Citation
Synthesis and characterization of the compounds with the derivatives of pyridine or schiff bases

Material Information

Title:
Synthesis and characterization of the compounds with the derivatives of pyridine or schiff bases
Creator:
Qian, Keping, 1943-
Publication Date:
Language:
English
Physical Description:
xv, 180 leaves : ill., photos 28 cm. ;

Subjects

Subjects / Keywords:
Atoms ( jstor )
Bond angles ( jstor )
Crystal structure ( jstor )
Crystals ( jstor )
Geometric planes ( jstor )
Ions ( jstor )
Ligands ( jstor )
Molecules ( jstor )
Nitrogen ( jstor )
Pyridines ( jstor )
Chemistry thesis Ph. D
Crystallography ( lcsh )
Dissertations, Academic -- Chemistry -- UF
Ligands ( lcsh )
Pyridine ( lcsh )
Schiff bases ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 174-179).
General Note:
Vita.
Statement of Responsibility:
by Keping Qian.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001694779 ( ALEPH )
25248361 ( OCLC )
AJA6884 ( NOTIS )
AA00004752_00001 ( sobekcm )

Downloads

This item has the following downloads:


Full Text











SYNTHESIS AND CHARACTERIZATION OF THE COMPOUNDS
WITH THE DERIVATIVES OF PYRIDINE OR SCHIFF BASES















BY

KEEPING QIAN


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1991



































TO MY PARENTS















ACKNOWLEDGMENTS


I would like to take the opportunity to thank my

supervisor Dr. Gus J. Palenik for his leadership and encou-

ragement over the years. This project could not have been

completed without the valuable knowledge and recommendation

that Dr. Palenik has offered.

I would also like to thank Dr. William M. Jones, Dr.

George E. Ryschkewitsch, Dr. James M. Boncella and Dr. Andrea

E. Tyler for being my supervisory committee. I am grateful

for their interest in the work.

There is not enough gratitude that could be offered to

Mrs. Ruth C. Palenik for her kindness and help.

Special thanks is offered to my parents for their

guidance through my early years and their love and support for

a lifetime.


iii















TABLE OF CONTENTS


Page

ACKNOWLEDGMENTS ................................... iii

TABLE OF CONTENTS ................................... iv

LIST OF TABLES...................................... vi

LIST OF FIGURES...................................... x

ABSTRACT ............ ................. ..... ..... .... xiv

CHAPTERS

ONE INTRODUCTION ................................. 1

Pyridine and Its Derivatives................. 1
Schiff Bases................................ 6
Helical Structure and Self Assembling........ 7

TWO REACTIONS OF CHLORAMINE WITH SOME METHYL
PYRIDINES .................................... 12

Historical View............................ 12
Synthesis of Chloramine with Some Methyl
Pyridines................ ................ 15
Crystal Structure of N-Amino(3,5-Dimethyl-
Pyridinium) ...... ......... .......... ..... 19
Discussion. ..... ...................... ..... 20

THREE METAL COMPLEXES WITH NONPLANAR MULTIDENTATE
LIGANDS ... ........ ... ..................... 40

Quadridentate Ligand......................... 40
Ligand................................... .... 43
Steriochemical Feature..................... 43
Synthesis of the Ligand..................... 45
Crystal Structure............................ 47
Metal Complexes.............................. 48
Copper(II) Complex......................... 48
Iron(III) Complex.......................... 58
Description and Discussion................... 68
Nonplanar Ligand.......................... 68











Copper(II) Complex ........................ 86
Iron(III) Complex......................... 96
Nonplanar Geometries....................... 108

FOUR METAL COMPLEXES OF AN INORGANIC DOUBLE
HELIX ".......... ....................... 110
Inorganic Double Helix....................... 110
Definition of Helicity...................... 111
Crystallographic Screw Axes and Helical
Symmetries..... ......... ....................... 113
Historical View............................. 114
Experimental Section....................... ... 119
Copper(II) Complex ......................... 119
Nickel(II) Complex.................. ....... 121
Description and Discussion.................. 133
Different Products in the Nickel System.... 142
Bis-tridentate Chelate.................... 145
Deprotonation of the Ligand................ 148
Geometry of the Polyhendrons Around
Metal Atoms................................ 152
Conformation of the Ligand................. 153
Herical Features of the Complexes.......... 161
Future ..................................... 167

APPENDICES

A REFERENCE CODES, R-VALUE AND REFERENCES FOR
THE 16 PYRIDINE ONLY" COMPOUNDS.............. 171

B REFERENCES CODES AND REFERENCES FOR THE
COMPOUNDS IN TABLE 3-27....................... 172

REFERENCES............................. ............... 174

BIOGRAPHICAL SKETCH................................... 180














LIST OF TABLES


Table Page

1-1 Approximate Number of Publications for Each
Fragment Containing Pyridine.................. 5

2-1 Melting Point and Elemental Analyses of the
Products of the Reactions with Chloramine..... 18

2-2 Crystal Data for [(CHnN2]C1 .................... 21

2-3 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (Axl03) for N-amino-3,5-
dimethylpyridinium chloride.................... 22

2-4 Selected Distances (A) and Angles (0) for
N-amino-3,5-dimethylpyridinium................ 23

2-5 Anisotropic Thermal Parameters (A2xl03) for
N-amino-3,5-dimethylpyridinium chloride........ 24

2-6 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (Axl03) for N-amino-
3,5-dimethylpyridinium chloride................ 25

2-7 Distances (A) and Angles (o) Involving the
H Atoms for N-amino-3,5-dimethylpyridinium
Chloride..................... ...... ......... 26

2-8 The Effect of Atom Hybridization on Bond
Lengths of C-C Bond............................ 30

3-1 Crystal Data for [C2e0N202,] .................... 49

3-2 Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (A2xl0O) for
2,2'-bis(salicylideneamino)biphenyl............ 50

3-3 Bond Distances (A) for 2,2'-bis
(salicylideneamino)biphenyl.................... 51

3-4 Bond Angles (0) and Hydrogen Bond for 2,2'-
bis(salicylideneamino)biphenyl................ 52








Table Page

3- 5 Anisotropic Thermal Parameters (A2xl10) for
2,2'-bis(salicylideneamino)biphenyl............ 53

3- 6 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (Ax10 ) for 2,2'-
bis(salicylideneamino)biphenyl................. 54

3- 7 Crystal Data for [Cs26HiN2O2Cu] ................. 59

3- 8 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (A2xl03) for Complex of Cu
with (sal) bp .................................. 60

3- 9 Bond Distances (A) for the Cu[(sal),bp]
Complex....... ...... ......................... 61

3-10 Bond Angles (0) for the Cu[(sal)2bp]
Complex............... ................. .... 62

3-11 Anisotropic Thermal Parameters (A2xl03)
for the Cu[(sal)2bp] Complex................... 63

3-12 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (A x103) for the
Cu[(sal)bp] Complex.......................... 64

3-13 Crystal Data for [C26H1NN2O2Fe]NO3. CH6H......... 69

3-14 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (A2xl03) for the
Fe[(sal)2bp]NO3 Complex......................... 70

3-15 Bond Distances (A) for the Fe[(sal),bp]NO3
Complex... ......................... 72

3-16 Bond Angles (0) for the Fe[(sal)2bp]NO,
Complex ................................. 73

3-17 Anisotropic Thermal Parameters (AVxl03) for
the Fe[(sal)2bp]NO, Complex.................. 75

3-18 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (Axl0O) for the
Fe[(sal)2bp]NO, Complex........................ 77

3-19 Equations to Various Planes for 2,2-
bis(salicylideneamino)biphenyl................ 82

3-20 Distances (A) to Various Planes in TABLE 3-19
for 2,2'-bis(salicylideneamino)biphenyl....... 83

vii








Table Page

3-21 Equations to Various Planes for the
Cu[(sal)2bp] Complex ........................ 87
3-22 Distances (A) to Various Planes in TABLE 3-21
for the Cu[(sal),bp] Complex................. 88

3-23 Bond distances and Dihedral Angles (0) for
Various CuN2O, Complexes....................... 90

3-24 Equations to Various Planes for the
Fe[(sal)2bp]NO3 Complex...................... 97
3-25 Distances (A) to Various Planes in TABLE 3-24
for the Fe[(sal)2bp]NO, Complex ................ 98

3-26 A Summary of the Distortions for Some
Salicylidene Complexes........................ 100

3-27 The Bond Lengths (A) of Some Iron (III)
Complexes with Schiff-Bases and the
Spin-States (S)............................. 105

4- 1 Crystal Data for [Cu2(apsh)2] (NO3)2 ............ 122

4- 2 Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (AVxl03)
for [Cu2(apsh),] (NO3)2.5H20...................... 123

4- 3 Bond Distances (A) for [Cu(apsh),] (NO3),...... 125

4- 4 Bond Angles (0) for [Cu2(apsh)] (NO3)2 ......... 126

4- 5 Anisotropic Thermal Parameters (A2x103) for
[Cu2(apsh) ] (NO3)2............................ 128
4- 6 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (A xl03) for
[Cu2 (apsh),] (NO),2 ........................ ... 130

4- 7 Crystal Data for [Ni2(pcsh)] (C104)2............ 134

4- 8 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (A2xl03) for
[Ni (pcsh)2] (Clo4)2 ............................. 135
4- 9 Bond Distances (A) for [Ni2(pcsh)] (C104)..... 137

4-10 Bond Angles (0) for [Ni,(pcsh)2] (C104) ........ 138


viii









Table Pace

4-11 Structural Analysis for Ligand apsh........... 147

4-12 A Summary of the Bond Distances in Various
Protonated and Deprotonated Ligands ........... 150

4-13 Least-Squarea and Parameters in
[CU2(apsh)2] (NO)2 ............................. 154

4-14 Torsion Anngles (0) for apsh in
[CU2(apsh)] (NO)..................................... 157















LIST OF FIGURES


Figure Page

1- 1 Two Main Groups of the Compounds Containing
Pyridine Ring............................... 2

1- 2 Some Crown-type Polymers Containing
2,6-disubstituted pyridine units.............. 3

1- 3 Some Ylides Species......................... 4

1- 4 From Molecular to Supramolecular
Chemistry .................................... 8

1- 5 An Example of a supermolecule................ 9

2- 1 The Products of Chloramine(g) Through
Quinoline and Pyridine....................... 13

2- 2 Caffeine and Theobromine...................... 13

2- 3 O-Mesitylene-Sulfonylhydroxylamine............ 14

2- 4 N-amino(3,5-dimethylpyridinium) Chloride...... 15

2- 5 The Chloramine Generator...................... 16

2- 6 A View of the Crystal Structure of
[C7HN,]Cl Showing the Atomic Numbering
and Thermal Ellipsoids.......................... 28

2- 7 2,2-Dimethyltriazanium (a) and
l,1,l-Trimethylhydrazinium Chloride........... 30

2- 8 An Increase of C-N-C Angle in the Pyridene
rings of O-Substitution..................... 34

2- 9 Dipyridinium Oxalate-Oxalic acid
( one pyridinium is omitted).................. 35

2-10 1,1'-methylene-bis(4,4'-dimethyl-
aminopyridinium) ion.......................... 36

2-11 The Resonance Structure of [C1H22N4]2+.......... 37









Figure Page

2-12 Impossible Resonance Structures
for [C7HIN2]+ ................................... 39

3- 1 Possible Patterns for Quadridentate
Chelating Agents............................. 41

3- 2 The Examples of Nonplanar Quadridentate
Chelating Agents............................ 42

3- 3 Some Molecules with a Helical Conformation.... 44

3- 4 2,2'-bis-(Salicylideneamino)biphenyl
(sal)2bp....................................... 46

3- 5 A View of the Crystal Structure of
[C6H2,N20O,] Showing the Atomic Numbering
and Thermal Ellipsoids....................... 56

3- 6 A View of the Crystal Structure of
[C2eHN202Cu] Showing the Atomic Numbering
and Thermal Ellipsoids........................ 66

3- 7 A View of the Structure of [C26HigN2gOFe]NO3
Showing the Atomic Numbering and
Thermal Ellipsoids ........................... 79

3- 8 The Packing Pattern of
[C26H18N,2OFe]NO0.C6H ........................... 81
3- 9 2,2'-bis(2''-pyridylmethylamino)biphenyl...... 84

3-10 A Model of Strainless Tetrahedral
Arrangement for (sal),bp..................... 85

3-11 Three Chelating Rings in the Quadridentate
Schiff Bases.................................. 93

3-12 Four Possible Conformations in Seven-
membered Ring............................ ... 95

3-13 The Torsion Angles in the Seven-membered
Ring of the Copper Complex.................... 95

3-14 Five Possible Isomers in Metal Complexes
with Quadridentate Ligands.................... 99

3-15 Possible Models of Coordination
of Bridging Nitrate Group..................... 102









Figure Page

3-16 Another Fe(III) Complex Contaning
Seven-membered Rings......................... 107


3-17 The Torsion Angles in the Seven-membered
Ring of the Iron(III) Complex................ 108

4- 1 Right-handed Helix (P) and
Lift-handed Helix (M) ........... ........... 112

4- 2 Crystallographic Screw Axes
and Helical Symmetries ...................... 113

4- 3 (a) Zn2(dapp),;(one dapp omitted) (b) The
Feature of an Inorganic Double Helix.......... 115

4- 4 The DNA Double Helix......................... 116

4- 5 The Complex of Ag2[(R,S)-1,2-(6-R-Py-2-CH=N)2
Cyclohexane]2 (one ligand is omitted)........ 117

4- 6 The Nomenclature for Trigonal Complexes....... 117

4- 7 Oligobipyridine Ligands....................... 118

4- 8 A View of the Structure of [Cu,(apsh),]
Showing the Atomic Numbering and
Thermal Ellipsoids......................... 132

4- 9 A View of the Structure of [Ni2(pcsh),]
Showing the Atomic Numbering and Thermal
Ellipsoids (The positions of H atoms
have not determined)........................... 141

4-10 The Competitive Reactions of Hydrazides
with Ni(II) and Salicyladehyde................ 143

4-11 Possible Reactions of sadh with Ni(ii)
and 2-pyridinecarboxaldehyde.................. 144

4-12 Possible Patterns for Tridentate
Chelating Agents .............................. 145

4-13 Planar and Non-planar Configurations
for Tridentate Ligands....................... 146

4-14 Possible Conjugated Forms for
Deprotonated apsh Ligand..................... 149

4-15 Conformation of the apsh Ligand Chain......... 158

xii









Figure Pace

4-16 Molecular Conformations....................... 159

4-17 A View of the Crystal Structure of
the Double Stranded Helical Complex
[Cu2(apsh)]................................. ... 163

4-18 Another View of the Crystal Structure
of the Double Stranded Helical Complex
[Cua(apsh)2].............. ....................... 165

4-19 Braid, Thread and Crossing................... 167

4-20 3,3'-bis(salicylideneanino) Phenyl Ether...... 168


xiii














Abstract of Dissertation Presented to the Graduate
School of the University of Florida in Partial Fulfillment
of the Requirements for the Degree of Doctor of Philosophy

SYNTHESIS AND CHARACTERIZATION OF THE COMPOUNDS
WITH THE DERIVATIVES OF PYRIDINE OR SCHIFF BASES

By

Keping Qian

August 1991

Chairman: Gus J. Palenik
Major Department: Chemistry

Though the literature contains a huge number of

publications on pyridine and its derivatives, no crystal

structures of substituted N-amino pyridinium cations have

been reported. The reaction of chloramine with 3,5-lutidine

was carried out and formed to give the expected product.

The product crystallized in the space group P1 bar with

a=7.663(1), b=8.241(2), c=8.266(2) A; and a=116.75(2),

P=115.39(2), r=91.85(2).

The 2,2-bis-(salicylideneamino)biphenyl [(sal)2bp], a

Schiff base ligand, is a good nonplanar ligand. The space

group was found to be P1 bar with a=10.127(2), b=10.811(2),

c=11.409(3) A; and a=116.93(2), P=101.03(2), r=102.58(2)11.

The reaction of (sal)2bp with Cu(N03)2 results in a four

coordinate complex. The space group is Pnna with

a=16.949(3), b=13.188(3), and c=9.369(1) A. A similar

xiv








reaction of (sal),bp with Fe(N03)3 results in a six

coordinate complex. The space group is P 21/n with

a=10.887(4), b=18.462(5), c=14.142(3) A; and 8=98.27(2).

Both of the metal complexes are nonplanar.

The reaction of 2-acetylpyridine succinic acid dihydra-

zone (apsh) with Cu(NO,)2 generates a metal complex of an

inorganic double helix. The [Cu,(apsh),] (NO3), crystallizes

in the space group P 21/n with a=10.887(6), b=26.030(10),

c=17.263(5) A; and P=99.15(3). A similar complex of an

inorganic double helix is formed from the reaction of

Ni(C104)2 with 2-pyridine carboxaldehyde succinic acid

dihydrazone (pcsh). The space group of [Ni2(pcsh)] (C104)2

is C 2/c with a=22.172(11),b=14.867(6), c=32.589(9) A; and

P=112.52(3).

More extensive structural studies on the metal

complexes with an inorganic double helix are attractive in

order to correlate the variability of the chemical,

biological and structural properties and to understand the

self-assembling in supramolecular structures.















CHAPTER ONE
INTRODUCTION



Compounds which contain pyridine or its derivatives or

Schiff-bases as ligands have occupied a central role in the

development of coordination chemistry, organometallic

chemistry, and biochemistry. This situation is manifested by

the huge number of publications ranging from the purely

synthetic to modern physicochemical to biochemically relevant

studies of these compounds. A tremendous variety of stable

chemical species have been synthesized containing both metals

and nonmetals.


Pyridine and Its Derivatives


Of all the known heterocyclic systems, pyridine has

perhaps the greatest importance. This can be judged by the

variety and interest in its derivatives and their reactions

and by the volume of literature devoted to them.

Pyridine is a planar molecule which is less basic than

are the aliphatic amines. The pK, value of its conjugate acid

is 5.2. The electron pair in pyridine is located in an sp2

molecular orbital, whereas an sp3 orbital is utilized by

aliphatic amines. The high s-character accounts for the






2
decreased availability of electrons for reaction with a
proton.
There are over 4000 compounds containing a pyridine ring
in the 1989 release of the Cambridge Structural Database
(CSD). Obviously, people have paid great attention to
pyridine. Pyridine is capable of acting as either a i or a
ligand. The higher affinity of pyridine toward donation of
a electrons is due to its inherent structure. Pyridine forms
a dipole with the electron density localized on the nitrogen
atom. The lone pair of N-electrons has a geometry that makes
it easily accessible for donation to an atom in the resultant
compounds. These compounds can be roughly divided into two
main groups: pyridine as a neutral species; and pyridine as
a non-neutral species. (Figure 1-1)

o M


0 (Neutral)




N H C
I I+ I

(Non-neutral)




Figure 1-1 Two Main Groups of the Compounds
Containing Pyridine Ring






3
Pyridine and its derivatives have practical importance

in chemistry fields, such as organic chemistry, biochemistry,

co-ordination chemistry, both in experimental and theoretical

aspects. Some examples are illustrated here. The system of

pyridine hydrogen fluoride is of practical importance in

preparative organic chemistry, in wide use as a convenient

reagent for a variety of fluorination reactions.['1 Acyclic

ethers with 2,6-disubstituted pyridine units as a rigid donor

units are used in syntheses of crown-type polymers. (Figure

1-2)











N N N










N N L I NN



Figure 1-2 Some Crown-type Polymers Containing
2,6-disubstituted pyridine units






4
Crown-ethers have given remarkable results when used in
catalytic amounts for special application. They are used to
specifically complex cations. Such completing agents are of
particular interest as models for the transfer of ions across
the nonpolar membranes of biological system.' As an example
in theoretical application, pyridinium ylides (Figure l-3a)
have the special advantages to study the organometallic
compounds containing ylide carbon. Negatively charged ylide
carbon (see Figure 1-3) has an ability to coordinate to metal
ions.41 Although reactivities of photo-excited states of



Q \N- < (CHN-C' (N) -


a pyridinium ylide a nitrogen ylide a phosphorus ylide
a b c

Figure 1-3 Some Ylides Species


organometallic compounds have attracted much interest,1[
luminescent properties of ylides and their metal complexes
have been little investigated. Pyridinium ylides are unique
because the carbonion can be stabilized by a vacant r* orbital
of the pyridinium ring.[6
In view of the huge number of publications of pyridine
and its derivatives, we can say that the coordination of the
nitrogen atom of pyridine ring with oxygen, hydrogen, carbon







5
and metal atoms has been studied extensively. Table 1-1 Shows

the approximate number of publications for each fragment

containing pyridine ring in the 1989 release of the CSD.

Unfortunately, there are no structural data related to

the coordination of the nitrogen atom of pyridine ring with

a nitrogen atom. Therefore, we decided to study reactions of

pyridine and its derivatives with chloramine in an attempt to

prepare pyridine-N-N compounds. The structural information

of the coordination of N of pyridine ring with N will be

described and discussed in chapter two.



TABLE 1-1 Approximate Number of Publications
for Each Fragment Containing pyriding



H C M
I + I+ I
Fragment N o N N



M= Zn,Cd,Hg
Number 983 198 95


I -- N--






Number 48 119 19







6

Schiff Base

Schiff base ligands are very diverse. Schiff bases which

are effective as coordinating ligands usually bear a second

functional group, frequently -OH, but N and S donors are also

known. The site of condensation can be controlled so that a

five or six membered chelate ring can be formed upon reaction

with a metal ion.

Metal Schiff base complexes have been known since the

mid-nineteenth century,M and even before the general

preparation of Schiff base ligands themselves.181 However,

there was no comprehensive, systematic study until the

preparative work of Pfeiffer and associates.I'9,110 Since

Pfeiffer's initial contributions, the interest in Schiff-base

complexes has increased dramatically. Metal complexes of

Schiff bases have been of considerable interest in the

development of the coordination chemistry of chelate systems.

There are several types of Schiff-base chelate agents,

such as bi- and polydentate salicylaldimines, bi- and

polydentate P-ketoamines, and Schiff bases resulting from the

condensation of functionally substituted primary amines with

1,2-dicarbonyl compounds, etc. The complexes with

salicylaldimines are particularly attractive for systematic

stereochemical studies because of the relatively easy

synthetic variation of the nitrogen substituents, thereby

permitting varying degrees of steric strain to be incorporated

into the planar forms.







7

Recently, metal complexes of some quadridentate salicyl-

aldimines have been intensively studied because of their

special properties, such as the models of iron-oxo

proteins. 11"I21 Binuclear iron-oxo centers have emerged as

common structural components in the active sites of several

metalloproteins.111 More extensive structural studies on the

metal complexes with quadridentate Schiff bases which appear

to be nonplanar and/or helical are attractive in order to

correlate the variability of the chemical, biological and

structural properties and to understand the self-assembling

in supramolecular structures. The 2,2'-bis(salicylideneamine)

biphenyl ligand system has been chosen to address this

problem, because the ligand can form a nearly strainless N202

tetrahedron. 141


Helical Structure and Self Assembling


Molecular helicity is a fascinating property displayed

by chemical and biological macromolecular structures, such as

the a-helix of polypeptidesl611 and the helical conformation of

polymers.[16 The spontaneous formation of the double helix of

nucleic acids represents the self-assembling of a

supramolecular structure. Supramolecular chemistry is a very

active research field. The development in supramolecular

chemistry offers exciting perspectives at the frontiers of

chemistry with physics and biology.







8
Molecular chemistry of the covalent bond is concerned

with uncovering and mastering the rules that govern the

structures, properties, and transformation of molecular

species. Supramolecular chemistry may be defined as

"chemistry beyond the molecule," bearing on the organized

entities of higher complexity that result from the association

of two or more chemical species held together by

intermolecular forces. These general considerations are

summarized in Figure 1-4.[~17





CHEMISTRY


MOLECULAR


SYNTHESIS
Covelent
Bonds


SUPRAMOLECULAR


RECOGNITION


COMPLEXATION

Intermolecular
Bonds


TRANSPORT


Figure 1-4 From Molecular to Supra-
molecular Chemistry







9

The patterns of a supramolecular species have been named

molecular receptor and substrate. Molecular receptors are

organic structures, held by covalent bonds, which are able to

complex selectively ions or molecules. The substrates are not

limited to transition metal ions, but extending to all type

of substrates: cationic, anionic or neutral species of

organic, inorganic or biological nature. Substrate binding

makes use of various intermolecular interactions

(electrostatic interactions, hydrogen bonding, van der Waals

forces, short range repulsion, etc.) to form an assembly of

two or more molecules, a supermolecule.

For example, polynuclear aromatic hydrocarbons, such as

tetrakis(5,10,15,20-benzo-15-crown-5)porphyrin (TCP) and its

metal derivatives(MTCP), are well known to form supermolecular

systems.[1l] (Figure 1-5a)


/-\


/-"
0 O)
0 n


0 o o

) Chemical Structures of
(a) TCP & MTCP


(b) Schematic representation
of the K ion-induced dimers


Figure 1-5 An Example of a supermolecule







10
When TCP or MTCP is completed with cations, e.g. K+, Ba2+, and

NH4+, the dimeric porphyrins were formed.119 (Figure 1-5b) These

species are described as supermolecules since the two

porphyrin units joined by non-covalent interactions exhibited

optical absorption and emission properties different from

those of the monomeric porphyrin units.[20

In addition to binding sites, the receptor may bear

reactive sites or lipophilic groups for dissolution in a

membrane so that its functions include molecular recognition,

transformation and translocation. Using polymolecular

assemblies, structural organization and functional integra-

tion, chemical systems are built into supramolecular

architectures. That is called molecular and supramolecular

devices. The devices include five parts: supra-molecular

photochemistry and molecular photonics; molecular electronic

devices; molecular ionic devices; molecular self-assembling

and chemionics.

Molecular self-assembling is one of the molecular and

supramolecular devices. Such self-assembling has recently

been shown to occur in repetitive chain ligands, such as

poly(2,2'-bipyridine) which form the polynuclear complexes

with metal centers. The inorganic double helical structures

in these complexes have been confirmed.[2 This spontaneous

formation of an organized structure of intermolecular type

opens ways to the design and study of the self-assembling

phenomenon.







11

Molecular self-assembling is well documented in biology,

much less so in chemistry. "Inorganic double helical"

complexes have been studied in our group since 1970's. In

order to open a general way for generating inorganic double

helical structures, we extended pure poly(2,2'-bipyridine) to

special derivatives of pyridine, such as bis(2-acetylpyridine)

succinic acid dihydrazone, to design new inorganic double

helical complexes and to further understanding of self-

assembling, molecular devices and supermolecular structures.














CHAPTER TWO
REACTIONS OF CHLORAMINE WITH SOME METHYL PYRIDINES


Historical View

Numerous investigations have examined the use of

chloramine as an aminating agent for a variety of nucleophilic

substances, notably molecules containing nitrogen or

phosphorus donor atoms.122 However, little work on the

chloramination of nitrogen heterocyclic aromatic compounds has

been reported to date.

In view of the broad applicability of the chloramination

reaction with various nucleophiles, the unanswered question

concerning the reactions of chloramine with nitrogen

heterocycles merited further investigation. Of all the known

nitrogen heterocyclic systems, pyridine has perhaps the

greatest importance, whether judged by the variety and

interest of its derivatives and their reactions or simply by

the volume of literature devoted to them.

An early paper[1 contained a brief statement that in

attempts to chloraminate pyridine and 2-methylpyridine, the

only solid product isolated was ammonium chloride. In the

pyridine reaction there was evidence of decomposition of the

heterocyclic base. Shortly after the appearance of this

paper, a note by Brooks and Rudner241 reported that passage of






13

gaseous chloramine through liquid quinoline and liquid

pyridine gave low yields of 2-amino quinoline and 2-amino
pyridine respectively. (Figure 2-1)


+ NH2Cl (g)


+ HC1


NH2


+ NH 2 C (g)


+ HCI


Figure 2-1


The Products of Chloramine(g) Through
Quinoline and Pyridine


They also tentatively reported the formation of the 8-amino

derivatives of theobromine and caffeine (Figure 2-2) by
analogous reactions.


O ,CH3

H3C-N \


CH N
CH3


,CH3
,N

1>
*N


Caffeine Theobromine
( 1,3,7- trimethylxanthine ) (3,7- dimethylxanthine)

Figure 2-2 Caffeine and Theobromine







14

Various substituted N- aminopyridinium cations have been

reported as products of the reactions of heterocyclic nitrogen

bases with potassium sulfonyl hydroxylamine and hydroiodic

acid: H2N-OSOS'K+ HI, 261 or O-mesitylene-sulfonyl-

hydroxylamine.1]1 (Figure 2-3) However, no crystal structures

of substituted N-amino pyridinium cations have been reported.




CH3

NH2OSOS2 3CH


CH3

Figure 2-3 O-Mesitylene-Sulfonyihydroxylamine


In the present chapter, the reactions of chloramine with

2,3-, 2,4-, 2,6-, 3,5- dimethyl pyridine and 2,4,6,- trimethyl

pyridine were examined. In the case of 3,5-dimethyl pyridine

a solid amination product was isolated in high yield and its

structural formula was shown to be N-amino(3,5-dimethyl-

pyridinium) chloride (Figure 2-4) by an X-ray crystal

structural study. The only solids isolated in the other cases

were ammonium chloride and the respective pyridinium

chlorides. The results obtained have practical and

theoretical significance.











CIH3 CH3


N
I
NH2

Figure 2-4 N-amino(3,5-dimethylpyridinium) Chloride



Synthesis of Chloramine with Some Methylpyridine


Experimental Materials


The 2,3-, 2,4-, 2,6-, and 3,5-lutidine and 2,4,6-

collidine from the Aldrich Chemical Company were used as

obtained. Chloramine was prepared by the gas-phase reaction

of chlorine-nitrogen mixtures with gaseous ammonia in a

Sisler-Mattair type reactorIl (Figure 2-5). Solutions of

chloramine in ether were prepared by passing the effluent gas

from the reactor into anhydrous ether and pouring the

resulting solution through a column of anhydrous copper

sulfate to remove the ammonia.128


Experimental Method


The reactions with all the pyridine derivatives were

carried out at 0C by stirring the pyridine derivative with

an ether solution of a slight excess of chloramine. The

reaction with 2,6-lutidine is typical. One hundredth mole of

2,6-lutidine was mixed with 40 mL of 0.3M chloramine solution








16



















0

o z






U- '
I









04 o




Iw .
H s s


Li ( i
8o~. S
C, w 01s



C, W fl














W %^b 1t







17

in ether (0.012 mol NH2Cl, 20% excess), stirred for eight

hours at 0C, and allowed to stand overnight. The white

precipitate that formed was filtered off and shown to be

ammonium chloride (mp.> 3000C). The filtrate was evaporated

to a volume of 10 mL by passing dry nitrogen over it for a

period of 2 hours and then allowed to stand overnight in a

refrigerator. Yellow crystals formed but were shown by

melting point determination (218 2190C) and elemental

analysis to be the hydrochloride of 2,6-lutidine. An

authentic sample of the hydro-chloride of 2,6-lutidine was

prepared from 2,6-lutidine and dry HC1 and was used for

comparison to confirm this conclusion. No other solid product

was obtained.


Experimental Results


Analogous results were obtained in the reactions of

chloramine with 2,4- and 2,3-lutidines, and with 2,4,6-

collidine, the only solid products isolated being ammonium

chloride and the hydrochlorides of the respective nitrogen

bases. The analyses and melting points of the hydrochlorides

are listed in Table 2-1. Different results were obtained in

the reaction with 3,5-lutidine. In this case concentration

of the final filtrate resulted in the formation of pale yellow

crystals which after recrystallization from a 2:1 mixture of

acetone and chloroform melted at 227-2290C. Elementary

analysis:







18

Found for C7HllN2C1: C, 53.00%; H, 7.32%; N, 17.39%

Calcd. for C7HllN2C1: C, 53.00%; H, 6.99%; N, 17.66%



These data indicate the amination of the lutidine by

chloramine. The weight of this product corresponded to a

yield of 75.4% of theoretical.





TABLE 2-1

Melting Points and Elemental Analyses
of the Products of the Reactions with Chloramine



m.p.C %C %H %N


2,6-lutidine 218-219 58.95 7.03 9.68

2,4-lutidine 208-210 58.76 7.10 10.01

2,3-lutidine 202-204 59.01 7.05 9.93

Theory for [(CHs)2CH3NH]C1 58.53 7.03 9.76


2,4,6-collidine 230-231 58.30 7.67 8.71

Theory for [(CH3),CH2NH]Cl 60.95 7.67 8.88


3,5-lutidine 227-229 53.00 7.32 17.39

Theory for [(CHS)2,CH3NNH2]C1 53.00 6.99 17.66







19

Crystal Structure of N-amino(3.5-DimethvlDvridinium)


To establish unequivocally the identity of the above

amination product, the structure was determined by X-ray

diffraction. A well shaped crystal of 0.2 x 0.2 x 0.15 mm

size was used for intensity measurements on Nicolet P1 bar

diffractometer with Ni filtered-CuKa radiation. Reflections

were collected in the 20 range 1.5-112.00 using the 0-20 scan

mode and a variable scan speed (1.90-29.300 min-'). Two check

reflections measured after every 49 reflections showed an

intensity variation of 5%. Of 1193 reflections measured,

1004 with I>2.5a(I) were used in calculations. Pertinent data

are listed in Table 2-2.

The structure was solved by the heavy-atom method. The

difference maps showed positions of all H-atoms bonded to ring

and the NH2 group, and indicated CH3- groups having H-atoms in

two orientations (rotated by 600). Because not all methyl

hydrogen atoms gave suitable bond angles, coordinates of three

of them were calculated assuming tetrahedral geometry around

the carbon atoms. Non-hydrogen atoms were refined with

anisotropic thermal factors. The parameters of the H-atoms

were included in the structure factor calculations but they

were not refined. The isotropic temperature factor of 0.05

A2 was assigned to all H-atoms. The final refinement of all

parameters converged at R=0.069 and R,=0.037 where w=a-'. The

residual peaks in the final difference map were in the range







20

from -0.54 to 0.66 eA-3. All calculations were carried out

using the DESK TOP SHELXTL (Nicolet, 1986).12 Crystal data

are summarized in Table 2-2 through 2-7. The structure is

illustrated in Figure 2-6.

Discussion


The results of these experiments demonstrate conclusively

that chloramine in anhydrous ether solution free of ammonia

react with 3,5-lutidine to give the expected hydrazinium-type

salt in good yields by the amination of the ring nitrogen in

accordance with the following equation



3,5,-(CH3)2C5H3N + NHC1l [3,5-(CH3) CsH3NNH ]Cl



In the amination product the C1- ion is in the correct

relative position found in the crystal to show the N-H.....C1

hydrogen bond:


H(lla)......C1' 2.203(6)A N(la)-H(lla).....Cl' 172.9(4)0

H(12a).....C1 2.381(6)A N(la)-H(12a).....C1 170.7(4)0

Cl' at -x, l-y, 1-z


In contrast, 2,3-, 2,4-, and 2,6-dimethylpyridine and 2,4,6-

trimethylpyridine do not appear to undergo this reaction.

Instead, ammonium chloride and the hydrochlorides of the

respective nitrogen bases are the only products isolated.










TABLE 2-2

Crystal Data for [CyH1N2J]C1


[ C7HjN, ]Cl


Molecular Weight

Crystal System

Space Group

a, A

b, A

c, A

a, deg

P, deg

y, deg

Volume, A3

Z

d(calcd), g/cm3

Crystal Size, mm3

Radiation Used

I, cm-1

20 Range, deg

Number of collected data

Data with I>2.5aI

Goodness of Fit

R, %

R, %


158.64

Triclinic

P 1 Bar

7.663(1)

8.241(2)

8.266(2)

116.75(2)

115.39(2)

91.85(2)

404.4(20

2

1.30

0.2 x 0.2 x 0.15

CuKa

35.8

1.5 112.0

1193

1004

8.281

6.9

3.7


Formula










TABLE 2-3

Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (AVxl03)
for N-amino-3,5-dimethylpyridinium chloride


ATOM X Y Z U*


Cl 1715(2) 2597(2) 4930(2) 56(1)

N(1) 3842(5) 7643(5) 6261(6) 41(2)

N(1A) 2052(6) 6360(6) 4455(6) 51(2)

C(2) 4237(7) 9471(7) 6744(7) 44(3)

C(3) 5974(7) 10762(7) 8443(7) 42(3)

C(3A) 6426(7) 12801(7) 8995(8) 53(3)

C(4) 7350(7) 10166(6) 9672(7) 43(3)

C(5) 6937(6) 8295(6) 9156(7) 39(3)

C(5A) 8410(7) 7619(7) 10473(8) 53(3)

C(6) 5174(7) 7055(6) 7439(7) 41(3)


* Equivalent isotropic U defined
of the orthogonalised Ui tensor


as one third of the trace











TABLE 2-4

Selected Distances (A) and Angles (o)
for N-amino-3,5-dimethylpyridinium


Bond Distances (A)


N(1)-N(1A)

N(1)-C(6)

C(3)-C(3A)

C(4)-C(5)

C(5)-C(6)


1.399(4)

1.352(7)

1.513(8)

1.386(8)

1.358(5)


N(1)-C(2)

C(2)-C(3)

C(3)-C(4)

C(5)-C(5A)


1.359(7)

1.355(5)

1.396(8)

1.518(8)


Bond Angles (0)


N(1A)-N(1)-C(2)

C(2)-N(1)-C(6)

C(2)-C(3)-C(3A)

C(3A)-C(3)-C(4)

C(4)-C(5)-C(5A)

C(5A)-C(5)-C(6)


118.1(4)

121.2(2)

121.0(5)

120.5(3)

121.3(3)

119.9(5)


N(1A)-N(1)-C(6)

N(1)-C(2)-C(3)

C(2)-C(3)-C(4)

C(3)-C(4)-C(5)

C(4)-C(5)-C(6)

N(1)-C(6)-C(5)


120.6(4)

120.6(5)

118.5(5)

120.4(3)

118.9(5)

120.5(5)


~=I~~~~~======E==C======~=~============~










TABLE 2-5
Anisotropic Thermal Parameters (A2x03)
for N-amino-3,5-dimethylpyridinium chloride


U11 U22 U33 U23 U,1 U12

Cl 45(1) 53(1) 54(1) 31(1) 10(1) 5(1)

N(1) 35(2) 46(2) 39(2) 24(2) 15(2) 7(2)

N(1A) 39(2) 53(2) 45(2) 24(2) 9(2) 0(2)

C(2) 40(3) 51(3) 44(3) 31(3) 17(2) 15(2)

C(3) 38(3) 47(3) 49(3) 31(3) 20(2) 11(2)

C(3A) 52(3) 45(3) 62(3) 32(3) 22(3) 13(2)

C(4) 37(3) 46(3) 44(3) 25(2) 16(2) 7(2)

C(5) 36(3) 42(3) 43(3) 27(2) 18(2) 11(2)

C(5A) 43(3) 50(3) 54(3) 33(3) 9(3) 7(2)

C(6) 39(3) 44(3) 45(3) 27(2) 20(2) 11(2)



The anisotropic temperature factor exponent takes the form:

-2" (h2a *2Ul+k2b U*U2+lc *2U3+2klb* cU23+2hla* c U+2hka*b*U,,)











TABLE 2-6

H-Atom Coordinates (x 10') and
Isotropic Thermal Parameters (AxlO0)
for N-amino-3,5-dimethylpyridinium chloride


ATOM X Y Z U


H(51A) 9580 8668 11614 50

H(52A) 8819 6647 9635 50

H(53A) 7793 7135 11015 50

H(51B) 7874 6151 9524 50

H(52B) 8678 8425 12236 50

H(53B) 9938 8096 10972 50

H(11A) 883 6789 4643 50

H(12A) 1830 5219 4429 50

H(2) 3232 9844 6028 50

H(31A) 4947 12721 7985 50

H(32A) 7472 12861 8526 50

H(33A) 6741 13659 10441 50

H(31B) 7851 13563 10159 50

H(32B) 5394 13411 9264 50

H(33B) 6424 12685 7973 50

H(4) 8691 11182 11030 50

H(6) 4641 5574 6828 50











TABLE 2-7

Distances (A) and Angles (0) Involving the H Atoms
for N-amino-3,5-dimethylpyridinium Chloride


Bond Distances (A)


N(la)-H(lla)
C(2)-H(2)
C(3a)-H(31a)
C(3a)-H(32a)
C(3a)-H(33a)
C(5a)-H(51a)
C(5a)-H(52a)
C(5a)-H(53a)
C(4)-H(4)


1.021(5)
0.909(5)
1.058(5)
1.038(7)
0.983(6)
0.965(4)
0.961(6)
0.955(8)
1.061(3)


N(la)-H(12a)
C(6)-H(6)
C(3a)-H(31b)
C(3a)-H(32b)
C(3a)-H(33b)
C(5a)-H(51b)
C(5a)-H(52b)
C(5a)-H(53b)


0.939(5)
1.072(5)
1.011(4)
1.002(6)
0.806(8)
1.041(5)
1.212(6)
1.051(6)


Bond Angles (0)


N(1)-N(la)-H(lla)
H(lla)-N(la)-H(12a)
C(3)-C(2)-H(2)
C(3)-C(3a)-H(32a)
C(3)-C(3a)-H(33a)
H(32a)-C(3a)-H(33a)
C(3)-C(3a)-H(32b)
C(3)-C(3a)-H(33b)
H(32b)-C(3a)-H(33b)
C(5)-C(4)-H(4)
C(5)-C(5a)-H(52a)
C(5)-C(5A)-H(53A)
H(52a)-C(5a)-H(53a)
C(5)-C(5a)-H(52b)
C(5)-C(5a)-H(53b)
H(52b)-C(5a)-H(52b)
C(5)-C(6)-H(6)


107.8(4)
98.2(5)
120.5(5)
101.9(5)
110.5(7)
121.1(4)
111.7(6)
101.3(5)
113.5(7)
120.9(5)
109.5(5)
109.9(5)
109.8(6)
111.2(4)
116.9(6)
93.4(3)
128.0(5)


N(1)-N(la)-H(12a)
N(1)-C(2)-H(2)
C(3)-C(3a)-H(31a)
H(31a)-C(3a)-H(32a)
H(31a)-C(3a)-H(33a)
C(3)-C(3a)-H(31b)
H(31b)-C(3a)-H(32b)
H(31b)-C(3a)-H(33b)
C(3)-C(4)-H(4)
C(5)-C(5a)-H(51a)
H(51a)-C(5a)-H(52a)
H(51a)-C(5a)-H(53a)
C(5)-C(5a)-H(51b)
H(51b)-C(5a)-H(52b)
H(51b)-C(5a)-H(53b)
N(1)-C(6)-H(6)


110.0(4)
118.2(4)
96.1(4)
115.8(7)
108.1(6)
112.8(5)
112.9(4)
103.8(7)
118.7(5)
109.1(5)
109.0(6)
109.5(6)
103.2(3)
121.6(7)
111.4(5)
111.6(3)


=~===~=~======~~~~=e==~~~~~=============


































-,.
r3
UU









) z
4-)






oe




qs
r0)















4t

*4
^1







-g



fn






28












Z3







0




t-
C)




~v~t I~ I







29

Since in each of these bases there are one or two methyl

groups alpha to the ring nitrogen, the attribution of these

results to spatial interference of the alpha methyl group is

a reasonable hypothesis. However, the presence of methyl

groups in the 2-position of the ring should increase the

electron density on the ring nitrogen and thus favor the

amination of the nitrogen by chloramine. The hypothesis of

spatial interference is, of course, speculative.

On the other hand, various substituted N-aminopyridinium

cations have been reported as products of the reactions of

pyridine and its alpha methyl derivatives with large counter

ions, such as iodide or mesithylenesulfonate ions. This

indicates that the further research including an examination

of solubilities or lattice stabilization of potential products

is necessary to obtain a satisfactory explanation.

There are two interesting features of the structure of

N-amino-3,5-dimethylpyridinium ion: the N(1)-N(1A) distance

and the change in the dimensions of the ring relative to other

pyridine derivatives.

The N(1)-N(1A) distance of 1.399(4) A in N-amino-3,5-

dimethylpyridinium is shorter than the N-N distances observed

in 2,2-dimethyltriazanium chloride (N(1)-N(2) 1.439(6) A and

N(1)-N(3) 1.462(6) A) (Figure 2-7a) and in 1,1,1-trimethyl

hydrazinium chloride (N(1)-N(2)=1.463(3) A)(Figure 2-7b).[0







30
Effect of atom hybridization on bond lengths has been

described in many articles and books. H.A.Bent described this

effect in detail.3l1 He illustrated the effect of atom

hybridization on bond lengths of carbon-carbon bonds in the

following data. (Table 2-8)


W- -


1.439(6) 1.462(6)
N(2) 1) N(3)


1"I


6L7~.


Figure 2-7 2,2-Dimethyltriazanium (a) and
1,1,1-Trimethylhydrazinium Chloride



TABLE 2-8
The Effect of Atom Hybridization on
Bond Lengths of C-C Bond


Type of Bond Bond Length(A) Type of Bond Bond of Length(A)

sp3-sp3 1.54 sp3-sp2 1.50

spS-sp 1.46 sp2-sp2 1.46

sp-sp 1.42 sp-sp 1.38
sp -sp2 +r 1.34 spS-sp +r 1.31

sp-sp +7 1.28 sp-sp +2r 1.20


- .463 34
N(2) N


f
[1)~-------







31

The useful rules which were indicated in these data are

that: (1) The carbon-carbon single bond distance decreases

by 0.04 A when one of the participating carbon atoms changes

hybridization type from sp3 to sp', or from sp2 to sp. (2)

When a r bond exists superimposed on the a bond, the figure

0.03 A is a better one to use.

Burke-Laing and co-workers discussed the relationship

between the bond lengths and bond orders in their paper.[n]

According to the paper single bond between two sp2 N atoms

has been estimated to be 1.41 A. On this basis the sp3 N-N

single bond would be 1.47-1.49A, which is close to the value

of 1.50 A,I31 a consequence of the sp3 hybridization of N which

is expected to increase the N radius (sp2) by about 0.04 A.

Thus the shorter N-N distance in N-amino(3,5-dimethyl-

pyridinium) ion would indicate that the N(1)-N(1A) bond has

some double bond character. However, as can be seen in the

Figure 2-6, the two H atoms bonded to N(1A) are not coplanar

with the pyridine ring as might be expected. Therefore, the

N-N bond may be considered to be an essentially single bond

with possibly some shortening resulting from formal charge.

The second interesting feature is that the formation of

the N-amino(3,5-dimethylpyridinium) ion results in significant

changes in the dimensions of the pyridine ring. Pyridine in

the gas phase has equal C-C bond length of 1.392(1) A, the

C-N bond lengths are 1.340(1) A and the C-N-C angle is

116050'.1341







32

Unfortunately, the crystal structure of pyridine has not been

reported yet. We searched these compounds which contained

simple pyridine rings (such as pyridine hydrogen fluoride) to

survey the parameters of pyridine in solid phase. The average

parameters of the 16 compounds (APPENDIX A) in 1987-1989

release in CSD are as follows:

C-C 1.375 A C-N 1.337 A C-N-C 117.130.

It indicates the parameters of pyridine in solid phase are

almost the same as those in gas phase. In the N-amino(3,5-

dimethyl-pyridinium) ion the C-N-C angle is increased to

121.3(4)0 and the C-N distances increase to 1.357(8) A.

An increase in the C-N-C angle in the pyridine ring

occurs on either substitution, coordination to a metal ion,

or pyridinium ion formation. The Figure 2-8 showed the

increase of the C-N-C angle in pyridine rings. The change in

the bond angle may be rationalized in terms of an assumption

of increased s-character in the C-N bond as predicted by

Bent's rules.131 For a familiar example, from the bond angle

in NH3 (106046') compared to that in H20 (104027') it is

inferred that nitrogen atom of NH, devoted slightly more s

character to its bonding orbitals than the oxygen atom of H20.

However, the change in the bond lengths of the pyridine

ring on either substitution, I361 ]] coordination to a metal

ion,371 or pyridinium ion18'1391 formation appears to be more

subtle and to depend on the nature of the group bonded to the

nitrogen lone pair. Some examples are illustrated below.



























Q)







0)
*o




4 c4



I0
1!0

o
0





r4
OC
*H



co
O








4 t
*rq
F)











Q)
0'
c







F __________ _________________


r---
CM

(0
CN


80
.,--
(11





;O
C\1




C)
()H
CO















: N-

(9-VIPIODSDI1iND ]Hi 4*ON






35
Example 1 z The Structure of Dipyridinum oxalate-oxalic

acid401 (Figure 2-9)
The structure consists of two pyridinium ions hydrogen
bonded to one oxalate ion, which lies on a center of symmetry.
An additional centrosymmetric oxalate acid molecule forms
hydrogen bonds with the oxalate moiety to give linear chains
along the C-axis. The bond distances (A) within the pyridi-






C6 O







004
C50c 0-cl






04

O
03'


Figure 2-9 Dipyridinium Oxalate-Oxalic acid
( one pyridinium is omitted)


nium cation and the angle (C-N-C) are as follows:

N-C(3) 1.312(2) N-C(7) 1.331(2)
C(3)-C(4) 1.366(2) C(4)-C(5) 1.370(2)
C(5)-C(6) 1.357(2) C(6)-C(7) 1.356(2)

C(3)-N-C(7) 122.1(2).







36

Bond distances within the pyridinium cation are short by

comparison to expected aromatic C-C (1.392 A) and C-N (1.340

A) distances. Such shortening is generally observed in

crystal structures containing pyridinium ions. However, most

suffer from disorder or high thermal motion and exhibit

shortened bond distances. Taking account of that error yields

average C-C (1.37 A) and C-N (1.31 A) distances that are close

to the values for this compound.

Example 2 : l,l'-methylene-bis(4,4'-dimethylamino

pyridinium) ion [C1rH22N4]2+ 11 (Figure 2-10)



0 c c 3
C1
-'O--cN1 C4 -N2

c ---

Figure 2-10 1,1'-methylene-bis(4,4'-dimethyl-
aminopyridinium) ion




The bond distances (A) within the pyridinium cation and

the angle (C-N-C) are as follows:


C(2)-N

C(2)-C(3)

C(3)-C(4)

C(2)-N-C(6)


1.345

1.351

1.419

119.50.


C(6)-N

C(5)-C(6)

C(4)-C(5)


1.350

1.351

1.417






37
The distances of C(2)-N, C(6)-N and C(3)-C(4), C(4)-C(5) are
longer and ones of C(2)-C(3), C(5)-C(6) are shorter in compa-
rison with the distances of C-N (1.340 A) and C-C (1.392 A)
in gaseous pyridine.
The resonance structures (A & B) (Figure 2-11) were
proposed to explain the differences between pyridine and the
ion. The positive charge presented on the N atoms is not
localized as implied by the structure (A). Instead the
positive charge is completely delocalized throughout the
molecule. In the other words, the exocyclic nitrogens share
the positive charges through the synergistic interaction as


CH3N NCH3 CH3+ /CH3


+N


+N
I I




I II


CH CH3 CH CH3
A B
Figure 2-11 The Resonance Structure of [CiH22N4] 2+







38

shown by the structure (B). The structure, therefore, does

make a significant contribution to the overall structure.

This is consisted with the enhanced resonance effects

associated with r-electron donors and their stabilizing

interactions. The geometry optimized INDO calculations have

shown that the quinoid resonance hybrids (B) do make a

definite contribution to the overall structure of the species.

This resonance structure (B) readily account for the changes

of these distances.

Although there are the very similar changes in N-

amino(3,5-dimethylpyridinium) chloride. The related distances

(A) are:



C(2)-N(1) 1.359 C(6)-N(1) 1.352 (longer)

C(2)-C(3) 1.355 C(5)-C(6) 1.358 (shorter)

C(3)-C(4) 1.396 C(4)-C(5) 1.386 (longer).



The explanation of the resonance structures is not reasonable.

Because if it were true, the resonance structures would be C

and D. (Figure 2-12) The structure (D) is unfavorable.

Unfortunately, there are no other compounds which are

strictly analogous for a comparison. However, these changes

in the compound may account for the observed reactivity of

pyridinium ions and related species.













C HI H



CH31 C3


H. + H


CH3


'CH3


D


Figure 2-12 Impossible Resonance Structures
for [C7H1N2]+


In the future, our group will try to obtain analogous
compounds for a comparison with the N-amino (3,5-dimethyl-
pyridinium) ion. We will also utilize the Cambridge
Structural Database to analyze the structural data for
pyridine rings to understand the changes in these compounds.














CHAPTER THREE
METAL COMPLEXES WITH NONPLANAR MULTIDENTATE LIGANDS


Quadridentate Ligand


The nonplanar multidentate ligands are chosen to synthe-

size metal complexes with "helical" coordination. Helical

coordination compounds will be discussed in more detail in the

next chapter. The simplest nonplanar multidentate ligand is

the quadridentate group. The following patterns are possible

for the arrangement of donor atoms in quadridentate

ligands141 (Figure 3-1). Most of the known quadridentate

chelating ligands have the linear arrangement of donor atoms

depicted by pattern [4-1]. These linear ligands can be

further subdivided into three stereochemical types: (a)

Planar ligands are those which are constrained to coordinate

with a metal ion in such a way that donor atoms lie in a

plane. (b) Nonplanar ligands are constructed so that the

donor atoms cannot lie in a plane, but may be arranged

tetrahedrally about a metal ion. (c) Facultative ligands are

flexible so that the donor atoms can be coordinate from either

a planar or nonplanar arrangement.

The metal atoms with coordination number four may require

a tetrahedral or a square planar arrangement of their coordi-












4-1 4-2 4-3 4-4





4-5 4-6 4-7






4-8 4-9 4-10 4-11


Figure 3-1 Possible Patterns for Quadridentate
Chelating Agents



nation covalences. Consequently, the quadridentate ligand

must be spatially capable of presenting its four donor atoms

to the metal atom from the apices of either a circumscribing

tetrahedron or a square.

Six covalent metal atoms which have an octahedral

disposition of covalences can also combine with quadri-

dentates. To a six coordinate metal atom a quadridentate

residue must be capable of presenting its four donor atoms

spatially in one of two ways. Either all four donors lie in

a plane leaving two vacant apices in the trans positions or

alternatively the two apices of the coordination octahedron

not occupied by the quadridentate are in cis positions to each

other.







42

Ligands of pattern [4-1] can be designed in such a way

that they can not be planar, but fix strainlessly into a

tetrahedral arrangement. The phenomenon of restricted

rotation in the hindered biphenyl compounds has been used to

synthesize nonplanar quadridentate chelating agents. Lions

and co-workers141 designed the quadridentate chelate ligands

with a molecule capable of presenting four donor atoms to a

metal atom from the apices of a circumscribing tetrahedron.

(Figure 3-2)


2,2'-bis-(2"-phenolmethyleneamino) -
6,6'-dimethylbiphenyl


2,2'-bis-(8"-quinolylmethylene-
amino)-biphenyl


Figure 3-2 The Examples of Nonplanar Quadridentate
Chelating Agents


The description of stereochemical configuration has been

used to design the specific quadridentate ligand and to

synthesis some metal complexes.







43

Ligand

Stereochemical Feature


In addition to the factors affecting the stability of

metal complexes, various considerations of geometry must be

borne in mind when designing a multidentate ligand. Various

stereochemical features influence the shape and flexibility

of organic compounds in general. Conformational preferences

can also affect the particular shape of a molecule. When

these stereochemical features occur in ligands they may

influence the geometrical arrangement of donor atoms in a

derived metal complex or the precise configuration of such a

complex.

According to these normal stereochemical effects of

organic molecules, it seems to me that a quadridentate ligand

of a Schiff base which contains biphenyl ring is a useful

linear multidentate ligand to synthesize metal complexes and

to study "helical" coordination compounds.

The particular advantage of the basic salicylaldimine

ligand system has been the considerable flexibility of the

synthetic procedure which has allowed the preparation of a

wide variety of complexes with a given metal whose properties

are often strongly dependent on the detailed ligand structure.

The 2,2'-diaminobiphenyl was selected as the primary

amine and reacted with salicylaldehyde to form salicylaldimine





44
ligand. The reason is that biphenyl is one of the simplest
molecules which may yield a helical conformation.
The structural information indicating the helical
conformation is available for many molecules.MI Some
examples are illustrated in Figure 3-3, such as biphenyl,
tris-chelates and two or three arylgroups are attached to a
central atom.


O
II
C
(Or UO


I o
O\i


Figure 3-3 Some Molecules with a Helical
Conformation


co- 0


O
At'0
6(~BI*0







45

The 2,2'-bis(salicylideneamino)biphenyl ligand system

potentially has three important structural consequences: []

(i) disposing itself in a nearly strainless manner to form an

OgN2 tetrahedron; (ii) forming complexes resistent to

racemization of the absolute configuration (A, A) at the metal

due to the high activation energy ( 45 Kcal/mole ) for parent

diamine; (iii) producing tetrahedral complexes of known

absolute configuration because the chirality of the complex

is necessarily that of the diamine. In the present chapter,

detailed discussion is confined to 2,2'-bis(salicylideneamino)

biphenyl ligand and its complexes.


Synthesis of the Ligand


Synthesis of 2.2'-diaminobiphenyl


Finely powdered 2,2'-dinitrobiphenyl (20g) was heated on

a water-bath with tin (100g) and concentrated hydrochloric

acid (200mL) until a clear solution was obtained. The

solution was treated with excess of caustic soda and extracted

with ether. The diaminobiphenyl was recovered and separated

from ligroin (b.p. 60-80 OC) as light yellow crystals. The

products were recrystallized from cyclohexane, forming

colorless crystals. The weight of this product corresponded

to a yield of 78% of theoretical. The melting point of the

products is 81 OC. The elementary analysis showed:











Found:

Calculated:


C %

78.31

78.25


H %

6.61

6.55


N %

15.22

15.20.


Synthesis of 2.2'-bis-(salicylideneamino)biphenyl (sal)bp


The 2,2'-diamino-biphenyl (0.55g, 3.0 x 10-3 mol) was

mixed with 50mL ethanol at 400C, stirred for about 30 minutes

until 2,2'-diaminobiphenyl was dissolved completely. Salicyl-

aldehyde (0.73g, 6.0 x 10-S mol) was added to the ethanol

solution, stirred for 2 hours at 400C. The bright yellow

precipitate that formed was filtered off and shown to be 2,2'-

bis (salicylideneamino) biphenyl (sal),bp. (Figure 3-4)


Figure 3-4 2,2'-bis-(Salicylideneamino)biphenyl
(sal)2bp







47

The weight of this product corresponded to a yield of 98%

of theoretical. The melting point of the products was 1520C.

The elementary analysis showed:


C % H% N%

Found: 79.42 5.10 7.01

Calculated: 79.57 5.14 7.14.


The filtrate was evaporated slowly at room temperature. Well

shaped yellow crystals formed in the filtrate. One of these

was used for X-ray studies.


Crystal Structure


To establish unequivocally the geometry of the above

condensation product, the structure was determined by X-ray

diffraction. A well shaped crystal of 0.27 x 0.10 x 0.034 mm

size was used for intensity measurements on Nicolet P1 bar

diffractometer with Ni filtered-CuKa radiation. Reflections

were collected in the 20 range 1.5-112.50 using the 0-20 scan

mode and a variable scan speed (1.90-29.300 min-1). Two check

reflections measured after every 48 reflections showed an

intensity variation of 5%. Of 2934 reflections measured,

1989 with I2.0o(I) were used in calculations. Pertinent data

are listed in Table 3-1.

The structure was solved by the direct method (SOLV).

The position of all H-atoms was shown in the difference maps.







48

Non-hydrogen atoms were refined with anisotropic thermal

factors. The parameters of the H-atoms were included in the

structure factor calculations but they were not refined. The

isotropic temperature factor of 0.07 A2 was assigned to all H-

atoms. The final refinement of all parameters converged at

R=0.081 and R,=0.049 where w=a-2. The residual peaks in the

final difference map were in the rang from -0.33 to 0.23 eA3.

All calculations were carried out using the DESK TOP SHELXTL

(Nicolet, 1986). Crystal data are summarized in Table 3-1

through 3-6. The structure is illustrated in Figure 3-5.


Metal Complexes

The following metal ions ( Fe3+, Co2+, Ni+, Cu2+, Zn+,

Hg Ce Bi+ and Pb+ ) were reacted with the ligand

(sal)2bp. Only Cu2+ and Fe3+ formed crystals which were

suitable for X-ray studies.


Copper(II) Complex


Synthesis of copper-complex


The 2,2'-bis(salicylideneamino)biphenyl (0.392g, 1.0 x

10-3 mol) in 50 mL methanol at about 400C was stirred until the

ligand was dissolved completely. Sodium methoxide (0.108g, 2.0

x 10-3 mol) in 20 mL methanol was added to the methanol

solution and stirred for about 1 hour. Copper nitrate(0.221g,

1.0 x 10-Smol) was added to the methanol solution, forming a

deep green solution. The green solution was refluxed for

about 4 hours, cooled and filtered. Slow evaporation of the







49

TABLE 3-1

Crystal Data for [C26H2,NfO2)


[(C26H2,N2O2


Molecular Weight

Crystal System

Space Group

a, A

b, A

c, A

a, deg

f, deg

1, deg

Volume, A3

Z

d(calcd), g/cms

Crystal Size, nmm

Radiation Used

#, cm-'

29 Range, deg

Number of collected data

Data with I2.0oI

Goodness of Fit

R, %

R, %


392.5

Triclinic

P 1 bar

10.127(2)

10.811(2)

11.409(3)

116.93(2)

101.03(2)

102.58(2)

1024.7(40

2

1.27

0.27 x 0.10 x 0.034

CuKa

6.09

1.5-112.5

2934

1989

2.437

8.1

4.9


Formula











TABLE 3-2

Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (AVxl03)
for 2,2'-bis(salicylideneamino)biphenyl


ATOM X Y Z U*


C(1) 7284(4)
C(2) 8567(4)
C(3) 9615(4)
C(4) 9389(5)
C(5) 8137(5)
C(6) 7096(5)
C(1') 6140(5)
C(2') 5294(5)
C(3') 4240(4)
C(4') 3928(5)
C(5') 4724(5)
C(6') 5827(5)
C(7) 9599(4)
C(8) 9885(4)
C(9) 9355(4)
C(10) 9659(5)
C(11) 10523(5)
C(12) 11067(5)
C(13) 10758(5)
C(7') 4633(4)
C(8') 4933(5)
C(9') 6278(5)
C(10') 6506(5)
C(11') 5368(6)
C(12') 4045(6)
C(13') 3783(5)
N(1) 8779(3)
N(1') 5634(3)
0(1) 8479(3)
0(1') 7409(3)


980(4)
1899(4)
2946(5)
3056(4)
2151(5)
1117(5)
-177(5)
166(4)
-953(5)
-2422(4)
-2810(5)
-1677(5)
2659(4)
2333(5)
910(5)
641(5)
1803(5)
3222(5)
3481(5)
2122(5)
3652(5)
4716(5)
6176(5)
6530(5)
5483(7)
4027(6)
1616(4)
1692(3)
-262(3)
4380(3)


7345(4)
8480(4)
8432(5)
7283(5)
6108(4)
6167(4)
7328(4)
8189(4)
8101(4)
7107(5)
6229(5)
6362(4)
10839(4)
11943(4)
11712(4)
12785(5)
14120(4)
14373(4)
13306(4)
9618(4)
10690(4)
11270(5)
12255(5)
12630(4)
12082(6)
11088(5)
9581(3)
9201(3)
10415(3)
10919(3)


* Equivalent isotropic U defined
of the orthogonalised Uij tensor


as one third of the trace


50(3)
53(3)
59(3)
64(3)
65(3)
60(3)
55(3)
54(3)
58(3)
74(3)
76(3)
70(3)
57(3)
60(3)
59(3)
73(3)
81(3)
92(3)
79(3)
61(3)
58(3)
67(3)
79(3)
89(3)
104(4)
82(4)
56(2)
54(2)
68(2)
87(2)











TABLE 3-3

Bond Distances (A)
for 2,2'-bis(salicylideneamino)biphenyl


Bond Distances (A)


C(1)-C(2)

C(2)-C(3)

C(3)-C(4)

C(4)-C(5)

C(5)-C(6)

C(1)-C(6)

C(2)-N(1)

C(7)-N(1)

C(7)-C(8)

C(8)-C(9)

C(9)-C(10)

C(10)-C(11)

C(11)-C(12)

C(12)-C(13)

C(8)-C(13)

C(9)-0(1)

C(1)-C(1')


1.407(5)

1.402(7)

1.384(8)

1.392(5)

1.395(8)

1.400(8)

1.412(7)

1.300(4)

1.450(8)

1.394(8)

1.377(8)

1.394(5)

1.382(8)

1.363(9)

1.410(5)

1.372(4)

1.499(7)


C(1')-C(2')

C(2')-C(3')

C(3')-C(4')

C(4')-C(5')

C(5')-C(6')

C(1')-C(6')

C(2')-N(1')

C(7')-N(1')

C(7')-C(8')

C(8')-C(9')

C(9')-C(10')

C(10')-C(11,)

C(11')-C(12')

C(12')-C(13')

C(8')-C(13')

C(9')-0(1')


1.402(7)

1.399(7)

1.393(6)

1.379(8)

1.394(7)

1.403(6)

1.431(5)

1.288(6)

1.460(6)

1.378(7)

1.394(6)

1.375(8)

1.358(7)

1.386(7)

1.403(8)

1.352(7)









TABLE 3-4

Bond Angles (0) and Hydrogen Bonds
for 2,2'-bis(salicylideneamino)biphenyl


Bond Angles (0)


C(2)-C(1)-C(6)
C(6)-C(1)-(1,)
C(1)-C(2)-N(1)
C(2)-C(3)-C(4)
C(4)-C(5)-C(6)
C(1)-C(1')-C(2')
C(2 ')-C(1')-C(6')
C (1')-C(2')-N(1')
C(2')-C(3')-C(4')
C(4 )-C(5')-C(6')
C(8)-C(7)-N(1)
C(7)-C(8)-C(13)
C(8)-C(9)-C(10)
C(10)-C(9)-0(1)
C(10)-C(11)-C(12)
C(8)-C(13)-C(12)
C(7')-C(8')-C(9')
C(9 ') -C(8 ')-C(13')
C(8') -C(9') -0(1')
C(9')-C(10')-C(11')
C(11' )-C(12')-C(13')
C(2)-N(1)-C(7)


118.6(4)
118.9(3)
116.6(4)
119.5(3)
118.7(5)
123.0(4)
117.4(4)
117.5(4)
119.1(5)
117.8(4)
120.2(4)
119.5(5)
121.0(3)
117.8(4)
120.4(5)
121.5(5)
122.1(5)
120.3(4)
121.5(4)
118.8(4)
121.1(6)
120.7(4)


C(2)-C(1)-C(1 ')
C(1)-C(2)-C(3)
C(3)-C(2)-N(1)
C(3)-C(4)-C(5)
C(1)-C(6)-C(5)
C(1)-C(1')-C(6')
C(1')-C(2')-C(3')
C(3')-C(2')-N(1')
C(3' )-C(4')-C(5')
C(1')-C(6')-C(5')
C(7)-C(8)-C(9)
C(9)-C(8)-C(13)
C(8)-C(9) -0(1)
C(9)-C(10) -C(11)
C(11)-C(12)-C(13)
C(8' )-C(7' ) -N (1')


122.5(5)
120.3(5)
122.8(3)
121.5(5)
121.5(3)
119.6(4)
120.9(4)
121.5(4)
121.9(4)
122.8(5)
122.7(3)
117.8(5)
121.1(5)
119.6(5)
119.6(4)
121.2(4)


C(7')-C(8')-C(13') 117.5(4)
C(8')-C(9')-C(10') 120.2(5)
C(10')-C(9')-0(1') 118.2(4)
C(10')-C(11')-C(12')121.3(5)
C(8')-C(13')-C(12') 118.2(5)
C(2')-N(1')-C(7') 118.9(3)


Hydrogen Bonds
-------------------------------------------------------------------


O(1)-H(1) ......N(1)
0(1)-H(1) 1.117 A
0(1)-N(1) 2.591 A
0(1)-H(1)-N(1) 141.60
N(1) at X, Y, Z


0(1')H(1') ......N(1')
0(1')-H(1') 1.159 A
0(1')-N(1') 2.596 A
O(1')-H(1')-N(1') 141.30
N(1') at X, Y, Z











TABLE 3-5

Anisotropic Thermal Parameters (A2xl0S)
for 2,2'-bis(salicylideneamino)biphenyl


Ul U22 U U U2 U13 U12


47(3)
51(3)
46(3)
74(4)
63(3)
55(3)
55(3)
58(3)
55(3)
71(4)
79(4)
73(4)
64(3)
56(3)
57(3)
77(4)
74(4)
110(5)
91(4)
53(3)
67(4)
74(4)
96(4)
146(5)
133(5)
86(4)
56(3)
52(2)
64(2)
58(2)


51(3)
57(3)
55(3)
60(3)
73(4)
66(3)
56(3)
51(3)
52(3)
59(3)
57(3)
62(3)
55(3)
59(3)
70(3)
86(4)
109(4)
82(4)
67(3)
69(3)
60(3)
63(3)
56(3)
70(4)
120(5)
82(4)
57(2)
49(2)
54(2)
56(2)


51(3)
49(3)
66(3)
66(3)
62(3)
51(3)
51(3)
47(3)
63(3)
80(4)
76(4)
54(3)
56(3)
52(3)
54(3)
84(4)
63(3)
50(3)
63(3)
71(3)
53(3)
55(3)
57(3)
48(3)
116(5)
98(4)
51(2)
56(2)
68(2)
105(3)


20(2)
20(2)
25(3)
35(3)
32(3)
23(3)
26(3)
20(2)
32(3)
37(3)
26(3)
12(3)
29(3)
18(3)
30(3)
56(3)
43(3)
20(3)
27(3)
37(3)
28(3)
22(3)
13(3)
20(3)
68(4)
44(3)
24(2)
24(2)
24(2)
12(2)


23(2)
19(2)
21(3)
32(3)
26(3)
19(3)
18(3)
15(3)
19(3)
17(3)
27(3)
24(3)
22(3)
17(3)
27(3)
40(3)
23(3)
9(3)
13(3)
33(3)
27(3)
15(3)
8(3)
32(3)
81(4)
58(4)
16(2)
21(2)
29(2)
19(2)


21(5)
28(2)
10(3)
27(3)
29(3)
21(3)
19(3)
20(3)
8(2)
8(3)
13(3)
27(3)
26(3)
22(3)
26(3)
37(3)
39(3)
19(3)
25(3)
27(3)
29(3)
34(3)
27(3)
59(4)
93(4)
48(3)
23(2)
16(2)
2(2)
18(2)


The anisotropic temperature factor exponent takes the form:

-2r2 (h a *2U+k b U22+12 c US+2klb*c*U2+2hla c*Uis+2hka*b*UI2)


C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
C(1')
C(2')
C(3')
C(4')
C(5')
C(6')
C(7)
C(8)
C(9)
C(10)
C(11)
C(12)
C(13)
C(7')
C(8')
C(9')
C(12')
C(11')
C(12')
C(13')
N(1)
N(1')
0(1)
0(1'










TABLE 3-6

H-Atom Coordinates (x 10') and
Isotropic Thermal Parameters (AxlO0)
for 2,2'-bis(salicylideneamino)biphenyl


ATOM X Y Z U


H(3)

H(4)

H(5)

H(6)

H(1)

H(7)

H(10)

H(11)

H(12)

H(13)

H(3')

H(4')

H(5')

H(6')

H(1')

H(7')

H(10')

H(11')

H(12')

H(13')


10698

9940

7807

5988

9079

9983

9419

10789

11644

11040

3529

3116

4485

6379

6972

3314

7611

5638

3207

2356


3745

4110

2215

303

604

3877

-277

1512

4038

4476

-758

-3190

-4175

-2087

3184

1393

7144

7804

5746

2842


9340

7201

5070

5197

10158

10907

12782

15058

15467

13379

8899

7048

5431

5691

9966

9226

12738

13361

12212

10302
























U,


010
00




L4J
w-a

r-4





c4J
0 9O



H H






4
0
l/3






04




4:
c,




















P 0)



r*H
ri-4







56




















b






0
o
O




, 0I.







