Citation
Spectroscopic investigations of electronic transitions in certain acene quinones

Material Information

Title:
Spectroscopic investigations of electronic transitions in certain acene quinones
Creator:
Capps, Rodger Neal, 1951-
Publication Date:
Language:
English
Physical Description:
xi, 124 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Absorption spectra ( jstor )
Anthraquinones ( jstor )
Electronics ( jstor )
Emission spectra ( jstor )
Fluorescence ( jstor )
Hexanes ( jstor )
Molecules ( jstor )
Octanes ( jstor )
Phosphorescence ( jstor )
Wavelengths ( jstor )
Quinone -- Spectra ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Includes bibliographical references (leaves 117-123).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Rodger N. Capps.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000087521 ( ALEPH )
AAK2889 ( NOTIS )
05530160 ( OCLC )

Downloads

This item has the following downloads:


Full Text










SPECTROSCOPIC INVESTIGATIONS OF ELECTRONIC TRANSITIONS IN
CERTAIN ACENE QUINONES








By

RODGER N. CAPPS


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY












UNIVERSITY OF FLORIDA


1979























"Training is everything. The peach was once a
bitter almond; cauliflower is nothing but cabbage
with a college education."

-- Pudd'nhead Wilson's Calendar













ACKNOWLEDGEMENTS


The author is indebted to Professor Martin T. Vala for his initiation

and support of this work. His many suggestions and comments, as well as

his never-failing optimism that things would eventually work out, were

of incalculable value in the course of this research.

The expertise contributed by the electronics shop personnel was a

help in carrying out these experiments, as was the assistance in construc-

tion of equipment contributed by Mr. E.C. Whitehead.

Dr. Glenn Boutilier and Mr. Gary Walden are gratefully acknowledged

for the performance of lifetime measurements included in these experi-

ments. The author would also like to thank Professor J.D. Winefordner

for the loan of the Eimac lamp, and Dr. E.J. Gabbay for the daunorubicin.

Numerous people must be acknowledged for moral support. The author

would like to thank his fellow graduate students, Ed. Voigtman, Joe

Baiardo, Dave Powell, and Bob Brittain for their camaraderie. He would

also like to acknowledge his parents for support and encouragement.

J.M. Nicovich, Justine Strand, Bette Ackerman, and Dr. S.O. Colgate are

also gratefully acknowledged for their moral support.

Finally, the author would like to thank Adele Koehler for her able

assistance in preparing this manuscript in a finished form.













TABLE OF CONTENTS


ACKNOWLEDGEMENTS


Page

. . iii


LIST OF TABLES . .

LIST OF FIGURES . .

ABSTRACT . .

CHAPTER

I INTRODUCTION . .

II EXPERIMENTAL DETAILS .

Materials . .
Monochromators and Light Sources .
Detection and Recording System .
Shpolskii Matrix Experiments .
Lifetime Measurements .
Polarized Excitation and Emission Spectra .

III THE ANTHRAQUINONE SYSTEM .

Introduction ..
Shpolskii Systems and Impurity-Lattice Interactions.
Experimental .. .
Results and Discussion .

Analysis of Phosphorescence Spectra .
Temperature-Dependent Emission .

IV QUINIZARIN AND DAUNORUBICIN .

Introduction . .
Theory of Photoselection .
Experimental . .. .
Results and Discussion .

Infrared Spectra .
Lifetimes . .
Absorption and Luminescence Spectra .


Shpolskii Systems


Photoselection and Assignment of Transitions .


vi

vii

ix


S92


. 97


. 105







Page
V SUMMARY AND CONCLUSIONS . 115

REFERENCES.................. .. ....... .117

APPENDIX FREQUENCIES OF NORMAL MODES OF VIBRATION OF
9,10-ANTHRAQUINONE . .. 122

BIOGRAPHICAL SKETCH ....................... 124












LIST OF TABLES

Table Page

I Experimental Equipment and Manufacturers (Lifetimes) 11

II Phosphorescence Vibrational Analysis for Anthraquinone
in Hexane at 10 K . 32

III Phosphorescence Vibrational Analysis for Anthraquinone
in Heptane at 10 K . 35

IV Representations of the Normal Modes of Vibration of
Quinizarin . 91

V I.R.-Active Fundamental Modes of Vibration of Quinizarin 93

VI Fluorescence Vibrational Analysis for Quinizarin in
Octane at 14K ..102














LIST OF FIGURES


Number

1. Block Diagram for Shpolskii Matrix Experiments .

2. Block Diagram for Lifetime Measurements .

3. Block Diagram of Experimental Set-Up for Polarization
Experiments . .

4. Mechanism of the 3Blg 1A Phosphorescence in
Anthraquinone . .

5. Phosphorescence of Anthraquinone in Hexane at 140K in
the Origin Region .

6. Phosphorescence of Anthraquinone in Hexane at 540K in
the Origin Region . .

7. Phosphorescence of Anthraquinone in Hexane at 740K in
the Origin Region . .

8. Phosphorescence of Anthraquinone in Hexane at 940K in
the Origin Region . .

9. Phosphorescence of Anthraquinone in Hexane at 1200K in
the Origin Region . .

10. Phosphorescence of Anthraquinone in Hexane at 1590K in
the Origin Region . .

11. Phosphorescence of Anthraquinone in Heptane at 14K
in the Origin Region . .

12. Phosphorescence of Anthraquinone in Heptane at 74K
in the Origin Region . .

13. Phosphorescence of Anthraquinone in Heptane at 1670K
in the Origin Region . .

14. Phosphorescence of Anthraquinone in Octane at 14K in
the Origin Region . .

15. Phosphorescence of Anthraquinone in Octane at 74K in
the Origin Region . .


Page

S 8

S. 10


S. 17


41


S. 43


S. 45


S. 47


49


S. 51


S. 53


. 55


. 57


S. 59


61


. 63







Figure Pane

16. Phosphorescence of Anthraquinone in Pentane at 14K
in the Origin Region . 55

17. Phosphorescence of Anthraquinone in Pentane at 74K
in the Origin Region .... 67

18. Plot of Activation Energies of Temperature-Dependent
Emission of Anthraquinone in Hexane. ... 69

19. Phosphorescence of Anthraquinone in Hexane at 140K .. 75

20. Phosphorescence of Anthraquinone in Hexane at 360K 76

21. Phosphorescence of Anthraquinone in Hexane at 760K 77

22. Structures and Axis System of Anthraquinone, Quinizarin,
and Daunorubicin . 82

23. Illustration of Relative Polarization for an Electronic
Transition . .. 87

24. Plot of A vs. C for Quinizarin in Hexane .... .. 95

25. Plot of A vs. C for Quinizarin in Methanol ... 96

26. Fluorescence of Quinizarin in Hexane at 140K ...... 98

27. Fluorescence of Quinizarin in Octane at 14K ...... 99

28. Fluorescence of Quinizarin in EPA at 770K. .. 106

29. Plots of Absorbance and Relative Polarization of
Quinizarin in EPA. .. . 108

30. Plot of Polarization vs. Wavelength for Quinizarin
Fluorescence. .. 110

31. Plot of Excitation Polarization of Anthraquinone as
Compared to Quinizarin . 111

32. Plots of Absorbance and Relative Polarization of
Daunorubicin in Alcohol-Water-Glycerin ... 114


viii









Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy


SPECTROSCOPIC INVESTIGATIONS OF ELECTRONIC TRANSITIONS IN
CERTAIN ACENE QUIRONES

By

Rodger N. Capps

March 1979

Chairman: Martin T. Vala
Major Department: Chemistry

The positions and natures of the lowest excited emitting electronic

levels in 9,10-anthraquinone and two of its derivatives, quinizarin and

daunorubicin, have been characterized. In the first case, that of

anthraquinone, highly resolved emission spectra at low temperatures were

obtained in Shpolskii matrices of n-pentane, n-hexane, n-heptane, and

n-octane. In the latter three matrices, the origin of the purely

electronic transition is observed very weakly or not at all. In the

n-pentane matrix, a variety of both non-totally symmetric and totally

symmetric modes are present. In hexane, heptane, and octane, the phos-

phorescence of anthraquinone is shown to contain progressions built upon

vibrations of types blu, b2u, and b3u, with the most intense peaks being

those of type blu. Analyses of the phosphorescence emission of anthra-

quinone are presented which are shown to be consistent with the assign-

ment of the lowest triplet level of anthraquinone as 3Blg. The results

obtained in this work tend to corroborate those of Khalil and Goodman,

but include several additional spectral features not reported by them.

A temperature-dependent emission at energies higher than the origin of







the purely electronic transition is also obtained in n-hexane, heptane,

and octane, but not in n-pentane. Based upon the behavior of this

emission as a function of temperature and solvent, it is suggested here

that the emission is a manifestation of the anthraquinone-lattice inter-

action which allows the spin and parity forbidden electronic transition

to gain radiative properties.

The nature of the lowest excited emitting electronic level in quin-

izarin is characterized by lifetime measurements, photoselection measure-

ments, and low temperature Shpolskii matrix emission spectra. The

species involved in the absorption and emission is shown to be the

quinizarin molecule, rather than an aggregated form, by concentration

studies. An analysis of the absorption spectrum of quinizarin in the

infrared and far infrared regions is also presented.

Photoselection measurements were made upon both quinizarin and

anthraquinone. It was observed that the relative polarizations of

transitions in the two molecules were the same. Based upon the axis

system chosen for quinizarin, electronic transitions occurring in the

ultraviolet and visible absorption spectra of quinizarin have been

assigned.

Highly resolved, low temperature emission spectra were recorded for

quinizarin in n-hexane, n-heptane, and n-octane. It is suggested that

the emission in n-hexane and n-heptane arises from two sites, at least

one of which is severely distorted. An analysis of the vibrational pro-

gressions for quinizarin in n-octane is presented which is consistent

with the observed ground state I.R. frequencies.







Based upon the measured emission lifetime of 6.5 1 nsec, photo-

selection measurements, and analyses of low temperature Shpolskii matrix

spectra, the lowest excited emitting electronic level in quinizarin is

assigned as a ir,i* singlet arising from a charge-transfer interaction of

the hydroxy substituents with the benzene ring of the anthraquinone

skeleton.

Photoselection measurements upon daunorubicin revealed that the

polarization of major electronic transitions in this molecule are the

same as those of quinizarin. Based upon these results, it is concluded

that the polarizations of transitions in this molecule, as assigned

byGabbayand co-workers, are incorrect.












CHAPTER I

INTRODUCTION


The 9,10-anthraquinone molecule and its related compounds are of

chemical importance from both an applied and a theoretical point of view.

It is an excellent subject for studies of heteroatom effects upon ex-

tended r-electronic systems, of spin-orbit coupling mechanisms, and of

possible intramolecular exciton interactions. Its high degree of sym-

metry allows an excellent correlation of theory and experiment through

the methods of group theory. Anthraquinone is also the parent molecule

of a large number of compounds which find use in the dye industry.

Studies of its electronic structure and photochemical reactivity might

find use in understanding the photodegradation of dyes. It has also

been demonstrated that this compound and certain of its derivatives dis-

play a mutagenic activity upon intestinal bacteria found in humans (1),

while other compounds having the 9,10-anthraquinone molecule incorporated

into their skeletal structures show promise as anti-leukemia drugs

(2, 3).

The earlier investigations of the nature of electronic transitions

in 9,10-anthraquinone were concerned with visible and near ultraviolet

absorption spectra (4, 5). Labhart carried out investigations of the

excited states of substituted anthraquinones using polarized absorption

spectra (6, 7).. Using polarized single crystal spectra, Sidman established

the polarizations of the electronic transitions in anthraquinone (8).




-2-


Photoselection experiments (9, 10) and a determination of the T1 < S

absroption moment (11) showed that the phosphorescence of anthraquinone

was in-plane polarized, n-n* type.

In reference (11) it was concluded that the lowest triplet level of
3
anthraquinone was A Later studies (12, 13) indicated that this
u
assignment was incorrect. The earliest reported Shpolskii matrix study

(14) was inconclusive, since no ground state vibrational frequencies were

available at that time. A later study (15) at 77K indicated that the

lowest triplet was 3Blg. However, there is normally a great difference

in resolution of spectra run at 770K and those obtained at temperatures

approaching O'K. One of the objectives of this study was to try to

determine the nature of the lowest triplet state of anthraquinone from an

analysis of the vibrational structure of the phosphorescence spectrum.

Quinizarin, which is a 1,4-disubstituted hydroxyanthraquinone, has

not been as extensively studied. Absorption and fluorescence spectra

of quinizarin in the vapor phase and in ethanol solutions were recorded

by Borisevich and Gouzinskii (16). A later work (17) reported visible

absorption and fluorescence spectra in the vapor phase, along with a

partial analysis of the I.R. spectrum.

Shcheglova, Shigorin, and Dokunikhin (18) recorded the luminescence

spectrum photographically at 770K in n-octane, but no attempt at analysis

was made. An early work (5) on substituent effects upon the visible and

ultraviolet absorption spectrum of anthraquinone included a study of

quinizarin. ElEzaby et al. (19) studied the absorption spectra of

anthracene, anthraquinone, and several hydroxy-anthraquinones in dif-

ferent solvents in order to determine the nature of the electronic







transitions in these compounds. Platonova, Popov, and Smirnov (20)

concluded from dichroic ratios of absorption spectra of quinizarin in

polyvinyl alcohol films that the relative polarizations of electronic

transitions in quinizarin were the same as those of anthraquinone.

The above works indicated that the behavior of quinizarin was

peculiar in several respects. A discussion of the effect of substituting

OH groups upon anthraquinone by Abrahamson and Panik (21) indicated that

the n-electronic levels of the molecule should be shifted relative to

anthraquinone. Experimentally (17), a very large wavelength shift in

emission was observed. Also, the emission from the molecule was appar-

ently fluorescence, rather than phosphorescence (17). Normally, carbonyl

containing compounds will exhibit phosphorescence (22).

The present work was undertaken to resolve some of the ambiguities.

The daunorubicin was also included in this study to determine whether

the assignments of electronic transitions in an earlier work were cor-

rect (23). The results listed in this work indicated a polarization of

electronic transitions contrary to results obtained here for quinizarin,

suggesting that chromophores present in daunorubicin had a very large

effect upon the electronic energy levels of the anthraquinone skeleton.

This work, then, presents a study of electronic transitions in

anthraquinone and two of its derivatives, quinizarin and daunorubicin,

using room temperature luminescence and absorption spectra, Shpolskii

matrix emission spectra, I.R. spectra, and polarized excitation spectra.












CHAPTER II

EXPERIMENTAL DETAILS



Materials


The anthraquinone used in these experiments was synthesized by ring

closure of ortho-benzoyl benzoic acid with concentrated H2SO4 (24).

Technical grade ortho-benzoyl benzoic acid was extracted from an

ether solution with 3 M NaOH solution. The sodium salt solution of the

acid was then filtered, and the ortho-benzoyl benzoic acid was regenerated

with 3 M HC1 solution. This was followed by suction filtering and

washing with distilled water. The ortho-benzoyl benzoic acid was then

recrystallized twice from ethanol and water. The melting point was

127-1280C, in good agreement with the literature value of 1280C (25).

The ortho-benzoyl benzoic acid was placed in a large excess of 96%

H2SO4. The mixture was then heated to 150-1600C, and maintained in this

temperature range with vigorous stirring for approximately two hours.

The reaction mixture was then poured over ice and allowed to stand

overnight. It was then mixed thoroughly with saturated NaHCO3 solution,

suction filtered, and thoroughly washed with more NaHCO3 solution and

distilled water. Two recrystallizations from an acetone-chloroform

mixture, followed by four vacuum sublimations, were deemed adequate to

insure the purity of the anthraquinone. An I.R. spectrum was run to

insure that the compound formed was indeed anthraquinone. Since the







compound sublimes, rather than melts, purity was checked by thin-layer

chromatography. Only one band was observed.

The quinizarin used was received from Eastman Kodak, and was vacuum

sublimed twice before use. The melting point was 200-202C. The litera-

ture value is also 200-202C (25).

The daunorubicin was a gift from Dr. E.J. Gabbay, and was used as

received.

Aldrich Gold Label (purity > 99%) n-hexane, n-octane, and 2-methyl

butane (isopentane) were used as received. Fisher analytical grade

n-pentane and Mallincrockt analytical grade n-heptane were used as re-

ceived, along with absolute ethanol and anhydrous ether. All solvents

were checked for absorption and emission in the spectral regions of

interest, and found to be satisfactory.



Monochromators and Light Sources


Heath EU-700 monochromators were used in this research. These are

0.35 meter, single pass, modified Czerny-Turner type mount monochromators

with folding mirrors which provide a common optical axis for entrance

and exit beams. The excitation monochromator was supplied with a plane

grating ruled with 1180 lines/mm and blazed at 3500 A, while the

emission monochromator grating was blazed at 5000 A.

The aperture ratio of the monochromator is f/6.8 at 2000 A. Wave-

length accuracy, relative to a fixed reference line, is 1.0 A throughout

the wavelength range. Resettability of the monochromator is 0.1 A.

Slits are continuously manually variable from closed up to 2000 microns.

Reciprocal linear dispersion is approximately 20 A/mm at the exit slit.







An external control unit provides scanning rates from 0.05 to 20 A/sec,

and can be synchronized with the chart rate drive of the Heath 700-C

chart recorder module used.

An Eimac 300 watt xenon lamp (Eimac is a division of Varian Associ-

ates) with a regulated power supply was used as a continuum excitation

source for the polarized excitation and emission spectra. A Hanovia

12 watt low pressure mercury discharge lamp was ordinarily used as an

excitation source for the Shpolskii matrix experiments on anthraquinone.



Detection and Recording System


The photodetector used in the Shpolskii matrix experiments and the

photoselection experiments was an RCA 1P-28A photomultiplier tube with

an S-5 spectral response. It was enclosed behind a shuttered quartz

window in the.light-tight compartment of a Heath photomultiplier module.

The supply voltage normally used was -900 volts.

The current output of the photomultiplier tube was fed into a

Keithley 416-S picoammeter. The picoammeter amplified the signal, con-

verted it from a current to a voltage signal, and filtered it. The

output of the picoammeter was then fed into the potentiometric amplifier

section of the Heath 700-C chart recorder module.

The potentiometric amplifier will accept any signal from 1 millivolt

up to 50 volts, and convert it to 1 volt full scale output to the chart

recorder. The recorder module was also equipped with a D.C. offset

module which allowed the baseline to be shifted to compensate for any

D.C. component of the signal.







The recorder output was plotted as a record of signal intensity

versus wavelength. The recorder drive could be synchronized with the

scan drives of the monochromators, so that a predetermined scale of

A/inch of chart paper could be recorded.



Shpolskii Matrix Systems

A block diagram of the experimental arrangement is shown in Figure 1.

An Air Products Model CSW202 Displex helium closed cycle refrigerator was

used as the cooling source in these experiments. Samples were contained

in a copper cell sealed with an 0-ring and a quartz Suprasil window.

The cell was mounted on the cold tip of the Displex at a 135 degree

angle to the face of the mercury lamp. The temperature of the sample

was measured by two gold-Chromel thermocouples, the upper of which was

fixed to the cold tip of the Displex, and the other mounted directly to

the cell. Liquid nitrogen was used as a reference junction. The tem-

perature of the upper thermocouple could be read directly from the

temperature controller module, while that of the lower one was indicated

by the thermocouple emf as registered on a Keithley digital voltmeter.

In general, the two temperatures agreed to within 1K. Due to its

proximity to the sample, that of the lower thermocouple was taken as

being a more accurate indication of the sample temperature. If desired,

the sample temperature could be increased by using a resistance heater

on the cold tip of the Displex. Temperature control was normally con-

stant to within 0.50K after the system had equilibrated.

Samples of the compounds to be run in n-paraffin matrices were pre-

pared by the quick-freeze method. The cell was filled and mounted on the











































0

I-











w
Z L


4J-
i-jM
























F-- 0
-0
Lll







CC x






























o
L
0









S-






L
+o


















S-
cr
































1-1


crO
CO
00




=If
I- 0

-O







cold tip of the Displex. Good thermal contact was insured by the use of

an indium gasket between the cell and the cold tip. The heat shield of

the Displex was placed around the cell, and the cold tip was immersed

in liquid nitrogen. When the readout of the Displex temperature con-

troller indicated that the cell was at 770K, the outer shroud of the

Displex was put into place and the system put under vacuum by a two-stage

mechanical pump with a liquid nitrogen cold trap. After approximately

fifteen minutes, the compressor of Displex was started. Cool-down time

to 100K was approximately thirty mintues.

Light from the mercury discharge lamp was passed through a Corning

CS 7-54 filter and focused onto the sample cell by quartz optics.

Emission from the sample cell was viewed at right angles to the direction

of excitation. It was focused by quartz optics onto the entrance slit

of the monochromator. Radiation passed by the monochromator was detected

by the RCA 1P-28A photomultiplier tube. The photomultiplier current was

processed as described in the previous section.

Slit widths of the monochromator were in the range from 18 to 120

microns, for a spectral bandpass of approximately 0.4 to 2.4 A. Scan

speed was normally 0.5 A/sec, with 20 A/inch recorded on the chart re-

corder output.



Lifetime Measurements

A block diagram of the apparatus used to measure lifetimes of

various peaks in the phosphorescence spectrum of anthraquinone in hexane

at 770K is shown in Figure 2. The same apparatus was used in an effort

to determine whether or not any phosphorescence was present in the

emission spectrum of quinizarin. Table I lists the model numbers and





- I (-


w ()


0-


v,



E










E

-r
L
r-





4-





0











CD
0)
ro














r-^


LL
en


cu


0



(-
=)
Q-


(_




-11-


Table I. Experimental Equipment and Manufacturers (Lifetimes)

Itm Model Number
(Description) source

Laser


Nitrogen


Flashlamp


Sample Housing

Monochromator


Photomultiplier Tube


Photomultiplier Housing


High Voltage Power
Supply

Gated Amplifier

Signal Generator


Oscilloscope


Boxcar Integrator


Chart Recorder


Signal Averager


Tape Punch

Computer


C950


CMX-4




H-10


4837


180


EU-42A




110


122AR


CW-1


SRG


BIOMAC 1000


2

PDP 11/20


Avco Everett Research Labora-
tories, Everett, Mass.

Chromatix, Sunnyvale,
Calif. 94086

Laboratory Constructed

American ISA, Inc.,
Metuchen, N.J. 08840

RCA Corp., Lancaster, Pa.
17604

PAR Corp., Princeton,
N.J. 08540

Heath Co., Benton Harbor,
Mich. 49022

Laboratory Constructed

Wavetek, Inc., San Diego,
Calif. 92123

Hewlett-Packard, Palo Alto,
Calif. 94306

PAR Corp., Princeton, N.J.
08540

Sargent-Welch, Skokie,
Ill. 60076

Data Laboratories Ltd.,
Mitcham, Surrey, U.K.

Friden, Inc., Rochester, N.Y.

DEC, Maynard, Mass. 01754




-12-


manufacturers of the equipment. Both Figure 2 and Table I are reproduced

with permission from Dr. Glenn Boutilier (26). A complete discussion of

the design and operation of the system may be found in reference (26).

Samples were placed in a 30 cm length Suprasil tube of 2 mm I.D. and

4 mm O.D. This was fitted into a Teflon cylinder using Teflon tape and

slip-fitted into a NMR spinner assembly. The spinner assembly fitted into

the top of the cover of a sample compartment containing a nitrogen

immersion Dewar and was used to position the sample cell. Nitrogen was

flushed through the lower section of the compartment to prevent conden-

sation of moisture on the Dewar.

A nitrogen discharge laser with a pulse width of 7.7 nsec was used

as the excitation source. The 3371 A line was used. Emission lines from

the laser were focused into one plane by the beam steering mirrors. The

laser beam was passed through an interference filter with a peak trans-

mittance of 42% at 3400 A and a bandwidth of 100 A to block non-lasing

nitrogen emission lines at wavelengths longer than 3600 A. The beam was

then focused onto the sample tube by a 3 inch diameter quartz lens of

8 inch focal length.

Light from the sample was focused onto the entrance slit of a

monochromator by a 15 mm diameter 25 mm focal length quartz lens. The

monochromator was a 0.1 meter focal length monochromator with an aperture

ratio of f/3.5 and a reciprocal linear dispersion of 80 A/mm. Detection

of phosphorescence selected by the monochromator was by an RCA 4857

photomultiplier tube enclosed in a light-tight compartment.

The photomultiplier socket was especially wired so that voltage

supplied to the photomultiplier dynodes could supply sufficient current




-13-


to maintain a linear response for the large pulses encountered using a

pulsed nitrogen laser. A wiring diagram of the P.M. socket may be found

in reference (26).

Both the signal average and the boxcar integrator used required a

voltage input. The photomultiplier output current was passed through a

current-to-voltage amplifier which could be gated to avoid saturation

effects due to stray light or fluorescence. A discussion of the design

and operation of the amplifier is included in reference (26). The laser

pulse repetition rate was controlled by the Wavetek signal generator

shown in Figure 2.

In the case of lifetime measurements of anthraquinone, the slit

width of the emission monitored at 4974 A was 0.1 mm (giving a spectral

bandwidth of 8 A). In the case of the peaks at approximately 4503 and
0
4530 A, the slit width was increased to 0.5 mm for a spectral bandwidth

of 40 A. The same setting was also used in attempts to detect phos-

phorescence in the emission spectrum of quinizarin. Supply voltage to

the photomultiplier tube was -800 volts. The amplifier was gated off

for 200 usec in all phosphorescence experiments.

In measuring lifetimes, the filtered output of the amplifier was

connected to the signal average. Sweep time of the signal average

could be varied by factors of 2 from 5 msec to 81.92 sec. Delay before

the start of sweep could either be set to zero or varied in factors of

2 from 0.32 msec to 5.12 sec. The signal average acquired 1000 points

per sweep and summed the value at each point into memory. The proper

repetition rate, sweep time, and amplifier gain were selected from an

oscilloscope display of the signal. After the requisite number of sweeps

had been averaged, the contents of the signal average were output to




-14-


the paper tape punch in 16 bit words. A PDP 11/20 microcomputer was

later used to process the tapes. The programs used are also listed in

the appendices of reference (26).

The arrangement used to measure fluorescence lifetimes of quinizarin

was similar. A 1.5 nsec laser was used as the excitation source, and a

fast boxcar integrator was used to process the signal. Instead of being

digitized, the data were recorded on a chart recorder. The limiting

factor here was the response time of the photomultiplier (1.5 nsec).

What was actually measured was the fluorescence lifetime convoluted with

the rise and decay time of the photomultiplier. Lifetimes were estimated

by extrapolating the time for a decay curve of known width of time to

decay to l/e of its original value.



Polarized'Excitation and Emission Spectra


When measuring a polarized spectrum, the substance in question is

normally imbedded in a clear, strain-free glass, dissolved in a dilute,

highly viscous solution, or grown in a single crystal. A glass is

generally much more convenient to prepare than a single crystal and is

preferable to a solution, since rotational depolarization will be

minimized.

In the case of quinizarin, EPA was found to be the most satisfactory

substance for forming a glass (EPA is a 5:5:2 vol.-vol.-vol. mixture of

ether-isopentane-ethanol). Attempts were made to use 3-methylpentane

and isopentane-methyl cyclohexane mixtures, but solubility problems pre-

vented the use of these compounds. Daunorubicin was not soluble to any

appreciable extent in EPA or other organic solvents commonly used to form




-Ib-


glasses. A 55-25-20 vol.-vol.-vol. mixture of ethanol-methanol-water

was used in an attempt to form a glass, but was found to be unstable when

the daunorubicin was dissolved and the solution frozen. Alternatively,

the daunorubicin solution was added in a volume ratio of 1:6 to glycerin,

and the mixture cooled by the simple expedient of lowering the room

temperature with air conditioning to approximately 190C. This arrange-

ment gave satisfactory results for obtaining the polarized excitation

spectrum of daunorubicin.

A number of experimental methods for obtaining polarization ratios

are discussed by Parker (27). The method used was that of Azumi and

McGlynn (28). This procedure corrects for such factors as selective

transmission of the emission monochromator, selective reflection of the

cylindrical sample tube and cylindrical Dewar, and spectral shifts due

to rotation of the Glan-Thompson polarizers. It makes use of the fact

that emission viewed in a direction at a right angle to an incident

horizontally-polarized beam must be unpolarized. If the intensities of

the vertical and horizontal components of fluorescence with horizontally

polarized exciting light are denoted as IBE and IBB, then the ratio

IBE/IBB is a correction factor for the effects mentioned above, since
any difference between IBE and IBB will be due to instrumental factors.

If the corresponding intensities of fluorescence with vertically

polarized light are denoted by IEE and IEB, then the corrected polariza-

tion of emission is calculated from


EE E B (IBE/IBB)
SI + (I BEBI
EE EB BE BB




-16-


Two different experimental methods were used which gave essentially

the same results. Polarized excitation and emission spectra were first

run on an Aminco-Bowman spectrofluorimeter equipped with a liquid

nitrogen immersion Dewar and Glan-Thompson polarizing accessory. How-

ever, in obtaining the polarized excitation spectra there was some

second-order scattering of the exciting light at short wavelengths.

Spectra were recorded on a relatively small area of chart paper, which

made an accurate interpretation of intensity versus wavelength somewhat

difficult. In order to obtain more highly resolved spectra, the experi-

mental arrangement shown in Figure 3 was employed.

Quinizarin, dissolved in EPA, was placed in a 2 mm I.D. quartz

Suprasil tube. The tube was then placed in a quartz immersion Dewar,

which was clamped into place on a ring stand mounted on the optical table.

A stream of air was blown across the Dewar to prevent condensation.

Light from the Eimac lamp was passed through the excitation mono-

chromator. The exciting light was collimated and focused on the sample

by quartz Suprasil optics. Polarization of the excitation beam was

achieved by passing the focused light through a Glan-Thompson polarizer

placed directly in front of the immersion Dewar.

Emission was collected at right angles to the direction of excita-

tion. Polarization of the emitted light was obtained by using a

polaroid sheet mounted in front of the entrance slits of the emission

monochromator.

In obtaining the polarized excitation spectra, the excitation

monochromator had to be scanned from 2000 A up to past 5300 A. This,

coupled with two other factors, led to the necessity of scanning the

excitation spectra in two segments. The Dewar used held enough liquid




























w
cr
I LIj
a OO_
< Q00


LU
I-
,)
o




C) m
Ql-

<<.^_ r, 'I

A


-17-


of
CD
Q:
o


I
-o




-18-


nitrogen for approximately 36 minutes. In order for a set of spectra to

be internally self-consistent, a scan of all four possible orientations

of the polarizers had to be taken on a single glass sample without re-

filling the Dewar. Also, since the output of the Eimac lamp was much

greater in the visible than in the ultraviolet region, a readjustment of

monochromator slit widths had to be made before scanning into the visible

region to keep the chart recorder from going off-scale. Therefore, the

excitation spectra for quinizarin were usually scanned from 2000 A up

to 3800 A. A scan of the visible region was made on a fresh glass sample

from 3600 A up to past 5400 A. An average of polarization values from

the two different runs was taken in the area of overlap. In general,

the agreement was good between the two sets of data.

When a set of polarized excitation spectra was obtained, the emis-

sion monochromator was set on a wavelength corresponding to the maximum

of a vibronic band in the emission spectrum. The chart recorder was

synchronized to the scan drive of the excitation monochromator, and the

wavelength region of interest was scanned. Slits of the excitation

monochromator were maintained at 1800 microns or less, while those of

the emission monochromator were maintained at 1000 microns or less.

In the emission mode, the strip chart recorder was synchronized with

the scanning drive of the emission monochromator. The excitation mono-

chromator was maintained at a fixed wavelength, and the fluorescence

emission spectrum was obtained. Spectra were also obtained here for all

four possible orientations of the two polarizers.

The experimental arrangement for obtaining the polarized excitation

spectra of daunorubicin was similar, with the distinction that the quartz







immersion Dewar was not used. As mentioned before, it was necessary to

use the highly viscous glycerin-alcohol-water mixture to obtain polarized

excitation spectra, since no suitable glass could be found for daunoru-

bicin. The mixture was placed in a 1/2" O.D. quartz Suprasil tube and

mounted in the same position as the immersion Dewar had been, and spectra

were obtained as described in the case of quinizarin. Since the

daunorubicin exhibited broad, structureless fluorescence, no polarized

fluorescence emission spectra were recorded.












CHAPTER III

THE ANTHRAQUINONE SYSTEM



Introduction

The molecular structure of anthraquinone and its crystalline mor-

phology are well known (29, 30, 31). The 9,10-anthraquinone molecule is

planar and belongs to the D2h point group, while its crystalline space

group is C2h.

Group theoretical considerations of the electronic configurations of

anthraquinone show that emission from the triplet level could occur from

either the Au, B1g, B2g, or B3u states. It is generally accepted (13, 15)

that the lowest triplet energy levels of the 9,10-anthraquinone molecule

are the 3B and 3A states. These two states are degenerate if inter-

actions between the two carbonyl groups are neglected. On the basis

of polarized single crystal absorption measurements at 770K, Dearman

and co-workers (11) have assigned the lowest triplet state of 9,10-

anthraquinone as A This assignment was refuted in later polarized

Zeeman (13) and Stark-Zeeman (12) absorption measurements, where it was

concluded that the lowest triplet state of 9,10-anthraquinone is 3Bg
31g
and that it is separated from the A state by 410 cm- in the crystal

(13).
3 1
The transition Big A is forbidden on the grounds of spin and
3 1
parity conservation, while the transition A A is only spin for-
bidden.
bidden.


-20-




-LI-


It has been shown (9, 10) that the phosphorescence of anthraquinone

is n-n* type, in-plane polarized. Measurements of the polarized S-T

absorption spectra (11) showed that the dipole moment of the transition

lies in the plane of the molecule parallel to the C-O axis (the Z axis,

in Mulliken's notation). Therefore, the vibrational bands present in the

emission spectrum of anthraquinone may be viewed as primarily being

polarized along the Z axis. If the conclusions in (12, 13) are correct
3 3 1
and the 3Bg is the lower triplet level, then the transition 3B A

will occur primarily as a result of borrowing intensity from the nearby
lu (TT*) state.

It is well known (32) that, in the case of forbidden electronic

transitions where vibronic coupling plays an important part in allowing

the transition to occur, only odd quanta of the coupling vibrations will

appear. These vibrations will be antisymmetric with respect to any

symmetry operation to which the transition moment integral is antisym-

metric. In the case of 9,10-anthraquinone, this will be vibrations of

the type b If the carbonyl stretching frequency and vibrational pro-

gressions built upon it are present, as is normally the case for n-n*

phosphorescence from carbonyl-containing compounds (22), then the low

temperature Shpolskii matrix phosphorescence should reveal them. If the

lowest triplet state were indeed the 3B1g, then a close analysis of

vibrational progressions present in the phosphorescence spectrum should

confirm this.

Analyses of the spectra were handicapped by a lack of reliable Raman

data. As an adjunct to this portion of the research, it was decided to

obtain polarized single crystal Raman spectra of anthraquinone. However,

for reasons which are discussed in a later section of this paper, these




-22-


attempts were unsuccessful. Also, a highly resolved low temperature

Shpolskii matrix emission spectrum of anthraquinone was published (33)

before the analysis presented here was complete. Therefore, the present

results will only be reported to the extent that they extend those findings.

In comparing spectra obtained at 100K and 770K, it was noticed that

several small high energy peaks had appeared as the temperature was in-

creased. The separation between the location chosen as the 0-0 position

of the anthraquinone phosphorescence and the highest-energy temperature

dependent band was approximately 424 cm-1. This was very close to the

value of 410 cm-1 tentatively suggested as the triplet level separation

in the crystal (13). It was thought that perhaps the upper triplet level

might be thermally populated by the lower one. Such behavior has been

observed in other molecules (34, 35, 36). Therefore, a series of experi-

ments were undertaken in an effort to determine whether the higher-

energy peaks were emission from a thermally populated triplet level of

anthraquinone, or whether they had some other origin.

In summary, this portion of the research had three major objec-

tives: (1) to obtain and analyze highly resolved phosphorescence spectra

of anthraquinone in n-paraffin matrices at low temperatures; (2) to

obtain polarized single crystal Raman spectra in order to make definitive

assignments of Raman-active normal vibrations; (3) to determine the

exact nature of the temperature dependent higher energy emission bands

in the phosphorescence of anthraquinone.


Shpolskii Systems and Impurity-Lattice Interactions


The low temperature phosphorescence spectrum of anthraquinone in

n-hexane is an example of what is commonly referred to as the "Shpolskii




-23-


effect." The Shpolskii effect was discovered by E.V. Shpolskii (37)

as part of a systematic investigation of luminescence and absorption

spectra of large organic molecules in frozen crystalline n-paraffin

matrices. As in the case of substituted molecular crystals, i.e.,

naphthalene in durene, the effect is generally considered to arise from

substitution of "guest" molecules into the crystalline lattice of the

host. The guest molecules exist as discrete molecular substitutional

sites, rather than as crystalline aggregates (33, 38, 39). In inves-

tigations of electronic transitions, the Shpolskii matrix method

possesses the inherent advantage that the electronic energy levels of

the host are usually much greater than those of the guest, so that the

only electronic transitions which occur upon excitation are those of

the guest molecule.

In an experiment involving the Shpolskii method the substance

under investigation is dissolved in a suitable solvent, usually an

n-alkane, and the solution is then frozen. At very low temperatures the

guest molecules undergo electronic transitions in both absorption and

emission with a very high probability that either no change or small

changes in the phonon energy of the host will take place. This will

depend upon the nature of the electronic transition and upon the extent

of coupling of inpurity molecules to the host lattice.

Spectra produced by these transitions are quasi-linear in nature,

having bands which are very sharp and well-defined, with residual half-

widths of approximately 1-10 cm- at very low temperatures. They are

sometimes considered to be the optical analogue of the Mossbauer effect

(40). Since emission in a condensed medium normally occurs from the

ground state vibrational level of the electronic excited state, there is




-L'\-


usually a very good correlation between the frequencies of such peaks in

the emission spectrum and the ground state vibrational frequencies of

the guest molecules. These sharp peaks are often accompanied by more

diffuse, less intense bands which are usually assigned as "lattice" bands

in the analysis of a Shpolskii matrix spectrum. More will be said about

these later.

For molecules in which the electronic transition is an allowed one,

there is an overlap of the 0-0 transition in absorption and emission. A

temperature dependence upon the intensity of the spectrum is also ob-

served, with the intensity increasing with decreasing temperature. It is

also observed that considerable broadening and loss of fine structure

occurs as the temperature is raised. This is often accompanied by

thermal line shifts.

There also appears to be a critical dependence upon the size of the

solvent molecule. This is manifested experimentally in several different

ways. One of these is the fact that a spectrum can often be interpreted

in terms of several different spectra of varying intensities which are

displaced from each other. This effect is explained in terms of dif-

ferent sites in the host crystal in which the guest molecules reside. It

is also found that the solvent molecule which has a long axis dimension

comparable to that of the guest molecule gives the sharpest, most well-

resolved spectra.

As mentioned earlier, a common feature of electronic spectra in

Shpolskii matrix systems is the appearance of sidebands which are

associated with vibrational-electronic transitions. These sidebands are

usually taken -to be evidence of the electron-phonon interaction. The







exact nature of the impurity-host relationship is not well understood.

The first attempts at formulating a theory to describe the effect ob-

served in Shpolskii systems were made by Rebane (41, 42). The quasi-

linear bands were associated with a phononless optical transition and

the diffuse background was associated with phonon bands. Interest in the

exact nature of the impurity-lattice interaction has led to attempts to

refine the theory of interactions (43, 44, 45) and also to account for

thermal broadening and shifts of the so-called "zero-phonon" lines in

Shpolskii systems. Recently (46-53), experiments have been performed,

utilizing both absorption and emission spectra, upon various systems in

attempts to clarify the nature of the impurity-lattice interaction.

In any treatment of the theory of optical spectra of impurities in

solids (43-45, 54, 55), several assumptions are normally made. Both the

Born-Oppenheimer approximation and the Franck-Condon principle are taken

to be valid. It is generally assumed that the impurity concentration is

low, so that impurity-impurity interactions are taken to be negligible.

