHG WKUHH VSHFLHV XQGHU D VLQJOH QXPEHU D QRW XQFRPPRQ RFFXUUHQFH LQ DUHDV ZKHUH VHYHUDO (XFKDULV VSHFLHV DUH V\PSDWULF (XFKDULV F\DQHRVSHUPD 0HHURZ VS QRY )LJ $f 6SHFLHV D (B XOHL .UIOQ]O DIILQLV VHG GLIIHUW IROLLV HOOLSWLFLV EUHYLRULEXV WXER PLQXV DUFXDWR HW WHVWD VHPLQDOL FREDOWLQD 7<3( 3HUX 6DQ 0DUWLQ NP QRUWK RI 7RFDFKH 1XHYR RQ URDG WR 7DUDSRWR 5LR &DXWR P -XO 0HHURZ HW DO KRORW\SH )/$6f

PAGE 357

%XOE VXEJORERVH FP ORQJ FP GLDP WXQLFV OLJKW EURZQ /HDYHV SHWLROH f f FP ORQJ PP WKLFN ODPLQD RYDWHfHOOLSWLF f FP ORQJ f f FP ZLGH DSLFDOO\ DFXWH WR VKRUWO\ DFXPLQDWH DWWHQXDWH DW WKH EDVH 6FDSH f f GP WDOO PP GLDP SUR[LPDOO\ PP GLDP GLVWDOO\ EUDFWV RYDWHODQFHRODWH f PP ORQJ )ORZHUV f f SHQGHQW ZLWKRXW IUDJUDQFH SHGLFHOV f f PP ORQJ FD PP GLDP WXEH PP ORQJ PP GLDP IRU PRVW RI LWV OHQJWK GLODWLQJ DEUXSWO\ WR PP SUR[LPDO WR WKH WKURDW FXUYHG DEUXSWO\ FD PP DERYH WKH RYDU\ DQG WKHQ PRUH RU OHVV VWUDLJKW RXWHU WHSDOV f PP ORQJ f PP ZLGH RYDWHODQFHRODWH DSLFXODWH LQQHU WHSDOV f PP ORQJ f PP ZLGH RYDWH DFXWH WR PLQXWHO\ DSLFXODWH 6WDPLQDO FXS F\OLQGULFDO f PP ORQJ WR WRRWK RU OREHf f PP ZLGH SDOH \HOORZ RU JUHHQ SUR[LPDOO\ TXDGUDWH RU LUUHJXODUO\ WRRWKHG EHWZHHQ HDFK IUHH ILODPHQW WKH WHHWK ZKHQ SUHVHQW PP ORQJ FOHIW EHWZHHQ HDFK VWDPHQ PP GHHS HDFK VWDPHQ f PP ZLGH DW WKH EDVH WKH QDUURZ VXEXODWH IUHH ILODPHQW f f PP ORQJ FD PP ZLGH DW WKH EDVH DQWKHUV FD PP ORQJ REORQJ SROOHQ JUDLQ FD \XP SRODU GLDP FD \XP ORQJHVW HTXDWRULDO GLDP 6W\OH FP ORQJ H[VHUWHG FP EH\RQG WKH DQWKHUV VWLJPD PP ZLGH 2YDU\ VXEJORERVHWULJRQRXV PP ORQJ PP ZLGH XVXDOO\ ZLGHU WKDQ ORQJ RYXOHV f SHU ORFXOH VXSHUSRVHG LQ WKH ORZHU KDOI RI WKH FHOO &DSVXOH PP ORQJ PP ZLGH SHGLFHO PP ORQJ VHHG HOOLSVRLG PP ORQJ FD PP ZLGH ZLWK D OXVWURXV FREDOWEOXH WHVWD QB (70/*< 7KH VSHFLILF HSLWKHW UHIHUV WR WKH FREDOWEOXH VHHG FRDW RI WKLV VSHFLHV

PAGE 358

',675,%87,21 $1' (&2/2*< 5DUH LQ WKH XQGHUVWRU\ RI SUH WR ORZHU PRQWDQH UDLQ IRUHVW RI WKH $PD]RQ EDVLQ DQG HDVWHUQ $QGHDQ IRRWKLOOV IURP 3HUX WR %ROLYLD )LJ f f f P HOHYDWLRQ IORZHULQJ DW DQ\ WLPH RI WKH \HDU EXW PRVW FRPPRQO\ LQ $XJXVW $'',7,21$/ 0$7(5,$/ (;$0,1(' %2/,9,$ (O %HQL YLFLQLW\ RI 5XUUHQDEDJXH P 1RY &DUGHQDV $$ 1< 86f 5XUUHQDEDJXH P 2FW &DUGHQDV $ 1LQ IUXLW@ )f /D 9LFWRULD RQ $PD]RQ $XJ :LOOLDPV >LQ IUXLW@ )f /D 9LFWRULD RQ $PD]RQ $XJ :LOOLDPV >LQ IUXLW@ ) 86f -XQOQ 3XHUWR LQ IUXLW@ ) 1< 86f 5LR 1HJUR WR 6DWLS P $XJ :R\WNRZVNL 02f 0DGUH GH 'LRV 7DKXDPDQX ,EHULD P 1RY $OIDUR >LQ IUXLW@ 02f ,EHULD 0LUDIORUHV YLFLQLW\ 5LR 7DKXDPDQX 6HS 6HLEHUW 86f 6DQ 0DUWLQ 6FKXQNH >LQ IUXLW@ ) 86f 0DULVFDO &DFHUHV 7RFDFKH 1XHYR 4XHEUDGD GH +XDJXLVKD PDUJHQ GHUHFKD GHO 5LR +XDOODJD P -XO 6FKXQNH >LQ IUXLW@ )f 8FD\DOL PLGGOH 8FD\DOL &DVKLERSOD\D r 6 7HVVPDQ 1< 6f

PAGE 359

(XFKDULV F\DQHRVSHUPD LV WKH RQO\ VSHFLHV RI (XFKDULV ZLWK EOXH FRDWHG VHHGV 7KH VSHFLHV DSSHDUV FORVH WR (B XOHL EXW GLIIHUV E\ LWV XVXDOO\ VKRUWHU OHDYHV WXEH PRUSKRORJ\ LUUHJXODUO\ GHQWDWH WR TXDGUDWH VWDPLQDO FXS )LJ $f DQG VHHG FRORU (XFKDULV F\DQHRVSHUPD DOVR RFFXSLHV PRUH XSODQG VLWHV WKDQ LV XVXDOO\ FKDUDFWHULVWLF RI (B XOHL 7KH VSHFLHV LV QRZKHUH DEXQGDQW WKURXJKRXW LWV EURDG UDQJH &ROOHFWLRQV DUH FRQFHQWUDWHG LQ WKH VRXWKHUQ HQG RI WKH UDQJH RI (B F\DQHRVSHUPD ZKLOH ( XOHL LV PRUH FRPPRQ WR WKH QRUWK )LJ f 7KH WZR VSHFLHV PD\ UHSUHVHQW VLEOLQJ DOORSDWULF GLYHUJHQFHV IURP D FRPPRQ DQFHVWRU WKDW KDYH VLQFH FRPH LQWR VHFRQGDU\ FRQWDFW (8&+$5,6 /(+0$1,, 5HJHO )LJV ')f LQVHUWDH VHGLV *DUWHQIO W )LJ 7<3( H[ KRUW IURP EXOEV FROOHFWHG E\ /HKPDQQ QHDU 3RSD\DQ &RORPELD $SU 5HJHO V QB KRORW\SH IUDJPHQWDU\f /( SKRWR RI KRORW\SH )/$6 .f 8UFHROLQD OHKPDQQLL 5HJHOf 7UDXE 3, /LIH %XOE VXEJORERVH QRW VHHQ /HDYHV SHWLROH FP ORQJ PP WKLFN ODPLQD RYDWHHOOLSWLF FP ORQJ FP ZLGH VKRUW DFXPLQDWH EDVDOO\ VXEFRUGDWH DQG DWWHQXDWH WR WKH SHWLROH 6FDSH QRW VHHQ EUDFWV ODQFHRODWH EUDFWHROHV OLQHDUODQFHRODWH )ORZHUV SHGLFHOV WR PP ORQJ OLPE SDWHQW VSUHDGLQJ WR FD FP WXEH FD PP ORQJ FD PP ZLGH EHORZ GLODWLQJ DEUXSWO\ WR PP DW WKH WKURDW RXWHU WHSDOV PP ORQJ PP ZLGH RYDWHODQFHRODWH DFXWH DSLFXODWH LQQHU WHSDOV PP ORQJ PP ZLGH REWXVH 6WDPLQDO FXS PP ORQJ WR DSH[ RI WRRWKf GHHSO\ FOHIW EHWZHHQ HDFK VWDPHQ WR PP IURP WKH WKURDW HDFK VWDPHQ ELGHQWDWH WKH WHHWK ORQJ ODQFHRODWH HTXDOLQJ WKH IUHH ILODPHQW LQ OHQJWK IUHH ILODPHQW OLQHDU PP ORQJ FD PP ZLGH DQWKHUV VXEEDVLIL[HG YHUVDWLOH 6W\OH

PAGE 360

VOLJKWO\ H[VHUWHG EH\RQG WKH DQWKHUV 2YDU\ JORERVHHOOLSVRLG FD PP ORQJ FD PP ZLGH RYXOHV FD SHU ORFXOH )UXLW DQG VHHG XQNQRZQ ',675,%87,21 $1' (&2/2*< ([WUHPHO\ UDUH LQ WKH XQGHUVWRU\ RI PRLVW ORZHU PRQWDQH IRUHVW RI WKH &RUGLOOHUD 2ULHQWDO LQ &DXFD 'HSDUWPHQW RI &RORPELD )LJ f P $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ &DXFD $JDQFKH 5LR 2UHMDV P /HKPDQQ .f (XFKDULV OHKPDQQL LV NQRZQ RQO\ IURP WKH IUDJPHQWDU\ W\SH D VLQJOH IORZHUf DQG D VLQJOH VSHFLPHQ DW .HZ ZLWK RQO\ RQH IORZHU SUHVHQW $ (FXDGRUHDQ VSHFLPHQ PLVODEHOHG DV WKH W\SH RI (B HKPDQLL UHFHLYHG IURP .HZ /HKPDQQ f WXUQHG RXW WR EH (B DVWURSKLDOD 5DYHQQDf 5DYHQQD 7KH QRYHO PRUSKRORJ\ RI WKH VWDPLQDO FXS )LJ (f VRPHZKDW DQDODJRXV WR WKH DQGURHFLXP RI &DOLSKUXULD KDUWZHJLDQD DQG &B WHHUD DQG LWV GLVWULEXWLRQ DERYH P VXJJHVWV WKDW (B OHKPDQQL PD\ EH D SHULSKHUDO LVRODWH RI VXEJ (XFKDULV ZLWK QRYHO PRUSKRORJLFDO FKDUDFWHU VWDWHV WKDW IUXVWUDWH WKH GHWHUPLQDWLRQ RI LWV SK\ORJHQHWLF UHODWLRQVKLSV $Q DOWHUQDWLYH K\SRWKHVLV LV WKDW e OHKPDQQLL LV D UHOHFW WD[RQ ZLWK FKDUDFWHUV RI LQWHUPHGLDF\ EHWZHHQ (XFKDULV DQG &DOLSKUXULD 3K\ORJHQHWLF DQDO\VLV VHH &KDSWHU ;,f SODFHV WKLV VSHFLHV LQ D UDWKHU LVRODWHG SRVLWLRQ EHWZHHQ WKH UHOLFW WD[D FRPSULVLQJ SDUDSK\OHWLF VXEJ +HWHURFKDULV DQG D PRQRSK\OHWLF FODGH FRPSULVLQJ &DOLSKUXULD DQG 8UHFROLQD 7KH EHVW HYLGHQFH RI LWV V\VWHPDWLF SRVLWLRQ LV WKH ILJXUH DFFRPSDQ\LQJ 5HJHOnV f GHVFULSWLRQ 7KH SODQW ILJXUHG LQ PRUSKRORJ\ DQG KDELW RI WKH IORZHU UHVHPEOHV (XFKDULV VXEJ (XFKDULV *LYHQ WKH SDXFLW\ RI PDWHULDO DYDLODEOH ZRXOG UHWDLQ (B OHKPDQQLL LQ VXEJ (XFKDULV ZLWK WKH GHVLJQDWLRQ LQFHUWDH VHGLV WR LQGLFDWH WKH XQFHUWDLQW\ RI WKH V\VWHPDWLF SRVLWLRQ RI WKLV VSHFLHV ,Q ZDV

PAGE 361

QRW DEOH WR VXFFHVVIXOO\ FROOHFW WKLV VSHFLHV DW WKH ORFDOLW\ RI /HKPDQQ LQ &RORPELD DQ DUHD QRZ ODUJHO\ GHIRUHVWHG (8&+$5,6 &25<1$1'5$ 5DYHQQDf 5DYHQQD )LJV *,f 3K\WRORJLD 8UFHROLQD FRU\QDQGUD 5DYHQQD 3, /LIH 7<3( 3HUX &DMDPDUFD &KLQJDQ]D EHWZHHQ $UDPDQJR DQG 0RQWHQHJUR -XO 5DYHQQD KRORW\SH KHUE 5DYHQQD LVRW\SHV 1< 02 H[ 75$f %XOE JORERVH PP ORQJ PP GLDP WXQLFV OLJKW EURZQ /HDYHV HOOLSWLF ODQFHRODWH SHWLROH FP ORQJ PP WKLFN ODPLQD FP ORQJ FP ZLGH DSLFDOO\ DFXWH 6FDSH FP WDOO VOHQGHU FD PP GLDP GLVWDOO\ EUDFWV ODQFHRODWH FD PP ORQJ )ORZHUV SHGLFHOV PP ORQJ WKLQ SHULDQWK WXEH FXUYHG PP ORQJ FD PP ZLGH IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG WR PP DW WKH WKURDW OLPE VSUHDGLQJ WR FP ZLGH RXWHU WHSDOV PP ORQJ PP ZLGH RYDWHODQFHRODWH DFXWHDSLFXODWH DW WKH DSH[ LQQHU WHSDOV FD PP ORQJ PP ZLGH RYDWH DFXWH 6WDPLQD FXS VKRUW IXQQHOIRUP WKLFN DQG ZD[\ LQ WH[WXUH PP ORQJ PP ZLGH ZLWK WZR REWXVH WHHWK EHWZHHQ HDFK IUHH ILODPHQW VRPHZKDW SOLFDWH IUHH ILODPHQWV FOXE VKDSHG DSSHDULQJ QDUURZO\ HOOLSWLFODQFHRODWH ZKHQ GU\ FD PP ORQJ PP ZLGH DEUXSWO\ GLODWHG WR FD PP DW WKH EDVH LQVHUWHG DGD[LDOO\ EHWZHHQ WZR RI WKH WHHWK DQWKHUV REORQJOLQHDU FD PP ORQJ YHUVDWLOH EODFN >GHQVHO\ SXEHVFHQW DFFRUGLQJ WR 5DYHQQD f@ 6W\OH PP ORQJ VWLJPD WULOREHG 2YDU\ JORERVHHOOLSVRLG PP ORQJ PP ZLGH RYXOHV SHU ORFXOH VXSHUSRVHG )UXLW DQG VHHG XQNQRZQ ',675,%87,21 $1' (&2/2*< .QRZQ RQO\ IURP WKH W\SH ORFDOLW\ )LJ f LQ WURSLFDO IRUHVW RQ VORSHV QHDU D VPDOO UDYLQH ZLWK

PAGE 362

'LHIIHQEDFKLD VS +HOO FRQL D VS &OXVLD VS DQG ;\SKLGLXP FRHUXOHXP $XEO (OHYDWLRQ QRW UHSRUWHG (XFKDULV FRU\QDQGUD LQ VL]H DQG QXPEHU RI WKH IORZHUV DV ZHOO DV RYXOH QXPEHU VKRZV DIILQLW\ WR ERWK (B FDVWHOQDHDQD %DLOORQf 0DFEU DQG (A SL L FDWD 0HHURZ 7KH VKRUW VWDPLQDO FXS DQG GLVWLQFWLYH FOXE VKDSHG IUHH ILODPHQWV )LJ +f DUH WKH SULQFLSDO XQLTXH FKDUDFWHUV RI WKLV VSHFLHV FDQQRW KRZHYHU FRQILUP 5DYHQQDnV f GHVFULSWLRQ RI WKH DQWKHUV DV GHQVHO\ SXEHVFHQW 7KRXJK QR HOHYDWLRQ GDWD ZHUH VXSSOLHG E\ WKH DXWKRU LW LV OLNHO\ DQ XSODQG LVRODWH IURP WKH $PD]RQLDQ FHQWHU RI WKH VXEJHQXV KDYLQJ FRORQL]HG WKH ORZHU OLPLWV RI WKH FHMD GH PRQWDD IRUHVW IRUPDWLRQV LQ &DMDPDUFD GHSDUWPHQW RI 3HUX (8&+$5,6 2;<$1'5$ 5DYHQQDf 5DYHQQD )LJ $&f 3K\WRORJLD 8UFHROLQD R[\DQGUD 5DYHQQD :ULJKWLD 7<3( 3HUX +XDQXFR +XDQXFR 5LR &KLQFKDR EHORZ &DUSLVK RQ UG WR 7LQJR 0DULD P -XO +XWFKLVRQ HW DO >VSHFLPHQV SUHSDUHG IURP EXOEV IORZHUHG LQ FXOWLYDWLRQ DW 8& $SU @ KRORW\SH 860 LVRW\SHV 02 H[ 75$ 8&f %XOE QRW VHHQ /HDYHV RQH VHHQf HOOLSWLF SHWLROH FP ORQJ PP WKLFN ODPLQD FP ORQJ FP ZLGH 6FDSH FP WDOO EUDFWV PP ORQJ RYDWHODQFHRODWH )ORZHUV FUDWHULIRUP"f FHUQXRXV SHGLFHOV FD PP ORQJ WXEH FXUYHG PP ORQJ PP GLDP EHORZ GLODWHG DEUXSWO\ DW WKH WKURDW WR PP WHSDOV VSUHDGLQJ WR PP ZLGH RXWHU VHULHV PP ORQJ PP ZLGH RYDWHODQFHRODWH DFXWH DSLFXODWH LQQHU VHULHV PP ORQJ PP ZLGH RYDWH REWXVH 6WDPLQDO FXS YHU\ VKRUW PP ORQJ PP ZLGH HGHQWDWH RU ZLWK WZR REWXVH WHHWK EHWZHHQ WKH IUHH ILODPHQWV IUHH ILODPHQWV FD PP ORQJ FD PP ZLGH DW WKH EDVH QDUURZO\ VXEXODWH DQWKHUV REORQJ

PAGE 363

PP ORQJ VXEEDVLIL[HG HYHQWXDOO\ YHUVDWLOH SROOHQ JUDLQ FD AXP SRODU GLDP FD \XP ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ VWLJPD PP ZLGH 2YDU\ JORERVHHOOLSVRLG PP ORQJ PP ZLGH RYXOHV SHU ORFXOH )UXLW DQG VHHG XQNQRZQ ',675,%87,21 $1' (&2/2*< (XFKDULV R[\DQGUD LV QRW NQRZQ LQ WKH ZLOG VWDWH 7KH FROOHFWRUnV ILHOG QRWHV 8&f LQGLFDWH WKDW WKUHH EXOEV ZHUH IRXQG DW WKH W\SH ORFDOLW\ )LJ f H[SRVHG RQ VXUIDFH RI JURXQG ZLWK HYLGHQFH RI SDVW FXOWLYDWLRQ LQ GHHS VKDGH QHDU DEDQGRQHG KXW DERYH URDG 7KH WKLUG EXOE SURYHG WR EH 8UFHROLQD XUFHRODWD 5 t 3f 0 / *UHHQ 7KLV XQXVXDO VSHFLHV KDV WKH VPDOOHVW VWDPLQD FXS RI DQ\ 3HUXYLDQ (XFKDULV RI VXEJ (XFKDULV )LJ %f 7KH ORQJ DOPRVW OLQHDU IUHH ILODPHQWV DUH DQRWKHU XQXVXDO IHDWXUH RI WKH DQGURHFLXP 7KH SRO\PRUSKLVP RI WKH VWDPLQDO FXS ERWK HGHQWDWH DQG REWXVHO\ GHQWDWH IRUPV UHSUHVHQWHG LQ WKH LVRW\SHV )LJ %f LV SX]]OLQJ DQG DGGV IXUWKHU FUHHGHQFH WR P\ VXJJHVWLRQ WKDW WKLV FKDUDFWHU KDV EHHQ RYHUn ZHLJKWHG DV DQ LQGLFDWRU RI VSHFLHV GHOLPLWDWLRQ LQ WKH DOSKDWD[RQRPLF OLWHUDWXUH UHODWLQJ WR WKH JHQXV $OWHUQDWLYHO\ LW LV SRVVLEOH WKDW WKH WZR EXOEV IRXQG E\ WKH FROOHFWRU DQG UHSUHVHQWLQJ WKLV VSHFLHV ZHUH RI WZR GLIIHUHQW RULJLQV ,Q SXEOLVKLQJ 8UFHROLQD R[\DQGUD 5DYHQQD f ZDV DSSDUHQWO\ XQDZDUH RI WKH XQXVXDO VLWXDWLRQ LQ ZKLFK WKH VSHFLHV ZDV IRXQG KDYLQJ H[DPLQHG RQO\ D GXSOLFDWH DW 860 ZKLFK VHHPV WR KDYH ODFNHG WKH GHWDLOHG ILHOG QRWHV RI WKH FROOHFWRU +H DUJXHG WKDW WKH XQXVXDO PRUSKRORJ\ RI WKH DQGURHFLXP UHGXFHG VWDPLQDO FXS ORQJ QDUURZO\ VXEXODWH ILODPHQWVf VLPLODU WR WKDW RI 8UFHROLQD VXSSRUWHG WKH LQFOXVLRQ RI (XFKDULV ZLWKLQ 8UFHROLQD 7UDXE f D SRVLWLRQ KH UHFHQWO\ UHYHUVHG

PAGE 364

5DYHQQD f 7KLV W\SH RI DQGURHFLDO PRUSKRORJ\ LV FKDUDFWHULVWLF RI WZR SXWDWLYH LQWHUJHQHULF K\EULGV EHWZHHQ (XFKDULV DQG 8UFHROL QD ; 8UFHRFKDULV HGHQWDWD :ULJKW DQG ; -FOLEUDQLL 0DVWHUV *LYHQ WKDW WKH SODQW ZDV GLVFRYHUHG DV DQ DSSDUHQW DUWLIDFW RI FXOWLYDWLRQ LQ FRPSDQ\ ZLWK D EXOE RI 8UFHROLQD DQG LQ D JHRJUDSKLF DUHD RI ORRVH V\PSDWU\ IRU WKH WZR JHQHUD WKRXJKW LW SRVVLEOH WKDW ,( R[\DQGUD PLJKW UHSUHVHQW D K\EULG EHWZHHQ (XFKDULV DQG 8UFHROLQD ;B 8B HGHQWDWD ZDV VXSSRVHGO\ FROOHFWHG LQ WKH ZLOG LQ 3HUX :ULJKW f 3ROOHQ RI ( R[\DQGUD KRZHYHU VWDLQV b ZLWK $OH[DQGHUnV f VWDLQ %RWK ; 8 HGHQWDWD DQG ; 8B FOLEUDQLL SURGXFHG YHU\ OLWWOH SROOHQ :ULJKW f DQ REVHUYDWLRQ FRQILUPHG ZKHQ H[DPLQHG VSHFLPHQV RI ERWK K\EULGV 7KH PRUSKRORJ\ RI WKH SHULDQWK DW OHDVW DV LW DSSHDUV LQ GULHG PDWHULDO WR VRPH GHJUHH UHVHPEOHV WKH FDPSDQXODWH IORZHUV RI WKH WZR ; 8UFHRFKDULV K\EULGV 3ROOHQ JUDLQ VL]H RI WKH VSHFLHV LV PRUH OLNH WKDW RI (XFKDULV VXEJ (XFKDULV EXW H[LQH VFXOSWXULQJ )LJ LQ &KDSWHU 9f UHVHPEOHV WKDW RI 8UFHROLQD )HUWLOH LQWHUJHQHULF K\EULGV DUH QRW XQNQRZQ LQ $PDU\OLGDFHDH K\EULGV RI $PDU\OOLV EHOODGRQQD / DQG %UXQVYLJLD +HLVW DUH NQRZQ WR EH IHUWLOH 7UDXE f $OWHUQDWLYHO\ (B R[\DQGUD PLJKW EH D UHOLFW WD[RQ FORVH WR WKH DQFHVWRU RI 8UFHROLQD D JHQXV ZKRVH GLYHUJHQFH IURP (XFKDULV PD\ KDYH EHHQ UHODWLYHO\ UHFHQW VHH &KDSWHU ;,f 3K\ORJHQHWLF DQDO\VLV &KDSWHU ;,f VXSSRUWV WKLV ODWWHU K\SRWKHVLV 7KH QRUWKHUQ KDOI RI 3HUX LV D FHQWHU RI SDQFUDWLRLG GLYHUVLW\ ULFK LQ VPDOO JHQHUD ZLWK QRYHO DQG VRPHWLPHV LQWHUPHGLDWH PRUSKRORJLFDO FKDUDFWHUV 0HHURZ 06 LQ SUHSf $W SUHVHQW LW VHHPV EHVW WR WUHDW (B R[\DQGUD DV D VSHFLHV RI (XFKDULV HYHQ WKRXJK LWV VKDUHG FKDUDFWHULVWLFV ZLWK (XFKDULV DUH

PAGE 365

V\PSOHVLRPRUSKRXV ,WV FODGLVWLF UHODWLRQVKLSV DUH REVFXUHG E\ WKH ODUJH DPRXQW RI XQNQRZQ FKDUDFWHU VWDWH GDWD &KDSWHU ;,f $V LQ (B DVWURSKLDOD (B FRU\QDQGUD DQG ( OHKPDQQLL WKLV VSHFLHV H[KLELWV D SDWWHUQ RI PRUSKRORJLFDO QRYHOW\ FKDUDFWHULVWLF RI SHULSKHUDO LVRODWLRQ LQ (XFKDULV 6LPLODULWLHV WR RWKHU VXEJHQHUD RU JHQHUD DUH OLNHO\ WKH UHVXOW RI FDQDOL]HG GHYHORSPHQW 6WHEELQV f D UHRFFXUULQJ SDWWHUQ ZLWKLQ DQG DPRQJ WKH WULEHV RI LQIUDIDPLO\ 3DQFUDWLRLGLQDH 0HHURZ f FXUUHQWO\ KDYH VHHGOLQJV RI D SXWDWLYH FURVV RI 8UFHROLQD PLFURFUDWHU DQG D 3HUXYLDQ (XFKDULV VSHFLHV LQ FXOWLYDWLRQ :KHQ WKHVH SODQWV IORZHU WKH VWDWXV RI B( R[\DQGUD PD\ QHHG UHDSSUDLVDO (8&+$5,6 3/,&$7$ 0HHURZ )LJ f %XOE VXEJORERVH FP ORQJ FP ZLGH WXQLFV EURZQ /HDYHV DW DQWKHVLV SHWLROH FP ORQJ ODPLQD ZLGHO\ HOOLSWLF WR RYDWH f f FP ORQJ f FP ZLGH VKRUW DFXPLQDWH YHU\ VKRUWO\ DWWHQXDWH WR WKH SHWLROH WKLQ OXVWURXV GDUN JUHHQ DGD[LDOO\ VLO YHU\JUHHQ DED[LDOO\ DED[LDO FXWLFOH GHQVHO\ VWULDWH 6FDSH FP WDOO EUDFWV PP ORQJ RYDWHODQFHRODWH EUDFWHROHV VXFFHVVLYHO\ VKRUWHU DQG QDUURZHU )ORZHUV f VRPHWLPHV OLJKWO\ IUDJUDQW SHGLFHO VXEHUHFW f PP ORQJ SHULDQWK WXEH PP ORQJ PP ZLGH WKURXJRXW PRVW RI LWV OHQJWK GLODWLQJ DEUXSWO\ WR PP DW WKH WKURDW OLPE VSUHDGLQJ WR PP WHSDOV RYDWH UHFXUYHG DW WKH DSH[ VXEHTXDO RXWHU VHULHV FD PP ORQJ PP ZLGH DSLFXODWH LQQHU VHULHV PP ORQJ PP ZLGH DSLFDOO\ DFXWH 6WDPLQDO FXS FDPSDQXODWH FD PP ORQJ WR DSH[ RI WHHWKf f PP ZLGH DSLFDOO\ ZKLWH EDVDOO\ SDOH JUHHQLVK\HOORZ SOLFDWHO\ IROGHG RQ HLWKHU VLGH RI WKH ILODPHQWDO WUDFH ELGHQWDWH HDFK VWDPHQ PP

PAGE 366

ZLGH WKH DQWKHUEHDULQJ SDUW VXEXODWH PP ORQJ DSLFDOO\ REWXVH DQWKHUV REORQJOLQHDU VXEEDVLIL[HG HUHFW DW ILUVW WKHQ EHFRPLQJ YHUVDWLOH JUD\LVK EURZQ PP ORQJ SROOHQ JUDLQ \XP SRODU GLDP \XP ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ VWLJPD FD PP ZLGH 2YDU\ JORERVHHOOLSVRLG JUHHQ FD PP ORQJ PP ZLGH RYXOHV SHU ORFXOH &DSVXOH FD FP ORQJ FP ZLGH VHHGV SHU ORFXOH FD FP ORQJ PP ZLGH WHVWD VKLQ\ EODFN QB .H\ WR WKH VXEVSHFLHV RI (B SLLFDWD )ORZHUV QRW QRWLFHDEO\ IUDJUDQW SHULDQWK WXEH GLODWLQJ WR PP DW WKH WKURDW VWDPLQDO FXS GHHSO\ SOLFDWH FD PP ORQJ WR DSH[ RI WHHWK WHHWK ORQJHU WKDQ VXEXODWH SRUWLRQ RI ILODPHQW FRDUVHO\ VHUUXODWH LPEULFDWH VW\OH UHDFKLQJ WR KDOI WKH OHQJWK RI WKH FXS RYXOHV SHU ORFXOH D VXEVS SLLFDWD )ORZHUV PLOGO\ IUDJUDQW SHULDQWK WXEH GLODWLQJ WR PP DW WKH WKURDW VWDPLQDO FXS RQO\ VKDOORZO\ SOLFDWH FD PP ORQJ WR DSH[ RI WHHWK WHHWK VKRUWHU WKDQ VXEXODWH SRUWLRQ RI ILODPHQW HQWLUH QRQLPEULFDWH VW\OH UHDFKLQJ WR MXVW EHORZ WKH WHHWK RYXOHV f SHU ORFXOH E VXEVS EUHYLGHQWDWD D (B SLLFDWD VXEVS SLLFDWD )LJ f %ULWWRQLD 7<3( 3HUX 6DQ 0DUWLQ 0DULVFDO &£FHUHV 7RFDFKH 1XHYR 4XHEUDGD GH +XDJXLVKD ULJKW EDQN ULR +XDOODJD RSSRVLWH 7RFDFKH 1XHYR rnV ODW rn: ORQJ P 'HF 3ORZPDQ HW DO +/7<3( )/$6 ,627<3(6 ) 1< 860f )ORZHUV ZLWKRXW QRWLFHDEOH IUDJUDQFH SHGLFHO VXEHUHFW PP ORQJ SHULDQWK WXEH PP ORQJ GLODWLQJ DEUXSWO\ WR PP ZLGH DW WKH WKURDW RXWHU WHSDOV PP ORQJ PP ZLGH LQQHU WHSDOV

PAGE 367

PP ORQJ PP ZLGH 6WDPLQD FXS FD PP ORQJ DQG ZLGH GHHSO\ SOLFDWH RQ HLWKHU VLGH RI WKH ILODPHQWDO WUDFH WKH DQWKHUEHDULQJ SRUWLRQ RI HDFK ILODPHQW LQVHUWHG EHWZHHQ LUUHJXODU REWXVH FRDUVHO\ VHUUXODWH WHHWK HDFK PP ORQJ DGMDFHQW SDLUV VRPHZKDW LPEULFDWH DQG DSSHDULQJ DV RQH SROOHQ JUDLQ FD AP SRODU GLDP FD \XP ORQJHVW HTXDWRULDO GLDP 6W\OH UHDFKLQJ WR WKH OHQJWK RI WKH VWDPLQDO FXS 2YXOHV SHU ORFXOH ',675,%87,21 $1' (&2/2*< .QRZQ RQO\ IURP WKH W\SH ORFDOLW\ ZKHUH LW LV ORFDOO\ DEXQGDQW )LJ f 7KLV SRSXODWLRQ DSSHDUV WR KDYH K\EULGL]HG ZLWK (B XOHL DQG FRQWDLQV D UDQJH RI LQWHUPHGLDWH PRUSKV DOO VKRZLQJ UHGXFHG SROOHQ VWDLQDELOLW\ DQG WKH RFFDVLRQDO SUHVHQFH RI QRQKRPRORJRXV FKURPRVRPHV ,W LV XQFOHDU ZKHWKHU WKHVH UHSUHVHQW D KLJKO\ YDULDEOH ), WKH ) RU WKH UHVXOWV RI LQWURJUHVVLRQ ZLWK (B SLLFDWD VXEVS SL L FDWD $'',7,21$/ 0$7(5,$/ (;$0,1(' 3(58 6DQ 0DUWLQ VDPH ORFDOLW\ DV WKH W\SH -XO 0HHURZ HW DO )/$6f VDPH ORFDOLW\ DV WKH W\SH $XJ 6FKXQNH )f 387$7,9( +<%5,'6 :,7+ ( 8/(, 3(58 6DQ 0DUWLQ VDPH ORFDOLW\ DV WKH W\SH -XO 0HHURZ HW DO )/$6f E -( SL LFDWD VXEVS EUHYL GHQWDWD 0HHURZ YDU QRY 6XEVSHFLHV QRYD GLIIHUW D VXEVSHFLHV W\SLFD GHQWLEXV VWDPLQDOLEXV EUHYLRULEXV HW QRQ VHUUXODWLV YHO LPEULFDWLV 7<3( %ROLYLD QR FROOHFWLRQ LQIRUPDWLRQ H[ KRUW )DLUFKLOG 7URSLFDO *DUGHQ IURP FROOHFWLRQV E\ )UHG )XFKV -U 2FW 0HHURZ )/$6f )ORZHUV PLOGO\ IUDJUDQW SHULDQWK WXEH PP ORQJ GLODWLQJ DEUXSWO\ WR PP ZLGH DW WKH WKURDW RXWHU WHSDOV PP ORQJ PP ZLGH LQQHU WHSDOV PP ORQJ PP ZLGH 6WDPLQDO FXS

PAGE 368

PP ORQJ WR DSH[ RI WHHWKf PP ZLGH RQO\ VKDOORZO\ SOLFDWH WHHWK FD PP ORQJ UHDFKLQJ WR DERXW KDOI WKH OHQJWK RI WKH VXEXODWH SRUWLRQ RI WKH ILODPHQW REWXVH HQWLUH QRQLPEULFDWH SROOHQ JUDLQ FD AP SRODU GLDP FD MP ORQJHVW HTXDWRULDO GLDP 6W\OH UHDFKLQJ WR MXVW EHORZ WKH DSH[ RI WKH WHHWK 2YXOHV f SHU ORFXOH (7<02/2*< 7KH HSLWKHW RI WKLV VXEVSHFLHV UHIHUV WR WKH VKRUW WHHWK RI WKH VWDPLQDO FXS ',675,%87,21 $1' (&2/2*< 5DUH LQ WKH XQGHUVWRU\ RI SUH DQG ORZHU PRQWDQH UDLQ IRUHVW RI QRUWKFHQWUDO 3HUX DQG %ROLYLD )LJ f P IORZHULQJ $XJXVW2FWREHU $'',7,21$/ 0$7(5,$/ (;$0,1(' 3(58 $PD]RQDV 5LR &HQHSD NP 1: RI +XDPSDPL FD P 2FW %HUOLQ 1
PAGE 369

PD\ KDYH UHVHPEOHG YDU EUHYLGHQWDWD ZKLFK KDV WKH PRVW JHQHUDOL]HG PRUSKRORJ\ FI RWKHU $PD]RQLDQ VSHFLHV RI VXEJ (XFKDULVf RI WKH WKUHH WD[D 7KH GLVMXQFW GLVWULEXWLRQ RI NQRZQ SRSXODWLRQV RI VXEVS EUHYLGHQWDWD WR ERWK WKH QRUWK DQG VRXWK RI WKH GLVWULEXWLRQV RI VXEVS SLLFDWD DQG (B FDVWHOQDHDQD OHQGV IXUWKHU FUHGHQFH WR WKLV K\SRWKHVLV 7KH UHVXOWV RI FODGLVWLF DQDO\VLV VHH &KDSWHU ;,f VXSSRUW WKLV K\SRWKHVLV (8&+$5,6 &$67(/1$($1$ %DLOORQf 0DFEULGH )LJ f 3XEO )LHOG 0XV 1DW +LVW %RW 6HU &DOLSKUXULD FDVWHOQDHDQD %DLOORQ %XOO 0HQV 6RF /LQQ 3DULV 7<3( 3HUX 8FD\DOL 3DPSD GHO 6DFUDPHQWR -XQ &DVWHOQDX VQ KRORW\SH QRW ORFDWHG LVRW\SH 3Lf 8UFHROLQD FDVWHOQDHDQD %DLOORQf 7UDXE 3, /LIH (XFKDULV QDUFLVVL IORUD +XEHU %RO 0XV *RHOGL 3DUD 7<3( 3HUX 8FD\DOL 6DUD\DFX &DWDOLQD -XQ +XEHU KRORW\SH 0* LVRW\SH >SKRWR DQG IUDJPHQW@ )f 8UFHROLQD QDUFLVVL IORUD +XEHUf 7UDXE 3, /LIH 3ODQW WR GP WDOO %XOE VPDOO VXEJORERVH f FP ORQJ FP ZLGH QHFN FP ORQJ FP ZLGH WXQLFV WDQQLVK EURZQ /HDYHV SHWLROH f f FP ORQJ FP ZLGH ODPLQD QDUURZO\ RYDWHHOOLSWLF f FP ORQJ f FP ZLGH DSH[ VKRUWO\ DFXPLQDWH OXVWURXV GDUN JUHHQ DGD[LDOO\ OLJKWHU JUHHQ DED[LDOO\ PDUJLQV XQGXODWH 6FDSH f f GP WDOO PP GLDP SUR[LPDOO\ FD PP GLDP GLVWDOO\ EUDFWV f FP ORQJ RYDWH ODQFHRODWH JUHHQLVKZKLWH )ORZHUV f SHQGHQW VPDOO ZLWK D IDLQW OHPRQ IUDJUDQFH SHGLFHOV PP ORQJ WXEH f PP ORQJ f PP ZLGH IRU PRVW RI LWV OHQJWK DEUXSWO\ GLODWHG QHDU

PAGE 370

WKH WKURDW WR f PP ZLGH WHSDOV SDWHQW VSUHDGLQJ WR f FP RIWHQ GLVWDOO\ UHFXUYHG VRPHWLPHV VWURQJO\ UHIOH[HG IRU WKHLU HQWLUH OHQJWK RXWHU WHSDOV RYDWHf ODQFHRODWH PP ORQJ PP ZLGH DSLFXODWH LQQHU WHSDOV RYDWH PP ORQJ PP ZLGH DFXWH 6WDPLQDO FXS IXQQHO IRUPF\OLQGULFDO WR F\OLQGULFDO XVXDOO\ VXE F\OLQGULFDO SUR[LPDOO\ DQG DEUXSWO\ GLODWHG DW RI LWV OHQJWK f f PP ORQJ WR DSH[ RI WRRWKf f f PP ZLGH ]RQHG JUHHQLVK\HOORZ LQ WKH SUR[LPDO VOLJKWO\ LQFXUYHG DW WKH ULP ZD[\ DQG VOLJKWO\ VXFFXOHQW LQ WH[WXUH ELGHQWDWH EHWZHHQ HDFK IUHH ILODPHQW FRQVSLFXRXVO\ SOLFDWH EHWZHHQ WKH WHHWK YHU\ VKDOORZO\ FOHIW EHWZHHQ HDFK WRRWK PPf DQG DV GHHS RU PRUH GHHSO\ FOHIW EHWZHHQ WKH WHHWK DQG WKH IUHH ILODPHQW PPf WHHWK PP ORQJ UHDFKLQJ WR DERXW KDOI WKH OHQJWK RI WKH IUHH ILODPHQWV REWXVH HQWLUH IUHH ILODPHQW VXEXODWH f f PP ORQJ PP ZLGH DW WKH EDVH REWXVH RU DFXWH DQWKHUV PP ORQJ REORQJ JUH\LVKEURZQ VXE EDVLIL[HG PRUH RU OHVV YHUVDWLOH DW DQWKHVLV SROOHQ JUDLQ FD AP SRODU GLDP FD MP ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ UHDFKLQJ WKH DSH[ RI WKH FXS RU VOLJKWO\ LQVHUWHG VWLJPD FD PP ZLGH 2YDU\ JORERVH PP GLDP ZKLWH WR JUHHQLVKZKLWH RYXOHV f f SHU ORFXOH &DSVXOH VXEJORERVH VKDOORZO\ WULOREHG FD FP ORQJ FP ZLGH JODXFRXV JUHHQ WKLQZDOOHG VRPHWLPHV DEVFLVLQJ LQGHKLVFHQWO\ VHHGV SHU ORFXOH FRPSUHVVHGHOOLSVRLG FD FP ORQJ PP ZLGH WHVWD GXOO EODFN UXJRVH QB ',675,%87,21 $1' (&2/2*< 8QGHUVWRU\ RI ORZODQG DQG SUHPRQWDQH RIWHQ VHDVRQDOO\ LQXQGDWHG SULPDU\ UDLQ IRUHVW LQ WKH $PD]RQ EDVLQ PRVW FRPPRQO\ LQ 3HUX UDUH LQ &RORPELD DQG %UD]LO )LJ f P

PAGE 371

IORZHULQJ -XQH6HSWHPEHU'HFHPEHUf 9HUQDFXODU QDPHV DPDQJD\ VDFKD FHEROOD $'',7,21$/ 0$7(5,$/ (;$0,1(' %5$=,/ $PD]RQDV 5LR -XUX£ 5LR 0LU\ -XO 8OH LQ SDUW 0*f &2/20%,$ $PD]RQDV YLFLQLW\ /HWLFLD H[ KRUW )DLUFKLOG 7URSLFDO *DUGHQ IURP FROOHFWLRQV PDGH E\ 5 %XWWRQV $SU :DWVRQ )/$6f 3(58 /RUHWR ,VOD 6DQWD 0DULD QHDU Q IUXLW@ )f 3XHUWR $UWXUR
PAGE 372

(XFKDULV FDVWHOQDHDQD LV PRVW FRPPRQ LQ WKH YLFLQLW\ RI
PAGE 373

6FKXQNH D )LJ $Lf KDYH IORZHUV DOPRVW WZLFH DV ODUJH DV WKRVH RI 6FKXQNH )LJ $LLf EXW DUH RWKHUZLVH LQGLVWLQJXLVKDEOH 6KDSH RI WKH VWDPLQDO FXS LQ WKH ODWWHU FROOHFWLRQ FDQ UDQJH IURP QHDUO\ F\OLQGULFDO WR IXQQHOIRUPF\OLQGULFDO (XFKDULV SL L FDWD LV WKH FORVHVW VSHFLHV WR (B FDVWHOQDHDQD ERWK LQ SKHQHWLF GLVWDQFH DQG SK\ORJHQHWLFDOO\ ,W LV YHU\ OLNHO\ WKDW ERWK VSHFLHV VKDUH LPPHGLDWH FRPPRQ DQFHVWU\ %RWK (B FRU\QDQGUD DQG (B R[\DQGUD PD\ UHSUHVHQW SHULSKHUDO LVRODWHV RI WKLV VDPH DQFHVWUDO FRPSOH[ %RWK ODWWHU VSHFLHV DUH NQRZQ RQO\ IURP ORZHU WR PLGPRQWDQH VLWHV RI WKH FHMD GH PRQWDQD ]RQH LQ 3HUX %DLOORQ f FRQVLGHUHG (B FDVWHOQDHDQD LQWHUPHGLDWH EHWZHHQ &DOLSKUXULD DQG (XFKDULV LQ KLV DUJXHPHQW IRU FRPELQLQJ WKHVH WZR JHQHUD %DLOORQ SUREDEO\ ZHLJKHG IORZHU VL]H KHDYLO\ LQ KLV MXGJHPHQW RQH RI RQO\ WZR FKDUDFWHUV E\ ZKLFK e FDVWHOQDHDQD UHVHPEOHV &DOLSKUXULD ,Q %DLOORQnV WLPH PRVW RWKHU VPDOO IORZHUHG (XFKDULV ZHUH QRW \HW GHVFULEHG 7KH JUHHQ WKLQZDOOHG FDSVXOH RI (B FDVWHQDHDQD LV DOVR OLNH WKH IUXLW RI &DOLSKUXULD %DLOORQ f JLYHV QR LQGLFDWLRQ ZKHWKHU KH ZDV IDPLOLDU ZLWK WKH IUXLW RI HLWKHU (XFKDULV RU &DO LSKUXULD 1RQHWKHOHVV SHULDQWK DQG SROOHQ H[LQH PRUSKRORJ\ SODFH (B FDVWHOQDHDQD VTXDUHO\ LQ (B VXEJ (XFKDULV GHVSLWH LWV DEHUUDQW IUXLW DQG VHHG PRUSKRORJ\ (8&+$5,6 VXEJ +(7(52&+$5,6 0HHURZ VXEJ QRY 6XEJHQXV (XFKDULV DIILQLV D TXD LPSULPLV GLIIHUW IORULEXV SOHUXPTXH QRQ SHQGXOLV WXER SHULDQWKLL EHQH LQIUD IDXFH GLODWR OLPER SOHUXPTXH PLQXV H[SDQVR RYDULR JUDQGLXV HW RYXOLV QXPHURVLV HQ TXRTXH ORFXOR 7<3( 63(&,(6 (XFKDULV ; JUDQGLIORUD 3ODQFKQ DQG /LQGHQ ), 6HUUHV -DUG (XU 6HU

PAGE 374

/DUJH EXOERXV SHUHQQLDO KHUEV /HDYHV SHWLRODWH SHUVLVWHQW ODPLQD RYDWH WKLQ SOLFDWH RU PRUH RU OHVV VPRRWK EHWZHHQ WKH YHLQV XQGXODWH PDUJLQHG DSLFDOO\ DFXPLQDWH VXEFRUGDWH EDVDOO\ DQG VKRUWO\ DWWHQXDWH WR WKH SHWLROH EULJKW RU GDUN JUHHQ DGD[LDOO\ OLJKW JUHHQ DED[LDOO\ WKH DED[LDO HSLGHUPDO FHOOV YDULDEO\ VWULDWH SHWLROH VXEWHUHWH ,QIORUHVFHQFH VFDSRVH XPEHOODWH WHUPLQDWHG E\ WZR JUHHQ RYDWHODQFHRODWH EUDFWV )ORZHUV VXEVHVVLOH RU VKRUWO\ SHGLFHOODWH ZKLWH FP ORQJ VWURQJO\ IUDJUDQW GHFOLQDWH UDUHO\ VXESHQGXORXVf IXQQHOIRUPFDPSDQXODWH UDUHO\ FUDWHULIRUPf SHULDQWK WXEH F\OLQGULFDO WR VXEF\OLQGULFDO EHORZ DEUXSWO\ GLODWHG DW RQH WKLUG WR RQH KDOI RI LWV OHQJWK FXUYHG WLQJHG JUHHQ EHORZ OLPE RI VL[ RYDWH WHSDOV LQ WZR VHULHV LPEULFDWH IRU KDOI WKHLU OHQJWK VXEHTXDO VSUHDGLQJ VRPHZKDW DERYH RIWHQ VOLJKWO\ XQGXODWH 6WDPHQV EDVDOO\ FRQQDWH LQWR VKRUW RU ORQJ VWDPLQDO FXS SDUWLDOO\ DGQDWH WR WKH XSSHU SRUWLRQ RI WKH WXEH VWULSHG JUHHQ RU \HOORZ ZLWKLQ DORQJ WKH ILODPHQWDO WUDFHV YDULRXVO\ WRRWKHG RU HGHQWDWH GLVWDO SRUWLRQ RI WKH ILODPHQWV OLQHDU RU VXEXODWH VRPHWLPHV LQFXUYHG DQWKHUV OLQHDU YHUVDWLOH DW DQWKHVLV SROOHQ JUDLQ ALP SRODU D[LVf AXP ORQJHVW HTXDWRULDO D[LVf WKH H[LQH FRDUVHO\ UHWLFXODWH 6W\OH ILOLIRUP ZHOO H[VHUWHG EH\RQG WKH VWDPLQDO FXS DQG VOLJKWO\ DVVXUJHQW VWLJPD GHHSO\ WULOREHG RIWHQ JUHHQ 2YDU\ ODUJH HOOLSVRLG WULJRQRXV DSSHDULQJ URVWHOODWH ZKHQ GU\ RYXOHV XVXDOO\ SHU ORFXOH HOOLSVRLG ELVHULDWH &DSVXOH JUHHQ VHHGV EODFNLVKEURZQ ZLWK D VOLJKWO\ UXJRVH WHVWD ( DQPDODf VSHFLHV DQG QDWXUDO K\EULGV LQ :HVWHUQ &RORPELD (FXDGRU DQG UDUHO\ 3HUX

PAGE 375

.H\ WR WKH VSHFLHV DQG K\EULGV RI VXEJ +HWHURFKDULV /HDYHV GHHSO\ SOLFDWH VWDPLQDO FXS UHGXFHG WR D EDVDO FRQQDWLRQ RI WKH ILODPHQWV OHVV WKDQ PP ORQJ 6WDPLQDO FXS DFXWHO\ ELGHQWDWH EHZWHHQ HDFK ILODPHQW WHHWK FD PP ORQJ (B ; JUDQGLIORUD 6WDPLQDO FXS HGHQWDWH RU UDUHO\ ZLWK D VLQJOH REVFXUH WRRWK OHVV WKDQ PP ORQJ DW WKH EDVH RI RQH RU VHYHUDO VWDPHQV 3HULDQWK WXEH PDUNHGO\ FXUYHG F\OLQGULFDO IRU RI LWV OHQJWK WKHQ DEUXSWO\ GLODWHG GLVWDOO\ WR WKH WKURDW IUHH ILODPHQW VRPHZKDW LQFXUYHG VWLJPDWLF SDSLOODH XQLFHOOXODU ,( VDQGHUL 3HULDQWK WXEH VWUDLJKW RU RQO\ VOLJKWO\ FHUQXRXV VXE F\OLQGULFDO SUR[LPDOO\ EXW GLVWDOO\ GLODWLQJ JUDGXDOO\ WRZDUGV WKH WKURDW IUHH ILODPHQW VWUDLJKW VWLJPDWLF SDSLOODH PXOWLFHOOXODU ; &DOLFKDULV EXWFKHUL /HDYHV UHODWLYHO\ QRQSOLFDWH VWDPLQDO FXS ZHOOGHYHORSHG JUHDWHU WKDQ FP ORQJ /HDI OHQJWKWRZLGWK UDWLR XVXDOO\ HTXDO WR RU OHVV WKDQ SHULDQWK PRUH RU OHVV FDPSDQXODWH WHSDOV VSUHDGLQJ RQO\ r IURP WKH WKURDW VWDPLQDO FXS DFXWHO\ ELGHQWDWH VWURQJO\ UHFXUYHG DW WKH PDUJLQ RYXOHV SHU ORFXOH SODQWV RI (FXDGRU YHU\ UDUH LQ 3HUX e DQRPDOD /HDI OHQJWKWRZLGWK UDWLR XVXDOO\ JUHDWHU WKDQ SHULDQWK FUDWHULIRUP WHSDOV VSUHDGLQJ FD r IURP WKH WKURDW VWDPLQDO FXS REWXVHO\ ELGHQWDWH WR TXDGUDWH QRW VWURQJO\ UHFXUYHG DW WKH PDUJLQ RYXOHV SHU ORFXOH SODQWV RI WKH +XDOODJD YDOOH\ LQ 3HUX ( DPD]QLFD

PAGE 376

(8&+$5,6 ; *5$1',)/25$ 3ODQFKQ DQG /LQGHQ )LJV $&f ), GHV 6HUUHV -DUG (XU 6HU /(&727<3( ), GHV 6HUUHV -DUG (XU 6HU SL 8UFHROLQD JUDQGLIORUD 3ODQFKQ t /LQGHQf 7UDXE 3, /LIH (XFKDULV PDVWHUVLL %DNHU &XUWLVn %RW 0DJ W 7<3( H[ KRUW 6DQGHU KRORW\SH SKRWR ),f 8UFHROLQD PDVWHUVLL %DNHUf 7UDXE 3, /LIH (XFKDULV RZLL %DNHU *DUG &KURQ 7<3( H[ KRUW /RZ KRORW\SH SKRWR )f 8UFHROLQD ORZLL %DNHUf 7UDXE 3, /LIH %XLE FP GLDP QHFN FP ORQJ WXQLFV OLJKW EURZQ /HDYHV SHWLROH PP ORQJ PP WKLFN ODPLQD RYDWH RU HOOLSWLF FP ORQJ f FP ZLGH DSLFDOO\ DFXPLQDWH VXEFRUGDWH EDVDOO\ DQG VKRUWO\ DWWHQWXDWH WR WKH SHWLROH GHHSO\ SOLFDWH DGD[LDO VXUIDFH OXVWURXV GDUN RU EULJKW JUHHQ DED[LDO VXUIDFH OLJKW JUHHQ DQG GHQVHO\ VWULDWH PDUJLQV XQGXODWH 6FDSH GP WDOO PP GLDP VXEWHUHWH EUDFWV RYDWHODQFHRODWH JUHHQ DW ILUVW VRRQ PDUFHVFHQW FP ORQJ PP ZLGH )ORZHUV IXQQHOIRUPFDPSDQXODWH GHFOLQDWH VZHHWO\ IUDJUDQW SHGLFHO VKRUW f PP ORQJ PP GLDP WXEH FXUYHG PP ORQJ PP ZLGH EHORZ GLODWLQJ DW WR LWV OHQJWK WR PP DW WKH WKURDW JUHHQ LQ WKH SUR[LPDO KDOI ZKLWH GLVWDOO\ WHSDOV RYDWH LPEULFDWH IRU KDOI WKHLU OHQJWK ZKLWH PDUJLQV XVXDOO\ XQGXODWH VSUHDGLQJ VOLJKWO\ DSLFDOO\ RXWHU VHULHV f PP ORQJ f PP ZLGH DFXWHDSLFXODWH LQQHU VHULHV f PP ORQJ PP ZLGH REWXVH 6WDPLQDO FXS VKRUW PP ORQJ WR WRRWKf PP ZLGH VWDLQHG JUHHQ RU \HOORZ ZKHUH DGQDWH WR WKH GLODWHG SRUWLRQ RI WKH WXEH ZLWK DFXWH RU REWXVH WHHWK EHWZHHQ HDFK

PAGE 377

VWDPHQ WHHWK FD PP ORQJ VWDPHQV f f ZLGH DW WKH EDVH IURP WRRWK WR WRRWK IUHH ILODPHQW f PP ORQJ OLQHDU RU QDUURZO\ VXEXODWH PP ZLGH DW WKH EDVH DQWKHUV REORQJOLQHDU f PP ORQJ VOLJKWO\ FXUYHG SROOHQ ZLWK RQO\ b VWDLQDELOLW\ 6W\OH ILOLIRUP f PP ORQJ JUHHQ DVVXUJHQW ZHOOH[VHUWHG EH\RQG WKH VWDPHQV VWLJPD GHHSO\ OREHG f PP ZLGH ZKLWH RU JUHHQLVK 2YDU\ REORQJ URVWHOODWH PP ORQJ PP ZLGH RYXOHV SHU ORFXOH JORERVH VXSHUSRVHG )UXLW DQG VHHG XQNQRZQ GRXEWIXOO\ HYHU IRUPHG ',675,%87,21 $1' (&2/2*< 5DUH LQ WKH XQGHUVWRU\ RI SULPDU\ DQG VHFRQGDU\ UDLQIRUHVW RI VRXWKHUQ &KRF DQG QRUWKZHVWHUQ (O 9DOOH GHSDUWPHQWV RI &RORPELD )LJ f f P HOHYDWLRQ EXW ZLGHO\ FXOWLYDWHG WKURXJKRXW ZHVWHUQ &RORPELD EHORZ P ,QWURGXFHG DQG SHUVLVWLQJ LQ (FXDGRU 7KH SODQW DSSHDUV WR EH IXQFWLRQDOO\ VWHULOH 0RVW FROOHFWLRQV DUH IURP FXOLYDWLRQ DQG SXWDWLYHO\ QDWLYH SRSXODWLRQV PD\ EH UHPQHQWV RI FXOWLYDWLRQ $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ &KRF HQWUH ,VWPLQD \ &RQGRWR 5LR 6DQ -XDQ \ 5LR ,U P $XJ *DUFLD%DUULJD &2/ 86f (O 9DOOH GH &DXFD 5LR &DEUHUD 7DPEL 5LR 6XPDSD] &XQGLQDPDUFD P )HE /HKPDQQ .f &RUGRYD 5LR 'DJXD /HKPDQQ LQ SDUWf 5LR 7HWD &DXFD 9DOOH\ P /HKPDQQ ) *+ 1< 86f &DXFD P /HKPDQQ VQ .f NP 6( RI %XHQDYHQWXUD RQ ROG URDG WR 3DFLILF FRDVW 5LR $QFKLFD\D P -XO 0HHURZ t 7HHWV )/$6f (&8$'25 &DUFKL &KLFDO SDWK IURP -XDQ 0DOGRQDGR WR 7REDU 'DQXVR IORZHUHG LQ FXOWLYDWLRQ 'HF 0DGL VRQ HW DO VBQB 6(/f *XD\DV *XD\DTXLO FXOWLYDWHG 1RY

PAGE 378

0LOOH 4&$f /RV 5LRV +DFLHQGD $QD 0DULD &DQWRQ 9LQFHV P
PAGE 379

JUDQGLIORUD (XFKDULV ; JUDQGLIORUD DSSHDUV LQWHUPHGLDWH LQ DOO UHVSHFWV WR (B DQPDOD DQG (B VDQGHUL 9LUWXDOO\ DOO FROOHFWLRQV RI (B ; JUDQGLIORUD DUH IURP FXOWLYDWHG SRSXODWLRQV LQ &RORPELD DQG (FXDGRU 3ROOHQ VWDLQDELOLW\ RI HLWKHU &RORPELDQ RU (FXDGRUHDQ FROOHFWLRQV RI (B ; JUDQGLIORUD LV QHYHU EHWWHU WKDQ b DQG KDYH QRW VXFFHHGHG LQ REWDLQLQJ VHHGV LQ FXOWLYDWLRQ ZLWK HLWKHU VLEOLQJ SROOHQ RU SROOHQ RI RWKHU VSHFLHV 7KH K\EULG LV KRZHYHU VOLJKWO\ YDULDEOH LQ OHDI PRUSKRORJ\ QXPEHU RI IORZHUV DQG FRORU RI DQGURHFLDO SLJPHQWDWLRQ WKURXJKRXW LWV UDQJH WKH H[WUHPHV RI ZKLFK ZHUH UHFRJQL]HG UHVSHFWLYHO\ DV (B PDVWHUVLL )LJ $f DQG (B RZLL )LJV %&f E\ %DNHU f 7KLV PD\ EH WKH FRQVHTXHQFH RI WZR RU PRUH K\EULGL]DWLRQ HYHQWV LQYROYLQJ WKH VDPH SDUHQWV RU PRUH OLNHO\ WKH UHVXOW RI VHOHFWLYH SURSDJDWLRQ RI D YDULDEOH ), WKURXJK KXPDQ DJHQF\ (8&+$5,6 6$1'(5, %DNHU )LJ f &XUWLVn %RW 0DJ W 7<3( H[ KRUW .f 8UFHROLQD VDQGHUL %DNHUf 7UDXE 3, /LIH %XOE PP ORQJ PP ZLGH QHFN WKLFN PP ZLGH WXQLFV OLJKW EURZQ /HDYHV SHWLRODWH SHUVLVWHQW SHWLROH FP ORQJ f PP WKLFN ODPLQD RYDWH RU HOOLSWLF f FP ORQJ f§f FP ZLGH WKLQ GHHSO\ SOLFDWH EHWZHHQ WKH YHLQV XQGXODWH PDUJLQHG DSLFDOO\ DFXPLQDWH VXEFRUGDWH EDVDOO\ DQG VKRUWO\ DWWHQXDWH WR WKH SHWLROH EULJKW JUHHQ DGD[LDOO\ OLJKW JUHHQ DED[LDOO\ WKH DED[LDO VXUIDFH LQWHQVHO\ VWULDWH 6FDSH VXEWHUHWH FP ORQJ PP GLDP EUDFWV ODQFHRODWH f PP ORQJ )ORZHUV f VXEVHVVLOH SHGLFHOV PP RU OHVV ORQJf VWURQJO\ IUDJUDQW GHFOLQDWH IXQQHOIRUPFDPSDQXODWH SHULDQWK WXEH f f PP ORQJ F\OLQGULFDO WR VXEF\OLQGULFDO DQG PP ZLGH EHORZ DEUXSWO\ GLODWHG DW

PAGE 380

RI LWV OHQJWK WR PP ZLGH FXUYHG WLQJHG JUHHQ SUR[LPDOO\ WHSDOV ZKLWH RYDWH VXEHTXDO LPEULFDWH IRU KDOI WKHLU OHQJWK VSUHDGLQJ VRPHZKDW GLVWDOO\ RXWHU VHULHV f PP ORQJ PP ZLGH DSLFXODWH LQQHU VHULHV f PP ORQJ PP ZLGH 6WDPHQV EDVD\ FRQQDWH LQWR D VKRUW VWDPLQDO FXS SDUWLDOO\ DGQDWH WR WKH XSSHU SRUWLRQ RI WKH WXEH FD PP ZLGH VWULSHG JUHHQ ZLWKLQ DORQJ WKH ILODPHQWDO WUDFHV RQO\ VKRUWO\ H[VHUWHG EH\RQG WKH ULP RI WKH WKURDW HGHQWDWH RU UDUHO\ ZLWK RQH WR IHZ REVFXUH WHHWK IUHH ILODPHQWV f f PP ORQJ PP ZLGH DW WKH EDVH OLQHDU LQFXUYHG DQWKHUV f f PP ORQJ OLQHDU YHUVDWLOH RIWHQ FXUYHG SROOHQ JUDLQ ALP SRODU D[LVf LP ORQJHVW HTXDWRULDO D[LVf WKH H[LQH PRVWO\ FRDUVHO\ UHWLFXODWH 6W\OH ILOLIRUP f f PP ORQJ ZHOO H[VHUWHG EH\RQG WKH VWDPLQDO FXS DQG VOLJKWO\ DVVXUJHQW ZKLWH VRPHWLPHV IOXVKHG JUHHQ VWLJPD GHHSO\ DQG REWXVHO\ WULOREHG f PP ZLGH 2YDU\ ODUJH HOOLSVRLG WULJRQRXV DSSHDULQJ URVWHOODWH ZKHQ GU\ f PP ORQJ f f PP ZLGH RYXOHV f SHU ORFXOH HOOLSVRLG ELVHULDWH )UXLW DQG VHHG LPSHUIHFWO\ NQRZQ FDSVXOH EHFRPLQJ DW OHDVW FP ORQJ DQG FP ZLGH VHHGV VHYHUDO SHU ORFXOH ',675,%87,21 $1' (&2/2*< (QGHPLF WR ZHVWHUQ &RORPELD RFFXUULQJ ORFDOO\ RQ VLWHV ZLWK ULFK VRLO LQ WKH XQGHUVWRU\ RI ZHW ORZODQG UDLQIRUHVW SULPDULO\ LQ &KRF 'HSW )LJ f IUHTXHQWO\ DORQJ ZDWHUFRXUVHV RFDVVLRQDO LQ VLPLODU KDELWDWV LQ (O 9DOOH GH &DXFD 'HSW f f P &ROOHFWLRQV DERYH P HOHYDWLRQ LQ WKH 5LR &DXFD 9DOOH\ 9RQ 6QHLGHUQ t f PD\ EH DGYHQWLYH )ORZHULQJ PD\ RFFXU DW DQ\ WLPH RI WKH \HDU

PAGE 381

$'',7,21$/ 63(&,0(16 (;$0,1(' &2/20%,$ &KRF KHDGZDWHUV RI 5LR 7XWXQHQGR HDVW RI 4XLEG 0D\ $UFKHU 86f 5LR 6DQ -XDQ EHWZHHQ 'LSXUGX t 6DQ 0LJXHO FD P $XJ *HQWU\ t )DOORQ 02f &RUFRYDGD UHJLRQ XSSHU 5LR 6DQ -XDQ "@ 7DW£PD 6DQWD &HFLOLD >/D &HOLD"@ P 'HF YRQ 6QHLGHUQ 6f 7KLV VSHFLHV LV GHQRWHG E\ LWV ODUJH VZHHWO\ IUDJUDQW IXQQHOIRUP FDPSDQXODWH IORZHUV ODUJH RYDU\ DQG FDSVXOH DQG UHGXFHG VWDPLQDO FXS 7KH QDUURZ GLVWULEXWLRQ RI (B VDQGHUL VXJJHVWV LW HYROYHG ZLWKLQ WKH FRQILQHV RI WKH ZHW 3DFLILF UDLQIRUHVWV RI &RORPELD FRQFHLYDEO\ IURP D IUDJPHQW SRSXODWLRQ RI DQ DQFHVWUDO WD[RQ LVRODWHG GXULQJ WKH 3OLRFHQFH XSOLIW RI WKH $QGHV VHH &KDSWHU ;,f 1DWXUDO K\EULGV H[LVW EHWZHHQ (B VDQGHUL DQG ERWK ,( DQPDOD (B ;B JUDQGLIORUDf DQG &DOLSKUXULD VXEHGHQWDWD ; &DOLFKDULV EXWFKHULf $ VLQJOH FROOHFWLRQ &XDWUHFDVDV f LQ ZKLFK PDWXULQJ FDSVXOHV DUH UHSUHVHQWHG VXJJHVWV WKDW (B VDQGHUL SURGXFHV WKH ODUJHVW IUXLW LQ WKH JHQXV 'HVSLWH WKH PDQ\ SXWDWLYHO\ SULPLWLYH FKDUDFWHULVWLFV RI (B VDQGHUL HJ ODUJH IORZHUV VWURQJ IUDJUDQFHf LQ FRPPRQ ZLWK ( DQPDOD RYXOH QXPEHU RI ( VDQGHUL LV FRQVLGHUDEO\ YDULDEOH DQG LWV OHDYHV DUH GHHSO\ SOLFDWH 7KH

PAGE 382

UHGXFHG PRUSKRORJ\ RI WKH DQGURHFLXP LV KRZHYHU WKH PDMRU DGYDQFHG FKDUDFWHU RI B( VDQGHUL ; &$/,&+$5,6 %87&+(5, 7UDXEf 0HHURZ QRWKRJHQ HW FRPE QRY )LJV '(f (XFKDULV EXWFKHUL 7UDXE 3, /LIH 7<3( H[ KRUW 7UDXE SXUSRUWHG WR KDYH EHHQ FROOHFWHG LQ 3DQDPD E\ 1 *LULGOLDQ 7UDXE KRORW\SH 02 H[ 75$f 8UFHROLQD EXWFKHUL 7UDXEf 7UDXE 3, /LIH (XFKDULV VDQGHUL %DNHU YDU PXOWL IORUD %DNHU &XUWLVn %RW 0DJ W 7<3( /HKPDQQ VQ KRORW\SH .f (XFKDULV VDQGHUL %DNHU VXEVS PXOWLIORUD %DNHUf 7UDXE 3, /LIH 8UFHROLQD VDQGHUL VXEVS PXOWL IORUD %DNHUf 7UDXE 3, /LIH %XOE FP ORQJ FP ZLGH QHFN VKRUW DQG WKLFN WXQLFV EURZQ /HDYHV SHWLROH FP ORQJ PP ZLGH ODPLQD HOOLSWLF f FP ORQJ f FP ZLGH VKRUWO\ DFXPLQDWH VXEFRUGDWHDWWHQXDWH DW WKH EDVH FRQVSLFXRXVO\ SOLFDWH DGD[LDO VXUIDFH EULJKW WR GDUN JUHHQ DGD[LDO VXUIDFH OLJKWHU JUHHQ DQG LQWHQVHO\ VWULDWH 6FDSH GP ORQJ PP GLDP SULPDU\ EUDFWV ODQFHRODWH PP ORQJ )ORZHUV f IXQQHOIRUPFDPSDQXODWH IUDJUDQW SHGLFHOV f PP ORQJ WXEH PP ORQJ IXQQHOIRUP SUR[LPDOO\ GLODWLQJ JUDGXDOO\ IURP PP ZLGH DW WKH EDVH WR PP ZLGH DW PHGLDQ OHQJWK WKHQ DEUXSWO\ GLODWHG LQ WKH GLVWDO KDOI WR PP ZLGH DW WKH WKURDW JUHHQ IRU PRVW RI LWV OHQJWK WKH LQWHULRU RI WKH GLODWHG DOVR SRUWLRQ VWDLQHG JUHHQ PRVW SURPLQHQWO\ DORQJ WKH ILODPHQWDO WUDFHV WHSDOV ZKLWH LPEULFDWH IRU KDOI WKHLU OHQJWK VSUHDGLQJ HYHQWXDOO\ WR f PP ZLGH PDUJLQV QRQXQGXODWH RXWHU VHULHV f PP ORQJ PP ZLGH DFXWHDSLFXODWH LQQHU VHULHV f PP ORQJ PP ZLGH REWXVH 6WDPHQV VKRUWO\ FRQQDWH EHORZ HGHQWDWH RU

PAGE 383

UDUHO\ ZLWK RQH REVFXUH WRRWK EHWZHHQ VRPH RI WKH ILODPHQWV ZKLWH IUHH ILODPHQW OLQHDU VWUDLJKW RU VOLJKWO\ FXUYHG DSLFDOO\ PP ORQJ PP ZLGH DW WKH EDVH ZKHUH DEUXSWO\ GLODWHG WR PP DQWKHUV f PP ORQJ OLQHDUREORQJ JUH\LVKEURZQ PRVWO\ GHYRLG RI SROOHQ 6W\OH FP ORQJ RYHUWRSSLQJ WKH VWDPHQV VOLJKWO\ DVVXUJHQW ZKLWH GLVWDOO\ JUHHQ SUR[LPDOO\ VWLJPD REWXVHO\ WULOREHG f PP ZLGH SDSLOODH PXOWLFHOOXODU 2YDU\ JORERVHHOOLSVRLG f PP ORQJ f PP ZLGH RYXOHV f SHU ORFXOH )UXLW DQG VHHG XQNQRZQ GRXEWIXOO\ HYHU IRUPHG ',675,%87,21 $1' (&2/2*< 5DUH LQ ZHVWHUQ &RORPELD DORQJ WKH 5LR 'DJXD LQ (O 9DOOH GH &DXFD 'HSW DQG WKH ORZHU &DXF $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ (O 9DOOH GH &DXFD 5LR 'DJXD 0DU /HKPDQQ %0 .f 5LR 'DJXD P /HKPDQQ ) LQ SDUWf &DXFD (O 7DPER /D &RVWD P -XQ 9RQ 6QHLGHUQ 6f 3URYHQDQFH XQNQRZQ QR GDWD -DQ &XDWUHFDVDV )f 7KLV SXWDWLYH K\EULG EHWZHHQ ( VDQGHUL DQG &DOLSKUXULD VXEHGHQWDWD ZDV ILUVW GHVFULEHG E\ %DNHU f DV (XFKDULV VDQGHUL YDU PXOWL IORUD ,W KDV EHHQ FROOHFWHG LQ WKH ZLOG DW WKH LQWHUIDFH RI WKH GLVWULEXWLRQV RI ERWK SDUHQWV DQG DW LQWHUPHGLDWH HOHYDWLRQV 7KH SODQW SURGXFHV OLWWOH SROOHQ QRQH RI LW VWDLQLQJ ZLWK $OH[DQGHUnV f VWDLQ )ORUDO PRUSKRORJ\ LV LQWHUPHGLDWH EHWZHHQ ERWK SDUHQWV WKRXJK OLNH e VXEHGHQWDWD WKH VWLJPDWLF SDSLOODH DUH PXOWLFHOOXODU /LNH RWKHU DUJHIORZHUHG DQG IUDJUDQW (XFKDULV ; & EXWFKHUL KDV OLNHO\ EHHQ FXOWLYDWHG DQG GLVVHPLQDWHG YLD KXPDQ DJHQF\

PAGE 384

(XFKDULV DQPDOD 0HHURZ VS QRY )LJV $%f 6SHFLHV D (B DPD]QLFD DIILQLV VHG GLIIHUW IROLLV SOHUXPTXH PLQXV TXDP SOR ORQJLV TXDP 7DWLV OLPER FDPSDQXODWR SDWHQWH PLQXV TXDP r FXSXOD VWDPLQHD DG PDUJLQHP SOXV UHFXUYDWD GHQWLEXV VWDPLQHLV DFXWLV HW RYXOLV LQ TXRTXH ORFXOR PDJLV QXPHURVLV 7<3( (FXDGRU 0RURQD 6DQWLDJR NP &XHQFD*XDODTXL]D P -XO 'RGVRQ t (PEUHH KRORW\SH 0 LVRW\SH 6(/f (XFKDULV JUDQGLIORUD YDU PRRUHL %DNHU *DUG &KURQ 7<3( H[ KRUW *ODVQHYLQ  e .f %XOE FP ORQJ FP GLDP WXQLFV EURZQ /HDYHV SHWLROH GP ORQJ PP WKLFN ZLWK DQ DQRPDORXV DUF RI DFFHVVRU\ ILEHU EXQGOHV QHDU WKH DGD[LDO VXUIDFH ODPLQD EURDGO\ RYDWH OHQJWK ZLGWK UDWLR OHVV WKDQ RU HTXDO WR FP ORQJ FP ZLGH DSH[ VKRUWO\ DFXPLQDWH EDVH DSSHDULQJ FRUGDWH DW WKH EDVH PDUJLQV FRDUVHO\ XQGXODWH OXVWURXV GDUN JUHHQ DGD[LDOO\ OLJKWHU JUHHQ DED[LDOO\ DED[LDO FXWLFOH PRVWO\ ZLWKRXW VWULDWLRQV 6FDSH GP WDOO WHUHWH PP GLDP SUR[LPDOO\ FD PP GLDP GLVWDOO\ EUDFWV RYDWH ODQFHRODWH f PP ORQJ JUHHQ )ORZHUV XVXDOO\ UDUHO\ XS WR PRUH RU OHVV FDPSDQXODWH GHFOLQDWH VZHHWO\ IUDJUDQW SHGLFHOV XVXDOO\ VKRUW f PP ORQJ WXEH PP ORQJ F\OLQGLFDO DQG PP ZLGH SUR[LPDOO\ DEUXSWO\ GLODWLQJ DW DERXW LWV PLGSRLQW WR f PP DW WKH WKURDW ZKLWH H[FHSW IRU D VOLJKW JUHHQ WLQJH DW WKH EDVH OLPE VSUHDGLQJ OHVV WKDQ r IURP WKH WKURDW WR FD PP ZLGH RU OHVV WHSDOV RYDWH WKH PDUJLQV XQGXODWH RXWHU VHULHV FP ORQJ PP ZLGH DSLFXODWH LQQHU VHULHV FP ORQJ PP ZLGH REWXVH 6WDPLQD FXS F\OLQGULFDO f f PP ORQJ WR DSH[ RI WHHWKf PP ZLGH VWURQJO\ UHFXUYHG DW WKH PDUJLQV ZKLWH

