xml version 1.0 encoding UTF8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchemainstance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EM995PMUD_RT697U INGEST_TIME 20111108T19:40:59Z PACKAGE AA00004819_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES
BIFURCATION AND MORPHOLOGICAL INSTABILITY
By
ARUNAN NADARAJAH
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1988
r. OF FLORIDA LIBRARIES
ACKNOWLEDGEMENTS
In the course of the three and a half years of effort that went
into this dissertation, I received help from numerous people in various
ways that contributed to its completion. Enumerating them all would
make this note be at odds with the spirit of conciseness of the rest of
the document and so, reluctantly, I resolved to include only those who
had made a direct contribution. Needless to say, I still remember with
gratitude my debt to the rest.
First mention should be made to my erstwhile mentor, Professor M.S.
Ananth at the Indian Institute of Technology, Madras, who first kindled
an enduring interest in theoretical transport phenomena and encouraged
my proclivities toward graduate study. The greatest help came from my
advisor Dr. R. Narayanan, who apart from getting me involved in morphoÂ¬
logical instability and giving many suggestions also imparted to me a
solid background in mathematics and hydrodynamic stability theory, not
to mention helping me in numerous other ways. Professor L.E. Johns,
Jr., first introduced me to linear operator theory and gave suggestions
too regarding my research, but more importantly, he was my "chemical
engineering conscience," broadening my vision when I tended to
specialize too much and keeping the objectives in perspective when I got
wrapped up in abstract theoretical points. It is not an exaggeration to
say that I probably would not have progressed this far academically
without these three individuals.
I would also like to thank Drs. S.R. Coriell and G.B. McFadden of
the National Bureau of Standards for many discussions and suggestions
regarding the subcritical nature of morphological instability; the
members of my supervisory committee: Professor U.H. Kurzweg, Dr. G.K.
Lyberatos, Dr. W.E. Lear, Jr., and Dr. S.A. Svoronos for their time and
effort on my behalf; the Department of Chemical Engineering for providÂ¬
ing a research assistantship during the first two years of my Ph.D. work
and the Department of Mathematics for a lectureship during the last one
and a half. My thanks also go to my uncle Dr. R.S. Perinbanayagam for
being a role model and helping me evolve a "meaningful philosophy of
life" and cope with the stress of graduate school.
Finally, I wish to express my gratitude to my colleague S. Pushpa
vanam for many "enlightening" discussions and to Debbie Hitt for doing a
superb job of typing the manuscript and "correcting" my Queen's English
spelling!
TABLE OF CONTENTS
Page
ACKNOWLEDGEMENTS ii
ABSTRACT vi
CHAPTERS
1 DESCRIPTION OF THE PROBLEM 1
2 PREVIOUS WORK ON MORPHOLOGICAL INSTABILITY 8
2.1 Early Work 8
2.2 Later Research 10
2.3 Inclusion of Other Effects 12
2.4 Experiments in Morphological Instability .... 14
2.5 Limitations of Existing Models and
Unaddressed Issues 15
3 A UNIFORM FORMULATION 17
3.1 The Formulation 17
3.2 The Linear Stability Problem 23
3.3 The Adjoint Problem and Exchange of
Stabilities 30
3.4 Finite Containers and the Most Dangerous
Wavenumber 35
4 SUBCRITICAL BIFURCATION 38
4.1 Theory 38
4.2 The Second Order Problem 41
4.3 The Third Order Problem 46
4.4 Calculations and Comparisons 49
5 COMPARISONS WITH RAYLEIGHMARANGONI CONVECTION .... 61
5.1 RayleighMarangoni Convection in Brief 61
5.^ The Augmented Morphological Problem 65
5.3Comparison of Morphological Instability
with RayleighMarangoni Convection 70
6 BIFURCATION BREAKING IMPERFECTIONS 74
6.1 Nature of Imperfections 74
6.2 Imperfection Due to Heat Loss 76
6.3 The Outer Expansions 78
6.4 The Inner Expansions 83
6.5 Imperfection Due to Advection in the Melt ... 87
6.6 Nonexistence of the Planar State 93
6.7 Asymptotic Solution 94
6.8 Controlling Imperfections 99
7 NEW DIRECTIONS 102
7.1 Transition to Dendritic Growth 102
7.2 Extension to Semiconductor Materials 103
7.3 Inclusion of Microscopic Effects 104
7.4 Numerical Methods 104
7.5 Experiments 105
APPENDICES
A NOMENCLATURE 107
B PHYSICAL PROPERTIES 113
REFERENCES 115
BIOGRAPHICAL SKETCH 120
Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
BIFURCATION AND MORPHOLOGICAL INSTABILITY
By
Arunan Nadarajah
August, 1988
Chairman: Dr. Ranganathan Narayanan
Major Department: Chemical Engineering
Morphological instability refers to the tendency towards spatial
pattern formation on the liquidsolid interface when a dilute binary
mixture is solidified or fused. The importance of this phenomenon is in
the growth of metal alloy and semiconductor crystals from their melts,
where it influences the solute or dopant concentration resulting in
nonuniform physical and electrical properties.
Previous formulations of morphological instability have involved
several simplifying assumptions which restricted it to the study of a
region immediately surrounding the interface. The models have limited
validity and they require separate treatments for different situations
like freezing and melting. In this study a new uniform approach is
presented which considers the entire melt and crystal domain and is
applicable to all situations. Earlier formulations are shown to be
approximations of this and exchange of stabilities is proven
asymptotically.
vi
The model is then used with a weakly nonlinear technique to predict
the shape of the bifurcation diagram for various cell patterns. The
subcritical nature of morphological instability is shown and regions of
its prevalence are determined over the entire domain of experimental
parameters. This was used to compare with experimental results and to
determine optimal crystal growth regions.
A comprehensive comparison of morphological instability with conÂ¬
vective instability was undertaken and this phenomenon was shown to
resemble Marangoni convection in its mathematical and physical feaÂ¬
tures. This was done in order to introduce some of the multitudinous
mathematical techniques employed in convective instabilities into morÂ¬
phological instability and specifically was used here to complete the
eigenspace of the linearized problem.
Two imperfections which reside in the domain, heat loss at the
container wall and advection in the melt, were considered and shown to
be bifurcation breaking imperfections. Solutions to the problem were
obtained in both cases by matched asymptotic expansions and based on
these results a practical way of minimizing the effect of these imperÂ¬
fections was suggested.
vii
CHAPTER 1
DESCRIPTION OF THE PROBLEM
Morphological instability refers to the process of spatial pattern
formation at the liquidsolid interface when a binary mixture is
solidified or fused. This is a problem of hydrodynamic instability and
like all other problems of this nature, for this phenomenon too there is
an onset point where the initially planar interface first begins to
deform and forms cellular patterns. These grow into deeper fingerlike
shapes and eventually forming side branches and treelike dendritic
structures.
The importance of this phenomenon is in the growth of metal alloy
and semiconductor crystals from their melts. Morphological instability
affects not just crystal shape but also the solute or dopant
concentration, resulting in nonuniform physical and electrical
properties in the crystal. This is especially perfidious in
applications where superfine crystals with very consistent properties
are required. Recently there have been some indications that crystal
quality can be significantly improved by growing them in low gravity as
this reduces other problems associated with crystal growth like natural
convection, but unfortunately not morphological instability. Growing
the crystal at very high temperature gradients or at very low growth
rates avoids morphological instability but crystals grown at high
temperature gradients are of poor quality due to thermal stresses and
the very low growth rates makes the process very expensive. Hence this
1
becomes a problem not only of avoiding crystal surface deformations but
one of optimization of the process as well.
There are several methods for growing crystals from the melt,
distinguished by the hydrodynamics of growth. The three basic ones are
Bridgman, Czochralski and float zone and most techniques are variations
of these, like horizontal and vertical Bridgman. A typical Bridgman
experiment is shown in Fig. 11. The material is usually in a quartz
ampoule and is melted and then recrystallized in the Bridgman furnace.
The upper part of the ampoule is maintained at a higher temperature than
the lower and solidification proceeds upwards and the ampoule is pulled
downwards at the same velocity v. The top of the melt is protected by a
liquid encapsulant like 620^. At the end of the process the ampoule is
broken to retrieve the crystal.
In the float zone technique shown in Fig. 12, the ampoule or the
material itself is pulled through a circular furnace and the melting and
recrystallization proceeds simultaneously. As this technique can be
done even without a container it avoids the problem of impurities from
the ampoule entering the crystal, but its more difficult to maintain a
uniform temperature gradient. Figure 13 shows the Czochralski method
where the crystal is rotated and pulled from a melt pool. As the
emphasis here is on the liquidsolid interface, the modelling of the
crystal growth process will be kept as general as possible but will
resemble the Bridgman technique the most.
The temperature and concentration profiles during typical crystal
growth conditions are shown in Fig. 14. The temperature profiles in
the liquid and solid are virtually straight lines and solute
concentration in the solid is virtually constant. But the solute
3
Figure 12. Float zone
Figure 13. Czochralski
4
concentration in the liquid changes sharply near the interface
because of solute rejection on solidification. This in turn has an
effect on the freezing point depression in the liquid as shown in the
figure. Figure 15 shows the same profiles but in a situation where the
freezing point in the liquid TM now exceeds the actual liquid
temperature (this change can be brought about by either reducing the
liquid temperature gradient or by making the change in near the
interface even sharper by increasing the growth velocity). This is
referred to as constitutional supercooling and the system responds to
this unstable situation by interface deformation. Countering this is
the interfacial tension which always acts to minimize the surface area
which in this case is the planar surface. When this balance is upset,
or in other words when the onset conditions are exceeded, the interface
loses planarity and forms cellular patterns. Figure 16 shows the
profiles for the fusion case, where we could have TM in the solid being
less than the actual solid temperature and once again interfacial
deformation is the system's response, balanced by interfacial tension.
The only difference here is that since solid diffusivities tend to be
several orders of magnitude lower than liquid diffusivities, the solute
concentration profile in the solid near the interface will vary even
more sharply resulting in lower onset conditions for morphological
instability.
In the paper of Trivedi and Somboonsuk (1984) there is a series of
photographs from an experiment (see Fig. 1 in their paper) where
succinonitrile/acetone crystals were grown. The first photograph shows
the liquidsolid interface just after onset and has a discernible
cellular pattern. Later ones show the cells becoming deeper, forming
5
Figure 14. Concentration and temperature profiles during
solidification
Figure 15. Concentration and temperature profiles during
solidification
Figure 16. Concentration and temperature profiles during fusion
6
fingers and ending up as dendrites. The arrows in the first photograph
mark the initial perturbations that eventually become dendrites. In
this thesis we will concentrate only on the region near the onset point,
shown by the first two photographs, though dendrites will be mentioned
in discussions.
In the papers by Morris and Winegard (1969) and Tiller and Rutter
(1956) we see another aspect of morphological instability, the variety
of cellular patterns, fingerlike shapes, hexagonal cells and variations
of these. Other possible shapes are cylindrical rolls and rectangular
cells but by far the commonly encountered pattern is the hexagonal
one. The choice of the cell pattern is extremely important and factors
determining this choice will be discussed later. Their figures also
show that, unlike other forms of hydrodynamic instability, the number of
cells on a single crystal is in the hundreds.
Though it is customary to model morphological instability in terms
of the temperature and concentration profiles, in reality this
phenomenon seldom exists in isolation; it is usually coupled with fluid
flow in the melt. There are two kinds of flows that occur. The first
is buoyancy driven solutal convection which is caused by the sharp
solute concentration gradients in the melt. The other is the result of
density change during solidification. When solidification occurs there
is a constant rate of volume decrease which causes the melt to move in
to fill the vacated space. This motion is referred to as advection and
the rigid side walls of the ampoule will cause closed streamlined flow
in the melt as a result (see Fig. 62). In addition there will be flows
in the melt in Czochralski growth due to rotation and other kinds of
flows in special growth techniques.
7
Apart from these, several other parameters affect this phenomenon,
the most important of which are due to the fact that most crystals are
faceted; that is, they have a crystal lattice structure. Hence whether
the lattice axis is aligned or not with the growth direction is
extremely important as can be seen from the experiments of Heslot and
Libchaber (1985). Other important considerations are grain boundaries,
wetting of the ampoule wall and the presence of impurities. Also in
rapid solidification, the system will not be at thermodynamic
equilibrium and kinetic undercooling of the melt becomes significant.
CHAPTER 2
PREVIOUS WORK ON MORPHOLOGICAL INSTABILITY
2.1. Early Work
The first successful attempt at explaining morphological
instability qualitatively was by Rutter and Chalmers (1953). They
coined the word "constitutional supercooling" to describe the existence
of unstable melt regions near the interface where the freezing
temperature can be higher than the liquid temperature itself and
correctly identified this as the cause of interface deformation.
Tiller, Rutter, Jackson and Chalmers (1953) quantified
constitutional supercooling and for instability came up with the
condition
mGHo>Gt
where m is the absolute value of the liquidus slope, G^ the liquid
temperature gradient at the interface and G^c the solute concentration
gradient in the liquid at the interface. The negative sign is caused
by G^ and G^ being in opposite directions (see Fig. 15). As can be
seen these simple thermodynamic explanations do not take into account
the stabilizing effect of interfacial tension. To do so would require
casting the problem as one of hydrodynamic instability and obtaining the
onset conditions from a linear stability analysis. This is exactly what
8
9
Mullins and Sekerka (1963, 1964) did when they considered the problem
with temperature and concentration equations in the liquid and solid and
boundary conditions at the interface. Their criterion for instability
to an infinitesimal disturbance was
mG >  Gâ€ž + a2TA/L, (2.12)
c T M h
where GT is the weighted temperature gradient
Gt = (k^ + kgGgVik^ + kg) (2.13)
Here ks and k^ are the solid and liquid thermal conductivities. Gc is a
modified liquid concentration gradient given by
Gc = GJlc(ajl  v^)/^  (1/2  kJv/D^) (2.14)
2 2 21/2
aÂ£ = (aÂ¿ + vV4D p (2.15)
where a is the wavenumber of the disturbance, k the solute distribution
coefficient, TM the melting temperature of the pure solvent, Lh the
latent heat of fusion and A the interfacial tension. This analysis laid
the foundation for all further work in morphological instability.
Following them Woodruff (1968) did the linear stability analysis along
the same lines for the melting problem and came up with the same
criterion as (2.12) but with
G = G (na  v/2Dâ€ž)/(nka + a + (1  k)v/2Dâ€ž) (2.16)
C SC S Â£ S X, X,
10
, 2 A 2 ,2.1 /2
a = (a + v /4D )
s s
(2.17)
where Gsc is the solid concentration gradient at the interface and n is
Ds/Dr the ratio of solute diffusivities.
2.2. Later Research
The next major contribution to the problem was made by Wollkind and
Segel (1970) who proved "exchange of stabilities" for this problem for
most parameter ranges. Proving exchange of stabilities is equivalent to
showing the existence of the onset of steady state nonplanar
solutions. They also considered the weakly nonlinear regime after the
onset of instability and using the method of Stuart (I960) and Watson
(I960) analyzed the problem for the case of twodimensional rolls,
showing the existence of subcritical bifurcation at most growth
velocities.
The method of Stuart and Watson is essentially the theory of Landau
(see Drazin and Reid (1981)) and follows the dominant mode of
instability into the weakly nonlinear regime. In this form it is
applicable only to disturbances of one cellular pattern at a time, but
Segel and Stuart (1962) extended this theory to the prediction of the
preferred pattern by considering the interaction of two specified modes
of disturbance. Depending on the way these two modes were combined it
was possible to obtain two dimensional rolls or hexagonal cells and they
showed that the experimental parameters would determine the stability of
these patterns. Sriranganathan, Wollkind and Oulton (1983) adopted this
11
method for morphological instability and gave parameter ranges where
each type of cell was stable. The limitation of the method is that it
considers hexagonal and two dimensional roll patterns but not
rectangular cells or cylindrical rolls and ignores the effect of
container shape and size which have been shown to be important in wave
pattern selection (see Koschmeider (1967)).
Ungar and Brown (1984a) considered the highly nonlinear problem and
after making several simplifications obtained solutions using the finite
element method. Finite elements can handle highly nonlinear problems
and give very accurate numerical solutions but are extremely time
consuming. Solving the full morphological problem is a very expensive
proposition by this method and hence Ungar and Brown simplified the
problem by ignoring the latent heat and solid diffusivity and assuming
that thermal conductivities in liquid and solid were equal. This
allowed them to reduce the problem to a "onesided model" consisting of
variables in the liquid region only, considerably simplifying the
algebra and saving computer time. Such a model will have only limited
validity in highly nonlinear regions and this was borne out when Ungar,
Bennett and Brown (1985) solved the complete problem. But their most
extensive calculations were done only for the one sided model and hence
this is of chief interest. These were done only for the case of two
dimensional roll disturbances and here they showed that contrary to that
reported by Wollkind and Segel, there were multiple regions of
supercritical and subcritical bifurcation. More importantly they showed
that at large deformations of the interface secondary bifurcations
occurred. Ungar and Brown (1985) also modelled the formation of deep
cells in an attempt to follow the transition to dendritic growth.
12
Nonlinear finite difference calculations were done in a more
limited way by McFadden and Coriell (198*0 for the two dimensional
case. Later McFadden, Boisvert and Sekerka (1987) extended the
calculations for the three dimensional patterns of hexagons and cross
rolls. In both cases the enormous expenses involved restricted
calculations to a few parameter values.
2.3. Inclusion of Other Effects
While these workers were investigating the basic problem others
were busy trying to incorporate various influences. The most important
concern was the effect of fluid flow. Delves (1968, 1971 and 1974) in
attempting to approximate the influence of advection and stirring in the
melt, studied the influence of plane Couette flow on the problem. He
showed that two dimensional roll disturbances in the flow direction were
stabilized but there was no effect on disturbances perpendicular to the
flow. Coriell, McFadden, Boisvert and Sekerka (1984) modelled Couette
flow more systematically and came to the same conclusion. Recently
McFadden, Coriell and Alexander (1988) examined the effect of plane
stagnation flow on two dimensional disturbances perpendicular to the
flow and here too the flow as found to be stabilizing.
In another very important development Coriell, Cordes, Boettinger
and Sekerka (1980) studied morphological instability with solutal
convection. They showed that the two instabilities were essentially
decoupled with the melt being unstable to convective disturbances of
long wavelengths and the interface unstable to nonplanar disturbances of
small wavelengths. Also at low growth rates the dominant instability
13
was convective and the interface was not easily disturbed. At high
growth rates the roles were reversed and at an intermediate velocity the
two instabilities became comparable. It was only at this rate the two
instabilities interacted and the result was the prevalence of
oscillatory instabilities. Their conclusion was that, except at this
particular growth rate, it is usually sufficient to study only the
dominant instability near its onset.
Following Coriell et al. several workers have looked at special
aspects of these two instabilities and their work has been reviewed by
Glicksman, Coriell and McFadden (1986). They all confirmed or refined
the work of Coriell et al. but all the main conclusions mentioned above
still hold.
Several other influences apart from fluid flow have been
incorporated into the model but only a few relevant ones will be
considered here. Coriell and Sekerka (1972, 1973) tried to include the
effect of grain boundaries on morphological instability by assuming that
its only effect was to shift the onset conditions. They failed to
observe that in the presence of grain boundaries there could be no
planar solutions to the problem and that the interface will be nonplanar
at all times. Ungar and Brown (1984b) obtained the solutions to this
problem by matched asymptotic expansions for small grain angles and
using finite elements for solutions of large grain angles.
In rapid solidification kinetic undercooling of the melt is
significant and Seidensticker (1967) included this and showed that it
caused a shift in the onset conditions. The significance of this was
shown by Hardy and Coriell (1968, 1969 and 1970) when they observed
morphological instability in the growth of ice crystals. Constitutional
14
supercooling was not a factor here and it was shown that kinetic
undercooling was the primary cause. This dual cause for morphological
instability is somewhat analogous to the situation in natural convection
where we find that the variations of density and surface tension with
temperature can both cause convective instability.
2.4. Experiments in Morphological Instability
The early work on modelling morphological instability was prompted
by experimental observations but beyond that very few quantitative
experiments have been done near the onset conditions. This is an
unfortunate state of affairs and experimental verifications of
theoretical predictions are badly needed if further concrete progress on
the theoretical front is to be made. The work of Morris and Winegard
(1969), Trivedi and Somboonsuk (1984) and of Heslot and Libchaber (1985)
have already been mentioned. Recently de Cheveigne, Guthman and Lebrun
(1985, 1986) have attempted to verify the weakly nonlinear and strongly
nonlinear theoretical predictions and one hopes that more work along
these lines will follow.
De Cheveigne et al. performed their experiments on
succinonitrile/acetone and CBrÂ¡j/Br2 systems. (These organic mixtures
are much easier to work with than metal alloys as they are generally
nonfaceted, transparent and require small temperature gradients and
hence they have been very popular with experimentalists.) They found
that the cell pattern formed and its dimensions were strongly dependent
on geometry of the container. More importantly when they ran the
experiments for two dimensional roll patterns, they found only
subcritical instability.
15
2.5. Limitations of Existing Models and Unaddressed Issues
In Chapter 1 the cause of constitutional supercooling was explained
as being due to the sharp solute concentration gradient in the liquid
near the interface, while elsewhere in the liquid and the solid the
solute concentration was practically a constant. It would seem then
that the only region of interest is the interface and a liquid "boundary
layer" adjacent to it. This has prompted all previous workers in
morphological instability to consider D^/v as the characteristic length
of the problem and to ignore solid diffusion. A typical value
of D^/v is 100 microns and this means that the far ends of the melt and
crystal are infinitely far away and the domain of the problem is
effectively confined to the liquid boundary layer mentioned above. For
the melting problem a characteristic length of Dâ€ž/v is used and the
domain becomes an even smaller boundary layer in the solid.
These assumptions considerably simplify the algebra involved and
hence their popularity. But they constrain the validity of the model in
several ways. The most obvious one is that they necessitate the melting
and solidification problems to be studied separately, even though they
only differ in the direction of the growth velocity. Besides this
assumption fails for very small growth velocities, as it introduces a
singularity at v = 0. Later we will show that neglecting solid
diffusion also introduces a singularity and makes the model fail in the
nonlinear regime.
Finally, any effect which resides in the entire domain, not merely
the boundary layer, cannot easily be incorporated into the model, which
is why all influences on morphological instability studied so far are
16
either boundary layer effects (e.g., solutal convection) or interfacial
effects (e.g., grain boundaries and kinetic undercooling). Phenomena
that span the entire domain, like advection in the melt or imperfect
insultion of the ampoule walls, have been either inadequately treated or
ignored completely. Hence there is a need for a model that includes the
entire liquid and solid domains which would be applicable for all growth
velocities. This model should also dispense with the separate
treatments accorded so far to the solidification and fusion problems
with one uniform formulation.
In Section 2.2 it was mentioned in connection with the work of
Wollkind and Segel (1970) and of Ungar and Brown (1984a), that this
problem oscillates between subcritical and supercritical instabilities
for the case of two dimensional roll disturbances. They did not,
however, compute the ranges of each type of instability for the
experimental parameters involved. This is necessary in light of the
experiments of de Cheveigne et al. (1986) who observed no supercritical
instability. Also the extension of these predictions to three
dimensional disturbances like hexagonal and rectangular cells is yet to
be done.
It would not be an exaggeration to state that the inspiration for
all the theoretical work done so far in morphological instability has
come from RayleighBenard convective instability. A comparison between
the two problems would be invaluable as a source of continued
inspiration and as a way to draw conclusions and conjectures about
morphological instability from the vast published literature on
RayleighBenard convection. Hurle (1985) has attempted this but his
work can only be regarded as perfunctory and there exists a need for a
more rigorous treatment of the issue.
CHAPTER 3
A UNIFORM FORMULATION
3.1. The Formulation
Since we are not making the assumption that the liquid and solid
are very deep, the problem has to be formulated very carefully,
especially with regard to the outer boundaries, if we are to avoid an
intractable moving boundary problem.
A typical crystal growth set up is shown in Fig. 31. The ampoule
is heated by the heating coils surrounding it and they keep the melt
region at a temperature T1 and the crystal at T2. The temperatures T1
and T2 are maintained constant by means of thermocouples located at z =
s and z = l. The ampoule is pulled towards the cooler end at the same
velocity V at which the crystal grows, thus keeping the interface
stationary. The region near the interface is protected by an insulating
shield and it is this region that becomes the domain in our model.
So in this model the outer liquid and solid boundaries become fixed
at z=l and z=s respectively and the solid will be moving with a bulk
velocity v and the liquid with a bulk velocity v/Y, where Y is the ratio
of densities p /p0. In this section we will assume that Y=1 and
s
consider the effects of Y not being unity in Chapter 6 as this would
cause advection and fundamentally alter the basic problem. Also we will
assume that the melt concentration at the outer liquid boundary is a
constant C1 .
17
13
Thermocouple Thermocouple
Figure 31. Experimental set up
19
The domain equations in the liquid melt are
9T*
at + v az
ac, ac^
at + v az
D
In the solid region the equations are
(3.11)
(3.12)
3T 3T
s ^ s
at V 3z
a V2T
s s
(3.13)
+ v
ac
s
az
d v2c
s s
(31^)
where T and C are the temperature and solute concentration, D and a the
diffusivity and thermal diffusivity, with the subscripts l and s
referring to the liquid and solid.
The boundary conditions are
T*  V c*  C1 at z =
(3.15)
T =T at z=s
s 2
(3.16)
At the liquidsolid interface we will use Â£ to denote the departure
from planarity and write the boundary conditions at z=Â£
T0 = T = T  mC0  Tm â€”H
l S M i ML.
h
(3.17)
Vh â– "  ksVTs â€¢ " â– Lh(v *
(3.18)
20
(3.19)
VC*
n  (v * DÃº)ci â–
D VC
s s
n  <â€™ â™¦ i)Cs
(3.110)
where TM is the melting point of the pure solvent, \ the interfacial
tension, the latent heat, m the absolute value of the liquidus
slope, k. and k the liquid and solid thermal conductivities, k the
x* S
distribution coefficient, n the normal at the interface directed into
the solid and H is the curvature of the liquidsolid interface and in
Cartesian coordinates is given by
Â«â– 1 A <â€™ *
3x
K K Â¿L. + Ã“n
3x 3y 3x3y ^2 u
(f)2)]Â«
0 * <f)2 *
a^2i3/2
(3.111)
In cylindrical coordinates, if we assume circular symmetry, it
becomes
H  [ <1
3r
(3C)2) _iÂ£][1 + (i5.)2]"3/2
v3r; â€˜ r3rJL ^3r; J
(3.112)
It is assumed that the side walls are sufficiently far apart and
well insulated to enable us to impose periodic boundary conditions in
that direction.
To convert these equations into the dimensionless form we will use
the liquid depth l as the characteristic length and the diffusive time
2
D^/v as the characteristic time.
21
The temperature will be made dimensionless by T = (TTw)/Gâ€ž2, with
M T
GT =  (kÂ¿GÂ¿ + kgGg)/(ks+ V (3.113)
where G. and G are the temperature gradients in the liquid and solid
X/ s
in the quiescent planar state.
Similiarly the concentration will be made dimensionless by
C = C/G l with
c
G
c
(DtÂ°io
D G )/ (D. * D )
s sc 2. s
(3.114)
where G. and G are the concentration gradients in the liquid and
X* c sc
solid in the quiescent planar state.
So in dimensionless form, if we neglect the Lewis numbers D^/a in
the temperature equations, we have
(3.115)
3C __ 3C
â€”â€” + v â€”
3t 3z
V2f = 0
(3.116)
(3.117)
3C
3t
3C
+ v
 = nv2c.
3z
where v =
o ani " â– VDt
The boundary conditions are
(3.118)
22
at z= 1,
V'V  Ti
c*  W  ci
(3.119)
at z=s/4=s,
T = (T. ' tJ/gtA  To (3.120)
S 2 M T 2
at the interface z=Â£
T4  Tg = SeC^ A H (3.121)
VT â€¢ n  2VT â€¢ n = L(v + ^) (3.122)
* 3 Dt
kCÂ¿ = Cg (3.123)
VC â€¢ n  (v + ^)C. = nVC â€¢ n  (v + ^)C (3.124)
* Dt 16 S Dt S
where is the total derivative, 3 the ratio of thermal conductivities
k /k. and Se, A and L are the Sekerka, capillary and latent heat numbers
Â¿3 Af
respectively.
Se
mG
c
A
V
W
LhDa
kÂ£GTl
(3.125)
(3.126)
L
(3.127)
23
At this point a discussion of the choice of a critical parameter
becomes imperative. The experimentally variable parameters for this
problem are G^, and v or their equivalents in this formulation
G^, Gc and v. Most previous workers have adopted G^ or C1 as their
critical parameter but Hurle (1985) has proposed Se, by analogy with the
RayleighMarangoni problem. Recently de Cheveigne et al. (1986) have
advocated the use of v from an experimentalist's perspective. Although
this is a valid choice the reason no one else has used it so far is
probably because v occurs in the domain equations and will give rise to
an infinite number of eigenvalues in the linearized problem. We second
Hurle's suggestion and choose Se as this seems to be the naturally
occurring coupling factor between temperature and concentration and the
fundamental cause for morphological instability. Besides it includes
both G^ and Gq . But the suggestion of de Cheveigne et al. still
remains a valid one.
3.2. The Linear Stability Problem
From now onwards the "  " for dimensionless variables will be
dropped. The steady state planar solution to this problem occurs when
Cc(x,y) or Cc(r) = 0
(3.21)
The solution is then
(T1 + SeCjlc(o))z  Secuto)
(3.22)
24
Tsc(z) = (T2 + SqC1o(Â°Â»z/s ~ SeCÂ¿c(o)
(3.23)
Cic(z)
(lk)exp(vz)
l]/[
(1k )exp(v)
kexp(v(1+s/n)) J Lkexp(v(1+s/n))
1]
(3.24)
C (z)
SC
(lk)exp(vz/n)
kexp(v( 1 +s/ti) )1 ' J' L kexp(v( 1 +s/n))
1]/tÃ¼T
(lk)exp(v)
1]
(3.25)
To write the equations of the linear stability problem we will
impose an infinitesimal disturbance on the steady state solution.
T = T + T
4 ic l
(3.26)
with similar expansions for T , C., C and
S XÂ» s
Considering the linear stability problem, in order to separate
variables we will assume a horizontal cell pattern. This pattern for
two dimensional rolls is given by
, v _ 2imx ... , 2irn
d> (x) = Cos â€”:â€”, with wave number a = â€”â€”
Tn L n L
(3.27)
for cross rolls
n Li Li n Li
for rectangular cells
<>n(x,y) = Cos Cos a = 2im(1/L^ + 1/L*) (3.29)
il Li  Li â€” n 1 C.
for hexagonal cells
25
n (x, y) = 2Cos Cos 2â„¢y + Cos
^imy _ 4irn
3L * an = 3L
(3.210)
for cylindrical rolls (r) = J (a r/R)
non
(3.211)
where an are the zeros of , and JQ and Jj are the zeroth order and
first order Bessel's functions of the first kind. We can now write
A A ,
T^(x,y,z,t) = T41(z) 1 (x,y)e0t
(3.212)
with corresponding forms for the other variables, where a is the
eigenvalue of the linear stability problem.
The linear stability problem becomes in the domain
(D2  a2)Tai= 0 (3.213)
oCai= (D2  vD  a2 )C^1 (3.214)
(D2  a2)Tgl= 0 (3.215)
s1
Here we have
The boundary
used D to denote
dz'
conditions are
(3.216)
TÃœ,1 = Â°* cu = 0 at z = 1 (3.217)
T
s 1
= 0
at z = s (3.218)
26
At the interface, z=0
s1
(Gt  V
T11 * SeCt, * il(0t * SeGIc a A > â– 0
DTÃ1  SDT3, ' Â°LS1
s1
(kG
ic
G )
sc
0
DCtl * nDG3l ' VC11 * VC3l
Â»v
c
sc
Solving the system we obtain a general equation for
instability
Se[G
aC^c(1k)tanhasstanha^
c. k(na + v/2 tanha s)tanha + (aâ€žv/2 tanha.)tanha s'
s s l l i s
2. _ oLtanhatanhas
+ a a(k.tanhas + k tanha)
where
2 . o . v
r Â¿ a v t
aÂ° [a *
aÂ¿ = [a2 + a + v2/4] '2
kâ€žGâ€žtanhas + k G tanha
l Â¡L s_s
k.tanhas + k tanha
Ã, s
(3.219)
(3.220)
(3.221)
(3.222)
(3.223)
morphological
(3.224)
(3.225)
(3.226)
(3.227)
27
G. (a  v/2 tanha.)tanha s + G (qa  v/2 tanha s)tanha.
i a/ S SC S S lo
c (a  v/2tanhaâ€ž)tanha s + k(na + v/2tanha s)tanha.
x, l s s s X,
(3.228)
If we can show exchange of stabilities for this problem, then for
neutral stability.
Se
o
Gj + a A
(3.229)
Here we have already used the fact that the Se obtained from the neutral
stability curve will be the same as SeQ defined later in eqn. (4.22).
In eqn. (3.229) if we let v become very large the critical wave number
ajjj^ (for which SeQ is a minimum) also becomes very large and we can
approximate all the tanh terms to unity. Further if we also neglect
solid diffusion, n and G are zero and the equation reduces to the well
s c
known results obtained by Mullins and Sekerka (1964).
r Â°!to(at ~ l V) , Â°Ctc(1~k)
0L ,, 1 +
H + v(k ' 2}
â™¦ v(k 
H = 1 + a A 
aL
a(V k3}
(3.230)
For the case of neutral stability this becomes
Se
o
(1 + a2A Ma^/v + k  ^)
(3.231)
It must be pointed out that setting all the tanh terms to unity is
equivalent to using the diffusive length as the characteristic length.
This is a boundary layer approximation not unlike that used in the study
of pipe flow at high Reynold's numbers.
28
In our derivations we did not restrict v to be positive and hence
eqn. (3.224) is also valid for negative velocities, that is the fusion
problem. If we replace v with v and here too assume that v is very
large and set the tanh terms to unity we obtain the result of Woodruff
(1968).
G (na  V? v)
Se [ â€” 3 2
ocioaÂ«)
0 nka + a. + ^ vCIk) nka * ao * i v(1k)
]  1 â™¦ a2A
oL
a(k,+ k )
x. s
(3.232)
and for o = 0
Se =
o
(1 + a2A)(nkag + aÂ¿ + j v(1k))
G (na
sc s
iv>
(3.233)
To compare this model with the approximations of Mullins and
Sekerka and that of Woodruff, SeQmin was calculated for various growth
velocities for the PbSn system and the results are shown in Fig. 3~2.
As can be seen the approximations hold up very well for most growth
velocities but begin to fail for small velocities. (The thermophysical
data for the PbSn system were those of Coriell et al. (1980).) The
ratio n for the PbSn system is of the order 10 but for systems with
much smaller values of n like the CAustenite system (see Clyne and Kurz
(1981) and Wolf, Clyne and Kurz (1982)) the approximations begin to fail
at higher velocities.
1200
800
400
VELOCITY (urns'1)
â—„
â–º
Figure 32. Comparison of previous approximations with general equation
30
3.3. The Adjoint Problem and Exchange of Stabilities
Exchange of stabilities refers to the nonexistence of time periodic
infinitesimal perturbations. Timedependent infinitesimal perturbations
about the planar state will generally have periodic and nonperiodic
components, with a = + io^. For some problems it is possible to show
that ck is zero and this is called exchange of stabilities (see Iooss
and Joseph (1980) for details).
We still have to prove exchange of stabilities for this problem but
before we can do that it is necessary to obtain the adjoint problem. To
accomplish this we will define a column vector â™¦ and a matrix operator
L
(3.3D
L =
2 2
(DÂ¿  a;
0
0
â€” (D2 vDa2 a)
0
0
0
0
2 2.
(D a )
0
0
0
Se, 2 2 ,
â€”(pD pa ovD)
(332)
and an inner product <#,â™¦>= J (T^ T^ + C?C?)dz + j (T^T^ + C^C^dz
IV
s s
s s
(3.33)
31
where T denotes the complex conjugate of T, T* the adjoint function of
T and
x
G
sc
)/
(3.34)
Then the domain equations can be written as = 0 (33â€”5)
In this inner product the adjoint problem becomes in the domain
2 2
(D a )Tjl1 = 0
(3.36)
2 2
(D a )Tsl = 0
(3.37)
(D + vD 
2
a >cn
Â° Si
(3.38)
(D^ + â€”
n
2 ~*
a )CS1
2 C*
n si
(3.39)
Subject to the boundary conditions
Si â€¢ Si â€¢0
at z = 1
(3.310)
T = 0
s1
at z=s
(3.31D
At the interface z=0
(3.312)
32
nCÂ£1 = Cs1
kDGsâ€˜,  DG^ * '* â– 0
DÃs',  DÃL * Â«' <Â°l  Gs>  0
<1 * SeDG3*, * 'Ã <Â°l * SeGÂ£0 a'A > â– (G^Vt ?il
2, s
aC (1k)
(kG0  G ) 6eUJl1
2,c sc
(3.313)
(3.314)
(3.315)
(3.316)
So far we have been unable to show exchange of stabilities for this
problem directly. But Wollkind and Segel (1970) have proved it when the
boundary layer approximation is valid and we will prove exchange of
stabilities by performing an asymptotic analysis around the boundary
layer solution, which corresponds to n=0 and Pe=0, where Pe is the
Peclet number given by D^/lv.
'2,1
= T
00
2,1
r)T
10
2,1
+ PeT
01
2,1
(3.317)
00 10 _ 01
a = o + no + Pea + ....
(3.318)
The other variables are expanded similarly.
If we use L00 to designate the operator L in (3.32) when n and Pe are
zero, then the linear perturbed systems become
00 210
J *1
.10
oo 201
J *1
= f
01
(3.319) & (3.320)
33
where
r
â–
0
0
0
10"00
0 cm
* f01 =
0
01:00
o C ,
s1
0
0
. <
(3.321) & (3.322)
With boundary conditions
at z =  Â»
(3.323)
at z=â€œ
(3.324)
at z=0 the equations are
boo(;;0,
> =
10
n00 "10
B (*1 ,
"01 ,
C, ) =
01
(3.325) & (3.326)
where B00 is the boundary operator defined by eqns. (3.219)  (3.2.23)
when n and Pe are zero and
10
;>iÂ° o
10r "00
o Lc1
"00,, .10 _10,
51
10.00,, , *00 00.10,, , .â€œ00
0 ct0Ok)t) . 0 Cto(1k)0,
(3.327)
34
h01 will have a similiar form with 01 superscripts replacing the 10. It
we let L00* and represent the adjoint operator and adjoint
function of and respectively, we can use the solvability
condition on the above system.
<#1 â€™
loo;;Â°> =
<$
00*
f10>
(3.328)
^00*200* 210X
=
(3.329)
Subtracting we get
J(*
00* "00*
â€™1
h10)
= <;Â°Â°* foi>
z=0 ' r
(3.330)
where the lefthand side of eqn (3.3â€œ30) is the bilinear concomitant
evaluated at z=0.
Similiarly J(*
00* "00*
â€™1
hÂ°1)
z=0
= <$
00*
f01>
(3.33D
"00* "00
We note that # and ^ are real as they correspond to a state where
exchange of stabilities has been proved, while h1<\ and f^1 are
also made up of real quantities except for and . Hence we
conclude from eqn (3.3â€œ30) that is real and from (33â€”31)
that a01 is real; i.e. exchange of stabilities holds for the generalized
morphological instability problem upto 0(n) and 0(Pe). So we are
justified in using the neutral stability curve (3.229) to calculate SeQ
at least up to such order even though we often extend it further. Even
when the boundary layer approximation is valid, exchange of stabilities
35
does not hold for all growth conditions (see Coriell and Sekerka (1983))
and care must be exercised when such extensions are made.
34. Finite Containers and the Most Dangerous Wavenumber
Appealing to the proof of Section 3.3, henceforth we shall only
consider steady state solutions. A typical SeQ versus a diagram is
shown in Fig. 3~3 and SeQmin is the minimum value of SeQ and the
wavenumber at which this occurs is amin. If we can maintain the growth
conditions such that Se < Seom^n we can at least say that the planar
interface is stable to infinitesimal perturbations.
As SeQmin is the least value of Se at which the planar solution
loses the stability, am^n is the wavenumber of the disturbance which is
most likely to occur. Hence this wavenumber is commonly regarded as the
most dangerous and is the wavenumber at which morphological instability
is usually studied. In the derivations and discussions that follow this
is the wavenumber employed and it becomes our "operating wavenumber."
The wavenumber is a 2tt multiple of the reciprocal of the
wavelength. If the domain being considered is regarded as being finite
with periodic lateral boundary conditions, the wavelength R (or L
depending on the wave pattern used) in its dimensionless form is now the
aspect ratio, the ratio of the ampoule radius to the melt depth. For
this situation SeQ takes on different values depending on the number of
cells formed on the crystal surface as shown in Fig. 3i1 (see also
Rosenblat, Homsy and Davis (1982)). For each value of R there is a
fixed number of cells which is the pattern that is most easily
disturbed, except at certain values of R where two different patterns
36
WAVENUMBER a
Figure 33. Se^ vs. wavenumber diagram
Figure 34.
SeQ curves for various aspect ratios
37
are equally dangerous. These "horizontal multiple points" are very
important and will be discussed later. At other values of R the most
dangerous number of cells is denoted by N and the corresponding
wavenumber of each cell and the value of SeQ are denoted as aÂ¡^ and SeQN
respectively. For the analysis in Chapter 6 where the effect of a
finite container on morphological instability is considered, R is chosen
such that SeoN is as close as possible to SeQmin so that the worst
possible case can be examined.
CHAPTER 4
SUBCRITICAL BIFURCATIONS
4.1. Theory
The linear stability analysis will only give the onset conditions
for morphological instability. Nonlinear calculations are necessary to
determine the behavior beyond this point. Ideally numerical
calculations should give the most amount of information by being
applicable for small and large deformations, but as can be seen from the
work of Ungar and Brown these calculations are very expensive to carry
out and they were forced to simplify the nonlinear problem and perform
calculations for very few experimental conditions. McFadden et al.
(1987), even though they did not attempt calculations for larger
deformations, were faced with the same restrictions.
This then is the case for weaklynonlinear methods. They are
generally valid only in a small region very close to the onset
conditions but they can be used to predict the shape of the nonlinear
curve for larger deformations and for several applications this
information is sufficient. More importantly due to the analytical
nature of the techniques they can be used to predict the weakly
nonlinear behavior for all experimental conditions. A case in point is
the work of McFadden et al., most of whose predictions could have been
obtained more cheaply for all parameter values from weaklynonlinear
theories.
38
39
Probably the most useful information generated by these theories is
the subcritical behavior of the nonlinear curve. Some typical
bifurcation diagrams are shown in Figs. 41 to 44. The e = 0 axis
corresponds to the planar solution and initially for small values of Se
the planar solution is stable and usually the only possible solution.
For Se Â£ SeQN the Planar solution becomes unstable and a nonplanar
solution "bifurcates" from the planar one. Figure 41 shows a symmetric
bifurcation diagram where nonplanar solutions do not exist for Se <
SeoN. For Se > SeQjy, even an infinitesimal perturbation will make the
solution jump from the unstable planar solution to the stable planar one
while for Se < SeQ^ the planar solution is stable to all
perturbations. This behavior is referred to as supercritical
bifurcation and for these curves Se^ = 0, Se2 > 0 (where Se1 = dSe/de
2 2
and Se2 = d Se/de at e = 0). Figure 42 is nonsymmetric and as can be
seen stable and unstable nonplanar solutions exist for Se < SeoN, making
the planar solution stable to infinitesimal perturbations in this
region, while a large perturbation can make it jump to the stable
nonplanar branch. This is called a subcritical bifurcation diagram and
is characterized by Se * 0. In this situation it is obvious that
growing the crystal at Se < SeQN is no guarantee of avoiding
morphological instability.
Figures 41 and 42 display the behavior usually seen in most
problems of hydrodynamic instability. Morphological instability is
unusual in having nonlinear curves shown by Figs. 43 and 44 as well.
These curves have been labelled "backward bending" to distinguish them
from the usual "forward bending" curves. (Actually they are Januslike
in appearance bending backwards and forwards.) From the point of view
40
Figure 41. Forward bending, locally
symmetric, supercritical
bifurcation diagram
Figure 42. Forward bending,
unsymmetric sub
critical bifurÂ¬
cation diagram
Figure 43. Backward bending, locally
symmetric, subcritical
bifurcation diagram
Figure 44. Backward bending,
unsymmetric, sub
critical bifurcaÂ¬
tion diagram
41
of the crystal grower this is unfortunate as their subcritical nature
increases the occurrence of subcritical bifurcation. Figure 43 is the
symmetric case with Sej = 0 and Se2 < 0 and Fig. 44 the nonsymmetric
one with Se^ * 0.
