Citation
A variable-order nonlinear programming algorithm for use in computer-aided circuit design and analysis

Material Information

Title:
A variable-order nonlinear programming algorithm for use in computer-aided circuit design and analysis
Added title page title:
Computer-aided circuit design and analysis
Creator:
Jimenez, Alberto Jose, 1944-
Publication Date:
Language:
English
Physical Description:
xii, 282 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Algorithms ( jstor )
Approximation ( jstor )
Boxes ( jstor )
Error rates ( jstor )
Function values ( jstor )
Iterative methods ( jstor )
Local minimum ( jstor )
Scalars ( jstor )
Subroutines ( jstor )
Trajectories ( jstor )
Algorithms ( lcsh )
Nonlinear programming ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Includes bibliographical references (leaves 276-281).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Alberto José Jiménez.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000178214 ( ALEPH )
AAU4719 ( NOTIS )
03114162 ( OCLC )

Downloads

This item has the following downloads:


Full Text








A VARIABLE-ORDER NONLINEAR PROGRAMMING ALGORITHM FOR
USE IN COMPUTER-AIDED CIRCUIT DESIGN AND ANALYSIS











By
Alberto Jose Jimenez


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY










UNIVERSITY OF FLORIDA

1976


L






















To Judy















ACKNOWLEDGEMENTS


The contributions and patience of the chairman of the committee,

Dr. S.W. Director, are gratefully acknowledged. Without the grant from

IBM, it would have not been possible for this researcher to afford the

pursuit of this research; in particular, I thank P.C. Reder, of the

General Systems Division of IBM at Boca Raton, Florida, for his un-

selfish help and support. Interactions and many lively discussions

with graduate students D. Fraser, M. Lightner and W. Nye also contributed

to this research. Finally, but by no means in a lesser manner, the sup-

port of my family, my wife,Judy, andour daughters, contributed in a very

important way and with some great sacrifices throughout the entire period

at the university.

I thank Adele Koehler for her self-evident superb typing of the

manuscript.

I gratefully acknowledge the constructive criticisms of Dr. A.E.

Durling, Dr. A. Paige, Dr. C.V. Shaffer, and Dr. A. Westerberg, who with

Dr. S.W. Director constituted the examining committee.















TABLE OF CONTENTS


Chapter

ACKNOWLEDGEMENTS . .

LIST OF TABLES . .

LIST OF FIGURES . .

LIST OF SYMBOLS . .

ABSTRACT . .

1. INTRODUCTION . .

2. A VIEW OF COMPUTER-AIDED CIRCUIT DESIGN. .

2.1 Nonlinear Programming Circuit Problem .

2.2 Derivation of the Gradient. .

2.3 Computational Flow. . .

2.4 Review of Unconstrained Minimization. .

3. THE VARIABLE-ORDER ALGORITHM FOR UNCONSTRAINED
MINIMIZATION . .

3.1 Properties of Minima. .

3.2 Principal Steps in a Minimization Algorithm .

3.3 Variable-Order Transformations .

3.3.1 Approximations of Higher-Order Corrections .

3.3.2 Transformation Order Selection .

3.4 The Scalar Search . .

3.4.1 Iterations Close to x .

3.4.2 Iterations Far from x .

3.5 Hessian Singular or Negative Definite .


Page

iii

viii

x

xi

xii

1

5

5

8

12

16


20

23

28

33








TABLE OF CONTENTS
(continued)


Chapter


3.5.1 Murray's Procedure .

3.5.2 Proposed Modification to Murray's Procedure .


3.5.3 Illustrative Example..


Page

59

62

65


3.5.4 Computation of High-Order Corrections .... .66

3.6 Convergence of the VO Algorithm. ... 68

3.6.1 Global Convergence. ... 68

3.6.2 Order of Convergence. ... 78

3.7 Summary. . 81

4. IMPLEMENTATION OF THE VARIABLE-ORDER ALGORITHM. ... 82

4.1 Nonlinear Inequality Constraints ........... 84

4.2 Box Constraints. . .. 86

4.3 Hessian and Gradient Approximations. ... 87

4.3.1 Function and Gradient Values Supplied .... .89

4.3.2 Only Function Values Supplied ... 94

4.4 Supplied Function and Gradient Values with Errors. 98

4.5 The Variable-Order Algorithm .... 102

4.6 Numerical Results. . ... 119

4.6.1 Rosenbrock's Problem. ... 120

4.6.2 Powell's Problem. ... 124

4.6.3 Fletcher and Powell's Problem ... 126

4.6.4 Wood's Problem. ... 127

4.6.5 Cragg and Levy's Problem. ... 132


4.6.6

4.6.7


Comparisons with Seven Minimization Algorithms.

Example with Nonlinear Constraints .








TABLE OF CONTENTS
(continued)


Chapter


Page
4.6.8 Example with Box Constraints ....... 143

4.6.9 Example with Errors in the Supplied Function 145
and Gradient . .
148
4.6.10 Simple Circuit Optimization Example .. ..

4.6.11 MOSFET Nand Gate Circuit Optimization Example. 151

4.6.12 Power Supply Regulator Circuit Optimization
Example. . .. 156


4.7 Summary . .

5. APPLICATION OF THE VARIABLE-ORDER CONCEPT TO CIRCUIT
ANALYSIS . .

5.1 Approaches in Finding a Solution .

5.1.1 Equivalent Unconstrained Minimization Problems.


5.1.2 Iterative Methods .

5.2 Infinite Series Representation of a Solution .

5.2.1 A Class of Iterative Methods ...

5.2.2 The Variable-Order Iterative Method .

5.3 The VO Iterative Method in Transient Analysis..

5.3.1 MOSFET Nand Gate Example .

5.3.2 MOSFET Buffer Examples .

5.3.3 ECL Gate Example .

5.4 The VO Iterative Method in DC Analysis .

5.5 Summary ... .

6. CONCLUSIONS AND FUTURE RESEARCH SUGGESTIONS .

6.1 Conclusions .. ..

6.2 Future Research Suggestions .

APPENDIX I. DESCRIPTION OF COMPUTER PROGRAM IMPLEMENTING THE
VARIABLE-ORDER ALGORITHM. .


170

S. 172

173

S. 176

. 187

. 191

. 192

196

200

202

204

. 204

S. 208


. 210








TABLE OF CONTENTS
(continued)

Chapter Page

I.1 Using the Program. ... ......... .210

1.2 Description of the Program .. 217

1.3 Listing of the Program ................ 222

REFERENCES . ... 276

BIOGRAPHICAL SKETCH . ... 282















LIST OF TABLES


Table Page

4.1 Results for Rosenbrock's problem ... .121

4.2 Results for Powell's problem .... 125

4.3 Results for Fletcher and Powell's problem. 128

4.4 Results for Wood's problem .. 130

4.5 Results for Wood's problem, initial guess near saddle
point. . ..... 131

4.6 Results for Cragg and Levy's problem. .133

4.7 Summary of results for five problems with reduced
accuracy . 136

4.8 Comparative results of VO algorithm with seven other
algorithms. ... . .137

4.9 Results for illustrative constrained problem .. 140

4.10 Results for constrained problem solved by a sequence
of problems. . 142

4.11 Results for Rosenbrock's problem with random errors in
the function and the gradient. ... 147

4.12 Results of optimization of nand gate .. 157

4.13 Tabular description of two current sources .. 161

5.1 Comparative results of transient analysis for nand gate. 193

5.2 Comparative results of transient analysis for 9-device
MOS buffer . ... .... 197

5.3 Comparative results of transient analysis for 18-device
MOS buffer . ... .... 197

5.4 Comparative results of transient analysis for ECL gate 199

5.5 Comparative results of transient analysis for ECL gate
with capacitances multiplied by 103. 199


viii











LIST OF TABLES
(Continued)


Table Page

5.6 Comparative results of dc analysis for ECL gate ..... 203

5.7 Comparative results of dc analysis for 18-device MOS
buffer. . ... ...... 203















LIST OF FIGURES


Figure Page

3.1 Flowchart of a portion of the scalar search step of the
VO algorithm. . ... ..... 53

4.1 Illustration of projection of trajectory onto box con-
straints ................... ...... 88

4.2 Trajectories for the second-, third-, and fourth-order
transformations at x0 = (-1.2, 1)T for the minimization
of Rosenbrock's function ................ 116

4.3 Plot of f(h (p)) vs. p ................. 118

4.4 Trajectory of VO algorithm for the minimization of
Rosenbrock's function ... 123

4.5 Simple circuit to test and compare the VO algorithm 149

4.6 Two-input nand gate optimized .... 152

4.7 Power supply regulator optimized ............ 158

5.1 Nine-device MOS buffer circuit analyzed ... 194

5.2 Eighteen-device MOS buffer analyzed ............ 195

5.3 ECL gate analyzed . .. .. 198

1.1 Example of subroutine to supply the function, the gradient
and/or the hessian to the VO algorithm. ... 212

1.2 Typical setup for executing the VO algorithm in an IBM
computer with standard catalog procedures ... 214














LIST OF SYMBOLS


x

x



IIy II




T




f'(x)
' 'W



[f'(x)].

f"(x)

[f"(x) 1.
% 1J


f"(x) -

f"'(x), (x),

F(x), F'(x), F"(x),..


-1
F' (x)

1
',
0
nu


A column vector in R with components x..

Each component of the vector x is less than the

corresponding component of the vector y.

Any norm of the vector y.

The maximum norm of the vector z, equal to

max[y ].

The transpose of the vector y, the result being

a row vector, or the transpose of a matrix y.

The column vector first derivative of f(x), the

transpose of the gradient.

The jth component of the gradient, af(x)/ax..

The second derivative of f(x), the hessian.

The (i,j)th component of the hessian,

82f(x)/ (axiSx.).

The inverse of the hessian matrix of f(x).

The third and fourth derivative tensors of f(x).

A vector function and its derivatives (F'(x) is
r u
called the Jacobian).

The inverse of the Jacobian matrix of F(x).

Unit diagonal matrix of appropriate dimension.

Zero vector or zero matrix of appropriate

dimension.

The time derivative of the variable q.








Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy


A VARIABLE-ORDER NONLINEAR PROGRAMMING ALGORITHM FOR
USE IN COMPUTER-AIDED CIRCUIT DESIGN AND ANALYSIS

By

Alberto Jose Jimenez

June, 1976

Chairman: Stephen W. Director
Major Department: Electrical Engineering

An iterative algorithm, called the Variable-Order (VO) algorithm,

is derived for computing a local minimum of a nonlinear function of

several independent variables. The VO algorithm is shown to be very

competitive with several existing algorithms. The class of functions for

which the algorithm is globally convergent is established. It is shown

that the VO algorithm converges with order as high as four. A major

step of the algorithm is the solution of a scalar problem that may be

along curved trajectories in the space of the independent variables, in-

stead of along straight lines as in most existing algorithms. Approxi-

mations to required higher-order derivatives are given which allow the

use of the VO algorithm even if only function values can be supplied. If

the supplied function and gradient values are somewhat inaccurate, as is

often the case in computer-aided circuit optimization procedures, the VO

algorithm is shown to be still effective. The algorithm may be used to

compute a solution of a general nonlinear programming problem by the use

of penalty functions.

Special cases of the VO algorithm are used to develop an iterative

method to solve nonlinear equations that arise in circuit analysis with

resulting modest improvements in efficiency. The new method is applied

to transient and dc analysis of nonlinear MOSFET and bipolar circuits.















CHAPTER 1

INTRODUCTION



It has been nine years since publication of the first, by now

almost classical, special issue of the Proceedings of the IEEE [57] on

computer-aided design of circuits. That issue marked the beginning of

a trend to use the computer as an active partner in design rather than

simply in a passive role for simulation. The circuits at that time

might be described as being in the infancy of integrated electronics.

The most complex integrated circuit chip might have consisted of ten

devices; it was still somewhat feasible to use breadboarding techniques

as aids in the design.

During the ensuing nine years, several more journals have been

devoted to the subject of computer-aided design of circuits, among them

[58-61], and integrated electronics has matured to the point where large-

scale integrated circuits which contain thousands of devices can be

manufactured. Breadboarding of circuits has generally ceased to be very

useful as a design tool, and the computer has become indispensable in

the entire design process. The computer is being used at many stages,

and for many different purposes, during the design of circuits. We will

be concerned with the use of the computer to optimize a circuit by vary-

ing some designable parameters in order to achieve the design objectives.

In circuit optimization, a scalar performance function representing

the design objectives is minimized. There are two principal computation-

al steps in this procedure. First, a numerical minimization algorithm









must be employed to adjust the designable parameters in order to mini-

mize the scalar performance function. Minimization algorithms begin

from an initial point, a guess to the optimum set of designable para-

meters, to generate a sequence of points which hopefully converges to

the minimum of the scalar performance function. Most minimization

algorithms require the numerical values of the performance function and

its gradient with respect to the designable parameters evaluated at

several points during the minimization procedure. The number of func-

tion and gradient evaluations required is generally proportional to the

computational cost of the minimization.

Second, the evaluation of the scalar performance function and its

gradient generally involvesanalysis of the circuit equations, a rather

large set of nonlinear algebraic and differential equations. The large

number of circuit equations is not only due to the increased circuit

size, but also due to the use of more complex device models for improved

accuracy.

The goals of this research were to improve the efficiency of the

two computational steps described above. The major accomplishments were

the derivation of a very promising new minimization algorithm, and a new

iterative method to solve the nonlinear algebraic equations that arise

in the analysis of circuits.

The main contribution of this research is the development of a new

minimization algorithm. Although the new algorithm has some short-

comings, numerical results on several examples show that it is quite

accurate, and more efficient than other existing algorithms for the

majority of the examples tried. From a theoretical standpoint the algo-

rithm has two novel new features: 1) it has a variable order of









convergence up to order four, and 2) it has a novel scalar search at

each iteration which may be along curved trajectories in the space of

the independent variables.

A second contribution of this research is an iterative method for

solving the nonlinear equations that arise in the transient analysis of

the circuit equations. Modest improvements in efficiency were obtained

when the new iterative method was implemented in an already very effi-

cient transient analysis program.

Other minor contributions can be summarized as follows:


1) A potentially useful Taylor series expansion of the solution

point of a system of nonlinear equations. Different forms of

the series, when truncated, yield different iterative methods.

An iterative method was used to obtain dc solutions of the cir-

cuit equations.

2) A modified Cholesky factorization of a symmetric matrix, the

hessian, which in effect modifies the matrix when it is not

positive definite. The new factorization is a modification of

a previously proposed technique [36].

3) An apparently novel scheme for computing difference approxima-

tions to first and second derivatives, the gradient and the

hessian. The scheme automatically takes into consideration

errors that may be present in the function values that are used

in the difference approximations.

4) A new method of describing minimization algorithms to account

for other than straight-line directions of search. Existing

theorems are extended to the new description.









The organization of the chapters is the following. In Chapter 2

we offer a brief theoretical and computational view of computer-aided

circuit design. In that chapter a brief historical review of minimiza-

tion algorithms is also given. In Chapter 3 the new minimization

algorithm is derived and its theoretical properties are established.

In Chapter 4, implementation of the new algorithm is described. In

addition, several examples and comparisons with other algorithms are

reported. In Chapter 5 the concepts used in the derivation of the mini-

mization algorithm are used to derive iterative methods for finding

solutions to nonlinear equations. Finally, Chapter 6 offers general

conclusions and some suggestions for further research.















CHAPTER 2

A VIEW OF COMPUTER-AIDED CIRCUIT DESIGN



A successful approach in using the computer as a circuit design

tool has been to minimize a scalar performance function, which repre-

sents the design objectives, by adjusting in some suitable fashion the

designable parameters. This procedure requires many steps which will

be briefly outlined in this chapter.

The first step in using optimization for circuit design is to

recast the problem into a nonlinear programming problem by character-

izing the qualitative design objectives by a scalar performance function

with constraints. This step is quite heuristic and requires great

insight on the part of the circuit designer. After this initial step,

the computer takes over by approximating the solution of the nonlinear

programming problem.

The derivation and the computational steps involved in the evalua-

tion of the scalar performance function and its gradient, needed for

solving the nonlinear programming problem, will be briefly outlined.

The chapter ends with a brief historical review of existing methods for

solving the unconstrained minimization problem which results from the

nonlinear programming problem.



2.1 Nonlinear Programming Circuit Problem


Although there havebeen some fairly successful attempts at synthesis,


-5-









where a circuit is "grown" to meet specifications [43,6], it may be

safely stated that this problem has not been solved satisfactorily.

Thus it will be assumed that a circuit which somewhat adequately meets

the design objectives is available, e.g. from a catalog of circuits. It

is then desired to change parameters of this circuit to improve its in-

tended objective.

The design objectives of a circuit are usually specified in a

somewhat qualitative manner. Some of the objectives are to minimize

certain quantities, such as power dissipation, time delays, circuit size,

or minimizing the difference between a desired voltage or current curve

with the actual curve. Other objectives may be described as constraints

on the solutions or on the designable parameters, such as voltage or

current levels less than (or greater than) some value, propagation

delays no larger than some value, low and high limits, called box con-

straints, on the designable parameters, etc. It is the circuit design-

er's job to translate the usually unspecific design objectives into a

set of specific scalar functions. Often this specification step yields

several scalar functions to be minimized, several constraint functions,

and box constraints on the designable parameters.

Most circuit optimization programs require that all the scalar

functions to be minimized be combined in some manner to obtain a single

scalar performance or objective function to be minimized. The simplest

technique for accomplishing this combination is to choose a performance

function which is a weighted sum of all the functions to be minimized.

The general form of such a performance function is


T
f = f e(w, q, x, t) dt (2.1)
to





-7-


where w is a vector of branch voltages, branch currents and node volt-

ages of the circuit; q is a vector of capacitance charges and inductor

fluxes; x is the vector of time-independent designable parameters, e.g.

geometries of each device in the circuit; and t is time. The scalar

function e represents a numerical compromise of the design objectives

in that a different combination of the functions to be minimized yields

a different function e, and thus a different minimization problem. As

published applications have shown [28,12,5], this numerical compromise

implies that circuit design carried out in this manner may require

several minimizations to achieve the best design, as interpreted by the

circuit designer.

The minimization of (2.1) must be carried out subject to the circuit

designer constraints and subject to the circuit equation constraints,

which is a nonlinear programming problem. This problem may be described

as follows


T
minimize f(w, q, x) = f e(w, q, x, t) dt (2.2a)
w,q,x I t Io



subject to u(w, x, t) < 0 (2.2b)


L H
x < x < x (2.2c)


H(w, x, t) = 0 (2.2d)


E w- = q(t) = () (2.2e)



where (2.2b) are the designer's nonlinear constraints, (2.2c) are the

box constraints, and (2.2d) with (2.2e) represent the circuit equations.









The circuit equations, which can also be expressed by



H(w, q, x, t)

F(w, q, t) = w = 0, q(0)=q(x) (2.3)
E w q




where the initial conditions q0(x) may be functions of the designable

parameters, consist of Kirchhoff-laws equations and the branch consti-

tuitive equations [15,17].

The box constraints (2.2c) are usually handled by transformations

[8], or directly as done by the algorithm to be given in Chapters 3 and

4. The nonlinear constraints (2.2b) are usually made part of the e

function in (2.2a) by using penalty functions as described in Chapter 4.

Therefore we will discuss the numerical and theoretical considerations

in solving the problem given by


T
minimize f(w, q, x) = f e(w, q, x, t) dt (2.3a)
w,q,x 0


subject to H(w, q, x, t) = 0 (2.3b)


E q q = 0, q(0) = q (x) (2.3c)



where without loss of generality tO = 0 is assumed.



2.2 Derivation of the Gradient


Any solution of (2.3) must satisfy the necessary condition that the

first variational (or gradient) or the Lagrangian vanishes [8,29]. The





-9-


Lagrangian is given by


T
L(w, x, w, ) = [e(w, %, x, t) + w H(w, q, x, t)
i0 % 'VIU 'V %


+ qT(Ew q)] dt (2.4)



where w(t) and q(t) are the Lagrange multiplier vectors which are func-

tions of time. The first variational of L is given by


T 8H
6L = J + w + T E) 6w dt +
0 '1 6,

T 9H T
T e ^+T a T -T
S(- + + 6q dt 6q +
( Tq FU uX


T T
o + -%) 6x dt +


T T
f Sw H dt + f 6 (E w ) dt ,(2.5)
0 Q 1 0 I



where the variational term in (2.4) involving j is obtained using in-

tegration by parts as follows


T T T
6(f q dt) = -f qT q dt f T 6q dt
0 0 1 0

T T TT
= -f S6q dt+J q 6qdt-q 6q (2.6)
0 0 0


In order to satisfy the necessary conditions one must find time-dependent





-10-


*()* *
vectors w (t), q (t), w (t), and q (t), and a time-independent vector

x to satisfy
q,


6L = 0


(2.7)


The problem of satisfying (2.7) normally has an extremely large

dimension. The dimension can be reduced substantially if one makes two

assumptions. First, if the circuit equations can be satisfied at all
k k k
values of x, then given an x = x we can obtain w (t) and (t) such
that the circuit equations
that the circuit equations


H( t) =0 ,



k -k k k
E w .- =, (0) = W(x


are satisfied. Second, if the

tions given by


k
J =


3H

aw


aHk
aq
0.


Jacobian operator of the circuit equa-









(2.9)


is invertible in the interval 0 < t < T, then the Lagrange multiplier
k k A
vectors w (t) and q (t) can be computed from


k k
T aH T aH k
-k ^k ae
w + w a (2.10a)
w aq aw
114 nj r.


(2.8a)



(2.8b)





-11-


T T k
k d -k e k
w E --q = q (O) = 0 (2.10b)



k nk
where t = T t (note that q (t= 0) = q (t=T)). The equations in

(2.10) may be written in matrix form as follows


MHk aHk T ekT
'Ik Ve
aw qv aw

(2.11)

k1
E -1 I ae
dt



which can be solved because of the second assumption. Observe that the

solution to (2.11) is carried out in t, where E = T t, which is back-

wards in the original time variable. These two assumptions are reason-

able since the designable parameters are normally constrained by the

box constraints, so that an actual physical circuit is always obtained,

and therefore the circuit equations should always have a solution.

With the preceding two assumptions, using (2.8) and (2.10), the

variational 6L in (2.5) at x = x becomes
'V, '

6Lk
k eT k Ta k kT k
S= + -- 6x dt + q (0) 6q (0) (2.12)
0 I ,


This variational may be expressed as the gradient with respect to x

evaluated at xk by


k k
k T k T 9Hk T @qk(0)
aL a + dt + (0) (2.13)
f 0 v (0). n'
lu 0 ru %





-12-


since x is not a function of time. This expression implies that the

problem has been reduced in dimension. We can now use any unconstrained

minimization algorithm which would vary only the designable parameters

by using function and gradient values of the Lagrangian now effectively

a function of only x.



2.3 Computational Flow


Most iterative minimization algorithms require that an initial

guess to the solution point be given, and that the values of the func-

tion and the gradient be supplied to the algorithm at points generated

by the algorithm (the next section and Chapters 3 and 4 offer a more

detailed description of minimization algorithms). Thus at any value of
k
x = x given by the minimization algorithm, one must supply L and the
k
gradient of L with respect to x, both evaluated at x = x Using the

derivation in the preceding section, the computational flow will be

described now. For notational convenience, the superscript k will be

dropped.


STEP 1. Determine q(0). These are the initial conditions. There

may be three possibilities, 1) q(0) = q0, where ~q is a

constant vector; 2) q(0) = q0, where 0 is part of the

designable parameters as in a periodic steady state problem

[13]; and 3) q(0) is computed from a dc analysis of the

circuit equations. That is, q(0) and w(0) satisfy



H(w(0), q(0), x) = 0 (2.14a)

E w(O) = 0 (2.14b)





-13-


In Chapter 5, dc analysis is discussed further where a

new algorithm is given.

STEP 2. Compute an approximation to w(t) and q(t) by a transient

analysis from t = 0 to t = T of the circuit equations to

satisfy



H(w, q, x, t) = 0 (2.15a)


E w 0 (2.15b)



with q(0) obtained from STEP 1. In this transient anal-

ysis, the value of the Lagrangian (2.4) can be computed,

which due to (2.15) is now given by

T
L = f e(w, q, x, t) dt .(2.16)



Transient analysis of the circuit equations is described

in more detail in Chapter 5.

STEP 3. Compute an approximation to the Lagrange multipliers w(t)

and q(t) by a transient analysis from t = T t = 0 to

t = T t = T (i.e., t running backwards) to satisfy


aH aH
-T ^T 2. ae
w +q (2.17a)
a 2w Dq aw
'b 'b ru

T d ^T 3e
w E- q = (2.17b)
dt



with q(t = 0) = 0. In this transient analysis, compute

the vector




-14-


T 8H
(DY e T )T dt (2.18)
l> 0 ru n



which is the dynamic portion of the gradient (see (2.13)).

STEP 4. Compute the equilibrium portion of the gradient given by


DL _T aq(0)
(aEQ = (0) ax (2.19)


The initial conditions q(0) are determined by one of the

three possibilities outlined in STEP 1. The value of

(2.19) therefore has also three possibilities, 1) if

q(O) = q0, where q0 is constant, then the term (2.19) is

zero; 2) if g(0) = %0, where q0 is obtained from a subset

of the designable parameter vector [1,16], that is, if


(xd T0
% 0u

with q(0) = 0 then



= (0, T (t= 0))
axEQ 'S 0


in this case; and 3) if q(0) is computed from a dc anal-

ysis satisfying (2.14), then this term requires additional

work. Differentiating (2.14) with respect to x, and ex-

pressing the result in matrix notation yields

aH aH aw(o) aH
aw aq ax ax

(2.20)
aq(0)
E 0
rL q- L J L





-15-


which is a matrix-matrix linear equation. Since we want

(2.19), if the system


-T -T
(w


E
L 1'I


aH
= (0 (0))



0
lu _


(2.21)


is solved for

both sides of

we obtain


the vectors w

(2.20) by (
(2.20) by (W


ax


8q(0)
ax


and q, then after multiplying
T), and using (2.21),
g ), and using (2.21),


=-T -T
(w q
nu 'x,


aH
ax
'0


0
O


which yields


aL aq(0) aH
3T nu IU
(Txax ax
"U I,


(2.22)


Now the entire gradient is giveanby



aL _dat rL 3L
ax DY (xEQ



This four-step procedure has been implemented in a general circuit

optimization program [27] with excellent results. Recently, it was

shown how the performance function (2.3a) can be made more useful by

the use of the event functional [5] which allows the inclusion of time

quantities, such as time delays, within the entire procedure.





-16-


Clearly this entire procedure can be computationally very costly.

Each function evaluation requested by the minimization algorithm requires

a transient analysis of a system of nonlinear algebraic and differen-

tial equations,and a transient analysis of a system of linear time

varying algebraic and differential equations is additionally required

for the gradient. It is therefore essential that 1) the minimization

algorithm used be extremely efficient requiring a small number of func-

tion and gradient evaluations to obtain the minimum, and 2) the entire

four-step procedure outlined above must be very efficiently implemented.

Due to the previously mentioned heuristic procedure of generating the

scalar performance function, this entire design procedure is manually

iterative thus emphasizing the need for overall efficiency.



2.4 Review of Unconstrained Minimization


Powell recently observed that in the last several years most of

the useful work in the area of unconstrained minimization has been in

understanding, improving and extending existing methods rather than

devising new algorithms [41]. Indeed most, if not all, minimization

algorithms can be described as first computing a direction of search

from the current estimate to the solution and then obtaining the next

point along this direction. That is, if the unconstrained minimization

problem is expressed by



minimize f(x)
x



most algorithms, at the kth iteration, first compute a direction of





-17-


k
search, represented by a vector d by using the values of the function
k k+1
f(x ) and perhaps some of its derivatives. Then the next point x is

obtained by searching along this straight line in some manner to yield#



k+l k k
x = x +p d



where pk is a scalar often called the step-length. Thus, most existing

minimization algorithms have two principal steps in each iteration:

choosing the direction of search, and the scalar search along this

direction to obtain a suitable step-length pk'

The direction of search is one of the differences among algorithms.

The oldest minimization algorithms are 1) steepest descent, where the

direction of search is in the direction of the negative gradient;

2) coordinate descents, where the direction of search is along each

coordinate direction, i.e., one variable is adjusted at a time; 3) New-

ton's method, where the direction of search is the product of the

inverse of the second derivative matrix, the hessian, and the negative

gradient [34]. The most robust of these algorithms is steepest descent

which converges with order one, while the fastest is Newton's which

converges with second order for most functions. For this reason, from

1959 to the present, much of the activity in the area of unconstrained

minimization algorithms has been to devise techniques that approach the

speed of Newton's method without its disadvantages, in particular its

requirement of the hessian matrix.

Davidon [14] in 1959 published an algorithm which uses only gradient

information to in effect build an approximation of the hessian inverse

as the algorithm progresses towards the solution; thus the method

Note that subscripts will be used for scalars.





-18-


approaches Newton's method after a number of iterations. Davidon's

method, which is based on hessian conjugate directions, gave birth to

a very large number of algorithms generally called quasi-Newton algo-

rithms [22,23,7,34].

A characteristic of the earlier quasi-Newton algorithms was that

the scalar search to compute pk had to solve the scalar minimization

problem



minimize f(xk + p d
p


very accurately. The accurate solution of this problem is quite costly

computationally as many researchers have shown [46,34]. The elimination

of the requirement to solve this scalar minimization problem accurately

was the principal motivation for many of the latest quasi-Newton algo-

rithms [21,7,12], although some researchers were additionally motivated

by deriving algorithms which required only function values [40,49,12].

The amount of information about the function which must be supplied

to minimization algorithms has been a motivation for the development of

many new algorithms. The general tendency in deriving algorithms, since

Davidon's classical contribution [14], has been to account for the

hessian without having it supplied; i.e., making sure an algorithm would

be efficient for quadratic functions. On the other hand, the new mini-

mization algorithm developed in the next two chapters has the property

of in effect accounting for even higher derivatives without having them

supplied.

The new algorithm requires that the function and the first two

derivatives, the gradient and the hessian, be supplied. The effect of





-19-


the third and fourth derivatives is approximated from values of the

first two derivatives. The algorithm offers several new novel ideas

to the area of unconstrained minimization such as a variable order con-

vergence as high as four and a novel scalar search that may be along

curved trajectories. Thus the new algorithm does not compute a direc-

tion of search which is always a straight line as most existing algo-

rithms do.

In circuit optimization procedures, as was shown, the function and

the gradient can be computed requiring only first partial derivatives

of the circuit equations and the performance function. The hessian

would require second partial derivatives of the circuit equations which

in general are very difficult to derive and would require a large number

of operations to handle (for linear circuits the second partial deriva-

tives are zero and thus the hessian can be evaluated in a straightforward

manner as done in [54] for a Newton-like minimization algorithm). For

this reason, in Chapter 4 we describe a difference scheme which is

built-in the new algorithm to approximate the hessian, thereby allowing

the use of the new algorithm by supplying it with only function and

gradient values.
















CHAPTER 3

THE VARIABLE-ORDER ALGORITHM FOR
UNCONSTRAINED MINIMIZATION



In this chapter a new algorithm, called the Variable-Order (VO)

algorithm, is proposed for finding a solution to the unconstrained

minimization problem



minimize f(x) (3.1)
x



n n
where f is a real-valued nonlinear function, f:E -+ E, and x E .
'u
The equivalent maximization problem is also included in (3.1) since



maximize f(x) = minimize f(x)
x x
'1 'I



Solution of the unconstrained minimization problem is not only im-

portant in its own right, but as will be seen in Chapter 4, solution

of the unconstrained problem is central to the solution of the con-

strained minimization problem which often arises in computer-aided

circuit optimization procedures.

There are several existing algorithms designed to solve (3.1).

These algorithms are all iterative, that is, beginning from an initial
0 k
estimate of a solution x a sequence {x } is generated which under
'u Il


-20-





-21-


certain conditions converges to a solution x of (3.1). The exact

solution x is rarely obtained in a finite number of iterations, but

if the sequence has a high order of convergence the solution can be

approximated closely in a finite, and hopefully small number of iter-

ations. Therefore, a desirable property for a minimization algorithm

is that it generates convergent sequences with a high order of con-

vergence.

If an algorithm generates convergent sequences from any initial

point x it is said to be globally convergent. It will be shown

that the VO algorithm is globally convergent for pseudoconvex [35]

functions that are twice continuously differentiable. Moreover,

numerical experiments indicate that the VO algorithm is able to effi-

ciently compute minima of some functions not satisfying these condi-

tions.

If an algorithm has a high order of convergence, reasonable

accuracy might be expected when the algorithm is stopped after several

iterations. The order of convergence of an algorithm may be defined

by a value r such that



k+1 k 11r
11x x II < c 1 x x II ,



where 0 < C < m is a constant called the convergence ratio. Observe
k k+l
that if the distance lIx x II is sufficiently small, x will be

much closer to x for large r. Most algorithms have orders of con-

vergence equal to two or less. For example: steepest descent con-

verges linearly (r = 1), the conjugate gradients algorithm of Fletcher






-22-


and Reeves converges linearly but with a smaller convergence ratio

than the convergence ratio of steepest descent, and the quasi-Newton

algorithm of Davidon, Fletcher and Powell approaches second-order

convergence [34]. It will be shown that the VO algorithm has up to

fourth-order convergence.

The definition of the order of convergence implies that the

higher the order the faster a solution is approached provided that
k
the point x is sufficiently close to the solution. Thus while a

high order of convergence algorithm is desirable when in a small

neighborhood of x previous studies generally indicated that when
k *
x is far from x a lower order algorithm was more efficient [30].

In fact the very popular class of algorithms called quasi-Newton

algorithms have the property of being linearly convergent initially

and becoming essentially second-order as the solution is approached

[34]. The VO algorithm automatically adjusts its order at each

iteration, generally selecting the order which allows the most pro-

gress towards the solution. The numerical results to be given in

the next chapter show that the VO algorithm is more efficient than

most existing algorithms.

The first section of this chapter reviews some of the existing

theory associated with solution points of (3.1). The second section

discusses the two major steps of a minimization algorithm: the trans-

formation step, and the scalar search step. The new techniques being

introduced for the VO algorithm are compared with the techniques of

previous algorithms in this section. The theoretical derivation of

the algorithm is presented in the third through the fifth sections.

Although the character of these three sections is theoretical, several






-23-


numerical and practical considerations are discussed. The sixth

and final section establishes the conditions for global convergence

of the VO algorithm and its order of convergence.



3.1 Properties of Minima


The problem to be solved is given by



minimize f(x) (3.2)
x



n *
where f:E -+ E. Let x be a solution, then if



f( ) f(x) (3.3)




for all possible x, the point x is called a global minimum. If
f *
(3.3) holds in a small neighborhood about x then the solution x

is called a local minimum.

One usually would like to determine the global minimum of (3.2).

However one must in general be content with a local minimum because

a global minimum can only be identified if all minima are obtained,

or if the function is assumed to have a convexity property (in which

case all minima are global [34]). In contrast, local minima are

identified under less stringent conditions on the function. The

following theorem establishes these conditions.


Local Minimum Theorem. Let f:En E and suppose that the first

derivative f'(x), the gradient of f, is continuous, and that the
lb "'






-24-


second derivative matrix f"(x), the hessian of f, exists at x If

x is a local minimum of f, then


1) f'(x) = 0 ,



and


2) f"(x ) is positive semidefinite.



Conversely, if


1) f'(x = 0



and


2) f"(x ) is positive definite,



then x is a local minimum of f.



The proof is straightforward [34, 38], and it will not be repeated

here. Note the subtle but significant difference between the neces-

sary and sufficient conditions.

Most local minima are strict local minima. A strict local

minimum solution x is defined by


*
f(x + y) < f(x ) (3.4)




for all y # 0 such that x + y is in some neighborhood about x

The following theorem plays an important role in the test for con-

vergence of the proposed algorithm.





-25-


Strict Local Minimum Theorem. Let f:En -+ E have a continuous
*
hessian in some neighborhood about x Then the point x is a strict

local minimum of f if and only if both f'(x ) = 0, and there exists

an E > 0 such that for all y satisfying 0 < Ily I < E, f"(x + y) is

positive definite.



This theorem is significant because in general a minimization algo-
k -
rithm stops at a point x = x which lies in a small neighborhood
*
about x The theorem states that if x is a strict local minimum,

the hessian should be positive definite at x.

Proof: (Sufficiency) Assume f'(x ) = 0 and that there exists

an c > 0 such that for all y satisfying 0 < IJly < E, f"(x + y) is

positive definite. From the Taylor series with remainder one may

write

T *
f(x + y) = f(x ) + (1/2) f"(x + t)



for some 0 < t < 1. Then for 0 < I ly [ < e


T *
f(x* + ) f(x*) = (1/2) y f"(x + ty) y > 0



*
which shows x is a strict local minimum.

(Necessity) Now assume x is a strict local minimum. Then for

arbitrary y



lim (1/t)[f(x* + ty f(x*)] = f'(x*)
+0 +^ tl f(i \ \






-26-


by the definition of the derivative [38]. Assume f'(x ) # 0. Then
T *
a vector y exists such that f'(x )T < 0 (e.g. y = -f'(x ) ). Thus

for suitably small t > 0



(1/t)[f(x* + ty) f(*)] < 0




which contradicts the hypothesis that x is a strict local minimum.

Now consider a Taylor series expansion with remainder



f(x* + y) = f(x) + (1/2) y f"(* + ty) ,
L '6 'L l u



for some 0 < t < 1. Then there exists a 6 > 0 such that for all y

satisfying 0 < y II < 6 < E


T *
(1/2) Z f"(x + ty) y = f(x + y) f(x ) > 0



which implies the positive definiteness of the hessian in a small
*
neighborhood about x not necessarily including x itself. This

completes the proof.

If the hessian is either inaccurate or not supplied, a widely

used test to stop an algorithm is at a point x for which



f'(x) E (3.5)


for some small e > 0, and


f(x + tei) > f(x) i = ..., n, (3.6a)
ik 1b n,






-27-


and


f(x te ) > f(x)
rV, 1%, -


(3.6b)


1 n
where e ..., e are the unit coordinate vectors, and t > 0 is some

small scalar. The tests in (3.6) insure that the function does not

decrease in value along any of the coordinate lines. However, as the

following simple example [34] shows, these tests are not sufficient

for x to be an approximation to a local minimum solution. Consider

the problem


minimize f(x)
x
nui


3 2 2
= x1 x1X2 + 2x2


The point (xl, x2) = (x x2) = (6, 9) satisfies



a f -2
[f'(x)]l = 3x 2x2 = 0 ,
l 1 = x= 1


Furthermore with xl fixed at xl = 6, the expression



f(6, 9+t) > f(6, 9)


is satisfied for all t, and with x2 fixed at x2 = 9, the expression


a f =~ -x 2 + 4x2 = 0
2 2 a x 2 1






-28-


f(6+t, 9) > f(6, 9)



is satisfied for t > -9. Therefore both (3.5) and (3.6) should be

satisfied. Despite this fact, the point (xl, x2) is not a local mini-

mum since the hessian evaluated at this point, given by



18 -12
f"(x ) =x
-12 4



is not positive semidefinite since its determinant is negative.

Therefore, any algorithm using (3.5) and (3.6) as its sole termina-

tion test cannot guarantee the computation of a local minimum.



3.2 Principal Steps in a Minimization Algorithm


A minimization algorithm iteratively generates a sequence of

points {xk starting from some initial point x0 which hopefully con-

verges to a solution of (3.2). It is convenient to view each itera-

tion of the algorithm in terms of the expression


k+1 pk k
x = H(p x) (3.7)




where H is called the iteration function, which is a function of a
th k
scalar parameter Pk' the k- estimate of the solution x the function
k k
value at x and possibly derivatives of f at x The iteration in-

dicated by (3.7) may be separated into two steps. The first step

consists of computing the transformation function given by






-29-


k(p) = Hk(p, k) (3.8)




where for convenience the function hk:E + En has been defined. This

step will be called the transformation step. Its purpose is to com-
k k
pute a direction or trajectory from x using f(x ) and possibly
k k+l
derivatives of f at x along which the next point x will be

selected. The transformation function represents this trajectory,

and p is a scalar parameter which is proportional to how far along
k+1
this trajectory will the next point x be. The second step con-

sists of selecting or computing a suitable value of P=Pk such that
k+1 .
x is given by



k+l k k
S = g = h (pk(3.9)



This step is called the scalar search step.

In most existing algorithms [34], the transformation functions

are linear in the scalar parameter p and have the form



hk(p) = x + p d (3.10)
^U 'Xi 'ki



where dk is called the direction of search. For example, in the
k k
steepest descent algorithm [34], dk = -f'(x ). In contrast, the

transformation functions for the VO algorithm are polynomials in

p, of degree up to three. These polynomials follow inherently from

the derivation of the transformation functions for the VO algorithm

to be given in the next section. The transformation functions for the


I






-30-


new algorithm may thus yield curved trajectories of search instead

of straight-line directions of search.

If the scalar search step computes a p=pk such that



f(x+) = f(h (pk)) < f(x) (3.11)



is satisfied, then each iteration of the algorithm will progress

towards a solution of (3.2). The satisfaction of (3.11) at each

iteration insures that the sequence {f(x k)} is monotonically de-

creasing, a property that is generally required to establish the

global convergence of an algorithm. Thus most algorithms, including

the VO algorithm, compute a pk which satisfies (3.11). If a pk

cannot be found to satisfy (3.11) an algorithm has either converged

to a solution of (3.2), or it has failed. The following lemma, a

generalization of an existing result [56], establishes sufficient

conditions for the existence of a p=pk to satisfy (3.11).



k k
Lemma 3.1 Assume f(x) is differentiable at x=x hk(p) is

differentiable at p=0, and hk(0)=xk. Define hk'(p) to be the first
u r%\, 11,
derivative of h with respect to p. Then if



f'(xk)T hk'() < 0 (3.12)



there exists a p > 0 such that



f(hk(p)) < f(xk) (3.13)
%L q,






-31-


Proof: Using chain differentiation and the definition of deri-

vative one may write


lim
-+0


(l/p)[f(hk(p)) f(hk(o))] = f'(hk(o))T hk(0))
'i '' 'I


(3.14)


hk(0) k
Since h (0)= x using (3.12), this expression becomes
lu


lim (1/p)[f(hk(p)) f(xk)] < 0
p*+O uF


(3.15)


Then there exists an e > 0 such that for p # 0 and -E < p < e


(l/p)[f(hk(p)) f(xk)] < .
> 'Lu


(3.16)


Select 0 < p < E to preserve the inequality and it follows that



f(hk(p)) < f(xk)



which completes the proof.



For the transformation function (3.10) found in most algorithms, (3.12)

takes the following form


k T k
f'(x ) d < 0 ,


which becomes

-f'(x ) f'(x ) < 0
%-lf'( k


(3.17)


(3.18)






-32-


for the steepest descent algorithm [34]. Thus as long as f'(xk) # 0,

the steepest descent algorithm should be able to obtain a decrease in

the function. As will be seen, the VO algorithm also has the property

of satisfying (3.12) whenever f'(xk) # 0. That this property is

highly desirable follows from the theorems given in the preceding

section.

Assuming the existence of a p which satisfies (3.11), the problem

to be briefly considered now is the computation of a particular value
k+l
pk to be used in obtaining x There are two stages to this problem.

First, the desired pk must be defined in some concrete manner, usually

as the solution of a scalar problem. In most existing algorithms,

the desired pk is defined as the solution of the following scalar

minimization problem [34]



f(k )) = minimize f(hk(p)) (3.19)
f(h (p ))
P



This value of p should satisfy (3.11), and thus this scalar problem

defines the desired pk in a suitable manner. Other existing algo-

rithms, such as the Davidon [14] algorithm or its more popular modi-

fication due to Fletcher and Powell [22], have the requirement of

defining pk by problem (3.19). While it may be argued that pk defined

by (3.19) provides the most decrease in the function at the kth iter-

ation, this pk may not be the best one in the sense of minimizing the
k
overall number of iterations. For example, when x is far from a

solution x of (3.2), the p, given by (3.19) tends to force all future

iterations to follow the bottom of narrow valleys with slow progress






-33-


towards x [30]. Thus ideally pk should be defined by (3.19) when-
k k
ever x is close to x and in some other manner whenever x is far

from x

Secondly, once the problem which defines the desired pk has been

given, an approximation to the solution of the problem must be effi-

ciently computed. It is important that the overall algorithm not fail

if rough approximations to the solution are computed to achieve savings

of computer time. For example, many studies have indicated that the

overall efficiency of the popular algorithm due to Fletcher and

Powell and the one due to Fletcher and Reeves (both of which theore-

tically require the solution of (3.19)) are sensitive to the accuracy

of the approximate solution of (3.19) [34,46]. The scalar search for

the VO algorithm was developed under these considerations. The de-

tails are given in Section 3.4.



3.3 Variable-Order Transformations


In this section the transformation functions for the VO algo-

rithm are derived. It will be seen that these transformation func-

tions require evaluation of higher-order derivatives. However,

approximations are possible which allow the algorithm to be used even

when only function values are supplied.

The motivation for the variable-order transformations stems from

a desire to approximate the behavior of the gradient of f with infor-
k
mation at the present point x It will be shown that it is possible

to represent the point x at which the gradient is zero, by an
infinite series. The varable-order transformation functions result
infinite series. The variable-order transformation functions result






-34-


from truncations of this series. A pararnter p appearing in the

infinite series in effect accounts for the terms of the series which

are dropped.
*
We begin by noting that a necessary condition for x to be a

solution of the minimization problem (3.2) is that the gradient of f

at x be zero. Then any solution of (3.2) must satisfy the system

of equations


f'(x) = 0




Now consider the change of variables denoted by


(3.20)


x = X(z)
'% % I


(3.21)


where X may be a

(3.20) becomes


nonlinear function. Using (3.21), the equation


f'(x) = f'(X(z)) = )(z)
'u 'I % u


Define a z such that



x =X(z )



then from (3.22)



g( ) = 0 ,
1i U 'U


(3.22)


(3.23)







(3.24)


since f'(x ) = 0. If the function g is simple to invert so that z
Il\, nu % I






-35-


may be found from (3.24) by


* -1
z = (0)
Ib f


(3.25)


then the solution x of (3.20) may be found from (3.23). Clearly

specifying a change of variables which yields a function g which is

simple to invert could be difficult. However as we now show, we can

start by specifying a suitable function g and determine the resulting

change of variable function X. To this end assume some g function

has been specified. Then X(z) may be expanded in a Taylor series
k
about some z=z so that (3.21) becomes
I\j r


x = X(z ) +
'v n 6'i


X'(zk)(z-z ) + (1/2)[X"(z )(z-z.)](z-z ) + ...

(3.26)


k k
where from (3.21), x may be associated with zk by



k k
X(z = x



and



X(zk) = fI(xk) g'(zk)
nu (U '= 'A '" I% (



X" (zk)= f"(xk- g'"(zk) [f"' (xk) X'(zk)] X'(z )]
X' '1. = ft 'U Ii M, %1, ''U b ,


(3.27)


(3.28)


, (3.29)


are obtained by repeated differentiation of (3.22) and evaluating the
k k
resulting expressions at x=x and z=z Since, as it is the case
u % q^ 'U






-36-


for the present, an x is known or given, a corresponding z may be
for the

found from (3.22) by


k -1 k
S= (f'()) (3.30)




since it was assumed that g is simple to invert. Therefore all the

terms of the series have been defined assuming all the derivatives

and the inverse of the hessian exist. Finally, since we are interested
*
in x given by X(z ) in (3.23), we obtain the infinite series repre-

sentation of a solution to (3.20) given by



x = k + X'(zk)(z* zk) + (1/2)[X"(zk)(z*-zk)](z*-zk) + ..,


(3.31)
k
where z is given by (3.25), z by (3.30), and the derivatives
k k
X'(z ), X"(z ), ... are obtained by differentiation as shown in

(3.28) and (3.29).

We now turn to the selection of a suitable function g. Since

the function g should be simple to invert, a logical choice might be

T

(z) = (z z2, ..., n) (3.32)



for which the function and its inverse are identical. For this func-

tion, the infinite series (3.31) becomes


k k k k
x x d d d ... (3.33a)
X ,2 ,3 f4


where





-37-


d = f"(xk ) f'(x) (3.33b)
%2 '1 % r



d = (1/2) f"(xk)-l[f"'(xk) d k d (3.33c)
%j3 "to lb 1b rk '2 u2


dk =f,,k-I[fk k k iv k k k k
d= f(xk -' (xk)dk]dk -(1/6)[[fi (xk)d ]dkk] (3.33d)
%4 x, -u 1\j U 1,3 i, ru %2 Q 1\12




This infinite series is a well-known result extended to n-dimensions.

If this series is truncated to two terms, an iterative method can be

constructed given by


k+1 k k
x = x -d (3.34)



which is Newton's iteration for solving (3.20) [34]. However, this

iterative method (or iterative methods obtained from any truncations

of (3.33)) may not converge to a solution of the minimization problem

(3.2), because the infinite series (3.33) may not itself be a con-

vergent series. Thus we conclude that the series resulting from the

simple function g given by (3.32) does not in general produce a

suitable infinite series.

One of the proposed modifications to (3.34) which improves its

potential for convergence is the introduction of a scalar pk to "damp"

the iteration [34] given by


In 1755, Euler derived an infinite series for a solution of the
scalar problem f(x) = 0 [19]. Other recent derivations and more
extensive studies of this scalar series have been published [47,
39,50,32,42]. The Euler series becomes (3.33) when extended to
n-dimensions for the solution of problem (3.20).






-38-


k+1 k dk
x = x p d .




For the minimization problem (3.2), this iteration becomes the two-

step procedure given by the computation of the transformation function



h(p) = p dk



k+1
and the computation of a suitable value p=k to obtain x given by



k+1
x = h(p)




Motivated by this modification, we propose the following function#


0(z) = (z, z, .... z )T


(3.35)


Note that this g function is simple to invert. Furthermore,
1i


* -1
z* = k (o) = 0
nui %u `U,


(3.36)


and any higher derivatives with respect to z are readily obtained.
"4
Taking the first two terms of the resulting series (3.31) yields the

iterative method


k+l k xk 1 xk
x = x pk f"(x ) f'(x )
"4 "4 l % f l


(3.37)


Thus the second-order transformation function may be defined by


Note that th
Note that z1 means zI raised to the p power.
Not I I





-39-


k k k
h(p) = x p (3.38)


where


dk = f(xk)-1 f(xk) (3.39)
n12 'lu % Ix. ri



is defined to be the second-order correction. (Note that the order

refers to the order of convergence of the sequences which are generated

by the algorithm.) Thus Newton's method for solving minimization

problems falls out as a special case of the proposed algorithm.

Taking three terms of (3.31) yields the third-order transformation

given by


k k k 2 k
h (p) = x (1/2)(3 p)p d p d (3.40)


where


d = (1/2) f"(xk)- [f" (xk) d ] d (3.41)




is the third-order correction. Similarly, using the first four terms

of (3.31) yields the fourth-order transformation given by



h(p) = k (1/6)(p 6p+l)p d (2-p)p2 d p3 dk
,, pl2 3 ,4
(3.42)

where the fourth-order correction is defined to be



dk = f" (xk)-1 [[f'(xk)dk]- (1/6)[[fiv(xk)dk]d kdk] (3.43)
,u4 %2 -.3 r 2 fU2 %2






-40-


Transformation functions of order higher than four may be similarly

derived. However, as will be seen below, it does not seem possible

to adequately approximate the corrections of order greater than four.

Moreover, higher-order derivatives require considerable storage and

they are very difficult to derive in general, and therefore we try

to avoid them. Additionally, the techniques proposed in Section 3.4

for the scalar search would not be as attractive for transformation

functions of order higher than four because the zeros of polynomials

of degree greater than two would be needed. Finally, it was experi-

mentally found that for one function tested, transformation functions

of order higher than four did not increase overall efficiency in

computing the solution. The selection of which transformation func-

tion to use at each iteration will be described later.



3.3.1 Approximations of Higher-Order Corrections


Observe that the computation of the third-order correction (3.41)

would require both the evaluation of f" (xk), a third-order tensor,

and a considerable number of multiplications. This computational

effort can be reduced by using the approximation



d f"I(xk) f'(h (1)) (3.44)
,;3 xL '\ 'i U2


where


k k k
h (1) = d (3.45)
,',2 2 ',2


from (3.38). The approximation (3.44) follows from the Taylor series






-41-


expansion



kfx k dk)k k k k "" k k
kf'(x- (x ) f(x )d k+ (1/2)[f.. (x ) d ] d -...

(3.46)

Using (3.39), the first two terms cancel, and therefore



f'(hk(1)) = f(xk dk) (1/2)[f"' (xk d k d k (3.47)
% i,2 = `2 % a 2 %2



is an approximation with error on the order of Il d k assuming the

fourth derivative of f is bounded. Comparing the equation for the

third-order correction given by (3.41), using (3.47) yields the approx-

imation (3.44). Similarly, the fourth-order correction (3.43) may be

approximated by



d k f"(xk)1 f'(h ()) (3.48)
,u4 11, ru II -.3


where


k k k k
h (1) = x d d (3.49)
%3 '% 2 Q %3



from (3.40). Using the approximation for dk given by (3.44), the

approximation (3.48) has error of order ( ldk II + Ildk I)3 assuming

the fourth derivative of f is bounded. The approximation and the
k kk
error bound follow from the Taylor series expansion of f'(x -d -d )
'V 'V %2 %3
and the use of (3.39) and (3.44). The error in these approximations

continues to increase for corrections of higher order. Furthermore,

there errors are enlarged since these higher-order corrections are






-42-


multiplied by increasing powers of p as can be seen from the third-

(3.40) and fourth-(3.42) order transformations. This error is the

major reason for considering only transformations of order four or

less.

In the next chapter, approximations to the hessian and the gra-

dient of f will be presented. These approximations will allow the

algorithm to be used even when only function values are supplied.



3.3.2 Transformation Order Selection


Assuming that all of the transformation functions exist (this

assumption is removed later in this chapter), we wish to consider the

question of which one should be used in each iteration.

Recall that each transformation function may be thought of as a
k
curved trajectory passing through x with the scalar parameter p
k
proportional to how far from x the next point might be. Ideally the

best transformation function order to use is the one whose trajectory

passes the closest to x It might seem that the higher the order,

the closer to the solution x since more terms are taken in the

infinite series representation of x However there are two reasons

why this seemingly reasonable expectation is not usually true. First,

the process of computing the terms of the transformation functions

involves several approximations and many arithmetic operations with

ensuing errors. Second and perhaps more importantly, the infinite

series represents x only if it converges; it must also converge very

fast. It was indeed verified numerically that usually one of the

transformation functions is better, in the sense of giving trajec-

tories closer to x than the others at each iteration, and the best






-43-


one is not necessarily the one with the highest order.

The proposed technique for selecting the best transformation

function is based on the convergence of the infinite series (3.33)

to a solution of the minimization problem (3.2). Recall that this

infinite series resulted from the g function (3.23), or for the func-

tion which was eventually used given by (3.35) with the scalar para-

meter p set to one. The procedure may be described as follows.

Select the second-order transformation if



f(h (1)) = f(x d ) > f(x ) = f(h (0)) (3.50)
n,2 'uiZ2 lu .2



otherwise select the (r-l) order transformation if



f(hk(1)) > f(hk (1)) r = 3 and 4 (3.51)
,br nir- 1



If (3.51) is not satisfied for r = 4, the fourth-order transformation

is selected. Thus when orders three or four are selected, a value

of p = 1 always gives a point which yields a function value less than

the present value. It was experimentally verified that this method

selected the best order in most iterations. In those very few itera-

tions where it did not select the best order, the order selected was

only insignificantly different than the best one.

Once one of the three transformation functions is selected, the

dimension of the problem has been reduced to one. To see this,note

that at the kth iteration the problem remaining is to compute a value

of the scalar parameter p such that






-44-


f(hk(p)) < f(x = f(hk(0)) r = 2, 3, or 4 ,(3.52)



where the transformation functions were given earlier, but will be

repeated here for ease of reference. Thus


k k k
h (p) = x p (3.53a)
,,,2 '1. ,2 9



h (p) = (3/2)d p Cd (1/2)d ] p (3.53b)

u3 k 'k 2 k 3'

h (p) = xk (11/6)dk p-(2d k-d) p [dk dk + (1/6)dk] p ,
%%4 lu %2V24 U3 %'
(3.53c)

k k
where the terms have been rearranged in powers of p, and d d and
k
d are given by (3.39), (3.44), and (3.48) respectively. The com-
rC4
putation of a suitable value of p is described in the next section.



3.4 The Scalar Search


The scalar search for an appropriate value of the parameter p

which appears in the higher-order transformation functions is often

the most time-consuming step in a minimization algorithm. The source

of the difficulty is the requirement that most existing algorithms

have of computing a value of p that accurately solves a scalar mini-

mization problem to be described below. In this section it will be

shown that the scalar search step for the VO algorithm is not time-

consuming due to inherent properties of the transformation functions.

Furthermore, during the initial iterations of the VO algorithm, when






-45-


k *
the estimate x of the solution x is far from the solution, the

desired value of p is defined to be the solution of a scalar problem

not used in any previously reported algorithm.

Recall that at this stage we wish to find a value of p=pk such

that



k+l k
x = h (p), r = 2, 3, or 4 (3.54)
b r k



where h is one of the transformation functions given in (3.53). If
k *
the current point x is not x a solution of the minimization pro-

blem (3.2), then the scalar search should select a value of p such

that the descent condition



f(hk(p)) < f(xk) (3.55)
kr *



is satisfied. If x is equal to x the scalar search is unnecessary.

Normally there is an infinite number of values of p for which

(3.55) is satisfied. The best value of p to choose would be the one

that minimizes the total number of iterations to approximate x

However, the computation of this value of p is impossible for general

problems since it requires information from future iterations. Some

of the considerations which lead to approximations of the best value

of p are given next.

Assume a pk= p exists such that from (3.54) we obtain



k+l k, m
x = x =h (p)
< r, k






-46-


Clearly the best value of p in this case would be pk, and pk would

be defined by



f(hk (p)) = minimize f(hk(p)), (3.56)
'\,Tr k r
p



which is a scalar minimization problem. Most existing algorithms

choose pk to be an approximation to pk at each iteration; some algo-

rithms theoretically require that pk be an accurate approximation to

Pk [46], in contrast with the VO algorithm which has no such require-

ment. In practice x k = h (p ) is seldom equal to x While it
b ar k P
m
may be convincingly argued that k = k is an optimal value for some
k *
iterations, particularly when x is in some neighborhood of x the

best value of p to choose is not pk for most iterations. In fact,
k m
when x is far from x choosing p = p tends to force any minimi-
lu *"lu k k
zation algorithm to follow the bottom of narrow valleys with typically

slow progress towards x [30]. Therefore, an ideal scheme would
m k *
choose p = p, when x is in some neighborhood of x ,and would
k k
choose pk to stay away from the bottom of narrow valleys whenever
k *
x is far from x

The scalar search of the VO algorithm first attempts to establish
k k *
whether x is close to x .If x is close to x then p is set to

an approximation of pm, a solution of the scalar minimization prob-
k *
lem (3.56). The details are described below. If x is far from x ,
k+l k
then pk is computed under the principle that x = h r(p) should be
a k is AU %r k
as far away from x as possible. The method for computing pk, when
k *
x is far from x will be described in two parts: 1) if the second-

order transformation was selected (r = 2), and 2) if the third-or






-47-


the fourth-order transformation was selected (r = 3 or 4).


*
3.4.1 Iterations Close to x


k k
If x is close to x then I f'(h (1)) I will be small due to

the manner in which the transformation functions hk were derived.
r
Thus, if



I f'((1)) k II M < (3.57)



for some e > 0, it is concluded that the choice p, = pm should be
c k k
made. (For the tested functions, which are not badly scaled,

E = was reasonable.) The test (3.57) can be made without
c
further gradient evaluations since it was shown in Section 3.3.1

that the two gradients f'(h (1)), and f'(h (1)) are evaluated while

computing the approximations to the third-and fourth-order correc-

tions given in (3.48). If the fourth-order transformation is

selected, it was found that it is not necessary to evaluate f'(hk(1)),

but rather the results of the test for f'(h (1)) could be used

instead.
k *
Having identified that x is close to x in the above manner,
m
an approximation to pk needs to be computed. The following procedure

was satisfactory for the functions tested. Evaluate f(h (p)) for
Aur
p = 2, 3, ..., L-1, L, L+1, until



f(hk(L-l)) > f(h (L)) < f(hk(L+l)) (3.58)
%;r %T %r






-48-


which is a standard method of bracketing the scalar minimum [30].

The minimum of the quadratic polynomial in p which passes through the

three points [30] obtained in (3.58) is computed given by



f( k(L-1)) 4f(h (L)) + 3f(hk(L+1))
S= L -I k k k (3.59)
f(h (L-1)) 2f(h (L)) + f(h (L+1))
rGr r



If p is close to L (Ip LI < .02), set pk = L to complete the

scalar search for this iteration. If p is not close to L, then

f(h (p)) is evaluated, and if f(h (p)) < f(h (L)), set pk = ,

otherwise set pk = L. This completes the scalar search for the case
k *
when x is close to x

For most local minima pk = 1 and the above procedure should yield

Pk = 1 requiring only one additional function evaluation. However, for

local minima with a positive semidefinite hessian, pm will generally

be greater than one. Therefore, in actual implementation shown in

Appendix I, if the minimum is located for p > 4, the function is

evaluated at p = 10, 22, 46, 94, 190, ..., etc., until the minimum is

bracketed.



3.4.2 Iterations Far from x

k *
When x is far from x the expression (3.57) is not satisfied.
k+1
In this case, the basic principle to be proposed is that x should

be as far away from x as possible, subject to satisfying (3.55).

This principle defines the desired pk to be a solution of






-49-


maximize | hk(p)- x (3.60a)
p



subject to f(hk(p)) < f(xk) (3.60b)



k+1
where ck 0 will be defined to insure that fk+ ) is sufficiently

less than f(x ). An accurate solution of (3.60) would be difficult

to obtain computationally. However, first an accurate solution is

not required, and second when the third-or fourth-order transformation

is selected, trial values of p that may approximate a solution of

(3.60) may be found from already available information. The pro-

cedure, if the second-order transformation is selected, is described

first.



Second-Order Transformation Selected. If the second-order

transformation is selected at the kth iteration, the search for an

approximation to a solution of (3.60) is along a straight line in

the space of the independent variables, since h (p) is a linear func-

tion of p; thus (3.60a) is linear in p and it is maximized by the

largest possible value of p. In this case ck is set to zero, which

implies that we desire any descent. The procedure proposed may be

generally described as fitting, and computing the minimum of, approx-

imating polynomials, which attempts to satisfy the descent constraint

(3.60b). Then attempting to satisfy (3.60a), a constant is added to

the computed minimum of the approximating polynomial. The details

are given next.

The following information is already available: f(h (0)),
Q






-50-


f'(hk(O)), f(hk(1)), and f'(hk(1)).
lb '%2 n,2 ru A2


fV(hk(O))T h (0) < 0
-6 2 IU2


Moreover,


(3.61)


where hk'(O) is the first derivative of h (p) with respect to p,
rU2 X1
evaluated at p= 0. Expression (3.61) implies the existence of a

p > 0 that satisfies (3.60b) (see Lemma 3.1). If the expression


f(hk(1)) < f(hk(0) = f(xk) ,


(3.62)


is satisfied, then (3.60b) is also satisfied. Whenever (3.62) is

satisfied, it is computationally efficient to select pk = 1 since the

function and the gradient are already evaluated for the next itera-

tion. In addition, it is unlikely that the descent constraint (3.60b)

will be satisfied for pk > 1 because of the manner in which the

transformation function order is selected. Thus whenever (3.62) is

satisfied, pk is set to one.

If (3.62) is not satisfied, the minimum within the interval (0, 1)

of the cubic Hermite polynomial in p fitted through the available

information is computed as follows [14]


(3.63a)


Pc = 1 (s1 + a b)/(s1 sO + 2 a)


where


(3.63b)


= k (1))T h k1
nu n,,2 nj2





-51-


So= f'(hk(0))T hk' (0)



b = 3 [f(h (0)) f(h (1))] + so + s



2 1i/2
a = b2 so s1/2



Then let



p = max {O.1, pc + min {pc, 1 -Pc}/2}



kp
Then after evaluating f(h (p )), if



f(k)
U C !.


set pk = pc, and the scalar search is done.

an attempt at satisfying (3.60a). Finally,

fled, the procedure becomes iterative. The

in p through the function and derivative at

function at p= p is computed as follows


Observe that (3.64) is

if (3.65) is not satis-

minimum of the quadratic

p=O, and through the


PC = .5 Pc SO / c + f h (0)) f(2h ())]



where so is given in (3.63c). Define


(3.66)


PC = max {pc' Pc/4}


(3.63c)



(3.63d)



(3.63e)


(3.64)


(3.65)


(3.67)






-52-


k -
Then after evaluating f(h(p )), if (3.65) is satisfied, the search

is done with pk = Pc, otherwise the process is repeated beginning

with (3.66). Figure 3.1 summarizes the steps in a flow chart. For

the functions tested, the second-order transformation was rarely

selected. Most of the time when it was selected, the search ended

with (3.64); thus only one additional function evaluation was needed

most of the time the second-order transformation was selected.



Third-or Fourth-Order Transformation Selected. Whenever the

third-or fourth-order transformation is selected, the search for a

Pk to approximate a solution of (3.60) is no longer along straight

lines in the space of the independent variables. Note that hk(p) and

h (p) given in (3.53b) and (3.53c) are polynomials in p of degree

greater than one. For clarity of notation, the superscript and sub-

script of the transformation function will be dropped; i.e., for the

present discussion



h(p) = hk(p), r = 3, or 4 (3.68)



Additionally, the individual components of the transformation vector

function will be needed. Thus let h(p) be defined by



h(p) = (h (p), h (p), ..., h (p)) (3.69)
1 2 n


k+1 th
Therefore, since x = h(pk), the i component of all the possible
k+1
points that may become x is given by






-53-


Figure 3.1 Flowchart of a portion of the Scalar Search step of the
VO algorithm.






-54-


xi = hi(p) (3.70)



This time, maximizing I h(p) xk I, as defined in (3.60), may not be

simply achieved by increasing p, as it is if the second-order trans-

formation is selected. In particular, since each coordinate is given

by (3.70) there may be certain values of p for which the square of

the difference


k 2 k 2
(x x) (hi(p) x.) (3.71)



is a maximum. This would certainly tend to satisfy the principle
k+1 k
that x should be as far as possible from x A necessary condition

to maximize (3.71), which would tend to satisfy (3.60a), is given by

differentiating (3.71) with respect to p and setting it equal to zero,

to obtain the equation



h!(p) = 0 .(3.72)
1



This equation is a linear equation in p for the third-order trans-

formation, and a quadratic polynomial in p for the fourth-order

transformation. Therefore, its zeros may be easily found. If any

of these zeros are positive, it implies that the ith coordinate moves
k
away from xi and at the value of p equal to a positive zero of (3.72)
k
it begins to move closer to xi again. Therefore, positive zeros are

suitable candidates to satisfy (3.60a). It is proposed that these

zeros be computed for all coordinates using (3.72), and to discard






-55-


any which are not positive. These zeros will be considered trial

values of p later.

Additional trial values of p are obtained by the following
k
argument. After expansion of f(x) in a Taylor series about x and

substitution of x = h(p), the following expression is obtained



f(h(p)) = f(xk) + f'(xk) Th(p) xk] + .(3.73)



Since it is desired to compute a p which yields f(h(p)) sufficiently
k
less than f(x ), the term



f'(xk) Th(p) x (3.74)



should be as negative as possible. Therefore, values of p for which

(3.74) may achieve a minimum value are points that are easily com-

puted. The necessary condition yields



f'(xk)T h'(p) = 0 (3.75)



which is a polynomial in p with zeros that may yield additional trial

values of p, if any of the zeros are positive.

Before describing how these trial values of p are used in approxi-

mating a solution of (3.60), the ck appearing in (3.60b) needs to be

defined. Recall that'f(h(l)) is already evaluated and it is less

than f(xk). The constant c is defined such that a value of p could

be used provided it does not yield a function value too much greater






-56-


than f(h(1)). This is accomplished by defining ck by


k
-min {10f(h(1)) f(x ), .1 w} f(h(1)) 0,

ck = (3.76)
-min {.lf(h(1)) f(x), .1 w} f(h(1)) < 0,


where


w = f(h(1)) f(x)



The constraint (3.60b) is now defined and the zeros previously

found are candidates to satisfy it. It was found experimentally that

a value of p greater than six never satisfied (3.60b). In addition,

since f(h(1)) is less than f(x ), only values of p in the range

1 < p < 6 are considered (note that non-integer values are used).

All the zeros previously obtained from (3.72) and (3.75) within the

above range are sorted. Then beginning from the largest value and

on to the smallest one, the function is evaluated and as soon as

(3.60b) is satisfied, the scalar search is complete. In case (3.72)

and (3.75) yield no trial values of p in the range 1 < p < 6, the

function is evaluated at f(h(p)), for p = 2, 3, ..., p' pk+1, until
k' k K
f(h(pk)) satisfies (3.60b), and f(h(pk+1)) does not. For all the

functions tested, in most iterations (3.72) and (3.75) yielded trial

values of p. Furthermore, in most iterations only one additional

function evaluation was needed to end the search.



3.5 Hessian Singular or Negative Definite


In computing the second, third-, and fourth-order corrections






-57-


given by (3.39), (3.44), and (3.48) there are two major difficulties

to be considered concerning the hessian matrix: it may be singular

and it may be negative definite. If the hessian is singular, the

proposed corrections cannot be computed. If the hessian is negative
k
definite, the current point x is not in some small neighborhood of

a strict local minimum. Furthermore, if the hessian is not positive

definite, the proposed transformations may not give descent tra-

jectories. Recall that if



f'(xk )T h'(0) < 0 (3.77)



then the existence of a p > 0 which satisfies



f(hk(p)) < f(xk) (3.78)




is implied as shown in Lemma 3.1. Observe that


k, k
h '(0) = -a d, r = 2, 3, or 4 (3.79)
%\r r n2 2



where from (3.53), a2 = 1, a3 = 3/2, and a4 = 11/6. Therefore, the

descent condition (3.77) becomes



-a f'(x ) f(x k) f'(xk) < 0 (3.80)
-r % 'U % %



where (3.39), which defines d was used. The inequality (3.80) may
not necessarily be satisfied whenever f k) is not positive definite.
not necessarily be satisfied whenever f"(x ) is not positive definite.
ru, %






-58-


Moreover, even if (3.80), and thus (3.78), is satisfied when the

hessian is not positive definite, the descent trajectory may still

be undesirable. Recall that the transformation functions were derived

to compute a point which would yield a zero gradient. While the

gradient is zero at a local minimum, it is also zero at a local maxi-

mum and at a saddle point [38]. Therefore, a descent trajectory may

be towards a saddle point. Saddle points are even more difficult

since the transformation functions may yield trajectories towards a

saddle point even when the hessian is positive definite. This dif-

ficulty will be discussed again when the global convergence of the

algorithm is established in the next section. Thus singularity and

non-positive definiteness of the hessian are signals to be used in

avoiding these troublesome points.

Since the hessian inverse is used in Newton's minimization

algorithm [34], several alternatives have been proposed whenever the

hessian is not positive definite [30,34]. The method we propose is

a modification of the one given by Murray [36] for a Newton-like

minimization algorithm. The principle of Murray's method may be

described as the computation of the Newton or second-order correction,
k
d2, by solving the linear system of equations



Fk dk= f'(xk) (3.81a)



with


F = f(xk) + D (3.81b)



where Dk is a diagonal matrix which is computed to insure that Fk is
lu n






-59-


positive definite. If the hessian f"(xk) is already positive de-

finite, the matrix Dk is the zero matrix, and dk is the second-order

correction as defined earlier. Observe that in the VO algorithm,

the approximation to the third-and the fourth-order corrections,

(3.44) and (3.48), may be also defined as solutions of linear systems

of equations with coefficient matrices equal to F.

Murray's procedure for computing D is based on the Cholesky
'b
factorization of a positive definite matrix. The Cholesky factor-

ization may be described as the computation of the upper triangular

matrix U, such that
'1\


F = UT U (3.82)



k
A by-product of this factorization is the diagonal matrix D The

modification we propose adds a pivoting strategy to this factorization

procedure. The result of this modification is that the diagonal

matrix Dk will tend to have a fewer number of nonzero diagonals than

the original procedure. Once the factorization is computed, the

computation of all the high-order corrections is simply obtained, as

shown later. The details of Murray's procedure are given next, fol-

lowed by the details of the proposed modification.



3.5.1 Murray's Procedure


Equating matrix elements in (3.82) yields the i row of U given

by

i-1 1/2
ui = { [ u2. (3.83a)
ii i mi
m=l





-60-


i-i
u" =I[Fkl ui Umj }
ij n% ij m= mi m



It can be shown [53-54] that if Fk is

elements given by (3.83a) are greater

elements of U are bounded by
^ '


/ u.. j=i+l, ..., n. (3.83b)




positive definite, all diagonal

than zero, and that all the


0 < u max Fk/2 i = 1, ..
ij a ii


(3.84)


The procedure due to Murray is to in effect obtain Dk in (3.81) such

that all diagonal elements in (3.83a) are bounded by


6 < uii n 8 ,


(3.85)


where a may be defined by


S = max if if (k)I 11/2


S (3.86)


i, j = 1, ..., n}


and 6 > 0 is a given constant which is used below to in effect iden-

tify the square root of a numerical zero due to round-off errors

(6 = 10s/2 gave good results, where s is the number of significant

digits of the numbers in the computer). The off-diagonal elements

are also bounded by


i = 1, ..., n-1; j > i


(3.87)


lu ij I< 0






-61-


th
The i stage of the procedure may be described as follows. Define

the quantity


k i-1 2 1/2
u= max { 6, [f"(xk) u2 ,
m=1


(3.88)


which will be considered as the candidate for the diagonal ui and


i-i
. = [f"(xk] U u., j=i+1, ..., n
3J ij u u ml m3
m=1


(3.89)


Observe that ui = uj/u j= i+, ..., n, will be the off-diagonal
th
elements of the i row once u.. has been computed. If the relation

given by


(1/ui) max {Ju.j, j = i+1, ..., n} < B


(3.90)


is satisfied, then set


(3.91)


uii = ui ,


otherwise set


ui = (1/B) max (u.j j = i+1, ..., n}



Then the rest of the ith row is given by


(3.92)


uij = uj / uii ,


(3.93)






-62-


The ith diagonal of the matrix Dk is given by

i-1

d uu2 [f"(xk 2 (3.94)
ii ii ] ii U mi
m=l



It can be shown [36], in a straightforward manner, that the bounds

(3.85) and (3.87) apply to this procedure.



3.5.2 Proposed Modification to Murray's Procedure


The modification to Murray's procedure is motivated by a desire

that the number of nonzero elements in Dk be as few as possible to

in effect use as much of the hessian as possible. If some form of

diagonal pivoting is added to Murray's procedure, not only will the

number of nonzero diagonals of Dk tend to be small, but numerical

stability may also be gained. Therefore, it is proposed that at each

stage of the factorization procedure, the strongest diagonal is

selected, where the strongest diagonal is defined as the diagonal

which generates the smallest, in absolute value, maximum off-diagonal

element in its row. Efficient implementation of this modification is

described next.

First, recognize that the Cholesky factorization of F with

diagonal pivoting may be described as the computation of the upper

triangular matrix U such that



P F pT =U (3.95)



where P is a permutation matrix with columns equal to a permutation






-63-


of the columns of the unit diagonal matrix. The procedure begins by

initializing the elements of U as follows



u( = [f"(xk)].. i = 1, ..., n; j = i, ..., n (3.96)
ij It, '1i ij



The elements of U are then modified iteratively. To describe the ith

stage of the procedure we begin by defining the set



{ek} = {max i u ) j=i, ..., k-1; u j=k+l, ..., n,


k=i, ..., n} (3.97)



which contains the maximum absolute value of the off-diagonal elements

in each row not yet processed. The next diagonal to be selected for

pivoting is based on the following sequential tests:


1) If i=n the set {ek} is empty. Select the remaining diagonal.

2) Otherwise, if any element of {ek} is zero, select the diag-

onal corresponding to the first such zero element. This is

a row where all off-diagonal elements are zero.

3) Otherwise, if the set {ek/ u(kk : ukk ( 0, k=i, ..., n

is not empty, select the diagonal corresponding to its

smallest element (the first one if ties exist).

4) Otherwise, select the diagonal corresponding to the smallest

element of the set {ek} (the first one if ties exist). This

choice occurs when all remaining diagonal elements are zero.


The appropriate interchange of rows and columns is done next in order






-64-


to bring the selected diagonal into the ith row. This interchange

is noted in the permutation matrix P of (3.95). Now define



i = max { 6, uii 1 / (3.98)


(1/u max 1 = i+, n} < I


(3.99)


set


(i)
uii =Ui



otherwise set


u( = (1/s) max { u-1) j = i+1, ... n



The ith diagonal of the permuted D matrix is given by


d C([i) 2 (i-1)
de rt of te rw iib


The rest of the row becomes


(3.100)


(3.101)


(3.102)


(i) (i-1) (i)
uij = uij / uii


j = i+i, ...,n


The rest of the matrix is updated as follows


(3.103)





-65-


(i) (i-1) (i) (i)
ukj = u ik uij k=i+, ..., n; =k, ..., n

(3.104)


This completes the ith stage of the procedure. The pivoting strategy

proposed insures that the remaining matrix is changed by a small

amount, since the maximum absolute value of the change to the re-

maining matrix in (3.104) was minimized. Observe that double pre-

cision is recommended to store the matrix U in the modified procedure

since inner products can no longer be efficiently accumulated [53-54]

as it is possible in the original method.



3.5.3 Illustrative Example


The following example illustrates the effect of pivoting. Let

f"(xk) for a three-dimensional problem be given by



0 1 -10

f"(xk) = 1 4 0

-10 0 400



-7
Let 6 = 10 and for this matrix 0 = 20 from (3.86). Without

pivoting, the method proposed by Murray yields D given by


k
D = diag (.25, 4, 800) ,
IV






-66-


.5 2 -20

U = 0 2 20

0 0 20



The proposed modification, with a diagonal pivot order 3, 2, 1, yields


k
D = diag (1, 0, 0)


and


20 0 -.5

U = 0 2 .5

0 0 (.5)1/2



3.5.4 Computation of High-Order Corrections


After the factorization (3.95) is completed, the high-order

corrections are computed as follows. Instead of (3.39), we may now

write



f(xk) + D d = f'(xk) (3.105)



Define v by


k T
d = (3.106)



where T is the transpose of the permutation used in the factoriza-

tion procedure. Now multiply (3.105) by P, and use (3.106) to obtain






-67-


P [fII(xk) + DkkIpT v = p f'(k)
lu l ru ru r. t, lu f l


(3.107)


From (3.81) and (3.95), the factorization process transforms (3.107)

into


UT U v = P f'(x k
,r


(3.108)


which may be solved by first solving


U w = P f'I(k)
lu % nu Ii r


(3.109)


for w by forward substitution, and then solving
n.


Uv=w
U''~ V =


(3.110)


for v by back substitution. The second-order correction is then

obtained from (3.106). Similarly, the approximation to the third-

order correction given in (3.44), now becomes the solution of


f"(xk) + Dk] dk = f'(hk(1))
'v\ I iJ 3 u U



and the fourth-order correction given by (3.48) now becomes



[f"(xk) + Dk] dk = f'(hk(1))
'n 1, 'b J4 u 'A3


(3.111)


(3.112)


These two systems of equations have the same coefficient matrix as






-68-


(3.105), and therefore the same factorization applies. The solutions

of (3.111) and (3.112) are obtained similarly to the procedure out-

lined for solving (3.105).



3.6 Convergence of the VO Algorithm


Two convergence properties of the VO algorithm are given in this

section. First we establish the class of functions for which the

algorithm is globally convergent. Second, it will be shown that the

VO algorithm generates a sequence with a high order of convergence

for most functions. When an algorithm generates sequences with a

high order of convergence, an approximation to a solution of the mini-

mization problem (3.2) can be computed in a small number of itera-

tions, if the initial point is close to the solution.



3.6.1 Global Convergence


The global convergence of the VO algorithm will be established

by using the general analysis of algorithms developed mainly by

Zangwill [56]. A brief review of this analysis is given below.

The new algorithm is then recast in a manner which allows the

results of this analysis to be used.

A minimization algorithm may be generally described by a point-

to-set mapping. A point-to-set mapping assigns to every point

x E En a subset of En. Let A be a point-to-set mapping, then A(x)

may be represented by


A(x) = {e En} ,


(3.113)






-69-


where the definition of the elements constitutes part of the algo-

k
rithm. The sequence of points {x k generated by the algorithm is
'A
given by



k+1 k
x E A(x )



0
beginning from some initial point x. The point selected from the

set A(xk) at each iteration is also part of the details of the algo-

rithm. It is clear that the sequence {xk cannot be predicted solely
'L
0
from knowledge of the initial point x As the scalar search for the

VO algorithm demonstrates, similar algorithms using the same trans-

formation functions could implement the scalar search somewhat

differently. This difference may be enough to generate different

sequences, but as the Global Convergence Theorem will show, the

different sequences may still converge. Thus the point-to-set

mapping concept aids in analyzing classes of algorithms without

describing its steps in detail.

An important property of point-to-set mappings, which is re-

quired later on, is that they may be closed. A point-to-set mapping

A is said to be closed at x, if the assumptions



k -
1) x + x ,



k k k
2) y y y E A(x )
iu iu % Il


imply


1






-70-


3) E A(x)



The closedness property is a generalization of continuity of point-

to-point mappings or ordinary functions.

The main result due to Zangwill may now be given.



Global Convergence Theorem. Let the point-to-set map A(x) be
n 0 k
an algorithm on E and suppose that given x the sequence {x } is

generated satisfying


k+l k
x C A(x )



Let 2 be a subset of En defined as the set of solution points of the

minimization problem (3.2), and suppose

k
1) All points x are in a compact set.

2) The function f(x) is continuous and

a) if x i 0, then f(X) < f(x) for all y E A(x),

b) if x E 0, then either the algorithm terminates, or

for all y e A(x), f(y) < f(x).

3) The map A is closed at points outside Q.


Then either the algorithm stops at a solution point in 2, or the

limit of any convergent subsequence of {x k is a solution point in Q.



The proof may be found in [56,34]. Condition 1 of the theorem in-

sures the existence of a convergent subsequence. Its violation

normally indicates that the minimization problem has no finite






-71-


solution, and thus this condition is not very restrictive. Condition

2 is normally satisfied by a suitable transformation function and a

scalar search using the terminology of the VO algorithm. Condition 3

of the algorithm is usually the most challenging. For the new algo-

rithm, the satisfaction of this condition imposes continuity require-

ments on the function and its first two derivatives, as well as the

additional condition of pseudoconvexity.

The VO algorithm will be described as a point-to-set composition

mapping given by



A(x) = S (M(x))
r r'1,



where M is a point-to-point map, and S is a point-to-set map. The

following lemma [56] establishes the conditions on each mapping to

yield a closed composition.



Lemma 3.2. Let M:En + Em be a point-to-point map and S:Em+{ CEn}

be a point-to-set map. Assume M is continuous at x and S is closed at

M(x). Then the point-to-set map A(x) = S (M(x)) is closed at x.