PAGE 385

RQ WKH H[WHULRU \HOORZLVKJUHHQ RQ WKH LQWHULRU VKDOORZO\ FOHIW EHWZHHQ HDFK VWDPHQ ELGHQWDWH EHWZHHQ HDFK IUHH ILODPHQW WHHWK DFXWH PP ORQJ HDFK VWDPHQ FD PP ZLGH WRRWKWRWRRWK IUHH ILODPHQW VXEXODWH f PP ORQJ PP RU OHVV ZLGH DW WKH EDVH DQWKHUV PP ORQJ REORQJOLQHDU JUH\LVKEURZQ SROOHQ JUDLQ FD ALP SRODU GLDP FD MXP ORQJHVW HTXDWRULDO GLDP 6W\OH FP ORQJ VWLJPD PP ZLGH ZKLWH 2YDU\ HOOLSVRLGWULJRQRXV f PP ORQJ FD PP ZLGH RYXOHV ELVHULDWH &DSVXOH JORERVH FD FP ORQJ FP ZLGH VOLJKWO\ URVWHOODWH JUHHQ VOLJKWO\ JODXFRXV VHHGV SHU ORFXOH FRPSUHVVHG JORERVH FD PP GLDP WXUJLG WHVWD EODFNLVKEURZQ DQG VOLJKWO\ UXJRVH QB (7<02/2*< 7KH HSLWKHW UHIHUV WR WKH DQRPDORXV VHFRQGDU\ YDVFXODU EXQGOHV RI WKH SHWLROH DQG WKH V\VWHPDWLF SRVLWLRQ RI WKLV VSHFLHV DV WKH PRVW SULPLWLYH LQ WKH JHQXV ',675,%87,21 $1' (&2/2*< $Q XQGHUVWRU\ SODQW RI SULPDU\ DQG VHFRQGDU\ ORZHU PRQWDQH UDLQIRUHVW RI WKH (FXDGRUHDQ $QGHV LQ 0RURQD 6DQWLDJR DQG 6DQWLDJR=DPRUD 3URYLQFHV RQ WKH HDVW VORSHV DQG /RV 5LRV &RWRSD[L DQG FRQWLJXRXV 3LFKLQFKD 3URYLQFHV RQ WKH ZHVWHUQ GHFOLYLW\ f f P )LJ f UDUH LQ WKH ORZHU FHMD GH PRQWDD RI &DMDPDUFD 'HSDUWPHQW 3HUX )ORZHULQJ LV FRQFHQWUDWHG IURP -DQXDU\ 0DUFK DQG DJDLQ IURP -XQHf -XO\6HSWHPEHU $'',7,21$/ 63(&,0(16 (;$0,1(' (&8$'25 &RWRSD[L NP RQ UG IURP 4XHYHGR WR /DWDFXQJD 5LR 3LODOR P $XJ 0HHURZ t 0HHURZ )/$6f VDPH ORFDOLW\ DV SUHFHGLQJ $XJ 0HHURZ t 0HHURZ )/$6f /RV 5LRV NP 4XHYHGR6DQWR 'RPLQJR 5LR 3DOHQTXH %LRORJLFDO 6WDWLRQ P IORZHUHG LQ FXOWLYDWLRQ 'RGVRQ 6(/f 0RURQD6DQWLDJR NP 6( RI 6DQ -XDQ %RVFR P -DQ *HQWU\

PAGE 386

HW DO 02 6(/f ,QGDQ]D/LPQ *HQHUDO 3OD]Df P 0DU +DUOLQJ t $QGHUVVRQ *%f NP 0 RI 7XFXPEDW]D RQ URDG *XDODTXL]D,QGDQ]D P IRUHVW UHPQHQWV $SU +DUOLQJ t $QGHUVVRQ *%f 5LR
PAGE 387

(XFKDULV 7KH VSHFLHV DOVR RFFXSLHV D JHRJUDSKLFDO SRVLWLRQ LQWHUPHGLDWH EHWZHHQ (B VDQGHUL HQGHPLF WR &KRF 'HSDUWPHQW &RORPELDf DQG WKH YDVW PDMRULW\ RI VXEJ (XFKDULV 6SHFLHV RI VXEJ (XFKDULV DUH H[FHHGLQJO\ UDUH RQ WKH ZHVWHUQ VORSHV RI WKH $QGHV 0HHURZ f (XFKDULV DQPDOD LV WKH RQO\ VSHFLHV LQ WKH JHQXV WKDW RFFXUV RQ ERWK VLGHV RI WKH $QGHV 7KH SUHVHQFH RI (B DQPDOD LQ QRUWKZHVWHUQ (FXDGRU DQG WKH H[LVWHQFH RI SXWDWLYH QDWXUDO K\EULGV EHWZHHQ LW DQG B( VDQGHUL (B ; JUDQGLIORUDf PLJKW VXJJHVW WKDW LW ZDV WKLV SODQW ZKLFK 3ODQFKQ DQG /LQGHQ GHVFULEHG DV (B JUDQGLIORUD 7R GDWH KRZHYHU KDYH QRW VHHQ D VLQJOH FROOHFWLRQ RI -( DQPDOD IURP &RORPELD )XUWKHUPRUH WKH VWDPLQD FXS RI WKH IORZHU LOOXVWUDWHG LQ WKH OHFWRW\SH RI (B ; JUDQGLIORUD LV FOHDUO\ PXFK VKRUWHU WKDQ WKDW RI B( DQPDOD DQG WKH JHQHUDO KDELW RI WKH ILJXUHG SODQW FORVHO\ UHVHPEOHV ,( ; JUDQGLIORUD (8&+$5,6 $0$=21,&$ /LQGHQ H[ 3ODQFKQ )LJV &'f ), GHV 6HUUHV -DUG (XU 6HU /(&727<3( ), GHV 6HUUHV -DUG (XU 6HU W %XOE FP GLDP QHFN FP ORQJ WXQLFV EURZQ /HDYHV XVXDOO\ SHWLROH f f FP ORQJ PP WKLFN ODPLQD ORQJHOOLSWLF f f FP ORQJ f FP ZLGH OHQJWKZLGWK UDWLR XVXDOO\ JUHDWHU WKDQ DFXPLQDWH VXEFRUGDWH DW WKH EDVH DQG DWWHQXDWH WR WKH SHWLROH OXVWURXV GDUN JUHHQ DGD[LDOO\ DQG VKDOORZO\ RU LQFRQVSLFXRXVO\ SOLFDWH DED[LDO VXUIDFH OLJKWHU JUHHQ FXWLFXODU VWULDWLRQV REVFXUH RU ODUJHO\ DEVHQW PDUJLQV FRDUVHO\ XQGXODWH 6FDSH f GP WDOO FD FP GLDP SUR[LPDOO\ FD PP GLDP GLVWDOO\ WHUHWH SULPDU\ EUDFWV f f PP ORQJ EURDGO\ RYDWHODQFHRODWH JUHHQ )ORZHUV f f VXESHQGXORXV

PAGE 388

VZHHWO\ IUDJUDQW SHGLFHO f f PP ORQJ WXEH ZKLWH WKURXJKRXW FXUYHG f PP ORQJ F\OLQGULFDO EHORZ DQG PP ZLGH GLODWLQJ DEUXSWO\ DW OHQJWK WR f f PP DW WKH WKURDW OLPE ZKLWH VSUHDGLQJ ZLGHO\ WR PP ZLGH WHSDOV RYDWH RXWHU VHULHV f PP ORQJ PP ZLGH DSLFXODWH LQQHU VHULHV f PP ORQJ PP ZLGH DFXWH 6WDPLQD FXS ZLGHO\ F\OLQGULFDO PP ORQJ WR DSH[ RI WHHWKf f f PP ZLGH PDUJLQV VOLJKWO\ UHFXUYHG WKH LQWHULRU VWDLQHG JUHHQ SDUWLFXODUO\ DORQJ WKH ILODPHQWDO WUDFHV VKDOORZO\ FOHIW EHWZHHQ HDFK VWDPHQ VWDPHQV f PP ZLGH DW WKH EDVH HDFK ZLWK REWXVH WHHWK RQH RQ HDFK VLGH RI WKH VXEXODWH IUHH ILODPHQW UDUHO\ VXEn TXDGUDWH WHHWK PP ORQJ IUHH ILODPHQW f PP ORQJ PP ZLGH DW WKH EDVH DQWKHUV REORQJOLQHDU f PP ORQJ JUH\LVK SROOHQ FD \XP SRODU GLDP FD \XP ORQJHVW HTXDWRULDO GLDP 6W\OH ZKLWH f PP ORQJ H[VHUWHG FP IURP WKH VWDPLQDO FXS VOLJKWO\ DVVXUJHQW VWLJPD GHHSO\ OREHG PP ZLGH ZKHQ UHFHSWLYH 2YDU\ REORQJHOO L SRVLG f PP ORQJ f f PP ZLGH VRPHZKDW URVWHOODWH RYXOHV SHU ORFXOH VXSHUSRVHG )UXLW DQG VHHG LPSHUIHFWO\ NQRZQ FDSVXOH UHSRUWHG WR EH JUHHQ DQG WKH VHHG HOOLSVRLG ZLWK D EODFN WHVWD 0 & :LOOLDPV SHUV FRPPf QB ',675,%87,21 $1' (&2/2*< $Q XQGHUVWRU\ KHUE RI ORZHU DQG PLG PRQWDQH UDLQIRUHVW RI QRUWKHDVWHUQ 3HUX PRVW SURPLQHQWO\ LQ WKH +XDOODJD YDOOH\ LQ WKH YLFLQLW\ RI 0R\REDPED DQG 7DUDSRWR )LJ f P &HUWDLQ 3HUXYLDQ SRSXODWLRQV DUH OLNHO\ HVFDSHV IURP FXOWLYDWLRQ 7KH SODQW IORZHUV DW OHDVW WZLFH SHU \HDU 0D\f -XO\ $XJXVW 6HSWHPEHUf DQG 'HFHPEHU0DUFK :LGHO\ FXOWLYDWHG WKURXJKRXW WKH ZDUP WURSLFV DQG DV D KRXVH DQG JUHHQKRXVH SODQW LQ WKH WHPSHUDWH

PAGE 389

]RQH 2FDVVLRQDOO\ DGYHQWLYH LQ WKH :HVW ,QGLHV DQG SUREDEO\ HOVHZKHUH 9HUQDFXODU QDPHV DPDQJDLV EODQFR DPDQJD\ IORU GH FHEROOD D]X]HQD $PD]RQ OLO\ (XFKDULVW OLO\ $'',7,21$/ 63(&,0(16 (;$0,1(' 3(58 +DQXFR +DQXFR 7LQJR 0DUOD $XJ $VSOXQG 6f +DQXFR 7LQJR 0DULD KZ\ /D 2UR\D7LQJR 0DUOD 0DU %RHNH 1"@ P :HEHUEDXHU *f /DPDV QHDU 7DUDSRWR P 'HF :LOOLDPV ) 86f 6DQ 5RTXH P )HE :LOOLDPV )f (XFKDULV DPD]QLFD ZDV UHVWDEOLVKHG DV D VSHFLHV GLVWLQFW IURP (B ; JUDQGLIORUD E\ 0HHURZ DQG 'HKJDQ f D WD[RQ ZLWK ZKLFK LW KDV EHHQ FRQIXVHG VLQFH LWV GHVFULSWLRQ E\ 3ODQFKQ f 7KH VSHFLHV LV LQGLJHQRXV RQO\ WR 3HUX LQ WKH XSSHU DQG PLGGOH +XDOODJD YDOOH\ EXW LV

PAGE 390

JURZQ ZRUOGZLGH LQ WURSLFDO UHJLRQV DQG PD\ EH VSRUDGLFDOO\ DGYHQWLYH 7KH VSHFLHV KDV D VRPDWLF FKURPRVRPH QXPEHU RI QB DQG LV DW OHDVW SDUWLDOO\ VWHULOH 1R VSHFLPHQ RI ( DPD]QLFD LQ FRQWUDVW WR PRVW RWKHU VSHFLHV KDV HYHU EHHQ FROOHFWHG LQ IUXLW SROOHQ VWDLQDELOLW\ LV RQO\ b DQG VHHG KDV RQO\ UDUHO\ EHHQ SURGXFHG LQ FXOWLYDWLRQ 0 & :LOOLDPV SHUV FRPP 3ROOHQ IURP +LSSHDVWUXP DQG +\PHQRFDOOLV VSHFLHV ZDV XVHG WKH UHVXOWLQJ VHHG ZDV LQYLDEOHf ,W LV WKHUHIRUH FRQFHLYDEOH WKDW DOO SRSXODWLRQV RI (B DPD]QLFD FRQVWLWXWH D VLQJOH FORQDO WD[RQ ,WV GLVWULEXWLRQ DERXW QRUWKHDVWHUQ 3HUX PD\ KDYH EHHQ KXPDQ YHFWRUHG IURP D FHQWUDO SDUHQW SRSXODWLRQ EHOLHYH (B DPD]QLFD WR EH D WULSORLG GHULYHG 3HUXYLDQ LVRODWH RI HLWKHU (B DQPDOD RU D WD[RQ SHUKDSV H[WLQFW DQFHVWUDO WR WKHP ERWK 7KH PRUSKRORJLFDO GLIIHUHQFHV EHWZHHQ WKHVH WD[D DUH FU\SWLF DQG YLUWXDOO\ LPSRVVLEOH WR GLVFHUQ LQ PRVW GULHG PDWHULDO ZLWKRXW GLVVHFWLRQ RI WKH RYDU\ 7KHLU FORVH UHODWLRQVKLS LV IXUWKHU VXSSRUWHG E\ WKH SUHVHQFH RI VHFRQGDU\ YDVFXODU EXQGOHV LQ WKH SHWLROH RI ERWK WD[D DOEHLW PXFK VPDOOHU LQ (B DPD]QLFD 'RXEWIXO RU ([FOXGHG 1DPHV LQ (XFKDULV (XFKDULV JDODQWKRLGHV .ORW]VFKf /LQGHQ QRPHQ QXGXP $QQ &DW +RUW 7KLV FRPELQDWLRQ LV EDVHG RQ WKH HUURQHRXV DVVXPSWLRQ WKDW /LQGHQnV (XFKDULV JDODQWKRLGHV ZDV EDVHG RQ 0DWKLHXD JDODQWKRLGHV .ORW]VFK 0HHURZ 06 LQ VXEPf 1R W\SH KDV EHHQ ORFDWHG IRU /LQGHQnV SODQW DQG WKH QDPH ( JDODQWKRLGHV PHUHO\ DSSHDUHG DV D

PAGE 391

OLVWLQJ LQ KLV FDWDORJ ,W LV OLNHO\ UHIHUDEOH WR B( FDVWHOQDHDQD %DLORQf 0DFEULGH (XFKDULV KLPHURHVVD 6DQGZLWK H[ 6WDQGOH\ +HUEHUWLD 7KLV QDPH ZDV QHYHU YDOLGO\ SXEOLVKHG ,W ZDV DSSOLHG WR D SRSXODWLRQ RI ( ERXFKHL YDU ERXFKHL :RRGVRQ t $OOHQ IURP 6DQ -RVH SURYLQFH LQ &RVWD 5LFD (XFKDULV SDUDGR[D 7 0RRUH *DUG &KURQ $ OLVWHG QDPH QHYHU YDOLGO\ SXEOLVKHG DSSOLHG WR WKH SODQW ODWHU GHVFULEHG DV &DOLSKUXULD VXEHGHQWDWD %DNHU &$/,3+585,$ +HUEHUW (GZDUGVn %RW 5HJ PLVH QR f 8UFHROLQD VXEJ &DOLSKUXULD +HUEHUWf 7UDXE 3, /LIH 7<3( 63(&,(6 &DOLSKUXULD KDUWZHJLDQD +HUEHUW 6PDOO EXOERXV SHUHQQLDO KHUEV /HDYHV JODEURXV SHWLRODWH SHUVLVWHQW RU UDUHO\ K\VWHUDQWKRXV SHWLROH VXEWHUHWH GLVWDOO\ DQFLSLWRXV ODPLQD RYDWH RYDWHHOOLSWLF RU HOOLSWLF VOLJKWO\ VXFFXOHQW DSLFDOO\ DFXWH RU DFXPLQDWH EDVDOO\ DWWHQXDWH WR WKH SHWLROH PDUJLQV QRQXQGXODWH GDUN JUHHQ DQG VPRRWKVXUIDFHG DGD[LDOO\ OLJKWHU JUHHQ DED[LDOO\ WKH FXWLFOH RI WKH DED[LDO HSLGHUPLV WKLFNO\ VWULDWH RU ULGJHG K\SRVWRPDWLF RU ZLWK DGD[LDO VWRPDWD RQO\ QHDU DQG XSRQ WKH PLGULE ,QIORUHVFHQFH VFDSRVH XPEHOODWH VFDSH VOHQGHU WHUPLQDWLQJ LQ WZR PDUFHVFHQW EUDFWV ZKLFK HQFORVH WKH IORZHUV EHIRUH DQWKHVLV )ORZHUV SHGLFHOODWH f f SHGLFHOV WKLQ HDFK VXEWHQGHG E\ D OLQHDUODQFHRODWH EUDFWHROH GHFOLQDWH RU VXESHQGXORXV E\ WKH OD[QHVV RI WKH SHGLFHO FP ORQJ ZLWKRXW QRWLFHDEOH IUDJUDQFH ZKLWH IXQQHO IRUP RU IXQQHO IRUPWXEXODU SURWDQGURXV SHULDQWK WXEH IXQQHO IRUP GLODWLQJ JUDGXDOO\ IURP WKH EDVH WLQJHG JUHHQ EHORZ RU VXEF\OLQGULFDO DQG ZKLWH WKURXJKRXW VWUDLJKW OLPE RI ODQFHRODWH

PAGE 392

RYDWH RU HOOLSWLF WHSDOV LQ WZR VXEHTXDO VHULHV WKH VHJPHQWV LPEULFDWH IRU KDOI WKHLU OHQJWK GLYHUJLQJ LQ WKHLU GLVWDO KDOI 6WDPHQV FRQQDWH RQO\ DW WKH EDVH IRUPLQJ D VKRUW PHPEUDQDFHRXV VWDPLQDO FXS YDULRXVO\ WRRWKHG RU HGHQWDWH EHWZHHQ HDFK ILODPHQW GLVWDO SRUWLRQ RI WKH ILODPHQW QDUURZO\ VXEXODWH RU OLQHDU VXEHTXDO DQWKHUV REORQJ HUHFW DW DQWKHVLV HYHQWXDOO\ YHUVDWLOH SROOHQ JUDLQV PHGLXPVL]HG ORQJHVW HTXDWRULDO D[LV FD \XPf WKH H[LQH ILQHO\ UHWLFXODWH 6W\OH ILOLIRUP VWLJPD WULOREHG SDSLOODH PXOWLFHOOXODU 2YDU\ JORERVH JUHHQ ZLWK VHSWDO QHFWDULHV RYXOHV HOOLSVRLG f SHU ORFXOH PHGLDOO\ VXSHUSRVHG SODFHQWDWLRQ D[LOH )UXLW D WKLQZDOOHG OHDWKHU\ \HOORZJUHHQ ORFXOLFLGDO FDSVXOH VHHGV IHZ SHU ORFXOH JORERVH RU FRPSUHVVHGHOOLSVRLG FD PP ORQJ WHVWD EODFN RU EURZQ QB )RXU VSHFLHV WKUHH HQGPHLF WR ZHVWHUQ &RORPELD RQH WR 3HUX .H\ WR WKH VSHFLHV RI &DOLSKUXULD 3HULDQWK PRUH WKDQ FP ORQJ WXEH PRUH WKDQ PP ORQJ 3HULDQWK WXEH PP ORQJ VWDPHQV PP ORQJ ELGHQWDWH EHWZHHQ HDFK OHQJWK RI WHHWK HTXDO WR RU JUHDWHU WKDQ WKH OHQJWK RI WKH IUHH ILODPHQW e KDUWZHJLDQD 3HULDQWK WXEH PP ORQJ VWDPHQV HTXDO WR RU JUHDWHU WKDQ PP ORQJ HGHQWDWH RU RFDVVLRQDOO\ ZLWK WHHWK EHWZHHQ HDFK WHHWK QHYHU PRUH WKDQ WKH OHQJWK RI WKH IUHH ILODPHQW &B VXEHGHQWDWD 3HULDQWK HTXDO WR RU OHVV WKDQ FP ORQJ WXEH OHVV WKDQ PP ORQJ /HDYHV K\VWHUDQWKRXV SHULDQWK WXEH IXQQHOIRUP VWDPHQV OHVV WKDQ PP ORQJ PRUH RU OHVV IDVLFXODWH ELGHQWDWH WHHWK

PAGE 393

PXFK H[FHHGLQJ WKH IUHH ILODPHQW LQ OHQJWK IUHH ILODPHQW PP ORQJ RYXOHV SHU ORFXOH e WHHUD /HDYHV SHUVLVWDQW SHULDQWK WXEH VXEF\OLQGULFDO VWDPHQV PP ORQJ GLYHUJHQW HGHQWDWH ILODPHQWV PP ORQJ RYXOHV SHU ORFXOH e NRUVDNRIILL &$/,3+585,$ +$57:(*,$1$ +HUEHUW (GZDUGVn %RW 5HJ PLVH QR 7<3( >7KH VSHFLHV DV GHVFULEHG E\ +HUEHUW IURP +DUWZHJ FROOHFWLRQV PDGH QHDU *XDGXDV &RORPELD ODFNV D KRORW\SH DQG KDYH QRW ORFDWHG DQ\ VSHFLPHQ ZKLFK FRXOG EH GHVLJQDWHG DV OHFWRW\SH 7KH IROORZLQJ QHRW\SH LV KHUHLQ SURSRVHG@ &RORPELD +XLOD 5LR 0DJGDOHQD QHDU 3DLFRO P /HKPDQQ QHRW\SH .,f (XFKDULV KDUWZHJLDQD +HUEHUWf 1LFKROVRQ 8OXV 'LHW *DUG 8UFHROLQD KDUWZHJLDQD +HUEHUWf 7UDXE 3, /LIH 3ODQW WR GP WDOO %XOE JORERVH ZLWK D EURZQ WXQLF FD PP GLDP RIWHQ DSLFDOO\ DUWLFXODWHG LQWR D VOHQGHU QHFN WR PP ORQJ /HDYHV SHWLROH FP ORQJ PP WKLFN ODPLQD RYDWH WR HOOLSWLF FP ORQJ FP ZLGH DFXPLQDWH VKRUWO\ DWWHQXDWH WR WKH SHWLROH DW WKH EDVH 6FDSH FP WDOO EUDFWV ODQFHRODWH PP ORQJ DQG FD PP ZLGH DW WKH EDVH LQQHU EUDFWHROHV VXFFHVVLYHO\ VPDOOHU DQG QDUURZHU )ORZHUV SHGLFHOV PP ORQJ WKLQ SHULDQWK PP ORQJ ZKLWH H[FHSW IRU WKH SUR[LPDO RI WKH WXEH ZKLFK LV JUHHQ WXEH IXQQHO IRUP GLODWLQJ JUDGXDOO\ IURP WKH EDVH PP ORQJ FD PP ZLGH DW WKH EDVH PP ZLGH DW WKH WKURDW OLPE VSUHDGLQJ WR PP WHSDOV RYDWHHOOLSWLF WKH RXWHU VHULHV FD PP ORQJ PP ZLGH DFXWHDSLFXODWH WKH LQQHU VHULHV FD PP ORQJ PP ZLGH REWXVH 6WDPHQV )LJ %f PP ORQJ QDUURZO\ VXEXODWH IRU PRVW RI WKHLU OHQJWK GLODWHG WR FD

PAGE 394

PP EDVDOO\ ZKHUH FRQQDWH ELGHQWDWH EHWZHHQ HDFK IUHH ILODPHQW WHHWK FD WKH OHQJWK RI WKH IUHH ILODPHQW IUHH ILODPHQW FD PP ZLGH DW SRLQW RI LQVHUWLRQ WR FXS DQWKHUV PP ORQJ OLQHDU YHUVDWLOH 6W\OH PP ORQJ H[VHUWHG FD PP EH\RQG WKH OLPE VWLJPD PP ZLGH 2YDU\ JORERVH PP GLDP RYXOHV SHU ORFXOH D[LOH PHGLDOO\ VXSHUSRVHG PDWXUH IUXLW DQG VHHG XQNQRZQ ',675,%87,21 $1' (&2/2*< :HVWHUQFHQWUDO &RORPELD LQ WKH XQGHUVWRU\ RI ORZHUPRQWDQH IRUHVWV RI WKH 5LR 0DJGDOHQD 9DOOH\ )LJ f P $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ &XQGLQDPDUFD &DSDUUDSL P -XQ *DUFLD%DUULJD &2/f ([ KRUW VBQB .f VBQB *2(7f +XLOD 0XQLFLSLR GH OD 3ODWD 9HUHGD $JXD %RQLWD )LQFD 0HUHQEHUJ P -XO 'D] HW DO &2/f 7KLV VHOGRPFROOHFWHG VSHFLHV LV GLVWLQJXLVKHG IURP e VXEHGHQWDWD E\ LWV VPDOOHU IORZHUV DQG VKRUW VWDPHQV ZLWK ORQJ WHHWK LQWHUSRVHG EHWZHHQ WKH ILODPHQWV )LJ %f ,Q DOO RWKHU UHVSHFWV LW FORVHO\ DSSURDFKHV e VXEHGHQWDWD ,Q YLHZ RI WKH ODFN RI DQ\ FROOHFWLRQV H[KLELWLQJ FOHDUFXW PRUSKRORJLFDO LQWHUPHGLDF\ EHWZHHQ e KDUWZHJLDQD DQG e VXEHGHQWDWD DQG WKHLU DOORSDWULF GLVWULEXWLRQ WKH UHWHQWLRQ RI WKH IRUPHU DV D GLVWLQFW VSHFLHV VHHPV DGYLVDEOH &$/,3+585,$ 68%('(17$7$ %DNHU &XUWLVn %RW 0DJ W 7<3( H[ KRUW %HDXIR\ ee KRORW\SH SKRWR RI W\SH &2/f (XFKDULV VXEHGHQWDWD %DNHUf %HQWKDP DQG +RRNHU )LJ f *HQHUD 3ODQWDUXP YRO 8UFHROLQD VXEHGHQWDWD %DNHUf 7UDXE 3, /LIH (XFKDULV IRVWHUL 7UDXE 3, /LIH 7<3( &RORPELD &DXFD DERYH &DOL RQ URDG WR %XHQDYHQWXUD IHHW FROOHFWHG E\ 0%

PAGE 395

)RVWHU 'HF 7UDXE KRORW\SH 02 H[ 75$f 8UFHROLQD IRVWHUL 7UDXEf 7UDXE 3, /LIH 3ODQW WR GP WDOO RIIVHWWLQJ YLJRURXVO\ %XOE JORERVHVXEJORERVH ZLWK D EURZQ WXQLFD f PP ORQJ f ZLGH RIWHQ DSLFDOO\ DUWLFXODWHG LQWR D VOHQGHU QHFN PP ORQJ DQG PP ZLGH /HDYHV SHWLROH f FP ORQJ PP WKLFN ODPLQD RYDWH RYDWHHOOLSWLF RU HOOLSWLF f FP ORQJ f FP ZLGH DFXPLQDWH VKRUWO\ DWWHQXDWH WR WKH SHWLROH 6FDSH FP WDOO VOHQGHU PP GLDP EUDFWV f PP ORQJ PP ZLGH DW EDVH LQQHU EUDFWHROHV PP ORQJ )ORZHUV f f SHGLFHOV f f PP ORQJ WKLQ FD PP GLDP SHULDQWK f f PP ORQJ ZKLWH EXW IRU WKH GLVWDO RI WKH WXEH ZKLFK LV JUHHQ WXEH IXQQHO IRUP GLODWLQJ JUDGXDOO\ IURP WKH EDVH PP ORQJ FD PP ZLGH DW WKH EDVH PP ZLGH DW WKH WKURDW OLPE VSUHDGLQJ WR PP ZLGH WHSDOV RYDWHHOOLSWLF RXWHU VHULHV f PP ORQJ PP ZLGH DFXWHDSLFXODWH LQQHU VHULHV f PP ORQJ PP ZLGH REWXVHPLQXWHO\ DSLFXODWH 6WDPHQV )LJV &' 'f OHVV WKDQ PP ORQJ HGHQWDWH UDUHO\ ZLWK VPDOO WHHWK EHWZHHQ DOO RU VRPH RI WKH ILODPHQWV ZKLWH ILODPHQWV QDUURZO\ VXEXODWHOLQHDU IRU PRVW RI WKHLU OHQJWK f f PP ORQJ GLODWLQJ WR PP DW WKHLU SRLQW RI LQVHUWLRQ WRRWK ZKHQ SUHVHQW PP RU OHVV ORQJ DQWKHUV f f PP ORQJ OLQHDU SROOHQ JUDLQ FD LP SRODU GLDP FD AXP ORQJHVW HTXDWRULDO GLDP 6W\OH f f PP ORQJ H[VHUWHG PP EH\RQG SHULDQWK ZKLWH VWLJPD OREHG f PP ZLGH 2YDU\ JORERVH HOOLSVRLG PP ORQJ PP ZLGH RYXOHV f f SHU ORFXOH D[LOH VXSHUSRVHG &DSVXOH FD FP GLDP VHHGV SHU ORFXOH

PAGE 396

FRPSUHVVHGHOOLSVRLGDO PP ORQJ FD PP GLDP WHVWD EODFN UXJRVH ',675,%87,21 $1' (&2/2*< 8QGHUVWRU\ RI ORZHU DQG PLGPRQWDQH IRUHVWV RI :HVWHUQ &RORPELD LQ WKH &RUGLOOHUDV 2FFLGHQWDO DQG &HQWUDO FKLHIO\ LQ WKH 5LR &DXFD YDOOH\ )LJ f f f P $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ &DXFD 6DQWDQGHU GH 4XLOLFKDR VHOYD GHQVD HQ f5LR &KLTXLWR P 2FW )HUQDQGH] &2/f 5LR &DXFD P 6HS /HKPDQQ %0 *f &DORWR P -XQ /HKPDQQ *f 4XHEUDGD *XDWLFD P /HKPDQQ .f &DMDPDUFD /HKPDQQ VQ .f &DORWR P -XQ /HKPDQQ VQ .f DORQJ 5LR /D 3DLOD DERYH &RUULQWR &HQWUDO &RUGLOOHUD P -DQ 3LWWLHU 86f YLFLQLW\ RI 0HGHOOLQ 0DU 7RUR 1SKRWR@f 0D\ 0HHURZ )/$6f -XQ 0HHURZ )/$6f -XQ 0HHURZ )/$6f H[ KRUW %XOO e QB .f H[ KRUW /LQGHQ BV QB .f &DOLSKUXULD VXEHGHQWDWD LV WKH PRVW FRPPRQ DQG YDULDEOH VSHFLHV RI &DOLSKUXULD DW RQH WLPH IRXQG WKURXJKRXW WKH PRLVW ORZHU DQG PLGGOH PRQWDQH IRUHVWV RI WKH VORSHV RI WKH &RUGLOOHUDV &HQWUDO DQG 2FFLGHQWDO ZHVW RI r Z ORQJLWXGH )LJ f DQG FKLHIO\ WKRVH VXUURXQGLQJ WKH &DXFD 9DOOH\ $V PXFK RI WKLV IRUHVW W\SH KDV EHHQ GHVWUR\HG LQ :HVWHUQ &RORPELD WKH VSHFLHV LV QR ORQJHU DEXQGDQW ,Q WKH FRXUVH RI ILHOGZRUN LQ ZHVWHUQ &RORPELD LQ ZDV QRW DEOH WR ILQG DQ\ SRSXODWLRQV RI & VXEHGHQWDWD LQ HLWKHU LWV KLVWRULFDO ORFDOLWLHV RU WKH UHPQHQWV RI ORZHU DQG PLGPRQWDQH IRUHVW ZKLFK H[SORUHG 7KH VSHFLHV PD\ \HW

PAGE 397

SHUVLVW LQ PRUH LQDFFHVVLEOH IRUHVWHG VLWHV /LYLQJ PDWHULDO UHFHLYHG IURP 0U 7KRPDV )HQQHOO ZDV VDLG WR KDYH EHHQ FROOHFWHG LQ (FXDGRU EXW WKLV LQIRUPDWLRQ LV XQGRFXPHQWHG $W SUHVHQW KDYH VHHQ QR (FXDGRUHDQ VSHFLPHQV RI &DOLSKUXULD QRU HQFRXQWHUHG SRSXODWLRQV LQ WKH ILHOG :LWKLQ WKH UDQJH RI e VXEHGHQWDWD YDULDWLRQ LQ OHDI VL]H IORZHU VL]H GHQWDWLRQ RI WKH DQGURHFLXP )LJV &'f DQG QXPEHU RI RYXOHV LV HYLGHQW EXW WKHVH SDWWHUQV DUH IRU WKH PRVW SDUW FRQWLQXRXV DQGRU PRVDLF LQ GLVWULEXWLRQ UHQGHULQJ UHFRJQLWLRQ RI VXEVSHFLILF WD[D VXSHUIOXRXV 7KH UDUH SUHVHQFH RI GHQWDWLRQ LQ WKH DQGURHFLXP RI e VXEHGHQWDWD PD\ FRQFHLYDEO\ EH WKH UHVXOW RI K\EULGL]DWLRQ ZLWK & KDUWZHJLDQD 7KH UHODWLYH UDULW\ RI e KDUWZHJLDQD DQG ODFN RI OLYLQJ PDWHULDO UHIHUDEOH WR WKLV VSHFLHV SUHFOXGHV IXUWKHU DQDO\VLV DW WKLV WLPH 7KRXJK %DNHU f FKDUDFWHUL]HG WKH VSHFLHV E\ WKH SUHVHQFH RI RQH RU WZR VPDOO WHHWK EHWZHHQ WKH IUHH ILODPHQWV WKH IORZHUV SUHVHQW RQ WKH W\SH VSHFLPHQ RI e VXEHGHQWDWD DUH FRPSOHWHO\ HGHQWDWH &ORQRW\SLF PDWHULDO RI WKH WD[RQ GHVFULEHG E\ 7UDXE f DV e IRVWHUL LV GLVWLQJXLVKDEOH IURP RWKHU OLYLQJ PDWHULDO RI e VXEHGHQWDWD RQO\ E\ LWV VOLJKWO\ VPDOOHU OHDYHV DQG IORZHUV 6HYHUDO OHWWHUV DGGUHVVHG WR %DNHU ZKLFK DFFRPSDQLHG WKH W\SH VSHFLPHQ RI e VXEHGHQWDWD UHYHDO WKDW PDWHULDO UHIHUDEOH WR WKLV VSHFLHV ZDV FLUFXODWHG SULRU WR LWV GHVFULSWLRQ E\ %DNHU f DV e FDQGLGD 3ODQFK DQG /LQG WKH W\SH VSHFLHV RI (XFKDULV (XFKDULV SDUDGR[D D OLVWHG QDPH RI QR QRPHQFODWXUD VWDQGLQJ ZDV VXSSRVHGO\ DSSOLHG WR SODQWV RI e VXEHGHQWDWD EHIRUH %DNHUAV YDOLG SXEOLFDWLRQ RI &DOLSKUXULD VXEHGHQWDWD &$/,3+585,$ 7(“(5$ %DNHU +DQGERRN RI WKH $PDU\OOLGHDH S 7<3( &RORPELD 5LR 0DJGDOHQD $XJ *RXGRW VQ KRORW\SH

PAGE 398

. LVRW\SH 3f (XFKDULV WHHUD %DNHUf 7UDXE 3O /LIH 8UFHROLQD WHHUD %DNHUf 7UDXE 3, /LIH 3ODQW WR GP %XOE JORERVH RU HOOLSVRLG FD PP GLDP RU PP ORQJ ; PP ZLGH VRPHWLPHV DSLFDOO\ DUWLFXODWHG LQWR D VKRUW QHFN PP ORQJ E\ PP ZLGH WXQLFD JUH\LVK EURZQ RU WDQ /HDYHV K\VWHUDQWKRXV QRW VHHQ 6FDSH WHUHWH VOHQGHU FP WDOO PP GLDP EUDFWV OLQHDUODQFHRODWH PP ORQJ LQQHU EUDFWHROHV OLQHDU WKH ORQJHVW WR PP )ORZHUV SHGLFHOV PP ORQJ WKLQ SHULDQWK PP ORQJ IXQQHOIRUP ZKLWH WXEH PP ORQJ IXQQHO IRUP GLODWLQJ JUDGXDOO\ IURP PP ZLGH DW WKH EDVH WR PP DW WKH WKURDW OLPE VSUHDGLQJ WR PP WHSDOV RYDWH WR HOOLSWLF WKH RXWHU VHULHV PP ORQJ PP ZLGH DFXWHDSLFXODWH WKH LQQHU VHULHV PP ORQJ LURQ ZLGH REWXVH 6WDPHQV )LJ $f PP ORQJ HDFK VWDPHQ ELGHQWDWH PP ZLGH WKH IUHH ILODPHQW LQVHUWHG EHWZHHQ WKH WHHWK WHHWK PXFK H[FHHGLQJ WKH IUHH ILODPHQW PP ORQJ IUHH ILODPHQW PP ORQJ OLQHDU DQWKHUV PP ORQJ OLQHDU SROOHQ JUDLQ FD SRODU GLDP AXP ORQJHVW HTXDWRULDO GLDP 6W\OH PP ORQJ VWLJPD OREHG PP ZLGH 2YDU\ JORERVH PP GLDP RYXOHV SHU ORFXOH D[LOH PHGLDOO\ VXSHUSRVHG )UXLW DQG VHHG XQNQRZQ ',675,%87,21 $1' (&2/2*< &RORPELD YDOOH\ RI WKH 5LR 0DJGDOHQD )LJ f P 7KH K\VWHUDQWKRXV OHDYHV RI WKLV VSHFLHV VXJJHVW DGDSWDWLRQ WR GULHU KDELWDWV WKDQ XVXDOO\ FKDUDFWHULVWLF RI WKH VXEJHQXV $FFRUGLQJ WR &XDWUHFDVDV f SRFNHWV RI [HULF YHJHWDWLRQ GR RFFXU LQ WKH YLFLQLW\ RI WKH W\SH ORFDOLW\ $'',7,21$/ 0$7(5,$/ (;$0,1(' &2/20%,$ &XQGLQDPDUFD >"@ 3URY %RJRWD &RS OD 3DUDGD P -XO 7ULDQD &2/ 86 SKRWR *+f

PAGE 399

&DO LSKUXULD WHHUD LV WKH VPDOOHVWIORZHUHG &RORPELDQ UHSUHVHQWDWLYH RI &DOLSKUXULD ,W LV UHDGLO\ GLVWLQJXLVKHG E\ LWV K\VWHUDQWKRXV OHDYHV DQG WKH ORQJ WHHWK RI WKH DQGURHFLXP ZKLFK JUHDWO\ H[FHHG WKH VKRUW IUHH ILODPHQW )LJ $f 8QIRUWXQDWHO\ e WHHUD KDV QRW EHHQ UHFROOHFWHG VLQFH &$/,3+585,$ .256$.2)),, 7UDXEf 0HHURZ FRPE QRY )LJ f (XFKDULV NRUVDNRIILL 7UDXE 3, /LIH 7<3( H[ KRUW 1 *LULGOLDQ IURP EXOEV FROOHFWHG E\ /HH 0RRUH LQ 3HUX 6DQ 0DUWLQ +LHUUD ZDWHUIDOOV NP IURP 0R\REDPED P -XO 7UDXE KRORW\SH 02 H[ 75$,f 8UFHROLQD NRUVDNRIILL 7UDXEf 7UDXE 3, /LIH 3ODQW RIIVHWWLQJ ZHDNO\ WR GP WDOO %XOE PRUH RU OHVV JORERVH PP ORQJ PP ZLGH ZLWKRXW DQ DSSUHFLDEOH QHFN WXQLFD EURZQ /HDYHV SHWLROH FP ORQJ PP WKLFN ODPLQD RYDWH ODQFHRODWH WR QDUURZO\ HOOLSWLF PP ORQJ PP ZLGH DFXWH DFXPLQDWH EDVDOO\ DWWHQXDWH WR WKH SHWLROH FXWLFOH RI WKH DED[LDO HSLGHUPLV WKLFNO\ ULGJHG 6FDSH FP WDOO PP GLDP EUDFWV ODQFHRODWH PP ORQJ PP ZLGH DW WKH EDVH LQQHU EUDFWHROHV PP ORQJ )ORZHUV PP ORQJ IXQQHOIRUP ZKLWH GHFOQDWH WR VOLJKWO\ DVFHQGHQW SHGLFHOV FP ORQJ WXEH VXEF\OLQGULFDO VWUDLJKW PP ORQJ PP ZLGH DW EDVH PP ZLGH DW WKURDW OLPE VSUHDGLQJ WR FD FP RXWHU WHSDOV ODQFHRODWH PP ORQJ PP ZLGH DFXWHDSLFXODWH LQQHU WHSDOV RYDWH PP ORQJ f PP ZLGH REWXVHPLQXWHO\ DSLFXODWH 6WDPHQV f PP ORQJ PP ZLGH DW WKH EDVH HGHQWDWH GLYHUJLQJ GLVWDOO\ QDUURZO\ VXEXODWH ZKLWH DQWKHUV PP ORQJ REORQJ GRUVLIL[HG LQ ORZHU WKLUG YHUVDWLOH SROOHQ JUDLQ FD AXP SRODU GLDP \XP ORQJHVW

PAGE 400

HTXDWRULDO GLDP 6W\OH PP ORQJ ZKLWH VOLJKWO\ ORQJHU WKDQ OLPE VHJPHQWV VWLJPD OREHG f PP ZLGH 2YDU\ JORERVH HOOLSVRLG PP ORQJ PP ZLGH RYXOHV SHU ORFXOH PHGLDOO\ VXSHUSRVHG &DSVXOH FD FP GLDP \HOORZJUHHQ WKLQZDOOHG VHHGV SHU ORFXOH JORERVH FD PP GLDP WHVWD EURZQ QB ',675,%87,21 $1' (&2/2*< 1RUWKFHQWUDO 3HUX )LJ f DW P .QRZQ RQO\ IURP WKH W\SH ORFDOLW\ LQ WKH XQGHUVWRU\ RI GHQVH ORZHU PRQWDQH UDLQIRUHVW LQ KXPLF WRSVRLO RQ VWHHS VORSHV RIWHQ JURZLQJ ZHGJHG LQ WKH FUHYLFHV RI URFNV $'',7,21$/ 0$7(5,$/ (;$0,1(' (; +257 FORQH RI W\SH FROOHFWLRQ VB LQ .f FORQRW\SH -XO 7UDXE VQ 02f FORQH RI W\SH FROOHFWLRQ 0D\ 0HHURZ )/$6f &DOLSKUXULD NRUVDNRIILL LV WKH RQO\ VSHFLHV RI &DOLSKUXULD SUHVHQWO\ NQRZQ RXWVLGH RI &RORPELD ,Q WKH VL]H RI WKH IORZHU WKLV VSHFLHV KDV DIILQLW\ ZLWK e WHHUD EXW FDQ EH GLVWLQJXLVKHG IURP WKH ODWWHU E\ LWV HYHUJUHHQ OHDYHV VXEF\OLQGULFDO WXEH HGHQWDWH GLYHUJHQW DQG ORQJHU VWDPHQV SROOHQ PRUSKRORJ\ PRUH QXPHURXV RYXOHV DQG DOWLWXGLQDO OLPLWV 7KH VHHGV RI e NRUVDNRIILL KDYH D EURZQ WHVWD WKRVH RI e VXEHGHQWDWD DUH EODFN 7KH ULGJHG FXWLFOH RI WKH DED[LDO OHDI VXUIDFH RI e NRUVDNRIILL LV TXLWH GLIIHUHQW IURP WKH QDUURZ FXWLFXODU VWULDWLRQV RI e VXEHGHQWDWD VHH &KDSWHU ,,,f 7KH PRUSKRORJLFDO QRYHOWLHV H[KLELWHG E\ & NRUVDNRIILL VXJJHVW D ORQJ LVRODWLRQ IURP WKH &RORPELDQ WD[D RI &DOLSKUXULD

PAGE 401

)LJXUH 6WDPLQDO FXS PHDVXUHPHQWV XVHG LQ VSHFLHV GHVFULSWLRQV RI (XFKDULV

PAGE 403

)LJXUH (XFKDULV IRUPRVD 0HHURZ )/$6f DQG ( FDQGLGD 7'RGVRQ HW DO A 6(/f $ )ORZHUV L ( IRUPRVD LL ( FDQG7GD %77HSDOV LLL ( IRUPRVD L 8XWHU WHSD7 LL ,QQHU WHSDO LLLY ( FDQGL GD LLL 2XWHU WHSDO LY ,QQHU WHSDO & 6WDPLQDO FXSV L ( IRUPRVD LL ( FDQGLGD 2YDULHV ORQJLWXGLQDO VHFWLRQ L ( IRUPRVD L L ( FDQGLGD

PAGE 405

)LJXUH 9DULDWLRQ LQ D VLQJOH 3HUXYLDQ SRSXODWLRQ RI (XFKDULV FDQGLGD 6FKXQNH % )/$6f 6f )ORZHU ZLWK ZLGHVSUHDGLQJ VWDPLQDO FXS % )ORZHU ZLWK F\OLQGULFDO VWDPLQD FXS

PAGE 407

)LJXUH 6WDPLQD FXS YDULDWLRQ LQ IRXU VSHFLHV RI (XFKDULV 6n ( FDQGLGD L %HVVH HW DO 6(/ LL +DUOLQJ HW DOf88 *% LLL 6FKX7IHV %ODFN 86 % W 7RUPRVD L 3HQODQG 86 LL +ROJXHU *% LLL +DUOLQJ HW DO =8, *% & ( ERXFKHL LQ 9DULHW\ ERXFKHL L77HZLV HW DO n0LO 77 $OOHQ 86 LLL 9DULHW\ GUHVVOHUI70HHURZ )/$67 IY 9DULHW\ GDULHQHQVLV *HQWU\ t 0RUL 02f ( XOHL L 3ORZPDQ t .HQQHG\ 7 *+ Q +RORW\SH 8OH $ %f LLL 6FKXQNH )

PAGE 409

)LJXUH 'LVWULEXWLRQV RI (XFKDULV FDQGLGD DQG ( IRUPRVD LQ (FXDGRU

PAGE 411

)LJXUH 'LVWULEXWLRQV RI (XFKDULV EDNHULDQD (B FDQGL GD DQG ( IRUPRVD LQ QRUWKZHVWHUQFHQWUDO 6RXWK $PHULFD

PAGE 413

)LJXUH 9DULDWLRQ LQ (XFKDULV IRUPRVD $& 0HHURZ ),$6 '( 6FKXQNH )/$6f ( 6FKXQNH )/$6

PAGE 414

683

PAGE 415

)LJXUH (XFKDULV EDNHULDQD 0HHURZ )/$6f % 7HSDOVf L 2XWHU WHSDO L L ,QQHU WHSDO & FXS 2YDU\ ORQJLWXGLQDO VHFWLRQ $ )ORZHU 6WDPLQDO

PAGE 416

00

PAGE 417

)LJXUH (XFKDULV ERQSODQGLL 0HHURZ )/$6f

PAGE 419

)LJXUH 'LVWULEXWLRQV RI (XFKDULV ERQSODQGLL ( F\DQHRVSHUPD DQG ( XOHL LQ QRUWKZHVWHUQFHQWUDO 6RXWK $PHULFD

PAGE 421

)LJXUH (XFKDULV ERXFKHL $ )ORZHUV L 9DULHW\ GUHVVOHUL nL7KRORW\SH 0HHURZ )/$6f L L L L L 9DULHW\ ERXFKHL LL 0HHURZ )/$6 L LL 0HHURZ )/$6f % 7HSDOV YDULHW\ ERXFKHL LLL 0HHURZ L 2XWHU WHSDO LL ,QQHU WHSDO 7LLLY 0HHURZ LLL 2XWHU WHSDO LY ,QQHU WHSDO & 6WDPLQDO FXSV YDULHW\ ERXFKHL L 0HHURZ LL 0HHURZ 2YDULHV YDULHW\ ERXFKHL ORQJLWXGLQDO VHFWLRQ L 0HHURZ LL 0HHURZ

PAGE 423

)LJXUH 'LVWULEXWLRQ RI (XFKDULV ERXFKHL LQ 3DQDPD

PAGE 424

f (XFKDUOV ERXFKHO }mW ERXFKHO Â’ ( ERXFKHO }mI GDUOHQHQVLV p( ERXFKHO YLU GUHVVLHU,

PAGE 425

)LJXUH 'LVWULEXWLRQ RI (XFKDULV ERXFKHL LQ &HQWUDO $PHULFD H[FOXVLYH RI 3DQDPD

PAGE 427

)LJXUH (XFKDULV DVWURSKLDOD DGDSWHG IURP D GUDZLQJ E\ %RRWV 1 &XOEHUVWRQ RI 'RGVRQ HW DO 6(/ $ +DELW % ,QIORUHVFHQFH & )ORZHU ORQJLWXGLQDO VHFWLRQ 6WLJPD ( 2YDU\ ORQJLWXGLQDO VHFWLRQ

PAGE 429

)LJXUH 'LVWULEXWLRQ RI (XFKDULV DVWURSKLDOD LQ (FXDGRU

PAGE 431

)LJXUH (XFKDULV F\DQHRVSHUPD DQG ( XOHL $ )ORZHU RI ( F\DQHRVSHUPD KRORW\SH 0HHURZ f7 )/$6I W )ORZHU RI ( XOHL 6FKXQNH )f & 2YDU\ RI ( XOHL ORQJLWXGLQDO VHFWLRQ 6FKXQNH )f

PAGE 433

)LJXUH (XFKDULV FRU\QDQGUD ( OHKPDQQLL DQG ( R[\DQGUD -& ( R[\DQGUD LVRW\SH +XWFKLVRQ HW DO 8&f ; )ORZHU % $QGURHFLXP 1RWH WKH SRO\PRUSKLVP & 2YDU\ ORQJLWXGLQDO VHFWLRQ ') ( OHKPDQQLL >DIWHU WDE LQ 5HJHO f DQG D SKRWR RI WKH W\SH /(f@ )ORZHU ( 6WDPLQDO FXS ) 2YDU\ ORQJLWXGLQDO VHFWLRQ (B FRU\QDQGUD LVRW\SH 5DYHQQD .f )ORZHU + 6WDPLQDO FXS 2YDU\ ORQJLWXGLQDO VHFWLRQ

PAGE 435

)LJXUH 'LVWULEXWLRQV RI (XFKDULV FDVWHOQDHDQD ( FRU\QDQGUD ( OHKPDQQL ( R[\DQGUD DQG ( SOLFDWD QRUWKZHVWHUQFHQWUDO LMRXW7I $PHULFD

PAGE 437

)LJXUH (XFKDULV SOLFDWD 0HHURZ HW DO )/$6f $ +DELW % ,QQHU WHSDO & 2XWHU WHSD77 6WLJPD ( 6WDPLQDO FXS ) 2YDU\ ORQJLWXGLQDO VHFWLRQ 2YDU\ WUDQVYHUVH VHFWLRQ

PAGE 439

)LJXUH (XFKDQnV FDVWHOQDHDQD $ )ORZHUV L 7$ )/$6 77 6FKXQNH 1RWH YDU\LQJ OLPE f% 7HSDOV 6FKXQNH f L 2XWHU WHSDO ,QQHU WHSDO & 6WDPLQD FXS 6FKXQNH f 6FKXQNH f ORQJLWXGLQDO VHFWLRQ 6FKXQNH KDELW RI L L 2YDU\

PAGE 441

)LJXUH 1DWXUDO K\EULGV RI (XFKDULV VXEJ +HWHURFKDULV $ & ( ; JUDQGLIORUD $ )ORZHU RI PDVWHUVLLff IRUP 0DG7VRQ HW DO V Q 6(/f %& /RZLL IRUP 0HHURZ t 7HHWV )7$67 a% +DELW LQ &RORPELD & )ORZU7 8) ; &DOLFKDULV EXWFKHUL 0HHURZ )/$6f ,QIORUHVFHQFHVA ( ), RZHU

PAGE 443

)LJXUH 'LVWULEXWLRQV RI VSHFLHV DQG K\EULGV RI (XFKDULV VXEJ +HWHURFKDULV LQ QRUWKZHVWHUQFHQWUDO 6RXWK $PHULFD

PAGE 445

)LJXUH (XFKDULV VDQGHUL &XDWUHFDVDV )f $ +DELW 6f )ORZHU & 7HSD7V, 77 2XWHU WHSDO Q ,QQHU WHSDO 'HWDLO RI DQGURHFLXP ( 2YDU\ ORQJLWXGLQDO VHFWLRQ

PAGE 447

)LJXUH (XFKDULV DQPDOD DIWHU D GUDZLQJ E\ :HQG\ % =RPOHIIHU RI 'RGVRQ 6(/f $ +DELW % )ORZHU & 2YDU\ ORQJLWXGLQDO VHFWLRQ

PAGE 449

)LJXUH DPD]QLFD (XFKDULV DQPDOD DQG ( DPD]QLFD $% ( DQPDOD 0HHURZ )/$6f &' ( 6FKXQNH )/$6f

PAGE 450

&0

PAGE 451

)LJXUH $QGURHFLDO PRUSKRORJ\ RI &DOLSKUXULD $ & WHHUD &7ULDQD &2/f % & KDUWZHJLDQD QHRW\SH /HKPDQQ Nff &' & VXEHGHQWDWD & 3LWWLHU 6 ,7 +RORW\SH H[ KRU7 %HDXIR\ V Q & NRUVDNRIILL 0HHURZ ) )f

PAGE 452

00 (

PAGE 453

)LJXUH 'LVWULEXWLRQ RI VSHFLHV RI &DOLSKUXULD LQ QRUWKZHVWHUQFHQWUDO 6RXWK $PHULFD

PAGE 455

)LJXUH &DOLSKUXULD VXEHGHQWDWD 0HHURZ )/$6f $ )7DELW % )ORZHU & 7HSDOV 7 2XWHU WHSDO LL ,QQHU WHSDO /RQJLWXGLQDO VHFWLRQ WKURXJK SDUW RI IORZHU WR VKRZ GHWDLO RI DQGURHFLXP ( 2YDU\ ORQJLWXGLQDO VHFWLRQ

PAGE 456

$

PAGE 457

)LJXUH &DOLSKUXULD NRUVDNRIILL 0HHURZ f ,QIORUHVFHQFH % )ORZHU

PAGE 458

8

PAGE 459

/,7(5$785( &,7(' $NVHQRYD / 0 DQG ( 6HGRYD %XOE VWUXFWXUH DQG PRUSKRJHQHVLV RI VRPH UHSUHVHQWDWLYHV RI WKH IDPLO\ $PDU\OLGDFHDH 8NU -RXU %RW $OH[DQGHU 0 3 'LIIHUHQWLDO VWDLQLQJ RI DERUWHG DQG QRQ DERUWHG SROOHQ 6WDLQ 7HFKQRO $OODUG 5 : 7KH PDWLQJ V\VWHP DQG PLFURHYROXWLRQ *HQHWLFV DQG $ / .DKOHU $OOR]\PH SRO\PRUSKLVPV LQ SODQW SRSXODWLRQV 6WDGOHU 6\PS $UEHU $ 6WXGLHV LQ IORZHU VWUXFWXUH ,,, 2Q WKH FRURQD DQG DQGURHFLXP LQ FHUWDLQ $PDU\OLGDFHDH $QQ %RW Q V $UUR\R 0 7 *HLWRQRJDP\ LQ DQLPDO SROOLQDWHG WURSLFDO DQJLRVSHUPV D VWLPXOXV IRU WKH HYROXWLRQ RI VHOILQFRPSDWLELOLW\ 7D[RQ $UUR\R 6 & &RQWULEXFLQ DO FRQRFLPLHQWR GH ORV EXOERV GH $PDU\OLGDFHDH .XUW]LDQD DQG ) &XWOHU (YROXWLRQDU\ DQG WD[RQRPLF DVSHFWV RI WKH LQWHUQDO PRUSKRORJ\ LQ $PDU\OLGDFHDH IURP 6RXWK $PHULFD DQG 6RXWKHUQ $IULFD .HZ %XOO $VKORFN 3 $Q HYROXWLRQDU\ V\VWHPDWLVWnV YLHZ RI FODVVLILFDWLRQ 6\VW =RRO $UW\XVKHQNR = 7 6RPH VWXGLHV RQ WKH YHJHWDWLYH DQDWRP\ RI *DODQWKXV DQG =HSK\UDQWKHV $PDU\OLGDFHDHf DQG WKHLU WD[RQRPLF VLJQLILFDQFH 3S LQ & %ULFNHOO ) &XWOHU DQG 0 *UHJRU\ HGVf 3HWDORLF727RQRFRW\OHGRQV $FDGHPLF 3UHVV /RQGRQ $VDWULDQ 0 $QDWRPLFDO VWUXFWXUH LQ VRPH WURSLFDO DQG VXEWURSLFDO UHSUHVHQWDWLYHV RI WKH IDPLO\ $PDU\OLGDFHDH %RW =K $VKWRQ 3 6 << *DQ DQG ) : 5REHUWVRQ (OHFWURSKRUHWLF DQG PRUSKRORJLFDO FRPSDULVRQV LQ WHQ UDLQ IRUHVW VSHFLHV RI 6KRUHD 'LSWHURFDUSDFHDHf %RW /LQQ 6RF

PAGE 460

$YLVH & 6\VWHPDWLF YDOXH RI HOHFWURSKRUHWLF GDWD 6\VW =RRO %DEEHO 5 DQG 5 6HODQGHU *HQHWLF YDULDELOLW\ LQ HGDSKLFDOO\ UHVWULFWHG DQG ZLGHVSUHDG SODQW VSHFLHV (YROXWLRQ %DLOORQ 0 + 6XU OHV OLPLWHV GX JHQUH &DOLSKUXULD %XOO 0HQV 6RF /LQQ 3DULV %DNHU &DOLSKUXULD VXEHGHQWDWD &XUWLVn %RW 0DJ W 3ODJLROLULRQ KRUVPDQQLL *DUG &KURQ D (XFKDULV VDQGHUL &XUWLVn %RW 0DJ W (XFKDULV PDVWHUVLL DQG (XFKDULV VDQGHUL YDU PXOWL IORUD &XUWLVn %RW 0DJ ,OO W +DQGERRN RI WKH $PDU\OOLGHDH *HRUJH %HOO t 6RQV /RQGRQ (XFKDULV ORZLL *DUG &KURQ %DUEHU 1 + +\EULGL]DWLRQ DQG WKH HYROXWLRQ RI SODQWV 7D[RQ %DWWDJOLD ( &KURPRVRPH PRUSKRORJ\ DQG WHUPLQRORJ\ &DU\RORJLD %DXPO $ $ VWXG\ RI WKH JHQXV +\PHQRFDOOLV $PDU\OLGDFHDHf LQ 0H[LFR 8QSXEO 0 6 WKHVLV &RUQHOO 8QLYHUVLW\ %DZD 6 3DWWHUQV RI IORZHULQJ LQ WURSLFDO SODQWV 3S LQ & ( -RQHV 5 /LWWOH HGVf +DQGERRN RI ([SHULPHQWDO 3ROOLQDWLRQ %LRORJ\ 6FLHQWLILF DQG $FDGHPLF (GLWLRQV +HZ
PAGE 461

: /XLWHQ 3 $ 6SUHQNHOV DQG & .HLM]HU )ORZHU IRUPDWLRQ LQ (XFKDULV DPD]QLFD /LQGHQ H[ 3ODQFKQ $FWD +RUW %UHPHU DQG + ( :DQQWRUS 3K\ORJHQHWLF V\VWHPDWLFV LQ ERWDQ\ 7D[RQ %ULWWRQ 1 ( (XFKDULV [ VWHYHQVLL *DUG &KURQ %URZQ $ + DQG % 6 :HLU 0HDVXULQJ JHQHWLF YDULDELOLW\ LQ SODQW SRSXODWLRQV 3S LBQ 7DQNVOH\ 6 DQG 7 2UWRQ HGVf ,VR]\PHV LQ 3ODQW *HQHWLFV DQG %UHHGLQJ 3DUW $ (OVHYLHU 6FLHQWLILF 3XEOLVKHUV % 9 $PVWHUGDP %UXQDXG $ DQG 0 ) 7XUOLHU 6WUXFWXUHV PRQRSRGLDOHV HW V\PSRGLDOHV OWXGH GH TXHOTXHV H[DPSOHV GnLQWHUSUHWDWLRQ FRQWURYHUVH %XO 6RF %RW )UDQFH %XFN : 5 7UDGLWLRQDO PHWKRGV LQ WD[RQRP\ D SHUVRQDO DSSUREDWLRQ 7D[RQ &DYDOOL6IRU]D / / DQG $ : ) (GZDUGV 3K\ORJHQHWLF DQDO\VLV PRGHOV DQG HVWLPDWLRQ SURFHGXUHV (YROXWLRQ &KHUU\ 3 ) 5 0 .DWWHUPDQ DQG ( (QGUL]]L 6HHG HVWHUDVHV OHXFLQH DPLQRSHSWLGDVHV DQG FDWDODVHV RI VSHFLHV RI WKH JHQXV *RVV\SLXP 7KHRU $SSO *HQHW &KXUFK 0 % 7KH GHYHORSPHQW DQG VWUXFWXUH RI WKH EXOE LQ &RRSHULD GUXPPRQGLL %XOO 7RUUH\ %RW &OXE &KXUFKLOO 6 3 ( :LOH\ DQG / $ +DXVHU $ FULWLTXH RI :DJQHU JURXQGSODQGLYHUJHQFH VWXGLHV DQG D FRPSDULVRQ ZLWK RWKHU PHWKRGV RI SK\ORJHQHWLF DQDO\VLV 7D[RQ %LRORJLFDO UHDOLWLHV DQG WKH SURSHU PHWKRGRORJ\ D UHSO\ WR 'XQFDQ 7D[RQ &OLIIRUG + 7 DQG : 6WHSKHQVRQ $Q ,QWURGXFWLRQ WR 1XPHULFDO &ODVVLILFDWLRQ $FDGHPLF 3UHVV 1HZ
PAGE 462

DQG 5 %D\HU $OOR]\PH GLYHUJHQFH LQ &RUHRSVLV F\FORFDUSD &RPSRVLWDHf 6\VW %RW DQG ( % 6PLWK D $OOR]\PH YDULDWLRQ LQ &RUHRSVLV EDVDO LV DQG & ZULJKWLL &RPSRVLWDHf 6\VW %RW ncQ E $OOR]\PH GLYHUJHQFH EHWZHHQ &RUHRSVLV QXHFHQVRLGHV DQG & QXHFHQVLV &RPSRVLWDHf D SURJHQLWRUGHULYDWLYH VSHFLHV SDLU ,QYROXWLRQ $OOR]\PH GLYHUJHQFH DQG LQWUDVSHFLILF YDULDWLRQ LQ &RUHRSVLV JUDQGLIORUD &RPSRVLWDHf 6\VW %RW DQG + :LOVRQ $OOR]\PH YDULDWLRQ LQ &KHQRSRGLXUQ IUHPRQWLL 6\VW %RW $OOR]\PH YDULDWLRQ LQ VHYHUDO FO RV OH\ UHODWHG GLSORLG VSHFLHV RI &KHQRSRGLXUQ RI WKH ZHVWHUQ 8QLWHG 6WDWHV $PHU %RW &ULVFL : + +XQ]LNHU 5 $ 3DODFLRV DQG & $ 1DUDQMR $ QXPHULFDOWD[RQRPLF VWXG\ RI WKH JHQXV %XOQHVLD =\JRSK\OODFHDHf &OXVWHU DQDO\VLV RUGLQDWLRQ DQG VLPXODWLRQ RI HYROXWLRQDU\ WUHHV $PHU %RW &UXGHQ 5 : DQG 6 0LOOHU:DUG 3ROOHQRYXOH UDWLR SROOHQ VL]H DQG WKH UDWLR RI VWLJPDWLF DUHD WR WKH SROOHQEHDULQJ DUHD RI WKH SROOLQDWRU DQ K\SRWKHVLV (YROXWLRQ DQG / /\RQ &RUUHODWLRQV DPRQJ VWLJPD GHSWK VW\OH OHQJWK DQG SROOHQ JUDLQ VL]H GR WKH\ UHIOHFW IXQFWLRQ RU SK\ORJHQ\ %RW *D] &XDWUHFDVDV $VSHFWRV GH OD YHJHWDFLQ QDWXUDO GH &RORPELD 5HYLVWD $FDG &RORPE &L ([DFW &XWOHU ) 3 ( %UDQGKDP 6 &DUWHU DQG 6 +DUULV 0RUSKRORJLFDO DQDWRPLFDO F\WRORJLFDO DQG ELRFKHPLFDO DVSHFWV RI HYROXWLRQ LQ (DVW $IULFDQ VKUXEE\ VSHFLHV RI $ORH / /LOLDFHDHf %RW /LQQ 6RF 'DKOJUHQ 5 0 7 DQG + 7 &OLIIRUG 7KH 0RQRFRW\OHGRQV $ &RPSDUDWLYH 6WXG\ $FDGHPLF 3UHVV /RQGRQ DQG 3 )

PAGE 463

'DYLV DQG $ *LOPDUWLQ 0RUSKRORJLFDO YDULDWLRQ DQG VSHFLDWLRQ 6\VW %RW 'HFNHU 6 1XPHULFDO DQDO\VLV RI DOOR]\PH YDULDWLRQ LQ &XFUELWD SHSR (FRQ %RW 'HQJR 3DODHR]RLF DQG 0HVR]RLF WHFWRQLF EHOWV LQ 0H[LFR DQG &HQWUDO $PHULFD 3S LQ $ ( 1DLUQ DQG ) 6WHKOL HGVf 7KH 2FHDQ %DVLQV DQG 0DUJLQV 9RO 7KH *XOI RI 0H[LFR DQG WKH &DULEEHDQA 3OHQXP 3UHVV 1HZ
PAGE 464

(OGUHGJH 1 DQG &UDFUDIW 3K\ORJHQHWLF 3DWWHUQV DQG WKH (YROXWLRQDU\ 3URFHVV 0HWKRG DQG 7KHRU\ LQ &RPSDUDWLYH %LRORJ\ &ROXPELD 8QLY 3UHVV 1HZ
PAGE 465

E 3K\WRJHRJUDSKLF SDWWHUQV DV HYLGHQFH IRU D &KRF UHIXJH 3S LQ 7 3UDQFH HGf %LRORJLFDO 'LYHUVLILFDWLRQ LQ WKH+
PAGE 466

3ODQW 6SHFLDWLRQ QG HG &ROXPELD 8QLY 3UHVV 1HZ 7RUN 7KH V\VWHPDWLF DQG JHRJUDSKLFDO GLVWULEXWLRQ RI )LDZNPRWK IORZHUV LQ WKH WHPSHUDWH 1RUWK $PHULFDQ IORUD %RW *D] *UD\ 5 ( )DLUEURWKHUV DQG $ 4XLQQ %LRFKHUPLFDO DQG DQDWRPLFDO SRSXODWLRQ YDULDWLRQ LQ WKH 'DQWKRQLD VHULFHD FRPSOH[ %RW *D] *XSWD % &RUUHODWLRQ RI WLVVXHV LQ OHDYHV $EVROXWH YHLQ LVOHW QXPEHUV DQG DEVROXWH YHLQOHW WHUPLQDWLRQ QXPEHUV $QQ %RW QV +DIIHU 6SHFLDWLRQ LQ $PD]RQLDQ IRUHVW ELUGV 6FLHQFH +DPHV % DQG 5LFNZRRG *HO (OHFWURSKRUHVLV RI 3URWHLQV $ 3UDFWLFDO $SSURDFK ,5/ 3UHVV 2[IRUG +DPPHU (QWZLFNOXQJVWHQGHQ]HQ EOWHQRNWLORJLVFKHU 0HUNPDOH EHL 3ODQWDJR )ORUD +DQQLEDO / 6 *DUGHQ &ULQXPV %XOO /RXLVLDQD 6RF +RUW 5HV +DUW ( (YLGHQFH IRU WULSOLFDWH JHQHV IRU DOFRKRO GHK\GURJHQDVH LQ KH[DSORLG ZKHDW 3URF 1DW $FDG 6FL 86$ (YLGHQFH IRU D WULSOLFDWH VHW RI JOXFRVHSKRVSKDWH LVRPHUDVH VWUXFWXUDO JHQHV LQ KH[DSORLG ZKHDW %LRFKHP *HQHW +DXOIOHU & + (Q]\PH YDULDELOLW\ DQG PRGHV RI HYROXWLRQ LQ %RPPHULD 3WHULGDFHDHf 6\VW %RW +HGULFN 3 : $ QHZ DSSURDFK WR PHDVXULQJ JHQHWLF VLPLODULW\ (YROXWLRQ +HQQLJ : 3K\ORJHQHWLF 6\WHPDWLFV 8QLY RI ,OOLQRLV 3UHVV 8UEDQD +HUEHUW : $PDU\OLGDFHDH -DPHV 5LGJZD\ DQG 6RQV /RQGRQ &DOLSKUXULD KDUWZHJLDQD (GZDUGVn %RW 5HJ 0LVFQR f 7a +HVORS+DUULVRQ 7KH DGDSWLYH VLJQLILFDQFH RI WKH H[LQH 3S LBQ )HUJXVRQ DQG 0XOOHU HGVf 7KH (YROXWLRQDU\ 6LJQLILFDQFH RI WKH ([LQH $FDGHPLF 3UHVV /RQGRQ

PAGE 467

-HIIUH\ ( & 7KH $QDWRP\ RI :RRG\ 3ODQWV 8QLY RI &KLFDJR 3UHVV &KLFDJR -RQHV $VSHFWV RI FKURPRVRPDO HYROXWLRQ LQ KLJKHU SODQWV $GYDQFHV LQ %RW 5HV DQG % 6PLWK &KURPRVRPH HYROXWLRQ LQ WKH JHQXV &ULQXP &£U\RORJLD .DSODQ & (OHFWURSKRUHWLF VWXG\ RI JOXWDWKLRQH UHGXFWDVH LQ KXPDQ HU\WKURF\WHV DQG OHXFRF\WHV 6FLHQFH .HLJZLQ / -U 3OLRFHQH FORVLQJ RI WKH ,VWKPXV RI 3DQDPD EDVHG RQ ELRVWUDWL JUDSKLF HYLGHQFH IURP QHDUE\ 3DFLILF 2FHDQ DQG &DULEHDQ 6HD FRUHV *HRORJ\ .LUNSDWULFN 6 'HFNHU DQG + :LOVRQ $OOR]\PH GLIIHUHQWLDWLRQ LQ WKH &XFUELWD SHSR FRPSOH[ & SHSR YDU PHGXOORVD YV & WH[DQD7 (FRQ %RW .ORW]VFK 0 ) 0DWKLHXD JDODQWKRLGHV $OOJ *DUWHQ]HLWXQJ .OXJH 6 DQG 6 )DUULV 4XDQWLWDWLYH SK\OHWLFV DQG WKH HYROXWLRQ RI DQXUDQV 6\VW =RRO .UHVV : 6HOILQFRPSDWDELOLW\ LQ &HQWUDO $PHULFDQ +HOLFRQLD (YROXWLRQ DQG ( 6WRQH 1DWXUH RI WKH VSRURGHUP LQ PRQRFRW\OHGRQV ZLWK VSHFLDO UHIHUHQFH WR WKH SROOHQ JUDLQV RI &DQQD DQG +HLFRQL D *UDQD /DNVKPL 1 &\WRORJLFDO VWXGLHV LQ WZR DOORSRO\SORLG VSHFLHV RI WKH JHQXV +\PHQRFDOOLV &\WRORJLD /DQFH 1 DQG : 7 :LOOLDPV 0L[HGGDWD FODVVLILFDWRU\ V\VWHPV $JJORPHUDWLYH V\VWHPV $XVWU &RPSXW /DUVHQ 6HOILQFRPSDWDELOLW\ LQ %HWD YXOJDULV / )RXU JDPHWRSK\WLF FRPSOHPHQWDU\ 6ORFL LQ VXJDU EHHW )HUHGLWDV /HH : DQG ( )DLUEURWKHUV (Q]\PH GLIIHUHQWLDWLRQ EHWZHHQ DGMDFHQW K\EULG DQG SDUHQW SRSXODWLRQV %XOO 7RUUH\ %RW &OXE /HIIHO 5 & *HQHWLF DQG HQYLURQPHQWDO YDULDWLRQ RI SVHXGRn VHOILQFRPSDWLELOLW\ 3S -BQ +HVORS+DUULVRQ HGf 3ROOHQ 'HYHORSPHQW DQG 3K\VLRORJ\ %XWWHUZRUWK /RQGRQ /HYLQ ,QWHUVSHFLILF K\EULGL]DWLRQ KHWHUR]\JRVLW\ DQG JHQH H[FKDQJH LQ 3KOR[ (YROXWLRQ

PAGE 468

3RO\SORLG\ DQG QRYHOW\ LQ IORZHULQJ SODQWV $PHU )-£7 /HYLWVN\ $ 7KH NDU\RW\SH LQ V\VWHPDWLFV 7UXG\ 3ULNO %RW /LOOHJUDYHQ $ 0 .UDXV DQG 7 0 %URZQ 3DOHRJHRJUDSK\ RI WKH ZRUOG RI WKH 0HVR]RLF 3S LQ $ /LOOHJUDYHQ = .LHODQ-DZRURZVND DQG Z $ &OHPHQV HGVf 0HVR]RLF 0DPPDOV 8QLYHUVLW\ RI &DOLI 3UHVV %HUNHOH\ /LQGHQ (XFKDULV JDODQWKRLGHV $QQ &DW +RUW /RZUH\ 7 DQG &UDZIRUG $OOR]\PH GLYHUJHQFH DQG HYROXWLRQ LQ 7HWUDPRORSLXP &RPSRVLWDH $VWHUDHf RQ WKH +DZDLLDQ LVODQGV 6\VW %RW 8 /\QFK 6 3 t / :HEVWHU $ QHZ WHFKQLTXH RI SUHSDULQJ SROOHQ IRU VFDQQLQJ HOHFWURQ PLFURVFRS\ *UDQD 0DFEULGH ) (XFKDULV FDVWHODQHDQD 3XEO )LHOG 0XV 1DW +LVW %RW 6HU (XFKDULV 3S LQ )ORUD RI 3HUX )LHOG 0XV 1DW +LVW %RW 6HU 0DGGLVRQ : 3 0 'RQRJKXH DQG 5 0DGGLVRQ 2XWJURXS DQDO\VLV DQG SDUVLPRQ\ 6\VW =RRO 0DQQ / 7KH $OOLXP LQIORUHVFHQFH VRPH VSHFLHV RI WKH VHFWLRQ 0ROLXUQ $PHU %RW 0DUVKDOO / 6 :HEE 6HSNRVNL DQG 0 5DXS 0DPPDOLDQ HYROXWLRQ DQG WKH JUHDW $PHULFDQ LQWHUFKDQJH 6FLHQFH 0DVWHUV 0 7 8UFHRFKDULV [ FOLEUDQLL *DUG &KURQ 0D\U ( &KDQJH RI JHQHWLF HQYLURQPHQW DQG HYROXWLRQ 3S LQ +X[OH\ HGf (YROXWLRQ DV D 3URFHVV $OOHQ DQG 8QZLQ /RQGRQ 3ULQFLSOHV RI 6\VWHPDWLF =RRORJ\ 0F*UDZ+LOO %RRN &R 1HZ
PAGE 469