The symmetry or nonsymmetry of the bifurcation diagram in
hydrodynamic stability is dependent on the cell pattern (see Joseph
(1976)). For morphological instability it will be shown that two
dimensional rolls, rectangular cells and cross rolls produce locally
symmetric bifurcation diagrams while cylindrical rolls and hexagonal
cells produce nonsymmetric diagrams. It will also be shown that both
backward bending and forward bending will occur for all cellular
patterns depending on the experimental parameters used. Hence
bifurcation can be subcritical or supercritical for two dimensional
rolls, rectangular cells and cross rolls but for hexagonal cells and
cylindrical cells bifurcation is always subcritical.
4.2. The Second Order Problem
Here we begin our weakly nonlinear analysis and in this section we
will calculate Se^, the first derivative of Se with respect to e.
Considering the neutrally stable nonplanar solution near the bifurcation
point SeQ, we will expand the variables around the planar steady state
solution.
2 3
T =T +eT +eT + Â£ T +
11 Alc lo 11 12
Se = Se + eSe. + e Se_ +.
o 1 2
(4.21)
(4.22)
42
V,
where e = <$ ~ Â¿
(4.23)
We have already obtained the linear perturbed solution
in Section
3.2. Substituting these expansions into the steady state versions of
eqns. (3.115)  (3.124) and collecting the terms of order
2
e we get
the second order perturbed problem.
If the first order perturbed variables are written, following eqn.
(3.212), as
Vx,y,z,Seo) = T2.01(zâ€™SeoH1(xâ€™y)
(4.24)
Then the solution to the second order problem becomes
CO
Til1 = E. WZâ€™SV TÃ¼01)<()n(x,y)
n=1
(4.25)
Substituting (4.24) and (4.25) into the second order problem and
taking Fourier transforms horizontally, we get
L*i, â– 0
(4.26)
anÃº TtU â– CI11 â– 0 at z  1
(4.27)
T .. = 0 at z =s
s 11
(4.28)
B($11 , ?11) = at z=0
(4.29)
at z=0
(4.29)
43
where L and B are the same as that used in (3.3~2) and (3.325) but with
o=0 and Se = Se and
o
11
r (DT  DT )I
^or ioi sor 11
f 501(DTi,01 + SeoDCÂ«,01) â€œ 2 vGi,cSeoi01^11 â€œ Sei(ci
~a C01(TÂ«,0r BTs01 5111 + ?01(W eTs01):i12
cwk dcÃoi  DCsoi^ Â¿v4(kG*c  â€˜W
"a C01 (CÂ«,01
nCs01)i:i1 + ?01(Ci,01 â€ nCs01)i:i2
(4.210)
L2 L1
I I ^(x,y)dxdy
o o
â€™11
L2 L1
I j 4>1 (x.y)dxdy
o o
(4.211)
rl2 G1 94Â». 94Â». 
I I ^(ir) + ^ ldxdy
9y
"12
L2 L1
I I 4>^(x,y)dxdy
o o
(4.212)
It can easily be seen that for two dimensional rolls, cross rolls
and rectangular cells that 1^ = I12 = 0* Hence from the solvability
condition for these patterns Se^ will be zero; that is, the bifurcation
will be locally symmetric. But for hexagonal cells and cylindrical
rolls Ii and will be nonzero and hence Se^ will also be nonzero
and we have nonsymmetric bifurcation and the existence of subcritical
instabilities.
44
We will analyze the case of Se^* 0 by considering hexagonal cells
as an example, but the results obtained are applicable to cylindrical
rolls as well. It should be noted here that all the horizontal cell
patterns we have been using are possible solutions to Helmholz's
equation
Â£Â± . iÂ± . a2* . 0
9xÂ¿ 9y
and the solutions always come in pairs. For hexagonal cells the
complementary solution to <$ given in (3.210) is t>
Pit Pit Utt
<Â»1 Â» 2 Cos JqX Sin jjy  Sin ^y (4.214)
So the general form of eqn. (5.4) will be
TÂ£01 (lf1
+ P^)
(4.215)
To determine p the procedure outlined by Joseph (1976) will be
used. We will proceed the same way as above but using (4.215) instead
of (4.24) and multiplying by
will give the same set of eqns. (4.26)  (4.210) but with
I
11
2
+ p*1 ) (J^dxdy
+ pij^ )1dxdy
(1p)2
(4.216)
45
3L /3L 34) 3*.  34Â»! H. ,
J / Ã ]*idxdy
O 0
'12 = 3ÃT73L
ff
O 0
a ,. 2*
= â€” (1p )
(')>1 + P^ )4>1 dxdy
(4.217)
which can be used to calculate Se^ . We then repeat the process
with and equate the two Se^ 's obtained. This will result in a cubic
equation for p.
P
3
3p = 0
(4.218)
and
Se1(1p2)
(4.219)
Se. G (kGâ€ž  G ) (a. + v/2tanha.)B (pa  v/2tanha s)
1 C = â€ž lc sc ( r l l_ + 3 s [
eo , â€ž\2 â€˜ *â– tanhaâ€ž qtanha^s J
â€™01
(k + e)'
11
(1+nB)tanha s
(na + v/2tanha s) X12J â€œ1
s s
J + h,
(4.220)
6(GÃœ " V [_fn + a(Gl + SeoGlc  a A)(1/g1 ) I
1 (3+A) Ltanha
(G G )tanha
SL s
11
(1+A)tanhas
(8+A)
*12 * * h2
(4.221)
Se I., a( 81 ) (kG.  G )
_ â€”2__U_[ â€” Â£câ€”  (bgâ€ž + G /n) ]
2 (k+B) L (B+A)tanha fcc sc
tu =
(4.222)
46
where B = (a.  v/2tanhaâ€ž)tanha s/(na + v/2tanha s)tanna. (4.223)
x. x. s s 3 x,
and A = tanhas/tanha (4.224)
There are three solutions 0, /3 and /3 for p, but it can be seen
that Se1p for /3 and /3 coincide. It is also obvious that while any
two of the solutions are independent the third is a linear combination
of the other two. Here is an instance where the problem exhibits a
multiplicity of solutions for the same eigenvalue, and could cause
secondary bifurcations further along the bifurcation curve.
The next obvious question is to ask if there is any point at which
Se1 in (4.220) goes to zero and hence causing Se^ to go to zero.
Calculations done for the CAustenite (i.e. steel) system did give such
a curve (see Fig. 45) though for most growth conditions this curve lies
far away from the critical (or most dangerous) wavenumber amin,
intersecting it only at high velocities.
4.3. The Third Order Problem
In Section 4.2, it was shown that for 2D rolls, cross rolls and
rectangular cells Se^ was zero, which implied a symmetric bifurcation
diagram. But to learn more about the nature of this diagram it is
necessary to go to the next order. If we repeat the procedure described
for the second order problem for the terms of order e^ we will obtain
the third order problem.
L*
21
0
(4.31)
WAVENUMBER
47
â–º
Figure 45. Growth velocity vs. wavenumber chart for
CAustenite system for hexagonal cells
48
TZ21 = GZ21 " 0
at z = 1
(4.32)
Ts21 " 0
at z=s
(4.33)
B(*2i Â» C21) = h21
at z=0
(4.34)
21
â€¢ â€” (T  T )I
2 ^01 WZ01 s01 '21
2
'I21^ 1~C01(TZ01 + SeoCÃ.01) + 2501Seo DCZ01 + 6V C01SeoGi,J
(GZ0Ã ?01GÂ«,c)Se2 â€œ Ac01(3/2 a I22~ I23)
2
_I21 ^~2~ C01(kCZ01 " Cs01) + 2C01(k DCZ01 " DCs01/n)
+ ^01(kG*c ' Gso^2)1
a2 2 2
2 C01V(DCZ01 " rDCs01 )J21 + C01(DCZ01
nDCs01)J22
L2 L1
/ / 4>1 dxdy
o o
â€™21
L2 L1
/ I 4>2dxdy
o o
(4.35)
(4.36)
LZ S 3*, 3*,
/ / +l[(â€”k> * (â€”)2]dxdy
o o
9y
â€™22
L2 L1
/ / 2dxdy
o o
(4.37)
49
L.i L2 a*, a*. ,
I I [4 <^>2
oo 3x
2 v 9y
34> 1 3^ 2 <(>^
2 9x 3y 9x3y
924>
dyâ€˜
dp
1 (~d)2]*ldXdy
â€™23
L2 L1
/ J
o o
Once again using the solvability condition we obtain
(4.38)
Se_ 2 v(kG. G )(1+B)tanha s
TVhrV (I22  r i2,)Seo rf22 <439>
â€™01
(k+B) (na +1/2vtanha s)
s s
where
h1 ~^2a I22+I23^A~ I21Se0V
vG
Ic
(kG. G )(a + v/2tanha.)/tanhaâ€ž
x.c sc x. x, i 
6(k+B)
hâ€ž = 
*21 â€™"'W
(k+B)â€˜
k(a^+ v/2 tanha^)
tanha.
(4.310)
(na v/2 tanha s)B
3 2 ' 1 G*o * *2,
n tanha s
s
Se v(kG. G /n)
o to sc
6(k+B)
(4.311)
and B = (a 1/2 vtanhaâ€ž)tanha s/(na + 1/2 vtanha s)tanha. (4.312)
l l s s s l
50
4.4. Calculations and Comparisons
Using the results of the previous section, Se2 was calculated for
various values of the experimental parameters and the results are shown
in Figs. 46 to 49. Figure 46 was drawn in order to check the
derivation with that of Ungar and Brown (1984a) and shows calculations
done for 2D rolls with Dg = 0 and 3 = 1 but is a more complete
calculation for the experimental parameter ranges involved than
theirs. The calculations agree with those of Ungar and Brown but it is
an unexpected result nevertheless, showing multiple regions of
subcritical and supercritical instability. It also seemed to contradict
the earlier calculations of Wollkind and Segel (1970) who did not see
any supercritical instability but this was resolved in the paper of
Wollkind and Wang (1988) and hence Fig. 46 agrees with their
calculations as well. As argued in Section 3.4 if we treat the amin
curve as the experimental "operating line," the bifurcation is mostly
supercritical which also seems to contradict the experimental results of
de Cheveigne et al. (1986) who observed only subcritical bifurcation.
In Fig. 47 calculations were done for more realistic values of Ds
and 3 and the results are significantly different with only one region
of supercritically and another of subcriticality. Ignoring solid
diffusion introduces a singularity to the problem and this accounts for
the distortions observed in Fig. 46. In Fig. 47 if we move along the
operating line for a fixed liquid temperature gradient, initially for
small growth velocities the bifurcation is supercritical, until at a
critical velocity a transition point is reached and the bifurcation
becomes subcritical.
Hence for every imposed liquid temperature
WAVENUMBER
51
Figure 46. Velocity vs. wavenumber chart for the onesided
approximations of Ungar and Brown for 2D rolls
WAVENUMBER
52
Figure 47. Velocity vs. wavenumber chart for 2D rolls
using the PbSn system
53
gradient there will be a critical growth velocity below which the
bifurcation for 2D roll disturbances is always supercritical. The
really surprising result here is that when these transition points for
various values of the gradient are joined, we get a straight line
through the origin. We now have a clearly demarcated supercritical
uppertriangular and subcritical lowertriangular one. It is well known
that the onset condition SeQ does not change much in the neighborhood of
a^H (see for example Coriell, McFadden and Sekerka (1985)) and so amin
is more of an interval than a unique point. It can also be seen from
Fig. 47 that the am^n curve practically hugs the line of transition
from sub to supercriticality and if we impose an interval for amin it
would straddle the transition line. Thus for 2D rolls it is unlikely
that we will ever see a sharp transition from subcritical to
supercritical bifurcation in experiments. More likely we will observe
subcritical behavior throughout as reported by de Cheveigne et al.
Proceeding to the three dimensional patterns, we obtained almost
identical results for square cells and cross rolls. Figure 48 is for
square cells and we see quite a change with the supercritical region
acquiring a characteristic balloon shape and having a sharp transition
to subcritical bifurcation along the amin curve. But here too if these
points of transition are joined, a straight line is the result,
demarcating a supercritical uppertriangular operating region and a
subcritical lower triangular one. Unlike the case of 2D rolls these
should be visible to the experimentalist. So in order to avoid cross
rolls and square cellular instabilities not only should the crystal be
grown when Se < SeQmin, but one should do so in the upper triangular
region. Figure 49 demonstrates the universality of our result in being
WAVENUMBER
54
VELOCITY (urns*1)
Figure 48. Velocity vs. wavenumber chart for square cells
using the PbSn system
55
8000
6000
4000
2000
0
â€¢*
Figure 49. Velocity vs. wavenumber chart for the fusion
problem for square cells using CAustenite system
WAVENUMBER
56
applicable for the melting problem as well and repeating the derivation
for this case separately as was done by Wollkind and Raissi (1974) is
unnecessary.
Finally, even though for hexagons Sej was usually nonzero (and
hence Se2 cannot easily be calculated), in Section 4.2 we saw that there
were points at which Se did go to zero. If we attempt to evaluate Se2
for hexagons at these points I2i, I22 and *23 become
(4.41)
5 2 2
!22 Â§ aÂ¿(1+pÂ¿)
(4.42)
(4.43)
and as can be expected Se2 will be in the form
(4.44)
where Se2 is that corresponding to p = 0. The other possible value is
when p is /3 or /3. Here Se2p can be calculated from (4.39)  (4.3
12) and (4.41)  (4.43). As mentioned in Section 4.2 these points are
usually far away from am^n and in Fig. 45 we found that along this
curve Se2 is positive at low values of "a." As "a" increases, at a
point above a=amin, Se2 becomes negative. Hence along this line the
bifurcation diagram is forward bending at low "a's" (including a^n) and
becomes backward bending at high values of "a." Even though this is
57
true only along the Se=0 line, by analogy with other cell patterns we
conjecture that this is valid when Se^O as well. In other words we
expect the bifurcation diagram to be forward bending along the line
and below (as shown in Figs. 410 and 411) but a transition to backward
bending along the line could occur at high velocities. Far above
the amin line the bifurcation diagram should be backward bending (see
Figs. 412 and 413).
To confirm these conjectures we turned to the nonlinear
calculations for hexagons of McFadden et al. (1987) but unfortunately
they were unable to complete the bifurcation diagram as their attempts
to compute the curve for e<0 failed. Also their calculations were done
only for the case of p=0 and not for p=Â±/3. But they did confirm the
existence of subcritical instability.
To sum up, it has been shown that the Mullins and Sekerka and the
Woodruff models of morphological instability are of limited validity.
The uniform formulation is the more exact representation of the problem
and
* it is applicable for all growth velocities and not just the
relatively rapid solidification and fusion regions and provides a
single formulation from which all the different models for
various growth conditions can be obtained as limiting cases,
eliminating the duplication of derivations for different cases;
* it incorporates the whole crystal and melt regions into the
problem and not just a boundary layer region adjoining the
interface facilitating the study of various domain effects like
convection on morphological instability;
53
Figure 410. Bifurcation diagram
for hexagonal cells
Figure 411. Bifurcation diagram
for hexagonal cells
Figure 412. Bifurcation diagram
for hexagonal cells
Figure 413. Bifurcation diagram
for hexagonal cells
59
* it avoids the incorrect predictions of subcritical bifurcation
regions because of the singularities inherent in previous models.
* The principle of exchange of stabilities has been shown to be
applicable to this model as well even though only in an
asymptotic sense.
When the weakly nonlinear technique of Malkus and Veronis (1959) is
applied to this problem in a systematic way, it resulted in important
information about the shape of the bifurcation diagram for various
growth conditions. Some of these results are similar to those obtained
for Marangoni instability (see Joseph (1976)) which leads us to assert
that these results are valid for all hydrodynamic instability problems
in which the nonlinearity lies only on the boundary.
* If rectangular cells, cross rolls or two dimensional rolls are
the horizontal cell patterns then the bifurcation diagram will
always be locally symmetric. For hexagonal cells or cylindrical
rolls they are generally nonsymmetric and hence the bifurcation
is subcritical.
* The problem can display a multiplicity of solutions for the same
eigenvalue. Specifically for hexagons there are two possible
solutions.
Considering the morphological instability problem in particular the
following were shown:
* for twodimensional rolls there are two operating regions, one
subcritical (backward bending) and the other supercritical
(forward bending), but since the demarcation is not sharp its
probable that only subscritical bifurcation will be observed
experimentally.
60
* For rectangular cells the forward bending region has a
characteristic balloonlike shape and here too there is a
straight line dividing the operating region into subcritical and
supercritical zones, but here the transition is sharp and hence
probably observable experimentally.
* For hexagonal cells and cylindrical rolls the bifurcation diagram
shows both backward and forward bending behavior but the exact
regions of each can only be conjectured.
CHAPTER 5
COMPARISONS WITH RAYLEIGHMARANGONI CONVECTION
5.1. RayleighMarangoni Convection in Brief
When a horizontal layer of quiescent fluid is heated from below, on
account of thermal expansion, the fluid at the bottom will be lighter
than the fluid at the top. This unstable arrangement is maintained by
the viscosity of the fluid which inhibits any flow and suppresses
disturbances such that there will be a stable conduction profile in the
fluid. But when the adverse temperature gradient exceeds a critical
value, the viscous force is overcome and there will be cellular
convection. This instability is known as RayleighBenard convective
instability.
There are several variations of this problem. Instead of an adÂ¬
verse temperature gradient, there could be an adverse solute concentraÂ¬
tion gradient in the fluid causing once again an unstable topheavy
arrangement. The convective instability arising from this is known as
solutal convection or the solutal Rayleigh problem. Another way to
cause convection is to have a very thin fluid layer heated from below,
but the top surface of the fluid instead of being kept at a fixed lower
temperature, is allowed to remain free. Here the thinness of the fluid
layer makes buoyancy effects negligible but convection will be caused by
surface tension variation on the free surface. This is known as Maran
goni convection. Finally, there could be combinations of the above
61
62
three types of convective instability. When convection is caused by
thermal and concentration gradients it is known as doublediffusive
convection. Combination of either thermal or solutal convection with
surface tension driven flow is the RayleighMarangoni problem.
In addition to these there are several other combinations possible
like RayleighBenard convection with rotation or with a magnetic field
but for purposes of comparison with morphological instability it will be
seen that the three causes for convection mentioned above are the most
relevant.
In the discussion to follow it is desirable to consider the most
general form of this problem. Despite there being several interesting
features in the problem of doublediffusive convection, the causes for
convection there, the temperature gradient and the solute concentration
gradient are both bery similar and it is sufficient to look at the
effect of one gradient. The manner in which the surface tension effects
the problem is very different from the buoyancy effects and a general
formulation should include both. Accordingly we will examine the RayÂ¬
leighMarangoni problem with thermal convection. In the following
sections several other reasons for looking at this problem will become
apparent.
The equations for the RayleighMarangoni problem are given by Sarma
(1987) and we will reproduce them here and refer the interested reader
to his paper for details. The steady state dimensionless Boussinesq
equations in the domain are
VV = 0
(5.11)
63
2 Ra
V V  Vp + ^ Tg  VVV = 0 (5.12)
V2T  PrV*VT = 0 (5.13)
where p is the modified pressure, g the acceleration due to gravity, Ra
the Rayleigh number and Pr the Prandtl number. The boundary conditions
at the bottom of the fluid layer are
at z = 0, T = Tq and w = 0, 3w/3z = 0 (5.14)
where w is the vertical component of velocity.
The boundary conditions at the top are more complicated. Not only
will there be surface tension variation across the surface but the
surface is also free to deflect like the liquidsolid interface in
crystal growth.
at z = 1 + i, VT*n =  BiT (5.15)
V*n = 0 (5.16)
 Bopn + Crn*[VV + VVT] = MaV T + Hn (5.17)
n
The dimensionless quantities are Bi the Biot number, Bo the Bond number,
Cr the Crispation number, Ma the Marangoni number and H the surface
curvature (see Scriven and Sternling (1964) for details).
Initially there will be a quiescent, linear, stable, conducting
solution to the problem with V =0. At a critical value of the charac
64
teristic parameter (Ma or Ra) this conducting solution becomes unstable
to infinitesimal perturbations and we have a convective solution.
Performing a linear stability analysis about the conduction state,
separating variables and doing considerable manipulations we get in the
domain
(D2  a2)30 =  a2Ra6 (5.18)
(D2  a2)3w =  a2Raw (5.19)
where "a" is the wavenumber, w the Fourier coefficient of the vertical
component of velocity and 0 the Fourier coefficient of the temperature.
At the boundary at z = 0,
w = Dw = 0 = 0 (5.110)
At z = 1, w = 0 (5.111)
BiD2w = a2MaD0 (5.112)
BiCr(D3w  3a2Dw) = a2(Bo + a2)(D0 + Bi0) (5.113)
When the density variation with temperature is negligible or in the
absence of gravity, then Ra = 0 and we have the pure Marangoni problem
with all the nonlinearities only in the boundary. Even with this effect
in the boundary the important result of bifurcation, namely the fluid
65
velocity, effects only the domain, the deflections in the boundary being
only a secondary effect of convection. On the other hand, when the
upper boundary is also kept at a fixed temperature we have, Ma = Bo = Cr
= 0 and so
at z = 1 , w = Dw = 0 = 0 (5.114)
This then is the pure RayleighBenard problem with all the nonlinÂ¬
earities only in the domain and the resulting nonquiescent solution also
manifests itself in the domain as convection. The RayleighMarangoni
problem described by eqns. (5.18)  (5.113) is a mixed problem with
nonlinearities in the domain and the boundary but the convective soluÂ¬
tion resulting from these nonlinearities shows up mainly in the domain.
5.2. The Augmented Morphological Problem
As can be seen from Section 5.1, in the RayleighMarangoni problem
there is a RaMa domainboundary duality which does not seem to exist in
morphological instability. From the problem description in Chapter 3 it
is easy to see that all the nonlinearities for this problem lie only in
the liquidsolid interface. This is a limitation because by virtue of
being on the boundary the Sekerka number is unique and hence also has a
unique eigenfunction and is insufficient when solutions to inhomogeneous
versions of the linearized morphological instability problem are needed,
as in Chapter 6 where "imperfections" are considered. This difficulty
also crops up in the pure Marangoni problem, but the RayleighMarangoni
problem comes to the rescue, as there are countably many corresponding
66
values of Ra for each value of Ma and hence also countably many
eigenfunctions forming a complete set (see Rosenblat, Homsy and Davis
(1981)). The naturally occurring duality of Ma and Ra enables solutions
to inhomogeneous problems to be obtained in a straightforward manner.
In morphological instability there is no such obvious, naturally
occurring boundarydomain duality and it is necessary to create one. To
avoid confusion we will refer to the pure morphological problem of
Chapter 3 as the Sekerka problem, and (by analogy with the Rayleigh
Marangoni problem) set up an eigenvalue problem, with the eigenvalue in
the domain, which we will call the "augmented morphological problem."
liquid:
solid:
(5.21)
(5.22)
(5.23)
(5.24)
where M is the eigenvalue which we label as the morphological number.
The boundary conditions are
at z = 1 , p^ = q^ = 0
(5.25)
at z = s, p = 0
*s
(5.26)
PÃ¼ " ps + t(GX, ~ V = 0
at z = 0,
(5.27)
67
Â»l â™¦ SeQt * ttOj * SeGl0) * A Â¿Ã , 0
9r
3pj, 3p
sr6 ST â– 0
kq  q + t(kGâ€ž  G ) = 0
Ã. s Â¿c sc
dql 3qs
ST " n 3T â€˜ vq* + vqs = Â°
(5.28)
(5.29)
(5.210)
(5.211)
with periodic conditions at the lateral boundary at r = R. We can now
separate variables expressing the horizontal dependence as zeroth order
Bessel's functions of the first kind JQ(air/R), where a^ are the zeros
of the first order Bessel's functions of the first kind .
00 CO
p (r,z) = Z Z Pm(z) J (a.r/R)
* i=i j=i 41J 0 1
(5.212)
In addition if we take Fourier transforms in the horizontal direcÂ¬
tion and solve for q^â€ž, qgâ€ž and the equations reduce to a system
in pâ€ž. . and p ... If we define a column vector
Ã.1J sij
Q,
ij
Â«J
P3ij
(5.213)
and a matrix differential operator Li
L.
l
)
BY.(D2  a2)
(5.214)
68
then the domain equations reduce to
L.Q.. =  M..Q..
l 1J ij lj
(5.215)
where Y. = (G. + Se 6  a2A )/(G + Se G  a2A )
IX, Cl S Cl
(5.216)
G = (Gâ€ž B + G )/(B + k)
c X, c sc
(5.217)
(a..  v/2tanha..)tanha .s
2.1 2d. si
(na . + v/2tanha ,s)tanha..
si si 2,1
(5.218)
, 2 x 2.. .1/2
Hi '
(5.219)
, 2 2 . 2,1/2
a . = (a. + v /4q )
si 1
(5.220)
The boundary conditions become
at z pUj â– 0
(5.221 )
at z = s, p .. = 0
sij
(5.222)
at z = 0,
BiQij * 0
(5.223)
where
B.
1
1
D
Y.
l
BD
(5.224)
69
Defining an inner product
dz + / p
0
s
(5.225)
where the refers to the adjoint eigenfunction and the complex
conjugate.
It can easily be seen that the system described by eqns. (5.213) 
(5.224) is selfadjoint in this inner product and so the eigenfunctions
Qjj are complete. Solving the system we get
(5.226)
A ..Sin/M.. a^ (s  z)
sij ij i
where Mjj are solutions of the equation
(5.227)
lj i 3 3 ij Ã
(5.228)
lj Ã S3 ij i
Here A... and A .. can be determined from the normalizing condition
Â¿ij sij
(5.229)
where 6.. is the Kronecker delta,
ij
70
5.3 Comparison of Morphological Instability with
RayleighMarangoni Convection
The principal aim of this section is to relate the mathematical
characteristics of the two problems so that we may introduce some of the
extensive mathematical techniques used to study RayleighMarangoni
convection to morphological instability, but we will make some physical
comparisons as well. The augmented morphological problem described in
Section k.2 is similar to RayleighMarangoni convection. The augmented
problem is self adjoint but the RayleighMarangoni problem is nonself
adjoint. Both have an infinity of eigenvalues and corresponding eigenÂ¬
functions, but while completeness of the eigenspace is assured for the
former, special theorems are required to show this for the latter (cf.
Nadarajah and Narayanan (1987)). It should also be noted that while the
RayleighMarangoni problem attempts to describe a realistic situation,
the augmented morphological problem was artificially created in order to
solve inhomogeneous versions of the Sekerka problem described in SecÂ¬
tions 3*1 and 3.2.
This brings us to the question whether there is a practical situaÂ¬
tion which is described by this mathematical concoction. The difficulty
in coming up with one stems from another important difference between
the two problems. In the pure RayleighBenard problem (where Ma, Bo and
Cr are all zero) the nonlinearity is in the domain and the instability
too manifests in the domain as convection. Even in the pure Marangoni
problem (where Ra is zero) where the nonlinearity is in the boundary,
the instability is still mainly in the domain. In contrast, in the
Sekerka problem the nonlinearities and the resulting instability show up
in the boundary. Though there are other boundary effects (like kinetic
71
undercooling) which can cause morphological instability the only domain
effect which could give M physical significance is a heat source term in
the form MT or Me E^RT (see Joseph (1965)). We do not know of any
experiment where morphological instability was observed as a result of a
heat source in the melt or the crystal but if one does exist it will
provide the true analogy to RayleighBenard convection.
This is relevant as Hurle (1985) has attempted a comparison between
the RayleighBenard problem and the Sekerka problem. It can now be seen
that the Sekerka problem can only be compared to the pure Marangoni
problem, with Se corresponding to Ma and A corresponding to the reciÂ¬
procal of Bo. Besides, for periodic lateral boundary conditions, the
eigenvalues of both problems, Se and Ma, are unique.
Based on this comparison we can make an important conjecture.
Vrentas, Narayanan and Agrawal (1981) have shown that for the Marangoni
and the RayleighMarangoni problems when the nonperiodic noslip condiÂ¬
tion for velocity is imposed at the sidewalls, the eigenvalue Ma is no
longer unique and has countably many values. In other words when the
walls are a finite distance apart Ma has many values, but as they are
gradually moved apart we have "spectral crowding" and in the limit when
they are sufficiently far apart to impose the periodic boundary condiÂ¬
tion of total slip, all the values of Ma coalesce into a unique numÂ¬
ber. Recently, following Coriell et al. (1980), several workers have
looked at the coupled problem of morphological instability with solutal
convection and all have assumed periodic boundary conditions. We susÂ¬
pect that here too if the noslip condition for velocity at the side
wall is imposed, the Sekerka number will no longer be unique. All this
raises the question of completeness of the Marangoni and the Sekerka
72
eigenspaces and its probable that generalized eigensolutions (see Nai
mark (1967)) are needed when Ma and Se are chosen as eigenvalues.
When these two problems are considered in a finite container we can
see yet another difference. Both problems have simple eigenvalues
except at certain aspect ratios of the container where two horizontal
modes can coexist (cf. Rosenblat, Homsy and Davis (1982)). In a typical
experiment of RayleighBenard convection we would expect to see a dozen
or so convection cells (see for example Koschmieder (1967)) and increasÂ¬
ing or decreasing the number of cells by one can significantly effect
the problem. Hence the multiple points in this problem are extremely
important and have been the subject of study. But in morphological
instability a single alloy crystal can contain hundreds of individual
cells and the addition or loss of one has hardly a noticeable effect on
the problem and consequently multiplicity of the lateral eigenfunctions
loses its significance. In addition unlike the Rayleigh number it is
well known that near the critical wave number a^, the critical value of
the Sekerka number SeQ hardly changes (see for example Coriell, McFadden
and Sekerka (1985)) and the choice of a^ has very little effect on
SeQfj. Conversely, the choice of the operating Se will have a tremendous
impact on the resulting wavenumber (cf. Ramprasad and Brown (1987)).
Other differences have been mentioned in Chapter 4. Both the
Marangoni problem and the Sekerka problem have symmetric bifurcation
diagrams near the bifurcation point for twodimensional rolls and recÂ¬
tangular cells and nonsymmetric curves for hexagonal cells and cylindriÂ¬
cal rolls. But in morphological instability the curves can be "forward
bending" or "backward bending" depending on the operating conditions,
whereas in Marangoni convection the curves are forward bending every
73
where. Hence the occurrence of subcritical instability is more wideÂ¬
spread in morphological instability.
CHAPTER 6
BIFURCATION BREAKING IMPERFECTIONS
6.1 . Nature of Imperfections
When the morphological instability problem was formulated in ChapÂ¬
ter 3, several effects were ignored and the resulting problem is an
idealized or "perfect" one. Inclusion of these can alter the problem in
several ways, for example kinetic undercooling of the melt becomes an
important effect in rapid solidification, but all it does is alter the
onset condition for morphological instability. In the parlance of
bifurcation theory, an "imperfection" is an effect on the "perfect"
problem which alters it in a specific way. Such an imperfection will
cause the morphological instability problem not to have a planar soluÂ¬
tion at all even below the onset condition, and these are known as
bifurcation breaking imperfections.
The effect of a typical imperfection on the bifurcation diagram is
shown in Fig. 61 . The broken line is the solution in the presence of
imperfection and it can be seen that the interface will be nonplanar for
all nonzero values of Se. Obtaining solutions to the problem with
imperfections is extremely difficult and we will only seek asymptotic
solutions. Hence the problems to be considered should have very small
imperfections. Under such conditions the method of matched asymptotic
expansions of Matkowsky and Reiss (1977) can be employed and here it
will be used in a way similar to the work of Tavantzis, Reiss and MatÂ¬
kowsky (1978) for the RayleighBenard problem.
75
Figure 61. Imperfect bifurcation diagram showing inner
and outer expansions
76
The methodis fairly straightforward. The variables are expanded
asymptotically with the imperfection parameter about the planar and the
nonplanar solutions and two outer expansions 0Q and 0, are obtained as
shown in Fig. 61. At the bifurcation point SeoN these expansions break
down and it is necessary to have inner expansions I1 and I2 near SeoN
and to join the corresponding 0q and 0^, matching conditions have to be
specified.
The imperfections that can be analyzed in this fashion must, of
course, be small effects else a fullblown nonlinear solution will be
needed. Two of the most important effects which are habitually ignored,
namely imperfect insulation of the ampoule wall and advection in the
melt, are such imperfections and readily lend themselves to this type of
analysis. In Chapter 3 when the morphological instability problem was
modelled by a uniform formulation, it was mentioned that one reason for
this was to consider a finite crystal/melt region. This finiteness was
only in the vertical direction and in the horizontal direction the
imposition of periodic boundary conditions effectively meant that the
ampoule side walls were infinitely far apart. The two imperfections
that are to be considered are caused by nonperiodic lateral boundary
conditions and another way of looking at the effect of these
imperfections is to say that the container is now being considered to be
finite in the lateral as well as the vertical direction.
6.2. Imperfection Due to Heat Loss
As mentioned in the last section, it has been customary in this
problem to assume periodic boundary conditions laterally, which is
77
equivalent to assuming that the walls of the ampoule are perfectly
insulated or that they are so far apart that their effect can be igÂ¬
nored. In practice neither of these is likely to be achieved and here
we will examine the effect of a small amount of heat loss or heat gain
from the wall on the problem. If we take the ampoule to be cylindrical
with radius R,
3T
r = R, liquid: kÂ¿ = 5f^(z) (6.21)
3T
solid: k tâ€”â€”â– = 6f (z) (6.22)
3 3r s
where f. and f are such that f.(5) = f (?) and f.(1) = f (s) = 0.
Xi ^ X/ S X/ s
If f^ and fg are positive it will mean heat loss and if they are negaÂ¬
tive, heat gain. If we make the transformations
Vz)
T^(z,r) = 5 â€” r + 0^(z,r) (6.23)
f (z)
and T (z,r) = 5 â€” r + 0 (z,r) (6.24)
S K S
and substitute these in the steadystate versions of eqns. (3.115) 
(3.124), the temperature equations in the domain become
=  6rD2f^/k^ (6.25)
V20 =  5rD2f /k
s s s
(6.26)
78
The outer boundary conditions will remain unchanged but at the interface
eqn. (3.121) becomes
Â°l  %   5r(Vkt ' W <627)
8, * SeCj â™¦ A H   Srft/kt (6.28)
and eqn. (3.122) converts to
ve n  8V0 n = Lv  5r(Dfâ€ž  Df ) (6.29)
X. S X, s
In order to solve this system we will be treating the heat loss as
an imperfection on the perfect problem (i.e. when 6=0). The perfect
problem is of course the Sekerka problem of Section 3.1.
6.3. The Outer Expansions
As this problem has been defined in a finite geometry, the number
of cells are fixed by the container size and the growth conditions. We
will choose these so that aN is very close to amin the wavelength correÂ¬
sponding to Seom^n the least value of Se^. Another important decision
is the selection of the wave pattern and our analysis is done for cylinÂ¬
drical rolls. An objection to this could be raised on the grounds that
in most experiments it is the hexagonal pattern which is observed. We
justify our assumption by once again making a comparison with Rayleigh
Benard convection. It appears that in RayleighBenard convection the
wave pattern selection is strongly influenced by the container size and
79
shape, with the hexagonal pattern prevailing for all shapes in wide
containers while in narrower ones the container shape determining the
pattern (e.g., cylindrical rolls for circular containers. See Kosch
mieder (1967)). Since the principal aim of this paper is to study a
finite geometry effect on morphological instability, the cylindrical
roll pattern would be the logical choice. This is especially valid for
experiments such as those of Peteves (1986) where ampoules of radius
0.025 inches were used.
In Chapter 4 it was shown that the bifurcation diagram is unsymme
tric for cylindrical rolls and the form of the outer expansions 0Q and
0^ are shown schematically in Fig. 61. If we use superscript o to
identify the problem with perfect insulation we can seek solutions by
means of asymptotic expansions about the perfect problem.
00
9,, = Z 0, 6k (6.31)
k=0
with similar expansions for 0 , C0, C and Â£. Substituting these expan
sions into the problem and collecting the terms of order 6 we get an
inhomogeneous linear system. If we separate variables horizontally
CO
0Â¡ = I 0Â¡ J (a.r/R) (6.32)
Â¡C . , X,. o 1
1 = 1 1
and eliminate cl , C1 and we get for the expansion about the planar
X/ s
solution
L *1 = f1
i i i
(6.33)
80
where
Ã1 =
x
Ã.
i
f! =  I.D2
l l
Vk*
f /k
s s
(6.34)
(6.35)
I.
i
r J (a.r/R)dr/
o x
rJ (a.r/R)dr
0 1
(6.36)
The boundary conditions are
at z = 1, 0^ = 0
at z = s, 91 . = 0
si
at z = 0, B. Ã1 = hi
li i
where
(6.37)
(6.38)
(6.39)
h.   I.
i i
Vki
Df,
Y.f /k
is s
â– Df
(6.310)
The eigenvalue problem of Section 5.2 has been shown to have a
complete set of eigenfunctions and hence can be used to solve the above
system.
81
00 CO
â™¦1 = E 1 Q. . J (a.r/R)
i1 j=1 1J 1 1J 0 1
(6.311)
J(QijÂ»hi)
M. .
1J
z=0
U i
M. .
1J
(6.312)
where J(Q..,h. ) _ is the bilinear concomitant evaluated at z=0
ij i z=0
J(VV
z=0
 VDf)t  Dfs>Vki * DPii
(6.313)
If we assume that and are nonzero, then when Se = SeQN, Mj^
becomes zero and the outer expansion (6.311)  (6.313) will fail.
When we expand about the nonplanar solution we end up with a much
more complicated system. But since we have expressed the solution to
the perfect nonplanar problem itself in terms of a perturbation series
in e, we can do the same for the imperfect problem.
i1 = 4>1 + Â£*] + ... (6.314)
o
If we take the zeroth order problem and once again separate variÂ¬
ables laterally,
*1 = Z *1. J (a.r/R) (6.315)
o .=1 oÃ o 1
and eliminate
eqns. (6.3~3)
and , we get the same system described by
Hoi soi oi
 (6.310) but with . as the variable. Again using the
01
eigenfunctions of Section 5.2, the solution is
82
*1 = E E Q.. J (a.r/R)
Â° i = i j=i 01 ij o l
(6.316)
with taking the same form as eqns. (6.312) and (6.313).
Since these equations are valid only for Se close to SeoN, we can write
an expansion for
dM
N1
M (Se) = M (Se ) + (Se  Se ..)
N1 N1 oN oN dSe
. (6.317)
Se = Se
oN
which simplifies to
VSe)
0 +
eSeiNMN1 + 0(G )
(6.318)
where
dM...
i. * _ N1
MN1 dSe
Se = Se
oN
(6.319)
and Se1N has been derived in Section 4.2. Hence the outer expansion
about the nonplanar solution is
* = * + _Ã J (a r/R) + 0(e ) +
c oN o N
Â«Q ,fJt> â€œ J) o o
i[ cSe1NM'N1'" QN1 J0(aNr/R) * 0
(6.320)
83
6.4. The Inner Expansions
The outer expansions described in the previous section fail at Se =
SeoN> requiring inner expansions in this vicinity. For Se very near
CO
Se (p) = Se
(6.41)
oN
k=2
<5(p) = pC
(6.42)
where b and c are integers to be determined such that the solution does
not fail at Se = Se^. We can now expand the solutions in orders of p.
CO
u(r,z,p) = e(r,z,Se,<5) = E uk(r,z)pk/k!
k=0
(6.43)
CO
v(r,z,p) = C(r,z,Se,Ã³) = E vk(r,z)pk/k!
k=0
(6.44)
CO
w(r,z,p) = c(r,Se,Ã³) = Z wk(r)pk/k!
k=0
(6.45)
Here the superscripts on u, v and w are not powers but indices.
Substituting these expansions into the problem set up in Section 6.2 and
collecting the terms of order p, we once again get an inhomogeneous
problem. Separating variables and eliminating v., v and w, the problem
36 S
reduces to
(6.46)
84
with boundary conditions
at z = 1 ,
Uu â– 0
at z = s
u . = 0
si
at z = 0,
B.*! = 5'h1
iTi i
where
and
d<5
5 '
Se' =
U=0
dSe
du
p=0
The variables and have been defined in Section 5
and h^ in Section 6.3. But Y^ now becomes
Y = (G, + Se Gâ€ž  af A)/(Ge + Se â€ž G  af A )
1 X, ON Cl s oNci
This means that the operator is singular when i=N,
for solutions to exist 6has to orthogonal to the null
Using this solvability condition with QN1 we get
z=0

(6.47)
(6.48)
(6.49)
(6.410)
(6.411)
.2 and f1
i
(6.412)
j=1 and hence
space of Ln.
(6.413)
85
From this we can conclude that S' = 0 (assuming J * <0*,, .f1,>) and
NI N
that c>1. This makes the system (6.46)  (6.412) homogeneous and
so are constant multiples of * .
o
*1 = A$o (6.414)
Proceeding to the next order we have
L.*2 = S"fJ (6.415)
and at z=0, B.^2 = h2 (6.416)
ill
h2 = 6"h?  2ASe'
i i
C . G /(G. + Se â€ž G a.A )
oi c i oN c i
+ 2A I. Q
l1
(6.417)
where
? 3 ? 2
... = I rJ^Ãa.r/R)dr/ J rJ (a.r/R)dr
i1Joi Joi
(6.418)
and Q is a complex function of the linear stability variables. The
solvability condition for i=N, j=1 now gives
J (Q
N1
(6.419)
Hence we can take 6" * 0 and Se' * 0 and so b=1 and c=2. Equation
(6.419) is a quadratic in A with two real roots A1 and A2 of opposite
signs, corresponding to two inner expansions I] and I2.
86
Se = SeoN + Â£Ã³1/2 + 0(6)
(6.420)
i> = *Â° + A^*o61/2 + 0(6)
(6.421)
In terms of y, the outer expansion 0Q about the planar state of
eqn. (6.311) can now be expressed by
â™¦in â–  j)qni J0(V/R)/5HÃ‘1 <6',22)
and the nonplanar expansion 01 of eqn. (6.3~20)
â™¦ill â– [Â«0N1.fi>  * V/Se1N]QN, J0(aNr/R> (6.123)
where we expressed as J (a^r/R). In attempting to match these
with the inner expansions of eqn. (6.421) we get
lim A1 = lim A2 (  J)/5M' (6.424)
Â£Â» 00 Â£Â»00
lim A, = lim A = Dâ€žÂ£/Se,â€ž (6.425)
_ 1 2 N IN
Hence using
A1
in
eqn.
(6.421)
will
give the
inner expansion I1
for
matching 0Q
for
Se
< SeoN
with 0.
for
Se > SeoN.
A2 will result in
I2,
matching 0Q
for
Se
> SeoN
with 0^
for
Se < SeofJ
as shown in Fig. 6
1 .
87
6.5. Imperfection Due to Advection in the Melt
In modelling morphological instability during solidification it is
customary to neglect the difference in density between liquid and
solid. Though this difference is very small (e.g. for the PbSn system,
the ratio of densities Pg/P^ is 1.035) the volume contraction upon
solidification results in closed streamlined flow in the melt which
fundamentally alters the planar state of this problem. Obtaining the
solution to the planar state with this flow is difficult enough even
without attempting the formidable task of solving the nonplanar probÂ¬
lem. In order to include the effect of the flow on morphological instaÂ¬
bility previous workers have therefore relied on simplifying assumptions
or looked at limiting cases.
The scenario in a typical solidification experiment is schematiÂ¬
cally shown in Fig. 62. The heating coils maintain constant temperaÂ¬
tures at positions z = l and z = s in the ampoule. As solidification
proceeds, the ampoule .is pulled in the positive zdirection at a veloÂ¬
city v in order that the liquidsolid interface will remain stationary
at z = 0. To fill the space created by volume contraction upon solidiÂ¬
fication, the melt will move towards the crystal with a bulk velocity
of v(p /p.  1) and this process is commonly referred to as "advec
S 3C
tion." In the presence of the rigid ampoule walls, this flow also
resembles the bolus flow of slugs through a pipe, resulting in closed
streamlined flow in the melt.
In the literature we find three approaches to tackling this probÂ¬
lem, the least of which is the work of Caroli, Caroli, Misbah and Roulet
(1985b) who ignored the rigid side walls. Then the only effect of
88
Figure 62. Crystal growth with advection in the melt
89
advection is a negligible modification of the growth velocity in the
melt. The other two approaches are more substantial and analize
limiting cases of this phenomenon. Since the traditional formulation of
morphological instability concentrates only at a "boundary layer" region
of the liquidsolid interface, in such a model the closed streamlined
flow shown in Fig. 62 can be approximated by Couette flow in Region I
and stagnation flow in Region II. Delves (1968, 1971 and 197*0 and
Coriell, McFadden, Boisvert and Sekerka (1984) looked at the effect of a
forced plane Couette flow and showed that the onset of morphological
instability is somewhat suppressed for disturbances in the flow
direction, while disturbances perpendicular to the flow were
uneffected. Recently McFadden, Coriell and Alexander (1988) examined
the effect of a plane stagnation flow on disturbances perpendicular to
the flow and here too the flow was found to be stabilizing.
