Citation
Reduction of the sulfur content of certain high boiling petroleum fractions ...

Material Information

Title:
Reduction of the sulfur content of certain high boiling petroleum fractions ...
Creator:
Gary, James Hubert, 1921-
Place of Publication:
Gainesville, Fla
Publisher:
University of Florida
Publication Date:
Language:
English
Physical Description:
55 leaves : ; 28 cm.

Subjects

Subjects / Keywords:
Adsorption ( jstor )
Catalysts ( jstor )
Crude oil ( jstor )
Hydrogen ( jstor )
Liquids ( jstor )
Petroleum ( jstor )
Petroleum distillates ( jstor )
Sulfides ( jstor )
Sulfur ( jstor )
Viscosity ( jstor )
Organosulfur compounds ( lcsh )
Petroleum -- Refining ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Bibliography:
Bibliography: leaves 53-54.
General Note:
Manuscript copy. Typed on one side of leaf only.
General Note:
Dissertation (Ph. D.) - University of Florida, 1951.
General Note:
Biography.
Statement of Responsibility:
By James H. Gary.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000541686 ( ALEPH )
ACW5231 ( NOTIS )
13077622 ( OCLC )

Downloads

This item has the following downloads:


Full Text











REDUCTION OF THE SULFUR CONTENT

OF CERTAIN HIGH BOILING

PETROLEUM FRACTIONS









By
JAMES H. GARY










A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY










UNIVERSITY OF FLORIDA
June, 1951












kCri L.;L .-G .-: CIHT


The autihor wishes to express his sincere appreciation

to Dr. Hi. iE. Schweyer for his seiulous and considerate

guidance as director of the research. The author is also

indebted to ::r. T. %. Leeper and .'.r, A. 0. ..ikman for their

many helpful criticisms; to Dr. R. A. ."orr-en for tho use

of tho facilities of the Engineering and Industrial

-:xperi.aent .atction; ani to tl-,e r.e.bers of his Supervisory

Co.iiittee, Dr. *ack Tyner, Dr. A. .'-lp, s, Dr. aul Tarrant

-n irrofossor P. L. Ircscott for t'eir reco-i-.endations and

assistacnce. The aut: or wishes to exprars appreciation to

CitiLs Service .reflnlng Corporation, .sso it rdard oil

Co.:.uny, Gulf i'll Cor-:.oration, ..a;.nolia petroleum Go',"fpany,

an-i tre Standard o.il Comp':ny (Indiana) for f'urnisiinug tne

sa-.ples of hiigh-sulfur cas oils use. in tPe inv:stiution.


(1)










TABLE OF C0cNTENTS


rage

ACKNu .LLEDG)c-.iENT (1)

LIST F FIGURSS (ili)

LIST OF TABLES (iv)

I INTRODUCTION 1

II STAli;..ENT OP THE t8 ,ILM 8

III LITrATRA'fUhRE R:VI-W

h-. Chromatopraphic adsorption 9

B. Desulfurization 12

C. Sulfur Analysis 16

IV DESCII'lTIU!O OPr AUrrA'.'.T7US

A. Deaulfurization Unit 17

B. Adsorption Apparatus 24

V PROC EDURE

A. Desulfurization Apparatus 26

B. Adsorption Apparatus 28

C. Sulfur Analysis 31

D. EKxperimental Data 33

VI RESULTS 35

VII CUIoCLUSIONS 52

VIII BIBL IOGRH.iY 53

IX API- EiDDI 55


(ii)











LIST ut .I;U 'oS


F'i -ure Title rage
.o.

1 'nite.3 t-.tes Crude Oil i'roductlon 2

2 Nieactor ri.otorraph 18

3 ijosulfu.rizer Flow lia:ran 19

4 L..actor Scne.iatic *. 21

b .;-x.ctor heater iring Diagram 22

6 .dsorption Column 25

7 Typical refractive Inde'x Curve 0 50

8 .isorption : r;ctions 32

'J iJsuliuriz :tin of J-as .is 41

10 e.-:ulfurization of i-.-s i..iil I'rctions 41

11 ,ulfr distributionn 'a e 3-121 43

12 Julfur Distribution, *;*.iple 5-126 44

13 sulfur distribution, Jam]ple r-162 44

14 ..L llur AijLtribution, aiple '-129 4b

15 1;ulfur Distribution, n .in le Gl-153 45

1G .uil'.r lAstribution, Sa i!ple '-128 46

17 .ulfur istrrihution, ,a&mpleO '3-137 46

18 .:ulfur Jistribution, sample 3-100-F 47

19 .*.ifur distribution, .s ::.lo :-134 48

0O .i [fur :iLatrLbution, ple --1l5 ,* 48

1 Co ...-oL.iti 'n C'.une .it-: VI c'slt: oO

22 c.> oastiorn : '.n;-e witt, V'sc- slty 1


(111)


















LIST OF TABLES


Table Title Page
0o.

1 Sulfur Compounds in Oil 5

2 Desulfurization Feed Stocks 37

3 Adsorption Feed Stocks 38

4 sulfur Distribution 39

5 Desulfurization Conditions 56

6 Adsorption Data 60


(iv)










I. iPNTRiUDTTC'TIUL


F'or many yec~rs the petroleum industry has been

face with- tie proble.!s i-l.oseai 1pon it by the presence

or various tr;;es of sulfur co r-nounis in crude oils

processed in the refineries. The need for effective

met: ods for re..:ovinr, sulfur from oils constantly is

.rowin, -.ronter for several reasons. As tlhe reserves of

low-sulfur crude oils decrease, the refiner is forced to

use more and .iore of the hir-h-sulfur crudes in order to

-:rintain or increase the ar.ount of his products. .ven for

those refi-era lwo have been proces:'inr sour crudes for a

number of years, the increase in sulfur content of the

refinery ciarire st-ck:s Ias aa anified and multiplied the

number :nf pirobleis normally encountered. In -'i ure 1 are

.lote. curves, p;ublisred ori '.-nullly by ::aith and -ilade (2d),

;.d aubs o. ue-tly r".vised by ti-Lem (2-1), 3rs' .:n;. ti.e production

ci crule oils of various r.ulfur contents in the United -tates

du:'ir- te puziod fromr. 1916 to 1947, *s of the end ol 1947,

a,,rxi xatly t l.j2 Tnilllolr barrels o' L.e 1,'"o million barrels

of crulo oil ,ro.tuced annually In the I: Lted states s contained

u.ver t,. .-.e cent sulfur -.n: over 70 t7C, lli n barrels

cont.air.ci over 0.b5 sulfur, 'i'e increased production of !.I.;h-

siLt'Lir cru.les in ti;. Id 1i .:.sst an.ul south .,merica has ad ed

to i.il .r.,LI r. cn': i eraIly since it a npours that most of

ur..pe's 'uiur'.-- re ,rii Ol* ts :ust :ieccss.arily be supplied








Figure 1

Crude Oil Production for the United States




1800.


1600
Legend
S>2.0 % Sulfur
91400 -
1400 0.51-.0 $ Sulfur --
FM0.26-0.50 % Sulfur
o 1200 -
01 01- 0 -0,25 % Sulfur


l ooo
800 *--- ----------* /*--- ------ -


o .. .... _.
61000--------- ---I---------- -p ----
I II




400
800
| 600 --- ---- ^- -^ -






200 R l



1915 1920 1925 1930 1935 1940 1945 1950
YEAR









from these sources. The large reserves of shale-oil

located in thLe western parts of che United States and

Canada are also hlsh in sulfur content. Before these oils

can assume the importance w..ich is forecast by the large

reserves available, a satisfactory solution to the sulfur

problem must be obtained,

Several of the most im.:ortant problems due to the

presence of sulfur con-ounds in petroleum are (12):

1. Corrosion of refining, storage ani
transportation eouipmnont.

2. lliminacion of odoriferous sulfur
co'-.pounds from products.

6. ;curession of octane ratings.

4. ioductlon of load susceptibility,

b. Increased *--ir rates of engines.

6. Catalyst poisr.ning during: catalytic
procesjln.. of the crude oil cuts.

7, Adrverse effects on product stability and
burntlr ciluracteristtcs,

Ailt:oul.- tna jresonce of sulfur causes man crude oils

to be clas.ilfled as "manr::lril" because of the above un-

ieslr.ble characterintics, t'.e petrolou:n industry is l'ining

it necessary to use such u .troleums to satisfy present needs.

.:1us, tLi nee for fund -rital reset-rch on the removal of

sulfur fr. : etroleum !--roducts In bocoing '-reater as t:o

in!unt.ry Is forco1 to call upon all available resources to

eelt te dr rand for retrolour! products.

greatt number of studies have been rnimde on the types

of sullL r co ound-s found in 'etroleum and shale oils but









it is apparent from a study of the literature that a

large amount of fundamental information is still lacking.

There is considerable disagreement as to the types of

sulfur co.Ti.ounris tjnat may occur in crude oils :.rnd straight-

run distillates. 'j'here is also some (;uestlon as to whether

the types t:;at arr known to be present occur as such in

the original petroleum or are formed .iurinpe- distillation.

A summary of the available ikno':leige on the occurrence

of various types of ~ ulfur co':iyounds in oils is .shov.n in

Table 1 (1, 12). From t.h -.e datP several 'ener: liz.-tions

can be m-lade. The pros nce of thiols (rnercs1tans) and

disulfides is well established, :-ith saturated co.ipounds

predominatin,g in straight run iistillates ani aromatic

derivatives prodominattin, in cracked 11istillates. N;o

aro!natic sulfides have been isolated; prob,'bly due to the

fact that the first Lmemnber of this series has a relatively

hi.:h boiling point. ''he ..r
run distillates is questionable, but t 'elr prcs-nco in

cracked distillates has been well established. No co;i.,pounds

containing more than one sulfur atom to tie riolecule, other

tnan disulfides, have as yet be.n isolated from petroleum

sources (''),

The methods for removal of sulfur from petroleum oils

may be separated into two types; those which remove the

entire molecule containl;-:- the sulfur anJ trnose i hlch rc-.ove

only the sulfur. In general, the first type of process is












Table 1

Sulfur Compounds in Oil


*: :Stra!-iht:
SType Formula :Crude: Hun :Cracked


Sulfur S + : + : +
hydrogen L.ulfide Hg2S : + : + : +
P i t
,; ercauptans 3: :
Aili.lhattic+ Mi. KH : + 3 + 3 4
pht!,enic : i1 : : :
Aromniatic : iSi : ? : +

,-ulf ides : 3 :
.-.li' i.Ltic R..-i : ? : + : +
i.... it- ,::ic : <-;.-'- : 7 + : T
..ro. ati c : ,-:.j- : : i

liuifides :
,l.i.nhatic : -.-..-.i : ? : + : -
.-ro.at ic : -:J- : ? : : +


1 0 v
tn1 .olo.a : 3 I

* olys:.,fid, -a -: : + +
o.y..ui.._1's : 3 _._ +-_^ +______ ;


+ ;.iilf)Iu Co n7oun) res -nt
- nif\iir .:oi;ioun i .bs..-nt
T7 I'n'~novn or u-1. tionable









used for .Litht distillates and the latter for de-

sulfurization of gas oils. This is due to the fact t;:at

it is important from the refiner's st_ -r-ioint that the

sulfur be removed in such a ,i.nner tiat the volume of

nte oil bnin)- d sulfurizod is not rnar.:eai.L. roeucetd. in

tie case of the liiht distillates where trio average number

of carbon atoms per molecule is a,' .roximately six, the

sulfur atom comprises a larog part of the molecular wuijit.

Thus tiie Ai;ole molecule can be removed without appreciably

affectin- the volume. In t1nr ctis,. of t-he gas oils, the

number of carbon atoms per molecule is in the range of

thirty to sixty a a an oil havin- five wei .t per cent

sulfur content ;ay contain twenty-five to fifty per cent

sulfur co.,iJounds (12), heM,-oval of the sulfur colnpounds as

such would be economically unattractive in this case.

'iiie entire sulfur cor...ound may be r,-!oved by caustic

wa:fi-in,;, acid treating (1), or extraction with hydrogen

fluoride (14). At trie present time the only method

known for complete dusulfurizatlon of petroleum oils by

res.-oving only tne sulfur is some form of catalytic hydro-

urenation in rhich the sulfur is r-mnoved as hydrogen sulfide

and the. remainder of the sulfur beprinrf molecule is converted

to a hydrocarbon. '..ssentially all of these processes are

similar, with the operaLinr- conditions varying according to

the typc of catalyst used. Data have been pubilisied on such

catalysts as fuller's earth (1), nickel-tlunsten sulfites (4),




7





a!ici-:el-molybdenu- sulfides (23), bauxite (J), cobalt

molybdate (2), ..n.i 7Pnc-,iolybdenurr, bauxite ('J), uf

these Cutlytic .etnods, the cobalt i:olybdate process

is t:.t one r,.ost corrm ,letel. ex lined in the literature.











II. STTEI.T.UNT OF TPT -: V RuBL

There were two purposes of this investigation. The

first was to determine how the sulfur contoe:t of the gas

oil fractions of a variety of crude oils is distributed

among the paraffin, naphthene, and aromatic fractions.

The second pur!rose was to determine the mr.nner in which

the desulfurization by hydrogenation affects the

distribution of sulfur,

The investigation was divided into two phases; one of

analysis and the other of desulfurization.

The separation of the gas oils into their paraffin,

naphthene, and aromatic components was accoliiplished by use

of the chromato:.raphic adsorption method developed by tihe

United ,tates bureauu of standards. ''he sulfur content was

determined by use of the high temperature co:nbustion-

titration prou ..ure adopted by .america.n society for Testing

materials.

'The ras oils were desulfurized by the low pressure

hydrorfonation method developed by the Union Oil Company which

uses a cobalt-molybdate catalyst. Operating conditions vere

selected within the range of their development data in order

that the effect of the change of operating variables would

be known. All samples were desulfurized at the same

operating conditions.










III. LIT ':-ATUR-. RTVI-%.

A. Chronatographic Adsorption

The ;:ethod of adsorption ussi to separate petroleum

fractions Into their various mrolecular types is essentially

t.iat devise by the r.uasian botanist M. Tswett and is

cocinonly known as the iswett methlod or the cliromnatographic

mnot'od. rrovious applications of ti:is r:.ethod to the

separation of nron tic hydrocarbons involved principally

hydrocarbons o! hi[.h tlolecular wl-.,iht an.-l of biological

i.,-ortance, .ork by ;.'air and associates showed that

fractionation by aisorptlon could be used to obtain

separation of petroleum fractions in the -asoline (15),

kerosine (16, 17), and &.as oil (19) ranges into t:.eir

;.,clecl lar types of compoundls.

The adsor ticn method consists, in -cnoral, of

a:lsorbir. the -"aterial to b- aSlparated on a suitable

adsorbLnt, usually silica gel, then a suitable desorbing

liquid is introduced. 'ho dosorbing liquid forces the

hydrocarbon portion lown the column of adsorbent causing

trio hydrocarbo portion to be fractionated according to

uhe a sorb:,bilit:,, of the various co:.pononts, 'These

co:.~ionents issue fro.. the bottom of the column in the

following order: ari ffLn, n-i;ht..ne, rnd nror.iatic.

'';e successful a.iplicttion of this toc!nique requires

a desorbr.nt that till qu:i:titAtlvcly remove the hydro-

cu.rLbo- fro the adsorbent, Goodinrt. rnd opkins (7)










have pointe- out that the characteristics desirable in a

desorbant are:

1. A stren.thi of adsorption greater than any
co;nponent of the sample

2. A viscosity higher than that of any component
of the sample

3. Complete iniiscibility v.'ith the aromatic portion
of the sample

4. A refractive index sufficiently different from
the aromatic portion that the final break on
the adsorptogram may be determined satisfactorily,

>hen separating petroleum fractions in the gas oil range,

it is virtually il- ogsible to fi-d a 'lesorbant fulfilling

completely all of the requir.-ments. Desorbsnts used for

tnis purpose are ethanol (13), cyclohexanl (i.),

1-octanol (5), aind n-henanol (19).

reductionn of the time required for analysis by raising

the temperature at which it is conducted is desirable and

it may be necessary to ise an elevated tem;.erature in the

case of a gas oil having a high pour point, Analyses

made by the same procedure on the same samples at room

temperature anfi at 7000. showe- no significant difference (b).

However, it was found necessary to maintain relatively close

control of the temperature of operation in order to prevent

remixing of the components.

Liquids which serve as desorbants or developors may be

classified into two -roups de;-ending upon their strength of

adsorption in relation to the material bein. sep;Lrated (3),










The desorbants which displace absorbed material from the

column by virtue of their -reater strength of adsorption

are cLAled dis-lacents. In such an operation, the desorbed

material is caused to move down the colutin asead of and

at tie samei rate as the displaoent. The less strongly

Eaisorbed dovrlclers are tcr-ned eluents. 'ihey will displace

c'.e i:araffin -.nd na;-hthene hydrocarbrns but not the aromatic

:- Iroaoirbons. 'ne paraffiris, napihthenes, an-i eluont

cr:r obtained as a Aixture fror.i which the eluent is separated

by distillation. 'ihe aronatic portlirU is tr n removed from

tLn ai~orbent by us of a disi.lacent.

ihe size anUi s;:ia-e of the a sor;jtion column is s~-cifled

by tLe :.uru.'u oi'f 'tndards (lb) a- ':.-il as the optimumi size

c.f sil*c el to be usie (17), 'te proceo.ure used is

sl! il-ar to t-.ut of air, .we.%t:.ian .in- ,:os.:inri (18, I.) for

t..e re.a ration .- f .:-as-oil (n1 :vw x t'r:-.cti.-ns of petroleum..

,i1:;ost any prclar liuid V.'LICn does not r -ct -.Itn the

hydrocarbons, the a sorbent, or tle material of the ad-

scr. tion tube ,i.-i: be used to il.splace tie :,ydrocari on

..atrrliA. it i'; also detirr.ble t'.nt th'e i!e-orbing liquid be

cu ,,lAtely sol.:blc. In water an.d profe'-entinlly less soluble

it tie hy.rocaroon, in orler t-."t its re-ioval from the hydro-

carbon ,nay be ror iilv: cffecto by extraction with water (16),

bLer na.ily 1]isi.laceo ti-!e rro-iatic hvdrocarbons but they

r ain 'hjtria. *i -' within ." e :;icro.rco 1c 1 t. Ln st Ces I.i the










adsorbent. For these reasons the Brureau of Stondards

recommends that methanol, ethanol, n-hexanol, or

cyclohexanol be used as.displacents (16, 19, 19). As the

desorbed material issues from the bottom; of the column,

it is separated into samples of approximately ; c.c. each.

The refractive indices are determined on each of the

samples and are plotted versus the amount of liquid

collected. From this adsorptogram the amount of paraffins,

na;'hthenes, and aro:.iatics may be determined (1i).

Fortunately, the breaks between various plateaus on

aAsorptcgraris for petroleura distillates are -eierally

sharp, sr'owini.- a reproducibility for t e various groups of

about two per cent (5). The separation r'ithin t:i( aromatic

u:roup of !nonocyclic and dicyclic courmpounds may be sufficiently

,;ood to per-rit individual estimation of tiiese classes (7).


B. eosulfurization i otiiod

C, rOview of the literature in regard to the desuliur-

izaTion of ;,a oil by hydro,'enation revealed that the only

process on which comrpreihonsive data have been published

uses a cobalt-mobybdena catalyst (11), The oil to be

processed is fed to a suitable prehea:ting zone, mixed with

hydro-en ani tnen passes over the catalyst. Conversion of

the sulfur compounds to hydrogen sulfide and hydrocarbons

occurs either in the liquid or vapor phase. The effluent

from the reactor passes throuw-l a cr-ndenser into a suitable











syste:,- of ras-so .arators and product receivers. The liquid

product Is freed of hydrogen sulfide by caustic washing

or distillation.