7KH HYROXWLRQDU\ VLJQLILFDQFH RI SDQFUDWLRLG IORUDO PRUSKRORJ\ LQ WKH $PDU\OOLGDFHDH $PHU %RW $EVWUDFWf $ PRQRJUDSK RI (XFURVLD $PDU\OLGDFHDHf 6\VW %RW LQ SUHVV DQG % 'HKJDQ D 5HHVWDEOLVKPHQW DQG OHFWRW\SLILFDWLRQ RI (XFKDULV DPD]QLFD /LQGHQ H[ 3ODQFKQ $PDU\OOLGDFHDHf 7D[RQ E 3URSRVDO IRU WKH FRQVHUYDWLRQ RI (XFKDULV 3ODQFKQ $PDU\OOLGDFHDHf DJDLQVW &DOLSKUXULD +HUEHUW 7D[RQ 0RRNHUMHD $ &\WRORJ\ RI DPDU\OOLGV DV DQ DLG WR WKH XQGHUVWDQGLQJ RI HYROXWLRQ &DU\RORJLD 0RRUH 3 DQG $ :HEE 3ROOHQ $QDO\VLV -RKQ :LOH\ t 6RQV 1HZ
PAGE 470

1LFKROVRQ ,OOXVWUDWHG 'LFWLRQDU\ RI *DUGHQLQJ / 8SFRWW *LOO /RQGRQ 1RUGDO % 5RUVOHWW DQG 0 0 /DDQH 6SHFLHV GHOLPLWDWLRQ ZLWKLQ WKH &ULQXP RUQDWXP JURXS $PDU\OOLGDFHDHf LQ (DVW $IULFD 1RUZ %RW EO DQG 7 'XQFDQ $ FODGLVWLF DQDO\VLV RI +DHPDQWKXV DQG 6FDGR[XV 1RUG %RW 2UQGXII 5 7KH RULJLQ DQG UHODWLRQVKLSV RI /DVWKHQLD EXUNHL &RPSRVLWDHf $PHU %RW 3DQGH\ . 0XWDWLRQV RI WKH VHOILQFRPSDWLELOLW\ JHQH 6f DQG SVHXGRFRPSDWEDLOLW\ LQ DQJLRVSHUPV /OR\GLD 3D[ ) $PDU\OLGDFHDH ,Q (QJOHU t 3UDQWO HGVf 'LH 1DWXUOLFKHQ 3IODQ]HQIDPL OLHQ (QJOHPDQQ /HLS]LJ 3D\QH 5 & DQG ( )DLUEURWKHUV 'LVF HOHFWURSKRUHWLF HYLGHQFH IRU KHWHUR]\JRVLW\ DQG SKHQRW\SLF SODVWLFLW\ LQ VHOHFWHG OLQHV RI &RIIHD DUDELFD / %RW *D] 3HUFLYDO 0 6 )ORUDO %LRORJ\ 3HUJDPRQ 3UHVV 2[IRUG 3HWHUV 8EHU GLH SHULRGLVFKH (QWZLFNOXQJ YRQ +DHPDQWKXV NDWKDULQDH FY .RQLQJ $OEHUW *DUWHEDXZLVVHQVFKDIW E 3LMO / YDQ GHU 3ULQFLSOHV RI 'LVSHUVDO LQ +LJKHU 3ODQWV UG HG 6SULQJHU9HUODJ %HUOLQ 3ODQFKQ ( (XFKDULV 3S LQ /LQGHQ $QQ &DW +RUW DQG /LQGHQ (XFKDULV FDQGLGD 3S LQ -/LQGHQ $QQ &DW +RUW 3OLWPDQ 8 DQG $ /HYLQ 3ROOHQSLVWLO UHODWLRQVKLSV LQ WKH 3ROHPRQLDFHDH (YROXWLRQ 3RQQDPPD 0 6WXGLHV RQ EXOERXV RUQDPHQWDOV .DU\RPRUSKRORJ\ RI GLSORLG DQG WULSORLG WD[D RI 3DQFUDWLXP WULIORUXP 5R[E &\WRORJLD 3UDQFH 7 3K\WRJHRJUDSKLF VXSSRUW IRU WKH WKHRU\ RI 3OHLVWRFHQH IRUHVW UHIXJHV LQ WKH $PD]RQ EDVLQ EDVHG RQ HYLGHQFH IURP GLVWULEXWLRQ SDWWHUQV LQ &DU\RFDUDFHDH &KU\VREDODQDFHDH 'LFKDSHWDODFHDH DQG /HF\WKLGDFHDH $FWD $PD]QLFD 7KH RULJLQ DQG HYROXWLRQ RI WKH $PD]RQ IORUD ,QWHUFLHQFLD

PAGE 471

D $ UHYLHZ RI WKH SK\WRJHRJUDSKLF HYLGHQFHV IRU 37HIV7RFHQH FOLPDWH FKDQJHV LQ WKH 1HRWURSLFV $QQ 0LVVRXUL %RW *DUG E HGf %LRORJLFDO 'LYHUVLW\ LQ WKH 7URSLFV &ROXPELD 8QLY 3UHVV 1HZ
PAGE 472

( .HVLFNL ) )REHV DQG 0 +ROO *HQHWLF DQG IM7RV\VWHPDWLF VWXGLHV RQ WZR QHZ VLEOLQJ VSHFLHV RI /\FRSHUVLFRQ IURP LQWHUDQGHDQ 3HUX 7KHRU DQG $SSO *HQHW EEE ) )REHV DQG 0 +ROO *HQHWLF YDULDWLRQ LQ (\FRSHUVLFRQ SLPLQHOOLIROLXP HYLGHQFH RI HYROXWLRQDU\ FKDQJH LQ PDWLQJ V\VWHPVf 3, 6\VW (YRO & 0 DQG 6 7DQNVOH\ *HQHWLF YDULDWLRQ LQ 6R7DQXP SHQQHOOLL FRPSDULRQV ZLWK WZR RWKHU V\PSDWLF WRPDWR VSHFLHV 3, 6\VW (YRO 5REHUWVRQ : 5 &KURPRVRPH VWXGLHV 7D[RQRPLF UHODWLRQVKLSV VKRZQ LQ WKH FKURPRVRPHV RI 7HWWLJLGDH DQG $FULGLGDH 9VKDSHG FKURPRVRPHV DQG WKHLU VLJQLILFDQFH LQ $FULGLGDH /RFXWLGDH DQG *U\OOLGDH FKURPRVRPHV DQG YDULDWLRQ 0RUSKRO 5RJHUV 6 0HDVXUHV RI JHQHWLF VLPLODULW\ DQG JHQHWLF GLVWDQFH 6WXGLHV LQ *HQHWLFV 8QLY 7H[DV 3XEO 5RRVH 0 / DQG / *RWWOLHE *HQHWLF DQG ELRFKHPLFDO FRQVHTXHQFHV RI SRO\SORLG\ LQ 7UDJRSRJQ (YROXWLRQ 6DOLVEXU\ ( 2Q WKH FDXVHV DQG HFRORJLFDO VLJQLILFDQFH RI VWRPDWDO IUHTXHQF\ ZLWK VSHFLDO UHIHUHQFH WR WKH ZRRGODQG IORUD 3KLO 7UDQV 5 6RF /RQG 6HU % 6DWR .DU\RW\SH HYROXWLRQ DQG SK\ORJHQ\ ,9 .DU\RW\SH LQ $PDU\OOLGDFHDH ZLWK VSHFLDO UHIHUHQFH WR 6$7 FKURPRVRPHV &\WRORJLD 6FKODUEDXP 6 ( DQG 7 7VXFKL\D &\WRWD[RQRP\ DQG SK\ORJHQ\ LQ FHUWDLQ VSHFLHV RI 7D[RGLDFHDH 3, 6\VW (YRO 6FKQDFN % DQG &RYDV +LEULGDFLQ LQWHUVSHFLILFD HQ *ODQGXODULD 9HUEHQ£FHDVf 'DUZLQLD 6FRJLQ 5 ,VRHQ]\PH SRO\PRUSKLVPV LQ QDWXUDO SRSXODWLRQV RI WKH %DSWLVWD /HJXPLQLRVDHf 3K\WRFKHPLVWU\ 2[f 6HDO\ 5 /HSLGRFKLWRQ TXLWRHQVLV &XUWLVn %RW 0DJ W 6HLEHUW 5 &RMRPDULD 3DUDPRQJDLD ZHEHUEDXHUL 9HODUGH IURP 3HUX 3, /LIH 6KDUPD $ DQG $ %DO $ F\WRORJLFDO VWXG\ RI D IHZ JHQHUD RI $PDU\OOLGDFHDH ZLWK D YLHZ WR ILQG RXW WKH EDVLV RI WKHLU SK\ORJHQ\ &\WRORJLD 6KDZ & 5 DQG 5 3UDVDG 6WDUFK JHO HOHFWURSKRUHVLV RI HQ]\PHV D FRPSLODWLRQ RI UHFLSHV %LRFKHP *HQHW

PAGE 473

6KHHQ 6 ,VR]\PLF HYLGHQFH EHDULQJ RQ WKH RULJLQ RI 1LFRWLDQD WDEDFXP (YROXWLRQ 6KLHOGV & 5 7 2UWRQ DQG & : 6WXEHU $Q RXWOLQH RI JHQHUDO UHVRXUFH QHHGV DQG SURFHGXUHV IRU WKH HOHFWURSKRUHWLF VHSDUDWLRQ RI DFWLYH HQ]\PHV IURP SODQW WLVVXH 3S LBQ 6 7DQNVOH\ DQG 7 2UWRQ HGVf ,VR]\PHV LQ 3ODQW *HQHWLFV DQG %UHHGLQJ 3DUW $ (OVHYLHU 6FLHQFH 3XEO % 9 $PVWHUGDP 6LPSVRQ % 3OHLVWRFHQH FKDQJHV LQ WKH IORUD DQG IDXQD RI 6RXWK $PHULFD 6FLHQFH 6LQJK 9 )ORUDO PRUSKRORJ\ RI WKH $PDU\OOLGDFHDH 6XEIDPLO\ $PDU\OORLGHDH &DQ %RW 6PLWK + + +DPLOO ( :HDYHU DQG 7KRPSVRQ 0XOWLSOH PROHFXODU IRUPV RI SHUR[LGDVHV DQG HVWHUDVHV DPRQJ 1LFRWLDQD VSHFLHV DQG DPSKLSORLGV +HUHGLW\ 6QHDWK 3 + $ DQG 5 5 6RNDO 1XPHULFDO 7D[RQRP\ : + )UHHPDQ DQG &R 6DQ )UDQVLVFR 6QRDG % 6RPDWLF LQVWDELOLW\ RI FKURPRVRPH QXPEHU LQ +\PHQRFDOOLV FDODWKLQXP +HUHGLW\ 6RNDO 5 5 DQG & 0LFKHQHU $ VWDWLVWLFDO PHWKRG IRU HYDOXDWLQJ V\VWHPDWLF UHODWLRQVKLSV 8QLY .DQV 6FL %XOO 6ROWLV ( $OOR]\PLF YDULDELOLW\ LQ 6XOOLYDQWLD 6D[LIUDJDFHDHf 6\VW %RW $OOR]\PLF GLIIHUHQWLDWLRQ DPRQJ +HXFKHUD DPHULFDQD + SDUYLIORUD + SXEHVFHQV DQG + YL ORVD 6D[LIUDJDFHDH7 6\VW %R7 DQG / + 5LHVHEHUJ $XWRSRO\SORLG\ LQ 7ROPLHD PHQ]LHVLL 6D[LIUDJDFHDHf JHQHWLF LQVLJKWV IURP WKH HQ]\PH HOHFWURSKRUHVLV $PHU %RW DQG 3 6 6ROWLV ,QWHUJHQHULF K\EULGL]DWLRQ EHWZHHQ &RQLPLWHOOD ZLOOLDPVLL DQG 0L WHO OD VWDXURSHWDOD 6D[LIUDJDFHDHf 6\VW %RW 6WDFH & $ &XWLFXODU VWXGLHV DV DQ DLG WR SODQW WD[RQRP\ %XOO %ULW 0XV 1DW +LVW %RW 6WHEELQV / 9DULDWLRQ DQG (YROXWLRQ LQ 3ODQWV &ROXPELD 8QLY 3UHVV 1HZ
PAGE 474

)ORZHULQJ 3ODQWV (YROXWLRQ $ERYH WKH 6SHFLHV /HYHO (HO NQDS 3UHVV &DPEULGJH 3RO\SORLG\ LQ SODQWV 8QUHVROYHG SUREOHPV DQG SURVSHFWV 3S MBQ : + /HZLV HGf 3RO\SLRLG\ 3OHQXP 3UHVV 1HZ
PAGE 475

*HQHUD RI WKH $PDU\OOLGDFHDH $PHULFDQ 3ODQW /LIH 6RFLHW\ /D -ROOD D 3RO\HPEU\RQ\ LQ +\PHQRFDOOLV PH[LFDQD 3, /LIH QUP E $PDU\OOLG 1RWHV 3, /LIH $PDU\OOLG 1RWHV 3, /LIH $PDU\OOLG 1RWHV 3, /LIH 6HFWLRQV DQG DOOLDQFHV JHQXV +\PHQRFDOOLV 6DO LV )7777IH DQG + 1 0ROGHQNH $PDU\OOLGDFHDH 7ULEH $PDU\,OHDH $PHULFDQ 3ODQW /LIH 6RFLHW\ /D -ROOD 7UROO : 9HUJOHLFKHQGH 0RUSKRORJLH GHU +RKHUHQ 3IODQ]HQ %RUQWUDJHU %HUOLQ 7XUQHU % / &KHPRV\VWHPDWLFV UHFHQW GHYHORSPHQWV 7D[RQ 9DOOHMRV & ( (Q]\PH VWDLQLQJ DFWLYLW\ 3S LBQ 6 7DQNVOH\ DQG 7 2UWRQ HGVf ,VR]\PHV LQ 3ODQW *HQHWLFV DQG %UHHGLQJ 3DUW $ (OVHYLHU 6FLHQFH 3XEO % 9 $PVWHUGDP 9DQ GHU +DPPHQ 7 &KDQJHV LQ YHJHWDWLRQ DQG FOLPDWH LQ WKH $PD]RQ EDVLQ DQG VXUURXQGLQJ DUHDV GXULQJ WKH 3OHLVWRFHQH *HRO DQG 0LMQE 7KH 3OHLVWRFHQH FKDQJHV RI YHJHWDWLRQ DQG FOLPDWH LQ WURSLFDO 6RXWK $PHULFD %LRJ +LVWRU\ RI WKH IORUD YHJHWDWLRQ DQG FOLPDWH LQ WKH &RORPELDQ &RUGLOOHUD 2ULHQWDO GXULQJ WKH ODVW ILYH PLOOLRQ \HDUV 3S LQ + /DUVHQ DQG / % +ROP1LHOVHQ HGVf 7URSLFDO %RWDQ\ $FDGHPLF 3UHVV /RQGRQ 9DUJDV & 3VHXGRXUFHROLQD %RO )DF 6FL 8QLY &XVFR 9HQNDWDNULVKQDQ 5 9DULDWLRQ LQ WKH VRPDWLF FKURPRVRPHV RI 3DQFUDWLXP WULIORUXP 5R[E &XUU 6FL 9RJHO 6 'DV VH[XHOOH $QORFNXQJVSULQ]LS GHU &DWDVHWLQHQ XQG 6WDQKRSHHQ %OGXWHQ XQG GLH ZDKUH )XQNWLRQ LKUHV VRJHQDQQWHQ )XWWHUJHZHEHV 2HVWHUU %RW = :DJQHU : + -U 7KH IHUQ JHQXV 'LHOOLD 6WUXFWXUH DIILQLWLHV DQG WD[RQRP\ 8QLY &DOLI 3XEO %RW

PAGE 476

D 7KH V\QWKHVLV DQG H[SUHVVLRQ RI SK\ORJHQHWLF GDWD 3S LQ / %HQVRQ 3ODQW 7D[RQRP\ 0HWKRGV DQG 3ULQFLSOHV 5RQDOG 37HVV 1HZ
PAGE 477

:ROIH $ $ 'R\OH DQG 9 0 3DJH 7KH EDVHV RI DQJLRVSHUP SK\ORJHQ\ SDOHRERWDQ\ $QQ 0LVVRXUL %RW *DUG :ULJKW & + 8UFHRFKDULV [ HGHQWDWD %RW 0DJ W :ULJKW 6 (YROXWLRQ DQG WKH *HQHWLFV RI 3RSXODWLRQV YRO 8QLY &KLFDJR 3UHVV &KLFDJR (YROXWLRQ DQG WKH *HQHWLFV RI 3RSXODWLRQV YRO 8QLY &KLFDJR 3UHVV &KLFDJR
PAGE 478

$33(1',; 7DEOH $O 2SHUDWLRQDO WD[RQRPLF DQDO\VLV RI $PD]RQLDQ XQLWV 278nVf IRU (XFKDULV PXOWLYDULDWH 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 +DUOLQJ HW DO *%f IRUPRVD (FXDGRU +DUOLQJ t $QGHUVVRQ *%f IRUPRVD (FXDGRU 'RGVRQ 6(/f IRUPRVD (FXDGRU +ROJXHU *%f IRUPRVD (FXDGRU $VSOXQG 6f IRUPRVD (FXDGRU +DUOLQJ *%f FDQGL GD (FXDGRU %HVVH HW DO 6(/f FDQGL GD (FXDGRU %HVVH HW DO 6(/f FDQGL GD (FXDGRU $VSOXQG 6f FDQGL GD (FXDGRU %HVVH HW DO 6(/f FDQGL GD ; IRUPRVD (FXDGRU %HVVH HW DO 6(/f FDQGL GD ; IRUPRVD (FXDGRU +ROJXHU *%f IRUPRVD (FXDGRU +ROJXHU *%f IRUPRVD (FXDGRU 3UHVFRWW 1
PAGE 479

7DEOH $OFRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 $VSOXQG 6f IRUPRVD (FXDGRU %HQRLVW 3f FDQGL GD (FXDGRU 0HHURZ )/$6f IRUPRVD (FXDGRU 6FKXQNH $ )/$6f FDVWHOQDHDQD 3HUX 6FKXQNH )/$6f FDVWHOQDHDQD 3HUX )HUUH\UD 02f FDVWHOQDHDQD 3HUX +XEHU *2(/f FDVWHOQDHDQD 3HUX %HUOLQ 1
PAGE 480

7DEOH $f§FRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 7HVVPDQ 1
PAGE 481

7DEOH $cFRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 'H -XVVLHX V Q XOHL 3HUX +XDVKLNDW 02f FDQGL GD 3HUX 'XFNH *2(/f F\DQHRVSHUPD %UD]L .UXNRII 1
PAGE 482

7DEOH $ 'DWD PDWUL[ IRU PXOWLYDULDWH DQDO\VHV RI $PD]RQLDQ (XFKDULV &+$5$&7(5 278

PAGE 483

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 484

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 485

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 486

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 487

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 488

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 489

7DEOH $ 2SHUDWLRQDO WD[RQRPLF XQLWV 278nVf IRU PXOWLYDULDWH DQDO\VLV RI DQGURHFLDO FKDUDFWHUV RI $PD]RQLDQ (XFKDULV 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 +DUOLQJ HW DO *%f IRUPRVD (FXDGRU +DUOLQJ t $QGHUVVRQ *%f IRUPRVD (FXDGRU 'RGVRQ 6(/f IRUPRVD (FXDGRU +ROJXHU *%f IRUPRVD (FXDGRU $VSOXQG 6f IRUPRVD (FXDGRU +DUOLQJ *%f FDQGL GD (FXDGRU %HVVH HW DO 6(/f FDQGL GD (FXDGRU %HVVH HW DO 6(/f FDQGLGD (FXDGRU $VSOXQG 6f FDQGLGD (FXDGRU %HVVH HW DO 6(/f FDQGL GD (FXDGRU ; IRUPRVD %HVVH HW DO 6(/f FDQGL GD (FXDGRU ; IRUPRVD +ROJXHU *%f IRUPRVD (FXDGRU +ROJXHU *%f IRUPRVD (FXDGRU 3UHVFRWW 1
PAGE 490

7DEOH $f§FRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 %HUOLQ 1
PAGE 491

7DEOH $f§FRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 .UXNRII 1
PAGE 492

7DEOH $f§FRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 25,*,1 &DUGHQDV $ 1
PAGE 493

7DEOH $ 'DWD PDWUL[ IRU PXOWLYDULDWH DQDO\VLV RI DQGURHFLDO FKDUDFWHUV RI $PD]RQLDQ (XFKDULV &+$5$&7(5 278

PAGE 494

7DEOH $FRQWLQXHG &+$5$&7(5 278 ] O ] ] ] " ] ] ] O O O ]

PAGE 495

7DEOH $FRQWLQXHG &+$5$&7(5 278 O

PAGE 496

7DEOH $FRQWLQXHG &+$5$&7(5 278 O

PAGE 497

7DEOH $ 2SHUDWLRQDO WD[RQRPLF XQLWV 278nVf IRU PXOWLYDULDWH DQDO\VLV RI WKH (XFKDULV FDQGLGDIRUPRVD FRPSOH[ LQ HDVWHUQ (FXDGRU 02 &2//(&7,21 $1' +(5%$5,80 63(&,(6 +DUOLQJ t $QGHUVVRQ *%f IRUPRVD +DUOLQJ HW DO *%f IRUPRVD +ROJXHU *%f IRUPRVD +LWFKFRFN 86f IRUPRVD 3HQL DQG t 6XPPHUV 86f IRUPRVD *XWLHUUH] &2/f FDQGLGD 0H[LD 86f IRUPRVD $VSOXQG 6f IRUPRVD $VSOXQG 6f IRUPRVD +DUOLQJ t $QGHUVVRQ *%f FDQGLGD +DUOLQJ t $QGHUVVRQ $ *%f IRUPRVD +DUOLQJ HW DO *%f IRUPRVD +DUOLQJ t $QGHUVVRQ *%f IRUPRVD 'RGVRQ 6(/f IRUPRVD +ROJXHU *%f IRUPRVD $VSOXQG 6f IRUPRVD +DUOLQJ *%f FDQGLGD %HVVH HW DO 6(/f FDQGLGD %HVVH HW DO 6(/f FDQGLGD $VSOXQG 6f FDQGLGD

PAGE 498

7DEOH $f§FRQWLQXHG 12 &2//(&7,21 $1' +(5%$5,80 63(&,(6 %HVVH HW DO 6(/f FDQGL GD ; IRUPRVD %HVVH HW DO 6(/f FDQGL GD ; IRUPRVD +ROJXHU *%f IRUPRVD +ROJXHU *%f IRUPRVD 3UHVFRWW 1
PAGE 499

7DEOH $ 'DWD PDWUL[ IRU 3&$ DQG FOXVWHU DQDO\VHV RI WKH (XFKDULV FDQGLGDIRUPRVD FRPOH[ LQ HDVWHUQ (FXDGRU &+$5$&7(5 278

PAGE 500

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 501

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 502

7DEOH $ 2SHUDWLRQDO WD[RQRPLF XQLWV 278nVf IRU PXOWLYDULDWH DQDO\VLV RI WKH (XFKDULV ERXFKHL FRPSOH[ &5 &RVWD 5LFD *XDWHPDOD 3 3DQDPDA 12 &2//(&7,21 $1' +(5%$5,80 9$5,(7< 25,*,1 $OVWRQ %0f GUHVVOHUL 3 &RFL 0HHURZ )/$6f GUHVVOHUL 3 &RFL :HQGODQG *2(7f GDULHQHQVLV 6XOOLYDQ 02f GDULHQHQVLV 3 'DULHQ )ROVRP 02f GDULHQHQVLV 3 'DULHQ )ROVRP HW DO 02f ERXFKHL 3 3DQDPD $OOHQ 86f ERXFKHL &5 .LUNEULGH t +D\GHQ 02f ERXFKHL 3 3DQDPD :LWKHUVSRRQ t :LWKHUVSRRQ 02f GDULHQHQVLV 3 3DQDPD 'XNH t (OLDV *+f GDULHQHQVLV 3 'DULHQ *HQWU\ t 0RUL 02f GDULHQHQVLV 3 'DULHQ 6WHUQ HW DO *+f GDULHQHQVLV 3 'DULHQ 6NXWFK )f ERXFKHL 6HLEHUW 02f ERXFKHL 3 &RFL /HZLV 02f ERXFKHL 3 &RFL :LWKHUVSRRQ t :LWKHUVSRRQ ERXFKHL 3 &RFL $OOHQ *+f ERXFKHL 3 &RFL 0RUL t .DOOXQNL $$8f ERXFKHL 3 &ROQ 0RUL HW DO $$8f ERXFKHL 3 &RO Q 0HHURZ )/$6f ERXFKHL 3 &RO Q

PAGE 503

7DEOH $ 'DWD PDWUL[ IRU 3&$ DQG FOXVWHU DQDO\VHV RI WKH (XFKDULV ERXFKHL FRPSOH[ &+$5$&7(5 278

PAGE 504

7DEOH $f§FRQWLQXHG &+$5$&7(5 278

PAGE 505

%,2*5$3+,&$/ 6.(7&+ $ODQ : 0HHURZ ZDV ERUQ RQ -XQH LQ %URQ[ 1HZ
PAGE 506

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ?/B %LMDQ /WDKJDQ LQDLUPDQ $VVRFLDWH 3URIHVVRU RI +RUWLFXOWXUDO 6FLHQFH FHUWLI\ WKDW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG 'RFWRU RI 3KLORVRSK\ KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 7DU7HO7 $VVLVWDQW L\ 3URIHVVR +RUWLFXOWXUDO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI %RWDQ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6FLHQFH 7KRPDV 3URIHVVRU DQ +RUWLFXOWXUDO FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ L DPV %RWDQ\

PAGE 507

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV D SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFAR[ RI 3KLORVRSK\ 'HFHPEHU 'HDQ7R HJHRI ;JUL FX7IXUH 'HDQ *UDGXDWH AFQRRO

PAGE 508

81,9(56,7< 2) )/25,'$ 91LO 81 1LO





A MONOGRAPH OF Eucharis AND Caliphruria (AMARYLLIDACEAE)
By
ALAN W. MEEROW
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1986

Copyright 1986
by
Alan W. Meerow

ACKNOWLEDGMENTS
Many individuals have facilitated the execution of this
dissertation. Grateful appreciation is extended to my graduate
committee chairman, Bijan Dehgan, for his unwavering support throughout
my graduate program. Thanks are also extended to the remaining members
of my graduate committee, Charles L. Guy, Walter S. Judd, Thomas J.
Sheehan, and Norris H. Williams. In particular, I thank Walter Judd for
his advice and assistance throughout the course of my work, and Charles
Guy for the generous use of his laboratory and materials for rny
electrophoretic investigations. Grateful appreciation is extended to
the curators of the herbaria cited in Chapter XII for the loan of
specimens, and the individuals and institutions, also cited in Chapter
XII, who provided living material of various genera of Amaryl1idaceae.
Bart Schutzman provided fellowship, comraderie, and much assistance with
computer problems throughout the past five years. Kent Perkins,
collections manager at FLAS, dealt effectively and patiently with a
complex herbarium loan history. Much of the work detailed herein was
supported by National Science Foundation Dissertation Improvement Grant
BSR 8401208, and a Garden Club of America/World Wildlife Fund Fellowship
in Tropical Biology. I thank both granting organizations for this
material support. Gratitude is also extended to the Florida Federation
of Garden Clubs, and the Garden Writers Association of America, for
their respective scholarship awards. Above all, I thank my wife, Linda

Fisher-Meerow, for the love, support, and patience that has sustained me
during the completion of this work; for her excellent illustrations of a
number of Eucharis species; and her welcome companionship in the field.
TV

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ill
ABSTRACT vi i
CHAPTERS
I INTRODUCTION 1
II TAXONOMIC HISTORY 5
III VEGETATIVE MORPHOLOGY 8
Materials and Methods 8
Results and Discussion 9
IV FLORAL MORPHOLOGY 46
Materials and Methods 46
Results and Discussion 46
V POLLEN MORPHOLOGY 73
Materials and Methods 73
Results 74
Discussion 78
Conclusions 82
VI PHENETIC ANALYSES 95
Materials and Methods 96
Results 99
Discussion 105
Conclusions 107
VII CHROMOSOME CYTOLOGY 142
Materials and Methods 142
Results 144
Discussion and Conclusions 149
VIII ELECTROPHORETIC ANALYSES OF ISOZYME VARIATION 186
Materials and Methods 188
v

Results 195
Discussion 202
Conclusions 211
IX ECOLOGY, PHENOLOGY, AND PHYTOGEOGRAPHY 239
Ecology 239
Phenology 241
Dispersal 244
Phytogeography 245
X REPRODUCTIVE BIOLOGY 255
Pollination Biology 255
Breeding System 258
XI PHYLOGENETIC RELATIONSHIPS AND EVOLUTIONARY HISTORY .... 262
A Review of Urceolina 263
Phylogenetic Analysis 266
XII TAXONOMIC TREATMENT 303
Materials and Methods 303
Taxonomic Treatment 307
LITERATURE CITED 450
APPENDIX 470
BIOGRAPHICAL SKETCH 497
vi

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
A MONOGRAPH OF Eucharis AND Caliphruria (AMARYLLIDACEAE)
By
Alan W. Meerow
December, 1986
Chairman: Bijan Dehgan
Major Department: Horticultural Science
Eucharis and Caliphruria are neotropical genera of petiolate-
leaved, white-flowered Amaryllidaceae found in the understory of primary
tropical rainforest. Together with the Peruvian endemic Urceolina,
Eucharis and Caliphruria form a monophyletic group on the basis of leaf
and seed morphology and ecological specialization. Sixteen species and
two natural hybrids within two subgenera are recognized in Eucharis.
Subgenus Eucharis, marked by its crateriform flowers, curved perianth
tube, well-developed staminal cup, and unicellular stigmatic papillae,
is distributed from Guatemala to Bolivia, chiefly in the western Amazon
basin and adjacent lower slopes of the eastern Andes. Subgenus
Heterocharis represents three relict species with many ancestral
characters of the genus. Caliphruria (4 species, 3 of which are endemic
to Colombia) has funnel form flowers, straight perianth tube, reduced
staminal connation, and multicellular stigmatic papillae. Abaxial leaf
surfaces of both genera have dense cuticular striations. Undulate
anticlinal cell walls are characteristic. A distinct palisade layer is

absent from the mesophyll. Eucharis subg. Eucharis has the least
derived pollen morphology, with characteristics in common with other
putatively ancestral genera of pancratioid Amaryllidaceae. Caliphruria
exhibits reduction trends in pollen grain size and exine sculpturing.
With the exception of two tetraploid species, all species are
characterized by 2n = 46. Karyomorphological change may be an important
factor in species divergence. Phenetic analyses achieve only fair
results in resolving phenetic relationships among Eucharis species, many
of which are highly variable morphologically. Analysis of isozyme
variation within two species complexes of Eucharis indicates high levels
of heterozygosity. Founder effects and hybridization are respectively
considered two important factors in the speciation of these groups.
Modern-day distribution of Eucharis and Caliphruria is related to
Pleistocene refugia theories. Phylogenetic analysis supports certain
species relationships hypothesized on the basis of phenetic data, but
indicates possible paraphyly for Eucharis if Caliphruria and Urceolina
are segregated as a distinct genera. Acceptance of paraphylly in
Eucharis is argued on the basis of degree of divergence of Caliphruria
and Urceolina. The relationship between these genera is paralleled
within other lineages of "infrafamily" Pancratioidinae. Keys and
descriptions are provided for all species of Eucharis and Caliphruria.
VI 1 i

CHAPTER I
INTRODUCTION
The closely-related genera Eucharis Planchón and Caliphruria
Herbert (Amaryllidaceae), the Amazon lilies, comprise, respectively, 16
and 4 species of bulbous, rainforest geophytes, adapted to the low-light
conditions of the forest understory. Together with the Peruvian endemic
Urecolina Reichb., Eucharis and Caliphruria form a monophyletic group
delimited by petiolate leaves with distinctive cuticular striation; a
turgid seed with a lustrous, usually black, testa; and complete fidelity
to the rainforest understory niche. The species are distributed from
Guatemala to Bolivia. The major center of diversity for Eucharis is
located in the western Amazon basin (inclusive of major tributary
systems, e.g., the Napo, Pastaza and Huallaga) and the adjoining lower
slopes of the eastern Andean cordillera. With the exception of single
Peruvian species, Caliphruria is restricted to the Cordilleras
Occidental and Central of Colombia. The species of both genera are no
where abundant, and are found growing only in primary, rarely secondary,
forest from ca. 50-1800 m elevation on soils of high fertility. The
latter factor is probably important in limiting their distribution in
the wild, and may also account for the highly localized population
demographics of many of the species. Large scale deforestation has
proven catastrophic to these plants. The plants are unable to adapt to
the higher light intensity of the clearings and soon perish. At least
several species are likely near extinction.

2
The Amazon lilies are marked by their evergreen, petiolate leaves;
white, often pendent, sometimes fragrant flowers with a frequently
conspicuous stamina! cup or false corona formed by the basal connation
of the staminal filaments; obtusely tri-lobed stigma; and large, turgid,
ellipsoid seeds with a black, brown or metallic blue testa. A single
species of Eucharis, _E. amazonica Linden ex Planchón, is widely known in
horticulture [erroneously as E,. grandiflora Planchón and Linden (Meerow
and Dehgan, 1984a)], but neither genus has never been critically treated
in the taxonomic literature. Baker (1888) provided a key and
descriptions for all species known at the time in his Handbook of the
Amaryll ideae, and Macbride (1936) treated the known Peruvian species of
Eucharis for the Flora of Peru. Though species of Eucharis have
continued to be described well into the present decade, the delimitation
of these species from previously described taxa has consistently
remained vague. No assessments of variation at either the population or
species level have been attempted.
My study of these genera began in 1980. Both were combined with
the closely related Urceolina by Traub (1971) without any supporting
data, the investigation of which formed the basis of my unpublished
master's thesis (Meerow, 1983). I refuted Traub's combination, and
Eucharis was re-established as a distinct genus with three subgenera:
Eucharis, Caliphruria (Herbert) Meerow ined. and Heterocharis Meerow
ined. On the basis of my continuous work since that time, I now believe
that Caliphruria is best retained as a distinct genus as well. This is
discussed in Chapter XI. Species delimitations and associated
systematic studies form the basis of this present work.

3
Neither Eucharis nor Caliphruria is not well represented in
herbarium collections, and critical morphological characters are often
obscured by the drying process. Consequently, a living collection of
over 100 accessions representing one dozen species was accumulated from
botanical gardens, individuals, and field collections by myself and
various colleagues. Study of living material not only clarified aspects
of floral and vegetative morphology, but allowed detailed study of
vegetative and seed anatomy, chromosome cytology, and electrophoretic
analysis of allozyme variation, as well as permitting the start of a
hybridization program. Populations were observed and sampled in
Colombia, Ecuador and Peru.
As two of only three genera of neotropical Amaryllidaceae (the
other being the related Urceolina) exhibiting complete fidelity to a
primary rainforest niche, systematic understanding of Eucharis and
Caliphruria offers important information relating to the evolution of
the pancratioid Amaryllidaceae ["infrafamily" Pancratioidinae sensu
Traub (1963)], centered in the central Andean region of South America.
As coadapted plants of the world's most complex and threatened
ecosystem, their scarcity in the wild will only increase to the point of
extinction if tropical deforestation continues at the present rate.
No taxonomic scheme can encompass all of the information about the
group of organisms under study (Ornduff, 1969; Raven, 1976; Holsinger,
1984, 1985). In genera such as Eucharis and Caliphruria, rare in the
wild and often accessible only with difficulty, and which often exhibits
cryptic patterns of variation, this observation becomes that much more
acute. By accumulating data from as many diverse sources as possible, I
have attempted to construct a classification of the Amazon lilies that

4
reflects their phylogeny and inter-relationships as accurately as these
data allow.

CHAPTER II
TAXONOMIC HISTORY
Herbert (1844) described the new genus Caliphruria from
collections made in New Granada (Colombia) near Guaduas by Hartweg,
placing Cali phruri a in the “section" Pancratiformes of "suborder"
Amaryllideae. Genera of this section were united by the single
character of stamina! connation. The small, white, funnelform flowers
were marked by the presence of a bristle or slender tooth at either side
of the filament. Herbert (1844) made no mention of basal connation of
the filaments. The orthography of the name, a single '1' in the Greek
stem "calli-," was emended by subsequent workers (e.g. Baker, 1877), but
was returned to Herbert's original by Meerow and Dehgan (1984b).
Planchón (1852) introduced another new pancratioid genus,
Eucharis. The first species described, _E. candi da Planchón and Linden,
collected in New Granada by M. Schlim, was characterized by its
crateriform flowers with a conspicuous stamina! cup and a widely
spreading perianth limb. If Planchón was aware of Caliphruria, he did
not note any relationship between it and Eucharis.
Noting the relationship between the two genera, Bentham and Hooker
(1883) placed Caliphruria and Eucharis in the tribe Cyathiferae.
Caliphruria subedentata Bak. was combined with Eucharis in their
treatment, while _C. hartwegiana Herb, was retained. Baker (1888)
accepted this treatment, and described another new species as C. teñera.
He described Caliphruria as "nearly allied to Eucharis."

6
Baillon (1894) described the species £. caste!naeana and declared
it precisely intermediate between Caliphruria and Eucharis. He further
suggested that Eucharis should be treated as a section of Caliphruria.
Macbride (1931) later transferred _C. caste!naeana to Eucharis.
Nicholson (1884) transferred £. hartwegiana (the type species of
Caliphruria) to Eucharis, ignoring the fact of the former's
nomenclatura! priority. Traub (1967) made the formal transfer of the
remaining species of Caliphruria, £. teñera Baker, to Eucharis and also
combined the monotypic genus Plagiolirion Baker (1883) with Eucharis.
He had previously listed Caliphruria, Plagiolirion, and Mathieua
Klotzsch [another monotypic genus (Meerow, MS in subm.)] as synonyms for
Eucharis in his Genera of the Amaryllidaceae, citing Baillon (1894) as a
"special reference" (Traub 1963, p. 74). The nomenclatura! priority of
Caliphruria Herbert was overlooked. No proposal for the conservation of
Eucharis Planchón over Caliphruria Herbert has ever been proposed
previous to that of Meerow and Dehgan (1984b).
Traub (1971) later combined Eucharis with Urceolina Reich, (nom.
cons.), a small Andean genus with petiolate leaves and markedly
urceolate, brightly colored flowers. He designated five subgenera:
Urceolina, Eucharis, Caliphruria, Mathieua, and PIagioíirion. Traub
(1971) offered no explanation for the combination of Eucharis and
Urceolina, but presumably his decision was prompted in part by reports
in the literature of two intergeneric hybrids between Eucharis and
Urceoli na: X Urceocharis clibranii Masters, an artificial hybrid, and X
U. edentata C. H. Wright, putatively discovered in the wild state in
Peru.

7
In my preliminary work (Meerow, 1983; Meerow and Dehgan, 1984a,
b), I refuted Traub's unsupported combination, re-establishing Eucharis
(including Caliphruria), Plagiolirion, and Mathiuea as distinct genera.
Plagiolirion and Mathieua are monotypic genera allied to Hymenocal1is
Salisb. and Stenomesson Herbert respectively (Meerow, MS in subm.). On
the basis of the work detailed in the following chapters, I prefer to
treat Caliphruria as a distinct genus as well.

CHAPTER III
VEGETATIVE MORPHOLOGY
Materials and Methods
Leaf Surface Morphology [Scanning Electron Microscopy (SEM)]
Fresh material was fixed in FAA for a minimum of 24 hrs. Leaf
sections were always taken from midpoint of the lamina. Samples were
EtOH-dehydrated, critically point dried with a Denton DCP-1 apparatus,
mounted, and coated with 600 $ of gold-palladium mixture with a Technics
Hummer V sputter coater. Specimens were observed and photographed on an
Hitachi S-450 scanning electron microscope at 20 kv.
Anatomical Studies
Petioles were freehand sectioned with teflon coated razor blades,
and lightly stained with toludidine blue. Leaf clearings were prepared
by immersing fresh, medial lamina sections in 85% lactic acid at 45° C
for 5-7 days. Abaxial and adaxial epidermal layers were then separated
using diluted Jeffrey's (1917) solution. Epidermal tissue was stained
in 1% safranin, and mounted in 1:1 glycerol - 95% EtOH mixture. Leaf
tissue (medial lamina) fixed in FAA was processed for paraffin block
sectioning with an American Optical T/P 8000 tissue processor.
Dehydration began with 50% EtOH, and continued through 50-100% tert-
butyl alcohol. Dehydrated material was then transfered to a 1% solution
of safranin, followed by a 1:1 mixture of absolute tert-butyl alcohol
8

9
and mineral oil, a 3:1 mixture of Paraplast and mineral oil, and finally
100% Paraplast. Embedded material was sectioned with an American
Optical No. 820 rotary microtome set at 10/im. Sections were further
stained with toluidine blue. Sections were mounted using Pro-Texx
mounting medium. All material was examined and photographed on a Nikon
Labophot photomicroscope with AFX-II photographic attachment.
Terminology is referable to Stace (1965) and Dilcher (1973).
Statistical Procedures
Statistical tests were performed with SAS Release 5.08 (SAS
Institute, INC.) on the Northeast Regional Data Center (NERDC) of the
University of Florida.
Results and Discussion
Bulbs
The globose or subglobose bulbs of Eucharis and Caliphruria,
composed of concentric and modified leaf bases (scales), are
characteristic of most members of the Amaryllidaceae. The outer scales
of Eucharis and Caliphruria bulbs are modified into a papery tunic,
either brown or tan in color. On the whole, little systematic
information can be derived from bulb morphology. Size of mature bulbs
is variable and proportional to the whole plant size range of each
species.
The bulb scales of most species of Eucharis and Caliphruria are
apically articulated into a neck or pseudostem of variable length.
Distally, the pseudostem grades into the petiole of individual leaves.

10
Unlike species of Hymenocal1 is subg. Ismene, the neck of Eucharis and
Caliphruria bulbs always remains below the soil surface. Length of the
neck may therefore be more a factor of bulb depth in the substrate
rather than of any phylogenetic significance.
Van Bragt et al. (1985) found flower initiation will not occur in
bulbs of _E. amazonica less than 35 mm diameter. This species
characteristically produces among the largest bulbs of any in the genus.
Irmisch (1850) recognized the existance of both monopodial and
sympodial shoot structure in bulbs of Amaryllidaceae. Pax (1888) and
Troll (1937) followed these same concepts, but other workers, (e.g.
Church, 1919; Peter, 1971; Brunard and Tulier, 1971; U. and D. MUller-
Doblies (1978), Dzidziguri, 1978; Akensova and Sedovi, 1981; and Arroyo,
1984) have not always been in agreement as to which shoot structure was
applicable to various taxa. Most recently, Arroyo (1984) characterized
only four South African taxa as possessing true monopodial organization.
She is now in accord (Arroyo, pers. comm.) with Müller-Doblies and
Müller-Doblies (1972) who suggest that only sympodial structure occurs
in bulbs of Amaryllidaceae.
Bulbs of Eucharis and Caliphruria are, without controversy, true
sympodia (Arroyo, 1984; van Bragt et al., 1985). Each bulb has a single
terminal vegetative meristem. After its transformation to a floral
apex, a new vegetative growing point is formed laterally.
Bulbs of most species of Eucharis and Caliphruria offset regularly
and vigorously, forming sizable clumps in time if undisturbed. Offset
bulbs are at first usually tightly joined at the basal plate to the
parent bulb. Only very rarely does an elongated rhizome develop from
which a new shoot system can arise at some distance from the parent

11
plant, a mode of vegetative reproduction characteristic of some species
of Hymenocallis (pers. obs.; T. Howard, pers. com.).
Leaf Gross Morphology
Leaves of Eucharis and Caliphruria are uniformly long-petioíate,
with a well-developed elliptic, ovate or lanceolate lamina. Petiolate
leaves are characteristic of a number of genera of Amaryllidaceae,
either completely or in part, and have undoubtedly evolved independently
several times from the linear or 1 orate leaf morphology typical of the
family. In most of these cases, the petiolate leaf appears to be
primarily an adaptation to reduced levels of light concurrent with
colonization of forest understory (e.g. Eucharis, Caliphruria,
Urceolina, Eurycles Salisb., Scadoxus (Raj.) F. Nordal, Hymenocal1 is
tubiflora Salisb. and allied species.). Foilage of petiolate-leaved
genera occurring in more open situations (e.g. Phaedranassa Herbert,
Rauhia Traub), is generally marked by increased succulence and/or
pruinosity [leaf surface wax is capable of reflecting light and heat
(Cutler et al., 1980)].
The petiole of the leaf of Eucharis and Caliphruria is usually as
long or longer than the lamina. It is subterete in cross-section (Fig.
1-2), rounded abaxially, and flattened adaxially, becoming slightly
channelled proximal to the sinus. The petiole is winged proximal to the
sinus by the attenuation of the lamina. The midrib is pronounced
abaxially along the entire length of the lamina, and slightly channelled
adaxially, continuous with the petiole.
Leaf shape only rarely provides taxonomically useful information.
Length : width ratios are subject to considerable variation even among

12
the leaves of a single bulb. Herbarium specimens will frequently
include only a single leaf, with no indication of its developmental age.
Taxonomic consistency of leaf shape is exceptional, but useful in the
few cases where it occurs. For example, leaves of E_. ulei are
consistently narrowly elliptic. Eucharis amazónica (leaf length/width
ratio greater than 2) may be delimited from from _E. anómala (1 : w less
than 2).
The leaves of Eucharis and Caliphruria are completely glabrous and
non-glaucous with a single exception. Eucharis bonplandii (Kunth)
Traub, a rare tetraploid species from central Colombia, develops a
glaucous bloom in strong light that gives the leaf a blue cast.
The leaves of Caliphruria are slightly thicker than those of subg.
Eucharis and Heterocharis. This may reflect adaptation to slight water
stress, as the species of Caliphruria sometimes inhabit slightly drier
forest associations than characteristic of the Eucharis (see Chapter
IX). Eucharis bouchei Woodson and Allen and E,. bonplandii (both subg.
Eucharis), however, have thickened leaves, possibly a consequence of
their tetraploid constitution (see Stebbins, 1950).
The leaf apex of all species is shortly acuminate, the base
attenuate. Coarse undulation of the margin will sometimes make the
lamina appear cordate at the base. Leaf margins of Caliphruria are
uniformly non-undulate.
Venation of the leaf of Eucharis and Caliphruria is
parallelodromus (Hickey, 1973), with a great number of transverse,
commisseral veins inter-connecting the primary vasculature. Whether the
leaf is plicate along the primary veins can be a taxonomically useful
character. Unfortunately, this, and many other leaf characters (e.g.,

marginal undulation, the color and luster of the epidermis), readily
observed in live material, are completely obscured in herbarium
specimens.
All species of Caliphruria have smooth, non-plicate leaves.
Eucharis is variable for this character, but the majority of species of
have plicate leaves.
The adaxial epidermis of most species of both genera is a
lustrous, dark green; the abaxial surface appears lighter, or silvery-
green. Only E_. astrophiala (Ravenna) Ravenna has diverged markedly from
the typical morphology, and has a uniquely non-1ustrous, bullate-
pustulate leaf texture.
Leaf Surface Features
Cutiele. Cuticular striation is prominent on the abaxial leaf
surfaces of most Eucharis and Caliphruria species (Fig. 3-7, 9-13, 15-
18). Striae are thickest in _C. subedentata (Fig. 6). Arroyo and Cutler
(1984) recognized eight cuticular sculpturing classes in a survey of 25
genera of Amaryllidaceae. The most common cuticular morphology of
Eucharis and Caliphruria fits their class VII: "thick striae, parallel
or not, interlocking, _+ transverse" (Arroyo and Cutler, 1984, p. 471), a
type they reported only for the few species of Phaedranassa, Scadoxus,
and Griffinia Ker-Gawl. that they examined, all three genera with
petiolate leaves, but not closely related. Phaedranassa is, however,
rather variable in its cuticular morphology (Meerow, unpubl.). Eucrosia
Ker-Gawl., a close ally of Phaedranassa, also has cuticular striation
similar to that of Arroyo and Cutler's type VII (Meerow and Dehgan,
1985), but differs in the orientation, thickness and pattern of the

14
striae. Urceolina, a small genus very closely related to Eucharis and
Caliphruria, has cuticular morphology much like that of the latter
genera.
In a few species of Eucharis (_E. amazonica, _E. anómala (Fig. 3; Z.
bouchei, Fig. 18) the striation is much less pronounced. Caliphruria
korsakoffii (the sole representative of Caliphruria outside Colombia)
has the most aberrant cuticle morphology (Fig. 7), correspondí'ng more or
less to type V of Arroyo and Cutler (1984): "central, thick axial
striation with less pronounced striae running from it, directly to
anticlinal walls" (Arroyo and Cutler, 1984, p. 471). The adaxial
cuticle of Eucharis and Caliphruria is either smooth or rarely much more
finely striate than the abaxial surface, the striations entirely axial.
The adaxial cuticle of _C. korsakof fi i (Fig. 8) has several, thick,
transverse striations across each cell, and the epidermis is unusually
flat in topography.
Stomata. Leaves of Eucharis and Caliphruria are predominently
hypostomatic. Stomata occur adaxially only along the midrib and
vicinity (Fig. 19A), and also occasionally in the proximity of primary
veins. Stomata are usually absent from the abaxial midrib (Fig. 19B).
Intercalary stomata were regularly observed only in E. cyaneosperma
Meerow (Fig. 14 ¿1 21C). A survey of leaf surfaces in "infrafamily"
Pancratioidinae (Meerow, unpubl.) suggests that loss or reduction of
adaxial stomata frequently accompanies the evolution of petiolate leaves
in Amaryllidaceae. Most linear or lorate-leaved genera are
amphistomatic. The stomata of Eucharis and Caliphruria are anomocytic,
as is typical for Amaryllidaceae (Arroyo and Cutler, 1984; Dahlgren and
Clifford, 1982), though E. astrophiala exhibits at least slight

15
differentiation of ce?ls neighboring the stomata (Fig. 9-10) from other
epidermal cells. These cells are more densely and regularly striate
than other epidermal cells, as well as slightly more upraised. The
guard cells of Eucharis and Caliphruria are oriented with their longest
axis parallel to that of the leaf. Wide variation in stomatal index
{[no. of stomata / (no. of stomata + no. of epidermal cells)] X 100
(Salisbury, 1927)} is evident (Table 2). Infraspecific variation in SI
can be as wide as that between species, however, and seems to have
little taxonomic significance. Correlations between SI and leaf width,
length and lengthcwidth ratios were tested for all plants examined.
Pearson correlation coeffcients for the three comparisons were 0.249
(width), 0.421 (length) and 0.232 (length:width). Greatest correlation
of SI was with leaf length, but none of the three tested factors are
very significant. Salisbury (1927) reported that humidity affects
stomatal index, and other workers (Yapp, 1912; Gupta, 1961) have
suggested that SI may not be as invariant as has been claimed. The
great morphological variation of Eucharis species (subg. Eucharis in
particular) in characters of floral morphology (Chaper IV) is also
present in vegetative characters.
Epidermal cells. The epidermal cells of all species of E_^ subg.
Eucharis have strongly undulate anticlinal walls (Fig. 20-23A), as as
noted by Asatrian (1984) for the few species he surveyed. Abaxial
cells are more strongly undulate than those of the adaxial surface.
Abaxial epidermal cells of Caliphruria (Fig. B-C) are more weakly
undulate, and the adaxial cells of _C. korsakoffii (Fig. 24C) are
completely straight. Eucharis subg. Heterocharis is polymorphic for
anticlinal wall morphology. Eucharis amazónica (Fig. 23A) and E.

16
sanderi (not illustrated) have strongly undulate walls, while E_. anómala
(Fig. 23B) has essentially straight walls. I have surveyed the leaf
surface morphology of all genera in "infrafamily" Pancratioidinae with
the exception of Pucara Ravenna (Meerow, unpubl.). Strongly undulate
anticlinal walls are very rare among these genera. Arroyo and Cutler
(1984) report similar findings for the genera of pancratioid
Amaryllidaceae that they surveyed. Arroyo and Cutler (1984) and
Artushenko (1980) consider undulate anticlinal walls to be primitive for
the family. No detailed reasons are given by these authors for this
assessment, though reference is made to Scadoxus, a putatively primitive
bulbless genus of African Amaryllidaceae with undulate anticlinal walls
and Type VIII striation. This genus is often considered close to the
ancestral complex that gave rise to the Amaryllidaceae (Arroyo, 1982;
Arroyo and Cutler, 1984; Nordal and Duncan, 1984). Yet Scadoxus has a
baccate fruit, "brush" type inflorescence morphology, and petiolate
leaves (Nordal and Duncan, 1984), all derived characters in relation to
the rest of the family (Meerow, 1985a). Consequently, there seems
little evidence to suggest that the undulate anticlinal walls of
Scadoxus represent the primitive condition for the Amaryllidaceae.
Eucharis anómala, putatively the most primitive species of Eucharis (see
Chapter XI) has straight anticlinal walls (Fig. 23B). Taking this fact
into consideration, along with the relative rarity of undulate
anticlinal walls throughout the Pancratioidinae, I believe the undulate
condition is more likely the derived state. End walls of the both the
abaxial and adaxial cells of all species range from oblique to rounded.
Abaxial epidermal cells range from rectangular to irregular in
shape. Adaxial epidermal cells are, in almost all cases, rectangular.

17
Eucharis astrophiala (Fig. 20A) has the most irregularly shaped cells of
both the abaxial and adaxial surfaces. In the vicinity of the midrib on
both surfaces of the leaf (Fig. 19), epidermal cells become
conspicuously elongated, and anticlinal walls are straight. Epidermal
cells of the midrib are extremely long and narrow.
Leaf Anatomy
In petiolar transverse section, a single arc of vascular bundles
is usually observed (Fig. 1-2). Median bundles are the largest. In
petioles of E. anómala Meerow (Fig.2B) and the closely related E.
amazonica (Fig. 2C), both in subg. Heterocharis, small secondary bundles
were observed near the adaxial surface. These bundles are most
conspicuous in E. anómala; they are markedly smaller in E_. amazoni ca.
These secondary vascular traces disappear above the middle of the
petiole. Asatrian (1984), who reported on petiole anatomy of three
Eucharis and Caliphruria species, did not observe these bundles in _E.
amazoni ca (cited as E_. grandiflora).
The internal morphology of leaves of Eucharis and Caliphruria
(Fig. 25-31) is largely invariant across both genus. No well defined
palisade layer is evident, a characteristic of most genera of
"infrafamily" Pancratioidinae (Arroyo and Cutler, 1984; Meerow, unpubl.
data). Mucilage cells, common throughout the family (Arroyo and Cutler,
1984), are often present near the leaf surface, and raphides are
occasionally observed in epidermal cells. The mesophyll consists of
several layers of chlorenchyma both ad- and abaxially, and a thicker
region of spongy, slightly aerenchymous tissue. Small air cavities
occur regularly only directly below stomata. Vascular bundles are

18
surrounded by a sheath of 1-2 layers of parenchymous cells. The only
xylem elements present are tracheids with annular thickenings (Fig. 28).

Table 3.1. Leaf length, width, length : width ratio, and stomatal index of Eucharis and Caliphruria
species. All voucher specimens are deposited at FLAS unless otherwise indicated.
TAXON
VOUCHER
LEAF
LENGTH
(cm)
LEAF
WIDTH
(cm)
L : W
STOMATAL INDEX
Eucharis subg.
Eucharis
E. astrophiala
Meerow 1140
19.0
8.0
2.38
10.42
E. bonplandii
Bauml 686 (HUNT)
17.5
8.5
2.06
12.70
E. bouchei var.
bouchei
Meerow 1125
24.0
8.5
2.82
14.74
E. bouchei var.
dressleri
Meerow 1107
24.0
10.0
2.40
11.61
E. candida
Meerow 1144
27.0
9.0
3.00
24.79
Schunke 14155-B
32.5
9.1
3.57
15.72
E. castelnaeana
Schunke 14156
17.5
7.0
2.50
9.33
E. cyaneosperma
Meerow 1032
31.5
7.5
2.36
17.21
E. formosa
Meerow 1099
51.0
15.0
3.40
18.18
Meerow 1103
35.0
10.0
3.50
16.34
Schunke 14157
35.0
10.5
3.33
14.45

Table 3.1—continued
TAXON
VOUCHER
LEAF
LENGTH
(cm)
Schunke 14171
37.5
Schunke 14174
42.0
E. plicata
pi i cata
subsp.
Meerow 1025
26.0
E. plicata
subsp.
Meerow 1143
19.5
brevTclentata
Eucharis subg. Heterocharis
E. amazonica Schunke 14179 35.0.
anómala Meerow 1141 22.5
X Cali chan's Meerow 1110 22.0
butcheri
Meerow 1127 27.0
LEAF
WIDTH
(cm)
15.0
14.8
12.0
10.0
13.5
12.5
10.5
14.5
E. X grandiflora
L : W
STOMATAL INDEX
2.50 18.57
2.94 12.95
2.17 9.92
1.95 20.79
2.59 12.29
1.89 12.36
2.10 16.01
1.86 14.00
PO
o

Table 3.1—continued
TAXON
VOUCHER
LEAF
LENGTH
(cm)
LEAF
WIDTH
(cm)
L : W
STOMATAL INDEX
Caliphruria
C. korsakoffii
Meerow 1096
13.5
3.8
3.55
10.15
C. subedentata
Meerow 1109
16.8
6.8
2.47
14.21
Meerow 1123
16.5
8.0
2.06
9.36
Meerow 1159
15.7
7.5
2.09
10.11
Pearson correlation
coefficients
(significance
is indicated
by proximity
of value to 1)
Stomatal index and leaf length = 0.421
Stomatal index and leaf width = 0.249
Stomatal index and leaf length/width ratios = 0.232

Figure 3.1. Petiole transverse sections of Eucharis species. A. E. astrophiala (Madison 3792, SEL).
Ü. E. bouchei var. dressleri (Meerow 1108, FLAS). C. E. pi i cata subsp. plicata (Meerow 1025,
FLAS). p = proximal, m = medial, d = distal.

I
CO
CXJ
o a v

Figure 3.2. Petiole transverse sections of Eucharis and Caliphruria species.
(Meerow 1156, FLAS). B. E. anómala (Meerow 1141, FLAS). C. E. amazónica
p = proximal, m = medial, d = distal.
A. C. subedentata
(ScfTunke 14179, FLAS).

ro
en

Figures 3.3-3.8. SEM photomicrographs of Eucharis and Caliphrun'a leaf
surfaces. 3-7. Abaxial surfaces. 3. E. anómala (Meerow 1141,
FLAS). 4. E. X grandiflora (Madison et al. s. n., SEL), 5. X
Calicharis Tñitchen (Meerow 1110, FLA3J. 6. C. subedentata
(Meerow 1109, FLA8J. 7. C. korsakoffii (Meerow 1096, FLAS). 8.
Adaxial surface of C. korsakotfn (Meerow íoyb, HAb). All scales
= 25 yum.

27
I

Figures 3.9-3.14. SEM photomicrographs of Eucharis leaf surfaces. 9-
n. Abaxial leaf surfaces. 9-10. E. astrophiala (Meerow lili,
FLAS). 11-12. E. plicata subsp. pTicata (Meerow 1025, FLA$).
13. E. cyaneosperma (Meerow 1032, FLAS). lTÜ ftcTaxial leaf
surface, E. cyane~o?perma (Meerow 1032, FLAS). All scales = 25/jm.

29

Figures 3.15-3.18. SEM photomicrographs of Eucharis abaxial leaf
surfaces. 15. E. bakeriana (Meerow 1108, FLAS). 16. E. formosa
(Meerow 1103, FTASTH 1 /. L. bonplandii (Bauml 686, HUTTT)~ 18.
E. bouchei var. dressleri TMeerow 1107, FLAS). ATI scales = 25
/jm.

31
I

Figure 3.19. Leaf epidermal cell configurations of representative
Eucharis species in the vicinity of the midrib. A. E. formosa
(Schunke 14174, FLAS), adaxial surface. B. E. pi i cata subsp.
pi i cata (Meerow 1025, FLAS).

33
B

Figure 3.20. Leaf epidermal configurations of Eucharis species in the
inter-costal area of the leaf. A. E. astrophiala (Madison 3792,
SEL). B. E. bonplandii (Bauml 686,“HliN'r). C. E. bouchei var.
bouchei (fieerow 112b, f-LAS).

35

Figure 3.21. Leaf epidermal configurations of Eucharis species in the
Tnter-costal area of the leaf. A. E. candida (Meerow 1144, FLAS).
B. E_. caste! naeana (Schunke 14156, TLAlTT"! CT E_. cyaneosperma
(Meerow 1032, KLAS).

37

Figure 3.22. Leaf epidermal configurations of Eucharis species in the
fnter-costal area of the leaf. A. E. formosa (Schunke 14174,
FLAS). B. E. pi i cata subsp. brevidentata (Meerow 1143, I- LAS). C.
E. ulei (ScFunke 14153, FLAS).

39
c

Figure 3.23. Leaf epidermal configurations of Eucharis species in the
inter-costal area of the leaf. A. E. amazónica (Schunke 14179,
FLAS). B. E. anómala (Meerow 1141)T C. E. \ grandiflora (Meerow
1127, FLAS).

41

Figure 3.24. Leaf epidermal configurations of Eucharis and Caliphruria
species and hybrid in the inter-costal area of the leaT\ A. X
Calicharis butcheri (Meerow 1110, FLAS). B. C. subedentata
(Meerow 1123, HAS). C. C. korsakoffii (Meerow 1Ü96, FLAS).

43

Figures 3.25-3.31. Transverse sections of Eucharis and Caliphruria
leaves. 25. E. bonplandii (Bauml 686, HUNT). 26. E. astrophiala
(Madison 3792, SEL). 27-28. E. formosa (Meerow 1107, FLÁS). 277
Tracheid with annular thi ckenTngs"! 277 E. bouchei var. dressleri
(Meerow 1107, FLAS). 30. C. subedentata (Meerow I~123, FLAS). TT.
C. korsakoffii (Meerow 1096, FLAS). Al 1 scales = 100 /jm except 25
/am in Fig. 2Ó.

45

CHAPTER IV
FLORAL MORPHOLOGY
Materials and Methods
Scanning Electron Microscopy (SEM)
Stigmas and seeds preserved in FAA were prepared and examined as
described in Chapter III.
Anatomical Studies
Seeds preserved in FAA were prepared for parafin block sectioning
as described for leaves in Chapter III. Scape sections were prepared
freehand as described for petioles in Chapter III.
Results and Discussion
Inflorescence
The inflorescence of Eucharis and Caliphruria is a naked scape
typical of Amaryllidaceae. The scape is sub-terete in cross-sectional
outline (Fig. 1), and has a solid pith. Vascular bundles are
distributed in several concentric rings within the pith (Fig. 1). A
layer of collenchyma cells occurs just below the epidermis of the scape.
The scape is terminated by two valvate-imbricate, ovate-lanceolate
bracts that enclose several secondary bracts and the flower buds before
anthesis. These bracts vary from green (_E. subg. Heterocharis) to
greenish-white (most species of subg. Eucharis) and are soon marcescent

47
after opening and spreading laterally. Each flower is subtended by a
linear-lanceolate bracteole.
The inflorescence of the Amaryllidaceae is traditionally described
as "umbellate". Developmental work by Mann (1959) on Al 1ium, and Stout
(1944) on Hippeastrum suggests that the superficially simple umbel of
Amaryllidaceae actually represents a complex series of reduced, helicoid
cymes. Anthesis occurs in a strict sequence within each cyme from the
developmentally oldest flower to the youngest. The peripheral cymes
flower first; the central cymes flower last.
Flower number varies in Eucharis and Caliphruria from 2-10, rarely
as many as 12 (_C. korsakoffii). Number of flowers is often a
taxonomically useful character, though any species characterized by 8-10
flowers is capable of producing a depauperate inflorescence with fewer
florets. An increase in flower number generally does not occur. In
some species of subg. Eucharis (_E. astrophiala, _E. bouchei, _E. ulei), a
flower number of 5 has become virtually fixed. Reduction in flower
number is usually considered the derived state in Amaryllidaceae (Traub
1962, 1963).
Flower Size and Fragrance
Flower size. The largest flowers in Eucharis are found in subg.
Heterocharis, flowers of which average 7-8 cm in length. Flowers of
Caliphruria are the smallest, never exceeding 4 cm in length. Subgenus
Eucharis, the largest of the two subgenera of Eucharis, is variable,
with flowers ranging from 3-7 cm in length. Within a fairly broad
range, flower size can be used to distinguish phenetic species complexes
within subg. Eucharis (see Chapters VI and XII), however, most species

48
of this subgenus are quite variable in size. Flower size may also be a
factor of plant vigor and soil fertility. I have repeatedly noted
differences from year to year in the size of flowers of greenhouse
collections, depending on the relative health of the plant.
Floral fragrance. Subgenus Heterocharis is the only subgenus of
Eucharis that is uniformly fragrant. The fragrance of all species of
subg. Heterocharis is intense and sweet. Flowers of Caliphruria do not
emit any detectable fragrance. Most species of _E. subg. Eucharis are
also without noticeable fragrance. In the few species of this subgenus
that are fragrant (_E. bakeriana, _E. caste!naeana, _E. formosa, and E_.
pi i cata subsp. brevidentata), the odor is not intense. In one case (_E.
formosa), the fragrance is slightly fetid. The significance of floral
fragrance in Eucharis is discussed further in Chapter X.
Perianth
The perianth of Eucharis and Caliphruria consists of six tepals in
two whorls, basally connate into a tube of varying length and
morphology. The tube of _E. subg. Eucharis (Fig. 2E) is cylindrical for
almost its entire length, abruptly dilating near the perianth throat.
The tube of subg. Eucharis is also strongly curved, either abruptly just
above the ovary (_E. bakeriana, _E. cyaneopserma), or gradually throughout
the proximal half of its length (all other species). The curving of the
tube results in the pendent habit of most species of subg. Eucharis.
The tube is white for its entire length.
The tube of subg. Heterocharis (Fig. 2C, D) is tinted green
proximally (for at least half its length). The tube is curved, though
not as markedly as that of subg. Eucharis, and the habit of the flowers

49
is either declínate (_E. anómala, _E. sanderi) or sub-pendulous (_E.
amazónica). The tube is cylindrical for 1/2 to 2/3 of its length; it
abruptly dilates in the distal half to 1/3. The tube morphology of X
Calicharis butcheri (Fig. 2B), putatively an inter-subgeneric hybrid
between E. sanderi and _C. subedentata, is intermediate between
Caliphruria (Fig. 2A) and _E. subg. Heterocharis (Fig. 2C, D).
The tube of Cali phruria (Fig. 2A) is straight, and dilates
gradually from base to throat. It is either sub-cylindrical (_C.
korsakoffii) or funnelform in shape (all other species). The tube is
tinted green proximally (in _C. subedentata, for 1/2 to 2/3 of its
length).
The tepals of Eucharis and Caliphruria flowers are white. Those
of the outer series are almost always longer and narrower than the inner
tepals. The outer tepals are apiculate. The apiculum frequently has a
small, papillate horn on the adaxial surface in _E. subg. Eucharis. The
inner tepals vary from acute to obtuse, sometimes minutely apiculate, at
the apex.
The tepals of most species of subg. Eucharis spread at an angle of
90° or more from the throat. Perianth morphology of subg. Eucharis is
thus predominantly crateriform. At times the tepals may be reflexed
strongly above the midpoint of their length, or rarely for their entire
length. Tepal habit varies even among flowers of the same inflorescence
and shows no taxonomic consistancy. If exposed to strong light, the
abaxial midrib of the tepals of some species of subg. Eucharis may be
lightly pigmented yellow.
The perianth of Caliphruria is infundibular. The tepals remain
imbricate for half their length and spread distally at an angle of only

50
45-60°. The tepals of subg. Heterocharis are also, for the most part,
imbricate proximally, and spread at 45-60° from the throat. The
perianth is more or less campanulate in morphology. One species, E_.
amazonica, has the crateriform perianth character!-stic of subg. Eucharis
with a wide-spreading (ca. 90°) limb.
Androecium
Staminal connation is one of the major characterise"cs of
"infrafamily" Pancratioidinae. Some taxonomic workers have mistakenly
considered the staminal cup of pancratioid genera homologous to the
corona of Narcissus (e.g., Pax, 1888). The corona of Narcissus is of
perianthal origin (Eichler, 1875; Arber, 1937), while the staminal cup
of pancratioid taxa is composed entirely of androecial tissue (Arber,
1937; Singh, 1972).
The stamens of Eucharis and Caliphruria are variously connate
proximally. In most species of subg. Eucharis and several species of
subg. Heterocharis (E_. anómala and _E. amazoni ca), a conspicuous staminal
cup or false corona is present (Fig. 3-4). In Caliphruria, the cup is
reduced to a short, membranous, connate portion of the filaments near
the perianth throat (Fig. 5). Eucharis sanderi (subg. Heterocharis) has
a reduced staminal cup similar to that of Caliphruria.
Stamens of Eucharis and Caliphruria may be dentate, edentate or
irregularly toothed. Both types of staminal morphology may occur in the
same species, and variation may occur even among flowers of a single
clone. The presence or absence of staminal dentation has frequently
been overweighted in the alpha-taxonomic literature relating to these
genera (e.g., Ravenna, 1982), but only occasionally has profound

51
taxonomic significance [e.g., _E. astrophiala (Fig. 3), the only species
of subg. Eucharis that always has an edentate staminal cup].
A variable pattern of green or yellow pigmentation is present in
the androecium of all species of subg. Eucharis and Heterocharis.
Stamens of Caliphruria are completely white. In subg. Heterocharis, the
green (rarely yellowish) pigmentation is largely restricted to the
interior of the cup, and extends into the dilated portion of the tube as
well (Fig. 4). The coloration is concentrated along the filamenta!
traces, but the tissue between the traces is suffused with green as
well. In subg. Eucharis, pigmentation is present on both the exterior
and interior surfaces of the cup, does not extend into the dilated
portion of the tube, and takes the form of either broad spots below each
free filament, or a uniform band of color at the basal 1/2 to 1/3 of the
cup. In subg. Eucharis, the pattern is of limited taxonomic
significance. Whether this pigmentation functions as nectar guides for
pollinating animals is unknown.
The stamens of most species of subg. Eucharis constrict distally
into a broadly subulate portion (> 1 mm wide for most of its length) of
varying length. Only in two species, E. astrophiala (Fig. 3) and E.
bouchei (in part), do the stamens constrict gradually from the rim of
the staminal cup to the apex of the filament. The free filaments of
Caliphruria are narrowly subulate (< 1 mm wide for most of their length,
Fig. 5). The free filaments of E_. sanderi (subg. Heterocharis) are
narrowly subulate and slightly incurved. Those of _E. anómala and E.
amazonica are broadly subulate.
Anthers of Eucharis are introrse, dehiscing longitudinally and
either dorsifixed or sub-basifixed in attachment. They are most

52
frequently oblong in shape, but are linear in subg. Heterocharis. At
anthesis, the anthers of Caliphruria and E_. subg. Eucharis are erect,
but become versatile as they age. In subg. Heterocharis the anthers are
versatile at anthesis.
Gynoeciurn
Stigma and style. The flowers of almost all Eucharis and
Caliphruria species are protandrous. Stigma receptivity does not occur
until the second or third day following anthesis. In some cases, the
stigma does not fully expand until the perianth has begun to senesce.
The styles of Eucharis and Caliphruria are usually exserted beyond
the anthers, most frequently from 0.5-1 cm. In subg. Heterocharis, the
styles are somewhat assurgent away from the stamens, and are exserted
well over 1 cm past the anthers. In two species of subg. Eucharis, _E.
castelnaeana and _E. plicata, the style is included within the cup. In
the former species, autogamy seems to occur with regularity, and stigma
receptivity coincides with anthesis.
The stigma of Eucharis and Caliphruria (Fig. 6, 8-9, 11-12) is
obtusely triblobed. Trilobed stigmas are relatively rare in the
Pancratioidinae, and Urceolina, sister group to Eucharis and
Caliphruria, has a capitate, entire stigma. Traub and Moldenke (1949)
and Traub (1963) considered a trilobed or trifid stigma the ancestral
state in the Amaryllidaceae.
The stigmas of Eucharis and Caliphruria are papillate. The
papillae of Eucharis are unicellular (Fig. 7, 13-16), while those of
subg. Caliphruria (Fig. 10) are multicellular, consisting of both a
stalk cell and globose head cell. X Calicharis butcheri, putatively a

53
natural hybrid of _E. sanderi and C. subedentata has the multicellular
stigmatic papillae (Fig. 17-18) characteristic of Caliphruria.
Heslop-Harrison and Shivanna (1977) characterized the stigmas of
Eucharis and Caliphruria as dry-type, and suggested a correlation
between this type of stigma morphology and sporophytic self¬
incompatibility. According to a number of workers (Heslop-Harrison,
1976; Kress, 1983; Larsen, 1977), however, gametophytic incompatibility
is characterise'c of monocots. At present, the incompatibility system
of Eucharis and Caliphruria, though apparently present, is unknown (see
Chapter X).
Ovary and ovules. The ovary of Eucharis and Caliphruria is
inferior and contains septal nectaries. It is green, with the exception
of two species, E. astrophiala and E. caste! naeana (subg. Eucharis) in
which the ovary is white at anthesis. Ovaries of Eucharis and
Caliphruria range from oblong-ellipsoid (subg. Heterocharis) to globose
or sub-globose (subg. Eucharis and Caliphruria). The ovary of subg.
Heterocharis is both trigonous and rostellate after senescence of the
perianth. Ovaries of Caliphruria and subg. Eucharis are non-rostellate
and smooth, with three exceptions: Eucharis bouchei var. bouchei, var.
darienensis, and E. cyaneosperma have a trigonous ovary at anthesis.
The ovules of Eucharis and Caliphruria are globose, anatropous,
and axile in placentation. Ovule number is quite variable throughout
both genera. Within limits, however, ovule number is character!'Stic of
species or species complexes. Subgenus Heterocharis has the largest
ovule number in Eucharis, generally 16-20 per locule, but occasionally
as low as 7 in E. sanderi (which otherwise has 16-20 throughout most of
its range) and 9-12 in E. amazónica. In both subg. Eucharis and

54
Caliphruria, ovules do not number more than 10 per locule. Eucharis
astrophiala, E. bouchei, _E. bonplandi i, _E. cyaneopserma and _E. ulei
characteristically have 2 ovules per locule, but rarely as many as 5.
In these species, there is a positive correlation between reduction in
flower number and ovule number.
Traub and Moldenke (1949) and Traub (1962, 1963) considered
numerous ovules an ancestral character in the Amaryllidaceae. In the
Pancratioidinae, an ovule number of ca. 20 per locule characterizes the
putatively ancestral complex of genera with typical, crateriform,
pancratioid floral morphology, heavy floral fragrance and well-developed
staminal cups (Meerow, 1985). Reduced ovule number is therefore likely
a derived character state.
Fruit and Seed
Fruit. The mature fruit of Eucharis and Caliphruria is a tri-
loculicidal capsule typical of the non-baccate fruited Amaryllidaceae.
In fruit, the pedicel elongates to 2 or more times its length at
anthesis. In Caliphruria and E. subg. Heterocharis (_E. anómala), the
capsule is thin-walled and green, sometimes turning yellow or brown at
dehiscence. In subg. Eucharis, however, the capsule is leathery and
bright orange (Fig. 19), contrasting vividly with the shiny black or
blue seeds at dehiscence. It is probable, though unsubstantiated, that
the combination of fruit and seed color functions mimetically to attract
avian dispersal agents (sensu van der Pijl, 1982). This type of fruit
morphology is unique among neotropical Amaryllidaceae. There is a
single known exception to this characterisec fruit morphology in subg.
Eucharis. Eucharis castelnaeana (Fig. 20) produces a capsule much like

55
that of Caliphruria. The fruit of this species is often tardily
dehiscent, and sometimes abscises before opening, though the seeds
within are ripe. The infructescence of E. caste!naeana bends to the
ground (in all other species it remains erect), a habit noted in many
Crinum species (Hannibal, 1972). In this manner, an indehiscent fruit
might rot in contact with the substrate, thereby releasing the seeds.
Seed. Regardless of the number of ovules per locule in any
species of Eucharis and Caliphruria, all but a few abort as the fruit
matures. Generally 1-2 seeds are present per locule in mature capsules,
but as many as four have been observed.
The seed of both Eucharis and Caliphruria is usually globose or
ellipsoid and turgid, the consequence of copious endosperm and a high
moisture content. Left at room temperature, the seeds will shrink away
from the testa somewhat as moisture is lost, but are still capable of
germination in this condition. Long-term viability has not been tested.
The seed of subg. Eucharis (Fig. 21) is characteristically
ellipsoid, and has a shiny, smooth black (blue in _E. cyaneosperma)
testa. The single exception so far known is again E. castelnaeana (Fig.
22). The seed of this species is wedge-shaped by compression in the
capsule, is less turgid than seeds of con-subgeneric species, and has a
dull, rugose testa. The seed of _E. anómala (subg. Heterocharis) is
globose to very slightly compressed, and has a brown, slightly rugose
testa.
In Cali phruria, the seeds of only _C. korsakof fii and _C.
subedentata are known. Seeds of C_. korsakoffii are globose, turgid,
and have a smooth, lustrous brown testa. Seed of C. subedentata is
slightly compressed, with a lustrous black, but rugose, testa.