It is also generally assumed that electronic eigenstates of the impurity

are at different energies than the electronic bands or states of the

host crystal. The presence of the impurity will serve to destroy the

translational symmetry of the host crystal, so that the relevant sym-

metry will be the site symmetry of the impurity. It will also perturb

the lattice vibrations of the crystal by giving rise to localized

vibrations which do not exist in the vibrational spectrum of the unsub-

stituted host crystal. In general, the impurity will interact with both

band and localized vibrations (55).

Detailed.treatments of the theory of lattice-impurity interactions

in the optical spectra of impurities in solids are available (42, 43, 54,




-26-


55). In the general case, the optical spectrum of the impurity crystal

will consist of a narrow zero-phonon line corresponding to the purely

electronic transition in the impurity site, accompanied by broad phonon

sidebands caused by transitions with simultaneous excitation of phonons

(55). In the case where localized modes are present in the crystal,

vibrational replicas of the zero-phonon line will be produced at

frequencies + nw from the zero-phonon line, where w is the frequency of

the localized vibration, n is an integer, the plus sign corresponds to

absorption, and the minus sign to emission (55). Physically, the inter-

action of the electronic transition in the impurity site with the thermal

vibrations of the crystal will manifest itself in its influence upon the

intensity, linewidth, and position of the zero-phonon line.

The theory of the electron-phonon coupling predicts an exponential

dependence of the relative integrated intensity of the zero-phonon line

on temperature. The ratio of the intensity of the zero-phonon line to

the total spectrum intensity may be expressed as (56):


Io/I = exp[-. pi(2ni + 1)] = exp[-S(T)] (1)
1

In this expression, i is an index for acoustic and local vibrations,

pi is the dimensionless "Stokes loss" per crystalline oscillator i and
is equal to (mi mw Ag/2h), w. is the frequency of the ith oscillator,

mi is the effective mass, Ai is the shift in the equilibrium position

of the ith oscillator during an optical transition in the impurity site,

ni = [exp(fihi/kT) 1]-1 is the thermal average of the occupation number
of the ith oscillator, and S(T) is the Huang-Rhys factor which denotes

the strength df impurity-lattice coupling (56).




- L. I -


An examination of the relative integrated intensity of the zero-

phonon line as a function of temperature would serve to give information

about the strength of the lattice-impurity coupling, since the overall

integrated intensity of the zero-phonon line and its accompanying phonon

bands is independent of temperature in the Franck-Condon approximation

(55). Intensity lost by the zero-phonon line should be gained by the

phonon side band, since increased electron-phonon interaction would occur

as the temperature increased. The extent of the impurity-lattice

coupling would be characterized by the resulting value of S, since the

larger the value of S, the greater the impurity-lattice coupling is

taken to be.

The nature of the broadening of the zero-phonon line will depend

upon the structure of the electronic energy levels of the impurity (56).

For the case where the maximum phonon energy is greater or equal to the

difference in the energies of the electronic levels, the broadening may

be mainly determined by nonradiative thermal processes when absorption

or emission of a single resonance phonon occurs at the same time as the

electronic transition. In the opposite case, that where the difference

in the energies of the electronic levels is greater than the maximum

phonon energy, Raman scattering of phonons by the impurity center may

play an important part in the thermal broadening (53).

If the electronic transition which takes place is a phonon-assisted

one, certain additional features will manifest themselves. The vibronic

bands present due to a phonon-assisted transition will involve the

emission of photons and the creation or annihilation of phonons. De-

pending upon the energy levels involved, either or both of Stokes and




-28-


anti-Stokes emission of phonons will occur. Di Bartolo (57) has derived

the relevant matrix elements for such processes.

Since thermal vibrations are involved, the intensities of the

phonon bands on either side of a zero-phonon line will be temperature-

dependent. In the simplest case, that of a one-phonon transition, the

process will depend upon the number of phonons present. The temperature

dependence is contained in the expression for the number of phonons


np= [exp(h, p/kT) 1]-1 (2)


The value of n becomes very small as T is reduced. As shown in

(57), this will result in the almost total disappearance of emission of

anti-Stokes phonons at low temperatures, while the Stokes processes will

persist. It is also expected that as the temperature increases, an

increase of the multi-phonon background will occur. These processes will

tend to smooth out the peaks so that an almost continuous background

will result.



Experimental


Anthraquinone and n-paraffin solvents were obtained as described

in Chapter II. The techniques described there for obtaining Shpolskii

matrix spectra and measurements of phosphorescence lifetimes were em-

ployed. The I.R. spectra were obtained in KBr disks on a Perkin-Elmer

621 spectrometer.

As was mentioned in the introductory section of this chapter, un-

successful attempts were made to obtain polarized single crystal Raman

spectra of anthraquinone. There were several reasons for attempting




-29-


these experiments. There is some disagreement concerning the presence or

absence of certain lines in the powder spectrum of anthraquinone, as well

as the assignment of certain experimentally observed frequencies to

normal modes (58, 59). The most complete experimental study upon powder

samples is that of Rasanen and Stenman (59), with frequencies being

assigned on the basis of normal coordinate calculations of Strokach,

Gastilovich, and Shigorin (60, 61). In cases where the crystal struc-

ture of a compound is known, the method of polarized single crystal Raman

spectroscopy has proven to be very useful in the unambiguous assignment

of Raman active normal modes of vibration (62, 63).

Single crystals of anthraquinone were grown by the Bridgman tech-

nique. The design of the furnace was based upon those described by

Lipsett (64). Two weeks were normally required to pass an anthraquinone

ingot through the furnace.

The Raman spectrometer used was a Spex Ramalog 5, with a Spex 1401

double monochromator and an RCA 3140 cooled photomultiplier tube which

could be operated in the photon-counting mode. The excitation source

normally employed with this system was a Coherent Radiation Model CR-5

argon ion laser. Malfunctions of the argon ion laser and the photo-

multiplier tube resulted in a lengthy period of inactivity in this portion

of the research.

It was found that anthraquinone fluoresced strongly under excitation

by the argon ion laser lines, so that no Raman spectra could be obtained.

The exact nature of the fluorescence which often occurs in Raman spectra

is not clear. In this case, it was decided to employ the accessory

Coherent Radiation Model 490 dye laser as an excitation source to see if

going to longer wavelengths of excitation would decrease the fluorescence.






Attempts to use the dye laser proved to be only a little more

successful. The power output of the dye laser was very unstable. Since
-5
the Raman effect is ordinarily on the order of 10-5 times the accompany-

ing Rayleigh scattering, a very poor signal to noise ratio was obtained.

It was also discovered that no signal below 1000 cm-l of the exciting

line of the dye laser could be detected due to background in the anthra-

quinone powder spectrum. The reason for this was not immediately clear.

It was later discovered that the birefringent tuning element of this

particular model of dye laser transmits a structured fluorescence

emanating from the dye itself (65). In addition, background fluorescence

was observed in portions of the anthraquinone spectrum which could be

obtained.

It is possible that the fluorescence emanating from the dye itself

could have been removed by either an appropriate wavelength notch optical

filter or a tunable grating filter. It was also planned to use a KIM-1

microcomputer to employ the technique of digitized frequency-modulated

spectroscopy (66) to remove any fluorescence intrinsic to the anthra-

quinone itself. This technique requires an excitation source which is

constant in time. All attempts to correct the problem of the dye laser

power fluctuations, including those of a Coherent Radiation field service

representative, were unsuccessful.

The only spectra obtained were those of powder samples. The

accessory for mounting single crystals on the spectrometer was not

available. Attempts to fabricate holders resulted in unsuccessful

attempts to obtain single crystal spectra, so it is probable that the

problem was one of alignment. In any case, in view of all the diffi-

culties encountered, it was deemed expedient to terminate this phase




-JI-


of the research and rely upon the frequencies and assignments of Raisnen

and Stenman (59).



Results and Discussion


Analysis of Phosphorescence Spectra


Tabulations of the analyses of the phosphorescence spectra of

anthraquinone in Shpolskii matrices of n-hexane and n-heptane are shown

in Tables II and III, respectively. The analysis is complete in the case

of n-hexane, while only the major spectral features of the emission in

n-heptane are presented. The analysis is much more straightforward in

the case of n-hexane, since anthraquinone exhibits only one-site emission

in this solvent. Interpretation is much more complicated in the heptane

and octane matrices, particularly in the case of the weaker combination

bands, since two sites appear to be present. Two sites also appear in

the case of anthraquinone in n-pentane. In n-hexane, heptane, and

octane, the origin of the electronic transition is absent, while it is

observed in n-pentane. As was noted by Khalil and Goodman (33), this

may be attributed to the fact that at least the site symmetry of the

molecule is conserved in the fonner three matrices, while distortion

and subsequent lowering of symmetry occur in the n-pentane case.

Literature values (67) of the I.R. active fundamentals were checked

for accuracy. As explained earlier, attempts to obtain Raman spectra

were unsuccessful. The frequencies and assignments of Rasanen and

Stenman (59) were used instead. A tabulation of the fundamental modes

of vibration of 9,10-anthraquinone used in this work can be found in the

Appendix.







Table II. Phosphorescence Vibrational Analysis for Anthraquinone in
lexane at 10"K


Energy
(cm-1, vac)


AE
(cm-1, vac)


Assignment


4533.6
4555
4564
4570
4579
4582
4585.5
4589
4593
4596
4602
4619
4626
4639
4644
4674
4702
4719
4724
4729
4740
4743
4763
4768
4783
4797
4807
4823
4850
4854
4865
4874
4879
4889
4894
4919
4929
4932
4936
4949
4953
4961
4963
4968
4974
4980


22051
21948
21903
21874
21832
21816
21802
21783
21765
21752
21722
21645
21613
21549
21527
21390
21262
21184
21162
21138
21091
21077
20988
20967
20902
20840
20796
20716
20615
20595
20548
20512
20489
20448
20429
20324
20282
20269
20253
20202
20183
20152
20143
20122
20098
20076


Anti-Stokes
Anti-Stokes
Anti-Stokes
Anti-Stokes
Anti-Stokes
Anti-Stokes
Anti-Stokes







ttice


-268
-164
-119
-91
-48
-32
-18
0
18
31
61
138
170
234
256
393
521
599
621
646
692
706
795
816
881
943
987
1067
1168
1188
1235
1271
1294
1335
1354
1459
1201
1514
1530
1581
1600
1631
1640
1661
1685
1707


VVVW
VVW
VW
VW


W
not seen
VVW
VW
VW
VW
W
W
W
W
W

S
M
iw
W
W
S
W
VW
W
W


WM
W
VW
W
W
M
W


w
W



s
s
MS
MW
W
W



VS
S
MS
MW

VVS
S


+ lattice


+ 789 Raman
+ 789 Raman + lattice
+ 1146 Raman

+ lattice
+ 1146 Raman
+ 1146 Raman + lattice
+ 365 Raman

+ lattice


Wavelength
(A)


0-lattice,
0-lattice,
0-lattice,
0-lattice,
0-lattice,
0-lattice,
0-lattice,
0-0
0-lattice
0-lattice
0-lattice
0-lattice
0-v66
0-v32
0-v32 + la
0-v49
0-3 x v66
0-v32+ 36
0-v31
0-v31 + la
0-3 x V32
0-v63 I.-
0-v62 I.R.
0-v62 + la
0-v31 + 25
0-v47
0-v31 + 36!
0-v29
0-v28
0-v28 + la
0-v45


0-v27
0-v44
0-v44
0-v
0-V26
0-v63
0-v63
0-v49
0-v25

0-v64
^27
0-v27
0-v24
0-v24


ttice


5 Raman

ttice



ttice
8 Raman

5 Raman


__I~


-JL-




-JJ-


Table II. (Continued)

Wavelength Energy AE Assignment
(A) (an1, vac) (cm-, vac)

5031 19875 1908 MW 0-v24 + 239 Ranan
5039 19841 1942 W 0-v24 + 258 Raman
5044 19819 1964 W 0-v62 + 1146 Raman
5051 19972 1992 VW 0-v62 + 1146 Raman + lattice
5065 19737 2046 MS 0-v24 + 365 Raman
5071 19714 2069 MW 0-v24 + 365 Raman + lattice
5104 19589 2194 W 0-v46 + 1146 Raman
5121 19521 2262 VW
5124 19511 2272 VW
5130 19487 2296 MS 0-v31 + 1667 Raman
5136 19467 2316 VW 0-v31 + 1667 Raman + lattice
5148 19419 2364 VW 0-v24 + 688 Raman
5152 19404 2379 VVW 0-v24 + 688 Raman + lattice
5160 19373 2410 VVW
5176 19314 2469 MS 0-v24 + 789 Raman
5183 19290 2493 W 0-v24 + 789 Raman + lattice
5199 19228 2555 VVW 0-v61 + 1597 Raman
5228 19124 2659 VVW O-v24 + 978 Raman
5248 19051 2732 VW
5259 19009 2774 VVW
5276 18948 2835 M 0-v24 + 1146 Raman
5283 18922 2861 W 0-v24 + 1146 Raman + lattice
5306.5 18839 2994 VVW
5313 18816 2967 W 0-v27 + 1667 Raman
5329 18761 3022 VW 0-v25 + 1440 Raman
5360 18653 3130 VVW
5370 18616 3167 W 0-v24 + 1480 Raman
5379 18585 3198 VVW
5391 18544 3239 MS 0-v25 + 1667 Raman
5399 18518 3265 MW 0-v25 + 1667 Raman + lattice
5407 18489 3294 W 0-v24 + 1597 Raman
5411 18476 3307 W 0-43 + 789 Raman +1146 Raman
5422 18439 3344 VS 0-v2 + 1667 Raman
5428 18419 3364 M 0-v24 + 1667 Raman + lattice
5489 18213 3570 VW
5498 18183 3600 VW
5530 18087 3705 M 0-v24 + 1667 Raman+365 Raman
5537 18055 3728 W 0-v24+1667 Raman+365 Raman+lattice
5576 17928 3855 W
5608 17826 3957 W 0-v31 + 2 x 1667 Raman
5643 17715 4068 W 0-v25 + 1667 Raman+789 Ranan
5663 17654 4129 W
5748 17392 4391 VW O- 25+1597 Raman+1146 Raman
5756 17366 4417 VW 0-v24+1597 Raman+1146 Raman
5782 .17289 4494 W 0-v24+1667 Raman+1146 Raman
5791 17280 4509 W 0-v24+1597 Raman+1243 Raman
5820 17177 4606 W




-34-


Table II. (Continued)


Wavelength Energy AE Assignment
(A) (cm-1, vac) (cm-1, vac)

5893 16965 4818 VW 0-v24+1667 Raman+1480 Raman
5917 16896 4887 VW 0-v24 + 2 x 1597 Raman
5928 16864 4919 W 0-v25 + 2 x 1667 Raman
5946 16813 4970 W 0-v24 + 2 x 1667 Raman
5954 16791 4992 W 0-3 x v24




-35-


Table III.


Phosphorescence Vibrational Analysis for Anthraquinone in
Heptane at 10K


Low-Energy High-Energy
Site Site AE I Assignment
(cm-1) (cm-1) (cn-l)


VVVW 0-0, H.E. site
VVW 0-0, L.E. site


21761


21610
21527

21366



21230
21167
21140

20965

20780

20589
20471

20307


20117

20075
20059


19714
19699


19465
19446


19296
19279

18927

18799


21866

21705
21630


21467

21352
21271
21244



21071

20884

20694


20411

20266
20184

20160


19824
19804


19572
19556


19399
19382


19031

18906


Raman


Raman


0
0
161
236
151
234
399
395
514
595
622
521
594
621
795
796
982
981
1172
1172
1290
1455
1454
1600
1686
1594
1706
1686
1702
2042
2062
2047
2062
2294
2320
2296
2315
2466
2484
2465
2482
2835
2834
2960
2962


V

V
VV


V





V



M

VV


VV
V





V


V
M


M
M


0-v66
W 0-v32
0-v66
W 0-v32
W 0- 49
W 0-v49
'W 0-3 x v66
'W 0-v32 + 365
M 0-v31
W 0-3 x v66
W 0-v32 + 365
M O-v31
W 0-v6
M 0-v62
W O-v31 + 365
W 0-v31 + 365
rW 0-v28
M 0-v28
M 0-v27
W 0-v26
1W 0-v26
M O-v25
S 0-V24
S 0-v25
S 0-v2 + lat'
*S O-v24
'S 0-v24 + latl
M 0-24 + 365
W 0-24 + 265
S 0-24 + 365
1W O-v24 + 365
WI 0-v2 + 166
'W 0-v31 + 166
M 0-v31 + 166
W 0-v31 + 166
W 0-v24 + 789
'W 0-v24 + 789
W O-v24 + 789
1 0-v24 + 789
W 0-v24 + 114(
1W 0-v24 + 1141
1W 0-v27 + 166
W 0-v27 + 166


Raman
Raman


twice


twice
Raman
Raman + lattice
Raman
Raman + lattice
7 Raman
7 Raman + lattice
7 Raman
7 Raman + lattic
Raman
Raman + lattice
Raman
Raman + lattice
6 Raman
6 Raman
7 Raman
7 Raman


e

e




-36-


Table III. (Continued)

Low-Energy High-Energy
Site Site AE I Assignment
(an-1) (cm-1) (cm-1)

18524 3342 S 0-v + 1667 Raman
18508 3358 W 0-v24 + 1667 Ranan + lattice
18418 3343 VW 0-v24 + 1667 Raman
18401 3360 MW 0-v24 + 1667 Raman + lattice
18164 3702 W 0-v24 + 1667 Ranan + 365 Raman
18058 3703 MW 0-v24 + 1667 Raman + 365 Raman
17910 3956 VW 0-v31 + 2 x 1667 Raman
17803 3958 W 0-v31 + 2 x 1667 Raman
17787 4079 VW 0-v25 + 1667 Raman + 789 Raman
17700 4061 VW 0-v25 + 1667 Raman + 789 Raman
17372 4492 VW 0-v2 + 1667 Raman + 1146 Raman
17350 4516 VW -v24 + 1597 Raman + 1243 Raman
17269 4492 W 0-v24 + 1667 Raman + 1146 Raman
17245 4516 VW 0-v24 + 1597 Raman + 1243 Raman
16947 4919 VW 0-v + 2 x 1667 Raman
16874 4992 VW 0-3 x v24
16844 4917 VW 0-v25 + 2 x 1667 Raman
16771 4990 W 0-3 x v24




-JI-


We find 7 out of 11 possible blu vibrations to be present in the

phosphorescence spectrum of 9,10-anthraquinone in hexane. These, in

the notation of reference (67), are v 32' v31' V28' v27' V26' v25' and v24

This is in agreement with the results of Khalil and Goodman. One fea-

ture which was not included in reference (33)was the presence of a peak

at 1661 cm-1 from the origin. This peak is clearly visible, and is

assigned in the present study as a combination of v27 and the 365 cm-1

Raman line of anthraquinone.

The most intense peaks in the spectrum were those based upon the

non-totally symmetric C = 0 stretch, v24, as was expected. Both one and

three quanta of this vibration are reported in this work, although only

one quantum was reported in reference (33). Assignments of multiple

quanta of vibrations will be discussed later.

Khalil and Goodman reported combinations of v24 with Raman lines of

frequencies 240, 360, 790, 1149, 1595, 1666, 1666 + 360, and 1666 + 1149
-1
cm In the present study, peaks were found which were assigned as

combinations of v24 with Raman lines of frequencies 239, 258, 365, 688,

789, 978, 1146, 1480, 1597, 1667, 1667 + 365, 1597 + 1146, 1597 + 1243,

1667 + 1480, 2 x 1597, and 2 x 1667 cm1. The difference is probably

attributable to the much greater sensitivity in this region of the spec-

trum of the photomultiplier used here, as compared to that used by

Khalil and Goodman (33).

Khalil and Goodman (33) assigned lines in the phosphorescence

spectrum of anthraquinone of type b2u corresponding to v46' U44' and

v43. In addition, another b2u vibration, V47' appeared in combination
with the Raman 360 cm- line. In this study, 5 out of 11 possible

b2u vibrations were observed. These were v43' v44' v45' v47, and v49'







Combinations of v49 + 1146 cm-1 Raman, v46 + 1146 cm-1 Raman, and

v43 + 789 cm- + 1146 cm- Raman were observed.

At this point, some discussion concerning peaks corresponding to

"46 is necessary. There is some disagreement (67, 58, 68) concerning
the frequency of this fundamental mode of vibration, since it did not

appear in the single crystal spectra of anthraquinone and anthraquinone

d-8 (67). Normal coordinate calculations (60, 61) favor the assignment

of a frequency of 1034 cm- (68). Khalil and Goodman used a frequency
-l
of 1155 cm as the basis for an assignment of v46' In the present

work, no peak is observed at this position. Instead, a peak is observed

at 1067 cm1 from the origin which might be assigned to either v46 or

v29. Since other combination bands occur in the spectrum which agree

very well with a frequency of 1034 cm-1 for v46, this value is chosen

and assignments are made accordingly.

Out of six possible b3u fundamentals, three are observed in this

work and three are also reported by Khalil and Goodman. These are v66,

v63' and v62. Combinations of v64 with the 1146 cm-l Raman line are

found in the present work and in reference (33). Khalil and Goodman

assign a combination of v61 with a 360 cm- Raman line, while a com-

bination of v61 with the 1597 cm-l Raman line is found in this study.

A combination of v62 with the 1146 cml Raman line and of v63 with the

789 cm-l Raman line is found in both results.

As regards the search for odd quanta in the vibrational progressions

of the phosphorescence of anthraquinone, there is evidence for three

such peaks. The band located at 521 cm-1 from the origin may be assigned

to three quant-a of v66' a skeletal deformation, or a combination of v32

with the 305 cm- Raman line. This was assigned by Khalil and Goodman (33)






as 3 x v32 on the basis of deuteration experiments. The line which

occurs at 692 anc from the origin might either be assigned to the Raman
-l
685 cm line, to 3 x v32' or to a combination of the b2u mode vu4

(387 cm-l) with the Raman 305 cm-l line. On the basis of deuteration

experiments, Khalil and Goodman assigned this line to 3 x v32, so it has

likewise been assigned here.

The third peak in the spectrum of anthraquinone in hexane which

may be assigned as an odd quantum progression lies at 5954 A. This line

is close to the position of several mercury lines. However, it appeared

in spectra excited by the mercury lamp using a Corning CS 7-54 filter and

a WG-9 emission filter. The Corning 7-54 filter served to prevent

transmission of visible lines from the lamp, while the WG-9 emission

filter served to prevent the occurrence of second-order mercury lines

in the spectrum. The band in question, along with several other weak

peaks in the area, was observed in spectra excited by the Eimac xenon

lamp, so the conclusion that it belongs to the anthraquinone phosphor-

escence seems a valid one. This line, along with several others reported

in this work, was not reported by Khalil and Goodman, since the spec-

tral response of the photomultiplier to be used by them was very weak

in this region.

Results of analyses of Shpolskii matrix emission spectra of anthra-

quinone obtained in this study tend, in general, to confirm the results

of Khalil and Goodman. Crystal field effects of the host lattice do not

affect the location of the origin to a great extent, since the origin of

the electronic transition lies at similar positions in pentane, hexane,

heptane, and octane. In pentane, the origin is observed, with two site




-40-


emissions present. In hexane, heptane, and octane, it occurs weakly or

not at all. This indicates that at least the site symmetry (Ci) of the

anthraquinone molecule is preserved in the hexane, heptane, and octane

matrices. Non-totally symmetric I.R. active vibrations of types blu,

b2u, and b3u occur in the phosphorescence spectrum, indicating that the

electronic state from which the phosphorescence takes place is B g.
3 1
The BIg A transition is both spin and symmetry forbidden.

Apparently, the state from which it borrows intensity is a Blu

(IT-Tr* state). As discussed by Khalil and Goodman (33) and Strokach and Shi-

gorin (69) mixing of states to allow the transition to occur may happen

in three different ways. The 3Blg state may be viewed as mixing directly

in first order perturbation theory by means of the spin-electronic-

vibrational interaction operation H vso. The two states may also be

mixed in second order perturbation by intermediate states. These may
1 3
be either or both of a A 7,7,* state or a A n,,r* state. The possi-
g u
abilities are shown in Figure 4. Here, Hvso = Hso /Q where Hso is the

spin-orbit interaction operator with a component of Blg symmetry and Q

corresponds to a blu type normal mode of vibration. H is the

operator for electron-vibrational interaction, aH o/Qa, where Ho repre-

sents the Hamiltonian of the unperturbed system.



Temperature-Dependent Emission


The question of the temperature-dependent emission in anthraquinone

is now considered. Figures 5-17 illustrate the behavior of emission in

the region of the origin of the electronic transition of anthraquinone

in octane, heptane, hexane, and pentane as the temperature is increased.

The phenomenon of temperature-dependent emission is observed in octane,





-41-


,r
co


0co
r--'

,-


r--


t



02


(,


4-)

0

E







=3
c,


a,


C
(A














































C,


4C)


0,
4-)






0,








cr
ro






4-
0





0,

u
C
o
0,
u



0,



S-C
0

Cd,





LL



cl)




0)

LL.





-113-


In 4-







C)
Lr)
ae,







tdrr
a,









Lo

in














in
















A; Cs.suI;u



































0


w







.:-
S..














4-3
C(















(U
c



























0)




.C-)

0-



0-



0L.
'-0


0)
S..




-45-


kAb sua ui










































C,



4-,

C)
Co

C)



C)





-4-

C




cU
C)
U




L
0

0,




U)
0



C)


L

0O





-1 t/-


i LsuaeuI


LO
in
ck
l'o
























o
0





01
C




I)

ro




LO
Icz








































x
0












S-
4-





















0
a)






U
u

S-)



V)
0
C-)










00
0











=3





0)
5-

U-





-'I \ -


&1tsua~ui


0
O














LC
to

-C
-c















In




O







Ln
'd:
'd


































0



C)














0
cr


S.-


4-,




4-
0

Q)


Q)
U














4L

0

V)
(A















0
-z
0d
LL




-b1-


kI;.Lsua;ui


































0








C
Ln









C

0I
4-)



0
w











C-,
C




x
0


cc







:A

0-
ro




4-

0






(IA
0
c





0,
u
V)








S.-
n








.I_
Ll

0,






LL-




- Jj)-


A/ Lsua;uI


IO




IC






C) 4-w
LO c

C)
(C







O

I--













cR-
LOr

































0



4-)
rO





4-)
CL
a,





a)
c



0











4-
0
a,

U









(1)
L)
o










s-C
0

0r










L
0
V)









0
a,


L








(3)













































4iLSUau UI


~-I


-bb-


O
Ln




0f
Ln -
UO 4-)











O
d


j

































0
O






I-"
*4-





















4-
0























U,
C














c
0
/)













C





O
r-
0-



















or-
c.
cC

(A










OJ
(:












L..




















































c) o
Ln
LO
LO
















C)
LO
Ln)

.zt






Itrl


44lsuq~uI


































0






C,
r-





4-,





0.
w
















4-,



4-
0

0)
0



C:
Q)
u










0



0)
-C





S-
:3
CD
U-















































































xtflsu94u1


-bV-




































0









(3)
ro
u





C)
a,






0,

0



ro








4-,




0

a,
U
C
0,
U






Q)
u








0,

0

(A
U,







0
a,

L
S-






-61-


Co







CD
CD







O













Lo a)






LO







Lo
-d- a






rCI





Lo

























kj Sua~uI




































0



4-J

CO



4-)





cr
U





ra


S-
-C
C








0~

cr


(0
C
C
















a)
U
C




a)
U



C









a)


:3


U-











































O
O
CO




o

0)








r ..


Ca






0
->
CD








:-:
O
O















Ln

'4-


fLsua~ui

































0
4d-






C






C
r0

S-


c




L







0
(3)
Sr









o
-C













L
0
r-
0:
CT)
U


-C

0,









:n

*r
LL.





-65-


A4LSUa4UI


































0







a)

4rJ
a)
0.


a)







C4L



a)
U



C,







ar
0U
0r

0L



a)
S.






-67-


k i.suaujI


o















o
o
LD -














LO
U*)
4-P
C

















L3
0














in
dl




-U (-


heptane, and hexane matrices, where the origin of the purely electronic

transition is absent, but not in the pentane case where the origin is

present.

The possibility that the peaks are an impurity emission can be

largely discounted by consideration of the purity of the chemicals used.

That the peaks might be due to a photoproduct being formed was eliminated

by demonstrating a reversible dependence of the emission upon temperature

and a lack of time dependence of intensity upon photopumping.

In cases where thermally activated emission processes between two

adjacent electronic levels occur, an Arrhenius plot of In I/I1 versus

T 1,will normally give a straight line whose slope agrees well with the

energy separation between the levels if no additional depletion processes

are present (34, 35). The results of such a plot for anthraquinone in

hexane are shown in Figure 18. There is an apparent exponential tem-

perature dependence, but the activation energies do not agree with the

energy level separations. If the highest-energy peak (- 4503 A) is taken

as the origin of a thermally populated 3A state, then it is separated

from the origin of the 3Bg state by approximately 420 cm-1. The value

of the activation energy obtained from the Arrhennius plot for this peak

is 220 cm- and the correlation coefficient of the plot is 0.981. There

is no obvious reason why the discrepancy of a factor of approximately

2 should occur if this peak is indeed the origin of emission from the

thermally populated 3A state. Likewise, the peak at approximately

4530 A gives an activation energy of 176 cm-. If it were a vibrational

progression in the emission from the 3A state, a separation of approxi-

mately 68 cm n- should be present. A careful study of the emission of

the origin region in hexane, as a function of temperature, as shown in




-69-


In I/I


A


4530
E = 176
a


4503 A
E. = 220 cm-1


-cm
cm


0.8 1.0 1.2 1.4 1.6 1.8
(1/kT x 103)


2.0


Figure 18.


Plot of Activation Energies
of Anthraquinone in Hexane


of Temperature-Dependent Emission


2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0


4554 A


A 1




-l')-


Figures 5-10, revealed that the peaks appeared sequentially as the

temperature was increased. The lifetime of the emission as monitored

at 4974 A (0-v24) was 3.21 + 0.32 msec, while those of the 4503 and

4530 A peaks were 3.77 + 0.38 and 3.71 + 0.33 msec, respectively. The

value of the lifetime of the emission monitored at 4974 A agrees well

with the literature values (70, 71). The close correlation of the life-

times of the three peaks indicates that they all originate from the same

electronic level. In view of all these factors, it was concluded that

the peaks were not emission from the second triplet level, but were

either vibrational hot bands or bands due to electron-phonon interaction.

This conclusion (that the peaks were not emission from the second triplet

level) was supported by a later paper (72) on the temperature dependence

of anthraquinone. The authors observed a strange effect upon adding

hexyl iodide to anthraquinone in heptane. No effect upon the emission
3
from the 31g level was observed, but a new set of weak bands in the

origin region were present which were assigned to the 3A level. These

peaks were separated from the 3B1g emission by approximately 60 cm-1

In this same paper, it was tentatively suggested that the temperature-

dependent emission was due to vibrational hot bands from the distorted

Blg level.

This does not seem to be a reasonable conclusion, since, in condensed

media, vibrational relaxation times are normally much faster (10-11 to

10-14 sec) than radiative lifetimes. Hot bands are therefore normally

found (73, 74) only in gaseous systems. In the rare cases (75, 76),

where it has been suggested that they were present in quasi-linear

systems, the electronic emission is spontaneous fluorescence where the

radiative lifetime is of a similar order of magnitude to the vibrational

relaxation times.




-11-


The fact that the temperature dependent emission is found in the

hexane, heptane, and octane matrices, but not in the pentane matrices,

lends support to the idea that the peaks are due to impurity-lattice

interactions rather than vibrational hot bands. That is, the transition

appears to be a phonon-assisted one in the cases of anthraquinone in

hexane, heptane, and octane, where the origin of the electron transition

is absent. Before proceeding further in this direction, a number of

points concerning the crystal structures and phonon spectra of the

n-paraffins C5-C7 will be discussed.

The crystalline structures of n-pentane, hexane, heptane, and octane

have been well characterized by X-ray methods (77-80). The n-pentane

structure is orthorhombic, with 4 molecules per unit cell and a volume
o3
of approximately 543 A Both n-hexane and n-octane are triclinic with

one molecule per unit cell and volumes of 165 and 208 A3, respectively.

N-heptane is triclinic, with 2 molecules per unit cell and a volume of

382 A3.

The phonon spectra of these crystals have been investigated using

Raman light scattering and neutron scattering techniques (81-83). A

remarkable similarity in the phonon spectra of n-hexane, heptane, and

octane is found, as might be expected in view of their similar crystal-

line structures.

The origin of the electronic transition in the phosphorescence of

anthraquinone occurs at similar locations in n-hexane, n-heptane, and

n-octane. Examination of Figures 5-15 shows that similar behavior

occurs in all three cases, with the temperature dependent emission

appearing at approximately the same position in all three matrices.

The discussion which follows is restricted to the case of anthraquinone







in n-hexane, since the situation is uncomplicated by multiple site

emission.

The temperature dependent emission is first noticeable at approxi-

mately 500K. Figures 5-10 illustrate the behavior of the origin region

of the phosphorescence of anthraquinone in n-hexane over the temperature

range 140K-159K. It can be seen that, as the temperature is increased,

the origin region begins to resemble a continuum, with maxima appearing

at positions separated by approximately 420, 290, and 180 cm-1 from the

origin. The word approximately is used here because the peaks are

slightly skewed and overlapped so that it is difficult to determine

their exact position. Also, an examination of the position of the most

intense component of the phosphorescence at 4974 A from 14-820K revealed

a shift on the order of 8-10 cm-1 toward the blue as the temperature

was increased. As Figure 10 shows, increasing the temperature to a

point just below the melting point of the n-hexane matrix results in an

almost complete loss of spectral definition in the origin region and an

extension of the emission to even shorter wavelengths. Although not

shown, similar behavior was observed in the heptane and octane cases.

In the case where a molecular impurity with intramolecular frequen-

cies of vibration is substituted into a crystal, two different situations

may arise (55). The molecular frequency wm may fall into a region

corresponding to frequencies also found in the perfect host crystal.

The resonance between the molecular and crystal frequencies will allow

energy to be transferred from the molecular impurity to the crystal.

The second case is that where the molecular frequency bm occurs in a

region which does not correspond to vibrations found in the perfect

crystal. If the perturbation produced by the impurity is strong enough,


-/f.-




-/J-


an anharmonic vibration may set in which does not correspond to a peak

in the phonon spectrum of the crystal (55). The relatively intense

phonon sidebands which accompany all the major vibrational progressions

in the phosphorescence of anthraquinone in hexane appear to be of this

type. For instance, in the emission corresponding to the vibrational

progression 0-v24, the accompanying phonon sideband occurs at a separa-

tion of 22 cm No such vibrational frequency occurs in the phonon

structure of n-hexane, while anthraquinone has a Raman active lattice

mode of 28 cm-1 (59). It is known (84) that such "lattice" modes will

appear in electronic spectra for either one of two reasons. The first

is that the excited molecule has an excited state equilibrium disposition

in the crystal lattice which differs from its normal ground state con-

formation. The second reason is that the lattice mode perturbs the

electronic transition in a way so as to assist the electronic motion to

gain radiative properties.

The temperature-dependent emission which occurs in the emission of

anthraquinone in hexane matrices has peaks separated from the origin of

the 3Bg level by approximately 180, 290, and 420 cm-l. Peaks in the

phonon structure of n-hexane (83) occur at 176 cm- 296 cm-, 372 cm-l

and 460 cm There is a relatively close correspondence between the

separation of the peaks occurring in the temperature dependent emission

and the peaks occurring in the phonon structure of n-hexane. Anthraquinone

itself has Raman active vibrations at frequencies of 301 cml, 419 cm-1
-l
and 150 cm so that it is more probable that the peaks correspond to

resonance modes set up between hexane vibrations and anthraquinone

normal modes.






As to the temperature-dependent emission, it is assigned here as

arising from a temperature-dependent anti-Stokes scattering of phonons

occurring simultaneously with the electronic transition. There are

several reasons for this conclusion. Figures 5-17 clearly reveal the

temperature dependent emission is present in the n-hexane, heptane, and

octane cases, but not in the n-pentane case. For each of the former

three cases, the origin of the purely electronic transition occurs with

negligible intensity, while in the latter case it is present. This in-

dicates that the transition is a phonon assisted one in the former three

cases. The occurrence of phonons in assisting transitions to take place,

while relatively rare, is not unknown. A most thoroughly documented

case (84) is that of the phosphorescence of molecular crystalline

pyrazine. Raman scattering of phonons has also been shown (50) to play

an important part in the thermal broadening observed in Shpolskii sys-

tems. Finally, the behavior of anthraquinone in n-paraffins C6-C8

resembles closely the temperature dependence of the emission of the

system V2+ in MgO, where anti-Stokes scattering of phonons was also

ascribed as the reason for the temperature-dependent emission observed

in this system (85).

A study of the impurity-lattice coupling in the anthraquinone-hexane

system might be helpful in corroborating the above conclusion. Judging

from the quasi-linear appearance of the spectra, it is probable that the

coupling is weak to intermediate. No attempt was made to evaluate the

coupling. This can be best understood with reference to Figures 19-21.

These indicate the decrease in intensity and broadening of the zero-

phonon line at 4974 A over the temperature range 14-780K. Studies of

impurity-lattice interactions (50) are usually performed on zero-phonon

































>)
















4925 4950 4975 5000 5025
Wavelength (4)


Figure 19. Phosphorescence of Anthraquinone in Hexane at 14K





-76-


4-,


















4925 4950 4975 5000 5025
Wavelength (A)


Figure 20. Phosphorescence of Anthraquinone in Hexane at 36K






































+--


'--
















I L I I I
4925 4950 4975 5000 5025

Wavelength (A)


Figure 21. Phosphorescence of Anthraquinone in Hexane at 760K




-/u-


lines which can be accurately separated from their phonon sidebands over

a wide range of temperature. The broadening in the anthraquinone case

makes this extremely difficult, and would introduce a large error into

calculations of the relative integrated intensity of the zero-phonon

line. Since the relative integrated intensity of the zero-phonon line

as a function of temperature characterizes the strength of the coupling,

this would cause a large error in the estimation of the strength of the

coupling.












CHAPTER IV

QUINIZARIN AND DAUNORUBICIN



Introduction

The geometrical structure of quinizarin is not known with certainty.

In all that follows, it will be assumed that the molecule is planar and

belongs to the point group C2v. There are several bases for this

assumption. Quinizarin is 1,4-dihydroxy anthraquinone. Free rotation

about the 0-H bonds could be expected to occur, so that on the average

the 0-H groups might lie either in or out of the plane of the molecule.

Experimentally (17, 86), it is found that the C=0 stretching frequency

in the infrared spectrum of this compound is 1631 cm-1, as opposed to
-l
1676 cm in anthraquinone. This indicates that quite strong hydrogen

bonding is present. Such a situation would occur if the 0-H groups lie

in the plane of the molecule. Quinizarin also displays a limited solu-

bility in polar solvents, which might be interpreted as additional

evidence that the 0-H groups are highly coordinated with the carbonyl

groups. Therefore, for purposes of analysis, it is assumed that 1,4-

dihydroxy anthraquinone (quinizarin) is a planar molecule in the ground

state and belongs to the point group C2v. The axis system in quinizarin

is chosen here to be the same as that used for anthraquinone in

reference (67).

The visible and ultra-violet spectra of quinizarin show several

quite strong absorption bands (5, 19). The longest wavelength absorption


-79-




-80-


band lies in the visible region, extending from approximately 4000 to

5300 A. The absorption appears to be due to one electronic transition

with vibrational fine structure. All of the UV and visible bands in the

quinizarin absorption spectrum have E values greater than 103, in-

dicating that the electronic transitions responsible for their occurrence

take place with a relatively high degree of probability. Under C2v

symmetry, elements of the electric dipole moment operator transform as

al, bl, and b2. Quinizarin has a closed shell electronic configuration,

so that its ground electronic state is A1 Transitions of the type

11 Al 1A1 B1 A1 B2 would be expected to occur with a high
degree of probability in absorption, while transitions of the type

1A1 1A2 would be forbidden by selection rules and would occur only

by "stealing" intensity through vibronic interactions with allowed

transitions.

Abrahamson and Panik (21) have discussed the effect of introducing

a basic group such as Cl, OH, NH2, etc.,into the rings of the anthra-

quinone system. If resonance interaction between orbitals on the basic

group and the 7 electronic system of anthraquinone occurs, then the

highest filled i orbital of the ground state will be raised in energy

and that of the basic group will be lowered. For highly electronegative

substituents, an inductive effect may be present which will interact

with n orbitals on the anthraquinone system to depress their energy

levels. Both of these effects will tend to decrease the energy level

separation of the n and n orbitals of the anthraquinone system and in

the extreme case might cause a reversal of the energy levels.

A study of the emission characteristics of the quinizarin molecule

can give information concerning the disposition of singlet energy levels.




-U1-


Compounds which have an n,w* singlet state as the lowest excited singlet

state do not normally exhibit fluorescence, since almost complete inter-

system crossing takes place from the lowest excited n,w* state to a

triplet state, from which phosphorescence occurs (22). Solvent effects

upon absorption spectra may also be useful, since n,r* transitions will

usually display a shift towards shorter wavelengths in going from a

non-polar to a polar solvent, while r,7* transitions display the opposite

behavior.

The structures of anthraquinone, quinizarin, and daunorubicin are

shown in Figure 22. It can be seen that the only symmetry element which

daunorubicin possesses is the identity element. It therefore belongs to

the point group C1. All electronic transitions will be of type A 1A,

with subsequent easing of symmetry constraints concerning the "allowed-

ness" or "forbiddenness" of transitions.

This portion of the research deals with investigations of electronic

transitions in quinizarin utilizing visible and ultraviolet absorption,

room temperature luminescence, lifetime measurements, photoselection,

and Shpolskii matrix emission. In addition, I.R. and far I.R. spectra

of quinizarin are reported, with an analysis of I.R. active normal modes

of vibration of quinizarin. Photoselection measurements upon daunoru-

bicin are also included, in an effort to determine whether the assign-

ments of electronic transitions of daunorubicin in reference (23) are

correct.


Theory of Photoselection

Numerous examples of the use of photoselection in the investigation

of electronic transitions may be found in the literature (28, 87-91). An




-82-


to















4-
cr O = =


















a oN
I -E



o ao c- \














OO t--
0C 3
5,







Of 50
--1 ~- C





4-).- M








tN
c--a
\r /- = f









Cr
\\, ,/ >0
\ '*- ^ / LTI
Uj --^- -- 10






extensive exposition of the theory of photoselection and discussions of

its application may be found in the article by Albrecht (92). The

treatment which follows is similar to Albrecht's.

In order to understand how photoselection might be used in the

assignment of electronic transitions, it is first appropriate to review

the concept of the polarization of an electronic transition. Since

electric dipole transitions are generally orders of magnitude stronger

than magnetic dipole or electric quadrupole transitions and are found

much more frequently in organic compounds, the example given is restricted

to the case of electric dipole transitions.

Consider, as the most general case, a transition between two

stationary electronic states qi and if brought about by incident radia-

tion of frequency v = (Ef Ei)/h. For simplicity, the states are

assumed to be non-degenerate and their eigenfunctions are assumed to be

real. The probability that the transition will occur is proportional

to the square of the transition moment integral


Mif = J i R 4 f dr f xi xf do (1)

where M = e ri', i is the spatial eigenfunction of the ith state and
1
xi is the corresponding spin function. For simplicity, it is assumed

that AS = 0. The electronic transition will be an allowed one if and

only if Mif is not equal to zero.

In the case where one or both states are degenerate, the transition

will be an allowed one provided that the direct product of the species

(r) of 0i with that of 1f belongs to the same species as one of the

components of.M.




-84-


The selection rule as discussed above applies only for fixed nuclei.

The nuclei are not actually fixed, and the dependence of the total eigen-

function upon nuclear motion must be considered. Neglecting rotational

motion (justified physically by the fact that during an actual experiment

the molecules undergoing a transition are normally fixed in a rigid

medium) the total eigenfunction may be expressed in the Born-Oppenheimer

approximation as


iik = ei(q,Q) ok (Q) (2)

where ,'ik is the vibronic state corresponding to the kth vibrational

level of the ith electronic state, q indicates all the electronic coor-

dinates, and Q stands for all the nuclear coordinates.

If the electric dipole is resolved into two parts, one due to

electrons and the other due to nuclei,


M = M + M (3)
e n

then the electric dipole transition moment becomes


Mik,fl f ik h1 dQ f e M of dq + I k mn Q1 dQ f o of dq (4)

Since the electronic wavefunctions for a given position of the

nuclei are muturally orthogonal, the second term in the above expression

vanishes.

If the dependence of 0. upon nuclear coordinates is taken into
1
account, we obtain


Mif = ei (q,Qo) M e f (q,Q ) dq (5)


(5a)


Mik,fl = Mif (Qo) f ak 1i dQ




-85-


where Q is the configuration of the nuclei near the equilibrium

position.
2
Thus, the transition probability, which is proportional to M2, has

been resolved into two components, one of which depends upon nuclear

motion, and the other which depends upon electronic motion.

Following Albrecht, this may be expressed in a slightly different

form by using the Q dependence of the electronic wave functions.


of (q,Q) = e + ~ fr (Q) oe (6)
r

The electronic wavefunction for state f at Q is expressed in terms

of the complete set of electronic wavefunctions evaluated at Q = 0,

corresponding to the ground electronic state. The sum in Eq. (6) goes

over all states but f, where the rth member of the set is The coef-
r
ficient Afr serves to mix the zeroth order wavefunction e6 with e through

a vibrational motion of the proper symmetry. Such mixing will be neg-

ligible for the ground state, so that 0. (q,Q) e?. The transition
1 1
moment may then be expressed as


Mikfl f = k 1 dQ + r M r fr dQ (7)

The physical interpretation of Mik,fl is that it represents the

polarization of the vibronic transition ik fl. Equation (7) may be

viewed as being made up of two parts, an "allowed" and a "forbidden"

part. It is the allowed part of the transition which will be the most

important part in determining the nature of the electronic transition.

This is the first term in Eq. (7), and represents the modification of

combining vibrational wave functions (Franck-Condon factor) upon an

electronic transition. The second term in Eq. (7) represents the forbidden







part of the transition. A given vibronic transition will be polarized

according to the vector sense of Mf if it is electronically allowed,

or according to the vector sense of the appropriate M? if the transition
ir
involves appropriate non-totally symmetric vibrations. This follows

from the fact that integrands in the integrals over nuclear space will

not contain totally symmetric components for both the allowed and for-

bidden components simultaneously for a non-totally symmetric Afr. There-

fore, vector addition of the two terms will not occur except when Xfr

contains a totally symmetric vibration.

In an actual experiment involving photoselection, there are essen-

tially two different methods which may be employed. In one case, there

is an active attempt to cause molecules to become oriented (as in the

case of a single crystal). The second method does not depend upon the

active orientation of molecules, but relies upon the anisotropic nature

of the exciting light. Ordinary light is isotropic. In order to render

it anisotropic, it is necessary to pass the beam through one of several

different types of polarizing media, so that the light which emerges is

a beam of plane polarized light.

Consider a rigid solution in which the fluorescent solute molecules

are randomly oriented. Assume, for the sake of simplicity, that the

transition moment for absorption coincides with that for emission. In

the absence of depolarizing factors this will correspond to an excitation

from the ground state to the first excited singlet state, and emission

from the first excited state to the ground state.

Following Parker (27), we may consider such a situation with

reference to Figure 23. The incident light is vertically polarized and




-87-


X -


Y <-

















Figure 23.


\ sR



V< E







Illustration of Relative Polarization for an Electronic
Transition




- Wu -


propagating along the X axis. Consider a molecule with a transition

moment directed along OR, inclined at an angle a with OZ and an azimuthal

angle y with OY. The R' is the projection of R on the plane XOY.

Emission is viewed along OY. The probability that such a molecule will

be excited by the vertically polarized light will vary as cos2a. For a

given number of excited molecules, the intensity of the vertical com-

ponent of light viewed along OY will also vary as cos a, while that of
2 2
the horizontal component will vary as sin asin y.

The degree of polarization is defined as


P = (I, I )/(lI + Ii) (8)

where In and LL are the intensities of the observed parallel and per-

pendicular components of the emission. In the case where the absorption

and emission moments coincide exactly, P is equal to 1/2 for vertically

polarized exciting light. Perrin (93) and Jablonski (94) have shown

that if the angle between absorption and emission oscillators is B, for

vertically polarized light P will be given by


P = (3cos28 l)/(cos2B + 3) (9)

For a = 0, P takes on the value of 1/2. For B = 90, when the

absorption and emission oscillators are at right angles, P will have the

value -1/3. Differences found in practice from these values are normally

attributed to such factors as overlap of two closely spaced transitions

or external factors such as strains in the rigid glass matrix.

The polarization of the emission as a function of excitation wave-

length can be.used to establish the relative orientation of an emission

transition dipole to a particular absorption band in the absorption




-89-


spectrum of the molecule in question. This is generally done by com-

paring the polarization curve to bands in the absorption spectrum. In

the ideal case, there will be a region of approximately constant polari-

zation for a given absorption band, followed by a region of changing

polarization where two absorption bands overlap, and then another region

of approximately constant polarization over most of the second absorption

band. The polarization may change sign or not depending upon whether

the two absorption bands have mutually perpendicular transition moments.



Experimental

The experimental procedures used to obtain Shpolskii matrix spectra,

photoselection measurements of quinizarin and daunorubicin, and lifetime

measurements for quinizarin are described in Chapter 2. Reagents and

equipment utilized in this set of experiments are also described in this

same chapter.

Infrared absorption spectra of quinizarin in the range 4000-250 cm-

were obtained in KBr disks on a Perkin-Elmer 621 spectrometer. Spectra

in Nujol mulls over the region 1800-400 cm-l and in the far I.R. were

obtained on a Digilab FTS-20C Fourier Transform I.R. spectrometer.

It has been suggested that dimerization takes place in the con-

densed phase in hydroxy anthraquinones (95). In order to determine

whether the emission and absorption spectra obtained were from quinizarin

molecules or from dimers, room temperature luminescence and absorption

spectra were run as a function of concentration in n-hexane and methanol

solvents. A Cary 17 spectrophotometer with a pair of matched 1 cm

path-length cells was used for absorption measurements, while a




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ENIBUGVBY_X3LN72 INGEST_TIME 2012-03-08T23:21:43Z PACKAGE AA00003890_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

63(&7526&23,& ,19(67,*$7,216 2) (/(&7521,& 75$16,7,216 ,1 &(57$,1 $&(1( 48,121(6 %\ 52'*(5 1 &$336 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7UDLQLQJ LV HYHU\WKLQJ 7KH SHDFK ZDV RQFH D ELWWHU DOPRQG FDXOLIORZHU LV QRWKLQJ EXW FDEEDJH ZLWK D FROOHJH HGXFDWLRQ 3XGGnQKHDG :LOVRQnV &DOHQGDU

PAGE 3

$&.12:/('*(0(176 7KH DXWKRU LV LQGHEWHG WR 3URIHVVRU 0DUWLQ 7 9DOD IRU KLV LQLWLDWLRQ DQG VXSSRUW RI WKLV ZRUN +LV PDQ\ VXJJHVWLRQV DQG FRPPHQWV DV ZHOO DV KLV QHYHUIDLOLQJ RSWLPLVP WKDW WKLQJV ZRXOG HYHQWXDOO\ ZRUN RXW ZHUH RI LQFDOFXODEOH YDOXH LQ WKH FRXUVH RI WKLV UHVHDUFK 7KH H[SHUWLVH FRQWULEXWHG E\ WKH HOHFWURQLFV VKRS SHUVRQQHO ZDV D KHOS LQ FDUU\LQJ RXW WKHVH H[SHULPHQWV DV ZDV WKH DVVLVWDQFH LQ FRQVWUXFn WLRQ RI HTXLSPHQW FRQWULEXWHG E\ 0U (& :KLWHKHDG 'U *OHQQ %RXWLOLHU DQG 0U *DU\ :DOGHQ DUH JUDWHIXOO\ DFNQRZOHGJHG IRU WKH SHUIRUPDQFH RI OLIHWLPH PHDVXUHPHQWV LQFOXGHG LQ WKHVH H[SHULn PHQWV 7KH DXWKRU ZRXOG DOVR OLNH WR WKDQN 3URIHVVRU -' :LQHIRUGQHU IRU WKH ORDQ RI WKH (LPDF ODPS DQG 'U (*DEED\ IRU WKH GDXQRUXELFLQ 1XPHURXV SHRSOH PXVW EH DFNQRZOHGJHG IRU PRUDO VXSSRUW 7KH DXWKRU ZRXOG OLNH WR WKDQN KLV IHOORZ JUDGXDWH VWXGHQWV (G 9RLJWPDQ -RH %DLDUGR 'DYH 3RZHOO DQG %RE %ULWWDLQ IRU WKHLU FDPDUDGHULH +H ZRXOG DOVR OLNH WR DFNQRZOHGJH KLV SDUHQWV IRU VXSSRUW DQG HQFRXUDJHPHQW -0 1LFRYLFK -XVWLQH 6WUDQG %HWWH $FNHUPDQ DQG 'U 62 &ROJDWH DUH DOVR JUDWHIXOO\ DFNQRZOHGJHG IRU WKHLU PRUDO VXSSRUW )LQDOO\ WKH DXWKRU ZRXOG OLNH WR WKDQN $GHOH .RHKOHU IRU KHU DEOH DVVLVWDQFH LQ SUHSDULQJ WKLV PDQXVFULSW LQ D ILQLVKHG IRUP

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLL $%675$&7 L[ &+$37(5 ,1752'8&7,21 ,, (;3(5,0(17$/ '(7$,/6 0DWHULDOV 0RQRFKURPDWRUV DQG /LJKW 6RXUFHV 'HWHFWLRQ DQG 5HFRUGLQJ 6\VWHP 6KSROVNLL 0DWUL[ ([SHULPHQWV /LIHWLPH 0HDVXUHPHQWV 3RODUL]HG ([FLWDWLRQ DQG (PLVVLRQ 6SHFWUD ,,,7+( $17+5$48,121( 6<67(0 ,QWURGXFWLRQ 6KSROVNLL 6\VWHPV DQG ,PSXULW\/DWWLFH ,QWHUDFWLRQV ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ $QDO\VLV RI 3KRVSKRUHVFHQFH 6SHFWUD 7HPSHUDWXUH'HSHQGHQW (PLVVLRQ ,948,1,=$5,1 $1' '$81258%,&,1 ,QWURGXFWLRQ 7KHRU\ RI 3KRWRVHOHFWLRQ ([SHULPHQWDO 5HVXOWV DQG 'LVFXVVLRQ ,QIUDUHG 6SHFWUD /LIHWLPHV $EVRUSWLRQ DQG /XPLQHVFHQFH 6SHFWUD 6KSROVNLL 6\VWHPV 3KRWRVHOHFWLRQ DQG $VVLJQPHQW RI 7UDQVLWLRQV L Y

PAGE 5

3DJH 9 6800$5< $1' &21&/86,216 5()(5(1&(6 $33(1',; )5(48(1&,(6 2) 1250$/ 02'(6 2) 9,%5$7,21 2) $17+5$48, 121( %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) 7$%/(6 7DEOH 3DJH ([SHULPHQWDO (TXLSPHQW DQG 0DQXIDFWXUHUV /LIHWLPHVf ,,3KRVSKRUHVFHQFH 9LEUDWLRQDO $QDO\VLV IRU $QWKUDTXLQRQH LQ +H[DQH DW r. ,,,3KRVSKRUHVFHQFH 9LEUDWLRQDO $QDO\VLV IRU $QWKUDTXLQRQH LQ +HSWDQH DW r. ,95HSUHVHQWDWLRQV RI WKH 1RUPDO 0RGHV RI 9LEUDWLRQ RI 4XLQL]DULQ 9 ,5$FWLYH )XQGDPHQWDO 0RGHV RI 9LEUDWLRQ RI 4XLQL]DULQ 9,)OXRUHVFHQFH 9LEUDWLRQDO $QDO\VLV IRU 4XLQL]DULQ LQ 2FWDQH DW r. YL

PAGE 7

/,67 2) ),*85(6 1XPEHU 3DJH %ORFN 'LDJUDP IRU 6KSROVNLL 0DWUL[ ([SHULPHQWV %ORFN 'LDJUDP IRU /LIHWLPH 0HDVXUHPHQWV %ORFN 'LDJUDP RI ([SHULPHQWDO 6HW8S IRU 3RODUL]DWLRQ ([SHULPHQWV 0HFKDQLVP RI WKH %@J !f $f 3KRVSKRUHVFHQFH LQ $QWKUDTXL QRQH \ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +HSWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +HSWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +HSWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 2FWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 2FWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ

PAGE 8

)LJXUH 3DQH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 3HQWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 3HQWDQH DW r. LQ WKH 2ULJLQ 5HJLRQ 3ORW RI $FWLYDWLRQ (QHUJLHV RI 7HPSHUDWXUH'HSHQGHQW (PLVVLRQ RI $QWKUDTXL QRQH LQ +H[DQH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r. 6WUXFWXUHV DQG $[LV 6\VWHP RI $QWKUDTXLQRQH 4XLQL]DULQ DQG 'DXQRUXELFLQ ,OOXVWUDWLRQ RI 5HODWLYH 3RODUL]DWLRQ IRU DQ (OHFWURQLF 7UDQVLWLRQ 3ORW RI $ YV & IRU 4XLQL]DULQ LQ +H[DQH 3ORW RI $ YV & IRU 4XLQL]DULQ LQ 0HWKDQRO )OXRUHVFHQFH RI 4XLQL]DULQ LQ +H[DQH DW r. )OXRUHVFHQFH RI 4XLQL]DULQ LQ 2FWDQH DW r. )OXRUHVFHQFH RI 4XLQL]DULQ LQ (3$ DW r. 3ORWV RI $EVRUEDQFH DQG 5HODWLYH 3RODUL]DWLRQ RI 4XLQL]DULQ LQ (3$ 3ORW RI 3RODUL]DWLRQ YV :DYHOHQJWK IRU 4XLQL]DULQ )OXRUHVFHQFH 3ORW RI ([FLWDWLRQ 3RODUL]DWLRQ RI $QWKUDTXLQRQH DV &RPSDUHG WR 4XLQL]DULQ ,OO 3ORWV RI $EVRUEDQFH DQG 5HODWLYH 3RODUL]DWLRQ RI 'DXQRUXELFLQ LQ $OFRKRO:DWHU*O\FHULQ Y L L L

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 63(&7526&23,& ,19(67,*$7,216 2) (/(&7521,& 75$16,7,216 ,1 &(57$,1 $&(1( 48,521(6 %\ 5RGJHU 1 &DSSV 0DUFK &KDLUPDQ 0DUWLQ 7 9DOD 0DMRU 'HSDUWPHQW &KHPLVWU\ 7KH SRVLWLRQV DQG QDWXUHV RI WKH ORZHVW H[FLWHG HPLWWLQJ HOHFWURQLF OHYHOV LQ DQWKUDTXLQRQH DQG WZR RI LWV GHULYDWLYHV TXLQL]DULQ DQG GDXQRUXELFLQ KDYH EHHQ FKDUDFWHUL]HG ,Q WKH ILUVW FDVH WKDW RI DQWKUDTXLQRQH KLJKO\ UHVROYHG HPLVVLRQ VSHFWUD DW ORZ WHPSHUDWXUHV ZHUH REWDLQHG LQ 6KSROVNLL PDWULFHV RI QSHQWDQH QKH[DQH QKHSWDQH DQG QRFWDQH ,Q WKH ODWWHU WKUHH PDWULFHV WKH RULJLQ RI WKH SXUHO\ HOHFWURQLF WUDQVLWLRQ LV REVHUYHG YHU\ ZHDNO\ RU QRW DW DOO ,Q WKH QSHQWDQH PDWUL[ D YDULHW\ RI ERWK QRQWRWDOO\ V\PPHWULF DQG WRWDOO\ V\PPHWULF PRGHV DUH SUHVHQW ,Q KH[DQH KHSWDQH DQG RFWDQH WKH SKRVn SKRUHVFHQFH RI DQWKUDTXLQRQH LV VKRZQ WR FRQWDLQ SURJUHVVLRQV EXLOW XSRQ YLEUDWLRQV RI W\SHV EA EA DQG EA ZLWK WKH PRVW LQWHQVH SHDNV EHLQJ WKRVH RI W\SH EA $QDO\VHV RI WKH SKRVSKRUHVFHQFH HPLVVLRQ RI DQWKUDn TXLQRQH DUH SUHVHQWHG ZKLFK DUH VKRZQ WR EH FRQVLVWHQW ZLWK WKH DVVLJQ PHQW RI WKH ORZHVW WULSOHW OHYHO RI DQWKUDTXLQRQH DV %A 7KH UHVXOWV REWDLQHG LQ WKLV ZRUN WHQG WR FRUURERUDWH WKRVH RI .KDOLO DQG *RRGPDQ EXW LQFOXGH VHYHUDO DGGLWLRQDO VSHFWUDO IHDWXUHV QRW UHSRUWHG E\ WKHP $ WHPSHUDWXUHGHSHQGHQW HPLVVLRQ DW HQHUJLHV KLJKHU WKDQ WKH RULJLQ RI ,;

PAGE 10

WKH SXUHO\ HOHFWURQLF WUDQVLWLRQ LV DOVR REWDLQHG LQ QKH[DQH KHSWDQH DQG RFWDQH EXW QRW LQ QSHQWDQH %DVHG XSRQ WKH EHKDYLRU RI WKLV HPLVVLRQ DV D IXQFWLRQ RI WHPSHUDWXUH DQG VROYHQW LW LV VXJJHVWHG KHUH WKDW WKH HPLVVLRQ LV D PDQLIHVWDWLRQ RI WKH DQWKUDTXLQRQHODWWLFH LQWHUn DFWLRQ ZKLFK DOORZV WKH VSLQ DQG SDULW\ IRUELGGHQ HOHFWURQLF WUDQVLWLRQ WR JDLQ UDGLDWLYH SURSHUWLHV 7KH QDWXUH RI WKH ORZHVW H[FLWHG HPLWWLQJ HOHFWURQLF OHYHO LQ TXLQ L]DULQ LV FKDUDFWHUL]HG E\ OLIHWLPH PHDVXUHPHQWV SKRWRVHOHFWLRQ PHDVXUHn PHQWV DQG ORZ WHPSHUDWXUH 6KSROVNLL PDWUL[ HPLVVLRQ VSHFWUD 7KH VSHFLHV LQYROYHG LQ WKH DEVRUSWLRQ DQG HPLVVLRQ LV VKRZQ WR EH WKH TXLQL]DULQ PROHFXOH UDWKHU WKDQ DQ DJJUHJDWHG IRUP E\ FRQFHQWUDWLRQ VWXGLHV $Q DQDO\VLV RI WKH DEVRUSWLRQ VSHFWUXP RI TXLQL]DULQ LQ WKH LQIUDUHG DQG IDU LQIUDUHG UHJLRQV LV DOVR SUHVHQWHG 3KRWRVHOHFWLRQ PHDVXUHPHQWV ZHUH PDGH XSRQ ERWK TXLQL]DULQ DQG DQWKUDTXLQRQH ,W ZDV REVHUYHG WKDW WKH UHODWLYH SRODUL]DWLRQV RI WUDQVLWLRQV LQ WKH WZR PROHFXOHV ZHUH WKH VDPH %DVHG XSRQ WKH D[LV V\VWHP FKRVHQ IRU TXLQL]DULQ HOHFWURQLF WUDQVLWLRQV RFFXUULQJ LQ WKH XOWUDYLROHW DQG YLVLEOH DEVRUSWLRQ VSHFWUD RI TXLQL]DULQ KDYH EHHQ DVVLJQHG +LJKO\ UHVROYHG ORZ WHPSHUDWXUH HPLVVLRQ VSHFWUD ZHUH UHFRUGHG IRU TXLQL]DULQ LQ QKH[DQH QKHSWDQH DQG QRFWDQH ,W LV VXJJHVWHG WKDW WKH HPLVVLRQ LQ QKH[DQH DQG QKHSWDQH DULVHV IURP WZR VLWHV DW OHDVW RQH RI ZKLFK LV VHYHUHO\ GLVWRUWHG $Q DQDO\VLV RI WKH YLEUDWLRQDO SURn JUHVVLRQV IRU TXLQL]DULQ LQ QRFWDQH LV SUHVHQWHG ZKLFK LV FRQVLVWHQW ZLWK WKH REVHUYHG JURXQG VWDWH ,5 IUHTXHQFLHV [

PAGE 11

%DVHG XSRQ WKH PHDVXUHG HPLVVLRQ OLIHWLPH RI QVHF SKRWRn VHOHFWLRQ PHDVXUHPHQWV DQG DQDO\VHV RI ORZ WHPSHUDWXUH 6KSROVNLL PDWUL[ VSHFWUD WKH ORZHVW H[FLWHG HPLWWLQJ HOHFWURQLF OHYHO LQ TXLQL]DULQ LV DVVLJQHG DV D VLQJOHW DULVLQJ IURP D FKDUJHWUDQVIHU LQWHUDFWLRQ RI WKH K\GUR[\ VXEVWLWXHQWV ZLWK WKH EHQ]HQH ULQJ RI WKH DQWKUDTXLQRQH VNHOHWRQ 3KRWRVHOHFWLRQ PHDVXUHPHQWV XSRQ GDXQRUXELFLQ UHYHDOHG WKDW WKH SRODUL]DWLRQ RI PDMRU HOHFWURQLF WUDQVLWLRQV LQ WKLV PROHFXOH DUH WKH VDPH DV WKRVH RI TXLQL]DULQ %DVHG XSRQ WKHVH UHVXOWV LW LV FRQFOXGHG WKDW WKH SRODUL]DWLRQV RI WUDQVLWLRQV LQ WKLV PROHFXOH DV DVVLJQHG E\*DEED\DQG FRZRUNHUV DUH LQFRUUHFW [L

PAGE 12

&+$37(5 ,1752'8&7,21 7KH DQWKUDTXLQRQH PROHFXOH DQG LWV UHODWHG FRPSRXQGV DUH RI FKHPLFDO LPSRUWDQFH IURP ERWK DQ DSSOLHG DQG D WKHRUHWLFDO SRLQW RI YLHZ ,W LV DQ H[FHOOHQW VXEMHFW IRU VWXGLHV RI KHWHURDWRP HIIHFWV XSRQ H[n WHQGHG 77HOHFWURQLF V\VWHPV RI VSLQRUELW FRXSOLQJ PHFKDQLVPV DQG RI SRVVLEOH LQWUDPROHFXODU H[FLWRQ LQWHUDFWLRQV ,WV KLJK GHJUHH RI V\Pn PHWU\ DOORZV DQ H[FHOOHQW FRUUHODWLRQ RI WKHRU\ DQG H[SHULPHQW WKURXJK WKH PHWKRGV RI JURXS WKHRU\ $QWKUDTXLQRQH LV DOVR WKH SDUHQW PROHFXOH RI D ODUJH QXPEHU RI FRPSRXQGV ZKLFK ILQG XVH LQ WKH G\H LQGXVWU\ 6WXGLHV RI LWV HOHFWURQLF VWUXFWXUH DQG SKRWRFKHPLFDO UHDFWLYLW\ PLJKW ILQG XVH LQ XQGHUVWDQGLQJ WKH SKRWRGHJUDGDWLRQ RI G\HV ,W KDV DOVR EHHQ GHPRQVWUDWHG WKDW WKLV FRPSRXQG DQG FHUWDLQ RI LWV GHULYDWLYHV GLVn SOD\ D PXWDJHQLF DFWLYLW\ XSRQ LQWHVWLQDO EDFWHULD IRXQG LQ KXPDQV f ZKLOH RWKHU FRPSRXQGV KDYLQJ WKH DQWKUDTXLQRQH PROHFXOH LQFRUSRUDWHG LQWR WKHLU VNHOHWDO VWUXFWXUHV VKRZ SURPLVH DV DQWLOHXNHPLD GUXJV f 7KH HDUOLHU LQYHVWLJDWLRQV RI WKH QDWXUH RI HOHFWURQLF WUDQVLWLRQV LQ DQWKUDTXLQRQH ZHUH FRQFHUQHG ZLWK YLVLEOH DQG QHDU XOWUDYLROHW DEVRUSWLRQ VSHFWUD f /DEKDUW FDUULHG RXW LQYHVWLJDWLRQV RI WKH H[FLWHG VWDWHV RI VXEVWLWXWHG DQWKUDTXLQRQHV XVLQJ SRODUL]HG DEVRUSWLRQ VSHFWUD f 8VLQJ SRODUL]HG VLQJOH FU\VWDO VSHFWUD 6LGPDQ HVWDEOLVKHG WKH SRODUL]DWLRQV RI WKH HOHFWURQLF WUDQVLWLRQV LQ DQWKUDTXLQRQH f

PAGE 13

3KRWRVHOHFWLRQ H[SHULPHQWV f DQG D GHWHUPLQDWLRQ RI WKH DEVURSWLRQ PRPHQW f VKRZHG WKDW WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH ZDV LQSODQH SRODUL]HG QQr W\SH ,Q UHIHUHQFH f LW ZDV FRQFOXGHG WKDW WKH ORZHVW WULSOHW OHYHO RI DQWKUDTXLQRQH ZDV $XB /DWHU VWXGLHV f LQGLFDWHG WKDW WKLV DVVLJQPHQW ZDV LQFRUUHFW 7KH HDUOLHVW UHSRUWHG 6KSROVNLL PDWUL[ VWXG\ f ZDV LQFRQFOXVLYH VLQFH QR JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV ZHUH DYDLODEOH DW WKDW WLPH $ ODWHU VWXG\ f DW r. LQGLFDWHG WKDW WKH ORZHVW WULSOHW ZDV %M +RZHYHU WKHUH LV QRUPDOO\ D JUHDW GLIIHUHQFH LQ UHVROXWLRQ RI VSHFWUD UXQ DW r. DQG WKRVH REWDLQHG DW WHPSHUDWXUHV DSSURDFKLQJ r. 2QH RI WKH REMHFWLYHV RI WKLV VWXG\ ZDV WR WU\ WR GHWHUPLQH WKH QDWXUH RI WKH ORZHVW WULSOHW VWDWH RI DQWKUDTXLQRQH IURP DQ DQDO\VLV RI WKH YLEUDWLRQDO VWUXFWXUH RI WKH SKRVSKRUHVFHQFH VSHFWUXP 4XLL]DULQ ZKLFK LV D GLVXEVWLWXWHG K\GUR[\DQWKUDTXLQRQH KDV QRW EHHQ DV H[WHQVLYHO\ VWXGLHG $EVRUSWLRQ DQG IOXRUHVFHQFH VSHFWUD RI TXLQL]DULQ LQ WKH YDSRU SKDVH DQG LQ HWKDQRO VROXWLRQV ZHUH UHFRUGHG E\ %RULVHYLFK DQG *RX]LQVNLL f $ ODWHU ZRUN f UHSRUWHG YLVLEOH DEVRUSWLRQ DQG IOXRUHVFHQFH VSHFWUD LQ WKH YDSRU SKDVH DORQJ ZLWK D SDUWLDO DQDO\VLV RI WKH ,5 VSHFWUXP 6KFKHJORYD 6KLJRULQ DQG 'RNXQLNKLQ f UHFRUGHG WKH OXPLQHVFHQFH VSHFWUXP SKRWRJUDSKLFDOO\ DW r. LQ QRFWDQH EXW QR DWWHPSW DW DQDO\VLV ZDV PDGH $Q HDUO\ ZRUN f RQ VXEVWLWXHQW HIIHFWV XSRQ WKH YLVLEOH DQG XOWUDYLROHW DEVRUSWLRQ VSHFWUXP RI DQWKUDTXLQRQH LQFOXGHG D VWXG\ RI TXLQL]DULQ (O(]DE\ HW DO f VWXGLHG WKH DEVRUSWLRQ VSHFWUD RI DQWKUDFHQH DQWKUDTXLQRQH DQG VHYHUDO K\GUR[\DQWKUDTXLQRQHV LQ GLIn IHUHQW VROYHQWV LQ RUGHU WR GHWHUPLQH WKH QDWXUH RI WKH HOHFWURQLF

PAGE 14

WUDQVLWLRQV LQ WKHVH FRPSRXQGV 3ODWRQRYD 3RSRY DQG 6PLUQRY f FRQFOXGHG IURP GLFKURLF UDWLRV RI DEVRUSWLRQ VSHFWUD RI TXLQL]DULQ LQ SRO\YLQ\O DOFRKRO ILOPV WKDW WKH UHODWLYH SRODUL]DWLRQV RI HOHFWURQLF WUDQVLWLRQV LQ TXLQL]DULQ ZHUH WKH VDPH DV WKRVH RI DQWKUDTXLQRQH 7KH DERYH ZRUNV LQGLFDWHG WKDW WKH EHKDYLRU RI TXLQL]DULQ ZDV SHFXOLDU LQ VHYHUDO UHVSHFWV $ GLVFXVVLRQ RI WKH HIIHFW RI VXEVWLWXWLQJ 2+ JURXSV XSRQ DQWKUDTXLQRQH E\ $EUDKDPVRQ DQG 3DQLN f LQGLFDWHG WKDW WKH QHOHFWURQLF OHYHOV RI WKH PROHFXOH VKRXOG EH VKLIWHG UHODWLYH WR DQWKUDTXLQRQH ([SHULPHQWDOO\ f D YHU\ ODUJH ZDYHOHQJWK VKLIW LQ HPLVVLRQ ZDV REVHUYHG $OVR WKH HPLVVLRQ IURP WKH PROHFXOH ZDV DSSDUn HQWO\ IOXRUHVFHQFH UDWKHU WKDQ SKRVSKRUHVFHQFH f 1RUPDOO\ FDUERQ\O FRQWDLQLQJ FRPSRXQGV ZLOO H[KLELW SKRVSKRUHVFHQFH f 7KH SUHVHQW ZRUN ZDV XQGHUWDNHQ WR UHVROYH VRPH RI WKH DPELJXLWLHV 7KH GDXQRUXELFLQ ZDV DOVR LQFOXGHG LQ WKLV VWXG\ WR GHWHUPLQH ZKHWKHU WKH DVVLJQPHQWV RI HOHFWURQLF WUDQVLWLRQV LQ DQ HDUOLHU ZRUN ZHUH FRUn UHFW f 7KH UHVXOWV OLVWHG LQ WKLV ZRUN LQGLFDWHG D SRODUL]DWLRQ RI HOHFWURQLF WUDQVLWLRQV FRQWUDU\ WR UHVXOWV REWDLQHG KHUH IRU TXLQL]DULQ VXJJHVWLQJ WKDW FKURPRSKRUHV SUHVHQW LQ GDXQRUXELFLQ KDG D YHU\ ODUJH HIIHFW XSRQ WKH HOHFWURQLF HQHUJ\ OHYHOV RI WKH DQWKUDTXLQRQH VNHOHWRQ 7KLV ZRUN WKHQ SUHVHQWV D VWXG\ RI HOHFWURQLF WUDQVLWLRQV LQ DQWKUDTXLQRQH DQG WZR RI LWV GHULYDWLYHV TXLQL]DULQ DQG GDXQRUXELFLQ XVLQJ URRP WHPSHUDWXUH OXPLQHVFHQFH DQG DEVRUSWLRQ VSHFWUD 6KSROVNLL PDWUL[ HPLVVLRQ VSHFWUD ,5 VSHFWUD DQG SRODUL]HG H[FLWDWLRQ VSHFWUD

PAGE 15

&+$37(5 ,, (;3(5,0(17$/ '(7$,/6 0DWHULDOV 7KH DQWKUDTXLQRQH XVHG LQ WKHVH H[SHULPHQWV ZDV V\QWKHVL]HG E\ ULQJ FORVXUH RI RUWKREHQ]R\O EHQ]RLF DFLG ZLWK FRQFHQWUDWHG +62 f 7HFKQLFDO JUDGH RUWKREHQ]R\O EHQ]RLF DFLG ZDV H[WUDFWHG IURP DQ HWKHU VROXWLRQ ZLWK 0 1D2+ VROXWLRQ 7KH VRGLXP VDOW VROXWLRQ RI WKH DFLG ZDV WKHQ ILOWHUHG DQG WKH RUWKREHQ]R\O EHQ]RLF DFLG ZDV UHJHQHUDWHG ZLWK 0 +& VROXWLRQ 7KLV ZDV IROORZHG E\ VXFWLRQ ILOWHULQJ DQG ZDVKLQJ ZLWK GLVWLOOHG ZDWHU 7KH RUWKREHQ]R\O EHQ]RLF DFLG ZDV WKHQ UHFU\VWDOOL]HG WZLFH IURP HWKDQRO DQG ZDWHU 7KH PHOWLQJ SRLQW ZDV r& LQ JRRG DJUHHPHQW ZLWK WKH OLWHUDWXUH YDOXH RI r& f 7KH RUWKREHQ]R\O EHQ]RLF DFLG ZDV SODFHG LQ D ODUJH H[FHVV RI b +62 7KH PL[WXUH ZDV WKHQ KHDWHG WR r& DQG PDLQWDLQHG LQ WKLV WHPSHUDWXUH UDQJH ZLWK YLJRURXV VWLUULQJ IRU DSSUR[LPDWHO\ WZR KRXUV 7KH UHDFWLRQ PL[WXUH ZDV WKHQ SRXUHG RYHU LFH DQG DOORZHG WR VWDQG RYHUQLJKW ,W ZDV WKHQ PL[HG WKRURXJKO\ ZLWK VDWXUDWHG 1D+&2A VROXWLRQ VXFWLRQ ILOWHUHG DQG WKRURXJKO\ ZDVKHG ZLWK PRUH 1D+&2A VROXWLRQ DQG GLVWLOOHG ZDWHU 7ZR UHFU\VWDOOL]DWLRQV IURP DQ DFHWRQHFKORURIRUP PL[WXUH IROORZHG E\ IRXU YDFXXP VXEOLPDWLRQV ZHUH GHHPHG DGHTXDWH WR LQVXUH WKH SXULW\ RI WKH DQWKUDTXLQRQH $Q ,5 VSHFWUXP ZDV UXQ WR LQVXUH WKDW WKnH FRPSRXQG IRUPHG ZDV LQGHHG DQWKUDTXLQRQH 6LQFH WKH

PAGE 16

FRPSRXQG VXEOLPHV UDWKHU WKDQ PHOWV SXULW\ ZDV FKHFNHG E\ WKLQOD\HU FKURPDWRJUDSK\ 2QO\ RQH EDQG ZDV REVHUYHG 7KH TXLQL]DULQ XVHG ZDV UHFHLYHG IURP (DVWPDQ .RGDN DQG ZDV YDFXXP VXEOLPHG WZLFH EHIRUH XVH 7KH PHOWLQJ SRLQW ZDV r& 7KH OLWHUDn WXUH YDOXH LV DOVR r& f 7KH GDXQRUXELFLQ ZDV D JLIW IURP 'U (*DEED\ DQG ZDV XVHG DV UHFHLYHG $OGULFK *ROG /DEHO SXULW\ bf QKH[DQH QRFWDQH DQG PHWK\O EXWDQH LVRSHQWDQHf ZHUH XVHG DV UHFHLYHG )LVKHU DQDO\WLFDO JUDGH QSHQWDQH DQG 0DOOLQFURFNW DQDO\WLFDO JUDGH QKHSWDQH ZHUH XVHG DV UHn FHLYHG DORQJ ZLWK DEVROXWH HWKDQRO DQG DQK\GURXV HWKHU $OO VROYHQWV ZHUH FKHFNHG IRU DEVRUSWLRQ DQG HPLVVLRQ LQ WKH VSHFWUDO UHJLRQV RI LQWHUHVW DQG IRXQG WR EH VDWLVIDFWRU\ 0RQRFKURPDWRUV DQG /LJKW 6RXUFHV +HDWK (8 PRQRFKURPDWRUV ZHUH XVHG LQ WKLV UHVHDUFK 7KHVH DUH PHWHU VLQJOH SDVV PRGLILHG &]HUQ\7XUQHU W\SH PRXQW PRQRFKURPDWRUV ZLWK IROGLQJ PLUURUV ZKLFK SURYLGH D FRPPRQ RSWLFDO D[LV IRU HQWUDQFH DQG H[LW EHDPV 7KH H[FLWDWLRQ PRQRFKURPDWRU ZDV VXSSOLHG ZLWK D SODQH JUDWLQJ UXOHG ZLWK OLQHVPP DQG EOD]HG DW $ ZKLOH WKH HPLVVLRQ PRQRFKURPDWRU JUDWLQJ ZDV EOD]HG DW $ 7KH DSHUWXUH UDWLR RI WKH PRQRFKURPDWRU LV I DW $ :DYHn OHQJWK DFFXUDF\ UHODWLYH WR D IL[HG UHIHUHQFH OLQH LV s $ WKURXJKRXW WKH ZDYHOHQJWK UDQJH 5HVHWWDELLW\ RI WKH PRQRFKURPDWRU LV $ 6OLWV DUH FRQWLQXRXVO\ PDQXDOO\ YDULDEOH IURP FORVHG XS WR PLFURQV 5HFLSURFDO OLQHDU GLVSHUVLRQ LV DSSUR[LPDWHO\ $PP DW WKH H[LW VOLW

PAGE 17

W! $Q H[WHUQDO FRQWURO XQLW SURYLGHV VFDQQLQJ UDWHV IURP WR $VHF DQG FDQ EH V\QFKURQL]HG ZLWK WKH FKDUW UDWH GULYH RI WKH +HDWK & FKDUW UHFRUGHU PRGXOH XVHG $Q (LPDF ZDWW [HQRQ ODPS (LPDF LV D GLYLVLRQ RI 9DUL DQ $VVRFLn DWHVf ZLWK D UHJXODWHG SRZHU VXSSO\ ZDV XVHG DV D FRQWLQXXP H[FLWDWLRQ VRXUFH IRU WKH SRODUL]HG H[FLWDWLRQ DQG HPLVVLRQ VSHFWUD $ +DQRYLD ZDWW ORZ SUHVVXUH PHUFXU\ GLVFKDUJH ODPS ZDV RUGLQDULO\ XVHG DV DQ H[FLWDWLRQ VRXUFH IRU WKH 6KSROVNLL PDWUL[ H[SHULPHQWV RQ DQWKUDTXLQRQH 'HWHFWLRQ DQG 5HFRUGLQJ 6\VWHP 7KH SKRWRGHWHFWRU XVHG LQ WKH 6KSROVNLL PDWUL[ H[SHULPHQWV DQG WKH SKRWRVHOHFWLRQ H[SHULPHQWV ZDV DQ 5&$ 3$ SKRWRPXOWLSOLHU WXEH ZLWK DQ 6 VSHFWUDO UHVSRQVH ,W ZDV HQFORVHG EHKLQG D VKXWWHUHG TXDUW] ZLQGRZ LQ WKH OLJKWWLJKW FRPSDUWPHQW RI D +HDWK SKRWRPXOWLSOLHU PRGXOH 7KH VXSSO\ YROWDJH QRUPDOO\ XVHG ZDV YROWV 7KH FXUUHQW RXWSXW RI WKH SKRWRPXOWLSOLHU WXEH ZDV IHG LQWR D .HLWKOH\ 6 SLFRDPPHWHU 7KH SLFRDPPHWHU DPSOLILHG WKH VLJQDO FRQn YHUWHG LW IURP D FXUUHQW WR D YROWDJH VLJQDO DQG ILOWHUHG LW 7KH RXWSXW RI WKH SLFRDPPHWHU ZDV WKHQ IHG LQWR WKH SRWHQWLRPHWULF DPSOLILHU VHFWLRQ RI WKH +HDWK & FKDUW UHFRUGHU PRGXOH 7KH SRWHQWLRPHWULF DPSOLILHU ZLOO DFFHSW DQ\ VLJQDO IURP PLOOLYROW XS WR YROWV DQG FRQYHUW LW WR YROW IXOO VFDOH RXWSXW WR WKH FKDUW UHFRUGHU 7KH UHFRUGHU PRGXOH ZDV DOVR HTXLSSHG ZLWK D '& RIIVHW PRGXOH ZKLFK DOORZHG WKH EDVHOLQH WR EH VKLIWHG WR FRPSHQVDWH IRU DQ\ '& FRPSRQHQW RI WKH VLJQDO

PAGE 18

7KH UHFRUGHU RXWSXW ZDV SORWWHG DV D UHFRUG RI VLJQDO LQWHQVLW\ YHUVXV ZDYHOHQJWK 7KH UHFRUGHU GULYH FRXOG EH V\QFKURQL]HG ZLWK WKH VFDQ GULYHV RI WKH PRQRFKURPDWRUV VR WKDW D SUHGHWHUPLQHG VFDOH RI ƒLQFK RI FKDUW SDSHU FRXOG EH UHFRUGHG 6KSROVNLL 0DWUL[ 6\VWHPV $ EORFN GLDJUDP RI WKH H[SHULPHQWDO DUUDQJHPHQW LV VKRZQ LQ )LJXUH $Q $LU 3URGXFWV 0RGHO &6: 'LVSOH[ KHOLXP FORVHG F\FOH UHIULJHUDWRU ZDV XVHG DV WKH FRROLQJ VRXUFH LQ WKHVH H[SHULPHQWV 6DPSOHV ZHUH FRQWDLQHG LQ D FRSSHU FHOO VHDOHG ZLWK DQ ULQJ DQG D TXDUW] 6XSUDVLO ZLQGRZ 7KH FHOO ZDV PRXQWHG RQ WKH FROG WLS RI WKH 'LVSOH[ DW D GHJUHH DQJOH WR WKH IDFH RI WKH PHUFXU\ ODPS 7KH WHPSHUDWXUH RI WKH VDPSOH ZDV PHDVXUHG E\ WZR JROG&KURPHO WKHUPRFRXSOHV WKH XSSHU RI ZKLFK ZDV IL[HG WR WKH FROG WLS RI WKH 'LVSOH[ DQG WKH RWKHU PRXQWHG GLUHFWO\ WR WKH FHOO /LTXLG QLWURJHQ ZDV XVHG DV D UHIHUHQFH MXQFWLRQ 7KH WHPn SHUDWXUH RI WKH XSSHU WKHUPRFRXSOH FRXOG EH UHDG GLUHFWO\ IURP WKH WHPSHUDWXUH FRQWUROOHU PRGXOH ZKLOH WKDW RI WKH ORZHU RQH ZDV LQGLFDWHG E\ WKH WKHUPRFRXSOH HPI DV UHJLVWHUHG RQ D .HLWKOH\ GLJLWDO YROWPHWHU ,Q JHQHUDO WKH WZR WHPSHUDWXUHV DJUHHG WR ZLWKLQ s r. 'XH WR LWV SUR[LPLW\ WR WKH VDPSOH WKDW RI WKH ORZHU WKHUPRFRXSOH ZDV WDNHQ DV EHLQJ D PRUH DFFXUDWH LQGLFDWLRQ RI WKH VDPSOH WHPSHUDWXUH ,I GHVLUHG WKH VDPSOH WHPSHUDWXUH FRXOG EH LQFUHDVHG E\ XVLQJ D UHVLVWDQFH KHDWHU RQ WKH FROG WLS RI WKH 'LVSOH[ 7HPSHUDWXUH FRQWURO ZDV QRUPDOO\ FRQn VWDQW WR ZLWKLQ W r. DIWHU WKH V\VWHP KDG HTXLOLEUDWHG 6DPSOHV RI WKH FRPSRXQGV WR EH UXQ LQ QSDUDIILQ PDWULFHV ZHUH SUHn SDUHG E\ WKH TXLFNIUHH]H PHWKRG 7KH FHOO ZDV ILOOHG DQG PRXQWHG RQ WKH

PAGE 19

),/7(5 )LJXUH %ORFN 'LDJUDP IRU 6KSROVNLL 0DWUL[ ([SHULPHQWV

PAGE 20

FROG WLS RI WKH 'LVSOH[ *RRG WKHUPDO FRQWDFW ZDV LQVXUHG E\ WKH XVH RI DQ LQGLXP JDVNHW EHWZHHQ WKH FHOO DQG WKH FROG WLS 7KH KHDW VKLHOG RI WKH 'LVSOH[ ZDV SODFHG DURXQG WKH FHOO DQG WKH FROG WLS ZDV LPPHUVHG LQ OLTXLG QLWURJHQ :KHQ WKH UHDGRXW RI WKH 'LVSOH[ WHPSHUDWXUH FRQn WUROOHU LQGLFDWHG WKDW WKH FHOO ZDV DW r. WKH RXWHU VKURXG RI WKH 'LVSOH[ ZDV SXW LQWR SODFH DQG WKH V\VWHP SXW XQGHU YDFXXP E\ D WZRVWDJH PHFKDQLFDO SXPS ZLWK D OLTXLG QLWURJHQ FROG WUDS $IWHU DSSUR[LPDWHO\ ILIWHHQ PLQXWHV WKH FRPSUHVVRU RI 'LVSOH[ ZDV VWDUWHG &RROGRZQ WLPH WR r. ZDV DSSUR[LPDWHO\ WKLUW\ PLQWXHV /LJKW IURP WKH PHUFXU\ GLVFKDUJH ODPS ZDV SDVVHG WKURXJK D &RUQLQJ &6 ILOWHU DQG IRFXVHG RQWR WKH VDPSOH FHOO E\ TXDUW] RSWLFV (PLVVLRQ IURP WKH VDPSOH FHOO ZDV YLHZHG DW ULJKW DQJOHV WR WKH GLUHFWLRQ RI H[FLWDWLRQ ,W ZDV IRFXVHG E\ TXDUW] RSWLFV RQWR WKH HQWUDQFH VOLW RI WKH PRQRFKURPDWRU 5DGLDWLRQ SDVVHG E\ WKH PRQRFKURPDWRU ZDV GHWHFWHG E\ WKH 5&$ 3$ SKRWRPXOWLSOLHU WXEH 7KH SKRWRPXOWLSOLHU FXUUHQW ZDV SURFHVVHG DV GHVFULEHG LQ WKH SUHYLRXV VHFWLRQ 6OLW ZLGWKV RI WKH PRQRFKURPDWRU ZHUH LQ WKH UDQJH IURP WR PLFURQV IRU D VSHFWUDO EDQGSDVV RI DSSUR[LPDWHO\ WR $ 6FDQ VSHHG ZDV QRUPDOO\ IWVHF ZLWK IWLQFK UHFRUGHG RQ WKH FKDUW UHn FRUGHU RXWSXW /LIHWLPH 0HDVXUHPHQWV $ EORFN GLDJUDP RI WKH DSSDUDWXV XVHG WR PHDVXUH OLIHWLPHV RI YDULRXV SHDNV LQ WKH SKRVSKRUHVFHQFH VSHFWUXP RI DQWKUDTXLQRQH LQ KH[DQH DW r. LV VKRZQ LQ )LJXUH 7KH VDPH DSSDUDWXV ZDV XVHG LQ DQ HIIRUW WR GHWHUPLQH ZKHWKHU RU QRW DQ\ SKRVSKRUHVFHQFH ZDV SUHVHQW LQ WKH HPLVVLRQ VSHFWUXP RI TXLQL]DULQ 7DEOH OLVWV WKH PRGHO QXPEHUV DQG

PAGE 21

)LJXUH %ORFN 'LDJUDP IRU /LIHWLPH 0HDVXUHPHQWV ,8

PAGE 22

7DEOH ([SHULPHQWDO (TXLSPHQW DQG 0DQXIDFWXUHUV /LIHWLPHVf ,WHP 0RGHO 1XPEHU 'HVFULSWLRQf 6RXUFH /DVHU 1LWURJHQ & $YFR (YHUHWW 5HVHDUFK /DERUDn WRULHV (YHUHWW 0DVV )ODVKODPS &0; &KURPDWL[ 6XQQ\YDOH &DOLI 6DPSOH +RXVLQJ /DERUDWRU\ &RQVWUXFWHG 0RQRFKURPDWRU + $PHULFDQ ,6$ ,QF 0HWXFKHQ 13KRWRPXOWLSOLHU 7XEH 5&$ &RUS /DQFDVWHU 3D 3KRWRPXOWLSOLHU +RXVLQJ 3$5 &RUS 3ULQFHWRQ 1+LJK 9ROWDJH 3RZHU 6XSSO\ (8$ +HDWK &R %HQWRQ +DUERU 0LFK *DWHG $PSOLILHU /DERUDWRU\ &RQVWUXFWHG 6LJQDO *HQHUDWRU QR :DYHWHN ,QF 6DQ 'LHJR &DOLI 2VFLRVFRSH $5 +HZOHWW3DFNDUG 3DOR $OWR &DOLI %R[FDU ,QWHJUDWRU &: 3$5 &RUS 3ULQFHWRQ 1&KDUW 5HFRUGHU 65* 6DUJHQW9-HOFK 6NRNLH ,OO 6LJQDO $YHUDJHU %,20$& 'DWD /DERUDWRULHV /WG 0LWFKDP 6XUUH\ 8. 7DSH 3XQFK )ULGHQ ,QF 5RFKHVWHU 1< &RPSXWHU 3'3 '(& 0D\QDUG 0DVV

PAGE 23

PDQXIDFWXUHUV RI WKH HTXLSPHQW %RWK )LJXUH DQG 7DEOH DUH UHSURGXFHG ZLWK SHUPLVVLRQ IURP 'U *OHQQ %RXWLOLHU f $ FRPSOHWH GLVFXVVLRQ RI WKH GHVLJQ DQG RSHUDWLRQ RI WKH V\VWHP PD\ EH IRXQG LQ UHIHUHQFH f 6DPSOHV ZHUH SODFHG LQ D FP OHQJWK 6XSUDVLO WXEH RI PP ,' DQG PP 2' 7KLV ZDV ILWWHG LQWR D 7HIORQ F\OLQGHU XVLQJ 7HIORQ WDSH DQG VOLSILWWHG LQWR D 105 VSLQQHU DVVHPEO\ 7KH VSLQQHU DVVHPEO\ ILWWHG LQWR WKH WRS RI WKH FRYHU RI D VDPSOH FRPSDUWPHQW FRQWDLQLQJ D QLWURJHQ LPPHUVLRQ 'HZDU DQG ZDV XVHG WR SRVLWLRQ WKH VDPSOH FHOO 1LWURJHQ ZDV IOXVKHG WKURXJK WKH ORZHU VHFWLRQ RI WKH FRPSDUWPHQW WR SUHYHQW FRQGHQn VDWLRQ RI PRLVWXUH RQ WKH 'HZDU $ QLWURJHQ GLVFKDUJH ODVHU ZLWK D SXOVH ZLGWK RI QVHF ZDV XVHG DV WKH H[FLWDWLRQ VRXUFH 7KH $ OLQH ZDV XVHG (PLVVLRQ OLQHV IURP WKH ODVHU ZHUH IRFXVHG LQWR RQH SODQH E\ WKH EHDP VWHHULQJ PLUURUV 7KH ODVHU EHDP ZDV SDVVHG WKURXJK DQ LQWHUIHUHQFH ILOWHU ZLWK D SHDN WUDQVn PLWWDQFH RI b DW $ DQG D EDQGZLGWK RI $ WR EORFN QRQODVLQJ QLWURJHQ HPLVVLRQ OLQHV DW ZDYHOHQJWKV ORQJHU WKDQ $ 7KH EHDP ZDV WKHQ IRFXVHG RQWR WKH VDPSOH WXEH E\ D LQFK GLDPHWHU TXDUW] OHQV RI LQFK IRFDO OHQJWK /LJKW IURP WKH VDPSOH ZDV IRFXVHG RQWR WKH HQWUDQFH VOLW RI D PRQRFKURPDWRU E\ D PP GLDPHWHU PP IRFDO OHQJWK TXDUW] OHQV 7KH PRQRFKURPDWRU ZDV D PHWHU IRFDO OHQJWK PRQRFKURPDWRU ZLWK DQ DSHUWXUH UDWLR RI I DQG D UHFLSURFDO OLQHDU GLVSHUVLRQ RI ƒPP 'HWHFWLRQ RI SKRVSKRUHVFHQFH VHOHFWHG E\ WKH PRQRFKURPDWRU ZDV E\ DQ 5&$ SKRWRPXOWLSOLHU WXEH HQFORVHG LQ D OLJKWWLJKW FRPSDUWPHQW 7KH SKRWRPXOWLSOLHU VRFNHW ZDV HVSHFLDOO\ ZLUHG VR WKDW YROWDJH VXSSOLHG WR WKH SKRWRPXOWLSOLHU G\QRGHV FRXOG VXSSO\ VXIILFLHQW FXUUHQW

PAGE 24

WR PDLQWDLQ D OLQHDU UHVSRQVH IRU WKH ODUJH SXOVHV HQFRXQWHUHG XVLQJ D SXOVHG QLWURJHQ ODVHU $ ZLULQJ GLDJUDP RI WKH 30 VRFNHW PD\ EH IRXQG LQ UHIHUHQFH f %RWK WKH VLJQDO DYHUDJHU DQG WKH ER[FDU LQWHJUDWRU XVHG UHTXLUHG D YROWDJH LQSXW 7KH SKRWRPXOWLSOLHU RXWSXW FXUUHQW ZDV SDVVHG WKURXJK D FXUUHQWWRYROWDJH DPSOLILHU ZKLFK FRXOG EH JDWHG WR DYRLG VDWXUDWLRQ HIIHFWV GXH WR VWUD\ OLJKW RU IOXRUHVFHQFH $ GLVFXVVLRQ RI WKH GHVLJQ DQG RSHUDWLRQ RI WKH DPSOLILHU LV LQFOXGHG LQ UHIHUHQFH f 7KH ODVHU SXOVH UHSHWLWLRQ UDWH ZDV FRQWUROOHG E\ WKH :DYHWHN VLJQDO JHQHUDWRU VKRZQ LQ )LJXUH ,Q WKH FDVH RI OLIHWLPH PHDVXUHPHQWV RI DQWKUDTXLQRQH WKH VOLW ZLGWK RI WKH HPLVVLRQ PRQLWRUHG DW $ ZDV PP JLYLQJ D VSHFWUDO EDQGZLGWK RI ƒf ,Q WKH FDVH RI WKH SHDNV DW DSSUR[LPDWHO\ DQG R $ WKH VOLW ZLGWK ZDV LQFUHDVHG WR PP IRU D VSHFWUDO EDQGZLGWK R RI $ 7KH VDPH VHWWLQJ ZDV DOVR XVHG LQ DWWHPSWV WR GHWHFW SKRVn SKRUHVFHQFH LQ WKH HPLVVLRQ VSHFWUXP RI TXLQL]DULQ 6XSSO\ YROWDJH WR WKH SKRWRPXOWLSOLHU WXEH ZDV YROWV 7KH DPSOLILHU ZDV JDWHG RII IRU SVHF LQ DOO SKRVSKRUHVFHQFH H[SHULPHQWV ,Q PHDVXULQJ OLIHWLPHV WKH ILOWHUHG RXWSXW RI WKH DPSOLILHU ZDV FRQQHFWHG WR WKH VLJQDO DYHUDJHU 6ZHHS WLPH RI WKH VLJQDO DYHUDJHU FRXOG EH YDULHG E\ IDFWRUV RI IURP PVHF WR VHF 'HOD\ EHIRUH WKH VWDUW RI VZHHS FRXOG HLWKHU EH VHW WR ]HUR RU YDULHG LQ IDFWRUV RI IURP PVHF WR VHF 7KH VLJQDO DYHUDJHU DFTXLUHG SRLQWV SHU VZHHS DQG VXPPHG WKH YDOXH DW HDFK SRLQW LQWR PHPRU\ 7KH SURSHU UHSHWLWLRQ UDWH VZHHS WLPH DQG DPSOLILHU JDLQ ZHUH VHOHFWHG IURP DQ RVFLOORVFRSH GLVSOD\ RI WKH VLJQDO $IWHU WKH UHTXLVLWH QXPEHU RI VZHHSV KDG EHHQ DYHUDJHG WKH FRQWHQWV RI WKH VLJQDO DYHUDJHU ZHUH RXWSXW WR

PAGE 25

WKH SDSHU WDSH SXQFK LQ ELW ZRUGV $ 323 PLFURFRPSXWHU ZDV ODWHU XVHG WR SURFHVV WKH WDSHV 7KH SURJUDPV XVHG DUH DOVR OLVWHG LQ WKH DSSHQGLFHV RI UHIHUHQFH f 7KH DUUDQJHPHQW XVHG WR PHDVXUH IOXRUHVFHQFH OLIHWLPHV RI TXLQL]DULQ ZDV VLPLODU $ QVHF ODVHU ZDV XVHG DV WKH H[FLWDWLRQ VRXUFH DQG D IDVW ER[FDU LQWHJUDWRU ZDV XVHG WR SURFHVV WKH VLJQDO ,QVWHDG RI EHLQJ GLJLWL]HG WKH GDWD ZHUH UHFRUGHG RQ D FKDUW UHFRUGHU 7KH OLPLWLQJ IDFWRU KHUH ZDV WKH UHVSRQVH WLPH RI WKH SKRWRPXOWLSOLHU QVHFf :KDW ZDV DFWXDOO\ PHDVXUHG ZDV WKH IOXRUHVFHQFH OLIHWLPH FRQYROXWHG ZLWK WKH ULVH DQG GHFD\ WLPH RI WKH SKRWRPXOWLSOLHU /LIHWLPHV ZHUH HVWLPDWHG E\ H[WUDSRODWLQJ WKH WLPH IRU D GHFD\ FXUYH RI NQRZQ ZLGWK RI WLPH WR GHFD\ WR H RI LWV RULJLQDO YDOXH 3RODUL]HG ([FLWDWLRQ DQG (PLVVLRQ 6SHFWUD :KHQ PHDVXULQJ D SRODUL]HG VSHFWUXP WKH VXEVWDQFH LQ TXHVWLRQ LV QRUPDOO\ LPEHGGHG LQ D FOHDU VWUDLQIUHH JODVV GLVVROYHG LQ D GLOXWH KLJKO\ YLVFRXV VROXWLRQ RU JURZQ LQ D VLQJOH FU\VWDO $ JODVV LV JHQHUDOO\ PXFK PRUH FRQYHQLHQW WR SUHSDUH WKDQ D VLQJOH FU\VWDO DQG LV SUHIHUDEOH WR D VROXWLRQ VLQFH URWDWLRQDO GHSRODUL]DWLRQ ZLOO EH PLQLPL]HG ,Q WKH FDVH RI TXLQL]DULQ (3$ ZDV IRXQG WR EH WKH PRVW VDWLVIDFWRU\ VXEVWDQFH IRU IRUPLQJ D JODVV (3$ LV D YROYROYRO PL[WXUH RI HWKHULVRSHQWDQHHWKDQROf $WWHPSWV ZHUH PDGH WR XVH PHWK\O SHQWDQH DQG LVRSHQWDQHPHWK\O F\FORKH[DQH PL[WXUHV EXW VROXELOLW\ SUREOHPV SUHn YHQWHG WKH XVH RI WKHVH FRPSRXQGV 'DXQRUXELFLQ ZDV QRW VROXEOH WR DQ\ DSSUHFLDEOH H[WHQW LQ (3$ RU RWKHU RUJDQLF VROYHQWV FRPPRQO\ XVHG WR IRUP

PAGE 26

JODVVHV $ YROYROYRO PL[WXUH RI HWKDQROPHWKDQROZDWHU ZDV XVHG LQ DQ DWWHPSW WR IRUP D JODVV EXW ZDV IRXQG WR EH XQVWDEOH ZKHQ WKH GDXQRUXELFLQ ZDV GLVVROYHG DQG WKH VROXWLRQ IUR]HQ $WHUQDWLYHO\ WKH GDXQRUXELFLQ VROXWLRQ ZDV DGGHG LQ D YROXPH UDWLR RI WR JO\FHULQ DQG WKH PL[WXUH FRROHG E\ WKH VLPSOH H[SHGLHQW RI ORZHULQJ WKH URRP WHPSHUDWXUH ZLWK DLU FRQGLWLRQLQJ WR DSSUR[LPDWHO\ r& 7KLV DUUDQJHn PHQW JDYH VDWLVIDFWRU\ UHVXOWV IRU REWDLQLQJ WKH SRODUL]HG H[FLWDWLRQ VSHFWUXP RI GDXQRUXELFLQ $ QXPEHU RI H[SHULPHQWDO PHWKRGV IRU REWDLQLQJ SRODUL]DWLRQ UDWLRV DUH GLVFXVVHG E\ 3DUNHU f 7KH PHWKRG XVHG ZDV WKDW RI $]XPL DQG 0F*O\QQ f 7KLV SURFHGXUH FRUUHFWV IRU VXFK IDFWRUV DV VHOHFWLYH WUDQVPLVVLRQ RI WKH HPLVVLRQ PRQRFKURPDWRU VHOHFWLYH UHIOHFWLRQ RI WKH F\OLQGULFDO VDPSOH WXEH DQG F\OLQGULFDO 'HZDU DQG VSHFWUDO VKLIWV GXH WR URWDWLRQ RI WKH *ODQ7KRPSVRQ SRODUL]HUV ,W PDNHV XVH RI WKH IDFW WKDW HPLVVLRQ YLHZHG LQ D GLUHFWLRQ DW D ULJKW DQJOH WR DQ LQFLGHQW KRUL]RQWDOO\SRODUL]HG EHDP PXVW EH XQSRODUL]HG ,I WKH LQWHQVLWLHV RI WKH YHUWLFDO DQG KRUL]RQWDO FRPSRQHQWV RI IOXRUHVFHQFH ZLWK KRUL]RQWDOO\ SRODUL]HG H[FLWLQJ OLJKW DUH GHQRWHG DV ,JA DQG ,AJ WKHQ WKH UDWLR 6 D FRUUHFWLRQ IDFWRU IRU WKH HIIHFWV PHQWLRQHG DERYH VLQFH DQ\ GLIIHUHQFH EHWZHHQ AA DQG ,JJ ZLOO EH GXH WR LQVWUXPHQWDO IDFWRUV ,I WKH FRUUHVSRQGLQJ LQWHQVLWLHV RI IOXRUHVFHQFH ZLWK YHUWLFDOO\ SRODUL]HG OLJKW DUH GHQRWHG E\ ,A DQG ,AJ WKHQ WKH FRUUHFWHG SRODUL]Dn WLRQ RI HPLVVLRQ LV FDOFXODWHG IURP 3 r(( -(% A%(%%A (( -(% A,%(,%%A f

PAGE 27

7ZR GLIIHUHQW H[SHULPHQWDO PHWKRGV YLHUH XVHG ZKLFK JDYH HVVHQWLDOO\ WKH VDPH UHVXOWV 3RODUL]HG H[FLWDWLRQ DQG HPLVVLRQ VSHFWUD ZHUH ILUVW UXQ RQ DQ $PLQFR%RZPDQ VSHFWURIO XRULPHWHU HTXLSSHG ZLWK D OLTXLG QLWURJHQ LPPHUVLRQ 'HZDU DQG *ODQ7KRPSVRQ SRODUL]LQJ DFFHVVRU\ +RZn HYHU LQ REWDLQLQJ WKH SRODUL]HG H[FLWDWLRQ VSHFWUD WKHUH ZDV VRPH VHFRQGRUGHU VFDWWHULQJ RI WKH H[FLWLQJ OLJKW DW VKRUW ZDYHOHQJWKV 6SHFWUD ZHUH UHFRUGHG RQ D UHODWLYHO\ VPDOO DUHD RI FKDUW SDSHU ZKLFK PDGH DQ DFFXUDWH LQWHUSUHWDWLRQ RI LQWHQVLW\ YHUVXV ZDYHOHQJWK VRPHZKDW GLIILFXOW ,Q RUGHU WR REWDLQ PRUH KLJKO\ UHVROYHG VSHFWUD WKH H[SHULn PHQWDO DUUDQJHPHQW VKRZQ LQ )LJXUH ZDV HPSOR\HG 4XLQL]DULQ GLVVROYHG LQ (3$ ZDV SODFHG LQ D PP ,' TXDUW] 6XSUDVLO WXEH 7KH WXEH ZDV WKHQ SODFHG LQ D TXDUW] LPPHUVLRQ 'HZDU ZKLFK ZDV FODPSHG LQWR SODFH RQ D ULQJ VWDQG PRXQWHG RQ WKH RSWLFDO WDEOH $ VWUHDP RI DLU ZDV EORZQ DFURVV WKH 'HZDU WR SUHYHQW FRQGHQVDWLRQ /LJKW IURP WKH (LPDF ODPS ZDV SDVVHG WKURXJK WKH H[FLWDWLRQ PRQRn FKURPDWRU 7KH H[FLWLQJ OLJKW ZDV FROOLPDWHG DQG IRFXVHG RQ WKH VDPSOH E\ TXDUW] 6XSUDVLO RSWLFV 3RODUL]DWLRQ RI WKH H[FLWDWLRQ EHDP ZDV DFKLHYHG E\ SDVVLQJ WKH IRFXVHG OLJKW WKURXJK D *ODQ7KRPSVRQ SRODUL]HU SODFHG GLUHFWO\ LQ IURQW RI WKH LPPHUVLRQ 'HZDU (PLVVLRQ ZDV FROOHFWHG DW ULJKW DQJOHV WR WKH GLUHFWLRQ RI H[FLWDn WLRQ 3RODUL]DWLRQ RI WKH HPLWWHG OLJKW ZDV REWDLQHG E\ XVLQJ D 3RODURLG VKHHW PRXQWHG LQ IURQW RI WKH HQWUDQFH VOLWV RI WKH HPLVVLRQ PRQRFKURPDWRU ,Q REWDLQLQJ WKH SRODUL]HG H[FLWDWLRQ VSHFWUD WKH H[FLWDWLRQ PRQRFKURPDWRU KDG WR EH VFDQQHG IURP ƒ XS WR SDVW $ 7KLV FRXSOHG ZLWK WZR RWKHU IDFWRUV OHG WR WKH QHFHVVLW\ RI VFDQQLQJ WKH H[FLWDWLRQ VSHFWUD LQ WZR VHJPHQWV 7KH 'HZDU XVHG KHOG HQRXJK OLTXLG

PAGE 28

)LJXUH %ORFN 'LDJUDP RI ([SHULPHQWDO 6HW8S IRU 3RODUL]DWLRQ ([SHULPHQWV

PAGE 29

QLWURJHQ IRU DSSUR[LPDWHO\ PLQXWHV ,Q RUGHU IRU D VHW RI VSHFWUD WR EH LQWHUQDOO\ VHOIFRQVLVWHQW D VFDQ RI DOO IRXU SRVVLEOH RULHQWDWLRQV RI WKH SRODUL]HUV KDG WR EH WDNHQ RQ D VLQJOH JODVV VDPSOH ZLWKRXW UHn ILOOLQJ WKH 'HZDU $OVR VLQFH WKH RXWSXW RI WKH (LPDF ODPS ZDV PXFK JUHDWHU LQ WKH YLVLEOH WKDQ LQ WKH XOWUDYLROHW UHJLRQ D UHDGMXVWPHQW RI PRQRFKURPDWRU VOLW ZLGWKV KDG WR EH PDGH EHIRUH VFDQQLQJ LQWR WKH YLVLEOH UHJLRQ WR NHHS WKH FKDUW UHFRUGHU IURP JRLQJ RIIVFDOH 7KHUHIRUH WKH H[FLWDWLRQ VSHFWUD IRU TXLQL]DULQ ZHUH XVXDOO\ VFDQQHG IURP $ XS R WR $ $ VFDQ RI WKH YLVLEOH UHJLRQ ZDV PDGH RQ D IUHVK JODVV VDPSOH IURP $ XS WR SDVW $ $Q DYHUDJH RI SRODUL]DWLRQ YDOXHV IURP WKH WZR GLIIHUHQW UXQV ZDV WDNHQ LQ WKH DUHD RI RYHUODS ,Q JHQHUDO WKH DJUHHPHQW ZDV JRRG EHWZHHQ WKH WZR VHWV RI GDWD :KHQ D VHW RI SRODUL]HG H[FLWDWLRQ VSHFWUD ZDV REWDLQHG WKH HPLVn VLRQ PRQRFKURPDWRU ZDV VHW RQ D ZDYHOHQJWK FRUUHVSRQGLQJ WR WKH PD[LPXP RI D YLEURQLF EDQG LQ WKH HPLVVLRQ VSHFWUXP 7KH FKDUW UHFRUGHU ZDV V\QFKURQL]HG WR WKH VFDQ GULYH RI WKH H[FLWDWLRQ PRQRFKURPDWRU DQG WKH ZDYHOHQJWK UHJLRQ RI LQWHUHVW ZDV VFDQQHG 6OLWV RI WKH H[FLWDWLRQ PRQRFKURPDWRU ZHUH PDLQWDLQHG DW PLFURQV RU OHVV ZKLOH WKRVH RI WKH HPLVVLRQ PRQRFKURPDWRU ZHUH PDLQWDLQHG DW PLFURQV RU OHVV ,Q WKH HPLVVLRQ PRGH WKH VWULS FKDUW UHFRUGHU ZDV V\QFKURQL]HG ZLWK WKH VFDQQLQJ GULYH RI WKH HPLVVLRQ PRQRFKURPDWRU 7KH H[FLWDWLRQ PRQRn FKURPDWRU ZDV PDLQWDLQHG DW D IL[HG ZDYHOHQJWK DQG WKH IOXRUHVFHQFH HPLVVLRQ VSHFWUXP ZDV REWDLQHG 6SHFWUD ZHUH DOVR REWDLQHG KHUH IRU DOO IRXU SRVVLEOH RULHQWDWLRQV RI WKH WZR SRODUL]HUV 7KH H[SHULPHQWDO DUUDQJHPHQW IRU REWDLQLQJ WKH SRODUL]HG H[FLWDWLRQ VSHFWUD RI GDL!QRUXELFLQ ZDV VLPLODU ZLWK WKH GLVWLQFWLRQ WKDW WKH TXDUW]

PAGE 30

LPPHUVLRQ 'HZDU ZDV QRW XVHG $V PHQWLRQHG EHIRUH LW ZDV QHFHVVDU\ WR XVH WKH KLJKO\ YLVFRXV JO\FHULQDOFRKROZDWHU PL[WXUH WR REWDLQ SRODUL]HG H[FLWDWLRQ VSHFWUD VLQFH QR VXLWDEOH JODVV FRXOG EH IRXQG IRU GDXQRUX ELFLQ 7KH PL[WXUH ZDV SODFHG LQ D 2' TXDUW] 6XSUDVLO WXEH DQG PRXQWHG LQ WKH VDPH SRVLWLRQ DV WKH LPPHUVLRQ 'HZDU KDG EHHQ DQG VSHFWUD ZHUH REWDLQHG DV GHVFULEHG LQ WKH FDVH RI TXLQL]DULQ 6LQFH WKH GDXQRUXELFLQ H[KLELWHG EURDG VWUXFWXUHOHVV IOXRUHVFHQFH QR SRODUL]HG IOXRUHVFHQFH HPLVVLRQ VSHFWUD ZHUH UHFRUGHG

PAGE 31

&+$37(5 ,,, 7+( $17+5$48,121( 6<67(0 ,QWURGXFWLRQ 7KH PROHFXODU VWUXFWXUH RI DQWKUDTXLQRQH DQG LWV FU\VWDOOLQH PRUn SKRORJ\ DUH ZHOO NQRZQ f 7KH DQWKUDTXLQRQH PROHFXOH LV SODQDU DQG EHORQJV WR WKH 'A SRLQW JURXS ZKLOH LWV FU\VWDOOLQH VSDFH JURXS LV &K *URXS WKHRUHWLFDO FRQVLGHUDWLRQV RI WKH HOHFWURQLF FRQILJXUDWLRQV RI DQWKUDTXLQRQH VKRZ WKDW HPLVVLRQ IURP WKH WULSOHW OHYHO FRXOG RFFXU IURP HLWKHU WKH $X %A %A RU %A VWDWHV ,W LV JHQHUDOO\ DFFHSWHG f WKDW WKH ORZHVW WULSOHW HQHUJ\ OHYHOV RI WKH DQWKUDTXLQRQH PROHFXOH DUH WKH %M DQG $X VWDWHV 7KHVH WZR VWDWHV DUH GHJHQHUDWH LI LQWHUn DFWLRQV EHWZHHQ WKH WZR FDUERQ\O JURXSV DUH QHJOHFWHG 2Q WKH EDVLV RI SRODUL]HG VLQJOH FU\VWDO DEVRUSWLRQ PHDVXUHPHQWV DW r. 'HDUPDQ DQG FRZRUNHUV f KDYH DVVLJQHG WKH ORZHVW WULSOHW VWDWH RI DQWKUDTXLQRQH DV $ 7KLV DVVLJQPHQW ZDV UHIXWHG LQ ODWHU SRODUL]HG =HHPDQ f DQG 6WDUN=HHPDQ f DEVRUSWLRQ PHDVXUHPHQWV ZKHUH LW ZDV FRQFOXGHG WKDW WKH ORZHVW WULSOHW VWDWH RI DQWKUDTXLQRQH LV %A DQG WKDW LW LV VHSDUDWHG IURP WKH $X VWDWH E\ FP LQ WKH FU\VWDO f 7KH WUDQVLWLRQ %A $A LV IRUELGGHQ RQ WKH JURXQGV RI VSLQ DQG SDULW\ FRQVHUYDWLRQ ZKLOH WKH WUDQVLWLRQ $X $A LV RQO\ VSLQ IRUn ELGGHQ

PAGE 32

,W KDV EHHQ VKRZQ f WKDW WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH LV QQr W\SH LQSODQH SRODUL]HG 0HDVXUHPHQWV RI WKH SRODUL]HG 67 DEVRUSWLRQ VSHFWUD f VKRZHG WKDW WKH GLSROH PRPHQW RI WKH WUDQVLWLRQ OLHV LQ WKH SODQH RI WKH PROHFXOH SDUDOOHO WR WKH & D[LV WKH = D[LV LQ 0X LNHQnV QRWDWLRQf 7KHUHIRUH WKH YLEUDWLRQDO EDQGV SUHVHQW LQ WKH HPLVVLRQ VSHFWUXP RI DQWKUDTXLQRQH PD\ EH YLHZHG DV SULPDULO\ EHLQJ SRODUL]HG DORQJ WKH = D[LV ,I WKH FRQFOXVLRQV LQ f DUH FRUUHFW DQG WKH % LV WKH ORZHU WULSOHW OHYHO WKHQ WKH WUDQVLWLRQ % $ LJ LJ J ZLOO RFFXU SULPDULO\ DV D UHVXOW RI ERUURZLQJ LQWHQVLW\ IURP WKH QHDUE\ A% WKWrf VWDWH OX Y n ,W LV ZHOO NQRZQ f WKDW LQ WKH FDVH RI IRUELGGHQ HOHFWURQLF WUDQVLWLRQV ZKHUH YLEURQLF FRXSOLQJ SOD\V DQ LPSRUWDQW SDUW LQ DOORZLQJ WKH WUDQVLWLRQ WR RFFXU RQO\ RGG TXDQWD RI WKH FRXSOLQJ YLEUDWLRQV ZLOO DSSHDU 7KHVH YLEUDWLRQV ZLOO EH DQWLV\PPHWULF ZLWK UHVSHFW WR DQ\ V\PPHWU\ RSHUDWLRQ WR ZKLFK WKH WUDQVLWLRQ PRPHQW LQWHJUDO LV DQWLV\Pn PHWULF ,Q WKH FDVH RI DQWKUDTXLQRQH WKLV ZLOO EH YLEUDWLRQV RI WKH W\SH E ,I WKH FDUERQ\O VWUHWFKLQJ IUHTXHQF\ DQG YLEUDWLRQDO SURn JUHVVLRQV EXLOW XSRQ LW DUH SUHVHQW DV LV QRUPDOO\ WKH FDVH IRU QWWr SKRVSKRUHVFHQFH IURP FDUERQ\OFRQWDLQLQJ FRPSRXQGV f WKHQ WKH ORZ WHPSHUDWXUH 6KSROVNLL PDWUL[ SKRVSKRUHVFHQFH VKRXOG UHYHDO WKHP ,I WKH ORZHVW WULSOHW VWDWH ZHUH LQGHHG WKH %M WKHQ D FORVH DQDO\VLV RI YLEUDWLRQDO SURJUHVVLRQV SUHVHQW LQ WKH SKRVSKRUHVFHQFH VSHFWUXP VKRXOG FRQILUP WKLV $QDO\VHV RI WKH VSHFWUD ZHUH KDQGLFDSSHG E\ D ODFN RI UHOLDEOH 5DPDQ GDWD $V DQ DGMXQFW WR WKLV SRUWLRQ RI WKH UHVHDUFK LW ZDV GHFLGHG WR REWDLQ SRODUL]HG VLQJOH FU\VWDO 5DPDQ VSHFWUD RI DQWKUDTXLQRQH +RZHYHU IRU UHDVRQV ZKLFK DUH GLVFXVVHG LQ D ODWHU VHFWLRQ RI WKLV SDSHU WKHVH