The point-to-point mapping M :En (r-l)n which characterizes
r
the transformation phase of the VO algorithm may be described by



M (x) = (x, d(r)) r = 2, 3, or 4 (3.114a)
r i1 liu lu


where d(r) denotes sets of correction terms given by
A'-






-72-


(d2)


d(r) = (d


(d,
,,2'


, r= 2


, r=3


d d ), r =4
I3 'I41


and the corrections d, d3' and d are the solutions of
%2' b3 U4



[f"(x) + D] d = f'(x)




[f"(x) + D] d = f'(x d )
lb 'It % i 3 '\ 'b rV2


and



[f"(x) + D] d = f'(x d d)
'b 'i %, ;; '\ % % %2 n


(3.114c)




(3.114d)


(3.114e)


(Note that the diagonal matrix D has been included as discussed in

Section 3.5.4.) In order to make use of Lemma 3.2 we need to estab-

lish that M is continuous.
r



Lemma 3.3. If the gradient and the hessian of f(x) are continu-

ous, the mapping Mr(x) given in (3.114) is continuous.



The proof is immediate since the diagonal matrix D is computed to

insure [f"(x) + D] is non-singular, and the diagonals of D are con-

tinuous functions of the elements of the hessian f"(x) as can be

readily seen in (3.98-3.102).


(3.114b)


j






-73-


Now consider the point-to-set mapping S :E(r l)n +y En}
r
which operates on M (x) which characterizes the scalar search phase

of the VO algorithm, and may be conveniently expressed as follows



S (x, d(r)) = : y=h (p) for p > 0 and f(h (p)) < f(x)} ,
r IV ,u nr br '

r = 2, 3, or 4, (3.115a)


where

x d p r=2,
S2
h (p) = x (3/2)d p [d (1/2)d]p2 r=3,
ur A A2 -D %2

x (ll/6)d2- (2d3-d2)p2 [d-d3+(1/6)d2]p3, r=4.

(3.115b)


Observe that (3.115b) consists of the three transformation functions

derived in Section 3.3. The following lemma establishes the conditions

that are sufficient for S to be closed.
r



Lemma 3.4. If f'(x) # 0 and f(x) is continuous, the mapping S

given in (3.115) is closed.



Proof: Recall that in order to show that S is closed, the

conditions



k k
1) (x, d (r)) (x, d(r))


k k k k
2) y y, ES (X d (r)) ,
'b A, 'n






-74-


imply


3) E S (x, d(r))
6u S r f, i\u


Suppose first that r = 2.


Then


k k k
y x pd
'i k 2


(3.116)


k
The assumption f'(x) # 0 implies that d # 0 for all k from (3.114c).

Thus one may write from (3.116)



pk= xk k dk
Pk = ,, 1" / %2 2



which when taking limits yields



P = 1111 / 11 11



This establishes the existence of a limit for the sequence {pk}. It

then follows that = x p d.2 It remains to be shown that

y Sr(x, 2). For each k, pk satisfies
k kr % -.k


f(y) = f(x k ) < f(x )



That such a pk exists follows from the fact that



f(xk)T h'(0) = -f'(xk) < 0
f'( r 2 "U ru %'


(3.117)


(3.118)






-75-


and from Lemma 3.1. Taking limits in (3.117), and using the assump-
tion that f(x) is continuous yields
tion that f(x) is continuous yields
lb


< f ,()


(3.119)


and hence S2(x, d2). Now consider the generalization of the pre-

ceding proof to any r. For each k, one may write


k= h ( ) = xk + h'(tP) pk'
'r k I U r k k'


t E (0, 1)


using the Mean Value Theorem [45]. The assumption f'(x) # 0 implies

that


f(k= k f(xk
f(vk) = f(hr(Pk)) < f(xk) ,


(3.121)


since


f(xk)T h'(O) < 0 ,
IV il


and Lemma 3.1 implies the existence of a pk which satisfies (3.121).

From the Mean Value Theorem and (3.120)



f(yk)= f(xk+h'(tp ) = f(x) + f(xk+ th'(tp )p )Th'(tp)p



for some t E (0, 1). The above expression with (3.121) imply


h'(tPk) # 0
^r*k ^


(3.120)






-76-


in (3.120). Thus taking limits in (3.120) establishes the existence

of a p given by



p = | y x / II h'(tp) .



Thus for each k,


k k k
f() = f(x + h'(tk) P) < f( )



and after taking limits, and using the continuity of f(x), we obtain



f(X) < f(x) .



Hence E Sr(x, d(r)). This completes the proof.



The VO algorithm may now be given as the composition of the two

mappings M (x) given in (3.113), and S (x, d(r)) given in (3.115) to
r 'ir 'r '
be


A(x) = S (M x)) (3.122)



By Lemmas 3.2, 3.3, and 3.4 the VO algorithm is closed at x, if both

f'(x) 1 0 and if f(x) has continuous first and second derivatives.

This implies that, using the Global Convergence Theorem, if

k+1 k
1) All x e A(x ) are in a compact set,

2) The gradient f'(x) # 0, except at a solution of the
rIV iX0 Ili






-77-


minimization problem (3.2).

3) The function f(x) is continuously twice differentiable,


then the VO algorithm generates a sequence which converges to a

solution or it stops at a solution. The conditions 1 and 3 may not

be difficult to achieve in practice. However condition 2 implies

that the algorithm is not closed at a local maximum or at a saddle

point of f(x), since f'(x) is zero at these points. Thus theoreti-

cally, f(x) must not have any such points; a function not having

these points is defined to be pseudoconvex [35]. In practice, the

algorithm should generate convergent sequences if the function is

pseudoconvex in the region including the desired solution and the

initial point. However, experimental evidence on one tested problem

indicates that the algorithm is superior to others in avoiding

these troublesome points even when they exist in the region of in-

terest.

The VO algorithm may be trivially modified to prevent convergence

to a strict local maximum. If xk is a local maximum, the present

algorithm will fail in the sense that f'(xk) = 0 will cause the

algorithm to stop. At this point however f"(x ) will be negative

semidefinite [56], which is indicated in the VO algorithm by Dk 0

in the modified Cholesky factorization presented in Section 3.5.
k
However Dk 0 may also occur when the hessian is positive semide-

finite, or indefinite. Thus Dk 0 is an indication of potential
1v, "u
problems. Thus if D # 0 at the point at which the algorithm stops,

coordinate searches may be undertaken to ascertain that the expres-

sions






-78-


f(xk + te) < f( = 1, ..., n
'Il 'i 1i



are satisfied for some small value of t. If xk is a strict local
k
maximum, the above procedure should indicate so, and x may then be

perturbed to start the algorithm again.
k
The previous modification may not work if x is a saddle point

as the example in Section 3.1 shows. It must be noted however that

numerical experiments will be given in the next chapter which show

that the VO algorithm appears to be highly effective in avoiding con-

vergence to saddle points. For one tested problem with a saddle

point three existing algorithms converged to the saddle point when

the initial guess was close to the saddle point, while the VO algo-

rithm converged to the correct solution from the same initial point.



3.6.2 Order of Convergence


The order of convergence of the VO algorithm can be established

from published results dating back to Schroder in 1870, who was the

first to define the concept of order of convergence [47-48]. However

in this section, the more modern results due to Ortega and Rheinboldt

[38] and Traub [50] will be used. Two results are given; one applies

to the convergence of the algorithm to local minima with positive

definite hessian, and the other to local minima with positive semi-

definite hessian.

Before we can use the existing results, it must be noted that

the VO algorithm becomes the m-step method






-79-


k,0 k k,i k,i-l f,,(xk -l f, k,i-
x = x x i = xki f"(x ) f'(x ), i=1, ..., m,


k+1 xk,m
xk = x (3.123)



when x is in some neighborhood of a local minimum with a positive

definite hessian (e.g., the scalar parameter p is one). This method

was proposed and studied by Traub [50]. It has also been used by many

researchers, as it can be thought of as Newton's method for solving a

system of equations without updating the coefficient matrix at every

iteration. The following theorem establishes that the method con-

verges with order m+ 1.



Theorem 3.1. Let f(x) have continuous gradients and hessians,

and


II f(x) f"( I11 c -x *II 0 < c <



-1
for all x in a neighborhood of x .Assuming f'(x ) = 0 and f"(x

exists, the order of convergence of (3.123) is m+1.



The proof may be found in Ortega and Rheinboldt [38] and Traub

[50]. Thus the VO algorithm converges with order r, where r is the

transformation function order, whenever f"(x ) is positive definite.
-1
If f"(x ) is positive semidefinite, f"(x ) does not exist,
1,I 'q, 'v
and therefore the preceding theorem does not apply. In this case

the convergence is in general linear (order equal to one) as the

following argument shows. In this case the algorithm may be des-

cribed by the iteration





-80-


k+1 G( k k [pf"( k )+ k-1 i k k
x k+l= G(x ) = x pk[f"(x ) + D ] cf'(x ) + (pk' x )] ,
ru ru 'u k "U f r 'IV % ) 5 kk '

(3.124)


where c, a constant, and the function k depend on the transformation

function order selected, and where the diagonal matrix D is not zero
k *
at x = x The iteration function is thus given by



G(x) = x p[f"(x) + D 1 [cf'(x)+ (p, x)]



The derivative of the iteration function evaluated at x = x is given

by

] *
G'(x*) = 1 p[f"(x ) + D ] [cf"(x ) + g'(p, x)]
V IVi A, %i n' n '%Xj rV



This matrix will not be zero for any value of p in general, since

D is not zero. Thus convergence cannot be higher than linear as

long as G'(x ) # 0 [38]. It should be noted that while convergence

is in general linear whenever f"(x ) is positive semidefinite, local

minima having this property may be picturesquely described as being

flat. This implies that for all x in a fairly large neighborhood of

x II f'(x) II is very small. Thus for practical reasons, it is nor-

mally unnecessary to compute the local minimum with great accuracy

for these cases. Two of the problems selected to test the VO algo-

rithm have their local minimum with a positive semidefinite hessian.

The new algorithm was more efficient in computing an approximation

to their local minimumthan several published algorithms.






-81-


3.7 Summary


The major contribution of this chapter is the derivation of a

new algorithm for finding a local minimum of an unconstrained non-

linear function. The new algorithm, called the Variable-Order (VO)

algorithm, has two properties that no existing minimization algorithm

has. The first new property is the order of convergence. While all

existing algorithms converge with order less than or equal to two,

the new algorithm converges with variable order as high as four. The

second new property is the scalar search step of the algorithm. In

contrast with previous algorithms that have scalar searches along a

straight line in the space of the independent variables, the VO algo-

rithm may have scalar searches along curved trajectories. The VO

algorithm was shown to be globally convergent for pseudoconvex func-

tions with continuous first and second derivatives. The order of

convergence was also established to be from two to four for functions

with a positive definite hessian at the local minimum being computed.

If the hessian is positive semidefinite at the local minimum being

computed, the convergence was shown to be linear.
















CHAPTER 4

IMPLEMENTATION OF THE VARIABLE-ORDER ALGORITHM



In this chapter we consider the practical aspects of the imple-

mentation of the Variable-Order (VO) algorithm to nonlinear circuit

optimization problems. These practical considerations lead to guide-

lines and to some modifications of the algorithm in order to solve the

general nonlinear programming problem given by



minimize f(x) (4.la)
x




subject to a set of nonlinear inequality constraints



(x)< (4.1b)




and a set of "box" constraints given by



L H
x < x < x (4.1c)




Observe that any equality constraint may be included in (4.1b) as two

inequality constraints [20].

In the first section, guidelines are given for handling the non-

linear inequalities by the use of penalty functions. In circuit


-82-






-83-


optimization, the nonlinear inequalities are "loose", i.e., they can

be relaxed to some degree. Therefore, the penalty function approach,

which in effect relaxes the constraints, is an ideal technique for

circuit optimization applications.

In the second section, it is shown how the VO algorithm handles

the box constraints. Unlike the nonlinear inequality constraints, the

box constraints must be satisfied.

The VO algorithm, as described in the last chapter, requires that

a subroutine be written which supplies the value of the function, the

gradient and the hessian at each point generated by the algorithm.

While writing such a subroutine may not be difficult for some problems,

the VO algorithm would be more useful if the hessian can be approxi-

mated when it is difficult to write a subroutine which supplies the

hessian values. Sometimes it may be just as difficult to supply even

the gradient, and thus in this case both the gradient and the hessian

must be approximated. In the third section we consider approximations

to the hessian and the gradient when these values are not supplied.

The fourth section considers the case when the function and the

gradient values supplied to the VO algorithm contain errors. In non-

linear circuit optimization applications, the subroutine that supplies

the function and the gradient values may be actually a complex computer

program which includes the solution of a system of nonlinear algebraic

and differential equations. The function and the gradient values

depend on the solutions to these equations; thus due to the numerical

techniques used, errors may be present in the function and the gradient

values. Numerical experiments will show that if any errors present in

the function and the gradient values supplied to the VO algorithm can





-84-


be estimated and kept small, the algorithm can still be effectively

employed.

The fifth section details the steps in a FORTRAN IV implementation

of the VO algorithm. Finally, the sixth section presents several numer-

ical experiments and comparisons with other algorithms.



4.1 Nonlinear Inequality Constraints


This section gives guidelines to be used in solving the problem

given by



minimize f(x) (4.2a)
x


subject to q(x) < 0 (4.2b)




where q(x) is a vector function of inequality constraints. It is

assumed that all the constraints are nonlinear.

The method recommended for finding a solution of (4.2) is to con-

vert the constrained problem to an unconstrained one by using a penalty

function method [20,34]. That is, define the problem



minimize f(x) = f(x) + PQ(x) (4.3)
x




where Q(x) is a penalty function for the inequality constraints; the

penalty function is defined such that it is zero whenever the point x

satisfies all the constraints, and greater than zero whenever the point

x does not satisfy any of the constraints. The constant y isapositive
nuj





-85-


scalar. For large u, the minimum of (4.3) will tend to be in a region

where the constraints should be almost satisfied. Thus for increasing

p, the corresponding solution points of (4.3) approach a solution of

(4.2) [34]. Therefore, the penalty method converts the constrained

problem (4.2) into an approximately equivalent unconstrained problem,

or perhaps to a sequence of unconstrained problems depending on how

strictly the constraints are to be satisfied. This implies that uncon-

strained minimization algorithms, in particular the VO algorithm, may

be used to approximate the solution of (4.3).

Two difficulties are inherent in converting problem (4.2) to

problem (4.3), and in eventually solving problem (4.3). First, to

insure the global convergence of the VO algorithm, f(x) must be twice

continuously differentiable. Therefore, it appears that penalty func-

tions must be chosen accordingly. Second, problem (4.3) is very ill-

conditioned for large values of the constant V [34]. These considera-

tions will be explored in more detail next.

A suitable penalty function Q(x) is given by

n
Q() = w (max[O, q(x)])3 (4.4)
i=l qi



where n is the number of inequality constraints, and the constants

w may be used to equalize the magnitude of the constraints. The

continuity conditions on f(x) are satisfied by (4.4), if the inequality

constraints qi(x), i=1, ..., n also satisfy them. In the litera-
i. bi q
ture, the most popular penalty function for inequality constraints is

given by





-86-


n

Q(x) = [ w (max[0, q (x)])2 (4.5)
i=1 i



This quadratic penalty function has a hessian which is discontinuous

whenever an inequality constraint is zero [34]. However, it was found

experimentally that for several problems tested, this quadratic penalty

function produces an unconstrained problem which is solved by the VO

algorithm more efficiently, especially when the hessian is not supplied

and thus approximated by differences, than by using the cubic penalty

function (4.4). Note that the VO algorithm is not guaranteed to be

globally convergent for the quadratic penalty function (4.5) because

of its discontinuous hessian.

The VO algorithm, as other existing algorithms [34], solves prob-

lem (4.3) for large p with great difficulty, as examples will show.

It was found that the best approach was to compute rough approximations

to the solution of a sequence of problems, given by (4.3), for increas-

ing values of p, and tightening the desired accuracy of the solution

for the last p used. Thus, it is recommended that initially a small

value of p be used when using the VO algorithm for solving problems

such as (4.3).



4.2 Box Constraints


When the minimization problem has box constraints of the form


L H
x


the penalty function method just described can be used, if (4.6) is






-87-


rearranged into 2n inequality constraints. However, there are two

reasons that compel the use of a different technique for handling the

box constraints. First, the penalty function method allows the viola-

tion of constraints, particularly when the multiplying constant p is

small. In circuit optimization procedures, the circuit equations may

not have any solution if any of the box constraints are violated, and

therefore the algorithm may fail if a box constraint is violated.

Second, the box constraints are linear constraints and their effect

can be very efficiently handled in a direct manner with some modifica-

tions to the VO algorithm.

The method proposed for handling the constraints is to in effect

project the transformation function trajectories onto the active box

constraints whenever the trajectories are outside of the box constraints.

Figure 4.1 illustrates the proposed technique. This projection can be

very efficiently implemented as will be shown.

A modification required in the implementation of the projection

of the transformations is that whenever the trajectory is on a boundary,

an accurate computation of the solution of the scalar minimization

problem in the scalar search should be done. The reason for this modi-

fication is that when transformation functions are projected, their

theoretical properties may be different when the scalar parameter p in

the transformation functions is set to one.



4.3 Hessian and Gradient Approximations


To this juncture the VO algorithm was described in a way that

required supplying the function, the gradient, and the hessian of the

function to be minimized at the points of the sequence {x } generated
'\j





-88-


Xk
O \



I -


Figure 4.1


Illustration of projection of trajectory onto box con-
straints. Box constraints are depicted by the rectangle.
The trajectory is shown by the dash curve to be outside
of the box constraints over two intervals. The actual
trajectory used is shown by the solid curve with arrows.


/
*1
/


/
V
'I




Full Text

PAGE 1

$ 9$5,$%/(25'(5 121/,1($5 352*5$00,1* $/*25,7+0 )25 86( ,1 &20387(5$,'(' &,5&8,7 '(6,*1 $1' $1$/<6,6 %\ $OEHUWR -RVH -LPHQH] $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

U 7R -XG\

PAGE 3

$&.12:/('*(0(176 7KH FRQWULEXWLRQV DQG SDWLHQFH RI WKH FKDLUPDQ RI WKH FRPPLWWHH 'U 6: 'LUHFWRU DUH JUDWHIXOO\ DFNQRZOHGJHG :LWKRXW WKH JUDQW IURP ,%0 LW ZRXOG KDYH QRW EHHQ SRVVLEOH IRU WKLV UHVHDUFKHU WR DIIRUG WKH SXUVXLW RI WKLV UHVHDUFK LQ SDUWLFXODU WKDQN 3& 5HGHU RI WKH *HQHUDO 6\VWHPV 'LYLVLRQ RI ,%0 DW %RFD 5DWRQ )ORULGD IRU KLV XQn VHOILVK KHOS DQG VXSSRUW ,QWHUDFWLRQV DQG PDQ\ OLYHO\ GLVFXVVLRQV ZLWK JUDGXDWH VWXGHQWV )UDVHU 0 /LJKWQHU DQG : 1\H DOVR FRQWULEXWHG WR WKLV UHVHDUFK )LQDOO\ EXW E\ QR PHDQV LQ D OHVVHU PDQQHU WKH VXSn SRUW RI P\ IDPLO\ P\ ZLIH-XG\ DQGRXU GDXJKWHUV FRQWULEXWHG LQ D YHU\ LPSRUWDQW ZD\ DQG ZLWK VRPH JUHDW VDFULILFHV WKURXJKRXW WKH HQWLUH SHULRG DW WKH XQLYHUVLW\ WKDQN $GHOH .RHKOHU IRU KHU VHOIHYLGHQW VXSHUE W\SLQJ RI WKH PDQXVFULSW JUDWHIXOO\ DFNQRZOHGJH WKH FRQVWUXFWLYH FULWLFLVPV RI 'U $( 'XUOLQJ 'U $ 3DLJH 'U &9 6KDIIHU DQG 'U $ :HVWHUEHUJ ZKR ZLWK 'U 6: 'LUHFWRU FRQVWLWXWHG WKH H[DPLQLQJ FRPPLWWHH LLL

PAGE 4

7$%/( 2) &217(176 &KDSWHU 3DJH $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YLLL /,67 2) ),*85(6 [ /,67 2) 6<0%2/6 [L $%675$&7 [LL ,1752'8&7,21 $ 9,(: 2) &20387(5$,'(' &,5&8,7 '(6,*1 1RQOLQHDU 3URJUDPPLQJ &LUFXLW 3UREOHP 'HULYDWLRQ RI WKH *UDGLHQW &RPSXWDWLRQDO )ORZ 5HYLHZ RI 8QFRQVWUDLQHG 0LQLPL]DWLRQ 7+( 9$5,$%/(25'(5 $/*25,7+0 )25 81&21675$,1(' 0,1,0,=$7,21 3URSHUWLHV RI 0LQLPD 3ULQFLSDO 6WHSV LQ D 0LQLPL]DWLRQ $OJRULWKP 9DULDEOH2UGHU 7UDQVIRUPDWLRQV $SSUR[LPDWLRQV RI +LJKHU2UGHU &RUUHFWLRQV 7UDQVIRUPDWLRQ 2UGHU 6HOHFWLRQ 7KH 6FDODU 6HDUFK r ,WHUDWLRQV &ORVH WR [ r ,WHUDWLRQV )DU IURP [ +HVVLDQ 6LQJXODU RU 1HJDWLYH 'HILQLWH LY

PAGE 5

7$%/( 2) &217(176 FRQWLQXHGf &KDSWHU 3DJH 0XUUD\nV 3URFHGXUH 3URSRVHG 0RGLILFDWLRQ WR 0XUUD\nV 3URFHGXUH ,OOXVWUDWLYH ([DPSOH &RPSXWDWLRQ RI +LJK2UGHU &RUUHFWLRQV &RQYHUJHQFH RI WKH 92 $OJRULWKP *OREDO &RQYHUJHQFH 2UGHU RI &RQYHUJHQFH 6XPPDU\ ,03/(0(17$7,21 2) 7+( 9$5,$%/(25'(5 $/*25,7+0 1RQOLQHDU ,QHTXDOLW\ &RQVWUDLQWV %R[ &RQVWUDLQWV +HVVLDQ DQG *UDGLHQW $SSUR[LPDWLRQV )XQFWLRQ DQG *UDGLHQW 9DOXHV 6XSSOLHG 2QO\ )XQFWLRQ 9DOXHV 6XSSOLHG 6XSSOLHG )XQFWLRQ DQG *UDGLHQW 9DOXHV ZLWK (UURUV 7KH 9DULDEOH2UGHU $OJRULWKP 1XPHULFDO 5HVXOWV 5RVHQEURFOFnV 3UREOHP 3RZHOOnV 3UREOHP )OHWFKHU DQG 3RZHOOnV 3UREOHP :RRGnV 3UREOHP &UDJJ DQG /HY\nV 3UREOHP &RPSDULVRQV ZLWK 6HYHQ 0LQLPL]DWLRQ $OJRULWKPV ([DPSOH ZLWK 1RQOLQHDU &RQVWUDLQWV Y

PAGE 6

7$%/( 2) &217(176 FRQWLQXHGf &KDSWHU 3DJH ([DPSOH ZLWK %R[ &RQVWUDLQWV ([DPSOH ZLWK (UURUV LQ WKH 6XSSOLHG )XQFWLRQ DQG *UDGLHQW 6LPSOH &LUFXLW 2SWLPL]DWLRQ ([DPSOH 026)(7 1DQG *DWH &LUFXLW 2SWLPL]DWLRQ ([DPSOH 3RZHU 6XSSO\ 5HJXODWRU &LUFXLW 2SWLPL]DWLRQ ([DPSOH 6XPPDU\ $33/,&$7,21 2) 7+( 9$5,$%/(25'(5 &21&(37 72 &,5&8,7 $1$/<6,6 $SSURDFKHV LQ )LQGLQJ D 6ROXWLRQ (TXLYDOHQW 8QFRQVWUDLQHG 0LQLPL]DWLRQ 3UREOHPV ,WHUDWLYH 0HWKRGV ,QILQLWH 6HULHV 5HSUHVHQWDWLRQ RI D 6ROXWLRQ $ &ODVV RI ,WHUDWLYH 0HWKRGV 7KH 9DULDEOH2UGHU ,WHUDWLYH 0HWKRG 7KH 92 ,WHUDWLYH 0HWKRG LQ 7UDQVLHQW $QDO\VLV 026)(7 1DQG *DWH ([DPSOH 026)(7 %XIIHU ([DPSOHV (&/ *DWH ([DPSOH 7KH 92 ,WHUDWLYH 0HWKRG LQ '& $QDO\VLV 6XPPDU\ &21&/86,216 $1' )8785( 5(6($5&+ 68**(67,216 &RQFOXVLRQV )XWXUH 5HVHDUFK 6XJJHVWLRQV $33(1',; '(6&5,37,21 2) &20387(5 352*5$0 ,03/(0(17,1* 7+( 9$5,$%/(25'(5 $/*25,7+0 YL

PAGE 7

7$%/( 2) &217(176 FRQWLQXHGf &KDSWHU 3DJH 8VLQJ WKH 3URJUDP 'HVFULSWLRQ RI WKH 3URJUDP /LVWLQJ RI WKH 3URJUDP 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ YLL

PAGE 8

/,67 2) 7$%/(6 7DEOH 3DJH 5HVXOWV IRU 5RVHQEURFNnV SUREOHP 5HVXOWV IRU 3RZHOOnV SUREOHP 5HVXOWV IRU )OHWFKHU DQG 3RZHOOnV SUREOHP 5HVXOWV IRU :RRGnV SUREOHP 5HVXOWV IRU :RRGnV SUREOHP LQLWLDO JXHVV QHDU VDGGOH SRLQW 5HVXOWV IRU &UDJJ DQG /HY\nV SUREOHP 6XPPDU\ RI UHVXOWV IRU ILYH SUREOHPV ZLWK UHGXFHG DFFXUDF\ &RPSDUDWLYH UHVXOWV RI 92 DOJRULWKP ZLWK VHYHQ RWKHU DOJRULWKPV 5HVXOWV IRU LOOXVWUDWLYH FRQVWUDLQHG SUREOHP 5HVXOWV IRU FRQVWUDLQHG SUREOHP VROYHG E\ D VHTXHQFH RI SUREOHPV 5HVXOWV IRU 5RVHQEURFNnV SUREOHP ZLWK UDQGRP HUURUV LQ WKH IXQFWLRQ DQG WKH JUDGLHQW 5HVXOWV RI RSWLPL]DWLRQ RI QDQG JDWH 7DEXODU GHVFULSWLRQ RI WZR FXUUHQW VRXUFHV &RPSDUDWLYH UHVXOWV RI WUDQVLHQW DQDO\VLV IRU QDQG JDWH &RPSDUDWLYH UHVXOWV RI WUDQVLHQW DQDO\VLV IRU GHYLFH 026 EXIIHU &RPSDUDWLYH UHVXOWV RI WUDQVLHQW DQDO\VLV IRU GHYLFH 026 EXIIHU &RPSDUDWLYH UHVXOWV RI WUDQVLHQW DQDO\VLV IRU (&/ JDWH &RPSDUDWLYH UHVXOWV RI WUDQVLHQW DQDO\VLV IRU (&/ JDWH ZLWK FDSDFLWDQFHV PXOWLSOLHG E\ A YLLL

PAGE 9

/,67 2) 7$%/(6 &RQWLQXHGf 7DEOH 3DJH &RPSDUDWLYH UHVXOWV RI GF DQDO\VLV IRU (&/ JDWH &RPSDUDWLYH UHVXOWV RI GF DQDO\VLV IRU GHYLFH 026 EXIIHU L[

PAGE 10

/,67 2) ),*85(6 )LJXUH 3DJH )ORZFKDUW RI D SRUWLRQ RI WKH VFDODU VHDUFK VWHS RI WKH 92 DOJRULWKP ,OOXVWUDWLRQ RI SURMHFWLRQ RI WUDMHFWRU\ RQWR ER[ FRQn VWUDLQWV 7UDMHFWRULHV IRU WKH VHFRQG WKLUG DQG IRXUWKRUGHU WUDQVIRUPDWLRQV DW [r f7 IRU WKH PLQLPL]DWLRQ RI 5RVHQEURFNnV IXQFWLRQ 3ORW RI IK"Sff YV S D 7UDMHFWRU\ RI 92 DOJRULWKP IRU WKH PLQLPL]DWLRQ RI 5RVHQEURFNnV IXQFWLRQ 6LPSOH FLUFXLW WR WHVW DQG FRPSDUH WKH 92 DOJRULWKP 7ZRLQSXW QDQG JDWH RSWLPL]HG 3RZHU VXSSO\ UHJXODWRU RSWLPL]HG 1LQHGHYLFH 026 EXIIHU FLUFXLW DQDO\]HG (LJKWHHQGHYLFH 026 EXIIHU DQDO\]HG (&/ JDWH DQDO\]HG ([DPSOH RI VXEURXWLQH WR VXSSO\ WKH IXQFWLRQ WKH JUDGLHQW DQGRU WKH KHVVLDQ WR WKH 92 DOJRULWKP 7\SLFDO VHWXS IRU H[HFXWLQJ WKH 92 DOJRULWKP LQ DQ ,%0 FRPSXWHU ZLWK VWDQGDUG FDWDORJ SURFHGXUHV [

PAGE 11

/,67 2) 6<0%2/6 ; $ FROXPQ YHFWRU LQ 5Q ZLWK FRPSRQHQWV [A [ \ nE b (DFK FRPSRQHQW RI WKH YHFWRU [ LV OHVV WKDQ WKH FRUUHVSRQGLQJ FRPSRQHQW RI WKH YHFWRU \ nE ,, \ ,, $Q\ QRUP RI WKH YHFWRU m,} 7KH PD[LPXP QRUP RI WKH YHFWRU HTXDO WR 7 O PD[>\A@ 7KH WUDQVSRVH RI WKH YHFWRU WKH UHVXOW EHLQJ In[f nE Y D URZ YHFWRU RU WKH WUDQVSRVH RI D PDWUL[ \ 7KH FROXPQ YHFWRU ILUVW GHULYDWLYH RI I[f WKH WUDQVSRVH RI WKH JUDGLHQW &In[f@ 9 A 7KH MFRPSRQHW RI WKH JUDGLHQW I[f;M I[f fE E 7KH VHFRQG GHULYDWLYH RI I[f WKH KHVVLDQ >I[f/ nE 7KH LMfWK FRPSRQHQW RI WKH KHVVLDQ I[f[ [ f Q L I0[f rE nE If[f ILY[f b nE nE b 7KH LQYHUVH RI WKH KHVVLDQ PDWUL[ RI I[f nE 7KH WKLUG DQG IRXUWK GHULYDWLYH WHQVRUV RI I[f )[f )n[f )[f nE nE Y D nE nE $ YHFWRU IXQFWLRQ DQG LWV GHULYDWLYHV )[f LV 2L b FDOOHG WKH -DFRELDQf )n[f rE nE 7KH LQYHUVH RI WKH -DFRELDQ PDWUL[ RI )[f nE b nE 8QLW GLDJRQDO PDWUL[ RI DSSURSULDWH GLPHQVLRQ D} =HUR YHFWRU RU ]HUR PDWUL[ RI DSSURSULDWH GLPHQVLRQ f T 7KH WLPH GHULYDWLYH RI WKH YDULDEOH T [L

PAGE 12

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 9$5,$%/(25'(5 121/,1($5 352*5$00,1* $/*25,7+0 )25 86( ,1 &20387(5$,'(' &,5&8,7 '(6,*1 $1' $1$/<6,6 %\ $OEHUWR -RVH -LPHQH] -XQH &KDLUPDQ 6WHSKHQ : 'LUHFWRU 0DMRU 'HSDUWPHQW (OHFWULFDO (QJLQHHULQJ $Q LWHUDWLYH DOJRULWKP FDOOHG WKH 9DULDEOH2UGHU 92f DOJRULWKP LV GHULYHG IRU FRPSXWLQJ D ORFDO PLQLPXP RI D QRQOLQHDU IXQFWLRQ RI VHYHUDO LQGHSHQGHQW YDULDEOHV 7KH 92 DOJRULWKP LV VKRZQ WR EH YHU\ FRPSHWLWLYH ZLWK VHYHUDO H[LVWLQJ DOJRULWKPV 7KH FODVV RI IXQFWLRQV IRU ZKLFK WKH DOJRULWKP LV JOREDOO\ FRQYHUJHQW LV HVWDEOLVKHG ,W LV VKRZQ WKDW WKH 92 DOJRULWKP FRQYHUJHV ZLWK RUGHU DV KLJK DV IRXU $ PDMRU VWHS RI WKH DOJRULWKP LV WKH VROXWLRQ RI D VFDODU SUREOHP WKDW PD\ EH DORQJ FXUYHG WUDMHFWRULHV LQ WKH VSDFH RI WKH LQGHSHQGHQW YDULDEOHV LQn VWHDG RI DORQJ VWUDLJKW OLQHV DV LQ PRVW H[LVWLQJ DOJRULWKPV $SSUR[Ln PDWLRQV WR UHTXLUHG KLJKHURUGHU GHULYDWLYHV DUH JLYHQ ZKLFK DOORZ WKH XVH RI WKH 92 DOJRULWKP HYHQ LI RQO\ IXQFWLRQ YDOXHV FDQ EH VXSSOLHG ,I WKH VXSSOLHG IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VRPHZKDW LQDFFXUDWH DV LV RIWHQ WKH FDVH LQ FRPSXWHUDLGHG FLUFXLW RSWLPL]DWLRQ SURFHGXUHV WKH 92 DOJRULWKP LV VKRZQ WR EH VWLOO HIIHFWLYH 7KH DOJRULWKP PD\ EH XVHG WR FRPSXWH D VROXWLRQ RI D JHQHUDO QRQOLQHDU SURJUDPPLQJ SUREOHP E\ WKH XVH RI SHQDOW\ IXQFWLRQV 6SHFLDO FDVHV RI WKH 92 DOJRULWKP DUH XVHG WR GHYHORS DQ LWHUDWLYH PHWKRG WR VROYH QRQOLQHDU HTXDWLRQV WKDW DULVH LQ FLUFXLW DQDO\VLV ZLWK UHVXOWLQJ PRGHVW LPSURYHPHQWV LQ HIILFLHQF\ 7KH QHZ PHWKRG LV DSSOLHG WR WUDQVLHQW DQG GF DQDO\VLV RI QRQOLQHDU 026)(7 DQG ELSRODU FLUFXLWV [LL

PAGE 13

&+$37(5 ,1752'8&7,21 ,W KDV EHHQ QLQH \HDUV VLQFH SXEOLFDWLRQ RI WKH ILUVW E\ QRZ DOPRVW FODVVLFDO VSHFLDO LVVXH RI WKH 3URFHHGLQJV RI WKH ,((( >@ RQ FRPSXWHUDLGHG GHVLJQ RI FLUFXLWV 7KDW LVVXH PDUNHG WKH EHJLQQLQJ RI D WUHQG WR XVH WKH FRPSXWHU DV DQ DFWLYH SDUWQHU LQ GHVLJQ UDWKHU WKDQ VLPSO\ LQ D SDVVLYH UROH IRU VLPXODWLRQ 7KH FLUFXLWV DW WKDW WLPH PLJKW EH GHVFULEHG DV EHLQJ LQ WKH LQIDQF\ RI LQWHJUDWHG HOHFWURQLFV 7KH PRVW FRPSOH[ LQWHJUDWHG FLUFXLW FKLS PLJKW KDYH FRQVLVWHG RI WHQ GHYLFHV LW ZDV VWLOO VRPHZKDW IHDVLEOH WR XVH EUHDGERDUGLQJ WHFKQLTXHV DV DLGV LQ WKH GHVLJQ 'XULQJ WKH HQVXLQJ QLQH \HDUV VHYHUDO PRUH MRXUQDOV KDYH EHHQ GHYRWHG WR WKH VXEMHFW RI FRPSXWHUDLGHG GHVLJQ RI FLUFXLWV DPRQJ WKHP >@ DQG LQWHJUDWHG HOHFWURQLFV KDV PDWXUHG WR WKH SRLQW ZKHUH ODUJH VFDOH LQWHJUDWHG FLUFXLWV ZKLFK FRQWDLQ WKRXVDQGV RI GHYLFHV FDQ EH PDQXIDFWXUHG %UHDGERDUGLQJ RI FLUFXLWV KDV JHQHUDOO\ FHDVHG WR EH YHU\ XVHIXO DV D GHVLJQ WRRO DQG WKH FRPSXWHU KDV EHFRPH LQGLVSHQVDEOH LQ WKH HQWLUH GHVLJQ SURFHVV 7KH FRPSXWHU LV EHLQJ XVHG DW PDQ\ VWDJHV DQG IRU PDQ\ GLIIHUHQW SXUSRVHV GXULQJ WKH GHVLJQ RI FLUFXLWV :H ZLOO EH FRQFHUQHG ZLWK WKH XVH RI WKH FRPSXWHU WR RSWLPL]H D FLUFXLW E\ YDU\n LQJ VRPH GHVLJQDEOH SDUDPHWHUV LQ RUGHU WR DFKLHYH WKH GHVLJQ REMHFWLYHV ,Q FLUFXLW RSWLPL]DWLRQ D VFDODU SHUIRUPDQFH IXQFWLRQ UHSUHVHQWLQJ WKH GHVLJQ REMHFWLYHV LV PLQLPL]HG 7KHUH DUH WZR SULQFLSDO FRPSXWDWLRQn DO VWHSV LQ WKLV SURFHGXUH )LUVW D QXPHULFDO PLQLPL]DWLRQ DOJRULWKP

PAGE 14

PXVW EH HPSOR\HG WR DGMXVW WKH GHVLJQDEOH SDUDPHWHUV LQ RUGHU WR PLQLn PL]H WKH VFDODU SHUIRUPDQFH IXQFWLRQ 0LQLPL]DWLRQ DOJRULWKPV EHJLQ IURP DQ LQLWLDO SRLQW D JXHVV WR WKH RSWLPXP VHW RI GHVLJQDEOH SDUDn PHWHUV WR JHQHUDWH D VHTXHQFH RI SRLQWV ZKLFK KRSHIXOO\ FRQYHUJHV WR WKH PLQLPXP RI WKH VFDODU SHUIRUPDQFH IXQFWLRQ 0RVW PLQLPL]DWLRQ DOJRULWKPV UHTXLUH WKH QXPHULFDO YDOXHV RI WKH SHUIRUPDQFH IXQFWLRQ DQG LWV JUDGLHQW ZLWK UHVSHFW WR WKH GHVLJQDEOH SDUDPHWHUV HYDOXDWHG DW VHYHUDO SRLQWV GXULQJ WKH PLQLPL]DWLRQ SURFHGXUH 7KH QXPEHU RI IXQFn WLRQ DQG JUDGLHQW HYDOXDWLRQV UHTXLUHG LV JHQHUDOO\ SURSRUWLRQDO WR WKH FRPSXWDWLRQDO FRVW RI WKH PLQLPL]DWLRQ 6HFRQG WKH HYDOXDWLRQ RI WKH VFDODU SHUIRUPDQFH IXQFWLRQ DQG LWV JUDGLHQW JHQHUDOO\ LQYROYHV DQDO\VLV RI WKH FLUFXLW HTXDWLRQV D UDWKHU ODUJH VHW RI QRQOLQHDU DOJHEUDLF DQG GLIIHUHQWLDO HTXDWLRQV 7KH ODUJH QXPEHU RI FLUFXLW HTXDWLRQV LV QRW RQO\ GXH WR WKH LQFUHDVHG FLUFXLW VL]H EXW DOVR GXH WR WKH XVH RI PRUH FRPSOH[ GHYLFH PRGHOV IRU LPSURYHG DFFXUDF\ 7KH JRDOV RI WKLV UHVHDUFK ZHUH WR LPSURYH WKH HIILFLHQF\ RI WKH WZR FRPSXWDWLRQDO VWHSV GHVFULEHG DERYH 7KH PDMRU DFFRPSOLVKPHQWV ZHUH WKH GHULYDWLRQ RI D YHU\ SURPLVLQJ QHZ PLQLPL]DWLRQ DOJRULWKP DQG D QHZ LWHUDWLYH PHWKRG WR VROYH WKH QRQOLQHDU DOJHEUDLF HTXDWLRQV WKDW DULVH LQ WKH DQDO\VLV RI FLUFXLWV 7KH PDLQ FRQWULEXWLRQ RI WKLV UHVHDUFK LV WKH GHYHORSPHQW RI D QHZ PLQLPL]DWLRQ DOJRULWKP $OWKRXJK WKH QHZ DOJRULWKP KDV VRPH VKRUWn FRPLQJV QXPHULFDO UHVXOWV RQ VHYHUDO H[DPSOHV VKRZ WKDW LW LV TXLWH DFFXUDWH DQG PRUH HIILFLHQW WKDQ RWKHU H[LVWLQJ DOJRULWKPV IRU WKH PDMRULW\ RI WKH H[DPSOHV WULHG )URP D WKHRUHWLFDO VWDQGSRLQW WKH DOJRn ULWKP KDV WZR QRYHO QHZ IHDWXUHV f LW KDV D YDULDEOH RUGHU RI

PAGE 15

FRQYHUJHQFH XS WR RUGHU IRXU DQG f LW KDV D QRYHO VFDODU VHDUFK DW HDFK LWHUDWLRQ ZKLFK PD\ EH DORQJ FXUYHG WUDMHFWRULHV LQ WKH VSDFH RI WKH LQGHSHQGHQW YDULDEOHV $ VHFRQG FRQWULEXWLRQ RI WKLV UHVHDUFK LV DQ LWHUDWLYH PHWKRG IRU VROYLQJ WKH QRQOLQHDU HTXDWLRQV WKDW DULVH LQ WKH WUDQVLHQW DQDO\VLV RI WKH FLUFXLW HTXDWLRQV 0RGHVW LPSURYHPHQWV LQ HIILFLHQF\ ZHUH REWDLQHG ZKHQ WKH QHZ LWHUDWLYH PHWKRG ZDV LPSOHPHQWHG LQ DQ DOUHDG\ YHU\ HIILn FLHQW WUDQVLHQW DQDO\VLV SURJUDP 2WKHU PLQRU FRQWULEXWLRQV FDQ EH VXPPDUL]HG DV IROORZV f $ SRWHQWLDOO\ XVHIXO 7D\ORU VHULHV H[SDQVLRQ RI WKH VROXWLRQ SRLQW RI D V\VWHP RI QRQOLQHDU HTXDWLRQV 'LIIHUHQW IRUPV RI WKH VHULHV ZKHQ WUXQFDWHG \LHOG GLIIHUHQW LWHUDWLYH PHWKRGV $Q LWHUDWLYH PHWKRG ZDV XVHG WR REWDLQ GF VROXWLRQV RI WKH FLUn FXLW HTXDWLRQV f $ PRGLILHG &KROHVN\ IDFWRUL]DWLRQ RI D V\PPHWULF PDWUL[ WKH KHVVLDQ ZKLFK LQ HIIHFW PRGLILHV WKH PDWUL[ ZKHQ LW LV QRW SRVVLWLYH GHILQLWH 7KH QHZ IDFWRUL]DWLRQ LV D PRGLILFDWLRQ RI D SUHYLRXVO\ SURSRVHG WHFKQLTXH >@ f $Q DSSDUHQWO\ QRYHO VFKHPH IRU FRPSXWLQJ GLIIHUHQFH DSSUR[LPDn WLRQV WR ILUVW DQG VHFRQG GHULYDWLYHV WKH JUDGLHQW DQG WKH KHVVLDQ 7KH VFKHPH DXWRPDWLFDOO\ WDNHV LQWR FRQVLGHUDWLRQ HUURUV WKDW PD\ EH SUHVHQW LQ WKH IXQFWLRQ YDOXHV WKDW DUH XVHG LQ WKH GLIIHUHQFH DSSUR[LPDWLRQV f $ QHZ PHWKRG RI GHVFULELQJ PLQLPL]DWLRQ DOJRULWKPV WR DFFRXQW IRU RWKHU WKDQ VWUDLJKWOLQH GLUHFWLRQV RI VHDUFK ([LVWLQJ WKHRUHPV DUH H[WHQGHG WR WKH QHZ GHVFULSWLRQ

PAGE 16

7KH RUJDQL]DWLRQ RI WKH FKDSWHUV LV WKH IROORZLQJ ,Q &KDSWHU ZH RIIHU D EULHI WKHRUHWLFDO DQG FRPSXWDWLRQDO YLHZ RI FRPSXWHUDLGHG FLUFXLW GHVLJQ ,Q WKDW FKDSWHU D EULHI KLVWRULFDO UHYLHZ RI PLQLPL]Dn WLRQ DOJRULWKPV LV DOVR JLYHQ ,Q &KDSWHU WKH QHZ PLQLPL]DWLRQ DOJRULWKP LV GHULYHG DQG LWV WKHRUHWLFDO SURSHUWLHV DUH HVWDEOLVKHG ,Q &KDSWHU LPSOHPHQWDWLRQ RI WKH QHZ DOJRULWKP LV GHVFULEHG ,Q DGGLWLRQ VHYHUDO H[DPSOHV DQG FRPSDULVRQV ZLWK RWKHU DOJRULWKPV DUH UHSRUWHG ,Q &KDSWHU WKH FRQFHSWV XVHG LQ WKH GHULYDWLRQ RI WKH PLQLn PL]DWLRQ DOJRULWKP DUH XVHG WR GHULYH LWHUDWLYH PHWKRGV IRU ILQGLQJ VROXWLRQV WR QRQOLQHDU HTXDWLRQV )LQDOO\ &KDSWHU RIIHUV JHQHUDO FRQFOXVLRQV DQG VRPH VXJJHVWLRQV IRU IXUWKHU UHVHDUFK

PAGE 17

&+$37(5 $ 9,(: 2) &20387(5$,'(' &,5&8,7 '(6,*1 $ VXFFHVVIXO DSSURDFK LQ XVLQJ WKH FRPSXWHU DV D FLUFXLW GHVLJQ WRRO KDV EHHQ WR PLQLPL]H D VFDODU SHUIRUPDQFH IXQFWLRQ ZKLFK UHSUHn VHQWV WKH GHVLJQ REMHFWLYHV E\ DGMXVWLQJ LQ VRPH VXLWDEOH IDVKLRQ WKH GHVLJQDEOH SDUDPHWHUV 7KLV SURFHGXUH UHTXLUHV PDQ\ VWHSV ZKLFK ZLOO EH EULHIO\ RXWOLQHG LQ WKLV FKDSWHU 7KH ILUVW VWHS LQ XVLQJ RSWLPL]DWLRQ IRU FLUFXLW GHVLJQ LV WR UHFDVW WKH SUREOHP LQWR D QRQOLQHDU SURJUDPPLQJ SUREOHP E\ FKDUDFWHUn L]LQJ WKH TXDOLWDWLYH GHVLJQ REMHFWLYHV E\ D VFDODU SHUIRUPDQFH IXQFWLRQ ZLWK FRQVWUDLQWV 7KLV VWHS LV TXLWH KHXULVWLF DQG UHTXLUHV JUHDW LQVLJKW RQ WKH SDUW RI WKH FLUFXLW GHVLJQHU $IWHU WKLV LQLWLDO VWHS WKH FRPSXWHU WDNHV RYHU E\ DSSUR[LPDWLQJ WKH VROXWLRQ RI WKH QRQOLQHDU SURJUDPPLQJ SUREOHP 7KH GHULYDWLRQ DQG WKH FRPSXWDWLRQDO VWHSV LQYROYHG LQ WKH HYDOXDn WLRQ RI WKH VFDODU SHUIRUPDQFH IXQFWLRQ DQG LWV JUDGLHQW QHHGHG IRU VROYLQJ WKH QRQOLQHDU SURJUDPPLQJ SUREOHP ZLOO EH EULHIO\ RXWOLQHG 7KH FKDSWHU HQGV ZLWK D EULHI KLVWRULFDO UHYLHZ RI H[LVWLQJ PHWKRGV IRU VROYLQJ WKH XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHP ZKLFK UHVXOWV IURP WKH QRQOLQHDU SURJUDPPLQJ SUREOHP 1RQOLQHDU 3URJUDPPLQJ &LUFXLW 3UREOHP $OWKRXJK WKHUH KDYH EHHQ VRPH IDLUO\ VXFFHVVIXO DWWHPSWV DW V\QWKHVLV

PAGE 18

ZKHUH D FLUFXLW LV JURZQ WR PHHW VSHFLILFDWLRQV >@ LW PD\ EH VDIHO\ VWDWHG WKDW WKLV SUREOHP KDV QRW EHHQ VROYHG VDWLVIDFWRULO\ 7KXV LW ZLOO EH DVVXPHG WKDW D FLUFXLW ZKLFK VRPHZKDW DGHTXDWHO\ PHHWV WKH GHVLJQ REMHFWLYHV LV DYDLODEOH HJ IURP D FDWDORJ RI FLUFXLWV ,W LV WKHQ GHVLUHG WR FKDQJH SDUDPHWHUV RI WKLV FLUFXLW WR LPSURYH LWV LQn WHQGHG REMHFWLYH 7KH GHVLJQ REMHFWLYHV RI D FLUFXLW DUH XVXDOO\ VSHFLILHG LQ D VRPHZKDW TXDOLWDWLYH PDQQHU 6RPH RI WKH REMHFWLYHV DUH WR PLQLPL]H FHUWDLQ TXDQWLWLHV VXFK DV SRZHU GLVVLSDWLRQ WLPH GHOD\V FLUFXLW VL]H RU PLQLPL]LQJ WKH GLIIHUHQFH EHWZHHQ D GHVLUHG YROWDJH RU FXUUHQW FXUYH ZLWK WKH DFWXDO FXUYH 2WKHU REMHFWLYHV PD\ EH GHVFULEHG DV FRQVWUDLQWV RQ WKH VROXWLRQV RU RQ WKH GHVLJQDEOH SDUDPHWHUV VXFK DV YROWDJH RU FXUUHQW OHYHOV OHVV WKDQ RU JUHDWHU WKDQf VRPH YDOXH SURSDJDWLRQ GHOD\V QR ODUJHU WKDQ VRPH YDOXH ORZ DQG KLJK OLPLWV FDOOHG ER[ FRQn VWUDLQWV RQ WKH GHVLJQDEOH SDUDPHWHUV HWF ,W LV WKH FLUFXLW GHVLJQn HUnV MRE WR WUDQVODWH WKH XVXDOO\ XQVSHFLILF GHVLJQ REMHFWLYHV LQWR D VHW RI VSHFLILF VFDODU IXQFWLRQV 2IWHQ WKLV VSHFLILFDWLRQ VWHS \LHOGV VHYHUDO VFDODU IXQFWLRQV WR EH PLQLPL]HG VHYHUDO FRQVWUDLQW IXQFWLRQV DQG ER[ FRQVWUDLQWV RQ WKH GHVLJQDEOH SDUDPHWHUV 0RVW FLUFXLW RSWLPL]DWLRQ SURJUDPV UHTXLUH WKDW DOO WKH VFDODU IXQFWLRQV WR EH PLQLPL]HG EH FRPELQHG LQ VRPH PDQQHU WR REWDLQ D VLQJOH VFDODU SHUIRUPDQFH RU REMHFWLYH IXQFWLRQ WR EH PLQLPL]HG 7KH VLPSOHVW WHFKQLTXH IRU DFFRPSOLVKLQJ WKLV FRPELQDWLRQ LV WR FKRRVH D SHUIRUPDQFH IXQFWLRQ ZKLFK LV D ZHLJKWHG VXP RI DOO WKH IXQFWLRQV WR EH PLQLPL]HG 7KH JHQHUDO IRUP RI VXFK D SHUIRUPDQFH IXQFWLRQ LV 7 I HZ T [ Wf GW A n9 A f

PAGE 19

ZKHUH Z LV D YHFWRU RI EUDQFK YROWDJHV EUDQFK FXUUHQWV DQG QRGH YROWn DJHV RI WKH FLUFXLW T LV D YHFWRU RI FDSDFLWDQFH FKDUJHV DQG LQGXFWRU n;M IOX[HV [ LV WKH YHFWRU RI WLPHLQGHSHQGHQW GHVLJQDEOH SDUDPHWHUV HJ n;M JHRPHWULHV RI HDFK GHYLFH LQ WKH FLUFXLW DQG W LV WLPH 7KH VFDODU IXQFWLRQ H UHSUHVHQWV D QXPHULFDO FRPSURPLVH RI WKH GHVLJQ REMHFWLYHV LQ WKDW D GLIIHUHQW FRPELQDWLRQ RI WKH IXQFWLRQV WR EH PLQLPL]HG \LHOGV D GLIIHUHQW IXQFWLRQ H DQG WKXV D GLIIHUHQW PLQLPL]DWLRQ SUREOHP $V SXEOLVKHG DSSOLFDWLRQV KDYH VKRZQ >@ WKLV QXPHULFDO FRPSURPLVH LPSOLHV WKDW FLUFXLW GHVLJQ FDUULHG RXW LQ WKLV PDQQHU PD\ UHTXLUH VHYHUDO PLQLPL]DWLRQV WR DFKLHYH WKH EHVW GHVLJQ DV LQWHUSUHWHG E\ WKH FLUFXLW GHVLJQHU 7KH PLQLPL]DWLRQ RI f PXVW EH FDUULHG RXW VXEMHFW WR WKH FLUFXLW GHVLJQHU FRQVWUDLQWV DQG VXEMHFW WR WKH FLUFXLW HTXDWLRQ FRQVWUDLQWV ZKLFK LV D QRQOLQHDU SURJUDPPLQJ SUREOHP 7KLV SUREOHP PD\ EH GHVFULEHG DV IROORZV 7 PLQLPL]H IZ T [f HZ T [ Wf GW Df VXEMHFW WR XZ T [ Wf \ Ef O [ [ [ + Ff b a b a Q +Z T [ Wf n;r n;M n;M n;M n;M Gf Hf ZKHUH Ef DUH WKH GHVLJQHUnV QRQOLQHDU FRQVWUDLQWV Ff DUH WKH ER[ FRQVWUDLQWV DQG Gf ZLWK Hf UHSUHVHQW WKH FLUFXLW HTXDWLRQV

PAGE 20

7KH FLUFXLW HTXDWLRQV ZKLFK FDQ DOVR EH H[SUHVVHG E\ )Z! f f "} Ff U?M r?M 2M n9 +Z! f "} b b b b ( Z T nOO nOO Tf T [f f nX A L8 Y! ZKHUH WKH LQLWLDO FRQGLWLRQV -T[f PD\ EH IXQFWLRQV RI WKH GHVLJQDEOH SDUDPHWHUV FRQVLVW RI .LUFKKRIIODZV HTXDWLRQV DQG WKH EUDQFK FRQVWLn WXWLYH HTXDWLRQV >@ 7KH ER[ FRQVWUDLQWV Ff DUH XVXDOO\ KDQGOHG E\ WUDQVIRUPDWLRQV >@ RU GLUHFWO\ DV GRQH E\ WKH DOJRULWKP WR EH JLYHQ LQ &KDSWHUV DQG 7KH QRQOLQHDU FRQVWUDLQWV Ef DUH XVXDOO\ PDGH SDUW RI WKH H IXQFWLRQ LQ Df E\ XVLQJ SHQDOW\ IXQFWLRQV DV GHVFULEHG LQ &KDSWHU 7KHUHIRUH ZH ZLOO GLVFXVV WKH QXPHULFDO DQG WKHRUHWLFDO FRQVLGHUDWLRQV LQ VROYLQJ WKH SUREOHP JLYHQ E\ 7 HZ T [ Wf GW Df T n;M b n;M A n;M A VXEMHFW WR +Z T [ Wf Ef nOO n9 nE R nOO PLQLPL]H ZT[ IZ T [f n;M n;M n;M ( T T Tf Tf[f Ff b U?M b n;M I;M n: I?M ZKHUH ZLWKRXW ORVV RI JHQHUDOLW\ W LV DVVXPHG 'HULYDWLRQ RI WKH *UDGLHQW $Q\ VROXWLRQ RI f PXVW VDWLVI\ WKH QHFHVVDU\ FRQGLWLRQ WKDW WKH ILUVW YDULDWLRQDO RU JUDGLHQWf RU WKH /DJUDQJLDQ YDQLVKHV >@ 7KH

PAGE 21

/DJUDQJLDQ LV JLYHQ E\ /Z T [ Z Tf >HZ T [ Wf Z7 +Z T [ LWf n\M nE n; n;M n;M a b nWI n;L n;M n;M U?L U?L A T (Z Tf@ GW A 2} 2} A f ZKHUH ZWf DQG TWf DUH WKH /DJUDQJH PXOWLSOLHU YHFWRUV ZKLFK DUH IXQF 2 n;M WLRQV RI WLPH 7KH ILUVW YDULDWLRQDO RI / LV JLYHQ E\ 7 + / Z7 T7 Hf Z GW n‘RZ nY Z D Y b 8 n[ nY + U H f7 c7L 7 A \ TGWT T Q nT nY T 8 I?M U?M b A 7 A 7 %+ W : f§f [ GW U [ A [n D 8 n[ D 7 7 n7 f U f}7 Z + GW T ( Z Tf GW A Y T D nYn[! f ZKHUH WKH YDULDWLRQDO WHUP LQ f LQYROYLQJ T LV REWDLQHG XVLQJ LQn WHJUDWLRQ E\ SDUWV DV IROORZV TA T GWf 6Trf T GW T7 T GW T nE 2U T A UO} T nE 2} T7 T GW T7TGWJ7 A A A A n9 T 7 f ,Q RUGHU WR VDWLVI\ WKH QHFHVVDU\ FRQGLWLRQV RQH PXVW ILQG WLPHGHSHQGHQW

PAGE 22

$ 9 D rr D $ YHFWRUV Z Wf T Wf Z Wf DQG T Wf DQG D WLPHLQGHSHQGHQW YHFWRU R Q} r [ WR VDWLVI\ nX / f 7KH SUREOHP RI VDWLVI\LQJ f QRUPDOO\ KDV DQ H[WUHPHO\ ODUJH GLPHQVLRQ 7KH GLPHQVLRQ FDQ EH UHGXFHG VXEVWDQWLDOO\ LI RQH PDNHV WZR DVVXPSWLRQV )LUVW LI WKH FLUFXLW HTXDWLRQV FDQ EH VDWLVILHG DW DOO N N N YDOXHV RI [ WKHQ JLYHQ DQ [ [ ZH FDQ REWDLQ Z Wf DQG T Wf VXFK b n;M n;M n;M b WKDW WKH FLUFXLW HTXDWLRQV -6Nf Nn 6 ‘ D! !! n ReNf f Ef DUH VDWLVILHG 6HFRQG LI WKH -DFRELDQ RSHUDWRU RI WKH FLUFXLW HTXDn WLRQV JLYHQ E\ b ( 9 T O f§ D GW f LV LQYHUWLEOH LQ WKH LQWHUYDO e W B 7 WKHQ WKH /DJUDQJH PXOWLSOLHU D $ $ YHFWRUV Z Wf DQG T Wf FDQ EH FRPSXWHG IURP b ,W N 7 + 7 + N rN nE YD rE H Z nE GZ n;M T Z Df

PAGE 23

H T n;M T f R Ef ZKHUH W 7 W QRWH WKDW TNW f TNW 7ff 2 b f PD\ EH ZULWWHQ LQ PDWUL[ IRUP DV IROORZV 7KH HTXDWLRQV LQ +N 2G +N b 7 aN U N7 L Z D Z b Z n;M ( D ]?r aN B N7 HN D f ZKLFK FDQ EH VROYHG EHFDXVH RI WKH VHFRQG DVVXPSWLRQ 2EVHUYH WKDW WKH VROXWLRQ WR f LV FDUULHG RXW LQ W ZKHUH W 7 W ZKLFK LV EDFNn ZDUGV LQ WKH RULJLQDO WLPH YDULDEOH 7KHVH WZR DVVXPSWLRQV DUH UHDVRQn DEOH VLQFH WKH GHVLJQDEOH SDUDPHWHUV DUH QRUPDOO\ FRQVWUDLQHG E\ WKH ER[ FRQVWUDLQWV VR WKDW DQ DFWXDO SK\VLFDO FLUFXLW LV DOZD\V REWDLQHG DQG WKHUHIRUH WKH FLUFXLW HTXDWLRQV VKRXOG DOZD\V KDYH D VROXWLRQ :LWK WKH SUHFHGLQJ WZR DVVXPSWLRQV XVLQJ f DQG f WKH YDULDWLRQDO / LQ f DW [ [ EHFRPHV n;M n;M 7 B N 7 +N 7 /N _6 ZN 6[N GW TN f TNf f Q G; A G; n 2 n9 Ur /f R nY 7KLV YDULDWLRQDO PD\ EH H[SUHVVHG DV WKH JUDGLHQW ZLWK UHVSHFW WR [ N HYDOXDWHG DW [ E\ / [ n?M n H [ Z + b [ GW N f TNf BL [ b f

PAGE 24

VLQFH [ LV QRW D IXQFWLRQ RI WLPH 7KLV H[SUHVVLRQ LPSOLHV WKDW WKH n;M SUREOHP KDV EHHQ UHGXFHG LQ GLPHQVLRQ :H FDQ QRZ XVH DQ\ XQFRQVWUDLQHG PLQLPL]DWLRQ DOJRULWKP ZKLFK ZRXOG YDU\ RQO\ WKH GHVLJQDEOH SDUDPHWHUV E\ XVLQJ IXQFWLRQ DQG JUDGLHQW YDOXHV RI WKH /DJUDQJLDQ QRZ HIIHFWLYHO\ D IXQFWLRQ RI RQO\ [ &RPSXWDWLRQDO )ORZ 0RVW LWHUDWLYH PLQLPL]DWLRQ DOJRULWKPV UHTXLUH WKDW DQ LQLWLDO JXHVV WR WKH VROXWLRQ SRLQW EH JLYHQ DQG WKDW WKH YDOXHV RI WKH IXQFn WLRQ DQG WKH JUDGLHQW EH VXSSOLHG WR WKH DOJRULWKP DW SRLQWV JHQHUDWHG E\ WKH DOJRULWKP WKH QH[W VHFWLRQ DQG &KDSWHUV DQG RIIHU D PRUH GHWDLOHG GHVFULSWLRQ RI PLQLPL]DWLRQ DOJRULWKPVf 7KXV DW DQ\ YDOXH RI [ [ JLYHQ E\ WKH PLQLPL]DWLRQ DOJRULWKP RQH PXVW VXSSO\ / DQG WKH JUDGLHQW RI / ZLWK UHVSHFW WR [ ERWK HYDOXDWHG DW [ [ 8VLQJ WKH n;M n; n;L GHULYDWLRQ LQ WKH SUHFHGLQJ VHFWLRQ WKH FRPSXWDWLRQDO IORZ ZLOO EH GHVFULEHG QRZ )RU QRWDWLRQDO FRQYHQLHQFH WKH VXSHUVFULSW N ZLOO EH GURSSHG 67(3 'HWHUPLQH Tf 7KHVH DUH WKH LQLWLDO FRQGLWLRQV 7KHUH PD\ EH WKUHH SRVVLELOLWLHV f Tf TA ZKHUH Tf LV D nY Y8 FRQVWDQW YHFWRU f Tf T ZKHUH T LV SDUW RI WKH U?M 98 GHVLJQDEOH SDUDPHWHUV DV LQ D SHULRGLF VWHDG\ VWDWH SUREOHP >@ DQG f Af LV FRPSXWHG IURP D GF DQDO\VLV RI WKH FLUFXLW HTXDWLRQV 7KDW LV Tf DQG Zf VDWLVI\ +Zf Y D ( Zf Tf [f R! 9 9 9 Df Ef

PAGE 25

,Q &KDSWHU GF DQDO\VLV LV GLVFXVVHG IXUWKHU ZKHUH D QHZ DOJRULWKP LV JLYHQ 67(3 &RPSXWH DQ DSSUR[LPDWLRQ WR ZWf DQG TWf E\ D WUDQVLHQW nK DQDO\VLV IURP W WR W 7 RI WKH FLUFXLW HTXDWLRQV WR VDWLVI\ +Z T [ Wf Df n;M f;M n;L I;M n;M ( Z T Ef b b b nK ZLWK Tf REWDLQHG IURP 67(3 ,Q WKLV WUDQVLHQW DQDO R \VLV WKH YDOXH RI WKH /DJUDQJLDQ $f FDQ EH FRPSXWHG ZKLFK GXH WR f LV QRZ JLYHQ E\ 7 / HZ T [ Wf GW f B n;L O?M nOO 7UDQVLHQW DQDO\VLV RI WKH FLUFXLW HTXDWLRQV LV GHVFULEHG LQ PRUH GHWDLO LQ &KDSWHU 67(3 &RPSXWH DQ DSSUR[LPDWLRQ WR WKH /DJUDQJH PXOWLSOLHUV ZWf 2M $ $ $ DQG TWf E\ D WUDQVLHQW DQDO\VLV IURP W 7W 2WR W 7 W 7 LH W UXQQLQJ EDFNZDUGVf WR VDWLVI\ + + H Q7 BME B Z T T Z 2 b Df 7 Z D H Ef ZLWK TW f D ,Q WKLV WUDQVLHQW DQDO\VLV FRPSXWH WKH YHFWRU

PAGE 26

67(3 P nf6[n '< Y f§ O[ Z ,, [GW f ZKLFK LV WKH G\QDPLF SRUWLRQ RI WKH JUDGLHQW VHH ff &RPSXWH WKH HTXLOLEULXP SRUWLRQ RI WKH JUDGLHQW JLYHQ E\ f§ A[-(4 f7 T f Tf [ f 7KH LQLWLDO FRQGLWLRQV Tf DUH GHWHUPLQHG E\ RQH RI WKH WKUHH SRVVLELOLWLHV RXWOLQHG LQ 67(3 7KH YDOXH RI f WKHUHIRUH KDV DOVR WKUHH SRVVLELOLWLHV f LI Tf T ZKHUH T LV FRQVWDQW WKHQ WKH WHUP f LV n: n: ]HUR f LI Jf F>A ZKHUH F>T LV REWDLQHG IURP D VXEVHW RI WKH GHVLJQDEOH SDUDPHWHU YHFWRU >@ WKDW LV LI G [7 f L ‘ 6R! ZLWK Tf TB WKHQ nf[(4 T7 W ff b LQ WKLV FDVH DQG f LI Tf LV FRPSXWHG IURP D GF DQDO \VLV VDWLVI\LQJ f WKHQ WKLV WHUP UHTXLUHV DGGLWLRQDO ZRUN 'LIIHUHQWLDWLQJ f ZLWK UHVSHFW WR [ DQG H[ U?! SUHVVLQJ WKH UHVXOW LQ PDWUL[ QRWDWLRQ \LHOGV a + ,S[ L aZf f L ,3; Z r G[ '[ 2 L 30 Tf 2} / f

PAGE 27

ZKLFK LV D PDWUL[PDWUL[ OLQHDU HTXDWLRQ 6LQFH ZH ZDQW f LI WKH V\VWHP 7 7 V + + Z T nE ( n; T ff nX 2M f LV VROYHG IRU WKH YHFWRUV Z DQG M WKHQ DIWHU PXOWLSO\LQJ ERWK VLGHV RI f E\ ZA JAf DQG XVLQJ f ZH REWDLQ T7ff n;M Zf b 7 f§7Y Z T f 2L D U K [ [ Tf [ D} b f§n ZKLFK \LHOGV 7 Tf AHT IH U 7 + n9 Z f§ n9 R[ n; f 1RZ WKH HQWLUH JUDGLHQW LV JLYHQBE\ / 6 ILWf P /[n'< / D[n(4 n9 n9 7KLV IRXUVWHS SURFHGXUH KDV EHHQ LPSOHPHQWHG LQ D JHQHUDO FLUFXLW RSWLPL]DWLRQ SURJUDP >@ ZLWK H[FHOOHQW UHVXOWV 5HFHQWO\ LW ZDV VKRZQ KRZ WKH SHUIRUPDQFH IXQFWLRQ Df FDQ EH PDGH PRUH XVHIXO E\ WKH XVH RI WKH HYHQW IXQFWLRQDO >@ ZKLFK DOORZV WKH LQFOXVLRQ RI WLPH TXDQWLWLHV VXFK DV WLPH GHOD\V ZLWKLQ WKH HQWLUH SURFHGXUH

PAGE 28

&OHDUO\ WKLV HQWLUH SURFHGXUH FDQ EH FRPSXWDWLRQDOO\ YHU\ FRVWO\ (DFK IXQFWLRQ HYDOXDWLRQ UHTXHVWHG E\ WKH PLQLPL]DWLRQ DOJRULWKP UHTXLUHV D WUDQVLHQW DQDO\VLV RI D V\VWHP RI QRQOLQHDU DOJHEUDLF DQG GLIIHUHQn WLDO HTXDWLRQV DQG D WUDQVLHQW DQDO\VLV RI D V\VWHP RI OLQHDU WLPH YDU\LQJ DOJHEUDLF DQG GLIIHUHQWLDO HTXDWLRQV LV DGGLWLRQDOO\ UHTXLUHG IRU WKH JUDGLHQW ,W LV WKHUHIRUH HVVHQWLDO WKDW f WKH PLQLPL]DWLRQ DOJRULWKP XVHG EH H[WUHPHO\ HIILFLHQW UHTXLULQJ D VPDOO QXPEHU RI IXQFn WLRQ DQG JUDGLHQW HYDOXDWLRQV WR REWDLQ WKH PLQLPXP DQG f WKH HQWLUH IRXUVWHS SURFHGXUH RXWOLQHG DERYH PXVW EH YHU\ HIILFLHQWO\ LPSOHPHQWHG 'XH WR WKH SUHYLRXVO\ PHQWLRQHG KHXULVWLF SURFHGXUH RI JHQHUDWLQJ WKH VFDODU SHUIRUPDQFH IXQFWLRQ WKLV HQWLUH GHVLJQ SURFHGXUH LV PDQXDOO\ LWHUDWLYH WKXV HPSKDVL]LQJ WKH QHHG IRU RYHUDOO HIILFLHQF\ 5HYLHZ RI 8QFRQVWUDLQHG 0LQLPL]DWLRQ 3RZHOO UHFHQWO\ REVHUYHG WKDW LQ WKH ODVW VHYHUDO \HDUV PRVW RI WKH XVHIXO ZRUN LQ WKH DUHD RI XQFRQVWUDLQHG PLQLPL]DWLRQ KDV EHHQ LQ XQGHUVWDQGLQJ LPSURYLQJ DQG H[WHQGLQJ H[LVWLQJ PHWKRGV UDWKHU WKDQ GHYLVLQJ QHZ DOJRULWKPV >@ ,QGHHG PRVW LI QRW DOO PLQLPL]DWLRQ DOJRULWKPV FDQ EH GHVFULEHG DV ILUVW FRPSXWLQJ D GLUHFWLRQ RI VHDUFK IURP WKH FXUUHQW HVWLPDWH WR WKH VROXWLRQ DQG WKHQ REWDLQLQJ WKH QH[W SRLQW DORQJ WKLV GLUHFWLRQ 7KDW LV LI WKH XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHP LV H[SUHVVHG E\ PLQLPL]H I[f [ D PRVW DOJRULWKPV DW WKH Nr LWHUDWLRQ ILUVW FRPSXWH D GLUHFWLRQ RI

PAGE 29

VHDUFK UHSUHVHQWHG E\ D YHFWRU G E\ XVLQJ WKH YDOXHV RI WKH IXQFWLRQ b I[Af DQG SHUKDSV VRPH RI LWV GHULYDWLYHV 7KHQ WKH QH[W SRLQW [AA LV REWDLQHG E\ VHDUFKLQJ DORQJ WKLV VWUDLJKW OLQH LQ VRPH PDQQHU WR \LHOGA N [ n;M ; 3 G N P ZKHUH LV D VFDODU RIWHQ FDOOHG WKH VWHSOHQJWK 7KXV PRVW H[LVWLQJ PLQLPL]DWLRQ DOJRULWKPV KDYH WZR SULQFLSDO VWHSV LQ HDFK LWHUDWLRQ FKRRVLQJ WKH GLUHFWLRQ RI VHDUFK DQG WKH VFDODU VHDUFK DORQJ WKLV GLUHFWLRQ WR REWDLQ D VXLWDEOH VWHSOHQJWK S WY 7KH GLUHFWLRQ RI VHDUFK LV RQH RI WKH GLIIHUHQFHV DPRQJ DOJRULWKPV 7KH ROGHVW PLQLPL]DWLRQ DOJRULWKPV DUH f VWHHSHVW GHVFHQW ZKHUH WKH GLUHFWLRQ RI VHDUFK LV LQ WKH GLUHFWLRQ RI WKH QHJDWLYH JUDGLHQW f FRRUGLQDWH GHVFHQWV ZKHUH WKH GLUHFWLRQ RI VHDUFK LV DORQJ HDFK FRRUGLQDWH GLUHFWLRQ LH RQH YDULDEOH LV DGMXVWHG DW D WLPH f 1HZn WRQnV PHWKRG ZKHUH WKH GLUHFWLRQ RI VHDUFK LV WKH SURGXFW RI WKH LQYHUVH RI WKH VHFRQG GHULYDWLYH PDWUL[ WKH KHVVLDQ DQG WKH QHJDWLYH JUDGLHQW >@ 7KH PRVW UREXVW RI WKHVH DOJRULWKPV LV VWHHSHVW GHVFHQW ZKLFK FRQYHUJHV ZLWK RUGHU RQH ZKLOH WKH IDVWHVW LV 1HZWRQnV ZKLFK FRQYHUJHV ZLWK VHFRQG RUGHU IRU PRVW IXQFWLRQV )RU WKLV UHDVRQ IURP WR WKH SUHVHQW PXFK RI WKH DFWLYLW\ LQ WKH DUHD RI XQFRQVWUDLQHG PLQLPL]DWLRQ DOJRULWKPV KDV EHHQ WR GHYLVH WHFKQLTXHV WKDW DSSURDFK WKH VSHHG RI 1HZWRQnV PHWKRG ZLWKRXW LWV GLVDGYDQWDJHV LQ SDUWLFXODU LWV UHTXLUHPHQW RI WKH KHVVLDQ PDWUL[ 'DYLGRQ >@ LQ SXEOLVKHG DQ DOJRULWKP ZKLFK XVHV RQO\ JUDGLHQW LQIRUPDWLRQ WR LQ HIIHFW EXLOG DQ DSSUR[LPDWLRQ RI WKH KHVVLDQ LQYHUVH DV WKH DOJRULWKP SURJUHVVHV WRZDUGV WKH VROXWLRQ WKXV WKH PHWKRG 1RWH WKDW VXEVFULSWV ZLOO EH XVHG IRU VFDODUV

PAGE 30

DSSURDFKHV 1HZWRQnV PHWKRG DIWHU D QXPEHU RI LWHUDWLRQV 'DYLGRQnV PHWKRG ZKLFK LV EDVHG RQ KHVVLDQ FRQMXJDWH GLUHFWLRQV JDYH ELUWK WR D YHU\ ODUJH QXPEHU RI DOJRULWKPV JHQHUDOO\ FDOOHG TXDVL1HZWRQ DOJRn ULWKPV >@ $ FKDUDFWHULVWLF RI WKH HDUOLHU TXDVL1HZWRQ DOJRULWKPV ZDV WKDW WKH VFDODU VHDUFK WR FRPSXWH KDG WR VROYH WKH VFDODU PLQLPL]DWLRQ SUREOHP OF ,F PLQLPL]H I[ S G f 3 YHU\ DFFXUDWHO\ 7KH DFFXUDWH VROXWLRQ RI WKLV SUREOHP LV TXLWH FRVWO\ FRPSXWDWLRQDOO\ DV PDQ\ UHVHDUFKHUV KDYH VKRZQ >@ 7KH HOLPLQDWLRQ RI WKH UHTXLUHPHQW WR VROYH WKLV VFDODU PLQLPL]DWLRQ SUREOHP DFFXUDWHO\ ZDV WKH SULQFLSDO PRWLYDWLRQ IRU PDQ\ RI WKH ODWHVW TXDVL1HZWRQ DOJRn ULWKPV >@ DOWKRXJK VRPH UHVHDUFKHUV ZHUH DGGLWLRQDOO\ PRWLYDWHG E\ GHULYLQJ DOJRULWKPV ZKLFK UHTXLUHG RQO\ IXQFWLRQ YDOXHV >@ 7KH DPRXQW RI LQIRUPDWLRQ DERXW WKH IXQFWLRQ ZKLFK PXVW EH VXSSOLHG WR PLQLPL]DWLRQ DOJRULWKPV KDV EHHQ D PRWLYDWLRQ IRU WKH GHYHORSPHQW RI PDQ\ QHZ DOJRULWKPV 7KH JHQHUDO WHQGHQF\ LQ GHULYLQJ DOJRULWKPV VLQFH 'DYLGRQnV FODVVLFDO FRQWULEXWLRQ >@ KDV EHHQ WR DFFRXQW IRU WKH KHVVLDQ ZLWKRXW KDYLQJ LW VXSSOLHG LH PDNLQJ VXUH DQ DOJRULWKP ZRXOG EH HIILFLHQW IRU TXDGUDWLF IXQFWLRQV 2Q WKH RWKHU KDQG WKH QHZ PLQLn PL]DWLRQ DOJRULWKP GHYHORSHG LQ WKH QH[W WZR FKDSWHUV KDV WKH SURSHUW\ RI LQ HIIHFW DFFRXQWLQJ IRU HYHQ KLJKHU GHULYDWLYHV ZLWKRXW KDYLQJ WKHP VXSSOLHG 7KH QHZ DOJRULWKP UHTXLUHV WKDW WKH IXQFWLRQ DQG WKH ILUVW WZR GHULYDWLYHV WKH JUDGLHQW DQG WKH KHVVLDQ EH VXSSOLHG 7KH HIIHFW RI

PAGE 31

WKH WKLUG DQG IRXUWK GHULYDWLYHV LV DSSUR[LPDWHG IURP YDOXHV RI WKH ILUVW WZR GHULYDWLYHV 7KH DOJRULWKP RIIHUV VHYHUDO QHZ QRYHO LGHDV WR WKH DUHD RI XQFRQVWUDLQHG PLQLPL]DWLRQ VXFK DV D YDULDEOH RUGHU FRQn YHUJHQFH DV KLJK DV IRXU DQG D QRYHO VFDODU VHDUFK WKDW PD\ EH DORQJ FXUYHG WUDMHFWRULHV 7KXV WKH QHZ DOJRULWKP GRHV QRW FRPSXWH D GLUHFn WLRQ RI VHDUFK ZKLFK LV DOZD\V D VWUDLJKW OLQH DV PRVW H[LVWLQJ DOJRn ULWKPV GR ,Q FLUFXLW RSWLPL]DWLRQ SURFHGXUHV DV ZDV VKRZQ WKH IXQFWLRQ DQG WKH JUDGLHQW FDQ EH FRPSXWHG UHTXLULQJ RQO\ ILUVW SDUWLDO GHULYDWLYHV RI WKH FLUFXLW HTXDWLRQV DQG WKH SHUIRUPDQFH IXQFWLRQ 7KH KHVVLDQ ZRXOG UHTXLUH VHFRQG SDUWLDO GHULYDWLYHV RI WKH FLUFXLW HTXDWLRQV ZKLFK LQ JHQHUDO DUH YHU\ GLIILFXOW WR GHULYH DQG ZRXOG UHTXLUH D ODUJH QXPEHU RI RSHUDWLRQV WR KDQGOH IRU OLQHDU FLUFXLWV WKH VHFRQG SDUWLDO GHULYDn WLYHV DUH ]HUR DQG WKXV WKH KHVVLDQ FDQ EH HYDOXDWHG LQ D VWUDLJKWIRUZDUG PDQQHU DV GRQH LQ >@ IRU D 1HZWRQOLNH PLQLPL]DWLRQ DOJRULWKPf )RU WKLV UHDVRQ LQ &KDSWHU ZH GHVFULEH D GLIIHUHQFH VFKHPH ZKLFK LV EXLOWLQ WKH QHZ DOJRULWKP WR DSSUR[LPDWH WKH KHVVLDQ WKHUHE\ DOORZLQJ WKH XVH RI WKH QHZ DOJRULWKP E\ VXSSO\LQJ LW ZLWK RQO\ IXQFWLRQ DQG JUDGLHQW YDOXHV

PAGE 32

&+$37(5 7+( 9$5,$%/(25'(5 $/*25,7+0 )25 81&21675$,1(' 0,1,0,=$7,21 ,Q WKLV FKDSWHU D QHZ DOJRULWKP FDOOHG WKH 9DULDEOH2UGHU 92f DOJRULWKP LV SURSRVHG IRU ILQGLQJ D VROXWLRQ WR WKH XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHP PLQLPL]H I[f f b [ nR ZKHUH I LV D UHDOYDOXHG QRQOLQHDU IXQFWLRQ I(Q ( DQG [ H (Q b 7KH HTXLYDOHQW PD[LPL]DWLRQ SUREOHP LV DOVR LQFOXGHG LQ f VLQFH PD[LPL]H I[f PLQLPL]H I[f b D [ [ b n9 6ROXWLRQ RI WKH XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHP LV QRW RQO\ LPn SRUWDQW LQ LWV RZQ ULJKW EXW DV ZLOO EH VHHQ LQ &KDSWHU VROXWLRQ RI WKH XQFRQVWUDLQHG SUREOHP LV FHQWUDO WR WKH VROXWLRQ RI WKH FRQn VWUDLQHG PLQLPL]DWLRQ SUREOHP ZKLFK RIWHQ DULVHV LQ FRPSXWHUDLGHG FLUFXLW RSWLPL]DWLRQ SURFHGXUHV 7KHUH DUH VHYHUDO H[LVWLQJ DOJRULWKPV GHVLJQHG WR VROYH f 7KHVH DOJRULWKPV DUH DOO LWHUDWLYH WKDW LV EHJLQQLQJ IURP DQ LQLWLDO N HVWLPDWH RI D VROXWLRQ [ D VHTXHQFH ^[ ` LV JHQHUDWHG ZKLFK XQGHU

PAGE 33

FHUWDLQ FRQGLWLRQV FRQYHUJHV WR D VROXWLRQ [ RI f 7KH H[DFW r VROXWLRQ [ LV UDUHO\ REWDLQHG LQ D ILQLWH QXPEHU RI LWHUDWLRQV EXW b LI WKH VHTXHQFH KDV D KLJK RUGHU RI FRQYHUJHQFH WKH VROXWLRQ FDQ EH DSSUR[LPDWHG FORVHO\ LQ D ILQLWH DQG KRSHIXOO\ VPDOO QXPEHU RI LWHUn DWLRQV 7KHUHIRUH D GHVLUDEOH SURSHUW\ IRU D PLQLPL]DWLRQ DOJRULWKP LV WKDW LW JHQHUDWHV FRQYHUJHQW VHTXHQFHV ZLWK D KLJK RUGHU RI FRQn YHUJHQFH ,I DQ DOJRULWKP JHQHUDWHV FRQYHUJHQW VHTXHQFHV IURP DQ\ LQLWLDO SRLQW [A LW LV VDLG WR EH JOREDOO\ FRQYHUJHQW ,W ZLOO EH VKRZQ n; WKDW WKH 92 DOJRULWKP LV JOREDOO\ FRQYHUJHQW IRU SVHXGRFRQYH[ >@ IXQFWLRQV WKDW DUH WZLFH FRQWLQXRXVO\ GLIIHUHQWLDEOH 0RUHRYHU QXPHULFDO H[SHULPHQWV LQGLFDWH WKDW WKH 92 DOJRULWKP LV DEOH WR HIILn FLHQWO\ FRPSXWH PLQLPD RI VRPH IXQFWLRQV QRW VDWLVI\LQJ WKHVH FRQGLn WLRQV ,I DQ DOJRULWKP KDV D KLJK RUGHU RI FRQYHUJHQFH UHDVRQDEOH DFFXUDF\ PLJKW EH H[SHFWHG ZKHQ WKH DOJRULWKP LV VWRSSHG DIWHU VHYHUDO LWHUDWLRQV 7KH RUGHU RI FRQYHUJHQFH RI DQ DOJRULWKP PD\ EH GHILQHG E\ D YDOXH U VXFK WKDW N r [ [ nOO D & [A [ __ U f§ 2I fE ZKHUH & LV D FRQVWDQW FDOOHG WKH FRQYHUJHQFH UDWLR 2EVHUYH LLN r LL N, WKDW LI WKH GLVWDQFH [ [ LV VXIILFLHQWO\ VPDOO [ ZLOO EH fN PXFK FORVHU WR [ IRU ODUJH U 0RVW DOJRULWKPV KDYH RUGHUV RI FRQ 2} YHUJHQFH HTXDO WR WZR RU OHVV )RU H[DPSOH VWHHSHVW GHVFHQW FRQn YHUJHV OLQHDUO\ U f WKH FRQMXJDWH JUDGLHQWV DOJRULWKP RI )OHWFKHU