56
Seed surface morphology (Fig. 23-28) does not reveal much
taxonomically useful information. The testa is alveolate in all species
examined. In E,. bouchei var. dressleri (Fig. 24), abundant wax
extrusions are found across the surface.
The testa of Eucharis and Caliphruria seeds is composed of
phytomelan (Huber, 1969), a simple, largely inert, carbonaceous compound
characteristically present in the seed coat of non-baccate fruited
Amaryllidaceae (Huber, 1969; Darlgren and Clifford, 1982). Werker and
Fahn (1975) reported the occurrence of phenolic quiñones in the
phytomelan layer of Pancratium seeds. In most species of Eucharis and
Caliphruria, the phytomelan layer is all that remains of the integuments
(Fig. 30, 36). In _E. bouchei, however, there is an additional layer of
integument tissue, ca. five cells thick, interposed between the
phytomelan and the endosperm (Fig. 34). Whether this may be a
consequence of the tetraploid condition of this species is unknown.
Most of the seed body of Eucharis and Caliphruria is taken up by a
copious quantity of endosperm characterized by abundant transfer cells
(Fig. 35). At maturity, no remnants of the nucellus were observed.
Most workers (e.g., Baker, 1888; Traub, 1963; Hutchinson, 1959;
Dahlgren et al. 1985) have allied Eucharis and Caliphruria with
Hymenoca11 is, Eurycles and Calostemma (i.e., tribe Euchareae) on the
basis of "fleshy seeds." The latter three genera do indeed have fleshy,
bulbiform seeds that are sometimes viviparous, but they are not
homologous structures.
The large, green seed of Hymenocal1is is unique in a number of
respects. The bulk of the seed body consists of two large, fleshy
integuments with a well-developed vascular system and abundant

57
chlorenchymous tissue (Rendle, 1901; Whitehead and Brown, 1940). The
embryo contains a large amount of stored starch (Whitehead and Brown,
1940). Whitehead and Brown (1940) characterized the seed, which does
not undergo any period of dormancy, as intermediate between true
vivipary and dormancy. Additionally, polyembryony has been observed
frequently in seeds of Hymenocallis (Bauml, 1979; Rendle, 1901; Traub,
1966).
The seeds of Calostemma and Eurycles superficially resemble seeds
of Hymenocallis, though they never achieve the size of the latter.
According to a much-overlooked review of bulbiform seeds in
Amaryllidaceae by Rendle (1901), the propagule of these two closely
related Australasian genera is not actually a true seed, but represents
an adventitious vegetative growth. After fertilization, at the chalazal
end of a normal ovule, adventitious shoot and root growth occur and a
true bulbil is formed. The integuments and the remnants of the nucellus
form the bulbil's outer coat.
The turgid seed of Eucharis and Caliphrupia, despite a high
moisture content when first ripe, cannot be accurately described as
fleshy. This becomes evident if the seed is allowed to dehydrate
slightly at room temperature, and is most apparent in the hard seeds of
E. caste!naeana, which, at capsule dehiscence, are less turgid than
seeds of other species of subg. Eucharis. Seeds of Eucharis and
Caliphruria have a reduced integument, represented in most cases only by
the compressed phytomelan layer, and have never been observed to
germinate viviparously. Phytomelan is absent from the testa of the
pseudoseeds of Eurycles and Calostemma. It is present in only a single
species of Hymenocallis, H_. quitoensis Herbert (and possibly H.

58
heliantha Ravenna), which has been segregated into a separate genus,
Lepidochiton Sealy (1937), on this basis.
Seeds of Pancratium are structurally most similar to those of
Eucharis and Caliphruria. Though variable in morphology (Werker and
Fahn, 1975), several species of Pancratium have a hard, turgid,
compressed seed body with copious endosperm (Meerow, unpubl. data;
Werker and Fahn, 1975). All species of Pancratium that I have examined
have a phytomelanous testa with an alveolate testa. Seeds of Eucharis
and Caliphruria do, however, have a higher moisture content than those
of Pancratium, all species of which occur in xeric to seasonally dry
habitats.

Figure 4.1. Serial tranverse sections through the scape of Eucharis
caste!naeana (Schunke 14156, FLAS). p = proximal, m = medial, d
distal.

60
d
P

Figure 4.2. Perianth tube morphology of Eucharis and Caliphruria species or hybrids. A. C.
subedentata (Meerow 1098, FLAS). B. X Calicharis butcheri (Meerow 1110, FLAS). C. E7 sanderi
(Cuatrecasas 16380, F). D. E. amazónica (Schunke 14179, FLAS). E. E. astrophiala (Madison
3792, SEL). “

62

Figures 4.3-4.5. Androecial morphology of Eucharis and Caliphruria
species. 3. E. astrophiala (Madison 3792, SEL). 4. E. amazónica
(Schunke 14175*, FLAS). subedentata (Meerow 110*5, FLAS).


Figures 4.6-4.18. SEM photomicrographs of Eucharis and Caliphruria
stigmas. 6-7. _E. astrophiala (Meerow 1111, FLAS). 8. E. pi i cata
(Plowman 13941, FLAS). 9-10. C. subedentata (Meerow 1152). 11.
C. korsakoffii (Meerow 1096, FTAST 12-13. E. X grandiflora
TMeerow 1127, FLAS). 14. E. anómala (Meerow 1141, ELAS). 15. E.
sanden (Cuatrecasas 16350, FT TT E. amazónica (Schunke 14171T,
FLAS). 17-18. i< Calichans butcheri, Meerow 1110, FLAS). TTI
scales = 50 /im.

66

Figures 4.19-4.22. Fruits and seeds of Eucharis subg. Eucharis. 19-20.
Mature capsules. 19. E. formosa (Schunke 14174, FLAS). ?0. _E.
castelnaeana (Schunke T41f>6, FLAS)” 21-22“ Seeds. 21. E.
bouchei var. bouchei (Meerow 1125, FLAS). 22. E. castelnaeana
(Schunke 14156, FLAS).

68
21
22

Figures 4.23-4.28. SEM photomicrographs of Eucharis and Caliphruria
seed surfaces. 23. E_. astrophiala (Meerow 1111, FLAS). 24. E_.
bouchei var. dressleri (Meerow 1107, FLAS). 75. E. formosa
(Meerow 1103)~ 26. _t. caste 1 naeana (Schunke JA15F, FLAS). 27.
C. korsakoffii (Meerow 1096, FlAS). 28. C. subedentata (Meerow
1152, FLAS).

70

Figures 4.29-4.37. Photomicrographs of Eucharis and Caliphruria seed
anatomy. 29-33. C. korsakoffii (Meerow 1096, FLAS). 29~.
Longitudinal sectTon through whole seed. 3TT. Transverse section
through testa and part of endosperm. 31. Longitudinal section
through radicle of embryo. 32. Longitudinal section through apex
of embryo. 33. Longitudinal section through vascular initial of
embryo. Scale = 40 ytim. 34-35. E_. bouchei var. bouchei (Meerow
1125, FLAS). 34. Transverse section through testa. Note several
layers of additional integument cells below outer phytomelan
layer. 35. Endosperm. Note transfer tissue with pitted walls and
plasmodesmata. 36-37. E_. caste!naeana (Schunke 14156, FLAS). 36.
Transverse section through testa and part of endosperm. 37.
Tranverse section through embryo. All scales = 100 jum unless
otherwise indicated, em = embryo, en = endosperm, t = testa.

72

CHAPTER V
POLLEN MORPHOLOGY
Materials and Methods
Scanning Electron Microscopy (SEM)
Fresh, dehisced anthers were removed from living collections,
fixed in FAA, and pollen extracted. Pollen from herbarium specimens was
treated according to the process of Lynch and Webster (1975). Samples
were treated for and examined with SEM as described for leaf surfaces in
Chapter III. Measurements of muri and lumina were derived from SEM
photomicrographs.
Transmission Electron Microscopy (TEM)
Pollen grains were fixed for 12 hr in 3% glutaraldehyde in 0.1 M
Na-cacodylate at pH 7.4, washed three times for 10 min with 7.5%
solution of sucrose in 0.1 M Na-cacodylate at pH 7.4, post-fixed for 1
hr in 2% OsO^ -¡n 0.1 M Na-cacodylate, washed as above three times for 10
min, and brought through an EtOH dehydration series. Dehydrated pollen
was placed through two pure propylene oxide baths, then placed in 1:1
propylene oxide:epon for 1 hr, 1:2 propylene oxide:epon for 12 hr, and
pure epon for 2-3 hr. Pollen was polymerized for 48 hr at 60° C,
sectioned, and viewed on a Zeiss 10A electron microscope at 80 kv.
73

74
Light Microscopy
Pollen size measurements were averaged for twenty grains examined
with a Nikon Lapophot photomicroscope.
Pollen Viability
Pollen was stained with Alexander's (1969) stain for 24 hrs at 50°
C. Percentages given are based on the number of grains staining from a
200 grain sample.
Statistical analysis
Correlations of pollen size with style length were performed with
SAS release 5.08 on the Northeast Regional Data Center (NERDC) of the
Universtity of Florida.
Terminology
Terminology follows Erdtman (1969) and Walker and Doyle (1975).
Results
Pollen grains of all species of Eucharis and Caliphruria (Fig. 1-
19) are boat-shaped elliptic, monosulcate, heteropolar, and bilateral in
symmetry. The germination furrow (sulcus) runs the length of the
presumed distal face of the grain (Fig. 12, 15). Exine sculpturing is
semi-tectate-columellate and reticulate in all species examined (Fig. 1-
19), composed of a network of muri (reticulum walls) and lumina
(intervening gaps).

75
Pollen Grain Size (Table 1)
Pollen grain size is quite variable in Eucharis and Caliphruria ,
and a notable size class (sensu Walker and Doyle, 1975) differential
occurs between Eucharis and Cali phruria. Pollen of Eucharis falls into
the large size class of Walker and Doyle (longest equatorial diameter
50-100 ^m). Pollen of Eucharis has average longest equatorial diameters
greater than 60 yum, with two exceptions: _E. castel naeana and _E. pi i cata
subsp. brevidentata. Pollen of Caliphruria falls into the medium size
class of Walker and Doyle (1975) with average longest equatorial
diameters of near 50 ^m.
The greatest number of species of Eucharis have pollen grains with
longest equatorial diameters between 65 and 75 /jm. Eucharis astrophiala
(subg. Eucharis) has the largest pollen grains in the genus, with
longest equatorial diameters of 83-86jam.
Polar diameter of pollen of Eucharis ranges from (39-) 45-60.6 /urn.
Polar diameter less than 40 /um is rare in these subgenera. Polar
diameter of pollen of Caliphruria is always less than 40 ^m.
Considerable infraspecific variation pollen size is evident in
some species of Eucharis (Table 1). Eucharis formosa is a wide-ranging
and morphologially variable species (see Chapter XII). Longest average
equatorial diameter among the populations sampled of this species shows
a 12.7% difference between the smallest and largest value. The two
subspecies of _E. pi i cata show a 15% differential in pollen size. Other
species are much more uniform in pollen grain size. Eucharis
astrophiala is a narrow endemic restricted to western Ecuador with
distinctive leaf and androecial morphology that is consistent among all
populations. Three populations of this species sampled show only a 3.8%

76
difference. Eucharis bouchei, a tetraploid species also of limited
distribution, but highly polymorphic, shows only a 2.4% difference
between the largest and smallest values.
The smallest pollen grains in Eucharis and Caliphruria are found
in species with the smallest flowers (Table 1), i.e., all species of
Caliphruri a and, in _E. subg. Eucharis, Z. caste!naeana. Nonetheless,
one of the largest flowered species, _E. sanderi (subg. Heterocharis) has
small pollen grains relative to other large-f1owered species. The
largest pollen grains in the genus are found in _E. astrophiala, a
species at the smaller end of flower size range in the genus. Since
style length is directly correlated with perianth size in Eucharis and
Caliphruria, style length was tested for correlation with longest
equatorial diameter of pollen of species in Table 1. Pearson
correlation coefficient for style length with pollen size of 29 Eucharis
and Caliphruria collections representing 16 species was only 0.379, and
therefore not significant (significance is indicated by proximity of
value to 1.000).
Exine Sculpturing (Fig. 1-19, Table 1)
The semi-tectate, reticulate exine sculpturing pattern of Eucharis
and Caliphruria may be subdivided into three classes on the basis of
lumia width. The first, designated Type 1 in Table 1, is characteristic
of most species of Eucharis (Fig. 1-11, 13, 15-16).. The reticulum of
Type 1 exine is coarse, with largest lumina widths equal to or greater
than 5 ^m. Type 1 exine can be further subdivided on the basis of muri
width. In Type 1-A (Fig. 3-11, 13, 15-16), the muri are equal to or
greater than 1 /jm wide. This is the most common exine morphology of

77
Eucharis. In Type 1-B exine, the muri are less than 1 jum wide. This is
characteristic of a single species of subg. Eucharis: _E. astrophiala
(muri ca. 0.6 yum wide, Fig. 1-2).
In Type 2 exine, lumina are 2-3 /im wide, and a marked reduction in
reticulum coarseness occurs at the meridional faces of the grain. Only
two species of Eucharis have Type 2 morphology, _E. oxyandra (subg.
Eucharis, Fig. 12), _E. sanderi (subg. Heterocharis, Fig. 14), and one
species of Caliphruria, _C. korsakoffi (Fig. 19). Width of the muri,
however, is variable among the species with Type 2 sculpturing, ranging
from less than 0.4 yum in E_. oxyandra, to ca. 0.75 ^m wide in E_. sanderi,
and ca. 1 yum wide in _C. korsakoffi.
Type 3 exine sculpturing is only characteristic of the Colombian
species of Caliphruria (Fig. 17-18). Type 3 sculpturing is finely
reticulate with lumina only 1-2 yüm wide, and the muri 0.5-0.6 yum wide.
As in Type 1 sculpturing, the reticulum is predominantly consistent in
coarseness throughout the grain surface.
Pollen Wall Ultrastructure (Fig. 20-31)
Eucharis and Caliphruria pollen grains are remarkably uniform in
their exine stratification patterns. They are completely ektexinous in
composition. The columellae arise from a thin foot-layer (usually ca. 2
Aim thick), and the intine is as thick or thicker than the exine. The
tectum is quite fragile, and usually ca. 5 yum thick. No channelling is
apparent in either the exine or intine.

78
Discussi on
Large, boat-shaped-elli pti c, monosulcate pollen grains with
reticulate exine morphology are the most common type of pollen found in
the Amaryllidaceae (Erdtman, 1952; Meerow and Dehgan, 1985; Walker and
Doyle, 1975). Similar morphology has been reported for many Liliaceae
sensu lato (Erdtman, 1952; Walker and Doyle, 1975; Zavada, 1983), and
conforms to the fossil form genus Liliacidites Couper, one of the major
angiosperm pollen types described from early Cretaceous deposits (Doyle,
1973; Walker and Walker, 1984). This type of pollen morphology appears
to be basic to the monocotyledonous orders in general (Doyle, 1973).
Among the Amaryllidaceae, only one group of genera show a radical
departure from this basic pollen morphology. Crinum and its allies
[tribes Crineae (Pax) Traub and Strumarieae Salisb. sensu Traub (1963)],
all have bisulculate pollen and spinulose exine sculpturing (Dahlgren
and Clifford, 1982; Erdtman, 1952; Nordal et al., 1977; Meerow, unpubl.
data). With the exception of Crinum, these genera are restricted to
Africa, many of them endemic to South Africa. In a remarkable example
of convergence, Donoghue (1985) reported a similar divergence in
Caprifoliaceae.
The Type 1 exine morphology that is characteristic of most
Eucharis pollen seems to have phylogenetic significance within
"infrafamily" Pancratioidinae (Meerow, 1985; Meerow and Dehgan, 1985).
All or some of the species of each of the genera with putatively
primitive pancratioid floral morphology (i.e. Eucharis, Hymenocallis,
Pamianthe Stapf, Pancratium, and Paramongaia Velarde) have large to very
large, coarsely reticulate pollen. The pollen of related genera with

79
divergent floral morphology shows reduction trends in both size and
reticulum coarseness (Meerow, 1985; Meerow and Dehgan, 1985).
Reduction in size and reticulum coarseness have been considered
evolutionary trends for angiosperm pollen in general (Walker and Doyle,
1975). Colombian species of Caliphruria (Fig. 17-18) show the greatest
degree of divergence for these pollen characters in comparison with
Eucharis.
The differentiation of the reticulum into coarse and fine areas,
characteristic of species with Type 2 exine, is restricted to monocot
pollen (Doyle, 1973; Walker and Walker, 1984), and has been observed in
some Li 1iacidi tes pollen from the early Cretaceous (Walker and Walker,
1984). The evolutionary polarity of this character is unclear, however.
Meerow and Dehgan (1985) described a transformation series from
auriculate pollen through dimorphic reticulum to homogeneous reticulum
among the subgenera of Hymenocallis (sensu Traub, 1962, 1980), which
would suggest that the homogeneous reticulum is an advanced character
state. The three species with dimorphic exine sculpturing (_E.
oxyandra, Fig. 12; E_. sanderi, Fig. 14; and _C. korsakoffi, Fig. 19)
each represent isolated taxa of their respective genus or subgenera (see
Chapter XI). The dimorphic reticulum in these three species may thus be
symplesiomorphous. On the other hand, each of three species differ in
muri width, thus the Type 2 exine morphology may have had an
independent, and thus derived, origin in each of the three.
In width of both muri and lumina, the pollen of E_. oxyandra (Fig.
12) resembles that of Urceolina, sister group to Eucharis, though pollen
of the latter genus fits the medium size class of Walker and Doyle, and
does not exhibit a substantial differentiation of the reticulum into

80
coarse and fine areas (Fig. 1 in Chapter XI). Eucharis oxyandra is a
problematic species morphologically as well, with certain characters of
intermediacy between Eucharis and Urceolina, particularly in androecial
morphology (see Chapter XII). I have suggested that _E. oxyandra may
represent a relict taxon related to the ancestor of Urceolina, or a
possible intergeneric hybrid (see Chapter XII), but this species is at
present too poorly known to confirm any of several hypotheses concerning
its origins.
Zavada (1984) associates reticulate exine sculpturing with
sporphytic self-incompatabi1ity (SSI). Though the SI system of Eucharis
and Caliphruria, if present, is unknown, two morphological characters of
the genus— pollen sculpturing, and stigma type (Heslop-Harrison and
Shivanna, 1979)— have been correlated with sporophytic SI, despite the
fact that only gametophytic SI has been reported for monocots (Heslop-
Harrison, 1976; Kress, 1981; Larsen, 1977).
Kress and Stone (1982) reviewed pollen wall ultrastructure of
monocots. The lack of endexine in the pollen grain wall appears to be a
virtually universal characteristic of monocot pollen. The thin foot-
layer and columellate structure of the exine found in Eucharis and
Caliphruria is common to all other genera of the Pancratioidinae that I
have examined (Meerow, unpubl. data; Meerow and Dehgan, 1985), and may
be basic to the Liliflorae in general (Doyle, 1973; Walker and Walker,
1984). The pattern of exine stratification in the pancratioid
Amaryllidaceae thus appears highly conserved.
Pollen grain size and style length has been correlated in some
investigations (Baker and Baker, 1979; Lee, 1978; Plitmann and Levin,
1983; Schnack and Covas, 1945; Taylor and Levin, 1975) but not in others

81
(Cruden and Miller-Ward, 1981; Darwin, 1896; Germeraad et al., 1968;
Ganders, 1979; Hammer, 1978). Cruden and Lyon (1985) observed that all
studies which showed a strong correlation involved related species,
while non-correlating studies involved unrelated taxa. They tested
correlations between both style length and stigma depth (an
approximation of the distance a pollen tube must grow to reach exogenous
resources in the transmission tissue of the style) and pollen grain
volume among species of several genera in several families. Cruden and
Lyon concluded that style length has little correlation with pollen
size, while stigma depth was highly correlated with style length. Where
style length and pollen grain volume do correlate, i.e., among related
species, they suggest that phylogeny, rather than function, is
represented. They further conclude that pollen grains need not contain
sufficient endogenous resources to reach the ovules, but only enough for
pollen tubes to grow through the stigma and reach exogenous substances
in the stylar transmission tissue.
In Eucharis and Caliphruria as a whole, little correlation between
style length and pollen grain size (as represented by longest equatorial
diameter, rather than volume) is evident (Table 1). Stigma depth, in so
far as I understand Cruden and Lyon's determination of this measure,
does not seem to vary appreciably among species of Eucharis. The stigma
of E. astrophiala, the species with the largest pollen grains in
Eucharis, is no larger or "deeper" than that of E_. pi i cata, the species
of subg. Eucharis with the smallest pollen grain.

82
Cone!usions
In characteristics of pollen grain size (medium size class), and
exine sculpturing (Type 3), Caliphruria shows the greatest degree of
divergence from the putatively ancestral, large, coarsely reticulate
pollen grain characteristic of most species of Eucharis. The Type 1
exine sculpturing of Eucharis shows relationship to the pollen
morphology of other genera of infra family Pancratioidinae with similar
floral morphology, i.e., Hymenocallis, Pamianthe, Pancratiurn and
Paramongaia (Meerow, 1985; Meerow and Dehgan, 1985).
Pollen grain size in Eucharis does not demonstrate any obvious
correlation with flower size (= style length). The large amount of
variation in pollen grain size in a few species of Eucharis may suggest
that this character, under certain conditions, is subject to as much
infraspecific variation as characters of vegetative and floral
morphology.

Table 5.1. Pollen morphology and style length of Eucharis and Caliphruria species. All voucher specimens
are deposited at FLAS unless otherwise stated.
TAXON
VOUCHER
POLAR
DIAMETER
(jum)
LONGEST
EQUATORIAL
DIAMETER
(yum)
EXINE3
TYPE
STYLE LENGTH
(mm)
Eucharis subg.
Eucharis
E. astrophiala
Meerow 1152
60.64
(+ 4.83)
84.43
(+ 4.72)
1-B
37.0
Madison 3792 (SEL)
58.62
(+ 4.16)
86.19
(+ 4.90)
46.8
Dodson et al. 7182
TSTT)
60.55
(+ 2.87)
83.05
(+ 4.71)
50.0
E. bakeriana
Meerow 1108
50.70
(+ 2.24)
76.85
(+ 3.32)
1-A
52.0
E. bonplandii
Bauml 686 (HUNT)
43.50
(+ 3.01)
62.95
(+ 2.73)
1-A
44.5
E. bouchei var.
bouchei
Meerow 1125
48.93
(+ 4.70)
68.43
(+ 4.22)
1-A
38.0
Meerow 1157
45.70
(+ 4.30)
66.80
(+ 3.14)
50.0
E. bouchei var.
dressleri
Meerow 1107
49.65
(+ 1.11)
68.30
(+ 2.10)
1-A
59.5

Table 5.1—continued
TAXON VOUCHER POLAR
DIAMETER
(/um)
E. candida
Meerow 1144
49.75
(+ 1.09)
Meerow 1158
46.75
(+ 3.06)
Dodson et al. 14095
—(my
52.30
(+ 3.35)
Schunke 14155-B
50.00
(+ 2.39)
E. castelnaeana
Schunke 14156
39.45
(+ 1.28)
E. cyaneosperma
Meerow 1032
47.95
(+ 2.38)
E. formosa
Meerow 1099
47.70
( + 2.45
Meerow 1103
47.70
(+ 2.95)
Meerow 1159
51.11
(+ 1.89)
LONGEST EXINE3 STYLE LENGTH
EQUATORIAL TYPE
DIAMETER
(yum) (mm)
69.50
(+ 2.69)
1-A
37.0
68.70
(+ 1.82)
49.3
72.15
(+ 3.17)
-
73.00
(+ 2.51)
40.0
55.80
(+ 2.73)
1-A
23.5
67.55
(+ 2.06)
1-A
50.0
65.50
(+ 3.07)
60.5
69.00
(+ 3.00)
1-A
51.0
73.84
(+ 2.58)
56.8

Table 5.1—continued
TAXON VOUCHER POLAR
DIAMETER
(/um)
Besse et al. s. n.
~rmy
48.50
(+ 3.04)
Schunke 14157
47.75
(+ 2.19)
Schunke 14171
52.00
(+ 2.15)
E. oxyandra
Hutchison et al.
5983 (UCT
42.36
(+ 3.48)
E. plicata subsp.
pii cata
Plowman 13951
43.45
(+ 3.50)
E. plicata subsp.
brevidentata
Meerow 1143
41.30
(+ 3.10)
E. ulei
Meerow 1024
49.35
(+ 2.61)
LONGEST EXINE3 STYLE LENGTH
EQUATORIAL TYPE
DIAMETER
(/im) (mm)
70.65
( + 3.15)
59.8
72.50
(+ 2.80)
52.8
71.50
(+ 2.66)
49.6
68.36
(+ 3.53)
2
32.8
68.90
(+ 1.84)
1-A
27.5
59.90
(+ 3.01)
1-A
32.0
69.85
(+ 3.04)
1-A
44.6
co
cn

Table 5.1—continued
TAXON
VOUCHER
POLAR
DIAMETER
(/Jm)
LONGEST
EQUATORIAL
DIAMETER
(>im)
EXINE3
TYPE
STYLE LENGTH
(mm)
Eucharis subg.
Heterocharis
E. amazónica
Schunke 14179
51.65
(+ 2.67)
78.25
{+ 3.39)
1-A
71.4
E. anómala
Meerow 1141
48.55
( + 2.89)
71.15
(+ 3.69)
1-A
58.5
E. sanderi
Caliphruria
Cuatrecasas 16380
(F) 39.75
(+ 3.01)
61.15
(+ 2.13)
2
76.0
C. korsakoffi
Meerow 1096
32.30
( + 2.47)
50.35
(+ 2.94)
2
16.0
C. subedentata
Meerow 1152
39.25
(+ 3.63)
50.95
(+ 3.28)
3
31.0
C. teñera
Triana 1289 (COL)
35.20b
53.70b
3
-
aSee text for explanation.
bValues without standard deviations were derived from statistically insignificant quantities of pollen.
00
cr>

Figures 5.1-5.6. SEN! photomicrographs of Eucharis pollen grains. 1-2.
E_. astrophiala (Madison 3792, SEL). 1. Whole grain, proximal
polar view. 2. Exine sculpturing. 3-6. Whole grains, proximal
polar views. 3. E. bonplandii (Bauml 686, HUNT). 4.. E_. bouchei
var. dressleri (Meerow 1107, FLAS). 5.. E. candi da (Asplund
19120, S). 57 _E. caste!naeana (Schunke 1T156, FLAS). All scales
= ca. 5 yum.

88
^W»R‘
Í?S2I
>
**
m
> J * • « *. T •*■
â– fevi/W*;
55if/i^n
&&&&»
W^livír
‘Wwi'tVÍ
íi^v
>%¡sQS&í
n

Figures 5.7-5.12. SEM photomicrographs of Eucharis pollen grains. 7-8.
Whole grains, proximal polar view. 7. E. corynandra (Ravenna
2090, K). 8. E. cyaneosperma (Seibert 7145, US). ET-
Formosa (Meerow 1108, i-LAS). 9. Whole grain, proximal polar view.
10. Exine sculpturing. 11-12. Whole grains, proximal polar view.
11. E. plicata (Meerow 1025, FLAS). 12. E. oxyandra (Hutchison et
al. T983, UC), oblique dTStal polar view.- ATTT£TT5s =' '¿a 5"yUlfl.

90

Figu res 5.13-5.19. SEM photomicrographs of Eucharis and Caliphruria
pollen grains. 13-17. Whole grains. 13. E. amazónica (Asplund
13214, S), proximal polar view. 14. E. sanderi (Killip 35401,
US), oblique lateral longitudinal view. 15. X Calicharis butcheri
(Meerow 1110, FLAS), oblique distal polar view. 16. _E. X
grandiflora (Meerow 1127, FLAS), lateral longitudinal view. 17-
18. C. subedentata (ex hort s. n., K). 17. Distal polar view.
18. Exine sculpturing. 19. Z. “Eorsakoffi (Meerow 1096, FLAS).
Al 1 scales = ca 5 yum.

92

Figures 5.20-5.31. TEM photomicrographs of Eucharis and Caliphruria
pollen grain sections. 20, 22, 24, and 28. Whole grain sections.
Scale = 10/jm. 21, 23, 25-27, 29—31. Sections through pollen
grain wall. Scale = 1 /im. 20-21. E. astrophiala (Meerow 1111,
FLAS). 22-23. E. bouchei var. boucTTei (Meerow 1157, FIAS)” ?4-
25. E. plicata var. plicata (Meerow 10257T 7E. C. subedentata
(Meerow 1152, i-LAS). ¿/.I. anómala (Meerow 114T, TTASTT ZFr29.
_E. sanderi (Cuatrecasas 16380, F). Black globules are extruded
lipids. 30. E. amazónica (Meerow 1105, FLAS). 31. _E. X
grandiflora ("Meerow 1127, FLAS).

94

CHAPTER VI
PHENETIC ANALYSES
The genus Eucharis presents a bewildering mosaic of morphological
variation which severely limits the accuracy of alpha-taxonomic species
delimitations. For example, characters such as flower size and
androecial dentation have been utilized to distinguish species without
any reference to how such characters might vary within populations and
throughout a species' range.
Principle Component analysis (PCA) is a widely employed ordination
methodology assessed as complementary to hierarchical cluster analysis
(Crisci et al, 1979; Sneath and Sokal, 1973). Both PCA and cluster
analysis allow quantitative analysis of continuous variation across
numerous morphological characters among a number of operational
taxonomic units (OTU's). The PCA algorithm rotates the axes
representing the characters to positions that will concentrate maximum
variance in the least number of axes. The axes are called principle
components. Scattergrams may be generated from principle components,
and heuristic relationships of the OTU's thus visualized. Clifford and
Stephenson (1975) warn against the utilization of PCA as a
classification device, particularly when insufficient cumulative
variation is represented in the first few principle components. PCA and
associated clustering algorithms provide a means to 1) quantify such
patterns of variation, and 2) graphically represent relationships based
95

96
on overall similarity in a manner that may aid in the final assessments
of taxonomic relationships.
Materials and Methods
Principle component and hierarchical cluster analyses of selected
herbarium specimens were conducted with CLUSTAN 2 vers. 2.1, originated
by the computing laboratory of the University of St. Andrews, Scotland,
on the North Florida Regional Data Center (NERDC) system of the
University of Florida. Three dimensional scattergrams were constructed
from PCA factor scores utilizing a program written by Bart Schutzman
(University of Florida).
Raw data was standardized using the “z-score" method (Sneath &
Sokal, 1973), by which initial values for each character were replaced
by standard deviations from the mean value for that character. A
distance matrix was then calculated using squared euclidean distance
(Cormack, 1971).
Twenty-seven characters were initially used in the analyses.
Examination of the results suggested that some of these characters
(e.g., all foliage characters, scape height, ovary length) were
unreliable due to environmental plasticity, developmental variation, or
specimen preparation. Though living material provides additional
characters of potential utility (e.g. leaf surface texture, pigmentation
pattern of the stamina! cup), the inability to consistently determine
these characters in dried specimens precluded their inclusion. Where
any two characters were highly correlated (more than 80% correlation),
which can result in data redundancy (Sneath and Sokal, 1973), one of the

97
two characters was removed from the data matrix, except where I felt
their removal would result in loss of information. In the final
analyses, 17 floral characters (Table 1) were selected as the basic data
set, of which fourteen were continuous, quantitative characters. The
remaining three qualitative characters were treated by assigning a
numerical value for each state of the character. Since CHISTAN would
treat these values as continuous, every attempt was made to number the
character states in a progressive transformation series, such that any
two successive numbers would reflect putative character state
relationship. These transformation series were constructed by careful
study of morphological patterns and trends in the genus Eucharis, and
comparative study with closely related genera of Amaryllidaceae.
At the level of species delimitation, analysis needs to begin with
individuals (Sneath and Sokal, 1973). A representative sampling of
populations is desirable (Williams and Lance, 1965), but in a widely-
dispersed genus such as Eucharis with many rare and inaccessible
species, in which a single genet in nature may function effectively at
the level of a population, or where an entire species is represented by
a single collection, a logical starting point is the use of all
available individuals.
Problems of taxonomic delimitation in Eucharis are concentrated in
Amazonian populations of subg. Eucharis. An additional area of
difficulty is the highly polymorphic, tetraploid _E. bouchei complex of
Central America. Analyses of these two groups utilized 78 and 20 OTU's
respectively. The inclusion in these analyses of well-marked species,
or species groups, whose delimitations are resolved by more traditional
systematic methodologies was deemed superfluous. The inclusion of such

98
OTU's can distort the analysis by introducing large additional variance
over some of the characters (Sneath and Sokal, 1973).
In addition to the larger analysis of all Amazonian populations
(including in this group a few OTU's from central Colombia), I subjected
one subset of this large matrix to additional analyses. This smaller
group represents populations of _E. candi da and _E. formosa from eastern
Ecuador, a monophyletic species complex that appeared taxonomically
insoluble from examination of herbarium specimens alone. These
populations are not only well-collected, but the specimens are of high
qua!ity.
Staminal dentation in Eucharis has historically been an important
crtierion from which species lines have been drawn. Analyses of the
Amazonian populations and the Napo-Pastaza populations were repeated
with characters of androecial dentation removed from the matrix. As
overall androecial morphology has been used frequently to delimit
species of Eucharis, a final analysis of 82 OTU's representing Amazonian
populations was conducted, using only the eight androecial characters of
the original character set (characters 3-5, 12-16). OTU lists and data
matrices for all analyses can be found in Appendix I.
A number of sequential, agglomerative, hierarchial, non¬
overlapping (SAHN) clustering methods (Sneath and Sokal, 1973) have been
devised for analyzing phenetic data, e.g., Lance and Williams' (1967)
complete linkage, Sokal and Michener's (1958) average linkage
[unweighted pair group method of analysis (UPGMA) of Sneath and Sokal,
1973], and Ward's (1963) minimum variance method. While the same
distance matrix is used by all three methods, each differs from the
others by its procedure for determing clusters between distances.

99
Complete linkage increases the distance between existing clusters,
making it difficult for OTU's to join, thus tending to create new
clusters (Cormack, 1971; Sneath and Sokal, 1973; Clifford and
Stephenson, 1975). Average linkage does not affect the ability of
individuals to join extant clusters. Ward's method uses least infra¬
group and greatest inter-group variance in determining where to fuse
clusters. Average linkage (UPGMA) was chosen for the cluster analyses
of Eucharis on the basis of preliminary analyses of various data sets
using all three methods described. Little difference was apparent among
the dendrograms generated by the three algorithms. In each case,
however, average linkage seemed to provide the most parsimonious
clustering of species groups.
Results
Amazonian Eucharis Populations (Table 2-4, Figs. 1-6)
PCA (Figs. 1-3). Cumulative variance of 67.2% in 17 characters
across 78 OTU's (Table 2) was resolved within the first three principle
components (PC's). Characters 2 (limb spread), 5 (stamen width), 7
(tube width at throat), and 9 (inner tepal length) contributed the most
variance to PCI, the component with the highest percentage variance
(45.5%). Characters 1 (flower number), 9, 13 (stamina! cup width), and
15 (cleft of staminal cup) contributed most of the variance to PC2,
especially character 15. Characters 5, 6 (tube length), 9, and 14
(toothing) were most strongly represented in PC3.
Removal of characters 14 and 16 (androecial toothing) raised the
cumulative variance within the first three PC's by only 1.5% to 68.7%.

100
Removal of these two characters slightly changed the character
components of the PC's (Table 3). Character 6 (tube length) replaced 7
in PCI, and characters 8 (outer tepal length) and 12 (cup length) were
more important contributors than 9 and 15 in PC2. Character 12 also
replaced the deleted character 14 in relative contribution to PC3.
The scattergrams generated by these PC scores (Figs. 1-2) are not
appreciably different. In both, two main phenetic groups can be
distinguished (_E. formosa and _E. caste!naena/plicata), but neither with
absolute clarity. An even more amorphous group comprises the remaining
four species. Eucharis formosa and E_. caste! naeana (and pi i cata)
represent the extremes of flower size (largest and smallest
respectively) among the OTU's. The E_. formosa aggregation segregates
into two smaller groups in Fig. 1 on the basis of staminal dentation.
When this character is removed from the analysis, _E. formosa becomes a
more homogeneous phenetic group. Among OTU's representing E,. candi da,
removal of characters 14 and 16 had less impact. The single outlying
OTU representing the rare _E. bakeriana moves closer to the _E. formosa
group when characters of staminal dentation are removed from the data
set (Fig. 2).
Phenetic resolution of _E. bonplandi i, _E. candi da, _E. cynaeosperma
and E. ulei is poor in both Figs. 1 and 2. These species overlap to a
large extent in flower size. Eucharis candida, in particular, shows
extreme heterogeneity.
Ordination with only the eight androecial characters (3-5, 12-16)
resolved 72.7% of total variance in PC's 1-3 (Table 3). Characters 3
(length of free filament), 5 (width of stamen), and 13 (cup width)
contributed the greatest amount of variance to PCI; 3, 12 (cup length)

101
and 14 (toothing) to PC2; and 3, 14, and 16 (relative length of tooth)
to PC3. Though the _E. caste! naeana/pl i cata and E_. formosa groups show a
tendancy to segregate, there is a greater degree of breakdown between
these two large phenetic groups. The poorly resolved assemblage of
OTU's representing _E. bonplandi i, candi da, _E. cyaneosperma and _E. ulei
are well-dispersed among the two larger phenetic groups. Eucharis
bakeriana is isolated from all other OTU's.
Cluster analyses (Figs. 4-6). Dendrograms generated by
hierarchical cluster analysis largely confirm the results of PCA. Using
the complete data set (Fig. 4), the average linkage algorithm resolved
three large clusters. All OTU's representing _E. caste!naena cluster at
a distance coefficient (DC) of 1.073. OTU's representing^, pi i cata
subsp. pi i cata join this cluster at a DC of 1.736. Almost all OTU's
representing _E. formosa cluster at a DC of 1.423. This large cluster
includes the solitary OTU representing _E. bakeri ana, one putative hybrid
between _E. candi da and _E. formsoa, and two OTU's representing _E.
candi da. One of the latter (OTU 74), however, is an outlying addition
to one of the smaller component clusters. All other species did not
fare as well. Paralleling the results of PCA, most OTU's representing
_E. bonplandi i, _E. candi da, _E. cyaneosperma and E_. ulei, form a large,
heterogeneous cluster at a DC of 1.858, within which may occur smaller
clusters of 2-4 conspecific OTUS's. This heterogeneous group joins the
_E. formosa cluster at DC 1.984.
Removal of stamina! toothing characters (Fig. 5) did not alter the
innermost topology of the dendrogram appreciably. However, the E_.
caste!naeana group, rather than forming a distinct cluster independent

102
of the other clusters, is joined to the heterogeneous species cluster at
DC 1.825.
The dendrogram based on analysis of only staminal characters (Fig.
6) is largely in concordance with that produced by the larger data set,
with _E. formosa dominating one main cluster, and all other species
another. The two OTU's representing _E. pi i cata subsp. pi i cata, however,
do not join with _E. caste!naeana until the latter has clustered with the
heterogeneous OTU's (DC 1.974). Most edentate OTU's of E. formosa form
a distinct subgroup within the first large cluster.
Eastern Ecuadorean Eucharis (Table 5-6, Figs. 7-10)
PCA. Cumulative variance of 64.8% in 17 characters was resolved
within the first three PC's across 28 OTU's. Character 6 (tube length)
contributed the most variance to PCI, followed by 2 (limb spread), 12
(cup length), and 15 (cleft of the staminal cup). Characters 1 (flower
number), 10 (width of inner tepal), 13 (cup width) and 14 (toothing) are
mostly expressed in PC2. Characters 3 (length of free filament), 9
inner tepal length), 10 and 15 are the most important contributor's to
PC3.
Removal of characters 14 and 16 (staminal dentation) raised the
cumulative variance only 0.5% (Table 6). Major contributors to the
variance of each PC were characters 2, 5, 7, and 8 (PCI); 1, 12 and 13
(PC2); and 2, 4, 6 and 8 (PC3).
The scattergrams generated by these PC scores (Figs. 7-8) are
similar. Eucharis formosa and _E. candi da form distinct phenetic groups,
largely on the basis of flower size, with two putative hybrids falling
between the two species groups. Staminal dentation separates two

103
subgroups in both species (Fig. 7), a distinction that disappears if
these characters are eliminated from the data matrix (Fig. 8). In both
scattergrams, a single outlying OTU (no. 27 in Table 5, Appendix 1) is
found among the JE. candi da group along PC2. This specimen has sharply
acute staminal teeth, rare in _E. candi da, and very short inner tepals
(9.4 mm).
Cluster analyses (Figs. 9-10). Hierarchical cluster analysis
largely conforms to the results of PCA for this group. In the
dendrogram produced with all 17 characters, two main clusters are
formed, _E. formosa at DC 2.062, and _E. candi da at DC 1.767. However,
both species groups cluster soon after, at DC 2.519. A single outlying
OTU occurs in each species group, OTU 3 (_E. formosa), and 27 (£.
candi da). Within each species group, further clustering on the basis of
presence or absence of staminal teeth is evident. The _E. candi da
outlying OTU does not fuse with the other OTU's until after both species
groups have formed a single cluster (DC 4.375). One of the putative
hybrids clusters with the _E. formosa OTU's, the other with _E. candi da.
The dendrogram for the reduced data matrix is much the same in topology,
with an expected decrease in the amount of clustering of toothed or
edentate forms of each species.
Eucharis bouchei complex (Table 7, Figs. 11-13)
PCA (Figs. 11-12). Cumulative variance of 71.9% percent across 20
OTU's was resolved in the first three PC's. Characters 5 (stamen
width), 6 (tube length), 9 (inner tepal length) and 14 (toothing)
contibuted the greatest magnitude of variance to PCI, especially
character 6. PC2 is largely a measure of outer tepal length (character

104
8), inner tepal width (11), staminal cup width (13) and toothing (14).
Characters 1, 7, and 14 also substantially contributed to the variance
reflected in PC2. Characters 2 (limb spread), 3 (length of free
filament), 13 (staminal cup width), and 15 (toothing) were the most
important sources of variance in PC3.
The three varieties of E. bouchei do not clearly resolve into
three phenetic groups in Fig. 11. Though var. bouchei shows a tendancy
to assemble along PC2 (21.1% total variance), this variety is still
widely distributed along PCI (38.7% total variance). One OTU each of
var. darienensis (no. 11) and dressleri (no. 2) form an outlying group,
as do OTU's 6, 7, and 15 of var. bouchei. Variety darienensis shows a
measure of phenetic congruence, but intergradation between it and
variety bouchei is still evident.
If the scattergram for the _E. bouchei complex is reformatted so
that PC2 and PC3 are visually accentuated (Fig. 12), grouping of OTU's
becomes largely a measure of androecial variance. In this scattergram,
the three varieties are resolved more clearly, particularly var.
bouchei. Variety darienensis, however, still intergrades with several
OTU's of var. bouchei. One of these OTU's (8), however, was collected
from Cerro Campana in Panama Province, an area of sympatry between these
two varieties. The third (no. 7) is a Costa Rican collection.
Cluster analysis (Fig. 13). Two major clusters are resolved in
the UPMGA dendrogram, each fairly heterogeneous. The first clusters at
a DC of 1.356. An outlying OTU (one of two representing var.
darienensis) fuses with this cluster at DC 1.921. Within this first
cluster, two subgroups emerge at DC's 1.207 and 1.213 respectively. The
former is made up entirely of OTU's representing var. darienensis. The

105
second is represents var. bouchei, with the single exception of OTU 5
(var. darienensis). OTU 5 forms together with OTU 8 (var. bouchei) an
outlying cluster to this second subgroup.
The second major cluster is formed at a DC of 2.502, near where
all clusters finally merge (DC 2.779). This smaller cluster is more
heterogenous than the first, but four OTU's of var. bouchei cluster at a
DC of 2.112. As in PCA, OTU's 2 and 11 (var. dressleri and darienensis
respectively) form a phenetic group.
Discussi on
Host species of Eucharis, particularly those with the widest
distributions, exhibit a high level of morphological diversity. Most
species found in the Amazon basin, for example, overlap to some degree
in quantitative floral characters (see Chapter XII). Such characters
are often the only ones available from herbarium material, unless the
collectors techniques and field notes have been meticulous. The results
of these phenetic studies not only confirm this variability, but also
resolve some morphological patterns in the genus.
The presence or absence of staminal dentation, among Amazonian
species of the genus, is a character of little or no taxonomic value.
This is evident in the PCA scattergrams (Figs. 1-2, 5-6) of Amazonian
and eastern Ecuadorean populations. Removal of these characters from
the analysis causes the immediate intergradation of any phenetic groups
based largely on this character. The use of eight androecial characters
by themselves did not successfully resolve phenetic groups among 87
OTU's from Amazonian populations.

106
In terms of resolving phenetic groups on the basis of 17 floral
characters, PCA and UPMGA were least successful with the large set of 78
OTU's representing Amazonian populations. Only _E. caste!naeana, the
smallest-flowered species of Eucharis subg. Eucharis, and most OTU's of
_E. formosa, the largest, were resolved phenetically as distinct groups.
Species of intermediate flower size (_E. bonplandi i, _E. candi da, _E.
cyaneosperma, and E_. ulei), form a large, heterogenous mosaic. Sneath
and Sokal (1973) warn of this problem when large, heteromorphic OTU sets
are chosen for analysis.
Phenetic analysis was more successful with smaller groups of OTU's
representing only 2 species or a single, polymorphic species complex.
The results of phenetic analyses of these two smaller groups can also be
compared with results of electrophoretic analysis of the same groups for
any correlative patterns.
Populations of _E. candi da and _E. formosa in the Oriente of Ecuador
segregate as distinct phenetic groups. The resulting scattergrams
(Figs. 7-8) and dendrograms (Figs. 9-10) also suggest that hybridization
has occured between these sympatric species. Patterns of genetic
variation (Chapter VIII) suggest a possible monophyletic origin of both
species in the Pastaza valley of Ecuador, with subsequent radiation into
adjoining areas. Radiation and secondary contact may have occurred more
than once. Infra-cluster variation does not show any geographic
congruence among the two species groups.
The Central American _E. bouchei semi-species complex does not
resolve phenetically as cleanly as the candida/formosa group. Staminal
cup morphology, however, does separate varieties to a fair degree (Fig.
12). Floral size characters in this group (Fig. 11) do not succeed as

107
well in resolving phenetic groups. Thus, the situation is exactly
opposite that of the eastern Ecuadorean species. The taxa of the E_.
bouchei group are tetraploid, putatively allotetraploid, and have even
higher levels of heterozygosity than the diploid Ecuadorean taxa
(Chapter VIII). Geographic isolation has probably been an important
factor restricting gene flow between populations (and consequently some
varieties) of _E. bouchei. By contrast, populations of _E. candi da and _E.
formosa in eastern Ecaudor are often sympatric.
Conclusions
Patterns of morphological variation in Eucharis are best resolved
by phenetic analyses when the OTU population represents only a few
closely related taxa. The degree of phenotypic plasticity in continuous
characters of floral size results in poor clustering of taxonomic groups
on the basis of such data, particularly when the OTU population is
highly heteromorphic. The presence or absence of stamina! dentation is
not a taxonomically significant character among Amazonian species of
Eucharis.
Analysis of the eastern Ecuadorean populations of E_. candi da and
E. formosa supports their treatment as distinct species, and suggests
that hybridization has occured between them. Varieties of E_. bouchei
resolve into relatively distinct phenetic groups only when androecial
characters are emphasized.
Species of Eucharis are usually rare, widely dispersed in their
natural habitats, and characteristically form small populations. If
most species are pollinated by female euglossine bees flying long

108
distances between populations, the potential for gene flow, maintenance
of heterozygosity, and consequent morphological diversity, is large.
The poor resolution of phenetic groups, particularly among species of
intermediate floral size, is probably a reflection of these factors.
In a recent review of morphological variation and speciation,
Davis and Gilmartin (1985) cite developmental factors (e.g.,
canalization, plasticity, epistasis) which weaken the correlation of
genetic and morphological divergence. They further conclude that
morphological divergence can proceed in random direction among plants.
The tendency to recognize taxonomic species in Eucharis, based on narrow
concepts of morphological discontinuity, is at variance with much of the
phenetic patterns that occur within the genus, and is further weakened
by what is known about the genetics, chromosome cytology, and
reproductive biology of the group. Morphological divergence in Eucharis
may be mostly a factor of rapid chromosomal change (see Chapter VII) and
peripheral isolation (Chapter IX). Where these evolutionary forces are
less acute, as among the taxa of the Amazon basin, phenetic groups are
much more difficult to distinguish.

109
Table 6.1. Characters used for multivariate analysis of Euchans
species.
1. Flower number.
2. Limb spread (mm).
3. Length of free filament (mm).
4. Width of free filament (mm).
5. Width of stamen (mm).
6. Length of tube (mm).
7. Width of tube at throat (mm).
8. Length of outer tepal (mm).
9. Length of inner tepal (mm).
10. Width of outer tepal (mm).
11. Width of inner tepal (mm).
12. Staminal cup length (mm).
13. Staminal cup width (mm).
14. Toothing of staminal cup:
1: bidentate, teeth acute
2: bidentate, teeth obtuse
3: irregularly toothed
4: quadrate
6: edentate
15. Cleft of staminal cup
0: none
1: < 1/5 length of cup
2: 1/5-1/3 length of cup
3: 1/3-1/2 length of cup
4: > 1/2 length of cup
16. Relative length of teeth:
0: edentate.
1: < 1/2 length of filament.
2: 1/2 length of filament.
3: = length of filament.
4: > length of filament.
17. No. ovules per locule.
5: lobed

110
Table 6.2. First three principle components for multivariate analysis
of Amazonian Eucharis.
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
1
0.073
0.331
0.232
2
0.461
0.029
-0.153
3
0.242
-0.048
-0.115
4
-0.113
0.019
0.282
5
-0.400
0.033-
0.469
6
-0.276
0.086
-0.308
7
0.404
-0.039
0.238
8
0.181
-0.145
-0.094
9
0.353
0.288
-0.431
10
-0.162
0.053
0.162
11
-0.170
0.028
-0.174
12
-0.209
-0.059
0.304
13
-0.185
-0.160
-0.102
14
0.105
0.148
-0.286
15
0.106
-0.847
-0.139
16
-0.005
-0.006
0.048
17
0.009
-0.019
-0.037
PERCENT OF
45.47
12.76
9.94
VARIANCE

Ill
Table 6.3. First three principle components for multivariate analysis
of Amazonian Eucharis (characters of staminal dentation
removed).
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
1
0.090
0.337
0.231
2
0.553
-0.029
-0.225
3
0.246
0.019
-0.201
4
-0.013
-0.034
-0.209
5
-0.365
0.054
-0.538
6
0.484
-0.083
0.342
7
0.191
-0.134
-0.079
8
-0.342
-0.305
0.314
9
-0.198
-0.014
0.269
10
-0.152
0.114
-0.193
11
-0.142
-0.024
0.012
12
0.147
-0.145
-0.432
13
0.006
-0.853
-0.022
15
0.010
-0.033
0.046
17
0.009
-0.021
-0.039
PERCENT OF
49.57
11.17
7.94
VARIANCE

112
Table 6.4. First three principle components for multivariate analysis
of Amazonian Eucharis (androecial characters only).
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
3
0.360
0.418
0.423
4
-0.087
-0.115
-0.275
5
-0.528
0.292
0.256
12
-0.212
-0.453
-0.156
13
-0.626
-0.055
0.290
14
0.089
0.521
-0.371
15
0.182
-0.308
-0.286
16
0.325
-0.391
0.593
PERCENT OF
42.98
19.49
10.26
VARIANCE

113
Table 6.5. First three principle components for multivariate analysis
of eastern Ecuadorean Eucharis.
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
1
0.119
0.374
0.182
2
0.310
0.076
0.033
3
-0.199
0.041
-0.458
4
0.093
0.096
-0.275
5
0.201
0.037
0.168
6
0.723
-0.062
0.115
7
-0.020
-0.063
-0.325
8
0.043
-0.122
-0.121
9
-0.054
0.142
0.396
10
0.213
0.192
-0.411
11
-0.006
0.082
-0.215
12
0.307
0.093
-0.025
13
0.215
-0.585
0.037
14
-0.062
-0.620
0.015
15
0.284
0.014
-0.347
16
-0.049
0.139
0.148
17
0.025
0.034
-0.054
PERCENT OF
36.33
16.51
11.92
VARIANCE

114
Table 6.6. First three principle components for multivariate analysis
of eastern Ecuadorean Eucharis (characters of stamina!
dentation removed).
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
1
0.137
0.381
0.175
2
0.355
0.010
0.342
3
0.058
0.046
-0.075
4
-0.076
-0.119
0.387
5
-0.633
0.035
-0.274
6
0.146
-0.061
-0.393
7
-0.418
-0.055
0.164
8
-0.338
0.110
0.459
9
-0.150
-0.191
-0.094
10
-0.181
0.158
-0.304
11
-0.196
-0.041
0.136
12
0.087
-0.774
0.054
13
0.035
0.370
0.118
15
0.183
0.133
-0.304
17
-0.010
0.038
-0.028
PERCENT OF
40.40
14.98
9.85
VARIANCE

115
Table 6.7. First three principle components for multivariate analysis
of the Eucharis bouchei complex.
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
1
0.151
0.317
0.120
2
-0.265
-0.189
0.340
3
-0.244
0.112
-0.440
4
-0.197
-0.141
-0.147
5
-0.375
0.129
0.059
6
-0.615
0.099
0.133
7
0.032
-0.302
-0.116
8
-0.100
-0.336
-0.106
9
-0.404
0.069
-0.061
10
0.017
0.168
-0.239
11
-0.030
0.386
0.137
12
0.156
-0.062
-0.045
13
0.013
-0.353
-0.524
14
-0.232
-0.381
0.216
15
-0.184
0.322
-0.436
16
-0.007
0.056
-0.121
17
-0.046
-0.195
0.020
PERCENT OF
38.71
21.12
12.03
VARIANCE

Figure 6.1. PCA scattergram based on variance across 17 floral characters in 78 OTU's representing
Amazonian Eucharis.

pCV-45-4T(7o
• Eucharl$ bakerlana
â– Jf E. bonplandll
E. candida
â–¡ (dentate)
(edentate)
'ÍTE. castelnaaana
E. cyaneosperma
E. formosa
© (dentate)
O (edentate)
X E. candida x formosa
★ E. pllcata
E. ulel
\ # (dentate)
O (edentate)

Figure 6.2. PCA scattergram based on variance across 15 floral characters in 78 OTU's representing
Amazonian Eucharis (characters of stamina! dentation removed).

PC 1-49.47%

Figure 6.3. PCA scattergram based on variance across 8 androecial characters in 87 OTU's representing
Amazonian Eucharis.

PC1:42.98%

Figure 6.4. Cluster analysis
floral characters in 78
Refer to Appendix Table
dendrogram based on variance across 17
OTU's representing Amazonian Eucharis.
1 for identification of OTU's.

DISTANCE
123

Figure 6.5. Cluster analysis dendrogram based on variance across 15
floral characters in 78 OTU's representing Amazonian Eucharis
(characters of staminal dentation removed). Refer to Appendix
Table 1 for identification of OTU's.

DISTANCE
125

Figure 6.6. Cluster analysis dendrogram based on
staminal characters in 87 OTU's representing
Refer to Appendix Table 3 for identification
variance across 8
Amazonian Eucharis.
of OTU's.

DISTANCE
127

Figure 6.7. PCA scattergram based on variance across 17 floral characters in 28 OTU's representing
Ecuadorean populations of Eucharis candida and E. formosa.

Eucharis candida
(dentate)
□ <«
a
\ed
enta
t e)
3:11.92%
E. formosa
©(dentate)
©(edentate)
x E. candida x formosa
no
kQ

Figure 6.8. PCA scattergram based on variance across 15 floral characters in 28 OTU's representing
Ecuadorean populations of Eucharis candida and jl. formosa (characters of staminal dentation
removed).

19.85%

Figure 6.9. Cluster analysis dendrogram based on variance across 17
floral characters in in 28 OTU's representing Ecuadorean
populations of Eucharis candida and E. formosa. Refer to Appendix
Table 5 for identincation or uiU's.

DISTANCE

Figure 6.10. Cluster analysis dendrogram based on variance across 15
floral characters in 28 OTU's representing Ecuadorean populations
of Eucharis candida and E. formosa (characters of stamina!
dentation removed). Refer to Appendix Table 5 for identification
of OTU's.

DISTANCE
135

Figure 6.11.
Eucharis
PCA scattergram based on variance across 17 floral characters in 20 OTU's representing
bouchei.

Eucharis bouchei
# var. bouchei
$ var. dressleri
â– Jfvar. darienensis

Figure 6.12. PCA scattergram based on variance across 17 floral characters in 20 OTU's representing
ruchan's bouchei, with PC3 emphasized.

139

Figure 6.13. Cluster analysis dendrogram based on variance across 17
floral characters in in 20 OTU's representing Eucharis bouchei.
Refer to Appendix Table 7 for identification of OTÜ's.

DISTANCE
141
2.899
2.635
2.372
2.108
1.844
1.580
1.317
1.053
0.789
0.526

CHAPTER VII
CHROMOSOME CYTOLOGY
Chromosome cytology of Amaryl1idaceae has been a favored subject
for investigation, chiefly due to the large size of the chromosomes and
availability of material (Sharma and Bal, 1956). The subject has been
reviewed by Flory (1977) and Meerow (1984). Mitotic studies have
dominated the literature. Microsporegensis occurs completely inside the
bulb when the inflorescence is nascent, and numerous bulbs must
therefore be sacrificed for meiotic analysis without guarantee that
necessary stages will be obtained (Nagalla, 1979; Ponamma, 1978;
Williams, 1981).
Nonetheless, chromosome cytology of only a single species of
Eucharis, E. amazonica, has been reported in the literature (Mookerjea,
1935; Nagalla, 1969; Sato, 1938). A large living collection of Eucharis
and Caliphruria species has allowed a nearly complete investigation of
somatic chromome cytology in the genus. The resulting data can be
applied to problems of species delimitation in Eucharis and Caliphruria,
as well as to wider questions of phylogenetic interest.
Materials and Methods
Root tips were collected from living collections, pretreated for
2-3 hours at room temperature in 10 ppm solution of o-isopropyl-N-
142

143
phenylcarbamate (Storey and Mann, 1967), rinsed in distilled water,
fixed in 3:1 mixture of 95% ETOH and chloroform (Carnoy's solution) at
18°C for 24 hr, then stored after fixation in 70% ETOH at 18°C. Root
tips were hydrolyzed in IN HCL at 50°C for 2-3 minutes, squashed, and
stained with iron aceto-carmine. Only temporary slides were made.
Metaphase configurations were photographed on a Nikon Labophot
photomicroscope with AFX-11 camera attachment, and haploid idiograms
constructed from photomicrographs. Counts were made for a minimum of
ten cells of each accession reported. Five metaphase configurations of
each accession were analyzed morphologically for diploid species, two
for tetraploids.
As absolute chromosome length can vary appreciably from cell to
cell due to differential affects of pre-treatment (Tjio and Hagberg,
1951; Schlarbaum and Tscuchiya, 1984), relative length, based on a value
of 100 for the haploid complement, was used to designate size class.
Relative size classes are based on correlations between absolute size
class [(modified from Battaglia (1955)] and relative length (RL) of
mitotic metaphase preparations of various species of Eucharis, Eucrosia,
Phaedranassa, and other Amaryllidaceae with 2n_ = 46, all of which have
similar relative length ranges. RL _> 7.0 = large, 5.0-7.0 = moderately
large, 3.5-5.0 = medium, <_ 3.5 = small. For tetraploid taxa, these
values were halved. For the single, putatively tripioid-derived species
(_E. amazónica), two-thirds of the diploid RL values were used to assign
size class. Chromosome morphology, modified from Battaglia (1955), is
defined as follows: metacentric, Arm Ratio (AR; long arm/short arm) =
1.00-1.10; near-metacentric, AR = 1.10-1.50; submetacentric, AR = 1.50-
3.00; subtelocentric, AR = > 3.00.

144
Karyotype morphology was analyzed by Principle Component (PCA) and
unweighted pairgroup cluster analysis (UPMGA of Sneath and Sokal, 1973)
with CLUSTAN vers. 2.1 on the NERDC computer system of the University of
Florida (see Chapter VI). Fifteen OTU's, representing non-hybrid,
diploid taxa of Eucharis, Caliphruria, and Urceolina were analyzed for
variance across thirteen characters. The characters were formed by
nesting chromosome morphology within size classes (e.g., large/meta- or
near-metacentric, large/submetacentric, etc.). Each OTU was then scored
for the number of chromosomes within each nested group (refer to Table
1). For the purposes of these analyses, meta- and near metacentric
morphologies were combined into a single category, as the distinction
between these two categories is oftentimes slight and therefore most
subject to error.
Results
A somatic chromosome number of 2_n = 46 is characteristic of
Eucharis and Caliphruria, as well as the single species of Urceolina
examined (Table 1). Two tetraploid species, E. bouchei from Central
America, and _E. bonplandii from Colombia, have 2_n = 92. Eucharis
amazónica, with 2_n = 68, is the only known departure from these 2n or 4n
karyotypes.
Karyotypes of all taxa studied are strongly bimodal (Figs. 1-25,
Table 1). Approximately half the chromosomes are large to medium in
size; the remainder are small. Mean numbers of chromosomes within each
size class across all 12 diploid, non-hybrid, Eucharis and Caliphruria
taxa examined are: large - 5.2 (SE 1.3), moderately large - 7.5 (SE

145
1.9), medium - 9.8 (SE 2.8), small - 23.5 (SE 2.7). If large and
moderately large are combined into a single size class (large), all taxa
(including both Urceolina microcrater) have either 12 or 14 large
chromosomes.
In most species of Eucharis (Figs. 2, 4, 5, 6-12, 14, 18-20, 220
E, 23, 24A, C, 25C, D, F), the two largest chromosome pairs are
metacentric or near-metacentric. In a single species, E_. astrophiala
(Figs. 1, 22A), the largest pair is submetacentric, as is the case in
Urceolina microcrater (Fig. 26). The second largest pair of E_.
astrophiala is subtelocentric. This species is a peripheral isolate of
subg. Eucharis, the only species of this subgenus on the western Andean
slopes south of Colombia. It has uniquely bullate-pustulate leaf
morphology, and the largest pollen grain in the genus. Caliphruria
subedentata is heteromorphic for the largest chromosome pair (Figs. 16,
25A). One of the homologs is metacentric, while the other is
submetacentric. Five different collections of this species all exhibit
this heteromorphism. Pollen of this species stains only 65-75% with
Alexander's (1969) stain, which may be a consequence of this
heteromorphism. The second largest chromosome pair of X Calicharis
butcheri, putatively an intergeneric hybrid between ¡E. sanderi and _C.
subedentata, is submetacentric, and may conceiveably be homologous to
the submetacentric member of the largest pair in _C. subedentata.
The second largest chromosome pair is also submetacentric in a few
species of Eucharis and Caliphruria: E_. bakeriana (Figs. 3, 22B), some
populations of E. bouchei (Figs. 13, 24B), E. bonplandii (Figs. 15,
24C), and C. korsakoffii (Figs. 17, 25B).

146
Telocentric chromosomes were observed in only two species, _E.
anómala (subg. Heterocharis, Figs. 18, 25C), and _E. caste!naeana (subg.
Eucharis, Figs. 4, 22D). The number of subtelocentric chromosomes,
however, is a major source of karyotypic variation among the species.
Secondary constrictions were resolved only in a single chromosome
of _E. bakeriana (subg. Eucharis, Figs. 3, 22B), and four chromosomes of
E. amazonica (subg. Heterocharis, Figs. 19, 25F). Terminal satellites
were not resolved in any species examined, even though Mookerjea (1955),
Nagalla ( 1969) and Sato (1938) all reported their occurence in E_.
amazonica. Mitotic metaphase configurations of cultivated material
(received without provenance) of E. amazonica did resolve several SAT-
chromosomes, however. In new collections from Peru, from which
karyotypes reported here were prepared, satellites were not apparent.
Tetraploidy in Eucharis is limited to two species, E. bonplandii,
a rare Colombian species, and JE. bouchei from Central America.
Karyotypically, the tetraploid Eucharis species are considerably
heteromorphic (Fig. 24). Karyotypes of two geographically isolated and
morphologically distinct populations of E_. bouchei var. bouchei (Figs.
13-14, 24A-B; Table 1) are quite different. Eucharis bouchei var.
dressleri is an unstable tetraploid (Figs. 11-12, 24C). Fifteen percent
of all root cells from which metaphase counts were obtained had 46
chromosomes.
Phenetic analyses of karyotype variation
PCA. Ordination of 15 diploid karyotypes by principle components
resolved almost 70% of total variance in the first three principle
components. By exploring the variance components of each of the three

147
PC's (Table 2), it is possible to determine which categories of
chromosome morphology are the most variable. From this, one can perhaps
infer the patterns of karyotypic change that has occured among species
and between genera. Characters 2 (1arge/submetacentric), 5 (moderately
large/submetacentric) 9 (medium/subtelocentic), and 15
(small/subtelocentric) were the most important contributors to total
variance of PCI. Characters 3 (large/subtelocentric), 4 (moderately
1arge/metacentric), 5, and 11 (small/submetacentric) are largely
represented in PC2. PC3 is weighted for characters 4, 6 (moderately
large/subtelocentric), 7 (medium/metacentric) and 10
(smal1/metacentric).
Ordination by the first three PC's produces the scattergram in
Fig. 27. Along PCI, the component of greatest variance, almost all the
karyotypes are found in the same general area of the scattergram.
indicating that in terms of chromosome categories large-submetacentric,
moderately 1arge-submetacentric, medium-subtelocentric, and small-
subtelocentric, the taxa do not vary appreciably from each other. A
notable exception is E. bakeriana. This species has 10 moderately
large-subtelocentric chromosomes (six is the highest number to occur in
all other taxa analyzed), and the only species to have any small-
subtelocentric chromosomes.
Greatest phenetic differentiation in karyotype occurs along PC2.
Eucharis astrophiala is the most isolated taxon along this component.
This species has the largest number of moderately large-submetacentric
chromosomes (10), the category which contributed the greatest variance
to PC2. Eight taxa (E. anómala, E. bouchei var. dressleri, E.
caste!naeana, E. cyaneosperma, E. formosa from Ecuador, E. ulei, C.

148
subedentata, and Urceolina microcrater) form a relatively distinct
phenetic group along PC2. The similarity of karyotype of the sibling
species E. cyaneosperma and E_. ulei is evident by their close proximity
in the scattergram. The remaining taxa in this phenetic group are a
heterogeneous assemblage of widely related species. Eucharis anómala
and E. caste!naeana separate from all other taxa along PC3 on the basis
of their two, small, telocentric chromosomes. The remaining taxa (_E.
candi da, E. f ormosa from Peru, E_. pi i cata and C. korsakoffi i) are united
along PC2 but separate along the length of PCI. The karyotype
relationship of both subspecies of E. pi i cata (Figs. 8-10, 23C-D; table
1) is evident by their proximity in the scattergram. The karytype
divergence of Peruvian _E. formosa from Ecuadorean populations is evident
as well by the distance between these two karyotypes in the scattergram.
Cluster analysis. The dendrogram generated by the UPGMA algorithm
(Fig. 28) supports many of the results of PCA. The karyotype of E_.
bakeriana is a distant outlyer to all other OTU's, fusing with the rest
of the group at a distance coefficient (DC) of 4.408. Eucharis
astrophiala is also an outlyer, but at a DC of only 2.630. Other than
these two OTU's, three main clusters are formed in the dendrogram. The
two populations of _E. formosa do form a cluster at DC 0.363, but not
until after the two subspecies of E_. pi i cata join with Peruvian E_.
formosa. Eucharis ulei and its sibling species E. cyaneosperma join at
a DC of only 0.131. The diploid karyotype of JE. bouchei var. dressleri
joins this cluster at DC 0.822. Caliphruria korsakoffii and Urceolina
microcrater fuse at a DC 0.509. Caliphruria subedentata is an outlyer
to this center cluster. The third cluster is a heterogeneous one.
Eucharis anómala and E_. caste!naeana fuse at a relatively high DC of

149
1.252, probably more on the basis of their small-telocentric chromosomes
than any other feature of their karyotypes. Eucharis candida joins them
at a DC of 1.602.
Discussion and Conclusions
A somatic chromosome number of 2£ =46 (or derivations thereof) is
characteristic of most genera of neotropical Pancrati oi dinae (Di Ful vio,
1972; Flory, 1977; Meerow, unpubl. data; Williams, 1981). All
paleotropical genera have 2n_ = 22 or 20 (Meerow, unpubl. data; Ponnamma,
1972; Zaman and Chakraborty, 1974). This suggests a polyploid origin
for the neotropical genera of the infrafamily from an ancestor with 2_n =
22 (cf. Pancratium L.) via chromosome fragmentation and subsequent
doubling (Lakshmi 1978; Sato 1938). The most common base number
occurring in the Amaryllidaceae is x = 11 (Flory, 1977; Goldblatt, 1976;
Traub, 1963), and 2_n = 22 characterizes many widely unrelated genera.
Two major trends characterize amaryllidaceous karyotype evolution
(Meerow, 1984). Certain genera exhibit great karyotypic stability, with
low frequency of polyploidy [(e.g., Crinum L. (Jones and Smith, 1967;
Raina, 1978); Hippeastrum Herbert (Naranjo and Andrada, 1975)]. Similar
chromosome morphology among the species of such genera is
characteristic. Their polyploids tend to be autoploid in origin. At
the other extreme, a genus may exhibit great variation in both
chromosome number and morphology [e.g., Hymenocal1is Salisb. (Flory,
1976; Flory and Schmidhauser, 1957; Lakshmi, 1978); Lycoris Herbert
(Inariyama, 1931, 1933, 1937, 1953; Bose and Flory, 1963)]. In such

150
genera, allopolyploidy has been implicated as an important factor in
speciation.
Eucharis and related genera are somewhat intermediate between
these two extremes. Chromosome number is very stable in Eucharis, and
incidences of polyploidy are low. The origins of the polyploids (i.e.,
whether auto- or alloploid) are inconclusive (attempts to secure meiotic
figures have been unsuccessful). But changes in chromosome morphology
among the species has been extensive enough that a general karyotypic
formula cannot be constructed, as has been done for Crinum (Jones and
Smith, 1967; Raina, 1978) and Hippeastrum (Naranjo and Andrada, 1975).
Chromosomal symmetry has classically been cited as evidence of
karyotypic evolution (Levitsky, 1931; Stebbins, 1950), i.e., karyotype
of greatest symmetry in a particular phylogeny is the most primitive,
and that of least symmetry, the more derived. Jones (1978) has
challenged this tenet, though the evidence for the reverse process is
inextricably linked to accompanying changes in chromosome number [i.e.,
Robertsonian changes (Robertson, 1916)]. Centric fusion and centric
fission have respectively been implicated in the evolution of Lycoris
(reviewed by Jones, 1978) and Hymenocallis (Flory, 1976). In Eucharis
and Caliphruria, no such change in number is in evidence. Thus,
pericentric inversion, centric shift, or unequal translocations (Grant,
1975; Jackson, 1971) would be the most likely causative factors
generating transformations in chromosome morphology of Eucharis and
Caliphruria.
Morphological change in the largest chromosome pair in Eucharis
and related genera is rare, but in both cases (Eucharis astrophiala and

151
Urceolina microcrater), large-scale phenetic divergence is correlated
with such change, in one case at the generic level.
Slightly more common (4 taxa) is the change in the second largest
chromosome pair, from metacentric to submetacentric. Again, a level of
morphological divergence correlates in these taxa (_E. bonplandii, _E.
bouchei, E_. bakeriana, and _C. korsakoffii). The case of _E. bakeriana is
particularly interesting. This rare species occurs in the same area as
some Peruvian populations of E_. formosa. A measure of karotypic
relationship between these two species in Peru may be the moderately
large subtelocentric chromosome (no. 9 in Figs. 22B and 23B) with a very
short arm. Except for the submetacentric second-largest pair in _E.
bakeriana (along with generally increased asymmetry), these two
karyotypes are very similar. The species are cladistically very close
as well (see Chapter IX). Eucharis bakeriana may represent a case of
rapid phenetic divergence via chromosomal change.
The large, heterogenous group in the scattergram (Fig. 27) may
represent taxa with more ancestral karyotype morphology (i.e., more
symmetrical), since it includes taxa of different genera as well as
Eucharis species. The putatively most primitive species of Eucharis, _E.
anómala, is included within this group. Number of subtelocentric
chromosomes is the best indicator of symmetry variance in Eucharis
karyotypes, and these taxa do have the lowest numbers of subtelocentrics
(2-6). Among the karyotypes of this group, the large chromosome size
class and the metacentric subclass of moderately large chromosomes show
the least variance (Table 1). Enough variance is expressed in all other
categories to make generation of a karyotype formula for Eucharis
difficult.