The operatlnr conditions used for desulfurization

depend on the crnaracteristics of the stock being processed

and tile 'ogree of desulfurization desired. Usually the

conditions are in the ranges 600-8500F catalyst temperature,

C.b-lo.O liquid icurl:y space velocity feed rate, 150 .sir. or

more, .ind ,i;th t'- circulation of 1,000 to 10,000 cubic fact

of by iro:on pefr barrel of feed (12),

In excess of 1::01i' li::uid vol:,umes of "'eed hiave been

(cosul'frize-i b- one Vlu 7O .a ,'' cat:lyVst witho;.t re oT.ijration

.,i'l without -.ltoct bl- loss in activity (:). 'i'no catalyst

c'rin be ru,-rneratoe rp,eeiteily to its original a..ctivity.

'-e enerati;:n is acco:qlitshed by controlled oxi-ation to

rei.ove tte carbon, :J3. ultaneously, :,ny metallicc 'ulfl ls

_prsonrt in the' catalyst is co vert,e to oxide. These

reactions ,'enerato a large quantity of heat and particular

care rust be tn1-:on to pr vent local over-eatlnjg of the

catalyst 'Ich 1 -: iit cause shatterinc7, sinterlnz or other

:eleterions clian -es L r-hysical structure (;),

oe- cob.-lt-'.iol"-,-ld-rna c.talvst is made by absorbing

sauttablo cob .t and i.ol-.odenum salts In hydrous or dried

uiu ,ri-is (1), rite copreclpitate '. catalyst i:n prepared

b :id'in' a water solution of cobaltous nitrate to snrrLe

'.oell sti.:.re'n: i i v'ous alu-i.ne followed y an a-n loniacal










soLution of molybdenum trioxide. After washing, the gel

is dried at 2000., crushed, mixed with a suitable pelleting

lubricant, pelleted, and then calcinei for several hours

at 1100oF. Alternately the cobalt and molybdenum salts

may be absorbed in dried alumina pellets or beads, dried,

and calcined.

Cobalt molybdate may be considered a chemical union

of cobalt oxide and nolybdic oxide, CoO.,'oO;. a comparison

of the results of tests usin7 each oxide separately and in

physical mixtures as catalysts reveals that neither oxide,

alone or in mecnanioal admixture, ap'..roaches the activity

of the chemical combination (2),

The mechanism of the desulfurization is not known.

Available evidence indicates that in the case of thiophene

strong adsorption of the compound on the catalyst occurs

followed by hydroenation to thiacyclopentune. The ring

then hydro-ruptures to give butyl mercaptan which miay lose

hydrogen sulfide to yield an olefin. ihe olefin is hydro-

gen.ated to a saturated hydrocarbon (12),

fiendricks, Huffman, iearker, and Stirton (11), have

published results of the catalytic desulfurization of

petroleum distillates which show the effect on the amount

of desulfurization of varying space velocity, pressure,

temperature and hydrogen rate. i'revious work by ryrns,

bradley, and Lee (2) Indicated that in the case of most of









tae coucounds conslderei, 6500FP represented a rather

critical temperature. If the catalyst temperature was

decreased iuch below this fir:ure, there was a rapid decline

in activity with a resultant r:lcrease in the degree of

LI':sulfurization. .i .-ore or less constant dcsulfurization

activity' was txsiited at te.-r eratures between 6500?. and

-00F. .ith little or no evidence of hydrocarbon de-

co..position. :oreever, catalyst activity was maintained

over a mnuch Lornger interval at b50o., to 70O0?, than at

more oluvated temperatures. -'or tLis reason they selected

bt'JOoP. as the :ust desiraulu temperature for operation.

Ihe results of ondric s and associates (11) show that

duoblLr: th feed rate (fro.r 1.0 to 2.0 L.H.-..V.)

a.; roxi .atelyr doubles thc i..roduct sulfur (from O.U15 to

G. 0O Wei .it :.er cent),

-n 1.icrease in pressure fro. 150 to 250 pounds per

sluare bict cu e r-sults in considerably increased de-

s'.lurlzation (fro.a 0.0C6.C to C.&ij, wel..:ht per cent).

increunlinc the hydror-en rate fro'- 3000 to 6000 cubic

foet ,:r !inrrel of ieed caused a small Increuae in r.roduct

sui:ur (rr .m 0,015 to 0.05 weli.-t jer cent) ..,icih was

probulby iije to the dilcrcuse in contact ti.ie of hydrocarbon

'eed aUn caltlyst,

,.- a. oil ch!-,r'.e used in thoir invcstlritions

c',ntai Lied .'.< rnl :;it ;er cent sulfur andJ .as taken fro.i

Anta aria Vullav crude oil in rc,lular refinery operations.










C. Analysis for Sulfur

the method employed for the analysis of sulfur

in the various petroleum fractions is according to

American society y for Testin. V:aterials method of test

SE 0-46 T. The procedure used is as noted under

"Organic lMaterials in -"eneral", The cinemistry of

the :ect!iod is illustrated by the following reactions:

KIO3 + 51l + 6-C1 M 3Io + 6C1l + 3H20

s02 + 12 + 2H'"-O 1 7I04 + 2HI

0.5 S = I











IV. U:;SC :it-TL: U? rr,:r'

A. Desulfurization Unit

ihe desulfurization unit co.nslsts of a feed tani,

licui-' feed rota::ot.r, hydrogen feed rotaneter, foeid

preheater, re:cct,.r, cooler, product ta-k, scrubbers,

and swet ~-s meter to:-et..er
controllers for tihe pre-at.ter and reactor end the

necoa33ary ..rFssur control a ...aratus, A picture of the

ap aratus is s,.own in I-1 ur9 2 and a flow dia'r.Lm in

'_ure a.

the fer.d and product tanks are identical in

construction. 'i'hcy are fabricated from three itch extra

heavy steel pipe und e.-ulpped wit'i Jorgens reflex type

liquid l-vel es'9e, 'he tanrs are 16 inches in outside

len tli inl have a capacity of 200 cubic oenti.-oters, ..'oth

tan'- are wr u.:e.i wit!i a 0.2b 1:-!cn co:. er tube through

*:..iclh stoa-1 is passed to maintain the to:i erature of the

li:,uid at 2000r, ';'he tsn.:s are i slated with Johna-.. ansvillo

asbestos shorts. 'y 'wre hy;,-odrosttically tested at u.O0

pounds Opr squac're InchL -ago.

I'he Li rd fo.' rot amter is a .ch:tte and roortiinr

0.5 .inc:; ur..':ro rti'.tu-ieter .avi n.- n average flow capacity

of 1000 cubic conti-eters ::er hour, It was -!osined for

viscous ;.otrole'iu liqu.idn and is eqiil: aid .*1th three rtors

in order t'at a wide rarn e of viscosities -ny be covered.






























































,,* .....
.. ., .. .
,, .


.. ..... :..


: ..J .. .."


mm** ;
.,.7 i ip


64








?5jl~re 3


*. V-fl*-T '^'.


CAS
I. T-?


" "UL -


DRAWN BY: J -C. ENGINEERING AND INDUSTRIAL EXPERIMENT STATION DRAWING NUMBER
CHECKED BY:
DATE: UNIVERSITY OF FLORIDA
SCALE: GAINESVILLE
REVISION DATE MATERIAL




TOLERANCES UNLESS OTHERWISE SPECIFIED
DECIMAL FRACTIONS


-LY


-. -.'. 1' --










The hydrogen feed rotametor is a standard one-el-'nth

inch Scriutte and Koerting rotameter having: a naximurm

operating pressure of 450 .-ounds per square inch ga;e.

Tne feed proheater comprises two stainless steel

coils 36 inches lonr inmnersed in an oil bath. 'he

hydrocarbon and hy-roren are heated in separate coils

in the same oil bath. They are -ixed toi-etner immediately

upon leavLng tne preieater and the te:p.erature of the

co.-olned street controls the temperature of the oil bath.

'The oil bath is heated by two 500 watt, 110 volt immersion

heaters and its temperature is controlled by a ;.rown

contr-oller.

The reactor is a stainless steel standard A'lrnco

:Super-pressure vessel riodlif'eie to havo a removable head

on each enj and a supt.ort plate on eacic end. .he vessel

is of the 4-3/8 incii series ano has a catalyst capacity

of 2200 cubic centimeters. It is constructed of 16 per

cent chrome stainlessss 'teil, Type 410, and has a maximum

working, pressure of 5600 pounds per square inch at a

temperature of 800'. The vessel in equipped with a

heating jacket contain.irg two 000 watt, 22 volt, electric

heaters connected as shown in iirure 5. sc:ei-iatic

diagram of the reactor is given in Y-'irure 4.

The cooler is made from a 40 inch length of 0.2b inch

stainless steel tubing coiled in a water bath. The water

flow is countercurrent to the flow of 'hydrocarbon.




.Co JL


Catalyst
uprort
Slate -


Thornocouplc
-* .ubo


'ilot


DRAWN BY. ENGINEERING AND INDUSTRIAL EXPERIMENT STATION DRAWING NUMBER
CHECKED BY:
CHECKED BY UNIVERSITY OF FLORIDA
DATE
SCALE: GAINESVILLE
REVISION DATE MATERIAL

131 chrome stainless steel


TOLERANCES UNLESS OTHERWISE SPECIFIED
DECIMAL FRACTIONS


!Figure 1










figure e 5


volt line


to terminals marl:ed
LOAD on controller


........G DlIAG rAIT PC02 1LATI'G JAC:I>T IJITH CC':7.'OLL.R
DRAWN aY: J~ T ENGINEERING AND INDUSTRIAL EXPERIMENT STATION DRAWING NUMBER
CHECKED BY:
DATE: UNIVERSITY OF FLORIDA
DATE:
SCALE: GAINESVILLE
REVISION DATE MATERIAL



TOLERANCES UNLESS OTHERWISE SPECIFIED
DECIMAL FRACTIONS











The scrubbers con'l-st of two 2,000 cubic centimeter

ihrleruneyer flas'cs wi:ich are partially filled with a

cold sodluri lI.:droxde solution. ifter the liquid is

seoarated from, the excess gas in the product tank, the

gas is bubbled t:!rou-:h t:.e caustic solution which

removes tne hydro:-en sulfide form:ael urin:- tho de-

sulfurization :.rocess.

heo wot 'as .-.eter is st.-nJard in design and

construction. .'ter t..e .,as jasses t:.rou-h tue wet

,as zioter, it is bu',ned in a 'ischer type burner adzipte.l

for hydro en .''rnin.-.

-ho feed 11 i.. is. : ..;rce-l tlrou -h the system by

pressure fro:-. a :iitr.,acn o:. -rider, A standard roculator

is uCsd on titn cylinder and a pressure api-,roxilately

five Jounins K.er square 1 cli '.iher tiLan the ro,.ctor

pressure is .i-aintained on tleo feed tank. ihe rate of feed

flow is controllo;i o;, a needle valve between L le feed tank

sn.i t-.n arriorc.d rote 'eter, i'lto fee lines I'fo:m: the feed

ta.k 1 o the e l..ator are steam truce' to provent

soildflication oi' -as oils having ii-h pour points.

'lie reactor :..rLsaure is detorninod by tus pressure

sctti-, c the v e u.lutor V:lve on thOe hyd'ror,-rn supply tank.

'r:-s rc.-u.ator can :,izrtali -elivery pressure up to 1,00i

pount3s ;,er aqutaro Inci! ;:age.

,Th oic : 'ri.. uro on 1',1: .! vnteo is la i.-, ntuirned by a

pressure r *'ulj:tor i th product tillk. 't:s re :ulutor










reduces the pressure from that of operation to approximately

fifty pounds per square inch gage. A low pressure reducer

then further reduces tne pressure to about one pound per

square inch gage pressure.

The rate of hydrogen flow is controlled by a needle

valve on the exit of tne low pressure regulator.

The reactor contains 1,800 cubic conti.ueters of 7.5

weight per cent cobalt-inolybdate supported on .-ocony alu.-ina

bead catalyst.

B. Adsorption Apparatus

The absorption au..aratus shown in Figure 6 was made

according to Burenu of SJtndards specifications (17). The

column has a packed section 1:50 :nill.iieters in length

having a ca:,acity of approximately 160 r..ras of silica gel.

It is supplied with two receivers with ca;.acities of 6.5

millilitersrs and 10.5 milliliters respectively, !graduated

to 0.02 milliliters with 0.01 milliliters esti .ated.

Tie top of the reservoir of thVe ccluin is connected

by means of a spherical :round joint to a nitrogen

cylinder regulator. A cylinder of nitrogen is used to

suy,.ly the pressure to the column necessary to maintain

a product collection rate of seven to thirty milliliters

per hour.

The adsorbent used is Davison silica gel with a

.article size range from 2: to 200 mesh. It is necessary

to use a fresh silica gel charge for each adsorption run.




a,


.-igu h 6


A&do n C olumn 1


r?
It~E~:
:~E~~


IF










V. ,\.OC_;OTJURE

i. Desulfurization A.pp ret.is

:.11 valves on- the equipment are close. '..'wo thousand

nilllllters of the oil to be desulfurized are charged

into thl feed tank. ':'he 7teai. to the heatin-, coils is

turned on ."n the oil allowed to reach it- equilibrium

teni;erature of ,p- roximatelv Or.0,'.

Th.: heating. ulnts of the ri ctor anR reiuot.er are

turned on -.nd the ter.iperature controllers set at 700F, .nD

30OP. respectively. :A'ter t:iese t,:mperatures are reached

the equipment is ready for operation.

One t.rousand milliliters of a :'0 :er cent sodium

hydroxide solution are put into each of the scrubbing flasics

and the water level in the wet --n *eter is filled to the

correct height.

The pressure regulator on the nitro-en cylinder is

adjusted until the pressure on the feel tank is a... roximrately

205 pounds per square inch gare.

The pressure regulator on the hydrogen cylinder is set

to deliver hydrogen at 200 pounds -.er square i':ch cage

pressure and the needle valve between the hydror-en regulator

and rotameter is slowly opened fully, Ihe regulator Is ien

adjusted until the reactor pressure .-ba e read 200 pounds

per square inch.

The hydrogen flow rate is adjusted by vreans of the

needle valve on the exit side of the low pressure regulator











until a l'iow rate of a'boit 24 cubic feet per hour is

idlicated on the roLaneter,

The liluii feed rate iso set at BOJ miillliters

peo r hur by :;i:ens cI' tiLe needle v:-.lv between the feed

tank and ar:.iore.i rota..ieter.

A wet gi;As meter reoi-in,- is tal:~n as the liquid

feer.1 !s intr'-duceJ. Tnc to-orerature, flow rate, pressure

un,! wet gas neter re,! in-s cr- recordeJ at ten minute

int c v- 1ls.

l-ie hydro-en :7as fro. the wet '.is a.eter is fed to a

burner and burned. If necessary t..e water to the cooler

::..-'y be 'urniis on. in tn- case of *:as oils having, '!i:-h pour

points care must be ta:.en tiht too lo. a to:n-.erature is

not mnainalned.

Ti. or, tL i co:-.clusion of t.h run tr.o bydroon re-ulator

anid liquid feed c-ntrol VLIve are closed and the heating

units tLrnod off, After th-e .resure of tnie s:,rstemn ias

fallen to at .c.silieric, t ic ;Prouct Is re invel from the

ir-',juct tank t7 reoovin the 0.5 inch pl:je plur from the

botto:ni of th tank ind lthe inount cf product is measured

bnd recurdei.

Si; :-'c'ro- .ure is for a U1-Iu ho r spacO velocity

(L. .. .V.) fi' .5, a 'i'-ro en feed rate of 4,0t.c0 cubic

feet (,,rr .ir r barrel of .-ro.luct, an avera:-e reactor

te.. erS.t'.re of ,ubUo ''., ;.:! a reactor Lrea-sure of

.:LL ounds er square 1 c' ::a' e.










B. Adsorption Apparatus

The adsorption column 1.3 filled with silica gel

and packed by tapping throughout its length '.ith a ruo .er-

covered wooden rod. The packirig is continued until the

level of the silica .:el decreases less than five 1.illiliters

in five minutes of packing. Sufficient silica tel should

be initially charged so that the final height of the

silica gel is about two to five conti-eters below the

bottom of the reservoir, .*en filiLin' tihe column vith

silica ;el a continuous flow should be maintained. .there-

ever the flow is stop aed, a ring will appear during the

adsorption process, while the ELureau of Standards procedure

makes no iuention of this effect, it was thou .it desirable

to keep the formation of theso rinns to a 'nlnimum.

After pac.ki.:, 100 milliliters of [gas oil are introduced

into the reservoir, care bel-..> taken not to wvet tae upper

portion of tihe reservoir, pressure of f'ivmt to ten pounds

per square inch is then applied. lfter theo sa.:ple has

completely entered the silica eel (about 40 to 60 minutes),

the pressure is reduced, the reservoir opened, and a layer

of two centi:aeters of silica -"el ad:ied. The reservoir is

then filled with1 ethanol or n-hexn.riol uni sul'ficient IpressLre

a.-',:lied to rive flow rates between ten &nd thirty milliliters

per hour, .hen a fraction 'Las collected in the receiver,

tre flow from the adsorption tube is interrupted by closing











trio stopcock. Forty seconds are allowed for the upper

!..arts or the receiver to drain before the volume is read

and an equal interval ullov:ed for Irainage after the

withdrawalal of the bulk of the fraction before the stopcock

on the receiver is closed.

Joth et:ianol and n-hexnnol were used as desorbants

during the course of the investi-ation. ."thanol is

preferred because it is more easily separated from the

hydrocarbon than n-nexanol. It is necessary to completely

reo.rove the desorbant before sulfur deter:.inations are made.

The othanol was easily reaoived by placing the sample in a

steam batn for a two hour period. To remove the n-hexanol,

it required Leriods up to 24 hours.

,ifter com:.letely re,-oving the solvent, the volume

of hydrocarbon rc:nainini." was r.eanured and its refractive

iriLX deter:miTr;e--. T.y plottlnc refractive Index versus

percent of saj.i.le tiinu.-h the adsorption column (percent

und .n1. -:-re equivalent in this investigation since

10'. .1. S&.-les .ere usel), a series of points are

ontiauind. 'i'Trou,-.i t:,ose points a series of tlrooe straight

lines can be drawn, e-chi havtin, a different slope (see

r'i -ure 7). '.'ie Intersccti.-ns or the center line with nach

of tUe other llr-ins i-notes the oroak points between the

:.uri nll'ln in. i nu.'I, thon,- un-1 ;i-:.J-p then nn-' aromatic fractions.

his ..et;.od is essentially t'o same as that reported by

.i.r :.nl iorziati (lb).




t .. .1 :... 0: .. '. ; .

* .: .













9.* ; O .
1 520




1. 50

" ". 0


,^ ^ :* ,' '
















.-1480






1,470



. ..* : .



tc .* *


50




Figure 7
Typical Refractive Index Plot
Sample 8-100-F at 40 G.


20 40 60
Per Cent Through Column


A 4 ;
.%- *
41 .dt* -











;iefrIctive iinices were determined at 250C. except

for those samples -ihich were not liquid at this temperature.

Por sa .ples ziav[inr, pour .olnts above 2?0C., the refractive

indices were ensuredd at 40C0

The ze,.aratlin between paruffins and naphthenes was

ver;7 s..aru in tPhe case of samples containing no sulfur

in tii.e :ar:iffin fraction, the point of change could easily

be seon. The &.arafi'n fraction was water white and the

ri.- .at.ene fraction .lee:-ly colored. The sliarp change can

be soon in iL.-ure B. Tno sample on th.e extreme left is

te urL-i:ial .-as oil used as feed to the adsorption column.

-ecause of wL.e dark color of both the na;o-ithene and

0iro autic portions th;e break point could not be

doteLr.irncd without th:e aid of the refracto.ieter,


C. Sulfur Analysis

''lie sulfur analysis was performed according to the

instructions <-iven in knerican societyy for Testnin

lautoriils test miet:hod 30-46 T using the equipment

I..nufactured by the Ltboriotory :.quipmont Company.


























Figure 8

Adsorption Analysis Fractions
Sample G-152
:*!. .,. ^C *; _'i .- ..'..::.-...^.: ***. ., ..,,- ., .. ..


- r .r --


At










D. experimentall Data

a total of eipgteer.n ras oil S iAples 'rom nine

different crude oils :tire obtained from oil companies.

The crude oils from vnich te gas oils were cor.Lercially

s-juarat-ad 'eg'rcs-3nted ni-ie separate reo raphical locations.

becausee of the difl'erent r1as oil a,.eclfications existing

a,.onr the oil co-.:panies supplying the samples, it was

possible to select only one set of samples having the same

viscoiaty andi *rrvity characteristics.

Since trLe purpose of tl.is invest action was to

deter:.iino teic effect of crude oil source on tihe catalytic

dosulflLrization uliochanisn, the samples sere selected so as

to :ive all physical characteristics as nearly lientical

as possible. In addition, one sample havingg a somewhat

different viscosity and gravity was desulfurized to see if

un.- change in dosulfurization 3ue to physical properties

was indicated.

Also three additional ,.as oils of widely different

pii;sical ciLaractbristics wore separated into fractions by

-aiBsrption to oetor.:ine tnhe effect of viscosity and -ravity

on com;,osition ani ';r.ulfur distribution.

The catalyst used for t'ij:: dosiulfurization was selected

because .!ir,- ;ubl'l.cI nlrtrnoation wa:i ;vuilable on catalytic

d',9u.lfrizaLion ai::!l..: a cobalt-nwiol, lona Ctitul'St than any

otnier k-:ind. I'ho te::iorature of thU dosiilfl'rizat ion reaction










was shown by Burns, bradley, and Lee (2) to be rather

critical in that temteraturrs in excess of 7500F,

caused excessive cracking of the oil and coking of

the catalyst while at temperatures under 600F. the

rate of desulfurization was very low. An average reactor

temperature between 6000F. and 7000F, was selected for

use in this investigation because it was recommended

by the above mentioned authors as being overall the :most

desirable.

In com.::ercial installati ns, low-pressure operations

are those r.'nich are carried out below 250 psig. To

operate at pressures in excess of this requires the use

of more costly equip:nent. Because it is desirable to

operate at pressures below 250 Y'sig. for this reason and

at pressures above 150 i'pig. in order to obtain a

satisfactory reaction velocity, the -edlan pressure of

200 psig was selected for t.lis investigation.

The liquid space velocity and hydrogen rate were

chosen to conform with those reported by iuffran (12).

The oils used in this investigation received no

special treatment except for washing with a caustic solution

to remove free hydrogen sulfide before adsorption and

leterraination of sulfur.











VI. HI-SCrTS

iLie desulfurization apparatus operated very

siootlily arn' the runs w.re nade at essentially constant

conditions. It wa3 found that ti o :h:;dro-oen flow rate

coul--. be~i more easily deterr-ined >'y the wet ras meter

t'r.an b,~ Lt-ir h-rro. on rota-.eter, 'ue to hydrocarbon

vua.ors in th!e .as ti:c rotor tended to stick in the

rota-. eter tube ar.d the rotor level Cluctu-ated over a .ide

ringe. Use -f a o1.:: pipe clean r to clean the rotu:..eter

tube thoroughly before each run reduced ti.is trouble but

did not co'.-ipletely overcome it. i-'ortunately, once the

flo,' rate was set it remained constant during; the run so

no operating: trouble resulted,

In t'he case of the Florlda oil, s:-.-aple nmer S-10-',

t..e color was so dark that tile rotor level could not be

jeteriinei once i1te outer portion of tan rotu:,.eter tuoe

wus filled. 'iTho flow rate woo adjusted wIile the outer

portion was beirL. filled .n! nrc t'urt''er chan.(es were

nfecesarj,

rhe ,-as flow rates ire letorni ned u;.on the coi:;pletion

of le run Lby ,ans of the wet -*ns peterr readings and tihe

Icn tu, of the run in the case of il,:dro:ren and by. measuring

tu:e feo-! re:-.aunnI r,. .nd tieo product r2eeivei in the case

of tioe ,'us oils.










All runs were made at a liquid hourly space velocity

of 0.5, reactor temperature of 6500F, rnector pressure

of 200 pounds per square inch gage, and hydrogen feed rate

of 4,000 cubic feet per hour per barrel of fresh feed.

The results of t:i', desulfurization runs are shown

in Tables 2 to 4. An examination of the data reveals

that in every asaiple, both before an-1 after desulfurization,

tie per cent sulfur is greatest in the aro-matic fraction

and least in the paraffin fraction. This is in accordance

with the .present theories on the subject and tends to

substantiate them.

A survey of the amount of sulfur in each of the

fractions, both before and after desulfurization, shows

that the sulfur contained in the paraffin fractions is,

in ,general, 'iore easily re- oved than that in the aromatic

and naphthene portions. howeverr, all of tie sulfur is

not r'c-moved from the paraffin fraction before de-

sulfurization of the aromatic and naphthLenic fractions

begins. Desulfurization appears to occur in all fractions

simultaneously with the rate of desulfurization being

greatest for the paraffinic and least for the aromatic

type of sulfur compound.

In every case in which the sulfur content of the

paraffin fraction is shown as O* weight per cent, the

fraction was water white in color. In the case of sample

G-129, the paraffin fraction before desulfurization






37


o4o o










m O OO N t ON 0 t 00 -4
> N rN




1. 1. ID 0
0






S .
** 66
C- M 0 00\4H49 40O







0 0(1 0Y 0- V~r t o 00
0 0










S o to W .

,.. a 0 O,- .. 0 0 0 0 r r4V




0N
E a m 0 N I ra

o to
0 r 044 t rl- < e (
toi I* e o & a I

"m


1 '0 0 Q1 -t 100 ID 0
o. 4 5
rj A 0 0 QO Te Q
-4 n V4 C m r-4 M c LA

0

2m 0



1. g Inr-

v= ril 0 ** o
tII O 0000 k 4 god
%0. 4NI 00 so 0 r0 00










Table 3


Tabulation of Data on Adsorption Feeds


I G-125 : G-128 : G-154


Source* : Talco : Kuwait : Fullerton

Sulfur, .;t. 0.648 : 1.880 : 2.210

Gravity, o0PI : 24.7 5 31.1 : 25.6
Refractive Index s 1.4973(1) : 1.4R43(): 1,4900(1)
Vis. .. 100oF. t
cp. : .15 -
s.s.u." : 43,8 -
4
Vis. 2100F. a
s.s.u, : 44.5 : 63
c.p. j 5.91 : ; 12,4

:Sp.,r. : I
S100F. : : 0.88 : -
2000F. : 0.854 : I 0.856

Cop:[position s 4
Vol. f | 19 : 44 46
Vol. ,M M : 35 t 21 : 27
Vol. A z 44 3 54 2 27


'data determined by
(1)-efractive Index
(2h)efractivo Index


corpuny supplying sample.
at 400C.
at 250C.












Table 4


Sulfur Distribution in Gas Oils


:Total as


*t
: .t. :
G-121 : 1.6e :
G-1''i-P : 1,42 :

G-126 :0.71 :
G-126-P : 0.56 :

G-129 2.65 :
G-129-1 :1. 0 :

a-162 0.51 :
G-132-i 0.41 :

'3-153 0,55 :
3-13.-P 0,57 :

G-137 : 0.87 :
G-137-k' 0.61 :

-10C-F :., 06 :
.i-IGL-P-r :2.34 :

G-125 i 0.65 :
G-128 1., :
G-134 :. 1 :
S


1,uraffin : Narhthene : Aromatic


Fol. t. :
7 00,58 :
15.0 0.39 :

16.0 0.56 :
17.5 0.24 :

16.0 1.07 :
18.0 0+ :

19.5 0+ :
20.0 0+ :

'8.5 0.32 :
27.5 0* :

1:i.5 0.23 :
21.0 0+ :

27,0 2.58 :
24.0 1.06 :

19.0 0.50
4-1.5 0+ i
46.0 0.84


'I


fol.. ..t. s S
32.0 1.09 "
29.0 0,97 :

39.0 0.59 :
41.5 0.52 :

33,0 2.20
30.5 1.10

.G6.5 0,44 :
35.0 0.33 :

32.7 0.53 :
34.7 0.37 :

30.0 0.64
.0, 0,36 :

26.0 3.40
30.5 2.38 :

35.0 0.64 :
20.5 1.11
27,0 1.62 :
S


Vol.,, V t.1;.
53,0 2.32
56.0 1.88

45.0 0.74
41.0 0,74

51,0 3.36
51.5 2.74

44.0 0.00
45.0 0.60

38.. 0,* 4
37.8 0.62

bl.b 1.17
51.0 0.96

47,0 3.77
45.5 0.04


44.0
34.0
27,0


0.74
4.71
3.20


;oto: "P" in saiple number denotes t,.at
it is a desulfurization proiuct.


I


-^I


--


~ -~-----~~-










contained 1.07 weight per cent sulfur and had a very

dark color. After desulfurization, the paraffin sulfur

content was negligible and the color was crystal clear

or "water white". There were six cases in which the

paraffin fraction was "water white" and had 0' weight

per cent sulfur content. There was no colorless sample

having a sulfur content greater than 0+ weight per cent.

These data give confirmation to the work of Rossini,

Leslie, nener, ;rair, sillingham ani btreiff reported by

Sachanen (20). They found t*iat the "water white" portion

of a straight-run distillate from a nonca City crude

contained no sulfur. This indicates that when the paraffin

fraction is colored, it is due to sulfur compounds present

and that a lack of color indic-.tes a sulfur-free fraction.

In Figure 9, the weight per cent sulfur after de-

sulfurization is plotted against wei,-,ht per cent original

sulfur. A straight line pasu inc through the ori-:in can

be drawn through these points indicating that the source

of the gas oil is not a factor in its degree of de-

sulfurization by low pressure hydrogenation using a cobalt-

molybdena catalyst. The line drawn between the points has

a slope of 0.725.

The weight per cent sulfur after desulfurization is

plotted versus wei-ght per cent original sulfur in Figure 10

for each of the gas oil fractions. In every case a straight

line results, but the slope of the line is different for














^* ^*\ rf
S. ,^ ,--i *
* ," '*'*
,-- :../: '.. .,
. : ;:: :


: "
7 ": :-./; '-^ ,,



.. '-
.t.

." 5 ;%
.' __ "* ../ .* ^*- ;
,^ .. .. ...


A .. .
--.; V
,- :" "





i's
*. :. *. -'.- ...












4, 4 1,-
*" ." ., .-' *
.% .... '"








- l ,;. .
S '. .' {






.'. :
.. '--':








*^...y^. ":***' ;. ....o'
I :- ..;. ? i.; ,
'j' ,,.



;',' ^ ? '

"' i '"* .<.. *




"r '. *

; --- ^ ." ^ ,
*'*.-* ^*: -A^


1 2 3,
wt. % Sulfur2 1 Pw(n4l,,
IA*


Figure to

Desulfurization of
Gas Oil Fraction .
Legend:
Paraffin
A Naphthene
B Aromatio


Area i -
-F^

_______ -


Ipil
F
r -


rA


3










II
1




0


46-wnsm










each fraction. For the paraffin fraction the line has

a slope of 0.80, for the naphthene fraction a slope of

0.68, and for the aromatic fraction a slope of 0.43.

perhaps the only significance that can be attributed

to tiiese curves is that the greater the slope the more

difficult the sulfur is to remove.

Graphs of the type used by Hughes, Stine, and

Faris (13) are given in Figures 11 to 20 for each of

the gas oils used. A plot of sulfur content versus per

cent through the adsorption column is shown. This gives

a graphical representation of where t:,e sulfur in each

fraction is located and its degree of removal.

The samples of oils from the various sources used

in the desulfurization runs were, in general, selected

with the same viscosity end specific -ravity. The object

of this type of selection was to have oils from different

sources having similar physical properties. The oils

selected for desulfurization were from :est Toxas, Kuwait,

Columbia, Venezuela and Fullerton fields. Two oils

having gravities very close together but greatly different

viscosities were selected from the F'ullerton gas oils to

determine the effect of viscosity on sulfur distribution,

In addition, a third Fullerton sample with a different

gravity and viscosity was analyzed to determine the

variation in sulfur composition among a range of oils















'Fi ure 11
Distribution of -ulfur in C.a~-le G-121
(Gas -il from '.'est To::as Crude)








Bofor .'-c ullu rzati.,n




After -czulfuri ation
r-- ------- -- -- ---
Total






















n
0 ____ _______ --------- ----


: cr Cent bTirou.li


6o
Colwun


100





Figure 12 .
1.0


o0.5


0 I-
0


Figure 15.
1.0,


0


0


Sulfur Distribution in Sample G-126


20 40 60 80 100
.or Cent Through Column


Sulfur Distribution in Sample G-132


40 60
Per Cent Through Column


100


-- <
(sfl r
- i ____-------------


Originally






Figure 14

Sulfur Distribution in Sample G-129




Original



Total __. A tqxl ej


I
I







---_ _-*

^


100


Per Cent Through Column

Figure 15
Sulfur Distribution in Samole G-133


I










S20 40 60 80 10
Per Cent Through Column
Per Gent Through Column


0


3.0





1 2.0





1.0


0


0.7


0o5o





i0.2$


0
E


T T1 T


Orizgirna


rized


iiDesufu


I


II-'





Sulfur Distribution in Sample G-128


4





-3.









1


Firmure l7im


Sullur Disti'ibntion in ?mini~e fl-i 7


Per Cent Through Column


T tal










)20 40 6o0 CO 100
Per Cent Through Colurm


Or! ginal



Total




r------

_____,


160




4 05





0


100


Figure 16.





Picure 18
Sulfur Distribution in Samnle S-100-?
L (Gas 0il fror Filorida Crude)


Original




Total -


Dosulfuri oed
3


I I







02



0
1
0I
8 2 ----------------



0 ,


1 -- J--------------







0 -----------------------


. er Ccnt r. ug c Column


1t'LU






Figure 19
Sulfur Distribution in Sample G-134
(Gas fil from Pullerton Crude)


Per Cent Through Column


Figure 20.
Sulfur Distribution in Sample G-125
, _(Gas Oil from Talco Crude)


40 60
Per Cent Through Column


100


1.0





0o.5





0


I 4 4. I 4


Total I rf


.1 .L


"I


--


Tota











from the same field. A heavy Talco and light ruwait

were also analyzed to determine the sulfur distribution.

It was found that for all of the oils with similar

,.rLvities an- viscosities the composition, v.ithin

reasonable limits, was the same. For example, the weight

per cent paraffins was in the range 15 to 20 per cent,

naphthenes from 30 to 36 per cent, and aromatics from

44 to 53 per cent. In the case of the tree sar.iples

run on Pullerton .,as oils a plot of viscosity in

centistokes versus weilr-ht per cent gave straight lines

for each of the fractions (Figure 21).

lor two of the virgin ras oils analyzed there was

no arprcciablo sulfur in the paraffin fraction. In every

other case, the iitlher the specific gravity of the gas

oil from a :iven source the greater the weight per cent

sulfur in all the fractions, In the case of the oils

having_ no sulfur in the paraffin n fractions, the densest

of L:.e two oils from the same source had less sulfur in

t!.e aromiatlc fraction even though the total sulfur content

of the theavier Y'as oil was .hlirher. There is no apparent

exZuLiiAuotion for tiis but it s'ay be due to an effect the

suliur contont of a molecule has on its a.isorptivity,

The determination of this effect has been made t!he

purpose of another invost:igItion.





I I


101
N.ap,, e -










^ i .-

n *






10---------------------- ----


--------6 8 1'

Viecoe t pb oentlatolks
't d06 F. .


i





*e~ -, 1"
'*' ^ -'


_______ .^ *
---- ----------- ( -- ^- .,
I '~. ''^
^ '' ..^ -


F.







It
*:^

* *

I:


.,





t 5

'. ,

i ':'.'
'u;'",: .d '









.A ..- .' *."
''



.'* .*; ,
'* .- ~, ',





i -i> ^r'- '' ''*.


.4


Figure S


Variation of Gas Oil

Composition with

Viseesity

(FPllerton Gas Oils)


^[ [4i


k7l


B-. *: ^ *'** ;; .. .; *1.. % ? -
.. .. ..... '- ...... i. ,^ '. : ':
.'., ." ._ .. :- .

5 0 '. ... ^.."

". i '" .



''
'."
; .-
*1r~

S' .


**:"./.

.. '*- ,







l.e
'1 .1'*
1 51







S- Figure 22
..*. Variation of Gas Oil Composition with Viscosity
Fullerton Gas Oils at 200P





80 Aomat aos




J 60 -----___---- ---- --------









80
SO0 J^ /------------------






Paraff .ns




2 4 6 8 10 12 14
Viscosity, centistokes











VI. CONCLUSIONS

Based on the data obtained -uring this investigation,

the following conclusions are drawn:

A. The aromatic portion of the rFas oils has

the highest sulfur content and the paraffin

fraction the lowest sulfur content.

B. The sulfur in the par.-ffin fraction is

the most easily removed.

C. Sulfur content reduction occurs in ::1l tree

r&otions simultaneously.

D. The complete r;-ioval of sulfur gives a

"water-white" paraffin fraction.

,. The source of the crude is not a factor in

EL'e low pressure desulfurization of a .as

oil wtien a cobalt-molybiate catalyst is used.

W'. G}as oils lnving the same viscosity aun specific

.-revity contain ap roximately the same amount

of ,araffins, naphtn-enes, .nd aromatics. This

indicates that viscosit-r an' r-rvity delineate

composition.

G. In the case of gas oils from a i-llerton crude,

the amount of each of the molecular types present

(i.e. paraffin, naphthene, and aromatic) varies

linearly with the viscosity at 2000F. in

centistokes.











VII. :LIBLI D:0R,.1iHY


(1) Ballard, ;. F., irritt, N. A, and Oosterhout,

J, C. D., In'. :ng. Chem., 41 2056 (1949).

(2) Byrns, A. C., .,radley, ,. :., and Lee, iA. '.

Ind. j;n,. Chom., 35, 1160 (1943),

(3) Clerc, H. J,, ilncannon, C. : ,, and ier, T. P, Jr.,

.anal. Chem., 22, 864, (1950).

(4) -,ole, r. i., iAnd Davidson, ,. G., Ind. -.nr. Che:rm., 41,

2711 (1949).

(b) Dinneen, ., U,, Tihoison, C, J., :Mith, J. :<., and

.all, J. .., .nal. Chem., '2, 871 (190).

(G) Furby, ,. ., final Chem., 22, 876 (1950),

(7) 'oo!lin;, i. i., :,n.i .opkins, i. L., ppier presented

before bivlsion of letri.leun Chemistry at 110th

..!eetin 'tm. Chem. LSoc., J-icago, Ill., eQ;.t. 1946.

(i:) .;ilnes, ,, en> er, J., ::elm, '. V,, Lnd Ball,

J .., U. :. iur, lines, se .t. Invest, 4060 (1946).

(9) :..:lo, T. -.ir. .:ons, .' C and *Eisenhunt, P. F,,

i.. l.n~. Jltoem., 41, 2702 (194.).

(10) A rlin, *. V., :a ies, ., .n all, J .i. '.

-ur, i.nes, Rept. Invest. 4566 (1.49).

(11) 'cndric.s, :, ., ifuff:.nn, :. C., turker, R. L., Jr.,

.l.J ti.tr.jn, ti. I., ri,:r.er pr.-serlted before division of

ietrleu Ch-onistrv at 100th i.'oetinrw, -m. CLhem. Soc.,

:tlu1ottc City, ., J., %,pril 1946,










(12) ![uffman, H. C., paper presented before the Southern

California Section, .i,. Chem. Soc., July, 1949.

(13) Hughes, .. C., Stine, H. i., and P'aris, ii. i.,

Ind. Eng. Chem., 42, 1879 (1950).

(14) Lien, A. r., icCaulay, D. ,,., and :vering, i. ,,

Ind. Eng. Chem., 41, 2698 (1949).

(15) iair, iB. J., and Forziati, A. F., J. :es--arch Nat.

Bur. Standards 32, 1L.1 (1944),

(16) Ibid., 32, 165 (1944).

(17) Ibid., 34, 435 (1945).

(18) Liair, ib. J., :'-aboriault, A. L., d:. :iosslnl, F. u.,

Ind. .ng. Chem., 39, 1072 (1947),

(19) iWair, o. J., Sweetman, J. J, and n :ossini, '. D.,

Ind. .n,. Chem., 41, 2224 (1940),

(20) 6achanen, ... N., "The Chemical Constituents of

ketroieum", Reinh-old :ublis'hin7 Cor,.oration,

;:ew York, (1945),

(21) ochweyer, H. ',., and -.dwards, C. H,, "An .valuation of

Sunniland Crude petroleum", Florida .n.ineering and

Industrial ':xperiment Station Bulletin, *t-'.ries .!o, 27,

,.ay, 1949.

(22) Seyfried, ,. D., Chem Eng. News3, 27, 2482 (1949).

(23) S;nith, H. 1., and Blade, 0. C., et. ;ef., 27, 5, 101

(1945.).

(24) Vorhies, Alexis, Jr., and Smith, M., Ind. :.ng. Chem.,

41, 2708 (1949).































IX. Ai' :;iDIX











Table 5-A

Tabulation of Desulfurization Data


: Time : Peed : Reactor :Reactor: et Gas ;.eter
: in. :Roteaneter: Inlet, : psig. :Cu.Ft. 5F. in.h20


G-121 : 0 :
S10 :
Rotor .73: 20 :
0.2 gm : 30
: 40 :
: 50
: 60 :
: 70 :
S80 :
: 90 :
: 100
: 110 :
S120 :

G-126 :
S10 :
Rotor ,12: 20 :
0.36 : 30
: 40 :
: 50 :
S60 :
: 70 :
: LO :
: 90 :
: 100 :
: 110 :
120


$. 'Jig


240
245
245 :
240
235
235 :
245 :
235 :
246
249
243
243
249

151
155
150 :
151
150
14 :
150
143 :
157
148
148 :
156
149


650
500
460
480
490
495
480
490
480
490
490
495
495

700
590
550
545
550
550
550
560
55
560
560
560
555


: 200 :340.0 80
: PO' : b6,.0 G
:200 :369.0 80
: 200 :373.3 80
: 200 :377.8 ~-0
S20o" :531.9 i0
: 20C :3t66.0 SC
: 20 :390.0 ;0
S OC :593. 9 b0
: "rO 397.8 78
: 20, :401.7 78
: 20C :405.5 78
* 200 :410.4 78

: 200 :49.6o 81
S200 :o05.3 -,I
: 20; :11.2 81
: 2.0 :516.5 81
: 200 :b21.2 81
: 20C :25.5 81
: 20. :o30.4 81
: 200 :535.4 81
: 2'0 :.40.4 81
: 20U :545.3 81
: 200 :550.2 81
S20(. :554.9 81
: 200 :559.3 61


0.2
0.2
0.9
0,9
0.9
0.9
0.9
0,9
0.9
0,9
0.9
0.9
0,9

1.6
1.7
1,7
1.7
1.3
1.2
1.5
1,4
1,4
1.4
1.4
1.4
1,4











Table 5-B

Tabulation of Desulfurization Data


: Tine :
S.*In.



;-1.?a 0
: 10
ot or 6: 20
G.z m : 30
S40
: 1 :U
6(;
70 :
: r' :
CO
1 00
: 110 :
: 12( :

G-1L.2 : 0
: 10
.otoLr ;:' 20
0.36 r;.n 30
S40 :
50 :
O 60
70

S90 :
100
S110
: 120 :


Feed : actorr sectortor: et 7as .eter
Aotameter: inlet, : sig. :Cu.iPt. OF. in.m..o


."b'50

23C
245
230
240

242
242
':42
239
242
'-)45

15 U
158
157
14U
139
145
144
135
135
141
144
140
137


dC,

:j50
540


550
560

560
560
560


700
58-0
545
540
545
.A45
545
350

560
560
560
570


200, :424.4 75
: 2C0 :427.6 75
20. :431.0 7o
S20. :4354.' 75
: 20( :439.6 7u
: 200 :445.0 75
S 20' :449.1" 7b
: 20- :403.6 7u
:200 :457,9 76
S 20f. :461.' 76
: 200 :4u6.6 76
S200 :470.6 76
S20( :475.5 76

20j :57.5.b Ul

a 5Cr :5-0.4 81
: 20C :5.6.0 81
: 200 :591.4 81
: 200 :536.9 Hi
: 00 :602.3 81
S200 :607.9 81
S20C :613.7 81
: 20( :618.3 81
: 200 :622.5 81
: 20L :26.6 81
I 2C0 :630.7 81


1.7
0.93
1.0
60.
1.5
1.3
1.1
1.2
1.1
1.4
1.1
1.4
1.6

1.2
1.2
1.3
1.4
1.4
1.4
1.4
1.5
1.b
1.2
1.1
1.1
1.1











Table 5-0

Tabulation of Desulfurization Data


: Time : Feed a Reactor :Reactor: .et Gas ;.eter
: .in. :Hotamneter: Inlet, s psig. :Cu.iFt. OF. in.H40
: t : of. i :


G-133 : 0 : 170 : 700 : 200 :714.5 62 1.4
: 10 : 174 : 620 20r :716.8 82 0.6
Hotor j2: 20 : 165 : 580 : 200 :722,4 82 1.4
0.36 gm a 30 : 127 : 600 a 200 :72;.4 82 1.4
: 40 : 155 : 590 : 200 :734.7 82 1.8
a 50 : 149 : 605 : 200 :741.2 82 2.0
a 60 : 155 : 610 : 200 :747.0 62 1.6
70 : 151 : 610 : 200 :752.6 82 1.5
: 80: 149 : 610 : 200 :758.2 82 1.5
90 : 154 : 610 : 200 :763.8 82 1.5
: 100 : 156 : 605 : 200 :769.5 82 1.5
110 : 154 : 610 : 200 :775.6 82 1.6
:120 : 150 : 610 : 200 :760.4 82 1.6

G-137 : 0 : 78 700 : 200 :641.2 82 1.2
1 0 : 64 : 640 a 200 :644.8 82 0.9
Hotor .2: 20 a 70 630 200 :649.7 82 1,4
0.36 in : 30 : 80 : 630 200 :654.9 82 1.4
: 40 : 75 : 610 s 200 :660.2 62 1.4
: 50 : 75 : 620 200 :6,5.5 82 1.4
S60 : 89 : 610 : 200 :670.7 82 1,4
70 : 76 : 610 200 :675.9 C2 1.4
80 : 86 : 610 : 200 :661.0 82 1.4
: 90 : 71 : 610 a 200 :686.0 82 1.4
: 100 a 80 a 605 : 200 :690.8 62 1.4
: 110 : 83 590 : 200 :695.8 F2 1.4
: 120 : 79 : 550 : 200 :700.8 82 1.4











Table 5-D

Tabulation of Desulrurization Data


: Timo : Feed : Heactor reactorr: ..et las 1.eter
: ..n. H ota o t er: Inlet, : si-. :Cu.l't. uF. In.hl .



-l1O-F : 0 : 20 : 700 :200 :[92..5 67 0.9
S10 : 2;:0 : 570 : 200 :R98.5 67 1.7
.iotor w2: 20 : 570 : 200 :.04.6 67 1,7
0.36 i 30 : : 570 : 200 :910.6 t.7 1,7
: 40 : 560 : 20( :916u. 67 1.5
: 50 : 570 : 200 :922.2 67 1.7
60 : : 6u 200 :927.5 67 1.0
: S S











Table 6-A

Tabulation of Adsorption Analyses Hesults


Sa:rple : G-121 : G-121-P : -16 : -126-
No. : : No, :


1 : 5.22 1.491 : 4.92 1,483 : 5.0. 1.500 : 4.86 1.477
2 1 o.30 1.480 : 4.90 1.471 : 6.30 1.437 : L.12 1.474
3 : 5.77 1,474 : 5.08 1.467 : 5.24 1.495 : 4.64 1.472
4 : 5.20 1.473 : :.00 1,467 : 5.18 1,494 : 4.98 1.473
5 5.29 1,475 : 5.24 1.470 : b.4 1.493 : 5.04 1,474
6 : 5.12 1.487 : 5.00 1.476 : 5.16 1,493 : 5.12 1.478
7 : 5.15 1,493 : 5.2i 1.482 : 5.08 1,493 : 5.04 1.483
8 : o.16 1.497 : 5.04 1,4-'6 : 5.30 1.49 : 6.10 1.4U8
9 : 5.70 1.496 : 5.12 1.41 i: 5.'0 1.493 : 5.50 1.493
10 : 4.98 1,496 : 5.16 1.493 : 5.04 1,493 : 5.15 1.499
11 : 5.22 1,494 : 5.00 1.495 : ..0 1,494 : ..13 1.b04
12 : 4.20 1,497 : 5.46 1.49. : 5.02 1.495 : 5.22 1.507
13 : 3.40 1.500 : 4.96 1,500 : 0.32 1,497 : 6.02 1.507
14 : 3.2 1.002 5.50 1,502 : 5,48 1.500 : 5.16 1.oll
15 : J.3 1.503 : 4,96 1.506 : 5.28 1.500 : ".14 1.10
16 : 4.9 1,506 : .6 1.509 : 3.4 1.500 : E.18 1.508
17 : 3.4 1.512 : 1.8 1.513 : 4,4 1.504 : 2.10 1.50L
18 : 3.1 1.514 : 2.8 1.507 : 2.5 1.504 : 1.3 0
19 : 2.3 1.517 : 2.3 1.508 : 9.4 1.L-4 : 1.V 1.608
20 : 2.2 1.516 : 7.6 1.502 : : 1.508
21 : 1.6 1.51: : 2.8 1.498 : 4.7 1.b08
22 9.7 1.517 :

Total 99.44 97.34 97,7 9i.l10


Note: R.I. 200C.












Table 6-B

Tabulation of .dsorption analyses Results


Sa .le : 0-129 : -1293- : :-132 : 0Q-6!-
No. : :..1. .-.I. : T1. .I. :t :. : Tl h.I.


1 : 4.1
: : v.0
: 44.
4 : 4.9
S : v.0




.0 : 6,4
.1 : 4.*
: 3.7
.L : ..9
.4 : 1.9

LO : 1.7
.7 : 1.4
S : 1.4
9 : .4
0 : .7




, : 4.
6 : 1.
,7 : 1,4
0.44
:9 2H.-

Total rl.CO


4,9igi
5.4.9
3.00
o.07

.05
5.14
5.1b
b.04
o.14
1.11l
b.34
4.'"'






o.3
5.1


1.4528:
1,4501:
1, >-.01:
1.4,.16:
1.4;,30:

1. 486:
l.4L;54:
1.47[:4:
1.4920:
I.. 18i
1. .s>1 "
1.X1'-7:
1.5191:
1,6211:
1.-. '18:
1.:-, 4:
1.5 '53:

J.r'


F.12
5..24
b.OO


o.14
4. F7

J.14

b.17
.. 3'
5.354
4..)0
k.62
3.31
I.bI
1.1
$3.7
4.9
6.0


98.77


1.4590:
1. 4579:
1. 4u74:
1,4574:
1.4574:

1.46L'O:
1.4 04
1.4764:
1.4cr57:
1.4--82:
1.4.10:
1.4926:
1.49-12:
1.4.-0:
1.5C2c:
L..z0,0:
1.50"0:

1. O1u
1..110:
l.,0
lr~i






;


,.00
Li.lu
4. 38
4,U3
b.01
4.b5
0. ".'
5. ..C
5.061
i.'02



3.1
7.3
3.2
2.i
o.b
4.1
4.1


1.4602

1.4o081
1,.4602
1.46 33
1.467'
1. iC7,'j
1.4722
1.4'7 5
1. 47.-9
1. 4-49


1,43.-
1.49.44
1.4@994
1.6012
1. but;'j4
1.4-70
1,4 .'70
1.4:.c9


b96, i


;ote: -.1. "'OC.


1.494
1.484
1.47-
1.482
1. 4 -,,
1.491
i. 4913
1.496
1.401 .
1.49.


1.u j L
1. 14
1.512
1.013
1. ID,
1. )07
I..1.l Oi

1,*.04
1.510
1, 14
1. -17
l.b16
1. ,12
l.b1,513
1.513

1. ;O


--- -------- ---- ----- --~--------- --~----- -- -- -------












Table 6-C

Tabulation of Adsorption analyses Hesults


Sample : 0-133 : G-133-P : -137 : G-137-P
ilo. : il. R.I.'" : 1. R..I. : Ml. R.I. : i .I.


1 : 5.03 1.4930: 5.10 1.4662: 5.01 1.4762: 4.94 1.4611
2 : 5.14 1.4910: 5.35 1.4619: 5.22 1.4697: b.20 1.4599
3 : 5.43 1.4870: 5.12 1.4597: 5.24 1.4700: 5.41 1.4587
4 : 5.45 1.4790: 5.18 1.4590: 5.17 1.4720: 5,12 1,4589
5 : 5.36 1.4760: 5.09 1.4589: 5.15 1.4720: 5.19 1,4620
6 : 4.87 1.4764: 5.01 1.4601: 5.10 1,4814: 5.13 1.4678
7 : 5.22 1.4782: 5.00 1.4658: 5.26 1.4892: 5.02 1.4744
8 : 5.06 1.4811: 5.47 1.4762: 5.23 1.4597: o.14 1,4830
9 : 5.17 1.4843: 5.02 1.4798: 5.11 1.4974: 5.09 1,4889
10 : 4.98 1,4870: 5.07 1,4848: 5.16 1.5004: 4.84 1,4940
11 : 5.48 1.4892: 4.72 1,4909: 5.22 1.5029: 3.43 1.4997
12 : 5.07 1.4880: 4.89 1,4965: 5.60 1.5048: b.04 1.6023
13 : 5.13 1.4710: 4.6 1.4998: 5.29 1.5084: b.08 1.6070
14 : 5.32 1.4620: 4.2 1.5004: 5.41 1.5108: b.11 1,5152
15 : 5.28 1.4526: 3.6 1.5031: 5.32 1.5098: 4,95 1.5200
16 : b.09 1.4443: 2.e 1.5065: 5.02 1.-1,18: .47 1.4968
17 : 8.70 1.4418: 4.0 1.5032: 2.3 1,5158: 5.13 1,4642
18 : 4.98 1.4397: 4.8 1.5025: 3.8 1.6144: 2.7C 1.4591
19 :.? 1.5011: 6.7 1,5047: 1.10 1,4448
20 : : 7.1 1.5002: : 0,90 1.4430

Total 96.76 98.82 96.31 99.06

Note: H.I. 4000, .11 others at 2000.












Table 6-D

jabulation of .dsorption Analyses Results


Sample : J-100-F a S-10')-F-P
No. ;i1. ;.1. I 1. R.I.
_____________:__________


I
S
S
S

a











s

Tot l


4. *5
4. 86
5.13

5.52
Z5.17

8.23
5.41
5.14
5.23
5.48
5.3
.05

3.1
1.6
b.4


1.5171
1.6150
1. 124
1.502c
1.5030
1.5008
1.5022
1.5057
1,5069
1.5090
1.5098
1.5090
1. 113
1.5022
1.5133
1.4763
1,4790


97,40


b.04
6.45
S.* 00
4.99
4.63
4.92
4.94
5.24
4.9-,
4.96
5.36
4.97
. 27
4.90
4.G2
3.1
2.3
3.3
2.8
8.4

37.38


1.4970
1.4805
1.4728
1.4728
1.4747
1,4793
1. 4t73
1,4940
1.5027
1.50c0
1.5015
1.5158
1.U169
1.5190
1.5135
1.5200
1.D200
1.51f3
l.l513
1.51a5


;.ote: R.I.


- --- ----


400,.











Table 6-E

Tabulation of Adsorption Analyses Results


.ample : G-125 : G-128 : G-134
:io. V 1. RR.TI. : I R.I T. R.I.


1 : 5.00 1.5009 : 5.00 1.4510 : 5.20 1.4398
2 1 5.36 1.4783 : 5.16 1.4508 : 5.01 1.4962
3 : 5.11 1.4689 : 4.94 1.4506 : 5.41 1.4960
4 : 5.06 1.4686 : 4.83 1.4504 5.05 1.4960
5 : 5.14 1.4686 : 5.04 1.4504 5.14 1,4950
6 : 4.97 1.4719 :5.21 1.4.02 : 5.17 1.4900
7 : 4.96 1.4780 : 5.01 1.4502 : 5.70 1.4888
8 : 5.06 1.4841 : 5.30 1.4500 : 5.04 1.48B0
9 : 5.05 1.4922 :4.91 1.4539 : o.32 1.4S78
10 : 5.11 1.4922 : 5.05 1.4631 5.12 1.4899
11 5.19 1.5056 : 5.04 1.4780 : 5.16 1.4920
12 : 5.08 1.5090 : 5.08 1,4967 : 5.32 1.4938
13 : 5.36 1.5128 5.17 1.5100 : 5.02 1,4950
14 : 5.10 1.5088 : 6.10 1.5113 : 5.11 1,4983
15 a 8.80 1.5050 : 5.01 1.5120 : 4.30 1.4983
16 : 4.10 1.5035 : 6.10 1.5152 : 4.30 1.5035
17 : 2.60 1.4978 : G.50 1.5158 : 5.10 1.5037
18 t 2.80 1.5274 ; 4.90 1.5190 a 5.00 1.5028
19 3.10 1.b300 : 2.70 1.5223 : 4.50 1.5022
20 4.30 1.5280 : a 2.70 1.5022

Total 96.95 99.05 99.27


Note: "R.I. 400C. All others 200C.










BIOGHArIICAL ITEAS

Jam:es iubert Gary was born .ovember 18, 1921, in

Victoria, Virginia. '.e was 7rnduated from Victoria nigh

School in June, 1938, and entered the Virginia Polytechnic

Institute in September of that year, !ie was graduated

with honors in June, 1942, receiving the Bachelor of

Science in Chemical Engineering degree. After graduationn

he served as an officer with the Anti-Aircraft Artillery

of ti.e Army of the Unite.l States in the South eost i'aocfio

Theatre. Upon return to inactive duty, he entered the

graduate school of the Virginia polytechnic Institute in

october, 1945, and was "ranted the degree i.Vaster of Scionce

in Chemical 'ngineering in je;-tember, 1946. Upon radiationn,

he b1:ecame e;.piloyed in the 'eclnical Service Division of the

Standard Oil Corpany (Ohio) at Cleveland, Unto. In Sept-

ember, 1948, he entered night school at tie Case Institute

of 'ect:nolo>'y and continued his graduate studies there

until Juno, 1949, In Lepternber, 1949, he 'aas ;-ranted a

leave of absence from trie Standard uil Company (Ohio) and

entered the University of Florida to undertake graduate

studies leading to the degree of Doctor of Philsophy, he

is a nieiber of rhi Luambda Upsilon, Phi ;appa bhi, Tau

Beta i'i, and tihe American Chemical Society, a junior ir.eber

of tLoe .nerican Institute of Chemical ;n-ineers, an

associate :r;Oibher of i'inma Xi, and a :e.-istered Professional

n,-.ii-ier in t c .tate of Ohio.










This dissertation was prepared under the direction

of the Chairman of the candidate's Supervisory Committee
and has been approved by all members of the Committee.
It was submitted to the Graduate Council and was approved

as partial fulfillment of the requirements for the degree
of Doctor of philosophy,

Date 91 t Z /9L /


Dean_

SUs ERVISURY CO,:IT''E-.


Chairman

64J l e


/ /7

-<-
...../

-7^-^^ L


a--~c~















ENGINEERING
SCIENCES












































UNIVERSITY OF FLORIDA


3 1262 08553 7784




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EQ22M19X3_H7RIWW INGEST_TIME 2017-07-13T22:08:22Z PACKAGE AA00003988_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

REDUCTION OF THE SULFUR CONTENT OF CERTAIN HIGH BOILING PETROLEUM FRACTIONS By JAMES H. GARY A DISSERTATION PRESENTED TO THE GRADUATE COUNOL OF THE UNIVERS11Y OF FLORIDA IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSI1Y OF FLORIDA Jun e, 1 951

PAGE 2

he ut o shes to express his sncerc p reciat1on to r . ~ ce in bte to cheer for ~is sc ulous and consi-er te ir ctor of the rea rch. T e .utr-or lso ,... .. ..... ... Leeper ar...d ... . .1 an :for their ny helpful critic~s s; to Dr. . or en for ..,l c use of t. fac 1:ties oft inecrn n In'u::;tri l p r ent tation; an to the e hers of r1 s Su ervisory Co 1 ttee, Dr ac Tyner r _.:. p s Dr r nd rofessor L rescott fort cir reco~ ondations nd ss st nee. T .. e aut .or ishes to ex ross rec ation to Ci t:es ervice Hefining ,orpor; tion, ,sso t dard Oil Co ... 1 ny, Gulf .tl 01 oration, a nolia etrole n t e t n ard Oil ,o puny (Indi na) or urni i t.e s p e of 11 n-sulfur gas oil use in tie inv sti tion. ( ) nt

PAGE 3

JJ.1 BLE OF C 'l'E -:'J.'S ;., S'l1 OF FIGURES Ll T OF TA.BLES I 1 -,1 J .l.DUC 'i '.EN'i. OF t :E rl BLE III VI, A Chromatoo-raphic dsorption B Desulfurization C Sulfur nalysis IV D~ C IP11'IOl O Art:1 R ~'!'U~ A Desulfurization Unit B .dsorption pparatus V PR11CEDUR~ ~ Desulfurization Apparatus B ,dsorption pparatus C Sulfur Analysis D Experimental Dat~ VI RESl-;:LTS VII ~ ONCLUsros VIII BIBL!OGP. ~HY (ii) age (i) ( 11:.i.) (iv) 1 8 9 12 16 17 24 26 28 31 33 35 52 53 55

PAGE 4

'i ure o 1 2 3 4 b 6 7 8 9 .1IST I U Title Unite t tea Crude 11 ro uct on. e ctor hoto r ph Dosulf rizer lo Di r e ctor Sche atic e ctor Heter iri1 dsorption olumn ia 1 m . ypica efractive Index GuI've dsorpton Tactions esulfu1iz tlon of Gs O ls . ... 2 18 19 21 '--2 25 50 2 41 10 Ve ulf riz tion of G s Oil zactions 41 12 13 14 1 16 17 18 1 20 2 1 22 ,ulf r Distribution, ~a ple G -121 vulfur Distr~bution, ple -126 ..,ulfur stribution, Sa ple G 132 ulfur D stribution, ple -12 ulfur Distribution, Su le G -133 ~u fr Di tr bution ple -128 ulfur Dis~rihution, S plo G -137 ulfur Distr.bution Su pl -10 F ulfur istr bution, ulfur D1otr bution, Co os t~ n Ch lo 1 4 le -125 it Vi co it Co o tion ,1 n c 1th V sc sit ( i. ) '13 .4 -. 44 4.., 46 46 ? 8 48 v 1 e

PAGE 5

LIS'1: OF '11 lBL8S '.!.'able .1 i tle a6e .o. 1 Sulfur Co poun s ; .. 1 ~ Oil 5 2 Desulfurization Peed Stoc 'S . 37 3 '4soIption Feed. 3t~.ckD 38 4 .:iulfur Distribution 39 5 uesulfurization Coic1j_tions .. 56 6 .dsor.,:Jtlon Dai:;a . 60 (iv)

PAGE 6

1 I. I ODUCTIO or m y y rs tLe petr leu. ndustry has been f' C ith tie proble s i o upo t by the pr nc o v rio types o lfur C nd ub c ue 1tly r v sed by GnP.m ( 22), sh in tl e p.1 oduction of crude oils of various rulfur contents in the Ur ted t tes dul i t!le rid fro. 191 'tO 1947. s of th e 0~ HL?, proxi ato y 152 nillion b r els of t 1 million b ls of crude oil ro ucod annully in the u te t te., cont n d ov r t 0 er ce ulfur nd over ?0 1 on b rrol con, inc over r sulfur. l'he .1croo.se pro uction of high-oultur cru s in t10 1 le t nd outh eric h 9 d to th ro l con r b y s1 ce t 0 s h t 0 t of :Urope' futur r uir nts ust r C s r'l b upp

PAGE 7

2 Figure l Crude Oil Production for the United States 1800 1600 Leg-end ~1400 I ~1200 3 H ::a 1000 .. E-4 0 8 800 0 600 400 200 B:E > 2.0 ._ B o.51--2.0 [I]] 0.26-0.so -D o -0.25 / V / I ,, / / /1 / A I/ /1/ 1/V /V ./, /Y .,.r /f ,/ A/ / A,/ .... ;' ,/ ,,,,,, ....-"""' i7 ~.,,... lL ..... ~I--" 1915 1920 1925 % Sulfur I % Sulfur j I/ I V % Sulfur I I I J. V I/ % Sulfur A/ IV /1/ II 1/Y / r/ /'ft...,, ....-1' y ~,,. / / / V / ~"' V / V / V / ,,, / / / / / ./ V I--" ...... /,1930 YEAR vv ____ ..... / 1935 /:/ 1940 f ,J ,--, _., I/ I I / V I I V J I ~I'" ----~ I -----.---............ 1945 195'0

PAGE 8

3 from these source Th 1 rge 1eserves of sh lo-oil loc t ln tLe cstern rts of th nte tates nd C n d re also h i l sulfur cont nt. afore t es C n s..,u e th impo1t n c ich s forecast by the 1 1 rcse1v va lable s t factory solution to th ul probl ust be obt n d uev ral of the most i port nt proble s ue tote pre nee of sulfur co~)ou.nds l petroleum re (12): 1 Corroson of r finii stora e an tr nsport tion equipment. 2 lim'nat'on of odo _ferous sulfur compounds from products. 3 Dcpre s on of octane r tins. 4 o.uction of lead susceptlbi~lty. 5 Increased .r r tes of enginos. 6 C talyst poison n during c t lytlc proce s1 of the crude 0 1 cuts. 7 dverse effects 0 product st b1lity bmn n cl arncterist cs. lt 10ug tho pre.-.. n e e of sulfur C u es man and crude oils ur oi to b C s ified s "m rglnol" because of the .... hove uns 1 bl charnct 1istic t. e petrol u in ustry is f'in ing it nee ssary to us such p trole ms to sat fy pr ent n ds. hus. t ulf nee for fund ntnl r sere on t er ov 1 of fro. petrol po ucts i b co. in re t r s t. in u try s .1.orc d to c 11 upon all va 1 bl r so cs to e t t do n for tro un pro cto. r t n r of tu of ul u:r co ounds found n h V b trol um n on t t s h 1 oil but

PAGE 9

4 it is appa11ont from a study of the litorature trat n large amount of fundamental nformation is st,111 lacking. There is conslderable dlRa reemont a to the types of sul ur conpounds that m"'y occur l 1 crude oil and straightrun dlDtillntes. :there iB also some question as to whether the types tl at ar-0 known t,o b present occur as such ln the ori inal petroleum or are formed during distillation. A .summary of the available kno :ledge on the occurrence of various types of sulfur co.pounds in oils is shown in 'l'uble 1 ( 12). F'rol"'l these dats sovcral ;cnor lizations can be ~ade. The res ~ce of t hiols (mercaJtbns) and dlsulf' ldes is well establinhed, --i th satur ted compounds predominating in strai~ht run distillates and aromatic derivatives prdominatin il"l. era.eked disvillates. r o aronatic sulfides have been isolated; prob bly due to the fact tnat tne flrst mombor of tlis series has a relatively hi boiling point. 1he _,r,Jsonce of tn ophenes in straigntrun dis~illutes ls ~uestlonablc, but the r pre nee in cra.c ~ed disttllates he.~ been ,,., ell establisi1ed. !~o co:n_..Jounds containin3 more than 0110 sulfur to to tne molecule, other than disulfides, have as yet beon isolated from petroleum sources ( ) The metHods for removal of sulfur from petroleum oils may bo separated into two t._.pes; those :vhlch remove the entire olocule conto.ining the sulfur and t hose \'.rhich r o;nove only tile sulfur. In general, tho first type of process is

PAGE 10

~ulfur ,: v T ble 1 u u r o poun p e or 1ula y 0 en .... ulf'lde H2 u . . 1 u fldes l Jbatic ---atic R -..... 'hiop no -1..,H= rr, -(, n ho olo 8 : . ol u 'id 9 R n R : + Co poun-:i ? u in 011 tr i ht: ru e: un :Cr C ed . . . : . + T + . + + + . . . + + + . ? : + . . . . ? + + + . ., + . : ( + . '( + + +

PAGE 11

6 us(,;a for li ht dlstlllutes and tne .latter or d.osulfurizatlon of as oJls. This i. ue to the fact t. ~t it .i..s i...:1~ort..ant i'rom the re ine,r's standpvlnt t:.ut tho sulfur be removed in such am nner that t .e volume of t e oil b .ing dosulfurizod is not mark8dJ __ r reduced. In t1. c a s e oi' tho J.l ht dlstillates .rhere tne a verage number of carbon at s per molecule is au_ ,ro:ct n ately six, th, sul ur atom con ,rises a largo part o th~ molecular :oi .h t J.'hus tl e -1, 1ole molecule cun he removec w i tnout appreciably affecting the volwao. In the c~ne of the gas oils, the number of car :::>on atoms per molecule i s i n the ran,e o f thirty to sixty and nn oil havin..,. fiYO ~.ei rtt per cent sulfur content rta.y contain tvumtyf lve to flfty per cent s<.1lfur conpounds ( 12). R e moval of the sulfur CO'l_pOunds as sue'~ ou l d bo economiclly unat~ractive in t nis case. 1 10 ent.ire sulfur comnound may bE~ r o oved by caustic washin~, acid treatin; (1), o r extraction vith hydrogen fluoride (14). R L ~ nv p resent time the only method known for comple~e desulfurization of petroleu m oils by re oving only t e sulfur is s o.~e forr.i of' c u talytic hydro genation in :hich the sulfur is r moved &.s hydrogen sulfldfJ and th~ remainder of trrn sulfur bearin~ ,10l e c u l e is converted to a hyd1ocarbon. Essentially all of thos e processes are sl ilar, with -chc operai.,inr; conditions Vv.rying accordlnG to tho t c of cataly..,t used. Data hav e been .)Ubllshed o n sch c"' t .... l ysts s .fuller Is ,r1r t h ( l), r lckel-tun sten sulfides ( 4),

PAGE 12

? n col-olyb num u_fi s {2v). b ux_t ( ), cob lt (2 n nc-olyb um ba x to ( ) t ct ytic .c~o s th cob lt olbd t proc s tl one os co.pl tely 1 in nth liter ture.

PAGE 13

8 II. ST, '11ElffiN'l1 OF' 1rHE > OBLEM 'l'hore were t o purposes oi' this investir,ation. The first was to determlno hov the sulfur conto~t of tho gas oil fractions of a variety of crude oils is distributed a nong tJ..e paraff ln, naphtheno, and aromatic fractions. The second puroose was to determine the manner in whic h the desulfurization by hydroe;enation affects the distribution of sulf'l.i.r. '11he investigation waa divided into two pl:ases; one of analysis and t.Le other of' desulfurization. The separation of the gae oils into their paraffin, naphthene, and aromatic conponents was accomplished by use of' the chromato,,.raphic adsorption 11ethod developed by tne United ...,tates Hlrca.u of ~tandards. 'l'he sulfur content was determined by use of the high temperaturo combustion titration n1ocvdur0 adopted by ~moricun ~ociety for Testing .... ateriuls. ,, The gas oils wore desulfurized by the loi pressure hydrogenation. method developed by the Union Oil Company which uses a cobalt-"!lolybdate cato.lyst. Opera~ing conditions were selected uithin the range of their development data in order tnat tho effect of the change of operating variables would be knov-m All sarn.ples were desulfurized at the same operating condltl0ns.

PAGE 14

III. L .. T V 0 tor uhic sorption -C ethod use t p rate otrol u r ctions into tl ir v rious olecul r type'! i. e senti lly t t ovis b tne USS un bot st s ett and is co only kno n ., th s att etho or the chro tor phic thod. rovious ,p llcations of th1 et od to the sep r.tion of' a.ro ntic hydrocarbons nvolved pr.inc p lly h~drocnrbons of h h mol cular :ei tan of biological importncu. ork by ir and as ociatcs showed t t 'ructionation by sorption could be u ed to obt n cparation of' potrolou.m fractions in th c;a.solinc (1 ) .erosine ( lG, 17), nd gas oil ( 1 ) r n es into t. ir olecular types of co:npoun s he adsorption ethod con ists, in cnor 1, of dsorbin the terl 1 to bes~ rat dsorb nt, usually silica gel, then on a suitable suit blo des rbing liquid is intro uced. The dcsorbing liquid forces t e hydroc rbo~ portion om the col n of u sorbont c-usin the hy o arbo port on to be fro.ctio ted accordin to t e sorb bilit of the v~rlous compon nts. l 38 co ponents issue fro the botto, 01 th column in the fol lo ling ordor: n t 1en d ro. ntic. The succ a ful ppl c tion of thi t C r qu1r s ooorb mt th t 11 qu ntit t V ly l 0 o v h o carbon fro th sorbont. Goo nd 0 ( 'I)

PAGE 15

10 hav e pointo1 out that t h e characteristics dosirj;)..ble in a desorbunt a.re: 1 A stren1th of n~sorotion co 1_ponent of. the saa1ple ater than any 2 i. viscosl ty h igher thnn that of any component of the S&I.'1.ple 3 Co-;iplote r:1iscibllity wit h the arm etlc portion of the s a.nple 4 A refractive index sufficiently different frou the aro 1atic nortion that the final break on t~e adsor~tosr n rar~ be determined satisf~ctorily. ~hen seoarutlng petroleum fractions i n the gas oil range, it is vlrtu~ll ~ im_ ossible to find a desorbant fulfilling cot,.pletely all of the requir:i nents. Desorbants used for 1 -octaPol (0), nnd n-henanol (19 ) Reductlon of tho t imc rc,quired 1'or analysis by ralsing t L te nperaturc a t whf ch 1 t ls con~uctec1 is de irable and it may b e n"'c essar~ .. to use an elevated temperature in the case of a. gas oil having a higl'l pour point. Analyses made by ti.le same p roc. ... dure o n the same samples at room temperature und at 7o0c showo ... no si~niflca.nt difference (..J) Ilmrnver, _t \.'O.S found necesso.ry to ma i.n tain relatively close control of tne temper"'turc of op3ra ion in order to pr0vent remixing of the components. Liqulds w!.ic h sorve us desor-bants or devolopors may be c lo.ss.:. led into two -Toups depending upon tr1eir ~trencth of adsorption i n relation to tho material being sepratod (6).

PAGE 16

T o col o_~b nt b vir 11 ch 1 pl ce ""0 b t ri f th ir ~r t l tr n t or fro tl.e orption d orb d C lle t r1 l at t e s soi b C S c nts. to OV n .uc1 n op r ti om th co. u 0 n rt s th dis c ~ Th less stro 1 v o rs ur tore l nts. y ill di pl C p raff1n n n 1the! Ly OC, rb n but not th 0 t C lV ro rbon. he p t'f ns, n hth nos. el nt obt in d as ixture fro vh ch ,h nt s s p r t d b ist1 1 t on. he o ntic i then r movea fro. t 0 b nt by 8 0 a s lac n size n of th sor to colui n 1s cl l by liU of' t ards (15) a l 0. the opt u B z of sil'c to be used ( 17). '.Lhe )I'OC ur e ls si i I' 0 t t of tr, e t n O!l lni (18 l 01" t rat on f -oil o.n X fr .ction. of tro l .O;;:,t n. pol r 0 not r ct th t hydroc rnons, t or nt, or t m teri 1 of th a or.,tion tub be us to pl C t roe bon t ri 1 It 1 d ii bl t t t e orb n liquid b ~o 1 t l ol in 'I t .. r 1 3S so ub in t h roe r on, 1 or 0 th droc rbo r ff ct -tr cton th t r ( 1 ) t r 11 1 tic h oc bon ut ,h y r in ith'n t ro co C t t C t d

PAGE 17

l) ~ ""-dsorbent. 1-"or these reasons the mreau of .::>t .. ndurds reco~.ends at ctl nol, ethanol, n -hoxa 101 or cyclohcx~nol be used as,displaconts (16, 18, 19). !s the desorbed material issues f'rom the botto of tht. column, it is separated into s3mples of a)proxi.matoly 5 c c each. 'l'he rei'ructl vo indices are doter ,d:i. ed on eac h of tho sampl e s an are plotted v ersus t.1.e f. mount of liquid collected. 'ro,. ti1i -adsorptogrrun thn amount of paraffins, nuphtr1enes, and a.ro'<:at.ic s r::ty be deter nined ( 1 9 ) F'ortunately, tho breaks between various !,lato~us on a.,isorptc-.,...c-l.. s for petroleum distillates arc encrally s.narp, shoNing u reproducibility for ;ie vnrious grOUlJS of about t 10 per cent ( 5). IJ.'he _,i:>paration ,ithin the aromatic group of !: onocycllc and dicyclic coumpounds ., v.Y e suf'ficiently good to permit in
PAGE 18

1 yst of' s ar tor. nd rodct r c iv s pro uct fre d of hydro n su fid b coust c shi o di t_ll tion. op re.ti conditions us d fo dosulfurizution d n on tho en r cter t_cs of t 1 stock b i':l pzoce n the o ree of SU f rizat_o re u u 11 i u d con itions ar in t r >es oo-s~o0 C t ly t te p r ture. v-~O. 0 1 quid hourl:,. 8 CCV locity fed r t 150 g or ore, dth the C rcul t'on of 1 ,000 to 1 0 ,000 cu ic fa t of hy l o > n rr 1 of feed ( 12). In xc;a of 1 0 qu ol s off d h V b n e ulfu iz d by 01 volu of ct lyat rithout r on it out etcct ble los 1 activ't ( ) ne t ly t cn b r, n r ted r p te ly to :ts ori :n 1 ctiv1ty. n ration is ccomplished b controll oxi tio to re ove the c rbo :J. ult n ously, etl C u fi pr> s nt in tn C t J.y., t i co V rt to oxide. e r ction. ncr t 1 rge qu ntity of he t n rticul r ca cm st b to.k n to pr vent loc 1 OV rh tin oft e C t lyst ich t C us sh tterin int rin or oth r 1 t OU ch n in physical tructure ( 2). cob lt-oly d na ct l yst by b 0 bi u t blo co lt nd olybd lt i or ried lu n B ( J ) h copr c it t C t t i. r P r d d i t r olut 0 of cob tou 1tr t to 1 11 ti r d hy OU n ollo y n oni c

PAGE 19

1 4 solution oi.' molybclonum tr .i.oxide. After Hashing, the gol is dried at 200,' crus.1ed mixed with a su.i te.blo pelleting lubricant, pellctc1, an t.1cn calcine for several hours at 1100! 1 ternatoly the cobalt and molybdonum stll ts uay be absorbed in driod alu:nina pellets or beuds, dried, und e a_cined Cobalt Molybdate may be considered a c hemical union of cooal t oxide and n.olybdic oxlde, Coo. : 000 compnr ison of t!1c results 01 tests using eucr .. oxide <>epu.rutely and in pl~slcal nixtures s catalysts reveals that neither oxide, alone or in me cnunical a,imlxture, a.proaches the actl vi ty of the chemical co ,1bir&tlon (?.}. The oehanism oi' the desul1'ur.1.zation is not known /,.vailable evidence indicates that i n the caso of t hio_p11ene strong t..dsorptlon of the co:-.1pound on the catalyst occurs followed. by hydrogenation to tk_iac.rclo:,ontane. 1.1.'he ring then hydro-ruptur Js to --;i v o outyl mercaota.n w1 ich may lose hydrogen sulfide to yield an olefin. 'i'h c olefin is hy1rogenatc to a sa~urQtcd hydrocarbon (12). Hendrlc'rn, Huffmun, 1-'arker, and Stirton (11), havo published rosults of th, cutalytlc desulfurization of petrolornn dintl1latos whic 1 sHow the effect on the m:1ount of desulfurization of varying space velocity, pressure, temperature o.nd hydrogen rate revious v.ork by yrns, ... radley, und Lee ( r~) lndicated tbo.t ln the case of 1r..ost of

PAGE 20

1 t e c ounds consid re, 650. r pr nte r .... ther criti c 1 te per tu e If th ct st e h er tur er s uc 101 thi fi ure, t ere : r pid o c ~ n in ct1vity 1th r u t nt er e in th re of sulfuri z tion. .ore or less c o st n t ~uL.ur ... z tion ct vit 00 c o postion. ov.r u c X t to er turos b little or no evid n e e of ydroc rbon e -o ver, ct lyst ctivity s ti loner interval t 6500,. t o 700F. th n nd d t i ore l vated te peratures. or t1is r .ason t y s lected 6 o0 ~ t e ost e ir bl te.per ~ur for o poratio. rh r ults of on ric sand a s o c t c s ( 1) _o t t doubl n the feed_ te ( ro 1 0 to 2 0 L H ) ox .ately doubles tl c product 0ulf1 r ( fro 0 0 5 to 0 .030 i 1t per cont). n c1e so n r ssuro fro 150 to 250 0W1ds p r s u 'e inch a r sul ts in cons_ e1 bly incr d au urLz tion { ~o 0 .060 to O .Oi i h t er cent). tl h o n 1 t fro 3000 to 000 c'..lbic et b rrel of d c.u ulf (from 0 .0lv to 0 .025 prob ly u. to th d er all incre in pro uet f d T cont nt 2 ly t oi 1 V 11 oi h t pr c nt) hie n contact ti o y roe bon u in th r t pr c nt u fur nv a t i tio n crud oi in r 11 r r s t n ry op ro ton.

PAGE 21

16 C nalysis for Sulfur 1he method e~ploJed for tho G\na.lysis of sulfur in the various petroleum fr.ctions is according to ._orican Society for est:n aterials method of test E 60-46 T the procedure use1 is as noted under "Organl c 1.ateria.ls in 'ieneral". 1I'he chemistry of t 1 e me thod is illustr&ted by the follO\::ing reactions: KI03 + 5KI + 6r-Cl :::; 3I,., + 6l~Cl + 3H20 ., 0 5 S == I

PAGE 22

17 IV 1 C TI O t Do::mlfur z ti n Hnl t .rho ~esulfurlzat.io unit of f ed t I r li ui io3d ot etor. l ydrogen feed rot meter, f, d prche t r 1 ctor, cooler, ro uct tank, sen bbers, 9 meter togetner ,ith te ,per ture i~dic tor cv 1trollors for tno pr .o. tor o.nd re ctor end the necc3sary ,ressuro control O.i aratPs. picture of the par tus i~ shown i F ure 2 and flo~ 1a~1 in F' i ure .:;. he feed n uroduct t nKs are ldcntic 1 in constr ction. Thoy are f' brlc tad fro t! rec L c. e. tra hea,ry steel pipe und o uipped itr Jorgens ref lex type liquid l vol ga e he tanks arn 16 incnes in outsi e en th an ave cap city of 2b00 cublc centin.e,ters. oth ta1ks ro wru_p d ith a 0 .25 n c h cop er tube t,rou h ic. steam is pasood to uaintaln the to oraturo of the i uid nt 200F. he ta ks are l oulat d 1th Johns-ansvillo sbestoc shorts. h y Jere hydrost tic lly tAsted at O pounds por square inc~ g ge. he li u d eo' O v incl r.orcd rot rot moter is et r vn n chutte and vert e flo ocrting C p City o 1000 cubic centi .eters per hour. t 'Is dosl ned r vi cous petxoleu llquide nd is qui \ 1th t re rotors in order tat a tdo r ng of viscos ti bo cov d

PAGE 23

J -.,:.

PAGE 24

Fi.cure 3 ..., r, ----'-. _j 7, 'D TJ'.:J\ G S i.IET::8 I ---'- O ... S8UP.. ...... ::: ;m.11:, _ r_:io;-, DRAWN BY: J ~G CHECKED BY: ENGINEERING AND INDUSTRIAL EXPERIMENT STATION DRAWING NUMBER DATE: SCALE: REVISION UNIVERSITY OF FLORIDA GAINESVILLE DATE MATERIAL TOLERANCES UNLESS OTHERWISE SPECIFIED DECIMAL FRACTIONS

PAGE 25

20 ho h ,ro en feecl rot".!'!1etor ls a standard one-o i. 1th lllch c hutte and oertin"' rotat.,eter hav ln1.r a 111axL.nurn o,crating ~ros.uro of 4o0 :ounds Jer square inch ga~e. rn feed. pre:ho:1.ter comprises two stli.lnless steel coils 36 incnes lo ir.i crsed in n oil bath. .ne hydrocarbon and hdroren ,re heated in sepnrate coils in t .. 10 sumc oil bath. 11hey are mlxod to ctaer immediatel.v U 1 JOn loavir1g t h o pre11eo.ter ancl tho temnerature of the co oined stream co'1trols t h e tcmp~rature of tho oil bath. 'he oil hath is heo. ted by t\,o 00 watt. 110 volt im.'Uorsion heuters and its te"'tporature is controlled by c. .ro1i,n controller. The re' ctor s a st ...... inless stee-1 st .. ridard A~.11 co uper-:prossure vessel modified to have t removable .1ead on each end and suprort late on o ch end. 'I.'ne vessel is cf the 1 --'/_ 'ilCh series and has a catalyst ca_ )acity of 2200 cuhic centiLetcrs. It is constructed of 13 per c.Jnt chrome tn_nles ~\;eel, Typo 410. and hus a maximum orkin~ prescurc of 5600 pound3 per squore incr ~ta tem~,erature of 800F. he vessel i~ equipped v1lth a heating ,jacl-ret containi.ri!'" two 800 Fatt, !?.20 volt, electric heaters con 1ectod as sho vn .tn F l ;ure :;. 1. schoMntic dl~ rLm of the reictor is rlven in Y i ure 4 'ihe cool er ls do from 40 inch length of o 2b lnci1. stainless steal tublns coiled in aw ter bath. The ,u~cr flo i is countercurrcmt to the flo of h:rdrocarbon.

PAGE 26

DRAWN BY: CHECKED BY: DATE: SCALE, Ca.tn.lyst upport : late :='igure L~ :nlct ?hcrnocounl c 1ubo c~o ) s :. mrc ENGINEERING AND INDUSTRIAL EXPERIMENT STATION ORA. WING NUMBER REVISION UNIVERSITY OF FLORIDA GAINESVILLE DA.TE MATERIAL 1.,, chro o sta nless steel TOLERANCES UNLESS OTHERWISE SPECIFIED DECIMAL FRACTIONS

PAGE 27

'7:'\70 800 watt heaters :7igure :5 G To 220 volt line ~ o tcr~inals nar:ed L e Don controller DRAWN BY: J::G CHECKED BY: DATE: SCALE: REVISION ENGINEERING AND INDUSTRIAL EXPERIMENT STATION DRAWING NUMBER UNIVERSITY OF FLORIDA GAINESVILLE DATE MATERIAL TOLERANCES UNLESS OTHERWISE SPECI F IED DECIMAL FRACTIONS

PAGE 28

1h scrub rs con it o: to 2 ,000 cub cc nti tor rlenmey r las{ 1 h e rti y filled it col o lu drox1de so ut_on. rter t h liquid ~s nr ted fro he exce. a~ in tho p o uct t t c gas i ubbled .r u t C U tic SOlUvi n re oves the h ro sulfi s iruriztio1 ~oc s ho et gas et s t construction ft r t. ,us s ote1, it is burne i n for hydro en rni 1 ho fee i u1d is f JI'Ce Ol' n ar i n p s t ischer t throu r ssure fro. nit;r gen c linder. i on th cyl.:.nder n r ssure C e d s n ind OU t O"l, e bu n r d the system ,y t n r d rcgul oxi ately five poun s p r 8 u I'e i c h i her than the IC ctor r .:>Suro int ne on t 1e f 0 t n r l: e r t of lo i controll nee le V lve t on th feed t r or d rota t e t to th r h tor r t am truce 0 rov nt olidi 'ic tion of s oils h ving hi h pour oints. l r ctor e i. te no l>y t l r s te tor f t e d 0 ot 1 0 r V on t. o hy ro r SU y t nl I 11 t n liv r pr s s to 1 ,00 un r 8 U o nc g 'h b C pr s ur on t} t i nt in db e. r 9SUr r to on t product t 1 r ul tor

PAGE 29

24 reduces tL.e pressure from that of ooeratlon to approxi:iately fifty pounds per square ir ch
PAGE 30

dsorption Column

PAGE 31

26 V P OC ,D .E n T)e"u .f t:r z t on tus llvuiveso ... tee iris tar clo~1e1. "totr1ous'nd mllllllters of the oil to be desulfurl.e are cL&r~ed into t-fe t ... n { ht, t~--: to tho heat in coils is tu Y ed. on na tbc oil -. llo VO to r ,.ch it equlliorium -i:; er!iture of "y roxlmo.te1 -f!00 I ';,';.~Q hE. tt u tp of th~, re etc:!' -n~1 prehuater are turned on & Y\ r1 ........ the te per re e o trollers ~ct. at 700F. and 300. respectiv ly. fter t1ese temperatures ar, reached tl e _uip ncnt is re d,. for o .. erat on. One thousand milliliters of a per cent 2odiwn. hydroxide solution are put into each of the ., crubbing flasi.:s nnd the e.tor level in the \' et ;;as .1eter is filled to the c01:rect height. mhe pressure ro 1 tor on the nitre en cylinder is adjustod until the pressure on the fee tank is a) roxiri1ataly 205 ounds por square lne 1. "'a e The pressure re ula.tor on the h.rdro-en c -rlindcr is set to deliver hy<~rogen t 200 pounds per square inch G"ge press, re .... nd the needle valv e bot ,en th hJdrc.>C'en retulator and rota~eter s slo ly opened fully. he regulator l s then a just~d until the rector pressure 8 er "ds 200 pounds per squ re .:.nc h lhe hy1rogan flov rat s ad.usted by means of the needle v lve on the e~it slde of the lov pressure regulator

PAGE 32

7 unt 1 0 r t of bot 24 cub C f t er 1our is ind c te on h ro tar. he 11 ui e r t is t t .o illi it s p e r hour by n 0 th n edl V lVt: b t n t 10 fee t nd r or :rot 1et r et g s met I r n i t J n tho li uld fo s intro U C The te::iper t1 I' flo rat r s ur n ei; ga.s t r r in s e..r r corde t t minute inte vl h ro en g fro the et s eter is led 0 a urner nd burned. If' n ces~ary th tor to h cool r y bo turne on. In th C se of c.: s oils h V n, 1 pour oints care ust be tal en that too lo to" per uro s not m intained. Upon th conclusion of he run tho hy ro on re lutor d liquid f e d cont1ol v 1 ve re clos d nd th he ti g unit2 turno o r 'ter the pr s uro of the yste s f llen to t ospleric, t product l! rem ve1 fro the product t nk y r ov n th O v n c 1 pipe plug f om th bottom of th nk n the amo nt of product s surd nd r cor i"' p o c ur for uid o r p C velocity ( L . . ) o 0 5 0 f r of ,000 cubic f t P r o r p r b r l of ro uct n v ra e r ctor t r tur of 650 r ctor r !) o f 0 o nd er qu r 1 ch

PAGE 33

28 1 1dsorptlon pparatus he a lsorption column ls fille with silica p;el nd p c .ed by to.pp in~ t_1roughout its le, gth ni th a ruo orcovered wooden rod. 1110 packi,1s is continued until the level uf the sllic u 101 decreases lesr than five milliliters in fi vo minutes of packing. Suff'icient si lioa. eel should be inl tially charged so that the final heit-:ht of the silic a el is about two to five conti. eter-n below the oott un of t h e reservoir. ,hen filling the column 11th Dllic... el a co1tir.uous flo 1 should be maintained. ,hereever t h e f'lo is stop_ cd, a ring 111 appoa.r < uring tho a.dsorptlon process. ,hile the !3ureau of 'tanda.rds l'roc~dure a :es no nention of t hL, el feet, it Wes thought desirable to keep t e f or::nation of the so rin"s to a mlnimum fter ~ac ~ in, 100 milliliters of ~as oil are introduced into the r eservoir, cure belng t~l on not to ,et tl:!.e up.i)er portion 01 tne r eservoir. 1 ressure o f fiv0 to ten pounds per square inch is t Lcm a. )plied. Afte:r' the sample L. s c onpletoly entered the s lica -el (about 40 to 60 minutes), the pressure is ror1uced, te reservoir opened a.nd a la-yer of t w o centlmetors of sillca 0c l ad~ed. 1~1e reservoir is t .. e11 filled d t h ct nnol or n -hexanol nn s1...t'! iclent presst,re a.plied to give f o v rates between ten end t hirty milliliters .,er hour ~en 1 fraction has collecte~ in the roceiver, t 1e f lov fro 1 the dsorptio.n tube is interrupted by closing

PAGE 34

C t e stopcoc Fortv eco s a1e lo c .or t e u per 1't o the r c ivcr to re.in befor th volume is re d and n e u 1 int rv 1 lo ed for n t r t e th r 1 o to bulk o tho fr ction befo th sto cock on the r ceiver s clo ed. ct et anol nd n -hexanol re use as esorb nts du1~1r"' the course of t! e investi ation. th nol is ref erred ec u e it is more easily sep rated fro the hydroc rbon t an n -1exanol It is necos ary to co ple tely o eve the desorbar..t before sulfur deter ination... re o.dc e ctl anol .ns O'silJ r cved by placin tho s ple in tea b th for t o hour period. or~ ova tho n -ex nol, it required periods up to 24 hours fter co.~_1otel,r re ovi1 tie solvent, the volum of hy rocuroon ro ainin 8 rtl8U$Ul' an its rcfr ctivo ind eterm'ne. By lottin, r fr ctive in ex vo sus percent of sa plc t rou l the n so~ pt ion colu m ( ere nt nd 1 r equ v lent int s invest.1 tion since 10 1 ,ere used), a erieo of point ... r 0 t ined. l ro J. t OS points s ri s 0 t _re tr 1 11n s C 11 b r m e ch h V n drrerent slope (s 0 i ure 7). h nt rscction of tl C .tor .in itb ch of th ot or 11n s oint bet een t r in noto tl o r no n n phth n n ro tic r ct n ls tl od 1 o t tr ort d by ir n orzi ti (1..,)

PAGE 35

M i .?; i l: 30 Figure 7 .Typical Ref'ractive Index Plot Sample S -100F at 40 c. l.520r--:.:.....~--,-----------....-----------1.51oi--------t-----~--1---+--_;_--J--..---.....J 1.500 1.490 1.480 l.470r------t-'ef----+-~---+-----+----~ 1.460'------+__; _:______JL...-___ .....1... ____ L_ ___ ..J 0 20 40 60 80 100 Per Cent Through Column

PAGE 36

r ctiv in ice ere dote i d t 2 c. xcopt 1or t ose s ples h c r not liq i t t ate po ature. lor s p es avi pour o nts bovo 25c., t e refr ctve ndices 1,re e sured t 40. he se arati.n t c n par ffins and naphthe e s v r s rp. n t e c so of s mples containing no ulfur in t1e par ffin fraction t e point of c1 ng cou d a ily be se n i'hc raf in fr ct.:.on s nte1 hi te and the n t ene fr ctlon oe ly colore. e s1 rp ch e c n be o n in 1 ure 8 o s lo on tl e extr t is th or n l a oil u ed as _ee to the dsor tion col c us of the arc color o )Ot t n ~hthene and ro tic ortions, t. bre oint could not be er nod :thout the i of th refr.cto eter. G ul1ur nal sis u fur 1 sis ; rform d ccor in tote n~t uctions lv n in meric n. oc ty for st teri la test metho 0 -46 Tu in~ th equip cnt uf ctur db th L bo tory ui ent Cop ny.

PAGE 37

32 Figure 8 dsorption Analysis Fractions Sample G-132

PAGE 38

33 ,xperi ental D ta. tot 1 o ei lfferent crudo oils .... l, n:as oil p es 1rom nine re obtan d fr moll co nies. 'he crud oils from hich t. o as oils re co y rte re res ntod nne se arate eo r~ph c 1 locutions. cause of th i!'ferent oils -ecific tions xlstlng .on~ the oil co pE-1ni s supplying the s ples, it s ossible to select onl.r one set of o.mples h ving the s o viscosity an ravi ty ch 1 cter st ics. ince ta urpos of tj is v st tion as to deter inc the ef ect of crude oil .ource on t C to.lytic esulfurz tion oc an.s, t.e ,t~les er elected so s o ave all p yolcul c h ractoristics as noarl, l nt c 1 as osslble. In a ton, ono nple 1avin omo, at di 'ferent vicosty imd r vity s dosulfur'ze to seo if a y change in d s l:furiz tion uc to p ysic 1 p1~operties liS in cated. Lo t re., on l p,a$ o ls of ii ly p sic 1 c h r ct ri tics re s p r t into fr ctions by orpt1on to d tor ne the f ct of vi cosit n vit on co po ition n lfu istrbutlon. h ct 1. t use for tt sulfuriz ton 1 s. uloct d b c uDe or pu 1 ~h d nfor ton on ct tic d furiz tion u n cob lt-ol b ena. c tul, t than n ot I 1nd. 'h t pr .turo o t 1' riz ion ro ction

PAGE 39

34 was snown by Burns, t)radley, and Lee ( 2) to be rather crltlcnl in t~at tcmperatur~s in excess of 750F. ca.used excessive crac ldng: of the oil and coking of tbe catalyst while at temperatures under G00P the rate of lesulftcrization was very low. An averao-e reactor temperature between 6ooF and 700F. m.s selected for use in this investic~u.tion because it ,,,,,.as rec ommended by tne above mentioned authors a.s being overall the :i.ost desirab.1.e. In c~J-erclal lnstallati ns, lowpressure o perations arc those t i c~1 a.re carried out belm: ?50 ;.)sig. '110 operate at pressures in exces~ of this requires the use of more costly equipment. Because it ls desirable to operate at presstres below 250 psig. for this reason and at presm.i.res above 150 1)sig. ln or .er to obtain a ~atisfactory reaction velocity, t.o meotan pressure of 2 G psig was selected for t his investigation. The lic"..lid space velocitv and hydro/J'en rate were chosen to cc.,nf'or,"Il i th tLose reported b,r uf'fm n ( 12). The oils used in this investisatlon received no s:,cclal treatment except for washing i th a caustic solution to remove free hydrogen sulfide before adsor1;tion and eter. inution of sulfur.

PAGE 40

.::,5 VI. 1 0 d sulfur z t on ro.tus ope!' te very e oot ] n re do t s nti _lr con t t condi ions. It s foun t t t 0 n flo I' te coul b or et r y t ete t by th h d_ 0 on rot etor. UC to c rbon V ors in the as o rotor tende to st C n th rot tcr tube nd t1e rotor leve fl ctu te over do r n o 'so of lo ppe cl n r to cle n t e rot eter tu o t orou hly b or e ch n r uce t is trouble but 1 not c plet _y ov r c o e it. ortun te onc e tho f o rte 1 s set tr a no const nt urn tho run .o no oper ting t:.. u le re,.ju t d nth cs of th lor o 1 s ple nllI!lbo 1 v t CO Ol' o dn : th t t e otor 1 v l coul not b r lne one e out r portion oft rot te1 t'l e ,, filled. h lo r te a 1ile t;h o ter po tion b in fi n no urt er c n OS .eie C s ry. ho flo. r te e eter n du on t1 cop et on oft run by n of ,h t n r r in nd tl 0 on t of t run nth C s of h dro and by e u il t f 0 r inn n th PI'O ct I' C V n the cs 0 t o ls.

PAGE 41

36 All runs were mado ate liquid hourly space velocity of 0 .5, reactor te peratnre of 65QOF reactor pressure of 200 pounds per square inch -a-o, "'nd hydrogen fed rate of 4 J000 cubic foot per hour er arrel of fresh feed. he results of th, esulfurlzat on runs uro sho n in ublen 2 to 4 n cxaninatlon of tc dut rov0als tl at ln every s unple, both bof'ore nncl !'>Ster d.osulf~rization, tne per cent sulfur is ... re~test ln tho aro.atic fraction and least in the paraffin fraction. Tris is in accordnnce wi tn tLe ;.rosent t.hoorios on the subj oct and tends to subst::.11tiato them. A survey of t"1e umount of sulfur in eact~ of the fructions, both bafore rrnd ai'ter dcsulf'urization, shows tat tte sulfur co~tained in the paraffin fractions ls, ir general, r ore eo.sily re: 1ovcd tban tna.t in th.e ar~,1at1.c und naphti1.ene portions. t OY1evor, all of the sulfur is not removed from the .1ar ... ffin fraction before de sulfurization of tho aromatlc e.ns to occur in c.ill fractions simultaneously with tho roto of' desulfurization belnc t',rcu tost for the para1'finic o. ... 1d least; i'or tho arorr.atlc type of' sulfur comiJound In every ce..se i 1 ,;hich the eu .... fur content of the araffin fraction is :Jhown as Ot \1:cig"-1t per cent, the f'.a.ction was "to.tor thite ln cc)lor. In the case of' sa.v ple G -129, the parnf in fraction hofo1e desulfurization

PAGE 42

Table 2 Tabulation of Data on Desulfurization Feed Stocke --------. G 121 G 126 G 129 G -1.32 G -13.3 G 137 b 100-F SOURCE* : W .Texas : ColF 0 853 0 850 0 855 0 828 0 846 0 849 Composition Vol. Paraffin 15 16 16 20 28 18 27 Haphthene 32 39 .33 36 .3.3 30 26 A roma.tic 53 45 51 44 39 52 47 L Note: i: Denotes infonnation detennined by company :tupplyi~ samples

PAGE 43

38 Table 3 'l'abulation of Dat a on Adsorption F'eeds G 125 G -128 0 134 . . . ~ource.; .. 'iialco : Kuwait l'ullerton . . . Sulfur, .... I., ;,) : 0 .648 t l .BBO : 2 210 G1~av i ty, 0.1~PI 24. 7 3 1 1 25. 6 . Refractive Index 1 _4973(1) 1 4343(~): l .490o(l) . Vis. 100~,1 . . e p . 8 .15 . . ,. 43.f s s .u. ,. . . . . : . Vis. 2lOO F . . s s u . 44. 5 63 . c p . 5 9 1 . 1 2 4 . . Sp. O r . 100 .? . O .t58 . . 2QQ01i'. : 0 .854 . O .S56 . : . Co,:r osit1on . Vol. 19 44 46 . Vol f., il 35 21 27 . Vol. p A 44 34 2 7 . . wdata determined bl co,npuny supplying sn.mple (l)~efrGc~lv e Index at 4o0c ( ~)Refractive Index at 250G

PAGE 44

39 ble 4 ul 'ur Distribution in Gs Oils . : lot ls: I' ffin phthene ro tic . . . : . 7ol . G -121 . 3~. o . . lc;,1 0 .39 29. 0 6 0 . 1 6 u .71 1 6 0 o 56 39. 0 0 5 4 o 0 .74 . G -126-. o J 17. 5 0 .24 41. 5 0 .52 41. 0 0 .74 . . . -129 2 .65 1 o 1 0 7 33. 0 2 .20 51. 0 3 .:16 . G -1291 .80 1 o+ 30. 5 1 .10 51 2 7 G -132 0 5 1 19. 5 o+ 36. 5 0 .44 44. 0 o 0 . G -1320 .41 20. 0 o + 35. 0 0 .33 45. 0 a co . . G -133 0 .55 28. 5 0 .32 'Z8. 7 0 .53 38. 8 o 1 . 1 3 o .37 : 27. 5 o+ 34. 7 o 7 37. 8 o 2 . G -137 0 .87 1 8 5 0 .23 30. 0 0 .64 51. 1 .17 1570 61. 21. 0 o + o o .36 51. 0 o . . . v -100 -3 .36 r:,ry o 2 .58 0 () 0 47. 0 5 .77 ,., -002 .34 ... 0 1 .06 .J. J .v~ 45. 5 3 0 G -125 (.,. 0,.) 19. 0 a .so .:>5. 0 0 .64 44. 0 o 74 G -12 1 44. 5 o+ 20. 5 1 .11 34. 0 4 7 1 0 -134 2 1 : 46. 0 0 .84 27. 0 1 .62 27. 0 3 .20 . . -ote: ., II in sa ple number denotes t .l it s a desul ur z t on pro uct.

PAGE 45

40 co~tained 1 0 7 \eight per cent sulf~r and had a very dark color. fter esulfurization, the paraffin sulf'ur content was negligible and the color us er. stal cleo.r or 11water whi te0 'l'horc 1ere six cases in widen the paraffin f r action v;as 11\'mter whlte" and ho.d o-r-rni ,;h t per cent sulfur content. There ,ms no colorless sample having s sulfur content rot-1.ter than o+ veight per cent. 'fi:.!.ese dut.:.. give confirm, tion to the work of -~ossini, Laslie, Hener, air, ,illingham an1 Streiff re1;orted by .::iftchanen ( 20) '11ney found t 1a. t tt ... e 11 1ater white I portion of a straight-run distillate from a t'Oncu City crude c o 1ta. ined no sulfur. 'l'his indicates that when tne paraff'in f'rE:.ction is colored, it is due to sulfur co . pounds p resent ~nd t~at a lack of color indic tes a su~fur-free fraction. In Pigure 9, the we ight per cent sulfur after de sulfurization is plotted against wei h t per cent original sulfur. str ight line passin~ throu~h the origin can be dra\m throu5h these points indicatin that t h e source of the as oil is not a factor in its deGreo o f de sulfurization b y low prcs3ure hydrosenation using a cobalt molybdena catalyst. Tho line drawn between the points has a slo~e of 0 .725. The v1eight per cent sulfur after desulfuri~ation is plotted ver3us -ieight per cent ori ; inal sulfur in 11igure 10 for eo.c:.L of the gas oll fractions. In every case a. strul._,ht line results, but t h e slope of the line is different for

PAGE 46

I Figure 9 41 -. ))esulturization or r:s Ga.s Oils i 3.__~-~~~---=-+------4-------I I i! ~ 21----'---+--~-----+----.~+----~ ~ ti ::s 011---,---+--r----+-----+----~ 1 2 3 ~t. % Sulfilr in Orig1na1 011 Figure !.O Desulf'urizatfon of Gas Oil Fractions 3 Legend: Parai'fin A Haphthene 4 El Aromatic M2~-----+--'--+---;.......j ; ~1r---------i-.:-,oorL-,-~-+----.,,.""'"""".X.--+--------~ 1 2 3 4 Wt. % Sulf'ur in Fraottcm

PAGE 47

112 oach fr, ctio 1 For tne par af1'ln fraction the line has a slo,1e of 0 .80, for tho n phthene fr :,ction n slope of O .G5, nd .ror the aro at ic fraction a slope of o 3 erhaps the only significance thut C'.:.n be, attributed to these curves ls that the f-,reater t 1c slope tne more difficult the sul~1r ls to re.eve. 'Traphs of the type u5ed by Hu hes, 0tine, o.nd Faris (13) ar~ .iven ln 31 ~res 11 to 20 for each of the gas olls used. A plot of sulfur content versus per cent through the a.dsor-ption column is sbuwn. 'l'hls ~ives a ,r>-pt,ical represe 1tation of 'Vhere the sulfur in euch fruct,ion is located and its degre of ran.oval. 11'he surr1ples 01' oils f'ro::n the va.rlous sources used in the d sulturization runs v,ere, i 1 p;,,ne r al, selected with the same viscosity and speciflc ravity. ~he object of this t:rpe of selection was to rrnve oils fror1 d1.ffcrent sources having similar phys.lcal properties. 'l'he oils selected for desulfurization wore fron est Toxus, iuwait Col bia, Venezuola and Pullerton fields. Two olls having gravities very close to ether but 0;reo.tly different vlsc0sities -re selected from the Fullerton gas oils to determine the effect or viscosity on sulfur distribution. In 1..ddition, a third li'ullerton sample wlth a di.fi'erent gravity nnd v lscosi ty 'ms unolyzed to deter-nine tho variation in sulfur co ,Dosition nmon u r ngc of oils

PAGE 48

3 2 43 ,...,i "'1.1..!' e 11 D stribution of ..... ulf'ur in ..... ru.1 le G-1~1 ( r"S il from 'est r.::'e:~as Crude) Bofor) ~ c sulf'lr- ization After .:esulf'ur:. ~2..tion r --------------I ';lob, l I I I I I ~-----I I I I I --------__ I I ------20 Por Cent ':'hrou 60 Colw m 80 100

PAGE 49

4 4 Sulfur Distribution in 3ru.'1ple G-1 :6 ( r>ic-i nn l Total I --------------I Desulfur ized I I .L I -I ------------_J I I I I I I 1 I I ------0 0 20 60 80 100 ?or Cent Through Col urnn Figure 13. Sulfur Distribution in Sample G-132 1.0 Orird nnl l)~~ulftu:'i w.d_ ----I Tnt.n l I I I I ------I I -------_____ __. I I I 0 ---0 20 60 80 100 ?er Cont ':i.1hrough Column

PAGE 50

4-. 0 Total : 2 0 45 ::::'ic;ure 14 Sulfur Distribution in Srunple G-129 0riainnl __ J2~ ~1Jl~_i_F;.f --------I I I I I I I I -----I I I I I I 1.0 r----------~ I 1 I I I I I I 0 -__ J 0 2v 60 80 100 Per Cent Through Column Figure 15 0 .75 Sulfur Distribution in Samole G-111 0 ric."i ,.,a 1 :--De su1ru ------'i'10t!:!1 ~izcd I I I I I I ----r ---------..J I I 0 .25 I I I I I I I _J 0 0 20 60 80 100 Per Cent Through Column

PAGE 51

5 f 2 0 1 0 0 46 Figure 16 Sulfur Distribution in 3amplo G-123 T c tal 20 60 8 0 100 Per Cent Through Co1Ul':ll1 Figure l 't. S u l:fur Distribution in 3ax.iule G 137 Or1 17inn l ., _,.. r -~O_j; \d,~ ~ ........ \:::.Y-. --------1otal I I I I ----I I I I r-------~ I I I I I 0 20 L~o 60 80 100 ~or Cent ~hrough ColUL1!1

PAGE 52

4 3 1 0 ,,OtPl 47 Pi ..... e 18 Sulf'u: Dist:--ibution i~ 3enple .'.:;-10 0 -:, ( Gas Gil i'ro.:1 lori a C::>ude) J r ic;i:wJ. ::>osu li'uri zed _____ ,-------' I I I I I I I I ----~----.J -------I I I I I I I I I I I I I I I I ---_J 0 20 I .0 60 G o 1 G : er Cent rl'lir ug}1 Colunn

PAGE 53

3 1 0 0 Total 0 0 4 8 Figure 1 9 Sulfur Distribution i n Saraple G-134 (Gas Oil f'rom Fullerto n Crude) T o t a l 20 _Q 60 80 er Cent '::1hrou0h Colunn Pigure 20, Sulf'ur Distribution in Sample G 1 25 (Gas Oil from Talco Crude) I I 20 ho 60 80 Per Cent Through Column 100 100

PAGE 54

9 fro ties e field. l ca.vy lco n 11 t u ait re lso n lyzed to etcr ine the u fur t s found tat or 11 of the o 1 viti nd vi cositi~s the co po tion 1st? "buti n it s 11 ith-'-n e son e i its, the s e or ex >le, the ei t pe c nt p r~ns sin the r no 15 o 20 per cent nuphthenes ro 30 to 36 per cent, n ro a.tics fro 44 to 3 per cent. In t1e c se o_ the tlre s .~las run on lcrton gs oils a plot of viscosity in centistokes versus 1el t per cent gave strai t lines o e c h f the r ctions ( igure 21). or t of the vir n gas oils nel zed tiere 1 s no pr ci blo sulfur nth paraffin fr ction. never otter c se, t e h1 her t e specific r vity of the s oil fro iven .. ource the r ter t e el t per cent sul ur in 11 t e fractions. In the c so oft e oils h vin no sulfur in tl e ars.1'1'in fr ctio1s, the ensest of the to olls fro th s me source h d less sulfur in t e o tic fr ctlon ev n though the tot 1 n,lfur cont nt of th e vier gs oil s hi her. tion or t11s but it y b here is no p rent ue to no feet t sul ur content of a ~o ecule has on ts orptivity. _h eter in tion of this ffect b s b en de t e purpo e of nether invcst1 tlon.

PAGE 55

5 Figure 21 Variation of Gas 011 Com.position rrith Viscosity (F'ul.lerton Gas Oils) -.a --Naph hene--_ -~50 lUl-----1------+-----+--------tf------,----t-------; 4 6 8 10 V1scoa1ty~ oentistokes at 200F f'. 12

PAGE 56

1 l I, I .. 51 Figure 22 Variation of Gas Oil Composition with Viscosity Fullerton Gas Oils at 200F. 160---------------;._--,------,-----,i------, .,... Aromat cs 801------+----..:,.-4---------+-----+------+-----~ i 60 t> ... .,,.. I Naphth nes ,.. 0 p,, 40 Pa.re.ff ns 0 a__ ____ ...__ ____ ...!.,_ __ ---.:..._...l-. ____ _.__ ____ _._ ____ __ 2 4 6 8 10 12 14 Viscosity, centistokes

PAGE 57

52 VI. CONGLUSiot.S Basod on the data obtained 'uring tlds investit.-...tion, the follo in~ conclusions are drawn: A The aromatic portion of the gas oils has the highest sul.fur content and the par.1rfin fraction the lo~est sulfur content. B 'fhe sulfur in the nar.-..ffin fraction is the 1ost easilJ removed. C Sulfur co11tent reduction occurs in r..11 tree fr~ctions simultaneously. D The complete r-=-mov 1 o!' sulfur gives a 11v;ater-.hi te11 pa.eaffin i'raction The source of -i;hc crude is not a f0ctor in -c .e low ,nossure desulfurization ol' a : as oil 1, en U cobalt-u,olybd te C ... tulyst is used. rD.s oils hnvinG the sc.me viscosity ana S~)eclfic -.ravi t-contain ap roxir:10.tel y the s -me e..u-ount of aruffins, n ..... phthenE-s, nd arorr-atics 'l'his indicates~ at v_scosity an~ ravity deline~te composition. G In the case of g~s oils from a ~ullerton crude, tnc t.. ount of each of the molecular types _resent ( i e -pari...f.fin, naphthene, nnd aromatic) varies linearly ,ith the viscosity at 200F. in centisto .. _es.

PAGE 58

53 I I IBLI ( l) 1 r d , J!. er1i t t d o t erhout, J C D ----'------- 4 1 2 5 ( 1 9 _9 ) ( 2 ) Byrns, v r dle, n d L . =n;.::;d~ .__.:;::;~..::.. ~h"' 35, 1 160 ( 1 9113). ( 3 ) ,lerc J .inc nnon, C nd ier, ~r., n 1 Chem 22, 864, (1950) ( 4) ole, _i, 271 1 ( 1949) ( ) inneen, r.. u ho son, c ... ith, nd ,J 11, J . 22 _, 071 (19 0 ) ( 6) Furby, n 1 Chem 22 8 7 6 (1950) ( 7 ) Goo i nd opki ns, L p per p s nted efore Divis on of etroleu, Che istry at llOtl eetin . Ch ooc hie o IL opt. 1 4 ( 8) u1ncs, .en er, J elm, v n 11 . ) Bt r ines, e t Invest. 4060 ( 1940) ( ) le, < .:,i OJI s C d 1 en.11.u t l 11, 2702 (1 49) (10) e m aines, . . n 11, J. u ur. in s pt. nvcst. 566 ( L 49) (11) en lckn, t . Huff n 1 l,. r er, L r tirton, I. p er pr for vi ion of tr le Ch 1st at 109th t m C 1e o c t t C City, J pr 1 1946.

PAGE 59

5 4 ( 1 2 ) !ruffman, H c po.i--e r presented before the couthern C l iforni. jcction, ~ Chem Soc. July, 1949. (16 ) Hug.l-ics, ~ C ~tine, H J d 1' ur is j i> Ind. ~ng C hem 42 1879 (1950) (1"-r} -.;i~n, J cCaulay, 1 ) l and ver-1.nr; B L Ind. ~ n g Che m 41, 2698 (lJO) (lo ) .... i r B J ?nd F o r% iati, A F J Hesea.ro h Nat. Bu r ... >t .ndards )2 1_,l ( 1944) (lb ) Ibi d 02, 165 ( 1944) (17 ) I b i d 0~, 435 (194b). (l>:) ... ir, J Gr..borlault, \ L and. \ OSsini ? lJ. Ind ,nt linet1. 39, 1 0 7 2 ( 1947}. (lv } i::ir, 1 J Sweetmn, r:. J nnr' .ossini, 111 D Ind. :nr. 0:1em 41, 2224 ( 194.9). ('~J) ::ia chanen, r urrhe Chemic.:.l Con.stituen.ts o f etroleurr "tei'111.cld ublishins Corporation, /e; York, ( 1945) { 21) I u,d Edwards, C fl. ir An ;iValuation of unniland Crude ctro~e um" ~lorida ,ngincering and lndustr ial xperimcnt Station '3u lletln, ~cries ,To 2 7 ,:o.y 1949. (22} 0ey1'ried, D Cr1e Eng. Nes, 27, 2482 (1949) ( 23) J .. i t h H ri. end B lade, o c 1 e t..;.. _ e f ;~7 5 101 (134:.) (24) Vo~hies, lexis, J r and ,mith, Ind. ng;. Che, n 4 1 2 7 OP ( 194 .3 )

PAGE 60

55 DIX

PAGE 61

56 Table 5 A Tabulation of 1esulfurization Data . . . . . T i m e eed : 1oactor :1eactor: et 1-c.s eter . in : r.otf ... ,oter: Inlet, osi'") :Cu.Ft. OF in.H20 . . op_ . . . . : : . . . . . G-121 0 : 240 650 200 :340. 0 80 0 2 . 10 245 500 20", :006. 0 80 0 2 Rotor 3 : 20 ''ll.~ 460 200 :369. 0 80 0 9 .., ~O . 0 2 gm 30 240 480 200 :373. 3 80 0 9 . 40 :"235 490 : 200 :377. 8 80 0 9 . 50 235 495 200 :361 9 80 c ~ . . 60 245 480 200 :386. 0 80 0 9 . . ?O 230 490 200 :390. 0 80 0 9 . . 80 '246 480 200 :393. 9 80 0 9 . . ~o !349 490 -~oo :397. 3 78 0 9 . : 100 243 4go 200 :401.'7 7 8 0 9 . 110 243 495 20 :405. 5 78 0 9 . l'~O 24g 495 200 :410. 4 7 8 0 9 . . . G -126 0 151 700 200 :199. G 8 1 l G . 10 155 590 200 : 505. 3 8 1 1 7 otor r2: 20 l bO 550 200 :Jll. 2 81 1 7 . 0 .36 31:l 30 151 545 00c : ~l ~. j 81 1 '7 . 40 150 050 200 :.521. 2 8 1 1 3 . 00 149 350 2or :525. 5 81 1 2 . 60 lbO : 350 200 :030. 4 81 1 5 . . 70 143 560 : 200 : 5:':>5. 4 8 1 1 4 . 0 137 055 200 : ,.AO 4 bl 1 4 . 90 148 560 : 200 :545. 3 81 1 4 100 l.1.8 560 200 :550._2 8 1 1 4 . . 110 lb6 560 20() :554. 9 81 1 4 . 120 149 555 200 :b59. 3 8 1 1 4 . : .

PAGE 62

57 able 5 -bul tio of Desulrurz tion Dat . . . . . Ti e : Feed eactor e ctor: . 1n . ot t 1: n t, psl n . . OF . . . : . : . : . -12. 0 0 700 : 200 : 4' 7 1 7 . . 10 2.:>0 60 200 :4 '7 7 . ..,, otor 3: 20 230 .:>50 200 :431. y7 ... 0 2 30 2.45 5_Q 20 : 4, 75 . 0 230 550 20 : 4::.., ,j ? 1 J 0 240 v40 200 4 o ?5 1 . . 60 238 550 200 : 4 '75 1 1 . 70 242 : 5 0 200 :4 3 6 7v 1 2 80 242 vO : 2 0 :457. ?t.J 1 . .o 242 560 200 :461. 7 1 . : 100 239 5o0 200 :4"6. 6 7 1 1 110 242 : 60 200 :470. 6 76 1 .I 120 245 560 200 :475. 5 7 1 . . . . G -1 0 150 700 : 200 81 1 2 10 158 580 200 1 n . "-otor 2 : 20 157 54200 81 1 3 . 0 .36 .:.>O 140 540 200 81 1 4 40 : 139 545 200 8 1 1 . . 50 1 ..) 045 200 l l . . 60 144 545 200 :60 81 1 . . 70 135 : 550 200 : 6l 7 < 8 1 1 5 . 80 135 560 200 : 6 1 5 ? 81 1 5 . . 90 141 : 560 20 : 18. 3 81 1 2 . 100 : 144 560 200 :622. 81 1 1 . 110 140 560 2 0 26. 8 1 1 . 120 13? 570 200 :630. 7 81 1 1

PAGE 63

. 58 Table 5 C ?abulation of Desulfurization Data . Time : Peed Reactor : qeactor: Jet ~as 1.cter : .in. :1 ota.~ioter: Inlet, si ..... :vu. -~t O./ in. h ,0 .., G -133 Rotor G 1.57 . ? ...... . 0 10 20 30 40 50 60 70 80 90 : 100 : 110 120 . 2: Hotor 0 .36 gm : 0 10 20 30 40 . 50 60 70 80 90 : 100 : 110 120 . . . . . . 170 174 16E 127 155 149 155 151 149 154 156 154 150 78 64 70 80 75 75 89 76 86 71 80 83 79 . . . . . OF. : : 700 620 580 600 590 505 610 610 610 610 605 GlO 610 700 640 630 630 610 620 610 610 610 610 605 5 .. 0 550 . . . . . . 200 :714. 5 82 201 :716 8 82 200 :722. 4 82 200 :7~8. 4 82 200 :734. 7 82 200 :741. 2 82 200 .747. 0 82 200 :'75 2 6 82 200 :758. 2 82 200 :763. 8 82 200 :'769. 5 82 200 :775 6 82 200 :780. 4 82 200 200 200 200 200 2(,0 200 200 200 200 200 200 200 :641 2 82 :644. 8 82 :649 7 :654. 9 :660. 2 :665. 5 :G?0. 7 :675. 3 :681. 0 :686. 0 :690. 8 82 8.) -82 B2 82 82 82 82 :695. G 82 :700. o 82 1 4 0 6 1 4 1 4 1 8 2 0 1 6 1 5 1 .. 5 1 .5 1 5 1 6 1 6 1 2 0 9 1 4 1 4. 1 4 1 .. 4 1 4 1 ,1 1 4 1 4 1 4 1 4 1 4

PAGE 64

59 Table 5 D abul tion of Desulfuriz tion Data . . . . 0 e d eactor : eactor: ot .oter: I _'3t ps . t, ., . . : -100-. 0 220 ?00 200 :892. 3 7 0 9 . : 10 220 570 200 :89 67 l .'7 . otor 2 : 20 570 '">QO : ( J1. t., 7 1 7 ( u g 30 070 200 1 u 7 1 7 . 40 5~0 200 :916 3 7 1 5 . 50 070 : 200 22. 2 67 1 7 60 60 200 27. 5 7 1 0

PAGE 65

6 0 Table 6 'I'abulation of Adsorption nalyses -iesu.lts . vample: G 1 2 1 : G 1~1 -f1.126 : :-1. R I ~ 126P ,l. !-: I . o 1 2 3 4 5 6 7 8 9 10 11 1 2 13 14. 1 5 l o 17 18 19 20 2 1 22 : 1 : : ~ .22 : ~ .30 : b .77 b .20 : 5 .29 : 5 .12 5 .18 b .16 : 5 .70 : 4 .98 5 .22 : 4 .20 : 3 .40 : 3 2 3 4 9 : 3 4 : 3 1 2 3 l') r, '-'i:J : 1 6 : 9 7 R I 1 .491: 1 4s::o : 1 474 : 1 .473 1 .475: 1 .487: 1 .493: 1 .497: 1 .49G: 1 .496 4 92 1 "83 4 .90 1 471 5 08 1 t!6 7 5 .00 1 .467 5 24. 1 .470 5 .00 1 .476 5 .28 1 .482 ~ o: 1 486 5 .08 -~ . ,o : 5 .24 : 5 .18 : v .24 : 5 lG : 5 .08 : 5 .50 s .12 1 .491: s ~o 5 1 6 1.493: 5 .04 1 L194 1 .497 1 .500 1 .)02 : 5 .00 1 .49b: : 5 .46 1 .499: : 4 98 1 50(J : : b .bO 1 .502: ., Ob 5 0?. b .32 5 .48 5 .28 1 .503: 4 .96 1 .506: 1 .506 : 1 5 1 2 : 1 5 14: 1 .517 2 6 1 8 '2. 8 2 3 1 .516 : 7 6 1 .51<: 1 517: ~ 8 97.34 : 3 4 : 4 4 1 ~09 1 513 l .b07 1 .508: 1 .502 1 .498: 2 5 9 4 9 7 7 Note: R I 1 .500: 4 .8o 1 l .)7 : D 1 1 .495: 4 .64 1 .494 4 .98 1 .49a : o .04 1 .493 5 1 2 1 .493: 5 .04 1 .493: 6 .10 1 .493 0 .50 l .493: S .15 1 .494: .... 13 1 .495: 6 .22 1 4~ 7 : 6 .02 1 .500 1 5 .16 1 .300: 5 .14 1 .500 6 .18 1 .504 2 .10 1 .504 1 3 1 504 : 1 .'" : 'l. 8 : 4 7 98.10 1 .477 1 4.?4 1 4 '72 1 .4?6 1 4?4 1 .478 1 .483 1 .488 1 .493 1 4f)9 l .b04 l .b07 l .C07 1 511 l .JlO 1 .308 1 .508 1 .008 l .JOd 1 .. 00'3 1 .508

PAGE 66

6 1 T ble 6 -bul tion of orption n ly s esu ts : . : : I . . : : 1 : 4 1 1 -494 . 9 1 528: 5 1 2 .4590: 1 . 2 . o 84 .00 1 .4501: 5 2 4 1 4 7 9 : 1 . . :3 : 4 8 1 .47 5 0 7 1 01: 00 1 '>74: 1 4 4 l ~82 48 1 > 1 6 : 4 .93 1 1 . 5 : s o 1 4 8 05 1 >30: o ..... : 5 4 1 4 1 5 .14 1 >88 : 5 1 1 . -. 7 ,.., . 5 .15 l : 4 7 . .... 8 : : "4 1 '784: 4 .88 . . ... . .... 1 1 l ~20: u l ..... 10 6 7 1 ..... 1 1 l : 5 .20 1 _8;:,7 .., 11 4 8 1 .002 5 4 ') 1: 5 .17 1 -. .... . ..... 1 2 3 7 1 ') 4 .92 1 12 5 3 1 7 .10 . l ~ 9 ) 5 .27 1 167: n .34 . 14 1 9 1 14 5 2 l 1: .30 I .L . 15 1 8 5 1 2 :.,, 1 8 1 .5211: r:: .62 1 6 1 7 1 5 1 3 5 1 8 1 v ::>1 8 : 3 1 . 7 1 1 5 1 3 5 1 3 l ~ 24: 3 5 ~ 040: . 1 8 1 5 1 4 .90 1 .5253: 1 1 1 .50 0: 5 .... . 1 2 4 1 ::.>07 2 1 .5268: ,., 1 .5102: 3 9 . 20 4 ..,')4 : 2 1 l .v288: 1 .510 4 1 . 2 : 1 6 .. 10 : ( 1 .5110: 2 1 1 1 4 . . 2 2 0 517 . 2 1 9 1 516 25 : l .bl2 . ; . 2 .L. 1 .51::S . . 2 7 1 3 . 28 : 2 : )5 . ..... . : Tot a l 98.60 96.60 8 7 7 3 lot e: . 20c.

PAGE 67

62 '11n.ble 6 C abulation of Adsor:ption Analyses \esul ts . . . 3. plo : G 133 G -133P '1-137 G-137-i . 1 rt. I . : '-1 '1. I ._,. . ,..i. I ,11. I 0 . . . . . . l : 5 .03 1 .4930: 5 .10 1 .4662: 5 .01 1 .4762: 4 .94 1 .4611 ..., 5 .14 1 .4910: v .35 1 461'3 : 5 .22 1 .4697: ;_;. 20 l .4b99 ..., 3 5 .43 l .4h70: s .12 1 .4597: 5 .24 1 .4700: 5 .'1.1 1 .4587 4 5 .45 1 .4790: 5 .18 l .4S90: 5 .17 1 .4720: 0 .12 l .4b89 5 5 .36 l 47GO: 5 .09 1 .4589: 5 .15 1 .4720: 5 .19 1 .4620 0 4 .87 l,.4?G4: 5 .01 1 .4601: 5 .10 1 .4814: 5 1.5 1 .4678 7 5 .22 1 .4782: 5 .00 1 .4658: 5 .26 1 .4892: 5 .02 1 .4744 8 5 .06 1 .4811: 5 .47 1 .4762: 5 .23 1 .4897: o .14 1 .48:":>0 9 b .17 1 .4843: 5 .02 l .4'798: 5 .11 1 : s .rn:, 1 .4889 10 4 .98 1 .4870: 5 .07 1 .4848: 5 .16 1 .5004: 1 .84 1 .4940 11 5 .48 1 .4892: 4 .?2 1 .4909: 5 .22 1 .5029: 5 .43 1 4~)97 12 t>.07 l 1arm: 4 .89 l .4~65: G .60 1 .5048: 5 .04 l .~023 1 0 b .1.:5 1 .4710: 4 6 1 .4998: 5 .29 1 .5084: b .08 1 .5070 14 5 3B 1 .4620: 4 2 1 .0004: G 41 1 .5108: J .11 l .51&2 15 5 .28 1 .4526: 3 6 1 .5031: 5 .32 1 .:)098: 4 .95 1 .5200 lo b .09 1 .4443: 2 8 1 .5065: 5 .02 1 .5128: 5 .47 1 .4968 17 8 .70 1 .4418: 4 0 1 .5032: 2 3 1 .5158: b .13 1 .4642 1 8 4 .98 1 .4397: 4 8 1 .5025: 3 8 1 5144: ..., 1 .4591 ..., .. IV 19 : 6 7 1 .3011: o 7 1 .5047: 1 .10 l .4'148 20 : 7 1 1 .5002: O 'JO 1 .4430 . . . . . .L'otal 96.76 98.82 96.31 99.06 :rote: 1i-R. I ., 4o0c .Hll others at 20c

PAGE 68

ble 6 D ul tion of' d ... orption n l es esults . ple . . o . : . : 1 5 1 171 : .04 1 .4970 2 1 150 .45 1 .480 ... . 3 ..). 1 124 6 .00 ri29 4 5 .17 1 .5028 4 9 1 72 . : 5 .32 1 .5050 4 3 .L. i 14.? 6 5 .17 1 .5008 0 1 .4793 . ? 5 .18 1 022 4 1 4 7"' . 8 5 .23 1 .'" \57 1 4 40 . 9 5 .41 1 .5069 4 .99 1 027 10 5 .14 1 .5090 4 9 80 11 5 .23 1 5 98 5 3 1 ..,01-12 5 .48 1 .5090 4 .97 1 .:1sa . 1 3 3 113 : 5 .27 l .vl69 .... 1 4 b O l 5~)22 4 .90 1 .5190 1~ . 1 1 .5133 .02 1 .5135 . 16 1 6 1 .4763 1 1 .5200 17 o 1 .4790 2 5 1 .~200 18 : 3 3 1 1 1 . 2 8 l .vl83 . 20 8 4 1 vl :3 : . ot 1 97.40 7 .38 .. ote: I 40

PAGE 69

64 Table 6 .. -.., Tabulation of .dsorption Lnalyses Results . . . Sc. .1ple G -125 G -128 G -134 . o . :J. ,;\. I ..... : 1 R I . ~.l R r . . : . . . 1 b .00 1 .5009 5 .00 1 .4510 5 .20 1 .499d . 2 5 .36 1 .4783 : 5 .16 1 .4508 5 .01 1 .4962 . 3 o .11 1 .4689 4 .94 1 .4506 .; .41 1 .4960 4. 0 .06 1 .4686 4 .83 1 .4504 5 .05 1 .4960 . 5 5 .14 1 .4686 5 .04 1 .4504 5 .11 l .49b0 . 6 4 .97 1 .4719 5 .21 l .4b02 5 .17 1 .4900 . 7 4 .96 1 .4760 5 .01 1 .4502 5 .70 1 .48 . 8 5 .06 l .4S41 3 .30 1 .4500 5 .04 l .48b0 9 5 .05 1 .4922 4 .91 1 .4539 .32 l 4f?78 . 10 5 .11 1 .4922 5 .05 1 .4631 5 1 2 1 .48 9 11 5 1.) 1 .5056 5 .04 1 .4780 b .16 1 .4920 12 5 .08 1 .5090 5 .08 1 .4937 5 .32 1 .4938 13 5 .36 1 .5188 b .17 1 .5100 : 5 .02 l .49b0 14 5 .10 l .5088 6 .10 1 .5113 5 .11 l .49G3 15 8 .80 1 .5050 5 .01 1 .5120 4 .90 l .49b3 . 16 4 .10 1 .5033 6 .10 1 .5152 4 .30 1 .. 5035 17 2 .60 1 .4978 G .50 1 .5158 5 .10 1 .5037 . 18 2 .80 1 [;274 4 .90 1 .5190 5 Ou 1 .5028 . 19 .:S.10 l .b300 2 .70 1 .5223 4 .50 1 .5022 20 4 .30 1 .5280 . 2 .70 1 .5022 . Total 96.95 99.05 99.27 11ote: {}H. I. 4o0c All others 20c.

PAGE 70

65 I HICA IT .J J es ubort ary 1 s born ove er 18, 1921, in e s r duate f o Victori Victoria, V r inia. chool in une, 1938, d ntere the Vir n olytec nic Inst tute in opt mber oft at your. He as r du tod th honors in June 19 2 r ceiv n the Bachelor o f 'cience in Cho :cl n ineerin do re. fter radu tion he served s an orrcor ith tho .nti-ircraft ,illery of .e r_ y of tl o nl te St tes in th outh est c l i c The tre. Upon return to inactve duty, he entered the gr du to s cnool of the Vlr ini &olytcchnic nstitute in ctober, 1945, an ras r nted tl o e ree ~ster of v cionc e in Che _cal n ineerin in optomber, 1946. Upon r du tion, he beca e c loyed int e e chnical ~ervic e Division 01 t e t ndurd 011 Co pany ( Ohlo) t Cleveland, hio. n ete .ber, 19~ , 10 enterc ni t school at t e Case nst tuto 0 ec nolo y und continued 1ls r d te studes t &ere u til June, 1949. In ept ber, 194 e as ranted a leave o abse co from the tandard i l Co pany ( .lo) nd enterc the Univorgity of Florid to undertale r du te studies lcdin to the de re of Doctor of i lsop y e 1s e ber of hi L bd Ups lon, hi Kap o. hi, u B t 1 i nd th erican Chomica.l oc ty, a junior ber of tho oric n Institute of Che ic 1 neers, n soci te me ber of Jim 1 nd tared ro ssion in r n t t te of h.:.o

PAGE 71

66 1his dissertation as prepared under the direction of the c_airman of the candidLtes Supervisory Co,u.lttee and has been approved by all members oft. e Committee. t v;c...s sub 1 tted to the -raduate vouncil and was approved as partial fulf:lll ent of the :require ents for the .:ie 6ree of octor of J?hilosophy. 'O ~rT ()J.B.~ Chairman (J ,f/~_r~ Dean

PAGE 72

ENGINEEAINC!i SC r C ES V UNIVERSITY OF FLORIDA II I II IIIIII Ill I ll lllll l llll I I IIIIII I III I I llll l lll 1 11111111111111 3 1262 08553 7784