PAGE 34

DQG 5HHYHV FRQYHUJHV OLQHDUO\ EXW ZLWK D VPDOOHU FRQYHUJHQFH UDWLR WKDQ WKH FRQYHUJHQFH UDWLR RI VWHHSHVW GHVFHQW DQG WKH TXDVL1HZWRQ DOJRULWKP RI 'DYLGRQ )OHWFKHU DQG 3RZHOO DSSURDFKHV VHFRQGRUGHU FRQYHUJHQFH >@ ,W ZLOO EH VKRZQ WKDW WKH 92 DOJRULWKP KDV XS WR IRXUWKRUGHU FRQYHUJHQFH 7KH GHILQLWLRQ RI WKH RUGHU RI FRQYHUJHQFH LPSOLHV WKDW WKH KLJKHU WKH RUGHU WKH IDVWHU D VROXWLRQ LV DSSURDFKHG SURYLGHG WKDW WKH SRLQW [ LV VXIILFLHQWO\ FORVH WR WKH VROXWLRQ 7KXV ZKLOH D KLJK RUGHU RI FRQYHUJHQFH DOJRULWKP LV GHVLUDEOH ZKHQ LQ D VPDOO r QHLJKERUKRRG RI [ SUHYLRXV VWXGLHV JHQHUDOO\ LQGLFDWHG WKDW ZKHQ nE N r [ LV IDU IURP [ D ORZHU RUGHU DOJRULWKP ZDV PRUH HIILFLHQW >@ ?M b ,Q IDFW WKH YHU\ SRSXODU FODVV RI DOJRULWKPV FDOOHG TXDVL1HZWRQ DOJRULWKPV KDYH WKH SURSHUW\ RI EHLQJ OLQHDUO\ FRQYHUJHQW LQLWLDOO\ DQG EHFRPLQJ HVVHQWLDOO\ VHFRQGRUGHU DV WKH VROXWLRQ LV DSSURDFKHG >@ 7KH 92 DOJRULWKP DXWRPDWLFDOO\ DGMXVWV LWV RUGHU DW HDFK LWHUDWLRQ JHQHUDOO\ VHOHFWLQJ WKH RUGHU ZKLFK DOORZV WKH PRVW SURn JUHVV WRZDUGV WKH VROXWLRQ 7KH QXPHULFDO UHVXOWV WR EH JLYHQ LQ WKH QH[W FKDSWHU VKRZ WKDW WKH 92 DOJRULWKP LV PRUH HIILFLHQW WKDQ PRVW H[LVWLQJ DOJRULWKPV 7KH ILUVW VHFWLRQ RI WKLV FKDSWHU UHYLHZV VRPH RI WKH H[LVWLQJ WKHRU\ DVVRFLDWHG ZLWK VROXWLRQ SRLQWV RI f 7KH VHFRQG VHFWLRQ GLVFXVVHV WKH WZR PDMRU VWHSV RI D PLQLPL]DWLRQ DOJRULWKP WKH WUDQVn IRUPDWLRQ VWHS DQG WKH VFDODU VHDUFK VWHS 7KH QHZ WHFKQLTXHV EHLQJ LQWURGXFHG IRU WKH 92 DOJRULWKP DUH FRPSDUHG ZLWK WKH WHFKQLTXHV RI SUHYLRXV DOJRULWKPV LQ WKLV VHFWLRQ 7KH WKHRUHWLFDO GHULYDWLRQ RI WKH DOJRULWKP LV SUHVHQWHG LQ WKH WKLUG WKURXJK WKH ILIWK VHFWLRQV $OWKRXJK WKH FKDUDFWHU RI WKHVH WKUHH VHFWLRQV LV WKHRUHWLFDO VHYHUDO

PAGE 35

QXPHULFDO DQG SUDFWLFDO FRQVLGHUDWLRQV DUH GLVFXVVHG 7KH VL[WK DQG ILQDO VHFWLRQ HVWDEOLVKHV WKH FRQGLWLRQV IRU JOREDO FRQYHUJHQFH RI WKH 92 DOJRULWKP DQG LWV RUGHU RI FRQYHUJHQFH 3URSHUWLHV RI 0LQLPD 7KH SUREOHP WR EH VROYHG LV JLYHQ E\ PLQLPL]H I[f f n9 ; Q r ZKHUH I( r‘ ( /HW [ EH D VROXWLRQ WKHQ LI n\ I[rf I[f f b f§ ?M r IRU DOO SRVVLEOH [ WKH SRLQW [ LV FDOOHG D JOREDO PLQLPXP ,I U?M 2M N N f KROGV LQ D VPDOO QHLJKERUKRRG DERXW [ WKHQ WKH VROXWLRQ [ Dr LV FDOOHG D ORFDO PLQLPXP 2QH XVXDOO\ ZRXOG OLNH WR GHWHUPLQH WKH JOREDO PLQLPXP RI f +RZHYHU RQH PXVW LQ JHQHUDO EH FRQWHQW ZLWK D ORFDO PLQLPXP EHFDXVH D JOREDO PLQLPXP FDQ RQO\ EH LGHQWLILHG LI DOO PLQLPD DUH REWDLQHG RU LI WKH IXQFWLRQ LV DVVXPHG WR KDYH D FRQYH[LW\ SURSHUW\ LQ ZKLFK FDVH DOO PLQLPD DUH JOREDO >@f ,Q FRQWUDVW ORFDO PLQLPD DUH LGHQWLILHG XQGHU OHVV VWULQJHQW FRQGLWLRQV RQ WKH IXQFWLRQ 7KH IROORZLQJ WKHRUHP HVWDEOLVKHV WKHVH FRQGLWLRQV /RFDO 0LQLPXP 7KHRUHP /HW I(r }‘ ( DQG VXSSRVH WKDW WKH ILUVW GHULYDWLYH In[f WKH JUDGLHQW RI I LV FRQWLQXRXV DQG WKDW WKH UE

PAGE 36

VHFRQG GHULYDWLYH PDWUL[ I[f WKH KHVVLDQ RI I E E r [ LV D ORFDO PLQLPXP RI I WKHQ E r f II[ f E E E r H[LVWV DW [ E ,I DQG f I[ f LV SRVLWLYH VHPLGHILQLWH E E &RQYHUVHO\ LI f If[ f E E E DQG f I[ f LV SRVLWLYH GHILQLWH E n;M IW WKHQ [ LV D ORFDO PLQLPXP RI I E 7KH SURRI LV VWUDLJKWIRUZDUG > @ DQG LW ZLOO QRW EH UHSHDWHG KHUH 1RWH WKH VXEWOH EXW VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH QHFHVn VDU\ DQG VXIILFLHQW FRQGLWLRQV 0RVW ORFDO PLQLPD DUH VWULFW ORFDO PLQLPD $ VWULFW ORFDO IW PLQLPXP VROXWLRQ [ LV GHILQHG E\ I[r \f I[rf f n;M n;M n;M IRU DOO \ A VXFK WKDW [ \ LV LQ VRPH QHLJKERUKRRG DERXW [ r?M 2M n;M n;M b 7KH IROORZLQJ WKHRUHP SOD\V DQ LPSRUWDQW UROH LQ WKH WHVW IRU FRQn YHUJHQFH RI WKH SURSRVHG DOJRULWKP

PAGE 37

6WULFW /RFDO 0LQLPXP 7KHRUHP /HW I(Q !‘ ( KDYH D FRQWLQXRXV r r KHVVLDQ LQ VRPH QHLJKERUKRRG DERXW [ 7KHQ WKH SRLQW [ LV D VWULFW R R ORFDO PLQLPXP RI I LI DQG RQO\ LI ERWK In[ f DQG WKHUH H[LVWV 2L 2 DQ H VXFK WKDW IRU DOO \ VDWLVI\LQJ __ \ _> H I[ \f LV 2} 2} 2} 2} SRVLWLYH GHILQLWH 7KLV WKHRUHP LV VLJQLILFDQW EHFDXVH LQ JHQHUDO D PLQLPL]DWLRQ DOJR ULWKP VWRSV DW D SRLQW [ [ ZKLFK OLHV LQ D VPDOO QHLJKERUKRRG 2 2} r r DERXW [ 7KH WKHRUHP VWDWHV WKDW LI [ LV D VWULFW ORFDO PLQLPXP Y D WKH KHVVLDQ VKRXOG EH SRVLWLYH GHILQLWH DW [ n8 N 3URRI 6XIILFLHQF\f $VVXPH II[ f DQG WKDW WKHUH H[LVWV } b N DQ H VXFK WKDW IRU DOO \ VDWLVI\LQJ ,, \ ,, H I[ \f LV 2L 7M D 2 2 SRVLWLYH GHILQLWH )URP WKH 7D\ORU VHULHV ZLWK UHPDLQGHU RQH PD\ ZULWH I[ ef I[ f f e I[ 2M 2 W 9 O IRU VRPH W 7KHQ IRU __ \ __ H R I[ \f I[ f f \7 I[ W\f \ 2} b 2} 2 2 N ZKLFK VKRZV [ LV D VWULFW ORFDO PLQLPXP R N 1HFHVVLW\f 1RZ DVVXPH [ LV D VWULFW ORFDO PLQLPXP 7KHQ IRU b DUELWUDU\ \ D OLP OWf>I W.f [ r WYf I[rf@ In [rf7 n9 b n9

PAGE 38

E\ WKH GHILQLWLRQ RI WKH GHULYDWLYH >@ $VVXPH In[ f  7KHQ nE nE nE A O_ A D YHFWRU \ H[LVWV VXFK WKDW In[ f \ HJ \ In[ f f 7KXV 9 n9n9nL AMnE nE IRU VXLWDEO\ VPDOO W OWf>I[ WYf I[ f@ b $ nX ZKLFK FRQWUDGLFWV WKH K\SRWKHVLV WKDW [f LV D VWULFW ORFDO PLQLPXP UE 1RZ FRQVLGHU D 7D\ORU VHULHV H[SDQVLRQ ZLWK UHPDLQGHU I[r \f I[rf f \7 I[r W\f \ nE nE ?! nE nE 2M b IRU VRPH W 7KHQ WKHUH H[LVWV D VXFK WKDW IRU DOO \ n9 VDWLVI\LQJ __ \ __ H f \7 I[ W\f \ I[ \f I[ f b fE ?L nE b nE ZKLFK LPSOLHV WKH SRVLWLYH GHILQLWHQHVV RI WKH KHVVLDQ LQ D VPDOO e $ QHLJKERUKRRG DERXW [ QRW QHFHVVDULO\ LQFOXGLQJ [ LWVHOI 7KLV nE b FRPSOHWHV WKH SURRI ,I WKH KHVVLDQ LV HLWKHU LQDFFXUDWH RU QRW VXSSOLHG D ZLGHO\ XVHG WHVW WR VWRS DQ DOJRULWKP LV DW D SRLQW [ IRU ZKLFK If[f ,, H Q} nY V f IRU VRPH VPDOO H DQG V I[ WH f I[f nE nE f§ nE Q Df

PAGE 39

DQG I[ WHLf I[f L Ef nE nE nE ZKHUH HA HQ DUH WKH XQLW FRRUGLQDWH YHFWRUV DQG W LV VRPH b b VPDOO VFDODU 7KH WHVWV LQ f LQVXUH WKDW WKH IXQFWLRQ GRHV QRW GHFUHDVH LQ YDOXH DORQJ DQ\ RI WKH FRRUGLQDWH OLQHV +RZHYHU DV WKH IROORZLQJ VLPSOH H[DPSOH >@ VKRZV WKHVH WHVWV DUH QRW VXIILFLHQW IRU [ WR EH DQ DSSUR[LPDWLRQ WR D ORFDO PLQLPXP VROXWLRQ &RQVLGHU nE WKH SUREOHP PLQLPL]H I[f [ [ [B [f U?M , L ; 7KH SRLQW [A [Af [A [Af f VDWLVILHV >If[f@ [A [ [ U?M I?M G = DQG >If[f/ n8 !E I [ [ )XUWKHUPRUH ZLWK [A IL[HG DW [A WKH H[SUHVVLRQ I Wf I f LV VDWLVILHG IRU DOO W DQG ZLWK [ IL[HG DW [ WKH H[SUHVVLRQ

PAGE 40

IW f I f LV VDWLVILHG IRU W B! 7KHUHIRUH ERWK f DQG f VKRXOG EH VDWLVILHG 'HVSLWH WKLV IDFW WKH SRLQW [A [Af LV QRW D ORFDO PLQLn PXP VLQFH WKH KHVVLDQ HYDOXDWHG DW WKLV SRLQW JLYHQ E\ I[ [ f U?M /  LV QRW SRVLWLYH VHPLGHILQLWH VLQFH LWV GHWHUPLQDQW LV QHJDWLYH 7KHUHIRUH DQ\ DOJRULWKP XVLQJ f DQG f DV LWV VROH WHUPLQDn WLRQ WHVW FDQQRW JXDUDQWHH WKH FRPSXWDWLRQ RI D ORFDO PLQLPXP 3ULQFLSDO 6WHSV LQ D 0LQLPL]DWLRQ $OJRULWKP $ PLQLPL]DWLRQ DOJRULWKP LWHUDWLYHO\ JHQHUDWHV D VHTXHQFH RI N SRLQWV ^[ ` VWDUWLQJ IURP VRPH LQLWLDO SRLQW [ ZKLFK KRSHIXOO\ FRQ R b YHUJHV WR D VROXWLRQ RI f ,W LV FRQYHQLHQW WR YLHZ HDFK LWHUDn WLRQ RI WKH DOJRULWKP LQ WHUPV RI WKH H[SUHVVLRQ [N +NS [Nf b I?M I?M f ZKHUH + LV FDOOHG WKH LWHUDWLRQ IXQFWLRQ ZKLFK LV D IXQFWLRQ RI D nE WK N VFDODU SDUDPHWHU S WKH Nf§ HVWLPDWH RI WKH VROXWLRQ [ WKH IXQFWLRQ OF U?M N OF YDOXH DW [ DQG SRVVLEO\ GHULYDWLYHV RI I DW [ 7KH LWHUDWLRQ LQ nE GLFDWHG E\ f PD\ EH VHSDUDWHG LQWR WZR VWHSV 7KH ILUVW VWHS FRQVLVWV RI FRPSXWLQJ WKH WUDQVIRUPDWLRQ IXQFWLRQ JLYHQ E\

PAGE 41

\ KNSf +NS! [Nf f nE nY n;} N Q ZKHUH IRU FRQYHQLHQFH WKH IXQFWLRQ K ( ( KDV EHHQ GHILQHG 7KLV D VWHS ZLOO EH FDOOHG WKH WUDQVIRUPDWLRQ VWHS ,WV SXUSRVH LV WR FRP F LF SXWH D GLUHFWLRQ RU WUDMHFWRU\ IURP [ XVLQJ I[ f DQG SRVVLEO\ n9 K N N GHULYDWLYHV RI I DW [ DORQJ ZKLFK WKH QH[W SRLQW [ ZLOO EH VHOHFWHG 7KH WUDQVIRUPDWLRQ IXQFWLRQ UHSUHVHQWV WKLV WUDMHFWRU\ DQG S LV D VFDODU SDUDPHWHU ZKLFK LV SURSRUWLRQDO WR KRZ IDU DORQJ N WKLV WUDMHFWRU\ ZLOO WKH QH[W SRLQW [ EH 7KH VHFRQG VWHS FRQn VLVWV RI VHOHFWLQJ RU FRPSXWLQJ D VXLWDEOH YDOXH RI S SA VXFK WKDW N [ LV JLYHQ E\ [N KNSNf f 7KLV VWHS LV FDOOHG WKH VFDODU VHDUFK VWHS ,Q PRVW H[LVWLQJ DOJRULWKPV >@ WKH WUDQVIRUPDWLRQ IXQFWLRQV DUH OLQHDU LQ WKH VFDODU SDUDPHWHU S DQG KDYH WKH IRUP KNSf [N S GN f b Q U b N ZKHUH G LV FDOOHG WKH GLUHFWLRQ RI VHDUFK )RU H[DPSOH LQ WKH R} N N VWHHSHVW GHVFHQW DOJRULWKP >@ G In[ f ,Q FRQWUDVW WKH n;L W?M n;M WUDQVIRUPDWLRQ IXQFWLRQV IRU WKH 92 DOJRULWKP DUH SRO\QRPLDOV LQ S RI GHJUHH XS WR WKUHH 7KHVH SRO\QRPLDOV IROORZ LQKHUHQWO\ IURP WKH GHULYDWLRQ RI WKH WUDQVIRUPDWLRQ IXQFWLRQV IRU WKH 92 DOJRULWKP WR EH JLYHQ LQ WKH QH[W VHFWLRQ 7KH WUDQVIRUPDWLRQ IXQFWLRQV IRU WKH

PAGE 42

QHZ DOJRULWKP PD\ WKXV \LHOG FXUYHG WUDMHFWRULHV RI VHDUFK LQVWHDG RI VWUDLJKWOLQH GLUHFWLRQV RI VHDUFK ,I WKH VFDODU VHDUFK VWHS FRPSXWHV D S S VXFK WKDW I[Nf IKNS ff I[Nf b A nE f LV VDWLVILHG WKHQ HDFK LWHUDWLRQ RI WKH DOJRULWKP ZLOO SURJUHVV WRZDUGV D VROXWLRQ RI f 7KH VDWLVIDFWLRQ RI f DW HDFK LWHUDWLRQ LQVXUHV WKDW WKH VHTXHQFH ^I[ f` LV PRQRWRQLFDOO\ GH U9Y FUHDVLQJ D SURSHUW\ WKDW LV JHQHUDOO\ UHTXLUHG WR HVWDEOLVK WKH JOREDO FRQYHUJHQFH RI DQ DOJRULWKP 7KXV PRVW DOJRULWKPV LQFOXGLQJ WKH 92 DOJRULWKP FRPSXWH D SA ZKLFK VDWLVILHV f ,I D SA FDQQRW EH IRXQG WR VDWLVI\ f DQ DOJRULWKP KDV HLWKHU FRQYHUJHG WR D VROXWLRQ RI f RU LW KDV IDLOHG 7KH IROORZLQJ OHPPD D JHQHUDOL]DWLRQ RI DQ H[LVWLQJ UHVXOW >@ HVWDEOLVKHV VXIILFLHQW FRQGLWLRQV IRU WKH H[LVWHQFH RI D S SA WR VDWLVI\ f OF /HPPD $VVXPH I[f LV GLIIHUHQWLDEOH DW [ [ K Sf LV n9 Y} GLIIHUHQWLDEOH DW S DQG KNf [N 'HILQH KNSf WR EH WKH ILUVW n b n; GHULYDWLYH RI K ZLWK UHVSHFW WR S 7KHQ LI I[Nf7 KNnf n;M f;M n;M f WKHUH H[LVWV D S VXFK WKDW IKN3ff I[Nf D nE f

PAGE 43

3URRI 8VLQJ FKDLQ GLIIHUHQWLDWLRQ DQG WKH GHILQLWLRQ RI GHULn YDWLYH RQH PD\ ZULWH OLP Sf>IKNSff IKNff@ InKNff7 KNnf S A A A Q A f N N 6LQFH K f [ XVLQJ f WKLV H[SUHVVLRQ EHFRPHV OLP Sf>IKNSff I[Nf@ S! A A f 7KHQ WKHUH H[LVWV DQ H VXFK WKDW IRU S DQG H S H Sf>IKNSff I[Nf@ 2} b f 6HOHFW S H WR SUHVHUYH WKH LQHTXDOLW\ DQG LW IROORZV WKDW IKNSff I[Nf D ZKLFK FRPSOHWHV WKH SURRI )RU WKH WUDQVIRUPDWLRQ IXQFWLRQ f IRXQG LQ PRVW DOJRULWKPV f WDNHV WKH IROORZLQJ IRUP N 7 N B In[ f G n;L n;M n; f ZKLFK EHFRPHV N 7 N In[ f In[ f D D f

PAGE 44

IRU WKH VWHHSHVW GHVFHQW DOJRULWKP >@ 7KXV DV ORQJ DV In[ f A nOO r?L U9 WKH VWHHSHVW GHVFHQW DOJRULWKP VKRXOG EH DEOH WR REWDLQ D GHFUHDVH LQ WKH IXQFWLRQ $V ZLOO EH VHHQ WKH 92 DOJRULWKP DOVR KDV WKH SURSHUW\ RI VDWLVI\LQJ f ZKHQHYHU In[ f A 7KDW WKLV SURSHUW\ LV Q n9 KLJKO\ GHVLUDEOH IROORZV IURP WKH WKHRUHPV JLYHQ LQ WKH SUHFHGLQJ VHFWLRQ $VVXPLQJ WKH H[LVWHQFH RI D S ZKLFK VDWLVILHV f WKH SUREOHP WR EH EULHIO\ FRQVLGHUHG QRZ LV WKH FRPSXWDWLRQ RI D SDUWLFXODU YDOXH N SA WR EH XVHG LQ REWDLQLQJ [ 7KHUH DUH WZR VWDJHV WR WKLV SUREOHP )LUVW WKH GHVLUHG S PXVW EH GHILQHG LQ VRPH FRQFUHWH PDQQHU XVXDOO\ DV WKH VROXWLRQ RI D VFDODU SUREOHP ,Q PRVW H[LVWLQJ DOJRULWKPV WKH GHVLUHG SA LV GHILQHG DV WKH VROXWLRQ RI WKH IROORZLQJ VFDODU PLQLPL]DWLRQ SUREOHP >@ IKASff PLQLPL]H IKASff f S 7KLV YDOXH RI S VKRXOG VDWLVI\ f DQG WKXV WKLV VFDODU SUREOHP GHILQHV WKH GHVLUHG SA LQ D VXLWDEOH PDQQHU 2WKHU H[LVWLQJ DOJRn ULWKPV VXFK DV WKH 'DYLGRQ >@ DOJRULWKP RU LWV PRUH SRSXODU PRGLn ILFDWLRQ GXH WR )OHWFKHU DQG 3RZHOO >@ KDYH WKH UHTXLUHPHQW RI GHILQLQJ S E\ SUREOHP f :KLOH LW PD\ EH DUJXHG WKDW S GHILQHG . WLO E\ f SURYLGHV WKH PRVW GHFUHDVH LQ WKH IXQFWLRQ DW WKH N LWHUn DWLRQ WKLV SA PD\ QRW EH WKH EHVW RQH LQ WKH VHQVH RI PLQLPL]LQJ WKH RYHUDOO QXPEHU RI LWHUDWLRQV )RU H[DPSOH ZKHQ [ LV IDU IURP D r VROXWLRQ [ RI f WKH S JLYHQ E\ f WHQGV WR IRUFH DOO IXWXUH n9 LWHUDWLRQV WR IROORZ WKH ERWWRP RI QDUURZ YDOOH\V ZLWK VORZ SURJUHVV

PAGE 45

WRZDUGV [ >@ 7KXV LGHDOO\ S VKRXOG EH GHILQHG E\ f ZKHQ 2M N r N HYHU [ LV FORVH WR [ DQG LQ VRPH RWKHU PDQQHU ZKHQHYHU [ LV IDU U;O n;L }?M r IURP [ b 6HFRQGO\ RQFH WKH SUREOHP ZKLFK GHILQHV WKH GHVLUHG SA KDV EHHQ JLYHQ DQ DSSUR[LPDWLRQ WR WKH VROXWLRQ RI WKH SUREOHP PXVW EH HIILn FLHQWO\ FRPSXWHG ,W LV LPSRUWDQW WKDW WKH RYHUDOO DOJRULWKP QRW IDLO LI URXJK DSSUR[LPDWLRQV WR WKH VROXWLRQ DUH FRPSXWHG WR DFKLHYH VDYLQJV RI FRPSXWHU WLPH )RU H[DPSOH PDQ\ VWXGLHV KDYH LQGLFDWHG WKDW WKH RYHUDOO HIILFLHQF\ RI WKH SRSXODU DOJRULWKP GXH WR )OHWFKHU DQG 3RZHOO DQG WKH RQH GXH WR )OHWFKHU DQG 5HHYHV ERWK RI ZKLFK WKHRUHn WLFDOO\ UHTXLUH WKH VROXWLRQ RI ff DUH VHQVLWLYH WR WKH DFFXUDF\ RI WKH DSSUR[LPDWH VROXWLRQ RI f >@ 7KH VFDODU VHDUFK IRU WKH 92 DOJRULWKP ZDV GHYHORSHG XQGHU WKHVH FRQVLGHUDWLRQV 7KH GHn WDLOV DUH JLYHQ LQ 6HFWLRQ 9DULDEOH2UGHU 7UDQVIRUPDWLRQV ,Q WKLV VHFWLRQ WKH WUDQVIRUPDWLRQ IXQFWLRQV IRU WKH 92 DOJRn ULWKP DUH GHULYHG ,W ZLOO EH VHHQ WKDW WKHVH WUDQVIRUPDWLRQ IXQFn WLRQV UHTXLUH HYDOXDWLRQ RI KLJKHURUGHU GHULYDWLYHV +RZHYHU DSSUR[LPDWLRQV DUH SRVVLEOH ZKLFK DOORZ WKH DOJRULWKP WR EH XVHG HYHQ YKHQ RQO\ IXQFWLRQ YDOXHV DUH VXSSOLHG 7KH PRWLYDWLRQ IRU WKH YDULDEOHRUGHU WUDQVIRUPDWLRQV VWHPV IURP D GHVLUH WR DSSUR[LPDWH WKH EHKDYLRU RI WKH JUDGLHQW RI I ZLWK LQIRU N UDDWLRQ DW WKH SUHVHQW SRLQW [ ,W ZLOO EH VKRZQ WKDW LW LV SRVVLEOH n;L fN WR UHSUHVHQW WKH SRLQW [ DW ZKLFK WKH JUDGLHQW LV ]HUR E\ DQ LQILQLWH VHULHV 7KH YDULDEOHRUGHU WUDQVIRUPDWLRQ IXQFWLRQV UHVXOW

PAGE 46

IURP WUXQFDWLRQV RI WKLV VHULHV $ SDUDPHWHU S DSSHDULQJ LQ WKH LQILQLWH VHULHV LQ HIIHFW DFFRXQWV IRU WKH WHUPV RI WKH VHULHV ZKLFK DUH GURSSHG ‘N :H EHJLQ E\ QRWLQJ WKDW D QHFHVVDU\ FRQGLWLRQ IRU [ WR EH D b VROXWLRQ RI WKH PLQLPL]DWLRQ SUREOHP f LV WKDW WKH JUDGLHQW RI I IW DW [ EH ]HUR 7KHQ DQ\ VROXWLRQ RI f PXVW VDWLVI\ WKH V\VWHP RI HTXDWLRQV In[f f b O?L b 1RZ FRQVLGHU WKH FKDQJH RI YDULDEOHV GHQRWHG E\ [ ;]f f n;M A 2 ZKHUH ; PD\ EH D QRQOLQHDU IXQFWLRQ 8VLQJ f WKH HTXDWLRQ f EHFRPHV In[f In;]ff J]f n;M b n; n;M n;M n;L f r 'HILQH D ] VXFK WKDW IW [ b IW ;] f D f WKHQ IURP f J]rf b b n;L f VLQFH In[ f n9 n;W Q ,I WKH IXQFWLRQ J LV VLPSOH WR LQYHUW VR WKDW ]

PAGE 47

PD\ EH IRXQG IURP f E\ r ] K f WKHQ WKH VROXWLRQ [ RI f PD\ EH IRXQG IURP f &OHDUO\ b VSHFLI\LQJ D FKDQJH RI YDULDEOHV ZKLFK \LHOGV D IXQFWLRQ J ZKLFK LV VLPSOH WR LQYHUW FRXOG EH GLIILFXOW +RZHYHU DV ZH QRZ VKRZ ZH FDQ VWDUW E\ VSHFLI\LQJ D VXLWDEOH IXQFWLRQ J DQG GHWHUPLQH WKH UHVXOWLQJ b FKDQJH RI YDULDEOH IXQFWLRQ ; 7R WKLV HQG DVVXPH VRPH IXQFWLRQ KDV EHHQ VSHFLILHG 7KHQ ;]f PD\ EH H[SDQGHG LQ D 7D\ORU VHULHV U?M 2L F DERXW VRPH ] ] VR WKDW f EHFRPHV [ ;]Nf ;n]Nf]]Nf Of>;]Nf]]Nf@]]Nf nOO K K K nOO nOO nOO nOO nOO nOO b nOO L f ZKHUH IURP f N [ PD\ EH DVVRFLDWHG ZLWK ] E\ D ;]Nf [N f b nOO DQG ;n]Nf I[Nf Jf]Nf f b nOO nOO nOO K K ;]Nf I[Nf >J]Nf >If[Nf ;n]Nf@ ;n]Nf@ f K K K K n;n8 K nOO nOO b K nOO DUH REWDLQHG E\ UHSHDWHG GLIIHUHQWLDWLRQ RI f DQG HYDOXDWLQJ WKH N ,F UHVXOWLQJ H[SUHVVLRQV DW [ [ DQG ] ] 6LQFH DV LW LV WKH FDVH A b n; b

PAGE 48

N N IRU WKH SUHVHQW DQ [ LV NQRZQ RU JLYHQ D FRUUHVSRQGLQJ ] PD\ EH n9n n;M IRXQG IURP f E\ ] nE In[Nff nE b f VLQFH LW ZDV DVVXPHG WKDW J LV VLPSOH WR LQYHUW 7KHUHIRUH DOO WKH nE WHUPV RI WKH VHULHV KDYH EHHQ GHILQHG DVVXPLQJ DOO WKH GHULYDWLYHV DQG WKH LQYHUVH RI WKH KHVVLDQ H[LVW )LQDOO\ VLQFH ZH DUH LQWHUHVWHG r r LQ [ JLYHQ E\ ;] f LQ f ZH REWDLQ WKH LQILQLWH VHULHV UHSUH nE nE nE VHQWDWLRQ RI D VROXWLRQ WR f JLYHQ E\ [r [N ;n]Nf]r]Nf Of>;]Nf]r]Nf@]r]Nf fE E nE nE nE nE nE nE nE nE nE b f r N ZKHUH ] LV JLYHQ E\ f ] E\ f DQG WKH GHULYDWLYHV D r?M F F ;n] f ;] f DUH REWDLQHG E\ GLIIHUHQWLDWLRQ DV VKRZQ LQ 9 nE b f DQG f :H QRZ WXUQ WR WKH VHOHFWLRQ RI D VXLWDEOH IXQFWLRQ J 6LQFH nE WKH IXQFWLRQ J VKRXOG EH VLPSOH WR LQYHUW D ORJLFDO FKRLFH PLJKW EH nE m"! f 9 9 f IRU ZKLFK WKH IXQFWLRQ DQG LWV LQYHUVH DUH LGHQWLFDO )RU WKLV IXQFn WLRQ WKH LQILQLWH VHULHV f EHFRPHV r [ fE f f f Df ZKHUH

PAGE 49

[9 In[Nf Ef 2L n;M f;L 2 n;M GN f InX9AIn [Nf GN@ GN Ff U?MR} n;W n;M GN IL[6AA&In [NfGN@GNGf>>I9[NfGN@GN@GN@ Gf A 2L 2 b 2L R! D b n8 n;M$ R] 7KLV LQILQLWH VHULHV LV D ZHOONQRZQ UHVXOW H[WHQGHG WR QGLPHQVLRQV ,I WKLV VHULHV LV WUXQFDWHG WR WZR WHUPV DQ LWHUDWLYH PHWKRG FDQ EH FRQVWUXFWHG JLYHQ E\ N [ n8 f ZKLFK LV 1HZWRQnV LWHUDWLRQ IRU VROYLQJ f >@ +RZHYHU WKLV LWHUDWLYH PHWKRG RU LWHUDWLYH PHWKRGV REWDLQHG IURP DQ\ WUXQFDWLRQV RI ff PD\ QRW FRQYHUJH WR D VROXWLRQ RI WKH PLQLPL]DWLRQ SUREOHP f EHFDXVH WKH LQILQLWH VHULHV f PD\ QRW LWVHOI EH D FRQn YHUJHQW VHULHV 7KXV ZH FRQFOXGH WKDW WKH VHULHV UHVXOWLQJ IURP WKH VLPSOH IXQFWLRQ J JLYHQ E\ f GRHV QRW LQ JHQHUDO SURGXFH D L? VXLWDEOH LQILQLWH VHULHV 2QH RI WKH SURSRVHG PRGLILFDWLRQV WR f ZKLFK LPSURYHV LWV SRWHQWLDO IRU FRQYHUJHQFH LV WKH LQWURGXFWLRQ RI D VFDODU SA WR GDPS WKH LWHUDWLRQ >@ JLYHQ E\ ,Q (XOHU GHULYHG DQ LQILQLWH VHULHV IRU D VROXWLRQ RI WKH VFDODU SUREOHP I[f >@ 2WKHU UHFHQW GHULYDWLRQV DQG PRUH H[WHQVLYH VWXGLHV RI WKLV VFDODU VHULHV KDYH EHHQ SXEOLVKHG > @ 7KH (XOHU VHULHV EHFRPHV f ZKHQ H[WHQGHG WR QGLPHQVLRQV IRU WKH VROXWLRQ RI SUREOHP f

PAGE 50

N [ N 3N A )RU WKH PLQLPL]DWLRQ SUREOHP f WKLV LWHUDWLRQ EHFRPHV WKH WZR VWHS SURFHGXUH JLYHQ E\ WKH FRPSXWDWLRQ RI WKH WUDQVIRUPDWLRQ IXQFWLRQ KSf [N S 2M n9 b= DQG NO WKH FRPSXWDWLRQ RI D VXLWDEOH YDOXH S S WR REWDLQ [ JLYHQ E\ D NO [ KS f A ?M +H 0RWLYDWHG E\ WKLV PRGLILFDWLRQ ZH SURSRVH WKH IROORZLQJ IXQFWLRQ JXM ‘ !7 f 1RWH WKDW WKLV J IXQFWLRQ LV VLPSOH WR LQYHUW )XUWKHUPRUH ]r Jf f D Y n;L DQG DQ\ KLJKHU GHULYDWLYHV ZLWK UHVSHFW WR ] DUH UHDGLO\ REWDLQHG 7DNLQJ WKH ILUVW WZR WHUPV RI WKH UHVXOWLQJ VHULHV f \LHOGV WKH LWHUDWLYH PHWKRG [ ; S I[ f If[ f f W;M b b I;M r?M A 7KXV WKH VHFRQGRUGHU WUDQVIRUPDWLRQ IXQFWLRQ PD\ EH GHILQHG E\ ,I S WK 1RWH WKDW PHDQV UDLVHG WR WKH S SRZHU

PAGE 51

f ZKHUH f LV GHILQHG WR EH WKH VHFRQGRUGHU FRUUHFWLRQ 1RWH WKDW WKH RUGHU UHIHUV WR WKH RUGHU RI FRQYHUJHQFH RI WKH VHTXHQFHV ZKLFK DUH JHQHUDWHG E\ WKH DOJRULWKPf 7KXV 1HZWRQnV PHWKRG IRU VROYLQJ PLQLPL]DWLRQ SUREOHPV IDOOV RXW DV D VSHFLDO FDVH RI WKH SURSRVHG DOJRULWKP 7DNLQJ WKUHH WHUPV RI f \LHOGV WKH WKLUGRUGHU WUDQVIRUPDWLRQ JLYHQ E\ KRSf [N f SfS GN S GN n;Lr?M U?- f ZKHUH GN f UI Y6 +N GN f LV WKH WKLUGRUGHU FRUUHFWLRQ 6LPLODUO\ XVLQJ WKH ILUVW IRXU WHUPV RI f \LHOGV WKH IRXUWKRUGHU WUDQVIRUPDWLRQ JLYHQ E\ [ N OfSS OOfS GN SfS GN S GN r n: f ZKHUH WKH IRXUWKRUGHU FRUUHFWLRQ LV GHILQHG WR EH

PAGE 52

7UDQVIRUPDWLRQ IXQFWLRQV RI RUGHU KLJKHU WKDQ IRXU PD\ EH VLPLODUO\ GHULYHG +RZHYHU DV ZLOO EH VHHQ EHORZ LW GRHV QRW VHHP SRVVLEOH WR DGHTXDWHO\ DSSUR[LPDWH WKH FRUUHFWLRQV RI RUGHU JUHDWHU WKDQ IRXU 0RUHRYHU KLJKHURUGHU GHULYDWLYHV UHTXLUH FRQVLGHUDEOH VWRUDJH DQG WKH\ DUH YHU\ GLIILFXOW WR GHULYH LQ JHQHUDO DQG WKHUHIRUH ZH WU\ WR DYRLG WKHP $GGLWLRQDOO\ WKH WHFKQLTXHV SURSRVHG LQ 6HFWLRQ IRU WKH VFDODU VHDUFK ZRXOG QRW EH DV DWWUDFWLYH IRU WUDQVIRUPDWLRQ IXQFWLRQV RI RUGHU KLJKHU WKDQ IRXU EHFDXVH WKH ]HURV RI SRO\QRPLDOV RI GHJUHH JUHDWHU WKDQ WZR ZRXOG EH QHHGHG )LQDOO\ LW ZDV H[SHULn PHQWDOO\ IRXQG WKDW IRU RQH IXQFWLRQ WHVWHG WUDQVIRUPDWLRQ IXQFWLRQV RI RUGHU KLJKHU WKDQ IRXU GLG QRW LQFUHDVH RYHUDOO HIILFLHQF\ LQ FRPSXWLQJ WKH VROXWLRQ 7KH VHOHFWLRQ RI ZKLFK WUDQVIRUPDWLRQ IXQFn WLRQ WR XVH DW HDFK LWHUDWLRQ ZLOO EH GHVFULEHG ODWHU $SSUR[LPDWLRQV RI +LJKHU2UGHU &RUUHFWLRQV 2EVHUYH WKDW WKH FRPSXWDWLRQ RI WKH WKLUGRUGHU FRUUHFWLRQ f ZRXOG UHTXLUH ERWK WKH HYDOXDWLRQ RI In [ f D WKLUGRUGHU WHQVRU n;M R DQG D FRQVLGHUDEOH QXPEHU RI PXOWLSOLFDWLRQV 7KLV FRPSXWDWLRQDO HIIRUW FDQ EH UHGXFHG E\ XVLQJ WKH DSSUR[LPDWLRQ e I[NfB InKMOff f n: n;M n;M n;M n;M ZKHUH N N N KfOf [ G I?M n;M ?M f IURP f 7KH DSSUR[LPDWLRQ f IROORZV IURP WKH 7D\ORU VHULHV

PAGE 53

H[SDQVLRQ In&[AGE 2 n; U?- If[Nf I[NfGN f>I;Nf b n;W n;L n;M b= ?M ;M +N  f 8VLQJ f WKH ILUVW WZR WHUPV FDQFHO DQG WKHUHIRUH InKNOff In[N GNf e f>If [Nf GN@ GN f [ ;M n;M= n;M b nE= b= LL N WL LV DQ DSSUR[LPDWLRQ ZLWK HUURU RQ WKH RUGHU RI __ G __ DVVXPLQJ WKH n[= IRXUWK GHULYDWLYH RI I LV ERXQGHG &RPSDULQJ WKH HTXDWLRQ IRU WKH WKLUGRUGHU FRUUHFWLRQ JLYHQ E\ f XVLQJ f \LHOGV WKH DSSUR[n LPDWLRQ f 6LPLODUO\ WKH IRXUWKRUGHU FRUUHFWLRQ f PD\ EH DSSUR[LPDWHG E\ GN e I[Nf In KNOff 7Y ;M n: f ZKHUH XNL? N Kf [ G G Y A f IURP f 8VLQJ WKH DSSUR[LPDWLRQ IRU Gf JLYHQ E\ f WKH n: DSSUR[LPDWLRQ f KDV HUURU RI RUGHU __GN__ __GN__fA DVVXPLQJ WKH IRXUWK GHULYDWLYH RI I LV ERXQGHG 7KH DSSUR[LPDWLRQ DQG WKH N N N HUURU ERXQG IROORZ IURP WKH 7D\ORU VHULHV H[SDQVLRQ RI In[ GfG f Q r A DQG WKH XVH RI f DQG f 7KH HUURU LQ WKHVH DSSUR[LPDWLRQV FRQWLQXHV WR LQFUHDVH IRU FRUUHFWLRQV RI KLJKHU RUGHU )XUWKHUPRUH WKHUH HUURUV DUH HQODUJHG VLQFH WKHVH KLJKHURUGHU FRUUHFWLRQV DUH

PAGE 54

PXOWLSOLHG E\ LQFUHDVLQJ SRZHUV RI S DV FDQ EH VHHQ IURP WKH WKLUG f DQG IRXUWKf RUGHU WUDQVIRUPDWLRQV 7KLV HUURU LV WKH PDMRU UHDVRQ IRU FRQVLGHULQJ RQO\ WUDQVIRUPDWLRQV RI RUGHU IRXU RU OHVV ,Q WKH QH[W FKDSWHU DSSUR[LPDWLRQV WR WKH KHVVLDQ DQG WKH JUDn GLHQW RI I ZLOO EH SUHVHQWHG 7KHVH DSSUR[LPDWLRQV ZLOO DOORZ WKH DOJRULWKP WR EH XVHG HYHQ ZKHQ RQO\ IXQFWLRQ YDOXHV DUH VXSSOLHG 7UDQVIRUPDWLRQ 2UGHU 6HOHFWLRQ $VVXPLQJ WKDW DOO RI WKH WUDQVIRUPDWLRQ IXQFWLRQV H[LVW WKLV DVVXPSWLRQ LV UHPRYHG ODWHU LQ WKLV FKDSWHUf ZH ZLVK WR FRQVLGHU WKH TXHVWLRQ RI ZKLFK RQH VKRXOG EH XVHG LQ HDFK LWHUDWLRQ 5HFDOO WKDW HDFK WUDQVIRUPDWLRQ IXQFWLRQ PD\ EH WKRXJKW RI DV D N FXUYHG WUDMHFWRU\ SDVVLQJ WKURXJK [ ZLWK WKH VFDODU SDUDPHWHU S b N SURSRUWLRQDO WR KRZ IDU IURP [ WKH QH[W SRLQW PLJKW EH ,GHDOO\ WKH EHVW WUDQVIRUPDWLRQ IXQFWLRQ RUGHU WR XVH LV WKH RQH ZKRVH WUDMHFWRU\ r SDVVHV WKH FORVHVW WR [ ,W PLJKW VHHP WKDW WKH KLJKHU WKH RUGHU f?M nN WKH FORVHU WR WKH VROXWLRQ [ VLQFH PRUH WHUPV DUH WDNHQ LQ WKH 2 9W LQILQLWH VHULHV UHSUHVHQWDWLRQ RI [ +RZHYHU WKHUH DUH WZR UHDVRQV ZK\ WKLV VHHPLQJO\ UHDVRQDEOH H[SHFWDWLRQ LV QRW XVXDOO\ WUXH )LUVW WKH SURFHVV RI FRPSXWLQJ WKH WHUUDV RI WKH WUDQVIRUPDWLRQ IXQFWLRQV LQYROYHV VHYHUDO DSSUR[LPDWLRQV DQG PDQ\ DULWKPHWLF RSHUDWLRQV ZLWK HQVXLQJ HUURUV 6HFRQG DQG SHUKDSV PRUH LPSRUWDQWO\ WKH LQILQLWH ‘N VHULHV UHSUHVHQWV [ RQO\ LI LW FRQYHUJHV LW PXVW DOVR FRQYHUJH YHU\ D IDVW ,W ZDV LQGHHG YHULILHG QXPHULFDOO\ WKDW XVXDOO\ RQH RI WKH WUDQVIRUPDWLRQ IXQFWLRQV LV EHWWHU LQ WKH VHQVH RI JLYLQJ WUDMHF N WRULHV FORVHU WR [ WKDQ WKH RWKHUV DW HDFK LWHUDWLRQ DQG WKH EHVW U? f r

PAGE 55

RQH LV QRW QHFHVVDULO\ WKH RQH ZLWK WKH KLJKHVW RUGHU 7KH SURSRVHG WHFKQLTXH IRU VHOHFWLQJ WKH EHVW WUDQVIRUPDWLRQ IXQFWLRQ LV EDVHG RQ WKH FRQYHUJHQFH RI WKH LQILQLWH VHULHV f WR D VROXWLRQ RI WKH PLQLPL]DWLRQ SUREOHP f 5HFDOO WKDW WKLV LQILQLWH VHULHV UHVXOWHG IURP WKH J IXQFWLRQ f RU IRU WKH IXQFn WLRQ ZKLFK ZDV HYHQWXDOO\ XVHG JLYHQ E\ f ZLWK WKH VFDODU SDUDn PHWHU S VHW WR RQH 7KH SURFHGXUH PD\ EH GHVFULEHG DV IROORZV 6HOHFW WKH VHFRQGRUGHU WUDQVIRUPDWLRQ LI IKLOff I[N GNf I[Nf IKNff f n;M= n;M U;M= f§ U?M WKf§ RWKHUZLVH VHOHFW WKH Uf RUGHU WUDQVIRUPDWLRQ LI IKNOff IKN ff U DQG f ,I f LV QRW VDWLVILHG IRU U WKH IRXUWKRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG 7KXV ZKHQ RUGHUV WKUHH RU IRXU DUH VHOHFWHG D YDOXH RI S DOZD\V JLYHV D SRLQW ZKLFK \LHOGV D IXQFWLRQ YDOXH OHVV WKDQ WKH SUHVHQW YDOXH ,W ZDV H[SHULPHQWDOO\ YHULILHG WKDW WKLV PHWKRG VHOHFWHG WKH EHVW RUGHU LQ PRVW LWHUDWLRQV ,Q WKRVH YHU\ IHZ LWHUDn WLRQV ZKHUH LW GLG QRW VHOHFW WKH EHVW RUGHU WKH RUGHU VHOHFWHG ZDV RQO\ LQVLJQLILFDQWO\ GLIIHUHQW WKDQ WKH EHVW RQH 2QFH RQH RI WKH WKUHH WUDQVIRUPDWLRQ IXQFWLRQV LV VHOHFWHG WKH GLPHQVLRQ RI WKH SUREOHP KDV EHHQ UHGXFHG WR RQH 7R VHH WKLVQRWH WKDW DW WKH NWN LWHUDWLRQ WKH SUREOHP UHPDLQLQJ LV WR FRPSXWH D YDOXH RI WKH VFDODU SDUDPHWHU S VXFK WKDW

PAGE 56

ZKHUH WKH WUDQVIRUPDWLRQ IXQFWLRQV ZHUH JLYHQ HDUOLHU EXW ZLOO EH UHSHDWHG KHUH IRU HDVH RI UHIHUHQFH 7KXV Df Sf L a rfS S Ef Sf N+f 3f S>f@ S Ff ZKHUH WKH WHUPV KDYH EHHQ UHDUUDQJHG LQ SRZHUV RI S DQG Gf G DQG G DUH JLYHQ E\ f f DQG f UHVSHFWLYHO\ 7KH FRUQn nOO SXWDWLRQ RI D VXLWDEOH YDOXH RI S LV GHVFULEHG LQ WKH QH[W VHFWLRQ 7KH 6FDODU 6HDUFK 7KH VFDODU VHDUFK IRU DQ DSSURSULDWH YDOXH RI WKH SDUDPHWHU S ZKLFK DSSHDUV LQ WKH KLJKHURUGHU WUDQVIRUPDWLRQ IXQFWLRQV LV RIWHQ WKH PRVW WLPHFRQVXPLQJ VWHS LQ D PLQLPL]DWLRQ DOJRULWKP 7KH VRXUFH RI WKH GLIILFXOW\ LV WKH UHTXLUHPHQW WKDW PRVW H[LVWLQJ DOJRULWKPV KDYH RI FRPSXWLQJ D YDOXH RI S WKDW DFFXUDWHO\ VROYHV D VFDODU PLQLn PL]DWLRQ SUREOHP WR EH GHVFULEHG EHORZ ,Q WKLV VHFWLRQ LW ZLOO EH VKRZQ WKDW WKH VFDODU VHDUFK VWHS IRU WKH 92 DOJRULWKP LV QRW WLPH FRQVXPLQJ GXH WR LQKHUHQW SURSHUWLHV RI WKH WUDQVIRUPDWLRQ IXQFWLRQV )XUWKHUPRUH GXULQJ WKH LQLWLDO LWHUDWLRQV RI WKH 92 DOJRULWKP ZKHQ

PAGE 57

WKH HVWLPDWH [ RI WKH VROXWLRQ [ LV IDU IURP WKH VROXWLRQ WKH GHVLUHG YDOXH RI S LV GHILQHG WR EH WKH VROXWLRQ RI D VFDODU SUREOHP QRW XVHG LQ DQ\ SUHYLRXVO\ UHSRUWHG DOJRULWKP 5HFDOO WKDW DW WKLV VWDJH ZH ZLVK WR ILQG D YDOXH RI S SA VXFK WKDW [N KNS f U RU f A N ZKHUH KA LV RQH RI WKH WUDQVIRUPDWLRQ IXQFWLRQV JLYHQ LQ f ,I N r WKH FXUUHQW SRLQW [ LV QRW [ D VROXWLRQ RI WKH PLQLPL]DWLRQ SUR 2L n9 EOHP f WKHQ WKH VFDODU VHDUFK VKRXOG VHOHFW D YDOXH RI S VXFK WKDW WKH GHVFHQW FRQGLWLRQ IKNSff I[Nf f N r LV VDWLVILHG ,I [ LV HTXDO WR [ WKH VFDODU VHDUFK LV XQQHFHVVDU\ 1RUPDOO\ WKHUH LV DQ LQILQLWH QXPEHU RI YDOXHV RI S IRU ZKLFK f LV VDWLVILHG 7KH EHVW YDOXH RI S WR FKRRVH ZRXOG EH WKH RQH $ WKDW PLQLPL]HV WKH WRWDO QXPEHU RI LWHUDWLRQV WR DSSUR[LPDWH [ +RZHYHU WKH FRPSXWDWLRQ RI WKLV YDOXH RI S LV LPSRVVLEOH IRU JHQHUDO SUREOHPV VLQFH LW UHTXLUHV LQIRUPDWLRQ IURP IXWXUH LWHUDWLRQV 6RPH RI WKH FRQVLGHUDWLRQV ZKLFK OHDG WR DSSUR[LPDWLRQV RI WKH EHVW YDOXH RI S DUH JLYHQ QH[W $VVXPH D SA SA H[LVWV VXFK WKDW IURP f ZH REWDLQ N r N P [ [ K S f U?M 2M .

PAGE 58

&OHDUO\ WKH EHVW YDOXH RI S LQ WKLV FDVH ZRXOG EH Sr1 DQG Sr1 ZRXOG 5 EH GHILQHG E\ IK S ff PLQLPL]H IK Sff RAU N ?U 3 f ZKLFK LV D VFDODU PLQLPL]DWLRQ SUREOHP 0RVW H[LVWLQJ DOJRULWKPV FKRRVH SA WR EH DQ DSSUR[LPDWLRQ WR Sr1 DW HDFK LWHUDWLRQ VRPH DOJRn ULWKPV WKHRUHWLFDOO\ UHTXLUH WKDW SA EH DQ DFFXUDWH DSSUR[LPDWLRQ WR 3r1 >@ LQ FRQWUDVW ZLWK WKH 92 DOJRULWKP ZKLFK KDV QR VXFK UHTXLUHn PHQW ,Q SUDFWLFH [AA KAISr1f LV VHOGRP HTXDO WR [ :KLOH LW R! nYU N b PD\ EH FRQYLQFLQJO\ DUJXHG WKDW Sr1 LV DQ RSWLPDO YDOXH IRU VRPH N r LWHUDWLRQV SDUWLFXODUO\ ZKHQ [ LV LQ VRPH QHLJKERUKRRG RI [ WKH n;M EHVW YDOXH RI S WR FKRRVH LV QRW Sr1 IRU PRVW LWHUDWLRQV ,Q IDFW N r UQ ZKHQ [ LV IDU IURP [ FKRRVLQJ S S WHQGV WR IRUFH DQ\ PLQLPL ?! UE . ]DWLRQ DOJRULWKP WR IROORZ WKH ERWWRP RI QDUURZ YDOOH\V ZLWK W\SLFDOO\ VORZ SURJUHVV WRZDUGV [ >@ 7KHUHIRUH DQ LGHDO VFKHPH ZRXOG P N N FKRRVH SA SA ZKHQ [ LV LQ VRPH QHLJKERUKRRG RI [ DQG ZRXOG FKRRVH SA WR VWD\ DZD\ IURP WKH ERWWRP RI QDUURZ YDOOH\V ZKHQHYHU N r [ LV IDU IURP [ D Q 7KH VFDODU VHDUFK RI WKH 92 DOJRULWKP ILUVW DWWHPSWV WR HVWDEOLVK N r N r ZKHWKHU [ LV FORVH WR [ ,I [ LV FORVH WR [ WKHQ S LV VHW WR b b b N DQ DSSUR[LPDWLRQ RI SA D VROXWLRQ RI WKH VFDODU PLQLPL]DWLRQ SURE N r OHP f 7KH GHWDLOV DUH GHVFULEHG EHORZ ,I [ LV IDU IURP [ Y D N N WKHQ S LV FRPSXWHG XQGHU WKH SULQFLSOH WKDW [ K S f VKRXOG EH N 2M YU N N DV IDU DZD\ IURP [ DV SRVVLEOH 7KH PHWKRG IRU FRPSXWLQJ S ZKHQ N r [ LV IDU IURP [ ZLOO EH GHVFULEHG LQ WZR SDUWV f LI WKH VHFRQG I?M 2} RUGHU WUDQVIRUPDWLRQ ZDV VHOHFWHG U f DQG f LI WKH WKLUGRU

PAGE 59

WKH IRXUWKRUGHU WUDQVIRUPDWLRQ ZDV VHOHFWHG U RU f r ,WHUDWLRQV &ORVH WR [ ,I [ LV FORVH WR [ nE ?L WKHQ __ InKNOff __ ZLOO EH VPDOO GXH WR b nXU WKH PDQQHU LQ ZKLFK WKH WUDQVIRUPDWLRQ IXQFWLRQV K ZHUH GHULYHG nYU 7KXV LI f IRU VRPH H LW LV FRQFOXGHG WKDW WKH FKRLFH S Sr1 VKRXOG EH F N UN PDGH )RU WKH WHVWHG IXQFWLRQV ZKLFK DUH QRW EDGO\ VFDOHG H ZDV UHDVRQDEOHf 7KH WHVW f FDQ EH PDGH ZLWKRXW F IXUWKHU JUDGLHQW HYDOXDWLRQV VLQFH LW ZDV VKRZQ LQ 6HFWLRQ N N WKDW WKH WZR JUDGLHQWV InKBOff DQG InKBOff DUH HYDOXDWHG ZKLOH nY nY] D D FRPSXWLQJ WKH DSSUR[LPDWLRQV WR WKH WKLUGDQG IRXUWKRUGHU FRUUHFn WLRQV JLYHQ LQ f ,I WKH IRXUWKRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG LW ZDV IRXQG WKDW LW LV QRW QHFHVVDU\ WR HYDOXDWH IfKff EXW UDWKHU WKH UHVXOWV RI WKH WHVW IRU InKBOff FRXOG EH XVHG n;M P LQVWHDG N r +DYLQJ LGHQWLILHG WKDW [ LV FORVH WR [ LQ WKH DERYH PDQQHU 2} nOO DQ DSSUR[LPDWLRQ WR Sr1 QHHGV WR EH FRPSXWHG 7KH IROORZLQJ SURFHGXUH ZDV VDWLVIDFWRU\ IRU WKH IXQFWLRQV WHVWHG (YDOXDWH IK Sff IRU ‘YU S /O / /O XQWLO IKN/Off IKN/ff IKN/Off b U AU f§ nYU f

PAGE 60

ZKLFK LV D VWDQGDUG PHWKRG RI EUDFNHWLQJ WKH VFDODU PLQLPXP >@ 7KH PLQLPXP RI WKH TXDGUDWLF SRO\QRPLDO LQ S ZKLFK SDVVHV WKURXJK WKH WKUHH SRLQWV >@ REWDLQHG LQ f LV FRPSXWHG JLYHQ E\ I-/Off IK?/ff I/Off e /_f§A" f f IKr/Off IKr/ff IKr/Off ,I e LV FORVH WR / ce O_ B f VHW SA / WR FRPSOHWH WKH VFDODU VHDUFK IRU WKLV LWHUDWLRQ ,I e LV QRW FORVH WR / WKHQ IKASff LV HYDOXDWHG DQG LI IKASff IKA/ff VHW SA e RWKHUZLVH VHW / 7KLV FRPSOHWHV WKH VFDODU VHDUFK IRU WKH FDVH N r ZKHQ [ LV FORVH WR [ b 2L )RU PRVW ORFDO PLQLPD SA DQG WKH DERYH SURFHGXUH VKRXOG \LHOG SA UHTXLULQJ RQO\ RQH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQ +RZHYHU IRU ORFDO PLQLPD ZLWK D SRVLWLYH VHPLGHILQLWH KHVVLDQ Sr1 ZLOO JHQHUDOO\ EH JUHDWHU WKDQ RQH 7KHUHIRUH LQ DFWXDO LPSOHPHQWDWLRQ VKRZQ LQ $SSHQGL[ LI WKH PLQLPXP LV ORFDWHG IRU S WKH IXQFWLRQ LV HYDOXDWHG DW S HWF XQWLO WKH PLQLPXP LV EUDFNHWHG r ,WHUDWLRQV )DU IURP [ N r :KHQ [ LV IDU IURP [ WKH H[SUHVVLRQ f LV QRW VDWLVILHG N ,Q WKLV FDVH WKH EDVLF SULQFLSOH WR EH SURSRVHG LV WKDW [ VKRXOG EH DV IDU DZD\ IURP [ DV SRVVLEOH VXEMHFW WR VDWLVI\LQJ f n;M 7KLV SULQFLSOH GHILQHV WKH GHVLUHG SA WR EH D VROXWLRQ RI

PAGE 61

PD[LPL]H ,, KNSf [N ,, Df 3 VXEMHFW WR IKASff I[Af Ef N ZKHUH !B ZLOO EH GHILQHG WR LQVXUH WKDW I[ f LV VXIILFLHQWO\ N OHVV WKDQ I[ f $Q DFFXUDWH VROXWLRQ RI f ZRXOG EH GLIILFXOW WR REWDLQ FRPSXWDWLRQDOO\ +RZHYHU ILUVW DQ DFFXUDWH VROXWLRQ LV QRW UHTXLUHG DQG VHFRQG ZKHQ WKH WKLUGRU IRXUWKRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG WULDO YDOXHV RI S WKDW PD\ DSSUR[LPDWH D VROXWLRQ RI f PD\ EH IRXQG IURP DOUHDG\ DYDLODEOH LQIRUPDWLRQ 7KH SURn FHGXUH LI WKH VHFRQGRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG LV GHVFULEHG ILUVW 6HFRQG2UGHU 7UDQVIRUPDWLRQ 6HOHFWHG ,I WKH VHFRQGRUGHU WLO WUDQVIRUPDWLRQ LV VHOHFWHG DW WKH N LWHUDWLRQ WKH VHDUFK IRU DQ DSSUR[LPDWLRQ WR D VROXWLRQ RI f LV DORQJ D VWUDLJKW OLQH LQ N WKH VSDFH RI WKH LQGHSHQGHQW YDULDEOHV VLQFH KfSf LV D OLQHDU IXQF r?M= WLRQ RI S WKXV Df LV OLQHDU LQ S DQG LW LV PD[LPL]HG E\ WKH ODUJHVW SRVVLEOH YDOXH RI S ,Q WKLV FDVH FA LV VHW WR ]HUR ZKLFK LPSOLHV WKDW ZH GHVLUH DQ\ GHVFHQW 7KH SURFHGXUH SURSRVHG PD\ EH JHQHUDOO\ GHVFULEHG DV ILWWLQJ DQG FRPSXWLQJ WKH PLQLPXP RI DSSUR[n LPDWLQJ SRO\QRPLDOV ZKLFK DWWHPSWV WR VDWLVI\ WKH GHVFHQW FRQVWUDLQW Ef 7KHQ DWWHPSWLQJ WR VDWLVI\ Df D FRQVWDQW LV DGGHG WR WKH FRPSXWHG PLQLPXP RI WKH DSSUR[LPDWLQJ SRO\QRPLDO 7KH GHWDLOV DUH JLYHQ QH[W 7KH IROORZLQJ LQIRUPDWLRQ LV DOUHDG\ DYDLODEOH IKBff n:

PAGE 62

f InKMff I2XOff DQG I n KNOff 2} ?! n;M= b U?M 0RUHRYHU InKAff7 Kn2f N F ZKHUH Knf LV WKH ILUVW GHULYDWLYH RI KA&Sf ZLWK UHVSHFW WR S HYDOXDWHG DW S ([SUHVVLRQ f LPSOLHV WKH H[LVWHQFH RI D S WKDW VDWLVILHV Ef VHH /HPPD f ,I WKH H[SUHVVLRQ IKMOff IKNf I[Nf r?M= U?M A?M f LV VDWLVILHG WKHQ Ef LV DOVR VDWLVILHG :KHQHYHU f LV VDWLVILHG LW LV FRPSXWDWLRQDOO\ HIILFLHQW WR VHOHFW S VLQFH WKH IXQFWLRQ DQG WKH JUDGLHQW DUH DOUHDG\ HYDOXDWHG IRU WKH QH[W LWHUDn WLRQ ,Q DGGLWLRQ LW LV XQOLNHO\ WKDW WKH GHVFHQW FRQVWUDLQW Ef ZLOO EH VDWLVILHG IRU SA EHFDXVH RI WKH PDQQHU LQ ZKLFK WKH WUDQVIRUPDWLRQ IXQFWLRQ RUGHU LV VHOHFWHG 7KXV ZKHQHYHU f LV VDWLVILHG S LV VHW WR RQH N ,I f LV QRW VDWLVILHG WKH PLQLPXP ZLWKLQ WKH LQWHUYDO f RI WKH FXELF +HUPLWH SRO\QRPLDO LQ S ILWWHG WKURXJK WKH DYDLODEOH LQIRUPDWLRQ LV FRPSXWHG DV IROORZV >@ 3F 6M D EfV V4 Df Df ZKHUH

PAGE 63

VRenff7f f !Ff E >IKMff I&KMGff@ 64 6M Gf D >E V4 6M@ Hf 7KHQ OHW 3F PD[ ^ SF PLQ ^SF!OSF`` f N f§ 7KHQ DIWHU HYDOXDWLQJ IK S ff LI nE= F IWS ff I[Nf nE= F nE f 2EVHUYH WKDW f LV LI f LV QRW VDWLV PLQLPXP RI WKH TXDGUDWLF S DQG WKURXJK WKH IK3Fff@ } f ZKHUH VA LV JLYHQ LQ Ff 'HILQH S PD[ ^S S ` F F F VHW S S DQG WKH VFDODU VHDUFK LV GRQH & DQ DWWHPSW DW VDWLVI\LQJ Df )LQDOO\ ILHG WKH SURFHGXUH EHFRPHV LWHUDWLYH 7KH LQ S WKURXJK WKH IXQFWLRQ DQG GHULYDWLYH DW IXQFWLRQ DW 3 3F LV FRPSXWHG DV IROORZV 3F 3F V &SF V I-Off f

PAGE 64

F f§ 7KHQ DIWHU HYDOXDWLQJ IKBS ff LI f LV VDWLVILHG WKH VHDUFK 2L= F LV GRQH ZLWK SA RWKHUZLVH WKH SURFHVV LV UHSHDWHG EHJLQQLQJ ZLWK f )LJXUH VXPPDUL]HV WKH VWHSV LQ D IORZ FKDUW )RU WKH IXQFWLRQV WHVWHG WKH VHFRQGRUGHU WUDQVIRUPDWLRQ ZDV UDUHO\ VHOHFWHG 0RVW RI WKH WLPH ZKHQ LW ZDV VHOHFWHG WKH VHDUFK HQGHG ZLWK f WKXV RQO\ RQH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQ ZDV QHHGHG PRVW RI WKH WLPH WKH VHFRQGRUGHU WUDQVIRUPDWLRQ ZDV VHOHFWHG 7KLUGRU )RXUWK2UGHU 7UDQVIRUPDWLRQ 6HOHFWHG :KHQHYHU WKH WKLUGRU IRXUWKRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG WKH VHDUFK IRU D SA WR DSSUR[LPDWH D VROXWLRQ RI f LV QR ORQJHU DORQJ VWUDLJKW N OLQHV LQ WKH VSDFH RI WKH LQGHSHQGHQW YDULDEOHV 1RWH WKDW KQSf DQG KASf JLYHQ LQ Ef DQG Ff DUH SRO\QRPLDOV LQ S RI GHJUHH JUHDWHU WKDQ RQH )RU FODULW\ RI QRWDWLRQ WKH VXSHUVFULSW DQG VXEn VFULSW RI WKH WUDQVIRUPDWLRQ IXQFWLRQ ZLOO EH GURSSHG LH IRU WKH SUHVHQW GLVFXVVLRQ KSf K Sf n9 QU U RU f $GGLWLRQDOO\ WKH LQGLYLGXDO FRPSRQHQWV RI WKH WUDQVIRUPDWLRQ YHFWRU IXQFWLRQ ZLOO EH QHHGHG 7KXV OHW KSf EH GHILQHG E\ 2} KSf K Sf K Sf K Sff7 nYL] Q f NI M W K 7KHUHIRUH VLQFH [ KS f WKH L FRPSRQHQW RI DOO WKH SRVVLEOH n<} n< NIO SRLQWV WKDW PD\ EHFRPH [ LV JLYHQ E\ n9\

PAGE 65

)LJXUH )ORZFKDUW RI D SRUWLRQ RI WKH 6FDODU 6HDUFK VWHS RI WKH 92 DOJRULWKP

PAGE 66

;L KLASA f f 7KLV WLPH PD[LPL]LQJ ,, KSf [A __ DV GHILQHG LQ f PD\ QRW EH 2M 2L VLPSO\ DFKLHYHG E\ LQFUHDVLQJ S DV LW LV LI WKH VHFRQGRUGHU WUDQVn IRUPDWLRQ LV VHOHFWHG ,Q SDUWLFXODU VLQFH HDFK FRRUGLQDWH LV JLYHQ E\ f WKHUH PD\ EH FHUWDLQ YDOXHV RI S IRU ZKLFK WKH VTXDUH RI WKH GLIIHUHQFH [ a [Mf KSf [Mf f LV D PD[LPXP 7KLV ZRXOG FHUWDLQO\ WHQG WR VDWLVI\ WKH SULQFLSOH NO N WKDW [ VKRXOG EH DV IDU DV SRVVLEOH IURP [ $ QHFHVVDU\ FRQGLWLRQ R! n; WR PD[LPL]H f ZKLFK ZRXOG WHQG WR VDWLVI\ Df LV JLYHQ E\ GLIIHUHQWLDWLQJ f ZLWK UHVSHFW WR S DQG VHWWLQJ LW HTXDO WR ]HUR WR REWDLQ WKH HTXDWLRQ KASf f 7KLV HTXDWLRQ LV D OLQHDU HTXDWLRQ LQ S IRU WKH WKLUGRUGHU WUDQVn IRUPDWLRQ DQG D TXDGUDWLF SRO\QRPLDO LQ S IRU WKH IRXUWKRUGHU WUDQVIRUPDWLRQ 7KHUHIRUH LWV ]HURV PD\ EH HDVLO\ IRXQG ,I DQ\ W K RI WKHVH ]HURV DUH SRVLWLYH LW LPSOLHV WKDW WKH L FRRUGLQDWH PRYHV DZD\ IURP [A DQG DW WKH YDOXH RI S HTXDO WR D SRVLWLYH ]HUR RI f N LW EHJLQV WR PRYH FORVHU WR [A DJDLQ 7KHUHIRUH SRVLWLYH ]HURV DUH VXLWDEOH FDQGLGDWHV WR VDWLVI\ Df ,W LV SURSRVHG WKDW WKHVH ]HURV EH FRPSXWHG IRU DOO FRRUGLQDWHV XVLQJ f DQG WR GLVFDUG

PAGE 67

DQ\ ZKLFK DUH QRW SRVLWLYH 7KHVH ]HURV ZLOO EH FRQVLGHUHG WULDO YDOXHV RI S ODWHU $GGLWLRQDO WULDO YDOXHV RI S DUH REWDLQHG E\ WKH IROORZLQJ DUJXPHQW $IWHU H[SDQVLRQ RI I[f LQ D 7D\ORU VHULHV DERXW [ DQG I?M nOO VXEVWLWXWLRQ RI [ KSf WKH IROORZLQJ H[SUHVVLRQ LV REWDLQHG b n; IKSff I[Nf In[Nf7>KSf [N@ f 6LQFH LW LV GHVLUHG WR FRPSXWH D S ZKLFK \LHOGV IKSff VXIILFLHQWO\ b OHVV WKDQ I[ f WKH WHUP In [Nf7>KSf [N@ nOO nOO X D f VKRXOG EH DV QHJDWLYH DV SRVVLEOH 7KHUHIRUH YDOXHV RI S IRU ZKLFK f PD\ DFKLHYH D PLQLPXP YDOXH DUH SRLQWV WKDW DUH HDVLO\ FRPn SXWHG 7KH QHFHVVDU\ FRQGLWLRQ \LHOGV In[Nf7 KnSf f b U?M n;M ZKLFK LV D SRO\QRPLDO LQ S ZLWK ]HURV WKDW PD\ \LHOG DGGLWLRQDO WULDO YDOXHV RI S LI DQ\ RI WKH ]HURV DUH SRVLWLYH %HIRUH GHVFULELQJ KRZ WKHVH WULDO YDOXHV RI S DUH XVHG LQ DSSUR[Ln PDWLQJ D VROXWLRQ RI f WKH DSSHDULQJ LQ Ef QHHGV WR EH GHILQHG 5HFDOO WKDWfIKOff LV DOUHDG\ HYDOXDWHG DQG LW LV OHVV nOO N WKDQ I[ f 7KH FRQVWDQW F LV GHILQHG VXFK WKDW D YDOXH RI S FRXOG R} N EH XVHG SURYLGHG LW GRHV QRW \LHOG D IXQFWLRQ YDOXH WRR PXFK JUHDWHU

PAGE 68

WKDQ IKOff 7KLV LV DFFRPSOLVKHG E\ GHILQLQJ F E\ rE PLQ ^IKff I[Nf Z` U?M I?M PLQ ^OIKOff I[Nf Z` } IKOff f IKOff R ZKHUH Z IKff I[Nf 2 7KH FRQVWUDLQW Ef LV QRZ GHILQHG DQG WKH ]HURV SUHYLRXVO\ IRXQG DUH FDQGLGDWHV WR VDWLVI\ LW ,W ZDV IRXQG H[SHULPHQWDOO\ WKDW D YDOXH RI S JUHDWHU WKDQ VL[ QHYHU VDWLVILHG Ef ,Q DGGLWLRQ VLQFH IKOff LV OHVV WKDQ I[ f RQO\ YDOXHV RI S LQ WKH UDQJH R R S DUH FRQVLGHUHG QRWH WKDW QRQLQWHJHU YDOXHV DUH XVHGf $OO WKH ]HURV SUHYLRXVO\ REWDLQHG IURP f DQG f ZLWKLQ WKH DERYH UDQJH DUH VRUWHG 7KHQ EHJLQQLQJ IURP WKH ODUJHVW YDOXH DQG RQ WR WKH VPDOOHVW RQH WKH IXQFWLRQ LV HYDOXDWHG DQG DV VRRQ DV Ef LV VDWLVILHG WKH VFDODU VHDUFK LV FRPSOHWH ,Q FDVH f DQG f \LHOG QR WULDO YDOXHV RI S LQ WKH UDQJH S WKH IXQFWLRQ LV HYDOXDWHG DW IKSff IRU S S S XQWLO I? N IKS ff VDWLVILHV Ef DQG IKS ff GRHV QRW )RU DOO WKH E nE IXQFWLRQV WHVWHG LQ PRVW LWHUDWLRQV f DQG f \LHOGHG WULDO YDOXHV RI S )XUWKHUPRUH LQ PRVW LWHUDWLRQV RQO\ RQH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQ ZDV QHHGHG WR HQG WKH VHDUFK +HVVLDQ 6LQJXODU RU 1HJDWLYH 'HILQLWH ,Q FRPSXWLQJ WKH VHFRQG WKLUG DQG IRXUWKRUGHU FRUUHFWLRQV

PAGE 69

JLYHQ E\ f f DQG f WKHUH DUH WZR PDMRU GLIILFXOWLHV WR EH FRQVLGHUHG FRQFHUQLQJ WKH KHVVLDQ PDWUL[ LW PD\ EH VLQJXODU DQG LW PD\ EH QHJDWLYH GHILQLWH ,I WKH KHVVLDQ LV VLQJXODU WKH SURSRVHG FRUUHFWLRQV FDQQRW EH FRPSXWHG ,I WKH KHVVLDQ LV QHJDWLYH GHILQLWH WKH FXUUHQW SRLQW [ LV QRW LQ VRPH VPDOO QHLJKERUKRRG RI n;M D VWULFW ORFDO PLQLPXP )XUWKHUPRUH LI WKH KHVVLDQ LV QRW SRVLWLYH GHILQLWH WKH SURSRVHG WUDQVIRUPDWLRQV PD\ QRW JLYH GHVFHQW WUDn MHFWRULHV 5HFDOO WKDW LI In[Nf7 KNnf f nY nY nXU WKHQ WKH H[LVWHQFH RI D S ZKLFK VDWLVILHV IKNSff I[Nf f bU n;M LV LPSOLHG DV VKRZQ LQ /HPPD 2EVHUYH WKDW KNff D GN U RU f YU U L?M ZKHUH IURP f D DQG DA 7KHUHIRUH WKH GHVFHQW FRQGLWLRQ f EHFRPHV D In[Nf7 I[NfB If[Nf f ,r n;M n;M n;M n;M n;M n;M ZKHUH f ZKLFK GHILQHV GA ZDV XVHG 7KH LQHTXDOLW\ f PD\ QRW QHFHVVDULO\ EH VDWLVILHG ZKHQHYHU I[ f LV QRW SRVLWLYH GHILQLWH n;M n;M

PAGE 70

0RUHRYHU HYHQ LI f DQG WKXV f LV VDWLVILHG ZKHQ WKH KHVVLDQ LV QRW SRVLWLYH GHILQLWH WKH GHVFHQW WUDMHFWRU\ PD\ VWLOO EH XQGHVLUDEOH 5HFDOO WKDW WKH WUDQVIRUPDWLRQ IXQFWLRQV ZHUH GHULYHG WR FRPSXWH D SRLQW ZKLFK ZRXOG \LHOG D ]HUR JUDGLHQW :KLOH WKH JUDGLHQW LV ]HUR DW D ORFDO PLQLPXP LW LV DOVR ]HUR DW D ORFDO PD[Ln PXP DQG DW D VDGGOH SRLQW >@ 7KHUHIRUH D GHVFHQW WUDMHFWRU\ PD\ EH WRZDUGV D VDGGOH SRLQW 6DGGOH SRLQWV DUH HYHQ PRUH GLIILFXOW VLQFH WKH WUDQVIRUPDWLRQ IXQFWLRQV PD\ \LHOG WUDMHFWRULHV WRZDUGV D VDGGOH SRLQW HYHQ ZKHQ WKH KHVVLDQ LV SRVLWLYH GHILQLWH 7KLV GLIn ILFXOW\ ZLOO EH GLVFXVVHG DJDLQ ZKHQ WKH JOREDO FRQYHUJHQFH RI WKH DOJRULWKP LV HVWDEOLVKHG LQ WKH QH[W VHFWLRQ 7KXV VLQJXODULW\ DQG QRQSRVLWLYH GHILQLWHQHVV RI WKH KHVVLDQ DUH VLJQDOV WR EH XVHG LQ DYRLGLQJ WKHVH WURXEOHVRPH SRLQWV 6LQFH WKH KHVVLDQ LQYHUVH LV XVHG LQ 1HZWRQnV PLQLPL]DWLRQ DOJRULWKP >@ VHYHUDO DOWHUQDWLYHV KDYH EHHQ SURSRVHG ZKHQHYHU WKH KHVVLDQ LV QRW SRVLWLYH GHILQLWH >@ 7KH PHWKRG ZH SURSRVH LV D PRGLILFDWLRQ RI WKH RQH JLYHQ E\ 0XUUD\ >@ IRU D 1HZWRQOLNH PLQLPL]DWLRQ DOJRULWKP 7KH SULQFLSOH RI 0XUUD\nV PHWKRG PD\ EH GHVFULEHG DV WKH FRPSXWDWLRQ RI WKH 1HZWRQ RU VHFRQGRUGHU FRUUHFWLRQ N GA E\ VROYLQJ WKH OLQHDU V\VWHP RI HTXDWLRQV Df ZLWK Ef N N ZKHUH LV D GLDJRQDO PDWUL[ ZKLFK LV FRPSXWHG WR LQVXUH WKDW ) LV

PAGE 71

SRVLWLYH GHILQLWH ,I WKH KHVVLDQ I[ f LV DOUHDG\ SRVLWLYH GH b n;M N N ILQLWH WKH PDWUL[ LV WKH ]HUR PDWUL[ DQG Gf LV WKH VHFRQGRUGHU n;M n;M= FRUUHFWLRQ DV GHILQHG HDUOLHU 2EVHUYH WKDW LQ WKH 92 DOJRULWKP WKH DSSUR[LPDWLRQ WR WKH WKLUGDQG WKH IRXUWKRUGHU FRUUHFWLRQV f DQG f PD\ EH DOVR GHILQHG DV VROXWLRQV RI OLQHDU V\VWHPV RI HTXDWLRQV ZLWK FRHIILFLHQW PDWULFHV HTXDO WR ) 0XUUD\nV SURFHGXUH IRU FRPSXWLQJ LV EDVHG RQ WKH &KROHVN\ IDFWRUL]DWLRQ RI D SRVLWLYH GHILQLWH PDWUL[ 7KH &KROHVN\ IDFWRUn L]DWLRQ PD\ EH GHVFULEHG DV WKH FRPSXWDWLRQ RI WKH XSSHU WULDQJXODU PDWUL[ 8 VXFK WKDW n;M )N 87 8 n;M 2 b f $ E\SURGXFW RI WKLV IDFWRUL]DWLRQ LV WKH GLDJRQDO PDWUL[ 7KH n;M PRGLILFDWLRQ ZH SURSRVH DGGV D SLYRWLQJ VWUDWHJ\ WR WKLV IDFWRUL]DWLRQ SURFHGXUH 7KH UHVXOW RI WKLV PRGLILFDWLRQ LV WKDW WKH GLDJRQDO PDWUL[ ZLOO WHQG WR KDYH D IHZHU QXPEHU RI QRQ]HUR GLDJRQDOV WKDQ n9 WKH RULJLQDO SURFHGXUH 2QFH WKH IDFWRUL]DWLRQ LV FRPSXWHG WKH FRPSXWDWLRQ RI DOO WKH KLJKRUGHU FRUUHFWLRQV LV VLPSO\ REWDLQHG DV VKRZQ ODWHU 7KH GHWDLOV RI 0XUUD\nV SURFHGXUH DUH JLYHQ QH[W IROn ORZHG E\ WKH GHWDLOV RI &KH SURSRVHG PRGLILFDWLRQ 0XUUD\nV 3URFHGXUH WK (TXDWLQJ PDWUL[ HOHPHQWV LQ f \LHOGV WKH L URZ RI 8 JLYHQ b E\ Y LB R X ^ >) @ e X ` LL b LL / PL P O Df

PAGE 72

fM n >N@LM 9 b n LL f f }E! ,W FDQ EH VKRZQ >@ WKDW LI )& LV SRVLWLYH GHILQLWH DOO GLDJRQDO HOHPHQWV JLYHQ E\ Df DUH JUHDWHU WKDQ ]HUR DQG WKDW DOO WKH HOHPHQWV RI 8 DUH ERXQGHG E\ _X_ PD[ ^>)N@O L Q` n OM f§ A /O f f 7KH SURFHGXUH GXH WR 0XUUD\ LV WR LQ HIIHFW REWDLQ LQ f VXFK b WKDW DOO GLDJRQDO HOHPHQWV LQ Df DUH ERXQGHG E\ B XA B Q f ZKHUH PD\ EH GHILQHG E\ PD[ ^ _&I[OFf @sM L M Q` f DQG LV D JLYHQ FRQVWDQW ZKLFK LV XVHG EHORZ WR LQ HIIHFW LGHQn WLI\ WKH VTXDUH URRW RI D QXPHULFDO ]HUR GXH WR URXQGRII HUURUV V JDYH JRRG UHVXOWV ZKHUH V LV WKH QXPEHU RI VLJQLILFDQW GLJLWV RI WKH QXPEHUV LQ WKH FRPSXWHUf 7KH RIIGLDJRQDO HOHPHQWV DUH DOVR ERXQGHG E\ ,XLM p r L Q M L f

PAGE 73

WLO 7KH L VWDJH RI WKH SURFHGXUH PD\ EH GHVFULEHG DV IROORZV 'HILQH WKH TXDQWLW\ X PD[ ^ L f ?L a A P O PL f ZKLFK ZLOO EH FRQVLGHUHG DV WKH FDQGLGDWH IRU WKH GLDJRQDO X DQG X L >I[.f@ O n8 b P O X X PL PM M L f 2EVHUYH WKDW X LM HOHPHQWV RI WKH JLYHQ E\ XAXA M LI Q ZLOO EH WKH RIIGLDJRQDO WLO L URZ RQFH XBf KDV EHHQ FRPSXWHG ,I WKH UHODWLRQ XAf PD[ ^ M 8M M L Q` B f LV VDWLVILHG WKHQ VHW X LL f RWKHUZLVH VHW XL f PD[ ^_XA_ M L Q` f 7KHQ WKH UHVW RI WKH L WK URZ LV JLYHQ E\ XX f fM n fLL f M L Q f