152
Karyotypes of Caliphruria korsakoffi and Urceolina microcrater
appear to have some phenetic similarity, on the basis of cluster
analysis (Fig. 28). This is all the more interesting due to the fact
that £. korsakoffii is the only species of Caliphruria found in Peru.
Urceolina is completely endemic to Peru. Since both are divergent taxa,
I would suspect that karyological features common to both species
represent symplesiomorphies.
The presence of telocentric chromosomes in both _E. anómala and ¡E.
caste!naeana are probably independent occurrences, considering the
phenetic and cladistic distance between these species. The presence of
telocentrics, however, correlates with green, thin-walled fruits in both
species.
Eucharis amazónica, with 2_n = 68, is an unusual species. Known in
the wild only from the Huallaga valley of Peru, _E. amazonica has never
been collected in fruit, and will not set capsules with self, sibling,
or interspecific pollen. Pollen stains only 50-65% with Alexander's
(1969) stain. On the basis of meiotic study, Nagalla (1979) considered
_E. amazoni ca an aneuploid with a 6_x + 2 constitution. At metaphase I
she observed 873 univalents, 325 bivalents, 61 trivalents, 61
quadrivalents, 30 pentavalents, and 45 hexavalents in the 35 cells
analyzed. Occurrence of bridge fragment configurations at anaphase I
suggested inversion heterozygosity. Nagalla (1979) concluded that the
species is a segmental allo-hexaaneuploid. I believe _E. amazoni ca is a
triploid derived isolate of the genus (3x_ - 1), with many ancestral (or
derived, in the case of secondary petiolar bundles) characters shared
with E. anómala. A similar case has occured in Eucrosia (Meerow, 1987),
another Andean genus of pancratioid Amaryllidaceae. Eucrosia bicolor

153
Ker Gawler has 2_n = 68 (the rest of the genus has 2_n = 46). In _E.
bicolor, however, pollen stainability is not reduced, and plants have
been collected in fruit.
Eucharis bouchei var. dressleri is an unstable tetraploid.
Somatic cells of the root tips have both tetraploid (92) and diploid
(46) counts. Snoad (1955) reported karotype instability in Hymenocallis
narcissif1 ora, but aneuploid numbers as well as polyploid counts were
observed in the cells of the latter species.
Polyploid species of Eucharis do not show any marked effects of
increased chromosome number beyond an increase in size of root cells,
and a slight thickening of the leaf laminae. Eucharis bonplandii, in
addition, develops a glaucous bloom on the leaves in strong light.
Tetraploidy may, however, have aided the successful colonization of
Central America by the E. bouchei complex (cf. Stebbins, 1985; see
Chapter IX).
Patterns of chromosomal variation (Figs. 27-28) confirm patterns
of phenetic variation (Chapter VI) and cladistic relationship (Chapter
XI). Karyotypes of _E. pii cata, and sibling species E. ulei and E.
cyaneosperma respectively, are very similar. Cluster analysis indicates
that the karyotypes of E_. bouchei, _E. cyaneosperma and E_. ulei are
similar. Cladistic analysis indicates that these three taxa comprise a
monophyletic group. Karyotype divergence is evident between E. candi da
and _E. formosa, mirroring morphological divergence (Chapter VI).
Isozyme variation (Chapter VIII), however, obscures the relationship
between these two sibling species.
In conclusion, karyotype diversity has undoubtedly contributed to
species and generic divergence in Eucharis, Caliphruria, and Urceolina.

154
Chromosomal change has not been through dramatic reorganization of the
genome through Robertsonian changes, but probably via non-reciprocal
interchanges between chromosomes, infra-chromosomal structural change,
and mutation. Evidence of mutation is the presence of rare alleles in
all species complexes that have been electrophoretically analyzed
(Chapter VIII). In some cases, rapid, sympatric speciation may have
been facilitated by chromosomal structural change.

Table 7.1. Karyotype data, Eucharis, Caliphruria, and Urceolina. All vouchers deposited at FLAS unless
otherwise stated"!
TAXON, CHROMOSOME CHROMOSOME SIZE CHROMOSOME SIZEb CHROMOSOME
VOUCHER, & NUMBER RANGE GROUPS MORPHOLOGY
FIG. NO. (relative length)3 L/ ML /M/S L/ ML /M/S
EUCHARIS SUBG. EUCHARIS
E. astrophiala 46 2.05 - 8.27
(Meerow 1111)
Figs. 1, 22A
E. candida 46
1.93 - 9.69
(Schunke 14155B)
Figs. 2, 22B
E. bakeriana 46
1.71 - 10.53
(Meerow 1108)
Figs. 3, 22C
4 8 10
8 4 8
4 10 10
24 m:
nm:
sm: 2
st: 2
26 m: 2
nm: 2
sm: 2
st: 2
22 m: 2
nm:
sm: 2
6
10
6 10 8
2
8
2 14
6 4
4
2 6
4 16
OTU NO. &
LABEL FOR PCA &
CLUSTER ANALYSIS
9, ASTRO
2, CANO
13, BAK
st:
10
4
U1
<_n

Table 7.1—continued
TAXON, CHROMOSOME CHROMOSOME SIZE CHROMOSOME SIZEb
VOUCHER, ¿1 NUMBER RANGE GROUPS
FIG. NO. (relative length)3 L / ML / M / S
castelnaeana 46 2.04 - 11.45 4 8 12 22
(Schunke 14156)
Figs. 4, 22D
E. cyaneosperma 46 2.27 - 9.48 6 6 14 20
(Meerow 1032)
Figs. 5, 22E
E. formosa 46 2.12 - 11.10 6 6 10 24
(Schunke 14174)
Figs. 6, 23B
CHROMOSOME0 OTU NO. &
MORPHOLOGY LABEL FOR PCA &
L / ML / M / S CLUSTER ANALYSIS
m:
nm: 4
sm:
st:
t:
m: 2
nm: 2
sm: 2
st:
m: 4
nm:
sm: 2
st:
4
4
2
2
2
2
10
2
6
6
4
6
4
14
2
2
6
6
8
4
14
6
3, CAST
8, CYAN
1, FORM-P
cn
cr>

Table 7.1—continued
TAXON, CHROMOSOME CHROMOSOME SIZE CHROMOSOME SIZEb CHROMOSOME0 OTU NO. &
VOUCHER, & NUMBER RANGE GROUPS MORPHOLOGY LABEL FOR PCA &
FIG. NO. (relative length) L/ ML /M/S L/ ML /M/S CLUSTER ANALYSIS
E. formosa 46
1.76 -
11.10
4
10
6
26
m:
2
6
11,
FORM-E
(Meerow 1099)
nm:
2
10
Figs. 7, 23A
sm:
6
4
10
st:
4
2
E. plicata subsp. 46
2.23 -
11.11
6
6
8
26
m:
4
5,
PLIC-P
pi i cata
nm:
4
16
(Meerow 1025)
sm:
2
2
4
6
Figs. 8, 23C
st:
4
4
E. plicata subsp. 46
2.41 -
11.43
4
8
8
26
m:
4
6,
PLIC-B
brevidentata
nm:
4
2
14
(Meerow 1143)
sm
2
6
8
Figs. 10, 23D
st:
6

Table 7.1—continued
TAXON, CHROMOSOME
VOUCHER, & NUMBER
FIG. NO.
t. ulei 46
(Schunke 14153)
Figs. 9, 23E
£. bouchei var. 46, 92
dresslerid
(Meerow 1107)
Figs. 11-12, 24C
t. bouchei var. 92
bouchei
(Meerow 1157)
CHROMOSOME SIZE CHROMOSOME SIZEb CHROMOSOME0
RANGE GROUPS MORPHOLOGY
(relative length)3 L/ ML /M/S L/ ML /M/S
2.18 -
9.60
6
6
12
22
m:
2
2
nm:
4
6
14
sm:
2
2
2
6
st:
2
2.07 -
9.63
4
10
14
18
m:
4
2
nm:
6
10
sm:
4
6
8
st:
6
0.54 -
5.27
14
16
14
48
m:
2
nm:
2
2
18
sm:
10
6
6
28
st:
2
10
6
OTU NO. &
LABEL FOR PCA &
CLUSTER ANALYSIS
4, ULEI
15, BOUCHEI
Figs. 13, 24B
CJ1
00

Table 7.1—continued
TAXON, CHROMOSOME CHROMOSOME SIZE CHROMOSOME SIZEb CHROMOSOME OTU NO. &
VOUCHER, & NUMBER RANGE GROUPS MORPHOLOGY LABEL FOR PCA &
FIG. NO. (relative length)3 L/ ML /M/S L/ ML /M/S CLUSTER ANALYSIS
E. bouchei var. 92
0.85
- 4.54
10
18
16
48
m:
2
2
4
6
bouchei
nm:
2
6
28
(Meerow 1125)
sm:
6
8
4
14
Figs. 14, 24A
st:
8
2
E. bonplandii 92
0.95
- 4.82
14
12
24
42
m:
6
(Bauml 686, HUNT)
nm:
6
6
18
Figs. 15, 24D
sm:
2
4
16
18
st:
6
8
2
EUCHARIS SUBG. HETEROCHARIS
E. anómala 46
2.13
- 10.87
6
8
6
26
m:
2
10, ANOMALA
(Meerow 1141)
nm:
4
2
18
Figs. 18, 25C
sm:
6
6
6
st:
2
2

Table 7.1—continued
TAXON, CHROMOSOME
VOUCHER, & NUMBER
FIG. NO.
E_. amazoni ca 68
(Schunke 14179)
Figs. 19, 25F
E. X grandiflora 46
(Meerow 1104)
Figs. 20, 25D
X Calicharis 46
butcheri
CHROMOSOME SIZE CHROMOSOME SIZE6 CHROMOSOME0
RANGE GROUPS MORPHOLOGY
(relative length)3 L/ ML /M/S L/ ML /M/S
t:
2
1.37 -
7.00
10
10
12
36
m:
2
2
2
nm:
4
16
sm:
2
2
18
st:
4
6
10
2.24 -
9.17
8
4
8
26
m:
2
2
nm:
2
2
14
sm:
2
2
4
10
st:
2
2
2
2.24 -
10.47
6
6
16
18
m:
2
nm:
2
2
6
12
sm:
2
4
8
4
st:
2
2
OTU NO. &
LABEL FOR PCA &
CLUSTER ANALYSIS
(Meerow 1110)
Figs. 21, 25E
CT>
O

Table 7.1—continued
TAXON, CHROMOSOME CHROMOSOME SIZE
VOUCHER, & NUMBER RANGE
FIG. NO. (relative length)3
CALIPHRURIA
C. korsakoffii 46 2.16 - 10.16
(Meerow 1098)
Figs. 17, 25B
C. subedentata6 46 2.55-10.21
(Meerow 1156)
CHROMOSOME SIZE5
GROUPS
L / ML / M / S
8 4 10 24
4 10 8 24
Figs. 16, 25A
CHROMOSOME0 OTU NO. &
MORPHOLOGY LABEL FOR PCA &
L / ML / M / S CLUSTER ANALYSIS
m: 2 2
nm: 2 2
sm: 4 4 4
st: 2
m: 4
nm: 2 4
sm: 6 2
st: 2 2
2 7, KORS
20
2
10 14, SUBE
8
6

Table 7.1—continued.
TAXON, CHROMOSOME
VOUCHER, & NUMBER
FIG. NO.
CHROMOSOME SIZE
RANGE
(relative length)3
CHROMOSOME SIZEb
GROUPS
L / ML / M / S
CHROMOSOME
MORPHOLOGY
L / ML /
c
M /
S
OTU NO. &
LABEL FOR PCA &
CLUSTER ANALYSIS
URCEOLINA
U. microcrater 46
2.20 - 10.07
6
6 14 20
m:
2
2
12, URCE
(Schunke 13633)
nm: 4
4
14
Fig. 26
sm: 2 4
6
4
st: 2
2
abased on a value of 100 for the haploid complement
bL = long, ML = moderately long, M = medium, S = small
cm = metacentric, nm = near-metacentric, sm = submetacentric, st = subtelocentric,
t = telocentric
ddiploid cell analyzed
eheteromorphic pair counted as "metacentric"

163
Table 7.2. First three principle components for multivariate analysis
of karyotypes of Eucharis, Caliphruria, and Urceolina.
COMPONENT NUMBER
CHARACTER
NUMBER
1
2
3
1
0.231
-0.062
0.172
2
0.369
0.207
0.189
3
0.232
0.440
-0.291
4
-0.101
-0.264
-0.416
5
-0.490
0.565
0.004
6
0.196
-0.006
-0.639
7
-0.058
0.240
-0.243
8
0.072
-0.014
-0.161
9
0.303
0.236
-0.187
10
0.125
-0.244
-0.302
11
0.169
-0.367
0.112
12
0.562
0.196
0.194
13
0.085
0.155
0.086

Figures 7.1-7.5. Root-tip cell mitotic metaphase configurations of
Éücharis species. 1. E. astrophiala. 2. E. candida. 3. E.
bakeriana. 4. E. caste!naeana. Arrows indicate telocentric
chromosomes. 57 t. cyaneosperma. All scales = 10 urn.

165
v.J-'X

Figures 7.6-7.10. Root-tip cell mitotic metaphase configurations of
Eucharis species. 6. E. formosa from Peru. 7. E. formosa from
Ecuador. 8. E. pi i cata subsp. plicata. 9. E. uTei~ 10. E.
pi i cata subsp. brevi dentata. All scales = 177 fim.

167

Figures 7.11-7.15. Root-tip cell mitotic metaphase configurations of
Eucharis species. 11-12. E. bouchei var. dressleri. 11. Diploid
cell. 12. Tetraploid cell. 13. É. bouchei var. bouchei from
Colón province in Panama. 14. E.“bouchei var. bouchei from Cocié
province in Panama. 15. E. bonplandii. Two small chromosomes are
outside the figure frame. AI I scales = 10 yum.

169

Figures 7.16-7.21.
and hybrids.
18. E. anómala.
grandTflora. 2l
Root-tip cell mitotic metaphase configurations of
16. C. subedentata. Arrows indicate heteromorphic
Arrows indicate telocentric chromosomes. 19. t
X Calicharis butcheri. All scales = 10yum.
Eucharis and Caliphruria species
homologs. 17. C. korsakoffii.
. amazónica. 2Ü. E. X

171

Figure 7.22. Haploid idiograms of Eucharis karyotypes. A. E.
astrophiala. B. _E. bakeriana. C. E. candida. D. _E. —
caste1!naeana. E. E. cynaenosperma.

U ll 12 02 61 81 Zl 91 SI W £1 21 ll 01 6 8 Z 9 S fr 8 2 l
â– â– â– â– â– â– RiRRRRHESilili!
"-â– â– â– â– â– â– â– â– â– llllHHgH
a
â–  â– â– â– HIlRlIllllilll
Bi
9bhbirrhbhiIHII
mill
â– HRHlIilH
â– â– â– â– lllliRIiillll
£Ll

Figure 7.23. Haploid idiograms of Eucharis karyotypes. A. E. formosa
from Peru. B. E_. formosa from Ecuador. C. _E. pi i cata subsp.
pi i cata. D. E. pi i cata subsp. brevidentata. E. E. ulei.

ti ll 11 OZ 61 81 Zl 91 SI M Cl Zl II 01 6 8 L 9 5 fr t Z I
[iHhRBBIHIH llRllllilIÃœl
a
íiHbbHHIHIBIII
"■■■■■■■B"BaaiBBB|BiHB¡
I nlillllll
illllllll
«■■■■■■■■bbbbb-bbbiih
BHHBBBB|llBgHB-BBflB||
iBiilfllll
niiiiii
«■I!
SZI

Figure 7.24. Haploid idiograms of Eucharis karyotypes. A. E. bouchei var. bouchei from Colón
province in Panama. B. E. bouchei var. bouchei from Cocié province in Panama. C. bouchei
var. dressleri, diploid "celTI DT-E. bonplandii.

In..
¡Eiiiiiiiiln ■lilillalli!111!■■■■■■■■■■Mb■■■■_
j,l,l,l„„j,l,llllllllllla.11
â–  I â–  9 â– â– !â– â– â–  SHI 1
IfülIüliUIH'lüi
illil â– â– bSbEIIIbEBkbShbh
IIIIIIIllllillliiBBBB”
y j| ^ B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

Figure 7.25. Haploid idiograms of Eucharis and Caliphruria karyotypes.
A. _C. subedentata. Letters A and B indicate heteromorphic
homologó B. C. korsakoffii. C. E. anómala. D. E. amazónica.
E. E. X grandiflora"! E. X CalicharTs butcheri.

179
IiIiIbIii ■llüaHiHiaHiiBi
jlllljijil111111111111»"
A B ^
IBBBIBHBBbBhb
illBlElBllBflHaBKBnsaa-
Mllll1"
üIIhIghIbBHBHEbiBhbBbíB!
IIIIIIIIBBIHH
II
lililí1»1
lilis»
||l|li|l|l!|i||IIB-1111
Ilii.L.
liijjiliiiiiii-r-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
iBIbIBbIbBBBBbBmB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 IB 19 20 21 22 23
bBbBBbbBBbbbhbbbbbhb
^BHBHBBflBflflS

Figure 7.26. Root-tip cell mitotic metaphase configuration and haploid
fdiogram of Urceolina microcrater.

181
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
CS O

Figure 7.27. PCA scattergram of karyotype variance among fifteen Eucharis, Caliphruria, and Urceolina
species. Refer to Table 1 for data matrix and OTU designations.

00
CO

Figure 7.28. UPGMA dendrogram of karyotype variance among fifteen
Tucharis, Caliphruria, and Urceolina species. Refer to Table 1
for data matrix and ÓTU designations.

DISTANCE
185
4.622 â– â– 
4.151 -â– 
3.681
3.210 -•
2.740 -â– 
2.269 -
1.799 â– â– 
1.329 --
0.858 --
0.388 -
1

CHAPTER VIII
ELECTROPHORETIC ANALYSES OF ISOZYME VARIATION
The use of electrophoretic analyses of isozyme variation in plant
systematics has recently begun to be applied widely, and has been the
subject of several reviews (Gottlieb, 1971, 1977, 1981a, 1982, 1984;
Crawford, 1983, 1985). A number of investigations (e.g. Gray et al.,
1973; Lee and Fairbrothers, 1973; Scogin, 1969), or reviews (Turner,
1969) of this application of electrophoresis concluded that isozyme
variation in plants was too extensive to be successfully applied to
systematic and phylogenetic questions. Unfortunately, most of these
early, and even some more recent, studies (e.g., Payne and Fairbrothers,
1976) focused on non-specific enzyme systems such as esterases,
peroxidases and phosphatases, which have large numbers of isozymic forms
and thus generate complex electrophoretic phenotypes consisting of
numerous bands (Gottlieb, 1977; Crawford, 1983). Interpretation of such
complex banding patterns requires formal genetic analysis with a large
population of segregating progeny (Crawford, 1983), as has been
.effectively demonstrated by Rick and coworkers (e.g., Rick et al., 1976,
1977; Rick and Tanksley, 1981) for Lycospersicon (Solanaceae).
Gel electrophoresis can be applied to a wide variety of
phylogenetic and systematic problems which more traditional
morphological criteria fail to resolve (Crawford, 1983; Gottlieb, 1977;
Sytsma and Schaal, 1985). Unlike many morphological characters, which
may demonstrate a great deal of environmental or developmental
186

187
plasticity, the electrophoretic phenotype is more directly equatable
with genotype.
Electrophoretic evidence can be utilized to address: (1) genetic
variation among conspecific populations (e.g., Crawford and Bayer, 1981;
Crawford and Smith, 1984; Gottlieb, 1975; Soltis, 1981; see Crawford,
1983 and Gottlieb, 1977, 1981a for additional references); (2) genetic
divergence among congeneric species, with attendent focus on the genetic
processes of speciation (e.g., Crawford and Smith, 1982a, b; Gottlieb,
1973a, b; Heywood and Levin, 1984; Haulfler, 1985; Lowrey and Crawford,
1985; Soltis, 1985; Sytsma and Schaal, 1985; Werth et al., 1985; see
Crawford, 1983, 1985 and Gottlieb 1977, 1981a for other references); (3)
resolution of polyploid taxa and insight into their origins (e.g. Bayer
and Crawford, 1986; Crawford and Smith, 1984; Gottlieb, 1973c, 1981b;
Roose and Gottlieb, 1976; Soltis, 1986); (4) origins of cultivated
plants (e.g., Decker, 1985; Doebley et al., 1984; Rick and Fobes, 1975a;
Torres et al., 1978); and (5) testing hypotheses of broad systematic or
evolutionary significance, e.g., genetic variation in relation to
breeding system (Allard, 1975; Allard and Kahler, 1971), edaphic
specialization (Babbel & Selander, 1974), interspecific (Levin, 1975) or
intergeneric (Soltis and Soltis, 1986) hybridization.
A great deal of the recent work applying gel electrophoresis to
problems in plant systematics has been conducted by Crawford or Gottlieb
and their coworkers (see Crawford, 1983, 1985 and Gottlieb, 1977, 1981a,
1982 for extensive literature reviews). Much of this work has focused
on annual or herbaceous perennial temperate zone plants in a few
families, e.g., Asteraceae, Onagraceae, most of which occur in large
populations. Electrophoretic studies of both woody and tropical plants

188
are not plentiful (Sytsma and Schaal, 1985). Plants with limited or
rare distributions in the wild have also not been widely investigated.
Malaysian Dipterocarpaceae have been subjects of limited isozyme studies
(Gan et al., 1977; Gan et al., 1981; Ashton, et a!., 1984). Genetic
variation in South American Lycopersicon species has been studied in
detail (Rick and Fobes, 1975a, 1975b; Rick et al., 1976, 1977).
Hunziker and Schaal (1983) investigated isozyme variation in three
species of Bulnesia, a woody genus of South American Zygophyllaceae. A
phylogeny of Solanum sect. Lasiocarpa (Solanaceae) of northern South
America, based heavily on isozyme data, was detailed by Whalen and
Caruso (1983). Hawaiian species of Tetramolopium (Asteraceae) were
surveyed for evidence of allozyme divergence (Lowrey and Crawford,
1985). Sytsma and Schaal (1985) studied genetic variation in the
shrubby species of Lisianthus (Gentianaceae) in Panama.
Eucharis are exclusively tropical plants of rainforest understory.
They are rare and widely dispersed in the wild, and are petaloid
monocots. Studies of genetic variation of any plant group fitting just
one of these three characteristics are very limited. Thus, an attempt
to quantify isozyme variation in Eucharis, which fits all three
conditions, seemed a worthy avenue of investigation.
Materials and Methods
Population and Material Selection
Two complexes of populations were selected for analysis of isozyme
variation; (1) the E. bouchei tetraploid complex of Panama, and (2) the

189
E. candida/formosa complex of Amazonian Ecuador, two phenetically
distinct but often sympatric species.
Eucharis bouchei complex (Table 1, Fig.l). Eucharis bouchei is a
tetraploid and highly polymorphic complex of Central American Eucharis.
The species is concentrated in Panama, but collections have been made in
Costa Rica and Guatemala. I recognize three varieties chiefly on the
basis of staminal cup morphology (Chapter XII). Five populations were
included in this analysis. These included three populations of E_.
bouchei var. bouchei, one from El Valle de Antón in Cocié province of
Panama, and one each from Cerro Brujo and Rio Iguanitas respectively in
Colón province; and one population of var. dressleri, also from El
Valle. The fifth population represented _E. bonplandii, a rare species
from Colombia, also tetraploid. These taxa are the only tetraploid
species so far encountered in Eucharis. Sample size varied from
population to population (Table 1) but did not exceed three plants in
any one population.
Eucharis candida/formosa complex (Table 2, Fig. 2). Eucharis
candi da and _E. formosa are the only species found in Amazonian Ecuador
north of the Rio Pastaza valley. From herbarium study alone, these
species form a mosaic of flower size and staminal cup morphology that
seemed taxonomically insoluble until living material was flowered in
cultivation. They often grow sympatrically, and several putative
hybrids have been collected. Both species occur in Amazonian Peru and
Colombia as well, but are rarer outside of Ecuador. Four populations of
i. formosa and two of E_. candi da were involved in the analysis. The
fourth population of E_. formosa represented a Peruvian population of the
species. Two putative hybrid populations were also included in the

190
analysis. Sample size was one in all but the Limoncocha population of
Í. formosa, where n = 3.
A note on population number and sample size. In each of these
studies, I have included as many populations of a particular taxon as
were available (and assignable to species) in living plant collections.
Crawford (1983) and Gottlieb (1977, 1981a) have surveyed genetic
identities among conspecific plant populations. Genetic identites range
from 0.87-1.00, with the greatest number above 0.95. Gottlieb (1981a)
stressed plant breeding system as an important factor by which to
regulate sample size for isozyme studies. Inbreeding plants either
exhibit very little genetic variation among populations, or else wide
variation due to to large differences in allelic frequency (Crawford,
1983; Crawford and Wilson, 1977, 1979; Nevo et al., 1979). This
uncertainty suggests that a greater number of populations should be
sampled for autogamous species. Gottlieb (1981a) contends that one
population of a particular species, especially if it is an outcrosser,
provides most of the isozyme variation encountered in the species as a
whole. The presence of interspecific and inter-subgeneric hybrids in
nature, and evidence from greenhouse pollination and hybridization tests
suggets that most Eucharis are out crossers (see Chapter X).
There is no particular consenus on the number of individual plants
of each population to sample for electrophoretic analyses (Brown and
Weir, 1983; Crawford, 1983; Gottlieb, 1977). Gottlieb (1977) suggests
that the number of individuals to sample is best approached from the
perspective of how many are required to have a 95% certainty of
observing all the alleles at a locus which have frequencies greater than
0.05 each. Nei (1978) states that larger sample sizes are necessary

191
when the number of loci assayed is low, and may be apreciably smaller
when numerous loci are analyzed. Much of the electrophoretic studies in
plant systematics have involved taxa of characteristically large
population size in nature. Populations of Eucharis, however, are
characteristically small. The largest population I have encountered in
the field (_E. anómala) consisted of about fifteen individual clumps of
bulbs in an approximate half-hectare area. Throughout eastern Ecuador,
populations of only 2-3 genets (and frequently as low as one) of E.
candi da, E. f ormosa, and E_. anómala are the norm. In eastern Peru, a
careful search through a five hectare area turned up only two plants of
_E. cyaneosperma. Eucharis astrophiala, endemic to north- and central
western Ecuador also frequently occurs as single, widely dispersed
clumps. Herbarium specimens of Eucharis regularly include some notation
indicating the rarity of the plants encountered. However, if Eucharis
are primarily visited by trap-lining insects flying long distances, as I
hypothesize (see Chapter X), population size from the perspective of
potential gene exchange may in fact be greater than otherwise expected
from known population densities.
Isozyme Extraction and Electrophoresis
Crude extracts for isozyme electrophoresis were prepared by
grinding ten 1 mm diameter leaf discs in 1 ml of extraction buffer [100
mM Tris-HCl, 10 mM DTT, 20% glycerol, and 1 mM PMSF adjusted to pH 6.8
(Hames and Rickwood, 1981)]. Extracts were centrifuged twice, for 10
minutes and 2 minutes respectively, and the supernatant was decanted by
pipette after each centrifugation.

192
Electrophoresis was performed on a BIO-RAD Protean II
polyacrylamide gel apparatus. Gel recipes were adopted from Hames and
Rickwood (1981). Running gels were 0.75 mm thick and 7.5% acrylamide
(10 ml 30% acrylamide-bis acrylamide, 10 ml 1.5 tris-HCl at ph 8.8,
19.85 ml H^o, 100 ul 10% ammonium persulfate, and 15 ul TEMED). A 2.5%
acrylamide stacking gel (1 ml 30% acrylamide-bis acrylamide, 1.92 ml 0.5
M tris-HCl at pH 6.8, 9 ml H^o, 20 ul ammonium persulfate, and 7.5 ul
TEMED) was employed. Running buffer was 25 mM tris-glycine at pH 8.3
(Hames and Rickwood, 1981). A 20 ul sample of the supernatant was
loaded into each stacking gel column. Gels were electrophoresed at a
constant current of 50 mA until a blue indicator line (40 ul of
bromophenol blue added to cathodal buffer) migrated off the anodal end
of the gel, generally 4-5 hours.
Seven enzyme systems in total were assayed: alcohol dehydrogenase
(ADH), aspartate dehydrogenase (AAT), glucose-6-phosphate dehydrogenase
(G6PDH); glutathione reductase (GSSGR), mal ate dehydrogenase (MDH),
phosphogluco-isomerase (PGI), and shikimate dehydrogenase (SKDH).
Staining recipes of Vallejos (1983) were followed for ADH, AAT, G6PDH,
PGI, and SKDH. All but AAT (diazonium system) utilize the tetrazolium
system for staining activity. The tetrazolium system stain for MDH was
that of Shaw and Prasad (1970). The tetrazolium system stain for GSSGR
was that of Kaplan (1968).
Resolution of additional enzyme systems (galactose dehydrogenase,
glutamate dehydrogenase, hexokinase, and isocitrate dehydrogenase) using
the same buffer system were unsuccesful. Extracts of Eucharis leaf
tissue are characteristically mucilaginous, which may impede
electrophoretic separation or contribute to the degradation of some

193
enzymes after extraction. Also, cathodally migrating isozymes cannot be
resolved in the same vertical, acrylamide gel as anodally migrating
isozymes. Future work is planned with starch gels and alternative
buffer systems.
Inferring Genotypes
Without the benefits of electrophoretic phenotypes of segregating
progeny, genotypes must be inferred directly from the electromorph
patterns of the plants sampled. The perennial growth habit, annual
flowering phenology, low seed yield of Eucharis fruits, plus the
difficulty in flowering some species in cultivation, are obstacles to
generating a substantial population. Artifical hybridization of
greenhouse collections of Eucharis has only recently been successfully
accomplished, and will aid immeasurably in future electrophoretic
studies.
Aiding in the problem of genotype inference were 1) the highly
conserved nature of both enzyme substructure (Gottlieb, 1981c) and
number and compartmentalization of loci coding for enzyme systems of
high specificity (Gottlieb, 1982). Banding patterns observed in in the
populations presented herein were consistent with patterns observed in
populations of other Eucharis species for which data are not presented.
Where electromorphs were resolved in two well-separated regions of the
gel (e.g., AAT), patterns within each region among polymorphic
populations suggested that a single locus was represented at each
region. In MDH, loci are not wel1-separated on the gels. This enzyme
system characteristically yields complex phenotypes with formation of
inter-locus heterodimers and, at times, overlap of isozymes (Kirkpatrick

194
et al., 1985; Torres, 1982). My i nterpretati on of four discrete loci
for MDH is drawn from patterns of polymorphisms observed in a number of
other Eucharis species, and is consistent with reports of 3-4 isozymes
of MDH for most diploid plants surveyed (Gottlieb, 1982).
Where several putative isozymes were observed, the most anodally
migrating isozyme was numbered 1. Slower isozymes then were numbered
successively towards the cathodal end of the gel. The most anodal
allozyme was designated a, with slower forms successively assigned the
labels b, c, etc.
Data Analysis
Genotype data was analyzed using BIOSYS release 1 by David L.
Swofford and Richard B. Selander (University of Illinois at Urbana-
Champaign) on the NERDC computer system of the University of Florida.
A number of statistical coefficients have been devised to place
allele frequency data into a single statistic of either genetic
similarity or distance (Cavalli-Sforza and Edwards, 1967; Edwards, 1971,
1974; Hedrick, 1971; Nei, 1972, 1975, 1978; Rogers, 1972; Wright, 1978).
Avise (1974) and Wright (1978) reviewed these measures in detail. All
appear to provide similar estimates (Avise, 1974; Gottlieb, 1977). The
genetic identity (I) and distance (D) coefficients of Nei (1972) are the
most widely used statistical measure in the literature. Small sample
size and low number of loci examined increases the bias of estimates of
both average heterozygosity, and genetic distance (Nei, 1978). Nei
(1978) presented modified formulae for unbiased genetic identities and
distances that could be used for small sample size. Nei stressed that
with a limited population sample, a large number of loci must be

195
analyzed. I have opted to use the unbiased D and I values for my
analysis where sample size was greater than one. Nei (1972) values were
used for all populations of a sample size of one. At all taxonomic
levels within Eucharis, unbiased (Nei, 1978) values were closer than
biased values (Nei, 1972) to average identities and distances reported
for numerous genera of plants analyzed at the same taxonomic levels (see
reviews of Gottlieb, 1977, 1981a, and Crawford, 1983). Nei also stated
that the magnitude of sampling bias is less severe if genetic distances
are high among the organisms under study (> 0.15). Most of the values
for D between the Eucharis populations assayed are well above 0.15.
Mean heterozygosity, however, is high in Eucharis (generally over 0.15),
which also can bias estimates of genetic identity and distance in cases
of both small locus and small sample size (Nei, 1978). Consequently,
the data on genetic variation presented below should be interpreted with
caution until a larger number of either individuals within populations
or loci are assayed. A larger data base will also allow statistically
significant tests of conformation to Hardy-Weinberg equilibrium [e.g.,
the Fixation Index (Jain and Workman, 1967; Wright, 1969), which
measures excess or deficiency of heterozygote proportions from Hardy-
Wei nberg estimations].
Results
Eucharis bouchei complex (Figs. 1, 3-4; Table 1, 3-5)
Enzyme systems assayed were AAT, MDH, GSSGR, PGI, and SKDH. Nine
putative loci were inferred from the electrophoretic phenotypes, coded
by 23 alleles (Table 3). Only SKDH was monomorphic across all

196
populations of _E. bouchei and E_. bonplandii. Only polymorphic loci are
discussed below in detail and diagrammed in Fig. 3.
AAT (Figs. 3A, 4). Two well-separated isozymes were resolved for
AAT, one rapidly migrating anodally (AAT-1) and the other (AAT-2)
considerably slower. Electromorphs at both loci were considerably more
complex than in diploid species of Eucharis. Three alleles were
inferred from the phenotypes of AAT-1 in the E_. bouchei complex. Each
allele of AAT-1 in all Eucharis characteristically resolves as two, very
closely spaced bands (Fig. 3). This is likely the result of breakdown
products forming after extraction (Fig. 1 in Shields et al., 1983).
Electromorphs of pollen of diploid Eucharis (Meerow, unpubl. data) also
showed this banding pattern. Were each component band of the doublet a
distinct allele, pollen would be expected to show only one of the two
(Gottlieb, 1982, 1984).
Allele a was the most common allele of AAT-1, found in all
individuals analyzed except for two homozygotes for allele c (the Cerro
Brujo population and one individual of the El Valle population of var.
bouchei). Variety dressleri and E_. bonplandii are homozygous for allele
a. The Rio Iguanitas individual of var. bouchei is heterozygous for
alleles a and b, while two individuals of the El Valle population have
all three alleles.
Seven different alleles were inferred from phenotypes of AAT-2,
and four _E. bouchei individuals resolved a four-banded electromorph.
Diploid species of Eucharis resolve only a one or two-banded
electromorph for this isozyme. Alleles f and g were found only in E_.
bonplandii. Only two bands were observed in var. dressleri (an unstable
tetraploid), representing alleles a and b or b and c, and one individual

197
of var. bouchei from El Valle (alleles c and d). All other individuals
of E. bouchei resolved a four-banded electromorph for AAT-2. Allele e
was found only in one individual of var. bouchei from El Valle. As all
diploid species of Eucharis species resolve only a one- or two-banded
electromorph for this isozyme, it was inferred that the proliferation of
alleles within E_. bouchei represented the additive effects of
tetraploidy (Crawford, 1983, 1985; Gottlieb, 1982). In order to
determine allele frequencies of these tetraploid phenotypes, putative
geontypes had to be inferred in the absence of segregating progeny. I
have opted to consider all alleles present in the tetraploid,
heterozygous genotypes of AAT to be represented equally. No obvious
dosage effects were visible in the electromorph patterns. Nonetheless,
unequal representation of any one allele in these tetraploid genotypes
remains a possibility. Alternative genotypes (e.g, aaab instead of
abab) were analyzed with BIOSYS, and genetic identities did not
fluctuate widely from the values reported below.
MDH (Figs. 3B, 4). Four loci were inferred from the phenotypes of
MDH, coded by 8 alleles. MDH-2, MDH-3, and MDH-4 each resolved two
alleles. Three or four isozymes of MDH are characteristically found
plants (Gottlieb, 1982). MDH-1, the most anodal, is monomorphic in all
populations of E_. bouchei, but resolved two alleles and their
heterodimer in E_. bonplandii [pollen of this species resolved only a
single band at this locus in a repetitive run (unpubl. data), supporting
this interpretation]. MDH-2 is heterozygous across all populations.
Dosage effects were apparent in homozygous phenotypes for allele a in
MDH-3, and allele b in MDH-4 (Fig. 4). Eucharis bonplandii is
heterozygous at all four loci.

198
PGI (Fig. 4). Only a single region of activity was resolved for
PGI. Two alleles were observed, but allele a was found only in the
heterozygotes (2 individuals of _E. bouchei var. dressleri, and one of
var. bouchei from El Valle).
GSSGR (Fig. 4). Two alleles were observed in the single locus
resolved for GSSGR. No heterozygote phenotypes were found.
Genetic variation (Table 4). Percentage of polymorphic loci (P)
ranges from 33.3-77.8%. Percentage of polymorphic loci in E_. bouchei
alone is 49.9%; for E. bonplandii P = 55.6%. Mean number of alleles per
locus (k) ranges from 1.6-2.2. Mean heterozygosity per locus (H) across
all populations ranges from 0.194-0.346. Average heterozygosity is
0.256 in populations of _E. bouchei alone, and 0.278 in _E. bonplandii.
The El Valle population of _E. bouchei var. bouchei in particular is
extremely heterozygous (P = 78%, H = 0.346). Gottlieb (1981a) reported
average values for outcrossing species of P = 33.3% and H = 0.086 in a
survey of isozyme variability of plant populations. Gottlieb's report
is for diploid species, however. Increased heterozygosity is an
expected consequence of allopolyploidy (Crawford, 1983, 1985; Gottlieb,
1981; Soltis and Rieseberg, 1986). A certain degree of fixed
heterozygosity would also be expected in an allopolyploid (Gottlieb,
1981; Soltis and Rieseberg, 1986), due to the presence of two genomes in
the allotetraploid. The heterozygous state for AAT-2 and MDH-2 is fixed
across all four populations of Eucharis bouchei.
Genetic identities (Table 5) were lowest between all pairwise
comparisons of _E. bouchei populations and _E. bonpl andi i (0.501-0.694, I
= 0.607). Genetic identity is also low (0.632-0.807, I = 0.731) between
E. bouchei var. dressleri and all populations of var. bouchei. Genetic

199
identity between the El Valle (Cocié province) and Rio Iguanitas (Colón)
populations of var. bouchei is high (0.951). These populations, while
geographically separate, are similar in floral morphology. The Cerro
Brujo population of var. bouchei (Colón province) shows a measure of
genetic divergence from the the El Valle and Rio Iguantitos populations
with attendent lowered identity values (0.902 and 0.632 respectively).
The very low value of I between the Rio Iguanitas population and the
Cerro Brujo population (0.632) is closer to the range usually found
between congeneric species (Crawford, 1983, 1985; Gottlieb, 1977,
1981a). A sample size of one, however, for both the Rio Iguanitas and
Cerro Brujo populations undoubtedly make these values biased to some
degree (Nei, 1978). Nonetheless, the phenetic heteromorphism of E_.
bouchei is paralleled in isozyme relationships as well. Mean
infraspecific genetic identity among all populations of _E. bouchei is
only 0.784. Mean infravarietal genetic identity in _E. bouchei var.
bouchei is 0.836.
Eucharis candida/formosa complex (Figs. 2, 5-6; Table 2, 6-8)
Enzyme systems assayed were AAT, ADH, MDH, GSSGR, and SKDH. Eight
putative loci coded by 18 alleles were inferred from the electrophoretic
phenotypes (Table 6). Only ADH was monomorphic across all populations
of the two species and putative hybrids. Only polymorphic loci, are
diagrammed in Fig. 6 and discussed below in detail.
AAT (Figs. 5A, 6). Two well-separated isozymes were resolved for
AAT, one rapidly migrating anodally (AAT-1) and the other (AAT-2)
considerably slower. Each of three alleles (a, b, and c) of AAT-1
resolved as a two-banded electromorph. This is likely the result of

200
breakdown products forming after extraction (see Fig. 1 in Shields et
al., 1983). Three ab heterozygotes were observed, the Puyo population
of E. candida, the Rio Coca hybrid, and the Peruvian population of E_.
formosa. A single individual of the Limoncocha population of E_. formosa
was a be heterozygote. All other individuals were homozygous for allele
b.
Three alleles were inferred from the electromorphs of AAT-2.
Allele b was the most common, found in the heterozygous state with
either allele a (Limoncocha E. formosa, Rio Coca E_. candi da, and the
Lago Agrio hybrid) or c (all other individuals).
'MDH. (Figs. 5B, 6). Three loci coded by six alleles were
inferred from the phenotypes. A fourth cathodal locus was apparent, but
could not be adequately resolved. MDH-1, the most anodal isozyme, was
also the most polymorphic, with three alleles observed. Allele c was
the most common, represented in all populations. Homozygotes for allele
c are all populations of E_. formosa, and the putative hybrid from Rio
Coca. Allele b was the rarest allele, observed only in the heteozygous
_E. candida from Puyo (genotype be). The putative hybrid from Lago
Agrio, and E_. candi da from Rio Coca are heterozygotes with the genotype
ac, with heterodimerization between c and the rare allele a.
Two alleles were observed for MDH-2, a and b. The most common
allele is b. Heterozgotes are both hybrids, the Tena population of E_.
formosa, and the Puyo population of E. candi da. Only two homozygotes
for a were observed, two individuals of E_. formosa from Limoncocha.
Two alleles were also resolved for MDH-3. Allele b is found in
only two individuals, homozygous E. candi da from Puyo, and heterozygous
E. formosa from Tena. All other populations were homozygous for a.

201
GSSGR (Fig. 6). Only a single anodal locus was successfuly
resolved for this enzyme. Two alleles were observed. Allele b is
present only in the two heterozygotes, both E. candi da, from Puyo and
Rio Coca respectively.
SKDH (Fig. 6). All populations except Peruvian E_. formosa were
homozygous for this monomorphic enzyme.
Genetic variation (Table 7). Percentage of polymorphic loci (P)
ranges from 12.5-62.5%. For _E. candi da P = 50%, and in _E. formosa,
31.3%. Mean number of alleles per locus (k_) ranges from 1.1-1.6. Mean
heterozygosity per locus (H) across all populations ranges from 0.063-
0.313. Average heterozygosity for populations of E_. candi da is 0.260,
and 0.148 for E_. formosa. These values of H are high in comparison to
Gottlieb's (1981a) reported average for outcrossing, diploid species
(0.086), especially the average value of candi da, but P for _E.
formosa agrees closely with his value (33.3%). The Eucharis populations
are also depauperate in mean number of alleles per locus based on
Gottlieb's (1981a) averages. Heterozygosity at the AAT-2 locus appears
fixed across all populations analyzed. The Pastaza population of E.
formosa is homozygous at all loci except AAT-2. Heterozygosity
estimates of these Eucharis populations are, however, biased to an
uncertain degree by the small sample size (Nei, 1978).
Mean genetic identity (Table 8) among all pairwise combinations of
Z. formosa populations is 0.900. Among only Ecuadorean populations of
E_. formosa, I = 0.927. Identity between the two _E. candi da populations
is very low, 0.669. Average identity between _E. candi da and Z. formosa
is 0.788. The Puyo population of _E. candi da has the lowest range of
genetic identities with all populations analyzed (0.669-0.836), and

202
shows lower genetic identity with the single other conspecific
population (0.669) than with the Tena population of _E. formosa (0.836).
The individual represent!'ng _E. formosa from Pastaza has high genetic
identities with all populations of either species (0.895-0.931), except
_E. candi da from Puyo (0.701). The putative hybrids generally have
values of genetic identity intermediate between those of both species (I
= 0.885), but both have very high I values with the Limoncocha
population of _E. formosa (0.946, 0.972). These values are higher than
any between the Ecuadorean populations of E. formosa (0.917-0.934)
Discussion
Studies of isozyme variation in plants allow several
generalizations to be made concerning degrees of genetic divergence at
various taxonomic levels (Gottlieb (1977, 1981a; Crawford, 1983). Mean
genetic identities among conspecific plant populations of diverse taxa
from widely unrelated families range from 0.87-1.00, with the greatest
perecentage above 0.95. At this level of the taxonomic hierarchy,
autogamous species usually show higher values than out-crossing species
(Gottlieb, 1981a). Genetic similarity among subspecific taxa is
generally the same as for conspecific populations of the same taxon
(Crawford, 1983, 1985). By contrast, genetic identities among
congeneric species are much lower (Crawford, 1983, 1985; Gottlieb, 1977,
1981a), with a mean value ca 0.67. In these contexts, values of Nei
(1972, 1978) genetic identities and distances among populations of two
species complexes of Eucharis, one diploid, the other tetraploid, offer
insight into their relationships.

203
Eucharis bouchei complex
Cluster analysis of the tetraploid Eucharis populations by the
unweighted pair group method (UPGMA, Sneath and Sokal, 1973) using
values of Nei (1972, 1978) genetic distance, graphically illustrates the
isozyme relationships among these taxa (Fig. 7). The Cerro Brujo (Colón
province) population of var. bouchei shows greater isozyme divergence
from El Valle populations than does var. dressleri, also from El Valle.
The Cerro Brujo population also exhibits karyotype divergence from the
El Valle population (Chapter VII). Though floral morphological
differences exist between the El Valle and Cerro Brujo populations of E.
bouchei var. bouchei (Fig. 11 in Chapter XII), they are not
discontinuous enough to warrant a clearcut differentiation of a fourth
variety in the species. Furthermore, at least one Colón population (Rio
Iguanitas) has a high value of genetic identity (0.951) with the El
Valle population. Divergence between the Cocié populations and those in
Colón province (of which the Cerro Brujo population is one), presumably
mediated by geographic isolation, may thus be an actively ongoing
process.
Eucharis bouchei var. dressleri occurs sympatrically as a rare
morph with populations of var. bouchei. This variety is an unstable
tetraploid (see Chapter VII). Fifteen percent of all chromosome counts
of root tip cell mitotic metaphase configurations have 2_n = 46, the
typical diploid chromosome number in Eucharis. Variety dressleri lacks
the additive banding patterns observed in both loci of AAT in all other
populations of E. bouchei, a factor, perhaps, of this karyotypic
instability. Additive enzyme banding patterns have been observed in a

204
number of tetraploid taxa of Gossypium (Cherry et al., 1972), Nicotiana
(Reddy and Garber, 1971; Sheen, 1972; Smith et al., 1970), Triticum
aestivum (Hart, 1970, 1979; Jaaska, 1978; Torres and Hart, 1976), and
Stephanomeria (Gottlieb, 1973c), and are usually interpreted as
indicative of allopolyploid origins (Crawford, 1983; Gottlieb, 1983;
Soltis and Rieseberg, 1986). Pollen stainability of var. dressleri is
100% with Alexander's (1969) stain, suggesting that gamete formation is
not impaired by the chromosome number instability. Nonetheless, I have
not successfully crossed this variety with El Valle populations of var.
bouchei.
The rare Colombian tetraploid, E. bonplandii, also lacks additive
banding patterns for AAT. This may indicate an autopolyploid origin for
this species (Crawford, 1985; Soltis and Rieseberg, 1986). Yet mean
heterozygosity for this species is still high (0.278). Even if _E.
bonplandii is an autotetraploid, it has established a degree of genomic
"hybridity" (Barber, 1970; Stebbins, 1980; Tal, 1980). Diploid species
of Eucharis appear to be highly heterozygous themselves (see discussion
of the E_. candida/formosa complex). Consequently, an autotetraploid may
have a degree of "advanced" heterozygosity built into its genome.
Isozyme analyses of polypoid taxa are not abundant (Crawford,
1985; Soltis and Rieseberg, 1986). There are no estimates of expected
genetic identities among related polyploid taxa, in contrast to the data
available for diploid taxa. Mean genetic identity among all populations
of _E. bouchei (0.784) is lower than the values usually reported for
subspecific taxa and conspecific populations (0.90-1.00). This reflects
the relatively high degree of heterozygosity in E. bouchei (Table 4),

205
which is itself good evidence for an allopolyploid origin of the
species.
Genetic identity patterns similar to those found between the
populations of var. bouchei (Table 5) were reported by Wain (1982) for
three subspecies of the diploid Helianthus debilis (Asteraceae). Mean
genetic identities among populations of each of the three subspecies
were high (ca 0.99). Pairwise comparisons between populations of
subspp. vestitus and tardifTorus yielded the same mean identity. When
subspp. vestitus and tardifTorus were compared to populations of subsp.
debilis [considered the most morphologically distinct of the three
subspecies by Heiser (1956)], mean identities dropped to 0.886 and 0.902
respectively. Wain (1982) hypothesized a recent divergence of subsp.
vesiti tus and tardifTorus from an ancestral population. Crawford
(1985), reviewing the same data along with concordant data on two
additional subspecies of H_. debi 1 is (Wain, 1983) suggested instead that
subsp. debi1is has been isolated geographically for a longer period of
time than any of the other subspecies.
On the basis of staminal cup morphology I hypothesiz that Eucharis
bouchei has been steadily migrating away from the Colombian border (see
Chapter IX and XII). The Cerro Brujo population of E. bouchei var.
bouchei may fit Crawfords's (1985) model of H. debilis subsp. debi1 is.
The Cerro Brujo population may represent an intermediate point in the
divergence of a new geographical race of E_. bouchei. The best test of
this hypothesis would be the results of isozyme analysis of _E. bouchei
var. darienensis, the one variety for which material is not presently
available. Variety darienensis is found closer to the Colombian border
than any other population of E. bouchei, and has the most generalized

206
staminal cup morphology relative to Eucharis as a whole. If my
hypothesis is correct, var. darienensis should have the lowest genetic
identity with populations of either var. bouchei or var. dressleri from
Cocié province, and higher identity with populations of var. bouchei
from Colón province.
However, the Rio Iguanitas and Cerro Brujo populations of var.
bouchei, both from Colón province, have a particularly low value of
genetic identity (0.656) between them. Colón populations of E_. bouchei
are geographically intermediate between most populations of var.
darienensis and the Cocié populations of var. bouchei (see Fig. 12,
Chapter XII). The two varieties come into close proximity in the Cerro
Campana area in Panama province. Colón populations may therefore also
be genetically intermediate between the two varieties. Segregating
genotypes in such a case could produce populations exhibiting a mosaic
of varying genetic identity, some close to Cocié var. bouchei, others
perhaps closer to var. darienensis. Further testing of this hypothesis
with var. darienensis and larger numbers of populations and individuals
is necessary. The origin of E. bouchei var. dressleri, however, may be
the first step in sympatric speciation. This variety shows highest
genetic identity with the Cocié population of var. bouchei (0.807).
Average genetic identity between _E. bonpl andi i i and E. bouchei
(0.607) is not far below the expected values for congeneric species
(Crawford, 1983; Gottlieb, 1981a). The question of whether these two
species represent a monophyletic group on the basis of their tetraploid
origin is not conclusive. Eucharis bonplandii does not show any
additive banding pattern at either locus of AAT, suggesting that its
genomic constitution may be autoploid. The fact that E. bonplandii is

207
the northernmost species of Eucharis subg. Eucharis in South America,
and is also tetraploid, lends at least circumstantial creedence to the
hypothesis that both _E. bouchei and E_. bon pi an di i represent divergences
from a common tetraploid ancestor. The rare occurence of polyploidy in
Eucharis strengthens this possibility as well. The difficulty in
obtaining successful meiotic figures from bulbs of Eucharis
(microsporogenesis occurs completely inside the bulb) blocks the
resolution of this question.
There is insufficient information on the breeding system and
pollination biology of Eucharis to support more than ad hoc hypotheses
of most species' origins. The characteristically small population sizes
that are encountered throughout the range of the genus, may indicate
that founder effects (Mayr, 1954; Templeton, 1980a, b) have played an
important role in the movement of _E. bouchei across the Isthmus of
Panama, with subsequent isolation restricting gene flow between
localized populations. The putatively allotetraploid genotype of E_.
bouchei would favor the "hybrid recombination" type of "genetic
transilience," a mode of speciation hypothesized by Templeton (1980a,
b). This is consistent with the low genetic identities between some
populations of _E. bouchei, all of which are geographically isolated (see
Chapter XII). Additional support are the morphological novelties
expressed within each geographical variety (or race, in the case of var.
bouchei). Reduction in heterozygosity does not necessarily follow
founder effects (Nei et al., 1975; Templeton, 1980a, b), but loss of
alleles often does occur. Eucharis bouchei is highly heterozygous
(Table 4), but most populations are somewhat depauperate in mean number
of alleles per locus (Table 4) in comparison with out-crossing North

208
American species (Gottlieb, 1981a). Sytsma and Schaal (1985) reported
similar findings and conclusions from isozyme analysis of the tetraploid
Lisianthus skinneri (Gentianaceae) complex from Panama.
Eucharis candida/formosa complex
Cluster analysis of the E_. candi da/formosa complex by the
unweighted pair group method [UPGMA (Sneath and Sokal, 1973)] using
values of Nei (1972, 1978) genetic distance, graphically illustrates the
isozyme relationships among these taxa (Fig. 8). Lower genetic
identities between all pairwise combinations of _E. formosa and _E.
candida (I = 0.785) than among populations of _E. formosa alone (0.900),
suggest that these morphological species have diverged genetically to
some extent. This between-species average value of identity, however,
is higher than usually characteristic of outcrossing plants (Gottlieb,
1981a). The degree of divergence of the Puyo population of E_. candi da
from all populations of either species is most striking. There is no
obvious phenetic corroboration of this level of genetic divergence, and
chromosome morphology of this population has not been examined. This
population is also extremely heterozygous (H = 0.313). Highest value of
I (0.836) for this population is with the Tena population of E. formosa,
the population of either species to which Puyo E_. candida is
geographically closest (Fig. 2).
The putative hybrids cluster with populations of _E. formosa, the
parent which they most resemble morphologically. Their average genetic
identity (0.885) is intermediate between I of _E. formosa (0.900) and _E.
candi da (0.669), but their close genetic relationship to E. formosa
occludes the hypothesis of hybridization between E. formosa and E.

209
candida suggested by phenetic analysis (Chapter VI). The Lago Agrio
hybrid in particular, which phentically is much closer to _E. formosa,
and whose pollen stains 100%, exhibits highest values of identity with
Ecuadorean _E. formosa (0.885-0.972). I suggest (Chapter XII) that this
collection in fact may be a genet at the low-size end for _E. formosa,
and not a hybrid.
The chromosomal divergence of Peruvian _E. formosa (Chapter VII)
is reflected genetically as well. Genetic identities between Peruvian
and Ecuadorian E_. formosa range from 0.844-0.931, in contrast to a range
of 0.917-0.934 among only Ecuadorean populations. Although Peruvian E_.
formosa does not obviously differ morphologically from Ecuadorean
populations of the species, it appears that both chromosomal and
isozymic divergence, mediated by geographical isolation, can precede
phenetic divergence in Eucharis.
The nearly homozygous _E. formosa from the Pastaza valley has high
genetic identities with populations of both _E. formosa and _E. candi da.
Of all populations, it also has the highest identity with Peruvian _E.
formosa (0.931) of any Ecuadorean population. The Pastaza valley may
therefore be the site of origin for both species, from which they have
radiated, perhaps more than once. Cladistic analysis supports a
progenitor-descendent relationship for these two species, and isozyme
data suggest that species level genetic divergence has not yet advanced
beyond the level usually characterisin'c of subspecific taxa. Further
isozyme analyses of populations of both of these sympatric species may
indicate a greater mosaic of genetic identity values than presently
reported.

210
The relationship of _E. candida and E_. formosa is complicated by
the likely prospect that both have been cultivated for many years by the
native people of eastern Ecuador (see Chapter XII). Present-day
populations may therefore not be "natural" populations, but rather
remnents of shifting cultivation over long periods of time. A long
history of cultivation of these two sibling species throughout the
Amazon basin of Ecuador may have artifically reinforced gene flow
between them, by continuously breaking down geographic barriers, and via
natural hybridization within mixed, cultivated populations. The Puyo
population of _E. candi da, with its large genetic distance from all other
populations, may have remained isolated enough to escape this pattern.
There is an alternative explanation for the patterns of isozyme
variation found in this complex. Successive fragmentation and expansion
(with secondary contact) of ancestral panmictic populations, as is now
largely accepted as having occurred in the Amazon basin during the
Pleistocene (see Prance, 1983 for extensive review), could also have
preserved genetic similarities between these two closely related
species. The disparate genetic identities of the two E. candida
populations with all other populations, and their low pair-wise
identity, may even suggest that _E. candi da is polyphyletic. A larger
number of populations of both species, but particularly _E. candi da, need
to be analyzed electrophoretically before a firm answer is given.
Crawford (1983) offers three hypotheses to explain taxonomically
difficult groups in which species boundaries are blurred
morphologically, and presents expected values of genetic identity in
each case: 1) taxa have originated recently and divergence is not yet
appreciable (high genetic identities); 2) phenotypic plasticity is high

211
enough that diveregent genomes converge phenotypically under similar
conditions (low genetic identities); and 3) interspecific hybridization
occurs between some populations of each species (low genetic identities
between true species populations; "intermediate" values among the
hybrids, and between them and true species). In the case of the E.
candida/formosa complex, all three processes may be at work.
Conclusions
Isozyme analysis of two species complexes of Eucharis indicates
that the genus is still actively evolving. The Central American £.
bouchei complex is a tetraploid, putatively all opioid, semi-species
complex of morphologically distinct entities that shows low genetic
identities between some geographically isolated populations. Founder
effects and geographic isolation probably were, and still are, important
forces influencing the continued evolution of E. bouchei. In one case
(£. bouchei var. dress!eri) sympatric divergence seems to be in process.
The £. candida/formosa group shows a more complex pattern of
isozyme variation. Eucharis formosa, the more ancestral species
cladistically, shows high genetic identities between populations. A
Peruvian isolate of E_. formosa, though not morphologically distinct,
shows both chromosomal and isozymic divergence from Ecuadorean
populations. Eucharis candida, the more derived species, appears
genetically diverse on the basis of the limited populations surveyed.
Hybridization and gene flow between both species has apparently occured,
mediated either by artificial population structures due to a probable
long history of cultivation, or via Pleistocene refugia effects. Both

212
species may have originated in the Pastaza valley from a common
ancestral population which has since radiated north and south, perhaps
several times.
The high level of heterozygosity exhibited by Eucharis species,
both diploid and tetraploid, raises an interesting question concerning
ploidy level of the pancratioid Amaryllidaceae as a whole.
Paleotropical genera of "infrafamily" Pancratioidinae characteristically
have 2_n = 22 or 20 chromosomes, while almost all neotropical genera have
2u_ = 46. The latter number is likely derived through fragmentation or
duplication of a single chromosome, followed by doubling of the genome
(Lakshmi, 1978; Sato, 1938). Increased heterozygosity may therefore
have accompanied a tetraploid origin of the neotropical tribes of the
Pancratioidinae from an ancestor with 2_n = 22. The high generic
diversity of neotropical pancratioids (ca 15 genera) in comparison to
the paleotropical taxa (4 genera) may itself be partially a consequence
of greater genetic variability. Comparative analysis of isozyme
phenotypes between paleotropical and neotropical genera is planned, and
may provide insight into the evolution of the Pancratioidinae.

Table 8.1. Euchan's bouchei and E. bonplandii populations examined electrophoretically
TAXON
DESIGNATION
COLLECTION INFORMATION
VOUCHER3
Eucharis bouchei
var. dressleri
EBD
Panama, Cocié, El Valle
de Antón
Meerow 1107
E. bouchei var.
bouchei
EBB-1
Panama, Cocié, El Valle
de Antón
Meerow 1125
E. bouchei var.
bouchei
EBB-2
Panama, Colón, Rio Guanche,
Cerro Brujo
Meerow 1157
E. bouchei var.
bouchei
EBB-3
Panama, Colón, Rio Iguanitas
Meerow 1158
E. bonplandii
EBN
Colombia, Cundinamarca,
vicinity of Bogotá
Bauml 720 (HUNT)
aAll vouchers deposited at FLAS
unless otherwise indicated.

Table 8.2. Eucharis candida, E. formosa and hybrid populations examined
electrophoretically.
TAXON DESIGNATION COLLECTION INFORMATION VOUCHER3
Eucharis formosa
EF-1
Ecuador,
Napo, Limoncocha
Meerow 1103
E. formosa
EF-2
Ecuador,
Napo, vie. Tena
Besse et al.
C5FLT
s. n.
E. formosa
EF-3
Peru, San
i Martin, Lamas
Schunke 14174
E. formosa
EF-4
Ecuador,
Agosto
Pastaza, Diez de
Meerow & Meerow 1131
E. candida
EC-1
Ecuador,
Napo, Rio Coca
Besse et al.
tselt
s. n.
E. candida
EC-2
Ecuador,
Pastaza, Puyo
Meerow 1159
E. candida X
formosa
EX-1
Ecuador,
Napo, Rio Coca
Besse et al.
T5ELT
1949
E. candida X
formosa
EX-2
Ecuador,
Napo, Lago Agrio
Besse et al.
~T5£LT
1558
aAll vouchers deposited at FLAS unless otherwise indicated.

215
Table 8.3. Allele frequencies in populations of Eucharis bouchei and E.
bonplandi i (N = sample size).
POPULATION
EBD
EBB-1 EBB-2
EBB-3
EBN
LOCUS
AND
ALLELES
FREQUENCIES
N
3
3
1
1
1
AAT-1
a
1.000
0.167
0.000
0.500
1.000
b
0.000
0.167
0.000
0.500
0.000
c
0.000
0.667
1.000
0.000
0.000
AAT-2
a
0.167
0.083
0.250
0.250
0.000
b
0.500
0.167
0.250
0.250
0.000
c
0.333
0.333
0.250
0.250
0.000
d
0.000
0.333
0.250
0.250
0.000
e
0.000
0.083
0.000
0.000
0.000
f
0.000
0.000
0.000
0.000
0.500
g
0.000
0.000
0.000
0.000
0.500
MDH-l
a
0.000
0.000
0.000
0.000
0.500
b
1.000
1.000
1.000
1.000
0.500
MDH-2
a
0.500
0.500
0.500
0.500
0.500
b
0.500
0.500
0.500
0.500
0.500
MDH-3
a
0.500
0.833
0.500
1.000
0.500
b
0.500
0.167
0.500
0.000
0.500
MDH-4
a
1.000
0.167
0.500
0.000
0.500
b
0.000
0.833
0.500
1.000
0.500
SDH
a
1.000
1.000
1.000
1.000
1.000
GSSGR
a
0.000
0.333
1.000
0.000
1.000
b
1.000
0.667
0.000
1.000
0.000

216
Table 8.3—continued.
EBD
POPULATION
EBB-1 EBB-2
EBB-3
EBN
LOCUS
AND
ALLELES
FREQUENCIES
N
2
2
1
1
1
PGI
a
b
0.500
0.500
0.250
0.750
0.000
1.000
0.000
1.000
1.000
0.000

217
Table 8.4. Genetic variability measures across all loci in populations
of Eucharis bouchei and E. bonplandii. n = sample size,
k = mean number of alleles per locus, P = percentage of
polymorphic loci, H = mean heterozygosity (standard errors
in parentheses).
POPULATION
n
7
Pa
H
EBD
3.0
1.6
44.4
0.235
(0.2)
(0.093)
EBB-1
3.0
2.2
77.8
0.346
(0.4)
(0.080)
EBB-2
1.0
1.7
44.4
0.250
(0.3)
(0.102)
EBB-3
1.0
1.6
33.3
0.194
(0.3)
(0.100)
EBN
1.0
1.6
55.6
0.278
(0.2)
(0.088)
a a .
A locus is
considered polymorphic
if the
more than
detected.

218
Table 8.5. Matrix of genetic identity and distance coefficients between
populations of Eucharis bouchei and E. bonplandii. Below
diagonal: Nei (1972, 1978) genetic identity; above diagonal:
Nei (1972, 1978) genetic distance.
POPULATION
EBD
EBB-1
EBB-2
EBB-3
EBN
EBD
*****
0.214
0.459
0.283
0.365
EBB-1
0.807
*****
0.103
0.050
0.445
EBB-2
0.632
0.902
0.422
0.523
EBB-3
0.754
0.951
0.656
0.691
EBN
0.694
0.641
0.593
0.501
'k'k'k'kic

Table 8.6. Allele frequencies in populations of Euchan's candida, E. formosa and hybrids (N = sample size)
EF-1
EF-2
POPULATION
EF-3 EF-4 EC-1
EC-2
EX-1
EX-2
LOCUS
AND
ALLELES
FREQUENCIES
N
3
1
1
1
1
1
1
1
AAT-1
a
0.000
0.000
0.500
0.000
0.000
0.500
0.500
0.000
b
0.833
1.000
0.500
1.000
1.000
0.500
0.500
1.000
c
0.167
0.000
0.000
0.000
0.000
0.000
0.000
0.000
AAT-2
a
0.500
0.000
0.000
0.000
0.500
0.000
0.000
0.500
b
0.500
0.500
0.500
0.500
0.500
0.500
0.500
0.500
c
0.000
0.500
0.500
0.500
0.000
0.500
0.500
0.000
MDH-1
a
0.000
0.000
0.000
0.000
0.500
0.000
0.000
0.500
b
0.000
0.000
0.000
0.000
0.000
0.500
0.000
0.000
c
1.000
1.000
1.000
1.000
0.500
0.500
1.000
0.500
MDH-2
a
0.667
0.500
0.000
0.000
0.000
0.500
0.500
0.500
b
0.333
0.500
1.000
1.000
1.000
0.500
0.500
0.500
ro
*—*

Table 8.6—continued
EF-1
EF-2
EF-3
POPULATION
EF-4 EC-1
EC-2
EX-1
EX-2
LOCUS
AND
ALLELES
FREQUENCIES
MDH-3
a
b
1.000
0.000
0.500
0.500
1.000
0.000
1.000
0.000
1.000
0.000
0.000
1.000
1.000
0.000
1.000
0.000
ADH
a
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
SDH
a
b
1.000
0.000
1.000
0.000
0.500
0.500
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
GSSGR
a
b
1.000
0.000
1.000
0.000
1.000
0.000
1.000
0.000
0.500
0.500
0.500
0.500
1.000
0.000
1.000
0.000
ro
ro
o

221
Table 8.7. Genetic variability measures across all loci in populations
of Eucharis candida, E. formosa and hybrids, n = sample
siz"e¡ k = mean number of alleles per locus, P = percentage
of polymorphic loci, H = mean heterozygosity (standard
errors in parentheses).
POPULATION
n
7
H
EF-1
3.0
1.4
37.5
0.153
(0.2)
(0.078)
EF-2
1.0
1.4
37.5
0.188
(0.2)
(0.091)
EF-3
1.0
1.4
37.5
0.188
(0.2)
(0.091)
EF-4
1.0
1.1
0.0
0.063
(0.1)
(0.063)
EC-1
1.0
1.4
37.5
0.188
(0.2)
(0.091)
EC-2
1.0
1.6
62.5
0.313
(0.2)
(0.091)
EX-1
1.0
1.4
37.5
0.188
(0.2)
(0.091)
EX-2
1.0
1.4
37.5
0.188
(0.2)
(0.091)
aA locus is considered polymorphic if more than one allele was detected.

Table 8.8. Matrix of genetic identity and distance coefficients betwen population of
Eucharis candida, E. formosa and hybrids. Below diagonal: Nei (1972, 1978) geneti
identity; above diagonal: Nei (1972, 1978) genetic distance.
POPULATION
EF-1
EF-2
EF-3
EF-4
EC-1
EC-2
EX-1
EX-2
EF-1
kkkkk
0.069
0.170
0.087
0.140
0.364
0.055
0.029
EF-2
0.934
*****
0.167
0.072
0.214
0.179
0.080
0.123
EF-3
0.844
0.846
â– k'k'k'k'k
0.072
0.214
0.402
0.080
0.214
EF-4
0.917
0.931
0.931
kkkkk
0.111
0.356
0.072
0.111
EC-1
0.870
0.808
0.808
0.895
kkkkk
0.402
0.214
0.080
EC-2
0.695
0.836
0.669
0.701
0.669
kkkkk
0.284
0.402
EX-1
0.946
0.923
0.923
0.931
0.808
0.753
kkkkk
0.123
EX-2
0.972
0.885
0.808
0.895
0.923
0.669
0.885
kkkkk

Fiqure 8.1. Distribution of Eucharis bouchei (Panama) and E. bonplandii (Colombia, inset) populations
analyzed electrophoretically. Refer to Table 1 for population designations.

ro
no

Figure 8.2. Distribution in Ecuador and Peru (inset) of Eucharis
candi da, _E. formosa, and hybrid populations analyzed
electrophoretically. Refer to Table 2 for population
designations.

226

Figure 8.3. Representative gels for electrophoretic analysis of
Eucharis bouchei complex. A. Aspartate amino transferase (AAT).
B. Mai ate dehydrogenase (MDH). Where no activity is apparent, it
was subsequently resolved in repetitive runs. Numbers and lower
case letters to right refer to loci and alleles respectively.
Refer to Table 1 for population designations.

228

Figure 8.4. Electrophoretic phenotypes at all polymorphic loci in the
Eucharis bouchei complex. Numbers and lower case letters to right
refer to loci and alleles respectively. Refer to Table 1 for
population designations. AAT = aspartate amino transferase, MDH
= malate dehydrogenase, GSSGR = glutathione reductase, PGI = 6-P-
glucose isomerase.

230
la
ib
le
EBD EBD EBD EBB-1 EBB-1 EBB-1 EBB-2 EBB-3 EBN
A AT
2a
2b
2c
2d
2 e
2 (
2g
EBD EBD EBD EBB-1 EBB-1 EBB-1 EBB-2 EBB-3 EBN
MDH
EBD EBD EBD EBB-1 EBB-1 EPP-1 EBB-2 EBB-3 EPN
GSSGR
EBD EBD EBB-1 EBB-1 EBB-2 EBB-3 EPN
PGI
L

Figure 8.5. Representative gels for electrophoretic analysis of
Eucharis candida/formosa complex. A. Aspartate amino transferase
(AAT). B. Malate dehydrogenase (MDH). Where no activity is
apparent, it was subsequently resolved in repetitive runs.
Numbers and lower case letters to right refer to loci and alleles
respectively. Refer to Table 2 for population designations.

232
EF i EF 4 EF 3 EX 2 EF 2 EC 2 EX l
EC i EF l EF l

Figure 8.6. Electrophoretic phenotypes at all polymorphic loci in the
Eucharis candida/formosa complex. Numbers and lower case letters
to right refer to loci and alleles respectively. Refer to Table 2
for population designations. AAT = aspartate amino transferase,
MDH = malate dehydrogenase, GSSGR = glutathione reductase, SKDH =
shikimate dehydrogenase.

234
2a
2b
2c
AAT
1 a
ib
1 c
2a
2b
3a
3b
MDH
— i —» ■ ■ ■■ ■■ - - a
GSSGR
EF-l EF-1 EF-1 EF-2 EF-3 EF-4 EC-1 EC-2 EX-1 EX-2
SKDH
a
b

Figure 8.7. Cluster analysis dendrogram of Eucharis bouchei complex based on Nei (1972, 1978) distances.
Refer to Table 1 for population designations.

EBD
EBB-1
EBB-2
EBB-3
EBN
0.60 0.54 0.48
0.42
H I i h-
0.36 0.30 0.24 0.18
DISTANCE
t
0.12 0.06
f\3
CO
CT>

Figure 8.8. Cluster analysis dendrogram of Eucharis candida/formosa complex based on Nei (1972, 1978)
distances. Refer to Table 2 for population designations.

EF—1
EX-2
EF-2
EF- 4
EC-1
EF- 3
EX-2
EC-2
fr 1 1 f 1 f 1 1 1 1 f
0.40 0.36 0.32 0.28 0.24 0.20 0.16 0.12 0.08 0.04 0.00
DISTANCE
no
oo
CO

CHAPTER IX
ECOLOGY, PHENOLOGY, AND PHYTOGEOGRAPHY
Ecology
Eucharis and Caliphruria are both strongly mesophytic. All
species exhibit high fidelity to a primary forest niche, and severe
disturbance of the forest canopy is probably catastrophic to these
plants. In recently cleared forest sites, the bulbs persist for a few
seasons, but the leaves developed in sunlight exhibit chlorosis and
necrosis (pers. obs.). Wilkins (pers. comm.) reports that leaves of E.
amazónica are damaged at light levels above 5000 foot candles, an
observation confirmed by Rees (1985). Fidelity of these genera to
mesic, low-light habitats suggest a strongly evolved adaptive complex.
Initial colonization of these habitats may have been the primary factor
in divergence of the ancestral eucharoid complex from the rest of the
Pancratioidinae. Only two other genera of pancratioid Amaryllidaceae
are completely adapted to forest understory: Eurycles, a small
Australasian genus; and Urceolina, sister group to Eucharis and
Caliphruria (see Chapter XI).
Eucharis is often prevalent in low-lying flood plain sites or
creek beds where frequent short-term inundation is likely. Eucharis
caste!naeana is almost always encountered on seasonally inundated soils.
Access to a population of _E. pi i cata in the vicinity of Tocache Nuevo,
Peru, which I studied in July 1982, was precluded on one occasion by
239

240
flooding. Largest populations of any species are usually associated
with flood plain colonization, though many species are found in more
upland sites in les mabundance. No fully deciduous species of subg.
Eucharis have been observed, though JE. astrophiala, endemic to the
western slopes of north-central Ecuador, does enter a season of dormancy
when growth ceases. However, several leaves may persist for the
duration.
The rarity of Eucharis and Caliphruria species throughout their
range is a striking characteristic of their distribution. Single,
widely-dispersed clumps of bulbs are more the rule than the exception.
Herbarium specimens are usually unicate collections, and often indicate
the relative infrequency with which the plants were encountered in the
forest. The largest population of Eucharis that I have observed
consisted of about fifteen clumps of bulbs of E_. anómala in an
approximate half-hectare area. Throughout eastern Ecuador, populations
of only 2-3 genets (and frequently as low as one) of E_. candi da, _E.
formosa and _E. anómala are the norm. In eastern Peru, a careful search
through a five hectare area turned up only two plants of E.
cyaneosperma. Edaphic conditions are probably important factors
limiting colonization and establishment of Eucharis species.
Restriction to sites of high fertility is evident for all species of
Eucharis, and has been noted by floristic workers in the Amazon basin
and Chocó region of Colombia (Gentry, pers. comm.). The low percentage
of fertile rainforest soils is a well known fact of tropical ecology
(Richards, 1968). In most upland sites, where the recurrent silt
deposition characteristic of flood plains is absent, Eucharis are much
more widely dispersed, single-bulb clumps are more frequently

241
encountered, and these are usually restricted to pockets of humus
accumulation at the bases of trees. Large populations of Eucharis may
therefore be potential indicators of soil fertility in the Amazon basin.
The overwhelming majority of collections of subg. Eucharis is from
elevations below 1000 m and, of these, more than half are below 500 m.
Ecology of subg. Heterocharis suggests affinity with that of subg.
Eucharis. Collections of E_. sanderi are from sites between 50 and 500
meters in very wet, lowland rain forest. Eucharis anómala and _E.
amazónica occur at higher elevation, between 500 and 1500 m.
Caliphruria is primarily collected at sites above 1000 m ("selva-
subandina'1 of Cuatrecasas, 1958). Most collections of Cali phruri a (£.
subedentata) were from the Rio Cauca River valley of western Colombia,
an area now largely deforested. In July, 1984, I was not able to find
members of this genus in any of its historical 1 ocalitites. The leaves
of Caliphruria appear smaller and slightly thicker than those of most
species of Eucharis. At least one species, C. teñera, is deciduous,
suggesting possible adaptation to water stress. This may reflect
adaptation to the leeward montane forests of the Colombian cordilleras,
which are drier than their counterparts on the Amazonian and Pacific
slopes (Cuatrecasas, 1958).
Phenology
Eucharis and Caliphruria species show a degree of seasonality in
flowering. Very well-collected species, such as _E. candi da or E_.
formosa, show flowering patterns skewed toward certain months (January
to March), but at least several flowering collections have been made

242
throughout the year. Species in Amazonian Peru have been collected in
flower most frequently from June to September. Each inflorescence is
moderately long-lived, from 2-3 weeks, but usually no more than 1-3
flowers are open at any one time. Anthesis occurs the first day the
flower opens. All but one species (_E. castelanaeana) are protandrous.
The style continues to elongate during the first and second day
following anthesis. Stigma expansion and receptivity does not occur
until late in the second day after anthesis or on the third day. By
this time, anthers have begun to sene see. The perianth may remain in
good condition for four days following anthesis, but the onset of
senescence has been observed to coincide with stigma receptivity in a
number of species. Successful greenhouse pollinations have been
accomplished after the onset of perianth senescence.
Mass flowering in nature is characteristic of a single species, _E.
castelnaeana. This species is also the only autogamous species yet
known. Eucharis castelnaeana forms large colonies of offset bulbs, most
of which flower synchronously. Most other species, even if large
numbers of offset bulbs have formed, produce their inflorescences
sporadically or successively in their natural habitat. In cultivation,
however, some clones of these same species will ocassionally flower
synchronously.
On the basis of observing greenhouse collections over a five year
period, an annual flowering pattern appears characteristic of most
Eucharis and Caliphruria species. Eucharis amazónica, however, flowers
2-3 times during the year. Van Bragt and Sprenkels (1983) have
regularly induced flowering in this species at any time of the year
after treatment at 27° C for at least 2 weeks. Collection data for this

243
species throughout its narrow range indicates that this phenology may
occur in habitat as well. Eucharis caste!naeana mass-flowers in the
greenhouse twice per year, but its behavior in habitat is unknown.
Other wel 1-collected species (e.g., _E. candi da and _E. f ormosa), which
show a peak period of flowering in certain months, are probably annual
flowering, with some populations, or individuals in a population,
flowering earlier or later. Where abundant offset bulbs have formed,
successive replacement (with some overlap) of one inflorescence with
another may create a flowering duration of 2-3 months for any one
individual clump of bulbs. A population of E_. pi i cata and putative
hybrids with E. ulei was surveyed in the middle Rio Huallaga valley of
Peru. Out of thirteen clumps of bulbs encountered, only two were in
flower, one near the end of its cycle, the other near the beginning. A
single inflorescence was present in both flowering individuals, even
though each consisted of at least four bulbs as large as the flowering
offset. Five individuals were in fruit, the capsules fully mature and
dehiscent. The remaining individuals were sterile. This heterogeneity
may be a reflection of the hybridity of this population, and therefore
atypical.
Bawa (1983) reviewed the subject of flowering phenology in
tropical plants. Most of the work to date on this subject involved
woody canopy species, particularly in the seasonally dry tropics.
Rainforest understory plants have been the subject of only a few studies
[e.g., Stiles, 1975 for He!iconi a (Heliconiaceae)]. For lowland, wet
forest species of the tropics, biotic factors such as availability of
pollinators, are probably more important selective forces on phenology
than abiotic factors (e.g., photoperiod, seasonality of precipitation).