Based on these two limiting cases it might be tempting to conclude
that advection generally stabilizes the liquidsolid interface. In this
and the next few sections we will embark upon a more complete analysis
of advection than has been attempted so afar and show that the above
assertion is questionable at best. In our model we consider morphologiÂ¬
cal instability with advection in the absence of natural convection. We
choose not to include natural convection as we wish to study the effect
of advection only and natural convection will only further complicate an
already nontrivial problem. Besides it has been shown very conclusively
by Coriell, Cordes, Boettinger and Sekerka (1980) and by Caroli, Caroli,
Misbah and Roulet (1985a) that the convective and morphological modes
are decoupled except at points where they become comparable. Hence our
model will be valid for the high growth velocity region where morpholo
90
gical instability is dominant and also in low gravity environments where
natural convection can be neglected.
The experimental set up was briefly described earlier. The steady
state domain equations in dimensionless form are
?vÂ°
(6.51)
2 ^i
V C2  V 3T  U'VCH " Â°
(6.52)
V T =0
s
(6.53)
2 3Cs
nV~C  v T2 = 0
s 9z
(6.54)
Here u is the velocity of the closed streamlined flow in the melt
caused by advection and 5 is (p /p.  1). The boundary conditions are
S XÂ»
at z  1, Tji " T1 * Cj, = C1
(6.55)
at z = s, Ts = T2
(6.56)
at z =5, T^ = Ts =  SeC^ + A H
(6.57)
VTâ€ž*n  fJVT *n = Lv
x. s
(6.58)
kC. = C
2, s
(6.59)
VC *n  (1+<5)vC. = nVC *n  vC
X/ X/ s s
(6.510)
91
Before we can write the equations for u, further assumptions are
necessary. The domain of the velocity equations extend over the entire
melt region, not just the depth l that we have considered. In the float
zone technique this melt region will still have a constant depth as
solidification proceeds but in Bridgman growth the melt region will
continuously shrink. Since crystal growth velocities are usually so
small, even in the latter technique it takes awhile before there is an
appreciable change in the melt depth. Hence over a short time span a
constant depth assumption will be valid even for Bridgman growth. We
will also assume that the melt is bounded on all sides by rigid walls.
This will require a container for zone refining and a very viscous
encapsulant for the melt in Bridgman growth.
Under these assumptions the velocity problem has been solved by
Duda and Vrentas (1971) for low velocities and here we will only give
the solution and refer the interested reader to their paper for the
details.
u = (5vR/r) 3ip/9z, u = 5v(1  (R/r)9
r* z
CO CO
ill = Z A F (r)Sinnir( 1 + z/Y) + Â£ G (z)rJ,(b r/R) (6.512)
, n n . n 1 n
n=1 n=1
F (r) = [rl, (nirr/Y)I0(mr/h)  r^I. (mr/h)I0(nirr/Y)/R]/I^(mr/h) (6.513)
n 1 2 1 22
G (z) = 2B [sinhb (z+Y)/R  (z/Y+1)exp(b z/R)Sinhb h]
n nL n y n n J
+ 2C (z+Y)/R expb h Sinhb z/R
n *n n
(6.514)
92
2 2
gn = Jo^bn^ 4bnhexpbnh + ^2exPbnh " exp(bnh)  exp3t>nh)/h] (6.515)
Bngn " %bexpbnh * AmQmn + 2(1  exP2bnh) Z ^Qmn^f (6.516)
m=1 m=1
hg C = 4(b hexpb h  Sinhb h) Z A Q
nn n*n n . m mn
m=1
(4b h+2  2exp2b h) Z A Q (1 )
n n , m mn
m=1
m
(6.517)
bn = \ nir^ I0(nir/h^I2^nir/b^ â€ !^(nir/b) J/I^nir/h)
(6.518)
mn
2bn(rmr/h)2I2(rmr/h) J^ib^)
I2(mir/h)[ (mir/h)2 + b 2]2
2 n
(6.519)
y = l /%, h = Y/R
m
(6.520)
where is the total melt depth, R the dimensionless radius of the
ampoule, ur and uz the radial and axial components of the velocity, Jp
the Bessel function of the first kind of order p and ID the modified
Bessel function of the first kind of order p. Duda and Vrentas have
determined the first twenty coefficients of An for various values of h
and we will use these in our calculations.
93
6.6 Nonexistence of the Planar State
The key assumption made in the two previous approaches to solving
the advection problem was that a stable planar state was still possible
even in the presence of melt flows. But this is true only if the veloÂ¬
city profile very close to the interface is assumed to be in a special
form, the vertical component of velocity being independent of any horiÂ¬
zontal coordinates and the horizontal component of velocity at most a
linear function of that horizontal coordinate. As can be seen by eqns.
(6.511)  (6.519) these assumptions can only be viewed as limiting
cases and in general up and uz will be complex functions of both r and
z. In this section we will use this to prove the nonexistence of planar
solutions for this problem. This proof can also be used to show the
nonexistence of planar solutions for the case of imperfect insulation
considered in Sections 6.6  6.4.
In Section 3.1 where we assumed that 6 was zero, a planar solution
was possible with the temperatures and concentrations functions of z
only. Then the energy balance condition at the interface (given by eqn.
(6.58)) could be used to determine the constant growth velocity v. In
other words the choice of T^, T2 and fixed v. For the case of nonÂ¬
zero 5 we will show that planar solutions do not exist by contradicÂ¬
tion. If there is a possible planar solution eqn. (6.52) specifies
that cannot have radially independent solutions. The solution will
be in the form
C (r.z)  I C
n=1
(6.61)
94
where JQ is the zeroth order Bessel function of the first kind and an
are zeros of the first order Bessel function of the first kind. Then
the boundary conditions (6.57), (6.59) and (6.510) will require
that , Ts and Cs be expressed in similar expansions in terms of Bessel
functions. If we now return once more to eqn. (6.58) to calculate v,
we can see that v too should be expressed in terms of Bessel functions
radially, but this contradicts our assumption of a planar solution.
Hence in the presence of advection there can be no planar solutions to
this problem.
6.7. Asymptotic Solution
A complete nonplanar solution of the equations described in Section
6.6 will require tedious numerical calculations. But such calculations
may be unnecessary, for as mentioned before for most systems 6 is an
extremely small number and hence an asymptotic solution should be posÂ¬
sible about the 6=0 solution. This would be similar to the method
used for analyzing heat loss at the ampoule wall and here too we will
show that advection is a bifurcation breaking imperfection on the morÂ¬
phological instability problem.
But unlike the problem with imperfect insulation, here the addiÂ¬
tional terms are in the concentration equations, not in the temperature
ones. Hence as done earlier we cannot eliminate the concentrations and
reduce the problem to only the temperature equations and so the eigenÂ¬
value problem defined in Section 5.2 has to be modified to include the
concentrations in the column vector. Correspondingly the differential
operator Li, the boundary operator and the inner product will have to
be changed to those used in Chapter 3.
95
L.Q.. =  M..Q..
i ij ij ij
(6
.71)
r
M*
II
(D2a2)
0 0
0
â€¢
0
â€” (D2vDa2) 0
X 1
0
0
0 (D2a2)
0
0
0 0 ^
X
(nD2vDna2)
O
(6
.72)
â€ž 0 â€ž
<* ,*> = J (TI
1 *
. + C*C.)dz + Ã (T*T + C*C )dz
X. i i q 3 3 SS
(6
.73)
B. =
i
(1Yi)
Se Y.
i
i
0
D
0 6D
0
x/Y.
X
(xSe/Y.k) 0
1
(6
.74)
vx/Y.
i
â€¢
[Dv(xSe/Y.+1k)] 0
nD
where
$ has been
expanded to (T0, C., T , C ) and
36 Yj S S
*1 â€¢
x â€¢ (l<0lo  Gsc)/
The eigenvalues M^j are the roots of
Se = ( gt + a.A )/ GQ
(6.77)
96
Gp is the same as that defined in eqn. (5.28) but Gc becomes
G = (Gâ€ž B + G )/(B+k)
c He sc
(6.78)
B =
(a..  v/2tanaâ€ž.)tana .s
ill Zi si
(na . + v/2tana .tanaâ€ž.
si si Hi
(6.79)
2 2 .. . 1 / 2
a.. = (M..  a.  v /4)
Hi ij l
(6.710)
/ .y, 2 2..,. 1/2
a . = (M..  a.  v /4)
31 ÃJ i
(6.711)
The modified eigenvalue problem defined above is nonself adjoint
and therefore its completeness is not assured. The adjoint problem will
have the same form as that obtained in Section 3.3.
Now if we write the outer expansions
00
* = I Ãk 5k (6.712)
k=0
and collect the first order terms in <5, the solution can be obtained in
the same form as in Section 6.3. For Se < Se0jj we have
I1
i
f = (0, lJvDCÂ°, 0, 0)
? ? 2
= J R(3
J oi i o i
(6.713)
(6.714)
0
(6.715)
97
The outer expansion about the planar state then becomes
" " 2
* = *+61 E â€”â€”â€” Q. .j (a.r/R) + 0(5 ) (6.716)
c .... M. . 1J O 1
i = 1 J=1 ij
*
where Q. . is the adjoint eigenfunction of Q. . . Similarly the outer
i J l J
expansion about the nonplanar solution is
+ e* J (a r/R) + 0(e )
ON o N
r
6 cf!' Qvâ€žJ U^/R) +
eSe,,.M.t, Ni o N
in N1
0(eÂ°)]
+ 0(62)
(6.717)
Once again it can be seen that both solutions will fail as
Se + Se0N and inner expansions are needed.
Se(y) = Se + Â£yb + Z Â£kykb/k! (6.718)
k=2
6(y) = yÂ°
(6.719)
with corresponding expansions for the variables T., T , C., C and Â£.
Jv S XÂ» s
The first order problem in y then becomes
(6.720)
98
where fj has been defined in eqn. (6.713). Here all the boundary
conditions will
be homogeneous and the solvability condition gives
6' < QN1 â€™fly = Â° (6.721)
Hence 6' = 0, C
> 1 and = A* . In the next order
T 0
L.*2 = 5"f] (6.722)
li i
and at z = 0,
B.*2 = h2 (6.723)
h2 = 
i
2 ASe' [0, ioiGc, 0, 0] + 2A2I.1Q (6.724)
I., = 1 rJ^(a.r/R)dr/f rJ2(a.r/R)dr (6.725)
11 0 0 1 0 Â° 1
The solvability
condition now gives
J(QN1â€™hi} â€œ 6" < QN1â€™fN > = 0 (6.726)
So here too we can take 6" * 0 and Se' * 0
Se = SeQN + 5
* =
VO
where A refers
V
to A1 and A2, the two solutions of the quadratic equa
tion in A, eqn.
(6.726). The positive solution A1 will give the inner
99
expansion matching the outer expansion eqn. (6.716) for Se < SeoN with
the outer expansion eqn. (6.717) for Se > SeoN. The negative solution
will result in the inner expansion matching eqn. (6.716) for Se >
SeoN with eqn. (6.717) for Se < SeoN.
6.8. Controlling Imperfections
In order to calculate the imperfection due to heat loss/gain the
form of the functions f^(z) and fg(z) must be known. A possible form
for these are
Vz) = (TÃ¼c(z) ' V + (T1 " Ta)(z " c)/(1 + ?) (6.81)
f (z) = (T (z)  T )  T  T )(z  c)/(s  z) (6.82)
s sc a 2 a
where T_ is the ambient temperature and T. and T are Tâ€ž and T in the
planar state defined by eqns. (3.22) and (3.23). This form was chosen
to satisfy the experimental conditions and to resemble Newton's law of
cooling. Hence 6/k. and <5/k will represent Biot numbers for the liquid
X/ s
and solid sections of the ampoule.
The resulting curves for the two imperfections are shown in Figs.
63 and 64. Figure 63 corresponds to the case of heat gain and
advection in the melt and Fig. 64 corresponds to heat loss. In Chapter
4 we concentrated on identifying suitable growth conditions in order to
avoid morphological instability. But as we have shown these
inperfections undermine our earlier effort by causing the liquidsolid
interface to be nonplanar at all times. All this makes the situation
100
Figure 63. Imperfect bifurcation diagram for heat loss
and advection
Figure 64. Imperfect bifurcation diagram for heat gain
101
seem hopeless for the crystal grower but it should be noted that even
though these imperfections cause nonplanarity right from the beginning,
large deviations from planarity still occur only for Se > SeQN. Still
for those growers concerned even with the small amount of nonplanarity
at Se < SeoN, we suggest a possible way to reduce the effect of
imperfections by mutual cancellation.
With regard to the imperfect insulation case, the important obserÂ¬
vation to be made is that this is an imperfection that can be controlled
to some extent. This can be done either by adjusting the amount of
insulation or by varying the ambient temperature. If this were the only
imperfection in the problem, its effect can be minimized by good insulaÂ¬
tion and by keeping Ta between and T2. Coupled as it usually will be
with the imperfection due to advection in the melt, this control can be
used to reduce their effects by mutual cancellation. Total elimination
is of course not possible but by maintaining the ambient temperature
above that of the ampoule it should be possible to minimize the effect
of these imperfections.
CHAPTER 7
NEW DIRECTIONS
There are several important issues still waiting to be addressed in
morphological instability in crystal growth. In this Chapter some of
these which are important and deserve attention will be briefly disÂ¬
cussed.
7.1. Transition to Dendritic Growth
This is a very open question and it will probably be years before
even preliminary results can be obtained. Ungar and Brown (1985) have
made an attempt in this direction by modelling the formation of deep
cells but were unable to proceed to the point where the cells begin to
coalesce. Another way of looking at their work is to say that they
tried to portray the transition to dendritic growth as a smooth one and
they failed in this.
This brings up the question, is the transition really smooth? If
it is smooth then it can only mean that the failure of Ungar and Brown
was only due to shortcomings of their deep cell model and improving the
model should rectify the problem. But if the transition is similar to
transition to turbulence in fluid flow or transition to chaos in dynamiÂ¬
cal systems, then we have a much more complex problem which defies easy
solutions. The experiments of Heslot and Libchaber (1984) indicate that
the coalescing of cells is catastrophic rather than smooth.
102
103
A possible way to determine whether the transition is smooth or not
is to look at secondary bifurcations for the steady state case. SecondÂ¬
ary and cascading bifurcations would indicate a more complex transiÂ¬
tion. When Ungar and Brown (1984a) initially did their nonlinear calcuÂ¬
lations with their simplified onesided model they observed subcritical
bifurcations but when they repeated their calculations for a more accuÂ¬
rate model (Ungar, Bennet and Brown (1985)) they failed to see any.
Unfortunately their calculations were performed for only two sets of
experimental conditions and their results are by no means conclusive.
I have already talked about the multiplicities in the problem and
these could lead to secondary bifurcations and hence examining the
multiplicities in the manner of Reiss (1983) would be a starting
point. If secondary bifurcations are observed an attempt could be made
to show that dendritic growth is a result of chaos in the system.
7.2. Extension to Semiconductor Materials
The theory of morphological instability was developed for binary
alloys but its biggest potential application is in the growth of semiÂ¬
conductor materials from the melt. But these materials are different in
two important respects. Firstly they are not simple binary mixtures
like alloys but complex compounds in the crystal form and secondly all
binary semiconductors like gallium arsenide have a onetoone ratio of
the components and hence even the melt is not a dilute mixture. The
effect of these is that the equilibrium relations at the liquidsolid
interface have to be reformulated. For example, the liquidus slope can
no longer be assumed to be a straight line and at least a quadratic
relationship will be required.
104
7.3. Inclusion of Microscopic Effects
Until now the researchers in morphological instability have been
fairly successful in studying the problem in the presence of the various
macroscopic influences that beset it while microscopic effects have been
almost completely ignored, except for the influence of grain boundaries
(see Ungar and Brown (1984b)). Anisotropy, that is the influence of the
lattice structure of the crystal on morphological instability, cannot be
ignored and this view has been reinforced by the experiments of Heslot
and Libchaber (1984). But how to include a microscopic effect on a
macroscopic model?
This is a fundamental question not just in crystal growth but in
all fluid mechanics. Molecular dynamics and statistical mechanics show
great promise in bridging the gap between molecular theory and continuum
mechanics (see Bitsanis, Magda, Tirrell and Davis (1987)). Even though
this would require tremendous effort and might seem like an overkill, it
is unavoidable if we hope to come up with an accurate model for the
influence of anisotropy on morphological instability. More importantly
it will be invaluable in understanding the mechanics of solidification
on a molecular level.
7.4. Numerical Methods
Almost all results in this thesis have been obtained by means of
asymptotic expansions. The advantages of this have already been disÂ¬
cussed in earlier chapters but there were numerous instances where the
effects of large deviations from the basic problem are necessary,
105
requiring numerical solutions. Ideally both types of analysis should be
done, one complementing the other.
Of course if molecular dynamics are employed, a numerical approach
is the only avenue, but even less demanding problems require it. In
this work some calculations were done for a weakly nonlinear analysis
with hexagonal and cylindrical cells but definite conclusion about the
bifurcation diagram could not be reached due to the absence of numerical
nonlinear calculations. Similarly the influences of large ampoule wall
heat losses and natural convection with rigid walls require numerical
solutions not to mention looking for secondary bifurcations along the
nonlinear curve.
7.5. Experiments
As mentioned several time in this thesis, there is a strong need
for quantitative experiments near the onset points. Recently de
Cheveigne et al. (1985 and 1 986) and Heslot and Libchaber (1984) have
made some efforts in this direction but a lot more needs to be done for
experiments to even catch up with theoretical work. Some of the quesÂ¬
tions that need to be answered by experiments are:
* Subcritical and supercritical bifurcations: As discussed in Section
4.4 theory predicts there are subcritical and supercritical bifurcaÂ¬
tion regions for this problem and experimental verification of these
would provide very useful information for the practical crystal
grower.
* Wavepattern and wavenumber selection: In this work (as well as in
the work of others) wherever a choice had to be made with regard to
106
wavepattern or wavenumber, the decision was based on theoretical
considerations or analogy with RayleighBenard convection. In some
instances, notably in wavepattern selection, the issue was skirted by
considering all possibilities. Experiments need to be done to verify
the validity of criteria proposed or to establish new criteria in
selections.
* Reducing imperfections: In Section 6.8 a way of reducing the effect
imperfections by playing off one against the other was proposed.
Only experiments can tell if this is a viable solution to the problem
of imperfections.
* Transition to dendritic growth: Heslot and Libchaber have shown that
oscillatory solutions precede dendritic growth. Cell disappearance
and cell splitting are also reported precursors. More work is needed
to establish the thread that leads from the cellular pattern near
onset to dendritic growth.
APPENDIX A
NOMENCLATURE
Latin
A
Ratio defined in eqn. (4.224)
A
V
Constant multiple defined by (6.414)
a
Wavenumber or aspect ratio
an
Wavenumber for n^h horizontal eigenvalue
V as
Modified wavenumbers defined in (3.225) and (3.226)
aU' asi
Modified wavenumbers defined in (5.219) and (5.220)
amin
The wavenumber for which SeQ is a minimum
B
Boundary operator
B
Ratio defined in eqn. (4.223)
Bi
Biot number
Bo
Bond number
b
Exponent defined by eqn. (6.41)
C1
Boundary concentration at z = l
crcs
Solute concentrations
c
Exponent defined by eqn. (6.42)
Cr
Crispation number
D
d_
dz
dn
Constant used in eqn. (6.423)
DrDs
Solute diffusivities
f
Inhomogeneous column vector in the domain
107
103
V fs
Functions defined in (6.21) and (6.22)
GrGs
Temperature gradients at the interface in the planar
state
Gi,câ€™Gsc
Concentration gradients at the interface in the
planar state
Gc
(D.G. + D G )/(D0 + D )
l Ic s sc l s
GÂ»p
(k*GJl + ksGs)/(kX. + ks}
g
Gravitational vector
Interface curvature
h
Inhomogeneous column vector at the boundary
h
Y/R
Ji
Ratio of integrals defined by (6.3â€” 6)
XP
Modified Bessel's function of the first kind of order
P
XiJ
Ratios of integrals for various cell patterns used in
Chapter 4
J
Bilinear concomitant
JP
Bessel's functions of the first kind of order p
k
Distribution coefficient
krks
Thermal conductivities
L
Matrix differential operator for linear problem
L
Latent heat number, L^D^/k^G,^
L,Li,L2>R
Wavelengths for various horizontal cell patterns
Lh
Latent heat
l
Liquid melt depth
l
m
Total melt depth
M
Eigenvalue of augmented morphological problem
109
m
Ma
n
P
Pe
Pr
Q
q
v
R
Ra
s
Se
Se
omin
W1
Ta
T1â€™T2
t
a
V US
urÂ» u
v
Absolute value of liquidus slope
Marangoni number
Unit normal vector at the interface, pointing into
the solid
Constant defined in (4.215) or modified pressure
Temperature eigenfunctions in augmented morphological
problem
Peclet number, D^/vi.
Prandtl number
Eigenvector of augmented morphological problem
Concentration eigenfunctions in augmented
morphological problem
Ampoule radius
Rayleigh number
Solid depth
Sekerka number, mGc/GT
The minimum value of SeQ
Temperatures
Ambient temperature
Freezing temperature of pure solvent
Boundary temperatures at z = l and z = s
Deviation from planarity in augmented morphological
problem
Advective velocity
Temperatures in inner expansions
Components of u
Convective velocity
Crystal growth velocity
110
v
V
v
s
w
X
Yi
Concentrations in inner expansions
Horizontal factor of the z component of V or
deviation from planarity in inner expansions
(kG.  G )/(G.  G )
1C SC X. S
Ratio defined in eqn. (5.216)
Greek
B
y
Ã³
e
C
n
9
\
u
5
prps
a
*
Thermal diffusivities
k /k
s
l
l /l
m
Imperfection parameter
Surface Laplacian
Pertubation variable about the planar state
Departure of interface from planarity
Fourier coefficient of temperature
Transformed temperatures defined by (6.23)
and (6.24)
Interfacial tension
61/C
Stretching parameter defined by eqn. (6.41)
Densities
Eigenvalue for linear stability problem
Column vector (T^.C.,! ,C ) or (T.,T )
XÂ» 36 S S 36 S
nth horizontal eigenfunction
Ill
*P Column vector in inner expansion
Adjoint eigenfunction of
Q Inhomogeneous column vector in eqn. (6.417)
and (6.724)
Gothic
2
A Capillary number,
Gq Modified concentration gradient defined in (3.228)
Gj Modified temperature gradient defined in (3.227)
Subscripts
c Refers to the planar state
mn m refers to order in the perturbation series in e
n refers to the nth horizontal Fourier coefficient
l Refers to liquid phase
s Refers to solid phase
Superscripts
Dimensionless quantity
Adjoint vector or operator
Complex conjugate
112
Variable in linear stability problem
n Order of terms in perturbation series for n, Pe,
Ã³ or p
APPENDIX B
PHYSICAL PROPERTIES
Properties of Alloy Systems
PbSn
PbSb
CAustenite
D (cm2 s 1)
3.0x10^
2.0x10^
2.0x10^
1
1
CO
1
e
o
o*
0.159
0.147
0.15
k (J cm 1 s 1 K 1 )
s
0.297
0.275
0.29
m (K/wt %)
2.33
5
65.3
Tâ€ž (K)
600
600
1485
\ (J cm 2)
4.27x106
2.30x106
2.04x10~5
Lh (J cm^)
256
280
2013
k
0.3
0.4
0.36
3
pa (g cm )
5
10.66
10.66
7.4
113
114
Properties of Organic Systems
Succinonitrile/Acetone
CBrjj/B^
(cm2 s 1)
1.27x10â€œ5
1 .2x10â€œ5
(J cm ' s 1 K S
2.23x10"3
k (J cm ^ s 1 K 1)
s
2.25x10~3
1 .1x10"2
ra (K/wt %)
3.02
2.9
tm (K)
331
93
\ (J cm"2)
8.94x107
7.00x10~7
Lh (J cm3)
47.8
34.45
k
0.1
0.16
3
pâ€ž (g cm )
s
1 .02
3.42
REFERENCES
Bitsanis, I., J.J. Magda, M. Tirrell and H.T. Davis, Molecular dynamics
of flow in micropores, J. Chem. Physics, 87, p1733, 1987.
Caroli, B., C. Caroli, C. Misbah and B. Roulet, Solutal convection and
morphological instability in directional solidification of binary alÂ¬
loys, J. de Physique, 46, p401 , 1985a.
Caroli, B., C. Caroli, C. Misbah and B. Roulet, Solutal convection and
morphological instability in directional solidification of binary alÂ¬
loys. II. Effect of the density difference between the two phases,
J. de Physique, 46, pi 657, 1985b.
Cheveigne, S. de, C. Guthman and M.M. Lebrun, Nature of the transition
of the solidification front of a binary mixture from a planar to a
cellular morphology, J. Crystal Growth, 73, p242, 1985.
Cheveigne, S. de, C. Guthman and M.M. Lebrun, Cellular instabilities in
directional solidification, J. de Physique, 47, p2095, 1986.
Clyne, T.W. and W. Kurz, Solute redistribution during solidification
with rapid solid state diffusion, Metall. Trans. A, 12A, p965, 1981.
Coriell, S.R., M.R. Cordes, W.J. Boettinger and R.F. Sekerka, Convective
and interfacial instabilities during unidirectional solidification of
a binary alloy, J. Crystal Growth, 49, pi 3* 1980.
Coriell, S.R., G.B. McFadden, R.F. Boisvert and R.F. Sekerka, Effect of
a force Couette flow on coupled convective and morphological
instabilities during unidirectional solidification, J. Crystal
Growth, 69, p. 15, 1984.
Coriell, S.R., G.B. McFadden and R.F. Sekerka, Cellular growth during
directional solidification, Ann. Rev. Mater. Sci., 15, p. 119, 1985.
Coriell, S.R. and R.F. Sekerka, Morphological stability near a grain
boundary groove in a solidliquid interface during solidification of
a pure substance, J. Crystal Growth, 19, p90, 1972.
Coriell, S.R. and R.F. Sekerka, Morphological stability near a grain
boundary groove in a solidliquid interface during solidification of
a binary alloy, J. Crystal Growth, 19, p285, 1973.
Coriell, S.R. and R.F. Sekerka, Oscillatory morphological instabilities
due to nonequilibrium segregation, J. Crystal Growth, 61, p499,
1983.
115
116
Delves, R.T., Theory of the stability of a solidliquid interface during
growth from stirred melts, J. Crystal Growth, 3, p562, 1968.
Delves, R.T., Theory of the stability of a solidliquid interface during
growth from stirred melts II, J. Crystal Growth, 8, pi3, 1971.
Delves, R.T., Theory of interface stability, in Crystal Growth, ed. B.R.
Pamplin, Pergamon, Oxford, 1974.
Drazin, P.G. and W.H. Reid, Hydrodynamic Stability, Cambridge University
Press, Cambridge, 1981.
Duda, J.L. and J.S. Vrentas, Steady flow in the region of closed stream
lines in a cylindrical cavity, J. Fluid Mech., 45, p247, 1971.
Glicksman, M., S.R. Coriell and G.B. McFadden, Interaction of flows with
the crystalmelt interface, Ann. Rev. Fluid Mech., 18, p307, 1986.
Hardy, S.C. and S.R. Coriell, Morphological stability and the icewater
interfacial free energy, J. Crystal Growth, 3, 4, p569, 1968.
Hardy, S.C. and S.R. Coriell, Morphological stability of cylindrical ice
crystals, J. Crystal Growth, 5, p329, 1969.
Hardy, S.C. and S.R. Coriell, Morphological stability of ice cylinders
in aqueous solution, J. Crystal Growth, 7, pl47, 1970.
Heslot, F. and A. Libchaber, Unidirectional crystal growth and crystal
anisotropy, Physica Scripta, T9, pi 26, 1985.
Hurle, D.T.J., On similarities between the theories of morphological
instability of a growing binary alloy crystal and RayleighBenard
convective instability, J. Crystal Growth, 72, p738, 1985.
Iooss, G. and D.D. Joseph, Elementary Stability and Bifurcation Theory,
SpringerVerlag, New York, 1980.
Joseph, D.D., Nonlinear heat generation and stability of the temperaÂ¬
ture distribution in conducting solids, Int. J. Heat and Mass Trans.,
8, p28l, 1965.
Joseph, D.D., Stability of Fluid Motions II, SpringerVerlag, Berlin,
1976.
Koschmeider, E.L., On convection under an air surface, J. Fluid Mech.,
30, p9, 1967.
Malkus, W.V.R. and G. Veronis, Finite amplitude cellular convection, J.
Fluid Mech., 4, p225, 1958.
Matkowsky, B.J. and E.L. Reiss, Singular perturbations of bifurcations,
SIAM J. Appl. Math., 33, p230, 1977.
117
McFadden, G.B., R.F. Boisvert and R.F. Sekerka, Nonplanar interface
morphologies during unidirectional solidification of a binary alloy
II: three dimensional computations, J. Crystal Growth, 84, p371,
1987.
McFadden, G.B. and S.R. Coriell, Nonplanar interface morphologies during
unidirectional solidification of a binary alloy, Physica, 12D, p253,
1984.
McFadden, G.B., S.R. Coriell and J.I.D. Alexander, Hydrodynamic and free
boundary instabilities during crystal growth: The effect of a plane
stagnation flow, to be published in J. Crystal Growth, 1988.
Morris, L.R. and W.C. Winegard, The development of cells during the
solidification of a dilute PbSn alloy, J. Crystal Growth, 5, p36l,
1969.
Mullins, W.W. and R.F. Sekerka, Morphological stability of a particle
growing by diffusion or heat flow, J. Appl. Physics, 34, p323, 1963.
Mullins, W.W. and R.F. Sekerka, Stability of a planar interface during
solidification of a dilute binary alloy, J. Appl. Physics, 35, p444,
1964.
Nadarajah, A. and R. Narayanan, On the completeness of the Rayleigh
Marangoni and Graetz eigenspaces and the simplicity of their eigenÂ¬
values, Quart. Appl. Math., 55, p8l, 1987.
Nadarajah, A. and R. Narayanan, Morphological instability in dilute
binary systems: a uniform approach, Submitted to PhysicoChemical
Hydrodynamics, 1988.
Naimark, M.A., Linear Differential Operators, Part I, Frederick Ungar,
New York, 1967.
Peteves, S.D., Growth kinetics of faceted solidliquid interfaces,
Doctoral dissertation, University of Florida, Gainesville, 1986.
Ramprasad, N. and R.A. Brown, Spatial wavelength dependence of direcÂ¬
tional solidification cells with finite depth, Paper 84j, AIChE
Annual Meeting in New York, November 1987.
Reiss, E.L., Cascading bifurcations, SIAM J. Appl. Math., 43, p57, 1983.
Rosenblat, G., G.M. Homsy and S.H. Davis, Eigenvalues of the Rayleigh
Benard and Marangoni problems, Phys. Fluids, 24, p2115, 1981.
Rosenblat, G., G.M. Homsy and S.H. Davis, Nonlinear Marangoni convection
in bounded layers. Part 1. Circular cylindrical containers, J. Fluid
Mech., 120, p91, 1982.
Rutter, J.W. and B. Chalmers, A prismatic substructure formed during
solidification of metals, Can. J. Physics, 31, p15, 1953.
113
Sarma, G.S.R., Interaction of surfacetension and buoyancy mechanisms in
horizontal liquid layers, J. Thermophys. Heat Trans., 1, p1 29, 1987.
Scriven, L.E. and C.V. Sternling, On cellular convection driven by surÂ¬
facetension gradients: effects of mean surface tension and surface
viscosity, J. Fluid Mech., 19, p321, 1964.
Segel, L.A. and J.T. Stuart, On the question of the preferred mode in
cellular thermal convection, J. Fluid Mech., 13, p289, 1962.
Seidensticker, R.G., Stability considerations in temperature gradient
zone melting, in Crystal Growth, ed. H.S. Peiser, Pergamon, Oxford,
1967.
Sriranganathan, R., D.J. Wollkind and D.B. Oulton, A theoretical
investigation of the development of interfacial cells during the
solidification of a binary alloy, J. Crystal Growth, 62, p265, 1983.
Stuart, J.T., On the nonlinear mechanics of wave disturbances in stable
and unstable parallel flows, J. Fluid Mech., 9, p353, I960.
Tavantzis, J., E.L. Reiss and B.J. Matkowsky, On the smooth transition
to convection, SIAM J. Appl. Math., 34, p322, 1978.
Tiller, W.A. and S.W. Rutter, The effect of growth conditions upon the
solidification of a binary alloy, Can. J. Physics, 34, p96, 1956.
Tiller, W.A., J.W. Rutter, K.A. Jackson and B. Chalmers, The redistribuÂ¬
tion of solute atoms during the solidification of metals, Acta
Metall., 1, p428, 1953
Trivedi, R. and K. Somboonsuk, Constrained dendritic growth and spacing,
Mat. Sci. and Eng., 65, p65, 1984.
Ungar, L.H., Directional solidification from a bifurcation viewpoint,
Doctoral dissertation, M.I.T., Cambridge, 1984.
Ungar, L.H., M.J. Bennett and R.A. Brown, Cellular interface morpholÂ¬
ogies in directional solidification. III. The effects of heat
transfer and solid diffusivity, Physical Rev. B, 31. p5923, 1985.
Ungar, L.H. and R.A. Brown, Cellular morphologies in directional solidiÂ¬
fication: the onesided model, Physical Rev. B, 29, pi 367, 1984a.
Ungar, L.H. and R.A. Brown, Cellular interface morphologies in direcÂ¬
tional solidification. II. The effect of grain boundaries, Phys.
Rev. B, 30, p3993, 1984b.
Ungar, L.H. and R.A. Brown, Cellular interface morphologies in direcÂ¬
tional solidification. IV. The formation of deep cells, Physical
Rev. B, 31, P5931, 1985.
119
Vrentas, J.S., R. Narayanan and S.S. Agrawal, Free surface convection in
a bounded cylindrical geometry, Int. J. Heat and Mass Trans., 24,
pi 513Â» 1981.
Watson, J., On the nonlinear mechanics of wave disturbances in stable
and unstable parallel flows, J. Fluid Mech., 9, p371, I960.
Wolf, M., T.W. Clyne and W. Kurz, Microstructure and cooling conditions
of steel solidified in the continuous casting mold, Arch. Eisenhut
tenwesen, 53, p3, 1982.
Wollkind, D.J. and S. Raissi, A nonlinear stability analysis of the
melting of a dilute binary alloy, J. Crystal Growth, 26, p277, 1974.
Wollkind, D.J. and L.A. Segel, A nonlinear stability analysis of the
freezing of a dilute binary alloy, Phil. Trans. Roy. Soc. London A,
268, p351, 1970.
Wollkind, D.J. and S. Wang, A nonlinear stability analysis of a model
equation for liquid phase electroepitaxial growth of a dilute binary
substance, SIAM J. Appl. Math., 48, p52, 1988.
Woodruff, D.P., The stability of a planar interface during the melting
of a binary alloy, Phil. Mag., 17, p83, 1968.
BIOGRAPHICAL SKETCH
The author was born on the 3rd of March, 1959, in Jaffna, Sri
Lanka, but moved shortly thereafter to Colombo where he had his early
education. In July, 1978, he joined the chemical engineering program at
the Indian Institute of Technology, Madras, and received his bachelor's
degree in June, 1983. In August of the same year he began his graduate
studies in chemical engineering at the University of Florida and did
research on RayleighBenard convection on his way to a master's degree
in August, 1984. Since then he has been a doctoral student in chemical
engineering at the same institution.
l on
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
/V,
Ranganathan Narayanan, Chairman
Associate Professor of Chemical
Engineering
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
c4 2/'
Ulrich H. Kurzweg
Professor of Engineering Sciences
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
Gerasimos K. Lyberatos
Assistant Professor of Chemical
Engineering
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
William E. Lear, Jr.
Assistant Professor of Mechanical
Engineering
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is fully
adequate, in scope and quality, as a dissertation for the degree of
Doctor of Philosophy.
5
A. s'.
Spyros A. Svoronos
Associate Professor of Chemical
Engineering
This dissertation was submitted to the Graduate Faculty of the College
of Engineering and to the Graduate School and was accepted as partial
fulfillment of the requirements for the degree of Doctor of Philosophy.