PAGE 74

7KH LWK GLDJRQDO RI WKH PDWUL[ 'N LV JLYHQ E\ X f ,W FDQ EH VKRZQ >@ LQ D VWUDLJKWIRUZDUG PDQQHU WKDW WKH ERXQGV f DQG f DSSO\ WR WKLV SURFHGXUH 3URSRVHG 0RGLILFDWLRQ WR 0XUUD\nV 3URFHGXUH 7KH PRGLILFDWLRQ WR 0XUUD\nV SURFHGXUH LV PRWLYDWHG E\ D GHVLUH OF WKDW WKH QXPEHU RI QRQ]HUR HOHPHQWV LQ EH DV IHZ DV SRVVLEOH WR LQ HIIHFW XVH DV PXFK RI WKH KHVVLDQ DV SRVVLEOH ,I VRPH IRUP RI GLDJRQDO SLYRWLQJ LV DGGHG WR 0XUUD\nV SURFHGXUH QRW RQO\ ZLOO WKH OF QXPEHU RI QRQ]HUR GLDJRQDOV RI WHQG WR EH VPDOO EXW QXPHULFDO VWDELOLW\ PD\ DOVR EH JDLQHG 7KHUHIRUH LW LV SURSRVHG WKDW DW HDFK VWDJH RI WKH IDFWRUL]DWLRQ SURFHGXUH WKH VWURQJHVW GLDJRQDO LV VHOHFWHG ZKHUH WKH VWURQJHVW GLDJRQDO LV GHILQHG DV WKH GLDJRQDO ZKLFK JHQHUDWHV WKH VPDOOHVW LQ DEVROXWH YDOXH PD[LPXP RIIGLDJRQDO HOHPHQW LQ LWV URZ (IILFLHQW LPSOHPHQWDWLRQ RI WKLV PRGLILFDWLRQ LV GHVFULEHG QH[W N )LUVW UHFRJQL]H WKDW WKH &KROHVN\ IDFWRUL]DWLRQ RI ) ZLWK b GLDJRQDO SLYRWLQJ PD\ EH GHVFULEHG DV WKH FRPSXWDWLRQ RI WKH XSSHU WULDQJXODU PDWUL[ 8 VXFK WKDW f ZKHUH 3 LV D SHUPXWDWLRQ PDWUL[ ZLWK FROXPQV HTXDO WR D SHUPXWDWLRQ

PAGE 75

RI WKH FROXPQV RI WKH XQLW GLDJRQDO PDWUL[ 7KH SURFHGXUH EHJLQV E\ LQLWLDOL]LQJ WKH HOHPHQWV RI 8 DV IROORZV XLf >I[Nf/ L ;9 9 f Q M M Lf f f f f Q f 7KH HOHPHQWV RI 8 DUH WKHQ PRGLILHG LWHUDWLYHO\ 7R GHVFULEH WKH L VWDJH RI WKH SURFHGXUH ZH EHJLQ E\ GHILQLQJ WKH VHW WK U LOf LOf PD[ ^ 8MN fff! N OM 8NM M NO Q` N L Q` f ZKLFK FRQWDLQV WKH PD[LPXP DEVROXWH YDOXH RI WKH RIIGLDJRQDO HOHPHQWV LQ HDFK URZ QRW \HW SURFHVVHG 7KH QH[W GLDJRQDO WR EH VHOHFWHG IRU SLYRWLQJ LV EDVHG RQ WKH IROORZLQJ VHTXHQWLDO WHVWV f f f f ,I L Q WKH VHW ^HA` LV HPSW\ 6HOHFW WKH UHPDLQLQJ GLDJRQDO 2WKHUZLVH LI DQ\ HOHPHQW RI ^HA` ,V ]HUR VHOHFW WKH GLDJn RQDO FRUUHVSRQGLQJ WR WKH ILUVW VXFK ]HUR HOHPHQW 7KLV LV D URZ ZKHUH DOO RIIGLDJRQDO HOHPHQWV DUH ]HUR 2WKHUZLVH LI WKH VHW ^H ML' NN DLO! NN X< f e N L Q` LV QRW HPSW\ VHOHFW WKH GLDJRQDO FRUUHVSRQGLQJ WR LWV VPDOOHVW HOHPHQW WKH ILUVW RQH LI WLHV H[LVWf 2WKHUZLVH VHOHFW WKH GLDJRQDO FRUUHVSRQGLQJ WR WKH VPDOOHVW HOHPHQW RI WKH VHW ^HA` WKH ILUVW RQH LI WLHV H[LVWf 7KLV FKRLFH RFFXUV ZKHQ DOO UHPDLQLQJ GLDJRQDO HOHPHQWV DUH ]HUR 7KH DSSURSULDWH LQWHUFKDQJH RI URZV DQG FROXPQV LV GRQH QH[W LQ RUGHU

PAGE 76

WR EULQJ WKH VHOHFWHG GLDJRQDO LQWR WKH L URZ 7KLV LQWHUFKDQJH LV QRWHG LQ WKH SHUPXWDWLRQ PDWUL[ 3 RI f 1RZ GHILQH PD[ ^ XL' ;, f ,I OXLf PD[ ALLf LM M L Q` e f VHW OL L f RWKHUZLVH VHW f PD[ ^ IW M L ff Q` f WK N 7KH L GLDJRQDO RI WKH SHUPXWHG PDWUL[ LV JLYHQ E\ LLWm(m! f 7KH UHVW RI WKH URZ EHFRPHV fLf B Lf Lf X X X OL M Lf ffmM Q f 7KH UHVW RI WKH PDWUL[ LV XSGDWHG DV IROORZV

PAGE 77

NM Lf 8NM Lf Lf 8n X ON [M N L Q M N Q f WK 7KLV FRPSOHWHV WKH L VWDJH RI WKH SURFHGXUH 7KH SLYRWLQJ VWUDWHJ\ SURSRVHG LQVXUHV WKDW WKH UHPDLQLQJ PDWUL[ LV FKDQJHG E\ D VPDOO DPRXQW VLQFH WKH PD[LPXP DEVROXWH YDOXH RI WKH FKDQJH WR WKH UHn PDLQLQJ PDWUL[ LQ f ZDV PLQLPL]HG 2EVHUYH WKDW GRXEOH SUHn FLVLRQ LV UHFRPPHQGHG WR VWRUH WKH PDWUL[ 8 LQ WKH PRGLILHG SURFHGXUH VLQFH LQQHU SURGXFWV FDQ QR ORQJHU EH HIILFLHQWO\ DFFXPXODWHG >@ DV LW LV SRVVLEOH LQ WKH RULJLQDO PHWKRG ,OOXVWUDWLYH ([DPSOH I 7KH IROORZLQJ H[DPSOH LOOXVWUDWHV WKH HIIHFW RI SLYRWLQJ [ f IRU D WKUHHGLPHQVLRQDO SUREOHP EH JLYHQ E\ /HW I[Nf b n9 /HW DQG IRU WKLV PDWUL[ IURP f :LWKRXW SLYRWLQJ WKH PHWKRG SURSRVHG E\ 0XUUD\ \LHOGV JLYHQ E\ 'N GLDJ f DQG

PAGE 78

8 7KH SURSRVHG PRGLILFDWLRQ ZLWK D GLDJRQDO SLYRW RUGHU \LHOGV 'N GLDJ f n;M DQG 8 nE f &RPSXWDWLRQ RI +LJK2UGHU &RUUHFWLRQV $IWHU WKH IDFWRUL]DWLRQ f LV FRPSOHWHG WKH KLJKRUGHU FRUUHFWLRQV DUH FRPSXWHG DV IROORZV ,QVWHDG RI f ZH PD\ QRZ ZULWH >I[Nf 'N@ GN In[Nf n;M n;M n;M= 2M n;M f 'HILQH Y E\ b GN 37 Y f U?M 9 nE 7 ZKHUH 3 LV WKH WUDQVSRVH RI WKH SHUPXWDWLRQ XVHG LQ WKH IDFWRUL]D WLRQ SURFHGXUH 1RZ PXOWLSO\ f E\ 3 DQG XVH f WR REWDLQ n;M

PAGE 79

3 R >I0[Nf n;M n;M N 7 IU @ 3 Y 3 In [ f n;M b n;M n;M b n;M f )URP f DQG f WKH IDFWRUL]DWLRQ SURFHVV WUDQVIRUPV f LQWR 87 8 Y 3 In[Nf nE n;M n;M n;M n;M b f ZKLFK PD\ EH VROYHG E\ ILUVW VROYLQJ Z 3 In[Nf n8 n;M n;M f IRU Z E\ IRUZDUG VXEVWLWXWLRQ DQG WKHQ VROYLQJ 8 Y Z n;M n;M n;M f IRU Y E\ EDFN VXEVWLWXWLRQ 7KH VHFRQGRUGHU FRUUHFWLRQ LV WKHQ b REWDLQHG IURP f 6LPLODUO\ WKH DSSUR[LPDWLRQ WR WKH WKLUG RUGHU FRUUHFWLRQ JLYHQ LQ f QRZ EHFRPHV WKH VROXWLRQ RI >I[Nf A b 'N@ f;M +N A m I2XGff b n;M, f DQG WKH IRXUWKRUGHU FRUUHFWLRQ JLYHQ E\ f QRZ EHFRPHV &I[Nf 2} R} 'N@ -N A I b Nff f 7KHVH WZR V\VWHPV RI HTXDWLRQV KDYH WKH VDPH FRHIILFLHQW PDWUL[ DV

PAGE 80

f DQG WKHUHIRUH WKH VDPH IDFWRUL]DWLRQ DSSOLHV 7KH VROXWLRQV RI f DQG f DUH REWDLQHG VLPLODUO\ WR WKH SURFHGXUH RXWn OLQHG IRU VROYLQJ f &RQYHUJHQFH RI WKH 92 $OJRULWKP 7ZR FRQYHUJHQFH SURSHUWLHV RI WKH 92 DOJRULWKP DUH JLYHQ LQ WKLV VHFWLRQ )LUVW ZH HVWDEOLVK WKH FODVV RI IXQFWLRQV IRU ZKLFK WKH DOJRULWKP LV JOREDOO\ FRQYHUJHQW 6HFRQG LW ZLOO EH VKRZQ WKDW WKH 92 DOJRULWKP JHQHUDWHV D VHTXHQFH ZLWK D KLJK RUGHU RI FRQYHUJHQFH IRU PRVW IXQFWLRQV :KHQ DQ DOJRULWKP JHQHUDWHV VHTXHQFHV ZLWK D KLJK RUGHU RI FRQYHUJHQFH DQ DSSUR[LPDWLRQ WR D VROXWLRQ RI WKH PLQLn PL]DWLRQ SUREOHP f FDQ EH FRPSXWHG LQ D VPDOO QXPEHU RI LWHUDn WLRQV LI WKH LQLWLDO SRLQW LV FORVH WR WKH VROXWLRQ *OREDO &RQYHUJHQFH 7KH JOREDO FRQYHUJHQFH RI WKH 92 DOJRULWKP ZLOO EH HVWDEOLVKHG E\ XVLQJ WKH JHQHUDO DQDO\VLV RI DOJRULWKPV GHYHORSHG PDLQO\ E\ =DQJZLOO >@ $ EULHI UHYLHZ RI WKLV DQDO\VLV LV JLYHQ EHORZ 7KH QHZ DOJRULWKP LV WKHQ UHFDVW LQ D PDQQHU ZKLFK DOORZV WKH UHVXOWV RI WKLV DQDO\VLV WR EH XVHG $ PLQLPL]DWLRQ DOJRULWKP PD\ EH JHQHUDOO\ GHVFULEHG E\ D SRLQW WRVHW PDSSLQJ $ SRLQWWRVHW PDSSLQJ DVVLJQV WR HYHU\ SRLQW [ H (Q D VXEVHW RI (Q /HW $ EH D SRLQWWRVHW PDSSLQJ WKHQ $[f PD\ EH UHSUHVHQWHG E\ f

PAGE 81

ZKHUH WKH GHILQLWLRQ RI WKH HOHPHQWV A FRQVWLWXWHV SDUW RI WKH DOJR ULWKP 7KH VHTXHQFH RI SRLQWV ^[ ` JHQHUDWHG E\ WKH DOJRULWKP LV b JLYHQ E\ .N e $.Nf n9 EHJLQQLQJ IURP VRPH LQLWLDO SRLQW [ 7KH SRLQW VHOHFWHG IURP WKH I?W VHW $[ f DW HDFK LWHUDWLRQ LV DOVR SDUW RI WKH GHWDLOV RI WKH DOJR n;M ,F ULWKP ,W LV FOHDU WKDW WKH VHTXHQFH ^[ ` FDQQRW EH SUHGLFWHG VROHO\ IURP NQRZOHGJH RI WKH LQLWLDO SRLQW [A $V WKH VFDODU VHDUFK IRU WKH 92 DOJRULWKP GHPRQVWUDWHV VLPLODU DOJRULWKPV XVLQJ WKH VDPH WUDQVn IRUPDWLRQ IXQFWLRQV FRXOG LPSOHPHQW WKH VFDODU VHDUFK VRPHZKDW GLIIHUHQWO\ 7KLV GLIIHUHQFH PD\ EH HQRXJK WR JHQHUDWH GLIIHUHQW VHTXHQFHV EXW DV WKH *OREDO &RQYHUJHQFH 7KHRUHP ZLOO VKRZ WKH GLIIHUHQW VHTXHQFHV PD\ VWLOO FRQYHUJH 7KXV WKH SRLQWWRVHW PDSSLQJ FRQFHSW DLGV LQ DQDO\]LQJ FODVVHV RI DOJRULWKPV ZLWKRXW GHVFULELQJ LWV VWHSV LQ GHWDLO $Q LPSRUWDQW SURSHUW\ RI SRLQWWRVHW PDSSLQJV ZKLFK LV UHn TXLUHG ODWHU RQ LV WKDW WKH\ PD\ EH FORVHG $ SRLQWWRVHW PDSSLQJ $ LV VDLG WR EH FORVHG DW [ LI WKH DVVXPSWLRQV f [N [ A b Nf§ N $N f \ \ \ H $[ f b b r?M nY LPSO\

PAGE 82

f Y $[f $ b 7KH FORVHGQHVV SURSHUW\ LV D JHQHUDOL]DWLRQ RI FRQWLQXLW\ RI SRLQW WRSRLQW PDSSLQJV RU RUGLQDU\ IXQFWLRQV 7KH PDLQ UHVXOW GXH WR =DQJZLOO PD\ QRZ EH JLYHQ *OREDO &RQYHUJHQFH 7KHRUHP /HW WKH SRLQWWRVHW PDS $[f EH Rr DQ DOJRULWKP RQ (Q DQG VXSSRVH WKDW JLYHQ [A WKH VHTXHQFH ^[N` LV n;M n;M JHQHUDWHG VDWLVI\LQJ [N H $[Nf b A /HW 6L EH D VXEVHW RI (Q GHILQHG DV WKH VHW RI VROXWLRQ SRLQWV RI WKH PLQLPL]DWLRQ SUREOHP f DQG VXSSRVH f $OO SRLQWV [ DUH LQ D FRPSDFW VHW f 7KH IXQFWLRQ I[f LV FRQWLQXRXV DQG n;M Df LI [ W 6L WKHQ IAf I[f IRU DOO A H $[f Ef LI [ J 6L WKHQ HLWKHU WKH DOJRULWKP WHUPLQDWHV RU IRU DOO \ H $[f I\f I[f f 7KH PDS $ LV FORVHG DW SRLQWV RXWVLGH 6L 7KHQ HLWKHU WKH DOJRULWKP VWRSV DW D VROXWLRQ SRLQW LQ 6L RU WKH N OLPLW RI DQ\ FRQYHUJHQW VXEVHTXHQFH RI ^[ ` LV D VROXWLRQ SRLQW LQ 6L 7KH SURRI PD\ EH IRXQG LQ >@ &RQGLWLRQ RI WKH WKHRUHP LQn VXUHV WKH H[LVWHQFH RI D FRQYHUJHQW VXEVHTXHQFH ,WV YLRODWLRQ QRUPDOO\ LQGLFDWHV WKDW WKH PLQLPL]DWLRQ SUREOHP KDV QR ILQLWH

PAGE 83

VROXWLRQ DQG WKXV WKLV FRQGLWLRQ LV QRW YHU\ UHVWULFWLYH &RQGLWLRQ LV QRUPDOO\ VDWLVILHG E\ D VXLWDEOH WUDQVIRUPDWLRQ IXQFWLRQ DQG D VFDODU VHDUFK XVLQJ WKH WHUPLQRORJ\ RI WKH 92 DOJRULWKP &RQGLWLRQ RI WKH DOJRULWKP LV XVXDOO\ WKH PRVW FKDOOHQJLQJ )RU WKH QHZ DOJRn ULWKP WKH VDWLVIDFWLRQ RI WKLV FRQGLWLRQ LPSRVHV FRQWLQXLW\ UHTXLUHn PHQWV RQ WKH IXQFWLRQ DQG LWV ILUVW WZR GHULYDWLYHV DV ZHOO DV WKH DGGLWLRQDO FRQGLWLRQ RI SVHXGRFRQYH[LW\ 7KH 92 DOJRULWKP ZLOO EH GHVFULEHG DV D SRLQWWRVHW FRPSRVLWLRQ PDSSLQJ JLYHQ E\ $[f 6 0 [ff nX U U n[ ZKHUH LV D SRLQWWRSRLQW PDS DQG LV D SRLQWWRVHW PDS 7KH IROORZLQJ OHPPD >@ HVWDEOLVKHV WKH FRQGLWLRQV RQ HDFK PDSSLQJ WR \LHOG D FORVHG FRPSRVLWLRQ /HPPD /HW 0(Q ‘ (r1 EH D SRLQWWRSRLQW PDS DQG 6(r1 r‘ H (Q` EH D SRLQWWRVHW PDS $VVXPH 0 LV FRQWLQXRXV DW [ DQG 6 LV FORVHG DW 0[f 7KHQ WKH SRLQWWRVHW PDS $[f 6 0[ff LV FORVHG DW [ 2 n;M n;M Y Q Wf§ f Q 7KH SRLQWWRSRLQW PDSSLQJ 0A( ‘ (A ZKLFK FKDUDFWHUL]HV WKH WUDQVIRUPDWLRQ SKDVH RI WKH 92 DOJRULWKP PD\ EH GHVFULEHG E\ 0 [f [ GUff U RU Df U n;M U?M U?M ZKHUH GUf GHQRWHV VHWV RI FRUUHFWLRQ WHUPV JLYHQ E\ n;M

PAGE 84

GUf R AA U Af r U A f } :f U f DQG WKH FRUUHFWLRQV Gf Gf DQG G DUH WKH VROXWLRQV RI R R >I[f '@ G If[f R R R >I[f '@ G In[ G f R} n;M R} R} R} I?M DQG >I[f '@ G If[ G Gff 2r 2} n;M ?er 2} 2} n;MEf Ff Gf Hf 1RWH WKDW WKH GLDJRQDO PDWUL[ KDV EHHQ LQFOXGHG DV GLVFXVVHG LQ R 6HFWLRQ f ,Q RUGHU WR PDNH XVH RI /HPPD ZH QHHG WR HVWDEn OLVK WKDW 0 LV FRQWLQXRXV U /HPPD ,I WKH JUDGLHQW DQG WKH KHVVLDQ RI I[f DUH FRQWLQX U?M RXV WKH PDSSLQJ 0 [f JLYHQ LQ f LV FRQWLQXRXV 7 n;M 7KH SURRI LV LPPHGLDWH VLQFH WKH GLDJRQDO PDWUL[ LV FRPSXWHG WR LQVXUH >I[f '@ LV QRQVLQJXODU DQG WKH GLDJRQDOV RI DUH FRQ n;M n;M rX b WLQXRXV IXQFWLRQV RI WKH HOHPHQWV RI WKH KHVVLDQ I[f DV FDQ EH UHDGLO\ VHHQ LQ f

PAGE 85

1RZ FRQVLGHU WKH SRLQWWRVHW PDSSLQJ 6 (AU r ^\ H (Q` U nY ZKLFK RSHUDWHV RQ 0A[f ZKLFK FKDUDFWHUL]HV WKH VFDODU VHDUFK SKDVH RI WKH 92 DOJRULWKP DQG PD\ EH FRQYHQLHQWO\ H[SUHVVHG DV IROORZV 6 [ GUff \ \ K Sf IRU S DQG IK Sff U 2L $M nYU bU I[f ` n9 U RU Df ZKHUH K Sf ‘ Unf ‘ [ fGS >G OfG@S U  +fGSGGfS>GG.OfG@S U Ef 2EVHUYH WKDW Ef FRQVLVWV RI WKH WKUHH WUDQVIRUPDWLRQ IXQFWLRQV GHULYHG LQ 6HFWLRQ 7KH IROORZLQJ OHPPD HVWDEOLVKHV WKH FRQGLWLRQV WKDW DUH VXIILFLHQW IRU 6 WR EH FORVHG U /HPPD ,I If[f A DQG I[f LV FRQWLQXRXV WKH PDSSLQJ 6 Y Y $L U JLYHQ LQ f LV FORVHG 3URRI 5HFDOO WKDW LQ RUGHU WR VKRZ WKDW 6 LV FORVHG WKH U FRQGLWLRQV f [? GNUff [ GUff N OF B Z ,F MN Y ? \ \ \H 6 [ G Uff 2M RM RM U f

PAGE 86

LPS O\ f \ H 6 [ GUff 2} / U[ A 6XSSRVH ILUVW WKDW U 7KHQ N N N L ‘ n SNIF 7KH DVVXPSWLRQ In[f A LPSOLHV WKDW Gf A IRU DOO N IURP 7KXV RQH PD\ ZULWH IURP f }N m+ n m,, f ZKLFK ZKHQ WDNLQJ OLPLWV \LHOGV S ,, 6 VOO n ,, L 7KLV HVWDEOLVKHV WKH H[LVWHQFH RI D OLPLW IRU WKH VHTXHQFH ^SA WKHQ IROORZV WKDW \ [ S Gf ,W UHPDLQV WR EH VKRZQ WKDW ?M 2 \ H 6 [ Gff )RU HDFK N S VDWLVILHV b U R} b= N I\Nf I[N GN SNf I[Nf 7KDW VXFK D SA H[LVWV IROORZV IURP WKH IDFW WKDW If[Nf7 KOf If[Nf7 G QL Q U? R R f Ff ` ,W f f

PAGE 87

DQG IURP /HPPD 7DNLQJ OLPLWV LQ f DQG XVLQJ WKH DVVXPSn WLRQ WKDW I[f LV FRQWLQXRXV \LHOGV b IW\f I[f f DQG KHQFH \ H 6f[ GBf 1RZ FRQVLGHU WKH JHQHUDOL]DWLRQ RI WKH SUH A = A U?M FHGLQJ SURRI WR DQ\ U )RU HDFK N RQH PD\ ZULWH O f 6U9 e 6UOSNf SN! H f Nf n ff XVLQJ WKH 0HDQ 9DOXH 7KHRUHP >@ 7KH DVVXPSWLRQ In[f LPSOLHV f?W n;M b WKDW I&N! ‘ eNUSNff INf f VLQFH In[Nf7 Knf D Y RU DQG /HPPD LPSOLHV WKH H[LVWHQFH RI D SA ZKLFK VDWLVILHV f )URP WKH 0HDQ 9DOXH 7KHRUHP DQG f I\NfILNKWSNfSNf I[Nf In[NeKWSNfSNf9WSNfSOF b IRU VRPH W H f 7KH DERYH H[SUHVVLRQ ZLWK f LPSO\ KnDSf RU N f;L

PAGE 88

LQ f 7KXV WDNLQJ OLPLWV LQ f HVWDEOLVKHV WKH H[LVWHQFH RI D S JLYHQ E\ S __ \ [ __ __ Kn WSf r;M n;M UEL7 7KXV IRU HDFK N I \Nf I [N Kn WS f S f I [Nf 0 b YU N N Y DQG DIWHU WDNLQJ OLPLWV DQG XVLQJ WKH FRQWLQXLW\ RI I[f ZH REWDLQ I\f I[f +HQFH A H 6A[ GUff 7KLV FRPSOHWHV WKH SURRI 7KH 92 DOJRULWKP PD\ QRZ EH JLYHQ DV WKH FRPSRVLWLRQ RI WKH WZR PDSSLQJV 0A[f JLYHQ LQ f DQG 6AL[ GUff JLYHQ LQ f WR EH $[f 6 0 [ff D U U D f %\ /HPPDV DQG WKH 92 DOJRULWKP LV FORVHG DW [ LI ERWK n9 In [f  DQG LI I[f KDV FRQWLQXRXV ILUVW DQG VHFRQG GHULYDWLYHV n;M n;M 2} 7KLV LPSOLHV WKDW XVLQJ WKH *OREDO &RQYHUJHQFH 7KHRUHP LI f $OO [N H $[Nf DUH LQ D FRPSDFW VHW D n9 f 7KH JUDGLHQW If[f A H[FHSW DW D VROXWLRQ RI WKH A b Y

PAGE 89

PLQLPL]DWLRQ SUREOHP f f 7KH IXQFWLRQ I[f LV FRQWLQXRXVO\ WZLFH GLIIHUHQWLDEOH WKHQ WKH 92 DOJRULWKP JHQHUDWHV D VHTXHQFH ZKLFK FRQYHUJHV WR D VROXWLRQ RU LW VWRSV DW D VROXWLRQ 7KH FRQGLWLRQV DQG PD\ QRW EH GLIILFXOW WR DFKLHYH LQ SUDFWLFH +RZHYHU FRQGLWLRQ LPSOLHV WKDW WKH DOJRULWKP LV QRW FORVHG DW D ORFDO PD[LPXP RU DW D VDGGOH SRLQW RI I[f VLQFH In[f LV ]HUR DW WKHVH SRLQWV 7KXV WKHRUHWL r?M n;M n;L FDOO\ I[f PXVW QRW KDYH DQ\ VXFK SRLQWV D IXQFWLRQ QRW KDYLQJ nE WKHVH SRLQWV LV GHILQHG WR EH SVHXGRFRQYH[ >@ ,Q SUDFWLFH WKH DOJRULWKP VKRXOG JHQHUDWH FRQYHUJHQW VHTXHQFHV LI WKH IXQFWLRQ LV SVHXGRFRQYH[ LQ WKH UHJLRQ LQFOXGLQJ WKH GHVLUHG VROXWLRQ DQG WKH LQLWLDO SRLQW +RZHYHU H[SHULPHQWDO HYLGHQFH RQ RQH WHVWHG SUREOHP LQGLFDWHV WKDW WKH DOJRULWKP LV VXSHULRU WR RWKHUV LQ DYRLGLQJ WKHVH WURXEOHVRPH SRLQWV HYHQ ZKHQ WKH\ H[LVW LQ WKH UHJLRQ RI LQn WHUHVW 7KH 92 DOJRULWKP PD\ EH WULYLDOO\ PRGLILHG WR SUHYHQW FRQYHUJHQFH WR D VWULFW ORFDO PD[LPXP ,I [ LV D ORFDO PD[LPXP WKH SUHVHQW N DOJRULWKP ZLOO IDLO LQ WKH VHQVH WKDW II[ f ZLOO FDXVH WKH r;! n;M n;L N DOJRULWKP WR VWRS $W WKLV SRLQW KRZHYHU I[ f ZLOO EH QHJDWLYH n;} n;M N VHPLGHILQLWH >@ ZKLFK LV LQGLFDWHG LQ WKH 92 DOJRULWKP E\  A nO LQ WKH PRGLILHG &KROHVN\ IDFWRUL]DWLRQ SUHVHQWHG LQ 6HFWLRQ +RZHYHU A PD\ DOVR RFFXU ZKHQ WKH KHVVLDQ LV SRVLWLYH VHPLGH nE nE F ILQLWH RU LQGHILQLWH 7KXV LV DQ LQGLFDWLRQ RI SRWHQWLDO n;M R} N SUREOHPV 7KXV LI A DW WKH SRLQW DW ZKLFK WKH DOJRULWKP VWRSV 2 nE FRRUGLQDWH VHDUFKHV PD\ EH XQGHUWDNHQ WR DVFHUWDLQ WKDW WKH H[SUHVn VLRQV

PAGE 90

I[A WHrf I[Af L } Q b I?M f§ DUH VDWLVILHG IRU VRPH VPDOO YDOXH RI W ,I [ LV D VWULFW ORFDO PD[LPXP WKH DERYH SURFHGXUH VKRXOG LQGLFDWH VR DQG [ PD\ WKHQ EH b SHUWXUEHG WR VWDUW WKH DOJRULWKP DJDLQ N 7KH SUHYLRXV PRGLILFDWLRQ PD\ QRW ZRUN LI [ LV D VDGGOH SRLQW DV WKH H[DPSOH LQ 6HFWLRQ VKRZV ,W PXVW EH QRWHG KRZHYHU WKDW QXPHULFDO H[SHULPHQWV ZLOO EH JLYHQ LQ WKH QH[W FKDSWHU ZKLFK VKRZ WKDW WKH 92 DOJRULWKP DSSHDUV WR EH KLJKO\ HIIHFWLYH LQ DYRLGLQJ FRQn YHUJHQFH WR VDGGOH SRLQWV )RU RQH WHVWHG SUREOHP ZLWK D VDGGOH SRLQW WKUHH H[LVWLQJ DOJRULWKPV FRQYHUJHG WR WKH VDGGOH SRLQW ZKHQ WKH LQLWLDO JXHVV ZDV FORVH WR WKH VDGGOH SRLQW ZKLOH WKH 92 DOJRn ULWKP FRQYHUJHG WR WKH FRUUHFW VROXWLRQ IURP WKH VDPH LQLWLDO SRLQW 2UGHU RI &RQYHUJHQFH 7KH RUGHU RI FRQYHUJHQFH RI WKH 92 DOJRULWKP FDQ EH HVWDEOLVKHG IURP SXEOLVKHG UHVXOWV GDWLQJ EDFN WR 6FKURGHU LQ ZKR ZDV WKH ILUVW WR GHILQH WKH FRQFHSW RI RUGHU RI FRQYHUJHQFH >@ +RZHYHU LQ WKLV VHFWLRQ WKH PRUH PRGHUQ UHVXOWV GXH WR 2UWHJD DQG 5KHLQEROGW >@ DQG 7UDXE >@ ZLOO EH XVHG 7ZR UHVXOWV DUH JLYHQ RQH DSSOLHV WR WKH FRQYHUJHQFH RI WKH DOJRULWKP WR ORFDO PLQLPD ZLWK SRVLWLYH GHILQLWH KHVVLDQ DQG WKH RWKHU WR ORFDO PLQLPD ZLWK SRVLWLYH VHPL GHILQLWH KHVVLDQ %HIRUH ZH FDQ XVH WKH H[LVWLQJ UHVXOWV LW PXVW EH QRWHG WKDW WKH 92 DOJRULWKP EHFRPHV WKH PVWHS PHWKRG

PAGE 91

b N [ N LO [ n9 I[NfB 2} 2L en;NOLB n9 R} f } L P! N NP [ [ b 9 f ZKHQ [ LV LQ VRPH QHLJKERUKRRG RI D ORFDO PLQLPXP ZLWK D SRVLWLYH GHILQLWH KHVVLDQ HJ WKH VFDODU SDUDPHWHU S LV RQHf 7KLV PHWKRG ZDV SURSRVHG DQG VWXGLHG E\ 7UDXE >@ ,W KDV DOVR EHHQ XVHG E\ PDQ\ UHVHDUFKHUV DV LW FDQ EH WKRXJKW RI DV 1HZWRQnV PHWKRG IRU VROYLQJ D V\VWHP RI HTXDWLRQV ZLWKRXW XSGDWLQJ WKH FRHIILFLHQW PDWUL[ DW HYHU\ LWHUDWLRQ 7KH IROORZLQJ WKHRUHP HVWDEOLVKHV WKDW WKH PHWKRG FRQn YHUJHV ZLWK RUGHU P 7KHRUHP /HW I[f KDYH FRQWLQXRXV JUDGLHQWV DQG KHVVLDQV DQG __ I[f I[ f F [ f§ [ __ Frr $ $ r B IRU DOO [ LQ D QHLJKERUKRRG RI [ $VVXPLQJ In[ f DQG I[ f H[LVWV WKH RUGHU RI FRQYHUJHQFH RI f LV P 7KH SURRI PD\ EH IRXQG LQ 2UWHJD DQG 5KHLQEROGW >@ DQG 7UDXE >@ 7KXV WKH 92 DOJRULWKP FRQYHUJHV ZLWK RUGHU U ZKHUH U LV WKH ‘N WUDQVIRUPDWLRQ IXQFWLRQ RUGHU ZKHQHYHU I[ f LV SRVLWLYH GHILQLWH 9 n9 $ $ B ,I I[ f LV SRVLWLYH VHPLGHILQLWH I[ f GRHV QRW H[LVW b b n;L UX DQG WKHUHIRUH WKH SUHFHGLQJ WKHRUHP GRHV QRW DSSO\ ,Q WKLV FDVH WKH FRQYHUJHQFH LV LQ JHQHUDO OLQHDU RUGHU HTXDO WR RQHf DV WKH IROORZLQJ DUJXPHQW VKRZV ,Q WKLV FDVH WKH DOJRULWKP PD\ EH GHVn FULEHG E\ WKH LWHUDWLRQ

PAGE 92

N N N [ *[ f [ I9 n;M n;M n;M S >I[Nf 'N@ >FIn[Nf JS [Nf@ Nn;nE n;M b n;M nE 2 f ZKHUH F D FRQVWDQW DQG WKH IXQFWLRQ A GHSHQG RQ WKH WUDQVIRUPDWLRQ IXQFWLRQ RUGHU VHOHFWHG DQG ZKHUH WKH GLDJRQDO PDWUL[ LV QRW ]HUR N r DW [ [ 7KH LWHUDWLRQ IXQFWLRQ LV WKXV JLYHQ E\ *[f [ S>I[f '@ >FIf[f JS [f@ n;M n;M n;M n;M n;M n;M n;M n;M n;M n;M 7KH GHULYDWLYH RI WKH LWHUDWLRQ IXQFWLRQ HYDOXDWHG DW [ [ LV JLYHQ E\ r *n[ f S>I[ f @ >FI[ f JnS [ f@ A n;M n;M n;M n;M n;M ;L; U?M 7KLV PDWUL[ ZLOO QRW EH ]HUR IRU DQ\ YDOXH RI S LQ JHQHUDO VLQFH r LV QRW ]HUR 7KXV FRQYHUJHQFH FDQQRW EH KLJKHU WKDQ OLQHDU DV n;M ORQJ DV *n[ f A >@ ,W VKRXOG EH QRWHG WKDW ZKLOH FRQYHUJHQFH b 2L 2M r LV LQ JHQHUDO OLQHDU ZKHQHYHU I[ f LV SRVLWLYH VHPLGHILQLWH ORFDO n;M n;M PLQLPD KDYLQJ WKLV SURSHUW\ PD\ EH SLFWXUHVTXHO\ GHVFULEHG DV EHLQJ IODW 7KLV LPSOLHV WKDW IRU DOO [ LQ D IDLUO\ ODUJH QHLJKERUKRRG RI n;M N __ L [ I [f LV YHU\ VPDOO 7KXV IRU SUDFWLFDO UHDVRQV LW LV QRU n;M n;M n;M PDOO\ XQQHFHVVDU\ WR FRPSXWH WKH ORFDO PLQLPXP ZLWK JUHDW DFFXUDF\ IRU WKHVH FDVHV 7ZR RI WKH SUREOHPV VHOHFWHG WR WHVW WKH 92 DOJRn ULWKP KDYH WKHLU ORFDO PLQLPXP ZLWK D SRVLWLYH VHPLGHILQLWH KHVVLDQ 7KH QHZ DOJRULWKP ZDV PRUH HIILFLHQW LQ FRPSXWLQJ DQ DSSUR[LPDWLRQ WR WKHLU ORFDO PLQLPXP WKDQ VHYHUDO SXEOLVKHG DOJRULWKPV

PAGE 93

‘ 6XPPDU\ 7KH PDMRU FRQWULEXWLRQ RI WKLV FKDSWHU LV WKH GHULYDWLRQ RI D QHZ DOJRULWKP IRU ILQGLQJ D ORFDO PLQLPXP RI DQ XQFRQVWUDLQHG QRQn OLQHDU IXQFWLRQ 7KH QHZ DOJRULWKP FDOOHG WKH 9DULDEOH2UGHU 92f DOJRULWKP KDV WZR SURSHUWLHV WKDW QR H[LVWLQJ PLQLPL]DWLRQ DOJRULWKP KDV 7KH ILUVW QHZ SURSHUW\ LV WKH RUGHU RI FRQYHUJHQFH :KLOH DOO H[LVWLQJ DOJRULWKPV FRQYHUJH ZLWK RUGHU OHVV WKDQ RU HTXDO WR WZR WKH QHZ DOJRULWKP FRQYHUJHV ZLWK YDULDEOH RUGHU DV KLJK DV IRXU 7KH VHFRQG QHZ SURSHUW\ LV WKH VFDODU VHDUFK VWHS RI WKH DOJRULWKP ,Q FRQWUDVW ZLWK SUHYLRXV DOJRULWKPV WKDW KDYH VFDODU VHDUFKHV DORQJ D VWUDLJKW OLQH LQ WKH VSDFH RI WKH LQGHSHQGHQW YDULDEOHV WKH 92 DOJRn ULWKP PD\ KDYH VFDODU VHDUFKHV DORQJ FXUYHG WUDMHFWRULHV 7KH 92 DOJRULWKP ZDV VKRZQ WR EH JOREDOO\ FRQYHUJHQW IRU SVHXGRFRQYH[ IXQFn WLRQV ZLWK FRQWLQXRXV ILUVW DQG VHFRQG GHULYDWLYHV 7KH RUGHU RI FRQYHUJHQFH ZDV DOVR HVWDEOLVKHG WR EH IURP WZR WR IRXU IRU IXQFWLRQV ZLWK D SRVLWLYH GHILQLWH KHVVLDQ DW WKH ORFDO PLQLPXP EHLQJ FRPSXWHG ,I WKH KHVVLDQ LV SRVLWLYH VHPLGHILQLWH DW WKH ORFDO PLQLPXP EHLQJ FRPSXWHG WKH FRQYHUJHQFH ZDV VKRZQ WR EH OLQHDU

PAGE 94

&+$37(5 ,03/(0(17$7,21 2) 7+( 9$5,$%/(25'(5 $/*25,7+0 ,Q WKLV FKDSWHU ZH FRQVLGHU WKH SUDFWLFDO DVSHFWV RI WKH LPSOHn PHQWDWLRQ RI WKH 9DULDEOH2UGHU 92f DOJRULWKP WR QRQOLQHDU FLUFXLW RSWLPL]DWLRQ SUREOHPV 7KHVH SUDFWLFDO FRQVLGHUDWLRQV OHDG WR JXLGHn OLQHV DQG WR VRPH PRGLILFDWLRQV RI WKH DOJRULWKP LQ RUGHU WR VROYH WKH JHQHUDO QRQOLQHDU SURJUDPPLQJ SUREOHP JLYHQ E\ PLQLPL]H I[f Df [ A D VXEMHFW WR D VHW RI QRQOLQHDU LQHTXDOLW\ FRQVWUDLQWV T[f Ef nY L f§ D DQG D VHW RI ER[ FRQVWUDLQWV JLYHQ E\ [/ [ [+ Ff A 2EVHUYH WKDW DQ\ HTXDOLW\ FRQVWUDLQW PD\ EH LQFOXGHG LQ Ef DV WZR LQHTXDOLW\ FRQVWUDLQWV >@ ,Q WKH ILUVW VHFWLRQ JXLGHOLQHV DUH JLYHQ IRU KDQGOLQJ WKH QRQn OLQHDU LQHTXDOLWLHV E\ WKH XVH RI SHQDOW\ IXQFWLRQV ,Q FLUFXLW

PAGE 95

RSWLPL]DWLRQ WKH QRQOLQHDU LQHTXDOLWLHV DUH ORRVH LH WKH\ FDQ EH UHOD[HG WR VRPH GHJUHH 7KHUHIRUH WKH SHQDOW\ IXQFWLRQ DSSURDFK ZKLFK LQ HIIHFW UHOD[HV WKH FRQVWUDLQWV LV DQ LGHDO WHFKQLTXH IRU FLUFXLW RSWLPL]DWLRQ DSSOLFDWLRQV ,Q WKH VHFRQG VHFWLRQ LW LV VKRZQ KRZ WKH 92 DOJRULWKP KDQGOHV WKH ER[ FRQVWUDLQWV 8QOLNH WKH QRQOLQHDU LQHTXDOLW\ FRQVWUDLQWV WKH ER[ FRQVWUDLQWV PXVW EH VDWLVILHG 7KH 92 DOJRULWKP DV GHVFULEHG LQ WKH ODVW FKDSWHU UHTXLUHV WKDW D VXEURXWLQH EH ZULWWHQ ZKLFK VXSSOLHV WKH YDOXH RI WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ DW HDFK SRLQW JHQHUDWHG E\ WKH DOJRULWKP :KLOH ZULWLQJ VXFK D VXEURXWLQH PD\ QRW EH GLIILFXOW IRU VRPH SUREOHPV WKH 92 DOJRULWKP ZRXOG EH PRUH XVHIXO LI WKH KHVVLDQ FDQ EH DSSUR[Ln PDWHG ZKHQ LW LV GLIILFXOW WR ZULWH D VXEURXWLQH ZKLFK VXSSOLHV WKH KHVVLDQ YDOXHV 6RPHWLPHV LW PD\ EH MXVW DV GLIILFXOW WR VXSSO\ HYHQ WKH JUDGLHQW DQG WKXV LQ WKLV FDVH ERWK WKH JUDGLHQW DQG WKH KHVVLDQ PXVW EH DSSUR[LPDWHG ,Q WKH WKLUG VHFWLRQ ZH FRQVLGHU DSSUR[LPDWLRQV WR WKH KHVVLDQ DQG WKH JUDGLHQW ZKHQ WKHVH YDOXHV DUH QRW VXSSOLHG 7KH IRXUWK VHFWLRQ FRQVLGHUV WKH FDVH ZKHQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV VXSSOLHG WR WKH 92 DOJRULWKP FRQWDLQ HUURUV ,Q QRQn OLQHDU FLUFXLW RSWLPL]DWLRQ DSSOLFDWLRQV WKH VXEURXWLQH WKDW VXSSOLHV WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV PD\ EH DFWXDOO\ D FRPSOH[ FRPSXWHU SURJUDP ZKLFK LQFOXGHV WKH VROXWLRQ RI D V\VWHP RI QRQOLQHDU DOJHEUDLF DQG GLIIHUHQWLDO HTXDWLRQV 7KH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV GHSHQG RQ WKH VROXWLRQV WR WKHVH HTXDWLRQV WKXV GXH WR WKH QXPHULFDO WHFKQLTXHV XVHG HUURUV PD\ EH SUHVHQW LQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV 1XPHULFDO H[SHULPHQWV ZLOO VKRZ WKDW LI DQ\ HUURUV SUHVHQW LQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV VXSSOLHG WR WKH 92 DOJRULWKP FDQ

PAGE 96

EH HVWLPDWHG DQG NHSW VPDOO WKH DOJRULWKP FDQ VWLOO EH HIIHFWLYHO\ HPSOR\HG 7KH ILIWK VHFWLRQ GHWDLOV WKH VWHSV LQ D )2575$1 ,9 LPSOHPHQWDWLRQ RI WKH 92 DOJRULWKP )LQDOO\ WKH VL[WK VHFWLRQ SUHVHQWV VHYHUDO QXPHUn LFDO H[SHULPHQWV DQG FRPSDULVRQV ZLWK RWKHU DOJRULWKPV 1RQOLQHDU ,QHTXDOLW\ &RQVWUDLQWV 7KLV VHFWLRQ JLYHV JXLGHOLQHV WR EH XVHG LQ VROYLQJ WKH SUREOHP JLYHQ E\ PLQLPL]H I[f Df Q [ !?M VXEMHFW WR T[f Ef L D f§ D ZKHUH T[f LV D YHFWRU IXQFWLRQ RI LQHTXDOLW\ FRQVWUDLQWV ,W LV Y b DVVXPHG WKDW DOO WKH FRQVWUDLQWV DUH QRQOLQHDU 7KH PHWKRG UHFRPPHQGHG IRU ILQGLQJ D VROXWLRQ RI f LV WR FRQn YHUW WKH FRQVWUDLQHG SUREOHP WR DQ XQFRQVWUDLQHG RQH E\ XVLQJ D SHQDOW\ IXQFWLRQ PHWKRG >@ 7KDW LV GHILQH WKH SUREOHP PLQLPL]H I[f I[f S4[f f Y nY Q [ n;M ZKHUH 4[f LV D SHQDOW\ IXQFWLRQ IRU WKH LQHTXDOLW\ FRQVWUDLQWV WKH SHQDOW\ IXQFWLRQ LV GHILQHG VXFK WKDW LW LV ]HUR ZKHQHYHU WKH SRLQW [ r$\ VDWLVILHV DOO WKH FRQVWUDLQWV DQG JUHDWHU WKDQ ]HUR ZKHQHYHU WKH SRLQW [ GRHV QRW VDWLVI\ DQ\ RI WKH FRQVWUDLQWV 7KH FRQVWDQW MM LV D SRVLWLYH

PAGE 97

VFDODU )RU ODUJH \ WKH PLQLPXP RI f ZLOO WHQG WR EH LQ D UHJLRQ ZKHUH WKH FRQVWUDLQWV VKRXOG EH DOPRVW VDWLVILHG 7KXV IRU LQFUHDVLQJ \ WKH FRUUHVSRQGLQJ VROXWLRQ SRLQWV RI f DSSURDFK D VROXWLRQ RI f >@ 7KHUHIRUH WKH SHQDOW\ PHWKRG FRQYHUWV WKH FRQVWUDLQHG SUREOHP f LQWR DQ DSSUR[LPDWHO\ HTXLYDOHQW XQFRQVWUDLQHG SUREOHP RU SHUKDSV WR D VHTXHQFH RI XQFRQVWUDLQHG SUREOHPV GHSHQGLQJ RQ KRZ VWULFWO\ WKH FRQVWUDLQWV DUH WR EH VDWLVILHG 7KLV LPSOLHV WKDW XQFRQn VWUDLQHG PLQLPL]DWLRQ DOJRULWKPV LQ SDUWLFXODU WKH 92 DOJRULWKP PD\ EH XVHG WR DSSUR[LPDWH WKH VROXWLRQ RI f 7ZR GLIILFXOWLHV DUH LQKHUHQW LQ FRQYHUWLQJ SUREOHP f WR SUREOHP f DQG LQ HYHQWXDOO\ VROYLQJ SUREOHP f )LUVW WR LQVXUH WKH JOREDO FRQYHUJHQFH RI WKH 92 DOJRULWKP I[f PXVW EH WZLFH FRQWLQXRXVO\ GLIIHUHQWLDEOH 7KHUHIRUH LW DSSHDUV WKDW SHQDOW\ IXQFn WLRQV PXVW EH FKRVHQ DFFRUGLQJO\ 6HFRQG SUREOHP f LV YHU\ LOO FRQGLWLRQHG IRU ODUJH YDOXHV RI WKH FRQVWDQW S >@ 7KHVH FRQVLGHUDn WLRQV ZLOO EH H[SORUHG LQ PRUH GHWDLO QH[W $ VXLWDEOH SHQDOW\ IXQFWLRQ 4[f LV JLYHQ E\ 2L Q 4[f O Z PD[> T [f@f f A L O TL A ZKHUH QA LV WKH QXPEHU RI LQHTXDOLW\ FRQVWUDLQWV DQG WKH FRQVWDQWV Z PD\ EH XVHG WR HTXDOL]H WKH PDJQLWXGH RI WKH FRQVWUDLQWV 7KH TL FRQWLQXLW\ FRQGLWLRQV RQ I[f DUH VDWLVILHG E\ f LI WKH LQHTXDOLW\ nY FRQVWUDLQWV T[f L Q DOVR VDWLVI\ WKHP ,Q WKH OLWHUD O D T WXUH WKH PRVW SRSXODU SHQDOW\ IXQFWLRQ IRU LQHTXDOLW\ FRQVWUDLQWV LV JLYHQ E\

PAGE 98

QA 4[f M Z PD[> r L O TL T @fn A f 7KLV TXDGUDWLF SHQDOW\ IXQFWLRQ KDV D KHVVLDQ ZKLFK LV GLVFRQWLQXRXV ZKHQHYHU DQ LQHTXDOLW\ FRQVWUDLQW LV ]HUR >@ +RZHYHU LW ZDV IRXQG H[SHULPHQWDOO\ WKDW IRU VHYHUDO SUREOHPV WHVWHG WKLV TXDGUDWLF SHQDOW\ IXQFWLRQ SURGXFHV DQ XQFRQVWUDLQHG SUREOHP ZKLFK LV VROYHG E\ WKH 92 DOJRULWKP PRUH HIILFLHQWO\ HVSHFLDOO\ ZKHQ WKH KHVVLDQ LV QRW VXSSOLHG DQG WKXV DSSUR[LPDWHG E\ GLIIHUHQFHV WKDQ E\ XVLQJ WKH FXELF SHQDOW\ IXQFWLRQ f 1RWH WKDW WKH 92 DOJRULWKP LV QRW JXDUDQWHHG WR EH JOREDOO\ FRQYHUJHQW IRU WKH TXDGUDWLF SHQDOW\ IXQFWLRQ f EHFDXVH RI LWV GLVFRQWLQXRXV KHVVLDQ 7KH 92 DOJRULWKP DV RWKHU H[LVWLQJ DOJRULWKPV >@ VROYHV SUREn OHP f IRU ODUJH \ ZLWK JUHDW GLIILFXOW\ DV H[DPSOHV ZLOO VKRZ ,W ZDV IRXQG WKDW WKH EHVW DSSURDFK ZDV WR FRPSXWH URXJK DSSUR[LPDWLRQV WR WKH VROXWLRQ RI D VHTXHQFH RI SUREOHPV JLYHQ E\ f IRU LQFUHDVn LQJ YDOXHV RI \ DQG WLJKWHQLQJ WKH GHVLUHG DFFXUDF\ RI WKH VROXWLRQ IRU WKH ODVW \ XVHG 7KXV LW LV UHFRPPHQGHG WKDW LQLWLDOO\ D VPDOO YDOXH RI \ EH XVHG ZKHQ XVLQJ WKH 92 DOJRULWKP IRU VROYLQJ SUREOHPV VXFK DV f %R[ &RQVWUDLQWV :KHQ WKH PLQLPL]DWLRQ SUREOHP KDV ER[ FRQVWUDLQWV RI WKH IRUP / + ; ; ; ,? f§ ?L f§ 2M f WKH SHQDOW\ IXQFWLRQ PHWKRG MXVW GHVFULEHG FDQ EH XVHG LI f LV

PAGE 99

UHDUUDQJHG LQWR Q LQHTXDOLW\ FRQVWUDLQWV +RZHYHU WKHUH DUH WZR UHDVRQV WKDW FRPSHO WKH XVH RI D GLIIHUHQW WHFKQLTXH IRU KDQGOLQJ WKH ER[ FRQVWUDLQWV )LUVW WKH SHQDOW\ IXQFWLRQ PHWKRG DOORZV WKH YLRODn WLRQ RI FRQVWUDLQWV SDUWLFXODUO\ ZKHQ WKH PXOWLSO\LQJ FRQVWDQW S LV VPDOO ,Q FLUFXLW RSWLPL]DWLRQ SURFHGXUHV WKH FLUFXLW HTXDWLRQV PD\ QRW KDYH DQ\ VROXWLRQ LI DQ\ RI WKH ER[ FRQVWUDLQWV DUH YLRODWHG DQG WKHUHIRUH WKH DOJRULWKP PD\ IDLO LI D ER[ FRQVWUDLQW LV YLRODWHG 6HFRQG WKH ER[ FRQVWUDLQWV DUH OLQHDU FRQVWUDLQWV DQG WKHLU HIIHFW FDQ EH YHU\ HIILFLHQWO\ KDQGOHG LQ D GLUHFW PDQQHU ZLWK VRPH PRGLILFDn WLRQV WR WKH 92 DOJRULWKP 7KH PHWKRG SURSRVHG IRU KDQGOLQJ WKH FRQVWUDLQWV LV WR LQ HIIHFW SURMHFW WKH WUDQVIRUPDWLRQ IXQFWLRQ WUDMHFWRULHV RQWR WKH DFWLYH ER[ FRQVWUDLQWV ZKHQHYHU WKH WUDMHFWRULHV DUH RXWVLGH RI WKH ER[ FRQVWUDLQWV )LJXUH LOOXVWUDWHV WKH SURSRVHG WHFKQLTXH 7KLV SURMHFWLRQ FDQ EH YHU\ HIILFLHQWO\ LPSOHPHQWHG DV ZLOO EH VKRZQ $ PRGLILFDWLRQ UHTXLUHG LQ WKH LPSOHPHQWDWLRQ RI WKH SURMHFWLRQ RI WKH WUDQVIRUPDWLRQV LV WKDW ZKHQHYHU WKH WUDMHFWRU\ LV RQ D ERXQGDU\ DQ DFFXUDWH FRPSXWDWLRQ RI WKH VROXWLRQ RI WKH VFDODU PLQLPL]DWLRQ SUREOHP LQ WKH VFDODU VHDUFK VKRXOG EH GRQH 7KH UHDVRQ IRU WKLV PRGLn ILFDWLRQ LV WKDW ZKHQ WUDQVIRUPDWLRQ IXQFWLRQV DUH SURMHFWHG WKHLU WKHRUHWLFDO SURSHUWLHV PD\ EH GLIIHUHQW ZKHQ WKH VFDODU SDUDPHWHU S LQ WKH WUDQVIRUPDWLRQ IXQFWLRQV LV VHW WR RQH +HVVLDQ DQG *UDGLHQW $SSUR[LPDWLRQV 7R WKLV MXQFWXUH WKH 92 DOJRULWKP ZDV GHVFULEHG LQ D ZD\ WKDW UHTXLUHG VXSSO\LQJ WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ RI WKH IXQFWLRQ WR EH PLQLPL]HG DW WKH SRLQWV RI WKH VHTXHQFH [ ` JHQHUDWHG

PAGE 100

)LJXUH ,OOXVWUDWLRQ RI SURMHFWLRQ RI WUDMHFWRU\ RQWR ER[ FRQn VWUDLQWV %R[ FRQVWUDLQWV DUH GHSLFWHG E\ WKH UHFWDQJOH 7KH WUDMHFWRU\ LV VKRZQ E\ WKH GDVK FXUYH WR EH RXWVLGH RI WKH ER[ FRQVWUDLQWV RYHU WZR LQWHUYDOV 7KH DFWXDO WUDMHFWRU\ XVHG LV VKRZQ E\ WKH VROLG FXUYH ZLWK DUURZV

PAGE 101

E\ WKH DOJRULWKP ,Q WKLV VHFWLRQ DSSUR[LPDWLRQV WR WKH KHVVLDQ DQG WKH JUDGLHQW ZLOO EH SUHVHQWHG EHFDXVH WKHUH PD\ EH WLPHV ZKHQ VXSSO\n LQJ WKH JUDGLHQW DQGRU WKH KHVVLDQ LV LPSUDFWLFDO :H FRQVLGHU WZR FDVHV 7KH ILUVW FDVH LV ZKHQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV DUH VXSSOLHG DQG WKH VHFRQG FDVH LV ZKHQ RQO\ WKH IXQFWLRQ YDOXHV DUH VXSSOLHG )XQFWLRQ DQG *UDGLHQW 9DOXHV 6XSSOLHG :KHQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV DUH VXSSOLHG WKH KHVVLDQ QHHGV WR EH DSSUR[LPDWHG ,W ZDV LQLWLDOO\ IHOW WKDW D TXDVL 1HZWRQ VFKHPH >@ ZKLFK EXLOGV DQ HVWLPDWH RI WKH KHVVLDQ LQYHUVH E\ FRQMXJDWH GLUHFWLRQV ZRXOG EH DQ LGHDO DSSURDFK 7KHVH PHWKRGV KDYH SURYHQ WR EH YHU\ UHOLDEOH LQ PLQLPL]DWLRQ DOJRULWKPV >@ +RZHYHU WKH DSSUR[LPDWLRQ WR WKH KHVVLDQ LQYHUVH LV QRW VXIILFLHQWO\ DFFXUDWH ZLWK D TXDVL1HZWRQ PHWKRG XQWLO WKH LWHUDWHV DUH ZLWKLQ D YHU\ VPDOO QHLJKERUKRRG DERXW WKH VROXWLRQ )RU H[DPSOH LW ZDV IRXQG H[SHULPHQWDOO\ WKDW WKH XVH RI WKH DSSUR[LPDWLRQV WR WKH KHVVLDQ LQYHUVH L U WKH KLJKHURUGHU WUDQVIRUPDWLRQV ZKHQ IDU IURP WKH VROXWLRQ UHn VXOWHG LQ QR LPSURYHPHQW RYHU WKH DOJRULWKP RI )OHWFKHU DQG 3RZHOO >@ 6LQFH QXPHULFDO H[SHULPHQWV ZLWK WKH KHVVLDQ YDOXHV VXSSOLHG LQGLFDWHG WKDW WKH 92 DOJRULWKP ZDV PRUH HIILFLHQW WKDQ H[LVWLQJ DOJRULWKPV DSSUR[LPDWLQJ WKH KHVVLDQ E\ GLIIHUHQFH PHWKRGV DV GHVFULEHG QH[W ZDV XQGHUWDNHQ ZLWK JRRG UHVXOWV 2UWHJD DQG 5KHLQEROGW >@ SURYH WKDW DV ORQJ DV WKH KHVVLDQ LV FRQWLQXRXV QRQVLQJXODU DQG VDWLVILHV D /LSVFKLW] FRQGLWLRQ D GLIn IHUHQFH DSSUR[LPDWLRQ WR WKH KHVVLDQ ZLOO NHHS WKH KLJK RUGHU RI FRQYHUJHQFH IRU 1HZWRQnV LWHUDWLRQ LI WKH SHUWXUEDWLRQV XVHG LQ WKH

PAGE 102

GLIIHUHQFH DSSUR[LPDWLRQV DSSURDFK ]HUR LQ WKH OLPLW )RU H[DPSOH WKH DSSUR[LPDWLRQ WR WKH KHVVLDQ JLYHQ E\ 2L LIF OENf>In[N A X N EH-f If8Nf@ M Q f PDLQWDLQV WKH KLJK RUGHU RI FRQYHUJHQFH IRU 1HZWRQnV LWHUDWLRQ SURYLGHG WKDW WKH YHFWRU RI WKH SHUWXUEDWLRQV E M O Q VDWLVILHV __ EN __ F __ In[Nf __ IRU DOO N N U?M f§ r?M A f§ 8 f ZKHUH NA B! DQG F LV D FRQVWDQW LQ WKH UDQJH F B 7KH UHODWLRQ f LPSOLHV WKDW __ E __ VKRXOG EHFRPH VPDOO DV WKH VROXWLRQ [ LV DSSURDFKHG 0RUH GHWDLOV RQ WKH WHFKQLTXH IRU FRPSXWLQJ WKH SHUWXUn EDWLRQV ZLOO EH JLYHQ ODWHU N L :KLOH f LV DQ DSSUR[LPDWLRQ ZLWK HUURU DVVXPLQJ WKH WKLUG GHULYDWLYH RI I LV ERXQGHG >@ WKH GLDJRQDO HOHPHQWV RI WKH N KHVVLDQ PD\ EH DSSUR[LPDWHG ZLWK HUURU RQ WKH RUGHU RI EAf LI RQH DVVXPHV WKDW WKH IXQFWLRQ YDOXH LV HYDOXDWHG DW HDFK SRLQW WKDW WKH JUDGLHQW LV HYDOXDWHG ZKLFK LV WKH QRUPDO FDVH $IWHU ILWWLQJ D +HUPLWH FXELF SRO\QRPLDO >@ RQ E WKURXJK WKH IXQFWLRQ DQG WKH JUD GLHQW FRPSXWHG IRU E DQG E E RQH FDQ GLIIHUHQWLDWH WZLFH @ DQG HYDOXDWH DW E WR REWDLQ >I[Nf@ b >I[N ENHMf I[Nf@ENf a a -A A >In[N ENHMf@EN >In[Nf@EN Q ; -nY Q QM M f

PAGE 103

ZKLFK LV DQ DSSUR[LPDWLRQ ZLWK HUURU RQ WKH RUGHU RI Ef DVVXPLQJ WKDW WKH IRXUWK GHULYDWLYH RI I LV ERXQGHG >@ 6LQFH WKH KHVVLDQ LV V\PPHWULF IRU WKH IXQFWLRQV EHLQJ FRQVLGHUHG WKH RIIGLDJRQDO HOHPHQWV PD\ EH DSSUR[LPDWHG DV WKH DYHUDJH RI WKH WZR HOHPHQWV FRPSXWHG IURP f QRWH WKDW WKLV DYHUDJLQJ GRHV QRW UHTXLUH DQ\ DGGLWLRQDO JUDGLHQW HYDOXDWLRQVf 7KXV DOO RIIGLDJRQDO HOHPHQWV L e Mf RI WKH KHVVLDQ DUH DSSUR[LPDWHG E\ >I[Nf@ b >In [N ENH;f@ENf >If[N ENHMf@ ENf OM n9 R OnX M L D b -DL L b b >If[Nf@ENf D nE >In[Nf@ENf f A O 7R DSSUR[LPDWH WKH KHVVLDQ XVLQJ f DQG f UHTXLUHV Q DGGLWLRQDO IXQFWLRQ DQG JUDGLHQW HYDOXDWLRQV SHU LWHUDWLRQ ZKHWKHU ZH XVH WKH DERYH DYHUDJLQJ RU QRW (YHQ ZLWK WKHVH DGGLWLRQDO HYDOXDWLRQV ZH IRXQG DV ZLOO EH VHHQf WKH 92 DOJRULWKP WR EH YHU\ FRPSHWLWLYH ZLWK VHYHUDO RWKHU H[LVWLQJ DOJRULWKPV LQ WKH WRWDO QXPEHU RI IXQFWLRQ DQG JUDGLHQW HYDOXDWLRQV UHTXLUHG IRU VHYHUDO PLQLPL]DWLRQ SUREOHPV 7KH SHUWXUEDWLRQV EA XVHG LQ f DQG f KDYH WZR QRUPDOO\ FRQIOLFWLQJ UHTXLUHPHQWV )LUVW WKH\ PXVW EH VXIILFLHQWO\ VPDOO LQ RUGHU WR VDWLVI\ f DQG WR SURGXFH DFFXUDWH DSSUR[LPDWLRQV 6HFRQG WKH SHUWXUEDWLRQV PXVW EH VXIILFLHQWO\ ODUJH LQ RUGHU WR DYRLG URXQGn RII HUURUV LQ WKH GLIIHUHQFHV SUHVHQW LQ f DQG f 7KHUHIRUH WKH VLPSOH LPSOHPHQWDWLRQ VXJJHVWHG E\ f PD\ QRW EH DGHTXDWH )RU URXQGRII HUURU UHDVRQV LW LV SURSRVHG WKDW HDFK SHUWXUEDWLRQ E EH VXFK WKDW

PAGE 104

>If[N ENHMf@ >In[Nf@ H H _>In[Nf@_ f Q Q -nE A O7n9nOL2 A ZKHUH H DQG H DUH FRQVWDQWV ZKLFK VKRXOG UHIOHFW WKH HUURU D U LQ WKH HYDOXDWLRQ RI WKH JUDGLHQW WHUPV VXSSOLHG DQG WKH ZRUG OHQJWK f§V RI WKH FRPSXWHU ,I WKH HYDOXDWLRQ KDV LQVLJQLILFDQW HUURU H f§J M DQG JDYH JRRG UHVXOWV ZKHUH V HTXDOV WKH QXPEHU RI VLJQLIn LFDQ GLJLWV LQ WKH QXPEHUV RI WKH FRPSXWHU 7KH FDVH ZKHUH HUURUV DUH SUHVHQW LQ WKH VXSSOLHG IXQFWLRQ DQG JUDGLHQW YDOXHV ZLOO EH FRQn VLGHUHG LQ 6HFWLRQ ,W ZLOO QRZ EH VKRZQ WKDW f PD\ EH XVHG WR \LHOG D GHVLUDEOH SHUWXUEDWLRQ VL]H 7KH 0HDQ 9DOXH 7KHRUHP >@ \LHOGV WKH UHODWLRQVKLS >In[N ENHMf@ >In[Nf@ EN>I[N WENHMf@ f nE nE -nE 2 9 nE E -nE -IRU W H f 8VLQJ f DQG >I[N Af@ DV DQ DSSUR[LPDWLRQ WR E E ->I[N WENHAf@ LQ f \LHOGV Y Y -Q MM n%f >ED HU &8fLr @M O>UI EOMMO N }f f U N 7KLV H[SUHVVLRQ LV ZHOO GHILQHG LQ VRPH QHLJKERUKRRG RI D VWULFW ORFDO PLQLPXP VLQFH WKH JUDGLHQW WHUPV DUH VPDOO DQG WKH KHVVLDQ LV SRVLWLYH GHILQLWH )XUWKHUPRUH IRU VXIILFLHQWO\ VPDOO H f VDWLVILHV D N f +RZHYHU ZKHQ [ LV IDU IURP D VROXWLRQ % PD\ QRW H[LVW RU LW nX M PD\ EH YHU\ ODUJH $OVR D GLIIHUHQW H[SUHVVLRQ LV UHTXLUHG IRU N )RU WKHVH UHDVRQV D VLPLODU DUJXPHQW XVHG IRU f DQG f EXW WKLV WLPH IRU WKH IXQFWLRQ \LHOGV

PAGE 105

E N D >H H D U I[ f_@ Dr >In@ A A M f IRU D GHVLUHG GLIIHUHQFH _I[N ENHarf I[Nf 7M MR n9 b H H I[Nf D U b f &HUWDLQO\ f LV QRW GHILQHG ZKHQHYHU D JUDGLHQW WHUP LV ]HUR EXW LQ WKDW FDVH f PD\ EH GHILQHG ,I QHLWKHU f QRU f LV GHILQHG D WKLUG RSWLRQ LV JLYHQ E\ EN b %; H _[N_f f U M 7KH FRPSXWDWLRQ RI WKH SHUWXUEDWLRQ EB PD\ QRZ EH VXPPDUL]HG E\ WKH IROORZLQJ H[SUHVVLRQ U] PLQ^%; %)` D N N f ZKHUH H LV DGGHG LQ f WR LQVXUH D QRQ]HUR EN DQG %" %) DQG D ; %M DUH JLYHQ LQ f f DQG f UHVSHFWLYHO\ 2EVHUYH WKDW GXH WR WKH FRQGLWLRQ f RQH ZRXOG QRW H[SHFW WKH 92 DOJRULWKP HPn SOR\LQJ f LQ WKH DSSUR[LPDWLRQ RI WKH KHVVLDQ WR FRQYHUJH YHU\ UDSLGO\ RQFH __ If[Nf __ H +RZHYHU WKLV H[SHFWHG EHKDYLRU ZDV QRW QM FO LQ WRWDO DJUHHPHQW ZLWK WKH QXPHULFDO H[SHULPHQWV RQ VHYHUDO IXQFWLRQV WHVWHG ,Q IDFW WKH DFFXUDF\ RI WKH DSSUR[LPDWLRQ RI WKH KHVVLDQ ZDV

PAGE 106

VR XQLIRUPO\ H[FHOOHQW WKURXJKRXW WKH LWHUDWLRQV WKDW LQ JHQHUDO WKH LF 92 DOJRULWKP JHQHUDWHG YHU\ VLPLODU VHTXHQFHV ^[ ` WR WKRVH JHQHUDWHG D XVLQJ VXSSOLHG KHVVLDQV 7KH DSSDUHQW UHDVRQ IRU WKH LPSURYHG EHKDYLRU LV WKH LQFUHDVHG DFFXUDF\ RI WKH KHVVLDQ HOHPHQWV E\ WKH XVH RI f DQG f LQVWHDG RI f 2QO\ )XQFWLRQ 9DOXHV 6XSSOLHG :KHQ RQO\ WKH IXQFWLRQ YDOXHV DUH VXSSOLHG ERWK WKH KHVVLDQ DQG WKH JUDGLHQW PXVW EH DSSUR[LPDWHG LQ RUGHU WR XVH WKH 92 DOJRULWKP $V LQ 6HFWLRQ WKH DSSUR[LPDWLRQV DUH FRQVLGHUHG ILUVW IROORZHG E\ WKH PHWKRG RI FRPSXWLQJ WKH SHUWXUEDWLRQV 7KH DSSUR[LPDWLRQV SURSRVHG IRU WKH KHVVLDQ PDWUL[ DUH WKH IROORZn LQJ 7KH GLDJRQDO HOHPHQWV RI WKH KHVVLDQ DUH DSSUR[LPDWHG E\ >I[Nf@ LIF >I[N ENH-f P P MM Q I[Nf I[N ENHMf@ENf Q Q M f ZKLFK LV REWDLQHG E\ WZLFH GLIIHUHQWLDWLQJ WKH TXDGUDWLF LQ EA ILWWHG N N WKURXJK WKH IXQFWLRQ YDOXHV IRU EA HTXDO WR EM DQG EA f IROORZV IRU EM 7KH HUURU LQ WKH DSSUR[LPDWLRQ f LV RI RUGHU _EN_ DVVXPLQJ WKH WKLUG GHULYDWLYH RI I LV ERXQGHG >@ ,Q RUGHU WR DSSUR[LPDWH DOO WKH GLDJRQDOV RI WKH KHVVLDQ XVLQJ f DGGLWLRQDO Q IXQFWLRQ HYDOXDWLRQV DUH UHTXLUHG 7KH RIIGLDJRQDO HOHPHQWV DUH DSSUR[LPDWHG E\ >If[Nf/ A>I[NENH-ENHLfI[NfI[NENH-fI[NENHLf@ENENf P R LM D -Q LA nY P -D A LP L f

PAGE 107

L OH L L OH ZKLFK LV DQ DSSUR[LPDWLRQ ZLWK HUURU LQ WKH RUGHU RI _EA _EA_ DVVXPLQJ WKH WKLUG GHULYDWLYH RI I LV ERXQGHG 7KLV DSSUR[LPDWLRQ PD\ EH REWDLQHG IURP D FRPELQDWLRQ RI WKH WKUHH 7D\ORU VHULHV H[SDQVLRQV RI I[N EAHnrnf I[N ENHAf DQG I[N ENHar ENHAf 7KH FRPSXWDn RV LX MY P MR LR WLRQ RI WKH RIIGLDJRQDO HOHPHQWV XVLQJ f UHTXLUHV RQH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQ IRU HDFK RIIGLDJRQDO HOHPHQW DIWHU FRQVLGHULQJ WKRVH IXQFWLRQ YDOXHV DOUHDG\ DYDLODEOH IURP WKH DSSUR[LPDWLRQ RI WKH GLDJRQDO HOHPHQWV IURP f WKXV D WRWDO RI Q Qf DGGLWLRQDO IXQFWLRQ HYDOXDWLRQV LV UHTXLUHG WR DSSUR[LPDWH DOO WKH RIIGLDJRQDO HOHPHQWV 7KHUHIRUH WKH HQWLUH KHVVLDQ PDWUL[ PD\ EH DSSUR[LPDWHG XVLQJ f DQG f ZLWK Q Qf DGGLWLRQDO IXQFWLRQ HYDOXDn WLRQV (DFK HOHPHQW RI WKH JUDGLHQW YHFWRU PD\ EH DSSUR[LPDWHG ZLWK WKH FHQWUDO GLIIHUHQFH DSSUR[LPDWLRQ JLYHQ E\ >In[Nf@ -IF >I[N ENHMf I[N ENHMf@ENf f nOO n9 M 2V -2V 2V -2V ZLWK WKH UHTXLUHG IXQFWLRQ YDOXHV DOUHDG\ DYDLODEOH IURP WKH KHVVLDQ DSSUR[LPDWLRQ 7KH DSSUR[LPDWLRQ f KDV HUURU RQ WKH RUGHU RI EMf DVVXPLQJ WKH WKLUG GHULYDWLYH RI I LV ERXQGHG >@ ,Q WKH FRPSXWDWLRQ RI WKH WUDQVIRUPDWLRQ IXQFWLRQV WKH JUDGLHQW LV UHTXLUHG DW VHYHUDO SRLQWV LQ WKH QHLJKERUKRRG RI [N )RU H[DPSOH WKH DSSUR[L U?W PDWLRQ WR WKH WKLUGRUGHU FRUUHFWLRQ f UHTXLUHV In[Nf InKNOff If[N GNf U?M U?M U?M 8VLQJ f WR HVWLPDWH WKH HOHPHQWV RI In[Bf ZRXOG UHTXLUH Q

PAGE 108

DGGLWLRQDO IXQFWLRQ HYDOXDWLRQV +RZHYHU ZLWKRXW VDFULILFLQJ WRR PXFK DFFXUDF\ LW ZLOO QRZ EH VKRZQ WKDW RQO\ Q DGGLWLRQDO IXQFWLRQ HYDOXDn WLRQV DUH UHTXLUHG )LUVW UHZULWH f DV IROORZV &In[Nf@ nE nE >I [ 2} ENHMf I[Nf@EN EN>I[Nf@ f -9 9 @ nE nE -7KLV H[SUHVVLRQ LV LGHQWLFDO WR f LI >I[ f@ LV JLYHQ E\ f A A 2EVHUYH WKDW WKH ILUVW WHUP LQ f LV WKH IRUZDUG GLIIHUHQFH DSSUR[L PDWLRQ WR WKH JUDGLHQW WHUP >@ ZKLFK XQOLNH f UHTXLUHV RQO\ RQH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQ 7KH DSSUR[LPDWLRQ f LV WKH SUHYLRXVO\ NQRZQ >@ TXDGUDWLF DSSUR[LPDWLRQ WR WKH JUDGLHQW WHUPV F N L ZKLFK PD\ EH GHULYHG IURP WKH 7D\ORU VHULHV H[SDQVLRQ RI I[ EH-f nE -n9 7KHUHIRUH IRU WKH DSSUR[LPDWLRQ WR WKH HOHPHQWV RI I[ff WKH IROORZ fE Y LQJ LV SURSRVHG >In;Sf@ nE nE= b >I[N N M Ef H-f  ef@E EN >I[Nf@ A A -f N N ZKHUH >I[ f@ LV JLYHQ E\ f ,I >I[ff@ ZHUH XVHG LQVWHDG nY Y MM nE Y MM N WKH HUURU LQ f ZRXOG EH LQ WKH RUGHU RI EA f +RZHYHU VLQFH N N N N A [f [ GB XVLQJ >I[ f@ PDNHV WKH HUURU LQ f RQ WKH RUGHU b= b b= Y M M RI _EN EN_ _EN c, GN __ DVVXPLQJ WKH WKLUG GHULYDWLYH RI I LV N ERXQGHG 6LQFH WKH QHHG WR FRPSXWH IMAf DULVHV IURP WKH DVVXPSWLRQ WKDW __ GN __ LV VPDOO WKH DSSUR[LPDWLRQ f LV H[SHFWHG WR KDYH f?M FRPSDUDEOH DFFXUDF\ ZLWK WKH FRPSXWDWLRQDOO\ PRUH FRVWO\ FHQWUDO GLIn IHUHQFH DSSUR[LPDWLRQ 1XPHULFDO H[SHULPHQWV KDYH LQGHHG YHULILHG WKLV H[SHFWDWLRQ $ VLPLODU DSSUR[LPDWLRQ LV XVHG IRU DOO RWKHU JUD N GLHQWV UHTXLUHG LQ WKH QHLJKERUKRRG RI [

PAGE 109

7KH DWWHQWLRQ QRZ WXUQV WRZDUGV WKH FRPSXWDWLRQ RI VXLWDEOH SHUn WXUEDWLRQV $V QRWHG HDUOLHU WKH SHUWXUEDWLRQV PXVW EH FRPSXWHG WDNLQJ URXQGRII HUURUV LQWR FRQVLGHUDWLRQ $GGLWLRQDOO\ LW LV GHVLUHG WR KDYH WKH SHUWXUEDWLRQV VPDOO WR LQVXUH VPDOO HUURUV LQ WKH DSSUR[Ln PDWLRQV :LWK WKHVH FRQVLGHUDWLRQV LW LV SURSRVHG WKDW HDFK SHUWXU N EDWLRQ EA EH VXFK WKDW f DQG OIeN f rMf I6NfO r HD HU.[NfO ff nX M nE nX D O b DUH VDWLVILHG 8VLQJ f DQG f IURP f EAf_>en[Nf@-+>WD f N Nf§ 7KLV H[SUHVVLRQ PD\ EH VROYHG IRU E XVLQJ >I[ f@ A A -EM b >HD (U_I&[NfM@_>I[Nf@A_OA WR REWDLQ N f ,Q VRPH QHLJKERUKRRG RI D VWULFW ORFDO PLQLPXP %B LV ZHOO GHILQHG ) +RZHYHU IDU IURP D VROXWLRQ PD\ QRW H[LVW DQG DOVR IRU N DQRWKHU DSSURDFK LV UHTXLUHG 7KHUHIRUH GHILQH H H PLQ^_I[Af_ D U Q r f DV D VHFRQG RSWLRQ IRU E 7KHQ WKH FRPSXWDWLRQ RI E LV JLYHQ E\ WKH IROORZLQJ H[SUHVVLRQ

PAGE 110

U 5[ ( % D N N 1 H PLQ^%A %A` N D f 2EVHUYH WKDW HAB PD\ KDYH WR EH VPDOOHU WKDQ IRU WKH SUHFHGLQJ FDVH ZKHQ N WKH JUDGLHQW DQG WKH IXQFWLRQ ZHUH VXSSOLHG ,Q SDUWLFXODU LI _I[ f_ n;M LV YHU\ ODUJH IRU DOO N f DQG f PD\ \LHOG D ODUJH YDOXH IRU ) ; % DQG % LI H LV QRW PDGH VXIILFLHQWO\ VPDOO )RU IXQFWLRQ YDOXHV U ZLWK UDQJH _I[Nf> e A DQG ZLWK _I[ f_ WKH FKRLFH [ A JDYH JRRG H[SHULPHQWDO UHVXOWV (YHQ ZLWK WKH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQV UHTXLUHG IRU WKH SURSRVHG DSSUR[LPDWLRQV WKH 92 DOJRULWKP FRPSDUHG YHU\ IDYRUDEO\ ZLWK RWKHU H[LVWLQJ DOJRULWKPV WKDW XVH RQO\ IXQFWLRQ YDOXHV 6XSSOLHG )XQFWLRQ DQG *UDGLHQW 9DOXHV ZLWK (UURUV :KHQ HUURUV DUH SUHVHQW LQ WKH HYDOXDWLRQ RI WKH IXQFWLRQ DQGRU WKH JUDGLHQW YDOXHV VXSSOLHG WKH 92 DOJRULWKP FDQ VWLOO EH HIIHFWLYHO\ HPSOR\HG LI WKH PDJQLWXGH RI WKH HUURUV LV QRW WRR ODUJH DQG FDQ EH HVWLPDWHG DQG LI VRPH PRGLILFDWLRQV DUH PDGH WR WKH DOJRULWKP :H EHJLQ E\ DVVXPLQJ WKDW HDFK VXSSOLHG JUDGLHQW FRPSRQHQW KDV HUURU LQ LWV HYDOXDWLRQ JLYHQ E\ _>In[Nf@ >In[Nf@_ H H _>In[Nf@_ f n M Q -M JD JU D Q M OF f§ ZKHUH In[ f LV WKH H[DFW JUDGLHQW In[ f LV WKH VXSSOLHG JUDGLHQW ?M f;L b f;W

PAGE 111

H LV WKH DEVROXWH HUURU DQG e LV WKH UHODWLYH HUURU 6LPLODUO\ JD JU HDFK VXSSOLHG IXQFWLRQ YDOXH KDV HUURU JLYHQ E\ _I[Nf I[Nf_ H H _I[Nf_ f n[ b n f§ W D WU ZKHUH ] DQG ]U DUH WKH DEVROXWH DQG UHODWLYH HUURUV UHVSHFWLYHO\ ID IU ,Q FRPSXWHUDLGHG RSWLPL]DWLRQ RI FLUFXLWV WKH DEVROXWH DQG UHODWLYH HUURUV SUHVHQW LQ WKH VXSSOLHG IXQFWLRQ DQG JUDGLHQW HYDOXDn WLRQV FDQ XVXDOO\ EH HVWLPDWHG )RU H[DPSOH LQ GF RSWLPL]DWLRQ WKH DEVROXWH DQG UHODWLYH HUURUV DUH QRUPDOO\ UHODWHG WR WKH DEVROXWH DQG UHODWLYH FRQVWDQWV XVHG LQ GHWHUPLQLQJ FRQYHUJHQFH WR WKH VROXWLRQ RI WKH QRQOLQHDU FLUFXLW HTXDWLRQV 7KDW LV WKH IXQFWLRQ DQG WKH JUDn GLHQW YDOXHV GHSHQG RQ WKH VROXWLRQ RI QRQOLQHDU HTXDWLRQV ,Q VROYLQJ WKH QRQOLQHDU HTXDWLRQV DQ LWHUDWLYH PHWKRG LV HPSOR\HG ZKLFK VWRSV ZKHQ WKH GLIIHUHQFH EHWZHHQ WZR VXFFHVVLYH LWHUDWHV LV OHVV WKDQ DQ DEVROXWH FRQVWDQW SOXV D UHODWLYH FRQVWDQW WLPHV WKH PDJQLWXGH RI WKH LWHUDWH 7KHUH DUH WZR PRGLILFDWLRQV ZKLFK LPSURYH WKH HIIHFWLYHQHVV RI WKH 92 DOJRULWKP IRU SUREOHPV WKDW KDYH HUURUV JLYHQ E\ f DQG f )LUVW WKH SHUWXUEDWLRQV XVHG LQ WKH GLIIHUHQFH DSSUR[LPDWLRQV WR WKH KHVVLDQ DQG WKH JUDGLHQW VKRXOG EH FRPSXWHG FRQVLGHULQJ WKH HUURUV SUHVHQW 6HFRQG LI WKH WUDQVIRUPDWLRQ IXQFWLRQV JHQHUDWH WUDMHFWRULHV ZKLFK \LHOG OLWWOH RU QR GHFUHDVH LQ WKH IXQFWLRQ YDOXH DW D SDUWLFXODU LWHUDWLRQ DQ DOWHUQDWH DSSURDFK VKRXOG EH XVHG 7KH SHUWXUEDWLRQV XVHG LQ WKH GLIIHUHQFH DSSUR[LPDWLRQV WR WKH KHVVLDQ ZHUH GHULYHG LQ WKH SUHFHGLQJ VHFWLRQ )RU URXQGRII UHDVRQV WKH SHUWXUEDWLRQV E XVHG LQ WKH DSSUR[LPDWLRQV DUH FRPSXWHG VXFK WKDW

PAGE 112

>In[f 2 b N M E HA f@ >I [Nf@ A A cY D HUO>N!@MO f nf ZKHQHYHU WKH JUDGLHQW YDOXHV DUH VXSSOLHG :LWK HUURUV SUHVHQW LQ WKH HYDOXDWLRQ RI WKH JUDGLHQW LW LV GHVLUHG WKDW >In[N 2 R! N M EH,nY >I [N!@ A !! H JD H JU >In[Nf/ b A f DQG WKDW WKH HUURU LQ WKH GLDJRQDO HOHPHQW RI WKH DSSUR[LPDWH KHVVLDQ EH VPDOO 7KH H[SUHVVLRQ f PD\ EH DFFRPSOLVKHG E\ LQLWLDOO\ VHWWLQJ H H DQG H H LQ f 7KH YDOXHV RI H D JDf U JU D DQG H DUH WKHQ DGMXVWHG DIWHU HDFK LWHUDWLRQ LI WKH HVWLPDWHG HUURU U LQ WKH GLDJRQDO HOHPHQW RI WKH KHVVLDQ LV WRR ODUJH (DFK GLDJRQDO HOHPHQW RI WKH KHVVLDQ LV DSSUR[LPDWHG E\ >I[r 2\ n; WWI N n[f N E H A f LQVWHDG RI f EHFDXVH f LV OHVV VHQVLWLYH WR WKH HUURUV LQ WKH F VXSSOLHG JUDGLHQW 7KH SHUWXUEDWLRQ E LQ f LV D IXQFWLRQ RI H D DQG DV GHVFULEHG LQ WKH SUHFHGLQJ VHFWLRQ 7KH HUURU LQ f GXH WR f LV OHVV WKDQ (I>I[Nf@f ZKHUH nX nY (>If[Nf@ f m H H _>If[NENHMf@_ _>I[Nf@_ffEN 2L A JD JU D nX MY A nY (>I[Nf@f [ [ f-_>I[Nf@ 9 L? Y n9L n9L M 1RZ LI

PAGE 113

LW LV FRQFOXGHG WKDW WKH SHUWXUEDWLRQ XVHG ZDV WRR VPDOO VLQFH WKH HUURU LQ WKH DSSUR[LPDWHG GLDJRQDO HOHPHQW PD\ EH ODUJH 7KHUHIRUH H LV VHW WR O2H DQG H LV VHW WR H 2Q WKH RWKHU KDQG LI D Df U U (>I[Nf@O [ f [ _>I[Nf@_ N Y nY MMn a A nY -WKHQ WKH SHUWXUEDWLRQ XVHG ZDV WRR ODUJH VLQFH WKH HVWLPDWHG HUURU LQ WKH DSSUR[LPDWLRQ LV VPDOO ,Q WKLV FDVH H LV VHW WR AH DQG LV VHW WR HU 7KLV SURFHGXUH PRQLWRUV WKH PD[LPXP HUURU LQ WKH GLDJRQDOV RI WKH KHVVLDQ DW HDFK LWHUDWLRQ DQG LQ HIIHFW DGMXVWV WKH SHUWXUEDWLRQV LQ DQ DWWHPSW WR NHHS WKHP VPDOO SURYLGHG WKDW WKH HUURU LV QRW ODUJH :KHQ RQO\ IXQFWLRQ YDOXHV DUH DYDLODEOH D VLPLODU WHFKQLTXH LV LPSOHPHQWHG 7KH RIIGLDJRQDO HOHPHQWV RI WKH KHVVLDQ PD\ DOVR KDYH VLJQLILFDQW HUURU ,W ZDV REVHUYHG LQ QXPHULFDO H[SHULPHQWV WKDW DYHUDJLQJ WKH WZR YDOXHV RI WKH LMf DQG MLf RIIGLDJRQDO HOHPHQW DSSUR[LPDWLRQV DV SURSRVHG LQ f GLG QRW ZRUN VRPHWLPHV )RU H[DPSOH WKH LMf DSSUR[LPDWLRQ PD\ EH VHYHUDO RUGHUV RI PDJQLWXGH ODUJHU RU VPDOOHU WKDQ WKH MLf DSSUR[LPDWLRQ :KHQHYHU WKLV ODUJH GLIIHUHQFH RFFXUV LW LV EHOLHYHG WKDW LW LV EHVW WR VHW WKH LMf RIIGLDJRQDO HOHPHQW WR WKH VPDOOHU RI WKH WZR DSSUR[LPDWLRQV 7KH VHFRQG PRGLILFDWLRQ WR WKH 92 DOJRULWKP VWHPV IURP WKH IDFW WKDW LW LV SRVVLEOH WKDW WKH WUDMHFWRU\ JHQHUDWHG E\ WKH WUDQVIRUPDWLRQ IXQFWLRQ VHOHFWHG GRHV QRW UHGXFH WKH YDOXH RI WKH IXQFWLRQ EHLQJ N PLQLPL]HG HYHQ ZKHQ WKH FXUUHQW SRLQW [ LV IDU IURP D VROXWLRQ 7KDW LV

PAGE 114

Ir9Sff I[Nf U RU U?U ,?M PD\ QRW EH VDWLVILHG RU PD\ EH VDWLVILHG IRU D YHU\ VPDOO YDOXH RI N N S ZKLFK ZRXOG \LHOG [ YHU\ FORVH WR [ ,Q HIIHFW WKLV LPSOLHV WKDW WKH WUDQVIRUPDWLRQ IXQFWLRQV PD\ \LHOG SRRU WUDMHFWRULHV ZKHQ ODUJH HUURUV DUH SUHVHQW LQ WKH IXQFWLRQ DQG WKH JUDGLHQW 7KHUHIRUH ZKHQ WKH SURJUHVV DW DQ LWHUDWLRQ LV VPDOO WKH JUDGLHQW GLUHFWLRQ LV XVHG RU F\FOLF FRRUGLQDWH VHDUFKHV DUH XQGHUWDNHQ XQWLO DQRWKHU SRLQW VXIILFLHQWO\ IDU DZD\ LV REWDLQHG RU LW LV DVVXPHG WKDW WKH DOJRULWKP KDV FRQYHUJHG LI DQRWKHU SRLQW FDQQRW EH IRXQG ZKLFK UHGXFHV WKH YDOXH RI WKH IXQFWLRQ 7KH 9DULDEOH2UGHU $OJRULWKP 7KH VWHSV RI WKH QHZ DOJRULWKP PD\ QRZ EH VXPPDUL]HG 7KH DOJRn ULWKP ZLOO EH GLYLGHG LQWR IRXU PDMRU VWHSV ,1,7,$/,=$7,21 75$16n )250$7,21 6&$/$5 6($5&+ DQG &219(5*(1&( 7(67 :LWKLQ HDFK RI WKHVH VWHSV VHYHUDO VXEVWHSV ZLOO EH LGHQWLILHG $ FRPSXWHU SURJUDP ZKLFK LQFRUSRUDWHV WKLV DOJRULWKP ZULWWHQ LQ )2575$1 ,9 LV GHVFULEHG LQ $SSHQGL[ 7KLV SURJUDP DOVR LQFOXGHV WKUHH RWKHU SRSXODU DOJRULWKPV DV RSWLRQV ,Q WKLV VHFWLRQ ZH ZLOO RQO\ EH FRQFHUQHG ZLWK WKRVH DVSHFWV RI WKH SURJUDP WKDW SHUWDLQ WR WKH 92 DOJRULWKP :H ZLOO UHIHU WR WKH YDULDEOHV DQG VXEURXWLQH QDPHV XVHG LQ WKH SURJUDP WR DLG LQ LWV XQGHUVWDQGLQJ 67(3 ,1,7,$/,=$7,21 7KLV VWHS FRQVLVWV RI VHWWLQJ RU REWDLQLQJ IURP WKH XVHU RI WKH

PAGE 115

9 DOJRULWKP VHYHUDO FRQVWDQWV DQG RSWLRQV ZKLFK ZLOO EH UHTXLUHG LQ WKH RWKHU VWHSV RI WKH DOJRULWKP 7KLV VWHS LV H[HFXWHG RQO\ RQFH DQG LW LV EDVLFDOO\ WKH 0$,1 SURJUDP 7KH FRQVWDQWV DQG RSWLRQV DUH WKH IROORZLQJ 0$;,7 GHIDXOW LV f WKH PD[LPXP QXPEHU RI LWHUDWLRQV WR EH GRQH VR WKH DOJRULWKP ZLOO VWRS HYHQ LI LW KDV QRW VDWLVILHG WKH FRQYHUJHQFH WHVW 673(36 GHIDXOW LV f WKH DOJRULWKP FRQVLGHUV VWRSSLQJ ZKHQ WKH PD[LPXP FRRUGLQDWH RI WKH JUDGLHQW LV OHVV WKDQ 673(36 LQ DEVROXWH YDOXH 7KDW LV LI c, In [Af ,, 673(36 DQG A b n f§ RWKHU FRQGLWLRQV WR EH JLYHQ LW LV DVVXPHG WKDW WKH DOJRn ULWKP KDV FRQYHUJHG 0$;$9 GHIDXOW LV f WR LQGLFDWH KRZ PXFK LQIRUPDWLRQ LV VXSSOLHG DERXW WKH IXQFWLRQ WR EH PLQLPL]HG ,W FDQ KDYH WKUHH YDOXHV 0$;$9 LQGLFDWHV WKDW RQO\ WKH IXQFWLRQ YDOXHV DUH VXSSOLHG 0$;$9 LQGLFDWHV WKDW ERWK WKH IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSSOLHG 0$;$9 LQGLFDWHV WKDW WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV DUH DOO VXSSOLHG 3+$%6 GHIDXOW LV 673(36 [ rf LV D FRQVWDQW XVHG LQ DSSUR[Ln PDWLQJ WKH KHVVLDQ ZKHQ ERWK WKH JUDGLHQW DQG WKH IXQFWLRQ YDOXHV DUH VXSSOLHG 0$;$9 f DV GHVFULEHG E\ H LQ 6HFWLRQ FO $ $ 3+5(/ GHIDXOW LV f LV D FRQVWDQW DOVR XVHG LQ DSSUR[LPDWLQJ WKH KHVVLDQ IRU 0$;$9 f DV GHVFULEHG E\ LQ 6HFWLRQ *)$%6 GHIDXOW LV f LV WKH DEVROXWH YDOXH RI WKH HUURU SUHVHQW LQ WKH JUDGLHQW YDOXHV VXSSOLHG DV GHVFULEHG LQ 6HFWLRQ E\ H ,I LW LV QRQ]HUR 673(36 LV VHW WR r*)$%6 DQG JD

PAGE 116

3+$%6 LV VHW WR r*)$%6 *)5(/ GHIDXOW LV f LV WKH UHODWLYH YDOXH RI WKH HUURU SUHVHQW LQ WKH JUDGLHQW YDOXHV VXSSOLHG DV GHVFULEHG LQ 6HFWLRQ E\ H ,I LW LV QRQ]HUR 3+5(/ LV VHW WR r*)5(/ JU 3$%6 GHIDXOW LV 673(36 [ LV D FRQVWDQW XVHG LQ DSSUR[LPDWLQJ ERWK WKH JUDGLHQW DQG WKH KHVVLDQ ZKHQ RQO\ IXQFWLRQ YDOXHV DUH VXSSOLHG 0$;$9 f DV GHVFULEHG LQ 6HFWLRQ E\ H F/ f 35(/ GHIDXOW LV [ f LV DOVR D FRQVWDQW XVHG LQ DSSUR[LPDWLQJ ERWK WKH JUDGLHQW DQG WKH KHVVLDQ 0$;$9 f DV GHVFULEHG LQ 6HFWLRQ E\ H U )$%6 GHIDXOW LV f LV WKH DEVROXWH YDOXH RI WKH HUURU SUHVHQW LQ WKH IXQFWLRQ YDOXHV VXSSOLHG DV GHVFULEHG LQ 6HFWLRQ E\ H ,I LW LV QRQ]HUR 673(36 LV VHW WR r)$%6 DQG 3$%6 LV VHW WR r)$%6 )5(/ GHIDXOW LV f LV WKH UHODWLYH YDOXH RI WKH HUURU SUHVHQW LQ WKH IXQFWLRQ YDOXHV VXSSOLHG DV GHVFULEHG LQ 6HFWLRQ E\ H ,I LW LV QRQ]HUR 35(/ LV VHW WR r)5(/ I U B 5(/6&+ GHIDXOW LV [ f UHODWLYH DFFXUDF\ RI WKH PLQLPL]LQJ VFDODU VHDUFK ZKHQ FRRUGLQDWH VHDUFKHV DUH XQGHUWDNHQ RU ZKHQ WKH JUDGLHQW GLUHFWLRQ LV XVHG %2; GHIDXOW LV QR ER[ FRQVWUDLQWVf LV D WZRGLPHQVLRQDO DUUD\ ZKLFK PD\ RSWLRQDOO\ FRQWDLQ WKH ER[ FRQVWUDLQWV %;OLf L Q PD\ EH VHW WR WKH ORZHU OLPLWV RI HDFK LQGHn SHQGHQW YDULDEOH %2;Lf L Q PD\ EH VHW WR WKH KLJKHU OLPLWV RI HDFK LQGHSHQGHQW YDULDEOH 1; WKH GLPHQVLRQ RI WKH SUREOHP Q LQ DOO RI WKH SUHFHGLQJ GHn YHORSPHQWf

PAGE 117

; DOVR FDOOHG ;. LQ VRPH RI WKH VXEURXWLQHVf DQ DUUD\ FRQWDLQLQJ WKH LQLWLDO JXHVV [A WR D VROXWLRQ RI WKH PLQLPL]DWLRQ SURE 2 OHP ZLWK SHUKDSV ER[ FRQVWUDLQWV QRQOLQHDU FRQVWUDLQWV UHTXLUH WKDW WKH\ EH PDQXDOO\ KDQGOHG E\ WKH SHQDOW\ PHWKRG GHVFULEHG LQ 6HFWLRQ f 7KXV WKH XVHU QHHGV WR SURYLGH 1; DQG ; RQO\ VLQFH DOO RWKHU FRQVWDQWV DQG RSWLRQV KDYH GHIDXOW YDOXHV ,Q DGGLWLRQ WKH XVHU PXVW ZULWH D VXEURXWLQH ZKLFK VXSSOLHV WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ N YDOXHV GHSHQGLQJ RQ WKH VHWWLQJ RI 0$;$9f DW D JLYHQ SRLQW [ ([ ?M DPSLHV RI KRZ WKLV VXEURXWLQH PD\ EH ZULWWHQ DUH JLYHQ LQ $SSHQGL[ 7KLV VWHS LV FRPSOHWHG E\ LQLWLDOL]LQJ VHYHUDO FRXQWHUV DQG HYDOXDWLQJ WKH IXQFWLRQ DQG WKH JUDGLHQW DW [A 7KH FRXQWHUV NHHS WUDFN RI KRZ PDQ\ IXQFWLRQ HYDOXDWLRQV JUDGLHQW HYDOXDWLRQV DQG KHVVLDQ HYDOXDn WLRQV KDYH EHHQ UHTXLUHG DQG RI KRZ PDQ\ WLPHV D JLYHQ WUDQVIRUPDWLRQ RUGHU KDV EHHQ XVHG :KLOH WKHVH FRXQWHUV DUH XVHIXO WKH\ DUH QRW HVVHQWLDO WR WKH DOJRULWKP DQG WKXV WKHLU XSGDWLQJ ZLOO QRW EH VKRZQ 7KH RQO\ FRXQWHU ZKLFK LV UHTXLUHG LV WKH LWHUDWLRQ FRXQWHU ,Q WKH SURJUDP GHVFULEHG LQ $SSHQGL[ WKLV FRXQWHU LV GHQRWHG E\ ,7&17 +RZHYHU IRU QRWDWLRQDO FRQYHQLHQFH WKH OHWWHU N ZLOO EH XVHG KHUH $OVR IRU QRWDWLRQDO FRQYHQLHQFH ZKLOH IRU H[DPSOH In[ f LV VWRUHG LQ 2L n;M DUUD\ *) LQ WKH SURJUDP WKH PDWKHPDWLFDO QRWDWLRQ ZLOO EH XVHG KHUH 7KH SURJUDP KDV FRPPHQWV KRZHYHU ZKLFK LGHQWLI\ WKH DUUD\V WKDW DUH XVHG 7KXV WKLV VWHS HQGV ZLWK WKH IROORZLQJ WZR VXEVWHSV 6HW N &RPSXWH I[Af DQG In[Af 7KH JUDGLHQW In[Af LV DSSUR[LPDWHG R R Q mYD LI 0$;$9 VHH 6HFWLRQV DQG f 7KH VXEURXWLQH WKDW

PAGE 118

WDNHV FDUH RI FDOOLQJ IRU WKH HYDOXDWLRQV DQG DOVR WKH DSSUR[ LPDWLRQ WR In[ f ZKHQ QRW VXSSOLHG LV FDOOHG 23*5$' 67(3 75$16)250$7,21 7KLV VWHS LV H[HFXWHG RQFH IRU HDFK LWHUDWLRQ DQG WKH GRPLQDQW VXEURXWLQH LV FDOOHG 3;.3 ,WV SXUSRVH LV WR FRPSXWH WKH KLJKRUGHU WK FRUUHFWLRQV DQG WR GHWHUPLQH WKH RUGHU WR XVH DW WKH N LWHUDWLRQ 7KH IROORZLQJ VXEVWHSV PD\ EH LGHQWLILHG N &RPSXWH WKH KHVVLDQ I[ f 7KH KHVVLDQ LV DSSUR[LPDWHG LI 0$;$9 A VHH 6HFWLRQV DQG f ,Q WKH SURJUDP RI $SSHQGL[ WKH KHVVLDQ LV VWRUHG LQ DUUD\ *) DQG RQO\ WKH XQV\PPHWULF SDUW LV VWRUHG 7KH VWRUDJH VFKHPH PD\ EH WKRXJKW RI DV UHFRUGLQJ HDFK URZ VHTXHQWLDOO\ LQ D RQHGLPHQVLRQDO DUUD\ EHJLQQLQJ HDFK URZ ZLWK WKH GLDJRQDO HOHPHQW 7KLV WHFKQLTXH UHTXLUHV Q Q VWRUDJH ORFDWLRQV LQVWHDG RI Q LI WKH HQWLUH KHVVLDQ LV VWRUHG 7KH VXEURXWLQH ZKLFK WDNHV FDUH RI FDOOLQJ IRU WKH HYDOXDWLRQ RU DSSUR[LPDWLRQ RI WKH KHVVLDQ LV FDOOHG 23+(66 )DFWRUL]H WKH KHVVLDQ 7KLV VWHS FRQVLVWV RI FRPSXWLQJ WKH N SHUPXWDWLRQ PDWUL[ 3 WKH GLDJRQDO PDWUL[ DQG WKH XSSHU WULDQJXODU PDWUL[ 8 VXFK WKDW 3&InL[Af DV GH VFULEHG LQ 6HFWLRQ 7KH SHUPXWDWLRQ PDWUL[ 3 LV PRVW HIILFLHQWO\ UHFRUGHG LQ D YHFWRU RI OHQJWK Q DV GRQH E\ VXEn URXWLQH 6)$& LQ WKH SURJUDP RI $SSHQGL[ 2EVHUYH WKDW WKH FROXPQV RI 3 DUH SHUPXWDWLRQV RI WKH FROXPQV RI WKH XQLW GLDn JRQDO PDWUL[ DQG WKHUHIRUH D VLQJOH LQWHJHU LV VXIILFLHQW WR

PAGE 119

N LGHQWLI\ HDFK FROXPQ RI 3 $OVR WKH HQWLUH PDWUL[ LV QRW b b UHTXLUHG UDWKHU WKH QRUP __ 'N __UD ZKLFK LV WKH PD[LPXP GLDJn RQDO HOHPHQW LV RQO\ QHHGHG )LQDOO\ LQ WKH SURJUDP 8 n;M UHSODFHV WKH VWRUDJH RFFXSLHG E\ WKH KHVVLDQ 6LQFH WKH GLDJRQDO HOHPHQWV RI WKH KHVVLDQ DUH UHTXLUHG ZKHQHYHU WKH JUDGLHQW DQG WKH KHVVLDQ KDYH WR EH DSSUR[LPDWHG DQRWKHU DUUD\ RI OHQJWK Q LV XVHG WR VWRUH WKH GLDJRQDO HOHPHQWV ZKHQ QHHGHG E\ WKH QH[W LWHUDWLRQ &RPSXWH WKH VHFRQGRUGHU FRUUHFWLRQ G 7KH VHFRQGRUGHU n;Mƒ FRUUHFWLRQ LV WKH VROXWLRQ RI WKH OLQHDU V\VWHP RI HTXDWLRQV JLYHQ E\ f 7KH VROXWLRQ LV YHU\ HIILFLHQWO\ REWDLQHG LI WKH SHUPXWDWLRQ PDWUL[ LV VWRUHG LQ D YHFWRU DV GHVFULEHG LQ DERYH VLQFH LQGLUHFW LQGH[LQJ FDQ EH XVHG DV GRQH E\ VXEURXWLQH 6)%68% LQ WKH SURJUDP RI $SSHQGL[ N N N N &RPSXWH e [ 7KLV FRPSXWDWLRQ LV GRQH E\ IXQFWLRQ 23(9; LQ RUGHU WR HIILFLHQWO\ KDQGOH WKH ER[ FRQn VWUDLQWV F F &RPSXWH I[ff DQG In[ f ,I WKH JUDGLHQW LV QRW VXSSOLHG ?M= nY} n;M= VHH 6HFWLRQV DQG DQG VXEURXWLQH 23*5$' IRU WKH DSSUR[n LPDWLRQ WHFKQLTXH ,I ,, In[f __ 673(36 VHW [N [N DQG JR WR 67(3 X A A m f§ n‘ b RWKHUZLVH FRQWLQXH F 9 ,I I[ f I[ff VHW RUGHU U DQG JR WR 67(3 RWKHUZLVH } f§  FRQWLQXH &RPSXWH WKH WKLUGRUGHU FRUUHFWLRQ Gf 7KH WKLUGRUGHU FRU UHFWLRQ LV DSSUR[LPDWHG E\ WKH VROXWLRQ RI WKH OLQHDU V\VWHP f 7KH VDPH FRPPHQW DV LQ DERYH DSSOLHV WR WKLV VXEn VWHS

PAGE 120

N OH OH OH OH &RPSXWH KAOf [ GA 6HH DERYH IRU DQ DSSOLn FDEOH FRPPHQW OH OH &RPSXWH I[f DQG InL[Af 6HH DERYH IRU DQ DSSOLFDEOH FRPPHQW ,I __ In[E __ 673(36 VHW [N [N DQG JR WR 67(3 RWKHUZLVH FRQWLQXH OH OH ,I Ief VHW RUGHU U DQG JR WR 67(3 RWKHUZLVH FRQWLQXH N &RPSXWH WKH IRXUWKRUGHU FRUUHFWLRQ G 7KH IRXUWKRUGHU FRU Q UHFWLRQ LV DSSUR[LPDWHG E\ WKH VROXWLRQ RI f 7KH VDPH FRPPHQW LQ DERYH LV DSSOLFDEOH KHUH &RPSXWH [N KNOf [N GN GN GN 6HH DERYH IRU DQ D R R R R DSSOLFDEOH FRPPHQW &RPSXWH I[Af (QWU\ 23)81& LQ VXEURXWLQH 23*5$' KDQGOHV WKH FDOOLQJ RI WKH XVHUnV VXEURXWLQH WR REWDLQ IXQFWLRQ YDOXHV OF OH ,I I[f I[Bf VHW RUGHU U RWKHUZLVH VHW RUGHU U R f§ R *R RQ WR 67(3 67(3 6&$/$5 6($5&+ 7KH VFDODU VHDUFK VWHS ZDV GHVFULEHG LQ GHWDLO LQ 6HFWLRQ ,W FRQVLVWV RI FRPSXWLQJ D VXLWDEOH YDOXH RI WKH VFDODU SDUDPHWHU S LQ WKH N WUDQVIRUPDWLRQ IXQFWLRQ K Sf FRUUHVSRQGLQJ WR WKH RUGHU U VHOHFWHG LQ RU 67(3 7KH WUDQVIRUPDWLRQ IXQFWLRQV DUH OLVWHG LQ f 7KH YHFWRUV WKDW DUH WKH FRHIILFLHQWV RI WKH SRO\QRPLDO LQ S LQ WKH WUDQVn IRUPDWLRQ IXQFWLRQV DUH VWRUHG LQ D WZRGLPHQVLRQDO DUUD\ FDOOHG & N 7KH DFWXDO HYDOXDWLRQ RI K Sf IRU DQ\ YDOXH RI S LV GRQH LQ WKH IXQF QU WLRQ 23(9; ZKHUH WKH ER[ FRQVWUDLQWV DUH KDQGOHG E\ WKH SURMHFWLRQ

PAGE 121

PHWKRG GHVFULEHG LQ 6HFWLRQ $ 7KH IROORZLQJ VXEVWHSV PD\ EH LGHQn WLILHG ,I RUGHU U JR WR RWKHUZLVH FRQWLQXH &RPSXWH S S IRU WKH VHFRQGRUGHU WUDQVIRUPDWLRQ 7KH VXEURXWLQH ZKLFK KDQGOHV WKLV FDVH LV FDOOHG 35' 1RWH WKDW ZKHQHYHU WKH VHFRQGRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG [ D LV IDU IURP D VROXWLRQ RI WKH PLQLPL]DWLRQ SUREOHP GXH WR WKH PDQQHU LQ ZKLFK WKH RUGHU LV GHWHUPLQHG 7KDW LV WKH LQn ILQLWH VHULHV f IRU ZKLFK S FRQYHUJHV DQG WKHUHIRUH WKH WHVWV LQ VXEVWHSV DQG RI 67(3 ZLOO ERWK EH IDOVH N r ZKHQ [ LV FORVH WR [ 7KXV WKH YDOXH S IRU WKH VFDODU 2 7M N SDUDPHWHU LV FRPSXWHG DV GHVFULEHG LQ 6HFWLRQ $ *R WR Q N Q ,I InKBOff JR WR RWKHUZLVH FRQWLQXH U?M U?MM &2 f§ N r $ &RPSXWH S S IRU [ FORVH WR [ 7KH YDOXH S LV JLYHQ E\ N D n9 N S b Sr1 ZKLFK LV D VROXWLRQ WR WKH VFDODU PLQLPL]DWLRQ SUREOHP WY L& f DV GHVFULEHG LQ 6HFWLRQ $, 7KH VXEURXWLQH ZKLFK KDQGOHV WKLV FDVH LV 2325'+ *R WR N A &RPSXWH S S IRU [ IDU IURP [ DQG U 7KLV FDVH LV DOVR KDQGOHG E\ VXEURXWLQH 2325'+ 7KH SDUDPHWHU SA LV FRPn SXWHG WR DSSUR[LPDWH D VROXWLRQ RI f DV GHVFULEHG LQ 6HFWLRQ $ 6HW [N KNS f DQG JR WR 67(3 $ $FWXDOO\ ERWK [Nr DQG D YU .N r A S DUH UHWXUQHG E\ VXEURXWLQHV 2325' DQG 2325'+ LQ WKH SUR -Y JUDP GHVFULEHG LQ $SSHQGL[ 67(3 $ &219(5*(1&( 7(67 7KH SXUSRVH RI WKLV VWHS LV WR FKHFN IRU FRQYHUJHQFH RU IRU DQ

PAGE 122

H[FHVVLYH QXPEHU RI LWHUDWLRQV LQ RUGHU WR VWRS WKH DOJRULWKP ([FHSW IRU WKH ILUVW VXEVWHS EHORZ ZKLFK LV GRQH LQ VXEURXWLQH 3;.3 WKH ORJLF RI WKLV VWHS LV LQ WKH 0$,1 SURJUDP 7KH VXEVWHSV PD\ EH GHn VFULEHG DV IROORZV &RPSXWH I[Nf DQG In[NAf LI QRW DOUHDG\ HYDOXDWHG 7KH FRPPHQW LQ VXEVWHS RI 67(3 LV DSSOLFDEOH KHUH ,I __ If[Nf __ 673(36 DQG __ 'N __ __ 'N __ LV VWRUHG LQ WKH YDULDEOH FDOOHG 326 E\ VXEURXWLQH 6)$&f WKH DOJRULWKP ‘N LV DVVXPHG WR KDYH FRQYHUJHG WR DQ DSSUR[LPDWLRQ RI [ *R b WR ,I __ In[Nf __ 673(36 JR WR ,I _I[Nf I[Nf_ 673(36 _I[Nf_ r 673(36f JR WR ,I _[N [N_ 673(36 _[N_ r 673(36f IRU DQ\ L Q WKHQ JR WR ,I FRRUGLQDWH VHDUFKHV KDYH DOUHDG\ EHHQ XQGHUWDNHQ WKHQ LW LV DVVXPHG WKDW FRQYHUJHQFH KDV RFFXUUHG 7HVWV DQG DERYH DUH HVSHFLDOO\ QHFHVVDU\ ZKHQ WKH VXSSOLHG IXQFWLRQ DQG JUDn GLHQW KDYH HUURUV VLQFH LQ WKDW FDVH WKH JUDGLHQW PD\ QRW EH VPDOO DW WKH SRLQW RI VROXWLRQ GXH WR LWV DEVROXWH HUURUV *R WR 6HW N N 8QGHUWDNH FRRUGLQDWH VHDUFKHV 6XEURXWLQH 23&225 KDQGOHV WKH VHOHFWLRQ RI FRRUGLQDWH GLUHFWLRQV DQG 23%'5< KDQGOHV WKH VFDODU PLQLPL]DWLRQ SUREOHP DORQJ WKH VHOHFWHG FRRUGLQDWH $V GLVFXVVHG LQ 6HFWLRQ FRRUGLQDWH VHDUFKHV SURYLGH VRPH LQVXUDQFH WKDW WKH SRLQW [ LV D ORFDO PLQLPXP 7KXV LI FR RUGLQDWH VHDUFKHV ILQG QR IXQFWLRQ GHFUHDVH DORQJ DQ\ RI WKH

PAGE 123

FRRUGLQDWH GLUHFWLRQV JR WR 2WKHUZLVH WKH FRRUGLQDWH N VHDUFK \LHOGV DQRWKHU [ DQG JR WR LQ WKLV 67(3f 6HW N N ,I N e 0$;,7 JR WR 67(3 RWKHUZLVH FRQWLQXH 'RQH ,I N 0$;,7 WKH DOJRULWKP GLG QRW FRQYHUJH 2WKHU N r ZLVH WKH SRLQW [ VKRXOG EH DQ DSSUR[LPDWLRQ RI [ D VROXWLRQ nE n9L RI WKH PLQLPL]DWLRQ SUREOHP ZLWK SHUKDSV ER[ FRQVWUDLQWV $ FRPSOHWH LWHUDWLRQ RQ DQ XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHP ZLOO QRZ EH JLYHQ WR LOOXVWUDWH WKH 92 DOJRULWKP 7KH SUREOHP WR EH XVHG LV JLYHQ E\ PLQLPL]H I[A [Af A [AfA [AfA 7KLV SUREOHP ZDV SURSRVHG E\ 5RVHQEURFN >@ DQG LW KDV D SDUDEROLF YDOOH\ ZKLFK LV H[WUHPHO\ QDUURZ 7KLV WHVW SUREOHP LV ZLGHO\ XVHG LQ WKH OLWHUDWXUH DQG PRVW H[LVWLQJ DOJRULWKPV KDYH EHHQ FRPSDUHG RQ WKLV SUREOHP 7KH XVXDO VWDUWLQJ SRLQW LV f 7 [ ?M DQG I[rf nOr I[rf f7 n;M n;M DQG U

PAGE 124

7KH RQO\ PLQLPXP SRLQW IRU WKLV IXQFWLRQ LV DW [ f DQG r I[ f 7KH IDFWRUL]DWLRQ RI I[ f UHTXLUHV QR SLYRWLQJ DQG 2L } 2Ln9 LQ WKH IDFWRUL]DWLRQ f 7KH 8 PDWUL[ LV JLYHQ E\ 8 n;M &RPSXWLQJ G IURP f \LHOGV ?M G" f7 n<= 7KXV WKH VHFRQGRUGHU WUDQVIRUPDWLRQ IURP Df LV JLYHQ E\ LW3! n n f a 3 B f 3URFHHGLQJ IKrOff I[r Grf n<= 2 2M= DQG InK"Off f7 A 2= 7KXV VLQFH IKAOff I[Af WKH WKLUGRUGHU FRUUHFWLRQ LV FRPSXWHG n;= r?M IURP f WR EH

PAGE 125

Gr f7 ZKLFK JLYHV WKH WKLUGRUGHU WUDQVIRUPDWLRQ IURP Ef E\ ccfLSn a n ‘ f f 3 3 L f 3URFHHGLQJ IKrOff I[r G" Grf 2\ 2\= DQG InK"Off f7 2 R! 7KXV VLQFH IKAOff ILKA2ff} WKH IRXUWKRUGHU FRUUHFWLRQ LV FRPSXWHG IURP f WR EH Gr f7 ZKLFK JLYHV WKH IRXUWKRUGHU WUDQVIRUPDWLRQ IURP Ff E\ r"m} n f n n f 3 3 3 B f DQG VLQFH

PAGE 126

IK7ff Y IKff WKH IRXUWKRUGHU WUDQVIRUPDWLRQ LV VHOHFWHG $OO WKDW UHPDLQV QRZ LV WR FRPSXWH WKH YDOXH RI S WR EH XVHG LQ f XVLQJ WKH WHFKQLTXHV RXWOLQHG LQ 6HFWLRQ ZKLFK DUH LOOXVWUDWHG QH[W 6LQFH O_Iff ,,n ‘ LW LV FRQFOXGHG WKDW [A LV IDU IURP WKH VROXWLRQ 7KH GHULYDWLYH RI D HDFK FRPSRQHQW RI KA LQ f ZLWK UHVSHFW WR S VHW HTXDO WR ]HUR \LHOGV WKH IROORZLQJ WZR SRO\QRPLDOV S S DQG S S 7KH ILUVW SRO\QRPLDO KDV FRPSOH[ ]HURV LPSO\LQJ WKDW WKH FRRUGLQDWH [A PRYHV DZD\ IURP IRU DOO S DV S LV LQFUHDVHG 7KH VHFRQG SRO\n QRPLDO KDV ]HURV JLYHQ E\ SAOM DQG (TXDWLRQ f ZKLFK LV In[Af7KAnSf EHFRPHV r?M n;M/I S S ZKLFK \LHOGV WKH WZR ]HURV

PAGE 127

SA DQG 7KH ODUJHVW ]HUR LV ZKLFK \LHOGV Krf f7 DQG Itrff ZKLFK VLQFH LW LV HYHQ OHVV WKDQ IKAOff WKLV YDOXH RI S VDWLVILHV Ef IRU DQ\ FA 7KHUHIRUH WKH LWHUDWLRQ LV FRPSOHWH WKDW LV 3T DQG [ KAf f7 )LJXUH VKRZV WKH [A [A SODQH ZLWK HTXLFRQWRXUV RI 5RVHQEURFNfV IXQFWLRQ VKRZQ E\ WKH GDVK FXUYHV 1RWH WKH WKUHH FXUYHV HPDQDWLQJ IURP 7 [ f (DFK RI WKHVH FXUYHV FRUUHVSRQGV WR WKH WUDMHFWRULHV JHQHUDWHG E\ WKH WKUHH WUDQVIRUPDWLRQV f f DQG f DV S LV LQFUHDVHG 2EVHUYH WKDW DOO WUDQVIRUPDWLRQV JLYH [A IRU S EXW WKDW DV S LV LQFUHDVHG WKH\ IROORZ GLIIHUHQW FXUYHV 2EVHUYH WKH VXSHULRULW\ RI WKH IRXUWKRUGHU WUDQVIRUPDWLRQ 1RWH WKDW WKH SURSRVHG VFDODU VHDUFK SURFHGXUH VHOHFWHG D S ZKLFK PDGH FRQVLGHUDEOH SURJUHVV \HW LW QHHGHG RQO\ RQH DGGLWLRQDO IXQFWLRQ HYDOXDWLRQ ,Q )LJ WKH IXQFn WLRQ IKASff LV SORWWHG DV D IXQFWLRQ RI S 2EVHUYH WKDW KDG D VWDQGDUG VFDODU VHDUFK EHHQ XVHG ZKLFK EUDFNHWV WKH PLQLPXP LW ZRXOG KDYH SUREDEO\ FRPSXWHG SA ZKLFK LV RI FRXUVH QRW DV JRRG DV

PAGE 128

)LJXUH 7UDMHFWRULHV IRU WKH VHFRQG WKLUG DQG IRXUWKRUGHU WUDQVn IRUPDWLRQV DW [p f7 IRU WKH PLQLPL]DWLRQ RI 5RVHQEURFNnV IXQFWLRQ f Df SURMHFWHG RQWR WKH ; YV [A SODQH DQG Ef D GLPHQVLRQDO SHUVSHFWLYH YLHZ ZLWK WKH H\H DW I [M ; ZLWK WKH YHUWLFDO D[LV EHLQJ I

PAGE 129

VHFRZ &Enf LVn XH NW A&RAE LWYH Gf

PAGE 130

)LJXUH 3ORW RI IWXSff YV S ZKHUH I LV 5RVHQEURFNnV IXQFWLRQ f DQG -cSf LV JLYHQ E\ f 1RWH WKDW WKH SURn FHGXUH RXWOLQHG IRU WKH VFDODU VHDUFK VHOHFWV S VKRZQ LQ WKH JUDSK

PAGE 131

3T 7KHVH ORFDO PLQLPD FORVH WR S LQ WKH VFDODU VHDUFK RFFXUUHG IUHTXHQWO\ ZLWK WKH KLJKHURUGHU WUDQVIRUPDWLRQV ZKLFK LV DQRWKHU MXVWLILFDWLRQ IRU WKH SURSRVHG VFDODU VHDUFK WHFKQLTXH 1XPHULFDO 5HVXOWV ,Q WKLV VHFWLRQ WKH UHVXOWV RI XVLQJ WKH 92 DOJRULWKP IRU VROYLQJ VHYHUDO WHVW SUREOHPV ZLOO EH SUHVHQWHG 7KH ILUVW ILYH SUREOHPV FKRVHQ DUH XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHPV WKDW DUH ZLGHO\ XVHG LQ WKH OLWHUDWXUH DQG WKXV WKH SHUIRUPDQFH RI WKH 92 DOJRULWKP LV FRPSDUHG ZLWK RWKHU SRSXODU DOJRULWKPV XVLQJ SXEOLVKHG UHVXOWV 7KHQ VHYHUDO RWKHU WHVW SUREOHPV DUH SUHVHQWHG ZKLFK LOOXVWUDWH HDFK RI WKH SUDFWLFDO DVSHFWV RI WKH FLUFXLW RSWLPL]DWLRQ SUREOHP GHVFULEHG LQ WKLV FKDSWHU $OO RI WKH FRPSXWHU UXQV ZHUH GRQH LQ DQ ,%0 0RGHO FRPn SXWHU XVLQJ WKH 097 V\VWHP VRIWZDUH SDFNDJH 8QOHVV QRWHG WKH GHIDXOW YDOXHV IRU DOO WKH FRQVWDQWV XVHG E\ WKH DOJRULWKP JLYHQ LQ 6HFWLRQ DUH DOZD\V XVHG 6HYHUDO DEEUHYLDWLRQV DUH XVHG LQ VXPPDUL]LQJ WKH UHVXOWV 7R DYRLG UHSHWLWLRQ WKHVH DEEUHYLDWLRQV ZLOO EH H[SODLQHG KHUH 7KH\ DUH 1R ,71 f§ WKH QXPEHU RI LWHUDWLRQV 1R )81 f§ WKH QXPEHU RI IXQFWLRQ HYDOXDWLRQV 1R *5$' f§ WKH QXPEHU RI JUDGLHQW HYDOXDWLRQV 1R +(66 f§ WKH QXPEHU RI KHVVLDQ HYDOXDWLRQV 25'(5 f§ WKH RUGHU RI WKH WUDQVIRUPDWLRQ IXQFWLRQ VHOHFWHG fN [ f§ WKH H[DFW VROXWLRQ RI WKH PLQLPL]DWLRQ SUREOHP EHLQJ VROYHG [ f§ WKH DSSUR[LPDWLRQ FRPSXWHG E\ WKH DOJRULWKP

PAGE 132

5RVHQEURFN7V 3UREOHP 5RVHQEURFNnV SUREOHP >@ ZDV LQWURGXFHG HDUOLHU WR LOOXVWUDWH RQH LWHUDWLRQ RI WKH 92 DOJRULWKP 7KH SUREOHP LV JLYHQ E\ PLQLPL]H I[f [ [f [A f [ b ZLWK LQLWLDO YDOXHV JLYHQ E\ fA DQG I[Af UE nE DQG ZLWK PLQLPXP YDOXHV JLYHQ E\ r 7 N [ f DQG I[ f 7DEOH VXPPDUL]HV WKH UHVXOWV RI XVLQJ WKH 92 DOJRULWKP WR VROYH WKLV SUREOHP ZLWK WKUHH GLIIHUHQW YDOXHV RI WKH RSWLRQ 0$;$9 2EVHUYH WKDW ZKLOH WKH DOJRULWKP JHQHUDWHV DOPRVW LGHQWLFDO VHTXHQFHV ZKHQ IDU IURP WKH VROXWLRQ UHJDUGOHVV RI WKH YDOXH RI 0$;$9 LQ WKH YLFLQLW\ RI ‘N [ WKH PRUH LQIRUPDWLRQ DERXW WKH IXQFWLRQ WKDW LV VXSSOLHG WKH EHWWHU WKH FRQYHUJHQFH EHKDYLRU D SURSHUW\ ZKLFK ZDV H[SHFWHG 7KHVH UHVXOWV DOVR LQGLFDWH WKDW WKH KLJKHURUGHU WUDQVIRUPDWLRQ IXQFWLRQV ZHUH VHOHFn WHG LQ PRVW LWHUDWLRQV )LJXUH VKRZV WKH HQWLUH WUDMHFWRU\ LQ WKH [ YV [A SODQH IURP WKH LQLWLDO SRLQW [Ar WR [A ZKLFK LV LQ WKH QHLJK r ERUKRRG RI [ 7KH SORW LV IRU 0$;$9 DQG RQH HTXLFRQWRXU RI WKH IXQFWLRQ LV VKRZQ LQ GDVK FXUYHV (DFK [ IURP N WR N FRP SXWHG E\ WKH DOJRULWKP LV QRWHG LQ WKH ILJXUH 7KH WUDMHFWRU\ EHWZHHQ

PAGE 133

7$%/( 5HVXOWV IRU 5RVHQEURFNnV SUREOHP ZLWK Df WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV VXSSOLHG 0$;$9 f Ef WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV VXSSOLHG 0$;$9 f DQG Ff RQO\ WKH IXQFWLRQ YDOXHV VXSSOLHG 0$;$9 f 1RWH WKDW WKH ]HUR JLYHQ IRU WKH HLJKWK LWHUDWLRQ LQ Df ZDV DFWXDOO\ D SULQWHG UHVXOW 7KH FRPSXWHU WLPHV UHTXLUHG ZHUH VHFRQGV IRU Df VHFRQGV IRU Ef DQG VHFRQGV IRU Ff Df N &RXQWHUV 1R 1R )81 *5$' 1R +(66 25'(5 ,, [NB[ ,, U?M I?M 22 e[NfI[rf [H f§ [Oa [OB O[O2 [Oa [Oa O[Oa [Oa ,[Of

PAGE 134

7$%/( FRQWLQXHGf Ef N f&RXQWHUVf§ 1R 1R )81 *5$' 25'(5 ,, [N[ ,, R} A RR I[NfI[rf nE D LL ULN! Q f§ [Oa [Oa [Of [Of [ [Oa [Oa Ff &RXQWHUV 1R N )81 25'(5 rr L "[ r I[NfI[rf __ I n [Nf __ nE f§ [Oa [Oa O[O2 [Oa R [ [Oa [ [ [O

PAGE 135

)LJXUH 7UDMHFWRU\ RI 92 DOJRULWKP IRU WKH PLQLPL]DWLRQ RI 5RVHQEURFNnV IXQFWLRQ f fA f7 0LQLPXP LV [ [r Of7 U?M

PAGE 136

N HDFK [ DV D IXQFWLRQ RI S LV DOVR VKRZQ 2EVHUYH WKDW HDFK WUDMHF b WRU\ WHQGV WR IROORZ WKH IXQFWLRQ FRQWRXUV 3RZHOOnV 3UREOHP 7KH SUREOHP PLQLPL]H I[f [ [ff [B[f [f [ff [[f b = =r f ZDV RULJLQDOO\ SURSRVHG E\ 3RZHOO >@ 7KH LQLWLDO YDOXHV DUH [r f7 DQG I[rf DQG WKH PLQLPXP YDOXHV DUH [ fA DQG I[ f Y b $ 7KLV IXQFWLRQ KDV D VLQJOXDU SRVLWLYH VHPLGHILQLWHf KHVVLDQ DW [ [ n;M nK 7KXV IURP WKH FRQYHUJHQFH DQDO\VLV RI 6HFWLRQ WKH 92 DOJRULWKP r FRQYHUJHV WR [ OLQHDUO\ RUGHU HTXDO WR RQHf 7KH OLQHDU FRQYHUJHQFH LV LQGHHG YHULILHG E\ WKH UHVXOWV VXPPDUL]HG LQ 7DEOH ,Q FRPSDULn VRQ ZLWK WKH UHVXOWV IRU 5RVHQEURFNnV SUREOHP LQ 7DEOH WKH GLIn IHUHQW UDWHV RI FRQYHUJHQFH FDQ EH FOHDUO\ GLVFHUQHG +RZHYHU ZKLOH B r WKH SRLQW RI FRQYHUJHQFH LV ZLWKLQ IURP [ ZKLFK LV QRW DV FORVH DV WKH FRQYHUJHQFH SRLQW IRU 5RVHQEURFNnV SUREOHP WKH ILQDO IXQFWLRQ DQG JUDGLHQW YDOXHV DUH TXLWH FORVH WR WKHLU PLQLPXP YDOXHV 7KH FRPn SXWHU WLPHV UHSRUWHG LQ 7DEOH LOOXVWUDWH WKH GLIILFXOW\ LQ WLPLQJ VPDOO LQWHUYDOV RI FRPSXWHU WLPH :KLOH WKH 92 DOJRULWKP UHTXLUHG WKH

PAGE 137

7$%/( 5HVXOWV IRU 3RZHOOnV SUREOHP ZLWK Df WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV VXSSOLHG 0$;$9 f Ef WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV VXSSOLHG 0$;$9 f DQG Ff RQO\ WKH IXQFWLRQ YDOXHV VXSSOLHG 0$;$9 f 7KH FRPSXWHU WLPHV UHTXLUHG ZHUH VHFRQGV IRU Df VHFRQGV IRU Ef DQG VHFRQGV IRU Ff Df N &RXQWHUV 1R 1R )81 *5$' 1R +(66 25'(5 Qr\ Qa N r I[ fI[ f ,, InrNf ,/ f§ [Oa O[O2 [OB [Oa [O &2 R + ; Uf§ 21 O[O2 [O [O Ef f§&RXQWHUVf§ 1R 1R N )81 *5$' 25'(5 ,, rN[r ,, r n< I?M RR I[NfI[rf ,, en[Nf ,, n;M n;M 22 [O2a [O2 [Oa [O2a ,[OB [Oa [ [OB [B Ff &RXQWHUV 1R N )81 25'(5 ,, ;N[r ,, 0 U?M U?M FR N r I[ fI[ f n8 2L QUN! nL [Oa [O [Oa O[O2 [OB [Oa R Wf§ ; LQ [ f [Oa

PAGE 138

VDPH QXPEHU RI LWHUDWLRQV ZKHWKHU 0$;$9 ZDV HTXDO WR RU WKH FRPn SXWHU WLPH ZDV PHDVXUHG WR EH OHVV ZKHQ 0$;$9 7KLV UHODWLRQVKLS LQ WKH FRPSXWHU WLPHV ZDV QRW H[SHFWHG 7KH UHDVRQ IRU WKH GLVFUHSDQF\ LV SUREDEO\ GXH WR H[SHULPHQWDOO\ REVHUYHG UDQGRP HUURUV LQ WLPLQJ VPDOO LQWHUYDOV RI WLPH LQ WKH ,%0 0RG FRPSXWHU ZLWK WKH V\VWHP VRIWZDUH SDFNDJH XVHG >@ )OHWFKHU DQG 3RZHOOnV 3UREOHP 7KH SUREOHP PLQLPL]H I[f >[ fA 5 fA@ [L" f A [ ZKHUH WW WW WDQ A[A[Af WW f A D 9 5 r rM [f ZDV SURSRVHG E\ )OHWFKHU DQG 3RZHOO >@ 7KH IXQFWLRQ KDV D VWHHS KHOLFDO YDOOH\ 7KH LQLWLDO YDOXHV DUH 7 [ f? DQG I[ f n9 DQG WKH PLQLPXP YDOXHV DUH [ f7 DQG I[ f nE nE 7KLV IXQFWLRQ LV QRW GHILQHG DW WKH SRLQWV [ [Af IRU DQ\

PAGE 139

YDOXH RI [A )XUWKHUPRUH D FRQWLQXRXV GHILQLWLRQ LV QRW SRVVLEOH 7KXV WKH VXIILFLHQW FRQGLWLRQV IRU WKH JOREDO FRQYHUJHQFH RI WKH 92 DOJRULWKP DUH QRW PHW +RZHYHU DV WKH UHVXOWV VXPPDUL]HG LQ 7DEOH -T VKRZ WKH DOJRULWKP FRQYHUJHV +RZHYHU REVHUYH WKDW [ PRYHV IXUWKHU $ DZD\ IURP [ LQLWLDOO\ $SSDUHQWO\ WKLV EHKDYLRU LV GXH WR WKH SUHn YLRXVO\ PHQWLRQHG GLVFRQWLQXLWLHV DQG WKH IDFW WKDW WKH KHVVLDQ KDV RQH ODUJH QHJDWLYH HLJHQYDOXH RYHU WKH ILUVW IRXU LWHUDWLRQV 7KLV ODUJH QHJDWLYH HLJHQYDOXH LV UHIOHFWHG LQ D ODUJH GLDJRQDO HOHPHQW RI LF WKH PDWUL[ FRPSXWHG GXULQJ WKH IDFWRUL]DWLRQ GHVFULEHG LQ 6HFWLRQ n; IRU WKH ILUVW IRXU LWHUDWLRQV :RRGnV 3UREOHP 7KH SUREOHP PLQLPL]H I[f [f [f ‘ O[f[ [f [fA nY [ b O>[ f [ f@ [ f[ f f ZDV SURSRVHG E\ &) :RRG LQ D VWXG\ UHSRUWHG E\ &ROYLOOH >@ 7KH LQLWLDO YDOXHV DUH [r f7 DQG I[rf DQG WKH PLQLPXP YDOXHV DUH [ f7 DQG I[ f U?M J 7KLV IXQFWLRQ KDV D VDGGOH SRLQW DW DSSUR[LPDWHO\ WKH SRLQW [ [

PAGE 140

7$%/( 5HVXOWV IRU )OHWFKHU DQG 3RZHOOnV KHOLFDO YDOOH\ SUREOHP 3DUW Df LV IRU WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ VXSSOLHG 0$;$9 f Ef LV IRU WKH IXQFWLRQ DQG WKH JUDn GLHQW VXSSOLHG 0$;$9 f DQG Ff LV IRU RQO\ WKH IXQFWLRQ YDOXHV VXSSOLHG 0$;$9 f 7KH FRPSXWHU WLPHV UHTXLUHG ZHUH VHFRQGV IRU Df VHFRQGV IRU Ef DQG VHFRQGV IRU Ff Df N &RXQWHUV 1R 1R )81 *5$' 1R +(66 25'(5 ,, N r __ [ B[ D I[NfI[rf n9 Q ,, IrN! ,, 0 I?M U?M &2 f§ [O2a [ [O2a [ [ O[OB Ef N &RXQWHUVf§ 1R 1R )81 *5$' 25'(5 ,, rNrr ,, N r I[ fI[ f n9L n9 ,, I f [Nf ,, U?M 2L [Of [O [Oa [O [Oa [OB Ff &RXQWHUV 1R N )81 25'(5 [Na[ I[NfI[rf I?M I?M Yf§A [O2f [O [O [ [ [

PAGE 141

ZKHUH [ n; V LV JLYHQ E\ V ; 7KH PDJQLWXGH RI WKH JUDGLHQW DW [6 VDWLVILHV ,, In[6f __ [ 2 U?M U?M ,, RR V V DQG WKH KHVVLDQ I[ f LV LQGHILQLWH 7KH IXQFWLRQ YDOXH LV IL[ f D Q nXnQ 7DEOH VXPPDUL]HV WKH UHVXOWV IRU WKH FODVVLFDO 7 VWDUWLQJ SRLQW [ f 7KH DOJRULWKP ZDV QRW DIIHFWHG n9r E\ WKH VDGGOH SRLQW IRU WKLV LQLWLDO SRLQW +RZHYHU IRU WKH LQLWLDO SRLQW [p f7 V ZKLFK LV YHU\ FORVH WR WKH VDGGOH SRLQW [ WKH 92 DOJRULWKP UHTXLUHV VXEVWDQWLDOO\ PRUH LWHUDWLRQV WR FRQYHUJH WR [ DV WKH UHVXOWV VXPPDU L]HG LQ 7DEOH VKRZ 2EVHUYH WKDW LQLWLDOO\ WKH DOJRULWKP WHQGV WR EH DWWUDFWHG WR WKH VDGGOH SRLQW EXW WKDW LW H[WULFDWHV LWVHOI fN IURP WKLV QHLJKERUKRRG WR HYHQWXDOO\ FRQYHUJH WR [ 7KH SURJUDP GHVFULEHG LQ $SSHQGL[ DOVR LQFOXGHV DV RSWLRQV WKH VWHHSHVW GHVFHQW DOJRULWKP >@ WKH FRQMXJDWH JUDGLHQWV DOJRULWKP RI )OHWFKHU DQG 5HHYHV >@ DQG WKH TXDVL1HZWRQ DOJRULWKP RI )OHWFKHU DQG 3RZHOO >@ )URP WKH LQLWLDO JXHVV LQ WKH QHLJKERUKRRG RI WKH VDGGOH ?MW SRLQW DOO RI WKHVH DOJRULWKPV DV LPSOHPHQWHG E\ WKLV SURJUDP FRQn YHUJHG WR WKH VDGGOH SRLQW ,W VKRXOG EH QRWHG WKDW WKH LPSOHPHQWDn WLRQV RI WKHVH DOJRULWKPV LQ WKLV SURJUDP FRQYHUJH IRU RWKHU FODVVLFDO

PAGE 142

7$%/( 5HVXOWV IRU :RRGnV SUREOHP 3DUW Df LV IRU WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ VXSSOLHG 0$;$9 f Ef LV IRU WKH IXQFWLRQ DQG WKH JUDGLHQW VXSSOLHG 0$;$9 f DQG Ff LV IRU RQO\ WKH IXQFWLRQ YDOXHV VXSSOLHG 0$;$9 f 7KH FRPSXWHU WLPHV UHTXLUHG ZHUH VHFRQGV IRU Df VHFRQGV IRU Ef DQG VHFRQGV IRU Ff Df N &RXQWHUV 1R 1R )81 *5$' 1R +(66 25'(5 L rrr I[NfI[rf b ,, enVN! ,, f§ [O [Oa [Oa [ [O FR R U+ OR [Oa [Oa Ef f§&RXQWHUVf§ 1R 1R N )81 *5$' 25'(5 ,, [N[ ,, U?M U?M 22 __ In [Nf __ U?M 2} [Oa [Oa [Oa ORn [ O[O2 Ff &RXQWHUV 1R N )81 25'(5 ,, rNf ,, Y Q f ,, I f &[Nf __ R} n;M O[O2 [O [Oa O[O2 [ [O

PAGE 143

7$%/( 5HVXOWV IRU :RRGnV SUREOHP ZLWK LQLWLDO SRLQW LQ WKH QHLJKERUKRRG RI LWV VDGGOH SRLQW 7KHVH UHVXOWV DUH IRU 0$;$9 WKH IXQFWLRQ DQG WKH JUDGLHQW VXSSOLHGf 7KH EHKDYLRU ZDV VLPLODU IRU RWKHU 0$;$9 VHWWLQJV N &RXQWHUV 1R 1R )81 *5$' 25'(5 ,, [N[ ,, N r I[ ff§I[ f n; n;M ,, In$ ,, A r?M RR f§ [OB [ [Oa [On LR [ [Oa

PAGE 144

SUREOHPV LQ WKH VDPH PDQQHU DV UHSRUWHG LQ WKH OLWHUDWXUH 7KXV LW DSSHDUV WKDW WKH FRQYHUJHQFH WR WKH VDGGOH SRLQW RI WKHVH DOJRULWKPV LV QRW GXH WR WKLV SDUWLFXODU LPSOHPHQWDWLRQ &UDJJ DQG /HY\nV 3UREOHP 7KH SUREOHP [ PLQLPL]H I[f H [ff [R[ff WDQ [f[f nY [ b [p[Of f ZDV SURSRVHG E\ &UDJJ DQG /HY\ >OO@ 7KH LQLWLDO YDOXHV DUH [r f7 DQG I[rf L?L D DQG WKH PLQLPXP YDOXHV DUH [r f7 DQG I[rf 7M D ‘N 7KLV IXQFWLRQ KDV D VLQJXODU SRVLWLYH VHPLGHILQLWHf KHVVLDQ DW [ [ 7KH UHVXOWV REWDLQHG E\ XVLQJ WKH 92 DOJRULWKP DUH VXPPDUL]HG LQ 7DEOH 2EVHUYH WKDW WKH JUDGLHQW DQG WKH KHVVLDQ RI WKLV IXQFWLRQ KDYH WHUPV LQYROYLQJ H[SRQHQWLDOV WULJRQRPHWULF IXQFWLRQV DQG WHUPV UDLVHG WR ODUJH SRZHUV 7KHVH WHUPV FDXVH WKH DSSUR[LPDWLRQV WR WKH KHVVLDQ DQG WKH JUDGLHQW WR EH OHVV DFFXUDWH WKDQ IRU WKH SUHYLRXV IXQFWLRQV 7KLV LQDFFXUDF\ LV PDQLIHVWHG LQ WKH UHVXOWV VLQFH WKH\ DUH VRPHZKDW VHQVLWLYH WR ZKHWKHU WKH JUDGLHQW DQG WKH KHVVLDQ DUH VXSSOLHG 7KXV

PAGE 145

7$%/( 5HVXOWV IRU &UDJJ DQG /HY\nV SUREOHP ZLWK Df WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV VXSSOLHG 0$;$9 f Ef WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV VXSSOLHG 0$;$9 f DQG Ff RQO\ WKH IXQFWLRQ YDOXHV VXSSOLHG 0$;$9 f 7KH FRPSXWHU WLPHV UHTXLUHG ZHUH VHFRQGV IRU Df VHFRQGV IRU Ef DQG VHFRQGV IRU Ff Df N &RXQWHUV 1R 1R )81 *5$' 1R +(66 25'(5 ,, N r L ; ; 0 rE rE I[NfI[rf nE 2} ,, If[Nf __UR D Y f§ R rf§ ; &0 [O2a [O2a [ [Oa Ef f§&RXQWHUVf§ 1R 1R N )81 *5$' 25'(5 ,, [N[r __ r I?M 2L n RR I[NfI[ f nE 2U ,, In [Nf ,, D} rE 22 [ [ [ [ f [ [ [ Ff &RXQWHUV 1R N )81 25'(5 ,, rN[r ,, 0 2L rE I[NfI[rf nE nE ,, In[Nf __ b U?M 22 [ ; [O [ [ [

PAGE 146

LW LV FRQMHFWXUHG WKDW LW ZDV D PDWWHU RI FKDQFH WKDW WKH 92 DOJRULWKP UHTXLUHG IHZHU LWHUDWLRQV ZKHQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV ZHUH VXSSOLHG 0$;$9 f WKDQ ZKHQ WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV ZHUH VXSSOLHG 0$;$9 f &RPSDULVRQV ZLWK 6HYHQ 0LQLPL]DWLRQ $OJRULWKPV 3XEOLVKHG UHVXOWV ZLOO EH XVHG WR FRPSDUH VHYHQ SRSXODU DOJRULWKPV ZLWK WKH 92 DOJRULWKP 7KH H[LVWLQJ DOJRULWKPV ZKLFK ZLOO EH XVHG LQ WKH FRPSDULVRQV DUH WKH IROORZLQJ )5 f§ )OHWFKHU DQG 5HHYHV >@ FRQMXJDWH JUDGLHQWV IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSSOLHGf ')3 f§ 'DYLGRQ >@ )OHWFKHU DQG 3RZHOO >@ TXDVL1HZWRQ ZLWK UDQN WZR XSGDWHV IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSSOLHGf % f§ %UR\GHQ >@ TXDVL1HZWRQ ZLWK UDQN RQH XSGDWHV IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSSOLHGf ) f§ )OHWFKHU >@ TXDVL1HZWRQ ZLWK D FRPELQDWLRQ RI UDQN RQH DQG UDQN WZR XSGDWHV IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSn SOLHGf 3 f§ 3RZHOO >@ FRQMXJDWH GLUHFWLRQV IXQFWLRQ YDOXHV DUH VXSn SOLHGf 6 f§ 6WHZDUW >@ ')3 DOJRULWKP ZLWK JUDGLHQWV DSSUR[LPDWHG E\ D GLIIHUHQFH VFKHPH IXQFWLRQ YDOXHV DUH VXSSOLHGf & f§ &XOOXP >@ % DOJRULWKP ZLWK WKH JUDGLHQW DSSUR[LPDWHG E\ D GLIIHUHQFH VFKHPH IXQFWLRQ YDOXHV DUH VXSSOLHGf $OPRVW DOO WKH UHVXOWV IRU WKH DERYH DOJRULWKPV RQ WKH SUHFHGLQJ ILYH WHVW SUREOHPV 6HFWLRQV WKURXJK f DUH REWDLQHG IURP D

PAGE 147

FRPSDUDWLYH VWXG\ SXEOLVKHG E\ +LPPHOEODX >O@ 7KH H[FHSWLRQV DUH WKH IROORZLQJ 7KH & DOJRULWKP ZDV QRW FRPSDUHG LQ >@ DQG WKXV &XOOXPnV UHVXOWV DUH XVHG IRU WKUHH RI WKH ILYH SUREOHPV WKH UHVXOWV IRU 5RVHQEURFNnV SUREOHP ZHUH QRW WDEXODWHG LQ >@ DQG WKXV WKH UHVXOWV TXRWHG LQ WKH RULJLQDO SXEOLFDWLRQ RI WKH DOJRULWKP DUH XVHG RU WKH UHVXOWV SXEOLVKHG E\ 6DUJHQW DQG 6HEDVWLDQ >@ DUH XVHG ZKLFKn HYHU ZHUH PRVW IDYRUDEOH WR WKH DOJRULWKPV ,Q RUGHU WR JLYH D IDLU FRPSDULVRQ DOO DOJRULWKPV VKRXOG EH FRPn SDUHG RQ WKH EDVLV WKDW D VLPLODU DFFXUDF\ RI WKH ILQDO SRLQW RI FRQn YHUJHQFH ZDV REWDLQHG ,W ZDV HVWLPDWHG WKDW WKH UHVXOWV JLYHQ IRU WKH H[LVWLQJ DOJRULWKPV ZHUH IRU D WHUPLQDWLRQ ZLWK PD[LPXP QRUP RI WKH JUDGLHQW OHVV WKDQ 7KXV 7DEOH VXPPDUL]HV WKH UHVXOWV RI WKH 92 DOJRULWKP IRU WKH ILYH WHVW SUREOHPV ZLWK WKLV WHUPLQDWLRQ 673(36 VHW WR [ f 7KH ILQDO FRXQWHUV IRU WKH FDVH ZKHQ WKH KHVVLDQ WKH JUDGLHQW DQG WKH IXQFWLRQ YDOXHV DUH DOO VXSSOLHG LV LQFOXGHG LQ WKH WDEOH DOWKRXJK WKLV RSWLRQ LV QRW FRPSDUHG ZLWK DQ\ DOJRULWKP 7DEOH JLYHV WKH UHVXOWV RI WKH FRPSDULVRQV 7KH WDEOH VKRZV WKH QXPEHU RI LWHUDWLRQV WKH QXPEHU RI IXQFWLRQ HYDOXDWLRQV DQG WKH QXPEHU RI JUDGLHQW HYDOXDWLRQV IRU WKH DOJRULWKPV WKDW XVH VXSSOLHG JUDGLHQWVf IRU HDFK DOJRULWKP LQFOXGLQJ WKH 92 DOJRULWKP :LWK RQH H[FHSWLRQ WKH SURSRVHG DOJRULWKP UHTXLUHG VXEVWDQWLDOO\ IHZHU LWHUDn WLRQV WR DFKLHYH FRQYHUJHQFH 7KH H[FHSWLRQ ZDV IRU WKH KHOLFDO YDOOH\ SUREOHP RI 6HFWLRQ ,Q IDFW IRU WKH KHOLFDO YDOOH\ SUREOHP WKH 92 DOJRULWKP ZDV QRW DV HIILFLHQW LQ JHQHUDO DV PDQ\ RI WKH RWKHU DOJRn ULWKPV SHUKDSV GXH WR WKH GLVFRQWLQXLWLHV GLVFXVVHG LQ 6HFWLRQ +LPPHOEODX >O@ UDWHG WKH ) DOJRULWKP DV WKH EHVW RI WKRVH FRPSDUHG LQ

PAGE 148

7$%/( 6XPPDU\ RI UHVXOWV IRU WKH 92 DOJRULWKP ZLWK 673(36 VHW WR 7KH VHWWLQJ RI 0$;$9 LQGLFDWHV WKDW WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV DUH VXSSOLHG LI HTXDO WR WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV DUH VXSSOLHG LI HTXDO WR DQG RQO\ WKH IXQFWLRQ YDOXHV DUH VXSSOLHG LI HTXDO WR 7KH SRLQW [ LV WKH FRQYHUJHQFH SRLQW 3UREOHP f§&RXQWHUV LQ 1R 1R 1R 1R ,, e[ cA I[fI[ f ,, I "! / 6HFWLRQ 0$;$9 ,71 )81 *5$' +(66 n;L !;L n;L n;L [Oa [O2 [Oa O[O2 [O2 [Oa [Oa [O [O O[O2 [O [Oa O[O2 [O [O O[O2 [O2 [O [Oa [O2 [O [O [O [O O[O2 [O2 [O O[O2 [O8 O[O2 O[O2 O[O2 O[O2 [O2 O[O2 [O [O [O2 [O [O [O O[O2 [O [O2 [O

PAGE 149

7$%/( 5HVXOWV RI FRPSDULVRQV RI WKH 92 DOJRULWKP ZLWK VHYHQ RWKHU H[LVWLQJ DOJRULWKPV IRU WKH PLQLPL]DWLRQ RI ILYH VWDQGDUG WHVW SUREOHPV 3UREOHP LQ 6HFWLRQ &RXQWHU $OJRULWKPV ZLWK VXSSOLHG IXQFWLRQV DQG JUDGLHQWV )5 ')3 % ) 92 $OJRULWKPV IXQFWLRQV 3 6 ZLWK RQO\ VXSSOLHG & 92 1R ,71 1R )81 1R *5$' 1R ,71 1R )81 1R *5$' 1R ,71 1R )81 1R *5$' 1R ,71 1R )81 1R *5$' 1R ,71 1R )81 1R *5$'

PAGE 150

WKH VWXG\ &OHDUO\ WKH 92 DOJRULWKP ZDV PRUH HIILFLHQW WKDQ WKH ) DOJRULWKP LQ WHUPV RI WKH QXPEHU RI LWHUDWLRQV DQG LQ WHUPV RI WKH QXPEHU RI IXQFWLRQ DQG JUDGLHQW HYDOXDWLRQV UHTXLUHG LQ IRXU RI WKH ILYH SUREOHPV WHVWHG ([DPSOH ZLWK 1RQOLQHDU &RQVWUDLQWV 7KH WHVW SUREOHP LV JLYHQ E\ PLQLPL]H I[f [ fA [f fA f A  ; VXEMHFW WR X[f [ [f D f§ X [f [ [ R f§ r r $ r 7KH VROXWLRQ LV DW [ f I[ f DQG X[ f Xf[ f R D D D 7KHUHIRUH WKH VROXWLRQ LV DW WKH ERXQGDU\ RI WKH IHDVLEOH UHJLRQ 7KH SUREOHP ZLOO EH DSSUR[LPDWHG ZLWK ERWK WKH FXELF SHQDOW\ IXQFWLRQ PHWKRG JLYHQ E\ a PLQLPL]H I[f I[f SPD[>X[f@f SPD[>Xf[f@f A 2} A n,I r f DQG WKH TXDGUDWLF SHQDOW\ IXQFWLRQ PHWKRG JLYHQ E\ a PLQLPL]H I[f I[f SLPD[&2M8[f@f SPD[>Xf[f@f R R OD D A f 7KH LQLWLDO SRLQW LV

PAGE 151

7 [ f b 7DEOH VXPPDUL]HV WKH UHVXOWV IRU WZR YDOXHV RI S DQG IRU 673(36 ‘r 1RWH WKDW LQ JHQHUDO WKH FXELF SHQDOW\ IXQFWLRQ f UHTXLUHV PRUH HIIRUW WR VROYH WKDQ WKH TXDGUDWLF RQH f $OVR IRU HTXDO YDOXHV RI S WKH VROXWLRQ FRPSXWHG YLRODWHV WKH FRQVWUDLQWV PRUH ZLWK WKH FXELF SHQDOW\ WKDQ ZLWK WKH TXDGUDWLF RQH ,W LV FRQMHFWXUHG WKDW ERWK RI WKHVH FKDUDFWHULVWLFV ZLOO DOZD\V EH SUHVHQW IRU DQ\ RWKHU SUREOHP 2EVHUYH WKDW ZLWK WKH KHVVLDQ DYDLODEOH IRU S DQG ZLWK WKH TXDGUDWLF SHQDOW\ IXQFWLRQ WKH DOJRULWKP FRXOG QRW FRQYHUJH WR WKH GHVLUHG DFFXUDF\ 673(36 ZDV rf ,W DSSHDUV WKDW WKH GLVn FRQWLQXLWLHV RI WKH KHVVLDQ IRU WKH TXDGUDWLF SHQDOW\ IXQFWLRQ DIIHFWHG WKH DOJRULWKP LQ WKLV FDVH 7KH GLIIHUHQFH EHWZHHQ WKH WZR W\SHV RI SHQDOW\ IXQFWLRQV PDQLn IHVWHG LWVHOI HYHQ PRUH ZKHQ SUREOHPV f DQG f ZHUH VROYHG LQ D VHTXHQFH RI XQFRQVWUDLQHG PLQLPL]DWLRQV IRU LQFUHDVLQJO\ ODUJHU YDOXHV RI S :H VWDUWHG ZLWK S DQG XVHG WKH 92 DOJRULWKP WR REWDLQ D URXJK DSSUR[LPDWLRQ WR WKH VROXWLRQ RI SUREOHPV f DQG f 7DNLQJ WKLV DSSUR[LPDWH VROXWLRQ DV WKH LQLWLDO SRLQW D URXJK DSSUR[Ln PDWLRQ WR WKH VROXWLRQ RI SUREOHPV f DQG f ZDV VLPLODUO\ FRPSXWHG EXW WKLV WLPH IRU S 7KH SURFHGXUH ZDV UHSHDWHG IRU S DQG IRU S +RZHYHU WKH GHVLUHG DFFXUDF\ RI WKH DSSUR[ LPDWH VROXWLRQ ZDV WLJKWHQHG IRU S 673(36 f 7KH UHVXOWV DUH VXPPDUL]HG LQ 7DEOH 7KH DFFXUDF\ RI WKH ILQDO VROXWLRQ ZDV HTXLYDOHQW WR WKH UHVXOWV IRU S LQ 7DEOH 7KH UHVXOWV RI 7DEOH ZKHQ FRPSDUHG WR WKH UHVXOWV RI 7DEOH LQGLFDWH WKDW SUREOHP f ZLWK WKH TXDGUDWLF SHQDOW\ ZDV PXFK PRUH HIILFLHQWO\

PAGE 152

7$%/( 6XPPDU\ RI UHVXOWV IRU WKH FRQVWUDLQHG SUREOHP f ZLWK WZR GLIIHUHQW SHQDOW\ IXQFWLRQV DQG WZR GLIIHUHQW FRQVWDQWV S PXOWLSO\LQJ WKH SHQDOW\ WHUPV Df 7KH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ DUH VXSSOLHG 0$;$9 f Ef 7KH IXQFWLRQ DQG WKH JUDGLHQW DUH VXSSOLHG 0$;$9 f Ff 2QO\ WKH IXQFWLRQ LV VXSSOLHG 0$;$9 f Df 3 3HQDOW\ IXQFWLRQ &RXQWHUV 1R 1R 1R 1R ,71 )81 *5$' +(66 &r WW !‘f§n fL"! f! 4XDGUDWLF [ &XELF [O LR 4XDGUDWLF [Oa [O2 &XELF [Oa [Oa [Oa Ef 9 3HQDOW\ IXQFWLRQ &RXQWHUV 1R 1R 1R ,71 )81 *5$' ,, I n rf ,, 0 I?M Q2 X [f A XA 4XDGUDWLF [ &XELF O[O2 4XDGUDWLF [OB [Oa [Oa &XELF O[O2 [Oa [Of

PAGE 153

7$%/( FRQWLQXHGf Ff S 3HQDOW\ IXQFWLRQ &RXQWHUV 1R 1R ,71 )81 ,I eV! ,/ XO[f XA 4XDGUDWLF [O &XELF [Oa LR 4XDGUDWLF O[O2 [Oa [OB &XELF O[O2 [Oa [Oa

PAGE 154

7$%/( 6XPPDU\ RI UHVXOWV REWDLQHG E\ VROYLQJ SUREOHPV f DQG f E\ D VHTXHQFH RI PLQLPL]DWLRQV ZLWK FRQVWDQW \ VHW WR A A DQG A ,I 0$;$9 LV RQO\ IXQFWLRQ IDOXHV DUH VXSSOLHG ,I 0$;$9 LV IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSSOLHG ,I 0$;$9 LV IXQFWLRQ JUDGLHQW DQG KHVVLDQ YDOXHV DUH VXSSOLHG 3UREOHP 0$;$9 1R 1R ,71 )81 0$;$9 1R 1R ,71 )81 1R *5$' 1R ,71 0$;$9 1R 1R )81 *5$' 1R +(66 4XDGUDWLF SHQDOW\ f &XELF SHQDOW\ f

PAGE 155

VROYHG E\ D VHTXHQFH RI PLQLPL]DWLRQV WKDQ E\ RQH PLQLPL]DWLRQ ZLWK WKH ODUJH YDOXH RI \ WKH RSSRVLWH ZDV WUXH IRU WKH FXELF SHQDOW\ IXQFWLRQ ,W ZDV DOVR HYLGHQW IURP WKH UHVXOWV WKDW HDFK PLQLPL]DWLRQ ZLWK WKH FXELF SHQDOW\ IXQFWLRQ ZDV YHU\ GLIILFXOW ZKLFK LPSOLHV WKDW \ PLJKW KDYH WR EH LQFUHDVHG DW D VORZHU UDWH ZKHQ WKLV SHQDOW\ IXQFn WLRQ LV XVHG ([DPSOH ZLWK %R[ &RQVWUDLQWV 7KH WHVW SUREOHP SURSRVHG E\ 5RVHQEURFN >@ JLYHQ E\ PLQLPL]H I[f [ [AfA [ f b -/ [ ZDV VROYHG ZLWK VHYHUDO VHWV RI ER[ FRQVWUDLQWV 2QH RI WKHVH VHWV LV JLYHQ E\ [ 5RVHQEURFNnV SUREOHP f KDV WZR ORFDO PLQLPD ZLWK WKLV VHW RI ER[ FRQVWUDLQWV :LWK WKH LQLWLDO SRLQW 7 [8 f WKH 92 DOJRULWKP FRQYHUJHV WR [ f7 I[f

PAGE 156

DQG In[f [ a f7 b UHTXLULQJ LWHUDWLRQV IXQFWLRQ JUDGLHQW DQG KHVVLDQ HYDOX DWLRQV :LWK WKH LQLWLDO SRLQW 7 [ f WKH 92 DOJRULWKP FRQYHUJHV WR WKH XQFRQVWUDLQHG PLQLPXP 7 ,f n; UHTXLULQJ LWHUDWLRQV IXQFWLRQ JUDGLHQW DQG KHVVLDQ HYDOX DWLRQV 7KH VHW RI ER[ FRQVWUDLQWV JLYHQ E\ [O B B B LOOXVWUDWHV WKH SRVVLELOLW\ RI FUHDWLQJ ZKDW LQ HIIHFW LV D VDGGOH SRLQW 7KH SRLQW [r f7 DW ZKLFK WKH JUDGLHQW LV If[f f7 LV D VDGGOH SRLQW VLQFH WKH JUDGLHQW LQGLFDWHV WKDW DQ\ GLUHFWLRQ G

PAGE 157

IURP [ VXFK WKDW IL[f b n9 G LV VDWLVILHG SRLQWV WRZDUGV WKH RXWVLGH RI WKH ER[ FRQVWUDLQWV WKHUHn IRUH DQ\ W\SLFDO JUDGLHQW PHWKRG VXFK DV VWHHSHVW GHVFHQW ZLOO VWRS DW WKLV SRLQW 7KLV SKHQRPHQRQ KDV EHHQ FDOOHG MDPPLQJ LQ WKH OLWHUDWXUH >@ +RZHYHU WKH KHVVLDQ LV QRW SRVLWLYH VHPLGHILQLWH IRU DOO SRVn VLEOH IHDVLEOH GLUHFWLRQV DQG WKXV WKH SRLQW LV D VDGGOH SRLQW 7KH PLQLPXP LV FRPSXWHG E\ WKH 92 DOJRULWKP WR EH [ f7 UHTXLULQJ LWHUDWLRQV IXQFWLRQ JUDGLHQW DQG KHVVLDQ HYDOXDn WLRQV ([DPSOH ZLWK (UURUV LQ WKH 6XSSOLHG )XQFWLRQ DQG *UDGLHQW 5RVHQEURFNnV SUREOHP JLYHQ E\ PLQLPL]H I[f [R [f [f Y L L ; D ZDV PLQLPL]HG ZLWK WKH LQWURGXFWLRQ RI UDQGRP HUURUV LQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV DW HDFK LWHUDWLRQ 7KH HUURUV ZHUH JHQHUDWHG DV IROORZV $W HDFK LWHUDWLRQ WKH DFWXDO YDOXH RI WKH IXQFWLRQ UHn WXUQHG ZDV I[Nf I[Nf ) H _I[NfL 2 ID IU Y

PAGE 158

ZKHUH e ID DQG H IU ZHUH UDQGRP QXPEHUV VDWLVI\LQJ (ID *ID *ID DQG HF ]F H IU f§ IU f§ IU 6LPLODUO\ HDFK JUDGLHQW WHUP UHWXUQHG ZDV JLYHQ E\ >In[Nf/ >In[Nf@ H H >In [Nf @ 2nY M nYnY M JD JU Y }?M M ZKHUH H DQG H ZHUH UDQGRP QXPEHUV VDWLVI\LQJ JD JU ( H H JD JD JD DQG H H H JU JU JU 7KH DFWXDO LPSOHPHQWDWLRQ LV JLYHQ LQ $SSHQGL[ 7KH 92 DOJRULWKP ZDV WKHQ XVHG WR VROYH WKLV SUREOHP ZLWK WKUHH VHWV RI YDOXHV RI )$%6f HAU )5(/f HA *)$%6f DQG HAU *)5(/f 7KH UHVXOWV DUH VXPPDUL]HG LQ 7DEOH 2EVHUYH WKDW WKH RYHUDOO HIIHFWLYHQHVV RI WKH DOJRULWKP ZKHQ IXQFWLRQ DQG JUDGLHQW YDOXHV DUH VXSSOLHG VWLOO UHPDLQV TXLWH JRRG LQ VSLWH RI WKH HUURUV SUHVHQW +RZHYHU ZKHQ RQO\ IXQFWLRQ YDOXHV DUH VXSSOLHG WKH 92 DOJRULWKP LV QRW DEOH WR DSSUR[Ln PDWH WKH VROXWLRQ DFFXUDWHO\ H[FHSW ZKHQ WKH HUURU LQ WKH IXQFWLRQ YDOXHV LV UHODWLYHO\ VPDOO

PAGE 159

7$%/( 7KH PLQLPL]DWLRQ RI 5RVHQEURFNnV IXQFWLRQ ZLWK UDQGRP HUURUV LQ WKH IXQFWLRQ DQG JUDGLHQW YDOXHV 0$;$9 f IRU Df DQG LQ WKH IXQFWLRQ YDOXHV 0$;$9 f IRU Ef 2UGHU GHQRWHV WKH QXPEHU RI FRRUGLQDWHVHDUFK LWHUDWLRQV 7KH SRLQW F LV WKH ILQDO FRQYHUJHQFH SRLQW rrr Df eID 0D[LPXP eIU (UURUV H JD H JU f§&RXQWHUV 1R 1R ,71 )81 1R *5$' ,, [[r __ r?M n9 FR I[fI[rf [Oa [O [Oa [Oa [O [O [ [Of [O [Oa [Oa [Oa [ [O [O [Oa [ [Oa O[Oa [O [ Ef 0D[LPXP eID (UURUV (IU 1R ,71 &RXQWHUV 1R 2UGHU )81 ,, [[r __ I[fI[ f ,, IXrf ,/ n;M n;M [Oa [Oa O[Oa [Oa [Oa [O [Oa [OB [Oa [O [OB

PAGE 160

6LPSOH &LUFXLW 2SWLPL]DWLRQ ([DPSOH 7KLV H[DPSOH LV D VLPSOH FLUFXLW RSWLPL]DWLRQ ZKLFK ZDV UXQ LQ WKH JHQHUDO FLUFXLW RSWLPL]DWLRQ SURJUDP $23 >@ 7KLV H[DPSOH ZDV FKRVHQ WR LOOXVWUDWH WKH HIIHFW RI UDWKHU ODUJH DQG GLIILFXOW WR HVWLn PDWH HUURUV WKDW PLJKW EH SUHVHQW LQ WKH IXQFWLRQ DQG WKH JUDGLHQW HYDOXDWLRQ 7KH FLUFXLW LV VKRZQ LQ )LJ ,Q HIIHFW WZR LQGHn SHQGHQW VXEFLUFXLWV DUH SUHVHQW LQ WKH FLUFXLW 7KH GHVLJQDEOH SDUDPHWHUV RU LQGHSHQGHQW YDULDEOHV DUH 5S &A DQG 5A 7KH IXQFWLRQ WR EH PLQLPL]HG LV JLYHQ E\ I >9 W 9B f@ GW & 5 7KH ULVH WLPH RI WKH WLPH GHSHQGHQW YROWDJH VRXUFH RI WKH FLUFXLW ZDV B 2 H[WUHPHO\ VPDOO VHFf WKLV VPDOO ULVH WLPH \LHOGV D UDWKHU ODUJH HUURU LQ WKH ILUVW WLPH VWHS RI WKH QXPHULFDO LQWHJUDWLRQ XVHG LQ HYDOXDWLQJ WKH IXQFWLRQ YDOXH ,W ZDV HVWLPDWHG WKDW WKH PD[LPXP RYHUDOO HUURU LQ WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV FRPSXWHG ZDV [ LQ DEVROXWH YDOXH DQG [ LQ UHODWLYH YDOXH $FWXDOO\ WKH PD[LPXP HUURU LV PXFK ODUJHU DW WKH LQLWLDO SRLQW JLYHQ E\ 5M & & 5fX f WKDQ DW SRLQWV LQ WKH QHLJKERUKRRG RI WKH VROXWLRQ ZKLFK LV DSSUR[Ln PDWHO\ JLYHQ E\ 5[ & & 5f e f

PAGE 161

OO )LJXUH 6LPSOH FLUFXLW WR WHVW DQG FRPSDUH WKH 92 DOJRULWKP

PAGE 162

7KH PLQLPL]DWLRQ DOJRULWKP LQ WKH $23 SURJUDP LV WKH RQH SURSRVHG E\ &XOOXUD ZKLFK LV D TXDVL1HZWRQ DOJRULWKP ZLWK D UDQN RQH XSGDWH DQG ZLWK F\FOLF VFDODU VHDUFKHV DW VRPH LWHUDWLRQV >@ 7KH $23 SURJUDP ZLWK &XOOXPnV DOJRULWKP FRQYHUJHG WR WKH SRLQW 5M & & 5f f DIWHU LWHUDWLRQV UHTXLULQJ IXQFWLRQ HYDOXDWLRQV DQG JUDGLHQW HYDOXDWLRQV 7KH JUDGLHQW DW WKH SRLQW RI FRQYHUJHQFH ZDV I [ [ ? [ af7 ?M 7KH $23 SURJUDP XVLQJ WKH 92 DOJRULWKP ZLWK WKH SURSRVHG PRGLILFDWLRQV FRQYHUJHG WR 5O & & 5f f LQ LWHUDWLRQV UHTXLULQJ IXQFWLRQ HYDOXDWLRQV DQG JUDGLHQW HYDOXDWLRQV 7KH JUDGLHQW DW WKH SRLQW RI FRQYHUJHQFH ZDV I [ [ [ Bf7 7KH FRPSXWHU WLPH UHTXLUHG IRU WKH RULJLQDO UXQ ZDV VHFRQGV ZKLOH WKH 92 DOJRULWKP UXQ UHTXLUHG VHFRQGV 2EVHUYH WKDW QRW RQO\ ZDV WKH FRPSXWHU WLPH UHTXLUHG E\ WKH 92 DOJRULWKP VPDOOHU EXW WKH FRQYHUJHQFH SRLQW REWDLQHG ZDV D EHWWHU DSSUR[LPDWLRQ RI WKH VROXn WLRQ WKDQ IRU WKH DOJRULWKP LQ $23 7KH 92 DOJRULWKP ZDV VRPHZKDW VHQVLWLYH WR WKH HVWLPDWH RI WKH HUURU SUHVHQW LQ WKH JUDGLHQW DQG WKH

PAGE 163

IXQFWLRQ )RU H[DPSOH VLQFH LW LV QRW NQRZQ H[DFWO\ KRZ PXFK HUURU LV SUHVHQW LQ WKH JUDGLHQW DQG WKH IXQFWLRQ YDOXHV VHYHUDO UXQV ZHUH PDGH ZLWK GLIIHUHQW VHWWLQJV RI WKH YDULDEOHV )$%6 )5(/ *)$%6 DQG *)5(/ WKH UHVXOWV ZKLOH JHQHUDOO\ FRQYHUJLQJ WR WKH VDPH SRLQW UHTXLUHG DV OLWWOH DV LWHUDWLRQV DQG DV KLJK DV LWHUDWLRQV EXW WKH FRPSXWHU WLPHV UHTXLUHG ZHUH DOZD\V OHVV WKDQ VHFRQGV 026)(7 1DQG *DWH &LUFXLW 2SWLPL]DWLRQ ([DPSOH &RQVLGHU WKH WZR LQSXW 026)(7 QDQG JDWH VKRZQ LQ )LJ 7KLV JDWH FRQVLVWV RI RQH VPDOO ORDG GHYLFH 7 DQG WZR PHGLXP VL]H GHYLFHV 7 DQG 7 7KH GHVLJQ REMHFWLYH RI WKLV FLUFXLW LV WR PLQLPL]H WKH DUHD RI WKH GHYLFHV DQG WKH SRZHU GLVVLSDWLRQ 7KH ORRVH FRQVWUDLQWV DUH WKDW WKH SURSDJDWLRQ GHOD\ VKRXOG QRW H[FHHG DERXW QVHF WKH RXWSXW YROWDJH VKRXOG QRW EH OHVV WKDQ DERXW YROWV DQG ER[ FRQn VWUDLQWV RQ WKH GHVLJQDEOH SDUDPHWHUV WR LQVXUH D FLUFXLW ZKLFK FDQ EH PDQXIDFWXUHG 7KH WKUHH GHVLJQDEOH SDUDPHWHUV DUH WKH ZLGWK ZA DQG WKH OHQJWK RI WKH ORDG GHYLFH 7 DQG WKH HTXDO ZLGWK ZA RI HDFK RI WKH RWKHU WZR GHYLFHV 7 DQG 7 7KH OHQJWKV RI 7 DQG 7 DUH IL[HG DW PLOV 7KH HOHPHQWV RI HDFK GHYLFH PRGHO LQ )LJ Ef >@ DUH IXQFWLRQV RI WKH WKUHH GHVLJQDEOH SDUDPHWHUV DV IROORZV 7KH GUDLQ FXUUHQW XQLWV LQ PDf LV JLYHQ E\ U Zef9 9 f DERYH SLQFKRII P 2E *PZrf9'69*6 a 97 f 9'6ff EHORZ 3LQFKaRII!