244
Bawa (1983) states that rare or patchily distributed plants should have
one of two flowering patterns. They may either flower massively (cf. E_.
castelnaeana), or else each individual may produce a few flowers at one
time, but synchronously with other conspecific individuals. The latter
pattern may be characteristic of the more common Amazonian species of
subg. Eucharis (e.g., _E. candi da, _E. formosa, _E. ulei). The latter
pattern would fit the hypothesis that most species of subg. Eucharis are
trap-lined by female euglossine bees (Chapter X).
Dispersal
The leathery, bright orange fruit of Eucharis subg. Eucharis is a
major apomorphy that defines the subgenus. At dehisence, the contrast
between the capsule and the lustrous black or blue seeds creates a
striking visual display. This type of display suggests that fruit and
seed function mimetically to attract avian dispersal agents (sensu van
der Pijl, 1981), but no confirming observations have been recorded.
Viable seeds of Eucharis also float (pers. obs.), and flood plains
are conspicuous sites of successful colonization of a number of
Amazonian species. Species distribution patterns (see Chapter XII) show
a marked decline in collections upstream from centers of distribution.
Thus mechanical dispersal of seeds along watercourses may also be an
important agent of species promulgation. For species of _E. subg.
Heterocharis and Caliphruria, and the single species of subg. Eucharis
(_E. castel naeana) that lack the mimetic fruit morphology, this form of
passive dispersal may be the major method by which seeds are
distributed. Bulbs may function as propagules in this manner as well.

245
I collected several bulbs of E. candida in the Oriente of Ecuador which
were loosely established in the bed of a small creek. The bulbs were
fully exposed, but roots had penetrated a short distance into the silt
of the creek bottom. Man has undoubtedly contributed to the
distribution of several species in the Amazon basin (see Chapter XII).
In one case of sympatric species (_E. candi da and E. formosa), population
structure may largely be a result of human agency.
Phytogeography
Eucharis subg. Eucharis occurs in lowland rain forest sites,
primarily on the eastern slope of the Andes. The majority of species
are concentrated along the Amazon and its main tributaries, e.g. the
Napo and Pastaza system in Ecuador and the Huallaga of Peru (Chapter
XII). Eight of the thirteen extant species of subg. Eucharis are
endemic to the premontane Andean-Amazonas interface, but no species has
been reported east of 68° W longitude. Thus the genus appears to be
absent from the great, largely Brazilian expanse of lowland Amazonas.
Four species are peripheral isolates from the premontane Andean-
Amazonian center of distribution. Eucharis corynandra, very closely
related to _E. caste!aneana and E. piicata, and _E. oxyandra, of uncertain
phylogenetic relationship, are both known only from the "ceja de
montaña" forest formations of north-central eastern Peru. Eucharis
astrophiala is endemic to a relatively small area of western Ecuador.
Eucharis lehmannii, also of uncertain phylogenetic relationship, is
restricted to western Colombia. All peripheral isolates of subg.
Eucharis show some degree of morphological novelty (see Chapter XII).

246
The two species of subg. Eucharis which occur above 2° n latitude
are both tetraploid. Eucharis bonplandii, endemic to the Cordilleras
Oriental and Central of Colombia is rare and infrequently collected.
The Eucharis bouchei complex, a series of geographically isolated and
morphologically distinct population clusters, is endemic to Central
America, chiefly Panama. Stebbins (1985), in a recent review of
polyploidy, found a correlation between high frequency of polyploidy and
patchy geographical (or ecological) distributions, coupled with the
occurence of secondary contact between these differentiated populations.
Levin (1983) discussed how chromosome doubling may " 'propel' a
population into a new adaptive sphere." Though _E. bouchei does not
exhibit any noticeably novel ecological adaptations, its success in
colonizing the Isthmus may have been aided by its polyploid-related
genetic diversity. Isozyme patterns reveal a very high level of
heterozygosity among tetraploid Eucharis (Chapter VIII). Central
American Eucharis are discussed further in a separate subsection of this
chapter.
Subgenus Heterocharis is widely dispersed from Colombia to Peru,
but each of three species are narrowly distributed. With the exception
of a single collection from northern Peru, E. anómala is not found
outside of Ecuador. It is the only species of Eucharis found on both
sides of the Andes. This latter fact is particularly significant in
view of the cladistic hypothesis that E. anómala is the most primitive
species in the genus. Eucharis amazónica is found natively within a
narrow area of the Rio Huallaga valley in Peru. Eucharis sanderi is
endemic to the Chocó region of Colombia.

247
Cal iphruria is almost completely western Colombian, most
prominently in the Rio Cauca valley, with a secondary distribution in
the Rio Magdalena valley. A single species, _C. korsakoffii, is
Peruvian.
Phytogeography of Eucharis and the Pleistocene Refugia Theory
Pleistocene events now substantiated in the literature have
undoutedly influenced the evolution of Eucharis and Caliphruria.
Simpson (1971), Van der Hammen (1974) and Prance (1978, 1982a, b)
summarize much of this work. Their consensus is that both montane and
lowland rain forest were fragmented during Pleistocene glacial periods
due to prevailing xeric climatic trends, and subsequently re-expanded
during interglacial pluvial periods. Furthermore, montane vegetational
belts were lowered during glacial periods. The second process would
have had relatively little effect on taxa in question, as neither
Eucharis or Caliphruria inhabit vegetation belts above 2000 m. The sum
effect of the lowering of Andean vegetational zones on Eucharis and
Caliphruria would have been reinforcement of isolation previously
imposed by initial uplift of the Andes. The former process, however,
would have enormous impact on organisms tied to a rainforest habitat.
The result of much biogeographic work since that of Haffer (1969)
has been the construction of an elaborate Pleistocene refugia theory for
the Neotropics. This work is summarized in Prance (1982a, b). Prance
(1973) provided the first phytogeographic support for the Pleistocene
refugia theory in the Amazon basin. He favored Haffer's (1969) idea
concerning the distribution of refugia, but expanded their limits
considerably (Fig. 1). Prance (1982a) has since further amended size

248
limits and distribution of proposed refugia. When distributions of
extant Eucharis and Caliphruria species (Chapter XII) are superimposed
upon proposed refugia sites, several striking correlations become
evident. The distribution of Caliphruria subedentata is included in or
occurs marginally to the Chocó refugium of Haffer (1969) and Prance
(1973, 1982a). Eucharis sanderi (subg. Heterocharis) is endemic to the
area of the Chocó refuge. Caliphruria is relatively species poor (4
species). This may be partially a consequence of present limits of wet
forest habitats in western Colombia conforming largely to the limits of
the Chocó refugium. In other words, the Chocó refugium has never
experienced secondary contact with other rain forest refugia during
interglacial expansion phases. The occurence of hybridization between
E. sanderi and _C. subedentata (X Calicharis butcheri) may reflect a
pattern of fragmentation and coalescence that occured within the limits
of the Chocó refugium, a hypothesis recently put forth by Gentry
(1982b). Caliphruria is also represented by two rare species in the Rio
Magdalena valley of Colombia (_C. hartwegiana and _C. teñera), and one
equally rare species in northern Peru (_C. korsakoffii). The Rio
Magdalena species show close phenetic relationship with_C. subedentata
of the Rio Cauca valley, particulary on the basis of pollen exine
morphology (see Chapter V), but Peruvian C. korsakoffii has both
different pollen and unique leaf surface morphology. It is unclear if
Caliphruria was at one time much more widespread in northern South
America, and has since suffered drastic reduction, or if _C. korsakoffii
represents the result of a long-distance disperal event.
Two areas of greatest taxonomic complexity in subg. Eucharis are
evident, the Napo-Pastaza river system of Ecuador and Peru, and an area

249
in east-central Peru consisting of the lower Rio Huallaga valley below
800 m. The former conforms to a refugium so named by Haffer (1969),
although Prance's (1973) expanded concept of the Napo refugium seems to
correspond better to phytogeographic study of subg. Eucharis. All of
the Oriente of Ecuador is contained within the limits of the Napo
refugium. Eucharis candida and E_. formosa are the only two species of
Eucharis found in eastern Ecuador north of the Pastaza valley. Most of
their occasional occurrences in Peru and Colombia either fit within
either one or the other of Prance's (1973, 1982a) proposed limits of the
Napo refugium, or are closely peripheral. A few outlying collections
from the middle Rio Huallaga valley in Peru do not fit any proposed
refugium. These species are often sympatric, and present a complex
mosaic of morphological variation from herbarium specimen examination
alone. They do show a measure of phenetic differentiation (Chapter VI),
but patterns of genetic variation are complicated (Chapter VIII), and
hybridization between them seems to have occurred. This may reflect a
pattern of secondary contact between populations, vectored by successive
fragmentation and coalescence of subsidiary refugia within the limits of
the Napo refugium.
Eucharis cyaneosperma and _E. ulei are two sibling species both
morphologically and cytologically close. Eucharis ulei is concentrated
in northern Peruvian Amazonas, while E. cyaneosperma has most frequently
been collected in the southern half of Peru and contiguous Bolivia.
These two taxa may represent the results of allopatric speciation within
a formerly continuous ancestral complex, vectored by isolation within
refugia. Most present day populations of both species are found either
in the Napo and East Peru refugia of Prance (1973) or the Peru-Acre

250
refugium of Prance (1982a). The limits of Prance's (1982a) Beni
refugium would have to be expanded to allow congruence between it and
present-day occurence of both taxa in Bolivia. However, as with the E.
candida/formosa complex, rare occurences of both species in the middle
Huallaga valley of Peru are not congruent with any proposed refugia.
The two subspecies of Eucharis pi i cata also show phytogeographic
patterns that may have been influenced by Pleistocene refugia. Eucharis
pi i cata subsp. brevidentata, the least derived of the two subspecies
morphologically, is presently known from only two localities: Amazonian
Bolivia and north-central Peru (Amazonas Department). The Peruvian
locality is at the very periphery of Prances's (1973, 1982a) Napo
refugium. The Bolivian locality would fit an expanded concept of the
Beni refugium (Prance, 1982a). However, Eucharis pii cata subsp. piicata
is a narrow endemic known only from a small area in the middle Rio
Huallaga valley of Peru.
It is thus apparent that the middle Rio Huallaga valley of Peru,
while a major locality for Eucharis species, and with at least three
endemic taxa (_E. amazoni ca, _E. bakeriana, _E. pi i cata subsp. pi i cata),
does not fit the limits of any worker's proposed refugia sites. Further
evidence of isolation of Huallaga Eucharis populations from other
clusters of species occurence is the cytological (Chapter VII) and
genetic (Chapter VIII) divergence of Huallaga E_. formosa from Ecuadorean
populations of this same species. These data are thus good evidence for
hypothesizing a Huallaga rainforest refugium in east-central Peru (Fig.
1).

251
Eucharis in Central America
Gentry (1982a) suggests that two major opportunities, widely-
spaced in time, existed for floristic interchange between Central and
South America. The first, ocurring during the Late Cretaceous, was
limited to a series of volcanic islands (the proto-Antilles; Dengo,
1975; Lillegraven et al. 1979). The degree to which this island arc
remained above water is unknown. At the beginning of the Tertiary,
however, this link between the continents was disrupted as the proto-
Antilles began a northward displacement. It was not until the late
Tertiary that the second opportunity for floristic interchange began to
coalesce, as formation of the Central American trench and new volcanic
activity gave rise to a new series of islands. These islands eventually
formed lower Central America, with a land bridge across the Isthmus of
Panama firmly established in the Pliocene, only ca. 3 million years ago
(Keigwin, 1978; Marshall et al., 1982). Gentry (1982a) concludes that
only very well-established Cretaceous taxa would have been able to take
advantage of the earlier connection via island-hopping. Entries into
Central America dating from this earlier connection, would be expected
to show strong taxonomic differentiation in Central America. Gentry
(1982a) cites tribe Crescentieae of the Bignoniaceae as a putative
example of early colonization of Central America by island-hopping,
followed by taxonomic differentiation. On the contrary, any migration
dating from the Pliocene or Pleistocene, would not be expected to show
much differentiation, either at the specific or generic level. I have
characterized the Eucharis bouchei complex as a semi-species complex of
geographically-isolated races or varieties not yet strongly
differentiated (Chapter XII). Patterns of genetic variation (Chapter

252
VIII), chromosome cytology (Chapter VII), and morphological variation
(Chapters VI and XII) in this group suggest that the entry of Eucharis
into Central America was a fairly recent event.
The species of subg. Eucharis geographically closest to _E.
bouchei, is _E. bonplandii, a rare taxon of central Colombia, and also
tetraploid. It is inconclusive whether these two species represent a
monophyletic, tetraploid group. Nonetheless, the congruence of
phytogeography with chromosome number in these two taxa suggests that
this may indeed be the case. It is tempting to speculate if tetraploid
Eucharis were at one time more common in northern Colombia, and that JE.
bouchei and E. bonplandii represent the remnent populations of a once
more widespread ancestral, tetraploid complex. Prance's (1982) most
recent distribution of Pleistocene refugia based on phytogeographic
patterns includes both a Rio Magdalena refuge in northern Colombia (most
collections of E_. bonplandii are from the Rio Magdalena valley, though
further south of Prance's proposed refuge), and a Darién refuge in
southwestern Panama (Fig. 1). Eucharis bouchei var. darieniensis is
most common in the area of the Darién refuge, and is putatively the
least derived variety of the species. The absence of collections of
Eucharis subg. Eucharis from northern Colombia is something of a
mystery, but may indicate that extinction of intervening populations
between E. bonplandii and E. bouchei was widespread in the recent
geological past.

Figure 9.1. Pleistocene refugia in northern South America proposed by Prance (1973, gray; 1982a,
ETlack). Dotted line indicates proposed Huallaga refugium in Peru (see text). Only refugia
discussed in the text are labelled. B = Beni, C = Chocé, D = Darién, EP = East Peru, H =
Huallaga, M = Magdalena, N = Napo.

254

CHAPTER X
REPRODUCTIVE BIOLOGY
Pollination Biology
Data on pollination ecology of Amaryllidaceae in general are
scant, and represent an area sorely in need of investigation. No
information on pollination of Caliphruria is available. The large,
white, heavily and sweetly fragrant flower of _E. amazonica (subg.
Heterocharis) was considered a model moth-pollinated flower by Percival
(1965). She noted that the nectar level in the tube rises to a maximum
height of 23% tube length, thus effectively preventing access to all but
long-tongued insects. Pollination of flowers of subg. Heterocharis, the
most ancestral complex of species in Eucharis, by sphingid moths may be
the primitive state in the genus. Other basal genera (sensu Meerow,
1985) of "infrafamily" Pancratioidinae also are specialized for hawkmoth
pollination (Hymenocallis: Baum!, 1979; Grant, 1983; Pancratium: Morton,
1965).
Floral fragrance, characteristic of all three species of subg.
Heterocharis, is rare in subg. Eucharis, occuring in only four taxa, _E.
bakeri ana, _E. caste! naeana, _E. f ormosa and E. pi i cata subsp.
brevidentata. However, floral fragrance is only weakly developed in
these species, and in one of them (_E. formosa), the odor is slightly
fetid. Vogel (1963) reported euglossine bees visiting Eucharis
bankeriana" (= bakeriana N. E. Britton?). Visitation by an

256
unidentified euglossine has been reported for other, unidentified
species of subg. Eucharis in Peru (J. Schunke, pers. comm.). In
addition to the majority of the species in this subgenus lacking
fragrance detectable to humans, the shorter perianth tubes of these
species may allow availability of nectar to bees or other insects. I
have observed the nectar level rising to the perianth throat in small -
flowered taxa of subg. Eucharis. The staminal cup of the flower,
exserted beyond the spreading limb could conceivably present a landing
platform for insects incapable of hovering (M. Whitten, pers. comm.).
What may have begun as purely facultative visitation by bees may in turn
have become a selective force within Eucharis for smaller flower size
and reduction in fragrance. Many bees are capable of detecting floral
fragrances unnoticeable to humans (Percival, 1965), however, and they
reportedly visit Peruvian species of subg. Eucharis.
Janzen (1971) discussed the potential long-distance pollination
activities of female euglossine bees in the lowland neotropics. Females
were observed to fly as much as 23 km in search of pollen and nectar
reserves for brood-rearing. Janzen coined the term "trap-lining" to
describe the behavior of these insects when foraging. He hypothesized
that female euglossines would visit spatially dispersed flowers along a
memorized flight pattern through the forest each day. He further
suggested that such trap-lining behavior would promote outcrossing among
tropical plants of low population density, and perhaps insure the
survival of such rare or spatially restricted plants.
The phenology of Eucharis (rarely more than 1-2 flowers open per
inflorescence at any one time over a period of 1-2 weeks, and the often
successive appearance of inflorescences from a clonal clump of bulbs)

257
and the dispersed distribution of plants in the wild, suggest that these
plants are pollinated by such trap-lining organisms. That the only
recorded observations of visitors to Eucharis are for euglossine bees,
further supports this hypothesis. The tendancy towards synchronzied
blooming among conspecific populations would at least strengthen the
probabilty that conspecific flowers would be encountered in any one
foraging bout. However, congruence of flowering period between
sympatric species, as is the case with E. candi da and _E. formosa in
Ecuador, might result in instances of interspecific hybridization. This
appears to have occurred at times, not only among the former species,
but between _E. pi i cata subsp. pi i cata and _E. ulei in Peru as well. If
ecological constraints force convergence in flowering period among
sympatric populations of different species, one might then expect
selection pressures to exert themselves in other ways that might
influence pollinator specificity. In this regard, consistent flower
size differences between E. candi da and E. formosa, as well as the
presence of floral fragrance in _E. formosa and its absence in E_.
candi da, may be significant.
One species of Eucharis subg. Eucharis exhibits a very different
flowering pattern. Eucharis castelaneana, the smallest-flowered species
in the subgenus, vigorously forms large clonal clumps which mass-flower,
perhaps biannually. The flowers are also mildly and sweetly fragrant.
Futhermore, E_. castelnaeana appears to be functionally autogamous. This
species may therefore be visited by more local insect pollen vectors
attracted by the mass display and olfactory cues.

258
Breeding System
Most species of Eucharis and Caliphruria appear to be self-
incompatible on the basis of greenhouse pollination studies with both
pollen of the same flower and inter-flower pollen (geitonogamy). This
observation, and the high levels of heterozgosity found in the genus
(see Chapter VIII), suggest that most species are predominantly
outcrossing. Further evidence of outcrossing is the marked protandry of
Eucharis flowers, and the presence of natural interspecific hybrids in
the wild. Of all species tested, only _E. castelnaeana regularly sets
capsules with self-pollen, and stigma receptivity of this species
coincides with anthesis. Capsules are set readily with sibling pollen
on all species (including _E. castelaneana) with the exception of
functionally sterile hybrid taxa (_E. X grandiflora, X Calicharis
butcheri) and E. amazonica. This latter species, probably triploid
derived and with ca. 50% pollen inviability, has not set capsules with
self, sibling, or interspecific pollen. M. D. Williams (pers. comm.)
reportedly induced fruit set with pollen of Hymenocal!is and Hippeastrum
pollen, but the resulting seed was inviable.
The self-incompatibility (SI) system of Eucharis is unknown. Two
character states of Eucharis (dry-type, papillate stigmas and reticulate
exine) have been correlated with sporophytic SI in other plants.
(Heslop-Harrison and Shivanna, 1977; Zavada, 1984). However, according
to several workers, sporophytic incompatibility is unknown in monocots
(Heslop-Harrison, 1976; Kress, 1981; Larsen, 1977).
The putative presence of SI in Eucharis is not in concordance with
limited data for other rainforest understory plants. Kress (1983) found

259
full self-compatabi1ity in the majority of 19 Costa Rican Heliconi a
species tested, and cited unpublished data of Grove, who found similar
results in a broader survey of understory plants. However, Bawa and
Beach (1983) tested 14 species of woody Rubiaceae in Costa Rica, most of
which were found to be self-incompatible. Self-incompatibility is also
characteristic of most canopy tree species in the tropics that have been
tested (Arroyo, 1976). Kress (1983) suggests that the availability of
long-distance pollinators and low daily output of flowers may enforce
outcrossing among otherwise self-compatible understory plants in the
tropics. Eucharis exhibit this type of phenology, are putatively
pollinated by trap-lining female euglossine bees, but are nonetheless at
least partially self-incompatible. Perhaps self-incompatibility is an
ancestral state in Eucharis (all other genera of Pancratioidinae that I
have tested will not self), and has persisted in all outcrossing species
despite a lack of selective pressure for its genetic maintenance.
Linder greenhouse cultivation, some species of Eucharis, which
otherwise do not set fruit with self-pollen, will set caspules late in
the flowering cycle, even when no other inflorescences are available for
insect-vectored pollen transfer. If anthers are removed from all
flowers before anthesis, fruit formation will not occur. This suggests
that only partial-incompatibility (Leffel, 1971; Pandey, 1959) may occur
in Eucharis. The ability to set fruit with self-pollen (perhaps limited
to geitonogamous pollen) late in the flowering cycle may serve as a
"fail-safe" measure in the absence of inter-plant pollen transfer.
Though agamospermy cannot be ruled out, tests for apomixis have been
inconclusive. Fruit set has never occured on flowers from which the

260
stigma and style has been excised. However, apomixis can be
pseudogamous (Focke, 1881), thus requiring pollination.
Autogamy in _E. caste! naeana is associated with a number of other
divergent character states for subg. Eucharis. This species has a mass¬
flowering phenology; the smallest flowers in the genus; a green, often
tardily-dehiscent capsule; a less-turgid seed with a dull, rugose testa;
and telocentric chromosomes. The most interesting correlation from the
standpoint of reproductive biology is between the phenology of E_.
caste!naeana and autogamy. The mass-f1owering habit of this species is
a unique characterisin'c for the subgenus, and suggests that pollinating
agents for this small-flowered taxon are other than trap-line foragers.
Eucharis caste!naeana occurs in geographic sympatry with several other
Eucharis species, most frequently with _E. ulei and _E. cyaneosperma. The
occurrence of _E. caste!naeana on seasonally inundated substrates,
however, may indicate a degree of ecological allopatry. The evolution
of both novel phenology and breeding system may have arisen through
competition for pollinators among sympatric congenors, the "reproductive
assurance hyopthesis" of Jain (1976). Autogamy would insure that a
novel phenological pattern would become fixed in a species. If only
partial incompatabi1ity exists among Eucharis species, the evolution of
complete autogamy in _E. caste!naeana could have been relatively rapid.
Autogamy would aid the fixation of structural rearrangements in
chromosomes as well, a potential isolating mechanism (Jain, 1976). The
presence of telocentrics in _E. caste!naeana is the best evidence for
this. Colonization of seasonally inundated soils appears to be a major
adaptation of E. caste!naeana in relation to sympatric congenors.

261
Inbreeding would allow rapid multiplication of a successful colonizing
genotype [the “infective principle" of Stebbins (1950)].
Few barriers to artifical interspecific hybridization have been
encountered in greenhouse tests of Eucharis species. However, the
autogamous species, _E. caste!naeana, would not function as maternal
parent in any interspecific cross attempted. Seedlings of a number of
putative interspecific and intergeneric crosses (with Caliphruria and
Urceolina) are presently in cultivation. Curiously, all attempts to
cross Ecuadorean Eucharis species with Urceolina microcrater have
failed. Only a single Peruvian collection of E_. ulei was successfully
hybridized with _U. microcrater. Eucharis ulei also shows a measure of
karyotypic similarity to _U. mi crocrater (see Chapter VII).
Reproductive biology of Eucharis and Caliphruria is thus still
largely unknown. The rarity of the plants is an obstacle to field
studies in this area. The disappearance of populations of these genera
and their pollinating agents, concurrent with rainforest destruction,
can only further impede investigation of this aspect of their biology.

CHAPTER XI
PHYLOGENETIC RELATIONSHIPS AND EVOLUTIONARY HISTORY
The most recent treatments of the Amaryllidaceae (Traub, 1963;
Dahlgren et al., 1985) have placed Eucharis (including Caliphruria,
Mathieua, and Plagiolirion) and Urceolina in the tribe Euchareae (Pax)
Traub together with Hymenocal1is Salisb., Eurycles Salisb., and
Calostemma Brown. The latter two genera are Australasian in
distribution and Hymenocal!is is entirely Neotropical. Unifying
characters of this tribe are 1) presence of a staminal cup, whether
conspicuous or reduced, and 2) fleshy seeds. On the basis of anatomical
study of the seeds, I do not believe that the globose, turgid seeds of
Eucharis and Caliphruria with their characterisec phytomelanous testa
(Huber, 1969) are homologous with the fleshy, bulbiform (and sometimes
viviparous) seeds of Hymenocallis, Eurycles and Calostemma. Seeds of
these genera [with the exception of two species of Hymenocal lis, H_.
quitoensis Herbert and H. he 1iantha Ravenna (= Lepidochiton Sealy)] lack
phytomelan in the seed coat. Furthermore, the bulbiform seeds of
Hymenocallis, and those of Eurycles and Calostemma, have different
ontogenetic origins. This is discussed in greater detail in Chapter IV.
Consequently, tribe Euchareae as presently circumscribed is probably
polyphyletic. The Euchareae was recognized as one of four tribes
comprising "infrafamily" Pancratioidinae (of subfamily Amaryl1oideae) by
Traub (1957, 1963). Traub's (1963) remaining subfamilies (Allioideae,
Hemerocalloideae, Ixiolirioideae) are recognized at the familial level
262

263
in recent classifications by Huber (1969) and Dahlgren, et al. (1985),
concept which I follow in my own work. Consequently, "infrafamily"
Pancratioidinae could be raised to the status of subfamily. A detailed
discussion of these taxa as a distinct evolutionary unit worthy of the
rank of subfamily is in preparation. The Pancratioidinae consists of
four tribes (sensu Traub, 1963): Euchareae, Eustephieae (Pax) Traub,
Pancratieae Salisb. and Stenomesseae Traub. Ravenna (1969, 1974) has
shifted some genera to different tribes. Most recently, Dahlgren et al
(1985) combined tribes Stenomesseae and Eustephieae.
Traub (1971) transfered Eucharis, Caliphruria, Mathieua and
PIagiolirion into Urceolina without any discussion or supporting data.
Mathieua and PIagiolorion are two very poorly known, monotypic genera
related to Stenomesson and Hymenocallis respectively (Meerow, MS in
submission). However, Eucharis, Caliphruria, and Urceolina appear to
form a natural phenetic group defined by characteristics of leaf
morphology (petioíate leaf with characteriStic cuticular striation, and
epidermal cells with undulate anticlinal walls), chromosome number (2_n
46), morphology of ovule and seed (turgid, with phytomelanous testa),
and ecology (rainforest understory). Before testing this hypothesis
cladistically, a review of character states in Urceolina is necessary.
A Review of Urceolina
The genus Urceolina Reich, (nom. cons.) consists of perhaps eight
species, all restricted to Peru. The relationships of Urceolina have
long been misunderstood, most workers (Baker, 1888; Pax, 1888;
Hutchinson, 1959) placing Urceolina near Stenomesson Herbert. Traub

264
(1957) was the first to recognize its affinities with Eucharis. The
problem no doubt stemmed from the inclusion of a species of Stenomesson
[S. miniatum (Herbert) Ravenna] in Urceoli na as _U. mi ni ata (Herbert)
Benth. & Hook. Despite the ventricose aspect of the corolla morphology
of S. miniatum, which is similar to that of Urceolina, the species
clearly belongs to Stenomesson as evidenced by its narrow, sub-petiolate
leaves, the morphology of its stamina! cup, and its numerous flat, black
seeds (Ravenna, 1978).
The most striking difference between Eucharis and Urceolina is in
floral morphology. Urceolina (Fig. 1A) is easily distinguished by its
brightly colored, urceolate corolla formed by the coherence of the
tepals throughout most of their length. Vargas (1960) described the
genus Pseudourceolina to accomodate a species of Urceolina in which the
tepals are more laxly coherent. As in Caliphruria, the stamina! cup of
Urceolina is reduced to a minute, membranous, basal connation of the
filaments which are otherwise linear throughout their considerable
length. One or several obtuse teeth may be situated between each
stamen. The leaves of Urceolina, in thickness and lack of both surface
plication and marginal undulation, resemble Caliphruria more closely
than Eucharis. The epidermal cell anticlinal walls of both surfaces are
strongly undulate (Fig. IB, C). Abaxial cuticular striations of
Urceolina (Fig. ID) are very much like those characteristic of Eucharis
and Caliphruria (Chapter III), but the striations are thin and slightly
less distinct than in Caliphruria. Abaxial epidermal cells of Urceolina
are nearly uni planar (Fig. ID), whereas in Eucharis and Caliphruria the
epidermal cells are strongly raised.

265
In size the pollen grains of Urceolina (Fig. IE) are similar to
those of subg. Caliphruria. The coarseness of the reticulum is
intermediate between that of Eucharis and Caliphruria. In all species
of Urceolina the small stigma is capitate and entire (Fig. IF) versus
the trilobed stigma found in Eucharis and Caliphruria. Stigmatic
papillae are unicellular as in Eucharis. Urceolina species have from
10-20 ovules (Fig. 1G).
Seed morphology of Urceolina is another major area of
morphological divergence from Eucharis and Caliphruria (Fig. 1H-L). The
ripe fruit of Urceolina is a thin-walled, yellow-green, turbinate
capsule, much like that of Caliphruria. However, the seeds of _U.
microcrater (Fig 1H) are narrowly oblong, ca. 5 mm long and 1.5 mm wide,
and curved. The testa is smooth, lustrous black, and phytomelanous,
with aveolate cell outlines like most Eucharis species. In longitudinal
transverse section, an anatomical feature unique to Urceolina is
revealed (Fig. 1J, L). At the chalazal end of the seed, a dam of poorly
differentiated tissue separates a "cap" composed of many small cells
from the endosperm. The cells of the "cap" do not have pitted walls
with plasmodesmata as is characterisec of the endosperm cells. There
is no obvious surface feature on the seed correspondí'ng to the area of
this "cap," and its function is unknown. Elaisomes are found in ant-
dispersed seeds of some species of Pancratium (Werker and Fahn, 1975),
but these structures appear on the seed surface.
Urceolina also exhibits divergent karyotype morphology (Chapter
VII) from most species of Eucharis and Caliphruria. The largest pair of
chromosomes in U. microcrater are submetacentric. Whether this
characterizes all other species of Urceolina is unknown. The largest

266
pair of chromosomes are submetacentric in only a single species of
Eucharis, E. astrophiala. Chromosomal change correlates with a great
deal of phenetic divergence in this species of Eucharis as well.
The distribution of Urceolina appears to overlap with Eucharis
only in the vicinity of Tingo Maria in Dept. Huánuco of Peru (Fig. 2),
though E. amazonica is the only species of Eucharis found in this area.
Urceolina inhabits situations of fast drainage in shady ravines and rock
outcrops (Ravenna, 1982; J. Schunke, pers. comm.; Meerow pers. obs.).
Altitudinal range of Urceolina is quite variable (700-2000 m). The
leaves of at least one species (JJ. microcrater Kranzl.) are
hysteranthous.
The morphology of the flower in Urceolina strongly suggests
ornithophily (sensu Faegri and van der Pijl, 1979), i.e., vivid,
“parrot" colors, ventricose corolla, pendulous habit, and absence of
odor. If this genus is bird-pollinated, mechanical isolation would be
an important barrier between it and Eucharis, even in areas of sympatry.
Phylogenetic Analysis
Phylogenetic analysis (cladistics) has become the standard
methodology for testing hypotheses of phylogeny among organisms in
systematic biology. The principles of phylogeny inference were formally
enumerated by Hennig (1966). A similar methodology, "the Wagner
groundplan divergence" method was applied in botany by Wagner (1952,
1962a, b, 1980; see also Churchill et al., 1984) but was overshadowed
for many years by Hennig's work.

267
The philosophical foundation of cladistics, as this form of
analysis is called, is based upon certain assumptions of evolutionary
thought (Hennig, 1966), that have become axiomatic in their application
to this methodology. The first is the concept of monophyletic groups.
From the standpoint of cladistic thought (Wiley, 1981), all recognized
taxa must be monophyletic, i.e., derived from a common ancestor and
including all descendents of this ancestor (but see Ashlock, 1979).
Monophyletic groups are recognized by the possession of shared derived
characters (= synapomorphies). Shared primitive characters (=
symplesiomorphies) cannot be used as a basis for delimiting taxa in a
cladistic classification. To do so results in paraphylesis, i.e.,
segregation of one or more descendent taxa from other descendents of
their common ancestor (Bremer and Wanntorp, 1978; Henning, 1966; Wiley,
1981). Polyphyletic groups (more than one ancestry) can result if the
characters used to define taxa are non-homologous, i.e., convergence or
paralellism has resulted in similar character states evolving along
different ontogenetic pathways. Polyphyletic groups are generally
considered anaethema to phylogenetic thought by cladist and non-cladist
alike. On the other hand, some systematists have argued for the
acceptance of paraphyletic groups (Ashlock, 1979; Buck, 1986; Dressier,
1986).
Another important concept central to phylogenetic systematics, and
perghaps the most controversial, is that of parsimony (Farris, 1970;
Farris et al., 1970; Kluge and Farris, 1969). In the context of
cladistics, the dictum of parsimony states simply that where two
conflicting hypotheses of phylogeny occur, the shortest [i.e., one
requiring fewest evolutionary steps or character state changes, and

268
consequently the fewest number of ad hoc hypotheses of evolutionary
change (Wiley, 1981)] is the most parsimonious and therefore the
preferable option. Recently, adherents of the character compatibility
method of cladistic analysis (see Duncan et al. 1980, and Meacham, 1981
for discussion of this method) have argued that the parsimony method of
cladistic analysis is less in accord with Henning's (1966) principles
than character compatibility (or "clique") analysis (Duncan, 1984,
1986). Proponents of parsimony have responded vociferously to the
contrary (Churchill, et al. 1985; Farris and Kluge, 1985; 1986).
Since accurate cladistic analysis is completely dependent on
accurate assessment of homology in characters and polarization of
character state changes (i.e., which is ancestral and which is/are
derived), rigorous attention must be paid to choosing the characters for
the analysis, as well as polarizing the state changes of each. The only
phylogentically acceptable concept of homology is genealogical; i.e, two
taxa have the same character because it was present in their common
ancestor (Eldredge and Cracraft, 1980). Without a complete fossil
record, indirect evidence (anatomical, developmental) is usually all
that is available for assessing questions of homology. In cladistic
analysis of species of a single genus, homology of characters is usually
assured (Wagner, 1980). If the cladogram resulting from an analysis
requires that some characters undergo multiple independent origins or
reversals, one inference may be that those characters are not
homologous.
Despite a lack of consensus on generic and specific limits in
Amaryllidaceae, cladistic analysis has only twice before been applied to
such problems in the family, by Nordal and Duncan (1984) for Haemanthus

269
L. and Scadoxus (Raj.) F. Nordal, two closely related, baccate-fruited
African genera; and Meerow (1987) for Eucrosia Ker Gawler. Resolution
of the generic limits of Euchari,s and Caliphruria in relation to
Urceolina, as well as interspecific relationships in the former genera,
seemed two areas that would benefit from the application of cladistic
analysis.
Materials and Methods
Cladistic analyses were run using PAUP version 2.3 by David L.
Swofford (Illinois Natural History Survey), on the Northeast Regional
Data Center (NERDC) computer system of the University of Florida. PAUP
is a highly versatile package utilizing the "Wagner method" (Farris
1970; Kluge and Farris 1969) of simple parsimony. Due to the high
incidence of homoplasy in Amaryllidaceae (Meerow 1985, 1987), the use of
the Wagner method, which places no restrictions upon character state
changes, seems advisable. All species (and one subspecies) of Eucharis
and Caliphruria [21 operational taxonomic units (OTU's)] excluding
hybrid taxa were analyzed using forty characters (Table 1, 3).
Character state polarities were assessed via outgroup comparison
(Maddison et al., 1984; Watrous and Wheeler, 1981). Out group
comparison is the most widely accepted methodology for assigning
character state polarities in conjuction with the parsimony method of
cladistic analysis. Due to the mosaicism of morphological variation in
Andean Amaryllidaceae (Meerow, 1985, 1987), character state polarization
is complex and requires some discussion.
Outgroups, character selection and polarization of states.
Character state analysis preliminary to a cladistic treatment of the

270
pancratioid Amaryllidaceae (Meerow, 1985) suggests that within the
Pancratioidinae, a large, white, fragrant, crateriform flower with a
conspicuous stamina! cup ("pancratioid," cf. Pancratium), presumably
involved with sphingid moth pollination (Grant, 1983; Morton, 1965), may
be symplesiomorphic. In other words, while the pancratioid flower was a
major apomorphy defining the Pancratioidinae as a distinct group within
the Amaryllidaceae, it is the ancestral floral morphology from which all
other pancratioid taxa have diverged. I have used the term "the
pancratioid base" to define the five genera of Pancratioidinae with this
type of flower morphology (Meerow, 1985). These five genera are
Eucharis, Hymenocallis Salisb. sens. str., Pancratiurn l., Pamianthe
Stapf, and Paramongaia Velarde. All but Pancratium are entirely
neotropical in distribution.
The genus Pancratium (ca. 17 species) and two species of
Hymenocallis (_H. quitoensis Herbert and _H. he 1 iantha Ravenna) were used
as the primary outgroups. Character state data on these taxa were
accumulated from study of living material, herbarium specimens and
various literature (Bjflrnstad, 1973; Meerow and Dehgan, 1985; Morton,
1965; Ponnamma, 1978; Ravenna, 1980; Traub, 1962; Werker and Fahn,
1975). The two species of Hymenocallis are undoubtedly a monophyletic
group. They are the only two species of the genus that have
phytomelanous seed coats. These two species have been segregated into a
separate genus, Lepidochiton Sealy (1937) on this basis (however, only
_H. quitoensis was known at that time). The two species are ephemeral
components of the xeric flora of southwestern Ecuador and northwestern
Peru, and differ only in flower color. Traub (1962) consi dered H_.
quitoensis a relict taxon, and the most primitive species of

271
Hymenocal1 is. These species of Hymenocallis will be refered to as
Lepidochiton in the following discussion. Urceolina, putative sister
group to Eucharis and Caliphruria, was included in the analysis to test
its phylogenetic relationships to the former two taxa. In this sense,
Urceolina is best considered part of the in group for the analysis,
since character state polarities were not based on the states ocurring
in this genus. At times, evolutionary trends in "infrafamily"
Pancratioidinae as a whole were used to resolve polarities. This is
discussed below wherever such criteria were applied.
All character states occurring in both Pancratiurn and Lepidochiton
were coded as ancestral. Only characters 10 (flower number), 11 (flower
color), 36 (seed shape), 37 (testa color), and 40 (chromosome number)
could not be polarized using this criterion. Pancratium is putatively
the least derived genus of the pancratioid base (Meerow, 1985). Where
character states of Lepidochiton and Pancratiurn were at variance, the
state occuring in Pancratium was weighted in judging the ancestral
condition for that character.
Flower number could not be polarized with certainty. The
hypothesis that the umbellate inflorescence of Amaryl1idaceae represents
a series of reduced, helicoid cymes (Mann, 1959; Stout, 1944) would
suggest that numerous flowers is the ancestral state in the family.
Reduction in number would thus represent loss of one or more of the
component cymes. Numerous flowers has usually been considered the
derived state in the family (Traub, 1962, 1963; Traub and Moldenke,
1949). Nonetheless, to my knowledge, no one has presented any evidence
that reversals in this character are developmental^ impossible.
Uniflory occurs sporadically throughout the family, but several

272
uniflorous taxa will occasionally produce a two-flowered scape.
Lepidochiton is uniflorous. Two uniflorous taxa also occur in
Pancratium. Consequently, both polarities for flower number were tested
in the analyses.
A trilobed stigma is also usually considered the ancestral state
in Amaryllidaceae (Traub, 1963; Traub and Moldenke, 1949). Nonetheless,
both outgroups have a capitate, entire stigma. In this case as well,
both possibilities were tried in the analyses.
A chromosome number of 2_n = 22 is undoubtedly ancestral among
extant pancratioid genera (Meerow, 1984). This number occurs among
widely unrelated genera of Amaryllidaceae (Flory, 1977). Base number in
the Amaryllydaceae is considered by most workers to be x = 11 (Flory,
1977; Goldblatt, 1976; Meerow, 1984). The chromosome number 2n^ = 46,
characteristic of all neotropical pancratioid genera in part or entirely
(Di Fulvio, 1972; Flory, 1977; Meerow, 1985, 1987) is likely derived via
duplication or fragmentation of a chromosome, followed by doubling of
the genome (Lakshmi, 1978; Sato, 1938). Snoad (1952) reported 2_n = 24
for _H. quitoensis. Material I have in cultivation of this species from
both Peru and Ecuador has 2_n = 34 (Meerow, unpubl. data). This number
may be triploid derived from the ancestral 2n_ = 22.
Of the forty characters used in the analysis, 19 were simple, two-
state characters. Of the remaining 21 multistate characters, 16 had
three states, 3 had four states, and 2 had five states. Some
multistates characters were placed into linear transformation series
(characters 8, 9, 10, 13, 24, 25, 27, 29, 34; see Table 1). Some of
these characters logically called for this type of treatment (e.g,
character 34, ovule number). Ordering of other multistate characters

273
into linear transformation series was based on corroborative trends
occurring in other tribes of "infrafamily" Pancratioidinae (Meerow,
1985) or within the family as a whole (e.g., character 28, exine
morphology). A number of three state characters (2, 11, 12, 17, 20, 21,
22, 36, 37), and one four-state character (18) were placed into
bifurcating transformation series whereby each of the derived states was
coded as an independent derivation from the ancestral (Table 1).
Finally, character 40 (chromosome number), a five state character (see
Table 1), was ordered on the basis of the chromosome data cited above.
Results
Changing polarities of characters 10 (flower number) and 30
(stigma morphology) did not affect either the topology or the resolution
of terminal taxa in the resulting cladograms. The cladogram resulting
from the coding the trilobed stigma and few flowers as derived was 134
evolutionary steps long, and had a Consistency Index (Kluge and Farris,
1969; Cl = total length of cladogram minus homplasies divided by total
length) of 0.592. The cladogram resulting from the coding of both these
characters as ancestral was 135 steps long, with a Cl = 0.589. For the
cladogram illustrated (Fig. 3), more than 5 flowers and trilobed stigmas
were coded as ancestral. These are the states which I believe are
ancestral in "infrafamily" Pancratioidinae as discussed above. This
cladogram is 133 steps long, with a Cl = 0.589. It is thus the most
parsimonious of the three cladograms, albeit by only a single step. Of
the 133 character state changes in Fig. 3, 55 are homoplasies, and 33
are reversals.

274
As is evident from the cladogram, Pancratium is only one step
removed (the evolution of a capitate stigma, homoplasious with
Urceolina) from the hypothetical ancestor used to root the cladogram.
This is congruent with morphological and karyological data that suggests
that Pancratium is the most primitive genus in the Pancratioidinae.
According to Traub (1963), a few species of Pancratiurn do have an
obscurely trilobed stigma. Lepidochiton is the next terminal taxon to
resolve in the cladogram. Uniflory and 34 chromosomes are the two
apomorphies of Lepidochiton, but its hypothetical ancestor is defined by
reduction in flower number, globose seeds, and a change in testa color
from black to brown. The next internal node of the cladogram is the
hypothetical ancestor to Eucharis, Caliphruria and Urceolina, all of
which thus form a monophyletic group. Ten apomorphies occur at this
node. The most important are the evolution and fixation of the
petiolate leaf, the changes in flower habit and pedicel length, tube
morphology, pollen size, and increased chromosome number. Rather than
an actual reversal to trilobed stigmas, I think it more likely that the
primitive state was retained within this monophyletic group until the
later divergence of Urceolina.
The next five bifurcations in the cladogram are very interesting.
The terminal taxa involved represent Eucharis subg. Heterocharis (E_.
amazónica, E. anómala, and _E. sanderi). It is obvious subg.
Heterocharis is paraphyletic. This situation is discussed in detail in
the next section. Eucharis anómala also resolves cladistically as the
most primitive species of Eucharis, with only two character state
changes (crateriform to campanulate perianth, smooth to rugose testa)

275
defining this species as distinct from the hypothetical ancestor of the
eucharoid genera.
Eucharis lehmannii, a poorly known species of uncertain
phylogenetic relationship is the next terminal taxon to resolve in the
cladogram. The great amount of missing character state information for
E. lehmannii compromises its position in the cladogram, but indications
are that it may occupy an isolated position between the more primitive
and advanced taxa of the eucharoid lineage.
The remainder of the cladogram represents two monophyletic groups.
These are Eucharis subg. Eucharis, and Caliphruria and Urceolina
respectively. The two apomorphies at the ancestral node are a reversal
to numerous flowers, and reversal to shorter staminal teeth.
Eucharis oxyandra, another species of uncertain phylogenetic
relationships and a great deal of missing character state information,
is placed within the cladogram as ancestral to both Urceolina and
Caliphruria. Six apomorphies define this ancestral node: the loss of
leaf margin undulation, reduction in flower size, loss of fragrance and
androecial pigmentation, reduction in exine reticulum coarseness, and
reversal in seed shape. The state occurring in _E. oxyandra is known for
only two of these apomorphies (flower size and exine morphology).
Urceolina has the largest patristic distance of all terminal taxa in the
cladogram, with nine apomorphies (leaves hysteranthous, flowers 5-7 cm
long and brightly colored, urceolate perianth, anthers versatile at
anthesis, long-exserted style, capitate stigma, numerous ovules, and
unique oblong, curved seed), four of which are reversals. The
hypothetical ancestor of Caliphruria required eight character state
changes (straight and green tube, funnel form perianth, long staminal

276
teeth, finely-reticulate exine, multicellular stigmatic papillae,
reduced ovule number, and non-lustrous testa), two of which were
reversals. Within Caliphruria, two small, monophyletic subgroups are
resolved with two species each. The major differences between these two
subgroups is the presence (£. hartwegiana and £. teñera) or absence (C.
subedentata and C. korsakoffii) of staminal dentation, and number of
ovules.
The large clade comprising Eucharis subg. Eucharis is the
monophyletic group in which I have the greatest confidence, since
cladistic relationships among the component species confirm
relationships based on phenetic and cytological data. Apomorphies at
the ancestral node are the reversal to a well-developed staminal cup
(more likely the retention of the ancestral state), the extention of
androecial pigmentation to both surfaces of the staminal cup, plication
of the staminal cup, reversal to shallowly cleft staminal cups (also
more likely retention of an ancestral state), the evolution of subulate
free filaments (homoplasious with E_. amazonica), and the evolution of
the bright orange, mimetic fruit. Two major monophyletic subgroups
resolve within subg. Eucharis, largely on the basis of staminal cup
characters. The first group of species all have shallowly cleft,
plicate staminal cups. Within this clade, large-flowered _E. bakeriana
is the first terminal taxon resolved. The remaining taxa, E. pi i cata,
_E. caste!naeana, and _E. corynandra are all small-flowered species very
close cladistically and phenetically as well (Chapter VI and XII).
According to this cladogram, Eucharis corynandra may be ancestral to the
former two species. This is doubtful, since two important autapomophies
of E. corynandra (short staminal cup, and club-shaped free filament)

277
were not included in the character matrix. An ancestor/descendent
relationship is also suggested between the two subspecies of E_. pi i cata.
All apomorphies expressed in E. caste!naeana are either homoplasies,
reversals or both. The most interesting of these is the reversal in
this species to an ancestral fruit morphology. A number of the
character state reversals that occur in the cladogram could just as
likely be considered to be the retention of the ancestral state in that
particular clade. I believe that the green, thin-walled capsule of E_.
caste!naeana may be a true evolutionary reversal, since there is not yet
a single additional species of subg. Eucharis that does not have the
orange capsule typical of the subgenus.
The second monophyletic subgroup of subg. Eucharis also resolves
sevral possible ancestor/descendent relationships. Eucharis formosa is
resolved in a zero-length branch from the ancestral node, defined by
apomorphies of plicate leaf lamina and a more deeply cleft staminal cup.
The presence of floral fragrance in this species, and its large flower
size are symplesiomorphies with E. bakeriana, to which _E. formosa also
bears close phenetic relationship (Chapter VI). The next terminal taxon
is _E. candi da, also terminating a zero-length clade. Loss of floral
fragrance and a reduction in flower size are the apomorphies at this
node. The remaining taxa in the cladogram are linked by the following
apomorphies: reduction in flower number and ovule number. Eucharis ulei
is positioned at the ancestral node. Together with E. astrophiala and
_E. cyaneosperma, _E. ulei forms an unresolved trichotomy in the
cladogram. The final monophyletic group within subg. Eucharis is formed
by the two tetraploid taxa, E. bonplandii and E. bouchei. Loss of leaf

278
plication and marginal undulation are the additional apomorphies at the
ancestral node.
The cladogram presented in Fig. 3 contains 55 homoplastic
character state changes, and 34 reversals. This may raise questions
concerning the homology of characters which manifest these changes.
Invariably, it is androecial characters (including pollen size) in which
a great deal of homoplasy has occured. The evidence from phenetic
studies of Eucharis (Chapter VI) and from study of other genera of the
Pancratioid Amaryllidaceae (e.g., Meerow, 1987) indicates that
androecial characters are among the most easily modified morphological
characters in this group. Not only can species be polymorphic for such
characters as staminal dentation (e.g., E_. candida, E_. formosa, E. ulei,
E. oxyandra), but reduction of the staminal cup has occured
independently in every pancratioid tribe, and sometimes more than once
(Meerow, 1985, 1987, unpubl. data).
Reduction of the staminal cup is one of seven apomorphies that
define a monophyletic group including E. sanderi, E_. lehmanni i, E,.
oxyandra, Caliphruria, and Urceolina. Since characters 21 and 22 also
included this state, this character —potentially non-homologous among
these diverse taxa — actually represents three of the seven apomorphies
at this node. The data matrix was therefore run with characters 19, 21,
and 22 deleted. The only change in terminal taxa on the resulting
cladogram was that E. sanderi was resolved as sister taxon to E.
anómala.

279
Discussion
Cladistic analysis indicates that Eucharis, Caliphruria and
Urceolina represent a monophyletic group, well-supported by 10
apomorphic character state changes. Within this large group, Eucharis
subg. Eucharis forms another clear cut monophyletic group. Cladistic
relationships among the species of subg. Eucharis largely corroborate
relationships postulated on the basis of phenetic and chromosomal data.
The clarity of this clade is due in no small measure to the completeness
of the data matrix for the component species.
The sister group relationship between Caliphruria and Urceolina
seems to be a very robust cladistic hypothesis. However, three of the
four species of Caliphruria are restricted to western Colombia, as is
Eucharis sanderi. Hybridization between Cali phruria and JE. sanderi, as
well as a degree of phenetic resemblance between _E. sanderi and
Caliphruria led me to earlier hypothesize that subg. Heterocharis and
Caliphruria were sister groups, and that Urceolina represented a
separate, perhaps even earlier, divergence from the ancestral eucharoid
complex (Meerow, 1983). This earlier hypothesis is not supported by the
cladogram (Fig. 3).
Of the eucharoid taxa, Eucharis subg. Heterocharis has the
greatest number of putatively primitive characters, and clearly
represents the more ancestral species in the genus. Nonetheless, my
concept of this subgenus is paraphyletic, since descendents of the
common ancestor of Heterocharis are excluded from the group. Subgenus
Heterocharis is a fairly heterogenous group from the perspective of
apomorphic characters alone. Each of the three species may be
characterized by autapomorphies, but only symplesiomorphies join them.

280
By Including subg. Heterocharis in Eucharis, Eucharis becomes
paraphyletic according to this cladogram.
The cladogram presented in Fig. 4 is a user generated tree
picturing relationships from an alternative perspective. In this
cladogram, I have positioned Urceolina as an early divergence from the
eucharoid lineage, and Caliphruria as a sister group to subg.
Heterocharis. The problematic species, E. lehmanni i and E_. oxyandra,
were situated within the clade containing smal1-flowered species of
subg. Eucharis with numerous ovules. This topology of this user¬
generated tree was then coded and submitted to PAUP along with the
character state matrix (Table 3) for analysis of character state changes
required to support the topology.
This second cladogram required 154 evolutionary steps, and has a
Cl of 0.448. Of the 154 character state changes, 85 were homoplasies,
and 52 were reversals. Thus, it is less parsimonious than the cladogram
in Fig. 3. Since I did not alter the resolution of the species of subg.
Eucharis in Fig. 4 from the results pictured in Fig. 3, character state
changes supporting its topology are essentially the same in both
cladograms. Therefore detailed topology for subg. Eucharis is not
illustrated in Fig. 4. The areas of exceptional interest in this user¬
generated cladogram are the resolution of Urceol i na, Cali phruria, _E.
subg. Heterocharis, and the accompanying character state changes within
these clades.
The very early branching of Urceolina from the rest of the
eucharoid lineage in Fig. 4, has consequences in the later branching of
the monophyletic group composed of Caliphruria and Heterocharis, and
further consequences at the ancestral node of subg. Heterocharis. The

281
ancestral node from which Heterocharis and Caliphruria bifurcate is
defined by 4 apomorphies (green tube, curved tube, long staminal teeth,
and non-lustrous testa), three of which are reversals. The ancestral
node of subg. Heterocharis is defined by nine apomorphies (large
flowers, fragrant flowers, reduced flower number, short pedicels,
campanulate perianth, versatile anthers, 1ong-exserted styles,
rostellate ovaries, and increased ovule number), seven of which are
reversals (more likely the retention of ancestral states). If these
reversals are actually the retention of the ancestral states in the
Heterocharis clade, Urceolina would necessarily require even more
apomorphies than the nine indicated in Fig. 4, with an even greater
incidence of homoplasy.
The question that must be asked is whether there is any evidence
to support such an early divergence of the Urceolina clade from the rest
of Eucharis, rather than the more parsimonious phylogeny illustrated in
Fig. 3. The only evidence evidence is circumstantial, the vicariant
distribution of Urecolina to the south of the center of diversity for
Eucharis (Fig. 2). Urceolina urceolata, the southernmost distributed
species in the genus, is the largest flowered species of Urceolina, and
the has the largest number of ovules per locule (20, the ancestral
number in the eucharoid line). Assuming the same type of character
state changes in Urceolina as in Eucharis, both characters of U.
urceolata would indicate that it is a less derived species than JJ.
mi croc rater (small flowers, 10 ovules per locule), the northernmost
distributed species. The greatest diversity of Urceol ina is in montane,
southeastern Peru. This evidence suggests to me that Urceol ina evolved
in this region. Relict, ancestral taxa of Eucharis are conspicuously

282
absent from this geographic region, but are sympatric with more derived
species throughout much of the northern range of Eucharis (Fig. 2).
Homoplasy in androecial and pollen characters is widespread
throughout the pancratioid Amaryllidaceae (Meerow, 1985), and has been
clearly documented within subg. Eucharis alone. Sister group
relationships based on such characters are thus suspect. Of the 6
apomorphies at the ancestral node defining Caliphruria, Urceolina and _E.
oxyandra as a monophyletic group in Fig. 3, two are of this category.
Other apomorphies at this node are based on characters of demonstrated
plasticity (e.g., leaf characters, flower size) or characters of unknown
genetic complexity (seed morphology). Only three apomorphies define
Caliphruria and Urceolina as a monophyletic group after the divergence
of _E. oxyandra in Fig. 3: the habit of the flower, the straight tube,
and pollen size. Pollen size, as discussed above and elsewhere in this
discussion, is acceptably homoplasious. Flower habit of both genera is
actually different (declínate in Caliphruria, pendent in Urceolina) but
was coded as a single state on the basis of whether it is a factor of
pedicel habit or tube morphology (see Table 1). This leaves the
straight tube, a character that may be retention of the ancestral state
or a true reversal (in which case, possibly homoplasious).
Thus there appears to be a degree of uncertainty associated with
some portions of the stronger of the two cladograms (Fig. 3). However,
the cladogram in Fig. 3 is more parsimonious, and also more clearly
resolves the species of subg. Heterocharis as the most primitive in
Eucharis. Though it is undoubtedly a controversial decision from an
orthodox cladistic perspective, I prefer to recognize Urceolina and
Caliphruria as distinct genera, despite the attendent risk of a

283
paraphyletic Eucharis. The ancestral node in Fig. 3 from which
Urceolina, Caliphruria, and Eucharis subg. Eucharis forms a monophyletic
group is defined by only 2 apomorphies (reversals to numerous flowers
and short stamina! teeth). Thus, this monophyletic group is not very
well supported.
Ashlock (1979) presents a very eloquent arguement for acceptance
of paraphyletic groups. Ashlock argues that an evolutionary systematic
approach to a group of organisms should equally reflect anagenesis
[degree of divergence (= number of apomorphies)] as well as
cladogenesis. He defines two subclasses of monophyletic groups:
hoiophyletic, which contain all descendents of the stem ancestor, and
paraphyletic, those which do not. Ashlock claims that orthodox
cladists, by ignoring the anagenetic aspect of evolution (i.e., basing
their classifications strictly on branching pattern), reduce the
information content of their classification.
In the first cladogram (Fig. 3), Urceolina and Caliphruria are
defined by 9 and 12 apomorphies respectively. The stem HTU
(hypothetical taxonomic unit) of subgenus Eucharis is defined by six
apomorphies, two of which (wel 1-developed and shallowly cleft staminal
cup) are probably false, as they more than likely represent retention of
the ancestral state. Three of the remaining four are all androecial
characters, an area of extensive morphological plasticity throughout the
pancratioid Amaryllidaceae. Thus, the only major apomorphy separating
subg. Eucharis from all other taxa in this clade is the orange, mimetic
capsule.
In terms of patristic distance, Eucharis is much closer to the
three species of subg. Heterocharis than either Caliphruria or

284
Urceoli na. In the generalized sense, the distribution of subg.
Heterocharis is quite broad, from Colombia to Peru (Fig. 2). However,
each of the three species of subg. Heterocharis itself are only narrowly
distributed. Eucharis sanderi is known only from the Chocó region of
Colombia. Eucharis amazónica is found natively only in the middle Rio
Huallaga valley of Peru. Eucharis anómala, cladistically the most
ancestral species in the genus (Fig. 3), has been collected outside of
Ecuador only once. More significantly, _E. anómala is the only species
of Eucharis found on both sides of the Andes. I believe that all three
species of subg. Heterocharis represent the relictual remnents of the
ancestral eucharoid complex, each of which has remained isolated long
enough to evolve its respective cohort of autapomorphies.
Eucharis oxyandra is a taxonomically perplexing species in its
characters of morphological intermediacy between Eucharis and Urceolina.
It is known only from bulbs found in local, transient cultivation in
Peru, near the single recorded point of geographic sympatry between
Eucharis (_E. amazónica) and Urceol ina (jJ. microcrater). The absence of
data on fruit and seed morphology of this species further occludes
resolution of its phylogeny. Eucharis lehmanni presents a similar
problem.
It is unfortunate that Traub (1971) never saw fit to supply
supporting data for his broad concept of Eucharis, Caliphruria and
Urceolina as a single, polymorphic genus. It is a cladistically
justifiable concept.
Equally sound cladistically is the recognition of Eucharis,
Heterocharis, Caliphruria and Urceolina as distinct genera. From a
practical standpoint, I find this unsatisfactory, due to the close

285
phenetic relationship between subg. Heterocharis and Eucharis. This
relationship is most conspicuous if one compares Eucharis bakeriana and
E_. formosa (the most primitive species of subg. Eucharis) with E.
amazónica and _E. anómala (subg. Heterocharis).
Alternatively, Urceolina and Caliphruria could be treated as two
subgenera of Urceolina according to the cladogram in Fig. 3, if their
sister group relationship is deemed accurate. This relationship is,
however, arguable. In the context of pancratioid evolution in
Amaryllidaceae (Meerow, 1985, 1987; Meerow and Dehgan, 1985), and modern
concepts of familial limits in monocots (Huber, 1969; Dahlgren et al.,
1985), I propose recognition of Eucharis, Cali phruria and Urceolina as
distinct genera, with the acceptance of paraphylly in Eucharis. Until
further data allows a more accurate understanding of their
relationships, I also prefer to maintain E.. lehmannii and E_. oxyandra as
species of Eucharis, with the notation incertae sedis.
In three neotropical lineages of the Pancratioidinae, parallel
trends in the evolution of floral morphology have occurred (Meerow,
1985). In each case, taxa with smaller, tubular or ventricose, brightly
colored flowers with reduced staminal connation, and without noticeable
fragrance have diverged from taxa possessing a large, white, fragrant,
crateriform flower with a staminal cup (Meerow, 1985). The pancratioid
flower correlates repeatedly with the largest pollen grain size within
the subfamily (Meerow, 1985; Meerow and Dehgan, 1985). Presumed basal
complexes within each pancratioid lineage also have numerous ovules per
locule, a character state considered primitive in the Amaryllidaceae
(Traub, 1963). Eucharis and Urceolina, as documented in this paper,
present one such case. Pseudostenomesson Velarde, perhaps prematurely

286
submerged by Traub (1980) as section Artema of Hymenocal1is on the basis
of leaf and seed morphology, presents a parallel situation within the
Hymenocal!is lineage (Meerow, 1985; Meerow and Dehgan, 1985). Tribe
Stenomesseae contains two small, genera, Pamianthe and Paramongaia, with
ancestral floral morphology, and a large genus, Stenomesson, with
derived morphology. Each lineage appears to be a monophyletic group on
the basis of vegetative and ovarian morphology, as well as chromosome
number (Meerow, 1985, 1987; Traub, 1963). A similar pattern occurs in
all three lineages: 1) floral morphology of "derived" taxa suggests an
ornithophilous pollination syndrome and 2) "derived" taxa are found,
entirely or in part, at higher elevations than presumed ancestral taxa.
In the Hymenocal1 is and Eucharis lineages, the pancratioid floral
morphology has radiated to a far greater extent than the putatively
ornithophilous divergence (Pseudostenomesson and Urceolina,
respectively). In the Pamianthe-Paramongaia/ Stenomesson lineage, it is
the derived genus, Stenomesson (35-40 species), which has speciated to
a greater degree than taxa with the ancestral pancratioid flower
(Pamianthe: 3 species, Paramongaia: monotypic).
A pattern unique to the neotropical Pancratioidinae is the
existance in modern times of small or monotypic genera with characters
of intermediacy between more widely distributed genera. A number of
these are known only from the type collections. Plagiolirion Baker and
Matiueua Klotzsch are two such taxa that Traub (1951) first merged with
Eucharis, and later with Urceolina (Traub, 1971). However, from
available data their affinities appear to be with Hymenocal1is and
Stenomesson respectively (Meerow, MS in subm.). Eucharis lehmannii and
E. oxyandra may represent two such taxa within the eucharoid phylogeny.

287
There are only four recognized, Paleotropical pancratioid genera.
Pancratium, ca. 17 species, is widely distributed from Africa,
Meditteranean Europe, to Asia. The genus is badly in need of revision.
Asian species are particularly poorly known. The relationship of
Yagaria, (ca. 2 species) to Pancratium, is similar to that of
Caliphruria and Eucharis. Divergence is concentrated in androcial
characters. Eurycles (2 species) and Calostemma (2 species) are two
Australasian genera, very different in leaf and floral morphology, but
linked by the synapomorphy of a unique bulbiform seed (see Chapter IV).
Pancratium and Vagaria have 22 chromosomes (Ponnamma, 1978; Meerow,
unpubl. data); Eurycles and Calostemma have 20 (Zaman and Chakraborty,
1974; Meerow, unpubl. data). Neotropical taxa characteristically have
46 chromosomes (Di Fulvio, 1972; Flory, 1977; Meerow, 1984, 1985,
1987).
The much higher level of divergence in neotropical pancratioid
lineages may thus be primarily a factor of two causes, 1) the uplift of
the Andes, creating much opportunity for geographic isolation, and 2)
greater genetic adaptability, via tetraploidy, to new ecological zones.
Northern South America has had a tropical climate since the
Cretaceous (110 Ma; Darlington, 1965). After the initial appearance of
the pancratioid complex, the eucharoid line probably diverged from other
pancratioid lineages, perhaps becoming well represented in the
rainforest understory across northern South America. Uplift of the
Andean geosyncline prior to the Pliocene (10 Ma) was not pronounced (Van
der Hammen, 1974). At the beginning of the Pliocene, the present-day
high plane of Bogotá, Colombia remained in the tropical belt (Van der
Hammen, 1979). During the Pliocene, massive uplift of the Andean

288
cordillera close to present elevational limit occured (Van der Hammen,
1979). Eucharis, as presently circumscribed, is rarely found indigenous
at elevations above 1000 m. If such a proto-eucharoid complex was found
across the northern South American tropical belt, expressing the same
fidelity to mesic, lowland sites as extant taxa, uplift of the Andes
would effectively have splintered populations of this complex into
several sets of populations. These would then have been separated by
the parallel chains of the Andes and their intervening high valleys,
plateaus, and xeric lowland valleys, formidable dispersal barriers to
organisms adaptively linked to lowland rainforest ecology. Massive
extinction of intervening populations probably occured. Subsequent to
the Andean uplift, taxa of the eucharoid line would have been restricted
to two geographical areas: 1) premontane rainforests of the Pacific
slope of the northern Andes and 2) the corresponding habitat on the
eastern slopes of the Amazonian drainage. It is within these areas that
the greatest diversity of these taxa is concentrated. The continuous
uplift of the Andes, and Pleistocene refugia effects (see Chapter IX)
has had further impact on the evolution of these groups. If the
evolution of Caliphruria and Urceolina is as recent as this scenario
might suggest, the occurrences of rare intergeneric hybrization in the
wild may reflect large-scale morphological differentiation as a preface
to large-scale genetic divergence. This is exactly what Davis and
Gil martin (1985) discuss in their review of morphological variation and
speciation. Much broader based isozyme studies of these taxa than
detailed in Chapter VIII are planned to address this issue in the
Amary11idaceae.

289
Huber (1969) revolutionized thought on monocot phylogeny by
pointing out that monophyletic groups of genera could be resolved within
traditionally broad family concepts of the Liliflorae. Dahlgren and
coworkers (e.g., Dahlgren and Clifford, 1982; Dahlgren et al. 1985) have
adopted much of Huber's data into a phylogenetic classification of the
monocots with much narrower family limits than previously proposed by
modern taxonomists working above the family level. Dahlgren et al.
(1985) have classified the petaloid monocots on the strict basis of
apomorphies, rather than by overall similarity and, consequently, their
many obvious symplesiomorphies.
Detailed study of Eucharis, Caliphruria, and Urceolina reveal that
each has evolved its own complement of autapomorphic characters, some of
which (e.g., multicellular stigmatic papillae in Cali phruria; mimetic
capsule in Eucharis; unique seed morphology and anatomy in Urceolina) do
not reoccur in the Amaryllidaceae. Rather than join these taxa on the
basis of their obvious phenetic similarities, a consequence of their
common ancestry, I prefer to recognize their diversity at the generic
level, and their common ancestry at the tribal rank (= Euchareae).

290
Table 11.1. Characters, character states, and transformation series for
cladistic analysis of Eucharis and Caliphruria. For simple
two-state characters, the transformation is always A —> B.
1. Leaves: A. linear or lorate, sessile; B. petiolate. 2.
Leaves: A. deciduous; B. deciduous and hysteranthous; C. persistent;
A —> B, A —> C. 3. Leaves: A. plicate; B. smooth. 4. Leaf margins:
A. non-undulate; B. undulate. 5. Petiolar secondary bundles: A. absent;
B. present. 6. Abaxial cuticular striations: A. absent or nearly so;
B. dense, well-developed. 7. Epidermal cell anticlinal walls: A. more
or less straight; B. undulate. 8. Flowers: A. more than 7 cm long; B.
5-7 cm long; C. less than 5 cm long; A > B —> C. 9. Floral
fragrance: A. heavy; B. mild; C. absent; A —> B —> C. 10. Flower
number: A. more than 5; B. ca. 5; C. less than 5; A —> B —> C. 11.
Flower color: A. white; B. white or yellow; C. yellow or orange; A —>
B, A —> C. 12. Flower habit: A. erect or sub-erect; B. declinate or
pendent by curving of tube; C. declinate or pendent by laxness of
pedicel; A —> B, A —> C. 13. Pedicel length: A. flower
(sub)sessile; B. less than 0.5 cm; C. greater than 0.5 cm long; A —> B
—> C. 14. Tube habit: A. straight; B. curved. 15. Tube length: A.
longer than tepals; B. equal to or shorter than tepals. 16. Tube
color: A. green; B. concolorous with tepals. 17. Tube morphology: A.
cylindrical proximally, dilating at 1/2 to 1/3 of its length; B.
funnelform, dilating gradually from the base; C. cylindrical for most of
its length, dilating abruptly near the throat; A —> B; A —> C. 18.
Perianth morphology: A. crateriform; B. campanulate; C. funnelform; D.
urecolate; A —> B, A —> C, A —> D. 19. Staminal cup: A. well-
developed; B. reduced. 20. Androecial pigmentation: A. primarily on
interior of cup; B. equally on interior and exterior; C. absent; A —>

291
Table 11.1—continued.
B, A —> C. 21. Stamina! cup: A. non-plicate; B. plicate; C. reduced;
A —> B, A —> C. 22. Stamina! cup: A. shallowly cleft between
stamens (< 2 mm); B. deeply cleft (> 2 mm); C. reduced; A —> B; A
C. 23. Free filament: A. linear (< 1 mm wide); B. subulate (> 1 mm
wide). 24. Stamina! dentation: A. present; B. polymorphic; C. absent.
A —> B, A —> C. 25. Stamina! teeth: A. shorter than free filament;
B. more or less equal to free filament; C. longer than free filament; D
absent; A —> B —> C, A —> D. 26. Anthers: A. versatile at
anthesis; B. erect at anthesis. 27. Pollen longest equatorial diameter
A. greater than 80 yum; B. 76-80 /am; C. 66-75 yum; D. 60-65 yUm; E. 50-59
^m; A —> B —> C —> D —> E. 28. Pollen exine reticulation: A.
coarse; B. moderately coarse; C. fine; A —> 3 —> C. 29. Style
axserted: A. greater than 1 cm beyond anthers; B. 1 cm or less beyond
anthers, but above the rim of the staminal cup; C. to or below the rim
of the staminal cup; A —> B —> C. 30. Stigma: A. trilobed; B.
capitate, entire. 31. Stigmatic papillae: A. unicellular; B.
multicellular. 32. Ovary color: A. green; B. white. 33. Ovary: A.
rostellate; B. not rostellate. 34. Ovule number (per locule): A. 10-20
B. 7-10; C. 3-6; 0. 2-3; A —> B —> C —> D. 35. Ripe capsule: A.
green, relatively thin-walled; 3. leathery, orange. 36. Seeds: A.
compressed; B. globose or ellipsoid; C. narrowly oblong, curved; A —>
B; A —> C. 37. Testa: A. black; B. blue; C. brown; A —> B; A —>
C. 38. Testa: A. dull; B. lustrous. 39. Testa: A. smooth; B. rugose.
40. Somatic chromosome number: A. 22; B. 34; C. 46; D. 68; E. 92;
A —> B —> C —> D, C > E.