PAGE 33

DWWHPSWV ZHUH XQVXFFHVVIXO $OVR D KLJKO\ UHVROYHG ORZ WHPSHUDWXUH 6KSROVNLL PDWUL[ HPLVVLRQ VSHFWUXP RI DQWKUDTXLQRQH ZDV SXEOLVKHG f EHIRUH WKH DQDO\VLV SUHVHQWHG KHUH ZDV FRPSOHWH 7KHUHIRUH WKH SUHVHQW UHVXOWV ZLOO RQO\ EH UHSRUWHG WR WKH H[WHQW WKDW WKH\ H[WHQG WKRVH ILQGLQJV ,Q FRPSDULQJ VSHFWUD REWDLQHG DW r. DQG r. LW ZDV QRWLFHG WKDW VHYHUDO VPDOO KLJK HQHUJ\ SHDNV KDG DSSHDUHG DV WKH WHPSHUDWXUH ZDV LQn FUHDVHG 7KH VHSDUDWLRQ EHWZHHQ WKH ORFDWLRQ FKRVHQ DV WKH SRVLWLRQ RI WKH DQWKUDTXLQRQH SKRVSKRUHVFHQFH DQG WKH KLJKHVWHQHUJ\ WHPSHUDWXUH GHSHQGHQW EDQG ZDV DSSUR[LPDWHO\ FPf 7KLV ZDV YHU\ FORVH WR WKH YDOXH RI FP A WHQWDWLYHO\ VXJJHVWHG DV WKH WULSOHW OHYHO VHSDUDWLRQ LQ WKH FU\VWDO f ,W ZDV WKRXJKW WKDW SHUKDSV WKH XSSHU WULSOHW OHYHO PLJKW EH WKHUPDOO\ SRSXODWHG E\ WKH ORZHU RQH 6XFK EHKDYLRU KDV EHHQ REVHUYHG LQ RWKHU PROHFXOHV f 7KHUHIRUH D VHULHV RI H[SHULn PHQWV ZHUH XQGHUWDNHQ LQ DQ HIIRUW WR GHWHUPLQH ZKHWKHU WKH KLJKHU HQHUJ\ SHDNV ZHUH HPLVVLRQ IURP D WKHUPDOO\ SRSXODWHG WULSOHW OHYHO RI DQWKUDTXLQRQH RU ZKHWKHU WKH\ KDG VRPH RWKHU RULJLQ ,Q VXPPDU\ WKLV SRUWLRQ RI WKH UHVHDUFK KDG WKUHH PDMRU REMHFn WLYHV f WR REWDLQ DQG DQDO\]H KLJKO\ UHVROYHG SKRVSKRUHVFHQFH VSHFWUD RI DQWKUDTXLQRQH LQ QSDUDIILQ PDWULFHV DW ORZ WHPSHUDWXUHV f WR REWDLQ SRODUL]HG VLQJOH FU\VWDO 5DPDQ VSHFWUD LQ RUGHU WR PDNH GHILQLWLYH DVVLJQPHQWV RI 5DPDQDFWLYH QRUPDO YLEUDWLRQV f WR GHWHUPLQH WKH H[DFW QDWXUH RI WKH WHPSHUDWXUH GHSHQGHQW KLJKHU HQHUJ\ HPLVVLRQ EDQGV LQ WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH 6KSROVNLL 6\VWHPV DQG ,PSXULW\/DWWLFH ,QWHUDFWLRQV 7KH ORZ WHPSHUDWXUH SKRVSKRUHVFHQFH VSHFWUXP RI DQWKUDTXLQRQH LQ QKH[DQH LV DQ H[DPSOH RI ZKDW LV FRPPRQO\ UHIHUUHG WR DV WKH 6KSROVNLL

PAGE 34

HIIHFW 7KH 6KSROVNLL HIIHFW ZDV GLVFRYHUHG E\ (9 6KSROVNLL f DV SDUW RI D V\VWHPDWLF LQYHVWLJDWLRQ RI OXPLQHVFHQFH DQG DEVRUSWLRQ VSHFWUD RI ODUJH RUJDQLF PROHFXOHV LQ IUR]HQ FU\VWDOOLQH QSDUDIILQ PDWULFHV $V LQ WKH FDVH RI VXEVWLWXWHG PROHFXODU FU\VWDOV LH QDSKWKDOHQH LQ GXUHQH WKH HIIHFW LV JHQHUDOO\ FRQVLGHUHG WR DULVH IURP VXEVWLWXWLRQ RI JXHVW PROHFXOHV LQWR WKH FU\VWDOOLQH ODWWLFH RI WKH KRVW 7KH JXHVW PROHFXOHV H[LVW DV GLVFUHWH PROHFXODU VXEVWLWXWLRQDO VLWHV UDWKHU WKDQ DV FU\VWDOOLQH DJJUHJDWHV f ,Q LQYHVn WLJDWLRQV RI HOHFWURQLF WUDQVLWLRQV WKH 6KSROVNLL PDWUL[ PHWKRG SRVVHVVHV WKH LQKHUHQW DGYDQWDJH WKDW WKH HOHFWURQLF HQHUJ\ OHYHOV RI WKH KRVW DUH XVXDOO\ PXFK JUHDWHU WKDQ WKRVH RI WKH JXHVW VR WKDW WKH RQO\ HOHFWURQLF WUDQVLWLRQV ZKLFK RFFXU XSRQ H[FLWDWLRQ DUH WKRVH RI WKH JXHVW PROHFXOH ,Q DQ H[SHULPHQW LQYROYLQJ WKH 6KSROVNLL PHWKRG WKH VXEVWDQFH XQGHU LQYHVWLJDWLRQ LV GLVVROYHG LQ D VXLWDEOH VROYHQW XVXDOO\ DQ QDONDQH DQG WKH VROXWLRQ LV WKHQ IUR]HQ $W YHU\ ORZ WHPSHUDWXUHV WKH JXHVW PROHFXOHV XQGHUJR HOHFWURQLF WUDQVLWLRQV LQ ERWK DEVRUSWLRQ DQG HPLVVLRQ ZLWK D YHU\ KLJK SUREDELOLW\ WKDW HLWKHU QR FKDQJH RU VPDOO FKDQJHV LQ WKH SKRQRQ HQHUJ\ RI WKH KRVW ZLOO WDNH SODFH 7KLV ZLOO GHSHQG XSRQ WKH QDWXUH RI WKH HOHFWURQLF WUDQVLWLRQ DQG XSRQ WKH H[WHQW RI FRXSOLQJ RI LQSXULW\ PROHFXOHV WR WKH KRVW ODWWLFH 6SHFWUD SURGXFHG E\ WKHVH WUDQVLWLRQV DUH TXDVLOLQHDU LQ QDWXUH KDYLQJ EDQGV ZKLFK DUH YHU\ VKDUS DQG ZHOOGHILQHG ZLWK UHVLGXDO KDOIn ZLGWKV RI DSSUR[LPDWHO\ FPfA DW YHU\ ORZ WHPSHUDWXUHV 7KH\ DUH VRPHWLPHV FRQVLGHUHG WR EH WKH RSWLFDO DQDORJXH RI WKH 0RVVEDXHU HIIHFW f 6LQFH HPLVVLRQ LQ D FRQGHQVHG PHGLXP QRUPDOO\ RFFXUV IURP WKH JURXQG VWDWH YLEUDWLRQDO OHYHO RI WKH HOHFWURQLF H[FLWHG VWDWH WKHUH LV

PAGE 35

XVXDOO\ D YHU\ JRRG FRUUHODWLRQ EHWZHHQ WKH IUHTXHQFLHV RI VXFK SHDNV LQ WKH HPLVVLRQ VSHFWUXP DQG WKH JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV RI WKH JXHVW PROHFXOHV 7KHVH VKDUS SHDNV DUH RIWHQ DFFRPSDQLHG E\ PRUH GLIIXVH OHVV LQWHQVH EDQGV ZKLFK DUH XVXDOO\ DVVLJQHG DV ODWWLFH EDQGV LQ WKH DQDO\VLV RI D 6KSROVNLL PDWUL[ VSHFWUXP 0RUH ZLOO EH VDLG DERXW WKHVH ODWHU )RU PROHFXOHV LQ ZKLFK WKH HOHFWURQLF WUDQVLWLRQ LV DQ DOORZHG RQH WKHUH LV DQ RYHUODS RI WKH WUDQVLWLRQ LQ DEVRUSWLRQ DQG HPLVVLRQ $ WHPSHUDWXUH GHSHQGHQFH XSRQ WKH LQWHQVLW\ RI WKH VSHFWUXP LV DOVR REn VHUYHG ZLWK WKH LQWHQVLW\ LQFUHDVLQJ ZLWK GHFUHDVLQJ WHPSHUDWXUH ,W LV DOVR REVHUYHG WKDW FRQVLGHUDEOH EURDGHQLQJ DQG ORVV RI ILQH VWUXFWXUH RFFXUV DV WKH WHPSHUDWXUH LV UDLVHG 7KLV LV RIWHQ DFFRPSDQLHG E\ WKHUPDO OLQH VKLIWV 7KHUH DOVR DSSHDUV WR EH D FULWLFDO GHSHQGHQFH XSRQ WKH VL]H RI WKH VROYHQW PROHFXOH 7KLV LV PDQLIHVWHG H[SHULPHQWDOO\ LQ VHYHUDO GLIIHUHQW ZD\V 2QH RI WKHVH LV WKH IDFW WKDW D VSHFWUXP FDQ RIWHQ EH LQWHUSUHWHG LQ WHUPV RI VHYHUDO GLIIHUHQW VSHFWUD RI YDU\LQJ LQWHQVLWLHV ZKLFK DUH GLVSODFHG IURP HDFK RWKHU 7KLV HIIHFW LV H[SODLQHG LQ WHUPV RI GLIn IHUHQW VLWHV LQ WKH KRVW FU\VWDO LQ ZKLFK WKH JXHVW PROHFXOHV UHVLGH ,W LV DOVR IRXQG WKDW WKH VROYHQW PROHFXOH ZKLFK KDV D ORQJ D[LV GLPHQVLRQ FRPSDUDEOH WR WKDW RI WKH JXHVW PROHFXOH JLYHV WKH VKDUSHVW PRVW ZHOO UHVROYHG VSHFWUD $V PHQWLRQHG HDUOLHU D FRPPRQ IHDWXUH RI HOHFWURQLF VSHFWUD LQ 6KSROVNLL PDWUL[ V\VWHPV LV WKH DSSHDUDQFH RI VLGHEDQGV ZKLFK DUH DVVRFLDWHG ZLWK YLEUDWLRQDOHOHFWURQLF WUDQVLWLRQV 7KHVH VLGHEDQGV DUH XVXDOO\ WDNHQ WR EH HYLGHQFH RI WKH HOHFWURQSKRQRQ LQWHUDFWLRQ 7KH

PAGE 36

fH[DFW QDWXUH RI WKH LPSXULW\KRVW UHODWLRQVKLS LV QRW ZHOO XQGHUVWRRG 7KH ILUVW DWWHPSWV DW IRUPXODWLQJ D WKHRU\ WR GHVFULEH WKH HIIHFW REn VHUYHG LQ 6KSROVNLL V\VWHPV ZHUH PDGH E\ 5HEDQH f 7KH TXDVL OLQHDU EDQGV ZHUH DVVRFLDWHG ZLWK D SKRQRQOHVV RSWLFDO WUDQVLWLRQ DQG WKH GLIIXVH EDFNJURXQG ZDV DVVRFLDWHG ZLWK SKRQRQ EDQGV ,QWHUHVW LQ WKH H[DFW QDWXUH RI WKH LPSXULW\DWWLFH LQWHUDFWLRQ KDV OHG WR DWWHPSWV WR UHILQH WKH WKHRU\ RI LQWHUDFWLRQV f DQG DOVR WR DFFRXQW IRU WKHUPDO EURDGHQLQJ DQG VKLIWV RI WKH VRFDOOHG ]HURSKRQRQ OLQHV LQ 6KSROVNLL V\VWHPV 5HFHQWO\ f H[SHULPHQWV KDYH EHHQ SHUIRUPHG XWLOL]LQJ ERWK DEVRUSWLRQ DQG HPLVVLRQ VSHFWUD XSRQ YDULRXV V\VWHPV LQ DWWHPSWV WR FODULI\ WKH QDWXUH RI WKH LPSXULW\ODWWLFH LQWHUDFWLRQ ,Q DQ\ WUHDWPHQW RI WKH WKHRU\ RI RSWLFDO VSHFWUD RI LPSXULWLHV LQ VROLGV f VHYHUDO DVVXPSWLRQV DUH QRUPDOO\ PDGH %RWK WKH %RUQ2SSHQKHLPHU DSSUR[LPDWLRQ DQG WKH )UDQFN&RQGRQ SULQFLSOH DUH WDNHQ WR EH YDOLG ,W LV JHQHUDOO\ DVVXPHG WKDW WKH LPSXULW\ FRQFHQWUDWLRQ LV ORZ VR WKDW LPSXULW\LPSXULW\ LQWHUDFWLRQV DUH WDNHQ WR EH QHJOLJLEOH ,W LV DOVR JHQHUDOO\ DVVXPHG WKDW HOHFWURQLF HLJHQVWDWHV RI WKH LPSXULW\ DUH DW GLIIHUHQW HQHUJLHV WKDQ WKH HOHFWURQLF EDQGV RU VWDWHV RI WKH KRVW FU\VWDO 7KH SUHVHQFH RI WKH LPSXULW\ ZLOO VHUYH WR GHVWUR\ WKH WUDQVODWLRQDO V\PPHWU\ RI WKH KRVW FU\VWDO VR WKDW WKH UHOHYDQW V\Pn PHWU\ ZLOO EH WKH VLWH V\PPHWU\ RI WKH LPSXULW\ ,W ZLOO DOVR SHUWXUE WKH ODWWLFH YLEUDWLRQV RI WKH FU\VWDO E\ JLYLQJ ULVH WR ORFDOL]HG YLEUDWLRQV ZKLFK GR QRW H[LVW LQ WKH YLEUDWLRQDO VSHFWUXP RI WKH XQVXEn VWLWXWHG KRVW FU\VWDO ,Q JHQHUDO WKH LPSXULW\ ZLOO LQWHUDFW ZLWK ERWK EDQG DQG ORFDOL]HG YLEUDWLRQV f 'HWDLOHG WUHDWPHQWV RI WKH WKHRU\ RI ODWWLFHLPSXULW\ LQWHUDFWLRQV LQ WKH RSWLFDO VSHFWUD RI LPSXULWLHV LQ VROLGV DUH DYDLODEOH

PAGE 37

Ef ,Q WKH JHQHUDO FDVH WKH RSWLFDO VSHFWUXP RI WKH LPSXULW\ FU\VWDO ZLOO FRQVLVW RI D QDUURZ ]HURSKRQRQ OLQH FRUUHVSRQGLQJ WR WKH SXUHO\ HOHFWURQLF WUDQVLWLRQ LQ WKH LPSXULW\ VLWH DFFRPSDQLHG E\ EURDG SKRQRQ VLGHEDQGV FDXVHG E\ WUDQVLWLRQV ZLWK VLPXOWDQHRXV H[FLWDWLRQ RI SKRQRQV f ,Q WKH FDVH ZKHUH ORFDOL]HG PRGHV DUH SUHVHQW LQ WKH FU\VWDO YLEUDWLRQDO UHSOLFDV RI WKH ]HURSKRQRQ OLQH ZLOO EH SURGXFHG DW IUHTXHQFLHV QX! IURP WKH ]HURSKRQRQ OLQH ZKHUH Z LV WKH IUHTXHQF\ RI WKH ORFDOL]HG YLEUDWLRQ Q LV DQ LQWHJHU WKH SOXV VLJQ FRUUHVSRQGV WR DEVRUSWLRQ DQG WKH PLQXV VLJQ WR HPLVVLRQ f 3K\VLFDOO\ WKH LQWHUn DFWLRQ RI WKH HOHFWURQLF WUDQVLWLRQ LQ WKH LPSXULW\ VLWH ZLWK WKH WKHUPDO YLEUDWLRQV RI WKH FU\VWDO ZLOO PDQLIHVW LWVHOI LQ LWV LQIOXHQFH XSRQ WKH LQWHQVLW\ OLQHZLGWK DQG SRVLWLRQ RI WKH ]HURSKRQRQ OLQH 7KH WKHRU\ RI WKH HOHFWURQSKRQRQ FRXSOLQJ SUHGLFWV DQ H[SRQHQWLDO GHSHQGHQFH RI WKH UHODWLYH LQWHJUDWHG LQWHQVLW\ RI WKH ]HURSKRQRQ OLQH RQ WHPSHUDWXUH 7KH UDWLR RI WKH LQWHQVLW\ RI WKH ]HURSKRQRQ OLQH WR WKH WRWDO VSHFWUXP LQWHQVLW\ PD\ EH H[SUHVVHG DV f ,4, H[S>3L f@ H[S>67f@ f ,Q WKLV H[SUHVVLRQ L LV DQ LQGH[ IRU DFRXVWLF DQG ORFDO YLEUDWLRQV S LV WKH GLPHQVLRQOHVV 6WRNHV ORVV SHU FU\VWDOOLQH RVFLOODWRU L DQG LV HTXDO WR P Z $eILf Z LV WKH IUHTXHQF\ RI WKH LWK RVFLOODWRU PM LV WKH HIIHFWLYH PDVV $e LV WKH VKLIW LQ WKH HTXLOLEULXP SRVLWLRQ RI WKH LWK RVFLOODWRU GXULQJ DQ RSWLFDO WUDQVLWLRQ LQ WKH LPSXULW\ VLWH QA >H[SLmN7f @ A LV WKH WKHUPDO DYHUDJH RI WKH RFFXSDWLRQ QXPEHU RI WKH LWK RVFLOODWRU DQG 67f LV WKH +XDQJ5K\V IDFWRU ZKLFK GHQRWHV WKH VWUHQJWK RI LPSXULW\DWWLFH FRXSOLQJ f

PAGE 38

$Q H[DPLQDWLRQ RI WKH UHODWLYH LQWHJUDWHG LQWHQVLW\ RI WKH ]HUR SKRQRQ OLQH DV D IXQFWLRQ RI WHPSHUDWXUH ZRXOG VHUYH WR JLYH LQIRUPDWLRQ DERXW WKH VWUHQJWK RI WKH ODWWLFHLPSXULW\ FRXSOLQJ VLQFH WKH RYHUDOO LQWHJUDWHG LQWHQVLW\ RI WKH ]HURSKRQRQ OLQH DQG LWV DFFRPSDQ\LQJ SKRQRQ EDQGV LV LQGHSHQGHQW RI WHPSHUDWXUH LQ WKH )UDQFN&RQGRQ DSSUR[LPDWLRQ f ,QWHQVLW\ ORVW E\ WKH ]HURSKRQRQ OLQH VKRXOG EH JDLQHG E\ WKH SKRQRQ VLGH EDQG VLQFH LQFUHDVHG HOHFWURQSKRQRQ LQWHUDFWLRQ ZRXOG RFFXU DV WKH WHPSHUDWXUH LQFUHDVHG 7KH H[WHQW RI WKH LPSXULW\ODWWLFH FRXSOLQJ ZRXOG EH FKDUDFWHUL]HG E\ WKH UHVXOWLQJ YDOXH RI 6 VLQFH WKH ODUJHU WKH YDOXH RI 6 WKH JUHDWHU WKH LPSXULW\ODWWLFH FRXSOLQJ LV WDNHQ WR EH 7KH QDWXUH RI WKH EURDGHQLQJ RI WKH ]HURSKRQRQ OLQH ZLOO GHSHQG XSRQ WKH VWUXFWXUH RI WKH HOHFWURQLF HQHUJ\ OHYHOV RI WKH LPSXULW\ f )RU WKH FDVH ZKHUH WKH PD[LPXP SKRQRQ HQHUJ\ LV JUHDWHU RU HTXDO WR WKH GLIIHUHQFH LQ WKH HQHUJLHV RI WKH HOHFWURQLF OHYHOV WKH EURDGHQLQJ PD\ EH PDLQO\ GHWHUPLQHG E\ QRQUDGLDWLYH WKHUPDO SURFHVVHV ZKHQ DEVRUSWLRQ RU HPLVVLRQ RI D VLQJOH UHVRQDQFH SKRQRQ RFFXUV DW WKH VDPH WLPH DV WKH HOHFWURQLF WUDQVLWLRQ ,Q WKH RSSRVLWH FDVH WKDW ZKHUH WKH GLIIHUHQFH LQ WKH HQHUJLHV RI WKH HOHFWURQLF OHYHOV LV JUHDWHU WKDQ WKH PD[LPXP SKRQRQ HQHUJ\ 5DPDQ VFDWWHULQJ RI SKRQRQV E\ WKH LPSXULW\ FHQWHU PD\ SOD\ DQ LPSRUWDQW SDUW LQ WKH WKHUPDO EURDGHQLQJ f ,I WKH HOHFWURQLF WUDQVLWLRQ ZKLFK WDNHV SODFH LV D SKRQRQDVVLVWHG RQH FHUWDLQ DGGLWLRQDO IHDWXUHV ZLOO PDQLIHVW WKHPVHOYHV 7KH YLEURQLF EDQGV SUHVHQW GXH WR D SKRQRQDVVLVWHG WUDQVLWLRQ ZLOO LQYROYH WKH HPLVVLRQ RI SKRWRQV DQG WKH FUHDWLRQ RU DQQLKLODWLRQ RI SKRQRQV 'Hn SHQGLQJ XSRQ WKH HQHUJ\ OHYHOV LQYROYHG HLWKHU RU ERWK RI 6WRNHV DQG

PAGE 39

DQWL6WRNHV HPLVVLRQ RI SKRQRQV ZL RFFXU 'L %DUWROR f KDV GHULYHG WKH UHOHYDQW PDWUL[ HOHPHQWV IRU VXFK SURFHVVHV 6LQFH WKHUPDO YLEUDWLRQV DUH LQYROYHG WKH LQWHQVLWLHV RI WKH SKRQRQ EDQGV RQ HLWKHU VLGH RI D ]HURSKRQRQ OLQH ZLOO EH WHPSHUDWXUH GHSHQGHQW ,Q WKH VLPSOHVW FDVH WKDW RI D RQHSKRQRQ WUDQVLWLRQ WKH SURFHVV ZLOO GHSHQG XSRQ WKH QXPEHU RI SKRQRQV SUHVHQW 7KH WHPSHUDWXUH GHSHQGHQFH LV FRQWDLQHG LQ WKH H[SUHVVLRQ IRU WKH QXPEHU RI SKRQRQV QS >H[SKrSN7f O@ f 7KH YDOXH RI Q EHFRPHV YHU\ VPDOO DV 7 LV UHGXFHG $V VKRZQ LQ 3 f WKLV ZLOO UHVXOW LQ WKH DOPRVW WRWDO GLVDSSHDUDQFH RI HPLVVLRQ RI DQWL6WRNHV SKRQRQV DW ORZ WHPSHUDWXUHV ZKLOH WKH 6WRNHV SURFHVVHV ZLOO SHUVLVW ,W LV DOVR H[SHFWHG WKDW DV WKH WHPSHUDWXUH LQFUHDVHV DQ LQFUHDVH RI WKH PXOWLSKRQRQ EDFNJURXQG ZLOO RFFXU 7KHVH SURFHVVHV ZLOO WHQG WR VPRRWK RXW WKH SHDNV VR WKDW DQ DOPRVW FRQWLQXRXV EDFNJURXQG ZLOO UHVXOW ([SHULPHQWDO $QWKUDTXLQRQH DQG QSDUDIILQ VROYHQWV ZHUH REWDLQHG DV GHVFULEHG LQ &KDSWHU ,, 7KH WHFKQLTXHV GHVFULEHG WKHUH IRU REWDLQLQJ 6KSROVNLL PDWUL[ VSHFWUD DQG PHDVXUHPHQWV RI SKRVSKRUHVFHQFH OLIHWLPHV ZHUH HPn SOR\HG 7KH ,5 VSHFWUD ZHUH REWDLQHG LQ .%U GLVNV RQ D 3HUNLQ(OPHU VSHFWURPHWHU $V ZDV PHQWLRQHG LQ WKH LQWURGXFWRU\ VHFWLRQ RI WKLV FKDSWHU XQn VXFFHVVIXO DWWHPSWV ZHUH PDGH WR REWDLQ SRODUL]HG VLQJOH FU\VWDO 5DPDQ VSHFWUD RI DQWKUDTXLQRQH 7KHUH ZHUH VHYHUDO UHDVRQV IRU DWWHPSWLQJ

PAGE 40

WKHVH H[SHULPHQWV 7KHUH LV VRPH GLVDJUHHPHQW FRQFHUQLQJ WKH SUHVHQFH RU DEVHQFH RI FHUWDLQ OLQHV LQ WKH SRZGHU VSHFWUXP RI DQWKUDTXLQRQH DV ZHOO DV WKH DVVLJQPHQW RI FHUWDLQ H[SHULPHQWDOO\ REVHUYHG IUHTXHQFLHV WR QRUPDO PRGHV f 7KH PRVW FRPSOHWH H[SHULPHQWDO VWXG\ XSRQ SRZGHU VDPSOHV LV WKDW RI 5DVDQHQ DQG 6WHQPDQ f ZLWK IUHTXHQFLHV EHLQJ DVVLJQHG RQ WKH EDVLV RI QRUPDO FRRUGLQDWH FDOFXODWLRQV RI 6WURNDFK *DVWLORYLFK DQG 6KLJRULQ f ,Q FDVHV ZKHUH WKH FU\VWDO VWUXFn WXUH RI D FRPSRXQG LV NQRZQ WKH PHWKRG RI SRODUL]HG VLQJOH FU\VWDO 5DPDQ VSHFWURVFRS\ KDV SURYHQ WR EH YHU\ XVHIXO LQ WKH XQDPELJXRXV DVVLJQPHQW RI 5DPDQ DFWLYH QRUPDO PRGHV RI YLEUDWLRQ f 6LQJOH FU\VWDOV RI DQWKUDTXLQRQH ZHUH JURZQ E\ WKH %ULGJPDQ WHFKn QLTXH 7KH GHVLJQ RI WKH IXUQDFH ZDV EDVHG XSRQ WKRVH GHVFULEHG E\ /LSVHWW f 7ZR ZHHNV ZHUH QRUPDOO\ UHTXLUHG WR SDVV DQ DQWKUDTXLQRQH LQJRW WKURXJK WKH IXUQDFH 7KH 5DPDQ VSHFWURPHWHU XVHG ZDV D 6SH[ 5DPDORJ ZLWK D 6SH[ GRXEOH PRQRFKURPDWRU DQG DQ 5&$ FRROHG SKRWRPXOWLSOLHU WXEH ZKLFK FRXOG EH RSHUDWHG LQ WKH SKRWRQFRXQWLQJ PRGH 7KH H[FLWDWLRQ VRXUFH QRUPDOO\ HPSOR\HG ZLWK WKLV V\VWHP ZDV D &RKHUHQW 5DGLDWLRQ 0RGHO &5 DUJRQ LRQ ODVHU 0DOIXQFWLRQV RI WKH DUJRQ LRQ ODVHU DQG WKH SKRWRn PXOWLSOLHU WXEH UHVXOWHG LQ D OHQJWK\ SHULRG RI LQDFWLYLW\ LQ WKLV SRUWLRQ RI WKH UHVHDUFK ,W ZDV IRXQG WKDW DQWKUDTXLQRQH IOXRUHVFHG VWURQJO\ XQGHU H[FLWDWLRQ E\ WKH DUJRQ LRQ ODVHU OLQHV VR WKDW QR 5DPDQ VSHFWUD FRXOG EH REWDLQHG 7KH H[DFW QDWXUH RI WKH IOXRUHVFHQFH ZKLFK RIWHQ RFFXUV LQ 5DPDQ VSHFWUD LV QRW FOHDU ,Q WKLV FDVH LW ZDV GHFLGHG WR HPSOR\ WKH DFFHVVRU\ &RKHUHQW 5DGLDWLRQ 0RGHO G\H ODVHU DV DQ H[FLWDWLRQ VRXUFH WR VHH LI JRLQJ WR ORQJHU ZDYHOHQJWKV RI H[FLWDWLRQ ZRXOG GHFUHDVH WKH IOXRUHVFHQFH

PAGE 41

$WWHPSWV WR XVH WKH G\H ODVHU SURYHG WR EH RQO\ D OLWWOH PRUH VXFFHVVIXO 7KH SRZHU RXWSXW RI WKH G\H ODVHU ZDV YHU\ XQVWDEOH 6LQFH B WKH 5DPDQ HIIHFW LV RUGLQDULO\ RQ WKH RUGHU RI WLPHV WKH DFFRPSDQ\n LQJ 5D\OHLJK VFDWWHULQJ D YHU\ SRRU VLJQDO WR QRLVH UDWLR ZDV REWDLQHG ,W ZDV DOVR GLVFRYHUHG WKDW QR VLJQDO EHORZ FP A RI WKH H[FLWLQJ OLQH RI WKH G\H ODVHU FRXOG EH GHWHFWHG GXH WR EDFNJURXQG LQ WKH DQWKUD TXLQRQH SRZGHU VSHFWUXP 7KH UHDVRQ IRU WKLV ZDV QRW LPPHGLDWHO\ FOHDU ,W ZDV ODWHU GLVFRYHUHG WKDW WKH ELUHIULQJHQW WXQLQJ HOHPHQW RI WKLV SDUWLFXODU PRGHO RI G\H ODVHU WUDQVPLWV D VWUXFWXUHG IOXRUHVFHQFH HPDQDWLQJ IURP WKH G\H LWVHOI f ,Q DGGLWLRQ EDFNJURXQG IOXRUHVFHQFH ZDV REVHUYHG LQ SRUWLRQV RI WKH DQWKUDTXLQRQH VSHFWUXP ZKLFK FRXOG EH REWDLQHG ,W LV SRVVLEOH WKDW WKH IOXRUHVFHQFH HPDQDWLQJ IURP WKH G\H LWVHOI FRXOG KDYH EHHQ UHPRYHG E\ HLWKHU DQ DSSURSULDWH ZDYHOHQJWK QRWFK RSWLFDO ILOWHU RU D WXQDEOH JUDWLQJ ILOWHU ,W ZDV DOVR SODQQHG WR XVH D .,0 PLFURFRPSXWHU WR HPSOR\ WKH WHFKQLTXH RI GLJLWL]HG IUHTXHQF\PRGXODWHG VSHFWURVFRS\ f WR UHPRYH DQ\ IOXRUHVFHQFH LQWULQVLF WR WKH DQWKUDn TXLQRQH LWVHOI 7KLV WHFKQLTXH UHTXLUHV DQ H[FLWDWLRQ VRXUFH ZKLFK LV FRQVWDQW LQ WLPH $OO DWWHPSWV WR FRUUHFW WKH SUREOHP RI WKH G\H ODVHU SRZHU IOXFWXDWLRQV LQFOXGLQJ WKRVH RI D &RKHUHQW 5DGLDWLRQ ILHOG VHUYLFH UHSUHVHQWDWLYH ZHUH XQVXFFHVVIXO 7KH RQO\ VSHFWUD REWDLQHG ZHUH WKRVH RI SRZGHU VDPSOHV 7KH DFFHVVRU\ IRU PRXQWLQJ VLQJOH FU\VWDOV RQ WKH VSHFWURPHWHU ZDV QRW DYDLODEOH $WWHPSWV WR IDEULFDWH KROGHUV UHVXOWHG LQ XQVXFFHVVIXO DWWHPSWV WR REWDLQ VLQJOH FU\VWDO VSHFWUD VR LW LV SUREDEOH WKDW WKH SUREOHP ZDV RQH RI DOLJQPHQW ,Q DQ\ FDVH LQ YLHZ RI DOO WKH GLIILn FXOWLHV HQFRXQWHUHG LW ZDV GHHPHG H[SHGLHQW WR WHUPLQDWH WKLV SKDVH

PAGE 42

RI WKH UHVHDUFK DQG UHO\ XSRQ WKH IUHTXHQFLHV DQG DVVLJQPHQWV RI 5DVDQHQ DQG 6WRQLQDQ f 5HVXOWV DQG 'LVFXVVLRQ $QDO\VLV RI 3KRVSKRUHVFHQFH 6SHFWUD 7DEXODWLRQV RI WKH DQDO\VHV RI WKH SKRVSKRUHVFHQFH VSHFWUD RI DQWKUDTXLQRQH LQ 6KSROVNLL PDWULFHV RI QKH[DQH DQG QKHSWDQH DUH VKRZQ LQ 7DEOHV ,, DQG ,,, UHVSHFWLYHO\ 7KH DQDO\VLV LV FRPSOHWH LQ WKH FDVH RI QKH[DQH ZKLOH RQO\ WKH PDMRU VSHFWUDO IHDWXUHV RI WKH HPLVVLRQ LQ QKHSWDQH DUH SUHVHQWHG 7KH DQDO\VLV LV PXFK PRUH VWUDLJKWIRUZDUG LQ WKH FDVH RI QKH[DQH VLQFH DQWKUDTXLQRQH H[KLELWV RQO\ RQHVLWH HPLVVLRQ LQ WKLV VROYHQW ,QWHUSUHWDWLRQ LV PXFK PRUH FRPSOLFDWHG LQ WKH KHSWDQH DQG RFWDQH PDWULFHV SDUWLFXODUO\ LQ WKH FDVH RI WKH ZHDNHU FRPELQDWLRQ EDQGV VLQFH WZR VLWHV DSSHDU WR EH SUHVHQW 7ZR VLWHV DOVR DSSHDU LQ WKH FDVH RI DQWKUDTXLQRQH LQ QSHQWDQH ,Q QKH[DQH KHSWDQH DQG RFWDQH WKH RULJLQ RI WKH HOHFWURQLF WUDQVLWLRQ LV DEVHQW ZKLOH LW LV REVHUYHG LQ QSHQWDQH $V ZDV QRWHG E\ .KDOLO DQG *RRGPDQ f WKLV PD\ EH DWWULEXWHG WR WKH IDFW WKDW DW OHDVW WKH VLWH V\PPHWU\ RI WKH PROHFXOH LV FRQVHUYHG LQ WKH IRUPHU WKUHH PDWULFHV ZKLOH GLVWRUWLRQ DQG VXEVHTXHQW ORZHULQJ RI V\PPHWU\ RFFXU LQ WKH QSHQWDQH FDVH /LWHUDWXUH YDOXHV f RI WKH ,5 DFWLYH IXQGDPHQWDOV ZHUH FKHFNHG IRU DFFXUDF\ $V H[SODLQHG HDUOLHU DWWHPSWV WR REWDLQ 5DPDQ VSHFWUD ZHUH XQVXFFHVVIXO 7KH IUHTXHQFLHV DQG DVVLJQPHQWV RI 5DVDQHQ DQG 6WHQPDQ f ZHUH XVHG LQVWHDG $ WDEXODWLRQ RI WKH IXQGDPHQWDO PRGHV RI YLEUDWLRQ RI DQWKUDTXLQRQH XVHG LQ WKLV ZRUN FDQ EH IRXQG LQ WKH $SSHQGL[

PAGE 43

7DEOH ,, 3KRVSKRUHVFHQFH 9LEUDWLRQDO $QDO\VLV IRU $QWKUDTXLQRQH LQ +H[DQH DW r. :DYHOHQJWK $f (QHUJ\ FP YDFf $( FPO YDF@ L $VVLJQPHQW YYYZ ODWWLFH $QWL6WRNHV YYZ ODWWLFH $QWL6WRNHV YZ ODWWLFH $QWL6WRNHV YZ ODWWLFH $QWL6WRNHV Z ODWWLFH $QWL6WRNHV Z ODWWLFH $QWL6WRNHV Z ODWWLFH $QWL6WRNHV QRW VHHQ 99: DWWLFH YZ ODWWLFH YZ DWWLFH YZ ODWWLFH Z BY Z Y,S Z Yf ODWWLFH Z 9AJ Z [ YJJ Z YR 5DPDQ V Ya 0 2YJM ODWWLFH Z [ 9 Z Y ,5 V YJ ,5 Z YA DWWLFH YZ YaLU 5DPDQ Z 29 Z 9RL 5DPDQ Z 29RJ Z YZ 9RT DWWLFH Z AY Z 0 2YA\ X 2Yf YZ Y"" ODWWLFH 0 Q Z YLR 5DQDQ Z 9FR 5DPDQ ODWWLFH Z Y"R A 5DPDQ V Q V 9SU ODWWLFH 06 Y 5DPDQ 0: YAm 5DPDQ ODWWLFH : YS 5DPDQ 996 aQ 6 YA ODWWLFH

PAGE 44

-7DEOH ,, &RQWLQXHGf :DYHOHQTWK $f n (QHUJ\ FP YDFf $( FP YDFf $VVLJQPHQW 0: B9" 5DPDQ : R 5DPDQ : raY" 5DPDQ 9: Q A 5DPDQ ODWWLFH 06 Y" 5DPDQ 0: 9"$ 5DPDQ ODWWLFH : 5DPDQ 9: 9: 06 BY 5DPDQ 9: rnY 5DPDQ ODWWLFH 9: rnY 5DPDQ YYZ r 5DPDQ ODWWLFH YYZ 06 29Sm 5DPDQ Z 8n9RL 5DPDQ ODWWLFH YYZ 5DPDQ YYZ Q A rnY" 5DPDQ 9:  YYZ 0 B9 5DPDQ Z Y" 5DPDQ ODWWLFH YYZ  f Z 2f 5DPDQ 9: 29RF 5DPDQ YYZ  Z BY" 5DPDQ YYZ  06 Y"U 5DPDQ 0: r\RF 5DPDQ ODWWLFH Z Y"] 5DPDQ Z 5DPDQ 5DPDQ YV Y" 5DPDQ 0 BY"D 5DPDQ ODWWLFH 9:  9: 0 YR 5DPDQ 5DPDQ : Ya 5DPDQ 5DPDQODWWLFH Z Z 29RL [ 5DPDQ Z rnY 5DPDQ 5DPDQ Z 9: Y"W 5DPDQ 5DPDQ 9: Ye 5DPDQ 5DPDQ Z YA 5DPDQ 5DPDQ Z 9RA 5DPDQ 5DPDQ Z

PAGE 45

7DEOH ,, &RQWLQXHGf :DYHOHQJWK (QHUJ\ D( $f FLW+ YDFf FP YDFf $VVLJQPHQW 9: Y" 5DPDQ 5DPDQ 9: Ya [ 5DPDQ : 9RU [ 5DPDQ : 9 [ 5DPDQ : [ 9

PAGE 46

7DEOH ,,, 3KRVSKRUHVFHQFH 9LEUDWLRQDO $QDO\VLV IRU $QWKUDTXLQRQH LQ +HSWDQH DW r. f:(QHUJ\ 6L WH FPf +LJK(QHUJ\ 6L WH DLUf /8 YYYZ YYZ Z X YZ Z YZ YYZ 0 Z YZ 0 : 0 Z X YZ Z 0 : 0: 0 996 V V 996 YV 0 Z V 0: Z YZ 0 Z Z YZ 0: Z Z f 0: 0: X $VVLJQPHQW +( VLWH /( VLWH rY rY rnY rBY 9AJ [ rY 29 [ Qf rY rY Qnf QnY pnY fY rnY ff UWX Qf pfY Q m Q 6 Y Y Y Y 2n n n / / f X Y 5DPDQ A 5DPDQ 5DQDQ 5DPDQ ODWWLFH ODWWLFH 5DPDQ 5DPDQ ODWWLFH 5DPDQ 5DPDQ DWWL FH 5DPDQ 5DPDQ ODWWLFH 5DPDQ 5DPDQ ODWWLFH 5DPDQ 5DPDQ ODWWLFH 5DPDQ 5DPDQ ODWWLFH 5DPDQ 5DPDQ 5DPDQ 5DPDQ

PAGE 47

7DEOH ,,, &RQWLQXHGf /RZ(QHUJ\ +LJK(QHUJ\ 6LWH 6LWH $( $VVLJQPHQW DL+f FQ+f FPf 6 Z YZ 0: : 0: 9: Z YZ YZ YZ YZ Z YZ YZ YZ YZ Z Yf 5DPDQ YA 5DPDQ ODWWLFH Ye 5DPDQ YeA 5DPDQ ODWWLFH 9Sm 5DPDQ 5DPDQ 29S 5DPDQ 5DPDQ Ye [ 5DPDQ YAM [ 5DPDQ 29RU 5DPDQ 5DPDQ 29SF 5DPDQ 5DPDQ 5DPDQ 5DPDQ fY"D 5DPDQ 5DPDQ YL/ 5DPDQ 5DPDQ 29S" 5DPDQ 5DPDQ YSU [ 5DPDQ [ Ye 9 [ 5DPDQ [ Ye

PAGE 48

:H ILQG RXW RI SRVVLEOH YLEUDWLRQV WR EH SUHVHQW LQ WKH SKRVSKRUHVFHQFH VSHFWUXP RI DQWKUDTXLQRQH LQ KH[DQH 7KHVH LQ WKH QRWDWLRQ RI UHIHUHQFH f DUH A Af Yf Ynf Yf DQFA Yf 7KLV LV LQ DJUHHPHQW ZLWK WKH UHVXOWV RI .KDOLO DQG *RRGPDQ 2QH IHDn WXUH ZKLFK ZDV QRW LQFOXGHG LQ UHIHUHQFH fZDV WKH SUHVHQFH RI D SHDN DW FP A IURP WKH RULJLQ 7KLV SHDN LV FOHDUO\ YLVLEOH DQG LV DVVLJQHG LQ WKH SUHVHQW VWXG\ DV D FRPELQDWLRQ RI YA\ DQG WKH FPaA 5DPDQ OLQH RI DQWKUDTXLQRQH 7KH PRVW LQWHQVH SHDNV LQ WKH VSHFWUXP ZHUH WKRVH EDVHG XSRQ WKH QRQWRWDOO\ V\PPHWULF & VWUHWFK YA DV ZDV H[SHFWHG %RWK RQH DQG WKUHH TXDQWD RI WKLV YLEUDWLRQ DUH UHSRUWHG LQ WKLV ZRUN DOWKRXJK RQO\ RQH TXDQWXP ZDV UHSRUWHG LQ UHIHUHQFH f $VVLJQPHQWV RI PXOWLSOH TXDQWD RI YLEUDWLRQV ZLOO EH GLVFXVVHG ODWHU .KDOLO DQG *RRGPDQ UHSRUWHG FRPELQDWLRQV RI ZLWK 5DPDQ OLQHV RI IUHTXHQFLHV DQG FP ? ,Q WKH SUHVHQW VWXG\ SHDNV ZHUH IRXQG ZKLFK ZHUH DVVLJQHG DV FRPELQDWLRQV RI YLWK 5DPDQ OLQHV RI IUHTXHQFLHV [ DQG [ FP ? 7KH GLIIHUHQFH LV SUREDEO\ DWWULEXWDEOH WR WKH PXFK JUHDWHU VHQVLWLYLW\ LQ WKLV UHJLRQ RI WKH VSHFn WUXP RI WKH SKRWRPXOWLSOLHU XVHG KHUH DV FRPSDUHG WR WKDW XVHG E\ .KDOLO DQG *RRGPDQ f .KDOLO DQG *RRGPDQ f DVVLJQHG OLQHV LQ WKH SKRVSKRUHVFHQFH VSHFWUXP RI DQWKUDTXLQRQH RI W\SH EeX FRUUHVSRQGLQJ WR YA YA DQG LQ DGGLWLRQ DQRWKHU EA YLEUDWLRQ YA\ DSSHDUHG LQ FRPELQDWLRQ ZLWK WKH 5DPDQ FP A OLQH ,Q WKLV VWXG\ RXW RI SRVVLEOH EX YLEUDWLRQV ZHUH REVHUYHG 7KHVH ZHUH YA YA YA\ DQG YAJ

PAGE 49

&RPELQDWLRQV RI FP 5DPDQ Y FP A 5DPDQ DQG FP A FP A 5DPDQ ZHUH REVHUYHG $W WKLV SRLQW VRPH GLVFXVVLRQ FRQFHUQLQJ SHDNV FRUUHVSRQGLQJ WR YJ LV QHFHVVDU\ 7KHUH LV VRPH GLVDJUHHPHQW f FRQFHUQLQJ WKH IUHTXHQF\ RI WKLV IXQGDPHQWDO PRGH RI YLEUDWLRQ VLQFH LW GLG QRW DSSHDU LQ WKH VLQJOH FU\VWDO VSHFWUD RI DQWKUDTXLQRQH DQG DQWKUDTXLQRQH G f 1RUPDO FRRUGLQDWH FDOFXODWLRQV f IDYRU WKH DVVLJQPHQW RI D IUHTXHQF\ RI FPaA f .KDOLO DQG *RRGPDQ XVHG D IUHTXHQF\ RI FP A DV WKH EDVLV IRU DQ DVVLJQPHQW RI ,Q WKH SUHVHQW ZRUN QR SHDN LV REVHUYHG DW WKLV SRVLWLRQ ,QVWHDG D SHDN LV REVHUYHG DW FP A IURP WKH RULJLQ ZKLFK PLJKW EH DVVLJQHG WR HLWKHU YJ RU YJ 6 LQFH RWKHU FRPELQDWLRQ EDQGV RFFXU LQ WKH VSHFWUXP ZKLFK DJUHH YHU\ ZHOO ZLWK D IUHTXHQF\ RI FP A IRU Y WKLV YDOXH LV FKRVHQ DQG DVVLJQPHQWV DUH PDGH DFFRUGLQJO\ 2XW RI VL[ SRVVLEOH EA IXQGDPHQWDOV WKUHH DUH REVHUYHG LQ WKLV ZRUN DQG WKUHH DUH DOVR UHSRUWHG E\ .KDOLO DQG *RRGPDQ 7KHVH DUH Y J DU_G 9J &RPELQDWLRQV RI 9JA ZLWK WKH FP A 5DPDQ OLQH DUH IRXQG LQ WKH SUHVHQW ZRUN DQG LQ UHIHUHQFH f .KDOLO DQG *RRGPDQ DVVLJQ D FRPELQDWLRQ RI ZLWK D FP A 5DPDQ OLQH ZKLOH D FRPn ELQDWLRQ RI 9J_ ZLWK WKH FPA 5DPDQ OLQH LV IRXQG LQ WKLV VWXG\ $ FRPELQDWLRQ RI 9J ZLWK WKH FP 5DPDQ OLQH DQG RI ZLWK WKH FP 5DPDQ OLQH LV IRXQG LQ ERWK UHVXOWV $V UHJDUGV WKH VHDUFK IRU RGG TXDQWD LQ WKH YLEUDWLRQDO SURJUHVVLRQV RI WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH WKHUH LV HYLGHQFH IRU WKUHH VXFK SHDNV 7KH EDQG ORFDWHG DW FP A IURP WKH RULJLQ PD\ EH DVVLJQHG WR WKUHH TXDQWD RI 9JJ D VNHOHWDO GHIRUPDWLRQ RU D FRPELQDWLRQ RI ZLWK WKH FP A 5DPDQ OLQH 7KLV ZDV DVVLJQHG E\ .KDOLO DQG *RRGPDQ f

PAGE 50

DV [ YA RQ WKH EDVLV RI GHXWHUDWLRQ H[SHULPHQWV 7KH OLQH ZKLFK RFFXUV DW DQ IURP WKH RULJLQ PLJKW HLWKHU EH DVVLJQHG WR WKH 5DPDQ FP A OLQH WR [ Y RU WR D FRPELQDWLRQ RI WKH Ef PRGH ?f$Q X FP ZLWK WKH 5DPDQ FP A OLQH 2Q WKH EDVLV RI GHXWHUDWLRQ H[SHULPHQWV .KDOLO DQG *RRGPDQ DVVLJQHG WKLV OLQH WR [ Vr LW KDV OLNHZLVH EHHQ DVVLJQHG KHUH 7KH WKLUG SHDN LQ WKH VSHFWUXP RI DQWKUDTXLQRQH LQ KH[DQH ZKLFK 2 PD\ EH DVVLJQHG DV DQ RGG TXDQWXP SURJUHVVLRQ OLHV DW $ 7KLV OLQH LV FORVH WR WKH SRVLWLRQ RI VHYHUDO PHUFXU\ OLQHV +RZHYHU LW DSSHDUHG LQ VSHFWUD H[FLWHG E\ WKH PHUFXU\ ODPS XVLQJ D &RUQLQJ &6 ILOWHU DQG D :* HPLVVLRQ ILOWHU 7KH &RUQLQJ ILOWHU VHUYHG WR SUHYHQW WUDQVPLVVLRQ RI YLVLEOH OLQHV IURP WKH ODPS ZKLOH WKH :* HPLVVLRQ ILOWHU VHUYHG WR SUHYHQW WKH RFFXUUHQFH RI VHFRQGRUGHU PHUFXU\ OLQHV LQ WKH VSHFWUXP 7KH EDQG LQ TXHVWLRQ DORQJ ZLWK VHYHUDO RWKHU ZHDN SHDNV LQ WKH DUHD ZDV REVHUYHG LQ VSHFWUD H[FLWHG E\ WKH (LPDF [HQRQ ODPS VR WKH FRQFOXVLRQ WKDW LW EHORQJV WR WKH DQWKUDTXLQRQH SKRVSKRUn HVFHQFH VHHPV D YDOLG RQH 7KLV OLQH DORQJ ZLWK VHYHUDO RWKHUV UHSRUWHG LQ WKLV ZRUN ZDV QRW UHSRUWHG E\ .KDOLO DQG *RRGPDQ VLQFH WKH VSHFn WUDO UHVSRQVH RI WKH SKRWRPXOWLSOLHU WR EH XVHG E\ WKHP ZDV YHU\ ZHDN LQ WKLV UHJLRQ 5HVXOWV RI DQDO\VHV RI 6KSROVNLL PDWUL[ HPLVVLRQ VSHFWUD RI DQWKUDn TXLQRQH REWDLQHG LQ WKLV VWXG\ WHQG LQ JHQHUDO WR FRQILUP WKH UHVXOWV RI .KDOLO DQG *RRGPDQ &U\VWDO ILHOG HIIHFWV RI WKH KRVW ODWWLFH GR QRW DIIHFW WKH ORFDWLRQ RI WKH RULJLQ WR D JUHDW H[WHQW VLQFH WKH RULJLQ RI WKH HOHFWURQLF WUDQVLWLRQ OLHV DW VLPLODU SRVLWLRQV LQ SHQWDQH KH[DQH KHSWDQH DQG RFWDQH ,Q SHQWDQH WKH RULJLQ LV REVHUYHG ZLWK WZR VLWH

PAGE 51

HPLVVLRQV SUHVHQW ,Q KH[DQH KHSWDQH DQG RFWDQH LW RFFXUV ZHDNO\ RU QRW DW DOO 7KLV LQGLFDWHV WKDW DW OHDVW WKH VLWH V\PPHWU\ &Af RI WKH DQWKUDTXLQRQH PROHFXOH LV SUHVHUYHG LQ WKH KH[DQH KHSWDQH DQG RFWDQH PDWULFHV 1RQWRWDOO\ V\PPHWULF ,5 DFWLYH YLEUDWLRQV RI W\SHV EA EA DQG EAX RFFXU LQ WKH SKRVSKRUHVFHQFH VSHFWUXP LQGLFDWLQJ WKDW WKH HOHFWURQLF VWDWH IURP ZKLFK WKH SKRVSKRUHVFHQFH WDNHV SODFH LV %M 7KH rf $J WUDQVLWLRQ LV ERWK VSLQ DQG V\PPHWU\ IRUELGGHQ $SSDUHQWO\ WKH VWDWH IURP ZKLFK LW ERUURZV LQWHQVLW\ LV D A%_ WWWWr VWDWHf $V GLVFXVVHG E\ .KDOLO DQG *RRGPDQ f DQG 6WURNDFK DQG 6KL JRULQ f PL[LQJ RI VWDWHV WR DOORZ WKH WUDQVLWLRQ WR RFFXU PD\ KDSSHQ LQ WKUHH GLIIHUHQW ZD\V 7KH %M VWDWH PD\ EH YLHZHG DV PL[LQJ GLUHFWO\ LQ ILUVW RUGHU SHUWXUEDWLRQ WKHRU\ E\ PHDQV RI WKH VSLQHOHFWURQLF YLEUDWLRQDO LQWHUDFWLRQ RSHUDWLRQ +YVT 7KH WZR VWDWHV PD\ DOVR EH PL[HG LQ VHFRQG RUGHU SHUWXUEDWLRQ E\ LQWHUPHGLDWH VWDWHV 7KHVH PD\ EH HLWKHU RU ERWK RI D $ VWDWH RU D $ QXr VWDWH 7KH SRVVL J X ELOLWLHV DUH VKRZQ LQ )LJXUH +HUH +Zff + D4 ZKHUH + LV WKH f YVR VR D VR VSLQRUELW LQWHUDFWLRQ RSHUDWRU ZLWK D FRPSRQHQW RI %M V\PPHWU\ DQG FRUUHVSRQGV WR D EA W\SH QRUPDO PRGH RI YLEUDWLRQ +JY LV WKH RSHUDWRU IRU HOHFWURQYLEUDWLRQDO LQWHUDFWLRQ D+4D4D! ZKHUH +T UHSUHn VHQWV WKH +DPLOWRQLDQ RI WKH XQSHUWXUEHG V\VWHP 7HPSHUDWXUH'HSHQGHQW (PLVVLRQ 7KH TXHVWLRQ RI WKH WHPSHUDWXUHGHSHQGHQW HPLVVLRQ LQ DQWKUDTXLQRQH LV QRZ FRQVLGHUHG )LJXUHV LOOXVWUDWH WKH EHKDYLRU RI HPLVVLRQ LQ WKH UHJLRQ RI WKH RULJLQ RI WKH HOHFWURQLF WUDQVLWLRQ RI DQWKUDTXLQRQH LQ RFWDQH KHSWDQH KH[DQH DQG SHQWDQH DV WKH WHPSHUDWXUH LV LQFUHDVHG 7KH SKHQRPHQRQ RI WHPSHUDWXUHGHSHQGHQW HPLVVLRQ LV REVHUYHG LQ RFWDQH

PAGE 52

, )LJXUH 0HFKDQLVP RI WKH $J 3KRVSKRUHVFHQFH LQ $QWKUDTXLQRQH $IWHU 5HIHUHQFH f

PAGE 53

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 54

WIRU :DYHOHQJWK ƒf

PAGE 55

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 56

,QWHQVLW\

PAGE 57

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 58

:DYHOHQJWK ƒf

PAGE 59

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 60

,QWHQVLW\

PAGE 61

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 62

,QWHQVLW\

PAGE 63

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 64

,QWHQVLW\ n&

PAGE 65

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +HSWDQH DW r.

PAGE 66

M M

PAGE 67

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +HSWDQH DW r.

PAGE 68

,QWHQVLW\

PAGE 69

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXL QRQH LQ +HSWDQH DW r.

PAGE 70

,QWHQVLW\ 2n 9e ,

PAGE 71

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 2FWDQH DW r.

PAGE 72

,QWHQVLW\

PAGE 73

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 2FWDQH DW r.

PAGE 74

,QWHQVLW\ &

PAGE 75

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 3HQWDQH DW r.

PAGE 76

,QWHQVLW\ *

PAGE 77

)LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ 3HQWDQH DW r.

PAGE 78

,QWHQVLW\ L f L :DYHOHQJWK $f

PAGE 79

8 KHSWDQH DQG KH[DQH PDWULFHV ZKHUH WKH RULJLQ RI WKH SXUHO\ HOHFWURQLF WUDQVLWLRQ LV DEVHQW EXW QRW LQ WKH SHQWDQH FDVH ZKHUH WKH RULJLQ LV SUHVHQW 7KH SRVVLELOLW\ WKDW WKH SHDNV DUH DQ LPSXULW\ HPLVVLRQ FDQ EH ODUJHO\ GLVFRXQWHG E\ FRQVLGHUDWLRQ RI WKH SXULW\ RI WKH FKHPLFDOV XVHG 7KDW WKH SHDNV PLJKW EH GXH WR D SKRWRSURGXFW EHLQJ IRUPHG ZDV HOLPLQDWHG E\ GHPRQVWUDWLQJ D UHYHUVLEOH GHSHQGHQFH RI WKH HPLVVLRQ XSRQ WHPSHUDWXUH DQG D ODFN RI WLPH GHSHQGHQFH RI LQWHQVLW\ XSRQ SKRWRSXPSLQJ ,Q FDVHV ZKHUH WKHUPDOO\ DFWLYDWHG HPLVVLRQ SURFHVVHV EHWZHHQ WZR DGMDFHQW HOHFWURQLF OHYHOV RFFXU DQ $UUKHQLXV SORW RI ,Q ,,T YHUVXV 7 ZL QRUPDOO\ JLYH D VWUDLJKW OLQH ZKRVH VORSH DJUHHV ZHOO ZLWK WKH HQHUJ\ VHSDUDWLRQ EHWZHHQ WKH OHYHOV LI QR DGGLWLRQDO GHSOHWLRQ SURFHVVHV DUH SUHVHQW f 7KH UHVXOWV RI VXFK D SORW IRU DQWKUDTXLQRQH LQ KH[DQH DUH VKRZQ LQ )LJXUH 7KHUH LV DQ DSSDUHQW H[SRQHQWLDO WHPn SHUDWXUH GHSHQGHQFH EXW WKH DFWLYDWLRQ HQHUJLHV GR QRW DJUHH ZLWK WKH HQHUJ\ OHYHO VHSDUDWLRQV ,I WKH KLJKHVWHQHUJ\ SHDN ƒf LV WDNHQ DV WKH RULJLQ RI D WKHUPDOO\ SRSXODWHG $X VWDWH WKHQ LW LV VHSDUDWHG IURP WKH RULJLQ RI WKH %_ VWDWH E\ DSSUR[LPDWHO\ FP 7KH YDOXH RI WKH DFWLYDWLRQ HQHUJ\ REWDLQHG IURP WKH $UUKHQQLXV SORW IRU WKLV SHDN LV FPfA DQG WKH FRUUHODWLRQ FRHIILFLHQW RI WKH SORW LV 7KHUH LV QR REYLRXV UHDVRQ ZK\ WKH GLVFUHSDQF\ RI D IDFWRU RI DSSUR[LPDWHO\ VKRXOG RFFXU LI WKLV SHDN LV LQGHHG WKH RULJLQ RI HPLVVLRQ IURP WKH WKHUPDOO\ SRSXODWHG $X VWDWH /LNHZLVH WKH SHDN DW DSSUR[LPDWHO\ r $ JLYHV DQ DFWLYDWLRQ HQHUJ\ RI FP ,I LW ZHUH D YLEUDWLRQDO SURJUHVVLRQ LQ WKH HPLVVLRQ IURP WKH $X VWDWH D VHSDUDWLRQ RI DSSUR[Ln PDWHO\ FP O VKRXOG EH SUHVHQW $ FDUHIXO VWXG\ RI WKH HPLVVLRQ RI WKH RULJLQ UHJLRQ LQ KH[DQH DV D IXQFWLRQ RI WHPSHUDWXUH DV VKRZQ LQ

PAGE 80

OQ ,, R )LJXUH 3ORW RI $FWLYDWLRQ (QHUJLHV RI 7HPSHUDWXUH'HSHQGHQW (PLVVLRQ RI $QWKUDTXLQRQH LQ +H[DQH

PAGE 81

f )LJXUHV UHYHDOHG WKDW WKH SHDNV DSSHDUHG VHTXHQWLDOO\ DV WKH WHPSHUDWXUH ZDV LQFUHDVHG 7KH OLIHWLPH RI WKH HPLVVLRQ DV PRQLWRUHG DW t Yf ZDV A PVHF ZKLOH WKRVH RI WKH DQG $ SHDNV ZHUH W DQG W PVHF UHVSHFWLYHO\ 7KH YDOXH RI WKH OLIHWLPH RI WKH HPLVVLRQ PRQLWRUHG DW $ DJUHHV ZHOO ZLWK WKH OLWHUDWXUH YDOXHV f 7KH FORVH FRUUHODWLRQ RI WKH OLIHn WLPHV RI WKH WKUHH SHDNV LQGLFDWHV WKDW WKH\ DOO RULJLQDWH IURP WKH VDPH HOHFWURQLF OHYHO ,Q YLHZ RI DOO WKHVH IDFWRUV LW ZDV FRQFOXGHG WKDW WKH SHDNV ZHUH QRW HPLVVLRQ IURP WKH VHFRQG WULSOHW OHYHO EXW ZHUH HLWKHU YLEUDWLRQDO KRW EDQGV RU EDQGV GXH WR HOHFWURQSKRQRQ LQWHUDFWLRQ 7KLV FRQFOXVLRQ WKDW WKH SHDNV ZHUH QRW HPLVVLRQ IURP WKH VHFRQG WULSOHW OHYHOf YDV VXSSRUWHG E\ D ODWHU SDSHU f RQ WKH WHPSHUDWXUH GHSHQGHQFH RI DQWKUDTXLQRQH 7KH DXWKRUV REVHUYHG D VWUDQJH HIIHFW XSRQ DGGLQJ KH[\O LRGLGH WR DQWKUDTXLQRQH LQ KHSWDQH 1R HIIHFW XSRQ WKH HPLVVLRQ IURP WKH % OHYHO ZDV REVHUYHG EXW D QHZ VHW RI ZHDN EDQGV LQ WKH LJ RULJLQ UHJLRQ ZHUH SUHVHQW ZKLFK ZHUH DVVLJQHG WR WKH $X OHYHO 7KHVH SHDNV ZHUH VHSDUDWHG IURP WKH %M HPLVVLRQ E\ DSSUR[LPDWHO\ FP ,Q WKLV VDPH SDSHU LW ZDV WHQWDWLYHO\ VXJJHVWHG WKDW WKH WHPSHUDWXUH GHSHQGHQW HPLVVLRQ ZDV GXH WR YLEUDWLRQDO KRW EDQGV IURP WKH GLVWRUWHG % OHYHO LJ 7KLV GRHV QRW VHHP WR EH D UHDVRQDEOH FRQFOXVLRQ VLQFH LQ FRQGHQVHG PHGLD YLEUDWLRQDO UHOD[DWLRQ WLPHV DUH QRUPDOO\ PXFK IDVWHU A WR A VHFf WKDQ UDGLDWLYH OLIHWLPHV +RW EDQGV DUH WKHUHIRUH QRUPDOO\ IRXQG f RQO\ LQ JDVHRXV V\VWHPV ,Q WKH UDUH FDVHV f ZKHUH LW KDV EHHQ VXJJHVWHG WKDW WKH\ ZHUH SUHVHQW LQ TXDVLOLQHDU V\VWHPV WKH HOHFWURQLF HPLVVLRQ LV VSRQWDQHRXV IOXRUHVFHQFH ZKHUH WKH UDGLDWLYH OLIHWLPH LV RI D VLPLODU RUGHU RI PDJQLWXGH WR WKH YLEUDWLRQDO UHOD[DWLRQ WLPHV

PAGE 82

7KH IDFW WKDW WKH WHPSHUDWXUH GHSHQGHQW HPLVVLRQ LV IRXQG LQ WKH KH[DQH KHSWDQH DQG RFWDQH PDWULFHV EXW QRW LQ WKH SHQWDQH PDWULFHV OHQGV VXSSRUW WR WKH LGHD WKDW WKH SHDNV DUH GXH WR LPSXULW\ODWWLFH LQWHUDFWLRQV UDWKHU WKDQ YLEUDWLRQDO KRW EDQGV 7KDW LV WKH WUDQVLWLRQ DSSHDUV WR EH D SKRQRQDVVLVWHG RQH LQ WKH FDVHV RI DQWKUDTXLQRQH LQ KH[DQH KHSWDQH DQG RFWDQH ZKHUH WKH RULJLQ RI WKH HOHFWURQ WUDQVLWLRQ LV DEVHQW %HIRUH SURFHHGLQJ IXUWKHU LQ WKLV GLUHFWLRQ D QXPEHU RI SRLQWV FRQFHUQLQJ WKH FU\VWDO VWUXFWXUHV DQG SKRQRQ VSHFWUD RI WKH QSDUDIILQV &A&A ZLOO EH GLVFXVVHG 7KH FU\VWDOOLQH VWUXFWXUHV RI QSHQWDQH KH[DQH KHSWDQH DQG RFWDQH KDYH EHHQ ZHOO FKDUDFWHUL]HG E\ ;UD\ PHWKRGV f 7KH QSHQWDQH VWUXFWXUH LV RUWKRUKRPELF ZLWK PROHFXOHV SHU XQLW FHOO DQG D YROXPH r RI DSSUR[LPDWHO\ $ %RWK QKH[DQH DQG QRFWDQH DUH WULFOLQLF ZLWK RQH PROHFXOH SHU XQLW FHOO DQG YROXPHV RI DQG IW UHVSHFWLYHO\ 1KHSWDQH LV WULFOLQLF ZLWK PROHFXOHV SHU XQLW FHOO DQG D YROXPH RI IW 7KH SKRQRQ VSHFWUD RI WKHVH FU\VWDOV KDYH EHHQ LQYHVWLJDWHG XVLQJ 5DPDQ OLJKW VFDWWHULQJ DQG QHXWURQ VFDWWHULQJ WHFKQLTXHV f $ UHPDUNDEOH VLPLODULW\ LQ WKH SKRQRQ VSHFWUD RI QKH[DQH KHSWDQH DQG RFWDQH LV IRXQG DV PLJKW EH H[SHFWHG LQ YLHZ RI WKHLU VLPLODU FU\VWDOn OLQH VWUXFWXUHV 7KH RULJLQ RI WKH HOHFWURQLF WUDQVLWLRQ LQ WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH RFFXUV DW VLPLODU ORFDWLRQV LQ QKH[DQH QKHSWDQH DQG QRFWDQH ([DPLQDWLRQ RI )LJXUHV VKRZV WKDW VLPLODU EHKDYLRU RFFXUV LQ DOO WKUHH FDVHV ZLWK WKH WHPSHUDWXUH GHSHQGHQW HPLVVLRQ DSSHDULQJ DW DSSUR[LPDWHO\ WKH VDPH SRVLWLRQ LQ DOO WKUHH PDWULFHV 7KH GLVFXVVLRQ ZKLFK IROORZV LV UHVWULFWHG WR WKH FDVH RI DQWKUDTXLQRQH

PAGE 83

LQ QKH[DQH VLQFH WKH VLWXDWLRQ LV XQFRPSOLFDWHG E\ PXOWLSOH VLWH HPLVVLRQ 7KH WHPSHUDWXUH GHSHQGHQW HPLVVLRQ LV ILUVW QRWLFHDEOH DW DSSUR[Ln PDWHO\ r. )LJXUHV LOOXVWUDWH WKH EHKDYLRU RI WKH RULJLQ UHJLRQ RI WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH LQ QKH[DQH RYHU WKH WHPSHUDWXUH UDQJH r.r. ,W FDQ EH VHHQ WKDW DV WKH WHPSHUDWXUH LV LQFUHDVHG WKH RULJLQ UHJLRQ EHJLQV WR UHVHPEOH D FRQWLQXXP ZLWK PD[LPD DSSHDULQJ DW SRVLWLRQV VHSDUDWHG E\ DSSUR[LPDWHO\ DQG FPaA IURP WKH RULJLQ 7KH ZRUG DSSUR[LPDWHO\ LV XVHG KHUH EHFDXVH WKH SHDNV DUH VOLJKWO\ VNHZHG DQG RYHUODSSHG VR WKDW LW LV GLIILFXOW WR GHWHUPLQH WKHLU H[DFW SRVLWLRQ $OVR DQ H[DPLQDWLRQ RI WKH SRVLWLRQ RI WKH PRVW LQWHQVH FRPSRQHQW RI WKH SKRVSKRUHVFHQFH DW ƒ IURP r. UHYHDOHG D VKLIW RQ WKH RUGHU RI FPf A WRZDUG WKH EOXH DV WKH WHPSHUDWXUH ZDV LQFUHDVHG $V )LJXUH VKRZV LQFUHDVLQJ WKH WHPSHUDWXUH WR D SRLQW MXVW EHORZ WKH PHOWLQJ SRLQW RI WKH QKH[DQH PDWUL[ UHVXOWV LQ DQ DOPRVW FRPSOHWH ORVV RI VSHFWUDO GHILQLWLRQ LQ WKH RULJLQ UHJLRQ DQG DQ H[WHQVLRQ RI WKH HPLVVLRQ WR HYHQ VKRUWHU ZDYHOHQJWKV $OWKRXJK QRW VKRZQ VLPLODU EHKDYLRU ZDV REVHUYHG LQ WKH KHSWDQH DQG RFWDQH FDVHV ,Q WKH FDVH ZKHUH D PROHFXODU LPSXULW\ ZLWK LQWUDPROHFXODU IUHTXHQn FLHV RI YLEUDWLRQ LV VXEVWLWXWHG LQWR D FU\VWDO WZR GLIIHUHQW VLWXDWLRQV PD\ DULVH f 7KH PROHFXODU IUHTXHQF\ ZP PD\ IDOO LQWR D UHJLRQ FRUUHVSRQGLQJ WR IUHTXHQFLHV DOVR IRXQG LQ WKH SHUIHFW KRVW FU\VWDO 7KH UHVRQDQFH EHWZHHQ WKH PROHFXODU DQG FU\VWDO IUHTXHQFLHV ZLOO DOORZ HQHUJ\ WR EH WUDQVIHUUHG IURP WKH PROHFXODU LPSXULW\ WR WKH FU\VWDO 7KH VHFRQG FDVH LV WKDW ZKHUH WKH PROHFXODU IUHTXHQF\ Z RFFXUV LQ D UHJLRQ ZKLFK GRHV QRW FRUUHVSRQG WR YLEUDWLRQV IRXQG LQ WKH SHUIHFW FU\VWDO ,I WKH SHUWXUEDWLRQ SURGXFHG E\ WKH LPSXULW\ LV VWURQJ HQRXJK

PAGE 84

DQ DQKDUPRQLF YLEUDWLRQ PD\ VHW LQ ZKLFK GRHV QRW FRUUHVSRQG WR D SHDN LQ WKH SKRQRQ VSHFWUXP RI WKH FU\VWDO f 7KH UHODWLYHO\ LQWHQVH SKRQRQ VLGHEDQGV ZKLFK DFFRPSDQ\ DOO WKH PDMRU YLEUDWLRQDO SURJUHVVLRQV LQ WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH LQ KH[DQH DSSHDU WR EH RI WKLV W\SH )RU LQVWDQFH LQ WKH HPLVVLRQ FRUUHVSRQGLQJ WR WKH YLEUDWLRQDO SURJUHVVLRQ AA WKH DFFRPSDQ\LQJ SKRQRQ VLGHEDQG RFFXUV DW D VHSDUDn WLRQ RI FP ? 1R VXFK YLEUDWLRQDO IUHTXHQF\ RFFXUV LQ WKH SKRQRQ VWUXFWXUH RI QKH[DQH ZKLOH DQWKUDTXLQRQH KDV D 5DPDQ DFWLYH ODWWLFH PRGH RI FP A f ,W LV NQRZQ f WKDW VXFK ODWWLFH PRGHV ZLOO DSSHDU LQ HOHFWURQLF VSHFWUD IRU HLWKHU RQH RI WZR UHDVRQV 7KH ILUVW LV WKDW WKH H[FLWHG PROHFXOH KDV DQ H[FLWHG VWDWH HTXLOLEULXP GLVSRVLWLRQ LQ WKH FU\VWDO ODWWLFH ZKLFK GLIIHUV IURP LWV QRUPDO JURXQG VWDWH FRQn IRUPDWLRQ 7KH VHFRQG UHDVRQ LV WKDW WKH ODWWLFH PRGH SHUWXUEV WKH HOHFWURQLF WUDQVLWLRQ LQ D ZD\ VR DV WR DVVLVW WKH HOHFWURQLF PRWLRQ WR JDLQ UDGLDWLYH SURSHUWLHV 7KH WHPSHUDWXUHGHSHQGHQW HPLVVLRQ ZKLFK RFFXUV LQ WKH HPLVVLRQ RI DQWKUDTXLQRQH LQ KH[DQH PDWULFHV KDV SHDNV VHSDUDWHG IURP WKH RULJLQ RI WKH %MJ OHYHO E\ DSSUR[LPDWHO\ DQG FP 3HDNV LQ WKH SKRQRQ VWUXFWXUH RI QKH[DQH f RFFXU DW FPA FPn FPfA DQG FP ? 7KHUH LV D UHODWLYHO\ FORVH FRUUHVSRQGHQFH EHWZHHQ WKH VHSDUDWLRQ RI WKH SHDNV RFFXUULQJ LQ WKH WHPSHUDWXUH GHSHQGHQW HPLVVLRQ DQG WKH SHDNV RFFXUULQJ LQ WKH SKRQRQ VWUXFWXUH RI QKH[DQH $QWKUDTXLQRQH LWVHOI KDV 5DPDQ DFWLYH YLEUDWLRQV DW IUHTXHQFLHV RI FPa? FP ? DQG FP A VR WKDW LW LV PRUH SUREDEOH WKDW WKH SHDNV FRUUHVSRQG WR UHVRQDQFH PRGHV VHW XS EHWZHHQ KH[DQH YLEUDWLRQV DQG DQWKUDTXLQRQH QRUPDO PRGHV f

PAGE 85

$V WR WKH WHPSHUDWXUHGHSHQGHQW HPLVVLRQ LW LV DVVLJQHG KHUH DV DULVLQJ IURP D WHPSHUDWXUHGHSHQGHQW DQWL6WRNHV VFDWWHULQJ RI SKRQRQV RFFXUULQJ VLPXOWDQHRXVO\ ZLWK WKH HOHFWURQLF WUDQVLWLRQ 7KHUH DUH VHYHUDO UHDVRQV IRU WKLV FRQFOXVLRQ )LJXUHV FOHDUO\ UHYHDO WKH WHPSHUDWXUH GHSHQGHQW HPLVVLRQ LV SUHVHQW LQ WKH QKH[DQH KHSWDQH DQG RFWDQH FDVHV EXW QRW LQ WKH QSHQWDQH FDVH )RU HDFK RI WKH IRUPHU WKUHH FDVHV WKH RULJLQ RI WKH SXUHO\ HOHFWURQLF WUDQVLWLRQ RFFXUV ZLWK QHJOLJLEOH LQWHQVLW\ ZKLOH LQ WKH ODWWHU FDVH LW LV SUHVHQW 7KLV LQn GLFDWHV WKDW WKH WUDQVLWLRQ LV D SKRQRQ DVVLVWHG RQH LQ WKH IRUPHU WKUHH FDVHV 7KH RFFXUUHQFH RI SKRQRQV LQ DVVLVWLQJ WUDQVLWLRQV WR WDNH SODFH ZKLOH UHODWLYHO\ UDUH LV QRW XQNQRZQ $ PRVW WKRURXJKO\ GRFXPHQWHG FDVH f LV WKDW RI WKH SKRVSKRUHVFHQFH RI PROHFXODU FU\VWDOOLQH S\UD]LQH 5DPDQ VFDWWHULQJ RI SKRQRQV KDV DOVR EHHQ VKRZQ f WR SOD\ DQ LPSRUWDQW SDUW LQ WKH WKHUPDO EURDGHQLQJ REVHUYHG LQ 6KSROVNLL V\Vn WHPV )LQDOO\ WKH EHKDYLRU RI DQWKUDTXLQRQH LQ QSDUDIILQV &J&J UHVHPEOHV FORVHO\ WKH WHPSHUDWXUH GHSHQGHQFH RI WKH HPLVVLRQ RI WKH V\VWHP 9 LQ 0J2 ZKHUH DQWL6WRNHV VFDWWHULQJ RI SKRQRQV ZDV DOVR DVFULEHG DV WKH UHDVRQ IRU WKH WHPSHUDWXUHGHSHQGHQW HPLVVLRQ REVHUYHG LQ WKLV V\VWHP f $ VWXG\ RI WKH LPSXULW\ODWWLFH FRXSOLQJ LQ WKH DQWKUDTXLQRQHKH[DQH V\VWHP PLJKW EH KHOSIXO LQ FRUURERUDWLQJ WKH DERYH FRQFOXVLRQ -XGJLQJ IURP WKH TXDVLOLQHDU DSSHDUDQFH RI WKH VSHFWUD LW LV SUREDEOH WKDW WKH FRXSOLQJ LV ZHDN WR LQWHUPHGLDWH 1R DWWHPSW ZDV PDGH WR HYDOXDWH WKH FRXSOLQJ 7KLV FDQ EH EHVW XQGHUVWRRG ZLWK UHIHUHQFH WR )LJXUHV 7KHVH LQGLFDWH WKH GHFUHDVH LQ LQWHQVLW\ DQG EURDGHQLQJ RI WKH ]HUR 2 SKRQRQ OLQH DW $ RYHU WKH WHPSHUDWXUH UDQJH r. 6WXGLHV RI LPSXULW\ODWWLFH LQWHUDFWLRQV f DUH XVXDOO\ SHUIRUPHG RQ ]HURSKRQRQ

PAGE 86

,QWHQVLW\ )LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 87

,QWHQVLW\ :DYHOHQJWK $f )LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 88

,QWHQVLW\ )LJXUH 3KRVSKRUHVFHQFH RI $QWKUDTXLQRQH LQ +H[DQH DW r.

PAGE 89

X OLQHV ZKLFK FDQ EH DFFXUDWHO\ VHSDUDWHG IURP WKHLU SKRQRQ VLGHEDQGV RYHU D ZLGH UDQJH RI WHPSHUDWXUH 7KH EURDGHQLQJ LQ WKH DQWKUDTXLQRQH FDVH PDNHV WKLV H[WUHPHO\ GLIILFXOW DQG ZRXOG LQWURGXFH D ODUJH HUURU LQWR FDOFXODWLRQV RI WKH UHODWLYH LQWHJUDWHG LQWHQVLW\ RI WKH ]HURSKRQRQ OLQH 6LQFH WKH UHODWLYH LQWHJUDWHG LQWHQVLW\ RI WKH ]HURSKRQRQ OLQH DV D IXQFWLRQ RI WHPSHUDWXUH FKDUDFWHUL]HV WKH VWUHQJWK RI WKH FRXSOLQJ WKLV ZRXOG FDXVH D ODUJH HUURU LQ WKH HVWLPDWLRQ RI WKH VWUHQJWK RI WKH FRXSOLQJ

PAGE 90

&+$37(5 ,9 48,1,=$5,1 $1' '$81258%,&,1 ,QWURGXFWLRQ 7KH JHRPHWULFDO VWUXFWXUH RI TXLQL]DULQ LV QRW NQRZQ ZLWK FHUWDLQW\ ,Q DOO WKDW IROORZV LW ZLOO EH DVVXPHG WKDW WKH PROHFXOH LV SODQDU DQG EHORQJV WR WKH SRLQW JURXS =A 7KHUH DUH VHYHUDO EDVHV IRU WKLV DVVXPSWLRQ 4XLQL]DULQ LV GLK\GUR[\ DQWKUDTXLQRQH )UHH URWDWLRQ DERXW WKH + ERQGV FRXOG EH H[SHFWHG WR RFFXU VR WKDW RQ WKH DYHUDJH WKH + JURXSV PLJKW OLH HLWKHU LQ RU RXW RI WKH SODQH RI WKH PROHFXOH ([SHULPHQWDOO\ f LW LV IRXQG WKDW WKH & VWUHWFKLQJ IUHTXHQF\ LQ WKH LQIUDUHG VSHFWUXP RI WKLV FRPSRXQG LV FP ? DV RSSRVHG WR FP A LQ DQWKUDTXLQRQH 7KLV LQGLFDWHV WKDW TXLWH VWURQJ K\GURJHQ ERQGLQJ LV SUHVHQW 6XFK D VLWXDWLRQ ZRXOG RFFXU LI WKH + JURXSV OLH LQ WKH SODQH RI WKH PROHFXOH 4XLQL]DULQ DOVR GLVSOD\V D OLPLWHG VROXn ELOLW\ LQ SRODU VROYHQWV ZKLFK PLJKW EH LQWHUSUHWHG DV DGGLWLRQDO HYLGHQFH WKDW WKH + JURXSV DUH KLJKO\ FRRUGLQDWHG ZLWK WKH FDUERQ\O JURXSV 7KHUHIRUH IRU SXUSRVHV RI DQDO\VLV LW LV DVVXPHG WKDW GLK\GUR[\ DQWKUDTXLQRQH TXLQL]DULQf LV D SODQDU PROHFXOH LQ WKH JURXQG VWDWH DQG EHORQJV WR WKH SRLQW JURXS 7KH D[LV V\VWHP LQ TXLQL]DULQ LV FKRVHQ KHUH WR EH WKH VDPH DV WKDW XVHG IRU DQWKUDTXLQRQH LQ UHIHUHQFH f 7KH YLVLEnOH DQG XOWUDYLROHW VSHFWUD RI TXLQL]DULQ VKRZ VHYHUDO TXLWH VWURQJ DEVRUSWLRQ EDQGV f 7KH ORQJHVW ZDYHOHQJWK DEVRUSWLRQ

PAGE 91

8 EDQG OLHV LQ WKH YLVLEOH UHJLRQ H[WHQGLQJ IURP DSSUR[LPDWHO\ WR $ 7KH DEVRUSWLRQ DSSHDUV WR EH GXH WR RQH HOHFWURQLF WUDQVLWLRQ ZLWK YLEUDWLRQDO ILQH VWUXFWXUH $OO RI WKH 89 DQG YLVLEOH EDQGV LQ WKH TXLQL]DULQ DEVRUSWLRQ VSHFWUXP KDYH H YDOXHV JUHDWHU WKDQ LQn GLFDWLQJ WKDW WKH HOHFWURQLF WUDQVLWLRQV UHVSRQVLEOH IRU WKHLU RFFXUUHQFH WDNH SODFH ZLWK D UHODWLYHO\ KLJK GHJUHH RI SUREDELOLW\ 8QGHU V\PPHWU\ HOHPHQWV RI WKH HOHFWULF GLSROH PRPHQW RSHUDWRU WUDQVIRUP DV D_ EA DQG EA 4XLQL]DULQ KDV D FORVHG VKHOO HOHFWURQLF FRQILJXUDWLRQ VR WKDW LWV JURXQG HOHFWURQLF VWDWH LV $M 7UDQVLWLRQV RI WKH W\SH A$M A$_ A %_ A$_ r A ZRXOG EH H[SHFWHG WR RFFXU ZLWK D KLJK GHJUHH RI SUREDELOLW\ LQ DEVRUSWLRQ ZKLOH WUDQVLWLRQV RI WKH W\SH A A ZRXA EH IRUELGGHQ E\ VHOHFWLRQ UXOHV DQG ZRXOG RFFXU RQO\ E\ VWHDOLQJ LQWHQVLW\ WKURXJK YLEURQLF LQWHUDFWLRQV ZLWK DOORZHG WUDQVLWLRQV $EUDKDPVRQ DQG 3DQLN f KDYH GLVFXVVHG WKH HIIHFW RI LQWURGXFLQJ D EDVLF JURXS VXFK DV &O 2+ 1+A HWFLQWR WKH ULQJV RI WKH DQWKUD TXLQRQH V\VWHP ,I UHVRQDQFH LQWHUDFWLRQ EHWZHHQ RUELWDOV RQ WKH EDVLF JURXS DQG WKH WW HOHFWURQLF V\VWHP RI DQWKUDTXLQRQH RFFXUV WKHQ WKH KLJKHVW ILOOHG WW RUELWDO RI WKH JURXQG VWDWH ZLOO EH UDLVHG LQ HQHUJ\ DQG WKDW RI WKH EDVLF JURXS ZLOO EH ORZHUHG )RU KLJKO\ HOHFWURQHJDWLYH VXEVWLWXHQWV DQ LQGXFWLYH HIIHFW PD\ EH SUHVHQW ZKLFK ZLOO LQWHUDFW ZLWK Q RUELWDOV RQ WKH DQWKUDTXLQRQH V\VWHP WR GHSUHVV WKHLU HQHUJ\ OHYHOV %RWK RI WKHVH HIIHFWV ZLOO WHQG WR GHFUHDVH WKH HQHUJ\ OHYHO VHSDUDWLRQ RI WKH Q DQG WW RUELWDOV RI WKH DQWKUDTXLQRQH V\VWHP DQG LQ WKH H[WUHPH FDVH PLJKW FDXVH D UHYHUVDO RI WKH HQHUJ\ OHYHOV $ VWXG\ RI WKH HPLVVLRQ FKDUDFWHULVWLFV RI WKH TXLQL]DULQ PROHFXOH FDQ JLYH LQIRUPDWLRQ FRQFHUQLQJ WKH GLVSRVLWLRQ RI VLQJOHW HQHUJ\ OHYHOV

PAGE 92

&RPSRXQGV ZKLFK KDYH DQ QUr VLQJOHW VWDWH DV WKH ORZHVW H[FLWHG VLQJOHW VWDWH GR QRW QRUPDOO\ H[KLELW IOXRUHVFHQFH VLQFH DOPRVW FRPSOHWH LQWHUn V\VWHP FURVVLQJ WDNHV SODFH IURP WKH ORZHVW H[FLWHG QL7r VWDWH WR D WULSOHW VWDWH IURP ZKLFK SKRVSKRUHVFHQFH RFFXUV f 6ROYHQW HIIHFWV XSRQ DEVRUSWLRQ VSHFWUD PD\ DOVR EH XVHIXO VLQFH Q"Ur WUDQVLWLRQV ZLOO XVXDOO\ GLVSOD\ D VKLIW WRZDUGV VKRUWHU ZDYHOHQJWKV LQ JRLQJ IURP D QRQSRODU WR D SRODU VROYHQW ZKLOH WWWWr WUDQVLWLRQV GLVSOD\ WKH RSSRVLWH EHKDYLRU 7KH VWUXFWXUHV RI DQWKUDTXLQRQH TXLQL]DULQ DQG GDXQRUXELFLQ DUH VKRZQ LQ )LJXUH ,W FDQ EH VHHQ WKDW WKH RQO\ V\PPHWU\ HOHPHQW ZKLFK GDXQRUXELFLQ SRVVHVVHV LV WKH LGHQWLW\ HOHPHQW ,W WKHUHIRUH EHORQJV WR WKH SRLQW JURXS &_ $OO HOHFWURQLF WUDQVLWLRQV ZLOO EH RI W\SH A$ A$ ZLWK VXEVHTXHQW HDVLQJ RI V\PPHWU\ FRQVWUDLQWV FRQFHUQLQJ WKH DOORZHG QHVV RU IRUELGGHQQHVV RI WUDQVLWLRQV 7KLV SRUWLRQ RI WKH UHVHDUFK GHDOV ZLWK LQYHVWLJDWLRQV RI HOHFWURQLF WUDQVLWLRQV LQ TXLQL]DULQ XWLOL]LQJ YLVLEOH DQG XOWUDYLROHW DEVRUSWLRQ URRP WHPSHUDWXUH OXPLQHVFHQFH OLIHWLPH PHDVXUHPHQWV SKRWRVHOHFWLRQ DQG 6KSROVNLL PDWUL[ HPLVVLRQ ,Q DGGLWLRQ ,5 DQG IDU ,5 VSHFWUD RI TXLQL]DULQ DUH UHSRUWHG ZLWK DQ DQDO\VLV RI ,5 DFWLYH QRUPDO PRGHV RI YLEUDWLRQ RI TXLQL]DULQ 3KRWRVHOHFWLRQ PHDVXUHPHQWV XSRQ GDXQRUXn ELFLQ DUH DOVR LQFOXGHG LQ DQ HIIRUW WR GHWHUPLQH ZKHWKHU WKH DVVLJQn PHQWV RI HOHFWURQLF WUDQVLWLRQV RI GDXQRUXELFLQ LQ UHIHUHQFH f DUH FRUUHFW 7KHRU\ RI 3KRWRVHOHFWLRQ 1XPHURXV fH[DPSOHV RI WKH XVH RI SKRWRVHOHFWLRQ LQ WKH LQYHVWLJDWLRQ RI HOHFWURQLF WUDQVLWLRQV PD\ EH IRXQG LQ WKH OLWHUDWXUH f $Q

PAGE 93

R

PAGE 94

H[WHQVLYH H[SRVLWLRQ RI WKH WKHRU\ RI SKRWRVHOHFWLRQ DQG GLVFXVVLRQV RI LWV DSSOLFDWLRQ PD\ EH IRXQG LQ WKH DUWLFOH E\ $OEUHFKW f 7KH WUHDWPHQW ZKLFK IROORZV LV VLPLODU WR $OEUHFKWnV ,Q RUGHU WR XQGHUVWDQG KRZ SKRWRVHOHFWLRQ PLJKW EH XVHG LQ WKH DVVLJQPHQW RI HOHFWURQLF WUDQVLWLRQV LW LV ILUVW DSSURSULDWH WR UHYLHZ WKH FRQFHSW RI WKH SRODUL]DWLRQ RI DQ HOHFWURQLF WUDQVLWLRQ 6LQFH HOHFWULF GLSROH WUDQVLWLRQV DUH JHQHUDOO\ RUGHUV RI PDJQLWXGH VWURQJHU WKDQ PDJQHWLF GLSROH RU HOHFWULF TXDGUXSROH WUDQVLWLRQV DQG DUH IRXQG PXFK PRUH IUHTXHQWO\ LQ RUJDQLF FRPSRXQGV WKH H[DPSOH JLYHQ LV UHVWULFWHG WR WKH FDVH RI HOHFWULF GLSROH WUDQVLWLRQV &RQVLGHU DV WKH PRVW JHQHUDO FDVH D WUDQVLWLRQ EHWZHHQ WZR VWDWLRQDU\ HOHFWURQLF VWDWHV DQG A EURXJKW DERXW E\ LQFLGHQW UDGLDn WLRQ RI IUHTXHQF\ Y (A (AfK )RU VLPSOLFLW\ WKH VWDWHV DUH DVVXPHG WR EH QRQGHJHQHUDWH DQG WKHLU HLJHQIXQFWLRQV DUH DVVXPHG WR EH UHDO 7KH SUREDELOLW\ WKDW WKH WUDQVLWLRQ ZLOO RFFXU LV SURSRUWLRQDO WR WKH VTXDUH RI WKH WUDQVLWLRQ PRPHQW LQWHJUDO nIfM A nInI [M [BS GD f ZKHUH 0 H U LM LV WKH VSDWLDO HLJHQIXQFWLRQ RI WKH LWK VWDWH DQG L [M LV WKH FRUUHVSRQGLQJ VSLQ IXQFWLRQ )RU VLPSOLFLW\ LW LV DVVXPHG WKDW $6 7KH HOHFWURQLF WUDQVLWLRQ ZLOO EH DQ DOORZHG RQH LI DQG RQO\ LI LV QRW HTXDO WR ]HUR ,Q WKH FDVH ZKHUH RQH RU ERWK VWDWHV DUH GHJHQHUDWH WKH WUDQVLWLRQ ZLOO EH DQ DOORZHG RQH SURYLGHG WKDW WKH GLUHFW SURGXFW RI WKH VSHFLHV Uf RI LN ZLWK WKDW RI EHORQJV WR WKH VDPH VSHFLHV DV RQH RI WKH FRPSRQHQWV RI0

PAGE 95

7KH VHOHFWLRQ UXOH DV GLVFXVVHG DERYH DSSOLHV RQO\ IRU IL[HG QXFOHL 7KH QXFOHL DUH QRW DFWXDOO\ IL[HG DQG WKH GHSHQGHQFH RI WKH WRWDO HLJHQn IXQFWLRQ XSRQ QXFOHDU PRWLRQ PXVW EH FRQVLGHUHG 1HJOHFWLQJ URWDWLRQDO PRWLRQ MXVWLILHG SK\VLFDOO\ E\ WKH IDFW WKDW GXULQJ DQ DFWXDO H[SHULPHQW WKH PROHFXOHV XQGHUJRLQJ D WUDQVLWLRQ DUH QRUPDOO\ IL[HG LQ D ULJLG PHGLXPf WKH WRWDO HLJHQIXQFWLRQ PD\ EH H[SUHVVHG LQ WKH %RUQ2SSHQKHLPHU DSSUR[LPDWLRQ DV 3LN kLT4f N 4f f ZKHUH nAN LV WKH YLEURQLF VWDWH FRUUHVSRQGLQJ WR WKH NWK YLEUDWLRQDO OHYHO RI WKH LWK HOHFWURQLF VWDWH T LQGLFDWHV DOO WKH HOHFWURQLF FRRUn GLQDWHV DQG 4 VWDQGV IRU DOO WKH QXFOHDU FRRUGLQDWHV ,I WKH HOHFWULF GLSROH LV UHVROYHG LQWR WZR SDUWV RQH GXH WR HOHFWURQV DQG WKH RWKHU GXH WR QXFOHL 0 0 0 f H Q n n WKHQ WKH HOHFWULF GLSROH WUDQVLWLRQ PRPHQW EHFRPHV 0LNIO rN r G4  L HI GT fWfN AQ r G4 HL rI 6LQFH WKH HOHFWURQLF ZDYHIXQFWLRQV IRU D JLYHQ SRVLWLRQ RI WKH QXFOHL DUH PXWXUDOO\ RUWKRJRQDO WKH VHFRQG WHUP LQ WKH DERYH H[SUHVVLRQ YDQLVKHV ,I WKH GHSHQGHQFH RI XSRQ QXFOHDU FRRUGLQDWHV LV WDNHQ LQWR DFFRXQW ZH REWDLQ f 0I T4f 0H HI T4f GT 0 4 f I LS D G4 WNI LI n[R N + Df

PAGE 96

ZKHUH 4T LV WKH FRQILJXUDWLRQ RI WKH QXFOHL QHDU WKH HTXLOLEULXP SRVLWLRQ 7KXV WKH WUDQVLWLRQ SUREDELOLW\ ZKLFK LV SURSRUWLRQDO WR 0 KDV EHHQ UHVROYHG LQWR WZR FRPSRQHQWV RQH RI ZKLFK GHSHQGV XSRQ QXFOHDU PRWLRQ DQG WKH RWKHU ZKLFK GHSHQGV XSRQ HOHFWURQLF PRWLRQ )ROORZLQJ $OEUHFKW WKLV PD\ EH H[SUHVVHG LQ D VOLJKWO\ GLIIHUHQW IRUP E\ XVLQJ WKH 4 GHSHQGHQFH RI WKH HOHFWURQLF ZDYH IXQFWLRQV HI T4f Hr O rIU 4f Hr f 7KH HOHFWURQLF ZDYHIXQFWLRQ IRU VWDWH I DW 4 LV H[SUHVVHG LQ WHUPV RI WKH FRPSOHWH VHW RI HOHFWURQLF ZDYHIXQFWLRQV HYDOXDWHG DW 4 FRUUHVSRQGLQJ WR WKH JURXQG HOHFWURQLF VWDWH 7KH VXP LQ (T f JRHV RYHU DOO VWDWHV EXW I ZKHUH WKH UWK PHPEHU RI WKH VHW LV r 7KH FRHIn ILFLHQW VHUYHV WR PL[ WKH ]HURWK RUGHU ZDYHIXQFWLRQ ZLWK Hr WKURXJK D YLEUDWLRQDO PRWLRQ RI WKH SURSHU V\PPHWU\ 6XFK PL[LQJ ZLOO EH QHJn OLJLEOH IRU WKH JURXQG VWDWH VR WKDW A T4f 7KH WUDQVLWLRQ PRPHQW PD\ WKHQ EH H[SUHVVHG DV 0LNIO 0LI I rN r G4 O 0LU I AN $IU fK G4 A 7KH SK\VLFDO LQWHUSUHWDWLRQ RI 0A A LV WKDW LW UHSUHVHQWV WKH SRODUL]DWLRQ RI WKH YLEURQLF WUDQVLWLRQ LN r I (TXDWLRQ f PD\ EH YLHZHG DV EHLQJ PDGH XS RI WZR SDUWV DQ DOORZHG DQG D IRUELGGHQ SDUW ,W LV WKH DOORZHG SDUW RI WKH WUDQVLWLRQ ZKLFK ZLOO EH WKH PRVW LPSRUWDQW SDUW LQ GHWHUPLQLQJ WKH QDWXUH RI WKH HOHFWURQLF WUDQVLWLRQ 7KLV LV WKH ILUVW WHUP LQ (T f DQG UHSUHVHQWV WKH PRGLILFDWLRQ RI FRPELQLQJ YLEUDWLRQDO ZDYH IXQFWLRQV )UDQFN&RQGRQ IDFWRUf XSRQ DQ HOHFWURQLF WUDQVLWLRQ 7KH VHFRQG WHUP LQ (T f UHSUHVHQWV WKH IRUELGGHQ

PAGE 97

SDUW RI WKH WUDQVLWLRQ $ JLYHQ YLEURQLF WUDQVLWLRQ ZLOO EH SRODUL]HG DFFRUGLQJ WR WKH YHFWRU VHQVH RI 0"A LI LW LV HOHFWURQLFDOO\ DOORZHG RU DFFRUGLQJ WR WKH YHFWRU VHQVH RI WKH DSSURSULDWH 0"A LI WKH WUDQVLWLRQ LQYROYHV DSSURSULDWH QRQWRWDOO\ V\PPHWULF YLEUDWLRQV 7KLV IROORZV IURP WKH IDFW WKDW LQWHJUDQGV LQ WKH LQWHJUDOV RYHU QXFOHDU VSDFH ZLOO QRW FRQWDLQ WRWDOO\ V\PPHWULF FRPSRQHQWV IRU ERWK WKH DOORZHG DQG IRUn ELGGHQ FRPSRQHQWV VLPXOWDQHRXVO\ IRU D QRQWRWDOO\ V\PPHWULF [A 7KHUHn IRUH YHFWRU DGGLWLRQ RI WKH WZR WHUPV ZLOO QRW RFFXU H[FHSW ZKHQ [A FRQWDLQV D WRWDOO\ V\PPHWULF YLEUDWLRQ ,Q DQ DFWXDO H[SHULPHQW LQYROYLQJ SKRWRVHOHFWLRQ WKHUH DUH HVVHQn WLDOO\ WZR GLIIHUHQW PHWKRGV ZKLFK PD\ EH HPSOR\HG ,Q RQH FDVH WKHUH LV DQ DFWLYH DWWHPSW WR FDXVH PROHFXOHV WR EHFRPH RULHQWHG DV LQ WKH FDVH RI D VLQJOH FU\VWDOf 7KH VHFRQG PHWKRG GRHV QRW GHSHQG XSRQ WKH DFWLYH RULHQWDWLRQ RI PROHFXOHV EXW UHOLHV XSRQ WKH DQLVRWURSLF QDWXUH RI WKH H[FLWLQJ OLJKW 2UGLQDU\ OLJKW LV LVRWURSLF ,Q RUGHU WR UHQGHU LW DQLVRWURSLF LW LV QHFHVVDU\ WR SDVV WKH EHDP WKURXJK RQH RI VHYHUDO GLIIHUHQW W\SHV RI SRODUL]LQJ PHGLD VR WKDW WKH OLJKW ZKLFK HPHUJHV LV D EHDP RI SODQH SRODUL]HG OLJKW &RQVLGHU D ULJLG VROXWLRQ LQ ZKLFK WKH IOXRUHVFHQW VROXWH PROHFXOHV DUH UDQGRPO\ RULHQWHG $VVXPH IRU WKH VDNH RI VLPSOLFLW\ WKDW WKH WUDQVLWLRQ PRPHQW IRU DEVRUSWLRQ FRLQFLGHV ZLWK WKDW IRU HPLVVLRQ ,Q WKH DEVHQFH RI GHSRODUL]LQJ IDFWRUV WKLV ZLOO FRUUHVSRQG WR DQ H[FLWDWLRQ IURP WKH JURXQG VWDWH WR WKH ILUVW H[FLWHG VLQJOHW VWDWH DQG HPLVVLRQ IURP WKH ILUVW H[FLWHG VWDWH WR WKH JURXQG VWDWH )ROORZLQJ 3DUNHU f ZH PD\ FRQVLGHU VXFK D VLWXDWLRQ ZLWK UHIHUHQFH WR )LJXUH 7KH LQFLGHQW OLJKW LV YHUWLFDOO\ SRODUL]HG DQG

PAGE 98

= )LJXUH ,OOXVWUDWLRQ RI 5HODWLYH 3RODUL]DWLRQ IRU DQ (OHFWURQLF 7UDQVLWLRQ

PAGE 99

SURSDJDWLQJ DORQJ WKH ; D[LV &RQVLGHU D PROHFXOH ZLWK D WUDQVLWLRQ PRPHQW GLUHFWHG DORQJ 25 LQFOLQHG DW DQ DQJOH m ZLWK 2= DQG DQ D]LPXWKDO DQJOH \ ZLWK 29 7KH 5 LV WKH SURMHFWLRQ RI 5 RQ WKH SODQH ;2< (PLVVLRQ LV YLHZHG DORQJ 2< 7KH SUREDELOLW\ WKDW VXFK D PROHFXOH ZLOO EH H[FLWHG E\ WKH YHUWLFDOO\ SRODUL]HG OLJKW ZLOO YDU\ DV FRV D )RU D JLYHQ QXPEHU RI H[FLWHG PROHFXOHV WKH LQWHQVLW\ RI WKH YHUWLFDO FRP f§ SRQHQW RI OLJKW YLHZHG DORQJ 2< ZLOO DOVR YDU\ DV FRV D ZKLOH WKDW RI WKH KRUL]RQWDO FRPSRQHQW ZLOO YDU\ DV VLQ DVLQ \ 7KH GHJUHH RI SRODUL]DWLRQ LV GHILQHG DV 3 ,Q ,Lf,P ,Lf f ZKHUH ,Q DQG 8 DUH WKH LQWHQVLWLHV RI WKH REVHUYHG SDUDOOHO DQG SHUn SHQGLFXODU FRPSRQHQWV RI WKH HPLVVLRQ ,Q WKH FDVH ZKHUH WKH DEVRUSWLRQ DQG HPLVVLRQ PRPHQWV FRLQFLGH H[DFWO\ 3 LV HTXDO WR IRU YHUWLFDOO\ SRODUL]HG H[FLWLQJ OLJKW 3HUULQ f DQG -DEORQVNL f KDYH VKRZQ WKDW LI WKH DQJOH EHWZHHQ DEVRUSWLRQ DQG HPLVVLRQ RVFLOODWRUV LV IRU YHUWLFDOO\ SRODUL]HG OLJKW 3 ZLOO EH JLYHQ E\ 3 FRV fFRVH f f )RU r 3 WDNHV RQ WKH YDOXH RI )RU r ZKHQ WKH DEVRUSWLRQ DQG HPLVVLRQ RVFLOODWRUV DUH DW ULJKW DQJOHV 3 ZLOO KDYH WKH YDOXH 'LIIHUHQFHV IRXQG LQ SUDFWLFH IURP WKHVH YDOXHV DUH QRUPDOO\ DWWULEXWHG WR VXFK IDFWRUV DV RYHUODS RI WZR FORVHO\ VSDFHG WUDQVLWLRQV RU H[WHUQDO IDFWRUV VXFK DV VWUDLQV LQ WKH ULJLG JODVV PDWUL[ 7KH SRODUL]DWLRQ RI WKH HPLVVLRQ DV D IXQFWLRQ RI H[FLWDWLRQ ZDYHn OHQJWK FDQ EH XVHG WR HVWDEOLVK WKH UHODWLYH RULHQWDWLRQ RI DQ HPLVVLRQ WUDQVLWLRQ GLSROH WR D SDUWLFXODU DEVRUSWLRQ EDQG LQ WKH DEVRUSWLRQ

PAGE 100

VSHFWUXP RI WKH PROHFXOH LQ TXHVWLRQ 7KLV LV JHQHUDOO\ GRQH E\ FRPn SDULQJ WKH SRODUL]DWLRQ FXUYH WR EDQGV LQ WKH DEVRUSWLRQ VSHFWUXP ,Q WKH LGHDO FDVH WKHUH ZLOO EH D UHJLRQ RI DSSUR[LPDWHO\ FRQVWDQW SRODULn ]DWLRQ IRU D JLYHQ DEVRUSWLRQ EDQG IROORZHG E\ D UHJLRQ RI FKDQJLQJ SRODUL]DWLRQ ZKHUH WZR DEVRUSWLRQ EDQGV RYHUODS DQG WKHQ DQRWKHU UHJLRQ RI DSSUR[LPDWHO\ FRQVWDQW SRODUL]DWLRQ RYHU PRVW RI WKH VHFRQG DEVRUSWLRQ EDQG 7KH SRODUL]DWLRQ PD\ FKDQJH VLJQ RU QRW GHSHQGLQJ XSRQ ZKHWKHU WKH WZR DEVRUSWLRQ EDQGV KDYH PXWXDOO\ SHUSHQGLFXODU WUDQVLWLRQ PRPHQWV ([SHULPHQWDO 7KH H[SHULPHQWDO SURFHGXUHV XVHG WR REWDLQ 6KSROVNLL PDWUL[ VSHFWUD SKRWRVHOHFWLRQ PHDVXUHPHQWV RI TXLQL]DULQ DQG GDXQRUXELFLQ DQG OLIHWLPH PHDVXUHPHQWV IRU TXLQL]DULQ DUH GHVFULEHG LQ &KDSWHU 5HDJHQWV DQG HTXLSPHQW XWLOL]HG LQ WKLV VHW RI H[SHULPHQWV DUH DOVR GHVFULEHG LQ WKLV VDPH FKDSWHU ,QIUDUHG DEVRUSWLRQ VSHFWUD RI TXLQL]DULQ LQ WKH UDQJH FPfA ZHUH REWDLQHG LQ .%U GLVNV RQ D 3HUNLQ(OPHU VSHFWURPHWHU 6SHFWUD LQ 1XMRO PXOOV RYHU WKH UHJLRQ FPn DQG LQ WKH IDU ,5 ZHUH REWDLQHG RQ D 'LJLODE )76& )RXULHU 7UDQVIRUP ,5 VSHFWURPHWHU ,W KDV EHHQ VXJJHVWHG WKDW GLPHUL]DWLRQ WDNHV SODFH LQ WKH FRQn GHQVHG SKDVH LQ K\GUR[\ DQWKUDTXLQRQHV f ,Q RUGHU WR GHWHUPLQH ZKHWKHU WKH HPLVVLRQ DQG DEVRUSWLRQ VSHFWUD REWDLQHG ZHUH IURP TXLQL]DULQ PROHFXOHV RU IURP GLPHUV URRP WHPSHUDWXUH OXPLQHVFHQFH DQG DEVRUSWLRQ VSHFWUD ZHUH UXQ DV D IXQFWLRQ RI FRQFHQWUDWLRQ LQ QKH[DQH DQG PHWKDQRO VROYHQWV $ &DU\ VSHFWURSKRWRPHWHU ZLWK D SDLU RI PDWFKHG FP SDWKOHQJWK FHOOV ZDV XVHG IRU DEVRUSWLRQ PHDVXUHPHQWV ZKLOH D

PAGE 101

3HUNLQ(OPHU VSHFWURIOXRULPHWHU ZDV XVHG IRU OXPLQHVFHQFH H[SHULn PHQWV 5HVXOWV DQG 'LVFXVVLRQ ,QIUDUHG 6SHFWUD %HIRUH DQ\ DWWHPSWV DW DQDO\VLV RI YLEUDWLRQDO SURJUHVVLRQV LQ WKH OXPLQHVFHQFH VSHFWUXP RI TXLQL]DULQ FRXOG EH PDGH LW ZDV ILUVW QHFHVVDU\ WR NQRZ WKH IXQGDPHQWDO PRGHV RI YLEUDWLRQ RI TXLQL]DULQ 2QO\ D SDUn WLDO DQDO\VLV RI WKH ,5 VSHFWUXP KDV EHHQ SXEOLVKHG f DQG QR 5DPDQ VSHFWUD FRXOG EH ORFDWHG LQ WKH OLWHUDWXUH $OWKRXJK 5DPDQ VSHFWUD DUH QHFHVVDU\ IRU D FRPSOHWH YLEUDWLRQDO DQDO\VLV WKHVH ZHUH QRW DWWHPSWHG IRU UHDVRQV GLVFXVVHG HDUOLHU LQ FRQMXQFWLRQ ZLWK H[SHULPHQWV RQ DQWKUD TXLQRQH 7KH TXLQL]DULQ PROHFXOH KDV DWRPV LQ LWV VWUXFWXUH ,W ZLOO WKHUHIRUH KDYH QRUPDO PRGHV RI YLEUDWLRQ ,I TXLQL]DULQ LV DVVLJQHG &9 V\PPHWU\ WKHVH PD\ EH GHGXFHG XVLQJ WKH PHWKRGV RI JURXS WKHRU\ 7KH VWUXFWXUHV DQG D[LV V\VWHPV RI TXLQL]DULQ DQG DQWKUDTXLQRQH ZHUH JLYHQ HDUOLHU LQ )LJXUH $OWKRXJK WKHUH DUH WKUHH SRVVLEOH ZD\V LQ ZKLFK V\PPHWU\ PD\ EH FRUUHODWHG ZLWK WKH OHVV V\PPHWULF SRLQW JURXS LW ZDV IHOW WKDW LW ZDV DSSURSULDWH WR XVH WKH DQWKUDTXLQRQH D[LV V\VWHP VLQFH DVVLJQPHQWV RI TXLQL]DULQ YLEUDWLRQDO PRGHV ZHUH PDGH E\ DQDORJ\ ZLWK DQWKUDTXLQRQH WKURXJK WKH UHVXOWV RI ,5 H[SHULPHQWV RQ FKHODWHG K\GUR[\TXLQRQHV f DQG WKURXJK WKH XVH RI FKDUWV RI FKDUDFn WHULVWLF YLEUDWLRQDO IUHTXHQFLHV f %\ DSSO\LQJ JURXS WKHRUHWLFDO PHWKRGV DV VKRZQ LQ 7DEOH ,9 WKH UHSUHVHQWDWLRQV RI WKH 1 1 LV WKH QXPEHU RI DWRPVf JHQXLQH QRUPDO

PAGE 102

f 7DEOH ,9 5HSUHVHQWDWLRQV RI WKH 1RUPDO 0RGHV RI 9LEUDWLRQ RI 4XLQL]DULQ rK &Y [ [ \ r \ ] A ]f $ $ J $ $ &' &2 $ %OX $ %J % %R X % %R J % %R X % &KDUDFWHUV ;(f [Ff R [R f 9;\ ;R f [\]n Q$ >f QIO >f D Q5 >f % Q5 >f % f f f@ f Of f@ Of f f@ Of Of f@ U U U U U 1 UYLE 1 $ WUDQV $ URW $ YL E U U WUDQV URW $ %% % % $ ,% %

PAGE 103

PRGHV RI YLEUDWLRQ RI TXLQL]DULQ DUH IRXQG WR EH DA QRUPDO PRGHV GS QRUPDO PRGHV EA DQG EA QRUPDO PRGHV ([DPLQDWLRQ RI WKH FKDUDFWHU WDEOH IRU &AY UHYHDOV WKDW YLEUDWLRQV RI W\SH DA ZLOO EH LQDFWLYH LQ WKH LQIUDUHG ZKLOH DOO RWKHU W\SHV ZLOO EH ,5 DFWLYH $OO PRGHV RI YLEUDWLRQ ZLOO EH H[SHFWHG WR DSSHDU LQ WKH 5DPDQ YLEUDn WLRQDO VSHFWUXP $Q DQDO\VLV RI WKH ,5 DFWLYH IXQGDPHQWDO PRGHV RI YLEUDWLRQ RI TXLQL]DULQ LV SUHVHQWHG LQ 7DEOH 9 7KH FRUUHVSRQGLQJ DQWKUDTXLQRQH IUHTXHQFLHV DUH DOVR OLVWHG ZKHUH DSSOLFDEOH ,W ZLOO EH QRWHG WKDW LQ PDQ\ LQVWDQFHV WKHUH DUH RQO\ VPDOO RU QR IUHTXHQF\ VKLIWV LQ JRLQJ IURP DQWKUDTXLQRQH WR TXLQL]DULQ /LIHWLPHV /LIHWLPH PHDVXUHPHQWV RQ VHYHUDO YLEURQLF EDQGV LQ WKH HPLVVLRQ VSHFWUD RI TXLQL]DULQ LQ KH[DQH DQG (3$ ZHUH PDGH DW ERWK r. DQG r. 1R SKRVSKRUHVFHQFH ZDV IRXQG 7KH YDOXH RI WKH IOXRUHVFHQFH OLIHWLPH REWDLQHG E\ WKH SURFHGXUH GHVFULEHG LQ &KDSWHU ZDV L QVHF 1R WHPSHUDWXUH GHSHQGHQFH XSRQ WKH IOXRUHVFHQFH OLIHWLPHV ZDV REVHUYHG LQ DFFRUG ZLWK WKH XVXDO EHKDYLRU RI IOXRUHVFHQFH f 7KH OLIHWLPH REWDLQHG KHUH DJUHHV UHDVRQDEO\ ZHOO ZLWK OLWHUDWXUH YDOXHV IRU WKH UHODWHG FRPSRXQG DK\GUR[\ DQWKUDTXLQRQH f $EVRUSWLRQ DQG /XPLQHVFHQFH 6SHFWUD 3ORWV RI DEVRUEDQFH YHUVXV FRQFHQWUDWLRQ DW VHYHUDO ZDYHOHQJWKV IRU TXLQL]DULQ LQ KH[DQH DQG PHWKDQRO DUH VKRZQ LQ )LJXUHV DQG UHVSHFWLYHO\ $ OLQHDU VORSH ZKRVH YDOXH LV He ZKHUH H LV WKH PRODU

PAGE 104

7DEOH 9 ,5$FWLYH )XQGDPHQWDO 0RGHV RI 9LEUDWLRQ RI 4XLQL]DULQ O-nSHn" $SSUR[ 'HVFULSWLRQ &RUUHVSRQGLQJ $QWKUDTXLQRQH FP nf U )UHTXHQF\ FPf + VWUHWFK EURDGf f§ &+ VWUHWFK EX &+ VWUHWFK ULQJ VWUHWFK 5DPDQ EJ EA ULQJ VWUHWFK ES ULQJ VWUHWFK 5D0DQ ET ULQJ VWUHWFK ULQJ VWUHWFK && VWUHWFK ULQJ VWUHWFK Ef ULQJnVWUHWFK EX ULQJ VWUHWFK ULQJ VWUHWFK &+ EHQG 5DPDQ EJ &+ EHQG EX &+ EHQG &+ EHQG 5DPDQ EJT &+ EHQG ES &+ 'HQG E VNHO GHI VNHO GHI VNHO GHI 5DPDQ EA + RS EHQG &+ RS EHQG f§ + RS EHQG f§ VNHO GHI 5DPDQ Ef VNHO GHI ES VNHO GHI ET & EHQG RU 5DPDQ ET f LS & EHQG VNHO GHI LS 5DPDQ EAJ

PAGE 105

n-rL 7DEOH 9 &RQWLQXHGf 7\SH DL FPf $SSUR[ 'HVFULSWLRQ &RUUHVSRQGLQJ $QWKUDTXLQRQH )UHTXHQF\ FQUOf && VWUHWFK & VWUHWFK E & VWUHWFK ULQJ VWUHWFK E@>M ULQJ VWUHWFK && VWUHWFK 5DPDQ DT ULQJ VWUHWFK E_X ULQJ VWUHWFK && VWUHWFK 5DPDQ D4 RS GHI &+ EHQG E &+ EHQG + LS DQJOH GHI X ULQJ VWUHWFK E ULQJ VWUHWFK + LS DQJOH GHI X &+ EHQG E@X &+ EHQG &+ EHQG 5DPDQ DJ VNHO GHI EJX VNHO GHI VNHO GHI 5DPDQ DT && GHI 5DPDQ D\ 7\SH E@ FPnOf $SSUR[ 'HVFULSWLRQ &RUUHVSRQGLQJ $QWKUDTXLQRQH )UHTXHQF\ FPOf &+ EHQG &+ EHQG &+ EHQG & EHQG VNHO GHI RS VNHO GHI RS VNHO GHI VNHO GHI LS EX &+ EHQG 5DPDQ ET EX &+ %HQG EX & EHQG 5DPDQ Ef 5DPDQ E_i EVX VNHO GHI EVX VNHO GHI LS

PAGE 106

$EVRUEDQFH )LJXUH 3ORW RI $ YV & IRU 4XLQL]DULQ LQ +H[DQH

PAGE 107

$EVRUEDQFH )LJXUH 3ORW RI $ YV & IRU 4XLQL]DULQ LQ 0HWKDQRO

PAGE 108

H[WLQFWLRQ FRHIILFLHQW DQG V LV WKH DEVRUSWLRQ SDWK OHQJWK LV REWDLQHG 7KH FORVH ILW WR WKH /DPEHUW%HHU /DZ LQGLFDWHV WKDW WKH DEVRUELQJ VSHFLHV SUHVHQW LV WKH TXLQL]DULQ PROHFXOH UDWKHU WKDQ DQ DJJUHJDWHG IRUP 7KH UHODWLYHO\ ODUJH H YDOXHV LQGLFDWH WKDW WKH HOHFWURQLF WUDQVLWLRQV DUH DOORZHG RQHV ,W KDV EHHQ VXJJHVWHG WKDW WKH\ DUH RI WKH W\SH f 7KH EHKDYLRU REVHUYHG KHUH DOPRVW QR VROYHQW VKLIW DQG ODUJH H YDOXHVf WHQG WR FRQILUP WKLV )XUWKHU FRQILUPDWLRQ LV REWDLQHG LQ WKH UHVXOWV RI WKH 6KSROVNLL PDWUL[ H[SHULPHQWV 7KLV ZLOO EH GLVFXVVHG LQ GHWDLO LQ D ODWHU VHFWLRQ 7KH EHKDYLRU RI WKH OXPLQHVFHQFH DV D IXQFWLRQ RI FRQFHQWUDWLRQ DW URRP WHPSHUDWXUH LV FRQVLVWHQW ZLWK PRQRPHU HPLVVLRQ 5HODWLYH LQWHQVLW\ RI OXPLQHVFHQFH ZDV SURSRUWLRQDO WR WKH TXLQL]DULQ FRQFHQWUDWLRQ LQn GLFDWLQJ WKDW LQ OLTXLG VROXWLRQV WKH TXLQL]DULQ PROHFXOH LV WKH HPLWn WLQJ VSHFLHV 1R HYLGHQFH IRU H[FLPHU IRUPDWLRQ ZDV IRXQG 6XFK HYLGHQFH ZLOO QRUPDOO\ WDNH WKH IRUP RI WKH DSSHDUDQFH RI D VWUXFWXUHOHVV ORQJHU ZDYHOHQJWK HPLVVLRQ EDQG DQG TXHQFKLQJ RI WKH VWUXFWXUHG PRQRPHU IOXRUHVFHQFH DV WKH VROXWLRQ FRQFHQWUDWLRQ LV LQFUHDVHG f 6KSROVNLL 6\VWHPV (PLVVLRQ VSHFWUD RI TXLQL]DULQ DW ORZ WHPSHUDWXUHV ZHUH REWDLQHG LQ PDWULFHV RI QKH[DQH QKHSWDQH DQG QRFWDQH 6SHFWUD REWDLQHG LQ KH[DQH DQG KHSWDQH ZHUH YHU\ VLPLODU ZLWK D VOLJKW VKLIW WRZDUG ORQJHU ZDYHOHQJWKV RFFXUULQJ LQ JRLQJ IURP KH[DQH WR KHSWDQH $ UDGLFDO FKDQJH LQ WKH DSSHDUDQFH RI WKH HPLVVLRQ VSHFWUXP ZDV REVHUYHG LQ JRLQJ IURP QKH[DQH WR QRFWDQH PDWULFHV 7KLV LV LOOXVWUDWHG LQ )LJXUHV DQG ([FLWDWLRQ RI IOXRUHVFHQFH LQ ERWK KH[DQH DQG RFWDQH PDWULFHV ZLWK

PAGE 109

,QWHQVLW\ )LJXUH 4XLQL]DULQ LQ +H[DQH DW r.

PAGE 110

,QWHQVLW\

PAGE 111

GLIIHUHQW ZDYHOHQJWKV RI OLJKW VKRZHG QR HIIHFW XSRQ WKH DSSHDUDQFH RI WKH VSHFWUXP 7KH HPLVVLRQ RI TXLQL]DULQ LQ QRFWDQH PDWULFHV UHVHPEOHV WKH VWUXFWXUH QRUPDOO\ IRXQG LQ 6KSROVNLL PDWUL[ VSHFWUD $Q DQDO\VLV RI WKH HPLVVLRQ RI TXLQL]DULQ LQ QKH[DQH ZDV DWWHPSWHG ERWK LQ WHUPV RI VLQJOH VLWH DQG PXOWLSOH VLWH HPLVVLRQ $OWKRXJK VSDFLQJV FRXOG EH IRXQG ZKLFK DJUHHG ZLWK IUHTXHQFLHV REVHUYHG LQ WKH ,5 QR VDWLVIDFWRU\ RYHUDOO FRUUHODWLRQ FRXOG EH PDGH 7KH YDVW GLIIHUHQFH LQ WKH DSSHDUDQFH RI WKH QRFWDQH VSHFWUXP DV FRPSDUHG WR WKH KH[DQH FDVH DQG WKH JRRG DJUHHPHQW ZLWK JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV LQGLFDWH WKDW WKH VSHFWUXP LV GXH SULPDULO\ WR RQH VWURQJO\ HPLWWLQJ VLWH LQ RFWDQH $V UHJDUGV WKH JUHDW GLIIHUHQFH LQ WKH DSSHDUDQFH RI VSHFWUD REn WDLQHG LQ KH[DQH DQG RFWDQH WKHUH DUH WZR SRVVLEOH H[SODQDWLRQV ZKLFK DUH UHDGLO\ DSSDUHQW 1HLWKHU LV HQWLUHO\ VDWLVIDFWRU\ KRZHYHU 7KH ILUVW SRVVLELOLW\ LV WKDW TXLQL]DULQ SDUWLDOO\ DJJUHJDWHV XSRQ IUHH]LQJ LQ KH[DQH DQG KHSWDQH VR WKDW WKH REVHUYHG HPLVVLRQ LV GXH WR PLFURn FU\VWDOOLWHV UDWKHU WKDQ EHLQJ IURP LVRODWHG PROHFXOHV LQ D WUXH 6KSROVNLL PDWUL[ $Q DWWHPSW ZDV PDGH WR YHULI\ WKLV H[SHULPHQWDOO\ E\ UXQQLQJ WKH ORZ WHPSHUDWXUH HPLVVLRQ VSHFWUXP RI D SRZGHU VDPSOH RI TXLQL]DULQ $ VWUXFWXUHOHVV IOXRUHVFHQFH RI ORZ LQWHQVLW\ ZDV REVHUYHG ZKLFK ZDV RI OLWWOH YDOXH LQ FODULI\LQJ WKH VLWXDWLRQ +RZHYHU QR HYLGHQFH IRU DJJUHJDWLRQ ZDV IRXQG LQ DQ HDUOLHU VHULHV RI H[SHULPHQWV RQ KH[DQH LQ WKH OLTXLG SKDVH 7KH VHFRQG SRVVLELOLW\ LV WKDW WZR RU PRUH VLWHV DW OHDVW RQH RI ZKLFK LV VHYHUHO\ GLVWRUWHG H[LVW LQ WKH KH[DQH FDVH GXH WR GLPHQVLRQDO GLIIHUHQFHV IURP RFWDQH :LWK UHIHUHQFH WR )LJXUHV DQG LW FDQ

PAGE 112

EH VHHQ WKDW WKHUH DUH FHUWDLQ IHDWXUHV RI WKH HPLVVLRQ LQ KH[DQH ZKLFK PD\ EH FRUUHODWHG WR SHDNV LQ WKH RFWDQH VSHFWUXP 7KHVH DUH LQGLFDWHG E\ DUURZV LQ )LJXUH 7KH YLEUDWLRQDO VSDFLQJV RI WKHVH SHDNV LQ KH[DQH DUH DOPRVW LGHQWLFDO WR WKRVH REVHUYHG LQ WKH RFWDQH FDVH +RZn HYHU LW PXVW EH DGPLWWHG WKDW WKH UHDVRQ IRU WKH ODUJH GLIIHUHQFH LQ WKH DSSHDUDQFH RI WKH WZR VHWV RI VSHFWUD LV QRW FOHDU $Q DQDO\VLV RI YLEUDWLRQDO IUHTXHQFLHV REVHUYHG LQ WKH HPLVVLRQ VSHFWUXP RI TXLQL]DULQ LQ QRFWDQH LV SUHVHQWHG LQ 7DEOH 9, 7KH RULJLQ LV WDNHQ DV WKH SHDN DW -/ 7KLV DVVLJQPHQW RI WKH RULJLQ ORFDWLRQ LV EDVHG SULPDULO\ XSRQ WKH IDFW WKDW D YHU\ VWURQJ SHDN ZDV REVHUYHG DW WKLV SRVLWLRQ ZKHQ WKH (LPDF ODPS ZDV XVHG WR VFDQ H[FLWDn WLRQ VSHFWUD RI TXLQL]DULQ LQ RFWDQH 7KH H[DFW UHDVRQ IRU WKH VSOLWn WLQJ LQ WKH RULJLQ UHJLRQ LV QRW NQRZQ ,W LV SRVVLEOH WKDW WKH VPDOO SHDN WR WKH KLJK HQHUJ\ VLGH RI WKH ORFDWLRQ FKRVHQ KHUH DV WKH RULJLQ PD\ EH D SKRQRQ EDQG 7KH SRVVLELOLW\ WKDW WKH VSOLWWLQJ PLJKW EH SUHVHQW DV D UHVXOW RI PXOWLSOH VLWH HPLVVLRQ LQ WKH RFWDQH PDWUL[ ZDV DOVR FRQVLGHUHG $Q DWWHPSW ZDV PDGH WR DQDO\]H WKH HPLVVLRQ VSHFWUXP RI TXLQL]DULQ LQ WHUPV RI ERWK WZR DQG WKUHH VLWH HPLVVLRQ EXW WKH UHVXOWV GLG QRW FRUUHODWH ZHOO ZLWK WKH REVHUYHG JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV $Q H[DPLQDWLRQ RI 7DEOH 9, UHYHDOV WKDW D YDULHW\ RI YLEUDWLRQDO PRGHV RFFXU LQ WKH HPLVVLRQ VSHFWUXP RI TXLQL]DULQ LQ RFWDQH 9LEUDn WLRQV RI W\SHV DA EA DQG EA DOO DSSHDU LQ WKH VSHFWUXP %DQGV ZKLFK DSSHDU LQ WKH HPLVVLRQ VSHFWUXP DQG DUH DVVLJQHG DV FRPELQDWLRQV DOVR KDYH FRXQWHUSDUWV LQ WKH ,5 VSHFWUXP ,Q JHQHUDO WKH DJUHHPHQW EHWZHHQ IUHTXHQFLHV REVHUYHG LQ WKH HPLVVLRQ VSHFWUXP DQG JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV LV JRRG $ QRWDEOH H[FHSWLRQ LV WKH SHDN

PAGE 113

7DEOH 9, IOXRUHVFHQFH 9LEUDWLRQDO $QDO\VLV IRU 4XLQL]DULQ LQ 2FWDQH DW r. :DYHOHQJWK $f (QHUJ\ FLUUL I YDFf $( FPf 5HO ,QWHQVLW\ $VVLJQPHQW : 0 0 ODWWLFH 9: 6 ,5 D_f 96 ,5 E@f V ,5 Ef YV ,5 EMf :G ODWWLFH RU ,5 Ef : ,5 Df 9: ,5 D f : ,5 Enf : ,5 EIf : ,5 E f Z ,5 Enf V ,5 ESf 0 ,5 ESf 9: ,5 FP 9: ,5 EM 06 ,5 Df 9: ,5 9: ,5 Df : ,5 D f V ,5 D f 06 ,5 D f 0 ,5 D f 0 5 Enf 6 ,5 Ef Z ,5 ESf Z ,5 DAf Z ,5 Z ,5 ESf Z ,5 Df 0 ,5 D f 0 ,5 D f RU [ FPf 0 ,5 f 9: ,5 9: ,5 : ,5 0 ,5 9:G ,5 9: G f§ :G f§

PAGE 114

,87DEOH 9, &RQWLQXHGf :DYHOHQJWK $f (QHUJ\ FPn YDFf $( FUQnOf 5HO ,QWHQVLW\ $VVLJQPHQW 9:G 9:G f§ : ZHDN 6 VWURQJ 96 YHU\ VWURQJ G GLIIXVH IL PRGHUDWH 06 PRGHUDWHO\ VWURQJ

PAGE 115

, f DSSHDULQJ LQ HPLVVLRQ DW FP A IURP WKH RULJLQ 7KLV SHDN GRHV QRW FRUUHVSRQG H[DFWO\ WR D YLEUDWLRQDO IUHTXHQF\ REVHUYHG LQ WKH ,5 EXW PD\ EH FRUUHODWHG UHDVRQDEO\ ZHOO ZLWK DQ ,5 YLEUDWLRQDO IUHTXHQF\ RI FP A ZKLFK KDV EHHQ DVVLJQHG KHUH DV D IXQGDPHQWDO PRGH RI W\SH DA ,W ZLOO DOVR EH QRWHG WKDW LQ FRQWUDVW WR DQWKUDTXLQRQH WKH TXLQL]DULQ VSHFWUXP GRHV QRW FRQWDLQ SURJUHVVLRQV EDVHG XSRQ WKH & VWUHWFK 7KH RQO\ SHDN LQ WKH VSHFWUXP ZKLFK PLJKW EH UHDVRQDEO\ DVVLJQHG DV D & VWUHWFK OLHV DW FP A IURP WKH RULJLQ 7KH IOXRUHVFHQFH REVHUYHG LQ WKH 6KSROVNLL PDWULFHV DSSDUHQWO\ RULn JLQDWHV IURP WKH ORZHVW H[FLWHG VLQJOHW VWDWH VLQFH DOO WKH YLEUDWLRQV REVHUYHG DSSHDU WR KDYH D FRPPRQ RULJLQ DQG WKH DSSHDUDQFH RI WKH VSHFWUXP LV LQGHSHQGHQW RI WKH ZDYHOHQJWK RI WKH H[FLWLQJ OLJKW $ JUHDW GLIIHUHQFH LV UHDGLO\ DSSDUHQW LQ FRPSDULQJ WKH UHVXOWV REWDLQHG KHUH IRU VSHFWUD UHFRUGHG SKRWRHOHFWULFDOO\ DW ORZ WHPSHUDWXUH WR WKRVH UHFRUGHG SKRWRJUDSKLFDOO\ LQ WKH YDSRU SKDVH LQ UHIHUHQFH f $ ODUJH VKLIW $f WRZDUG ORQJHU ZDYHOHQJWKV LV REVHUYHG LQ JRLQJ IURP WKH YDSRU SKDVH WR WKH ORZ WHPSHUDWXUH FRQGHQVHG SKDVH ,Q UHIHUHQFH f DQ DQDO\VLV RI WKH HPLVVLRQ VSHFWUXP ZDV SUHVHQWHG ZKLFK DWWHPSWHG WR FRUUHODWH YLEUDWLRQDO VWUXFWXUH LQ WKH HPLVVLRQ ZLWK SURJUHVVLRQV EXLOW XSRQ JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV RI FQI FPr DQG FP WDNHQ WR EH WKH YDOXH RI WKH VWUHWFKLQJ IUHTXHQF\ LQ WKH DEVHQFH RI K\GURJHQ ERQGLQJf 7KH YDOXHV RI WKHVH YLEUDWLRQDO IUHTXHQFLHV LQ WKH H[FLWHG VWDWH ZHUH WDNHQ WR EH FP ? FP? DQG FPf?n +RZHYHU LQ WKH SDUWLDO DVVLJQPHQW RI WKH TXLQL]DULQ ,5 VSHFWUXP SUHVHQWHG LQ WKLV UHIHUHQFH QR IXQGDPHQWDO PRGHV RI YLEUDWLRQ ZLWK IUHTXHQFLHV RI FP A DQG FP A ZHUH OLVWHG ,Q WKH SUHVHQW ZRUN

PAGE 116

2E JURXQG VWDWH YLEUDWLRQDO IUHTXHQFLHV RI FPDQG FPZHUH IRXQG ,Q WKH DQDO\VLV RI WKH 6KSROVNLL HPLVVLRQ VSHFWUD LQ WKLV ZRUN D SHDN DW FP A IURP WKH DVVLJQHG RULJLQ ZDV IRXQG ZKLFK ZDV DVVLJQHG WR WKH JURXQG VWDWH YLEUDWLRQDO IUHTXHQF\ RI FQI $ SHDN OLNHZLVH DSSHDUHG DW FP A IURP WKH RULJLQ ZKLFK ZDV DVVLJQHG WR WKH ,5 IUHTXHQF\ RI FP ? 7KH RQO\ SHDN ZKLFK DSSHDUHG LQ WKH SUHVHQW ZRUN LQ WKH FP A UHJLRQ LV RQH ZKLFK DSSHDUHG DW FPfA IURP WKH RULJLQ DQG LV DVVLJQHG WR WKH FPA ,5 ULQJ VWUHWFKLQJ PRGH ,QVWHDG RI DQ DQDO\VLV EDVHG XSRQ SURJUHVVLRQV LQ GLIIHUHQW IXQGDPHQWDO PRGHV DV LQ UHIHUHQFH f WKH SUHVHQW ZRUN VKRZV D QXPEHU RI GLIn IHUHQW W\SHV RI YLEUDWLRQV WR EH SUHVHQW LQ WKH FRQGHQVHG SKDVH ,Q FRQWUDVW WKH SHDN SRVLWLRQV DQG YLEUDWLRQDO VSDFLQJV REWDLQHG LQ WKLV ZRUN DJUHH YHU\ ZHOO ZLWK WKH 6KSROVNLL PDWUL[ VSHFWUD UHFRUGHG SKRWRJUDSKLFDOO\ LQ QRFWDQH DW r. LQ UHIHUHQFH f 1R FRPSDULVRQ RI DQDO\VHV FDQ EH PDGH KRZHYHU VLQFH QR DQDO\VLV RI WKH YLEUDWLRQDO VSDFLQJV ZDV JLYHQ LQ WKLV UHIHUHQFH 3KRWRVHOHFWLRQ DQG $VVLJQPHQWV RI 7UDQVLWLRQV )LJXUH LOOXVWUDWHV WKH IOXRUHVFHQFH RI TXLQL]DULQ LQ (3$ DW r. ,W FDQ EH VHHQ WKDW YHU\ OLWWOH YLEUDWLRQDO ILQH VWUXFWXUH LV UHYHDOHG )RXU PDMRU YLEURQLF EDQGV DSSHDU WR EH SUHVHQW FHQWHUHG DW DSSUR[LPDWHO\ IW IW IW DQG IW 7KH SRODUL]DWLRQ RI HPLVVLRQ RI HDFK RI WKHVH EDQGV DV D IXQFWLRQ RI H[FLWDWLRQ ZDYHOHQJWK ZDV PHDVXUHG WR GHWHUPLQH ZKHWKHU DQ\ PL[HG SRODUL]DWLRQ RI WKH YLEURQLF EDQGV LQ WKH HPLVVLRQ ZDV SUHVHQW 2QO\ WKH UHVXOWV IRU WKH SHDN DW IW DUH VKRZQ LQ )LJXUH VLQFH DOO IRXU YLEURQLF EDQGV H[KLELWHG

PAGE 117

,QWHQVLW\

PAGE 118

, X YHU\ VLPLODU EHKDYLRU 7R GHWHUPLQH ZKHWKHU RU QRW WKH UHVXOWV REWDLQHG IRU TXLQL]DULQ DQG GDXQRUXELFLQ ZHUH YDOLG DQG IRU SXUSRVHV RI FRPn SDULVRQ WKH UHODWLYH SRODUL]DWLRQ RI WKH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH LQ (3$ DW r. ZDV DOVR REWDLQHG 7KH SRODUL]DWLRQ FXUYH ZDV FRPSDUHG WR WKH UHVXOWV REWDLQHG E\ 'URWW DQG 'HDUPDQ f DQG WKH DJUHHPHQW ZDV IRXQG WR EH JRRG 7KLV LQGLFDWHV WKDW WKH SRODUL]DWLRQ FXUYHV REWDLQHG KHUH IRU GDXQRUXELFLQ DQG TXLQL]DULQ DUH LQGHHG YDOLG )LJXUH LOOXVWUDWHV WKH UHODWLYH SRODUL]DWLRQ RI WKH HPLVVLRQ RI TXLQL]DULQ DW 6 DV D IXQFWLRQ RI H[FLWDWLRQ ZDYHOHQJWK DQG WKH DEVRUSWLRQ VSHFWUXP RI TXLQL]DULQ LQ (3$ $V ZDV PHQWLRQHG HDUOLHU RQO\ WKH SRODUL]DWLRQ FXUYH IRU WKH $ SHDN LV VKRZQ VLQFH WKH SHDN LQ WKH UHJLRQ RI $ DQG WKH RWKHU WZR SHDNV DW $ DQG $ KDYH YHU\ VLPLODU SRODUL]DWLRQ FXUYHV 1R SRODUL]DWLRQ YDOXHV EHORZ $ DUH UHSRUWHG VLQFH WKH OLJKW LQWHQVLW\ RI WKH (LPDF ODPS GURSSHG FRQVLGHUDEO\ EHORZ $ FDXVLQJ D ODUJH GHJUHH RI XQFHUWDLQW\ LQ WKH FDOFXODWHG SRODUL]DWLRQ UDWLRV 7KH SRODUL]DWLRQ FXUYH VKRZQ LQ )LJXUH VKRZV WKH SUHVHQFH RI DW OHDVW IRXU HOHFWURQLF WUDQVLWLRQV 7KH SRVVLELOLW\ RI D ILIWK HOHFn WURQLF WUDQVLWLRQ LV LQGLFDWHG E\ WKH VKRXOGHU RQ WKH SRODUL]DWLRQ FXUYH DW $ $ FRPSDULVRQ RI WKH SRODUL]DWLRQ FXUYH ZLWK WKH DEVRUSWLRQ VSHFWUXP RI TXLQL]DULQ VKRZV WKDW WKH WZR FRUUHODWH YHU\ ZHOO ([DPLQDWLRQ RI )LJXUH UHYHDOV WKDW IURP WR MXVW SDVW $ WKH UHODWLYH SRODUL]DWLRQ RI TXLQL]DULQ LV SRVLWLYH 7KH 89 DEVRUSWLRQ VSHFWUXP UHYHDOVD VWURQJ DEVRUSWLRQ EDQG LQ WKLV UHJLRQ )URP WR $ WKH UHODWLYH SRODUL]DWLRQ RI TXLQL]DULQ LV QHJDWLYH $JDLQ DQRWKHU WUDQVLWLRQ VSDQQLQJ WKLV UHJLRQ DSSHDUV LQ WKH DEVRUSWLRQ VSHFWUXP )URP DSSUR[LPDWHO\ WR $ WKH SRODUL]DWLRQ FXUYH

PAGE 119

ORJ )LJXUH 3ORWV RI $EVRUEDQFH f§f DQG 5HODWLYH 3RODUL]DWLRQ f RI 4XLQL]DULQ LQ (3$ .2,

PAGE 120

LQGLFDWHV WKH SUHVHQFH RI DQRWKHU HOHFWURQLF WUDQVLWLRQ ZKLFK LV DJDLQ FRQILUPHG E\ WKH DEVRUSWLRQ VSHFWUXP $W ORQJHU ZDYHOHQJWKV WKH SRODUL]DWLRQ UDWLR UHPDLQV IDLUO\ FRQVWDQW RVFLOODWLQJ VRPHZKDW DURXQG D YDOXH RI 7KLV UHJLRQ PD\ EH FRUUHODWHG ZLWK WKH ORQJ ZDYHOHQJWK DEVRUSWLRQ EDQG 7KH DOPRVW FRQVWDQW YDOXH RI WKH SRODUL]DWLRQ UDWLR LQGLFDWHV WKDW WKH ORQJ ZDYHOHQJWK DEVRUSWLRQ LV GXH WR RQH HOHFWURQLF WUDQVLWLRQ 7KH IRXU HOHFWURQLF WUDQVLWLRQV UHYHDOHG LQ WKH SRODUL]DWLRQ FXUYH RI TXLQL]DULQ PD\ EH GHVLJQDWHG LQ RUGHU RI LQFUHDVLQJ HQHUJ\ DV SDUDOOHO SDUDOOHO SHUSHQGLFXODU DQG SDUDOOHO 7KDW WKH WUDQVLn WLRQ ZKLFK LV FHQWHUHG DW DSSUR[LPDWHO\ $ KDV D WUDQVLWLRQ PRPHQW SHUSHQGLFXODU WR WKH RWKHU WKUHH WUDQVLWLRQV PD\ EH VHHQ ZLWK UHIHUHQFH WR )LJXUH 7KLV LOOXVWUDWHV WKH SRODUL]DWLRQ RI WKH HPLVVLRQ RI TXLQL]DULQ DW WKUHH GLIIHUHQW ZDYHOHQJWKV RI H[FLWDWLRQ 1R SRODUL]Dn WLRQ RI WKH HPLVVLRQ DERYH $ LV UHSRUWHG EHFDXVH WKH IOXRUHVFHQFH LQWHQVLW\ IDOOV RII UDSLGO\ DW ORQJHU ZDYHOHQJWKV LQWURGXFLQJ D ODUJH UHODWLYH HUURU LQWR WKH FDOFXODWLRQ RI SRODUL]DWLRQ YDOXHV )LJXUH FOHDUO\ VKRZV WKDW WKH RYHUDOO SRODUL]DWLRQ RI WKH IOXRUHVFHQFH RI TXLQL]DULQ ZLWK H[FLWLQJ OLJKW RI ZDYHOHQJWK $ LV QHJDWLYH LQ FRQWUDVW WR WKH EHKDYLRU REVHUYHG ZLWK $ DQG $ OLJKW 7KH SRODUL]DWLRQ H[FLWDWLRQ FXUYHV IRU TXLQL]DULQ DQG DQWKUDTXLQRQH LQ WKH UHJLRQ WR $ DUH VKRZQ LQ )LJXUH ,W FDQ EH VHHQ WKDW WKH UHODWLYH SRODUL]DWLRQ RI WUDQVLWLRQV LQ ERWK FRPSRXQGV LV WKH VDPH 7KH GLIIHUHQFH LQ WKH VLJQ RI SRODUL]DWLRQ LV GXH WR WKH GLIIHUHQW QDWXUH RI WKH HPLVVLRQ LQ WKH WZR FDVHV SKRVSKRUHVFHQFH IRU DQWKUDTXLQRQH DQG IOXRUHVFHQFH IRU TXLQL]DULQf 7KLV LV GLVFXVVHG E\ $OEUHFKW f ,Q UHIHUHQFH rf LW ZDV VKRZQ WKDW WKH WUDQVLWLRQ RFFXUULQJ LQ DQWKUDTXLQRQH DW DSSUR[LPDWHO\ $ KDV =D[LV SRODUL]DWLRQ ZKLOH

PAGE 121

3RODUL]DWLRQ D $ ;H H[F $ $ ;H H[F & $ ;H H[F )LJXUH 3ORW RI 3RODUL]DWLRQ YV :DYHOHQJWK IRU 4XLQL]DULQ )OXRUHVFHQFH RQ

PAGE 122

3RODUL]DWLRQ )LJXUH 3ORW RI ([FLWDWLRQ 3RODUL]DWLRQ RI $QWKUDTXLQRQH Ff DV &RPSDUHG WR 4XLQL]DULQ Rf

PAGE 123

WKH RWKHU WUDQVLWLRQV DUH ORQJLWXGLQDOO\ SRODUL]HG < D[LVf /LNHZLVH WKH SRODUL]DWLRQV RI WKH HOHFWURQLF WUDQVLWLRQV LQ TXLQL]DULQ DUH VKRZQ KHUH WR KDYH VLPLODU SRODUL]DWLRQV 7KXV WKH ORQJ ZDYHOHQJWK HOHFWURQL WUDQVLWLRQ ZKLFK LV
PAGE 124

EHLQJ GXH WR QHOHFWURQ LQWHUDFWLRQ RI WKH K\GUR[\ VXEVWLWXHQWV WKURXJK WKH DQWKUDTXLQRQH EHQ]HQH ULQJ 7KLV FRQFOXVLRQ LV FRQVLVWHQW ERWK ZLWK PHDVXUHPHQWV RI WKH DQDPRORXV .HUU HIIHFW XSRQ EHQ]HQH VROXWLRQV RI TXLQL]DULQ f DQG RI GLFKURLF UDWLRV RI GLDU\O DPLQR DQWKUDTXLQRQHV LQ SRO\YLQ\O DOFRKRO ILOPV f 7KH SRODUL]DWLRQ FXUYH IRU GDXQRUXELFLQ LV VKRZQ LQ )LJXUH ,W FDQ EH VHHQ WKDW WKH EHKDYLRU RI GDXQRUXELFLQ PLPLFV WKDW RI TXLQLn ]DULQ WR D ODUJH GHJUHH %RWK WKH ORQJ ZDYHOHQJWK WUDQVLWLRQ DQG WKH WUDQVLWLRQ DW DSSUR[LPDWHO\ IW DSSHDU WR EH ORQJLWXGLQDOO\ SRODUL]HG 7KLV LV LQ GLVDJUHHPHQW ZLWK WKH FRQFOXVLRQV UHDFKHG LQ UHIHUHQFH f 7KHUH LW ZDV FRQFOXGHG WKDW WKH ORQJ ZDYHOHQJWK WUDQVLWLRQ ZDV SRODUn L]HG DORQJ WKH VKRUW D[LV = D[LVf DQG WKH VKRUWHU ZDYHOHQJWK WUDQVLWLRQ ZDV ORQJLWXGLQDOO\ SRODUL]HG ,Q WKH SUHVHQW ZRUN WKH H[SHULPHQWDO HYLGHQFH LQGLFDWHV WKDW ERWK KDYH < D[LV SRODUL]DWLRQ

PAGE 125

S ORJ H )LJXUH 3ORWV RI $EVRUEDQFH f§f DQG 5HODWLYH 3RODUL]DWLRQ f§f RI 'DXQRUXELFLQ LQ $OFRKRO:DWHU*O\FHULQ

PAGE 126

&+$37(5 9 6800$5< $1' &21&/86,216 ,W KDV EHHQ VKRZQ LQ WKLV VWXG\ WKDW WKH DQDO\VLV RI YLEUDWLRQDO SURJUHVVLRQV LQ WKH ORZ WHPSHUDWXUH SKRVSKRUHVFHQFH RI DQWKUDTXLQRQH LQ QKH[DQH DQG QKHSWDQH PDWULFHV LV FRQVLVWHQW ZLWK DQ DVVLJQPHQW RI WKH ORZHVW WULSOHW OHYHO RI WKLV PROHFXOH DV %A 7KH WHPSHUDWXUHGHSHQn GHQW HPLVVLRQ RI WKLV PROHFXOH ZKLFK RFFXUV LQ QKH[DQH KHSWDQH DQG RFWDQH PDWULFHV LV DVFULEHG WR WKH HOHFWURQSKRQRQ LQWHUDFWLRQ ZKLFK WDNHV SODFH EHWZHHQ WKH DQWKUDTXLQRQH LPSXULW\ DQG LWV KRVW ODWWLFH WR DOORZ WKH VSLQ DQG SDULW\ IRUELGGHQ r $J WUDQVLWLRQ WR JDLQ UDGLDWLYH SURSHUWLHV 7KH HPLVVLRQ RI WKH UHODWHG PROHFXOH GLK\GUR[\ DQWKUDTXLQRQH TXLQL]DULQf KDV EHHQ VKRZQ WR EH LQSODQH SRODUL]HG IOXRUHVFHQFH ZLWK D OLIHWLPH RI DSSUR[LPDWHO\ QVHF 7KH ORZHVW VLQJOHW VWDWH RI TXLQLn ]DULQ LV DVVLJQHG KHUH DV D WWWWr VWDWH DULVLQJ IURP D FKDUJHWUDQVIHU LQWHUDFWLRQ RI WKH VXEVWLWXHQW K\GUR[\ JURXSV ZLWK WKH EHQ]HQH ULQJ RI WKH DQWKUDTXLQRQH VNHOHWRQ ,Q YLHZ RI WKH IDFW WKDW RQO\ SURPSW IOXRUHVFHQFH LV REVHUYHG IURP WKLV PROHFXOH LW LV FRQFOXGHG WKDW HLWKHU WKH ORZHVW VLQJOHW VWDWH DQG WKH ORZHVW WULSOHW VWDWH DUH QHDUO\ FRLQFLn GHQW LQ HQHUJ\ RU HOVH WKH UDWH RI LQWHUV\VWHP FURVVLQJ WR WKH WULSOHW VWDWH LV JUHDWO\ KLQGHUHG )LQDOO\ LW KDV EHHQ VKRZQ WKDW WKH HOHFWURQLF WUDQVLWLRQV LQ WKH FRPSRXQG GDXQRUXELFLQ UHWDLQ WKH SRODUL]DWLRQV IRXQG LQ WKH TXLQL]DULQ PROHFXOH

PAGE 127

$OWKRXJK WKH FRQFOXVLRQV UHDFKHG LQ WKLV ZRUN DUH EDVHG XSRQ VRXQG H[SHULPHQWDO HYLGHQFH DQG D ORJLFDO VHTXHQFH RI UHDVRQLQJ WKHUH DUH FHUWDLQ DGGLWLRQDO H[SHULPHQWV ZKLFK PLJKW EH GRQH ZLWK WKH SURSHU HTXLSPHQW WR FRUURERUDWH WKH FRQFOXVLRQV UHDFKHG KHUH $ 5DPDQ VSHFWUXP RI TXLQL]DULQ ZRXOG EH XVHIXO LQ FKHFNLQJ WKH FRUUHFWQHVV RI WKH ,5 DFWLYH YLEUDWLRQDO DVVLJQPHQWV RI TXLQL]DULQ DQG ZRXOG DOVR DLG LQ WKH DVVLJQPHQW RI FRPELQDWLRQ DQG RYHUWRQH EDQGV 7KH HPLVVLRQ VSHFWUXP RI LVRODWHG TXLQL]DULQ PROHFXOHV LQ DUJRQ NU\SWRQ RU QHRQ PDWULFHV ZRXOG DOVR EH XVHIXO LQ VXEVWDQWLDWLQJ WKH UHVXOWV REWDLQHG KHUH IRU TXLQL]DULQ LQ 6KSROVNLL PDWULFHV RI RFWDQH )LQDOO\ WKH WHFKQLTXH RI SKRWRn DFRXVWLF VSHFWURVFRS\ PLJKW FRQFHLYDEO\ EH DSSOLHG WR ILQG WKH ORFDWLRQ RI WKH ORZHVW WULSOHW OHYHO RI TXLQL]DULQ DQG WR GHWHUPLQH ZKHWKHU RU QRW LW GRHV LQ IDFW FRLQFLGH ZLWK WKH ORZHVW VLQJOHW OHYHO

PAGE 128

5()(5(1&(6 -3 %URZQ 36 'LHWULFK DQG 5%URZQ %LRFKHP 6RF 7UDQV B f '* 'DOJOLHVK )H\ DQG : .HUVWHQ %LRSRO\PHUV 9 f : .HUVWHQ + .HUVWHQ DQG : 6]\EROVNL %LRFKHP B f -: 6LGPDQ $P &KHP 6RF f 5$ 0RUWRQ DQG :7 (DUODP &KHP 6RF f + /DEKDUW +HOY &KLP $FWD f + /DEKDUW &KLPLD $DUDXf @B f -: 6LGPDQ $P &KHP 6RF f +5 'URWW DQG ++ 'HDUPDQ &KHP 3K\V f -' 6FRWW DQG :+ :DWVRQ &KHP 3K\V f ++ 'HDUPDQ 1 6XQGDUDFKDUL DQG NLL &KHP 3KYV B f -3 *DODXR 0HJHO DQG +3 7URPPVGRUII &KHP 3K\V /HWWHUV f .( 'UDEH + 9HHQYOLHW DQG '$ :LHUVPD &KHP 3K\V /HWWHUV f 51 1XUPXNKDPHWRY DQG '1 6KLJRULQ 5XVV 3K\V &KHP f 16 6WURNDFK ($ *DVWLORYLFK DQG '1 6KLJRULQ 'RNO $NDG 1DXN 6665 f 1$ %RULVHYLFK DQG 99 *RX]LQVNLL ,]YHVW $NDG 1DXN 6665 6HU )L] f *' %DUXDK DQG 56 6LQJK &XUU 6FL -B f 1$ 6KFKnHJORYD '1 6KLJRULQ DQG 16 'RNXQLNKLQ 5XVV 3K\V f

PAGE 129

06 (O(]DE\ 70 6DOHP $+ =HZDLL DQG 5 ,VVD &KHP 6RF %f f 19 3ODWRQRYD .5 3RSRY DQG /9 6PLUQRY 2SW 6SHFWURVF f (: $EUDKDPVRQ DQG ( 3DQLN LQ $GYDQFHV LQ 0ROHFXODU 6SHFWURVFRS\ 9RO $ 0DUJLQL (G 0F0LOODQ 1HZ
PAGE 130

9$ .L]HO DQG 01 6DSR]KQLNRY )L[ 7YHUG 7HOD f .. 5HEDQH DQG 99 .KL]KQ\DNRY 2SW 6SHFWURVF B f .. 5HEDQH 2SW 6SHFWURVF OML f ,6 2VDGNR )L] 7YHUG 7HOD 8 f ,6 2VDGNR )L] 7YHUG 7HOD B f ,, $EUDP DQG 5 6LOEH\ &KHP 3K\V A f 5, 3HUVRQRY ,6 2VDGNR (' *RG\DHY DQG (, $OVKLWV )L] 7YHUG 7HOD f -/ 5LFKDUGV DQG 6$ 5LFH &KHP 3K\V f ,6 2VDGNR (, $OVKLWV DQG 5, 3HUVRQRY )L] 7YHUG 7HOD f 5, 3HUVRQRY DQG 99 6ROXGXQRY )L] 7YHUG 7HOD -B f 01 6DSR]KQLNRY 3K\V 6WDW 6RO %f A f (, $OVKLWV (' *RG\DHY DQG 5, 3HUVRQRY )L] 7YHUG 7HOD f ,6 2VDGNR 5, 3HUVRQRY DQG (9 6KSROVNLL /XPLQHVFHQFH B f 01 6DSR]KQLNRY 3K\V 6WDW 6RO %f f .. 5HEDQH ,PSXULW\ 6SHFWUD RI 6ROLGV 3OHQXP 1HZ
PAGE 131

8 0 6X]XNL 7
PAGE 132

 8QSXEOLVKHG UHVXOWV WKLV ODERUDWRU\ 0 *RXWHQQDQ DQG / 6WU\HU &KHP 3K\V B f ++DLQN DQG -5 +XEHU 0RO 6SHFWU\ f )ULHGULFK ) 0HW] DQG ) 'RUU 0RO 3K\V f )ULHGULFK 9RJHO : :LQGKDJHU DQG ) 'RUU = 1DWXUIRUVK $ f 7'XUQLFN DQG $ .DODQWHU &KHP 3K\V f $& $OEUHFKW 0RO 6SHFWU\ f ) 3HUULQ 3K\V 5DGLXP @B f + -DEORQVNL = 3K\VLN f '1 6KLJRULQ 1$ 6KFKHJORYD DQG 51 1XUPXNKDPHWRY %XOO $FDG 6FL 6665 f + +D]GL DQG 1 6KHSSDUG 7UDQV )DUDGD\ 6RFLHW\ f $( /XWVNLL %$ 9HUDWHQFKHQNR ,6 5RPRGDQRY DQG 99 3UH]KGR $SSO 6SHFWURVF f

PAGE 133

$33(1',; )5(48(1&,(6 2) 1250$/ 02'(6 2) 9,%5$7,21 2) $17+5$48,121( 6\PPHWU\ 6\PERO ,5$FWLYH 9LEUDWLRQV )UHTXHQF\ FPf $VVLJQPHQW Y &+ VWUHWFK &+ VWUHWFK & VWUHWFK 5LQJ VWUHWFK 5LQJ VWUHWFK &+ EHQG 5LQJ VWUHWFK &+ EHQG 6NHOHWDO GHI 6NHOHWDO GHI 6NHOHWDO GHI &+ VWUHWFK &+ VWUHWFK 5LQJ VWUHWFK 5LQJ VWUHWFK 5LQJ VWUHWFK 5LQJ VWUHWFK &+ EHQG &+ EHQG 6NHOHWDO GHI 6NHOHWDO GHI & EHQG E X &+ EHQG 6NHOHWDO GHI &+ EHQG & EHQG 6NHOHWDO GHI 6NHOHWDO GHI

PAGE 134

6\PPH WU\ 6\PERO 5DPDQ$FWLYH 9LEUDWLRQV )UHTXHQF\ FP $VVLJQPHQW 9 Y &+ VWUHWFK &+ VWUHWFK & & VWUHWFK Y && VWUHWFK Y && VWUHWFK Y Y && VWUHWFK && VWUHWFK 93 &+ EHQG 2 YT &+ EHQG Y YOO 9 6NHOHWDO GHI 6NHOHWDO GHI 6NHOHWDO GHI 9 9 Y 9 &+ EHQG &+ EHQG 6NHOHWDO GHI 6NHOHWDO GHI Y Y Y Y Y Y &+ EHQG &+ EHQG 6NHOHWDO GHI 6NHOHWDO GHI & EHQG 6NHOHWDO GHI Y 9 &+ VWUHWFK &+ VWUHWFK Y Y Y Y Y Y Y Y Y && VWUHWFK && VWUHWFK && VWUHWFK &+ EHQG &+ EHQG 6NHOHWDO GHI 6NHOHWDO GHI & EHQG 6NHOHWDO GHI

PAGE 135

%,2*5$3+,&$/ 6.(7&+ 5RGJHU 1 &DSSV ZDV ERUQ LQ WKH EXVWOLQJ PHWURSROLV RI *UDFHYLOOH )ORULGD RQ -DQXDU\ +H JUDGXDWHG IURP 3RSODU 6SULQJV +LJK 6FKRRO LQ 5HFHLYLQJ D )ORULGD %RDUG RI 5HJHQWV 6FKRODUVKLS KH GHIHUUHG JHWWLQJ D IXOOWLPH MRE E\ HQUROOLQJ LQ FROOHJH +H UHFHLYHG DQ $$ GHJUHH IURP &KLSOD -XQLRU &ROOHJH LQ DQG D %6 GHJUHH IURP WKH 8QLYHUVLW\ RI :HVW )ORULGD LQ 1RW NQRZLQJ DQ\ EHWWHU KH GHFLGHG WR JR WR JUDGXDWH VFKRRO DQG HQUROOHG LQ WKH 8QLYHUVLW\ RI )ORULGD LQ )URP WR KH FRPSOHWHG WKH UHTXLUHPHQWV IRU WKH 3K' GHJUHH +LV ILUVW RIILFLDO DFW DIWHU JUDGXDWLRQ ZLOO EH WR UHVWRUH KLV IDWKHUnV )RUG SLFNXS WUXFN

PAGE 136

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUWLQ 7 9DO D &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLV % 3HUVRQ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6DPXHO &ROJDWH $VVRFLDWH 3URIHVVRU RI &ILHPLVWU\

PAGE 137

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI 3K\VLFV DQG $VWURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KDUOHV 3 /XHKU $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHn PHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUFK 'HDQ *UDGXDWH 6FKRRO

PAGE 138

81,9(56,7< 2) )/25,'$