PAGE 164

9 9 R R ,.IW 9 R 99 9R 99 + ,f§ 7O + a _+ Q _,-7 9 7 f§ L Q 3) )LJXUH Df 7ZRLQSXW QDQG JDWH RSWLPL]HG Ef 7KH 026)(7 PRGHO XVHG

PAGE 165

B ZKHUH LV WKH QRUPDOL]HG WUDQVFRQGXFWDQFH [ PPKRVf Z DQG e P DUH WKH ZLGWK DQG OHQJWK RI WKH GHYLFH LQ PLOV 9 LV WKH JDWH WR *6 VRXUFH YROWDJH LQ YROWV 9 LV WKH GUDLQ WR VRXUFH YROWDJH LQ YROWV /O' DQG 9 LV WKH WKUHVKROG YROWDJH RI WKH GHYLFH JLYHQ E\ 9 9 9 7 )% Y 66 9 ZKHUH 9 LV WKH IODW EDQG YROWDJH YROWVf 9BB LV WKH VRXUFH WR U G 66 VXEVWUDWH YROWDJH DQG 3J, LV WKH HOHFWURVWDWLF SRWHQWLDO YROWVf 7KH FDSDFLWRUV DUH DOVR IXQFWLRQV RI WKH ZLGWK DQG OHQJWK RI HDFK GHYLFH JLYHQ E\ XQLWV LQ SIf &*6 [ a e f Z &*' [ Z &66 U [ IRU GHYLFHV 7 DQG 7 [ :S IRU GHYLFH 7 :H PXVW QRZ H[SUHVV WKH GHVLJQ REMHFWLYHV LQ WHUPV RI D VFDODU SHUIRUPDQFH IXQFWLRQ WKH IXQFWLRQ WR EH PLQLPL]HG ZLWK FRQVWUDLQWV 7KH WRWDO DUHD RI WKH GHYLFHV LV JLYHQ E\ $ Z f DQG WKH SRZHU GLVVLSDWHG LV PLQLPL]HG LI ‘ -'6! f f

PAGE 166

LV PLQLPL]HG ZKHUH LV WKH GUDLQ FXUUHQW RI DQ\ RI WKH GHYLFHV 7KH SURSDJDWLRQ GHOD\ FRQVWUDLQW QRUPDOO\ UHTXLUHV D WUDQVLHQW DQDO\VLV +RZHYHU LW FDQ EH VKRZQ >@ WKDW 7S -LMZ f LV D JRRG DSSUR[LPDWLRQ WR WKH SURSDJDWLRQ GHOD\ ZKLFK DOORZV IRU D FRPSXWDWLRQDOO\ OHVV H[SHQVLYH RSWLPL]DWLRQ UXQ 7KXV WKLV FRQVWUDLQW EHFRPHV 3' eAZA f 7KH RXWSXW YROWDJH FRQVWUDLQW PD\ EH H[SUHVVHG E\ r9 987 f f n! )LQDOO\ WKH ER[ FRQVWUDLQWV DUH JLYHQ E\ e :M B DQG f§ /HWWLQJ [ ZOW OY Zf f

PAGE 167

WKLV SUREOHP PD\ EH H[SUHVVHG E\ PLQLPL]H [ I[f $ 'PD[>3Q@fPPD[>7@fP n; X 9 Df VXEMHFW WR / V + ; ; ; n;M b n;M Ef ZKHUH [A fA DQG [+ fA 7KH FRQVWDQWV LQ WKH ‘Y !?M IXQFWLRQ Df ZHUH GHWHUPLQHG HOVHZKHUH >@ WR JLYH D UHDVRQDEOH VROXWLRQ WR WKLV SUREOHP 2EVHUYH WKDW LQ Df IRU P ZH REWDLQ WKH TXDGUDWLF SHQDOW\ IXQFWLRQ PHWKRG DQG IRU P WKH FXELF SHQDOW\ IXQFWLRQ PHWKRG 3UREOHP f ZDV VROYHG LQ WKH $23 SURJUDP EHJLQQLQJ ZLWK WKH LQLWLDO SRLQW [r f7 I[rf f n;M D 7KH $23 SURJUDP XVLQJ WKH PLQLPL]DWLRQ DOJRULWKP SURSRVHG E\ &XOOXP >@ DQG P LQ f FRQYHUJHV WR WKH SRLQW [ f7 I[f UHTXLULQJ LWHUDWLRQV IXQFWLRQ HYDOXDWLRQV DQG JUDGLHQW HYDOXDWLRQV 7KH FRPSXWHU WLPH UHTXLUHG ZDV PLQXWH DQG VHFRQGV $W WKLV SRLQW WKH QRQOLQHDU FRQVWUDLQWV DUH VOLJKWO\ QHJDWLYH WKXV WKH\ DUH VDWLVILHG ZKLFK LV DQ LQGLFDWLRQ WKDW WKH VROXWLRQ LV LQDF FXUDWH >@ 7KH DUHD RI WKH GHYLFHV JLYHQ E\ f LV PLOV DQG f \LHOGV PD 7KH QH[W UXQ LV $23 ZLWK WKH 92 DOJRn ULWKP IURP WKH VDPH LQLWLDO SRLQW 7KLV WLPH WKH DOJRULWKP FRQYHUJHG WR

PAGE 168

[ f7 I["f n;M n;M XVLQJ WKH TXDGUDWLF SHQDOW\ PHWKRG P f 2EVHUYH WKDW WKLV VROXWLRQ \LHOGV D VPDOOHU IXQFWLRQ DQG WKXV LW LV PRUH DFFXUDWH WKDQ WKH SUHn YLRXV VROXWLRQ 0RUHRYHU WKH 92 DOJRULWKP UHTXLUHG LWHUDWLRQV IXQFWLRQ HYDOXDWLRQV JUDGLHQW HYDOXDWLRQV DQG VHFRQGV RI FRPSXWHU WLPH 7KH DUHD RI WKH GHYLFHV DW WKLV SRLQW LV PLOV f \LHOGV PD DQG WKH FRQVWUDLQWV DUH VOLJKWO\ ODUJHU WKDQ ]HUR EXW WKH VROXWLRQ LV FRQVLGHUHG VDWLVIDFWRU\ 7KH 92 DOJRULWKP ZLWK WKH FXELF SHQDOW\ IXQFWLRQ PHWKRG P f FRQYHUJHV WR [ f7 I[f 7KH FRQVWUDLQWV ZKLOH VWLOO EDVLFDOO\ VDWLVIDFWRU\ DUH VOLJKWO\ PRUH SRVLWLYH WKDQ IRU WKH TXDGUDWLF SHQDOW\ IXQFWLRQ DV H[SHFWHG 7KH DUHD RI WKH GHYLFHV LV PLOV DQG f \LHOGV PD 7KLV PLQLPL]DWLRQ UHTXLUHG LWHUDWLRQV IXQFWLRQ HYDOXDWLRQV JUDn GLHQW HYDOXDWLRQV DQG VHFRQGV RI FRPSXWHU WLPH 2QFH DJDLQ WKH TXDGUDWLF SHQDOW\ IXQFWLRQ PHWKRG ZDV VOLJKWO\ PRUH HIILFLHQW WKDQ WKH FXELF SHQDOW\ IXQFWLRQ PHWKRG 7KH UHVXOWV RI WKLV QXPHULFDO H[SHULPHQW DUH VXPPDUL]HG LQ 7DEOH 3RZHU 6XSSO\ 5HJXODWRU &LUFXLW 2SWLPL]DWLRQ ([DPSOH 7KH ODVW H[DPSOH LV WKH GHVLJQ RI WKH SRZHU UHJXODWRU >@ VKRZQ LQ )LJ 7KLV UHJXODWRU KDV WZR ]HQHU GLRGHV RQH SQS DQG WKUHH QSQ ELSRODU WUDQVLVWRUV 7KH GHVLJQ REMHFWLYH LV WR PLQLPL]H WKH YDULn DWLRQ RI WKH RXWSXW YROWDJH 9287 DERXW D FRQVWDQW OHYHO ,W LV DOVR

PAGE 169

7$%/( 6XPPDU\ RI UHVXOWV RI WKH RSWLPL]DWLRQ RI WKH FLUFXLW LQ )LJ %RWK WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV ZHUH VXSSOLHG EXW WKH\ KDG HUURUV $OJRULWKP &RXQWHUV 1R 1R 1R ,71 )81 *5$' &RPSXWHU WLPH I [f b Df $ f f 3' f r9 f &XOOXP TXDGUDWLF SHQDOW\f VHF [OB [ 92 TXDGUDWLF SHQDOW\f VHF 92 FXELF SHQDOW\f VHF

PAGE 170

7 )LJXUH Df 3RZHU VXSSO\ UHJXODWRU RSWLPL]HG ORDG UHVLVWRU LV 5/ IW Ef 7KH ]HQHU GLRGH PRGHO XVHG Ff 7KH PRGHO IRU WKH ELSRODU WUDQVLVWRUV m9287

PAGE 171

Ff )LJXUH &RQWLQXHGf

PAGE 172

GHVLUHG WKDW WKH SRZHU GLVVLSDWLRQ EH UHGXFHG LI SRVVLEOH 7KH GH VLJQDEOH SDUDPHWHUV DUH DOO RI WKH UHVLVWRUV LQ WKH FLUFXLW H[FHSW WKH ORDG DQG WKH FDSDFLWRU WKXV WKLV H[DPSOH KDV D WRWDO RI VHYHQ GHVLJQDEOH SDUDPHWHUV 7KH HTXDWLRQV GHVFULELQJ WKH GHYLFH PRGHOV RI WKH FLUFXLW DUH WKH IROORZLQJ >@ 5HVLVWDQFH XQLWV DUH JLYHQ LQ .4 FDSDFLWDQFH XQLWV DUH LQ SI FXUUHQWV DUH LQ PD YROWDJHV DUH LQ YROWV DQG WLPH XQLWV DUH LQ QVHF =HQHU =O 7KH ]HQHU PRGHO LV VKRZQ LQ )LJ E DQG WKH FLUFXLW HOHPHQWV DUH GHILQHG E\ 5=6 5=3 &= 9&=f [O-= [Oaf -= N9f9&= f -=% 7DEOH D =HQHU = 7KH ]HQHU PRGHO LV VKRZQ LQ )LJ E DQG WKH FLUFXLW HOHPHQWV DUH GHILQHG E\ 5=6 5=3 &= 9&=fn [O-= [af -= [OHf9-= f -=% 7DEOH E 313 7UDQVLVWRU 7O 7KH ELSRODU PRGHO LV VKRZQ LQ )LJ F DQG WKH FLUFXLW HOHPHQWV DUH GHILQHG E\ 5%% 5&& LRn? 5( [O

PAGE 173

7$%/( 7DEXODU VHW RI SRLQWV GHVFULELQJ WKH FXUUHQW VRXUFH -=% IRU ]HQHU = Df DQG ]HQHU = Ef IRU WKH SRZHU VXSSO\ UHJXODWRU FLUFXLW RI )LJ Df 9-=% 9&= -=% LR [O &2 a /2n Ef 9-=% 9&= -=% [O OR !f§r 2

PAGE 174

5& [O &( 9&(f -( [ rf && 9&&f -& [Bf -( [OaHff9&( f -& [OHf9&& f -$ f-( -% f-& 131 7UDQVLVWRUV 7 7 DQG 7 7KH ELSRODU PRGHO LV VKRZQ LQ )LJ F DQG WKH FLUFXLW HOHPHQWV DUH GHILQHG E\ 5%% 5&& 5( [O 5& [O &( 9&(f n -( [Oaf && 9&&f -& [ f -( IHf9&( f -& [-nLnf9&& f -$ f-( -% &f-& :H PXVW QRZ H[SUHVV WKH GHVLJQ REMHFWLYHV LQ WHUPV RI D VFDODU SHUIRUPDQFH IXQFWLRQ 7KH LQSXW ZDYHIRUP LV GHILQHG E\ 9,1 VLQLUWf ZKLFK LV D VLQH ZDYH FHQWHUHG DW YROWV )RU 9,1 Y WKH RXSXW YROWDJH 9287 LV DSSUR[LPDWHO\ Y DW WKH LQLWLDO JXHVV JLYHQ EHORZ 7KH GHVLJQ REMHFWLYH LV WKDW 9287 YDULHV IURP Y DV OLWWOH DV SRVVLEOH LQ D WUDQVLHQW DQDO\VLV IURP W WR W 7KLV YDULDWLRQ

PAGE 175

PD\ EH H[SUHVVHG E\ ',)) 9287 f GW 6LQFH LW LV DOVR GHVLUHG WR UHGXFH WKH SRZHU GLVVLSDWLRQ WKH PLQLPLn ]DWLRQ SUREOHP LV GHILQHG E\ PLQLPL]H I[f > f',)) ,,1f @ GW [ ZKHUH ,,1 LV WKH FXUUHQW LQWR WKH QHWZRUN DQG WKH LQGHSHQGHQW YDULDEOHV RU GHVLJQDEOH SDUDPHWHUV DUH [ 5O 5 5 5 5 5 &f7 n;L $OO WKDW UHPDLQV LV WR VSHFLI\ WKH ER[ FRQVWUDLQWV RQ WKH LQGHSHQGHQW YDULDEOHV ZKLFK DUH JLYHQ E\ e 5O e e 5 e e 5 e 5 e 5 e e 5 e e &O e 7KH LQLWLDO JXHVV WR WKH VROXWLRQ LV [r [Of7

PAGE 176

DW ZKLFK SRLQW ',)) DQG I[rf [ n;L In[rf [O [O [O [O [O [O2Bf7 A n;M 7KH $23 SURJUDP >@ ZLWK WKH PLQLPL]DWLRQ DOJRULWKP SURSRVHG E\ &XOOXP >@ UHTXLUHV LWHUDWLRQV JUDGLHQW DQG IXQFWLRQ HYDOXDWLRQV WR REWDLQ [ [Of7 I[f [ In[f [O [O [O2af7 2L b DQG ',)) 7KH $23 SURJUDP ZLWK WKH 92 DOJRULWKP UHTXLUHV LWHUDWLRQV JUDGLHQW DQG IXQFWLRQ HYDOXDWLRQV WR REWDLQ [ [Of7 b I[f [ In[f [O [O [O [Oaf7 DQG ',)) 7KH FRPSXWHU WLPHV UHTXLUHG E\ $23 ZHUH DSSUR[Ln PDWHO\ PLQXWHV ZLWK &XOOXPnV DOJRULWKP DQG DSSUR[LPDWHO\ PLQXWHV ZLWK WKH 92 DOJRULWKP &XOOXPnV DOJRULWKP VROYHG WKLV SUREOHP PRUH HIILFLHQWO\ WKDQ WKH 92 DOJRULWKP 2EVHUYH WKDW &XOOXPnV DOJRULWKP

PAGE 177

VROYHG WKLV SUREOHP LQ HLJKW LWHUDWLRQV ZKLFK LV WKH QXPEHU RI GHVLJQ DEOH SDUDPHWHUV RU WKH QXPEHU RI LQGHSHQGHQW YDULDEOHVf SOXV RQH 'XH WR WKH RYHUKHDG LQ WKH 92 DOJRULWKP RI DSSUR[LPDWLQJ WKH KHVVLDQ E\ GLIIHUHQFHV ZKHQ WKH KHVVLDQ LV QRW VXSSOLHG WKH 92 DOJRULWKP PD\ EH JHQHUDOO\ OHVV HIILFLHQW WKDQ RWKHU DOJRULWKPV IRU SUREOHPV ZKLFK DUH VROYHG E\ WKH RWKHU DOJRULWKPV LQ D VPDOO QXPEHU RI LWHUDWLRQV 7KLV REVHUYDWLRQ LV JHQHUDOO\ VXSSRUWHG E\ WKH FRPSDULVRQ ZLWK VHYHQ RWKHU DOJRULWKPV JLYHQ LQ 6HFWLRQ 6XPPDU\ ,Q WKLV FKDSWHU WKH 92 DOJRULWKP ZDV VXFFHVVIXOO\ LPSOHPHQWHG DQG H[WHQGHG WR SUDFWLFDO SUREOHPV WKDW RFFXU LQ FRPSXWHUDLGHG RSWLn PL]DWLRQ RI FLUFXLWV 1XPHULFDO UHVXOWV RQ VHYHUDO SUREOHPV ZHUH JLYHQ &RPSDULVRQ RI WKH 92 DOJRULWKP ZLWK SXEOLVKHG UHVXOWV RI VHYHQ RWKHU SRSXODU DOJRULWKPV RQ VROYLQJ ILYH RI WKH WHVW SUREOHPV LQGLFDWHV WKDW WKH 92 DOJRULWKP LV PRUH HIILFLHQW LQ VROYLQJ IRXU RXW RI WKH ILYH SUREOHPV ,Q DGGLWLRQ WKH 92 DOJRULWKP ZDV VKRZQ WR EH YHU\ HIIHFWLYH LQ DYRLGLQJ FRQYHUJHQFH WR WKH VDGGOH SRLQW RI RQH RI WKH WHVWHG SUREn OHPV HYHQ ZKHQ WKH LQLWLDO JXHVV ZDV YHU\ FORVH WR WKH VDGGOH SRLQW $V ORQJ DV HUURUV WKDW PD\ EH SUHVHQW LQ WKH HYDOXDWLRQ RI WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV VXSSOLHG WR WKH DOJRULWKP FDQ EH HVWLPDWHG DQG NHSW VPDOO QXPHULFDO UHVXOWV JLYHQ LQGLFDWH WKDW WKH 92 DOJRULWKP PD\ VWLOO EH XVHG HIIHFWLYHO\ 'XH WR WKH KHVVLDQ EHLQJ DSSUR[LPDWHG E\ GLIIHUHQFHV ZKHQ LW LV QRW VXSSOLHG WKH UHVXOWV DOVR LQGLFDWH WKDW WKH 92 DOJRULWKP PD\ EH OHVV HIILFLHQW WKDQ RWKHU DOJRULWKPV IRU SUREOHPV WKDW FDQ EH VROYHG LQ D VPDOO QXPEHU RI LWHUDWLRQV E\ WKH RWKHU DOJRn ULWKPV

PAGE 178

&+$37(5 $33/,&$7,21 2) 7+( 9$5,$%/(25'(5 &21&(37 72 &,5&8,7 $1$/<6,6 ,Q WKLV FKDSWHU ZH GLVFXVV WKH DSSOLFDWLRQ RI WKH SULQFLSOHV EHKLQG WKH 92 DOJRULWKP WR JHQHUDWH D FODVV RI LWHUDWLYH PHWKRGV IRU VROYLQJ QRQOLQHDU V\VWHPV RI HTXDWLRQV RI WKH IRUP f LV} ZKHUH )(Q (Q LV D QRQOLQHDU YHFWRU IXQFWLRQ ,Q PRVW FRPSXWHUDLGHG GHVLJQ DQG DQDO\VLV SURFHGXUHV SUREOHP f LV VROYHG PDQ\ WLPHV WKH QXPEHU RI WLPHV PD\ EH LQ WKH WKRXVDQGVf 7KXV VPDOO LPSURYHPHQWV WR H[LVWLQJ PHWKRGV IRU VROYLQJ f PD\ WUDQVODWH LQWR VXEVWDQWLDO VDYLQJV WR WKH RYHUDOO GHVLJQ RU DQDO\VLV SURFHGXUH 7KH FODVV RI LWHUDWLYH VROXWLRQ PHWKRGV LV EDVHG RQ WKH LQILQLWH VHULHV UHSUHVHQWDWLRQ RI D VROXWLRQ WR D V\VWHP RI QRQOLQHDU HTXDWLRQV GHULYHG HDUOLHU LQ 6HFWLRQ %\ VXLWDEOH VHOHFWLRQ RI WKH DUELWUDU\ YHFWRU IXQFWLRQ WKDW DSSHDUV LQ WKH VHULHV SDUWLFXODU LQILQLWH VHULHV UHSUHVHQWDWLRQV RI D VROXWLRQ WR f DUH REWDLQHG ,WHUDWLYH PHWKRGV DUH REWDLQHG E\ WUXQFDWLRQ RI WKH UHVXOWLQJ VHULHV 0DQ\ RI WKH LWHUDn WLYH PHWKRGV REWDLQHG LQ WKLV PDQQHU VXFK DV 1HZWRQnV PHWKRG DUH ZHOO NQRZQ +RZHYHU WKH GHULYDWLRQ WHFKQLTXH DSSHDUV WR EH ERWK QRYHO DQG FDSDEOH RI \LHOGLQJ DQ\ QXPEHU RI QHZ LWHUDWLYH PHWKRGV ,I D JRRG LQLWLDO JXHVV WR D VROXWLRQ RI f LV DYDLODEOH WKHQ RQH LWHUDWLYH PHWKRG ZKLFK XVHV WKH YDULDEOHRUGHU FRQFHSW LQWURGXFHG

PAGE 179

LQ &KDSWHU DSSHDUV WR EH YHU\ SURPLVLQJ 7KLV 9DULDEOH2UGHU 92f LWHUDWLYH PHWKRG ZDV LPSOHPHQWHG LQ WKH WUDQVLHQW DQDO\VLV SRUWLRQ RI DQ DOUHDG\ YHU\ HIILFLHQW FLUFXLW DQDO\VLV SURJUDP LPSURYLQJ LWV HIILn FLHQF\ VWLOO IXUWKHU ,W LV HVWLPDWHG WKDW RQO\ D YHU\ VPDOO HIIRUW LV UHTXLUHG WR LPSOHPHQW WKH 92 LWHUDWLYH PHWKRG LQ PRVW H[LVWLQJ FLUFXLW DQDO\VLV SURJUDPV ,I WKH LQLWLDO JXHVV WR D VROXWLRQ RI f LV SRRU H[SHULPHQWDO HYLGHQFH LV JLYHQ WKDW LQGLFDWHV WKH GHVLUDELOLW\ RI LQLWLDOO\ XVLQJ DQ LWHUDWLYH PHWKRG ZKLFK GHSHQGV RQ WKH EHKDYLRU RI HDFK IXQFWLRQ LQ ) 7KH FODVV RI LWHUDWLYH PHWKRGV GHULYHG LQ WKLV FKDSWHU LV VXLWDEOH IRU LQ HIIHFW WDLORULQJ WKH LWHUDWLYH PHWKRG WR ) +RZHYHU RQO\ JHQHUDO JXLGHOLQHV DUH JLYHQ VLQFH D JHQHUDO DOJRULWKP GRHV QRW VHHP SRVVLEOH DW WKLV WLPH 7KLV FKDSWHU EHJLQV ZLWK D EULHI UHYLHZ RI JHQHUDO DSSURDFKHV WKDW KDYH EHHQ SURSRVHG IRU VROYLQJ f ,Q WKH VHFRQG VHFWLRQ VHYHUDO LWHUDWLYH PHWKRGV DUH GHULYHG LQFOXGLQJ WKH 92 PHWKRG WKDW DUH REn WDLQHG IURP LQILQLWH VHULHV UHSUHVHQWDWLRQV RI D VROXWLRQ WR f ,Q WKH WKLUG VHFWLRQ ZH FRQVLGHU WKH LPSOHPHQWDWLRQ RI WKH 92 PHWKRG LQ D WUDQVLHQW DQDO\VLV SURJUDP IRU WKH VLPXODWLRQ RI HOHFWURQLF FLUFXLWV )LQDOO\ WKH IRXUWK VHFWLRQ JLYHV JXLGHOLQHV LQ VROYLQJ f ZKHQ WKH LQLWLDO JXHVV LV SRRU DV LQ GF DQDO\VLV RI HOHFWURQLF FLUFXLWV XVLQJ D FODVV RI LWHUDWLYH PHWKRGV GHULYHG IURP LQILQLWH VHULHV UHSUHVHQWDn WLRQV RI D VROXWLRQ WR f ([DPSOHV DUH JLYHQ ZKLFK LOOXVWUDWH WKH WHFKQLTXHV $SSURDFKHV LQ )LQGLQJ D 6ROXWLRQ 7KH SUREOHP WR EH VROYHG PD\ EH H[SUHVVHG E\

PAGE 180

)[f 2 D Y R f ZKHUH )(r (r LV D QRQOLQHDU YHFWRU IXQFWLRQ RI [ H (Q :H ZLVK WR n;M 2L r Q r ILQG D SRLQW [ H ( VXFK WKDW [ [ VDWLVILHV f ,W LV DVVXPHG U 9 n;M ?M WKDW VXFK D SRLQW H[LVWV KRZHYHU LW LV LPSRUWDQW WR UHFRJQL]H WKDW IRU JHQHUDO SUREOHPV D SRLQW VDWLVI\LQJ f PD\ QRW H[LVW RU DOWHUn QDWLYHO\ WKHUH PD\ EH PDQ\ SRLQWV WKDW VDWLVI\ f >@ 7KHUH DUH WZR SUDFWLFDO DSSURDFKHV IRU ILQGLQJ D VROXWLRQ RI f 7KH ILUVW DSSURDFK FRQYHUWV WKH SUREOHP LQWR DQ XQFRQVWUDLQHG PLQLPLn ]DWLRQ SUREOHP ZKLFK PD\ WKHQ EH VROYHG E\ D PLQLPL]DWLRQ DOJRULWKP 7KH VHFRQG DSSURDFK LV WR XVH D PRUH HIILFLHQW EXW SHUKDSV OHVV VWDEOH LWHUDWLYH PHWKRG GHULYHG GLUHFWO\ IRU WKH VROXWLRQ RI f (TXLYDOHQW 8QFRQVWUDLQHG 0LQLPL]DWLRQ 3UREOHPV /HW WKH YHFWRU IXQFWLRQ )[f KDYH FRPSRQHQW IXQFWLRQV JLYHQ E\ b n;M I[f L Q 7KDW LV GHILQH )[f E\ b n;M 9 M )[f b n;M I [f If[f U?M = U?M 7 I[ff Q A f 7KHQ WKH FODVV RI XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHPV JLYHQ E\ PLQLPL]H I[f e I[ffAP f [ L O 2L ZKHUH P LV D SRVLWLYH LQWHJHU LV HTXLYDOHQW WR SUREOHP f SURYLGHG WKDW D JOREDO PLQLPXP SRLQW RI I[f LV FRPSXWHG >@ )RU H[DPSOH IRU P SUREOHP f PD\ EH H[SUHVVHG E\

PAGE 181

PLQLPL]H I[f )[fA )[f f ; R} $ QHFHVVDU\ FRQGLWLRQ IRU D VROXWLRQ [ RI DQ XQFRQVWUDLQHG PLQLPL]Dn WLRQ SUREOHP ZDV JLYHQ LQ 6HFWLRQ WR EH WKDW WKH JUDGLHQW RI I[f DW [ [ YDQLVKHV )RU f WKLV FRQGLWLRQ \LHOGV WKH V\VWHP RI HTXDWLRQV In [f )f [f )[f 2M 9 b b D n;M f ZKHUH )f[f LV FDOOHG WKH -DFRELDQ PDWUL[ RI ) ZLWK LMf HOHPHQW JLYHQ 2 n;M b E\ >)f[f@ I[f O nE [ f (TXDWLRQ f YDQLVKHV DW SRLQWV WKDW DUH VROXWLRQV RI WKH SUREOHP f EHLQJ VROYHG +RZHYHU WKH PDMRU GLIILFXOW\ LV WKDW f PD\ DOVR YDQLVK DW SRLQWV IRU ZKLFK )[f LV QRW ]HUR 7KHUHIRUH VLQFH nE fE XQFRQVWUDLQHG PLQLPL]DWLRQ DOJRULWKPV LQFOXGLQJ WKH 92 DOJRULWKP GHn ULYHG LQ WKH SUHFHGLQJ WZR FKDSWHUV FRPSXWH ORFDO PLQLPXP VROXWLRQV WKH FRPSXWHG VROXWLRQ RI f PD\ QRW EH D VROXWLRQ RI f ,Q r DGGLWLRQ ZKHQ D JRRG LQLWLDO JXHVV WR D VROXWLRQ [ RI f LV DYDLO DEOH LWHUDWLYH PHWKRGV GLVFXVVHG LQ WKH QH[W VHFWLRQ DUH JHQHUDOO\ PRUH HIILFLHQW 2Q WKH RWKHU KDQG WKH DYDLODELOLW\ RI JHQHUDO PLQLn PL]DWLRQ DOJRULWKPV VXFK DV WKH 92 DOJRULWKP DOORZV IRU DQ HDV\ PHWKRG RI VROYLQJ WKH JHQHUDO SUREOHP f YLD f LI ZH DUH ZLOOLQJ WR SHUKDSV WU\ VHYHUDO GLIIHUHQW LQLWLDO JXHVVHV XQWLO WKH FRPSXWHG PLQLPXP VDWLVILHV f

PAGE 182

)RU H[DPSOH WKH 92 DOJRULWKP IRU XQFRQVWUDLQHG PLQLPL]DWLRQ JLYHQ LQ 6HFWLRQ ZDV XVHG WR FRPSXWH WKH VDGGOH SRLQW RI :RRGnV IXQFWLRQ JLYHQ LQ 6HFWLRQ 7KH VDGGOH SRLQW ZDV FRPSXWHG E\ VROYLQJ WKH XQFRQVWUDLQHG PLQLPL]DWLRQ SUREOHP 7 PLQLPL]H If[f In[f nY D Y [ nE ZKHUH I[f LV WKH JUDGLHQW YHFWRU RI :RRGnV IXQFWLRQ 7KH 92 DOJRULWKP nO n;M A ZDV XVHG ZLWK DQ LQLWLDO JXHVV QHDU WKH VDGGOH SRLQW 8QOHVV WKH LQLn WLDO JXHVV ZDV YHU\ FORVH WR WKH VDGGOH SRLQW 1HZWRQnV LWHUDWLRQ GHVFULEHG LQ WKH QH[W VHFWLRQ IDLOHG EHFDXVH WKH -DFRELDQ ZKLFK LV WKH KHVVLDQ RI :RRGnV IXQFWLRQ LV VLQJXODU DQG QHDU VLQJXODU DW VHYHUDO SRLQWV LQ WKH QHLJKERUKRRG RI WKH VDGGOH SRLQW ,WHUDWLYH 0HWKRGV ,WHUDWLYH PHWKRGV IRU VROYLQJ f PD\ EH WKRXJKW RI DWWHPSWLQJ WR DSSUR[LPDWH WKH EHKDYLRU RI )[f LQ WKH QHLJKERUKRRG RI D SRLQW [ b n;M I? E\ D VLPSOH YHFWRU IXQFWLRQ $Q LWHUDWLYH PHWKRG IROORZV E\ ILQGLQJ N [ DV WKH VROXWLRQ RI WKH VLPSOHU SUREOHP DQG UHSHDWLQJ WKH SURFHVV >@ 3UREDEO\ WKH PRVW EDVLF LWHUDWLRQ FHUWDLQO\ WKH PRVW SRSXODU LQ FLUFXLW DQDO\VLV SURJUDPV >HJ @ LV 1HZWRQnV PHWKRG N [ nE N N N [ f§ )n[ f )[ f A A b f 7KLV LWHUDWLRQ KDV VRPH LPSRUWDQW DGYDQWDJHRXV SURSHUWLHV f ZKHQ LW FRQYHUJHV WKH RUGHU RI FRQYHUJHQFH LV WZR IRU PRVW SUREOHPV >@ DQG

PAGE 183

f WKH HOHPHQWV RI WKH -DFRELDQ PDWUL[ )n[f KDYH QDWXUDO FLUFXLW FRP 9 SRQHQW LQWHUSUHWDWLRQV DQG WKHUHIRUH WKH LWHUDWLRQ FDQ RIWHQ EH ZULWWHQ E\ LQVSHFWLRQ >@ 2Q WKH RWKHU KDQG WKH GLVDGYDQWDJHV DUH f LW PD\ QRW FRQYHUJH IRU SRRU LQLWLDO JXHVVHV >@ f WKH -DFRELDQ PDWUL[ LV UHTXLUHG DQG f RIWHQ D ODUJH V\VWHP RI HTXDWLRQV PXVW EH VROYHG 7KHVH GLVDGYDQWDJHV DUH H[SORUHG LQ PRUH GHWDLO EHORZ 7KH PRVW VHYHUH SUREOHP ZLWK 1HZWRQnV LWHUDWLRQ LV LWV JHQHUDOO\ SRRU EHKDYLRU ZKHQ [ LV QRW LQ D VPDOO QHLJKERUKRRG DERXW D VROXWLRQ [ RWKHU PHWKRGV >@ KRZHYHU HQFRXQWHU VLPLODU GLIILFXOWLHVf ,Q n;M IDFW WKH SUREOHP RI VROYLQJ f ZLWK SRRU LQLWLDO JXHVVHV JHQHUDOO\ PDQLIHVWHG LQ WKH GF DQDO\VLV RI QRQOLQHDU FLUFXLWV LV D SUREOHP ZKLFK KDV QRW EHHQ VDWLVIDFWRULO\ VROYHG DQG DQ HQWLUHO\ VDWLVIDFWRU\ VROXn WLRQ LV QRW RIIHUHG 6RPH PRGLILFDWLRQV RI 1HZWRQnV LWHUDWLRQ KDYH EHHQ SURSRVHG WKDW GDPS WKH LWHUDWLRQ E\ N N YL N Z N [ [ S ) [ f ) [ f R nYD n9n9 f ZKHUH S LV DUELWUDULO\ VSHFLILHG WR EH OHVV WKDQ RQH LQLWLDOO\ ZKLOH N r N r [ LV IDU IURP [ DQG VHW WR RQH ZKHQ [ DSSURDFKHV [ /M 2WKHU U/r n; 2 n;M PHWKRGV FDOOHG FRQWLQXDWLRQ PHWKRGV E\ QXPHULFDO DQDO\VWV >@ PD\ EH GHVFULEHG DV FRQYHUWLQJ WKH GF SUREOHP LQWR D WUDQVLHQW SUREOHP ZKHUH WKH GF VROXWLRQ LV DSSURDFKHG DV\PSWRWLFDOO\ DV WKH YDULDEOH WLPH EHFRPHV ODUJH >@ $ SUHYLRXVO\ XQUHSRUWHG PHWKRG LV GHVFULEHG LQ 6HFWLRQ ZKLFK FRPELQHV WKH EDVLF LGHD RI WKHVH WZR PHWKRGV ZLWK WKH YDULDEOH RUGHU FRQFHSW +RZHYHU ZKLOH HQFRXUDJLQJ QXPHULFDO UHn VXOWV DUH JLYHQ QR GHILQLWH WKHRUHWLFDO UHVXOWV DSSHDU WR EH SRVVLEOH 7KH -DFRELDQ PDWUL[ KDV Q HOHPHQWV ZKLFK PXVW EH GHWHUPLQHG 7KLV

PAGE 184

GLVDGYDQWDJH KDV EHHQ HIIHFWLYHO\ HOLPLQDWHG ,Q FLUFXLW DQDO\VLV D ODUJH QXPEHU RI WKHVH HOHPHQWV DUH ]HUR DQG PDQ\ RI WKH QRQ]HUR HOHPHQWV DUH FRQVWDQW ,Q DGGLWLRQ WKH QRQ]HUR HOHPHQWV WKDW DUH QRW FRQVWDQW DUH FRPSXWHG E\ GLIIHUHQFH DSSUR[LPDWLRQV ZLWK H[FHOOHQW UHVXOWV >@ ,Q RUGHU WR WDNH DGYDQWDJH RI WKH IDFW WKDW PDQ\ RI WKH -DFRELDQ HOHn PHQWV DUH ]HUR DQG WKH IDFW WKDW PDQ\ RI WKH QRQ]HUR HOHPHQWV DUH FRQVWDQW VHYHUDO VSDUVH PDWUL[ PHWKRGV RI LPSOHPHQWLQJ WKH LWHUDWLRQ f KDYH EHHQ SURSRVHG >@ $ EULHI GHVFULSWLRQ RI WKHVH LPSOHn PHQWDWLRQV LV JLYHQ ODWHU ,QILQLWH 6HULHV 5HSUHVHQWDWLRQ RI D 6ROXWLRQ ,Q 6HFWLRQ ZH GHULYHG DQ LQILQLWH VHULHV UHSUHVHQWDWLRQ RI $ WKH SRLQW [ DW ZKLFK WKH JUDGLHQW RI D VFDODU IXQFWLRQ LV ]HUR 7KLV t UHVXOW LV GLUHFWO\ DSSOLFDEOH IRU D VROXWLRQ [ WR f DQG LW LV JLYHQ E\ D ,W N r [ [. ;n].f] n;M ‘Y b N U N r N r N ] f Of>;] f] ]&f@] ]9 P P P P P P P f ZKHUH [ ;]f A A 2} );]ff *]f A A A $ B ] f 2 2} r ]N *)[Nff 2} 2\ n;M ;n =Nf )n [Nf *n ]Nf n;M b n;M n;M n;M n;M

PAGE 185

;]Nf )n[Nf >*]Nf >)[Nf;r]Nf@[n]Nf@ n;M n;M n;M n;M n;M n;M n;M n;M n;L b n;M n;M ZLWK DQ\ KLJKHU GHULYDWLYHV RI ;]f HYDOXDWHG DW ] ] REWDLQHG E\ nOO n9 IXUWKHU GLIIHUHQWLDWLRQ DQG WKH XVH RI WKH FKDLQ UXOH 8QGHU WKH DVVXPSWLRQ WKDW DOO WKH UHTXLUHG GHULYDWLYHV DQG WKH LQYHUVH RI WKH -DFRELDQ )n[ f H[LVWV D VHOHFWLRQ RI D IXQFWLRQ *]f ZKLFK VKRXOG n;M n;M n;M n;M EH VLPSOH WR LQYHUW \LHOGV D SDUWLFXODU IRUP RI WKH VHULHV :H QRZ FRQVLGHU WZR SRVVLELOLWLHV RI JHQHUDWLQJ LWHUDWLYH PHWKRGV IURP f $ &ODVV RI ,WHUDWLYH 0HWKRGV ,I RQO\ WZR WHUPV DUH NHSW LQ WKH LQILQLWH VHULHV f D FODVV RI LWHUDWLYH PHWKRGV UHVXOWV ZKLFK PD\ EH H[SUHVVHG E\ N N B N f N r N [ [ ) [ f *n ] f ] ] f n;M n;M n;M n;M n;M n;M n;M n;M Df ZKHUH ]N Jn)[Nff n9 n8 Ef DQG r B ] f D nX D Ff 1HZWRQnV PHWKRG LV REWDLQHG IRU *]f ]Y ] f =Q! f r N N VLQFH ] DQG ] )] f $OVR WKH IXQFWLRQ n;M n;M n;M n;M n;M

PAGE 186

*]f n; nO A!7 Q f \LHOGV WKH GDPSHG 1HZWRQnV LWHUDWLRQ JLYHQ E\ N N NO N [ [ S )n[ f )[ f f A 2M A A ,W LV RIWHQ EHQHILFLDO WR FKRRVH D *]f ZKLFK UHVHPEOHV WKH EH b b KDYLRU RI WKH IXQFWLRQ EHLQJ VROYHG )RU H[DPSOH FRQVLGHU WKH VFDODU SUREOHP I[f [ OI H[nr f f ZKLFK UHVXOWV VHULHV ZLWK D 8H;r LWHUDWLRQ IRU IURP D VLPSOH FLUFXLW FRPSRVHG RI D YROW EDWWHU\ LQ RKP UHVLVWRU DQG D GLRGH ZKRVH FXUUHQW LV JLYHQ E\ f ZKHUH [ LV WKH YROWDJH DFURVV WKH GLRGH 1HZWRQnV VROYLQJ f LV JLYHQ E\A ?Q f rN e?I[N! f )URP WKH LQLWLDO JXHVV [A f \LHOGV [A DQG FRPSXWLQJ WKH VROXWLRQ [A UHTXLUHV RYHU LWHUDWLRQV 7KH H[FHVVLYH QXPEHU RI LWHUDWLRQV LV GXH WR WKH IDFW WKDW 1HZWRQnV LWHUDWLRQ DVVXPHV WKH IXQFWLRQ WR EH OLQHDU DW HDFK [A ZKLOH f KDV DQ H[SRQHQWLDO EHKDYLRU IRU WKH LQLWLDO JXHVV JLYHQ DQG RYHU PRVW RI WKH LWHUDWLRQV 7KH LWHUDWLYH PHWKRG JLYHQ E\ I[ f [NO [N f In [Nf AO f f A 1RWH WKH XVH RI VXEVFULSWV IRU VFDODUV

PAGE 187

LV REWDLQHG IURP f IRU WKH J]f IXQFWLRQ JLYHQ E\ J]f H= f )URP ;T XVLQJ f IRU SUREOHP f \LHOGV [A ,I ZH WKHQ VZLWFK WR 1HZWRQnV LWHUDWLRQ VLQFH [ LV FORVH WR [ FRQYHU JHQFH LV DFKLHYHG LQ LWHUDWLRQV ,W PLJKW EH FRQFOXGHG WKDW J]f VKRXOG EH VHOHFWHG DFFRUGLQJ WR WKH EHKDYLRU RI WKH IXQFWLRQ DERXW WKH FXUUHQW HVWLPDWH RI WKH VROXWLRQ [ :H ZLOO UHWXUQ WR WKLV FRQFOXVLRQ N ODWHU ([WHQGLQJ WKH SUHFHGLQJ H[DPSOH WR Q GLPHQVLRQV RQH FRXOG VHOHFW HDFK LQGLYLGXDO IXQFWLRQ LQ *]f DFFRUGLQJ WR WKH EHKDYLRU RI LWV FRU n;M n;M UHVSRQGLQJ IXQFWLRQ LQ )[f :H ZLOO FDOO WKHVH PHWKRGV WDLORUHG U?M I?M f§ ‘ LWHUDWLYH PHWKRGV )RU H[DPSOH D WZRGLPHQVLRQDO HTXLYDOHQW RI SUREOHP f LV I[f [ [ Df nE  B 9 If[f H f [ Ef  U?M  ZKHUH [A LV WKH YROWDJH DFURVV WKH GLRGH DQG [A LV WKH FXUUHQW LQ WKH r D r 7 FLUFXLW DQG WKH VROXWLRQ LV [ [ [ff f r $ 7 8VLQJ 1HZWRQnV PHWKRG ZLWK WKH LQLWLDO JXHVV [ f \LHOGV nE 7 [ [ f DQG RYHU LWHUDWLRQV DUH UHTXLUHG WR FRQ n;M fN YHUJH WR [ ,I ZH VHOHFW *]f ] H f7 f n;M n;M / WKH LWHUDWLYH PHWKRG WKDW UHVXOWV IURP f LV JLYHQ E\

PAGE 188

ZKHUH )[Nf I[Nf > I [Nf@OQ_O I [Nf _f 9 2 L  b ,?M )RU WKH LQLWLDO JXHVV [r f7 f \LHOGV [r f7 b n;M r DQG WKHQ VLQFH [ LV QRZ FORVH WR [ DIWHU VZLWFKLQJ WR 1HZWRQnV PHWKRG FRQYHUJHQFH LV DFKLHYHG LQ OHVV WKDQ LWHUDWLRQV 7KHUHIRUH VLPLODU LPSURYHPHQWV DUH SRVVLEOH LQ Q GLPHQVLRQV ,Q SULQFLSOH RQH FRXOG VHOHFW DQ DSSURSULDWH *]f IXQFWLRQ DW HDFK 9 n;M LWHUDWLRQ ,W GRHV QRW VHHP SRVVLEOH KRZHYHU WKDW D JHQHUDO DOJRULWKP FDQ EH GHYHORSHG WR DFKLHYH WKH DSSURSULDWH VHOHFWLRQ LQ DQ DXWRPDWLF 7 ZD\ )RU H[DPSOH LQ SUREOHP f DW WKH LQLWLDO JXHVV [ f D WKH VHFRQG IXQFWLRQ Ef GRHV QRW KDYH DQ H[SRQHQWLDO EHKDYLRU ,Q IDFW WKH EHKDYLRU RI ERWK IXQFWLRQV LQ f LV OLQHDU DERXW WKLV [A 7KXV LW ZRXOG VHHP WKDW 1HZWRQnV LWHUDWLRQ LV DSSURSULDWH +RZHYHU ,7 V9 1HZWRQnV LWHUDWLRQ \LHOGV [ A f ZKLFK LV IDUWKHU IURP [ WKDQ n;W U;M r $ 7 [ LV 6LQFH ZH NQRZ WKH VROXWLRQ [ IRU WKLV SUREOHP *]f ]A ]Af IRU H[DPSOH ZRXOG KDYH EHHQ DQ DSSURSULDWH *]f IRU WKH LQLWLDO JXHVV 7 [8 Rf X 7KH 9DULDEOH2UGHU ,WHUDWLYH 0HWKRG ,Q WKLV VHFWLRQ WKH 9DULDEOH2UGHU 92f LWHUDWLYH PHWKRG LV GHULYHG r ZKLFK LV PDLQO\ VXLWDEOH ZKHQ LQLWLDO JXHVVHV WR WKH VROXWLRQ [ RI f DUH FORVH WR [ 7KH PHWKRG LV EDVHG RQ WKH LQILQLWH VHULHV WKDW UHVXOWV IRU WKH *]f IXQFWLRQ JLYHQ E\ n;M n;}

PAGE 189

*]f ] n;} n;r f =Q`n f )RU WKLV *]f IXQFWLRQ f EHFRPHV n;M r [ D [ D $ Df ZKHUH 'n )n [NfB )[Nf Ef n;M= R R R R f )n[Nf >)[Nf 'N@ 'N Ff Y D D D RA RA 'N )f[NfB >>)[Nf'N@'N f >>)f [Nf'N@'N@'N@ Gf R b R R R R R DUH FDOOHG WKH VHFRQG WKLUG IRXUWK HWF RUGHU FRUUHFWLRQV UHVSHFn WLYHO\ $V VWDWHG LQ 6HFWLRQ WKLV LQILQLWH VHULHV LV D ZHOO NQRZQ DQG H[WHQVLYHO\ VWXGLHG UHVXOW >@ H[WHQGHG WR Q GLPHQVLRQV 7KH LPSRUWDQW SURSHUW\ RI f LV WKDW LWHUDWLYH PHWKRGV REWDLQHG IURP WKH VHULHV KDYH LQFUHDVLQJO\ KLJKHU RUGHU RI FRQYHUJHQFH IRU PRVW IXQFWLRQV >@ DV PRUH WHUPV DUH UHWDLQHG IURP WKH VHULHV )RU H[DPSOH N [ [ n9 e f REWDLQHG IURP f E\ UHWDLQLQJ WKH ILUVW WZR WHUPV LV WKH ZHOONQRZQ 1HZWRQ LWHUDWLRQ ZKLFK KDV VHFRQGRUGHU FRQYHUJHQFH 7KH LWHUDWLRQ

PAGE 190

N [ R N [ 2 W f REWDLQHG IURP f E\ UHWDLQLQJ WKUHH WHUPV KDV WKLUGRUGHU FRQn YHUJHQFH 5HWDLQLQJ IRXU WHUPV \LHOGV N [ R N N N N r f R r a r f ZKLFK KDV IRXUWKRUGHU FRQYHUJHQFH &OHDUO\ DQ\ LWHUDWLYH PHWKRG ZLWK HYHQ KLJKHU RUGHU FDQ EH REWDLQHG VLPLODUO\ DVVXPLQJ DOO WKH KLJKHU GHULYDWLYHV DQG WKH LQYHUVH RI WKH -DFRELDQ H[LVW +RZHYHU LW ZDV GHWHUPLQHG H[SHULPHQWDOO\ WKDW ERWK GXH WR HUURUV LQ FRPSXWLQJ RU DSSUR[LPDWLQJf WKH FRUUHFWLRQV RI RUGHU KLJKHU WKDQ IRXU DQG GXH WR QR REVHUYHG LPSURYHPHQW LQ HIILFLHQF\ LWHUDWLYH PHWKRGV RI RUGHU KLJKHU WKDQ IRXU QHHG QRW EH FRQVLGHUHG 7KH WKLUGRUGHU FRUUHFWLRQ PD\ EH DSSUR[LPDWHG E\ 'N b )f[Nf )[Nf R R R R R Df ZKHUH N N N [ [ 'B R R R Ef LV WKH VHFRQGRUGHU SRLQW RU 1HZWRQ SRLQWf 7KLV DSSUR[LPDWLRQ IRO F WF ORZV IURP WKH 7D\ORU VHULHV H[SDQVLRQ RI )[ff DERXW [ DV ZDV VKRZQ LQ nE n;M= rE 6HFWLRQ 6LPLODUO\ WKH IRXUWKRUGHU FRUUHFWLRQ PD\ EH DSSUR[Ln PDWHG E\ VHH 6HFWLRQ f 'N )f[Nf )[Nf D R Df ZKHUH

PAGE 191

N N N N [f [ ' A Y A A Ef LV WKH WKLUGRUGHU SRLQW 7KH LWHUDWLYH PHWKRGV f DQG f XVLQJ WKH DERYH DSSUR[LPDWLRQV FDQ EH WKRXJKW RI DV 1HZWRQnV LWHUDWLRQ ZLWKRXW HYDOXDWLQJ WKH -DFRELDQ PDWUL[ DW HDFK LWHUDWLRQ 7UDXE >@ SURSRVHG DQG VWXGLHG D VLPLODU LWHUDWLYH PHWKRG GHULYHG GLIIHUHQWO\ ,W FDQ EH VKRZQ WKDW WKH RUGHU RI FRQYHUJHQFH IRU WKH LWHUDWLYH PHWKRGV VWLOO UHPDLQV WKH VDPH HYHQ ZLWK WKH SUHFHGLQJ DSSUR[LPDWLRQV >@ 7KH 92 ,WHUDWLYH PHWKRG IRU VROYLQJ f PD\ EH EULHIO\ GHVFULEHG DV IROORZV D PRUH GHWDLOHG LPSOHPHQWDWLRQ LV JLYHQ ODWHUf 67(3 67(3 67(3 67(3 67(3 67(3 67(3 67(3 6HW N DQG REWDLQ [ &RPSXWH 'A n;= ,I __ G,, LV VPDOO JR WR 67(3 N N N 6HW [ [ S 'f IRU VRPH S DOVR VHW A n;M f§ N N DQG JR WR 67(3 ,I __ __ LV VXIILFLHQWO\ VPDOO WR VDWLVI\ D FRQYHUJHQFH N N N FULWHULRQVHW [ [ 'f DQG JR WR 67(3 2WKHU R D A ZLVH VHW U DQG FRQWLQXH &RPSXWH RU LWV DSSUR[LPDWLRQ ,I 'A+ LV VXIILFLHQWO\ VPDOO WR VDWLVI\ WKH FRQYHUJHQFH N N N N FULWHULRQVHW [ [ 'f DQG JR WR 67(3 D D A WU 2WKHUZLVH VHW U U DQG LI U e JR WR 67(3 RWKHUZLVH JR WR 67(3 r N 'RQH $SSUR[LPDWLRQ WR D VROXWLRQ [ RI f LV [ b b 7KH EDVLF LGHD RI WKH DERYH DOJRULWKP LV WKH IROORZLQJ 8VH 1HZWRQnV LWHUDWLRQ RU LWV GDPSHG PRGLILFDWLRQ f RU D WDLORUHG LWHUDWLYH

PAGE 192

PHWKRG DV GHVFULEHG LQ 6HFWLRQ XQWLO [ LV FORVH WR [ 7KHQ f b n;M $ KLJKHURUGHU FRUUHFWLRQV DUH FRPSXWHG XQWLO [ LV DSSUR[LPDWHG WR WKH GHVLUHG DFFXUDF\ 7KH DVVXPSWLRQ XQGHUO\LQJ WKH 92 LWHUDWLRQ LV WKDW WKH KLJKHURUGHU FRUUHFWLRQV DUH PRUH HIILFLHQWO\ FRPSXWHG WKDQ WKH VHFRQGRUGHU FRUUHFWLRQ 7KLV DVVXPSWLRQ LV MXVWLILHG QH[W U?M 6LQFH ZH ZLVK WR LPSOHPHQW WKLV PHWKRG LQ D FLUFXLW DQDO\VLV SURn JUDP WKH ZD\ 1HZWRQnV LWHUDWLRQ LV QRUPDOO\ LPSOHPHQWHG ZLOO EH EULHIO\ UHYLHZHG QRZ 7KH YHFWRU IXQFWLRQ )[f IRU FLUFXLW DQDO\VLV DSSOLFDn WLRQV QRUPDOO\ KDV WKUHH SDUWLWLRQV JLYHQ E\ )[f ) [f ) [f ) [ff nX Y+ nX nX/ b Q1 Df ZLWK ) D OLQHDU DQG KRPRJHQHRXV SDUWLWLRQ JLYHQ E\ ) [f [ Y+ R Y+ b \ Ef DQG D OLQHDU SDUWLWLRQ JLYHQ E\ ) [f [ n;L/ n;M Q/ ?M R/ Ff ZKHUH DQG -7 DUH FRQVWDQW DQG VSDUVH PDWULFHV DQG F7 LV D FRQVWDQW nX/ Y/ YHFWRU DQG ZKHUH )f[f DUH WKH QRQOLQHDU IXQFWLRQV LQ )[f ,I )[f UHSUHVHQWV WKH FLUFXLW HTXDWLRQV WKH QXPEHU RI IXQFWLRQV LQ )A LV XVXDOO\ YHU\ VPDOO FRPSDUHG ZLWK Q ZKHUH Q LV WKH WRWDO QXPEHU RI IXQFWLRQV LQ )[f 1HZWRQnV LWHUDWLRQ LV UDUHO\ LPSOHPHQWHG DV ZULWWHQ n;M ?} LQ f 0RVW WH[WV UHFRPPHQG VROYLQJ WKH V\VWHP RI HTXDWLRQV JLYHQ E\ N N N ) [ f $[ )[ f b ?9 Rm Y Df

PAGE 193

ZKHUH N [ 2L ; b Ef N 7KHQ Ef PD\ EH XVHG WR REWDLQ [ ,I )[f LV JLYHQ E\ f WKHQ f EHFRPHV U f (& rQ" ,, ; 7 N r Y/ f§! [H f§‘ IFL" )[Nf nY1 D f +RZHYHU XVLQJ Ef ZH FDQ ZULWH f DV IROORZV e N [ b L )n[Nf 2L1 A N [ D )0[Nf Y1 Y! f ZKLFK LV FRPSXWDWLRQDOO\ PRUH HIILFLHQW WKDQ f LI ERWK WKH QXPEHU F ,F RI IXQFWLRQV LQ )L[f LV VPDOO DQG WKH SURGXFW )n[ f [ FDQ EH HYDOX DWHG WDNLQJ LQWR FRQVLGHUDWLRQ WKH VSDUVLW\ RI )Ac^ f 0RGHUQ FLUFXLW DQDO\VLV SURJUDPV LPSOHPHQW 1HZWRQnV LWHUDWLRQ E\ f >@ ,Q WKH VROXWLRQ RI f DGYDQWDJH LV WDNHQ RI ERWK WKH ]HUR HOHPHQWV DQG WKH FRQVWDQW HOHPHQWV LQ WKH V\VWHP RI HTXDWLRQV :KLOH f ZLOO VXIILFH IRU RXU SXUSRVHV LQ WKLV FKDSWHU DGGLWLRQDO SDUWLWLRQV FDQ EH LQWURGXFHG ZKLFK ZKHQ WDNHQ DGYDQWDJH RI PDNH WKH LWHUDWLRQ H[WUHPHO\ HIILFLHQW >@ 7KH V\VWHP RI HTXDWLRQV f PD\ EH H[SUHVVHG DV

PAGE 194

N [f F A )$[Nf UrWN1 N N )n[ f[ ) [ f 1 Qr nnY UR1nY n f ZKHUH [LV WKH VHFRQGRUGHU SRLQW Ef 7KH VHFRQGRUGHU FRUUHFWLRQ LV WKHQ JLYHQ E\ N B N N 6 f 6 f 7KH WKLUGRUGHU SRLQW [ LV GHILQHG LQ Ef 8VLQJ Ef HTXDWLRQ Ef VROYHG IRU [ DQG VXEVWLWXWHG LQWR f \LHOGV R! N N r eO tVN! B 8VLQJ Ff ZH KDYH f b AN U A L t Vf§V fW1N! f§ f 1RWH WKDW IRU WKH SDUWLWLRQ RI )[f LQ f ZH KDYH )[f )[ff Y ‘Y b Y1 b f

PAGE 195

6XEVWLWXWLRQ RI f LQWR f \LHOGV WKH WKLUGRUGHU SRLQW DV WKH VROXWLRQ RI &!8 D N A A a 6Nf !>AANf6@£ f 7KHQ N B N N A A e OF OF ,F ,I WKH WHUP f )A[ f'A FDQ EH FRPSXWHG HIILFLHQWO\ E\ WDNLQJ LQWR FRQVLGHUDWLRQ WKH VSDUVLW\ RI )A[ f! VHWWLQJXS DQG VROYLQJ f FDQ EH GRQH PRUH HIILFLHQWO\ WKDQ VHWWLQJXS DQG VROYLQJ DQRWKHU VHFRQGRUGHU SRLQW E\ f 7KH UHDVRQ LV WKDW WKH IDFWRUL]DWLRQ RI WKH -DFRELDQ LQ f LV LGHQWLFDO WR f DQG PRVW RI WKH ULJKW KDQG VLGH LV DOVR WKH VDPH 7KH IRXUWKRUGHU SRLQW JLYHQ E\ N N N N N N fN [ [ ' [ Q ?M nOR QW Q f FDQ EH VLPLODUO\ GHULYHG WR EH WKH VROXWLRQ RI M f N [ N )f[ f % nY1 nX n8 f ZKHUH

PAGE 196

Nf5@@£ 7KHQ N N N [B [ A A R ,I WKH QXPEHU RI QRQOLQHDU IXQFWLRQV LQ )L[f LV VPDOO DQG LI WKH DGGHG R1 Y WHUP LQ WKH ULJKWKDQG VLGH RI f FDQ EH FRPSXWHG E\ WDNLQJ LQWR F LF FRQVLGHUDWLRQ WKH VSDUVLW\ RI )[ f DQG )n [ f WKH IRXUWKRUGHU SRLQW PD\ EH FRPSXWHG PRUH HIILFLHQWO\ WKDQ D QHZ VHFRQGRUGHU SRLQW ,I LQVWHDG RI FRPSXWLQJ WKH H[DFW WKLUGRUGHU FRUUHFWLRQ ZH XVH WKH DSSUR[LPDWLRQ f WKH WKLUGRUGHU SRLQW FDQ EH GHULYHG LQ D VWUDLJKWIRUZDUG PDQQHU WR EH WKH VROXWLRQ RI f ;A W eO SL N N )n[ f[f nY1 nY f &OHDUO\ VHWWLQJXS f DQG VROYLQJ LW IRU FDQ EH GRQH PRUH HIIL F FLHQWO\ WKDQ VHWWLQJXS f DQG VROYLQJ LW IRU DQ HQWLUHO\ QHZ WKDW LV D SXUH 1HZWRQnV LWHUDWLRQf 7KH DSSUR[LPDWH IRXUWKRUGHU SRLQW XVLQJ f FDQ DOVR EH GHULYHG LQ D VWUDLJKWIRUZDUG PDQQHU WR EH WKH VROXWLRQ RI

PAGE 197

/ [A A e rr b B 6“eNf )n B N N [ f[ R A A f :H FDQ QRZ JLYH WKH FRPSXWDWLRQDOO\ HIILFLHQW 92 LWHUDWLYH PHWKRG IRU VROYLQJ f ZLWK )[f SDUWLWLRQHG DV LQ f D b 92 ,WHUDWLYH 0HWKRG 67(3 6HW N REWDLQ [A H DQG H XVHG LQ WKH FRQYHUJHQFH \M WHVWV W\SLFDOO\ H [ DQG H [ JDYH FD FU E JRRG UHVXOWVf DQG 0$;,7 WKH PD[LPXP QXPEHU RI LWHUDWLRQV WR EH GRQH ZKHWKHU FRQYHUJHQFH LV DFKLHYHG RU QRWf 67(3 (YDOXDWH WKH -DFRELDQ DQG WKH ULJKWKDQG VLGH LQ f DW WKH SRLQW [ 67(3 &RPSXWH WKH /8 IDFWRUL]DWLRQ RI WKH -DFRELDQ >@ 7KLV VWHS DQG WKH SUHFHGLQJ RQH FDQ EH PDGH H[WUHPHO\ HIILFLHQW LI WKH IDFWRUL]DWLRQ LV SDUWLWLRQHG VR WKDW WKH FRQVWDQW SDUW RI WKH IDFWRUL]DWLRQ LV GRQH RQO\ RQFH LQ 67(3 DQG LI WKH JHQHUDOO\ QXPHURXV ]HURV LQ WKH -DFRELDQ DUH WDNHQ LQWR FRQVLGHUDWLRQ >@ 67(3 &RPSXWH WKH VHFRQGRUGHU SRLQW [f E\ IRUZDUG DQG EDFN VXEVWLWXWLRQ ,I WKH QRQOLQHDU IXQFWLRQV RQO\ GHSHQG RQ D VXEVHW RI WKH XQNQRZQ YHFWRU [ WKHQ WKH EDFN VXE VWLWXWLRQ FDQ EH GHVLJQHG WR WDNH DGYDQWDJH RI WKLV IDFW >@ ,I _Ge _[M r HFD HFU A IRU D O! fff! N r Q WKHQ LW LV DVVXPHG WKDW [A LV DQ DSSUR[LPDWLRQ WR [ 67(3

PAGE 198

67(3 67(3 67(3 67(3 67(3 67(3 67(3 67(3 67(3 N N WKXV VHW [ [f DQG JR WR 67(3 b A _[A_ IRU DQ\ L Q ,I _Ge DQG _Ge r N r WKHQ LW LV DVVXPHG WKDW [ LV IDU IURP D VROXWLRQ [ N N WKXV VHW [ [f DQG JR WR 67(3 (YDOXDWH WKH ULJKWKDQG VLGH RI HLWKHU f RU f ZKLFK GHILQHV [A RU LWV DSSUR[LPDWLRQ &RPSXWH [A RU LWV DSSUR[LPDWLRQ E\ IRUZDUG DQG EDFN VXEn VWLWXWLRQ RI f RU f 6HH 67(3 IRU DQ DSSOLn FDEOH FRPPHQW ,I O' O[ a [ (FD RU Or Or ,f IRU N r DOO L Q WKHQ [A LV DQ DSSUR[LPDWLRQ WR [ WKXV VHW [N [N DQG JR WR 67(3 LI c'r (FD DQG ,Gr _' IRU DQ\ L L WKHQ LW LV DVVXPHG WKDW WKH LQILQLWH VHULHV f LV QRW N N FRQYHUJLQJ WKXV VHW [ [f DQG JR WR 67(3 nE r? (YDOXDWH WKH ULJKWKDQG VLGH RI HLWKHU f RU f ZKLFK GHILQHV [A RU LWV DSSUR[LPDWLRQ N &RPSXWH [A RU LWV DSSUR[LPDWLRQ E\ IRUZDUG DQG EDFN VXEn VWLWXWLRQ RI f RU f 6HH 67(3 IRU DQ DSSOLn FDEOH FRPPHQW ,I Or O[ a [O HFD rU Or Or f IRU L L L N A r DOO L Q WKHQ [A LV DQ DSSUR[LPDWLRQ WR [ N N WKXV VHW [ [ DQG JR WR 67(3 2WKHUZLVH VHW nX }?} N N [ [ DQG FRQWLQXH D A 6HW N N DQG LI N B 0$;,7 JR WR 67(3 RWKHUZLVH FRQYHUJHQFH FRXOG QRW EH DFKLHYHG LQ 0$;,7 LWHUDWLRQV WKXV H[LW ZLWK HUURU

PAGE 199

67(3 'RQH 7KH SRLQW [ VKRXOG EH DQ DSSUR[LPDWLRQ WR [ 7KH 92 LWHUDWLRQ LV LGHDOO\ VXLWHG IRU VROYLQJ WKH QRQOLQHDU HTXDWLRQV ZKLFK DULVH DW HDFK VWHS ZKHQ LPSOLFLW LQWHJUDWLRQ PHWKRGV >@ DUH XVHG LQ WKH VROXWLRQ RI QRQOLQHDU GLIIHUHQWLDO HTXDWLRQV $V ZLOO EH VKRZQ WKHVH SUREOHPV FDQ VXSSO\ JRRG LQLWLDO JXHVVHV WR WKH VROXn WLRQ RI WKH QRQOLQHDU HTXDWLRQV 7KH 92 ,WHUDWLYH 0HWKRG LQ 7UDQVLHQW $QDO\VLV $V VKRZQ LQ &KDSWHU WKH FLUFXLW HTXDWLRQV PD\ EH FRQYHQLHQWO\ H[SUHVVHG E\ D V\VWHP RI DOJHEUDLF DQG GLIIHUHQWLDO HTXDWLRQV JLYHQ E\ +Xr bf er 6R f ZKHUH ZWf LV WKH YHFWRU RI EUDQFK YROWDJHV EUDQFK FXUUHQWV DQG QRGH b YROWDJHV TWf LV WKH YHFWRU RI FDSDFLWRU FKDUJHV DQG LQGXFWRU IOX[HV b TWf LV WKH WLPH GHULYDWLYH RI TWf DQG W LV WKH LQGHSHQGHQW YDULDEOH n9 WLPH 7KH YHFWRU IXQFWLRQ ) FRPSULVHV .LUFKKRIInV YROWDJH DQG FXUUHQW n;M ODZ HTXDWLRQV DQG WKH EUDQFK FRQVWLWXLWLYH HTXDWLRQV 7KH WUDQVLHQW DQDO\VLV RI WKH FLUFXLW HTXDWLRQV LV GHILQHG WR EH WKH SURFHGXUH E\ ZKLFK WKH YHFWRUV ZWf DQG MWf DUH FRPSXWHG WR VDWLVI\ f IRU DOO YDOXHV RI WLPH LQ WKH LQWHUYDO WA B W B 7 )RU D ODUJH QXPEHU RI FLUFXLWV WKH GLIIHUHQWLDO HTXDWLRQV LQ f DUH VWLII >@ 7KDW LV WKH WLPH FRQVWDQWV RI WKH FLUFXLW DUH ZLGHO\ VHSDUn DWHG 7KLV VWLIIQHVV KDV IRUFHG PRVW UHFHQW WUDQVLHQW DQDO\VLV SURJUDPV WR XVH LPSOLFLW QXPHULFDO LQWHJUDWLRQ PHWKRGV >@ LQ FRPSXWLQJ DSSUR[LPDWLRQV WR ZWf DQG F>Wf

PAGE 200

,Q JHQHUDO WKH VROXWLRQV ZWf DQG JWf DUH DSSUR[LPDWHG DW GLVn FUHWH YDOXHV RI WLPH W W W Wf ZKHUH WZ 7 7KH DSSUR[L 8 0 0 f§ PDWLRQ LV DFFRPSOLVKHG E\ WKH GLVFUHWL]DWLRQ RI TWf DW HDFK WLPH VWHS nE W WA 7KLV GLVFUHWL]DWLRQ JHQHUDOO\ FRQVLVWV RI DSSUR[LPDWLQJ HDFK FRPSRQHQW TALWAf E\ D SRO\QRPLDO SDVVLQJ WKURXJK WKH SDVW YDOXHV RI TA&Wf )RU LPSOLFLW LQWHJUDWLRQ PHWKRGV WKH WLPH GHULYDWLYHV DUH JHQHUDOO\ GLVFUHWL]HG E\ T W f 6T W f T W f L P L P L P } T W f K K [ PU P P rfr 9UO} W OO ZKHUH K W W LV FDOOHG WKH P VWHS VL]H DQG WKH IXQFWLRQ 6 P P P GHSHQGV RQ WKH LQWHJUDWLRQ PHWKRG )RU H[DPSOH WKH EDFNZDUG (XOHU GLVFUHWL]DWLRQ PHWKRG >@ LV JLYHQ E\ 7KXV DW HDFK WLPH SRLQW W W DIWHU WKH GLVFUHWL]DWLRQ RI HDFK FRP P SRQHQW RI TW f WKH FLUFXLW HTXDWLRQV EHFRPH 2X P )ZWf TW ff f ?M ; P b P nY ZKLFK LV D QRQOLQHDU V\VWHP RI HTXDWLRQV WR EH VROYHG IRU ZW f DQG TW f )RU VXIILFLHQWO\ VPDOO K WKH VROXWLRQ RI f DW HDFK WLPH U& P P VWHS LV LQ JHQHUDO YHU\ FORVH WR WKH VROXWLRQ RI f DW WKH SUHFHGLQJ WLPH VWHS H[FHSW SHUKDSV DW WKH ILUVW WLPH SRLQW ZKLFK LV FRQVLGHUHG LQ 6HFWLRQ f 7KHUHIRUH YHU\ JRRG LQLWLDO HVWLPDWHV RI D VROXWLRQ RI f FDQ XVXDOO\ EH REWDLQHG 7KHUH DUH PDQ\ DOJRULWKPV IRU GHWHUPLQLQJ WKH QXPEHU RI SDVW YDOXHV

PAGE 201

RI TWf WR XVH LQ WKH GLVFUHWL]DWLRQ RI TW f WKH RUGHU RI WKH DSSUR[ nY n[ P LPDWLQJ SRO\QRPLDOf DQG IRU GHWHUPLQLQJ WKH VWHS VL]H WR LQVXUH DFFXUDF\ >@ 7KH DOJRULWKPV FDQ EH JHQHUDOO\ GHVFULEHG E\ WKH IROORZLQJ JHQHUDO WUDQVLHQW LWHUDWLRQ *HQHUDO 7UDQVLHQW ,WHUDWLRQ 67(3 2EWDLQ Wa K WKH LQLWLDO VWHS VL]Hf 7 T WKH LQLWLDO 8 L n9M8 FRQGLWLRQV ZKLFK JHQHUDOO\ UHTXLUH D GF DQDO\VLVf 6HW P 67(3 67(3 67(3 67(3 67(3 67(3 6HW W W K P P P 'LVFUHWL]DWLRQ RI TW f 7KLV VWHS GHSHQGV RQ WKH LP n9 P SOLFLW LQWHJUDWLRQ PHWKRG EHLQJ XVHG ([WUDSRODWH IURP WKH SUHYLRXV WLPH VWHS YDOXHV WR REWDLQ DQ LQLWLDO JXHVV WR WKH GHVLUHG VROXWLRQ RI f 6ROYH f IRU ZW f DQG TW f 1RUPDOO\ D PD[LPXP RI A P UR P ILYH LWHUDWLRQV DUH GRQH LQ DWWHPSWLQJ WR VROYH f ,I WKH FRQYHUJHQFH FULWHULRQ LV QRW PHW WKHQ VHW K K P P DQG JR WR 67(3 2WKHUZLVH FRQWLQXH (VWLPDWH WKH WUXQFDWLRQ HUURU LQ WKH GLVFUHWL]DWLRQ 7KLV VWHS DOVR GHSHQGV RQ WKH LQWHJUDWLRQ PHWKRG DV 67(3 GRHV ,I WKH WUXQFDWLRQ HUURU LV WRR ODUJH WKHQ VHW K K DQG JR WR 67(3 2WKHUZLVH GHWHUPLQH ZKDW WKH P P QH[W VWHS VL]H KAA VKRXOG EH 'LVSOD\ DQGRU VDYH UHTXHVWHG RXWSXWV DW WKH FXUUHQW WLPH W ,I W 7 WKHQ VHW P P DQG JR WR 67(3 P P 2WKHUZLVH WKH WUDQVLHQW DQDO\VLV LV FRPSOHWH 0RVW H[LVWLQJ LPSOHPHQWDWLRQV RI WKLV JHQHUDO WUDQVLHQW DQDO\VLV

PAGE 202

LWHUDWLRQ XVH D 1HZWRQOLNH LWHUDWLRQ WR VROYH f DW 67(3 > @ :H SURSRVH WR XVH WKH 92 LWHUDWLRQ JLYHQ LQ 6HFWLRQ %DVHG RQ H[SHULPHQWDO HYLGHQFH LW LV FRQMHFWXUHG WKDW WKH FRPSXWHU WLPH VSHQW LQ 67(3 LV IURP b WR b RI WKH WRWDO FRPSXWHU WLPH 7KH DFWXDO FRPSXWHU WLPH GHSHQGV RQ PDQ\ IDFWRUV VXFK DV f WKH FRPSXWHU WLPH LQ 67(3 LV GLUHFWO\ SURSRUWLRQDO WR WKH HIILFLHQF\ RI WKH LPSOHn PHQWDWLRQ RI ERWK WKH /8 IDFWRUL]DWLRQ RI WKH -DFRELDQ DQG WKH IRUZDUG EDFN VXEVWLWXWLRQ RI WKH VROXWLRQ WR WKH OLQHDU V\VWHP RI HTXDWLRQV f WKH FRPSXWHU WLPH LQ 67(3 LV LQYHUVHO\ SURSRUWLRQDO WR WKH DPRXQW RI UHTXHVWHG RXWSXW LQ 67(3 DQG f WKH FRPSXWHU WLPH LQ 67(3 LV GLUHFWO\ SURSRUWLRQDO WR WKH FRPSOH[LW\ RI WKH FLUFXLW UHSUHVHQWHG E\ WKH FLUFXLW HTXDWLRQV )RU WKH $23 SURJUDP ZKLFK XVHV DQ H[WUHPHO\ HIILFLHQW 1HZWRQnV LWHUDWLRQ DW 67(3 >@ WKH PHDVXUHG FRPSXWHU WLPH VSHQW LQ 67(3 ZDV IURP b WR b IRU WKH H[DPSOHV UHSRUWHG LQ WKH UHVW RI WKLV FKDSWHU 7KH $23 SURJUDP GRHV D PD[LPXP RI ILYH 1HZWRQ LWHUDWLRQV EHIRUH WKH VWHS VL]H LV UHGXFHG DV QRWHG LQ 67(3 ,W ZDV H[SHULPHQWDOO\ IRXQG KRZHYHU WKDW LI WKH VHFRQGRUGHU RU 1HZWRQ FRUUHFWLRQ 'f ZDV HYHU ODUJH LW ZDV EHVW WR QRW FRQWLQXH ZLWK WKH LWHUDWLRQV LH UHGXFH WKH VWHS VL]H ULJKW DZD\f 7KLV FKHFN LV LPSOHPHQWHG LQ 67(3 RI WKH 92 LWHUDWLYH PHWKRG GHVFULEHG LQ 6HFWLRQ DV IROORZV ,Qn VWHDG RI JRLQJ WR 67(3 DV LQGLFDWHG LI _GA DQG _'A _[A_ L L IRU DQ\ L Q WKHQ D VLJQDO WR UHGXFH WKH VWHS VL]H LV PDGH RWKHUZLVH JR WR 67(3 ,Q WKH IROORZLQJ WKH $23 SURJUDP UHVXOWV ZLWK 1HZWRQnV LWHUDWLRQ DW 67(3 DUH ODEHOHG $23 WKH UHVXOWV IRU WKH $23 SURJUDP XVLQJ WKH 92 LWHUDWLRQ ZLWK H[DFW FRUUHFWLRQV DUH ODEHOHG $2392 DQG WKH UHVXOWV IRU

PAGE 203

WKH $23 SURJUDP XVLQJ WKH 92 LWHUDWLRQ ZLWK DSSUR[LPDWH FRUUHFWLRQV DUH ODEHOHG $2392$ ,Q WU\LQJ WR PDNH D GHILQLWH VWDWHPHQW DERXW WKH LPSURYHPHQWV LQ HIILFLHQF\ ZH DUH DJDLQ IDFHG VHH 6HFWLRQ f ZLWK WKH IDFW WKDW LQWHUYDOV RI WLPH FDQQRW EH PHDVXUHG DFFXUDWHO\ LQ WKH ,%0 0RG FRPSXWHU XVHG > SHUKDSV EHFDXVH RI WKH PXOWLSURn JUDPPLQJ HQYLURQPHQW $V ZLOO EH VHHQ VHYHUDO LQFRQVLVWHQFLHV LQ WKH PHDVXUHG FRPSXWHU WLPHV PDNH FRQFOXVLRQV EDVHG VROHO\ RQ WKLV ILJXUH VRPHZKDW GXELRXV +RZHYHU PRVW PHDVXUHG FRPSXWHU WLPHV ZKLFK DUH LQ VHFRQGV LQGLFDWH VDYLQJV RI b LQ 67(3 RQ DYHUDJH $Q LQWHUHVWLQJ UHVXOW ZDV WKDW WKH WRWDO QXPEHU RI VHFRQGRUGHU RU 1HZWRQ FRUUHFWLRQV LQ $23 ZKLFK LV HTXDO WR WKH WRWDO QXPEHU RI SDVVHV LQ WKH ODQJXDJH RI WKH SURJUDP ZHUH DSSUR[LPDWHO\ HTXDO WR WKH WRWDO QXPEHU RI WKH VXP RI VHFRQG WKLUGDQG IRXUWKRUGHU FRUUHFWLRQV LQ $2392 DQG LQ $2392$ 7KDW LV WKH 92 LWHUDWLYH PHWKRG UHGXFHG WKH FRPSXWDWLRQDO FRVW RI REWDLQLQJ PDQ\ RI WKH FRUUHFWLRQV LW JHQHUDOO\ GLG QRW UHGXFH WKH QXPEHU RI WKHP 026)(7 1DQG *DWH ([DPSOH 7KH VLPSOH QDQG JDWH GHVFULEHG HDUOLHU LQ 6HFWLRQ DQG LQ )LJ LV WKH ILUVW H[DPSOH 7KH WZR LQSXWV DUH QRZ VHW WR D WLPH GHSHQGHQW WUDSH]RLGDO FXUYH LQVWHDG RI EHLQJ FRQVWDQWV RI YROWV DV LQ )LJ (DFK LQSXW LV LQLWLDOO\ FRQVWDQW DW YROWV 7KHQ WKH ULVH EHJLQV DW QVHF XQWLO QVHF DW ZKLFK SRLQW WKH\ VWD\ DW YROWV XQWLO WKH\ EHJLQ WR IDOO DW QVHF XQWLO QVHF ZKHQ WKH\ VWD\ DW YROWV 7KH WUDQVLHQW DQDO\VLV ZDV IURP WR QVHF 7KH GHYLFH PRGHOV ZHUH DV GHVFULEHG LQ 6HFWLRQ ZLWK WKH H[FHSWLRQ WKDW WKH VXEVWUDWH WHUPLQDO ZDV QRW LQFOXGHG DQG WKXV D FRQVWDQW

PAGE 204

WKUHVKROG YROWDJH RI YROWV ZDV XVHG $ IXQFWLRQ VXESURJUDP ZDV XVHG WR VXSSO\ WKH GUDLQ WR VRXUFH FXUUHQW DQG WKH DSSURSULDWH SDUWLDO GHULYDWLYHV 7KH UHVXOWV IRU $23 DQG $2392 DUH VXPPDUL]HG LQ 7DEOH 2En VHUYH WKDW ZKLOH WKLV LV D UHODWLYHO\ VPDOO WUDQVLHQW DQDO\VLV SUREOHP E\ WRGD\nV VWDQGDUGV b VDYLQJV LQ WKH PHDVXUHG FRPSXWHU WLPH RI 67(3 UHVXOWHG 1RWH WKDW $2392 UHTXLUHG PRUH WLPH VWHSV WKDQ $23 $V ZLOO EH VHHQ LQ RWKHU H[DPSOHV $2392 UHTXLUHG OHVV WLPH VWHSV WKDQ $23 ,Q QXPHULFDO LQWHJUDWLRQ VOLJKW GLIIHUHQFHV LQ WKH VROXWLRQ WR WKH QRQOLQHDU HTXDWLRQV LQ RQH WLPH VWHS FDXVHV GLIIHUHQW VXEVHTXHQW WLPH VWHSV WR EH WDNHQ +RZHYHU WKH VROXWLRQ RI ERWK $23 DQG $2392 ZHUH LQ DJUHHPHQW WR WKUHH VLJQLILFDQW GLJLWV DV H[SHFWHG 026)(7 %XIIHU ([DPSOHV 7KH QH[W WZR H[DPSOHV DUH 026 EXIIHUV VKRZQ LQ )LJV DQG >@ 7KH LQSXW YROWDJH 9,1 LV D WUDSH]RLG ZLWK LQLWLDO OHYHO DW Y WKH ULVH EHJLQV DW QVHF XQWLO QVHF DW ZKLFK SRLQW LW VWD\V DW Y WKHQ LW EHJLQV WR IDOO DW QVHF XQWLO QVHF ZKHQ LW VWD\V DW Y 7KH 026)(7 GHYLFH PRGHOV DUH WKH VDPH DV WKH RQHV GHVFULEHG LQ 6HFWLRQ ZLWK WKH IROORZLQJ ZLGWKV Zf DQG OHQJWKV =f LQ XQLWV RI PLOV 7O Z = 7 Z = 7 DQG 7 Z = 7 Z = 7 Z = 7 Z = 7 DQG 7LO Z = 7KH QRQOLQHDU GUDLQ WR VRXUFH FXUUHQWV DUH IXQFWLRQV RI WKUHH YROWDJHV DQG WKHUHIRUH WKHUH DUH VHYHUDO QRQ]HUR VHFRQG SDUWLDO GHULn YDWLYHV ,W ZDV GHWHUPLQHG WKDW LQ WKLV FDVH FRPSXWLQJ WKH H[DFW IRXUWKRUGHU SRLQW E\ f ZDV QRW HIILFLHQW 7KXV $2392 GLG QRW

PAGE 205

7$%/( 5HVXOWV RI WUDQVLHQW DQDO\VLV IRU WZR LQSXW QDQG JDWH RI )LJ 3HUFHQW VDYLQJV DUH JLYHQ LQ SDUHQWKHVHV &RXQWHUV $23 $2392 7LPH 6WHSV ULG 2UGHU &RUUHFWLRQV UG 2UGHU &RUUHFWLRQV WLO 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU WLPH bf 67(36 &RPSXWHU WLPH bf

PAGE 206

9 9 9,12 , %8))(5 Df % f§ & )LJXUH Df 1LQHGHYLFH 026 EXIIHU FLUFXLW DQDO\]HG Ef &LUFXLW GLDJUDP RI WKH EXIIHU EORFN 5HVLVWDQFH XQLWV DUH LQ . DQG FDSDFLWDQFH XQLWV DUH LQ SI 7KH 026 GHYLFH PRGHO LV JLYHQ LQ )LJ E

PAGE 207

9,1 2 )LJXUH 9 (LJKWHHQGHYLFH 026 EXIIHU DQDO\]HG 7KH FLUFXLW GLDJUDP RI WKH EXIIHU EORFN LV JLYHQ LQ )LJ E

PAGE 208

REWDLQ WKH IRXUWKRUGHU FRUUHFWLRQV +RZHYHU DOO RI WKH KLJKHU RUGHU FRUUHFWLRQV FDQ DOZD\V EH DSSUR[LPDWHG HIILFLHQWO\ 7KH UHVXOWV RI D WUDQVLHQW DQDO\VLV IURP WR QVHF DUH VXPn PDUL]HG LQ 7DEOHV DQG 2EVHUYH WKDW WKHVH WZR H[SHULPHQWV LQGLFDWH WKDW WKH VDYLQJV WHQG WR EH ODUJHU DV WKH VL]H RI WKH FLUFXLW LQFUHDVHV DV LW ZDV VXJJHVWHG HDUOLHU (&/ *DWH ([DPSOHV 7KLV LV D ELSRODU H[DPSOH FRQVLVWLQJ RI DQ (&/ JDWH >@ VKRZQ LQ )LJ 7KH QRQOLQHDU FDSDFLWDQFHV LQ SIf DQG FXUUHQW VRXUFHV LQ PDf RI WKH GHYLFH PRGHO VKRZQ LQ )LJ E DUH JLYHQ E\ >@ 7B f9&( -( [ H f -&[Hf9&& f &( 9&(fn -( [ af && 9&&f [ -& [ f 7KH WKUHH LQSXWV 9, 9 DQG 9 DUH HDFK VHW WR D WUDSH]RLG IXQFWLRQ RI WLPH 7KH LQLWLDO OHYHO ZDV Y WKH ULVH EHJLQV DW QVHF XQWLO QVHF DW ZKLFK SRLQW WKH OHYHO LV Y WKH IDOO EHJLQV DW QVHF XQWLO QVHF ZKHQ WKH OHYHO LV DJDLQ Y 7KH WUDQVLHQW DQDO\VLV ZDV IURP WR QVHF 7ZR UXQV ZHUH PDGH ZKLFK DUH VXPPDUn L]HG LQ 7DEOHV DQG 7KH VHFRQG UXQ GLIIHUHG IURP WKH ILUVW RQH LQ WKDW DOO RI WKH FDSDFLWRU HTXDWLRQV LQ WKH PRGHOV ZHUH PXOWLSOLHG E\ D FRQVWDQW IDFWRU RI 7KHVH ODUJHU FDSDFLWRUV SURGXFH D PXFK PRUH

PAGE 209

7$%/( 5HVXOWV RI WUDQVLHQW DQDO\VLV IRU GHYLFH 026 EXIIHU RI )LJ 3HUFHQW VDYLQJV DUH JLYHQ LQ SDUHQWKHVHV $2392 UHVXOWV DUH IRU XVLQJ WKH VHFRQG DQG WKLUG RUGHU FRUUHFWLRQV RQO\ DV WKH IRXUWKRUGHU H[DFW FRUUHFWLRQV ZHUH WRR FRVWO\ WR HYDOXDWH &RXQWHUV $23 $2392 $2392$ 7LPH 6WHSV QG 2UGHU &RUUHFWLRQV UG 2UGHU &RUUHFWLRQV Wr 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU 7LPH bf bf 67(36 &RPSXWHU 7LPH bf bf 7$%/( 5HVXOWV RI WUDQVLHQW DQDO\VLV IRU GHYLFH 026 EXIIHU RI )LJ 3HUFHQW VDYLQJV DUH JLYHQ LQ SDUHQWKHVHV $2392 UHVXOWV DUH IRU XVLQJ WKH VHFRQG DQG WKLUG RUGHU FRUUHFWLRQV RQO\ DV WKH IRXUWKRUGHU H[DFW FRUUHFWLRQV ZHUH WRR FRVWO\ WR HYDOXDWH &RXQWHUV $23 $2392 $2392$ 7LPH 6WHSV QFr 2UGHU &RUUHFWLRQV UG 2UGHU &RUUHFWLRQV WLO 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU 7LPH bf bf 67(36 &RPSXWHU 7LPH bf bf

PAGE 210

R 9 )LJXUH Df (&/ JDWH DQDO\]HG Ef %LSRODU GHYLFH PRGHOV 5HVLVWDQFH XQLWV DUH LQ .