292
Table 11.2. List of OTU's and label designations for cladistic analysis
of Eucharis and Caliphruria. * = outgroup.
TAXON DESIGNATION
Eucharis amazónica
AMA
E. anómala
ANO
E. astrophiala
AST
E. bakeriana
BAK
E. bonplandii
BON
E. bouchei
BOU
E. candida
CAN
E. castelnaeana
CAS
E. corynandra
COR
E. cyaneosperma
CYA
E. formosa
FOR
E. pi i cata subsp. pi i cata
PLI-P
E. formosa subsp. brevidentata
PLI-B
E. lehmannii
LEH
E. oxyandra
OXY
E. sanderi
SAN
E. ulei
ULE
Caliphruria hartwegiana
HAR
C. korsakoffii
KOR
C. subedentata
SUB
C. teñera
TEN

293
Table 11.2—continued.
TAXON
DESIGNATION
* PANCRATIUM
PAN
URCEOLINA
URC
* LEPIDOCHITON
(Hymenocal1 is LEP
quitoensis & H_. heliantha)
ANCESTOR ANC

Table 11.3. Character state matrix for cladistic analysis of Eucharis and Caliphruria. ilefer to
Table 11.2 for key to 0TÜ abbreviations. No value indicates unknown character state.
CHARACTER
OTU
1
2
3
4
5
6
7
8
9
10
11
12
13
14
is
16
17
IB
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ANO
B
C
A
B
B
A
A
A
A
A
A
B
B
B
A
A
A
B
A
A
A
A
A
A
A
A
C
A
A
A
A
A
A
A
A
B
C
A
B
C
AMA
B
C
A
B
B
A
B
A
A
B
A
B
B
B
A
A
A
A
A
A
A
A
B
A
A
A
B
A
A
A
A
A
A
A
A
A
B
A
D
AST
B
A
B
B
A
B
B
C
C
B
A
B
C
B
A
8
B
A
A
B
A
B
B
C
D
B
A
A
A
A
A
B
B
D
B
B
A
B
A
C
BAR
B
C
A
A
A
B
8
B
B
C
A
B
C
B
A
B
B
A
A
B
B
A
B
A
A
B
B
A
B
B
A
A
B
B
8
B
A
B
A
C
BON
B
C
A
A
A
B
B
B
C
B
A
B
C
B
A
B
B
A
A
B
A
B
B
A
A
B
0
A
B
A
A
A
B
0
B
B
A
B
A
E
BOU
B
C
A
A
A
A
B
B
C
B
A
B
B
B
A
B
B
A
A
B
A
B
B
B
B
B
C
A
A
A
A
A
B
0
B
B
A
B
A
E
CAN
B
C
B
B
A
B
B
B
C
C
A
B
B
B
A
B
B
A
A
B
A
B
B
B
A
B
C
A
B
A
A
B
B
c
B
B
A
B
A
C
CAS
B
C
A
B
A
B
B
C
B
C
A
B
B
B
A
B
B
A
A
B
B
A
B
A
A
B
E
A
C
A
A
B
C
A
A
A
A
B
C
COR
B
C
C
c
A
A
B
C
B
A
B
C
A
A
B
B
A
B
A
A
B
A
B
A
B
c
CYA
B
C
B
B
A
B
B
B
c
B
A
B
C
B
A
B
B
A
A
B
A
B
B
B
A
B
C
A
B
A
A
A
B
D
B
B
B
B
A
C
FOR
B
C
B
B
A
B
B
B
B
C
A
B
C
B
A
B
B
A
A
B
A
B
B
B
A
B
C
A
B
A
A
A
B
B
B
B
A
B
A
C
HAR
B
C
A
B
C
C
A
C
C
A
A
B
c
B
C
C
A
A
B
B
E
C
B
A
B
A
B
0
A
KOK
B
c
A
A
A
B
A
c
C
C
A
C
C
A
B
A
C
B
B
C
C
C
A
C
D
B
E
B
B
A
A
B
B
c
A
B
C
A
A
C
LEH
B
c
B
C
B
A
B
C
B
A
C
A
B
C
C
A
A
B
B
B
A
A
B
oxr
B
c
A
c
c
A
B
C
B
A
B
B
B
C
C
A
B
A
B
c
B
B
A
A
A
B
B
PLI-P
B
c
A
B
A
B
B
c
C
c
/V
u
C
B
A
B
B
A
A
B
B
A
B
A
C
B
c
A
c
A
A
A
B
B
A
B
A
B
A
C
PLI-B
B
c
A
B
A
B
B
c
B
c
A
B
c
B
A
B
B
A
A
B
B
A
B
A
B
B
c
A
c
A
A
A
B
C
A
B
A
B
A
C
SAN
B
c
B
B
A
B
B
A
A
A
A
B
c
8
A
A
A
C
B
A
C
C
A
C
0
A
D
A
A
A
A
A
A
A
C
SUB
B
c
A
A
A
B
B
C
c
A
A
C
C
A
A
A
C
B
B
C
C
C
A
A
0
B
E
C
B
A
B
A
B
C
A
A
A
A
B
C
TEN
B
B
C
C
A
A
C
â–  c
A
B
C
B
B
c
C
c
A
A
c
B
E
C
B
A
B
A
B
0
A
ULE
B
c
B
B
A
B
B
B
c
B
A
B
c
B
A
B
B
A
A
B
A
B
B
B
A
B
C
A
B
A
A
A
B
D
B
a
A
B
A
C
LEP
A
A
A
A
A
A
A
A
A
B
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
A
B
C
A
A
U
PAN
A
A
A
A
A
A
A
A
A
c
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
URC
B
B
A
A
A
B
B
B
c
c
c
C
c
A
A
B
B
0
B
c
c
c
A
B
A
A
E
B
A
B
A
A
B
A
A
c
A
B
A
c
ANC
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
A
A
A
294

Figure 11.1. Character states of Urceolina. All photos are Ü.
mi crocrater Kr&nzl. (Schunke 13633, FÃœAS), unless otherwTse
stated. A." Flowers (PTo'wman 3 Kennedy 5721, GH). Photo courtesy
T. Plowman. B-C. Epidermal" cel 1 configurations. B. Abaxial. C.
Adaxial. Scales = 0.1 mm. D. SEM photomicrograph of abaxial leaf
surface. Scale = 25 urn. E. SEM photomicrograph of U. urceolata
pollen grain (Weberbauer 7822, US), proximal polar vTew~ Scale =
5 urn. F. OvaryT G. SEM photomicrograph of stigma. Scale = 50
urn. H. Seed. I-L. Longitudinal transverse sections of seed. I.
Micropylar end of seed. J. Chalaza! end of seed. K. Apex of
embryo. Scale = 100 urn. Internal chalaza! "cap". Scale = 200 urn.
em = embryo, en = endosperm, t = testa, c = cap.

296

Figure 11.2.
Urceoli na
General i zed
in Central
distributions of Eucharis,
and South America.
Caliphruria and


Figure 11.3. Cladogram of Eucharis and Caliphruria, based on data matrix in Table 3
indicates zero-length branch.
Broken li

Eucharis subg.
Eucharis subg. Eucharis Caliphruria Heterocharis
PAN
/
/
/
300

Figure 11.4. User-generated cladogram of Eucharis, Caliphruria, and Urceolina. Broken line indicates
zero-length branch.

Eucharis _ ,
subg. Heterocharis Caiiphruria
Eucharis subg. Eucharis
PAN
/
/
CO
o
r\s

CHAPTER XII
TAXONOMIC TREATMENT
Materials and Methods
Herbarium Studies
Loans or gifts of herbarium specimens were received from the
following herbaria: AAU, B, BM, COL, F, FTG, G, GB, GH, GOET, HUNT, K,
LE, M, MG, MICH, MO, MPU, NA, NY, OXF, P, QCA, S, SEL, SP, U, UC, US,
VEN.
Living Collections
Over 100 accessions of living material representing 15 species or
natural hybrids of Eucharis and Caliphruria were accumulated from
personal field collections and from the following individuals or
institutions: James Bauml, Libby Besse, Calaway Dodson, Robert Dressier,
Mark Elliot, Thomas Fennell, Fred Fuchs, Harry Luther, Fred Meyer,
Timothy Plowman, James Watson, Mark Whitten, Margot Williams, Norris
Williams, Marcia Wilson, Bailey Hortorium, Royal Botanic Gardens at Kew
and Edinburgh, Longwood Gardens, UC Berkeley Botanical Garden, Honolulu
Botanical Gardens, Huntington Botanical Garden, Fairchild Tropical
Garden, Marie Selby Botanical Garden, Missouri Botanical Garden, and
Strybing Arboretum. Voucher specimens for living material utilized in
the various systematic investigations enumerated in previous chapters
are deposited at FLAS.
303

304
Field Studies
Field work was conducted in Peru and Ecuador in July-August, 1982,
and in Colombia and Ecuador in July-August, 1984. Herbarium specimens
and living material were collected, and ecological observations of
natural populations were made.
Notes on Critical Measurements
Measurements of vegetative and floral parts in the following
species descriptions are derived from examination of dried material
(floral parts after rehydration in a 3% solution of Aerosol OT brought
to boil), supplemented with examination of fresh or FAA-preserved
material when available. In all cases where dried and fresh or spirit
preserved material of the same collection was available, I found less
than 5% difference between measurements of rehydrated and fresh or
preserved tissue.
Measurements of the staminal cup are frequently critical in
delimiting taxa of Eucharis possessing a well-developed cup, and the
criteria used in assessing size of the androecium requires special
consideration. Length measurements of the staminal cup were made from
the base to the apex of the teeth or lobes of the cup, not including the
subulate portion of the filament. In only two cases (E_. astrophiala and
E_. bouchei var. bouchei), where each stamen dilates gradually from apex
to base in all or some populations, do length measurements refer to the
entire length of the androecium. The width of the staminal cup, where
relevant, was measured at the rim of the cup in those species where the
stamens constrict distally into a narrow, subulate portion; and at the
widest point along the stamens in those taxa in which the stamens dilate

305
gradually from apex to base. These measurements are graphically
illustrated in Figure 1.
A Note on the Keys
Taxa of Caliphruria and E_. subg. Heterocharis are separable by
discrete characters or character states very amenable to key
construction. Using the keys to these two subgenera, any worker should
be able to identify material referable to described taxa of either
group, whether in the field or in the herbarium. The enormous degree of
phenotypic plasticity exhibited by species of subg. Eucharis, however,
made key construction difficult. Most species of subg. Eucharis overlap
to at least some degree with one or more other species in virtually all
quantitative morphological characters. As a consequence, major
dichotomies in the key to subg. Eucharis are not as discrete as one
would prefer. In some cases, I have had to rely on characters
observable only with living material. With perserverance, any worker
should be able to key out all but the most depauperate herbarium
specimens of subg. Eucharis.
Species Concept
The great degree of morphological variation demonstrated by many
species of E_. subg. Eucharis renders a purely taxonomic species concept
unworkable. Narrow concepts of morphological species in this genus,
have little biological basis, and would result in an enormous increase
in the number of recognized species.
Mayr (1969, p. 26) defined the biological species as "groups of
interbreeding natural populations that are reproductively isolated from

306
other such groups." At present, there is insufficient data concerning
population dynamics and breeding behavior of Eucharis and Caliphruria to
support an exclusively biological species concept in this genus. In at
least one case (£. piicata and E_. ulei), interspecific hybridization and
perhaps introgression between two species has occured. In addition, I
recognize several other putative natural interspecific hybrids in
Eucharis, and one inter-generic hybrid (X Calicharis butcheri). The
evidence from artificial hybridization attempts suggests that a number
of species of E_. subg. Eucharis are cross-compatible, though most
natural hybrids show reduced pollen stainability.
The evolutionary species concept of Simpson (1961) and Wiley
(1978, 1981) is defined as "a lineage of ancestor-descendent populations
which maintains its identity from other such lineages and which has its
own evolutionary tendancies and historical fate" (Wiley, 1981, p. 25).
Though reproductive isolation may be necessary to maintain the integrity
of an evolutionary species, its identity, as defined by morphological
similarity, is conceived as the result of the common ancestry of its
component populations. I have striven in my work on Eucharis and
Caliphruria to adhere to an evolutionary species concept, using as broad
a morphological data base as possible, and subjecting the data to both
phenetic and phylogenetic analyses. Insights from chromosome cytology
and analyses of genetic variation have at times provided additional
support for species delimitation.
The rank of subspecies is used once in this treatment (E_. pi icata)
to designate strong morphological divergence coupled with geographical
isolation which, in my opinion, is acceptable within the confines of
specific limits. The rank of variety is used in a case (E. bouchei)

307
where both the morphological and geographic components of divergence are
weaker, but appear to represent the first stages of speciation within a
heterozygous semi-species complex (Grant, 1981).
Taxonomic Treatment
Key to Eucharis and Caliphruria:
1. Leaf margins usually undulate; flowers declinate to pendulous via
the curving of the tube; perianth funnelform-campanulate or
crateriform; tube cylindrical, at least below middle, abruptly
dilating at or above the midpoint of its length, curved, 25-50 mm
long; staminal cup conspicuous, basally pigmented green or yellow,
exserted from the throat of the perianth or adnate to the dilated
portion of the tube; stigmatic papillae unicellular Eucharis
1. Leaf margins non-undulate; flowers declinate to sub-pendulous via
the curving of the pedicel; perianth funnel form; tube funnel form,
dilating gradually from base (rarely sub-cylindrical), straight or
only slightly cernuous, 25 mm or less long; staminal cup
inconspicuous and unpigmented, reduced to a membranous, basal
connation of the filaments; stigmatic papillae multicellular
Caliphruria
EUCHARIS Planchón. Linden's Ann. Cat. Hort. 8: 3. 1852; FI. des
Serres Ser. 1, 8: 107. 1853. TYPE SPECIES: Eucharis candida Planchón
et Linden. Urecolina subg. Eucharis (Planchón) Traub. PI. Life 27: 57-
59. 1971.
Evergreen (one species _+ deciduous), bulbous geophytes. Buib
tunicate, usually offsetting vigorously. Leaves petiolate, persistent,
glabrous; petiole sub-terete, somewhat concave adaxially proximal to the

308
sinus, convex abaxially, light green, winged distally by the attenuation
of the lamina; lamina ovate, elliptic, ovate- or elliptic-lanceolate,
usually thin, predominately hypostomatic, usually lustrous, dark green
adaxially, light or silvery green abaxially, smooth or plicate between
the parallel veins, cuticle of the abaxial epidermis variably striate,
margins frequently undulate, apically acute or acuminate, basally
attenuate to the petiole, rarely appearing sub-cordate. Inflorescence
scapose, umbellate (composed of 1 to several, reduced, helicoid cymes);
scape solid, terete or slightly compressed, glaucous, terminating in two
green or greenish-white, ovate-lanceolate, valvate-imbricate, marcescent
bracts that enclose the flowers and several secondary bracts before
anthesis. Flowers 2-10, pedicellate (rarely subsessile), each subtended
by a lanceolate bracteole, pendent or declinate, sometimes fragrant,
white, protandrous; perianth crateriform or campanulate; tube
cylindrical, dilating abruptly above its midpoint, sometimes stained
green proximally; limb of 6 tepals in 2 series spreading widely from the
throat or imbricate for half their length, the outer series usually
longer, narrower and apiculate; the inner series acute, obtuse, or
minutely apiculate. Stamens 6, variously connate below, pigmented
yellow or green proximally; free filament linear, subulate, or otherwise
petaloid; anthers oblong to linear, sub-basifixed or dorsifixed,
eventually becoming versatile, introrse, dehiscing longitudinally;
pollen grain boat-shaped elliptic, monosulcate, exine reticulate. Style
filiform, included within, equal to, or exserted from the staminal cup;
stigma obtusely 3-lobed, glandular-papillose. Ovary inferior, green or
white, globose-ellipsoid, oblong, occasionally trigonous, 3-locular;
septal nectaries present; ovules 2-20 per locule, placentation axile,

309
globose, anatropous. Fruit a 3-lobed, loculicidal capsule, thin-walled
or leathery, green or bright orange; seed globose or ellipsoid,
sometimes angled by pressure, turgid, with copious endosperm, few per
locule; testa thin, phytomelanous, lustrous (rarely dull) black, dark
brown or blue, usually smooth. 2 n_ = 46, 68, 92.
Key to the subgenera of Eucharis:
1. Flowers 3 to 7 cm long, usually pendulous, only rarely and
mildly fragrant, crateriform (rarely somewhat campanulate);
perianth tube cylindrical below, dilated abruptly just below
throat, usually strongly curved, white; limb usually segments
spreading widely (ca. 90°) at perianth throat; staminal cup
inserted at throat of tube, proximally spotted or stained
yellow, green or yellow-orange equally on the exterior and
interior of the cup; distal part of filament usually widely
subulate (> 1.5 mm wide) or otherwise petaloid; anthers
more or less erect at anthesis; ovules 2-9 (-10) per locule ...
subg. Eucharis
1. Flowers 7-8 cm long, declinate or sub-pendulous, strongly
fragrant, funnelform-campanulate to crateriform; perianth
tube cylindrical below, abruptly dilated at 1/3-1/2 its
length, green (at least proximally); limb segments usually
imbricate for half their length; staminal cup partially
adnate to upper portion of tube, sometimes reduced, flushed
(yellow-)green, particularly along the filamental traces,
with the pigmentation most intense on the interior of the
cup; distal portion of the filament usually narrowly subulate

310
(1 mm or less wide); anthers versatile at anthesis; ovules
(7, 9-) 16-20 per locule subg. Heterocharis
EUCHARIS subg. EUCHARIS.
Leaves glabrous, petioíate, persistent; lamina ovate, elliptic or
lanceolate, mostly thin, margins usually undulate, variably plicate
between the parallel veins, apically acute or acuminate, basally
attenuate to the petiole or rarely subcordate, mostly dark green and
lustrous adaxially, light or silvery-green abaxially, the abaxial
epidermis variously striate; petiole subterete, somewhat channelled
adaxially proximal to the sinus. Inflorescence scapose, umbellate,
terminating in two greenish-white marcescent bracts. Flowers
pedicellate, (3-) 5-10, only rarely with noticeable fragrance, mostly
pendulous, 3-7 cm long, crateriform (rarely slightly campanulate);
perianth tube usually strongly curved, cylindrical below, dilated just
below the throat or rarely at 1/3 length, white; limb of six white,
ovate to ovate-lanceolate tepals which usually spread widely from the
throat, often recurved above the middle, the outer three usually longer,
narrower and apically apiculate, the midvein often faintly yellow in
strong light. Stamens connate into a conspicuous stamina! cup, usually
exserted from the rim of the throat, cup rarely reduced; staminal cup
apically white, marked green or yellow (rarely yellow-orange) basally,
variously toothed, lobed or entire; distal portion of the filaments
petaloid and variously shaped; anthers oblong or linear, sub-dorsifixed
or sub-basifixed, more or less erect at anthesis, finally becoming
versatile; pollen grain 45-60yum (polar axis), 55-86 jm (longest
equatorial axis), the exine coarsely reticulate. Style filiform, white;
stigma obtusely trilobed, glandular pubescent. Ovary globose, elliptic

311
or trigonous, green or white; ovules globose to ellipsoid, axile,
superposed, 1-12 per locule, most often 2-4. Fruit a loculicidal
capsule, orange and leathery when ripe (rarely remaining green); seeds
1-3 (-4) per locule, ca. 1 cm long, turgid, ellipsoid (rarely somewhat
compressed), with a lustrous black or blue testa. 13 species,
(Guatemala) Costa Rica to Bolivia, concentrated on the lower slopes of
the northeastern Andes and in lowland Amazonas.
Key to the species of subg. Eucharis:
1.Perianth tube 25 mm or more long.
2.Flowers (7-) 8-10 (very rarely 5), ovules 3-9 per locule
(very rarely 2).
3.Flowers not fragrant; perianth tube (25-) 30-35 mm long;
outer tepals (20-) 25-30 (-33) mm long; stamina! cup 8-11
mm long to apex of teeth or lobes; ovules (2-) 3-5 (-7)
per locule 1. E_. candi da
3. Flowers mildly fragrant; perianth tube 35-45 (-50) mm
long; outer tepals (28-) 32-45 (-47) mm long; stamina!
cup 10-16 mm long to apex of teeth or lobes; ovules (2-4)
7-9 per locule.
4.Floral fragrance slightly fetid; flowers pendent;
staminal cup less than 15 mm long to apex of teeth
or lobes, cleft between each stamen 3-5 mm long, non-
plicate; staminal teeth, if present, much less than
half the length of the subulate portion of the
filament; style exserted ca. 1 cm beyond the
anthers
2. E. formosa

312
4.Floral fragrance sweet; flower perpendicular to
vertical axis of scape; stamina! cup more than
15 mm long to apex of teeth, cleft very shallowly
(less than 2 mm) between each stamen, plicate;
staminal teeth half the length of the subulate
portion of the filament; style exserted less than
0.5 cm beyond the anthers 3. E_. bakeriana
2. Flowers 3-5 (-7); ovules 2-3 (-5) per locule.
5.Leaves non-plicate, somewhat succulent, margins non-
undulate, length : width ratio usually less than 3;
petiole usually shorter than the lamina; plants of
central and western Colombia or Central America.
6.Leaves slightly glaucous adaxially; abaxial cuticle
densely striate; perianth tube 25-33 mm long;
staminal cup irregularly toothed, proximally
pigmented pale yellow; stamens always constricted
distally into a narrow subulate portion; style
exserted less than 0.5 cm beyond anthers; ovary
not trigonous; plants of Colombia ... 4. E_. bonplandii
6. Leaves not glaucous, abaxial cuticle largely devoid
of striations; perianth tube (25-) 33-45 mm long;
staminal cup most frequently edentate, proximally
pigmented green; stamens often dilating gradually
from apex to base; style exserted 0.5-1 cm beyond
anthers; ovary often trigonous; plants of Central
America 5. E. bouchei

313
5. Leaves plicate, thin, margins undulate, lamina length :
width ratio usually greater than 3; petiole usually equal
to or exceeding the lamina in length; plants of western
Ecuador and Amazonas.
7. Leaves bullate-pustulate in texture, non-1ustrous;
staminal cup always edentate, pigmented yellow-
orange proximally, cleft between each stamen to at
least half its length; stamens deltoid, dilating
gradually from apex to base; ovary white; plants of
western Ecuador 6. E_. astrophiala
7. Leaves not bullate-pustulate in texture, lustrous;
staminal cup usually bidentate or quadrate,
pigmented yellow or green, cleft between each
stamen for ca. 2-3 mm; stamens not deltoid,
constricted distally into a narrow (less than 2 mm
wide) subulate portion; ovary green; plants of
Amazonas.
8. Perianth tube curved gradually throughout the
proximal half; staminal cup spotted green in
the proximal half of each stamen, usually
bidentate but sometimes obtusely lobed (rarely
one to several stamens quadrate); testa lustrous
black 7. E_. ulei
8. Perianth tube usually curved abruptly above the
ovary, then more or less straight for the rest
of its length; staminal cup pigmented yellow
proximally, usually quadrately lobed, but one

314
or several stamens occasionally toothed; testa
lustrous blue 8. E_. cyaneosperma
1. Perianth tube equal to or less than 25 (very rarely to 30) mm
long.
9.Staminal cup usually less than 1 cm long to apex of teeth or
lobes, but connate portion of filaments always much shorter
than free, subulate portion.
10.Teeth of the staminal cup acutely long-lanceolate,
equaling the subulate portion of the filament in
length; ovules 10 per locule, plants of western Colombia
9. E. lehmanni i
10. Teeth of the staminal cup (when present) obtuse, much
shorter than the subulate portion of the filaments;
ovules less than 10 per locule; plants of Amazonas.
11.Perianth +_ campanulate; staminal cup reduced to a
basal connation of the filaments 0.8-1.5 mm long,
edentate or obtusely bidentate; free filaments
narrowly subulate, ca. 1 mm wide; ovules 6-8 per
locule 10. E_. oxyandra
11. Perianth crateriform, staminal cup 3.5 mm long (to
apex of teeth), obtusely bidentate between each
stamen; free filaments club-shaped (appearing
elliptic-lanceolate in dried material), 1.8-2 mm
wide, ovules 4-6 per locule 11. E_. corynandra
9. Staminal cup usually greater than 1 cm long to apex of teeth
or lobes, but connate portion of filaments always longer than
the free, subulate portion.

315
12. Leaves 7-12 (-14) cm wide; staminal cup campanulate,
gradually dilating distally; plicate along the
filamental traces; ovary green; capsule leathery,
bright orange, dehiscent; seeds ellipsoid, with a
lustrous, smooth black testa 12. E_. pi i cata
12. Leaves 3-6 cm wide; staminal cup funnel form-cylindrical
to cylindrical, often abruptly dilated distally at 1/2-
2/3 length, plicate between the filamental traces; ovary
whitish; capsule green, thin-walled, often tardily
dehiscent; seeds wedge-shaped, with a dull, rugose black
testa 13. E_. castelnaeana
1. EUCHARIS CANDIDA Planchón et Linden (Figs. 2-4A). Linden's
Ann. Cat. Hort. 8:3, 1852; FI. des Serres Jard. Eur. Ser 1, 8: 107,
1853. TYPE: ex hort Linden, supposedly imported from Colombia, no other
data, Planchón s.n. (MPU!). Urceolina candida (Planch. & Lind.) Traub.
PI. Life 27: 57-59. 1971.
Plant to ca. 6 dm tall. Bulb sub-globose, 3-5 (-6) cm long, 3-4
(-5) cm diam, neck 1-2.5 (-4) cm long, 1-2.5 cm wide; tunics brown.
Leaves 1-2, petiole (15-) 18-30 (-35) cm long, ca. 7 mm thick
proximally, ca. 3-4 mm thick distally; lamina elliptic, (18-) 30-35 cm
long, (7-) 8.5-11.5 (-12) cm wide; acuminate, deeply plicate, dark green
but only slightly lustrous adaxially, light green abaxially, abaxial
cuticle striate, margins coarsely undulate. Scape (4-) 5-6 dm tall, 8-
10 mm diam proximally, 4-5 mm diam distally; bracts 25-45 (-50) mm long,
ca. 5-6 mm wide, ovate-lanceolate. Flowers (7-) 8-10, rarely as few as
5, without noticeable fragrance; pedicels (9-) 15-20 (-35) mm long; tube
(25-) 30-35 mm long, ca. 2 mm diam for most of its length, abruptly

316
dilated to (7-) 10 (-11.5) mm at the throat; limb spreading to 4.5-6 cm
wide; tepals sometimes recurved distally, outer tepals (20-) 25-30 (-33)
mm long, (9-) 10.5-14 (-15) mm wide, ovate-lanceolate, apiculate, the
apiculum only slightly or obscurely tufted adaxially; inner series (20-)
22-28 (-32) mm long, (10-) 12-15 (-20) mm wide, ovate, acute to minutely
apiculate. Stamina! cup (Fig. 4A) funnelform-cylindrical to slightly
campanulate, rarely widely ampliate distally, (7-) 8-11 mm long (to apex
of teeth or lobes), (10-) 13-16 (-18) mm wide, most frequently edentate
and lobed between each stamen, but at times bidentate or irregularly
toothed, widely spotted green to greenish-yellow below each stamen;
teeth, when present, 1-2 mm long, < 1 mm wide, acute or obtuse; cup
cleft for (2.5-) 3-5 (-6) mm between each stamen; stamens (3.5-) 4.5-5.5
(-6) wide proximally; distal subulate portion (3.5-) 4.5-6 (-6.5) mm
long, 1.5-2 mm wide at the base; anthers (3.5-) 4-5 (-6) mm long,
oblong; pollen grain 46.8-50 yum polar diam, 68.7-73 ¡M longest
equatorial diam. Style (38-) 45-55 mm long, exserted 0.5-1 cm beyond
the anthers; stigma 2-3 mm wide. Ovary globose-ellipsoid, green, 5-7 (-
8) mm long, 4-6 (-7) mm diam; ovules (2-) 3-5 (-7) per locule. Capsule
(1.5-) 1.8-2.4 cm long, (2-) 2.5-2.9 cm wide; pedicel 2-4 cm long; seeds
1-2 (3) per locule, ellipsoid, ca. 1 cm long, ca. 0.5 cm diam, with a
lustrous, smooth black testa. 2n_ = 46.
DISTRIBUTION AND ECOLOGY: Understory of primary rain forest chiefly
in the Oriente of Ecuador, particularly the Rio Napo valley, occasional
in north Peru and southeast Colombia (Figs. 5-6), (100-180) 240-550
(1000-1600) m; flowering at any time of the year, but most frequently in
February-March and August.

317
ADDITIONAL MATERIAL EXAMINED: COLOMBIA. Amazonas: Puerto Nariño,
24 Jul 1965, Lozano et al. 594 (COL); Trapecio amazónica, Loretoyacu
River, ca. 100 m, Oct 1946, Schultes & Black 8478 (US). Meta: Sabanas
de San Juan de Arama, margen izquierda del Rio Güejar, alrededores del
aterrizaje "Los Micos," 500 m, 22 Jan 1951, Idrobo & Schultes 1208 (COL,
GH, NY, US). ECUADOR. Ñapo: Tena, wet forest, 27 Sep 1939, Asplund
8853 (S); El Ñapo, 1931, Benoist 4717 (P); 70 km downstream from Coca at
Anangu, 260 m, 8-11 Aug 1982, Besse et al. 1598 (SEL); Tena-Puyo road,
550 m, Aug 1982, Besse et al♦ 1643 (SEL); Coca-Lago Agrio road, 45 km
north of Coca, Rio Palanda Yacu, 7 Jun 1983, Bohlin & Bohlin 319 (GB);
km 5, Cotunda-Coca, 1130 m, 19 Jun 1963, Dodson et al ♦ 14095 (SEL);
orilla izquierda del Rio San Miguel, Puerto Nuevo, 26 Mar 1953,
Gutierrez V. 2687 (COL); Santa Rosa at Rio Ñapo, ca. 400 m, 29 Feb 1972,
Harling 11090 (GB); Hacienda Cotapino (Concepcion), 550 m, 19-20 Feb
1968, Harling et al. 7121 (FLAS, GB); lower Rio Aguarico (above puesto
militar Puerto Loja, 7 Mar 1968, Harling et al. 7400 (GB); Coca,
potreros and rastrojos near the village along road to Lago Agrio, ca.
250 m, 2 Feb 1974, Harling & Andersson 11682 (GB); Canon de los Monos,
ca. 12 km north of Coca, 250 m, 4 Feb 1974, Harling & Andersson 11719,
FLAS specimen (FLAS); Misahualli at Rio Napo, 28 Mar 1969, Holguer 925
(FLAS, GB); environs of Limoncocha, 240 m, Jun 1978, Madison et al. 5326
(F, SEL). Pastaza: Mera, forest on shore of Rio Pastaza, ca. 1000 m, 30
Jan 1956, Asplund 19120 (S); Puyo-Arajuno Road, 1-5 km SW Diez ed
Agosto, ca. 900 m, 4 Feb 1980, Harling & Andersson 16862 (GB); 68 km
north of Puyo on road to Tena, along creek, ca. 500 m, 26 Jul 1982,
flowered in cultivation, 15 Jan 1985, Meerow 1144 (FLAS). Morona-
Santiago: Huamboya, 1500-1600 m, 15 Feb 1944, Acosta-Solis 7469 (F).

318
PERU. Amazonas: 400 m atrás de La Poza, Río Santiago, 180 m, 23 Aug
1979, Huashikat 164 (MO). Loreto: Maynas, Rio Ampiyacu, Pebas and
vicinity, approx. 3o 10' N, 71° 49' W, behind Pebas on trail north of
town, 10 April 1977, Plowman et al. 6724 (F); Maynas, Santa Maria de
Nanay, Colonia San Fransisco de Indies Yaguas, 1.5 km del Fundo Balcón,
Rio Momen, 106-110 m, 15 Nov 1984, Schunke 14155-B (F, FLAS).
Putative hybrids with formosa: ECUADOR. Napo: km 23 Lago Agrio-
Baeza road, 350 m, Jul 1982, Besse et al. 1558 (SEL); 35 km south of Rio
Aguarico, Lago Agrio-Coca road, Jul 1982, Besse et al. 1563 (SEL); Rio
Coca, 10 km upstream from ferry crossing, 250 m, 28 Nov 1983, Besse et
al_. 1949 (SEL).
Eucharis candida was originally described from cultivated material
supposedly originating from Colombia, a country in which the species has
actually been encountered only rarely. The species previously has been
delimited by the absence of staminal dentation, however, this character
varies considerably throughout the range of E_. candi da, as in the
related species _E. formosa and ulei.
Eucharis candida is most common throughout the upper Napo Valley in
eastern Ecuador, and is very often geographically sympatric with the
larger-flowered and more widely distributed E_. formosa (Figs. 5-6). To
date, no species of Eucharis other than these two have been collected
north of the Pastaza valley in eastern Ecuador. On the basis of
herbarium study alone, Ecuadorean populations of these two taxa form a
mosaic that seemed taxonomically insoluble until living material of both
species from several populations was collected and flowered. Principal
component analysis (see Chapter VI) supports recognition of these taxa
as distinct species, and also suggest that E. candida and E. formosa

319
have hybridized in at least one area of sympatry. Patterns of allozyme
variation (see Chapter VIII) and karyotype analysis (Chapter VII)
further support the separation of these two species. The species may be
ecologically allopatric, however. Plants of E_. candida which I
collected in 1982 were growing along the bank of a small creek, just
above the high water line. Populations of E_. formosa were encountered
in more upland sites. Nonetheless, in one instance two specimens
(Harling & Andersson 11719), one each of the two species, were collected
under the same number. Patterns of genetic variation (Chapter VIII)
suggest a monophyletic origin for these species, possibly in the Pastaza
valley. Both species have radiated outward, perhaps more than once.
I believe the unprecedented degree of sympatry between these two
species in Ecuador is inextricably related to their use by Indian people
of the Napo and Pastaza basins. The bulbs are not only mashed for
poultices, a general use to which many South American amaryllids are
applied, but Indian women reportedly collect the plants quite actively
for reasons they would not disclose (N. Whitten, pers. comm.). Of
course, aboriginal people are not without an aesthetic, and the species
of Eucharis have a pleasing aspect when in flower. Cultivation for
ornamental as well as medicinal and ceremonial uses cannot be
discounted. Most local inhabitants whom I met while collecting Eucharis
in the Oriente were readily familiar with the plants when shown
photographs. It is thus more than likely that both species have been
vectored about eastern Ecuador through human agency for years, if not
centuries, perhaps even being transplanted from the wild into transient
agricultural settlements. When these small gardens were abandoned after
a few years, the bulbs probably recolonized locally. I am doubtful that

320
even botanically astute aboriginal people would differentiate between
such similar species as £. candi da and E_. formosa, and plants from
allopatric populations may have been collected indiscriminently and
cultivated together. Succesive patterns of fragmentation and
coalescence of rainforest during the Pleistocene (reviewed by Prance,
1982a, b) may also have influenced distribution patterns of these two
species (see Chapter IX).
Alternatively, E_. candida and E_. formosa may fit the semi-species
model of Grant (1981), in which genetic barriors have not solidified
between two morphologically distinct, sympatric races. Pollen of one
putatively hybrid collection (Besse et al. 1558) stains 100% with
Alexander's (1969) stain. In gross morphology, the flower of this
collection resembles E_. formosa, and thus may represent a genet at the
low end of the floral size range for £. formosa, and not a hybrid
between it and E_. candi da. Another hypothesis might be that £. candi da
and E_. formosa represent the segregating phenotypes of a single, highly
heterozygous species, a situation possibly existing in the £. bouchei
complex of Central America. However, allozyme variation patterns (see
Chapter VIII) suggest a fair degree of genetic divergence between E_.
candi da and £. formosa, and I have decided to recognize these two,
distinct, phenetic entities at the species level, with the understanding
that their biological relationships may present more than meets the eye.
Eucharis candida may be separated from E_. formosa by its smaller
leaves and flowers, complete absence of fragrance (E_. formosa produces a
mild, "sour" odor), and generally fewer ovules per locule (though both
species are quite variable in ovule number). Both species probably
originated in the Napo-Pastaza drainage of Ecuador where present-day

321
populations are now concentrated. Eucharis formosa is slightly better
represented in the Pastaza valley than E_. candi da.
Despite a formidable range of morphological variation in E_. candi da
(Figs. 3-4A), I do not find any patterns that lend themselves to
delimiting infra-specific taxonomic categories. Peruvian populations of
E. candida are exceptionally variable in the shape of the staminal cup
(Fig. 3), even among flowers of the same inflorescence. Such phenotypic
plasticity is characteristic of Eucharis, and the bane of any purely
alpha-taxonomic approach to the genus.
2. Eucharis formosa Meerow, sp. nov. (Figs. 2, 4B, 7).
E. candida Planchón et Linden primo adspectu máxime simile sed in
omnes partes grandiores, floribus leniter fragrantibus, cupula staminea
subcylindrica, et ovulis plerumque in quoque loculo piurimioribus;
differt praecipue a E_. bakeriana N. E. Brown cupula staminea angustiore
inter stamina fissa profundi us. TYPE: Ecuador, Morona-Santiago, Road
Limón-Macas, ca. km 20 from Limón, primary rain forest and rastrojos,
700-900 m, 26 Mar 1974, Harling & Andersson 12915 (holotype: GB!;
isotype: FLAS!).
Plant to 6-8 dm tall. Bulb sub-globose, 4-7 cm long, 3-5 cm diam,
neck 2-5 cm long, ca. 1 cm thick, tunics brown. Leaves 1-2 (-3);
petiole 25-38 (-42) cm long, 8.5-1 mm thick proximally, 5-6 mm thick
distally; lamina elliptic, (21-) 30-45 (-52) cm long, (8-) 11-15 (-16)
cm wide, usually conspicuously plicate, dark green and only slightly
lustrous adaxially, light green abaxially, abaxial cuticle striate,
margins coarsely undulate. Scape (5-) 6-7 (-8) dm tall, ca. 1 cm diam
proximally, 5-6 mm diam distally; bracts ovate-lanceolate, (36-) 43-60
(-85) mm long, 10-15 cm wide at the base. Flowers 8-10, very rarely

322
less, pendent, emitting a mild, "sour" odor; pedicels (8-) 12-18 (-30)
mm long; tube 35-45 (-50) mm long, ca. 2-2.5 mm wide for most of its
length, abruptly dilated to (9-) 10-13 (-14) mm at the throat; limb
spreading to (55-) 60-70 (-80) cm; tepals somtimes recurved distally;
outer tepals narrowly ovate, (30-) 35-45 (-47) mm long, (10-) 15-18 (-
20) mm wide, apiculate, apiculum conspicuously horned adaxially
(Ecuadorean populations); inner tepals ovate, (28-) 31-40 (-45) mm
long, (15-) 18-22 (-25) mm wide, acute to minutely apiculate. Staminal
cup (Fig. 4B) funnelform-cylindrical, 10-13 (-15) mm long (to apex of
teeth or lobes), (15-) 17-20 (-22) mm wide; flushed greenish-yellow
proximally, with the greatest concentration of pigment below each free
filament, rarely only widely punctate; bidentate, irregularly toothed,
lobed or quadrate between the distal portion of the filament; cup cleft
between each stamen for 3-5 mm; teeth when present acute or obtuse, <_ 2
mm long; each stamen (5-) 6-7 (-7.5) mm wide tooth-to-tooth or lobe-to-
lobe; distal portion of filament subulate, (4.5-) 5-6.6 (-7) mm long,
(1.8-) 2-2.5 (-3) mm wide at point of dilation; anthers oblong, 4.5-5.5
(-6) mm long, grey-brown; pollen grain 47.7-53.4 yum polar diam, 65.5-
73.8 yum longest equatorial diam. Style 5.5-6 (-6.5) cm long, exserted
ca. 1 cm beyond the anthers; stigma ca. 2-3 mm wide. Ovary globose-
ellipsoid, 6-8.5 (-10) mm long, (4.5-) 5.5-7 (-7.5) mm diam, green;
ovules (2-) 5-7 (-8). Capsule 1.5-2 cm long, 2-3 cm wide; pedicels 3-4
cm long; seeds (1-) 2-4 per locule, ellipsoid, 8-10 mm long, 5-6 mm
diam, with a lustrous, smooth black testa. 2n_ = 46.
ETYMOLOGY: The epithet of this new species refers to its handsome
aspect when in flower.

323
DISTRIBUTION AND ECOLOGY: Rich, moist soil in the understory of
pre- and lower montane rain forest, chiefly in the Napo and Pastaza
drainage of Ecuador (Fig. 5); less frequent in Amazonian Peru and
Colombia, the lower "ceja de montaña" of north-central Peru, and upper
Huallaga valley of Peru (Fig. 6); rare in central Colombia [a single,
poorly documented collection (Killip s. n_., COL) from near Popayan may
be of cultivated origin], 100-1800 m; flowering most commonly January-
March. A poultice of the bulbs is used to treat tumors (Lawesson et al.
39632); vernacular name: cebolla de la selva, sugkip.
ADDITIONAL MATERIAL EXAMINED: COLOMBIA. Amazonas: confluencia de
los Rios Amazonas y Loretoyacu, 12 Apr 1975, Cabrera 3336 (COL);
Trapecio amazónico, Loretoyacu River, ca. 100 m, Sep 1946, Schultes &
Black 8342 [in fruit] (US); same locality as preceding, Oct 1946,
Schultes & Black 8410 [in fruit] (GH, US). Caqueta: Morelia, 150 m, 5
Oct 1941, von Sneidern s. n_. (S). Cauca: Popayan, 25 Jan 1935, Kill ip
_s. n_. (COL). ECUADOR. Morona-Santiago: Road Limón-Macas, ca. km 20
from Limón, primary rain forest and rastrojos, 700-900 m, 26 Mar 1974,
Harling & Andersson 12915 (FLAS, GB). Napo: Napo, forest, 6 Oct 1939,
Asplund 9122 (S); Tena, marshy forest, 21 Oct 1939, Asplund 9488 (S);
Limoncocha, 300 m, 22 Jan 1977, Dodson 6636 (SEL); 45 minute walk by
trail from Santa Ceceilia up Rio Aguarico, ca. 350 m, 28 Mar 1972, Dwyer
& MacBryde 9699 [in fruit] (MO); Santa Cecilia, rain forest off runway,
340 m, 30 Mar 1972, Dwyer & Simmons 9743 [in fruit] (MO); Canon de los
Monos, ca. 12 km north of Coca, 250 m, Harling & Andersson 11719, GB
specimen (GB); path from Rio Bueno to Santa Rosa, Harling et al. 7201
(GB); Rio Jivino, Limoncocha, 13-15 Mar 1968, Harling et al. 7673 (FLAS,
GB); Armenia Vieja at Rio Napo, ca. 12 km sw of Coca, 12 Jan 1973,

324
Holguer 2655 (FLAS, GB); Canon de los Monos, road Coca-Lago Agrio, ca.
12 km north of Coca, 24 Jan 1973, Holguer 2960 (GB); Santa Cecilia, Lago
Agrio-Baeza, ca. 16 km west of Lago Agrio, 27 Feb 1973, Holguer 3532
(FLAS, GB); Rio Aguarico west of Detacamento Zancudo at entrance of Rio
Zancudo, 320 m, very rich soil, 29 Aug 1979, Holm-Nielsen et al. 20168
[in fruit] (AAU); Añangu, Rio Napo, 76° 23' W, 0° 32' S, 260-350 m, 27
June 1983, Lawesson et al. 39632 (AAU); 4.2-7.5 km west of Lago Agrio
(5-8.2 km east of Rio Conejo) near Lago Agrio-Baeza Road, ca. 340 m, 31
Mar 1972, MacBryde & Dwyer 1387 (M0); ex hort, voucher of SEL Acc. 78-
1099, collected vicinity Limoncocha, 240 m, 15 Dec 1982, Meerow 1103
(FLAS). Pastaza: Mera, ca. 1100 m, 3 Mar 1956, Asplund 19571 (S);
Curaray (Jesús Pitishka), virgin rain forest near the posto militar, ca.
200 m, 18 Mar 1980, Harling & Andersson 17374 (FLAS, GB); between Nal pi
v
and Canelo, 26 Feb 1971, Holguer 1504 (FLAS, GB); trail from Indillama
to Canelos, 400 m, occasional, 5 Feb 1935, Mexia 6855 (UC, US); on Napo
road north of Puyo, 16 Feb 1953, Prescott 438 (NY). Tungurahua: valley
of Pastaza River, between Baños and Cashurco, 8 hours east of Baños,
1300-1800 m, Hitchcock 21891 (GH, NY, US); vicinity of Rio Margarjitas
on Canelos trail, 1225 m, 19 Mar 1939, Peni and & Summers 142 (US).
PERU. Amazonas: Quebrada Huampami, Lugar tseasim, monte al lado
nayumpin, 800 ft, 3 Apr 1973, Ancuash 161 (M0); Quebrada de
apigkagentsa, Rio Cenepa, 720 ft, Kayap 597 (F, M0); Quebrada Cunup,
monte cerca a la chacra, 800-850 ft, 24 Jul 1974, Kayap 1298 [in fruit]
(M0); Rio Cenepa, vicinity of Huampami, ca. 5 km east of Chávez
Valdivia, ca. 78° 30' W, 4° 30' S, Quebrada Aintami, 17 Aug 1978,
Kujikat 415 (M0). Loreto: Maynas, Yanamono, Explorama Tourist Camp, Rio
Amazonas, between Indiana and mouth of Rio Napo, 72° 48' W, 3° 28' S,

325
120 m, 18 August 1980, Gentry et al. 29867 (MO); same locality as
preceding, 130 m, 18 Feb 1981, Gentry et al. 31418 (MO); Maynas,
¡quitos, Rio Ampiyacu, 4 vueltas de Monona Cocha, 4 Aug 1976, Revi 11 a
990 (MO); Alto Amazonas, Yurimaguas, Camino a "Shunguyco," al sur-este
de Puerto Arturo, cerca a Yurimaguas, 150-200 m, 1 Dec 1984, Schunke
14157 (FLAS). San Martin: Mariscal Caceres, Tocache Nuevo, Camino a
Shunté, 12 Mar 1970, Schunke 3856 (F); Lamas, Alonso de Alvarado, San
Juan de Pacaizapa, km 72, carretera Tarapoto-Moyobamba, 1000-1050 m, 9
Jun 1977, Schunke 9675 (F); Lamas, Alonso de Alvarado, Fundo Las
Malvinas, carretera Moyobamba-Tarapoto, km 43, 850 m, 6 Dec 1984,
Schunke 14174 (FLAS); San Roque, in humid loam, 1350-1500 m, 5 Feb 1930,
Williams 7748 (F).
Eucharis formosa is the most commonly encountered species in
eastern Ecuador (Fig. 5). It extends into Amazonian Peru and Colombia,
and also occurs in the lower "ceja de montaña" forests of north-central
Peru (Fig. 6). Like the closely related E_. candida, E_. formosa has a
wide elevational range, though this may be in part the result of
cultivation. The flowers emit a mild and not particularly pleasant
"sour" odor. The biological relationship of _E. formosa to E_. candi da
has been discussed under E_. candi da. Eucharis formosa is larger in all
parts than E_. candi da, and generally has more ovules per locule. The
conspicuously horned apiculum is characteristic of Ecuadorean
populations of E_. formosa (Figs. 2A-B); this character is not obvious in
Peruvian collections. Forms with toothed or edentate staminal cups
occur throughout this species' range without any observable geographic
pattern (Fig. 4B). In cultivation, flowers of the same inflorescence
can vary for this character. A Peruvian collection (Schunke 14174)

326
shows some karyotypic (see Chapter VII) and allozyme divergence (see
Chapter VIII) from Ecuadorean populations. In floral morphology (Fig.
7F), however, it is virtually indistinguishable from other Ecuadorean
material. A second collection (Schunke 14171) from the same general
vicinity of Peru as Schunke 14174 has only shallowly plicate leaves and
reduced pigmentation of the staminal cup (Figs. 7D-E). At the present
time, I do not believe that enough is known about E_. formosa in Peru to
justify recognition of subspecific taxa.
3. EUCHARIS BAKERIANA N. E. Brown (Fig. 8). Gard. Chron. 7: 416,
Fig. 61. 1890. TYPE: ex hort Sander and Co., Colombia, no other data,
1890, £. n_, in part (holotype: K!). Urceolina bakeriana (N. E. Brown)
Traub. PI. Life 27: 57-59. 1971.
Bulb to ca. 5 cm diam, tunics brown. Leaves 2-4; petiole 15-17,
25-30 cm long, 5, 10-11 mm wide; lamina elliptic, 24-29.5, 44-55 cm
long, 10, 17-20 cm wide, somewhat succulent, smooth. Scape 6-8 dm tall,
ca. 1 cm diam proximally, 5-7 mm diam distally; bracts ovate-lanceolate,
30-38 mm long, ca. 10 mm wide at the base. Flowers 5, 10; with a mild,
sweet fragrance, pedicels 10-30 mm long; tube 35-40 mm long, 2-3 mm wide
for most of its length, abruptly dilated near the throat to 9-9.7 mm
wide, curved abruptly just above the ovary and straight for the rest of
its length, thus perpendicular to the vertical axis of the scape; limb
spreading to 50-60 mm wide; outer tepals 28.5-32 mm long, ca. (10-) 16.8
mm wide, ovate-lanceolate to ovate, apiculate; inner tepals 26-30 mm
long, (14-), 20-22 mm wide, ovate, acute to minutely apiculate.
Staminal cup sub-cylindrical to campanulate, ca. 16 mm long (to apex of
teeth), 13-15 mm wide, slightly plicate between the filamental trace,
very shallowly cleft between each stamen (< 1 mm), proximally marked

327
green, obtusely bidentate between each free filament; teeth 2-3 mm long,
half the length of the subulate portion of the free filament; each
stamen 5-6.4 mm wide tooth to tooth; subulate portion of the filament 3-
4.5 mm long, 1.5-1.7 mm wide; anthers oblong, 5.4-6 mm long; pollen
grain ca. 50.7 ^um polar diam, ca. 76.9 yum longest equatorial diam.
Style 45-54.5 mm long, exserted just slightly past the anthers; stigma
2.4-2.8 mm wide. Ovary ellipsoid, 6.5-7 mm long, 5.3-6.5 mm diam;
ovules 2-3, 8-9 per locule. Capsule ca. 1.5-2 cm long, 2.5-3 cm wide;
seeds ellipsoid, ca. 1 cm long, 0.5 cm diam, with a lustrous, smooth
black testa. 2n_ = 46.
DISTRIBUTION AND ECOLOGY: Very rare in the understory of lower
montane rain forest in the middle Rio Huallaga valley of Peru, 800 m
(Fig. 6). Living material from which the type specimen was prepared was
reportedly collected in Colombia. Flowering season not known.
ADDITIONAL MATERIAL EXAMINED: PERU. San Martin: 17 km NE of
Tarapoto on road to Yurimaguas, trail along stream to waterfall, wet
premontane forest on rocky hills, 6° 30' S, 76° 20' W, 800 m, 21 Jul
1982, Gentry et al. 37852 [in fruit] (M0); vicinity of Tarapoto, no
other data, flowered in cultivation from material collected by L. Besse,
Meerow 1108 (FLAS).
The type of E_. bakeriana was prepared from living material
supposedly collected in Colombia. When I examined the type specimen,
only the several large flowers present in the fragment packet resembled
the figure which accompanied Brown's (1890) description of E. bakeriana.
The mounted material was referable to the smaller flowered E. candi da.
At the time, I thought that E. bakeriana might represent an abberant
form of E. candida. Several years later I recived bulb of a Eucharis

328
collected near Tarapoto, Peru by Libby Besse of SEL. When this plant
was flowered, the flowers bore exacting resemblance in habit and
staminal cup morphology to E_. bakeriana, though with considerably more
ovules per locule. At present, E_. bakeriana is known only from the
type, the Besse material, and a fruiting specimen refered to this
species on the basis of leaf size.
Eucharis bakeriana is distinct from E_. formosa, its closest
phenetic and cladistic relative, by its non-pendent flowers which are
perpendicular to the vertical axis of the scape, very shallowly cleft
staminal cup (< 1 mm, > 2 mm in E. formosa), short subulate portion of
the stamen, and sweet floral fragrance (slightly fetid in E_. formosa).
In leaf size and karyotype, E_. bakeriana is very similar to Peruvian
material of E_. formosa (Schunke 14174, see Chapter VII), but differs by
its greater number of subtelocentric chromosomes and the submetacentric
morphology of the second-largest pair. The leaves are only shallowly,
if at all, plicate, and thicker. As more collections of Eucharis are
made, a more realistic idea of the range of E_. bakeriana may emerge.
4. EUCHARIS BONPLANDII (Kunth) Traub (Fig. 9). PI. Life 7: 40.
1951. Hymenocallis bonplandii Kunth. Enum. PI. 5: 666. 1850. TYPE:
Colombia, Rio Magdalena, near Nares, Bonpland 1657 (holotype: P!, photo
of type: NY!). Caliphruria bonplandii (Kunth) Baillon. Bull. Mens.
Soc. Linn. Paris 143: 1136. 1894. Urceolina bonplandii (Kunth) Traub.
PI. Life 27: 57-59. 1971.
Buib sub-globose, 41-46 mm long, 29-32 mm wide, neck ca. 18 mm long
and wide, tunics brown. Leaves 2, somewhat succulent; petiole 8-14 (-
18) cm long, 6-8 mm thick proximally, 3-4 mm distally, always shorter
than the lamina; lamina elliptic, (16-) 18-24 (-26) cm long, 8.5-11.5 cm

329
wide, blueish-green, especially in strong light, and slightly glaucous
adaxially; lighter green abaxially, the abaxial cuticle densely striate;
apex acute to shortly acuminate; attenuate at the base. Scape 4.5-5.8
dm tall, 6-8 mm diam proximally, 3-4 mm diam distally; bracts (25-) 33-
40 mm long, ovate-lanceolate, greenish-white. Flowers 5-7, non-
fragrant, pendent; pedicels 18-25 mm long; tube 25-33 mm long, 1.8-2.5
mm wide for most of its length, abruptly dilated at the throat to 7-9 (-
10) mm wide; limb spreading to 47-55 mm wide; outer tepals ovate-
lanceolate, 25.7-30.5 mm long, 8-10 mm wide, apiculate; inner tepals 23-
28 mm long, 11.5-14 mm wide, acute to minutely apiculate. Stamina! cup
sub-cylindrical, (11.5-) 12.5-14.3 mm long (to apex of teeth), 11.5-13
mm wide, stained pale yellow proximally, irregularly bidentate between
each free filament, one stamen occasionally only lobed or quadrate,
cleft 2.6-4 mm between each stamen; teeth variously acute or obtuse, 1-2
mm long; each stamen 3.6-4.5 mm wide tooth-to-tooth; free portion
narrowly subulate, (3.8-) 4.5-5.8 mm long, ca. 1.8 mm wide; anthers 4-
4.8 mm long, oblong, greyish-brown; pollen grain ca. 43.5 ^um polar diam,
ca. 63 yum longest equatorial diam. Style 50-60 mm long, exserted just
beyond the anthers; stigma 2-2.7 mm wide. Ovary sub-globose, ca. 5-6 mm
diam; ovules 2-3 per locule. 2n_ = 92. Capsule ca. 1 cm long, 2 cm
wide; seeds 1-2 per locule, ellipsoid, ca. 1 cm long, ca. 0.5 mm diam,
with a lustrous black testa.
DISTRIBUTION AND ECOLOGY: Rare in central and western Colombia
(Fig. 10), in the understory of lower montane rain forest, 400-600 (-
1300 m), flowering February-March, May-June, August.
ADDITIONAL MATERIAL EXAMINED: COLOMBIA. Department unknown: La
Mejita [?], June 1844, Goudot s. n. (K, P). Caldas: Cauca Valley,

330
Tabeja, west of Armenia, 1100-1300 m, 23 Jul 1922, Pennel1 et al. 8604
(GH, NY, US). Cauca [?]: La Paila, 30 May 1853, Holton s. £. (NY).
Cundinamarca: Viotá, Quebrada Cachinibulo, 550 m, 18 Feb 1876, Andre
1583 (K); same locality as preceding, 600 m, 19 Feb 1876, Andre 1721
(K); ex hort, originally collected by J. Paxton near Bogota, ca. 650 m,
received from Foster Gardens, Hawaii, 14 May 1982, Meerow 1098 (FLAS).
Tolima: valle del Alto Magdalena, vereda La Chamba (municipio del
Guamo), 400 m, 3 Mar 1963, Uribe 4218 [in fruit] (COL).
Eucharis bonplandii is one of only two tetraploid (2n_ = 92) species
in the genus. The species is known only from Colombia, and is rarely
encountered. The relative rarity of this species might suggest an
autopolyploid origin for E_. bonplandii [viz. Stebbins (1951, 1985)
hypothesis that autopolyploids rarely are markedly successful in
nature], perhaps from an ancestor close to _E. ulei, to which, among
Amazonian species, _E. bonplandii has the greatest phenetic relationship,
(see Chapter VI). Meiotic pairing relationships would be helpful in
confirming this hypothesis, but unfortunately are difficult to obtain
from in these plants. The cladistic hypothesis (Chapter XI) that E_.
bonplandii and £. bouchei form a monophyletic group (largely on the
basis of tetraploidy) is not conclusive.
It may separated from £. ulei by its succulent, glaucous leaves and
short petioles. The staminal cup of E_. bonplandii is pigmented pale
yellow at its base; that of E_. ulei is marked green. Eucharis
bonplandii and E. lehmanii are the only two species of subg. Eucharis
that occur in western Colombia.

331
5. EUCHARIS BOUCHEI Woodson and Allen (Fig. 11).
Plant 5-6 dm tall. Bulb sub-globose, 30-45 (-85) mm long, (25-)
30-40 (-50) mm diam; neck short, to 25 mm long, 10-20 mm wide; tunics
brown. Leaves 1-3 (-4); petiole (9-) 15-25 (-28) cm long, 7-8 mm wide
proximally, 5-6 mm wide distally; lamina widely (ovate-) elliptic, (17-)
20-25 (-40) cm long, (7-) 8-10 (-14) cm wide, shortly acuminate,
slightly succulent, lustrous bright green adaxially, dull pale green
abaxially, smooth, margins mostly non-undulate, abaxial cuticle largely
devoid of striation. Scape ca. (4-) 5.5 dm tall, ca. 1 cm diam
proximally, ca. 5 mm diam distally; bracts ovate-lanceolate, 25-36 (-47)
mm long, (5-) 7-10 mm wide at the base. Flowers (3-) 5 (-6); usually
pendent, sometimes only declinate, not fragrant; pedicels 5-10 (-20) mm
long, very rarely less than 5 mm; tube (25-) 33-45 mm long, cylindrical
and (1.5-) 2-2.5 (-3) mm for most of its length, abruptly dilated near
the throat to (7-) 8-10 (-12) mm wide, usually curved gradually, but
sometimes only curved abruptly at the base, in which case nearly
straight for most of its length; tepals spreading widely from the throat
(ca. 90°) or sometimes only at an angle of 45-60°; outer tepals ovate-
lanceolate, (18-) 21-28 (-32) mm long, 8-11 (-15) mm wide, apiculate;
inner tepals ovate, (16-) 20-26 (-32) mm long, (10-) 12-15 (-17) mm
wide, obtuse to acute. Stamina! cup sub-cylindrical, 9-12 (-15) mm long
to apex of filament, (10-) 12-15 (-18) mm wide, deeply cleft between
each stamen to 3-5 mm, usually edentate but variably lobed, acutely or
obtusely bidentate, or irregularly toothed between each stamen, marked
pale green to greenish-yellow proximally; each stamen (3.5-) 4-5 mm wide
at the base, 4-6 (-7) mm long, either trapezoidal in shape (in which
case dilating gradually from apex to base), or abruptly dilated at 1/2

332
to 1/4 of its length (in which case the upper portion narrowly subulate
and 2-3 or 3-4 mm long, 1.5-2 mm wide); anthers oblong, 3.5-4.5 mm long;
pollen grain 45.7-49.65 yum polar diam, 66.8-68.43 ^m longest equatorial
diam. Style (30-) 45-60 mm long, exserted 0.5-1 cm beyond anthers;
stigma 2-3 mm wide. Ovary globose or ellipsoid and deeply trigonous,
rarely not trigonous, 5-8 mm long, 4-6 (-6.5) mm diam, usually wider
than long when deeply trigonous; ovules 2-3 (-4, very rarely 5) per
locule, superposed in the lower half of the cell. Capsule 1.5-2 cm
long, 2-3 cm wide; pedicels 15-27 mm long; seeds 1-2 per locule,
ellipsoid, ca. 1 cm long, 0.5 cm diam, with a lustrous, smooth, black
testa. 2 n_ = 92.
Key to the varieties of £. bouchei:
1. Staminal cup edentate, or occasionally with one obscure tooth
at the base of one stamen; stamens trapazoidal and gradually
dilated from apex to base, or, if obscurely constricted
distally, subulate portion > 2 mm wide; Cocié and Colon
provinces of Panama, rare in Panama province and in Costa
Rica and Guatemala 5a. var. bouchei
1. Staminal cup lobed or toothed; stamens abruptly constricted
distally at 1/2-1/4 length into a subulate portion 1.5-2 mm
wi de.
2. Outer tepals 26-32 mm long; staminal cup irregularly
toothed, the teeth acute; subulate portion of filament
3.5-4.5 mm long; ovary not deeply trigonous; ovules 2-4
per locule; Cocié province of Panama near El Valle
5b. var. dresslerii

333
2. Outer tepals 20-26 mm long; staminal cup obtusely bidentate
or lobed; subulate portion of filament £ 3.5 mm long; ovary
deeply trigonous; ovules 2-5 per locule; Panama and Darien
provinces of Panama, rare in Guatemala
5c. var. darienensis
5a. Eucharis bouchei var. bouchei Woodson and Allen (Figs. llAii-
iii, B-C). Ann. Missouri Bot. Gard. 24: 181. 1937. TYPE: Panama,
Cocié, El Valle de Antón, 500-700 m, 23-27 Jul 1935, Seibert 466
(holotype: M0!). Urceolina bouchei (Woodson & Allen) Traub. PI. Life
27: 57-59. 1971.
Perianth tube (30.8-) 34-45 mm long; outer tepals (18-) 24-28 (-35)
mm long, (8.8-) 9.4-15.5 mm wide; inner tepals 21-26 (-31) mm long, 11-
17.5 mm wide. Staminal cup (8, 9-) 11.5-15 (16.7) mm long (to apex of
filaments), (9-) 12-15.5 (-16, 18) mm wide, edentate or rarely with a
single obscure tooth between one or several stamens; each stamen
trapezoidal in shape, dilating gradually from the apex to the base, or,
if obscurely constricted in the distal 2-3 mm, the subulate portion
wider than 2 mm. Style exserted ca. 1 cm beyond the anthers. Ovary
trigonous; ovules 2-3 per locule.
DISTRIBUTION AND ECOLOGY: Understory of primary, pre- and lower
montane rain forest in Cocié and Colon provinces of Panama (Fig. 12),
particularly in the vicinity of El Valle de Antón and the Rio Guanche
valley; rare in Panama province, Costa Rica and Guatemala (Fig. 13);
frequently on steep slopes; (200-) 500-1000 m; flowering (March) June-
August, October-December.
ADDITIONAL MATERIAL EXAMINED: COSTA RICA. Puntarenas: Canton de
Osa, hills near Palmar Norte, Rio Grande de Terraba, 2000 ft, Allen 5347

334
(F, K, MO, US); cataratas de San Ramón, 26 Feb 1931, Brenes 13515 (F).
San José: El Rodeo, Mar 1931, Lankester s. n_. (F). GUATEMALA.
Suchitepequez: Finca Mocá, steep, bushy slope, 3300 ft, 31 Oct 1934,
Skutch 1585 (F). PANAMA. Cocié: lower Rio Antón, vie. El Valle de
Antón, 800-1000 m, 30 Dec 1936, Allen 120 (GH, MO); vie. of El Valle de
Antón, 600-1000 m, Allen 1228 (GH, MO); vie. El Valle de Antón, ca. 600
m, 10 Dec 1939, Allen 2063 (MO); hills north of El Valle de Antón, 100
m, 14 Aug 1940, Allen 2182 (MO); region north of El Valle de Antón, ca.
1000 m, 21 Aug 1946, Allen 3641 (G); La Mesa, above El Valle, 600-800 m,
18 Jan 1968, Duke & Dwyer 15180 [in fruit] (NY); 1-3 miles west of
Portobello, Gentry 1750 (MO); foot of Cerro Pilón, 11 Jan 1972, Gentry &
Dwyer 3634 [in fruit] (F, MO); foot of Cerro Pilón, 11 Jan 1972, Gentry
& Dwyer 3636 [in fruit] (MO); El Valle de Antón, along Rio Indio Trail,
500-700 m, Hunter & Allen 338 [in fruit] (G, MO, P, US); El Valle de
Antón, 1000-2000 ft, edge of cloud forest and roadside, Dec 1967, Lewis
et al_. 2617 (MO); ex hort, from bulb collected by M. Whitten and M.
Elliot, vie. El Valle, flowered in cultivation, 25 Jul 1984, Meerow 1125
(FLAS); Cerro Pilón, 5 km north of El Valle, 800-1045 m, 13 Jun 1975,
Mori et al. 6586 (AAU); Quebrada Amarillo, north of El Valle, 17 Oct
1975, Witherspoon & Witherspoon 8736 (MO). Colon: Rio Guanche, 16 Nov
1975, D'Arcy 9679 (MO); hills just north of Rio Guanche, 1-200 m, 16 Nov
1975, Davidse & D'Arcy 10096 [in fruit] (MO); Cerro Brujo, ex hort,
collected by R. Dressier, flowered in cultivation, Jul 1985 Meerow 1157
(FLAS); trail south of Rio Guanche, on ridge to Cerro Pan de Azúcar, 200
m, Mori & Kallunki 2014 (AAU); Rio Guanche, 6 Nov 1974, Mori & Kallunki
3019 [in fruit] (AAU). Panama: mountains above Torti Arriba, 2 Dec
1977, Folsom et al. 6582 (AAU, BM, MO); near Cerro Campana, on trails

335
radiating from end of road which passes Campana water tank, 23 Aug 1967,
Kirkbride & Hayden 305 (MO, NY).
5a. Eucharis bouchei var. dresslerii Meerow, var. nov (Fig. llAi).
Vari etas haec ab vari etas typica differt staminibus acute dentatis
ad 1.5-2 mm distale concratis, ovario non trigono, et ovulis in quoque
loculo aliquando piurimioribus. TYPE: ex hort, from bulbs collected by
R. Dressier in Panama, Cocié, El Valle de Antón, flowered in
cultivation, 17 Mar 1983 Meerow 1107 (holotype: FLAS1).
Perianth tube 30-41 mm long; outer tepals 26.2-32 mm long, 6-10 mm
wide; inner tepals 24-28 mm long, 9-13.5 mm wide. Stamina! cup 10-16 mm
long (to apex of filaments), 9.5-11.5 mm wide, irregularly toothed (some
stamens lobed or quadrate), the teeth acute and from 1.5-2.7 mm long;
each stamen distally constricted abruptly at 1/2 length, the subulate
portion 3.5-4.5 mm long, ca. 1.8 mm wide. Style exserted ca. 0.5 cm
beyond the anthers. Ovary not trigonous; ovules 2-4 per locule.
ETYMOLOGY: This variety is named in honor of Robert L. Dressier,
well-known tropical biologist.
DISTRIBUTION AND ECOLOGY: Rare rain forest understory herb in Cocié
province of Panama (Fig. 12), in the vicinity of El Valle de Antón,
perhaps sympatric with var. bouchei, ca. 900 m; flowering in June.
ADDITIONAL MATERIAL EXAMINED: El Valle de Anton, 900 m, 4 Jun 1939,
Alston 8727 (BM).
5c. Eucharis bouchei var. darienensis Meerow, var. nov.
Varietas a Eucharis bouchei var. dresslerii affinis sed differt
staminibus obtuse dentatis vel 1 obis et parte staminea distale subulata
breviore. TYPE: Panama, Darien, valley between Cerro Pirre and next
most southerly peak, Jul 1977, Folsom 4402 (holotype: M0!).

336
Perianth tube 25.5-36 (-43.4) mm long; outer tepals 20-26 mm long,
8-11 mm wide; inner tepals 10.5-24 mm long, (11-) 12-15 (-16.5) mm wide.
Staminal cup 9-10 (-13, 16) mm long (to apex of filaments), 12-14.5 (18)
mm wide, obtusely bidentate or lobed, the teeth when present ca. 1-1.5
mm long; each stamen distally constricted abruptly at 1/2-1/4 length;
the subulate portion ca. 1.7-3 mm long, 1.5-2 mm wide. Style exserted
less than 0.5 cm beyond the anthers. Ovary trigonous; ovules 2-5 per
locule.
ETYMOLOGY: The varietal epithet refers to Darién province of
Panama, where _E. bouchei var. darienensis is most frequently collected.
DISTRIBUTION AND ECOLOGY: Understory of primary rainforest in
Darien province of Panama (Fig. 12); rare in Panama province and
Guatemala (Fig. 13); 480-1450 m; flowering January-February and June-
August (-November).
ADDITIONAL MATERIAL EXAMINED: GUATEMALA. Solola: between St. Pedro
and Sta. Lucia, 20 Jan 1857, Wend!and 207 (G0ET). PANAMA. Darien: La
Boca de Pirre, 13 Oct 1967, Bristan 1285 [in fruit] (M0); vicinity of
airstrip at Cana gold mine, 480 m, disturbed forest, 29 July 1976, Croat
37956 (AAU); Cerro Pirre, cloud forest and/or mossy forest, 2500-4500
ft, Aug 1967, Duke & Elias 3661 (GH, M0, US); Cerro Tacarcuna, south
slope, 1250-1450 m, 26 Jan 1975, Gentry & Mori 13945 (M0); 0-2 miles
east of Tres Bocas, along shortest headwaters of Rio Cuasi, premontane
rain forest, 28 Mar 1968, Kirkbride & Duke 1175 [in fruit] (M0);
vicinity Cana, 1750 ft, rare on forest floor, 23 June 1959, Stern et al.
499 (GH); gold mine at Cana, 480 m, 26 Jul 1976, Sullivan 626 [in fruit]
(M0); trail northwest of Cana, 600 m, 28 Jul 1976, Sullivan 718 [in
fruit] (M0); gold mine at Cana, 480 m, 29 Jul 1976, Sullivan 753 [in

337
fruit] (MO); Cana-Cuasi trail, Chepigano, 2000 ft, 12 Mar 1940, Terry &
Terry 1533 [in fruit] (F). Panama: stream flowing out of Serrania de
Maje, 10 Feb 1977, Folsom & Collins 1725 [in fruit] (M0); Maje, 5 miles
up Rio Maje, steep forested ridge above Chocó Indian trail, 400 m, 19
Nov 1970, Kennedy 680 (MO, US); woods around La Eneida, 1000 m, 5 Aug
1970, Luteyn & Kennedy 1761 [in fruit] (F); lower slopes and trail to
Cerro Campana, 13 Sep 1975, Witherspoon & Witherspoon 8372 (MO).
Eucharis bouchei is the northernmost distributed species of
Eucharis, and the only species found north of the Darien Gap. It is
also the most variable species in the genus, in characteristics that
elsewhere justify specific delimitation. Patterns of variation in
floral size, and tube and limb habit form a complete mosaic throughout
the range of E_. bouchei, and show little or no geographic consistency.
Staminal cup morphology (Fig. 4C) does, however, demonstrate a fair
degree of geographical consistancy, and it is chiefly on this basis that
I have recognized var. bouchei and var. darienensis. Variety
dress!erii, rarely encountered among populations of var. bouchei,
presents a special case, discussed below.
The unprecedented degree of variation in £. bouchei is likely the
result of two main factors: (1) the species is tetraploid, putatively
allotetraploid (see Chapters VII and VIII for detailed discussion), and
(2) probably represents a geologically recent colonization of Central
America by this primarily northern Andean and Amazonian genus (see
Chapter IX for detailed discussion). Eucharis bouchei is thus a highly
heterozygous, allotetraploid, semi-species complex still in the process
of active evolution. The wide variation present in E. bouchei likely
represents the segregating phenotypes of a richly diverse genetic base.

338
On the basis of known distributions (Figs. 12-13), it appears that
substantial geographic barriers exist between groups of populations,
probably restricting gene flow between them. Left undisturbed, as is
not the case in the Neotropics today, these aggregates could conceivably
each justify specific recognition.
Northwesternnmost populations representing var. bouchei have the
most derived androecial morphology (Figs. 4Ci-ii) relative to
southeasterly populations (var. darienensis, Fig. 4Civ). The latter
have staminal cups similar to the generalized morphology characteristic
of Andean and Amazonian species of subg. Eucharis. This suggests to me
that general movement of E_. bouchei in Central America has been away
from the Colombian border. The occasional presence of E_. bouchei in
Costa Rica is not surprising, but the two reported collections from
Guatemala (Wendland 207 and Skutch 1585) represent a substantial
disjunct. This is all the more interesting due to the fact that each of
the two represents a different variety of the species. Given the
history of cultivation of Amazonian Eucharis by Indian people for
medicinal, ceremonial and possibly ornamental use, the same may have
held true in Central America.
Variety bouchei, most common around El Valle de Antón in Cocié
province, is recognized by its largely edentate staminal cup in which
the trapezoidal free filament is not markedly constricted distally into
a narrow subulate portion (Figs. 4Ci-ii, 11C). The staminal cup of
variety darienenis, found both in Panama and Darien provinces, is
obtusely bidentate or lobed (Fig. 4Civ). The free filament constricts
distally into a narrow (< 2 mm) subulate portion. These two varieties

339
occur in close proximity in one location, near Cerro Campana in Panama
province (Fig. 12).
The rare var. dress!erii (Fig. llAi), with its acutely toothed
staminal cup (Fig. 4Ciii) and non-trigonous ovary, may be the result of
recent sympatric divergence, as it occurs in close geographic proximity
to populations of var. bouchei. This variety is an unstable tetraploid,
producing at least some cells with diploid (2n_ = 46) chromosome number
(see Chapter VII). This variety also does not express an additive
banding phenotype for an aspartate amino transferase (AAT-2) locus,
which otherwise characterizes electrophoretic phenotypes of E_. bouchei.
Electrophoretic phenotypes also suggest profound genetic divergence from
var. bouchei. Genetic identity (Nei, 1978) between the two varieties is
only 0.632-0.807, considerably below that which is usually
characteristic of conspecific plant populations (Gottlieb, 1977).
Eucharis bouchei offers an excellent opportunity for detailed study
of the evolution of a tropical rain forest organism. Future work should
seek to quantify in greater detail the genetic variation present within
and among populations of this actively evolving species complex. I have
so far been unsuccessful in obtaining meiotic pairing figures from
limited dissection of bulbs, information that would be helpful in
confirming the nature of this species' polyploid origins.
6. EUCHARIS ASTROPHIALA (Ravenna) Ravenna (Fig. 14). Phytologia
57: 95-96. 1985. Urecolina astrophiala Ravenna. PI. Life 38: 49.
1982. TYPE: Ecuador, Cotopaxi, Quevedo-Latacunga road, km 46 from
Quevedo, 79°11'W, 0°55‘S, 600 m, 4 Apr 1973, Holm-Nielsen et al. 2851.
(H0L0TYPE: AAU; ISOTYPE: S!)

340
Bulb globose, 4-5 cm long, 3-4 cm wide, usually without an
appreciable neck, tunics tannish-brown. Leaves 2-4 at anthesis,
elliptic- or ovate-lanecolate; petiole 10-20 cm long, 4-5.5 mm thick;
lamina 15-25 cm long, 5-10 cm wide, thin, non-1ustrous, deeply plicate
and pustulate, adaxial surface light green, the white midrib
conspicuous; abaxial surface whitish-green; margin slightly undulate;
apically acuminate; basally attentuate to the petiole. Scape 3-4 (-5)
dm tall, ca. 5 mm diam; bracts 29-35 (-40) mm long, lanceolate. Flowers
5-8 (-10); pedicels 8-14 mm long; tube 28-35 mm long, ca. 2 mm wide for
most of its length, dilating to (4-) 5-6 mm at the throat, strongly
curved; perianth limb spreading to 4-5 cm wide; outer tepals 25-30 mm
long, (7-) 10 mm wide, lanceolate, apiculate; inner tepals 25-28 mm
long, 10-12 (-14) mm wide, ovate-lanceolate to ovate, acute. Stamina!
cup funnelform-cylindrical, (10-) 12-14 mm long, 8-12 mm wide, edentate,
stained orange-yellow basally, cleft between each stamen for 1/2-2/3 of
its length; each free filament (5) 6.4-6.9 mm long, ca. (2.5-) 3.5-4.5
mm wide at the base, deltoid; anthers oblong, 5-5.5 mm long; average
pollen grain 58.6-60.6 ^m polar diam, 83.0-86.1 yüm longest equatorial
diam. Style 50-55 mm long, exserted 5-10 mm beyond the stamina! cup;
stigma 3-lobed, ca. 2 mm wide. Ovary globose-trigonous, 3.9-4.5 mm
long, 3.2-4 mm wide, white at anthesis; ovules 2-3(-4) per locule,
medially superposed. Capsule ca. 1-1.5 cm long, 2-2.5 cm wide; seeds 1-
2 per locule, ellipsoid, ca. 1 cm long, 0.5 cm diam, with a lustrous,
smooth black testa. 2n_ =46.
DISTRIBUTION AND ECOLOGY: Endemic to the western declivity of the
Andes in north-central Ecuador (Fig. 15), particularly in contiguous
areas of Cotopaxi, Los Rios and Pichincha provinces, occupying the

341
understory of lower montane rain forest from (250-)400-800(-1100) m
elevation. Sporadic flowering may occur at any time but is concentrated
in the wetter months of the year. Unlike the species of subgenus
Eucharis from Amazonas, E. astrophiala manifests a definite rest period
when growth ceases, though the leaves may persist for the duration.
ADDITIONAL SPECIMENS EXAMINED: ECUADOR. Bolivar: Limón, 800-1100
m, 14 Oct 1943, Acosta-Solis 6374 (F). Chimborazo: km 52-53 on Quevedo-
Latacunga road, Tenefuerste, Rio Pilalo, Tenefuerste, 750 m, 21 Feb
1982, Dodson & Gentry 12815 (M0, SEL); same locality as Dodson &_ Gentry
10187, 23 May 1983, Dodson & Gentry 13793 (M0, SEL); Puente de Chimbo,
250 m, Jun 1876, Lehmann 7775 (K). Cotopaxi: km 40 on road from Quevedo
to Latacunga, 600 m, 6 Mar 1975, Dodson 5864 (M0, SEL, US); 3 km east of
El Palmar on Quevedo-Latacunga rd, 800 m, 5 Apr 1980, Dodson & Gentry
10187 (MO, SEL); same locality as Dodson & Gentry 12815, 750 m, sterile,
15 Aug 1984, Meerow & Meerow 1140 (FLAS). Los Rios: forested hills 12
km east of Patricia Pilar, 650 m, 9 Apr 1977, Madison 3792 (NY).
Pichincha: Centinela, Canton Santo Domingo, km 12 east of Patricia
Pilar, 600 m, 17 Aug 1978, Dodson et al. 7122 (MO, SEL); 2 km SE of
Santo Domingo de los Colorados along Rio Verde, 530 m, 5 Feb 1979,
Dodson & Duke 7714 (MO, SEL); road from Patricia Pilar to 24 de Mayo at
km 12, path following ridge line at El Centinela at crest of Montañas de
lia, 600 m, 6 Apr 1980, Dodson & Gentry 10298 (MO, SEL); Reserva Endesa,
ca. 6 km WNW of P. Vicente Maldonado, mature rain forest, ca. 800 m, 24
Mar 1985, Harling & Andersson 23279 (GB); Santo Domingo de los
Colorados, Rancho Brahman, ca. 10 km NW of the town on road to
Esmeraldas, 400 m, 31 Mar 1967, Sparre 15216 (S).