57

green filtrate produced a deep green precipitate. The solid

was washed with water, and filtered, giving a deep green

powder. The weight of this product corresponded to a yield

of 46% of theoretical. The elementary analysis showed:


C % H % N %

Found: 68.96 4.12 6.13

Calculated: 68.78 4.00 6.17.


The products were recrystallized from methanol, producing deep

green crystals, suitable for X-ray diffraction studies.


Crystal structure of copper-complex


To establish unequivocally the geometry of the above

condensation product, the crystal structure was determined by

X-ray diffraction. A well shaped crystal of 0.78 x 0.34 x

0.034 mm size was used for intensity measurements on Nicolet

P1 bar diffractometer with Ni filtered-CuKa radiation.

Reflections were collected in the 20 range 1.5-112.50 using

the 0-20 scan mode and a variable scan speed (1.90-29.300

min-'). Two check reflections measured after every 48 reflec-

tions showed an intensity variation of 5%. Of 1658 reflec-

tions measured, 1289 with I2.0a(I) were used in calculations.

Pertinent data are listed in Table 3-7.

The structure was solved by the heavy atom method. The

position of all H-atoms was located in the difference maps.

Non-hydrogen atoms were refined with anisotropic thermal

factors. The parameters of the H-atoms were included in the







58

structure factor calculations but they were not refined. The

isotropic temperature factor of 0.05 A2 was assigned to all H-

atoms. The final refinement of all parameters converged at

R=0.043 and R,=0.041 where w=a-'. The residual peaks in the

final difference map were in the range from -0.44 to 0.33 eA3.

All calculations were carried out using the DESK TOP SHELXTL

(Nicolet, 1986). Crystal data are summarized in Table 3-7

through 3-12. The structure is illustrated in Figure 3-6.


Iron(III) Complex


Synthesis of iron-complex


The 2,2'bis-(salicylideneamino)biphenyl (0.392g, 1.0 x

10-3 mol) in 50 mL methanol at about 400C was stirred until the

ligand was dissolved completely. Sodium methoxide (0.108g,

2.0 x 10-s mol) in 20 mL methanol was added to the methanol

solution and stirred for about 1 hour. Iron(III) nitrate

(0.404g, 1.0 x 10-3 mol) was added to the methanol solution,

forming a deep brown solution. The brown solution was

refluxed for about 8 hours, cooled and filtered. Slow

evaporation of the brown filtrate produced deep brown

precipitate. The solid was washed with water and filtered,

giving a deep brown powder. The weight of this product

corresponded to a yield of 52% of theoretical. The elementary

analysis showed:

C % H% N %

Found: 65.78 4.48 7.13

Calculated: 65.54 4.13 7.17.










TABLE 3-7

Crystal Data for [C26HiN202-Cu]


[Cz2eHsN202Cu]


Molecular Weight

Crystal System

Space Group

a, A

b, A

c, A

a, deg

, deg

1, deg

Volume, A3

Z


454.0

Orthorhombic

P nna

16.949(3)

13.188(3)

9.369(1)

90 *

90 *

90 *

2094(1)

4


d(calcd), g/cms 1.44

Crystal Size, mm3 0.78 x 0.34 x 0.034

Radiation Used CuKa

A, cm-1 16.33

28 Range, deg 1.5-112.5

Number of collected data 1658

Data with I2.0oI 1289

Goodness of Fit 4.943

R, % 4.32

R, % 4.09

* Required by symmetry of space group


Formula











TABLE 3-8

Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (AIxl03) for the Cu[(sal)2bp] Complex



ATOM X Y Z U*


C(1)

C(2)

C(3)

C(4)

C(5)

C(6)

N(1)

C(7)

C(8)

C(9)

0(1)

C(10)

C(11)

C(12)

C(13)


4831(1)

2797(2)

3386(2)

3312(2)

2655(3)

2066(2)

2144(2)

4075(2)

4233(2)

4920(2)

5591(2)

5642(1)

6242(2)

6213(3)

5561(3)

4931(3)


7500

7281(3)

6647(3)

6224(3)

6420(3)

7047(3)

7466(3)

6418(2)

5460(3)

5033(3)

5618(3)

6598(20

5101(3)

4076(3)

3503(3)

3970(3)


2500

1759(4)

1220(4)

-123(5)

-954(5)

-436(5)

897(4)

2050(3)

2242(4)

2876(4)

3259(4)

3040(3)

3863(4)

4116(5)

3746(5)

3133(5)


31(1)

33(1)

31(1)

42(1)

53(2)

49(2)

41(1)

31(1)

37(1)

35(1)

36(1)

41(1)

43(1)

49(2)

50(2)

50(2)


* Equivalent isotropic U defined as one third of the trace
of the orthogonalised Uy tensor











TABLE 3-9

Bond Distances (A) for the Cu[(sal),bp] Complex


Bond Distances (A)


Cu-N(1)

C(7)-N(1)

C(1)-C(2)

C(2)-C(3)

C(4)-C(5)

C(7)-C(8)

C(8)-C(13)

C(9)-C(10)

C(11)-C(12)

C(1)-C(1')


1.964(3)

1.305(5)

1.397(5)

1.383(6)

1.384(6)

1.422(5)

1.423(6)

1.415(6)

1.383(6)

1.503(7)


Cu-O(l)

C(9)-0(1)

C(1)-C(6)

C(3)-C(4)

C(5)-C(6)

C(8)-C(9)

C(9)-0(1)

C(10)-C(11)

C(12)-C(13)


1.887(2)

1.321(5)

1.391(5)

1.383(6)

1.371(6)

1.421(5)

1.321(5)

1.373(6)

1.360(6)











TABLE 3-10

Bond Angles (0) for the Cu[(sal),bp] Complex


Bond Angles (0)


N(1)-Cu-O(1)

0(1)-Cu-N(1A)

0(1)-Cu-O(1A)

C(2)-C(1)-C(6)

C(6)-C(1)-C(1A)

C(1)-C(2)-N(1)

C(2)-C(3)-C(4)

C(4)-C(5)-C(6)

Cu-N(1) -C(2)

C(2)-N(1)-C(7)

C(7)-C(8)-C(9)

C(9)-C(8)-C(13)

C(8)-C(9)-C(10)

Cu-O(1)-C(9)

C(10)-C(11)-C(12)

C(8)-C(13)-C(12)


94.3(1)

151.2(1)

86.5(1)

117.6(3)

118.0(3)

120.8(3)

120.6(4)

119.4(4)

119.6(2)

116.5(3)

123.1(4)

118.7(3)

117.7(4)

128.0(2)

121.5(4)

121.9(4)


N(1)-Cu-N(1A)

N(1)-Cu-O(1A)

N(lA)-Cu-O(1A)

C(2)-C(1) -C(1A)

C(1)-C(2)-C(3)

C(3)-C(2)-N(1)

C(3)-C(4)-C(5)

C(1)-C(6)-C(5)

Cu-N(1)-C(7)

N(1)-C(7)-C(8)

C(7)-C(8)-C(13)

C(8)-C(9)-0(1)

0(1)-C(9)-C(10)

C(9)-C(10) -C(11)

C(11)-C(12)-C(13)


98.5(2)

151.2(1)

94.3(1)

124.3(3)

120.4(3)

118.8(3)

119.7(4)

122.3(4)

122.7(4)

127.5(3)

118.2(3)

123.1(3)

119.1(3)

121.0(4)

119.1(4)











TABLE 3-11

Anisotropic Thermal Parameters (A2xlO3)
for the Cu[(sal),bp] Complex


U11 U22 U33 U23 U1 U12


47(1)

43(2)

41(2)

52(3)

50(3)

56(3)

51(3)

43(2)

54(3)

50(3)

33(2)

67(2)

50(3)

49(3)

61(3)

69(3)


26(1)

31(2)

29(2)

39(2)

57(3)

60(3)

47(2)

28(2)

29(2)

26(2)

41(3)

28(2)

44(3)

45(3)

31(2)

35(2)


21(1)

27(2)

25(2)

34(2)

52(3)

32(2)

24(2)

21(2)

28(2)

28(2)

33(2)

26(1)

36(2)

53(3)

59(3)

45(3)


0

-5(2)

-6(2)

-2(2)

-9(2)

-2(2)

0(2)

-1(1)

-6(2)

5(2)

8(2)

1(1)

10(2)

26(2)

13(2)

1(2)


0

2(2)

-0(2)

-0(2)

-8(2)

-12(2)

-4(2)

-2(1)

4(2)

5(2)

2(2)

-11(1)

-2(2)

4(2)

4(3)

9(2)


2(1)

4(2)

2(2)

-7(2)

-6(3)

5(3)

1(2)

-0(1)

-3(2)

4(2)

4(2)

7(1)

0(2)

11(2)

7(2)

1(2)


The anisotropic temperature factor exponent takes the form:

-2z (h a U*U+k2b*2U22+1 c*2 U3+2klb c U23+2hla c*U,3+2hka*b*UI2)


Cu

C(1)

C(2)

C(3)

C(4)

C(5)

C(6)

N(1)

C(7)

C(8)

C(9)

0(1)

C(10)

C(11)

C(12)

C(13)











TABLE 3-12

H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (Ax103)
for the Cu[(sal)2bp] Complex


ATOM X Y Z U


H(3) 3779 5787 -475 50

H(4) 2647 6139 -2079 50

H(5) 1567 7211 -1007 50

H(6) 1701 7910 1318 50

H(7) 3815 4824 1869 50

H(10) 6715 5534 4202 50

H(11) 6671 3695 4523 50

H(12) 5505 2669 3975 50

H(13) 4432 3617 2898 50
























C30

co
U

a-4

0,r-i
0o


4J
<"
^

U)


u)
r.
.rj
4




4)

44
03
0

> .0
4J
SUl





0
(, .


J4
c! <"




3

,C
cr^
m








66















f




a



I(11








o
Ut







67

The products were recrystallized from benzene, producing deep

brown crystals, suitable for X-ray diffraction studies.


Crystal structure of iron-complex


To establish unequivocally the geometry of the above

condensation product, the structure was determined by X-ray

diffraction. A well shaped crystal of 0.32 x 0.20 x0.04 mm

size was used for intensity measurements on a Siemens R3m/E

diffractometer with graphite monochromat, MoKa radiation.

Reflections were collected in the 20 range 3.0-52.00 using the

0-20 scan mode and a variable scan speed (1.90-29.30 min-').

Two check reflections measured after every 98 reflections

showed an intensity variation of 5%. Of 5124 reflections

measured, 2217 with I3.0a(I) were used in calculations.

Pertinent data are listed in Table 3-13.

The structure was solved by the heavy atom method. Non-

hydrogen atoms were refined with anisotropic thermal factors.

The benzene ring (the solvent molecule) was fixed as a rigid

body. The parameters of the H-atoms were included in the

structure factor calculations but they were not refined. The

isotropic hydrogen temperature factor U of 1.2 was assigned

to all H-atoms. The final refinement of all parameters

converged at R=0.086 and R,=0.092 where w=a-2. The residual

peaks in the final difference map were in the range from -0.67

to 0.89 eA-3. Crystal data are summarized in Table 3-13







68
through 3-18. The structure is illustrated in Figure 3-7 and

Figure 3-8.


Description and Discussion

Nonplanar Ligand


The bright yellow crystal of formula IC26H2Nz202] was

determined to have a triclinic unit cell of space group P1 bar

and da,,d=l.27g/cmS. Final positional parameters for the atoms

are given in Table 3-2. Table 3-3 and 3-4 contain the bond

lengths and bond angles, respectively. The deviations of the

N-H.....O angles from 1800 and the long H.....N and 0.....N

distances are characteristic of intramolecular hydrogen bonds

(Table 3-4).

The C-N bonds of salicylidene linkages ( C(7)-N(1)

1.300(4) A; C(7')-N(1') 1.288(6)A ) are both shorter than the

neighboring C-N bonds ( C(2)-N(1) 1.412(7) A; C(2')-N(1')

1.431(5) A ). This indicates the bonds between N and C of

salicylidene linkages (imine bonds) are characteristic of

highly localized double bonds.

The equations of various planes are presented in Table

3-19 and the deviations from these planes are shown in Table

3-20. These results reveal that the four phenyl rings are

quite planar, but twisted relatively to each other ( from 290-

670 ). Obviously, any attempt to make the biphenyl group

coplanar would result in intolerably close contact between

the two hydrogen atoms. The twisted ligand conformation

results from the minimization of these nonbonding repulsions.







69

TABLE 3-13

Crystal Data for [C2eH,,N,2Fe]NO3.CegH


[C2,H,,N2,OFe] NO3.C CeH


Molecular Weight

Crystal System

Space Group

a, A

b, A

c, A

a, deg

f, deg

-, deg

Volume, A3

Z

d(calcd), g/cm3

Crystal Size, mm3

Radiation Used
A I cm-1
jn, cm'

20 Range, deg

Number of collected data

Data with 13.0aI

Goodness of Fit

R, %

Rw %


586.1

Monoclinic

P 21/n

10.887(4)

18.462(5)

14.142(3)

90*

98.27(2)

90*

2813(1)

4

1.67

0.32 x 0.20 x 0.04

MoKa

5.78

3.0-52.0

5124

2217

1.346

8.59

9.22


* Required by symmetry of space group


Formula











TABLE 3-14

Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (A'xlOs)
for the Fe[(sal),bp)]NO Complex


X Y Z U*


[C26HN2,02Fe ]


2200(3)
3009(18)
3527(15)
4767(17)
5558(22)
5068(22)
3838(22)
2760(13)
2407(16)
1875(15)
1954(19)
2307(12)
1587(18)
1135(20)
995(18)
1411(19)
1712(17)
1197(16)
-53(19)
-759(19)
-234(18)
983(18)
1886(13)
2343(18)
3088(19)
3660(18)
3515(12)
4395(22)
4623(24)
4134(22)
3359(19)


5668(1)
3666(10)
4271(9)
4275(11)
3703(12)
3109(12)
3104(9)
4882(7)
4891(10)
5509(8)
6211(9)
6334(6)
6798(11)
6684(14)
5993(12)
5423(11)
3650(9)
4153(10)
4128(8)
3524(11)
3005(10)
3055(9)
4778(7)
4762(9)
5286(11)
5863(8)
5958(7)
6332(11)
6266(13)
5681(15)
5218(11)


7385(2)
7713(10)
8240(10)
8617(11)
8479(15)
7972(16)
7606(11)
8403(9)
9235(11)
9662(11)
9237(13)
8415(7)
9790(13)
10631(14)
10947(13)
10511(12)
7291(9)
6644(11)
6223(14)
6406(15)
7030(12)
7456(12)
6408(9)
5604(11)
5279(12)
5843(12)
6747(8)
5463(15)
4544(20)
3975(16)
4355(12)


Fe
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
N(1)
C(7)
C(8)
C(9)
0(1)
C(10)
C(l1)
C(12)
C(13)
C(1')
C(2')
C(3')
C(4')
C(5')
C(6')
N(1')
C(7')
C(8')
C(9 )
0(1 )
C(10')
C(11')
C(12')
C(13')


45(1)
48(7)
35(6)
42(7)
64(9)
61(9)
41(8)
38(5)
43(7)
34(6)
51(8)
52(5)
57(8)
70(10)
56(9)
58(8)
41(7)
42(7)
50(8)
59(8)
57(8)
42(7)
42(5)
47(7)
57(8)
37(7)
55(5)
75(10)
95(13)
90(11)
64(9)










TABLE 3-14 Continued


X Y Z U*


NO3-

N -75(17) 6058(9) 6766(10) 70(7)
On(l) 200(12) 5583(7) 7407(9) 64(5)
On(2) 880(14) 6307(7) 6425(8) 68(6)
On(3) -1110(16) 6238(10) 6437(12) 121(8)


C6He

C(1E) 5878(21) 8692(10) 3525(15) 127(17)
C(2E) 5652 8251 4281 131(18)
C(3E) 6634 7896 4836 123(16)
C(4E) 7843 7983 4634 87(12)
C(5E) 8069 8424 3878 81(11)
C(6E) 7087 8779 3323 97(13)



* Equivalent isotropic U defined as one third of the trace
of the orthogonalised Ui, tensor







72

TABLE 3-15

Bond Distances (A) for
the Fe[(sal),bp)]NO Complex


Bond Distances (A)


Fe-O(l)

Fe-On (1)

Fe-N (1)

C(1) -C(2)

C(2)-C(3)

C(3)-C(4)

C(4)-C(5)

C(5)-C(6)

C(6)-C(1)

C(2)-N(1)

C(7) -N(1)

C(7)-C(8)

C(8)-C(9)

C(9)-C(10)

C(10)-C(11)

C(11)-C(12)

C(12)-C(13)

C(13)-C(8)

C(9)-0O(1)

C(1)-C(1')

On(2)-N


1.987(11)

2.188(14)

2.074(12)

1.515(23)

1.397(24)

1.393(30)

1.376(31)

1.364(32)

1.398(28)

1.442(21)

1.289(21)

1.449(24)

1.437(22)

1.428(27)

1.368(29)

1.367(33)

1.332(29)

1.377(25)

1.296(23)

1.452(25)

1.292(23)


Fe-O(1')

Fe-On(2)

Fe-N(1')

C(1')-C(2')

C(2')-C(3')

C(3')-C(4')

C(4')-C(5')

C(5')-C(6')

C(6')-C(1')

C(2')-N(1')

C(7')-N(1')

C(7')-C(8')

C(8')-C(9')

C(9')-C(10')


C(10')-C(13')
C(11')-C(12')

C(12')-C(13')

C(13')-C(8')

C(9')-O(1')

On(l-)N

On(3)-N


1.876(14)

2.176(13)

2.143(14)

1.367(22)

1.406(26)

1.400(27)

1.371(27)

1.337(26)

1.394(25)

1.441(23)

1.305(22)

1.383(27)

1.419(24)

1.344(29)

1.362(36)

1.406(35)

1.365(34)

1.386(26)

1.323(21)

1.267(20)

1.202(24)











TABLE 3-16

Bond Angles (0) for
the Fe[ (sal) bp) ]NO Complex


Bond Angles (0)


O(1)-Fe-O(l')

0(1')-Fe-On(l)

0(1')-Fe-On(2)

0(1)-Fe-N(1)

On(l)-Fe-N(1)

O(1)-Fe-N(1')

On(1)-Fe-N(1')

N(1)-Fe-N(1')

C(13)-C(12)-C(11)

C(11)-C(10)-C(9)

C(10)-C(9)-0(1)

C(13)-C(8)-C(9)

C(9)-C(8)-C(7)

C(5)-C(6)-C(1)

C(5)-C(4)-C(3)

C(3)-C(2)-C(1)

C(1)-C(2)-N(1)

C(6)-C(1)-C(1')

C(8' ) -C(7' )-N(1')


102.6(5)

149.0(5)

91.5(5)

86.6(5)

97.6(5)

168.2(6)

83.5(5)

85.1(5)

121.7(19)

121.6(20)

120.0(15)

121.4(16)

118.9(16)

124.6(17)

118.5(21)

120.1(16)

120.4(14)

123.0(16)

126.1(15)


O(1)-Fe-On(1)

O(1)-Fe-On(2)

On(1) -Fe-On(2)

O(1')-Fe-N(1)

On(2)-Fe-N(1)

0(1')-Fe-N(1')

On(2) -Fe-N(1')

C(12)-C(13)-C(8)

C(12)-C(11)-C(10)

C(10)-C(9)-C(8)

C(8)-C(9)-0(1)

C(13)-C(8)-C(7)

C(8)-C(7)-N(1)

C(6)-C(5)-C(4)

C(4)-C(3)-C(2)

C(3)-C(2)-N(1)

C(6)-C(1)-C(2)

C(2)-C(1)-C(1')


89.3(5)

95.2(5)

58.6(5)

111.4(6)

156.1(6)

88.3(5)

89.0(5)

120.3(18)

119.9(21)

114.7(17)

125.3(16)

119.4(15)

125.4(15)

119.2(21)

122.2(17)

119.4(14)

115.4(16)

121.6(16)


C(5')-C(6')-C(1') 120.9(16)











TABLE 3-16 Continued


Bond Angles (0)


C(6')-C(5')-C(4')

C(4 )-C(3')-C(2')

C(3')-C(2 ')-N(1')

C(1)-C(1')-C(6')

C(6')-C(1')-C(2')

C(13')-C(12')-C(11')

C(11')-C(10')-C(9')

C(10')-C(9')-0(1')

C(7') -C(8' ) -C(13')

C(13 ')-C(8' ) -C(9')

Fe-O(1')-C(9')

Fe-On(2)-N

On(1) -N-On(3)

Fe-N(1')-C(7)

C(7)-N(1)-C(2)

Fe-N(1')-C(2')


121.4(18)

118.2(16)

115.6(14)

119.4(15)

117.4(16)

117.4(22)

121.6(20)

117.5(15)

117.6(17)

117.6(18)

129.2(11)

94.0(10)

125.5(18)

121.9(11)

114.3(13)

120.3(10)


C(5')-C(4')-C(3')

C(3')-C(2')-C(1')

C(1') -C(2')-N(1')

C(1)-C(1')-C(2')

C(12')-C(13')-C(8')

C(12')-C(11')-C(10')

C(10')-C(9')-C(8')

C(8')-C(9' )-0O(1')

C(7')-C(8')-C(9')

Fe-O(1)-C(9)

Fe-On(l)-N

On(1) -N-On(2)

On(2)-N-On(3)

Fe-N (1)-C(2)

Fe-N(1')-C(7')

C(7')-N(1')-C(2')


119.1(18)

122.6(17)

121.5(15)

122.8(16)

122.8(19)

120.6(24)

119.8(17)

122.7(16)

124.7(16)

125.5(11)

94.2(11)

113.2(15)

121.1(16)

123.7(10)

122.2(11)

117.4(14)












TABLE 3-17

Anisotropic Thermal Parameters (Axl03)
for the Fe[(sal)2bp)]NO3 Complex


Ull U22 Ug3 U23 U1 U12


C26HIeN202Fe


Fe
C(1)
C(2)
C(3)
C(4)
C(5)
C(6)
N(1)
C(7)
C(8)
C(9)
0(1)
C(10)
C(11)
C(12)
C(13)
C(1 )
C(2 )
C(3')
C(4')
C(5 )
C(6')
N(1')
C(7')
C(8')
C(9')
0(1 )
C(10')
C(11')
C(12')
C(13')


68(2)
67(16)
46(12)
49(13)
78(19)
46(17)
69(17)
55(10)
39(13)
34(12)
79(17)
78(11)
61(16)
82(19)
59(16)
80(18)
73(15)
24(12)
68(16)
37(14)
67(16)
51(15)
37(10)
84(16)
72(16)
59(14)
82(11)
121(22)
107(23)
88(19)
85(18)


34(1)
63(12)
34(9)
45(11)
54(14)
55(15)
25(10)
17(7)
56(12)
25(10)
24(10)
40(8)
63(14)
90(19)
88(17)
63(14)
41(10)
63(14)
13(9)
60(14)
57(13)
32(10)
51(10)
30(10)
65(13)
16(9)
56(8)
57(14)
69(18)
120(21)
68(15)


32(1)
10(7)
24(8)
31(8)
64(13)
88(16)
38(10)
41(8)
35(10)
42(9)
48(11)
36(6)
44(12)
36(12)
28(10)
37(10)
8(7)
36(9)
70(13)
76(14)
50(11)
43(10)
37(8)
31(9)
28(13)
42(10)
35(7)
62(14)
121(22)
67(15)
40(11)


-5(1)
-12(9)
0
-5(9)
1(12)
28(13)
3(8)
4(6)
26(9)
0
-10(9)
-2(6)
6(10)
-7(12)
4911)
-17(10)
0
-7(9)
-2(9)
0
-31(10)
1(8)
7(7)
4(8)
8(9)
-1(7)
-1(6)
-33(12)
-19(16)
-6(17)
-4(10)


2(1)
-9(9)
0
3(9)
25(13)
26(13)
36(11)
-0(7)
4(9)
0
-1(11)
-0(6)
1(11)
3(12)
24(10)
25(11)
0
-10(9)
18(12)
0
23(11)
11(10)
-1(7)
16(10)
-10(10)
25(10)
30(7)
67(15)
58(18)
33(14)
14(11)


-0(2)
18(12)
0
-16(12)
-7(14)
34(13)
-3(11)
7(7)
-1(10)
0
8(10)
-9(7)
16(12)
33(15)
9(13)
16(12)
0
7(10)
15(9)
0
-52(12)
-12(10)
-2(8)
-1(10)
-3(12)
-5(9)
-23(7)
-28(14)
-40(16)
-7(18)
-11(13)










TABLE 3-17 Continued


Ul U22 Us, U,, U,1 U12

NO3-

N 109(16) 74(12) 25(8) 0 0 0
On(1) 54(10) 62(9) 75(9) -23(8) 12(7) -4(7)
On(2) 90(12) 64(9) 50(8) 8(7) 4(7) 19(8)
On(3) 92(14) 156(17) 94(12) -30(12) -53(10) 54(12)


C6H6
C(1E) 132(32) 64(20) 162(33) -59(22) -56(23) 56(19)
C(2E) 37(19) 188(37) 162(32) 0 0 0
C(3E) 158(33) 145(28) 81(19) -71(20) 62(23) -98(26)
C(4E) 106(25) 74(18) 72(18) -14(14) -20(16) -8(16)
C(5E) 92(22) 80(18) 77(17) -28(14) 35(17) -33(16)
C(6E) 156(31) 68(18) 62(16) -9(13) 3(200 -25(21)


The anisotropic temperature factor exponent takes the form:

-2 r(h2a *2U,+k2b*2U22+12c *2U+2klb*c*U23+2hla c U+2hka*b Ul2)












TABLE 3-18

H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (Axl03)
for the Fe[(sal)2bp)]NO, Complex


ATOM X Y Z U


1389
585
916
1660
3520
5585
6423
5097
2143
1337
-721
-1602
-412
2984
4337
5121
4770
5202
4820
6478
8518
8900
7242
2632(127)


4950
5917
7089
7285
2685
2702
3723
4685
4348
2675
2597
3473
4514
4828
5609
6622
6724
8936
8191
7592
7739
8484
9082
4544(68)


10791
11496
11000
9566
7250
7875
8733
8987
5200
7873
7173
6101
5820
3967
3343
4282
5847
3143
4420
4357
5016
3739
2802
9699(93)


H(1A)
H(1A)
H(3A)
H(4A)
H(1B)
H(2B)
H(3B)
H(4B)
H(2)
H(1C)
H(2C)
H(3C)
H(4C)
H(1D)
H(2D)
H(3D)
H(4D)
H(1E)
H(2E)
H(3E)
H(4E)
H(5E)
H(6E)
H(1)


70
66
80
64
46
71
83
48
52
45
57
61
61
76
98
112
94
80
80
80
80
80
80
32


























*a






**4
O(1
S4

o





44




41
0.0)




4-)
a,
0 .-r









4J
0




PC
*01
:cj
U 0
















?-4







79













C4


to-



.),



o
ao
cq 0

ZWj
Ln m







CV itr
O
C3
to


0 ,...
O





)

C3
CCD4






OC.)





























0

0





z
00



44

0

4
a)





CO



A4
co



















0O
*4
04

*r1
QJ

ou








81










N *
*




9' *- .














T 4









S w


0-.
*
#4











TABLE 3-19

Equations to Various Planes
for 2,2'-bis(salicylideneamino)biphenyl


Plane* Atoms 1 m n p



Salicylidene Benzene Ring:

1 C8 C9 C10 C11 C12 C13 .8125 -.4880 -.3188 4.6905
2 C8'C9'C10'C11'C12'C13' .2234 -.2926 .9298 9.2862

Biphenyl Ring:

3 C1 C2 C3 C4 C5 C6 -.4295 .8835 .1870 -3.0985
4 C1'C2'C3'C4'C5'C6' .6438 -.3055 .7015 9.4751

Imine Region:

5 N1 C7 C8 C9 01 .8095 -.4911 -.3219 4.6348
6 N1'C7'C8'C9'01' .2077 -.3109 .9275 9.1459



Angles of interest between the planes (0) (plane 1 plane 4)
1-3=32.9 3-4=65.5 4-2=27.7

X + mY + nZ = p
Reference is made to orthogonal X, Y, Z.










TABLE 3-20
Distances (A) to Various Planes in TABLE 3-19
for 2,2 -bis(salicylideneamino)biphenyl


Plane Atoms Deviation (A)

1 C8 C9 CI0 Cl1 C12 C13 N1 C7
-.0036 .0036 -.0019 .0002 -.0003 .0002 -.0124 .0121
2 C81 C9' CI0' Cl1' C12' C13' N11 C7'
-.0017 .0032 .0019 -.0087 .0103 -.0049 -.0449 -.0494
3 C1 C2 C3 C4 C5 C6 N1 C7
.0058 -.0057 .0019 .0017 -.0015 -.0023 -.1434 .3096
4 Ci' C2' C3' C4' C5' C6' NI' C7'
.0013 -.0106 .0119 -.0039 -.0054 .0068 .0196 -.4914
5 NI C7 C8 C9 01 C2
-.0066 .0109 -.0085 .0021 .0020 .0993
6 N1' C7' C8' C9' 01' C2'
-.0004 -.0052 .0121 -.0128 .0065 .0375







84

The highly localized imine double bonds together with the

biphenyl backbone make the molecule incapable of functioning

as a planar quadridentate. In contrast, in 2,2'-bis (2'-

pyridylmethylamino)biphenyl copper'46 (Figure 3-9), the ligand







N

N
N





Figure 3-9 2,2'-bis(2''-pyridylmethylamino)biphenyl



was functioning as a planar quadridentate. Flexibility can

be introduced easily by the reduction of imine bonds.

A model (Figure 3-10) shows that the two oxygen atoms and

the two nitrogen atoms of 2,2'-bis-(salicylideneamino)biphenyl

can be brought almost strainlessly into a tetrahedral

arrangement from which they can all become attached to a

central metal atom of appropriate size. Moreover, they cannot

be disposed about a metal atom in a planar arrangement. It

means the ligand (sal)2bp is a good candidate as a nonplanar

ligand.

















N


Figure 3-10 A Model of Strainless Tetrahedral
Arrangement for (sal)2bp




Full Text

PAGE 1

6<17+(6,6 $1' &+$5$&7(5,=$7,21 2) 7+( &203281'6 :,7+ 7+( '(5,9$7,9(6 2) 3<5,',1( 25 6&+,)) %$6(6 %< .(3,1* 4,$1 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,//2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

72 0< 3$5(176

PAGE 3

$&.12:/('*0(176 ZRXOG OLNH WR WDNH WKH RSSRUWXQLW\ WR WKDQN P\ VXSHUYLVRU 'U *XV 3DOHQLN IRU KLV OHDGHUVKLS DQG HQFRXn UDJHPHQW RYHU WKH \HDUV 7KLV SURMHFW FRXOG QRW KDYH EHHQ FRPSOHWHG ZLWKRXW WKH YDOXDEOH NQRZOHGJH DQG UHFRPPHQGDWLRQ WKDW 'U 3DOHQLN KDV RIIHUHG ZRXOG DOVR OLNH WR WKDQN 'U :LOOLDP 0 -RQHV 'U *HRUJH ( 5\VFKNHZLWVFK 'U -DPHV 0 %RQFHOOD DQG 'U $QGUHD ( 7\OHU IRU EHLQJ P\ VXSHUYLVRU\ FRPPLWWHH DP JUDWHIXO IRU WKHLU LQWHUHVW LQ WKH ZRUN 7KHUH LV QRW HQRXJK JUDWLWXGH WKDW FRXOG EH RIIHUHG WR 0UV 5XWK & 3DOHQLN IRU KHU NLQGQHVV DQG KHOS 6SHFLDO WKDQNV LV RIIHUHG WR P\ SDUHQWV IRU WKHLU JXLGDQFH WKURXJK P\ HDUO\ \HDUV DQG WKHLU ORYH DQG VXSSRUW IRU D OLIHWLPH LLL

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LLL 7$%/( 2) &217(176 LY /,67 2) 7$%/(6 YL /,67 2) ),*85(6 [ $%675$&7 [LY &+$37(56 21( ,1752'8&7,21 3\ULGLQH DQG ,WV 'HULYDWLYHV 6FKLII %DVHV +HOLFDO 6WUXFWXUH DQG 6HOI $VVHPEOLQJ 7:2 5($&7,216 2) &+/25$0,1( :,7+ 620( 0(7+
PAGE 5

3DJH &RSSHU ,,f &RPSOH[ ,URQ,,,f &RPSOH[ 1RQSODQDU *HRPHWULHV )285 0(7$/ &203/(;(6 2) $1 ,125*$1,& '28%/( +(/,; ,QRUJDQLF 'RXEOH +HOL[ 'HILQLWLRQ RI +HOLFLW\ ,OO &U\VWDOORJUDSKLF 6FUHZ $[HV DQG +HOLFDO 6\PPHWULHV +LVWRULFDO 9LHZ ([SHULPHQWDO 6HFWLRQ &RSSHU ,,f &RPSOH[ 1LFNHO ,,f &RPSOH[ 'HVFULSWLRQ DQG 'LVFXVVLRQ 'LIIHUHQW 3URGXFWV LQ WKH 1LFNHO 6\VWHP %LVWULGHQWDWH &KHODWH 'HSURWRQDWLRQ RI WKH /LJDQG *HRPHWU\ RI WKH 3RO\KHQGURQV $URXQG 0HWDO $WRPV &RQIRUPDWLRQ RI WKH /LJDQG +HULFDO )HDWXUHV RI WKH &RPSOH[HV )XWXUH $33(1',&(6 $ 5()(5(1&( &2'(6 59$/8( $1' 5()(5(1&(6 )25 7+( 3<5,',1( 21/< &203281'6 % 5()(5(1&(6 &2'(6 $1' 5()(5(1&(6 )25 7+( &203281'6 ,1 7$%/( 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) 7$%/(6 7DEOH 3DJH $SSUR[LPDWH 1XPEHU RI 3XEOLFDWLRQV IRU (DFK )UDJPHQW &RQWDLQLQJ 3\ULGLQH 0HOWLQJ 3RLQW DQG (OHPHQWDO $QDO\VHV RI WKH 3URGXFWV RI WKH 5HDFWLRQV ZLWK &KORUDPLQH &U\VWDO 'DWD IRU >&+Q1@&O )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU 1DPLQR GLPHWK\OS\ULGLQLXP FKORULGH 6HOHFWHG 'LVWDQFHV ƒf DQG $QJOHV rf IRU 1DPLQRGLPHWK\OS\U LGLQLXP $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU 1DPLQRGLPHWK\OS\ULGLQLXP FKORULGH +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[O2f IRU 1DPLQR GLPHWK\OS\ULGLQLXP FKORULGH 'LVWDQFHV ƒf DQG $QJOHV rf ,QYROYLQJ WKH + $WRPV IRU 1DPLQRGLPHWK\OS\ULGLQLXP &KORULGH 7KH (IIHFW RI $WRP +\EULGL]DWLRQ RQ %RQG /HQJWKV RI && %RQG &U\VWDO 'DWD IRU >&+12@ )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU n ELV VDOLF\OLGHQHDPLQRf ELSKHQ\O %RQG 'LVWDQFHV $f IRU nELV VDOLF\OLGHQHDPLQRf ELSKHQ\O %RQG $QJOHV rf DQG +\GURJHQ %RQG IRU n ELV VDOLF\OLGHQHDPLQRf ELSKHQ\O YL

PAGE 7

7DEOH 3DJH $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[O2Vf IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[O2f IRU n ELV VDOLF\OLGHQHDPLQRf ELSKHQ\O &U\VWDO 'DWD IRU >&+1&X@ )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU &RPSOH[ RI &X ZLWK VDOfES %RQG 'LVWDQFHV $f IRU WKH &X>VDOfES@ &RPSOH[ %RQG $QJOHV rf IRU WKH &X>VDOfES@ &RPSOH[ $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU WKH &X>VDOfES@ &RPSOH[ +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $ [O2f IRU WKH &X>VDOfES@ &RPSOH[ &U\VWDO 'DWD IRU > &+1)H@ 1 &+ )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU WKH )H VDOfES@1 &RPSOH[ %RQG 'LVWDQFHV $f IRU WKH )H>VDOfES@1 &RPSOH[ %RQG $QJOHV rf IRU WKH )H> VDOfES@1 &RPSOH[ $QLVRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU WKH )H> VDOfES@1 &RPSOH[ +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[O2f IRU WKH )H> VDOfES@1 &RPSOH[ (TXDWLRQV WR 9DULRXV 3ODQHV IRU ELV VDOLF\OLGHQHDPLQRf ELSKHQ\O 'LVWDQFHV $f WR 9DULRXV 3ODQHV LQ 7$%/( IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O YLL

PAGE 8

7DEOH 3DJH (TXDWLRQV WR 9DULRXV 3ODQHV IRU WKH &X>VDOfES@ &RPSOH[ 'LVWDQFHV ƒf WR 9DULRXV 3ODQHV LQ 7$%/( IRU WKH &X>VDOfES@ &RPSOH[ %RQG GLVWDQFHV DQG 'LKHGUDO $QJOHV f IRU 9DULRXV &X1 &RPSOH[HV (TXDWLRQV WR 9DULRXV 3ODQHV IRU WKH )H> VDOfES@1 &RPSOH[ 'LVWDQFHV ƒf WR 9DULRXV 3ODQHV LQ 7$%/( IRU WKH )H> VDOfES@1 &RPSOH[ $ 6XPPDU\ RI WKH 'LVWRUWLRQV IRU 6RPH 6DOLF\OLGHQH &RPSOH[HV 7KH %RQG /HQJWKV ƒf RI 6RPH ,URQ ,,,f &RPSOH[HV ZLWK 6FKLII%DVHV DQG WKH 6SLQ6WDWHV 6f &U\VWDO 'DWD IRU >&X DSVKf@ 1f )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU >&XDSVKf@ 1f+ %RQG 'LVWDQFHV $f IRU >&X DSVKf @ 1f %RQG $QJOHV rf IRU >&X DSVKf @ 1f $QLVRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU >&XDSVKf@ 1f +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $ [O2f IRU >&XDSVKf@ 1f &U\VWDO 'DWD IRU >1LSFVKf@ &f )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU >1LSFVKf@ &f %RQG 'LVWDQFHV $f IRU >1L SFVKf @ &f %RQG $QJOHV rf IRU >1LSFVKf@ &f YLLL

PAGE 9

7DEOH 3DJH 6WUXFWXUDO $QDO\VLV IRU /LJDQG DSVK $ 6XPPDU\ RI WKH %RQG 'LVWDQFHV LQ 9DULRXV 3URWRQDWHG DQG 'HSURWRQDWHG /LJDQGV /HDVW6TXDUHD DQG 3DUDPHWHUV LQ >&XDSVKf@ 1f 7RUVLRQ $QQJOHV rf IRU DSVK LQ >&XDSVKf@ 1f L[

PAGE 10

/,67 2) ),*85(6 )LJXUH 3DJH 7ZR 0DLQ *URXSV RI WKH &RPSRXQGV &RQWDLQLQJ 3\ULGLQH 5LQJ 6RPH &URZQW\SH 3RO\PHUV &RQWDLQLQJ GLVXEVWLWXWHG S\ULGLQH XQLWV 6RPH &+Q1@&O 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV 'LPHWK\OWULD]DQLXP Df DQG 7ULPHWK\OK\GUD]LQLXP &KORULGH $Q ,QFUHDVH RI &1& $QJOH LQ WKH 3\ULGHQH ULQJV RI 6XEVWLWXWLRQ 'LS\ULGLQLXP 2[DODWH2[DOLF DFLG RQH S\ULGLQLXP LV RPLWWHGf nPHWK\OHQHELVnGLPHWK\O DPLQRS\ULGLQLXPf LRQ 7KH 5HVRQDQFH 6WUXFWXUH RI >&+1@ [

PAGE 11

3DJH )LJXUH ,PSRVVLEOH 5HVRQDQFH 6WUXFWXUHV IRU >&+Q1@ 3RVVLEOH 3DWWHUQV IRU 4XDGULGHQWDWH &KHODWLQJ $JHQWV 7KH ([DPSOHV RI 1RQSODQDU 4XDGULGHQWDWH &KHODWLQJ $JHQWV 6RPH 0ROHFXOHV ZLWK D +HOLFDO &RQIRUPDWLRQ nELV6DOLF\OLGHQHDPLQRfELSKHQ\O VDOfES $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI >&+R1@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI >&+L1r&X@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV $ 9LHZ RI WKH 6WUXFWXUH RI >&+1)H@1 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV 7KH 3DFNLQJ 3DWWHUQ RI >&+1)H@1&+ nELVnnS\ULG\OPHWK\ODPLQRfELSKHQ\O $ 0RGHO RI 6WUDLQOHVV 7HWUDKHGUDO $UUDQJHPHQW IRU VDOfES 7KUHH &KHODWLQJ 5LQJV LQ WKH 4XDGULGHQWDWH 6FKLII %DVHV )RXU 3RVVLEOH &RQIRUPDWLRQV LQ 6HYHQ PHPEHUHG 5LQJ 7KH 7RUVLRQ $QJOHV LQ WKH 6HYHQPHPEHUHG 5LQJ RI WKH &RSSHU &RPSOH[ )LYH 3RVVLEOH ,VRPHUV LQ 0HWDO &RPSOH[HV ZLWK 4XDGULGHQWDWH /LJDQGV 3RVVLEOH 0RGHOV RI &RRUGLQDWLRQ RI %ULGJLQJ 1LWUDWH *URXS [L

PAGE 12

)LJXUH 3DJH $QRWKHU )H,,,f &RPSOH[ &RQWDQLQJ 6HYHQPHPEHUHG 5LQJV 7KH 7RUVLRQ $QJOHV LQ WKH 6HYHQPHPEHUHG 5LQJ RI WKH ,URQ ,,,f &RPSOH[ 5LJKWKDQGHG +HOL[ 3f DQG /LIWKDQGHG +HOL[ 0f &U\VWDOORJUDSKLF 6FUHZ $[HV DQG +HOLFDO 6\PPHWULHV Df =QGDSSf RQH GDSS RPLWWHGf Ef 7KH )HDWXUH RI DQ ,QRUJDQLF 'RXEOH +HOL[ 7KH '1$ 'RXEOH +HOL[ 7KH &RPSOH[ RI $J > 5 6f 53\&+ 1f &\FORKH[DQH@ RQH OLJDQG LV RPLWWHGf 7KH 1RPHQFODWXUH IRU 7ULJRQDO &RPSOH[HV 2OLJRELS\ULGLQH /LJDQGV $ 9LHZ RI WKH 6WUXFWXUH RI >&XDSVKf@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV $ 9LHZ RI WKH 6WUXFWXUH RI >1LSFVKf@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV 7KH SRVLWLRQV RI + DWRPV KDYH QRW GHWHUPLQHGf 7KH &RPSHWLWLYH 5HDFWLRQV RI +\GUD]LGHV ZLWK 1L,,f DQG 6DOLF\ODGHK\GH 3RVVLEOH 5HDFWLRQV RI VDGK ZLWK 1LLLf DQG S\ULGLQHFDUER[DOGHK\GH 3RVVLEOH 3DWWHUQV IRU 7ULGHQWDWH &KHODWLQJ $JHQWV 3ODQDU DQG 1RQSODQDU &RQILJXUDWLRQV IRU 7ULGHQWDWH /LJDQGV 3RVVLEOH &RQMXJDWHG )RUPV IRU 'HSURWRQDWHG DSVK /LJDQG &RQIRUPDWLRQ RI WKH DSVK /LJDQG &KDLQ [LL

PAGE 13

)LJXUH 3DJH 0ROHFXODU &RQIRUPDWLRQV $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI WKH 'RXEOH 6WUDQGHG +HOLFDO &RPSOH[ >&X DSVKf @ $QRWKHU 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI WKH 'RXEOH 6WUDQGHG +HOLFDO &RPSOH[ >&X DSVKf @ %UDLG 7KUHDG DQG &URVVLQJ nELVVDOLF\OLGHQHDQLQRf 3KHQ\O (WKHU [LLL

PAGE 14

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 6<17+(6,6 $1' &+$5$&7(5,=$7,21 2) 7+( &203281'6 :,7+ 7+( '(5,9$7,9(6 2) 3<5,',1( 25 6&+,)) %$6(6 %\ .HSLQJ 4LDQ $XJXVW &KDLUPDQ *XV 3DOHQLN 0DMRU 'HSDUWPHQW &KHPLVWU\ 7KRXJK WKH OLWHUDWXUH FRQWDLQV D KXJH QXPEHU RI SXEOLFDWLRQV RQ S\ULGLQH DQG LWV GHULYDWLYHV QR FU\VWDO VWUXFWXUHV RI VXEVWLWXWHG 1DPLQR S\ULGLQLXP FDWLRQV KDYH EHHQ UHSRUWHG 7KH UHDFWLRQ RI FKORUDPLQH ZLWK OXWLGLQH ZDV FDUULHG RXW DQG IRUPHG WR JLYH WKH H[SHFWHG SURGXFW 7KH SURGXFW FU\VWDOOL]HG LQ WKH VSDFH JURXS 3, EDU ZLWK D f E f F f $ DQG D f f fr 7KH ELVVDOLF\OLGHQHDPLQRfELSKHQ\O >VDOfES@ D 6FKLII EDVH OLJDQG LV D JRRG QRQSODQDU OLJDQG 7KH VSDFH JURXS ZDV IRXQG WR EH 3, EDU ZLWK D f E f F OOf $ DQG D f c f f r 7KH UHDFWLRQ RI VDOfES ZLWK &X1f UHVXOWV LQ D IRXU FRRUGLQDWH FRPSOH[ 7KH VSDFH JURXS LV 3QQD ZLWK D f E f DQG F f $ $ VLPLODU [LY

PAGE 15

UHDFWLRQ RI VDOfES ZLWK )H1f UHVXOWV LQ D VL[ FRRUGLQDWH FRPSOH[ 7KH VSDFH JURXS LV 3 [Q ZLWK D f E f F f ƒ DQG fr %RWK RI WKH PHWDO FRPSOH[HV DUH QRQSODQDU 7KH UHDFWLRQ RI DFHW\OS\ULGLQH VXFFLQLF DFLG GLK\GUD ]RQH DSVKf ZLWK &X1f JHQHUDWHV D PHWDO FRPSOH[ RI DQ LQRUJDQLF GRXEOH KHOL[ 7KH >&XDSVKf@ 1f FU\VWDOOL]HV LQ WKH VSDFH JURXS 3 Q ZLWK D f E f F f ƒ DQG f $ VLPLODU FRPSOH[ RI DQ LQRUJDQLF GRXEOH KHOL[ LV IRUPHG IURP WKH UHDFWLRQ RI 1L&f ZLWK S\ULGLQH FDUER[DOGHK\GH VXFFLQLF DFLG GLK\GUD]RQH SFVKf 7KH VSDFH JURXS RI >1LSFVKf@ &f LV & F ZLWK D fE f F f ƒ DQG f 0RUH H[WHQVLYH VWUXFWXUDO VWXGLHV RQ WKH PHWDO FRPSOH[HV ZLWK DQ LQRUJDQLF GRXEOH KHOL[ DUH DWWUDFWLYH LQ RUGHU WR FRUUHODWH WKH YDULDELOLW\ RI WKH FKHPLFDO ELRORJLFDO DQG VWUXFWXUDO SURSHUWLHV DQG WR XQGHUVWDQG WKH VHOIDVVHPEOLQJ LQ VXSUDPROHFXODU VWUXFWXUHV [Y

PAGE 16

&+$37(5 21( ,1752'8&7,21 &RPSRXQGV ZKLFK FRQWDLQ S\ULGLQH RU LWV GHULYDWLYHV RU 6FKLIIEDVHV DV OLJDQGV KDYH RFFXSLHG D FHQWUDO UROH LQ WKH GHYHORSPHQW RI FRRUGLQDWLRQ FKHPLVWU\ RUJDQRPHWDOOLF FKHPLVWU\ DQG ELRFKHPLVWU\ 7KLV VLWXDWLRQ LV PDQLIHVWHG E\ WKH KXJH QXPEHU RI SXEOLFDWLRQV UDQJLQJ IURP WKH SXUHO\ V\QWKHWLF WR PRGHUQ SK\VLFRFKHPLFDO WR ELRFKHPLFDOO\ UHOHYDQW VWXGLHV RI WKHVH FRPSRXQGV $ WUHPHQGRXV YDULHW\ RI VWDEOH FKHPLFDO VSHFLHV KDYH EHHQ V\QWKHVL]HG FRQWDLQLQJ ERWK PHWDOV DQG QRQPHWDOV 3\ULGLQH DQG ,WV 'HULYDWLYHV 2I DOO WKH NQRZQ KHWHURF\FOLF V\VWHPV S\ULGLQH KDV SHUKDSV WKH JUHDWHVW LPSRUWDQFH 7KLV FDQ EH MXGJHG E\ WKH YDULHW\ DQG LQWHUHVW LQ LWV GHULYDWLYHV DQG WKHLU UHDFWLRQV DQG E\ WKH YROXPH RI OLWHUDWXUH GHYRWHG WR WKHP 3\ULGLQH LV D SODQDU PROHFXOH ZKLFK LV OHVV EDVLF WKDQ DUH WKH DOLSKDWLF DPLQHV 7KH S.D YDOXH RI LWV FRQMXJDWH DFLG LV 7KH HOHFWURQ SDLU LQ S\ULGLQH LV ORFDWHG LQ DQ VS PROHFXODU RUELWDO ZKHUHDV DQ VS RUELWDO LV XWLOL]HG E\ DOLSKDWLF DPLQHV 7KH KLJK VFKDUDFWHU DFFRXQWV IRU WKH

PAGE 17

GHFUHDVHG DYDLODELOLW\ RI HOHFWURQV IRU UHDFWLRQ ZLWK D SURWRQ 7KHUH DUH RYHU FRPSRXQGV FRQWDLQLQJ D S\ULGLQH ULQJ LQ WKH UHOHDVH RI WKH &DPEULGJH 6WUXFWXUDO 'DWDEDVH &6'f 2EYLRXVO\ SHRSOH KDYH SDLG JUHDW DWWHQWLRQ WR S\ULGLQH 3\ULGLQH LV FDSDEOH RI DFWLQJ DV HLWKHU D LW RU D OLJDQG 7KH KLJKHU DIILQLW\ RI S\ULGLQH WRZDUG GRQDWLRQ RI D HOHFWURQV LV GXH WR LWV LQKHUHQW VWUXFWXUH 3\ULGLQH IRUPV D GLSROH ZLWK WKH HOHFWURQ GHQVLW\ ORFDOL]HG RQ WKH QLWURJHQ DWRP 7KH ORQH SDLU RI 1HOHFWURQV KDV D JHRPHWU\ WKDW PDNHV LW HDVLO\ DFFHVVLEOH IRU GRQDWLRQ WR DQ DWRP LQ WKH UHVXOWDQW FRPSRXQGV 7KHVH FRPSRXQGV FDQ EH URXJKO\ GLYLGHG LQWR WZR PDLQ JURXSV S\ULGLQH DV D QHXWUDO VSHFLHV DQG S\ULGLQH DV D QRQQHXWUDO VSHFLHV )LJXUH f 2 0 1HXWUDOf 1 + & 1RQQHXWUDOf )LJXUH 7ZR 0DLQ *URXSV RI WKH &RPSRXQGV &RQWDLQLQJ 3\ULGLQH 5LQJ

PAGE 18

3\ULGLQH DQG LWV GHULYDWLYHV KDYH SUDFWLFDO LPSRUWDQFH LQ FKHPLVWU\ ILHOGV VXFK DV RUJDQLF FKHPLVWU\ ELRFKHPLVWU\ FRRUGLQDWLRQ FKHPLVWU\ ERWK LQ H[SHULPHQWDO DQG WKHRUHWLFDO DVSHFWV 6RPH H[DPSOHV DUH LOOXVWUDWHG KHUH 7KH V\VWHP RI S\ULGLQH K\GURJHQ IOXRULGH LV RI SUDFWLFDO LPSRUWDQFH LQ SUHSDUDWLYH RUJDQLF FKHPLVWU\ LQ ZLGH XVH DV D FRQYHQLHQW UHDJHQW IRU D YDULHW\ RI IOXRULQDWLRQ UHDFWLRQVA $F\FOLF HWKHUV ZLWK GLVXEVWLWXWHG S\ULGLQH XQLWV DV D ULJLG GRQRU XQLWV DUH XVHG LQ V\QWKHVHV RI FURZQW\SH SRO\PHUVA )LJXUH f )LJXUH 6RPH &URZQW\SH 3RO\PHUV &RQWDLQLQJ GLVXEVWLWXWHG S\ULGLQH XQLWV

PAGE 19

&URZQHWKHUV KDYH JLYHQ UHPDUNDEOH UHVXOWV ZKHQ XVHG LQ FDWDO\WLF DPRXQWV IRU VSHFLDO DSSOLFDWLRQ 7KH\ DUH XVHG WR VSHFLILFDOO\ FRPSOH[ FDWLRQV 6XFK FRPSOH[LQJ DJHQWV DUH RI SDUWLFXODU LQWHUHVW DV PRGHOV IRU WKH WUDQVIHU RI LRQV DFURVV WKH QRQSRODU PHPEUDQHV RI ELRORJLFDO V\VWHPrr $V DQ H[DPSOH LQ WKHRUHWLFDO DSSOLFDWLRQ S\ULGLQLXP \OLGHV )LJXUH ODf KDYH WKH VSHFLDO DGYDQWDJHV WR VWXG\ WKH RUJDQRPHWDOOLF FRPSRXQGV FRQWDLQLQJ \OLGH FDUERQ 1HJDWLYHO\ FKDUJHG \OLGH FDUERQ VHH )LJXUH f KDV DQ DELOLW\ WR FRRUGLQDWH WR PHWDO LRQVrr $OWKRXJK UHDFWLYLWLHV RI SKRWRH[FLWHG VWDWHV RI D S\ULGLQLXP \OLGH D QLWURJHQ \OLGH D SKRVSKRUXV \OLGH D E F )LJXUH 6RPH
PAGE 20

DQG PHWDO DWRPV KDV EHHQ VWXGLHG H[WHQVLYHO\ 7DEOH 6KRZV WKH DSSUR[LPDWH QXPEHU RI SXEOLFDWLRQV IRU HDFK IUDJPHQW FRQWDLQLQJ S\ULGLQH ULQJ LQ WKH UHOHDVH RI WKH &6' 8QIRUWXQDWHO\ WKHUH DUH QR VWUXFWXUDO GDWD UHODWHG WR WKH FRRUGLQDWLRQ RI WKH QLWURJHQ DWRP RI S\ULGLQH ULQJ ZLWK D QLWURJHQ DWRP 7KHUHIRUH ZH GHFLGHG WR VWXG\ UHDFWLRQV RI S\ULGLQH DQG LWV GHULYDWLYHV ZLWK FKORUDPLQH LQ DQ DWWHPSW WR SUHSDUH S\ULGLQH11 FRPSRXQGV 7KH VWUXFWXUDO LQIRUPDWLRQ RI WKH FRRUGLQDWLRQ RI 1 RI S\ULGLQH ULQJ ZLWK 1 ZLOO EH GHVFULEHG DQG GLVFXVVHG LQ FKDSWHU WZR 7$%/( $SSUR[LPDWH 1XPEHU RI 3XEOLFDWLRQV IRU (DFK )UDJPHQW &RQWDLQLQJ S\ULGLQJ

PAGE 21

6FKLII %DVH 6FKLII EDVH OLJDQGV DUH YHU\ GLYHUVH 6FKLII EDVHV ZKLFK DUH HIIHFWLYH DV FRRUGLQDWLQJ OLJDQGV XVXDOO\ EHDU D VHFRQG IXQFWLRQDO JURXS IUHTXHQWO\ 2+ EXW 1 DQG 6 GRQRUV DUH DOVR NQRZQ 7KH VLWH RI FRQGHQVDWLRQ FDQ EH FRQWUROOHG VR WKDW D ILYH RU VL[ PHPEHUHG FKHODWH ULQJ FDQ EH IRUPHG XSRQ UHDFWLRQ ZLWK D PHWDO LRQ 0HWDO 6FKLII EDVH FRPSOH[HV KDYH EHHQ NQRZQ VLQFH WKH PLGQLQHWHHQWK FHQWXU\rr DQG HYHQ EHIRUH WKH JHQHUDO SUHSDUDWLRQ RI 6FKLII EDVH OLJDQGV WKHPVHOYHVrr +RZHYHU WKHUH ZDV QR FRPSUHKHQVLYH V\VWHPDWLF VWXG\ XQWLO WKH SUHSDUDWLYH ZRUN RI 3IHLIIHU DQG DVVRFLDWHVrrfrr 6LQFH 3IHLIIHUnV LQLWLDO FRQWULEXWLRQV WKH LQWHUHVW LQ 6FKLIIEDVH FRPSOH[HV KDV LQFUHDVHG GUDPDWLFDOO\ 0HWDO FRPSOH[HV RI 6FKLII EDVHV KDYH EHHQ RI FRQVLGHUDEOH LQWHUHVW LQ WKH GHYHORSPHQW RI WKH FRRUGLQDWLRQ FKHPLVWU\ RI FKHODWH V\VWHPV 7KHUH DUH VHYHUDO W\SHV RI 6FKLIIEDVH FKHODWH DJHQWV VXFK DV EL DQG SRO\GHQWDWH VDOLF\ODOGLPLQHV EL DQG SRO\GHQWDWH fNHWRDPLQHV DQG 6FKLII EDVHV UHVXOWLQJ IURP WKH FRQGHQVDWLRQ RI IXQFWLRQDOO\ VXEVWLWXWHG SULPDU\ DPLQHV ZLWK GLFDUERQ\O FRPSRXQGV HWF 7KH FRPSOH[HV ZLWK VDOLF\ODOGLPLQHV DUH SDUWLFXODUO\ DWWUDFWLYH IRU V\VWHPDWLF VWHUHRFKHPLFDO VWXGLHV EHFDXVH RI WKH UHODWLYHO\ HDV\ V\QWKHWLF YDULDWLRQ RI WKH QLWURJHQ VXEVWLWXHQWV WKHUHE\ SHUPLWWLQJ YDU\LQJ GHJUHHV RI VWHULF VWUDLQ WR EH LQFRUSRUDWHG LQWR WKH SODQDU IRUPV

PAGE 22

5HFHQWO\ PHWDO FRPSOH[HV RI VRPH TXDGULGHQWDWH VDOLF\O DOGLPLQHV KDYH EHHQ LQWHQVLYHO\ VWXGLHG EHFDXVH RI WKHLU VSHFLDO SURSHUWLHV VXFK DV WKH PRGHOV RI LURQR[R SURWHLQVrrfrr %LQXFOHDU LURQR[R FHQWHUV KDYH HPHUJHG DV FRPPRQ VWUXFWXUDO FRPSRQHQWV LQ WKH DFWLYH VLWHV RI VHYHUDO PHWDOORSURWHLQVrr 0RUH H[WHQVLYH VWUXFWXUDO VWXGLHV RQ WKH PHWDO FRPSOH[HV ZLWK TXDGULGHQWDWH 6FKLII EDVHV ZKLFK DSSHDU WR EH QRQSODQDU DQGRU KHOLFDO DUH DWWUDFWLYH LQ RUGHU WR FRUUHODWH WKH YDULDELOLW\ RI WKH FKHPLFDO ELRORJLFDO DQG VWUXFWXUDO SURSHUWLHV DQG WR XQGHUVWDQG WKH VHOIDVVHPEOLQJ LQ VXSUDPROHFXODU VWUXFWXUHV 7KH nELVVDOLF\OLGHQHDPLQHf ELSKHQ\O OLJDQG V\VWHP KDV EHHQ FKRVHQ WR DGGUHVV WKLV SUREOHP EHFDXVH WKH OLJDQG FDQ IRUP D QHDUO\ VWUDLQOHVV 1 WHWUDKHGURQrr +HOLFDO 6WUXFWXUH DQG 6HOI $VVHPEOLQJ 0ROHFXODU KHOLFLW\ LV D IDVFLQDWLQJ SURSHUW\ GLVSOD\HG E\ FKHPLFDO DQG ELRORJLFDO PDFURPROHFXODU VWUXFWXUHV VXFK DV WKH DKHOL[ RI SRO\SHSWLGHVrr DQG WKH KHOLFDO FRQIRUPDWLRQ RI SRO\PHUVrr 7KH VSRQWDQHRXV IRUPDWLRQ RI WKH GRXEOH KHOL[ RI QXFOHLF DFLGV UHSUHVHQWV WKH VHOIDVVHPEOLQJ RI D VXSUDPROHFXODU VWUXFWXUH 6XSUDPROHFXODU FKHPLVWU\ LV D YHU\ DFWLYH UHVHDUFK ILHOG 7KH GHYHORSPHQW LQ VXSUDPROHFXODU FKHPLVWU\ RIIHUV H[FLWLQJ SHUVSHFWLYHV DW WKH IURQWLHUV RI FKHPLVWU\ ZLWK SK\VLFV DQG ELRORJ\

PAGE 23

0ROHFXODU FKHPLVWU\ RI WKH FRYDOHQW ERQG LV FRQFHUQHG ZLWK XQFRYHULQJ DQG PDVWHULQJ WKH UXOHV WKDW JRYHUQ WKH VWUXFWXUHV SURSHUWLHV DQG WUDQVIRUPDWLRQ RI PROHFXODU VSHFLHV 6XSUDPROHFXODU FKHPLVWU\ PD\ EH GHILQHG DV FKHPLVWU\ EH\RQG WKH PROHFXOH EHDULQJ RQ WKH RUJDQL]HG HQWLWLHV RI KLJKHU FRPSOH[LW\ WKDW UHVXOW IURP WKH DVVRFLDWLRQ RI WZR RU PRUH FKHPLFDO VSHFLHV KHOG WRJHWKHU E\ LQWHUPROHFXODU IRUFHV 7KHVH JHQHUDO FRQVLGHUDWLRQV DUH VXPPDUL]HG LQ )LJXUH A &+(0,675< 02/(&8/$5 6835$02/(&8/$5 75$163257 )LJXUH )URP 0ROHFXODU WR 6XSUDn PROHFXODU &KHPLVWU\

PAGE 24

7KH SDWWHUQV RI D VXSUD[QROHFXODU VSHFLHV KDYH EHHQ QDPHG PROHFXODU UHFHSWRU DQG VXEVWUDWH 0ROHFXODU UHFHSWRUV DUH RUJDQLF VWUXFWXUHV KHOG E\ FRYDOHQW ERQGV ZKLFK DUH DEOH WR FRPSOH[ VHOHFWLYHO\ LRQV RU PROHFXOHV 7KH VXEVWUDWHV DUH QRW OLPLWHG WR WUDQVLWLRQ PHWDO LRQV EXW H[WHQGLQJ WR DOO W\SH RI VXEVWUDWHV FDWLRQLF DQLRQLF RU QHXWUDO VSHFLHV RI RUJDQLF LQRUJDQLF RU ELRORJLFDO QDWXUH 6XEVWUDWH ELQGLQJ PDNHV XVH RI YDULRXV LQWHUPROHFXODU LQWHUDFWLRQV HOHFWURVWDWLF LQWHUDFWLRQV K\GURJHQ ERQGLQJ YDQ GHU :DDOV IRUFHV VKRUW UDQJH UHSXOVLRQ HWFf WR IRUP DQ DVVHPEO\ RI WZR RU PRUH PROHFXOHV D VXSHUPROHFXOH )RU H[DPSOH SRO\QXFOHDU DURPDWLF K\GURFDUERQV VXFK DV WHWUDNLVEHQ]RFURZQfSRUSK\ULQ 7&3f DQG LWV PHWDO GHULYDWLYHV07&3f DUH ZHOO NQRZQ WR IRUP VXSHUPROHFXODU V\VWHPV )LJXUH ODf &KHPLFDO 6WUXFWXUHV RI 7&3 t 07&3 K ? 6FKHPDWLF UHSUHVHQWDWLRQ RI WKH LRQLQGXFHG GLPHUV )LJXUH $Q ([DPSOH RI D VXSHUPROHFXOH

PAGE 25

:KHQ 7&3 RU 07&3 LV FRPSOH[HG ZLWK FDWLRQV HJ %D DQG 1+ WKH GLPHULF SRUSK\ULQV ZHUH IRUPHGA)LJXUH OEf 7KHVH VSHFLHV DUH GHVFULEHG DV VXSHUPROHFXOHV VLQFH WKH WZR SRUSK\ULQ XQLWV MRLQHG E\ QRQFRYDOHQW LQWHUDFWLRQV H[KLELWHG RSWLFDO DEVRUSWLRQ DQG HPLVVLRQ SURSHUWLHV GLIIHUHQW IURP WKRVH RI WKH PRQRPHULF SRUSK\ULQ XQLWVA ,Q DGGLWLRQ WR ELQGLQJ VLWHV WKH UHFHSWRU PD\ EHDU UHDFWLYH VLWHV RU OLSRSKLOLF JURXSV IRU GLVVROXWLRQ LQ D PHPEUDQH VR WKDW LWV IXQFWLRQV LQFOXGH PROHFXODU UHFRJQLWLRQ WUDQVIRUPDWLRQ DQG WUDQVORFDWLRQ 8VLQJ SRO\PROHFXODU DVVHPEOLHV VWUXFWXUDO RUJDQL]DWLRQ DQG IXQFWLRQDO LQWHJUDn WLRQ FKHPLFDO V\VWHPV DUH EXLOW LQWR VXSUDPROHFXODU DUFKLWHFWXUHV 7KDW LV FDOOHG PROHFXODU DQG VXSUDPROHFXODU GHYLFHV 7KH GHYLFHV LQFOXGH ILYH SDUWV VXSUDPROHFXODU SKRWRFKHPLVWU\ DQG PROHFXODU SKRWRQLFV PROHFXODU HOHFWURQLF GHYLFHV PROHFXODU LRQLF GHYLFHV PROHFXODU VHOIDVVHPEOLQJ DQG FKHPLRQLFV 0ROHFXODU VHOIDVVHPEOLQJ LV RQH RI WKH PROHFXODU DQG VXSUDPROHFXODU GHYLFHV 6XFK VHOIDVVHPEOLQJ KDV UHFHQWO\ EHHQ VKRZQ WR RFFXU LQ UHSHWLWLYH FKDLQ OLJDQGV VXFK DV SRO\nELS\ULGLQHf ZKLFK IRUP WKH SRO\QXFOHDU FRPSOH[HV ZLWK PHWDO FHQWHUV 7KH LQRUJDQLF GRXEOH KHOLFDO VWUXFWXUHV LQ WKHVH FRPSOH[HV KDYH EHHQ FRQILUPHGA 7KLV VSRQWDQHRXV IRUPDWLRQ RI DQ RUJDQL]HG VWUXFWXUH RI LQWHUPROHFXODU W\SH RSHQV ZD\V WR WKH GHVLJQ DQG VWXG\ RI WKH VHOIDVVHPEOLQJ SKHQRPHQRQ

PAGE 26

0ROHFXODU VHOIDVVHPEOLQJ LV ZHOO GRFXPHQWHG LQ ELRORJ\ PXFK OHVV VR LQ FKHPLVWU\ ,QRUJDQLF GRXEOH KHOLFDO FRPSOH[HV KDYH EHHQ VWXGLHG LQ RXU JURXS VLQFH nV ,Q RUGHU WR RSHQ D JHQHUDO ZD\ IRU JHQHUDWLQJ LQRUJDQLF GRXEOH KHOLFDO VWUXFWXUHV ZH H[WHQGHG SXUH SRO\nELS\ULGLQHf WR VSHFLDO GHULYDWLYHV RI S\ULGLQH VXFK DV ELVDFHW\OS\ULGLQHf VXFFLQLF DFLG GLK\GUD]RQH WR GHVLJQ QHZ LQRUJDQLF GRXEOH KHOLFDO FRPSOH[HV DQG WR IXWKHU XQGHUVWDQGLQJ RI VHOIn DVVHPEOLQJ PROHFXODU GHYLFHV DQG VXSHUPROHFXODU VWUXFWXUHV

PAGE 27

&+$37(5 7:2 5($&7,216 2) &+/25$0,1( :,7+ 620( 0(7+
PAGE 28

JDVHRXV FKORUDPLQH WKURXJK OLTXLG TXLQROLQH DQG OLTXLG S\ULGLQH JDYH ORZ \LHOGV RI DPLQR TXLQROLQH DQG DPLQR S\ULGLQH UHVSHFWLYHO\ )LJXUH f )LJXUH 7KH 3URGXFWV RI &KORUDPLQHJf 7KURXJK 4XLQROLQH DQG 3\ULGLQH 7KH\ DOVR WHQWDWLYHO\ UHSRUWHG WKH IRUPDWLRQ RI WKH DPLQR GHULYDWLYHV RI WKHREURPLQH DQG FDIIHLQH )LJXUH f E\ DQDORJRXV UHDFWLRQV &+L 1 r1 &DIIHLQH WULPHWK\O[DQWKLQH f 7KHREURPLQH GLPHWK\O[DQWKLQHf )LJXUH &DIIHLQH DQG 7KHREURPLQH

PAGE 29

9DULRXV VXEVWLWXWHG 1 DPLQRS\ULGLQLXP FDWLRQV KDYH EHHQ UHSRUWHG DV SURGXFWV RI WKH UHDFWLRQV RI KHWHURF\FOLF QLWURJHQ EDVHV ZLWK SRWDVVLXP VXOIRQ\O K\GUR[\ODPLQH DQG K\GURLRGLF DFLG +16n. +, A RU 2PHVLW\OHQHVXOIRQ\O K\GUR[\ODPLQH-r )LJXUH f +RZHYHU QR FU\VWDO VWUXFWXUHV RI VXEVWLWXWHG 1DPLQR S\ULGLQLXP FDWLRQV KDYH EHHQ UHSRUWHG &+ )LJXUH 20HVLW\OHQH6XOIRQ\OK\GUR[\ODPLQH ,Q WKH SUHVHQW FKDSWHU WKH UHDFWLRQV RI FKORUDPLQH ZLWK GLPHWK\O S\ULGLQH DQG WULPHWK\O S\ULGLQH ZHUH H[DPLQHG ,Q WKH FDVH RI GLPHWK\O S\ULGLQH D VROLG DPLQDWLRQ SURGXFW ZDV LVRODWHG LQ KLJK \LHOG DQG LWV VWUXFWXUDO IRUPXOD ZDV VKRZQ WR EH 1DPLQRGLPHWK\O S\ULGLQLXPf FKORULGH )LJXUH f E\ DQ ;UD\ FU\VWDO VWUXFWXUDO VWXG\ 7KH RQO\ VROLGV LVRODWHG LQ WKH RWKHU FDVHV ZHUH DPPRQLXP FKORULGH DQG WKH UHVSHFWLYH S\ULGLQLXP FKORULGHV 7KH UHVXOWV REWDLQHG KDYH SUDFWLFDO DQG WKHRUHWLFDO VLJQLILFDQFH

PAGE 30

)LJXUH 1DPLQRGLPHWK\OS\ULGLQLXPf &KORULGH 6\QWKHVLV RI &KORUDPLQH ZLWK 6RPH 0HWKYOSYULGLQH ([SHULPHQWDO 0DWHULDOV 7KH DQG OXWLGLQH DQG FROOLGLQH IURP WKH $OGULFK &KHPLFDO &RPSDQ\ ZHUH XVHG DV REWDLQHG &KORUDPLQH ZDV SUHSDUHG E\ WKH JDVSKDVH UHDFWLRQ RI FKORULQHQLWURJHQ PL[WXUHV ZLWK JDVHRXV DPPRQLD LQ D 6LVOHU0DWWDLU W\SH UHDFWRUAn )LJXUH f 6ROXWLRQV RI FKORUDPLQH LQ HWKHU ZHUH SUHSDUHG E\ SDVVLQJ WKH HIIOXHQW JDV IURP WKH UHDFWRU LQWR DQK\GURXV HWKHU DQG SRXULQJ WKH UHVXOWLQJ VROXWLRQ WKURXJK D FROXPQ RI DQK\GURXV FRSSHU VXOIDWH WR UHPRYH WKH DPPRQLDA ([SHULPHQWDO 0HWKRG 7KH UHDFWLRQV ZLWK DOO WKH S\ULGLQH GHULYDWLYHV ZHUH FDUULHG RXW DW r& E\ VWLUULQJ WKH S\ULGLQH GHULYDWLYH ZLWK DQ HWKHU VROXWLRQ RI D VOLJKW H[FHVV RI FKORUDPLQH 7KH UHDFWLRQ ZLWK OXWLGLQH LV W\SLFDO 2QH KXQGUHGWK PROH RI OXWLGLQH ZDV PL[HG ZLWK P/ RI 0 FKORUDPLQH VROXWLRQ

PAGE 31

5(&(,9(5 7;a )LJXUH 7KH &KORUDPLQH *HQHUDWRU

PAGE 32

LQ HWKHU PRO 1+& b H[FHVVf VWLUUHG IRU HLJKW KRXUV DW r& DQG DOORZHG WR VWDQG RYHUQLJKW 7KH ZKLWH SUHFLSLWDWH WKDW IRUPHG ZDV ILOWHUHG RII DQG VKRZQ WR EH DPPRQLXP FKORULGH PS! r&f 7KH ILOWUDWH ZDV HYDSRUDWHG WR D YROXPH RI P/ E\ SDVVLQJ GU\ QLWURJHQ RYHU LW IRU D SHULRG RI KRXUV DQG WKHQ DOORZHG WR VWDQG RYHUQLJKW LQ D UHIULJHUDWRU
PAGE 33

)RXQG IRU &+Q1&O & b + b 1 b &DOHG IRU &+Q1&O & b + b 1 b 7KHVH GDWD LQGLFDWH WKH DPLQDWLRQ RI WKH OXWLGLQH E\ FKORUDPLQH 7KH ZHLJKW RI WKLV SURGXFW FRUUHVSRQGHG WR D \LHOG RI b RI WKHRUHWLFDO 7$%/( 0HOWLQJ 3RLQWV DQG (OHPHQWDO $QDO\VHV RI WKH 3URGXFWV RI WKH 5HDFWLRQV ZLWK &KORUDPLQH PSr& b& b+ b1 OXWLGLQH OXWLGLQH OXWLGLQH 7KHRU\ IRU > &+f &+1+@ &O FROOLGLQH 7KHRU\ IRU > &+f &+1+@ &O OXWLGLQH 7KHRU\ IRU > &+f&+11+@&

PAGE 34

&U\VWDO 6WUXFWXUH RI 1DPLQR'LPHWKYOSYULGLQLXPf 7R HVWDEOLVK XQHTXLYRFDOO\ WKH LGHQWLW\ RI WKH DERYH DPLQDWLRQ SURGXFW WKH VWUXFWXUH ZDV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ $ ZHOO VKDSHG FU\VWDO RI [ [ PP VL]H ZDV XVHG IRU LQWHQVLW\ PHDVXUHPHQWV RQ 1LFROHW 3, EDU GLIIUDFWRPHWHU ZLWK 1L ILOWHUHG&X.D UDGLDWLRQ 5HIOHFWLRQV ZHUH FROOHFWHG LQ WKH UDQJH r XVLQJ WKH VFDQ PRGH DQG D YDULDEOH VFDQ VSHHG r PLQnf 7ZR FKHFN UHIOHFWLRQV PHDVXUHG DIWHU HYHU\ UHIOHFWLRQV VKRZHG DQ LQWHQVLW\ YDULDWLRQ RI s b 2I UHIOHFWLRQV PHDVXUHG ZLWK ,!FW,f ZHUH XVHG LQ FDOFXODWLRQV 3HUWLQHQW GDWD DUH OLVWHG LQ 7DEOH 7KH VWUXFWXUH ZDV VROYHG E\ WKH KHDY\DWRP PHWKRG 7KH GLIIHUHQFH PDSV VKRZHG SRVLWLRQV RI DOO +DWRPV ERQGHG WR ULQJ DQG WKH 1+ JURXS DQG LQGLFDWHG &+ JURXSV KDYLQJ +DWRPV LQ WZR RULHQWDWLRQV URWDWHG E\ rf %HFDXVH QRW DOO PHWK\O K\GURJHQ DWRPV JDYH VXLWDEOH ERQG DQJOHV FRRUGLQDWHV RI WKUHH RI WKHP ZHUH FDOFXODWHG DVVXPLQJ WHWUDKHGUDO JHRPHWU\ DURXQG WKH FDUERQ DWRPV 1RQK\GURJHQ DWRPV ZHUH UHILQHG ZLWK DQLVRWURSLF WKHUPDO IDFWRUV 7KH SDUDPHWHUV RI WKH +DWRPV ZHUH LQFOXGHG LQ WKH VWUXFWXUH IDFWRU FDOFXODWLRQV EXW WKH\ ZHUH QRW UHILQHG 7KH LVRWURSLF WHPSHUDWXUH IDFWRU RI ƒ ZDV DVVLJQHG WR DOO +DWRPV 7KH ILQDO UHILQHPHQW RI DOO SDUDPHWHUV FRQYHUJHG DW 5 DQG 5Z ZKHUH Z Dn 7KH UHVLGXDO SHDNV LQ WKH ILQDO GLIIHUHQFH PDS ZHUH LQ WKH UDQJH

PAGE 35

IURP WR H$nV $OO FDOFXODWLRQV ZHUH FDUULHG RXW XVLQJ WKH '(6. 723 6+(/;7/ 1LFROHW f>@ &U\VWDO GDWD DUH VXPPDUL]HG LQ 7DEOH WKURXJK 7KH VWUXFWXUH LV LOOXVWUDWHG LQ )LJXUH 'LVFXVVLRQ 7KH UHVXOWV RI WKHVH H[SHULPHQWV GHPRQVWUDWH FRQFOXVLYHO\ WKDW FKORUDPLQH LQ DQK\GURXV HWKHU VROXWLRQ IUHH RI DPPRQLD UHDFW ZLWK OXWLGLQH WR JLYH WKH H[SHFWHG K\GUD]LQLXPW\SH VDOW LQ JRRG \LHOGV E\ WKH DPLQDWLRQ RI WKH ULQJ QLWURJHQ LQ DFFRUGDQFH ZLWK WKH IROORZLQJ HTXDWLRQ &+f &+1 1+& >&+f&+11+@&O ,Q WKH DPLQDWLRQ SURGXFW WKH &On LRQ LV LQ WKH FRUUHFW UHODWLYH SRVLWLRQ IRXQG LQ WKH FU\VWDO WR VKRZ WKH 1+ &O K\GURJHQ ERQG +OODf &On fƒ 1ODf+OODf &On fr + Df &O f ƒ 1ODf+Df &O fr &On DW [ \ ] ,Q FRQWUDVW DQG GLPHWK\OS\ULGLQH DQG WULPHWK\OS\ULGLQH GR QRW DSSHDU WR XQGHUJR WKLV UHDFWLRQ ,QVWHDG DPPRQLXP FKORULGH DQG WKH K\GURFKORULGHV RI WKH UHVSHFWLYH QLWURJHQ EDVHV DUH WKH RQO\ SURGXFWV LVRODWHG

PAGE 36

7$%/( &U\VWDO 'DWD IRU >&+1@& )RUPXOD >&+X1@& 0ROHFXODU :HLJKW &U\VWDO 6\VWHP 7ULFOLQLF 6SDFH *URXS 3 %DU D ƒ f E ƒ f F ƒ f D GHJ f 3 GHJ f GHJ f 9ROXPH ƒ = GFDOHGf JFP &U\VWDO 6L]H PP ; ; 5DGLDWLRQ 8VHG &X.D cMO FPn 5DQJH GHJ 1XPEHU RI FROOHFWHG GDWD 'DWD ZLWK ,!DO *RRGQHVV RI )LW 5 b 5Z b

PAGE 37

7$%/( )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU 1DPLQRGLPHWK\OS\ULGLQLXP FKORULGH $720 ; < = 8r &O f f f f 1 f f f f f 1 $f f f f f & f f f f f & f f f f f &$f f f f f &f f f f f & f f f f f &$f f f f f & f f f f f r (TXLYDOHQW LVRWURSLF 8 GHILQHG DV RQH WKLUG RI WKH WUDFH RI WKH RUWKRJRQDO LVHG 8cM WHQVRU

PAGE 38

7$%/( 6HOHFWHG 'LVWDQFHV $f DQG $QJOHV rf IRU 1DPLQRGLPHWK\OS\ULGLQLXP %RQG 'LVWDQFHV $f 1f1$f f 1f&f f 1f&f f &f&f f &f&$f f &f&f f &f&f f &f&$f f &f&f f %RQG $QJOHV rf 1$f1f&f f 1$f1f&f f &f1f&f f 1f&f&f f &f&f&$f f &f&f&f f &$f&f&f f &f&f&f f &f&f&$f f & f & f & f f &$f&f&f f 1Of&f&f f

PAGE 39

7$%/( $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU 1DPLQRGLPHWK\OS\ULGLQLXP FKORULGH 8Q X A X A 8L &O f f f f f f 1 f f f f f f f 1 $f f f f f f f & f f f f f f f & f f f f f f f &$f f f f f f f & f f f f f f f & f f f f f f f &$f f f f f f f & f f f f f f f 7KH DQLVRWURSLF WHPSHUDWXUH IDFWRU H[SRQHQW WDNHV WKH IRUP UKDr8XN98OFr8NOE9XKOD9XKND9Xf

PAGE 40

7$%/( +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[O2f IRU 1DPLQRGLPHWK\OS\ULGLQLXP FKORULGH $720 ; < = 8 +$f +$f +$f +%f + %f + %f +$f +$f + f +$f +$f +$f + %f +%f + %f + f + f

PAGE 41

7$%/( 'LVWDQFHV $f DQG $QJOHV rf ,QYROYLQJ WKH + $WRPV IRU 1DPLQRGLPHWK\OS\ULGLQLXP &KORULGH %RQG 'LVWDQFHV $f 1ODf+OODf f 1ODf+Df f &f+f f &f+f f &Df+Df f &Df+Ef f &Df+Df f &Df+Ef f &Df+Df f &Df+Ef f &Df+Df f &Df+Ef f &Df+Df f &Df+Ef f &Df+Df f &Df+Ef f &f+f f %RQG $QJOHV rf 1f1ODf+Df f +OODf1ODf+Df f &f&f+f f &f&Df+Df f &f&Df+Df f +Df&Df+Df f &f&Df+Ef f &ff§&Dff§+Ef f +Ef&Df+Ef f &f&f+f f &f&Df+Df f &f&$f+$f f +Df&Df+Df f &f&Df+Ef f &f&Df+Ef f +Ef&Df+Ef f &f&f+f f 1Of1ODf+Df f 1f&f+f f &f&Df+Df f +Df&Df+Df f +Df&Df+Df f &f&Df+Ef f +Ef&Df+Ef f +OEf&Df+Ef f &f&f+f f &f&Df+Df f +Df&Df+Df f +Df&Df+Df f &f&Df+Ef f +Ef&Df+Ef f +Ef&Df+Ef f 1f&f+f f

PAGE 42

)LJXUH $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI >&+Q1@&O 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV

PAGE 43

1!

PAGE 44

6LQFH LQ HDFK RI WKHVH EDVHV WKHUH DUH RQH RU WZR PHWK\O JURXSV DOSKD WR WKH ULQJ QLWURJHQ WKH DWWULEXWLRQ RI WKHVH UHVXOWV WR VSDWLDO LQWHUIHUHQFH RI WKH DOSKD PHWK\O JURXS LV D UHDVRQDEOH K\SRWKHVLV +RZHYHU WKH SUHVHQFH RI PHWK\O JURXSV LQ WKH SRVLWLRQ RI WKH ULQJ VKRXOG LQFUHDVH WKH HOHFWURQ GHQVLW\ RQ WKH ULQJ QLWURJHQ DQG WKXV IDYRU WKH DPLQDWLRQ RI WKH QLWURJHQ E\ FKORUDPLQH 7KH K\SRWKHVLV RI VSDWLDO LQWHUIHUHQFH LV RI FRXUVH VSHFXODWLYH 2Q WKH RWKHU KDQG YDULRXV VXEVWLWXWHG 1DPLQRS\ULGLQLXP FDWLRQV KDYH EHHQ UHSRUWHG DV SURGXFWV RI WKH UHDFWLRQV RI S\ULGLQH DQG LWV DOSKD PHWK\O GHULYDWLYHV ZLWK ODUJH FRXQWHU LRQV VXFK DV LRGLGH RU PHVLWK\OHQHVXOIRQDWH LRQV 7KLV LQGLFDWHV WKDW WKH IXUWKHU UHVHDUFK LQFOXGLQJ DQ H[DPLQDWLRQ RI VROXELOLWLHV RU ODWWLFH VWDELOL]DWLRQ RI SRWHQWLDO SURGXFWV LV QHFHVVDU\ WR REWDLQ D VDWLVIDFWRU\ H[SODQDWLRQ 7KHUH DUH WZR LQWHUHVWLQJ IHDWXUHV RI WKH VWUXFWXUH RI 1DPLQRGLPHWK\OS\ULGLQLXP LRQ WKH 1f1$f GLVWDQFH DQG WKH FKDQJH LQ WKH GLPHQVLRQV RI WKH ULQJ UHODWLYH WR RWKHU S\ULGLQH GHULYDWLYHV 7KH 1f1$f GLVWDQFH RI f ƒ LQ 1DPLQR GLPHWK\OS\ULGLQLXP LV VKRUWHU WKDQ WKH 11 GLVWDQFHV REVHUYHG LQ GLPHWK\OWULD]DQLXP FKORULGH 1ff§1f f $ DQG 1f1f f ƒf )LJXUH Df DQG LQ WULPHWK\O K\GUD]LQLXP FKORULGH 1f1f f $f )LJXUH Ef

PAGE 45

(IIHFW RI DWRP K\EULGL]DWLRQ RQ ERQG OHQJWKV KDV EHHQ GHVFULEHG LQ PDQ\ DUWLFOHV DQG ERRNV +$%HQW GHVFULEHG WKLV HIIHFW LQ GHWDLOAr +H LOOXVWUDWHG WKH HIIFW RI DWRP K\EULGL]DWLRQ RQ ERQG OHQJWKV RI FDUERQFDUERQ ERQGV LQ WKH IROORZLQJ GDWD 7DEOH f )LJXUH 'LPHWK\OWULD]DQLXP Df DQG 7ULPHWK\OK\GUD]LQLXP &KORULGH 7$%/( 7KH (IIHFW RI $WRP +\EULGL]DWLRQ RQ %RQG /HQJWKV RI && %RQG 7\SH RI %RQG %RQG /HQJWKƒf 7\SH RI %RQG %RQG RI /HQJWK ƒf Bf Bf VS VS VS VS VSVS VS VS VSVS VSVS VSVS 7 VSVS 7 VSVS Q VSVS Q

PAGE 46

7KH XVHIXO UXOHV ZKLFK ZHUH LQGLFDWHG LQ WKHVH GDWD DUH WKDW f 7KH FDUERQFDUERQ VLQJOH ERQG GLVWDQFH GHFUHDVHV E\ $ ZKHQ RQH RI WKH SDUWLFLSDWLQJ FDUERQ DWRPV FKDQJHV K\EULGL]DWLRQ W\SH IURP VS WR VS RU IURP VS WR VS f :KHQ D Q ERQG H[LVWV VXSHULPSRVHG RQ WKH D ERQG WKH ILJXUH $ LV D EHWWHU RQH WR XVH %XUNH/DLQJ DQG FRZRUNHUV GLVFXVVHG WKH UHODWLRQVKLS EHWZHHQ WKH ERQG OHQJWKV DQG ERQG RUGHUV LQ WKHLU SDSHUA $FFRUGLQJ WR WKH SDSHU VLQJOH ERQG EHWZHHQ WZR VS 1 DWRPV KDV EHHQ HVWLPDWHG WR EH $ 2Q WKLV EDVLV WKH VS 11 VLQJOH ERQG ZRXOG EH $ ZKLFK LV FORVH WR WKH YDOXH RI $rr D FRQVHTXHQFH RI WKH VS K\EULGL]DWLRQ RI 1 ZKLFK LV H[SHFWHG WR LQFUHDVH WKH 1 UDGLXV VSf E\ DERXW $ 7KXV WKH VKRUWHU 11 GLVWDQFH LQ 1DPLQRGLPHWK\O S\ULGLQLXPf LRQ ZRXOG LQGLFDWH WKDW WKH 1f1$f ERQG KDV VRPH GRXEOH ERQG FKDUDFWHU +RZHYHU DV FDQ EH VHHQ LQ WKH )LJXUH WKH WZR + DWRPV ERQGHG WR 1$f DUH QRW FRSODQDU ZLWK WKH S\ULGLQH ULQJ DV PLJKW EH H[SHFWHG 7KHUHIRUH WKH 11 ERQG PD\ EH FRQVLGHUHG WR EH DQ HVVHQWLDOO\ VLQJOH ERQG ZLWK SRVVLEO\ VRPH VKRUWHQLQJ UHVXOWLQJ IURP IRUPDO FKDUJH 7KH VHFRQG LQWHUHVWLQJ IHDWXUH LV WKDW WKH IRUPDWLRQ RI WKH 1DPLQRGLPHWK\OS\ULGLQLXPf LRQ UHVXOWV LQ VLJQLILFDQW FKDQJHV LQ WKH GLPHQVLRQV RI WKH S\ULGLQH ULQJ 3\ULGLQH LQ WKH JDV SKDVH KDV HTXDO && ERQG OHQJWK RI f $ WKH &1 ERQG OHQJWKV DUH f $ DQG WKH &1& DQJOH LV rn >@

PAGE 47

8QIRUWXQDWHO\ WKH FU\VWDO VWUXFWXUH RI S\ULGLQH KDV QRW EHHQ UHSRUWHG \HW :H VHDUFKHG WKHVH FRPSRXQGV ZKLFK FRQWDLQHG VLPSOH S\ULGLQH ULQJV VXFK DV S\ULGLQH K\GURJHQ IOXRULGHf WR VXUYH\ WKH SDUDPHWHUV RI S\ULGLQH LQ VROLG SKDVH 7KH DYHUDJH SDUDPHWHUV RI WKH FRPSRXQGV $33(1',; $f LQ UHOHDVH LQ &6' DUH DV IROORZV && ƒ &1 ƒ &1& r ,W LQGLFDWHV WKH SDUDPHWHUV RI S\ULGLQH LQ VROLG SKDVH DUH DOPRVW WKH VDPH DV WKRVH LQ JDV SKDVH ,Q WKH 1DPLQR GLPHWK\OS\ULGLQLXPf LRQ WKH &1& DQJOH LV LQFUHDVHG WR fr DQG WKH &1 GLVWDQFHV LQFUHDVH WR f ƒ $Q LQFUHDVH LQ WKH &1& DQJOH LQ WKH S\ULGLQH ULQJ RFFXUV RQ HLWKHU VXEVWLWXWLRQ FRRUGLQDWLRQ WR D PHWDO LRQ RU S\ULGLQLXP LRQ IRUPDWLRQ 7KH )LJXUH VKRZHG WKH LQFUHDVH RI WKH &1& DQJOH LQ S\ULGLQH ULQJV 7KH FKDQJH LQ WKH ERQG DQJOH PD\ EH UDWLRQDOL]HG LQ WHUPV RI DQ DVVXPSWLRQ RI LQFUHDVHG VFKDUDFWHU LQ WKH &1 ERQG DV SUHGLFWHG E\ %HQWnV UXOHVA )RU D IDPLOLDU H[DPSOH IURP WKH ERQG DQJOH LQ 1+ rnf FRPSDUHG WR WKDW LQ + rnf LW LV LQIHUUHG WKDW QLWURJHQ DWRP RI 1+ GHYRWHG VOLJKWO\ PRUH V FKDUDFWHU WR LWV ERQGLQJ RUELWDOV WKDQ WKH R[\JHQ DWRP RI + +RZHYHU WKH FKDQJH LQ WKH ERQG OHQJWKV RI WKH S\ULGLQH ULQJ RQ HLWKHU VXEVWLWXWLRQAfA FRRUGLQDWLRQ WR D PHWDO LRQOr RU S\ULGLQLXP LRQAA IRUPDWLRQ DSSHDUV WR EH PRUH VXEWOH DQG WR GHSHQG RQ WKH QDWXUH RI WKH JURXS ERQGHG WR WKH QLWURJHQ ORQH SDLU 6RPH H[DPSOHV DUH LOOXVWUDWHG EHORZ

PAGE 48

)LJXUH $Q ,QFUHDVH RI &1& $QJOH LQ WKH 3\ULGHQH ULQJV RI 26XEVWLWXWLRQ

PAGE 49

122) 7+( (175,(67RWDOf &1& $1*/(6

PAGE 50

([DPSOH 7KH 6WUXFWXUH RI 'LS\ULGLQXP R[DODWHR[DOLF DFLGAn )LJXUH f 7KH VWUXFWXUH FRQVLVWV RI WZR S\ULGLQLXP LRQV K\GURJHQ ERQGHG WR RQH R[DODWH LRQ ZKLFK OLHV RQ D FHQWHU RI V\PPHWU\ $Q DGGLWLRQDO FHQWURV\PPHWULF R[DODWH DFLG PROHFXOH IRUPV K\GURJHQ ERQGV ZLWK WKH R[DODWH PRLHW\ WR JLYH OLQHDU FKDLQV DORQJ WKH &D[LV 7KH ERQG GLVWDQFHV ƒf ZLWKLQ WKH S\ULGL 2 ? R f )LJXUH 'LS\ULGLQLXP 2[DODWH2[DOLF DFLG RQH S\ULGLQLXP LV RPLWWHGf QLXP FDWLRQ DQG WKH DQJOH &1&f DUH DV IROORZV 1&f f &f&f f &f&f f &f1&f fr 1&f &f&f &f&f f f f

PAGE 51

%RQG GLVWDQFHV ZLWKLQ WKH S\ULGLQLXP FDWLRQ DUH VKRUW E\ FRPSDULVRQ WR H[SHFWHG DURPDWLF && ƒf DQG &1 ƒf GLVWDQFHV 6XFK VKRUWHQLQJ LV JHQHUDOO\ REVHUYHG LQ FU\VWDO VWUXFWXUHV FRQWDLQLQJ S\ULGLQLXP LRQV +RZHYHU PRVW VXIIHU IURP GLVRUGHU RU KLJK WKHUPDO PRWLRQ DQG H[KLELW VKRUWHQHG ERQG GLVWDQFHV 7DNLQJ DFFRXQW RI WKDW HUURU \LHOGV DYHUDJH && $f DQG &1 $f GLVWDQFHV WKDW DUH FORVH WR WKH YDOXHV IRU WKLV FRPSRXQG ([DPSOH PHWK\OHQHELVnGLPHWK\ODPLQR S\ULGLQLXPf LRQ >&+1@ A )LJXUH f )LJXUH nPHWK\OHQHELVnGLPHWK\O DPLQRS\ULGLQLXPf LRQ 7KH ERQG GLVWDQFHV $f ZLWKLQ WKH S\ULGLQLXP FDWLRQ DQG WKH DQJOH &1&f DUH DV IROORZV &f1 &f1 &f&f &f&f &f&f &f&f &f1&f r

PAGE 52

7KH GLVWDQFHV RI &f1 &f1 DQG &f&f &f&f DUH ORQJHU DQG RQHV RI &f&f &f&f DUH VKRUWHU LQ FRPSDn ULVRQ ZLWK WKH GLVWDQFHV RI &1 ƒf DQG && ƒf LQ JDVHRXV S\ULGLQH 7KH UHVRQDQFH VWUXFWXUHV $ t %f )LJXUH f ZHUH SURSRVHG WR H[SODLQ WKH GLIIHUHQFHV EHWZHHQ S\ULGLQH DQG WKH LRQ 7KH SRVLWLYH FKDUJH SUHVHQWHG RQ WKH 1 DWRPV LV QRW ORFDOL]HG DV LPSOLHG E\ WKH VWUXFWXUH $f ,QVWHDG WKH SRVLWLYH FKDUJH LV FRPSOHWHO\ GHORFDOL]HG WKURXJKRXW WKH PROHFXOH ,Q WKH RWKHU ZRUGV WKH H[RF\FOLF QLWURJHQV VKDUH WKH SRVLWLYH FKDUJHV WKURXJK WKH V\QHUJLVWLF LQWHUDFWLRQ DV )LJXUH 7KH 5HVRQDQFH 6WUXFWXUH RI >&+1@

PAGE 53

VKRZQ E\ WKH VWUXFWXUH %f 7KH VWUXFWXUH WKHUHIRUH GRHV PDNH D VLJQLILFDQW FRQWULEXWLRQ WR WKH RYHUDOO VWUXFWXUH 7KLV LV FRQVLVWHG ZLWK WKH HQKDQFHG UHVRQDQFH HIIHFWV DVVRFLDWHG ZLWK UHOHFWURQ GRQRUV DQG WKHLU VWDELOL]LQJ LQWHUDFWLRQV 7KH JHRPHWU\ RSWLPL]HG ,1'2 FDOFXODWLRQV KDYH VKRZQ WKDW WKH JXLQRLG UHVRQDQFH K\EULGV %f GR PDNH D GHILQLWH FRQWULEXWLRQ WR WKH RYHUDOO VWUXFWXUH RI WKH VSHFLHV 7KLV UHVRQDQFH VWUXFWXUH %f UHDGLO\ DFFRXQW IRU WKH FKDQJHV RI WKHVH GLVWDQFHV $OWKRXJK WKHUH DUH WKH YHU\ VLPLODU FKDQJHV LQ 1 DPLQRGLPHWK\OS\ULGLQLXPf FKORULGH 7KH UHODWHG GLVWDQFHV ƒf DUH &f1f &f1f ORQJHUf &f&f &f&f VKRUWHUf &f&f &f&f ORQJHUf 7KH H[SODQDWLRQ RI WKH UHVRQDQFH VWUXFWXUHV LV QRW UHDVRQDEOH %HFDXVH LI LW ZHUH WUXH WKH UHVRQDQFH VWUXFWXUHV ZRXOG EH & DQG )LJXUH f 7KH VWUXFWXUH 'f LV XQIDYRUDEOH 8QIRUWXQDWHO\ WKHUH DUH QR RWKHU FRPSRXQGV ZKLFK DUH VWULFWO\ DQDORJRXV IRU D FRPSDULVRQ +RZHYHU WKHVH FKDQJHV LQ WKH FRPSRXQG PD\ DFFRXQW IRU WKH REVHUYHG UHDFWLYLW\ RI S\ULGLQLXP LRQV DQG UHODWHG VSHFLHV

PAGE 54

)LJXUH ,PSRVVLEOH 5HVRQDQFH 6WUXFWXUHV IRU >&+Q1@ ,Q WKH IXWXUH RXU JURXS ZLOO WU\ WR REWDLQ DQDORJRXV FRPSRXQGV IRU D FRPSDULVRQ ZLWK WKH 1DPLQR GLPHWK\O S\ULGLQLXPf LRQ :H ZLOO DOVR XWLOL]H WKH &DPEULGJH 6WUXFWXUDO 'DWDEDVH WR DQDO\]H WKH VWUXFWXUDO GDWD IRU S\ULGLQH ULQJV WR XQGHUVWDQG WKH FKDQJHV LQ WKHVH FRPSRXQGV

PAGE 55

&+$37(5 7+5(( 0(7$/ &203/(;(6 :,7+ 1213/$1$5 08/7,'(17$7( /,*$1'6 2XDGULGHQWDWH /LJDQG 7KH QRQSODQDU PXOWLGHQWDWH OLJDQGV DUH FKRVHQ WR V\QWKHn VL]H PHWDO FRPSOH[HV ZLWK KHOLFDOf FRRUGLQDWLRQ +HOLFDO FRRUGLQDWLRQ FRPSRXQGV ZLOO EH GLVFXVVHG LQ PRUH GHWDLO LQ WKH QH[W FKDSWHU 7KH VLPSOHVW QRQSODQDU PXOWLGHQWDWH OLJDQG LV WKH TXDGULGHQWDWH JURXS 7KH IROORZLQJ SDWWHUQV DUH SRVVLEOH IRU WKH DUUDQJHPHQW RI GRQRU DWRPV LQ TXDGULGHQWDWH OLJDQGVAr )LJXUH f 0RVW RI WKH NQRZQ TXDGULGHQWDWH FKHODWLQJ OLJDQGV KDYH WKH OLQHDU DUUDQJHPHQW RI GRQRU DWRPV GHSLFWHG E\ SDWWHUQ >@ 7KHVH OLQHDU OLJDQGV FDQ EH IXUWKHU VXEGLYLGHG LQWR WKUHH VWHUHRFKHPLFDO W\SHV Df 3ODQDU OLJDQGV DUH WKRVH ZKLFK DUH FRQVWUDLQHG WR FRRUGLQDWH ZLWK D PHWDO LRQ LQ VXFK D ZD\ WKDW GRQRU DWRPV OLH LQ D SODQH Ef 1RQSODQDU OLJDQGV DUH FRQVWUXFWHG VR WKDW WKH GRQRU DWRPV FDQQRW OLH LQ D SODQH EXW PD\ EH DUUDQJHG WHWUDKHGUDOO\ DERXW D PHWDO LRQ Ff )DFXOWDWLYH OLJDQGV DUH IOH[LEOH VR WKDW WKH GRQRU DWRPV FDQ EH FRRUGLQDWH IURP HLWKHU D SODQDU RU QRQSODQDU DUUDQJHPHQW 7KH PHWDO DWRPV ZLWK FRRUGLQDWLRQ QXPEHU IRXU PD\ UHTXLUH D WHWUDKHGUDO RU D VTXDUH SODQDU DUUDQJHPHQW RI WKHLU FRRUGL

PAGE 56

2 2 2 )LJXUH 3RVVLEOH 3DWWHUQV IRU 4XDGULGHQWDWH &KHODWLQJ $JHQWV QDWLRQ FRYDOHQFHV &RQVHTXHQWO\ WKH TXDGULGHQWDWH OLJDQG PXVW EH VSDWLDOO\ FDSDEOH RI SUHVHQWLQJ LWV IRXU GRQRU DWRPV WR WKH PHWDO DWRP IURP WKH DSLFHV RI HLWKHU D FLUFXPVFULELQJ WHWUDKHGURQ RU D VTXDUH 6L[ FRYDOHQW PHWDO DWRPV ZKLFK KDYH DQ RFWDKHGUDO GLVSRVLWLRQ RI FRYDOHQFHV FDQ DOVR FRPELQH ZLWK TXDGUL GHQWDWHV 7R D VL[ FRRUGLQDWH PHWDO DWRP D TXDGULGHQWDWH UHVLGXH PXVW EH FDSDEOH RI SUHVHQWLQJ LWV IRXU GRQRU DWRPV VSDWLDOO\ LQ RQH RI WZR ZD\V (LWKHU DOO IRXU GRQRUV OLH LQ D SODQH OHDYLQJ WZR YDFDQW DSLFHV LQ WKH WUDQV SRVLWLRQV RU DOWHUQDWLYHO\ WKH WZR DSLFHV RI WKH FRRUGLQDWLRQ RFWDKHGURQ QRW RFFXSLHG E\ WKH TXDGULGHQWDWH DUH LQ FLV SRVLWLRQV WR HDFK RWKHU

PAGE 57

/LJDQGV RI SDWWHUQ >@ FDQ EH GHVLJQHG LQ VXFK D ZD\ WKDW WKH\ FDQ QRW EH SODQDU EXW IL[ VWUDLQOHVVO\ LQWR D WHWUDKHGUDO DUUDQJHPHQW 7KH SKHQRPHQRQ RI UHVWULFWHG URWDWLRQ LQ WKH KLQGHUHG ELSKHQ\O FRPSRXQGV KDV EHHQ XVHG WR V\QWKHVL]H QRQSODQDU TXDGULGHQWDWH FKHODWLQJ DJHQWV /LRQV DQG FRZRUNHUVrr GHVLJQHG WKH TXDGULGHQWDWH FKHODWH OLJDQGV ZLWK D PROHFXOH FDSDEOH RI SUHVHQWLQJ IRXU GRQRU DWRPV WR D PHWDO DWRP IURP WKH DSLFHV RI D FLUFXPVFULELQJ WHWUDKHGURQ )LJXUH f nELVSKHQROPHWK\OHQHDPLQRf nGLPHWK\OELSKHQ\O nELVTXLQRO\OPHWK\OHQH DPLQRfELSKHQ\O )LJXUH 7KH ([DPSOHV RI 1RQSODQDU 4XDGULGHQWDWH &KHODWLQJ $JHQWV 7KH GHVFULSWLRQ RI VWHUHRFKHPLFDO FRQILJXUDWLRQ KDV EHHQ XVHG WR GHVLJQ WKH VSHFLILF TXDGULGHQWDWH OLJDQG DQG WR V\QWKHVLV VRPH PHWDO FRPSOH[HV

PAGE 58

/LJDQG 6WHUHRFKHPLFDO )HDWXUH ,Q DGGLWLRQ WR WKH IDFWRUV DIIHFWLQJ WKH VWDELOLW\ RI PHWDO FRPSOH[HV YDULRXV FRQVLGHUDWLRQV RI JHRPHWU\ PXVW EH ERUQH LQ PLQG ZKHQ GHVLJQLQJ D PXOWLGHQWDWH OLJDQG 9DULRXV VWHUHRFKHPLFDO IHDWXUHV LQIOXHQFH WKH VKDSH DQG IOH[LELOLW\ RI RUJDQLF FRPSRXQGV LQ JHQHUDO &RQIRUPDWLRQDO SUHIHUHQFHV FDQ DOVR DIIHFW WKH SDUWLFXODU VKDSH RI D PROHFXOH :KHQ WKHVH VWHUHRFKHPLFDO IHDWXUHV RFFXU LQ OLJDQGV WKH\ PD\ LQIOXHQFH WKH JHRPHWULFDO DUUDQJHPHQW RI GRQRU DWRPV LQ D GHULYHG PHWDO FRPSOH[ RU WKH SUHFLVH FRQILJXUDWLRQ RI VXFK D FRPSOH[ $FFRUGLQJ WR WKHVH QRUPDO VWHUHRFKHPLFDO HIIHFWV RI RUJDQLF PROHFXOHV LW VHHPV WR PH WKDW D TXDGULGHQWDWH OLJDQG RI D 6FKLII EDVH ZKLFK FRQWDLQV ELSKHQ\O ULQJ LV D XVHIXO OLQHDU PXOWLGHQWDWH OLJDQG WR V\QWKHVL]H PHWDO FRPSOH[HV DQG WR VWXG\ KHOLFDO FRRUGLQDWLRQ FRPSRXQGV 7KH SDUWLFXODU DGYDQWDJH RI WKH EDVLF VDOLF\ODOGLPLQH OLJDQG V\VWHP KDV EHHQ WKH FRQVLGHUDEOH IOH[LELOLW\ RI WKH V\QWKHWLF SURFHGXUH ZKLFK KDV DOORZHG WKH SUHSDUDWLRQ RI D ZLGH YDULHW\ RI FRPSOH[HV ZLWK D JLYHQ PHWDO ZKRVH SURSHUWLHV DUH RIWHQ VWURQJO\ GHSHQGHQW RQ WKH GHWDLOHG OLJDQG VWUXFWXUH 7KH nGLDPLQRELSKHQ\O ZDV VHOHFWHG DV WKH SULPDU\ DPLQH DQG UHDFWHG ZLWK VDOLF\ODOGHK\GH WR IRUP VDOLF\ODOGLPLQH

PAGE 59

OLJDQG 7KH UHDVRQ LV WKDW ELSKHQ\O LV RQH RI WKH VLPSOHVW PROHFXOHV ZKLFK PD\ \LHOG D KHOLFDO FRQIRUPDWLRQ 7KH VWUXFWXUDO LQIRUPDWLRQ LQGLFDWLQJ WKH KHOLFDO FRQIRUPDWLRQ LV DYDLODEOH IRU PDQ\ PROHFXOHVA 6RPH H[DPSOHV DUH LOOXVWUDWHG LQ )LJXUH VXFK DV ELSKHQ\O WULVFKHODWHV DQG WZR RU WKUHH DU\OJURXSV DUH DWWDFKHG WR D FHQWUDO DWRP )LJXUH 6RPH 0ROHFXOHV ZLWK D +HOLFDO &RQIRUPDWLRQ

PAGE 60

7KH nELVVDOLF\OLGHQHDPLQRfELSKHQ\O OLJDQG V\VWHP SRWHQWLDOO\ KDV WKUHH LPSRUWDQW VWUXFWXUDO FRQVHTXHQFHVA Lf GLVSRVLQJ LWVHOI LQ D QHDUO\ VWUDLQOHVV PDQQHU WR IRUP DQ 1 WHWUDKHGURQ LLf IRUPLQJ FRPSOH[HV UHVLVWHQW WR UDFHPL]DWLRQ RI WKH DEVROXWH FRQILJXUDWLRQ $ $f DW WKH PHWDO GXH WR WKH KLJK DFWLYDWLRQ HQHUJ\ .FDOPROH f IRU SDUHQW GLDPLQH LLLf SURGXFLQJ WHWUDKHGUDO FRPSOH[HV RI NQRZQ DEVROXWH FRQILJXUDWLRQ EHFDXVH WKH FKLUDOLW\ RI WKH FRPSOH[ LV QHVFHVVDULO\ WKDW RI WKH GLDPLQH ,Q WKH SUHVHQW FKDSWHU GHWDLOHG GLVFXVVLRQ LV FRQILQHG WR nELV VDOLF\OLGHQHDPLQRf ELSKHQ\O OLJDQG DQG LWV FRPSOH[HV 6\QWKHVLV RI WKH /LJDQG 6\QWKHVLV RI GLDPLQRELSKHQYO )LQHO\ SRZGHUHG nGLQLWURELSKHQ\O Jf ZDV KHDWHG RQ D ZDWHUEDWK ZLWK WLQ O22Jf DQG FRQFHQWUDWHG K\GURFKORULF DFLG P/f XQWLO D FOHDU VROXWLRQ ZDV REWDLQHG 7KH VROXWLRQ ZDV WUHDWHG ZLWK H[FHVV RI FDXVWLF VRGD DQG H[WUDFWHG ZLWK HWKHU 7KH GLDPLQRELSKHQ\O ZDV UHFRYHUHG DQG VHSDUDWHG IURP OLJURLQ ES r&f DV OLJKW \HOORZ FU\VWDOV 7KH SURGXFWV ZHUH UHFU\VWDOOL]HG IURP F\FORKH[DQH IRUPLQJ FRORUOHVV FU\VWDOV 7KH ZHLJKW RI WKLV SURGXFW FRUUHVSRQGHG WR D \LHOG RI b RI WKHRUHWLFDO 7KH PHOWLQJ SRLQW RI WKH SURGXFWV LV r& 7KH HOHPHQWDU\ DQDO\VLV VKRZHG

PAGE 61

& b + b 1 b )RXQG &DOFXODWHG 6\QWKHVLV RI ELVVDOLF\OLGHQHDPLQRfELSKHQ\O IVDOfES 7KH nGLDPLQRELSKHQ\O J [ a PROf ZDV PL[HG ZLWK P/ HWKDQRO DW r& VWLUUHG IRU DERXW PLQXWHV XQWLO GLDPLQRELSKHQ\O ZDV GLVVROYHG FRPSOHWHO\ 6DOLF\O DOGHK\GH J [ n PROf ZDV DGGHG WR WKH HWKDQRO VROXWLRQ VWLUUHG IRU KRXUV DW r& 7KH EULJKW \HOORZ SUHFLSLWDWH WKDW IRUPHG ZDV ILOWHUHG RII DQG VKRZQ WR EH n ELV VDOLF\OLGHQHDPLQRf ELSKHQ\O VDOfES )LJXUH f 2+ 2+ )LJXUH nELV6DOLF\OLGHQHDPLQRfELSKHQ\O VDOf ES

PAGE 62

7KH ZHLJKW RI WKLV SURGXFW FRUUHVSRQGHG WR D \LHOG RI b RI WKHRUHWLFDO 7KH PHOWLQJ SRLQW RI WKH SURGXFWV ZDV r& 7KH HOHPHQWDU\ DQDO\VLV VKRZHG & b + b 1 b )RXQG &DOFXODWHG 7KH ILOWUDWH ZDV HYDSRUDWHG VORZO\ DW URRP WHPSHUDWXUH :HOO VKDSHG \HOORZ FU\VWDOV IRUPHG LQ WKH ILOWUDWH 2QH RI WKHVH ZDV XVHG IRU ;UD\ VWXGLHV &U\VWDO 6WUXFWXUH 7R HVWDEOLVK XQHTXLYRFDOO\ WKH JHRPHWU\ RI WKH DERYH FRQGHQVDWLRQ SURGXFW WKH VWUXFWXUH ZDV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ $ ZHOO VKDSHG FU\VWDO RI [ [ PP VL]H ZDV XVHG IRU LQWHQVLW\ PHDVXUHPHQWV RQ 1LFROHW 3, EDU GLIIUDFWRPHWHU ZLWK 1L ILOWHUHG&X.D UDGLDWLRQ 5HIOHFWLRQV ZHUH FROOHFWHG LQ WKH UDQJH r XVLQJ WKH VFDQ PRGH DQG D YDULDEOH VFDQ VSHHG r PLQnf 7ZR FKHFN UHIOHFWLRQV PHDVXUHG DIWHU HYHU\ UHIOHFWLRQV VKRZHG DQ LQWHQVLW\ YDULDWLRQ RI sb 2I UHIOHFWLRQV PHDVXUHG ZLWK ,!D,f ZHUH XVHG LQ FDOFXODWLRQV 3HUWLQHQW GDWD DUH OLVWHG LQ 7DEOH 7KH VWUXFWXUH ZDV VROYHG E\ WKH GLUHFW PHWKRG 62/9f 7KH SRVLWLRQ RI DOO +DWRPV ZDV VKRZQ LQ WKH GLIIHUHQFH PDSV

PAGE 63

1RQK\GURJHQ DWRPV ZHUH UHILQHG ZLWK DQLVRWURSLF WKHUPDO IDFWRUV 7KH SDUDPHWHUV RI WKH +DWRPV ZHUH LQFOXGHG LQ WKH VWUXFWXUH IDFWRU FDOFXODWLRQV EXW WKH\ ZHUH QRW UHILQHG 7KH LVRWURSLF WHPSHUDWXUH IDFWRU RI $ ZDV DVVLJQHG WR DOO DWRPV 7KH ILQDO UHILQHPHQW RI DOO SDUDPHWHUV FRQYHUJHG DW 5 DQG A ZKHUH Z Xn 7KH UHVLGXDO SHDNV LQ WKH ILQDO GLIIHUHQFH PDS ZHUH LQ WKH UDQJ IURP WR H$n $OO FDOFXODWLRQV ZHUH FDUULHG RXW XVLQJ WKH '(6. 723 6+(/;7/ 1LFROHW f &U\VWDO GDWD DUH VXPPDUL]HG LQ 7DEOH WKURXJK 7KH VWUXFWXUH LV LOOXVWUDWHG LQ )LJXUH 0HWDO &RPSOH[HV 7KH IROORZLQJ PHWDO LRQV )H &R 1L &X =Q +J &H %L DQG 3E f ZHUH UHDFWHG ZLWK WKH OLJDQG VDOfES 2QO\ &X DQG )H IRUPHG FU\VWDOV ZKLFK ZHUH VXLWDEOH IRU ;UD\ VWXGLHV &RSSHU,,f &RPSOH[ 6\QWKHVLV RI FRSSHUFRPSOH[ 7KH nELVVDOLF\OLGHQHDPLQRfELSKHQ\O J [ PROf LQ P/ PHWKDQRO DW DERXW r& ZDV VWLUUHG XQWLO WKH OLJDQG ZDV GLVVROYHG FRPSOHWHO\ 6RGLXP PHWKR[LGH J [ f PROf LQ P/ PHWKDQRO ZDV DGGHG WR WKH PHWKDQRO VROXWLRQ DQG VWLUUHG IRU DERXW KRXU &RSSHU QLWUDWHJ [ PROf ZDV DGGHG WR WKH PHWKDQRO VROXWLRQ IRUPLQJ D GHHS JUHHQ VROXWLRQ 7KH JUHHQ VROXWLRQ ZDV UHIOX[HG IRU DERXW KRXUV FRROHG DQG ILOWHUHG 6ORZ HYDSRUDWLRQ RI WKH

PAGE 64

7$%/( &U\VWDO 'DWD IRU >&+12f )RUPXOD > &+12 @ 0ROHFXODU :HLJKW &U\VWDO 6\VWHP 7ULFOLQLF 6SDFH *URXS 3 EDU D $ f E $ f F $ f D GHJ f 3 GHJ f GHJ f 9ROXPH $ = GFDOHGf JFP &U\VWDO 6L]H PP ; ; 5DGLDWLRQ 8VHG &X.D + FPn 5DQJH GHJ 1XPEHU RI FROOHFWHG GDWD 'DWD ZLWK ,!DO *RRGQHVV RI )LW 5 b 5Z b

PAGE 65

7$%/( )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O $720 ; < = 8r &Of f f f f & f f f f f & f f f f f & f f f f f & f f f f f & f f f f f &Onf f f f f & nf f f f f & ff f f f f & nf f f f f & f f f f f & r f f f f f & f f f f f & f f f f f & f f f f f &f f f f f &OOf f f f f & f f f f f & f f f f f & n f f f f f & f f f f f & nf f f f f &n f f f f f &OOnf f f f f & n f f f f f & n f f f f f 1 f f f f f 1 rf f f f f f f f f f 2Onf f f f f r (TXLYDOHQW LVRWURSLF 8 GHILQHG DV RQH WKLUG RI WKH WUDFH RI WKH RUWKRJRQDO LVHG 8cM WHQVRU

PAGE 66

7$%/( %RQG 'LVWDQFHV ƒf IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O %RQG 'LVWDQFHV ƒf &f&f f &nf&ff f &f&f f & nf&nf f & f f§& f f &nf&nf f &f&f f &nf&nf f &f&f f &nf&nf f &f&f f &nf&nf f &f1f f &nf1 rf f &f1f f &nf1nf f &f&f f & nf f§& n f f &f&f f &nf& nf f &f&f f &f& n f f &f&OOf f &nf&OOnf f &OOf&f f &nf& nf f &f&f f &nf& n f f &f&f f &nf&nf f &ff f &nfnf f &Of&Onf f

PAGE 67

7$%/( %RQG $QJOHV rf DQG +\GURJHQ %RQGV IRU rELVVDOLF\OLGHQHDPLQRfELSKHQ\O %RQG $QJOHV rf &f&f&f f &f&f&nf f &f & f f f &f&f&f f &Of &f1Of f &f &f 1f f &f&f&f f &f &f f§&f f &f&f&f f &f&f&f f &f &nf&nf f & f & n f & f f &nf&nf&nf f &nf&nf&nf f &nf&nf1nf f &nf&nf1nf f &f&f&nf f &nf& nf&nf f & nf&nf&nf f &nf& nf&nf f &f&f1f f &f&f&f f &f&f&f f &f&f&f f &f &f&f f &f&ff f &f&ff f &f&f&OOf f &f &OOf&f f &OOf&f&f f &f&f&f f &f&nf1nf f &nf&nf&nf f &f&nf&nf f &nf&nf&rf f &nf&f&nf f &nf&nfnf f &nf&nfnf f &Jn-&O2n-&OOnf f &n f &OOnf&nff &nf&f&nf f &nf&nf& n f f &f1f&f f &nf1nf&nf f +\GURJHQ %RQGV f+f 1 f f+f $ f1f $ f+f1f 1f DW ; < = r n f+n f 1n f nf+nf $ nf1nf $ nf+nf1f r 1Onf DW ; < =

PAGE 68

7$%/( $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O 8Q 8 8 8 8 X &Of f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f &Onf f f f f f f & nf f f f f f f & n f f f f f f f & nf f f f f f f & f f f f f f f & nf f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f &f f f f f f f &OOf f f f f f f & f f f f f f f & f f f f f f f & nf f f f f f f & nf f f f f f f & n f f f f f f f &n f f f f f f f &OOnf f f f f f f & n f f f f f f f & n f f f f f f f 1 f f f f f f f 1 r f f f f f f f f f f f f f f n f f f f f f 7KH DQLVRWURSLF WHPSHUDWXUH IDFWRU H[SRQHQW WDNHV WKH IRUP UK98N98O98JNOE9XKOD9XKND9Xf

PAGE 69

7$%/( +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[O2f IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O $720 ; < = 8 + f +f + f + f + f + f + f + f + f + f + nf + n f + f + n f +Onf + n f +,2nf ++nf + n f + n f

PAGE 70

)LJXUH $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI >&+12@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV

PAGE 72

JUHHQ ILOWUDWH SURGXFHG D GHHS JUHHQ SUHFLSLWDWH 7KH VROLG ZDV ZDVKHG ZLWK ZDWHU DQG ILOWHUHG JLYLQJ D GHHS JUHHQ SRZGHU 7KH ZHLJKW RI WKLV SURGXFW FRUUHVSRQGHG WR D \LHOG RI b RI WKHRUHWLFDO 7KH HOHPHQWDU\ DQDO\VLV VKRZHG & b + b 1 b )RXQG &DOFXODWHG 7KH SURGXFWV ZHUH UHFU\VWDOOL]HG IURP PHWKDQRO SURGXFLQJ GHHS JUHHQ FU\VWDOV VXLWDEOH IRU ;UD\ GLIIUDFWLRQ VWXGLHV &U\VWDO VWUXFWXUH RI FRSSHUFRPSOH[ 7R HVWDEOLVK XQHJXLYRFDOO\ WKH JHRPHWU\ RI WKH DERYH FRQGHQVDWLRQ SURGXFW WKH FU\VWDO VWUXFWXUH ZDV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ $ ZHOO VKDSHG FU\VWDO RI [ [ PP VL]H ZDV XVHG IRU LQWHQVLW\ PHDVXUHPHQWV RQ 1LFROHW 3, EDU GLIIUDFWRPHWHU ZLWK 1L ILOWHUHG&X.D UDGLDWLRQ 5HIOHFWLRQV ZHUH FROOHFWHG LQ WKH UDQJH r XVLQJ WKH VFDQ PRGH DQG D YDULDEOH VFDQ VSHHG r PLQnf 7ZR FKHFN UHIOHFWLRQV PHDVXUHG DIWHU HYHU\ UHIOHFn WLRQV VKRZHG DQ LQWHQVLW\ YDULDWLRQ RI sb 2I UHIOHFn WLRQV PHDVXUHG ZLWK ,!D,f ZHUH XVHG LQ FDOFXODWLRQV 3HUWLQHQW GDWD DUH OLVWHG LQ 7DEOH 7KH VWUXFWXUH ZDV VROYHG E\ WKH KHDY\ DWRP PHWKRG 7KH SRVLWLRQ RI DOO +DWRPV ZDV ORFDWHG LQ WKH GLIIHUHQFH PDSV 1RQK\GURJHQ DWRPV ZHUH UHILQHG ZLWK DQLVRWURSLF WKHUPDO IDFWRUV 7KH SDUDPHWHUV RI WKH +DWRPV ZHUH LQFOXGHG LQ WKH

PAGE 73

VWUXFWXUH IDFWRU FDOFXODWLRQV EXW WKH\ ZHUH QRW UHILQHG 7KH LVRWURSLF WHPSHUDWXUH IDFWRU RI $ ZDV DVVLJQHG WR DOO + DWRPV 7KH ILQDO UHILQHPHQW RI DOO SDUDPHWHUV FRQYHUJHG DW 5 DQG A ZKHUH Z Dn 7KH UHVLGXDO SHDNV LQ WKH ILQDO GLIIHUHQFH PDS ZHUH LQ WKH UDQJH IURP WR H$n $OO FDOFXODWLRQV ZHUH FDUULHG RXW XVLQJ WKH '(6. 723 6+(/;7/ 1LFROHW f &U\VWDO GDWD DUH VXPPDUL]HG LQ 7DEOH WKURXJK 7KH VWUXFWXUH LV LOOXVWUDWHG LQ )LJXUH ,URQ ILOOf &RPSOH[ 6\QWKHVLV RI LURQFRPSOH[ 7KH nELVVDOLF\OLGHQHDPLQRfELSKHQ\O J [ n PROf LQ P/ PHWKDQRO DW DERXW r& ZDV VWLUUHG XQWLO WKH OLJDQG ZDV GLVVROYHG FRPSOHWHO\ 6RGLXP PHWKR[LGH J [ n PROf LQ P/ PHWKDQRO ZDV DGGHG WR WKH PHWKDQRO VROXWLRQ DQG VWLUUHG IRU DERXW KRXU ,URQ,,,f QLWUDWH J [ n PROf ZDV DGGHG WR WKH PHWKDQRO VROXWLRQ IRUPLQJ D GHHS EURZQ VROXWLRQ 7KH EURZQ VROXWLRQ ZDV UHIOX[HG IRU DERXW KRXUV FRROHG DQG ILOWHUHG 6ORZ HYDSRUDWLRQ RI WKH EURZQ ILOWUDWH SURGXFHG GHHS EURZQ SUHFLSLWDWH 7KH VROLG ZDV ZDVKHG ZLWK ZDWHU DQG ILOWHUHG JLYLQJ D GHHS EURZQ SRZGHU 7KH ZHLJKW RI WKLV SURGXFW FRUUHVSRQGHG WR D \LHOG RI b RI WKHRUHWLFDO 7KH HOHPHQWDU\ DQDO\VLV VKRZHG & b + b 1 b )RXQG &DOFXODWHG

PAGE 74

7$%/( &U\VWDO 'DWD IRU >&+1&X@ )RUPXOD >&+1&X@ 0ROHFXODU :HLJKW &U\VWDO 6\VWHP 2UWKRUKRPELF 6SDFH *URXS 3 QQD D $ f E $ f F $ f D GHJ r GHJ r GHJ r 9ROXPH $ f = GFDOHGf JFP &U\VWDO 6L]H PP ; ; 5DGLDWLRQ 8VHG &X.D + FPn 5DQJH GHJ 1XPEHU RI FROOHFWHG GDWD 'DWD ZLWK ,!XO *RRGQHVV RI )LW 5 b b r 5HTXLUHG E\ V\PPHWU\ RI VSDFH JURXS

PAGE 75

7$%/( )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU WKH &X>VDOfES@ &RPSOH[ $720 ; < = 8r &X f f &Of f f f f & f f f f f & f f f f f & f f f f f & f f f f f & f f f f f 1 f f f f f & f f f f f & f f f f f &f f f f f f f f f &f f f f f &OOf f f f f & f f f f f & f f f f f r (TXLYDOHQW LVRWURSLF 8 GHILQHG DV RQH WKLUG RI WKH WUDFH RI WKH RUWKRJRQDO LVHG 8cM WHQVRU

PAGE 76

7$%/( %RQG 'LVWDQFHV ƒf IRU WKH &X>VDOfES@ &RPSOH[ %RQG 'LVWDQFHV ƒf &X1Of f &X2Of f &f1f f & f f f &ff&f f &f&f f &f&f f &f&f f &f&f f &f&f f &f&f f &f&f f &f&f f &ff f &f&f f &f&OOf f &f&f f &f&f f &Gf&Onf f

PAGE 77

7$%/( %RQG $QJOHV rf IRU WKH &X>VDOfES@ &RPSOH[ %RQG $QJOHV rf 1f&X2Of f 1f&X1$f f f&X1,$f f 1f&82,$f f f&X$f f 1$f&82,$f f &f&f&f f &f&f&$f f &f&Of&$f f &fa&f&f f &Of&f1Of f &f&f1f f &f&f&f f &f&f&f f &f&f&f f & f f& f & f f &X1f&f f &X1 f & f f & f 1 f & f f 1f&f&f f &f&f&f f &f&f&f f &f&f&f f &f&ff f &f&f&f f f &f&f f &Xf&f f &f &f&f f &f&OOf&f f &f&f&f f &f&f&f f

PAGE 78

7$%/( $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU WKH &X>VDOfES@ &RPSOH[ 8Q A 8 X X 8 &X f f f f &Of f f f f f f & f f f f f f f & f f f f f f f &f f f f f f f & f f f f f f f & f f f f f f f 1 f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f f f f f f f f &f f f f f f f &OOf f f f f f f f f f f f f f f f f f f f f 7KH DQLVRWURSLF WHPSHUDWXUH IDFWRU H[SRQHQW WDNHV WKH IRUP UKDr8QN98O98NOE9XKOD9XKND9Xf

PAGE 79

7$%/( +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[O2f IRU WKH &X>VDOfES@ &RPSOH[ $720 ; < = 8 + f + f + f + f +f + f + f + f + f

PAGE 80

)LJXUH $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI >&+1&X@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV

PAGE 81

&6 26

PAGE 82

7KH SURGXFWV ZHUH UHFU\VWDOOL]HG IURP EHQ]HQH SURGXFLQJ GHHS EURZQ FU\VWDOV VXLWDEOH IRU ;UD\ GLIIUDFWLRQ VWXGLHV &U\VWDO VWUXFWXUH RI LURQFRPSOH[ 7R HVWDEOLVK XQHTXLYRFDOO\ WKH JHRPHWU\ RI WKH DERYH FRQGHQVDWLRQ SURGXFW WKH VWUXFWXUH ZDV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ $ ZHOO VKDSHG FU\VWDO RI [ [ PP VL]H ZDV XVHG IRU LQWHQVLW\ PHDVXUHPHQWV RQ D 6LHPHQV 5P( GLIIUDFWRPHWHU ZLWK JUDSKLWH PRQRFKURPDW 0R.D UDGLDWLRQ 5HIOHFWLRQV ZHUH FROOHFWHG LQ WKH G UDQJH r XVLQJ WKH VFDQ PRGH DQG D YDULDEOH VFDQ VSHHG r PLQnf 7ZR FKHFN UHIOHFWLRQV PHDVXUHG DIWHU HYHU\ UHIOHFWLRQV VKRZHG DQ LQWHQVLW\ YDULDWLRQ RI sb 2I UHIOHFWLRQV PHDVXUHG ZLWK ,!D,f ZHUH XVHG LQ FDOFXODWLRQV 3HUWLQHQW GDWD DUH OLVWHG LQ 7DEOH 7KH VWUXFWXUH ZDV VROYHG E\ WKH KHDY\ DWRP PHWKRG 1RQn K\GURJHQ DWRPV ZHUH UHILQHG ZLWK DQLVRWURSLF WKHUPDO IDFWRUV 7KH EHQ]HQH ULQJ WKH VROYHQW PROHFXOHf ZDV IL[HG DV D ULJLG ERG\ 7KH SDUDPHWHUV RI WKH +DWRPV ZHUH LQFOXGHG LQ WKH VWUXFWXUH IDFWRU FDOFXODWLRQV EXW WKH\ ZHUH QRW UHILQHG 7KH LVRWURSLF K\GURJHQ WHPSHUDWXUH IDFWRU 8 RI ZDV DVVLJQHG WR DOO +DWRPV 7KH ILQDO UHILQHPHQW RI DOO SDUDPHWHUV FRQYHUJHG DW 5 DQG 5Z ZKHUH Z Dn 7KH UHVLGXDO SHDNV LQ WKH ILQDO GLIIHUHQFH PDS ZHUH LQ WKH UDQJH IURP WR H$n &U\VWDO GDWD DUH VXPPDUL]HG LQ 7DEOH

PAGE 83

WKURXJK 7KH VWUXFWXUH LV LOOXVWUDWHG LQ )LJXUH DQG )LJXUH 'HVFULSWLRQ DQG 'LVFXVVLRQ 1RQSODQDU /LJDQG 7KH EULJKW \HOORZ FU\VWDO RI IRUPXOD >&+12@ ZDV GHWHUPLQHG WR KDYH D WULFOLQLF XQLW FHOO RI VSDFH JURXS 3, EDU DQG GFDOFG JFP )LQDO SRVLWLRQDO SDUDPHWHUV IRU WKH DWRPV DUH JLYHQ LQ 7DEOH 7DEOH DQG FRQWDLQ WKH ERQG OHQJWKV DQG ERQG DQJOHV UHVSHFWLYHO\ 7KH GHYLDWLRQV RI WKH 1+ DQJOHV IURP r DQG WKH ORQJ + 1 DQG 1 GLVWDQFHV DUH FKDUDFWHULVWLF RI LQWUDPROHFXODU K\GURJHQ ERQGV 7DEOH f 7KH &1 ERQGV RI VDOLF\OLGHQH OLQNDJHV &f1Of f ƒ &nf1Onf fƒ f DUH ERWK VKRUWHU WKDQ WKH QHLJKERULQJ &1 ERQGV &f1Of f ƒ &nf1Onf f ƒ f 7KLV LQGLFDWHV WKH ERQGV EHWZHHQ 1 DQG & RI VDOLF\OLGHQH OLQNDJHV LPLQH ERQGVf DUH FKDUDFWHULVWLF RI KLJKO\ ORFDOL]HG GRXEOH ERQGV 7KH HTXDWLRQV RI YDULRXV SODQHV DUH SUHVHQWHG LQ 7DEOH DQG WKH GHYLDWLRQV IURP WKHVH SODQHV DUH VKRZQ LQ 7DEOH 7KHVH UHVXOWV UHYHDO WKDW WKH IRXU SKHQ\O ULQJV DUH TXLWH SODQDU EXW WZLVWHG UHODWLYHO\ WR HDFK RWKHU IURP r r f 2EYLRXVO\ DQ\ DWWHPSW WR PDNH WKH ELSKHQ\O JURXS FRSODQDU ZRXOG UHVXOW LQ LQWROHUDEO\ FORVH FRQWDFW EHWZHHQ WKH WZR K\GURJHQ DWRPV 7KH WZLVWHG OLJDQG FRQIRUPDWLRQ UHVXOWV IURP WKH PLQLPL]DWLRQ RI WKHVH QRQERQGLQJ UHSXOVLRQV

PAGE 84

7$%/( &U\VWDO 'DWD IRU > &+OJ1)H @ 16 &+ )RUPXOD >&+1)H@1&+ 0ROHFXODU :HLJKW &U\VWDO 6\VWHP 0RQRFOLQLF 6SDFH *URXS 3 MQ D ƒ f E ƒ f F ƒ f D GHJ r 3 U GHJ f GHJ r 9ROXPH ƒ f = GFDOHGf JFP &U\VWDO 6L]H PP ; ; 5DGLDWLRQ 8VHG 0R.D + FPn G 5DQJH GHJ 1XPEHU RI FROOHFWHG GDWD 'DWD ZLWK ,!XO *RRGQHVV RI )LW 5 b 5Z b r 5HTXLUHG E\ V\PPHWU\ RI VSDFH JURXS

PAGE 85

7$%/( )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[Of IRU WKH )H> VDOfESf @12V &RPSOH[ ; < = 8r >&+,1)H@ )H f f f f &Of f f f f & f f f f f & f f f f f &f f f f f & f f f f f & f f f f f 1 f f f f f & f f f f f & f f f f f & f f f f f f f f f f &f f f f f &OOf f f f f & f f f f f & f f f f f &Onf f f f f & n f f f f f & rf f f f f & ff f f f f & n f f f f f & r f f f f f 1Onf f f f f & rf f f f f & nf f f f f & nf f f f f 2Onf f f f f &nf f f f f &OOnf f f f f & n f f f f f & n f f f f f

PAGE 86

7$%/( &RQWLQXHG ; < = 8r QR 1 f f f f 2QOf f f f f 2Q f f f f f 2Q f f f f f FK & ,(f f f f f &(f f &(f f &(f f &(f f &(f f r (TXLYDOHQW LVRWURSLF 8 GHILQHG DV RQH WKLUG RI WKH WUDFH RI WKH RUWKRJRQDO LVHG 8cM WHQVRU

PAGE 87

7$%/( %RQG 'LVWDQFHV ƒf IRU WKH )H> VDOfESf @1 &RPSOH[ %RQG 'LVWDQFHV $f )H2Of f )Hnf f )H2QOf f )H2Qf f )H1Of f )H1f f &Of&f f &nf&nf f &f&f f & nf f§& nf f &f&f f & nf f§& nf f &f&f f & nf f§& f f &f&f f &nf&nf f &f&f f &nf&Onf f &f1f f & nf1Onf f &f1f f &nf1Onf f &f&f f &nf& nf f &f&f f &nf& n f f &f&f f &nf& nf f &f&OOf f &nf&OOnf f &OOf&f f &nf& rf f &f&f f &nf& n f f &f&f f &nf& n f f &ff f &nfnf f &Of&Onf f 2QOf1 f 2Qf1 f 2Qf1 f

PAGE 88

7$%/( %RQG $QJOHV rf IRU WKH )H>VDOfESf@1 &RPSOH[ %RQG $QJOHV rf f)Hnf f f)H2QOf f rf)H2QOf f f)HQf f nf)HQf f 2Qf)H2Qf f f)H1Of f nf)H1f f 2Qf)H1Of f 2Qf)H1f f f)H1 rf f nf)H1nf f 2Qf)H1nf f 2Qf)H1nf f 1f)H1nf f &f&f&f f &f&f&f f &f&f&f f &f&f&f f &f&f&f f & f &f f f &f&ff f &f&f&f f &f&f&f f &f &f&f f & f & f 1 f f & f & f & f f &f&f&f f &f&f&f f &f&f&f f &f&f&Of f &f&f1f f &f&f1f f &f&ff§&f f &f&f&nf f &f&f&nf f & nf&nf1f f &nf&nf&n f f

PAGE 89

7$%/( &RQWLQXHG %RQG $QJOHV rf & rf&nf&nf f &nf&nf&nf f & n f& n f& nf f & n f f§& f f§& n f f & nf&nf1 rf f &f& rf1nf f &fa& rff&f f &f&nf&f f & nf&nf&nf f &f&nf&nf f &nf&nf&ff f &nf&nf&nf f FLLnMFLRnMFJrf f &f&nf&nf f & f&nfnf f &nf&nf2nf f &An-&An-&WO6nf f &nf&nf&nf f &nf&nf&nf f )H2Of&f f )Hnf&nf f )H2QOf1 f )HQf1 f 2QOf12Qf f 2QOf1Qf f 2Qf12Qf f )H1nf&f f )H1f&f f &f 1f & f f )H1nf&f f )H1 rf&nf f &nf1f&nf f

PAGE 90

7$%/( $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU WKH )H> VDOfESf @1 &RPSOH[ &AA )H &Of & f & f & f & f & f 1 f & f & f & f f &f &OOf & f & f &Onf & f & nf & f & f & f 1Onf & n f & n f & n f nf &,2nf &OOnf & nf & f 8Q f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f X f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f 8 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f X f f f f f f f f f f f f f f f f f f f f f f f f f f f X f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 91

7$%/( &RQWLQXHG 8Q X 8 X X 8O QR 1 f f f rQOf f f f f f f 2Q f f f f f f f 2Q f f f f f f f FK & ,(f f f f f f f &(f f f f &(f f f f f f f &(f f f f f f f &(f f f f f f f &(f f f f f f 7KH DQLVRWURSLF WHPSHUDWXUH IDFWRU H[SRQHQW WDNHV WKH IRUP UK98QN98DFr8NOE9XKOD9XKND9Xf

PAGE 92

7$%/( +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV $[O2f IRU WKH )H>VDOfESf @12V &RPSOH[ $720 ; < = 8 + $f + $f +$f +$f + ,%f +%f +%f +%f + f + &f +&f +&f +&f + ,'f + 'f + 'f +'f + ,(f +(f +(f +(f +(f +(f + f f f f

PAGE 93

)LJXUH $ 9LHZ RI WKH 6WUXFWXUH RI >&+1)H@1 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV

PAGE 95

)LJXUH 7KH 3DFNLQJ 3DWWHUQ RI >&+1)H@1 &+

PAGE 96

nr r + 0 W 7 L r A W f

PAGE 97

7$%/( (TXDWLRQV WR 9DULRXV 3ODQHV IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O 3ODQHr $WRPV P Q 3 6DOLF\OLGHQH %HQ]HQH 5LQJ & & &,2 &8 & & &n&n&,2n&OO &On&n %LSKHQ\O 5LQJ &O & & & & & &On&&&n&n&n ,PLQH 5HJLRQ 1 & & & 1On&7n&6n&Jn2On $QJOHV RI LQWHUHVW EHWZHHQ WKH SODQHV rf SODQH SODQH f r ,; P< Q= S 5HIHUHQFH LV PDGH WR RUWKRJRQDO ; < =

PAGE 98

7$%/( 'LVWDQFHV ƒf WR 9DULRXV 3ODQHV LQ 7$%/( IRU nELVVDOLF\OLGHQHDPLQRfELSKHQ\O 3ODQH $WRPV 'HYLDWLRQ $f & & &,2 &OO & & 1O & & n & &,2n &OOn & n & n 1Or &n &O & & & & & 1O &O &On & n & n & n & & n 1On &O n 1 & & & & 1On & n & n & n n & n

PAGE 99

7KH KLJKO\ ORFDOL]HG L[QLQH GRXEOH ERQGV WRJHWKHU ZLWK WKH ELSKHQ\O EDFNERQH PDNH WKH PROHFXOH LQFDSDEOH RI IXQFWLRQLQJ DV D SODQDU TXDGULGHQWDWH ,Q FRQWUDVW LQ nELV r f§ S\ULG\OPHWK\ODPLQRfELSKHQ\O FRSSHUAr )LJXUH f WKH OLJDQG )LJXUH nELVnnS\ULG\OPHWK\ODPLQRfELSKHQ\O ZDV IXQFWLRQLQJ DV D SODQDU TXDGULGHQWDWH )OH[LELOLW\ FDQ EH LQWURGXFHG HDVLO\ E\ WKH UHGXFWLRQ RI LPLQH ERQGV $ PRGHO )LJXUH f VKRZV WKDW WKH WZR R[\JHQ DWRPV DQG WKH WZR QLWURJHQ DWRPV RI nELVVDOLF\OLGHQHDPLQRf ELSKHQ\O FDQ EH EURXJKW DOPRVW VWUDLQOHVVO\ LQWR D WHWUDKHGUDO DUUDQJHPHQW IURP ZKLFK WKH\ FDQ DOO EHFRPH DWWDFKHG WR D FHQWUDO PHWDO DWRP RI DSSURSULDWH VL]H 0RUHRYHU WKH\ FDQQRW EH GLVSRVHG DERXW D PHWDO DWRP LQ D SODQDU DUUDQJHPHQW ,W PHDQV WKH OLJDQG VDOfES LV D JRRG FDQGLGDWH DV D QRQSODQDU OLJDQG

PAGE 100

)LJXUH $ 0RGHO RI 6WUDLQOHVV 7HWUDKHGUDO $UUDQJHPHQW IRU VDOfES

PAGE 101

&RSSHUI,,f &RPSOH[ 7KH GHHS JUHHQ FU\VWDO RI IRUPXOD >&+1&X@ ZDV GHWHUPLQHG WR KDYH D RUWKRUKRPELF XQLW FHOO RI VSDFH JURXS 3QQD DQG GFDOFG JFP )LQDO SRVLWLRQDO SDUDPHWHUV IRU WKH DWRPV DUH JLYHQ LQ 7DEOH 7KH PHWDO DWRP &Xf LV ORFDWHG LQ WKH VSHFLDO SRVLWLRQ IROG D[LVf 7DEOH DQG FRQWDLQ WKH ERQG GLVWDQFHV DQG ERQG DQJOHV UHVSHFWLYHO\ 7KH &X GLVWDQFHV DUH f $ DQG &X1 GLVWDQFHV DUH f $ 7KHVH DUH FORVH WR WKH DYHUDJH YDOXHV SUHYLRXVO\ UHSRUWHG IRU &X $ DQG &X1 $MA 7KH VDOfES IXQFWLRQV DV D DQLRQLF JXDGULGHQWDWH OLJDQG FRRUGLQDWLQJ WKURXJK WKH WZR SKHQROLF R[\JHQ DWRPV DQG WKH WZR LPLQH QLWURJHQ DWRPV ,Q RUGHU WR DFKLHYH WKLV FRRUGLQDWLRQ WKH OLJDQG IRUPV WZR VL[ PHPEHUHG FKHODWH ULQJV DQG RQH VHYHQ PHPEHUHG FKHODWH ULQJ 7KH HTXDWLRQV RI WKH YDULRXV OHDVWVTXDUHV SODQHV DUH SUHVHQWHG LQ 7DEOH DQG WKH GHYLDWLRQV IURP WKHVH SODQHV DUH VKRZQ LQ 7DEOH 7KH GHYLDWLRQV RI &X f nf 1f DQG 1Onf IURP WKHLU PHDQ SODQH DUH DQG $ UHVSHFWLYHO\ 7KH FRPSOH[ LV GLVWLQFWO\ QRQSODQDU 7ZR RI WKH VL[ PHPEHUHG ULQJV LQYROYH SKHQROLF R[\JHQ DQG LPLQH QLWURJHQ DWRPV DQG HDFK RI WKHVH LV D QRUPDO SODQDU ULQJ ZLWK D GHORFDOL]HG UV\VWHP VLPLODU WR WKH FKHODWH ULQJV LQ VDOLF\ODOGHK\GH DQG RWKHU VDOLF\ODOGLPLQH FRPSOH[HV 7KH VHYHQ PHPEHUHG ULQJ LQFOXGHV ERWK RI WKH LPLQH QLWURJHQ DWRPV

PAGE 102

7$%/( (TXDWLRQV WR 9DULRXV 3ODQHV IRU WKH &X>VDOfES@ &RPSOH[ 3ODQHr $WRPV P Q 3 6DOLF\OLGHQH %HQ]HQH 5LQJ & & &,2 &OO & & &&n&,2n&OOn&n&On %LSKHQ\O 5LQJ &O & & & & & &On&n&n&n&n&n ,PLQH 5HJLRQ 1 & & & &X 1,n&n&n&&X &KHODWH 5LQJ &X 1 &O & & &X 1,n&n&n&nn 1, & &O &On&n1n&X 2WKHU &8 1 2On1On r ,; P< Q= S 5HIHUHQFH LV PDGH WR RUWKRJRQDO ; < =

PAGE 103

7$%/( 'LVWDQFHV ƒf WR 9DULRXV 3ODQHV LQ 7$%/( IRU WKH &X>VDOfES@ &RPSOH[ 3ODQH $WRPV 'HYLDWLRQ ƒf & & &,2 &OO &O & & & 1O & & & &X 1O & & 1O & &O &On &X 2O 1O 2On & & 1O & & & 1O & &X & & & n 1On &8 1On

PAGE 104

7KH GLKHGUDO DQJOH DGRSWHG DV D PHDVXUH RI WHWUDn KHGUDO LW\rn LV GHILQHG DV WKH DQJOH EHWZHHQ SODQHV WKURXJK &X f 1f DQG &X nf 1Onf 7KH DQJOH EHWZHHQ WKH SODQHV FDQ EH FRPSDUHG WR DERXW r LQ 11rGLVDOLF\OLGHQH HWK\OHQHGLDPLQRFRSSHU,,f 7DEOH ff DQG r LQ 11n K\GUR[\SURSDQHGL\OfELVVDOLF\ODOGLPLQDWRfFRSSHU,,f 7DEOH ff -rfrr ,Q WKH VDOfESFRSSHU WKH FRRUGLQDWLRQ JHRPHWU\ RI WKH FRSSHU LV GHVFULEHG DV VTXDUH SODQDU VLJQLILn FDQWO\ GLVWRUWHG WRZDUG WHWUDKHGUDO ZLWK WZR R[\JHQV DQG WZR QLWURJHQV IURP VDOLF\ODOGLPLQH PRLHWLHV WKH GLKHGUDO DQJOH EHWZHHQ f&X1Of DQG nf&X1nf LV r ,W LV HVWDEOLVKHG WKDW FRSSHU,,f FRPSOH[HV ZLWK 1 VXEVWLWXWHG VDOLF\ODOGLPLQHV FDQ RFFXU LQ HLWKHU VTXDUH SODQDU RU WHWUDKHGUDO FRQILJXUDWLRQV GHSHQGLQJ RQ WKH EXONLQHVV RI WKH VXEVWLWXHQW JURXS -nrr 7KH GLVWRUWHG WHWUDKHGUDO FRQILJXUDWLRQV DUH IRXQG LQ 1WEXW\O DQG 1LVRSURS\O ELV VDOLF\ODOGLPLQH FRPSOH[HV RI FRSSHU 7DEOH f t ff 7KH VXEVWLWXHQWV LQ WKHVH FRPSOH[HV DUH VXIILFLHQWO\ EXON\ WR SUHYHQW WKH QRUPDO VTXDUH SODQDU DUUDQJHPHQW 7KH &X1 GLVWDQFHV f ƒf DUH ORQJHU WKDQ WKH &X GLVWDQFHV f ƒf WKLV GLIIHUHQFH EHLQJ VLPLODU WR WKRVH REVHUYHG LQ 11nWULPHWK\OHQGLVDOLF\OLGHQHDPLQDWRf FRSSHU,,f 7DEOH ff DQG D QXPEHU RI RWKHU DQDORJRXV PROHFXOHV OLVWHG LQ 7DEOH 7KH VOLJKW LQFUHDVH RI WKH

PAGE 105

7$%/( %RQG GLVWDQFHV DQG 'LKHGUDO $QJOHV f IRU 9DULRXV &X1 &RPSOH[HV &RPSOH[ 7\SH %RQG 'LVWDQFHV$f 'LKHGUDO 5HI ; &X &X1 $QJOHV f rf f f f f f >@ f f f f f >@ f >@ f f f f f Z >@ f f f f f >@ f f f f f >@ f f f f f >@ f f f f f >@ f f f f f >@ f f f f f WKLV ZRUN

PAGE 106

7$%/( &RQWLQXHG f f

PAGE 107

7$%/( &RQWLQXHG &RPSOH[ 1DPH f %LV1WEXW\OVDOLF\ODOGLPLQDWRfFRSSHU,,f f %LV1LVRSURS\OVDOLF\ODOGLPLQDWRfFRSSHU,,f f 11nGLVDOLF\OLGHQHHWK\OHQHGLDPLQRFRSSHU,,f f 11nSKHQ\OHQHfELVVDOLF\ODOGLPLQDWRf FRSSHU,,f f 11nSURS\OHQHELVELVK\GUR[\OQDSKWK\Of PHWKDQLPLQDWRfFRSSHU,,f f 7ULPHWK\OLQH1DFHW\ODFHWRQHLPLQDWRf 1nVDOLF\OLGHQHLPLQDWRfFRSSHU,,f f 11nWULPHWK\OHQHGLVDOLF\OLGHQHDPLQDWRf FRSSHU,,f f %LVK\GUR[\DFHWRSKHQRQHfWULPHWK\OHQH GLLPLQRFRSSHU,,f f 11nK\GUR[\SURSDQHGL\OfELV VDOLF\ODOGLPLQDWRfFRSSHU,,f f nELVVDOLF\LGHQHDPLQRfELSKHQ\OFRSSHU,,f

PAGE 108

ERQG OHQJWKV EHWZHHQ PHWDO DQG QLWURJHQ DWRPV LQ WKH FRPSOH[ PD\ EH DWWULEXWHG WR WKH VWHULF KLQGUDQFH RI WKH EXONLHU VXEVWLWXHQW JURXSV EHWZHHQ WKH 1 DWRPV $Q H[WHQVLYH VWXG\ KDV EHHQ PDGH RI WKH FRSSHU ,,f FRPSOH[HV ZLWK TXDGULGHQWDWH 6FKLII EDVHV GHULYHG IURP VHYHUDO DOGHK\GHV RU NHWRQHV 7KHVH FRPSOH[HV SRVVHVV WKUHH FKHODWH ULQJV DQG WKHLU VWUXFWXUHV FDQ EH UHSUHVHQWHG DV IROORZV 7KHUH DUH WZR VL[PHPEHUHG FKHODWH ULQJV LQ WKH VWUXFWXUH 7KH VL]H RI WKH WKLUG ULQJ GHSHQGV RQ Q )LJXUH f )LJXUH 7KUHH &KHODWLQJ 5LQJV LQ WKH 4XDGULGHQWDWH 6FKLII %DVHV $Q LQYHVWLJDWLRQ RI WKH UHODWLYH VWDELOLWLHV RI WKH FRPSOH[HV KDV UHYHDOHG WKDW WKRVH FRPSOH[HV ZKLFK KDYH D ILYH PHPEHUHG FHQWUDO FKHODWH ULQJ Q f DUH JHQHUDOO\ PRUH VWDEOH WKDQ WKHVH ZLWK D VL[PHPEHUHG FHQWUDO FKHODWH ULQJ Q f 7KH PROHFXODU VWUXFWXUHV RI WKH FRPSOH[HV ZLWK D HJ 11nGLVDOLF\OLGHQHHWK\OHQHGLDPLQRFRSSHU f LQ 7DEOH f

PAGE 109

DQG D HJ 11nWULPHWK\OHQHGLVDOLGHQHDPLQDWRFRSSHU f LQ 7DEOH f IXVHG FKHODWH ULQJ VWUXFWXUHV KDYH DOUHDG\ EHHQ GHWHUPLQHG ,Q WKH SUHVHQW FRPSRXQG WKH WZR K\GUR[\DFHWRSKHQRQH LPLQH JURXSV DUH MRLQHG E\ nELSKHQ\O &RQVHTXHQWO\ WKH FHQWUDO FKHODWH ULQJ LV VHYHQPHPEHUHG 7KH VKDSH RI D VHYHQ PHPEHUHG ULQJ FDQ EH H[SUHVVHG E\ PHDQV RI WKH VLJQV RI WKH WRUVLRQ DQJOHV %XFRXUUA GHVFULEHG WKH VLJQV RI WKH WRUVLRQ DQJOHV LQ FRQIRUPDWLRQDO DQDO\VLV )RU D VHYHQPHPEHUHG ULQJ WKHUH DUH IRXU SRVVLEOH FRQIRUPDWLRQV)LJXUH f 7KH WRUVLRQ DQJOHV LQ WKH VHYHQPHPEHUHG ULQJ RI VDOfES FRSSHU DUH VKRZQ LQ )LJXUH 7KH FRQIRUPDWLRQ RI WKH &X,,f ELSKHQ\OGLDPLQH ULQJ PLJKW EH D WZLVWERDW 7KH VHYHQ PHPEHUHG FKHODWH ULQJ KDV D WZRIROG D[LV RI URWDWLRQ WKURXJK WKH FHQWUDO FRSSHU DWRP DQG ELVHFWLQJ WKH &Of&Onf ERQG ,W ZRXOG EH RI LQWHUHVW WR VWXG\ WKH UHODWLRQVKLS EHWZHHQ WKH VWDELOLW\ DQG QXPEHU RI DWRPV LQ FHQWUDO FKHODWH 7DEOH LQGLFDWHG WKDW WKH GLKHGUDO DQJOH f EHWZHHQ WKH WZR FRRUGLQDWLRQ SODQHV LQFUHDVHV ZLWK WKH LQFUHDVH LQ ; r IRU ; Orr IRU ; r IRU ; ,W VHHPV OLNHO\ WKH H[WHQW RI WKH GLVWRUWLRQ RI VTXDUHSODQDU FRRUGLQDWLRQ QRW RQO\ GHSHQGV RQ WKH EXONLQHVV RI VXEVWLWXWHV EXW DOVR UHODWHV WR WKH QXPEHU RI DWRPV LQ WKH FHQWUDO FKHODWH ULQJ 6XFK D GLVWRUWHG WHWUDKHGUDO FRRUGLQDWLRQ DURXQG WKH FHQWUDO FRSSHU DWRP DV LV GHVFULEHG DERYH ZLOO FHUWDLQO\ GHFUHDVH WKH VWDELOLW\ RI WKH FRPSOH[-r

PAGE 110

)LJXUH )RXU 3RVVLEOH &RQIRUPDWLRQV LQ 6HYHQPHPEHUHG 5LQJ )LJXUH 7KH 7RUVLRQ $QJOHV LQ WKH 6HYHQ PHPEHUHG 5LQJ RI WKH &RSSHU &RPSOH[

PAGE 111

7KH VDOfES FRSSHUFRPSOH[ LV PRQRPHULF DQG WKHUH DUH QR YHU\ FORVH LQWHUPROHFXODU FRQWDFWV LQ WKH FRPSOH[ 7KHUHIRUH RQO\ YDQ GHU :DDOV IRUFHV H[LVW EHWZHHQ PROHFXOHV LQ WKH FU\VWDO ,URQ ILOOf &RPSOH[ 7KH GHHS EURZQ FU\VWDO RI IRUPXOD > &+1)H@ 1 &J+H ZDV GHWHUPLQHG WR KDYH D PRQRFOLQLF XQLW FHOO RI VSDFH JURXS 3 MQ DQG GFDOFG JFP )LQDO SRVLWLRQDO SDUDPHWHUV IRU WKH DWRPV DUH JLYHQ LQ 7DEOH 7DEOH DQG FRQWDLQ WKH ERQG GLVWDQFHV DQG ERQG DQJOHV UHVSHFWLYHO\ 7KH FRPSOH[ LV EHVW GHVFULEHG DV D GLVWRUWHG RFWDKHGURQ 7KH HTXDWLRQV RI WKH OHDVWVTXDUHV SODQHV IRU )HVDOfES DUH SUHVHQWHG LQ 7DEOH DQG WKH GHYLDWLRQV IURP WKHVH SODQHV DUH JLYHQ LQ 7DEOH 7KH EHVW HTXDWRULDO SODQH LV GHILQHG E\ WKH WZR QLWUDWH R[\JHQ DWRPV DQG 1Of nf RI WKH VDOfES OLJDQG DYHUDJH GHYLDWLRQ ƒf 7KH OLJDQG VDOfES RFFXSLHV IRXU FRRUGLQDWLRQ VLWHV DURXQG WKH LURQ ,,,f ZKLOH WKH WZR UHPDLQLQJ VLWHV DUH ILOOHG E\ WKH ELGHQWDWH QLWUDWH JURXS 7KHUH DUH ILYH SRVVLEOH RSWLFDO DQG JHRPHWULFDO LVRPHUV LQ PHWDOFRPSOH[HV ZLWK TXDGULGHQWDWH OLJDQGVA )LJXUH f ,Q WKLV FDVH WKH VDOfES DGRSWV WKH QRQSODQDU FLV FRQILJXUDWLRQ WR DFFRPPRGDWH WKH ELGHQWDWH QLWUDWH OLJDQG 7KLV UHVXOWV LQ WKH URWDWLRQ RI D SKHQ\O LPLQH QLWURJHQ ERQG DQG GLVSODFHPHQW RI nf E\ ƒ IURP

PAGE 112

7$%/( (TXDWLRQV WR 9DULRXV 3ODQHV IRU WKH )H> VDOfESf @1 &RPSOH[ 3ODQHr $WRPV P Q 3 6DOLF\OLGHQH %HQ]HQH 5LQJ & & &,2 &8 & & &n&n&,2n&OOn&n&n %LSKHQ\O 5LQJ &O & & & & & &On&n&n&n&n&n ,PLQH 5HJLRQ 1 & & & )H 1On&n&n&)H &KHODWH 5LQJ )H 1 & & & )H 1n&&&nn 1, & &O &On&n1n)H 2WKHU )H 2QO Q 1 n )H 1On 1 Q )H 1On n 2QO r ,; P< Q= S 5HIHUHQFH LV PDGH WR RUWKRJRQDO ; < =

PAGE 113

7$%/( 'LVWDQFHV $f WR 9DULRXV 3ODQHV LQ 7$%/( IRU WKH FRPOSH[ RI )H ZLWK VDOfES 3ODQH $WRPV 'HYLDWLRQ $f & & &,2 &OO & & 1O &O & n & n &,2n &OOn & n & n 1On &On &O & & & & & 1O &O &On & n & n & n &n & n 1On &On 1 & & & )H & 1On & n & n & n )H n & n )H 1O & & & )H 1On &n & n & n n 1O & &O &On & n 1On )H )H 2QO 2Q 1O n )H 1On 1O 2Q )H 1On n 2QO

PAGE 114

; 7UDQV /EHWD )LJXUH )LYH 3RVVLEOH ,VRPHUV LQ 0HWDO &RPSOH[HV ZLWK 4XDGULGHQWDWH /LJDQGV

PAGE 115

WKH SODQH GHILQHG E\ WKH LURQ DWRP DQG WKH RWKHU WKUHH FRRUGLn QDWLQJ DWRPV LQ VDOfES 7KH LURQ LRQ KDV D GLVWRUWHG RFWDKHGUDO FRRUGLQDWLRQ JHRPHWU\ DV HYLGHQFHG E\ WKH DQJOH 2f)H1Onf RI fr 7KH WZR SKHQROLF R[\JHQ DWRPV RQ WKH VDOfES OLJDQG DUH FLV UHODWLYH WR HDFK RWKHU WKH WZR LPLQR QLWURJHQ DWRPV DUH DOVR FLV ,Q WKH QRQSODQDU FLV FRQILJXUDWLRQ WKH LQWHUSODQDU DQJOH EHWZHHQ WKH WZR VDOLF\OLGHQH ULQJV LV r LQ VDOfES LURQ FRPSOH[ WKH 1 VSHFLHV EHLQJ WHWUDKHGUDOO\ GLVWRUWHG $ VXPPDU\ RI WKH GLVWRUWLRQV REVHUYHG IRU VRPH VDOLF\OLGHQH LURQ DQG FREDOW FRPSOH[HV LV JLYHQ LQ 7DEOH 7$%/( $ 6XPPDU\ RI WKH 'LVWRUWLRQV IRU 6RPH 6DOLF\OLGHQH FRPSOH[HV FRPSOH[ LQWHUSODQDU DQJOH rf 10 DQJOHV D[LDO HTXDWRULDO UHI >)HVDOHQf@KTf >)HVDOHQfSVTf@ >)HVDOHQfR[f@n >)HVDOGDESf12V@ >&RVDOHQfDFDFf@ >@ >@ >@ WKLV >@ KT K\GURTXLQRQDWH SVT SKHQDQWKUHQH VHPLTXLQRQH R[ R[DODWH DFDF DFHW\ODFHWRQH

PAGE 116

7KH LQWHUSODQDU DQJOH LQFUHDVHV IURP r LQ >)HVDOHQf@ KTf WR r LQ WKH SUHVHQW LURQ FRPSOH[ WR r LQ >&RVDOHQf DFDFf@ 7R UHOLHYH VRPH RI WKH VWHULF FURZGLQJ WKH D[LDO 10 DQJOH GHFUHDVHV ZLWK GHFUHDVLQJ GLVWRUWLRQ IURP WKH LGHDO VTXDUH SODQH ZKLOH WKH HTXDWRULDO 10 DQJOH LQFUHDVHV 7KH FREDOW FRPSOH[ FOHDUO\ DSSUR[LPDWHV RFWDKHGUDO JHRPHWU\ PRUH WKDQ WKH LURQ FRPSOH[HV GR XQGRXEWHGO\ EHFDXVH RI WKH ODUJH OLJDQG ILHOG VWDELOL]DWLRQ HQHUJ\ IRU ORZVSLQ &R,,,f 7KH KLJKVSLQ IHUULF FRPSOH[ ODFNLQJ VXFK VWDELOL]DWLRQ LV PRUH GLVWRUWHG IURP WKH LGHDO RFWDKHGURQ 7KH LURQ FRPSOH[HV H[KLELW YDU\LQJ GHJUHHV RI GLVWRUWLRQ WRZDUG WKH FLV FRQILJXUDWLRQ GHSHQGLQJ RQ WKH ELGHQWDWH OLJDQG 7KH WZR LURQSKHQROLF R[\JHQ DWRP GLVWDQFHV >)H ƒf DQG )Hn ƒf @ DUH QHDUO\ LGHQWLFDO DV KDYH EHHQ REVHUYHG LQ >)HVDOHQf SVTf @ )H2 DQG ƒf> DQG .>)H VDOHQf FDWf @ )H DQG $f-A +RZHYHU WKHVH GLVWDQFHV DUH VLJQLILFDQWO\ GLIIHUHQW LQ WKH FRPSOH[HV >)HVDOHQf R[f @n )H DQG ƒf>f DQG LQ >)H VDOHQf DFDFf @ )H DQG ƒf>6O $OO RI WKHP H[KLELW WKH QRQSODQDU FLVIf FRQILJXUDWLRQV ,Q VDOfES LURQ FRPSOH[ WKH ELGHQWDWH OLJDQG LV QLWUDWH $ ZLGH UDQJH RI QLWUDWRFRPSOH[HV KDV QRZ EHHQ FKDUDFWHULVHG 7KH VWUXFWXUDO VWXGLHV FDUULHG RXW KDYH LGHQWLILHG IRXU W\SHV RI QLWUDWHJURXS FRRUGLQDWLRQ XQLGHQWDWH XQV\PPHWULFDOO\ ELGHQWDWH V\PPHWULFDOO\ ELGHQWDWH DQG EULGJLQJ

PAGE 117

7KH XQLGHQWDWH IRUP LV D OHVV FRPPRQ DOWHUQDWLYH ,Q QLWUDWR 11nHWK\OHQHELVVDOLF\OLGHQHLPLQDWRf LURQ,,,f GLPHUrr WKH FU\VWDOORJUDSKLF LQYHVWLJDWLRQ LV LWVHOI LQWHUHVWLQJ DV DSSDUHQWO\ WKH ILUVW LQ ZKLFK XQLGHQWDWH &Vf DWWDFKPHQW RI D QLWUDWR OLJDQG WR IHUULF LURQ KDV EHHQ FRQILUPHG E\ ;UD\ GLIIUDFWLRQ ,Q XQV\PPHWULFDO ELGHQWDWH QLWUDWR JURXSV WKHUH LV D VPDOO EXW UHDO GLIIHUHQFH HJ ƒfrr EHWZHHQ WKH GLVWDQFHV IURP WKH PHWDO DWRP WR WKH WZR FRRUGLQDWHG R[\JHQ DWRPV RI HDFK QLWUDWR JURXS )RU H[DPSOH LQ &X1f S\UD]LQHf rppr WKHUH DUH WZR XQV\PPHWULFDO ELGHQWDWH JURXSV 7KH GLVWDQFHV RI &R &R DQG &R &R DUH f f DQG f f ƒ UHVSHFWLYHO\ )RU EULGJLQJ QLWUDWRJURXSV WKH FRRUGLQDWLRQ WR PRUH WKDQ RQH PHWDO DWRP LV SRVVLEOHrr )LJXUH f 0 Z Z 0 Rn ? 1f§2 0f 2 2 ? 1 2 0f 2 2 2V 1 ? 0 0n 2 ? 2 1 )LJXUH 3RVVLEOH 0RGHOV RI &RRUGLQDWLRQ RI %ULGJLQJ 1LWUDWH *URXS

PAGE 118

7KH V\PPHWULFDO ELGHQWDWH QLWUDWHJURXS LV SUHIHUUHG ZKHUH WKH PHWDO DWRP LV HTXLGLVWDQW IURP WKH WZRFRRUGLQDWHG R[\JHQ DWRPV ,Q WKH VDOfES LURQ FRPSOH[ WKH )H ERQG GLVWDQFHV DUH f DQG f $ IRU WKH ELGHQWDWH QLWUDWR JURXS ,Q >$V&+f@ >)H1f@rr WKH GLVWDQFHV RI )H 2 IURP V\PPHWULFDO ELGHQWDWH QLWUDWRJURXSf DUH DQG $ 7KH QLWUDWRJURXS LQ WKH VDOfES LURQ FRPSOH[ LV V\PPHWULFDO DQG WKH )H GLVWDQFHV DUH ZHOO ZLWKLQ WKH UDQJH RI )H,,,f FRPSOH[HV ZLWK QLWUDWRJURXS DV V\PPHWULFDO ELGHQWDWH OLJDQG 6FKLIIEDVH FRPSOH[HV RI LURQ,,,f DUH RI FRQVLGHUDEOH LQWHUHVW EHFDXVH RI WKH GLYHUVLW\ RI FRRUGLQDWLRQ JHRPHWULHV DQG DOVR WKH XQXVXDO PDJQHWLF SURSHUWLHV 7KH UHODWLRQVKLS EHWZHHQ LURQOLJDQG GLVWDQFHV DQG WKH VSLQ VWDWH RI LURQ IRU LURQ,,,f FRPSOH[HV ZLWK 1 GRQRUV RI VH[LGHQWDWH 6FKLII EDVH OLJDQGV KDV EHHQ H[WHQVLYHO\ LQYHVWLJDWHGrrnrr ,W KDV EHHQ VKRZQ WKDW SVHXGR RFWDKHGUDO )H,,,f FRPSOH[HV GHULYHG IURP YDULRXV VDOLF\ODOGHK\GHV DQG WKHLU DQDORJXHV H[KLELW ORZVSLQ 7f DQG KLJKVSLQ $;f HTXLOLEULD LQ VROLG DQG VROXWLRQ VWDWHV 6LQFH VXFK FRPSOH[HV OLH QHDU WKH VSLQ FURVVRYHU LQWUDPROHFXODU VWHULF HIIHFWV ZKLFK SURGXFH HORQJDWHG PHWDO OLJDQG ERQGV FDXVH VKLIWV WRZDUG WKH KLJKVSLQ IRUPrr 6SHFLILFDOO\ WKH )H1 DPLQHf ERQGV DUH ORQJHVW WKH )H ERQGV VKRUWHVW DQG WKH )H1 LPLQHf ERQGV LQWHUPHGLDWH <0DHGDrr 0 '7LPNHQrr DQG WKHLU FRZRUNHUV SRLQWHG RXW WKH DYHUDJH )HOLJDQG GLVWDQFHV LQ WKH UDQJH $

PAGE 119

DQG $ FRUUHVSRQG WR KLJK DQG ORZVSLQ VWDWHV UHVSHFWLYHO\ 0'7LPNHQ SRVWXODWHG WKDW WKH GLVWDQFHV RI )H1 DPLQHf ERQGV ZHUH WKH PRVW VSLQVWDWH GHSHQGHQW 7KH VDOfES LURQ ,,,f FRPSOH[ LV RQH RI WKH 1 V\VWHP GHULYHG IURP VDOLF\DOGHK\GHV 6RPH DQDORJRXV IHUULF 1 DQG 1 V\VWHP IURP YDULRXV VDOLDOGHK\GHV ZHUH VWXGLHG LQ RUGHU WR XQGHUVWDQG WKH UHODWLRQVKLS EHWZHHQ ERQG GLVWDQFHV DQG VSLQ VWDWHV )URP WKH VXPPDU\ LQ 7DEOH $33(1',; %f WKH FRQFOXVLRQ LV WKDW WKH ERQG GLVWDQFHV RI LURQ,,,f WR LPLQH QLWURJHQ DUH PRUH VHQVLWLYH WR WKH VSLQVWDWH RI WKH PHWDO WKDQ WKRVH RI LURQ,,,f WR DPLQHQLWURJHQ 7KH DYHUDJH )H LPLQH QLWURJHQ GLVWDQFHV LQ WKH UDQJH $> DQG O $rn FRUUHVSRQGV WR KLJK DQG ORZVSLQ VWDWHV UHVSHFWLYHO\ 7KHUH LV DQ HTXLOLEULXP EHWZHHQ 6 DQG 6 O LI WKH )HLPLQH QLWURJHQ GLVWDQFH LV LQ WKH UDQJH $Of@ +RZHYHU )H GLVWDQFHV DUH DOPRVW FRQVWDQW IRU ERWK KLJK DQG ORZVSLQ FRPSOH[HV ,Q WKH VDOfES LURQ,,,f FRPSRXQG WKH )H1LPLQHf GLVWDQFHV DQG $f LQGLFDWH WKH LURQ,,,f EHORQJV WR KLJKVSLQ VWDWH 7KHUH DUH D YHU\ IHZ FRPSOH[HV ZKLFK FRQWDLQ D VHYHQ PHPEHUHG ULQJ LQ WKH IHUULF 1 V\VWHP $FFRRUGLQJ WR P\ NQRZOHGJH WKH VDOfES LURQ FRPSOH[ LV WKH VHFRQG FRPSRXQG FRQWDLQLQJ D VHYHQPHPEHUHG ULQJ WKH ILUVW RQH LV )H> 7,(2f 7,(2+f @ &f>@ 7KH 7,(2+f LV WKH DEEUHYLDWLRQ RI WULVOPHWK\OLPLGD]R\Of HWKDQRO 7KHUH DUH WZR VHYHQPHPEHUHG ULQJV LQ WKH FRPSRXQG)LJXUH f 7KH YDOXHV

PAGE 120

7$%/( 7KH %RQG /HQJWKV ƒf RI 6RPH ,URQ ,,,f &RPSOH[HV ZLWK 6FKLII%DVHV DQG WKH 6SLQ6WDWHV 6f $ QRr 5HIVFRGH )H1O )H1 )H1 )H1 )H )H 6 '(;3$; '(;3$; '(;3$; '(;3$; '2%.,2 rrO '2%.,2 '25323 )(6<$' )(6<$' )(6<(+ )(6<,/ )(:926 )(:98< ),678: ),69$( ),69(, ),69(, 6$(1)( 6$/7)1 6$/7)1

PAGE 121

7$%/( &RQWLQXHG $ QR 5HIVFRGH )H1O )H1 )H1 )H1 )H )H 6 6$/7)1 6$/7)1 % QRr 5HIVFRGH )H1O )H1 )H )H )H )H 6 &$+-($ &8368% )8&180 *(-.(/ *(-.(/ .$-&,+ 6$/3$) 6$/3$) r 1 RU 1 LPLQHQWURJHQ 1 RU 1 DPLQHQLWURJHQ r $33(1',; %

PAGE 122

2 )H>7,(2f+7,(2f@ )LJXUH $QRWKHU )H,,,f &RPSOH[ &RQWDQLQJ 6HYHQPHPEHUHG 5LQJV RI WKH DQJOHV EHWZHHQ GRQDWLQJ DWRPV DQG LURQ LQFUHDVH WRZDUG r ZLWK WKH VL]H RI WKH FKHODWH ULQJ EHLQJ fr IRU WKH ILYHPHPEHUHG ULQJ fr IRU WKH VL[PHPEHUHG ULQJ DQG fr IRU WKH VHYHQPHPEHUHG ULQJ LQ )H>7,(2f+7,(2f@ +RZHYHU LQ VDOfES LURQ FRPSOH[ WKH YDOXHV GHFUHDVH ZLWK WKH VL]H RI WKH FKHODWH ULQJ EHLQJ fr fr IRU WKH VL[ PHPEHUHG ULQJ fr IRU WKH VHYHQPHPEHUHG ULQJ UHVSHFWLYHO\ 7KH FRQIRUPDWLRQ RI WKH LURQ,,,f ELSKHQ\O GLDPLQH ULQJ LV D WZLVWERDW E\ PHDQV RI WKH VLJQV RI WKH WRUVLRQ DQJOHV

PAGE 123

)LJXUH 7KH 7RUVLRQ $QJOHV LQ WKH 6HYHQPHPEHUHG 5LQJ RI WKH ,URQ,,,f &RPSOH[ 1RQSODQDU *HRPHWULHV )RU WKH WKUHH FRPSRXQGV OLJDQG VDOfES &X FRPSOH[ ZLWK VDOfES DQG )H FRPSOH[ ZLWK VDOfES WKH HTXDWLRQV RI WKH OHDVWVTXDUHV SODQHV WKURXJK WKH ULQJV DQG RWKHU VXSSRVHGO\ SODQDU JURXSV DUH SUHVHQWHG LQ 7DEOH DQG WKH GHYLDWLRQV IURP WKHVH SODQHV DUH VKRZQ LQ 7DEOH UHVSHFWLYHO\ 7KH DQJOHV DPRQJ WKH IRXU ULQJV LQ WKH WKUHH FRPSRXQGV DUH 3ODQH3ODQH /LJDQG &XFRPSOH[ )HFRPSOH[ :KHQ WKH OLJDQG LV FRRUGLQDWHG WR WKH PHWDODWRPV WKH DQJOH EHWZHHQ WKH ELSKHQ\O JURXSV SODQH DQG f GHFUHDVHV ZKHUHDV WKH DQJOH EHWZHHQ WKH VDOLF\OLGHQH JURXS DQG SKHQ\O

PAGE 124

JURXS SODQH DQG f LQFUHDVHV 7KH UHVXOWV UHYHDO D ORVV RI SODQDULW\ EHWZHHQ WKH ELSKHQ\O JURXSV DQG WKH LPLQH UHJLRQV DV HYLGHQFHG E\ WKH ODUJH GLVSODFHPHQWV RI & DQG &n 'HYLDWLRQ ƒf & IURP SODQH &nIURP SODQH /LJDQG &XFRPSOH[ )HFRPSOH[ $ VPDOOHU ORVV RI SODQDULW\ EHWZHHQ WKH QLWURJHQ DQG WKHLU DVVRFLDWHG VDOLF\OLGHQH JURXSV 'HYLDWLRQ $f /LJDQG &XFRPSOH[ )HFRPSOH[ 1 IURP SODQH 1OnIURP SODQH 7KLV LV D PDQLIHVWDWLRQ RI D WZLVW DORQJ & DQG & ZKLFK LV IXUWKHU HYLGHQFHG E\ WKH QRQ SODQDULW\ RI WKH FKHODWH ULQJV 'HYLDWLRQ $f &XFRPSOH[ )HFRPSOH[ &O LQ SODQH & LQ SODQH 7KH UHVXOWV RI WKHVH H[SHULPHQWV GHPRQVWUDWH FRQFOXVLYHO\ WKDW WKH WKUHH FRPSRXQGV KDYH WKH FKDUDFWHUV RI QRQSODQDU JHRPHWU\ 7KH GRXEOH LQRUJDQLF KHOL[ FRPSOH[HV DUH GHVFULEHG LQ WKH QH[W FKDSWHU

PAGE 125

&+$37(5 )285 0(7$/ &203/(;(6 2) $1 ,125*$1,& '28%/( +(/,; ,QRUJDQLF 'RXEOH +HOL[ +HOLFDO VWUXFWXUHV KHOL[ *UHHN I$e ZLQGLQJ FRQGXFWLRQ VSLUDOf RU VFUHZ VWUXFWXUHV SOD\ DQ LPSRUWDQW UROH LQ DUFKLn WHFWXUH SK\VLFV DVWURQRP\ DQG ELRORJ\ 6FUHZ VKDSHG PDFUR PROHFXODU VNHOHWRQV RI QXFOHLF DFLGV SURWHLQV DQG SRO\n VDFFKDULGHV DUH LPSRUWDQW VWUXFWXUDO HOHPHQWV LQ ELRFKHPLVWU\ 7KHLU KHOL[ WXUQV RIWHQ DUH VWDELOL]HG WKURXJK K\GURJHQ ERQGV GLVXOILGH OLQNDJHV DQG K\GURSKRELF LQWHUDFWLRQV +HOLFDO VWUXFWXUHV LQ QDWXUH DOVR DUH IRUPHG WKURXJK FRPSOH[DWLRQ ZLWK PHWDO FDWLRQV 6RPH PLFUREHV LQFOXGLQJ (VFKHULFKLD FROL SURGXFH HQWHUEDFWLQA D VLGHURSKRU ZKLFK FRPSOH[HV )H,,,f ZLWK D YHU\ KLJK FRPSOH[ FRQVWDQW RI 7KH VWUXFWXUH IRUPDWLRQ DQG GLVVRFLDWLRQ RI WKH GRXEOH KHOL[ RI QXFOHLF DFLG KDV EHHQ WKH VXEMHFW RI YHU\ H[WHQVLYH VWXGLHV 7KH VSRQWDQHRXV IRUPDWLRQ RI WKH GRXEOH KHOL[ RI QXFOHLF DFLG UHSUHVHQWV WKH VHOIDVVHPEOLQJ RI D VXSUDPROH FXODU VWUXFWXUH LQGXFHG E\ WKH SDWWHUQ RI LQWHUPROHFXODU LQWHUDFWLRQV SURYLGHG E\ WKH FRPSOHPHQWDU\ QXFOHLF EDVHV

PAGE 126

,OO 0ROHFXODU VHOIDVVHPEOLQJ WKH SKHQRPHQRQ LV ZHOO GRFXPHQWHG LQ ELRORJ\ PXFK OHVV VR LQ FKHPLVWU\ +RZHYHU VXFK VHOIDVVHPEOLQJ KDV UHFHQWO\ EHHQ VKRZQ WR RFFXU LQ UHSHWLWLYH FKDLQ OLJDQGV FRQWDLQLQJ VHYHUDO LGHQWLFDO ELQGLQJ VLWHVA DUUDQJHG OLQHDUO\ 7KH FRUUHVSRQGLQJ FRPSOH[HV SUHVHQW WKH IHDWXUHV RI DQ LQRUJDQLF GRXEOH KHOL[ 7KLV VSRQWDQHRXV IRUPDWLRQ RI DQ RUJDQL]HG VWUXFWXUH E\ ROLJR OLJDQGV DQG VXLWDEOH PHWDO LRQV RSHQV ZD\V WR WKH GHVLJQ DQG VWXG\ RI VHOIDVVHPEOLQJ V\VWHPV SUHVHQWLQJ FRRSHUDWLYLW\ DQG UHJXODWLRQ IHDWXUHV 9DULRXV IXUWKHU GHYHORSPHQWV PD\ EH HQYLVDJHG DORQJ RUJDQLF LQRUJDQLF DQG ELRFKHPLFDO OLQHV 'HILQLWLRQ RI +HOLFLWY +HOLFLW\ LV D JHRPHWULF VWUXFWXUDO SURSHUW\ E\ ZKLFK WKH DUUDQJHPHQW RI DWRPV LQ PROHFXOHV FDQ EH GHVFULEHG DV D FRPELQHG URWDWLRQ DQG WUDQVODWLRQ SURFHVV +HOLFLW\ LV D VSHFLDO FDVH RI FKLUDOLW\ EHFDXVH LW LPSOLHV WZR DGGLWLRQDO SURSHUWLHV 7KHUHIRUH VRPH FHQWURFKLUDO DQG SODQDU FKLUDO PROHFXOHV FDQ EH FRQVLGHUHG DV KHOLFDO &DKQ ,QJROG DQG 3UHORJAr GHILQHG WKH KHOL[ DV IROORZV $ KHOL[ LV FKDUDFWHUL]HG E\ D KHOLFDO VHQVH D KHOLFDO D[LV DQG D SLWFKUDWLR RI D[LDOO\ OLQHDU WR DQJXODU SURSHUWLHVf 7KDW PHDQV D PROHFXODU KHOL[ LV GHILQHG E\ DQ D[LV E\ LWV VFUHZ VHQVH DQG LWV SLWFK $ KHOL[ LV FRQVLGHUHG WR ZLQG VWDUWLQJ IURP WKH YLHZHUV H\H WR D SRLQW GLVWDQW IURP WKH YLHZHU WKH VFUHZ VHQVH LV ULJKWKDQGHG IRU D FORFNZLVH URWDWLRQ RU OHIWKDQGHG IRU DQ

PAGE 127

DQWLFORFNZLVH URWDWLRQV VHH )LJXUH f 7XUQLQJ WKH KHOL[ LQ VSDFH UHODWLYH WR WKH REVHUYHU GRHVQnW FKDQJH WKH VFUHZ VHQVH $ ULJKWKDQGHG KHOL[ LV V\PEROL]HG E\ 3 SOXVf D OHIWKDQGHG KHOL[ E\ 0 PLQXVf ,I D PROHFXOH FRQWDLQV VHYHUDO KHOLFDO VHJPHQWV WKH KHOLFDO VXEXQLWV VKRXOG EH GHVFULEHG XVLQJ 3 DQG 0 )LJXUH f f3KH[DKHOLFHQH f0KH[DKHOLFHQH 03f 30f )LJXUH 5LJKWKDQGHG +HOL[ 3f DQG /LIWKDQGHG +HOL[ 0f $V WKH ILJXUH VKRZV WKH DEVROXWH FRQILJXUDWLRQ RI f URWDWLQJ KH[DKHOLFHQH KDV EHHQ GHWHUPLQHG WR EH 3 DQG f KH[DKHOLFHQH WR KDYH WKH 0 FRQILJXUDWLRQ ,Q VXFK FDVHV HVSHFLDOO\ ZLWK ODUJH ELRFKHPLFDOf PROHFXOHV LW LV RIWHQ XVHIXO WR GLIIHUHQWLDWH EHWZHHQ WKH DEVROXWH KHOLFLW\ ZKLFK LV WKH VXP RI DOO 0 DQG 3 KHOLFDO GRPDLQV DQG WKH QHW KHOLFLW\ GHILQHG E\ WKH GLIIHUHQFH RI WKH YROXPHV RI OHIW DQG ULJKWKDQGHG KHOL[ GRPDLQV 7KH QHW

PAGE 128

KHOLFLW\ LV RI LQWHUHVW IRU FKHPLFDO XVH ZLWK UHVSHFW WR WKH REVHUYHG FKLURSWLFDO SURSHUWLHV %UHZVWHUrr GHYHORSHG WKH KHOLFDO FRQGXFWRU PRGHO IRU WKH GHVFULSWLRQ RI KHOLFDO DUUD\V RI DWRPV DFFRUGLQJ WR JHRPHWULF DQG PDWKHPDWLFDO SRLQWV RI YLHZ +H LQWURGXFHG SUHFLVH GHILQLWLRQV IRU WKH QHZ WHUPV FKLURSWLFLW\ DQG VWHUHRJHQLFLW\ ZKLFK FDQ EH XVHG WR VSHFLI\ FKLUDOLW\ DQG WRSLFLW\ 7KHVH WHUPV LQWURGXFHG VRPH PRUH SUHFLVH GHVFULSn WLRQV LQ WKH ILHOG RI KHOLFDO VWUXFWXUHVrrnrr &U\VWDOORJUDSKLF 6FUHZ $[HV DQG +HOLFDO 6\PPHWULHV ,Q FU\VWDOORJUDSK\ WKHUH DUH DQG IROG VFUHZ RSHUDWLRQV ZLWK V\PEROV M M 6 6 6 7KH RSHUDWLRQ ; URWDWHV D PRWLI E\ Q r LQ D ULJKW KDQGHG VFUHZ VHQVH DQG HOHYDWHV LW E\ D[LDO UHSHDW HWF ,Q WKH URWDWLRQ LV DJDLQ Q LQ D ULJKWKDQGHG VHQVH EXW HOHYDWLRQ LV QRZ D[LDO UHSHDW \LHOGLQJ PRWLIV HWF )LJXUH f 7KH PLVVLQJ PRWLI DW D[LDO UHSHDW LV )LJXUH &U\VWDOORJUDSKLF 6FUHZ $[HV DQG +HOLFDO 6\PPHWULHV

PAGE 129

SURGXFHG E\ WUDQVODWLRQ RI WKH PRWLI DW [ HOHYDWLRQ E\ RQH XQLW LH ZH REWDLQ f $V LOOXVWUDWHG LQ WKH )LJXUH FRQQHFWLRQ RI WKH GLIIHUHQW PRWLIV E\ D FRQWLQXRXV OLQH OHDGV WR ULJKWKDQGHG VFUHZ VHQVH IRU M EXW OHIW KDQGHG VHQVH IRU $QDORJRXVO\ ; DQG DUH ULJKWKDQGHG DQG DQG DUH FRUUHVSRQGLQJ OHIW KDQGHG VFUHZ RSHUDWLRQV ,Q KHOLFDO V\PPHWULHV RI QXFOHLF DFLGV WKH VDPH V\PEROV 1P DUH XVHG ZLWK WKH VDPH PHDQLQJ DV LQ FU\VWDOORJUDSKLF WHUPV ,Q WKLV VLWXDWLRQ WKH PRWLI LV LQ JHQHUDO D QXFOHRWLGH RU D EDVHSDLU DQG KHOLFDO V\PPHWU\ DV LQ $'1$ LQGLFDWHV WKDW IURP RQH QXFOHRWLGH WR WKH QH[W URWDWLRQ LV WKURXJK QOO rf DQG HOHYDWLRQ LV WKH UHSHDW XQLW SLWFKf ,Q RWKHU ZRUGV $'1$ LV IROG ZLWK QXFOHRWLGHV LQ RQH WXUQ ,Q &'1$ ZLWK V\PPHWU\ OI D QRQLQWHJUDO KHOL[ RFFXUV ([DFW UHSHDW LV RQO\ PHW DIWHU WXUQV ZLWK [ QXFOHRWLGHV 2IWHQ H[SUHVVHG DV D QRPHQFODWXUH QRW VWULFWO\ LQ DJUHHPHQW ZLWK FU\VWDOORn JUDSKLF XVDJH EXW FRQYHQLHQW WR GHVFULEH QRQLQWHJUDO KHOLFHV 7KH GHILQLWLRQV DQG FRQFHSWV DOVR KDYH EHHQ XVHG WR GHVLJQ OLJDQGV DQG PHWDO FRPSOH[HV +LVWRULFDO 9LHZ D$P\ORVH ZDV WKH ILUVW KHOL[ SRVWXODWHG IRU D QDWXUDO PDFURPROHFXOHA 2QH RI WKH PRVW LPSRUWDQW QDWXUDO FRPSRXQGV ZLWK D KHOLFDO VWUXFWXUH LV GHR[\ULERQXFOHLF DFLG '1$f ,W

PAGE 130

ZDV VWXGLHG E\ :DWVRQ DQG &ULFNr EDVHG RQ WKH [UD\ DQDO\VLV RI )UDQNOLQ DQG *RVVOLQJA +HOLFLW\ KDV EHHQ DQDO\]HG IRU WZLVWHG FKDLQV RI DWRPVr DQG LWV EDVLF JHRPHWULFDO IHDWXUHV DUH IRXQG LQ VHYHUDO W\SHV RI VPDOO PROHFXOHV-r 7KH VWUXFWXUHV IRUPDWLRQV DQG UHDFWLYLWLHV RI SRO\QXFOHDU FRPSOH[HV KDYH EHHQ WKH VXEMHFW RI YHU\ H[WHQVLYH VWXGLHV 7KH VWUXFWXUDO IHDWXUHV LQ ZKLFK OLJDQGV SRVVHVV D WZLVWHG FKLUDO FRQIRUPDWLRQ DQG DUH ZUDSSHG DURXQG WKH WZR RU PRUH PHWDO DWRPV KDYH EHHQ IRXQG LQ VRPH GLQXFOHDU RU WULQXFOHDU PHWDO FRPSOH[HV 7KH FRPSOH[ RI ]LQF ,,f ZLWK GLDFHW\OS\ULGLQHELVn S\ULG\OK\GUD]RQHf ZDV V\QWKHVL]HG DQG FKDUDFWHUL]HG E\ 3DOHQLN DQG :HVWHUrA LQ )LJXUH f 7KLV PLJKW EH WKH ILUVW SRO\PHWDOOLF FRPSOH[ UHPLQLVFHQW RI WKH GRXEOHKHOLFDO VWUXFWXUH RI QXFOHLF DFLGV )LJXUH f LQ HIIHFW DQ LQRUJDQLF GRXEOH KHOL[ )LJXUH Df =Q GDSSf RQH GDSS RPLWWHGf Ef 7KH )HDWXUH RI ,QRUJDQLF 'RXEOH +HOL[

PAGE 131

)LJXUH 7KH '1$ 'RXEOH +HOL[ $QRWKHU FRPSOH[ ZKLFK KDG DQ LQRUJDQLF GRXEOH KHOLFDO VWUXFWXUH ZDV V\QWKHVL]HG E\ 9DQ 6WHLQ DQG FRZRUNHUVrn LQ 7KH FRPSOH[ ZDV VLOYHU,f ZLWK 56f53\ &+ 1f F\FORKH[DQH DV OLJDQG )LJXUH f ,Q WKH >$J1f@ XQLW HDFK RI WKH WZR 1 OLJDQGV FRRUGLQDWH WR WKH PHWDO FHQWHU LQ D GLELGHQWDWH PDQQHU 7KH F\FORKH[DQHGL\O ULQJV EULGJLQJ WKH IODW S\ULGLQH PRLHWLHV DUH GLUHFWHG WRZDUG WKH PHWDO FHQWHUV DQG KDYH HTXLYDOHQW FKDLQ FRQIRUPDWLRQ LH HLWKHU 66 RU ;; HQDQLRPHULF SDLUf LQ FRPELQDWLRQ ZLWK $$ RU $$ FRQILJXUDWLRQ UHVSHFWLYHO\ DW WKH VLOYHU,f FHQWHU 7KH ODWWHU QRPHQFODWXUH VXJJHVWHG IRU WULJRQDO FRPSOH[HV DQG GHVFULEH WKH FRQILJXUDWLRQV ZLWKRXW UHIHUHQFH WR DQ\ NQRZQ

PAGE 132

VWUXFWXUHA WKH WZR DEVROXWH FRQILJXUDWLRQ DUH GHVLJQDWHG DV $ DQG $ )LJXUH f )LJXUH 7KH &RPSOH[ RI $J >56f53\&+ 1f &\FORKH[DQH@ RQH OLJDQG LV RPLWWHGf $ ULJKWKDQGHG KHO LFLO\ $ OHIWKDQGHG KFOLFLW\ YLHZHG GRZQ WKH & D[LV $ DQG % FRQYH\ WKH FKHODWH ULQJ DV\PPHWU\ )LJXUH 7KH 1RPHQFODWXUH IRU 7ULJRQDO &RPSOH[HV

PAGE 133

/HKQ DQG KLV FRZRUNHU UHSRUWHG WKH GLPHULF FRPSOH[ FDWLRQ >&X343f@ IRUPHG E\ WZR TXDWHUS\ULGLQH OLJDQG 343f DQG WZR &X,f LRQV LQ -n 7KH PRGLILFDWLRQ RI WKH 343 OLJDQG DQG H[WHQVLRQ RI LWV EDVLF IHDWXUHV KDG EHHQ VWXGLHG 7KH\ UHSRUWHGA WKHLU UHVXOWV RQ D FODVV RI RUJDQLF OLJDQGV RI SRO\nELS\ULGLQHf ZKLFK E\ ELQGLQJ PHWDO LRQV RI VSHFLILF FRRUGLQDWLRQ JHRPHWU\ XQGHUJR VSRQWDQHRXV RUJDQLn ]DWLRQ LQWR KHOLFDO SRO\PHWDOOLF FRPSOH[HV 7KH\ GHVFULEHG WKH V\QWKHVLV DQG SURSHUWLHV RI VRPH PHWDO FRPSOH[HV RI WKH ILUVW WZR PHPEHUV %3 DQG %3 RI VXFK D VHULHV RI ROLJRELS\ULGLQH OLJDQG )LJXUH f 7KH FU\VWDO VWUXFWXUH RI >&X%3f@ ZDV )LJXUH 2OLJRELS\ULGLQH /LJDQGV

PAGE 134

GHWHUPLQHG 7KUHH YLHZV RI WKH GRXEOH VWUDQGHG KHOLFDWH FRPSOH[HV ZHUH JLYHQ LQ WKHLU SDSHU ,QRUJDQLF GRXEOH KHOLFDO FRPSOH[HV KDYH EHHQ VWXGLHG LQ RXU JURXS ,Q WKLV FKDSWHU ZLOO GHVFULEH WZR LQRUJDQLF GRXEOH KHOLFDO FRPSOH[HV ZKLFK KDYH EHHQ V\QWKHVL]HG UHFHQWO\ EDVHG RQ WKH VWXGLHV RQ QRQSODQDU FRPSOH[HV 7KH VWUXFWXUHV RI WKH WZR FRPSOH[HV KDYH EHHQ FKDUDFWHUL]HG E\ [UD\ VWXGLHV WR XQGHUVWDQG WKH IHDWXUHV RI GRXEOH KHOL[ VHOIDVVHPEOLQJ PROHFXODU GHYLFHV DQG VXSHUPROHFXODU VWUXFWXUHV ([SHULPHQWDO 6HFWLRQ 7ZR PHWDO FRPSOH[HV KDYH EHHQ V\QWKHVL]HG IRU VWXG\LQJ LQRUJDQLF GRXEOH KHOLFDO VWUXFWXUHV 2QH RI WKHP LV WKH FRPSOH[ RI &X ZLWK ELVDFHW\OS\ULGLQHf VXFFLQLF DFLG GLK\GUD]RQH DSVKf 7KH RWKHU LV WKH FRPSOH[ RI 1L ZLWK ELVS\ULGLQHFDUER[DOGHK\GHf VXFFLQLF DFLG GLK\GUD]RQH SFVKf &RSSHU,,f &RPSOH[ 6\QWKHVLV RI FRSSHU FRPSOH[ &RSSHU QLWUDWH J PPROf ZDV PL[HG ZLWK DFHW\O S\ULGLQH b J PPROf LQ O22P/ HWKDQRO JLYLQJ D SXUSOH VROXWLRQ 7R WKH SXUSOH VROXWLRQ VXFFLQLF DFLG GLK\GUD]LGH b J O2PPROf ZDV DGGHG 7KH PL[WXUH ZDV KHDWHG LQ DQ RLO EDWK IRU DERXW KRXUV DW r& FRROHG

PAGE 135

DQG ILOWHUHG 7KH JUHHQ VROLG ZDV UHFU\VWDOOL]HG IURP PHWKDQRO $ IXUWKHU UHFU\VWDOOL]DWLRQ IURP PHWKDQRO DQG HWKDQROZDWHU JDYH EHDXWLIXO JUHHQ FU\VWDOV VXLWDEOH IRU [ UD\ GLIIUDFWLRQ VWXGLHV &U\VWDO VWUXFWXUH RI FRSSHU FRPSOH[ 7R HVWDEOLVK XQHJXLYRFDOO\ WKH JHRPHWU\ RI WKH DERYH FRQGHQVDWLRQ SURGXFW WKH VWUXFWXUH ZDV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ $ ZHOO VKDSHG FU\VWDO RI [ [ PP VL]H ZDV XVHG IRU LQWHQVLW\ PHDVXUHPHQWV RQ D 6LHPHQV 5P( GLIIUDFWRPHWHU ZLWK D JUDSKLWH PRQRFKURPDWRU 0R.D UDGLDWLRQ 5HIOHFWLRQV ZHUH FROOHFWHG LQ WKH UDQJH r XVLQJ WKH VFDQ PRGH DQG D YDULDEOH VFDQ VSHHG r PLQnf 7ZR FKHFN UHIOHFWLRQV PHDVXUHG DIWHU HYHU\ UHIOHFWLRQV VKRZHG DQ LQWHQVLW\ YDULDWLRQ RI sb 2I UHIOHFWLRQV PHDVXUHG ZLWK ,!X,f ZHUH XVHG LQ FDOFXODWLRQV 3HUWLQHQW GDWD DUH OLVWHG LQ 7DEOH 7KH VWUXFWXUH ZDV VROYHG E\ WKH KHDY\ DWRP PHWKRG DQG UHILQHG 7KH SRVLWLRQV RI WZHOYH K\GURJHQ DWRPV ZHUH IRXQG IURP WKH GLIIHUHQFH PDSV 7KH WZHOYH +DWRPV ZHUH UHILQHG ZLWK LVRWURSLF WKHUPDO SHUDPHWHUV 7KH UHVW RI K\GURJHQ DWRPV ZHUH FDOFXODWHG LQ LGHDOL]HG SRVLWLRQV 7KH LVRWURSLF K\GURJHQ WHPSHUDWXUH IDFWRU 8 RI ZDV DVVLJQHG WR WKHVH + DWRPV %HFDXVH RI GLVRUGHU WKH VROYHQW DQG ZDWHU PROHFXOHV FRXOG QRW EH FRPSOHWHO\ UHVROYHG 5HILQHPHQW ZLWK DQLVRWURSLF WKHUPDO IDFWRUV IRU WKH FRPSOH[ FDWLRQ OHG WR 5 DQG

PAGE 136

A ZKHUH Z Dn 7KH UHVLGXDO SHDNV LQ WKH ILQDO GLIIHUHQFH PDS ZHUH LQ WKH UDQJH IURP WR H$f $OO FDOFXODWLRQV ZHUH FDUULHG RXW XVLQJ WKH '(6. 723 6+(/;7/ 1LFROHW f &U\VWDO GDWD DUH VXPPDUL]HG LQ 7DEOH WKURXJK 7KH VWUXFWXUH LV LOOXVWUDWHG LQ )LJXUH 1LFNHO,,f &RPSOH[ 6\QWKHVLV RI QLFNHO FRPSOH[ 3HUFKORULF DFLG bf ZDV DGGHG WR 1L&f b J PPROf DW URRP WHPSHUDWXUH SXW LQWR D r RLO EDWK DQG DOORZHG WR FRRO WR URRP WHPSHUDWXUH %HDXWLIXO JUHHQ QHHGOHV ZHUH IRUPHG $TXHRXV VRGLXP K\GUR[LGH ZDV DGGHG WR JLYH D S+ RI 7KH QLFNHO VROXWLRQ LQ DERXW P/ ZDWHU ZDV DGGHG WR VXFFLQLF DFLG GLK\GUD]LGH b J PPROf DQG S\ULGLQH FDUER[DOGHK\GH b J PPROf LQ O22P/ HWKDQRO 7KH PL[WXUH ZDV KHDWHG LQ DQ RLO EDWK DW r& RYHUQLJKW FRROHG DQG ILOWHUHG 7KH JUHHQJUH\ SUHFLSLWDWHV ZHUH UHFU\VWDOOL]HG IURP HWKDQRO PHWKDQRO DQG ZDWHU 8QGHU D PLFURVFRSH WKUHH GLIIHUHQW SURGXFWV FRXOG EH REVHUYHG EURZQ JUH\ DQG JUHHQEOXH JUH\ SUHFLSLWDWHV $IWHU UHFU\VWDOOL]DWLRQ RQO\ WKH EURZQ FU\VWDOV ZHUH VXLWDEOH IRU [UD\ GLIIUDFWLRQ VWXGLHV &U\VWDO VWUXFWXUH RI QLFNHO FRPSOH[ 7R HVWDEOLVK XQHTXLYRFDOO\ WKH LGHQWLW\ RI WKH DERYH FRQGHQVDWLRQ SURGXFW WKH VWUXFWXUH ZDV GHWHUPLQHG E\ ;UD\ GLIIUDFWLRQ $ ZHOO VKDSHG FU\VWDO RI [ [ PP

PAGE 137

7$%/( &U\VWDO 'DWD IRU >&X DSVKf @ 1f )RUPXOD &+1r&X 0ROHFXODU :HLJKW &U\VWDO 6\VWHP 0RQRFOLQLF 6SDFH *URXS 3 MQ D $ f E $ f F $ f D GHJ r 3 GHJ f GHJ r 9ROXPH $ f = GFDOHGf JFP &U\VWDO 6L]H PP ; ; 5DGLDWLRQ 8VHG 0R.D + FPn 5DQJH GHJ 1XPEHU RI FROOHFWHG GDWD 'DWD ZLWK ,!DO *RRGQHVV RI )LW 5 b 5Z b r 5HTXLUHG E\ WKH V\PPHWU\ RI VSDFH JURXS

PAGE 138

7$%/( )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU >&X DSVKf @ 12Vf + $720 ; < = 8r >&X DSVKf @ &XOf f f f f &Xf f f f f 1 f f f f f & f f f f f & f f f f f & f f f f f & f f f f f & f f f f f & f f f f f 1 f f f f f 1 f f f f f &f f f f f &OOf f f f f & f f f f f & f f f f f 1 f f f f f 1 f f f f f & f f f f f & f f f f f 1 f f f f f & f f f f f & f f f f f & f f f f f & f f f f f & f f f f f f f f f f f f f f f & f f f f f 1Onf f f f f & f f f f f & f f f f f & f f f f f &nf f f f f & nf f f f f & f f f f f 1 nf f f f f 1 n f f f f f &rf f f f f &+nf f f f f

PAGE 139

7$%/( &RQWLQXHG $720 ; < = 8r & n f f f f f & n f f f f f 1 n f f f f f 1 n f f f f f &nf f f f f & n f f f f f 1 n f f f f f & n f f f f f & n f f f f f &n f f f f f & n f f f f f & n f f f f f n f f f f f nf f f f f & nf f f f f QR 1f@ f f f f >+f@ f f f f >f @ f f f f >f @ f f f f 1>f @ f f f f >f @ f f f f >f @ f f f f >f @ f f f f >f @ f f f f K :Of f f f f :f f f f f :f f f f f :f f f f f :f f f f f r (TXLYDOHQW LVRWURSLF 8 GHILQHG DV RQH WKLUG RI WKH WUDFH RI WKH RUWKRJRQDOLVHG WHQVRU

PAGE 140

7$%/( %RQG 'LVWDQFHV $f IRU >&X DSVKf @ 16f %RQG 'LVWDQFHV $f &X f 1 f f &Xf1f f &Xff f &Xf1nf &Xfnf f &8f1nf f f &X f 1 f f &Xf1f f &Xff f &Xf1f f &Xf1nf f &Xfnf f 1f&f f 1f&f f &f&f f &f&f f &f&f f &f&f f &f &f f &f1f f &f&f f 1f1f f 1f&f f &f&OOf f &ff f &OOf&f f &f&f f &f1f f &ff f 1f1f f 1f&f f &f&f f &f&f f & f1f f &f&f f 1f&f f &f&f f &f&f f &f&f 1Orff&nf f 1nf&nf f f &nf&nf f &nf&nf f &nf&nf f &f&nf f &nf&nf f &nf1 n f f &nf&nf f 1nf1nf f 1nf& n f f &nf&OOnf f &nf n f f &nf& rf f &nf& n f f &nf1 n f f &nfnf f 1nf1 n f f 1nf& f f &f&nf f &nf& f f & ff f§1 ff f &nf&ff f 1nf& n f f &nf& n f f &nf&nf f &nf& n f f 1>f@>f@ 1>Of@>f@ f f 1 > f @>f @ f 1>f@>f@ f 1 f@>f @ f 1>f@> f @ >f@>f @ f f 1>f@>f @ f

PAGE 141

7$%/( %RQG $QJOHV rf IRU >&X DSVKf @ 16f %RQG $QJOHV rf >&X DSVKf @ 1f&Xf1f 1f&Xff 1f&Xf1nf 1 f &X f 1 n f f &X f 1 nf 1f&Xf2nf f&Xf2nf 1nf&Xf2nf 1f&Xff 1f&Xf1nf f&Xf1nf 1f&Xf1nf 1nf &Xf1 n f 1f&Xf n f 1nf &Xf2nf &Xf1f&f &f1f&f 1f&f&f &f&f&f &f&f&f &f&f1f 1f&f&f &XOf1f1f 1f1f&f 1f&ff &f&f&f &f&f1f 1f&ff &Xf1f1f 1f1f&f 1f&f&f &f&f1f 1f&f&f &Xf1f&f 1f&f&f &f&f&f &Xff&f &Xf1nf&nf &nf1Onf&nf 1nf&nf&nf &f&nf&nf f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f 1f&Xf2f 1&Xf1f f&XOf1nf 1f&Xf1nf 1nf&Xf1nf 1f&Xfnf 1nf&Xfnf 1f&Xf1f 1f&Xff 1f&Xf1f 1f&Xf1nf f&Xf1nf 1f&Xf n f 1nf&Xf2nf 1nf&Xf2nf &Xf1f&f 1Of&f&f &f&f&f &f &f&f 1f&f&f &f&f&f &X f 1 f & f &f1f1f 1f&f&f &f&f2f &OOf&f&f &f&f2f &f1f1f &Xf1f&f 1f&ff§&f &f&f&f &f&f&f &Xf1f&f &f1f&f &f&f&f &f&f&f &X f 2 f & f &Xf1f&nf 1Orf&nf&nf &nf&nf&nf &f&nf&nf f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 142

7$%/( &RQWLQXHG %RQG $QJOHV rf & rf& rf&nf & nf&nf1nf 1 nf&nf&nf &Xf1nf1 rf 1nf1nf& n f 1nf&nf2nf &nf&rf&nf &nf&nf1nf 1nf&nfnf &X f 1 n f 1 n f 1nf1nf&f 1f&nf&nf &f&nf1ff 1f&nf&nf &X f 1 n f & f 1nf&nf&nf &nf&nf&nf &Xfnf&nf f f f f f f f f f f f f f f f f f f 1Onf&nf&nf &nf&nf& n f &Xf1nf&nf &nf1nf1f 1nf&f&nf &nf&nf2 n f &nf&nf&nf &nf& n f2nf &nf1nf1nf &Xf1nf&f 1nf&nf&nf &nf&nf&f & nf&f&nf &Xf1nf&nf &nf1nf&nf &nf&nf&nf &nf&nf&nf &Xf nf&nf f f f f f f f f f f f f f f f f f f QR >f1>Of>f f >f1>Of>f f >f1>f>f f >f1>f>f f > f1>f2>f f 1> f>f>f f >f1>f>f f >f1>f>f f >f1>f>f f >f1>f>f f 1>f>f>f f

PAGE 143

7$%/( $QLVRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU >&XDSVKf@ 1f XQ X X X X X >&X DSVKf @ &Xf f f f f f f &Xf f f f f f f 1 f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f & f f f f f f f 1 f f f f f f f 1 f f f f f f f &f f f f f f f &OOf f f f f f f & f f f f f f f & f f f f f f f 1 f f f f f f f 1 f f f f f f f &f f f f f f f & f f f f f f f 1 f f f f f f f & f f f f f f f & f f f f f f f &f f f f f f f & f f f f f f f & f f f f f f f f f f f f f f f f f f f f f & f f f f f f f 1Onf & nf f f f f f f f f f f f f & nf f f f f f f & nf f f f f f f & nf f f f f f f & nf & n f f f f f f f f f f f f f 1 f 1 n f f f f f f f f f f f f f &n f &OOnf f f f f f f f f f f f f

PAGE 144

7$%/( &RQWLQXHG 8 X 8 8 8 & nf & nf 1 n f 1 n f &f & nf 1 n f & f &f & n f & nf & f nf n f & n f 12 1>f@ >+f@ >f @ >f @ 1> f @ > f @ > f @ > f @ > f @ :Of :f :f :f :f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f 7KH DQLVRWURSLF WHPSHUDWXUH IDFWRU H[SRQHQW WDNHV WKH IRUP WW KDr8QNEr8OFr8NOErFr8KODrFr8KNDrEr8f

PAGE 145

7$%/( +$WRP &RRUGLQDWHV [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[O2f IRU >&XDSVKf@ 1f $720 ; < = 8 + $WRPV + f RI )LUVW DSVKf + f f f f f + f f f f f + f +$f f f f f +%f f f f f +$f + %f + f +f + f + f +$f +%f +&f +$f +%f +&f + $WRPV +nf RI 6HFRQG DSVKf + n f + f + f +OOn$f f f f f +OOn%f f f f f +n$f f f f f + n %f f f f f + n f f f f f + n f f f f f +nf f f f f + nf f f f f +n$f +%f +n&f +n$f +n%f +n&f

PAGE 146

)LJXUH $ 9LHZ RI WKH 6WUXFWXUH RI >&XDSVKf@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV

PAGE 148

VL]H ZDV XVHG IRU LQWHQVLW\ PHDVXUHPHQWV RQ D 6LHPHQV 5P( GLIIUDFWRPHWHU ZLWK D JUDSKLWH PRQRFKURPDWRU 0R.D UDGLDWLRQ 5HIOHFWLRQV ZHUH FROOHFWHG LQ WKH UDQJH r XVLQJ WKH VFDQ PRGH DQG D YDULDEOH VFDQ VSHHG r PLQnf 7ZR FKHFN UHIOHFWLRQV PHDVXUHG DIWHU HYHU\ UHIOHFWLRQV VKRZHG DQ LQWHQVLW\ YDULDWLRQ RI sb 2I UHIOHFWLRQV PHDVXUHG ZLWK )!2FW ZHUH XVHG LQ FDOFXODWLRQV 3HUWLQHQW GDWD DUH OLVWHG LQ 7DEOH 7KH VWUXFWXUH ZDV VROYHG E\ WKH KHDY\ DWRP PHWKRG %HFDXVH RI GLVRUGHU RQO\ WZR QLFNHO DWRPV ZHUH UHILQHG ZLWK DQLVRWURSLF WKHUPDO IDFWRUV 7KH SRVLWLRQV RI DOO K\GURJHQ DWRPV KDYH QRW EHHQ GHWHUPLQHG DW DOO 7KH ILQDO UHILQHPHQW RI DOO SDUDPHWHUV f FRQYHUJHG DW 5 DQG 5Z ZKHUH Z Dn 7KH UHVLGXDO SHDNV LQ WKH ILQDO GLIIHUHQFH PDS ZHUH LQ WKH UDQJH IURP WR H$f $OO FDOFXODWLRQV ZHUH FDUULHG RXW XVLQJ WKH '(6. 723 6+(/;7/ 1LFROHW f &U\VWDO GDWD DUH VXPPDUL]HG LQ 7DEOH WKURXJK 7KH VWUXFWXUH LV LOOXVWUDWHG LQ )LJXUH 'HVFULSWLRQ DQG 'LVFXVVLRQ 7ZR GLIIHUHQW OLJDQGV KDYH EHHQ XVHG WR V\QWKHVL]H FRSSHU DQG QLFNHO FRPSOH[HV 2QH LV DFHW\OS\ULGLQH VXFFLQLF DFLG GLK\GUD]RQH DSVKf DQRWKHU LV S\ULGLQHFDUER[DOGHK\GH VXFFLQLF DFLG GLK\GUD]RQH SFVKf 7KH JRDO LV WR XQGHUVWDQG WKH VWHULF HIIHFW RQ WKH IRUPDWLRQ RI DQ LQRUJDQLF GRXEOH KHOL[ ZKHQ WKH VLGH FKDLQV RI WKH OLJDQGV KDYH PHWK\O JURXSV RU QRW 8QIRUWXQDWHO\ WKH QLFNHO FRPSOH[ FRXOG QRW EH GHWHUPLQHG DFFXUDWHO\

PAGE 149

7$%/( &U\VWDO 'DWD IRU >1LSFVKf@ &f )RUPXOD AAAp A AA A 0ROHFXODU :HLJKW &U\VWDO 6\VWHP 0RQRFOLQLF 6SDFH *URXS & F D $ f E $ f F $ f D GHJ r 3 L GHJ f GHJ r 9ROXPH $ f = &U\VWDO 6L]H PP ; ; 5DGLDWLRQ 8VHG 0R.D + FPn 5DQJH GHJ 1XPEHU RI FROOHFWHG GDWD 'DWD ZLWK ,!DO *RRGQHVV RI )LW 5 b 5r b r 5HTXLUHG E\ WKH V\PPHWU\ RI VSDFH JURXS

PAGE 150

7$%/( )LQDO 3RVLWLRQDO 3DUDPHWHU [ f DQG ,VRWURSLF 7KHUPDO 3DUDPHWHUV ƒ[Of IRU >1LSFVKf@ &f $720 ; < = 8 >1L SFVKf @ 1L f r 1L f r 1 f & f & f & f & f & f & f 1 f 1 f &f &OOf & f & f 1 f 1 f & f & f 1 f & f & f & f & f f f 1Onf & n f & n f & f & n f & n f & n f 1 n f 1 n f &n f &OOnf

PAGE 151

7$%/( &RQWLQXHG $720 ; < = 8 & n f & n f 1 n f 1nf &nf & n f 1f & n f & nf & nf & nf & n f n f &n &O>Of@ >+f@ >f @ > f @ >f@ &O> f @ >f@ > f @ > f@ > f @ KR :Of : f : f r (TXLYDOHQW LVRWURSLF 8 GHILQHG DV RQH WKLUG RI WKH WUDFH RI WKH RUWKRJRQDO LVHG 8cM WHQVRU

PAGE 152

7$%/( %RQG 'LVWDQFHV ƒf IRU >1LSFVKf@ &f %RQG 'LVWDQFHVr ƒf 1Lf1f 1Lf1f 1Lff 1Lf1nf 1Lf1nf 1LOfnf 1Lf1f 1Lf1f 1Lff 1Lf1rf 1Lf1nf 1Lf2nf 1Of &f 1f&f &ff§&f &f&f & f f§& f &f&f & f f§& f &f1f 1f1f 1f&f &f&OOf &ff &OOf&f &f&f & f 1 f &ff 1f1f 1f&f &f&f &f1f &f&f 1f&f &f&f &f&f &f&f 1n f f§& n f 1f&nf &nf&nf &nf&f & n f & nf &nf&nf &nf&nf &f1nf 1nf1 n f 1f&f &nf&OOnf &fnf &nf& n f &nf&nf &nf1 n f &nfnf 1nf1nf 1nf&nf &f& n f &nf1f & f& n f 1nf&nf &nf&nf &nf&nf &nf&f &OOff &Off &Off &Off &Off &Off &Off &Off r 7KH HVG DUH QRW VKRZQ LQ WKH GDWD

PAGE 153

7$%/( %RQG $QJOHV rf IRU >1LSFVKf@ &f %RQG $QJOHVr rf >1L SFVKf @ 1f1Lf1f 1f1Lff 1f1Lf1f 1f1Lf1nf f1LOf1nf 1f1Lfnf f1Lfnf 1nf1Lfnf 1f1Lff 1f1Lf1nf f1Lf1nf 1f1Lf1nf 1nf1Lf1nf 1f1Lfnf 1nf1Lf f 1Lf1f&f & f 1 f & f 1Of&f&f &f&f&f &f&f&f &f&f1f 1Lf1f1f 1 f 1 f & f 1f&ff &f&f&f &f&f1f 1f&ff 1Lf1f1f 1f1f&f &f&f1f 1f&f&f 1Lf1f&f 1f&f&f &f&f&f 1Lff&f 1Lf1nf&nf &nf1nf&nf 1nf&nf&nf & nf&f&nf 1f1Lf2f 1f1Lf1nf f1Lf1f 1f1Lf1nf 1nf1Lf1nf 1f1LOfnf 1Orf1LOfnf 1f1Lf1f 1f1Lff 1f1Lf1nf 1f1Lf1nf f1Lf1nf 1Of1Lfnf f1Lf2nf 1nf1Lfrf 1Lf1f&f 1f&f&f &f&f&f &f&f&f 1f &f&f 1Lf1f&f &f1f1f 1f&f&f &f&f2f &f&f&f &f&f2f &f1f1f 1Lf1f&f 1f&f&f &f&f&f 1Lf1f&f &f1f&f &f&f&f &f&f&f 1Lf2f&f 1Lf1f&nf 1nf&f&f &nf&nf&f &nf&nf&nf

PAGE 154

RAFRRR?R?+QRUf0n2Zmf+LQ 7IQ6+W}+m0RAK:ULRUn2LQ 1+112UOUO212++1UO02 +UOUO+++++UOUOUO++ULUO+ QQnI LQ U FP R?KK InOUOQLUOO2UOQLInUOQMQLQ LQ0-LAnn88A888A ,,,,8,,8,,,8 f§ f§f§ f§, R FP QR YR U FR R FP f§ f§ f§ 2UOUOUOUOLQ++&2+1LnLnI 12 U+ A U+ n+ f§n f§ f§ &0 f§ f§ f§ 8 8 8 f§ 2 2 n 2 8 f§ , , , 2 r Gf U+ 2n & + ++101LQL2L10-O01 Lf§, Yf§ Wnn 2, + U+ U+ U+ nf§ U+ U+ A U+ U+ U+ Yf§n 7 e 2 &4 2 2 &2 I &2 -O K + + 1 2 + + Lf§, Lf§, ,7f 1 &2 U+ 2 + +r 2O Q 1 + 1 U+ U+ U+ U+ 2 9' 2 1QRRQ 1 UO + 1 + + U+ U+ 1 2 I R U P LQ K R UO UO + + 7 f e e f+ ‘3 e 2 R ,f§, D &4 (K f§‘} &0 A A 12 &2 &0 2 &0 2UOUO&1AUUOUO&02,&0&02 f§ f§ f§ 2 &0 VU Vf§ Vf§ U+ A Vf§n rf§ U+ f§ f§ U+ LRHRRL+A8A88A88A ZZf§n 2 , , 8 , 8 UUf§ _ QQQ LQ U Ur RL K f§ f f f 2UOUOUO:UO+UO&2U+OnLQ LQ I &2 U+ 1f§ nnf§ 1f§ U+ f§f f§ f§ U+ nnf§n Vf§n &0 f§n A 2 X 2 f§n 8 8 Z 8 2 , ,2 , , _ _ 2&00f10n2&2L1&22+ + + UO Vf§ UO + UO f§ U+ &0 7' LQ Q WR K FR 0 &1 ,V UO + 2 2 &0 &0 U+ U+ 2 + U+ U+ U+ + U+ Q + A Q + UO + UO &0 &0 &0 2 2 2 2 2 2 , , , + UO UO 1 &0 &0 R R R R R R L L L L L L U+ U+ &2 U+ Lf§, &2 + + U+ &0 &0 &0 2 2 2 2 2 2 f F2 &2 7f 3 R U R RL ‘mW RL e f+ 2, K 2 2 + 2, &0 2 2 e &2 &0 &2 + &1 &2 +r + + UO &0 &0 &0 3 e R R R R R R , , , + + U+ &0 &0 &0 &R R R X R , , , FX S 7 Gf + &0 1 + &0 &0 U+ U+ U+ &0 &0 &0 2 2 2 2 2 2 G! (K

PAGE 155

)LJXUH $ 9LHZ RI WKH 6WUXFWXUH RI >1LSFVKf@ 6KRZLQJ WKH $WRPLF 1XPEHULQJ DQG 7KHUPDO (OOLSVRLGV 7KH SRVLWLRQV RI + DWRPV KDYH QRW GHWHUPLQHGf

PAGE 157

7KH HPSKDVLV ZLOO EH SXW RQ WKH FRSSHU FRPSOH[ LQ WKH GLVFXVVLRQ VHFWLRQ DOWKRXJK WKH VLPLODU UHVXOWV ZHUH REWDLQHG IRU WKH QLFNHO FRPSOH[ ,Q WKH FRSSHU FRPSOH[ WZR DSVK OLJDQGV QXPEHULQJ 1&& & DQG 1n&n& n& UHVSHFWLYHO\ FRRUGLQDWH WR WZR FRSSHU LRQV 7KH ILUVW RQH LV QDPHG DV DVSKO DQG VHFRQG DV DVSK IRU FRQYHQLHQFH %HIRUH GLVFXVVLQJ WKH FRSSHU FRPSOH[ LQ GHWDLO D EULHI GHVFULSWLRQ ZLOO EH JLYHQ RI WKH GLIIHUHQW SURGXFWV LQ QLFNHO V\VWHP 'LIIHUHQW 3URGXFWV LQ WKH 1LFNHO 6\VWHP 6DFFRQLrr VWXGLHG WKH UHDFWLRQV RI K\GUD]LGHV ZLWK QLFNHO DFHWDWH DQG VDOLF\ODOGHK\GH DQG LQGLFDWHG WKH RFFXUUHQFH WKH VHYHUDO FRPSHWLWLYH UHDFWLRQV )LJXUH f $FFRUGLQJ WKH QDWXUH RI WKH 5 JURXS RQH RI WKUHH SRVVLEOH FRPSOH[HV IRUPV DV WKH PDLQ SURGXFW D JUHHQ SDUDPDJQHWLF LRQLF FRPSOH[ ,f DQ RUDQJH GLDPDJQHWLF SODQDU FRPSOH[ ,,f RU D GHHS UHG GLDPDJQHWLF FRPSOH[ ,,,f $W OHDVW WKUHH GLIIHUHQW SURGXFWV DOVR ZHUH IRXQG LQ WKH UHDFWLRQ RI 1L&Of ZLWK VXFFLQLF DFLG GLK\GUD]LGH DQG S\ULGLQH FDUER[DOGHK\GH 7KH VWUXFWXUH RI WKH EURZQ FU\VWDOV KDV EHHQ GHWHUPLQHG E\ DQ [UD\ VWXG\ DQG VKRZV WKDW WZR PROHFXOHV RI S\ULGLQH FDUER[DOGHK\GH UHDFW ZLWK RQH PROHFXOH RI VXFFLQLF DFLG GLK\GUD]LGH WR IRUP ELVS\ULGLQH FDUER[DOGHK\GHf VXFFLQLF DFLG GLK\GUD]RQH 7ZR RI WKH OLJDQGV WKHQ FRRUGLQDWH WR WZR 1L LRQV WR JHQHUDWH DQ LQRUJDQLF GRXEOH KHOLFDO FRPSRXQG ,I RQH PROHFXOH RI S\ULGLQH

PAGE 158

2 UFQKQK Q DON\O SKHQ\O ? ?. SKHQ\ODON\O f f§ + L < 2+RU1+ f 2 +1fFBU , 5&Q+ 2 ,f JUHHQ < f 1 &5 L L 2f§ + , 1LV 1+1&5 ,,f RUDQJH < f ,,,f GHHS UHG < f )LJXUH 7KH &RPSHWLWLYH 5HDFWLRQV RI +\GUD]LGHV ZLWK 1L,,f DQG 6DOLF\ODGHK\GH

PAGE 159

FDUER[DOGHK\GH UHDFWV ZLWK RQH PROHFXOH RI VXFFLQLF DFLG GLK\GUD]LGH WKHQ RWKHU SRVVLEOH FRPSHWLWLYH UHDFWLRQV PLJKW RFFXU )LJXUH f 1 &5 ; +&1 4 1L + 1 1+1&5 ,f R R KQ ,, + + ,, FFFF ? 1+ QK 1 &f§5 ,, ,,,f R 2 ,, 5 L&+b 1+ ] QK )LJXUH 3RVVLEOH 5HDFWLRQV RI VDGK ZLWK 1LLLf DQG S\ULGLQHFDUER[DOGHK\GH

PAGE 160

7KH V\VWHP LV FRPSOLFDWHG 7KH GHWDLOHG VWXG\ RQ WKH VHYHUDO SURGXFWV KDV QRW EHHQ GRQH \HW 7KH IROORZLQJ GLVFXVVLRQ VHFWLRQV PDLQO\ ZLOO EH FRQFHUQHG ZLWK WKH FRSSHU FRPSOH[ %LV7ULGHQWDWH &KHODWH 7KHUH DUH VL[ SRVVLEOH GRQRU DWRPV LQ DSVK WZR R[\JHQ DWRPV DQG IRXU RI VL[ QLWURJHQ DWRPV 7KHUHIRUH WKH OLJDQG PLJKW EH H[SHFWHG WR IXQFWLRQ DV D VH[DGHQWDWH FKHODWLQJ DJHQW +RZHYHU DSVK LV FDSDEOH RI FRRUGLQDWLQJ ZLWK WZR PHWDO LRQV DV D ELVWULGHQWDWH FKHODWH %DVHG RQ WKH UHVXOWV IURP WKH [UD\ VWXGLHV LQ WKH FRSSHU FRPSOH[ DSVK IXQFWLRQV DV D ELVWULGHQWDWH FKHODWLQJ OLJDQG FRRUGLQDWLQJ WR WZR PHWDO &X LRQV WR IRUP DQ LQRUJDQLF GRXEOH KHOL[ 7KH GRQRU DWRPV LQ WULGHQWDWH FKHODWLQJ DJHQWV FDQ EH DUUDQJHG LQ OLQHDU RU EUDQFKHG SDWWHUV DV VKRZQ LQ )LJXUH )LJXUH 3RVVLEOH 3DWWHUQV IRU 7ULGHQWDWH &KHODWLQJ $JHQWV

PAGE 161

7KH OLQHDU WULGHQWDWH FKHODWLQJ DJHQW SDWWHUQ f FDQ EH VXEGLYLGHG LQWR SODQDU DQG QRQSODQDU W\SHV $ SODQDU W\SH LV RQH LQ ZKLFK WKH OLJDQG LV DUUDQJHG LQ DQ HTXDWRULDO SODQH )LJXUH Df 2Q WKH RWKHU KDQG D QRQSODQDU W\SH RI OLJDQG JLYH ULVH WR D PHWDO FRPSOH[ ZLWK YLFLQDO FRQILJXUDWLRQ )LJXUH Ef 7KH QDWXUH RI WKH FHQWUDO GRQRU DWRP < FDQ D E )LJXUH 3ODQDU DQG 1RQSODQDU &RQILJXUDWLRQV IRU 7ULGHQWDWH /LJDQGV LQIOXHQFH WKH SUHIHUHQFH IRU RQH RU RWKHU FRQILJXUDWLRQ ,I WKH FHQWUDO GRQRU DWRP LV SDUW RI DQ XQVDWXUDWHG JURXS WKH GLVWULEXWLRQ RI ERQGV DERXW FHQWUDO DWRP ZRXOG WHQG WR EH FRSODQDU DQG WKHUHIRUH FRQILJXUDWLRQDf ZRXOG EH OHVV VWUDLQHG WKDQ FRQILJXUDWLRQEf ;UD\ FU\VWDO VWUXFWXUDO DQDO\VLV VKRZV WKDW WULGHQWDWH FKHODWLQJ PRLHWLHV KDYH D SUHIHUHQFH IRU SODQDU FRQILJXUDWLRQ Df 7DEOH f

PAGE 162

7$%/( 6WUXFWXUDO $QDO\VLV IRU /LJDQG DSVK 0RLHW\ %RQG $QJOHV rf ;&X< <&X= =&X; 1, 1 f f f 11 f f f 1,n1nn f f f 11nn f f f

PAGE 163

'HSURWRQDWLRQ RI WKH /LJDQG $FFRUGLQJ WR WKH [UD\ UHVXOWV D GLFDWLRQ LRQ >&X DSVKf @ LV IRUPHG E\ UHPRYDO RI D SURWRQ IURP HDFK OLJDQG LH RQH IURP 1 RU 1 DQG WKH RWKHU IURP 1n RU 1n 1HLWKHU RI WKHVH IRXU DWRPV LV FRRUGLQDWHG WR WKH &X LRQV $ IXOO\ FRQMXJDWHG OLJDQG FRXOG EH DFKLHYHG E\ GHSURWRQDWLRQ WR JLYH WKH GHORFDOL]HG DQLRQ )LJXUH f 7KLV LGHD KDV H[SORLWHG E\ /LRQV DQG KLV FRZRUNHUV ZKR VKRZHG WKDW KLJKO\ VWDEOH FRPSOH[HV FRXOG EH SUHSDUHG E\ GHSURWRQDWLRQ ,prp $ VXPPDU\ RI WKH ERQG GLVWDQFHV RI YDULRXV SURWRQDWHG DQG GHSURWRQDWHG OLJDQGV LV JLYHQ LQ 7DEOH 7KLV DSSHDUV WR EH QR VLJQLILFDQW GLIIHUHQFHV RI WKH ERQG GLVWDQFHV EHWZHHQ WKH QHXWUDO DQG GHSURWRQDWHG IRUPV 8QIRUWXQDWHO\ WKH GLVRUGHU RI WKH DQLRQV DQG VROYHQW PROHFXOHV LQ WKH YDULRXV FU\VWDOV KDV UHGXFHG WKH DFFXUDF\ RI WKH GHWHUPLQDWLRQ VR WKDW VPDOO FKDQJHV PD\ EH PDVNHG E\ ODUJH HVWLPDWHG VWDQGDUG GHYLDWLRQV HVSHFLDOO\ LQ WKH QLFNHO FRPSOH[ $OWKRXJK WKH GHSURWRQDWLRQ RI S\ULG\OK\GUD]RQHV LV ZHOO GRFXPHQWHG DGGLWLRQDO VWXGLHV RQ PRUH FRPSOH[HV RI ERWK GHSURWRQDWHG DQG SURWRQDWHG UHODWHG OLJDQGV DUH QHHGHG EHIRUH WKH GLPHUL]DWLRQ UHDFWLRQ DQG VSRQWDQHRXV IRUPDWLRQ RI WKH GRXEOH KHOL[ FDQ EH IXOO\ XQGHUVWRRG

PAGE 164

)LJXUH 3RVVLEOH &RQMXJDWHG )RUPV IRU 'HSURWRQDWHG DSVK /LJDQG

PAGE 165

7$%/( $ 6XPPDU\ RI WKH %RQG 'LVWDQFHV LQ 9DULRXV 3URWRQDWHG DQG 'HSURWRQDWHG /LJDQGV 0ROHFXOH && %RQG 'LVWDQFHVr ƒf & &1 11 f f f f f f f f f f f f f f f f f f frr f f f f f f f f f f f f f f f f f f f f f f f f f f f 1& && &1 1& f f f f f f f f f f f f f f f f f f frr f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f

PAGE 166

7$%/( &RQWLQXHG f DSVKO LQ WKLV ZRUN f DSVK LQ WKLV ZRUN f +VLS 1SLFROLQ\OLGHQH1nVDOLF\OROK\GUD]LQH LQ UHI >@ f +VLS LQ >&XVLSf +VLSf @ >&@ (W2+ LQ UHI >@ f VLS LQ >&XVLSf+VLSf@>&@(W2+ LQ UHI >@ f +GDSS LQ =Q+GDSS LQ UHI >@ +GDSS GLDFHW\OS\ULGLQH ELVnS\ULG\OK\GUD]RQH ZLWK =Q,,f f GDSS LQ =QGDSSf LQ UHI >@ f +GDSVF LQ >&X +GDSVFf &Of +@ &O + LQ UHI >@ r 7KH ODEHOV RI WKH DWRPV UHIHU WR WKH KDOI IUDJPHQW RI OLJDQG DSVKO LQ WKLV ZRUN QXPEHULQJ 1&&,2 rr (VWLPDWHG VWDQGDUG GHYLDWLRQV DUH LQ WKH UDQJH $f

PAGE 167

*HRPHWU\ RI WKH 3RO\KHGURQV $URXQG 0HWDO $WRPV $V VKRZQ LQ )LJXUH WKH WZR WULGHQWDWH PRLHWLHV RQH IURP DSVKO DQRWKHU IURP DSVKf FRRUGLQDWH WR WKH VDPH &X LRQ WKURXJK WKH FDUERQ\O R[\JHQ DWRP RQH K\GUD]LGH QLWURJHQ DWRP DQG S\ULGLQH QLWURJHQ DWRP IRU HDFK PRLHW\ IRUPLQJ DQ HORQJDWHG -DKQ7HOOHU HIIHFWf DQG GLVWRUWHG RFWDKHGUDO FRQILJXUDWLRQ $URXQG &XOf 11 IURP DSVKOf DUH HJXDWRULDO ZLWK 1n1n n IURP DSVKf RUWKRJRQDO WR LW WKH ODWWHU WZR EHLQJ LQYROYHG LQ WKH WZR ORQJ DSLFDO LQWHUDFWLRQV &XOf1n f DQG &XOfn f $f $URXQG &Xf1n1n n IURP DSVKf DUH HJXDWRULDO ZLWK PRLHW\ 11 IURP DSVKOf RUWKRJRQDO WR LW 1 DQG EHLQJ LQYROYHG LQ WKH HORQJDWHG D[LV &Xf1 f DQG &Xf f $f 7KH &X DQG &X1 FRRUGLQDWLRQ GLVWDQFHV DUH LQ DJUHHPHQW ZLWK WKH FRUUHVSRQGLQJ RQHV IRXQG LQ RWKHU VL[ FRRUGLQDWLRQ FRSSHU,,f FRPSOH[HVOf WKH DSLFDO RQHV EHLQJ DPRQJ WKH VKRUWHVW GLVWDQFHV REVHUYHG LQ VLPLODU FDVHV HJ>&XVLSf +VLSf @ -7KLV IDFW PLJKW EH UHODWHG WR WKH VWUXFWXUDO ULJLGLW\ RI WKH FKHODWLQJ OLJDQGV ZKRVH DSSURDFKHV WR &XOf DQG &Xf PD\ EH GHWHUPLQHG E\ WKH GLVWDQFHV &XOf1n f DQG &Xf1 f $ UHVSHFWLYHO\ 7KHVH GLVWDQFHV DUH VLJQLILFDQWO\ ORQJHU WKDQ WKH FRUUHVSRQGLQJ &Xff§1 f DQG &Xf1n f $ VXJJHVWLQJ WKDW WKH QHJDWLYH FKDUJHV DULVLQJ IURP WKH ORVV RI WKH SURWRQV RULJLQDOO\ ERXQG WR 1 DQG 1n DUH SDUWLDOO\ ORFDWHG RQ 1

PAGE 168

DQG 1n UHVSHFWLYHO\ 7KH DQDO\VLV RI WKH HTXDWRULDO FRRUGLQDWLRQ SODQHV VKRZ VPDOO EXW VLJQLILFDQWO\ WHWUDKHGUDO VKLIWV 7DEOH f &RQIRUPDWLRQ RI WKH /LJDQG 7DEOH JLYHV WKH WRUVLRQ DQJOHV IRU HDFK ERQG LQ WKH OLJDQG FKDLQV 7KH OLJDQG DSVKO LV WDNHQ DV WKH EDVLV IRU D GLVFXVVLRQ RI WKH FRQIRUPDWLRQ RI WKH OLJDQGV LQ WKH FRPSOH[ %RQG GLVWDQFHV DQG DQJOHV LQGLFDWH VS K\EULGL]DWLRQ IRU &1 &,2 & 1 DQG & ZLWK D WHQGHQF\ WR D ORFDOL]DWLRQ RI WKH GRXEOH ERQGV EHWZHHQ & 1 $f & 1 $f DQG EHWZHHQ &,2 $f & $f 7KH GLVWDQFHV RI && $f DQG && $f DUH DV H[SHFWHG IRU VLQJOH ERQGV EHWZHHQ WZR VS K\EULGL]HG FDUERQ DWRPV 7KH WZR GLVWDQFHV RI && $f DQG && $f DUH UHDVRQDEOH IRU WKH VLQJOH ERQGV EHWZHHQ VSVS K\EULGL]HG FDUERQ DWRPV 7KH ERQG GLVWDQFH 2I && LV D VLJOH ERQG EHWZHHQ VSVS K\EULGL]HG FDUERQ DWRPV 7KH &+ &+ ERQGV DUH DSSUR[LPHWHO\ JDXFKH RU rf DQG UHVW RI WKH VLQJOH ERQGV DUH QHDUO\ WUDQV 7KH FRQIRUPDWLRQ RI WKH ZKROH OLJDQG FKDLQ LV WKHQ GHQRWHG DQG VKRZQ LQ )LJXUH ,Q WKH PROHFXODU FRQIRUPDWLRQ RI WKH OLJDQGV LQ WKH FRPSOH[HV ZLWK &X RU 1L WKH JDXFKH IRUP RI WKH &+&+ ERQG LV HVVHQWLDOO\ IDYRUDEOH IRU FRRUGLQDWLRQ EHWZHHQ QLWURJHQ DWRP IURP WKH K\GUD]LGH JURXS DQG PHWDO DWRPV ZKLOH WKH UHVW RI VLQJOH ERQGV WDNH WKH WUDQV IRUPV 7KH OLJDQG FRQIRUPD

PAGE 169

7$%/( /HDVW6TXDUHV DQG 3DUDPHWHUV IRU &XDSVKf $WRP 3ODQHVr &XO r r &X r r 1 r r & r r & r & r & r & r & r 1 r r 1 r &,2 r &OO & & r 1 r 1 r r & r & r r 1 r r & r & r & r & r & r r & DSVKOf 3DUDPHWHUV IRU WKH SODQHV [ f P Q 3

PAGE 170

7$%/( &RQWLQXHG $WRP 3ODQH &XO r r &X r r 1On r r & n r r & n r & n r & n r & n r & n r 1 n r r 1 n r &,2n r &OOr & n & n r 1 n r 1 n r r & n r & n r r 1 n r r & n r & r &n r & n r & n n r n r & n DSVKf 3DUDPHWHUV IRU WKH SODQHV [ f P Q f 3 ‘

PAGE 171

7$%/( &RQWLQXHG (TUHWRULDO 3ODQHV (TXDWRULDO SODQH $ $WRP &XO 'HY r 1 r 1 r r 1 r 1 n n (TXDWRULDO SODQH $WRP &X 'HY r % 1On r 1 n r n r 1 r 1 $QJOHV RI LQWHUHVW EHWZHHQ WKH SODQHV rf SODQH SODQH f DSVKOf DSVKf $QJOHV RI LQWHUHVW EHWZHHQ WKH IRXU S\ULGLQHULQJV rf $QJOHV RI LQWHUHVW EHWZHHQ WKH HTXDWRULDO SODQHV rf $% r 7KH GHYLDWLRQV IURP WKH SODQH $ [ f DUH JLYHQ IRU WKH VSHFLILHG DWRP (TXDWLRQ RI WKH SODQH GHYLDWLRQ $f O;P
PAGE 172

7$%/( 7RUVLRQ $QJOHV rf IRU DSVK LQ > &X DSVKf @ 16 7RUVLRQ $QJOHV rf LQ DSVKO 7RUVLRQ $QJOHV rf LQ DSVK & 1 & &O & n 1On & n &On 1 & & 1 1On & n &On 1 n & & 1 1 & n &On 1 n 1 n & 1 1 &,2 & n 1 n 1 n &,2n 1 1 &,2 &OO 1 n 1 n &,2 n&OOn 1 &,2 &OO & 1 n &,2 n&OO n & n &,2 &OO & & &O2n&OO n & n & n &OO & & 1 &OOn& n & n 1 n & & 1 1 &n& n 1 n 1 n & 1 1 & &1 n 1 n & n 1 1 & & 1n1 n & n & n 1 & & 1 1n& n & n 1 n & & 1 & &n& n 1 n & n 1 1 &,2 1n 1n &,2 n n &,2 &OO & n&,2 n&OO n & n &OO & & &OOn& n & nn & 1 1 n& n 1 n 1 n

PAGE 173

)LJXUH &RQIRUPDWLRQ RI WKH DSVK /LJDQG &KDLQ WLRQV LQ WKH FRPSOH[HV PD\ EH FRQVLGHUHG WR EH JRYHUQHG E\ WZR IDFWRU FRQIRUPDWLRQDO VWDELOLW\ RI D VLQJOH FKDLQ DQG VWDELOL]DWLRQ E\ WKH LQWHUDFWLRQV EHWZHHQ WKH GRQRU DWRPV DQG PHWDO DWRPV AA ,ZDPRWR DQG FRZRUNHUV KDYH EHHQ VWXGLHG D VHULHV RI WKH VLQJOH KHOLFDO FRPSOH[HV RI +J&O ZLWK HWK\OHQH R[LGH ROLJRPHU &+&+f Q >+ ([SHULPHQWDO UHVXOWV VKRZ WKHUH DUH WKUHH SRVVLEOH IRUPV IRU WKH &+&+f JURXS LQ WKH PHUFXU\,,f FRPSOH[HV 7KH\ DUH 7*7 777 7** DQG DUH GHQRWHG DV W\SH $ % DQG & UHVSHFWLYHO\ DV VKRZQ LQ )LJXUH

PAGE 174

0Q 2US & 4 & UML 2 UMaL & 4 & UA2 USL & & UA2US & T& US 2 & UA2 UAL & AL& A ƒ $ $ $ $ $ & R M&J&M MF*F[r MFJFWr 7&*F 7r & 2US & 7M & A 2 A-L& T& 2 A & 7M& 7ML2 UML & A & UM2 % $ % $ &RQIRUPDWLRQDO 6WDELOLW A & & US 2 US& 7 & US 2 US &SL & US 2US & S & Sn2 \ & SL & UM7 2 US & S & US 2US &S &US 2 B& ff & 7 7B*B7BB*BI ;*,3 4B*7B*A,B*B7 $ $ & & D $ ff 2UM & 4 & T2 US & 4 & A2 & 3(2 3(2 3RO\HWK\OHQH 2[LGH 7*0+J&O 7*0 7HWUDHWK\OHQH *O\FRO 'LPHWK\O HWKHU 3(2 +J&O 7\SH +*(+J&O +*( +H[DHWK\OHQH *O\FRO 'LHWK\O HWKHU 3(2+J&O 7\SH 3(2 3RO\HWK\OHQH 2[LGH )LJXUH 0ROHFXODU &RQIRUPDWLRQV

PAGE 175

:LWK UHVSHFW WR WKH &+&+ ERQGV WKH JDXFKH IRUP PD\ EH PRUH VWDEOH E\ DERXW FDOPRO WKDQ WKH WUDQV IRUPrr ZKLOH IRU WKH &+ ERQGV WKH WUDQV IRUP LV PRUH VWDEOH E\ NFDOPRO WKDQ JDXFKH RQHrr &RQVHTXHQWO\ WKH WKUHH SRVVLEOH IRUPV DUH $ % & LQ WKH RUGHU RI FRQIRUPDWLRQDO VWDELOLW\ ,ZDPRWR5 DOVR GHILQHG WKH QXPEHUV WR GLVFXVV WKH FRUUHODWLRQ RI WKH FRQIRUPDWLRQDO VWDELOLW\ ZLWK WKH PRGH RI FRRUGLQDWLRQ EHWZHHQ WKH GRQRU DWRPV DQG PHWDO DWRPV )RU DQ H[DPSOH 3(2+J&O W\SH ,, LV GHQRWHG DV VV0 ZKLFK PHDQV VLQJOHVWUDQGHG KHOLFDO 0 7KH VXEVFULSW RI 0 LQGLFDWHV WKH DYHUDJH QXPEHU RI PHWDO LRQV SHU GRQRU DWRP 7KHUHIRUH WKH VXEVFULSW PLJKW EH XVHG WR PHDVXUH WKH VWUHQJWK RI WKH LQWHUDFWLRQV EHWZHHQ PHWDO DWRPV DQG WKH ROLJRPHU RU SRO\PHU PROHFXOHV 7KH LQWHUHVWLQJ IHDWXUH LV WKDW WKH OHVV VWDEOH FRQIRUPDWLRQ KDV VWURQJHU LQWHUDFWLRQV EHWZHHQ WKH GRQRU DWRPV DQG PHWDO DWRPV LQ WKH FRPSOH[HV 7KHVH LQWHUDFWLRQV PLJKW FDXVH WKH PROHFXOH WR WDNH D VSHFLILF FRQIRUPDWLRQ IRU IDYRUDEOH FRRUGLQDWLRQ EHWZHHQ ROLJRPHU RU SRO\PHU DQG PHWDO DWRPV LQ WKH FRPSOH[HV ZKLFK LV XVXDOO\ OHVV VWDEOH DV D VLQJOH FKDLQ 7KXV WKH WZR IDFWRU FRQIRUPDWLRQDO VWDELOLW\ DQG VWDELOL]DWLRQ E\ WKH LQWHUDFWLRQV EHWZHHQ WKH GRQRU DWRPV DQG PHWDO DWRPV ERWK QHHGHG WR EH FRQVLGHUHG ZKHQ ZH GLVFXVV WKH UHVXOWLQJ FRQIRUPDWLRQ RI WKHVH PROHFXOHV 8VXDOO\ WKH WUDQV FRQIRUPDWLRQ LV WKH PRVW VWDEOH FRQIRUPDWLRQ )RU &+&+ WKH JDXFKH IRUP PD\ EH PRUH VWDEOH

PAGE 176

WKDQ WKH WUDQV RQH 7KH OLJDQG DSVK RU SFVKf DSSHDUV WR KDYH WKH PRVW VWDEOH FRQIRUPDWLRQV 7KH DYHUDJH QXPEHU RI FRRUGLQDWLRQ SHU GRQRU DWRP LV RQH 7KH &X FRPSOH[ SUHVHQWV WKH IHDWXUHV RI DQ LQRUJDQLF GRXEOH KHOL[ DQG PD\ EH WHUPHG D GRXEOHVWUDQGHG KHOLFDWH RI &X GHVLJQDWHG E\ GVDH&8M 2EYLRXVO\ WKH VWUXFWXUH RI WKH LQRUJDQLF GRXEOH KHOL[ LV HQHUJHWLFDOO\ IDYRUDEOH ERWK LQ FRQIRUPDWLRQDO VWDELOLW\ DQG LQ VWDELOL]DWLRQ E\ WKH LQWHUDFWLRQ EHWZHHQ WKH GRQRU DWRPV DQG WKH PHWDO DWRPV +HOLFDO )HDWXUHV RI WKH &RPSOH[HV 7R PRUH SUHFLVHO\ DVVHVV WKHLU JHRPHWULFDO SDUDPHWHUV WZR GLIIHUHQW YLHZV RI WKH GRXEOHVWUDQGHG KHOLFDWH FRPSOH[ >&XDSVKf@ DUH VKRZQ LQ )LJXUH DQG ,W LV VHHQ WKDW WKH >&XDSVKf@ LV LQGHHG D GRXEOHVWUDQGHG KHOLFDWH )LJXUH f FRUUHVSRQGLQJ WR WKH VFKHPDWLF UHSUHVHQWDWLRQ JLYHQ LQ )LJXUH E WZR DSVK OLJDQG PROHFXOHV DUH ZUDSSHG DURXQG HDFK RWKHU DQG KHOG WRJHWKHU E\ WZR FRSSHU LRQV ZKLFK PDLQWDLQ WKH VWUXFWXUH E\ PHWDO FRRUGLQDWLRQ LQWHUDFWLRQV DV K\GURJHQ ERQGLQJ RI EDVH SDLUV PDLQWDLQV WKH GRXEOH KHOL[ LQ QXFOHLF DFLG 7KH KHOLFDO IHDWXUHV RI HDFK VWUDQG DUH GHILQHG E\ D WRWDO OHQJWK RI m ƒ IRU DERXW RQH WXUQ D SLWFK OHQJWK SHU WXUQf RI m $ D UDGLXV RI m $ EHWZHHQ &OO DQG &nf ,Q FRPSDULVRQ WKH GRXEOH KHOL[ RI QXFOHLF DFLGV KDV D SLWFK RI $ DQ H[WHUQDO UDGLXV RI

PAGE 177

)LJXUH $ 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI WKH 'RXEOH 6WUDQGHG +HOLFDO &RPSOH[ >&XDSVKf@

PAGE 179

)LJXUH $QRWKHU 9LHZ RI WKH &U\VWDO 6WUXFWXUH RI WKH 'RXEOH 6WUDQGHG +HOLFDO &RPSOH[ >&XDSVKf@

PAGE 181

m $ DQG EDVHSDLU LQWHUDFWLRQV SHU WXUQ-A ,Q WKH FRPSOH[ >&XDSVKf@ D WXUQ RI WKH GRXEOH KHOL[ FRQWDLQV WZR LQWHUDFWLRQ FHQWHUV LH WZR PHWDO LRQV 7KH WZR VWUDQGV KDYH WKH VDPH FKLUDOLW\ LH VFUHZ VHQVH 2QH PD\ DOVR QRWH WKDW WKH GRXEOHVWUDQGHG XQLWV IRUPHG E\ DSVK DV ZHOO DV E\ %3 DQG %3 KDYH WKH LQWHUWZLQHG IHDWXUHV RI WKH /D &RXSH GX URL 7KH /D &RXSH GX URL LQ )UDQFH PHDQV WKH VSHFLDO FDVH LQ ZKLFK DQ DFKLUDO REMHFW LV ELVHFWHG LQWR LVRPHULF KRPRFKLUDO KDOYHV 7KH WHUPV KRPRFKLUDO DQG KHWHURFKLUDO UHIHU WR UHODWLRQV EHWZHHQ LVRPHWULF FKLUDO REMHFWV RU PRGHOV RI FKLUDO PROHFXOHV KRPRFKLUDO REMHFWV DUH RQO\ SURSHUO\ FRQJUXHQW ZKHUHDV KHWHURFKLUDO REMHFWV DUH RQO\ LPSURSHUO\ FRQJUXHQW-r 2QH PD\ DOVR QRWH WKDW WKH GRXEOHVWUDQGHG XQLWV KDYH WKH LQWHUWZLQHG IHDWXUH RI D EUDLG ZLWK WZR WKUHDGV DQG WZR FURVVLQJV :DOED GHILQHG EUDLG WKUHDG DQG FURVVLQJ LQ KLV SDSHU 7RSRORJLFDO VWHUHRFKHPLVWU\ fD EUDLG LV WKH VSHFLDO SUHVHQWDWLRQ RI FRQVWUXFWLRQV FRPSRVHG RI WKUHDGV DQG D IRXUVLGHG SRO\JRQ (DFK WKUHDG PXVW FRQQHFW ZLWK HDFK YHUWLFDO VLGH RQFH GHILQLQJ SRLQWV 7KH WKUHDGV PD\ FURVV HDFK RWKHU IRUPLQJ FURVVLQJV 7ZR EUDLGV ZLWK RQH DQG IRXU FURVVLQJV DUH VKRZQ LQ )LJXUH 7KH VWDFNLQJ RI WKH WZR S\ULGLQH ULQJV FRUUHVSRQGV WR D VKRUWHVW GLVWDQFH RI ƒ EHWZHHQ WKH SODQH 1,&&&&& DQG WKH SODQH 1,n&n&n&n&n&n )LJXUH f DV

PAGE 182

D EUDLG ZLWK RQH FURVVLQJ )LJXUH %UDLG 7KUHDG DQG &URVVLQJ H[SHFWHG IRU YDQ GHU :DDOV FRQWDFW DQG LV VLPLODU WR WKH VHSDUDWLRQ RI VWDFNHG EDVH SDLUV LQ '1$ 7KH EHQGLQJ RI WKH VWUXFWXUH PD\ EH GXH LQ SDUW WR WKH WHQGHQF\ RI RQH VHW RI WZR S\ULGLQHV WR UHDFK YDQ GHU :DDOV FRQWDFW DQRWKHU FRQWULEXWLRQ PLJKW FRPH IURP WKH OHQJWK RI WKH &+&+ EULGJH VHSDUDWLQJ WKH WZR FRRUGLQDWLRQ XQLWV ,Q RUGHU WR IRUP D KHOLFDO VWUXFWXUH WKH EULGJHV ZKLFK VHSDUDWH WZR FRRUGLQDWLRQ XQLWV VKRXOG EH VKRUW HQRXJK WR KLQGHU SRO\n KHGUDO ELQGLQJ RI D PHWDO LRQ E\ PRUH WKDQ RQH FRRUGLQDWLRQ XQLW RI WKH VDPH OLJDQG PROHFXOH 2Q WKH RWKHU KDQG WKH EULGJHV VKRXOG EH IOH[LEOH HQRXJK WR DOORZ VWUDLQ IUHH FRRUGLQDWLRQ LQ SRO\PHULF IDVKLRQ 7KH VLPSOH &+&+ DSSHDUV WR IXOILOO WKHVH UHTXLUHPHQWV )XWXUH +HOLFDWHV VXFK DV >&X %3f @ >&X %3f @V DQG WKH SUHVHQW FRPSOH[HV >&X DSVKf @ >1LDFVKf@ FDQ SURYLGH D JHQHUDO ZD\ IRU JHQHUDWLQJ LQRUJDQLF GRXEOHKHOLFDO VWUXFWXUHV 7KH EDVLF IHDWXUHV RI WKHVH V\VWHPV DOORZ XV WR

PAGE 183

LPDJLQH QXPHURXV H[WHQVLRQV LQWR D YDULHW\ RI GLUHFWLRQ )RU H[DPSOH ZHnG OLNH WR VWXG\ WKH UHODWLRQVKLS EHWZHHQ WKH VWDELOLWLHV DQG WKH QXPEHUV RI DWRPV RI FKHODWLQJ ULQJV LQ LQRUJDQLF GRXEOH KHOLFDO FRPSRXQGV +RZHYHU WR P\ NQRZOHGJH RQO\ ILYH PHPEHUHG ULQJV KDYH EHHQ IRXQG LQ WKH LQRUJDQLF GRXEOH KHOLFDO FRPSRXQGV ZKLFK KDYH EHHQ V\QWKHVL]HG DQG FKDUDFWHUL]HG 2XU JURXS KDV EHHQ VWXGLHG RQ H[WHQVLRQ RI OLJDQGV IURP ELVVDOLF\OLGHQHDPLQRfELSKHQ\O WR n ELVVDOLF\OLGHQHDPLQRfSKHQ\O HWKHU VDOSHf)LJXUH f )LJXUH nELVVDOLF\OLGHQHDPLQRf 3KHQ\O (WKHU ,I WKH OLJDQG VDOSHf FRXOG JHQHUDWH LQRUJDQLF GRXEOHKHOLFDWH FRPSRXQGV ZLWK PHWDO LRQV HDFK OLJDQG ZRXOG FRRUGLQDWH WR WZR PHWDO LRQV FHQWHU DQG IRUP WZR VL[ PHPEHUHG ULQJV 7KH HOHPHQWDU\ DQDO\VLV RI WKH OLJDQG VDOSHf VKRZV WKH JRRG DJUHHPHQW ZLWK WKHRUHWLFDO FDOFXODWLRQ

PAGE 184

& b + b 1 b )RXQG &DOFXODWHG 8QIRUWXQDWHO\ WKH VWUXFWXUHV RI WKH OLJDQG VDOSHf DQG LWV PHWDO FRPSOH[HV KDYH QRW EHHQ GHWHUPLQHG \HW 9DULDWLRQV LQ WKH EDVLF RUJDQLF VWUXFWXUHV RI WKH OLJDQGV PD\ DOVR LQYROYH DQ LQFUHDVH LQ WKH QXPEHU RI VXEXQLWV ZLWK H[WHQVLRQ WR SRO\PHULF OLJDQGV WR GHVLJQ SRO\QXFOHDU GRXEOH VWUDQGHG KHOLFDWHV ZLWK PHWDO LRQV ,I DFHW\OS\ULGLQH ZRXOG EH UHSODFHG E\ GLDFHW\OS\UD]LQH WR UHDFW ZLWK VXFFLQLF DFLG GLK\GUD]LGH WKH SRO\PHULF OLJDQG PLJKW EH JHQHUDWHG )URP WKH SRLQW RI YLHZ RI JHQHUDO PROHFXODU IHDWXUH WKHVH DQG UHODWHG PROHFXOHV RIIHU DQ HQWU\ LQWR WKH GHVLJQ RI V\VWHPV GLVSOD\LQJ VHOIRUJDQL]DWLRQ FRRSHUDWLYLW\ DQG KHOLFDO FKLUDOLW\ WKH\ SURYLGH VWXG\ FDVHV IRU WKH PHFKDQLVP WKH WKHUPRG\QDPLFV DQG WKH NLQHWLF RI IRUPDWLRQ DQG GLVVRFLDWLRQ RI D GRXEOH KHOL[ LQ SDUWLFXODU DQG D VHOIn DVVHPEOLQJ V\VWHP LQ JHQHUDO )URP WKH SRLQW RI YLHZ RI LQRUJDQLF FKHPLVWU\ RQH PD\ VWXG\ WKH ELQGLQJ RI RWKHU PHWDO LRQV SRVVHVVLQJ RWKHU FRRUGLQDWLRQ IHDWXUHVf WKH IRUPDWLRQ RI SRO\PHWDOOLF FKDLQ FRPSOH[HV WKH SKRWRDFWLYLW\ HOHFWURDFWLYLW\ DQG UHDFWLYLW\ RI PXOWLFHQWHUV VXFK DV &X,f 5X,,f 5H,f HWF 3RO\HOHFWURQLF H[FKDQJH DQG SKRWRLQGXFHG FKDUJH VHSDUDWLRQ PD\ EH HQYLVDJHG ZLWK VXFK VWULQJHG FRPSOH[HV

PAGE 185

)URP WKH ELRORJLFDO SRLQW RI YLHZ WKHVH LQRUJDQLF GRXEOH KHOLFDWHV ZLOO EHFRPH LGHDO PRGHOV WR XQGHUVWDQG WKH KHOLFDO SKHQRPHQD LQ FRPSOLFDWHG ELRORJLFDO V\VWHP $OVR WKH VWUXFWXUDO DQG SK\VLFDO IHDWXUHV RI WKH SUHVHQW DQG UHODWHG VSHFLHV PD\ EH RI XVH LQ WKH GHVLJQ RI PROHFXODU GHYLFHV WDNLQJ DGYDQWDJH RI WKH FRRSHUDWLYLW\ DQG VHOI DVVHPEO\ SURFHVV 7KLV UHVHDUFK ILHOGV KDYH H[FLWLQJ SHUVSHFWLYHV DW WKH IURQWLHUV RI FKHPLVWU\ ZLWK SK\VLFV DQG ELRORJ\

PAGE 186

$33(1',; $ 7+( 5()(5(1&( &2'(6 59$/8(6 $1' 5()(5(1&(6 )25 7+( 3<5,',1( 21/< &203281'6 5()6&2'( 5 5()(5(1&(6 *(1<,+ ,QRUJ &KLP $FWD *$6&,0 &KHP =HLW *$;-2( $XVW &KHP *(.7,= $FWD &U\VW & *$:+8+ ,QRUJ &KHP *(5&$+ $FWD &U\VW & *('7$. &U\VW 6SHFWURVF *()'($ $XVW &KHP *(%124 $FWD &U\VW & *(.7,= $FWD &U\VW & *(.7,= $FWD &U\VW & *(%124 $FWD &U\VW & *(%124 $FWD &U\VW & '(+6,6 $P &KHP 6RF *()'($ $XVW &KHP *()'($ $XVW &KHP

PAGE 187

$33(1',; % 7+( 5()(5(1&( &2'(6 $1' 5()(5(1&(6 )25 7+( &203281'6 ,1 7$%/( 5()6&2'( 5()(5(1&( $ QR '(;3$; $P &KHP 6RF '(;3$; $P &KHP 6RF '(;3$; $P &KHP 6RF '(;3$; f $P f &KHP 6RF '2%.,2 ,QRUJ &KHP '2%.,2 ,QRUJ &KHP '25323 &KHP 6RF 'DOWRQ )(6<$' ,QRUJ &KHP )(6<$' ,QRUJ &KHP )(6<(+ ,QRUJ &KHP )(6<,/ ,QRUJ &KHP )(:926 &KHP 6RF 'DOWRQ )(:98< &KHP 6RF 'DOWRQ ),678: &KHP 6RF 'DOWRQ ),69$( &KHP 6RF 'DOWRQ ),69(, &KHP 6RF 'DOWRQ ),69(, &KHP 6RF 'DOWRQ 6$(1)( ,QRUJ &KLP $FWD 6$/7)1 $P &KHP 6RF 6$/7)1 $P &KHP 6RF 6$/7)1 $P &KHP 6RF 6$/7)1 $P &KHP 6RF

PAGE 188

$33(1',; % &RQWLQXHG % 1 ,QRUJ &KHP $P &KHP 6RF $FWD &U\VW & ,QRUJ &KLP $FWD ,QRUJ &KLP $FWD &KHP 6RF 'DOWRQ ,QRUJ &KHP ,QRUJ &KHP &$+-($ &8368% )8&180 *(-.(/ *(-.(/ .$-&,+ 6$/3$) 6$/3$)

PAGE 189

5()(5(1&(6 %RHQLJN 0RRW] $P &KHP 6RF 1HZFRPE 0 7LPNR 0 :DOED 0 &UDP '$P FKHP 6RF 3LQH 6+ 2UJDQLF &KHPLVWU\ )LIWK (GLWLRQf 0F*UDZ+LOO %RRN &RPSDQ\ 1HZ
PAGE 190

'RULV .$ (OOLV '( 5DWQHU 0$ 0DUNV 7$P &KHP 6RF 7KDQDEDO 9 .ULVKQDQ 9 $P &KHP 6RF 0DL\D *% .ULVKQDQ 9 ,QRUD &KHP /HKQ -0 5LJDXOW $ 6LHJHO +DUURZILHOG-&KHYULHU % 0RUDV 3URF 1DWO $FDG 6FL 86$ $ JRRG UHYLHZ RI FKORUDPLQDWLRQ FDQ EH IRXQG LQ )UD]LHU 6( 6LVOHU ++ &KORUDPLQDWLRQ 5HDFWLRQV 'RZGHQ +XWFKLQVRQ t 5RVV ,QF 1HZ
PAGE 191

9DOOH *RQ]DOH] $6 (WWRUUH 5 3OD]]RJQD 2UDDQRPHW &KHP .DPHQDU % 9LFNRYLF $FWD &UYVW & 1HZNRPH *5 7KHULRW .)URQF]HN )5 $FWD &UYVW & 0XQDYDOOL 6 3R]LRPHN ($FWD &UYVW & %ODFN '6W' +DUWVKRUQ $&RRUG &KHP5HY /LRQV ) 0DUWLQ .9 $P &KHP 6RF 0H\UHU .3 9JWLH ) 7RSLFV &XUU &KHP 2n&RQQRU 0(UQVW 5( +ROP 5+ $P &KHP 6RF *RRGZLQ +$ /LRQV ) $P &KHP 6RF (OGHU 5 & +LOO 0 & ,QRUD &KHP +DOO :DWHUV 71 &KHP 6RF .LWDMLPD 1 :KDQJ 0RURRND < 8FKLGD $ 6DVDGD< &KHP 6RF &KHP &RPPX 'UHZ 0*% 3UDVDG 51 6KDUPD55 $FWD &UYVW & &KHHVHPDQ 73 +DOO :DWHUV 71 &KHP 6RF 2ULROL 3/ 6DFFRQL / $P &KHP 6RF &DVVRX[ 3 *OHL]HV $ ,QRUD &KHP $NKWDU ) 'UHZ 0*% $FWD &UYVW % 0DWVXPRWR 1 $VDNDZD 0 1RJDPL 0 2K\RVKL $ &KHP 6RF 'DOWRQ ,LGD 2RQLVKL 1DNDKDUD $ .RPL\DQD < %XOO &KHP 6RF -SQ

PAGE 192

%XFRXUU 5 7RSLFV LQ 6WHUHRFKHPLVWU\ ,QVWLWXWH RI &KHPLVWU\ &ROOHJH RI *HQHUDO (GXFDWLRQ 2VDND 8QLYHUVLW\ 7R\RQDND 2VDND 6DUJHVRQ $0 6HDUOH *+ ,QRUD &KHP +HLVWDQG 5+,, 5RH $/ 4XR /-U ,QRUD &KHP /DXIIHU 5+ +HLVWDQG 5+,, 4XR /-U ,QRUD &KHP /ORUHW ) -XOYH 0 0ROODU 0 &DVWUR /DWRUUH )DXV 6RODQV ; 0RUJHQVWHUQ%DGDUD\ &KHP 6RF 'DOWRQ &DOOLJDULV 0 0DQ]LQL 1DUGLQ 5DQGDFFLR / &KHP 6RF 'DOWRQ 5HVFH -/ )DQQLQJ -& 'D\ &6 8KP 6&URLV\ $) .HIIHU / $FWD &UYVW & %HUJPDQ -*-U &RWWRQ )$ ,QRUD &KHP 6DQWRUR $ 0LJKHOO $' 5HLPDQQ &: $FWD &UYVW % $GGLVRQ && /RJDQ 1 :DOOZRUN 6& *DUQHU &' 4XDUW 5HY &KHP 6RFf .LQJ 7 /RJDQ 1 0RUULV $ :DOOZRUN 6 & &KHP 6RF &KHP &RPPQQf 0DHGD < 7DNDVKLPD < 0DWVXPRWR 1 2K\RVKL $ &KHP 6RF 'DOWRQ 7LPNHQ 0' 6WURXVH &( 6ROWLV 60 'DYHULR 6$ +HQRULFNVRQ '1 $EGHO0DZJRXG $0 :LOVRQ 65 $P &KHP 6RF 1LVKLGD < .LQR .LQG 6 &KHP 6RF 'DOWRQ 6XPPHUWRQ $3 'LDPDQWLV $$6QRZ 05 ,QRUD &KLP $FWD +RVHOWRQ 0$ :LOVRQ /'UDJR 56 $P &KHP 6RF

PAGE 193

.HQQHG\ %0FJUDWK $& 0XUUD\ .6 6NHOWRQ %: :KLWH $+ ,QRUD &KHP %RUHU / 7KDONHQ / &HFFDUHOOL & *OLFN 0 =KDQJ -+ 5HLII :0 ,QRUD &KHP 0DWVXPRWR 1 2KWD 6
PAGE 194

*HOGDUG -) /LRQV ) $P &KHP 6RF *HOGDUG -) /LRQV ) ,QRUD &KHP &KLVZHOO % *HOGDUG -) 3KLOOLS $7 /LRQV ) ,QRUJ &KHP 'RPLDQR 3 0XVDWWL $ 3HOL]]L & 3UHGLHUL &U\VW 6WUXFW &RPPXQ 'RPLDQR3 0XVDWWL$ 1DUGHOOL0 3HOL]]L& 3UHGLHUL* &KHP 6RF 'DOWRQ 3DOHQLN *.R]LRO $( *DZURQ 0 3DOHQLN 5& :HVWHU ': $FWD &UYVW & %URZQ ,' :HLVV &3 :X .. %RQG ,QGH[ WR WKH 'HWHUPLQDWLRQ RI ,QRUJDQLF &U\VWDO 6WUXFWXUHV %,',&6f ,QVWLWXWH IRU 0DWHULDO 5HVHDHFK 0F0DVWHU 8QLYHUVW\ +DPLOWRQ 2QWDULR %URZQ ,' +R ./. %,',&6 ,ZDPRWR 5 %XOO &KHP 6RF -DSDQ ,ZDPRWR 5 6DLWR < ,VKLKDUD + 7DGRNRUR + 3RO\PHU 6FL $
PAGE 195

%,2*5$3+,&$/ 6.(7&+ .HSLQJ 4LDQ ZDV ERUQ LQ -LDQJVX &KLQD RQ -XO\ 6KH JUDGXDWHG ZLWK D %6 LQ FKHPLVWU\ IURP 1DQMLQJ 8QLYHUVLW\ &KLQD LQ -XO\ 6KH ZRUNHG LQ WKH 'HSDUWPHQW RI &KHPLVWU\ DW 1DQMLQJ 8QLYHUVLW\ IURP WR 6KH HQWHUHG WKH 8QLYHUVLW\ RI )ORULGD LQ $XJXVW ,Q $XJXVW RI VKH EHJDQ JUDGXDWH ZRUN LQ WKH 'HSDUWPHQW RI &KHPLVWU\ LQ 'U 3DOHQLNnV JURXS

PAGE 196

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ \n /M *XV 3DOHQLN &KDLU 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -DPHV 0 %RQFHOOD $VVLVWDQW 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *HRUJH ( 5\VFKNHZLWVFK 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP 0 -RQHV 3URIHVVRU RI &KHPLVWU\

PAGE 197

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 198

81,9(56,7< 2) )/25,'$


SYNTHESIS AND CHARACTERIZATION OF THE COMPOUNDS
WITH THE DERIVATIVES OF PYRIDINE OR SCHIFF BASES
BY
KEPING QIAN
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILLOSOPHY
UNIVERSITY OF FLORIDA
1991

TO MY PARENTS

ACKNOWLEDGMENTS
I would like to take the opportunity to thank my
supervisor Dr. Gus J. Palenik for his leadership and encou¬
ragement over the years. This project could not have been
completed without the valuable knowledge and recommendation
that Dr. Palenik has offered.
I would also like to thank Dr. William M. Jones, Dr.
George E. Ryschkewitsch, Dr. James M. Boncella and Dr. Andrea
E. Tyler for being my supervisory committee. I am grateful
for their interest in the work.
There is not enough gratitude that could be offered to
Mrs. Ruth C. Palenik for her kindness and help.
Special thanks is offered to my parents for their
guidance through my early years and their love and support for
a lifetime.
iii

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES x
ABSTRACT xiv
CHAPTERS
ONE INTRODUCTION 1
Pyridine and Its Derivatives 1
Schiff Bases 6
Helical Structure and Self Assembling 7
TWO REACTIONS OF CHLORAMINE WITH SOME METHYL
PYRIDINES 12
Historical View 12
Synthesis of Chloramine with Some Methyl
Pyridines 15
Crystal Structure of N-Amino(3,5-Dimethyl-
Pyridinium) 19
Discussion 20
THREE METAL COMPLEXES WITH NONPLANAR MULTIDENTATE
LIGANDS 40
Quadridentate Ligand 40
Ligand 43
Steriochemical Feature 43
Synthesis of the Ligand 45
Crystal Structure 47
Metal Complexes 48
Copper(II) Complex 48
Iron(III) Complex 58
Description and Discussion 68
Nonplanar Ligand 68
iv

Page
Copper (II) Complex 86
Iron(III) Complex 96
Nonplanar Geometries 108
FOUR METAL COMPLEXES OF " AN INORGANIC DOUBLE
HELIX " 110
Inorganic Double Helix 110
Definition of Helicity Ill
Crystallographic Screw Axes and Helical
Symmetries 113
Historical View 114
Experimental Section 119
Copper (II) Complex 119
Nickel (II) Complex 121
Description and Discussion 133
Different Products in the Nickel System.... 142
Bis-tridentate Chelate 145
Deprotonation of the Ligand 148
Geometry of the Polyhendrons Around
Metal Atoms 152
Conformation of the Ligand 153
Herical Features of the Complexes 161
Future 167
APPENDICES
A REFERENCE CODES, R-VALUE AND REFERENCES FOR
THE 16 " PYRIDINE ONLY" COMPOUNDS 171
B REFERENCES CODES AND REFERENCES FOR THE
COMPOUNDS IN TABLE 3-27 172
REFERENCES 174
BIOGRAPHICAL SKETCH 180
v

LIST OF TABLES
Table Page
1-1 Approximate Number of Publications for Each
Fragment Containing Pyridine 5
2-1 Melting Point and Elemental Analyses of the
Products of the Reactions with Chloramine 18
2-2 Crystal Data for [C7HnN2]Cl 21
2-3 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (Á2xl03) for N-amino-3,5-
dimethylpyridinium chloride 22
2-4 Selected Distances (Á) and Angles (°) for
N-amino-3,5-dimethylpyr idinium 23
2-5 Anisotropic Thermal Parameters (Á2xl03) for
N-amino-3,5-dimethylpyridinium chloride 24
2-6 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (AxlO3) for N-amino-
3,5-dimethylpyridinium chloride 25
2-7 Distances (Á) and Angles (°) Involving the
H Atoms for N-amino-3,5-dimethylpyridinium
Chloride 26
2-8 The Effect of Atom Hybridization on Bond
Lengths of C-C Bond 30
3-1 Crystal Data for [C26H20N2O2] 49
3-2 Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (Á2xl03) for
2,2' -bis (salicylideneamino) biphenyl 50
3-3 Bond Distances (A) for 2,2'-bis
(salicylideneamino) biphenyl 51
3-4 Bond Angles (°) and Hydrogen Bond for 2,2'-
bis (salicylideneamino) biphenyl 52
vi

Table Page
3- 5 Anisotropic Thermal Parameters (Á2xlOs) for
2,2 '-bis(salicylideneamino)biphenyl 53
3- 6 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (ÁxlO3) for 2,2'-
bis (salicylideneamino) biphenyl 54
3- 7 Crystal Data for [C26H18N202Cu] 59
3- 8 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (Á2xl03) for Complex of Cu
with (sal)2bp 60
3- 9 Bond Distances (A) for the Cu[(sal)2bp]
Complex 61
3-10 Bond Angles (°) for the Cu[(sal)2bp]
Complex 62
3-11 Anisotropic Thermal Parameters (Á2xl03)
for the Cu[(sal)2bp] Complex 63
3-12 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (A xlO3) for the
Cu[(sal)2bp] Complex 64
3-13 Crystal Data for [ C26H18N202Fe] N03. C6H6 69
3-14 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (A2xl03) for the
Fe( (sal)2bp]N03 Complex 70
3-15 Bond Distances (A) for the Fe[(sal)2bp]N03
Complex 72
3-16 Bond Angles (°) for the Fe[ (sal)2bp]N03
Complex 73
3-17 Anisotropic Thermal Parameters (A2xl03) for
the Fe[ (sal)2bp]N03 Complex 75
3-18 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (AxlO3) for the
Fe[ (sal)2bp]N03 Complex 77
3-19 Equations to Various Planes for 2,2-
bis (salicylideneamino) biphenyl 82
3-20 Distances (A) to Various Planes in TABLE 3-19
for 2,2'-bis(salicylideneamino)biphenyl 83
vii

Table Page
3-21 Equations to Various Planes for the
Cu[(sal)2bp] Complex 87
3-22 Distances (Á) to Various Planes in TABLE 3-21
for the Cu[(sal)2bp] Complex 88
3-23 Bond distances and Dihedral Angles (6) for
Various CuN202 Complexes 90
3-24 Equations to Various Planes for the
Fe[ (sal)2bp]N03 Complex 97
3-25 Distances (Á) to Various Planes in TABLE 3-24
for the Fe[ (sal)2bp]N03 Complex 98
3-26 A Summary of the Distortions for Some
Salicylidene Complexes 100
3-27 The Bond Lengths (Á) of Some Iron (III)
Complexes with Schiff-Bases and the
Spin-States (S) 105
4- 1 Crystal Data for [Cu2 (apsh)2] (N03)2 122
4- 2 Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (A2xl03)
for [Cu2(apsh)2] (N03)2.5H20 123
4- 3 Bond Distances (A) for [Cu2 (apsh) 2] (N03) 2 125
4- 4 Bond Angles (°) for [Cu2 (apsh) 2] (N03) 2 126
4- 5 Anisotropic Thermal Parameters (A2xl03) for
[Cu2(apsh)2] (N03)2 128
4- 6 H-Atom Coordinates (x 104) and Isotropic
Thermal Parameters (A xlO3) for
[Cu2(apsh)2] (N03)2 130
4- 7 Crystal Data for [Ni2(pcsh)2] (C104)2 134
4- 8 Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (A2xl03) for
[Ni2(pcsh)2] (C104)2 135
4- 9 Bond Distances (A) for [Ni2 (pcsh)2] (C104) 2 137
4-10 Bond Angles (°) for [Ni2(pcsh)2] (C104)2 138
viii

Table Page
4-11 Structural Analysis for Ligand apsh 147
4-12 A Summary of the Bond Distances in Various
Protonated and Deprotonated Ligands 150
4-13 Least-Squarea and Parameters in
[Cu2(apsh)2] (N03)2 154
4-14 Torsion Anngles (°) for apsh in
[Cu2(apsh)2] (N03)2 157
ix

LIST OF FIGURES
Figure Page
1- 1 Two Main Groups of the Compounds Containing
Pyridine Ring 2
1- 2 Some Crown-type Polymers Containing
2,6-disubstituted pyridine units 3
1- 3 Some Ylides Species 4
1- 4 From Molecular to Supramolecular
Chemistry 8
1- 5 An Example of a supermolecule 9
2- 1 The Products of Chloramine(g) Through
Quinoline and Pyridine 13
2- 2 Caffeine and Theobromine 13
2- 3 O-Mesitylene-Sulfonylhydroxylamine 14
2- 4 N-amino(3,5-dimethylpyridinium) Chloride 15
2- 5 The Chloramine Generator 16
2-6 A View of the Crystal Structure of
[C7HnN2]Cl Showing the Atomic Numbering
and Thermal Ellipsoids 28
2- 7 2,2-Dimethyltriazanium (a) and
1,1,1-Trimethylhydrazinium Chloride 30
2- 8 An Increase of C-N-C Angle in the Pyridene
rings of 0-Substitution 34
2- 9 Dipyridinium Oxalate-Oxalic acid
( one pyridinium is omitted) 35
2-10 1,1'-methylene-bis(4,4'-dimethyl-
aminopyridinium) ion 36
2-11 The Resonance Structure of [C15H22N4]2+ 37
x

Page
Figure
2-12 Impossible Resonance Structures
for [C7HnN2] + 39
3- 1 Possible Patterns for Quadridentate
Chelating Agents 41
3- 2 The Examples of Nonplanar Quadridentate
Chelating Agents 42
3- 3 Some Molecules with a Helical Conformation.... 44
3- 4 2,2'-bis-(Salicylideneamino)biphenyl
(sal)2bp 46
3-5 A View of the Crystal Structure of
[C26H2oN2°2] Showing the Atomic Numbering
and Thermal Ellipsoids 56
3-6 A View of the Crystal Structure of
[C26Hi8N2°2Cu] Showing the Atomic Numbering
and Thermal Ellipsoids 66
3-7 A View of the Structure of [C26H18N202Fe]N03
Showing the Atomic Numbering and
Thermal Ellipsoids 79
3- 8 The Packing Pattern of
[C26H18N202Fe]N03.C6H6 81
3- 9 2,2'-bis(2''-pyridylmethylamino)biphenyl 84
3-10 A Model of Strainless Tetrahedral
Arrangement for (sal)2bp 85
3-11 Three Chelating Rings in the Quadridentate
Schiff Bases 93
3-12 Four Possible Conformations in Seven-
membered Ring 95
3-13 The Torsion Angles in the Seven-membered
Ring of the Copper Complex 95
3-14 Five Possible Isomers in Metal Complexes
with Quadridentate Ligands 99
3-15 Possible Models of Coordination
of Bridging Nitrate Group 102
xi

Figure Page
3-16 Another Fe(III) Complex Contaning
Seven-membered Rings 107
3-17 The Torsion Angles in the Seven-membered
Ring of the Iron (III) Complex 108
4- 1 Right-handed Helix (P) and
Lift-handed Helix (M) 112
4- 2 Crystallographic Screw Axes
and Helical Symmetries 113
4- 3 (a) Zn2(dapp)2; (one dapp omitted) (b) The
Feature of an Inorganic Double Helix 115
4- 4 The DNA Double Helix 116
4- 5 The Complex of Ag2 [ (R, S) -1,2-(6-R-Py-2-CH=N)2
Cyclohexane]2 (one ligand is omitted) 117
4- 6 The Nomenclature for Trigonal Complexes 117
4- 7 Oligobipyridine Ligands 118
4-8 A View of the Structure of [Cu2(apsh)2]
Showing the Atomic Numbering and
Thermal Ellipsoids 132
4-9 A View of the Structure of [Ni2(pcsh)2]
Showing the Atomic Numbering and Thermal
Ellipsoids (The positions of H atoms
have not determined) 141
4-10 The Competitive Reactions of Hydrazides
with Ni(II) and Salicyladehyde 143
4-11 Possible Reactions of sadh with Ni(ii)
and 2-pyridinecarboxaldehyde 144
4-12 Possible Patterns for Tridentate
Chelating Agents 145
4-13 Planar and Non-planar Configurations
for Tridentate Ligands 146
4-14 Possible Conjugated Forms for
Deprotonated apsh Ligand 149
4-15 Conformation of the apsh Ligand Chain 158
xii

Figure Page
4-16 Molecular Conformations 159
4-17 A View of the Crystal Structure of
the Double Stranded Helical Complex
[Cu2 (apsh) 2] 163
4-18 Another View of the Crystal Structure
of the Double Stranded Helical Complex
[Cu2 (apsh) 2] 165
4-19 Braid, Thread and Crossing 167
4-20 3,3'-bis(salicylideneanino) Phenyl Ether 168
xiii

Abstract of Dissertation Presented to the Graduate
School of the University of Florida in Partial Fulfillment
of the Requirements for the Degree of Doctor of Philosophy
SYNTHESIS AND CHARACTERIZATION OF THE COMPOUNDS
WITH THE DERIVATIVES OF PYRIDINE OR SCHIFF BASES
By
Keping Qian
August 1991
Chairman: Gus J. Palenik
Major Department: Chemistry
Though the literature contains a huge number of
publications on pyridine and its derivatives, no crystal
structures of substituted N-amino pyridinium cations have
been reported. The reaction of chloramine with 3,5-lutidine
was carried out and formed to give the expected product.
The product crystallized in the space group PI bar with
a=7.663(1), b=8.241(2), c=8.266(2) A; and a=116.75(2),
/3=115.39(2) , 7=91.85(2)°.
The 2,2-bis-(salicylideneamino)biphenyl [(sal)2bp], a
Schiff base ligand, is a good nonplanar ligand. The space
group was found to be PI bar with a=10.127(2), b=10.811(2),
c=ll.409(3) A; and a=116.93(2), ¡3=101.03 (2), 7=102.58(2) 11°.
The reaction of (sal)2bp with Cu(N03)2 results in a four
coordinate complex. The space group is Pnna with
a=16.949(3), b=13.188(3), and c=9.369(1) A. A similar
xiv

reaction of (sal)2bp with Fe(N03)3 results in a six
coordinate complex. The space group is P 2x/n with
a=10.887(4), b=18.462(5), c=14.142(3) Á; and 0=98.27(2)°.
Both of the metal complexes are nonplanar.
The reaction of 2-acetylpyridine succinic acid dihydra-
zone (apsh) with Cu(N03) 2 generates a metal complex of an
inorganic double helix. The [Cu2(apsh)2] (N03)2 crystallizes
in the space group P 21/n with a=10.887(6), b=26.030(10),
c=17.263(5) Á; and 0=99.15(3). A similar complex of an
inorganic double helix is formed from the reaction of
Ni(C104)2 with 2-pyridine carboxaldehyde succinic acid
dihydrazone (pcsh) . The space group of [Ni2(pcsh)2] (C104)2
is C 2/c with a=22.172(11),b=14.867(6), c=32.589(9) Á; and
0=112.52(3) .
More extensive structural studies on the metal
complexes with an inorganic double helix are attractive in
order to correlate the variability of the chemical,
biological and structural properties and to understand the
self-assembling in supramolecular structures.
xv

CHAPTER ONE
INTRODUCTION
Compounds which contain pyridine or its derivatives or
Schiff-bases as ligands have occupied a central role in the
development of coordination chemistry, organometallic
chemistry, and biochemistry. This situation is manifested by
the huge number of publications ranging from the purely
synthetic to modern physicochemical to biochemically relevant
studies of these compounds. A tremendous variety of stable
chemical species have been synthesized containing both metals
and nonmetals.
Pyridine and Its Derivatives
Of all the known heterocyclic systems, pyridine has
perhaps the greatest importance. This can be judged by the
variety and interest in its derivatives and their reactions
and by the volume of literature devoted to them.
Pyridine is a planar molecule which is less basic than
are the aliphatic amines. The pKa value of its conjugate acid
is 5.2. The electron pair in pyridine is located in an sp2
molecular orbital, whereas an sp3 orbital is utilized by
aliphatic amines. The high s-character accounts for the
1

2
decreased availability of electrons for reaction with a
proton.
There are over 4000 compounds containing a pyridine ring
in the 1989 release of the Cambridge Structural Database
(CSD). Obviously, people have paid great attention to
pyridine. Pyridine is capable of acting as either a it or a
ligand. The higher affinity of pyridine toward donation of
a electrons is due to its inherent structure. Pyridine forms
a dipole with the electron density localized on the nitrogen
atom. The lone pair of N-electrons has a geometry that makes
it easily accessible for donation to an atom in the resultant
compounds. These compounds can be roughly divided into two
main groups: pyridine as a neutral species; and pyridine as
a non-neutral species. (Figure 1-1)
O
M
(Neutral)
N
H
C
(Non-neutral)
Figure 1-1 Two Main Groups of the Compounds
Containing Pyridine Ring

3
Pyridine and its derivatives have practical importance
in chemistry fields, such as organic chemistry, biochemistry,
co-ordination chemistry, both in experimental and theoretical
aspects. Some examples are illustrated here. The system of
pyridine hydrogen fluoride is of practical importance in
preparative organic chemistry, in wide use as a convenient
reagent for a variety of fluorination reactions.^ Acyclic
ethers with 2,6-disubstituted pyridine units as a rigid donor
units are used in syntheses of crown-type polymers.^ (Figure
1-2)
Figure 1-2 Some Crown-type Polymers Containing
2,6-disubstituted pyridine units

4
Crown-ethers have given remarkable results when used in
catalytic amounts for special application. They are used to
specifically complex cations. Such complexing agents are of
particular interest as models for the transfer of ions across
the nonpolar membranes of biological system.*3* As an example
in theoretical application, pyridinium ylides (Figure l-3a)
have the special advantages to study the organometallic
compounds containing ylide carbon. Negatively charged ylide
carbon (see Figure 1-3) has an ability to coordinate to metal
ions.*4* Although reactivities of photo-excited states of
^3+-C< (CHjtN—C"<( (0>P-C"<
a pyridinium ylide a nitrogen ylide a phosphorus ylide
a b c
Figure 1-3 Some Ylides Species
organometallic compounds have attracted much interest,*5*
luminescent properties of ylides and their metal complexes
have been little investigated. Pyridinium ylides are unique
because the carbonion can be stabilized by a vacant n* orbital
of the pyridinium ring.*6*
In view of the huge number of publications of pyridine
and its derivatives, we can say that the coordination of the
nitrogen atom of pyridine ring with oxygen, hydrogen, carbon

5
and metal atoms has been studied extensively. Table 1-1 Shows
the approximate number of publications for each fragment
containing pyridine ring in the 1989 release of the CSD.
Unfortunately, there are no structural data related to
the coordination of the nitrogen atom of pyridine ring with
a nitrogen atom. Therefore, we decided to study reactions of
pyridine and its derivatives with chloramine in an attempt to
prepare pyridine-N-N compounds. The structural information
of the coordination of N of pyridine ring with N will be
described and discussed in chapter two.
TABLE 1-1 Approximate Number of Publications
for Each Fragment Containing pyriding

6
Schiff Base
Schiff base ligands are very diverse. Schiff bases which
are effective as coordinating ligands usually bear a second
functional group, frequently -OH, but N and S donors are also
known. The site of condensation can be controlled so that a
five or six membered chelate ring can be formed upon reaction
with a metal ion.
Metal Schiff base complexes have been known since the
mid-nineteenth century,*7* and even before the general
preparation of Schiff base ligands themselves.*8* However,
there was no comprehensive, systematic study until the
preparative work of Pfeiffer and associates.*9*’*10* Since
Pfeiffer's initial contributions, the interest in Schiff-base
complexes has increased dramatically. Metal complexes of
Schiff bases have been of considerable interest in the
development of the coordination chemistry of chelate systems.
There are several types of Schiff-base chelate agents,
such as bi- and polydentate salicylaldimines, bi- and
polydentate )3-ketoamines, and Schiff bases resulting from the
condensation of functionally substituted primary amines with
1,2-dicarbonyl compounds, etc. The complexes with
salicylaldimines are particularly attractive for systematic
stereochemical studies because of the relatively easy
synthetic variation of the nitrogen substituents, thereby
permitting varying degrees of steric strain to be incorporated
into the planar forms.

7
Recently, metal complexes of some quadridentate salicyl-
aldimines have been intensively studied because of their
special properties, such as the models of iron-oxo
proteins.*u*’*12* Binuclear iron-oxo centers have emerged as
common structural components in the active sites of several
metalloproteins.*15* More extensive structural studies on the
metal complexes with quadridentate Schiff bases which appear
to be nonplanar and/or helical are attractive in order to
correlate the variability of the chemical, biological and
structural properties and to understand the self-assembling
in supramolecular structures. The 2,2'-bis(salicylideneamine)
biphenyl ligand system has been chosen to address this
problem, because the ligand can form a nearly strainless N202
tetrahedron.*14*
Helical Structure and Self Assembling
Molecular helicity is a fascinating property displayed
by chemical and biological macromolecular structures, such as
the a-helix of polypeptides*15* and the helical conformation of
polymers.*16* The spontaneous formation of the double helix of
nucleic acids represents the self-assembling of a
supramolecular structure. Supramolecular chemistry is a very
active research field. The development in supramolecular
chemistry offers exciting perspectives at the frontiers of
chemistry with physics and biology.

8
Molecular chemistry of the covalent bond is concerned
with uncovering and mastering the rules that govern the
structures, properties, and transformation of molecular
species. Supramolecular chemistry may be defined as
"chemistry beyond the molecule," bearing on the organized
entities of higher complexity that result from the association
of two or more chemical species held together by
intermolecular forces. These general considerations are
summarized in Figure 1-4.^
CHEMISTRY
MOLECULAR
SUPRAMOLECULAR
TRANSPORT
Figure 1-4 From Molecular to Supra¬
molecular Chemistry

9
The patterns of a supraxnolecular species have been named
molecular receptor and substrate. Molecular receptors are
organic structures, held by covalent bonds, which are able to
complex selectively ions or molecules. The substrates are not
limited to transition metal ions, but extending to all type
of substrates: cationic, anionic or neutral species of
organic, inorganic or biological nature. Substrate binding
makes use of various intermolecular interactions
(electrostatic interactions, hydrogen bonding, van der Waals
forces, short range repulsion, etc.) to form an assembly of
two or more molecules, a supermolecule.
For example, polynuclear aromatic hydrocarbons, such as
tetrakis(5,10,15,20-benzo-15-crown-5)porphyrin (TCP) and its
metal derivatives(MTCP), are well known to form supermolecular
systems J181 (Figure l-5a)
Chemical Structures of
TCP & MTCP
/ h \ Schematic representation
of the K ion-induced dimers
Figure 1-5 An Example of a supermolecule

10
When TCP or MTCP is complexed with cations, e.g. K+, Ba2+, and
NH4+, the dimeric porphyrins were formed.^(Figure l-5b) These
species are described as supermolecules since the two
porphyrin units joined by non-covalent interactions exhibited
optical absorption and emission properties different from
those of the monomeric porphyrin units.^
In addition to binding sites, the receptor may bear
reactive sites or lipophilic groups for dissolution in a
membrane so that its functions include molecular recognition,
transformation and translocation. Using polymolecular
assemblies, structural organization and functional integra¬
tion, chemical systems are built into supramolecular
architectures. That is called molecular and supramolecular
devices. The devices include five parts: supra-molecular
photochemistry and molecular photonics; molecular electronic
devices; molecular ionic devices; molecular self-assembling
and chemionics.
Molecular self-assembling is one of the molecular and
supramolecular devices. Such self-assembling has recently
been shown to occur in repetitive chain ligands, such as
poly(2,2'-bipyridine) which form the polynuclear complexes
with metal centers. The inorganic double helical structures
in these complexes have been confirmed.^ This spontaneous
formation of an organized structure of intermolecular type
opens ways to the design and study of the self-assembling
phenomenon.

11
Molecular self-assembling is well documented in biology,
much less so in chemistry. "Inorganic double helical"
complexes have been studied in our group since 1970's. In
order to open a general way for generating inorganic double
helical structures, we extended pure poly(2,2'-bipyridine) to
special derivatives of pyridine, such as bis(2-acetylpyridine)
succinic acid dihydrazone, to design new inorganic double
helical complexes and to futher understanding of self¬
assembling, molecular devices and supermolecular structures.

CHAPTER TWO
REACTIONS OF CHLORAMINE WITH SOME METHYL PYRIDINES
Historical View
Numerous investigations have examined the use of
chloramine as an aminating agent for a variety of nucleophilic
substances, notably molecules containing nitrogen or
phosphorus donor atoms. However, little work on the
chloramination of nitrogen heterocyclic aromatic compounds has
been reported to date.
In view of the broad applicability of the chloramination
reaction with various nucleophiles, the unanswered question
concerning the reactions of chloramine with nitrogen
heterocycles merited further investigation. Of all the known
nitrogen heterocyclic systems, pyridine has perhaps the
greatest importance, whether judged by the variety and
interest of its derivatives and their reactions or simply by
the volume of literature devoted to them.
An early paper^23' contained a brief statement that in
attempts to chloraminate pyridine and 2-methylpyridine, the
only solid product isolated was ammonium chloride. In the
pyridine reaction there was evidence of decomposition of the
heterocyclic base. Shortly after the appearance of this
paper, a note by Brooks and Rudner^24' reported that passage of
12

13
gaseous chloramine through liquid quinoline and liquid
pyridine gave low yields of 2-amino quinoline and 2-amino
pyridine respectively. (Figure 2-1)
Figure 2-1 The Products of Chloramine(g) Through
Quinoline and Pyridine
They also tentatively reported the formation of the 8-amino
derivatives of theobromine and caffeine (Figure 2-2) by
analogous reactions.
CH
N
N
CH3
Caffeine
( 1,3,7- trimethylxanthine )
3
Theobromine
( 3,7- dimethylxanthine)
Figure 2-2 Caffeine and Theobromine

14
Various substituted N- aminopyridinium cations have been
reported as products of the reactions of heterocyclic nitrogen
bases with potassium sulfonyl hydroxylamine and hydroiodic
acid: H2N-0S03'K+ HI, ^ or O-mesitylene-sulfonyl-
hydroxylamineJ26* (Figure 2-3) However, no crystal structures
of substituted N-amino pyridinium cations have been reported.
CH3
Figure 2-3 O-Mesitylene-Sulfonylhydroxylamine
In the present chapter, the reactions of chloramine with
2,3-, 2,4-, 2,6-, 3,5- dimethyl pyridine and 2,4,6,- trimethyl
pyridine were examined. In the case of 3,5-dimethyl pyridine
a solid amination product was isolated in high yield and its
structural formula was shown to be N-amino(3,5-dimethyl-
pyridinium) chloride (Figure 2-4) by an X-ray crystal
structural study. The only solids isolated in the other cases
were ammonium chloride and the respective pyridinium
chlorides. The results obtained have practical and
theoretical significance.

15
Figure 2-4 N-amino(3,5-dimethylpyridinium) Chloride
Synthesis of Chloramine with Some Methvlpvridine
Experimental Materials
The 2,3-, 2,4-, 2,6-, and 3,5-lutidine and 2,4,6-
collidine from the Aldrich Chemical Company were used as
obtained. Chloramine was prepared by the gas-phase reaction
of chlorine-nitrogen mixtures with gaseous ammonia in a
Sisler-Mattair type reactor^27' (Figure 2-5) . Solutions of
chloramine in ether were prepared by passing the effluent gas
from the reactor into anhydrous ether and pouring the
resulting solution through a column of anhydrous copper
sulfate to remove the ammonia.^
Experimental Method
The reactions with all the pyridine derivatives were
carried out at 0°C by stirring the pyridine derivative with
an ether solution of a slight excess of chloramine. The
reaction with 2,6-lutidine is typical. One hundredth mole of
2,6-lutidine was mixed with 40 mL of 0.3M chloramine solution

RECEIVER
TX~
Figure 2-5 The Chloramine Generator

17
in ether (0.012 mol NH2C1, 20% excess), stirred for eight
hours at 0°C, and allowed to stand overnight. The white
precipitate that formed was filtered off and shown to be
ammonium chloride (mp.> 300°C) . The filtrate was evaporated
to a volume of 10 mL by passing dry nitrogen over it for a
period of 2 hours and then allowed to stand overnight in a
refrigerator. Yellow crystals formed but were shown by
melting point determination (218 - 219°C) and elemental
analysis to be the hydrochloride of 2,6-lutidine. An
authentic sample of the hydro-chloride of 2,6-lutidine was
prepared from 2,6-lutidine and dry HCl and was used for
comparison to confirm this conclusion. No other solid product
was obtained.
Experimental Results
Analogous results were obtained in the reactions of
chloramine with 2,4- and 2,3-lutidines, and with 2,4,6-
collidine, the only solid products isolated being ammonium
chloride and the hydrochlorides of the respective nitrogen
bases. The analyses and melting points of the hydrochlorides
are listed in Table 2-1. Different results were obtained in
the reaction with 3,5-lutidine. In this case concentration
of the final filtrate resulted in the formation of pale yellow
crystals which after recrystallization from a 2:1 mixture of
acetone and chloroform melted at 227-229°C. Elementary
analysis:

18
Found for C7HnN2Cl: C, 53.00%; H, 7.32%; N, 17.39%
Caled, for C7HnN2Cl: C, 53.00%; H, 6.99%; N, 17.66%
These data indicate the amination of the lutidine by
chloramine. The weight of this product corresponded to a
yield of 75.4% of theoretical.
TABLE 2-1
Melting Points and Elemental Analyses
of the Products of the Reactions with Chloramine
m.p.°C
%C
%H
%N
2,6-lutidine
218-219
58.95
7.03
9.68
2,4-lutidine
208-210
58.76
7.10
10.01
2,3-lutidine
202-204
59.01
7.05
9.93
Theory for [ (CH3) 2C5H3NH] Cl
58.53
7.03
9.76
2,4,6-collidine
230-231
58.30
7.67
8.71
Theory for [ (CH3) 3C5H2NH] Cl
60.95
7.67
8.88
3,5-lutidine
227-229
53.00
7.32
17.39
Theory for [ (CH3)2C6H3NNH2]C1
53.00
6.99
17.66

19
Crystal Structure of N-amino(3.5-Dimethvlpvridinium)
To establish unequivocally the identity of the above
amination product, the structure was determined by X-ray
diffraction. A well shaped crystal of 0.2 x 0.2 x 0.15 mm
size was used for intensity measurements on Nicolet PI bar
diffractometer with Ni filtered-CuKa radiation. Reflections
were collected in the 26 range 1.5-112.0° using the 9-26 scan
mode and a variable scan speed (1.90-29.30° min'1). Two check
reflections measured after every 49 reflections showed an
intensity variation of ± 5%. Of 1193 reflections measured,
1004 with I>2.5ct(I) were used in calculations. Pertinent data
are listed in Table 2-2.
The structure was solved by the heavy-atom method. The
difference maps showed positions of all H-atoms bonded to ring
and the NH2 group, and indicated CH3- groups having H-atoms in
two orientations (rotated by 60°) . Because not all methyl
hydrogen atoms gave suitable bond angles, coordinates of three
of them were calculated assuming tetrahedral geometry around
the carbon atoms. Non-hydrogen atoms were refined with
anisotropic thermal factors. The parameters of the H-atoms
were included in the structure factor calculations but they
were not refined. The isotropic temperature factor of 0.05
Á2 was assigned to all H-atoms. The final refinement of all
parameters converged at R=0.069 and Rw=0.037 where w=a'2. The
residual peaks in the final difference map were in the range

20
from -0.54 to 0.66 eA's. All calculations were carried out
using the DESK TOP SHELXTL (Nicolet, 1986).[29] Crystal data
are summarized in Table 2-2 through 2-7. The structure is
illustrated in Figure 2-6.
Discussion
The results of these experiments demonstrate conclusively
that chloramine in anhydrous ether solution free of ammonia
react with 3,5-lutidine to give the expected hydrazinium-type
salt in good yields by the amination of the ring nitrogen in
accordance with the following equation
3 / 5, - (CH3) 2C5H3N + NH2C1 - [ 3,5-(CHS) 2C5H3NNH2 ] Cl
In the amination product the Cl' ion is in the correct
relative position found in the crystal to show the N-H Cl
hydrogen bond:
H(lla) Cl' 2.203 (6) Á N(la) -H(lla) Cl' 172.9(4)°
H (12a) Cl 2.381 (6) Á N(la)-H(12a) Cl 170.7(4)°
Cl' at -x, 1-y, 1-z
In contrast, 2,3-, 2,4-, and 2,6-dimethylpyridine and 2,4,6-
trimethylpyridine do not appear to undergo this reaction.
Instead, ammonium chloride and the hydrochlorides of the
respective nitrogen bases are the only products isolated.

21
TABLE 2-2
Crystal Data for [C7H11N2]C1
Formula
[C7HuN2]C1
Molecular Weight
158.64
Crystal System
Triclinic
Space Group
P 1 Bar
a, Á
7.663(1)
b, Á
8.241(2)
c, Á
8.266(2)
a, deg
116.75(2)
P, deg
115.39(2)
7/ deg
91.85(2)
Volume, Á3
404.4(20
Z
2
d(caled), g/cm3
1.30
Crystal Size, mm3
0.2 X 0.2 X 0.15
Radiation Used
CuKa
¡JL, cm'1
35.8
20 Range, deg
1.5 - 112.0
Number of collected data
1193
Data with I>2.5al
1004
Goodness of Fit
8.281
R, %
6.9
Rw %
3.7

22
TABLE 2-3
Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (Á2xl03)
for N-amino-3,5-dimethylpyridinium chloride
ATOM
X
Y
Z
U*
Cl
1715(2)
2597(2)
4930(2)
56(1)
N (1)
3842(5)
7643(5)
6261(6)
41(2)
N (1A)
2052(6)
6360(6)
4455(6)
51(2)
C (2)
4237(7)
9471(7)
6744(7)
44(3)
C (3)
5974(7)
10762(7)
8443 (7)
42(3)
C(3A)
6426(7)
12801(7)
8995(8)
53(3)
C(4)
7350(7)
10166(6)
9672(7)
43(3)
C (5)
6937(6)
8295(6)
9156(7)
39(3)
C(5A)
8410(7)
7619(7)
10473(8)
53(3)
C (6)
5174(7)
7055(6)
7439(7)
41(3)
* Equivalent isotropic U defined as one third of the trace
of the orthogonal ised U¡j tensor

23
TABLE 2-4
Selected Distances (A) and Angles (°)
for N-amino-3,5-dimethylpyridinium
Bond
Distances (A)
N(1)-N(1A) 1.399(4)
N(1)-C(2)
1.359(7)
N(1)-C(6) 1.352(7)
C(2)-C(3)
1.355(5)
C(3)-C(3A) 1.513(8)
C(3)-C(4)
1.396(8)
C(4)-C(5) 1.386(8)
C(5)-C(5A)
1.518 (8)
C(5)-C(6) 1.358(5)
Bond Angles (°)
N(1A)-N(1)-C(2) 118.1(4)
N(1A)-N(1)-C(6)
120.6(4)
C(2)-N(1)-C(6) 121.2(2)
N(1)-C(2)-C(3)
120.6(5)
C(2)-C(3)-C(3A) 121.0(5)
C(2)-C(3)-C(4)
118.5(5)
C(3A)-C(3)-C(4) 120.5(3)
C(3)-C(4)-C(5)
120.4(3)
C(4)-C(5)-C(5A) 121.3(3)
C (4) -C (5) -C (6)
118.9(5)
C(5A)-C(5)-C(6) 119.9(5)
N(l)-C(6)-C(5)
120.5(5)

24
TABLE 2-5
Anisotropic Thermal Parameters (Á2xl03)
for N-amino-3,5-dimethylpyridinium chloride
Un
u22
^33
u23
^13
Ul2
Cl
45(1)
53(1)
54(1)
31(1)
10(1)
5(1)
N (1)
35(2)
46(2)
39(2)
24(2)
15(2)
7(2)
N (1A)
39(2)
53 (2)
45(2)
24(2)
9(2)
0(2)
C (2)
40(3)
51(3)
44(3)
31(3)
17 (2)
15(2)
C (3)
38(3)
47(3)
49(3)
31(3)
20(2)
11(2)
C(3A)
52(3)
45(3)
62 (3)
32(3)
22 (3)
13(2)
C (4)
37(3)
46(3)
44(3)
25(2)
16(2)
7(2)
C (5)
36(3)
42(3)
43(3)
27(2)
18(2)
11(2)
C(5A)
43(3)
50(3)
54(3)
33 (3)
9(3)
7(2)
C (6)
39(3)
44(3)
45(3)
27(2)
20(2)
11(2)
The anisotropic
temperature
factor
exponent takes
the form:
-27r2(h2a*2U11+kV2U22+l2c*2U33+2klbVu23+2hlaVu13+2hkaVu12)

25
TABLE 2-6
H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (ÁxlO3)
for N-amino-3,5-dimethylpyridinium chloride
ATOM
X
Y
Z
U
H(51A)
9580
8668
11614
50
H(52A)
8819
6647
9635
50
H(53A)
7793
7135
11015
50
H(51B)
7874
6151
9524
50
H (52B)
8678
8425
12236
50
H (53B)
9938
8096
10972
50
H(11A)
883
6789
4643
50
H(12A)
1830
5219
4429
50
H (2)
3232
9844
6028
50
H(31A)
4947
12721
7985
50
H(32A)
7472
12861
8526
50
H(33A)
6741
13659
10441
50
H (31B)
7851
13563
10159
50
H(32B)
5394
13411
9264
50
H (33B)
6424
12685
7973
50
H (4)
8691
11182
11030
50
H (6)
4641
5574
6828
50

26
TABLE 2-7
Distances (A) and Angles (°) Involving the H Atoms
for N-amino-3,5-dimethylpyridinium Chloride
Bond
Distances (A)
N(la)-H(lla)
1.021(5)
N(la)-H(12a)
0.939(5)
C(2)-H(2)
0.909(5)
C(6)-H(6)
1.072(5)
C(3a)-H(31a)
1.058(5)
C(3a)-H(31b)
1.011(4)
C(3a)-H(32a)
1.038(7)
C(3a)-H(32b)
1.002(6)
C(3a)-H(33a)
0.983(6)
C(3a)-H(33b)
0.806(8)
C(5a)-H(51a)
0.965(4)
C(5a)-H(51b)
1.041(5)
C(5a)-H(52a)
0.961(6)
C(5a)-H(52b)
1.212(6)
C(5a)-H(53a)
0.955(8)
C(5a)-H(53b)
1.051(6)
C(4)-H(4)
1.061(3)
Bond Angles (°)
N(1)-N(la)-H(11a) 107.8(4)
H(lla)-N(la)-H(12a) 98.2(5)
C(3)-C(2)-H(2) 120.5(5)
C(3)-C(3a)-H(32a) 101.9(5)
C(3)-C(3a)-H(33a) 110.5(7)
H(32a)-C(3a)-H(33a) 121.1(4)
C(3)-C(3a)-H(32b) 111.7(6)
C(3)—C(3a)—H(33b) 101.3(5)
H(32b)-C(3a)-H(33b) 113.5(7)
C(5)-C(4)-H(4) 120.9(5)
C(5)-C(5a)-H(52a) 109.5(5)
C(5)-C(5A)-H(53A) 109.9(5)
H(52a)-C(5a)-H(53a) 109.8(6)
C(5)-C(5a)-H(52b) 111.2(4)
C(5)-C(5a)-H(53b) 116.9(6)
H(52b)-C(5a)-H(52b) 93.4(3)
C(5)-C(6)-H(6) 128.0(5)
N(1)-N(la)-H(12a) 110.0(4)
N(1)-C(2)-H(2) 118.2(4)
C(3)-C(3a)-H(31a) 96.1(4)
H(31a)-C(3a)-H(32a) 115.8(7)
H(31a)-C(3a)-H(33a) 108.1(6)
C(3)-C(3a)-H(31b) 112.8(5)
H(31b)-C(3a)-H(32b) 112.9(4)
H(3lb)-C(3a)-H(33b) 103.8(7)
C(3)-C(4)-H(4) 118.7(5)
C(5)-C(5a)-H(51a) 109.1(5)
H(51a)-C(5a)-H(52a) 109.0(6)
H(51a)-C(5a)-H(53a) 109.5(6)
C(5)-C(5a)-H(51b) 103.2(3)
H(51b)-C(5a)-H(52b) 121.6(7)
H(51b)-C(5a)-H(53b) 111.4(5)
N(1)-C(6)-H(6) 111.6(3)

Figure 2-6 A View of the Crystal Structure of [C7HnN2]Cl
Showing the Atomic Numbering and Thermal Ellipsoids

N>
00

29
Since in each of these bases there are one or two methyl
groups alpha to the ring nitrogen, the attribution of these
results to spatial interference of the alpha methyl group is
a reasonable hypothesis. However, the presence of methyl
groups in the 2-position of the ring should increase the
electron density on the ring nitrogen and thus favor the
amination of the nitrogen by chloramine. The hypothesis of
spatial interference is, of course, speculative.
On the other hand, various substituted N-aminopyridinium
cations have been reported as products of the reactions of
pyridine and its alpha methyl derivatives with large counter
ions, such as iodide or mesithylenesulfonate ions. This
indicates that the further research including an examination
of solubilities or lattice stabilization of potential products
is necessary to obtain a satisfactory explanation.
There are two interesting features of the structure of
N-amino-3,5-dimethylpyridinium ion: the N(1)-N(1A) distance
and the change in the dimensions of the ring relative to other
pyridine derivatives.
The N(1)-N(1A) distance of 1.399(4) Á in N-amino-3,5-
dimethylpyridinium is shorter than the N-N distances observed
in 2,2-dimethyltriazanium chloride (N(l)-N(2) 1.439(6) Á and
N(1)-N(3) 1.462(6) Á) (Figure 2-7a) and in 1,1,1-trimethyl
hydrazinium chloride (N(1)-N(2) =1.463 (3) A) (Figure 2-7b)

30
Effect of atom hybridization on bond lengths has been
described in many articles and books. H.A.Bent described this
effect in detail. ^ He illustrated the effct of atom
hybridization on bond lengths of carbon-carbon bonds in the
following data. (Table 2-8)
Figure 2-7 2,2-Dimethyltriazanium (a) and
1,1,1-Trimethylhydrazinium Chloride
TABLE 2-8
The Effect of Atom Hybridization on
Bond Lengths of C-C Bond
Type of Bond
Bond Length(Á)
Type of Bond
Bond of Length (Á)
_„3 _„3
sp -sp
1.54
3 2
sp -sp
1.50
sp3-sp
1.46
2 2
sp -sp
1.46
sp2-sp
1.42
sp-sp
1.38
sp2-sp2 +7T
1.34
sp2-sp +7r
1.31
sp-sp +n
1.28
sp-sp +2n
1.20

31
The useful rules which were indicated in these data are
that: (1) The carbon-carbon single bond distance decreases
by 0.04 A when one of the participating carbon atoms changes
hybridization type from sp3 to sp2, or from sp2 to sp. (2)
When a n bond exists superimposed on the a bond, the figure
0.03 A is a better one to use.
Burke-Laing and co-workers discussed the relationship
between the bond lengths and bond orders in their paper.^
According to the paper single bond between two sp2 N atoms
has been estimated to be 1.41 A. On this basis the sp3 N-N
single bond would be 1.47-1.49A, which is close to the value
of 1.50 A,*53* a consequence of the sp3 hybridization of N which
is expected to increase the N radius (sp2) by about 0.04 A.
Thus the shorter N-N distance in N-amino(3,5-dimethyl-
pyridinium) ion would indicate that the N(1)-N(1A) bond has
some double bond character. However, as can be seen in the
Figure 2-6, the two H atoms bonded to N(1A) are not coplanar
with the pyridine ring as might be expected. Therefore, the
N-N bond may be considered to be an essentially single bond
with possibly some shortening resulting from formal charge.
The second interesting feature is that the formation of
the N-amino(3,5-dimethylpyridinium) ion results in significant
changes in the dimensions of the pyridine ring. Pyridine in
the gas phase has equal C-C bond length of 1.392(1) A, the
C-N bond lengths are 1.340(1) A and the C-N-C angle is
116°50' .[34]

32
Unfortunately, the crystal structure of pyridine has not been
reported yet. We searched these compounds which contained
simple pyridine rings (such as pyridine hydrogen fluoride) to
survey the parameters of pyridine in solid phase. The average
parameters of the 16 compounds (APPENDIX A) in 1987-1989
release in CSD are as follows:
C-C 1.375 Á C-N 1.337 Á C-N-C 117.13°.
It indicates the parameters of pyridine in solid phase are
almost the same as those in gas phase. In the N-amino(3,5-
dimethyl-pyridinium) ion the C-N-C angle is increased to
121.3(4)° and the C-N distances increase to 1.357(8) Á.
An increase in the C-N-C angle in the pyridine ring
occurs on either substitution, coordination to a metal ion,
or pyridinium ion formation. The Figure 2-8 showed the
increase of the C-N-C angle in pyridine rings. The change in
the bond angle may be rationalized in terms of an assumption
of increased s-character in the C-N bond as predicted by
Bent's rules.^ For a familiar example, from the bond angle
in NH3 (106°46') compared to that in H20 (104°27') , it is
inferred that nitrogen atom of NH3 devoted slightly more s
character to its bonding orbitals than the oxygen atom of H20.
However, the change in the bond lengths of the pyridine
ring on either substitution,^’^ coordination to a metal
ion,l*71 or pyridinium ion^38^391 formation appears to be more
subtle and to depend on the nature of the group bonded to the
nitrogen lone pair. Some examples are illustrated below.

Figure 2-8 An Increase of C-N-C Angle in the Pyridene
rings of O-Substitution

NO.OF THE ENTRIES(Total:46)
118 119 120 121 122 123 124 125 126 127
C6-N1-C2 ANGLES

35
Example 1 : The Structure of Dipyridinum oxalate-oxalic
acid^40' (Figure 2-9)
The structure consists of two pyridinium ions hydrogen
bonded to one oxalate ion, which lies on a center of symmetry.
An additional centrosymmetric oxalate acid molecule forms
hydrogen bonds with the oxalate moiety to give linear chains
along the C-axis. The bond distances (Á) within the pyridi-
O
\
o
03’
Figure 2-9 Dipyridinium Oxalate-Oxalic acid
( one pyridinium is omitted)
nium cation and the angle (C-N-C) are as follows:
N-C(3)
1.312(2)
C(3)-C(4)
1.366(2)
C(5)-C(6)
1.357(2)
C(3)-N-C(7) 122.1(2)°.
N-C(7)
C (4) -C (5)
C(6)-C(7)
1.331(2)
1.370(2)
1.356(2)

36
Bond distances within the pyridinium cation are short by
comparison to expected aromatic C-C (1.392 Á) and C-N (1.340
Á) distances. Such shortening is generally observed in
crystal structures containing pyridinium ions. However, most
suffer from disorder or high thermal motion and exhibit
shortened bond distances. Taking account of that error yields
average C-C (1.37 A) and C-N (1.31 A) distances that are close
to the values for this compound.
Example 2 : 1,11-methylene-bis(4,4'-dimethylamino
pyridinium) ion [C16H22N4]2+ ^ (Figure 2-10)
Figure 2-10 1,1'-methylene-bis(4,4'-dimethyl-
aminopyridinium) ion
The bond distances (A) within the pyridinium cation and
the angle (C-N-C) are as follows:
C(2)-N
1.345
C(6)-N
1.350
C(2)-C(3)
1.351
C(5)-C(6)
1.351
C(3)-C(4)
1.419
C(4)-C(5)
1.417
C(2)-N-C(6)
119.5°.

37
The distances of C(2)-N, C(6)-N and C(3)-C(4), C(4)-C(5) are
longer and ones of C(2)-C(3), C(5)-C(6) are shorter in compa¬
rison with the distances of C-N (1.340 Á) and C-C (1.392 Á)
in gaseous pyridine.
The resonance structures (A & B) (Figure 2-11) were
proposed to explain the differences between pyridine and the
ion. The positive charge presented on the N atoms is not
localized as implied by the structure (A) . Instead the
positive charge is completely delocalized throughout the
molecule. In the other words, the exocyclic nitrogens share
the positive charges through the synergistic interaction as
Figure 2-11 The Resonance Structure of [C15H22N4]2+

38
shown by the structure (B) . The structure, therefore, does
make a significant contribution to the overall structure.
This is consisted with the enhanced resonance effects
associated with 7r-electron donors and their stabilizing
interactions. The geometry optimized INDO calculations have
shown that the guinoid resonance hybrids (B) do make a
definite contribution to the overall structure of the species.
This resonance structure (B) readily account for the changes
of these distances.
Although there are the very similar changes in N-
amino(3,5-dimethylpyridinium) chloride. The related distances
(Á) are:
C(2)-N(1)
1.359
C(6)-N(1)
1.352
(longer)
C(2)-C(3)
1.355
C(5)-C(6)
1.358
(shorter)
C(3)-C(4)
1.396
C(4)-C(5)
1.386
(longer).
The explanation of the resonance structures is not reasonable.
Because if it were true, the resonance structures would be C
and D. (Figure 2-12) The structure (D) is unfavorable.
Unfortunately, there are no other compounds which are
strictly analogous for a comparison. However, these changes
in the compound may account for the observed reactivity of
pyridinium ions and related species.

39
Figure 2-12 Impossible Resonance Structures
for [C7HnN2] +
In the future, our group will try to obtain analogous
compounds for a comparison with the N-amino (3,5-dimethyl-
pyridinium) ion. We will also utilize the Cambridge
Structural Database to analyze the structural data for
pyridine rings to understand the changes in these compounds.

CHAPTER THREE
METAL COMPLEXES WITH NONPLANAR MULTIDENTATE LIGANDS
Ouadridentate Ligand
The nonplanar multidentate ligands are chosen to synthe¬
size metal complexes with "helical" coordination. Helical
coordination compounds will be discussed in more detail in the
next chapter. The simplest nonplanar multidentate ligand is
the quadridentate group. The following patterns are possible
for the arrangement of donor atoms in quadridentate
ligands^42* (Figure 3-1) . Most of the known quadridentate
chelating ligands have the linear arrangement of donor atoms
depicted by pattern [4-1]. These linear ligands can be
further subdivided into three stereochemical types: (a)
Planar ligands are those which are constrained to coordinate
with a metal ion in such a way that donor atoms lie in a
plane. (b) Nonplanar ligands are constructed so that the
donor atoms cannot lie in a plane, but may be arranged
tetrahedrally about a metal ion. (c) Facultative ligands are
flexible so that the donor atoms can be coordinate from either
a planar or nonplanar arrangement.
The metal atoms with coordination number four may require
a tetrahedral or a square planar arrangement of their coordi-
40

41
4-1 4-2 4-3 4-4
O O O
Figure 3-1 Possible Patterns for Quadridentate
Chelating Agents
nation covalences. Consequently, the quadridentate ligand
must be spatially capable of presenting its four donor atoms
to the metal atom from the apices of either a circumscribing
tetrahedron or a square.
Six covalent metal atoms which have an octahedral
disposition of covalences can also combine with quadri-
dentates. To a six coordinate metal atom a quadridentate
residue must be capable of presenting its four donor atoms
spatially in one of two ways. Either all four donors lie in
a plane leaving two vacant apices in the trans positions or
alternatively the two apices of the coordination octahedron
not occupied by the quadridentate are in cis positions to each
other.

42
Ligands of pattern [4-1] can be designed in such a way
that they can not be planar, but fix strainlessly into a
tetrahedral arrangement. The phenomenon of restricted
rotation in the hindered biphenyl compounds has been used to
synthesize nonplanar quadridentate chelating agents. Lions
and co-workers*43* designed the quadridentate chelate ligands
with a molecule capable of presenting four donor atoms to a
metal atom from the apices of a circumscribing tetrahedron.
(Figure 3-2)
2,2'-bis-(2"-phenolmethyleneamino) -
6,6'-dimethylbiphenyl
2,2'-bis-(8"-quinolylmethylene-
amino)-biphenyl
Figure 3-2 The Examples of Nonplanar Quadridentate
Chelating Agents
The description of stereochemical configuration has been
used to design the specific quadridentate ligand and to
synthesis some metal complexes.

43
Ligand
Stereochemical Feature
In addition to the factors affecting the stability of
metal complexes, various considerations of geometry must be
borne in mind when designing a multidentate ligand. Various
stereochemical features influence the shape and flexibility
of organic compounds in general. Conformational preferences
can also affect the particular shape of a molecule. When
these stereochemical features occur in ligands they may
influence the geometrical arrangement of donor atoms in a
derived metal complex or the precise configuration of such a
complex.
According to these normal stereochemical effects of
organic molecules, it seems to me that a quadridentate ligand
of a Schiff base which contains biphenyl ring is a useful
linear multidentate ligand to synthesize metal complexes and
to study "helical" coordination compounds.
The particular advantage of the basic salicylaldimine
ligand system has been the considerable flexibility of the
synthetic procedure which has allowed the preparation of a
wide variety of complexes with a given metal whose properties
are often strongly dependent on the detailed ligand structure.
The 2,2'-diaminobiphenyl was selected as the primary
amine and reacted with salicylaldehyde to form salicylaldimine

44
ligand. The reason is that biphenyl is one of the simplest
molecules which may yield a helical conformation.
The structural information indicating the helical
conformation is available for many molecules.^ Some
examples are illustrated in Figure 3-3, such as biphenyl,
tris-chelates and two or three arylgroups are attached to a
central atom.
Figure 3-3 Some Molecules with a Helical
Conformation

45
The 2,2'-bis(salicylideneamino)biphenyl ligand system
potentially has three important structural consequences:^
(i) disposing itself in a nearly strainless manner to form an
02N2 tetrahedron; (ii) forming complexes resistent to
racemization of the absolute configuration (A, A) at the metal
due to the high activation energy ( 45 Kcal/mole ) for parent
diamine; (iii) producing tetrahedral complexes of known
absolute configuration because the chirality of the complex
is nescessarily that of the diamine. In the present chapter,
detailed discussion is confined to 2,2 '-bis (salicylideneamino)
biphenyl ligand and its complexes.
Synthesis of the Ligand
Synthesis of 2.21-diaminobiphenvl
Finely powdered 2,2'-dinitrobiphenyl (20g) was heated on
a water-bath with tin (lOOg) and concentrated hydrochloric
acid (200mL) until a clear solution was obtained. The
solution was treated with excess of caustic soda and extracted
with ether. The diaminobiphenyl was recovered and separated
from ligroin (b.p. 60-80 °C) as light yellow crystals. The
products were recrystallized from cyclohexane, forming
colorless crystals. The weight of this product corresponded
to a yield of 78% of theoretical. The melting point of the
products is 81 °C. The elementary analysis showed:

46
C %
H %
N %
Found:
78.31
6.61
15.22
Calculated:
78.25
6.55
15.20
Synthesis of 2.21-bis-(salicylideneamino)biphenyl fsal)2bp
The 2,2'-diamino-biphenyl (0.55g, 3.0 x 10~3 mol) was
mixed with 50mL ethanol at 4 0°C, stirred for about 30 minutes
until 2,21-diaminobiphenyl was dissolved completely. Salicyl-
aldehyde (0.73g, 6.0 x 10'3 mol) was added to the ethanol
solution, stirred for 2 hours at 40°C. The bright yellow
precipitate that formed was filtered off and shown to be 2,2'-
bis (salicylideneamino) biphenyl (sal)2bp. (Figure 3-4)
OH
OH
Figure 3-4 2,2'-bis-(Salicylideneamino)biphenyl
(sal) 2bp

47
The weight of this product corresponded to a yield of 98%
of theoretical. The melting point of the products was 152°C.
The elementary analysis showed:
C %
H %
N %
Found:
79.42
5.10
7.01
Calculated:
79.57
5.14
7.14.
The filtrate was evaporated slowly at room temperature. Well
shaped yellow crystals formed in the filtrate. One of these
was used for X-ray studies.
Crystal Structure
To establish unequivocally the geometry of the above
condensation product, the structure was determined by X-ray
diffraction. A well shaped crystal of 0.27 x 0.10 x 0.034 mm
size was used for intensity measurements on Nicolet PI bar
diffractometer with Ni filtered-CuKa radiation. Reflections
were collected in the 26 range 1.5-112.5° using the 6-26 scan
mode and a variable scan speed (1.90-29.30° min'1). Two check
reflections measured after every 48 reflections showed an
intensity variation of ±5%. Of 2934 reflections measured,
1989 with I>2.0cj(I) were used in calculations. Pertinent data
are listed in Table 3-1.
The structure was solved by the direct method (SOLV).
The position of all H-atoms was shown in the difference maps.

48
Non-hydrogen atoms were refined with anisotropic thermal
factors. The parameters of the H-atoms were included in the
structure factor calculations but they were not refined. The
isotropic temperature factor of 0.07 A2 was assigned to all H-
atoms. The final refinement of all parameters converged at
R=0.081 and 1^=0.049 where w=u'2. The residual peaks in the
final difference map were in the rang from -0.33 to 0.23 eA'3.
All calculations were carried out using the DESK TOP SHELXTL
(Nicolet, 1986). Crystal data are summarized in Table 3-1
through 3-6. The structure is illustrated in Figure 3-5.
Metal Complexes
The following metal ions ( Fe3+, Co2+, Ni2+, Cu2+, Zn2+,
Hg2+, Ce3+, Bi3+, and Pb2+ ) were reacted with the ligand
(sal)2bp. Only Cu2+ and Fe3+ formed crystals which were
suitable for X-ray studies.
Copper(II) Complex
Synthesis of copper-complex
The 2,2'-bis(salicylideneamino)biphenyl (0.392g, 1.0 x
10 3 mol) in 50 mL methanol at about 40°C was stirred until the
ligand was dissolved completely. Sodium methoxide (0.108g, 2.0
x 10‘3 mol) in 20 mL methanol was added to the methanol
solution and stirred for about 1 hour. Copper nitrate(0.221g,
1.0 x 10"3mol) was added to the methanol solution, forming a
deep green solution. The green solution was refluxed for
about 4 hours, cooled and filtered. Slow evaporation of the

49
TABLE 3-1
Crystal Data for [C26H20N2O2)
Formula
[ c26h20n2o2 ]
Molecular Weight
392.5
Crystal System
Triclinic
Space Group
P 1 bar
a, A
10.127(2)
b, A
10.811(2)
c, A
11.409(3)
a, deg
116.93 (2)
P, deg
101.03(2)
1, deg
102.58(2)
Volume, A3
1024.7(40
Z
2
d(caled), g/cm3
1.27
Crystal Size, mm3
0.27 X 0.10 X 0.034
Radiation Used
CuKa
/x, cm'1
6.09
20 Range, deg
1.5-112.5
Number of collected data 2934
Data with I>2.0al 1989
Goodness of Fit 2.437
R, % 8.1
Rw % 4.9

50
TABLE 3-2
Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (Á2xl03)
for 2,2'-bis(salicylideneamino)biphenyl
ATOM
X
Y
Z
U*
C(l)
7284(4)
980(4)
7345(4)
50(3)
C (2)
8567(4)
1899(4)
8480(4)
53(3)
C (3)
9615(4)
2946(5)
8432(5)
59(3)
C (4)
9389(5)
3056(4)
7283(5)
64(3)
C (5)
8137(5)
2151(5)
6108(4)
65(3)
C (6)
7096(5)
1117(5)
6167 (4)
60(3)
C(l')
6140(5)
-177(5)
7328(4)
55(3)
C (2 ')
5294(5)
166(4)
8189(4)
54(3)
C(3 •)
4240(4)
-953(5)
8101(4)
58(3)
C(4 ')
3928(5)
-2422(4)
7107(5)
74(3)
C (5 1 )
4724(5)
-2810(5)
6229(5)
76(3)
C (6 ' )
5827(5)
-1677(5)
6362(4)
70(3)
C (7)
9599(4)
2659(4)
10839(4)
57(3)
C (8)
9885(4)
2333(5)
11943(4)
60(3)
C (9)
9355(4)
910(5)
11712(4)
59(3)
C(10)
9659(5)
641(5)
12785(5)
73(3)
C(ll)
10523(5)
1803(5)
14120(4)
81(3)
C (12)
11067(5)
3222(5)
14373(4)
92 (3)
C (13)
10758(5)
3481(5)
13306(4)
79(3)
C (7 ' )
4633 (4)
2122(5)
9618(4)
61(3)
C (8 1 )
4933(5)
3652(5)
10690(4)
58(3)
C(9 ')
6278(5)
4716(5)
11270(5)
67(3)
C(10' )
6506(5)
6176(5)
12255(5)
79(3)
C(ll')
5368(6)
6530(5)
12630(4)
89(3)
C (12 ' )
4045(6)
5483(7)
12082(6)
104(4)
C (13 ' )
3783(5)
4027(6)
11088(5)
82(4)
N (1)
8779(3)
1616(4)
9581(3)
56(2)
N(l')
5634(3)
1692 (3)
9201(3)
54(2)
0(1)
8479(3)
-262 (3)
10415(3)
68(2)
O(l')
7409(3)
4380(3)
10919(3)
87 (2)
* Equivalent isotropic U defined as one third of the trace
of the orthogonal ised U¡j tensor

51
TABLE 3-3
Bond Distances (Á)
for 2,2'-bis(salicylideneamino)biphenyl
Bond
Distances (Á)
C(1)-C(2)
1.407(5)
C(1')-C(2•)
1.402(7)
C(2)-C(3)
1.402(7)
C (2 ')-C(3')
1.399(7)
C (3 ) —C (4)
1.384(8)
C(3')-C(4')
1.393(6)
C(4)-C(5)
1.392(5)
C(4')-C(5')
1.379(8)
C(5)-C(6)
1.395(8)
C(5')-C(6')
1.394(7)
C(1)-C(6)
1.400(8)
C(1')~C(6')
1.403(6)
C(2)-N(1)
1.412(7)
C(2')-N(1 *)
1.431(5)
C(7)-N(1)
1.300(4)
C(7')-N(1' )
1.288(6)
C(7)-C(8)
1.450(8)
C ( 7 ') —C ( 8 ' )
1.460(6)
C(8)-C(9)
1.394(8)
C(8')-C(9 ' )
1.378(7)
C(9)-C(10)
1.377(8)
C(91)-C(101)
1.394(6)
C(10)-C(ll)
1.394(5)
C(10')-C(ll')
1.375(8)
C(ll)-C(12)
1.382(8)
C(ll')-C(12')
1.358(7)
C(12)-C(13)
1.363(9)
C(12')-C(13')
1.386(7)
C(8)-C(13)
1.410(5)
C(8')-C(13 ' )
1.403(8)
C(9)-0(1)
1.372 (4)
C(9')-0(1')
1.352(7)
C(l)-C(l')
1.499(7)

52
TABLE 3-4
Bond Angles (°) and Hydrogen Bonds
for 2,2*-bis(salicylideneamino)biphenyl
Bond Angles (°)
C(2)-C(1)-C(6)
118.6(4)
C(2)-C(1)-C(1')
122.5(5)
C(6) -C (1) - (11)
118.9(3)
C(1)-C(2)-C(3)
120.3(5)
C(l) -C(2)-N(l)
116.6(4)
C(3) -C(2) -N(1)
122.8(3)
C(2)-C(3)-C(4)
119.5(3)
C(3) -C(4) —C(5)
121.5(5)
C(4)-C(5)-C(6)
118.7(5)
C(1)”C(6)-C(5)
121.5(3)
C(1) -C(1')-C(2')
123.0(4)
C (1) -C (1 *) -C (6 1 )
119.6(4)
C(2')-C(1')-C(6')
117.4(4)
C(l*)-C(2')-C(3')
120.9(4)
C(1')-C(2')-N(1')
117.5(4)
C(3')-C(2')-N(1')
121.5(4)
C(21)-C(31)-C(4')
119.1(5)
C(3')-C( 4 ')-C(5')
121.9(4)
C (4')-C(5')-C(6')
117.8(4)
C(1')-C( 6')-C(5')
122.8(5)
C(8)-C(7)-N(1)
120.2 (4)
C(7)-C(8)-C(9)
122.7(3)
C(7)-C(8)-C(13)
119.5(5)
C(9)-C(8)-C(13)
117.8(5)
C(8) -C(9)-C(10)
121.0(3)
C(8)-C(9)-0(1)
121.1(5)
C(10)-C(9)-0(1)
117.8(4)
C(9)-C(10)-C(ll)
119.6(5)
C(10) -C(ll)-C(12)
120.4(5)
C(ll)-C(12)-C(13)
119.6(4)
C(8)-C(13)-C(12)
121.5(5)
C(81)-C(7')-N(1')
121.2(4)
C(7')-C(8')-C(9')
122.1(5)
C(71)-C(8')-C(13')
117.5(4)
C(9')-C(8')-C(13*)
120.3(4)
C(8')-C(9')-C(10')
120.2(5)
C(8')-C(9')-0(1')
121.5(4)
C(10')-C(9 *)-0(1')
118.2(4)
Cíg'J-CílO'J-Cíll')
118.8(4)
C(10' ) -C(ll')-C(12')121.3(5)
C(ll')-C(12')-C(13')
121.1(6)
C(8')-C(13')-C(12 ' )
118.2(5)
C(2)-N(1)-C(7)
120.7 (4)
C(2')-N(1')-C(7')
118.9(3)
Hydrogen Bonds
0(1)-H(1) N (1)
0(1)-H(1) 1.117 A
0(1)-N(1) 2.591 A
0(1)-H(1)-N(1) 141.6
N(1) at X, Y, Z
1°
0(1' )H(1' ) N(1' )
0(1')-H(1') 1.159 A
0(1')-N(1') 2.596 A
0(1')-H(1')-N(11) 141.3°
N(l') at X, Y, Z

53
TABLE 3-5
Anisotropic Thermal Parameters (Á2xl03)
for 2,2'-bis(salicylideneamino)biphenyl
Un
u22
U33
U23
U13
u12
C(l)
47(3)
51(3)
51(3)
20(2)
23 (2)
21(5)
C (2)
51(3)
57(3)
49(3)
20(2)
19(2)
28(2)
C (3)
46(3)
55(3)
66(3)
25(3)
21(3)
10(3)
C (4)
74(4)
60(3)
66(3)
35(3)
32 (3)
27(3)
C (5)
63(3)
73(4)
62 (3)
32(3)
26(3)
29(3)
C (6)
55(3)
66(3)
51(3)
23(3)
19(3)
21(3)
C(l')
55(3)
56(3)
51(3)
26(3)
18(3)
19(3)
C (2 ')
58(3)
51(3)
47(3)
20(2)
15(3)
20(3)
C(3 ')
55(3)
52 (3)
63(3)
32 (3)
19(3)
8(2)
C(4 ')
71(4)
59(3)
80(4)
37(3)
17(3)
8(3)
C (5 1 )
79(4)
57(3)
76(4)
26(3)
27(3)
13(3)
C (6 ')
73(4)
62(3)
54(3)
12(3)
24(3)
27(3)
C (7)
64(3)
55(3)
56(3)
29(3)
22(3)
26(3)
C (8)
56(3)
59(3)
52(3)
18(3)
17(3)
22 (3)
C (9)
57(3)
70(3)
54(3)
30(3)
27(3)
26(3)
C(10)
77(4)
86(4)
84 (4)
56(3)
40(3)
37(3)
C(ll)
74(4)
109(4)
63 (3)
43(3)
23 (3)
39(3)
C (12)
110(5)
82(4)
50(3)
20(3)
9(3)
19(3)
C (13)
91(4)
67(3)
63(3)
27(3)
13(3)
25(3)
C (7 ')
53(3)
69(3)
71(3)
37(3)
33 (3)
27(3)
C (8 ')
67(4)
60(3)
53 (3)
28(3)
27 (3)
29 (3)
C (9 ' )
74(4)
63 (3)
55(3)
22 (3)
15(3)
34(3)
C(10' )
96(4)
56(3)
57(3)
13(3)
8(3)
27(3)
C(ll')
146(5)
70(4)
48(3)
20(3)
32 (3)
59(4)
C(12 ' )
133(5)
120(5)
116(5)
68(4)
81(4)
93(4)
C(13 ' )
86(4)
82(4)
98 (4)
44(3)
58(4)
48(3)
N (1)
56(3)
57(2)
51(2)
24(2)
16(2)
23 (2)
N(l')
52 (2)
49(2)
56(2)
24(2)
21(2)
16(2)
0(1)
64(2)
54(2)
68(2)
24(2)
29(2)
2(2)
0(1'
58(2)
56(2)
105(3)
12(2)
19(2)
18(2)
The anisotropic temperature factor exponent takes the form:
-27r2(hV2U11+kV2U22+lV2U3g+2klbVu23+2hlaVu13+2hkaVu12)

54
TABLE 3-6
H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (ÁxlO3)
for 2,2'-bis(salicylideneamino)biphenyl
ATOM
X
Y
Z
U
H (3)
10698
3745
9340
70
H(4)
9940
4110
7201
70
H (5)
7807
2215
5070
70
H (6)
5988
303
5197
70
H (1)
9079
604
10158
70
H (7)
9983
3877
10907
70
H (10)
9419
-277
12782
70
H (11)
10789
1512
15058
70
H (12)
11644
4038
15467
70
H (13)
11040
4476
13379
70
H (3 ')
3529
-758
8899
70
H(4 ' )
3116
-3190
7048
70
H (5 1)
4485
-4175
5431
70
H (6 ' )
6379
-2087
5691
70
H(l')
6972
3184
9966
70
H (7 ' )
3314
1393
9226
70
H(IO')
7611
7144
12738
70
H(H')
5638
7804
13361
70
H(12 ' )
3207
5746
12212
70
H (13 ' )
2356
2842
10302
70

Figure 3-5 A View of the Crystal Structure of [C26H20N2O2]
Showing the Atomic Numbering and Thermal Ellipsoids

56

57
green filtrate produced a deep green precipitate. The solid
was washed with water, and filtered, giving a deep green
powder. The weight of this product corresponded to a yield
of 46% of theoretical. The elementary analysis showed:
C %
H %
N %
Found:
68.96
4.12
6.13
Calculated:
68.78
4.00
6.17.
The products were recrystallized from methanol, producing deep
green crystals, suitable for X-ray diffraction studies.
Crystal structure of copper-complex
To establish uneguivocally the geometry of the above
condensation product, the crystal structure was determined by
X-ray diffraction. A well shaped crystal of 0.78 x 0.34 x
0.034 mm size was used for intensity measurements on Nicolet
PI bar diffractometer with Ni filtered-CuKa radiation.
Reflections were collected in the 26 range 1.5-112.5° using
the 9-26 scan mode and a variable scan speed (1.90-29.30°
min'1) . Two check reflections measured after every 48 reflec¬
tions showed an intensity variation of ±5%. Of 1658 reflec¬
tions measured, 1289 with I>2.0a(I) were used in calculations.
Pertinent data are listed in Table 3-7.
The structure was solved by the heavy atom method. The
position of all H-atoms was located in the difference maps.
Non-hydrogen atoms were refined with anisotropic thermal
factors. The parameters of the H-atoms were included in the

58
structure factor calculations but they were not refined. The
isotropic temperature factor of 0.05 A2 was assigned to all H-
atoms. The final refinement of all parameters converged at
R=0.043 and 1^=0.041 where w=a'2. The residual peaks in the
final difference map were in the range from -0.44 to 0.33 eA'3.
All calculations were carried out using the DESK TOP SHELXTL
(Nicolet, 1986). Crystal data are summarized in Table 3-7
through 3-12. The structure is illustrated in Figure 3-6.
Iron fill) Complex
Synthesis of iron-complex
The 2,2'bis-(salicylideneamino)biphenyl (0.392g, 1.0 x
10'3 mol) in 50 mL methanol at about 4 0°C was stirred until the
ligand was dissolved completely. Sodium methoxide (0.108g,
2.0 x 10'3 mol) in 20 mL methanol was added to the methanol
solution and stirred for about 1 hour. Iron(III) nitrate
(0.404g, 1.0 x 10'3 mol) was added to the methanol solution,
forming a deep brown solution. The brown solution was
refluxed for about 8 hours, cooled and filtered. Slow
evaporation of the brown filtrate produced deep brown
precipitate. The solid was washed with water and filtered,
giving a deep brown powder. The weight of this product
corresponded to a yield of 52% of theoretical. The elementary
analysis showed:
C % H % N %
Found: 65.78 4.48 7.13
65.54 4.13 7.17.
Calculated:

59
TABLE 3-7
Crystal Data for [C26H18N202Cu]
Formula
[C26H18N202Cu]
Molecular Weight
454.0
Crystal System
Orthorhombic
Space Group
P nna
a, A
16.949(3)
b, A
13.188(3)
c, A
9.369(1)
a, deg
90 *
(3, deg
90 *
1, deg
90 *
Volume, A3
2094(1)
Z
4
d(caled) , g/cm3
1.44
Crystal Size, mm3
0.78 X 0.34 X 0.034
Radiation Used
CuKa
H, cm'1
16.33
20 Range, deg
1.5-112.5
Number of collected data
1658
Data with I>2.0ul
1289
Goodness of Fit
4.943
R, %
4.32
K %
4.09
* Required by symmetry of space group

60
TABLE 3-8
Final Positional Parameter (x 104) and Isotropic
Thermal Parameters (A2xl03) for the Cu[(sal)2bp] Complex
ATOM
X
Y
Z
U*
Cu
4831(1)
7500
2500
31(1)
C(l)
2797(2)
7281(3)
1759(4)
33(1)
C (2)
3386(2)
6647(3)
1220(4)
31(1)
C (3)
3312 (2)
6224(3)
-123(5)
42(1)
C (4)
2655(3)
6420(3)
-954(5)
53 (2)
C (5)
2066 (2)
7047 (3)
-436(5)
49(2)
C (6)
2144(2)
7466(3)
897 (4)
41(1)
N (1)
4075(2)
6418(2)
2050(3)
31(1)
C (7)
4233(2)
5460(3)
2242(4)
37(1)
C (8)
4920(2)
5033 (3)
2876(4)
35(1)
C(9)
5591(2)
5618(3)
3259(4)
36(1)
0(1)
5642(1)
6598 (20
3040(3)
41(1)
C(10)
6242 (2)
5101(3)
3863(4)
43(1)
C(ll)
6213(3)
4076(3)
4116(5)
49(2)
C (12)
5561(3)
3503 (3)
3746(5)
50(2)
C (13)
4931(3)
3970(3)
3133(5)
50(2)
* Equivalent isotropic U defined as one third of the trace
of the orthogonal ised U¡j tensor

61
TABLE 3-9
Bond Distances (Á) for the Cu[(sal)2bp] Complex
Bond
Distances (Á)
CU-N(1)
1.964(3)
Cu-O(l)
1.887 (2)
C(7)-N(1)
1.305(5)
C (9) -0(1)
1.321(5)
C(1)“C(2)
1.397(5)
C(1)-C(6)
1.391(5)
C(2)-C(3)
1.383(6)
C(3)-C(4)
1.383(6)
C(4)-C(5)
1.384(6)
C(5)-C(6)
1.371(6)
C(7)-C(8)
1.422(5)
C(8)-C(9)
1.421(5)
C(8)-C(13)
1.423(6)
C(9)-0(1)
1.321(5)
C(9)-C(10)
1.415(6)
C(10)-C(ll)
1.373(6)
C(11)-C(12)
1.383(6)
C(12)-C(13)
1.360(6)
C(l)-C(l')
1.503(7)

62
TABLE 3-10
Bond Angles (°) for the Cu[(sal)2bp] Complex
Bond Angles (°)
N(1)-Cu-O(l)
94.3(1)
N(1)-Cu-N(1A)
98.5(2)
0(1)-Cu-N(IA)
151.2(1)
N(1)-CU-O(IA)
151.2(1)
0(1)-Cu-0(1A)
86.5(1)
N(1A)-CU-O(IA)
94.3(1)
C(2)-C(1)-C(6)
117.6(3)
C(2)-C(1)-C(1A)
124.3(3)
C(6)-C(l)-C(1A)
118.0(3)
C(1)“C(2)-C(3)
120.4(3)
C(l)-C(2)-N(l)
120.8(3)
C(3)-C(2)-N(1)
118.8(3)
C(2)-C(3)-C(4)
120.6(4)
C(3)-C(4)-C(5)
119.7(4)
C (4) -C (5) -C (6)
119.4(4)
C (1) “C (6) -C (5)
122.3(4)
Cu-N(1)-C(2)
119.6(2)
Cu-N (1) -C (7)
122.7(4)
C (2) -N (1) -C (7)
116.5(3)
N(1)-C(7)-C(8)
127.5(3)
C(7)-C(8)-C(9)
123.1(4)
C(7)-C(8)-C(13)
118.2(3)
C(9)-C(8)-C(13)
118.7(3)
C(8)-C(9)-0(1)
123.1(3)
C(8)-C(9)-C(10)
117.7(4)
0(1) -C(9)-C(10)
119.1(3)
Cu-0(1)-C(9)
128.0(2)
C(9) -C(10)-C(11)
121.0(4)
C(10)-C(ll)-C(12)
121.5(4)
C(11)-C(12)-C(13)
119.1(4)
C(8)-C(13)-C(12)
121.9(4)

63
TABLE 3-11
Anisotropic Thermal Parameters (Á2xl03)
for the Cu[(sal)2bp] Complex
Un
^22
U33
u23
u13
u12
Cu
47(1)
26(1)
21(1)
0
0
2(1)
C(l)
43(2)
31(2)
27 (2)
"5(2)
2(2)
4(2)
C (2)
41(2)
29 (2)
25(2)
-6(2)
-0(2)
2(2)
C (3)
52(3)
39(2)
34(2)
-2(2)
-0(2)
-7(2)
C(4)
50(3)
57(3)
52(3)
-9(2)
-8(2)
-6(3)
C (5)
56(3)
60(3)
32 (2)
-2(2)
-12(2)
5(3)
C (6)
51(3)
47(2)
24(2)
0(2)
-4(2)
1(2)
N (1)
43(2)
28(2)
21(2)
-1(1)
-2(1)
-0(1)
C (7)
54(3)
29(2)
28 (2)
-6(2)
4(2)
-3(2)
C ( 8)
50(3)
26(2)
28 (2)
5(2)
5(2)
4(2)
C (9)
33 (2)
41(3)
33 (2)
8(2)
2(2)
4(2)
0(1)
67(2)
28(2)
26(1)
1(1)
-11(1)
7(1)
C(10)
50(3)
44(3)
36(2)
10(2)
-2(2)
0(2)
C(ll)
49(3)
45(3)
53 (3)
26(2)
4(2)
11(2)
0(12)
61(3)
31(2)
59(3)
13(2)
4(3)
7(2)
0(13)
69(3)
35(2)
45(3)
1(2)
9(2)
1(2)
The anisotropic temperature factor exponent takes the form:
-27r2(h2a*2Un+kV2U22+l2c*2U33+2klbVu23+2hlaVu13+2hkaVu12)

64
TABLE 3-12
H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (ÁxlO3)
for the Cu[(sal)2bp] Complex
ATOM
X
Y
Z
U
H (3)
3779
5787
-475
50
H(4)
2647
6139
-2079
50
H (5)
1567
7211
-1007
50
H (6)
1701
7910
1318
50
H (7)
3815
4824
1869
50
H (10)
6715
5534
4202
50
H (11)
6671
3695
4523
50
H (12)
5505
2669
3975
50
H (13)
4432
3617
2898
50

Figure 3-6 A View of the Crystal Structure of [C26HlgN,02Cu]
Showing the Atomic Numbering and Thermal Ellipsoids

CS
OS

67
The products were recrystallized from benzene, producing deep
brown crystals, suitable for X-ray diffraction studies.
Crystal structure of iron-complex
To establish unequivocally the geometry of the above
condensation product, the structure was determined by X-ray
diffraction. A well shaped crystal of 0.32 x 0.20 x0.04 mm
size was used for intensity measurements on a Siemens R3m/E
diffractometer with graphite monochromat, MoKa radiation.
Reflections were collected in the 29 range 3.0-52.0° using the
9-29 scan mode and a variable scan speed (1.90-29.30° min'1).
Two check reflections measured after every 98 reflections
showed an intensity variation of ±5%. Of 5124 reflections
measured, 2217 with I>3.0a(I) were used in calculations.
Pertinent data are listed in Table 3-13.
The structure was solved by the heavy atom method. Non¬
hydrogen atoms were refined with anisotropic thermal factors.
The benzene ring (the solvent molecule) was fixed as a rigid
body. The parameters of the H-atoms were included in the
structure factor calculations but they were not refined. The
isotropic hydrogen temperature factor U of 1.2 was assigned
to all H-atoms. The final refinement of all parameters
converged at R=0.086 and Rw=0.092 where w=a'2. The residual
peaks in the final difference map were in the range from -0.67
to 0.89 eA'3. Crystal data are summarized in Table 3-13

68
through 3-18. The structure is illustrated in Figure 3-7 and
Figure 3-8.
Description and Discussion
Nonplanar Ligand
The bright yellow crystal of formula [C26H20N2O2] was
determined to have a triclinic unit cell of space group PI bar
and dcalcd=1.27g/cm3. Final positional parameters for the atoms
are given in Table 3-2. Table 3-3 and 3-4 contain the bond
lengths and bond angles, respectively. The deviations of the
N-H 0 angles from 180° and the long H N and 0 N
distances are characteristic of intramolecular hydrogen bonds
(Table 3-4).
The C-N bonds of salicylidene linkages ( C(7)-N(l)
1.300(4) Á; C(7')-N(11) 1.288(6)Á ) are both shorter than the
neighboring C-N bonds ( C(2)-N(l) 1.412(7) Á; C(2')-N(l')
1.431(5) Á ). This indicates the bonds between N and C of
salicylidene linkages (imine bonds) are characteristic of
highly localized double bonds.
The equations of various planes are presented in Table
3-19 and the deviations from these planes are shown in Table
3-20. These results reveal that the four phenyl rings are
quite planar, but twisted relatively to each other ( from 29°-
67° ) . Obviously, any attempt to make the biphenyl group
coplanar would result in intolerably close contact between
the two hydrogen atoms. The twisted ligand conformation
results from the minimization of these nonbonding repulsions.

69
TABLE 3-13
Crystal Data for [ C26HlgN202Fe ] N0S. C6H6
Formula
[C26H18N202Fe]N03.
c6h6
Molecular Weight
586.1
Crystal System
Monoclinic
Space Group
P 2j/n
a, A
10.887(4)
b, A
18.462(5)
c, A
14.142(3)
a, deg
90*
P, deg
98.27(2)
7, deg
90*
Volume, A3
2813(1)
Z
4
d(caled), g/cm3
1.67
Crystal Size, mm3
0.32 X 0.20 X 0
.04
Radiation Used
MoKa
H, cm'1
5.78
20 Range, deg
3.0-52.0
Number of collected data
5124
Data with I>3.0crl
2217
Goodness of Fit
1.346
R, %
8.59
Rw %
9.22
* Required by symmetry of space group

70
TABLE 3-14
Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (A2xl03)
for the Fe[ (sal)2bp) ]NOs Complex
X
Y
Z
U*
[C26HI8N202Fe] +
Fe
2200(3)
5668(1)
7385(2)
45(1)
C(l)
3009(18)
3666(10)
7713(10)
48(7)
C (2)
3527(15)
4271(9)
8240(10)
35(6)
C (3)
4767(17)
4275(11)
8617(11)
42(7)
C(4)
5558(22)
3703(12)
8479(15)
64(9)
C (5)
5068(22)
3109(12)
7972(16)
61(9)
C (6)
3838(22)
3104(9)
7606(11)
41(8)
N (1)
2760(13)
4882(7)
8403(9)
38 (5)
C (7)
2407(16)
4891(10)
9235(11)
43(7)
C (8)
1875(15)
5509(8)
9662(11)
34(6)
C (9)
1954(19)
6211(9)
9237(13)
51(8)
0(1)
2307(12)
6334(6)
8415(7)
52 (5)
C(10)
1587(18)
6798(11)
9790(13)
57(8)
C(ll)
1135(20)
6684(14)
10631(14)
70(10)
C (12)
995(18)
5993(12)
10947(13)
56(9)
C (13)
1411(19)
5423(11)
10511(12)
58 (8)
C(l')
1712(17)
3650(9)
7291(9)
41(7)
C (2 ' )
1197(16)
4153(10)
6644(11)
42(7)
C (3 *)
-53(19)
4128(8)
6223(14)
50(8)
C (4 *)
-759(19)
3524(11)
6406(15)
59(8)
C(5')
-234(18)
3005(10)
7030(12)
57(8)
C (6 * )
983(18)
3055(9)
7456(12)
42(7)
N(l')
1886(13)
4778 (7)
6408(9)
42(5)
C(7 *)
2343(18)
4762(9)
5604(11)
47(7)
C (8 ')
3088(19)
5286(11)
5279(12)
57(8)
C (9 1 )
3660(18)
5863(8)
5843(12)
37 (7)
O(l')
3515(12)
5958 (7)
6747(8)
55(5)
C(10')
4395(22)
6332(11)
5463(15)
75(10)
C(ll')
4623(24)
6266(13)
4544(20)
95(13)
C(12 ' )
4134 (22)
5681(15)
3975(16)
90(11)
C(13 ' )
3359(19)
5218(11)
4355(12)
64(9)

71
TABLE 3-14 Continued
X
Y
Z
U*
no3-
N
-75(17)
6058(9)
6766(10)
70(7)
On(l)
200(12)
5583(7)
7407(9)
64 (5)
On (2)
880(14)
6307(7)
6425(8)
68(6)
On (3)
-1110(16)
6238(10)
6437(12)
121(8)
CeHe
C (IE)
5878(21)
8692(10)
3525(15)
127(17)
C(2E)
5652
8251
4281
131(18)
C(3E)
6634
7896
4836
123(16)
C(4E)
7843
7983
4634
87(12)
C(5E)
8069
8424
3878
81(11)
C(6E)
7087
8779
3323
97(13)
* Equivalent isotropic U defined as one third of the trace
of the orthogonal ised U¡j tensor

72
TABLE 3-15
Bond Distances (Á) for
the Fe[ (sal)2bp) ]N03 Complex
Bond
Distances (A)
Fe-O(l)
1.987(11)
Fe-0(1')
1.876(14)
Fe-On(l)
2.188(14)
Fe-On(2)
2.176(13)
Fe-N(l)
2.074(12)
Fe-N(11)
2.143(14)
C(l)-C(2)
1.515(23)
C(1')-C(21)
1.367(22)
C(2)-C(3)
1.397(24)
C(2 ') —C(3 ')
1.406(26)
C(3)-C(4)
1.393 (30)
C(3 ' ) —C(4 ')
1.400(27)
C(4)-C(5)
1.376(31)
C (4 ') —C ( 5 1 )
1.371(27)
C(5)-C(6)
1.364 (32)
C(5')-C(6')
1.337(26)
C(6)-C(1)
1.398(28)
C(6')-C(l')
1.394(25)
C(2)-N(1)
1.442(21)
C(2')-N(l')
1.441(23)
C(7)-N(1)
1.289(21)
C(7')-N(l')
1.305(22)
C(7)-C(8)
1.449(24)
C(71)-C(8 ')
1.383(27)
C(8)-C(9)
1.437(22)
C(8')-C(9 ' )
1.419(24)
C(9)-C(10)
1.428(27)
C(9')-C(10 ')
1.344(29)
C(10)-C(ll)
1.368(29)
C(10')-C(ll')
1.362(36)
C(ll)-C(12)
1.367 (33)
C(11')-C(12 ' )
1.406(35)
C(12)-C(13)
1.332(29)
C(12')-C(13')
1.365(34)
C(13)-C(8)
1.377(25)
C(13')-C(8 1 )
1.386(26)
C(9) -0(1)
1.296(23)
C(9')-0(1 *)
1.323(21)
C(l)-C(l')
1.452(25)
On(l-)N
1.267(20)
On(2)-N
1.292(23)
On(3)-N
1.202(24)

73
TABLE 3-16
Bond Angles (°) for
the Fe[(sal)2bp)]N03 Complex
Bond Angles (°)
0(1)-Fe-0(1')
102.6(5)
0(1)-Fe-On(l)
89.3(5)
0(1*)-Fe-On(l)
149.0(5)
0(1)-Fe-0n(2)
95.2(5)
0(1')-Fe-0n(2)
91.5(5)
On(1)-Fe-On(2)
58.6(5)
0(1)-Fe-N(l)
86.6(5)
0(1')-Fe-N(1)
111.4(6)
On(1)-Fe-N(l)
97.6(5)
On(2)-Fe-N(1)
156.1(6)
0(1)-Fe-N(1')
168.2(6)
0(1')-Fe-N(1')
88.3(5)
On(1)-Fe-N(1')
83.5(5)
On(2)-Fe-N(1')
89.0(5)
N(1)-Fe-N(1')
85.1(5)
C(12)-C(13)-C(8)
120.3(18)
C(13)-C(12)-C(11)
121.7(19)
C(12)-C(11)-C(10)
119.9(21)
C(11)-C(10)-C(9)
121.6(20)
C(10)-C(9)-C(8)
114.7(17)
C (10) -C(9) -0 (1)
120.0(15)
C(8)-C(9)-0(1)
125.3(16)
C(13)-C(8)-C(9)
121.4(16)
C(13)-C(8)-C(7)
119.4(15)
C(9) -C(8)-C(7)
118.9(16)
C (8) -C (7) -N (1)
125.4(15)
C (5) -C (6) -C (1)
124.6(17)
C(6)-C(5)-C(4)
119.2(21)
C(5)-C(4)-C(3)
118.5(21)
C(4)-C(3)-C(2)
122.2(17)
C(3)-C(2)-C(l)
120.1(16)
C(3)-C(2)-N(1)
119.4(14)
C(1)-C(2)-N(1)
120.4(14)
C(6)-C(1)—C(2)
115.4(16)
C(6)-C(1)-C(1')
123.0(16)
C(2)-C(1)-C(1')
121.6(16)
C (8')-C(7')-N(11)
126.1(15)
C(5')-C(6')-C(1' )
120.9(16)

74
TABLE 3-16 Continued
Bond Angles (°)
C(6')-C(5')-C(41)
121.4(18)
C(5')-C(4')-C(3')
119.1(18)
C(4 ' )-C(3 ' )-C(2 ')
118.2(16)
C (3 ' ) —C (2 1 ) —C (1' )
122.6(17)
C (3')-C(2')-N(1 *)
115.6(14)
C(11)-C(2 *)-N(1')
121.5(15)
C(1)~C(11)-C(6 *)
119.4(15)
C(1)-C(1')-C(21)
122.8(16)
C (6')-C(1')-C(2')
117.4(16)
C(121)-C(13')-C(8')
122.8(19)
C (13')-C(12')-C(ll')
117.4(22)
C(12')-C(11')-C(10')
120.6(24)
Cíll'J-CílO'J-Cíg')
121.6(20)
C(101)-C(91)-C(8')
119.8(17)
C (101)-C(9')-0(1')
117.5(15)
C(8')-C(9')-O(1')
122.7(16)
C (7 1 )-C(81)-C(13')
117.6(17)
C(71)-C(8')-C(9')
124.7(16)
C(13')-C(8')-C(9')
117.6(18)
Fe-O(l)-C(9)
125.5(11)
Fe-0(1')-C(9')
129.2(11)
Fe-On(l)-N
94.2(11)
Fe-0n(2)-N
94.0(10)
On(l)-N-On(2)
113.2(15)
On(l)-N-0n(3)
125.5(18)
On(2)-N-On(3)
121.1(16)
Fe-N(1')-C(7)
121.9(11)
Fe-N(1)-C(2)
123.7(10)
C(7) -N(1) -C (2)
114.3(13)
Fe-N(1')-C(71)
122.2(11)
Fe-N(1 *)-C(2')
120.3(10)
C(7')-N(11)-C(2')
117.4(14)

75
TABLE 3-17
Anisotropic Thermal Parameters (Á2xl03)
for the Fe[ (sal)2bp) ]N03 Complex
C26^16^202
Fe
C(l)
C (2)
C (3)
C (4)
C (5)
C (6)
N (1)
C (7)
C (8)
C (9)
0(1)
C(10)
C(ll)
C (12)
C (13)
C(l')
C (2 1 )
C (3 ')
C (4 1 )
C (5 1 )
C (6 1 )
N(l')
C (7 ' )
C (8 ' )
C(9 ' )
0(1')
C(IO')
C(ll')
C (12 ')
C (13 1 )
Un
68 (2)
67(16)
46(12)
49(13)
78(19)
46(17)
69(17)
55(10)
39(13)
34(12)
79(17)
78(11)
61(16)
82(19)
59(16)
80(18)
73(15)
24 (12)
68(16)
37(14)
67(16)
51(15)
37(10)
84(16)
72(16)
59(14)
82(11)
121(22)
107(23)
88(19)
85(18)
u22
34(1)
63(12)
34(9)
45(11)
54(14)
55(15)
25(10)
17 (7)
56(12)
25(10)
24(10)
40(8)
63(14)
90(19)
88(17)
63(14)
41(10)
63(14)
13(9)
60(14)
57(13)
32(10)
51(10)
30(10)
65(13)
16(9)
56(8)
57(14)
69(18)
120(21)
68(15)
U33
32(1)
10(7)
24(8)
31(8)
64(13)
88(16)
38(10)
41(8)
35(10)
42(9)
48(11)
36(6)
44 (12)
36(12)
28(10)
37(10)
8(7)
36(9)
70(13)
76(14)
50(11)
43 (10)
37 (8)
31(9)
28(13)
42(10)
35(7)
62(14)
121(22)
67(15)
40(11)
u23
-5(1)
-12(9)
0
-5(9)
1(12)
28(13)
3(8)
4(6)
26(9)
0
-10(9)
-2(6)
6(10)
-7(12)
4911)
-17(10)
0
-7(9)
-2(9)
0
-31(10)
1(8)
7(7)
4(8)
8(9)
-1(7)
-1(6)
-33(12)
-19(16)
-6(17)
-4(10)
u13
2(1)
-9(9)
0
3(9)
25(13)
26(13)
36(11)
-0(7)
4(9)
0
-1(11)
-0(6)
1(11)
3(12)
24(10)
25(11)
0
-10(9)
18(12)
0
23(11)
11(10)
-1(7)
16(10)
-10(10)
25(10)
30(7)
67(15)
58(18)
33(14)
14(11)
u12
-0(2)
18(12)
0
-16(12)
-7(14)
34(13)
-3(11)
7(7)
-1(10)
0
8(10)
-9(7)
16(12)
33(15)
9(13)
16(12)
0
7(10)
15(9)
0
-52(12)
-12(10)
-2(8)
-1(10)
-3(12)
-5(9)
-23 (7)
-28(14)
-40(16)
-7(18)
-11(13)

76
TABLE 3-17 Continued
Un
u22
U33
u23
u13
Ul2
no3-
N
109(16)
74 (12)
25(8)
0
0
0
°n(l)
54(10)
62(9)
75(9)
-23(8)
12(7)
-4(7)
On (2)
90(12)
64(9)
50(8)
8(7)
4(7)
19(8)
On (3)
92 (14)
156(17)
94(12)
-30(12)
-53(10)
54(12)
c6h6
C (IE)
132(32)
64(20)
162(33)
-59 (22)
-56(23)
56(19)
C(2E)
37(19)
188(37)
162(32)
0
0
0
C(3E)
158(33)
145(28)
81(19)
-71(20)
62(23)
-98(26)
C(4E)
106(25)
74(18)
72 (18)
-14(14)
-20(16)
-8(16)
C(5E)
92(22)
80(18)
77(17)
-28(14)
35(17)
-33(16)
C(6E)
156(31)
68(18)
62(16)
-9(13)
3 (200
-25(21)
The anisotropic temperature factor exponent takes the form:
-27r2(hV2Un+kV2U22+l2c*2U33+2klbVu23+2hlaVu13+2hkaVu12)

77
TABLE 3-18
H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (AxlO3)
for the
Fe[(sal)2bp) ]NOs
Complex
ATOM
X
Y
Z
U
H (1A)
1389
4950
10791
70
H (1A)
585
5917
11496
66
H(3A)
916
7089
11000
80
H(4A)
1660
7285
9566
64
H (IB)
3520
2685
7250
46
H(2B)
5585
2702
7875
71
H(3B)
6423
3723
8733
83
H(4B)
5097
4685
8987
48
H (2)
2143
4348
5200
52
H (1C)
1337
2675
7873
45
H(2C)
-721
2597
7173
57
H(3C)
-1602
3473
6101
61
H(4C)
-412
4514
5820
61
H (ID)
2984
4828
3967
76
H (2D)
4337
5609
3343
98
H (3D)
5121
6622
4282
112
H(4D)
4770
6724
5847
94
H (IE)
5202
8936
3143
80
H(2E)
4820
8191
4420
80
H(3E)
6478
7592
4357
80
H(4E)
8518
7739
5016
80
H(5E)
8900
8484
3739
80
H(6E)
7242
9082
2802
80
H (1)
2632(127)
4544(68)
9699(93)
32

Figure 3-7 A View of the Structure of [C26H18N202Fe]N03
Showing the Atomic Numbering and Thermal Ellipsoids


Figure 3-8 The Packing Pattern of [C26H18N202Fe]N03. C6H6

81
* T
f, t
^ Ac—
.1 *
♦ t
• i

82
TABLE 3-19
Equations to Various Planes
for 2,2'-bis(salicylideneamino)biphenyl
Plane*
Atoms
1
m
n
P
Salicylidene Benzene Ring:
1
C8 C9 CIO CU C12 C13
.8125
-.4880
-.3188
4.6905
2
C8'C9' CIO 'Cll1 Cl2'C13'
.2234
-.2926
.9298
9.2862
Biphenyl Ring:
3
Cl C2 C3 C4 C5 C6
-.4295
.8835
.1870
-3.0985
4
Cl'C21C3'C4'C5'C61
.6438
-.3055
.7015
9.4751
Imine
Region:
5
N1 Cl C8 C9 01
.8095
-.4911
-.3219
4.6348
6
NI'C7'C8'C9'01'
.2077
-.3109
.9275
9.1459
Angles of interest between the
planes
(°) (plane 1 -
plane 4)
1-3=32.9 3-4=65.5
4-2=27.
7
* IX + mY + nZ = p
Reference is made to orthogonal X, Y, Z.

83
TABLE 3-20
Distances (Á) to Various Planes in TABLE 3-19
for 2,2'-bis(salicylideneamino)biphenyl
Plane
Atoms Deviation (A)
1
C8
C9
CIO
Cll
C12
C13
Nl
C7
-.0036
.0036
-.0019
.0002
-.0003
.0002
-.0124
.0121
2
C8 '
C9 '
CIO'
Cll'
C12 '
C13 '
Nl*
C7 '
-.0017
.0032
.0019
-.0087
.0103
-.0049
-.0449
-.0494
3
Cl
C2
C3
C4
C5
C6
Nl
C7
.0058
-.0057
.0019
.0017
-.0015
-.0023
-.1434
.3096
4
Cl'
C2 '
C3 '
C4 '
C5 1
C6 '
Nl'
C7 '
.0013
-.0106
.0119
-.0039
-.0054
.0068
.0196
-.4914
5
N1
C7
C8
C9
01
C2
-.0066
.0109
-.0085
.0021
.0020
.0993
6
Nl'
C7 '
C8 '
C9 '
01'
C2 '
-.0004
-.0052
.0121
-.0128
.0065
.0375

84
The highly localized imine double bonds together with the
biphenyl backbone make the molecule incapable of functioning
as a planar quadridentate. In contrast, in 2,2'-bis (2 * 1 —
pyridylmethylamino)biphenyl copper^46* (Figure 3-9), the ligand
Figure 3-9 2,2'-bis(2''-pyridylmethylamino)biphenyl
was functioning as a planar quadridentate. Flexibility can
be introduced easily by the reduction of imine bonds.
A model (Figure 3-10) shows that the two oxygen atoms and
the two nitrogen atoms of 2,2 '-bis-(salicylideneamino) biphenyl
can be brought almost strainlessly into a tetrahedral
arrangement from which they can all become attached to a
central metal atom of appropriate size. Moreover, they cannot
be disposed about a metal atom in a planar arrangement. It
means the ligand (sal)2bp is a good candidate as a nonplanar
ligand.

85
Figure 3-10 A Model of Strainless Tetrahedral
Arrangement for (sal)2bp

86
CopperfII) Complex
The deep green crystal of formula [C26H18N202Cu] was
determined to have a orthorhombic unit cell of space group
Pnna and dcalcd = 1.44g/cm3. Final positional parameters for the
atoms are given in Table 3-8. The metal atom (Cu2+) is
located in the special position (2-fold axis). Table 3-9 and
3-10 contain the bond distances and bond angles, respectively.
The Cu-0 distances are 1.887(2) A and Cu-N distances are
1.964(3) A. These are close to the average values previously
reported for Cu-0 1.88-1.92 A and Cu-N 1.94-1.98 Aj47^
The (sal)2bp functions as a anionic guadridentate ligand,
coordinating through the two phenolic oxygen atoms and the two
imine nitrogen atoms. In order to achieve this coordination,
the ligand forms two six membered chelate rings and one seven
membered chelate ring.
The equations of the various least-squares planes are
presented in Table 3-21 and the deviations from these planes
are shown in Table 3-22. The deviations of Cu, 0(1), 0(1'),
N(1), and N(l') from their mean plane are 0.0000, 0.5057,
-0.5057, -0.4216, and 0.4216 A , respectively. The complex
is distinctly nonplanar.
Two of the six membered rings involve phenolic oxygen and
imine nitrogen atoms and each of these is a normal planar ring
with a delocalized 7r-system similar to the chelate rings in
salicylaldehyde and other salicylaldimine complexes. The
seven membered ring includes both of the imine nitrogen atoms.

87
TABLE 3-21
Equations to Various Planes
for the Cu[(sal)2bp] Complex
Plane*
Atoms
1
m
n
P
Salicylidene Benzene Ring:
1
C8 C9 CIO Cll C12 C13
.9082
.1575
-.3879
.2560
2
C81C9'CIO'Cll'C12'Cl3'
.9082
.1575
.3879
7.1136
Biphenyl Ring:
3
Cl C2 C3 C4 C5 C6
-.3980
.7920
.4630
9.1448
4
Cl'C2'C3'C4'C5'C6'
.3980
-.7920
.4630
-4.6578
Imine
Region:
5
N1 C7 C8 C2 Cu
.8860
.0801
-.4566
-.8558
6
NI'C7'C8'C21Cu
.8860
.0801
.4566
6.5902
Chelate Ring:
7
Cu N1 Cl C8 C9 01
.9293
.0871
-.3590
.0477
8
Cu NI'C7'C8'C9'01'
.9293
.0871
.3590
6.0290
9
NI C2 Cl Cl'C2'N1'Cu
.8021
-.5972
-.0000
-4.0287
Other:
10
CU 01 N1 Ol'Nl'
1.0000
-.0001
.0000
2.3409
* IX + mY + nZ = p
Reference is made to orthogonal X, Y, Z.

88
TABLE 3-22
Distances (Á) to Various Planes in TABLE 3-21
for the Cu[(sal)2bp] Complex
Plane
Atoms Deviation (Á)
1
C8
C9
CIO
Cll
.0020
.0081
-.0134
.0082
3
Cl
C2
C3
C4
-.0006
.0000
.0005
-.0004
5
Nl
C7
C8
C2
.0814
.0174
-.0331
-.0498
7
Cu
Nl
C7
C8
.0512
-.0050
-.0440
.0408
9
Nl
C2
Cl
Cl'
.5139
-.2898
-.3849
.3849
10
Cu
Ol
Nl
Ol'
-.0000
.5057
-.4216
-.5057
C12
.0026
C13
-.0075
Nl
.1423
C7
.0029
C5
-.0002
C6
.0007
Nl
-.0080
C7
-.9663
Cu
-.0158
01
-.2906
C9
-1729
C9
.0331
01
-.0760
C2 '
.2898
Nl'
-.5139
CU
-.0000
Nl'
.4216

89
The dihedral angle 6 adopted as a measure of tetra-
hedrality*14' is defined as the angle between planes through
Cu, 0(1), N(1), and Cu, 0(1'), N(l'). The angle between the
planes can be compared to about 0° in N,N*-disalicylidene-
ethylenediamino-copper(II) (Table 3-23 (3)) and 35.7° in N,N'-
(2-hydroxy-propane-1,3-diyl)bis(salicylaldiminato)copper(II)
(Table 3-23 (9)) J48*’*49* In the (sal)2bp-copper the coordination
geometry of the copper is described as square planar signifi¬
cantly distorted toward tetrahedral with two oxygens and two
nitrogens from salicylaldimine moieties, the dihedral angle
between 0(1)-Cu-N(l) and 0(1')-Cu-N(1') is 38.7°.
It is established that copper(II) complexes with N-
substituted salicylaldimines can occur in either square planar
or tetrahedral configurations, depending on the bulkiness of
the substituent group J48'"*66* The distorted tetrahedral
configurations are found in N-t-butyl and N-isopropyl bis
salicylaldimine complexes of copper (Table 3-23 (1) & (2)).
The substituents in these complexes are sufficiently bulky to
prevent the normal square planar arrangement.
The Cu-N distances (1.964(3) Á) are longer than the Cu-
0 distances (1.887(2) Á) , this difference being similar to
those observed in N,N'-trimethylendisalicylideneaminato)
copper(II) (Table 3-23 (7)) and a number of other analogous
molecules, listed in Table 3-23. The slight increase of the

90
TABLE 3-23
Bond distances and Dihedral Angles (0)
for Various CuN202 Complexes
Complex
Type
Bond Distances(A)
Dihedral
Ref.
6-X-6
Cu-0
Cu-N
Angles (0) (°)
1.893(12)
2.201(12)
(1)
1.903(12)
1.960(12)
53.6
[51]
1.870(6)
1.979(10)
(2)
1.887(7)
1.990(8)
59.8
[52]
1.91
1.94
(3)
6-5-6
2.03
2.08
0
[48]
1.890(3)
1.939(3)
(4)
6-5-6
1.900(3)
1.947(3)
w 0
[53]
1.917(10)
1.989(12)
(5)
6-6-6
1.904(11)
1.971(13)
6.1
[54]
1.914(3)
1.965(3)
(6)
6-6-6
1.912(3)
1.975(3)
19.1
[55]
1.857(9)
1.938(11)
(7)
6-6-6
1.878(11)
1.958(12)
21.8
[50]
1.88(2)
1.94(2)
(8)
6-6-6
1.89(1)
1.97(2)
34.4
[56]
1.901(2)
1.937(3)
(9)
6-6-6
1.900(2)
1.946(3)
35.7
[49]
1.887(2) 1.964(3)
1.886(2) 1.964(3)
(10)
6-7-6
38.7
this work

91
TABLE 3-23 Continued
(9)
(10)

92
TABLE 3-23 Continued
Complex
Name
(1)
Bis-(N-t-butylsalicylaldiminato)-copper(II)
(2)
Bis-(N-isopropylsalicylaldiminato)-copper(II)
(3)
N-N'-disalicylidene-ethylenediamino-copper(II)
(4)
N-N'-(1,2-phenylene)-bis-(salicylaldiminato)-
copper(II)
(5)
N-N'-propylene-bis-bis-(2-hydroxy-l-naphthyl)
methaniminato)-copper(II)
(6)
Trimethyline-N-(acetylacetoneiminato)-
N'-salicylideneiminato)-copper(II)
(7)
(N,N'-trimethylene-disalicylideneaminato)-
copper(II)
(8)
Bis-(2-hydroxyacetophenone)-trimethylene-
diimino-copper(II)
(9)
N,N'-(2-hydroxy-propane-1,3-diyl)-bis-
(salicylaldiminato)-copper(II)
(10)
2,2'-bis-(salicy1ideneamino)biphenyl-copper(II)

93
bond lengths between metal and nitrogen atoms in the complex
may be attributed to the steric hindrance of the bulkier
substituent groups between the N atoms.
An extensive study has been made of the copper (II)
complexes with quadridentate Schiff bases derived from several
aldehydes or ketones. These complexes possess three chelate
rings, and their structures can be represented as follows.
There are two six-membered chelate rings in the structure.
The size of the third ring depends on n. (Figure 3-11)
Figure 3-11 Three Chelating Rings in the
Quadridentate Schiff Bases
An investigation of the relative stabilities of the
complexes has revealed that those complexes which have a five
membered central chelate ring (n=2) are generally more stable
than these with a six-membered central chelate ring (n=3).
The molecular structures of the complexes with a 6-5-6 (eg.
N,N'-disalicylidene-ethylenediamino-copper (3) in Table 3-23)

94
and a 6-6-6 (eg. N,N'-trimethylene-disalideneaminato-copper
(7) in Table 3-23) fused chelate ring structures have already
been determined.
In the present compound, the two 2 hydroxyacetophenone-
imine groups are joined by 2,2'-biphenyl. Consequently, the
central chelate ring is seven-membered. The shape of a seven-
membered ring can be expressed by means of the signs of the
torsion angles. Bucourr^ described the signs of the torsion
angles in conformational analysis. For a seven-membered ring,
there are four possible conformations.(Figure 3-12) The
torsion angles in the seven-membered ring of (sal)2bp copper
are shown in Figure 3-13. The conformation of the Cu(II)
biphenyldiamine ring might be a twist-boat. The seven-
membered chelate ring has a twofold axis of rotation through
the central copper atom and bisecting the C(l)-C(l') bond.
It would be of interest to study the relationship between the
stability and number of atoms in central chelate.
Table 3-23 indicated that the dihedral angle (0) between
the two coordination planes increases with the increase in X:
0° for X=5; 6. l°-35.7° for X=6; 38.7° for X=7. It seems likely
the extent of the distortion of square-planar coordination not
only depends on the bulkiness of substitutes, but also relates
to the number of atoms in the central chelate ring. Such a
distorted tetrahedral coordination around the central copper
atom as is described above will certainly decrease the
stability of the complex.^

95
Figure 3-12
Four Possible Conformations
in Seven-membered Ring
-60.2
Figure 3-13 The Torsion Angles in the Seven-
membered Ring of the Copper Complex

96
The (sal)2bp copper-complex is monomeric and there are no
very close intermolecular contacts in the complex. Therefore
only van der Waals forces exist between molecules in the
crystal.
Iron fill) Complex
The deep brown crystal of formula [ C26H18N202Fe] N03. C6H6 was
determined to have a monoclinic unit cell of space group
P 2j/n and dcalcd = 1.67g/cm3. Final positional parameters for
the atoms are given in Table 3-14. Table 3-15 and 3-16
contain the bond distances and bond angles, respectively.
The complex is best described as a distorted octahedron.
The equations of the least-squares planes for Fe(sal)2bp are
presented in Table 3-24 and the deviations from these planes
are given in Table 3-25. The best equatorial plane is defined
by the two nitrate oxygen atoms and N(l), 0(1') of the
(sal)2bp ligand (average deviation 0.05 Á) . The ligand
(sal)2bp occupies four coordination sites around the iron
(III) while the two remaining sites are filled by the
bidentate nitrate group. There are five possible optical and
geometrical isomers in metal-complexes with quadridentate
ligands.^ (Figure 3-14) In this case the (sal)2bp adopts
the nonplanar cis-/3 configuration to accommodate the bidentate
nitrate ligand. This results in the rotation of a phenyl
imine nitrogen bond and displacement of 0(1') by 1.861 Á from

97
TABLE 3-24
Equations to Various Planes
for the Fe[ (sal)2bp) ]N03 Complex
Plane*
Atoms
1
m
n
P
Salicylidene Benzene Ring:
1
C8 C9 CIO CU C12 C13
.9217
.0835
. 3788
7.7645
2
C81C9'CIO'Cll'C12'C13'
.7902
-.5733
.2167
-1.4381
Biphenyl Ring:
3
Cl C2 C3 C4 C5 C6
.2120
.4222
-.8814
-5.6537
4
Cl1C2'C3'C4'C5'C6'
-.2974
.4980
.8146
10.9659
Imine
Region:
5
N1 C7 C8 C2 Fe
.8465
.5061
.1650
8.9799
6
Nl'C7'C8'C2,Fe
.8292
-.4378
.3475
.8915
Chelate Ring:
7
Fe N1 C7 C8 C9 01
.9722
. 1867
. 1410
5.9716
8
Fe N1'C71C81C9'01'
.7366
-.5818
.3449
-.6982
9
NI C2 Cl Cl'C2'N1'Fe
.7464
.0075
-.6655
-4.8275
Other:
10
Fe Onl 0n2 N1 01'
.1256
.7388
.6621
14.6184
11
Fe 01 Nl' N1 0n2
.8651
.2696
-.4230
.3558
12
Fe 01 Nl' 01' Onl
.3828
-.6769
.6288
. 0232
* IX + mY + nZ = p
Reference is made to orthogonal X, Y, Z.

98
TABLE 3-25
Distances (A) to Various Planes in TABLE 3-24
for the comlpex of Fe with (sal)2bp
Plane
Atoms Deviation (A)
1
C8
.0148
C9
-.0311
CIO
.0130
Cll
.0241
C12
-.0437
C13
.0228
Nl
.0696
Cl
.1870
2
C8 '
-.0150
C9 '
.0159
CIO'
.0031
Cll'
-.0225
C12 '
.0227
C13 '
-.0041
Nl'
-.1137
Cl'
.0302
3
Cl
.0005
C2
.0045
C3
-.0087
C4
.0078
C5
-.0028
C6
-.0013
Nl
-.0039
Cl
-1.1627
4
Cl'
.0227
C2 *
-.0297
C3 '
.0211
C4 '
-.0064
C5'
-.0000
C6 '
-.0077
Nl'
-.0360
Cl'
-1.1810
5
N1
-.0113
C7
-.1216
C8
.0839
C2
.0594
Fe
-.0103
01
.9471
C9
.7106
6
Nl'
-.0225
C7 '
-.0212
C8 '
.0207
C2 '
.0210
Fe
.0020
01'
.5579
C9 '
.3124
7
Fe
-.2889
Nl
.2170
C7
.0240
C8
-.2230
C9
.0152
01
.2557
8
Fe
-.1611
Nl'
.0860
Cl'
.0489
C8 '
-.1214
C9 '
-.0418
01'
.1895
9
Nl
-.5072
C2
.3348
Cl
.3525
Cl'
-.4295
C2 '
-.2805
Nl'
.5758
Fe
-.04660
10
Fe
.0982
Onl
-.0614
On2
.0282
Nl
-.0026
01'
-0624
11
Fe
.2435
01
.0656
Nl'
.0710
Nl
-.1985
On2
-.1816
12
Fe
.1509
01
.2681
Nl'
.2958
01'
-.3649
Onl
-.3499

99
X
Trans
L-beta
Figure 3-14 Five Possible Isomers in Metal Complexes
with Quadridentate Ligands

100
the plane defined by the iron atom and the other three coordi¬
nating atoms in (sal)2bp. The iron ion has a distorted
octahedral coordination geometry as evidenced by the angle
O(1)-Fe-N(l') of 168.2(6)°. The two phenolic oxygen atoms on
the (sal)2bp ligand are cis relative to each other, the two
imino nitrogen atoms are also cis.
In the nonplanar cis-/3 configuration, the interplanar
angle between the two salicylidene rings is 49.0° in (sal)2bp
iron complex , the N202 species being tetrahedrally distorted.
A summary of the distortions observed for some salicylidene
iron and cobalt complexes is given in Table 3-26.
TABLE 3-26
A Summary of the Distortions
for Some Salicylidene complexes
complex interplanar
angle (°)
N-M-0 angles
axial equatorial
ref.
[Fe(salen)]2(hq)
[Fe(salen)(psq)]
[Fe(salen)(ox)]'
[Fe(saldabp)N03]
[Co(salen)(acac)]
8.4
28.1
38.9
49.0
58.6
159.6
168.2
176
144
159
154
117
112.3
111.4
97
[60]
[61]
[62]
this
[63]
hq : hydroquinonate
psq : phenanthrene semiquinone
ox : oxalate
acac: acetylacetone

101
The interplanar angle increases from 8.4° in [Fe(salen)2] (hq)
to 49.0° in the present iron complex to 58.6° in [Co(salen)-
(acac)]. To relieve some of the steric crowding, the "axial"
N-M-0 angle decreases with decreasing distortion from the
ideal square plane, while the "equatorial" N-M-0 angle
increases. The cobalt complex clearly approximates
octahedral geometry more than the iron complexes do,
undoubtedly because of the large ligand field stabilization
energy for low-spin Co(III). The high-spin ferric complex,
lacking such stabilization, is more distorted from the ideal
octahedron. The iron complexes exhibit varying degrees of
distortion toward the cis-(3 configuration depending on the
bidentate ligand.
The two iron-phenolic oxygen atom distances [Fe-01 (1.897
Á) and Fe-01' (1.876 Á) ] are nearly identical as have been
observed in [Fe(salen) (psq) ] (Fe-O: 1.919 and 1.913 Á)[611 and
K[Fe (salen) - (cat) ] (Fe-0: 1.994 and 1.988 A)J61^ However,
these distances are significantly different in the complexes
[Fe(salen) (ox) ]' (Fe-0 1.965 and 1.864 Á)[62) and in
[Fe (salen) (acac) ] (Fe-0 1.958 and 1.899 Á).[6Sl All of them
exhibit the nonplanar cis-f¡ configurations.
In (sal)2bp iron complex the bidentate ligand is nitrate.
A wide range of nitrato-complexes has now been characterised.
The structural studies carried out have identified four types
of nitrate-group coordination: unidentate, unsymmetrically
bidentate, symmetrically bidentate and bridging.

102
The unidentate form is a less common alternative. In
nitrato N,N'-ethylene-bis(salicylidene-iminato) iron(III)
dimer,*64* the crystallographic investigation is itself
interesting as apparently the first in which unidentate (Cs)
attachment of a nitrato ligand to ferric iron has been
confirmed by X-ray diffraction.
In unsymmetrical bidentate nitrato groups, there is a
small but real difference (e.g. 0.2-0.7 Á)*66* between the
distances from the metal atom to the two coordinated oxygen
atoms of each nitrato group. For example, in Cu(N03)2-
(pyrazine) *®®* there are two unsymmetrical bidentate groups.
The distances of Co-01, Co-03 and Co-04, Co-05 are 2.03(2),
2.36(2) and 2.11(1), 2.54(2) Á, respectively.
For bridging nitrato-groups, the coordination to more
than one metal atom is possible.*67* (Figure 3-15)
M
/
✓
M o'
\
N—O
/
M’ O
/
O
\
N O
/
M’ O
O
Os /
N
I
/0\
M M'
O
\
O
/
N
Figure 3-15 Possible Models of Coordination
of Bridging Nitrate Group

103
The symmetrical bidentate nitrate-group is preferred
where the metal atom is equidistant from the two-coordinated
oxygen atoms. In the (sal)2bp iron complex the Fe-0 bond
distances are 2.188(14) and 2.176(13) A for the bidentate
nitrato group. In [As(C6H6)4] [Fe(N03)4]*68* the distances of Fe-
O (from symmetrical bidentate nitrato-group) are 2.130 and
2.140 A. The nitrato-group in the (sal)2bp iron complex is
symmetrical and the Fe-0 distances are well within the range
of Fe(III) complexes with nitrato-group as symmetrical
bidentate ligand.
Schiff-base complexes of iron(III) are of considerable
interest because of the diversity of coordination geometries,
and also the unusual magnetic properties. The relationship
between iron-ligand distances and the spin state of iron for
iron(III) complexes with N402 donors of sexidentate Schiff base
ligands has been extensively investigated.*69*'*72* It has been
shown that pseudo octahedral Fe(III) complexes derived from
various salicylaldehydes and their analogues exhibit low-spin
(2T2) and high-spin (6AX) equilibria in solid and solution
states. Since such complexes lie near the spin crossover,
intramolecular steric effects which produce elongated metal
ligand bonds cause shifts toward the high-spin form.*73*
Specifically, the Fe-N (amine) bonds are longest, the Fe-0
bonds shortest, and the Fe-N (imine) bonds intermediate.
Y.Maeda,*69* M. D.Timken*70* and their co-workers pointed out
the average Fe-ligand distances in the range 2.06-2.10 A

104
and 1.93-1.96 A correspond to high- and low-spin states,
respectively. M.D.Timken postulated that the distances of
Fe-N (amine) bonds were the most spin-state dependent.
The (sal)2bp iron (III) complex is one of the N204 system
derived from salicyaldehydes. Some analogous ferric N402 and
N204 system from various salialdehydes were studied in order
to understand the relationship between bond distances and spin
states. From the summary in Table 3-27 (APPENDIX B) , the
conclusion is that the bond distances of iron(III) to imine-
nitrogen are more sensitive to the spin-state of the metal
than those of iron(III) to amine-nitrogen. The average Fe-
imine nitrogen distances in the range 2.05-2.20 A[741,1751 and
1.91174l -1.96 A*70* corresponds to high- and low-spin states,
respectively. There is an equilibrium between S=2/5 and S=l/2
if the Fe-imine nitrogen distance is in the range 1.98-2.00
A.l76!’!77] However, Fe-0 distances are almost constant for both
high- and low-spin complexes. In the (sal)2bp iron(III)
compound the Fe-N(imine) distances (2.074 and 2.143 A)
indicate the iron(III) belongs to high-spin state.
There are a very few complexes which contain a seven-
membered ring in the ferric N202 system. Accoording to my
knowledge the (sal)2bp iron complex is the second compound
containing a seven-membered ring; the first one is
Fe[ (TIEO) (TIEOH) ] (C104)2.[78] The (TIEOH) is the abbreviation
of 1,1,2-tris(l-methylimidazo-2-yl) ethanol. There are two
seven-membered rings in the compound.(Figure 3-16) The values

105
TABLE 3-27
The Bond Lengths (Á) of Some Iron (III) Complexes
with Schiff-Bases and the Spin-States (S)
A. n4o2*
Refscode
Fe-Nl
Fe-N2
Fe-N3
Fe-N4
Fe-05
Fe-06
S
DEXPAX01
1.953
1.952
2.028
2.037
1.864
1.845
1/2
DEXPAX02
1.954
1.961
2.023
2.032
1.864
1.850
1/2
DEXPAX03
1.994
2.028
2.071
2.095
1.884
1.877
5/2-1/2
DEXPAX04
2.085
2.085
2.173
2.173
1.923
1.921
5/2
DOBKIO
1.976
1.989
2.148
2.094
1.941
1.852
5/2-1/2
DOBKIO
1.949
1.924
2.031
2.063
1.864
1.903
1/2
DORPOP
1.936
1.922
2.006
2.027
1.879
1.911
1/2
FESYAD
1.905
1.921
1.990
1.993
1.885
1.903
1/2
FESYAD01
2.051
2.083
2.141
2.151
1.897
1.906
5/2
FESYEH
2.055
2.089
2.117
2.128
1.897
1.906
5/2
FESYIL
2.146
2.125
2.153
2.153
1.913
1.894
5/2
FEWVOS
2.130
2.105
2.137
2.148
1.928
1.906
5/2
FEWVUY
2.108
2.143
2.172
2.158
1.883
1.910
5/2
FISTUW
1.938
1.925
2.000
1.999
1.869
1.890
1/2
FISVAE
2.123
2.129
2.200
2.187
1.895
1.900
5/2
FISVEI
2.094
2.097
2.231
2.199
1.909
1.871
5/2
FISVEI
2.108
2.111
2.208
2.200
1.899
1.897
5/2
SAENFE
1.929
1.956
2.020
2.040
1.878
1.892
1/2
SALTFN01
1.929
1.931
2.003
2.009
1.890
1.878
1/2
SALTFN02
1.930
1.934
2.000
1.998
1.892
1.872
1/2

106
TABLE 3-27 Continued
A. n4o2
Refscode
Fe-Nl
Fe-N2
Fe-N3
Fe-N4
Fe-05
Fe-06
S
SALTFN03
2.098
2.098
2.181
2.168
1.925
1.935
5/2
SALTFN04
2.103
2.089
2.179
2.167
1.911
1.905
5/2
B. n2o4*
Refscode
Fe-Nl
Fe-N2
Fe-03
Fe-04
Fe-05
Fe-06
S
CAHJEA
2.188
2.212
1.964
1.915
1.986
2.055
5/2
CUPSUB
2.173
2.121
1.925
1.872
2.063
2.053
5/2
FUCNUM
2.112
2.085
1.998
1.884
2.086
2.152
5/2
GEJKEL
2.158
2.130
1.892
1.902
2.042
2.172
5/2
GEJKEL
2.205
2.157
1.921
1.834
1.942
2.032
5/2
KAJCIH
2.175
2.116
1.864
1.964
2.113
2.020
5/2
SALPAF
2.188
2.209
1.970
1.919
1.988
1.972
5/2
SALPAF
2.155
2.171
1.922
1.942
1.926
2.001
5/2
* N1 or N2: imine-ntrogen; N3 or N4: amine-nitrogen
* APPENDIX B

107
O
2 +
Fe[(TIEO)(HTIEO)]
Figure 3-16 Another Fe(III) Complex Contaning
Seven-membered Rings
of the angles between donating atoms and iron increase toward
90° with the size of the chelate ring, being 79.9(2)° for the
five-membered ring, 84.6(3)° for the six-membered ring and
86.2(3)° for the seven-membered ring in Fe[(TIEO)(HTIEO)]2+.
However, in (sal)2bp iron complex the values decrease with the
size of the chelate ring, being 88.3(5)°, 86.6(5)° for the six-
membered ring, 85.1(5)° for the seven-membered ring,
respectively. The conformation of the iron(III) biphenyl-
diamine ring is a twist-boat by means of the signs of the
torsion angles.

108
Figure 3-17 The Torsion Angles in the Seven-membered
Ring of the Iron(III) Complex
Nonplanar Geometries
For the three compounds: ligand (sal)2bp, Cu2+ complex
with (sal)2bp and Fe3+ complex with (sal)2bp, the equations of
the least-squares planes through the rings and other
supposedly planar groups are presented in Table 3-19, 3-21,
3-24; and the deviations from these planes are shown in Table
3-20, 3-22, 3-25, respectively. The angles among the four
rings in the three compounds are:
Plane-Plane Ligand
3-1 32.9
4-3 65.5
4-2 27.7
Cu-complex
65.4
55.2
65.4
Fe-complex
84.1
55.2
79.7.
When the ligand is coordinated to the metal-atoms the angle
between the biphenyl groups ( plane 4 and 3) decreases,
whereas the angle between the salicylidene group and phenyl

109
group (plane 3-1 and 4-2) increases. The results reveal a
loss of planarity between the biphenyl groups and the imine
regions as evidenced by the large displacements of C7 and C7':
Deviation (Á)
C7 from plane 3
C7'from plane 4
Ligand
.3096
-.4914
Cu-complex
-.9563
-.9563
Fe-complex
-1.1627
-1.1810.
A smaller loss of planarity between the nitrogen and
their associated salicylidene groups:
Deviation (A) Ligand Cu-complex Fe-complex
N1 from plane 1 -.0124 .1423 .0696
Nl'from plane 2 -.0449 .1423 -.1137.
This is a manifestation of a twist along C7 and C8 which
is further evidenced by the non planarity of the chelate
rings:
Deviation (A) Cu-complex Fe-complex
Cl in plane 5 -.0440 -.1216
C8 in plane 5 .0408 .0839.
The results of these experiments demonstrate conclusively
that the three compounds have the characters of nonplanar
geometry. The " double inorganic helix complexes " are
described in the next chapter.

CHAPTER FOUR
METAL COMPLEXES OF " AN INORGANIC DOUBLE HELIX "
Inorganic Double Helix
Helical structures (helix: Greek cA£=winding, conduction,
spiral) or screw structures play an important role in archi¬
tecture, physics, astronomy and biology. Screw shaped macro-
molecular skeletons of nucleic acids, proteins and poly¬
saccharides are important structural elements in biochemistry.
Their helix turns often are stabilized through hydrogen bonds,
disulfide linkages and hydrophobic interactions. Helical
structures in nature also are formed through complexation with
metal cations. Some microbes, including Escherichia coli,
produce enterbactin,^ a siderophor, which complexes Fe(III)
with a very high complex constant of 1052.
The structure, formation and dissociation of the double
helix of nucleic acid has been the subject of very extensive
studies. The spontaneous formation of the double helix of
nucleic acid represents the self-assembling of a supramole-
cular structure induced by the pattern of intermolecular
interactions provided by the complementary nucleic bases.
110

Ill
Molecular self-assembling, the phenomenon is well
documented in biology, much less so in chemistry. However,
such self-assembling has recently been shown to occur in
repetitive chain ligands containing several identical binding
sites^ arranged linearly. The corresponding complexes
present the features of an inorganic double helix. This
spontaneous formation of an organized structure by oligo-
ligands and suitable metal ions opens ways to the design and
study of self-assembling systems presenting cooperativity and
regulation features. Various further developments may be
envisaged along organic, inorganic, and biochemical lines.
Definition of Helicitv
Helicity is a geometric structural property, by which the
arrangement of atoms in molecules can be described as a
combined rotation and translation process. Helicity is a
special case of chirality, because it implies two additional
properties. Therefore, some centro-chiral and planar chiral
molecules can be considered as helical. Cahn, Ingold and
Prelog^ defined the helix as follows: " A helix is
characterized by a helical sense, a helical axis and a
pitch(ratio of axially linear to angular properties).". That
means a molecular helix is defined by an axis, by its screw
sense and its pitch.
A helix is considered to wind starting from the viewers
eye to a point distant from the viewer, the screw sense is
right-handed for a clockwise rotation or left-handed for an

112
anticlockwise rotations (see Figure 4-1). Turning the helix
in space relative to the observer doesn't change the screw
sense. A right-handed helix is symbolized by P (plus), a
left-handed helix by M (minus). If a molecule contains
several helical segments, the helical subunits should be
described using P and M. (Figure 4-1)
(+)-P-hexahelicene (-)-M-hexahelicene
(M,P)
(P,M)
Figure 4-1 Right-handed Helix (P) and
Lift-handed Helix (M)
As the figure shows, the absolute configuration of (+)-
rotating hexahelicene has been determined to be P, and (-)-
hexahelicene to have the M configuration.
In such cases, especially with large (biochemical)
molecules, it is often useful to differentiate between the
absolute helicity, which is the sum of all M- and P- helical
domains, and the net helicity, defined by the difference of
the volumes of left and right-handed helix domains. The net

113
helicity is of interest for chemical use with respect to the
observed chiroptical properties.
Brewster*81* developed the " helical conductor model" for
the description of helical arrays of atoms according to
geometric and mathematical points of view. He introduced
precise definitions for the new terms "chiropticity" and
"stereogenicity" which can be used to specify chirality and
topicity. These terms introduced some more precise descrip¬
tions in the field of helical structures.*82*'*85*
Crystallographic Screw Axes and Helical Symmetries
In crystallography, there are 2-, 3-, 4-, and 6-fold
screw operations with symbols
2j ; 3j 32 ; 42 4S ; 62 6S 64 6S .
The operation 3X rotates a motif by 2n/3 = 120° in a right-
handed screw sense and elevates it by 1/3 axial repeat, etc.
In 32, the rotation is again 2n/3 in a right-handed sense but
elevation is now 2/3 axial repeat, yielding motifs 1,2,3,4,
etc. (Figure 4-2) The missing motif at 1/3 axial repeat is
Figure 4-2 Crystallographic Screw Axes
and Helical Symmetries

114
produced by translation of the motif 3, at 2 x 2/3 elevation
by one unit; i.e., we obtain (4/3 - 3/3 = 1/3). As
illustrated in the Figure 4-2, connection of the different
motifs by a continuous line leads to right-handed screw sense
for 3j but left handed sense for 32. Analogously, 41# 6X and
62 are right-handed and 43, 64, and 65 are corresponding left-
handed screw operations.
In helical symmetries of nucleic acids, the same symbols
Nm are used with the same meaning as in crystallographic
terms. In this situation, the motif is, in general, a
nucleotide or a base-pair and helical symmetry as in A-DNA,
111, indicates that from one nucleotide to the next, rotation
is through 2n/ll (32.7°) and elevation is 1/11 the repeat unit
(pitch). In other words, A-DNA is 11-fold, with 11
nucleotides in one turn. In C-DNA with symmetry 9.33lf a
nonintegral helix occurs. Exact repeat is only met after 3
turns with 3 x 9.33 = 28 nucleotides. Often expressed as 283,
a nomenclature not strictly in agreement with crystallo¬
graphic usage but convenient to describe nonintegral helices.
The definitions and concepts also have been used to design
ligands and metal complexes.
Historical View
a-Amylose was the first helix postulated for a natural
macromolecule.^ One of the most important natural compounds
with a helical structure is deoxyribonucleic acid (DNA). It

115
was studied by Watson and Crick*86! based on the x-ray analysis
of Franklin and Gossling.^ Helicity has been analyzed for
twisted chains of atoms*81' and its basic geometrical features
are found in several types of small moleculesJ87*
The structures, formations and reactivities of
polynuclear complexes have been the subject of very extensive
studies. The structural features in which ligands possess a
twisted chiral conformation and are wrapped around the two or
more metal atoms have been found in some dinuclear or
trinuclear metal complexes.
The complex of zinc (II) with 2,6-diacetylpyridine-bis(2'-
pyridylhydrazone) was synthesized and characterized by Palenik
and Wester*88* in 1976. (Figure 4-3) This might be the first
polymetallic complex, reminiscent of the double-helical
structure of nucleic acids (Figure 4-4), in effect an
inorganic double helix.
Figure 4-3 (a) Zn2 (dapp)2; (one dapp omitted)
(b) The Feature of Inorganic Double Helix

116
Figure 4-4 The DNA Double Helix
Another complex which had an "inorganic double helical"
structure was synthesized by Van Stein and co-workers*89' in
1984. The complex was silver(I) with (R,S)-1,2-(6-R-Py-2-
CH=N)2 cyclohexane as ligand (Figure 4-5). In the [Ag2(N4)2]
unit each of the two N4 ligands coordinate to the metal center
in a dibidentate manner. The cyclohexanediyl rings bridging
the flat pyridine moieties are directed toward the metal
centers and have equivalent chain conformation, i.e., either
SS or XX (enaniomeric pair) in combination with AA or AA
configuration, respectively, at the silver(I) center. The
latter nomenclature suggested for trigonal complexes and
describe the configurations without reference to any known

117
structure,^ the two absolute configuration are designated as
A and A (Figure 4-6).
Figure 4-5
The Complex of Ag2 [(R,S)-1,2-(6-R-Py-2-CH=N)2
Cyclohexane]2 (one ligand is omitted)
A
right-handed
hel icily
A
left-handed
hclicity
viewed down the C2 axis
A and B convey the chelate ring asymmetry
Figure 4-6
The Nomenclature for Trigonal
Complexes

118
Lehn and his co-worker reported the dimeric complex
cation [Cu2(PQP)2]2+ formed by two quaterpyridine ligand (PQP)
and two Cu(I) ions in 1983.The modification of the PQP
ligand and extension of its basic features had been studied.
They reported^ their results on a class of organic ligands
of poly(2,2'-bipyridine), which by binding metal ions of
specific coordination geometry undergo spontaneous organi¬
zation into helical polymetallic complexes. They described the
synthesis and properties of some metal complexes of the first
two members, BP2 and BP3 of such a series of oligobipyridine
ligand (Figure 4-7). The crystal structure of [Cu3(BP3)2] was
Figure 4-7 Oligobipyridine Ligands

119
determined. Three views of the double stranded helicate
complexes were given in their paper.
"Inorganic double helical" complexes have been studied
in our group. In this chapter I will describe two "inorganic
double helical" complexes which have been synthesized recently
based on the studies on nonplanar complexes. The structures
of the two complexes have been characterized by x-ray studies
to understand the features of double helix, self-assembling,
molecular devices and supermolecular structures.
Experimental Section
Two metal complexes have been synthesized for studying
inorganic double helical structures. One of them is the
complex of Cu2+ with bis(2-acetylpyridine) succinic acid
dihydrazone (apsh). The other is the complex of Ni2+ with
bis(2-pyridine-carboxaldehyde) succinic acid dihydrazone
(pcsh).
Copper(II) Complex
Synthesis of copper complex
Copper nitrate (0.221g, 1.0 mmol) was mixed with 2-acetyl
pyridine (97%, 0.247g, 2.0 mmol) in lOOmL ethanol, giving a
purple solution. To the purple solution succinic acid
dihydrazide (96%, 0.152g, l.Ommol) was added. The mixture was
heated in an oil bath for about 70 hours at 53-55°C, cooled

120
and filtered. The green solid was recrystallized from
methanol. A further recrystallization from methanol and
ethanol-water gave beautiful green crystals, suitable for x-
ray diffraction studies.
Crystal structure of copper complex
To establish unequivocally the geometry of the above
condensation product, the structure was determined by X-ray
diffraction. A well shaped crystal of 0.12 x 0.09 x0.08 mm
size was used for intensity measurements on a Siemens R3m/E
diffractometer with a graphite monochromator, MoKa radiation.
Reflections were collected in the 26 range 0.0-45.0° using the
6-26 scan mode and a variable scan speed (1.90-29.30° min'1).
Two check reflections measured after every 98 reflections
showed an intensity variation of ±5%. Of 6952 reflections
measured, 4506 with I>3.0ct(I) were used in calculations.
Pertinent data are listed in Table 4-1.
The structure was solved by the heavy atom method and
refined. The positions of twelve hydrogen atoms were found
from the difference maps. The twelve H-atoms were refined
with isotropic thermal perameters. The rest of hydrogen atoms
were calculated in idealized positions. The isotropic
hydrogen temperature factor U of 1.2 was assigned to these H-
atoms. Because of disorder the solvent and water molecules
could not be completely resolved. Refinement with anisotropic
thermal factors for the complex cation led to R=0.063 and

121
1^=0.064 where w=a'2. The residual peaks in the final
difference map were in the range from -0.39 to 0.97 eA“3. All
calculations were carried out using the DESK TOP SHELXTL
(Nicolet, 1986). Crystal data are summarized in Table 4-1
through 4-6. The structure is illustrated in Figure 4-8.
Nickel(II) Complex
Synthesis of nickel complex
Perchloric acid (70%) was added to Ni(C03)2 (47.5%,
0.250g, 1.0 mmol) at room temperature, put into a 60° oil
bath, and allowed to cool to room temperature. Beautiful
green needles were formed. Aqueous sodium hydroxide was added
to give a pH of 1.20. The nickel solution in about 25mL water
was added to succinic acid dihydrazide (96%, 0.152g, 1.0 mmol)
and 2-pyridine carboxaldehyde (99%, 0.22g, 2.0 mmol) in lOOmL
ethanol. The mixture was heated in an oil bath at 45-68°C
overnight, cooled and filtered. The green-grey precipitates
were recrystallized from ethanol, methanol and water. Under
a microscope, three different products could be observed:
brown, grey and green-blue grey precipitates. After
recrystallization, only the brown crystals were suitable for
x-ray diffraction studies.
Crystal structure of nickel complex
To establish unequivocally the identity of the above
condensation product, the structure was determined by X-ray
diffraction. A well shaped crystal of 0.28 x 0.13 x0.12 mm

122
TABLE 4-1
Crystal Data for [Cu2 (apsh) 2] (N03) 2
Formula
C36H38N14°10Cu2
Molecular Weight
953.9
Crystal System
Monoclinic
Space Group
P 2j/n
a, A
10.887(6)
b, A
26.030(10)
c, A
17.263(5)
a, deg
90 *
P, deg
99.15(3)
7 / deg
90 *
Volume, A3
4830(3)
Z
4
d(caled), g/cm3
1.50
Crystal Size, mm3
0.12 X 0.09 X 0.08
Radiation Used
MoKa
H, cm'1
9.60
26 Range, deg
0.0 - 45.0
Number of collected data
6952
Data with I>3.0al
4506
Goodness of Fit
2.238
R, %
6.28
Rw %
6.40
* Required by the symmetry of space group

123
TABLE 4-2
Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (Á2xl03)
for
[Cu2 (apsh)
2] (NOs) 2.5H20
ATOM
X
Y
Z
U*
[Cu2 (apsh)
2]
Cu(l)
4180(1)
1341(1)
9875(1)
40(1)
Cu(2)
6009(1)
1018(1)
13289(1)
41(1)
N (1)
4784(6)
813(3)
9140(4)
42(3)
C (2)
4235(7)
351(3)
9162(4)
34(3)
C (3)
4608(8)
-53(3)
8747(5)
42(3)
C (4)
5544(8)
5(3)
8309(5)
47(3)
C (5)
6061(9)
476(4)
8263(5)
55(4)
C (6)
5676(8)
878(3)
8684(5)
50(3)
C (7)
3263(7)
332(3)
9668(4)
36(3)
N(8)
3224(5)
741(3)
10076(4)
38(2)
N (9)
2460(6)
816(3)
10633(4)
35(2)
C(10)
2574(7)
1289(3)
10947 (4)
37(3)
C(ll)
1756(7)
1407(3)
11567(5)
44(3)
C (12)
2369(7)
1761(3)
12203(5)
48(3)
C (13)
3536(8)
1530(3)
12652 (5)
42(3)
N (14)
4062 (7)
1819(3)
13274(4)
45(3)
N (15)
5157(6)
1636(3)
13720(4)
45(3)
C (16)
5633 (9)
1863(4)
14348(5)
54 (4)
C (17)
6806(9)
1651(4)
14772 (5)
57(4)
N (18)
7254 (7)
1251(3)
14431(4)
58 (3)
C (19)
8289(9)
1019(5)
14783(6)
72(5)
C (20)
8932(11)
1185(5)
15491(7)
97(6)
C (21)
8470(13)
1601(6)
15831(7)
126(7)
C (22)
7397(12)
1840(5)
15484 (6)
101(6)
C (23)
2449(8)
-119(3)
9682(5)
55(40)
0(24)
3287(5)
1609(2)
10755(3)
44(2)
0(25)
3987(5)
1128(2)
12476(3)
50(2)
C (26)
5086(12)
2340(5)
14661(6)
104(60)
N(l')
5237 (7)
380(3)
13708(4)
47(3)
C (2 1 )
5822(8)
-51(4)
13561(5)
47(4)
C (3 1 )
5382(10)
-532(4)
13756(6)
65(4)
C(4 1)
4290(10)
-543(4)
14073(6)
79(5)
C(5')
3698(11)
-97(5)
14216(6)
78(5)
C (6')
4191(9)
362 (4)
14039(5)
62(4)
C (7 1 )
6857(7)
10(4)
13103 (5)
43(3)
N (8 ')
6985(6)
480(3)
12898 (4)
40(3)
N (9 ' )
7797(6)
629(3)
12397 (4)
42(3)
C(10')
7610(7)
1128(4)
12246(5)
42(3)
C(H')
8416(7)
1366(4)
11701(5)
45(3)

124
TABLE 4-2 Continued
ATOM
X
Y
Z
U*
C(12 ' )
7833(8)
1820(3)
11227(5)
45(3)
C (13 ' )
6648(7)
1690(4)
10690(5)
47(3)
N(14 ' )
6188(6)
2094(3)
10210(4)
44(3)
N (15 ' )
5066(6)
2001(3)
9726(4)
39(3)
C(16')
4575(8)
2334 (3)
9222(5)
44(3)
C(17 ' )
3356(8)
2192(4)
8766(5)
46(3)
N(18 ' )
2906(7)
1728(3)
8921(4)
45(3)
C(19 ' )
1819(9)
1567 (4)
8523(6)
56(4)
C (20 ' )
1146(9)
1874 (4)
7969(6)
69(4)
C(21' )
1576(10)
2346(4)
7822(6)
68(5)
C(22 ' )
2678(9)
2509(4)
8221(6)
57(4)
C(23 ' )
7584(10)
-432(4)
12884(6)
74(5)
0(24 ' )
6852(5)
1422(2)
12642 (3)
43(2)
0(25')
6121(5)
1275(2)
10672 (3)
47(2)
C(26 ')
5196(10)
2828 (4)
9077(6)
77(5)
no3-
N((1)]
4327(8)
3840(3)
14428(5)
74(4)
0[(H)]
3642(9)
3794(9)
13853 (7)
157(6)
0[(12) ]
4966(8)
4234 (3)
14485(6)
131(5)
0[(13) ]
4603(14)
3522(5)
14914(6)
196(8)
N[(2) ]
5059(12)
1978(5)
7060(8)
101(6)
0[(21) ]
5153(11)
2394 (5)
6850(9)
179 (7)
0[(22) ]
4108(12)
1751(4)
6877(8)
175(7)
0[(23) ]
5495(20)
1969(10)
7759(11)
117(11)
0[(24) ]
6116(18)
1769(8)
7297(12)
152(11)
h20
W(l)
1024(7)
122 (3)
1242(4)
85(3)
W(2)
334(7)
311(3)
2612(5)
109 (4)
W(3)
7858(7)
2211(3)
8315(6)
137(5)
W(4)
2322(9)
1986(3)
5640(6)
147(5)
W(5)
9189(15)
854(6)
7365(8)
231(9)
* Equivalent isotropic U defined as one third of the trace
of the orthogonalised tensor

125
TABLE 4-3
Bond Distances (A) for [Cu2 (apsh) 2] (N0S) 2
Bond
Distances (A)
Cu (1) -N (1)
2.054(7)
Cu(1)-N(8)
1.942(7)
CU(1)-0(24)
2.050(6)
Cu(1)-N(15')
Cu(1)-0(25')
2.002(7)
CU(1)-N(18')
2.216(7)
2.338(5)
Cu (2) -N (15)
2.054(7)
Cu(2)-N(18)
2.290(7)
Cu(2)-0(25)
2.431(5)
Cu(2)-N(11)
2.044(8)
Cu(2)-N(8')
1.943(7)
Cu(2)-0(24')
1.997(6)
N(1)-C(2)
1.346(11)
N(1)-C(6)
1.354(12)
C(2)-C(3)
1.371(12)
C(2)-C(7)
1.475(12)
C(3)-C(4)
1.371(13)
C(4)-C(5)
1.357(13)
C(5) -C(6)
1.377(14)
C(7)-N(8)
1.283(10)
C(7)-C(23)
1.474(12)
N(8)-N(9)
1.382(9)
N(9)-C(10)
1.342(11)
C(10)-C(ll)
1.529(12)
C(10)-0(24)
1.220(10)
C(ll)-C(12)
1.505(11)
C(12)-C(13)
1.505(11)
C(13)-N(14)
1.360(11)
C(13)-0(25)
1.216(10)
N(14)-N(15)
1.395(9)
N(15)-C(16)
1.270(11)
C(16)-C(17)
1.474(13)
C(16)-C(26)
1.515(16)
C (17)-N(18)
1.327(13)
C(17)-C(22)
1.385(14)
N(18)-C(19)
1.335(13)
C(19)-C(20)
1.377(15)
C(20)-C(21)
1.365(21)
C(21)-C(22)
N(1')-C(61)
1.374(19)
N(1')-C(2')
1.335(12)
1.353(13)
C(2')-C(3')
1.400(14)
C (2 ' )-C(7')
1.486(13)
C(3')-C(4')
1.387(16)
C(41)-C(5')
1.374(16)
C(5')-C(6')
1.371(16)
C(7')-N(8 1 )
1.285(12)
C(7')-C(23')
1.480(14)
N(8')-N(9')
1.387(10)
N(9')-C(10 ' )
1.334(12)
C(10')-C(ll')
1.518(13)
C(10')-0(24 ' )
1.289(10)
C(11')-C(12 *)
1.517(12)
C(12')-C(13 ' )
1.503(11)
C(13')-N(14 ' )
1.381(11)
C(13')-0(25')
1.221(11)
N(14')-N(15 ' )
1.387 (9)
N(15')-C(16 1 )
1.284(11)
C(161)-C(17')
1.478(11)
C(16')-C(26 ' )
1.492(14)
C(17•)—N(18•)
1.347(11)
C(17')-C(22 ' )
1.374(12)
N(18')-C(19')
1.337(11)
C(19')-C(20')
1.365(14)
C(20')-C(21')
1.354(16)
C(21' )—C(22 ')
1.353(13)
N[(1)]-0[(11)]
N[(1)]-0[(13) ]
1.149(13)
1.182(14)
N[(1)]“0[(12)]
1.235(12)
N[(2)]-0[(21)]
1.152(19)
N((2)]-0[(22) ]
1.191(18)
N[(2)]-0[(23)]
0[(23)]-0[(24) ]
1.224(23)
1.238(32)
N[(2)]-0[ (24) ]
1.280(23)

126
TABLE 4-4
Bond Angles (°) for [Cu2 (apsh) 2] (N0S) 2
Bond Angles (°)
[Cu2 (apsh) 2]
N(1)-Cu(1)-N(8)
N(8)-Cu(1)-0(24)
N(8)-Cu(1)-N(15')
N (1) -Cu (1) -N (18 ' )
0(24)-Cu(1)-N(18 ')
N(1)-Cu(1)-0(25')
0(24)-Cu(1)-0(25')
N(18')-Cu(1)-0(25')
N(15)-Cu(2)-0(25)
N(15)-Cu(2)-N(1')
0(25)-Cu(2)-N(1')
N(18) -Cu(2)-N(8 ' )
N(1') -Cu(2)-N(8 ' )
N(18) -Cu(2)-0(24 ' )
N(1')-Cu(2)-0(24')
Cu(1)-N(1)-C(2)
C(2)-N(1)-C(6)
N(1)-C(2)-C(7)
C(2)-C(3)-C(4)
C(4)-C(5)-C(6)
C(2)-C(7)-N(8)
N(8)-C(7)-C(23)
Cu(l)-N(8)-N(9)
N(8)-N(9)-C(10)
N(9)-C(10)-0(24)
C(10)-C(11)-C(12)
C(12)-C(13)-N(14)
N(14)-C(13)-0(25)
Cu(2)-N(15)-N(14)
N(14)-N(15)-C(16)
N(15)-C(16)-C(26)
C(16)-C(17)-N(18)
N(18)-C(17)-C(22)
Cu(2)-N(18)-C(19)
N(18)-C(19)-C(20)
C(20)-C(21)-C(22)
Cu(1)-0(24)-C(10)
Cu(2)-N(1')-C(2')
C(2')-N(l')-C(6')
N(1')-C(2')-C(7')
C (21)-C(3')-C(4')
78.6(3)
79.0(3)
174.7(3)
93.9(3)
94.8(2)
87.9(2)
94.7(2)
150.6(2)
72.4 (2)
105.9(3)
85.1(2)
102.0(3)
79.4(3)
98.4(3)
155.9(3)
113.2(6)
119.4(7)
114.3(7)
120.8(8)
119.4(9)
112.7(7)
125.5(8)
114.1(5)
112.5(6)
122.6(8)
113.2(7)
113.7(7)
122.4(7)
117.5(5)
120.6(7)
123.8(8)
115.1(8)
121.4(10)
127.8(7)
122.3(11)
121.1(11)
111.5(5)
112.4(6)
120.7(8)
115.8(8)
117.5(10)
N(1)Cu(1)-O(24)
N(10-Cu(1)-N(151)
0(24)-Cu(l)-N(15')
N(8)-Cu(1)-N(18•)
N(15')-Cu(1)-N(18')
N(8)-Cu(1)-0(25')
N(15')-Cu(1)-0(25')
N(15)-Cu(2)-N(18)
N(18)-Cu(2)-0(25)
N(18)-Cu(2)-N(1')
N(15)-Cu(2)-N(8')
0(25)-Cu(2)-N(8')
N(15)-Cu(2)-0(24 ' )
N(8')-Cu(2)-O(24')
N(8')-Cu(2)-O(24')
Cu(1)-N(1)-C(6)
N(l)-C(2)-C(3)
C(3)-C(2)-C(7)
C(3) -C(4)-C(5)
N(1)-C(6)-C(5)
C(2)-C(7)-C(23)
Cu (1) -N (8) -C (7)
C(7)-N(8)-N(9)
N(9)-C(10)-C(11)
C(11)-C(10)-O(24)
C(ll)-C(12)-C(13)
C(12)-C(13)-O(25)
C(13)-N(14)-N(15)
Cu(2)-N(15)-C(16)
N(15)-C(16)—C(17)
C(17)-C(16)-C(26)
C(16)-C(17)-C(22)
Cu(2)-N(18)-C(17)
C(17)-N(18)-C(19)
C(19)-C(20)-C(21)
C(17)-C(22)-C(21)
Cu(2)-0(25)-C(13)
Cu(2)-N(11)-C(6')
N(l*)-C(2')-C(3')
C(3')-C(2')-C(7')
C(31)-C(4')-C(5')
157.2(3)
106.7(3)
95.8(3)
102.0(3)
77.0(3)
107.1(2)
74.4(2)
73.8(3)
145.4(3)
97.5(3)
173.5(3)
112.3(2)
95.8(3)
91.9(2)
79.8(3)
127.3(6)
120.1(8)
125.6(8)
118.9(8)
121.3(8)
121.8(7)
120.4(6)
125.2(7)
116.1(7)
121.2(7)
111.8(7)
123.9(7)
117.6(7)
121.8(6)
117.0(9)
119.2(8)
123.5(10)
112.3(6)
119.7(8)
117.4(11)
118.0(12)
108.8(5)
126.7(7)
121.0(9)
122.8(9)
121.0(10)

127
TABLE 4-4 Continued
Bond Angles (°)
C (4')-C(5 *)-C(6')
C (2')-C(7')-N(8')
N (8 ' )-C(7')-C(23')
Cu(2)-N(8')-N(9 *)
N(8')-N(9')-C(10 ' )
N(9')-C(10')-O(24')
C(10')-C(11*)-C(12')
C(12')-C(13')-N(14')
N(14')-C(13')-0(25')
Cu (1) -N (15 ' ) -N (14 ' )
N(14')-N(15')-C(161)
N(151)-C(16')-C(26')
C(161)-C(17')-N(18•)
N(181)-C(17')-C(22')
Cu (1) -N (18 ' ) -C (19 1 )
N(18')-C(19')-C(20')
C(20')-C(21')-C(22')
Cu(2)-0(24')-C(10')
118.6(11)
111.9(8)
125.8(8)
116.9(5)
107.6(7)
126.1(8)
114.8(7)
113.1(7)
122.3(7)
117.9(5)
121.5(7)
123.0(8)
116.3(7)
120.1(8)
129.7(6)
120.7(9)
119.7(9)
109.4(5)
N(l')-C(6')-C(5')
C(2')-C(7')-C(23 ' )
Cu(2)-N(8')-C(7')
C(7')-N(8')-N(9')
N(9')-C(101)-C(11')
C(11')-C(10')-O(24 ' )
C(11')-C(12')-C(13')
C(12')-C(131)-O(25')
C(13')-N(14')-N(15')
Cu(1)-N(15')-C(161)
N(15')-C(16')-C(17')
C(17')-C(16')-C(261)
C(16 ')-C(171)-C(22')
Cu(1)-N(18')-C(17')
C(17')-N(18')-C(19')
C(19')-C(20')-C(21')
C(17')-C(22')-C(21')
Cu(1)-0(25')-C(13')
121.1(10)
122.2 (8)
120.1(6)
123.0(7)
115.7(8)
118.2 (8)
113.7(7)
124.7(8)
115.4 (7)
120.5(5)
115.7 (8)
121.2(8)
123.6(8)
110.4(5)
119.9(7)
119.9(9)
119.7(9)
108.9(5)
no3-
0[(11)-N[(l)-0[(12) 115.7(10)
0[(12)-N[(l)-0[(13) 116.7(10)
0[(21)-N[(2)-0[(22) 120.1(13)
0[(22)-N[(2)-0[(23) 115.9(18)
0[ (22)-N[(2)-0[(24) 125.0(15)
N[ (2)-0[(23)-0[(24) 62.6(15)
0[(11)-N[(1)-0[(13) 126.7(11)
0[(21)-N[(2)-0[(23) 106.7(18)
0[(21)-N[(2)-0[(24) 112.4(15)
0[(23)-N[(2)-0[(24) 59.2(16)
N[(2)-0[(24)-0[(23) 58.1(14)

128
TABLE 4-5
Anisotropic Thermal Parameters (Á2xl03)
for [Cu2(apsh)2] (N03)2
un
u22
u33
u23
u13
u 12
[Cu2 (apsh) 2]
Cu(1) 42(1)
34(1)
44(1)
1(1)
9(1)
-1(1)
Cu(2)
44(1)
39(1)
43(1)
-1(1)
13(1)
2(1)
N (1)
39(5)
43(5)
44 (4)
-0(4)
8(4)
1(4)
C (2)
33 (5)
29(5)
38(5)
2(4)
-3(4)
-6(4)
C (3)
48(6)
30(6)
44(5)
-5(4)
-3(5)
-1(4)
C (4)
59(6)
35(6)
46(5)
-11(4)
8(5)
10(4)
C (5)
58(6)
64 (8)
48(6)
-12(6)
19(5)
8(6)
C (6)
53(6)
45(6)
49(6)
2(4)
2(4)
-7(4)
C (7)
37(5)
32 (5)
36(5)
-3(4)
-2(4)
1(4)
N (8)
32(4)
40(4)
41(4)
8(3)
1(3)
0(3)
N (9)
32(4)
42(5)
34(4)
-5(3)
10(3)
-3(3)
C(10)
31(5)
44(6)
35(5)
-2(4)
6(4)
3(4)
C(ll)
32(5)
52(6)
48(5)
5(5)
2(4)
3(4)
C (12)
48(6)
54(6)
44(6)
-11(5)
14(5)
11(5)
C (13)
42(5)
37(6)
49(6)
2(5)
13(5)
1(4)
N (14)
53(5)
41(5)
42(5)
-7(4)
12(4)
7(4)
N (15)
51(4)
45(5)
41(4)
2(4)
9(3)
3(4)
C(16)
69(7)
56(7)
38(6)
-15(5)
12(5)
0(5)
C (17)
75(7)
51(7)
45(6)
-1(5)
10(5)
-5(6)
N (18)
50(5)
70(7)
54 (5)
6(5)
8(4)
-12(5)
C (19)
51(7)
100(10)
62(7)
13(7)
-1(6)
14(7)
C (20)
60(7)
134(13)
87(9)
-4(8)
-21(7)
13(7)
C(21)
109(11)
178(16)
72 (9)
-23(9)
-45(8)
10(11)
C (22)
111(10)
134(13)
49(7)
-34(8)
-11(7)
13(9)
C (23)
65(7)
46(6)
56(6)
-14(5)
14(5)
-12(5)
0(24)
48 (4)
39(4)
49(4)
-2(3)
22(3)
-6(3)
0(25)
50(4)
49(4)
48(4)
-7(3)
5(3)
16(3)
C (26)
127(11)
120(12)
56(7)
-38(7)
-8(7)
32(9)
N(l')
C (2 ')
52 (5)
51(6)
40(4)
6(4)
12(4)
-2(4)
56(6)
39(6)
44(6)
1(5)
5(5)
0(5)
C (3 ')
83 (8)
50(7)
68(7)
11(6)
28 (6)
-2(6)
C (4 ' )
93 (8)
60(8)
92 (8)
24(6)
33 (7)
-15(6)
C (5 1 )
78(8)
73 (9)
87 (9)
27(7)
29(7)
-5(7)
C (6 ' )
C (7 1 )
63(7)
64(7)
66(7)
16(5)
31(5)
3(5)
40(6)
42(6)
45(5)
3(5)
6(4)
2(4)
N (8 1 )
N(9 ' )
36(4)
39(5)
48(5)
-3(4)
14(4)
1(3)
37(4)
47(5)
45(5)
3(4)
14(4)
1(4)
C(10' )
C(ll')
36(5)
49(7)
38(5)
-5(4)
2(4)
-8(4)
35(5)
55(6)
49(5)
-2(5)
14(4)
-6(5)

129
TABLE 4-5 Continued
U22 u33 U23 U13 U12
C (12 ')
C (13 ')
N (14 ' )
N(15 ' )
C(161)
C (17 ')
N (18 ' )
C (19 ' )
C(20 1 )
C (21' )
C(22 ')
C (23 1 )
0(24 ')
0(25' )
C(26 ' )
NO3-
N[(1)]
0[(H)]
0[(12) ]
0[(13) ]
N[(2)]
0[ (21) ]
0[ (22) ]
0[ (23) ]
0[ (24) ]
W(l)
W(2)
W(3)
W(4)
W(5)
38(5)
41(5)
40(4)
40(5)
47(6)
41(5)
48(5)
47(6)
50(7)
63(7)
50(6)
82 (8)
49(3)
48 (4)
85(8)
96(7)
111(7)
110(7)
332(18)
91(9)
145(10)
150(10)
83(13)
142(16)
95(6)
76(5)
104(7)
148(8)
327919)
47(6)
54(7)
39(5)
33 (5)
41(6)
46(6)
35(5)
52(7)
70(8)
77 (9)
45(6)
51(7)
34(4)
37(4)
53 (8)
48(6)
131(9)
82 (7)
153(12)
59(8)
123(11)
101(9)
200(26)
139(19)
70(5)
159(9)
68(6)
67(6)
201(15)
51(6)
47(5)
51(5)
46(4)
46(5)
53 (6)
55(5)
70(7)
81(8)
60(7)
72 (7)
95(8)
48(3)
55(4)
86(8)
73(6)
200(11)
182(10)
113(8)
132(12)
113(8)
247(14)
63(13)
154(19)
102(6)
98(6)
214(10)
191(100
166(12)
5(5)
-11(5)
5(4)
0(4)
10(5)
19(5)
3(4)
8(6)
13(6)
21(6)
11(6)
6(6)
0(3)
-5(3)
22 (6)
-8(5)
-38(8)
-27(6)
52 (8)
18(7)
52(8)
-31(9)
31(14)
-18(15)
-2(4)
7(6)
59(6)
-13(6)
21(11)
9(4)
10(4)
0(4)
13(4)
12(4)
13(4)
13(4)
10(5)
-8(66)
-1(6)
4(5)
32 (7)
18(3)
8(3)
-13(7)
1(5)
-65(7)
-39(7)
69(10)
-50(8)
69(10)
-52(10)
-2(11)
-42(14)
49(5)
32 (5)
-54(7)
-79(7)
44(13)
-16(4)
-2(5)
1(4)
-2(3)
-2(5)
1(4)
1(4)
-4(5)
-1(6)
7(6)
6(5)
18(6)
2(3)
-11(3)
-18(6)
11(5)
23 (6)
20(5)
21(11)
-17(7)
21(11)
2(8)
11(14)
61(14)
-22(4)
31(5)
-30(5)
28(6)
-14(13)
The anisotropic temperature factor exponent takes the form:
-2tt2 (h2a*2Un+k2b*2U22+l2c*2U33+2klb*c*U23+2hla*c*U13+2hka*b*U12)

130
TABLE 4-6
H-Atom Coordinates (x 104) and
Isotropic Thermal Parameters (ÁxlO3)
for [Cu2(apsh)2] (N03)2
ATOM
X
Y
Z
U
H Atoms
H (3)
of First (apsh)
4207 -381
8760
58
H (4)
5804(57)
-291(25)
8135(36)
35(19)
H (5)
6682(49)
495(22)
7993(31)
17(16)
H (6)
6053
1209
8658
61
H(11A)
1172(48)
1529(21)
11272(31)
17(15)
H(11B)
1542(67)
1065(29)
11826(42)
51(23)
H(12A)
2578
2076
11964
56
H(12B)
1794
1832
12557
56
H (19)
8600
729
14532
90
H(20)
9674
1015
15737
114
H (21)
8905
1729
16320
143
H (22)
7064
2128
15729
115
H(23A)
2661
-375
9326
66
H(23B)
1597
-18
8528
66
H(23C)
2558
-258
10204
66
H(26A)
5583
2446
15144
126
H(26B)
4258
2263
14751
126
H(26C)
5056
2613
14284
126
H Atoms
H(3')
of Second
5853
(apsh)
-841
13669
77
H (4 ' )
3944
-869
14186
100
H(5*)
2936
-107
14440
97
H (6 1 )
3794
676
14154
78
H(ll'A)
8672(50)
1120(22)
11284(32)
17(16)
H(ll'B)
9361(93)
1523(43)
12007(61)
122(38)
H(12'A)
8353(68)
1927(30)
10868(44)
55(24)
H (12 ' B)
7708(74)
2150(32)
11523(47)
77(27)
H (19 ' )
1644(71)
1192(31)
8690(45)
93(26)
H (20' )
437(65)
1775(29)
7790(41)
48(24)
H(21')
1135(85)
2615(37)
7429(54)
102(33)
H (22 ')
2894(55)
2858(24)
8157(35)
33(19)
H(23'A)
7306
-740
13108
84
H(231B)
H(23'C)
8450
-379
13080
84
7466
-465
12324
84
H(26 ' A)
4677
3021
8679
90
H(26'B)
5974
2754
8906
90
H(26'C)
5345
3025
9553
90

Figure 4-8 A View of the Structure of [Cu2(apsh)2] Showing
the Atomic Numbering and Thermal Ellipsoids

132

133
size was used for intensity measurements on a Siemens R3m/E
diffractometer with a graphite monochromator, MoKa radiation.
Reflections were collected in the 26 range 0.0-45.0° using the
6-26 scan mode and a variable scan speed (1.90-29.30° min'1).
Two check reflections measured after every 98 reflections
showed an intensity variation of ±5%. Of 3110 reflections
measured, 1927 with F>3.Oct were used in calculations.
Pertinent data are listed in Table 4-7.
The structure was solved by the heavy atom method.
Because of disorder only two nickel atoms were refined with
anisotropic thermal factors. The positions of all hydrogen
atoms have not been determined at all. The final refinement
of all parameters (263) converged at R=0.168 and Rw=0.155
where w=o~2. The residual peaks in the final difference map
were in the range from -0.71 to 1.89 eA'3. All calculations
were carried out using the DESK TOP SHELXTL (Nicolet, 1986).
Crystal data are summarized in Table 4-7 through 4-10. The
structure is illustrated in Figure 4-9.
Description and Discussion
Two different ligands have been used to synthesize copper
and nickel complexes. One is 2-acetylpyridine succinic acid
dihydrazone (apsh), another is 2-pyridinecarboxaldehyde
succinic acid dihydrazone (pcsh). The goal is to understand
the steric effect on the formation of an inorganic double
helix when the side chains of the ligands have methyl groups
or not. Unfortunately, the nickel complex could not be
determined accurately.

134
TABLE 4-7
Crystal Data for [Ni2(pcsh)2] (C104)2
Formula
^"32^30^12® 12^ ^2^ ^2
Molecular Weight
956.0
Crystal System
Monoclinic
Space Group
C 2/c
a, A
22.172(11)
b, A
14.867(6)
c, A
32.589(9)
a, deg
90 *
P i deg
112.52(3)
7/ deg
90 *
Volume, A3
9918(6)
Z
8
Crystal Size, mm3
0.28 X 0.13 X 0.12
Radiation Used
MoKa
H, cm'1
9.37
26 Range, deg
0-45
Number of collected data 3110
Data with I>3.0al 1927
Goodness of Fit 6.409
R, % 0.168
R*, % 0.155
* Required by the symmetry of space group

135
TABLE 4-8
Final Positional Parameter (x 104) and
Isotropic Thermal Parameters (Á2xl03)
for [Ni2(pcsh)2] (C104)2
ATOM
X
Y
Z
U
[Ni2 (pcsh)
2]
Ni (1)
8913
6282
143
36*
Ni (2)
7953
10001
1645
38*
N (1)
7909
10035
2280
38
C (2)
7491
10729
2312
30
C (3)
7304
10885
2645
43
C (4)
7605
10319
2976
86
C (5)
8110
9643
2978
70
C (6)
8196
9593
2605
42
C (7)
7228
11291
1881
59
N (8)
7403
11109
1552
39
N (9)
7189
11561
1171
34
C(10)
7417
11092
890
26
C(ll)
7254
11592
445
63
C (12)
7347
11033
67
35
C (13)
6981
10181
-26
56
N (14)
7190
9543
-251
46
N (15)
8127
6285
300
43
C (16)
7034
8029
-464
32
C (17)
6617
7274
-516
30
N (18)
8962
7567
419
46
C (19)
5557
6816
-498
49
C (20)
5634
5894
-655
68
C (21)
6282
5746
-733
68
C (22)
6732
6440
-667
46
0(23)
7710
10404
951
31
0(24)
8516
5034
-100
46
N(l')
9706
5686
693
44
C (2 ' )
10245
5640
605
35
C ( 3 ' )
4207
9776
-903
48
C (4 1 )
4192
10097
-1316
51
C (5 ' )
4783
10083
-1373
59
C (6 ' )
5313
9685
-1048
47
C (7 ' )
10218
6024
214
33
N (8 1 )
9630
6363
-81
43
N(9 ' )
9555
6713
-478
28
C(10' )
8997
6985
-650
51
C(ll')
6267
7598
1127
41

136
TABLE 4-8 Continued
ATOM
X
Y
Z
U
C (12 ')
7019
7361
1378
56
C (13 ' )
7470
8231
1468
39
N (14 • )
8132
8054
1624
44
N(15')
8436
8863
1694
36
C(16')
9049
8814
1807
48
C (17 ' )
9316
9781
1879
51
N(181)
8897
10457
1825
49
C(19 ' )
9093
11306
1845
64
C (20')
9795
11528
1949
74
C (21')
10246
10784
1992
77
C (22 ')
9999
9914
1978
67
C(23 ' )
8486
6900
-521
49
0(24 ' )
7176
8990
1421
34
C104'
Cl[(l)]
3471
11878
-2439
110
0[(H)]
3152
11970
-2896
141
0[(12) ]
2827
11902
-2399
232
0 [ (13) ]
3698
12715
-2250
219
0[(14)]
3606
10993
-2219
252
Cl[ (2) ]
9419
7351
3055
114
0[(21)]
9406
7918
2680
161
0( (22) ]
9114
6515
2981
170
0[ (23)]
10061
7248
3372
167
0[ (24) ]
9167
7722
3297
179
h2o
W(l)
4195
7293
715
36
W (2)
6373
8536
-1626
106
W (3)
1210
7721
976
136
* Equivalent isotropic U defined as one third of the trace
of the orthogonal ised U¡j tensor

137
TABLE 4-9
Bond Distances (Á) for [Ni2(pcsh)2] (C104)2
Bond
Distances* (Á)
Ni(1)-N(15)
1.998
Ni(1)-N(18)
2.101
Ni(1)-0(24)
2.078
Ni(1)-N(1')
2.157
Ni(1)-N(8')
1.992
Ni(l)-0(23')
2.199
Ni(2)-N(1)
2.107
Ni(2)-N(8)
2.004
Ni(2)-0(23)
2.192
Ni(2)-N(15')
1.979
Ni(2)-N(18')
2.060
Ni(2)-O(24')
2.191
N(l) C (2)
1.418
N(1)-C(6)
1.288
C(2)-C(3)
1.325
C(2)-C(7)
1.541
C ( 3) —C (4)
1.327
C(4)-C(5)
1.506
C (5) —C (6)
1.317
C(7)-N(8)
1.302
N(8)-N(9)
1.327
N(9)-C(10)
1.393
C(10)-C(ll)
1.541
C(10)-0(23)
1.187
C(ll)-C(12)
1.566
C(12)-C(13)
1.473
C (13) -N (14)
1.384
C(13)-0(24)
1.355
N(14)-N(15)
1.363
N(15)-C(16)
1.297
C(16)-C(17)
1.424
C(17)-N(18)
1.455
C(17)-C(22)
1.396
N(18)-C(19)
1.355
C(19)-C(20)
1.500
C(20)-C(21)
1.569
C(21)-C(22)
1.394
N(1')-C(2')
1.335
N(11)-C(6')
1.296
C(2')-C(3')
1.376
C(2')-C(71)
1.375
C(3 ')-C(4 ')
1.415
C(4')-C(5')
1.394
C(5')-C(6 ')
1.375
C(71)-N(8')
1.383
N(8')-N(9 ' )
1.342
N(91)-C(101)
1.214
C(10')-C(ll')
1.560
C(101)-0(23')
1.356
C(11')-C(12 ' )
1.588
C(12')-C(13')
1.594
C(13')-N(14 ' )
1.381
C(13')-0(24')
1.286
N(14')-N(15')
1.356
N(15')-C(16')
1.266
C(161)-C(17 ' )
1.542
C(17')-N(18 1 )
1.336
C(17 1)-C(22 ' )
1.434
N(18')-C(19 ' )
1.331
C(19')-C(201)
1.496
C(20')-C(21')
1.462
C(21')-C(221)
1.402
Cl(l)-0(11)
1.383
Cl(1)-0(12)
1.484
Cl(1)-0(13)
1.396
Cl(1)-0(14)
1.475
Cl(2)-0(21)
1.477
Cl(2)-0(22)
1.395
Cl(2)-0(23)
1.407
Cl(2)-0(24)
1.209
* The "esd" are not shown in the data.

138
TABLE 4-10
Bond Angles (°) for [Ni2(pcsh)2] (C104)2
Bond Angles* (°)
[Ni2 (pcsh) 2]
N(15)-Ni(1)-N(18)
N(18)-Ni(1)-0(24)
N(18)-Ni(1)-N(11)
79.2
157.3
97.4
N(15)-Ni(1)-N(8')
173.4
0(24)-Ni(l)-N(8')
101.3
N(15)-Ni(1)-0(23')
99.9
0(24)-Ni(1)-0(23')
92.5
N(8')-Ni(1)-0(23')
72.5
N(1)-Ni(2)-0(23)
156.5
N(1)-Ni(2)-N(15')
99.8
0(23)-Ni(2)-N(15')
103.2
N(8)-Ni(2)-N(18')
105.3
N(15')-Ni(2)-N(18')
78.5
N(8)-Ni(2)-0(24')
99.3
N(15')-Ni(2)-0(24 1 )
76.7
Ni(2)-N(1)-C(2)
111.6
C (2) -N (1) -C (6)
121.8
N(1)-C(2)-C(7)
111.0
C(2)-C(3)-C(4)
109.6
C(4)-C(5)-C(6)
118.9
C(2)-C(7)-N(8)
120.4
Ni(2)-N(8)-N(9)
122.5
N (8) -N (9) -C (10)
105.6
N(9)-C(10)-0(23)
129.5
C(10)-C(11)-C(12)
115.3
C(12)-C(13)-N(14)
115.5
N(14)-C(13)-0(24)
118.3
Ni(1)-N(15)-N(14)
116.5
N(14)-N(15)-C(16)
123.7
C(16)-C(17)-N(18)
115.6
N(18)-C(17)-C(22)
121.2
Ni(1)-N(18)-C(19)
127.3
N(18)-C(19)-C(20)
120.1
C(20)-C(21)-C(22)
121.2
Ni(2)-0(23)-C(10)
108.1
Ni(1)-N(1')-C(2')
110.7
C(2')-N(1')-C(6')
120.6
N(1')-C(2')-C(7')
117.2
C (2')-C(31)-C(4')
120.7
N(15)-Ni(l)-0(24) 78.3
N(15)-Ni(1)-N(1') 107.0
0(24)-Ni(1)-N(11) 92.1
N(18)-Ni(1)-N(8 *) 100.6
N(1')-Ni(1)-N(8') 79.6
N(18)-Ni(l)-0(23') 88.3
N(l*)-Ni(l)-0(23') 153.0
N(1)-Ni(2)-N(8) 82.6
N(8)-Ni(2)-0(23) 74.1
N(8)-Ni(2)-N(151) 175.2
N(1)-Ni(2)-N(18') 98.1
0(23)-Ni(2)-N(18') 91.2
N(l)-Ni(2)-0(24') 90.8
0(23)-Ni(2)-O(24') 89.8
N(18')-Ni(2)-0(24') 154.7
Ni(2)-N(1)-C(6) 126.6
N(1)-C(2)-C(3) 127.5
C(3)-C(2)-C(7) 121.4
C(3)-C(4)-C(5) 124.6
N(1) -C(6)-C(5) 116.7
Ni(2)-N(8)-C(7) 114.0
C(7)-N(8)-N(9) 123.3
N(9)-C(10)-C(11) 111.1
C(11)-C(10)-O(23) 119.4
C(11)-C(12)-C(13) 113.0
C(12)-C(13)-O(24) 126.1
C(13)-N(14)-N(15) 113.7
Ni(1)-N(15)-C(16) 119.7
N(15)-C(16)-C(17) 115.3
C(16)-C(17)-C(22) 123.2
Ni(1)-N(18)-C(17) 109.7
C(17)-N(18)-C(19) 123.0
C(19)-C(20)-C(21) 114.5
C(17)-C(22)-C(21) 119.8
Ni(1)-O(24)-C(13) 111.8
Ni(1)-N(11)-C(6') 128.2
N(1')-C(21)-C(31) 119.6
C(3')-C(21)-C(71) 123.3
C(3')-C(4')-C(5') 116.5

139
o^tcoocncriHríOnfovoCTiooHif)
Tfn(SHt»H«Mo^hWrior'Oin
NHNNOHHONOrtrlNHlMO
rlrlrlHHHHHrlrlrlHHrirlH
- nri'f m- r-» cm - o\hh-
—n H NHNHWHNt'HNNn
id oh —" 0 0 0 2 ■ U O ■ U O O —
CJ IIIIOIIOIIIU
0 0 2 1 — —| —— | —|
orgrtTf - vo r- - coooj-
“ — — OHHrlrllflrlHíDrlNN'f
VD 00 00 rH — — — — rH -H CN
www>_üUU2^UU'^2UU'-
0 2 2 0 1 I I 12 1 12 1 â–  >0
*
10
O)
rH
OH
C
<
- H - - HHNDNiniOíNMÍMN
i—I '— r» 2202000022020002
d
C
O
CQ
OOCOH1
co oh r>
H H N O
rH rH rH rH
ID CM ID H
O H CH CN rH CM
rH rH rH rH
O OI VO O
CM OH 00 n
CM H rH CM
rH rH rH rH
CM O O H1
o C" ^
CM CM H O
rH rH rH rH
d
0)
d
c
•H
â– P
c
o
o
o
rH
I
^í*
CQ
<
Eh
-X- CM'*^1- VO CO CM - O CM *
OHiHCM^rHi-HCMOHCMCMO
“ * • O CM *•—' rH s—' *—1 rH '— '—* rH
vococjirH — 020w020'~'00^'
ww—'O I I 12 1 I I U I I U
0 2 2 0 1 I | |
lili - ^
Hnn - ID t" f* - 0\ H -
m “ “ — OrHHrHIDrHHrHCOrHCMC'H
ID t'' 00 OH rH '— '—''— rH '—’'— '— rH ''—1 s—* CM
—' N-* ' ' ' O O O —'2 U O O O ^
0 0 2 2 0 I I 121 I 121 IO
I I I I | | I r-s I
- - rH - - ONH,CMH,'CCOCMCOOH
'I* CM "— 00 OH rH H rH ' rl H H '— rH CM •>—*
0022200222022202
OID
ID n 00 H co ^
OH CM Is rl H O
O CM CM rH rH O
H rH rH rH H rH
CH M1 M1 M M1 M1
H H rl CM CM CM
O O O O O O
lililí
H rl H CM CM CM
O O O O O O
lililí
rH rH OH rH i—I OH
H rH O O O O O O
•
cO
4->
C0
d
d)
43
P
O O' O OH M1 OH
C
•H
OH O' O O 00 rH
00 OH OH CM O O
G
s
o
43
to
CMDM'CNOHM’
H H rl CM CM CM
P
O
c
o o o o o o
lililí
rH H rH CM CM CM
o O u o u o
lililí
0)
p
(0
d
(0
d)
rH CM CM H CM CM
rH rH rH CM CM CM
O O O O O O
d>
43
Eh

Figure 4-9 A View of the Structure of [Ni2(pcsh)2] Showing
the Atomic Numbering and Thermal Ellipsoids
(The positions of H atoms have not determined)

141

142
The emphasis will be put on the copper complex in the
discussion section, although the similar results were obtained
for the nickel complex. In the copper complex, two apsh
ligands, numbering N1,C2,C3 ....024,025,C26 and N1',C2,,C3
....0241,025',C26, respectively, coordinate to two copper
ions, The first one is named as asphl and second as asph2 for
convenience. Before discussing the copper complex in detail,
a brief description will be given of the different products
in nickel system.
Different Products in the Nickel System
Sacconi*92* studied the reactions of hydrazides with nickel
acetate and salicylaldehyde, and indicated the occurrence the
several competitive reactions (Figure 4-10). According the
nature of the R group, one of three possible complexes forms
as the main product: a green paramagnetic ionic complex (I),
an orange diamagnetic planar complex (II) or a deep red
diamagnetic complex (III).
At least three different products also were found in the
reaction of Ni(Cl04)2 with succinic acid dihydrazide and 2-
pyridine carboxaldehyde. The structure of the brown crystals
has been determined by an x-ray study and shows that two
molecules of 2-pyridine carboxaldehyde react with one molecule
of succinic acid dihydrazide to form bis(2-pyridine
carboxaldehyde) succinic acid dihydrazone. Two of the ligands
then coordinate to two Ni2+ ions to generate an inorganic
double helical compound. If one molecule of 2-pyridine

143
O
r-cnh-nh2 + ní2+
/ alkyl, phenyl \
\K phenylalkyl )
+ —
H
i
(Y= OH,orNH2 )
O
HN“c_r
I
I
R-C-nH
O (I) green
(Y=0)
N=C-R
i i
fVC=N, ,0— H
I I -Nis I 2
Y' NH2-N-C-R
(II) orange
(Y=0)
(III) deep red
(Y=0)
Figure 4-10 The Competitive Reactions of Hydrazides
with Ni(II) and Salicyladehyde

144
carboxaldehyde reacts with one molecule of succinic acid
dihydrazide, then other possible competitive reactions might
occur. (Figure 4-11)
N=C-R
1 hC-N ''H o
,Ni I H
N NH2-N-C-R
(I)
+ 1
o
o
hn
I
/
II H2 H2 II
c-c-c-c
\
NH
I
nh2
N=C—R
II
(III) o
+ 2
O
II
R=-iCH2% "NH
z I
nh2
Figure 4-11 Possible Reactions of sadh with Ni(ii)
and 2-pyridinecarboxaldehyde

145
The system is complicated. The detailed study on the
several products has not been done yet. The following
discussion sections mainly will be concerned with the copper
complex.
Bis-Tridentate Chelate
There are six possible donor atoms in apsh: two oxygen
atoms and four of six nitrogen atoms. Therefore, the ligand
might be expected to function as a sexadentate chelating
agent. However, apsh is capable of coordinating with two
metal ions as a bis-tridentate chelate. Based on the results
from the x-ray studies, in the copper complex apsh functions
as a bis-tridentate chelating ligand coordinating to two metal
Cu ions to form an "inorganic double helix".
The donor atoms in tridentate chelating agents can be
arranged in linear or branched patters as shown in Figure
4-12.
Figure 4-12
Possible Patterns for Tridentate
Chelating Agents

146
The linear tridentate chelating agent (pattern 3-1) can
be subdivided into "planar" and "nonplanar" types. A "planar"
type is one in which the ligand is arranged in an equatorial
plane (Figure 4-13a). On the other hand, a nonplanar type of
ligand give rise to a metal complex with vicinal configuration
(Figure 4-13b). The nature of the central donor atom Y can
a b
Figure 4-13 Planar and Nonplanar Configurations
for Tridentate Ligands
influence the preference for one or other configuration. If
the central donor atom is part of an unsaturated group, the
distribution of bonds about central atom would tend to be
coplanar and therefore configuration(a) would be less strained
than configuration(b).
X-ray crystal structural analysis shows that tridentate
chelating moieties have a preference for planar configuration
(a). (Table 4-11)

147
TABLE 4-11
Structural Analysis for Ligand apsh
Moiety
Bond Angles (°)
X-Cu-Y
Y-Cu-Z
Z-Cu-X
NI, N8, 024
78.6(3)
79.0(3)
157.2(3)
N18,N15,025
73.8(3)
72.4 (2)
145.4 (3)
NI',N8',024'
79.4(3)
79.8(3)
155.9(3)
N181N15'025'
77.0(3)
74.4(3)
150.6(2)

148
Deprotonation of the Ligand
According to the x-ray results a dication ion
[Cu2 (apsh) 2]2+ is formed by removal of a proton from each
ligand, i.e., one from N9 or N14 and the other from N9' or
N14'. Neither of these four atoms is coordinated to the Cu2+
ions. A fully conjugated ligand could be achieved by
deprotonation to give the delocalized anion (Figure 4-14).
This idea has exploited by Lions and his co-workers, who
showed that highly stable complexes could be prepared by
deprotonation. I®*!-!®6!
A summary of the bond distances of various protonated and
deprotonated ligands is given in Table 4-12. This appears to
be no significant differences of the bond distances between
the neutral and deprotonated forms. Unfortunately, the
disorder of the anions and solvent molecules in the various
crystals has reduced the accuracy of the determination so that
small changes may be masked by large estimated standard
deviations, especially in the nickel complex.
Although the deprotonation of pyridylhydrazones is well
documented, additional studies on more complexes of both
deprotonated and protonated related ligands are needed before
the dimerization reaction and spontaneous formation of the
double helix can be fully understood.

149
Figure 4-14 Possible Conjugated Forms for
Deprotonated apsh Ligand

150
TABLE 4-12
A Summary of the Bond Distances
in Various Protonated and Deprotonated Ligands
Molecule
C10-C11
Bond Distances* (Á)
C10-024 C10-N9
N9-N8
(1)
1.529(12)
1.220(10)
1.342(11)
1.382(9)
1.505(12)
1.216(10)
1.360(11)
1.395(10)
(2)
1.518(13)
1.289(10)
1.334(12)
1.384(10)
1.503(11)
1.221(10)
1.381(11)
1.387(9)
(3)**
1.493
1.230
1.359
1.375
(4)
1.475(7)
1.232(5)
1.364(5)
1.369(4)
(5)
1.477(6)
1.284(5)
1.327(5)
1.370(6)
(6)
/
/
1.385(7)
1.352(6)
/
/
1.391(7)
1.359(6)
(7)
/
/
1.346(16)
1.362(14)
/
/
1.377(16)
1.382(14)
(8)
/
1.220(8)
1.374 (8)
1.381(6)
/
1.235(7)
1.387(7)
1.352(7)
N8-C7
C7-C2
C2-N1
N1-C6
(1)
1.293(10)
1.475(12)
1.346(11)
1.354(12)
1.270(11)
1.474(13)
1.327(11)
1.335(13)
(2)
1.285(12)
1.486(13)
1.335(13)
1.353(13)
1.284(11)
1.478(11)
1.347(11)
1.337(11)
(3)**
1.271
1.475
1.344
1.333
(4)
1.279(5)
1.471(6)
1.343(5)
1.328(5)
(5)
1.275(6)
1.447(6)
1.359(6)
1.326(6)
(6)
1.289(7)
1.472 (8)
1.346(7)
/
1.267(7)
1.478(8)
1.338(7)
/
(7)
1.287(16)
1.447(18)
1.360(16)
/
1.296(17)
1.475(18)
1.350(16)
/
(8)
1.304(8)
1.495(8)
1.321(7)
/
1.297 (7)
1.463(8)
1.351(6)
/

151
TABLE 4-12 Continued
(1) apshl in this work
(2) apsh2 in this work
(3) Hsip: N-picolinylidene-N'-salicylolhydrazine in ref. [19]
(4) Hsip in [Cu(sip) (Hsip) ] [C104] .EtOH in ref. [20]
(5) sip in [Cu(sip)(Hsip)][C104].EtOH in ref. [20]
(6) H2dapp in ZnH2dapp in ref. [11]
H2dapp: 2,6-diacetylpyridine bis(2'-pyridylhydrazone with
Zn(II)
(7) dapp in Zn2(dapp)2 in ref. [11]
(8) H2dapsc in [Cu (H2dapsc) (Cl) (H20] Cl. 2H20 in ref. [21]
* The labels of the atoms refer to the half fragment of
ligand apshl in this work, numbering N1,C2....CIO.
** Estimated standard deviations are in the range 0.005-
0.010(A)

152
Geometry of the Polyhedrons Around Metal Atoms
As shown in Figure 4-8, the two tridentate moieties ( one
from apshl, another from apsh2) coordinate to the same Cu2+
ion, through the carbonyl oxygen atom, one hydrazide nitrogen
atom and pyridine nitrogen atom for each moiety, forming an
elongated (Jahn-Teller effect) and distorted octahedral
configuration. Around Cu(l), N1,N8,024 (from apshl) are
eguatorial with N15',N18', 025' (from apsh2) orthogonal to it,
the latter two being involved in the two long apical
interactions ( Cu(l)-N18' 2.216(7) and Cu(l)-025' 2.338(5) A).
Around Cu(2),N1',N8' , 024' (from apsh2) are eguatorial with
moiety N15,N18,025 (from apshl) orthogonal to it, N18 and 025
being involved in the elongated axis ( Cu(2)-N18 2.290(7) and
Cu(2)-025 2.431(4) A) .
The Cu-0 and Cu-N coordination distances are in agreement
with the corresponding ones found in other six coordination
copper(II) complexes,l"!’!100! the apical ones being among the
shortest distances observed in similar cases, e.g.[Cu(sip)-
(Hsip) ] + J97J This fact might be related to the structural
rigidity of the chelating ligands, whose approaches to Cu(l)
and Cu(2) may be determined by the distances Cu(l)-N15'
2.002(7) and Cu(2)-N15 2.054(7) A, respectively. These
distances are significantly longer than the corresponding
Cu(1)—N8 1.942(7) and Cu(2)-N8' 1.943(7) A, suggesting that
the negative charges arising from the loss of the protons
originally bound to N9 and N9' are partially located on N8

153
and N8', respectively. The analysis of the equatorial
coordination planes show small but significantly tetrahedral
shifts (Table 4-13).
Conformation of the Ligand
Table 4-14 gives the torsion angles for each bond in the
ligand chains. The ligand apshl is taken as the basis for a
discussion of the conformation of the ligands in the complex.
Bond distances and angles indicate sp2 hybridization for
C7,N8, CIO, C16, N15 and C13 with a tendency to a localization
of the double bonds between C7, N8 (1.283 A); C16, N15 (1.270
A) and between CIO, 024 (1.220 A); C13, 025 (1.216 A). The
distances of C2-C7 (1.475 A) and C16-C17 (1.474 A) are as
expected for single bonds between two sp2 hybridized carbon
atoms. The two distances of C10-C11 (1.529 A) and C12-C13
(1.505 A) are reasonable for the single bonds between sp2-sp3
hybridized carbon atoms. The bond distance Of C11-C12 is a
sigle bond between sp3-sp3 hybridized carbon atoms. The CH2-
CH2 bonds are approximetely gauche(-61.1 or -61.7°) and rest
of the single bonds are nearly trans. The conformation of the
whole ligand chain is then denoted and shown in Figure 4-15.
In the molecular conformation of the ligands in the
complexes with Cu2+ or Ni2+, the gauche form of the CH2-CH2 bond
is essentially favorable for coordination between nitrogen
atom from the hydrazide group and metal atoms, while the rest
of single bonds take the trans forms. The ligand conforma-

154
TABLE 4-13
Least-Squares and Parameters
for Cu2(apsh)2
Atom
Planes*
1
2
3
4
5
Cul
1731
-186*
-190*
Cu2
543*
34* -8:
N1
162*
-16*
1054
C2
-72*
257*
C3
-105*
1385
C4
193*
C5
-105*
C6
-072*
379
C7
-40
-506*
-197
N8
451*
221*
N9
875
-122*
CIO
-132*
Cll
-572
505
C12
7153
1919
C13
393*
N14
465*
329
N15
-756*
-91*
C16
-1967
105*
-496
C17
-53*
-23*
N18
-1937
4*
62*
C19
-620
-36*
C20
-28*
C21
66*
C22
-577
-40*
C23
-2163
024
1391
223*
025
-646*
-2933
C26
936
(apshl)
Parameters
for the planes ( x 10
4+ )
1
6890
7150
7441
4631
5091
5439
m
-2423
-3032
-3225
5618
6151
6112
n
6831
6299
5851
-6867
-6020
-5750
P
132255
124540
117847
106249
82698
-73763

155
TABLE 4-13 Continued
Atom
Plane
7
8
9
10
11
12
Cul
503*
115*
957
Cu2
-1895
320*
270*
Nl'
-32*
-293*
-3683
C2 '
-115*
114*
C3 '
160*
-1099
C4 '
-65*
C5 '
-81*
C6 '
133*
-2079
C7 '
-2119
297*
-1480
N8 '
-438*
-379*
N9 '
-1874
300*
CIO'
26*
Cll*
651
950
C12 '
-6155
2131
C13 '
441*
N14 '
321*
211
N15 '
-634*
-120*
C16 '
-1607
31*
282
C17 '
128*
130*
N18 '
-1608
-155*
-95*
C19 '
-328
-5*
C20 1
68*
C21'
-32*
C22 '
756
-66*
C23 '
565
024 '
-3475
-216*
025'
-630*
-2423
C26 '
-312
(apsh2)
Parameters
for the planes ( x
104+ )
1
5442
6562
7334
-4317
-4684
4702
m
481
953
2059
3707
4315
-3954
n
8376
7486
6479
8223
7710
•7890
P
221745
208515
194437
127296
119790
â– 120538

156
TABLE 4-13 Continued
Eqretorial Planes
Equatorial plane A:
Atom Cul
Dev. -200*
N1
472*
N8
-489*
024
498*
N15 *
-282
N18 '
-21807
025'
22203
Equatorial plane
Atom Cu2
Dev. 456*
B:
Nl'
1347*
N8 '
1504*
024 '
-1486*
N15
900*
N18
22571
025
-22444
Angles of interest between the planes (°) (plane 1 - plane 12)
2-1=4.9 3-2=3.3 4-3=76.1 5-4=6.4 6-5=2.5 (apshl)
8-7=8.6 9-8=9.7 10-9=73.0 11-10=5.0 12-11=2.3 (apsh2)
Angles of interest between the four pyridine-rings (°)
6-1=99.6 7-1=20.1 7-6=99.0 12-1=96.8 12-6=62.1 12-7=64.9
Angles of interest between the equatorial planes (°)
A-B=21.4
* The deviations from the plane (A x 104) are given for the
specified atom. Equation of the plane: deviation (A)=lX+mY+nZ-p
when X, Y, and Z are the orthogonal coordinates(in A) relative to a,
b, and c sin/3, and p is the distance of the plane from the origin.
The atoms used to define the planes are noted by an asterisk
foilwing the deviation.

157
TABLE 4-14
Torsion Angles (°) for apsh
in [ Cu2 (apsh) 2 ] N0S
Torsion Angles (°) in apshl Torsion Angles (°) in apsh2
C6
Nl
C2
Cl
-178.9
C6 '
Nl'
C2 '
Cl'
172.2
N1
C2
C7
N8
-8.5
Nl'
C2 '
Cl'
N8 '
-2.2
C2
C7
N8
N9
-175.8
C2 '
Cl'
N8 '
N9 '
-173.0
C7
N8
N9
CIO
-177.2
C7 '
N8 '
N9 '
CIO'
173.8
N8
N9
CIO
Cll
179.7
N8 '
N9 '
CIO
'Cll'
-179.9
N9
CIO
Cll
C12
145.9
N9 '
CIO
'Cll
' C12 '
151.5
CIO
Cll
C12
C13
-61.7
ClO'Cll
' C12
' C13 '
-61.1
Cll
C12
C13
N14
-174.7
Cll'C12
' C13
' N14 '
-174.5
C12
C13
N14
N15
-179.3
C12'C13
' N14
' N15 '
-177.3
C13
N14
N15
C16
-173.6
C131N14
' N15
' C16 '
-176.0
N14
N15
C16
C17
-178.6
N14'N15
' C16
' C17 '
-177.9
N15
C16
C17
N18
1.9
N15'C16
' C17
' N18 '
-1.0
C16
C17
N18
C19
-177.6
C16'C17
' N18
' C19 '
-178.8
N8
N9
CIO
024
-.5
N8' N9'
CIO
'024 '
2.8
024
CIO
Cll
C12
-33.9
024'CIO
'Cll
' C12 '
-31.0
Cll
C12
C13
025
6.2
Cll'C12
' C13
'025'
6.1
025
C13
N14
N15
-.2
025'C13
' N14
' N15 '
2.1

158
Figure 4-15 Conformation of the apsh Ligand Chain
tions in the complexes may be considered to be governed by two
factor: conformational stability of a single chain and
stabilization by the interactions between the donor atoms and
metal atoms. ^101^
Iwamoto and co-workers have been studied a series of the
single helical complexes of HgCl2 with ethylene oxide oligomer
(-0-CH2-CH2-) n. [102H1061 Experimental results show there are
three possible forms for the (-0-CH2-CH2-) group in the
mercury(II) complexes. They are TGT, TTT, TGG and are denoted
as type A, B, and C, respectively, as shown in Figure 4-16.

159
Mn
1 Orp C Q C rji O rj~i C Q C "^0^7 C C r^Orp C qC rj-i O C r^O r^i C ^iC ^
Á A A A A A
2C ° jcgcX0TcGcT°TcGCT0 TCGc T° C
3 ”” O rj-1 C Tjí C rji O r-j-iC ^~lC rjp O rp C "TjC rjpO rp C C "rjO
B A B A
Conformational Stabilit /
^ C C m O rpC 7T C rp O f-p C rp Orp C P C /^0/n C /^1 C m“ O rp C p C rp Orp Cp Crp O rr^C C
T T_G_T T_G_f XGIP Q_GJ T_G^J I_G_J T
A A C C a A
5 ““ Orj-1 C Q C "qO r-p C Q C "^O
C
1/2
8/7
1. PEO
PEO
Polyethylene Oxide
2. TGM-HgCl2
TGM
Tetraethylene Glycol Dimethyl ether
3. PEO- HgCl2 Type 1
4. HGE-HgCl2
HGE
Hexaethylene Glycol Diethyl ether
5. PEO-HgCl2 Type 2
PEO Polyethylene Oxide
Figure 4-16 Molecular Conformations

160
With respect to the CH2-CH2 bonds, the gauche form may be more
stable by about 400 cal/mol than the trans form,*106' while for
the CH2-0 bonds the trans form is more stable by 1.2 kcal/mol
than gauche one.*107* Consequently, the three possible forms
are A, B, C in the order of conformational stability.
Iwamoto,R. also defined the numbers to discuss the
correlation of the conformational stability with the mode of
coordination between the donor atoms and metal atoms. For an
example, PEO-HgCl2 type II, is denoted as ss-aeM2, which means
single-stranded helical M2. The subscript of M indicates the
average number of metal ions per donor atom. Therefore, the
subscript might be used to measure the strength of the
interactions between metal atoms and the oligomer or polymer
molecules.
The interesting feature is that the less stable
conformation has stronger interactions between the donor atoms
and metal atoms in the complexes. These interactions might
cause the molecule to take a specific conformation for
favorable coordination between oligomer or polymer and metal
atoms in the complexes, which is usually less stable as a
single chain. Thus, the two factor, conformational stability
and stabilization by the interactions between the donor atoms
and metal atoms, both needed to be considered when we discuss
the resulting conformation of these molecules.
Usually, the trans conformation is the most stable
conformation. For CH2-CH2, the gauche form may be more stable

161
than the trans one. The ligand (apsh or pcsh) appears to have
the most stable conformations. The average number of
coordination per donor atom is one. The Cu2+ complex presents
the features of an inorganic double helix and may be termed
a double-stranded helicate of Cu2+, designated by ds-aeCUj.
Obviously, the structure of the inorganic double helix is
energetically favorable both in conformational stability and
in stabilization by the interaction between the donor atoms
and the metal atoms.
Helical Features of the Complexes
To more precisely assess their geometrical parameters,
two different views of the double-stranded helicate complex
[Cu2(apsh)2]2+ are shown in Figure 4-17 and 4-18. It is seen
that the [Cu2(apsh)2]2+ is indeed a double-stranded helicate
(Figure 4-17), corresponding to the schematic representation
given in Figure 4-3b : two apsh ligand molecules are wrapped
around each other and held together by two copper ions, which
maintain the structure by metal coordination interactions as
hydrogen bonding of base pairs maintains the double helix in
nucleic acid.
The helical features of each strand are defined by a
total length of « 11.6 - 12.2 Á for about one turn, a pitch
(length per turn) of « 11.6 - 12.2 A, a radius of « 6.8 A
(between Cll and C12'). In comparison, the double helix of
nucleic acids has a pitch of 30-35 A, an external radius of

Figure 4-17 A View of the Crystal Structure of the Double
Stranded Helical Complex [Cu2(apsh)2]

163

Figure 4-18 Another View of the Crystal Structure of the
Double Stranded Helical Complex [Cu2(apsh)2J

165

166
« 10 A and 10-11 base-pair interactions per turnJ108* In the
complex [Cu2(apsh)2]2+, a turn of the double helix contains two
interaction centers, i.e., two metal ions.
The two strands have the same chirality, i.e., screw
sense. One may also note that the double-stranded units
formed by apsh as well as by BP2 and BP3 have the intertwined
features of the " La Coupe du roi". The " La Coupe du roi"
in France means the special case in which an achiral object
is bisected into isomeric homochiral halves. The terms
"homochiral and heterochiral" refer to relations between
isometric chiral objects or models of chiral molecules:
homochiral objects are only properly congruent, whereas
heterochiral objects are only improperly congruentJ109*
One may also note that the double-stranded units have the
intertwined feature of a braid with two threads and two
crossings. Walba defined braid, thread and crossing in his
paper " Topological stereochemistry ”J1101 a braid is the
special presentation of constructions composed of threads and
a four-sided polygon. Each thread must connect with each
vertical side once, defining points. The threads may cross
each other, forming crossings. Two braids with one and four
crossings are shown in Figure 4-19.
The stacking of the two pyridine rings corresponds to a
shortest distance of 3.3 Á between the plane N1,C2,C3,C4,C5,C6
and the plane NI',C2',C3',C4',C6',C6' (Figure 4-18), as

167
a braid with one crossing
Figure 4-19 Braid, Thread and Crossing
expected for van der Waals contact, and is similar to the
separation of stacked base pairs in DNA.
The bending of the structure may be due in part to the
tendency of one set of two pyridines to reach van der Waals
contact; another contribution might come from the length of
the CH2-CH2 bridge separating the two coordination units. In
order to form a helical structure the bridges which separate
two coordination units should be short enough to hinder poly¬
hedral binding of a metal ion by more than one coordination
unit of the same ligand molecule. On the other hand, the
bridges should be flexible enough to allow strain free
coordination in polymeric fashion. The simple CH2-CH2 appears
to fulfill these requirements.
Future
Helicates, such as [Cu2 (BP2) 2]2+, [Cu3 (BP3) 2]s+ and the
present complexes [Cu2 (apsh) 2]2+, [Ni2(acsh)2]2+, can provide a
general way for generating inorganic double-helical
structures. The basic features of these systems allow us to

168
imagine numerous extensions into a variety of direction. For
example, we'd like to study the relationship between the
stabilities and the numbers of atoms of chelating rings in
inorganic double helical compounds. However, to my knowledge
only five membered rings have been found in the inorganic
double helical compounds which have been synthesized and
characterized. Our group has been studied on extension of
ligands from 2,2-bis-(salicylideneamino)biphenyl to 3,3'-
bis(salicylideneamino)phenyl ether (salpe).(Figure 4-20)
Figure 4-20 3,3'-bis(salicylideneamino)
Phenyl Ether
If the ligand (salpe) could generate inorganic double-helicate
compounds with metal ions, each ligand would coordinate to two
metal ions center and form two six membered rings.
The elementary analysis of the ligand (salpe) shows the
good agreement with theoretical calculation:

169
C %
H %
N
%
Found;
75.45
4.94
6.
.86
Calculated:
75.39
4.85
6.
.57.
Unfortunately, the structures of the ligand (salpe) and its
metal complexes have not been determined yet.
Variations in the basic organic structures of the ligands
may also involve an increase in the number of subunits with
extension to polymeric ligands to design polynuclear double-
stranded helicates with metal ions. If 2-acetylpyridine would
be replaced by 2,5-diacetylpyrazine to react with succinic
acid dihydrazide, the polymeric ligand might be generated.
From the point of view of general molecular feature,
these and related molecules offer an entry into the design of
systems displaying self-organization, cooperativity, and
helical chirality; they provide study cases for the mechanism,
the thermodynamics, and the kinetic of formation and
dissociation of a double helix in particular and a self¬
assembling system in general.
From the point of view of inorganic chemistry, one may
study the binding of other metal ions (possessing other
coordination features), the formation of polymetallic chain
complexes, the photoactivity, electroactivity, and reactivity
of multicenters such as Cu(I), Ru(II), Re(I), etc.
Polyelectronic exchange and photoinduced charge separation may
be envisaged with such " stringed " complexes.

170
From the biological point of view, these inorganic double
helicates will become ideal models to understand the helical
phenomena in complicated biological system.
Also, the structural and physical features of the present
and related species may be of use in the design of molecular
devices, taking advantage of the cooperativity and self-
assembly process. This research fields have exciting
perspectives at the frontiers of chemistry with physics and
biology.

APPENDIX A
THE REFERENCE CODES, R-VALUES AND REFERENCES
FOR THE 16 "PYRIDINE ONLY" COMPOUNDS
REFSCODE R REFERENCES
1
GENYIH
0.069
Inorg. Chim. Acta,
1988, 148, 85
2
GASCIM
0.055
Chem. Zeit.,
1987,
111, 310
3
GAXJOE
0.039
Aust. J. Chem.
, 1988, 41, 419
4
GEKTIZ
0.046
Acta Cryst.,
1988,
C44, 757
5
GAWHUH
0.025
Inorg. Chem.,
1988
, 27, 1649
6
GERCAH
0.053
Acta Cryst.,
1988,
C44, 907
7
GEDTAK
0.045
J. Cryst. Spectrosc
., 1988, 18, 75
8
GEFDEA
0.054
Aust. J. Chem.
, 1988, 41, 413
9
GEBNOQ
0.045
Acta Cryst.,
1988,
C44, 937
10
GEKTIZ
0.046
Acta Cryst.,
1988,
C44, 757
11
GEKTIZ
0.046
Acta Cryst.,
1988,
44C, 757
12
GEBNOQ
0.045
Acta Cryst.,
1988,
44C, 937
13
GEBNOQ
0.045
Acta Cryst.,
1988,
C44, 937
14
DEHSIS10
0.028
J. Am. Chem. Soc.,
1988, 110, 2135
15
GEFDEA
0.054
Aust. J. Chem.
, 1988, 41, 413
16
GEFDEA
0.054
Aust. J. Chem.
, 1988, 41, 413
171

APPENDIX B
THE REFERENCE CODES AND REFERENCES
FOR THE COMPOUNDS IN TABLE 3-27
REFSCODE
REFERENCE
A. n4o2
DEXPAX01
J. Am.
Chem. Soc.,
1986. 108.
395
DEXPAX02
J. Am.
Chem. Soc.,
1986. 108.
395
DEXPAX03
J. Am.
Chem. Soc.,
1986. 108.
395
DEXPAX04
J • Am •
Chem. Soc.,
1986. 108.
395
DOBKIO
Inorg.
Chem., 1985
, 24, 3947
DOBKIO
Inorg.
Chem., 1985
, 24, 3947
DORPOP
J. Chem. Soc., Dalton, 1986,
1115
FESYAD
Inorg.
Chem., 1987
, 26, 483
FESYAD01
Inorg.
Chem., 1987
, 26, 483
FESYEH
Inorg.
Chem., 1987
, 26, 483
FESYIL
Inorg.
Chem., 1987
, 26, 483
FEWVOS
J. Chem. Soc., Dalton, 1987,
1157
FEWVUY
J. Chem. Soc., Dalton, 1987,
1157
FISTUW
J. Chem. Soc., Dalton, 1987,
1957
FISVAE
J. Chem. Soc., Dalton, 1987,
1957
FISVEI
J. Chem. Soc., Dalton, 1987,
1957
FISVEI
J. Chem. Soc., Dalton, 1987,
1957
SAENFE
Inorg.
Chim. Acta,
1978, 27,
123
SALTFN01
J. Am.
Chem. Soc.,
1978. 100.
3375
SALTFN02
J. Am.
Chem. Soc.,
1978. 100
, 3375
SALTFN03
J. Am.
Chem. Soc.,
1978. 100
, 3375
SALTFN04
J. Am.
Chem. Soc.,
1978, 100
, 3375
172

173
APPENDIX B Continued
B. N204
Inorg. Chem., 1983, 22, 1719
J. Am. Chem. Soc., 1985, 107. 1651
Acta Cryst., 1987, C43. 2100
Inorg. Chim. Acta, 1988, 152. 135
Inorg. Chim. Acta, 1988, 152. 135
J. Chem. Soc., Dalton, 1989, 729
Inorg. Chem., 1974, 13., 927
Inorg. Chem., 1974, ¿3, 927
CAHJEA
CUPSUB
FUCNUM
GEJKEL
GEJKEL
KAJCIH
SALPAF
SALPAF

REFERENCES
1. Boenigk, D.; Mootz, D. J. Am. Chem. Soc. 1988, 110. 2135
2. Newcomb, M.; Timko, J. M.; Walba, M.; Cram, D.J. J. Am.
chem. Soc. 1977, 99, 6392
3. Pine, S.H. Organic Chemistry ( Fifth Edition) McGraw-Hill
Book Company, New York, 1987
4. Natsubayoshi, G. Akazawa, S. Polvhendron 1985, 4, 419
5. Geoffroy, G.L.; Wrighton, M.S. Oraanometallic Photochemistry
Academic Press, New York, 1979
6. Zugravescu, I.; Peltrovanu, M. N-Ylide Chemistry McGraw-
Hill Book Company, New York, 1979
7. Ettling, C. Ann. Chem. Pharm. 1840, 35., 241
8. Schiff, H. Ann. Chem. Pharm..Suppl.. 1864, 3, 343
9. Pfeiffer, P.; Bucholz, E.; Bauer, O. J. Prakt. Chem. 1931,
129. 163
10. Pfeiffer, P.; Offermann, W.; Werner, H. J. Prakt. Chem.
1942, 129. 163
11. Mashuta, M.S.; Webb, R.J.; Oberhausen, K.J.; Richardson,
J.F.; Buchanan, R.M.; Hendrickson, D.N. J.Am. Chem. Soc.
1989, 111. 2745
12. Borovik, A.S.; Papaefthymiou, V.; Taylor, L.F.; Anderson,
O.P.; Que, L.Jr. J.Am. Chem. Soc. 1989, 111. 6183
13. Lippard, S.J. Angew. Chem.. Inti. Ed. Engl. 1988, 27., 344
14. Holm, R.H.; O'Connor, M.J. Prog. Inorg. Chem. 1971, 14,
253
15. Pauling, L.; Corey, R.B.; Branson, H.R. Proc. Natl. Acad.
Sci. USA 1951, 37, 205
16. Flory, P.J.; Millor, N.G. J. Mol. Biol. 1966, 15, 284
17. Lehn, J.M. Pure and Applied Chemistry 1978, 50, 871
174

175
18. Doris, K.A.; Ellis, D.E.; Ratner, M.A.; Marks, T.J. J. Am.
Chem. Soc. 1984, 106, 2491
19. Thanabal, V.; Krishnan, V. J. Am. Chem. Soc. 1982, 104.
3643
20. Maiya, G.B.; Krishnan, V. Inora. Chem. 1985, 24, 3253
21. Lehn, J.M.; Rigault, A.; Siegel, J.; Harrowfield,J.;Chevrier,
B. ; Moras, D. Proc. Natl. Acad. Sci., USA 1987 8.4, 2565
22. A good review of chloramination can be found in: Frazier,
S.E.; Sisler, H.H. Chloramination Reactions. Dowden,
Hutchinson & Ross, Inc., New York, 1977
23. Omietanski, G.; Sisler, H.H. J. Am. Chem. Soc. 1956, 78,
1211
24. Brooks, B.E.; Runder, S. J. Am. Chem. Soc. 1956, 78., 2339
25. Gósl, R.; Meuwsen, A. Chemichte Berichte 1959, 92, 2621
26. Tamura, Y.; Minanikura, J.; Ikeda, M. synthesis 1977, 1
27. Sisler, H.H. J. Am. Chem. Soc. 1954, 76, 3906
28. Gilson, I.T.; Sisler, H.H. Inora. Chem. 1965, 4, 273
29. Sheldrick, G.M. DESK TOP SHELXTL Nicolet XRD Corporation,
Wisconsin, USA, 1986
30. Giordano, T.J.; Palenik, G.J.; Sisler, H.H. Inora. Chem.
1976, 15, 751
31. Bent, H.A. Chem. Rev. 1961, 61, 275
32. Burke-Laing, M.; Laing, M. Acta Crvst. 1976, B32. 3216
33. Huheey, J.E. Inorganic Chemistry; 3rd ed. Harper & Row;
New York, 1983
34. Bak, B.; Nygaard, L.H.; Anderson, J.R. J. Molecular Spect.
1958, 2, 361
35. Boenigk, D.; Mootz, D. J. Am. Chem. Soc. 1988, 110. 2135
36. Steffen, W.; Palenik, G.J. Inora. Chem. 1978, 17, 1338
37. Keene, F.R.; Snow, M.R.; Tiekink, E.R.T. Acta Crvst. 1988,
C44. 757

176
38. Valle, G. ; Gonzalez, A.S.; Ettorre, R.; Plazzogna, G.
J. Oraanomet. Chem. 1988, 348. 49
38. Kamenar, B.; Vickovic, I. Acta Crvst. 1987, C43, 1547
40. Newkome, G.R.; Theriot,, K.J.; Fronczek, F.R. Acta Crvst.
1985, C41, 1642
41. Munavalli, S.; Poziomek, E.J. Acta Crvst. 1988, C44. 272
42. Black, D.St.D.; Hartshorn, A.J. Coord. Chem.Rev. 1972-
1973, 9, 219
43. Lions, F.; Martin, K.V. J. Am. Chem. Soc. 1957, 79, 1273
44. Meyrer, K.P.; Vógtie, F. Topics Curr. Chem. 1985, 127. 1
45. O'Connor, M.J.; Ernst, R.E.; Holm, R.H. J. Am. Chem. Soc.
1968, 90, 4561
46. Goodwin, H.A.; Lions, F. J. Am. Chem. Soc. I960, 82.,
5013
47. Elder, R. C.; Hill, M. C. Inora. Chem 1979, 18, 729
48. Hall, D.; Waters, T.N. J. Chem. Soc. 1960, 2644
49. Kitajima, N,; Whang, K.; Moro-oka, Y.; Uchida. A.; Sasada,Y.
J. Chem. Soc. Chem. Commu. 1986, 1504
50. Drew, M.G.B.; Prasad, R.N.; Sharma,R.R. Acta Crvst. 1985,
C41. 1755
51. Cheeseman, T.P.; Hall, D.; Waters, T.N. J. Chem. Soc.
1966, 685
52. Orioli, P.L.; Sacconi, L. J. Am. Chem. Soc. 1966, 88.
277
53. Cassoux, P., Gleizes, A. Inora. Chem. 1980, 19, 665
54. Akhtar, F.; Drew, M.G.B. Acta Crvst. 1982, B38. 1149
55. Matsumoto, N,; Asakawa, M.; Nogami, M.; Ohyoshi, A.
J. Chem. Soc., Dalton 1985, 101
56. Iida, K.; Oonishi, I.; Nakahara, A.; Komiyana, Y.
Bull. Chem. Soc. Jpn. 1970, 43., 2347

177
57. Bucourr. R. Topics in Stereochemistry 1974, 8, 159
58. Institute of Chemistry. College of General Education,
Osaka University, Toyonaka, Osaka, 1975
59. Sargeson, A.M.; Searle, G.H. Inora. Chem. 1965, 4, 45
60. Heistand, R.H.,II; Roe, A.L.; Quo, L.,Jr. Inora. Chem.
1982, 21, 676
61. Lauffer, R.H.; Heistand, R.H.,II; Quo, L.,Jr. Inora. Chem.
1983, 22, 50
62. Lloret, F.; Julve, M.; Mollar, M.; Castro, I.; Latorre, J.;
Faus, J.; Solans, X.; Morgenstern-Badaray, I.
J. Chem. Soc.. Dalton 1989, 729
63. Calligaris, M.; Manzini, G.; Nardin, G,; Randaccio, L.
J. Chem. Soc., Dalton 1972, 543
64. Resce, J.L.; Fanning, J.C.; Day, C.S.; Uhm, S.J.;
Croisy, A.F.; Keffer, L. K. Acta Crvst. 1987, C43. 2100
65. Bergman, J.G.,Jr.; Cotton, F.A. Inora. Chem. 1966, 5, 1208
66. Santoro, A.; Mighell, A.D.; Reimann, C.W. Acta Crvst.
1970, B26, 979
67. Addison, C.C.; Logan, N.; Wallwork, S.C.; Garner, C.D.
Quart. Rev. (Chem. Soc.) 1971, 25, 289
68. King, T. J.; Logan, N.; Morris, A.; Wallwork, S. C.
J. Chem. Soc. D ( Chem. Commnn.) 1971, 554
69. Maeda, Y.; Takashima, Y.; Matsumoto, N.; Ohyoshi, A.
J. Chem. Soc.. Dalton 1986, 1115
70. Timken, M.D.; Strouse, C.E.; Soltis, S.M.; Daverio, S.A.;
Henorickson, D.N.; Abdel-Mawgoud, A.M.; Wilson, S.R.
J. Am. Chem. Soc. 1986, 108. 395
71. Nishida, Y.; Kino, K.; Kind, S. J. Chem. Soc., Dalton
1987, 1957
72. Summerton, A.P.; Diamantis, A.A.;Snow, M.R. Inora. Chim.
Acta 1978, 27, 123
73. Hoselton, M.A.; Wilson, L.J.; Drago, R.S. J. Am. Chem. Soc.
1975, 97, 1722

178
74. Kennedy, B.J.; Mcgrath, A.C.; Murray, K.S.; Skelton, B.W.;
White, A.H. Inora. Chem. 1987, 26, 483
75. Borer, L.; Thalken, L.; Ceccarelli, C.; Glick, M.; Zhang,
J.H.; Reiff, W.M. Inora. Chem. 1983, 22, 1719
76. Matsumoto, N.; Ohta, S.; Yoshimura, C.; Ohyoshi, A.; Kohata,
S.; Okawa, H.; Maeda, Y. J. Chem. Soc.. Dalton 1985, 2575
77. Timken, M.D.; Hendrickson, D.N.; Sinn, E. Inora. Chem.
1985, 24, 3947
78. Gorun, S.M.; Papaefthymiou, G.C.; Frankel, R.B.; Lipparo,
S.J.; J. Am. Chem. Soc. 1987, 109. 4244
79. Rastetter, W.H.; Erickson, T.J.; Venutti, M.C. J. Orq. Chem.
1981, 46, 3579
80. Cahn, R.S.; Ingold, C.; Prelog, V. Anaew. Chem. Int. Ed.
Enal. 1966 5, 385
81. Brewster, J.H.; Top. Curr. Chem. 1974 47, 29
82. Prelog, V.; Helmchen, G. Anaew. Chem. Int. Ed. Enal. 1982
21, 567
83. Mislow, K.; Siegel, J. J. Am. Chem. Soc. 1984 106. 3319
84. Freudenberg, K.; Schaaf, E.; Dumpert, G.; Plock, T.
Naturwissenschafter 1959 27, 850
85. Watson, J.D.; Crick, F.H.C.; Nature 1953 171. 737
86. Franklin, R.E.; Gosling, R.G. Nature 1953 172. 156
87. Mislow, K.; Gust, D.; Finocchiaro, P.; Boettcher, R.J.
Top. Curr. Chem. 1974 47, 1
88. Palenik, G.J.; Wester, D. Inora. Chem. 1976 15, 755
89. Van Stein, G.G., Van Koten, G.; Vrieze, K.; Brevard, C.; Spek,
A.L. J. Am. chem. Soc. 1984 106. 4486
90. Ernst, R.E.; O'Connor, M.J.O.; Holm, R.H. J. Am. Chem. Soc.
1967 89, 6104
91. Lehn, J.M.; Sauvage, J.P.; Simon, J.; Ziessel, R.; Piccini-
Leopard, C.; Germain, G,; Declereq, J.P.; Van Meersche, M.
NOUV. J. Chim. 1983 7, 413
92. Sacconi, L. J. Am. Chem. Soc. 1954 76, 3400

179
93. Geldard, J.F.; Lions, F. J. Am. Chem. Soc. 1962 84., 2262
94. Geldard, J.F.; Lions, F. Inora. Chem. 1963 2, 270
95. Chiswell, B.; Geldard, J.F.; Phillip, A.T.; Lions, F. Inorg.
Chem. 1964 3, 1272
96. Domiano, P.; Musatti, A.; Pelizzi, C.; Predieri, G. Cryst.
Struct. Commun. 1975 3, 531
97. Domiano,P.; Musatti,A.; Nardelli,M.; Pelizzi,C.; Predieri,G.
J. Chem. Soc.. Dalton 1979 1266
98. Palenik, G.J.; Koziol, A.E.; Gawron, M.; Palenik, R.C.;
Wester, D.W. Acta Crvst. 1988 44C. 85
99. Brown, I.D.; Weiss, C.P.; Wu, K.K. Bond Index to the
Determination of Inorganic Crystal Structures (BIDICS)
Institute for Material Reseaech, McMaster Universty,
Hamilton, Ontario, 1969-1971
100. Brown, I.D.; Ho, K.L.K. BIDICS 1972
101. Iwamoto, R. Bull. Chem. Soc.. Japan 1973 46, 1123
102. Iwamoto, R.; Saito, Y,; Ishihara, H,; Tadokoro, H. J.
Polymer. Sci.. A-2 1968 6, 1509
103. Yokoyama, M.; Ishihara, H.; Iwamoto, R.; Tadokoro, H.
Macromolecules 1969 2, 184
104. Iwamoto, R. Bull. Chem. Soc.. Japan 1973 46, 1114
105. Iwamoto, R. Bull. Chem. Soc.. Japan 1973 4.6, 1118
106. Mark, J.E.; Flory, P.J. J. Am. Chem. Soc. 1966 88, 3702
107. Wieser, H.; Lailaw, W.G.; Krueger, P.T.; Führer, H.
Spectrochim. Acta 1968 24A. 1055
108. Saenger, W. Principles of Nucleic Acid Structure Springer,
New York, 1984
109. Anet, F.; Miura, S.S.; Siegel, J.; Mislow, K. J. Am. Chem.
Soc. 1983, 105. 1419
110. Walba, D.M. Tetrahendron 1985, 41, 3161

BIOGRAPHICAL SKETCH
Keping Qian was born in Jiangsu, China on July 26,
1943. She graduated with a B.S. in chemistry from Nanjing
University, China in July, 1965. She worked in the
Department of Chemistry at Nanjing University from 1965 to
1985. She entered the University of Florida in August, 1985.
In August of 1986 she began graduate work in the Department
of Chemistry in Dr. Palenik's group.
180

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
y'
Lj
Gus J. Palenik, Chair
Professor of Chemistry
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
James M. Boncella
Assistant Professor of Chemistry
I certify that I have read this study and that in my opinion
it conforms to acceptable standards of scholarly presentation and
is fully adequate, in scope and quality, as a dissertation for
the degree of Doctor of Philosophy.
George E. Ryschkewitsch
Professor of Chemistry
I certify that I have read this study and that in my opinion
it conforms to acceptable standards of scholarly presentation and
is fully adequate, in scope and quality, as a dissertation for
the degree of Doctor of Philosophy.
William M. Jones J
Professor of Chemistry

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
This dissertation was submitted to the Graduate Faculty
of the Department of Chemistry in the College of Liberal Arts
and Sciences and to the Graduate School and was accepted as
partial fulfillment of the degree of Doctor of Philosophy.
August 1991
Dean, Graduate School

UNIVERSITY OF FLORIDA
...... â–  â–  â– "â– ii mi N iiiii uai m mi
3 1262 08556 9977



xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ELLQKV6F8_RD8FLY INGEST_TIME 2011-10-06T21:53:06Z PACKAGE AA00004752_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES