Citation
Synthesis and properties of some bismuth (III), manganese (II), yttrium (III), europium (III), and gadolinium (III) complexes

Material Information

Title:
Synthesis and properties of some bismuth (III), manganese (II), yttrium (III), europium (III), and gadolinium (III) complexes
Creator:
Summers, Stephen P
Publication Date:
Language:
English
Physical Description:
xiv, 142 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Atoms ( jstor )
Bismuth ( jstor )
Chemical valence ( jstor )
Coordinate systems ( jstor )
Crystals ( jstor )
Data ranges ( jstor )
Hydrogen ( jstor )
Ligands ( jstor )
Numberings ( jstor )
Polyhedrons ( jstor )
Chemistry thesis Ph.D
Crystallography ( lcsh )
Dissertations, Academic -- Chemistry -- UF
Organometallic compounds ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1994.
Bibliography:
Includes bibliographical references (leaves 138-140).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Stephen P. Summers.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002021966 ( ALEPH )
32838561 ( OCLC )
AKK9460 ( NOTIS )
AA00004729_00001 ( sobekcm )

Downloads

This item has the following downloads:


Full Text











SYNTHESIS AND PROPERTIES OF SOME
BISMUTH(III), MANGANESE(II), YTTRIUM(III),
EUROPIUM(III), AND GADOLINIUM(III) COMPLEXES

















BY

STEPHEN P. SUMMERS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1994














ACKNOWLEDGEMENTS


Many thanks must first go to Dr. Gus Palenik and the

Inorganic Division for giving me a home, and to Ruth Palenik

and Kim Browning for helping me a great deal as I began my

graduate research. Special thanks go to Dr. Khalil Abboud

whose expertise in x-ray crystallography, and patience with

me, were above and beyond the call of duty, and to Dr. Sam

Farrah whose aid in determining antibacterial activities was

greatly appreciated.

I would like to thank my parents Don and Helen Summers,

and the rest of my family, Kim, Bob, Rachel, Rochelle, Lynn,

Brad, and David, for their continued support throughout my

schooling.

To Dewayne, my friend, roommate, and traveling

companion, Jason, my friend and confidant, and Jeff, my

friend and work-out partner, I pledge my friendship forever

and hope that we will all stay together in spirit, if not in

body. And to Eric, with many thanks for being there the

last nine months, I wish the best of luck in Seattle.
















TABLE OF CONTENTS

page

ACKNOWLEDGMENTS.................................. ii

LIST OF TABLES.................................... v

LIST OF FIGURES.................................. x

ABSTRACT......................................... xiii

CHAPTERS

1 INTRODUCTION........................... ..... 1

Bismuth Chemistry............................ 1
Manganese and Gadolinium Chemistry.......... 3

2 COMPLEXES OF BISMUTH(III):
A SYNTHETIC AND STRUCTURAL STUDY........... 6

Introduction................................ 6
Experimental............................... 11
Discussion........................ .......... 16

3 COMPLEXES OF BISMUTH(III): VALENCE
BOND SUMS AND COORDINATION POLYHEDRA........ 60

Introduction................................... 60
Discussion and Results...................... 62

4 BISMUTH COMPLEXES: A STUDY OF
ANTIBACTERIAL ACTIVITY..................... 76

Introduction................................ 76
Experimental................................ 77
Discussion........................... ...... 78

5 COMPLEXES OF BISMUTH(III) WITH PHOSPHONIC
ACIDS: A SYNTHETIC AND SPECTROSCOPIC
STUDY ........ .............................. 82

Introduction................. ............ .. 82
Experimental................................ 83
Discussion.................... ........... .. 88

iii









page

6 COMPLEXES OF MANGANESE(II), GADOLINIUM(III),
EUROPIUM(III), AND YTTRIUM(III) WITH
2,6-DIACETYLPYRIDINE BIS(ACETIC ACID
HYDRAZONE)................. ............... 93

Introduction............................... 93
Experimental................................ 96
Discussion ................................ 100

REFERENCES........................................ 138

BIOGRAPHICAL SKETCH .............................. 141














LIST OF TABLES


Table Pase

2-1: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 1. ............... 19

2-2: Bond lengths (A) and angles (0) for the
non-H atoms of compound 1. ................... 20

2-3: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 1. ......................... 22

2-4: Bond lengths (A) and angles (0) for the
H atoms of compound 1. ......................... 23

2-5: Crystallographic data for compound 1. ........ 24

2-6: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 3. ............... 27

2-7: Bond lengths (A) and angles (0) for the
non-H atoms of compound 3. ................... 28

2-8: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 3. ......................... 30

2-9: Bond lengths (A) and angles (0) for the
H atoms of compound 3. ........................ 30

2-10: Crystallographic data for compound 3. ........ 31

2-11: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 4 ................ 34

2-12: Bond lengths (A) and angles (0) for the
non-H atoms of compound 4. .................... 35








Table Page

2-13: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 4. ......................... 36

2-14: Bond lengths (A) and angles (0) for the
H atoms of compound 4. ......................... 36

2-15: Crystallographic data for compound 4. ........ 37

2-16: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 5. ............... 40

2-17: Bond lengths (A) and angles (0) for the
non-H atoms of compound 5. ................... 41

2-18: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 5. ......................... 42

2-19: Bond lengths (A) and angles (0) for the
H atoms of compound 5. ......................... 43

2-20: Crystallographic data for compound 5. ........ 44

2-21: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 6. ............... 47

2-22: Bond lengths (A) and angles (0) for the
non-H atoms of compound 6. ................... 48

2-23: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 6. ........................ 49

2-24: Bond lengths (A) and angles (0) for the
H atoms of compound 6. ......................... 50

2-25: Crystallographic data for compound 6. ........ 52

2-26: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 7. ............... 55

2-27: Bond lengths (A) and angles (0) for the
non-H atoms of compound 7. ................... 55








Table Page

2-28: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 7. ......................... 56

2-29: Bond lengths (A) and angles (0) for the
H atoms of compound 7. ......................... 57

2-30: H-bonding for compound 7. .................... 58

2-31: Crystallographic data for compound 7. ........ 59

3-1: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi2 (DIPIC) 2 (HDIPIC) 2(HAc) 4H20. .... .. 65

3-2: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi(NTA) 2H2O. ................................ 65

3-3: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi (HEDTA) *2H20. .............................. 65

3-4: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
(Guan) 2Bi(DTPA) 4H20. ........................... 66

3-5: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi(DAPAAH) (Ac) 24H20. .................. ..... 66

4-1: Mass of complexes on filter papers after
soaking in saturated solutions. .............. 81

4-2: Diameters of inhibition for Bi(PIC)3,
Bi(NTA), and Bi(HEDTA) in each type
of bacteria. ................................. 81

6-1: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 14. ............. 103

6-2: Bond lengths (A) and angles (0) for the
non-H atoms of compound 14. .................. 104

6-3: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 14. ...................... 105


vii








Table Page

6-4: Bond lengths (A) and angles (0) for the
H atoms of compound 14. ....................... 106

6-5: Crystallographic data for compound 14. ....... 107

6-6: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 15. .............. 110

6-7: Bond lengths (A) and angles (0) for the
non-H atoms of compound 15. .................. 111

6-8: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 15. ....................... 113

6-9: Bond lengths (A) and angles (0) for the
H atoms of compound 15. ....................... 114

6-10: Crystallographic data for compound 15. ....... 115

6-11: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 16. .............. 118

6-12: Bond lengths (A) and angles (0) for the
non-H atoms of compound 16. .................. 119

6-13: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 16. ...................... 121

6-14: Bond lengths (A) and angles (0) for the
H atoms of compound 16. ....................... 122

6-15: Crystallographic data for compound 16. ....... 123

6-16: Fractional coordinates and equivalent
isotropic thermal parameters (A2) for
the non-H atoms of compound 17. .............. 125

6-17: Bond lengths (A) and angles (0) for the
non-H atoms of compound 17. .................. 126

6-18: Fractional coordinates and isotropic
thermal parameters (A2) for the
H atoms of compound 17. ....................... 128


viii








Table Page

6-19: Bond lengths (A) and angles (0) for the
H atoms of compound 17. ...................... 129

6-20: Crystallographic data for compound 17. ....... 130















LIST OF FIGURES


Figure Page

2-1: 2,6-diacetylpyridine bis(acetic acid
hydrazone)................................. 8

2-2: Salicylaldehyde Semicarbazone.............. 8

2-3: Picolinic Acid ............................ 9

2-4: Dipicolinic Acid .......................... 9

2-5: Nitrilotriacetic Acid ..................... 9

2-6: Ethylenediaminetetraacetic Acid............ 10

2-7: Diethylenetriaminepentaacetic Acid........ 10

2-8: View of 1 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity. ................. 18

2-9: View of 3 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ...................... 26

2-10: View of 4 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ...................... 33

2-11: View of 5 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ...................... 39

2-12: View of 6 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ...................... 46

2-13: View of 7 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity. ................. 54

3-1: View of the polyhedron for compound 1
showing the capped square antiprism
arrangement. ............................. 70

x









Figure Page

3-2: View of the polyhedron for compound 3
showing the bicapped trigonal prism
arrangement. ............................ 71

3-3: View of the polyhedron for compound 4
showing the bicapped trigonal prism
arrangement ............................. 72

3-4: View of the polyhedron for compound 5
showing the bicapped trigonal prism
arrangement ............................. 73

3-5: View of the polyhedron for compound 6
showing the capped square antiprism
arrangement. ...... ...................... 74

5-1: Nitrilotrismethylenetriphosphonic Acid.... 84

5-2: Ethylenediaminotetramethylenetetraphos-
phonic Acid.......................... ..... 84

5-3: Infrared spectrum of 9. ................... 90

5-4: Infrared spectrum of 10. ................. 91

5-5: Infrared spectrum of 11. ................. 91

5-6: Infrared spectrum of 12. .................. 92

5-7: Infrared spectrum of 13. ................. 92

6-1: 2,6-diacetylpyridine bis(acetic acid
hydrazone) ................................ 95

6-2: View of 14 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ....................... 102

6-3: View of 15 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ...................... 109

6-4: View of 16 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity. ....................... 117

6-5: View of 17 showing the thermal ellipsoids
and atomic numbering. Water hydrogens are
omitted for clarity. ....................... 124









Figure Pace

6-6: 'H NMR of 17 taken 3/22/94. ............... 132

6-7: 13C NMR of 17 taken 3/22/94. ............. 132

6-8: 'H NMR of 17 taken 3/24/94 ............... 133

6-9: 13C NMR of 17 taken 3/24/94. ............. 133

6-10: 1H NMR of 17 taken 3/29/94 ............... 134

6-11: 13C NMR of 17 taken 3/29/94. ............. 134

6-12: 89Y NMR of Y(NO3)3 (reference) ............ 135

6-13: 89Y NMR of Y(NO3)3, close-up of 9Y peak.... 135

6-14: 9Y NMR of 17. ........ .................... 136

6-15: 89Y NMR of 17, close-up of 89Y peak. ...... 136


xii















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SYNTHESIS AND PROPERTIES OF SOME
BISMUTH(III), MANGANESE(II), YTTRIUM(III),
EUROPIUM(III), AND GADOLINIUM(III) COMPLEXES

By
STEPHEN P. SUMMERS

August, 1994


Chairman: Dr. Gus J. Palenik
Major Department: Chemistry

A series of bismuth (III) complexes has been

synthesized with the carboxylic acids picolinic acid,

dipicolinic acid, nitrilotriacetic acid, ethylene-

diaminetetraacetic acid, and diethylenetriaminepentaacetic

acid, along with the phosphonic acids nitrilotrismethylene-

triphosphonic acid and ethylenediaminotetramethylenetetra-

phosphonic acid. Where satisfactory crystalline samples

were obtained x-ray crystallographic studies were conducted.

Solid state structures of the carboxylic acid compounds

revealed several similarities between these complexes, and

the crystallographic data was used to calculate valence bond

sums and determine coordination polyhedra. Phosphonic acid

complexes were extremely insoluble and were characterized by

elemental analysis and infrared spectroscopy.


xiii








Antibacterial properties of the carboxylate complexes

were monitored against the bacteria Escherichia Coli,

Pseudomonas Aeruginosa, and Staphylococcus Aureus. Radii of

inhibition were measured, and a correlation to water

solubility was drawn.

Complexes of Bi(III), Mn(II), Eu(III), Gd(III), and

Y(III) were synthesized with the ligand 2,6-diacetylpyridine

bis(acetic acid hydrazone). Crystals obtained from these

procedures were analyzed by x-ray crystallography and their

solid state structures determined. A study of their

solution stability over time was conducted by means of

nuclear magnetic resonance spectroscopy. The 1H, "C, and 89Y

spectra were taken of the Y(III) complex in D20 over a

period of one week. The spectra showed no change over time,

and the presence of a single peak in the 89Y spectrum

suggests that Y(III) existed in only one stable environment.


xiv














CHAPTER 1


INTRODUCTION


Bismuth Chemistry


The element bismuth has been known for about five

hundred years but was not identified as such until 1530.1

In 1786, Odier touted the use of bismuth subnitrate,

(BiO)N03, as a gastric antispasmodic. Since then, a variety

of bismuth salts including bismuth subcarbonate, (BiO)2C03,

bismuth subsalicylate, (BiO) (HOC6H4COO), and ammonium

bismuth citrate dihydrate, (NHI)Bi(C6H4O,) 2H20, have been

used to treat a wide range of human ailments. Some of these

include peptic ulcers, syphilis, and the topical

disinfection of wounds.2

With the exception of some commercial products which

utilize bismuth subsalicylate as a treatment for the relief

of gastric disorders, the use of bismuth compounds has

steadily waned as heavy metal salts have fallen out of

favor.3 Interest in bismuth chemistry has been rekindled,

however, with the discovery of colloidal bismuth subcitrate

(CBS), and its effect on Helicobacter Pylori, a stomach

bacterium recently pinpointed as a causal factor in the

formation of peptic ulcers. The water solubility of CBS and
1








2

its stability in solution, due to the strongly coordinating

citrate, have rendered it useful as a medicinal treatment

for this ailment.27 Further stimuli for the study of

bismuth coordination chemistry have been questions of

possible relativistic effects in the heavy elements,8 and

the use of bismuth in high temperature superconductors.9

The compound CBS appears to be active against peptic

ulcers in several ways. First, it inhibits the action of

pepsins in the stomach, possibly by adsorption of these

enzymes onto tiny particles of the bismuth complex. Second,

the presence of bismuth in the stomach's mucosal membrane

inhibits proteolysis and proton diffusion as well as

increasing the secretion of bicarbonate anions into the

mucous. Finally, and most significantly, the CBS complex

has proven to be bactericidal to H. Pylori.2 These

developments in bismuth chemistry have been the impetus for

our study of bismuth coordination complexes and their

properties.

Recent studies of bismuth complexes have fallen into

two general categories. Several complexes have been

synthesized by Herrmann and coworkers,4'5 Reedijk and

coworkers,6-7 and Postel and coworkers10 which contain ligands

made predominantly of carboxylate groups. Herrmann and

Reedijk have focused mainly on complexes which are

variations of CBS, i.e. citrate containing salts. Postel

has synthesized bismuth complexes with such carboxylate








3

containing ligands as mandelic acid, glycolic acid, and

ethylene glycol.

A second group of bismuth complexes has been

synthesized by Palenik and coworkers, and Battaglia and

coworkers which contain planar pentadentate ligands. Work

by Palenik has included the syntheses of bismuth complexes

with the ligands 2,6-diacetylpyridine bis(semicarbazone),

(DAPSC), and 1,10-diformylphenanthroline bis(semicarbazone),

(PHENSC),11-3 which have shown surprising water solubility.

A similar complex with the ligand 2,6-diacetylpyridine

bis(2-thenoylhydrazone), (DAPT), was synthesized by

Battaglia.14

Our study of bismuth coordination compounds has focused

on the synthesis of complexes with both carboxylate

containing ligands and planar pentadentate ligands. A

subsequent investigation of antibacterial properties yielded

some surprising results as a correlation to water solubility

was drawn. The complexes were further characterized by a

variety of methods including x-ray crystallography, infrared

(IR) spectroscopy, elemental analyses, and through the

method of valence bond sums.


Manganese and Gadolinium Chemistry


The use of nuclear magnetic resonance imaging (MRI) as

a technique for the detection of diseased body tissue has

grown in recent years. While this method has proven its








4

usefulness, its success has depended on the availability of

imaging agents that possess several important characterist-

ics. First, the imaging agent must be sufficiently water

soluble and stable in vivo to facilitate thorough passage

through the body. Any decomposition of the agent could

leave toxic amounts of the free ligand or metal ion in the

body. Second, the agent must provide a sharp contrast

between normal and diseased tissue which is accomplished by

utilizing paramagnetic metal centers and maximizing the

degree of inner sphere waters of hydration. Finally, the

desired imaging agent must show a tendency to localize in a

specific target tissue, a property that is determined

empirically from trials on other organisms.

The most common imaging agents used for the purpose of

MRI are complexes of Mn(II) and Gd(III). The paramagnetism

of these metal centers, which are d5 and f7, respectively,

makes them ideal choices as imaging agents. The choice of

ligand is important in determining the usefulness of these

complexes, as it is the ligand that dictates where the

complex will localize in the body and determines the degree

of inner sphere hydration. Multidentate ligands usually

yield a strong, stable complex that will not dissociate in

vivo. 15

After documented success in producing water soluble

complexes of Bi(III) with planar pentadentate ligands,1-14

similar complexes were synthesized using Mn(II) and Gd(III).








5

Besides the obvious contribution a multidentate ligand

brings to the stability of a complex, the use of a planar

ligand also provides areas above and below the metal center

which can accommodate several waters of hydration, a

situation that is advantageous for imaging agents.

Variability in the structural characteristics of the ligands

may be a way to 'direct' the complex to a desired body

tissue.

Complexes of Mn(II), Eu(III), Gd(III), and Y(III),

containing planar pentadentate ligands, were synthesized and

characterized by x-ray crystallography and elemental

analyses. An investigation of their solution stability over

time was attempted via a study of the 'H, 3"C, and 9Y nuclear

magnetic resonance (NMR) spectra for the Y(III) complex.

The results reveal a series of complexes that are

surprisingly water soluble and stable in solution, and which

can accommodate at least four inner sphere waters of

hydration.















CHAPTER 2


COMPLEXES OF BISMUTH(III):
A SYNTHETIC AND STRUCTURAL STUDY


Introduction


Historically, bismuth compounds have been used as

medicinal agents for a variety of purposes including the

treatment of stomach disorders and wound disinfection.

Though the use of bismuth salts waned after World War II,

interest has increased with the emergence of CBS as a

treatment for peptic ulcers. The solubility of CBS in water

is uncharacteristic of bismuth salts and has facilitated its

medicinal use.

Recently bismuth (III) complexes with the planar

pentadentate ligands DAPSC, PHENSC and DAPT have been

prepared and characterized structurally. The use of these

strongly coordinating neutral ligands rendered their Bi(III)

complexes surprisingly water soluble, an unusual condition

in bismuth complexes. We have synthesized a similar complex

with the ligand 2,6-diacetylpyridine bis(acetic acid

hydrazone), (DAPAAH), which has shown water solubility as

well. The ligand is shown in Figure 2-1. Single crystals

of the complex were used in an x-ray diffraction study which








7

showed, as previously reported,16 the ability of ligands of

this type to adapt to a variety of coordination environments

and metal ion sizes.

Attempts to synthesize a series of Bi(III) complexes

with three 'one-arm' variations on the DAPSC ligand were met

with little success. These ligands, including

salicylaldehyde semicarbazone, (SASC), did not effectively

coordinate Bi(III). However, crystals obtained during the

unsuccessful synthesis of [Bi-SASC]3 (the ligand is given

in Figure 2-2) were shown, via an x-ray study, to be the

free ligand hydrogen bonded to a single acetic acid, (HAc),

molecule. This structure was previously unreported.

The use of carboxylate-containing ligands in the

synthesis of complexes with Bi(III) has been of great

interest recently.4-7"10 Several of these complexes have

shown, through the formation of charged complexes, an

impressive water solubility. We have undertaken the

synthesis of Bi(III) complexes with a series of ligands

including picolinic acid, (PIC), dipicolinic acid, (DIPIC),

nitrilotriacetic acid, (NTA), ethylenediaminetetraacetic

acid, (EDTA), and diethylenetriaminepentaacetic acid,

(DTPA). The syntheses of Bi(HEDTA)17 and guanidinium

Bi(EDTA)18 have been reported but no structural data are

available.19

The reactions of these ligands, shown in Figures 2-3 -

2-7, with bismuth subcarbonate, (BiO)2CO3, have produced
























CH3


Figure 2-1: 2,6-diacetylpyridine
bis(acetic acid hydrazone) (DAPAAH)









OH






H H


Salicylaldehyde Semicarbazone (SASC)


H3


H 3
Hz


Figure 2-2:



















O

Figure 2-3: Picolinic Acid (PIC)


HO>


OH


0


Figure 2-4: Dipicolinic Acid (DIPIC)



HC N CH

0=7 I H-OH


Figure 2-5: Nitrilotriacetic Acid (NTA)






















/CH CH2



0 /-C\


0


Ethylenediaminetetraacetic Acid (EDTA)


HO. CHa2 AH2 ^2
R H2C\
0A


HO, /CH2
FO
0


II
0


CH2 CH2\ /H / OH

- OH 0
N0


H2C- ,OH
0
0


Figure 2-7: Diethylenetriaminepentaacetic Acid (DTPA)


F-OH


CH2\
F-OH


Figure 2-6:


r


C








11

a series of Bi(III) complexes which show a wide range of

water solubility. Crystals obtained in complexes of Bi(III)

with DIPIC, NTA, EDTA, and DTPA were used in x-ray

structural studies which revealed a number of similarities

among the structures of these compounds, including their

coordination polyhedra and the tendency to form dimer-like

units in the solid state. The PIC complex was insoluble and

no x-ray quality crystals were obtained.

Herein we report the syntheses and x-ray crystal

structures of Bi(III) complexes with the ligands DAPAAH,

DIPIC, NTA, EDTA, and DTPA along with the free ligand SASC.

The PIC complex was characterized via elemental analysis.


Experimental


Materials

Bismuth subcarbonate (BiO)2C03, guanidine carbonate

(C(NH2)3)2CO3, bismuth nitrate Bi(NO3)3-5H20 (J.T. Baker);

PIC, DIPIC, NTA, DTPA, 2,6-diacetylpyridine and

acethydrazide (Aldrich); EDTA (LaPine); salicylaldehyde and

semicarbazide hydrochloride (Kodak); sodium acetate (NaAc)

and glacial acetic acid (HAc) (Fisher); were all commercial

products and used without further purification. The

procedure used for the complexes of DIPIC, NTA, EDTA, and

DTPA was similar to that reported for the synthesis of

Bi(HEDTA).17








12

Synthesis of Bi(DAPAAH)Ac,24HO (1)

To a solution of 20 mL HAc in 20 mL H20 was added 0.286

g (0.561 mmol) (BiO)2CO3. After boiling for several hours

all solid went into solution. A mixture of 0.101 g (1.36

mmol) acethydrazide dissolved in 10 mL H20, and 0.0933 g

2,6-diacetylpyridine stirred in 15 mL HO0 was added directly

to the solution. A clear yellow solution (pH = 4) was

obtained. The solution was filtered and allowed to

evaporate. A single recrystallization from H20 revealed

beautiful yellow x-ray quality crystals. Anal. Calc (found)

for C17H30N5O0Bi: C, 30.32(30.07); H, 4.49(4.19);

N, 10.40(10.28).

Synthesis of Bi(PIC), (2)

A picolinic acid solution was made by dissolving 0.208

g (1.69 mmol) of the acid in 14 mL H20. The pH was

approximately 4. Solid Bi(NO3)3-5H20 (0.273 g (0.563 mmol))

was added directly to the solution. A white solid appeared

immediately and the pH decreased to approximately 1. The

solid was filtered and allowed to dry. Recrystallizations

from a water/ethanol/pyridine mixture, nitric acid solution,

and hydrochloric acid solution did not yield x-ray quality

crystals. Mp for 2, 340-3500C (dec). Anal. Calc(found) for

C18H12N306Bi: C, 37.56(37.16); H, 2.09(2.09); N, 7.30(7.21).
Synthesis of Bi2 (DIPIC)2 (HDIPIC) 2(HAc), 4H2O (3)

To a heated solution of 0.188 g (1.12 mmol) of DIPIC in

25 mL H20 (pH 2-3) was added 0.143 g (0.280 mmol) (BiO)2C03.








13

All solid was in solution within 0.5 h. White solid

obtained upon evaporation was redissolved in a solution of 8

mL HAc and 2 mL H20. After slow evaporation colorless x-ray

quality crystals were obtained. Anal. Calc(found) for

C32H20N4020Bi2-4H20: C, 30.25(29.69); H, 2.22(2.13);

N, 4.41(4.26).

Synthesis of Bi(NTA)*2H.O (4)

To a boiling solution of 0.107 g (0.561 mmol) NTA in 60

mL of H20 was added 0.142 g (0.279 mmol) of (BiO)2CO3. After

12 h of boiling with stirring, all solids had dissolved.

The solution was filtered while hot, and the clear,

colorless filtrate was allowed to evaporate. The

crystalline product was recrystallized once from H20 and

crystals suitable for an x-ray analysis were obtained.

Anal. Calc (found) for C6HoNOBi: C, 16.64(17.16);

H, 2.33(1.99); N, 3.23(3.28).

Synthesis of Bi(HEDTA)*2HO (5)

To 100 mL of HO was added 1.25 g (4.29 mmol) of EDTA.

The solution was heated to boiling, and 1.20 g (2.36 mmol)

of (BiO)2CO3 was added in small increments. After 30 min of

boiling the mixture was filtered while hot, and the

colorless filtrate allowed to evaporate. Colorless crystals

suitable for an x-ray single crystal analysis were formed.

Anal. Calc (found) for CoH,1N2OoBi: C, 22.48(22.16);

H, 3.21(3.15); N, 5.24(5.19).








14

Synthesis of (Guan) 2Bi (DTPA) 4HO (6)

To a boiling solution of 50 mL of H20 and 0.928 g (2.36

mmol) of DTPA was added 0.600 g (1.18 mmol) of (BiO)2CO3.

After stirring for 1 h all solid was in solution. To the

cooled solution was added 0.425 g (2.36 mmol) of guanidine

carbonate ((C(NH2) 3)2C3) The reaction mixture was heated

slowly to boiling, and after 2 h, the solution was filtered

and the clear, colorless filtrate allowed to evaporate

slowly. The resulting white solid was recrystallized three

times from H20 to obtain crystals suitable for an x-ray

anaylsis. Anal. Calc (found) for C16H3,NgO,,Bi: C, 24.34

(24.90); H, 4.85(4.61); N, 15.97(16.53).

Synthesis of SASC-HAc (7)

The ligand was synthesized by adding 0.94 mL

salicylaldehyde to a solution of approximately 1 g

semicarbazide hydrochloride and 1.5 g sodium acetate in 8 mL

H20. The resulting white precipitate was recrystallized

once from H20. Anal. Calc (found) for CsHN302:

C, 53.63(53.43); H, 5.06(5.00); N, 23.45(23.85).

Crystals of 7 were obtained during a procedure in which

0.138 g (0.270 mmol) (BiO)2CO3 was dissolved in 30 mL

glacial HAc and combined with 0.232 g (1.29 mmol) SASC.

Large colorless crystals, obtained on evaporation of the

clear colorless solution, appeared to lose solvent molecules

after drying in air. Recrystallization from HAc produced








15

large colorless crystals which were submitted for a single

crystal x-ray analysis.

X-ray Structural Studies

Data for all of the crystals were collected at room

temperature on a Siemens R3m/V diffractometer equipped with

a graphite monochromator utilizing Mo K, radiation (X =

0.71073 A). Forty reflections with 20.00 28 s 22.00 were

used to refine the cell parameters. Full intensity

reflections were collected using the w-scan method. Four

reflections were measured every 96 reflections to monitor

instrument and crystal stability Absorption corrections

were applied based on measured crystal faces using SHELXTL

plus;20 absorption coefficient.

The structures were solved by the heavy-atom method in

SHELXTL plus from which the location of the heavy elements

were obtained. The rest of the non-hydrogen atoms were

obtained from subsequent difference Fourier maps. The

structures were refined in SHELXTL plus using full-matrix

least squares. The non-H atoms were treated

anisotropically, whereas the positions of the hydrogen atoms

were calculated in ideal positions and their isotropic

thermal parameters were fixed. All parameters were refined

and Y w ( IFo IFc )2 was minimized; w=1/(a Fo )2, a( F) =

0.5 kI-1/2{[( I )]2 + (0.021)2}1/2, I(intensity)= ( I peak -

Ibackground ) (scan rate ), and a(I) = ( I peak + I background) 1/2 (scan

rate), k is the correction due to decay and Lp effects, 0.02








16

is a factor used to down weight intense reflections and to

account for instrument instability. The linear absorption

coefficient was calculated from values from the

International Tables for X-ray Crystallography.21 Scattering

factors for non-hydrogen atoms were taken from Cromer &

Mann22 with anomalous-dispersion corrections from Cromer &

Liberman,23 while those of hydrogen atoms were from Stewart,

Davidson, and Simpson.24



Discussion



The reaction of bismuth salts, such as bismuth nitrate

and bismuth subcarbonate, with DAPAAH and the carboxylic

acids PIC, DIPIC, NTA, EDTA, and DTPA, has proven to be a

convenient method of synthesizing complexes of these

ligands. Bismuth subcarbonate appears to be most useful

when used with acids with a pK of about 5 or lower. An acid

with a pK of higher than 5 does not seem effective at

dissolving the subcarbonate and requires the use of bismuth

nitrate. Our results also show that complexes containing

both fully and partially deprotonated ligands are possible

when using these polyprotic acids. This suggests that the

choice of an appropriate cation may be a convenient way to

vary the solubility of such complexes.

A thermal ellipsoid drawing of 1 given in Figure 2-8

shows the full bismuth coordination sphere and atomic








17

numbering scheme including the DAPAAH ligand and the two

coordinating acetate counteranions. Atomic coordinates and

bond distances and angles for the non-hydrogen atoms are

given in Tables 2-1 and 2-2, respectively. Coordinates for

the hydrogen atoms are given in Table 2-3, and the hydrogen

atom bond distances and angles are given in Table 2-4. The

structure was refined to an R value of 5.3%. This and other

crystal data are given in Table 2-5.

The DAPAAH coordinates in a pentadentate fashion

through N2, N3, N4, and the two carbonyl oxygens 01 and 012.

Two bidentate acetates complete the coordination sphere

bringing the total coordination number to nine. Charge

balance is maintained by deprotonation of the ligand at N5,

a designation based on the lack of a refined hydrogen in

this position, and the 1110 C12-N5-N4 bond angle. The usual

planarity of the ligand is affected by the presence of the

two acetates. To minimize steric interactions between the

acetate oxygens and the DAPAAH ligand, and to accommodate the

large Bi3 ion, the hydrazone 'arms' are twisted in opposite

directions. Previous work with ligands of this type has

shown their remarkable ability to adapt to a variety of

coordination environments and metal ion sizes.16

The bismuth complex with PIC, 2, was isolated as a

fast-forming precipitate directly from the reaction mixture.

This is not surprising considering that PIC has the

possibility of only a -1 charge. Three coordinating PIC




















014a


014b


Cl N 012 C12 N C13


01 016a


016b C16


C17







Figure 2-8: View of 1 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity.














Table 2-1: Fractional coordinates
thermal parameters (A2)
compound 1.


and equivalent isotropica
for the non-H atoms of


Atom x


Bi
01
012
014a
014b
016a
016b
N1
N2
N3
N4
N5
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
01'
02'
03'
04'


0.77999(4)
0.6166(9)
0.6264(8)
0.8514(9)
0.6265(10)
0.8625(9)
0.6291(10)
0.8084(9)
0.8980(9)
1.0474(8)
0.8987(8)
0.8156(9)
0.6651(11)
0.5678(12)
1.0350(11)
1.1043(13)
1.1213(11)
1.2718(12)
1.3454(14)
1.2727(14)
1.1198(10)
1.0374(11)
1.1157(13)
0.6776(10)
0.5715(12)
0.7368(13)
0.741(2)
0.7433(14)
0.751(2)
0.8745(9)
0.8713(10)
0.6340(12)
0.6367(12)


z

-0.25413(2)
-0.1075(6)
-0.3770(5)
-0.3387(6)
-0.2962(7)
-0.1726(6)
-0.2041(7)
-0.0545(6)
-0.1137(6)
-0.2426(5)
-0.3726(6)
-0.4353(6)
-0.0596(7)
-0.0009(9)
-0.1152(7)
-0.0607(11)
-0.1820(7)
-0.1806(10)
-0.2437(12)
-0.3019(10)
-0.3030(8)
-0.3696(8)
-0.4294(9)
-0.4291(6)
-0.4881(9)
-0.3383(8)
-0.3885(12)
-0.1724(8)
-0.1298(14)
0.0911(6)
-0.5984(7)
0.3136(11)
0.1871(11)


U

0.02912(11)
0.055(3)
0.045(2)
0.047(3)
0.057(3)
0.058(3)
0.062 (3)
0.036(3)
0.036(3)
0.035(2)
0.034(2)
0.035(2)
0.038(3)
0.053 (4)
0.040(3)
0.067(4)
0.040(3)
0.064(5)
0.081(5)
0.065(5)
0.040(3)
0.044(3)
0.061(4)
0.031(3)
0.050(4)
0.044(4)
0.093(8)
0.048(4)
0.090(7)
0.063(3)
0.073(4)
0.125(5)
0.118(5)


aFor anisotropic atoms, the U value
Ueq = 1/3 Ej U- a,* aj* Aij where Aij
of the ith and th direct space unit


is Ueq, calculated as
is the dot product
cell vectors.


0.50538(4)
0.4424(10)
0.5514(8)
0.2824(8)
0.2490(9)
0.7386(9)
0.7551(9)
0.3256(9)
0.3863(9)
0.4970(9)
0.6160(9)
0.6744(9)
0.3582(12)
0.2841(13)
0.3573(12)
0.256(2)
0.4291(12)
0.424(2)
0.494(2)
0.565(2)
0.5642(12)
0.6364(13)
0.728(2)
0.6378(10)
0.7049(13)
0.2092(12)
0.055 (2)
0.8122(12)
0.9683(15)
0.1646(10)
0.8163(12)
-0.0839(15)
0.093 (2)











Table 2-2:


Bond Lengths (A) and Angles (0) for the non-H
atoms of compound 1.


2 3


01
012
014a
014b
016a
016b
N2
N3
N4
01
01
01
01
01
01
01
012
012
012
012
012
012
012
014a
014a
014a
014a
014a
014a
014b
014b
014b
014b
014b
016a
016a
016a
016a
016b
016b
016b
N2
N2
N3
N4
C1


1-2

2.769(9)
2.373(8)
2.371(7)
2.758(8)
2.446(8)
2.732(8)
2.700(9)
2.468(8)
2.411(9)
2.769(9)






2.373(8)







2.371(7)





2.758(8)




2.446(8)



2.732(8)


2.700(9)

2.468(8)
2.411(9)
1.208(14)


1-2-3











110.5(2)
107.8(3)
68.3(3)
92.8(3)
76.6(3)
57.8(2)
118.8(3)
90.2(3)
76.7(3)
108.2(3)
70.5(3)
162.8(3)
130.6(3)
65.1(3)
50.1(3)
145.7(3)
160.3(3)
82.4(3)
73.5(3)
85.2(3)
160.8(3)
118.5(3)
86.6(3)
119.0(3)
120.6(3)
50.0(3)
86.1(3)
72.6(3)
77.4(3)
114.9(3)
122.0(3)
90.1(3)
62.0(3)
129.3 (3)
67.3(3)
166.6(3)
118.4(7)


012
014a
014b
016a
016b
N2
N3
014a
014b
016a
016b
N2
N3
N4
014b
016a
016b
N2
N3
N4
016a
016b
N2
N3
N4
016b
N2
N3
N4
N2
N3
N4
N3
N4
N4
01
Bi











Table 2-2 -- continued


1 2


C12
C14
C14
C16
C16
N2
C1
C3
C3
Bi
C5
C5
C9
N5
N5
C10
C12
C2
C2
01
C4
C4
C5
C6
C6
N3
C7
C8
C9
C10
C10
N3
C11
C11
N4
C13
C13
012
C15
C15
014a
C17
C17
016a


012
014a
014b
016a
016b
N1
N1
N2
N2
N2
N3
N3
N3
N4
N4
N4
N5
C1
C1
C1
C3
C3
C3
C5
C5
C5
C6
C7
C8
C9
C9
C9
C10
C10
C10
C12
C12
C12
C14
C14
C14
C16
C16
C16


3

Bi
Bi
Bi
Bi
Bi
C1

Bi
N1
N1
C9
Bi
Bi
C10
Bi
Bi
N4
01
N1
N1
C5
N2
N2
N3
C3
C3
C5
C6
C7
N3
C8
C8
N4
C9
C9
012
N5
N5
014a
014b
014b
016a
016b
016b


1-2


1.275(13)
1.252(14)
1.228(15)
1.30(2)
1.23(2)
1.379(12)
1.359(13)
1.292(13)


1.344(14)

1.337(14)
1.365(12)

1.289(13)
1.320(12)
1.48(2)


1.47(2)

1.49(2)
1.386(15)


1.38(2)
1.33(2)
1.41(2)
1.47(2)


1.49(2)


1.50(2)


1.52(2)


1.50(2)


1-2-3

115.7(6)
101.1(7)
83.4(7)
100.3(7)
88.4(7)
115.8(9)

118.9(7)
119.8(9)
119.4(6)
119.6(8)
124.7(7)
115.6(6)
120.3 (9)
118.9(6)
120.2(7)
111.0(8)
120.5(10)
115.6(10)
123.9(10)
120.5(9)
124.4(10)
115.0(10)
122.1(11)
120.4(11)
117.4(9)
117.7(13)
120.4(12)
120.3(14)
119.0(9)
121.2(11)
119.8(11)
123.5(11)
119.7(9)
116.9(10)
117.0(9)
116.9(9)
126.0(9)
116.5(12)
118.2(12)
125.1(10)
116.7(12)
122.1(12)
121.2(10)























Table 2-3: Fractional
parameters


coordinates and isotropic thermal
(A2) for the H atoms of compound 1.


x

0.84202
0.62397
0.49681
0.51958
1.2065
1.06205
1.08973
1.32307
1.44958
1.32486
1.21784
1.08001
1.0995
0.62238
0.502090
0.52192
0.64783
0.81414
0.76252
0.65715
0.82037
0.78027


0.24255
0.22155
0.22749
0.35513
0.251770
0.1609
0.28788
0.37458
0.49068
0.61766
0.72832
0.82585
0.68987
0.76739
0.76048
0.62988
0.00932
0.00118
0.05793
1.01168
1.01942
0.97338


z

-0.00337
0.03231
-0.03853
0.04148
-0.07308
-0.07658
0.0032
-0.13733
-0.24556
-0.34322
-0.41568
-0.41833
-0.49243
-0.52398
-0.45008
-0.52801
-0.38386
-0.36149
-0.45179
-0.13349
-0.16196
-0.06679


U


Atom

H1
H2a
H2b
H2c
H4a
H4b
H4c
H6
H7
H8
Hlla
Hllb
Hllc
H13a
H13b
H13c
H15a
H15b
H15c
H17a
H17b
H17c


0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08












Table 2-4: Bond Lengths (A) and Angles (0) for the H atoms
of compound 1.


1 2 3 1-2 1-2-3

H1 N1 N2 1.19(1) 127.0(7)
H1 N1 C1 117.1(8)
H2a C2 H2b 0.96(1) 109.5(12)
H2a C2 H2c 109.5(13)
H2a C2 C1 109.5(10)
H2b C2 H2c 0.96(1) 109.5(11)
H2b C2 C1 109.5(12)
H2c C2 C1 0.96(1) 109.5(11)
H4a C4 H4b 0.96(1) 109.5(13)
H4a C4 H4c 109.5(13)
H4a C4 C3 109.5(13)
H4b C4 H4c 0.96(1) 109.5(15)
H4b C4 C3 109.5(12)
H4c C4 C3 0.96(2) 109.5(12)
H6 C6 C7 0.96(1) 121.2(11)
H6 C6 C5 121.1(13)
H7 C7 C8 0.96(1) 120.(2)
H7 C7 C6 120.(2)
H8 C8 C9 0.96(2) 119.9(14)
H8 C8 C7 119.9(13)
Hlla C11 Hllb 0.96(1) 109.5(13)
Hlla C11 Hllc 109.5(12)
Hlla C11 C10 109.5(13)
Hllb C11 Hllc 0.96(1) 109.5(14)
Hllb C11 C10 109.5(11)
Hllc C11 C10 0.96(1) 109.5(12)
H13a C13 H13b 0.96(1) 109.5(11)
H13a C13 H13c 109.5(13)
H13a C13 C12 109.5(10)
H13b C13 H13c 0.96(1) 109.5(11)
H13b C13 C12 109.5(11)
H13c C13 C12 0.96(1) 109.5(10)
H15a C15 H15b 0.96(2) 109.(2)
H15a C15 H15c 109.(2)
H15a C15 C14 109.5(15)
H15b C15 H15c 0.96(2) 109.(2)
H15b C15 C14 109.5(15)
H15c C15 C14 0.96(2) 109.5(13)
H17a C17 H17b 0.96(2) 109.(2)
H17a C17 H17c 109.(2)
H17a C17 C16 109.5(14)
H17b C17 H17c 0.96(2) 109.(2)
H17b C17 C16 110.(2)
H17c C17 C16 0.96(2) 109.4(14)











Table 2-5: Crystallographic data for compound 1.


A. Crystal data (298 K)
a, A
b, A
c, A
a, deg.
P, deg.
7, deg.
V, A3
dcalc, g cm-3(298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)


1
9.206(3)
9.300(2)
14.741(4)
97.77(2)
90.53 (2)
90.37(2)
1250.4(6)
1.789
C17H22N50OBi
673.44
Triclinic
P -1


4H2,


2
660
0.23 x 0.20 x 0.18


B. Data collection (298 K)
Radiation, X (A) Mo-K 0.71073
Mode w-scan
Scan range Symmetrically over 1.20 about K ,2 maximum
Background offset 1.0 and -1.0 in w from K 1,2 maximum
Scan rate, deg. min.-l 3 -6
28 range, deg. 3 55
Range of h k 1 0 s h 11
-12 s k s 12
-19 s 1 s 19


Total reflections measured
Unique reflections
Absorption coeff. A (Mo-K0), cm-1
Min. & Max. Transmission

C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 3u(I)
No. of variables
R, RW (%)
Rint (%)
Max. shift/esd
min. peak in diff. four. map (e A-3)
max. peak in diff. four. map (e A3)


6117
5616
7.11
0.265, 0.351


2.23
4685
298
5.26, 6.80
1.49
0.000
-1.34
1.51


* Relevant expressions are as follows, where in the footnote
Fo and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w( Fo IFc)2, where w = (a(F))-2
R = IllFol IF ) / l Fo 1/2
R = [Zw( Fo IF )2 / ( ) 1/2.
S = [w( Fo- F)2 / (m-n)/2








25

anions would produce a complex that is electrically neutral

and unlikely to stay in aqueous solution. It seems clear,

based on excellent elemental analysis results, that a pure

sample of Bi(PIC)3 was indeed obtained. The complex has

defied attempts at crystal growth from several solvents and

solvent mixtures.

A view of the Bi(DIPIC)(HDIPIC) (HAc) complex, 3, along

with the atomic numbering scheme is given in Figure 2-9.

Atomic coordinates and bond distances and angles for the

non-hydrogen atoms are given in Tables 2-6 and 2-7,

respectively. Hydrogen atom coordinates and bond distances

and angles are given in Tables 2-8 and 2-9, respectively.

The structure was refined to an R value of 3.0 %. This and

other crystal data for 3 are given in Table 2-10.

The x-ray analysis reveals a structure in which each

bismuth is coordinated by two tridentate DIPIC anions and a

monodentate HAc molecule. The total coordination number of

eight is completed by a DIPIC oxygen from an adjacent ligand

which is shared by both bismuth centers. Ligand oxygen 01

is likewise shared with the neighboring bismuth center

creating a 'dimer-like' unit consisting of the two bismuth

complexes connected by shared oxygens. This feature

manifests itself consistently in bismuth complexes with

carboxylate containing ligands. The combination of a

Bi(III) center with two DIPIC ligands, both capable of a -2

charge, necessitates that one carboxylate group remain
















































Figure 2-9: View of 3 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.














Table 2-6:


Fractional coordinates and equivalent isotropica
thermal parameters for the non-H atoms of
compound 3.


Atom


x

1.04930(2)
0.7899(5)
0.8679(5)
0.6299(5)
1.0201(5)
0.8758(6)
0.7265(6)
0.6792(6)
0.5294(7)
0.4949(7)
0.6085(7)
0.7563(6)
0.8922(7)
1.1704(5)
0.8700(4)
0.8031(6)
1.3639(5)
1.5664(6)
0.9013(7)
1.0740(7)
1.1266(8)
1.2873(8)
1.3837(7)
1.3240(6)
1.4209(6)
1.0979(12)
1.2554(13)
0.897(4)
0.744(4)
1.1192(14)
0.899(6)
0.992(2)
0.5039(8)
0.7383 (5)


z

1.16123(2)
1.0887(4)
0.9373 (3)
0.7775(3)
1.3177(3)
1.3802(4)
0.8846(5)
0.9704(4)
0.9309(5)
1.0165(6)
1.1388(6)
1.1710(5)
1.3004(5)
1.3581(3)
1.1781(3)
1.2732(5)
1.3293 (4)
1.5117(4)
1.2670(5)
1.3693(5)
1.4681(5)
1.5596(5)
1.5478(5)
1.4463 (4)
1.4240(5)
1.0417(10)
0.9854(9)
0.860(4)
0.809(3)
0.9616(10)
0.835(3)
0.8320(9)
0.7853(6)
0.4657(4)


U

0.02974(8)
0.028(2)
0.041(2)
0.055(2)
0.041(2)
0.055(2)
0.034(2)
0.029(2)
0.037(2)
0.044(3)
0.040(2)
0.031(2)
0.036(2)
0.030(2)
0.0383(15)
0.062(2)
0.046(2)
0.061(2)
0.038(2)
0.036(2)
0.044(2)
0.048(3)
0.044(2)
0.034(2)
0.036(2)
0.114(6)
0.125(6)
0.11(2)
0.08(2)
0.067(5)
0.07(2)
0.097(6)
0.097(4)
0.046(2)


aFor anisotropic atoms,
= 1/3 ZiL U.. ai* aj* Aij
ith and j direct space


the U value is Ueq, calculated as Ueq
where Aj is the dot product of the
unit cell vectors.


0.14229(2)
0.1797(4)
0.0349(4)
-0.0033(5)
0.2722(4)
0.3751(5)
0.0479(6)
0.1285(5)
0.1480(6)
0.2191(7)
0.2715(6)
0.2509(5)
0.3042(6)
0.0705(5)
-0.0418(4)
-0.2104(5)
0.3056(4)
0.3246(6)
-0.1070(6)
-0.0461(6)
-0.1091(7)
-0.0441(7)
0.0783(7)
0.1342(6)
0.2643(6)
0.3477(10)
0.5004(10)
0.567(4)
0.362(2)
0.4042(9)
0.446(4)
0.3811(12)
0.4382(7)
0.5369(4)


Bi
N
01
02
03
04
C1
C2
C3
C4
C5
C6
C7
N'
01'
02'
03'
04'
C1'
C2'
C3'
C4'
C5'
C6'
C7'
05
06
05'
06'
C8
C8'
C9
07
08











Bond Lengths (A) and Angles (0) for
atoms of compound 3.


2


N
N
N
N
N
N
01
01
01
01
01
01
Oli
Oli
Oli
Oli
Oli
03
03
03
03
N'
N'
N'
01'
01'
03'
05
C2
C2
C6
C1
C1
C7
C7
C2
C2
01
C3
C3
N
C4
C5
C6
C7
C7
N


3

01
Oli
03
N'
01'
03'
Oli
03
N'
01'
03'
05
03
N'
01'
03'
05
N'
01'
03'
05
01'
03'
05
03'
05
05
N
C6
Bi
Bi
Bi

Bi

01
02
02
N
C1
C1
C2
C3
C4
N
C5
C5


1-2

2.415(5)





2.489(3)





2.543(5)




2.325(5)



2.470(4)


2.206(4)

2.768(3)
2.672(11)
1.340(5)

1.343(8)
1.291(7)
1.209(5)
1.280(8)
1.221(9)
1.515(9)


1.383 (9)


1.378(10)
1.382(7)
1.375(9)
1.508(6)


Table 2-7:


the non-H


1-2-3

65.5(2)
129.03(12)
67.48(13)
125.6(2)
75.0(2)
132.40(14)
65.48(14)
132.99(15)
138.55(14)
78.61(13)
145.68(14)
75.6(2)
157.87(14)
85.04(15)
82.6(2)
96.84(13)
104.9(3)
72.8(2)
89.3(2)
72.87(14)
93.1(3)
68.83(13)
61.69(13)
143.0(2)
130.33(13)
146.8(2)
81.6(2)
75.5(3)
120.1(5)
121.5(4)
118.4(3)
121.6(4)

123.2(3)

114.9(4)
119.4(6)
125.7(6)
120.9(5)
122.6(4)
116.5(5)
118.6(5)
120.6(7)
117.7(7)
114.6(5)
123.3(6)
122.1(4)


















Table 2-7 -- continued.


1

03
03
04
C2'
C2'
C6'
C1'
C1'
C7'
C7'
C2'
C2'
01'
C3'
C3'
N'
C4'
C5'
C6'
C7'
C7'
N'
03'
03'
04'
C8
C8
C8'
C8'
C9
C9
05
C9
C9
05'
C8


1-2-3


124.4
116.2
119.4
119.9
114.2
125.7
125.1


2

C7
C7
C7
N'
N'
N'
01'
02'
03'
04'
C1'
C1'
C1'
C2'
C2'
C2'
C3'
C4'
C5'
C6'
C6'
C6'
C7'
C7'
C7'
05
06
05'
06'
C8
C8
C8
C8'
C8'
C8'
C9


3

04
C6
C6
C6'
Bi
Bi
Bi

Bi

01'
02'
02'
N'
C1'
C1'
C2'
C3'
C4'
N'
C5'
C5'
04'
C6'
C6'
Bi



05
06
06
05'
06'
06'
C8'


1-2




1.324(7)

1.344(5)
1.287(7)
1.211(8)
1.223(7)
1.292(6)
1.518(6)


1.390(9)


1.402(7)
1.372(10)
1.381(9)
1.487(8)





1.19(2)
1.273(14)
1.29(7)
1.34(6)
1.501(14)


1.25(6)


116.1(3)

115.8(5)
119.8(5)
124.4(5)
122.5(4)
121.8(5)
115.6(5)
117.9(6)
118.6(6)
120.3(5)
115.2(5)
124.1(4)
120.7(5)
125.2(6)
121.1(4)
113.6(5)
157.7(9)



125.6(10)
114.1(11)
120.1(10)
143. (4)
112. (3)
104. (5)
109. (2)















Table 2-8: Fractional coordinates and isotropic thermal
parameters (A2) for the H atoms of compound 3.


x

0.456(7)
0.422(8)
0.595(7)
1.629(11)
1.028(12)
1.332(6)
1.487(8)
0.44422
0.55951
0.78709
0.79786


0.111(6)
0.231(6)
0.328(6)
0.390(9)
-0.209(9)
-0.101(5)
0.120(7)
0.41557
0.40377
0.60287
0.49661


z

0.848(6)
0.993(5)
1.199(5)
1.497(8)
1.453 (8)
1.621(4)
1.589(6)
0.7097
0.81479
0.51898
0.44399


U

0.04(2)
0.03(2)
0.028(14)
0.08(3)
0.10(3)
0.015(11)
0.05(2)
0.08
0.08
0.08
0.08


Table 2-9:


Bond Lengths (A)
of compound 3.


and Angles (0) for the H atoms


1-2

0.93(5)


0.68(7)

0.94(7)

0.83(9)
1.11(9)

1.02(5)

0.85(6)

1.19(2)
0.827(6)
0.780(4)


1-2-3

123. (5)
103. (5)
118. (5)
124. (5)
116. (5)
118. (3)
124. (3)
116. (5)
133. (5)
109. (5)
124. (2)
116. (2)
111. (5)
127. (5)
157.7(9)
122.4(10)
116.1(5)


Atom


H3
H4
H5
H4 "
H3'
H4'
H5'
H7a
H7b
H8a
H8b


1

H3
H3
H3
H4
H4
H5
H5
H4"
H3'
H3'
H4'
H4'
H5'
H5'
C8
H7a
H8a


2

C3
C3
C3
C4
C4
C5
C5
04'
C3'
C3'
C4'
C4'
C5'
C5'
05
07
08


3

C4
H4
C2
C5
C3
C6
C4
C7'
C4'
C2'
C5'
C3'
C6'
C4'
Bi
H7b
H8b











Table 2-10: Crystallographic data for compound 3.


A. Crystal data (298 K)
a, A
b, A
c, A
a, deg.
3, deg.
7, deg.
V, A3
dcalc, g cm3(298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)


3
9.251(1)
10.478(1)
11.666(1)
94.87(1)
110.49(1)
107.63(1)
986.2(2)
2.140
C32H20N4020Bi2 4H20
1270.54
Triclinic
P -1
4

0.20 x 0.11 x 0.08


B. Data collection (298 K)
Radiation, X (A) Mo-K,, 0.71073
Mode w-scan
Scan range Symmetrically over 1.20 about K,,,2 maximum
Background offset 1.0 and -1.0 in w from Ka ,2 maximum
Scan rate, deg. min.-' 3 -6
28 range, deg. 3 55
Range of h k 1 0 s h < 12
-13 s k s 13
-15 s 1 s 14


Total reflections measured
Unique reflections
Absorption coeff. p (Mo-K,), cm-
Min. & Max. Transmission

C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2u(I)
No. of variables
R, Rw* (%)
Rint (%)
Max. shift/esd
min. peak in diff. four. map (e A-3)
max. peak in diff. four. map (e A-3)


4754
4402
9.01
0.266, 0.543


1.17
3877
336
3.02, 3.38
1.71
0.0002
-10
0.94


* Relevant expressions are as follows, where in the footnote
Fo and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(Foj IFcJ)2, where w= (a(F))-2
R = I ( IFo 1Fe ) / i IFo 1
Rw [Iw(IFo, IFc1)2 / IF 2]1/2
S = [w(!IFo IFJc)2 / (m-n)]11/2








32

protonated to maintain charge balance. The proton appears

to be located on 04' based on the carbon to oxygen bond

lengths.

The crystal structure of Bi(NTA), 4, along with the

atomic numbering scheme, is given in the thermal ellipsoid

drawing in Figure 2-10. Atomic coordinates and bond

distances and angles for the non-hydrogen atoms are given in

Tables 2-11 and 2-12, respectively. Hydrogen atom

coordinates, and bond distances and angles, are given in

Tables 2-13 and 2-14, respectively. The structure was

refined to an R value of 3.5 %. Crystal data are given in

Table 2-15.

The complex consists of a single Bi(III) coordinated to

a completely deprotonated NTA trianion. Complete

deprotonation of NTA is necessary to maintain charge balance

but produces a neutral complex that is only slightly more

soluble than the previously mentioned Bi(PIC)3. The NTA

ligand coordinates in a tetradentate fashion through the

single nitrogen, N, and singly through one 0 atom from each

of the three carboxylate groups. The coordination sphere of

eight donor atoms shown in Figure 2-10 is completed by two

water molecules, 04 and 05, and two carboxylate oxygens from

an adjacent ligand, 02i and 03'i. As in 3, the sharing of

carboxylate oxygens produces a 'dimer-like' unit.

A view of the Bi(HEDTA) complex, 5, is shown in Figure

2-11 along with the atomic numbering scheme. Atomic



























C2 r 02'

01' C1'

02


Bi 02i
04

03'i



05








Figure 2-10: View of 4 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.























Table 2-11:


Fractional coordinates and equivalent
isotropica thermal parameters (A2) for the
non-H atoms of compound 4.


x

0.08221(5)
0.0602(12)
0.0532(12)
0.1090(13)
0.1018(11)
0.2339(12)
-0.2757(10)
-0.5332(10)
-0.0856(12)
0.3527(12)
0.0976(14)
0.131(2)
0.1781(13)
0.2058(15)
-0.3390(14)
-0.1708(14)


0.094810(10)
0.1436(3)
0.2020(3)
0.2974(3)
0.0164(3)
-0.0001(3)
0.1021(3)
0.1309(4)
0.1154(3)
0.0308(5)
0.2392(4)
0.2104(4)
0.0355(4)
0.1072(4)
0.1232(4)
0.1382(6)


z

0.43940(4)
0.7101(9)
0.4132(8)
0.5236(9)
0.6692(8)
0.9368(8)
0.4465(8)
0.5768(9)
0.1556(8)
0.2697(10)
0.5353(12)
0.7093(12)
0.8161(11)
0.8453(10)
0.5702(12)
0.7274(12)


U

0.01760(10)
0.020(2)
0.033 (3)
0.044(3)
0.026(2)
0.036 (3)
0.030(2)
0.039(2)
0.029(2)
0.053(3)
0.027(3)
0.029(3)
0.022(3)
0.023 (3)
0.025(3)
0.032(3)


aFor anisotropic atoms, the U value is Ueq, calculated as Ueq
= 1/3 iZ U.i ai* aj* Ai where Ai is the dot product of the
th and j direct space unit cell vectors.


Atom


Bi
N
01
01'
02
02'
03
03'
04
05
C1
C1'
C2
C2'
C3
C3'













Table 2-12: Bond Lengths (A) and Angles (0) for the non-H
atoms of compound 4.


2


1_

N
01
02
02i
03
03'i
04
05
C1'
C1'
C1'
C2'
C2'
C3'
C1
C1
C2
C2
C3
C3
Cl'
C1'
01
N
C2'
C2'
02
N
C3'
C3'
03
N


3










C2'
C3'
Bi
C3'
Bi
Bi
Bi

Bi

Bi

01
01'
01'
Cl
02
02'
02'
C2
03
03'
03'
C3


1-2

2.500(8)
2.258(6)
2.501(6)
2.665(6)
2.253(7)
2.435(6)
2.403 (6)
2.767(9)
1.468(11)


1.492(10)

1.484(12)
1.260(11)
1.225(11)
1.274(10)
1.238(11)
1.259(13)
1.235(11)
1.537(14)



1.524(12)



1.521(12)


Bi
Bi
Bi
Bi
Bi
Bi
Bi
Bi
N
N
N
N
N
N
01
01'
02
02'
03
03'
C1
C1
C1
CI'
C2
C2
C2
C2'
C3
C3
C3
C3'


1-2-3










110.8(6)
111.9(8)
108.0(6)
109.5(7)
109.0(5)
107.4(5)
122.4(6)

118.1(5)

122.2(5)

118.4(8)
117.7(9)
123.8(9)
113.4(7)
117.9(7)
117.5(7)
124.6(8)
110.7(6)
119.5(8)
115.9(9)
124.5 (8)
115.9(8)












Table 2-13: Fractional coordinates and isotropic thermal
parameters (A2) for the H atoms of compound 4.


x

-0.16908
-0.1467
0.44329
0.35049
0.04852
0.28421
0.35569
0.16862
-0.17754
-0.21109


z


0.14176
0.0791
0.05756
0.02926
0.23531
0.21268
0.1187
0.11778
0.10475
0.17805


0.1347
0.1132
0.29155
0.17215
0.77181
0.76044
0.84927
0.94839
0.80534
0.76975


U


0.01(2)
0.14(8)
0.09(6)
0.04(3)
0.08
0.08
0.08
0.08
0.08
0.08


Table 2-14: Bond Lengths (A) and Angles (0)
of compound 4.


1 2 3 1-2

H4a 04 H4b 0.752(7)
H4a 04 Bi
H4b 04 Bi 0.889(7)
H5a 05 H5b 0.788(9)
H5a 05 Bi
H5b 05 Bi 0.808(8)
H1'a C1' H1'b 0.960(10)
H1'a C1' N
H1'a C1' C1
H1'b C1' N 0.960(10)
H1'b C1' C1
H2'a C2' H2'b 0.960(9)
H2'a C2' N
H2'a C2' C2
H2'b C2' N 0.960(9)
H2'b C2' C2
H3'a C3' H3'b 0.960(11)
H3'a C3' N
H3'a C3' C3
H3'b C3' N 0.960(11)


for the H atoms



1-2-3

108.6(7)
119.4(6)
107.1(5)
96.6(10)
91.5(7)
130.6(7)
109.5(9)
108.5(9)
108.5(8)
108.5(8)
108.5(9)
109.5(8)
109.2(8)
109.2(8)
109.2(8)
109.2(8)
109.5(10)
107.8(8)
107.8(9)
107.8(9)
107.8(8)


Atom

H4a
H4b
H5a
H5b
H1'a
H1'b
H2'a
H2'b
H3'a
H3'b


C3


H3'b


C3'











Table 2-15: Crystallographic data for compound 4.


A. Crystal data (298 K)
a, A
b, A
c, A
3, deg.
V, A3
dcai, g cm-3 (298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)


4
6.242(1)
20.927(3)
8.307(1)
102.49(1)
1059.4(3)
2.716
C6H6NO6Bi- 2H20
433.13
Monoclinic
P 21/n
4
800
0.30 x 0.26 x 0.20


B. Data collection (298 K)
Radiation/ X, (A) Mo-K,/0.71073
Mode w-scan
Scan range Symmetrically over Xo about Kl,2 maximum
(X = 1.5)
Background offset 1.0 and -1.0 in w from Kal,2 maxima
Scan rate, deg. min.-1 3 -6
28 range, deg. 3 55
Range of h k 1 0 h < 8
0 s k < 27
-10 s 1 s 10


Total reflections measured
Unique reflections
Absorption coeff. /L (Mo-K~), mm-1
Minimum / maximum transmission

C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2o(I)
No. of variables
R, RJ (%)
Ri.t, (%)
Max. shift/esd
min. peak in diff. four. map (e A-3)
max. peak in diff. four. map (e A-3)


2744
2446
16.67
0.035


/ 0.105


1.44
1943
149
3.47, 4.09
3.54
0.001
-2.54
2.29


* Relevant expressions are as follows, where in the footnote
Fo and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(IFoI 1Fc)2, where w= (a(F))-2
R = Z(IIFol IFJ) / ZIF
R.= [w( IFoJ IFc )2 / F 1F,2]1/2
S = [yw(IFo IFj1)2 / (m-n)]1/2


im








38

coordinates and bond distances and angles for non-hydrogen

atoms are given in Tables 2-16 and 2-17, respectively.

Tables 2-18 and 2-19 contain the hydrogen atom coordinates

and bond distances and angles, respectively. The crystal

structure was refined to an R value of 2.2 %. This and

other relevant data regarding the crystal, data collection,

and structure refinement are given in Table 2-20.

The complex, 5, consists of a single EDTA molecule

coordinating in a hexadentate fashion through both

nitrogens, N1 and N2, and singly through one 0 atom from

each of the four carboxylate groups. The coordination

sphere, shown in Figure 2-11 containing eight donor atoms,

is completed by two carboxylate oxygens, 03'i and 04'i, from

a neighboring complex. There are no coordinated water

molecules. The ligand remains singly protonated in the

crystalline state to maintain a 3- charge, giving rise to

the notation HEDTA. The Bi(HEDTA) neutral molecule appears

to be more soluble than 4, possibly due to the presence of

the single ionizable proton. This proton has been assigned

to 01 on the basis of bond lengths in the carboxylate

groups. In carboxylates 2 to 4 the C-O bond distances are

statistically equivalent indicating conjugation of the

double bond after deprotonation. The C-O bond distances in

carboxylate 1 are not statistically equivalent, differing by

0.09 A, indicating a nonconjugated system.



















04'








C5 C1
C6
C0
N2 N1 C' 01'

03'i
02'


02 C3
03


04'I
03'











Figure 2-11: View of 5 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.
















Table 2-16: Fractional coordinates and equivalent
isotropica thermal parameters (A2) for the
non-H atoms of compound 5.


x

0.0
0.1362(5)
0.2626(5)
-0.1514(5)
-0.2776(5)
-0.0415(5)
-0.0031(5)
0.0338(5)
0.0119(7)
0.0727(6)
-0.0930(5)
0.1544(6)
0.1892(7)
-0.1779(6)
-0.2032(7)
0.0780(6)
0.0032(9)
-0.0880(8)
-0.0092(8)
0.0298(7)
-0.0602(7)
0.1868(5)
0.3003(6)


0.12068(4)
0.1168(10)
0.1691(14)
0.0000(15)
0.0472(14)
0.4449(14)
0.7487(10)
-0.0447(11)
-0.1408(12)
0.3664(11)
0.2209(12)
0.287(2)
0.187(2)
0.244 (2)
0.082(2)
0.549(2)
0.5826(13)
0.061(2)
-0.0484(15)
0.4059(14)
0.4077(14)
0.2631(14)
-0.011(2)


z

0.0
0.0113(7)
0.1119(8)
-0.0637(9)
-0.0606(7)
-0.0609(7)
-0.0641(6)
0.1563(6)
0.3037(8)
0.1263(8)
0.1141(7)
0.1736(9)
0.0944(9)
0.0529(9)
-0.0284(9)
0.0652(9)
-0.0234(6)
0.1936(9)
0.2195(8)
0.2093(9)
0.1667(9)
-0.1826(8)
-0.1832(8)


U

0.02009(11)
0.033(3)
0.046(3)
0.056(3)
0.040(3)
0.033(3)
0.037(3)
0.033 (3)
0.049(4)
0.025(3)
0.023 (3)
0.031(3)
0.032(4)
0.033(4)
0.031(4)
0.027(3)
0.021(3)
0.033(4)
0.031(4)
0.027(3)
0.025(3)
0.050(3)
0.059(4)


aFor anisotropic atoms, the U value is Ueq, calculated as Ueq
= 1/3 i .1 Ui a* aj* A. where Ai. is the dot product of the
ith and j direct space unit cell vectors.


Atom


Bi
01
01'
02
02'
03
03'
04
04'
N1
N2
C1
C1'
C2
C2'
C3
C3'
C4
C4'
C5
C6
O
0'











Table 2-17:


Bond Lengths (A) and
atoms of compound 5.


Angles (0) for the non-H


2


1-2-3


01
02
03
03'i
04
04'ii
N1
N2
Cl'
Cl'
C2'
C2'
C3'
C3'
C4'
C4'
C1
C1
C1
C3
C3
C5
C2
C2
C2
C4
C4
C6
C1'
01
01
01'
C2'
02
02
02'
C3'
03
03
03'
C4'
04
04
04'
C6
N2


Bi
Bi
Bi
Bi
Bi
Bi
Bi
Bi
01
01'
02
02'
03
03'
04
04'
N1
N1
N1
N1
N1
N1
N2
N2
N2
N2
N2
N2
C1
C1'
C1'
C1'
C2
C2'
C2'
C2'
C3
C3'
C3'
C3'
C4
C4'
C4'
C4'
C5
C6


3


1-2

2.306(9)
2.642(9)
2.400(9)
2.678(7)
2.295(7)
2.673(11)
2.461(8)
2.577(9)
1.316(13)
1.226(14)
1.25(2)
1.256(14)
1.232(14)
1.249(11)
1.26(2)
1.248(14)
1.478(13)


1.504(15)

1.51(2)
1.474(12)


1.508(14)

1.491(12)
1.51(2)



1.52(2)



1.506(15)



1.50(2)



1.50(2)


120.7(8)

118.8(8)

118.3(7)

124.2(7)

110.1(9)
110.6(9)
106.8(6)
111.1(8)
107.0(6)
111.2(6)
108.9(9)
111.1(8)
112.6(7)
110.6(8)
106.9(7)
106.7(7)
112.4(9)
124.4(12)
115.8(10)
119.7(10)
111.3(9)
123.5(11)
119.8(10)
116.6(11)
112.6(9)
123.3(9)
120.3(9)
115.6(10)
113.5(11)
121.7(12)
119.5(9)
118.8(13)
112.7(9)
113.0(8)


Bi

Bi

Bi

Bi

C3
C5
Bi
C5
Bi
Bi
C4
C6
Bi
C6
Bi
Bi
N1
01'
C1
C1
N2
02'
C2
C2
N1
03'
C3
C3
N2
04'
C4
C4
N1
C5
























Table 2-18: Fractional coordinates and isotropic thermal
parameters (A2) for the H atoms of compound 5.


x

0.14727
0.18951
0.15154
-0.21196
-0.18399
0.08572
0.12351
-0.09457
-0.13093
0.04672
0.0445
-0.07499
-0.08375
0.14122
0.22294
0.19956
0.29878
0.30146
0.35154


-0.00462
0.39282
0.19419
0.23954
0.36805
0.65892
0.53723
0.11796
-0.03084
0.5312
0.30627
0.51185
0.43061
0.20214
0.15913
0.36556
-0.08576
0.11582
-0.02474


z

0.01393
0.20483
0.22668
0.09946
0.01793
0.11168
0.03666
0.25677
0.16643
0.24003
0.26199
0.11668
0.22348
-0.15042
-0.19136
-0.13863
-0.23989
-0.19979
-0.14366


Atom


H1
Hla
Hib
H2a
H2b
H3a
H3b
H4a
H4b
H5a
H5b
H6a
H7b
Ha
Hb
He
H'a
H'b
H'c


U

0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08
0.08















Table 2-19: Bond Lengths (A)
of compound 5.


for the H atoms


2


1

H1
H1
Hla
Hla
Hla
Hlb
Hlb
H2a
H2a
H2a
H2b
H2b
H3a
H3a
H3a
H3b
H3b
H4a
H4a
H4a
H4b
H4b
H5a
H5a
H5a
H5b
H5b
H6a
H6a
H6a
H7b
H7b
Ha
Ha
Hb
H'a
H'a
H'b
H'c


3

C1'
Bi
Hlb
C1'
N1
Cl'
N1
H2b
C2'
N2
C2'
N2
H3b
C3'
N1
C3'
N1
H4b
C4'
N2
C4'
N2
H5b
C6
N1
C6
N1
H7b
N2
C5
N2
C5
Hb
Hc
He
H'b
H'c
H'c
HOb


1-2

0.850(7)

0.960(10)


0.960(12)

0.960(13)


0.960(12)

0.960(11)


0.960 (13)

0.960(12)


0.960(12)

0.960(10)


0.960(10)

0.960(10)


0.960(13)

1.073(10)

0.972(9)
0.904(11)

0.895(12)
0.900(9)


1-2-3

103.1(8)
103.1(7)
109.5(10)
108.7(11)
108.8(9)
108.6(10)
108.8(10)
109.5(12)
109.1(10)
109.1(10)
109.0(10)
108.8(10)
109.5(11)
108.7(9)
108.7(10)
108.6(11)
108.6(10)
109.5(14)
108.4(9)
108.4(10)
108.5(10)
108.5(9)
109.5(10)
108.4(10)
108.6(10)
108.8(11)
108.8(10)
109.5(10)
108.4(9)
108.7(10)
108.7(10)
108.6(10)
108.9(9)
96.9(9)
126.6(9)
110.0(12)
103.2(11)
99.3 (10)
135.6(10)


and Angles (0)











Table 2-20: Crystallographic data for compound 5.


A. Crystal data (298 K)
a, A
b, A
c, A
3, deg.
V, A3
dcaic, g cm-3(298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)

B. Data collection (298 K)
Radiation/, X (A)
Mode w-scan


5
17.196(2)
6.837(1)
13.277(2)
105.74(1)
1502.4(4)
2.358
CloH,3N2OgBi' 2H20
534.24
Monoclinic
Cc
4
1016
0.39 x 0.22 x 0.16


Mo-Ka/ 0.71073


Scan range Symmetrically over Xo about K,,2 maximum
(X = 1.2)
Background offset 1.0 and -1.0 in a from K1,2 maxim
Scan rate, deg. min.-1 2 -4
28 range, deg. 3 50
Range of h k 1 0 < h < 20


Total reflections measured
Unique reflections
Absorption coeff. A (Mo-K,), mm-1
Minimum / maximum transmission

C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2a(I)
No. of variables
R, RW (%)
Rint (%)
Max. shift/esd
min. peak in diff. four. map (e A3)
max. peak in diff. four. map (e A-3)


0 < k < 8
-15 < 1 < 15


1495
1367
11.77
0.070


1.29
1288
206
2.24,
0.00
0.001
-1.49
1.52


/ 0.200





2.72


* Relevant expressions are as follows, where in the footnote
Fo and F, represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(IFol IFc)2, where w= (a(F))-2
R = I(IFol IFJ ) / I Fo
R = [w( Fo! IFJ)2 / XFo 121/2
S = [-w(IFol IF I)2 / (m-n)]1/2


um








45

Figure 2-12 shows a thermal ellipsoid plot of the

Bi(DTPA) complex, 6, including the atomic numbering scheme.

Atomic coordinates and selected bond distances and angles

for the non-hydrogen atoms are given in Tables 2-21 and 2-

22, respectively. Tables 2-23 and 2-24 give the hydrogen

atom coordinates and bond distances and angles,

respectively. The structure was refined to an R value of

3.8 %. This and other crystal data are given in Table 2-25.

The complex contains the octadentate ligand DTPA, which

coordinates through three nitrogens, N1 N3, and singly

through one 0 atom from each of the five carboxylate groups.

Complete deprotonation of the ligand produces a 5- charge,

which is balanced by the Bi3, and two guanidinium (1+)

cations. An attempt was made to synthesize the complex

without guanidinium countercations, but this did not yield a

crystalline product. The Bi(III) is nine-coordinate with

the ninth coordination position taken by a carboxylate

oxygen, Ol'i, from another Bi(DTPA), again yielding a

'dimer-like' arrangement. Of the four bismuth carboxylate

complexes, Bi(DTPA) is the most soluble due to the presence

of a net 2- charge on the complex.

A thermal ellipsoid plot and atomic numbering scheme

for SASC-HAc, 7, is shown in Figure 2-13. Atomic

coordinates and bond distances and angles for the non-

hydrogen atoms of 7 are given in Tables 2-26 and 2-27,

respectively. Hydrogen atom coordinates and bond distances






























NI Bi C8 C9 C5'
C1





C3'
0303'








Figure 2-12: View of 6 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.











Table 2-21:


Fractional coordinates and equivalent
isotropica thermal parameters (A2) for the
non-H atoms of compound 6.


Atom


Bi
01
01'
02
02'
03
03'
04
04'
05
05'
N1
N2
N3
C1
C1'
C2
C2'
C3
C3'
C4
C4'
C5
C5'
C6
C7
C8
C9
C10
N11
N12
N13
C20
N21
N22
N23
011
012
013
014


x

0.95368(2)
0.9342 (4)
0.8917(4)
0.8528(4)
0.7321(4)
0.9271(4)
0.9018(4)
1.0428(4)
1.0651(4)
1.0667(4)
1.1834(4)
0.7923(4)
0.8432(4)
1.0014(4)
0.8103(6)
0.8846(5)
0.7465(6)
0.7791(5)
0.8717(6)
0.9017(6)
0.9950(6)
1.0369(5)
1.0966(7)
1.1165(5)
0.7396(6)
0.7489(6)
0.8477(6)
0.9429(6)
0.8902(6)
0.8505(5)
0.9518(4)
0.8675(5)
1.1985(6)
1.2283(5)
1.2520(5)
1.1175(5)
1.1255(13)
0.9927(14)
0.5554(11)
1.023(2)


-0.59373(3)
-0.6038(5)
-0.4767(6)
-0.7657(5)
-0.8683(6)
-0.3674(5)
-0.2220(6)
-0.7867(5)
-0.9856(5)
-0.4932(5)
-0.5205(6)
-0.5411(6)
-0.5505(6)
-0.7269(6)
-0.4639(8)
-0.5205(7)
-0.6589(8)
-0.7723(8)
-0.4301(7)
-0.3322(8)
-0.8584(7)
-0.8801(7)
-0.6956(8)
-0.5583(7)
-0.4761(8)
-0.5419(10)
-0.6560(9)
-0.6937(9)
-0.0948(8)
-0.0827(7)
-0.1811(6)
-0.0177(7)
-0.2021(8)
-0.0874(7)
-0.2842(7)
-0.2352(7)
-0.331(2)
-0.161(2)
-0.934 (3)
0.041(2)


aFor anisotropic atoms, the U value is Ueq, calculated as Ueq
= 1/3 i U ai* aj* ij where A. is the dot product of the
ith and j direct space unit cell vectors.


z

0.64925(2)
0.4966(3)
0.3911(3)
0.6306(3)
0.5647(4)
0.6630(3)
0.7482(4)
0.6395(3)
0.6739(3)
0.7694(3)
0.8721(3)
0.5598(4)
0.7381(4)
0.7808(4)
0.4935(5)
0.4578(5)
0.5276(5)
0.5775(5)
0.7789(5)
0.7260(5)
0.7577(5)
0.6845(5)
0.8203(6)
0.8215(5)
0.6104(5)
0.6907(6)
0.7965(5)
0.8376(5)
0.5375(5)
0.5988(4)
0.5374(4)
0.4752 (4)
0.7879(5)
0.7814(4)
0.8336(5)
0.7504(5)
0.9794(9)
0.9042(8)
0.5128(11)
0.9620(12)


U

0.02632(9)
0.039(2)
0.047(2)
0.039(2)
0.052(2)
0.035(2)
0.053(2)
0.036(2)
0.043(2)
0.040(2)
0.053(2)
0.031(2)
0.034(2)
0.032(2)
0.036 (3)
0.035(3)
0.037(3)
0.037(3)
0.038(3)
0.036(3)
0.032 (3)
0.033 (3)
0.039(3)
0.034(3)
0.037(3)
0.044 (3)
0.039(3)
0.041(3)
0.037(3)
0.046(3)
0.042(3)
0.047(3)
0.042(3)
0.048(3)
0.056(3)
0.055(2)
0.239(12)
0.29(2)
0.38(2)
0.142(13)











Table 2-22:


Bond Lengths (A) and
atoms of compound 6.


for the non-H


1


2


01
01'i
02
03
04
05
N1
N2
N3
C1'
C1'
C2'
C2'
C3'
C3'
C4'
C4'
C5'
C5'
C1
C1
C1
C2
C2
C6
C3
C3
C3
C7
C7
C8
C4
C4
C4
C5
C5
C9
C1'
01
01
01'
C2'
02
02
02'


Bi
Bi
Bi
Bi
Bi
Bi
Bi
Bi
Bi
01
01'
02
02'
03
03'
04
04'
05
05'
N1
N1
N1
N1
N1
N1
N2
N2
N2
N2
N2
N2
N3
N3
N3
N3
N3
N3
C1
C1'
Cl'
C1'
C2
C2'
C2'
C2'


3











Bi

Bi

Bi

Bi


1-2

2.562(5)
2.686(6)
2.368(5)
2.479(5)
2.494(5)
2.599(5)
2.639(6)
2.536(7)
2.626(6)
1.258(9)
1.260(10)
1.275(9)
1.242(10)
1.278(10)
1.240(10)
1.277(9)
1.235(9)
1.245(9)
1.246(9)
1.477(11)


1.486(11)

1.473(12)
1.484(10)


1.478(10)

1.500(11)
1.462(10)


1.487(11)

1.492(12)
1.518(13)



1.505(12)


1-2-3











115.4(5)

125.1(5)

117.0(5)

120.0(5)

121.3(5)

110.0(6)
113.6(6)
105.1(5)
110.6(7)
109.2(4)
108.1(4)
110.4(7)
112.2(6)
106.2(5)
108.0(7)
111.4(5)
108.7(5)
109.8(6)
113.1(7)
107.7(4)
107.7(6)
108.8(5)
109.7(5)
111.2(7)
125.7(8)
118.7(7)
115.7(7)
114.2(6)
123.2(8)
119.0(7)
117.9(7)


C2
C6
Bi
C6
Bi
Bi
C7
C8
Bi
C8
Bi
Bi
C5
C9
Bi
C9
Bi
Bi
N1
01'
Cl
C1
N1
02'
C2
C2


Angles ()














Table 2-22 -- continued.


1


2


Table 2-23:


Atom


Hla
Hib
H2a
H2b
H3a
H3b
H4a
H4b
H5a
H5b
H6a
H6b
H7a
H7b
H8a


Fractional coordinates and isotropic thermal
parameters (A2) for the H atoms of compound 6.


x

0.834(6)
0.753(6)
0.774(5)
0.684(6)
0.82143
0.92137
0.930(5)
1.019(5)
1.133(5)
1.108(5)
0.672(6)
0.766(6)
0.711(5)
0.723(7)
0.817(6)


-0.379(8)
-0.450(7)
-0.679(7)
-0.651(7)
-0.39704
-0.44615
-0.880(6)
-0.899(7)
-0.730(7)
-0.746(7)
-0.467(8)
-0.389(7)
-0.501(7)
-0.623(9)
-0.630(8)


z

0.520(6)
0.458(5)
0.473(5)
0.515(4)
0.79817
0.82343
0.742(4)
0.800(5)
0.800(4)
0.873(5)
0.582(5)
0.611(5)
0.722(4)
0.696(6)
0.836(5)


U


0.06(3)
0.04(2)
0.04(2)
0.04(2)
0.05
0.05
0.01(2)
0.02(2)
0.02(2)
0.04(2)
0.05
0.05
0.03(2)
0.08(4)
0.05(3)


3

N2
03'
C3
C3
N3
04'
C4
C4
N3
05'
C5
C5
N1
C6
N2
C8
N12
N13
N11
N22
N23
N21


1-2

1.518(12)



1.540(13)



1.501(12)



1.522(13)

1.509(12)

1.324(12)
1.311(11)
1.332(10)
1.323(12)
1.326(11)
1.301(10)


C3'
03
03
03'
C4'
04
04
04'
C5'
05
05
05'
C7
N2
C9
N3
N11
N12
N13
N21
N22
N23


C3
C3'
C3'
C3'
C4
C4'
C4'
C4'
C5
C5'
C5'
C5'
C6
C7
C8
C9
C10
C10
C10
C20
C20
C20


1-2-3

114.6(7)
124.0(8)
118.8(7)
117.2(8)
110.5(7)
124.0(8)
117.8(7)
118.2(7)
113.4(7)
125.7(7)
116.9(7)
117.3(7)
110.8(7)
114.2(8)
114.3(8)
113.7(7)
121.0(7)
119.7(8)
119.3(8)
119.5(7)
119.7(8)
120.8(8)











Table 2-23 -- continued


Atom

H8b
H9a
H9b
Hlla
Hllb
H12a
H12b
H13a
H13b
H21a
H21b
H22a
H22b
H23a
H23b


z

0.769(4)
0.869(5)
0.877(5)
0.59806
0.64101
0.496
0.57949
0.47426
0.43372
0.80774
0.75036
0.86001
0.83804
0.75546
0.71936


Table 2-24:


Bond Lengths (A)
of compound 6.


2


1


Hla
Hla
Hla
Hib
Hib
H2a
H2a
H2a
H2b
H2b
H3a
H3a
H3a
H3b
H3b
H4a
H4a
H4a
H4b
H4b
H5a
H5a
H5a


3

Hlb
C1'
N1
C1'
N1
H2b
C2'
N1
C2'
N1
H3b
C3'
N2
C3'
N2
H4b
C4'
N3
C4'
N3
H5b
C5'
N3


and Angles (o)


1-2

1.05(9)


0.95(8)

1.12(9)


0.93(8)

0.960(9)


0.960(8)

0.99(7)


0.85(7)

0.80(8)


for the H atoms


1-2-3

109. (7)
108. (6)
105. (5)
117. (5)
106. (5)
112. (6)
100. (4)
104. (4)
114. (5)
112. (5)
109.5(8)
108.2(7)
108.2(7)
108.2(8)
108.2(7)
109. (6)
108. (4)
108. (4)
116. (6)
106. (5)
98. (7)
108. (5)
112. (5)


x

0.816(5)
0.973(5)
0.938(5)
0.80846
0.86524
0.9794
0.96675
0.82551
0.89491
1.28432
1.19207
1.30808
1.23209
1.09744
1.08123


-0.738(7)
-0.635(8)
-0.766(7)
-0.02302
-0.13466
-0.18777
-0.23318
0.04209
-0.02582
-0.06482
-0.03163
-0.26192
-0.36238
-0.31315
-0.17939


U


0.03(2)
0.04(2)
0.04(2)
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.05











Table 2-24 -- continued.


2


1

H5b
H5b
H6a
H6a
H6a
H6b
H6b
H7a
H7a
H7a
H7b
H7b
H8a
H8a
H8a
H8b
H8b
H9a
H9a
H9a
H9b
H9b
Hlla
Hlla
Hllb
H12a
H12a
H12b
H13a
H13a
H13b
H21a
H21a
H21b
H22a
H22a
H22b
H23a
H23a
H23b


C5
C5
C6
C6
C6
C6
C6
C7
C7
C7
C7
C7
C8
C8
C8
C8
C8
C9
C9
C9
C9
C9
N11
N11
N11
N12
N12
N12
N13
N13
N13
N21
N21
N21
N22
N22
N22
N23
N23
N23


3

C5'
N3
H6b
C7
N1
C7
N1
H7b
N2
C6
N2
C6
H8b
C9
N2
C9
N2
H9b
N3
C8
N3
C8
Hllb
C10
C10
H12b
C10
C10
H13b
C10
C10
H21b
C20
C20
H22b
C20
C20
H23b
C20
C20


1-2

1.03 (8)

1.03(8)


1.01(8)

0.97(8)


0.97(10)

0.95(10)


1.05(7)

0.88(8)


1.03(8)

0.900(7)

0.900(7)
0.900(8)

0.900(7)
0.900(7)

0.900(8)
0.900(7)

0.900(7)
0.900(7)

0.900(8)
0.900(7)

0.900(7)


1-2-3

121. (4)
104. (4)
106. (7)
111. (5)
111. (5)
118. (5)
100. (5)
93. (8)
110. (4)
110. (4)
105. (6)
123. (6)
108. (7)
109. (5)
107. (5)
106. (4)
113. (4)
104. (7)
105. (6)
114. (5)
112. (5)
108. (4)
120.0(9)
120.1(7)
119.9(8)
120.0(8)
120.6(7)
119.4(8)
120.0(8)
120.9(8)
119.1(8)
120.0(8)
120.5(7)
119.5(7)
120.0(8)
120.3(8)
119.7(7)
120.0(7)
120.4(8)
119.6(8)











Table 2-25: Crystallographic data for compound 6.


A. Crystal data (298 K)
a, A
b, A
c, A
3, deg.
V, A3
deai, g cm-3(298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)


B. Data collection (298 K)
Radiation/, X (A)
Mode
Scan range Symmetrically over X
(X = 1.2)
Background offset 1.0 and -1.0 in
Scan rate, deg. min.-1
28 range, deg.
Range of h k 1 0
0
-20

Total reflections measured
Unique reflections
Absorption coeff. p (Mo-K,), mm-1
Minimum / maximum transmission

C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2u(I)
No. of variables
R, R:* (%)
Rint (%)
Max. shift/esd
min. peak in diff. four. map (e A-3)
max. peak in diff. four. map (e A-3)


6
15.113(3)
10.720(2)
17.091(3)
102.72(2)
2701.0(9)
1.942
C,6H30NgO10Bi- 4H20
789.53
Monoclinic
P 21/n
4
1568
0.65 x 0.54 x 0.07


Mo-K,/ 0.71073
w-scan
about K1a,2 maximum

W from K.,2 maximum
3 6
3 55
s h 18
5 k s 12
5 1 s 20


5117
4640
6.61
0.331


1.38
3631
423
3.79,
2.03
0.001
-1.75
1.34


/ 0.669





4.09


* Relevant expressions are as follows, where in the footnote
Fo and F, represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(Fo IFF1)2, where w= (a(F))-2
R = I (I FoI IFcl ) / ZIF1o
R = [Zw( Fo IFJ)2 / I 1F21/2
S = [yw(IFo IFJ)2 / (m-n)] 12








53

and angles are given in Tables 2-28 and 2-29, respectively.

Table 2-30 details the hydrogen bonding interactions, and

the structure was refined to an R value of 4.2 %, which is

shown with other crystal data in Table 2-31.

The crystal structure of 7 reveals the ligand SASC

bonded to an acetic acid (HAc) molecule. Extensive hydrogen

bonding is observed in this structure both within the SASC

molecule, and between the SASC and HAc. The entire

semicarbazone 'arm' is rotated so as to maximize the

hydrogen bonding interaction between the ligand hydroxyl

hydrogen, H2, and N2. This leaves the molecule in a

position to interact with HAc. The N8b hydrogen, H8a, is

involved in hydrogen bonding through the HAc carbonyl oxygen

09a, while the ligand carbonyl oxygen, 08a, hydrogen bonds

with the HAc hydroxyl hydrogen. All hydrogen bonding

interactions, including those created by symmetry, are given

in Table 2-30.

The ability to synthesize a series of bismuth complexes

with widely varying solubilities comes at a time when more

attention is being focused on the solid state coordination

chemistry of bismuth(III) and its role as a therapeutic

agent. Subsequent studies of coordination polyhedra and

antibacterial activity have further served to characterize

this element. The positive results obtained herein warrant

further attempts at the synthesis and characterization of

bismuth complexes.































C7 N8b
80N7
C1 C8 *
09b
C6 080















Figure 2-13: View of 7 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity.













Table 2-26: Fractional coordinates and equivalent
isotropica thermal parameters (A2) for the
non-H atoms of compound 7.


x

0.3581(3)
-0.0242(3)
0.1206(4)
0.0698(3)
-0.1086(3)
0.1864(3)
0.1075(3)
0.2754 (3)
0.3502(4)
0.4231(5)
0.4206(4)
0.3481(4)
0.2776(4)
0.1979(3)
0.0658(3)
-0.0372(4)
-0.0993(5)


0.4840(2)
-0.0740(2)
0.0580(3)
-0.2661(2)
-0.3203 (2)
0.2779(2)
0.1430(2)
0.5222(3)
0.5715(3)
0.7148(3)
0.8087(3)
0.7625(3)
0.6209(3)
0.3738(3)
0.0377(3)
-0.3490(3)
-0.4960(3)


z

0.33965(9)
0.40836(8)
0.32124(12)
0.24866(10)
0.34046(10)
0.42151(10)
0.43959(11)
0.46468(12)
0.39979(12)
0.3950(2)
0.4540(2)
0.5187(2)
0.5239(2)
0.47329(13)
0.38916(12)
0.27748(14)
0.2465(2)


U

0.0683(8)
0.0530(6)
0.0605(10)
0.0732(8)
0.0687(8)
0.0406(7)
0.0487(8)
0.0388(8)
0.0458(9)
0.0612(11)
0.0640(12)
0.0600(11)
0.0501(10)
0.0410(8)
0.0433(9)
0.0540(10)
0.087(2)


aFor anisotropic atoms, the U value is Ue calculated as Ueq
=1/3 ij U.i ai* aj* A where Aj is the dot product of the
ith and jt direct space unit cell vectors.


Table 2-27:


1


Bond Lengths (A) and Angles (0) for the non-H
atoms of compound 7.


2


02
08a
N8b
09a
09b
N7
N7
N8
C1
C1
C1
C2
C2


3






C7

N7
C6
C7
C2
02
C1


1-2

1.352(3)
1.247(3)
1.327(3)
1.202(3)
1.301(3)
1.378(3)
1.279(3)
1.345(3)
1.390(3)
1.397(3)
1.450(3)
1.389(4)


1-2-3






115.3 (2)

122.2(2)
117.8(2)
119.3(2)
122.9(2)
117.2(2)
120.3(2)


Atom


02
08a
N8b
09a
09b
N7
N8
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10











Table 2-27 -- continued


1-2


1.368(4)
1.372(5)
1.369(4)





1.494 (4)


1-2-3

122.5(2)
120.1(3)
120.7(3)
119.4(3)
121.7(3)
123.4(2)
123.0(2)
118.3(2)
118.6(2)
124.3 (3)
112.8(3)
122.8(2)


Table 2-28:


Fractional
parameters


coordinates and isotropic thermal
(A2) for the H atoms of compound 7.


x

0.308(4)
0.096(5)
0.199(4)
-0.056(5)
0.075(3)
0.486(4)
0.473 (4)
0.354(3)
0.235(3)
0.153 (3)
-0.0903
-0.01873
-0.22551
-0.13561
-0.20237
0.00344


0.394 (4)
-0.016(4)
0.137(3)
-0.225(4)
0.130(3)
0.739(3)
0.905(3)
0.829(3)
0.585(2)
0.349(2)
-0.49235
-0.57295
-0.51729
-0.56193
-0.48178
-0.53889


z

0.348(2)
0.291(2)
0.3117(14)
0.362(2)
0.4845(14)
0.350(2)
0.4492(13)
0.5599(14)
0.5674(12)
0.5205(12)
0.19421
0.26591
0.2587
0.28489
0.21241
0.22152


U

0.105(13)
0.108(13)
0.068(9)
0.112(12)
0.054(7)
0.086(10)
0.066(8)
0.064(8)
0.047(7)
0.046(6)
0.08
0.08
0.08
0.08
0.08
0.08


2


1


02
C4
C5
C6
C1
N7
08a
08a
N8b
C10
C10
09a


3

C1
C2
C3
C4
C5
C1
N8b
N8
N8
09a
09b
09b


Atom

H2
H8a
H8b
H9b
H8
H3
H4
H5
H6
H7
H101
H102
H103
H104
H105
H106






















Table 2-29: Bond Lengths (A)
of compound 7.


1

H2
H8a
H8a
H8b
H9b
H8
H8
H3
H3
H4
H4
H5
H5
H6
H6
H7
H7
H101
H101
H101
H102
H102
H103
H104
H104
H104
H105
H105
H106


2

02
N8b
N8b
N8b
09b
N8
N8
C3
C3
C4
C4
C5
C5
C6
C6
C7
C7
C10
C10
C10
C10
C10
C10
C10
C10
C10
C10
C10
C10


3

C2
H8b
C8
C8
C9
C8
N7
C4
C2
C5
C3
C6
C4
C1
C5
N7
C1
H102
H103
C9
H103
C9
C9
H105
H106
C9
H106
C9
C9


(0) for the H atoms


1-2

0.90(3)
0.88(3)

0.92(3)
1.01(3)
0.87(2)

0.97(3)

0.95(3)

0.96(2)

0.92(2)

0.96(2)

0.960(3)


0.960(3)

0.960(4)
0.960(3)


0.960(4)

0.960(4)


1-2-3

110. (2)
125. (3)
115. (2)
119. (2)
111. (2)
120. (2)
118. (2)
123. (2)
116. (2)
121. (2)
118. (2)
122. (2)
119. (2)
117.0(14)
121.2(14)
119.6(13)
117.1(13)
109.5(3)
109.5(4)
108.6(3)
109.5(3)
108.8(3)
111.0(3)
109.5(4)
109.5(3)
110.4(3)
109.5(3)
110.1(3)
107.9(3)


and Angles





















Table 2-30: H-bonding for compound 7.


D


02
02
N8b
N8b
N8b
N8b
N8
09b


H


H2
H2
H8a
H8a
H8b
H8b
H8
H9b


A


N7
09a'
09a
02a"i
N7
09ai
08.ii
08a


D-H
(A)

0.90(3)

0.88(3)

0.92 (3)

0.87(2)
1.01(3)


H----A
(A)

1.93(3)
2.47(3)
2.37(3)
2.42(3)
2.38(3)
2.20(3)
2.07(2)
1.61(3)


D-H----A
(o)

143(3)
104 (2)
158(3)
126(3)
102(2)
151(2)
172 (2)
164(3)


Elements generated by symmetry operators: i 0.5-x, 0.5+y,
0.5-z; ii 0.5-x, -0.5+y, 0.5-z; iii iv -x, -y, l-x.











Table 2-31: Crystallographic data for compound 7.


A. Crystal data (298 K)
a, A
b, A
c, A
a, deg.
3, deg.
7, deg.
V, A3
dcal, g cm-3(298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)

B. Data collection (298 K)
Radiation, X (A)
Mode
Scan range Symmetrically over 1.2
Background offset 1.0 and -1.0 in w
Scan rate, deg. min.-
26 range, deg.
Range of h k 1 -9
0
0 s

Total reflections measured
Unique reflections
Absorption coeff. p (Mo-K~), cm-1
Min. & Max. Transmission

C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2(I)
No. of variables
R, RW (%)
Rint. (%)
Max. shift/esd
min. peak in diff. four. map (e A-3)
max. peak in diff. four. map (e A-3)


7
7.182(1)
8.947(1)
18.277(2)
90
91.89(1)
90
1173.8(2)
1.354
CloH3N304O
239.23
Monoclinic
P 21/n
4
504
0.36 x 0.23 x 0.19


Mo-K,, 0.71069
w-scan
about K,,2 maximum
from K,1,2 maximum
3 6
3 55
h s 9
k < 11
1 s 23


3115
2711
0.11
0.962,


1.19
1309
198
4.20%,
0%
0.0012
-0.19
0.12


0.986





4.08%


* Relevant expressions are as follows, where in the footnote
F, and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(IFo1 IFJ)2, where w= (a(F))-2
R = (I IFo IFc ) / ZIF
R = [Iw(IFo IFc )2 / I 2 1F1/2
S = [w(|IFj IFJ )2 / (m-n)]/2














CHAPTER 3


COMPLEXES OF BISMUTH(III):
VALENCE BOND SUMS AND COORDINATION POLYHEDRA


Introduction


Our studies of bismuth coordination chemistry have been

directed mainly toward the synthesis of satisfactory

crystalline samples with which to gain a clearer

understanding of bismuth complexes in the solid state. With

this goal comes the sometimes daunting task of evaluating

the nature both of the bismuth coordination environment in

terms of its geometry, and of the electronic nature of the

bismuth ion itself.

The formation of a complex of any metal ion with a

multidentate ligand represents a compromise between the

steric demands of the ligand, and the steric and electronic

requirements of the metal ion. The large size of the

Bi(III) ion facilitates coordination spheres containing up

to nine donor atoms, but can pose difficulties for ligands

that are either small or sterically hindered. Two features

that appear to be common to the bismuth carboxylato

complexes reported in chapter 2, together with the citrate

complexes reported earlier,7 are the tendency to form








61

dimerr like' subunits, and the presence of widely variable

metal-donor atom bond distances. These could be related

both to the coordination sphere geometry imposed by the

ligand, and to the possible stereochemical activity of the

bismuth (III) 6s2 lone pair.

Questions of the presence, or lack, of a

stereochemically active lone pair on the Bi(III) ion have

been raised in a variety of forums.2'26 Problems arise in

the determination of the correct oxidation state for the

bismuth ion if one considers that the only difference

between Bi(OH,)3, where Bi formally maintains a +3 formal

charge, and (BiO)3, in which Bi formally maintains a +5

formal charge, is the presence of two protons, which may or

may not be detectable in an x-ray crystal structure. As

water molecules often play a part in the inner coordination

spheres of bismuth complexes with sterically hindered

ligands, this distinction becomes an important one.

In order to assess the possible stereochemical activity

of a Bi(III) lone pair we have sought a means by which to

evaluate the inner coordination sphere geometries of

complexes 1, 3, 4, 5, and 6 to see if such a lone pair is

detectable via a 'vacant' coordination site. Coordination

polyhedra were analyzed by calculating the angles between

facial planes each consisting of three atoms bonded to the

central bismuth atom.27 Likewise, a method for determining

the metal ion valency consisted of utilizing the idea of








62

valence bond sums,28 henceforth VBS. This 'valence sum' is

obtained by adding the contributions to valency of each

metal-donor atom bond, which are calculated from standard

bond lengths. From these data we have gained a clearer

picture of the electronic nature of Bi(III) in the solid

state, as well as its common coordination geometries.


Discussion and Results


Questions regarding the existence and/or stereochemical

activity of a Bi3+ 6s2 lone pair of electrons have made the

use of VBS a desirable tool. We have utilized this method

to determine the overall valence of the Bi cation in each of

our bismuth complexes. The VBS method depends on the

empirical determination of a set of standard cation-anion

bond lengths, ro, from large sets of crystal data. A table

of such values has been reported by Brown and Altermatt,28

henceforth BA, along with an algorithm for predicting the ro

values of bonds not listed. A more recent method formulated

by O'Keeffe and Brese,29 henceforth OB, was also utilized.

In the BA method, the contribution, s, of any given

cation-anion bond to cation valence is given by the equation



s = exp[(ro-r)/B]



where r, and B are empirically determined parameters, and r

is the experimentally observed cation-anion bond length. In








63

this manner, the oxidation state, Vi, of any cation, i, may

be calculated via the equation



Vi= Sij


where sj are the valence contributions from bonds between

the cation i and each donor atom j. The parameter B was

determined empirically to be 0.37A.

In the OB method, a similar mathematical form is used.

For any given cation, i, the valence, Vi, is calculated by

summing the contributions to valency, vj, of each bond

between i, and its donor anions, j.



Svi, = V


Contributions to valence, vi, are calculated via


vi = exp[(Rij dij)/b]


where d.9 is the experimentally determined bond length

between i and j, and b is the "universal" constant taken to

be 0.37 A. The parameter R1i is the bond valence

parameter. In a general sense, this is the length of a

single bond between i and j, but is usually determined to be

the bond length in compounds that are stable at normal

temperatures and pressures. For example, Rij for the bond

between Na and F- is taken to be the bond distance in

crystalline NaF, not that observed in diatomic NaF.








64

Values of Rij for any given bond may be calculated by

using the expression


rrj, (/c vCj)2
Rj = ri + rj -
ciri + Cjrj


where r is a 'size' parameter, and c is a second parameter

for any element. Values of r and c were determined

empirically so as to minimize the squared deviation between

calculated and observed values of Rij. In some cases the

value of c for a particular element showed a strong

correlation to the Allred-Rochow electronegativity for that

element. These were fixed where appropriate.

Both the BA and OB methods were used to calculate the

Bi cation valency for each bismuth complex in which Bi-donor

atom distances were known. The VBS, utilizing each method,

for the complexes Bi(DIPIC), Bi(NTA), Bi(EDTA), Bi(DTPA),

and Bi(DAPAAH) along with the contributions from each donor

atom are given in Tables 3-1 to 3-5. Values of r, used in

the BA method were 2.094 A for Bi-O, and 2.184 A for Bi-N.

The values for Ri used in the OB method were 2.12 A for Bi-

0, and 2.23 A for Bi-N.

The calculated VBS values range from 2.89 to 3.29 for

the BA method, and from 3.16 to 3.59 for the OB method.

Values of 3.00 0.30, for the BA method, suggest that the

actual valence of the Bi cation is indeed 3+. Both VBS











Table 3-1: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi2 (DIPIC), (HDIPIC)2(HAc) 2 4H20.


Bi-N
Bi-N'
Bi-O1
Bi-Ol'
Bi-Oli
Bi-03
Bi-03'
Bi-05


BA
0.536
0.462
0.344
0.739
0.297
0.536
0.162
0.210

3.286


OB
0.607
0.523
0.369
0.793
0.319
0.575
0.174
0.225

3.585


Table 3-2: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi (NTA) 2H20.


Bi-N
Bi-Ol
Bi-02
Bi-03
Bi-04
Bi-05
Bi-02i
Bi-03'i


VBS


BA
0.426
0.642
0.333
0.651
0.434
0.162
0.214
0.398

3.260


OB
0.482
0.689
0.357
0.698
0.465
0.174
0.229
0.427

3.521


Table 3-3: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi(HEDTA) 2H20.


BA


Bi-N1
Bi-N2
Bi-Ol
Bi-02
Bi-03
Bi-04
Bi-03'i
Bi-04'i


0.473
0.346
0.564
0.227
0.437
0.581
0.206
0.209


3.043


OB

0.536
0.391
0.605
0.244
0.469
0.623
0.221
0.224

3.313


VBS











Table 3-4: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
(Guan) 2Bi(DTPA) 4H20.


Bi-N1
Bi-N2
Bi-N3
Bi-O1
Bi-02
Bi-03
Bi-04
Bi-05
Bi-Ol' i


VBS


BA

0.292
0.386
0.303
0.282
0.477
0.353
0.339
0.255
0.202

2.889


OB

0.331
0.437
0.343
0.303
0.512
0.379
0.364
0.274
0.217

3.160


Table 3-5: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi(DAPAAH) (Ac) 2H20.


BA


Bi-N2
Bi-N3
Bi-N4
Bi-Ol
Bi-012
Bi-014a
Bi-Ol4b
Bi-016a
Bi-016b


VBS


0.248
0.464
0.541
0.161
0.470
0.473
0.166
0.386
0.178


3.087


OB


0.281
0.526
0.613
0.173
0.505
0.505
0.178
0.414
0.191


3.386


methods are apparently useful in determining metal ion

valencies in coordination complexes, although the BA method

has produced values closer to what are predicted.30 This

concept may then be useful in distinguishing between Bi(III)

and Bi(V).

In assessing the coordination environment of any

particular cation, it is often useful to assign a specific








67

polyhedron that corresponds to the geometric arrangement of

donor atoms about the central metal ion. While this

assignment is important, it is by no means a trivial

process. Since many ligands are sterically hindered, both

by their own bulk and by the size of the metal ion to which

they are coordinated, the polyhedra are often not clearly

defined, and the assignment becomes somewhat arbitrary.

We have utilized a method by which the process of

polyhedron assignment may be made somewhat more quantitative

through the use of a computer program that analyzes the

positions of the metal and donor atoms. After inputing the

atomic coordinates of the metal and donors, three-atom

planes are chosen until all possible outside planes have

been located. An 'outside' plane is detected by determining

if all other donor atoms are on one side of this plane.

Once all of the outside planes have been located, the

program calculates the angles between all planes which share

an edge, as well as listing how many three-atom faces meet

at each donor atom.27

Once these data have been generated, the angles and

vertices of any compound may be compared to the angles and

vertices for all possible idealized polyhedra which

correspond to that particular coordination number. For

example, coordination numbers of eight normally show square

antiprism, dodecahedron, or bicapped trigonal prism

arrangements, the former two being the more common. The









68

most common polyhedra for nine-coordinate complexes are that

of the capped square antiprism and tricapped trigonal

prism.3 In looking for a polyhedron such as the square

antiprism, one would expect to find two square faces, with

each face consisting of two triangular faces with an angle

of 00(or 1800) between them. A bicapped trigonal prism

should show only one such square face, and the dodecahedron

would show none.

Polyhedra have been assigned for the complexes

Bi(DAPAAH) (Ac)2(1), Bi(DIPIC) (HDIPIC) (3), Bi(NTA) (4),

Bi(HEDTA)(5), and Bi(DTPA)2-(6). No determination was

possible for compound 2, as an x-ray structure was not

obtained. The polyhedra for the three eight-coordinate

complexes, 3, 4, and 5, appear to be best described as

bicapped trigonal prisms. The polyhedra for the nine-

coordinate complexes, 1 and 6, may be described as

monocapped square antiprisms. Compound 1, however, has a

geometry that might be better described as a distorted

monocapped square prism. In all cases the polyhedra show

distortions from the idealized geometries.

Compounds 3, 4, and 5 are shown in Figures 3-2, 3-3,

and 3-4, respectively. The designation of bicapped trigonal

prism is based on the presence of several characteristics.

In 4, a well-defined square face containing 01, 04, 03' and

05 is noted along with two triangular faces (01, 03, 04 and

02, 05, 03'). The capping atoms are N and 02'. In compound








69

5, the square face consists of the atoms 01, N1, 03, and 04'

with the two triangular faces defined by 02, 03, 04' and 04,

N1, 01. The capping atoms are 03' and N2.

Compound 3 represented somewhat of a problem in

assessing its coordination polyhedron. The lack of a

clearly defined square face (that containing two three-atom

faces with an angle of 00 between them) suggested that a

dodecahedron was the proper designation. Upon viewing the

coordination sphere, however, the lack of two clearly

defined perpendicular four-atom faces, necessary for a

dodecahedron, suggested that the designation of bicapped

trigonal prism was indeed proper. This distorted polyhedron

consists of a square face defined by 03', Ola, 01, Ac, and

two triangular faces containing 03', N', Ola, and 01, N, Ac,

respectively. The capping atoms are 03 and 01'. This

distortion may be caused both by the rigidity of the DIPIC

ligands, and by the presence of the Bi(III) lone pair, which

would reside in the third capping position in the trigonal

prism arrangement, but would not be evident in the

dodecahedron.

In compound 6, shown in Figure 3-5, the best

arrangement appears to be that of a monocapped square

antiprism. The complex shows two distinct square faces

which consist of N3, 04, 05, 01', and N2, 01, 02, 03. The

latter face is capped by atom N1. Compound 1, shown in

Figure 3-1, maintains a geometry intermediate between that




















S N(4) 0(12)















arrangement.
0016b)

0(16a) *

0(1)





Figure 3-1: View of the polyhedron for compound 1
showing the capped square antiprism
arrangement.
















03'












Ac


Figure 3-2: View of the polyhedron for compound 3
showing the bicapped trigonal prism
arrangement.


so100


LMMMS I
























0(20(1














0(1)





Figure 3-3: View of the polyhedron for compound 4
showing the bicapped trigonal prism
arrangement.















0(2)


0(') o 49j


0(3'i)00



N(2)




0(1)



0(4)






Figure 3-4: View of the polyhedron for compound 5
showing the bicapped trigonal prism
arrangement.

















0(2)


0(4)


N(1)














0(5)






Figure 3-5: View of the polyhedron for compound 6
showing the capped square antiprism
arrangement.
arrangement.








75

of a monocapped square antiprism and monocapped square

prism. The uncapped and capped square faces consist of 01,

014b, 012, 016b, and N2, 014a, N4, 016a, respectively. The

capping atom is N3.

The presence of the Bi(III) 6s2 lone pair appears to be

substantiated by the results of our valence bond sum

calculations. The fact that the VBS consistently showed

values near the predicted value of 3.0 in complexes of

different coordination numbers, suggests both that the

assignment of a 3+ charge to the bismuth ion is an

appropriate one, and that this method may be useful in

distinguishing between Bi(III) and Bi(V) in coordination

complexes. Values obtained using the BA method ranged from

2.89 to 3.29 and are in better agreement with the predicted

value than those obtained in the OB method.

In theory, a stereochemically active lone electron

pair, such as the Bi(III) 6s2 electrons, should manifest

itself as an open or 'vacant' coordination site. This would

lead, in the cases of our complexes, to the lone pair

occupying the third capping position in the bicapped

trigonal prisms, or the second capping position in the

monocapped square antiprisms. Neither of these situations

represent unusual or unreasonable polyhedra. Further

studies will continue to shed light on the question of lone

pair stereochemical activity.














CHAPTER 4


BISMUTH COMPLEXES:
A STUDY OF ANTIBACTERIAL ACTIVITY


Introduction


Bismuth compounds have been used over the years for a

number of medicinal purposes including the treatment of

gastric disorders, syphilis, and the topical disinfection of

wounds. Use of bismuth drugs waned for a number of years in

the mid twentieth century as medical doctors discouraged the

use of heavy-metal containing salts. Bismuth therapies have

made a comeback, however, with the continued use of bismuth

subsalicylate as a treatment for gastrointestinal disorders,

and the use of colloidal bismuth subcitrate (CBS) as a

treatment for peptic ulcers. It was found recently that CBS

is active against the stomach bacterium Helicobacter Pylori,

thought to be a causal factor in the development of peptic

ulcers.2 It is this activity that has prompted our

investigation of the antibacterial properties of the bismuth

complexes synthesized in this project.

We have utilized the bismuth complexes Bi(NTA),

Bi(HEDTA), and Bi(PIC)3 in a study of antibacterial

activity. The complexes were used to coat filter papers in








77

an attempt to simulate a bandage coating. These filter

papers were then immersed in agar solutions containing one

of several types of bacteria, including Escherichia Coli,

Pseudomonas Aeruginosa, and Staphylococcus Aureus. The

effect of the coated filter papers on bacterial growth was

observed and is reported herein.


Experimental


Materials

All bismuth complexes used were synthesized and

purified as outlined in Chapter 2. 'Blanks' included filter

papers dipped in H20, and solutions of NTA and (BiO)2CO3.

NTA and (BiO)2C03 were obtained commercially and used

without further purification. Filter papers used were

Whatman qualitative grade 4.25 cm circles.

Filter Paper Production

Filter papers were dried in dessicators and weighed

prior to use. For each compound, a saturated solution was

prepared by stirring an excess of the solid and 1-2 mL H20

in a vial at a constant temperature for 10-15 min. The

temperature was maintained by immersing the vial in an oil

bath heated to 900C. Filter papers were then soaked

thoroughly in the solutions, placed into dessicators until

dry, and reweighed to determine approximate amounts of solid

absorbed onto the filter paper. This procedure was used to








78

produce filter papers coated with Bi(PIC)3, Bi(NTA),

Bi(HEDTA), Bi(DTPA)2-, NTA, (BiO)2CO3, and H20 alone.

Bacterial Growth

Solutions containing Escherichia Coli were made by

combining melted plate-count agar (Difco) with 0.05 g/mL of

2,3,5-triphenyltetrazolium chloride (henceforth TTC) dye and

approximately 105 colony-forming units (CFU) of E. Coli C-

3000 per mL. Two solutions each of Pseudomonas Aeruginosa

(ATCC 10145), and Staphylococcus Aureus (FDA 209) were made,

one without TTC and one with only 0.01 g/mL of the dye.

Aliquots of about 20 mL were placed in sterile 100 mm

diameter petri plates along with 13 mm diameter circular

cutouts from the prepared filter papers. These were allowed

to incubate for 24 h and the bacterial growth monitored by

observing either the red color of the reduced TTC, or a

generally darker color in the plates without TTC. The

degree of bacterial inhibition was quantified by measuring

the radii of the colorless zones surrounding the filter

paper cutouts.32


Discussion


Bismuth compounds have been used in the past for the

topical disinfection of wounds. It was our hope that the

series of carboxylate complexes synthesized herein would

prove to be effective at inhibiting bacterial growth, and








79

would shed some light on the importance of water solubility.

On neither count were we disappointed.

Bacterial growth was evident in petri dishes containing

TTC by the red color of the reduced dye. Areas where

bacterial growth was inhibited remained colorless. Since

TTC has proven to be toxic to P. Aeruginosa, and S. Aureus,

runs were done with and without the dye. Where TTC was

used, only trace amounts were added to give a clearer

contrast between areas of bacterial growth and inhibition.

Without TTC, areas of inhibition were more difficult to

discern, the only difference between these and areas of

bacterial growth being a very slight change in color and

clarity of the solution.

The inhibition of bacterial growth occurred most

prominently in complexes of low to moderate water

solubility. These included the complexes of Bi(III) with

PIC, NTA, and EDTA. The NTA complex showed the most

consistently high levels of inhibition. Filter papers

coated with Bi(DTPA)2- and Bi(DIPIC)(HDIPIC), the most water

soluble of the complexes, showed little bacterial

inhibition. Table 4-1 shows the approximate amounts, of

several of the complexes, that were absorbed onto the filter

papers. These values were obtained by subtracting the

initial weight of the filter papers from their dry weights

after soaking in saturated solutions of the complexes.








80

Blanks were run by soaking filter papers in saturated

solutions of NTA, (BiO),CO3, and H20 alone, then repeating

the procedure for bacterial inhibition as outlined above.

NTA was chosen since the Bi(NTA) complex showed the most

consistent antibacterial activity, and (BiO)2CO3 because it

is extremely insoluble and was our source of Bi(III) in most

of the complex syntheses. In no case did these blanks show

any noticeable inhibition of bacterial growth. This was

done to establish three things: 1) that the ligand alone is

not responsible for any observed antibacterial activity, 2)

that our original source of the Bi(III) ion doesn't show

greater antibacterial activity than the subsequent complexes

made from it, and 3) that Bi(III) must be present in a

compound that shows at least a small degree of water

solubility.

In cases where the inhibition of bacterial growth was

significant, a radius of inhibition was measured. This was

done from the center of the 13 mm circular filter paper to

the edge of the colorless zones of inhibition. Measurements

were taken on several different trials to produce average

results. In several of the petri dishes where TTC was not

used, no area of inhibition could be discerned. These

results are outlined in Table 4-2.

The results of our antibacterial studies, outlined in

the previous tables, show that bismuth complexes of moderate

to low solubility may be used successfully to inhibit the









81

Table 4-1: Mass of complexes on filter papers after
soaking in saturated solutions.


Bi(PIC),

0.0008 g



Bi (DTPA) 2-

0.1907 g


Bi(NTA)

0.0006 g



NTA

0.0050 g


Bi(HEDTA)

0.0119 g



HO0

0.0001 g


Table 4-2: Diameters of inhibition for Bi(PIC)3, Bi(NTA),
and Bi(HEDTA) in each type of bacteria.


E. Coli

P. Aeruginosa
(with TTC)
(without TTC)

S. Aureus
(with TTC)
(without TTC)


Bi(PIC) 3

1.1 cm


1.1 cm
N/A*


1.0 cm
0.8 cm


Bi(NTA)

1.7 cm


1.3 cm
N/A*


1.3 cm
1.1 cm


Bi(HEDTA)

1.2 cm


2.3 cm
-2.6 cm


1.3 cm
N/A*


indicates areas of inhibition not discernible



growth of several types of bacteria. The effectiveness of

these compounds appears to require a balance between a level

of solubility that frees enough of the Bi(III) to inhibit

bacterial growth, and a level of insolubility that keeps the

Bi(III) localized in a small area. Our encouraging results

will warrant further investigations into the antibacterial

properties of these and other bismuth complexes.















CHAPTER 5


COMPLEXES OF BISMUTH (III) WITH PHOSPHONIC ACIDS:
A SYNTHETIC AND SPECTROSCOPIC STUDY


Introduction


Results outlined in chapter 4 show that bismuth

complexes with the ligands NTA and EDTA have demonstrated

considerable activity against Escherichia Coli,

Staphylococcus Aureus, and Pseudomonas Aeruginosa. These

activities appear to be related to the relative water

solubilities of the complexes. The least soluble complex,

Bi(NTA), showed the most consistently strong antibacterial

activity, while the more soluble Bi(DTPA)2-,

Bi(HDIPIC)(DIPIC), and Bi(DAPAAH)3 complexes showed little

to no observable activity. In Chapter 2 we showed that both

protonated and nonprotonated bismuth complexes could be

formed and that, as in (Guan),Bi(DTPA), that the solubility

of the resulting complex could be manipulated with the use

of appropriate countercations.

To further utilize this property, we have attempted the

synthesis of an analogous series of bismuth complexes with

ligands in which phosphonic acid groups replace the acetic

acid groups. The phosphonic acid functional group contains
82








83

two ionizable protons, which provides a greater opportunity

to manipulate the extent of deprotonation and, therefore,

the solubilities of these complexes. We have successfully

prepared the ligands nitrilotrismethylenetriphosphonic acid

(NTPA), and ethylenediaminotetramethylenetetraphosphonic

acid (EDTPA), analogous to their counterparts NTA and EDTA.

The ligands are shown in Figures 5-1 and 5-2. Attempts to

synthesize the phosphonic acid analogous to DTPA were not

met with success. The results from the syntheses of bismuth

complexes with NTPA and EDTPA, along with their infrared

spectra, are presented herein.


Experimental


Materials

All reagents, including phosphorous acid, H3PO3

(Aldrich); ethylenediamine, NH2 (CH2)2NH2, concentrated HC1,

concentrated HNO3, 37% aqueous formaldehyde, H2CO, and

acetone, CH3C(O)CH3 (Fisher); ethanol, CH3CH20H (Florida

Distillers); bismuth subcarbonate, (BiO)2CO3; bismuth

nitrate Bi(NO3)3-5H20, and ammonium chloride, NH4C1 (J.T.

Baker); were used without further purification. The

synthetic procedures for the NTPA and EDTPA ligands were

adapted from methods previously reported.33

Synthesis of NTPA (8)

To a solution of 8.211 g crystalline H3PO3 and 1.781 g

NH4Cl in 12 mL H20 was added 10 mL conc HC1. This solution














SCH/
HO7P H2
HO 1
Oa H O


PO
OH


HO O 0

OH


Figure 5-1: Nitrilotrismethylenetriphosphonic Acid
(NTPA)


/CH2 CH2-
HO /CH2-
HOC- HO CH2 H 2
0 Ha,/ HyC
O 2 2-


Ou
0


2NCH2 / OH


0OH
\ /OH O
%T_-<^T O-


0


Figure 5-2: Ethylenediaminotetramethylene-
tetraphosphonic Acid (EDTPA)


AAV








85

was heated to reflux in an oil bath. Over approx. 45 min,

16 mL of 37% H2CO was added dropwise to the solution. After

refluxing for an additional 1 h 20 min, the solution was

poured into a beaker and allowed to evaporate. The

resulting thick, syrupy solution was dissolved in 40 mL

CH3OH and allowed to evaporate. Over approx 1 month, very

slow crystallization yielded large star-like clumps of clear

colorless crystals. The crystals were separated from the

syrupy mother liquor and washed with ethanol/acetone, but

were still sticky and difficult to handle. Anal. Calc

(Found) for C3HI2NO9P3: C, 12.05(12.14); H, 4.04(4.95);

N, 4.68(5.12).

Synthesis of EDTPA (9)

To a solution of 8.212 g (0.100 mol) H3PO3 in 10 mL H20

was added 10 mL conc HC1 and 1.536 g (0.0250 mol)

NH2(CH2)2NH2. After heating to reflux, 16 mL 37% H2CO was

added dropwise over 1 h. The solution was heated for an

additional 40 min., then placed onto a roto-vac and the

volume reduced to approx 10 mL. Crystals were visible and

continued to form as the remaining solution evaporated.

Several harvests yielded colorless crystals which were

washed with H20 and stored for further use. The mp of 210-

2150 is consistent with the literature.33 Anal. Calc(Found)

for C6H20N2O12P4- 2H20: C, 15.26(15.08); H, 5.12(4.77);

N, 5.93(5.86).










Synthesis of Bi.(NTPA) (10)

A solution of the ligand was prepared by dissolving

0.172 g (0.575 mmol) in 20 mL H20. The pH was approximately

1-2. To this solution was added 0.147 g (0.288 mmol)

(BiO)2CO3. The volume was increased to 40 mL by the

addition of 20 mL H20 and refluxed for several days. A

white solid persisted throughout, which was subsequently

filtered off and allowed to dry. Anal. Calc(Found) for

C3H6NO9P3Bi2: C, 5.07(4.99); H, 0.85(0.91); N, 1.97(1.98).

Synthesis of Bi (HNTPA) (NTPA) (NO3) 6H2O (11)

To a solution of 0.0750 g (0.251 mmol) NTPA in 10 mL

H20 (pH approx 1) was added 0.234 g (0.503 mmol)

Bi(NO)3- 5H20. A fine white solid appeared immediately.

After stirring with heat for several hours the solid was

filtered off. Anal. Calc(Found) for CgH25N3027P6Bi4:

C, 4.52(4.28); H, 1.58(1.49); N, 2.64(2.45).

Synthesis of Bi. (EDTPA) 3 10H20 (12)

Solid (BiO)2CO3 (0.256 g (0.502 mmol)), was added

directly to a solution of 0.219 g (0.502 mmol) EDTPA in 20

mL H20. The reaction mixture was heated to boiling for 4 h,

during which 10 mL H20 were added. This mixture was allowed

to cool and the white solid filtered off and allowed to dry.

Anal. Calc(Found) for C8Hs56N604,P12Bi': C, 6.89(6.95); H,

1.79(1.85); N, 2.68(2.55).




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EU0XKZVNG_L3ORQW INGEST_TIME 2011-11-02T16:27:05Z PACKAGE AA00004729_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

6<17+(6,6 $1' 3523(57,(6 2) 620( %,6087+,,,f 0$1*$1(6(,,f <775,80,,,f (8523,80,,,f $1' *$'2/,1,80,,,f &203/(;(6 %< 67(3+(1 3 6800(56 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 0DQ\ WKDQNV PXVW ILUVW JR WR 'U *XV 3DOHQLN DQG WKH ,QRUJDQLF 'LYLVLRQ IRU JLYLQJ PH D KRPH DQG WR 5XWK 3DOHQLN DQG .LP %URZQLQJ IRU KHOSLQJ PH D JUHDW GHDO DV EHJDQ P\ JUDGXDWH UHVHDUFK 6SHFLDO WKDQNV JR WR 'U .KDOLO $EERXG ZKRVH H[SHUWLVH LQ [UD\ FU\VWDOORJUDSK\ DQG SDWLHQFH ZLWK PH ZHUH DERYH DQG EH\RQG WKH FDOO RI GXW\ DQG WR 'U 6DP )DUUDK ZKRVH DLG LQ GHWHUPLQLQJ DQWLEDFWHULDO DFWLYLWLHV ZDV JUHDWO\ DSSUHFLDWHG ZRXOG OLNH WR WKDQN P\ SDUHQWV 'RQ DQG +HOHQ 6XPPHUV DQG WKH UHVW RI P\ IDPLO\ .LP %RE 5DFKHO 5RFKHOOH /\QQ %UDG DQG 'DYLG IRU WKHLU FRQWLQXHG VXSSRUW WKURXJKRXW P\ VFKRROLQJ 7R 'HZD\QH P\ IULHQG URRPPDWH DQG WUDYHOLQJ FRPSDQLRQ -DVRQ P\ IULHQG DQG FRQILGDQW DQG -HII P\ IULHQG DQG ZRUNRXW SDUWQHU SOHGJH P\ IULHQGVKLS IRUHYHU DQG KRSH WKDW ZH ZLOO DOO VWD\ WRJHWKHU LQ VSLULW LI QRW LQ ERG\ $QG WR (ULF ZLWK PDQ\ WKDQNV IRU EHLQJ WKHUH WKH ODVW QLQH PRQWKV ZLVK WKH EHVW RI OXFN LQ 6HDWWOH

PAGE 3

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LL /,67 2) 7$%/(6 Y /,67 2) ),*85(6 [ $%675$&7 [LLL &+$37(56 ,1752'8&7,21 %LVPXWK &KHPLVWU\ 0DQJDQHVH DQG *DGROLQLXP &KHPLVWU\ &203/(;(6 2) %,6087+,,,f $ 6<17+(7,& $1' 6758&785$/ 678'< ,QWURGXFWLRQ ([SHULPHQWDO 'LVFXVVLRQ &203/(;(6 2) %,6087+,,,f 9$/(1&( %21' 6806 $1' &225',1$7,21 32/<+('5$ ,QWURGXFWLRQ 'LVFXVVLRQ DQG 5HVXOWV %,6087+ &203/(;(6 $ 678'< 2) $17,%$&7(5,$/ $&7,9,7< ,QWURGXFWLRQ ([SHULPHQWDO 'LVFXVVLRQ &203/(;(6 2) %,6087+,,,f :,7+ 3+263+21,& $&,'6 $ 6<17+(7,& $1' 63(&7526&23,& 678'< ,QWURGXFWLRQ ([SHULPHQWDO 'LVFXVVLRQ LLL

PAGE 4

JDJH &203/(;(6 2) 0$1*$1(6(,,f *$'2/,1,80,,,f (8523,80,,,f $1' <775,80,,,f :,7+ ',$&(7
PAGE 5

/,67 2) 7$%/(6 7DEOH 3DJH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG Y

PAGE 6

7DEOH 3DJH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG YL

PAGE 7

7DEOH 3DJH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG +ERQGLQJ IRU FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L ',3,&f +',3,&f +$Ff + &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L 17$f r + &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L +('7$f f + &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ *XDQf %L '73$f f + &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L '$3$$+f $Ff + 0DVV RI FRPSOH[HV RQ ILOWHU SDSHUV DIWHU VRDNLQJ LQ VDWXUDWHG VROXWLRQV 'LDPHWHUV RI LQKLELWLRQ IRU %L3,&f %L17$f DQG %L+('7$f LQ HDFK W\SH RI EDFWHULD )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG 9OO

PAGE 8

7DEOH 3DJH %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG ,OO )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG YLLL

PAGE 9

7DEOH 3DJH %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH + DWRPV RI FRPSRXQG &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG ,;

PAGE 10

/,67 2) ),*85(6 )LJXUH 3DJH GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf 6DOLF\ODOGHK\GH 6HPLFDUED]RQH 3LFROLQLF $FLG 'LSLFROLQLF $FLG 1LWULORWULDFHWLF $FLG (WK\OHQHGLDPLQHWHWUDDFHWLF $FLG 'LHWK\OHQHWULDPLQHSHQWDDFHWLF $FLG 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ 0HWK\O K\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ 0HWK\O K\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH FDSSHG VTXDUH DQWLSULVP DUUDQJHPHQW [

PAGE 11

3DJH )LJXUH 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH ELFDSSHG WULJRQDO SULVP DUUDQJHPHQW 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH ELFDSSHG WULJRQDO SULVP DUUDQJHPHQW 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH ELFDSSHG WULJRQDO SULVP DUUDQJHPHQW 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH FDSSHG VTXDUH DQWLSULVP DUUDQJHPHQW 1LWULORWULVPHWK\OHQHWULSKRVSKRQLF $FLG (WK\OHQHGLDPLQRWHWUDPHWK\OHQHWHWUDSKRV SKRQLF $FLG ,QIUDUHG VSHFWUXP RI ,QIUDUHG VSHFWUXP RI ,QIUDUHG VSHFWUXP RI ,QIUDUHG VSHFWUXP RI ,QIUDUHG VSHFWUXP RI GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\ 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ :DWHU K\GURJHQV DUH RPLWWHG IRU FODULW\ [L

PAGE 12

)LJXUH 3DJH + 105 RI WDNHQ & 105 RI WDNHQ ;+ 105 RI WDNHQ & 105 RI WDNHQ + 105 RI WDNHQ & 105 RI WDNHQ < 105 RI < 1f UHIHUHQFHf < 105 RI <1f FORVHXS RI < SHDN < 105 RI < 105 RI FORVHXS RI < SHDN ;OO

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 6<17+(6,6 $1' 3523(57,(6 2) 620( %,6087+,,,f 0$1*$1(6(,,f <775,80,,,f (8523,80,,,f $1' *$'2/,1,80,,,f &203/(;(6 %\ 67(3+(1 3 6800(56 $XJXVW &KDLUPDQ 'U *XV 3DOHQLN 0DMRU 'HSDUWPHQW &KHPLVWU\ $ VHULHV RI ELVPXWK ,,,f FRPSOH[HV KDV EHHQ V\QWKHVL]HG ZLWK WKH FDUER[\OLF DFLGV SLFROLQLF DFLG GLSLFROLQLF DFLG QLWULORWULDFHWLF DFLG HWK\OHQH GLDPLQHWHWUDDFHWLF DFLG DQG GLHWK\OHQHWULDPLQHSHQWDDFHWLF DFLG DORQJ ZLWK WKH SKRVSKRQLF DFLGV QLWULORWULVPHWK\OHQH WULSKRVSKRQLF DFLG DQG HWK\OHQHGLDPLQRWHWUDPHWK\OHQHWHWUD SKRVSKRQLF DFLG :KHUH VDWLVIDFWRU\ FU\VWDOOLQH VDPSOHV ZHUH REWDLQHG [UD\ FU\VWDOORJUDSKLF VWXGLHV ZHUH FRQGXFWHG 6ROLG VWDWH VWUXFWXUHV RI WKH FDUER[\OLF DFLG FRPSRXQGV UHYHDOHG VHYHUDO VLPLODULWLHV EHWZHHQ WKHVH FRPSOH[HV DQG WKH FU\VWDOORJUDSKLF GDWD ZDV XVHG WR FDOFXODWH YDOHQFH ERQG VXPV DQG GHWHUPLQH FRRUGLQDWLRQ SRO\KHGUD 3KRVSKRQLF DFLG FRPSOH[HV ZHUH H[WUHPHO\ LQVROXEOH DQG ZHUH FKDUDFWHUL]HG E\ HOHPHQWDO DQDO\VLV DQG LQIUDUHG VSHFWURVFRS\ [L[L

PAGE 14

$QWLEDFWHULDO SURSHUWLHV RI WKH FDUER[\ODWH FRPSOH[HV ZHUH PRQLWRUHG DJDLQVW WKH EDFWHULD (VFKHULFKLD &ROL 3VHXGRPRQDV $HUXJLQRVD DQG 6WDSK\ORFRFFXV $XUHXV 5DGLL RI LQKLELWLRQ ZHUH PHDVXUHG DQG D FRUUHODWLRQ WR ZDWHU VROXELOLW\ ZDV GUDZQ &RPSOH[HV RI %L,,,f 0Q,,f (X,,,f *G,,,f DQG <,,,f ZHUH V\QWKHVL]HG ZLWK WKH OLJDQG GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf &U\VWDOV REWDLQHG IURP WKHVH SURFHGXUHV ZHUH DQDO\]HG E\ [UD\ FU\VWDOORJUDSK\ DQG WKHLU VROLG VWDWH VWUXFWXUHV GHWHUPLQHG $ VWXG\ RI WKHLU VROXWLRQ VWDELOLW\ RYHU WLPH ZDV FRQGXFWHG E\ PHDQV RI QXFOHDU PDJQHWLF UHVRQDQFH VSHFWURVFRS\ 7KH & DQG < VSHFWUD ZHUH WDNHQ RI WKH <,,,f FRPSOH[ LQ RYHU D SHULRG RI RQH ZHHN 7KH VSHFWUD VKRZHG QR FKDQJH RYHU WLPH DQG WKH SUHVHQFH RI D VLQJOH SHDN LQ WKH < VSHFWUXP VXJJHVWV WKDW <,,,f H[LVWHG LQ RQO\ RQH VWDEOH HQYLURQPHQW [LY

PAGE 15

&+$37(5 ,1752'8&7,21 %LVPXWK &KHPLVWU\ 7KH HOHPHQW ELVPXWK KDV EHHQ NQRZQ IRU DERXW ILYH KXQGUHG \HDUV EXW ZDV QRW LGHQWLILHG DV VXFK XQWLO ,Q 2GLHU WRXWHG WKH XVH RI ELVPXWK VXEQLWUDWH %L2f1 DV D JDVWULF DQWLVSDVPRGLF 6LQFH WKHQ D YDULHW\ RI ELVPXWK VDOWV LQFOXGLQJ ELVPXWK VXEFDUERQDWH %Lf& ELVPXWK VXEVDOLF\ODWH %L2f+2&+&22f DQG DPPRQLXP ELVPXWK FLWUDWH GLK\GUDWH 1+f %L &+f f + KDYH EHHQ XVHG WR WUHDW D ZLGH UDQJH RI KXPDQ DLOPHQWV 6RPH RI WKHVH LQFOXGH SHSWLF XOFHUV V\SKLOLV DQG WKH WRSLFDO GLVLQIHFWLRQ RI ZRXQGV :LWK WKH H[FHSWLRQ RI VRPH FRPPHUFLDO SURGXFWV ZKLFK XWLOL]H ELVPXWK VXEVDOLF\ODWH DV D WUHDWPHQW IRU WKH UHOLHI RI JDVWULF GLVRUGHUV WKH XVH RI ELVPXWK FRPSRXQGV KDV VWHDGLO\ ZDQHG DV KHDY\ PHWDO VDOWV KDYH IDOOHQ RXW RI IDYRU ,QWHUHVW LQ ELVPXWK FKHPLVWU\ KDV EHHQ UHNLQGOHG KRZHYHU ZLWK WKH GLVFRYHU\ RI FROORLGDO ELVPXWK VXEFLWUDWH &%6f DQG LWV HIIHFW RQ +HOLFREDFWHU 3\ORUL D VWRPDFK EDFWHULXP UHFHQWO\ SLQSRLQWHG DV D FDXVDO IDFWRU LQ WKH IRUPDWLRQ RI SHSWLF XOFHUV 7KH ZDWHU VROXELOLW\ RI &%6 DQG

PAGE 16

LWV VWDELOLW\ LQ VROXWLRQ GXH WR WKH VWURQJO\ FRRUGLQDWLQJ FLWUDWH KDYH UHQGHUHG LW XVHIXO DV D PHGLFLQDO WUHDWPHQW IRU WKLV DLOPHQWn )XUWKHU VWLPXOL IRU WKH VWXG\ RI ELVPXWK FRRUGLQDWLRQ FKHPLVWU\ KDYH EHHQ TXHVWLRQV RI SRVVLEOH UHODWLYLVWLF HIIHFWV LQ WKH KHDY\ HOHPHQWV DQG WKH XVH RI ELVPXWK LQ KLJK WHPSHUDWXUH VXSHUFRQGXFWHUV 7KH FRPSRXQG &%6 DSSHDUV WR EH DFWLYH DJDLQVW SHSWLF XOFHUV LQ VHYHUDO ZD\V )LUVW LW LQKLELWV WKH DFWLRQ RI SHSVLQV LQ WKH VWRPDFK SRVVLEO\ E\ DGVRUSWLRQ RI WKHVH HQ]\PHV RQWR WLQ\ SDUWLFOHV RI WKH ELVPXWK FRPSOH[ 6HFRQG WKH SUHVHQFH RI ELVPXWK LQ WKH VWRPDFKnV PXFRVDO PHPEUDQH LQKLELWV SURWHRO\VLV DQG SURWRQ GLIIXVLRQ DV ZHOO DV LQFUHDVLQJ WKH VHFUHWLRQ RI ELFDUERQDWH DQLRQV LQWR WKH PXFRXV )LQDOO\ DQG PRVW VLJQLILFDQWO\ WKH &%6 FRPSOH[ KDV SURYHQ WR EH EDFWHULFLGDO WR + 3\ORUL 7KHVH GHYHORSPHQWV LQ ELVPXWK FKHPLVWU\ KDYH EHHQ WKH LPSHWXV IRU RXU VWXG\ RI ELVPXWK FRRUGLQDWLRQ FRPSOH[HV DQG WKHLU SURSHUWLHV 5HFHQW VWXGLHV RI ELVPXWK FRPSOH[HV KDYH IDOOHQ LQWR WZR JHQHUDO FDWHJRULHV 6HYHUDO FRPSOH[HV KDYH EHHQ V\QWKHVL]HG E\ +HUUPDQQ DQG FRZRUNHUVn 5HHGLMN DQG FRZRUNHUVn DQG 3RVWHO DQG FRZRUNHUV ZKLFK FRQWDLQ OLJDQGV PDGH SUHGRPLQDQWO\ RI FDUER[\ODWH JURXSV +HUUPDQQ DQG 5HHGLMN KDYH IRFXVHG PDLQO\ RQ FRPSOH[HV ZKLFK DUH YDULDWLRQV RI &%6 LH FLWUDWH FRQWDLQLQJ VDOWV 3RVWHO KDV V\QWKHVL]HG ELVPXWK FRPSOH[HV ZLWK VXFK FDUER[\ODWH

PAGE 17

FRQWDLQLQJ OLJDQGV DV PDQGHOLF DFLG JO\FROLF DFLG DQG HWK\OHQH JO\FRO $ VHFRQG JURXS RI ELVPXWK FRPSOH[HV KDV EHHQ V\QWKHVL]HG E\ 3DOHQLN DQG FRZRUNHUV DQG %DWWDJOLD DQG FRZRUNHUV ZKLFK FRQWDLQ SODQDU SHQWDGHQWDWH OLJDQGV :RUN E\ 3DOHQLN KDV LQFOXGHG WKH V\QWKHVHV RI ELVPXWK FRPSOH[HV ZLWK WKH OLJDQGV GLDFHW\OS\ULGLQH ELVVHPLFDUED]RQHf '$36&f DQG GLIRUP\OSKHQDQWKUROLQH ELVVHPLFDUED]RQHf 3+(16&f ZKLFK KDYH VKRZQ VXUSULVLQJ ZDWHU VROXELOLW\ $ VLPLODU FRPSOH[ ZLWK WKH OLJDQG GLDFHW\OS\ULGLQH ELVWKHQR\OK\GUD]RQHf '$37f ZDV V\QWKHVL]HG E\ %DWWDJOLD 2XU VWXG\ RI ELVPXWK FRRUGLQDWLRQ FRPSRXQGV KDV IRFXVHG RQ WKH V\QWKHVLV RI FRPSOH[HV ZLWK ERWK FDUER[\ODWH FRQWDLQLQJ OLJDQGV DQG SODQDU SHQWDGHQWDWH OLJDQGV $ VXEVHTXHQW LQYHVWLJDWLRQ RI DQWLEDFWHULDO SURSHUWLHV \LHOGHG VRPH VXUSULVLQJ UHVXOWV DV D FRUUHODWLRQ WR ZDWHU VROXELOLW\ ZDV GUDZQ 7KH FRPSOH[HV ZHUH IXUWKHU FKDUDFWHUL]HG E\ D YDULHW\ RI PHWKRGV LQFOXGLQJ [UD\ FU\VWDOORJUDSK\ LQIUDUHG ,5f VSHFWURVFRS\ HOHPHQWDO DQDO\VHV DQG WKURXJK WKH PHWKRG RI YDOHQFH ERQG VXPV 0DQJDQHVH DQG *DGROLQLXP &KHPLVWU\ 7KH XVH RI QXFOHDU PDJQHWLF UHVRQDQFH LPDJLQJ 05,f DV D WHFKQLTXH IRU WKH GHWHFWLRQ RI GLVHDVHG ERG\ WLVVXH KDV JURZQ LQ UHFHQW \HDUV :KLOH WKLV PHWKRG KDV SURYHQ LWV

PAGE 18

XVHIXOQHVV LWV VXFFHVV KDV GHSHQGHG RQ WKH DYDLODELOLW\ RI LPDJLQJ DJHQWV WKDW SRVVHVV VHYHUDO LPSRUWDQW FKDUDFWHULVWn LFV )LUVW WKH LPDJLQJ DJHQW PXVW EH VXIILFLHQWO\ ZDWHU VROXEOH DQG VWDEOH LQ YLYR WR IDFLOLWDWH WKRURXJK SDVVDJH WKURXJK WKH ERG\ $Q\ GHFRPSRVLWLRQ RI WKH DJHQW FRXOG OHDYH WR[LF DPRXQWV RI WKH IUHH OLJDQG RU PHWDO LRQ LQ WKH ERG\ 6HFRQG WKH DJHQW PXVW SURYLGH D VKDUS FRQWUDVW EHWZHHQ QRUPDO DQG GLVHDVHG WLVVXH ZKLFK LV DFFRPSOLVKHG E\ XWLOL]LQJ SDUDPDJQHWLF PHWDO FHQWHUV DQG PD[LPL]LQJ WKH GHJUHH RI LQQHU VSKHUH ZDWHUV RI K\GUDWLRQ )LQDOO\ WKH GHVLUHG LPDJLQJ DJHQW PXVW VKRZ D WHQGHQF\ WR ORFDOL]H LQ D VSHFLILF WDUJHW WLVVXH D SURSHUW\ WKDW LV GHWHUPLQHG HPSLULFDOO\ IURP WULDOV RQ RWKHU RUJDQLVPV 7KH PRVW FRPPRQ LPDJLQJ DJHQWV XVHG IRU WKH SXUSRVH RI 05, DUH FRPSOH[HV RI 0Q,,f DQG *G,,,f 7KH SDUDPDJQHWLVP RI WKHVH PHWDO FHQWHUV ZKLFK DUH G DQG I UHVSHFWLYHO\ PDNHV WKHP LGHDO FKRLFHV DV LPDJLQJ DJHQWV 7KH FKRLFH RI OLJDQG LV LPSRUWDQW LQ GHWHUPLQLQJ WKH XVHIXOQHVV RI WKHVH FRPSOH[HV DV LW LV WKH OLJDQG WKDW GLFWDWHV ZKHUH WKH FRPSOH[ ZLOO ORFDOL]H LQ WKH ERG\ DQG GHWHUPLQHV WKH GHJUHH RI LQQHU VSKHUH K\GUDWLRQ 0XOWLGHQWDWH OLJDQGV XVXDOO\ \LHOG D VWURQJ VWDEOH FRPSOH[ WKDW ZLOO QRW GLVVRFLDWH LQ YL YR $IWHU GRFXPHQWHG VXFFHVV LQ SURGXFLQJ ZDWHU VROXEOH FRPSOH[HV RI %L,,,f ZLWK SODQDU SHQWDGHQWDWH OLJDQGVn VLPLODU FRPSOH[HV ZHUH V\QWKHVL]HG XVLQJ 0Q,,f DQG *G,,,f

PAGE 19

%HVLGHV WKH REYLRXV FRQWULEXWLRQ D PXOWLGHQWDWH OLJDQG EULQJV WR WKH VWDELOLW\ RI D FRPSOH[ WKH XVH RI D SODQDU OLJDQG DOVR SURYLGHV DUHDV DERYH DQG EHORZ WKH PHWDO FHQWHU ZKLFK FDQ DFFRPRGDWH VHYHUDO ZDWHUV RI K\GUDWLRQ D VLWXDWLRQ WKDW LV DGYDQWDJHRXV IRU LPDJLQJ DJHQWV 9DULDELOLW\ LQ WKH VWUXFWXUDO FKDUDFWHULVWLFV RI WKH OLJDQGV PD\ EH D ZD\ WR nGLUHFWn WKH FRPSOH[ WR D GHVLUHG ERG\ WLVVXH &RPSOH[HV RI 0Q,,f (X,,,f *G,,,f DQG <,,,f FRQWDLQLQJ SODQDU SHQWDGHQWDWH OLJDQGV ZHUH V\QWKHVL]HG DQG FKDUDFWHUL]HG E\ [UD\ FU\VWDOORJUDSK\ DQG HOHPHQWDO DQDO\VHV $Q LQYHVWLJDWLRQ RI WKHLU VROXWLRQ VWDELOLW\ RYHU WLPH ZDV DWWHPSWHG YLD D VWXG\ RI WKH + & DQG < QXFOHDU PDJQHWLF UHVRQDQFH 105f VSHFWUD IRU WKH <,,,f FRPSOH[ 7KH UHVXOWV UHYHDO D VHULHV RI FRPSOH[HV WKDW DUH VXUSULVLQJO\ ZDWHU VROXEOH DQG VWDEOH LQ VROXWLRQ DQG ZKLFK FDQ DFFRPRGDWH DW OHDVW IRXU LQQHU VSKHUH ZDWHUV RI K\GUDWLRQ

PAGE 20

&+$37(5 &203/(;(6 2) %,6087+,,,f $ 6<17+(7,& $1' 6758&785$/ 678'< ,QWURGXFWLRQ +LVWRULFDOO\ ELVPXWK FRPSRXQGV KDYH EHHQ XVHG DV PHGLFLQDO DJHQWV IRU D YDULHW\ RI SXUSRVHV LQFOXGLQJ WKH WUHDWPHQW RI VWRPDFK GLVRUGHUV DQG ZRXQG GLVLQIHFWLRQ 7KRXJK WKH XVH RI ELVPXWK VDOWV ZDQHG DIWHU :RUOG :DU ,, LQWHUHVW KDV LQFUHDVHG ZLWK WKH HPHUJHQFH RI &%6 DV D WUHDWPHQW IRU SHSWLF XOFHUV 7KH VROXELOLW\ RI &%6 LQ ZDWHU LV XQFKDUDFWHULVWLF RI ELVPXWK VDOWV DQG KDV IDFLOLWDWHG LWV PHGLFLQDO XVH 5HFHQWO\ ELVPXWK ,,,f FRPSOH[HV ZLWK WKH SODQDU SHQWDGHQWDWH OLJDQGV '$36& 3+(16& DQG '$37 KDYH EHHQ SUHSDUHG DQG FKDUDFWHUL]HG VWUXFWXUDOO\ 7KH XVH RI WKHVH VWURQJO\ FRRUGLQDWLQJ QHXWUDO OLJDQGV UHQGHUHG WKHLU %L,,,f FRPSOH[HV VXUSULVLQJO\ ZDWHU VROXEOH DQ XQXVXDO FRQGLWLRQ LQ ELVPXWK FRPSOH[HV :H KDYH V\QWKHVL]HG D VLPLODU FRPSOH[ ZLWK WKH OLJDQG GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf '$3$$+f ZKLFK KDV VKRZQ ZDWHU VROXELOLW\ DV ZHOO 7KH OLJDQG LV VKRZQ LQ )LJXUH 6LQJOH FU\VWDOV RI WKH FRPSOH[ ZHUH XVHG LQ DQ [UD\ GLIIUDFWLRQ VWXG\ ZKLFK

PAGE 21

VKRZHG DV SUHYLRXVO\ UHSRUWHG WKH DELOLW\ RI OLJDQGV RI WKLV W\SH WR DGDSW WR D YDULHW\ RI FRRUGLQDWLRQ HQYLURQPHQWV DQG PHWDO LRQ VL]HV $WWHPSWV WR V\QWKHVL]H D VHULHV RI %L,,,f FRPSOH[HV ZLWK WKUHH nRQHDUPn YDULDWLRQV RQ WKH '$36& OLJDQG ZHUH PHW ZLWK OLWWOH VXFFHVV 7KHVH OLJDQGV LQFOXGLQJ VDOLF\ODOGHK\GH VHPLFDUED]RQH 6$6&f GLG QRW HIIHFWLYHO\ FRRUGLQDWH %L,,,f +RZHYHU FU\VWDOV REWDLQHG GXULQJ WKH XQVXFFHVVIXO V\QWKHVLV RI >%L6$6&@ WKH OLJDQG LV JLYHQ LQ )LJXUH f ZHUH VKRZQ YLD DQ [UD\ VWXG\ WR EH WKH IUHH OLJDQG K\GURJHQ ERQGHG WR D VLQJOH DFHWLF DFLG +$Ff PROHFXOH 7KLV VWUXFWXUH ZDV SUHYLRXVO\ XQUHSRUWHG 7KH XVH RI FDUER[\ODWHFRQWDLQLQJ OLJDQGV LQ WKH V\QWKHVLV RI FRPSOH[HV ZLWK %L,,,f KDV EHHQ RI JUHDW LQWHUHVW UHFHQWO\n 6HYHUDO RI WKHVH FRPSOH[HV KDYH VKRZQ WKURXJK WKH IRUPDWLRQ RI FKDUJHG FRPSOH[HV DQ LPSUHVVLYH ZDWHU VROXELOLW\ :H KDYH XQGHUWDNHQ WKH V\QWKHVLV RI %L,,,f FRPSOH[HV ZLWK D VHULHV RI OLJDQGV LQFOXGLQJ SLFROLQLF DFLG 3,&f GLSLFROLQLF DFLG ',3,&f QLWULORWULDFHWLF DFLG 17$f HWK\OHQHGLDPLQHWHWUDDFHWLF DFLG ('7$f DQG GLHWK\OHQHWULDPLQHSHQWDDFHWLF DFLG '73$f 7KH V\QWKHVHV RI %L+('7$f DQG JXDQLGLQLXP %L('7$f KDYH EHHQ UHSRUWHG EXW QR VWUXFWXUDO GDWD DUH DYDLODEOH 7KH UHDFWLRQV RI WKHVH OLJDQGV VKRZQ LQ )LJXUHV ZLWK ELVPXWK VXEFDUERQDWH %Lf& KDYH SURGXFHG

PAGE 22

)LJXUH GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf '$3$$+f )LJXUH 6DOLF\ODOGHK\GH 6HPLFDUED]RQH 6$6&f

PAGE 23

)LJXUH 3LFROLQLF $FLG 3,&f )LJXUH 'LSLFROLQLF $FLG ',3,&f 2+ 2+AN 2 2+ 2 )LJXUH 1LWULORWULDFHWLF $FLG 17$f

PAGE 24

&+ AM&+a&+ ? +BII R $ $ ? &+B &+ + ) 2+ +2aIU 2 )2+ 2 )LJXUH (WK\OHQHGLDPLQHWHWUDDFHWLF $FLG ('7$f )LJXUH 'LHWK\OHQHWULDPLQHSHQWDDFHWLF $FLG '73$f

PAGE 25

D VHULHV RI %L,,,f FRPSOH[HV ZKLFK VKRZ D ZLGH UDQJH RI ZDWHU VROXELOLW\ &U\VWDOV REWDLQHG LQ FRPSOH[HV RI %L,,,f ZLWK ',3,& 17$ ('7$ DQG '73$ ZHUH XVHG LQ [UD\ VWUXFWXUDO VWXGLHV ZKLFK UHYHDOHG D QXPEHU RI VLPLODULWLHV DPRQJ WKH VWUXFWXUHV RI WKHVH FRPSRXQGV LQFOXGLQJ WKHLU FRRUGLQDWLRQ SRO\KHGUD DQG WKH WHQGHQF\ WR IRUP GLPHUOLNH XQLWV LQ WKH VROLG VWDWH 7KH 3,& FRPSOH[ ZDV LQVROXEOH DQG QR [UD\ TXDOLW\ FU\VWDOV ZHUH REWDLQHG +HUHLQ ZH UHSRUW WKH V\QWKHVHV DQG [UD\ FU\VWDO VWUXFWXUHV RI %L,,,f FRPSOH[HV ZLWK WKH OLJDQGV '$3$$+ ',3,& 17$ ('7$ DQG '73$ DORQJ ZLWK WKH IUHH OLJDQG 6$6& 7KH 3,& FRPSOH[ ZDV FKDUDFWHUL]HG YLD HOHPHQWDO DQDO\VLV ([SHULPHQWDO 0DWHULDOV %LVPXWK VXEFDUERQDWH %Lf& JXDQLGLQH FDUERQDWH & 1+f f & ELVPXWK QLWUDWH %L 1f + -7 %DNHUf 3,& ',3,& 17$ '73$ GLDFHW\OS\ULGLQH DQG DFHWK\GUD]LGH $OGULFKf ('7$ /D3LQHf VDOLF\ODOGHK\GH DQG VHPLFDUED]LGH K\GURFKORULGH .RGDNf VRGLXP DFHWDWH 1D$Ff DQG JODFLDO DFHWLF DFLG +$Ff )LVKHUf ZHUH DOO FRPPHUFLDO SURGXFWV DQG XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ 7KH SURFHGXUH XVHG IRU WKH FRPSOH[HV RI ',3,& 17$ ('7$ DQG '73$ ZDV VLPLODU WR WKDW UHSRUWHG IRU WKH V\QWKHVLV RI %L +('7$f

PAGE 26

6\QWKHVLV RI %L '$3$$+f $F+ f 7R D VROXWLRQ RI P/ +$F LQ P/ + ZDV DGGHG J PPROf %Lf& $IWHU ERLOLQJ IRU VHYHUDO KRXUV DOO VROLG ZHQW LQWR VROXWLRQ $ PL[WXUH RI J PPROf DFHWK\GUD]LGH GLVVROYHG LQ P/ + DQG J GLDFHW\OS\ULGLQH VWLUUHG LQ P/ + ZDV DGGHG GLUHFWO\ WR WKH VROXWLRQ $ FOHDU \HOORZ VROXWLRQ S+ f ZDV REWDLQHG 7KH VROXWLRQ ZDV ILOWHUHG DQG DOORZHG WR HYDSRUDWH $ VLQJOH UHFU\VWDOOL]DWLRQ IURP + UHYHDOHG EHDXWLIXO \HOORZ [UD\ TXDOLW\ FU\VWDOV $QDO &DOF IRXQGf IRU &+12%L & f + f 1 f 6\QWKHVLV RI %L3,&f f $ SLFROLQLF DFLG VROXWLRQ ZDV PDGH E\ GLVVROYLQJ J PPROf RI WKH DFLG LQ P/ + 7KH S+ ZDV DSSUR[LPDWHO\ 6ROLG %L 1f r + J PPROff ZDV DGGHG GLUHFWO\ WR WKH VROXWLRQ $ ZKLWH VROLG DSSHDUHG LPPHGLDWHO\ DQG WKH S+ GHFUHDVHG WR DSSUR[LPDWHO\ 7KH VROLG ZDV ILOWHUHG DQG DOORZHG WR GU\ 5HFU\VWDOOL]DWLRQV IURP D ZDWHUHWKDQROS\ULGLQH PL[WXUH QLWULF DFLG VROXWLRQ DQG K\GURFKORULF DFLG VROXWLRQ GLG QRW \LHOG [UD\ TXDOLW\ FU\VWDOV 0S IRU r& GHFf $QDO &DOFIRXQGf IRU &L+1%L & f + f 1 f 6\QWKHVLV RI %L ',3,&f +',3,&f +$Ff Y + f 7R D KHDWHG VROXWLRQ RI J PPROf RI ',3,& LQ P/ + S+ f ZDV DGGHG J PPROf %Lf&

PAGE 27

$OO VROLG ZDV LQ VROXWLRQ ZLWKLQ K :KLWH VROLG REWDLQHG XSRQ HYDSRUDWLRQ ZDV UHGLVVROYHG LQ D VROXWLRQ RI P/ +$F DQG P/ + $IWHU VORZ HYDSRUDWLRQ FRORUOHVV [UD\ TXDOLW\ FU\VWDOV ZHUH REWDLQHG $QDO &DOFIRXQGf IRU &+12%Ln+ & f + f 1 f 6\QWKHVLV RI %L 17$f f + f 7R D ERLOLQJ VROXWLRQ RI J PPROf 17$ LQ P/ RI + ZDV DGGHG J PPROf RI %Lf& $IWHU K RI ERLOLQJ ZLWK VWLUULQJ DOO VROLGV KDG GLVVROYHG 7KH VROXWLRQ ZDV ILOWHUHG ZKLOH KRW DQG WKH FOHDU FRORUOHVV ILOWUDWH ZDV DOORZHG WR HYDSRUDWH 7KH FU\VWDOOLQH SURGXFW ZDV UHFU\VWDOOL]HG RQFH IURP + DQG FU\VWDOV VXLWDEOH IRU DQ [UD\ DQDO\VLV ZHUH REWDLQHG $QDO &DOF IRXQGf IRU &+12%L & f + f 1 f 6\QWKHVLV RI %L+('7$ff+ f 7R P/ RI + ZDV DGGHG J PPROf RI ('7$ 7KH VROXWLRQ ZDV KHDWHG WR ERLOLQJ DQG J PPROf RI %L2f & ZDV DGGHG LQ VPDOO LQFUHPHQWV $IWHU PLQ RI ERLOLQJ WKH PL[WXUH ZDV ILOWHUHG ZKLOH KRW DQG WKH FRORUOHVV ILOWUDWH DOORZHG WR HYDSRUDWH &RORUOHVV FU\VWDOV VXLWDEOH IRU DQ [UD\ VLQJOH FU\VWDO DQDO\VLV ZHUH IRUPHG $QDO &DOF IRXQGf IRU &+12%L & f + f 1 f

PAGE 28

6\QWKHVLV RI *XDQf %L '73$f f + f 7R D ERLOLQJ VROXWLRQ RI P/ RI + DQG J PPROf RI '73$ ZDV DGGHG J PPROf RI %Lf& $IWHU VWLUULQJ IRU K DOO VROLG ZDV LQ VROXWLRQ 7R WKH FRROHG VROXWLRQ ZDV DGGHG J PPROf RI JXDQLGLQH FDUERQDWH & 1+f f &f 7KH UHDFWLRQ PL[WXUH ZDV KHDWHG VORZO\ WR ERLOLQJ DQG DIWHU K WKH VROXWLRQ ZDV ILOWHUHG DQG WKH FOHDU FRORUOHVV ILOWUDWH DOORZHG WR HYDSRUDWH VORZO\ 7KH UHVXOWLQJ ZKLWH VROLG ZDV UHFU\VWDOOL]HG WKUHH WLPHV IURP + WR REWDLQ FU\VWDOV VXLWDEOH IRU DQ [UD\ DQD\OVLV $QDO &DOF IRXQGf IRU &+1%L & f + f 1 f 6\QWKHVLV RI 6$6&+$F f 7KH OLJDQG ZDV V\QWKHVL]HG E\ DGGLQJ P/ VDOLF\ODOGHK\GH WR D VROXWLRQ RI DSSUR[LPDWHO\ J VHPLFDUED]LGH K\GURFKORULGH DQG J VRGLXP DFHWDWH LQ P/ + 7KH UHVXOWLQJ ZKLWH SUHFLSLWDWH ZDV UHFU\VWDOOL]HG RQFH IURP + $QDO &DOF IRXQGf IRU &+1 & f + f 1 f &U\VWDOV RI ZHUH REWDLQHG GXULQJ D SURFHGXUH LQ ZKLFK J PPROf %Lf& ZDV GLVVROYHG LQ P/ JODFLDO +$F DQG FRPELQHG ZLWK J PPROf 6$6& /DUJH FRORUOHVV FU\VWDOV REWDLQHG RQ HYDSRUDWLRQ RI WKH FOHDU FRORUOHVV VROXWLRQ DSSHDUHG WR ORVH VROYHQW PROHFXOHV DIWHU GU\LQJ LQ DLU 5HFU\VWDOOL]DWLRQ IURP +$F SURGXFHG

PAGE 29

ODUJH FRORUOHVV FU\VWDOV ZKLFK ZHUH VXEPLWWHG IRU D VLQJOH FU\VWDO [UD\ DQDO\VLV ;UD\ 6WUXFWXUDO 6WXGLHV 'DWD IRU DOO RI WKH FU\VWDOV ZHUH FROOHFWHG DW URRP WHPSHUDWXUH RQ D 6LHPHQV 5P9 GLIIUDFWRPHWHU HTXLSSHG ZLWK D JUDSKLWH PRQRFKURPDWRU XWLOL]LQJ 0R .f UDGLDWLRQ ; ƒf )RUW\ UHIOHFWLRQV ZLWK r r ZHUH XVHG WR UHILQH WKH FHOO SDUDPHWHUV )XOO LQWHQVLW\ UHIOHFWLRQV ZHUH FROOHFWHG XVLQJ WKH FMVFDQ PHWKRG )RXU UHIOHFWLRQV ZHUH PHDVXUHG HYHU\ UHIOHFWLRQV WR PRQLWRU LQVWUXPHQW DQG FU\VWDO VWDELOLW\ $EVRUSWLRQ FRUUHFWLRQV ZHUH DSSOLHG EDVHG RQ PHDVXUHG FU\VWDO IDFHV XVLQJ 6+(/;7/ SOXV DEVRUSWLRQ FRHIILFLHQW 7KH VWUXFWXUHV ZHUH VROYHG E\ WKH KHDY\DWRP PHWKRG LQ 6+(/;7/ SOXV IURP ZKLFK WKH ORFDWLRQ RI WKH KHDY\ HOHPHQWV ZHUH REWDLQHG 7KH UHVW RI WKH QRQK\GURJHQ DWRPV ZHUH REWDLQHG IURP VXEVHTXHQW GLIIHUHQFH )RXULHU PDSV 7KH VWUXFWXUHV ZHUH UHILQHG LQ 6+(/;7/ SOXV XVLQJ IXOOPDWUL[ OHDVW VTXDUHV 7KH QRQ+ DWRPV ZHUH WUHDWHG DQLVRWURSLFDOO\ ZKHUHDV WKH SRVLWLRQV RI WKH K\GURJHQ DWRPV ZHUH FDOFXODWHG LQ LGHDO SRVLWLRQV DQG WKHLU LVRWURSLF WKHUPDO SDUDPHWHUV ZHUH IL[HG $OO SDUDPHWHUV ZHUH UHILQHG DQG e Z )_ a )F f ZDV PLQLPL]HG Z OD ) f D )f NOa^>D f@ f ` LQWHQVLW\f SHDN AEDFNJURXQG f VFDQ UDWH f DQG 2 ;f f§ SHDN A EDFNJURXQGA 6&DQ UDWHf N LV WKH FRUUHFWLRQ GXH WR GHFD\ DQG /S HIIHFWV

PAGE 30

LV D IDFWRU XVHG WR GRZQ ZHLJKW LQWHQVH UHIOHFWLRQV DQG WR DFFRXQW IRU LQVWUXPHQW LQVWDELOLW\ 7KH OLQHDU DEVRUSWLRQ FRHIILFLHQW ZDV FDOFXODWHG IURP YDOXHV IURP WKH ,QWHUQDWLRQDO 7DEOHV IRU ;UD\ &U\VWDOORJUDSK\ 6FDWWHULQJ IDFWRUV IRU QRQK\GURJHQ DWRPV ZHUH WDNHQ IURP &URPHU t 0DQQ ZLWK DQRPDORXVGLVSHUVLRQ FRUUHFWLRQV IURP &URPHU t /LEHUPDQ ZKLOH WKRVH RI K\GURJHQ DWRPV ZHUH IURP 6WHZDUW 'DYLGVRQ DQG 6LPSVRQ 'LVFXVVLRQ 7KH UHDFWLRQ RI ELVPXWK VDOWV VXFK DV ELVPXWK QLWUDWH DQG ELVPXWK VXEFDUERQDWH ZLWK '$3$$+ DQG WKH FDUER[\OLF DFLGV 3,& ',3,& 17$ ('7$ DQG '73$ KDV SURYHQ WR EH D FRQYHQLHQW PHWKRG RI V\QWKHVL]LQJ FRPSOH[HV RI WKHVH OLJDQGV %LVPXWK VXEFDUERQDWH DSSHDUV WR EH PRVW XVHIXO ZKHQ XVHG ZLWK DFLGV ZLWK D S. RI DERXW RU ORZHU $Q DFLG ZLWK D S. RI KLJKHU WKDQ GRHV QRW VHHP HIIHFWLYH DW GLVVROYLQJ WKH VXEFDUERQDWH DQG UHTXLUHV WKH XVH RI ELVPXWK QLWUDWH 2XU UHVXOWV DOVR VKRZ WKDW FRPSOH[HV FRQWDLQLQJ ERWK IXOO\ DQG SDUWLDOO\ GHSURWRQDWHG OLJDQGV DUH SRVVLEOH ZKHQ XVLQJ WKHVH SRO\SURWLF DFLGV 7KLV VXJJHVWV WKDW WKH FKRLFH RI DQ DSSURSULDWH FDWLRQ PD\ EH D FRQYHQLHQW ZD\ WR YDU\ WKH VROXELOLW\ RI VXFK FRPSOH[HV $ WKHUPDO HOOLSVRLG GUDZLQJ RI JLYHQ LQ )LJXUH VKRZV WKH IXOO ELVPXWK FRRUGLQDWLRQ VSKHUH DQG DWRPLF

PAGE 31

QXPEHULQJ VFKHPH LQFOXGLQJ WKH '$3$$+ OLJDQG DQG WKH WZR FRRUGLQDWLQJ DFHWDWH FRXQWHUDQLRQV $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ &RRUGLQDWHV IRU WKH K\GURJHQ DWRPV DUH JLYHQ LQ 7DEOH DQG WKH K\GURJHQ DWRP ERQG GLVWDQFHV DQG DQJOHV DUH JLYHQ LQ 7DEOH 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD DUH JLYHQ LQ 7DEOH 7KH '$3$$+ FRRUGLQDWHV LQ D SHQWDGHQWDWH IDVKLRQ WKURXJK 1 1 1 DQG WKH WZR FDUERQ\O R[\JHQV DQG 7ZR ELGHQWDWH DFHWDWHV FRPSOHWH WKH FRRUGLQDWLRQ VSKHUH EULQJLQJ WKH WRWDO FRRUGLQDWLRQ QXPEHU WR QLQH &KDUJH EDODQFH LV PDLQWDLQHG E\ GHSURWRQDWLRQ RI WKH OLJDQG DW 1 D GHVLJQDWLRQ EDVHG RQ WKH ODFN RI D UHILQHG K\GURJHQ LQ WKLV SRVLWLRQ DQG WKH &11 ERQG DQJOH 7KH XVXDO SODQDULW\ RI WKH OLJDQG LV DIIHFWHG E\ WKH SUHVHQFH RI WKH WZR DFHWDWHV 7R PLQLPL]H VWHULF LQWHUDFWLRQV EHWZHHQ WKH DFHWDWH R[\JHQV DQG WKH '$3$$+ OLJDQG DQG WR DFFRPRGDWH WKH ODUJH %L LRQ WKH K\GUD]RQH nDUPVn DUH WZLVWHG LQ RSSRVLWH GLUHFWLRQV 3UHYLRXV ZRUN ZLWK OLJDQGV RI WKLV W\SH KDV VKRZQ WKHLU UHPDUNDEOH DELOLW\ WR DGDSW WR D YDULHW\ RI FRRUGLQDWLRQ HQYLURQPHQWV DQG PHWDO LRQ VL]HV 7KH ELVPXWK FRPSOH[ ZLWK 3,& ZDV LVRODWHG DV D IDVWIRUPLQJ SUHFLSLWDWH GLUHFWO\ IURP WKH UHDFWLRQ PL[WXUH 7KLV LV QRW VXUSULVLQJ FRQVLGHULQJ WKDW 3,& KDV WKH SRVVLELOLW\ RI RQO\ D FKDUJH 7KUHH FRRUGLQDWLQJ 3,&

PAGE 32

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ 0HWK\O K\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 33

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 %L f f f f f f f f f f f f D f f f f E f f f f D f f f f E f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f &OO f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f n f f f f n f f f f n f f f f n f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT (L(M D/r DMr $LM ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG MWK GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 34

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG %L f %L f D %L f E %L f D %L f E %L f 1 %L f 1 %L f 1 %L f %L f f %L D f %L E f %L D f %L E f %L 1 f %L 1 f %L D f f %L E f %L D f %L E f %L 1 f %L 1 f %L 1 f D %L E f f D %L D f D %L E f D %L 1 f D %L 1 f D %L 1 f E %L D f f E %L E f E %L 1 f E %L 1 f E %L 1 f D %L E f f D %L 1 f D %L 1 f D %L 1 f E %L 1 f f E %L 1 f E %L 1 f 1 %L 1 f f 1 %L 1 f 1 %L 1 f f 1 %L f f &O %L f f

PAGE 35

7DEOH FRQWLQXHG & %L f f & D %L f f & E %L f f & D %L f f & E %L f f 1 1 &O f f &O 1 f & 1 %L f f & 1 1 f %L 1 1 f & 1 & f f & 1 %L f & 1 %L f f 1 1 &,2 f f 1 1 %L f &,2 1 %L f f & 1 1 f f & &O f f & &O 1 f &O 1 f & & & f f & & 1 f & & 1 f f & & 1 f f & & & f 1 & & f & & & f f & & & f f & & & f f &,2 & 1 f f &,2 & & f 1 & & f &OO &,2 1 f f &OO &,2 & f 1 &,2 & f & & f f & & 1 f & 1 f & & D f f & & E f D & E f & & D f f & & E f D & E f

PAGE 36

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 +, +D +E +F +D +E +F + + + +LOD +OOE +OOF +D +E +F +D +E +F +D +E +F

PAGE 37

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG +, 1 1 f f +, 1 &O f +D & +E f f +D & +F f +D & &O f +E & +F f f +E & &O f +F & &O f f +D & +E f f +D & +F f +D & & f +E & +F f f +E & & f +F & & f f + & & f f + & & f + & & f f + & & f + & & f f + & & f +LOD &OO +OOE f f +LOD &OO +OOF f +LOD &OO &,2 f +OOE &OO +OOF f f +OOE &OO &,2 f +LOH &OO &,2 f f +D & +E f f +D & +F f +D & & f +E & +F f f +E & & f +F & & f f +D & +E f f +D & +F f +D & & f +E & +F f f +E & & f +F & & f f +D & +E f f +D & +F f +D & & f +E & +F f f +E & & f +F & & f f

PAGE 38

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E ƒ F ƒ D GHJ M6 GHJ \ GHJ 9 $ G&DLF FPn .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf f f f f f f f &+1%L f + 7ULFOLQLF 3 [ [ % 'DWD FROOHFWLRQ 5DGLDWLRQ ; $f 0RGH 6FDQ UDQJH %DFNJURXQG 6FDQ UDWH GHJ UDQJH GHJ 5DQJH RI K N .f 0R.D FMVFDQ 6\PPHWULFDOO\ RYHU r DERXW .DO! PD[LPXP RIIVHW DQG PLQ n LQ Df IURP .DO PD[LPXP K N V VLV 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII [ 0R.Df FPn 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D ,f 1R RI YDULDEOHV 5 5bf ‘ALQW bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H ƒnf PD[ SHDN LQ GLII IRXU PDS H ƒnf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH ) DQG )F UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG ZDV Z_)_ )F f ZKHUH Z D)ff 5 ,G ) , ) f ;, ) 5f >;: _)T_ )F f ; ) @ +Z?) )Mf PQf @

PAGE 39

DQLRQV ZRXOG SURGXFH D FRPSOH[ WKDW LV HOHFWULFDOO\ QHXWUDO DQG XQOLNHO\ WR VWD\ LQ DTXHRXV VROXWLRQ ,W VHHPV FOHDU EDVHG RQ H[FHOOHQW HOHPHQWDO DQDO\VLV UHVXOWV WKDW D SXUH VDPSOH RI %L3,&f ZDV LQGHHG REWDLQHG 7KH FRPSOH[ KDV GHILHG DWWHPSWV DW FU\VWDO JURZWK IURP VHYHUDO VROYHQWV DQG VROYHQW PL[WXUHV $ YLHZ RI WKH %L',3,&f+',3,&f+$Ff FRPSOH[ DORQJ ZLWK WKH DWRPLF QXPEHULQJ VFKHPH LV JLYHQ LQ )LJXUH $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ +\GURJHQ DWRP FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD IRU DUH JLYHQ LQ 7DEOH 7KH [UD\ DQDO\VLV UHYHDOV D VWUXFWXUH LQ ZKLFK HDFK ELVPXWK LV FRRUGLQDWHG E\ WZR WULGHQWDWH ',3,& DQLRQV DQG D PRQRGHQWDWH +$F PROHFXOH 7KH WRWDO FRRUGLQDWLRQ QXPEHU RI HLJKW LV FRPSOHWHG E\ D ',3,& R[\JHQ IURP DQ DGMDFHQW OLJDQG ZKLFK LV VKDUHG E\ ERWK ELVPXWK FHQWHUV /LJDQG R[\JHQ LV OLNHZLVH VKDUHG ZLWK WKH QHLJKERULQJ ELVPXWK FHQWHU FUHDWLQJ D nGLPHUOLNHn XQLW FRQVLVWLQJ RI WKH WZR ELVPXWK FRPSOH[HV FRQQHFWHG E\ VKDUHG R[\JHQV 7KLV IHDWXUH PDQLIHVWV LWVHOI FRQVLVWHQWO\ LQ ELVPXWK FRPSOH[HV ZLWK FDUER[\ODWH FRQWDLQLQJ OLJDQGV 7KH FRPELQDWLRQ RI D %L ,,,f FHQWHU ZLWK WZR ',3,& OLJDQGV ERWK FDSDEOH RI D FKDUJH QHFHVVLWDWHV WKDW RQH FDUER[\ODWH JURXS UHPDLQ

PAGE 40

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 41

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 %L f f f f 1 f f f f f f f f f f f f f f f f f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f 1n f f f f n f f f f n f f f f n f f f f n f f f f &On f f f f & n f f f f & n f f f f &n f f f f &n f f f f &n f f f f &On f f f f f f f f f f f f n f f f f n f f f f & f f f f &n f f f f & f f f f f f f f f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT ;LOM 8LM D/r DMr $sM ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG MA GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 42

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG 1 %L f f 1 %L 2OL f 1 %L f 1 %L 1n f 1 %L n f 1 %L n f %L 2OL f f %L f %L 1n f %L n f %L n f %L f 2OL %L f f 2OL %L 1n f 2OL %L n f 2OL %L n f 2OL %L f %L 1n f f %L n f %L n f %L f 1n %L n f f 1n %L n f 1n %L f n %L n f f n %L f n %L f f %L 1 f f & 1 & f f & 1 %L f & 1 %L f f &O %L f f &O f & %L f f & f & &O f f & &O f &O f & & 1 f f & & &O f 1 & &O f & & & f f & & & f f & & & f f & & 1 f f & & & f 1 & & f

PAGE 43

7DEOH FRQWLQXHG &O f &O & f &O & f & n 1n & n f f & n 1n %L f &n 1n %L f f &On n %L f f &On n f &On n %L f f &On n f & n &On n f f &n &On n f n &On n f & n & n 1n f f & n & n &On f 1n & n &On f & n & n & n f f &n &n & n f f &n &n & n f f &On & n 1n f f &On &n &n f 1n &n &n f n &On n f n &On &n f n &On &n f & %L f f & f &n n f &n n f & & f f & & f & f & &n n f f & &n n f n &n n f & & & n f

PAGE 44

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 + f ,OO f f f + f f f f + f f f f + f f f f +n f f f f + n f f f f +n f f f f +D +E +D +E 7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG + & & f f + & + f + & & f + & & f f + & & f + & & f f + & & f + n &On f f + n & n & n f f + n & n & n f + n & n &n f f +n & n & n f +n &n &n f ,OO f +n &n & n f & %L f f +D +E f +D +E f f

PAGE 45

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E ƒ F ƒ D GHJ L6 GHJ \ GHJ 9 $ GFDLF J FPn .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf f f f f f f f AfAAAp A n 7ULFOLQLF 3 [ [ + % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0RGH 6FDQ UDQJH %DFNJURXQG 6FDQ UDWH GHJ UDQJH GHJ 5DQJH RI K N 0R .D FRVFDQ 6\PPHWULFDOO\ RYHU r DERXW .DO RIIVHW DQG LQ Z IURP .f PLQ 1LO ‘ K A N V PD[LPXP PD[LPXP 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII [ 0R.Df FPn 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 5Zr bf 5 LQW 0D[ bf VKLIWHVG PLQ SHDN LQ GLII IRXU PDS PD[ SHDN LQ GLII IRXU PDS H $f H ƒf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH ) DQG )F UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG ZDV Zc)c )F ,f )R, 5 ) , UR , B UG )U f ZKHUH Z D)ff 5 >eZ ) L ‘S L , B , 6 >! _)f L )F c ,S , , L U R , f PQf@ @

PAGE 46

SURWRQDWHG WR PDLQWDLQ FKDUJH EDODQFH 7KH SURWRQ DSSHDUV WR EH ORFDWHG RQ n EDVHG RQ WKH FDUERQ WR R[\JHQ ERQG OHQJWKV 7KH FU\VWDO VWUXFWXUH RI %L17$f DORQJ ZLWK WKH DWRPLF QXPEHULQJ VFKHPH LV JLYHQ LQ WKH WKHUPDO HOOLSVRLG GUDZLQJ LQ )LJXUH $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ +\GURJHQ DWRP FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b &U\VWDO GDWD DUH JLYHQ LQ 7DEOH 7KH FRPSOH[ FRQVLVWV RI D VLQJOH %L,,,f FRRUGLQDWHG WR D FRPSOHWHO\ GHSURWRQDWHG 17$ WULDQLRQ &RPSOHWH GHSURWRQDWLRQ RI 17$ LV QHFHVVDU\ WR PDLQWDLQ FKDUJH EDODQFH EXW SURGXFHV D QHXWUDO FRPSOH[ WKDW LV RQO\ VOLJKWO\ PRUH VROXEOH WKDQ WKH SUHYLRXVO\ PHQWLRQHG %L3,&f 7KH 17$ OLJDQG FRRUGLQDWHV LQ D WHWUDGHQWDWH IDVKLRQ WKURXJK WKH VLQJOH QLWURJHQ 1 DQG VLQJO\ WKURXJK RQH DWRP IURP HDFK RI WKH WKUHH FDUER[\ODWH JURXSV 7KH FRRUGLQDWLRQ VSKHUH RI HLJKW GRQRU DWRPV VKRZQ LQ )LJXUH LV FRPSOHWHG E\ WZR ZDWHU PROHFXOHV DQG DQG WZR FDUER[\ODWH R[\JHQV IURP DQ DGMDFHQW OLJDQG L DQG nL $V LQ WKH VKDULQJ RI FDUER[\ODWH R[\JHQV SURGXFHV D nGLPHUOLNHn XQLW $ YLHZ RI WKH %L+('7$f FRPSOH[ LV VKRZQ LQ )LJXUH DORQJ ZLWK WKH DWRPLF QXPEHULQJ VFKHPH $WRPLF

PAGE 47

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 48

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 %L f f f f 1 f f f f f f f f n f f f f f f f f n f f f f f f f f n f f f f f f f f f f f f &O f f f f &On f f f f & f f f f &n f f f f & f f f f & n f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8 FDOFXODWHG DV 8HT 8LM Dr DGr ZKHUH $Q LV WKH GRW SURGXFW RI WKH LWK DQG GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 49

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ DWRPV RI FRPSRXQG 1 %L f %L f %L f L %L f %L f n L %L f %L f %L f &On 1 &n f f &On 1 & n f &On 1 %L f &n 1 & n f f & n 1 %L f & n 1 %L f f &O %L f f &O n f & %L f f & n f & %L f f & n f &On &O f f &On &O n f &O n f 1 &On &O f &n & f f &n & n f & n f 1 &n & f & n & f f & n & n f & n f 1 & n & f

PAGE 50

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 +D f +E f +D f +E f +,nD +,n E +n D + n E + n D + nE 7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG +D +E f f +D %L f +E %L f f +D +E f f +D %L f +E %L f f +,n D &On +OnE f f +,nD &On 1 f +,nD &On &O f +OnE &On 1 f f +,n E &On &O f +n D & n +nE f f +n D & n 1 f +n D & n & f +nE & n 1 f f +nE & n & f + n D & n + nE f f + n D & n 1 f +n D & n & f +n E & n 1 f f +n E & n & f

PAGE 51

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E ƒ F ƒ GHJ 9 ƒ GFDLFr FPn .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf f f f f f &+1%L f + 0RQRFOLQLF 3 Q [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0RGH 6FDQ UDQJH 6\PPHWULFDOO\ RYHU ;R 0R.D RMVFDQ DERXW .DO PD[LPXP %DFNJURXQG 6FDQ UDWH GHJ UDQJH GHJ 5DQJH RI K N ; f RIIVHW DQG LQ Z IURP .DO PLQ K e N VLV PD[LPXP 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII L 0R.ff PPn 0LQLPXP PD[LPXP WUDQVPLVLQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 L9 bf 5LQWn bf 0D[ VKLIWHVG H PLQ SHDN LQ GLII IRXU PDS H ƒnf PD[ SHDN LQ GLII IRXU PDS H ƒf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH ) DQG )F UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU )XQFWLRQ PLQLPL]HG ZDV Z U LG 5Z /,Z V 9=Z ,I 7, , 7" , A R L U R )FL , , )Fn_f )F_f ,, ) P L S L , R , DPSOLWXGHV ZKHUH Z D)f ,W" f , O )f+n fQ!@

PAGE 52

FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ 7DEOHV DQG FRQWDLQ WKH K\GURJHQ DWRP FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV UHVSHFWLYHO\ 7KH FU\VWDO VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU UHOHYDQW GDWD UHJDUGLQJ WKH FU\VWDO GDWD FROOHFWLRQ DQG VWUXFWXUH UHILQHPHQW DUH JLYHQ LQ 7DEOH 7KH FRPSOH[ FRQVLVWV RI D VLQJOH ('7$ PROHFXOH FRRUGLQDWLQJ LQ D KH[DGHQWDWH IDVKLRQ WKURXJK ERWK QLWURJHQV 1 DQG 1 DQG VLQJO\ WKURXJK RQH 2 DWRP IURP HDFK RI WKH IRXU FDUER[\ODWH JURXSV 7KH FRRUGLQDWLRQ VSKHUH VKRZQ LQ )LJXUH FRQWDLQLQJ HLJKW GRQRU DWRPV LV FRPSOHWHG E\ WZR FDUER[\ODWH R[\JHQV nL DQG nL IURP D QHLJKERULQJ FRPSOH[ 7KHUH DUH QR FRRUGLQDWHG ZDWHU PROHFXOHV 7KH OLJDQG UHPDLQV VLQJO\ SURWRQDWHG LQ WKH FU\VWDOOLQH VWDWH WR PDLQWDLQ D FKDUJH JLYLQJ ULVH WR WKH QRWDWLRQ +('7$ 7KH %L+('7$f QHXWUDO PROHFXOH DSSHDUV WR EH PRUH VROXEOH WKDQ SRVVLEO\ GXH WR WKH SUHVHQFH RI WKH VLQJOH LRQL]DEOH SURWRQ 7KLV SURWRQ KDV EHHQ DVVLJQHG WR RQ WKH EDVLV RI ERQG OHQJWKV LQ WKH FDUER[\ODWH JURXSV ,Q FDUER[\ODWHV WR WKH & ERQG GLVWDQFHV DUH VWDWLVWLFDOO\ HTXLYDOHQW LQGLFDWLQJ FRQMXJDWLRQ RI WKH GRXEOH ERQG DIWHU GHSURWRQDWLRQ 7KH & ERQG GLVWDQFHV LQ FDUER[\ODWH DUH QRW VWDWLVWLFDOO\ HTXLYDOHQW GLIIHULQJ E\ ƒ LQGLFDWLQJ D QRQFRQMXJDWHG V\VWHP

PAGE 53

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 54

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 %L f f f f f f n f f f f f f f f n f f f f f f f f n f f f f f f f f n f f f f 1 f f f f 1 f f f f &O f f f f &On f f f f & f f f f & n f f f f & f f f f & n f f f f & f f f f &n f f f f & f f f f & f f f f f f f f n f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT =L=M XLS DLr DMr $LM ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG MW GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 55

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG %L f %L f %L f n L %L f %L f n %L f 1 %L f 1 %L f &On %L f f &On n f & n %L f f & n n f & n %L f f & n n f & n %L f f & n n f &O 1 & f f &O 1 & f &O 1 %L f & 1 & f f & 1 %L f & 1 %L f f & 1 & f f & 1 & f & 1 %L f & 1 & f f & 1 %L f & 1 %L f f &On &O 1 f f &On n f &On &O f n &On &O f & n & 1 f f & n n f & n & f n & n & f & n & 1 f f & n n f & n & f n & n & f & n & 1 f f & n n f &n & f n &n & f & & 1 f f 1 & & f

PAGE 56

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; < ] 8 +, +OD +OE +D +E +D +E +D +E +D +E +D +E +D +E +H +n D +nE +n F

PAGE 57

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG +, &On f f +, %L f +OD &O +OE f f +OD &O &On f +OD &O 1 f +OE &O &On f f +OE &O 1 f +D & +E f f +D & & n f +D & 1 f +E & & n f f +E & 1 f +D & +E f f +D & & n f +D & 1 f +E & & n f f +E & 1 f +D & +E f f +D & & n f +D & 1 f +E & & n f f +E & 1 f +D & +E f f +D & & f +D & 1 f +E & & f f +E & 1 f +D & +E f f +D & 1 f +D & & f +E & 1 f f +E & & f +D +E f f +D +H f +E +H f f +n D 2n +nE f f +n D 2n +n F f +nE 2n +n F f f +n F 2n +2E f f

PAGE 58

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E $ F $ M6 GHJ 9 $ G&DLF J FPn .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf f f f f f A‘AAApr + 0RQRFOLQLF &F [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0R.D 0RGH FMVFDQ 6FDQ UDQJH 6\PPHWULFDOO\ n RYHU ;R DERXW .DO PD[LPXP ; f %DFNJURXQG RIIVHW DQG LQ FR IURP .DO PD[LPXP 6FDQ UDWH GHJ PLQn UDQJH GHJ 5DQJH RI K N K N 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII [ 0R.Df PPn 0LQLPXP PD[LPXP WUDQVPLVLQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D ,f 1R RI YDULDEOHV 5 L"Zr bf 6LQW bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H ƒnf PD[ SHDN LQ GLII IRXU PDS H $nf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH )f DQG )f UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG ZDV Z_) 5 =, ,I , UR 5f W! I 6 >eZ c ) ,S , f A & , n R R , S , A F ,S ? ?WF?I LUR, RO , )J @ PQf @ )B_f ZKHUH Z >R ^)f f ;O)

PAGE 59

)LJXUH VKRZV D WKHUPDO HOOLSVRLG SORW RI WKH %L'73$f FRPSOH[ LQFOXGLQJ WKH DWRPLF QXPEHULQJ VFKHPH $WRPLF FRRUGLQDWHV DQG VHOHFWHG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ 7DEOHV DQG JLYH WKH K\GURJHQ DWRP FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV UHVSHFWLYHO\ 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD DUH JLYHQ LQ 7DEOH 7KH FRPSOH[ FRQWDLQV WKH RFWDGHQWDWH OLJDQG '73$ ZKLFK FRRUGLQDWHV WKURXJK WKUHH QLWURJHQV 1, 1 DQG VLQJO\ WKURXJK RQH DWRP IURP HDFK RI WKH ILYH FDUER[\ODWH JURXSV &RPSOHWH GHSURWRQDWLRQ RI WKH OLJDQG SURGXFHV D FKDUJH ZKLFK LV EDODQFHG E\ WKH %L DQG WZR JXDQLGLQLXP f FDWLRQV $Q DWWHPSW ZDV PDGH WR V\QWKHVL]H WKH FRPSOH[ ZLWKRXW JXDQLGLQLXP FRXQWHUFDWLRQV EXW WKLV GLG QRW \LHOG D FU\VWDOOLQH SURGXFW 7KH %L,,,f LV QLQHFRRUGLQDWH ZLWK WKH QLQWK FRRUGLQDWLRQ SRVLWLRQ WDNHQ E\ D FDUER[\ODWH R[\JHQ nL IURP DQRWKHU %L'73$f DJDLQ \LHOGLQJ D nGLPHUOLNHn DUUDQJHPHQW 2I WKH IRXU ELVPXWK FDUER[\ODWH FRPSOH[HV %L'73$f LV WKH PRVW VROXEOH GXH WR WKH SUHVHQFH RI D QHW FKDUJH RQ WKH FRPSOH[ $ WKHUPDO HOOLSVRLG SORW DQG DWRPLF QXPEHULQJ VFKHPH IRU 6$6&+$F LV VKRZQ LQ )LJXUH $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQn K\GURJHQ DWRPV RI DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ +\GURJHQ DWRP FRRUGLQDWHV DQG ERQG GLVWDQFHV

PAGE 60

RU )LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 61

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 %L f f f f f f f f n f f f f f f f f n f f f f f f f f n f f f f f f f f n f f f f f f f f n f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f &On f f f f & f f f f &n f f f f & f f f f & n f f f f & f f f f &n f f f f & f f f f &n f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f 1LO f f f f 1 f f f f 1 f f f f & f f f f 1 f f f f 1 f f f f 1 f f f f 2LO f f f f f f f f f f f f f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT OLOM 8L" Dr DMr $LM ZKHUH LV WKH GRW SURGXFW RI WKH LWK DQG MWD GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 62

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG %L f n L %L f %L f %L f %L f %L f 1, %L f 1 %L f 1 %L f &On %L f f &On n f &n %L f f &n n f & n %L f f & n n f & n %L f f & n n f &n %L f f &n n f &O 1 & f f &O 1 & f &O 1 %L f & 1 & f f & 1 %L f & 1 %L f f & 1 & f f & 1 & f & 1 %L f & 1 & f f & 1 %L f & 1 %L f f & 1 & f f & 1 & f & 1 %L f & 1 & f f & 1 %L f & 1 %L f f &On &O 1 f f &On n f &On &O f n &On &O f &n & 1 f f & n n f & n & f n & n & f

PAGE 63

7DEOH FRQWLQXHG & n & 1 f f &n n f & n & f n & n & f & n & 1 f f & n n f & n & f n & n & f &n & 1 f f &n n f &n & f n &n & f & & 1 f f 1 & & f & & 1 f f 1 & & f 1LO &,2 1 f f 1 &,2 1 f f 1 &,2 1LO f f 1 & 1 f f 1 & 1 f f 1 & 1 f f 7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 +OD f f f f +OE f f f f +D f f f f +E f f f f +D +E +D f f f f +E f f f f +D f f f f +E f f f f +D f f f +E f f f +D f f f f +E f f f f +D f f f f

PAGE 64

7DEOH FRQWLQXHG $WRP ; 9 ] 8 +E f f f f +D f f f f +E f f f f +LOD +OOE +D +E +D +E +D +E +D +E +D +E 7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG +OD &O +OE f f +OD &O &On f +OD &O 1 f +OE &O &On f f +OE &O 1 f +D & +E f f +D & & n f +D & 1 f +E & &n f f +E & 1 f +D & +E f f +D & & n f +D & 1 f +E & & n f f +E & 1 f +D & +E f f +D & & n f +D & 1 f +E & & n f f +E & 1 f +D & +E f f +D & &n f +D & 1 f

PAGE 65

7DEOH FRQWLQXHG +E & &n f f +E & 1 f +D & +E f f +D & & f +D & 1 f +E & & f f +E & 1 f +D & +E f f +D & 1 f +D & & f +E & 1 f f +E & & f +D & +E f f +D & & f +D & 1 f +E & & f f +E & 1 f +D & +E f f +D & 1 f +D & & f +E & 1 f f +E & & f +LOD 1LO +OOE f f +LOD 1LO &,2 f +OOE 1LO &,2 f f +D 1 +E f f +D 1 &,2 f +E 1 &,2 f f +D 1 +E f f +D 1 &,2 f +E 1 &,2 f f +D 1 +E f f +D 1 & f +E 1 & f f +D 1 +E f f +D 1 & f +E 1 & f f +D 1 +E f f +D 1 & f +E 1 & f f

PAGE 66

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &UYVWDO GDWD .f D $ f E ƒ f F ƒ f GHJ f 9 ƒ f GFDLF J FPn .f (PSLULFDO IRUPXOD &+12% f + )RUPXOD ZW J &U\VWDO V\VWHP 0RQRFOLQLF 6SDFH JURXS 3 Q = )222f HOHFWURQV &U\VWDO VL]H PPf [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0R.D 0RGH FMVFDQ 6FDQ UDQJH 6\PPHWULFDOO\ RYHU ;R DERXW .DO PD[LPXP ; f %DFNJURXQG RIIVHW DQG LQ Df IURP .DO PD[LPXP 6FDQ UDWH GHJ PLQn UDQJH GHJ 5DQJH RI K N K V N V VLV 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII L 0R.Df PPn 0LQLPXP PD[LPXP WUDQVPLVLQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 5Zr bf 5LQI bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H ƒf PD[ SHDN LQ GLII IRXU PDS H ƒnf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH )f DQG )f UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ 5 5Z *; L V L r ) >!_)_ PLQLPL]HG ZDV Z _)&c Lf =c L )Fc f c ) M @ c )F c f PQf @ c)F )c ‘) O UF ZKHUH Z D)ff R

PAGE 67

DQG DQJOHV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ 7DEOH GHWDLOV WKH K\GURJHQ ERQGLQJ LQWHUDFWLRQV DQG WKH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b ZKLFK LV VKRZQ ZLWK RWKHU FU\VWDO GDWD LQ 7DEOH 7KH FU\VWDO VWUXFWXUH RI UHYHDOV WKH OLJDQG 6$6& ERQGHG WR DQ DFHWLF DFLG +$Ff PROHFXOH ([WHQVLYH K\GURJHQ ERQGLQJ LV REVHUYHG LQ WKLV VWUXFWXUH ERWK ZLWKLQ WKH 6$6& PROHFXOH DQG EHWZHHQ WKH 6$6& DQG +$F 7KH HQWLUH VHPLFDUED]RQH nDUPn LV URWDWHG VR DV WR PD[LPL]H WKH K\GURJHQ ERQGLQJ LQWHUDFWLRQ EHWZHHQ WKH OLJDQG K\GUR[\O K\GURJHQ + DQG 1 7KLV OHDYHV WKH PROHFXOH LQ D SRVLWLRQ WR LQWHUDFW ZLWK +$F 7KH 1E K\GURJHQ +D LV LQYROYHG LQ K\GURJHQ ERQGLQJ WKURXJK WKH +$F FDUERQ\O R[\JHQ D ZKLOH WKH OLJDQG FDUERQ\O R[\JHQ D K\GURJHQ ERQGV ZLWK WKH +$F K\GUR[\O K\GURJHQ $OO K\GURJHQ ERQGLQJ LQWHUDFWLRQV LQFOXGLQJ WKRVH FUHDWHG E\ V\PPHWU\ DUH JLYHQ LQ 7DEOH 7KH DELOLW\ WR V\QWKHVL]H D VHULHV RI ELVPXWK FRPSOH[HV ZLWK ZLGHO\ YDU\LQJ VROXELOLWLHV FRPHV DW D WLPH ZKHQ PRUH DWWHQWLRQ LV EHLQJ IRFXVHG RQ WKH VROLG VWDWH FRRUGLQDWLRQ FKHPLVWU\ RI ELVPXWK,,,f DQG LWV UROH DV D WKHUDSHXWLF DJHQW 6XEVHTXHQW VWXGLHV RI FRRUGLQDWLRQ SRO\KHGUD DQG DQWLEDFWHULDO DFWLYLW\ KDYH IXUWKHU VHUYHG WR FKDUDFWHUL]H WKLV HOHPHQW 7KH SRVLWLYH UHVXOWV REWDLQHG KHUHLQ ZDUUDQW IXUWKHU DWWHPSWV DW WKH V\QWKHVLV DQG FKDUDFWHUL]DWLRQ RI ELVPXWK FRPSOH[HV

PAGE 68

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ 0HWK\O K\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 69

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 f f f f D f f f f 1E f f f f D f f f f E f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT 7L7L XLM DLr DMr $LM ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG GLUHFW VSDFH XQLW FHOO YHFWRUV 7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG & f & D f & 1E f & D f & E f 1 1 & f f & 1 f & 1 1 f f & &O & f f & &O &O f f &O &O & f f & & f f & & &O f

PAGE 70

7DEOH FRQWLQXHG & &O f & & & f f & & & f f & & & f f &O & & f 1 & &O f D & 1E f D & 1 f 1E & 1 f &,2 & D f f &,2 & E f D & E f 7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 + f f f f +D f f f f +E f f f f +E f f f f + f f f f + f f f f + f f f f + f f f f + f f f f + f f f f + + + + + +

PAGE 71

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG + & f f +D 1E +E f f +D 1E & f +E 1E & f f +E E & f f + 1 & f f + 1 1 f + & & f f + & & f + & & f f + & & f + & & f f + & & f + & &O f f + & & f + & 1 f f + & &O f + &,2 + f f + &,2 + f + &,2 & f + &,2 + f f + &,2 & f + &,2 & f f + &,2 + f f + &,2 + f + &,2 & f + &,2 + f f + &,2 & f + &,2 & f f

PAGE 72

7DEOH +ERQGLQJ IRU FRPSRXQG + $ '+ + $ '+ $f $f rf + 1 f f f + D f f 1E +D D f f f 1E +D DX f f 1E +E 1 f f f 1E +E D f f 1 + 8L f f f E +E D f f f (OHPHQWV JHQHUDWHG E\ V\PPHWU\ RSHUDWRUV L [ \ ] LL [ \ ] LLL LY [ \ [

PAGE 73

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E ƒ F ƒ D GHJ GHJ \ GHJ 9 $ GFDLF J FP .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf f f f f f AAA 0RQRFOLQLF 3 Q [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0RGH 6FDQ UDQJH %DFNJURXQG 6FDQ UDWH GHJ PLQ UDQJH GHJ 5DQJH RI K N 0R.f RU FMVFDQ 6\PPHWULFDOO\ RYHU r DERXW .R RIIVHW DQG LQ X IURP .DO e e K N PD[LPXP PD[LPXP 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII I-/ 0R.Df FP 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 L& bf 5LQI bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS PD[ SHDN LQ GLII IRXU PDS H H $@ $ b b b r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH )f DQG )Q UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG 5 , c )R 5Z c)c V >!_)_ ZDV c)ROcf c)Fcf )Fcf _)R RO )f@ Z = c ) = B PQf @ )F ? f ZKHUH Z D)f

PAGE 74

&+$37(5 &203/(;(6 2) %,6087+,,,f 9$/(1&( %21' 6806 $1' &225',1$7,21 32/<+('5$ ,QWURGXFWLRQ 2XU VWXGLHV RI ELVPXWK FRRUGLQDWLRQ FKHPLVWU\ KDYH EHHQ GLUHFWHG PDLQO\ WRZDUG WKH V\QWKHVLV RI VDWLVIDFWRU\ FU\VWDOOLQH VDPSOHV ZLWK ZKLFK WR JDLQ D FOHDUHU XQGHUVWDQGLQJ RI ELVPXWK FRPSOH[HV LQ WKH VROLG VWDWH :LWK WKLV JRDO FRPHV WKH VRPHWLPHV GDXQWLQJ WDVN RI HYDOXDWLQJ WKH QDWXUH ERWK RI WKH ELVPXWK FRRUGLQDWLRQ HQYLURQPHQW LQ WHUPV RI LWV JHRPHWU\ DQG RI WKH HOHFWURQLF QDWXUH RI WKH ELVPXWK LRQ LWVHOI 7KH IRUPDWLRQ RI D FRPSOH[ RI DQ\ PHWDO LRQ ZLWK D PXOWLGHQWDWH OLJDQG UHSUHVHQWV D FRPSURPLVH EHWZHHQ WKH VWHULF GHPDQGV RI WKH OLJDQG DQG WKH VWHULF DQG HOHFWURQLF UHTXLUHPHQWV RI WKH PHWDO LRQ 7KH ODUJH VL]H RI WKH %L,,,f LRQ IDFLOLWDWHV FRRUGLQDWLRQ VSKHUHV FRQWDLQLQJ XS WR QLQH GRQRU DWRPV EXW FDQ SRVH GLIILFXOWLHV IRU OLJDQGV WKDW DUH HLWKHU VPDOO RU VWHULFDOO\ KLQGHUHG 7ZR IHDWXUHV WKDW DSSHDU WR EH FRPPRQ WR WKH ELVPXWK FDUER[\ODWR FRPSOH[HV UHSRUWHG LQ FKDSWHU WRJHWKHU ZLWK WKH FLWUDWH FRPSOH[HV UHSRUWHG HDUOLHUn DUH WKH WHQGHQF\ WR IRUP

PAGE 75

nGLPHU OLNHn VXEXQLWV DQG WKH SUHVHQFH RI ZLGHO\ YDULDEOH PHWDOGRQRU DWRP ERQG GLVWDQFHV 7KHVH FRXOG EH UHODWHG ERWK WR WKH FRRUGLQDWLRQ VSKHUH JHRPHWU\ LPSRVHG E\ WKH OLJDQG DQG WR WKH SRVVLEOH VWHUHRFKHPLFDO DFWLYLW\ RI WKH ELVPXWK ,,,f V ORQH SDLU 4XHVWLRQV RI WKH SUHVHQFH RU ODFN RI D VWHUHRFKHPLFDOO\ DFWLYH ORQH SDLU RQ WKH %L,,,f LRQ KDYH EHHQ UDLVHG LQ D YDULHW\ RI IRUXPV 3UREOHPV DULVH LQ WKH GHWHUPLQDWLRQ RI WKH FRUUHFW R[LGDWLRQ VWDWH IRU WKH ELVPXWK LRQ LI RQH FRQVLGHUV WKDW WKH RQO\ GLIIHUHQFH EHWZHHQ %L2+f ZKHUH %L IRUPDOO\ PDLQWDLQV D IRUPDO FKDUJH DQG %L2f LQ ZKLFK %L IRUPDOO\ PDLQWDLQV D IRUPDO FKDUJH LV WKH SUHVHQFH RI WZR SURWRQV ZKLFK PD\ RU PD\ QRW EH GHWHFWDEOH LQ DQ [UD\ FU\VWDO VWUXFWXUH $V ZDWHU PROHFXOHV RIWHQ SOD\ D SDUW LQ WKH LQQHU FRRUGLQDWLRQ VSKHUHV RI ELVPXWK FRPSOH[HV ZLWK VWHULFDOO\ KLQGHUHG OLJDQGV WKLV GLVWLQFWLRQ EHFRPHV DQ LPSRUWDQW RQH ,Q RUGHU WR DVVHVV WKH SRVVLEOH VWHUHRFKHPLFDO DFWLYLW\ RI D %L,,,f ORQH SDLU ZH KDYH VRXJKW D PHDQV E\ ZKLFK WR HYDOXDWH WKH LQQHU FRRUGLQDWLRQ VSKHUH JHRPHWULHV RI FRPSOH[HV DQG WR VHH LI VXFK D ORQH SDLU LV GHWHFWDEOH YLD D nYDFDQWn FRRUGLQDWLRQ VLWH &RRUGLQDWLRQ SRO\KHGUD ZHUH DQDO\]HG E\ FDOFXODWLQJ WKH DQJOHV EHWZHHQ IDFLDO SODQHV HDFK FRQVLVWLQJ RI WKUHH DWRPV ERQGHG WR WKH FHQWUDO ELVPXWK DWRP /LNHZLVH D PHWKRG IRU GHWHUPLQLQJ WKH PHWDO LRQ YDOHQF\ FRQVLVWHG RI XWLOL]LQJ WKH LGHD RI

PAGE 76

YDOHQFH ERQG VXPV KHQFHIRUWK 9%6 7KLV nYDOHQFH VXPn LV REWDLQHG E\ DGGLQJ WKH FRQWULEXWLRQV WR YDOHQF\ RI HDFK PHWDOGRQRU DWRP ERQG ZKLFK DUH FDOFXODWHG IURP VWDQGDUG ERQG OHQJWKV )URP WKHVH GDWD ZH KDYH JDLQHG D FOHDUHU SLFWXUH RI WKH HOHFWURQLF QDWXUH RI %L,,,f LQ WKH VROLG VWDWH DV ZHOO DV LWV FRPPRQ FRRUGLQDWLRQ JHRPHWULHV 'LVFXVVLRQ DQG 5HVXOWV 4XHVWLRQV UHJDUGLQJ WKH H[LVWHQFH DQGRU VWHUHRFKHPLFDO DFWLYLW\ RI D %L V ORQH SDLU RI HOHFWURQV KDYH PDGH WKH XVH RI 9%6 D GHVLUDEOH WRRO :H KDYH XWLOL]HG WKLV PHWKRG WR GHWHUPLQH WKH RYHUDOO YDOHQFH RI WKH %L FDWLRQ LQ HDFK RI RXU ELVPXWK FRPSOH[HV 7KH 9%6 PHWKRG GHSHQGV RQ WKH HPSLULFDO GHWHUPLQDWLRQ RI D VHW RI VWDQGDUG FDWLRQDQLRQ ERQG OHQJWKV U' IURP ODUJH VHWV RI FU\VWDO GDWD $ WDEOH RI VXFK YDOXHV KDV EHHQ UHSRUWHG E\ %URZQ DQG $OWHUPDWW KHQFHIRUWK %$ DORQJ ZLWK DQ DOJRULWKP IRU SUHGLFWLQJ WKH U4 YDOXHV RI ERQGV QRW OLVWHG $ PRUH UHFHQW PHWKRG IRUPXODWHG E\ 2n.HHIIH DQG %UHVH KHQFHIRUWK 2% ZDV DOVR XWLOL]HG ,Q WKH %$ PHWKRG WKH FRQWULEXWLRQ V RI DQ\ JLYHQ FDWLRQDQLRQ ERQG WR FDWLRQ YDOHQFH LV JLYHQ E\ WKH HTXDWLRQ V H[S > U'Uf %@ ZKHUH U DQG % DUH HPSLULFDOO\ GHWHUPLQHG SDUDPHWHUV DQG U LV WKH H[SHULPHQWDOO\ REVHUYHG FDWLRQDQLRQ ERQG OHQJWK ,Q

PAGE 77

WKLV PDQQHU WKH R[LGDWLRQ VWDWH 9L RI DQ\ FDWLRQ L PD\ EH FDOFXODWHG YLD WKH HTXDWLRQ 9L 6LM M ZKHUH VLM DUH WKH YDOHQFH FRQWULEXWLRQV IURP ERQGV EHWZHHQ WKH FDWLRQ L DQG HDFK GRQRU DWRP M 7KH SDUDPHWHU % ZDV GHWHUPLQHG HPSLULFDOO\ WR EH ƒ ,Q WKH 2% PHWKRG D VLPLODU PDWKHPDWLFDO IRUP LV XVHG )RU DQ\ JLYHQ FDWLRQ L WKH YDOHQFH 9LW LV FDOFXODWHG E\ VXPPLQJ WKH FRQWULEXWLRQV WR YDOHQF\ YLMU RI HDFK ERQG EHWZHHQ L DQG LWV GRQRU DQLRQV M 9LM 9 &RQWULEXWLRQV WR YDOHQFH YLM DUH FDOFXODWHG YLD YsM H[S >^5LM GL-f -E@ ZKHUH GM LV WKH H[SHULPHQWDOO\ GHWHUPLQHG ERQG OHQJWK EHWZHHQ L DQG M DQG E LV WKH XQLYHUVDO FRQVWDQW WDNHQ WR EH ƒ 7KH SDUDPHWHU 5LM LV WKH ERQG YDOHQFH SDUDPHWHU ,Q D JHQHUDO VHQVH WKLV LV WKH OHQJWK RI D VLQJOH ERQG EHWZHHQ L DQG M EXW LV XVXDOO\ GHWHUPLQHG WR EH WKH ERQG OHQJWK LQ FRPSRXQGV WKDW DUH VWDEOH DW QRUPDO WHPSHUDWXUHV DQG SUHVVXUHV )RU H[DPSOH IRU WKH ERQG EHWZHHQ 1D DQG ) LV WDNHQ WR EH WKH ERQG GLVWDQFH LQ FU\VWDOOLQH 1D) QRW WKDW REVHUYHG LQ GLDWRPLF 1D)

PAGE 78

9DOXHV RI 5sM IRU DQ\ JLYHQ ERQG PD\ EH FDOFXODWHG E\ XVLQJ WKH H[SUHVVLRQ 5Q UL UM UU F \IFMf FLUL FMUM ZKHUH U LV D nVL]Hn SDUDPHWHU DQG F LV D VHFRQG SDUDPHWHU IRU DQ\ HOHPHQW 9DOXHV RI U DQG F ZHUH GHWHUPLQHG HPSLULFDOO\ VR DV WR PLQLPL]H WKH VTXDUHG GHYLDWLRQ EHWZHHQ FDOFXODWHG DQG REVHUYHG YDOXHV RI ,Q VRPH FDVHV WKH YDOXH RI F IRU D SDUWLFXODU HOHPHQW VKRZHG D VWURQJ FRUUHODWLRQ WR WKH $OOUHG5RFKRZ HOHFWURQHJDWLYLW\ IRU WKDW HOHPHQW 7KHVH ZHUH IL[HG ZKHUH DSSURSULDWH %RWK WKH %$ DQG 2% PHWKRGV ZHUH XVHG WR FDOFXODWH WKH %L FDWLRQ YDOHQF\ IRU HDFK ELVPXWK FRPSOH[ LQ ZKLFK %LGRQRU DWRP GLVWDQFHV ZHUH NQRZQ 7KH 9%6 XWLOL]LQJ HDFK PHWKRG IRU WKH FRPSOH[HV %L',3,&f %L17$f %L('7$f %L'73$f DQG %L'$3$$+f DORQJ ZLWK WKH FRQWULEXWLRQV IURP HDFK GRQRU DWRP DUH JLYHQ LQ 7DEOHV WR 9DOXHV RI U XVHG LQ WKH %$ PHWKRG ZHUH ƒ IRU %L DQG ƒ IRU %L1 7KH YDOXHV IRU 5A XVHG LQ WKH 2% PHWKRG ZHUH ƒ IRU %L DQG ƒ IRU %L1 7KH FDOFXODWHG 9%6 YDOXHV UDQJH IURP WR IRU WKH %$ PHWKRG DQG IURP WR IRU WKH 2% PHWKRG 9DOXHV RI s IRU WKH %$ PHWKRG VXJJHVW WKDW WKH DFWXDO YDOHQFH RI WKH %L FDWLRQ LV LQGHHG %RWK 9%6

PAGE 79

7DEOH &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L',3,&f +',3,&f +$Ff n + %$ 2% %L1 %L1n %L %Ln %L2OL %L %Ln %L 7DEOH &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L 17$f f + %$ 2% %L1 %L %L %L %L %L %LL %Ln L 9%6 7DEOH &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ %L +('7$f f + f %$ 2% %L1O %L1 %L %L %L %L %LnL %LnL 9%6

PAGE 80

7DEOH &RQWULEXWLRQV WR YDOHQF\ RI HDFK %LGRQRU DWRP ERQG DQG WRWDO 9%6 IRU WKH FRPSOH[ *XDQf %L '73$f f + %$ %L1O %1 %1 %L %L %L %L %L %LnL 9%6 7DEOH &RQWULEXWLRQV DWRP ERQG DQG %L'$3$$+f$Ff %$ %1 %1 %1 %L %L %LD %LE %LD %LE 9%6 2% WR YDOHQF\ RI HDFK %LGRQRU WRWDO 9%6 IRU WKH FRPSOH[ + 2% PHWKRGV DUH DSSDUHQWO\ XVHIXO LQ GHWHUPLQLQJ PHWDO LRQ YDOHQFLHV LQ FRRUGLQDWLRQ FRPSOH[HV DOWKRXJK WKH %$ PHWKRG KDV SURGXFHG YDOXHV FORVHU WR ZKDW DUH SUHGLFWHG 7KLV FRQFHSW PD\ WKHQ EH XVHIXO LQ GLVWLQJXLVKLQJ EHWZHHQ %L,,,f DQG %L9f ,Q DVVHVVLQJ WKH FRRUGLQDWLRQ HQYLURQPHQW RI DQ\ SDUWLFXODU FDWLRQ LW LV RIWHQ XVHIXO WR DVVLJQ D VSHFLILF

PAGE 81

SRO\KHGURQ WKDW FRUUHVSRQGV WR WKH JHRPHWULF DUUDQJHPHQW RI GRQRU DWRPV DERXW WKH FHQWUDO PHWDO LRQ :KLOH WKLV DVVLJQPHQW LV LPSRUWDQW LW LV E\ QR PHDQV D WULYLDO SURFHVV 6LQFH PDQ\ OLJDQGV DUH VWHULFDOO\ KLQGHUHG ERWK E\ WKHLU RZQ EXON DQG E\ WKH VL]H RI WKH PHWDO LRQ WR ZKLFK WKH\ DUH FRRUGLQDWHG WKH SRO\KHGUD DUH RIWHQ QRW FOHDUO\ GHILQHG DQG WKH DVVLJQPHQW EHFRPHV VRPHZKDW DUELWUDU\ :H KDYH XWLOL]HG D PHWKRG E\ ZKLFK WKH SURFHVV RI SRO\KHGURQ DVVLJQPHQW PD\ EH PDGH VRPHZKDW PRUH TXDQWLWDWLYH WKURXJK WKH XVH RI D FRPSXWHU SURJUDP WKDW DQDO\]HV WKH SRVLWLRQV RI WKH PHWDO DQG GRQRU DWRPV $IWHU LQSXWLQJ WKH DWRPLF FRRUGLQDWHV RI WKH PHWDO DQG GRQRUV WKUHHDWRP SODQHV DUH FKRVHQ XQWLO DOO SRVVLEOH RXWVLGH SODQHV KDYH EHHQ ORFDWHG $Q nRXWVLGHn SODQH LV GHWHFWHG E\ GHWHUPLQLQJ LI DOO RWKHU GRQRU DWRPV DUH RQ RQH VLGH RI WKLV SODQH 2QFH DOO RI WKH RXWVLGH SODQHV KDYH EHHQ ORFDWHG WKH SURJUDP FDOFXODWHV WKH DQJOHV EHWZHHQ DOO SODQHV ZKLFK VKDUH DQ HGJH DV ZHOO DV OLVWLQJ KRZ PDQ\ WKUHHDWRP IDFHV PHHW DW HDFK GRQRU DWRP 2QFH WKHVH GDWD KDYH EHHQ JHQHUDWHG WKH DQJOHV DQG YHUWLFHV RI DQ\ FRPSRXQG PD\ EH FRPSDUHG WR WKH DQJOHV DQG YHUWLFHV IRU DOO SRVVLEOH LGHDOL]HG SRO\KHGUD ZKLFK FRUUHVSRQG WR WKDW SDUWLFXODU FRRUGLQDWLRQ QXPEHU )RU H[DPSOH FRRUGLQDWLRQ QXPEHUV RI HLJKW QRUPDOO\ VKRZ VTXDUH DQWLSULVP GRGHFDKHGURQ RU ELFDSSHG WULJRQDO SULVP DUUDQJHPHQWV WKH IRUPHU WZR EHLQJ WKH PRUH FRPPRQ 7KH

PAGE 82

PRVW FRPPRQ SRO\KHGUD IRU QLQHFRRUGLQDWH FRPSOH[HV DUH WKDW RI WKH FDSSHG VTXDUH DQWLSULVP DQG WULFDSSHG WULJRQDO SULVP ,Q ORRNLQJ IRU D SRO\KHGURQ VXFK DV WKH VTXDUH DQWLSULVP RQH ZRXOG H[SHFW WR ILQG WZR VTXDUH IDFHV ZLWK HDFK IDFH FRQVLVWLQJ RI WZR WULDQJXODU IDFHV ZLWK DQ DQJOH RI rRU rf EHWZHHQ WKHP $ ELFDSSHG WULJRQDO SULVP VKRXOG VKRZ RQO\ RQH VXFK VTXDUH IDFH DQG WKH GRGHFDKHGURQ ZRXOG VKRZ QRQH 3RO\KHGUD KDYH EHHQ DVVLJQHG IRU WKH FRPSOH[HV %L '$3$$+f $Ff f %L ',3,&f +',3,&f f %L 17$f f %L+('7$f f DQG %L '73$f f 1R GHWHUPLQDWLRQ ZDV SRVVLEOH IRU FRPSRXQG DV DQ [UD\ VWUXFWXUH ZDV QRW REWDLQHG 7KH SRO\KHGUD IRU WKH WKUHH HLJKWFRRUGLQDWH FRPSOH[HV DQG DSSHDU WR EH EHVW GHVFULEHG DV ELFDSSHG WULJRQDO SULVPV 7KH SRO\KHGUD IRU WKH QLQH FRRUGLQDWH FRPSOH[HV DQG PD\ EH GHVFULEHG DV PRQRFDSSHG VTXDUH DQWLSULVPV &RPSRXQG KRZHYHU KDV D JHRPHWU\ WKDW PLJKW EH EHWWHU GHVFULEHG DV D GLVWRUWHG PRQRFDSSHG VTXDUH SULVP ,Q DOO FDVHV WKH SRO\KHGUD VKRZ GLVWRUWLRQV IURP WKH LGHDOL]HG JHRPHWULHV &RPSRXQGV DQG DUH VKRZQ LQ )LJXUHV DQG UHVSHFWLYHO\ 7KH GHVLJQDWLRQ RI ELFDSSHG WULJRQDO SULVP LV EDVHG RQ WKH SUHVHQFH RI VHYHUDO FKDUDFWHULVWLFV ,Q D ZHOOGHILQHG VTXDUH IDFH FRQWDLQLQJ n DQG LV QRWHG DORQJ ZLWK WZR WULDQJXODU IDFHV DQG nf 7KH FDSSLQJ DWRPV DUH 1 DQG n ,Q FRPSRXQG

PAGE 83

WKH VTXDUH IDFH FRQVLVWV RI WKH DWRPV 1O DQG n ZLWK WKH WZR WULDQJXODU IDFHV GHILQHG E\ n DQG 1O 7KH FDSSLQJ DWRPV DUH n DQG 1 &RPSRXQG UHSUHVHQWHG VRPHZKDW RI D SUREOHP LQ DVVHVVLQJ LWV FRRUGLQDWLRQ SRO\KHGURQ 7KH ODFN RI D FOHDUO\ GHILQHG VTXDUH IDFH WKDW FRQWDLQLQJ WZR WKUHHDWRP IDFHV ZLWK DQ DQJOH RI r EHWZHHQ WKHPf VXJJHVWHG WKDW D GRGHFDKHGURQ ZDV WKH SURSHU GHVLJQDWLRQ 8SRQ YLHZLQJ WKH FRRUGLQDWLRQ VSKHUH KRZHYHU WKH ODFN RI WZR FOHDUO\ GHILQHG SHUSHQGLFXODU IRXUDWRP IDFHV QHFHVVDU\ IRU D GRGHFDKHGURQ VXJJHVWHG WKDW WKH GHVLJQDWLRQ RI ELFDSSHG WULJRQDO SULVP ZDV LQGHHG SURSHU 7KLV GLVWRUWHG SRO\KHGURQ FRQVLVWV RI D VTXDUH IDFH GHILQHG E\ n D $F DQG WZR WULDQJXODU IDFHV FRQWDLQLQJ n 1n D DQG 1 $F UHVSHFWLYHO\ 7KH FDSSLQJ DWRPV DUH DQG n 7KLV GLVWRUWLRQ PD\ EH FDXVHG ERWK E\ WKH ULJLGLW\ RI WKH ',3,& OLJDQGV DQG E\ WKH SUHVHQFH RI WKH %L,,,f ORQH SDLU ZKLFK ZRXOG UHVLGH LQ WKH WKLUG FDSSLQJ SRVLWLRQ LQ WKH WULJRQDO SULVP DUUDQJHPHQW EXW ZRXOG QRW EH HYLGHQW LQ WKH GRGHFDKHGURQ ,Q FRPSRXQG VKRZQ LQ )LJXUH WKH EHVW DUUDQJHPHQW DSSHDUV WR EH WKDW RI D PRQRFDSSHG VTXDUH DQWLSULVP 7KH FRPSOH[ VKRZV WZR GLVWLQFW VTXDUH IDFHV ZKLFK FRQVLVW RI 1 n DQG 1 7KH ODWWHU IDFH LV FDSSHG E\ DWRP 1O &RPSRXQG VKRZQ LQ )LJXUH PDLQWDLQV D JHRPHWU\ LQWHUPHGLDWH EHWZHHQ WKDW

PAGE 84

1f 1f Df Ef f Ef )LJXUH 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH FDSSHG VTXDUH DQWLSULVP DUUDQJHPHQW

PAGE 85

)LJXUH 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH ELFDSSHG WULJRQDO SULVP DUUDQJHPHQW

PAGE 86

)LJXUH 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH ELFDSSHG WULJRQDO SULVP DUUDQJHPHQW

PAGE 87

)LJXUH 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH ELFDSSHG WULJRQDO SULVP DUUDQJHPHQW

PAGE 88

)LJXUH 9LHZ RI WKH SRO\KHGURQ IRU FRPSRXQG VKRZLQJ WKH FDSSHG VTXDUH DQWLSULVP DUUDQJHPHQW

PAGE 89

RI D PRQRFDSSHG VTXDUH DQWLSULVP DQG PRQRFDSSHG VTXDUH SULVP 7KH XQFDSSHG DQG FDSSHG VTXDUH IDFHV FRQVLVW RI E E DQG 1 D 1 D UHVSHFWLYHO\ 7KH FDSSLQJ DWRP LV 1 7KH SUHVHQFH RI WKH %L,,,f V ORQH SDLU DSSHDUV WR EH VXEVWDQWLDWHG E\ WKH UHVXOWV RI RXU YDOHQFH ERQG VXP FDOFXODWLRQV 7KH IDFW WKDW WKH 9%6 FRQVLVWHQWO\ VKRZHG YDOXHV QHDU WKH SUHGLFWHG YDOXH RI LQ FRPSOH[HV RI GLIIHUHQW FRRUGLQDWLRQ QXPEHUV VXJJHVWV ERWK WKDW WKH DVVLJQPHQW RI D FKDUJH WR WKH ELVPXWK LRQ LV DQ DSSURSULDWH RQH DQG WKDW WKLV PHWKRG PD\ EH XVHIXO LQ GLVWLQJXLVKLQJ EHWZHHQ %L,,,f DQG %L9f LQ FRRUGLQDWLRQ FRPSOH[HV 9DOXHV REWDLQHG XVLQJ WKH %$ PHWKRG UDQJHG IURP WR DQG DUH LQ EHWWHU DJUHHPHQW ZLWK WKH SUHGLFWHG YDOXH WKDQ WKRVH REWDLQHG LQ WKH % PHWKRG ,Q WKHRU\ D VWHUHRFKHPLFDOO\ DFWLYH ORQH HOHFWURQ SDLU VXFK DV WKH %L,,,f V HOHFWURQV VKRXOG PDQLIHVW LWVHOI DV DQ RSHQ RU nYDFDQWn FRRUGLQDWLRQ VLWH 7KLV ZRXOG OHDG LQ WKH FDVHV RI RXU FRPSOH[HV WR WKH ORQH SDLU RFFXS\LQJ WKH WKLUG FDSSLQJ SRVLWLRQ LQ WKH ELFDSSHG WULJRQDO SULVPV RU WKH VHFRQG FDSSLQJ SRVLWLRQ LQ WKH PRQRFDSSHG VTXDUH DQWLSULVPV 1HLWKHU RI WKHVH VLWXDWLRQV UHSUHVHQW XQXVXDO RU XQUHDVRQDEOH SRO\KHGUD )XUWKHU VWXGLHV ZLOO FRQWLQXH WR VKHG OLJKW RQ WKH TXHVWLRQ RI ORQH SDLU VWHUHRFKHPLFDO DFWLYLW\

PAGE 90

&+$37(5 %,6087+ &203/(;(6 $ 678'< 2) $17,%$&7(5,$/ $&7,9,7< ,QWURGXFWLRQ %LVPXWK FRPSRXQGV KDYH EHHQ XVHG RYHU WKH \HDUV IRU D QXPEHU RI PHGLFLQDO SXUSRVHV LQFOXGLQJ WKH WUHDWPHQW RI JDVWULF GLVRUGHUV V\SKLOLV DQG WKH WRSLFDO GLVLQIHFWLRQ RI ZRXQGV 8VH RI ELVPXWK GUXJV ZDQHG IRU D QXPEHU RI \HDUV LQ WKH PLG WZHQWLHWK FHQWXU\ DV PHGLFDO GRFWRUV GLVFRXUDJHG WKH XVH RI KHDY\PHWDO FRQWDLQLQJ VDOWV %LVPXWK WKHUDSLHV KDYH PDGH D FRPHEDFN KRZHYHU ZLWK WKH FRQWLQXHG XVH RI ELVPXWK VXEVDOLF\ODWH DV D WUHDWPHQW IRU JDVWURLQWHVWLQDO GLVRUGHUV DQG WKH XVH RI FROORLGDO ELVPXWK VXEFLWUDWH &%6f DV D WUHDWPHQW IRU SHSWLF XOFHUV ,W ZDV IRXQG UHFHQWO\ WKDW &%6 LV DFWLYH DJDLQVW WKH VWRPDFK EDFWHULXP +HOLFREDFWHU 3\ORUL WKRXJKW WR EH D FDXVDO IDFWRU LQ WKH GHYHORSPHQW RI SHSWLF XOFHUV ,W LV WKLV DFWLYLW\ WKDW KDV SURPSWHG RXU LQYHVWLJDWLRQ RI WKH DQWLEDFWHULDO SURSHUWLHV RI WKH ELVPXWK FRPSOH[HV V\QWKHVL]HG LQ WKLV SURMHFW :H KDYH XWLOL]HG WKH ELVPXWK FRPSOH[HV %L17$f %L+('7$f DQG %L3,&f LQ D VWXG\ RI DQWLEDFWHULDO DFWLYLW\ 7KH FRPSOH[HV ZHUH XVHG WR FRDW ILOWHU SDSHUV LQ

PAGE 91

DQ DWWHPSW WR VLPXODWH D EDQGDJH FRDWLQJ 7KHVH ILOWHU SDSHUV ZHUH WKHQ LPPHUVHG LQ DJDU VROXWLRQV FRQWDLQLQJ RQH RI VHYHUDO W\SHV RI EDFWHULD LQFOXGLQJ (VFKHULFKLD &ROL 3VHXGRPRQDV $HUXJLQRVD DQG 6WDSK\ORFRFFXV $XUHXV 7KH HIIHFW RI WKH FRDWHG ILOWHU SDSHUV RQ EDFWHULDO JURZWK ZDV REVHUYHG DQG LV UHSRUWHG KHUHLQ ([SHULPHQWDO 0DWHULDOV $OO ELVPXWK FRPSOH[HV XVHG ZHUH V\QWKHVL]HG DQG SXULILHG DV RXWOLQHG LQ &KDSWHU n%ODQNVn LQFOXGHG ILOWHU SDSHUV GLSSHG LQ + DQG VROXWLRQV RI 17$ DQG %Lf& 17$ DQG %Lf& ZHUH REWDLQHG FRPPHUFLDOO\ DQG XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ )LOWHU SDSHUV XVHG ZHUH :KDWPDQ TXDOLWDWLYH JUDGH FP FLUFOHV )LOWHU 3DSHU 3URGXFWLRQ )LOWHU SDSHUV ZHUH GULHG LQ GHVVLFDWRUV DQG ZHLJKHG SULRU WR XVH )RU HDFK FRPSRXQG D VDWXUDWHG VROXWLRQ ZDV SUHSDUHG E\ VWLUULQJ DQ H[FHVV RI WKH VROLG DQG P/ + LQ D YLDO DW D FRQVWDQW WHPSHUDWXUH IRU PLQ 7KH WHPSHUDWXUH ZDV PDLQWDLQHG E\ LPPHUVLQJ WKH YLDO LQ DQ RLO EDWK KHDWHG WR r& )LOWHU SDSHUV ZHUH WKHQ VRDNHG WKRURXJKO\ LQ WKH VROXWLRQV SODFHG LQWR GHVVLFDWRUV XQWLO GU\ DQG UHZHLJKHG WR GHWHUPLQH DSSUR[LPDWH DPRXQWV RI VROLG DEVRUEHG RQWR WKH ILOWHU SDSHU 7KLV SURFHGXUH ZDV XVHG WR

PAGE 92

SURGXFH ILOWHU SDSHUV FRDWHG ZLWK %L3,&f %L17$f %L+('7$f %L'73$fn 17$ %Lf& DQG + DORQH %DFWHULDO *URZWK 6ROXWLRQV FRQWDLQLQJ (VFKHULFKLD &ROL ZHUH PDGH E\ FRPELQLQJ PHOWHG SODWHFRXQW DJDU 'LIFRf ZLWK JP/ RI WULSKHQ\OWHWUD]ROLXP FKORULGH KHQFHIRUWK 77&f G\H DQG DSSUR[LPDWHO\ FRORQ\IRUPLQJ XQLWV &)8f RI ( &ROL & SHU P/ 7ZR VROXWLRQV HDFK RI 3VHXGRPRQDV $HUXJLQRVD $7&& f DQG 6WDSK\ORFRFFXV $XUHXV )'$ f ZHUH PDGH RQH ZLWKRXW 77& DQG RQH ZLWK RQO\ JP/ RI WKH G\H $OLTXRWV RI DERXW P/ ZHUH SODFHG LQ VWHULOH PP GLDPHWHU SHWUL SODWHV DORQJ ZLWK PP GLDPHWHU FLUFXODU FXWRXWV IURP WKH SUHSDUHG ILOWHU SDSHUV 7KHVH ZHUH DOORZHG WR LQFXEDWH IRU K DQG WKH EDFWHULDO JURZWK PRQLWRUHG E\ REVHUYLQJ HLWKHU WKH UHG FRORU RI WKH UHGXFHG 77& RU D JHQHUDOO\ GDUNHU FRORU LQ WKH SODWHV ZLWKRXW 77& 7KH GHJUHH RI EDFWHULDO LQKLELWLRQ ZDV TXDQWLILHG E\ PHDVXULQJ WKH UDGLL RI WKH FRORUOHVV ]RQHV VXUURXQGLQJ WKH ILOWHU SDSHU FXWRXWV 'LVFXVVLRQ %LVPXWK FRPSRXQGV KDYH EHHQ XVHG LQ WKH SDVW IRU WKH WRSLFDO GLVLQIHFWLRQ RI ZRXQGV ,W ZDV RXU KRSH WKDW WKH VHULHV RI FDUER[\ODWH FRPSOH[HV V\QWKHVL]HG KHUHLQ ZRXOG SURYH WR EH HIIHFWLYH DW LQKLELWLQJ EDFWHULDO JURZWK DQG

PAGE 93

ZRXOG VKHG VRPH OLJKW RQ WKH LPSRUWDQFH RI ZDWHU VROXELOLW\ 2Q QHLWKHU FRXQW ZHUH ZH GLVDSSRLQWHG %DFWHULDO JURZWK ZDV HYLGHQW LQ SHWUL GLVKHV FRQWDLQLQJ 77& E\ WKH UHG FRORU RI WKH UHGXFHG G\H $UHDV ZKHUH EDFWHULDO JURZWK ZDV LQKLELWHG UHPDLQHG FRORUOHVV 6LQFH 77& KDV SURYHQ WR EH WR[LF WR 3 $HUXJLQRVD DQG 6 $XUHXV UXQV ZHUH GRQH ZLWK DQG ZLWKRXW WKH G\H :KHUH 77& ZDV XVHG RQO\ WUDFH DPRXQWV ZHUH DGGHG WR JLYH D FOHDUHU FRQWUDVW EHWZHHQ DUHDV RI EDFWHULDO JURZWK DQG LQKLELWLRQ :LWKRXW 77& DUHDV RI LQKLELWLRQ ZHUH PRUH GLIILFXOW WR GLVFHUQ WKH RQO\ GLIIHUHQFH EHWZHHQ WKHVH DQG DUHDV RI EDFWHULDO JURZWK EHLQJ D YHU\ VOLJKW FKDQJH LQ FRORU DQG FODULW\ RI WKH VROXWLRQ 7KH LQKLELWLRQ RI EDFWHULDO JURZWK RFFXUUHG PRVW SURPLQHQWO\ LQ FRPSOH[HV RI ORZ WR PRGHUDWH ZDWHU VROXELOLW\ 7KHVH LQFOXGHG WKH FRPSOH[HV RI %L,,,f ZLWK 3,& 17$ DQG ('7$ 7KH 17$ FRPSOH[ VKRZHG WKH PRVW FRQVLVWHQWO\ KLJK OHYHOV RI LQKLELWLRQ )LOWHU SDSHUV FRDWHG ZLWK %L'73$fn DQG %L',3,&f+',3,&f WKH PRVW ZDWHU VROXEOH RI WKH FRPSOH[HV VKRZHG OLWWOH EDFWHULDO LQKLELWLRQ 7DEOH VKRZV WKH DSSUR[LPDWH DPRXQWV RI VHYHUDO RI WKH FRPSOH[HV WKDW ZHUH DEVRUEHG RQWR WKH ILOWHU SDSHUV 7KHVH YDOXHV ZHUH REWDLQHG E\ VXEWUDFWLQJ WKH LQLWLDO ZHLJKW RI WKH ILOWHU SDSHUV IURP WKHLU GU\ ZHLJKWV DIWHU VRDNLQJ LQ VDWXUDWHG VROXWLRQV RI WKH FRPSOH[HV

PAGE 94

%ODQNV ZHUH UXQ E\ VRDNLQJ ILOWHU SDSHUV LQ VDWXUDWHG VROXWLRQV RI 17$ %Lf& DQG + DORQH WKHQ UHSHDWLQJ WKH SURFHGXUH IRU EDFWHULDO LQKLELWLRQ DV RXWOLQHG DERYH 17$ ZDV FKRVHQ VLQFH WKH %L17$f FRPSOH[ VKRZHG WKH PRVW FRQVLVWHQW DQWLEDFWHULDO DFWLYLW\ DQG %Lf& EHFDXVH LW LV H[WUHPHO\ LQVROXEOH DQG ZDV RXU VRXUFH RI %L,,,f LQ PRVW RI WKH FRPSOH[ V\QWKHVHV ,Q QR FDVH GLG WKHVH EODQNV VKRZ DQ\ QRWLFHDEOH LQKLELWLRQ RI EDFWHULDO JURZWK 7KLV ZDV GRQH WR HVWDEOLVK WKUHH WKLQJV f WKDW WKH OLJDQG DORQH LV QRW UHVSRQVLEOH IRU DQ\ REVHUYHG DQWLEDFWHULDO DFWLYLW\ f WKDW RXU RULJLQDO VRXUFH RI WKH %L,,,f LRQ GRHVQnW VKRZ JUHDWHU DQWLEDFWHULDO DFWLYLW\ WKDQ WKH VXEVHTXHQW FRPSOH[HV PDGH IURP LW DQG f WKDW %L,,,f PXVW EH SUHVHQW LQ D FRPSRXQG WKDW VKRZV DW OHDVW D VPDOO GHJUHH RI ZDWHU VROXELOLW\ ,Q FDVHV ZKHUH WKH LQKLELWLRQ RI EDFWHULDO JURZWK ZDV VLJQLILFDQW D UDGLXV RI LQKLELWLRQ ZDV PHDVXUHG 7KLV ZDV GRQH IURP WKH FHQWHU RI WKH PP FLUFXODU ILOWHU SDSHU WR WKH HGJH RI WKH FRORUOHVV ]RQHV RI LQKLELWLRQ 0HDVXUHPHQWV ZHUH WDNHQ RQ VHYHUDO GLIIHUHQW WULDOV WR SURGXFH DYHUDJH UHVXOWV ,Q VHYHUDO RI WKH SHWUL GLVKHV ZKHUH 77& ZDV QRW XVHG QR DUHD RI LQKLELWLRQ FRXOG EH GLVFHUQHG 7KHVH UHVXOWV DUH RXWOLQHG LQ 7DEOH 7KH UHVXOWV RI RXU DQWLEDFWHULDO VWXGLHV RXWOLQHG LQ WKH SUHYLRXV WDEOHV VKRZ WKDW ELVPXWK FRPSOH[HV RI PRGHUDWH WR ORZ VROXELOLW\ PD\ EH XVHG VXFFHVVIXOO\ WR LQKLELW WKH

PAGE 95

0DVV RI VRDNLQJ FRPSOH[HV RQ LQ VDWXUDWHG ILOWHU SDSHUV DIWHU VROXWLRQV %L3,&f %L17$f %L+('7$f J J J %L '73$f n 17$ + J J J 7DEOH 'LDPHWHUV RI LQKLELWLRQ IRU %L3,&f %L17$f DQG %L+('7$f LQ HDFK W\SH RI EDFWHULD %L3,&ff %L17$f %L+('7$f ( &ROL FP FP FP 3 $HUXJLQRVD ZLWK 77&f ZLWKRXW 77&f FP 1$r FP 1$r FP a FP 6 $XUHXV ZLWK 77&f ZLWKRXW 77&f FP FP FP FP FP 1$r LQGLFDWHV DUHDV RI LQKLELWLRQ QRW GLVFHUQLEOH JURZWK RI VHYHUDO W\SHV RI EDFWHULD 7KH HIIHFWLYHQHVV RI WKHVH FRPSRXQGV DSSHDUV WR UHTXLUH D EDODQFH EHWZHHQ D OHYHO RI VROXELOLW\ WKDW IUHHV HQRXJK RI WKH %L,,,f WR LQKLELW EDFWHULDO JURZWK DQG D OHYHO RI LQVROXELOLW\ WKDW NHHSV WKH %L,,,f ORFDOL]HG LQ D VPDOO DUHD 2XU HQFRXUDJLQJ UHVXOWV ZLOO ZDUUDQW IXUWKHU LQYHVWLJDWLRQV LQWR WKH DQWLEDFWHULDO SURSHUWLHV RI WKHVH DQG RWKHU ELVPXWK FRPSOH[HV

PAGE 96

&+$37(5 &203/(;(6 2) %,6087+ ,,,f :,7+ 3+263+21,& $&,'6 $ 6<17+(7,& $1' 63(&7526&23,& 678'< ,QWURGXFWLRQ 5HVXOWV RXWOLQHG LQ FKDSWHU VKRZ WKDW ELVPXWK FRPSOH[HV ZLWK WKH OLJDQGV 17$ DQG ('7$ KDYH GHPRQVWUDWHG FRQVLGHUDEOH DFWLYLW\ DJDLQVW (VFKHULFKLD &ROL 6WDSK\ORFRFFXV $XUHXV DQG 3VHXGRPRQDV $HUXJLQRVD 7KHVH DFWLYLWLHV DSSHDU WR EH UHODWHG WR WKH UHODWLYH ZDWHU VROXELOLWLHV RI WKH FRPSOH[HV 7KH OHDVW VROXEOH FRPSOH[ %L17$f VKRZHG WKH PRVW FRQVLVWHQWO\ VWURQJ DQWLEDFWHULDO DFWLYLW\ ZKLOH WKH PRUH VROXEOH %L'73$f %L+',3,&f ',3,&f DQG %L'$3$$+f FRPSOH[HV VKRZHG OLWWOH WR QR REVHUYDEOH DFWLYLW\ ,Q &KDSWHU ZH VKRZHG WKDW ERWK SURWRQDWHG DQG QRQSURWRQDWHG ELVPXWK FRPSOH[HV FRXOG EH IRUPHG DQG WKDW DV LQ *XDQf %L '73$f WKDW WKH VROXELOLW\ RI WKH UHVXOWLQJ FRPSOH[ FRXOG EH PDQLSXODWHG ZLWK WKH XVH RI DSSURSULDWH FRXQWHUFDWLRQV 7R IXUWKHU XWLOL]H WKLV SURSHUW\ ZH KDYH DWWHPSWHG WKH V\QWKHVLV RI DQ DQDORJRXV VHULHV RI ELVPXWK FRPSOH[HV ZLWK OLJDQGV LQ ZKLFK SKRVSKRQLF DFLG JURXSV UHSODFH WKH DFHWLF DFLG JURXSV 7KH SKRVSKRQLF DFLG IXQFWLRQDO JURXS FRQWDLQV

PAGE 97

WZR LRQL]DEOH SURWRQV ZKLFK SURYLGHV D JUHDWHU RSSRUWXQLW\ WR PDQLSXODWH WKH H[WHQW RI GHSURWRQDWLRQ DQG WKHUHIRUH WKH VROXELOLWLHV RI WKHVH FRPSOH[HV :H KDYH VXFFHVVIXOO\ SUHSDUHG WKH OLJDQGV QLWULORWULVPHWK\OHQHWULSKRVSKRQLF DFLG 173$f DQG HWK\OHQHGLDPLQRWHWUDPHWK\OHQHWHWUDSKRVSKRQLF DFLG ('73$f DQDORJRXV WR WKHLU FRXQWHUSDUWV 17$ DQG ('7$ 7KH OLJDQGV DUH VKRZQ LQ )LJXUHV DQG $WWHPSWV WR V\QWKHVL]H WKH SKRVSKRQLF DFLG DQDORJRXV WR '73$ ZHUH QRW PHW ZLWK VXFFHVV 7KH UHVXOWV IURP WKH V\QWKHVHV RI ELVPXWK FRPSOH[HV ZLWK 173$ DQG ('73$ DORQJ ZLWK WKHLU LQIUDUHG VSHFWUD DUH SUHVHQWHG KHUHLQ ([SHULPHQWDO 0DWHULDOV $OO UHDJHQWV LQFOXGLQJ SKRVSKRURXV DFLG +3 $OGULFKf HWK\OHQHGLDPLQH 1+ &+f 1+ FRQFHQWUDWHG +&O FRQFHQWUDWHG +1 b DTXHRXV IRUPDOGHK\GH +&2 DQG DFHWRQH &+&f&+ )LVKHUf HWKDQRO &+&+2+ )ORULGD 'LVWLOOHUVf ELVPXWK VXEFDUERQDWH %Lf& ELVPXWK QLWUDWH %L 1f r + DQG DPPRQLXP FKORULGH 1+& -7 %DNHUf ZHUH XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ 7KH V\QWKHWLF SURFHGXUHV IRU WKH 173$ DQG ('73$ OLJDQGV ZHUH DGDSWHG IURP PHWKRGV SUHYLRXVO\ UHSRUWHG 6\QWKHVLV RI 173$ f 7R D VROXWLRQ RI J FU\VWDOOLQH +3 DQG J 1+& LQ P/ + ZDV DGGHG P/ FRQH +&O 7KLV VROXWLRQ

PAGE 98

)LJXUH 1LWULORWULVPHWK\OHQHWULSKRVSKRQLF $FLG 173$f +2A +a &+ &+ ,3 2 +2? +A 2 1 U &+ +& 2+ UR+ R 2+ Ur+ 2 )LJXUH (WK\OHQHGLDPLQRWHWUDPHWK\OHQH WHWUDSKRVSKRQLF $FLG ('73$f

PAGE 99

ZDV KHDWHG WR UHIOX[ LQ DQ RLO EDWK 2YHU DSSUR[ PLQ P/ RI b +&2 ZDV DGGHG GURSZLVH WR WKH VROXWLRQ $IWHU UHIOX[LQJ IRU DQ DGGLWLRQDO K PLQ WKH VROXWLRQ ZDV SRXUHG LQWR D EHDNHU DQG DOORZHG WR HYDSRUDWH 7KH UHVXOWLQJ WKLFN V\UXS\ VROXWLRQ ZDV GLVVROYHG LQ P/ &+2+ DQG DOORZHG WR HYDSRUDWH 2YHU DSSUR[ PRQWK YHU\ VORZ FU\VWDOOL]DWLRQ \LHOGHG ODUJH VWDUOLNH FOXPSV RI FOHDU FRORUOHVV FU\VWDOV 7KH FU\VWDOV ZHUH VHSDUDWHG IURP WKH V\UXS\ PRWKHU OLTXRU DQG ZDVKHG ZLWK HWKDQRODFHWRQH EXW ZHUH VWLOO VWLFN\ DQG GLIILFXOW WR KDQGOH $QDO &DOF )RXQGf IRU &+13 & f + f 1 f 6\QWKHVLV RI ('73$ f 7R D VROXWLRQ RI J PROf +3 LQ P/ + ZDV DGGHG P/ FRQH +& DQG J PROf 1+ &+f 1+ $IWHU KHDWLQJ WR UHIOX[ P/ b +& ZDV DGGHG GURSZLVH RYHU K 7KH VROXWLRQ ZDV KHDWHG IRU DQ DGGLWLRQDO PLQ WKHQ SODFHG RQWR D URWRYDF DQG WKH YROXPH UHGXFHG WR DSSUR[ P/ &U\VWDOV ZHUH YLVLEOH DQG FRQWLQXHG WR IRUP DV WKH UHPDLQLQJ VROXWLRQ HYDSRUDWHG 6HYHUDO KDUYHVWV \LHOGHG FRORUOHVV FU\VWDOV ZKLFK ZHUH ZDVKHG ZLWK + DQG VWRUHG IRU IXUWKHU XVH 7KH PS RI r LV FRQVLVWHQW ZLWK WKH OLWHUDWXUH $QDO &DOF)RXQGf IRU &+123+ & f + f 1 f

PAGE 100

6\QWKHVLV RI %L 173$f f $ VROXWLRQ RI WKH OLJDQG ZDV SUHSDUHG E\ GLVVROYLQJ J PPROf LQ P/ + 7KH S+ ZDV DSSUR[LPDWHO\ 7R WKLV VROXWLRQ ZDV DGGHG J PPROf %Lf& 7KH YROXPH ZDV LQFUHDVHG WR P/ E\ WKH DGGLWLRQ RI P/ + DQG UHIOX[HG IRU VHYHUDO GD\V $ ZKLWH VROLG SHUVLVWHG WKURXJKRXW ZKLFK ZDV VXEVHTXHQWO\ ILOWHUHG RII DQG DOORZHG WR GU\ $QDO &DOF)RXQGf IRU &+13%L & f + f 1 f 6\QWKHVLV RI %L +173$f 173$f 12f f + f 7R D VROXWLRQ RI J PPROf 173$ LQ P/ + S+ DSSUR[ f ZDV DGGHG J PPROf %L 1f r + $ ILQH ZKLWH VROLG DSSHDUHG LPPHGLDWHO\ $IWHU VWLUULQJ ZLWK KHDW IRU VHYHUDO KRXUV WKH VROLG ZDV ILOWHUHG RII $QDO &DOF )RXQGf IRU &+13%L & f + f 1 f 6\QWKHVLV RI %Lf ('73$f f +2 f 6ROLG %Lf& J PPROff ZDV DGGHG GLUHFWO\ WR D VROXWLRQ RI J PPROf ('73$ LQ P/ + 7KH UHDFWLRQ PL[WXUH ZDV KHDWHG WR ERLOLQJ IRU K GXULQJ ZKLFK P/ + ZHUH DGGHG 7KLV PL[WXUH ZDV DOORZHG WR FRRO DQG WKH ZKLWH VROLG ILOWHUHG RII DQG DOORZHG WR GU\ $QDO &DOF )RXQGf IRU &+13%L & f + f 1 f

PAGE 101

6\QWKHVLV RI %L +('73$f 12f ff + f 7KH OLJDQG ('73$ J PPROff ZDV GLVVROYHG LQ P/ + 7R WKLV VROXWLRQ ZDV DGGHG J PPROf %L 1f + GLVVROYHG LQ D PL[WXUH RI P/ + DQG P/ FRQH +1 7KH DGGLWLRQ ZDV GRQH VORZO\ RYHU DSSUR[LPDWHO\ PLQ $IWHU P/ RI WKLV VROXWLRQ KDG EHHQ DGGHG D ZKLWH SUHFLSLWDWH IRUPHG LPPHGLDWHO\ DQG SHUVLVWHG WKURXJKRXW WKH UHVW RI WKH UHDFWLRQ 7KH PL[WXUH ZDV VWLUUHG DW r& IRU K WKHQ ILOWHUHG $QDO &DOF)RXQGf IRU &+13%L & f + f 1 f 6ROXELOLW\ 6WXGLHV 7KH VROXELOLWLHV RI FRPSRXQGV ZHUH WHVWHG LQ ERWK GLOXWH 0f DQG FRQFHQWUDWHG +1 DQG LQ FRQFHQWUDWHG +&O ,Q DOO FDVHV D IHZ PJ ZHUH SODFHG LQ D YLDO ZLWK P/ + DQG WKH DFLGV DGGHG GURSZLVH XQWLO GLVVROXWLRQ WRRN SODFH ,Q QR FDVH GLG GLOXWH +1 QRWLFDEO\ LQFUHDVH WKH VROXELOLW\ RI WKHVH FRPSRXQGV $OO ZHQW LQWR VROXWLRQ DIWHU WKH DGGLWLRQ RI GURSV RI FRQH +1 $OO VROLGV DOVR GLVVROYHG LQ GURSV RI FRQH +&O &U\VWDOV REWDLQHG IURP HYDSRUDWLRQ RI LQ +&O ZHUH ILOWHUHG DZD\ IURP WKH PRWKHU OLTXRU DQG VXEPLWWHG IRU DQ [ UD\ DQDO\VLV 7KH FU\VWDOV ZHUH VLPSO\ FRPSRXQG 6SHFWURVFRSLF 6WXGLHV ,QIUDUHG VSHFWUD IRU FRPSRXQGV ZHUH WDNHQ RQ D 3HUNLQ(OPHU 6HULHV )RXULHU 7UDQVIRUP ,QIUDUHG

PAGE 102

6SHFWURSKRWRPHWHU 7KH VROLGV ZHUH JURXQG DQG PXOOHG LQ 1XMRO WKHQ SODFHG EHWZHHQ 1D&O SODWHV 7KH EDFNJURXQG ZDV FROOHFWHG RYHU VL[WHHQ VFDQV DQG VXEVHTXHQWO\ VXEWUDFWHG IURP WKH VDPSOH VSHFWUD 6DPSOH VSHFWUD ZHUH SURGXFHG IURP VL[WHHQ VFDQV DQG VXEVHTXHQW )RXULHU WUDQVIRUPDWLRQV 'LVFXVVLRQ 2XU DWWHPSWV DW WKH V\QWKHVLV RI ELVPXWK FRPSOH[HV ZLWK PRUH YDULDEOH VROXELOLWLHV GLG QRW SURGXFH IDYRUDEOH UHVXOWV 5HDFWLRQV RI WKH EDVLF %L2f & ZLWK SKRVSKRQLF DFLGV 173$ DQG ('73$ SURGXFHG FRPSOH[HV LQ ZKLFK WKH OLJDQGV ZHUH FRPSOHWHO\ GHSURWRQDWHG DQG WKH PD[LPXP UDWLR RI %LOLJDQG ZDV DFKLHYHG 7KH ODFN RI VROXELOLW\ RI WKHVH FRPSOH[HV ZDV XQH[SHFWHG DQG GLG QRW DSSHDU WR EH LQFUHDVHG E\ VXEVWLWXWLQJ WKH OHVV EDVLF %L 1f + LQ WKH V\QWKHWLF SURFHGXUH :KLOH WKH OLJDQGV UHWDLQHG VRPH SURWRQV LQ WKH ODWWHU FDVHV WKH SUHFLSLWDWHV VWLOO VKRZHG D GLVWLQFW ODFN RI VROXELOLW\ 7KH DFLGV +1 DQG +&O ZHUH HPSOR\HG LQ DQ DWWHPSW WR HQKDQFH WKH VROXELOLW\ RI DOO IRXU FRPSOH[HV ,Q DOO FDVHV WKH VROLGV ZHQW LQWR VROXWLRQ DIWHU GURSV RI FRQH +1 RU GURSV RI FRQH +&O KDG EHHQ DGGHG 5HVXOWV ZHUH QRW HQFRXUDJLQJ KRZHYHU ZKHQ FU\VWDOV REWDLQHG DV WKH VROXWLRQ RI %L ('73$f LQ +&O HYDSRUDWHG SURYHG WR EH VLPSO\ WKH OLJDQG ('73$ $GGLWLRQ RI VWURQJ DFLGV QRW RQO\ VROXELOL]HG WKH FRPSOH[HV EXW GHVWUR\HG WKHP DV ZHOO

PAGE 103

&RPSRXQGV ZHUH FKDUDFWHUL]HG E\ HOHPHQWDO DQDO\VHV DQG LQIUDUHG VSHFWURVFRS\ 7KH VSHFWUXP IRU ZDV QRW WDNHQ GXH WR WKH FRQVLVWHQF\ RI WKLV VROLG 6SHFWUD IRU DUH VKRZQ LQ )LJXUHV &RPSRXQG WKH OLJDQG ('73$ VKRZV WKH PRVW GHWDLOHG SHDNV 1XMRO KHUH DQG LQ DOO RWKHU VSHFWUD LV HYLGHQW LQ WKH SHDNV DW RU DURXQG FP FP FP DQG FP 2WKHU SHDNV LQFOXGH WKRVH IRU 32+ VWUHWFKLQJ DW FPn 2+ EHQGLQJ LQ ZDWHUV RI K\GUDWLRQ DW RU DURXQG FPn DQG D ZKROH UDQJH RI SHDNV IURP FPn FRUUHVSRQGLQJ WR WKRVH QRUPDOO\ REVHUYHG LQ PHWK\O SKRVSKRQDWHV 7KH VSHFWUD IRU FRPSRXQGV UHYHDO PXFK OHVV GHWDLO 7KH 32+ VWUHWFKLQJ SHDN ZKLFK RFFXUV DW FP LQ WKH OLJDQG DOO EXW GLVDSSHDUV LQ WKH FRPSOH[HV 3HDNV LQGLFDWLQJ K\GUDWLRQ DW FP DUH VWLOO HYLGHQW 7KH UHJLRQ IURP FP ORVHV PXFK RI LWV GHWDLO DQG EHFRPHV D YHU\ EURDG EDQG HQFRPSDVVLQJ WKLV DUHD EXW VWLOO UHIOHFWV DEVRUSWLRQV DVVRFLDWHG ZLWK PHWK\O SKRVSKRQDWHV :KLOH WKH XVH RI VXFK LQVROXEOH ELVPXWK SKRVSKRQDWH FRPSOH[HV VHHPV OLPLWHG IXUWKHU VWXGLHV PD\ DWWHPSW WR VROXELOL]H WKHVH FRPSOH[HV WR D GHJUHH WKDW D VROLG VWDWH VWUXFWXUH PD\ EH GHWHUPLQHG 6\QWKHWLF SURFHGXUHV XWLOL]LQJ WKHVH OLJDQGV DQG RWKHU PHWDO LRQV PD\ \LHOG FRPSOH[HV WKDW DUH ZDWHU VROXEOH DQG PRUH HDVLO\ FKDUDFWHUL]HG

PAGE 104

)LJXUH ,QIUDUHG VSHFWUXP RI

PAGE 105

)LJXUH ,QIUDUHG VSHFWUXP RI )LJXUH ,QIUDUHG VSHFWUXP RI

PAGE 106

)LJXUH ,QIUDUHG VSHFWUXP RI )LJXUH ,QIUDUHG VSHFWUXP RI

PAGE 107

&+$37(5 &203/(;(6 2) 0$1*$1(6(,,f *$'2/,1,80,,,f (8523,80,,,f $1' <775,80,,,f :,7+ ',$&(7
PAGE 108

ZDWHU PROHFXOHV ,W LV WKLV SKHQRPHQRQ ZKLFK DOORZV WKH GLVHDVHG WLVVXH WR EH GLVWLQJXLVKHG IURP WKH QRUPDO VXUURXQGLQJ WLVVXH $ KLJK GHJUHH RI LQQHU VSKHUH K\GUDWLRQ LQ WKH PHWDO FRPSOH[ LV GHVLUDEOH DV WKLV PD[LPL]HV WKH LQWHUDFWLRQ RI VROYHQW ZLWK WKH PHWDO FHQWHU 7R PLQLPL]H WKH ULVN WDNHQ E\ WKH SDWLHQW LW LV LPSRUWDQW WR XVH FRPSOH[HV WKDW DUH ERWK ZDWHU VROXEOH DQG VWDEOH LQ VROXWLRQ 6LQFH IUHH PHWDO LRQV DQG IUHH OLJDQGV DUH RIWHQ TXLWH WR[LF WKLV GHPDQGV WKDW FRPSOH[HV EH FKRVHQ ZKLFK SRVH QR ULVN RI GHFRPSRVLWLRQ ZKLOH LQ WKH ERG\ ,Q VXPPDU\ D 05, DJHQW PXVW EH D FRPSOH[ RI D SDUDPDJQHWLF PHWDO LRQ ZKLFK LV ERWK ZDWHU VROXEOH DQG VWDEOH HQRXJK WR UHPDLQ LQWDFW WKURXJKRXW WKH GXUDWLRQ RI WKH SURFHGXUH $ EDODQFH PXVW EH IRXQG EHWZHHQ D VWURQJO\ FRRUGLQDWLQJ OLJDQG XVXDOO\ D PXOWLGHQWDWH OLJDQG VXFK DV ('7$ RU '73$ DQG RQH ZKLFK ZLOO DOORZ WKH JUHDWHVW LQWHUDFWLRQ SRVVLEOH EHWZHHQ VROYHQW PROHFXOHV DQG WKH PHWDO FHQWHU %HVLGHV WKHVH SK\VLFDO FULWHULD WKH DJHQW PXVW ORFDOL]H LQ WKH WDUJHW WLVVXH ORQJ HQRXJK WR JLYH D FOHDU LPDJH 7KLV ODWWHU SURSHUW\ LV GHWHUPLQHG HPSLULFDOO\ WKURXJK WULDOV LQ RWKHU RUJDQLVPV :H KDYH DWWHPSWHG WKH V\QWKHVLV RI FRPSOH[HV RI 0Q,,f DQG *G,,,f ZLWK GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf '$3$$+f VKRZQ LQ )LJXUH f ZLWK WKHVH

PAGE 109

)LJXUH GLDFHW\OS\ULGLQH ELVDFHWLF DFLG K\GUD]RQHf '$3$$+f

PAGE 110

FULWHULD LQ PLQG 7KH OLJDQG FRRUGLQDWHV LQ D SHQWDGHQWDWH IDVKLRQ ZKLFK VKRXOG JLYH WKH FRPSOH[ VXEVWDQWLDO VROXWLRQ VWDELOLW\ :LWK D SODQDU OLJDQG DUHDV DERYH DQG EHORZ WKH PHWDO FHQWHU PD\ DIIRUG D JUHDW GHDO RI LQQHU VSKHUH ZDWHUV RI K\GUDWLRQ 7KH OLJDQG LWVHOI PD\ EH DOWHUHG HDVLO\ E\ YDU\LQJ WKH IXQFWLRQDO JURXSV DW WKH HQGV RI WKH K\GUD]RQH nDUPVn 7KLV PD\ VHUYH WR GLUHFW WKH FRPSOH[ WR YDULRXV RUJDQV GHSHQGLQJ RQ ZKLFK IXQFWLRQDO JURXS LV FKRVHQ 7R HVWDEOLVK WKH XVHIXOQHVV RI WKH V\QWKHWLF SURFHGXUH D '$3$$+ FRPSOH[ ZLWK (X,,,f ZDV V\QWKHVL]HG ,Q RUGHU WR PRQLWRU YLD 105 WKH VROXWLRQ VWDELOLW\ RI WKHVH FRPSOH[HV RYHU WLPH D '$3$$+ FRPSOH[ ZLWK WKH GLDPDJQHWLF <,,,f ZKLFK KDV D UDGLXV YHU\ QHDU WKDW RI *G,,,f ZDV V\QWKHVL]HG DV ZHOO 7KH FRPSOH[HV RI '$3$$+ ZLWK 0Q,,f *G,,,f (X,,,f DQG <,,,f DORQJ ZLWK UHVXOWV IURP 105 VWXGLHV ZLOO EH UHSRUWHG KHUHLQ ([SHULPHQWDO 0DWHULDOV $OO UHDJHQWV LQFOXGLQJ PDQJDQHVH FKORULGH WHWUDK\GUDWH 0Q&O\ + 0DOOLQFNURGWf JDGROLQLXP R[LGH *G DQG \WWULXP R[LGH < .HUU0F*HHf HXURSLXP QLWUDWH KH[DK\GUDWH (X 1f + $OIDf GLDFHW\OS\ULGLQH DQG DFHWK\GUD]LGH $OGULFKf SURSDQRO DQG FRQH +1 )LVKHUf ZHUH XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ

PAGE 111

6\QWKHVLV RI 0Q '$3$$+f &LY +2 f $ VROXWLRQ RI '$3$$+ ZDV SUHSDUHG E\ FRPELQLQJ J PPROf GLDFHW\OS\ULGLQH DQG J PPROf DFHWK\GUD]LGH LQ P/ + DW r& ZLWK VWLUULQJ 7R WKLV VROXWLRQ ZDV DGGHG J PPROf 0Q&O+ LQ P/ + 7KH VOLJKWO\ \HOORZ FRORUHG VROXWLRQ ZDV VWLUUHG IRU VHYHUDO KRXUV DW r& WKHQ ILOWHUHG 7KH \HOORZRUDQJH VROLG REWDLQHG XSRQ HYDSRUDWLRQ ZDV UHFU\VWDOOL]HG WZLFH IURP + DQG WKH FU\VWDOV VXEPLWWHG IRU DQ [UD\ DQDO\VLV $QDO &DOF)RXQGf IRU &+1&O0Q & f + f 1 f 6\QWKHVLV RI (X '$3$$+f 12f Y + f 7KH VROXWLRQ RI '$3$$+ ZDV SUHSDUHG E\ FRPELQLQJ J PPROf GLDFHW\OS\ULGLQH DQG J PPROf DFHWK\GUD]LGH LQ P/ + DW r& 7R WKLV VROXWLRQ ZDV DGGHG J PPROf (X 1f + 6WLUULQJ DW r& FRQWLQXHG IRU DSSUR[ K RYHU WKH QH[W WZR GD\V DIWHU ZKLFK WKH VROXWLRQ ZDV ILOWHUHG DQG DOORZHG WR HYDSRUDWH 7KH FRORUOHVV FU\VWDOOLQH VROLG ZDV UHFU\VWDOOL]HG RQFH IURP + DQG WZLFH IURP SURSDQRO DQG VXEPLWWHG IRU DQ [UD\ DQDO\VLV $QDO &DOF )RXQGf IRU &+1(X & f + f 1 f 6\QWKHVLV RI *G '$3$$+f 12f + f $ VROXWLRQ RI '$3$$+ ZDV SUHSDUHG E\ FRPELQLQJ J PPROf GLDFHW\OS\ULGLQH DQG J PPROf DFHWK\GUD]LGH LQ P/ + DW r& 7R WKLV ZDV DGGHG D

PAGE 112

VROXWLRQ RI *G,,,f PDGH E\ GLVVROYLQJ J PPROf *G LQ D PL[WXUH RI P/ FRQH +1 LQ P/ + 7KH OLJKW \HOORZ VROXWLRQ VWLUUHG DW r& IRU K WKHQ ILOWHUHG DQG DOORZHG WR HYDSRUDWH 7KH FRORUOHVV FU\VWDOOLQH SURGXFW ZDV UHFU\VWDOOL]HG RQFH IURP + $QDO &DOF)RXQGf IRU &+1*G & f + f 1 f 6\QWKHVLV RI < '$3$$+f 12ff + f $ PDVV RI J PPROf < ZDV GLVVROYHG LQ D VROXWLRQ RI P/ + ZLWK GURSV FRQH +1 $IWHU KHDWLQJ DOPRVW WR GU\QHVV DQG DGGLQJ P/ + WKH S+ ZDV DSSUR[LPDWHO\ 7R WKLV VROXWLRQ ZDV DGGHG J PPROf GLDFHW\OS\ULGLQH DQG J PPROf DFHWK\GUD]LGH 7KH PL[WXUH ZDV ZDUPHG WR r& DQG VWLUUHG IRU K WKHQ ILOWHUHG DQG DOORZHG WR HYDSRUDWH 7KH FU\VWDOOLQH VROLG ZDV UHFU\VWDOOL]HG RQFH IURP + $QDO &DOF )RXQGf IRU &+1< & f + f 1 f ;UDY 6WUXFWXUDO 6WXGLHV 'DWD IRU FU\VWDOV RI DQG ZHUH FROOHFWHG DW URRP WHPSHUDWXUH RQ D 6LHPHQV 5P9 GLIIUDFWRPHWHU HTXLSSHG ZLWK D JUDSKLWH PRQRFKURPDWRU XWLOL]LQJ 0R.D UDGLDWLRQ ; 2 ƒf )RUW\ UHIOHFWLRQV ZLWK r V A r ZHUH XVHG WR UHILQH WKH FHOO SDUDPHWHUV )XOO LQWHQVLW\ UHIOHFWLRQV ZHUH FROOHFWHG XVLQJ WKH XVFDQ PHWKRG )RXU UHIOHFWLRQV ZHUH PHDVXUHG HYHU\ UHIOHFWLRQV WR PRQLWRU

PAGE 113

LQVWUXPHQW DQG FU\VWDO VWDELOLW\ $EVRUSWLRQ FRUUHFWLRQV ZHUH DSSOLHG EDVHG RQ PHDVXUHG FU\VWDO IDFHV XVLQJ 6+(/;7/ SOXV DEVRUSWLRQ FRHIILFLHQW 7KH VWUXFWXUHV ZHUH VROYHG E\ WKH KHDY\DWRP PHWKRG LQ 6+(/;7/ SOXV IURP ZKLFK WKH ORFDWLRQ RI WKH KHDY\ HOHPHQWV ZHUH REWDLQHG 7KH UHVW RI WKH QRQK\GURJHQ DWRPV ZHUH REWDLQHG IURP VXEVHTXHQW GLIIHUHQFH )RXULHU PDSV 7KH VWUXFWXUHV ZHUH UHILQHG LQ 6+(/;7/ SOXV XVLQJ IXOOPDWUL[ OHDVW VTXDUHV 7KH QRQ+ DWRPV ZHUH WUHDWHG DQLVRWURSLFDOO\ ZKHUHDV WKH SRVLWLRQV RI WKH K\GURJHQ DWRPV ZHUH FDOFXODWHG LQ LGHDO SRVLWLRQV DQG WKHLU LVRWURSLF WKHUPDO SDUDPHWHUV ZHUH IL[HG $OO SDUDPHWHUV ZHUH UHILQHG DQG e Z )_ )F f ZDV PLQLPL]HG Z OD ) f D )f NOf^>D f@ f` LQWHQVLW\f SHDN AEDFNJURXQG f VFDQ UDWH f DQG 2 ,f ; SHDN A EDFNJURXQGA 6&DQ UDWHf N LV WKH FRUUHFWLRQ GXH WR GHFD\ DQG /S HIIHFWV LV D IDFWRU XVHG WR GRZQ ZHLJKW LQWHQVH UHIOHFWLRQV DQG WR DFFRXQW IRU LQVWUXPHQW LQVWDELOLW\ 7KH OLQHDU DEVRUSWLRQ FRHIILFLHQW ZDV FDOFXODWHG IURP YDOXHV IURP WKH ,QWHUQDWLRQDO 7DEOHV IRU ;UD\ &U\VWDOORJUDSK\ 6FDWWHULQJ IDFWRUV IRU QRQK\GURJHQ DWRPV ZHUH WDNHQ IURP &URPHU t 0DQQ ZLWK DQRPDORXVGLVSHUVLRQ FRUUHFWLRQV IURP &URPHU t /LEHUPDQ ZKLOH WKRVH RI K\GURJHQ DWRPV ZHUH IURP 6WHZDUW 'DYLGVRQ DQG 6LPSVRQ 'DWD IRU FRPSRXQG ZHUH FROOHFWHG DV DERYH 7KH VWUXFWXUH ZDV UHILQHG XVLQJ WKH 15&9$; VHW RI SURJUDPV $

PAGE 114

3DWWHUVRQ PDS UHYHDOHG WKH KHDY\ HOHPHQW DQG WKH UHVW RI WKH QRQ+ DWRPV ZHUH FDOFXODWHG IURP VXEVHTXHQW GLIIHUHQFH )RXULHU PDSV DQG UHILQHG DQLVRWURSLFDOO\ XVLQJ IXOOPDWUL[ OHDVW VTXDUHV FDOFXODWLRQV +\GURJHQ DWRPV ZHUH UHILQHG LVRWURSLFDOO\ *UDSKLFV ZHUH JHQHUDWHG E\ 6+(/;7/SOXV 6SHFWURVFRSLF 6WXGLHV 7KH DYDLODEOH VDPSOH RI ZDV GLVVROYHG LQ D PLQLPXP DPRXQW a P/f RI S+ f DQG + DQG & 105 VSHFWUD WDNHQ WKUHH WLPHV LQ WKH FRXUVH RI HLJKW GD\V 7KH VDPSOH ZDV LQFUHDVHG WR P/ DQG H[WUD GLVVROYHG LQ WKH VROXWLRQ 7KLV QHZ VDPSOH ZDV VXEPLWWHG IRU < 105 DORQJ ZLWK D 0 <1f VROXWLRQ DV UHIHUHQFH 7KH UHIHUHQFH VROXWLRQ ZDV SUHSDUHG E\ GLVVROYLQJ J PPROf < LQ P/ + WR ZKLFK GURSV FRQH +1 KDG EHHQ DGGHG $IWHU KHDWLQJ DOPRVW WR GU\QHVV WKH VROXWLRQ ZDV GLOXWHG WR P/ ZLWK + ><@ 0 S+ 'LVFXVVLRQ (IIRUWV WR V\QWKHVL]H SXUH FRPSOH[HV RI '$3$$+ ZLWK WKH PHWDOV 0Q,,f *G,,,f (X,,,f DQG <,,,f ZHUH YHU\ VXFFHVVIXO 7KH FRPSOH[HV DOO FU\VWDOOL]HG LQ D VLPLODU PDQQHU DQG VHYHUDO RI WKH FKDUDFWHULVWLFV ZKLFK DUH QHFHVVDU\ IRU D 05, DJHQW ZHUH VKRZQ E\ WKHVH FRPSRXQGV 7KH FRPSOH[HV FDUU\LQJ D RU FKDUJH RZLQJ WR WKH QHXWUDO '$3$$+ OLJDQG VKRZHG LPSUHVVLYH ZDWHU VROXELOLW\ DW S+ OHYHOV YHU\ FORVH WR QHXWUDO 6ROLG VWDWH VWUXFWXUHV RI

PAGE 115

WKH FRPSOH[HV UHYHDOHG D KLJK GHJUHH RI LQQHUVSKHUH K\GUDWLRQ D FRQGLWLRQ ZKLFK ZRXOG HQKDQFH SHUIRUPDQFH DV D 05, DJHQW $ WKHUPDO HOOLSVRLG SORW RI JLYHQ LQ )LJXUH VKRZV WKH IXOO PDQJDQHVH FRRUGLQDWLRQ VSKHUH DORQJ ZLWK WKH DWRPLF QXPEHULQJ VFKHPH LQFOXGLQJ WKH '$3$$+ OLJDQG WKH FRRUGLQDWLQJ FKORULGH DQG LQQHU VSKHUH + PROHFXOH $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ &RRUGLQDWHV IRU WKH K\GURJHQ DWRPV DQG K\GURJHQ ERQG OHQJWKV DQG DQJOHV DUH JLYHQ LQ 7DEOHV DQG 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD DUH JLYHQ LQ 7DEOH 7KH '$3$$+ FRRUGLQDWHV LQ D SHQWDGHQWDWH IDVKLRQ WKURXJK 1 1 1 DQG WKH WZR FDUERQ\O R[\JHQV DQG $ FKORULGH DQG D ZDWHU PROHFXOH FRPSOHWH WKH FRRUGLQDWLRQ VSKHUH RQH DERYH DQG RQH EHORZ WKH 0Q,,f EULQJLQJ WKH WRWDO FRRUGLQDWLRQ QXPEHU WR VHYHQ 7KH VWUXFWXUH VKRZV YHU\ OLWWOH GLVWRUWLRQ ZLWK WKH 0Q,,f O\LQJ GLUHFWO\ LQ WKH SODQH RI WKH OLJDQG DQG DSSHDUV WR UHSUHVHQW D SHQWDJRQDO ELS\UDPLGDO JHRPHWU\ 8QOLNH WKH RWKHU VWUXFWXUHV WKHUH LV RQO\ D VLQJOH LQQHU VSKHUH ZDWHU RI K\GUDWLRQ LQ WKH VROLG VWDWH $Q 257(3 YLHZ RI JLYHQ LQ )LJXUH VKRZV WKH IXOO (X,,,f FRRUGLQDWLRQ VSKHUH DQG DWRPLF QXPEHULQJ VFKHPH LQFOXGLQJ WKH '$3$$+ OLJDQG ELGHQWDWH QLWUDWH DQG WKUHH

PAGE 116

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 117

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV $f IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 0Q f f f f &OO f f f f & f f f f f f f f f f f f 2LO f f f f f f f f f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f &On f f f f & f f f f & n f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &n f f f f & f f f f &n f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT! FDOFXODWHG DV 8HT OLOL 8LM DWr DMr $LM ZKHUH LV WKH GRW SURGXFW RI WKH LWK DQG GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 118

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ DWRPV RI FRPSRXQG &OO 0Q f f &OO 0Q f &OO 0Q 2LO f &OO 0Q 1 f &OO 0Q 1 f 0Q f f 0Q 2LO f 0Q 1 f 0Q 1 f 0Q 1 f 0Q 2LO f f 0Q 1 f 0Q 1 f 0Q 1 f 2LO 0Q 1 f f 2LO 0Q 1 f 2LO 0Q 1 f 1 0Q 1 f f 1 0Q 1 f 1 0Q 1 f f 1 0Q &OO f f &O 0Q f f & 0Q f f 1 1 &O f f &O 1 f & 1 0Q f f & 1 1 f 0Q 1 1 f & 1 & f f & 1 0Q f & 1 0Q f f 1 1 & f f 1 1 0Q f & 1 0Q f f & 1 1 f f &On &O f f &On &O 1 f &O 1 f &n & & f f & n & 1 f & & 1 f f & & 1 f f & & & f 1 & & f & & & f f & & & f f

PAGE 119

7DEOH FRQWLQXHG & & & f f & 1 f f & & & f 1 & & f &n & 1 f f &n & & f 1 & & f &n & f f &n & 1 f & 1 f 7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 +LOD +OOE +D +E +D +E +, f f f f +D f f f f +,n D +,n E +,n F +n D +n E +n F + f f f f +E f f f f + f f f f + n D +nE +n F +n D +n E +n F

PAGE 120

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG +LOD 2LO +OOE f f +LOD 2LO 0Q f +OOE 2LO 0Q f f +D +E f f +D +E f f +D +OOE f +E +OOE f f +, 1 1 f f +, 1 &O f +D 1 & f f +D 1 1 f +,n D &On +OnE f f +,n D &On +OnF f +,n D &On &O f +,n E &On +OnF f f +OnE &On &O f +,n F &On &O f f +n D & n +nE f f +n D & n +nF f +n D &n & f +n E &n +n F f f +nE &n & f + n F &n & f f + & & f f + & & f +E & & f f +E & & f + & & f f + & & f +n D & n +nE f f +n D & n +nF f +n D & n & f +n E &n +nF f f +nE & n & f +n F &n & f f +n D &n +nE f f +n D &n +n F f +n D &n & f +n E &n +n F f f +n E &n & f +n F &n & f f

PAGE 121

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D ƒ f E ƒ f F ƒ f 3 GHJ f 9 ƒ f GFDLF J FP .f (PSLULFDO IRUPXOD & +Q 1W&O0Q f + )RUPXOD ZW J &U\VWDO V\VWHP 0RQRFOLQLF 6SDFH JURXS 3 F = )f HOHFWURQV &U\VWDO VL]H PPf [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0R .D 0RGH ZVFDQ 6FDQ UDQJH 6\PPHWULFDOO\ RYHU r DERXW .DO PD[LPXP %DFNJURXQG RIIVHW DQG LQ FX IURP .DO PD[LPXP 6FDQ UDWH GHJ PLQ UDQJH GHJ 5DQJH RI K N e K V V N V V 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII L 0R.Df PP 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 5-n bf mLQI bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H ƒf PD[ SHDN LQ GLII IRXU PDS H ƒnf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH )f DQG )f UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG ZDV Z 5 .O L B L R , 5 >=A_)RO L V >! ,I I-f UF , 7 , , ) LUFOf ,_URO ) ) UF f ZKHUH Z D )ff URO f PQf @

PAGE 122

LQQHUVSKHUH ZDWHUV RI K\GUDWLRQ $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ &RRUGLQDWHV IRU WKH K\GURJHQ DWRPV DUH JLYHQ LQ 7DEOH DQG 7DEOH JLYHV WKH K\GURJHQ ERQG OHQJWKV DQG DQJOHV 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD DUH JLYHQ LQ 7DEOH 7KH '$3$$+ DJDLQ DFWV DV D SHQWDGHQWDWH OLJDQG FRRUGLQDWLQJ WKURXJK 1 1 1 DQG 7KH (X,,,f XQOLNH WKH 0Q,,f LV GLVWRUWHG VLJQLILFDQWO\ RXW RI WKH SODQH RI WKH OLJDQG 7KLV OHDYHV D ODUJH RSHQ DUHD RQ RQH VLGH RI WKH PHWDO RQ ZKLFK WZR ZDWHU PROHFXOHV DQG D ELGHQWDWH QLWUDWH DUH FRRUGLQDWHG 7KH RWKHU VLGH RI WKH PHWDO FRQWDLQV D VLQJOH ZDWHU PROHFXOH EULQJLQJ WKH WRWDO FRRUGLQDWLRQ QXPEHU WR WHQ 7KH SUHVHQFH RI WKUHH FRRUGLQDWHG ZDWHU PROHFXOHV LQ WKH VROLG VWDWH VXJJHVWV WKDW LQ VROXWLRQ WKHUH DUH DW OHDVW WKUHH LQQHUVSKHUH ZDWHUV RI K\GUDWLRQ D VLWXDWLRQ IDYRUDEOH IRU D 05, DJHQW 7KH WKHUPDO HOOLSVRLG YLHZ RI JLYHQ LQ )LJXUH VKRZV WKH IXOO *G,,,f FRRUGLQDWLRQ VSKHUH DQG DWRPLF QXPEHULQJ VFKHPH LQFOXGLQJ WKH '$3$$+ OLJDQG ELGHQWDWH QLWUDWH DQG WKUHH FRRUGLQDWLQJ ZDWHU PROHFXOHV $WRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQn K\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ &RRUGLQDWHV IRU WKH K\GURJHQ DWRPV DUH JLYHQ LQ 7DEOH ZKLOH WKH K\GURJHQ DWRP ERQG OHQJWKV DQG

PAGE 123

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 124

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV $f IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 (X f f f f f f f f f f f f 2LO f f ‘ f f f f f f f f f f f f f f f f f f f f f f f f f f 1 f f ‘ f f 1 f f ‘ f f 1 f f f f 1 f f f f 1 f f f f 1LO f f f f &O f f f f &On f f f f f & f f f f f &n f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &n f f f f & f f f f &n f f f f 1 f f f f f f f f f f f f f f f f 1 f f f f f f f f f f f f f f f f 1 f f f f f f f f f f f f f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT ;L;M 8sL Dr Dr $LM ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 125

1 1 1 1 %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG (X f f (X f (X f (X f (X f (X f (X 1 f (X 1 f (X f f (X f (X f (X f (X f (X 1 f (X 1 f (X 1 f (X f f (X f (X f (X f (X 1 f (X 1 f (X 1 f (X f f (X f (X f (X 1 f (X 1 f (X 1 f (X f f (X f (X 1 f (X 1 f (X 1 f (X f f (X 1 f (X 1 f (X 1 f (X 1 f f (X 1 f (X 1 f (X 1 f f (X 1 f (X 1 f f (X f f

PAGE 126

7DEOH FRQWLQXHG &O (X f f & (X f f 1LO 2LO f 1LO (X f f 1LO (X f f 1 1 &O f f &O 1 f & 1 (X f f & 1 1 f (X 1 1 f & 1 & f f & 1 (X f & 1 (X f f 1 1 & f f 1 1 (X f & 1 (X f f & 1 1 f f 2LO 1LO f 2LO 1LO f 1LO f &On &O f f &On &O 1 f &O 1 f &n & & f f &n & 1 f & & 1 f f & & 1 f f & & & f 1 & & f & & & f f & & & f f & & & f f & & 1 f f & & & f 1 & & f & n & 1 f f & n & & f 1 & & f &n & f f &n & 1 f & 1 f 1 f f 1 f f 1 f f 1 f f 1 f f 1 f f 1 f f

PAGE 127

7DEOH FRQWLQXHG 1 1 f f f f 7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 +D +E +, +D +,nD +OnE +,n F +n D +nE + n F + +E + +n D +n E +n F +n D +n E +n F

PAGE 128

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH + DWRPV RI FRPSRXQG +D +E f f +, 1 1 f f +, 1 &O f +D 1 & f f +D 1 1 f +,n D &On +OnE f f +,n D &On +OnF f +,n D &On &O f +OnE &On +OnF f f +OnE &On &O f +OnF &On &O f f +n D & n +nE f f +n D &n +n F f +n D & n & f +n E & n +nF f f +n E & n & f +nF &n & f f + & & f f + & & f +E & & f f +E & & f + & & f f + & & f +n D & n +nE f f +n D & n +nF f +n D &n & f +nE & n + n F f f +nE & n & f +n F &n & f f +n D &n +nE f f +n D &n +n F f +n D &n & f +n E &n +n F f f +n E &n & f +n F &n & f f

PAGE 129

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E ƒ F ƒ FQ GHJ GHJ \ GHJ 9 ƒ GFDLF J FP .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf f f f f f f f &+1f (X 1f r + 7ULFOLQLF 3 [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; ƒf 0R. 0RGH ZVFDQ 6FDQ UDQJH 6\PPHWULFDOO\ RYHU DERXW .DL PD[LPXP %DFNJURXQG RIIVHW DQG LQ FR IURP NFK PD[LPXP 6FDQ UDWH GHJ PLQ UDQJH GHJ 5DQJH RI K N K N V 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII 0R.ff FP 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH 5HILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 5Zr bf 5sQW ‘ bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H ƒf PD[ SHDN LQ GLII IRXU PDS H ƒf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH ) DQG )F UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG ZDV Zc)Qc c)Fcf ZKHUH Z D)ffn 5 , )R, 5Z >! c) 6 ,! _)_ O R , 7 , f K , n ) ,, ) c)FM & n ‘ f , rL ) @ PQf @

PAGE 130

DQJOHV DUH JLYHQ LQ 7DEOH 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD DUH JLYHQ LQ 7DEOH 1RW VXUSULVLQJO\ WKH *G'$3$$+f DQG (X '$3$$+f FRPSOH[HV DUH LVRPRUSKRXV 7KH FRPSOH[ DJDLQ FRQVLVWV RI WKH SHQWDGHQWDWH '$3$$+ OLJDQG D ELGHQWDWH QLWUDWH DQG WKUHH FRRUGLQDWHG ZDWHU PROHFXOHV $V LQ WKH (X,,,f FRPSOH[ WKH PHWDO LRQ LV GLVWRUWHG RXW RI WKH SODQH RI WKH OLJDQG ZLWK WKH QLWUDWH DQG WZR ZDWHU PROHFXOHV FRRUGLQDWLQJ EHORZ WKH PHWDO DQG D VLQJOH ZDWHU PROHFXOH FRRUGLQDWLQJ LQ WKH VPDOO VSDFH DYDLODEOH DERYH WKH PHWDO 7KH WRWDO FRRUGLQDWLRQ VSKHUH FRQVLVWV RI WHQ GRQRU DWRPV 7KH PHWDO FRRUGLQDWLRQ VSKHUH RI LV JLYHQ LQ WKH WKHUPDO HOOLSVRLG SORW VKRZQ LQ )LJXUH DORQJ ZLWK WKH DWRPLF QXPEHULQJ VFKHPH IRU WKH '$3$$+ OLJDQG DQG IRXU FRRUGLQDWHG ZDWHU PROHFXOHV 7KH DWRPLF FRRUGLQDWHV DQG ERQG GLVWDQFHV DQG DQJOHV IRU WKH QRQK\GURJHQ DWRPV DUH JLYHQ LQ 7DEOHV DQG &RRUGLQDWHV IRU WKH K\GURJHQ DWRPV DUH JLYHQ LQ 7DEOH ZLWK WKH K\GURJHQ DWRP ERQG GLVWDQFHV DQG DQJOHV LQ 7DEOH 7KH VWUXFWXUH ZDV UHILQHG WR DQ 5 YDOXH RI b 7KLV DQG RWKHU FU\VWDO GDWD DUH JLYHQ LQ 7DEOH 7KH <'$3$$+f FRPSOH[ VKRZV HVVHQWLDOO\ WKH VDPH DUUDQJHPHQW RI GRQRU DWRPV DV LQ FRPSOH[HV DQG 7KH OLJDQG LV SHQWDGHQWDWH ZLWK WKH <,,,f O\LQJ f ƒ EHORZ WKH SODQH GHILQHG E\ 1 1 DQG 1 7KLV

PAGE 131

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ +\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 132

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 *' f f f f f f f f f f f f 2LO f f f f f f f f f f f f f f f f f f f f f f ,' f f f f f f f f f f f f f f f f f f f f f f f f f f f f ,' f f f f f f f f f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1LO f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f &On ,' f f f & f f f f &n f f f f & f f f f & f f f f & f f f f & f f ,' f & f f f f & f f f f & n f f f f & f f f f &n f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8HT FDOFXODWHG DV 8HT OLOL 8Lc Dsr DMr $Lc ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG Mr1 GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 133

1 1 1 1 %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH QRQ+ DWRPV RI FRPSRXQG *G f f *G f *G f *G f *G f *G f *G 1 f *G 1 f *G 1 f *G f f *G f *G f *G f *G f *G 1 f *G 1 f *G 1 f *G f f *G f *G f *G f *G 1 f *G 1 f *G 1 f *G f f *G f *G f *G 1 f *G 1 f *G 1 f *G f f *G f *G 1 f *G 1 f *G 1 f *G f f *G 1 f *G 1 f *G 1 f *G 1 f f *G 1 f *G 1 f *G 1 f f *G 1 f *G 1 f f *G f

PAGE 134

7DEOH FRQWLQXHG *G &O f *G & f *G 1LO f *G 1LO f 1 1 &O f *G 1 1 f *G 1 & f 1 1 & f f *G 1 & f *G 1 & f & 1 & f *G 1 1 f *G 1 & f 1 1 & f 1 1 & f f 2LO 1LO f f 2LO 1LO f 1LO f f 1LO f 1 f f 1 f 1 f f 1 f 1 f f 1 f 1 f f 1 f 1 f f 1 f 1 f f 1 f &O 1 f f &O &On f &O &On f 1 &O &On f f 1 & & n f f 1 & & f &n & & f f 1 & & f f 1 & & f & & & f f & & & f f & & & f f & & & f f 1 & & f f 1 & & f & & & f f 1 & & f f

PAGE 135

7DEOH FRQWLQXHG 1 & &n f & & &n f f & &n f & 1 f & &n f f 1 & &n f f & &n f 7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 + + + + + + + + +1 +1 +&n +&n +&n +& n +&n +&n +& +& +& +&n +& n +&n +&n +&n +&n

PAGE 136

7DEOH %RQG OHQJWKV ƒf DQG DQJOHV rf IRU WKH +DWRPV RI FRPSRXQG *G + f f *G + f f + + f *G + f f *G + f f + + f *G + f f *G + f f + + f + f + + f f 1 1 +1 f f &O 1 +1 f 1 1 +1 f f & 1 +1 f &O &On +&n f f &O &On +&n f f &O &On +&n f f +&n &On +&n f +&n &On +&n f +&n &On +&n f & & n +&n f f & &n +& n f f & &n +&n f f +& n &n +&n f +& n & n +&n f +& n &n +&n f & & +& f f & & +& f & & +& f f & & +& f & & +& f f & & +& f & &n +&n f f & &n +&n f f & &n +&n f f +&n &n +&n f +& n &n +& n f +& n &n +& n f & &n +&n f f & &n +&n f f & &n +&n f f +&n &n +&n f +&n &n +&n f +&n &n +&n f

PAGE 137

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D ƒ f E ƒ f F ƒ f D GHJ f GHJ f GHJ f 9 $ f GFDLF J FPn .f (PSLULFDO )RUPXOD &+1*G )RUPXOD ZW J &U\VWDO V\VWHP 6SDFH JURXS = )f HOHFWURQV &U\VWDO VL]H PPf 7ULFOLQLF 3 [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; $f 0RGH 6FDQ 5DQJH %DFNJURXQG 6FDQ UDWH GHJ PLQ UDQJH GHJ 5DQJH RI K N 6\PPHWULFDOO\ RYHU RIIVHW L DQG 0R .f ZVFDQ DERXW .R PD[LPXP LQ RM e e e IURP K V N V V ‘DO PD[LPXQ 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII  0R.Df FP 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 5Zr bf 5LQW bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H $f PD[ SHDN LQ GLII IRXU PDS H ƒf r5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ WKH IRRWQRWH ) DQG )F UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV )XQFWLRQ PLQLPL]HG ZDV Z_)_ )F f ZKHUH Z M )ff 5 .O _)_ )F _f ,_)M 5Z !_)R_ V 4! ) , )&, f )F' = ) @ f PQf @

PAGE 138

)LJXUH 9LHZ RI VKRZLQJ WKH WKHUPDO HOOLSVRLGV DQG DWRPLF QXPEHULQJ :DWHU K\GURJHQV DUH RPLWWHG IRU FODULW\

PAGE 139

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG HTXLYDOHQW LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH QRQ+ DWRPV RI FRPSRXQG $WRP ; 9 ] 8 < f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f 1 f f f f &O f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f & f f f f &,2 f f f f &OO f f f f & f f f f & f f f f 1LO f f f f f f f f f f f f f f f f 1 f f f f f f f f f f f f f f f f 1 f f f f f ‘ f f f f f f f f f f f D)RU DQLVRWURSLF DWRPV WKH 8 YDOXH LV 8 FDOFXODWHG DV 8HT =L/ 8LS 6Lr Mr ALM ZKHUH $LM LV WKH GRW SURGXFW RI WKH LWK DQG Mf GLUHFW VSDFH XQLW FHOO YHFWRUV

PAGE 140

7DEOH %RQG /HQJWKV ƒf DQG $QJOHV rf IRU WKH QRQ DWRPV RI FRPSRXQG < f f < f < f < f < f < 1 f < 1 f < f f < f < f < f < 1 f < 1 f < 1 f < f f < f < f < 1 f < 1 f < 1 f < f f < f < 1 f < 1 f < 1 f < f f < 1 f < 1 f < 1 f < 1 f f < 1 f < 1 f 1 < 1 f f 1 < 1 f 1 < 1 f f 1 < f f & < f f & < f f 1 1 & f f & 1 f & 1 < f f & 1 1 f < 1 1 f & 1 & f f & 1 < f & 1 < f f

PAGE 141

7DEOH FRQWLQXHG 1 1 &,2 f f 1 1 < f &,2 1 < f f & 1 1 f f & &O f & 1 f & &O f 1 & &O f & & & f f & & 1 f & & 1 f f & & 1 f f & & & f 1 & & f & & & f f & & & f f & & & f f &,2 & 1 f f &,2 & & f 1 & & f &OO &,2 1 f f &OO &,2 & f 1 &,2 & f & & f f & & 1 f & 1 f 2LO 1LO f f 1LO f f 1LO 2LO f f 1 f f 1 f f 1 f f 1 f f 1 f f 1 f f

PAGE 142

7DEOH )UDFWLRQDO FRRUGLQDWHV DQG LVRWURSLF WKHUPDO SDUDPHWHUV ƒf IRU WKH + DWRPV RI FRPSRXQG $WRP ; 9 ] 8 +OD +E +OE +OF +LG +E +F +G +E +D +D +LOD +OOE +OOF +D +E +F

PAGE 143

7DEOH %RQG /HQJWKV ƒf RI FRPSRXQG DQG $QJOHV rf IRU WKH + +OD 1 1 f f +OD 1 & f +E 1 & f f +E 1 1 f +OE &O +OF f f +OE &O +LG f +OE &O & f +OF &O +LG f f +OF &O & f +LG &O & f f +E & +F f f +E & +G f +E & & f +F & +G f f +F & & f +G & & f f +E & & f f +E & & f +D & & f f +D & & f +D & & f f +D & & f +LOD &OO +OOE f f +LOD &OO +OOF f +LOD &OO &,2 f +, OE &OO +OOF f f +, OE &OO &,2 f +OOF &OO &,2 f f +D & +E f f +D & +F f +D & & f +E & +F f f +E & & f +F & & f f

PAGE 144

7DEOH &U\VWDOORJUDSKLF GDWD IRU FRPSRXQG $ &U\VWDO GDWD .f D $ E ƒ F ƒ D GHJ 3 GHJ 7 GHJ 9 ƒ GFDLF J FPf .f (PSLULFDO IRUPXOD )RUPXOD ZW J &U\VWDO V\VWHP &+1 f f f f f f f <+f1f 7ULFOLQLF + 6SDFH JURXS 3 = )f HOHFWURQV &U\VWDO VL]H PPf [ [ % 'DWD FROOHFWLRQ .f 5DGLDWLRQ ; ƒf 0R .D 0RGH FRVFDQ 6FDQ UDQJH 6\PPHWULFDOO\ RYHU r DERXW .fW PD[LPXP %DFNJURXQG RIIVHW DQG LQ FR IURP .FG PD[LPXP 6FDQ UDWH GHJ PLQ UDQJH GHJ 5DQJH RI K N K e N V 7RWDO UHIOHFWLRQV PHDVXUHG 8QLTXH UHIOHFWLRQV $EVRUSWLRQ FRHII Q 0R.Df PPn 0LQ t 0D[ 7UDQVPLVVLRQ & 6WUXFWXUH UHILQHPHQW 6 *RRGQHVVRIILW 5HIOHFWLRQV XVHG D,f 1R RI YDULDEOHV 5 5Zr bf fALQW f bf 0D[ VKLIWHVG PLQ SHDN LQ GLII IRXU PDS H ƒf PD[ SHDN LQ GLII IRXU PDS H ƒf r 5HOHYDQW H[SUHVVLRQV DUH DV IROORZV ZKHUH LQ )T DQG )F UHSUHVHQW UHVSHFWLYHO\ WKH REVHUYHG DQG )XQFWLRQ PLQLPL]HG ZDV Z_)Q FDOFXODWHG VWUXFWXUHIDFWRU DPSOLWXGHV LURc c)Fcf ZKHUH Z D)ff AR IF Mf c IG M@ )F c f PQf @ 5 ; ) c 5Z (;: )G 7" , , =_)f 9eZ^ M )F c

PAGE 145

GLVWDQFH LV VLPLODU WR WKH RXWRISODQH GLVWRUWLRQ REVHUYHG LQ D <,,,f FRPSOH[ SUHYLRXVO\ UHSRUWHG :DWHU PROHFXOHV RFFXS\ VLPLODU SRVLWLRQV DV LQ FRPSOH[HV DQG ZLWK WKH H[FHSWLRQ RI D VLQJOH ZDWHU PROHFXOH RFFXS\LQJ WKH SRVLWLRQ RI WKH ELGHQWDWH QLWUDWH 7KH WRWDO FRRUGLQDWLRQ VSKHUH LV QLQH FRQVLVWLQJ RI WKH SHQWDGHQWDWH OLJDQG DQG IRXU ZDWHU PROHFXOHV $ VWXG\ RI WKH VROXWLRQ VWDELOLW\ RI FRPSOH[HV ZDV XQGHUWDNHQ YLD 105 7KHLU VROXELOLW\ LQ PDGH 105 D GHVLUDEOH WRRO LQ WKLV LQYHVWLJDWLRQ DV WKHVH HVVHQWLDOO\ FRORUOHVV FRPSRXQGV JDYH OLWWOH VLJQDO LQ WKH YLVLEOH UHJLRQ 7KUHH + DQG & VSHFWUD ZHUH WDNHQ RYHU WKH FRXUVH RI HLJKW GD\V DQG DUH VKRZQ LQ )LJXUHV 7KH VSHFWUD VKRZ JRRG FRQVLVWHQF\ RYHU WKLV H[WHQGHG WLPH SHULRG ZLWK SHDNV UHPDLQLQJ VKDUS DQG QR QHZ SHDNV DSSHDULQJ 7KH < VSHFWUD IRU WKH <1f UHIHUHQFH DQG FRPSRXQG DUH VKRZQ LQ )LJXUHV DQG UHVSHFWLYHO\ 7KH ODUJH < SHDNV ZHUH HQODUJHG DQG DUH VKRZQ LQ )LJXUHV DQG IRU WKH UHIHUHQFH DQG VDPSOH UHVSHFWLYHO\ ,Q ERWK FDVHV WKHUH DUH VLQJOH < SHDNV ZLWK WKH VDPSOH SHDN VKLIWHG E\ SSP IURP WKH UHIHUHQFH 7KH SUHVHQFH RI D VLQJOH < SHDN LQ WKH VROXWLRQ RI VKLIWHG DZD\ IURP WKH UHIHUHQFH VXJJHVWV WKDW <,,,f H[LVWV LQ RQO\ RQH W\SH RI HQYLURQPHQW ZKLFK LV GLIIHUHQW IURP WKDW H[SHULHQFHG E\ <,,,f LQ WKH UHIHUHQFH VROXWLRQ 6LQFH QR

PAGE 146

)LJXUH + 105 RI WDNHQ )LJXUH & 105 RI WDNHQ

PAGE 147

L n ‘ ‘ ‘ L ‘ ‘ ‘ ‘ L ‘ ‘ ‘ ‘ L ‘ ‘ ‘ ‘ L ‘ ‘ ‘ f L ‘ ‘ f ‘ L ‘ ‘ ‘ ‘ L f ‘ ‘ ‘ L f ‘ ‘ ‘ L ‘ f§A $ ] ‘ f ‘ Wn n 7nn n ,f nn nn n n n n n n n n L }30 )LJXUH ;+ 105 RI WDNHQ 330 )LJXUH & 105 RI WDNHQ

PAGE 148

)LJXUH ;+ 105 RI WDNHQ rrrrrr ‘ ,, _+_ 08 r‘}f§! 0QQPZmL 3 )LJXUH & 105 RI WDNHQ

PAGE 149

)LJXUH < 105 RI <1f UHIHUHQFHf )LJXUH < 105 RI <1f FORVHXS RI < SHDN

PAGE 150

)LJXUH < 105 RI )LJXUH < 105 RI FORVHXS RI < SHDN

PAGE 151

RWKHU SHDNV DUH HYLGHQW FKDQFHV DUH JRRG WKDW WKH FRPSOH[ KDV QRW GHFRPSRVHG 5HDFWLRQV RI PHWDO QLWUDWHV DQG PHWDO FKORULGHV ZLWK WKH FRQVWLWXHQW SDUWV RI '$3$$+ DSSHDU WR EH XVHIXO LQ V\QWKHVL]LQJ PHWDO FRPSOH[HV ZLWK WKLV OLJDQG 7KH SODQDULW\ RI '$3$$+ HQVXUHV WKDW WKHUH DUH FRRUGLQDWLRQ VLWHV DYDLODEOH IRU VROYHQW PROHFXOHV D FRQGLWLRQ WKDW LV IDYRUDEOH IRU DQ\ SRWHQWLDO 05, DJHQW $OVR VLJQLILFDQW LV WKH ZDWHU VROXELOLW\ GHPRQVWUDWHG E\ WKHVH FRPSOH[HV DQG WKHLU VWDELOLW\ LQ VROXWLRQ RYHU DQ H[WHQGHG SHULRG RI WLPH 7KH IDYRUDEOH UHVXOWV REWDLQHG KHUHLQ ZLOO ZDUUDQW IXUWKHU LQYHVWLJDWLRQ RI WKHVH SRWHQWLDO 05, DJHQWV

PAGE 152

5()(5(1&(6 *UHHQZRRG 11 (DUQVKDZ $ &KHPLVWU\ RI WKH (OHPHQWV 3HUJDPRQ 3UHVV 2[IRUG SS %D[WHU *) &KHP %U .UHXVDO 8 'LSORPD 7KHVLV 7HFKQLVFKH 8QLYHUVLWDW 0QFKHQ +HUUPDQQ 9,$ +HUGWZHFN ( 3DMGOD / ,QRUJ &KHP +HUUPDQQ 9,$ +HUGWZHFN ( 3DMGOD / = IXU .ULVWDOORJU $VDWR ( 'ULHVVHQ :/ GH*UDDII 5$* +XOVEHUJHQ )% 5HHGLMN ,QRUJ&KHP $VDWR ( .DWVXUD 0LNXUL\D 0 )XMLL 7 5HHGLMN &KHP /HWW (O,VVD 3\\NNR 3 =DQDWL +0 ,QRUJ &KHP DQG UHIHUHQFHV WKHUHLQ &DYD 56FLHQFH DQG UHIHUHQFHV WKHUHLQ =HYDFR 7 3RVWHO 0 6\QWK 5HDFW ,QRUJ 0HWRUJ &KHP tf 3DOHQLN *8QSXEOLVKHG UHVXOWV 6RPPHUHU 62 3DOHQLN *,QRUJ &KLP $FWD $JKDER]RUJ + 3DOHQLN 5& 3DOHQLN *,QRUJ &KLP $FWD // %DWWDJOLD /3 &RUUDGH $% 3HORVL 7DUDVFRQL 3 3HOL]]L & &KHP 6RF 'DOWRQ 7UDQV /DXIIHU 5% &KHP 5HY

PAGE 153

6RPPHUHU 62 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD %ULQW]LQJHU + 0XQNHOW 6 = $QRUJ &KHP 6KFKHORNRY 51 0LNKDLORZ <1 0LVWU\XNRY 9( 6HUJHHY $9 'RNO $FDG 1DXN 6665 &DPEULGJH 6WUXFWXUDO 'DWDEDVH 6KHOGULFN *0 6+(/;7/ SOXV 1LFROHW ;5' &RUSRUDWLRQ 0DGLVRQ :LVFRQVLQ 86$ ,QWHUQDWLRQDO 7DEOHV IRU ;UD\ &U\VWDOORJUDSK\ 9RO ,9 .\QRFK 3UHVV %LUPLQJKDP S 3UHVHQW GLVWULEXWRU 5HLGHO 'RUGUHFKWf &URPHU '7 0DQQ -% $FWD &U\VWDOORJU $ &URPHU '7 /LEHUPDQ &KHP 3K\V 6WHZDUW 5) 'DYLGVRQ (5 6LPSVRQ :7 &KHP 3K\V +XKHH\ -( .HLWHU ($ .HLWHU 5/ ,QRUJDQLF &KHPLVWU\ WK HG +DUSHU &ROOLQV &ROOHJH 3XEOLVKHUV 1HZ
PAGE 154

0RHGULW]HU ,UDQL 55 2UJ &KHP &RUEULGJH '(& /RZH (&KHP 6RF &RUEULGJH '(& /RZH (&KHP 6RF &RQOH\ 57 ,QIUDUHG 6SHFWURVFRS\ QG HG %DFRQ ,QF %RVWRQ S 6KDQQRQ 5' $FWD &U\VWDOORJU $ $OO\Q DQG *DEH (/H3DJH < &KDUODQG -3 /HH )/ :KLWH 36 $SSO &U\VW %UHYDUG & *UDQJHU 3 +DQGERRN RI +LJK 5HVROXWLRQ 0XOWLQXFOHDU 105 :LOH\,QWHUVFLHQFH 1HZ
PAGE 155

%,2*5$3+,&$/ 6.(7&+ 6WHSKHQ 3 6XPPHUV ZDV ERUQ LQ &LQFLQQDWL 2KLR DQG DWWHQGHG &LQFLQQDWL SXEOLF VFKRROV JUDGXDWLQJ IURP :LWKURZ +LJK 6FKRRO LQ DV WKH YDOHGLFWRULDQ RI KLV FODVV +LV XQGHUJUDGXDWH ZRUN ZDV FRPSOHWHG DW 'H3DXZ 8QLYHUVLW\ *UHHQFDVWOH ,QGLDQD ZKHUH KH PDMRUHG LQ FKHPLVWU\ DQG PLQRUHG LQ (QJOLVK OLWHUDWXUH +H JUDGXDWHG FXP ODXGH LQ 0D\ RI 6WHSKHQ HQWHUHG WKH FKHPLVWU\ 3K' SURJUDP DW WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD LQ $XJXVW ZKHUH KH VWXGLHG LQRUJDQLF FKHPLVWU\ DQG SXUVXHG D UHVHDUFK SURMHFW ZLWK 'U *XV 3DOHQLN +H ZDV DZDUGHG D 6LVOHU )HOORZVKLS LQ WKH IDOO RI DQG D 'LYLVLRQ RI 6SRQVRUHG 5HVHDUFK )HOORZVKLS IRU WKH DFDGHPLF \HDU $V D JUDGXDWH WHDFKLQJ DVVLVWDQW 6WHSKHQ KDV VHUYHG WKH 8QLYHUVLW\ RI )ORULGD FKHPLVWU\ GHSDUWPHQW WHQ RI WZHOYH VHPHVWHUV +H KDV SDUWLFLSDWHG LQ WKH LQVWUXFWLRQ RI JHQHUDO FKHPLVWU\ ODERUDWRULHV DQG GLVFXVVLRQ VHFWLRQV DQG ZDV JLYHQ DQ 2XWVWDQGLQJ 7HDFKLQJ $ZDUG IRU WKH DFDGHPLF \HDU 2XWVLGH RI WKH FKHPLVWU\ GHSDUWPHQW 6WHSKHQ KDV DSSOLHG KLPVHOI DV D PXVLFLDQ LQ VHYHUDO DUHDV +H VWXGLHG SLDQR IRU WKLUWHHQ \HDUV DQG WUXPSHW IRU HLJKW 5HFHQWO\

PAGE 156

KH KDV SDUWLFLSDWHG LQ VHYHUDO FKRUDO HQVHPEOHV LQFOXGLQJ WKH 'H3DXZ 8QLYHUVLW\ &KRLU WKH 8QLYHUVLW\ RI )ORULGD &KRLU WKH 8QLYHUVLW\ RI )ORULGD &KDPEHU 6LQJHUV DQG WKH *DLQHVYLOOH 35,'( &KRUXV

PAGE 157

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $£A52DM/ *XV 3DnOHQLN &KDLU 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6DPXHO 3URIHVVRU 2 RLJDWH RI &KHPLVnWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5REHUW & $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ < 'DQLHO 5 7DOKDP $VVLVWDQW 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $\980 r 3 f§ 6DPXHO 5 )DUUDK 3URIHVVRU RI 0LFURELRORJ\ DQG &HOO 6FLHQFH

PAGE 158

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO


SYNTHESIS AND PROPERTIES OF SOME
BISMUTH(III), MANGANESE(II), YTTRIUM(III),
EUROPIUM(III), AND GADOLINIUM(III) COMPLEXES
BY
STEPHEN P. SUMMERS
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1994

ACKNOWLEDGEMENTS
Many thanks must first go to Dr. Gus Palenik and the
Inorganic Division for giving me a home, and to Ruth Palenik
and Kim Browning for helping me a great deal as I began my
graduate research. Special thanks go to Dr. Khalil Abboud
whose expertise in x-ray crystallography, and patience with
me, were above and beyond the call of duty, and to Dr. Sam
Farrah whose aid in determining antibacterial activities was
greatly appreciated.
I would like to thank my parents Don and Helen Summers,
and the rest of my family, Kim, Bob, Rachel, Rochelle, Lynn,
Brad, and David, for their continued support throughout my
schooling.
To Dewayne, my friend, roommate, and traveling
companion, Jason, my friend and confidant, and Jeff, my
friend and work-out partner, I pledge my friendship forever
and hope that we will all stay together in spirit, if not in
body. And to Eric, with many thanks for being there the
last nine months, I wish the best of luck in Seattle.
11

TABLE OF CONTENTS
page
ACKNOWLEDGMENTS ii
LIST OF TABLES v
LIST OF FIGURES x
ABSTRACT xiii
CHAPTERS
1 INTRODUCTION 1
Bismuth Chemistry 1
Manganese and Gadolinium Chemistry 3
2 COMPLEXES OF BISMUTH(III):
A SYNTHETIC AND STRUCTURAL STUDY 6
Introduction 6
Experimental 11
Discussion 16
3 COMPLEXES OF BISMUTH(III): VALENCE
BOND SUMS AND COORDINATION POLYHEDRA 6 0
Introduction 60
Discussion and Results 62
4 BISMUTH COMPLEXES: A STUDY OF
ANTIBACTERIAL ACTIVITY 76
Introduction 76
Experimental 77
Discussion 78
5 COMPLEXES OF BISMUTH(III) WITH PHOSPHONIC
ACIDS: A SYNTHETIC AND SPECTROSCOPIC
STUDY 82
Introduction 82
Experimental 83
Discussion 88
iii

gage
6 COMPLEXES OF MANGANESE(II), GADOLINIUM(III),
EUROPIUM(III), AND YTTRIUM(III) WITH
2,6-DIACETYLPYRIDINE BIS(ACETIC ACID
HYDRAZONE) 93
Introduction 93
Experimental 96
Discussion 100
REFERENCES 138
BIOGRAPHICAL SKETCH 141
IV

LIST OF TABLES
Table Page
2-1: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 1 19
2-2: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 1 20
2-3: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 1 22
2-4: Bond lengths (Á) and angles (°) for the
H atoms of compound 1 23
2-5: Crystallographic data for compound 1 24
2-6: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 3 27
2-7: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 3 28
2-8: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 3 30
2-9: Bond lengths (Á) and angles (°) for the
H atoms of compound 3 30
2-10: Crystallographic data for compound 3 31
2-11: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 4 34
2-12: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 4 35
v

Table Page
2-13: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 4 36
2-14: Bond lengths (Á) and angles (°) for the
H atoms of compound 4 36
2-15: Crystallographic data for compound 4 37
2-16: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 5 40
2-17: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 5 41
2-18: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 5 42
2-19: Bond lengths (Á) and angles (°) for the
H atoms of compound 5 43
2-20: Crystallographic data for compound 5 44
2-21: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 6 47
2-22: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 6 48
2-23: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 6 49
2-24: Bond lengths (Á) and angles (°) for the
H atoms of compound 6 50
2-25: Crystallographic data for compound 6 52
2-26: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 7 55
2-27: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 7 55
vi

Table Page
2-28: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 7 56
2-29: Bond lengths (Á) and angles (°) for the
H atoms of compound 7 57
2-30: H-bonding for compound 7 58
2-31: Crystallographic data for compound 7 59
3-1: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi2 (DIPIC)2 (HDIPIC)2 (HAc)2- 4H20 65
3-2: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi (NTA) * 2H20 65
3-3: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi (HEDTA) • 2H20 65
3-4: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
(Guan) 2Bi (DTPA) • 4H20 66
3-5: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
Bi (DAPAAH) (Ac) 2-4H20 66
4-1: Mass of complexes on filter papers after
soaking in saturated solutions 81
4-2: Diameters of inhibition for Bi(PIC)3/
Bi(NTA), and Bi(HEDTA) in each type
of bacteria 81
6-1: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 14 103
6-2: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 14 104
6-3: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 14 105
Vll

Table Page
6-4: Bond lengths (Á) and angles (°) for the
H atoms of compound 14 106
6-5: Crystallographic data for compound 14 107
6-6: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 15 110
6-7: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 15 Ill
6-8: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 15 113
6-9: Bond lengths (Á) and angles (°) for the
H atoms of compound 15 114
6-10: Crystallographic data for compound 15 115
6-11: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 16 118
6-12: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 16 119
6-13: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 16 121
6-14: Bond lengths (Á) and angles (°) for the
H atoms of compound 16 122
6-15: Crystallographic data for compound 16 123
6-16: Fractional coordinates and equivalent
isotropic thermal parameters (Á2) for
the non-H atoms of compound 17 125
6-17: Bond lengths (Á) and angles (°) for the
non-H atoms of compound 17 126
6-18: Fractional coordinates and isotropic
thermal parameters (Á2) for the
H atoms of compound 17 12 8
viii

Table Page
6-19: Bond lengths (Á) and angles (°) for the
H atoms of compound 17 12 9
6-20: Crystallographic data for compound 17 130
IX

LIST OF FIGURES
Figure Page
2-1: 2,6-diacetylpyridine bis(acetic acid
hydrazone) 8
2-2: Salicylaldehyde Semicarbazone 8
2-3: Picolinic Acid 9
2-4: Dipicolinic Acid 9
2-5: Nitrilotriacetic Acid 9
2-6: Ethylenediaminetetraacetic Acid 10
2-7: Diethylenetriaminepentaacetic Acid 10
2-8: View of 1 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity 18
2-9: View of 3 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 26
2-10: View of 4 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 33
2-11: View of 5 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 39
2-12: View of 6 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 46
2-13: View of 7 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity 54
3-1: View of the polyhedron for compound 1
showing the capped square antiprism
arrangement 70
x

Page
Figure
3-2: View of the polyhedron for compound 3
showing the bicapped trigonal prism
arrangement 71
3-3: View of the polyhedron for compound 4
showing the bicapped trigonal prism
arrangement 72
3-4: View of the polyhedron for compound 5
showing the bicapped trigonal prism
arrangement 73
3-5: View of the polyhedron for compound 6
showing the capped square antiprism
arrangement 74
5-1: Nitrilotrismethylenetriphosphonic Acid.... 84
5-2: Ethylenediaminotetramethylenetetraphos-
phonic Acid 84
5-3: Infrared spectrum of 9 90
5-4: Infrared spectrum of 10 91
5-5: Infrared spectrum of 11 91
5-6: Infrared spectrum of 12 92
5-7: Infrared spectrum of 13 92
6-1: 2,6-diacetylpyridine bis(acetic acid
hydrazone) 95
6-2: View of 14 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 102
6-3: View of 15 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 109
6-4: View of 16 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity 117
6-5: View of 17 showing the thermal ellipsoids
and atomic numbering. Water hydrogens are
omitted for clarity 124
xi

Figure Page
6-6: 3H NMR of 17 taken 3/22/94 132
6-7: 13C NMR of 17 taken 3/22/94 132
6-8: 3H NMR of 17 taken 3/24/94 133
6-9: 13C NMR of 17 taken 3/24/94 133
6-10: 3H NMR of 17 taken 3/29/94 134
6-11: 13C NMR of 17 taken 3/29/94 134
6-12: 89Y NMR of Y (N03) 3 (reference) 135
6-13: 89Y NMR of Y(N03)3/ close-up of 89Y peak.... 135
6-14 : 89Y NMR of 17 136
6-15: 89Y NMR of 17, close-up of 89Y peak 136
Xll

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
SYNTHESIS AND PROPERTIES OF SOME
BISMUTH(III), MANGANESE(II), YTTRIUM(III),
EUROPIUM(III), AND GADOLINIUM(III) COMPLEXES
By
STEPHEN P. SUMMERS
August, 1994
Chairman: Dr. Gus J. Palenik
Major Department: Chemistry
A series of bismuth (III) complexes has been
synthesized with the carboxylic acids picolinic acid,
dipicolinic acid, nitrilotriacetic acid, ethylene-
diaminetetraacetic acid, and diethylenetriaminepentaacetic
acid, along with the phosphonic acids nitrilotrismethylene-
triphosphonic acid and ethylenediaminotetramethylenetetra-
phosphonic acid. Where satisfactory crystalline samples
were obtained x-ray crystallographic studies were conducted.
Solid state structures of the carboxylic acid compounds
revealed several similarities between these complexes, and
the crystallographic data was used to calculate valence bond
sums and determine coordination polyhedra. Phosphonic acid
complexes were extremely insoluble and were characterized by
elemental analysis and infrared spectroscopy.
xixi

Antibacterial properties of the carboxylate complexes
were monitored against the bacteria Escherichia Coli,
Pseudomonas Aeruginosa, and Staphylococcus Aureus. Radii of
inhibition were measured, and a correlation to water
solubility was drawn.
Complexes of Bi(III), Mn(II), Eu(III), Gd(III), and
Y(III) were synthesized with the ligand 2,6-diacetylpyridine
bis(acetic acid hydrazone). Crystals obtained from these
procedures were analyzed by x-ray crystallography and their
solid state structures determined. A study of their
solution stability over time was conducted by means of
nuclear magnetic resonance spectroscopy. The 13C, and 89Y
spectra were taken of the Y(III) complex in D20 over a
period of one week. The spectra showed no change over time,
and the presence of a single peak in the 89Y spectrum
suggests that Y(III) existed in only one stable environment.
xiv

CHAPTER 1
INTRODUCTION
Bismuth Chemistry
The element bismuth has been known for about five
hundred years but was not identified as such until 1530.1
In 1786, Odier touted the use of bismuth subnitrate,
(BiO)N03, as a gastric antispasmodic. Since then, a variety
of bismuth salts including bismuth subcarbonate, (Bi0)2C03,
bismuth subsalicylate, (BiO)(HOC6H4COO), and ammonium
bismuth citrate dihydrate, (NH4) Bi (C6H407) • 2H20, have been
used to treat a wide range of human ailments. Some of these
include peptic ulcers, syphilis, and the topical
disinfection of wounds.2
With the exception of some commercial products which
utilize bismuth subsalicylate as a treatment for the relief
of gastric disorders, the use of bismuth compounds has
steadily waned as heavy metal salts have fallen out of
favor.3 Interest in bismuth chemistry has been rekindled,
however, with the discovery of colloidal bismuth subcitrate
(CBS), and its effect on Helicobacter Pylori, a stomach
bacterium recently pinpointed as a causal factor in the
formation of peptic ulcers. The water solubility of CBS and
1

2
its stability in solution, due to the strongly coordinating
citrate, have rendered it useful as a medicinal treatment
for this ailment.2'7 Further stimuli for the study of
bismuth coordination chemistry have been questions of
possible relativistic effects in the heavy elements,8 and
the use of bismuth in high temperature superconducters.9
The compound CBS appears to be active against peptic
ulcers in several ways. First, it inhibits the action of
pepsins in the stomach, possibly by adsorption of these
enzymes onto tiny particles of the bismuth complex. Second,
the presence of bismuth in the stomach's mucosal membrane
inhibits proteolysis and proton diffusion as well as
increasing the secretion of bicarbonate anions into the
mucous. Finally, and most significantly, the CBS complex
has proven to be bactericidal to H. Pylori.2 These
developments in bismuth chemistry have been the impetus for
our study of bismuth coordination complexes and their
properties.
Recent studies of bismuth complexes have fallen into
two general categories. Several complexes have been
synthesized by Herrmann and coworkers,4'5 Reedijk and
coworkers,6'7 and Postel and coworkers10 which contain ligands
made predominantly of carboxylate groups. Herrmann and
Reedijk have focused mainly on complexes which are
variations of CBS, i.e. citrate containing salts. Postel
has synthesized bismuth complexes with such carboxylate

3
containing ligands as mandelic acid, glycolic acid, and
ethylene glycol.
A second group of bismuth complexes has been
synthesized by Palenik and coworkers, and Battaglia and
coworkers which contain planar pentadentate ligands. Work
by Palenik has included the syntheses of bismuth complexes
with the ligands 2,6-diacetylpyridine bis(semicarbazone),
(DAPSC), and 1,10-diformylphenanthroline bis(semicarbazone),
(PHENSC) ,11'13 which have shown surprising water solubility.
A similar complex with the ligand 2,6-diacetylpyridine
bis(2-thenoylhydrazone), (DAPT), was synthesized by
Battaglia.14
Our study of bismuth coordination compounds has focused
on the synthesis of complexes with both carboxylate
containing ligands and planar pentadentate ligands. A
subsequent investigation of antibacterial properties yielded
some surprising results as a correlation to water solubility
was drawn. The complexes were further characterized by a
variety of methods including x-ray crystallography, infrared
(IR) spectroscopy, elemental analyses, and through the
method of valence bond sums.
Manganese and Gadolinium Chemistry
The use of nuclear magnetic resonance imaging (MRI) as
a technique for the detection of diseased body tissue has
grown in recent years. While this method has proven its

4
usefulness, its success has depended on the availability of
imaging agents that possess several important characterist¬
ics. First, the imaging agent must be sufficiently water
soluble and stable in vivo to facilitate thorough passage
through the body. Any decomposition of the agent could
leave toxic amounts of the free ligand or metal ion in the
body. Second, the agent must provide a sharp contrast
between normal and diseased tissue which is accomplished by
utilizing paramagnetic metal centers and maximizing the
degree of inner sphere waters of hydration. Finally, the
desired imaging agent must show a tendency to localize in a
specific target tissue, a property that is determined
empirically from trials on other organisms.
The most common imaging agents used for the purpose of
MRI are complexes of Mn(II) and Gd(III). The paramagnetism
of these metal centers, which are d5 and f7, respectively,
makes them ideal choices as imaging agents. The choice of
ligand is important in determining the usefulness of these
complexes, as it is the ligand that dictates where the
complex will localize in the body and determines the degree
of inner sphere hydration. Multidentate ligands usually
yield a strong, stable complex that will not dissociate in
vi vo.15
After documented success in producing water soluble
complexes of Bi(III) with planar pentadentate ligands,11'14
similar complexes were synthesized using Mn(II) and Gd(III).

5
Besides the obvious contribution a multidentate ligand
brings to the stability of a complex, the use of a planar
ligand also provides areas above and below the metal center
which can accomodate several waters of hydration, a
situation that is advantageous for imaging agents.
Variability in the structural characteristics of the ligands
may be a way to 'direct' the complex to a desired body
tissue.
Complexes of Mn(II), Eu(III), Gd(III), and Y(III),
containing planar pentadentate ligands, were synthesized and
characterized by x-ray crystallography and elemental
analyses. An investigation of their solution stability over
time was attempted via a study of the 1H, 13C, and 89Y nuclear
magnetic resonance (NMR) spectra for the Y(III) complex.
The results reveal a series of complexes that are
surprisingly water soluble and stable in solution, and which
can accomodate at least four inner sphere waters of
hydration.

CHAPTER 2
COMPLEXES OF BISMUTH(III):
A SYNTHETIC AND STRUCTURAL STUDY
Introduction
Historically, bismuth compounds have been used as
medicinal agents for a variety of purposes including the
treatment of stomach disorders and wound disinfection.
Though the use of bismuth salts waned after World War II,
interest has increased with the emergence of CBS as a
treatment for peptic ulcers. The solubility of CBS in water
is uncharacteristic of bismuth salts and has facilitated its
medicinal use.
Recently bismuth (III) complexes with the planar
pentadentate ligands DAPSC, PHENSC and DAPT have been
prepared and characterized structurally. The use of these
strongly coordinating neutral ligands rendered their Bi(III)
complexes surprisingly water soluble, an unusual condition
in bismuth complexes. We have synthesized a similar complex
with the ligand 2,6-diacetylpyridine bis(acetic acid
hydrazone), (DAPAAH), which has shown water solubility as
well. The ligand is shown in Figure 2-1. Single crystals
of the complex were used in an x-ray diffraction study which
6

7
showed, as previously reported,16 the ability of ligands of
this type to adapt to a variety of coordination environments
and metal ion sizes.
Attempts to synthesize a series of Bi(III) complexes
with three 'one-arm' variations on the DAPSC ligand were met
with little success. These ligands, including
salicylaldehyde semicarbazone, (SASC), did not effectively
coordinate Bi(III). However, crystals obtained during the
unsuccessful synthesis of [Bi-SASC]3+ (the ligand is given
in Figure 2-2) were shown, via an x-ray study, to be the
free ligand hydrogen bonded to a single acetic acid, (HAc),
molecule. This structure was previously unreported.
The use of carboxylate-containing ligands in the
synthesis of complexes with Bi(III) has been of great
interest recently.4'7,10 Several of these complexes have
shown, through the formation of charged complexes, an
impressive water solubility. We have undertaken the
synthesis of Bi(III) complexes with a series of ligands
including picolinic acid, (PIC), dipicolinic acid, (DIPIC),
nitrilotriacetic acid, (NTA), ethylenediaminetetraacetic
acid, (EDTA), and diethylenetriaminepentaacetic acid,
(DTPA) . The syntheses of Bi(HEDTA)17 and guanidinium
Bi(EDTA)18 have been reported but no structural data are
available.19
The reactions of these ligands, shown in Figures 2-3 -
2-7, with bismuth subcarbonate, (Bi0)2C03, have produced

8
Figure 2-1: 2,6-diacetylpyridine
bis(acetic acid hydrazone) (DAPAAH)
Figure 2-2:
Salicylaldehyde Semicarbazone (SASC)

9
Figure 2-3: Picolinic Acid (PIC)
Figure 2-4: Dipicolinic Acid (DIPIC)
OH
OH^k
O OH
O
Figure 2-5: Nitrilotriacetic Acid (NTA)

10
/
^chtch2^
ch2—N /N—'CH2X
/Ch2 foh
HO— C ^“OH 0
o o
Figure 2-6: Ethylenediaminetetraacetic Acid (EDTA)
Figure 2-7: Diethylenetriaminepentaacetic Acid (DTPA)

11
a series of Bi(III) complexes which show a wide range of
water solubility. Crystals obtained in complexes of Bi(III)
with DIPIC, NTA, EDTA, and DTPA were used in x-ray
structural studies which revealed a number of similarities
among the structures of these compounds, including their
coordination polyhedra and the tendency to form dimer-like
units in the solid state. The PIC complex was insoluble and
no x-ray quality crystals were obtained.
Herein we report the syntheses and x-ray crystal
structures of Bi(III) complexes with the ligands DAPAAH,
DIPIC, NTA, EDTA, and DTPA along with the free ligand SASC.
The PIC complex was characterized via elemental analysis.
Experimental
Materials
Bismuth subcarbonate (Bi0)2C03, guanidine carbonate
(C (NH2) 3) 2C03, bismuth nitrate Bi (N03) 3-5H20 (J.T. Baker);
PIC, DIPIC, NTA, DTPA, 2,6-diacetylpyridine and
acethydrazide (Aldrich); EDTA (LaPine); salicylaldehyde and
semicarbazide hydrochloride (Kodak); sodium acetate (NaAc)
and glacial acetic acid (HAc) (Fisher); were all commercial
products and used without further purification. The
procedure used for the complexes of DIPIC, NTA, EDTA, and
DTPA was similar to that reported for the synthesis of
Bi (HEDTA) ,17

12
Synthesis of Bi (DAPAAH) Ac-,-4H,0 (1)
To a solution of 2 0 mL HAc in 2 0 mL H20 was added 0.286
g (0.561 mmol) (Bi0)2C03. After boiling for several hours
all solid went into solution. A mixture of 0.101 g (1.36
mmol) acethydrazide dissolved in 10 mL H20, and 0.0933 g
2,6-diacetylpyridine stirred in 15 mL H20 was added directly
to the solution. A clear yellow solution (pH = 4) was
obtained. The solution was filtered and allowed to
evaporate. A single recrystallization from H20 revealed
beautiful yellow x-ray quality crystals. Anal. Calc (found)
for C17H30N5O10Bi: C, 30.32(30.07); H, 4.49(4.19);
N, 10.40 (10.28) .
Synthesis of Bi(PIC), (2)
A picolinic acid solution was made by dissolving 0.208
g (1.69 mmol) of the acid in 14 mL H20. The pH was
approximately 4. Solid Bi (N03) 3* 5H20 (0.273 g (0.563 mmol))
was added directly to the solution. A white solid appeared
immediately and the pH decreased to approximately 1. The
solid was filtered and allowed to dry. Recrystallizations
from a water/ethanol/pyridine mixture, nitric acid solution,
and hydrochloric acid solution did not yield x-ray quality
crystals. Mp for 2, 340-350°C (dec). Anal. Calc(found) for
Ci8H12N306Bi: C, 37.56(37.16); H, 2.09(2.09); N, 7.30(7.21).
Synthesis of Bi, (DIPIC) . (HDIPIC) . (HAc) v 4H.0 (3)
To a heated solution of 0.188 g (1.12 mmol) of DIPIC in
25 mL H20 (pH 2-3) was added 0.143 g (0.280 mmol) (Bi0)2C03.

13
All solid was in solution within 0.5 h. White solid
obtained upon evaporation was redissolved in a solution of 8
mL HAc and 2 mL H20. After slow evaporation colorless x-ray-
quality crystals were obtained. Anal. Calc(found) for
C32H2oN4020BÍ2-4H20: C, 30.25(29.69); H, 2.22(2.13);
N, 4.41 (4.26) .
Synthesis of Bi (NTA) • 2H-,0 (4)
To a boiling solution of 0.107 g (0.561 mmol) NTA in 60
mL of H20 was added 0.142 g (0.279 mmol) of (Bi0)2C03. After
12 h of boiling with stirring, all solids had dissolved.
The solution was filtered while hot, and the clear,
colorless filtrate was allowed to evaporate. The
crystalline product was recrystallized once from H20 and
crystals suitable for an x-ray analysis were obtained.
Anal. Calc (found) for C6H10NO8Bi: C, 16.64(17.16);
H, 2.33(1.99); N, 3.23(3.28).
Synthesis of Bi(HEDTA)•2H.0 (5)
To 100 mL of H20 was added 1.25 g (4.29 mmol) of EDTA.
The solution was heated to boiling, and 1.20 g (2.36 mmol)
of (BiO) 2C03 was added in small increments. After 30 min of
boiling the mixture was filtered while hot, and the
colorless filtrate allowed to evaporate. Colorless crystals
suitable for an x-ray single crystal analysis were formed.
Anal. Calc (found) for C10H17N2O10Bi: C, 22.48(22.16);
H, 3.21(3.15); N, 5.24(5.19).

14
Synthesis of (Guan) -,Bi (DTPA) • 4H-,0 (6)
To a boiling solution of 50 mL of H20 and 0.928 g (2.36
mmol) of DTPA was added 0.600 g (1.18 mmol) of (Bi0)2C03.
After stirring for 1 h all solid was in solution. To the
cooled solution was added 0.425 g (2.36 mmol) of guanidine
carbonate ( (C (NH2) 3) 2C03) . The reaction mixture was heated
slowly to boiling, and after 2 h, the solution was filtered
and the clear, colorless filtrate allowed to evaporate
slowly. The resulting white solid was recrystallized three
times from H20 to obtain crystals suitable for an x-ray
anaylsis. Anal. Calc (found) for C16H38N9014Bi: C, 24.34
(24.90); H, 4.85(4.61); N, 15.97(16.53).
Synthesis of SASC-HAc (7)
The ligand was synthesized by adding 0.94 mL
salicylaldehyde to a solution of approximately 1 g
semicarbazide hydrochloride and 1.5 g sodium acetate in 8 mL
H20. The resulting white precipitate was recrystallized
once from H20. Anal. Calc (found) for C8H9N302:
C, 53.63(53.43); H, 5.06(5.00); N, 23.45(23.85).
Crystals of 7 were obtained during a procedure in which
0.138 g (0.270 mmol) (Bi0)2C03 was dissolved in 30 mL
glacial HAc and combined with 0.232 g (1.29 mmol) SASC.
Large colorless crystals, obtained on evaporation of the
clear colorless solution, appeared to lose solvent molecules
after drying in air. Recrystallization from HAc produced

15
large colorless crystals which were submitted for a single
crystal x-ray analysis.
X-ray Structural Studies
Data for all of the crystals were collected at room
temperature on a Siemens R3m/V diffractometer equipped with
a graphite monochromator utilizing Mo K„ radiation (X =
0.71073 Á) . Forty reflections with 20.0° < 20 < 22.0° were
used to refine the cell parameters. Full intensity
reflections were collected using the cj-scan method. Four
reflections were measured every 96 reflections to monitor
instrument and crystal stability . Absorption corrections
were applied based on measured crystal faces using SHELXTL
plus;20 absorption coefficient.
The structures were solved by the heavy-atom method in
SHELXTL plus from which the location of the heavy elements
were obtained. The rest of the non-hydrogen atoms were
obtained from subsequent difference Fourier maps. The
structures were refined in SHELXTL plus using full-matrix
least squares. The non-H atoms were treated
anisotropically, whereas the positions of the hydrogen atoms
were calculated in ideal positions and their isotropic
thermal parameters were fixed. All parameters were refined
and £ w ( | F0| ~ | Fc | )2 was minimized; w=l/(a | F0 | ) 2, a ( F0) =
0.5 kl'1/2{[a( I )]2 + (0.021) 2}1/2, I (intensity) = ( I peak -
^background ) (scan rate ) , and O (I) — ( I peak ^ background^ (SCan
rate), k is the correction due to decay and Lp effects, 0.02

16
is a factor used to down weight intense reflections and to
account for instrument instability. The linear absorption
coefficient was calculated from values from the
International Tables for X-ray Crystallography.21 Scattering
factors for non-hydrogen atoms were taken from Cromer &
Mann22 with anomalous-dispersion corrections from Cromer &
Liberman,23 while those of hydrogen atoms were from Stewart,
Davidson, and Simpson.24
Discussion
The reaction of bismuth salts, such as bismuth nitrate
and bismuth subcarbonate, with DAPAAH and the carboxylic
acids PIC, DIPIC, NTA, EDTA, and DTPA, has proven to be a
convenient method of synthesizing complexes of these
ligands. Bismuth subcarbonate appears to be most useful
when used with acids with a pK of about 5 or lower. An acid
with a pK of higher than 5 does not seem effective at
dissolving the subcarbonate and requires the use of bismuth
nitrate. Our results also show that complexes containing
both fully and partially deprotonated ligands are possible
when using these polyprotic acids. This suggests that the
choice of an appropriate cation may be a convenient way to
vary the solubility of such complexes.
A thermal ellipsoid drawing of 1 given in Figure 2-8
shows the full bismuth coordination sphere and atomic

17
numbering scheme including the DAPAAH ligand and the two
coordinating acetate counteranions. Atomic coordinates and
bond distances and angles for the non-hydrogen atoms are
given in Tables 2-1 and 2-2, respectively. Coordinates for
the hydrogen atoms are given in Table 2-3, and the hydrogen
atom bond distances and angles are given in Table 2-4. The
structure was refined to an R value of 5.3%. This and other
crystal data are given in Table 2-5.
The DAPAAH coordinates in a pentadentate fashion
through N2, N3, N4, and the two carbonyl oxygens 01 and 012.
Two bidentate acetates complete the coordination sphere
bringing the total coordination number to nine. Charge
balance is maintained by deprotonation of the ligand at N5,
a designation based on the lack of a refined hydrogen in
this position, and the 1110 C12-N5-N4 bond angle. The usual
planarity of the ligand is affected by the presence of the
two acetates. To minimize steric interactions between the
acetate oxygens and the DAPAAH ligand, and to accomodate the
large Bi3+ ion, the hydrazone 'arms' are twisted in opposite
directions. Previous work with ligands of this type has
shown their remarkable ability to adapt to a variety of
coordination environments and metal ion sizes.16
The bismuth complex with PIC, 2, was isolated as a
fast-forming precipitate directly from the reaction mixture.
This is not surprising considering that PIC has the
possibility of only a -1 charge. Three coordinating PIC

18
Figure 2-8:
View of 1 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity.

19
Table 2-1: Fractional coordinates and equivalent isotropic3
thermal parameters (Á2) for the non-H atoms of
compound 1.
Atom
X
V
z
U
Bi
0.77999(4)
0.50538 (4)
-0.25413 (2)
0.02912(11)
01
0.6166(9)
0.4424(10)
-0.1075 (6)
0.055 (3)
012
0.6264(8)
0.5514(8)
-0.3770 (5)
0.045 (2)
014a
0.8514(9)
0.2824 (8)
-0.3387(6)
0.047 (3)
014b
0.6265(10)
0.2490 (9)
-0.2962(7)
0.057 (3)
016a
0.8625(9)
0.7386 (9)
-0.1726 (6)
0.058 (3)
016b
0.6291(10)
0.7551(9)
-0.2041(7)
0.062 (3)
N1
0.8084 (9)
0.3256(9)
-0.0545(6)
0.036 (3)
N2
0.8980(9)
0.3863 (9)
-0.1137(6)
0.036 (3)
N3
1.0474(8)
0.4970 (9)
-0.2426 (5)
0.035 (2)
N4
0.8987(8)
0.6160 (9)
-0.3726 (6)
0.034 (2)
N5
0.8156(9)
0.6744(9)
-0.4353(6)
0.035 (2)
Cl
0.6651(11)
0.3582 (12)
-0.0596(7)
0.038 (3)
C2
0.5678 (12)
0.2841(13)
-0.0009(9)
0.053(4)
C3
1.0350(11)
0.3573 (12)
-0.1152(7)
0.040 (3)
C4
1.1043(13)
0.256 (2)
-0.0607(11)
0.067(4)
C5
1.1213 (11)
0.4291(12)
-0.1820 (7)
0.040 (3)
C6
1.2718 (12)
0.424 (2)
-0.1806(10)
0.064(5)
C7
1.3454(14)
0.494 (2)
-0.2437(12)
0.081(5)
C8
1.2727(14)
0.565(2)
-0.3019 (10)
0.065 (5)
C9
1.1198 (10)
0.5642(12)
-0.3030(8)
0.040 (3)
CIO
1.0374 (11)
0.6364(13)
-0.3696 (8)
0.044 (3)
Cll
1.1157(13)
0.728 (2)
-0.4294(9)
0.061 (4)
C12
0.6776(10)
0.6378(10)
-0.4291(6)
0.031 (3)
C13
0.5715(12)
0.7049 (13)
-0.4881 (9)
0.050 (4)
C14
0.7368 (13)
0.2092(12)
-0.3383(8)
0.044(4)
C15
0.741(2)
0.055 (2)
-0.3885 (12)
0.093(8)
C16
0.7433 (14)
0.8122 (12)
-0.1724 (8)
0.048 (4)
C17
0.751(2)
0.9683 (15)
-0.1298 (14)
0.090 (7)
01'
0.8745(9)
0.1646(10)
0.0911(6)
0.063 (3)
02'
0.8713(10)
0.8163(12)
-0.5984(7)
0.073 (4)
03'
0.6340(12)
-0.0839(15)
0.3136(11)
0.125(5)
04'
0.6367(12)
0.093 (2)
0.1871(11)
0.118(5)
aFor anisotropic atoms, the U value is Ueq, calculated as
Ueq = 1/3 EiEj aL* a-j* Ai;j where Ai;j is the dot product
of the ith and jth direct space unit cell vectors.

20
Table 2-2: Bond Lengths (Á) and Angles (°) for the non-H
atoms of compound 1.
1
2
3
1-2
1-2-3
01
Bi
2.769(9)
012
Bi
2.373(8)
014a
Bi
2.371(7)
014b
Bi
2.758(8)
016a
Bi
2.446 (8)
016b
Bi
2.732(8)
N2
Bi
2.700(9)
N3
Bi
2.468 (8)
N4
Bi
2.411 (9)
01
Bi
012
2.769(9)
110.5(2)
01
Bi
014a
107.8(3)
01
Bi
014b
68.3(3)
01
Bi
016a
92.8 (3)
01
Bi
016b
76.6 (3)
01
Bi
N2
57.8 (2)
01
Bi
N3
118.8(3)
012
Bi
014a
2.373(8)
90.2 (3)
012
Bi
014b
76.7 (3)
012
Bi
016a
108.2 (3)
012
Bi
016b
70.5 (3)
012
Bi
N2
162.8(3)
012
Bi
N3
130.6 (3)
012
Bi
N4
65.1 (3)
014a
Bi
014b
2.371(7)
50.1(3)
014a
Bi
016a
145.7(3)
014a
Bi
016b
160.3(3)
014a
Bi
N2
82.4 (3)
014a
Bi
N3
73.5 (3)
014a
Bi
N4
85.2 (3)
014b
Bi
016a
2.758 (8)
160.8(3)
014b
Bi
016b
118.5(3)
014b
Bi
N2
86.6(3)
014b
Bi
N3
119.0(3)
014b
Bi
N4
120.6 (3)
016a
Bi
016b
2.446(8)
50.0(3)
016a
Bi
N2
86.1(3)
016a
Bi
N3
72.6 (3)
016a
Bi
N4
77.4(3)
016b
Bi
N2
2.732(8)
114.9(3)
016b
Bi
N3
122.0(3)
016b
Bi
N4
90.1(3)
N2
Bi
N3
2.700 (9)
62.0 (3)
N2
Bi
N4
129.3(3)
N3
Bi
N4
2.468 (8)
67.3 (3)
N4
Bi
01
2.411 (9)
166.6(3)
Cl
01
Bi
1.208 (14)
118.4 (7)

21
Table 2-2 -- continued
1
2
3
1-2
1-2-3
C12
012
Bi
1.275 (13)
115.7(6)
C14
014a
Bi
1.252 (14)
101.1(7)
C14
014b
Bi
1.228(15)
83.4 (7)
C16
016a
Bi
1.30 (2)
100.3(7)
C16
016b
Bi
1.23 (2)
88.4(7)
N2
N1
Cl
1.379 (12)
115.8(9)
Cl
N1
1.359 (13)
C3
N2
Bi
1.292 (13)
118.9(7)
C3
N2
N1
119.8 (9)
Bi
N2
N1
119.4 (6)
C5
N3
C9
1.344 (14)
119.6(8)
C5
N3
Bi
124.7(7)
C9
N3
Bi
1.337(14)
115.6(6)
N5
N4
CIO
1.365(12)
120.3 (9)
N5
N4
Bi
118.9(6)
CIO
N4
Bi
1.289 (13)
120.2 (7)
C12
N5
N4
1.320(12)
111.0(8)
C2
Cl
01
1.48(2)
120.5(10)
C2
Cl
N1
115.6(10)
01
Cl
N1
123.9(10)
C4
C3
C5
1.47(2)
120.5 (9)
C4
C3
N2
124.4 (10)
C5
C3
N2
1.49(2)
115.0 (10)
C6
C5
N3
1.386(15)
122.1(11)
C6
C5
C3
120.4 (11)
N3
C5
C3
117.4 (9)
C7
C6
C5
1.38(2)
117.7(13)
C8
C7
C6
1.33(2)
120.4 (12)
C9
C8
C7
1.41 (2)
120.3 (14)
CIO
C9
N3
1.47 (2)
119.0(9)
CIO
C9
C8
121.2(11)
N3
C9
C8
119.8(11)
Cll
CIO
N4
1.49 (2)
123.5(11)
Cll
CIO
C9
119.7(9)
N4
CIO
C9
116.9(10)
C13
C12
012
1.50(2)
117.0(9)
C13
C12
N5
116.9(9)
012
C12
N5
126.0(9)
C15
C14
014a
1.52 (2)
116.5(12)
C15
C14
014b
118.2 (12)
014a
C14
014b
125.1(10)
C17
C16
016a
1.50 (2)
116.7(12)
C17
C16
016b
122.1(12)
016a
C16
016b
121.2 (10)

22
Table
2-3: Fractional
coordinates
and isotropic thermal
parameters
(Á2) for the
H atoms of
compound 1
Atom
X
V
z
U
HI
0.84202
0.24255
-0.00337
0.08
H2a
0.62397
0.22155
0.03231
0.08
H2b
0.49681
0.22749
-0.03853
0.08
H2c
0.51958
0.35513
0.04148
0.08
H4a
1.2065
0.251770
-0.07308
0.08
H4b
1.06205
0.1609
-0.07658
0.08
H4c
1.08973
0.28788
0.0032
0.08
H6
1.32307
0.37458
-0.13733
0.08
H7
1.44958
0.49068
-0.24556
0.08
H8
1.32486
0.61766
-0.34322
0.08
Hila
1.21784
0.72832
-0.41568
0.08
Hllb
1.08001
0.82585
-0.41833
0.08
Hllc
1.0995
0.68987
-0.49243
0.08
H13a
0.62238
0.76739
-0.52398
0.08
H13b
0.502090
0.76048
-0.45008
0.08
H13c
0.52192
0.62988
-0.52801
0.08
H15a
0.64783
0.00932
-0.38386
0.08
H15b
0.81414
0.00118
-0.36149
0.08
H15c
0.76252
0.05793
-0.45179
0.08
H17a
0.65715
1.01168
-0.13349
0.08
H17b
0.82037
1.01942
-0.16196
0.08
H17c
0.78027
0.97338
-0.06679
0.08

23
Table 2-4: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 1.
1
2
3
1-2
1-2-3
HI
N1
N2
1.19(1)
127.0(7)
HI
N1
Cl
117.1 (8)
H2a
C2
H2b
0.96(1)
109.5(12)
H2a
C2
H2c
109.5(13)
H2a
C2
Cl
109.5 (10)
H2b
C2
H2c
0.96(1)
109.5(11)
H2b
C2
Cl
109.5 (12)
H2c
C2
Cl
0.96(1)
109.5(11)
H4a
C4
H4b
0.96(1)
109.5(13)
H4a
C4
H4c
109.5(13)
H4a
C4
C3
109.5 (13)
H4b
C4
H4c
0.96(1)
109.5 (15)
H4b
C4
C3
109.5(12)
H4c
C4
C3
0.96(2)
109.5(12)
H6
C6
C7
0.96(1)
121.2 (11)
H6
C6
C5
121.1(13)
H7
C7
C8
0.96(1)
120. (2)
H7
C7
C6
120 . (2)
H8
C8
C9
0.96 (2)
119.9(14)
H8
C8
C7
119.9(13)
Hila
Cll
Hllb
0.96(1)
109.5(13)
Hila
Cll
Hllc
109.5(12)
Hila
Cll
CIO
109.5 (13)
Hllb
Cll
Hllc
0.96(1)
109.5(14)
Hllb
Cll
CIO
109.5 (11)
Hile
Cll
CIO
0.96(1)
109.5(12)
H13a
C13
H13b
0.96(1)
109.5(11)
H13a
C13
H13c
109.5 (13)
H13a
C13
C12
109.5 (10)
H13b
C13
H13c
0.96(1)
109.5 (11)
H13b
C13
C12
109.5 (11)
H13c
C13
C12
0.96(1)
109.5 (10)
H15a
C15
H15b
0.96(2)
109 . (2)
H15a
C15
H15c
109. (2)
H15a
C15
C14
109.5 (15)
H15b
C15
H15c
0.96(2)
109 . (2)
H15b
C15
C14
109.5(15)
H15c
C15
C14
0.96 (2)
109.5(13)
H17a
C17
H17b
0.96(2)
109. (2)
H17a
C17
H17c
109.(2)
H17a
C17
C16
109.5(14)
H17b
C17
H17c
0.96 (2)
109. (2)
H17b
C17
C16
110. (2)
H17c
C17
C16
0.96(2)
109.4(14)

24
Table 2-5: Crystallographic data for compound 1.
A. Crystal data (298 K)
a, A
b, Á
c, Á
a, deg.
¡3, deg.
y, deg.
V, A3
dCaic/ 9 cm'3 (298 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
1
9.206 (3)
9.300 (2)
14.741 (4)
97.77 (2)
90.53 (2)
90.37(2)
1250.4(6)
1.789
C17H22N506Bi • 4HzO
673.44
Triclinic
P -1
2
660
0.23 x 0.20 x 0.18
B. Data collection
Radiation, X (A)
Mode
Scan range
Background
Scan rate, deg.
2 0 range, deg.
Range of h k 1
(298 K)
Mo-Ka, 0.71073
cj-scan
Symmetrically over 1.2° about Kal>2 maximum
offset 1.0 and -1
min. '1
0 in a) from Kal 2 maximum
3-6
3-55
0 < h < 11
-12 < k s 12
-19 sis 19
Total reflections measured
Unique reflections
Absorption coeff. /x (Mo-Ka) , cm'1
Min. & Max. Transmission
6117
5616
7.11
0.265,
0.351
C. Structure refinement
S, Goodness-of-fit
2.23
Reflections used,
I > 3 a (I)
4685
No.
of variables
298
R, RJ (%)
5.26,
â– ^int
(%)
1.49
Max.
shift/esd
0.000
min.
peak in diff.
four, map
(e
Á'3)
-1.34
max.
peak in diff.
four, map
(e
Á'3)
1.51
6.80
* Relevant expressions are as follows, where in the footnote
F0 and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(|F0| - | Fc | )2, where w = (a(F))"2.
R = Id I F I - I F I | ) / II F I .
R„ = [2>( |Fq| - I Fc I ) 2 / I | F0 | 2] 1/2
5 = [Iw(|F0
Fd )
/ (m-n) ]
1/2

25
anions would produce a complex that is electrically neutral
and unlikely to stay in aqueous solution. It seems clear,
based on excellent elemental analysis results, that a pure
sample of Bi(PIC)3 was indeed obtained. The complex has
defied attempts at crystal growth from several solvents and
solvent mixtures.
A view of the Bi(DIPIC)(HDIPIC)(HAc) complex, 3, along
with the atomic numbering scheme is given in Figure 2-9.
Atomic coordinates and bond distances and angles for the
non-hydrogen atoms are given in Tables 2-6 and 2-7,
respectively. Hydrogen atom coordinates and bond distances
and angles are given in Tables 2-8 and 2-9, respectively.
The structure was refined to an R value of 3.0 %. This and
other crystal data for 3 are given in Table 2-10.
The x-ray analysis reveals a structure in which each
bismuth is coordinated by two tridentate DIPIC anions and a
monodentate HAc molecule. The total coordination number of
eight is completed by a DIPIC oxygen from an adjacent ligand
which is shared by both bismuth centers. Ligand oxygen 01
is likewise shared with the neighboring bismuth center
creating a 'dimer-like' unit consisting of the two bismuth
complexes connected by shared oxygens. This feature
manifests itself consistently in bismuth complexes with
carboxylate containing ligands. The combination of a
Bi (III) center with two DIPIC ligands, both capable of a -2
charge, necessitates that one carboxylate group remain

26
Figure 2-9:
View of 3 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

27
Table 2-6:
Fractional
coordinates
and equivalent
isotropic3
thermal parameters for
the non-H atoms
: of
compound 3,
Atom
X
V
z
U
Bi
1.04930(2)
0.14229(2)
1.16123 (2)
0.02974 (8)
N
0.7899(5)
0.1797(4)
1.0887 (4)
0.028 (2)
01
0.8679 (5)
0.0349 (4)
0.9373 (3)
0.041 (2)
02
0.6299 (5)
-0.0033 (5)
0.7775 (3)
0.055 (2)
03
1.0201 (5)
0.2722 (4)
1.3177 (3)
0.041 (2)
04
0.8758(6)
0.3751 (5)
1.3802 (4)
0.055 (2)
Cl
0.7265 (6)
0.0479 (6)
0.8846 (5)
0.034 (2)
C2
0.6792 (6)
0.1285 (5)
0.9704 (4)
0.029 (2)
C3
0.5294(7)
0.1480 (6)
0.9309(5)
0.037 (2)
C4
0.4949 (7)
0.2191 (7)
1.0165(6)
0.044 (3)
C5
0.6085(7)
0.2715 (6)
1.1388(6)
0.040 (2)
C6
0.7563(6)
0.2509(5)
1.1710(5)
0.031 (2)
C7
0.8922 (7)
0.3042 (6)
1.3004(5)
0.036 (2)
N'
1.1704 (5)
0.0705 (5)
1.3581 (3)
0.030 (2)
01'
0.8700 (4)
-0.0418(4)
1.1781 (3)
0.0383 (15)
02'
0.8031(6)
-0.2104 (5)
1.2732(5)
0.062(2)
03'
1.3639(5)
0.3056 (4)
1.3293 (4)
0.046 (2)
04'
1.5664 (6)
0.3246 (6)
1.5117 (4)
0.061 (2)
Cl'
0.9013(7)
-0.1070(6)
1.2670(5)
0.038 (2)
C2 '
1.0740(7)
-0.0461(6)
1.3693(5)
0.036 (2)
C3 '
1.1266 (8)
-0.1091(7)
1.4681(5)
0.044 (2)
C4'
1.2873 (8)
-0.0441(7)
1.5596(5)
0.048 (3)
C5'
1.3837(7)
0.0783(7)
1.5478 (5)
0.044 (2)
C6'
1.3240 (6)
0.1342 (6)
1.4463 (4)
0.034(2)
Cl'
1.4209(6)
0.2643 (6)
1.4240 (5)
0.036 (2)
05
1.0979 (12)
0.3477(10)
1.0417(10)
0.114(6)
06
1.2554(13)
0.5004(10)
0.9854 (9)
0.125(6)
05'
0.897 (4)
0.567 (4)
0.860 (4)
0.11(2)
06'
0.744 (4)
0.362 (2)
0.809 (3)
0.08(2)
C8
1.1192(14)
0.4042 (9)
0.9616 (10)
0.067(5)
C8'
0.899 (6)
0.446 (4)
0.835 (3)
0.07 (2)
C9
0.992 (2)
0.3811(12)
0.8320 (9)
0.097 (6)
07
0.5039 (8)
0.4382(7)
0.7853 (6)
0.097 (4)
08
0.7383 (5)
0.5369 (4)
0.4657 (4)
0.046 (2)
aFor anisotropic atoms, the U value is Ueq, calculated as Ueq
= 1/3 Xilj Utj aL* aj* A±j where Ai;j is the dot product of the
ith and j"1 direct space unit cell vectors.

28
Table 2-7:
Bond
Lengths (Á)
and Angles (°)
for the non-H
atoms
of compound
3 .
1
2
3
1-2
1-2-3
N
Bi
01
2.415(5)
65.5 (2)
N
Bi
Oli
129.03 (12)
N
Bi
03
67.48 (13)
N
Bi
N'
125.6(2)
N
Bi
01'
75.0(2)
N
Bi
03 '
132.40 (14)
01
Bi
Oli
2.489 (3)
65.48 (14)
01
Bi
03
132.99(15)
01
Bi
N'
138.55 (14)
01
Bi
01'
78.61(13)
01
Bi
03'
145.68 (14)
01
Bi
05
75.6 (2)
Oli
Bi
03
2.543(5)
157.87(14)
Oli
Bi
N'
85.04(15)
Oli
Bi
01'
82.6(2)
Oli
Bi
03'
96.84 (13)
Oli
Bi
05
104.9(3)
03
Bi
N'
2.325(5)
72.8(2)
03
Bi
01'
89.3 (2)
03
Bi
03 '
72.87(14)
03
Bi
05
93.1 (3)
N'
Bi
01'
2.470 (4)
68.83 (13)
N'
Bi
03'
61.69(13)
N'
Bi
05
143.0 (2)
01'
Bi
03'
2.206 (4)
130.33(13)
01'
Bi
05
146.8(2)
03 '
Bi
05
2.768 (3)
81.6(2)
05
Bi
N
2.672 (11)
75.5 (3)
C2
N
C6
1.340 (5)
120.1(5)
C2
N
Bi
121.5 (4)
C6
N
Bi
1.343 (8)
118.4 (3)
Cl
01
Bi
1.291 (7)
121.6 (4)
Cl
02
1.209(5)
C7
03
Bi
1.280 (8)
123.2 (3)
C7
04
1.221(9)
C2
Cl
01
1.515(9)
114.9(4)
C2
Cl
02
119.4 (6)
01
Cl
02
125.7 (6)
C3
C2
N
1.383(9)
120.9 (5)
C3
C2
Cl
122.6 (4)
N
C2
Cl
116.5 (5)
C4
C3
C2
1.378(10)
118.6(5)
C5
C4
C3
1.382 (7)
120.6 (7)
C6
C5
C4
1.375 (9)
117.7(7)
C7
C6
N
1.508 (6)
114.6 (5)
C7
C6
C5
123.3 (6)
N
C6
C5
122.1(4)

29
Table 2-7 -- continued.
1
2
3
1-2
1-2-3
03
Cl
04
124.4 (4)
03
Cl
C6
116.2(5)
04
Cl
C6
119.4 (6)
C2 '
N'
C6 '
1.324(7)
119.9 (5)
C2 '
N'
Bi
114.2 (3)
C6'
N'
Bi
1.344 (5)
125.7 (4)
Cl'
01'
Bi
1.287(7)
125.1(3)
Cl'
02'
1.211(8)
Cl'
03'
Bi
1.223(7)
116.1(3)
Cl'
04'
1.292 (6)
C2 '
Cl'
01'
1.518 (6)
115.8 (5)
C2'
Cl'
02 '
119.8 (5)
01'
Cl'
02'
124.4(5)
C3 '
C2 '
N'
1.390(9)
122.5(4)
C3 '
C2 '
Cl'
121.8(5)
N'
C2 '
Cl'
115.6 (5)
C4 '
C3 '
C2 '
1.402 (7)
117.9(6)
C5'
C4'
C3 '
1.372 (10)
118.6(6)
C6'
C5'
C4 '
1.381(9)
120.3(5)
C7'
C6 '
N'
1.487 (8)
115.2 (5)
Cl'
C6'
C5'
124.1 (4)
N'
C6'
C5'
120.7(5)
03 '
Cl'
04'
125.2 (6)
03'
Cl'
C6'
121.1(4)
04'
Cl'
C6'
113.6 (5)
C8
05
Bi
1.19(2)
157.7 (9)
C8
06
1.273 (14)
C8'
05'
1.29(7)
C8'
06'
1.34 (6)
C9
C8
05
1.501(14)
125.6(10)
C9
C8
06
114.1(11)
05
C8
06
120.1(10)
C9
C8'
05'
1.25 (6)
143. (4)
C9
C8'
06'
112. (3)
05'
C8'
06'
104. (5)
C8
C9
C8 '
109.(2)

30
Table 2-8:
Fractional
coordinates
and isotropic thermal
parameters
(Á2) for the
H atoms of
compound 3.
Atom
X
V
z
U
H3
0.456(7)
0.Ill (6)
0.848 (6)
0.04 (2)
H4
0.422 (8)
0.231 (6)
0.993(5)
0.03 (2)
H5
0.595(7)
0.328 (6)
1.199(5)
0.028 (14)
H4 "
1.629(11)
0.390(9)
1.497(8)
0.08(3)
H3'
1.028 (12)
-0.209(9)
1.453 (8)
0.10(3)
H4'
1.332 (6)
-0.101(5)
1.621 (4)
0.015(11)
H5'
1.487(8)
0.120(7)
1.589 (6)
0.05 (2)
H7a
0.44422
0.41557
0.7097
0.08
H7b
0.55951
0.40377
0.81479
0.08
H8a
0.78709
0.60287
0.51898
0.08
H8b
0.79786
0.49661
0.44399
0.08
Table 2-9: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 3.
1
2
3
1-2
1-2
-3
H3
C3
C4
0.93(5)
123 .
(5)
H3
C3
H4
103 .
(5)
H3
C3
C2
118 .
(5)
H4
C4
C5
0.68(7)
124 .
(5)
H4
C4
C3
116 .
(5)
H5
C5
C6
0.94(7)
118 .
(3)
H5
C5
C4
124 .
(3)
H4 "
04'
Cl'
0.83(9)
116 .
(5)
H3 '
C3 '
C4 '
1.11(9)
133 .
(5)
H3 '
C3 '
C2 '
109 .
(5)
H4 '
C4 '
C5'
1.02(5)
124 .
(2)
H4'
C4 '
C3 '
116 .
(2)
H5'
C5'
C6'
0.85(6)
Ill.
(5)
H5'
C5'
C4 '
127 .
(5)
C8
05
Bi
1.19(2)
157 .
7(9)
H7a
07
H7b
0.827(6)
122 .
4 (10
H8a
08
H8b
0.780 (4)
116 .
1 (5)

31
Table 2-10: Crystallographic data for compound 3.
A.
Crystal data (298 K)
3
a,
A
9.251(1)
b,
A
10.478(1)
c,
A
11.666(1)
ot,
deg.
94.87(1)
/?,
deg.
110.49 (1)
7/
deg.
107.63(1)
V,
Á3
986.2 (2)
dcalc, g cm"3 (298 K) 2.14 0
Empirical formula C32H20N4O20Bi2' 4H20
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
1270.54
Triclinic
P -1
4
0.20 x 0.11 x 0.08
B. Data collection (298 K)
Radiation, X (A)
Mode
Scan range Symmetrically
Background offset 1.0 an<
Scan rate, deg. min.'1
2 0 range, deg.
Range of h k 1
Mo - Ka, 0.71073
over 1
co-scan
.2° about
Kal,2
maximum
. -1.0
in w from
Kal,2
maximum
0
3-6
3-55
< h <;
12
-13
< k <
13
-15
s 1 <
14
Total reflections measured
Unique reflections
Absorption coeff. /x (Mo-Ka) , cm'1
Min. & Max. Transmission
4754
4402
9.01
0.266, 0.543
C. Structure refinement
S, Goodness-of-fit
1.17
Reflections used,
I > 2ff(I)
3877
No. of variables
336
R, Rw* (%)
3.02,
Rinf (%)
1.71
Max. shift/esd
0.0002
min. peak in diff.
four, map
(e
Á"3)
-10
max. peak in diff.
four, map
(e
Á"3)
0.94
* Relevant expressions are as follows, where in the footnote
F0 and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(¡F0¡
! Fc! I) / Z! FoI
R = I ( ! ! F
I I ro I
I
I _
! rd
Fr ) , where w= (cr(F))
R, = [IW|Fol
i p i
I I
I _ I
I
s = [Iw( If.
i Fc i
It? M 2
I ^ c I
/ I
l
i r o I
I 2-1 1/2
)2 / (m-n)]
!]
1/2

32
protonated to maintain charge balance. The proton appears
to be located on 04' based on the carbon to oxygen bond
lengths.
The crystal structure of Bi(NTA), 4, along with the
atomic numbering scheme, is given in the thermal ellipsoid
drawing in Figure 2-10. Atomic coordinates and bond
distances and angles for the non-hydrogen atoms are given in
Tables 2-11 and 2-12, respectively. Hydrogen atom
coordinates, and bond distances and angles, are given in
Tables 2-13 and 2-14, respectively. The structure was
refined to an R value of 3.5 %. Crystal data are given in
Table 2-15.
The complex consists of a single Bi(III) coordinated to
a completely deprotonated NTA trianion. Complete
deprotonation of NTA is necessary to maintain charge balance
but produces a neutral complex that is only slightly more
soluble than the previously mentioned Bi(PIC)3. The NTA
ligand coordinates in a tetradentate fashion through the
single nitrogen, N, and singly through one 0 atom from each
of the three carboxylate groups. The coordination sphere of
eight donor atoms shown in Figure 2-10 is completed by two
water molecules, 04 and 05, and two carboxylate oxygens from
an adjacent ligand, 02i and 03'i. As in 3, the sharing of
carboxylate oxygens produces a 'dimer-like' unit.
A view of the Bi(HEDTA) complex, 5, is shown in Figure
2-11 along with the atomic numbering scheme. Atomic

33
Figure 2-10: View of 4 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

34
Table 2-11: Fractional coordinates and equivalent
isotropic3 thermal parameters (Á2) for the
non-H atoms of compound 4.
Atom
X
V
z
U
Bi
0.08221(5)
0.094810(10) 0.43940(4)
0.01760(10)
N
0.0602(12)
0.1436
(3)
0.7101(9)
0.020 (2)
01
0.0532 (12)
0.2020
(3)
0.4132 (8)
0.033 (3)
01'
0.1090 (13)
0.2974
(3)
0.5236 (9)
0.044 (3)
02
0.1018(11)
0.0164
(3)
0.6692 (8)
0.026 (2)
02'
0.2339(12)
0.0001
(3)
0.9368 (8)
0.036 (3)
03
0.2757 (10)
0.1021
(3)
0.4465 (8)
0.030(2)
03'
0.5332(10)
0.1309
(4)
0.5768 (9)
0.039 (2)
04
0.0856 (12)
0.1154
(3)
0.1556 (8)
0.029 (2)
05
0.3527(12)
0.0308
(5)
0.2697(10)
0.053 (3)
Cl
0.0976(14)
0.2392
(4)
0.5353 (12)
0.027 (3)
Cl'
0.131 (2)
0.2104
(4)
0.7093(12)
0.029 (3)
C2
0.1781(13)
0.0355
(4)
0.8161(11)
0.022 (3)
C2'
0.2058 (15)
0.1072
(4)
0.8453 (10)
0.023 (3)
C3
0.3390 (14)
0.1232
(4)
0.5702 (12)
0.025(3)
C3 '
0.1708(14)
0.1382
(6)
0.7274 (12)
0.032 (3)
aFor anisotropic atoms,
the U
value is U , calculated as Ueq
= 1/3
Ui(j a,* a.,*
where
An
is the dot product of the
ith and j**
direct space
unit cell
vectors.

35
Table
2-12: Bond
Lengths (Á)
and Angles (°)
for the non
atoms
of compound
4 .
1
2
3
1-2
1-2-3
N
Bi
2.500 (8)
01
Bi
2.258 (6)
02
Bi
2.501 (6)
02 i
Bi
2.665 (6)
03
Bi
2.253(7)
03' i
Bi
2.435 (6)
04
Bi
2.403(6)
05
Bi
2.767(9)
Cl'
N
C2'
1.468(11)
110.8 (6)
Cl'
N
C3 '
111.9(8)
Cl'
N
Bi
108.0(6)
C2'
N
C3 '
1.492 (10)
109.5 (7)
C2 '
N
Bi
109.0 (5)
C3 '
N
Bi
1.484 (12)
107.4(5)
Cl
01
Bi
1.260(11)
122.4 (6)
Cl
01'
1.225(11)
C2
02
Bi
1.274 (10)
118.1(5)
C2
02'
1.238 (11)
C3
03
Bi
1.259(13)
122.2(5)
C3
03 '
1.235(11)
Cl'
Cl
01
1.537(14)
118.4 (8)
Cl'
Cl
01'
117.7(9)
01
Cl
01'
123.8(9)
N
Cl'
Cl
113.4(7)
C2'
C2
02
1.524(12)
117.9(7)
C2'
C2
02'
117.5(7)
02
C2
02'
124.6 (8)
N
C2'
C2
110.7 (6)
C3 '
C3
03
1.521 (12)
119.5(8)
C3 '
C3
03'
115.9 (9)
03
C3
03'
124.5(8)
N
C3 '
C3
115.9(8)

36
Table 2-13: Fractional coordinates and isotropic thermal
parameters (Á2) for the H atoms of compound 4.
Atom
X
V
z
U
H4a
-0.16908
0.14176
0.1347
0.01 (2)
H4b
-0.1467
0.0791
0.1132
0.14(8)
H5a
0.44329
0.05756
0.29155
0.09(6)
H5b
0.35049
0.02926
0.17215
0.04(3)
HI'a
0.04852
0.23531
0.77181
0.08
HI' b
0.28421
0.21268
0.76044
0.08
H2' a
0.35569
0.1187
0.84927
0.08
H2 ' b
0.16862
0.11778
0.94839
0.08
H3 ' a
-0.17754
0.10475
0.80534
0.08
H3 'b
-0.21109
0.17805
0.76975
0.08
Table 2-14: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 4.
1
2
3
1-2
1-2-3
H4a
04
H4b
0.752(7)
108.6 (7)
H4a
04
Bi
119.4 (6)
H4b
04
Bi
0.889(7)
107.1 (5)
H5a
05
H5b
0.788 (9)
96.6(10)
H5a
05
Bi
91.5 (7)
H5b
05
Bi
0.808 (8)
130.6(7)
HI' a
Cl'
Hl'b
0.960(10)
109.5 (9)
HI'a
Cl'
N
108.5(9)
HI'a
Cl'
Cl
108.5 (8)
Hl'b
Cl'
N
0.960(10)
108.5(8)
HI' b
Cl'
Cl
108.5(9)
H2' a
C2 '
H2'b
0.960 (9)
109.5 (8)
H2' a
C2 '
N
109.2 (8)
H2' a
C2 '
C2
109.2 (8)
H2'b
C2 '
N
0.960 (9)
109.2 (8)
H2'b
C2 '
C2
109.2 (8)
H3 ' a
C3 '
H3 'b
0.960(11)
109.5 (10)
H3 ' a
C3 '
N
107.8(8)
H3' a
C3 '
C3
107.8(9)
H3' b
C3 '
N
0.960(11)
107.8 (9)
H3 ' b
C3 '
C3
107.8(8)

37
Table 2-15: Crystallographic data for compound 4.
A. Crystal data (298 K)
a, A
b, Á
c, Á
|6, deg.
V, Á3
dcaio ^ cm'3 (2 98 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
4
6.242(1)
20.927 (3)
8.307(1)
102.49 (1)
1059.4 (3)
2.716
C6H6N06Bi • 2H20
433.13
Monoclinic
P 21/n
4
800
0.30 x 0.26 x 0.20
B. Data collection (298 K)
Radiation/ X, (A)
Mode
Scan range Symmetrically over Xo
Mo-Ka/0.71073
oj-scan
about Kal 2 maximum
Background
Scan rate, deg
2 0 range, deg.
Range of h k 1
(X = 1.5)
offset 1.0 and -1.0 in w from Kal2
min."1 3-6
3-55
0 <; h <;
0 £ k <
-10 sis
maximum
8
27
10
Total reflections measured
Unique reflections
Absorption coeff. /i (Mo-K„) , mm'1
Minimum / maximum transmisión
2744
2446
16.67
0.035 / 0.105
C. Structure refinement
S, Goodness-of-fit 1.44
Reflections used, I > 2a(I) 1943
No. of variables 149
R, iV (%) 3.47, 4.09
*Lnt, (%) 3.54
Max. shift/esd e 0.001
min. peak in diff. four, map (e Á'3) -2.54
max. peak in diff. four, map (e Á"3) 2.2 9
* Relevant expressions are as follows, where in the footnote
F0 and Fc represent, respectively, the observed and
calculated structure-factor
Function minimized was w(
r - id
Rw = LIw(
s = [£w( |f,
I T? I
I I
I T7 I
I I
i r o I
Fci
I
I
I
I
Fc'|)2
Fc|)2
I|F
/
I
(m
i p i
I I
I
o I
I
I
amplitudes.
2 where w= (a(F)
I L1 I \
I I /
-2
F„H1'2
•n>]
1/2

38
coordinates and bond distances and angles for non-hydrogen
atoms are given in Tables 2-16 and 2-17, respectively.
Tables 2-18 and 2-19 contain the hydrogen atom coordinates
and bond distances and angles, respectively. The crystal
structure was refined to an R value of 2.2 %. This and
other relevant data regarding the crystal, data collection,
and structure refinement are given in Table 2-20.
The complex, 5, consists of a single EDTA molecule
coordinating in a hexadentate fashion through both
nitrogens, N1 and N2, and singly through one O atom from
each of the four carboxylate groups. The coordination
sphere, shown in Figure 2-11 containing eight donor atoms,
is completed by two carboxylate oxygens, 03'i and 04'i, from
a neighboring complex. There are no coordinated water
molecules. The ligand remains singly protonated in the
crystalline state to maintain a 3- charge, giving rise to
the notation HEDTA. The Bi(HEDTA) neutral molecule appears
to be more soluble than 4, possibly due to the presence of
the single ionizable proton. This proton has been assigned
to 01 on the basis of bond lengths in the carboxylate
groups. In carboxylates 2 to 4 the C-0 bond distances are
statistically equivalent indicating conjugation of the
double bond after deprotonation. The C-0 bond distances in
carboxylate 1 are not statistically equivalent, differing by
0.09 Á, indicating a nonconjugated system.

39
Figure 2-11: View of 5 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

40
Table 2-16: Fractional coordinates and equivalent
isotropic3 thermal parameters (Á2) for the
non-H atoms of compound 5.
Atom
X
V
z
U
Bi
0.0
0.12068 (4)
0.0
0.02009(11)
01
0.1362 (5)
0.1168 (10)
0.0113(7)
0.033 (3)
01'
0.2626(5)
0.1691(14)
0.1119 (8)
0.046 (3)
02
-0.1514(5)
0.0000(15)
-0.0637 (9)
0.056 (3)
02'
-0.2776(5)
0.0472 (14)
-0.0606(7)
0.040 (3)
03
-0.0415(5)
0.4449 (14)
-0.0609 (7)
0.033 (3)
03 '
-0.0031(5)
0.7487 (10)
-0.0641(6)
0.037 (3)
04
0.0338(5)
-0.0447(11)
0.1563 (6)
0.033 (3)
04'
0.0119(7)
-0.1408 (12)
0.3037 (8)
0.049 (4)
N1
0.0727(6)
0.3664 (11)
0.1263 (8)
0.025 (3)
N2
-0.0930 (5)
0.2209 (12)
0.1141(7)
0.023 (3)
Cl
0.1544 (6)
0.287 (2)
0.1736 (9)
0.031 (3)
Cl'
0.1892(7)
0.187 (2)
0.0944(9)
0.032(4)
C2
-0.1779 (6)
0.244 (2)
0.0529(9)
0.033 (4)
C2 '
-0.2032 (7)
0.082 (2)
-0.0284(9)
0.031 (4)
C3
0.0780 (6)
0.549 (2)
0.0652 (9)
0.027 (3)
C3 '
0.0032 (9)
0.5826 (13)
-0.0234 (6)
0.021 (3)
C4
-0.0880 (8)
0.061 (2)
0.1936 (9)
0.033 (4)
C4'
-0.0092 (8)
-0.0484 (15)
0.2195 (8)
0.031 (4)
C5
0.0298 (7)
0.4059 (14)
0.2093 (9)
0.027 (3)
C6
-0.0602(7)
0.4077(14)
0.1667(9)
0.025 (3)
0
0.1868 (5)
0.2631(14)
-0.1826 (8)
0.050 (3)
0'
0.3003 (6)
-0.011 (2)
-0.1832 (8)
0.059 (4)
aFor anisotropic atoms, the U value is Ueq/ calculated as Ueq
= 1/3 ZiZj uip ai* aj* Aij where Ai;j is the dot product of the
ith and jt3 direct space unit cell vectors.

41
Table 2-17: Bond Lengths (Á) and Angles (°) for the non-H
atoms of compound 5.
1
2
3
1-2
1-2-3
01
Bi
2.306 (9)
02
Bi
2.642(9)
03
Bi
2.400 (9)
03 ' i
Bi
2.678(7)
04
Bi
2.295 (7)
04' Ü
Bi
2.673 (11)
N1
Bi
2.461 (8)
N2
Bi
2.577(9)
Cl'
01
Bi
1.316 (13)
120.7 (8)
Cl'
01'
1.226 (14)
C2 '
02
Bi
1.25 (2)
118.8(8)
C2 '
02'
1.256 (14)
C3 '
03
Bi
1.232(14)
118.3(7)
C3 '
03 '
1.249(11)
C4 '
04
Bi
1.26(2)
124.2(7)
C4 '
04'
1.248 (14)
Cl
N1
C3
1.478 (13)
110.1(9)
Cl
N1
C5
110.6(9)
Cl
N1
Bi
106.8(6)
C3
N1
C5
1.504 (15)
111 .1(8)
C3
N1
Bi
107.0(6)
C5
N1
Bi
1.51 (2)
111.2 (6)
C2
N2
C4
1.474 (12)
108.9(9)
C2
N2
C6
111 .1(8)
C2
N2
Bi
112.6(7)
C4
N2
C6
1.508 (14)
110.6(8)
C4
N2
Bi
106.9(7)
C6
N2
Bi
1.491(12)
106.7(7)
Cl'
Cl
N1
1.51 (2)
112.4 (9)
01
Cl'
01'
124.4 (12)
01
Cl'
Cl
115.8(10)
01'
Cl'
Cl
119.7(10)
C2 '
C2
N2
1.52 (2)
111.3(9)
02
C2 '
02'
123.5(11)
02
C2 '
C2
119.8 (10)
02'
C2 '
C2
116.6(11)
C3 '
C3
N1
1.506(15)
112.6(9)
03
C3 '
03 '
123.3 (9)
03
C3 '
C3
120.3 (9)
03'
C3 '
C3
115.6(10)
C4 '
C4
N2
1.50(2)
113.5(11)
04
C4 '
04 '
121.7(12)
04
C4'
C4
119.5(9)
04'
C4'
C4
118.8(13)
C6
C5
N1
1.50 (2)
112.7(9)
N2
C6
C5
113.0(8)

42
Table 2-18: Fractional coordinates and isotropic thermal
parameters (Á2) for the H atoms of compound 5.
Atom
X
Y
z
U
HI
0.14727
-0.00462
0.01393
0.08
Hla
0.18951
0.39282
0.20483
0.08
Hlb
0.15154
0.19419
0.22668
0.08
H2a
-0.21196
0.23954
0.09946
0.08
H2b
-0.18399
0.36805
0.01793
0.08
H3a
0.08572
0.65892
0.11168
0.08
H3b
0.12351
0.53723
0.03666
0.08
H4a
-0.09457
0.11796
0.25677
0.08
H4b
-0.13093
-0.03084
0.16643
0.08
H5a
0.04672
0.5312
0.24003
0.08
H5b
0.0445
0.30627
0.26199
0.08
H6a
-0.07499
0.51185
0.11668
0.08
H7b
-0.08375
0.43061
0.22348
0.08
Ha
0.14122
0.20214
-0.15042
0.08
Hb
0.22294
0.15913
-0.19136
0.08
He
0.19956
0.36556
-0.13863
0.08
H' a
0.29878
-0.08576
-0.23989
0.08
H'b
0.30146
0.11582
-0.19979
0.08
H' c
0.35154
-0.02474
-0.14366
0.08

43
Table 2-19: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 5.
1
2
3
1-2
1-2-3
HI
01
Cl'
0.850 (7)
103.1(8)
HI
01
Bi
103.1 (7)
Hla
Cl
Hlb
0.960(10)
109.5 (10)
Hla
Cl
Cl'
108.7 (11)
Hla
Cl
N1
108.8(9)
Hlb
Cl
Cl'
0.960(12)
108.6(10)
Hlb
Cl
N1
108.8 (10)
H2a
C2
H2b
0.960(13)
109.5 (12)
H2a
C2
C2 '
109.1(10)
H2a
C2
N2
109.1 (10)
H2b
C2
C2 '
0.960(12)
109.0 (10)
H2b
C2
N2
108.8 (10)
H3a
C3
H3b
0.960(11)
109.5 (11)
H3a
C3
C3 '
108.7(9)
H3a
C3
N1
108.7(10)
H3b
C3
C3 '
0.960 (13)
108.6 (11)
H3b
C3
N1
108.6 (10)
H4a
C4
H4b
0.960 (12)
109.5 (14)
H4a
C4
C4 '
108.4(9)
H4a
C4
N2
108.4 (10)
H4b
C4
C4 '
0.960(12)
108.5 (10)
H4b
C4
N2
108.5(9)
H5a
C5
H5b
0.960(10)
109.5 (10)
H5a
C5
C6
108.4 (10)
H5a
C5
N1
108.6(10)
H5b
C5
C6
0.960(10)
108.8 (11)
H5b
C5
N1
108.8(10)
H6a
C6
H7b
0.960(10)
109.5 (10)
H6a
C6
N2
108.4 (9)
H6a
C6
C5
108.7(10)
H7b
C6
N2
0.960 (13)
108.7(10)
H7b
C6
C5
108.6(10)
Ha
0
Hb
1.073 (10)
108.9 (9)
Ha
0
He
96.9(9)
Hb
0
He
0.972(9)
126.6(9)
H' a
O'
H'b
0.904(11)
110.0 (12)
H' a
O'
H' c
103.2(11)
H'b
O'
H' c
0.895(12)
99.3 (10)
H' c
O'
HOb
0.900 (9)
135.6(10)

44
Table 2-20: Crystallographic data for compound 5.
A. Crystal data (298 K)
a, A
b, A
c, A
jS, deg.
V, A3
dCaic/ g cm'3 (2 98 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
5
17.196(2)
6.837(1)
13.277 (2)
105.74(1)
1502.4 (4)
2.358
^-■10^13^2^8®-*-" 2H20
534.24
Monoclinic
Cc
4
1016
0.39 x 0.22 x 0.16
B. Data collection (298 K)
Radiation/, X (A) Mo-Ka/ 0.71073
Mode co-scan
Scan range Symmetrically <
over
Xo about Kal 2 maximum
(X = 1.2)
Background offset 1.0 and
-1.0
in co from Kal 2 maximum
Scan rate, deg. min.'1
2-4
2 0 range, deg.
3-50
Range of h k 1
0
< h < 20
0
< k < 8
-15
< 1 < 15
Total reflections measured
1495
Unique reflections
1367
Absorption coeff. /¿ (Mo-Ka) , mm'
1
11.77
Minimum / maximum transmisión
0.070 / 0.200
C. Structure refinement
S, Goodness-of-fit
1.29
Reflections used, I > 2a (I)
1288
No. of variables
206
R, i?w* (%)
2.24, 2.72
*int (%)
0.00
Max. shift/esd
0.001
min. peak in diff. four, map (e
Á'3)
-1.49
max. peak in diff. four, map (e
A'3)
1.52
* Relevant expressions are as follows, where in the footnote
F„ and F„ represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(|F
R = Z(I If.
I I ro I
R* = E5>( ¡ f,
S = [£w( I F,
It? I I ^
II I '
o I
o I
I I? I
I I
Ip I \ 2
\tc\f
iroI - I
ol
/ I ! Fo!a J1/2
/ (m-n) ]1/2
F_|)2, where w= [o {F) )
-2
/ XlF

45
Figure 2-12 shows a thermal ellipsoid plot of the
Bi(DTPA) complex, 6, including the atomic numbering scheme.
Atomic coordinates and selected bond distances and angles
for the non-hydrogen atoms are given in Tables 2-21 and 2-
22, respectively. Tables 2-23 and 2-24 give the hydrogen
atom coordinates and bond distances and angles,
respectively. The structure was refined to an R value of
3.8 %. This and other crystal data are given in Table 2-25.
The complex contains the octadentate ligand DTPA, which
coordinates through three nitrogens, NI - N3, and singly
through one 0 atom from each of the five carboxylate groups.
Complete deprotonation of the ligand produces a 5- charge,
which is balanced by the Bi3+, and two guanidinium (1 + )
cations. An attempt was made to synthesize the complex
without guanidinium countercations, but this did not yield a
crystalline product. The Bi(III) is nine-coordinate with
the ninth coordination position taken by a carboxylate
oxygen, 01'i, from another Bi(DTPA), again yielding a
'dimer-like' arrangement. Of the four bismuth carboxylate
complexes, Bi(DTPA) is the most soluble due to the presence
of a net 2- charge on the complex.
A thermal ellipsoid plot and atomic numbering scheme
for SASC-HAc, 7, is shown in Figure 2-13. Atomic
coordinates and bond distances and angles for the non¬
hydrogen atoms of 7 are given in Tables 2-26 and 2-27,
respectively. Hydrogen atom coordinates and bond distances

46
Figure 2-12: View of 6 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

Table 2-21: Fractional coordinates and equivalent
isotropic3 thermal parameters (Á2) for the
non-H atoms of compound 6.
Atom
X
V
z
U
Bi
0.95368 (2)
-0.59373 (3)
0.64925(2)
0.02632(9)
01
0.9342 (4)
-0.6038 (5)
0.4966 (3)
0.039 (2)
01'
0.8917 (4)
-0.4767(6)
0.3911 (3)
0.047 (2)
02
0.8528 (4)
-0.7657(5)
0.6306 (3)
0.039 (2)
02'
0.7321 (4)
-0.8683(6)
0.5647 (4)
0.052 (2)
03
0.9271 (4)
-0.3674(5)
0.6630 (3)
0.035 (2)
03 '
0.9018 (4)
-0.2220(6)
0.7482 (4)
0.053 (2)
04
1.0428(4)
-0.7867 (5)
0.6395 (3)
0.036 (2)
04'
1.0651(4)
-0.9856(5)
0.6739 (3)
0.043(2)
05
1.0667 (4)
-0.4932(5)
0.7694 (3)
0.040(2)
05'
1.1834 (4)
-0.5205 (6)
0.8721 (3)
0.053(2)
N1
0.7923 (4)
-0.5411 (6)
0.5598 (4)
0.031 (2)
N2
0.8432 (4)
-0.5505 (6)
0.7381(4)
0.034 (2)
N3
1.0014 (4)
-0.7269 (6)
0.7808(4)
0.032 (2)
Cl
0.8103 (6)
-0.4639 (8)
0.4935(5)
0.036 (3)
Cl'
0.8846 (5)
-0.5205 (7)
0.4578(5)
0.035 (3)
C2
0.7465 (6)
-0.6589 (8)
0.5276 (5)
0.037 (3)
C2'
0.7791 (5)
-0.7723 (8)
0.5775 (5)
0.037 (3)
C3
0.8717(6)
-0.4301(7)
0.7789(5)
0.038 (3)
C3 '
0.9017 (6)
-0.3322 (8)
0.7260(5)
0.036 (3)
C4
0.9950(6)
-0.8584(7)
0.7577 (5)
0.032 (3)
C4'
1.0369 (5)
-0.8801 (7)
0.6845 (5)
0.033 (3)
C5
1.0966(7)
-0.6956 (8)
0.8203(6)
0.039 (3)
C5'
1.1165 (5)
-0.5583(7)
0.8215(5)
0.034 (3)
C6
0.7396(6)
-0.4761 (8)
0.6104(5)
0.037(3)
C7
0.7489 (6)
-0.5419 (10)
0.6907(6)
0.044 (3)
C8
0.8477 (6)
-0.6560(9)
0.7965(5)
0.039 (3)
C9
0.9429 (6)
-0.6937(9)
0.8376 (5)
0.041 (3)
CIO
0.8902 (6)
-0.0948(8)
0.5375(5)
0.037 (3)
Nil
0.8505(5)
-0.0827(7)
0.5988(4)
0.046 (3)
N12
0.9518 (4)
-0.1811 (6)
0.5374 (4)
0.042 (3)
N13
0.8675(5)
-0.0177(7)
0.4752 (4)
0.047 (3)
C20
1.1985 (6)
-0.2021(8)
0.7879(5)
0.042 (3)
N21
1.2283(5)
-0.0874 (7)
0.7814 (4)
0.048 (3)
N22
1.2520 (5)
-0.2842(7)
0.8336(5)
0.056(3)
N23
1.1175(5)
-0.2352(7)
0.7504(5)
0.055 (2)
Oil
1.1255 (13)
-0.331 (2)
0.9794(9)
0.239(12)
012
0.9927(14)
-0.161 (2)
0.9042 (8)
0.29(2)
013
0.5554(11)
-0.934 (3)
0.5128(11)
0.38 (2)
014
1.023 (2)
0.041 (2)
0.9620(12)
0.142 (13)
aFor anisotropic atoms, the U value is Ueq, calculated as Ueq
= 1/3 lilj U±i a¿* aj* Ai;j where is the dot product of the
ith and jta direct space unit cell vectors.

48
Table 2-22:
Bond
Lengths (Á) and Angles (°)
for the non-H
atoms
of compound 6.
1
2
3
1-2
1-2-3
01
Bi
2.562(5)
01' i
Bi
2.686 (6)
02
Bi
2.368(5)
03
Bi
2.479(5)
04
Bi
2.494 (5)
05
Bi
2.599 (5)
NI
Bi
2.639(6)
N2
Bi
2.536 (7)
N3
Bi
2.626 (6)
Cl'
01
Bi
1.258(9)
115.4 (5)
Cl'
01'
1.260(10)
C2'
02
Bi
1.275(9)
125.1(5)
C2'
02'
1.242 (10)
C3 '
03
Bi
1.278 (10)
117.0(5)
C3 '
03'
1.240 (10)
C4 '
04
Bi
1.277(9)
120.0(5)
C4 '
04'
1.235 (9)
C5'
05
Bi
1.245 (9)
121.3(5)
C5'
05'
1.246 (9)
Cl
N1
C2
1.477(11)
110.0(6)
Cl
N1
C6
113.6(6)
Cl
N1
Bi
105.1(5)
C2
N1
C6
1.486 (11)
110.6(7)
C2
N1
Bi
109.2 (4)
C6
N1
Bi
1.473 (12)
108.1 (4)
C3
N2
C7
1.484(10)
110.4(7)
C3
N2
C8
112.2(6)
C3
N2
Bi
106.2 (5)
C7
N2
C8
1.478(10)
108.0 (7)
C7
N2
Bi
111.4(5)
C8
N2
Bi
1.500(11)
108.7(5)
C4
N3
C5
1.462 (10)
109.8(6)
C4
N3
C9
113.1(7)
C4
N3
Bi
107.7 (4)
C5
N3
C9
1.487(11)
107.7(6)
C5
N3
Bi
108.8(5)
C9
N3
Bi
1.492(12)
109.7(5)
Cl'
Cl
N1
1.518 (13)
111.2(7)
01
Cl'
01'
125.7(8)
01
Cl'
Cl
118.7(7)
01'
Cl'
Cl
115.7(7)
C2'
C2
N1
1.505(12)
114.2 (6)
02
C2 '
02'
123.2 (8)
02
C2 '
C2
119.0(7)
02'
C2 '
C2
117.9 (7)

49
Table 2-22 -- continued.
1
2
3
1-2
1-2-3
C3 '
C3
N2
1.518(12)
114.6(7)
03
C3'
03'
124.0(8)
03
C3 '
C3
118.8(7)
03'
C3 '
C3
117.2(8)
C4 '
C4
N3
1.540 (13)
110.5(7)
04
C4 '
04'
124.0(8)
04
C4 '
C4
117.8(7)
04'
C4 '
C4
118.2 (7)
C5'
C5
N3
1.501(12)
113.4 (7)
05
C5'
05'
125.7(7)
05
C5'
C5
116.9(7)
05'
C5'
C5
117.3(7)
C7
C6
N1
1.522 (13)
110.8(7)
N2
C7
C6
114.2(8)
C9
C8
N2
1.509(12)
114.3(8)
N3
C9
C8
113.7(7)
Nil
CIO
N12
1.324(12)
121.0(7)
N12
CIO
N13
1.311(11)
119.7(8)
N13
CIO
Nil
1.332(10)
119.3(8)
N21
C20
N22
1.323(12)
119.5(7)
N22
C20
N23
1.326(11)
119.7(8)
N23
C20
N21
1.301(10)
120.8(8)
Table
2-23: Fractional
coordinates
and isotropic
thermal
parameters
(Á2) for the
H atoms of compound 6.
Atom
X
V
z
U
Hla
0.834 (6)
-0.379(8)
0.520 (6)
0.06 (3)
Hlb
0.753 (6)
-0.450(7)
0.458(5)
0.04 (2)
H2a
0.774(5)
-0.679(7)
0.473(5)
0.04 (2)
H2b
0.684(6)
-0.651 (7)
0.515(4)
0.04(2)
H3a
0.82143
-0.39704
0.79817
0.05
H3b
0.92137
-0.44615
0.82343
0.05
H4a
0.930 (5)
-0.880 (6)
0.742 (4)
0.01 (2)
H4b
1.019(5)
-0.899(7)
0.800 (5)
0.02 (2)
H5a
1.133 (5)
-0.730(7)
0.800(4)
0.02 (2)
H5b
1.108 (5)
-0.746(7)
0.873 (5)
0.04 (2)
H6a
0.672 (6)
-0.467(8)
0.582 (5)
0.05
H6b
0.766(6)
-0.389(7)
0.611(5)
0.05
H7a
0.711(5)
-0.501(7)
0.722 (4)
0.03(2)
H7b
0.723(7)
-0.623 (9)
0.696 (6)
0.08(4)
H8a
0.817 (6)
-0.630 (8)
0.836(5)
0.05(3)

50
Table
2-23 -- continued
Atom
X
V
z
U
H8b
0.816(5)
-0.738 (7)
0.769 (4)
0.03 (2)
H9a
0.973 (5)
-0.635 (8)
0.869(5)
0.04 (2)
H9b
0.938(5)
-0.766(7)
0.877(5)
0.04(2)
Hila
0.80846
-0.02302
0.59806
0.05
Hllb
0.86524
-0.13466
0.64101
0.05
H12a
0.9794
-0.18777
0.496
0.05
H12b
0.96675
-0.23318
0.57949
0.05
H13a
0.82551
0.04209
0.47426
0.05
H13b
0.89491
-0.02582
0.43372
0.05
H21a
1.28432
-0.06482
0.80774
0.05
H21b
1.19207
-0.03163
0.75036
0.05
H22a
1.30808
-0.26192
0.86001
0.05
H22b
1.23209
-0.36238
0.83804
0.05
H23a
1.09744
-0.31315
0.75546
0.05
H23b
1.08123
-0.17939
0.71936
0.05
Table 2-24: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 6.
1
2
3
1-2
1-2
-3
Hla
Cl
Hlb
1.05(9)
109 .
(7)
Hla
Cl
Cl'
108 .
(6)
Hla
Cl
N1
105 .
(5)
Hlb
Cl
Cl'
0.95(8)
117 .
(5)
Hlb
Cl
N1
106 .
(5)
H2a
C2
H2b
1.12(9)
112 .
(6)
H2a
C2
C2 '
100 .
(4)
H2a
C2
N1
104 .
(4)
H2b
C2
C2'
0.93(8)
114 .
(5)
H2b
C2
N1
112 .
(5)
H3a
C3
H3b
0.960(9)
109 .
5 (8)
H3a
C3
C3 '
108 .
2 (7)
H3a
C3
N2
108 .
2 (7)
H3b
C3
C3 '
0.960(8)
108 .
2 (8)
H3b
C3
N2
108 .
2 (7)
H4a
C4
H4b
0.99(7)
109 .
(6)
H4a
C4
C4 '
108 .
(4)
H4a
C4
N3
108 .
(4)
H4b
C4
C4 '
0.85(7)
116 .
(6)
H4b
C4
N3
106 .
(5)
H5a
C5
H5b
0.80(8)
98 .
(7)
H5a
C5
C5'
108 .
(5)
H5a
C5
N3
112 .
(5)

51
Table 2-24 -- continued.
1
2
3
1-2
1-2-3
H5b
C5
C5'
1.03(8)
121. (4)
H5b
C5
N3
104. (4)
H6a
C6
H6b
1.03(8)
106.(7)
H6a
C6
C7
111.(5)
H6a
C6
N1
111. (5)
H6b
C6
C7
1.01(8)
118.(5)
H6b
C6
N1
100.(5)
H7a
C7
H7b
0.97(8)
93.(8)
H7a
C7
N2
110.(4)
H7a
C7
C6
110.(4)
H7b
C7
N2
0.97(10)
105.(6)
H7b
C7
C6
123.(6)
H8a
C8
H8b
0.95(10)
108.(7)
H8a
C8
C9
109. (5)
H8a
C8
N2
107. (5)
H8b
C8
C9
1.05(7)
106 . (4)
H8b
C8
N2
113. (4)
H9a
C9
H9b
0.88(8)
104.(7)
H9a
C9
N3
105.(6)
H9a
C9
C8
114.(5)
H9b
C9
N3
1.03(8)
112. (5)
H9b
C9
C8
108 . (4)
Hila
Nil
Hllb
0.900(7)
120.0 (9)
Hila
Nil
CIO
120.1(7)
Hllb
Nil
CIO
0.900(7)
119.9(8)
H12a
N12
H12b
0.900 (8)
120.0 (8)
H12a
N12
CIO
120.6(7)
H12b
N12
CIO
0.900(7)
119.4 (8)
H13a
N13
H13b
0.900(7)
120.0 (8)
H13a
N13
CIO
120.9 (8)
H13b
N13
CIO
0.900 (8)
119.1(8)
H21a
N21
H21b
0.900 (7)
120.0(8)
H21a
N21
C2 0
120.5(7)
H21b
N21
C2 0
0.900(7)
119.5 (7)
H22a
N22
H22b
0.900(7)
120.0 (8)
H22a
N22
C20
120.3 (8)
H22b
N22
C20
0.900 (8)
119.7(7)
H23a
N23
H23b
0.900 (7)
120.0 (7)
H23a
N23
C2 0
120.4 (8)
H23b
N23
C2 0
0.900(7)
119.6(8)

52
Table 2-25: Crystallographic data for compound 6
A. Crystal data (298 K)
a, A
b, Á
c, Á
13, deg.
V, Á3
dcaio 9 cm'3 (2 98 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
15.113 (3)
10.720 (2)
17.091 (3)
102.72 (2)
2701.0 (9)
1.942
^--16^30^9^10®-*-’ 4H20
789.53
Monoclinic
P 21/n
4
1568
0.65 x 0.54 x 0.07
B. Data collection (298 K)
Radiation/,
Mode
Scan range
X (A)
Mo-Ka/ 0.71073
co-scan
Background
Scan rate, deg.
20 range, deg.
Range of h k 1
Symmetrically over Xo about Kal 2 maximum
(X = 1.2)
offset 1.0 and -1.0 in to from K,
-i
min.
0
0
-20
OJ
3
3
from
- 6
- 55
h
k
1
Oil, 2
maximum
18
12
20
Total reflections measured
Unique reflections
Absorption coeff. /¿ (Mo-Ka) , mm'1
Minimum / maximum transmisión
5117
4640
6.61
0.331 / 0.669
C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2a(I)
No. of variables
R, Rw* (%)
R
int
Max
(%)
shift/esd
min. peak in diff. four,
max. peak in diff. four.
map
map
(e Á'3!
(e Á'3]
1.38
3631
423
3.79,
2.03
0.001
-1.75
1.34
4.09
* Relevant expressions are as follows, where in the footnote
F„ and F„ represent, respectively, the observed and
calculated structure-factor amplitudes.
Function
R = K
Rw = ¡
s
11? i
I I r o I
! F,
= [Z^dFoi
minimized was w(
|FC¡ i) / I¡
! Fc!)2 / I ¡ F0 j 2 ]
¡ Fc ¡ )2 / (m-n) ] 1/2
¡ F0 ¡
!f0¡
!f
I
I rc I
where w= (a(F))
-2
o I
12-11/2

53
and angles are given in Tables 2-28 and 2-29, respectively.
Table 2-30 details the hydrogen bonding interactions, and
the structure was refined to an R value of 4.2 %, which is
shown with other crystal data in Table 2-31.
The crystal structure of 7 reveals the ligand SASC
bonded to an acetic acid (HAc) molecule. Extensive hydrogen
bonding is observed in this structure both within the SASC
molecule, and between the SASC and HAc. The entire
semicarbazone 'arm' is rotated so as to maximize the
hydrogen bonding interaction between the ligand hydroxyl
hydrogen, H2, and N2. This leaves the molecule in a
position to interact with HAc. The N8b hydrogen, H8a, is
involved in hydrogen bonding through the HAc carbonyl oxygen
09a, while the ligand carbonyl oxygen, 08a, hydrogen bonds
with the HAc hydroxyl hydrogen. All hydrogen bonding
interactions, including those created by symmetry, are given
in Table 2-30.
The ability to synthesize a series of bismuth complexes
with widely varying solubilities comes at a time when more
attention is being focused on the solid state coordination
chemistry of bismuth(III) and its role as a therapeutic
agent. Subsequent studies of coordination polyhedra and
antibacterial activity have further served to characterize
this element. The positive results obtained herein warrant
further attempts at the synthesis and characterization of
bismuth complexes.

54
Figure 2-13: View of 7 showing the thermal ellipsoids
and atomic numbering. Methyl hydrogens
are omitted for clarity.

55
Table 2-26: Fractional coordinates and equivalent
isotropic9 thermal parameters (Á2) for the
non-H atoms of compound 7.
Atom
X
V
z
U
02
0.3581(3)
0.4840 (2)
0.33965(9)
0.0683 (8)
08a
-0.0242 (3)
-0.0740 (2)
0.40836 (8)
0.0530 (6)
N8b
0.1206(4)
0.0580 (3)
0.32124 (12)
0.0605 (10)
09a
0.0698(3)
-0.2661 (2)
0.24866(10)
0.0732 (8)
09b
-0.1086(3)
-0.3203 (2)
0.34046(10)
0.0687 (8)
N7
0.1864 (3)
0.2779 (2)
0.42151(10)
0.0406 (7)
N8
0.1075 (3)
0.1430 (2)
0.43959 (11)
0.0487 (8)
Cl
0.2754 (3)
0.5222 (3)
0.46468 (12)
0.0388 (8)
C2
0.3502 (4)
0.5715 (3)
0.39979 (12)
0.0458 (9)
C3
0.4231 (5)
0.7148 (3)
0.3950 (2)
0.0612 (11)
C4
0.4206 (4)
0.8087 (3)
0.4540 (2)
0.0640 (12)
C5
0.3481 (4)
0.7625 (3)
0.5187 (2)
0.0600 (11)
C6
0.2776 (4)
0.6209 (3)
0.5239 (2)
0.0501(10)
C7
0.1979 (3)
0.3738 (3)
0.47329 (13)
0.0410 (8)
C8
0.0658 (3)
0.0377 (3)
0.38916 (12)
0.0433(9)
C9
-0.0372 (4)
-0.3490 (3)
0.27748 (14)
0.0540 (10)
CIO
-0.0993(5)
-0.4960 (3)
0.2465 (2)
0.087 (2)
aFor anisotropic atoms, the U value is Ueq/ calculated as Ueq
= 1/3 TiTi uij ai* aj* Aij where Ai;j is the dot product of the
ith and direct space unit cell vectors.
Table 2-27:
Bond
Lengths (Á) and
Angles (°)
for the non-H
atoms
of compound 7.
1
2
3
1-2
1-2-3
C2
02
1.352 (3)
C8
08a
1.247 (3)
C8
N8b
1.327(3)
C9
09a
1.202 (3)
C9
09b
1.301 (3)
N8
N7
C7
1.378(3)
115.3 (2)
C7
N7
1.279 (3)
C8
N8
N7
1.345 (3)
122.2 (2)
C2
Cl
C6
1.390 (3)
117.8(2)
C6
Cl
Cl
1.397 (3)
119.3 (2)
Cl
Cl
C2
1.450 (3)
122.9(2)
C3
C2
02
1.389 (4)
117.2 (2)
C3
C2
Cl
120.3 (2)

56
Table 2-27 -- continued
1
2
3
1-2
1-2-3
02
C2
Cl
122.5(2)
C4
C3
C2
1.368 (4)
120.1(3)
C5
C4
C3
1.372 (5)
120.7(3)
C6
C5
C4
1.369 (4)
119.4 (3)
Cl
C6
C5
121.7 (3)
N7
C7
Cl
123.4 (2)
08a
C8
N8b
123.0(2)
08a
C8
N8
118.3(2)
N8b
C8
N8
118.6(2)
CIO
C9
09a
1.494 (4)
124.3 (3)
CIO
C9
09b
112.8(3)
09a
C9
09b
122.8 (2)
Table
2-28: Fractional
coordinates
and isotropic
thermal
parameters
(Á2) for the
H atoms of compound 7.
Atom
X
V
z
U
H2
0.308 (4)
0.394 (4)
0.348 (2)
0.105(13)
H8a
0.096 (5)
-0.016 (4)
0.291 (2)
0.108 (13)
H8b
0.199 (4)
0.137 (3)
0.3117(14)
0.068(9)
H9b
-0.056 (5)
-0.225 (4)
0.362 (2)
0.112 (12)
H8
0.075 (3)
0.130 (3)
0.4845(14)
0.054(7)
H3
0.486 (4)
0.739 (3)
0.350 (2)
0.086(10)
H4
0.473 (4)
0.905 (3)
0.4492(13)
0.066 (8)
H5
0.354 (3)
0.829 (3)
0.5599(14)
0.064 (8)
H6
0.235 (3)
0.585 (2)
0.5674 (12)
0.047 (7)
H7
0.153 (3)
0.349 (2)
0.5205(12)
0.046 (6)
H101
-0.0903
-0.49235
0.19421
0.08
H102
-0.01873
-0.57295
0.26591
0.08
H103
-0.22551
-0.51729
0.2587
0.08
H104
-0.13561
-0.56193
0.28489
0.08
H105
-0.20237
-0.48178
0.21241
0.08
H106
0.00344
-0.53889
0.22152
0.08

57
Table
2-29: Bond
Lengths (Á)
and Angles (°)
for the H atoms
of
compound 7.
1
2
3
1-2
1-2-3
H2
02
C2
0.90(3)
110. (2)
H8a
N8b
H8b
0.88(3)
125 . (3)
H8a
N8b
C8
115. (2)
H8b
N8b
C8
0.92 (3)
119. (2)
H9b
09b
C9
1.01 (3)
111. (2)
H8
N8
C8
0.87(2)
120. (2)
H8
N8
N7
118. (2)
H3
C3
C4
0.97(3)
123.(2)
H3
C3
C2
116. (2)
H4
C4
C5
0.95 (3)
121. (2)
H4
C4
C3
118. (2)
H5
C5
C6
0.96 (2)
122. (2)
H5
C5
C4
119. (2)
H6
C6
Cl
0.92(2)
117.0 (14)
H6
C6
C5
121.2 (14)
H7
C7
N7
0.96(2)
119.6(13)
H7
C7
Cl
117.1 (13)
H101
CIO
H102
0.960(3)
109.5(3)
H101
CIO
H103
109.5(4)
H101
CIO
C9
108.6(3)
H102
CIO
H103
0.960(3)
109.5 (3)
H102
CIO
C9
108.8(3)
H103
CIO
C9
0.960 (4)
111 .0(3)
H104
CIO
H105
0.960 (3)
109.5 (4)
H104
CIO
H106
109.5(3)
H104
CIO
C9
110.4 (3)
H105
CIO
H106
0.960 (4)
109.5 (3)
H105
CIO
C9
110.1 (3)
H106
CIO
C9
0.960 (4)
107.9(3)

58
Table
2-30 :
H-bonding
for compound
7 .
D
H
A
D-H
H A
D-H .
(A)
(Á)
(°)
02
H2
N7
0.90(3)
1.93(3)
143 (3)
02
H2
09a1
2.47 (3)
104 (2)
N8b
H8a
09a
0.88(3)
2.37(3)
158 (3)
N8b
H8a
02au
2.42(3)
126 (3)
N8b
H8b
N7
0.92 (3)
2.38(3)
102(2)
N8b
H8b
09a1
2.20(3)
151 (2)
N8
H8
08Ui
0.87(2)
2.07 (2)
172 (2)
09b
H9b
08a
1.01(3)
1.61 (3)
164(3)
Elements generated by symmetry operators: i 0.5-x, 0.5+y,
0.5-z; ii 0.5-x, -0.5+y, 0.5-z; iii iv -x, -y, 1-x.

59
Table 2-31: Crystallographic data for compound 7.
A. Crystal data (298 K)
a, A
b, Á
c, Á
a, deg.
|6, deg.
7/ deg.
V, A3
dcaic/ g cm"3 (2 98 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
7
7.182(1)
8.947(1)
18.277(2)
90
91.89 (1)
90
1173.8(2)
1.354
^-10^13^304
239.23
Monoclinic
P 21/n
4
504
0.36 x 0.23 x 0.19
B. Data collection (298 K)
Radiation, X (A)
Mode
Scan range
Background
Scan rate, deg. min.
20 range, deg.
Range of h k 1
Mo-K„
or 1
cj-scan
Symmetrically over 1.2° about Ko12
offset 1.0 and -1.0 in u from Kal 2
0.71069
-9
0
0
<
£
£
3 -
3 -
h
k
1
6
55
maximum
maximum
9
11
23
Total reflections measured
Unique reflections
Absorption coeff. /x (Mo-Ka) , cm"1
Min. & Max. Transmission
3115
2711
0.11
0.962, 0.986
C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2a(I)
No. of variables
R, (%)
«inf (%)
Max. shift/esd
min. peak in diff. four, map
max. peak in diff. four, map
(e
(e
A"3)
1.19
1309
198
4.20%,
0%
0.0012
-0.19
0.12
4.08%
* Relevant expressions are as follows, where in the footnote
F„ and Fn represent, respectively, the observed and
calculated structure-factor amplitudes.
Function
R = X(
I I tr I
11*01
Rw = [2>( ¡F,
= [X^(|Fo!
minimized was
iFci!) /
¡ Fc ¡ ) /
! Fc¡)2 /
I
|Fo!
ol
F„!2] 1/2
w(
X ¡ F,
XI
(m-n) ]1/2
I Fc
where w= (a(F)

CHAPTER 3
COMPLEXES OF BISMUTH(III):
VALENCE BOND SUMS AND COORDINATION POLYHEDRA
Introduction
Our studies of bismuth coordination chemistry have been
directed mainly toward the synthesis of satisfactory
crystalline samples with which to gain a clearer
understanding of bismuth complexes in the solid state. With
this goal comes the sometimes daunting task of evaluating
the nature both of the bismuth coordination environment in
terms of its geometry, and of the electronic nature of the
bismuth ion itself.
The formation of a complex of any metal ion with a
multidentate ligand represents a compromise between the
steric demands of the ligand, and the steric and electronic
requirements of the metal ion. The large size of the
Bi(III) ion facilitates coordination spheres containing up
to nine donor atoms, but can pose difficulties for ligands
that are either small or sterically hindered. Two features
that appear to be common to the bismuth carboxylato
complexes reported in chapter 2, together with the citrate
complexes reported earlier,4'7 are the tendency to form
60

61
'dimer like' subunits, and the presence of widely variable
metal-donor atom bond distances. These could be related
both to the coordination sphere geometry imposed by the
ligand, and to the possible stereochemical activity of the
bismuth (III) 6s2 lone pair.
Questions of the presence, or lack, of a
stereochemically active lone pair on the Bi(III) ion have
been raised in a variety of forums. 25,26 Problems arise in
the determination of the correct oxidation state for the
bismuth ion if one considers that the only difference
between Bi(OH2)3+, where Bi formally maintains a +3 formal
charge, and (BiO)3+, in which Bi formally maintains a +5
formal charge, is the presence of two protons, which may or
may not be detectable in an x-ray crystal structure. As
water molecules often play a part in the inner coordination
spheres of bismuth complexes with sterically hindered
ligands, this distinction becomes an important one.
In order to assess the possible stereochemical activity
of a Bi(III) lone pair we have sought a means by which to
evaluate the inner coordination sphere geometries of
complexes 1, 3, 4, 5, and 6 to see if such a lone pair is
detectable via a 'vacant' coordination site. Coordination
polyhedra were analyzed by calculating the angles between
facial planes each consisting of three atoms bonded to the
central bismuth atom.27 Likewise, a method for determining
the metal ion valency consisted of utilizing the idea of

62
valence bond sums,28 henceforth VBS. This 'valence sum' is
obtained by adding the contributions to valency of each
metal-donor atom bond, which are calculated from standard
bond lengths. From these data we have gained a clearer
picture of the electronic nature of Bi(III) in the solid
state, as well as its common coordination geometries.
Discussion and Results
Questions regarding the existence and/or stereochemical
activity of a Bi3+ 6s2 lone pair of electrons have made the
use of VBS a desirable tool. We have utilized this method
to determine the overall valence of the Bi cation in each of
our bismuth complexes. The VBS method depends on the
empirical determination of a set of standard cation-anion
bond lengths, rD, from large sets of crystal data. A table
of such values has been reported by Brown and Altermatt,28
henceforth BA, along with an algorithm for predicting the rQ
values of bonds not listed. A more recent method formulated
by O'Keeffe and Brese,29 henceforth OB, was also utilized.
In the BA method, the contribution, s, of any given
cation-anion bond to cation valence is given by the equation
s = exp t (rD-r) /B\
where r0 and B are empirically determined parameters, and r
is the experimentally observed cation-anion bond length. In

63
this manner, the oxidation state, Vi, of any cation, i, may
be calculated via the equation
Vi = I Sij
j
where sij are the valence contributions from bonds between
the cation i and each donor atom j. The parameter B was
determined empirically to be 0.37Á.
In the OB method, a similar mathematical form is used.
For any given cation, i, the valence, V±l is calculated by
summing the contributions to valency, v±j, of each bond
between i, and its donor anions, j.
I Vij = V,
J
Contributions to valence, v1:j, are calculated via
= exp [{Ri:j - di:j) /Jb]
where d1:j is the experimentally determined bond length
between i and j, and b is the "universal" constant taken to
be 0.37 Á. The parameter Ri;j is the bond valence
parameter. In a general sense, this is the length of a
single bond between i and j, but is usually determined to be
the bond length in compounds that are stable at normal
temperatures and pressures. For example, for the bond
between Na+ and F" is taken to be the bond distance in
crystalline NaF, not that observed in diatomic NaF.

64
Values of R±j for any given bond may be calculated by
using the expression
Rn = ri + rj
r1rj('/ci - Jcj)
ciri + cjrj
where r is a 'size' parameter, and c is a second parameter
for any element. Values of r and c were determined
empirically so as to minimize the squared deviation between
calculated and observed values of R±j. In some cases the
value of c for a particular element showed a strong
correlation to the Allred-Rochow electronegativity for that
element. These were fixed where appropriate.
Both the BA and OB methods were used to calculate the
Bi cation valency for each bismuth complex in which Bi-donor
atom distances were known. The VBS, utilizing each method,
for the complexes Bi(DIPIC), Bi(NTA), Bi(EDTA), Bi(DTPA),
and Bi(DAPAAH) along with the contributions from each donor
atom are given in Tables 3-1 to 3-5. Values of r0 used in
the BA method were 2.094 Á for Bi-0, and 2.184 Á for Bi-N.
The values for R^ used in the OB method were 2.12 Á for Bi-
0, and 2.23 Á for Bi-N.
The calculated VBS values range from 2.89 to 3.29 for
the BA method, and from 3.16 to 3.59 for the OB method.
Values of 3.00 ± 0.30, for the BA method, suggest that the
actual valence of the Bi cation is indeed 3+. Both VBS

65
Table 3-1:
Contributions
to valency of each Bi-donor
atom bond and
total VBS for the complex
Bi2(DIPIC)2 (HDIPIC) 2 (HAc) 2' 4H20.
BA
OB
Bi-N
0.536
0.607
Bi-N'
0.462
0.523
Bi-01
0.344
0.369
Bi-01'
0.739
0.793
Bi-Oli
0.297
0.319
Bi-03
0.536
0.575
Bi-03'
0.162
0.174
Bi -05
0.210
0.225
3.286
3.585
Table 3-2:
Contributions
to valency of each Bi-donor
atom bond and
total VBS for the complex
Bi (NTA) • 2H20.
BA
OB
Bi-N
0.426
0.482
Bi-01
0.642
0.689
Bi -02
0.333
0.357
Bi-03
0.651
0.698
Bi -04
0.434
0.465
Bi -05
0.162
0.174
Bi-02i
0.214
0.229
Bi-03' i
0.398
0.427
VBS
3.260
3.521
Table 3-3:
Contributions
to valency of each Bi-donor
atom bond and
total VBS for the complex
Bi (HEDTA) • 2H20
•
BA
OB
Bi-Nl
0.473
0.536
Bi-N2
0.346
0.391
Bi-01
0.564
0.605
Bi-02
0.227
0.244
Bi-03
0.437
0.469
Bi - 04
0.581
0.623
Bi-03'i
0.206
0.221
Bi-04'i
0.209
0.224
VBS
3.043
3.313

66
Table 3-4: Contributions to valency of each Bi-donor
atom bond and total VBS for the complex
(Guan) ,Bi (DTPA) • 4H,0 .
BA
Bi-Nl
0.292
BÍ-N2
0.386
BÍ-N3
0.303
Bi -01
0.282
Bi -02
0.477
Bi -03
0.353
Bi - 04
0.339
Bi -05
0.255
Bi-01'i
0.202
VBS
2.889
Table 3-5:
Contributions
atom bond and
Bi(DAPAAH)(Ac)
BA
BÍ-N2
0.248
BÍ-N3
0.464
BÍ-N4
0.541
Bi -01
0.161
Bi-012
0.470
Bi-014a
0.473
Bi-014b
0.166
Bi-016a
0.386
Bi-016b
0.178
VBS
3.087
OB
0.331
0.437
0.343
0.303
0.512
0.379
0.364
0.274
0.217
3.160
to valency of each Bi-donor
total VBS for the complex
2-H20.
OB
0.281
0.526
0.613
0.173
0.505
0.505
0.178
0.414
0.191
3.386
methods are apparently useful in determining metal ion
valencies in coordination complexes, although the BA method
has produced values closer to what are predicted.30 This
concept may then be useful in distinguishing between Bi(III)
and Bi(V).
In assessing the coordination environment of any
particular cation, it is often useful to assign a specific

67
polyhedron that corresponds to the geometric arrangement of
donor atoms about the central metal ion. While this
assignment is important, it is by no means a trivial
process. Since many ligands are sterically hindered, both
by their own bulk and by the size of the metal ion to which
they are coordinated, the polyhedra are often not clearly
defined, and the assignment becomes somewhat arbitrary.
We have utilized a method by which the process of
polyhedron assignment may be made somewhat more quantitative
through the use of a computer program that analyzes the
positions of the metal and donor atoms. After inputing the
atomic coordinates of the metal and donors, three-atom
planes are chosen until all possible outside planes have
been located. An 'outside' plane is detected by determining
if all other donor atoms are on one side of this plane.
Once all of the outside planes have been located, the
program calculates the angles between all planes which share
an edge, as well as listing how many three-atom faces meet
at each donor atom.27
Once these data have been generated, the angles and
vertices of any compound may be compared to the angles and
vertices for all possible idealized polyhedra which
correspond to that particular coordination number. For
example, coordination numbers of eight normally show square
antiprism, dodecahedron, or bicapped trigonal prism
arrangements, the former two being the more common. The

68
most common polyhedra for nine-coordinate complexes are that
of the capped square antiprism and tricapped trigonal
prism.31 In looking for a polyhedron such as the square
antiprism, one would expect to find two square faces, with
each face consisting of two triangular faces with an angle
of 0°(or 180°) between them. A bicapped trigonal prism
should show only one such square face, and the dodecahedron
would show none.
Polyhedra have been assigned for the complexes
Bi (DAPAAH) (Ac) 2 (1) , Bi (DIPIC) (HDIPIC) (3) , Bi (NTA) (4) ,
Bi (HEDTA) (5), and Bi (DTPA) 2" (6) . No determination was
possible for compound 2, as an x-ray structure was not
obtained. The polyhedra for the three eight-coordinate
complexes, 3, 4, and 5, appear to be best described as
bicapped trigonal prisms. The polyhedra for the nine-
coordinate complexes, 1 and 6, may be described as
monocapped square antiprisms. Compound 1, however, has a
geometry that might be better described as a distorted
monocapped square prism. In all cases the polyhedra show
distortions from the idealized geometries.
Compounds 3, 4, and 5 are shown in Figures 3-2, 3-3,
and 3-4, respectively. The designation of bicapped trigonal
prism is based on the presence of several characteristics.
In 4, a well-defined square face containing 01, 04, 03' and
05 is noted along with two triangular faces (01, 03, 04 and
02, 05, 03'). The capping atoms are N and 02'. In compound

69
5, the square face consists of the atoms 01, Nl, 03, and 04'
with the two triangular faces defined by 02, 03, 04' and 04,
Nl, 01. The capping atoms are 03' and N2.
Compound 3 represented somewhat of a problem in
assessing its coordination polyhedron. The lack of a
clearly defined square face (that containing two three-atom
faces with an angle of 0° between them) suggested that a
dodecahedron was the proper designation. Upon viewing the
coordination sphere, however, the lack of two clearly
defined perpendicular four-atom faces, necessary for a
dodecahedron, suggested that the designation of bicapped
trigonal prism was indeed proper. This distorted polyhedron
consists of a square face defined by 03', 01a, 01, Ac, and
two triangular faces containing 03', N', 01a, and 01, N, Ac,
respectively. The capping atoms are 03 and 01'. This
distortion may be caused both by the rigidity of the DIPIC
ligands, and by the presence of the Bi(III) lone pair, which
would reside in the third capping position in the trigonal
prism arrangement, but would not be evident in the
dodecahedron.
In compound 6, shown in Figure 3-5, the best
arrangement appears to be that of a monocapped square
antiprism. The complex shows two distinct square faces
which consist of N3, 04, 05, 01', and N2, 01, 02, 03. The
latter face is capped by atom Nl. Compound 1, shown in
Figure 3-1, maintains a geometry intermediate between that

70
N(3)
N(2)
0(14a)
0(14b)
0(12)
0(16b)
Figure 3-1: View of the polyhedron for compound 1
showing the capped square antiprism
arrangement.

71
Figure 3-2: View of the polyhedron for compound 3
showing the bicapped trigonal prism
arrangement.

72
Figure 3-3: View of the polyhedron for compound 4
showing the bicapped trigonal prism
arrangement.

73
Figure 3-4: View of the polyhedron for compound 5
showing the bicapped trigonal prism
arrangement.

74
Figure 3-5: View of the polyhedron for compound 6
showing the capped square antiprism
arrangement.

75
of a monocapped square antiprism and monocapped square
prism. The uncapped and capped square faces consist of 01,
014b, 012, 016b, and N2, 014a, N4, 016a, respectively. The
capping atom is N3.
The presence of the Bi(III) 6s2 lone pair appears to be
substantiated by the results of our valence bond sum
calculations. The fact that the VBS consistently showed
values near the predicted value of 3.0 in complexes of
different coordination numbers, suggests both that the
assignment of a 3+ charge to the bismuth ion is an
appropriate one, and that this method may be useful in
distinguishing between Bi(III) and Bi(V) in coordination
complexes. Values obtained using the BA method ranged from
2.89 to 3.29 and are in better agreement with the predicted
value than those obtained in the 0B method.
In theory, a stereochemically active lone electron
pair, such as the Bi(III) 6s2 electrons, should manifest
itself as an open or 'vacant' coordination site. This would
lead, in the cases of our complexes, to the lone pair
occupying the third capping position in the bicapped
trigonal prisms, or the second capping position in the
monocapped square antiprisms. Neither of these situations
represent unusual or unreasonable polyhedra. Further
studies will continue to shed light on the question of lone
pair stereochemical activity.

CHAPTER 4
BISMUTH COMPLEXES:
A STUDY OF ANTIBACTERIAL ACTIVITY
Introduction
Bismuth compounds have been used over the years for a
number of medicinal purposes including the treatment of
gastric disorders, syphilis, and the topical disinfection of
wounds. Use of bismuth drugs waned for a number of years in
the mid twentieth century as medical doctors discouraged the
use of heavy-metal containing salts. Bismuth therapies have
made a comeback, however, with the continued use of bismuth
subsalicylate as a treatment for gastrointestinal disorders,
and the use of colloidal bismuth subcitrate (CBS) as a
treatment for peptic ulcers. It was found recently that CBS
is active against the stomach bacterium Helicobacter Pylori,
thought to be a causal factor in the development of peptic
ulcers.2 It is this activity that has prompted our
investigation of the antibacterial properties of the bismuth
complexes synthesized in this project.
We have utilized the bismuth complexes Bi(NTA),
Bi(HEDTA), and Bi(PIC)3 in a study of antibacterial
activity. The complexes were used to coat filter papers in
76

77
an attempt to simulate a bandage coating. These filter
papers were then immersed in agar solutions containing one
of several types of bacteria, including Escherichia Coli,
Pseudomonas Aeruginosa, and Staphylococcus Aureus. The
effect of the coated filter papers on bacterial growth was
observed and is reported herein.
Experimental
Materials
All bismuth complexes used were synthesized and
purified as outlined in Chapter 2. 'Blanks' included filter
papers dipped in H20, and solutions of NTA and (Bi0)2C03.
NTA and (Bi0)2C03 were obtained commercially and used
without further purification. Filter papers used were
Whatman qualitative grade 4.25 cm circles.
Filter Paper Production
Filter papers were dried in dessicators and weighed
prior to use. For each compound, a saturated solution was
prepared by stirring an excess of the solid and 1-2 mL H20
in a vial at a constant temperature for 10-15 min. The
temperature was maintained by immersing the vial in an oil
bath heated to 90°C. Filter papers were then soaked
thoroughly in the solutions, placed into dessicators until
dry, and reweighed to determine approximate amounts of solid
absorbed onto the filter paper. This procedure was used to

78
produce filter papers coated with Bi(PIC)3, Bi(NTA),
Bi(HEDTA), Bi(DTPA)2', NTA, (Bi0)2C03, and H20 alone.
Bacterial Growth
Solutions containing Escherichia Coli were made by-
combining melted plate-count agar (Difco) with 0.05 g/mL of
2,3,5-triphenyltetrazolium chloride (henceforth TTC) dye and
approximately 105 colony-forming units (CFU) of E. Coli C-
3000 per mL. Two solutions each of Pseudomonas Aeruginosa
(ATCC 10145), and Staphylococcus Aureus (FDA 209) were made,
one without TTC and one with only 0.01 g/mL of the dye.
Aliquots of about 20 mL were placed in sterile 100 mm
diameter petri plates along with 13 mm diameter circular
cutouts from the prepared filter papers. These were allowed
to incubate for 24 h and the bacterial growth monitored by
observing either the red color of the reduced TTC, or a
generally darker color in the plates without TTC. The
degree of bacterial inhibition was quantified by measuring
the radii of the colorless zones surrounding the filter
paper cutouts.32
Discussion
Bismuth compounds have been used in the past for the
topical disinfection of wounds. It was our hope that the
series of carboxylate complexes synthesized herein would
prove to be effective at inhibiting bacterial growth, and

79
would shed some light on the importance of water solubility.
On neither count were we disappointed.
Bacterial growth was evident in petri dishes containing
TTC by the red color of the reduced dye. Areas where
bacterial growth was inhibited remained colorless. Since
TTC has proven to be toxic to P. Aeruginosa, and S. Aureus,
runs were done with and without the dye. Where TTC was
used, only trace amounts were added to give a clearer
contrast between areas of bacterial growth and inhibition.
Without TTC, areas of inhibition were more difficult to
discern, the only difference between these and areas of
bacterial growth being a very slight change in color and
clarity of the solution.
The inhibition of bacterial growth occurred most
prominently in complexes of low to moderate water
solubility. These included the complexes of Bi(III) with
PIC, NTA, and EDTA. The NTA complex showed the most
consistently high levels of inhibition. Filter papers
coated with Bi(DTPA)2' and Bi(DIPIC)(HDIPIC), the most water
soluble of the complexes, showed little bacterial
inhibition. Table 4-1 shows the approximate amounts, of
several of the complexes, that were absorbed onto the filter
papers. These values were obtained by subtracting the
initial weight of the filter papers from their dry weights
after soaking in saturated solutions of the complexes.

80
Blanks were run by soaking filter papers in saturated
solutions of NTA, (Bi0)2C03, and H20 alone, then repeating
the procedure for bacterial inhibition as outlined above.
NTA was chosen since the Bi(NTA) complex showed the most
consistent antibacterial activity, and (Bi0)2C03 because it
is extremely insoluble and was our source of Bi(III) in most
of the complex syntheses. In no case did these blanks show
any noticeable inhibition of bacterial growth. This was
done to establish three things: 1) that the ligand alone is
not responsible for any observed antibacterial activity, 2)
that our original source of the Bi(III) ion doesn't show
greater antibacterial activity than the subsequent complexes
made from it, and 3) that Bi(III) must be present in a
compound that shows at least a small degree of water
solubility.
In cases where the inhibition of bacterial growth was
significant, a radius of inhibition was measured. This was
done from the center of the 13 mm circular filter paper to
the edge of the colorless zones of inhibition. Measurements
were taken on several different trials to produce average
results. In several of the petri dishes where TTC was not
used, no area of inhibition could be discerned. These
results are outlined in Table 4-2.
The results of our antibacterial studies, outlined in
the previous tables, show that bismuth complexes of moderate
to low solubility may be used successfully to inhibit the

81
-1: Mass of
soaking
complexes on
in saturated
filter papers after
solutions.
Bi(PIC).
Bi(NTA)
Bi(HEDTA)
0.0008 g
0.0006 g
0.0119 g
Bi (DTPA) 2'
NTA
H20
0.1907 g
0.0050 g
0.0001 g
Table 4-2: Diameters of inhibition for Bi(PIC)3/ Bi(NTA),
and Bi(HEDTA) in each type of bacteria.
Bi(PIC)„
Bi(NTA)
Bi(HEDTA)
E. Coli
1.1 cm
1.7 cm
1.2 cm
P. Aeruginosa
(with TTC)
(without TTC)
1.1 cm
N/A*
1.3 cm
N/A*
2.3 cm
~2.6 cm
S. Aureus
(with TTC)
(without TTC)
1.0 cm
0.8 cm
1.3 cm
1.1 cm
1.3 cm
N/A*
indicates
areas of
inhibition not
discernible
growth of several types of bacteria. The effectiveness of
these compounds appears to require a balance between a level
of solubility that frees enough of the Bi(III) to inhibit
bacterial growth, and a level of insolubility that keeps the
Bi(III) localized in a small area. Our encouraging results
will warrant further investigations into the antibacterial
properties of these and other bismuth complexes.

CHAPTER 5
COMPLEXES OF BISMUTH (III) WITH PHOSPHONIC ACIDS:
A SYNTHETIC AND SPECTROSCOPIC STUDY
Introduction
Results outlined in chapter 4 show that bismuth
complexes with the ligands NTA and EDTA have demonstrated
considerable activity against Escherichia Coli,
Staphylococcus Aureus, and Pseudomonas Aeruginosa. These
activities appear to be related to the relative water
solubilities of the complexes. The least soluble complex,
Bi(NTA), showed the most consistently strong antibacterial
activity, while the more soluble Bi(DTPA)2',
Bi(HDIPIC) (DIPIC) , and Bi(DAPAAH)3+ complexes showed little
to no observable activity. In Chapter 2 we showed that both
protonated and nonprotonated bismuth complexes could be
formed and that, as in (Guan) 2Bi (DTPA) , that the solubility
of the resulting complex could be manipulated with the use
of appropriate countercations.
To further utilize this property, we have attempted the
synthesis of an analogous series of bismuth complexes with
ligands in which phosphonic acid groups replace the acetic
acid groups. The phosphonic acid functional group contains
82

83
two ionizable protons, which provides a greater opportunity
to manipulate the extent of deprotonation and, therefore,
the solubilities of these complexes. We have successfully
prepared the ligands nitrilotrismethylenetriphosphonic acid
(NTPA), and ethylenediaminotetramethylenetetraphosphonic
acid (EDTPA), analogous to their counterparts NTA and EDTA.
The ligands are shown in Figures 5-1 and 5-2. Attempts to
synthesize the phosphonic acid analogous to DTPA were not
met with success. The results from the syntheses of bismuth
complexes with NTPA and EDTPA, along with their infrared
spectra, are presented herein.
Experimental
Materials
All reagents, including phosphorous acid, H3P03
(Aldrich); ethylenediamine, NH2 (CH2) 2NH2, concentrated HCl,
concentrated HN03, 37% aqueous formaldehyde, H2CO, and
acetone, CH3C(0)CH3 (Fisher); ethanol, CH3CH2OH (Florida
Distillers); bismuth subcarbonate, (Bi0)2C03; bismuth
nitrate Bi (N03) 3* 5H20, and ammonium chloride, NH4C1 (J.T.
Baker); were used without further purification. The
synthetic procedures for the NTPA and EDTPA ligands were
adapted from methods previously reported.33
Synthesis of NTPA (8)
To a solution of 8.211 g crystalline H3P03 and 1.781 g
NH4C1 in 12 mL H20 was added 10 mL cone HCl. This solution

84
Figure 5-1: Nitrilotrismethylenetriphosphonic Acid
(NTPA)
HO\
H0~
CH
CH
IP
O
HO\
H0^
O
N r
/CH2 H2C /OH
roH
o
, .OH
r°H
O
Figure 5-2: Ethylenediaminotetramethylene-
tetraphosphonic Acid (EDTPA)

85
was heated to reflux in an oil bath. Over approx. 45 min,
16 mL of 37% H2CO was added dropwise to the solution. After
refluxing for an additional 1 h 20 min, the solution was
poured into a beaker and allowed to evaporate. The
resulting thick, syrupy solution was dissolved in 40 mL
CH3OH and allowed to evaporate. Over approx 1 month, very
slow crystallization yielded large star-like clumps of clear
colorless crystals. The crystals were separated from the
syrupy mother liquor and washed with ethanol/acetone, but
were still sticky and difficult to handle. Anal. Calc
(Found) for C3H12N09P3: C, 12.05(12.14); H, 4.04(4.95);
N, 4.68(5.12).
Synthesis of EDTPA (9)
To a solution of 8.212 g (0.100 mol) H3P03 in 10 mL H20
was added 10 mL cone HC1 and 1.536 g (0.0250 mol)
NH2 (CH2) 2NH2. After heating to reflux, 16 mL 37% H2C0 was
added dropwise over 1 h. The solution was heated for an
additional 40 min., then placed onto a roto-vac and the
volume reduced to approx 10 mL. Crystals were visible and
continued to form as the remaining solution evaporated.
Several harvests yielded colorless crystals which were
washed with H20 and stored for further use. The mp of 210-
215° is consistent with the literature.33 Anal. Calc(Found)
for C6H20N2O12P4-2H20: C, 15.26(15.08); H, 5.12(4.77);
N, 5.93 (5.86) .

86
Synthesis of Bi-, (NTPA) (10)
A solution of the ligand was prepared by dissolving
0.172 g (0.575 mmol) in 20 mL H20. The pH was approximately
1-2. To this solution was added 0.147 g (0.288 mmol)
(Bi0)2C03. The volume was increased to 40 mL by the
addition of 20 mL H20 and refluxed for several days. A
white solid persisted throughout, which was subsequently
filtered off and allowed to dry. Anal. Calc(Found) for
C3H6N09P3Bi2: C, 5.07(4.99); H, 0.85(0.91); N, 1.97(1.98).
Synthesis of Bi, (HNTPA) (NTPA) (NO,) • 6H.0 (11)
To a solution of 0.0750 g (0.251 mmol) NTPA in 10 mL
H20 (pH approx 1) was added 0.234 g (0.503 mmol)
Bi (N03) 3* 5H20. A fine white solid appeared immediately.
After stirring with heat for several hours the solid was
filtered off. Anal. Calc (Found) for C6H25N3027P6Bi4:
C, 4.52(4.28); H, 1.58(1.49); N, 2.64(2.45).
Synthesis of Bi„ (EDTPA) ,• 10H.O (12)
Solid (Bi0)2C03 (0.256 g (0.502 mmol)), was added
directly to a solution of 0.219 g (0.502 mmol) EDTPA in 20
mL H20. The reaction mixture was heated to boiling for 4 h,
during which 10 mL H20 were added. This mixture was allowed
to cool and the white solid filtered off and allowed to dry.
Anal. Calc (Found) for C18H56N6046P12Bi8: C, 6.89(6.95); H,
1.79(1.85) ; N, 2.68 (2.55) .

87
Synthesis of Bi- (H.EDTPA) (NO,) „• 4H.0 (13)
The ligand EDTPA (0.219 g (0.502 mmol)) was dissolved
in 20 mL H20. To this solution was added 0.2440 g (0.503
mmol) Bi (N03) 3-5H20 dissolved in a mixture of 4 mL H20 and 2
mL cone HN03. The addition was done slowly over
approximately 20 min. After 4 mL of this solution had been
added, a white precipitate formed immediately and persisted
throughout the rest of the reaction. The mixture was
stirred at 85°C for 2 h, then filtered. Anal. Calc(Found)
for C6H24N4022P4Bi2: C, 6.89(6.74); H, 2.31(2.00);
N, 5.36 (5.03) .
Solubility Studies
The solubilities of compounds 10 - 13 were tested in
both dilute (0.5 M) and concentrated HN03, and in
concentrated HCl. In all cases a few mg were placed in a
vial with 1 mL H20, and the acids added dropwise until
dissolution took place. In no case did dilute HN03
noticably increase the solubility of these compounds. All
went into solution after the addition of 45-50 drops of
cone. HN03. All solids also dissolved in 8-10 drops of cone
HCl. Crystals obtained from evaporation of 12 in HCl were
filtered away from the mother liquor and submitted for an x-
ray analysis. The crystals were simply compound 9.
Spectroscopic Studies
Infrared spectra for compounds 9-13 were taken on a
Perkin-Elmer 1600 Series Fourier Transform Infrared

88
Spectrophotometer. The solids were ground and mulled in
Nujol, then placed between NaCl plates. The background was
collected over sixteen scans and subsequently subtracted
from the sample spectra. Sample spectra were produced from
sixteen scans and subsequent Fourier transformations.
Discussion
Our attempts at the synthesis of bismuth complexes with
more variable solubilities did not produce favorable
results. Reactions of the basic (BiO) 2C03 with phosphonic
acids NTPA and EDTPA produced complexes in which the ligands
were completely deprotonated and the maximum ratio of
Bi:ligand was achieved. The lack of solubility of these
complexes was unexpected, and did not appear to be increased
by substituting the less basic Bi (N03) 3-5H20 in the synthetic
procedure. While the ligands retained some protons in the
latter cases, the precipitates still showed a distinct lack
of solubility.
The acids HN03 and HCl were employed in an attempt to
enhance the solubility of all four complexes. In all cases
the solids went into solution after 45-50 drops of cone
HN03, or 8-10 drops of cone HCl, had been added. Results
were not encouraging, however, when crystals obtained as the
solution of Bi8 (EDTPA)3 in HCl evaporated proved to be
simply the ligand EDTPA. Addition of strong acids not only
solubilized the complexes, but destroyed them as well.

89
Compounds 8-13 were characterized by elemental
analyses, and infrared spectroscopy. The spectrum for 8 was
not taken due to the consistency of this solid. Spectra for
9-13 are shown in Figures 5-3 - 5-7. Compound 9, the
ligand EDTPA, shows the most detailed peaks. Nujol, here
and in all other spectra, is evident in the peaks at or
around 2926 cm"1, 2855 cm"1, 1461 cm"1, and 1378 cm"1. Other
peaks include those for P-O-H stretching at 2700 cm'1, O-H
bending in waters of hydration, at or around 1650 cm'1, and
a whole range of peaks from 1200 - 700 cm'1 corresponding to
those normally observed in methyl phosphonates.34-36
The spectra for compounds 10 - 13 reveal much less
detail. The P-O-H stretching peak, which occurs at 2700
cm"1 in the ligand, all but disappears in the complexes.
Peaks indicating hydration, at 1650 cm"1, are still evident.
The region from 1200 - 700 cm"1, loses much of its detail
and becomes a very broad band encompassing this area, but
still reflects absorptions associated with methyl
phosphonates.
While the use of such insoluble bismuth phosphonate
complexes seems limited, further studies may attempt to
solubilize these complexes to a degree that a solid state
structure may be determined. Synthetic procedures utilizing
these ligands and other metal ions may yield complexes that
are water soluble and more easily characterized.

90
54.93-
XT
Figure 5-3: Infrared spectrum of 9.

91
Figure 5-4: Infrared spectrum of 10.
Figure 5-5: Infrared spectrum of 11.

92
Figure 5-6: Infrared spectrum of 12.
Figure 5-7: Infrared spectrum of 13.

CHAPTER 6
COMPLEXES OF MANGANESE(II), GADOLINIUM(III),
EUROPIUM(III), AND YTTRIUM(III) WITH
2,6-DIACETYLPYRIDINE BIS(ACETIC ACID HYDRAZONE)
Introduction
The employment of nuclear magnetic resonance imaging
(MRI), as a technique for the detection of diseased body
tissue, has grown in recent years. While this process has
proven quite useful, and been refined a great deal, its
success has depended on the availability of imaging agents
which display four important characteristics: 1) water
solubility and in vivo stability, 2) lack of toxicity to the
patient, 3) the ability to provide a sharp contrast between
normal and diseased tissue, and 4) the tendency to localize
in a specific target tissue.
Finding imaging agents that fit these criteria is not a
trivial task. The most common imaging agents that have been
employed recently are stable complexes of Mn(II) and
Gd(III). These metals have been chosen due to the high
number of unpaired electrons in their ions, Mn(II) existing
in a d5 configuration, and Gd(III) in an f7 configuration.
These paramagnetic centers, after localizing in the diseased
body tissue, affect proton relaxation times in bulk solvent
93

94
water molecules. It is this phenomenon which allows the
diseased tissue to be distinguished from the normal
surrounding tissue. A high degree of inner sphere hydration
in the metal complex is desirable as this maximizes the
interaction of solvent with the metal center.
To minimize the risk taken by the patient, it is
important to use complexes that are both water soluble, and
stable, in solution. Since free metal ions, and free
ligands, are often quite toxic, this demands that complexes
be chosen which pose no risk of decomposition while in the
body.
In summary, a MRI agent must be a complex of a
paramagnetic metal ion which is both water soluble and
stable enough to remain intact throughout the duration of
the procedure. A balance must be found between a strongly
coordinating ligand, usually a multidentate ligand such as
EDTA or DTPA, and one which will allow the greatest
interaction possible between solvent molecules and the metal
center. Besides these physical criteria, the agent must
localize in the target tissue long enough to give a clear
image. This latter property is determined empirically
through trials in other organisms.15
We have attempted the synthesis of complexes of Mn(II)
and Gd(III) with 2,6-diacetylpyridine bis(acetic acid
hydrazone), ((DAPAAH), shown in Figure 6-1) with these

95
Figure 6-1: 2,6-diacetylpyridine
bis(acetic acid hydrazone) (DAPAAH)

96
criteria in mind. The ligand coordinates in a pentadentate
fashion which should give the complex substantial solution
stability. With a planar ligand, areas above and below the
metal center may afford a great deal of inner sphere waters
of hydration. The ligand itself may be altered easily by
varying the functional groups at the ends of the hydrazone
'arms'. This may serve to direct the complex to various
organs depending on which functional group is chosen. To
establish the usefulness of the synthetic procedure, a
DAPAAH complex with Eu(III) was synthesized. In order to
monitor, via NMR, the solution stability of these complexes
over time, a DAPAAH complex with the diamagnetic Y(III),
which has a radius very near that of Gd(III),37 was
synthesized as well. The complexes of DAPAAH with Mn(II),
Gd(III), Eu(III), and Y(III), along with results from NMR
studies, will be reported herein.
Experimental
Materials
All reagents, including manganese chloride
tetrahydrate, MnCl2-4H20 (Mallinckrodt) ; gadolinium oxide,
Gd203 and yttrium oxide, Y203 (Kerr-McGee); europium nitrate
hexahydrate, Eu (N03) 3- 6H20 (Alfa); 2,6-diacetylpyridine and
acethydrazide (Aldrich); 2-propanol and cone. HN03 (Fisher);
were used without further purification.

97
Synthesis of Mn (DAPAAH) Civ 3H.O (14)
A solution of DAPAAH was prepared by combining 0.0930 g
(0.570 mmol) 2,6-diacetylpyridine and 0.0830 g (1.12 mmol)
acethydrazide in 35 mL H20 at 50°C with stirring. To this
solution was added 0.111 g (0.562 mmol) MnCl2-4H20 in 5 mL
H20. The slightly yellow colored solution was stirred for
several hours at 50°C then filtered. The yellow-orange
solid obtained upon evaporation was recrystallized twice
from H20 and the crystals submitted for an x-ray analysis.
Anal. Calc(Found) for C13H23N505Cl2Mn: C, 34.30(34.32);
H, 5.09(5.02); N, 15.39(15.09).
Synthesis of Eu (DAPAAH) (NO,) v 5H.0 (15)
The solution of DAPAAH was prepared by combining 0.183
g (1.12 mmol) 2,6-diacetylpyridine and 0.166 g (2.24 mmol)
acethydrazide in 4 0 mL H20 at 6 0°C. To this solution was
added 0.501 g (1.12 mmol) Eu (N03) 3-6H20. Stirring at 60°C
continued for approx. 10 h over the next two days, after
which the solution was filtered and allowed to evaporate.
The colorless crystalline solid was recrystallized once from
H20 and twice from 2-propanol and submitted for an x-ray
analysis. Anal. Calc (Found) for C13H27N8016Eu: C, 22.20
(21.77); H, 3.87(3.61); N, 15.93(15.69).
Synthesis of Gd (DAPAAH) (NO,) / 5H,0 (16)
A solution of DAPAAH was prepared by combining 0.226 g
(1.39 mmol) 2,6-diacetylpyridine and 0.205 g (2.77 mmol)
acethydrazide in 30 mL H20 at 55°C. To this was added a

98
solution of Gd(III) made by dissolving 0.252 g (0.694 mmol)
Gd203 in a mixture of 0.5 mL cone HN03 in 10 mL H20. The
light yellow solution stirred at 55°C for 3 h, then filtered
and allowed to evaporate. The colorless crystalline product
was recrystallized once from H20. Anal. Calc(Found) for
C13H27N8016Gd: C, 22.03(21.72); H, 3.84(3.52);
N, 15.81(15.82) .
Synthesis of Y (DAPAAH) (NO,),• 7H.0 (17)
A mass of 0.250 g (1.11 mmol) Y203 was dissolved in a
solution of 10 mL H20 with 35 drops cone HN03. After
heating almost to dryness and adding 20 mL H20 the pH was
approximately 3-4. To this solution was added 0.362 g (2.22
mmol) 2,6-diacetylpyridine and 0.331 g (4.47 mmol)
acethydrazide. The mixture was warmed to 60°C and stirred
for 1 h, then filtered and allowed to evaporate. The
crystalline solid was recrystallized once from H20. Anal.
Calc (Found) for C13H31N8018Y: C, 23.09(22.75);
H, 4.62(4.11); N, 16.57(16.67).
X-rav Structural Studies
Data for crystals of 14, 15, and 17 were collected at
room temperature on a Siemens R3m/V diffractometer equipped
with a graphite monochromator utilizing MoKa radiation (X =
O.71073 Á) . Forty reflections with 20.0° s 29 ^ 22.0° were
used to refine the cell parameters. Full intensity
reflections were collected using the co-scan method. Four
reflections were measured every 96 reflections to monitor

99
instrument and crystal stability . Absorption corrections
were applied based on measured crystal faces using SHELXTL
plus;20 absorption coefficient.
The structures were solved by the heavy-atom method in
SHELXTL plus from which the location of the heavy elements
were obtained. The rest of the non-hydrogen atoms were
obtained from subsequent difference Fourier maps. The
structures were refined in SHELXTL plus using full-matrix
least squares. The non-H atoms were treated
anisotropically, whereas the positions of the hydrogen atoms
were calculated in ideal positions and their isotropic
thermal parameters were fixed. All parameters were refined
and £ w ( | F0| - | Fc | )2 was minimized; w=l/(a | F0 | )2, a ( F0) =
0.5 kl‘1/2{[a( I )]2 + (0.021)2}1/2, I (intensity) = ( I peak -
^background ) (scan rate ) , and O (I) = ( X peak ^ background^ (SCan
rate), k is the correction due to decay and Lp effects, 0.02
is a factor used to down weight intense reflections and to
account for instrument instability. The linear absorption
coefficient was calculated from values from the
International Tables for X-ray Crystallography.21 Scattering
factors for non-hydrogen atoms were taken from Cromer &
Mann22 with anomalous-dispersion corrections from Cromer &
Liberman,23 while those of hydrogen atoms were from Stewart,
Davidson, and Simpson.24
Data for compound 16, were collected as above. The
structure was refined using the NRCVAX38 set of programs. A

100
Patterson map revealed the heavy element, and the rest of
the non-H atoms were calculated from subsequent difference
Fourier maps, and refined anisotropically using full-matrix
least squares calculations. Hydrogen atoms were refined
isotropically. Graphics were generated by SHELXTL-plus.
Spectroscopic Studies
The available sample of 17 was dissolved in a minimum
amount (~1.5 mL) of D20 (pH -4) and 3H and 13C NMR spectra
taken three times in the course of eight days. The sample
was increased to -4 mL D20 and extra 17 dissolved in the
solution. This new sample was submitted for 89Y NMR along
with a 0.5 M Y(N03)3 solution as reference.39 The reference
solution was prepared by dissolving 0.283 g (1.25 mmol) Y203
in 5 mL H20 to which 3 5 drops cone HN03 had been added.
After heating almost to dryness the solution was diluted to
5 mL with H20. [Y3+] - 0.5 M. pH - 3-4.
Discussion
Efforts to synthesize pure complexes of DAPAAH with the
metals Mn(II), Gd(III), Eu(III), and Y(III) were very
successful. The complexes all crystallized in a similar
manner, and several of the characteristics which are
necessary for a MRI agent were shown by these compounds.
The complexes, carrying a +2 or +3 charge owing to the
neutral DAPAAH ligand, showed impressive water solubility at
pH levels very close to neutral. Solid state structures of

101
the complexes revealed a high degree of inner-sphere
hydration, a condition which would enhance performance as a
MRI agent.
A thermal ellipsoid plot of 14, given in Figure 6-2,
shows the full manganese coordination sphere along with the
atomic numbering scheme including the DAPAAH ligand, the
coordinating chloride, and inner sphere H20 molecule.
Atomic coordinates and bond distances and angles for the
non-hydrogen atoms are given in Tables 6-1 and 6-2,
respectively. Coordinates for the hydrogen atoms, and
hydrogen bond lengths and angles are given in Tables 6-3 and
6-4. The structure was refined to an R value of 4.3 %.
This and other crystal data are given in Table 6-5.
The DAPAAH coordinates in a pentadentate fashion
through N2, N3, N4, and the two carbonyl oxygens, 01 and 02.
A chloride and a water molecule complete the coordination
sphere, one above and one below the Mn(II), bringing the
total coordination number to seven. The structure shows
very little distortion with the Mn(II) lying directly in the
plane of the ligand, and appears to represent a pentagonal
bipyramidal geometry. Unlike the other structures, there is
only a single inner sphere water of hydration in the solid
state.
An ORTEP view of 15, given in Figure 6-3, shows the
full Eu(III) coordination sphere and atomic numbering scheme
including the DAPAAH ligand, bidentate nitrate, and three

102
Figure 6-2:
View of 14 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

103
Table
6-1: Fractional
coordinates
and equivalent
. isotropic3
thermal parameters (A2)
for the non-H
atoms of
compound 14
Atom
X
V
z
U
Mn
0.26471 (5)
0.21405 (3)
0.00689 (2)
0.03951 (15)
Cll
0.54014 (10)
0.21915 (6)
0.08613(4)
0.0581 (3)
C12
0.95863 (13)
0.30173 (8)
0.79127(4)
0.0751 (4)
01
0.3440 (3)
0.0925 (2)
-0.06296(11)
0.0551(8)
09
0.1710 (3)
0.0840 (2)
0.06546 (10)
0.0500 (7)
Oil
0.0184 (3)
0.2102 (2)
-0.05771(11)
0.0586 (8)
012
0.5818 (4)
0.2567 (3)
0.2499 (2)
0.136 (2)
013
-0.2377 (3)
0.1149 (2)
-0.0163 (2)
0.0924 (13)
N1
0.4113 (3)
0.2164 (2)
-0.13516(14)
0.0541(10)
N2
0.3609 (3)
0.2847 (2)
-0.08862 (13)
0.0445 (8)
N3
0.2442 (3)
0.3868 (2)
0.00789 (12)
0.0427(8)
N4
0.1382 (3)
0.2711 (2)
0.09951(13)
0.0438 (8)
N5
0.0862 (3)
0.1966 (2)
0.14097(13)
0.0472(9)
Cl
0.3997 (4)
0.1179 (3)
-0.1171 (2)
0.0516(11)
Cl'
0.4578(5)
0.0435 (3)
-0.1656 (2)
0.0740(15)
C2
0.3557(4)
0.3801 (3)
-0.1007 (2)
0.0496(11)
C2 '
0.3994 (4)
0.4287 (3)
-0.1669 (2)
0.075(2)
C3
0.2964 (3)
0.4404 (2)
-0.0438 (2)
0.0458 (10)
C4
0.2963 (4)
0.5448 (3)
-0.0427 (2)
0.0593 (13)
C5
0.2387(5)
0.5935 (3)
0.0123(2)
0.0662(14)
C6
0.1818 (4)
0.5382 (3)
0.0655 (2)
0.0595 (13)
C7
0.1871 (3)
0.4329 (2)
0.0613 (2)
0.0463(10)
C8
0.1289 (4)
0.3649 (2)
0.1146 (2)
0.0447(10)
C8'
0.0645(5)
0.4050 (3)
0.1790(2)
0.0714(15)
C9
0.1039 (4)
0.1012 (2)
0.1180(2)
0.0442 (10)
C9'
0.0370(5)
0.0201 (2)
0.1590 (2)
0.0654(13)
aFor anisotropic atoms, the U value is Ueq> calculated as Ueq
= 1/3 lili ui; ai* aj* Aij where is the dot product of the
ith and j“ direct space unit cell vectors.

104
Table 6-2:
Bond
Lengths (Á)
and Angles (°)
for the non
atoms
of compound
14.
1
2
3
1-2
1-2-3
Cll
Mn
01
2.4939(9)
93.84(6)
Cll
Mn
09
93.42(5)
Cll
Mn
Oil
177.22 (8)
Cll
Mn
N2
95.00 (6)
Cll
Mn
N3
91.56 (6)
01
Mn
09
2.246 (2)
83.99(8)
01
Mn
Oil
88.25 (8)
01
Mn
N2
69.95 (8)
01
Mn
N3
138.38 (8)
01
Mn
N4
153.16 (8)
09
Mn
Oil
2.248 (2)
84.97 (8)
09
Mn
N2
153.05(8)
09
Mn
N3
136.83 (8)
09
Mn
N4
69.22 (8)
Oil
Mn
N2
2.177 (2)
87.44 (8)
Oil
Mn
N3
88.09(8)
Oil
Mn
N4
87.88(8)
N2
Mn
N3
2.289 (3)
68.47 (9)
N2
Mn
N4
136.33 (9)
N3
Mn
N4
2.294 (2)
67.99(8)
N4
Mn
Cll
2.303 (3)
89.43(6)
Cl
01
Mn
1.237 (4)
118.4(2)
C9
09
Mn
1.233 (4)
119.2 (2)
N2
N1
Cl
1.373 (4)
115.5(3)
Cl
N1
1.356 (4)
C2
N2
Mn
1.283 (4)
122.6 (2)
C2
N2
N1
122.5 (3)
Mn
N2
N1
114.6(2)
C3
N3
C7
1.335 (4)
120.6 (2)
C3
N3
Mn
119.5 (2)
C7
N3
Mn
1.330 (4)
119.9(2)
N5
N4
C8
1.371 (4)
122.3 (3)
N5
N4
Mn
114.8(2)
C8
N4
Mn
1.280 (4)
122.6(2)
C9
N5
N4
1.352 (4)
115.3 (2)
Cl'
Cl
01
1.476(5)
122.3 (3)
Cl'
Cl
N1
116.2 (3)
01
Cl
N1
121.4 (3)
C2'
C2
C3
1.506(5)
121.8 (3)
C2 '
C2
N2
124.3 (3)
C3
C2
N2
1.486 (4)
113.8(3)
C4
C3
N3
1.382 (4)
121.3 (3)
C4
C3
C2
123.3 (3)
N3
C3
C2
115.4 (3)
C5
C4
C3
1.372 (6)
118.9(4)
C6
C5
C4
1.387(6)
120.0 (3)

105
Table 6-2 -- continued.
1
2
3
1-2
1-2-3
C7
C6
C5
1.398 (4)
117.9(3)08
C7
N3
1.489 (4)
115.4(2)
C8
C7
C6
123.3 (3)
N3
C7
C6
121.3 (3)
C8'
C8
N4
1.504 (5)
124.5 (3)
C8'
C8
C7
122.1(3)
N4
C8
C7
113.5(3)
C9'
C9
09
1.480 (5)
122.7(3)
C9'
C9
N5
116.1(3)
09
C9
N5
121.2 (3)
Table 6-3:
Fractional
coordinates
and isotropic
thermal
parameters
(Á2) for the
H atoms of compound 14.
Atom
X
V
z
U
Hila
-0.00805
0.23642
-0.09861
0.08
Hllb
-0.06215
0.176
-0.04394
0.08
H12a
0.55811
0.23514
0.20579
0.08
H12b
0.68647
0.28746
0.25922
0.08
H13a
-0.28445
0.12813
0.02024
0.08
H13b
-0.2346
0.05807
-0.01345
0.08
HI
0.448 (5)
0.243 (3)
-0.179 (2)
0.099 (14)
H5a
0.051 (4)
0.210 (3)
0.185 (2)
0.081(12)
HI' a
0.49615
0.07821
-0.2042
0.08
HI' b
0.36733
-0.00066
-0.18385
0.08
HI' c
0.54772
0.00459
-0.14014
0.08
H2' a
0.3863
0.50052
-0.16401
0.08
H2' b
0.32656
0.40327
-0.20758
0.08
H2' c
0.513060
0.41309
-0.17113
0.08
H4
0.332 (4)
0.589 (3)
-0.078 (2)
0.071 (11)
H5b
0.237 (4)
0.659 (3)
0.013 (2)
0.061 (10)
H6
0.146 (4)
0.570(3)
0.102 (2)
0.074(12)
H8 ' a
0.06929
0.47744
0.17898
0.08
H8'b
0.13203
0.37952
0.22111
0.08
H8' c
-0.04909
0.38366
0.178
0.08
H9' a
-0.0098
0.04929
0.19758
0.08
H9' b
0.12552
-0.02532
0.17746
0.08
H9' c
-0.04821
-0.01637
0.128540
0.08

106
Table 6-4: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 14.
1
2
3
1-2
1-2-3
Hila
Oil
Hllb
0.850 (2)
113.3 (2)
Hila
Oil
Mn
126.0(2)
Hllb
Oil
Mn
0.868 (2)
120.5 (2)
H12a
012
H12b
0.880 (3)
112.4(4)
H13a
013
H13b
0.862 (3)
99.1 (3)
H13a
013
Hllb
128.1(2)
H13b
013
Hllb
0.755 (3)
117.0(2)
HI
N1
N2
1.00(4)
118. (2)
HI
N1
Cl
126. (2)
H5a
N5
C9
0.95 (4)
121. (2)
H5a
N5
N4
123. (2)
HI' a
Cl'
Hl'b
0.960 (4)
109.5 (3)
HI' a
Cl'
Hl'c
109.5 (4)
HI' a
Cl'
Cl
109.5 (3)
HI' b
Cl'
Hl'c
0.960 (4)
109.5(4)
Hl'b
Cl'
Cl
109.5(3)
HI' c
Cl'
Cl
0.960 (4)
109.5(3)
H2' a
C2 '
H2'b
0.960 (4)
109.5(3)
H2' a
C2 '
H2'c
109.5(4)
H2' a
C2'
C2
109.5(3)
H2' b
C2'
H2' c
0.960 (3)
109.5 (4)
H2'b
C2'
C2
109.5 (3)
H2 ' c
C2'
C2
0.960 (4)
109.5(3)
H4
C4
C5
0.97 (3)
115. (2)
H4
C4
C3
126. (2)
H5b
C5
C6
0.86(4)
121. (2)
H5b
C5
C4
119. (2)
H6
C6
C7
0.90(4)
122. (2)
H6
C6
C5
120. (2)
H8' a
C8 '
H8'b
0.960 (4)
109.5(3)
H8' a
C8 '
H8'c
109.5(4)
H8' a
C8 '
C8
109.5(3)
H8' b
C8'
H8'c
0.960 (3)
109.5 (3)
H8'b
C8 '
C8
109.5(3)
H8' c
C8'
C8
0.960 (4)
109.5(3)
H9' a
C9'
H9'b
0.960 (4)
109.5(3)
H9' a
C9'
H9' c
109.5 (4)
H9' a
C9'
C9
109.5(3)
H9' b
C9'
H9' c
0.960 (3)
109.5 (3)
H9'b
C9'
C9
109.5(3)
H9' c
C9'
C9
0.960 (3)
109.5(3)

107
Table 6-5: Crystallographic data for compound 14.
A. Crystal data (298 K)
14
a, Á
8.105(1)
b, Á
13.242 (2)
c, Á
19.064 (2)
13, deg.
98.96(1)
V, Á3
2021.1(4)
dcaic, g cm-3 (298 K)
1.496
Empirical formula
C, -,H, 7N^0,C1 ,Mn • 3H,0
Formula wt, g
455.20
Crystal system
Monoclinic
Space group
P 21/c
Z 4
F(000), electrons
940
Crystal size (mm3)
0.54 x 0.46 x 0.20
B. Data collection (298 K)
Radiation, X (A)
Mo - Ka, 0.71073
Mode
w-scan
Scan range Symmetrically over 1.2
° about Ko12 maximum
Background offset 1.0 and -1.0 in
cu from Kal 2 maximum
Scan rate, deg. min."1
3-6
20 range, deg.
3-55
Range of h k 1 0
=£ h s 10
0
<; k s 17
-24
<; 1 =s 24
Total reflections measured
5222
Unique reflections
4675
Absorption coeff. ¿i (Mo-Ka) , mm"1
0.95
Min. & Max. Transmission
0.745, 0.837
C. Structure refinement
S, Goodness-of-fit
1.83
Reflections used, I > 3a(I)
3207
No. of variables
255
R, Rw* (%)
4.27, 5.53
Rint- (%)
1.58
Max. shift/esd
0.0001
min. peak in diff. four, map (e Á"3)
-0.29
max. peak in diff. four, map (e Á'3)
0.32
* Relevant expressions are as follows, where in the footnote
F„ and F„ represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(
R
- Kl I
i _ i
o I
I
I
R,., = [Z^(|Fol
I I "
s = [5>( If,
fc|)2 /
I rc I
I TT I
I I
I F,
I
¡rc!I) / Zlro¡
F0 |
if
I rc I
I)2
where w= (a (F))
I rol
I 21 1/2
)2 / (m-n) ]1/2

108
inner-sphere waters of hydration. Atomic coordinates and
bond distances and angles for the non-hydrogen atoms are
given in Tables 6-6 and 6-7, respectively. Coordinates for
the hydrogen atoms are given in Table 6-8, and Table 6-9
gives the hydrogen bond lengths and angles. The structure
was refined to an R value of 5.3 %. This and other crystal
data are given in Table 6-10.
The DAPAAH again acts as a pentadentate ligand,
coordinating through N2, N3, N4, 01, and 02. The Eu(III),
unlike the Mn(II), is distorted significantly out of the
plane of the ligand. This leaves a large open area on one
side of the metal, on which two water molecules and a
bidentate nitrate are coordinated. The other side of the
metal contains a single water molecule, bringing the total
coordination number to ten. The presence of three
coordinated water molecules in the solid state suggests that
in solution there are at least three inner-sphere waters of
hydration, a situation favorable for a MRI agent.
The thermal ellipsoid view of 16, given in Figure 6-4,
shows the full Gd(III) coordination sphere and atomic
numbering scheme, including the DAPAAH ligand, bidentate
nitrate, and three coordinating water molecules. Atomic
coordinates and bond distances and angles for the non¬
hydrogen atoms are given in Tables 6-11 and 6-12,
respectively. Coordinates for the hydrogen atoms are given
in Table 6-13, while the hydrogen atom bond lengths and

109
Figure 6-3: View of 15 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

110
Table
6-6: Fractional coordinates
and equivalent
isotropic3
thermal
parameters (A2)
for the non-H
atoms of
compound
15.
Atom
X
V
z
U
Eu
0.18347 (4)
0.27023 (3)
0.15010(3)
0.0570 (2)
01
0.3409(6)
0.4035 (4)
0.0134 (4)
0.063 (2)
09
0.2609(7)
0.3044 (4)
0.2936 (4)
0.074 (2)
Oil
-0.2424(7)
0.3248(5)
â– 0.0081 (5)
0.084 (3)
012
-0.0774(7)
0.2106 (4)
0.0929(5)
0.080 (2)
013
-0.0193 (6)
0.3754 (4)
0.0220(5)
0.074 (2)
051
0.0728 (8)
0.4580 (5)
0.1643(5)
0.082 (2)
052
-0.0917 (7)
0.2663 (5)
0.2738(5)
0.088 (3)
053
0.4976(6)
0.2070 (5)
0.1411(4)
0.073 (2)
054
1.194 (2)
0.6054 (14)
0.5950 (12)
0.244(13)
N1
0.3541(9)
0.3161(6)
â– 0.1072 (5)
0.072 (3)
N2
0.3000 (8)
0.2303(6)
â– 0.0287 (5)
0.064 (3)
N3
0.2265 (8)
0.0680 (5)
0.1310(7)
0.074 (3)
N4
0.2170 (8)
0.1060 (5)
0.3099(6)
0.069 (3)
N5
0.2349 (9)
0.1327 (6)
0.3918(6)
0.081 (3)
Nil
-0.1159 (7)
0.3042 (6)
0.0346 (5)
0.071 (3)
Cl
0.3758(9)
0.4028(7)
0.0795(7)
0.070 (3)
Cl'
0.4427(13)
0.4984(8)
•0.1624 (7)
0.084 (4)
C2
0.2845(10)
0.1414(9)
0.0485 (8)
0.080 (4)
C2 '
0.314 (2)
0.1258(12)
0.1537(9)
0.113 (7)
C3
0.2394(10)
0.0484 (8)
0.0398 (8)
0.075(4)
C4
0.2234 (15)
-0.0506 (9)
0.0334 (12)
0.103 (6)
C5
0.187 (2)
-0.1328(11)
0.1192 (15)
0.139 (9)
C6
0.178 (2)
-0.1171(9)
0.2166 (15)
0.118(7)
C7
0.1962(11)
-0.0144 (7)
0.2241 (10)
0.092 (5)
C8
0.2067(10)
0.0073 (7)
0.3178 (8)
0.079 (4)
C8'
0.2025(14)
-0.0887 (8)
0.4090(9)
0.111(5)
C9
0.2650(11)
0.2393 (8)
0.3781(7)
0.081 (4)
C9'
0.294 (2)
0.2669 (9)
0.4674 (8)
0.101 (5)
N21
0.6919 (9)
0.0364 (8)
0.3482(6)
0.092 (4)
021
0.6580 (10)
0.1332 (8)
0.3080(7)
0.137 (4)
022
0.8150(10)
-0.0019 (8)
0.3877(7)
0.135 (4)
023
0.596 (2)
-0.0239 (10)
0.3518(12)
0.172(7)
N31
0.914(2)
0.4073(12)
0.664 (2)
0.066(7)
031
0.853(5)
0.357 (2)
0.623 (2)
0.20 (2)
032
0.973 (4)
0.478 (2)
0.588 (3)
0.21 (2)
033
0.921 (4)
0.409 (2)
0.719(2)
0.138 (13)
N41
0.482 (3)
0.3735(13)
0.619 (2)
0.083(8)
041
0.499(4)
0.434 (2)
0.531 (2)
0.191 (15)
04 2
0.577(5)
0.323 (2)
0.653(2)
0.18(2)
04 3
0.379 (4)
0.3692 (13)
0.6759(10)
0.134(11)
aFor anisotropic atoms, the U value is Ueq, calculated as Ueq
= 1/3 XiXj U±i aA* a-,* Aij where is the dot product of the
ith and direct space unit cell vectors.

1
01
01
01
01
01
01
01
01
09
09
09
09
09
09
09
09
012
012
012
012
012
012
012
013
013
013
013
013
013
051
051
051
051
051
052
052
052
052
053
053
053
N2
N2
N3
N4
111
6-7 :
Bond Lengths (Á) and Angles (°) for the non-H
atoms of compound 15.
2
3
1-2
1-2-3
Eu
09
2.420 (5)
98.2 (2)
Eu
012
113.1(2)
Eu
013
71.2 (2)
Eu
051
68.3 (2)
Eu
052
138.3 (2)
Eu
053
72.3(2)
Eu
N2
61.8(2)
Eu
N3
117.7 (2)
Eu
012
2.402 (7)
142.6(2)
Eu
013
134.7(2)
Eu
051
67.5 (2)
Eu
052
77.3(2)
Eu
053
73.2(2)
Eu
N2
145.7(2)
Eu
N3
120.8 (2)
Eu
N4
62.6(2)
Eu
013
2.698 (7)
48.2(2)
Eu
051
104.5(2)
Eu
052
65.7(2)
Eu
053
134.6(2)
Eu
N2
70.8 (2)
Eu
N3
62.4 (2)
Eu
N4
98.1(2)
Eu
051
2.572 (6)
67.7(2)
Eu
052
82.7(2)
Eu
053
136.6(2)
Eu
N2
68.3(2)
Eu
N3
102.2 (2)
Eu
N4
144.4 (2)
Eu
052
2.466 (6)
71.8 (2)
Eu
053
118.1(2)
Eu
N2
121.1(2)
Eu
N3
166.7(2)
Eu
N4
122.3(2)
Eu
053
2.422 (5)
140.7(2)
Eu
N2
136.5 (2)
Eu
N3
99.0(2)
Eu
N4
70.8(2)
Eu
N2
2.438 (5)
74.1(2)
Eu
N3
75.1(2)
Eu
N4
72.7(2)
Eu
N3
2.600(7)
59.0(2)
Eu
N4
116.3 (2)
Eu
N4
2.660 (8)
60.8(3)
Eu
01
2.590 (6)
143.8(2)

112
Table 6-7 -- continued.
1
2
3
1-2
1-2-3
Cl
01
Eu
1.254(11)
123.7(6)
C9
09
Eu
1.223 (10)
125.8(7)
Nil
Oil
1.226(9)
Nil
012
Eu
1.262(8)
94.0(5)
Nil
013
Eu
1.258(10)
100.2 (4)
N2
N1
Cl
1.356(9)
115.7(7)
Cl
N1
1.346 (14)
C2
N2
Eu
1.296(15)
124.1(5)
C2
N2
N1
119.5 (8)
Eu
N2
N1
115.5(6)
C3
N3
C7
1.34(2)
121.3(9)
C3
N3
Eu
121.9(5)
C7
N3
Eu
1.409(12)
115.4(7)
N5
N4
C8
1.330(12)
119.1(7)
N5
N4
Eu
114.5(5)
C8
N4
Eu
1.269(12)
126.2(7)
C9
N5
N4
1.397(13)
117.8(7)
Oil
Nil
012
121.2(7)
Oil
Nil
013
121.4 (6)
012
Nil
013
117.4(7)
Cl'
Cl
01
1.497(11)
120.8(9)
Cl'
Cl
N1
118.3(8)
01
Cl
N1
120.9 (7)
C2'
C2
C3
1.49 (2)
117.7(11)
C2 '
C2
N2
125.1(9)
C3
C2
N2
1.465(13)
117.2(10)
C4
C3
N3
1.35(2)
121.5 (10)
C4
C3
C2
125.0(12)
N3
C3
C2
113.3 (10)
C5
C4
C3
1.35(2)
121. (2)
C6
C5
C4
1.41(3)
119.4(15)
C7
C6
C5
1.40 (2)
120.0 (12)
C8
C7
N3
1.43 (2)
118.6(9)
C8
C7
C6
124.2(11)
N3
C7
C6
116.7(13)
C8 '
C8
N4
1.480(13)
129.8 (11)
C8 '
C8
C7
115.2(9)
N4
C8
C7
115.0(8)
C9'
C9
09
1.47 (2)
124.1(9)
C9'
C9
N5
117.7(8)
09
C9
N5
118.1(10)
021
N21
022
1.212 (13)
123.5(11)
022
N21
023
1.180(12)
116.7 (11)
023
N21
021
1.17 (2)
119.7 (10)
031
N31
032
1.21 (4)
100. (3)
03 2
N31
033
1.23 (3)
120. (3)
033
N31
031
0.79(4)
140. (3)
041
N41
042
1.22 (3)
127 . (3)

113
Table 6-7 -- continued.
1 2
1-2
1-2-3
042 N41 043
043 N41 041
1.00(4)
0.99(3)
103 . (3)
130. (2)
Table 6-8: Fractional coordinates and isotropic thermal
parameters (Á2) for the H atoms of compound 15.
Atom
X
V
z
U
H54a
1.13738
0.66876
0.56532
0.08
H54b
1.13238
0.54906
0.59602
0.08
HI
0.37552
0.3151
-0.17804
0.08
H5a
0.22741
0.0804
0.45819
0.08
HI'a
0.46228
0.48385
-0.2283
0.08
Hl'b
0.55134
0.51037
-0.15081
0.08
HI' c
0.35733
0.5624
-0.16115
0.08
H2' a
0.29467
0.05333
-0.14819
0.08
H2'b
0.43312
0.13567
-0.1882
0.08
H2 ' c
0.23406
0.17836
-0.19231
0.08
H4
0.23838
-0.06304
-0.03311
0.08
H5b
0.16619
-0.20133
0.11398
0.08
H6
0.16065
-0.17665
0.27761
0.08
H8' a
0.21012
-0.06694
0.46784
0.08
H8' b
0.30040
-0.14330
0.39600
0.08
H8' c
0.09447
-0.11829
0.42223
0.08
H9' a
0.29217
0.20321
0.52515
0.08
H9' b
0.2029
0.32332
0.48443
0.08
H9' c
0.40648
0.29236
0.45088
0.08

114
Table 6-9: Bond Lengths (Á) and Angles (°) for the H atoms
of compound 15.
1
2
3
1-2
1-2-3
H54a
054
H54b
0.89(2)
108. (2)
HI
N1
N2
0.960(8)
122.1(9)
HI
N1
Cl
122.2(7)
H5a
N5
C9
0.960 (7)
121.1(9)
H5a
N5
N4
121.1(8)
HI' a
Cl'
Hl'b
0.960 (10)
109.5 (8)
HI' a
Cl'
Hl'c
109.5(9)
HI' a
Cl'
Cl
109.5(10)
Hl'b
Cl'
Hl'c
0.960(11)
109.5 (11)
Hl'b
Cl'
Cl
109.4 (8)
Hl'c
Cl'
Cl
0.960(9)
109.4(7)
H2' a
C2 '
H2'b
0.96(2)
109.5(13)
H2' a
C2'
H2' c
109. (2)
H2' a
C2 '
C2
109.4(10)
H2' b
C2 '
H2'c
0.960 (12)
109.5(11)
H2' b
C2 '
C2
109.5(14)
H2'c
C2'
C2
0.960 (12)
109.5 (12)
H4
C4
C5
0.96 (2)
119.5 (15)
H4
C4
C3
119.5(11)
H5b
C5
C6
0.96 (2)
120.3(14)
H5b
C5
C4
120. (2)
H6
C6
C7
0.960 (14)
120. (2)
H6
C6
C5
120.0(14)
H8' a
C8 '
H8'b
0.960 (14)
109.5(14)
H8' a
C8 '
H8'c
109.5(10)
H8' a
C8'
C8
109.6 (10)
H8'b
C8 '
H8 ' c
0.960(14)
109.5 (13)
H8'b
C8 '
C8
109.4(11)
H8' c
C8'
C8
0.960(12)
109.5 (10)
H9' a
C9'
H9'b
0.960 (9)
109.5(10)
H9' a
C9'
H9' c
109.5 (12)
H9' a
C9'
C9
109.5(11)
H9' b
C9'
H9' c
0.960(11)
109.5(13)
H9' b
C9'
C9
109.4 (11)
H9' c
C9'
C9
0.960 (13)
109.4 (9)

115
Table 6-10: Crystallographic data for compound 15.
A. Crystal data (298 K)
a, A
b, Á
c, Á
cn, deg.
(3, deg.
y. deg.
V, Á3
dcaic/ g cm"3 (2 98 K)
Empirical formula
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
15
7.900(1)
12.960(1)
13.881(1)
72.31(1)
76.02 (1)
78.44(1)
1301.4 (2)
1.749
(C13H17N502) Eu (N03) 3* 4H20
685.37
Triclinic
P -1
2
684
0.42 x 0.26 x 0.20
B, Data collection (298 K)
Radiation, X (Á)
Mo-K0,
0.71073
Mode
w-scan
Scan range Symmetrically over 1.2
0 about
Kaii2 maximum
Background offset 1.0 and -1.0 in
co from
kch,2 maximum
Scan rate, deg. min."1
3-6
20 range, deg.
3-55
Range of h k 1 0
< h
< 10
-16
< k
s 16
-18
< 1
<; 18
Total reflections measured
6452
Unique reflections
6013
Absorption coeff. // (Mo-K„) , cm"1
Min. & Max. Transmission
2.49
C. Structure Refinement
S, Goodness-of-fit
2.70
Reflections used, I > 3a(I)
4472
No. of variables
370
R, Rw* (%)
0.0527
, 0.0715
Rinf (%)
0.0108
Max. shift/esd
0.001
min. peak in diff. four, map (e Á"3)
-1.81
max. peak in diff. four, map (e Á"3)
1.30
* Relevant expressions are as follows, where in the footnote
F0 and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(¡Fn¡ - ¡Fc¡)2, where w= (a(F))'2
R = I ( I I FoI
Rw = [2>( ¡F
S = I5>( |F0|
l
o I
Ip I I )
I h I I '
I P I
I h I /
Ip I \ 2
I ^ C I '
/ II F !
I 2 "I 1/2
/ I °i F0 ! 2 ]
/ (m-n) ] 1/2

116
angles are given in Table 6-14. The structure was refined
to an R value of 4.7 %. This and other crystal data are
given in Table 6-15.
Not surprisingly, the Gd(DAPAAH)3+ and Eu (DAPAAH)3+
complexes are isomorphous. The complex again consists of
the pentadentate DAPAAH ligand, a bidentate nitrate, and
three coordinated water molecules. As in the Eu(III)
complex, the metal ion is distorted out of the plane of the
ligand with the nitrate and two water molecules coordinating
below the metal, and a single water molecule coordinating in
the small space available above the metal. The total
coordination sphere consists of ten donor atoms.
The metal coordination sphere of 17 is given in the
thermal ellipsoid plot shown in Figure 6-5 along with the
atomic numbering scheme for the DAPAAH ligand and four
coordinated water molecules. The atomic coordinates and
bond distances and angles for the non-hydrogen atoms are
given in Tables 6-16 and 6-17. Coordinates for the hydrogen
atoms are given in Table 6-18, with the hydrogen atom bond
distances and angles in Table 6-19. The structure was
refined to an R value of 5.6 %. This and other crystal data
are given in Table 6-20.
The Y(DAPAAH)3+ complex shows essentially the same
arrangement of donor atoms as in complexes 15 and 16. The
ligand is pentadentate with the Y(III) lying 0.622(1) Á
below the plane defined by 01, 02, N2, N3, and N4. This

117
Figure 6-4: View of 16 showing the thermal ellipsoids
and atomic numbering. Hydrogens are
omitted for clarity.

118
Table 6-11: Fractional coordinates and equivalent
isotropic3 thermal parameters (Á2) for
the non-H atoms of compound 16.
Atom
X
V
z
U
GD
.18405 ( 4)
.26994
( 3)
. 149320(25)
4.278(16)
01
. 3413
( 6)
.4036
( 4)
. 0130
( 4)
4.65
(22)
09
.2613
( 7)
.3045
( 4)
.2934
( 4)
5.47
(25)
Oil
- . 2427
( 6)
.3264
( 5)
-.0077
( 5)
6.3
( 3)
012
-.0185
( 6)
.3750
( 4)
. 0228
( 4)
5.57
(24)
013
-.0778
( 6)
.2110
( 4)
. 0930
( 4)
6.1
( 3)
021
. 6560
( 9)
. 1338
( 8)
.3085
( 7)
11.4
( 5)
022
. 8150
( 9)
-.0017
( 7)
.3889
( 7)
10.9
( 5)
023
.5914
(13)
-.0224
( 9)
.3527
(ID
14.5
( 8)
031
. 0810
(23)
. 5971
(14)
.2803
(15)
9.3
( 4)
032
. 148
( 3)
. 6451
(18)
.3717
(16)
12.5
( 5)
033
. 029
( 4)
. 5295
(24)
.3988
(21)
15.2
( 8)
041
. 0715
( 7)
.4565
( 4)
. 1635
( 4)
6.2
( 3)
042
-.0914
( 6)
.2666
( 5)
.2717
( 4)
7.1
( 3)
04 3
.4948
( 6)
.2054
( 4)
. 1396
( 4)
5.61
(25)
044
. 8149
(19)
.3860
(12)
.4056
(10)
17.4
(ID
051
. 6447
(23)
. 6262
(13)
.3257
(12)
8.4
( 3)
052
. 502
( 3)
. 5763
(19)
.4558
(19)
13.5
( 6)
053
.419
( 4)
. 6738
(22)
.3415
(19)
13.7
( 7)
N1
.3543
( 8)
.3197
( 6)
-.1088
( 5)
5.7
( 3)
N2
.2979
( 7)
.2300
( 6)
-.0292
( 5)
5.1
( 3)
N3
.2253
( 7)
. 0694
( 5)
. 1338
( 6)
5.3
( 3)
N4
.2171
( 7)
. 1071
( 5)
.3105
( 5)
5.3
( 3)
N5
. 2342
( 8)
. 1343
( 5)
.3939
( 5)
5.7
( 3)
Nil
- . 1151
( 7)
.3046
( 5)
. 0344
( 5)
5.3
( 3)
N21
.6903
( 9)
. 0350
( 8)
.3470
( 6)
7.0
( 4)
N31
. 0825
(20)
. 5888
(13)
.3363
(14)
6.0
( 3)
N51
. 523
( 3)
. 6312
(15)
.3557
(14)
7.3
( 4)
Cl
.3751
( 8)
.4047
( 7)
-.0793
( 6)
5.0
( 4)
Cl'
.4418
(ID
. 5016
( 8)
-.1590
( 6)
6.9
( 5)
C2
.2843
( 9)
. 1407
( 8)
-.0495
( 7)
5.9
( 5)
C2'
.3126
(16)
. 1343
(11)
-.1608
(10)
9.5
( 8)
C3
.2400
( 9)
. 0495
( 7)
. 0434
( 8)
5.8
( 4)
C4
. 2219
(13)
-.0517
(10)
. 0341
(11)
8.6
( 8)
C5
. 1848
(17)
-.1324
( 9)
. 1252
(14)
10.3
(10)
C6
. 1776
(15)
-.1172
( 8)
.2189
(ID
8.2
( 6)
C7
.2004
( 9)
-.0138
( 6)
.2204
( 8)
6.3
( 4)
C8
.2052
( 9)
. 0064
( 7)
.3184
( 7)
5.9
( 4)
C8 '
.2026
(12)
-.0869
( 8)
.4131
( 9)
8.2
( 5)
C9
.2629
(10)
.2377
( 7)
.3779
( 6)
5.6
( 4)
C9'
.2946
(14)
.2647
( 9)
.4663
( 7)
7.8
( 5)
aFor anisotropic atoms, the U value is Ueq/ calculated as Ueq
= 1/3 ZiZj Ui:¡ a±* aj* Ai;¡ where Ai;j is the dot product of the
ith and direct space unit cell vectors.

1
01
01
01
01
01
01
01
01
01
09
09
09
09
09
09
09
09
012
012
012
012
012
012
012
013
013
013
013
013
013
041
041
041
041
041
04 2
04 2
04 2
042
04 3
04 3
04 3
N2
N2
N3
N4
119
6-12 :
Bond lengths (Á) and angles (°) for the non-H
atoms of compound 16.
2
3
1-2
1-2-3
Gd
09
2.415 (4)
97.71(17)
Gd
012
71.58(15)
Gd
013
113.56(16)
Gd
041
68.36 (17)
Gd
04 2
137.74(18)
Gd
04 3
72.57 (16)
Gd
N2
62.39(19)
Gd
N3
118.88(19)
Gd
N4
143.61(16)
Gd
012
2.403 (5)
134.04(18)
Gd
013
142.22(17)
Gd
041
67.62(17)
Gd
04 2
77.74 (20)
Gd
04 3
73.96(18)
Gd
N2
146.12(17)
Gd
N3
120.14(20)
Gd
N4
62.31 (21)
Gd
013
2.548(5)
48.23 (16)
Gd
041
66.94 (18)
Gd
042
81.76(17)
Gd
043
136.85 (16)
Gd
N2
68.66 (17)
Gd
N3
103.20 (19)
Gd
N4
144.45 (17)
Gd
041
2.689 (5)
103.80 (18)
Gd
042
64.95(20)
Gd
04 3
134.14(18)
Gd
N2
70.78(18)
Gd
N3
62.90(17)
Gd
N4
98.32(18)
Gd
042
2.456 (6)
71.26(20)
Gd
04 3
119.33(20)
Gd
N2
121.23 (18)
Gd
N3
166.25 (18)
Gd
N4
121.88 (20)
Gd
043
2.411(5)
141.36 (17)
Gd
N2
135.73 (20)
Gd
N3
98.46 (21)
Gd
N4
71.07(18)
Gd
N2
2.416 (4)
73.90(17)
Gd
N3
74.41 (18)
Gd
N4
72.67(17)
Gd
N3
2.585 (6)
59.72 (22)
Gd
N4
116.72 (22)
Gd
N4
2.623(7)
60.30 (24)
Gd
2.583 (6)

120
Table 6-12 -- continued
1
2
3
1-2
1-2-3
Gd
01
Cl
124.0(5)
Gd
09
C9
124.1(6)
Gd
012
Nil
100.7(4)
Gd
013
Nil
93.7 (4)
N2
N1
Cl
116.0(6)
Gd
N2
N1
114.0(5)
Gd
N2
C2
124.7 (5)
N1
N2
C2
1.396(9)
120.7(7)
Gd
N3
C3
121.3 (5)
Gd
N3
C7
119.5(6)
C3
N3
C7
118.2 (8)
Gd
N4
N5
114.8 (5)
Gd
N4
C8
125.5(6)
N5
N4
C8
119.5(6)
N4
N5
C9
1.346 (11)
116.3 (6)
Oil
Nil
012
1.226(7)
121.5(6)
Oil
Nil
013
121.3(6)
012
Nil
013
1.253(8)
117.2 (6)
013
Nil
1.259 (8)
021
N21
022
1.231 (12)
121.1(10)
021
N21
023
119.4 (8)
022
N21
023
1.205(9)
119.0 (10)
023
N21
1.156 (14)
031
N31
032
0.75 (3)
126 (3)
031
N31
033
127 (3)
032
N31
033
1.24 (3)
106.5 (23)
033
N31
1.03 (3)
051
N51
052
0.95 (3)
109.5 (23)
051
N51
053
138 (3)
052
N51
053
1.33(3)
109(3)
053
N51
0.92(4)
01
Cl
N1
1.235(9)
121.1(7)
01
Cl
Cl'
119.5 (8)
Cl
Cl'
1.487(11)
N1
Cl
Cl'
1.335(12)
119.4 (7)
N2
C2
C2'
1.301(12)
121.2(9)
N2
C2
C3
114.3(8)
C2'
C2
C3
1.526(15)
124.5(9)
N3
C3
C2
1.324(13)
115.9(8)
N3
C3
C4
123.1(9)
C2
C3
C4
1.480(13)
121.0(10)
C3
C4
C5
1.395(14)
116.6(12)
C4
C5
C6
1.380(21)
122.2(10)
C5
C6
C7
1.353 (24)
117.0 (10)
N3
C7
C6
1.348(11)
122.7(10)
N3
C7
C8
117.3 (8)
C6
C7
C8
1.395 (14)
120.0(9)
N4
C8
C7
1.297(11)
114.0(7)

121
Table 6-12 -- continued
1
2
3
1-2
1-2-3
N4
C8
C8'
127.1(9)
C7
C8
C8'
1.466 (15)
118.9(8)
C8
C8'
1.486 (11)
09
C9
N5
121.2 (8)
09
C9
C9'
1.224(9)
122.5(9)
N5
C9
C9'
1.346(12)
116.3 (7)
C9
C9'
1.457(14)
Table
6-13: Fractional
coordinates
and isotropic thermal
parameters
(Á2) for the
H atoms of
compound 16
Atom
X
V
z
U
H1041
. 054
. 510
. 103
3.7
H2041
. 073
.437
.233
3.7
H1042
- . 164
. 221
.310
3.7
H2042
- . 050
.260
.314
3.7
H1043
. 544
. 173
. 195
3.7
H2043
. 550
.240
.094
3.7
H1044
. 866
.325
.418
3.7
H2044
. 881
.441
.409
3.7
HN1
.377
.325
- . 185
3.7
HN5
.242
. 083
.461
3.7
H1C1'
.483
.490
- .219
3.7
H2C1'
.371
.539
- . 199
3.7
H3C1'
. 565
. 510
- . 129
3.7
H1C2 '
.306
. 074
- . 132
3.7
H2C2'
.429
. 156
- . 198
3.7
H3C2'
. 197
. 121
- . 177
3.7
HC4
.202
- . 054
- . 045
3.7
HC5
. 148
- . 199
. 135
3.7
HC6
. 141
- . 180
.302
3.7
H1C8'
.234
- . 062
.458
3.7
H2C8 '
. 082
- . 115
.437
3.7
H3C8'
.317
- . 139
.416
3.7
H1C9'
.389
.302
. 446
3.7
H2C9'
.276
.200
.535
3.7
H3C9'
. 198
.323
.486
3.7

122
Table 6-14: Bond lengths (Á) and angles (°) for the
H-atoms of compound 16.
1
2
3
2-3
1-2-3
Gd
041
H1041
0.935 (5)
117.2(4)
Gd
041
H2041
0.921 (5)
92.3 (3)
H1041
041
H2041
150.4 (7)
Gd
04 2
H1042
0.867 (5)
140.3 (6)
Gd
04 2
H2042
0.707(6)
92.8(4)
H1042
04 2
H2042
91.5(5)
Gd
04 3
H1043
0.896(5)
123.5 (4)
Gd
043
H2043
0.749 (5)
112.2(4)
H1043
043
H2043
116.5(5)
044
H1044
0.803(16)
H1044
044
H2044
0.985(12)
113.7(17)
N2
N1
HN1
1.015(6)
124.7(7)
Cl
N1
HN1
119.3(7)
N4
N5
HN5
0.968(5)
124.2(7)
C9
N5
HN5
119.0(8)
Cl
Cl'
H1C1'
0.869 (8)
112.8 (10)
Cl
Cl'
H2C1'
0.861(8)
114.9(8)
Cl
Cl'
H3C1'
1.18(16)
101(7)
H1C1'
Cl'
H2C1'
72.4 (6)
H1C1'
Cl'
H3C1'
106(7)
H2C1'
Cl'
H3C1'
140 (8)
C2
C2 '
H1C2'
0.77(9)
80 (8)
C2
C2'
H2C2 '
0.99 (13)
108 (7)
C2
C2 '
H3C2'
1.04(16)
111(8)
H1C2 '
C2'
H2C2'
118(11)
H1C2 '
C2 '
H3C2'
77(11)
H2C2 '
C2'
H3C2'
139(11)
C3
C4
HC4
1.144(13)
116.6(11)
C5
C4
HC4
124.6(11)
C4
C5
HC5
0.928(11)
128.9(17)
C6
C5
HC5
108.5(15)
C5
C6
HC6
1.197(12)
127.3(11)
C7
C6
HC6
115.5(13)
C8
C8'
H1C8'
0.885(12)
104.8(8)
C8
C8'
H2C8'
1.032(9)
110.8(7)
C8
C8'
H3C8'
1.01 (11)
114 (6)
H1C8'
C8'
H2C8'
115.4(12)
H1C8 '
C8'
H3C8 '
85 (5)
H2C8 '
C8'
H3C8 '
121(6)
C9
C9'
H1C9'
0.912(11)
109.4 (9)
C9
C9'
H2C9'
1.05 (13)
112(7)
C9
C9'
H3C9'
1.009(10)
109.3 (9)
H1C9'
C9'
H2C9'
123(7)
H1C9'
C9'
H3C9'
100.4(10)
H2C9'
C9'
H3C9'
100(7)

123
Table 6-15: Crystallographic data for compound 16.
A. Crystal data (298 K)
16
a, Á
7.8983 (1)
b, Á
12.9664(1)
c, Á
13.8133 (1)
a, deg.
72.2270 (1)
13, deg.
76.0680(1)
7, deg.
78.5080(1)
V, A3
1295.35 (2)
dcaic g cm'3 (2 98 K)
1.771
Empirical Formula
C13H25N8015Gd
Formula wt, g
Crystal system
Space group
Z
F(000), electrons
Crystal size (mm3)
690.63
Triclinic
P -1
2
685
0.14 x 0.18 x
0.33
B. Data collection (298 K)
Radiation, X (A)
Mode
Scan Range
Background
Scan rate, deg. min
2 0 range, deg.
Range of h k 1
Symmetrically over 1.2
offset
i
1.0 and -1.0
Mo - K„, 0.71073
to-scan
5 about Ko1 2 maximum
-9
0
-15
in oj
3
3
£
£
£
from K,
- 6
- 50
h s
k s
1 s
â– al.2
maximun
9
15
16
Total reflections measured
Unique reflections
Absorption coeff. /¿ (Mo-Ka) , cm
Min. & Max. Transmission
4917
4566
2.65
0.202
C. Structure refinement
S, Goodness-of-fit
Reflections used, I > 2.5a (I)
No. of variables
R, Rw* (%)
Rint- (%)
Max. shift/esd
min. peak in diff. four, map (e A"3)
max. peak in diff. four, map (e Á3)
2.77
3956
330
4.70, 5.80
2.81
0.002
-1.07
1.45
*Relevant expressions are as follows, where in the footnote
F0 and Fc represent, respectively, the observed and
calculated structure-factor amplitudes.
Function minimized was w(|F0| - | Fc | )2, where w= ( R = I ( | | F„ | - I Fc I I ) / 11 F J .
Rw = 0>(|Fo|
s = Q>( | F0 I
I FCI )2 /
Fj)2 /
X I F0 | 2] 1/2 •
(m-n) ]1/2.

124
Figure 6-5:
View of 17 showing the thermal ellipsoids
and atomic numbering. Water hydrogens
are omitted for clarity.

125
Table 6-16: Fractional coordinates and equivalent
isotropic3 thermal parameters (Á2) for
the non-H atoms of compound 17.
Atom
X
V
z
U
Y
0.14058 (6)
0.25516 (5)
0.21518 (4)
0.0233 (2)
01
0.3474 (4)
0.2440 (4)
0.0835 (3)
0.0401(15)
02
0.0410 (4)
0.4620 (3)
0.1708 (3)
0.0357 (14)
03
0.2901 (4)
0.4045 (4)
0.2450 (3)
0.041 (2)
04
0.1045 (4)
0.1930 (4)
0.2641 (3)
0.041 (2)
05
0.1440 (4)
0.0299 (4)
0.1949 (3)
0.042(2)
06
0.0625 (4)
0.2448 (4)
0.0752 (3)
0.043 (2)
07
0.3735(6)
0.6226 (6)
0.3966 (4)
0.087 (3)
08
0.1472(6)
0.5979 (6)
-0.0176 (4)
0.089 (3)
09
0.4250(9)
0.4899 (10)
0.9210 (6)
0.171(5)
N1
0.4846 (5)
0.1153 (5)
0.1663 (3)
0.036 (2)
N2
0.3685(5)
0.1276 (4)
0.2452 (3)
0.029 (2)
N3
0.1473 (5)
0.1864 (4)
0.3862 (3)
0.029 (2)
N4
0.0272(5)
0.3820 (4)
0.3485 (3)
0.028(2)
N5
0.1035 (5)
0.4891 (4)
0.3184 (3)
0.036 (2)
Cl
0.5888 (8)
0.1727 (7)
-0.0009 (5)
0.061 (3)
C2
0.4645 (7)
0.1807 (6)
0.0851 (4)
0.039 (2)
C3
0.3760 (6)
0.0660 (5)
0.3239 (4)
0.033 (2)
C4
0.5072(7)
0.0206 (6)
0.3408 (5)
0.049 (3)
C5
0.2478 (6)
0.0929 (5)
0.4048 (4)
0.031 (2)
C6
0.2356(7)
0.0316 (6)
0.4964 (4)
0.046 (2)
C7
0.1205 (8)
0.0740 (7)
0.5704 (5)
0.057 (3)
C8
0.0260(7)
0.1757 (7)
0.5528 (4)
0.047 (2)
C9
0.0402 (6)
0.2304 (5)
0.4600 (4)
0.032 (2)
CIO
0.0537(6)
0.3444 (5)
0.4365 (4)
0.032 (2)
Cll
0.1662 (7)
0.4081(7)
0.5151 (4)
0.050 (3)
C12
0.0599(7)
0.5246 (5)
0.2237(4)
0.037 (2)
C13
0.1364(8)
0.6413 (6)
0.1871 (5)
0.060 (3)
Nil
0.4502 (6)
0.3089 (5)
0.3731(5)
0.053 (2)
011
0.3990(7)
0.3235(6)
0.2872 (5)
0.095 (3)
012
0.5814 (6)
0.3428 (6)
0.4061 (4)
0.081 (3)
013
0.3721(7)
0.2612 (6)
0.4246(5)
0.102 (3)
N22
0.3207(6)
0.7189 (5)
0.2526 (4)
0.045 (2)
021
0.2209(6)
0.6693(5)
0.2324 (4)
0.075 (3)
022
0.3043 (6)
0.8321(5)
0.2682 (4)
0.078 (3)
023
0.4332 (6)
0.6531 (5)
0.2606 (5)
0.081(3)
N33
0.1519 (5)
0.0450 (5)
-0.1095 (3)
0.037 (2)
031
0.2130(5)
â– 0.0394 (5)
-0.1649 (4)
0.062(2)
03 2
0.2279 (5)
0.0966 (4)
-0.0687 (3)
0.049 (2)
03 3
0.0192 (4)
0.0754 (4)
-0.0970 (3)
0.047 (2)
aFor anisotropic atoms,
the U value is U , calculated as Ueq
= 1/3 ZiL
Ui-j ^ij
where Ai;j
is the dot product of the
ith and
direct space
unit cell
vectors.

126
Table
6-17 :
Bond Lengths (Á)
and Angles (°)
for the non-
atoms of compound
17 .
1
2
3
1-2
1-2-3
01
Y
02
2.362 (3)
96.89(13)
01
Y
03
76.97 (14)
01
Y
04
139.8 (2)
01
Y
05
82.69(14)
01
Y
06
70.54 (14)
01
Y
N2
63.79 (14)
01
Y
N3
124.41 (14)
02
Y
03
2.367 (4)
73.29(14)
02
Y
04
87.39(14)
02
Y
05
143.3(2)
02
Y
06
71.22(14)
02
Y
N2
144.49(14)
02
Y
N3
121.81(13)
02
Y
N4
62.89 (13)
03
Y
04
2.356 (4)
141.22 (14)
03
Y
05
140.59 (14)
03
Y
06
127.62 (14)
03
Y
N2
73.37 (14)
03
Y
N3
78.17(15)
03
Y
N4
75.38 (14)
04
Y
05
2.380 (4)
71.11(14)
04
Y
06
73.28(14)
04
Y
N2
127.00 (14)
04
Y
N3
84.54 (15)
04
Y
N4
65.87 (15)
05
Y
06
2.405 (4)
74.15 (15)
05
Y
N2
67.4 (2)
05
Y
N3
86.34 (15)
05
Y
N4
127.39 (13)
06
Y
N2
2.356 (4)
122.53(14)
06
Y
N3
154.13 (14)
06
Y
N4
118.24 (14)
N2
Y
N3
2.526 (4)
61.69 (13)
N2
Y
N4
118.9 (2)
N3
Y
N4
2.537(5)
61.31(13)
N4
Y
01
2.560 (4)
149.51(14)
C2
01
Y
1.234 (7)
124.2(4)
C12
02
Y
1.236 (6)
124.0(3)
N2
N1
C2
1.375 (6)
115.5 (4)
C2
N1
1.353(8)
C3
N2
Y
1.272 (7)
124.5(3)
C3
N2
N1
119.8(4)
Y
N2
N1
115.3(3)
C5
N3
C9
1.349 (7)
118.6(5)
C5
N3
Y
120.0 (3)
C9
N3
Y
1.355 (6)
120.9 (4)

127
Table 6-17 -- continued.
1
2
3
1-2
1-2-3
N5
N4
CIO
1.366 (6)
120.1(4)
N5
N4
Y
115.0(3)
CIO
N4
Y
1.270 (7)
124.4 (3)
C12
N5
N4
1.358(7)
114.9(4)
C2
Cl
1.481 (8)
01
C2
N1
120.9 (5)
01
C2
Cl
122.0 (6)
N1
C2
Cl
117.1 (5)
C4
C3
C5
1.516 (8)
119.8 (5)
C4
C3
N2
125.3 (5)
C5
C3
N2
1.482(7)
114.7(5)
C6
C5
N3
1.403 (8)
121.8(5)
C6
C5
C3
122.6(5)
N3
C5
C3
115.5 (5)
C7
C6
C5
1.390 (8)
118.5(6)
C8
C7
C6
1.365 (10)
119.5(6)
C9
C8
C7
1.392 (8)
119.7(5)
CIO
C9
N3
1.477(8)
115.8(4)
CIO
C9
C8
122.5 (5)
N3
C9
C8
121.6 (5)
Cll
CIO
N4
1.506(8)
125.6 (5)
Cll
CIO
C9
119.7 (5)
N4
CIO
C9
114.7(4)
C13
C12
02
1.478 (9)
121.6 (5)
C13
C12
N5
117.5 (5)
02
C12
N5
121.0 (5)
Oil
Nil
012
1.220 (9)
118.8 (7)
012
Nil
013
1.236(7)
121.3 (7)
013
Nil
Oil
1.220 (10)
119.8(6)
021
N22
022
1.234(9)
119.4 (6)
022
N22
023
1.217(7)
120.4 (7)
023
N22
021
1.230 (8)
120.1(6)
031
N33
032
1.253 (7)
118.5 (5)
032
N3 3
033
1.236 (8)
121.5 (5)
033
N33
031
1.232 (6)
120.0 (6)

128
Table 6-18: Fractional coordinates and isotropic thermal
parameters (Á2) for the H atoms of compound 17.
Atom
X
V
z
U
Hla
0.56835
0.06701
0.16869
0.08
H5b
-0.17715
0.53277
0.35824
0.08
Hlb
0.56161
0.22255
-0.05359
0.08
Hlc
0.67266
0.20593
0.01108
0.08
Hid
0.6126
0.0846
-0.01567
0.08
H4b
0.57973
-0.02846
0.28148
0.08
H4c
0.5486
0.01579
0.38491
0.08
H4d
0.47626
-0.10403
0.36661
0.08
H6b
0.30561
-0.0378
0.507180
0.08
H7a
0.108
0.031570
0.63319
0.08
H8a
-0.05096
0.20881
0.60371
0.08
Hila
-0.21778
0.48004
0.48821
0.08
Hllb
-0.23468
0.34728
0.54844
0.08
Hllc
-0.11815
0.43738
0.55869
0.08
H13a
-0.09625
0.65627
0.11973
0.08
H13b
-0.23966
0.63142
0.19965
0.08
H13c
-0.12174
0.71303
0.21871
0.08

129
Table
6-19 :
Bond Lengths (Á)
of compound 17.
and Angles (°)
for the H
1
2
3
1-2
1-2-3
Hla
N1
N2
0.900 (5)
122.2 (5)
Hla
N1
C2
122.3 (4)
H5b
N5
C12
0.900 (4)
122.5(5)
H5b
N5
N4
122.6(5)
Hlb
Cl
Hlc
0.960(7)
109.5 (7)
Hlb
Cl
Hid
109.5(7)
Hlb
Cl
C2
109.4 (6)
Hlc
Cl
Hid
0.960(8)
109.5(7)
Hlc
Cl
C2
109.3 (7)
Hid
Cl
C2
0.960(8)
109.7(6)
H4b
C4
H4c
0.960 (6)
109.5(6)
H4b
C4
H4d
109.5(6)
H4b
C4
C3
109.3 (6)
H4c
C4
H4d
0.960 (8)
109.5(7)
H4c
C4
C3
109.7 (6)
H4d
C4
C3
0.960 (6)
109.4 (6)
H6b
C6
C7
0.960 (6)
121.3 (6)
H6b
C6
C5
120.3 (5)
H7a
C7
C8
0.960 (6)
120.6(6)
H7a
C7
C6
119.9(7)
H8a
C8
C9
0.960 (6)
119.8(6)
H8a
C8
Cl
120.5(6)
Hila
Cll
Hllb
0.960(7)
109.5(7)
Hila
Cll
Hllc
109.5 (7)
Hila
Cll
CIO
109.4(5)
HI lb
Cll
Hllc
0.960 (7)
109.5 (6)
HI lb
Cll
CIO
109.3 (6)
Hllc
Cll
CIO
0.960(7)
109.7(6)
H13a
C13
H13b
0.960 (7)
109.5 (8)
H13a
C13
H13c
109.5(6)
H13a
C13
C12
109.7 (6)
H13b
C13
H13c
0.960 (7)
109.5(6)
H13b
C13
C12
110.3 (6)
H13c
C13
C12
0.960 (8)
108.4(7)

130
Table 6-20: Crystallographic data for compound 17.
A. Crystal data (298 K)
a, A
b, Á
c, Á
a, deg.
P, deg.
T/ deg.
V, Á3
dcaic, g cm’3 (298 K)
Empirical formula
Formula wt, g
Crystal system
( c13h17n5o2
17
9.448 (1)
10.483 (1)
13.570(1)
84.15(1)
75.05 (1)
84.00(1)
1382.4 (2)
1.625
Y(H20)4(N03)3-
676.37
Triclinic
3H20
Space group
P -1
Z
2
F(000), electrons
696
Crystal size (mm3)
0.56 x
0.38 x 0.30
B. Data collection (298 K)
Radiation, X (Á)
Mo - Ka,
0.71073
Mode
co-scan
Scan range Symmetrically over
1.2°
about
K„t , maximum
Background offset 1.0 and -1.
0 in
co from
Kcd,2 maximum
Scan rate, deg. min."1
3-6
2 0 range, deg.
3-55
Range of h k 1
0
< h
< 12
-13
£ k
s 13
-18
< 1
< 18
Total reflections measured
6613
Unique reflections
6237
Absorption coeff. n (Mo-Ka) , mm'1
2.20
Min. & Max. Transmission
0.466,
0.572
C. Structure refinement
S, Goodness-of-fit
2.02
Reflections used, I > 3a(I)
4294
No. of variables
361
R, Rw* (%)
5.63,
6.75
•^int •
(%)
2.17
Max.
shift/esd
0.0001
min.
peak in diff.
four
. map
(e
Á"3)
-1.06
max.
peak in diff.
four
. map
(e
Á"3)
0.71
* Relevant expressions <
are as
follows,
where in
Fq and Fc represent, respectively, the observed and
Function minimized was w(|Fn
calculated structure-factor amplitudes
iro¡ " ¡Fc¡)2, where w= (a(F))"2
^o!
i-oi - ! Fc ¡ ) 2 / I i F0 ! 2] 1/2
! F0 ¡ - ! Fc ¡ )2 / (m-n) ] 1/2
R = X (!! F0 ¡ -
Rw = [Zw( !fJ
5 = [£*/<
It? II
I *c I I
/ Z|F„

131
distance is similar to the out-of-plane distortion observed
in a Y(III) complex previously reported.40 Water molecules
occupy similar positions as in complexes 15 and 16 with the
exception of a single water molecule occupying the position
of the bidentate nitrate. The total coordination sphere is
nine, consisting of the pentadentate ligand and four water
molecules.
A study of the solution stability of complexes 14 - 17
was undertaken via NMR. Their solubility in D20 made NMR a
desirable tool in this investigation, as these essentially
colorless compounds gave little signal in the visible
region. Three 1H and 13C spectra were taken over the course
of eight days, and are shown in Figures 6-6 - 6-11. The
spectra show good consistency over this extended time
period, with peaks remaining sharp, and no new peaks
appearing. The 89Y spectra for the Y(N03)3 reference, and
compound 17, are shown in Figures 6-12 and 6-14,
respectively. The large 89Y peaks were enlarged and are
shown in Figures 6-13 and 6-15 for the reference and sample,
respectively. In both cases there are single 89Y peaks with
the sample peak shifted by 5.6 ppm from the reference. The
presence of a single 89Y peak, in the solution of 17,
shifted away from the reference suggests that Y(III) exists
in only one type of environment which is different from that
experienced by Y(III) in the reference solution. Since no

132
Figure 6-6: 1H NMR of 17 taken 3/22/94.
Figure 6-7:
13C NMR of 17 taken 3/22/94.

133
.9.0 8.5 8.0 7.5 7.0 6.5 6 0 5.5 5.0 4.5
—^"1 A
/ ' ' ‘ ' r 1 1 1 ' I—■- 1 1 I 1 1 ' 1 I 1 1 I - r I -I- I - | 111 -1 ■ I ' —'—1—'—|-
4.5 4 0 i 5 3 0 2 5 2 0 15 1.0 0 5 0 0 »PM
Figure 6-8: XH NMR of 17 taken 3/24/94.
1 ’—■—'—1—'—■—'—1
1 ■ ■ i ' ’ ' 1 ■ ' ' 1 ' 1 ' 1 ' 1 ' 1 1 1 •' 1 1 1 ' 1 ' ' ' 1
• 1
220 200 180 160 140 120 100 80 60 40 20 0 PPM
Figure 6-9:
13C NMR of 17 taken 3/24/94.

134
Figure 6-10: XH NMR of 17 taken 3/29/94.
******
■ii ion mu1 ww» mtmt# o
¿P
Figure 6-11:
13C NMR of 17 taken 3/29/94.

135
Figure 6-12: 89Y NMR of Y(N03)3 (reference).
Figure 6-13:
89Y NMR of Y(N03)3, close-up of 89Y peak.

136
Figure 6-14: 89Y NMR of 17.
Figure 6-15:
89Y NMR of 17, close-up of 89Y peak.

137
other peaks are evident, chances are good that the complex
has not decomposed.
Reactions of metal nitrates and metal chlorides with
the constituent parts of DAPAAH appear to be useful in
synthesizing metal complexes with this ligand. The
planarity of DAPAAH ensures that there are coordination
sites available for solvent molecules, a condition that is
favorable for any potential MRI agent. Also significant is
the water solubility demonstrated by these complexes and
their stability in solution over an extended period of time.
The favorable results obtained herein will warrant further
investigation of these potential MRI agents.

REFERENCES
1. Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements;
Pergamon Press: Oxford, 1984; pp 637-638.
2. Baxter, G.F. Chem. Br. 1992, 445-448.
3. Kreusal, U. Diploma Thesis, Technische Universitat
München, 1990.
4. Herrmann, VI.A.; Herdtweck, E. ; Pajdla, L. Inorg. Chem.
1991, 30, 2579-2581.
5. Herrmann, VI.A.; Herdtweck, E. ; Pajdla, L. Z. fur
Kristallogr. 1992, 198, 257-264.
6. Asato, E.; Driessen, W.L.; deGraaff, R.A.G.; Hulsbergen,
F.B.; Reedijk, J. Inorg.Chem. 1991, 30, 4210-4218.
7. Asato, E.; Katsura, K.; Mikuriya, M.; Fujii, T.;
Reedijk, J. Chem. Lett. 1992, 1967-1970.
8. El-Issa, D.; Pyykko, P.; Zanati, H.M. Inorg. Chem. 1991,
30, 2781-2787 and references therein.
9. Cava, R.J. Science, 1990, 247, 656-662 and references
therein.
10. Zevaco, T.; Postel, M. Synth. React. Inorg. Met.-org.
Chem. 1992, 22(2&3), 289-297.
11. Palenik, G.J. Unpublished results.
12. Sommerer, S.O.; Palenik, G.J. Inorg. Chim. Acta. 1991,
183, 217.
13. Aghabozorg, H.; Palenik, R.C.; Palenik, G.J. Inorg.
Chim. Acta. 1983, 76, L259-L260.
14. Battaglia, L.P.; Corrade, A.B.; Pelosi, G.; Tarasconi,
P.; Pelizzi, C. J. Chem. Soc., Dalton Trans. 1989,
671-675 .
15.Lauffer, R.B. Chem. Rev. 1987, 87, 901-927
138

139
16. Sommerer, S.O. Dissertation, University of Florida,
1991.
17. Brintzinger, H.; Munkelt, S. Z. Anorg. Chem. 1948, 256,
65-74.
18. Shchelokov, R.N.; Mikhailow, Y.N.; Mistryukov, V.E.;
Sergeev, A.V. Dokl. Acad. Nauk SSSR 1987, 293,
642-644.
19. Cambridge Structural Database.
20. Sheldrick, G.M. SHELXTL plus 1990, Nicolet XRD
Corporation, Madison, Wisconsin, USA.
21. International Tables for X-ray Crystallography Vol. IV;
Kynoch Press: Birmingham, 1974; p 55. (Present
distributor, D. Reidel, Dordrecht.).
22. Cromer, D.T.; Mann, J.B. Acta. Crystallogr. 1968, A24,
321-324.
23. Cromer, D.T.; Liberman, D. J. Chem. Phys. 1970, 53,
1891-1898.
24. Stewart, R.F.; Davidson, E.R.; Simpson, W.T. J. Chem.
Phys. 1965, 42, 3175-3187.
25. Huheey, J.E.; Keiter, E.A.; Keiter, R.L. Inorganic
Chemistry, 4th ed.; Harper Collins College
Publishers: New York, 1993; p 215.
26. Ng, S.-W.; Zuckerman, J.J. Adv. Inorg. Chem. Radiochem.
1985, 29, 302.
27. Gopal, R.; Rutherford, J.S.; Robertson, B.E. J. Solid
State Chem. 1980, 32, 29-40.
28. Brown, I.D.; Altermatt, D. Acta. Crystallogr. 1985, B41,
244-247.
29. O'Keeffe, M.; Brese, N.E. J. Am. Chem. Soc. 1991, 113,
3226-3229.
30. Thorp, H.H. Inorg. Chem. 1992, 31, 1585-1588 and
references therein.
31. Kepert, D.L. Prog. Inorg. Chem. 1978, 24, 179-249.
Farrah, S.R.; Erdos, G.W. Can. J. Microbiol. 1991, 37,
445-449.
32 .

140
33. Moedritzer, K. ; Irani, R.R. J. Org. Chem. 1966, 31,
1603-1607.
34 .
35 .
36 .
37 .
Corbridge, D.E.C.; Lowe, E.J. J. Chem. Soc.
493-502.
Corbridge, D.E.C.; Lowe, E.J. J. Chem. Soc.
4555-4564.
Conley, R.T. Infrared Spectroscopy 2nd ed.;
Bacon, Inc.: Boston, 1972; p 198-200.
Shannon, R.D. Acta. Crystallogr. 1976, A32,
1974,
1974,
Allyn and
751-767.
38. Gabe, E.J.; LePage, Y.; Charland, J.-P.; Lee, F.L.;
White, P.S. J. Appl. Cryst. 1989, 22, 384-386.
39. Brevard, C.; Granger, P. Handbook of High Resolution
Multinuclear NMR; Wiley-Interscience: New York,
1981; p 146-147.
40. Bombieri, G.; Benetollo, F.; Hawkins, W.T.; Polo, A.;
Vallarino, L.M. Polyhedron 1989, 8, 1923-1931.

BIOGRAPHICAL SKETCH
Stephen P. Summers was born in Cincinnati, Ohio, and
attended Cincinnati public schools, graduating from Withrow
High School in 1986 as the valedictorian of his class. His
undergraduate work was completed at DePauw University,
Greencastle, Indiana, where he majored in chemistry and
minored in English literature. He graduated cum laude in
May of 1990. Stephen entered the chemistry Ph.D. program at
the University of Florida, Gainesville, Florida, in August,
1990, where he studied inorganic chemistry and pursued a
research project with Dr. Gus J. Palenik. He was awarded a
Sisler Fellowship in the fall of 1990 and a Division of
Sponsored Research Fellowship for the 1991-1992 academic
year.
As a graduate teaching assistant, Stephen has served
the University of Florida chemistry department ten of twelve
semesters. He has participated in the instruction of
general chemistry laboratories and discussion sections, and
was given an Outstanding Teaching Award for the 1992-1993
academic year.
Outside of the chemistry department, Stephen has
applied himself as a musician in several areas. He studied
piano for thirteen years, and trumpet for eight. Recently
141

142
he has participated in several choral ensembles, including
the DePauw University Choir, the University of Florida
Choir, the University of Florida Chamber Singers, and the
Gainesville PRIDE Chorus.

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
.
Gus J. Pa'lenik, Chair
Professor of Chemistry
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Samuel 0.
Professor
:oigate
of Chemis'try
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Robert C.
Associate Professor of Chemistry
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Y-
Daniel R. Talham
Assistant Professor of Chemistry
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Samuel R. Farrah
Professor of Microbiology and
Cell Science

This dissertation was submitted to the Graduate Faculty
of the Department of Chemistry in the College of Liberal
Arts and Sciences and to the Graduate School and was
accepted as partial fulfillment of the requirements for the
degree of Doctor of Philosophy.
August 1994
Dean, Graduate School