August 1988
Cl. Hjuh*
Dean, College of Engineering
Dean, Graduate School
UNIVERSITY OF FLORIDA
1262 08556 7823
PAGE 1
%,)85&$7,21 $1' 0253+2/2*,&$/ ,167$%,/,7< %\ $581$1 1$'$5$$+ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$ U 2) )/25,'$ /,%5$5,(6
PAGE 2
$&.12:/('*(0(176 ,Q WKH FRXUVH RI WKH WKUHH DQG D KDOI \HDUV RI HIIRUW WKDW ZHQW LQWR WKLV GLVVHUWDWLRQ UHFHLYHG KHOS IURP QXPHURXV SHRSOH LQ YDULRXV ZD\V WKDW FRQWULEXWHG WR LWV FRPSOHWLRQ (QXPHUDWLQJ WKHP DOO ZRXOG PDNH WKLV QRWH EH DW RGGV ZLWK WKH VSLULW RI FRQFLVHQHVV RI WKH UHVW RI WKH GRFXPHQW DQG VR UHOXFWDQWO\ UHVROYHG WR LQFOXGH RQO\ WKRVH ZKR KDG PDGH D GLUHFW FRQWULEXWLRQ 1HHGOHVV WR VD\ VWLOO UHPHPEHU ZLWK JUDWLWXGH P\ GHEW WR WKH UHVW )LUVW PHQWLRQ VKRXOG EH PDGH WR P\ HUVWZKLOH PHQWRU 3URIHVVRU 06 $QDQWK DW WKH ,QGLDQ ,QVWLWXWH RI 7HFKQRORJ\ 0DGUDV ZKR ILUVW NLQGOHG DQ HQGXULQJ LQWHUHVW LQ WKHRUHWLFDO WUDQVSRUW SKHQRPHQD DQG HQFRXUDJHG P\ SURFOLYLWLHV WRZDUG JUDGXDWH VWXG\ 7KH JUHDWHVW KHOS FDPH IURP P\ DGYLVRU 'U 5 1DUD\DQDQ ZKR DSDUW IURP JHWWLQJ PH LQYROYHG LQ PRUSKRn ORJLFDO LQVWDELOLW\ DQG JLYLQJ PDQ\ VXJJHVWLRQV DOVR LPSDUWHG WR PH D VROLG EDFNJURXQG LQ PDWKHPDWLFV DQG K\GURG\QDPLF VWDELOLW\ WKHRU\ QRW WR PHQWLRQ KHOSLQJ PH LQ QXPHURXV RWKHU ZD\V 3URIHVVRU /( RKQV U ILUVW LQWURGXFHG PH WR OLQHDU RSHUDWRU WKHRU\ DQG JDYH VXJJHVWLRQV WRR UHJDUGLQJ P\ UHVHDUFK EXW PRUH LPSRUWDQWO\ KH ZDV P\ FKHPLFDO HQJLQHHULQJ FRQVFLHQFH EURDGHQLQJ P\ YLVLRQ ZKHQ WHQGHG WR VSHFLDOL]H WRR PXFK DQG NHHSLQJ WKH REMHFWLYHV LQ SHUVSHFWLYH ZKHQ JRW ZUDSSHG XS LQ DEVWUDFW WKHRUHWLFDO SRLQWV ,W LV QRW DQ H[DJJHUDWLRQ WR VD\ WKDW SUREDEO\ ZRXOG QRW KDYH SURJUHVVHG WKLV IDU DFDGHPLFDOO\ ZLWKRXW WKHVH WKUHH LQGLYLGXDOV
PAGE 3
, ZRXOG DOVR OLNH WR WKDQN 'UV 65 &RULHOO DQG *% 0F)DGGHQ RI WKH 1DWLRQDO %XUHDX RI 6WDQGDUGV IRU PDQ\ GLVFXVVLRQV DQG VXJJHVWLRQV UHJDUGLQJ WKH VXEFULWLFDO QDWXUH RI PRUSKRORJLFDO LQVWDELOLW\ WKH PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH 3URIHVVRU 8+ .XU]ZHJ 'U *. /\EHUDWRV 'U :( /HDU U DQG 'U 6$ 6YRURQRV IRU WKHLU WLPH DQG HIIRUW RQ P\ EHKDOI WKH 'HSDUWPHQW RI &KHPLFDO (QJLQHHULQJ IRU SURYLGn LQJ D UHVHDUFK DVVLVWDQWVKLS GXULQJ WKH ILUVW WZR \HDUV RI P\ 3K' ZRUN DQG WKH 'HSDUWPHQW RI 0DWKHPDWLFV IRU D OHFWXUHVKLS GXULQJ WKH ODVW RQH DQG D KDOI 0\ WKDQNV DOVR JR WR P\ XQFOH 'U 56 3HULQEDQD\DJDP IRU EHLQJ D UROH PRGHO DQG KHOSLQJ PH HYROYH D PHDQLQJIXO SKLORVRSK\ RI OLIH DQG FRSH ZLWK WKH VWUHVV RI JUDGXDWH VFKRRO )LQDOO\ ZLVK WR H[SUHVV P\ JUDWLWXGH WR P\ FROOHDJXH 6 3XVKSD YDQDP IRU PDQ\ HQOLJKWHQLQJ GLVFXVVLRQV DQG WR 'HEELH +LWW IRU GRLQJ D VXSHUE MRE RI W\SLQJ WKH PDQXVFULSW DQG FRUUHFWLQJ P\ 4XHHQnV (QJOLVK VSHOOLQJ
PAGE 4
7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LL $%675$&7 YL &+$37(56 '(6&5,37,21 2) 7+( 352%/(0 35(9,286 :25. 21 0253+2/2*,&$/ ,167$%,/,7< (DUO\ :RUN /DWHU 5HVHDUFK ,QFOXVLRQ RI 2WKHU (IIHFWV ([SHULPHQWV LQ 0RUSKRORJLFDO ,QVWDELOLW\ /LPLWDWLRQV RI ([LVWLQJ 0RGHOV DQG 8QDGGUHVVHG ,VVXHV $ 81,)250 )2508/$7,21 7KH )RUPXODWLRQ 7KH /LQHDU 6WDELOLW\ 3UREOHP 7KH $GMRLQW 3UREOHP DQG ([FKDQJH RI 6WDELOLWLHV )LQLWH &RQWDLQHUV DQG WKH 0RVW 'DQJHURXV :DYHQXPEHU 68%&5,7,&$/ %,)85&$7,21 7KHRU\ 7KH 6HFRQG 2UGHU 3UREOHP 7KH 7KLUG 2UGHU 3UREOHP &DOFXODWLRQV DQG &RPSDULVRQV &203$5,6216 :,7+ 5$
PAGE 5
7KH 2XWHU ([SDQVLRQV 7KH ,QQHU ([SDQVLRQV ,PSHUIHFWLRQ 'XH WR $GYHFWLRQ LQ WKH 0HOW 1RQH[LVWHQFH RI WKH 3ODQDU 6WDWH $V\PSWRWLF 6ROXWLRQ &RQWUROOLQJ ,PSHUIHFWLRQV 1(: ',5(&7,216 7UDQVLWLRQ WR 'HQGULWLF *URZWK ([WHQVLRQ WR 6HPLFRQGXFWRU 0DWHULDOV ,QFOXVLRQ RI 0LFURVFRSLF (IIHFWV 1XPHULFDO 0HWKRGV ([SHULPHQWV $33(1',&(6 $ 120(1&/$785( % 3+<6,&$/ 3523(57,(6 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+
PAGE 6
$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ %,)85&$7,21 $1' 0253+2/2*,&$/ ,167$%,/,7< %\ $UXQDQ 1DGDUDMDK $XJXVW &KDLUPDQ 'U 5DQJDQDWKDQ 1DUD\DQDQ 0DMRU 'HSDUWPHQW &KHPLFDO (QJLQHHULQJ 0RUSKRORJLFDO LQVWDELOLW\ UHIHUV WR WKH WHQGHQF\ WRZDUGV VSDWLDO SDWWHUQ IRUPDWLRQ RQ WKH OLTXLGVROLG LQWHUIDFH ZKHQ D GLOXWH ELQDU\ PL[WXUH LV VROLGLILHG RU IXVHG 7KH LPSRUWDQFH RI WKLV SKHQRPHQRQ LV LQ WKH JURZWK RI PHWDO DOOR\ DQG VHPLFRQGXFWRU FU\VWDOV IURP WKHLU PHOWV ZKHUH LW LQIOXHQFHV WKH VROXWH RU GRSDQW FRQFHQWUDWLRQ UHVXOWLQJ LQ QRQXQLIRUP SK\VLFDO DQG HOHFWULFDO SURSHUWLHV 3UHYLRXV IRUPXODWLRQV RI PRUSKRORJLFDO LQVWDELOLW\ KDYH LQYROYHG VHYHUDO VLPSOLI\LQJ DVVXPSWLRQV ZKLFK UHVWULFWHG LW WR WKH VWXG\ RI D UHJLRQ LPPHGLDWHO\ VXUURXQGLQJ WKH LQWHUIDFH 7KH PRGHOV KDYH OLPLWHG YDOLGLW\ DQG WKH\ UHTXLUH VHSDUDWH WUHDWPHQWV IRU GLIIHUHQW VLWXDWLRQV OLNH IUHH]LQJ DQG PHOWLQJ ,Q WKLV VWXG\ D QHZ XQLIRUP DSSURDFK LV SUHVHQWHG ZKLFK FRQVLGHUV WKH HQWLUH PHOW DQG FU\VWDO GRPDLQ DQG LV DSSOLFDEOH WR DOO VLWXDWLRQV (DUOLHU IRUPXODWLRQV DUH VKRZQ WR EH DSSUR[LPDWLRQV RI WKLV DQG H[FKDQJH RI VWDELOLWLHV LV SURYHQ DV\PSWRWLFDOO\ YL
PAGE 7
7KH PRGHO LV WKHQ XVHG ZLWK D ZHDNO\ QRQOLQHDU WHFKQLTXH WR SUHGLFW WKH VKDSH RI WKH ELIXUFDWLRQ GLDJUDP IRU YDULRXV FHOO SDWWHUQV 7KH VXEFULWLFDO QDWXUH RI PRUSKRORJLFDO LQVWDELOLW\ LV VKRZQ DQG UHJLRQV RI LWV SUHYDOHQFH DUH GHWHUPLQHG RYHU WKH HQWLUH GRPDLQ RI H[SHULPHQWDO SDUDPHWHUV 7KLV ZDV XVHG WR FRPSDUH ZLWK H[SHULPHQWDO UHVXOWV DQG WR GHWHUPLQH RSWLPDO FU\VWDO JURZWK UHJLRQV $ FRPSUHKHQVLYH FRPSDULVRQ RI PRUSKRORJLFDO LQVWDELOLW\ ZLWK FRQn YHFWLYH LQVWDELOLW\ ZDV XQGHUWDNHQ DQG WKLV SKHQRPHQRQ ZDV VKRZQ WR UHVHPEOH 0DUDQJRQL FRQYHFWLRQ LQ LWV PDWKHPDWLFDO DQG SK\VLFDO IHDn WXUHV 7KLV ZDV GRQH LQ RUGHU WR LQWURGXFH VRPH RI WKH PXOWLWXGLQRXV PDWKHPDWLFDO WHFKQLTXHV HPSOR\HG LQ FRQYHFWLYH LQVWDELOLWLHV LQWR PRUn SKRORJLFDO LQVWDELOLW\ DQG VSHFLILFDOO\ ZDV XVHG KHUH WR FRPSOHWH WKH HLJHQVSDFH RI WKH OLQHDUL]HG SUREOHP 7ZR LPSHUIHFWLRQV ZKLFK UHVLGH LQ WKH GRPDLQ KHDW ORVV DW WKH FRQWDLQHU ZDOO DQG DGYHFWLRQ LQ WKH PHOW ZHUH FRQVLGHUHG DQG VKRZQ WR EH ELIXUFDWLRQ EUHDNLQJ LPSHUIHFWLRQV 6ROXWLRQV WR WKH SUREOHP ZHUH REWDLQHG LQ ERWK FDVHV E\ PDWFKHG DV\PSWRWLF H[SDQVLRQV DQG EDVHG RQ WKHVH UHVXOWV D SUDFWLFDO ZD\ RI PLQLPL]LQJ WKH HIIHFW RI WKHVH LPSHUn IHFWLRQV ZDV VXJJHVWHG YLL
PAGE 8
&+$37(5 '(6&5,37,21 2) 7+( 352%/(0 0RUSKRORJLFDO LQVWDELOLW\ UHIHUV WR WKH SURFHVV RI VSDWLDO SDWWHUQ IRUPDWLRQ DW WKH OLTXLGVROLG LQWHUIDFH ZKHQ D ELQDU\ PL[WXUH LV VROLGLILHG RU IXVHG 7KLV LV D SUREOHP RI K\GURG\QDPLF LQVWDELOLW\ DQG OLNH DOO RWKHU SUREOHPV RI WKLV QDWXUH IRU WKLV SKHQRPHQRQ WRR WKHUH LV DQ RQVHW SRLQW ZKHUH WKH LQLWLDOO\ SODQDU LQWHUIDFH ILUVW EHJLQV WR GHIRUP DQG IRUPV FHOOXODU SDWWHUQV 7KHVH JURZ LQWR GHHSHU ILQJHUOLNH VKDSHV DQG HYHQWXDOO\ IRUPLQJ VLGH EUDQFKHV DQG WUHHOLNH GHQGULWLF VWUXFWXUHV 7KH LPSRUWDQFH RI WKLV SKHQRPHQRQ LV LQ WKH JURZWK RI PHWDO DOOR\ DQG VHPLFRQGXFWRU FU\VWDOV IURP WKHLU PHOWV 0RUSKRORJLFDO LQVWDELOLW\ DIIHFWV QRW MXVW FU\VWDO VKDSH EXW DOVR WKH VROXWH RU GRSDQW FRQFHQWUDWLRQ UHVXOWLQJ LQ QRQXQLIRUP SK\VLFDO DQG HOHFWULFDO SURSHUWLHV LQ WKH FU\VWDO 7KLV LV HVSHFLDOO\ SHUILGLRXV LQ DSSOLFDWLRQV ZKHUH VXSHUILQH FU\VWDOV ZLWK YHU\ FRQVLVWHQW SURSHUWLHV DUH UHTXLUHG 5HFHQWO\ WKHUH KDYH EHHQ VRPH LQGLFDWLRQV WKDW FU\VWDO TXDOLW\ FDQ EH VLJQLILFDQWO\ LPSURYHG E\ JURZLQJ WKHP LQ ORZ JUDYLW\ DV WKLV UHGXFHV RWKHU SUREOHPV DVVRFLDWHG ZLWK FU\VWDO JURZWK OLNH QDWXUDO FRQYHFWLRQ EXW XQIRUWXQDWHO\ QRW PRUSKRORJLFDO LQVWDELOLW\ *URZLQJ WKH FU\VWDO DW YHU\ KLJK WHPSHUDWXUH JUDGLHQWV RU DW YHU\ ORZ JURZWK UDWHV DYRLGV PRUSKRORJLFDO LQVWDELOLW\ EXW FU\VWDOV JURZQ DW KLJK WHPSHUDWXUH JUDGLHQWV DUH RI SRRU TXDOLW\ GXH WR WKHUPDO VWUHVVHV DQG WKH YHU\ ORZ JURZWK UDWHV PDNHV WKH SURFHVV YHU\ H[SHQVLYH +HQFH WKLV
PAGE 9
EHFRPHV D SUREOHP QRW RQO\ RI DYRLGLQJ FU\VWDO VXUIDFH GHIRUPDWLRQV EXW RQH RI RSWLPL]DWLRQ RI WKH SURFHVV DV ZHOO 7KHUH DUH VHYHUDO PHWKRGV IRU JURZLQJ FU\VWDOV IURP WKH PHOW GLVWLQJXLVKHG E\ WKH K\GURG\QDPLFV RI JURZWK 7KH WKUHH EDVLF RQHV DUH %ULGJPDQ &]RFKUDOVNL DQG IORDW ]RQH DQG PRVW WHFKQLTXHV DUH YDULDWLRQV RI WKHVH OLNH KRUL]RQWDO DQG YHUWLFDO %ULGJPDQ $ W\SLFDO %ULGJPDQ H[SHULPHQW LV VKRZQ LQ )LJ 7KH PDWHULDO LV XVXDOO\ LQ D TXDUW] DPSRXOH DQG LV PHOWHG DQG WKHQ UHFU\VWDOOL]HG LQ WKH %ULGJPDQ IXUQDFH 7KH XSSHU SDUW RI WKH DPSRXOH LV PDLQWDLQHG DW D KLJKHU WHPSHUDWXUH WKDQ WKH ORZHU DQG VROLGLILFDWLRQ SURFHHGV XSZDUGV DQG WKH DPSRXOH LV SXOOHG GRZQZDUGV DW WKH VDPH YHORFLW\ Y 7KH WRS RI WKH PHOW LV SURWHFWHG E\ D OLTXLG HQFDSVXODQW OLNH A $W WKH HQG RI WKH SURFHVV WKH DPSRXOH LV EURNHQ WR UHWULHYH WKH FU\VWDO ,Q WKH IORDW ]RQH WHFKQLTXH VKRZQ LQ )LJ WKH DPSRXOH RU WKH PDWHULDO LWVHOI LV SXOOHG WKURXJK D FLUFXODU IXUQDFH DQG WKH PHOWLQJ DQG UHFU\VWDOOL]DWLRQ SURFHHGV VLPXOWDQHRXVO\ $V WKLV WHFKQLTXH FDQ EH GRQH HYHQ ZLWKRXW D FRQWDLQHU LW DYRLGV WKH SUREOHP RI LPSXULWLHV IURP WKH DPSRXOH HQWHULQJ WKH FU\VWDO EXW LWV PRUH GLIILFXOW WR PDLQWDLQ D XQLIRUP WHPSHUDWXUH JUDGLHQW )LJXUH VKRZV WKH &]RFKUDOVNL PHWKRG ZKHUH WKH FU\VWDO LV URWDWHG DQG SXOOHG IURP D PHOW SRRO $V WKH HPSKDVLV KHUH LV RQ WKH OLTXLGVROLG LQWHUIDFH WKH PRGHOOLQJ RI WKH FU\VWDO JURZWK SURFHVV ZLOO EH NHSW DV JHQHUDO DV SRVVLEOH EXW ZLOO UHVHPEOH WKH %ULGJPDQ WHFKQLTXH WKH PRVW 7KH WHPSHUDWXUH DQG FRQFHQWUDWLRQ SURILOHV GXULQJ W\SLFDO FU\VWDO JURZWK FRQGLWLRQV DUH VKRZQ LQ )LJ 7KH WHPSHUDWXUH SURILOHV LQ WKH OLTXLG DQG VROLG DUH YLUWXDOO\ VWUDLJKW OLQHV DQG VROXWH FRQFHQWUDWLRQ LQ WKH VROLG LV YLUWXDOO\ FRQVWDQW %XW WKH VROXWH
PAGE 10
)LJXUH )ORDW ]RQH )LJXUH &]RFKUDOVNL
PAGE 11
FRQFHQWUDWLRQ LQ WKH OLTXLG FKDQJHV VKDUSO\ QHDU WKH LQWHUIDFH EHFDXVH RI VROXWH UHMHFWLRQ RQ VROLGLILFDWLRQ 7KLV LQ WXUQ KDV DQ HIIHFW RQ WKH IUHH]LQJ SRLQW GHSUHVVLRQ LQ WKH OLTXLG DV VKRZQ LQ WKH ILJXUH )LJXUH VKRZV WKH VDPH SURILOHV EXW LQ D VLWXDWLRQ ZKHUH WKH IUHH]LQJ SRLQW LQ WKH OLTXLG 70 QRZ H[FHHGV WKH DFWXDO OLTXLG WHPSHUDWXUH WKLV FKDQJH FDQ EH EURXJKW DERXW E\ HLWKHU UHGXFLQJ WKH OLTXLG WHPSHUDWXUH JUDGLHQW RU E\ PDNLQJ WKH FKDQJH LQ QHDU WKH LQWHUIDFH HYHQ VKDUSHU E\ LQFUHDVLQJ WKH JURZWK YHORFLW\f 7KLV LV UHIHUUHG WR DV FRQVWLWXWLRQDO VXSHUFRROLQJ DQG WKH V\VWHP UHVSRQGV WR WKLV XQVWDEOH VLWXDWLRQ E\ LQWHUIDFH GHIRUPDWLRQ &RXQWHULQJ WKLV LV WKH LQWHUIDFLDO WHQVLRQ ZKLFK DOZD\V DFWV WR PLQLPL]H WKH VXUIDFH DUHD ZKLFK LQ WKLV FDVH LV WKH SODQDU VXUIDFH :KHQ WKLV EDODQFH LV XSVHW RU LQ RWKHU ZRUGV ZKHQ WKH RQVHW FRQGLWLRQV DUH H[FHHGHG WKH LQWHUIDFH ORVHV SODQDULW\ DQG IRUPV FHOOXODU SDWWHUQV )LJXUH VKRZV WKH SURILOHV IRU WKH IXVLRQ FDVH ZKHUH ZH FRXOG KDYH 70 LQ WKH VROLG EHLQJ OHVV WKDQ WKH DFWXDO VROLG WHPSHUDWXUH DQG RQFH DJDLQ LQWHUIDFLDO GHIRUPDWLRQ LV WKH V\VWHPnV UHVSRQVH EDODQFHG E\ LQWHUIDFLDO WHQVLRQ 7KH RQO\ GLIIHUHQFH KHUH LV WKDW VLQFH VROLG GLIIXVLYLWLHV WHQG WR EH VHYHUDO RUGHUV RI PDJQLWXGH ORZHU WKDQ OLTXLG GLIIXVLYLWLHV WKH VROXWH FRQFHQWUDWLRQ SURILOH LQ WKH VROLG QHDU WKH LQWHUIDFH ZLOO YDU\ HYHQ PRUH VKDUSO\ UHVXOWLQJ LQ ORZHU RQVHW FRQGLWLRQV IRU PRUSKRORJLFDO LQVWDELOLW\ ,Q WKH SDSHU RI 7ULYHGL DQG 6RPERRQVXN f WKHUH LV D VHULHV RI SKRWRJUDSKV IURP DQ H[SHULPHQW VHH )LJ LQ WKHLU SDSHUf ZKHUH VXFFLQRQLWULOHDFHWRQH FU\VWDOV ZHUH JURZQ 7KH ILUVW SKRWRJUDSK VKRZV WKH OLTXLGVROLG LQWHUIDFH MXVW DIWHU RQVHW DQG KDV D GLVFHUQLEOH FHOOXODU SDWWHUQ /DWHU RQHV VKRZ WKH FHOOV EHFRPLQJ GHHSHU IRUPLQJ
PAGE 12
)LJXUH &RQFHQWUDWLRQ DQG WHPSHUDWXUH SURILOHV GXULQJ VROLGLILFDWLRQ )LJXUH &RQFHQWUDWLRQ DQG WHPSHUDWXUH SURILOHV GXULQJ VROLGLILFDWLRQ )LJXUH &RQFHQWUDWLRQ DQG WHPSHUDWXUH SURILOHV GXULQJ IXVLRQ
PAGE 13
ILQJHUV DQG HQGLQJ XS DV GHQGULWHV 7KH DUURZV LQ WKH ILUVW SKRWRJUDSK PDUN WKH LQLWLDO SHUWXUEDWLRQV WKDW HYHQWXDOO\ EHFRPH GHQGULWHV ,Q WKLV WKHVLV ZH ZLOO FRQFHQWUDWH RQO\ RQ WKH UHJLRQ QHDU WKH RQVHW SRLQW VKRZQ E\ WKH ILUVW WZR SKRWRJUDSKV WKRXJK GHQGULWHV ZLOO EH PHQWLRQHG LQ GLVFXVVLRQV ,Q WKH SDSHUV E\ 0RUULV DQG :LQHJDUG f DQG 7LOOHU DQG 5XWWHU f ZH VHH DQRWKHU DVSHFW RI PRUSKRORJLFDO LQVWDELOLW\ WKH YDULHW\ RI FHOOXODU SDWWHUQV ILQJHUOLNH VKDSHV KH[DJRQDO FHOOV DQG YDULDWLRQV RI WKHVH 2WKHU SRVVLEOH VKDSHV DUH F\OLQGULFDO UROOV DQG UHFWDQJXODU FHOOV EXW E\ IDU WKH FRPPRQO\ HQFRXQWHUHG SDWWHUQ LV WKH KH[DJRQDO RQH 7KH FKRLFH RI WKH FHOO SDWWHUQ LV H[WUHPHO\ LPSRUWDQW DQG IDFWRUV GHWHUPLQLQJ WKLV FKRLFH ZLOO EH GLVFXVVHG ODWHU 7KHLU ILJXUHV DOVR VKRZ WKDW XQOLNH RWKHU IRUPV RI K\GURG\QDPLF LQVWDELOLW\ WKH QXPEHU RI FHOOV RQ D VLQJOH FU\VWDO LV LQ WKH KXQGUHGV 7KRXJK LW LV FXVWRPDU\ WR PRGHO PRUSKRORJLFDO LQVWDELOLW\ LQ WHUPV RI WKH WHPSHUDWXUH DQG FRQFHQWUDWLRQ SURILOHV LQ UHDOLW\ WKLV SKHQRPHQRQ VHOGRP H[LVWV LQ LVRODWLRQ LW LV XVXDOO\ FRXSOHG ZLWK IOXLG IORZ LQ WKH PHOW 7KHUH DUH WZR NLQGV RI IORZV WKDW RFFXU 7KH ILUVW LV EXR\DQF\ GULYHQ VROXWDO FRQYHFWLRQ ZKLFK LV FDXVHG E\ WKH VKDUS VROXWH FRQFHQWUDWLRQ JUDGLHQWV LQ WKH PHOW 7KH RWKHU LV WKH UHVXOW RI GHQVLW\ FKDQJH GXULQJ VROLGLILFDWLRQ :KHQ VROLGLILFDWLRQ RFFXUV WKHUH LV D FRQVWDQW UDWH RI YROXPH GHFUHDVH ZKLFK FDXVHV WKH PHOW WR PRYH LQ WR ILOO WKH YDFDWHG VSDFH 7KLV PRWLRQ LV UHIHUUHG WR DV DGYHFWLRQ DQG WKH ULJLG VLGH ZDOOV RI WKH DPSRXOH ZLOO FDXVH FORVHG VWUHDPOLQHG IORZ LQ WKH PHOW DV D UHVXOW VHH )LJ f ,Q DGGLWLRQ WKHUH ZLOO EH IORZV LQ WKH PHOW LQ &]RFKUDOVNL JURZWK GXH WR URWDWLRQ DQG RWKHU NLQGV RI IORZV LQ VSHFLDO JURZWK WHFKQLTXHV
PAGE 14
$SDUW IURP WKHVH VHYHUDO RWKHU SDUDPHWHUV DIIHFW WKLV SKHQRPHQRQ WKH PRVW LPSRUWDQW RI ZKLFK DUH GXH WR WKH IDFW WKDW PRVW FU\VWDOV DUH IDFHWHG WKDW LV WKH\ KDYH D FU\VWDO ODWWLFH VWUXFWXUH +HQFH ZKHWKHU WKH ODWWLFH D[LV LV DOLJQHG RU QRW ZLWK WKH JURZWK GLUHFWLRQ LV H[WUHPHO\ LPSRUWDQW DV FDQ EH VHHQ IURP WKH H[SHULPHQWV RI +HVORW DQG /LEFKDEHU f 2WKHU LPSRUWDQW FRQVLGHUDWLRQV DUH JUDLQ ERXQGDULHV ZHWWLQJ RI WKH DPSRXOH ZDOO DQG WKH SUHVHQFH RI LPSXULWLHV $OVR LQ UDSLG VROLGLILFDWLRQ WKH V\VWHP ZLOO QRW EH DW WKHUPRG\QDPLF HTXLOLEULXP DQG NLQHWLF XQGHUFRROLQJ RI WKH PHOW EHFRPHV VLJQLILFDQW
PAGE 15
&+$37(5 35(9,286 :25. 21 0253+2/2*,&$/ ,167$%,/,7< (DUO\ :RUN 7KH ILUVW VXFFHVVIXO DWWHPSW DW H[SODLQLQJ PRUSKRORJLFDO LQVWDELOLW\ TXDOLWDWLYHO\ ZDV E\ 5XWWHU DQG &KDOPHUV f 7KH\ FRLQHG WKH ZRUG FRQVWLWXWLRQDO VXSHUFRROLQJ WR GHVFULEH WKH H[LVWHQFH RI XQVWDEOH PHOW UHJLRQV QHDU WKH LQWHUIDFH ZKHUH WKH IUHH]LQJ WHPSHUDWXUH FDQ EH KLJKHU WKDQ WKH OLTXLG WHPSHUDWXUH LWVHOI DQG FRUUHFWO\ LGHQWLILHG WKLV DV WKH FDXVH RI LQWHUIDFH GHIRUPDWLRQ 7LOOHU 5XWWHU DFNVRQ DQG &KDOPHUV f TXDQWLILHG FRQVWLWXWLRQDO VXSHUFRROLQJ DQG IRU LQVWDELOLW\ FDPH XS ZLWK WKH FRQGLWLRQ P*+R!*W ZKHUH P LV WKH DEVROXWH YDOXH RI WKH OLTXLGXV VORSH *A WKH OLTXLG WHPSHUDWXUH JUDGLHQW DW WKH LQWHUIDFH DQG *AF WKH VROXWH FRQFHQWUDWLRQ JUDGLHQW LQ WKH OLTXLG DW WKH LQWHUIDFH 7KH QHJDWLYH VLJQ LV FDXVHG E\ *A DQG *A EHLQJ LQ RSSRVLWH GLUHFWLRQV VHH )LJ f $V FDQ EH VHHQ WKHVH VLPSOH WKHUPRG\QDPLF H[SODQDWLRQV GR QRW WDNH LQWR DFFRXQW WKH VWDELOL]LQJ HIIHFW RI LQWHUIDFLDO WHQVLRQ 7R GR VR ZRXOG UHTXLUH FDVWLQJ WKH SUREOHP DV RQH RI K\GURG\QDPLF LQVWDELOLW\ DQG REWDLQLQJ WKH RQVHW FRQGLWLRQV IURP D OLQHDU VWDELOLW\ DQDO\VLV 7KLV LV H[DFWO\ ZKDW
PAGE 16
0XOOLQV DQG 6HNHUND f GLG ZKHQ WKH\ FRQVLGHUHG WKH SUREOHP ZLWK WHPSHUDWXUH DQG FRQFHQWUDWLRQ HTXDWLRQV LQ WKH OLTXLG DQG VROLG DQG ERXQGDU\ FRQGLWLRQV DW WKH LQWHUIDFH 7KHLU FULWHULRQ IRU LQVWDELOLW\ WR DQ LQILQLWHVLPDO GLVWXUEDQFH ZDV P* *W D7$/ f F 7 0 K ZKHUH *7 LV WKH ZHLJKWHG WHPSHUDWXUH JUDGLHQW *W NA NJ*J9LNA NVf f +HUH NV DQG NA DUH WKH VROLG DQG OLTXLG WKHUPDO FRQGXFWLYLWLHV *F LV D PRGLILHG OLTXLG FRQFHQWUDWLRQ JUDGLHQW JLYHQ E\ *F *OFDMO Y'ÂfDMO NY'Af f De DÂ Y9' S f ZKHUH D LV WKH ZDYHQXPEHU RI WKH GLVWXUEDQFH N WKH VROXWH GLVWULEXWLRQ FRHIILFLHQW 70 WKH PHOWLQJ WHPSHUDWXUH RI WKH SXUH VROYHQW /K WKH ODWHQW KHDW RI IXVLRQ DQG $ WKH LQWHUIDFLDO WHQVLRQ 7KLV DQDO\VLV ODLG WKH IRXQGDWLRQ IRU DOO IXUWKHU ZRUN LQ PRUSKRORJLFDO LQVWDELOLW\ )ROORZLQJ WKHP :RRGUXII f GLG WKH OLQHDU VWDELOLW\ DQDO\VLV DORQJ WKH VDPH OLQHV IRU WKH PHOWLQJ SUREOHP DQG FDPH XS ZLWK WKH VDPH FULWHULRQ DV f EXW ZLWK * QD Y'ffQND D NfY'ff f & 6& 6 e 6 ; ;
PAGE 17
$ D D Y f V V f ZKHUH *VF LV WKH VROLG FRQFHQWUDWLRQ JUDGLHQW DW WKH LQWHUIDFH DQG Q LV 'V'U WKH UDWLR RI VROXWH GLIIXVLYLWLHV /DWHU 5HVHDUFK 7KH QH[W PDMRU FRQWULEXWLRQ WR WKH SUREOHP ZDV PDGH E\ :ROONLQG DQG 6HJHO f ZKR SURYHG H[FKDQJH RI VWDELOLWLHV IRU WKLV SUREOHP IRU PRVW SDUDPHWHU UDQJHV 3URYLQJ H[FKDQJH RI VWDELOLWLHV LV HTXLYDOHQW WR VKRZLQJ WKH H[LVWHQFH RI WKH RQVHW RI VWHDG\ VWDWH QRQSODQDU VROXWLRQV 7KH\ DOVR FRQVLGHUHG WKH ZHDNO\ QRQOLQHDU UHJLPH DIWHU WKH RQVHW RI LQVWDELOLW\ DQG XVLQJ WKH PHWKRG RI 6WXDUW ,f DQG :DWVRQ ,f DQDO\]HG WKH SUREOHP IRU WKH FDVH RI WZRGLPHQVLRQDO UROOV VKRZLQJ WKH H[LVWHQFH RI VXEFULWLFDO ELIXUFDWLRQ DW PRVW JURZWK YHORFLWLHV 7KH PHWKRG RI 6WXDUW DQG :DWVRQ LV HVVHQWLDOO\ WKH WKHRU\ RI /DQGDX VHH 'UD]LQ DQG 5HLG ff DQG IROORZV WKH GRPLQDQW PRGH RI LQVWDELOLW\ LQWR WKH ZHDNO\ QRQOLQHDU UHJLPH ,Q WKLV IRUP LW LV DSSOLFDEOH RQO\ WR GLVWXUEDQFHV RI RQH FHOOXODU SDWWHUQ DW D WLPH EXW 6HJHO DQG 6WXDUW f H[WHQGHG WKLV WKHRU\ WR WKH SUHGLFWLRQ RI WKH SUHIHUUHG SDWWHUQ E\ FRQVLGHULQJ WKH LQWHUDFWLRQ RI WZR VSHFLILHG PRGHV RI GLVWXUEDQFH 'HSHQGLQJ RQ WKH ZD\ WKHVH WZR PRGHV ZHUH FRPELQHG LW ZDV SRVVLEOH WR REWDLQ WZR GLPHQVLRQDO UROOV RU KH[DJRQDO FHOOV DQG WKH\ VKRZHG WKDW WKH H[SHULPHQWDO SDUDPHWHUV ZRXOG GHWHUPLQH WKH VWDELOLW\ RI WKHVH SDWWHUQV 6ULUDQJDQDWKDQ :ROONLQG DQG 2XOWRQ f DGRSWHG WKLV
PAGE 18
PHWKRG IRU PRUSKRORJLFDO LQVWDELOLW\ DQG JDYH SDUDPHWHU UDQJHV ZKHUH HDFK W\SH RI FHOO ZDV VWDEOH 7KH OLPLWDWLRQ RI WKH PHWKRG LV WKDW LW FRQVLGHUV KH[DJRQDO DQG WZR GLPHQVLRQDO UROO SDWWHUQV EXW QRW UHFWDQJXODU FHOOV RU F\OLQGULFDO UROOV DQG LJQRUHV WKH HIIHFW RI FRQWDLQHU VKDSH DQG VL]H ZKLFK KDYH EHHQ VKRZQ WR EH LPSRUWDQW LQ ZDYH SDWWHUQ VHOHFWLRQ VHH .RVFKPHLGHU ff 8QJDU DQG %URZQ Df FRQVLGHUHG WKH KLJKO\ QRQOLQHDU SUREOHP DQG DIWHU PDNLQJ VHYHUDO VLPSOLILFDWLRQV REWDLQHG VROXWLRQV XVLQJ WKH ILQLWH HOHPHQW PHWKRG )LQLWH HOHPHQWV FDQ KDQGOH KLJKO\ QRQOLQHDU SUREOHPV DQG JLYH YHU\ DFFXUDWH QXPHULFDO VROXWLRQV EXW DUH H[WUHPHO\ WLPH FRQVXPLQJ 6ROYLQJ WKH IXOO PRUSKRORJLFDO SUREOHP LV D YHU\ H[SHQVLYH SURSRVLWLRQ E\ WKLV PHWKRG DQG KHQFH 8QJDU DQG %URZQ VLPSOLILHG WKH SUREOHP E\ LJQRULQJ WKH ODWHQW KHDW DQG VROLG GLIIXVLYLW\ DQG DVVXPLQJ WKDW WKHUPDO FRQGXFWLYLWLHV LQ OLTXLG DQG VROLG ZHUH HTXDO 7KLV DOORZHG WKHP WR UHGXFH WKH SUREOHP WR D RQHVLGHG PRGHO FRQVLVWLQJ RI YDULDEOHV LQ WKH OLTXLG UHJLRQ RQO\ FRQVLGHUDEO\ VLPSOLI\LQJ WKH DOJHEUD DQG VDYLQJ FRPSXWHU WLPH 6XFK D PRGHO ZLOO KDYH RQO\ OLPLWHG YDOLGLW\ LQ KLJKO\ QRQOLQHDU UHJLRQV DQG WKLV ZDV ERUQH RXW ZKHQ 8QJDU %HQQHWW DQG %URZQ f VROYHG WKH FRPSOHWH SUREOHP %XW WKHLU PRVW H[WHQVLYH FDOFXODWLRQV ZHUH GRQH RQO\ IRU WKH RQH VLGHG PRGHO DQG KHQFH WKLV LV RI FKLHI LQWHUHVW 7KHVH ZHUH GRQH RQO\ IRU WKH FDVH RI WZR GLPHQVLRQDO UROO GLVWXUEDQFHV DQG KHUH WKH\ VKRZHG WKDW FRQWUDU\ WR WKDW UHSRUWHG E\ :ROONLQG DQG 6HJHO WKHUH ZHUH PXOWLSOH UHJLRQV RI VXSHUFULWLFDO DQG VXEFULWLFDO ELIXUFDWLRQ 0RUH LPSRUWDQWO\ WKH\ VKRZHG WKDW DW ODUJH GHIRUPDWLRQV RI WKH LQWHUIDFH VHFRQGDU\ ELIXUFDWLRQV RFFXUUHG 8QJDU DQG %URZQ f DOVR PRGHOOHG WKH IRUPDWLRQ RI GHHS FHOOV LQ DQ DWWHPSW WR IROORZ WKH WUDQVLWLRQ WR GHQGULWLF JURZWK
PAGE 19
1RQOLQHDU ILQLWH GLIIHUHQFH FDOFXODWLRQV ZHUH GRQH LQ D PRUH OLPLWHG ZD\ E\ 0F)DGGHQ DQG &RULHOO r IRU WKH WZR GLPHQVLRQDO FDVH /DWHU 0F)DGGHQ %RLVYHUW DQG 6HNHUND f H[WHQGHG WKH FDOFXODWLRQV IRU WKH WKUHH GLPHQVLRQDO SDWWHUQV RI KH[DJRQV DQG FURVV UROOV ,Q ERWK FDVHV WKH HQRUPRXV H[SHQVHV LQYROYHG UHVWULFWHG FDOFXODWLRQV WR D IHZ SDUDPHWHU YDOXHV ,QFOXVLRQ RI 2WKHU (IIHFWV :KLOH WKHVH ZRUNHUV ZHUH LQYHVWLJDWLQJ WKH EDVLF SUREOHP RWKHUV ZHUH EXV\ WU\LQJ WR LQFRUSRUDWH YDULRXV LQIOXHQFHV 7KH PRVW LPSRUWDQW FRQFHUQ ZDV WKH HIIHFW RI IOXLG IORZ 'HOYHV DQG f LQ DWWHPSWLQJ WR DSSUR[LPDWH WKH LQIOXHQFH RI DGYHFWLRQ DQG VWLUULQJ LQ WKH PHOW VWXGLHG WKH LQIOXHQFH RI SODQH &RXHWWH IORZ RQ WKH SUREOHP +H VKRZHG WKDW WZR GLPHQVLRQDO UROO GLVWXUEDQFHV LQ WKH IORZ GLUHFWLRQ ZHUH VWDELOL]HG EXW WKHUH ZDV QR HIIHFW RQ GLVWXUEDQFHV SHUSHQGLFXODU WR WKH IORZ &RULHOO 0F)DGGHQ %RLVYHUW DQG 6HNHUND f PRGHOOHG &RXHWWH IORZ PRUH V\VWHPDWLFDOO\ DQG FDPH WR WKH VDPH FRQFOXVLRQ 5HFHQWO\ 0F)DGGHQ &RULHOO DQG $OH[DQGHU f H[DPLQHG WKH HIIHFW RI SODQH VWDJQDWLRQ IORZ RQ WZR GLPHQVLRQDO GLVWXUEDQFHV SHUSHQGLFXODU WR WKH IORZ DQG KHUH WRR WKH IORZ DV IRXQG WR EH VWDELOL]LQJ ,Q DQRWKHU YHU\ LPSRUWDQW GHYHORSPHQW &RULHOO &RUGHV %RHWWLQJHU DQG 6HNHUND f VWXGLHG PRUSKRORJLFDO LQVWDELOLW\ ZLWK VROXWDO FRQYHFWLRQ 7KH\ VKRZHG WKDW WKH WZR LQVWDELOLWLHV ZHUH HVVHQWLDOO\ GHFRXSOHG ZLWK WKH PHOW EHLQJ XQVWDEOH WR FRQYHFWLYH GLVWXUEDQFHV RI ORQJ ZDYHOHQJWKV DQG WKH LQWHUIDFH XQVWDEOH WR QRQSODQDU GLVWXUEDQFHV RI VPDOO ZDYHOHQJWKV $OVR DW ORZ JURZWK UDWHV WKH GRPLQDQW LQVWDELOLW\
PAGE 20
ZDV FRQYHFWLYH DQG WKH LQWHUIDFH ZDV QRW HDVLO\ GLVWXUEHG $W KLJK JURZWK UDWHV WKH UROHV ZHUH UHYHUVHG DQG DW DQ LQWHUPHGLDWH YHORFLW\ WKH WZR LQVWDELOLWLHV EHFDPH FRPSDUDEOH ,W ZDV RQO\ DW WKLV UDWH WKH WZR LQVWDELOLWLHV LQWHUDFWHG DQG WKH UHVXOW ZDV WKH SUHYDOHQFH RI RVFLOODWRU\ LQVWDELOLWLHV 7KHLU FRQFOXVLRQ ZDV WKDW H[FHSW DW WKLV SDUWLFXODU JURZWK UDWH LW LV XVXDOO\ VXIILFLHQW WR VWXG\ RQO\ WKH GRPLQDQW LQVWDELOLW\ QHDU LWV RQVHW )ROORZLQJ &RULHOO HW DO VHYHUDO ZRUNHUV KDYH ORRNHG DW VSHFLDO DVSHFWV RI WKHVH WZR LQVWDELOLWLHV DQG WKHLU ZRUN KDV EHHQ UHYLHZHG E\ *OLFNVPDQ &RULHOO DQG 0F)DGGHQ f 7KH\ DOO FRQILUPHG RU UHILQHG WKH ZRUN RI &RULHOO HW DO EXW DOO WKH PDLQ FRQFOXVLRQV PHQWLRQHG DERYH VWLOO KROG 6HYHUDO RWKHU LQIOXHQFHV DSDUW IURP IOXLG IORZ KDYH EHHQ LQFRUSRUDWHG LQWR WKH PRGHO EXW RQO\ D IHZ UHOHYDQW RQHV ZLOO EH FRQVLGHUHG KHUH &RULHOO DQG 6HNHUND f WULHG WR LQFOXGH WKH HIIHFW RI JUDLQ ERXQGDULHV RQ PRUSKRORJLFDO LQVWDELOLW\ E\ DVVXPLQJ WKDW LWV RQO\ HIIHFW ZDV WR VKLIW WKH RQVHW FRQGLWLRQV 7KH\ IDLOHG WR REVHUYH WKDW LQ WKH SUHVHQFH RI JUDLQ ERXQGDULHV WKHUH FRXOG EH QR SODQDU VROXWLRQV WR WKH SUREOHP DQG WKDW WKH LQWHUIDFH ZLOO EH QRQSODQDU DW DOO WLPHV 8QJDU DQG %URZQ Ef REWDLQHG WKH VROXWLRQV WR WKLV SUREOHP E\ PDWFKHG DV\PSWRWLF H[SDQVLRQV IRU VPDOO JUDLQ DQJOHV DQG XVLQJ ILQLWH HOHPHQWV IRU VROXWLRQV RI ODUJH JUDLQ DQJOHV ,Q UDSLG VROLGLILFDWLRQ NLQHWLF XQGHUFRROLQJ RI WKH PHOW LV VLJQLILFDQW DQG 6HLGHQVWLFNHU f LQFOXGHG WKLV DQG VKRZHG WKDW LW FDXVHG D VKLIW LQ WKH RQVHW FRQGLWLRQV 7KH VLJQLILFDQFH RI WKLV ZDV VKRZQ E\ +DUG\ DQG &RULHOO DQG f ZKHQ WKH\ REVHUYHG PRUSKRORJLFDO LQVWDELOLW\ LQ WKH JURZWK RI LFH FU\VWDOV &RQVWLWXWLRQDO
PAGE 21
VXSHUFRROLQJ ZDV QRW D IDFWRU KHUH DQG LW ZDV VKRZQ WKDW NLQHWLF XQGHUFRROLQJ ZDV WKH SULPDU\ FDXVH 7KLV GXDO FDXVH IRU PRUSKRORJLFDO LQVWDELOLW\ LV VRPHZKDW DQDORJRXV WR WKH VLWXDWLRQ LQ QDWXUDO FRQYHFWLRQ ZKHUH ZH ILQG WKDW WKH YDULDWLRQV RI GHQVLW\ DQG VXUIDFH WHQVLRQ ZLWK WHPSHUDWXUH FDQ ERWK FDXVH FRQYHFWLYH LQVWDELOLW\ ([SHULPHQWV LQ 0RUSKRORJLFDO ,QVWDELOLW\ 7KH HDUO\ ZRUN RQ PRGHOOLQJ PRUSKRORJLFDO LQVWDELOLW\ ZDV SURPSWHG E\ H[SHULPHQWDO REVHUYDWLRQV EXW EH\RQG WKDW YHU\ IHZ TXDQWLWDWLYH H[SHULPHQWV KDYH EHHQ GRQH QHDU WKH RQVHW FRQGLWLRQV 7KLV LV DQ XQIRUWXQDWH VWDWH RI DIIDLUV DQG H[SHULPHQWDO YHULILFDWLRQV RI WKHRUHWLFDO SUHGLFWLRQV DUH EDGO\ QHHGHG LI IXUWKHU FRQFUHWH SURJUHVV RQ WKH WKHRUHWLFDO IURQW LV WR EH PDGH 7KH ZRUN RI 0RUULV DQG :LQHJDUG f 7ULYHGL DQG 6RPERRQVXN f DQG RI +HVORW DQG /LEFKDEHU f KDYH DOUHDG\ EHHQ PHQWLRQHG 5HFHQWO\ GH &KHYHLJQH *XWKPDQ DQG /HEUXQ f KDYH DWWHPSWHG WR YHULI\ WKH ZHDNO\ QRQOLQHDU DQG VWURQJO\ QRQOLQHDU WKHRUHWLFDO SUHGLFWLRQV DQG RQH KRSHV WKDW PRUH ZRUN DORQJ WKHVH OLQHV ZLOO IROORZ 'H &KHYHLJQH HW DO SHUIRUPHG WKHLU H[SHULPHQWV RQ VXFFLQRQLWULOHDFHWRQH DQG &%UcM%U V\VWHPV 7KHVH RUJDQLF PL[WXUHV DUH PXFK HDVLHU WR ZRUN ZLWK WKDQ PHWDO DOOR\V DV WKH\ DUH JHQHUDOO\ QRQIDFHWHG WUDQVSDUHQW DQG UHTXLUH VPDOO WHPSHUDWXUH JUDGLHQWV DQG KHQFH WKH\ KDYH EHHQ YHU\ SRSXODU ZLWK H[SHULPHQWDOLVWVf 7KH\ IRXQG WKDW WKH FHOO SDWWHUQ IRUPHG DQG LWV GLPHQVLRQV ZHUH VWURQJO\ GHSHQGHQW RQ JHRPHWU\ RI WKH FRQWDLQHU 0RUH LPSRUWDQWO\ ZKHQ WKH\ UDQ WKH H[SHULPHQWV IRU WZR GLPHQVLRQDO UROO SDWWHUQV WKH\ IRXQG RQO\ VXEFULWLFDO LQVWDELOLW\
PAGE 22
/LPLWDWLRQV RI ([LVWLQJ 0RGHOV DQG 8QDGGUHVVHG ,VVXHV ,Q &KDSWHU WKH FDXVH RI FRQVWLWXWLRQDO VXSHUFRROLQJ ZDV H[SODLQHG DV EHLQJ GXH WR WKH VKDUS VROXWH FRQFHQWUDWLRQ JUDGLHQW LQ WKH OLTXLG QHDU WKH LQWHUIDFH ZKLOH HOVHZKHUH LQ WKH OLTXLG DQG WKH VROLG WKH VROXWH FRQFHQWUDWLRQ ZDV SUDFWLFDOO\ D FRQVWDQW ,W ZRXOG VHHP WKHQ WKDW WKH RQO\ UHJLRQ RI LQWHUHVW LV WKH LQWHUIDFH DQG D OLTXLG ERXQGDU\ OD\HU DGMDFHQW WR LW 7KLV KDV SURPSWHG DOO SUHYLRXV ZRUNHUV LQ PRUSKRORJLFDO LQVWDELOLW\ WR FRQVLGHU 'AY DV WKH FKDUDFWHULVWLF OHQJWK RI WKH SUREOHP DQG WR LJQRUH VROLG GLIIXVLRQ $ W\SLFDO YDOXH RI 'AY LV PLFURQV DQG WKLV PHDQV WKDW WKH IDU HQGV RI WKH PHOW DQG FU\VWDO DUH LQILQLWHO\ IDU DZD\ DQG WKH GRPDLQ RI WKH SUREOHP LV HIIHFWLYHO\ FRQILQHG WR WKH OLTXLG ERXQGDU\ OD\HU PHQWLRQHG DERYH )RU WKH PHOWLQJ SUREOHP D FKDUDFWHULVWLF OHQJWK RI 'fY LV XVHG DQG WKH GRPDLQ EHFRPHV DQ HYHQ VPDOOHU ERXQGDU\ OD\HU LQ WKH VROLG 7KHVH DVVXPSWLRQV FRQVLGHUDEO\ VLPSOLI\ WKH DOJHEUD LQYROYHG DQG KHQFH WKHLU SRSXODULW\ %XW WKH\ FRQVWUDLQ WKH YDOLGLW\ RI WKH PRGHO LQ VHYHUDO ZD\V 7KH PRVW REYLRXV RQH LV WKDW WKH\ QHFHVVLWDWH WKH PHOWLQJ DQG VROLGLILFDWLRQ SUREOHPV WR EH VWXGLHG VHSDUDWHO\ HYHQ WKRXJK WKH\ RQO\ GLIIHU LQ WKH GLUHFWLRQ RI WKH JURZWK YHORFLW\ %HVLGHV WKLV DVVXPSWLRQ IDLOV IRU YHU\ VPDOO JURZWK YHORFLWLHV DV LW LQWURGXFHV D VLQJXODULW\ DW Y /DWHU ZH ZLOO VKRZ WKDW QHJOHFWLQJ VROLG GLIIXVLRQ DOVR LQWURGXFHV D VLQJXODULW\ DQG PDNHV WKH PRGHO IDLO LQ WKH QRQOLQHDU UHJLPH )LQDOO\ DQ\ HIIHFW ZKLFK UHVLGHV LQ WKH HQWLUH GRPDLQ QRW PHUHO\ WKH ERXQGDU\ OD\HU FDQQRW HDVLO\ EH LQFRUSRUDWHG LQWR WKH PRGHO ZKLFK LV ZK\ DOO LQIOXHQFHV RQ PRUSKRORJLFDO LQVWDELOLW\ VWXGLHG VR IDU DUH
PAGE 23
HLWKHU ERXQGDU\ OD\HU HIIHFWV HJ VROXWDO FRQYHFWLRQf RU LQWHUIDFLDO HIIHFWV HJ JUDLQ ERXQGDULHV DQG NLQHWLF XQGHUFRROLQJf 3KHQRPHQD WKDW VSDQ WKH HQWLUH GRPDLQ OLNH DGYHFWLRQ LQ WKH PHOW RU LPSHUIHFW LQVXOWLRQ RI WKH DPSRXOH ZDOOV KDYH EHHQ HLWKHU LQDGHTXDWHO\ WUHDWHG RU LJQRUHG FRPSOHWHO\ +HQFH WKHUH LV D QHHG IRU D PRGHO WKDW LQFOXGHV WKH HQWLUH OLTXLG DQG VROLG GRPDLQV ZKLFK ZRXOG EH DSSOLFDEOH IRU DOO JURZWK YHORFLWLHV 7KLV PRGHO VKRXOG DOVR GLVSHQVH ZLWK WKH VHSDUDWH WUHDWPHQWV DFFRUGHG VR IDU WR WKH VROLGLILFDWLRQ DQG IXVLRQ SUREOHPV ZLWK RQH XQLIRUP IRUPXODWLRQ ,Q 6HFWLRQ LW ZDV PHQWLRQHG LQ FRQQHFWLRQ ZLWK WKH ZRUN RI :ROONLQG DQG 6HJHO f DQG RI 8QJDU DQG %URZQ Df WKDW WKLV SUREOHP RVFLOODWHV EHWZHHQ VXEFULWLFDO DQG VXSHUFULWLFDO LQVWDELOLWLHV IRU WKH FDVH RI WZR GLPHQVLRQDO UROO GLVWXUEDQFHV 7KH\ GLG QRW KRZHYHU FRPSXWH WKH UDQJHV RI HDFK W\SH RI LQVWDELOLW\ IRU WKH H[SHULPHQWDO SDUDPHWHUV LQYROYHG 7KLV LV QHFHVVDU\ LQ OLJKW RI WKH H[SHULPHQWV RI GH &KHYHLJQH HW DO f ZKR REVHUYHG QR VXSHUFULWLFDO LQVWDELOLW\ $OVR WKH H[WHQVLRQ RI WKHVH SUHGLFWLRQV WR WKUHH GLPHQVLRQDO GLVWXUEDQFHV OLNH KH[DJRQDO DQG UHFWDQJXODU FHOOV LV \HW WR EH GRQH ,W ZRXOG QRW EH DQ H[DJJHUDWLRQ WR VWDWH WKDW WKH LQVSLUDWLRQ IRU DOO WKH WKHRUHWLFDO ZRUN GRQH VR IDU LQ PRUSKRORJLFDO LQVWDELOLW\ KDV FRPH IURP 5D\OHLJK%HQDUG FRQYHFWLYH LQVWDELOLW\ $ FRPSDULVRQ EHWZHHQ WKH WZR SUREOHPV ZRXOG EH LQYDOXDEOH DV D VRXUFH RI FRQWLQXHG LQVSLUDWLRQ DQG DV D ZD\ WR GUDZ FRQFOXVLRQV DQG FRQMHFWXUHV DERXW PRUSKRORJLFDO LQVWDELOLW\ IURP WKH YDVW SXEOLVKHG OLWHUDWXUH RQ 5D\OHLJK%HQDUG FRQYHFWLRQ +XUOH f KDV DWWHPSWHG WKLV EXW KLV ZRUN FDQ RQO\ EH UHJDUGHG DV SHUIXQFWRU\ DQG WKHUH H[LVWV D QHHG IRU D PRUH ULJRURXV WUHDWPHQW RI WKH LVVXH
PAGE 24
&+$37(5 $ 81,)250 )2508/$7,21 7KH )RUPXODWLRQ 6LQFH ZH DUH QRW PDNLQJ WKH DVVXPSWLRQ WKDW WKH OLTXLG DQG VROLG DUH YHU\ GHHS WKH SUREOHP KDV WR EH IRUPXODWHG YHU\ FDUHIXOO\ HVSHFLDOO\ ZLWK UHJDUG WR WKH RXWHU ERXQGDULHV LI ZH DUH WR DYRLG DQ LQWUDFWDEOH PRYLQJ ERXQGDU\ SUREOHP $ W\SLFDO FU\VWDO JURZWK VHW XS LV VKRZQ LQ )LJ 7KH DPSRXOH LV KHDWHG E\ WKH KHDWLQJ FRLOV VXUURXQGLQJ LW DQG WKH\ NHHS WKH PHOW UHJLRQ DW D WHPSHUDWXUH 7 DQG WKH FU\VWDO DW 7 7KH WHPSHUDWXUHV 7 DQG 7 DUH PDLQWDLQHG FRQVWDQW E\ PHDQV RI WKHUPRFRXSOHV ORFDWHG DW ] V DQG ] O 7KH DPSRXOH LV SXOOHG WRZDUGV WKH FRROHU HQG DW WKH VDPH YHORFLW\ 9 DW ZKLFK WKH FU\VWDO JURZV WKXV NHHSLQJ WKH LQWHUIDFH VWDWLRQDU\ 7KH UHJLRQ QHDU WKH LQWHUIDFH LV SURWHFWHG E\ DQ LQVXODWLQJ VKLHOG DQG LW LV WKLV UHJLRQ WKDW EHFRPHV WKH GRPDLQ LQ RXU PRGHO 6R LQ WKLV PRGHO WKH RXWHU OLTXLG DQG VROLG ERXQGDULHV EHFRPH IL[HG DW ] O DQG ] V UHVSHFWLYHO\ DQG WKH VROLG ZLOO EH PRYLQJ ZLWK D EXON YHORFLW\ Y DQG WKH OLTXLG ZLWK D EXON YHORFLW\ Y< ZKHUH < LV WKH UDWLR RI GHQVLWLHV S S ,Q WKLV VHFWLRQ ZH ZLOO DVVXPH WKDW < DQG 6 $ FRQVLGHU WKH HIIHFWV RI < QRW EHLQJ XQLW\ LQ &KDSWHU DV WKLV ZRXOG FDXVH DGYHFWLRQ DQG IXQGDPHQWDOO\ DOWHU WKH EDVLF SUREOHP $OVR ZH ZLOO DVVXPH WKDW WKH PHOW FRQFHQWUDWLRQ DW WKH RXWHU OLTXLG ERXQGDU\ LV D FRQVWDQW &
PAGE 25
7KHUPRFRXSOH 7KHUPRFRXSOH )LJXUH ([SHULPHQWDO VHW XS
PAGE 26
7KH GRPDLQ HTXDWLRQV LQ WKH OLTXLG PHOW DUH 7r DW Y D] DF DFA DW Y D] DJr? ,Q WKH VROLG UHJLRQ WKH HTXDWLRQV DUH f f 7 7 V A V DW 9 ] D 97 V V f Y DF V D] 9F V V Af ZKHUH 7 DQG & DUH WKH WHPSHUDWXUH DQG VROXWH FRQFHQWUDWLRQ DQG D WKH GLIIXVLYLW\ DQG WKHUPDO GLIIXVLYLW\ ZLWK WKH VXEVFULSWV O DQG V UHIHUULQJ WR WKH OLTXLG DQG VROLG 7KH ERXQGDU\ FRQGLWLRQV DUH 7r 9 Fr & DW ] f 7 7 DW ] V V f $W WKH OLTXLGVROLG LQWHUIDFH ZH ZLOO XVH e WR GHQRWH WKH GHSDUWXUH IURP SODQDULW\ DQG ZULWH WKH ERXQGDU\ FRQGLWLRQV DW ] e 7 7 7 P& 7P fÂ§+ O 6 0 L 0/ K f 9K Â‘ NV97V f Â‘ /KY r f
PAGE 27
f f ZKHUH 70 LV WKH PHOWLQJ SRLQW RI WKH SXUH VROYHQW ? WKH LQWHUIDFLDO WHQVLRQ WKH ODWHQW KHDW P WKH DEVROXWH YDOXH RI WKH OLTXLGXV VORSH N DQG N WKH OLTXLG DQG VROLG WKHUPDO FRQGXFWLYLWLHV N WKH [r 6 GLVWULEXWLRQ FRHIILFLHQW Q WKH QRUPDO DW WKH LQWHUIDFH GLUHFWHG LQWR WKH VROLG DQG + LV WKH FXUYDWXUH RI WKH OLTXLGVROLG LQWHUIDFH DQG LQ &DUWHVLDQ FRRUGLQDWHV LV JLYHQ E\ f ,Q F\OLQGULFDO FRRUGLQDWHV LI ZH DVVXPH FLUFXODU V\PPHWU\ LW EHFRPHV M/f n U f ,W LV DVVXPHG WKDW WKH VLGH ZDOOV DUH VXIILFLHQWO\ IDU DSDUW DQG ZHOO LQVXODWHG WR HQDEOH XV WR LPSRVH SHULRGLF ERXQGDU\ FRQGLWLRQV LQ WKDW GLUHFWLRQ 7R FRQYHUW WKHVH HTXDWLRQV LQWR WKH GLPHQVLRQOHVV IRUP ZH ZLOO XVH WKH OLTXLG GHSWK O DV WKH FKDUDFWHULVWLF OHQJWK DQG WKH GLIIXVLYH WLPH 'AY DV WKH FKDUDFWHULVWLF WLPH
PAGE 28
7KH WHPSHUDWXUH ZLOO EH PDGH GLPHQVLRQOHVV E\ 7 77Zf*f ZLWK 0 7 *" NÂ*Â NJ*JfNV 9 f ZKHUH DQG DUH WKH WHPSHUDWXUH JUDGLHQWV LQ WKH OLTXLG DQG VROLG ; V LQ WKH TXLHVFHQW SODQDU VWDWH 6LPLOLDUO\ WKH FRQFHQWUDWLRQ ZLOO EH PDGH GLPHQVLRQOHVV E\ & &* O ZLWK F F 'WrO& f' r f V VF V f ZKHUH DQG DUH WKH FRQFHQWUDWLRQ JUDGLHQWV LQ WKH OLTXLG DQG ;r F VF VROLG LQ WKH TXLHVFHQW SODQDU VWDWH 6R LQ GLPHQVLRQOHVV IRUP LI ZH QHJOHFW WKH /HZLV QXPEHUV 'AD LQ WKH WHPSHUDWXUH HTXDWLRQV ZH KDYH f & BB & fÂ§fÂ§ Y fÂ§ W ] 9I f f & W & Y QYF ] ZKHUH Y R DQL n 'V'W 7KH ERXQGDU\ FRQGLWLRQV DUH f
PAGE 29
DW ] 9n9 7L Fr : FL f DW ] V V 7 7 n WJW$ 7R f 6 0 7 DW WKH LQWHUIDFH ] e 7 7J 6H&A $ + f 97 f Q 97 f Q /Y Af f r 'W N&Â &J f 9& f Q Y Af& Q9& f Q Y Af& f r 'W 6 'W 6 ZKHUH LV WKH WRWDO GHULYDWLYH WKH UDWLR RI WKHUPDO FRQGXFWLYLWLHV N N DQG 6H $ DQG / DUH WKH 6HNHUND FDSLOODU\ DQG ODWHQW KHDW QXPEHUV $I UHVSHFWLYHO\ 6H P* F $ 9 : /K'D NL*7A f f / f
PAGE 30
$W WKLV SRLQW D GLVFXVVLRQ RI WKH FKRLFH RI D FULWLFDO SDUDPHWHU EHFRPHV LPSHUDWLYH 7KH H[SHULPHQWDOO\ YDULDEOH SDUDPHWHUV IRU WKLV SUREOHP DUH *A DQG Y RU WKHLU HTXLYDOHQWV LQ WKLV IRUPXODWLRQ *A *F DQG Y 0RVW SUHYLRXV ZRUNHUV KDYH DGRSWHG *A RU & DV WKHLU FULWLFDO SDUDPHWHU EXW +XUOH f KDV SURSRVHG 6H E\ DQDORJ\ ZLWK WKH 5D\OHLJK0DUDQJRQL SUREOHP 5HFHQWO\ GH &KHYHLJQH HW DO f KDYH DGYRFDWHG WKH XVH RI Y IURP DQ H[SHULPHQWDOLVWnV SHUVSHFWLYH $OWKRXJK WKLV LV D YDOLG FKRLFH WKH UHDVRQ QR RQH HOVH KDV XVHG LW VR IDU LV SUREDEO\ EHFDXVH Y RFFXUV LQ WKH GRPDLQ HTXDWLRQV DQG ZLOO JLYH ULVH WR DQ LQILQLWH QXPEHU RI HLJHQYDOXHV LQ WKH OLQHDUL]HG SUREOHP :H VHFRQG +XUOHnV VXJJHVWLRQ DQG FKRRVH 6H DV WKLV VHHPV WR EH WKH QDWXUDOO\ RFFXUULQJ FRXSOLQJ IDFWRU EHWZHHQ WHPSHUDWXUH DQG FRQFHQWUDWLRQ DQG WKH IXQGDPHQWDO FDXVH IRU PRUSKRORJLFDO LQVWDELOLW\ %HVLGHV LW LQFOXGHV ERWK *A DQG *T %XW WKH VXJJHVWLRQ RI GH &KHYHLJQH HW DO VWLOO UHPDLQV D YDOLG RQH 7KH /LQHDU 6WDELOLW\ 3UREOHP )URP QRZ RQZDUGV WKH IRU GLPHQVLRQOHVV YDULDEOHV ZLOO EH GURSSHG 7KH VWHDG\ VWDWH SODQDU VROXWLRQ WR WKLV SUREOHP RFFXUV ZKHQ &F[\f RU &FUf f 7KH VROXWLRQ LV WKHQ 7 6H&MOFRff] 6HFXWRf f
PAGE 31
7VF]f 7 6T&Rr}]V a 6H&AWRf f &LF]f ONfH[SY]f O@> N fH[SYf NH[SYVQff /NH[SYVQff @ f & ]f 6& 6W ONfH[SY]Qf NH[SY VWLf f n n/NH[SYVQff @>WWW ONfH[SYf @ f 7R ZULWH WKH HTXDWLRQV RI WKH OLQHDU VWDELOLW\ SUREOHP ZH ZLOO LPSRVH DQ LQILQLWHVLPDO GLVWXUEDQFH RQ WKH VWHDG\ VWDWH VROXWLRQ 7 7 7 LF D f ZLWK VLPLODU H[SDQVLRQV IRU 7 & & DQG ef 6 ;} V &RQVLGHULQJ WKH OLQHDU VWDELOLW\ SUREOHP LQ RUGHU WR VHSDUDWH YDULDEOHV ZH ZLOO DVVXPH D KRUL]RQWDO FHOO SDWWHUQ 7KLV SDWWHUQ IRU WZR GLPHQVLRQDO UROOV LV JLYHQ E\ Y B LP[ LUQ G! [f &RV fÂ§LfÂ§ ZLWK ZDYH QXPEHU D fÂ§fÂ§ 7Q / Q / f IRU FURVV UROOV [\f &RV &RV D f Q /L /L Q /L IRU UHFWDQJXODU FHOOV _!Q[\f &RV &RV D LP/A ??`f f Q /L /L fÂ§ Q Â IRU KH[DJRQDO FHOOV
PAGE 32
!Q[\f &RV &RV r1\ &RV LP\ B LP / r DQ / f IRU F\OLQGULFDO UROOV ! Uf D U5f QRQ f ZKHUH DQ DUH WKH ]HURV RI DQG 4 DQG M DUH WKH ]HURWK RUGHU DQG ILUVW RUGHU %HVVHOnV IXQFWLRQV RI WKH ILUVW NLQG :H FDQ QRZ ZULWH $ $ 7A[\]Wf 7]f M! [\fHW f ZLWK FRUUHVSRQGLQJ IRUPV IRU WKH RWKHU YDULDEOHV ZKHUH D LV WKH HLJHQYDOXH RI WKH OLQHDU VWDELOLW\ SUREOHP 7KH OLQHDU VWDELOLW\ SUREOHP EHFRPHV LQ WKH GRPDLQ Df7m f R&DL Y' D f&A f Df7JO f V +HUH ZH KDYH 7KH ERXQGDU\ XVHG WR GHQRWH G]n FRQGLWLRQV DUH f 7 rr FX DW ] f 7 V DW ] V f
PAGE 33
$W WKH LQWHUIDFH ] V *W 9 7 r 6H&W r LO*W r 6H*,F $ f '7Â '7V n R/$O V N* OD f VF '&WO r Q'*O n 9& r 9&O }YFWR F VF 6ROYLQJ WKH V\VWHP ZH REWDLQ D JHQHUDO HTXDWLRQ IRU LQVWDELOLW\ 6H>* D&AFNfWDQKDVVWDQKDA F NQD Y WDQKD VfWDQKD D Y WDQKDfWDQKD Vn V V O O L V B R/WDQKDWDQKDV D DNWDQKDV N WDQKDf ZKHUH R Y 9 U Â Y W Dr f>D r DÂ >D D Y@ Nf*fWDQKDV N WDQKD O c/ VBV NWDQKDV N WDQKD Â V f f f f f PRUSKRORJLFDO f f f f
PAGE 34
* D Y WDQKDfWDQKD V TD Y WDQKD VfWDQKD L ;&& D 6 6& 6 6 OR F D YWDQKDffWDQKD V NQD YWDQKD VfWDQKD [ O V V V LO f ,I ZH FDQ VKRZ H[FKDQJH RI VWDELOLWLHV IRU WKLV SUREOHP WKHQ IRU QHXWUDO VWDELOLW\ 6H R *M D $ f +HUH ZH KDYH DOUHDG\ XVHG WKH IDFW WKDW WKH 6H REWDLQHG IURP WKH QHXWUDO VWDELOLW\ FXUYH ZLOO EH WKH VDPH DV 6H4 GHILQHG ODWHU LQ HTQ f ,Q HTQ f LI ZH OHW Y EHFRPH YHU\ ODUJH WKH FULWLFDO ZDYH QXPEHU DMMMA IRU ZKLFK 6H4 LV D PLQLPXPf DOVR EHFRPHV YHU\ ODUJH DQG ZH FDQ DSSUR[LPDWH DOO WKH WDQK WHUPV WR XQLW\ )XUWKHU LI ZH DOVR QHJOHFW VROLG GLIIXVLRQ Q DQG DUH ]HUR DQG WKH HTXDWLRQ UHGXFHV WR WKH ZHOO V F NQRZQ UHVXOWV REWDLQHG E\ 0XOOLQV DQG 6HNHUND f U rWRDW a O 9f r&WFrnNf + YN f ` A YN + D $ D/ D9 NV` f )RU WKH FDVH RI QHXWUDO VWDELOLW\ WKLV EHFRPHV 6H R D$ 0DAY N Af 99Y Â‘ L f ,W PXVW EH SRLQWHG RXW WKDW VHWWLQJ DOO WKH WDQK WHUPV WR XQLW\ LV HTXLYDOHQW WR XVLQJ WKH GLIIXVLYH OHQJWK DV WKH FKDUDFWHULVWLF OHQJWK 7KLV LV D ERXQGDU\ OD\HU DSSUR[LPDWLRQ QRW XQOLNH WKDW XVHG LQ WKH VWXG\ RI SLSH IORZ DW KLJK 5H\QROGnV QXPEHUV
PAGE 35
,Q RXU GHULYDWLRQV ZH GLG QRW UHVWULFW Y WR EH SRVLWLYH DQG KHQFH HTQ f LV DOVR YDOLG IRU QHJDWLYH YHORFLWLHV WKDW LV WKH IXVLRQ SUREOHP ,I ZH UHSODFH Y ZLWK Y DQG KHUH WRR DVVXPH WKDW Y LV YHU\ ODUJH DQG VHW WKH WDQK WHUPV WR XQLW\ ZH REWDLQ WKH UHVXOW RI :RRGUXII f QD 9" Yf 6H > fÂ§ RFLRDmf QND D A Y&,Nf QND r DR r L YNf @ r D$ R/ DN N f [ V f DQG IRU R 6H R D$fQNDJ DÂ M YNff QD VF V LY! f 7R FRPSDUH WKLV PRGHO ZLWK WKH DSSUR[LPDWLRQV RI 0XOOLQV DQG 6HNHUND DQG WKDW RI :RRGUXII 6H4PLQ ZDV FDOFXODWHG IRU YDULRXV JURZWK YHORFLWLHV IRU WKH 3E6Q V\VWHP DQG WKH UHVXOWV DUH VKRZQ LQ )LJ a $V FDQ EH VHHQ WKH DSSUR[LPDWLRQV KROG XS YHU\ ZHOO IRU PRVW JURZWK YHORFLWLHV EXW EHJLQ WR IDLO IRU VPDOO YHORFLWLHV 7KH WKHUPRSK\VLFDO GDWD IRU WKH 3E6Q V\VWHP ZHUH WKRVH RI &RULHOO HW DO ff 7KH UDWLR Q IRU WKH 3E6Q V\VWHP LV RI WKH RUGHU EXW IRU V\VWHPV ZLWK PXFK VPDOOHU YDOXHV RI Q OLNH WKH &$XVWHQLWH V\VWHP VHH &O\QH DQG .XU] f DQG :ROI &O\QH DQG .XU] ff WKH DSSUR[LPDWLRQV EHJLQ WR IDLO DW KLJKHU YHORFLWLHV
PAGE 36
9(/2&,7< XUQVrf )LJXUH &RPSDULVRQ RI SUHYLRXV DSSUR[LPDWLRQV ZLWK JHQHUDO HTXDWLRQ
PAGE 37
7KH $GMRLQW 3UREOHP DQG ([FKDQJH RI 6WDELOLWLHV ([FKDQJH RI VWDELOLWLHV UHIHUV WR WKH QRQH[LVWHQFH RI WLPH SHULRGLF LQILQLWHVLPDO SHUWXUEDWLRQV 7LPHGHSHQGHQW LQILQLWHVLPDO SHUWXUEDWLRQV DERXW WKH SODQDU VWDWH ZLOO JHQHUDOO\ KDYH SHULRGLF DQG QRQSHULRGLF FRPSRQHQWV ZLWK D LRA )RU VRPH SUREOHPV LW LV SRVVLEOH WR VKRZ WKDW FN LV ]HUR DQG WKLV LV FDOOHG H[FKDQJH RI VWDELOLWLHV VHH ,RRVV DQG RVHSK f IRU GHWDLOVf :H VWLOO KDYH WR SURYH H[FKDQJH RI VWDELOLWLHV IRU WKLV SUREOHP EXW EHIRUH ZH FDQ GR WKDW LW LV QHFHVVDU\ WR REWDLQ WKH DGMRLQW SUREOHP 7R DFFRPSOLVK WKLV ZH ZLOO GHILQH D FROXPQ YHFWRU A DQG D PDWUL[ RSHUDWRU / 'Â D Y'D Df D f 6H fÂ§Q' SD RY'f f V U fÂ§ r fÂ§ U fÂ§ r fÂ§ r DQG DQ LQQHU SURGXFW r! 7 7 &&fG] 7 7 & & fG] B A R 6 6 f
PAGE 38
ZKHUH 7 GHQRWHV WKH FRPSOH[ FRQMXJDWH RI 7 7r WKH DGMRLQW IXQFWLRQ RI 7 DQG [ VF f*U 9 f 7KHQ WKH GRPDLQ HTXDWLRQV FDQ EH ZULWWHQ DV fÂ§f ,Q WKLV LQQHU SURGXFW WKH DGMRLQW SUREOHP EHFRPHV LQ WKH GRPDLQ D f7MO f D f7DO f Y' D fFX r 6L f 'A fÂ§ Q ar D f&6 &r Q VL f 6XEMHFW WR WKH ERXQGDU\ FRQGLWLRQV 6L f 6L f DW ] f 7 V DW ] V $W WKH LQWHUIDFH ] f
PAGE 39
Q&e &V N'*Vf '*A r nr N*OR *VR! Â‘ 'ÂVn 'Â/ r mn *+ rV! ',c r 6H'*r r b *W r 6H*eR Dn$ Â‘ ZIUM V D& Nf N* f H8O F VF f f f f 6R IDU ZH KDYH EHHQ XQDEOH WR VKRZ H[FKDQJH RI VWDELOLWLHV IRU WKLV SUREOHP GLUHFWO\ %XW :ROONLQG DQG 6HJHO f KDYH SURYHG LW ZKHQ WKH ERXQGDU\ OD\HU DSSUR[LPDWLRQ LV YDOLG DQG ZH ZLOO SURYH H[FKDQJH RI VWDELOLWLHV E\ SHUIRUPLQJ DQ DV\PSWRWLF DQDO\VLV DURXQG WKH ERXQGDU\ OD\HU VROXWLRQ ZKLFK FRUUHVSRQGV WR Q DQG 3H ZKHUH 3H LV WKH 3HFOHW QXPEHU JLYHQ E\ 'AOY n 7 Uf7 3H7 f B D R QR 3HD f 7KH RWKHU YDULDEOHV DUH H[SDQGHG VLPLODUO\ ,I ZH XVH / WR GHVLJQDWH WKH RSHUDWRU / LQ f ZKHQ Q DQG 3H DUH ]HUR WKHQ WKH OLQHDU SHUWXUEHG V\VWHPV EHFRPH r RR r I f t f
PAGE 40
ZKHUH Â‘ FP r I R & V S Â‘ f t f :LWK ERXQGDU\ FRQGLWLRQV DW ] } f DW ] f f DW ] WKH HTXDWLRQV DUH ERR Q % r & f f t f ZKHUH % LV WKH ERXQGDU\ RSHUDWRU GHILQHG E\ HTQV f f ZKHQ Q DQG 3H DUH ]HUR DQG !Lr R !Lr m2 U R /F N*OF fVFn r f FW2NfWf &WRNf f
PAGE 41
K ZLOO KDYH D VLPLOLDU IRUP ZLWK VXSHUVFULSWV UHSODFLQJ WKH ,W ZH OHW /r DQG UHSUHVHQW WKH DGMRLQW RSHUDWRU DQG DGMRLQW IXQFWLRQ RI DQG UHVSHFWLYHO\ ZH FDQ XVH WKH VROYDELOLW\ FRQGLWLRQ RQ WKH DERYH V\VWHP Or f ORRr! r I! f rr 2[ / r r f 6XEWUDFWLQJ ZH JHW r r r f Kf rrr IRL! ] n U f ZKHUH WKH OHIWKDQG VLGH RI HTQ ff LV WKH ELOLQHDU FRQFRPLWDQW HYDOXDWHG DW ] 6LPLOLDUO\ r r r f Krf ] r I! r :H QRWH WKDW DQG A DUH UHDO DV WKH\ FRUUHVSRQG WR D VWDWH ZKHUH H[FKDQJH RI VWDELOLWLHV KDV EHHQ SURYHG ZKLOH K? DQG IA DUH DOVR PDGH XS RI UHDO TXDQWLWLHV H[FHSW IRU DQG +HQFH ZH FRQFOXGH IURP HTQ f ff WKDW LV UHDO DQG IURP fÂ§f WKDW D LV UHDO LH H[FKDQJH RI VWDELOLWLHV KROGV IRU WKH JHQHUDOL]HG PRUSKRORJLFDO LQVWDELOLW\ SUREOHP XSWR Qf DQG 3Hf 6R ZH DUH MXVWLILHG LQ XVLQJ WKH QHXWUDO VWDELOLW\ FXUYH f WR FDOFXODWH 6H4 DW OHDVW XS WR VXFK RUGHU HYHQ WKRXJK ZH RIWHQ H[WHQG LW IXUWKHU (YHQ ZKHQ WKH ERXQGDU\ OD\HU DSSUR[LPDWLRQ LV YDOLG H[FKDQJH RI VWDELOLWLHV
PAGE 42
GRHV QRW KROG IRU DOO JURZWK FRQGLWLRQV VHH &RULHOO DQG 6HNHUND ff DQG FDUH PXVW EH H[HUFLVHG ZKHQ VXFK H[WHQVLRQV DUH PDGH )LQLWH &RQWDLQHUV DQG WKH 0RVW 'DQJHURXV :DYHQXPEHU $SSHDOLQJ WR WKH SURRI RI 6HFWLRQ KHQFHIRUWK ZH VKDOO RQO\ FRQVLGHU VWHDG\ VWDWH VROXWLRQV $ W\SLFDO 6H4 YHUVXV D GLDJUDP LV VKRZQ LQ )LJ a DQG 6H4PLQ LV WKH PLQLPXP YDOXH RI 6H4 DQG WKH ZDYHQXPEHU DW ZKLFK WKLV RFFXUV LV DPLQ ,I ZH FDQ PDLQWDLQ WKH JURZWK FRQGLWLRQV VXFK WKDW 6H 6HRPAQ ZH FDQ DW OHDVW VD\ WKDW WKH SODQDU LQWHUIDFH LV VWDEOH WR LQILQLWHVLPDO SHUWXUEDWLRQV $V 6H4PLQ LV WKH OHDVW YDOXH RI 6H DW ZKLFK WKH SODQDU VROXWLRQ ORVHV WKH VWDELOLW\ DPAQ LV WKH ZDYHQXPEHU RI WKH GLVWXUEDQFH ZKLFK LV PRVW OLNHO\ WR RFFXU +HQFH WKLV ZDYHQXPEHU LV FRPPRQO\ UHJDUGHG DV WKH PRVW GDQJHURXV DQG LV WKH ZDYHQXPEHU DW ZKLFK PRUSKRORJLFDO LQVWDELOLW\ LV XVXDOO\ VWXGLHG ,Q WKH GHULYDWLRQV DQG GLVFXVVLRQV WKDW IROORZ WKLV LV WKH ZDYHQXPEHU HPSOR\HG DQG LW EHFRPHV RXU RSHUDWLQJ ZDYHQXPEHU 7KH ZDYHQXPEHU LV D WW PXOWLSOH RI WKH UHFLSURFDO RI WKH ZDYHOHQJWK ,I WKH GRPDLQ EHLQJ FRQVLGHUHG LV UHJDUGHG DV EHLQJ ILQLWH ZLWK SHULRGLF ODWHUDO ERXQGDU\ FRQGLWLRQV WKH ZDYHOHQJWK 5 RU / GHSHQGLQJ RQ WKH ZDYH SDWWHUQ XVHGf LQ LWV GLPHQVLRQOHVV IRUP LV QRZ WKH DVSHFW UDWLR WKH UDWLR RI WKH DPSRXOH UDGLXV WR WKH PHOW GHSWK )RU WKLV VLWXDWLRQ 6H4 WDNHV RQ GLIIHUHQW YDOXHV GHSHQGLQJ RQ WKH QXPEHU RI FHOOV IRUPHG RQ WKH FU\VWDO VXUIDFH DV VKRZQ LQ )LJ L VHH DOVR 5RVHQEODW +RPV\ DQG 'DYLV ff )RU HDFK YDOXH RI 5 WKHUH LV D IL[HG QXPEHU RI FHOOV ZKLFK LV WKH SDWWHUQ WKDW LV PRVW HDVLO\ GLVWXUEHG H[FHSW DW FHUWDLQ YDOXHV RI 5 ZKHUH WZR GLIIHUHQW SDWWHUQV
PAGE 43
:$9(180%(5 D )LJXUH 6HA YV ZDYHQXPEHU GLDJUDP
PAGE 44
DUH HTXDOO\ GDQJHURXV 7KHVH KRUL]RQWDO PXOWLSOH SRLQWV DUH YHU\ LPSRUWDQW DQG ZLOO EH GLVFXVVHG ODWHU $W RWKHU YDOXHV RI 5 WKH PRVW GDQJHURXV QXPEHU RI FHOOV LV GHQRWHG E\ 1 DQG WKH FRUUHVSRQGLQJ ZDYHQXPEHU RI HDFK FHOO DQG WKH YDOXH RI 6H4 DUH GHQRWHG DV DcA DQG 6H41 UHVSHFWLYHO\ )RU WKH DQDO\VLV LQ &KDSWHU ZKHUH WKH HIIHFW RI D ILQLWH FRQWDLQHU RQ PRUSKRORJLFDO LQVWDELOLW\ LV FRQVLGHUHG 5 LV FKRVHQ VXFK WKDW 6HR1 LV DV FORVH DV SRVVLEOH WR 6H4PLQ VR WKDW WKH ZRUVW SRVVLEOH FDVH FDQ EH H[DPLQHG
PAGE 45
&+$37(5 68%&5,7,&$/ %,)85&$7,216 7KHRU\ 7KH OLQHDU VWDELOLW\ DQDO\VLV ZLOO RQO\ JLYH WKH RQVHW FRQGLWLRQV IRU PRUSKRORJLFDO LQVWDELOLW\ 1RQOLQHDU FDOFXODWLRQV DUH QHFHVVDU\ WR GHWHUPLQH WKH EHKDYLRU EH\RQG WKLV SRLQW ,GHDOO\ QXPHULFDO FDOFXODWLRQV VKRXOG JLYH WKH PRVW DPRXQW RI LQIRUPDWLRQ E\ EHLQJ DSSOLFDEOH IRU VPDOO DQG ODUJH GHIRUPDWLRQV EXW DV FDQ EH VHHQ IURP WKH ZRUN RI 8QJDU DQG %URZQ WKHVH FDOFXODWLRQV DUH YHU\ H[SHQVLYH WR FDUU\ RXW DQG WKH\ ZHUH IRUFHG WR VLPSOLI\ WKH QRQOLQHDU SUREOHP DQG SHUIRUP FDOFXODWLRQV IRU YHU\ IHZ H[SHULPHQWDO FRQGLWLRQV 0F)DGGHQ HW DO f HYHQ WKRXJK WKH\ GLG QRW DWWHPSW FDOFXODWLRQV IRU ODUJHU GHIRUPDWLRQV ZHUH IDFHG ZLWK WKH VDPH UHVWULFWLRQV 7KLV WKHQ LV WKH FDVH IRU ZHDNO\QRQOLQHDU PHWKRGV 7KH\ DUH JHQHUDOO\ YDOLG RQO\ LQ D VPDOO UHJLRQ YHU\ FORVH WR WKH RQVHW FRQGLWLRQV EXW WKH\ FDQ EH XVHG WR SUHGLFW WKH VKDSH RI WKH QRQOLQHDU FXUYH IRU ODUJHU GHIRUPDWLRQV DQG IRU VHYHUDO DSSOLFDWLRQV WKLV LQIRUPDWLRQ LV VXIILFLHQW 0RUH LPSRUWDQWO\ GXH WR WKH DQDO\WLFDO QDWXUH RI WKH WHFKQLTXHV WKH\ FDQ EH XVHG WR SUHGLFW WKH ZHDNO\ QRQOLQHDU EHKDYLRU IRU DOO H[SHULPHQWDO FRQGLWLRQV $ FDVH LQ SRLQW LV WKH ZRUN RI 0F)DGGHQ HW DO PRVW RI ZKRVH SUHGLFWLRQV FRXOG KDYH EHHQ REWDLQHG PRUH FKHDSO\ IRU DOO SDUDPHWHU YDOXHV IURP ZHDNO\QRQOLQHDU WKHRULHV
PAGE 46
3UREDEO\ WKH PRVW XVHIXO LQIRUPDWLRQ JHQHUDWHG E\ WKHVH WKHRULHV LV WKH VXEFULWLFDO EHKDYLRU RI WKH QRQOLQHDU FXUYH 6RPH W\SLFDO ELIXUFDWLRQ GLDJUDPV DUH VKRZQ LQ )LJV WR 7KH H D[LV FRUUHVSRQGV WR WKH SODQDU VROXWLRQ DQG LQLWLDOO\ IRU VPDOO YDOXHV RI 6H WKH SODQDU VROXWLRQ LV VWDEOH DQG XVXDOO\ WKH RQO\ SRVVLEOH VROXWLRQ )RU 6H e 6H41 WKH 3ODQDU VROXWLRQ EHFRPHV XQVWDEOH DQG D QRQSODQDU VROXWLRQ ELIXUFDWHV IURP WKH SODQDU RQH )LJXUH VKRZV D V\PPHWULF ELIXUFDWLRQ GLDJUDP ZKHUH QRQSODQDU VROXWLRQV GR QRW H[LVW IRU 6H 6HR1 )RU 6H 6H4M\ HYHQ DQ LQILQLWHVLPDO SHUWXUEDWLRQ ZLOO PDNH WKH VROXWLRQ MXPS IURP WKH XQVWDEOH SODQDU VROXWLRQ WR WKH VWDEOH SODQDU RQH ZKLOH IRU 6H 6H4A WKH SODQDU VROXWLRQ LV VWDEOH WR DOO SHUWXUEDWLRQV 7KLV EHKDYLRU LV UHIHUUHG WR DV VXSHUFULWLFDO ELIXUFDWLRQ DQG IRU WKHVH FXUYHV 6HA 6H ZKHUH 6HA G6HGH DQG 6H G 6HGH DW H f )LJXUH LV QRQV\PPHWULF DQG DV FDQ EH VHHQ VWDEOH DQG XQVWDEOH QRQSODQDU VROXWLRQV H[LVW IRU 6H 6HR1 PDNLQJ WKH SODQDU VROXWLRQ VWDEOH WR LQILQLWHVLPDO SHUWXUEDWLRQV LQ WKLV UHJLRQ ZKLOH D ODUJH SHUWXUEDWLRQ FDQ PDNH LW MXPS WR WKH VWDEOH QRQSODQDU EUDQFK 7KLV LV FDOOHG D VXEFULWLFDO ELIXUFDWLRQ GLDJUDP DQG LV FKDUDFWHUL]HG E\ 6H_ r ,Q WKLV VLWXDWLRQ LW LV REYLRXV WKDW JURZLQJ WKH FU\VWDO DW 6H 6H41 LV QR JXDUDQWHH RI DYRLGLQJ PRUSKRORJLFDO LQVWDELOLW\ )LJXUHV DQG GLVSOD\ WKH EHKDYLRU XVXDOO\ VHHQ LQ PRVW SUREOHPV RI K\GURG\QDPLF LQVWDELOLW\ 0RUSKRORJLFDO LQVWDELOLW\ LV XQXVXDO LQ KDYLQJ QRQOLQHDU FXUYHV VKRZQ E\ )LJV DQG DV ZHOO 7KHVH FXUYHV KDYH EHHQ ODEHOOHG EDFNZDUG EHQGLQJ WR GLVWLQJXLVK WKHP IURP WKH XVXDO IRUZDUG EHQGLQJ FXUYHV $FWXDOO\ WKH\ DUH DQXVOLNH LQ DSSHDUDQFH EHQGLQJ EDFNZDUGV DQG IRUZDUGVf )URP WKH SRLQW RI YLHZ
PAGE 47
)LJXUH )RUZDUG EHQGLQJ ORFDOO\ V\PPHWULF VXSHUFULWLFDO ELIXUFDWLRQ GLDJUDP )LJXUH )RUZDUG EHQGLQJ XQV\PPHWULF VXE FULWLFDO ELIXUn FDWLRQ GLDJUDP )LJXUH %DFNZDUG EHQGLQJ ORFDOO\ V\PPHWULF VXEFULWLFDO ELIXUFDWLRQ GLDJUDP )LJXUH %DFNZDUG EHQGLQJ XQV\PPHWULF VXE FULWLFDO ELIXUFDn WLRQ GLDJUDP
PAGE 48