PAGE 211

7$%/( 5HVXOWV RI WUDQVLHQW DQDO\VLV IRU WUDQVLVWRU ELSRODU (&/ JDWH RI )LJ 3HUFHQW VDYLQJV DUH VKRZQ LQ SDUHQWKHVHV &RXQWHUV $23 $2392 $39$ 7LPH 6WHSV QA 2UGHU &RUUHFWLRQV UG 2UGHU &RUUHFWLRQV WLO 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU 7LPH bf bf 67(36 &RPSXWHU 7LPH bf bf 7$%/( 5HVXOWV RI WUDQVLHQW DQDO\VLV IRU WUDQVLVWRU ELSRODU (&/ JDWH RI )LJ EXW ZLWK WKH QRQOLQHDU FDSDFLWRU HTXDWLRQV PXOWLSOLHG E\ 3 7KLV PDNHV WKH FLUFXLW KDUGHU WR DQDO\]H 3HUFHQW VDYLQJV DUH VKRZQ LQ SDUHQWKHVHV &RXQWHUV $23 $2392 $2392$ 7LPH 6WHSV QG 2UGHU &RUUHFWLRQV UG 2UGHU &RUUHFWLRQV WLO 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU 7LPH bf bf 67(36 &RPSXWHU 7LPH bf bf

PAGE 212

GLIILFXOW WUDQVLHQW DQDO\VLV 2EVHUYH WKDW WKH VDYLQJV ZHUH ODUJHU IRU WKH PRUH FRPSOH[ DQDO\VLV DV ZDV VXJJHVWHG HDUOLHU 7KH 92 ,WHUDWLYH 0HWKRG LQ '& $QDO\VLV 7KH GF DQDO\VLV RI D FLUFXLW UHSUHVHQWHG E\ WKH FLUFXLW HTXDWLRQV f \LHOGV WKH YDOXHV Z DQG J IRU ZKLFK J LQ f 7KXV GF DQDO\VLV FRQVLVWV RI VROYLQJ WKH V\VWHP RI QRQOLQHDU HTXDWLRQV f ZLWK T WKDW LV n9 nE )Z T nE 2f R} R nE 9 f 7KH GLIILFXOW\ LQ VROYLQJ f LV WKDW QRUPDOO\ WKH LQLWLDO JXHVV RI D VROXWLRQ LV SRRU 7KH $23 SURJUDP DQG RWKHU SURJUDPV >@ XVH D SVHXGRWUDQVLHQW DQDO\VLV WHFKQLTXH IRU VROYLQJ f 7KH PHWKRG VWHPV IURP WKH IDFW WKDW GF DQDO\VLV PD\ EH GHILQHG DV WKH EHKDYLRU RI D FLUFXLW XQGHU WLPH LQYDULDQW VRXUFHV DIWHU VXFK D ORQJ SHULRG RI WLPH WKDW DOO YROWDJHV DQG FXUUHQWV DUH FRQVWDQW 7KXV LI DQ\ WLPHGHSHQGHQW VRXUFHV RI WKH FLUFXLW DUH KHOG FRQVWDQW DW WKHLU W WA YDOXH D WUDQVLHQW DQDO\VLV RI f XQWLO T LV VPDOO QRUPDOO\ DSSUR[LPDWHV WKH VROXWLRQ RI f nE 7KLV SVHXGRWUDQVLHQW DQDO\VLV LV RI FRXUVH QRW FRQFHUQHG ZLWK LQWHUn PHGLDWH UHVXOWV DQG WKXV WUXQFDWLRQ HUURUV DUH DOORZHG WR EH ODUJH LQ RUGHU WR XVH ODUJHU SVHXGR WLPHVWHSV 7KHVH PHWKRGV FDOOHG FRQWLQXn DWLRQ PHWKRGV E\ QXPHULFDO DQDO\VWV >@ DUH TXLWH UHOLDEOH EXW LQ JHQHUDO WKH\ FRQYHUJH WR WKH GF VROXWLRQ YHU\ VORZO\ :H FDQ RI FRXUVH DGG WKH 92 LWHUDWLRQ DV GRQH LQ WKH ODVW VHFWLRQ WR WKLV SVHXGRWUDQVLHQW DQDO\VLV PHWKRG DQG DV ZLOO EH VKRZQ VLPLODU

PAGE 213

LPSURYHPHQW DV WKRVH UHSRUWHG LQ WKH ODVW VHFWLRQ DUH REWDLQHG +RZn HYHU DQ LWHUDWLYH PHWKRG ZDV DOVR XVHG ZLWK JRRG UHVXOWV ZKLFK FRPELQHV WKH SVHXGR WUDQVLHQW DQDO\VLV PHWKRG WKH 92 LWHUDWLRQ WKH GDPSHG 1HZWRQ LWHUDWLRQ DQG WKH WDLORUHG LWHUDWLYH PHWKRG GHVFULEHG LQ 6HFWLRQ 7KH XQGHUO\LQJ LGHD RI WKLV FRPELQHG LWHUDWLRQ LV WR GR D SVHXGR WUDQVLHQW DQDO\VLV ZLWK YHU\ ODUJH SVHXGR WLPHVWHSV &OHDUO\ WKH ODUJHU WKH SVHXGR VWHS VL]H LV WKH VPDOOHU T EHFRPHV DQG WKH PRUH WKH VROXWLRQ RI f LV DSSUR[LPDWHG 7KXV ZH FDQ VWLOO GHVFULEH WKH HQWLUH SURFHGXUH E\ WKH JHQHUDO WUDQVLHQW LWHUDWLRQ JLYHQ LQ 6HFWLRQ 7KH RQO\ H[FHSWLRQ LV WKDW WKH WHUPLQDWLRQ RI WKH SURFHGXUH LV f QRW DW VRPH IL[HG YDOXH RI WLPH EXW E\ WHVWLQJ WKH VPDOOQHVV RI T DW nW HDFK WLPH VWHS DV GRQH LQ >@ 7KH 67(3 RI WKH WUDQVLHQW LWHUDWLRQ ZKLFK LV ZKHUH WKH QRQOLQHDU HTXDWLRQV DUH VROYHG DW HDFK WLPH VWHS LV RQFH DJDLQ WKH 92 LWHUDWLYH PHWKRG DV GHVFULEHG LQ 6HFWLRQ ZLWK WKH IROORZLQJ PRGLILFDWLRQV ,Q 67(3 RI WKH 92 LWHUDWLRQ ZKHUH WKH ULJKWKDQG VLGH RI f LV HYDOXDWHG LI DQ\ RI WKH QRQOLQHDU IXQFWLRQV KDV H[SRQHQWLDO EHKDYLRU WKHQ LWV FRUUHVSRQGLQJ *]f IXQFWLRQ LV VHOHFWHG DSSURSULDWHO\ DV LOOXVWUDWHG LQ 6HFWLRQ 7KH HIIHFW RI WKLV VHOHFWLRQ LV D WDLORUHG LWHUDWLYH PHWKRG LOOXVWUDWHG LQ f DQG f DQG FDQ EH GRQH VWUDLJKWIRUZDUGO\ LQ WKH IXQFWLRQ VXEn SURJUDP ZKLFK VXSSOLHV WKH QRQOLQHDU IXQFWLRQ YDOXHV DQG WKHLU SDUWLDO GHULYDWLYHV 7KH VHFRQG PRGLILFDWLRQ WR WKH 92 LWHUDWLRQ LV LQ 67(3 ZKHUH LW LV HVWDEOLVKHG ZKHQ WKH VHFRQGRUGHU FRUUHFWLRQ LV ODUJH ,I WKH VHFRQGRUGHU FRUUHFWLRQ LV ODUJH LQVWHDG RI JRLQJ WR 67(3 D GDPSLQJ SDUDPHWHU LV DXWRPDWLFDOO\ FRPSXWHG JLYHQ E\ S PLQ^O PD[>O _[A_'__! L Q` f L

PAGE 214

7KHQ VHW N [ n9 f DQG JR WR 67(3 1RWH WKDW WKLV LV DQ DXWRPDWLF GDPS 1HZWRQ LWHUD N WLRQ 7KH GDPS f LQVXUHV WKDW DQ\ FRPSRQHQW RI [ LV GLIIHUHQW nK N IURP [ E\ DW PRVW b RU LI WKH FRPSRQHQW LV OHVV WKDQ f D 7DEOHV DQG VXPPDUL]H WKH UHVXOWV IRU WZR RI WKH FLUFXLWV XVHG LQ WKH ODVW VHFWLRQ 7KH $39$ FROXPQ LV IRU WKH FRPELQHG n LWHUDWLRQ GHVFULEHG DERYH 7KH FRPELQHG LWHUDWLRQ ZRUNHG YHU\ ZHOO ZLWK VLPLODU UHVXOWV IRU DOO WKH FLUFXLW H[DPSOHV RI WKH ODVW VHFWLRQ )RU WKH GHYLFH 026 EXIIHU LW ZDV IRXQG WKDW WKH GF VROXWLRQ JLYHQ E\ $23 ZDV QRW DV DFFXUDWH DV WKH GF VROXWLRQ REWDLQHG ZLWK WKH FRPELQHG LWHUDWLRQ 7KXV WKH FRPSDULVRQ RI WKH UHVXOWV RI 7DEOH PXVW WDNH WKLV GLVFUHSDQF\ LQWR FRQVLGHUDWLRQ LH $23 VKRXOG KDYH GRQH D PXFK ORQJHU SVHXGR WUDQVLHQW DQDO\VLV IRU WKH HTXLYDOHQW DFFXUDF\ RI $23 9$f 6XPPDU\ ,Q WKLV FKDSWHU DQ DOJRULWKP EDVHG RQ WKH YDULDEOH RUGHU FRQFHSW LQWURGXFHG LQ &KDSWHU ZDV LPSOHPHQWHG WR VROYH WKH QRQOLQHDU HTXDWLRQV WKDW DULVH LQ WUDQVLHQW DQDO\VLV RI FLUFXLWV &RPSDULVRQV ZLWK DQ H[LVWLQJ DQG DOUHDG\ YHU\ HIILFLHQW PHWKRG VKRZ PRGHVW LPSURYHPHQWV LQ HIILFLHQF\ $GGLWLRQDOO\ D FRPELQHG LWHUDWLRQ VXLWDEOH IRU GF DQDO\VLV RI FLUFXLWV ZDV DEOH WR VROYH VHYHUDO H[DPSOHV PRUH HIILFLHQWO\ WKDQ DQ H[LVWLQJ PHWKRG EDVHG RQ VROYLQJ WKH GF SUREOHP E\ D SVHXGRWUDQVLHQW DQDO\VLV

PAGE 215

7$%/( 5HVXOWV RI GF DQDO\VLV IRU WUDQVLVWRU ELSRODU (&/ JDWH RI )LJ &RXQWHUV $23 $2392 $39$ 7LPH 6WHSV QA 2UGHU &RUUHFWLRQV QR U2UGHU &RUUHFWLRQV W K 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU 7LPH bf bf 7$%/( 5HVXOWV RI GF DQDO\VLV IRU GHYLFH 026 EXIIHU RI )LJ ,W ZDV IRXQG WKDW WKH VROXWLRQ FRPSXWHG E\ $23 ZDV LQn FRUUHFW WKXV WKLV PXVW EH FRQVLGHUHG ZKHQ LQWHUSUHWLQJ WKH UHVXOWV &RXQWHUV $23 $2392$ $39$ 7LPH 6WHSV QG 2UGHU &RUUHFWLRQV UFM 2UGHU &RUUHFWLRQV IFK 2UGHU &RUUHFWLRQV 67(3 &RPSXWHU 7LPH bf bf

PAGE 216

&+$37(5 &21&/86,216 $1' )8785( 5(6($5&+ 68**(67,216 ,Q WKLV FKDSWHU WKH FRQWULEXWLRQV RI WKLV UHVHDUFK ZLOO EH RXWn OLQHG 7KH SUREOHPV DQG VKRUWFRPLQJV RI WKH SURSRVHG QHZ DOJRULWKPV DQG WHFKQLTXHV DUH GHVFULEHG DQG VRPH VXJJHVWLRQV IRU WKHLU VROXWLRQ DQG IRU IXUWKHU UHVHDUFK DUH RIIHUHG &RQFOXVLRQV 7KH PDLQ FRQWULEXWLRQ RI WKLV UHVHDUFK LV WKH 9DULDEOH2UGHU 92f DOJRULWKP IRU WKH PLQLPL]DWLRQ RI D IXQFWLRQ RI VHYHUDO YDULDEOHV GHn ULYHG LQ &KDSWHUV DQG $ 7KH 92 DOJRULWKP KDV WZR GLVWLQFWLYHO\ QHZ IHDWXUHV WKH RUGHU RI FRQYHUJHQFH LV YDULDEOH DV KLJK DV IRXU DQG WKH VFDODU SUREOHP LQ HDFK LWHUDWLRQ LV EDVHG RQ WKH SULQFLSOH RI PRYLQJ DV IDU DZD\ DV SRVVLEOH IURP WKH SUHVHQW SRLQW 7KH RUGHU RI FRQYHUJHQFH LV DQ LQWULQVLF SURSHUW\ RI WKH WUDQVn IRUPDWLRQ IXQFWLRQ ,W ZDV VKRZQ LQ &KDSWHU WKDW WKH 92 DOJRULWKP LV EDVHG RQ WUXQFDWLRQV RI D 7D\ORU VHULHV H[SDQVLRQ RI D SRLQW VDWLVI\LQJ D QHFHVVDU\ FRQGLWLRQ IRU D VROXWLRQ 7KH JHQHUDO GHULYDWLRQ RI WKLV VHULHV DSSHDUV WR EH QRYHO DOWKRXJK SDUWLFXODU IRUPV RI WKH VHULHV KDYH EHHQ SUHYLRXVO\ REWDLQHG DV ZDV PHQWLRQHG 0RVW H[LVWLQJ DOJRULWKPV KDYH RUGHU RI FRQYHUJHQFH OHVV WKDQ RU HTXDO WR WZR ZKLOH WKH 92 DOJRn ULWKP FDQ FRQYHUJH ZLWK RUGHU DV KLJK DV IRXU 7KH VFDODU VHDUFK VXESUREOHP ZDV GHILQHG LQ WZR ZD\V )LUVW ZKHQ

PAGE 217

WKH JXHVV WR WKH VROXWLRQ LV YHU\ SRRU WKH SULQFLSOH SURSRVHG ZDV WR PRYH DV IDU DZD\ IURP WKH SUHVHQW SRLQW DV SRVVLEOH DV ORQJ DV WKH IXQFWLRQ EHLQJ PLQLPL]HG GHFUHDVHV LQ YDOXH 7KLV SULQFLSOH VHHPV WR EH QRYHO DQG LW PLJKW EH XVHIXO LQ RWKHU H[LVWLQJ DOJRULWKPV 6HFRQG ZKHQ WKH JXHVV WR WKH VROXWLRQ LV YHU\ JRRG RU ZKHQ WKH SRLQWV JHQHUDWHG E\ WKH 92 DOJRULWKP DSSURDFK WKH VROXWLRQ WKH XVXDO SULQFLSOH RI VFDODU PLQLPL]DWLRQ LV XVHG 7KH PDMRU IHDWXUHV DQG SURSHUWLHV RI WKH 92 DOJRULWKP PD\ EH VXPn PDUL]HG DV IROORZV f $ QRYHO GHULYDWLRQ EDVHG RQ D 7D\ORU VHULHV H[SDQVLRQ RI D SRLQW VDWLVI\LQJ QHFHVVDU\ FRQGLWLRQV f $ QRYHO VFDODU VHDUFK SUREOHP DW HDFK LWHUDWLRQ 7KH VFDODU VHDUFK PD\ DOVR EH DORQJ FXUYHG WUDMHFWRULHV LQ WKH VSDFH RI WKH LQGHSHQGHQW YDULDEOHV LQVWHDG RI DOZD\V DORQJ VWUDLJKW OLQHV DV LQ DOO SXEOLVKHG DOJRULWKPV f 6LQFH WKH RUGHU RI FRQYHUJHQFH PD\ EH DV KLJK DV IRXU H[WUHPHO\ DFFXUDWH VROXWLRQV PD\ EH IRXQG UHTXLULQJ UHDVRQDEOH FRPSXWHU WLPH f 1XPHULFDO UHVXOWV LQGLFDWH WKDW WKH 92 DOJRULWKP PD\ EH JHQHUDOO\ PRUH HIILFLHQW WKDQ RWKHU DOJRULWKPV IRU PLQLPL]LQJ IXQFWLRQV WKDW DUH FRQWLQXRXVO\ WZLFH GLIIHUHQWLDEOH 7KH 92 DOJRULWKP PD\ DOVR EH PRUH VXFFHVVIXO WKDQ RWKHU DOJRULWKPV LQ DYRLGLQJ FRQYHUJHQFH WR VDGGOH SRLQWV f ([WHQVLRQV WR LQFOXGH ER[ FRQVWUDLQWV RQ WKH LQGHSHQGHQW YDULn DEOHV DQG WR REWDLQ DSSUR[LPDWLRQV RI KLJKRUGHU GHULYDWLYH WHUPV PDNH WKH 92 DOJRULWKP SRWHQWLDOO\ YHU\ XVHIXO

PAGE 218

2Q WKH RWKHU KDQG VHYHUDO VKRUWFRPLQJV RI WKH 92 DOJRULWKP FDQ EH UHDGLO\ LGHQWLILHG f 7KH IXQFWLRQ WR EH PLQLPL]HG PXVW EH TXLWH VPRRWK WR REWDLQ WKH LPSURYHG EHKDYLRU RI WKH 92 DOJRULWKP ,W ZDV VKRZQ WKDW WKH DOJRULWKP ZDV JOREDOO\ FRQYHUJHQW IRU WZLFH FRQWLQXRXVO\ GLIn IHUHQWLDEOH IXQFWLRQV 7KH QXPHULFDO UHVXOWV VKRZ WKDW IRU IXQFWLRQV QRW PHHWLQJ WKHVH FRQWLQXLW\ FRQGLWLRQV WKH 92 DOJRn ULWKP PD\ EH JHQHUDOO\ OHVV HIILFLHQW WKDQ RWKHU DOJRULWKPV f 7KH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ YDOXHV DUH UHTXLUHG 7KH KHVVLDQ UHTXLUHPHQW VHYHUHO\ OLPLWV WKH XVHIXOQHVV RI WKH DOJRULWKP :LLOH WKLV UHTXLUHPHQW ZDV SDUWLDOO\ UHOLHYHG E\ DSSUR[LPDWLQJ WKH KHVVLDQ E\ GLIIHUHQFHV WKLV VFKHPH KDV WKUHH GLVDGYDQWDJHV )LUVW IRU SUREOHPV WKDW FDQ EH VROYHG E\ RWKHU DOJRULWKPV LQ D QXPEHU RI LWHUDWLRQV DERXW HTXDO WR WKH QXPEHU RI LQGHSHQGHQW YDULDEOHV WKH 92 DOJRULWKP LV OLNHO\ WR EH OHVV HIILFLHQW DV ZDV LQGHHG WKH FDVH ZLWK VRPH QXPHULFDO H[DPSOHV JLYHQ 6HFRQG IRU SUREOHPV ZLWK D ODUJH QXPEHU RI LQGHSHQGHQW YDULDEOHV RWKHU DOJRULWKPV PD\ \LHOG EHWWHU DSSUR[LPDWH VROXn WLRQV LQ D IL[HG DPRXQW RI FRPSXWHU WLPH 7KLUG REWDLQLQJ DQ DFFXUDWH KHVVLDQ DSSUR[LPDWLRQ E\ GLIIHUHQFHV UHTXLUHV HYHQ VPRRWKHU IXQFWLRQV WKDQ WZLFH FRQWLQXRXVO\ GLIIHUHQWLDEOH f &RPSXWHU VWRUDJH UHTXLUHPHQWV DUH JUHDWHU IRU WKH 92 DOJRULWKP WKDQ IRU PRVW RWKHU H[LVWLQJ DOJRULWKPV 7KHVH GLVDGYDQWDJHV RI WKH 92 DOJRULWKP PXVW EH FRQVLGHUHG ZKHQ XVLQJ LW WR VROYH D JLYHQ FODVV RI SUREOHPV $QRWKHU FRQWULEXWLRQ RI WKLV UHVHDUFK LV WKH 92 LWHUDWLYH PHWKRG ZKHQ DSSOLHG WR WUDQVLHQW DQDO\VLV RI FLUFXLWV DV GHVFULEHG LQ &KDSWHU

PAGE 219

0RGHV W VDYLQJV ZHUH UHDOL]HG LQ DQ DOUHDG\ H[WUHPHO\ HIILFLHQW JHQHUDO SXUSRVH SURJUDP ,W LV HVWLPDWHG WKDW WKH VDYLQJV WR RWKHU H[LVWLQJ WUDQVLHQW DQDO\VLV SURJUDPV FRXOG EH YHU\ VXEVWDQWLDO ,I DQ H[LVWLQJ SURJUDP GRHV QRW XVH VSDUVH PDWUL[ PHWKRGV LQ WKH LPSOHPHQWDWLRQ RI 1HZWRQnV LWHUDWLRQ LW LV FRQMHFWXUHG WKDW LPSOHPHQWLQJ WKH 92 LWHUDn WLRQ FRXOG SURGXFH VDYLQJV RI VLPLODU PDJQLWXGH WR WKRVH REWDLQHG E\ LPSOHPHQWLQJ VSDUVH PDWUL[ PHWKRGV DQG WKH 92 LWHUDWLRQ VKRXOG UHTXLUH OHVV HIIRUW WR LPSOHPHQW WKDQ D VSDUVH PDWUL[ PHWKRG 2WKHU PLQRU FRQWULEXWLRQV RI WKLV UHVHDUFK PD\ EH VXPPDUL]HG DV IROORZV f $ QHZ PHWKRG IRU GHVFULELQJ PLQLPL]DWLRQ DOJRULWKPV WR DFFRPn PRGDWH WKH FXUYHG WUDMHFWRULHV RI WKH 92 DOJRULWKP 6RPH RI WKH H[LVWLQJ WKHRUHPV ZHUH H[WHQGHG WR WKH QHZ GHVFULSWLRQ f $Q DSSDUHQWO\ QRYHO VFKHPH IRU DSSUR[LPDWLQJ WKH ILUVW DQG VHFRQG GHULYDWLYHV WKH JUDGLHQW DQG WKH KHVVLDQ RI D VFDODU IXQFWLRQ 7KH SURSRVHG VFKHPH WDNHV LQWR FRQVLGHUDWLRQ HUURUV WKDW PD\ EH SUHVHQW LQ WKH IXQFWLRQ YDOXHV XVHG LQ WKH DSSUR[Ln PDWLRQV f $ PRGLILFDWLRQ WR DQ H[LVWLQJ SURFHGXUH IRU FRPSXWLQJ WKH &KROHVN\ IDFWRUL]DWLRQ RI WKH KHVVLDQ >@ ZKLFK FKDQJHV WKH KHVVLDQ LQ D PLQLPDO PDQQHU ZKHQ LW LV QRW SRVLWLYH GHILQLWH f $ SRWHQWLDOO\ XVHIXO 7D\ORU VHULHV H[SDQVLRQ RI WKH VROXWLRQ SRLQW RI D V\VWHP RI QRQOLQHDU HTXDWLRQV 'LIIHUHQW IRUPV RI WKH VHULHV ZKHQ WUXQFDWHG \LHOG GLIIHUHQW LWHUDWLYH PHWKRGV ZKLFK ZHUH FDOOHG WDLORUHG LWHUDWLYH PHWKRGV $ WDLORUHG LWHUDn WLYH PHWKRG ZDV VKRZQ WR EH YHU\ XVHIXO IRU VRPH SUREOHPV

PAGE 220

)XWXUH 5HVHDUFK 6XJJHVWLRQV 7KH GHULYDWLRQ RI WKH 7D\ORU VHULHV H[SDQVLRQ RI D VROXWLRQ LQn YROYHV DQ DUELWUDU\ IXQFWLRQ M!]f ,Q WKH 92 DOJRULWKP IRU PLQLPL]DWLRQ WKH J]f IXQFWLRQ XVHG ZDV Y J]f b nOO ] U f f ,W ZDV DOVR VKRZQ WKDW RWKHU A]f IXQFWLRQV SURGXFHG GLIIHUHQW 7D\ORU VHULHV )RU H[DPSOH IRU S WKH A]f IXQFWLRQ f SURGXFHV WKH ZHOO NQRZQ (XOHU VHULHV >@ ,W ZDV DOVR VKRZQ LQ &KDSWHU KRZ RWKHU IXQFWLRQV SURGXFH LWHUDWLYH PHWKRGV ZKLFK ZHUH VRPHWLPHV XVHIXO &DQ RWKHU MA]f IXQFWLRQV EH IRXQG WKDW DUH PRUH XVHIXO" )RU H[DPSOH LQ PLQLPL]DWLRQ WKH J]f IXQFWLRQ JLYHQ E\ 3WX7 =Q f ZRXOG \LHOG QRW D VFDODU SUREOHP DW HDFK LWHUDWLRQ DV f GRHV EXW UDWKHU D SUREOHP LQ S Sf S VSDFH 7KH PLQLPL]DWLRQ SUREOHP PLJKW EH VROYHG LQ WKLV QHZ VSDFH LQ D VLPSOHU PDQQHU KRZHYHU ,W DSSHDUV WR EH ,PSRVVLEOH WR HOLPLQDWH WKH VPRRWKQHVV FRQGLWLRQV RI WZLFH FRQWLQXRXV GLIIHUHQWLDELOLW\ WR LQVXUH JOREDO FRQYHUJHQFH RI WKH 92 DOJRULWKP +RZHYHU SHUKDSV RWKHU KHVVLDQ DSSUR[LPDWLRQ WHFKn QLTXHV FDQ EH XVHG $WWHPSWV DW XVLQJ WKH )OHWFKHU DQG 3RZHOO >@ UDQN PHWKRG RI DSSUR[LPDWLQJ WKH KHVVLDQ LQYHUVH GLG QRW SURYH VXFn FHVVIXO DV UHSRUWHG LQ &KDSWHU 2WKHU TXDVL1HZWRQ PHWKRGV VXFK DV >@ DUH DOVR OLNHO\ WR EH XQVXFFHVVIXO +RZHYHU SHUKDSV WKH GLIIHUHQFH DSSUR[LPDWLRQV WR WKH KHVVLDQ FDQ EH LPSURYHG )RU H[DPSOH

PAGE 221

D VFKHPH PLJKW EH GHYLVHG WR XSGDWH RQO\ WKRVH SDUWV RI WKH KHVVLDQ ZKLFK DUH FKDQJLQJ WKH PRVW IURP WKH ODVW LWHUDWLRQ E\ XVLQJ LQIRUPDWLRQ IURP WKH WKLUGRUGHU DQG WKH IRXUWKRUGHU GHULYDWLYH WHUPV ZKLFK DUH REWDLQHG DV SDUW RI WKH DOJRULWKP DW HDFK LWHUDWLRQ )LQDOO\ LW PD\ EH SRVVLEOH WR FRPELQH WKH 92 DOJRULWKP ZLWK RWKHU PLQLPL]DWLRQ DOJRULWKPV WR REWDLQ D EHWWHU RYHUDOO DOJRULWKP IRU VRPH FODVVHV RI IXQFWLRQV

PAGE 222

$33(1',; '(6&5,37,21 2) &20387(5 352*5$0 ,03/(0(17,1* 7+( 9$5,$%/(25'(5 $/*25,7+0 ,Q WKLV DSSHQGL[ WKH SURJUDP ZULWWHQ LQ )2575$1 ,9 ZKLFK LPSOHn PHQWV WKH 9DULDEOH2UGHU 92f DOJRULWKP DQG WKUHH RWKHU DOJRULWKPV LV GHVFULEHG $ GHVFULSWLRQ RI KRZ WR XVH WKH SURJUDP LV JLYHQ ILUVW IROORZHG E\ D EULHI GHVFULSWLRQ RI HDFK VXEURXWLQH WKH SULQFLSOH DUn UD\V YDULDEOHV DQG WKH FRPPRQ EORFNV LQ WKH SURJUDP 8VLQJ WKH 3URJUDP )LUVW D VXEURXWLQH PXVW EH ZULWWHQ WR VXSSO\ WKH IXQFWLRQ WKH JUDGLHQW DQG WKH KHVVLDQ RU WKH IXQFWLRQ DQG WKH JUDGLHQW RU RQO\ WKH IXQFWLRQ LW LV UHFRPPHQGHG WKDW LI SRVVLEOH ERWK WKH JUDGLHQW DQG WKH KHVVLDQ EH VXSSOLHGf 7KH SURJUDP FDOOV VXEURXWLQH )81& DV IROORZV &$// )81&; )f WR REWDLQ WKH YDOXH RI WKH IXQFWLRQ LQ ) DW WKH SRLQW [ GHQRWHG E\ WKH DUUD\ ; :KHQ WKH JUDGLHQW LV VXSSOLHG WKH SURJUDP FDOOV VXEURXWLQH *5$' ZKHQ LW UHTXLUHV WKH IXQFWLRQ DQG WKH JUDGLHQW DV IROORZV &$// *5$'; ) *)f ZKHUH *) LV WKH DUUD\ WR FRQWDLQ WKH JUDGLHQW :KHQ WKH KHVVLDQ LV

PAGE 223

EHLQJ VXSSOLHG WKH SURJUDP FDOOV +(66 WR REWDLQ LW DV IROORZV &$// +(66; *)f ZKHUH *) LV WKH DUUD\ WR FRQWDLQ WKH KHVVLDQ VWRUHG URZZLVH EHJLQQLQJ HDFK URZ ZLWK WKH GLDJRQDO WKXV WKH QXPEHU RI HOHPHQWV RI *) WR EH VXSSOLHG LV HTXDO WR QQ Of ZKHUH Q LV WKH QXPEHU RI LQGHSHQGHQW YDULDEOHV $Q H[DPSOH RI KRZ D VXEURXWLQH PD\ EH ZULWWHQ WR VDWLVI\ WKH DERYH FDOO VWDWHPHQWV LV VKRZQ LQ )LJ IRU 5RVHQEURFNnV IXQFWLRQ ZKLFK LV JLYHQ E\ I[f [ [f [Lf A  ZLWK LWV JUDGLHQW JLYHQ E\ In [f [[ ;f ;Mf [ [ff7 DQG LWV KHVVLDQ JLYHQ E\ Ir! [A [ [ [ 2EVHUYH WKDW WKH YDULDEOH ,7&17 WKH LWHUDWLRQ FRXQWHU FDQ EH DFFHVVHG YLD WKH FRPPRQ EORFN 23,1', LQ )LJ WKLV YDULDEOH LV XVHG WR SULQW D KHDGLQJ $Q\ RI WKH RWKHU YDULDEOHV LQ WKH FRPPRQ EORFNV WR EH GHVFULEHG ODWHU FDQ RI FRXUVH EH VLPLODUO\ DFFHVVHG IRU DQ\ RWKHU SXUn SRVH :KLOH LW LV FRQYHQLHQW WR PDNH +(66 DQ HQWU\ LQVWHDG RI D VHSDUDWH

PAGE 224

68%5287,1( *5$'; ) *)f ,03/,&,7 5($/r$+=f 5($/r ;f*)f*)f & 127( $%29( ',0(16,216 $5( '800< &2002123,1',,'80f,7&17 & 7+( $%29( $//2:6 7+( 021,725,1* 2) ,7&17 72 35,17 +($',1*6 $66,*1 72 ,* *2 72 (175< )81&; )f $66,*1 72 ,* ,),7&17(4f :5,7( f )250$7n 526(1%52&. 352%/(0nf 8 ;Ofrr 7 ;f 8 ) 'r7r7 ,'2 ;Offrr *2 72 ,* f & 7+( *5$',(17 $/62 '(6,5(' *)f 'r7r;f 'r' ;Offf *)f 'r7 *2 72 & 7+( +(66,$1 (175< (175< +(66; *)f 8 ;Ofrr *)f 'r8 '2 'r;f *)f 'r;f *)f 5(7851 (1' )LJXUH ([DPSOH RI VXEURXWLQH WR VXSSO\ WKH IXQFWLRQ WKH JUDGLHQW DQGRU WKH KHVVLDQ WR WKH 92 DOJRULWKP 1RWH WKDW LQ WKH (175< +(66 DQ\ YDULDEOHV WKDW DUH GHILQHG LQ WKH RWKHU HQWULHV PXVW QRW EH XVHG )RU H[DPSOH WKH YDULDEOH 8 GHILQHG DIWHU VWDWHPHQW QXPEHU PXVW QRW EH XVHG LQ HYDOXDWLQJ DQ\ RI WKH *) HOHPHQWV ZLWKRXW GHILQLQJ LW DJDLQ

PAGE 225

VXEURXWLQH LW VKRXOG EH WUHDWHG DV D VHSDUDWH VXEURXWLQH 7KLV PHDQV WKDW DQ\ YDULDEOHV GHILQHG GXULQJ WKH FRXUVH RI HYDOXDWLQJ WKH IXQFWLRQ DQGRU WKH JUDGLHQW LQ WKH HQWULHV )81& DQGRU *5$' VKRXOG QRW EH DVVXPHG GHILQHG LQ WKH HQWU\ +(66 )LQDOO\ LI WKH KHVVLDQ LV QRW WR EH VXSSOLHG WKH HQWU\ +(66 VKRXOG VWLOO EH GHILQHG WR DYRLG HUURUV ZLWK WKH OLQNDJH HGLWRU LH RQO\ WKH HQWU\ VWDWHPHQW LV HQWHUHG ZLWKRXW DQ\ *) VWDWHPHQWV XQGHU LWf WKH VDPH LV WUXH ZKHQ RQO\ WKH IXQFWLRQ YDOXHV DUH WR EH VXSSOLHG 2QFH WKH VXEURXWLQH VXSSO\LQJ WKH LQIRUPDWLRQ DERXW WKH IXQFWLRQ WR EH PLQLPL]HG KDV EHHQ ZULWWHQ LW PXVW EH FRPSLOHG DQG OLQNHG DORQJ ZLWK WKH UHVW RI WKH SURJUDP )LJXUH VKRZV D W\SLFDO GHFN VHWXS IRU FRPSLOLQJ ORDGLQJ DQG H[HFXWLQJ WKH SURJUDP LQ D W\SLFDO ,%0 FRPSXWHU 0RUH HIILFLHQW UHSHDWHG H[HFXWLRQV DUH SRVVLEOH LI WKH SURJUDP LV FRPn SLOHG RQFH DQG WKH REMHFW GHFN VDYHG LQ D SHUPDQHQW ILOH 7KH LQSXW WR WKH SURJUDP LV E\ WKH XVH RI D 1$0(/,67 QDPHG t,1 LOOXVWUDWHG LQ )LJ ,I D GLIIHUHQW LQSXW IRUPDW LV GHVLUHG WKH 0$,1 SURJUDP PXVW EH FKDQJHG DOVR WKH SURJUDP KDV D OLPLW RI LQ WKH GLPHQVLRQ RI WKH LQGHSHQGHQW YDULDEOHV WKXV WKH GLPHQVLRQV ZLOO KDYH WR EH FKDQJHG WR LQFUHDVH WKLV OLPLW 0RVW RI WKH YDULRXV RSWLRQV DQG YDULDEOHV WR H[HFXWH WKH 92 DOJRn ULWKP ZHUH JLYHQ LQ 6HFWLRQ WKHUH DUH VRPH DGGLWLRQDO RSWLRQV DQG YDULDEOHV DV IROORZV ,'%8* GHIDXOW LV f GHEXJ VZLWFK :KHQ VHW WR DOPRVW HYHU\ VXEURXWLQH SULQWV LQIRUPDWLRQ DERXW LWV LQSXWV ZKHQ FDOOHG DQG WKH IXQFWLRQ JUDGLHQW DQG KHVVLDQ YDOXHV DUH SULQWHG HYHU\ WLPH DQ HYDOXDWLRQ LV REWDLQHG HWF :KHQ VHW WR HYHQ PRUH GHEXJ RXWSXW LV REWDLQHG IRU H[DPSOH LQWHUPHGLDWH

PAGE 226

526(1 -2% ,QVWDOODWLRQ DFFRXQWLQJf-,0(1(= 67(3 (;(& )257*&* )2576<6,1 '' r )2575$1 ,9 VXEURXWLQHV ZLWK 92 DOJRULWKPf 68%5287,1( *5$'; ) *)f VXEURXWLQH OLNH WKH RQH LQ )LJ f r *22%-(&7 '' r REMHFW GHFN RI 17,0(8 WKH DVVHPEO\ ODQJXDJH IXQFWLRQf r *26<6,1 '' r t,1 1; ; 0$;$9 t(1' r )LJXUH 7\SLFDO VHWXS IRU H[HFXWLQJ 92 DOJRULWKP LQ DQ ,%0 FRPSXWHU ZLWK VWDQGDUG FDWDORJ SURFHGXUHV

PAGE 227

UHVXOWV RI WKH IDFWRUL]DWLRQ RI WKH KHVVLDQ DUH GLVSOD\HG 0$;25' GHIDXOW LV f 7KH PD[LPXP WUDQVIRUPDWLRQ RUGHU WR XVH PXVW EH OHVV WKDQ RU HTXDO WR f :KHQ WKH DOJRULWKP VHOHFWHG LV WKH 'DYLGRQ)OHWFKHU3RZHOO E\ VHWWLQJ ,')36: f VHH EHORZf LI 0$;25' LV JUHDWHU WKDQ WKH 92 DOJRULWKP LV XVHG HYHU\ Q LWHUDWLRQV LH RQ WKH DVVXPSWLRQ WKDW DQ DSSUR[LPDWLRQ RI WKH KHVVLDQ LQYHUVH LV DYDLODEOHf KRZHYHU LW LV UHFRPPHQGHG WKDW 0$;25' EH VHW WR LI ,')36: ZKHQ WKH ')3 DOJRULWKP LV GHVLUHG ,356: GHIDXOW LV f SULQW VZLWFK 1RUPDOO\ DIWHU HDFK LWHUDWLRQ WKH YDOXH RI WKH IXQFWLRQ WKH JUDGLHQW DQG WKH LQGHSHQGHQW YDULDEOHV DUH SULQWHG DORQJ ZLWK WKH SULQFLSDO FRXQWHUV ,I ,356: LV VHW WR RQO\ WKH LQLWLDO DQG ILQDO YDOXHV DUH SULQWHG ,I ,356: LV VHW WR WKH YDOXH RI WKH JUDGLHQW LV QRW SULQWHG DW HDFK LWHUDWLRQ ,')36: GHIDXOW LV f VZLWFK WR XVH WKH 'DYLGRQ)OHWFKHU3RZHOO DOJRULWKP ZKHQ VHW WR VHH 0$;25' DERYH IRU UHODWHG YDULn DEOHf 7KH YDULDEOH 5(/6&+ FRQWUROV WKH DFFXUDF\ RI WKH VFDODU VHDUFK VHH 6HFWLRQ f ,&21-* GHIDXOW LV f VZLWFK WR XVH WKH FRQMXJDWH JUDGLHQWV DOJRn ULWKP RI )OHWFKHU5HHYHV RI WKH VWHHSHVW GHVFHQW DOJRULWKP ,I ,&21-* LV VHW WR DQG 0$;25' LV JUHDWHU WKDQ WKHQ WKH )OHWFKHU5HHYHV DOJRULWKP LV VHOHFWHG ,I ,&21-* LV VHW WR DQG 0$;25' LV HTXDO WR WKHQ VWHHSHVW GHVFHQW LV VHOHFWHG 7KH YDULDEOH 5(/6&+ FRQWUROV WKH DFFXUDF\ RI WKH VFDODU VHDUFK VHH 6HFWLRQ f ,6((' GHIDXOW f JHQHUDO SXUSRVH YDULDEOH ZKLFK LV LQ FRPPRQ

PAGE 228

EORFN 23,1', WR EH XVHG E\ WKH XVHU VXEURXWLQH IRU DQ\ SXUSRVH )RU H[DPSOH LQ LPSOHPHQWLQJ 5RVHQEURFNnV SUREOHP ZLWK HUURUV LQ WKH IXQFWLRQ DQG WKH JUDGLHQW DV GRQH IRU WKH SUREOHP LQ 6HFWLRQ WKLV YDULDEOH ZDV XVHG WR VHW WKH VHHG IRU WKH UDQGRP QXPEHU JHQHUDWRU 7KH SURJUDP ORRSV WR UHDG PRUH LQSXW LI WKHUH LV DQ\ PRUH DIWHU LW ILQLVKHV ZLWK D VHW RI GDWD WKLV DOORZHG WKH WHVWLQJ RI VHYHUDO RSWLRQV LQ RQH H[HFXWLRQ IRU WKH UHVXOWV JLYHQ LQ WKLV UHVHDUFK 6RPH H[DPSOHV RI SRVVLEOH LQSXW GDWD DUH WKH IROORZLQJ t,1 1; ; 0$;$9 %;f %;f %;f %2;f t(1' 7 ZKLFK VSHFLILHV WKH GLPHQVLRQ DV WKH LQLWLDO JXHVV [ f ? WKDW WKH IXQFWLRQ DQG WKH JUDGLHQW YDOXHV DUH VXSSOLHG DQG WKH ER[ FRQVWUDLQWV DUH B [A e DQG B [A e t,1 1; ; 0$;$9 )$%6 )5(/ *)$%6 *)5(/ %2;OOf %;f %;f %;f %;f %;f %;f %;f t(1' ZKLFK VSHFLILHV D IRXUGLPHQVLRQDO SUREOHP ZLWK LQLWLDO JXHVV 7 [ f WKDW WKH IXQFWLRQ DQG WKH JUDGLHQW DUH VXSSOLHG EXW ZLWK HUURUV ERWK DEVROXWH HUURUV DUH [ A DQG ERWK UHODWLYH HUURUV DUH [ DQG ZLWK WKH ER[ FRQVWUDLQWV RQ DOO WKH LQGHSHQGHQW YDULDEOHV WKH VDPH B [A B L 2EVHUYH WKDW LQ QDPHOLVW LQSXW WKH t,1 PXVW EHJLQ LQ FROXPQ RI WKH FDUG RU OLQH DQG FROXPQ PXVW EH EODQN RQ DOO FDUGV RU OLQHV

PAGE 229

'HVFULSWLRQ RI WKH 3URJUDP 7KHUH DUH WKUHH FRPPRQ EORFNV 23,1', ,3,1'5 DQG 23'$7$ 7KH FRPPRQ 23,1', FRQWDLQV LQWHJHU YDULDEOHV DQG LW LV GHILQHG DV IROORZV &20021 23,1', ,'%8*1;1*),7&170$;$90$;25'0$;,7,25' r ,3f1)61*)61+(661%281',')36:,&21-*,5(6(7,&225',6((' ZKHUH PRVW RI WKH YDULDEOHV KDYH EHHQ SUHYLRXVO\ H[SODLQHG 7KH RQHV WKDW KDYH QRW EHHQ H[SODLQHG DUH WKH IROORZLQJ 1*) LV WKH QXPEHU RI HOHPHQWV LQ WKH FRPSUHVVHG KHVVLDQ ZKLFK LV VWRUHG LQ *) LW LV 1;r1; ff ,25' FRQWDLQV WKH WUDQVIRUPDWLRQ RUGHU XVHG DW HDFK LWHUDWLRQ ,3f LV WKH SHUPXWDWLRQ XVHG DW HDFK LWHUDWLRQ LQ WKH IDFWRUL]DWLRQ RI WKH KHVVLDQ 1)6 1*)6 1+(66 DUH WKH FRXQWHUV IRU WKH QXPEHU RI IXQFWLRQ JUDGLHQW DQG KHVVLDQ HYDOXDWLRQV 1%281' FRQn WDLQV WKH QXPEHU RI LQGHSHQGHQW YDULDEOHV DW WKHLU ERXQGDULHV IRU WKH ODVW SRLQW XVHG ,5(6(7 LV XVHG LQ UHVHWWLQJ WKH FRQMXJDWH JUDGLHQWV DOJRULWKP RI )OHWFKHU5HHYHV ,&225' FRQWDLQV WKH ODVW FRRUGLQDWH GLUHFWLRQ XVHG RU ]HUR LI WKH ODVW LWHUDWLRQ ZDV QRW D FRRUGLQDWH GLUHFWLRQ 7KH FRPPRQ EORFN 23,1'5 FRQWDLQV WKH UHDO GRXEOH SUHFLVLRQ YDULDEOHV DQG LW LV GHILQHG DV IROORZV &20021 23,1'5 35(/3$%6673(36330,1*)f&f%281' r 326)5(/)$%6*)5(/*)$%63+5(/3+$%6+*),,f3(57f r 63(57,2f673$365(/6&+ ZKHUH PRVW RI WKH YDULDEOHV KDYH DOVR EHHQ GHILQHG DQG H[SODLQHG SUHn YLRXVO\ 7KH RQHV WKDW KDYH QRW EHHQ H[SODLQHG SUHYLRXVO\ DUH WKH IROORZLQJ 3 LV WKH VWHSOHQJWK LQ WKH WUDQVIRUPDWLRQ IXQFWLRQV DW

PAGE 230

LWHUDWLRQ 30,1 LV XVHG WR VDYH WKH YDOXH RI WKH S ZKLFK PLQLPL]HV WKH IXQFWLRQ LQ WKH VFDODU VHDUFK WR EH XVHG LQ DQ\ VXEVHTXHQW LWHUDWLRQV &f LV XVHG WR FRQWDLQ WKH WUDQVIRUPDWLRQ IXQFWLRQ FRHIILFLHQW YHFWRUV %281' FRQWDLQV WKH GLVWDQFH RI WKH SURMHFWLRQ WUDQVIRUPDWLRQ IRUP WKH DFWXDO WUDQVIRUPDWLRQ ZKHQ WKH WUDMHFWRULHV IDOO RXWVLGH WKH ER[ FRQVWUDLQWV WKXV LW LV D PHDVXUH RI KRZ PXFK WKH DFWXDO WUDQVIRUn PDWLRQ LV EHLQJ SURMHFWHG 326 FRQWDLQV WKH PD[LPXP QRUP RI WKH GLDJRQDO PDWUL[ REWDLQHG LQ WKH IDFWRUL]DWLRQ RI WKH KHVVLDQ VHH 6HFWLRQ f +*),,f FRQWDLQV WKH GLDJRQDO HOHPHQWV RI WKH KHVVLDQ ZKHQHYHU WKH KHVVLDQ LV EHLQJ DSSUR[LPDWHG E\ GLIIHUHQFHV 3(57f FRQWDLQV WKH SHUWXUEDWLRQV XVHG IRU WKH ODVW JUDGLHQW DSSUR[LPDWLRQ ZKHQHYHU RQO\ IXQFWLRQ YDOXHV DUH VXSSOLHG 63(57,2f LV D WHPSRUDU\ DUUD\ WR KROG WKH SHUWXUEDWLRQV LQ VRPH LQVWDQFHV VHH VXEURXWLQH 3;.3f 673$36 LV VHW WR WKH VTXDUH URRW RI 673(36 ZKLFK LV XVHG LQ WKH FRQYHUJHQFH WHVWV DV WKH UHODWLYH FRQVWDQW 7KH ODVW FRPPRQ EORFN LV '3'$7$ DQG LW LV GHILQHG DV IROORZV &20021 '3'$7$ %; f ZKHUH %2; FRQWDLQV WKH ER[ FRQVWUDLQWV DV SUHYLRXVO\ GHVFULEHG 7KH GLPHQVLRQV RI %2; ZHUH GHILQHG DV VKRZQ EHFDXVH WKDW LV WKH ZD\ WKH\ DUH GHILQHG LQ WKH FRPSXWHU SURJUDP $23 ZKHUH WKH 92 DOJRULWKP UHSODFHG LWV PLQLPL]DWLRQ DOJRULWKP ,Q RUGHU WR EH FRQVLVWHQW %2; VKRXOG EH GHn ILQHG %; f WKHQ DQ\ LQFUHDVH LQ WKH QXPEHU RI LQGHSHQGHQW YDULn DEOHV FRXOG EH DFKLHYHG E\ LQFUHDVLQJ DOO WKH GLPHQVLRQV RI LQ WKH FRPPRQ EORFNV WKH GLPHQVLRQ RI *) VKRXOG EHFRPH QQ Of ZKHUH Q LV WKH PD[LPXP QXPEHU RI YDULDEOHV DQG WKHUH DUH WZR RWKHU GLPHQVLRQ VWDWHPHQWV WKDW QHHG WR EH FKDQJHG RQH LQ WKH 0$,1 SURJUDP DQG DQRWKHU

PAGE 231

LQ VXEURXWLQH 3;.3 ERWK IURP WR ZKDWHYHU QXPEHU RI YDULDEOHV DUH GHVLUHG :H FDQ QRZ GHVFULEH WKH IXQFWLRQ RI HDFK RI WKH VXEURXWLQHV LQ WKH SURJUDP (DFK VXEURXWLQH ZLOO EH GHVFULEHG E\ ILUVW EULHIO\ VWDWLQJ LWV IXQFWLRQ DQG WKHQ OLVWLQJ WKH VXEURXWLQHV WKDW FDOO LW DQG WKH VXEn URXWLQHV WKDW LW FDOOV 0$,1 7KLV LV WKH PDLQ VXEURXWLQH ZKLFK UHDGV WKH GDWD GHWHUPLQHV ZKHQ WKH DOJRULWKP KDV FRQYHUJHG DQG SULQWV WKH UHVXOWV ,W FDOOV 17,0(8 23*5$' 3;.3 23);*) 23*)&,& 23(9; DQG 23&225 3;.3 7KLV VXEURXWLQH FRPSXWHV WKH WUDQVIRUPDWLRQ IXQFWLRQV DQG UHWXUQV WKH QH[W SRLQW ZKLFK UHGXFHG WKH IXQFWLRQ EHLQJ PLQLn PL]HG ,W LV FDOOHG E\ WKH 0$,1 SURJUDP ,W FDOOV 23(9; 23);*) 2325'+ 23*5&. 2325' 23&1-* 23*5$' 23)81& 23+(66 DQG 6)%68% 23')3 7KLV VXEURXWLQH KDQGOHV WKH 'DYLGRQ)OHWFKHU3RZHOO DOJRn ULWKP ,W LV FDOOHG E\ 23+(66 ,W FDOOV 23%'5< 23)81& DQG 23(9; 23&225 7KLV VXEURXWLQH KDQGOHV WKH VHOHFWLRQ RI FRRUGLQDWH VHDUFK GLUHFWLRQV ,W LV FDOOHG E\ WKH 0$,1 SURJUDP ,W FDOOV 23(9; 23)81& DQG 23%'5< N/ 23(9; 7KLV VXEURXWLQH HYDOXDWHV D SRLQW [ JLYHQ D YDOXH RI S DQG LW WDNHV FDUH RI LQ HIIHFW SURMHFWLQJ WKH WUDQVIRUPDWLRQ ZKHQ WKH SRLQW IDOOV RXWVLGH WKH ER[ FRQVWUDLQWV ,W LV FDOOHG E\ DOPRVW HYHU\ VXEURXWLQH ,W GRHV QRW FDOO DQ\ VXEURXWLQH 23*)&. 7KLV IXQFWLRQ FRPSXWHV WKH PD[LPXP QRUP RI WKH JUDGLHQW ZLWKRXW WDNLQJ LQWR FRQVLGHUDWLRQ WKRVH FRRUGLQDWHV WKDW DUH

PAGE 232

DW WKH ERXQGDU\ ,W LV FDOOHG E\ 0$,1 DQG 23;.3 ,W GRHV QRW FDOO DQ\ VXEURXWLQH 2325' 7KLV VXEURXWLQH KDQGOHV WKH VHFRQGRUGHU WUDQVIRUPDWLRQ VFDODU VHDUFK ,W LV FDOOHG E\ 23;.3 ,W FDOOV 23(9; 23%'5< 23)81& DQG 23*5$' 2325'+ 7KLV VXEURXWLQH KDQGOHV WKH VFDODU VHDUFK IRU WKH WKLUG DQG IRXUWK RUGHU WUDQVIRUPDWLRQV ,W LV FDOOHG E\ 23;.3 ,W FDOOV 23)81& 23(9; DQG 23%'5< 23%'5< 7KLV VXEURXWLQH VROYHV WKH VFDODU PLQLPL]DWLRQ SUREOHP IRU WKH 'DYLGRQ)OHWFKHU3RZHOO WKH FRQMXJDWH JUDGLHQWV DQG WKH VWHHSHVW GHVFHQW DOJRULWKPV ,W LV DOVR FDOOHG ZKHQ WKH WUDQVIRUPDWLRQV DUH SURMHFWHG DQG ZKHQ FRRUGLQDWH VHDUFKHV DUH XVHG ,W LV FDOOHG E\ 23')3 23&1-* 2325' 2325'+ DQG 23&225 ,W FDOOV 23(9; DQG 23)81& 23&1-* 7KLV VXEURXWLQH KDQGOHV WKH FRQMXJDWH JUDGLHQW DQG VWHHSn HVW GHVFHQW DOJRULWKPV ,W LV FDOOHG E\ 23;.3 ,W FDOOV 23%&5< 23(9; DQG 23)81& 23*5$' 7KLV VXEURXWLQH DQG LWV HQWU\ 23)81& KDQGOH WKH FDOOV WR WKH XVHUZULWWHQ VXEURXWLQHV WR HYDOXDWH WKH JUDGLHQW DQG WKH IXQFWLRQ ,W DOVR DSSUR[LPDWHV WKH JUDGLHQW ZKHQHYHU LW LV QRW VXSSOLHG 0$;$9 f 23*5$' LV FDOOHG E\ 0$,1 23;.3 35' 23)81& LV FDOOHG E\ DOPRVW DOO WKH VXEURXWLQHV 6XEn URXWLQHV FDOOHG DUH )81& DQG *5$' 23)81& 6HH 23*5$' 23+(66 7KLV VXEURXWLQH KDQGOHV WKH HYDOXDWLRQ RU DSSUR[LPDWLRQ RI WKH KHVVLDQ DQG LWV IDFWRUL]DWLRQ RU WKH KHVVLDQ XSGDWH ZKHQHYHU WKH 'DYLGRQ)OHWFKHU3RZHOO DOJRULWKP LV EHLQJ XVHG

PAGE 233

,I WKH KHVVLDQ LV QRW VXSSOLHG ZLWK WKH 92 DOJRULWKP LW DOVR KDQGOHV LWV DSSUR[LPDWLRQ ,W LV FDOOHG E\ 23;.3 ,W FDOOV +(66 23*5$' 23)81& 6)$& DQG 23')3 23);*) 7KLV VXEURXWLQH FRUUHFWV WKH IRUZDUG GLIIHUHQFH JUDGLHQW E\ DGGLQJ WKH WHUP HTXDO WR RQH KDOI WLPHV WKH KHVVLDQ GLDn JRQDOV WLPHV WKH SHUWXUEDWLRQV XVHG VHH 6HFWLRQ f ,W LV FDOOHG E\ 23;.3 DQG 0$,1 ,W GRHV QRW FDOO DQ\ VXEURXWLQHV 6)$& 7KLV VXEURXWLQH KDQGOHV WKH IDFWRUL]DWLRQ RI WKH KHVVLDQ DV GHVFULEHG LQ 6HFWLRQ ,W LV FDOOHG E\ 23+(66 ,W GRHV QRW FDOO DQ\ VXEURXWLQHV 6)%68% 7KLV VXEURXWLQH KDQGOHV WKH IRUZDUG DQG EDFN VXEVWLWXWLRQ IRU WKH KLJKHURUGHU FRUUHFWLRQ DQG LI WKH 'DYLGRQ)OHWFKHU 3RZHOO DOJRULWKP LV EHLQJ XVHG LW PXOWLSOLHV WKH DSSUR[LPDWH KHVVLDQ LQYHUVH WLPHV WKH JUDGLHQW ,W LV FDOOHG E\ 3;.3 ,W GRHV QRW FDOO DQ\ VXEURXWLQHV 17,0(8 7KLV LV D IXQFWLRQ ZULWWHQ LQ ,%0 DVVHPEO\ ODQJXDJH ZKLFK UHWXUQV WKH HODSVHG WLPH ,W LV FDOOHG E\ 0$,1 ,W GRHV QRW FDOO DQ\ VXEURXWLQH $OO RI WKH DERYH VXEURXWLQHV UHTXLUH DSSUR[LPDWHO\ ILIW\ NLORE\WHV ZKHQ FRPSLOHG DQG OLQNHG ZLWK DOO WKH UHTXLUHG )2575$1 ,9 EXLOWLQ IXQFWLRQV ,W LV HVWLPDWHG WKDW E\ HOLPLQDWLQJ WKH RSWLRQV DQG WKH UHTXLUHG VXEn URXWLQHV IRU WKH 'DYLGRQ)OHWFKHU3RZHOO DQG IRU WKH FRQMXJDWH JUDGLHQW DOJRULWKPV DQG E\ HOLPLQDWLQJ WKH QXPHURXV SULQW VWDWHPHQWV XVHG IRU GHEXJJLQJ RXWSXW WKDW WKH VWRUDJH UHTXLUHPHQWV FRXOG EH FXW E\ RQH WKLUG

PAGE 234

QQQQULQQQQQQQILQQRQQQQ QQQQQ +51,&(3 JR )7 ) & /LVWLQJ RI WKH 3URJUDP $/ -,0(1( 0$,1 352*5$0 ,03/,&,7 5($/rD $+ = f 5( $/ U ; f *) f 7, 0( 56R &20021*3,1',,'E8*1; 1*) } ,7&17 0$;$9 cm,$;+' m 0$; 7 ,2r' r 3 f L1) 6 1*)6 1+(66 1G81' 2) 36 r & 1 5(6( 7 &22 3' r ,6((' &2002123,1'535(/ L3$66 !67 3(36330,1W *)f& 326 m ) 5( /U $E6*)5(/*)$%63+5(/ 3+$E6+*) , r 63(57f675$36+(/6&+ &2002123 '$7 $ n-2 ; m f 1$0(/,67 ,11; ,'(8*0$;$90$;5'0$; ,7673(3 r ; %2; } ,356: ,')36; ,&&1-*)5(/} )$ (6 } *)5 (/ }*)$2 r 5(/6&+ 1$ 0(/ 67 ,6 86(& )25 ,1387 7+( 9$5,$'/(6 $ 5 1; 7+( 180%(5 2) ,1'(3(1'(17 9$5,$'/(6 ,'E8* 12 '(%8* 287387 620( '(G8R 287387 0267 &O8* 287387 0$;$9 21/< )81&7,21 9$/8(6 6833/,(' )81&7,21 $1' *5$',(17 9$/8(6 6833/,(' )81&7,21 *5$',(17 $1' +(66,$1 9$/8(6 6833/,(' 0$;5' 0$;,080 25'(5 ,) ,')36Z $1' 0$;.' 7+( ')3 $/*25,7+0 ,6 86(' ,) ,')369W O $1' 0$;5' ')3 3/86 98 $/*25,7+0 ,6 86(' ,) ,&81-* $1' 0$;85'*( 7+( )5 $/*25,7+0 2) &21-8*$7( *5$',(176 ,6 86(' ,) ,& 21 -* $1' 0$;25& O 67((3(67 '(6&(17 ,6 86(' 0$;,7 0$;,080 180%(5 2) ,7(5$7,216 673(36 $%62/87( &2167$17 86(X ,1 7(67,1* )25 &219(5*(1&( 5(/$7,9( &2167$17 ,6 '6457673(36f 35(/3$(6 &2167$176 86(' ,1 $3352;,0$7,1* 7+( *5$',(17 $1' 7+( +(66,$1 :+(1 0$;$9 3$'6 ,6 $/62 86(' $6 7+( 60$//(67 $//2:(' &+$1*( ,1 $1 ,1'(3(1'(17 f %2 81 f 3(57 & f 35F / } 3 $E6 6((' } L 6 3+5(/ } 3+$E 6 } U2 1 

PAGE 235

F F F F F F F F F F F F F F F F F F ($&+ ,7F+$7 -1f 7+( )58*N$0 0$< %( 86(' %< -665 :5,77 D-; f 7+( /89 / YDULDEOH DW 6((' 127 86(' ,1 6865*87,1( ; 7+( ,1,7,$/ *8(66 72 7+( 62/87,21 DR[ 0$< T( 6(7 72 7+( E&; &21675$,176 $1' ; f f7+( +,*+ /,0,7 ,356: 6:,7&+ 72 &21752/ $02817 2) 35,17,1* ,7(5$7,21 ,')36: ,&1*L 6E( 0$;+' $Q89( )5(/)$%6 0$;,080 5(/$7,9( $1' $%62/87( (5525 9$/8(6 6833/,(' 72 7+( 352*5$0 *).(/*)$26 0$;,080 5(/$7,9( $1' $%62/87( (5525 ,1 ($&+ &20321(17 2) 7+( *5$',(17 6833/,(' 72 7+( 352*5$0 3+5(/3+6 &2167$176 86(' ,1 $3352;,0$7,1* 7+( +(66,$1 :+(1 )81&7,21 $1' *5$',(17 9$/8(6 $5( 6833/,(' 5(/6&+ $&&85$&< 2) 6&$/$5 6($5&+ :+(1 0,1,0,=,1* $/21* ')3 )5 67((3(67 '(6&(17 &225',1$7( 25 21 7+( %281'$5< 2) %2; :,7+ 92 $7 ($&+ ,1 7+( ,17(*(5 3 56 :n 1; ((' 0$;$9 0$;.' ,'%8* 0$ ;,7 /,1(6 )25 6($5&+(6 25'f )5 (/ '2 )$% 6 '2 *) 5( / 2'2 *) $ 6 '2 ,')36:f§ ,& &1-* 5W/6&K '2 %2; f G2;f 30 ,1 O ,7&17 73(36 ,'f§ 5 (/6 &+ '$65(/6&+f 6; 35 (/ 'f§ 3 $%6 4 '2 3+5(/ 3+$%6 2'2 ,& &25' ,5 ((7 ,25' 1 ,0 ,7

PAGE 236

36 O'6 3 '4 *5',f 2 1)6 1*) 6 1+(66 1% 281' 2 5($'O } ,1}(1' D22f } 1; 7(03 %2; f f§ %2 ; f ) 7(03*7 N 7 (03 / 7 2 f 7(03 ,'2 %2;,f 7(03r7(03 673(36 '0$; 673(36*)$%6 *)$%6 f ,) 3$%6 (D2'2f 3$ '0$; O 673(36$'f ,) 3UO$'6 (4 2 '2 f 3+$%6 21 $; 7 3(36r' f ,) &1-/7 f &21-* ,),2)36:1(2f ,')3Z ,)0$;$9*(f *2 72 ,)0$; $9/(Of *2 72 3+ 5(/ '0 $; 'r)5(/3+5(/f 3+$% '0$;r*)$%63+$'6f 3U(/ 20$;O 35(/'r)5(/f 3$%6 0$; 3$EE}r )$ LL6f *2 72 35(/ '0$;35(Or)5(/f 3 $ %6 '0$;O3$D6 '))$6f 673(36 '0 $; 673(36)$'6)$26f &$// 83*5$', ;)*) 6*) f ,) 35(/ *7 f 36(/ ,) 3+5(/ *7 'O f 3+5(/ ,) 3$'6 *7 f 3$E6 'O ,) 3+$G6 *7 f 3+$%6 673$36 '6457673 (36f ,) ,3569En(4 f *2 72 r5 ,7( f f 0$; $9 0$;45' 0$; 7 673 (36 '))n6X W ,&O1M 5 (/ 2+ r ,6((')5(/)$%6*)5(/*)$R63.(/3$R6L3K5(/L3+ $% 6 )250 $7;r‘0$;$9f r }; f r 0$;5'f ;f 0$; ,7r ; r} 673(36r 3* f ,')36Zr ; f ,& 21 -* f ; f 5(/&+r r *6 f 6(('r ,OO r; f )5(/r *6 r )$Er* r *)5(/ r r *)$26r r *,*r 35(/f f 3$E6f f 3+5(/f f 3+$A6r :5,7(OOf ,E;O f 6*; f 1;f )250$7n %2; & ?O 675$ ,176n f ; 3* E R f f :5,7(}f 1*) 1; r 1; f f r5,7( f ) ; f 1; f

PAGE 237

) f 3* f ;r 3* )..$7n ,1,7,$/ 9$/8(6nn f r 3* 3* f f :5,7(Ff2) ,f 1;f )250$7r *) f ,3 3 * f f :5,7(f )850$7f ,7,0 17 0(8 f & %(*,1 /223 7* 0 00 ( & 7&17 ,7&17 )6 ) & *(7 1(;7 (67,0$7( 2) 62/87,21 &$// 23;.3; ) *)*)6; f ,&245' ,) ,356:(f *2 72 :5,7( f 7& 17 1) 6 1*) 6 1+(6 ,*523 ) ^ ; f )250 $7 ,; ‘ & 17 6 r , r &5'rr 3r r r ; r * * f f &$// 23);*)*)&f 6*)f ,) ,366*7 f :5 7( f & f 1;! )250$7;}*)r 3**ROff 25'O,25'f 25'O,25'fO & &+(&. 1&50 2) 7+( *5$',(17 7(03 23*)&. ; *) f ,)7(03/( 673(36 $1' 326(82'2f *2 72 ,)7(03/(675(36f *2 72 R ,U 7( 03 /7 ,'f 5 (/6 & ) & $ 26 5 (/ 6& 1 f ,),3(22'2f *2 72 7( L0 3 6 73( 36 675$36 r '0 1 '$ -6 )6 f &$%6 ,)ff ,)&$%6 )6) f *7 7(03f *2 72 '2 E 1; 7( 03 673(36 675$36} '0 1OL&$F6L& f f '$ -6 ; f f ,) '$%6 ; ,f&O f f 67 7(03f *2 72 &217,18( ,) 326(42'2 $1' 3*7'f *2 72 ,) ,&5'1( f *2 72 & &225',1$7( 6($5&+(6 1&7 '&1( $1' 5(28,5(' ,) ,7&17*7 f *2 72 & ,1,7,$/ 9$/8( 0$< +$9( %((1 $ 6$''/( 32,17 & 3(5785% ,7 $60; 'r'0 $;  673(363$66 3+$%6 f 5(/0; 'm'0$;67)$3635(/3+5(Of '2 1; & ,f $%60; 5(/0;:'$%6& f f ,45' 6; 23( 9 ; ,'2;f ,) 6;.(42'2f 6;. 83(9; '2;f 1 ; f 3* f

PAGE 238

&$// 23*IL$' ; ) &) 6*)f :5,7F } f )250$7n rrrrrr 6,1&( ,1,7,$/ *8(66 0$< %( $ 6 $'8/( r f r r r ,7 :,// ( 3(5785%('rf ,7&17 3 :5, 7 ( f ,7&1, 1)61*)61+(66,25'L3);,f, 1;f :5,7(f *),f, 1;f 5 ( (7 ,) ,&21-*/7f ,&21-* ,),&)36:1(f ,')36: *2 72 & 81'(57$.( &X25',1$7( 6($5&K(6 5(/ 6&+ f§ &$ %5 (/6& 3f 3 7&1 7 ,7&17 ,25' )6 ) '2 1; & f ; f &$// 43& 225;)*)6;f ,)31(2'2f &$// 83 *5 $' ; ) *) 6 *) f *2 72 ,),7&17/70$;,7f *2 72 & F HQG RI ORRS F ,7 ,0 17,0(8 f :5,7(f )250$7r 0$;,080 67(36 5($&+('nf *2 72 ,7 ,0 17, 0(/ f :5 ,7 (O • f )250$7r rrrr &219(5*(1&( rrrrff 76(& ,7,0r7,0(56 :5,7( f 7&17 1)6 1*)61+(66 76e& )250 $7 ; f 67(36 nn )81 r,n J5$' r, r r +(66 6(&21'6 f )* f Z5,7(f)25;,f 1; )250$7n )r 3* r 25'(5 &176 rn ;rE* r **f f &$// 23);*)*) &6f *) :5,7(f &,f 1;f *2 72 6723 (1

PAGE 239

68%5287,1( 23;.)O ;.) .*)6*)6[f & $/ -,0(1(( & & &20387( 75$16)250$7,216 $1' (9(178$//< 5(7851 7+( & 1(;7 32,17 $1' 7+( )81&7,21 $1' 7+( *5$',(17 $7 7+( & 1(;7 32,17 ,03/,&,7 5($/06$+&f 5($/& ;. f 73 & f *) f &2 002123 ,1',,'28* 1; 1*) ,7&17 0$;$90$;25'0$;, 7 25' A ,3 f 1) 61*a 1+(661X&81' ,') 36 $} ,&21-* ,5(6(7 ‘ ,&225' &2002123,1'535(/ 3$66673(36 r 330 ,1*) f & f'-81' A 326 f )5(/ ) $%6 *)6F/ *) $UL6 L 3,K(/ 3+$%6 +*) f 3(57 f A 63 )5 7 f &200 21, '3 $7 $ %2; f ,) ,&21-*(22 f *2 72 & &21-8*$7( *5$',(176 2Q 67((3(67 '(6&(17 ,1 86( ,) &21-**7f *2 72 9 &$// 23);*) *) } 73 6*)f *2 72 '2 1; 73 f *) f ).6$9( ). & 2%7$,1 1(;7 32,17 )&5 67((3(67 '(6 &(17 25 &$/*25,7+0 &$// 83&1-*,;.).736*)6;f ,) ,&21 -*f 326 ,' ,) ,7&17 (*,&21*f *8 78 ,)).6$9().*7,'r'$%6).$9(ff *8 72 '2 1; ,) '$%6;. f& f f X7 'r '$%6 & f f f f -2 72 &217,18( *2 72 & 21 -* ,) ,5(6(7/( ,7&17f *2 72 '2 4 1; W & f &f *2 72 & 2%7$,1 +(66,$1 U $&2 75 ,$7 ,21 25 1(;7 32,17 ,) ')3 & $/*25,7+0 ,6 ,1 86( %< 86,1* 12167$1'$5' 5(7851f ,*)

PAGE 240

&$// 3+(66;N +N *) 7S 6*) 6; f ,)0$;$91FOf *2 72 &$// 3);*)*) *) 6*)f ' 1; 3(57+ & &20387( 6(&21'&.'(5 &255(&7,21 &$// 6)268%*) ,3 *) & W ff *3 '2 1; &,f ;.,f ,)1X281'(22f *X 7 6 ) *)&'/72 $12 ;. f *( %2; f f 23 r *),f*72 $12 ;.^ f /F%2; ff f *2 72 *3 *3 *),f &,f &217,18( 67) 23*)&.;. & f ` ,),*32/72 $1' 73 7 6 73(36 23 12 8 1 ( f f r * 72 ,)*3/( $1' 1G&81&1(2f *2 7R & 1( :721f6 2,5(&7 ,21 *,9(6 12 '(6&(17 6:,7&+ 72 &* ,) ,')36r f ( f & f *2 72 ,')36: *2 72 ,) ,25'(4 f *2 7& & 21 f§ 7&171; f ,5 (6(7 *2 72 ,) ,+(6(7*7 ,7&17 f *2 72 ,&21-* ,7&171;f 2 5' *8 72 1; & f & f ,&1-* 3((7 *2 72 ,)&,2521(O 25 ,5 (6 (7 /( 7& 17 f *X 72 ,1 '326 *2 72 ,,6 ,1'326 ,45' & (9$/8$7( ;.'. 6; 23(9; ;. f & (9$/8$7( );..f $1' *); .'.f &$// 3*6$' ;. ), 73 673 f 3 ,)675(36*(83*)&.;. 7)f $1') /().f *2 72 ,3 U f*F}3.m5m0$$/-9n&meYMfmr5} 88 L0m*OOr6;f *8 78 63 '$G6&rff

PAGE 241

LQQ RQ ''$\6;.ff '2 1 ; 62 '0$; 6''$R6 ;. f f f 63 '0$; 63 $F6 & OO f f 63 &0$;OR'O 63 r f§ r f ), 6 f§ ) ,*) (*,1 /223 7&20387( 7+,5' $1' )2857+ X5 -/5 &SKU &O 81 V &$// 83);*),73 ; 67367 37 673 & &20387( 7+, 5' -5 )2857+ 25'(5 &255(&7 ,21 &$// )8 *) ,3 ;.& -ff '$6&-ff '2 1; 6' '0$; 6''$R6& ff f ,) 0$;$9 0( f *2 72 -2 1 $ 3(.7 f 3F) 7 ,)6'O763f *2 72 45' ;7 *3(9; &;.f ,) -/70$;25'f *2 72 OR2 ,) 30, 1 f 1e 85 *) / ( f 6 7 3 f 85 f 1 8 812 f 1( & f *2 72 ,),')36:16f *2 72 &$// 83*5$';. ) *) 673f ,) ^ 675(36 /7 23*)&.W;. *) f '5) *7 ) *2 7R ). ) 6* )673 ,25''2 1; *) O f *) f *2 72 ,))*().f *2 72 ) ) 1; 73 *) f ,) 0$;$9F2O f &$// 23);*)73 63(57 673 f *2 72 &$// 23)81&;.)f ,*) *2 72 &$// 23*5$&;. ) &WO-Of 6737f ,) 673 W36 /7 -3*)& ;. & O f f *5 ) 7 ), f *2 72 ,25'

PAGE 242

6*) 673 7 6; 6; 7 ) LV f§ ) -) W! 1; W! M) L f & L -f *2 72 ,))*7)6 85 &81 f F m;7 f *2 72 ) ) 673 6737 6; 6;7 ,) W4 0$;52 f *f7& -) 1; 73f &,-f *2 72 & 7+,5' 2N )X8+,+ 25'(5 75$16)250$7,21 6(/(&7(' ,25' &$// 4325'+).m)O}*)}7)}*)}673*3*},*)O};UV}6;*n-22f ,) ,')360(2f *R 72 ,')36P O *2 72 6 & 6(&21'25'(5 75$16)250$7,21 6(/(&7(' 3' f§ 6; 23(9; '2 ;.f )0$;$9 1( f *& 72 '2 1; 3(57,f 63(57,f ,) 252 *7 f *2 72 ).6$9( ). &$// 23);*),73 &Of 673f &$// 345').) *)& r f 6*)673*32;N6;,*), f ) ,')36: 1 f *2 7& ,)'$%63f *( f *2 7& ,)3(4222f *2 72 '2 1; ,) $6 ;. f& f f*7 'Or ')'$• & f f f f *2 72 &217,18( ,)).6$9().*7fr $W6).6$9(f f *2 72 & 02',),(' 1(; 781 *$9( 60$// 2(6&(17 6:,7&+ 72 &* 1H;7 ,1'326(22f *R 72 ). ).6$9( 6; 23(9;2'2 ; LV f '2 1; & f & f ,& &1-* 5( 6(7 *2 72 ,&81-* f§ ,7&17 W8; f