342
Eucharis astrophiala is easily separated from the other small-
flowered species of subg. Eucharis by its uniquely bullate-pustulate and
non-lustrous ovate-lanceolate leaves; edentate and deeply cleft staminal
cup with deltoid free filaments (Fig. 14B-C); and large pollen grain
(the largest in the genus) with narrow reticulum muri. The largest
chromosome pair of E_. astrophiala is submetacentric, unlike all other
species of the genus I have examined. It is the only species of the
subgenus found exclusively on the western slopes of the Andes south of
Colombia. It occurs sympatrically in some localities (fide Dodson &
Gentry 12815 and Meerow &_ Meerow 1140) with _E. anómala, though the
latter grows at slightly higher elevation in these areas. Eucharis
astrophiala is the only species of subg. Eucharis that enters a definite
rest period during the short dry season of the north- and central
western Ecuadorean Andes. New growth completely ceases, though 1-2
leaves may persist for the duration.
7. EUCHARIS ULEI Kriinzlin (Fig. 16B). Bot. Jahrb. 50: Beibl. Ill:
4-5. 1913. TYPE: Brazil, Amazonas, Jurua Miry, Jun 1901, Ule 5737a
(holotype: B!), non Ule 5737b [in fruit] (B!) vel Ule 5737 (GOEL!).
Urceolina ulei (Kránzl.) Traub. PI. Life 27: 57-59. 1971.
Eucharis ipariensis (Ravenna) Ravenna. Phytologia 57: 95. 1984.
Urceolina ipariensis Ravenna. PI. Life 38: 50-51. 1982. TYPE: Peru,
Huánuco, Pachitea, Honoria, Bosque Nacional de Iparia, Rio Pachitea, 20
km above confluence with Rio Ucayali, near Miel de Abeja, 1 km from
Tuernavista, 26 Apr 1967, Schunke 1887 (holotype: NY; isotypes: F!,
COL!, G!, US!).
Eucharis moana (Ravenna) Ravenna. Phytologia 57: 95. 1984.
Urceolina moana Ravenna. PI. Life 38: 50. 1982. TYPE: Brazil, Acre,

343
Río Moa at Serra da Moa village, 27 Apr 1971, Prance et al. 12491
(holotype: NY!, isotypes: K!, M0!, herb. Ravenna).
Plant to 5-6 dm tall. Buib sub-globose, (2.5-) 3.5-4.5 (-5) cm
long, 2-3.5 (-4.5) cm diam; neck 1-2 cm long, ca. 1.5 cm wide; outermost
tunics grey-brown, inner tunics tan. Leaves 2-3; petiole (10-) 18-30 (-
35) cm long, 5-6 mm thick; lamina (narrowly) elliptic (average length :
width > 3), 18-25-33 cm long, (5-) 7-10 (-12.5) cm wide, acute to
shortly acuminate, attenuate at the base. Scape (35-) 40-58 cm tall, 8-
10 mm diam proximally, 3-4 mm diam distally; bracts lanceolate to ovate-
lanceolate, (25-) 30-37 (-54) mm long, greenish-white. Flowers (3-) 5
(-7), pendent, without fragrance; pedicels (8-) 11-15 (-20) mm long, ca.
2 mm diam; tube (25-) 28-35 (-37.5) mm long, curved gradually for most
of its length, 1.5-2 (-2.5) mm wide for most of its length, abruptly
dilated just below throat to (6-) 7-10 mm; limb spreading to 40-45 (-55)
mm wide; outer tepals ovate-lanceolate, 24-28 (-32) mm long, (6.5-) 8-10
(-11) mm wide, apiculate; inner tepals ovate, 23-27 (-30) mm long, (9-)
10-13 (-15) mm wide, acute. Stamina! cup funnelform-cylindrical, 10-12
mm long (to apex of teeth or lobes), 11-13 (-16) mm wide, usually
bidentate between each free filament, rarely edentate, irregularly
toothed, or the teeth obscure (in which case the stamens quadrately
lobed), cleft between each stamen for (1.5-) 2-3 (-4) mm, with a +
rectangular, green zone in the proximal half of each stamen; teeth acute
or obtuse, 0.5-0.7 mm long; each stamen 3.5-4.5 (-5.5) mm wide from
tooth to tooth; free filament subulate, (3-) 4.5-6 mm long, (1-) 1.5-2
mm wide at its base; anthers oblong, 3-3.8 mm long; pollen grain ca.
49.35 ^m polar diam, ca. 69.85 ^m longest equatorial diam. Style (40-)
45-50 (-60) mm long; stigma 1.5-2.5 mm wide. Ovary globose-ellipsoid,

344
6-8.5 (-10) mm long, 4-5.5 mm wide; ovules 2 (-4) per locule, superposed
in the lower half of the cell. Capsule 1.2-1.5 cm long, 2-2.5 cm wide;
pedicels 2-4 cm long; seeds 1-2 per locule, ellipsoid, 8-10 mm long, ca.
5 mm wide with a smooth, lustrous black testa.
DISTRIBUTION AND ECOLOGY: Understory of primary rain forest in the
Amazon Basin and eastern Andean foothills, most common in Peru but
sporadically encountered north to Colombia and south to Bolivia (Fig.
10), on fertile, usually non-inundated, soils; 100-300 (-1000) m;
flowering at any time of the year, but most frequently from June-
September.
ADDITIONAL MATERIAL EXAMINED: BOLIVIA. El Beni: Covendo, 600 m,
19 Aug 1921, White 930 (K, NY). BRAZIL. Amazonas: basin of Rio Jurua,
Foz da Tarauca, Yuma, rare, on vareza land, 1 Jun 1933, Krukoff 4613
(NY); basin of Rio Jurua, near mouth of Rio Embira, 7° 30' S, 70° 15' W,
3 Jun 1933, Krukoff 4637 [in fruit] (G, GH, K, NY, S, US); Rio Purus,
Rio Itaxi, Seringal Jurucua, 120 km south of Lábrea, 29 Jun 1971, Prance
et £l_. 13915 (M0, NY). Para [?]: no data, Ferreira s. n_. (P).
COLOMBIA: Amazonas: Trapecio, confluencia de Rio Loretoyacu con el Rio
Amazonas, Puerto Nariño, Mar 1968, Diaz-M 15 (COL); Trapecio amazónico,
Boiauassá River, 100 m, Oct 1946, Schultes & Black 8608a (US); Puerto
Nariño, mouth of Rio Loretoyacu, 100m, 8 May 1972, Plowman 3216 [in
fruit] (COL, K). PERU. Amazonas: valle de Rio Santiago, ca. 65 km
norte de Pinglo, Quebrada Caterpiza, 2-3 lm atrás sde la comunidad de
Caterpiza, 200 m, 13 Oct 1979, Huashikat 930 [in fruit] (MO); same
locality as preceding, 17 Dec 1979, Huashikat 1553 (MO); Monte del Isla,
la isla 1 km bajo de La Poza, Rio Santiago, 180 m, 8 Aug 1979, Leveau 7
[in fruit] (MO); same locality as preceding, 15 Aug 1979, Leveau 123 [in

345
fruit]; (MO); same locality as preceding, 8 Aug 1979, Peña 9 [in fruit]
(MO). Loreto: Rio Amazonas, SE of Iquitos, swampy forest, 17 Aug 1972,
Croat 19289 (MO); Rio Napo near Entrada de Isla Inayuga, edge of forest,
20 Sep 1972, Croat 20521 [in fruit] (MO); near Base Araguana, upper Rio
Mazán, ca. due north of Santa Maria de Nánay, non-inundated forest, 9
Jul 1976, Gentry & Revilla 16586 [in fruit] (MO); Maynas, Quebrada
Yanomono, Explorama tourist camp, halfway between Indiana and mouth of
Rio Napo, mature non-inundated forest on laterite, 4 Nov 1979, Gentry et
al ♦ 27438 [in fruit] (MO); Yanomeno, Explorama Tourist Camp, Rio
Amazonas above mouth of Rio Napo, 72o 48' w, 3° 28' S, 130 m, upland
forest on lateritic soil, 25 Jun 1982, Gentry et al. 37204 [in fruit]
(MO); Rio Samiria, Flor de Yarina, ca. 5° 2' S, 74° 30' W, 160 m, non-
inundated restinga forest, Gentry et al. 38103 (M0); Iquitos, ca. 100 m,
3-11 Aug 1929, Killips & Smith 27442 (US); Yurimaguas, lower Rio
Huallaga, ca. 135 m, 23 Aug-7 Sep 1929, Kill ip & Smith 27656 (US); Rio
Marañon Valley, San Lorenzo, between mouths of Rio Pastaza and Rio
Huallaga, 150 m, 20 Aug-9 Sep 1929, Kill ip et al. 29227 (US); Iquitos,
Muena-Caño, 105 m, 9 Feb 1932, Mexia 6504a (F, UC); Maynas, Rio Amazonas
near Tamishiyacu, 3 Sep 1976, Revi11 a 1281 (M0); Pebas on Amazon River,
25 Jul 1929, Williams 1751 [in fruit] (F); Pebas on Amazon, 21 Jul 1929,
Williams 1787 [in fruit] (F); La Victoria on the Amazon, 21 Aug 1929,
Williams 2629 (F); same locality as preceding, 29 Aug 1929, Williams
2938 (F); alto Rio Itaya (San Antonio), 145 m, Williams 3398 [in fruit]
(F); Puerto Arturo, Yurimaguas, lower Rio Huállaga, 155-210 m, 16 Nov
1929, Williams 5148 [in fruit] (F). San Martin: Mariscal Caceres,
Tocache Nuevo, Quebrada de Cachiyacu de Huaguisha, 570 m, 16 Jul 1982,
Meerow et al. 1023 [in fruit] (FLAS); Mariscal Caceres, Tocache Nuevo,

346
Quebrada de Cachiyacu de Huaguisha, 570 m, 16 Jul 1982, Meerow et al.
1024 (FLAS); Mariscal Caceres, Mirama, north of Tocache Nuevo, along
left bank of Rio Huallaga, 500 m, Plowman & Kennedy 5811 (GH); Mariscal
Caceres, Tocache Nuevo, Fundo La Campiña, 2 km abajo de Tocache Nuevo,
margen derecha del Rio Huállaga, 400 m, 7 Sep 1969, Schunke 3396 (F,
US); Mariscal Caceres, Tocache Nuevo, Quebrada de Cachiyacu, 3 km abajo
de Puerto Pizano (margen derecha del Rio Huallaga), 21 Apr 1971.
Ucayali: Coronel Portillo, Yarina Cocha, Fundo “El Pescador," cerca al
Caserio Nuevo Destino, al este de Yarina Cocha, 150 m, 31 Oct 1984,
Schunke 14153 (FLAS).
Eucharis ulei is among the more widespread Amazonian taxa of subg.
Eucharis, extending north from its Peruvian center of distribution into
Colombia, and south to Bolivia (Fig. 10). The species is best
recognized by its primarily narrow-el 1iptic leaves, chiefly 5-flowered
inflorescence, tube length ca. 3-4 cm, limb spread of 4-5 cm, and
reduced ovule number (generally 2 per locule, Fig. 16C). Both flower
and ovule number have become nearly fixed throughout the range of the
species. In many respects, E_. ulei occupies a morphologically
intermediate position between the more floriferous E_. candi da, more
common to the north, and the smaller and many-flowered _E. caste!naeana
and its allies. Eucharis caste!naeana is sympatric with E_. ulei at
times, but tends to occur on seasonally inundated soils. The fruit of
caste!naeana is not orange, however, and the seed coat is rugose.
Eucharis candida and E_. ulei are not at all fragrant, whereas E_.
castelnaeana produces a faint, sweet fragrance. This, along with size
differences, may reflect pollinator-adapted divergence among the three
taxa. Flower size and number, ovule number (Fig. 16), and chromsome

347
morphology (see Chapter VII) suggests close to E_. cyaneosperma, which
has different tube morphology and blue-coated seeds.
Ravenna (1982, p. 50) described Urceolina moana, citing the
"absence of lobes, or teeth, in the cup". When I examined the single,
poorly preserved, fragmentary flower of the holotype, however, the
stamens appeared at least shortly dentate to quadrate. As in E_. candi da
and _E. formosa, androecial toothing in £. ulei has little taxonomic
significance. The androecial morphology of _E. moana is well-included
within the range of variation for this character in E_. ulei (Fig. 4D).
Several collections of E_. ulei have completely edentate staminal cups
(e.g., Meerow et al♦ 1024, Plowman Kennedy 5811, Prance et al. 13915).
Eucharis ipariensis, inexplicably described by Ravenna (1981) as allied
to E_. mastersii (= £. X grandiflora of subg. Heterocharis), is
indistinguishable from numerous collections of E. ulei.
Both Krclnzlin (1913) and Macbride (1939) noted the dissimilarity
of the two specimens comprising the holotype of E_. ulei (Ule 5737, B),
one in flower, the other a fruiting specimen. I have assigned the
fruiting specimen (Ule 5737b), with blue seeds, to E_. cyaneosperma
Meerow. When a putative isotype of Ule 5737 was received from GOEL, it
proved to represent E_. caste!naeana. Ule thus collected three species
under a single number, a not uncommon occurrence in areas where several
Eucharis species are sympatric.
8. Eucharis cyaneosperma Meerow, sp. nov. (Fig. 16A).
Species a E_. ulei Krflnzl. affinis sed differt foliis ellipticis
brevioribus, tubo minus arcuato, et testa semi nal i cobaltina. TYPE:
Peru, San Martin, 20 km north of Tocache Nuevo on road to Tarapoto, Rio
Cañuto, 520 m, 17 Jul 1982, Meerow et al. 1032 (holotype: FLAS!)

348
Bulb subglobose, 3-5 cm long, 3-3.5 cm diam, tunics light brown.
Leaves 2-4; petiole (10-) 15-30 (-35) cm long, 5-6.5 mm thick; lamina
(ovate-)elliptic, 18-25 (-30) cm long, (6.5-) 7-8 (-13) cm wide,
apically acute to shortly acuminate, attenuate at the base. Scape (3-)
4-5 (-6.5) dm tall, 5-7 mm diam proximally, 3-4 mm diam distally; bracts
ovate-lanceolate, (20-) 27-35 mm long. Flowers (3-) 5 (-7), pendent,
without fragrance; pedicels (10-) 15-25 (-28) mm long, ca. 1.7-2 mm
diam; tube 30-40 mm long, 1.5-2 mm diam for most of its length, dilating
abruptly to 7-9 mm proximal to the throat, curved abruptly ca. 5 mm
above the ovary and then more or less straight; outer tepals 23-28 (-32)
mm long, 8-10 (-13) mm wide, ovate-lanceolate, apiculate; inner tepals
21-24 (-30) mm long, 10-14 (-15) mm wide, ovate, acute to minutely
apiculate. Staminal cup cylindrical, (8-) 10-12 mm long (to tooth or
lobe), 10-13 (-15) mm wide, pale yellow or green proximally, quadrate or
irregularly toothed between each free filament, the teeth when present <
1.5 mm long, cleft between each stamen 2-3 mm deep; each stamen 3.5-4 (-
5) mm wide at the base; the narrow, subulate free filament (3-) 3.5-4.5
(-5.5) mm long, ca. 1.5 mm wide at the base; anthers ca. 3 mm long,
oblong; pollen grain ca. 47.95 yum polar diam, ca. 67.55 yum longest
equatorial diam. Style 4.5-6 cm long, exserted 0.5-1 cm beyond the
anthers; stigma 2-2.5 mm wide. Ovary sub-globose-trigonous, 5-7 mm
long, 7-10 mm wide, usually wider than long; ovules 2 (-3, 5) per
locule, superposed in the lower half of the cell. Capsule 10-12 mm
long, 15-20 mm wide; pedicel 25-36 mm long; seed ellipsoid, 7-9 mm long,
ca. 5 mm wide, with a lustrous, cobalt-blue testa. 2n_ = 46.
ETM0L0GY: The specific epithet refers to the cobalt-blue seed coat
of this species.

349
DISTRIBUTION AND ECOLOGY: Rare in the understory of pre- to lower
montane rain forest of the Amazon basin and eastern Andean foothills,
from Peru to Bolivia (Fig. 10), (330-) 400-800 (-1200) m elevation,
flowering at any time of the year but most commonly in August.
ADDITIONAL MATERIAL EXAMINED: BOLIVIA. El Beni: vicinity of
Rurrenabague, 330 m, 25 Nov 1921, Cardenas 1179 (AA, NY, US);
Rurrenabague, 500 m, 7 Oct 1921, Cardenas 1553A (NY); San Antonio, 15
Nov 1958, flowered in cultivation 30 Apr 1959, Nelson 58-301 (MO); same
collection as preceding, flowered in cultivation 4 Apr 1961, Nelson 58-
301 (MO). BRAZIL. Acre: basin of Rio Purus, near mouth of Rio
Macauhan, 9o 20* Sj 69° W, 17 Aug 1933, Krukoff 5573 (NY); Rio Branco de
Obidos, Santo Antonio, 6 Aug 1912, Ducke 12162 (GOEL, photo and fragment
F). Amazonas: Jurua Miry, Jun 1901, Ule 5737b (B). PERU. Cuzco: Rio
Araza, northeast of Cuzco, 1150 m, Jan 1943, Sandeman 3724 (K, OXF).
Loreto: lower Rio Nanay, 24 May 1929, Williams 431 [in fruit] (F); La
Victoria on Amazon, 21 Aug 1929, Williams 2619 [in fruit] (F); La
Victoria on Amazon, 28 Aug 1929, Williams 2878 [in fruit] (F, US).
Junln: Puerto Yessup, ca. 400 m, 10-12 Jul 1929, Kill ip & Smith 26394
[in fruit] (F, NY, US); Rio Negro to Satip, 800 m, 17 Aug 1960,
Woytkowski 5830 (MO). Madre de Dios: Tahuamanu, Iberia, 200 m, 15 Nov
1973, Alfaro 1684 [in fruit] (MO); Iberia, Miraflores, vicinity Rio
Tahuamanu, 1 Sep 1945, Seibert 2145 (US). San Martin: Schunke 4843 [in
fruit] (F, US); Mariscal Caceres, Tocache Nuevo, Quebrada de Huaguisha
(margen derecha del Rio Huallaga, 400-450 m, 3 Jul 1974, Schunke 7146
[in fruit] (F). Ucayali: middle Ucayali, Cashiboplaya, 10° S, 1923,
Tessman 3179 (G, NY, S).

350
Eucharis cyaneosperma is the only species of Eucharis with blue-
coated seeds. The species appears close to E_. ulei, but differs by its
usually shorter leaves, tube morphology, irregularly dentate to quadrate
staminal cup (Fig 16A), and seed color. Eucharis cyaneosperma also
occupies more upland sites than is usually characteristic of _E. ulei.
The species is nowhere abundant throughout its broad range. Collections
are concentrated in the southern end of the range of E_. cyaneosperma,
while E. ulei is more common to the north (Fig. 10). The two species
may represent sibling, allopatric divergences from a common ancestor
that have since come into secondary contact.
9. EUCHARIS LEHMANII Regel (Figs. 17D-F), insertae sedis.
Gartenfl. 38: 313-314, t. 1300, Fig. 1. 1888. TYPE: ex hort, from bulbs
collected by Lehmann near Popayan, Colombia, Apr 1888, Regel s. n_.
(holotype (fragmentary): LE; photo of holotype: FLAS!, K!). Urceolina
lehmannii (Regel) Traub. PI. Life 27: 57-59. 1971.
Bulb subglobose, not seen. Leaves 2; petiole 45.5 cm long, 3.5 mm
thick; lamina ovate-elliptic, 24-25 cm long, 16 cm wide, short
acuminate, basally subcordate and attenuate to the petiole. Scape not
seen; bracts lanceolate; bracteoles linear-lanceolate. Flowers 4;
pedicels to 30 mm long; limb patent, spreading to ca. 4 cm; tube ca. 25
mm long, ca. 1.2 mm wide below, dilating abruptly to 8 mm at the throat;
outer tepals 20-22 mm long, 8-10 mm wide, ovate-lanceolate, acute-
apiculate; inner tepals 18-20 mm long, 10-12 mm wide, obtuse. Staminal
cup 7-8 mm long (to apex of tooth), deeply cleft between each stamen to
< 2 mm from the throat; each stamen bidentate, the teeth long-
lanceolate, equaling the free filament in length; free filament linear,
7-8 mm long, ca. 1 mm wide; anthers sub-basifixed, versatile. Style

1
351
slightly exserted beyond the anthers. Ovary globose-ellipsoid, ca. 6 mm
long, ca. 4 mm wide; ovules ca. 10 per locule. Fruit and seed unknown.
DISTRIBUTION AND ECOLOGY: Extremely rare in the understory of
moist, lower montane forest of the Cordillera Oriental in Cauca
Department of Colombia (Fig. 18), 1200 m.
ADDITIONAL MATERIAL EXAMINED: COLOMBIA. Cauca: Aganche, Rio
Orejas, 1200 m, Lehmann 5883 (K).
Eucharis lehmanni is known only from the fragmentary type (a single
flower), and a single specimen at Kew with only one flower present. A
Ecuadorean specimen mislabeled as the type of E_. 1 ehmanii, received from
Kew (Lehmann 7775), turned out to be E_. astrophiala (Ravenna) Ravenna.
The novel morphology of the staminal cup (Fig. 17E), somewhat analagous
to the androecium of Caliphruria hartwegiana and C_. teñera, and its
distribution above 1000 m, suggests that E_. lehmanni may be a peripheral
isolate of subg. Eucharis, with novel morphological character states
that frustrate the determination of its phylogenetic relationships. An
alternative hypothesis is that £. lehmannii is a relect taxon with
characters of intermediacy between Eucharis and Caliphruria.
Phylogenetic analysis (see Chapter XI) places this species in a rather
isolated position between the relict taxa comprising paraphyletic subg.
Heterocharis and a monophyletic clade comprising Caliphruria and
Urecolina. The best evidence of its systematic position is the figure
accompanying Regel's (1888) description. The plant figured, in
morphology and habit of the flower, resembles Eucharis subg. Eucharis.
Given the paucity of material available, I would retain E_. lehmannii in
subg. Eucharis with the designation incertae sedis to indicate the
uncertainty of the systematic position of this species. In 1984, I was

352
not able to successfully collect this species at the locality of Lehmann
5883 in Colombia, an area now largely deforested.
10. EUCHARIS CORYNANDRA (Ravenna) Ravenna (Figs. 17G-I).
Phytologia 57: 95-96. 1985. Urceolina corynandra Ravenna. PI. Life 34:
80-81. 1978. TYPE: Peru, Cajamarca, Chinganza, between Aramango and
Montenegro, 2 Jul 1973, Ravenna 2090 (holotype: herb. Ravenna; isotypes:
K!, NY, MO ex TRA).
Bulb globose, 47 mm long, 37 mm diam; tunics light brown. Leaves
elliptic lanceolate; petiole 25-27 cm long, 3.5-5 mm thick; lamina 20-27
cm long, 5 cm wide, apically acute. Scape 50 cm tall, slender, ca. 2 mm
diam distally; bracts lanceolate, ca. 32 mm long. Flowers 8-10;
pedicels 15-23 mm long, thin; perianth tube curved, 17-18 mm long, ca. 1
mm wide for most of its length, abruptly dilated to 3-4 mm at the
throat; limb spreading to 3-4 cm wide; outer tepals 27-29 mm long, 6-7
mm wide, ovate-lanceolate, acute-apiculate at the apex; inner tepals ca.
28 mm long, 8-10 mm wide; ovate, acute. Stamina! cup short, funnelform,
thick and waxy in texture, 3.5 mm long, 7.5 mm wide, with two obtuse
teeth between each free filament, somewhat plicate; free filaments club-
shaped, appearing narrowly elliptic-lanceolate when dry, ca. 6.2 mm
long, 1.8 mm wide, abruptly dilated to ca. 1 mm at the base, inserted
adaxially between two of the teeth; anthers oblong-linear, ca. 3 mm
long, versatile, black, [densely pubescent according to Ravenna (1978)].
Style 30-44.5 mm long, stigma tri-lobed. Ovary globose-ellipsoid, 6 mm
long, 3 mm wide; ovules 4-6 per locule, superposed. Fruit and seed
unknown.
DISTRIBUTION AND ECOLOGY: Known only from the type locality (Fig.
18), in tropical forest on slopes, near a small ravine with

353
Dieffenbachia sp, Hell coni a sp., Clusia sp. and Xyphidium coeruleum
Aubl. Elevation not reported.
Eucharis corynandra in size and number of the flowers, as well as
ovule number, shows affinity to both E_. castelnaeana (Baillon) Macbr.
and E^ pi i cata Meerow. The short staminal cup and distinctive club-
shaped free filaments (Fig. 17H) are the principal unique characters of
this species. I cannot, however, confirm Ravenna's (1978) description
of the anthers as densely pubescent. Though no elevation data were
supplied by the author, it is likely an upland isolate from the
Amazonian center of the subgenus, having colonized the lower limits of
the "ceja de montaña" forest formations in Cajamarca department of Peru.
11. EUCHARIS OXYANDRA (Ravenna) Ravenna (Fig 17A-C). Phytologia
57: 95-96. 1985. Urceolina oxyandra Ravenna. Wrightia 7: 251-253.
1983. TYPE: Peru: Huanuco, Huanuco, Rio Chinchao, below Carpish on rd
to Tingo Maria, 1800 m, 19 Jul 1964, Hutchison et al. 5983 [specimens
prepared from bulbs flowered in cultivation at UC, 26 Apr 1967].
(holotype: USM; isotypes: MO ex TRA!, UC!).
Bulb not seen. Leaves (one seen) elliptic; petiole 17 cm long, 4-6
mm thick; lamina 25 cm long, 12 cm wide. Scape 27-28 cm tall; bracts
34-35 mm long, ovate-lanceolate. Flowers 6-7, (crateriform?), cernuous;
pedicels ca. 19 mm long; tube curved, 25 mm long, 1.5 mm diam below,
dilated abruptly at the throat to 3.5 mm; tepals spreading to 27 mm
wide; outer series 17-19 mm long, 6.7 mm wide, ovate-lanceolate, acute-
apiculate; inner series 17-18 mm long, 8-9 mm wide, ovate, obtuse.
Staminal cup very short, 0.8-1.5 mm long, 3-3.5 mm wide, edentate or
with two obtuse teeth between the free filaments; free filaments ca. 7
mm long, ca. 1 mm wide at the base, narrowly subulate; anthers oblong,

354
3.3 mm long, sub-basifixed, eventually versatile; pollen grain ca. 42.36
^um polar diam, ca. 68.36 yum longest equatorial diam. Style 32.8 mm
long; stigma 2-2.5 mm wide. Ovary globose-ellipsoid, 6 mm long, 4 mm
wide; ovules 6-8 per locule. Fruit and seed unknown.
DISTRIBUTION AND ECOLOGY: Eucharis oxyandra is not known in the
wild state. The collector's field notes (UC) indicate that three bulbs
were found at the type locality (Fig. 18) "exposed on surface of ground
with evidence of past cultivation, in deep shade near abandoned hut
above road. The third bulb proved to be Urceolina urceolata (R. & P.)
M. L. Green."
This unusual species has the smallest stamina! cup of any Peruvian
Eucharis of subg. Eucharis (Fig 17B). The long, almost linear, free
filaments are another unusual feature of the androecium. The
polymorphism of the staminal cup (both edentate and obtusely dentate
forms represented in the isotypes, Fig. 17B) is puzzling, and adds
further creedence to my suggestion that this character has been over¬
weighted as an indicator of species delimitation in the alpha-taxonomic
literature relating to the genus. Alternatively, it is possible that
the two bulbs found by the collector and representing this species were
of two different origins.
In publishing Urceolina oxyandra, Ravenna (1983) was apparently
unaware of the unusual situation in which the species was found, having
examined only a duplicate at USM which seems to have lacked the detailed
field notes of the collector. He argued that the unusual morphology of
the androecium (reduced staminal cup; long, narrowly subulate
filaments), similar to that of Urceolina, supported the inclusion of
Eucharis within Urceolina (Traub, 1971), a position he recently reversed

355
(Ravenna, 1985). This type of androecial morphology is characteristic
of two putative intergeneric hybrids between Eucharis and Urceoli na, X
Urceocharis edentata Wright and X JJ. clibranii Masters.
Given that the plant was discovered as an apparent artifact of
cultivation in company with a bulb of Urceolina, and in a geographic
area of loose sympatry for the two genera, I thought it possible that IE.
oxyandra might represent a hybrid between Eucharis and Urceolina. X_ U_.
edentata was supposedly collected in the wild in Peru (Wright, 1910).
Pollen of E. oxyandra, however, stains 100% with Alexander's (1969)
stain. Both X U. edentata and X JJ. clibranii produced very little
pollen (Wright, 1910), an observation confirmed when I examined
specimens of both hybrids. The morphology of the perianth, at least as
it appears in dried material, to some degree resembles the campanulate
flowers of the two X Urceocharis hybrids. Pollen grain size of the
species is more like that of Eucharis subg. Eucharis, but exine
sculpturing (Fig. 12 in Chapter V) resembles that of Urceolina. Fertile
intergeneric hybrids are not unknown in Amaryl1idaceae; hybrids of
Amaryllis belladonna L. and Brunsvigia Heist, are known to be fertile
(Traub, 1982).
Alternatively, E_. oxyandra might be a relict taxon close to the
ancestor of Urceolina, a genus whose divergence from Eucharis may have
been relatively recent (see Chapter XI). Phylogenetic analysis (Chapter
XI) supports this latter hypothesis. The northern half of Peru is a
center of pancratioid diversity, rich in small genera with novel and
sometimes intermediate morphological characters (Meerow, 1985; MS in
prep.). At present, it seems best to treat £. oxyandra as a species of
Eucharis, even though its shared characteristics with Eucharis are

356
symplesiomorphous. Its cladistic relationships are obscured by the
large amount of unknown character state data (Chapter XI). As in E_.
astrophiala, E_. corynandra, and E.. lehmannii, this species exhibits a
pattern of morphological novelty characteristic of peripheral isolation
in Eucharis. Similarities to other subgenera or genera are likely the
result of canalized development (Stebbins, 1974), a reoccurring pattern
within and among the tribes of "infrafamily" Pancratioidinae (Meerow,
1985).
I currently have seedlings of a putative cross of Urceolina
microcrater and a Peruvian Eucharis species in cultivation. When these
plants flower, the status of _E. oxyandra may need reappraisal.
12. EUCHARIS PLICATA Meerow (Fig. 19).
Bulb subglobose, 5-6 cm long, 4 cm wide, tunics brown. Leaves 2-4
at anthesis, petiole 25-35 cm long; lamina widely elliptic to ovate,
(19-) 20-30 (-35) cm long, 7-12 (-14) cm wide, short acuminate, very
shortly attenuate to the petiole, thin, lustrous dark green adaxially,
sil very-green abaxially, abaxial cuticle densely striate. Scape 40-60
cm tall; bracts 29-30 mm long, ovate-lanceolate; bracteoles successively
shorter and narrower. Flowers (7-) 9-10, sometimes lightly fragrant;
pedicel sub-erect, 10-15 (-25) mm long; perianth tube 25-28 mm long,
2.5-3 mm wide througout most of its length, dilating abruptly to 6-10 mm
at the throat; limb spreading to 30-40 mm; tepals ovate, recurved at the
apex, subequal; outer series ca. 19-24 mm long, 9-14 mm wide, apiculate;
inner series 16-23 mm long, 11-15.5 mm wide, apically acute. Staminal
cup campanulate, ca. 8.5-12 mm long (to apex of teeth), 10-12 (-15) mm
wide, apically white, basally pale greenish-yellow, plicately folded on
either side of the filamental trace, bidentate; each stamen 4.5-5.5 mm

357
wide, the anther-bearing part subulate, 2-3.5 mm long, apically obtuse,
anthers oblong-linear, sub-basifixed, erect at first then becoming
versatile, grayish brown, 3.5-4 mm long; pollen grain 41.3-43.5 yum polar
diam, 59.9-68.9 yum longest equatorial diam. Style 36-40 mm long; stigma
ca. 2.5 mm wide. Ovary globose-ellipsoid, green, ca. 5-6 mm long, 3.4-4
mm wide; ovules 4-8 per locule. Capsule ca. 1 cm long, 2 cm wide; seeds
1-2 per locule, ca. 1 cm long, 5 mm wide; testa shiny black. 2n_ = 46.
Key to the subspecies of E_. piicata:
1. Flowers not noticeably fragrant; perianth tube dilating to 6-
7.5 mm at the throat; staminal cup deeply plicate, ca. 12 mm
long to apex of teeth; teeth longer than subulate portion of
filament, coarsely serrulate, imbricate; style reaching to
half the length of the cup; ovules 7-8 per locule
12a. subsp. piicata
1. Flowers mildly fragrant; perianth tube dilating to 7.5-10 mm
at the throat; staminal cup only shallowly plicate, ca. 8-10
mm long to apex of teeth; teeth shorter than subulate portion
of filament, entire, non-imbricate; style reaching to just below
the teeth; ovules 4-5(-7) per locule 12b. subsp. brevidentata
12a. E_. pi icata subsp. piicata (Fig. 19). Brittonia 36: 18-25.
1984. TYPE: Peru, San Martin, Mariscal Cáceres, Tocache Nuevo, Quebrada
de Huaguisha, right bank rio Huallaga opposite Tocache Nuevo, 8°09's
lat, 76°27'W long, 500-600m, 14 Dec 1981, Plowman et al. 11394
(H0L0TYPE: FLAS!; ISOTYPES: F, K, NY, USM).
Flowers without noticeable fragrance; pedicel sub-erect, 10-15 mm
long; perianth tube 22-24 mm long, dilating abruptly to 6-7.5 mm wide at
the throat; outer tepals 18-23 mm long, 9-12 mm wide; inner tepals 16-20

358
mm long, 11-12 mm wide. Staminal cup ca. 12 mm long and wide, deeply
plicate on either side of the filamental trace; the anther-bearing
portion of each filament inserted between 2 irregular, obtuse, coarsely
serrulate teeth each 4-5 mm long, adjacent pairs somewhat imbricate and
appearing as one; pollen grain ca. 43.45 ^m polar diam, ca. 68.9 yum
longest equatorial diam. Style reaching to 1/2 the length of the
staminal cup. Ovules 7-8 per locule.
DISTRIBUTION AND ECOLOGY: Known only from the type locality where
it is locally abundant (Fig. 18). This population appears to have
hybridized with E_. ulei, and contains a range of intermediate morphs,
all showing reduced pollen stainability, and the occasional presence of
non-homologous chromosomes. It is unclear whether these represent a
highly variable FI, the F2, or the results of introgression with E_.
piicata subsp. pi i cata.
ADDITIONAL MATERIAL EXAMINED: PERU. San Martin: same locality as
the type, 16 Jul 1982, Meerow et al♦ 1025 (FLAS); same locality as the
type, 4 Aug 1974, Schunke 8046 (F).
PUTATIVE HYBRIDS WITH E. ULEI: PERU. San Martin: same locality as
the type, 16 Jul 1982, Meerow et al. 1030, 1031 (FLAS).
13b. JE. pi icata subsp. brevi dentata Meerow, var. nov.
Subspecies nova differt a subspecies typica dentibus staminalibus
brevioribus et non serrulatis vel imbricatis. TYPE: Bolivia, no
collection information, ex hort Fairchild Tropical Garden from
collections by Fred Fuchs Jr., 3 Oct 1984, Meerow 1143 (FLAS!).
Flowers mildly fragrant; perianth tube 25-29 mm long, dilating
abruptly to 7.5-10 mm wide at the throat; outer tepals 20-24 mm long, 9-
12 mm wide; inner tepals 18.7-23 mm long, 12-15 mm wide. Staminal cup

359
8-11 mm long (to apex of teeth), 10.5-14 mm wide, only shallowly
plicate; teeth ca. 1.5-2 mm long, reaching to about half the length of
the subulate portion of the filament, obtuse, entire, non-imbricate;
pollen grain ca. 41.3 ^m polar diam, ca. 59.9 /jm longest equatorial
diam. Style reaching to just below the apex of the teeth. Ovules 4-6(-
8) per locule.
ETYMOLOGY: The epithet of this subspecies refers to the short
teeth of the staminal cup.
DISTRIBUTION AND ECOLOGY: Rare in the understory of pre- and lower
montane rain forest of north-central Peru and Bolivia (Fig. 18), 200-420
m; flowering August-October.
ADDITIONAL MATERIAL EXAMINED: PERU. Amazonas: Rio Cenepa, 10-12 km
NW of Huampami, ca. 420 m, 2 Oct 1972, Berlin 148 (NY); Rio Cenepa,
vicinity of Huampami, ca. 5 km e of Chávez Valdavla, Quebrada Huampami,
ca. 78° 30* W, 4° 30' S, 200-250 m, 15 Aug 1978, Kujikat 365 (MO).
Eucharis pi i cata is closest to E_. castel naeana and may represent
an upland segregate of the latter taxon. The phenetic relationship
between the two species is most evident in E_. piicata subsp.
brevidentata, which in characteristics of the staminal cup and ovule
number is intermediate between subsp. pi icata and IE. castelnaeana. From
the latter E_. pi icata may be distinguished by its wider leaves and
tepals, larger flowers, absence of any noticeable floral fragrance,
campanulate staminal cup which is plicate along the filamental traces
(Fig 19), more numerous ovules, and fruit and seed morphology typical of
subg. Eucharis. Eucharis castel naeana and E_. pi icata may represent the
fragmentation of a more widespread ancestral taxon during the
Pleistocene (see Chapter IX for discussion). Such a putative ancestor

360
may have resembled var. brevidentata, which has the most "generalized"
morphology (cf. other Amazonian species of subg. Eucharis) of the three
taxa. The disjunct distribution of known populations of subsp.
brevidentata, to both the north and south of the distributions of subsp.
piicata and E_. castelnaeana, lends further credence to this hypothesis.
The results of cladistic analysis (see Chapter XI) support this
hypothesis.
13. EUCHARIS CASTELNAEANA (Baillon) Macbride (Fig. 20). Publ.
Field Mus. Nat. Hist. Bot. Ser. 11: 47. 1931. Caliphruria castelnaeana
Baillon. Bull. Mens. Soc. Linn. Paris 144: 1133-1136. 1894. TYPE:
Peru, Ucayali, Pampa del Sacramento, Jun 1847, Castelnau s.n. (holotype:
not located; isotype: PI). Urceolina castelnaeana (Baillon) Traub. PI
Life 27: 57-59. 1971.
Eucharis narcissi flora Huber. Bol. Mus. Goeldi Para 4: 543.
1906. TYPE: Peru, Ucayali, Sarayacu, Catalina, 25 Jun 1898, Huber 1574
(holotype: MG!; isotype [photo and fragment]: FI). Urceolina
narcissi flora (Huber) Traub. PI. Life 27: 57-59. 1971.
Plant to 4-5 dm tall. Bulb small, sub-globose, 2.2-3 (-4.5) cm
long, 1.4-2.7 cm wide; neck 1-2 cm long, 1-1.5 cm wide; tunics tannish
brown. Leaves 2-4; petiole (10-) 13-17 (-25) cm long, 3-6 cm wide;
lamina narrowly ovate-elliptic, (10-) 15-20 cm long, 5-7 (-10) cm wide,
apex shortly acuminate, lustrous dark green adaxially, lighter green
abaxially, margins undulate. Scape (2.5-) 3-4 (-5) dm tall, 5-6 mm diam
proximally, ca. 3 mm diam distally; bracts (2.5-) 3-4 cm long, ovate-
lanceolate, greenish-white. Flowers (7) 8-10, pendent, small, with a
faint, lemon fragrance; pedicels 10-18 mm long; tube 15-25 (-30) mm
long, 1-1.5 (-2) mm wide for most of its length, abruptly dilated near

361
the throat to 5-6 (-8) mm wide; tepals patent, spreading to (2.5-) 3-4
cm, often distally recurved, sometimes strongly reflexed for their
entire length; outer tepals (ovate-) lanceolate, 15-20 mm long, 5-7 mm
wide, apiculate; inner tepals ovate, 11.5-18.7 mm long, 8-11 mm wide,
acute. Staminal cup funnel form-cylindrical to cylindrical, usually sub-
cylindrical proximally and abruptly dilated at 1/2-2/3 of its length,
(5.5-) 7-8 (-9.5) mm long (to apex of tooth), (7-) 9-11 (-12) mm wide,
zoned greenish-yellow in the proximal 1/3-2/3, slightly incurved at the
rim, waxy and slightly succulent in texture, bidentate between each free
filament, conspicuously plicate between the teeth, very shallowly cleft
between each tooth (< 1 mm) and as deep or more deeply cleft between the
teeth and the free filament (> 1 mm); teeth 0.5-1 mm long, reaching to
about half the length of the free filaments, obtuse, entire; free
filament subulate, (1.5-) 2-3 (-4) mm long, 1.5-1.5 mm wide at the base,
obtuse or acute; anthers 3-4.5 mm long, oblong, greyish-brown, sub-
basifixed, more or less versatile at anthesis; pollen grain ca. 39.45 ^m
polar diam, ca. 55.8 /jm longest equatorial diam. Style 25-35 mm long,
reaching the apex of the cup or slightly inserted; stigma ca. 1.5 mm
wide. Ovary globose, 3.5-5 mm diam, white to greenish-white; ovules
(2-) 4-5 (-7) per locule. Capsule sub-globose, shallowly trilobed, ca.
1 cm long, 1.5 cm wide, glaucous green, thin-walled, sometimes abscising
indehiscently; seeds 1-3 per locule, compressed-ellipsoid, ca. 1 cm
long, 5 mm wide.; testa dull black, rugose. 2n_ = 46.
DISTRIBUTION AND ECOLOGY: Understory of lowland and premontane,
often seasonally inundated, primary rain forest in the Amazon basin,
most commonly in Peru, rare in Colombia and Brazil (Fig. 18), 100-200 m,

362
flowering June-September(-December). Vernacular names: amangay, sacha
cebolla.
ADDITIONAL MATERIAL EXAMINED: BRAZIL. Amazonas: Rio Juruá, Rio
Miry, Jul 1901, Ule 5737 in part (MG). COLOMBIA. Amazonas: vicinity
Leticia, ex hort Fairchild Tropical Garden from collections made by R.
Buttons, 1 Apr 1984, Watson 1868 (FLAS). PERU. Loreto: Isla Santa
Maria, near Yurimaguas, Huallaga Valley, 150-200 m, 16 Sep 1948,
Ferreyra 4984 (MO); Maynas, Quebrad Sucusari, Llachapa camp of
Explorama, north side of Rio Napo below Mazan, forest on somewhat sandy
lateritic soil, 140 m, 6 Nov 1979, Gentry et al. 27569 (MO); Maynas,
Yanamono, Explorama Tourist camp on Rio Amazonas between Indiana and
mouth of Rio Napo, 72° 48' W, 3° 28' S, seasonally inundated tahuampa,
120 m, 28 Jul 1980, Gentry et al. 29203 (MO); Puerto Arturo, lower Rio
Huallaga below Yurimaguas, ca. 135 m, 24-25 Aug 1929, Kill ip & Smith
27801 (NY, US); same locality as preceding, Aug 1929, Kill ip & Smith
27844 (F, NY, US); between Yurimaguas and Balsapuerto (lower Rio
Huallaga basin), 135-150 m, 26-31 Aug 1929, Kill ip & Smith 28249 (US);
Santa Rosa, lower Rio Huallaga below Yurimaguas, ca. 135 m, Kill ip &
Smith 28886 (F, NY, US); Maynas, Santa Maria de Nanay, Colonia San
Fransisco de Indies Yaguas, 1.5 km del Fundo Balcón Momon, 106-110 m, 15
Nov 1984, Schunke 14154a (FLAS); Alto Amazonas, Yurimaguas, Camino a
"SchunguyceH al sur este de Puerto Arturo, near Yurimaguas, 150-200 m, 1
Dec 1984, Schunke 14156 (BM, COL, F, FLAS, G, GB, GH, K, MO, NY, P, S,
UC, US); Pebas on the Amazon, 30 Jul 1929 Williams 1898 (F, S, US);
lower Rio Huallaga, Sapotoyacu, Santa Rosa, 155-210 m, 11 Nov 1929,
Williams 4906 [n fruit] (F); Puerto Arturo, Yurimaguas, lower Rio
Huallaga, 155-210 m, 15 Nov 1929, Williams 5051 (F).

363
Eucharis caste!naeana is most common in the vicinity of Yurimaguas
in Peru (Fig. 18), and is sometimes locally abundant in rain forest
understory. It has the smallest flowers of any species in subg.
Eucharis. It is the major exception to the correlation of reduced
flower size with loss of fragrance which otherwise characterizes
Eucharis. Several living collections produce a mild, lemon scent when
ambient temperatures are high (as does E. piicata var. brevidentata).
It is the only species of subg. Eucharis in which the ripe capsule is
not leathery and orange in color. The glaucous, green, thin-walled
capsule is tardily dehiscent, and may abcise without opening, though the
seeds within are fully ripe. The infructescence tends to bend to the
ground, as is common among some Crinum species (Hannibal, 1972). In
this manner an indehiscent fruit may rot, thus facilitating dispersal.
The seeds of this species are also unusual in that the testa is dull
brownish-black and rugose. The seeds are not as turgid as most
Eucharis, and are wedge-shaped from compression in the capsule. They
appear to contain less endosperm than typical seeds of subg. Eucharis,
resembling seeds of some Pancratium species.
Eucharis castelnaeana appears to be autogamous. It is the only
species of Eucharis that successfully sets fruit with self-pollen.
Unmanipulated infloresences regularly set 50-75% of their capsules.
Eucharis castelnaeana exhibits some degree of variability in
flower size (Fig. 20A), and androecial morphology. In his relatively
undetailed description of _E. narcissi flora, Huber (1906) made no
reference to _E. castelnaeana, even though it was described from nearly
the same location as the former. The two taxa represent the extremes of
floral size diversity of a single species. Populations represented by

364
Schunke 14154a (Fig. 20Ai) have flowers almost twice as large as those
of Schunke 14156 (Fig. 20Aii), but are otherwise indistinguishable.
Shape of the staminal cup in the latter collection can range from nearly
cylindrical to funnelform-cylindrical.
Eucharis pi i cata is the closest species to E_. castelnaeana, both
in phenetic distance and phylogenetically. It is very likely that both
species share immediate common ancestry. Both E_. corynandra and E_.
oxyandra may represent peripheral isolates of this same ancestral
complex. Both latter species are known only from lower to mid-montane
sites of the "ceja de montana" zone in Peru.
Baillon (1894) considered E_. castelnaeana intermediate between
Caliphruria and Eucharis in his arguement for combining these two
genera. Baillon probably weighed flower size heavily in his judgement,
one of only two characters by which £. castelnaeana resembles
Caliphruria. In Baillon's time, most other small flowered Eucharis were
not yet described. The green, thin-walled capsule of E_. caste!naeana is
also like the fruit of Caliphruria. Baillon (1894) gives no indication
whether he was familiar with the fruit of either Eucharis or
Cal iphruria. Nonetheless, perianth and pollen exine morphology place E_.
castelnaeana squarely in E_. subg. Eucharis, despite its aberrant fruit
and seed morphology.
2. EUCHARIS subg. HETEROCHARIS Meerow, subg. nov.
Subgenus Eucharis affinis a qua imprimis differt floribus
plerumque non pendulis, tubo perianthii bene infra fauce dilato, limbo
plerumque minus expanso, ovario grandius et ovulis numerosis en quoque
loculo. TYPE SPECIES: Eucharis X grandiflora Planchón and Linden, FI.
Serres Jard. Eur. Ser. I, 9:255. 1853.

365
Large bulbous perennial herbs. Leaves petiolate, persistent;
lamina ovate, thin, plicate or more or less smooth between the veins,
undulate margined, apically acuminate, subcordate basally and shortly
attenuate to the petiole, bright or dark green adaxially, light green
abaxially, the abaxial epidermal cells variably striate; petiole
subterete. Inflorescence scapose, umbellate, terminated by two green
ovate-lanceolate bracts. Flowers sub-sessile or shortly pedicellate, 2-
7, white, 7-8 cm long, strongly fragrant, declinate (rarely
subpendulous), funnelform-campanulate (rarely crateriform); perianth
tube cylindrical to subcylindrical below, abruptly dilated at one third
to one half of its length, curved, tinged green below; limb of six ovate
tepals in two series, imbricate for half their length, subequal,
spreading somewhat above, often slightly undulate. Stamens basally
connate into short or long staminal cup partially adnate to the upper
portion of the tube, striped green or yellow within along the filamental
traces, variously toothed or edentate; distal portion of the filaments
linear or subulate, sometimes incurved; anthers linear, versatile at
anthesis; pollen grain 40-60 ^im (polar axis), 60-76 ^urn (longest
equatorial axis), the exine coarsely reticulate. Style filiform, well-
exserted beyond the staminal cup and slightly assurgent; stigma deeply
trilobed, often green. Ovary large, ellipsoid, trigonous, appearing
rostellate when dry; ovules usually 16-20 per locule, ellipsoid,
biseriate. Capsule green, seeds blackish-brown with a slightly rugose
testa (E. anómala). 3 species and 2 natural hybrids in Western
Colombia, Ecuador and rarely Peru.

366
Key to the species and hybrids of subg. Heterocharis:
1.Leaves deeply plicate; staminal cup reduced to a basal connation
of the filaments less than 5 mm long
2.Staminal cup acutely bidentate bewteen each filament, teeth
ca. 2 mm long 1. E_. X grandiflora
2.Staminal cup edentate or rarely with a single obscure tooth
less than 1 mm long at the base of one or several stamens.
3.Perianth tube markedly curved, cylindrical for 1/2-2/3 of
its length, then abruptly dilated distally to the throat;
free filament somewhat incurved; stigmatic papillae
unicellular 2. IE. sanderi
3.Perianth tube straight or only slightly cernuous, sub-
cylindrical proximally but distally dilating gradually
towards the throat; free filament straight; stigmatic
papillae multi-cellular 3. X Calicharis butcheri
1. Leaves relatively non-plicate; staminal cup well-developed,
greater than 1 cm long.
4.Leaf length-to-width ratio usually equal to or less than 2;
perianth more or less campanulate, tepals spreading only 45-
60° from the throat; staminal cup acutely bidentate, strongly
recurved at the margin; ovules 16-20 per locule; plants of
Ecuador, very rare in Peru 4. £. anomala
4.Leaf length-to-width ratio usually greater than 2; perianth
crateriform, tepals spreading ca. 90° from the throat;
staminal cup obtusely bidentate to quadrate, not strongly
recurved at the margin; ovules 9-12 per locule; plants of
the Huallaga valley in Peru 5. E. amazónica

367
1. EUCHARIS X GRANDIFLORA Planchón and Linden (Figs. 25A-C). FI.
des Serres Jard. Eur. Ser. 1, 9: 255. 1853. LECTOTYPE: FI. des Serres
Jard. Eur. Ser 1, 9: pi. 957. Urceolina grandiflora (Planchón <& Linden)
Traub. PI. Life 27: 57-59. 1971.
Eucharis mastersii Baker. Curtis' Bot. Mag. t. 6831. 1885.
TYPE: ex hort Sander (holotype, K!; photo, F!). Urceolina mastersii
(Baker) Traub. PI. Life 27: 57-59. 1971.
Eucharis 1owii Baker, Gard. Chron. 13:538-539, 1983. TYPE: ex
hort Low (holotype, K!; photo, F!). Urceolina lowii (Baker) Traub. PI.
Life 27: 57-59. 1971,
Buib 3-5 cm diam, neck 2-4 cm long, tunics light brown. Leaves 1-
3; petiole 19-36 mm long, 5-7 mm thick; lamina ovate or elliptic, 20-33
cm long, (10-) 13-16 cm wide, apically acuminate, sub-cordate basally
and shortly attentuate to the petiole, deeply plicate, adaxial surface
lustrous dark or bright green, abaxial surface light green and densely
striate, margins undulate. Scape 4-5 dm tall, 5-6 mm diam, subterete;
bracts ovate-lanceolate, green at first, soon marcescent, 2.5-4.8 cm
long, 14-17 mm wide. Flowers 2-6, funnelform-campanulate, declinate,
sweetly fragrant; pedicel short, 5-7 (-10) mm long, 2.5-3.4 mm diam;
tube curved, 40-55 mm long, 1.5-2 mm wide below, dilating at 1/2 to 1/3
its length to 20-25 mm at the throat, green in the proximal half, white
distally; tepals ovate, imbricate for half their length, white, margins
usually undulate, spreading slightly apically; outer series (30-) 35-40
mm long, (18-) 20-26 mm wide, acute-apiculate; inner series 25-35 (-40)
mm long, 23-31 mm wide, obtuse. Staminal cup short, 5-7.5 mm long (to
tooth), 23-25 mm wide, stained green or yellow where adnate to the
dilated portion of the tube, with 2 acute or obtuse teeth between each

368
stamen, teeth ca. 1.5 mm long; stamens (5-) 6.7-7.5 (-10) wide at the
base from tooth to tooth, free filament 7-8.5 (-10) mm long, linear or
narrowly subulate, 1-1.5 mm wide at the base; anthers oblong-linear,
5.5-6.7 (-7.5) mm long, slightly curved; pollen with only 10%
stainability. Style filiform, (67-) 74-85 mm long, green, assurgent,
well-exserted beyond the stamens, stigma deeply 3-lobed, 2.5-3.5 (-5) mm
wide, white or greenish. Ovary oblong, rostellate, 12-19 mm long, 6-8
mm wide; ovules 16-20 per locule, globose, superposed. Fruit and seed
unknown, doubtfully ever formed.
DISTRIBUTION AND ECOLOGY: Rare in the understory of primary and
secondary rainforest of southern Chocó and northwestern El Valle
departments of Colombia (Fig. 22), 80-600(-1000) m elevation, but widely
cultivated throughout western Colombia below 1750 m. Introduced and
persisting in Ecuador. The plant appears to be functionally sterile.
Most collections are from culivation, and putatively native populations
may be remnents of cultivation.
ADDITIONAL MATERIAL EXAMINED: COLOMBIA. Chocó: entre Istmina y
Condoto, Rio San Juan y Rio Iró, 80-100 m, 5 Aug 1944, Garcia-Barriga
11525 (COL, US); El Valle de Cauca: Rio Cabrera, Tambi, Rio Sumapaz,
Cundinamarca, 600-1000 m, Feb 1883, Lehmann 2644 (K); Cordova, Rio
Dagua, Lehmann 2736 (K in part); Rio Teta, Cauca Valley, 1000 m, Lehmann
7776 (F, GH, K, NY, US); Cauca, 1000 m, Lehmann s.n. (K); 50 km SE of
Buenaventura on old road to Pacific coast, Rio Anchicaya, 500 m, 22 Jul
1984, Meerow & Teets 1127 (FLAS). ECUADOR. Carchi: Chical, path from
Juan Maldonado to Tobar Danuso, flowered in cultivation, 23 Dec 1982,
Madi son et al. s_.n_. (SEL). Guayas: Guayaquil, cultivated, Nov 1925,

369
Mille 40 (QCA). Los Rios: Hacienda Ana Maria, Canton Vinces, 60 m, Y_.
Mexia 6644 (GH, US); vicinity Durán, cultivated, Rose & Rose 23627 (US).
Eucharis X grandiflora has had an unfortunate nomenclatural
history, having long been confused with E_. amazónica Lind, ex Planch.
(Meerow and Dehgan, 1984). Meerow and Dehgan (1984) re-establ i shed E_.
grandiflora (without hybrid designation) as a species distinct from IE.
amazónica in Eucharis subg. Heterocharis. At the time, I considered E_.
1 owii and E_. mastersii to be distinct, but closely related to E. X.
grandiflora. In 1984, I collected material in Colombia referable to E_.
1 owii Baker, and received living material of E_. mastersii collected in
Ecuador. Baker (1893) described both species from cultivated material.
According to Baker, E_. 1 owii had a stamina! cup half as long as that of
_E. '“grandiflora." He was probably refering to E_. amazónica or _E.
anómala (as E_. grandiflora var. moo re i Baker). When I compared the
stamina! cup of E_. 1 owii to that of the lectotype of E_. X grandiflora,
the synonomy of E_. 1 owii with E_. X grandiflora became evident. In all
respects, the two plants seemed identical. Baker considered E_. 1 owii a
hybrid of E_. mastersii and _E. "grandiflora." He also considered E_.
mastersii Baker (1885) to be a hybrid between E_. sanderi and E_.
"grandiflora.11 Baker distinguished IE. 1 owii from his earlier taxon E_.
mastersii merely by its slightly 1onger-exserted staminal cup, a
difference that does not hold up to scrutiny. I now believe that both
E_. mastersii and E_. 1 owii are elements of a slightly variable hybrid
taxon, E_. X grandiflora, a putative hybrid of E_. sanderi and E_. anómala.
Though never collected in western Colombia, E. anómala does occur in
contiguous northwestern Ecuador. Therefore, it was likely a collection
of this hybrid which Planchón and Linden (1853) described as E.

370
grandiflora. Eucharis X grandiflora appears intermediate in all
respects to E_. anómala and sanderi. Virtually all collections of E_.
X grandiflora are from cultivated populations in Colombia and Ecuador.
Pollen stainability of either Colombian or Ecuadorean collections of E_.
X grandiflora is never better than 10%, and I have not succeeded in
obtaining seeds in cultivation with either sibling pollen or pollen of
other species. The hybrid is, however, slightly variable in leaf
morphology, number of flowers, and color of androecial pigmentation
throughout its range, the extremes of which were recognized respectively
as E_. mastersii (Fig. 26A) and E_. 1 owii (Figs. 26B-C) by Baker (1885,
1893). This may be the consequence of two or more hybridization events
involving the same parents, or, more likely, the result of selective
propagation of a variable FI through human agency.
2. EUCHARIS SANDERI Baker (Fig. 23). Curtis' Bot. Mag. t.6676.
1883. TYPE: ex hort (K!). Urceolina sanderi (Baker) Traub. PI. Life
27: 57-59. 1971.
Bulb 42.5-49 mm long, 32-47 mm wide; neck thick, 24-30 mm wide;
tunics light brown. Leaves petiolate, persistent; petiole 31-50 cm
long, 5.5-6 (-8) mm thick; lamina ovate or elliptic, (23-) 30-37 cm
long, (10—) 14-17 cm wide, thin, deeply plicate between the veins,
undulate margined, apically acuminate, subcordate basally and shortly
attenuate to the petiole, bright green adaxially, light green abaxially,
the abaxial surface intensely striate. Scape subterete, 45-54 cm long,
5-6 mm diam; bracts lanceolate, 45-65 (-77) mm long. Flowers 2 (-3),
sub-sessile (pedicels 5 mm or less long), strongly fragrant, declinate,
funnelform-campanulate; perianth tube (45-) 50-60 (-70) mm long,
cylindrical to subcylindrical and 2-3 mm wide below, abruptly dilated at

371
1/2 of its length to 20-27 mm wide, curved, tinged green proximally;
tepals white, ovate, subequal, imbricate for half their length,
spreading somewhat distally; outer series 26-32 (-37) mm long, 16-20 mm
wide, apiculate; inner series 24-30 (-33) mm long, 20-25 mm wide.
Stamens basa11y connate into a short staminal cup partially adnate to
the upper portion of the tube, ca. 20-24 mm wide, striped green within
along the filamental traces, only shortly exserted beyond the rim of the
throat, edentate or rarely with one to few obscure teeth; free filaments
(6-) 7-9 (-9.7) mm long, 1.8-2.2 mm wide at the base, linear, incurved;
anthers (5.6-) 6-8 (-9) mm long linear, versatile, often curved; pollen
grain 40-60 ^im (polar axis), 50-70 /im (longest equatorial axis), the
exine mostly coarsely reticulate. Style filiform, (66-) 75-80 (-90) mm
long, well exserted beyond the staminal cup and slightly assurgent,
white, sometimes flushed green; stigma deeply and obtusely trilobed,
(2.8-) 3-4 mm wide. Ovary large, ellipsoid, trigonous, appearing
rostellate when dry, (10-) 15-20 mm long, (5-) 7-9 (-11) mm wide; ovules
(7-) 10-20 per locule, ellipsoid, biseriate. Fruit and seed imperfectly
known, capsule becoming at least 5 cm long and 3.3 cm wide, seeds
several per locule.
DISTRIBUTION AND ECOLOGY: Endemic to western Colombia, occurring
locally on sites with rich soil in the understory of wet, lowland
rainforest, primarily in Chocó Dept. (Fig. 22), frequently along
watercourses; ocassional in similar habitats in El Valle de Cauca Dept.,
(5-) 30-300 (-1000) m. Collections above 500 m elevation in the Rio
Cauca Valley (Von Sneidern 404, 1129, & 5208) may be adventive.
Flowering may occur at any time of the year.

372
ADDITIONAL SPECIMENS EXAMINED: COLOMBIA. Chocó: headwaters of Rio
Tutunendo, east of Quibdó, 20-21 May 1931, Archer 2197 (US); Rio San
Juan between Dipurdu & San Miguel, ca. 100 m, 14 Aug 1976, Gentry &
Fallon 17687 (MO); Corcovada region, upper Rio San Juan, Yeracüi valley,
200-275 m, 24-25 Apr 1939, Kill ip 35276 (US); Andagoya, 70-100 m, Apr
1939, Kill ip 35401 (US). El Valle de Cauca: Rio Calima, La Trojita, 5-
50 m, 19 Feb-10 Mar 1944, Cuatrecasas 16380 (F); Rio Calima, Quebrada de
La Brea, 30-50 m, 18-22 May 1946, Cuatrecasas 21195 (F); Rio Telembi, 12
Aug 1880, Lehmann 65 (G); Rio Dagua, 0-300 m, 11 Aug 1884, Lehmann s.n.
(G). Cauca: El Tambo, La Costa, 1000 m, 3 Jul 1935, von Sneidern 404
(S); El Tambo, 800 m, 7 Jul 1936, von Sneidern 1129 (S). Caldas:
Riseralda [?], Tatáma, Santa Cecilia [La Celia?], 800 m, 1 Dec 1945, von
Sneidern 5208 (S).
This species is denoted by its large, sweetly fragrant funnelform-
campanulate flowers, large ovary and capsule, and reduced staminal cup.
The narrow distribution of E_. sanderi suggests it evolved within the
confines of the wet Pacific rainforests of Colombia, conceivably from a
fragment population of an ancestral taxon isolated during the Pliocence
uplift of the Andes (see Chapter XI). Natural hybrids exist between E_.
sanderi and both IE. anómala (E_. X_ grandiflora) and Caliphruria
subedentata (X Calicharis butcheri). A single collection (Cuatrecasas
16380) in which maturing capsules are represented suggests that E_.
sanderi produces the largest fruit in the genus. Despite the many
putatively primitive characteristics of E_. sanderi (e.g., large flowers,
strong fragrance) in common with E. anómala, ovule number of E. sanderi
is considerably variable, and its leaves are deeply plicate. The

373
reduced morphology of the androecium is, however, the major advanced
character of E_. sanderi.
3. X CALICHARIS BUTCHERI (Traub) Meerow, nothogen. et comb. nov.
(Figs. 22D-E). Eucharis butcheri Traub. PI. Life 23: 68, 1967. TYPE:
ex hort Traub, purported to have been collected in Panama by J. N.
Giridlian, Traub 1051 (holotype: MO ex TRA!). Urceolina butcheri
(Traub) Traub. PI. Life 27: 57-59. 1971.
Eucharis sanderi Baker var. multi flora Baker, Curtis' Bot. Mag.
t.6831, 1885. TYPE: Lehmann s.n. (holotype: K!). Eucharis sanderi Baker
subsp. multiflora (Baker) Traub. PI. Life 23: 65. Urceolina sanderi
subsp. multi flora (Baker) Traub. PI. Life 27: 57-59. 1971.
Bulb 6-7 cm long, 3.8-5 cm wide, neck short and thick, tunics
brown. Leaves 2-3; petiole 20-40 cm long, 5-6 mm wide; lamina elliptic,
21-26 (-35) cm long, (10.5-) 12-15 cm wide, shortly acuminate,
subcordate-attenuate at the base, conspicuously plicate, adaxial surface
bright to dark green, adaxial surface lighter green and intensely
striate. Scape 5-6 dm long, 4-5.5 mm diam; primary bracts lanceolate,
41-57 mm long. Flowers 4-6 (-7), funnelform-campanulate, fragrant;
pedicels 4.5-5 (-8) mm long; tube 35-42 mm long, funnelform proximally,
dilating gradually from 1.5 mm wide at the base to 3.5 mm wide at median
length, then abruptly dilated in the distal half to 13-16 mm wide at the
throat, green for most of its length, the interior of the dilated also
portion stained green, most prominently along the filamental traces;
tepals white, imbricate for half their length, spreading eventually to
45-55 (-60) mm wide, margins non-undulate; outer series 20-28 (-35) mm
long, 12-17.5 mm wide, acute-apiculate; inner series 19-27 (-32) mm
long, 18-25 mm wide, obtuse. Stamens shortly connate below, edentate or

374
rarely with one obscure tooth between some of the filaments, white; free
filament linear, straight or slightly curved apically, 6.7-8.7 mm long,
0.6-1 mm wide at the base where abruptly dilated to 2.5-3 mm; anthers
(4.5-) 6 mm long, linear-oblong, greyish-brown, mostly devoid of pollen.
Style 6-7 cm long, overtopping the stamens, slightly assurgent, white
distally, green proximally; stigma obtusely trilobed, (2-) 2.8-3 mm
wide, papillae multicellular. Ovary globose-ellipsoid, 7.7-12 (-15) mm
long, (5-) 7-9 mm wide; ovules 7-10 (-12) per locule. Fruit and seed
unknown, doubtfully ever formed.
DISTRIBUTION AND ECOLOGY: Rare in western Colombia, along the Rio
Dagua in El Valle de Cauca Dept., and the lower Cauc
ADDITIONAL MATERIAL EXAMINED: COLOMBIA. El Valle de Cauca: Rio
Dagua, 17 Mar 1883, Lehmann 2736 (BM, K); Rio Dagua, 200-500 m, Lehmann
7774 (F, K in part). Cauca: El Tambo, La Costa, 1000 m, 24 Jun 1936,
Von Sneidern 1269 (S). Provenance unknown: no data, Jan 1938,
Cuatrecasas 1620 (F).
This putative hybrid between E. sanderi and Caliphruria
subedentata was first described by Baker (1885) as Eucharis sanderi var.
multi flora. It has been collected in the wild at the interface of the
distributions of both parents, and at intermediate elevations. The
plant produces little pollen, none of it staining with Alexander's
(1969) stain. Floral morphology is intermediate between both parents,
though, like £. subedentata, the stigmatic papillae are multicellular.
Like other 1arge-flowered and fragrant Eucharis, X C. butcheri has
likely been cultivated and disseminated via human agency.

375
Eucharis anómala Meerow, sp. nov. (Figs. 24, 25A-B).
Species a E_. amazónica affinis sed differt foliis plerumque minus
quam 2-plo longis quam Tatis, limbo campanulato patente minus quam 90°,
cupula staminea ad marginem plus recurvata, dentibus stamineis acutis,
et ovulis in quoque loculo magis numerosis. TYPE: Ecuador, Morona-
Santiago, km 145, Cuenca-Gualaquiza, 1300 m, Jul 1982, Dodson & Embree
13200 (holotype: M0!, isotype: SEL!).
Eucharis grandiflora var. moorei Baker, Gard. Chron. 4: 628, 1888.
TYPE: ex hort Glasnevin, 1888, ¿. £. (K!).
Bulb 6-7 cm long, 2.5-4 cm diam, tunics brown. Leaves 2-3;
petiole 2-4 dm long, 5-7 mm thick, with an anomalous arc of accessory
fiber bundles near the adaxial surface; lamina broadly ovate, length/
width ratio less than or equal to 2, 17-30 cm long, 10-14 cm wide, apex
shortly acuminate, base appearing cordate at the base, margins coarsely
undulate, lustrous dark green adaxially, lighter green abaxially,
abaxial cuticle mostly without striations. Scape 5-7 dm tall, terete,
7-10 mm diam proximally, ca. 5 mm diam distally; bracts ovate-
lanceolate, (25-) 35-45 mm long, green. Flowers usually 4, rarely up to
7, more or less campanulate, declinate, sweetly fragrant; pedicels
usually short, 3-10 (-18) mm long; tube 40-52 mm long, cylindical and
1.7-2 mm wide proximally, abruptly dilating at about its midpoint to
(15.5-) 18.5-25 mm at the throat, white except for a slight green tinge
at the base; limb spreading less than 90° from the throat to ca. 70 mm
wide or less; tepals ovate, the margins undulate; outer series 3.3-4 cm
long; 17-22 mm wide, apiculate; inner series 2.9-3.8 cm long, 22-27 mm
wide, obtuse. Stamina! cup cylindrical, (8-) 10-15 (-16.4) mm long (to
apex of teeth), 20-25 mm wide, strongly recurved at the margins, white

376
on the exterior, yellowish-green on the interior, shallowly cleft
between each stamen, bidentate between each free filament, teeth acute,
2.5-3 mm long; each stamen ca. 7-8 mm wide tooth-to-tooth; free filament
subulate, (5-) 6-8.5 mm long, 2 mm or less wide at the base; anthers
5.5-6.5 mm long, oblong-linear, greyish-brown; pollen grain ca. 48.6 ^im
polar diam, ca. 71.2 jum longest equatorial diam. Style 6-7 cm long;
stigma 2.5-3.5 mm wide, white. Ovary ellipsoid-trigonous, (7-) 10-13 mm
long, ca. 5 mm wide; ovules 16-20, biseriate. Capsule globose, ca. 1.5
cm long, 1.3 cm wide, slightly rostellate, green, slightly glaucous;
seeds 1-3 per locule, compressed globose, ca. 6 mm diam, turgid, testa
blackish-brown and slightly rugose. 2n_ = 46.
ETYMOLOGY: The epithet refers to the anomalous secondary vascular
bundles of the petiole, and the systematic position of this species as
the most primitive in the genus.
DISTRIBUTION AND ECOLOGY: An understory plant of primary and
secondary lower montane rainforest of the Ecuadorean Andes, in Morona-
Santiago and Santiago-Zamora Provinces on the east slopes, and Los Rios,
Cotopaxi, and contiguous Pichincha Provinces on the western declivity,
(220-) 600-1200 (-1600) m (Fig. 22); rare in the lower "ceja de montaña"
of Cajamarca Department, Peru. Flowering is concentrated from January-
March and again from (June-) July-September.
ADDITIONAL SPECIMENS EXAMINED: ECUADOR. Cotopaxi: km 52-53 on rd
from Quevedo to Latacunga, Rio Pilalo, 800-950 m, 11 Aug 1984, Meerow &
Meerow 1137 (FLAS); same locality as preceding, 13 Aug 1984, Meerow &
Meerow 1141 (FLAS). Los Rios: km 56 Quevedo-Santo Domingo, Rio Palenque
Biological Station, 220 m, flowered in cultivation, Dodson 5527 (SEL).
Morona-Santiago: 27 km SE of San Juan Bosco, 1270 m, 27 Jan 1981, Gentry

377
et al 30913 (MO, SEL); Indanza-Limón (General Plaza), 1300-1600 m, 23
Mar 1974, Harling & Andersson 12779 (GB); 3 km M of Tucumbatza on road
Gualaquiza-Indanza, 1200 m, forest remnents, 19 Apr 1985, Harling &
Andersson 24329 (GB); Rio Yunganza, rd Limon-Mendez (78° 19' W, 2o 49'
S), 1100 m, 23 Sep 1979, Holm-Nielsen et al_ 20393 & 20407 (AAU); Rio
Gualaquiza and Rio Bomboiza, east Andes of Sigsig, 800-1200 m, Lehmann
5882 (K); 10-20 km from Gualaquiza on rd to Sigsig-Cuenca, 1300 m, 5 Aug
1984, Meerow & Meerow 1135 (FLAS). Pichincha: Nanegal, west slope
Andes, 5000 ft, Jameson 9 (G, P). Santiago-Zamora: Yurupaza, 600 m, 3
Jun 1947, Harling 1407 (GB); west side Rio Valladolid, 2100-2400 m, 15
Oct 1943, Steyermark 54717 (F). PERU. Cajamarca: Jaén, Rio Tabaconas
valley, 900-1000m, May 1912, Weberbauer 6251 (GH, US);
Herbarium material of E_. anómala, when first received, was
assigned to E_. amazónica. In 1984, I collected the species on both
sides of the Ecuadorean Andes. Morphological, anatomical and
karyological differences between these collections and the Peruvian E_.
amazónica became evident. Eucharis anómala is fully fertile, diploid
(2n^ = 46) and of fairly wide distribution throughout Ecuador. The
anomalous arc of secondary bundles that appear in petiolar transverse
sections of E_. anómala, and reduced, in E_. amazónica, are not found in
any other species of the genus investigated. Eucharis anómala is
putatively the most primitive species of the genus, and shares numerous
plesiomorphic character states with other genera of "infrafamily"
Pancratioidinae (e.g. large, fragrant flower, short pedicels, and
numerous ovules per locule). Perianth and ovary morphology of E_.
anómala is similar to that of IE. sanderi, but the species has a
conspicuous, long-exserted staminal cup as is characteristic of subg.

378
Eucharis. The species also occupies a geographical position
intermediate between JE_. sanderi (endemic to Chocó Department, Colombia)
and the vast majority of subg. Eucharis. Species of subg. Eucharis are
exceedingly rare on the western slopes of the Andes (Meerow, 1986).
Eucharis anómala is the only species in the genus that occurs on both
sides of the Andes.
The presence of E_. anómala in northwestern Ecuador, and the
existence of putative natural hybrids between it and JE. sanderi (E_. X
grandiflora), might suggest that it was this plant which Planchón and
Linden described as E_. grandiflora. To date, however, I have not seen a
single collection of JE. anómala from Colombia. Furthermore, the
stamina! cup of the flower illustrated in the lectotype of E_. X
grandiflora is clearly much shorter than that of _E. anómala, and the
general habit of the figured plant closely resembles IE. X grandiflora.
5. EUCHARIS AMAZONICA Linden ex Pla