RI WKH FU\VWDO JURZHU WKLV LV XQIRUWXQDWH DV WKHLU VXEFULWLFDO QDWXUH LQFUHDVHV WKH RFFXUUHQFH RI VXEFULWLFDO ELIXUFDWLRQ )LJXUH LV WKH V\PPHWULF FDVH ZLWK 6HM DQG 6H DQG )LJ WKH QRQV\PPHWULF RQH ZLWK 6HA r 7KH V\PPHWU\ RU QRQV\PPHWU\ RI WKH ELIXUFDWLRQ GLDJUDP LQ K\GURG\QDPLF VWDELOLW\ LV GHSHQGHQW RQ WKH FHOO SDWWHUQ VHH RVHSK ff )RU PRUSKRORJLFDO LQVWDELOLW\ LW ZLOO EH VKRZQ WKDW WZR GLPHQVLRQDO UROOV UHFWDQJXODU FHOOV DQG FURVV UROOV SURGXFH ORFDOO\ V\PPHWULF ELIXUFDWLRQ GLDJUDPV ZKLOH F\OLQGULFDO UROOV DQG KH[DJRQDO FHOOV SURGXFH QRQV\PPHWULF GLDJUDPV ,W ZLOO DOVR EH VKRZQ WKDW ERWK EDFNZDUG EHQGLQJ DQG IRUZDUG EHQGLQJ ZLOO RFFXU IRU DOO FHOOXODU SDWWHUQV GHSHQGLQJ RQ WKH H[SHULPHQWDO SDUDPHWHUV XVHG +HQFH ELIXUFDWLRQ FDQ EH VXEFULWLFDO RU VXSHUFULWLFDO IRU WZR GLPHQVLRQDO UROOV UHFWDQJXODU FHOOV DQG FURVV UROOV EXW IRU KH[DJRQDO FHOOV DQG F\OLQGULFDO FHOOV ELIXUFDWLRQ LV DOZD\V VXEFULWLFDO 7KH 6HFRQG 2UGHU 3UREOHP +HUH ZH EHJLQ RXU ZHDNO\ QRQOLQHDU DQDO\VLV DQG LQ WKLV VHFWLRQ ZH ZLOO FDOFXODWH 6HA WKH ILUVW GHULYDWLYH RI 6H ZLWK UHVSHFW WR H &RQVLGHULQJ WKH QHXWUDOO\ VWDEOH QRQSODQDU VROXWLRQ QHDU WKH ELIXUFDWLRQ SRLQW 6H4 ZH ZLOO H[SDQG WKH YDULDEOHV DURXQG WKH SODQDU VWHDG\ VWDWH VROXWLRQ 7 7 H7 H7 e 7 $OF OR 6H 6H H6H H 6HB R f f
PAGE 49
9 ZKHUH H SA I! Â f :H KDYH DOUHDG\ REWDLQHG WKH OLQHDU SHUWXUEHG VROXWLRQ LQ 6HFWLRQ 6XEVWLWXWLQJ WKHVH H[SDQVLRQV LQWR WKH VWHDG\ VWDWH YHUVLRQV RI HTQV f f DQG FROOHFWLQJ WKH WHUPV RI RUGHU H ZH JHW WKH VHFRQG RUGHU SHUWXUEHG SUREOHP ,I WKH ILUVW RUGHU SHUWXUEHG YDULDEOHV DUH ZULWWHQ IROORZLQJ HTQ f DV 9[\]6HRf 76O]f6HR+[f\f f 7KHQ WKH VROXWLRQ WR WKH VHFRQG RUGHU SUREOHP EHFRPHV &2 7LO ( 7eQ]6HU 7ffQ[\f Q f 6XEVWLWXWLQJ f DQG f LQWR WKH VHFRQG RUGHU SUREOHP DQG WDNLQJ )RXULHU WUDQVIRUPV KRUL]RQWDOO\ ZH JHW /}Q n f DQ 7W8 Â‘ &, Â‘ DW ] Â‘ f 7 DW ] V V f % "f DW ] f DW ] f
PAGE 50
ZKHUH / DQG % DUH WKH VDPH DV WKDW XVHG LQ af DQG f EXW ZLWK R DQG 6H 6H DQG R U '7 '7 f, ARU ÂR VRU I '7e 6HR'&ef f Y*eF6HRLA 6HL&L aD "7e %7V :9I H7VfL AN '&e :: "9N*eF f f: D &&e Q*VfLL "&e f Q&VfLL f / / , W!A[\fG[G\ R R f / / c ! [\fG[G\ R R f * } } , ALUf rU`AG[G\ \ / / , !A[\fG[G\ R R f ,W FDQ HDVLO\ EH VHHQ WKDW IRU WZR GLPHQVLRQDO UROOV FURVV UROOV DQG UHFWDQJXODU FHOOV WKDW A +HQFH IURP WKH VROYDELOLW\ FRQGLWLRQ IRU WKHVH SDWWHUQV 6HA ZLOO EH ]HUR WKDW LV WKH ELIXUFDWLRQ ZLOO EH ORFDOO\ V\PPHWULF %XW IRU KH[DJRQDO FHOOV DQG F\OLQGULFDO UROOV ,_L DQG ZLOO EH QRQ]HUR DQG KHQFH 6HA ZLOO DOVR EH QRQ]HUR DQG ZH KDYH QRQV\PPHWULF ELIXUFDWLRQ DQG WKH H[LVWHQFH RI VXEFULWLFDO LQVWDELOLWLHV
PAGE 51
:H ZLOO DQDO\]H WKH FDVH RI 6HAr E\ FRQVLGHULQJ KH[DJRQDO FHOOV DV DQ H[DPSOH EXW WKH UHVXOWV REWDLQHG DUH DSSOLFDEOH WR F\OLQGULFDO UROOV DV ZHOO ,W VKRXOG EH QRWHG KHUH WKDW DOO WKH KRUL]RQWDO FHOO SDWWHUQV ZH KDYH EHHQ XVLQJ DUH SRVVLEOH VROXWLRQV WR +HOPKRO]nV HTXDWLRQ f DQG WKH VROXWLRQV DOZD\V FRPH LQ SDLUV )RU KH[DJRQDO FHOOV WKH FRPSOHPHQWDU\ VROXWLRQ WR JLYHQ LQ f LV L_ _L &RV WW Â‘; 6LQ LU /WW 6OQ /\ f 6R WKH JHQHUDO IRUP RI HTQ f ZLOO EH 7e OI 3Af f 7R GHWHUPLQH S WKH SURFHGXUH RXWOLQHG E\ RVHSK f ZLOO EH XVHG :H ZLOO SURFHHG WKH VDPH ZD\ DV DERYH EXW XVLQJ f LQVWHDG RI f DQG PXOWLSO\LQJ E\ A DQG LQWHJUDWLQJ KRUL]RQWDOO\ 7KLV ZLOO JLYH WKH VDPH VHW RI HTQV f f EXW ZLWK SLA f AG[G\ SLS f!G[G\ Sf f
PAGE 52
/ / M! GLS GLS GLS , LUrSLf r r S! 2 n / $O II 2 D } fÂ§ S f n +A[G\ f ZKLFK FDQ EH XVHG WR FDOFXODWH 6HA :H WKHQ UHSHDW WKH SURFHVV ZLWK A DQG HTXDWH WKH WZR 6HnV REWDLQHG 7KLV ZLOO UHVXOW LQ D FXELF HTXDWLRQ IRU S 3 S f DQG 6HSf f 6Hf N*f f D YWDQKDf% TD YWDQKD Vf F f OF 6& U U O OB 6 L HR f? f rÂ‘ WDQKDf TWDQKDAV f N %f T%fWDQKD V QD YWDQKD Vf ;f V V ,LRO r f *L 9 >BAQ D*O 6HR*OF D $f% f %$f /WDQKD * fWDQKD 6/ V $fWDQKDV %$f K r K f 6H D%fN* f B fÂ§B//> AfÂ§ EJ J Qf@ N%f / %$fWDQKD .F VF 8 f
PAGE 53
ZKHUH % D YWDQKDffWDQKD VQD YWDQKD VfWDQQD f [ [ V V [ DQG $ WDQKDVWDQKD f 7KHUH DUH WKUHH VROXWLRQV DQG IRU S EXW LW FDQ EH VHHQ WKDW 6HS IRU DQG FRLQFLGH ,W LV DOVR REYLRXV WKDW ZKLOH DQ\ WZR RI WKH VROXWLRQV DUH LQGHSHQGHQW WKH WKLUG LV D OLQHDU FRPELQDWLRQ RI WKH RWKHU WZR +HUH LV DQ LQVWDQFH ZKHUH WKH SUREOHP H[KLELWV D PXOWLSOLFLW\ RI VROXWLRQV IRU WKH VDPH HLJHQYDOXH DQG FRXOG FDXVH VHFRQGDU\ ELIXUFDWLRQV IXUWKHU DORQJ WKH ELIXUFDWLRQ FXUYH 7KH QH[W REYLRXV TXHVWLRQ LV WR DVN LI WKHUH LV DQ\ SRLQW DW ZKLFK 6H LQ f JRHV WR ]HUR DQG KHQFH FDXVLQJ 6HOS WR JR WR ]HUR &DOFXODWLRQV GRQH IRU WKH &$XVWHQLWH LH VWHHOf V\VWHP GLG JLYH VXFK D FXUYH VHH )LJ f WKRXJK IRU PRVW JURZWK FRQGLWLRQV WKLV FXUYH OLHV IDU DZD\ IURP WKH FULWLFDO RU PRVW GDQJHURXVf ZDYHQXPEHU DAA LQWHUVHFWLQJ LW RQO\ DW KLJK YHORFLWLHV 7KH 7KLUG 2UGHU 3UREOHP ,Q 6HFWLRQ LW ZDV VKRZQ WKDW IRU UROOV FURVV UROOV DQG UHFWDQJXODU FHOOV 6HA ZDV ]HUR ZKLFK LPSOLHG D V\PPHWULF ELIXUFDWLRQ GLDJUDP %XW WR OHDUQ PRUH DERXW WKH QDWXUH RI WKLV GLDJUDP LW LV QHFHVVDU\ WR JR WR WKH QH[W RUGHU ,I ZH UHSHDW WKH SURFHGXUH GHVFULEHG IRU WKH VHFRQG RUGHU SUREOHP IRU WKH WHUPV RI RUGHU HA ZH ZLOO REWDLQ WKH WKLUG RUGHU SUREOHP /r f
PAGE 54
:$9(180%(5 )LJXUH *URZWK YHORFLW\ YV ZDYHQXPEHU FKDUW IRU &$XVWHQLWH V\VWHP IRU KH[DJRQDO FHOOV
PAGE 55
7= *= DW ] f 7V f DW ] V f %rL } &f K DW ] f f fÂ§ 7 7 f, A := V n n,A a&7= 6HR&f 6HR '&= 9 &6HR*m*=Â "*mFf6H f $F D ,a ,f B, >aa &N&= &Vf &N '&= '&VQf AN*rF n *VRULf@ D &9'&= U_'&V f&'&= Q'&Vf/ / G[G\ R R f / / !G[G\ R R f f /= 6 r r O>fÂ§N! r fÂ§f@G[G\ R R \ f / / M!G[G\ R R f
PAGE 56
/L / Dr Dr , > A! RR [ Y \ W!A !A [ \ [\ G\f GS fÂfOrG;G\ f / / W}G[G\ R R 2QFH DJDLQ XVLQJ WKH VROYDELOLW\ FRQGLWLRQ ZH REWDLQ f 6HB YN* f%fWDQKD V \9Kf9 L U Lf6HR f f N%f QD YWDQKD Vf V V ZKHUH K aAD ,,A$a ,6H9 Y* ,F N* fD YWDQKDfWDQKDf [F VF [ [ L N%f r nn*WF*VF! N%ff NDA Y WDQKDAf WDQKD f QD Y WDQKD Vf% n r r Q WDQKD V V 6H YN* Qf R WR VF N%f f DQG % D YWDQKDffWDQKD VQD YWDQKD VfWDQKD f [ [ V V V O
PAGE 57
&DOFXODWLRQV DQG &RPSDULVRQV 8VLQJ WKH UHVXOWV RI WKH SUHYLRXV VHFWLRQ 6H ZDV FDOFXODWHG IRU YDULRXV YDOXHV RI WKH H[SHULPHQWDO SDUDPHWHUV DQG WKH UHVXOWV DUH VKRZQ LQ )LJV WR )LJXUH ZDV GUDZQ LQ RUGHU WR FKHFN WKH GHULYDWLRQ ZLWK WKDW RI 8QJDU DQG %URZQ Df DQG VKRZV FDOFXODWLRQV GRQH IRU UROOV ZLWK 'J DQG EXW LV D PRUH FRPSOHWH FDOFXODWLRQ IRU WKH H[SHULPHQWDO SDUDPHWHU UDQJHV LQYROYHG WKDQ WKHLUV 7KH FDOFXODWLRQV DJUHH ZLWK WKRVH RI 8QJDU DQG %URZQ EXW LW LV DQ XQH[SHFWHG UHVXOW QHYHUWKHOHVV VKRZLQJ PXOWLSOH UHJLRQV RI VXEFULWLFDO DQG VXSHUFULWLFDO LQVWDELOLW\ ,W DOVR VHHPHG WR FRQWUDGLFW WKH HDUOLHU FDOFXODWLRQV RI :ROONLQG DQG 6HJHO f ZKR GLG QRW VHH DQ\ VXSHUFULWLFDO LQVWDELOLW\ EXW WKLV ZDV UHVROYHG LQ WKH SDSHU RI :ROONLQG DQG :DQJ f DQG KHQFH )LJ DJUHHV ZLWK WKHLU FDOFXODWLRQV DV ZHOO $V DUJXHG LQ 6HFWLRQ LI ZH WUHDW WKH DPLQ FXUYH DV WKH H[SHULPHQWDO RSHUDWLQJ OLQH WKH ELIXUFDWLRQ LV PRVWO\ VXSHUFULWLFDO ZKLFK DOVR VHHPV WR FRQWUDGLFW WKH H[SHULPHQWDO UHVXOWV RI GH &KHYHLJQH HW DO f ZKR REVHUYHG RQO\ VXEFULWLFDO ELIXUFDWLRQ ,Q )LJ FDOFXODWLRQV ZHUH GRQH IRU PRUH UHDOLVWLF YDOXHV RI 'V DQG DQG WKH UHVXOWV DUH VLJQLILFDQWO\ GLIIHUHQW ZLWK RQO\ RQH UHJLRQ RI VXSHUFULWLFDOO\ DQG DQRWKHU RI VXEFULWLFDOLW\ ,JQRULQJ VROLG GLIIXVLRQ LQWURGXFHV D VLQJXODULW\ WR WKH SUREOHP DQG WKLV DFFRXQWV IRU WKH GLVWRUWLRQV REVHUYHG LQ )LJ ,Q )LJ LI ZH PRYH DORQJ WKH RSHUDWLQJ OLQH IRU D IL[HG OLTXLG WHPSHUDWXUH JUDGLHQW LQLWLDOO\ IRU VPDOO JURZWK YHORFLWLHV WKH ELIXUFDWLRQ LV VXSHUFULWLFDO XQWLO DW D FULWLFDO YHORFLW\ D WUDQVLWLRQ SRLQW LV UHDFKHG DQG WKH ELIXUFDWLRQ EHFRPHV VXEFULWLFDO +HQFH IRU HYHU\ LPSRVHG OLTXLG WHPSHUDWXUH
PAGE 58
:$9(180%(5 )LJXUH 9HORFLW\ YV ZDYHQXPEHU FKDUW IRU WKH RQHVLGHG DSSUR[LPDWLRQV RI 8QJDU DQG %URZQ IRU UROOV
PAGE 59
:$9(180%(5 )LJXUH 9HORFLW\ YV ZDYHQXPEHU FKDUW IRU UROOV XVLQJ WKH 3E6Q V\VWHP
PAGE 60
JUDGLHQW WKHUH ZLOO EH D FULWLFDO JURZWK YHORFLW\ EHORZ ZKLFK WKH ELIXUFDWLRQ IRU UROO GLVWXUEDQFHV LV DOZD\V VXSHUFULWLFDO 7KH UHDOO\ VXUSULVLQJ UHVXOW KHUH LV WKDW ZKHQ WKHVH WUDQVLWLRQ SRLQWV IRU YDULRXV YDOXHV RI WKH JUDGLHQW DUH MRLQHG ZH JHW D VWUDLJKW OLQH WKURXJK WKH RULJLQ :H QRZ KDYH D FOHDUO\ GHPDUFDWHG VXSHUFULWLFDO XSSHUWULDQJXODU DQG VXEFULWLFDO ORZHUWULDQJXODU RQH ,W LV ZHOO NQRZQ WKDW WKH RQVHW FRQGLWLRQ 6H4 GRHV QRW FKDQJH PXFK LQ WKH QHLJKERUKRRG RI DA+ VHH IRU H[DPSOH &RULHOO 0F)DGGHQ DQG 6HNHUND ff DQG VR DPLQ LV PRUH RI DQ LQWHUYDO WKDQ D XQLTXH SRLQW ,W FDQ DOVR EH VHHQ IURP )LJ WKDW WKH DPAQ FXUYH SUDFWLFDOO\ KXJV WKH OLQH RI WUDQVLWLRQ IURP VXE WR VXSHUFULWLFDOLW\ DQG LI ZH LPSRVH DQ LQWHUYDO IRU DPAQ LW ZRXOG VWUDGGOH WKH WUDQVLWLRQ OLQH 7KXV IRU UROOV LW LV XQOLNHO\ WKDW ZH ZLOO HYHU VHH D VKDUS WUDQVLWLRQ IURP VXEFULWLFDO WR VXSHUFULWLFDO ELIXUFDWLRQ LQ H[SHULPHQWV 0RUH OLNHO\ ZH ZLOO REVHUYH VXEFULWLFDO EHKDYLRU WKURXJKRXW DV UHSRUWHG E\ GH &KHYHLJQH HW DO 3URFHHGLQJ WR WKH WKUHH GLPHQVLRQDO SDWWHUQV ZH REWDLQHG DOPRVW LGHQWLFDO UHVXOWV IRU VTXDUH FHOOV DQG FURVV UROOV )LJXUH LV IRU VTXDUH FHOOV DQG ZH VHH TXLWH D FKDQJH ZLWK WKH VXSHUFULWLFDO UHJLRQ DFTXLULQJ D FKDUDFWHULVWLF EDOORRQ VKDSH DQG KDYLQJ D VKDUS WUDQVLWLRQ WR VXEFULWLFDO ELIXUFDWLRQ DORQJ WKH DPLQ FXUYH %XW KHUH WRR LI WKHVH SRLQWV RI WUDQVLWLRQ DUH MRLQHG D VWUDLJKW OLQH LV WKH UHVXOW GHPDUFDWLQJ D VXSHUFULWLFDO XSSHUWULDQJXODU RSHUDWLQJ UHJLRQ DQG D VXEFULWLFDO ORZHU WULDQJXODU RQH 8QOLNH WKH FDVH RI UROOV WKHVH VKRXOG EH YLVLEOH WR WKH H[SHULPHQWDOLVW 6R LQ RUGHU WR DYRLG FURVV UROOV DQG VTXDUH FHOOXODU LQVWDELOLWLHV QRW RQO\ VKRXOG WKH FU\VWDO EH JURZQ ZKHQ 6H 6HRPLQ EXW RQH VKRXOG GR VR LQ WKH XSSHU WULDQJXODU UHJLRQ )LJXUH GHPRQVWUDWHV WKH XQLYHUVDOLW\ RI RXU UHVXOW LQ EHLQJ
PAGE 61
:$9(180%(5 9(/2&,7< XUQVrf )LJXUH 9HORFLW\ YV ZDYHQXPEHU FKDUW IRU VTXDUH FHOOV XVLQJ WKH 3E6Q V\VWHP
PAGE 62
mr )LJXUH 9HORFLW\ YV ZDYHQXPEHU FKDUW IRU WKH IXVLRQ SUREOHP IRU VTXDUH FHOOV XVLQJ &$XVWHQLWH V\VWHP :$9(180%(5
PAGE 63
DSSOLFDEOH IRU WKH PHOWLQJ SUREOHP DV ZHOO DQG UHSHDWLQJ WKH GHULYDWLRQ IRU WKLV FDVH VHSDUDWHO\ DV ZDV GRQH E\ :ROONLQG DQG 5DLVVL f LV XQQHFHVVDU\ )LQDOO\ HYHQ WKRXJK IRU KH[DJRQV 6HM ZDV XVXDOO\ QRQ]HUR DQG KHQFH 6H FDQQRW HDVLO\ EH FDOFXODWHGf LQ 6HFWLRQ ZH VDZ WKDW WKHUH ZHUH SRLQWV DW ZKLFK 6H_ GLG JR WR ]HUR ,I ZH DWWHPSW WR HYDOXDWH 6H IRU KH[DJRQV DW WKHVH SRLQWV ,L DQG A EHFRPH f I DÂSÂf f f DQG DV FDQ EH H[SHFWHG 6H ZLOO EH LQ WKH IRUP f ZKHUH 6H LV WKDW FRUUHVSRQGLQJ WR S 7KH RWKHU SRVVLEOH YDOXH LV ZKHQ S LV RU +HUH 6HS FDQ EH FDOFXODWHG IURP f f DQG f f $V PHQWLRQHG LQ 6HFWLRQ WKHVH SRLQWV DUH XVXDOO\ IDU DZD\ IURP DPAQ DQG LQ )LJ ZH IRXQG WKDW DORQJ WKLV FXUYH 6H LV SRVLWLYH DW ORZ YDOXHV RI D $V D LQFUHDVHV DW D SRLQW DERYH D DPLQ 6H EHFRPHV QHJDWLYH +HQFH DORQJ WKLV OLQH WKH ELIXUFDWLRQ GLDJUDP LV IRUZDUG EHQGLQJ DW ORZ DnV LQFOXGLQJ DAQf DQG EHFRPHV EDFNZDUG EHQGLQJ DW KLJK YDOXHV RI D (YHQ WKRXJK WKLV LV
PAGE 64
WUXH RQO\ DORQJ WKH 6H_ OLQH E\ DQDORJ\ ZLWK RWKHU FHOO SDWWHUQV ZH FRQMHFWXUH WKDW WKLV LV YDOLG ZKHQ 6HA2 DV ZHOO ,Q RWKHU ZRUGV ZH H[SHFW WKH ELIXUFDWLRQ GLDJUDP WR EH IRUZDUG EHQGLQJ DORQJ WKH OLQH DQG EHORZ DV VKRZQ LQ )LJV DQG f EXW D WUDQVLWLRQ WR EDFNZDUG EHQGLQJ DORQJ WKH OLQH FRXOG RFFXU DW KLJK YHORFLWLHV )DU DERYH WKH DPLQ OLQH WKH ELIXUFDWLRQ GLDJUDP VKRXOG EH EDFNZDUG EHQGLQJ VHH )LJV DQG f 7R FRQILUP WKHVH FRQMHFWXUHV ZH WXUQHG WR WKH QRQOLQHDU FDOFXODWLRQV IRU KH[DJRQV RI 0F)DGGHQ HW DO f EXW XQIRUWXQDWHO\ WKH\ ZHUH XQDEOH WR FRPSOHWH WKH ELIXUFDWLRQ GLDJUDP DV WKHLU DWWHPSWV WR FRPSXWH WKH FXUYH IRU H IDLOHG $OVR WKHLU FDOFXODWLRQV ZHUH GRQH RQO\ IRU WKH FDVH RI S DQG QRW IRU S s %XW WKH\ GLG FRQILUP WKH H[LVWHQFH RI VXEFULWLFDO LQVWDELOLW\ 7R VXP XS LW KDV EHHQ VKRZQ WKDW WKH 0XOOLQV DQG 6HNHUND DQG WKH :RRGUXII PRGHOV RI PRUSKRORJLFDO LQVWDELOLW\ DUH RI OLPLWHG YDOLGLW\ 7KH XQLIRUP IRUPXODWLRQ LV WKH PRUH H[DFW UHSUHVHQWDWLRQ RI WKH SUREOHP DQG r LW LV DSSOLFDEOH IRU DOO JURZWK YHORFLWLHV DQG QRW MXVW WKH UHODWLYHO\ UDSLG VROLGLILFDWLRQ DQG IXVLRQ UHJLRQV DQG SURYLGHV D VLQJOH IRUPXODWLRQ IURP ZKLFK DOO WKH GLIIHUHQW PRGHOV IRU YDULRXV JURZWK FRQGLWLRQV FDQ EH REWDLQHG DV OLPLWLQJ FDVHV HOLPLQDWLQJ WKH GXSOLFDWLRQ RI GHULYDWLRQV IRU GLIIHUHQW FDVHV r LW LQFRUSRUDWHV WKH ZKROH FU\VWDO DQG PHOW UHJLRQV LQWR WKH SUREOHP DQG QRW MXVW D ERXQGDU\ OD\HU UHJLRQ DGMRLQLQJ WKH LQWHUIDFH IDFLOLWDWLQJ WKH VWXG\ RI YDULRXV GRPDLQ HIIHFWV OLNH FRQYHFWLRQ RQ PRUSKRORJLFDO LQVWDELOLW\
PAGE 65
)LJXUH %LIXUFDWLRQ GLDJUDP IRU KH[DJRQDO FHOOV )LJXUH %LIXUFDWLRQ GLDJUDP IRU KH[DJRQDO FHOOV )LJXUH %LIXUFDWLRQ GLDJUDP IRU KH[DJRQDO FHOOV )LJXUH %LIXUFDWLRQ GLDJUDP IRU KH[DJRQDO FHOOV
PAGE 66
r LW DYRLGV WKH LQFRUUHFW SUHGLFWLRQV RI VXEFULWLFDO ELIXUFDWLRQ UHJLRQV EHFDXVH RI WKH VLQJXODULWLHV LQKHUHQW LQ SUHYLRXV PRGHOV r 7KH SULQFLSOH RI H[FKDQJH RI VWDELOLWLHV KDV EHHQ VKRZQ WR EH DSSOLFDEOH WR WKLV PRGHO DV ZHOO HYHQ WKRXJK RQO\ LQ DQ DV\PSWRWLF VHQVH :KHQ WKH ZHDNO\ QRQOLQHDU WHFKQLTXH RI 0DONXV DQG 9HURQLV f LV DSSOLHG WR WKLV SUREOHP LQ D V\VWHPDWLF ZD\ LW UHVXOWHG LQ LPSRUWDQW LQIRUPDWLRQ DERXW WKH VKDSH RI WKH ELIXUFDWLRQ GLDJUDP IRU YDULRXV JURZWK FRQGLWLRQV 6RPH RI WKHVH UHVXOWV DUH VLPLODU WR WKRVH REWDLQHG IRU 0DUDQJRQL LQVWDELOLW\ VHH RVHSK ff ZKLFK OHDGV XV WR DVVHUW WKDW WKHVH UHVXOWV DUH YDOLG IRU DOO K\GURG\QDPLF LQVWDELOLW\ SUREOHPV LQ ZKLFK WKH QRQOLQHDULW\ OLHV RQO\ RQ WKH ERXQGDU\ r ,I UHFWDQJXODU FHOOV FURVV UROOV RU WZR GLPHQVLRQDO UROOV DUH WKH KRUL]RQWDO FHOO SDWWHUQV WKHQ WKH ELIXUFDWLRQ GLDJUDP ZLOO DOZD\V EH ORFDOO\ V\PPHWULF )RU KH[DJRQDO FHOOV RU F\OLQGULFDO UROOV WKH\ DUH JHQHUDOO\ QRQV\PPHWULF DQG KHQFH WKH ELIXUFDWLRQ LV VXEFULWLFDO r 7KH SUREOHP FDQ GLVSOD\ D PXOWLSOLFLW\ RI VROXWLRQV IRU WKH VDPH HLJHQYDOXH 6SHFLILFDOO\ IRU KH[DJRQV WKHUH DUH WZR SRVVLEOH VROXWLRQV &RQVLGHULQJ WKH PRUSKRORJLFDO LQVWDELOLW\ SUREOHP LQ SDUWLFXODU WKH IROORZLQJ ZHUH VKRZQ r IRU WZRGLPHQVLRQDO UROOV WKHUH DUH WZR RSHUDWLQJ UHJLRQV RQH VXEFULWLFDO EDFNZDUG EHQGLQJf DQG WKH RWKHU VXSHUFULWLFDO IRUZDUG EHQGLQJf EXW VLQFH WKH GHPDUFDWLRQ LV QRW VKDUS LWV SUREDEOH WKDW RQO\ VXEVFULWLFDO ELIXUFDWLRQ ZLOO EH REVHUYHG H[SHULPHQWDOO\
PAGE 67
r )RU UHFWDQJXODU FHOOV WKH IRUZDUG EHQGLQJ UHJLRQ KDV D FKDUDFWHULVWLF EDOORRQOLNH VKDSH DQG KHUH WRR WKHUH LV D VWUDLJKW OLQH GLYLGLQJ WKH RSHUDWLQJ UHJLRQ LQWR VXEFULWLFDO DQG VXSHUFULWLFDO ]RQHV EXW KHUH WKH WUDQVLWLRQ LV VKDUS DQG KHQFH SUREDEO\ REVHUYDEOH H[SHULPHQWDOO\ r )RU KH[DJRQDO FHOOV DQG F\OLQGULFDO UROOV WKH ELIXUFDWLRQ GLDJUDP VKRZV ERWK EDFNZDUG DQG IRUZDUG EHQGLQJ EHKDYLRU EXW WKH H[DFW UHJLRQV RI HDFK FDQ RQO\ EH FRQMHFWXUHG
PAGE 68
&+$37(5 &203$5,6216 :,7+ 5$
PAGE 69
WKUHH W\SHV RI FRQYHFWLYH LQVWDELOLW\ :KHQ FRQYHFWLRQ LV FDXVHG E\ WKHUPDO DQG FRQFHQWUDWLRQ JUDGLHQWV LW LV NQRZQ DV GRXEOHGLIIXVLYH FRQYHFWLRQ &RPELQDWLRQ RI HLWKHU WKHUPDO RU VROXWDO FRQYHFWLRQ ZLWK VXUIDFH WHQVLRQ GULYHQ IORZ LV WKH 5D\OHLJK0DUDQJRQL SUREOHP ,Q DGGLWLRQ WR WKHVH WKHUH DUH VHYHUDO RWKHU FRPELQDWLRQV SRVVLEOH OLNH 5D\OHLJK%HQDUG FRQYHFWLRQ ZLWK URWDWLRQ RU ZLWK D PDJQHWLF ILHOG EXW IRU SXUSRVHV RI FRPSDULVRQ ZLWK PRUSKRORJLFDO LQVWDELOLW\ LW ZLOO EH VHHQ WKDW WKH WKUHH FDXVHV IRU FRQYHFWLRQ PHQWLRQHG DERYH DUH WKH PRVW UHOHYDQW ,Q WKH GLVFXVVLRQ WR IROORZ LW LV GHVLUDEOH WR FRQVLGHU WKH PRVW JHQHUDO IRUP RI WKLV SUREOHP 'HVSLWH WKHUH EHLQJ VHYHUDO LQWHUHVWLQJ IHDWXUHV LQ WKH SUREOHP RI GRXEOHGLIIXVLYH FRQYHFWLRQ WKH FDXVHV IRU FRQYHFWLRQ WKHUH WKH WHPSHUDWXUH JUDGLHQW DQG WKH VROXWH FRQFHQWUDWLRQ JUDGLHQW DUH ERWK EHU\ VLPLODU DQG LW LV VXIILFLHQW WR ORRN DW WKH HIIHFW RI RQH JUDGLHQW 7KH PDQQHU LQ ZKLFK WKH VXUIDFH WHQVLRQ HIIHFWV WKH SUREOHP LV YHU\ GLIIHUHQW IURP WKH EXR\DQF\ HIIHFWV DQG D JHQHUDO IRUPXODWLRQ VKRXOG LQFOXGH ERWK $FFRUGLQJO\ ZH ZLOO H[DPLQH WKH 5D\n OHLJK0DUDQJRQL SUREOHP ZLWK WKHUPDO FRQYHFWLRQ ,Q WKH IROORZLQJ VHFWLRQV VHYHUDO RWKHU UHDVRQV IRU ORRNLQJ DW WKLV SUREOHP ZLOO EHFRPH DSSDUHQW 7KH HTXDWLRQV IRU WKH 5D\OHLJK0DUDQJRQL SUREOHP DUH JLYHQ E\ 6DUPD f DQG ZH ZLOO UHSURGXFH WKHP KHUH DQG UHIHU WKH LQWHUHVWHG UHDGHU WR KLV SDSHU IRU GHWDLOV 7KH VWHDG\ VWDWH GLPHQVLRQOHVV %RXVVLQHVT HTXDWLRQV LQ WKH GRPDLQ DUH 99 f
PAGE 70
5D 9 9 9S A 7J 999 f 97 3U9r97 f ZKHUH S LV WKH PRGLILHG SUHVVXUH J WKH DFFHOHUDWLRQ GXH WR JUDYLW\ 5D WKH 5D\OHLJK QXPEHU DQG 3U WKH 3UDQGWO QXPEHU 7KH ERXQGDU\ FRQGLWLRQV DW WKH ERWWRP RI WKH IOXLG OD\HU DUH DW ] 7 7T DQG Z Z] f ZKHUH Z LV WKH YHUWLFDO FRPSRQHQW RI YHORFLW\ 7KH ERXQGDU\ FRQGLWLRQV DW WKH WRS DUH PRUH FRPSOLFDWHG 1RW RQO\ ZLOO WKHUH EH VXUIDFH WHQVLRQ YDULDWLRQ DFURVV WKH VXUIDFH EXW WKH VXUIDFH LV DOVR IUHH WR GHIOHFW OLNH WKH OLTXLGVROLG LQWHUIDFH LQ FU\VWDO JURZWK DW ] L 97rQ %L7 f 9rQ f %RSQ &UQr>99 997@ 0D9 7 +Q f Q 7KH GLPHQVLRQOHVV TXDQWLWLHV DUH %L WKH %LRW QXPEHU %R WKH %RQG QXPEHU &U WKH &ULVSDWLRQ QXPEHU 0D WKH 0DUDQJRQL QXPEHU DQG + WKH VXUIDFH FXUYDWXUH VHH 6FULYHQ DQG 6WHUQOLQJ f IRU GHWDLOVf ,QLWLDOO\ WKHUH ZLOO EH D TXLHVFHQW OLQHDU VWDEOH FRQGXFWLQJ VROXWLRQ WR WKH SUREOHP ZLWK 9 $W D FULWLFDO YDOXH RI WKH FKDUDF
PAGE 71
WHULVWLF SDUDPHWHU 0D RU 5Df WKLV FRQGXFWLQJ VROXWLRQ EHFRPHV XQVWDEOH WR LQILQLWHVLPDO SHUWXUEDWLRQV DQG ZH KDYH D FRQYHFWLYH VROXWLRQ 3HUIRUPLQJ D OLQHDU VWDELOLW\ DQDO\VLV DERXW WKH FRQGXFWLRQ VWDWH VHSDUDWLQJ YDULDEOHV DQG GRLQJ FRQVLGHUDEOH PDQLSXODWLRQV ZH JHW LQ WKH GRPDLQ Df D5D f DfZ D5DZ f ZKHUH D LV WKH ZDYHQXPEHU Z WKH )RXULHU FRHIILFLHQW RI WKH YHUWLFDO FRPSRQHQW RI YHORFLW\ DQG WKH )RXULHU FRHIILFLHQW RI WKH WHPSHUDWXUH $W WKH ERXQGDU\ DW ] Z 'Z f $W ] Z f %L'Z D0D' f %L&U'Z D'Zf D%R Df' %Lf f :KHQ WKH GHQVLW\ YDULDWLRQ ZLWK WHPSHUDWXUH LV QHJOLJLEOH RU LQ WKH DEVHQFH RI JUDYLW\ WKHQ 5D DQG ZH KDYH WKH SXUH 0DUDQJRQL SUREOHP ZLWK DOO WKH QRQOLQHDULWLHV RQO\ LQ WKH ERXQGDU\ (YHQ ZLWK WKLV HIIHFW LQ WKH ERXQGDU\ WKH LPSRUWDQW UHVXOW RI ELIXUFDWLRQ QDPHO\ WKH IOXLG
PAGE 72
YHORFLW\ HIIHFWV RQO\ WKH GRPDLQ WKH GHIOHFWLRQV LQ WKH ERXQGDU\ EHLQJ RQO\ D VHFRQGDU\ HIIHFW RI FRQYHFWLRQ 2Q WKH RWKHU KDQG ZKHQ WKH XSSHU ERXQGDU\ LV DOVR NHSW DW D IL[HG WHPSHUDWXUH ZH KDYH 0D %R &U DQG VR DW ] Z 'Z f 7KLV WKHQ LV WKH SXUH 5D\OHLJK%HQDUG SUREOHP ZLWK DOO WKH QRQOLQn HDULWLHV RQO\ LQ WKH GRPDLQ DQG WKH UHVXOWLQJ QRQTXLHVFHQW VROXWLRQ DOVR PDQLIHVWV LWVHOI LQ WKH GRPDLQ DV FRQYHFWLRQ 7KH 5D\OHLJK0DUDQJRQL SUREOHP GHVFULEHG E\ HTQV f f LV D PL[HG SUREOHP ZLWK QRQOLQHDULWLHV LQ WKH GRPDLQ DQG WKH ERXQGDU\ EXW WKH FRQYHFWLYH VROXn WLRQ UHVXOWLQJ IURP WKHVH QRQOLQHDULWLHV VKRZV XS PDLQO\ LQ WKH GRPDLQ 7KH $XJPHQWHG 0RUSKRORJLFDO 3UREOHP $V FDQ EH VHHQ IURP 6HFWLRQ LQ WKH 5D\OHLJK0DUDQJRQL SUREOHP WKHUH LV D 5D0D GRPDLQERXQGDU\ GXDOLW\ ZKLFK GRHV QRW VHHP WR H[LVW LQ PRUSKRORJLFDO LQVWDELOLW\ )URP WKH SUREOHP GHVFULSWLRQ LQ &KDSWHU LW LV HDV\ WR VHH WKDW DOO WKH QRQOLQHDULWLHV IRU WKLV SUREOHP OLH RQO\ LQ WKH OLTXLGVROLG LQWHUIDFH 7KLV LV D OLPLWDWLRQ EHFDXVH E\ YLUWXH RI EHLQJ RQ WKH ERXQGDU\ WKH 6HNHUND QXPEHU LV XQLTXH DQG KHQFH DOVR KDV D XQLTXH HLJHQIXQFWLRQ DQG LV LQVXIILFLHQW ZKHQ VROXWLRQV WR LQKRPRJHQHRXV YHUVLRQV RI WKH OLQHDUL]HG PRUSKRORJLFDO LQVWDELOLW\ SUREOHP DUH QHHGHG DV LQ &KDSWHU ZKHUH LPSHUIHFWLRQV DUH FRQVLGHUHG 7KLV GLIILFXOW\ DOVR FURSV XS LQ WKH SXUH 0DUDQJRQL SUREOHP EXW WKH 5D\OHLJK0DUDQJRQL SUREOHP FRPHV WR WKH UHVFXH DV WKHUH DUH FRXQWDEO\ PDQ\ FRUUHVSRQGLQJ
PAGE 73
YDOXHV RI 5D IRU HDFK YDOXH RI 0D DQG KHQFH DOVR FRXQWDEO\ PDQ\ HLJHQIXQFWLRQV IRUPLQJ D FRPSOHWH VHW VHH 5RVHQEODW +RPV\ DQG 'DYLV ff 7KH QDWXUDOO\ RFFXUULQJ GXDOLW\ RI 0D DQG 5D HQDEOHV VROXWLRQV WR LQKRPRJHQHRXV SUREOHPV WR EH REWDLQHG LQ D VWUDLJKWIRUZDUG PDQQHU ,Q PRUSKRORJLFDO LQVWDELOLW\ WKHUH LV QR VXFK REYLRXV QDWXUDOO\ RFFXUULQJ ERXQGDU\GRPDLQ GXDOLW\ DQG LW LV QHFHVVDU\ WR FUHDWH RQH 7R DYRLG FRQIXVLRQ ZH ZLOO UHIHU WR WKH SXUH PRUSKRORJLFDO SUREOHP RI &KDSWHU DV WKH 6HNHUND SUREOHP DQG E\ DQDORJ\ ZLWK WKH 5D\OHLJK 0DUDQJRQL SUREOHPf VHW XS DQ HLJHQYDOXH SUREOHP ZLWK WKH HLJHQYDOXH LQ WKH GRPDLQ ZKLFK ZH ZLOO FDOO WKH DXJPHQWHG PRUSKRORJLFDO SUREOHP OLTXLG VROLG Q"TV f f f f ZKHUH 0 LV WKH HLJHQYDOXH ZKLFK ZH ODEHO DV WKH PRUSKRORJLFDO QXPEHU 7KH ERXQGDU\ FRQGLWLRQV DUH DW ] SV f DW ] V S rV f DW ] S S W* f ;} 6 ; V f
PAGE 74
}O A 6H4W r WW2M r 6H*Of r $ ÂÂ U SM S VU 7 Â‘ NT T WN*f f Â V eF VF GTO TV 7 Q 7 f YTr YTV r f f f f ZLWK SHULRGLF FRQGLWLRQV DW WKH ODWHUDO ERXQGDU\ DW U 5 :H FDQ QRZ VHSDUDWH YDULDEOHV H[SUHVVLQJ WKH KRUL]RQWDO GHSHQGHQFH DV ]HURWK RUGHU %HVVHOnV IXQFWLRQV RI WKH ILUVW NLQG 4DLU5f ZKHUH DA DUH WKH ]HURV RI WKH ILUVW RUGHU %HVVHOnV IXQFWLRQV RI WKH ILUVW NLQG &2 S U]f = = 3]f DU5f r L L M L f ,Q DGGLWLRQ LI ZH WDNH )RXULHU WUDQVIRUPV LQ WKH KRUL]RQWDO GLUHFn WLRQ DQG VROYH IRU TAf TJf DQG WKH HTXDWLRQV UHGXFH WR D V\VWHP LQ Sf DQG S ,I ZH GHILQH D FROXPQ YHFWRU ÂVLM 4 LM 3LM f DQG D PDWUL[ GLIIHUHQWLDO RSHUDWRU /L / O f %<' Df f
PAGE 75
WKHQ WKH GRPDLQ HTXDWLRQV UHGXFH WR /4 04 O LM OM f ZKHUH < 6H D$ f* 6H D$ f ,; &O 6 &O f *f % f% Nf F F VF f D YWDQKDfWDQKD V G VL QD YWDQKD VfWDQKDf VL VL f [ +L n DL r Y _f f D D Y T f VL f 7KH ERXQGDU\ FRQGLWLRQV EHFRPH DW ] SLLM Â‘ f DW ] V S VLM f DW ] %L4LM r f ZKHUH % < O %' f
PAGE 76
'HILQLQJ DQ LQQHU SURGXFW G] S V f ZKHUH WKH UHIHUV WR WKH DGMRLQW HLJHQIXQFWLRQ DQG WKH FRPSOH[ FRQMXJDWH ,W FDQ HDVLO\ EH VHHQ WKDW WKH V\VWHP GHVFULEHG E\ HTQV f f LV VHOIDGMRLQW LQ WKLV LQQHU SURGXFW DQG VR WKH HLJHQIXQFWLRQV 4LM DUH FRPSOHWH 6ROYLQJ WKH V\VWHP ZH JHW f $ 6LQ0 DA V ]f VLM LM L ZKHUH 0MBM DUH VROXWLRQV RI WKH HTXDWLRQ f OM L LM Â f OM Â 6 LM L +HUH $ DQG $ FDQ EH GHWHUPLQHG IURP WKH QRUPDOL]LQJ FRQGLWLRQ ÂLM VLM f ZKHUH LV WKH .URQHFNHU GHOWD LM
PAGE 77
&RPSDULVRQ RI 0RUSKRORJLFDO ,QVWDELOLW\ ZLWK 5D\OHLJK0DUDQJRQL &RQYHFWLRQ 7KH SULQFLSDO DLP RI WKLV VHFWLRQ LV WR UHODWH WKH PDWKHPDWLFDO FKDUDFWHULVWLFV RI WKH WZR SUREOHPV VR WKDW ZH PD\ LQWURGXFH VRPH RI WKH H[WHQVLYH PDWKHPDWLFDO WHFKQLTXHV XVHG WR VWXG\ 5D\OHLJK0DUDQJRQL FRQYHFWLRQ WR PRUSKRORJLFDO LQVWDELOLW\ EXW ZH ZLOO PDNH VRPH SK\VLFDO FRPSDULVRQV DV ZHOO 7KH DXJPHQWHG PRUSKRORJLFDO SUREOHP GHVFULEHG LQ 6HFWLRQ N LV VLPLODU WR 5D\OHLJK0DUDQJRQL FRQYHFWLRQ 7KH DXJPHQWHG SUREOHP LV VHOI DGMRLQW EXW WKH 5D\OHLJK0DUDQJRQL SUREOHP LV QRQVHOI DGMRLQW %RWK KDYH DQ LQILQLW\ RI HLJHQYDOXHV DQG FRUUHVSRQGLQJ HLJHQn IXQFWLRQV EXW ZKLOH FRPSOHWHQHVV RI WKH HLJHQVSDFH LV DVVXUHG IRU WKH IRUPHU VSHFLDO WKHRUHPV DUH UHTXLUHG WR VKRZ WKLV IRU WKH ODWWHU FI 1DGDUDMDK DQG 1DUD\DQDQ ff ,W VKRXOG DOVR EH QRWHG WKDW ZKLOH WKH 5D\OHLJK0DUDQJRQL SUREOHP DWWHPSWV WR GHVFULEH D UHDOLVWLF VLWXDWLRQ WKH DXJPHQWHG PRUSKRORJLFDO SUREOHP ZDV DUWLILFLDOO\ FUHDWHG LQ RUGHU WR VROYH LQKRPRJHQHRXV YHUVLRQV RI WKH 6HNHUND SUREOHP GHVFULEHG LQ 6HFn WLRQV r DQG 7KLV EULQJV XV WR WKH TXHVWLRQ ZKHWKHU WKHUH LV D SUDFWLFDO VLWXDn WLRQ ZKLFK LV GHVFULEHG E\ WKLV PDWKHPDWLFDO FRQFRFWLRQ 7KH GLIILFXOW\ LQ FRPLQJ XS ZLWK RQH VWHPV IURP DQRWKHU LPSRUWDQW GLIIHUHQFH EHWZHHQ WKH WZR SUREOHPV ,Q WKH SXUH 5D\OHLJK%HQDUG SUREOHP ZKHUH 0D %R DQG &U DUH DOO ]HURf WKH QRQOLQHDULW\ LV LQ WKH GRPDLQ DQG WKH LQVWDELOLW\ WRR PDQLIHVWV LQ WKH GRPDLQ DV FRQYHFWLRQ (YHQ LQ WKH SXUH 0DUDQJRQL SUREOHP ZKHUH 5D LV ]HURf ZKHUH WKH QRQOLQHDULW\ LV LQ WKH ERXQGDU\ WKH LQVWDELOLW\ LV VWLOO PDLQO\ LQ WKH GRPDLQ ,Q FRQWUDVW LQ WKH 6HNHUND SUREOHP WKH QRQOLQHDULWLHV DQG WKH UHVXOWLQJ LQVWDELOLW\ VKRZ XS LQ WKH ERXQGDU\ 7KRXJK WKHUH DUH RWKHU ERXQGDU\ HIIHFWV OLNH NLQHWLF
PAGE 78
XQGHUFRROLQJf ZKLFK FDQ FDXVH PRUSKRORJLFDO LQVWDELOLW\ WKH RQO\ GRPDLQ HIIHFW ZKLFK FRXOG JLYH 0 SK\VLFDO VLJQLILFDQFH LV D KHDW VRXUFH WHUP LQ WKH IRUP 07 RU 0H(57 VHH RVHSK ff :H GR QRW NQRZ RI DQ\ H[SHULPHQW ZKHUH PRUSKRORJLFDO LQVWDELOLW\ ZDV REVHUYHG DV D UHVXOW RI D KHDW VRXUFH LQ WKH PHOW RU WKH FU\VWDO EXW LI RQH GRHV H[LVW LW ZLOO SURYLGH WKH WUXH DQDORJ\ WR 5D\OHLJK%HQDUG FRQYHFWLRQ 7KLV LV UHOHYDQW DV +XUOH f KDV DWWHPSWHG D FRPSDULVRQ EHWZHHQ WKH 5D\OHLJK%HQDUG SUREOHP DQG WKH 6HNHUND SUREOHP ,W FDQ QRZ EH VHHQ WKDW WKH 6HNHUND SUREOHP FDQ RQO\ EH FRPSDUHG WR WKH SXUH 0DUDQJRQL SUREOHP ZLWK 6H FRUUHVSRQGLQJ WR 0D DQG $ FRUUHVSRQGLQJ WR WKH UHFLn SURFDO RI %R %HVLGHV IRU SHULRGLF ODWHUDO ERXQGDU\ FRQGLWLRQV WKH HLJHQYDOXHV RI ERWK SUREOHPV 6H DQG 0D DUH XQLTXH %DVHG RQ WKLV FRPSDULVRQ ZH FDQ PDNH DQ LPSRUWDQW FRQMHFWXUH 9UHQWDV 1DUD\DQDQ DQG $JUDZDO f KDYH VKRZQ WKDW IRU WKH 0DUDQJRQL DQG WKH 5D\OHLJK0DUDQJRQL SUREOHPV ZKHQ WKH QRQSHULRGLF QRVOLS FRQGLn WLRQ IRU YHORFLW\ LV LPSRVHG DW WKH VLGHZDOOV WKH HLJHQYDOXH 0D LV QR ORQJHU XQLTXH DQG KDV FRXQWDEO\ PDQ\ YDOXHV ,Q RWKHU ZRUGV ZKHQ WKH ZDOOV DUH D ILQLWH GLVWDQFH DSDUW 0D KDV PDQ\ YDOXHV EXW DV WKH\ DUH JUDGXDOO\ PRYHG DSDUW ZH KDYH VSHFWUDO FURZGLQJ DQG LQ WKH OLPLW ZKHQ WKH\ DUH VXIILFLHQWO\ IDU DSDUW WR LPSRVH WKH SHULRGLF ERXQGDU\ FRQGLn WLRQ RI WRWDO VOLS DOO WKH YDOXHV RI 0D FRDOHVFH LQWR D XQLTXH QXPn EHU 5HFHQWO\ IROORZLQJ &RULHOO HW DO f VHYHUDO ZRUNHUV KDYH ORRNHG DW WKH FRXSOHG SUREOHP RI PRUSKRORJLFDO LQVWDELOLW\ ZLWK VROXWDO FRQYHFWLRQ DQG DOO KDYH DVVXPHG SHULRGLF ERXQGDU\ FRQGLWLRQV :H VXVn SHFW WKDW KHUH WRR LI WKH QRVOLS FRQGLWLRQ IRU YHORFLW\ DW WKH VLGH ZDOO LV LPSRVHG WKH 6HNHUND QXPEHU ZLOO QR ORQJHU EH XQLTXH $OO WKLV UDLVHV WKH TXHVWLRQ RI FRPSOHWHQHVV RI WKH 0DUDQJRQL DQG WKH 6HNHUND
PAGE 79
HLJHQVSDFHV DQG LWV SUREDEOH WKDW JHQHUDOL]HG HLJHQVROXWLRQV VHH 1DL PDUN ff DUH QHHGHG ZKHQ 0D DQG 6H DUH FKRVHQ DV HLJHQYDOXHV :KHQ WKHVH WZR SUREOHPV DUH FRQVLGHUHG LQ D ILQLWH FRQWDLQHU ZH FDQ VHH \HW DQRWKHU GLIIHUHQFH %RWK SUREOHPV KDYH VLPSOH HLJHQYDOXHV H[FHSW DW FHUWDLQ DVSHFW UDWLRV RI WKH FRQWDLQHU ZKHUH WZR KRUL]RQWDO PRGHV FDQ FRH[LVW FI 5RVHQEODW +RPV\ DQG 'DYLV ff ,Q D W\SLFDO H[SHULPHQW RI 5D\OHLJK%HQDUG FRQYHFWLRQ ZH ZRXOG H[SHFW WR VHH D GR]HQ RU VR FRQYHFWLRQ FHOOV VHH IRU H[DPSOH .RVFKPLHGHU ff DQG LQFUHDVn LQJ RU GHFUHDVLQJ WKH QXPEHU RI FHOOV E\ RQH FDQ VLJQLILFDQWO\ HIIHFW WKH SUREOHP +HQFH WKH PXOWLSOH SRLQWV LQ WKLV SUREOHP DUH H[WUHPHO\ LPSRUWDQW DQG KDYH EHHQ WKH VXEMHFW RI VWXG\ %XW LQ PRUSKRORJLFDO LQVWDELOLW\ D VLQJOH DOOR\ FU\VWDO FDQ FRQWDLQ KXQGUHGV RI LQGLYLGXDO FHOOV DQG WKH DGGLWLRQ RU ORVV RI RQH KDV KDUGO\ D QRWLFHDEOH HIIHFW RQ WKH SUREOHP DQG FRQVHTXHQWO\ PXOWLSOLFLW\ RI WKH ODWHUDO HLJHQIXQFWLRQV ORVHV LWV VLJQLILFDQFH ,Q DGGLWLRQ XQOLNH WKH 5D\OHLJK QXPEHU LW LV ZHOO NQRZQ WKDW QHDU WKH FULWLFDO ZDYH QXPEHU DA WKH FULWLFDO YDOXH RI WKH 6HNHUND QXPEHU 6H4 KDUGO\ FKDQJHV VHH IRU H[DPSOH &RULHOO 0F)DGGHQ DQG 6HNHUND ff DQG WKH FKRLFH RI DA KDV YHU\ OLWWOH HIIHFW RQ 6HRWM &RQYHUVHO\ WKH FKRLFH RI WKH RSHUDWLQJ 6H ZLOO KDYH D WUHPHQGRXV LPSDFW RQ WKH UHVXOWLQJ ZDYHQXPEHU FI 5DPSUDVDG DQG %URZQ ff 2WKHU GLIIHUHQFHV KDYH EHHQ PHQWLRQHG LQ &KDSWHU %RWK WKH 0DUDQJRQL SUREOHP DQG WKH 6HNHUND SUREOHP KDYH V\PPHWULF ELIXUFDWLRQ GLDJUDPV QHDU WKH ELIXUFDWLRQ SRLQW IRU WZRGLPHQVLRQDO UROOV DQG UHFn WDQJXODU FHOOV DQG QRQV\PPHWULF FXUYHV IRU KH[DJRQDO FHOOV DQG F\OLQGULn FDO UROOV %XW LQ PRUSKRORJLFDO LQVWDELOLW\ WKH FXUYHV FDQ EH IRUZDUG EHQGLQJ RU EDFNZDUG EHQGLQJ GHSHQGLQJ RQ WKH RSHUDWLQJ FRQGLWLRQV ZKHUHDV LQ 0DUDQJRQL FRQYHFWLRQ WKH FXUYHV DUH IRUZDUG EHQGLQJ HYHU\
PAGE 80
ZKHUH +HQFH WKH RFFXUUHQFH RI VXEFULWLFDO LQVWDELOLW\ LV PRUH ZLGHn VSUHDG LQ PRUSKRORJLFDO LQVWDELOLW\
PAGE 81
&+$37(5 %,)85&$7,21 %5($.,1* ,03(5)(&7,216 1DWXUH RI ,PSHUIHFWLRQV :KHQ WKH PRUSKRORJLFDO LQVWDELOLW\ SUREOHP ZDV IRUPXODWHG LQ &KDSn WHU VHYHUDO HIIHFWV ZHUH LJQRUHG DQG WKH UHVXOWLQJ SUREOHP LV DQ LGHDOL]HG RU SHUIHFW RQH ,QFOXVLRQ RI WKHVH FDQ DOWHU WKH SUREOHP LQ VHYHUDO ZD\V IRU H[DPSOH NLQHWLF XQGHUFRROLQJ RI WKH PHOW EHFRPHV DQ LPSRUWDQW HIIHFW LQ UDSLG VROLGLILFDWLRQ EXW DOO LW GRHV LV DOWHU WKH RQVHW FRQGLWLRQ IRU PRUSKRORJLFDO LQVWDELOLW\ ,Q WKH SDUODQFH RI ELIXUFDWLRQ WKHRU\ DQ LPSHUIHFWLRQ LV DQ HIIHFW RQ WKH SHUIHFW SUREOHP ZKLFK DOWHUV LW LQ D VSHFLILF ZD\ 6XFK DQ LPSHUIHFWLRQ ZLOO FDXVH WKH PRUSKRORJLFDO LQVWDELOLW\ SUREOHP QRW WR KDYH D SODQDU VROXn WLRQ DW DOO HYHQ EHORZ WKH RQVHW FRQGLWLRQ DQG WKHVH DUH NQRZQ DV ELIXUFDWLRQ EUHDNLQJ LPSHUIHFWLRQV 7KH HIIHFW RI D W\SLFDO LPSHUIHFWLRQ RQ WKH ELIXUFDWLRQ GLDJUDP LV VKRZQ LQ )LJ 7KH EURNHQ OLQH LV WKH VROXWLRQ LQ WKH SUHVHQFH RI LPSHUIHFWLRQ DQG LW FDQ EH VHHQ WKDW WKH LQWHUIDFH ZLOO EH QRQSODQDU IRU DOO QRQ]HUR YDOXHV RI 6H 2EWDLQLQJ VROXWLRQV WR WKH SUREOHP ZLWK LPSHUIHFWLRQV LV H[WUHPHO\ GLIILFXOW DQG ZH ZLOO RQO\ VHHN DV\PSWRWLF VROXWLRQV +HQFH WKH SUREOHPV WR EH FRQVLGHUHG VKRXOG KDYH YHU\ VPDOO LPSHUIHFWLRQV 8QGHU VXFK FRQGLWLRQV WKH PHWKRG RI PDWFKHG DV\PSWRWLF H[SDQVLRQV RI 0DWNRZVN\ DQG 5HLVV f FDQ EH HPSOR\HG DQG KHUH LW ZLOO EH XVHG LQ D ZD\ VLPLODU WR WKH ZRUN RI 7DYDQW]LV 5HLVV DQG 0DWn NRZVN\ f IRU WKH 5D\OHLJK%HQDUG SUREOHP
PAGE 82
)LJXUH ,PSHUIHFW ELIXUFDWLRQ GLDJUDP VKRZLQJ LQQHU DQG RXWHU H[SDQVLRQV
PAGE 83
7KH PHWKRGLV IDLUO\ VWUDLJKWIRUZDUG 7KH YDULDEOHV DUH H[SDQGHG DV\PSWRWLFDOO\ ZLWK WKH LPSHUIHFWLRQ SDUDPHWHU DERXW WKH SODQDU DQG WKH QRQSODQDU VROXWLRQV DQG WZR RXWHU H[SDQVLRQV 4 DQG DUH REWDLQHG DV VKRZQ LQ )LJ $W WKH ELIXUFDWLRQ SRLQW 6HR1 WKHVH H[SDQVLRQV EUHDN GRZQ DQG LW LV QHFHVVDU\ WR KDYH LQQHU H[SDQVLRQV DQG QHDU 6HR1 DQG WR MRLQ WKH FRUUHVSRQGLQJ T DQG A PDWFKLQJ FRQGLWLRQV KDYH WR EH VSHFLILHG 7KH LPSHUIHFWLRQV WKDW FDQ EH DQDO\]HG LQ WKLV IDVKLRQ PXVW RI FRXUVH EH VPDOO HIIHFWV HOVH D IXOOEORZQ QRQOLQHDU VROXWLRQ ZLOO EH QHHGHG 7ZR RI WKH PRVW LPSRUWDQW HIIHFWV ZKLFK DUH KDELWXDOO\ LJQRUHG QDPHO\ LPSHUIHFW LQVXODWLRQ RI WKH DPSRXOH ZDOO DQG DGYHFWLRQ LQ WKH PHOW DUH VXFK LPSHUIHFWLRQV DQG UHDGLO\ OHQG WKHPVHOYHV WR WKLV W\SH RI DQDO\VLV ,Q &KDSWHU ZKHQ WKH PRUSKRORJLFDO LQVWDELOLW\ SUREOHP ZDV PRGHOOHG E\ D XQLIRUP IRUPXODWLRQ LW ZDV PHQWLRQHG WKDW RQH UHDVRQ IRU WKLV ZDV WR FRQVLGHU D ILQLWH FU\VWDOPHOW UHJLRQ 7KLV ILQLWHQHVV ZDV RQO\ LQ WKH YHUWLFDO GLUHFWLRQ DQG LQ WKH KRUL]RQWDO GLUHFWLRQ WKH LPSRVLWLRQ RI SHULRGLF ERXQGDU\ FRQGLWLRQV HIIHFWLYHO\ PHDQW WKDW WKH DPSRXOH VLGH ZDOOV ZHUH LQILQLWHO\ IDU DSDUW 7KH WZR LPSHUIHFWLRQV WKDW DUH WR EH FRQVLGHUHG DUH FDXVHG E\ QRQSHULRGLF ODWHUDO ERXQGDU\ FRQGLWLRQV DQG DQRWKHU ZD\ RI ORRNLQJ DW WKH HIIHFW RI WKHVH LPSHUIHFWLRQV LV WR VD\ WKDW WKH FRQWDLQHU LV QRZ EHLQJ FRQVLGHUHG WR EH ILQLWH LQ WKH ODWHUDO DV ZHOO DV WKH YHUWLFDO GLUHFWLRQ ,PSHUIHFWLRQ 'XH WR +HDW /RVV $V PHQWLRQHG LQ WKH ODVW VHFWLRQ LW KDV EHHQ FXVWRPDU\ LQ WKLV SUREOHP WR DVVXPH SHULRGLF ERXQGDU\ FRQGLWLRQV ODWHUDOO\ ZKLFK LV
PAGE 84
HTXLYDOHQW WR DVVXPLQJ WKDW WKH ZDOOV RI WKH DPSRXOH DUH SHUIHFWO\ LQVXODWHG RU WKDW WKH\ DUH VR IDU DSDUW WKDW WKHLU HIIHFW FDQ EH LJn QRUHG ,Q SUDFWLFH QHLWKHU RI WKHVH LV OLNHO\ WR EH DFKLHYHG DQG KHUH ZH ZLOO H[DPLQH WKH HIIHFW RI D VPDOO DPRXQW RI KHDW ORVV RU KHDW JDLQ IURP WKH ZDOO RQ WKH SUREOHP ,I ZH WDNH WKH DPSRXOH WR EH F\OLQGULFDO ZLWK UDGLXV 5 7 U 5 OLTXLG NÂ IA]f f 7 VROLG N WfÂ§fÂ§Â‘ I ]f f U V ZKHUH I DQG I DUH VXFK WKDW If I f DQG If I Vf ;r A ; 6 ; V ,I IA DQG IJ DUH SRVLWLYH LW ZLOO PHDQ KHDW ORVV DQG LI WKH\ DUH QHJDn WLYH KHDW JDLQ ,I ZH PDNH WKH WUDQVIRUPDWLRQV 9]f 7A]Uf fÂ§ U A]Uf f I ]f DQG 7 ]Uf fÂ§ U ]Uf f 6 6 DQG VXEVWLWXWH WKHVH LQ WKH VWHDG\VWDWH YHUVLRQV RI HTQV f f WKH WHPSHUDWXUH HTXDWLRQV LQ WKH GRPDLQ EHFRPH U'IANA f 9 U'I N V V V f
PAGE 85
7KH RXWHU ERXQGDU\ FRQGLWLRQV ZLOO UHPDLQ XQFKDQJHG EXW DW WKH LQWHUIDFH HTQ f EHFRPHV rO b Â‘ U9NW n : f r 6H&M A $ + 6UIWNW f DQG HTQ f FRQYHUWV WR YH Q 9 Q /Y U'If 'I f f ; 6 ; V ,Q RUGHU WR VROYH WKLV V\VWHP ZH ZLOO EH WUHDWLQJ WKH KHDW ORVV DV DQ LPSHUIHFWLRQ RQ WKH SHUIHFW SUREOHP LH ZKHQ f 7KH SHUIHFW SUREOHP LV RI FRXUVH WKH 6HNHUND SUREOHP RI 6HFWLRQ 7KH 2XWHU ([SDQVLRQV $V WKLV SUREOHP KDV EHHQ GHILQHG LQ D ILQLWH JHRPHWU\ WKH QXPEHU RI FHOOV DUH IL[HG E\ WKH FRQWDLQHU VL]H DQG WKH JURZWK FRQGLWLRQV :H ZLOO FKRRVH WKHVH VR WKDW D1 LV YHU\ FORVH WR DBÂQ WKH ZDYHOHQJWK FRUUHn VSRQGLQJ WR 6HRPAQ WKH OHDVW YDOXH RI 6H4A $QRWKHU LPSRUWDQW GHFLVLRQ LV WKH VHOHFWLRQ RI WKH ZDYH SDWWHUQ DQG RXU DQDO\VLV LV GRQH IRU F\OLQn GULFDO UROOV $Q REMHFWLRQ WR WKLV FRXOG EH UDLVHG RQ WKH JURXQGV WKDW LQ PRVW H[SHULPHQWV LW LV WKH KH[DJRQDO SDWWHUQ ZKLFK LV REVHUYHG :H MXVWLI\ RXU DVVXPSWLRQ E\ RQFH DJDLQ PDNLQJ D FRPSDULVRQ ZLWK 5D\OHLJK %HQDUG FRQYHFWLRQ ,W DSSHDUV WKDW LQ 5D\OHLJK%HQDUG FRQYHFWLRQ WKH ZDYH SDWWHUQ VHOHFWLRQ LV VWURQJO\ LQIOXHQFHG E\ WKH FRQWDLQHU VL]H DQG
PAGE 86
VKDSH ZLWK WKH KH[DJRQDO SDWWHUQ SUHYDLOLQJ IRU DOO VKDSHV LQ ZLGH FRQWDLQHUV ZKLOH LQ QDUURZHU RQHV WKH FRQWDLQHU VKDSH GHWHUPLQLQJ WKH SDWWHUQ HJ F\OLQGULFDO UROOV IRU FLUFXODU FRQWDLQHUV 6HH .RVFK PLHGHU ff 6LQFH WKH SULQFLSDO DLP RI WKLV SDSHU LV WR VWXG\ D ILQLWH JHRPHWU\ HIIHFW RQ PRUSKRORJLFDO LQVWDELOLW\ WKH F\OLQGULFDO UROO SDWWHUQ ZRXOG EH WKH ORJLFDO FKRLFH 7KLV LV HVSHFLDOO\ YDOLG IRU H[SHULPHQWV VXFK DV WKRVH RI 3HWHYHV f ZKHUH DPSRXOHV RI UDGLXV LQFKHV ZHUH XVHG ,Q &KDSWHU LW ZDV VKRZQ WKDW WKH ELIXUFDWLRQ GLDJUDP LV XQV\PPH WULF IRU F\OLQGULFDO UROOV DQG WKH IRUP RI WKH RXWHU H[SDQVLRQV 4 DQG A DUH VKRZQ VFKHPDWLFDOO\ LQ )LJ ,I ZH XVH VXSHUVFULSW R WR LGHQWLI\ WKH SUREOHP ZLWK SHUIHFW LQVXODWLRQ ZH FDQ VHHN VROXWLRQV E\ PHDQV RI DV\PSWRWLF H[SDQVLRQV DERXW WKH SHUIHFW SUREOHP H ] HN N f N ZLWK VLPLODU H[SDQVLRQV IRU & & DQG e 6XEVWLWXWLQJ WKHVH H[SDQ 6 ; V VLRQV LQWR WKH SUREOHP DQG FROOHFWLQJ WKH WHUPV RI RUGHU ZH JHW DQ LQKRPRJHQHRXV OLQHDU V\VWHP ,I ZH VHSDUDWH YDULDEOHV KRUL]RQWDOO\ &2 H = c DU5f f b ; 2 DQG HOLPLQDWH FO & DQG ZH JHW IRU WKH H[SDQVLRQ DERXW WKH SODQDU ; V VROXWLRQ / r I L L L f
PAGE 87
ZKHUH [ L I ,' O O 9Nr I N V V f f L U DU5fGU R [ UDU5fGU f 7KH ERXQGDU\ FRQGLWLRQV DUH DW ] A DW ] V VL DW ] % K OL L ZKHUH f f f K L L 9Nr 'I
PAGE 88
&2 A ( 4 r! 4 DU5f L M f 4LMf9 : 0 ] 4I 8 L 0 f ZKHUH 4K f_ B LV WKH ELOLQHDU FRQFRPLWDQW HYDOXDWHG DW ] LM L ] 99 ] 9 'IV!YNL r 'IX9K K:K f ,I ZH DVVXPH WKDW DQG DUH QRQ]HUR WKHQ ZKHQ 6H 6H41 0MA EHFRPHV ]HUR DQG WKH RXWHU H[SDQVLRQ f f ZLOO IDLO :KHQ ZH H[SDQG DERXW WKH QRQSODQDU VROXWLRQ ZH HQG XS ZLWK D PXFK PRUH FRPSOLFDWHG V\VWHP %XW VLQFH ZH KDYH H[SUHVVHG WKH VROXWLRQ WR WKH SHUIHFW QRQSODQDU SUREOHP LWVHOI LQ WHUPV RI D SHUWXUEDWLRQ VHULHV LQ H ZH FDQ GR WKH VDPH IRU WKH LPSHUIHFW SUREOHP L er@ f R ,I ZH WDNH WKH ]HURWK RUGHU SUREOHP DQG RQFH DJDLQ VHSDUDWH YDULn DEOHV ODWHUDOO\ r = r DU5f f R R R DQG HOLPLQDWH HTQV af DQG ZH JHW WKH VDPH V\VWHP GHVFULEHG E\ +RL VRL RL f EXW ZLWK DV WKH YDULDEOH $JDLQ XVLQJ WKH HLJHQIXQFWLRQV RI 6HFWLRQ WKH VROXWLRQ LV
PAGE 89
r ( ( 4r! 4 DU5f r L L M L LM R O f ZLWK WDNLQJ WKH VDPH IRUP DV HTQV f DQG f 6LQFH WKHVH HTXDWLRQV DUH YDOLG RQO\ IRU 6H FORVH WR 6HR1 ZH FDQ ZULWH DQ H[SDQVLRQ IRU G0 1 0 6Hf 0 6H f 6H 6H f 1 1 R1 R1 G6H f 6H 6H R1 ZKLFK VLPSOLILHV WR 96Hf J6p101 f f ZKHUH G0 B 1 01 G6H 6H 6H R1 f DQG 6H1 KDV EHHQ GHULYHG LQ 6HFWLRQ +HQFH WKH RXWHU H[SDQVLRQ DERXW WKH QRQSODQDU VROXWLRQ LV r A B D U5f H f F R1 R 1 4 IW! f f R R > BfÂ§fÂ§ 40 PD0U5f H f@ f e6LQPnQL 1 R 1 f
PAGE 90
7KH ,QQHU ([SDQVLRQV 7KH RXWHU H[SDQVLRQV GHVFULEHG LQ WKH SUHYLRXV VHFWLRQ IDLO DW 6H 6HR1! UHTXLULQJ LQQHU H[SDQVLRQV LQ WKLV YLFLQLW\ )RU 6H YHU\ QHDU &2 6H Sf 6H f R1 N Sf S& f ZKHUH E DQG F DUH LQWHJHUV WR EH GHWHUPLQHG VXFK WKDW WKH VROXWLRQ GRHV QRW IDLO DW 6H 6H4A :H FDQ QRZ H[SDQG WKH VROXWLRQV LQ RUGHUV RI S &2 XU]Sf HU]6Hf ( XNU]fSNN N f &2 YU]Sf &U]6Hf ( YNU]fSNN N f &2 ZU]Sf FU6Hf = ZNUfSNN N f +HUH WKH VXSHUVFULSWV RQ X Y DQG Z DUH QRW SRZHUV EXW LQGLFHV 6XEVWLWXWLQJ WKHVH H[SDQVLRQV LQWR WKH SUREOHP VHW XS LQ 6HFWLRQ DQG FROOHFWLQJ WKH WHUPV RI RUGHU S ZH RQFH DJDLQ JHW DQ LQKRPRJHQHRXV SUREOHP 6HSDUDWLQJ YDULDEOHV DQG HOLPLQDWLQJ Y Y DQG Z WKH SUREOHP 6 UHGXFHV WR f
PAGE 91
ZLWK ERXQGDU\ FRQGLWLRQV DW ] XLL Â‘ DW ] V X VL DW ] %r nK L7L L ZKHUH DQG G n 6Hn 8 G6H GX S 7KH YDULDEOHV DQG KDYH EHHQ GHILQHG LQ 6HFWLRQ DQG KA LQ 6HFWLRQ %XW
PAGE 92
)URP WKLV ZH FDQ FRQFOXGH WKDW n DVVXPLQJ r IO!f DQG 1, 1 WKDW F! 7KLV PDNHV WKH V\VWHP f f KRPRJHQHRXV DQG VR DUH FRQVWDQW PXOWLSOHV RI r R r $ f 3URFHHGLQJ WR WKH QH[W RUGHU ZH KDYH /rU VI LL L f DQG DW ] %_L K LL L f K K@ $6Hn L L F * 6H D$ f RL FO R1 F L $ 4 L f ZKHUH " UnfD U5fGU UDU5fGU L R L ARL f DQG 4 LV D FRPSOH[ IXQFWLRQ RI WKH OLQHDU VWDELOLW\ YDULDEOHV 7KH VROYDELOLW\ FRQGLWLRQ IRU L 1 M QRZ JLYHV 4 1 TQLf9 f +HQFH ZH FDQ WDNH r DQG 6Hn r DQG VR E DQG F (TXDWLRQ f LV D TXDGUDWLF LQ $ ZLWK WZR UHDO URRWV $ DQG $ RI RSSRVLWH VLJQV FRUUHVSRQGLQJ WR WZR LQQHU H[SDQVLRQV ,@ DQG ,
PAGE 93
6H 6HR1 e f f L! rr $ArR f f ,Q WHUPV RI \ WKH RXWHU H[SDQVLRQ 4 DERXW WKH SODQDU VWDWH RI HTQ f FDQ QRZ EH H[SUHVVHG E\ ALQ Â‘ TQW! MfTQL 95f+Â“ nf DQG WKH QRQSODQDU H[SDQVLRQ RI HTQ af rLO f >m1IL! r 96H41 &95f f ZKHUH ZH H[SUHVVHG DV DAU5f DWWHPSWLQJ WR PDWFK WKHVH ZLWK WKH LQQHU H[SDQVLRQV RI HTQ f ZH JHW OLP $ OLP $ 4 IM! f0n f e} e} OLP $ OLP $ '0&6H f B 1 ,1 +HQFH XVLQJ $ LQ HTQ f ZLOO JLYH WKH LQQHU H[SDQVLRQ IRU PDWFKLQJ 4 IRU 6H 6HR1 ZLWK IRU 6H 6HR1 $ ZLOO UHVXOW LQ PDWFKLQJ 4 IRU 6H 6HR1 ZLWK L IRU 6H 6HRIDV VKRZQ LQ )LJ
PAGE 94
,PSHUIHFWLRQ 'XH WR $GYHFWLRQ LQ WKH 0HOW ,Q PRGHOOLQJ PRUSKRORJLFDO LQVWDELOLW\ GXULQJ VROLGLILFDWLRQ LW LV FXVWRPDU\ WR QHJOHFW WKH GLIIHUHQFH LQ GHQVLW\ EHWZHHQ OLTXLG DQG VROLG 7KRXJK WKLV GLIIHUHQFH LV YHU\ VPDOO HJ IRU WKH 3E6Q V\VWHP WKH UDWLR RI GHQVLWLHV 3J3A LV f WKH YROXPH FRQWUDFWLRQ XSRQ VROLGLILFDWLRQ UHVXOWV LQ FORVHG VWUHDPOLQHG IORZ LQ WKH PHOW ZKLFK IXQGDPHQWDOO\ DOWHUV WKH SODQDU VWDWH RI WKLV SUREOHP 2EWDLQLQJ WKH VROXWLRQ WR WKH SODQDU VWDWH ZLWK WKLV IORZ LV GLIILFXOW HQRXJK HYHQ ZLWKRXW DWWHPSWLQJ WKH IRUPLGDEOH WDVN RI VROYLQJ WKH QRQSODQDU SUREn OHP ,Q RUGHU WR LQFOXGH WKH HIIHFW RI WKH IORZ RQ PRUSKRORJLFDO LQVWDn ELOLW\ SUHYLRXV ZRUNHUV KDYH WKHUHIRUH UHOLHG RQ VLPSOLI\LQJ DVVXPSWLRQV RU ORRNHG DW OLPLWLQJ FDVHV 7KH VFHQDULR LQ D W\SLFDO VROLGLILFDWLRQ H[SHULPHQW LV VFKHPDWLn FDOO\ VKRZQ LQ )LJ 7KH KHDWLQJ FRLOV PDLQWDLQ FRQVWDQW WHPSHUDn WXUHV DW SRVLWLRQV ] O DQG ] V LQ WKH DPSRXOH $V VROLGLILFDWLRQ SURFHHGV WKH DPSRXOH LV SXOOHG LQ WKH SRVLWLYH ]GLUHFWLRQ DW D YHORn FLW\ Y LQ RUGHU WKDW WKH OLTXLGVROLG LQWHUIDFH ZLOO UHPDLQ VWDWLRQDU\ DW ] 7R ILOO WKH VSDFH FUHDWHG E\ YROXPH FRQWUDFWLRQ XSRQ VROLGLn ILFDWLRQ WKH PHOW ZLOO PRYH WRZDUGV WKH FU\VWDO ZLWK D EXON YHORFLW\ RI YS S f DQG WKLV SURFHVV LV FRPPRQO\ UHIHUUHG WR DV DGYHF 6 & WLRQ ,Q WKH SUHVHQFH RI WKH ULJLG DPSRXOH ZDOOV WKLV IORZ DOVR UHVHPEOHV WKH EROXV IORZ RI VOXJV WKURXJK D SLSH UHVXOWLQJ LQ FORVHG VWUHDPOLQHG IORZ LQ WKH PHOW ,Q WKH OLWHUDWXUH ZH ILQG WKUHH DSSURDFKHV WR WDFNOLQJ WKLV SUREn OHP WKH OHDVW RI ZKLFK LV WKH ZRUN RI &DUROL &DUROL 0LVEDK DQG 5RXOHW Ef ZKR LJQRUHG WKH ULJLG VLGH ZDOOV 7KHQ WKH RQO\ HIIHFW RI
PAGE 95
)LJXUH &U\VWDO JURZWK ZLWK DGYHFWLRQ LQ WKH PHOW
PAGE 96
DGYHFWLRQ LV D QHJOLJLEOH PRGLILFDWLRQ RI WKH JURZWK YHORFLW\ LQ WKH PHOW 7KH RWKHU WZR DSSURDFKHV DUH PRUH VXEVWDQWLDO DQG DQDOL]H OLPLWLQJ FDVHV RI WKLV SKHQRPHQRQ 6LQFH WKH WUDGLWLRQDO IRUPXODWLRQ RI PRUSKRORJLFDO LQVWDELOLW\ FRQFHQWUDWHV RQO\ DW D ERXQGDU\ OD\HU UHJLRQ RI WKH OLTXLGVROLG LQWHUIDFH LQ VXFK D PRGHO WKH FORVHG VWUHDPOLQHG IORZ VKRZQ LQ )LJ FDQ EH DSSUR[LPDWHG E\ &RXHWWH IORZ LQ 5HJLRQ DQG VWDJQDWLRQ IORZ LQ 5HJLRQ ,, 'HOYHV DQG r DQG &RULHOO 0F)DGGHQ %RLVYHUW DQG 6HNHUND f ORRNHG DW WKH HIIHFW RI D IRUFHG SODQH &RXHWWH IORZ DQG VKRZHG WKDW WKH RQVHW RI PRUSKRORJLFDO LQVWDELOLW\ LV VRPHZKDW VXSSUHVVHG IRU GLVWXUEDQFHV LQ WKH IORZ GLUHFWLRQ ZKLOH GLVWXUEDQFHV SHUSHQGLFXODU WR WKH IORZ ZHUH XQHIIHFWHG 5HFHQWO\ 0F)DGGHQ &RULHOO DQG $OH[DQGHU f H[DPLQHG WKH HIIHFW RI D SODQH VWDJQDWLRQ IORZ RQ GLVWXUEDQFHV SHUSHQGLFXODU WR WKH IORZ DQG KHUH WRR WKH IORZ ZDV IRXQG WR EH VWDELOL]LQJ %DVHG RQ WKHVH WZR OLPLWLQJ FDVHV LW PLJKW EH WHPSWLQJ WR FRQFOXGH WKDW DGYHFWLRQ JHQHUDOO\ VWDELOL]HV WKH OLTXLGVROLG LQWHUIDFH ,Q WKLV DQG WKH QH[W IHZ VHFWLRQV ZH ZLOO HPEDUN XSRQ D PRUH FRPSOHWH DQDO\VLV RI DGYHFWLRQ WKDQ KDV EHHQ DWWHPSWHG VR DIDU DQG VKRZ WKDW WKH DERYH DVVHUWLRQ LV TXHVWLRQDEOH DW EHVW ,Q RXU PRGHO ZH FRQVLGHU PRUSKRORJLn FDO LQVWDELOLW\ ZLWK DGYHFWLRQ LQ WKH DEVHQFH RI QDWXUDO FRQYHFWLRQ :H FKRRVH QRW WR LQFOXGH QDWXUDO FRQYHFWLRQ DV ZH ZLVK WR VWXG\ WKH HIIHFW RI DGYHFWLRQ RQO\ DQG QDWXUDO FRQYHFWLRQ ZLOO RQO\ IXUWKHU FRPSOLFDWH DQ DOUHDG\ QRQWULYLDO SUREOHP %HVLGHV LW KDV EHHQ VKRZQ YHU\ FRQFOXVLYHO\ E\ &RULHOO &RUGHV %RHWWLQJHU DQG 6HNHUND f DQG E\ &DUROL &DUROL 0LVEDK DQG 5RXOHW Df WKDW WKH FRQYHFWLYH DQG PRUSKRORJLFDO PRGHV DUH GHFRXSOHG H[FHSW DW SRLQWV ZKHUH WKH\ EHFRPH FRPSDUDEOH +HQFH RXU PRGHO ZLOO EH YDOLG IRU WKH KLJK JURZWK YHORFLW\ UHJLRQ ZKHUH PRUSKROR
PAGE 97
JLFDO LQVWDELOLW\ LV GRPLQDQW DQG DOVR LQ ORZ JUDYLW\ HQYLURQPHQWV ZKHUH QDWXUDO FRQYHFWLRQ FDQ EH QHJOHFWHG 7KH H[SHULPHQWDO VHW XS ZDV EULHIO\ GHVFULEHG HDUOLHU 7KH VWHDG\ VWDWH GRPDLQ HTXDWLRQV LQ GLPHQVLRQOHVV IRUP DUH 9 7r f 9 &r 9 7 8n9&r r f 9 7 V f &V Q9Â& Y a V ] f +HUH X LV WKH YHORFLW\ RI WKH FORVHG VWUHDPOLQHG IORZ LQ WKH PHOW FDXVHG E\ DGYHFWLRQ DQG LV S S f 7KH ERXQGDU\ FRQGLWLRQV DUH 6 ;} DW ] 7ML 7 r &M & f DW ] V 7V 7 f DW ] 7A 7V 6H&A $ + f 97frQ I97 rQ /Y [ V f N& & O V f 9& rQ fY& Q9& rQ Y& ; ; V V f
PAGE 98
%HIRUH ZH FDQ ZULWH WKH HTXDWLRQV IRU X IXUWKHU DVVXPSWLRQV DUH QHFHVVDU\ 7KH GRPDLQ RI WKH YHORFLW\ HTXDWLRQV H[WHQG RYHU WKH HQWLUH PHOW UHJLRQ QRW MXVW WKH GHSWK O WKDW ZH KDYH FRQVLGHUHG ,Q WKH IORDW ]RQH WHFKQLTXH WKLV PHOW UHJLRQ ZLOO VWLOO KDYH D FRQVWDQW GHSWK DV VROLGLILFDWLRQ SURFHHGV EXW LQ %ULGJPDQ JURZWK WKH PHOW UHJLRQ ZLOO FRQWLQXRXVO\ VKULQN 6LQFH FU\VWDO JURZWK YHORFLWLHV DUH XVXDOO\ VR VPDOO HYHQ LQ WKH ODWWHU WHFKQLTXH LW WDNHV DZKLOH EHIRUH WKHUH LV DQ DSSUHFLDEOH FKDQJH LQ WKH PHOW GHSWK +HQFH RYHU D VKRUW WLPH VSDQ D FRQVWDQW GHSWK DVVXPSWLRQ ZLOO EH YDOLG HYHQ IRU %ULGJPDQ JURZWK :H ZLOO DOVR DVVXPH WKDW WKH PHOW LV ERXQGHG RQ DOO VLGHV E\ ULJLG ZDOOV 7KLV ZLOO UHTXLUH D FRQWDLQHU IRU ]RQH UHILQLQJ DQG D YHU\ YLVFRXV HQFDSVXODQW IRU WKH PHOW LQ %ULGJPDQ JURZWK 8QGHU WKHVH DVVXPSWLRQV WKH YHORFLW\ SUREOHP KDV EHHQ VROYHG E\ 'XGD DQG 9UHQWDV f IRU ORZ YHORFLWLHV DQG KHUH ZH ZLOO RQO\ JLYH WKH VROXWLRQ DQG UHIHU WKH LQWHUHVWHG UHDGHU WR WKHLU SDSHU IRU WKH GHWDLOV X Y5UfLS] X Y 5UfAUf f Ur ] &2 &2 LOO $ ) Uf6LQQLU ]UO PUUVLQKE ]
PAGE 99
Q EQ+n9nH[SWLQK r H[SEQK H[SEQKf H[SE KfK@ f %QJQ +EfKH[SEQK $P4PQ } H[SEQEf $4 f f P P KJ & E KH[SE K 6LQKE Kf = $ 4 Q Q Q rQ Q P PQ P E K H[SE Kf = $ 4 f Q Q P PQ P P f EQ ? QLUA ,AQLUKf,AQLUOA f ,AQLUKf @,PUKf f PQ EQUPUKf,UPUKf ALEAf ,PLUKf> LPUKf E @ Q f \ O O K <5 P f ZKHUH LV WKH WRWDO PHOW GHSWK 5 WKH GLPHQVLRQOHVV UDGLXV RI WKH DPSRXOH XU DQG X] WKH UDGLDO DQG D[LDO FRPSRQHQWV RI WKH YHORFLW\ S WKH %HVVHO IXQFWLRQ RI WKH ILUVW NLQG RI RUGHU S DQG ,' WKH PRGLILHG %HVVHO IXQFWLRQ RI WKH ILUVW NLQG RI RUGHU S 'XGD DQG 9UHQWDV KDYH GHWHUPLQHG WKH ILUVW WZHQW\ FRHIILFLHQWV RI $Q IRU YDULRXV YDOXHV RI K DQG ZH ZLOO XVH WKHVH LQ RXU FDOFXODWLRQV
PAGE 100
1RQH[LVWHQFH RI WKH 3ODQDU 6WDWH 7KH NH\ DVVXPSWLRQ PDGH LQ WKH WZR SUHYLRXV DSSURDFKHV WR VROYLQJ WKH DGYHFWLRQ SUREOHP ZDV WKDW D VWDEOH SODQDU VWDWH ZDV VWLOO SRVVLEOH HYHQ LQ WKH SUHVHQFH RI PHOW IORZV %XW WKLV LV WUXH RQO\ LI WKH YHORn FLW\ SURILOH YHU\ FORVH WR WKH LQWHUIDFH LV DVVXPHG WR EH LQ D VSHFLDO IRUP WKH YHUWLFDO FRPSRQHQW RI YHORFLW\ EHLQJ LQGHSHQGHQW RI DQ\ KRULn ]RQWDO FRRUGLQDWHV DQG WKH KRUL]RQWDO FRPSRQHQW RI YHORFLW\ DW PRVW D OLQHDU IXQFWLRQ RI WKDW KRUL]RQWDO FRRUGLQDWH $V FDQ EH VHHQ E\ HTQV f f WKHVH DVVXPSWLRQV FDQ RQO\ EH YLHZHG DV OLPLWLQJ FDVHV DQG LQ JHQHUDO XS DQG X] ZLOO EH FRPSOH[ IXQFWLRQV RI ERWK U DQG ] ,Q WKLV VHFWLRQ ZH ZLOO XVH WKLV WR SURYH WKH QRQH[LVWHQFH RI SODQDU VROXWLRQV IRU WKLV SUREOHP 7KLV SURRI FDQ DOVR EH XVHG WR VKRZ WKH QRQH[LVWHQFH RI SODQDU VROXWLRQV IRU WKH FDVH RI LPSHUIHFW LQVXODWLRQ FRQVLGHUHG LQ 6HFWLRQV ,Q 6HFWLRQ ZKHUH ZH DVVXPHG WKDW ZDV ]HUR D SODQDU VROXWLRQ ZDV SRVVLEOH ZLWK WKH WHPSHUDWXUHV DQG FRQFHQWUDWLRQV IXQFWLRQV RI ] RQO\ 7KHQ WKH HQHUJ\ EDODQFH FRQGLWLRQ DW WKH LQWHUIDFH JLYHQ E\ HTQ ff FRXOG EH XVHG WR GHWHUPLQH WKH FRQVWDQW JURZWK YHORFLW\ Y ,Q RWKHU ZRUGV WKH FKRLFH RI 7A 7 DQG IL[HG Y )RU WKH FDVH RI QRQn ]HUR ZH ZLOO VKRZ WKDW SODQDU VROXWLRQV GR QRW H[LVW E\ FRQWUDGLFn WLRQ ,I WKHUH LV D SRVVLEOH SODQDU VROXWLRQ HTQ f VSHFLILHV WKDW FDQQRW KDYH UDGLDOO\ LQGHSHQGHQW VROXWLRQV 7KH VROXWLRQ ZLOO EH LQ WKH IRUP & U]f & ]f DQU+f Q f
PAGE 101
ZKHUH 4 LV WKH ]HURWK RUGHU %HVVHO IXQFWLRQ RI WKH ILUVW NLQG DQG DQ DUH ]HURV RI WKH ILUVW RUGHU %HVVHO IXQFWLRQ RI WKH ILUVW NLQG 7KHQ WKH ERXQGDU\ FRQGLWLRQV f f DQG f ZLOO UHTXLUH WKDW 7V DQG &V EH H[SUHVVHG LQ VLPLODU H[SDQVLRQV LQ WHUPV RI %HVVHO IXQFWLRQV ,I ZH QRZ UHWXUQ RQFH PRUH WR HTQ f WR FDOFXODWH Y ZH FDQ VHH WKDW Y WRR VKRXOG EH H[SUHVVHG LQ WHUPV RI %HVVHO IXQFWLRQV UDGLDOO\ EXW WKLV FRQWUDGLFWV RXU DVVXPSWLRQ RI D SODQDU VROXWLRQ +HQFH LQ WKH SUHVHQFH RI DGYHFWLRQ WKHUH FDQ EH QR SODQDU VROXWLRQV WR WKLV SUREOHP $V\PSWRWLF 6ROXWLRQ $ FRPSOHWH QRQSODQDU VROXWLRQ RI WKH HTXDWLRQV GHVFULEHG LQ 6HFWLRQ ZLOO UHTXLUH WHGLRXV QXPHULFDO FDOFXODWLRQV %XW VXFK FDOFXODWLRQV PD\ EH XQQHFHVVDU\ IRU DV PHQWLRQHG EHIRUH IRU PRVW V\VWHPV LV DQ H[WUHPHO\ VPDOO QXPEHU DQG KHQFH DQ DV\PSWRWLF VROXWLRQ VKRXOG EH SRVn VLEOH DERXW WKH VROXWLRQ 7KLV ZRXOG EH VLPLODU WR WKH PHWKRG XVHG IRU DQDO\]LQJ KHDW ORVV DW WKH DPSRXOH ZDOO DQG KHUH WRR ZH ZLOO VKRZ WKDW DGYHFWLRQ LV D ELIXUFDWLRQ EUHDNLQJ LPSHUIHFWLRQ RQ WKH PRUn SKRORJLFDO LQVWDELOLW\ SUREOHP %XW XQOLNH WKH SUREOHP ZLWK LPSHUIHFW LQVXODWLRQ KHUH WKH DGGLn WLRQDO WHUPV DUH LQ WKH FRQFHQWUDWLRQ HTXDWLRQV QRW LQ WKH WHPSHUDWXUH RQHV +HQFH DV GRQH HDUOLHU ZH FDQQRW HOLPLQDWH WKH FRQFHQWUDWLRQV DQG UHGXFH WKH SUREOHP WR RQO\ WKH WHPSHUDWXUH HTXDWLRQV DQG VR WKH HLJHQn YDOXH SUREOHP GHILQHG LQ 6HFWLRQ KDV WR EH PRGLILHG WR LQFOXGH WKH FRQFHQWUDWLRQV LQ WKH FROXPQ YHFWRU &RUUHVSRQGLQJO\ WKH GLIIHUHQWLDO RSHUDWRU /L WKH ERXQGDU\ RSHUDWRU DQG WKH LQQHU SURGXFW ZLOO KDYH WR EH FKDQJHG WR WKRVH XVHG LQ &KDSWHU
PAGE 102
/4 0 4 L LM LM LM f U 0r ,, 'Df f fÂ§ 'Y'Df ; 'Df ; Q'Y'QDf } f f f r r! 7, r &r&fG] 7r7 &r& fG] ; ;; V V VV f % L 'Y[6H
PAGE 103
*S LV WKH VDPH DV WKDW GHILQHG LQ HTQ f EXW *F EHFRPHV *f % f%Nf F +H VF f % D YWDQDffWDQD V LOO =L VL QD YWDQD WDQDf VL VL +L f D 0 D Y f +L LM L f D 0 D Y f VL LM L f 7KH PRGLILHG HLJHQYDOXH SUREOHP GHILQHG DERYH LV QRQVHOI DGMRLQW DQG WKHUHIRUH LWV FRPSOHWHQHVV LV QRW DVVXUHG 7KH DGMRLQW SUREOHP ZLOO KDYH WKH VDPH IRUP DV WKDW REWDLQHG LQ 6HFWLRQ 1RZ LI ZH ZULWH WKH RXWHU H[SDQVLRQV r ÂN N f N DQG FROOHFW WKH ILUVW RUGHU WHUPV LQ WKH VROXWLRQ FDQ EH REWDLQHG LQ WKH VDPH IRUP DV LQ 6HFWLRQ )RU 6H 6H4A ZH KDYH L I_ OY'&r f " 5UfDU5fGUUDU5fGU RL L R L f f f
PAGE 104
7KH RXWHU H[SDQVLRQ DERXW WKH SODQDU VWDWH WKHQ EHFRPHV 4LLnIO! r r ( fÂ§fÂ§fÂ§ 4 M DU5f f f F 0 LM R L LM r ZKHUH 4 LV WKH DGMRLQW HLJHQIXQFWLRQ RI 4 6LPLODUO\ WKH RXWHU L L H[SDQVLRQ DERXW WKH QRQSODQDU VROXWLRQ LV Hr D U5f H f 21 R 1 U 41 fI1! Â/X 4PD U5f H6H0W 1L R 1 ,1 1 Hrf@ f f 2QFH DJDLQ LW FDQ EH VHHQ WKDW ERWK VROXWLRQV ZLOO IDLO DV 6H 6H1 DQG LQQHU H[SDQVLRQV DUH QHHGHG 6H\f 6H e\E = eN\NEN f N \f \r f ZLWK FRUUHVSRQGLQJ H[SDQVLRQV IRU WKH YDULDEOHV 7 7 & & DQG e Y 6 ;} V 7KH ILUVW RUGHU SUREOHP LQ \ WKHQ EHFRPHV f
PAGE 105
ZKHUH KDV EHHQ GHILQHG LQ HTQ f +HUH DOO WKH ERXQGDU\ FRQGLWLRQV ZLOO EH KRPRJHQHRXV DQG WKH VROYDELOLW\ FRQGLWLRQ JLYHV n 41 fIO\ r f +HQFH n & DQG $r ,Q WKH QH[W RUGHU 7 /r I f OL L DQG DW ] %r K f K L $6Hn > T* F} R@ $,4 f UADU5fGUI UDU5fGU f r 7KH VROYDELOLW\ FRQGLWLRQ QRZ JLYHV 4rUKf 4cUIc f 6R KHUH WRR ZH FDQ WDNH r DQG 6Hn r 6H 6H41 6 f f r MLr $ f f 92 ZKHUH $ UHIHUV 9 WR $ DQG $ WKH WZR VROXWLRQV RI WKH TXDGUDWLF HTXD WLRQ LQ $ HTQ f 7KH SRVLWLYH VROXWLRQ $ ZLOO JLYH WKH LQQHU
PAGE 106
H[SDQVLRQ PDWFKLQJ WKH RXWHU H[SDQVLRQ HTQ f IRU 6H 6HR1 ZLWK WKH RXWHU H[SDQVLRQ HTQ f IRU 6H 6HR1 7KH QHJDWLYH VROXWLRQ ZLOO UHVXOW LQ WKH LQQHU H[SDQVLRQ PDWFKLQJ HTQ f IRU 6H 6HR1 ZLWK HTQ f IRU 6H 6HR1 &RQWUROOLQJ ,PSHUIHFWLRQV ,Q RUGHU WR FDOFXODWH WKH LPSHUIHFWLRQ GXH WR KHDW ORVVJDLQ WKH IRUP RI WKH IXQFWLRQV IA]f DQG IJ]f PXVW EH NQRZQ $ SRVVLEOH IRUP IRU WKHVH DUH 9]f 7F]f n 9 7 7Df] Ff "f f I ]f 7 ]f 7 f 7 7 f] FfV ]f f V VF D D ZKHUH 7B LV WKH DPELHQW WHPSHUDWXUH DQG 7 DQG 7 DUH 7f DQG 7 LQ WKH SODQDU VWDWH GHILQHG E\ HTQV f DQG f 7KLV IRUP ZDV FKRVHQ WR VDWLVI\ WKH H[SHULPHQWDO FRQGLWLRQV DQG WR UHVHPEOH 1HZWRQnV ODZ RI FRROLQJ +HQFH 6N DQG N ZLOO UHSUHVHQW %LRW QXPEHUV IRU WKH OLTXLG V DQG VROLG VHFWLRQV RI WKH DPSRXOH 7KH UHVXOWLQJ FXUYHV IRU WKH WZR LPSHUIHFWLRQV DUH VKRZQ LQ )LJV DQG )LJXUH FRUUHVSRQGV WR WKH FDVH RI KHDW JDLQ DQG DGYHFWLRQ LQ WKH PHOW DQG )LJ FRUUHVSRQGV WR KHDW ORVV ,Q &KDSWHU ZH FRQFHQWUDWHG RQ LGHQWLI\LQJ VXLWDEOH JURZWK FRQGLWLRQV LQ RUGHU WR DYRLG PRUSKRORJLFDO LQVWDELOLW\ %XW DV ZH KDYH VKRZQ WKHVH LQSHUIHFWLRQV XQGHUPLQH RXU HDUOLHU HIIRUW E\ FDXVLQJ WKH OLTXLGVROLG LQWHUIDFH WR EH QRQSODQDU DW DOO WLPHV $OO WKLV PDNHV WKH VLWXDWLRQ
PAGE 107
)LJXUH ,PSHUIHFW ELIXUFDWLRQ GLDJUDP IRU KHDW ORVV DQG DGYHFWLRQ )LJXUH ,PSHUIHFW ELIXUFDWLRQ GLDJUDP IRU KHDW JDLQ
PAGE 108
VHHP KRSHOHVV IRU WKH FU\VWDO JURZHU EXW LW VKRXOG EH QRWHG WKDW HYHQ WKRXJK WKHVH LPSHUIHFWLRQV FDXVH QRQSODQDULW\ ULJKW IURP WKH EHJLQQLQJ ODUJH GHYLDWLRQV IURP SODQDULW\ VWLOO RFFXU RQO\ IRU 6H 6H41 6WLOO IRU WKRVH JURZHUV FRQFHUQHG HYHQ ZLWK WKH VPDOO DPRXQW RI QRQSODQDULW\ DW 6H 6HR1 ZH VXJJHVW D SRVVLEOH ZD\ WR UHGXFH WKH HIIHFW RI LPSHUIHFWLRQV E\ PXWXDO FDQFHOODWLRQ :LWK UHJDUG WR WKH LPSHUIHFW LQVXODWLRQ FDVH WKH LPSRUWDQW REVHUn YDWLRQ WR EH PDGH LV WKDW WKLV LV DQ LPSHUIHFWLRQ WKDW FDQ EH FRQWUROOHG WR VRPH H[WHQW 7KLV FDQ EH GRQH HLWKHU E\ DGMXVWLQJ WKH DPRXQW RI LQVXODWLRQ RU E\ YDU\LQJ WKH DPELHQW WHPSHUDWXUH ,I WKLV ZHUH WKH RQO\ LPSHUIHFWLRQ LQ WKH SUREOHP LWV HIIHFW FDQ EH PLQLPL]HG E\ JRRG LQVXODn WLRQ DQG E\ NHHSLQJ 7D EHWZHHQ DQG 7 &RXSOHG DV LW XVXDOO\ ZLOO EH ZLWK WKH LPSHUIHFWLRQ GXH WR DGYHFWLRQ LQ WKH PHOW WKLV FRQWURO FDQ EH XVHG WR UHGXFH WKHLU HIIHFWV E\ PXWXDO FDQFHOODWLRQ 7RWDO HOLPLQDWLRQ LV RI FRXUVH QRW SRVVLEOH EXW E\ PDLQWDLQLQJ WKH DPELHQW WHPSHUDWXUH DERYH WKDW RI WKH DPSRXOH LW VKRXOG EH SRVVLEOH WR PLQLPL]H WKH HIIHFW RI WKHVH LPSHUIHFWLRQV
PAGE 109
&+$37(5 1(: ',5(&7,216 7KHUH DUH VHYHUDO LPSRUWDQW LVVXHV VWLOO ZDLWLQJ WR EH DGGUHVVHG LQ PRUSKRORJLFDO LQVWDELOLW\ LQ FU\VWDO JURZWK ,Q WKLV &KDSWHU VRPH RI WKHVH ZKLFK DUH LPSRUWDQW DQG GHVHUYH DWWHQWLRQ ZLOO EH EULHIO\ GLVn FXVVHG 7UDQVLWLRQ WR 'HQGULWLF *URZWK 7KLV LV D YHU\ RSHQ TXHVWLRQ DQG LW ZLOO SUREDEO\ EH \HDUV EHIRUH HYHQ SUHOLPLQDU\ UHVXOWV FDQ EH REWDLQHG 8QJDU DQG %URZQ f KDYH PDGH DQ DWWHPSW LQ WKLV GLUHFWLRQ E\ PRGHOOLQJ WKH IRUPDWLRQ RI GHHS FHOOV EXW ZHUH XQDEOH WR SURFHHG WR WKH SRLQW ZKHUH WKH FHOOV EHJLQ WR FRDOHVFH $QRWKHU ZD\ RI ORRNLQJ DW WKHLU ZRUN LV WR VD\ WKDW WKH\ WULHG WR SRUWUD\ WKH WUDQVLWLRQ WR GHQGULWLF JURZWK DV D VPRRWK RQH DQG WKH\ IDLOHG LQ WKLV 7KLV EULQJV XS WKH TXHVWLRQ LV WKH WUDQVLWLRQ UHDOO\ VPRRWK" ,I LW LV VPRRWK WKHQ LW FDQ RQO\ PHDQ WKDW WKH IDLOXUH RI 8QJDU DQG %URZQ ZDV RQO\ GXH WR VKRUWFRPLQJV RI WKHLU GHHS FHOO PRGHO DQG LPSURYLQJ WKH PRGHO VKRXOG UHFWLI\ WKH SUREOHP %XW LI WKH WUDQVLWLRQ LV VLPLODU WR WUDQVLWLRQ WR WXUEXOHQFH LQ IOXLG IORZ RU WUDQVLWLRQ WR FKDRV LQ G\QDPLn FDO V\VWHPV WKHQ ZH KDYH D PXFK PRUH FRPSOH[ SUREOHP ZKLFK GHILHV HDV\ VROXWLRQV 7KH H[SHULPHQWV RI +HVORW DQG /LEFKDEHU f LQGLFDWH WKDW WKH FRDOHVFLQJ RI FHOOV LV FDWDVWURSKLF UDWKHU WKDQ VPRRWK
PAGE 110
$ SRVVLEOH ZD\ WR GHWHUPLQH ZKHWKHU WKH WUDQVLWLRQ LV VPRRWK RU QRW LV WR ORRN DW VHFRQGDU\ ELIXUFDWLRQV IRU WKH VWHDG\ VWDWH FDVH 6HFRQGn DU\ DQG FDVFDGLQJ ELIXUFDWLRQV ZRXOG LQGLFDWH D PRUH FRPSOH[ WUDQVLn WLRQ :KHQ 8QJDU DQG %URZQ Df LQLWLDOO\ GLG WKHLU QRQOLQHDU FDOFXn ODWLRQV ZLWK WKHLU VLPSOLILHG RQHVLGHG PRGHO WKH\ REVHUYHG VXEFULWLFDO ELIXUFDWLRQV EXW ZKHQ WKH\ UHSHDWHG WKHLU FDOFXODWLRQV IRU D PRUH DFFXn UDWH PRGHO 8QJDU %HQQHW DQG %URZQ ff WKH\ IDLOHG WR VHH DQ\ 8QIRUWXQDWHO\ WKHLU FDOFXODWLRQV ZHUH SHUIRUPHG IRU RQO\ WZR VHWV RI H[SHULPHQWDO FRQGLWLRQV DQG WKHLU UHVXOWV DUH E\ QR PHDQV FRQFOXVLYH KDYH DOUHDG\ WDONHG DERXW WKH PXOWLSOLFLWLHV LQ WKH SUREOHP DQG WKHVH FRXOG OHDG WR VHFRQGDU\ ELIXUFDWLRQV DQG KHQFH H[DPLQLQJ WKH PXOWLSOLFLWLHV LQ WKH PDQQHU RI 5HLVV f ZRXOG EH D VWDUWLQJ SRLQW ,I VHFRQGDU\ ELIXUFDWLRQV DUH REVHUYHG DQ DWWHPSW FRXOG EH PDGH WR VKRZ WKDW GHQGULWLF JURZWK LV D UHVXOW RI FKDRV LQ WKH V\VWHP ([WHQVLRQ WR 6HPLFRQGXFWRU 0DWHULDOV 7KH WKHRU\ RI PRUSKRORJLFDO LQVWDELOLW\ ZDV GHYHORSHG IRU ELQDU\ DOOR\V EXW LWV ELJJHVW SRWHQWLDO DSSOLFDWLRQ LV LQ WKH JURZWK RI VHPLn FRQGXFWRU PDWHULDOV IURP WKH PHOW %XW WKHVH PDWHULDOV DUH GLIIHUHQW LQ WZR LPSRUWDQW UHVSHFWV )LUVWO\ WKH\ DUH QRW VLPSOH ELQDU\ PL[WXUHV OLNH DOOR\V EXW FRPSOH[ FRPSRXQGV LQ WKH FU\VWDO IRUP DQG VHFRQGO\ DOO ELQDU\ VHPLFRQGXFWRUV OLNH JDOOLXP DUVHQLGH KDYH D RQHWRRQH UDWLR RI WKH FRPSRQHQWV DQG KHQFH HYHQ WKH PHOW LV QRW D GLOXWH PL[WXUH 7KH HIIHFW RI WKHVH LV WKDW WKH HTXLOLEULXP UHODWLRQV DW WKH OLTXLGVROLG LQWHUIDFH KDYH WR EH UHIRUPXODWHG )RU H[DPSOH WKH OLTXLGXV VORSH FDQ QR ORQJHU EH DVVXPHG WR EH D VWUDLJKW OLQH DQG DW OHDVW D TXDGUDWLF UHODWLRQVKLS ZLOO EH UHTXLUHG
PAGE 111
,QFOXVLRQ RI 0LFURVFRSLF (IIHFWV 8QWLO QRZ WKH UHVHDUFKHUV LQ PRUSKRORJLFDO LQVWDELOLW\ KDYH EHHQ IDLUO\ VXFFHVVIXO LQ VWXG\LQJ WKH SUREOHP LQ WKH SUHVHQFH RI WKH YDULRXV PDFURVFRSLF LQIOXHQFHV WKDW EHVHW LW ZKLOH PLFURVFRSLF HIIHFWV KDYH EHHQ DOPRVW FRPSOHWHO\ LJQRUHG H[FHSW IRU WKH LQIOXHQFH RI JUDLQ ERXQGDULHV VHH 8QJDU DQG %URZQ Eff $QLVRWURS\ WKDW LV WKH LQIOXHQFH RI WKH ODWWLFH VWUXFWXUH RI WKH FU\VWDO RQ PRUSKRORJLFDO LQVWDELOLW\ FDQQRW EH LJQRUHG DQG WKLV YLHZ KDV EHHQ UHLQIRUFHG E\ WKH H[SHULPHQWV RI +HVORW DQG /LEFKDEHU f %XW KRZ WR LQFOXGH D PLFURVFRSLF HIIHFW RQ D PDFURVFRSLF PRGHO" 7KLV LV D IXQGDPHQWDO TXHVWLRQ QRW MXVW LQ FU\VWDO JURZWK EXW LQ DOO IOXLG PHFKDQLFV 0ROHFXODU G\QDPLFV DQG VWDWLVWLFDO PHFKDQLFV VKRZ JUHDW SURPLVH LQ EULGJLQJ WKH JDS EHWZHHQ PROHFXODU WKHRU\ DQG FRQWLQXXP PHFKDQLFV VHH %LWVDQLV 0DJGD 7LUUHOO DQG 'DYLV ff (YHQ WKRXJK WKLV ZRXOG UHTXLUH WUHPHQGRXV HIIRUW DQG PLJKW VHHP OLNH DQ RYHUNLOO LW LV XQDYRLGDEOH LI ZH KRSH WR FRPH XS ZLWK DQ DFFXUDWH PRGHO IRU WKH LQIOXHQFH RI DQLVRWURS\ RQ PRUSKRORJLFDO LQVWDELOLW\ 0RUH LPSRUWDQWO\ LW ZLOO EH LQYDOXDEOH LQ XQGHUVWDQGLQJ WKH PHFKDQLFV RI VROLGLILFDWLRQ RQ D PROHFXODU OHYHO 1XPHULFDO 0HWKRGV $OPRVW DOO UHVXOWV LQ WKLV WKHVLV KDYH EHHQ REWDLQHG E\ PHDQV RI DV\PSWRWLF H[SDQVLRQV 7KH DGYDQWDJHV RI WKLV KDYH DOUHDG\ EHHQ GLVn FXVVHG LQ HDUOLHU FKDSWHUV EXW WKHUH ZHUH QXPHURXV LQVWDQFHV ZKHUH WKH HIIHFWV RI ODUJH GHYLDWLRQV IURP WKH EDVLF SUREOHP DUH QHFHVVDU\
PAGE 112
UHTXLULQJ QXPHULFDO VROXWLRQV ,GHDOO\ ERWK W\SHV RI DQDO\VLV VKRXOG EH GRQH RQH FRPSOHPHQWLQJ WKH RWKHU 2I FRXUVH LI PROHFXODU G\QDPLFV DUH HPSOR\HG D QXPHULFDO DSSURDFK LV WKH RQO\ DYHQXH EXW HYHQ OHVV GHPDQGLQJ SUREOHPV UHTXLUH LW ,Q WKLV ZRUN VRPH FDOFXODWLRQV ZHUH GRQH IRU D ZHDNO\ QRQOLQHDU DQDO\VLV ZLWK KH[DJRQDO DQG F\OLQGULFDO FHOOV EXW GHILQLWH FRQFOXVLRQ DERXW WKH ELIXUFDWLRQ GLDJUDP FRXOG QRW EH UHDFKHG GXH WR WKH DEVHQFH RI QXPHULFDO QRQOLQHDU FDOFXODWLRQV 6LPLODUO\ WKH LQIOXHQFHV RI ODUJH DPSRXOH ZDOO KHDW ORVVHV DQG QDWXUDO FRQYHFWLRQ ZLWK ULJLG ZDOOV UHTXLUH QXPHULFDO VROXWLRQV QRW WR PHQWLRQ ORRNLQJ IRU VHFRQGDU\ ELIXUFDWLRQV DORQJ WKH QRQOLQHDU FXUYH ([SHULPHQWV $V PHQWLRQHG VHYHUDO WLPH LQ WKLV WKHVLV WKHUH LV D VWURQJ QHHG IRU TXDQWLWDWLYH H[SHULPHQWV QHDU WKH RQVHW SRLQWV 5HFHQWO\ GH &KHYHLJQH HW DO DQG f DQG +HVORW DQG /LEFKDEHU f KDYH PDGH VRPH HIIRUWV LQ WKLV GLUHFWLRQ EXW D ORW PRUH QHHGV WR EH GRQH IRU H[SHULPHQWV WR HYHQ FDWFK XS ZLWK WKHRUHWLFDO ZRUN 6RPH RI WKH TXHVn WLRQV WKDW QHHG WR EH DQVZHUHG E\ H[SHULPHQWV DUH r 6XEFULWLFDO DQG VXSHUFULWLFDO ELIXUFDWLRQV $V GLVFXVVHG LQ 6HFWLRQ WKHRU\ SUHGLFWV WKHUH DUH VXEFULWLFDO DQG VXSHUFULWLFDO ELIXUFDn WLRQ UHJLRQV IRU WKLV SUREOHP DQG H[SHULPHQWDO YHULILFDWLRQ RI WKHVH ZRXOG SURYLGH YHU\ XVHIXO LQIRUPDWLRQ IRU WKH SUDFWLFDO FU\VWDO JURZHU r :DYHSDWWHUQ DQG ZDYHQXPEHU VHOHFWLRQ ,Q WKLV ZRUN DV ZHOO DV LQ WKH ZRUN RI RWKHUVf ZKHUHYHU D FKRLFH KDG WR EH PDGH ZLWK UHJDUG WR
PAGE 113
ZDYHSDWWHUQ RU ZDYHQXPEHU WKH GHFLVLRQ ZDV EDVHG RQ WKHRUHWLFDO FRQVLGHUDWLRQV RU DQDORJ\ ZLWK 5D\OHLJK%HQDUG FRQYHFWLRQ ,Q VRPH LQVWDQFHV QRWDEO\ LQ ZDYHSDWWHUQ VHOHFWLRQ WKH LVVXH ZDV VNLUWHG E\ FRQVLGHULQJ DOO SRVVLELOLWLHV ([SHULPHQWV QHHG WR EH GRQH WR YHULI\ WKH YDOLGLW\ RI FULWHULD SURSRVHG RU WR HVWDEOLVK QHZ FULWHULD LQ VHOHFWLRQV r 5HGXFLQJ LPSHUIHFWLRQV ,Q 6HFWLRQ D ZD\ RI UHGXFLQJ WKH HIIHFW LPSHUIHFWLRQV E\ SOD\LQJ RII RQH DJDLQVW WKH RWKHU ZDV SURSRVHG 2QO\ H[SHULPHQWV FDQ WHOO LI WKLV LV D YLDEOH VROXWLRQ WR WKH SUREOHP RI LPSHUIHFWLRQV r 7UDQVLWLRQ WR GHQGULWLF JURZWK +HVORW DQG /LEFKDEHU KDYH VKRZQ WKDW RVFLOODWRU\ VROXWLRQV SUHFHGH GHQGULWLF JURZWK &HOO GLVDSSHDUDQFH DQG FHOO VSOLWWLQJ DUH DOVR UHSRUWHG SUHFXUVRUV 0RUH ZRUN LV QHHGHG WR HVWDEOLVK WKH WKUHDG WKDW OHDGV IURP WKH FHOOXODU SDWWHUQ QHDU RQVHW WR GHQGULWLF JURZWK
PAGE 114
$33(1',; $ 120(1&/$785( /DWLQ $ 5DWLR GHILQHG LQ HTQ f $ 9 &RQVWDQW PXOWLSOH GHILQHG E\ f D :DYHQXPEHU RU DVSHFW UDWLR DQ :DYHQXPEHU IRU QAK KRUL]RQWDO HLJHQYDOXH 9 DV 0RGLILHG ZDYHQXPEHUV GHILQHG LQ f DQG f D8n DVL 0RGLILHG ZDYHQXPEHUV GHILQHG LQ f DQG f DPLQ 7KH ZDYHQXPEHU IRU ZKLFK 6H4 LV D PLQLPXP % %RXQGDU\ RSHUDWRU % 5DWLR GHILQHG LQ HTQ f %L %LRW QXPEHU %R %RQG QXPEHU E ([SRQHQW GHILQHG E\ HTQ f & %RXQGDU\ FRQFHQWUDWLRQ DW ] O FUFV 6ROXWH FRQFHQWUDWLRQV F ([SRQHQW GHILQHG E\ HTQ f &U &ULVSDWLRQ QXPEHU GB G] GQ &RQVWDQW XVHG LQ HTQ f 'U'V 6ROXWH GLIIXVLYLWLHV U ,QKRPRJHQHRXV FROXPQ YHFWRU LQ WKH GRPDLQ
PAGE 115
9 IV )XQFWLRQV GHILQHG LQ f DQG f *U*V 7HPSHUDWXUH JUDGLHQWV DW WKH LQWHUIDFH LQ WKH SODQDU VWDWH *LFf*VF &RQFHQWUDWLRQ JUDGLHQWV DW WKH LQWHUIDFH LQ WKH SODQDU VWDWH *F 'f* f' f OF V VF O V *}S NÂ* N*AN; Nf J *UDYLWDWLRQDO YHFWRU ,QWHUIDFH FXUYDWXUH K ,QKRPRJHQHRXV FROXPQ YHFWRU DW WKH ERXQGDU\ K <5 L 5DWLR RI LQWHJUDOV GHILQHG E\ fÂ§ f ;3 0RGLILHG %HVVHOnV IXQFWLRQ RI WKH ILUVW NLQG RI RUGHU 3 ;L5DWLRV RI LQWHJUDOV IRU YDULRXV FHOO SDWWHUQV XVHG LQ &KDSWHU %LOLQHDU FRQFRPLWDQW 3 %HVVHOnV IXQFWLRQV RI WKH ILUVW NLQG RI RUGHU S N 'LVWULEXWLRQ FRHIILFLHQW NUNV 7KHUPDO FRQGXFWLYLWLHV / 0DWUL[ GLIIHUHQWLDO RSHUDWRU IRU OLQHDU SUREOHP / /DWHQW KHDW QXPEHU /A'ANA* O //L/!5 :DYHOHQJWKV IRU YDULRXV KRUL]RQWDO FHOO SDWWHUQV /K /DWHQW KHDW D /LTXLG PHOW GHSWK ] P 7RWDO PHOW GHSWK 0 (LJHQYDOXH RI DXJPHQWHG PRUSKRORJLFDO SUREOHP
PAGE 116
P 0D Q 3 3H 3U 4 T Y 5 5D V 6H 6H RPLQ : 7D 7f7 W X 9 86 XU} X Y $EVROXWH YDOXH RI OLTXLGXV VORSH 0DUDQJRQL QXPEHU 8QLW QRUPDO YHFWRU DW WKH LQWHUIDFH SRLQWLQJ LQWR WKH VROLG &RQVWDQW GHILQHG LQ f RU PRGLILHG SUHVVXUH 7HPSHUDWXUH HLJHQIXQFWLRQV LQ DXJPHQWHG PRUSKRORJLFDO SUREOHP 3HFOHW QXPEHU 'AYL 3UDQGWO QXPEHU (LJHQYHFWRU RI DXJPHQWHG PRUSKRORJLFDO SUREOHP &RQFHQWUDWLRQ HLJHQIXQFWLRQV LQ DXJPHQWHG PRUSKRORJLFDO SUREOHP $PSRXOH UDGLXV 5D\OHLJK QXPEHU 6ROLG GHSWK 6HNHUND QXPEHU P*F*7 7KH PLQLPXP YDOXH RI 6H4 7HPSHUDWXUHV $PELHQW WHPSHUDWXUH )UHH]LQJ WHPSHUDWXUH RI SXUH VROYHQW %RXQGDU\ WHPSHUDWXUHV DW ] O DQG ] V 'HYLDWLRQ IURP SODQDULW\ LQ DXJPHQWHG PRUSKRORJLFDO SUREOHP $GYHFWLYH YHORFLW\ 7HPSHUDWXUHV LQ LQQHU H[SDQVLRQV &RPSRQHQWV RI X &RQYHFWLYH YHORFLW\ &U\VWDO JURZWK YHORFLW\
PAGE 117
Y 9 Y V Z ;
PAGE 118
,OO nI &ROXPQ YHFWRU LQ LQQHU H[SDQVLRQ !_!Q $GMRLQW HLJHQIXQFWLRQ RI _! IRU KH[DJRQV 4 ,QKRPRJHQHRXV FROXPQ YHFWRU LQ HTQ f DQG f *RWKLF $ &DSLOODU\ QXPEHU *T 0RGLILHG FRQFHQWUDWLRQ JUDGLHQW GHILQHG LQ f *W 0RGLILHG WHPSHUDWXUH JUDGLHQW GHILQHG LQ f 6XEVFULSWV F 5HIHUV WR WKH SODQDU VWDWH PQ P UHIHUV WR RUGHU LQ WKH SHUWXUEDWLRQ VHULHV LQ H Q UHIHUV WR WKH QWK KRUL]RQWDO )RXULHU FRHIILFLHQW O 5HIHUV WR OLTXLG SKDVH V 5HIHUV WR VROLG SKDVH 6XSHUVFULSWV 'LPHQVLRQOHVV TXDQWLW\ $GMRLQW YHFWRU RU RSHUDWRU &RPSOH[ FRQMXJDWH
PAGE 119
9DULDEOH LQ OLQHDU VWDELOLW\ SUREOHP Q 2UGHU RI WHUPV LQ SHUWXUEDWLRQ VHULHV IRU Q 3H RU S
PAGE 120
$33(1',; % 3+<6,&$/ 3523(57,(6 3URSHUWLHV RI $OOR\ 6\VWHPV 3E6Q 3E6E &$XVWHQLWH FP V f [A [A [Lr &2 H R N FP V A f V P .ZW bf 7f .f ? FP f [ [ [a /K FQIAf N SD J FP f V
PAGE 121
3URSHUWLHV RI 2UJDQLF 6\VWHPV 6XFFLQRQLWULOH$FHWRQH &%UMM%A FP V f [f [f FP n V 6 [ N FP A V f V [a [ UD .ZW bf WP .f ? FPf [ [a /K FPf N Sf J FP f V
PAGE 122
5()(5(1&(6 %LWVDQLV 0DJGD 0 7LUUHOO DQG +7 'DYLV 0ROHFXODU G\QDPLFV RI IORZ LQ PLFURSRUHV &KHP 3K\VLFV S &DUROL % & &DUROL & 0LVEDK DQG % 5RXOHW 6ROXWDO FRQYHFWLRQ DQG PRUSKRORJLFDO LQVWDELOLW\ LQ GLUHFWLRQDO VROLGLILFDWLRQ RI ELQDU\ DOn OR\V GH 3K\VLTXH S D &DUROL % & &DUROL & 0LVEDK DQG % 5RXOHW 6ROXWDO FRQYHFWLRQ DQG PRUSKRORJLFDO LQVWDELOLW\ LQ GLUHFWLRQDO VROLGLILFDWLRQ RI ELQDU\ DOn OR\V ,, (IIHFW RI WKH GHQVLW\ GLIIHUHQFH EHWZHHQ WKH WZR SKDVHV GH 3K\VLTXH SL E &KHYHLJQH 6 GH & *XWKPDQ DQG 00 /HEUXQ 1DWXUH RI WKH WUDQVLWLRQ RI WKH VROLGLILFDWLRQ IURQW RI D ELQDU\ PL[WXUH IURP D SODQDU WR D FHOOXODU PRUSKRORJ\ &U\VWDO *URZWK S &KHYHLJQH 6 GH & *XWKPDQ DQG 00 /HEUXQ &HOOXODU LQVWDELOLWLHV LQ GLUHFWLRQDO VROLGLILFDWLRQ GH 3K\VLTXH S &O\QH 7: DQG : .XU] 6ROXWH UHGLVWULEXWLRQ GXULQJ VROLGLILFDWLRQ ZLWK UDSLG VROLG VWDWH GLIIXVLRQ 0HWDOO 7UDQV $ $ S &RULHOO 65 05 &RUGHV :%RHWWLQJHU DQG 5) 6HNHUND &RQYHFWLYH DQG LQWHUIDFLDO LQVWDELOLWLHV GXULQJ XQLGLUHFWLRQDO VROLGLILFDWLRQ RI D ELQDU\ DOOR\ &U\VWDO *URZWK SL r &RULHOO 65 *% 0F)DGGHQ 5) %RLVYHUW DQG 5) 6HNHUND (IIHFW RI D IRUFH &RXHWWH IORZ RQ FRXSOHG FRQYHFWLYH DQG PRUSKRORJLFDO LQVWDELOLWLHV GXULQJ XQLGLUHFWLRQDO VROLGLILFDWLRQ &U\VWDO *URZWK S &RULHOO 65 *% 0F)DGGHQ DQG 5) 6HNHUND &HOOXODU JURZWK GXULQJ GLUHFWLRQDO VROLGLILFDWLRQ $QQ 5HY 0DWHU 6FL S &RULHOO 65 DQG 5) 6HNHUND 0RUSKRORJLFDO VWDELOLW\ QHDU D JUDLQ ERXQGDU\ JURRYH LQ D VROLGOLTXLG LQWHUIDFH GXULQJ VROLGLILFDWLRQ RI D SXUH VXEVWDQFH &U\VWDO *URZWK S &RULHOO 65 DQG 5) 6HNHUND 0RUSKRORJLFDO VWDELOLW\ QHDU D JUDLQ ERXQGDU\ JURRYH LQ D VROLGOLTXLG LQWHUIDFH GXULQJ VROLGLILFDWLRQ RI D ELQDU\ DOOR\ &U\VWDO *URZWK S &RULHOO 65 DQG 5) 6HNHUND 2VFLOODWRU\ PRUSKRORJLFDO LQVWDELOLWLHV GXH WR QRQHTXLOLEULXP VHJUHJDWLRQ &U\VWDO *URZWK S
PAGE 123
'HOYHV 57 7KHRU\ RI WKH VWDELOLW\ RI D VROLGOLTXLG LQWHUIDFH GXULQJ JURZWK IURP VWLUUHG PHOWV &U\VWDO *URZWK S 'HOYHV 57 7KHRU\ RI WKH VWDELOLW\ RI D VROLGOLTXLG LQWHUIDFH GXULQJ JURZWK IURP VWLUUHG PHOWV ,, &U\VWDO *URZWK SL 'HOYHV 57 7KHRU\ RI LQWHUIDFH VWDELOLW\ LQ &U\VWDO *URZWK HG %5 3DPSOLQ 3HUJDPRQ 2[IRUG 'UD]LQ 3* DQG :+ 5HLG +\GURG\QDPLF 6WDELOLW\ &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH 'XGD / DQG 6 9UHQWDV 6WHDG\ IORZ LQ WKH UHJLRQ RI FORVHG VWUHDP OLQHV LQ D F\OLQGULFDO FDYLW\ )OXLG 0HFK S *OLFNVPDQ 0 65 &RULHOO DQG *% 0F)DGGHQ ,QWHUDFWLRQ RI IORZV ZLWK WKH FU\VWDOPHOW LQWHUIDFH $QQ 5HY )OXLG 0HFK S +DUG\ 6& DQG 65 &RULHOO 0RUSKRORJLFDO VWDELOLW\ DQG WKH LFHZDWHU LQWHUIDFLDO IUHH HQHUJ\ &U\VWDO *URZWK S +DUG\ 6& DQG 65 &RULHOO 0RUSKRORJLFDO VWDELOLW\ RI F\OLQGULFDO LFH FU\VWDOV &U\VWDO *URZWK S +DUG\ 6& DQG 65 &RULHOO 0RUSKRORJLFDO VWDELOLW\ RI LFH F\OLQGHUV LQ DTXHRXV VROXWLRQ &U\VWDO *URZWK SO +HVORW ) DQG $ /LEFKDEHU 8QLGLUHFWLRQDO FU\VWDO JURZWK DQG FU\VWDO DQLVRWURS\ 3K\VLFD 6FULSWD 7 SL +XUOH '72Q VLPLODULWLHV EHWZHHQ WKH WKHRULHV RI PRUSKRORJLFDO LQVWDELOLW\ RI D JURZLQJ ELQDU\ DOOR\ FU\VWDO DQG 5D\OHLJK%HQDUG FRQYHFWLYH LQVWDELOLW\ &U\VWDO *URZWK S ,RRVV DQG '' RVHSK (OHPHQWDU\ 6WDELOLW\ DQG %LIXUFDWLRQ 7KHRU\ 6SULQJHU9HUODJ 1HZ
PAGE 124
0F)DGGHQ *% 5) %RLVYHUW DQG 5) 6HNHUND 1RQSODQDU LQWHUIDFH PRUSKRORJLHV GXULQJ XQLGLUHFWLRQDO VROLGLILFDWLRQ RI D ELQDU\ DOOR\ ,, WKUHH GLPHQVLRQDO FRPSXWDWLRQV &U\VWDO *URZWK S 0F)DGGHQ *% DQG 65 &RULHOO 1RQSODQDU LQWHUIDFH PRUSKRORJLHV GXULQJ XQLGLUHFWLRQDO VROLGLILFDWLRQ RI D ELQDU\ DOOR\ 3K\VLFD S 0F)DGGHQ *% 65 &RULHOO DQG ,' $OH[DQGHU +\GURG\QDPLF DQG IUHH ERXQGDU\ LQVWDELOLWLHV GXULQJ FU\VWDO JURZWK 7KH HIIHFW RI D SODQH VWDJQDWLRQ IORZ WR EH SXEOLVKHG LQ &U\VWDO *URZWK 0RUULV /5 DQG :& :LQHJDUG 7KH GHYHORSPHQW RI FHOOV GXULQJ WKH VROLGLILFDWLRQ RI D GLOXWH 3E6Q DOOR\ &U\VWDO *URZWK SO 0XOOLQV :: DQG 5) 6HNHUND 0RUSKRORJLFDO VWDELOLW\ RI D SDUWLFOH JURZLQJ E\ GLIIXVLRQ RU KHDW IORZ $SSO 3K\VLFV S 0XOOLQV :: DQG 5) 6HNHUND 6WDELOLW\ RI D SODQDU LQWHUIDFH GXULQJ VROLGLILFDWLRQ RI D GLOXWH ELQDU\ DOOR\ $SSO 3K\VLFV S 1DGDUDMDK $ DQG 5 1DUD\DQDQ 2Q WKH FRPSOHWHQHVV RI WKH 5D\OHLJK 0DUDQJRQL DQG *UDHW] HLJHQVSDFHV DQG WKH VLPSOLFLW\ RI WKHLU HLJHQn YDOXHV 4XDUW $SSO 0DWK SO 1DGDUDMDK $ DQG 5 1DUD\DQDQ 0RUSKRORJLFDO LQVWDELOLW\ LQ GLOXWH ELQDU\ V\VWHPV D XQLIRUP DSSURDFK 6XEPLWWHG WR 3K\VLFR&KHPLFDO +\GURG\QDPLFV 1DLPDUN 0$ /LQHDU 'LIIHUHQWLDO 2SHUDWRUV 3DUW )UHGHULFN 8QJDU 1HZ
PAGE 125
6DUPD *65 ,QWHUDFWLRQ RI VXUIDFHWHQVLRQ DQG EXR\DQF\ PHFKDQLVPV LQ KRUL]RQWDO OLTXLG OD\HUV 7KHUPRSK\V +HDW 7UDQV S 6FULYHQ /( DQG &9 6WHUQOLQJ 2Q FHOOXODU FRQYHFWLRQ GULYHQ E\ VXUn IDFHWHQVLRQ JUDGLHQWV HIIHFWV RI PHDQ VXUIDFH WHQVLRQ DQG VXUIDFH YLVFRVLW\ )OXLG 0HFK S 6HJHO /$ DQG 7 6WXDUW 2Q WKH TXHVWLRQ RI WKH SUHIHUUHG PRGH LQ FHOOXODU WKHUPDO FRQYHFWLRQ )OXLG 0HFK S 6HLGHQVWLFNHU 5* 6WDELOLW\ FRQVLGHUDWLRQV LQ WHPSHUDWXUH JUDGLHQW ]RQH PHOWLQJ LQ &U\VWDO *URZWK HG +6 3HLVHU 3HUJDPRQ 2[IRUG 6ULUDQJDQDWKDQ 5 ':ROONLQG DQG '% 2XOWRQ $ WKHRUHWLFDO LQYHVWLJDWLRQ RI WKH GHYHORSPHQW RI LQWHUIDFLDO FHOOV GXULQJ WKH VROLGLILFDWLRQ RI D ELQDU\ DOOR\ &U\VWDO *URZWK S 6WXDUW 7 2Q WKH QRQOLQHDU PHFKDQLFV RI ZDYH GLVWXUEDQFHV LQ VWDEOH DQG XQVWDEOH SDUDOOHO IORZV )OXLG 0HFK S 7DYDQW]LV (/ 5HLVV DQG %0DWNRZVN\ 2Q WKH VPRRWK WUDQVLWLRQ WR FRQYHFWLRQ 6,$0 $SSO 0DWK S 7LOOHU :$ DQG 6: 5XWWHU 7KH HIIHFW RI JURZWK FRQGLWLRQV XSRQ WKH VROLGLILFDWLRQ RI D ELQDU\ DOOR\ &DQ 3K\VLFV S 7LOOHU :$ : 5XWWHU .$ DFNVRQ DQG % &KDOPHUV 7KH UHGLVWULEXn WLRQ RI VROXWH DWRPV GXULQJ WKH VROLGLILFDWLRQ RI PHWDOV $FWD 0HWDOO S 7ULYHGL 5 DQG 6RPERRQVXN &RQVWUDLQHG GHQGULWLF JURZWK DQG VSDFLQJ 0DW 6FL DQG (QJ S 8QJDU /+ 'LUHFWLRQDO VROLGLILFDWLRQ IURP D ELIXUFDWLRQ YLHZSRLQW 'RFWRUDO GLVVHUWDWLRQ 0,7 &DPEULGJH 8QJDU /+ 0%HQQHWW DQG 5$ %URZQ &HOOXODU LQWHUIDFH PRUSKROn RJLHV LQ GLUHFWLRQDO VROLGLILFDWLRQ ,,, 7KH HIIHFWV RI KHDW WUDQVIHU DQG VROLG GLIIXVLYLW\ 3K\VLFDO 5HY % S 8QJDU /+ DQG 5$ %URZQ &HOOXODU PRUSKRORJLHV LQ GLUHFWLRQDO VROLGLn ILFDWLRQ WKH RQHVLGHG PRGHO 3K\VLFDO 5HY % SL D 8QJDU /+ DQG 5$ %URZQ &HOOXODU LQWHUIDFH PRUSKRORJLHV LQ GLUHFn WLRQDO VROLGLILFDWLRQ ,, 7KH HIIHFW RI JUDLQ ERXQGDULHV 3K\V 5HY % S E 8QJDU /+ DQG 5$ %URZQ &HOOXODU LQWHUIDFH PRUSKRORJLHV LQ GLUHFn WLRQDO VROLGLILFDWLRQ ,9 7KH IRUPDWLRQ RI GHHS FHOOV 3K\VLFDO 5HY % 3
PAGE 126
9UHQWDV 6 5 1DUD\DQDQ DQG 66 $JUDZDO )UHH VXUIDFH FRQYHFWLRQ LQ D ERXQGHG F\OLQGULFDO JHRPHWU\ ,QW +HDW DQG 0DVV 7UDQV SL } :DWVRQ 2Q WKH QRQOLQHDU PHFKDQLFV RI ZDYH GLVWXUEDQFHV LQ VWDEOH DQG XQVWDEOH SDUDOOHO IORZV )OXLG 0HFK S :ROI 0 7: &O\QH DQG : .XU] 0LFURVWUXFWXUH DQG FRROLQJ FRQGLWLRQV RI VWHHO VROLGLILHG LQ WKH FRQWLQXRXV FDVWLQJ PROG $UFK (LVHQKXW WHQZHVHQ S :ROONLQG 'DQG 6 5DLVVL $ QRQOLQHDU VWDELOLW\ DQDO\VLV RI WKH PHOWLQJ RI D GLOXWH ELQDU\ DOOR\ &U\VWDO *URZWK S :ROONLQG 'DQG /$ 6HJHO $ QRQOLQHDU VWDELOLW\ DQDO\VLV RI WKH IUHH]LQJ RI D GLOXWH ELQDU\ DOOR\ 3KLO 7UDQV 5R\ 6RF /RQGRQ $ S :ROONLQG 'DQG 6 :DQJ $ QRQOLQHDU VWDELOLW\ DQDO\VLV RI D PRGHO HTXDWLRQ IRU OLTXLG SKDVH HOHFWURHSLWD[LDO JURZWK RI D GLOXWH ELQDU\ VXEVWDQFH 6,$0 $SSO 0DWK S :RRGUXII '3 7KH VWDELOLW\ RI D SODQDU LQWHUIDFH GXULQJ WKH PHOWLQJ RI D ELQDU\ DOOR\ 3KLO 0DJ S
PAGE 127
%,2*5$3+,&$/ 6.(7&+ 7KH DXWKRU ZDV ERUQ RQ WKH UG RI 0DUFK LQ DIIQD 6UL /DQND EXW PRYHG VKRUWO\ WKHUHDIWHU WR &RORPER ZKHUH KH KDG KLV HDUO\ HGXFDWLRQ ,Q XO\ KH MRLQHG WKH FKHPLFDO HQJLQHHULQJ SURJUDP DW WKH ,QGLDQ ,QVWLWXWH RI 7HFKQRORJ\ 0DGUDV DQG UHFHLYHG KLV EDFKHORUnV GHJUHH LQ XQH ,Q $XJXVW RI WKH VDPH \HDU KH EHJDQ KLV JUDGXDWH VWXGLHV LQ FKHPLFDO HQJLQHHULQJ DW WKH 8QLYHUVLW\ RI )ORULGD DQG GLG UHVHDUFK RQ 5D\OHLJK%HQDUG FRQYHFWLRQ RQ KLV ZD\ WR D PDVWHUnV GHJUHH LQ $XJXVW 6LQFH WKHQ KH KDV EHHQ D GRFWRUDO VWXGHQW LQ FKHPLFDO HQJLQHHULQJ DW WKH VDPH LQVWLWXWLRQ O RQ
PAGE 128
, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 9 5DQJDQDWKDQ 1DUD\DQDQ &KDLUPDQ $VVRFLDWH 3URIHVVRU RI &KHPLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ F n 8OULFK + .XU]ZHJ 3URIHVVRU RI (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *HUDVLPRV /\EHUDWRV $VVLVWDQW 3URIHVVRU RI &KHPLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP ( /HDU U $VVLVWDQW 3URIHVVRU RI 0HFKDQLFDO (QJLQHHULQJ
PAGE 129
, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $ Vn 6S\URV $ 6YRURQRV $VVRFLDWH 3URIHVVRU RI &KHPLFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW &O +MOONr 'HDQ &ROOHJH RI (QJLQHHULQJ 'HDQ *UDGXDWH 6FKRRO
PAGE 130
81,9(56,7< 2) )/25,'$
UNIVERSITY OF FLORIDA
1262 08556 7823