PAGE 243

, 5(6(7 ,)^30(8f *7-R* ,&21-* ,&21-*, ,)O0$;$91FOf *72 '2 1; 3(57,f 2'2 *2 72 ,&&1-* ,7&17 1;f 5 (6 (7 & & &20387( ) $12 &) $7 7+( 1F 9 32,17 & 6736*) ,)3(22'2f *2 72 ,) ,&21-**(2 f *8 72 ,)+$;$9f 1 ( 23 ,&52/FOf *2 72 R '2 1; 3)LO7 f &$// *3);*) *) 6337 673 f &$// 83*5$&,;1). *)6*) f ,) n $; $ 9 (4 25 ,&21-*/7f &$// 83);*),X) 73 *) f ,) , &21-**(f *2 72 '2 1; ,)'$R663(57 ,f73 f f*7, r'$E663(57 f '2f *2 78 ,)'$%663(57ff*FO'Or'$673,fff -W &2 17 1 8D ,) ^1(1;f *2 72 ,&&1-* ,) 35(6(7/( ,7& 17 f *& 7& '2 f§ 1; & ff§&f ,)3 1( 30 ,1 f *2 72 ,) 30,1 *7 2'* $1' 6 7 3 /( r X) f 3LL1 *2 72 ,) ,85'/( 25 OX)36Z(4&f *X 72 '2 1; & f *) f DO 2 1; *) f 73, f ). ) ,) 30 ,1 *7 2'* $1' 6 *) /( ,' r6 7 3 f 30 1 6*) 673 ,) RD8*(4 f 5(7851 0 $ ; 5'f :5 ,76 f ,85' & ,-f 1;f1f )250$7f 83;. }3*,**ff 5(7851

PAGE 244

QQQQR 12 & F 68 FNX87,1( 43')3; ) ) } 76r 6;r f $_B -016= • '$9 ,'213/(7&+(532YL(// 88$,L?( UI721 $/*25,7+0 Yr ,7 + 5(67$576 (95< 1; ,7(5$7,216 ,) 352*5(66 ,6 6/2: ,03/,&,7 5($/06$32=f 5($/r ;f *),2f 76,2f &40013 12 , 2E8* 1; 1*") ,7&17 0$; $ 9 0$; 5' 0$; ,7 252 r ,3 &f 1)61*) 1+(661%281' ,2)36Z} c&1-L 5 H 6( 7 f ,&885Wf &20021'3,1'535(/3$%6673(3330,1*)Ef&f6281' 326 &20021'3'$7 $ ;f /2* ,&$/ UOOR+() 5 ,) ,')36:*7,7&17f *2 7& ,)3/7 -5 ,')3 6nY /( f *2 7 '2 127 5(6(7 73 ,6 7,0( $6 6&+('8/(' ,')36Z ,')36: 84 72 5(6(7 $/*25,7+0 ')3 : 7& 17 1; 1*) '2 *) ,f 2' 0 '2 1; *)0f ;f 0 01; ,) '28* 1( f :5, 7( f *) f 12 ) f 3 *3 '2 '* 1; ,) *) f 1( f r3 '0,1,3&0$; '2'$ ;, ff f r2$G6 *) ff f f & f ; f & f f§*) f

PAGE 245

& ,f *) f ,) L1%81 f (4 f & f 72 E ,) *),f/72 $1' ; f f *( f 2&; ff 85 r *),f*72 $1' ;,f/L-2;,ff f *2 72 E *3 *3*), rr &217,18( )6 $ 9( ) 72 ,)3/(2'&f * 7W& 83'$7( +(66 c$1 ,19(56( '( 12 '2 1; 76,f *),f& & f *) f & f ; ^ f&W f '(L0 '(1O76 fr& f 0 '(12 ' 1; +, '2 '2 1; + + 76 ^ -fXU .f ,)./70f *8 7' . *2 72 .1;&217,18( 0 &^ f + '(18 '(1+,r76,f ,)'(12O(22'2 25 'IF1*(* *2 72 ,) ,'R8*1U Z6,7( ,'( 18 '(12 76W O f 1;f r ,')36 D & -f 1;f` '( 1& '2'(12O '( 12 ''(1œ 3 *3 & 2' & 0 +,*+W 758( & ,U 0$;5'*7 86( 92 $)7(5 1; ,7(5$7,21A ) ,')36: 1( 7&17 *5 } 0$;5-/O r + ,*+5 U$/6(f '2 1; 7 &fr'( 18O 7 &f r'(1 *) 9f *) 0 f &,fr7O&^ r7 06 $9( 0

PAGE 246

,),(21;f *2 72 & , .1; 0 0 *) 0f *) 0 f& f r7 & fr7 0 0 ,) +,*+(5f *2 72 & } f ; f +, '2 1; + K f§ *) fr*).f ,).O706$9(f *2 72 K . *2 72 .1; & & 17 18 ( & f +, ,)L+,1( f '0 1, 3 '0 $; '2 '$ ; f f f r' $' +, f f f ,) 1'812(*&f *2 7 8 ,) *),f/72 $1' ; f *G R*; f f . *),f*72 $12 ; f /( f R2; f f f *2 72 *3 *3*)^,fr+ &2 17 ,18( ,) ,2UL8*1(f :5,7( f *) f f§ 1*)f )250$7 r ')3+ f ,3 * f f )6$9( ) ,)+,*+G5f *2 72 2& ,)*3&*(2'2f *2 72 & ,)3*7,'2f 3 '& ,) ,')36YL(2 ,7&17 f ,5' ; 3(9;3;f &$// 23 )81 & ; )3f & 62/9( 6&$/$5 0,1,0,=$7,21 3. *2/(0 &$// 232'5 < ) *) *)2 )3 3 ; ;f ,) )6$9() /7 'r8$6 )6$9( f $1' ,8581( f ')3nIW O 5(7251 5(7851 (1'

PAGE 247

QQQQ 68E587,1W 43&225I;. ). *) 6;f $/ -,0(1(= $ 81'(57$.( &225',1$7( 6($5&+(6 817,/ 68)),&,(17 '(6&(17 ,6 2%7$,1(' ,03/,&,7 5($/rUL $K=f 5($/06 ;. f *) f &20021&3 ,1',,'%8 *1; 1 *) ,7 &17 0$;$90$;25'0$; 7 /25' r ,3 f } 1)6 } 1*) 6 r 1+(6 L 12/81'L ,') 3* Z & 1 ,5OL6(7 &22 .&2 0021*3,1'535(/ 3$6675236330 ,1*)f & f82812 326 } )5(/ m ) $E6 *) 5(/ *) $66 3+5(LB }3 UL$%6 K*U ,& f F c 7 ^ f r 63(57 f 675$36 5(/6&) &200213'$7 $ %2; Ef & &225',1$7( 6($3&K ),1' /$.R(67 *5$',(17 7(50 *)0 $; *)0$; ).6$ 9( ). 7 ( 03 6 73(36673$3 $'$6 6 ).6$9W f 180& '2 1; & ,f & f 12 0& 1 80& ,3 L080& f a *),f/72 $1' & f *F R -; ff 25 *),f*72 $1' & f /( %2; ,f f f *R 72 ,)*) f (2'f *8 72 ,)*)0$;*('$G6*) f f f *2 72 &)0$; '$%6^*) ,f f ) 0 $; ,3180&f 3 ,f ,3 f &217,18( ,)180&/Ef *2 7& ) *) 0$; 1( &22. & 25 180&LB(Of *2 72 ) 0 $; 3 18 0 & f ,3120&f ,3 f ,3f ,3 f ,&&5' ,*) 0$; *)0$; & '2 1; ,),(*,&*45'f *2 72 & f f§ 2' *2 7&& ,f f§ *) f

PAGE 248

,) & f ( &'2 f & f 673(36 *3 f§ *) f r& L f 3 20$;, '2 2 $ X6 & f f f r $X6 & f f ` &20 ,18( & /223 72 &<&/W 7+IO&8E+ &225',1$7( ',5(&7,216 ,)3*7,'2f 3 3$/6; & '2 ,3 )5(/(4 ''2 $1'} )$W 6 mF2 - 23 ) 3 f 1( m,'2 $1 r (/ 6&K*7*22f f *2 72 (&2 3 3$6' $66 &O &225' f f 3$RE;3 ,) ,&%2*1(2 ,f-5 ,7 F f ,&2-5'} & M f 1; f f )250$7 f &225 f 3 *O£f f 6; 3 (9;O3 W;.f ,) ,6; O'G *(3$G6f *2 7 ,) ,*) 0$;(42f *2 72 *2 72 &$8 23)81&;.)3f ,))3/7).f *2 72 F22 )W ,*) 0$;(*&f *2 72 ,)3 /(3$6;f *2 72 &$// 23%'5<,)N *) *32 )3 3 ;. 6;f ,)W3*72'2 25 ,R)0$;(42f *2 72 & 12 '(6&(17 75< 1(*$7,9( ',5(&7,21 & ,&2854 f & &225' f 3 3$G6'$% & ,&25' f f ,* )0$; *2 72 & 12 '(6&(17 $7 $// ;. W &225'f & ,&2252 f 3 & ,) 3*7*)0$; f ) 0 $ ; 3 ,) 180& /F f *2 7 ,) '$F6O ).6$ 9(). f *7 7W Ir3f *2 72 & 60$// '(6&(17 75< $127+(5 &225' ,1 $7( & ,&823' f 2'2 & &225' f ;. &225'f &225',3180&f ,*) 0$; &225' 180& 180& & ,*)0$; f rM) *)0$; f ,)& ,*)0$;-(-'f & *)0$; f 673(36 *3 *),*)0$;fr& ,*)0$;f 3 20$; '2 '$26 & *)0$; f f f $'$G6 & *)0$; f f f *2 72 & 3 *)0$;

PAGE 249

QRRQ ,.( 6( 7 ,),&)36r1(f .f)36: ,) ,&41-*/7f ,&&1-* Â’ 1; & ,f & +( 7851 ( 1' )81&7,21 39;&3; ;f $/ -,0(1(= $E (9$/8$7( 32,17 ,1 ; *,9(1 $ 9$/8( &) 3 32,17 ; ,6 352-(&7(' 2172 7+( E8; &21675$,176 ,) 1(&(66$5< ,03/,&,7 5($/rG$3=f 3($/)E ;f &2002183 ,1,'8*1; 1*U ,7&170$;$90$;.'0$; ,7.85' r ,3 f 1)6 1R) 6 1+( 66 1 %281' ')36 r ,& 21 -R 5(6(7 ,&3' &2002123 ,1'535 (/ 3$667+(36330,1*)f & f6281' &20 0*1'3'$7 $ WL2 ; f ,252 0$;2.85'f 181' %281' 2'2 6' ; ,) );(4,'2 f 62 72 ,)3;(4,22f *2 72 ,UL2 50 ,25& & /223 )25 $ 63f1(O ,O1; 6 & , &5' f ,) ,5'0/(f *2 72 '2 25'0 6 6r3; & , 25 f 6 6r3; 6; & f ,) 6; /74&; f f *2 7* %2 /1' O! 9 $; %281' 6;%&; ^ ` f 6; %2;f 6 6;& f 1D8-121%81'

PAGE 250

*2 72 ,) 6; *7 %2; f f *R 78 8281' 0$;, %281' /8; f6; f 6; %2; f 6 6;& f 1 &818 1D812 6';40$; 68;8$X f f ; f 6; *8 72 /223 )85 3 '2 L1; 6 & ,m f ,) ,5&(*f *2 72 '/ ,23 & 6 6& L -f 6;f§6&,}f ,) 6;/7; f f *2 72 OR E&8L?' 20 $[ %281' ;%*; f 6 ;  2 ; ^f 6 6 ; & f 12 281' 1G281' *2 72 OR ,)6;*78;,ff *2 72 OH! %481' '0$;%281'%2;,!;f ; f§G2; f 6 6; & f 1G281' 1G281'O 6& ; 'YW $; 62; '$8 6 f f ; f 6; *2 72 & /283 )85 3 O '& ,O1; 6 &,} f ,) ,252(X f Y 72 '2 ,*52 & -f 6; 6&f ,)6;/7&;,ff *2 72 8281' '0$; %281' L;+; ff 6; f§%2;f 6 6;& f 1% &8 1 1%*n-1 *2 72 ,)6;*7%2;,ff *& 72 E281' '0$; %281' %2; f6;f ; %2;f 6 6;&,f 1% &818 1%2812O

PAGE 251

QRQ & 6'; '0$; 6'; 2$6 6 f f ; f E; 37 3; 23 ( 9; 62; ,) ,'GX*(& f 5(7851 $5,7(Af376';1221}X81';>,f, 0;f )250$7 n (9; f 3* *A^*R*O ff 5(7851 (1' )81&7,81 23*)&1,;;*)f $/ -,0(1(= &20387( 0$; 1250 2) *5$',(17 ,03/,&,7 5A$/r $+ *=f 5( $Or *) & f ; f &2002123 ,1',, '28*1; 1*),7 &17 0$;$90$;5'0$;, 7 ,85' r ,3,2f 1)6 1*)6 1+W 66 $%281' ,') 369r &21 -* 5(6(7 ,&225&2 00 21&3 12535 (/ 3 $%6 67 3(36 3 30 1 ) & f f X* 81 2 r 386 )5 (O )$•6 *)5(/ *) $FWV 3+5(/ 3+ 6 r + *) , f 3(57 ^ f &2002123 '$7 $ %2 ; f /2*,&$/ 0R"$9 +*$9 )$/6( ,) 0$; $ 9 (* $1' ,2)36Y (X& $1' &21 -* / ( & f 0* $ 9 758( 6* '2 1; 7 *)^,f ,)+*$9$12 '$% 63(57, f f /7 '2f 7 7K*), ,f m3(57 f ,) 7/72 $1' ;. f*(-*;^-, f f 25 r 7*72 $1' ;.,f/(22;,,ff f *2 72 6* '0$;6* $67ff &2 17 ,18 ( 23 *) &; f§6* 3( 7 25 1 (1'

PAGE 252

R Q Q 686AX-7 1 3 5' ) ; ) r *) L 73r *) L *73 L 3} ;. L*;A L M.F r } W f $/ ,01(= E M[]FRW VFDODU VHDUFK IRU VHFRQGRUGHU WUDQVIRUP $7 81 ,03/,&,7 .e$/$+8f 5($/r *)f73f;.&2 004123,12 '8 *1; 1*) ,7&170$; $90$;25'0$; ,7 352 r ,3 f } 1)6 1*)6 1+(66 1881' ')36$ &81-* 5(6(7 ,&2 252 &2002123, 1'535(/ 3$ 6e 73(36 } 330O1 } *) f r& rf 6281' &20021'3 '$7 $ R2; f ,) ,'8* (42 f *2 72 :5,7(f ). ) *) f 1;f 73, f 1; f r ;. f 1; f 6*)673 ,&. *32 )250$7 258 f 3*** f f *3 ‘'2 1; ,)1%281'(4f *2 72 ,) 73,f/72 $1' [; ,f *(X; ff -5 r 73,f*74 $1' ;.,f/(G8;,ff f *2 72 3 *373,fr& ,f &2 17 ,18( 6* 0, 1O 6*) 6,3 f ,)*3 /7 f *2 72 ,))/7). $1' 1&81'(** $1' 6**7'f *R 72 V & &20387( 0,1 2) &8%,& = *3O*3r).)O f : '6457=r=*3r*3f 3 O*3O r= f *3 *32 D, D f ,) 6* *7 'O f 3 '0$;'O3'0,13'3frE',f ,))/7). $1' 6**7' $1' 1%281' (42 f *2 7' ,)'$%63Of/7' $1' )O7).f *2 72 1%281' 6;3 23(9;3 ;.f ,)'$'66;36;.f /7 $1' ), /7);$1'L (f *2 72 &$// 23)81&;.)f ,) (42 f *2 72 ), ) O *2 72 ,) /7); $1' */7 ,'f *72 36 3;e3).) f )). f r3r).)f )).f f ,) **7, f 3 &0$; ( &a 3 0,1,363f§36f f

PAGE 253

,)36/Ff *8 72 6; 3; 3(9; 36 L;.f ,) ) *W). 25 6rM/ f§ f 2 N f 2$2^ 6;UAM6;3 f rnM7 f 'rf *f72 D 6;3 &-3(9;3;.f R8 72 &$// 23 )8L0& ;W? ) 3 f ,))3/7).f *2 72 ,)36*73f *4 72 = 36 363 3 = 6;36 6; 36 6;3 6;3 = = )3 )3 ) ) = ,))3*(). 2N )/7)3f *2 72 & 7+5(( 32,17 3L)fL 36)3)f 33 O36W36r))Of33r )O)3-)3)f  36r )U f3 Y ) ) fU3) f f 6;33 83(9;33;.f ,)W$66;336;36f*7 &3 6*/(f *2 72 & 6;36 83( 9; 36 ;.f OG£ 336 ;. 6;3 ).)3 *2 72 & &$// 23)81& ;.) f ,))*7)3f *2 72 3 "3 *2 72 & 7+5((6 32,17 ).f 3)f 36)3f 33 3r3)N)" f 36 r36r ))O fr3A);)3 f36r^ )).f f f 3320$; 333W8f 6;3323 (9;33;;f ,),)*7). f 25 6*/(' -5 $R 6 ;33;3 f 7 f r *2 72 6;3 23( 9; f§ 3 L;.f *2 72 &$// 3)81&W ;.)O f ,))O*7).f *2 72 ,))O*7Wf *2 7& ) ) *2 72 ,))/7).f *2 72 ,)33*73f *2 72 3 33 U f§)

PAGE 254

& 2WI .f 2 932f 3 )f 36 3r3r*3fr3 r*3 ).)f f 3 2+$; 36 3r f f§ f ;3 3(9;3;.f &$// œ+)81& ;. ) f ,))/7).f *2 72 ) 3 /( ,4 f *2 7& 3 3' *2 72 3 6;.43(9;^3;.f *2 72 ). ) 6;. 6;3 *2 72 & ),/7). ,)'$G63O!/(f *2 72 6;3 4"(9;3;.f ,) -$266;3;.f *7,' f *& 72 6;. 23(9;'2;.f 3 *& 72 R22 &$// 23 *5 $2 ;. ) *) 6*) f ,))7). 25 )&7)f *& 72 ). ) *2 72 & *3/72 ,))O/7).f *2 72 3 ) ) *2 72 36 ,) 1R*81' 1( f *2 72 ,) (&f *2 72 & = *(fr&f 2* 1; = =*) fr& f /f§ *3 = ) =*( $1' =/7f *& 72 R* : '4N7 =f ,) = /7 f *2 72 36 & r= r : f *2 72 3 & r=r :f ,)36/(Of *2 72 6;36 *3(9; 36 ; f ,) 081')4* f *2 72 ;. 239;O'2;.f

PAGE 255

*8 72 ,) 2$%6 6D366;. f /7f *7& &$// )n)81& ; r ) 3 f ,))3/)O f 25 } )3/7). $12 ,'.1(ff *2 72 OIFR 3 )OI3*3O 36r3f f)O)3*3OrO36ff ) 6**7 f 3 3 '0,1 36 f§ 33f§ ,)'$263Of/7f * 78 ; 3 23 e9;3;Qf ,)8$G6;36;.f/7f *78 &$// 3)81&;.)f ,)) /7 ). f *8 78 *2 72 3 2 *& 1; & m f & f &$// 23 W '5< ).*)*3-) 3 ;. ;. f F 5(7851 5(7851 5(7851 (1' 8 F-5887 1( 238)n'+W ). ), U } 73 6*U673 *3 *) };.;. f & $/-,0(1(=f§ & & 6&$/$5 6($5&+ )25 7+,5' $1' )2857+ 25'(5 75$16)250$7,21 ,03/,&,7 5W$/r $K &= f 5($/r *) f 73 f ;. f &20 02123 ,1',,'G8 /1;1*) 7&17 0 $; $ ? 0$;25' 0$; 7 &5' r ,3 f 1)61*)61+(R6}1XM &8 1' ,')36YY &81-* ‘ ,5 (6 (7 ,& 4 258 &8002123, 12535(/ 3$G6673(36330L1*)f& f G&-81 2 326 ,) ,'G8*(8f *2 72 5, 7( f). ), *U f c 1; f 73 f 1;f $.^ f 1;f 6*) 673 326 *3 *) )250$7n 25'+, f 3 2* X f f ,),2N'*7f *2 7& Of4 1;

PAGE 256

&O f &r&, f& f & ,f & f r &2 *2 72 OQ1; &O ,mf &,rf&O f&O f)--8' &O ,rf &, mff§ '2} &O Lf &O f & f r '& ,) Q%œ81 0( f *2 72 ,)73 *(,'2 23 673*(6*) 2. ;.*(f X 72 -2 3 30,1 ,)3*78f *2 72 & 1( $UF 62/87 ,21 237 $ ,1 6(( 03 727,& 9$/8( 2) 3 3 )3 ). ; 6;. 6;3 23(9;3;.f ,) 2$E6O 6;36;f /7673(36f *2 7& A &$// 23)8,n-&O ;. }) f ,) ,) 7 ), f *2 72 3 3,'2 )3 ) ) f§U 6; ;3 ,),3*7f 3 f§3 )3 *2 72 & 0,1 %5$&.(7 (' &20387( 0,1 2) '8P'N$7,& ,UW2 ,)O673/7O'f *2 72 7 )3) f $ ,' ,),7/(O22f 7 7$& 4 )7 ,) /$%6O ), f *7 ,' f *2 72 7 ,) ) /7222 f 8 '0,1* 7 $) f ,),3*7f *2 72 36 3,)3r)r)f er)3 )f f 6; f§3f§ '2 *2 72 ,)O3*7f *2 78 7 )3r)) 36 ) $O )3) f 36 $3 $36 3 r 7 f§ ) 3 $ ) $) ,367 7f *2 72 R 7 D $)3 $)$) f 36 $)3 $) f§ ) 36 ,3r736f $3$)3$)$) f $ ^ 3 f $ )3r c ) ) f f R 6; '$3f§ '2 ,)^$6O36f§ 6;f / (f'f§ f *8 72

PAGE 257

,) 73 *( $1' )/(6 r 3/76[ff *7 ;. &3H9;36;.f &$// 83)81&;.7f ,) 7*7& 26 3*/7*; $1' 7 *7 ) f f A 7X 6; -$(M6 &0 ,1, )3 )f 7-' ,) 6;/F '2 f 6; *;W 6; f§ 7 6 ; ,)$œ67f *7 *2 7* 6 ;3' & ,) 7/ 72'2 6;3 6;3 '0,06; Vƒ3I7f 4 20O1O ;3f ,),36/76; $1'} )O/72f E 7 30 ,1 $0$;2 ,,Q7 36f f ,))/(* $1' 73*( & f *2 72 ). 7 3 36 *2 72 ,))/(2 $1' 73*FO'f *2 72 ,)673/7-Of * 7 ,)W3*7 f 3 3' 3 3 '2 *2 72 & ,)3 *7ff 3 3rO 3 ) ,) 73/' $1'36(*f 30 ,1 3 ,) 3 /( f *2 72 • ;. 23&9;3;.f ,)181'1(f *2 7 ). ) O *2 72 ,)30,1/( f *2 72 ,)3/(f *2 72 6;3 23(9;3 ;. f &$// 83)1& ;.) f ,))/()Of *2 72 ,) 3 *7 '2 f * 72 )3 ) 3 * 72 ) ) 6; 23(9;3;.f &$// 23)81&W;.r )f ,))/7)Of *2 7 3 3 30 ,1 3 6; 23( 9;3L;.f ).) WR 3a 8 ,

PAGE 258

*8 72 6; U& 6; ,)'$E6)!*(Of *2 72 ,)WU.f§)OB er 0 ,1'$)f'$%6)Lf ). ) * 72 & & &855(17 32,17 )$5 )520 62/87,21 & &20387( =(526 8)3&/<1*9, $/ 6725( 15&87 30 ,1 ,) ), /7 f *8 7* E '0,1 r) ).).) f r'f *2 72 '0,1, ^ 'Or) U.).) f r 8f ,),25*7f R 7& & 7+,5' 25'(5 6; *U fe& f ) *)fr&f '2 1; 6;6; *) OLG ,}f ) ) *) f & f 36 f§) 6; )6; f ,)36/(2f *4 72 15 22 7 *) f 36 ,)673/7,'2f *2 7* '2 1; ) & r& f f ,U)/IF2f *2 72 15 '27 1 5287 *)15227f ) &217,18( *2 72 E22 & )2857+ 25'(5 6; *) frF f ) *)fr&f 36 *) f r& f '2 1; 6; 6;*) f r& f ) ) *)^ fr& f 36 36 *) fr& Lf 6; 6;6;6; ) )6; 6; )r) f§ 366; ,) ;f *L ; '6*57;f 3 )6; f 30O1 3 ,1 *) )25 /$7(n 26(

PAGE 259

,)36/72f *2 72 15227 *) f 36 36 ); ,),36/72 f *2 72 154&7 15227O *) 157f 3 6 *2 72 ,)) /W mf *2 72 D 16227 *)f ) ,)673/7 '2f *2 72 '2 1; 6; & f ) &,f6; 6; ) r)& f; ,) ; f 6; 62 5 7 6 ;f 7 ) f§ 6 ; ,)7/FOf *2 72 1527 0527 *)05227f 7 7 ))6; ULR ,)7/(Of *2 72 ‘! 157 15227 9 *)15227fa7 &217,18( & 6857 =(52 6 f .((3 $1< /WE $12 *7 ) 15227 OB) *2 7& & ,) O8UL8*1(f:5,7WOL f*),f, 1 522 7f )250$7f 25'+ r32*X2f*ff ,)15227(4f *2 72 15 &27 f§ '8 R ,0 6; *) f ) 6; /f§ '2 / 15227 ,)6;/( *).ff *& 72 R 6; *).f 0 R &217,18( *),f 6; ,)6;/(R'f *2 72 15 *27 *2 72 )0f f§ )

PAGE 260

36 )3 ) 0 15227 & /223 72 75< (326 $6 3266,%/( 9$/8 2) 3 W! 3 *)15M27f ,) 3/7 f *2 72 W ) 3 f*7f'&f *2 72 6; 23(9; 3 ;. f ,) '$R6W6;6;.f /7 ,'f ** 72 &$// 23)81&;.)f ,))/7*f *2 72 15227 15427 ,)132*7/7f *2 72 ,)3/W'f *2 72 ,)*) 15227 f *7 *2 7X R 3 *)15227f '2 15427 15287 *2 72 36 3*)15227f ,)36/73 r f *2 72 ,)36/(*)1IL2*7ff *2 72 36 3 6;. 43)9;36;.f ,)'$%66;.6;f/7,'f *& 72 R &$// *3)81&, ;. )3f ,) )3*F) f *2 72 3 3 ) 4 f ) 3 f§) f ,)3/(*) 15227 f f *2 7& ,)3 /(36f 3 3*)152&7ffr 15227 15227 *2 72 R ,),<,(4, $1' 3/7,f *2 72 ,) 3 *7 f *2 72 6;. &3IF9;;.f 3 ). ) ,),*)1W2f *2 72 *2 72 ). ) 6;. 6; *2 72 3 &$// 23%25<&).2)*32)3;.;1f *47œ & 121( 2) 7+( =(526 98&5N(& %5$&.(7 '(6,5(' 3 $1' ),7 & 7$ $ *+7 / c0( 3 ) )

PAGE 261

6;. 23(9; 3;0 &$// 3)81&;.U3f ,) )3 ‘ *( f 4 f * 7 ,) '$G6 )3)f / 673(3 r' $(6 U f $0' )3*()f L Y 1G 281( 1;f *2 72 r 3 3 ,)3*7f 3 3)3 ) )3 *8 72 ,)3/7E'2f * 78 36 f§3 -33fr3 f2r)33f f 6; r3f§ '2 *2 72 3 3 8)3 f )3) f 6; 3'2 ,) &$E6 6;S6f // f *& 7& E 6; 23(9; ^ 36 ;.f &$// 23)81& ; }) 3 f ,),)3/7*f *2 72 3 6; ).) ;. 3F9;3;.f *2 72 3 36 ). )3 & &217,18( 3(7 851 ,) $% ), f *)B '2 f *72 ,) ).) /(,'; '0,1 '$O6).f m /$E6O ), ff f 3,r 1 30, 1 5(72$1 (1' 68G5287,1( G3E '5< ). *) *32 ,)3 )3 3 ;. 6;. f & $/ -,0(1(= & & 6&/$5 0,1,0,=$7,21 $/*1* 75$-(&725< 8(6&5,(' ,1 $55$< & ,03/,&,7 +)$/r $+8=f 5($/rG *),2f ;. f

PAGE 262

& L" & & F IW22 /2*,&$/ >04. & 2004183, 12 , G8* 1; 1 *) ,7&17 0 $; $ 9 0 $; -5 0 $; ,7 } 5' r 3 & f m 1U ( } 1*) L 1)O(6 1%LL81'L )36 Y! L L&XO2XW +(8F7 &8X52 &20021-3,1 2335(/3$67)(3f+=30,1*)f & f 2812L r 386 ) 5 (/ )$ $6 W *..(/L *) $ %6 3+5 (/ 3+ $G +*) f 3( )7 f } 63(57^f673365(/6&+ ,) 8* f ( 4 f X f *2 72 :3 ,7 ( R f ). *) f 1;f *3,)3)33 )250 $7 n 2'5< f 3 R R f f 3& 7 5(/6&+ ,)3&7 /7 f 3&72$%63&7fLO2O 3& 7 3&7 0$; ,) ,)3 /72f 0$; 6;. 3(9;3 ;.f ,))3/7).f *2 72 0,1,080 %5$&.(7 W'L ,,12 '(6&(17 9$/8( 2U 3 723( 9; ;.f 3$6; 3$%6781f 7 3r*3).)3 ,) 7 (4 f *2 72 36 3r3r*3f 7L 7 f 36 &0 $; 3 6 f ,' 3f *2 72 36 n r3 ,) f*( f f 3 6 O2f§ W36 ;36 23( 9;36;.f &$// 23)81&O ;. ) f ,) ) /7 ). f *2 72 & ,)36/(3$UW6;f *2 7& 6;. 6;36 3 3 ) 3 ) *2 72 & ).f 36) f 3))f 3. )36) 3 )3 ) 33 3 336 36 3 3 6;36 6;. *8 72 0,1,080 1(('6 7& )( %5$&.(7 Ln7 3r*3

PAGE 263

73r7 ).)3 7, 7r3 36 33 3. ,) 2$%6 7r3 6r f /7 '$E 6 7 f f *2 72 36 20$;O3677f *2 72 36 36r4 6;36 43(9;36;.f &$// 23)81& ;.L)36 f ,) 1%281' )4 1; 2) 6; 36 f  f 6 ;. $12 '$-6)36)3f/Fe)$6673(3 UQe/ O' f§f'$G)3fff *2 72 ,) )36 *7 )3 f *2 72 r 6;. 6;36 3. 3 3 36 ).)3 )3 )36 36 3636 ,) }*e f 36 36 &O *2 72 ,))3Oe)3f *2 7& 6;. 3= 9; 3 ;.f ). )3 *2 72 E22 3 36 6; 6; 3 ) ) 36 *2 72 & 33/3$3( ) 8. /223 72 =(52 ,1 21 0,1,080 ,U 6;36 *7 f 0$;O 0$;, ,)'$'6)36). f *7 '2 r'$E6)30,1 )36U.f f f 0$; 0$;, & 3.).f 3)3f 36)36f E ,)'$'6 )36). f /( r$+6)320,1 ^)36 ).ff f R2 78 R ,)O, *(0$;, f 0$ ; , ,) ). *7 ) 36 f *2 72 & )36 08&+ *5($7(5 73 $ 1 ). ,) 363/(' 033.! f *2 72 • SS ).)3fr363 f)36)3 f 33 3'0$; 33r33. f f 33 20,1O 3) r ) )6f f 33 '0$; 33L 3'r363! f ,172. )$/6( *2 72 6 & ). 08&+ *5($7(5 7 )$1 )36

PAGE 264

D R ,) 33. /(&r 33f ** 72 E 33 )36)3fr33.f).)3f 33 320$; 33 0363ff 33 20$;O 3)' r33.f f 33 0, 1 3)L 3 Y 33. f f ,172. ) $/6( *2 72 ,17&. 758( 7 3.r))6)3f 7 3L).))6f 7 3r)3).f 7777 ,) 7(&'& f *2 72 33 3.r7 37 37 f ;7 ,),33*736 2. 33/7).f *8 72 R 7 '$D6333fa3&7}3 ,) (4 f *2 72 E ,),7/(' $1' )7(7/(' $1' 6;. 23(9;33 ;.f &$// 23)81&;.)f ,) I081'(1; $1' )/F)3*2 72 )7(67 '$%6)f§)3f§3&7r&$D6)f ,),7/( $1' ) 7(67 /W &22 $Q' ,) *(0$;O f *2 7* ,)33*73f *2 7* )3 *7 )3f *2 72 36 3 )3 6 )3 3 33 ) 3 ) *2 72 E 3. 33 ). ) *2 72 R )) *7)3 f *2 72 3. 3 ). )3 3 33 )3 ) *2 72 3633 )36 ) *8 72 R ,))/7)3f *2 7* ;. 3(9;3;.f ). ) 3 *2 72 17 2. f R 17/. f *2 72 72

PAGE 265

XXX 2 2 & & 2 S SS ). ) *2 72 F22 ,) ) 1( m)3 f *8 7 )1 )3 * 7 2 3 6;. 23(9;3;.f 5(7851 (1' V8E Z287 ,2321 -* ;.L ) ) R R ) A!;f $/ -,0(1(= &21-8*$7( *5$',(176 $1' 67((3(67 '(6&(17 $/*25,7+06 ,03/,&,7 5($/06 $3 2= f 5($/ E ;.,2f *) f &200213, 1', 'E8& L1; r1*) ,7 &17 0$; $9 0$; 858} 0$; ,7 -5 r ,3 f 1)6 W1*)6 1+(66L 12 812 2)36 : &*0-* n5(6(7 &225' &2002143,1'535(/ 3$%6675(363 30 ,1*)f & f-4812 r 326)5(/)$%6 *)5(/*) $%63+5(/3+$66 &2004123'$7 $(2 ; f ,),2%8*(*f *' 72 :5,7 ( R f ,&21-*, 5( 6(7).6*)6;;. f f§ 1;f $ W *) f 1; f )250$7^ f &1-* f ,3 ***f f ,25' O ) ^ ,5(6(7 *7 7&17 $1' 0$; 25 2 *7 f *2 72 & 5(6(7 7+( &21-8*$7( *5$',(17 $/*25,7+0 *3 ,5 ((7 7& 17 1; 3 '2 1; & f ;. f & f *) f r88; f ,) *),f1(2'2 f r3 '0, 1, 3'0$;, }'$IF6;. ,ff f r'$G6& fff f ,)1%881(*f *2 72

PAGE 266

& ,) *) f /7 $1' ;. ,f *( W;W } f 85 r *),f*72 $12 ;. O f /(%2; f f f *72 *3 *3& ,"frr &217,18( 3.*3 *2 72 3 f§ 2 & '* L0; ,)1818(&f *2 7 ,) *)&,-/7 DQG ;. ,-*(*;, ff 25 r *)Of*72 $12 ;. ,f /('2;O ff * 72 *3 &3. f§ *) fn$; f f &217 ,18( %(7$ *3.*3 *3 3 2* 1; & } f ;. f &,f W(7$r& f *) f 8;& f ,)1881'(2f *2 7* ) *),f/72 $12 ;. f *( %8; f f 83 r *),f*72 $1' ;. ,f /(-; ff ` *2 72 *3 *3 *) frf2; f r& f ,) /n$%6 & f f /7 673(36f *4 72 3 '0 1LO 3 89L$;O 8'$%;. ,f f f r2$GL& f ff f &817 ,18( ,) *32 *(2'& f *72 ,) 3*7,'2 f 3 ,'2 ,)1%*8121(& 23 &41-**7f O 3 $ %6; '2 ,) )5 (/ (* '2 $LP8) $'6 (X f 25 31('f r * 7 6; *3( 9; &2 ;. f 3 3 $%6; 81'f 3$ G ; 3 6; *3(9;3 ; .f &$// *3)81&&;.)3f ,)&)3*(). $1' 3/( f 3 $ ; f *2 78 &$// 43%'3<& ). *I *32 )3 3 ;. ;f 3 *3. ,)3(4222f ,5( 6( 7 *4 72 3 2'2 6; *3(9;3 ;.f ,5 (6(7 5( 7851

PAGE 267

QQQQQ (1' 68X54R7,1( 3tN$ ;! ) ) m 6* L f $/ -,0(1(= '(7(50,1( *5$',(17 $0' )81&7,21 $7 ; 6(( (175< 23)81& 6*) ,6 9$; QX50 2) *5$',(17 ,03/,&,7 5 F$/r $K 2= 5( $/A6 ; & 2 f *) f &20021 *3 ,1', '8* 1; m1*) f ,7&17 r 0 $ ; $ 9 0 $ ; 5 } 0$; ,7} ,.n' r ,3 f 1)6 1*)61+(6 1%X812} ) 3 : f &21* 5(6(7 f ,&* -5' &200123,12535 (/3$26673(36 3 30 ,1 ) f & f %281' r 3m)5(/)$%*)5(/*)$63+5(/3+$%6+*), f3(57 f r 63(+7,2f &20P2123'$7 $; f /2*,&$/ 12(5.+*$9 ,17(*(5 +,*+ ,)0$;$9*(f *2 72 & *5$',(17 127 6833/,(' $3352;,0$7( %< ',))(5(1&(6 12(5. 758( ) U 5eO 1( 2 25 )$(61(&22f 18(6N U $/ 6F m +,*+ /2: ,1 & &$// )81&&; )f ,) ,7&17(42f ,7&17 O ,)^,')36:(4 $1' ,&21-J(82 $1' ,7&17*72f *2 72 +* $ 9 )$/6( + 35(/r'$6)f *2 72 +*$9 7IL8( + 3N(/ r'$%6)fI3$6 '2 r 1 ; ,),7&17/(2f ,1' ,f§ 6 ; ^ f +3 + ,) +* $9 $1' '$%6 +*) , ,+1(2'2 f+3 '625 7^ )W '$ % ),*) , f f f +, 3 $%6 )20,1 +3 3m(/r&$G6^6fWO'2Q

PAGE 268

,)^/2: f e f *X 72 + +, +, ,I +, /7 f r3$6f +, &0,0 3$ f ; f +,6 ,) ; f /( 62; f f *2 7& +, +, ;,f +,6 ) ; f *WR2;G f f 72 ; f ; f +, ;,-6 ,) + O 1( f *2 72 *) f '2 *2 72 &$// )81&; )+f *) f ^ )+) +, 7 '$26*) f f ,)7*7,'2f *2 72 & ,)'$6),, ,/O,2,7 f 25 f 3$WUDRF7 $1 2$ 6 +, /7 3$LM6)3$26f r‘ *2 72 +, 7r33(/)3$+6 +,*+ +,*+ 1I 6 1) 6 *2 72 ,) +* $ 9 f 2 5 f 7&17 *7&5, 12*e f *2 72 7 +7 ,)'$E6+,f*F7f *2 7& ,) ; f 6I2; f 2+ ; f (& 2; f f *2 72 1)6 1)6 +L 7 / 4 } /2nr ) ,1& ,1' ,) ,1'(4, f ,1' *2 72 ,)'$26+, f/7 67 f *2 7& 1) 1) 6 ) +, 7 r ,1 ,1') +,*+ +,*+ ) ,1'(2 ,f ,1' ), *2 72 62 ,)12/35f *2 72 ,),1'(4, 85 '$ )L f *7 '2! *2 7M ,) ; f WI8'2;2 W f 25 ; f LF4W;, r f f *2 72 7 )5(/0 '$ )f '$E6 )+ f f ))$%6)$G f'$26 + f 70 'r'$G6 *) f f )' f ,)7/(70f *2 72 / WR f§/ 2: 1)6 1)6

PAGE 269

, 1 +LQO+O ,),'$&-6W +, f /7 r3$6 f +,f§'0 ,1, f§ } ,'Om3$Xf n 72 E2 ,) 'r7*7 70} *2 72 +,*K K,*+ & ; f 3($7& f +, ,3 /2:/(K,*K f *2 72 ,'2 35e/ 0 1 35 (/r f 3$46 '0,0 3$(6 f *2 72 ,)^ +,*+/71;f *2 72 35(/ '0$;'35 (/r f 3$6 '0$;, 'O 3 $%6r'f ) '8*1( f 3 7e $ f/* + &+ 33e/ 3$'6 r )250 $7 f 3 &+1 r 3 O G f 1)6 1)61; ,) ,7&17/7f ,7&17 *2 72 & +L $2 ( LP 7 6 833 / ('r &$// 86(5 f§Df 5,77W1 8 %52 8 7 ,0O &$// *5$'&; ) *) f +, 1) 6 1) 6 1*)6 1*)6 *I '$X6*) f f 1; 6*)'0$;^6*)2$%*),fff *2 72 & & e 171 9 23)81&&; )f & &$// 8em5,77F1 68%5287,1( 7X 8E7$,1 )81&7,21 9$/86L 1) 6 1)60 &$// )81&&; )f +, &217,18( ,),8*(8L 5(7851 :N ,7(& f) ^; ,f 1;f )250$7f ) ; f3**%**ff ,)+, 1( f05,7 f *) f 1;f )250$7^f *) f 3 * R f f 5( 7851 (1'

PAGE 270

R Q R R 68GL RXWL1( $/ 23+(66; -,01= ) *) 7L 6*) 6; F F F 2G7$,1 +(66,$1 $1' )$&725,=( 7 25 *G 7$,1 1(;7 32,17 ,) ')3 $/*25,7+0 ,6 86(' ,03/,&,7 5($/r $+ 8/f 5($/r% ; f *U O2f76O2f &2002123 ,1',, 8*1; 0* ) 7 &17 9$;$98$;2520$;,7 ,25' ,3 f 1)61*)61+( 661%81',') 36 &21-* 5(6(7, &225' &2002123, 12535 (/ }3$+6673(36f330 ,1} *)! & f2221 r 326 )5(/ W )$% *) 5(_B *) $% 3+5 (/ 3K$%6 f +*) , f W 3(57 & f } r 63 (:7 f &2101232$7 $ G8;f ,17(*(5 +,*+ /2*,&$/ 12 (55 ,) ,&)36: 1( f *2 7X 92 $/*25,7+0 %(,1* 86(' ,)0$;$9*(f *2 72 +(66,$1 127 6833/,(' $3352;,0$7( ,7 12(5 5 758( +,*+ /2: ,)0$;$9W8Of *2 72 )81&7,21 $1' *5$',(17 9$/8(6 6833/,(' ,U )5(/ 1e 2'4 2K )$D61F 2K *)5(O1/2'2 2N r *)$66 1(2'&f 12(55 )$/6( ,)& ,7&17 *7 f *2 72 ), 3+5(/8'$26 ,)f 3+$%6 ,5 W '2 1; ; f +2$G6 *) f f ,)+*7,'2f *2 72 + 3+(/r+ *2 72 ,) ,7&17*7 $1''$26+*U , f1/&'2f *2 72 + )O +r ,'2*)5(O f *) $ f *2 72 +, 3 +$%6 20,1, +3+5 (/ r &$G66f '2 f f ,)/-:(42f *X 72 + +,+,

PAGE 271

,U +, /7 'r3P$G6f + 9 0 r 3+ $n-6 f +, 6,*1+, f§ *) f ; ,f +,6 ,); f /( *; f f *& 7* +,+, ;^ f + f 6 ,);,f*(6;ff *2 72 +, +O ; f f§ 6 + ,) ; ,f /W2;^ f f *& 72 +, }+';,fa%2;ff )+,1(2'2f ** 7& '2 1; 76 f2 +* ), , f *2 72 &$// 3*5$*; )3 7* 7f +,, +, ,)12(.5f *2 7* 2, $* 7 f*) f f+, 7 *)N//r'$%6*) ,f f&$E6 76 ,ff f *)$ *)$ 6f'$G6QL f )3 6'r $G6 & ,$ f f )7 / )3 f *2 7 & 3(/5785($7 ,21 26(2 : $ 722 60$// / r /0 +,, +, ; f 6+, ,) ; f /H 2*; f $,?& ; 'RF%*;OO,ff *2 7,26 ,) +, *) f * 7* +L f§ +,)+, ; f f§ 6 + , ,); f *7 E8;, f *. ; ,f /7G-; f f ** 7 &$// *3*5$'W;)376 7f +, O '&+, 2,$ 7 6 ff§ *) ff + , *8 7 ,26 &$// *3 *5 $' ; )3 &fm7f +, O'^+OK,,f ' -O1; 76 f 76-f&ffr+ +*) , f 76 f * 72 O ,)&'87/()32+ $%6Q f R&' f + + Q ,2+ ** 7* +, '+, ** 72 ',$* +,,r+,,r'r)3)f+,r'r,76,f'r*),fff 7 +,,r76 ,f f§ *) f f

PAGE 272

D ,) 2$O£6 $*7 f *7 7Wf ,$ 7 1; ,)1( f *2 72 76-ff§'O$* *2 72 76-f 76!*) -f f r+, &217,18( +*), , f ', $* ;,f 2 1 ; *) ,5 f 76 f 5 5 ,) ,88*1( f :5, 7(,tf >76^ -f 1;f )250$7r +(66 f m 3* * f f ,) (* f *2 72 0 , '2 f§ O _. 6'0 ,1 4$E*)0f f 2$R6^ 76f f f ,)*)0fr76-f*7f *2 72 ,) 6/( r'0$; $ *) 0f f '$6 76 -f f f f *2 72 *)0! *2 72 ,) '$%6 *) 0 f76 f f *7 6r3+5(/f *2 7X *)0f *)0f76-ffr' *2 72 ) ^ 2$%6 &) 0 f f (* 6f *2 72 *)0f 76,-f & 0 0 1;&217 ,18 ( *2 72 F RQO\ IXQFWLRQ YDOXHV DYDLODEOH Q ,) )5O/ 1( 85 U$(61(284f 12(55 ) $/ 6( '2 1; ; f +, 3(57,f ,)+,)22'2f *2 72 +, f§+ ;, f 6 + , ) ;, f/(D2;^ ff *2 72 +, +, +, ,)  /7 42; ,f f +,, G2;}, f f§ 6 ;&,f 6+,, ,);L '*( G;O,Of *2 72 +, +,+, ,) 6 *7 ; f f + , %; f6 ,)&'$G6),+,,f(œ2'2f + , +, g

PAGE 273

[ !K ,);,f/eG8;,ff *2 7& +L r+ ; f 6 +, ), ) K &E) f &$// 23)81 & ;)3 f ;,f 6 76O f ) 7 K + , 7 ^ 7r)+, r) UO r) ) f + , r7 f +*) , f 7+ *) ,3f &2 r + *) , f ,)1-(:5f *2 72 7 )5(/r '$%6 )r + ,+, ff'$%6)Or+O, f 4$X6 )3r+, f U 7 '2 ) $ $ 6 +, f f &$%6 +, + ,+ , f f 6 'r 82'$26*) ,5f f f ,) 7 /( 6 f *2 72 ,% /29L /2:O *2 72 ,) r7 m/( 6 8 5 '$%6 + f &[ + *+ + ,*+ *2 72 *),5f & +*) , f 7 6 O` ) ,5 ,51;, & ,) ,'88*1( f :5, 7(E f 7 6 f 1; r 3(57 -f L-O 1; f L )*) , -f M O 1;f & &20387(6 2))',$*21$/6 1; f§ 5 '2 / ,)3(57 f 1( *2 7'8 /1; *) ,5 f 5 ,5 *2 72 ; f ;,f 63(57,! '8 /1; ,) 3(57 ^ f 0( f *2 72 *) ,5f 2' *2 72 7 ;-f ; -f f§ 7 3(57-f &$// 23)81&;)3;-f 7

PAGE 274

*) ,5 f )376O f f )76 -f f f 3e57 fr3($7 f f ,$ ,5 ; f 6 ,5 ,5 & ,) /QW2*2 7X 35 (/ f§'0 ,1, 35 (/ r f 3+ 5(/&20 1LO 3+5(/'&f 3$%'0,0'3$(6r&f 3+$E6 '0 ,1, 3+ $ G6 r f *2 72 ,) +,*+ /7 1;f *2 72 3:e/ 0$; O'R35 (/r' f 3+5(/ 20$;O 3K5(/ &f§ f 3$ 6 0$; '3$66 ,' f 3+$X6 '0$;3+$E6rOf ,) ,228* 1( f r5 7( f/2UL + *K 35 (/ 3$ 3),5(/ 3+$ )250$7n 3&+1*f 3*f *2 72 & & +(66,$1 6833/,(' &$// 86(5:5,77(1 685-7,1( &$// +(6 6,;* )f 1+e66 1+( 66 ,) '58*(4f*2 7& m., 7( f *) f 1X)f )250$7&r *) ‘ 3*& *& f f & & )$&725,=( 7+( +(66,$1 &$// 6)$&,*) ,3 3&6f *2 72 & 2$9,221)O(7&+(532:)// 0(7+2' &$// 3')3,; ) *) 7 6; 326 5(7851 5(7851 (1 68G5287 L1W 23);*),*) &)); 6*)); f $/ -,0(1(= f§ & &

PAGE 275

Q RQ Q & &255( & 7 )25Z$5 '&,))(5(1&O $3352;,0$7,21 72 7+( *5$',(17 ,03/,&,7 5$/r$)=f 5( $/) *) f *)); f &00&123, 12 , '88 m 1; m1 ) f ,7 & 17 0$; $9 f 0 $; UY W 0 $; ,7 } ,58L r ,3 f m1)6 !1*)m 1+(66L 18 812 m 2 ) 36 Z m &21 -* } 5( 6(7 m ,& /-8 cmc/ &2002123, 1'535(/ m3$66673(36330 ,1*)Ef & f6281' r 386)5(/)$6*)5(/*)$G63+5(/3+$R6 + *) f 3(57f &20021'3 '$7 $ ;Ff & ,) 0$ ;$ 9 1( 25 ,')36G1(2 25 ,&21-**7'f *2 72 6*)); &' 1; 7 *) f ,) '$26 3(57 f f /7 ,' f 7 7+*) , & f r3 (5 7 f *)) ;, f 7 6*));'0$;6*)); '$%67ff &217,18( ,) ,28*1(f :5, 7K f *)); f 1;f )250$7 f *)); f 3 * f f *2 72 & '2 1; *)) ; f *) f 5(7851 (1' 68%5287,1( 6)$&6<1 ,3 'f $/ -,0(1(= 6<00(75,& )$&725,=$7,21 2) $ 0$75,; +(66,$1f :+,&+ ,6 02',),(' ,) ,7 ,6 1(7 326,7,9( '(),1,7( ,03/,&,7 5($/ $ f§)2f§= f 5($/06 6<0f '7O2 ,1 7(*F$ ,3 f &2002123,1',,'G8*116 & ,1,7,$/ 3(5087$7,21 '2 1 ,3,f & ) ,1' 0$; 9$/8(

PAGE 276

& F F & & G 2$W6 6<0 f ` '2 16 R '0 $ ; %'$W66 6<0 f f '62$7D! ,5 13 1 EHJLQ IDFWRUL  D WL F Q ORRS '2 1 15 13, 7 '$%66<0,5f f ,) K&OL1 f *2 72 /. ),1' 675&1*F67 GLDJJQDO 8 '2 O1 ),1' 0$;,080 8))&, $*21$/ ,1 7+,6 52: 0 5 3 0 f§' ,).F*2f *8 7G '2 / 360 '0 $; 360 '$6 6<0 0O f 0 0 1N/ 7'$26<00ff 1,) ; f *2 78 '2 / 360 '0$; 360 '$G 6 6<00 /f f 360 12: &217$,16 7+( 9$/8( 2) 0$; 4))',$R21$/ ,) 360 *7 f *2 72 7 7 2) ) 0; 36 0 06 0 /5 *2 7' OR2 860 36020$;7&7 7r30f ,)860*78f *8 78 c) 860(* $1' 36 0 &( 2) )0; f *& 72 A 7 7 2) ) 0; 30 8 *60 06 0 /5 &217 ,18( ,U /5 (&8 f *2 7& 35(6(17 ',$*21$/ ,6 187 7+( 67521*(67 ,17(5&+$1*( ,3 f

PAGE 277

,3 f ,3/5f ,3/5f < 0 +f <0 ,5 f f§ < 0 06f 6< 006 f 8 ,1' ,5/5, /5(& 1 f *2 - 1/N '2 8 6<0 ,1' -f < 0 ^ ,1' -`f§6<0,06 -f 6<006-f/ /5,W ,) ./(2 f *2 72 '2 O ,1 ,1'158 6<0,5-f <0 ,5 f 6<0 12 f 6< 0 ,1'f 8 ,) f 2 72 0f§ ,1' /5O G f§ } 6< 0 0 6< 0 0f 6<00, 12f 6< m0W,12f 0 0 1&217,18( ,) ,R8*/(&f *8 72 n95 ,7(,O22" f ,3^ -f0 m,5,7F,G f <0^ -f 16 f )250$73&*f 8 '0$;'77f 6<0 ,5f 36 0 2&'64576<0 ,5f8f ,) ,(41 f *272 & ,) ',$*21$/ ,6 722 60$// ,1&5($6( ,7 7 2))0; r360 ,) *(7 f *X 72 & 3,927 722 60$// ,1&5($6( ,7 30 360r %7 8 36 0%n 360f f 6 <0 ,5 f 15 f§ '2 6<0 ,5 f 6<0 ,. f r30 & 5('8&( (/(0(176 (/&: ',$*21$/ 0 5 15 ,) '58* *7 f Z5 7e f 6<0 16f 360

PAGE 278

'2 7 6<0 $ f 24 O -. 6< 0 0 f <0 0 f U r< c9 ,5/ f 0 0 &217,18( 6<0,5f 30 ,)'/78f 8 ,5 ,515 ,) 'G8**7 fmN 7 ( } +6<02f 06f 2 9 &417 LQXH Ua / ,) ,'%8*e&&f5( 7851 :) 7 ( f ,3 !f 1 f 6 <0 f 16f )250$7 r 6)$& 3 * G f f 5(7851 (1' 68%5287,1( 6)%68%W6<0 ,3 2 ;f & $/ -,0(1(= Ua & ).:$ $12 %$&. 68%67,787,21 $ 7+ 0$75,; )$&725,=(' & A< VIDF LI WKH LQYHUVH LV DYDLODEOH DV LQ 2)3 F DOJRULWKP LW PXOWLSOLHV LQVWHDG ,03/,&,7 5($/r%$f§)f§=f 5($/06 6<0 f Ff f ; f ,17(*(5 ,3,2f &2002123, 12,,'G8*1 ,'810f ') 36 : & ,) ')36: 1( f R 72 ; ,3 f f 6<0 f r A f f '2 1 0 7 % ,3,ff '2 7 7 ; ,3-ffr6<00f 0 L9 1

PAGE 279

X RM ; ,3 f f <0 0fr7 ; 3 1 f f ; 3 1 f f r < 0 ^ 0 f 13 1 '2 .1 f§ 13 f§ 0 0. 7 ; ,3 ff / '2 / 7 7; ,3 -f f
PAGE 280

r r r 17 ,LWW f $N*80F17 127 =F52f f ,8 f ( ,8 $n,// &217$,1 7KH 180%(5 2) 7 9(5 81,76 //$3= 6,1&O 7+( /$67 17,0(82f ;(&8,,21 17 0(8 &6(&7 6 $9 ( $ f } m I /6 6 86,1* 1 7 0( 8 7 } 6 $ 9 ($5F$ /$ $ 9 ( $ 5( $ 67 f /5 / O2Y2Of / OB75 %1 = $3 *12 7= r $5*80(17 ,6 =(52 70 67, 0(5)/ ; f %2 28 1267,0(5 67 ,0(5 7$6. 7 8 17 9 / 09 6 7 0( 5) / ; r 1&67,0(5 77,0(5 /13 & $ 6 7$5 7 7 67 67$577 /5 % '21( r $5*80(17 127 =(5X $5*17= 77,0(5 /15 $ 67$5 7 7 r '81( / 6$ 9($5($ / f / G f 0 9 f ; n)) ‘ % 5 r 6$9H$6($ '& G)‘ n 67$577 '& ) f f 7,0( '& ; n ))I))))r 67,0(5)/ '& ; f f (1' 17 ,0(8

PAGE 281

6 8 3 5 48 7 1V *+$'^ ;L ) *)f & 526 (1 W-52& n )81&7,21 $1$1$ 9$//(< & ; f ;r ,03/,&,7 5($/7•& $) 2= f 5 ( $ / r ; f *) f *) f &2002123 ,1', ,'800 f 7& 17 &2 902123,1252800 } )5(/)$*6*) 5//*)$E6 ,17(*(5 ,7&176f§ $66,*1 72 ,* * 72 (175< )81*,$ )f $66,*1 72 ,* ,),7&17(2f }5 7( 6 f ) 50 $7 r 326(1%52&. f f 6 )81&7,21 n $ n67((3 %$1$1$ 6+$3(' 9$//(< nf 8 ; f 7 ; !8 ) O'r77 O2&;8 f f r r ,))5(/ (4 &f *8 72 OL ,) ,7&1761(,7&17$1' ,7&17*(f&$// 235$1'^5(/))5(/)5(/f ) )5(/)r'$26)f ,))$E6 (2 2'2 f *2 7 ,) ,7&1761( ,7&17 $1' ,7&17 f ( f f& $// 235$1'O$6)LB)$FRI$MRf ) f§ ) $ 6) &217,18( X2 72 ,* f *)f 'r7 *) f 'r7r; f '2 &; f f f ,) *)5(/ (*2'2f *& 72 ,) ,7&17 61( ,7&17 $1' ,7& 17*( f& $// œ3.$1'5(/ **)5(/*)5(/f *) *) f 5(/*r'$%6*) f f *) f *) f5 (/*"X$66 *)f f ,) *S $E 6 ( 8 '2 f *2 72 ,) 7&1761( ,7&17 $1' ,7&17 *(& f & $// 235 $12 $RM &) $26 *) $E6 f *) f *) f $%6* *) f *) f $'6J *2 7 (175< +(66; *)f *) fA}; frr 'f§';f *) f f§ f§ A ; f

PAGE 282

Q Q L QRQ *) f ,7 &17 6 0$; ,7 &17 f 5( 7851 =1 68EL 8 7,1( 83.$1/&5180 5 / 2 r } $ 3 + f $/ -,0(1(= 81,)250/< ',675,%87(' %(7:((1 5/: $1' 5+,*+ 5$18/0 180%(5 *(1(5$725 .$1'X0 180%(5 5(7851(' ,1 5180 ,03/,&,7 5&$/ 0O $K =f &2002123 1' ,28900 • f 6((' 6((' ORG L?_4' ,6 )(' %R f ,U ,6(('/72f 6(('f§, $%6,((f 5 ,6 ((' 5 5 51 /0 5/2G 5+ *+5/&r f r5 5(7851 (1 G 68%5287,1( *5$',; ) *)f 32:(//n6 )81&7,21 2) 9 $5 $ }/Wn 66 ,1 *2/ $5 +(66,$1 $7 ;r ; Of ;r ,03/,&,7 5($/, $) &=f 5($/% ; f *) f *) f &20041-3,1',,'809f ,7&17 $66,*1 72 ,* *2 72 (175< ) 81& ; )f $66,*1 72 ,* ,) ^ 7&17(4f :5,7(&f )250$7 n 52: (// rn )81&7,21n r n +(66,$1 6,1*8/$5 $7 ; ff $ ; f 2 r; W f R ; f f§ ; f &A; f f &r& ) ; f f§ ; f

PAGE 283

* (r( )$r$ '2HrG '!/ r** *2 72 ,* G f + r *r( 3 r *) ^ f3 +f 4 &r& *) f 3G22L4 *) f .$ $22L8 *) f $ $K *2 72 ,62 W17.< +(66; *) f $ 'r; f; frr & r ; ^ f'r[ f f r *) f '$ *)f *) f 2' )f f§ $ *)f '& *)f&& f *)f '2 *) f '2 r& )f f§ 2 *) f $ 5(7851 (1' 68+Vn227 ,1( *5$2; ) *) f & )/F7&+E5 $1' 32Z(//n6 +(/,&$/ 9$//(< )81&7,21 & ; m*f ;r f ,03/,&,7 5($/06 $)L=f 5F$/r ;ff*)f*)f}3, &2 00 21 23 ,1', 'R8 ,22,90, f 7&17 $66,*1 72 ,* *2 72 (175< )81&; )f $66,*1 72 ,* ,) 7&17 (* f :3,7(f )250$7 f )/(7&+(532Y(//r n 6 +(/,&$/ 9$//(< ff

PAGE 284

7+ K 7 '$7$1;f ; f f) ,)7+(7$/('f 7+(7$ 7+(7 $ & 7 ;frr;frr 5$' '62577f ,) ,&81(LOf :5,7( 6, &f 7+(7$ 5$' 250$7& 7+(7$ 5$' 3*f ) 8r; f On-O 7K(7$f >5$2 ,'2 f r rf; f rr *2 72 ,* f 7 'r;f'r7+(7$f3,r7f 7 r 5$ ,'2f KL $' *) ^ f 7 $; f 7 f *) 7 r; f7O "; f *) & f &'$;, f'r7+(7$ *2 78 (1759 +(66 ; *)f 7+(7 $'$7$ 1 ; f ; f f3 ,7^7+(7$/( f 7 +( 7$ 7+( 7$ '2 7 ; fr r ; f 5$ '577f 7O 'r;fL7+(7$f3, I7 f 7 rO5$& '2f5 $2 7' 5D&7f 7 '3, r7f 7 7r7r' 7 f§' r7 7 ; f r ; ^ f 7 ; &Ofrr UD [W frr *) f 77r77r7)7r7 *) f 7 f§ 7 e7 f§ 7e77r7 *)f 7r;f *)f 77W7R7r7 7r7 *)f 7r; f *)^ f & 5(7851 (1' & 68%5287,1( œ5$'; ) :22' f 6 )81&7,21 f§ *) f 6$''/( 32,17 $£8X7 )

PAGE 285

;r L f & ;& m f ,03/,&,7 5H$/m$f§+2f 5($/r} ; &f M)^ f *)Ef &2001*3,1', ,'800,f} ,7(0 $66,*1 7* ,* *2 72 (175< )-1&; )f $66,*1 72 ,* ,),7&17(4f :5,7(f )250$7 f Z2&&n6 )81&UL21 f r f6$''/( 32,17 $87 ) ff $ ; Ofrr E ;f $ ; f r & f§ ;^ff§ 8 ) OGUL ;O ffrr'r&r& '; f f rr ) ) '2r ;, f '&frr ;f '' frr f ) ) r ;f f§ & f r ^ ; ff§ ,'2 f *2 72 ,* f *) f 'r; ,'f'rr;f *)! r%'s;f'2f'2r ; f ,'2 f *)f 'r;fO'&f 2Or&r;f *) f & r;fO&2f DX2r;fOLf *2 72 (175< +(66,; *)f $ ; fr r [f$ 4 ; f rr & ; f' *)Of 'G8r$'rD *)f 'r;f ) f 2' *) f f *) f A)Rf *)^ f J6'2 *) 6f ' 'f§' r& *)f -RO;f rR ) f f 5(7851 F1 '

PAGE 286

R Q 85'87,1( *5$'; ) J) f &N$** $1' /(9< /4 ; f} ; A & f ,03/,&,7 3e$/rG $K2f§! +($/r ; 2f *)^ f *) 2f &200183, 1 ,'800& f 7 & 17 $66,*1 72 ,* * 74 (1 75< ) 81&; )f $66,*1 ,62 74 ,* ,) ,7&17 (&2 f :.,7(f )20$7& &5$** $1' /(9
PAGE 287

7 f§7 7 767&r7& 7$ O 4 r7 F" r 7W f 2 r 7 r 7 7 WL )f 77$ ) f a7$ *) f '7$ fn‘LEn78)1 12 1/Q ,

PAGE 288

5()(5(1&(6 >OD@ 7$SULOOH DQG 71 7ULFN 6WHDG\6WDWH $QDO\VLV RI 1RQOLQHDU &LUFXLWV 7KDW +DYH D 3HULRGLF 5HVSRQVH 8QLYHUVLW\ RI ,OOLQRLV &RRUGLQDWHG 6FLHQFHV /DERUDWRU\ 5HSRUW 5 -XQH >OE@ $ &RPSXWHU $OJRULWKP WR 'HWHUPLQH WKH 6WHDG\6WDWH 5HVSRQVH RI 1RQOLQHDU 2VFLOODWRUV ,((( 7UDQV &7 >@ 65 %RZHUV DQG -& 6HGRUH 6&(375( $ &RPSXWHU 3URJUDP IRU &LUFXLW DQG 6\VWHPV $QDO\VLV (QJOHZRRG &OLIIV 1HZ -HUVH\ 3UHQWLFH+DOO ,QF >D@ )+ %UDQLQ *5 +RJVHWW 5/ /XQGH DQG /( .XJHO (&$3 ,, $Q (OHFWURQLF &LUFXLW $QDO\VLV 3URJUDP ,((( 6SHFWUXP ^` 1R >E@ (&$3 ,, $ 1HZ (OHFWURQLF &LUFXLW $QDO\VLV 3URJUDP ,((( 6ROLG6WDWH &LUFXLWV 6& >@ 5. %UD\WRQ )* *XVWDYVRQ DQG *' +DFKWHO $ 1HZ (IILFLHQW $OJRULWKP IRU 6ROYLQJ 'LIIHUHQWLDO$OJHEUDLF 6\VWHPV 8VLQJ ,PSOLFLW %DFNZDUG 'LIIHUHQWLDWLRQ )RUPXODV 3URF ,((( 5HSULQWHG LQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ 6: 'LUHFWRU HGf 6WURXGVEXUJ 3HQQ 'RZGHQ +XWFKLQVRQ DQG 5RVV ,QF >@ 5. %UD\WRQ DQG 6: 'LUHFWRU &RPSXWDWLRQ RI 'HDO\ 7LPH 6HQn VLWLYLWLHV IRU 8VH LQ 7LPH 'RPDLQ 2SWLPL]DWLRQ ,((( 7UDQV &$6 1R >@ $%URGHUVHQ 6: 'LUHFWRU DQG :$ %ULVWRO 6LPXOWDQHRXV $XWRPDWHG $& DQG '& 'HVLJQ RI /LQHDU ,QWHJUDWHG &LUFXLW $PSOLILHUV ,((( 7UDQV &7 1R >@ &* %UR\GHQ 4XDVL1HZWRQ 0HWKRGV LQ 1XPHULFDO 0HWKRGV IRU 8QFRQVWUDLQHG 2SWLPL]DWLRQ : 0XUUD\ HGf 1HZ @ '$ &DODKDQ &RPSXWHU$LGHG 1HWZRUN 'HVLJQ 5HYLVHG (GLWLRQ 1HZ @ )5 &RORQ DQG 71 7ULFN )DVW 3HULRGLF 6WHDG\6WDWH $QDO\VLV IRU /DUJH6LJQDO (OHFWURQLF &LUFXLWV ,((( 6ROLG6WDWH &LUFXLWV 6& 1R

PAGE 289

>@ $5 &ROYLOOH $ &RPSDUDWLYH 6WXG\ RQ 1RQOLQHDU 3URJUDPPLQJ &RGHV ,%0 1< 6FL &HQWHU 5HSRUW >@ (( &UDJJ DQG $9 /HY\ 6WXG\ RQ D 6XSHUPHPRU\ *UDGLHQW 0HWKRG IRU WKH 0LQLPL]DWLRQ RI )XQFWLRQV 2SWLP 7KHRU\ $SSOQV B >D@ &XOOXP 8QFRQVWUDLQHG 0LQLPL]DWLRQ RI )XQFWLRQV :LWKRXW ([SOLFLW 8VH RI 7KHLU 'HULYDWLYHV ,%0 5HVHDUFK 5HSRUW 5& 7:DWVRQ 5HVHDUFK &HQWHU E@ $Q $OJRULWKP IRU 0LQLPL]LQJ D 'LIIHUHQWLDEOH )XQFWLRQ 7KDW 8VHV 2QO\ )XQFWLRQ 9DOXHV LQ 7HFKQLTXHV RI 2SWLPL]DWLRQ $9 %DODNULVKQDQ HGf 1HZ D@ .: &XUUHQW DQG 6: 'LUHFWRU 2SWLPL]DWLRQ RI 1RQOLQHDU 3HULRGLF &LUFXLWV 3URFHHGLQJV RI 687+($67&1 >E@ 2SWLPL]DWLRQ RI )RUFHG 1RQn OLQHDU 3HULRGLF &LUFXLWV ,%0 5HVHDUFK 5HSRUW 5& D@ : 'DYLGRQ 9DULDEOH 0HWULF 0HWKRGV IRU 0LQLPL]DWLRQ $(& 5HVHDUFK DQG 'HYHORSPHQW 5HSW $1/ $UJRQQH 1DWLRQDO /DE $UJRQQH ,OO >E@ 9DULDQFH $OJRULWKP IRU 0LQLPL]DWLRQ &RPSXWHU >@ 6: 'LUHFWRU 6XUYH\ RI &LUFXLW 2ULHQWHG 2SWLPL]DWLRQ 7HFKn QLTXHV ,((( 7UDQV &7 1R >@ 6: 'LUHFWRU $%URGHUVHQ DQG '$ :D\QH $ 0HWKRG IRU 4XLFN 'HWHUPLQDWLRQ RI WKH 3HULRGLF 6WHDG\6WDWH LQ 1RQOLQHDU 1HWZRUNV 3URFHHGLQJV RI 1LQWK $OOHUWRQ &RQIHUHQFH RQ &LUFXLWV DQG 6\VWHPV 7KHRU\ >@ 6: 'LUHFWRU $ 6XUYH\ RI 'HFRPSRVLWLRQ 7HFKQLTXHV IRU $QDO\VLV DQG 'HVLJQ RI (OHFWULFDO 1HWZRUNV LQ 3URF 'HFRPSRVLWLRQ RI /DUJH 6FDOH 3UREOHPV '0 +LPPHOEODX HGf 1HZ @ &LUFXLW 7KHRU\ 7KH &RPSXWDWLRQDO $SSURDFK 1HZ @ / (XOHU ,QVWLWXWLRQHV &DOFXOL 'LIIHUHQWLDOLV &XP (LXV 9VX ,Q $QDO\VL )LQLWRUXP DF 'RFWULQD 6HULHUXP $OVR LQ 2SHUD 2PQLD 6HU 9RO ; DQ RULJLQDO FRS\ RI WKLV ZRUN LV LQ WKH 5DUH &ROOHFWLRQ RI WKH /LEUDU\ DW WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH ),f >@ $9 )LDFFR DQG *3 0F&RUPLFN 1RQOLQHDU 3URJUDPPLQJ 6HTXHQn WLDO 8QFRQVWUDLQHG 0LQLPL]DWLRQ 7HFKQLTXHV 1HZ
PAGE 290

> 5 )OHWFKHU $ 1HZ $SSURDFK WR 9DULDEOH 0HWULF $OJRULWKPV &RPS 1R >@ 5 )OHWFKHU DQG 0-' 3RZHOO $ 5DSLGO\ &RQYHUJHQW 'HVFHQW 0HWKRG IRU 0LQLPL]DWLRQ &RPS 5HSULQWHG LQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ 6: 'LUHFWRU HGf 6WURXGVn EXUJ 3HQQ 'RZGHQ +XWFKLQVRQ DQG 5RVV ,QF >@ 5 )OHFWKHU DQG &0 5HHYHV )XQFWLRQ 0LQLPL]DWLRQ E\ &RQMXJDWH *UDGLHQWV &RPS B 5HSULQWHG LQ &RPSXWHU $LGHG &LUFXLW 'HVLJQ 6: 'LUHFWRU HGf 6WURXGVEXUJ 3HQQ 'RZGHQ +XWFKLQVRQ DQG 5RVV ,QF >@ )UDVHU 2SWLPL]DWLRQ RI 'LJLWDO 0HWDO 2[LGH 6HPLFRQGXFWRU )LHOG (IIHFW 7UDQVLVWRU &LUFXLWV IRU /DUJH 6FDOH ,QWHJUDWLRQ 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD WHQWDWLYHf >D@ &: *HDU 7KH $XWRPDWLF ,QWHJUDWLRQ RI 2UGLQDU\ 'LIIHUHQWLDO (TXDWLRQV LQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ 6: 'LUHFWRU HGf 6WURXGVEXUJ 3HQQ 'RZGHQ +XWFKLQVRQ DQG 5RVV ,QF >E@ 6LPXOWDQHRXV 1XPHULFDO 6ROXWLRQ RI 'LIIHUHQWLDO $OJHEUDLF (TXDWLRQV ,((( 7UDQV &7 1R >@ 3( *UD\ DQG &/ 6HDUOH (OHFWURQLF 3ULQFLSOHV 3K\VLFV 0RGHOV DQG &LUFXLWV 1HZ D@ )* *XVWDYVRQ : /LQLJHU DQG 5$ :LOORJXKE\ 6\PEROLF *HQHUn DWLRQ RI DQ 2SWLPDO &URXW $OJRULWKP IRU 6SDUVH 6\VWHPV RI /LQHDU (TXDWLRQV $VV &RUDSXW 0DFK B >E@ *' +DFKWHO 5. %UD\WRQ DQG )* *XVWDYVRQ 7KH 6SDUVH 7DEOHDX $SSURDFK WR 1HWZRUN $QDO\VLV DQG 'HVLJQ ,((( 7UDQV &7 >F@ *' +DFKWHO 9HFWRU DQG 0DWUL[ 9DULDELOLW\ 7\SH LQ 6SDUVH 0DWUL[ $OJRULWKPV LQ 6SDUVH 0DWULFHV DQG 7KHLU $SSOLFDWLRQV '5RVH DQG 5$ :LOORXJKE\ HGVf 1HZ @ *' +DFKWHO 05 /LJKWQHU DQG +.HOO\ $SSOLFDWLRQ RI WKH 2SWLPL]DWLRQ 3URJUDP $23 WR WKH 'HVLJQ RI 0HPRU\ &LUFXLWV ,((( 7UDQV &$6 1R >@ *' +DFKWHO DQG 5$ 5RKUHU 7HFKQLTXHV IRU WKH 2SWLPDO 'HVLJQ DQG 6\QWKHVLV RI 6ZLWFKLQJ &LUFXLWV 3URF ,((( M! 1R 5HSULQWHG LQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ 6: 'LUHFWRU HGf 6WURXGVEXUJ 3HQQ 'RZGHQ +XWFKLQVRQ DQG 5RVV ,QF >@ '0 +LPPHOEODX $SSOLHG 1RQOLQHDU 3URJUDPPLQJ 1HZ
PAGE 291

>@ '0 +LPPHOEODX $ 8QLIRUP (YDOXDWLRQ RI 8QFRQVWUDLQHG 2SWLPLn ]DWLRQ 7HFKQLTXHV LQ 1XPHULFDO 0HWKRGV IRU 1RQOLQHDU 2SWLPLn ]DWLRQ )$ /RRWVPD HGf 1HZ @ $6 +RXVHKROGHU 3ULQFLSOHV RI 1XPHULFDO $QDO\VLV 1HZ @ ( ,VDDFVRQ DQG +% .HOOHU $QDO\VLV RI 1XPHULFDO 0HWKRGV 1HZ @ '* /XHQEHUJHU ,QWURGXFWLRQ WR /LQHDU DQG 1RQOLQHDU 3URJUDPPLQJ 5HDGLQJ 0DVV $GGLVRQ:HVOH\ 3XEOLVKLQJ &R >@ 2/ 0DQJDVDULDQ 1RQOLQHDU 3URJUDPPLQJ 1HZ @ : 0XUUD\ 6HFRQG 'HULYDWLYH 0HWKRGV LQ 1XPHULFDO 0HWKRGV IRU 8QFRQVWUDLQHG 2SWLPL]DWLRQ : 0XUUD\ HGf 1HZ @ &6 0H\HU '. /\QQ DQG '+DPLOWRQ $QDO\VLV DQG 'HVLJQ RI ,QWHJUDWHG &LUFXLWV 1HZ @ -0 2UWHJD DQG :& 5KHLQEROGW ,WHUDWLYH 6ROXWLRQ RI 1RQOLQHDU (TXDWLRQV LQ 6HYHUDO 9DULDEOHV 1HZ @ $0 2VWURZVNL 6ROXWLRQV RI (TXDWLRQV LQ (XFOLGHDQ DQG %DQDFK 6SDFHV 7KLUG (GLWLRQ 1HZ @ 0-' 3RZHOO $Q (IILFLHQW 0HWKRG IRU )LQGLQJ WKH 0LQLPXP RI D )XQFWLRQ RI 6HYHUDO 9DULDEOHV :LWKRXW &DOFXODWLQJ 'HULYDWLYHV &RPSXW @B > @ $ 9LHZ RI 8QFRQVWUDLQHG 2SWLPL]DWLRQ $WRPLF (QHUJ\ 5HVHDUFK (VWDEOLVKPHQW 5HSRUW &66 +DUZHOO 2[IRUGn VKLUH (QJODQG -DQXDU\ >@ $ 5DOVWRQ $ )LUVW &RXUVH LQ 1XPHULFDO $QDO\VLV 1HZ @ 5$ 5RKUHU )XOO\ $XWRPDWHG 1HWZRUN 'HVLJQ E\ 'LJLWDO &RPSXWHU 3UHOLPLQDU\ &RQVLGHUDWLRQV 3URF ,((( 1R 5HSULQWHG LQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ 6: 'LUHFWRU HGf 6WURXGVEXUJ 3HQQ 'RZGHQ +XWFKLQVRQ DQG 5RVV ,QF >@ ++ 5RVHQEURFN $Q $XWRPDWLF 0HWKRG IRU )LQGLQJ WKH *UHDWHVW RU WKH /HDVW 9DOXH RI D )XQFWLRQ &RPS M >@ : 5XGLQ 3ULQFLSOHV RI 0DWKHPDWLFDO $QDO\VLV 6HFRQG (GLWLRQ 1HZ
PAGE 292

>@ 5:+ 6DUJHQW DQG '6HEDVWLDQ 1XPHULFDO ([SHULHQFH ZLWK $OJRULWKPV IRU 8QFRQVWUDLQHG 0LQLPL]DWLRQ LQ 1XPHULFDO 0HWKRGV IRU 1RQOLQHDU 2SWLPL]DWLRQ )$ /RRWVPD HGf 1HZ @ ( 6FKUEGHU 8HEHU XQHQGOLFK YLHOH $OJRULWKPHQ ]XU $XIORVXQJ GHU *OHLFKXQJHQ 0DWK $QQ A VHH 6WHZDUWnV WUDQVODWLRQf >@ *: 6WHZDUW 7UDQVODWLRQ RI WKH SDSHU E\ ( 6FKURGHU n2Q LQILQLWHO\ PDQ\ DOJRULWKPV IRU VROYLQJ HTXDWLRQVn 2DN 5LGJH 1DWLRQDO /DERUDWRU\ 5HSRUW 251/WU 2DN 5LGJH 7HQQHVVHH >@ *: 6WHZDUW $ 0RGLILFDWLRQ RI 'DYLGRQnV 0LQLPL]DWLRQ 0HWKRG WR $FFHSW 'LIIHUHQFH $SSUR[LPDWLRQV RI 'HULYDWLYHV $&0 >@ -) 7UDXE ,WHUDWLYH 0HWKRGV IRU WKH 6ROXWLRQ RI (TXDWLRQV (QJOHZRRG &OLIIV 13UHQWLFH+DOO ,QF >@ :0* 9DQ %RNKRYHQ /LQHDU ,PSOLFLW 'LIIHUHQWLDWLRQ )RUPXODV RI 9DULDEOH 6WHS DQG 2UGHU ,((( 7UDQV &$6 1R >@ :7 :HHNV $-LPHQH] *: 0DKRQH\ 0HKWD + 4DVVHP]DGHK DQG 75 6FRWW $OJRULWKPV IRU $67$3 $ 1HWZRUN $QDO\VLV 3URJUDP ,((( 7UDQV &7 >D@ -+ :LONLQVRQ 7KH $OJHEUDLF (LJHQYDOXH 3UREOHP /RQGRQ *UHDW %ULWDLQ 2[IRUG 8QLYHUVLW\ 3UHVV >E@ 7KH 6ROXWLRQ RI ,OO&RQGLWLRQHG /LQHDU (TXDWLRQV LQ 0DWKHPDWLFDO 0HWKRGV IRU 'LJLWDO &RPSXWHUV 9RO ,, $ 5DOVWRQ DQG +6 :LOI HGVf 1HZ @ :LQJ DQG -9 %HKDU &LUFXLW 'HVLJQ E\ 0LQLPL]DWLRQ 8VLQJ WKH +HVVLDQ 0DWUL[ ,((( 7UDQV &$6 1R >@ '0 @ :, =DQJZLOO 1RQOLQHDU 3URJUDPPLQJ $ 8QLILHG $SSURDFK (QJOHZRRG &OLIIV 13UHQWLFH+DOO ,QF >@ 3URFHHGLQJV RI WKH ,((( YRO 6SHFLDO ,VVXH RQ &RPSXWHU $LGHG 'HVLJQ >@ ,((( 7UDQVDFWLRQV RQ &LUFXLW 7KHRU\ YRO &7 6SHFLDO ,VVXH RQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ >@ ,((( -RXUQDO RI 6ROLG6WDWH &LUFXLWV YRO 6& 6SHFLDO ,VVXH RQ &RPSXWHU$LGHG &LUFXLW $QDO\VLV DQG 'HYLFH 0RGHOLQJ

PAGE 293

>@ 3URFHHGLQJV RI WKH ,((( YRO 6SHFLDO ,VVXH 'HVLJQ >@ ,((( 7UDQVDFWLRQV RQ &LUFXLW 7KHRU\ YRO &7 RQ &RPSXWHU$LGHG &LUFXLW 'HVLJQ RQ &RPSXWHUV LQ 6SHFLDO ,VVXH

PAGE 294

%,2*5$3+,&$/ 6.(7&+ $OEHUWR -RVH -LPHQH] WKH RQO\ FKLOG RI 0U DQG 0UV $$ -LPHQH] RI +LDOHDK )ORULGD ZDV ERUQ RQ 0DUFK LQ 0RURQ &DPDJXH\ &XED +H DUULYHG LQ WKH 8QLWHG 6WDWHV DV D UHIXJHH RQ $SULO $IWHU ILQLVKLQJ KLJK VFKRRO DW 0LDPL *HVX +LJK 0LDPL )ORULGD LQ DQG RQH \HDU DW 6W *UHJRU\nV &ROOHJH LQ 6KDZQHH 2NODKRPD KH HQWHUHG :LFKLWD 6WDWH 8QLYHUVLW\ LQ :LFKLWD .DQVDV ZKHUH KH UHFHLYHG WKH %6(( LQ -XQH $W WKDW WLPH KH MRLQHG ,%0 DW WKH 'HYHORSPHQW /DERUDn WRULHV LQ 3RXJKNHHSVLH 1HZ
PAGE 295

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRUf§WKH AGHJUHH RI 'RFWRU RI 3KLORVRSK\ 6WHSKHQ : 'LUHFWRU &KDLUPDQ 3URIHVVRU RI (OHFWULFDO (QJLQHHULQJ FHUWLI\ WKDW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG 'RFWRU RI 3KLORVRSK\ KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI $UQROG 3DLJH $VVRFLDWH 3URIHVVRU (QJLQHHULQJ FHUWLI\ WKDW FRQIRUPV WR DFFHSWDEOH DGHTXDWH LQ VFRSH DQG 'RFWRU RI 3KLORVRSK\ KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI $UWKXU : :HVWHUEHUJA $VVRFLDWH 3URIHVVRU RI &KHPLFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -XQH

PAGE 296

IORULGD


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EJFOQDRGI_W036KV INGEST_TIME 2012-03-09T07:20:31Z PACKAGE AA00003927_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES