Citation
Sicklepod (Cassia obtusifolia L.) competition with soybeans as influenced by row spacing, density, planting date, and herbicides

Material Information

Title:
Sicklepod (Cassia obtusifolia L.) competition with soybeans as influenced by row spacing, density, planting date, and herbicides
Added title page title:
Cassia obtusifolia
Creator:
Jordan, J. H ( Jerry Holland ), 1956-
Publication Date:
Language:
English
Physical Description:
x, 106 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Crops ( jstor )
Herbicides ( jstor )
Planting ( jstor )
Planting date ( jstor )
Row spacing ( jstor )
Soybeans ( jstor )
Test ranges ( jstor )
Vegetation canopies ( jstor )
Water usage ( jstor )
Weeds ( jstor )
Soybean -- Weed control ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1983.
Bibliography:
Includes bibliographical references (leaves 98-105).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Jerry Holland Jordan, Jr.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000419152 ( ALEPH )
ACG6855 ( NOTIS )
10955901 ( OCLC )

Downloads

This item has the following downloads:


Full Text









SICKLEPOD (Cassia obtusifolia L.) COMPETITION
WITH SOYBEANS AS INFLUENCED BY ROW SPACING,
DENSITY, PLANTING DATE, AND HERBICIDES









BY

JERRY HOLLAND JORDAN, JR.


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY


UNIVERSITY OF FLORIDA


1983













ACKNOWLEDGMENTS


I wish to express my sincere appreciation to Dr. Wayne Currey,

Dr. David Teem, Dr. Barry Brecke, Dr. Don Herzog, Dr. David Hall,

and Dr. Cliff Hiebsch for their support in preparing this manuscript.

I especially acknowledge Dr. Wayne Currey, chairman of my committee,

and Dr. David Teem for allowing me to continue my education at the

University of Florida and for giving of their time and experience,

thus providing me an education not obtainable from classwork and

textbook studies.

Thanks are extended to Dr. Ken Quesenberry, Dr. Ken Boote, and

Dr. Jerry Bennett for their helpful suggestions during my research.

My upmost appreciation is extended to Mrs. Mary Ann Andrews for

her professional assistance in preparing this manuscript.

To my parents, Mr. and Mrs. Jerry Jordan, thank you for preparing

me for life in a way only a loving environment can provide.

To Dot Bailey and Jeffie Filgas, thank you for all of your support

without which this manuscript would not be possible.

To my loving wife Lisa, thank you for your patience and under-

standing throughout my education. Your love and devotion have made

any hardships seems insignificant.

To April Michelle and Brett Holland, thank you for showing me

that children are God's assurance that life is worthwhile.

Finally, I would like to thank God for opening doors only he

could open to allow me to accomplish this goal in my life.









TABLE OF CONTENTS


Page
ACKNOWLEDGMENTS............................................... ii

LIST OF TABLES............................ ................... .

LIST OF FIGURES................................ ...... .. ..........viii

ABSTRACT......................................................... ix

INTRODUCTION.... .............................. ............... 1

LITERATURE REVIEW....................... ......................... 3

Classification and Description of Sicklepod................. 3

Weed-Crop Competition..................................... 4

Definition........................ .......... ......... 4
Nutrient Competition.................................. 5
Water Competition..................................... 8
Light Competition...................................... 9
Weed Density.................................. ... ...... 12
Row Spacing.......................... ................ 16

Sicklepod Control Programs................................ 20

MATERIALS AND METHODS.......................................... 23

Soybean-Sicklepod Competition Studies...................... 23

Competition of Sicklepod with Soybeans--1980......... 23
Competition of Sicklepod with Soybeans--1981 .......... 24
Competition of Sicklepod with Soybeans--1982........... 27

Herbicide Programs and Planting Date Studies................ 28

RESULTS AND DISCUSSION......................................... 32

Soybean-Sicklepod Competition Studies...................... 32

Competition of Sicklepod with Soybeans--1980........... 32
Competition of Sicklepod with Soybeans--1981........... 35
Competition of Sicklepod with Soybeans--1982........... 60

Herbicide Programs and Planting Date Studies................ 78

SUMMARY AND CONCLUSIONS....................... ..... .............. 90


iii








APPENDICES

A RAINFALL DATA, QUINCY, FLORIDA, 1980................ 94

B RAINFALL DATA, GAINESVILLE, FLORIDA, 1980........... 95

C RAINFALL DATA, GAINESVILLE, FLORIDA, 1981........... 96

D RAINFALL DATA, GAINESVILLE, FLORIDA, 1982........... 97

LITERATURE CITED ............................................. 98

BIOGRAPHICAL SKETCH.......................................... 106








LIST OF TABLES


TABLE PAGE

1 Treatment Variables for Competition Studies............ 30

2 Treatments for Herbicide Programs and Planting Date
Studies............................................ 31

3 Soybean Yield and Sicklepod Dry Weight as Affected by
Soybean Row Spacing and Sicklepod Densities, 1980...... 33

4 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Dry Weight (kg/ha). Quincy, 1980......... 34

5 Soybean Yield and Heights as Influenced by Soybean Row
Spacing and Sicklepod Density in 1981. Gainesville.... 44

6 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Dry Weight (kg/ha), 1981. Gainesville.... 46

7 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm depth, 1981.
Gainesville........................................... 47

8 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm Depth. Sampling
Time 2, 1981. Gainesville............................ 53

9 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm Depth. Sampling
Time 3, 1981. Gainesville............................. 53

10 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm Depth. Sampling
Time 5, 1981 .......................................... 55

11 Effect of Soybean Row Spacing on Percent Canopy Closure,
1981. Gainesville.................................. 55

12 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Height (cm), 1981. Gainesville........... 56

13 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Width (cm), 1981. Gainesville............ 58

14 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod 1st Branch Height (cm), 1981. Gainesville. 58

15 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Seed (per ha), 1981. Gainesville......... 59








16 Effect of Soybean Row Spacing and Sicklepod Densities
on Percent Sicklepod Light Interception, 1981.
Gainesville...................... ...................... 59

17 Soybean Yield and Characteristics as Influenced by
Soybean Row Spacing and Sicklepod Density, 1982.
Gainesville............... ............................ 61

18 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Dry Weight (kg/ha), 1982................. 62

19 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm Depth, 1982.
Gainesville........................................... 68

20 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth, 1982.
Gainesville......................................... 71

21 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth. Sampling
Time 1, 1982. Gainesville............................ 73

22 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth. Sampling
Time 3, 1982. Gainesville............................. 73

23 Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth. Sampling
Time 17, 1982. Gainesville............................ 75

24 Effect of Soybean Row Spacing on Percent Canopy Closure,
1982. Gainesville.................................... 75

25 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Height (cm), 1982. Gainesville........... 76

26 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Width (cm), 1982. Gainesville............ 76

27 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod 1st Branch Height (cm), 1982. Gainesville. 77

28 Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Seed (per ha), 1982. Gainesville......... 77

29 Effect of Soybean Row Spacing and Sicklepod Densities
on Percent Light Interception by Sicklepod, 1982.
Gainesville ........................................... 79

30 Effect of Soybean Row Spacing and Herbicide Programs
on Soybean Yield, 1981. Gainesville.................. 80









31 Effect of Soybean Row Spacing and Herbicide Programs
on Sicklepod Control, 1981. Gainesville.............. 83

32 Effect of Soybean Row Spacing on Percent Canopy Closure,
1981. Gainesville.................................. 83

33 Effect of Soybean Row Spacing, Herbicide Programs,
and Planting Date on Soybean Yield and Sicklepod
Control, 1982. Gainesville........................... 84

34 Effect of Soybean Row Spacing, Herbicide Programs,
and Planting Date on Sicklepod Weed Control. Planting
Date A (May 3), 1982. Gainesville.................... 85

35 Effect of Soybean Row Spacing, Herbicide Programs,
and Planting Date on Sicklepod Weed Control. Planting
Date B (May 17), 1982. Gainesville.................... 85

36 Effect of Soybean Row Spacing on Percent Canopy Closure
Planting Date A (May 3), 1982. Gainesville............ 87

37 Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date B (May 17), 1982. Gainesville........... 87

38 Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date C (May 31), 1982. Gainesville........... 88

39 Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date D (June 14), 1982. Gainesville.......... 88

40 Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date E (June 28), 1982. Gainesville........... 89








LIST OF FIGURES


FIGURE PAGE

1 Soybean yield as influenced by sicklepod density.
Quincy (1980)....................................... 37

2 Soybean yield as influenced by sicklepod density.
Gainesville (1980)................................. 39

3 Soybean yield as influenced by sicklepod dry weight.
Quincy (1980)......................................... 41

4- Soybean yield as influenced by sicklepod dry weight.
Gainesville (1980) .................................. 43

5 Soybean yield as influenced by sicklepod dry weight.
1981 ................ .......... .................... 49

6 Soybean yield as influenced by sicklepod density.
1981 ............... ............................. 51

7 Soybean yield as influenced by sicklepod dry weight.
1982................................................. 65

8 Soybean yield as influenced by sicklepod density.
1982................ ....... ........ ................... 67


viii













Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


SICKLEPOD (Cassia obtusifolia L.) COMPETITION
WITH SOYBEANS AS INFLUENCED BY ROW SPACING,
DENSITY, PLANTING DATE, AND HERBICIDES

By

JERRY HOLLAND JORDAN, JR.

April, 1983

Chairman: Dr. W. L. Currey
Major Department: Agronomy


Sicklepod (Cassia obtusifolia L.) competition with soybeans

(Glycine max (L.) Merr.), as influenced by soybean row spacing,

sicklepod density, and planting date, was studied from 1980 to 1982

at Quincy and Gainesville, Florida. Soybean row spacings were 30,

60 and 90 cm in 1980 and 25, 50 and 75 cm in 1981 and 1982. Sickle-

pod densities evaluated were 0, 1, 5 and 15 per m2 in 1980 and 0,

0.5, 1.0 and 5.0 per m2 in 1981 and 1982.

Soybean yields in 1980 were significantly greater in the 30 cm

rows than in the 60 and 90 cm rows, while in 1981 there was no differ-

ence in row spacings and in 1982 both the 25 and 50 cm row yields were

significantly higher than the 75 cm rows. Soybean yield decreased as

sicklepod density increased in 1980. In 1981, yields were similar at

low and medium densities. In 1982 yields at the zero and low densities

were not significantly different from each other. Soybean yield responded








curvilinearly to both sicklepod density and dry weight. Sicklepod dry

weight, seed production and light interception were all decreased by

soybeans in narrow row spacings.

Mean water use was greater in the 25 and 50 cm rows than in the

75 cm rows in both 1981 and 1982. However, under water stress con-

ditions there was no difference between the narrow and wide rows at

25 cm depth. At 15 cm depth, the narrow rows used more water under

all conditions.

When herbicide treatments were evaluated, weed control increased

as row spacing decreased. Excellent sicklepod control was obtained

with both trifluralin (a,a,a-trifluoro-2,6-dinitro-N,N-dipropyl-p-

toluidine) + metribuzin (4-amino-6-tert-butyl-3-(methylthio)-as-

triazin-5(4H)-one) preplant incorporated and alachlor (2-chloro-2',

6'-diethyl-N-(methoxymethyl)acetanilide) + metribuzin preemergence.

Poor sicklepod control resulted with the same herbicides in wide row

spacings. Two applications of toxaphene (chlorinated camphene) gave

100% control at all row spacings. Planting date did not affect sickle-

pod control. Soybean yields were greatest in the recommended planting

dates. The narrow rows outyielded the wide rows in the late planting

date and ine one of the three recommended planting dates.














INTRODUCTION


Weed competition is one of the primary limiting factors in soybean

(Glycine max (L.) Merr.) production throughout the world. In the south-

eastern United States, sicklepod (Cassia obtusifolia L.) is a major

competitor in soybeans, cotton (Gossypium hirsutum L.) and peanuts

(Arachis hypoqaea L.) (9, 11, 13, 15, 30, 35, 38, 39, 44). McCormick

(62) lists sicklepod as one of the ten most troublesome weeds of soybeans

in Alabama, Florida, Georgia, Mississippi, North Carolina, and Tennessee.

It is also in the top ten weeds of peanuts, cotton and corn in Alabama,

Florida and Georgia.

Sicklepod is a non-nodulating legume whose persistence can be at-

tributed to its tolerance of a wide range of soil fertility, pH, and

temperatures (25, 27, 92). Also contributing to this success as a

major pest is sicklepod's prolific seed production and tolerance to

many commonly used herbicides.

Farmers have been reluctant to use narrow rows in their soybean

production mainly because cultivation is no longer an option in their

weed control program. Recent advances in chemical weed control now

make narrow row soybeans an alternative program. Decreasing row spa-

cing in soybeans has advantages and disadvantages. The impact upon

various soybean weed pests, such as sicklepod, to this cultural prac-

tice has not been completely determined. Numerous studies have inves-

tigated the competitiveness of weeds in soybeans. However, most of

these investigations involve weeds per meter of linear row in soybeans

1









of 85 cm row spacing or greater. Many researchers and consultants are

now advising growers to decrease row spacing to achieve more rapid

canopy closure; however, therearelittle data available evaluating the

interaction between weed density and crop row spacing.

Investigations were initiated to evaluate the effect of decreasing

soybean row spacing on sicklepod growth. The major objective of this

study was to determine whether improved control of sicklepod could be

achieved by increasing crop competition through modification of cul-

tural practices. Variables involved include row spacing, sicklepod

densities, planting dates, and chemical control.













LITERATURE REVIEW


Classification and Description of Sicklepod


Cassia obtusifolia L. is an erect annual herb of the family

Leguminosae (subfamily Caesalpinioideae). The Weed Science Society of

America approved common name is sicklepod although it is often referred

to as coffeeweed by growers in the South. This species has pinnately

compound leaves with leaflets obovate, 2-7 cm long and numbering 4-6.

Sicklepod's petiolar gland is elongate. This gland is about 2 mm long.

It is located between, or just above, the petiolules of the lowest pair

of leaflets. The sepals are unequal and are 5-10 mm long and 2-5 mm

wide. The petals are yellow and are 8-17 mm long. There are 6-7 fer-

tile stamens and 3-4 staminodes. The legume is narrowly linear, strongly

curved, tetragonal, 1-2 mm long and 3-5 mm broad. Sicklepod often

reaches heights of 2 meters or more under conditions of good moisture

and fertility. Coffee senna (Cassia occidentalis L.), a closely related

species found commonly throughout the southeast, is separated from

C. obtusifolia L. by the number and shape of the leaflets and the

petiolar gland which is larger and bulb-shaped at the base of the

petiole. Both species are commonly found in Virginia, North and South

Carolina, Georgia, Florida, Alabama, Missisippi, and Tennessee (14, 17,

44, 50, 66, 77, 102, 104).








Weed-Crop Competition

Definition

Competition, as a comprehensive term, is defined by Smith (89) as

common use of a resource, regardless of supply, resulting in harm to

one organism by another seeking the resource. Smith (89) considers

competition to be one of two types, exploitative or contest. Exploi-

tation competition is where organisms have equal access to a limited

resource. Contest or interference competition is where a competitor

is denied access to a resource. However, these theories were developed

from animal populations.

Competition between plants has been defined by many authors. One

of the first researchers to investigate the subject of plant competition

was Pavlychenko (71) who in 1949 defined competition as a natural force

exerted by each living organism, tending to attain maximum advantage at

the expense of other living organisms occupying the same space. Donald

states "competition occurs when each of two or more organisms seeks the

measure it wants of any particular factor or thing and when the immediate

supply of the factor or thing is below the combined demand of the organ-

isms" (30:356). Although competition theories are well documented, even

the term "competition" is somewhat controversial. Harper (42) dislikes the

word "competition" because of its connotations to games and sports and its

unscientific meaning. He prefers the term "interference" which includes

both competition and allelopathy. Allelopathy describes the addition of

a chemical substance to the environment, while competition involves the

removal or reduction of a necessary factor from the environment (108).








Allelopathic effects will not be addressed in this manuscript and the

term "competition" used. Plants usually compete for water, nutrients,

light, oxygen, carbon dioxide and agents of pollination and dispersal.

Water, nutrients, and light are the most commonly deficient (24, 30,

108).


Nutrient Competition

Competition for nutrients constitutes an important factor in crop

production (7, 56). Vengris et al. (98) determined that weeds are

important competitors with crop plants for nitrogen and potassium.

High phosphorus content of weeds, even when available soil phosphorus

is low, indicates weeds compete effectively for this element. However,

this may be due to a more efficient utilization of soil phosphates. In

competition between leguminous crops and weeds, nitrogen may not be as

important a factor as phosphorus or potassium. On a soil acutely de-

ficient in nitrogen and phosphorus, Donald (30) determined that grass

weed growth was significantly depressed by gramineous cereal crops but

not by peas (Pisum sp.). Conversly the growth of clovers was depressed

by the peas but was unaffected by barley (Hordeum vulgare L.) or oats

(Avena sativa L.). Donald concluded that the main factor of competition

between the gramineous species was nitrogen, whereas between the leg-

uminous species with an independent nitrogen supply,competition was

primarily for phosphorus.

Blackman and Templeman (6) found that annual weeds in cereal crops

resulted in lower nitrogen and potassium content of the cereal but did

not alter the phosphorus content. Hoveland et al. (48) showed that

weeds respond to added potassium and phosphorus. Of the weed species









they studied, redroot pigweed (Amaranthus retroflexus L.), jimsonweed

(Datura stramonium L.) and Florida beggarweed (Desmodium tortuosum L.)

were the most responsive warm-season weeds to potassium and phosphorus

levels. Showy crotalaria (Crotalaria spectabilis Roth), tall morning-

glory (Ipomoea purpurea (L.) Roth), sicklepod, and coffee senna were

the most tolerant to low soil phosphorus. Generally, weeds were more

sensitive to low soil-test phosphorus than to low levels of potassium.

Chambers and Holm (21) found phosphorus competition by weeds to be

minimal. In their tests, weeds were found to have less effect on

phsophorus uptake than bean plants. Weeds may also compete with crops

for Ca and Mg, but nitrogen is usually the nutrient most subject to

competitive uptake (10). Response of plants to different levels of

Ca is difficult to measure because of its pH-dependent properties (11).

Increased fertility levels may not remedy nutrient competition by

weeds but may instead enhance it through increased weed growth thus

reducing crop yield. Vengris et al. (98) in a later study concluded

that weeds compete for essential nutrients and decrease crop yield

even at high fertility levels. Nakoneshny and Friesen (64) determined

that wheat (Triticum aestiuum L.) yield increases due to fertilizer

applications were not different from increases due to weed removal.

Staniforth (91) stated that soybean yield reductions due to weeds

were greater in tests where 75 or 150 kg/ha of nitrogen was applied

the previous year. In studying competition with wild buckwheat

(Polygonum convolvulus L.) Nalewaja (65) reported greater yield re-

ductions of wheat and flax (Linum usitatissimum L.) occurredin fertilized

treatments. Zimdahl (108) in his review on weed-crop competition stated

that weed control cannot be achieved with fertilizer. Maximum benefits








from fertilizer occur only to crops with relatively few weeds. The

solution to nutrient deficiencies in weed infested areas is obviously

not solely increased fertilizer, but depends on removal or reduction

of the weeds.

It is difficult to separate nutrient competition from other con-

founding factors such as light, moisture and pH since they are all

interrelated and a change in one may result in a correspodning change

in the other. Numerous investigators have attempted to separate light

from nutrient competition in the field by using weeds which are low-

growing and have smaller leaf areas (30, 37). Donald, in studying

nutrient competition, concluded that secondary effects must be consid-

ered. He states "success in gaining a larger share of available nu-

trients may stimulate growth increases resulting in dominance as much

from competition for light as for nutrients" (30:356). However, the

ability to compete for nutrients is an important aspect of the success

of weeds (103).

Moolani et al. (63) concluded that smooth pigweed (Amaranthus

hybridus L.) competition was greatest when early season rainfall was

high. Knake and Slife (52) found that giant foxtail (Setaria faberi

Herrm.) reduced corn (Zea mays L.) and soybean yields more in years of

high rainfall than in years of low initial rainfall followed by ade-

quate midseason moisture. In studying Venice mallow (Hibiscus trionum

L.) competition in soybeans, Eaton et al. (36) discovered that compet-

ition was greatest when moisture conditions were good initially and

poor after midseason than when moisture was limited early but adequate

from midseason on. Sicklepod competition in soybeans was found by

Thurlow and Buchanan (95) to be less severe in years of high moisture.









Size, distribution, and developmental rate of a plant's root

system influence the competitiveness of a plant for water. Scott and

Oliver (80) found that, compared with the soybean root system, tall

morningglory roots were found deeper and had greater root densities.

Little expansion of the soybean root system was found after initiation

of reproductive growth; however, during this phase the tall morning-

glory root system was still increasing.

The quantity and distribution of seasonal rainfall can alter the

competitive ability of various weeds as well as crops. Wiese and

Vandiver (104) showed that soil conditions can affect the competitive

ability of weeds. Barnyardgrass (Echinochloa crus-galli (L.) Beauv.)

and large crabgrass (Digitaria sanguinalis (L.) Scop.) were found to

be serious competitors when adequate soil moisture was available.

However, in semi-arid or arid areas, these weeds are not problems.

Kochia (Kochia scoparia (L.) Schrad), Russian thistle (Salsola kali

L.), buffalobur (Solanum rostratum Dunal) and tumblegrass (Schedonn-

ardus paniculatus (Nutt.) Trel.) were more competitive under dry con-

ditions, while Palmer amaranth (Amaranthus palmeri S. Wats.) grew

equally well under high and moderate soil moisture. Of the species

studied, cocklebur (Xanthium pensylvanicum Wallr.) was the only weed

that did not survive extreme drought.


Water Competition

Water is often considered to be the primary limiting factor in

soybean production throughout the world (33, 72). The effects of

water stress on growth and yield of soybeans aredependent on the degree

of stress and the stage of growth when the stress occurs. Burnside and








Colville (18) found that soybeans irrigated during the late bloom stage

outyielded non-irrigated soybeans by 685 kg/ha. Sionit and Kramer (87)

found that of all growth stages, water stress during early pod formation

resulted in the greatest decrease in number of pods and seed at harvest.

However, stress applied during pod formation or during pod fill re-

sulted in greater yield reductions than stress applied during flower

induction or flowering. This phenomenon has been confirmed by numerous

investigators (32, 78, 82, 94). Peters and Johnson (75) found that

from July 1 to September 20, 2.5 cm of water was required to produce

134 kg/ha of soybeans. Pendleton and Hartwig (72) state that at this

rate it would take 625 cm of water during the late growing season to

produce a high-yielding soybean crop of 3,369 kg/ha.

It is evident from the above investigations that soybeans require

sufficient moisture, especially during the late growing season, in

order to produce high yields. With the dependence upon natural rain-

fall in non-irrigated soybeans, adequate moisture is not always pres-

ent. When weeds exist the amount of soil moisture available to the

soybeans is further depleted. Staniforth (90) found that soybean

yields were only slightly reduced by yellow foxtail (Setaria lutescens

(Weigel) Hubb.) competition when water was limited in early season,

but was sufficient later in the season. However, when moisture was

plentiful early but limited in late season, there was a 15% reduction

in soybean yield.


Light Competition

Competition for light is unique among the factors for which plants

compete. With water or nutrients there is a fluctuating reservoir from








which to draw; however, light is available from a constant source.

Light energy must be intercepted and utilized instantaneously or be

lost. Donald (29) points out that this is particularly evident in

the young crop where most of the energy passes to the soil surface

due to lack of leaf area. Competition for light also differs from

other factors in that the competition is not necessarily between spe-

cies or plants butrather among leaves. This intra-plant competition

also occurs for water and nutrients but it is not as intense since

water and nutrients are translocated throughout the plant. The com-

petition along leaves for radiant energy is among individual units

within the plant canopy (30)..

The role which light plays in photosynthetic reactions has been

well documented (40, 41). The photosynthetic rate of a whole canopy

usually shows a greater response to light intensity than that of a

single leaf which may reach light saturation at less than full sun-

light. This is due to canopy architecture which includes leaf angle,

leaf distribution and leaf area index which allows more leaves to

intercept light at an average lower light intensity where they are

more efficient. Although single leaves may reach their maximum

photosynthetic rate at near full sun intensities, they are not very

efficient at utilizing light at that intensity (46). Bowes et al. (9).

states that the light saturation intensity of field grown soybeans is

approximately equal to the maximum light intensity under which they

are grown thus indicating that soybeans acclimate to the light avail-

able. Therefore, soybeans appear to develop sufficient, but not ex-

cessive, photosynthetic capacity to utilize the maximum available light.

In view of these facts the question arises as to how much depletion of








soybean yield potential is due to the interception of solar radiation

caused by a low or intermediate population of weeds arising above

the soybean canopy.

Light interception and subsequent photosynthesis depend largely

on foliage density and percent ground cover. Leaf area indes (LAI),

the units of leaf area per unit of land area, is the best criterion

for analyzing this. Brougham (12) defined the critical LAI as that

leaf area required to result in 95% interception at local noon. This

value for soybeans is approximately 3.2 (85). The relative light in-

tensity through the plant profile is reported to follow the relation-

ship I/I = eKA, where I = radiant energy received at the bottom of

an increment LAI, A, I = incident energy at the canopy top, K =

extinction coefficient. Sakamoto and Shaw (79) demonstrated by using

the above equation that light interception occurred primarily at the

periphery of the soybean canopy. When the open space between rows

closed, interception was primarily at the top of the canopy. Several

investigators using Beer's Law (30, 79) have shown that light inter-

ception by a canopy of leaves is exponential. Light intensity, there-

fore, decreases sharply as it penetrates into the canopy. Sinclair's

(86) equation of light attentuation, derived from Beer's Law, states

that the fraction of photon flux density (Pz) reaching any depth in

the canopy is an exponential function of cumulative leaf area from the

top (Lz), extinction coefficient (K), and the solar elevation (sin e)-

I/0 = Pz = e( ). The majority of the light is therefore found to

be intercepted by the upper unit of LAI (57). The effect that weeds

extending above the soybean canopy have on this relationship has not

been adequately investigated.








Perhaps the single most important factor in weed-crop competition

for light is plant height. Blackman and Templeman (6) stated that

light competition existed only when the weed species is tall growing

and the density is high. Shadbolt and Holm (81) reported that high

populations of redroot pigweed and ladysthumb (Polvgonum persicaria L.)

populations reduced light penetration 85%. Weber and Staniforth (101)

found that soybean yields were reduced more by overshadowing weeds

than by weeds of approximately the same height as the crop. Moolani

et al. (63) found that smooth pigweed had a greater effect on soybeans

than on corn due to the height differential between soybean and pigweed.

Knake and Slife (53) reported that giant foxtail had the greatest

effect on soybeans after reproductive growth had begun or after the

weeds began shading the soybeans.

It is evident that light competition is interrelated with water

and nutrients and that individual effects are difficult to separate.

A shaded plant, for example, suffers reduced photosynthesis leading

to poorer growth, and a smaller root system, and ultimately reduced

capacity for water or nutrient uptake (30). However, if water and

nutrients are in adequate supply, then light will become the major

limiting factor controlling rate of growth and the production of dry

matter (28).


Weed Density

Crop yield reductions due to weeds have been demonstrated by

numerous investigators (11, 22, 26, 39, 51, 81) with much of this

work involving soybeans. Wilson and Cole (107) reported that soy-

bean yields were reduced 12 and 44% by tall and ivyleaf morningglory








(Ipomoea hederacea (L.) Jacq.) at densities of one plant per 51 and

4 cm or row, respectively. Removal of morningglories at six to eight

weeks after planting permitted maximum soybean yields. Oliver et al.

(69) found that at one weed per 61, 30, or 15 cm of row, tall morning-

glory could remain for ten, eight, and six weeks, respectively, without

soybean yield reduction. Barrentine (3) indicated that tall morning-

glory and cocklebur were similar in competitive ability with soybeans.

Buchanan and Burns (13) found that one tall morningglory plant per

30 cm of row reduced cotton yields 10 to 40% on Norfolk sandy loam

soil and 50 to 75% on Lucedale sandy clay soil. Tall morningglory

was found to be more competitive than sicklepod in this study.

In 1976, Bloomberg and Wax (8) stated that common cocklebur ranked

as the most important and detrimental weed in soybeans. In a three

year study involving common cocklebur in soybeans, Barrentine (3)

found that full season competition by cocklebur at 3,300, 6,600,

13,000, and 26,000 plants/ha reduced soybean yields by 10, 28, 43,

and 52%, respectively. When controlled for the first four weeks,

further cocklebur removal was not necessary in order to obtain max-

imum yields. In studying the economics of common cocklebur control,

Anderson and McWhorter (1) reported that soybean yields were increased

about 6% for each 10% increase in cocklebur control. Net returns to

land, management, and general farm overhead were $63/ha with 0% con-

trol and $119/ha with 95% control of cocklebur. A 70% weed control

level was required to escape losses caused by excessive seed moisture.

Hauser et al. (45) stated that common cocklebur as well as yellow nut-

sedge (Cyperus esculentus L.) reduced yields 75% in experiments con-

ducted in Georgia. The above data clearly give evidence to support








Bloomberg's and Wax's initial statement. Cotton is also adversely

affected by cocklebur competition. Buchanan and Burns (14) found

that 8 weeds/7.3 m of row reduced yields more than 20% and 48 reduced

yield more than 80%.

Sicklepod competitiveness in soybeans is well documented, although

it is reportedly less competitive than cocklebur in some regions of

the country. Thurlow and Buchanan (95) found that soybean yields were
2
reduced linearly between 0 and 15 weeds/m2. In two separate locations,

yield was reduced 19 to 32% and 34 to 35%, respectively by densities
2
of 7.7 sicklepod/m2. Weeds allowed to compete for the first four weeks

of crop growth failed to reduce yields. Competition for six weeks

reduced yields in two of five experiments. Although early season

sicklepod competition may not adversely affect soybean yield at the

present, there is currently no reliable means of sicklepod control

after the early seedling stage until a weed-crop height differential

has been established (27). Teem (92 ) reported that sicklepod at

3, 5, and 7 weeds/m of row reduced soybean yields 19, 25, and 38%,

respectively. A regression coefficient of -.40 was obtained in these

studies indicating a reduction in soybean yield of .40 for each kg/ha

increase in dry weight of sicklepod. In studies evaluating soybean

yield as affected by sicklepod dry weight or density, Teem indicated

the coefficient of determination was .93 for the former and .38 for

the latter, thus indicating the weed weight is a more precise measure

of sicklepod competitiveness than weed density.

Buchanan and Burns (13) reported that cotton yields were reduced

10 to 40% at 8 plants/7.3 m of row, depending on soil type. A density

of 48 plants/7.3 m of row resulted in a 45 to 80% yield reduction.









Thurlow and Buchanan (95) stated that in general sicklepod is more

effective in reducing cotton yield than soybean yield, probably due

to soybean's shorter life cycle.

Numerous other weeds have been found to be deleterious to soybean

yields. Moolani et al. (63) reported that soybean yield reductions

from the highest population of smooth pigweed averaged 55% during a

three year study. Coble and Ritter (22) found that soybean yield

was reduced 13% by a density of 8 Pennsylvania smartweed (Polygonum

pensylvanicum L.) plants/!O m of row. Further yields reductions of

21, 37, and 62% resulted from full-season competition by densities

of 16, 32, and 240 weeds/l0 m of row, respectively. Berglund and

Nalewaja (5) found that soybean yields were reduced 21% by one wild

mustard (Brassica kaber (D.C.) L. C. Wheeler) plant/0.3 m of row.

Velvetleaf (Abutilon theophrasti Medic.), Venice mallow, and prickly

sida (Sida spinosa L.) were found to decrease soybean yields 720, 250,

and 230 kg/ha, respectively.

Monocots are also reported to be competitive with soybeans. Nave

and Wax (67) reported giant foxtail at 1 plant/0.3 m of row reduced

soybean yields by 13%. Knake and Slife (52) reported that 54 giant

foxtail/0.3 m of row caused a 28% soybean yield reduction.

Competition studies aid growers in determining the feasibility

of controlling particular weeds at various densities. Thus the term

economic threshold has been coined. This concept may have some prac-

ticality on a short term basis; however, for a long term weed control

program the economic threshold principle may not apply. When even a

low population of weeds is allowed to mature and produce seed each

year, the seed reserve in the soil can become enormous. A herbicide








program giving 95% control may not be adequate if the weed population

is extremely high. One pigweed plant has been reported to produce

over 117,000 seed (2). At this rate, only a few plants are needed to

result in a high weed population for many years. If weeds are not

permitted to produce seed, then a long term weed control program may

eventually be less costly.


Row Spacing

Soybeans have traditionally been planted in 75 to 100 cm row widths.

These widths are also used for cotton, corn, and grain sorghum. Wide

rows were necessary to accommodate conventional cultivation equipment;

however, with the development of selective herbicides, narrow-row soy-

beans are becoming a viable alternative (20).

Several studies with indeterminate soybean varieties have shown

increased yields with rows narrower than 100 cm (31, 66, 76, 105).

Wax and Pendleton (100) noted an increase in soybean yields of 10,

18, and 20% for 76, 51, and 25 cm rows, respectively, when compared

to 102 cm rows. Lehman and Lambert (55) found that seed yields ob-

tained from the 50 cm spacing were approximately 15% greater than

yields from the 100 cm spacing. Lovely et al. (58) achieved highest

yields from 30 cm rows. Hammerton (41) found in competition studies

with mixed weed stands that soybeans in 30 cm rows gave higher yields

than 60 cm rows.

Weed control is the most important consideration in the production

of soybeans in rows too narrow to allow cultivation (99). Studies on

the interaction of weed control methods and row spacing have shown that

soybeans in narrow rows provided more shade between the rows; therefore








fewer cultivations were needed after initial weed control had been

obtained in the row with herbicides (73). Wax and Pendleton (100)

demonstrated an increased weed growth in the wider soybean row spac-

ings. They stated that weed control by either trifluralin (a,a,a-

trifluro-2,6-dinitro-N,N-dipropyl-p-toluidine) or cultivation.was

more effective in 50 cm rows than in 100 cm rows. Burnside and

Colville (18) showed that soybeans planted in 25, 50, 75, and 100 cm

rows obtained canopy closure in 36, 47, 58, and 64 days, respectively.

They also noted a yield increase of 39% from the 25 to 100 cm rows.

Lower rates of chloramben (3-amino-2,5-dichlorobenzoic acid) could

be used and still obtain adequate weed control. Kust and Smith (54)

found that soybeans planted in narrow rows were much more effective

than those planted in wide rows in suppressing the growth of yellow

foxtail and barnyardgrass. In addition, they found that lower rates

of linuron (3-(3,4-dichlorophenyl)-l-methoxy-l-methylurea) were re-

quired for comparable weed control as row spacing decreased. Cooper

(23) noted that if weeds are controlled with herbicides for four to

six weeks after planting, narrow row soybeans may provide more shading

than would wide row soybeans and lower rates of herbicide may be re-

quired in narrow rows because of the greater shading by soybeans.

Weed control may be increased in narrow row soybeans with effec-

tive herbicides, but a serious problem may arise if the herbicides are

unsuccessful. At this point, cultivation or a postemergence directed

spray could salvage a wide row soybean crop; however, this is not an

option with narrow row soybeans. One alternative early in the growing

season would be the rotary hoe. Lovely et al. (58) noted 70 to 80%

weed control by rotary hoeing when weeds had germinated but not emerged.








Peters and Johnson (75) found the rotary hoe effective on emerged weeds

less than 1 cm in height.

Another problem that may arise in narrow rows is the presence of

perennial weeds. Perennial weed species that normally do not persist

in cultivated row crops may increase if cultivation is eliminated (99).

Narrow row soybeans offer advantages other than increased weed

control. Mannering and Johnson (61) found that narrow row soybeans

provided significantly greater ground cover than wide row soybeans as

early as three to four weeks after planting resulting in 24% greater

water infiltration and 35% less soil loss to erosion. Hicks et al.

(47) noted that a greater leaf area index was provided earlier in the

season when plants were spaced in 25 cm rows. One further advantage

of narrow rows is the height of the lowest pods on the stems is raised,

which can help reduce harvest losses (51). Burnside and Colville (19)

found that height to lowest pod decreased with increasing row spacing.

Basnet et al. (4) found that in narrow rows the first pods were pro-

duced 3 to 9 cm higher above ground level than those in wider soybean

row spacings.

One disadvantage is that soybeans planted in narrow rows tend to

be lodged more than wide row soybeans (4, 19, 66). Hartwig (43) states

that planting more than 10 to 12 soybean seeds per 0.3 m of row gives

better early season weed control but a greater amount of loding usually

results. Most research has shown that when rows are narrowed to less

than 50 cm the seeding rate should be increased 10 to 30% to help assure

an adequate stand (51). Water use is supposedly another disadvantage of

narrow rows; however, current data do not support this. Johnson et al.

(51) state that if narrow rows do use more water it is being used to








produce more crop, not just lost to evaporation. Narrow rows may not

yield more than wide rows during a dry year, nor should they yield

less. Doss and Thurlow (33) reported that average daily water use

differed little between row widths except for a period early in the

season when plants were 25 to 60 cm high. At this stage more water

was used by the 90 cm than the 60 cm rows. The lower water use rate

on 60 cm rows probably resulted from less evaporation from the soil

surface due to more shading effect by the narrow rows during the early

season. Timmons et al. (96) stated that neither row spacing nor plant

population significantly altered evapotranspiration.

In contrast to the yield increases found in the northern U.S., row

width studies conducted in the major soybean producing areas of the

South indicate that there is no yield advantage to planting in rows

narrower than 30 to 40 cm. Hartwig (43) in Mississippi and Smith (88)

in Florida found that planting narrow rows had no effect on soybean

yields. Hartwig (43) explained that adapted southern varieties have

more foliage than northern indeterminate varieties and normally will

completely fill the row middles in 80 to 100 cm rows. Johnson et al.

(51) reported that row spacing will not have an effect on yield as long

as the rows are sufficiently narrow to close the soybean canopy by the

time the plants have begun flowering. Generally the farther north, the

narrower the optimum row width because the plants are smaller at flow-

ering. However, late planted soybeans are more likely to show a greater

response to narrow rows than those planted in the spring.








Sicklepod Control Programs

Sicklepod remains one of the South's most troublesome weeds in

soybean production despite numerous investigations on herbicide effi-

cacy. In corn and pastures, sicklepod can be easily controlled with

phenoxy herbicides, while in soybeans this is not an option (49).

Soil applied herbicides such as trifluralin (a,a,a-trifluro-2,6-dinitro-

N,N-dipropyl-p-toluidine) and nitralin (4-(methylsulfonyl)-2,6-dinitro-

N,N-dipropylaniline).have essentially no activity at normal use rates

(16); however, alachlor (2-chloro-2',6'-diethyl-N-(methoxymethyl)

acetanilide), metribuzin (4-amino-6-tert-butyl-3-(methylthio)-as-

triazin-5(4H)-one), and vernolate (S-propyl dipropylthio-carbamate)

have been reported to result in fair to good suppression of sicklepod.

Oliver et al. (70) reported that alachlor, metribuzin, and vernolate

gave 79, 56, and 49% control, respectively, of sicklepod thus providing

a height differential adequate for successful directed postemergence

herbicide applications. However, Currey et al. (27) stated that

metribuzin was the single most effective herbicide to control sickle-

pod. They also stated that sicklepod control and soybean tolerance

were consistently better for preplant incorporated than for preemer-

gence treatments containing metribuzin. Teem (92) also reported that

metribuzin gave greater control of sicklepod than either alachlor or

vernolate at normal use rates. While vernolate has provided good

control of sicklepod in some cases, soybean injury and stand reduction

have also occurred (26, 83).

The most effective method of controlling sicklepod involves the

use of postemergence applications in addition to preplant or preemergence








treatments. Toxaphene (chlorinated camphene) has been the most success-

ful of these chemicals both in terms of efficacy and low crop injury;

however, it was never granted a federal use label and will not be

available in the future. Sherman et al. (84) reported that toxaphene

at 2.24 kg/ha plus an oil concentrate controlled 89 and 95% of the

sicklepod in the cotyledon or first true-leaf stage, respectively.

Lunsford (59) found that toxaphene at 2.24 kg/ha plus an oil concen-

trate applied 11 days after planting to soybeans in the V2 stage when

sicklepod was in the cotyledon stage provided excellent control. A

subsequent application was needed seven to ten days later to control

newly emerging sicklepod. Once sicklepod passes the cotyledonary

stage, tolerance to toxaphene increased (60, 106). Acifluorfen (sodium

5-[2-chloro-4-trifluoromethyl)-phenoxy]-2-nitrobenzoate) has been shown

to provide some control of sicklepod in the cotyledonary stage with a

single application; however, split applications resulted in severe

soybean injury (34, 59, 68). A single application of acifluorfen at

0.56 kg/ha gave only 30% control of sicklepod while causing 20% soy-

bean injury on the V2 and V4 growth stage. A split application of

acifluorfen at 0.56 kg/ha at V2 and V4 stage soybeans resulted in 70%

sicklepod control and 60% crop injury; however, a split application

of toxaphene at 2.24 kg/ha at the V2 and V4 soybean growth stage gave

95% sicklepod control and no crop injury (59).

Buchanan and Hoveland (16) reported that postemergence appli-

cations of chloroxuron (3-[p-(p-chlorophenoxy)phenyl]-1,1-dimethy-

lurea) resulted in adequate control of seedling sicklepod. The add-

ition of a crop oil concentrate improved control; however, some crop

injury occurred. Oliver et al. (70) found that chloroxuron at 1.12









kg/ha plus a surfactant (0.5%) resulted in 92% control of sicklepod

while experiments in Florida showed that 97% control could be obtained

with the chloroxuron treatment (26).

Post-directed spray treatments have been one of the most success-

ful sicklepod control programs according to recent investigations;

unfortunately, grower acceptance of this practice has been slow (93).

Preemergence treatments of metribuzin, alachlor, alachlor plus metri-

buzin, or vernolate applied preplant, may provide sufficient suppress-

ion of sicklepod to provide the height differential necessary for a

post-directed spray (70). Sherman et al. (84) reported that either

linuron (3-(3,4-dichloro phenyl)-l-methoxy-l-methylurea) at 0.56 kg/ha

or metribuzin at 0.28 and 0.56 kg/ha applied alone or as tank mixes

with 2,4-DB (4-(2,4-dichlorophenoxy) butric acid) at 0.22 kg/ha pro-

vided greater than 90% sicklepod control when applied to the lower

7 to 10 cm or 20 to 25 cm tall soybeans. Other successful post-directed

treatments are paraquat (l,l'-dimethyl-4,4'-bipyridinium ion) alone or

in combination with either metribuzin or 2,4-DB (27, 60, 70).

From these results, it is clear that a complete herbicide program

is necessary for adequate sicklepod control. Currey et al. (27) found

that consistently acceptable control of sicklepod was obtained with use

of a dinitroaniline herbicide plus metribuzin preplant incorporated or

alachlor plus metribuzin preemergence, toxaphene early postemergence

to seedling sicklepod, and a post-directed spray of metribuzin plus

either 2,4-DB or paraquat. Oliver et al. (70) stated that by combining

the best preemergence and postemergence treatments, excellent control

of sicklepod was obtained resulting in a 37% increase in yield over

the check.













MATERIALS AND METHODS


Soybean-Sicklepod Competition Studies


Studies to evaluate the competition of various densities of

sicklepod with soybeans planted in various row spacings were conducted

during 1980 at the University of Florida Agricultural Research and

Education Center in Quincy and at Agronomy Farm (Green Acres) in

Gainesville. Competition studies were continued with modification

during 1981-1982 at the Gainesville location only. The soil at Quincy

was a Norfolk loamy fine sand (Fine-loamy, Siliceous, Thermic, Typic,

Paleudults) whereas the soil at Gainesville was a Bonneau fine sand

(Loamy, Siliceous, Theremic, Arenic Paleudults).

A split-plot design with row spacings as main plots and sickle-

pod populations as subplots, was utilized. Plots were 3.6 m by 6.0 m

and replicated four times. Trifluralin was applied at 0.56 kg/ha over

the entire experimental area for annual grass and small seeded broad-

leaf weed control. Soybean row spacings and sicklepod densities used

in these studies are listed in Table 1. Analysis of variance, Duncan's

New Multiple Range Test and regression equations were utilized to

analyze the data.


Competition of Sicklepod with Soybeans--1980

'Bragg' variety, maturity group VII, was planted on June 12 and

June 24, 1980, in Gainesville and Quincy, respectively. Soybean seeding








rates were 67, 84 and 100 kg/ha of soybean seed for the 90, 60 and

30 cm row spacings, respectively. Sicklepod populations were estab-

lished approximately two weeks after planting and maintained by hand

weeding. The middle two rows were harvested from each plot on October

28 and November 6, 1980, at Gainesville and Quincy, respectively.

Sicklepod plants were harvested from a 1 m2 area in each plot and its

green and dry weights were recorded. Regression analysis was utilized

to determine the influence of sicklepod density and dry weight on soy-

bean yield.


Competition of Sicklepod with Soybean--1981

'Bragg' soybeans were planted on May 27, 1981, at Gainesville.

After emergence the soybean stand was thinned to densities of 67,

84, and 100 plants/ha for the 75, 50, and 25 cm row spacings, respec-

tively. Weed populations were established approximately two weeks

after planting and maintained by hand weeding throughout the test.

Mercury manometric tensiometers were placed at a depth of 25 cm

in each plot of the first three replications on June 22, 1981. These

tensiometers consist of a 50 cm tube with a 10 cm porous ceramic cup.

The tube is placed to the desired depth in the soil and connected to

the above ground manometer scale by a single, transparent, plastic

tube that served both as the manometer measuring tube as well as the

connecting link between the manometer assembly and the tensiometric

cup tube. The plastic tube was inserted into a reservoir containing

30 grams of mercury, with the opposite end in the water filled cup

tube. The manometer scale was graduated in millibars of soil tension

and is a standard unit of measurement for soil moisture. Tensiometers








were placed 15 cm laterally from one of the middle soybean rows and

10 to 15 cm from the nearest sicklepod plant. Tensiometric readings

were recorded nine times from June 30 to September 25, 1981.

Soybean canopy closure and sicklepod light interception were

evaluated utilizing a intergrating radiometer/photometer and line

quantum sensor that measured photosynthetically active radiation (PAR).

The preferred measurement for PAR is Photosynthetic Photon Flux Density

(PPFD) (85), the number of photons in the 400 to 700 nm waveband inci-

dent per unit time on a unit surface, and is recorded in microeinsteins
-1 -2
sec m The line quantum sensor, which has a sensing area of 1 m

by 12.7 mm, effectively averages PPFD over its 1 m length thus elimin-

ating the need for averaging measurements from numerous small diameter

sensors. Canopy closure was determined by placing the sensor on the

ground perpendicular to the soybean rows and recording the output.

The sensor was then placed over the canopy and the output again recorded.

The difference was calculated as a percent and recorded as amount of

canopy closure. This procedure was replicated four times with two

observations per replication.

Sicklepod light interception was determined with a light attenuation

equation derived from the Beer-Lambert law of light absorbance.

(-K; LAI)
I sin e
0

where-- = fraction of radiation penetrating to depth 0
o
K = transmissivity constant (extinction coefficient)
LAI = cumulative leaf area index
Sin o = solar elevation








The fraction of photon flux density is an exponential function of

cumulative leaf area, extinction coefficient, and the altitude of

the sun (sin e). The extinction coefficient, K, depends upon leaf

angle relative to horizontal and to the solar angle. The K value used

was derived from results obtained by Shibles and Weber (85). The leaf

area index of the canopy can be determined from a derivation of the

above equation, LAI = -In(frac.) x Sin e
K

The solar elevation was obtained by the equation,

Sin a = Sin L Sin 6 + Cos L Cos 6 Cos t

where a = altitude
L = latitude
6 = declination of the sun

t = time before local apparent noon 1 hr = 150

In the solar elevation equation the only unknown is the declination of

the sun which was derived from the equation,

6 =23.45T~- Cos [3-2 (172-D)]

where 6 = declination in radians
D = day of year


In calculating the LAI, the fraction of light penetrating the

canopy was determined. The line quantum sensor was placed on the

ground under the soybeans at a specified sicklepod density. Light

penetrating the total (soybean + sicklepod) canopy was recorded, the

sicklepod plants were removed, and the light recorded again. The

sensor was then placed above the canopy to record the total PAR

available to the plants. This fraction of light with both weed and

crop was inserted into the formula resulting in the cumulative LAI









of the canopy. The process was duplicated utilizing the weed removal

reading resulting in soybean LAI. Sicklepod LAI was obtained by sub-

tracting the soybean LAI from the total LAI. A ratio was then estab-

lished between total LAI and sicklepod LAI, thus percent sicklepod light

interception can be obtained. These equations assume that leaves are

horizontal and the soybean and sicklepod leaves are in the same plane.

All light measurements were taken between 11:00 a.m. and 1:00 p.m.

Sicklepod morphological data were obtained by randomly selecting

plants from each plot and recording the number of pods per plant, seeds

per pod, seeds per plant, plant height, plant width, distance from

ground to first lateral branch, and plant dry weight. Seeds per hectare

were also calculated. Soybean height measurements were recorded both

from soil to first pod and from soil to top pod. Soybeans were hand

harvested on November 4, 1981, and yields recorded. Regression analyses

were used to determine the influence of sicklepod density and dry

weight on soybean yield.


Competition of Sicklepod With Soybeans--1982

'Bragg' soybeans were planted on May 21, 1982. After emergence

soybean stand was thinned to densities of 67, 84, and 100 plant/ha

for the 75, 50, and 25 cm row spacings, respectively. Weed populations

were established two weeks after planting and maintained by hand weed-

ing throughout the test.

Mercury manometric tensiometers were placed in the first two rep-

lications. Two tensiometers at 15 cm depth and one tensiometer at

25 cm depth were placed in each plot in the first replication. In the

second replication, one at each depth was placed in each plot. Readings






28

were recorded 17 times from June 16 to September 15, 1982. Soybean

canopy closure, sicklepod light interception, and morphological data

were measured by the same procedures used in 1981. Soybeans were

hand harvested on November 12, 1982, and yields recorded. Regression

analyses were again used to measure the influence of sicklepod density

and dry weight on soybean yield.


Herbicide Programs and Planting Date Studies


In 1981 and 1982, field studies were conducted at the University

of Florida's Agronomy Research Farm (Green Acres) in Gainesville, to

determine the effect of soybean row spacing, herbicide programs and

planting date on sicklepod control. In 1981, one planting date (June 5)

and in 1982 five planting dates (May 3, May 17, May 31, June 14, and

June 28) were utilized. Hereafter, these five planting dates will be

referred to as A, B, C, D, and E. The recommended planting dates for

'Bragg' soybeans in Florida are May 15 through June 15. These planting

dates are approximately two weeks apart, thus representing one planting

date two weeks prior to, three planting dates during, and one planting

date two weeks after the recommended period.

A split-plot design was utilized with three replications in which

row spacings were the main plots and herbicide treatments were subplots.

All herbicide treatments were applied in 187 liters of water/hectare at

3.08 kg/cm2 with a CO2 backpack sprayer. In 1982, each planting date

was considered a separate test; therefore data from different planting

dates cannot be statistically compared. Plot diminsions were 3.6 m by

4.5 m. Table 2 lists herbicide treatments for 1981 and 1982. Analysis

of variance, Duncan's New Multiple Range Test, and regression equations

were used to analyze the data.






29

Canopy closure was determined according to the procedure used in

the competition studies. Readings were initiated four weeks after

planting and were repeated at weekly intervals until canopy closure.

Weed control ratings were recorded once. A scale of 0 to 10 was used,

where 0 = no control and 10 = total control. In 1982, the last three

planting dates did not contain sufficient uniform sicklepod stands to

warrant weed control ratings. Soybeans were hand harvested on November

18, 1981, and November 11 and 12, 1982.



















TABLE 1. Treatment Variables for Competition Studies

1980 1980 1981 1982
Quincy Gainesville Gainesville Gainesville
Row Spacing: Narrow-30cm Narrow-30cm Narrow-25cm Narrow-25cm
Medium-60cm Medium-60cm Medium-50cm Medium-50cm
Wide-90cm Wide-90cm Wide-75cm Wide-75cm

Weed Population: 0 0 0 0
Low-I/m2 Low-I/m2 Low-0.5/m2 Low-0.5/m2
Medium-5/m2 Medium-5/m2 Medium-1/m2 Medium-1/m2
High-15/m2 High-15/m2 High-5/m2 High-5/m2



















to NI O N N

01 0 0 00

+ + +*

0c-







O
0
C



I
--r


r- *r- C

4-


+M I 4-)
0 r- I
*r- E W r4-

3I 0 I 'c-
-O:)O I

E *r-- *- E


I I X
E S .- 0o u
0 Z r- 0
r0 Q -C -4
U I 34--
C *r- 0 I E .
*- EE LE 4-

t r I Z





Oo-- --
SM -- *i Q. -

So0 a
E 5- a- u a c-











+ o

(n 043' C- 4-
4E 3 CD *U
5- -- 4- a
C4- 4 C
*r- 0 | r-
5- S- 1 0 C

S-- to -
IC 0 *r- t7

4 -E Ec o C
*r S- U E

o i .

m t
C + 0
c. 5)
F- CC C (- (
0 *r- *r- 0 4 *r-
-.- N N U 0) U 3
C 3 C U <0 4-'
In .0 *r- .0 *r- C 4-
4 *r-N *r- C -U
C S- 3 4 r r-
0) 4-) .0 4-> C 5- CO *r-
E O *- a rIt C 0) r-
4- E 5- E r- E -- 0.
i0 4-3 0. CU 0.
0 -4- 0 + 0 0) C r
5- E 5-. S *-
H 0 C C 0. n Q. 0
E *- + **- -o C
it -- )- U "0 0) 1)
* 2S o 5- rL C 0) 0) t) .
CM S.- o 5- 0 *-r Tr 3 D.
C 3 r- 3J r- r- to
Lii 0 r- -C r- Q. .V 0. Q. 4-) X
-I E 4- U 1- lC U 0. 0. 0 o
Co E **- t *7- X ) < 2
C 0 5- ra- S- 0
H 0 4-' (0 4- 4-' U 4- ion e.














RESULTS AND DISCUSSION


Soybean-Sicklepod Competition Studies


Competition of Sicklepod with Soybeans-1980

Soybean yields at both Quincy and Gainesville locations were

significantly higher in the 30 cm rows than in the 50 and 75 cm rows

(Table 3). Previous research (43, 51) in the southern U.S. has not

shown a yield advantage due to narrow row spacing. The late planting

may provide an explanation since higher soybean populations of narrow

row spacings have been shown to produce higher yields than wide rows

at late planting dates (20). Soybean yields showed a significant

decrease with increasing sicklepod density at both locations. Sick-

lepod dry weight was not affected by row spacing in Gainesville but

weed dry weight increased with increasing sicklepod density.

In Quincy, there was a significant interaction between row spac-

ing and sicklepod density. At the high weed density, the narrow row

soybeans produced the greatest sicklepod dry matter. At the low and

medium densities, weed dry weight was not affected by row spacing

(Table 4). Competition from the 50 cm row soybeans resulted in a

decrease in sicklepod dry weight from that in the 90 cm rows. However,

an expected decrease in sicklepod dry weight in the 30 cm rows did not

occur. Since the sicklepod density of 15/m2 is so great, the lower

populated soybeans in the 60 and 90 cm rows did not produce a yield

increase over the 30 cm rows even with a lower sicklepod biomass.






























to




U

0B
CV)


0






>0
o



4o
*I-









4.
0)


4-)






_I-
10

r





S.
C)
,a






0






r-
M c
*r-
in
So
LI-
O



5- 0



.-
e0

r
001
>
O











w
r- 0-


* i-
--1 V




i-- 1


)
0 r-

5-
O > C
Q. VI w


-K *T--
w o

*- CD







r- LO

*0,- -
> *r- (L
> .C


0) C -e






0
o tc
C')



































S-
03
*r






--

.- +-





-0
uC o





E



P- 1




r




D. n:


Lu .0 Li



co Cj r-.


r.r.
CO CO











Ld .0 U


LO- C- C
in cn- Nt o

r-
















Cv O C) r
Ni om LO
1- c3- In












ca -0 Li -O
- %~- -- -


O- (0 0 -
0C1 o C) LO
- r- I-


CM
E

-,

C) C) C) CD C) CD


o O


CO


L LC LO


CD (0
r- CO to













rL .0 .0

(0 In (0
r- (0 *st-
CO Rd L-



















cD- d













Lu .0 .0



d- C.- ,-
5-* 5


00)


C tn
5- -
1o C
rs
LC
Lu
0)C


0)
r->)

0)
E -

tV C

0 5
-C 1-



.0



ar
C)
0 *

5-)




r- .
r- S.
*r-


4-5
S).0

*.-.0
4m- 0

) 0.











to U'
C
S0






4-,-
C C,
c r-

ro n
Q.







4-
0
a. 4-)
*1


c c
*r-


*.- -. *
0 0) 4.
4- to
C CI- 0)
E *r- 4-
3 *0
-- 0E





C U 0)
*r- *I- 5-
4- Q.


C C4,-
Lu *O- 3
S: U) E
4-





















TABLE 4. Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Dry Weight (kg/ha). Quincy, 1980.

Row Spacing Sicklepod Density/m2 t
(cm) 1.0 5.0 15.0
30 a558e b2257e c16650e

60 a340e b2720e c9525g

90 a371e b2492e C10879f

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter,are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.








With all row spacings, sicklepod dry weight increased as density

increased.

Increasing sicklepod density and sicklepod dry weight decreased

soybean yield curvilinearly at both locations (Figs. 1-4). Yield

decrease was rapid initially but was similar at the medium and high

densities. At Quincy, the coefficient of determination was slightly

higher for sicklepod density than for sicklepod dry weight, 0.78 vs.

0.72, respectively. This was a result of the large sicklepod dry

weight value in the 30 cm rows at the high sicklepod density. In

Gainesville, the coefficients of determination were similar at 0.64

and 0.63, for density and dry weight, respectively. Yields and cor-

relations were lower at the Gainesville location.


Competition of Sicklepod with Soybeans-1981

Soybean yields in 1981 (Table 5) were not significantly different

between row spacings. This experiment, unlike 1980 tests, was planted

during the recommended planting dates for the 'Bragg' variety. In-

creasing sicklepod density reduced yield across all row spacings except

the low and medium densities. The suboptimal rainfall in 1981 resulted

in a decrease of 401 kg/ha with the low sicklepod density, whereas in

1980 the decrease for the same densities was 249 and 313 kg/ha at Quincy

and Gainesville, respectively. The yields were higher over all row

spacing and sicklepod densities in 1981 compared to 1980 probably due

to a more favorable planting date in 1981.

Other soybean morphological characteristics evaluated were soy-

bean height and height of first pod (Table 5). Plants were signifi-

cantly taller in the 25 cm rows than in either the 50 or 75 cm rows,



































**

W V EI
C 0
-0 4r-
0()0
CL


Q. r--

u


o
0 3
) O


U- 0)
U


C- C
0U Q


r- a>
4- >





o o
'r--











) u
0 CO 0)
VI












L L
r-0 -



C VI
0)U 0











*r
L0)


















CM


t-
'C
0
05

<0
cM
0d


>-


* A


EEE
[00
0 U 0o


NV38AOS


CJ
E
o >-
-I--

z


0

O
0c
w.
-J
Iog
CO


(D4/-b) CI731A






































0
.-
*r- VI




o C
C O







0 U




ti-

-

Or- -







>co C
Q. w-













r Li


S-



*
toC C
-- t


)r- -












*r-

C1)
10 .. i


















Co
01
rci)

x c
o E
to -


.0 ,, W




a.





EE E
4010





0
00 0
i,0
/Q-J

to 0 -O













(Dql/6) (9131A NV38AOS


-r



































.-
Ca




*-




o
0

a-

U
r-
tn










-I-
94-














a u
C
*-

VI



r- O
) CO
*,- oC


re






41






0
0
-
O


0
0
0


8
0

\ i^

b 0



+o


d
co







CO
0
000 0

E EE0
0 l/o 0




000
C\j LO c\j
COO / C


0 O 0 I
N -
(Dq/6() a131A NV38AOS


































en
.C










-o
0-


Q.







.0


U
L

4o








C)

*-
*o





V CD


-r


r -
0)

u/)





















000

EEE

ccr i.
C o n-


CMJ
(ec
b

C0
x


Dro


-0
x
ro
0




11 U >
>- cco~


0 /


(Dq/bj) G1i31A NV3aAOS


0




t-









0



-J

0
CO
(1




















TABLE 5. Soybean Yield and Heights as Influenced by Soybean Row
Spacing and Sicklepod Density in 1981. Gainesville.

t Soybean 1st
Soybean Yield Pod Ht. Soybean Ht.
Parameters (kg/ha) (cm) (cm)

Row Spacing (cm)y

25 1537 a 19.1 a 73.6 a

50 1768 a 15.9 b 65.9 b

75 1670 a 14.3 b 67.5 b

Sicklepod/m2

0.0 2144 (a) 16.3 (a) 70.9 (a)

0.5 1743 (b) 15.7 (a) 68.9 (a)

1.0 1572 (b) 16.7 (a) 67.1 (a)

5.0 1175 (c) 17.2 (a) 69.0 (a)


Means within columns within row
followed by the same letter are
at the 5% level of probability,
multiple range test.


spacings or within densities
not significantly different
as determined by Duncan's new


VInteraction of soybean row spacing x sicklepod population present.








while sicklepod densities did not significantly alter soybean height.

The 25 cm rows also resulted in the soybean's first pod being signif-

icantly higher from the ground than the other rows, thus resulting in

the possibility of less harvest loss associated with reduced row spacing.

Sicklepod dry weight (Table 6) was significantly lower in the 25 cm

rows than in the 50 and 75 cm rows at each density. Again,.however,

the 50 cm rows resulted in the greatest dry weight which was not ex-

pected. Although not significant, the 50 cm rows on the average out-

yielded the 25 and 75 cm rows. Growing conditions for both the crop

and the weed seemed to be at an optimum at this row spacing. On a

per hectare basis, sicklepod dry weight increased as sicklepod density

increased for each row spacing. This increase was 32 and 27% from low

to intermediate density for the 25 and 50 cm rows, respectively. How-

ever, a 63% increase in sicklepod biomass resulted in the 75 cm rows.

When yield was correlated to sicklepod dry weight, a curvilinear re-

sponse was obtained with a coefficient of determination of only 0.24

(Fig. 5). Similar results were obtained between soybean yield and

sicklepod density giving a R2 of 0.43 (Fig. 6). These low correlations

are indicative of the unfavorable growing conditions in 1981.

Water use did not differ between soybean row spacings or between

weed densities at sampling times 4, 6, 7, 8, and 9 (Table 7). Water

use was also not significant at these times between densities. Analy-

sis of variance indicated a significant interaction between row spacing

and density at sampling times 1, 2, 3, and 5. Interactions were only

analyzed when water use across row spacing was greater than 100 milli-

bars, thereby omitting sampling time 1. This procedure was followed

because water reservoirs were sampledat readings below 100 millibars,


























TABLE 6. Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Dry Weight (kg/ha), 1981. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0
25 a401 e a592e b2300e

50 a861 f a2577f b78639

75 a653e b1975f c5013f

tMeans within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.




















E





in
'a




03





E



Lor

to-
3

Ctn
*r-
o


r-



O0




*r-






















4-)
CL


*r-
C











ULJ




0-
.-



Ur






r-







3>
Cn





Cr
f f







o *
(r-






aC )





4 r-

o .c
a







L'J3
N-




CO
a r-
4-


n3 o .0-


O F r- r-






Cr to (a

to to r-
40 40 N-
C r- i







'0 (a 'a








CO CO
a- CO








O CM C O
-) r- rO








co to- ri





CM a- CM






o to N-





C C) U)
CY) to r'

C)O ) C)
0) z- Ct
ac O- a-
N r-- CM
























n N- N0
CO~ 't U


N
E

*O
0
LO C LO C. oC Ln o o
2 LA N- C *.


r-
V)O


-> .0 -
f0 ra 10


CV v
cO 1 M





to ro ta


o0 CO
O C( I









r- -- -
(\j i- cc >






'a a o ra


d- 00 0C)








m )- N-


C- CO C-


CO CM U)-






tn to LO



r- C0 cn


N O CO





- M r--
I- U) CM


4-3
0


C-
a
S- m.

4-)






t-
I- C)
-1 3







.C



0
a-








< 0
r-
,--- E


U >
Cto
c: o







or"
C 4->3
4J -o








3 J
O C






r-

r- E

0 O










O

4- O)
C) 0


















*I-
c -) c)

VIn


or-
C,



Cr-



r.- J.
30

L


0 Q
"4-
0)

*r- C)
0 >

Qa,-
10






*r- <


-) 4'a

3+)

9- 4-

IX)
( -



C C--
4-, (0 10





'a 01 C


*--


t1


X




0
r-




I--
O




0.




0
0
C)
O
s-







a
r-
U

0.












3.
0
*O-





ro
r-

.0





In
C
o


OU
L





4--


C
o






C
I-
c,








































-0

0
0
L)

(o








L)

r_
(U
4-



00
-0
0J



r--



0a)
o-
r-










on0
i- C
o)cr
-i- i
>i5



















CM
ci





'C
X
ro







00
2 i
3_CDJ
N21
ci


d
co






4c


ooo
r cc cIr
EEE
000
0 U
ej O '


(D4/b6) 0131A NV38AOS


CL
-c
1-




03
0
0
0r


w


C-)






































*r-
*r





10
*o
0.






-n





r
a)
r






I,,


-o
9--
a)
u
c
=J

c

M


(10

TO




'01
*r-

>>



o r>
<^ i




















CV


a)
ro

0

Srr-


=0
NJ
>L


oo
00

EE
io
Co 0
* *


O 0 0
0 to 0 N
(Dq4/bM) C-1I3A NV39AOS


cn
'I

z

Q



w
-J


- O
cn









thus no immediate competition for water was occurring. At sampling

time 2 the 0.0 and 1.0 sicklepod densities showed no significant diff-

erences in water use among row spacings (Table 8). At 0.5 density,

the 75 cm rows used more water than the narrow rows while at the 5.0

density the 25 cm rows used the most water. With 25 cm rows, water

use was significantly greater only at the high weed density. There

was no significant difference in water use between densities in the

50 cm rows while the 75 cm rows.had increased water use only at the

low sicklepod density. At sampling time 3 (Table 9) increasing sick-

lepod density did not increase water use except in the 25 cm rows where

the medium and high densities are similar. Water use in the 25 cm rows

was significantly higher than in the 75 cm rows at 0.0 and 5.0 densities.

No difference occurred at the 0.5 and 1.0 densities. At sampling time

5 (Table 10) no significant difference among densities was found in the

50 cm rows. Water use in the 25 cm rows at 0.5 and 5.0 densities was

greater than at 0.0 and 1.0 densities, whereas 0.0 and 5.0 density water

use was not significantly different in the 75 cm rows. At this row

spacing however, the greatest water use was at the 0.5 density. The

mean water use (Table 7) of all row spacings shows that the 25 and 50

cm rows used significantly more water than the 75 cm rows. Across sick-

lepod densities, mean water use indicates that the high weed population

used more water than the zero or medium density. However, after exam-

ining each sampling date where stress occurred (average above 200 mill-

ibars for at least one row spacing), there was no significant difference

between the 25 and 75 cm rows. This indicates that during conditions

where moisture is limited, narrow rows do not use more water but when

water is plentiful the narrow rows are using water thus producing more











TABLE 8. Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm depth. Sampling
Time 2, 1981. Gainesville.

Row Spacing Sicklepod Densities/m2 t
(cm) 0.0 0.5 1.0 5.0
25 a95c al37c al28c b359c

50 al1llc al20c all5c a115d

.75 al31c b231d a120c a156d

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 9. Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm Depth. Sampling
Time 3, 1981. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.0 0.5 1.0 5.0

25 a141c a209cd a166c b405c

50 a11 a 153c a173c a169d

75 a247d a257d a215c a81 d

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.









photosynthate. Although this may or may not increase yields, it

should increase early leaf area and therefore quicker canopy closure.

In addition, when soil moisture is most critical, the period during

flowering through pod fill (sample times 5-8), there were no signifi-

cant differences between the 25 and 75 cm rows.

No significant correlation existed between mean water use and

soybean yield. This is expected since high water use at field ca-

pacity would increase production while stress situations would de-

crease production if water use were.high.

A parameter that could alter soybean competitiveness with sickle-

pod is canopy closure. The progression of canopy closure is shown

in Table 11. At four weeks after planting, the 25 cm row canopy had

a canopy closure of 83.7% which was significantly higher than the 50

and 75 cm rows which were 56.5 and 39%, respectively. Five weeks after

planting, canopy closuresin the 25 cm rows were still significantly

higher than the other spacings. Canopy closure did not equalize be-

tween row spacings until ten weeks after planting. Five weeks were

required for the 25 cm rows to reach 90% closure while the 75 cm rows

required nine weeks.

Other sicklepod characteristics evaluated include sicklepod height,

width, first branch.height, seed per plant, and seed per hectare.

Sicklepod height was not altered by row spacing or sicklepod density

(Table 12). A significant interaction was detected between both row

spacing and sicklepod density relative to sicklepod plant width

(Table 13). A decrease in plant width occurred as density increased

at all row spacings. Sicklepod width was also less in the 25 cm rows

due to the competitive ability of the soybeans. The soybeans in the










TABLE 10.


Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 25 cm Depth. Sampling
Time 5, 1981. Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.0 0.5 1.0 5.0

25 a 67d b226d a 93d b407d

50 al99d a167e a72d a84f
75 b290e c397d a95e b277e

*Means within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


Effect of Soybean Row Spacing on
1981. Gainesville.


Percent Canopy Closure,


Row Spacing Weeks After Planting
(cm) 4 5 6 7 8' 9 10

25 83 a 92 a 96 a 98 a 97 a 96 a 97 a

50 56 b 74 b 90 a 93 b 96 a 97 a 95 a

75 39 c 57 c 76 b 84 c 89 b 95 a 95 a

Means within a column followed by the same letter are not
significantly different at the 5% level of probability, as
determined by Duncan's new multiple range test.


TABLE 11.



















TABLE 12.


Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Height (cm) 1981. Gainesville


Sicklepod Height
Parameters (cm)

Row Spacing (cm)

25 118 a

50 135 b

75 128 b

Sicklepod/m2

0.5 169 (b)

1.0 172 (b)

5.0 167 (b)

tMeans in a column within row spacings or within densities
followed by the same letter are not significantly different
at the 5% level of probability, as determined by Duncan's
new multiple range test.
TNo interaction exists between row spacings and sicklepod
densities.






57

50 cm rows had the greatest plant width, the same row width which

produced the most sicklepod dry weight. Sicklepod plants delayed

lateral branch initiation in the 25 cm rows until breakthrough of

the soybean canopy occurred (Table 14).

The effect of row spacing and sicklepod density on sicklepod

seed production is shown in Table 15. In the 25 cm rows only the.high

density produced significantly greater weed seed. In the 50 cm rows

the weed seed production in low and medium dersities was not signif-

icantly different but both did produce significantly less seed than

the high density. As sicklepod density increased in the 75 cm rows,

weed seed production also increased. At all densities, sicklepod

seed per hectare was least in the 25 cm rows and greatest in the

50 cm rows. The 25 cm rows reduced sicklepod seed production an

average of 76% compared to the 50 cm rows and 60% compared to the

75 cm rows. This reduction was due to soybean competition with the

sicklepod.

One important competition variable is light. No significant

difference was measured between light intercepted at the low and

medium density in all row spacings (Table 16). Light interception

was greatest at the high density of sicklepod in each row spacing.

At each density the sicklepod intercepted the least light in the 25 cm

rows. Over all densities the sicklepod in the 75 cm rows intercepted

75% more light than those in the 25 cm rows, while those in the 50 cm

rows intercepted 67% more light than those in the 25 cm rows. A re-

duction in sicklepod biomass by soybean competition caused the re-

duction of light interception by sicklepod in the narrow row spacing.










TABLE 13.


Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Width (cm). 1981. Gainesville.


2 t
Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0

25 b97e ab84e a73e

50 b76f ab168g al529

75 b147g b 45f a19f

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 14.


Effect of Soybean Row Spacing and Sicklepod Densities
on SickleDod 1st Branch Heiaht (cm), 1981. Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 .5.0

25 a65.3e a61.0e b89.0e

50 a9.0f a20.3f al2.0f

75 a6.0f a4.8g al7.0f

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.











TABLE 15.


Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Seed (per ha), 1981. Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0

25 a5165e a8550e b31606e

50 a26469f a34413f b1221939

75 al0437e b29212f c79800f

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 16.


Effect of Soybean Row Spacing and Sicklepod Densities
on Percent Sicklepod Light Interception, 1981.
Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0

25 a3.9e a5.5e b9.3e

50 a4.1 f a17.2f b24.4f

75 a20.6g a18.8f b35.9g

tMeans within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.









Competition of Sicklepod with Soybeans--1982

Unlike the 1981 results, significant differences between soybean

yields across row spacings were observed (Table 17). Yields in the

25 and 50 cm rows were significantly greater than those from the 75 cm

rows. Growing conditions were excellent in 1982; therefore moisture

stress was much less than in 1981. Yields increased 25% from 1981 to

1982 in the 25 cm rows while increasing only 12% in the 50 cm rows and

no increase in the 75 cm rows. Soybean yield did not decrease sig-

nificantly from the zero to low weed density. This was probably due to

the increased rainfall in 1982. There was a 19% decrease in yield when

sicklepod density increased from 0 to 0.5 weed/m2 in 1981 and 13% de-

crease in 1980. Soybean height, as in 1981, was greatest in the 25 cm

rows. Although taller, soybeans in the 25 cm rows were not subject to

increased lodging. Sicklepod densities did not affect soybean height.

Soybean first pod height was also greatest in the 25 cm rows and lowest

in the 75 cm rows. This could increase harvesting efficiency. Sickle-

pod densities had no effect on first pod height.

Sicklepod dry weight was greatest at the high weed density for

each soybean row spacing (Table 18). No significant difference in

sicklepod dry weight between row spacing was observed at the low weed

density. Sicklepod dry weight in the 75 cm rows was significantly

greater than that in the 25 cm rows at the intermediate and high weed

densities. Soybean yields were therefore greatest where sicklepod dry

weight was the least. From 1981 (a dry year) to 1982 (a wet year),

sicklepod dry weight increased 1% in the 25 cm rows while the yield

increased 25%. For the 75 cm rows, sicklepod dry weight increased



















TABLE 17.


Soybean Yield and Characteristics as Influenced by
Soybean Row Spacing and Sicklepod Density, 1982.
Gainesville.


S Soybean 1st
Soybean Yield Pod Ht. Soybean Ht.
Parameters (kg/ha) (cm) (cm)

Row Spacing (cm)

25 2054 a 17.6 a 68 a

50 2013 a 14.2 b 59 b

75 1663 b 11.6 c 59 b

Sicklepod/m2

0.0 2458 (a) 13.9 (a) 65 (a)

0.5 2264 (a) 14.9 (a) 62 (a)

1.0 1905 (b) 14.6 (a) 61 (a)

5.0 1012 (c) 14.6 (a) 60 (a)

tMeans within a column within row spacings or sicklepod densi-
ties followed by the same letter do not differ significantly
at the 5% level of probability, as determined by Duncan's new
multiple range test.
























TABLE 18. Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Dry Weight (kg/ha), 1982. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0
25 a285e a660e b2600e

50 a1129e a1383ef b7688f

75 a811e a2295f b 00889

tMeans within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.









42% while yield did not increase. Thus in the 25 cm rows, the addition-

al water would appear to be utilized more efficiently by the soybeans

while in the 75 cm rows, the sicklepod was using the additional water.

These results indicate that narrow row soybeans in a dry growing season

yield similarly to the wide rows. However, in a wet growing season,

narrow rows may be more beneficial.

A curvilinear response was obtained when yield was correlated to

sicklepod dry weight (Fig. 7), and sicklepod density in 1982 (Fig. 8).

A coefficient of determination of 0.81 and 0.74 was calculated for dry

weight and density, respectively. These results indicate that dry

weight of weeds is a more precise indicator of soybean yield than weed

density. Teem (92) reported similar results with dry weight and density

correlations.

Mean water use at the 25 cm depth was significantly greater in the

25 cm rows than in the 75 cm rows (Table 19). However, no difference

was observed between 25 and 50 cm rows. When examining individual

sampling time where stress was approached (average above 200 millibars

for at least one row spacing) there was no significant difference be-

tween 25 and 75 cm rows 80% of the time. Thus indicating that even

though the mean tensiometer value is greater during the 17 readings,

in stress situations the narrow rows may not be depleting more soil

moisture than the wide rows. This trend was also shown in the 1981

data (Table 7). Mean water use across sicklepod densities revealed

that only the high weed population used significantly more water.

This is not surprising considering the heavy rainfall in the 1982

growing season.







































D-


O










-0 C
0

'r




o-


* -
0


C
'U



r-

4-

C
*r-
or


rd


r- CO




c. *
.0 r.D


>.r-
0O(
tn a


































- r

7ci


000

EE


o* 0
00t0
-t O


0
0

(131A


00

r0

8 F
0
0
0
o 0


0
o


0]
0 C)
0
8..
0 O


0
i n
o
0
0
C\J


NV38AOS


(Dq /5bM)




































I,
e-







0
CL






















to
X>


r-
















0-
U


I-










'-0








C
I-









oai


















CM








I-
CO





IIt
0
CM













-* o *o I -I0
CD
0 0


















SI I ,
CO 0

o C oj






0 0 0 0


0 0 0 0O
0 0 0 0N


(Df/bj) C131A NV38AOS






















Sr-


to to o (CM to to
Sro- O 0. L co C) Ln L- -
CM-- CM-- -CM








0 Ur- 4-






E S-
L~ -t to 0 CO t 0
t- 1- 0 0 -- t -o S.. a


0 r
o e co CM in 4-
0 cC rc O 0 co CM ( V E

R0 *i- r4--
toE I
LA n LO CM c L c) 0J
A O I 1 0 L U C -~ L W (
-I C' C' r- CM CM CM CO LOr-
0- Q.
- r- -r





S.0 .0 -- -- 4- ir-
0o to0 10 a0 = (
o -0 ,0 0 *- -" 0U E








o rca co o i
w c
(D 3 D Nm CC) A LA 3




LO C- I,- to LID c \ --0 0
*)- 9 4 CM LA Ec





o 3
to U)










0) n- 0 C) C CO Co CM >n
L C L LA L CM E0Co











0,- '-0 Q
Um q) "
S3 0 (0 -I C
00 t10 .0 *-- -.- .-
r a- ED
a) k 0 C n mo to O ) i U)




m- r- OL- to r- cn 14- S *-
*r- 1- -

*- >-. C- Ur U)







U to C .
e d 0 ) Co
0O Q.0 3--- *- *0)
EC c t (a to r 0o *.



Soo go 5 to




0 0 ) LA C C -- C ) CO LA CL S-
O- D A L o C )O OD m 4-
c F- F- C F- 00 F- 0 0 .r-




*- > 3 4-
v) ol C: a)
C0 Qa 0 0a > 0
('- 0 0 0d *' Q- -u 00

>-, co r i- O O a).
S CM cC) C cO C m) CO CO

0 a0
C CM E-a



> co r o N r-- e r*~ rr > : u
W4-) 5 = C


0 0" r -- iC



a)CI E C L
4- n U in

=C E 0 E
* V- r- C-4-'

E 4-'
L-e C -*. CC
* *- O *-- 0)

I- C 0 LA O LO C) LA o o U o>
*r- C. M LA N- 0) C 4-
U r- / F- 0 0 -- LA 03 4-
. 1 D. .: 0) *r-
Co E O
I- 1t Qt t 4-+









69









.0 LCO Kj- cO -
x C\M Ln CO om co L -




0










,- ,- Cr O0 C) O 1,

r-



Or
C 4-3
N- C) C'o O'n tN CM.J iN-. m l o-













L- ,O C- .- m CM CO m-,
1 cl (a U+ r'














( ,- ,-- 1--h- ur U4-~- -
(0 10 10 0 4 0
to to ,- -- OJ-


I- I- 0 I 0 *r-




























0- .r
-4)
A LA 10 (V) L CO L E4
o- u L 0f ,- co 0
m'4 CN g- i- m- Cn CN W
VU)













M -














OO
Ct CO
10
d in on -r o co Id
m n3 ooo ci ( n


0































t LO C) C) N C CO C
S0)
-S C Cs O -

00O O 0 (0 c



CQl


































(0 tm (0 0 S-
N O C) *: U- 4-
U )


M 0 tO in .- CM ->

C) Cr) CJ (N Co) C) I *r-



10 '0 0 .0 U .Q

D- S.-
r- CM CM C3 C) '. O (



s .0 .0 ~ CU)





3 C )


*r U~ U4-)


o 0) 10
U E CM 10



a- c ta i o n C o m o o InO)

Lii a- U) O n

I- U) CO-








At the 15 cm depth there was no significant difference in mean

water use between 25 and 50 cm rows (Table 20), but the water use was

greater than that for the 75 cm rows. Only 37% of the time was there

no significant difference between the 25 and 75 cm rows during periods

of stress as compared to 82% at the 25 cm depth. Difference in row

spacing water use is greater at the 15 cm depth than at the 25 cm depth.

Drying of the soil is faster at the shallow depth and the higher popu-

lations of soybeans in the 25 cm rows use the soil moisture at this depth

more rapidly. However, at the growing season where soybean roots can

utilize water in the 25 cm depth range, water use difference is not as

great between the row spacings.

A significant interaction with the tensiometer measurements was

present at sampling times 1, 2, 3, 13, 14, and 16 (Table 20). At sam-

pling time 1 (Table 21) there was no significant difference in water

use between row spacings at 0 and 0.5 densities. Density 1.0 showed

higher tensiometer readings for the 25 and 50 cm rows than for the

75 cm rows and at 5.0 density the 25 cm row readings were greater than

those from the 50 and 75 cm rows. Within row spacing, there was no

significant difference between densities at 75 cm while only the 5.0

sicklepod/m2 density was higher in the 50 cm rows. In the 25 cm rows

the 0.0 and 0.5 densities were similar. At sample time 3 the 25 cm

rows were greater than the 75 cm rows at 0.0 and 1.0 densities (Table 22).

Within row spacing, there was no significant difference between densi-

ties in the 50 and 75 cm rows. In the 25 cm rows 0.5 and 5.0 sicklepod

densities were greater than the 0.0 and 1.0 densities. At sampling

time 17, as sicklepod density increased, water use did not increase

for the 50 and 75 cm rows, but in the 25 cm rows water use in the low

























4-3


s-


0
.0
4r-

r-
E


0u

CL
r4-
L)









"
t-
0



*r-
O
/)


0


Ur)


































to 0
0)
0






r-)
.M
0-


a)
c





00)
o










a-
01a-
C r-


0)j
Q. C






ca
0 o



.0<-

o -

cl
0cn

0

UE

4--



*
La)




- c
Ir-




O
(/I E
^-*
0 <
Q:


NC
E

"O
0
LO o LO CL.
(M LO r 0)


*--
/)


o o r- Ln
C)U- C C

C) C>U


o tIn o C OC
0 0 c c

Cf) LO 0 tfl 0' 0 C C)
Nr LA O 0' O 0 0



(0j IC Cs C sQ Cs

to> ca oa .0







t to ro-


CO m < CO O- O -N
1 r. LA .O N
0-









o0 0 (a .0





to I co I -



c CO CM M Cm C0) C


cis (0 co cs


co cc $ 2- 10 0' c' r-

Ln 00n 1-0 m
rC MO- Ot C C C
3) C\ O CO Ci CO cO





toC r( ca ( 0
to .0 o






fl co oe eo ro 0C 10
L .0 0 m -C ) )








%d- ro CD CM co
C i-- r- r- CM j e-






cn i- co LO MI to co
O1 co r-_ co co r- 0








co co c r-- r- r- C
10 CM) m CM) 0 Rd- '-


U
r_



*r- *





o c'
O 3
CCn





0)L
0 0


Lc
1-

r-
S-

4-+ +-
0) 3

-- E


E )

tl


.C C

I 0






r-
4-Q
i- C)









C0)
E)


0)0
U4




to +o
ci .0



4-
rU c




0



0-




c Q-
o 4-







a0)




O
r -E



C C




--


4--


*

4-3

*r-
x
0

I)
to
C

4,.
0

c.
0




0.
o
0
o-


0.
Q.
Ua
0






r-




o
Sc.

C
0



c0





o
U-
C
*S.
0




ta

o






*r




at
4-
r-


CO















CL

4-






--,
01
E
*r-

C-



ca
)r
r--

E

C/)
























ro to

CO co
C r) -
CMJ .-.


ON CM Co r- Co r- C)
-I) Cr-) C) c cj CM
in~- ~ p.-. 5-- I


CO 0 Co O C)O
co 0n .> 0 r C 0>)


co Co

C' -O


co r-. '0 o0 C -
r l_ o %D U r) t0 Fr


COj I-O





co- r- LO









o to .0X
LO t -O





O I- 0--
C to C' r-








o co to
r-- CC CC)
CO CO 0
U- r- c d







So N
E





r-


O t CO COc
10 CO CO r-


0 .0


o o
'0 -


C) r-- Lo


4-
1,,





*r- .
04) (



O 01
0 c
(U

a)
O-







E







S,a
0 S


0E














c E





















t--
o-)









t0o


















O
S-
413
E


*r- 4

*r- 0







o 4-

4- r
c .0








03.0
0


r- O0



0- U)





EOO

:,-
*r- 0
>









0 J4-
*1I
r-r-
*r-



U J
0 0C





CC

*r- >
L-



0
UE 4->


r--

O
P.--






En


0)




C
E
-V)
E-

01
r-


4->

*r-

a)

En















S-
0
*r-

4-




0






0)
T-








O
-,
r-
*0


C











c-
EU
O0
Q.


0

r-

.U



0
aE




4-
0
C





r-
0




S.-
a)
c
*-4
3











TABLE 21. Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth. Sampling
Time 1, 1982. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.0 0.5 1.0 5.0

25 al17e a113e b200e b240e

50 30e ab117e a178e b87f

75 a117e a92e a63f a100f

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter,are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 22.


Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth. Sampling
Time 3. 1982. Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.0 0.5 1.0 5.0

25 a220e b387e a47e a 243e

50 a203e a170f al40e al57f

75 al13f a93g a73f al57f

tMeans within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.









and high sicklepod densities was significantly greater than water use

at the zero and medium densities (Table 23). Water use at this time

was significantly greater in the 25 cm rows compared to the 75 cm rows

at the zero and medium sicklepod densities. The mean tensiometer read-

ing across sicklepod densities was significantly higher only at the

high density which is similar to the 25 cm depth.

The effect of soybean row spacing and densities on canopy closure

for 1982 is shown in Table 24. At four weeks after planting, canopy

closure was 74% in the 25 cm rows which was significantly greater than

the 50 cm rows at 55% and the 75 cm rows at 38%. At five weeks the

25 cm rows had greater canopy closure than the 50 and 75 cm rows.

Greater than 90% canopy closure occurred five weeks after planting in

the 25 cm rows and not until seven and nine weeks for the 50 and 75 cm

rows, respectively.

As in 1981, sicklepod height, width, first branch height, seed per

plant and seed per hectare were measured. Sicklepod height increased

as density increased in the 25 and 75 cm rows (Table 25). Sicklepod

height in the 75 cm rows was greater than in the 25 cm rows at all

densities. Sicklepod width was unaffected by density in each row

spacing (Table 26). In the 25 cm rows, sicklepod width was signifi-

canly lower than the 50 and 75 cm rows at all densities. Sicklepod

first branch height was greatest in the 25 cm rows indicating lateral

branching was delayed until the soybean canopy was penetrated by the

plant (Table 27).

Sicklepod seed per hectare increased significantly at the high

sicklepod density for all row spacings (Table 28). At the medium and

high densities, seed per hectare was significantly lower in the 25 cm










TABLE 23. Effect of Soybean Row Spacing and Sicklepod Densities
on Soil Moisture (millibars) at 15 cm Depth. Sampling
Time 17, 1982. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.0 0.5 1.0 5.0

25 a197e b127e a212e b 00e

50 al17f a120e a123f a167f

75 a97f a137e a107f a93e

tMeans within a row preceded by the same letter, or means within
a column followed by the same letter,are not significantly dif-
ferent at the 5% level of probability, as determined by Duncan's
new multiple range test.


Effect of Soybean Row Spacing on Percent
1982. Gainesville.


Canopy Closure,


Row Spacing Weeks After Plantingt
(cm) 4 5 6 7 8 9 10

25 74 a 91 a 97 a 99 a 97 a 98 a 97 a

50 55 b 72 b 88 a 95 a 95 a 98 a 96 a

75 38 c 49 c 70 b 83 b 89 b 94 b 96 a

Means within a column followed by the same letter are not signifi-
cantly different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 24.











TABLE 25. Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Height (cm), 1982. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0
25 a126e b147e c156e

50 b 55g a138e b163e

75 a142f bl60f c176f

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 26.


Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Width (cm). 1982. Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0
25 59e a82e a61 e

50 al40f a114f a22f

75 a129f a143g al44g

tMeans within a row preceded by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.











TABLE 27. Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod 1st Branch Height (cm), 1982. Gainesville.

Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0

25 a70e a68e a71e
50 a29f al5f b47f

75 al3g al8f al59

Means within a row preceded' by the same letter, or means with-
in a column followed by the same letter, are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.


TABLE 28.


Effect of Soybean Row Spacing and Sicklepod Densities
on Sicklepod Seed (per ha), 1982. Gainesville.


Row Spacing Sicklepod Density/m2 t
(cm) 0.5 1.0 5.0

25 a6021e a12184e b52725e

50 al5426e a21 090ef bl29675f

75 a 5532e a38333f bl681509

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter,are not significantly
different at the 5% level of probability as determined by
Duncan's new multiple range test.






78


rows than in the 75 cm rows. There was no significant difference be-

tween row spacings at the low density The 25 cm rows reduced sicklepod

seed per hectare an average of 54% from the 50 cm rows and 66% from the

75 cm rows. The greatest sicklepod seed production was 168.15 million

seeds/ha produced in the 75 cm rows at the.high density.

The effect of soybean row spacing and sicklepod densities on per-

cent light interception by sicklepod is shown in Table 29. In the 25 cm

rows, light interception was significantly greater in the medium and

high densities than in the low sicklepod density. In the 50 and 75 cm

rows, the low and medium densities are similar but significantly lower

than the high density. Sicklepod light interception was least in the

25 cm rows at the low and high densities and lower than the 75 cm rows

at all densities. The sicklepod in the 75 cm rows on the average of

all densities intercepted 78% more light than those in the 25 cm rows.

The sicklepod in the 50 cm rows intercepted 42% more light than those

in the 25 cm rows.


Herbicide Programs and Planting Date Studies


Effects of soybean row spacing and herbicide programs on soybean

yield in 1981 are shown in Table 30. There was no significant differ-

ence in soybean yield among row spacings which is similar to the re-

sults obtained from the competition studies in 1981. For all herbicide

treatments, no difference in soybean yield was found between triflur-

alin + metribuzin and trifluralin + metribuzin + toxaphene which were

both greater than the check. Excellent weed control in the narrow rows

(Table 31) seemed to mask the effect of the two treatments on soybean

yield. Although the toxaphene treatment resulted in significantly



























TABLE 29.


Effect of Soybean Row Spacing and Sicklepod Densities on
Percent Light Interception by Sicklepod. Gainesville.


Row Spacing Sicklepod Density/m2t
(cm) 0.5 1.0 5.0

25 a2.4e b12.7e b13.7e
50 al0.8f a13.7e b26.6f

75 a32.1g a39.1f b53.39

Means within a row preceded by the same letter, or means with-
in a column followed by the same letter,are not significantly
different at the 5% level of probability, as determined by
Duncan's new multiple range test.




















TABLE 30.


Effect of Soybean Row Spacing and Herbicide Programs
on Soybean Yield. 1981. Gainesville.


Soybean Yieldt
Parameters (kg/ha)

Row Spacing (cm)

25 1610 a

50 1761 a

75 1623 a

Treatments

Trifluralin + Metribuzin 2114 (a)

Trifluralin + Metribuzin + Toxaphene 2222 (a)

Check 658 (b)

Means in a column within row spacings or treatments followed
by the same letter are not significantly different at the 5%
level of probability, as determined by Duncan's new multiple
range test.









greater weed control ratings than the preplant treatment alone at all

row spacings, the actual differences were not great enough to decrease

yield significantly. The 25 cm rows at all densities resulted in the

best weed control. The trifluralin + metribuzin + toxaphene treatment

provided excellent sicklepod control in both the 25 and 50 cm rows.

An unexpected result was 39% reduction of sicklepod in the 25 cm rows

receiving no herbicide application due to competition of the soybeans

with sicklepod.

Directly affecting weed control is the rate of soybean canopy

closure. At four weeks after planting the 25 cm rows had a canopy

closure of 85% which is significantly greater than both 50 cm rows at

60% and the 75 cm rows at 34% (Table 32). The 25 cm rows were over

90% closed after only five weeks, whereas the 50 cm rows required seven

weeks and the 75 cm rows needed nine weeks. The early canopy closure

of the 25 cm rows is responsible for the excellent weed control with

only a preplant herbicide treatment which gave early suppression of

sicklepod. However, in the wide rows when additional sicklepod plants

emerged,therewere adequate light and space for the weed to become es-

tablished.

In 1982, five planting dates were used and an additional herbicide

treatment of alachlor + metribuzin. Soybean yield from different row

spacings was affected at planting dates A and C while at planting date

D no difference was found between the 25 and 75 cm rows. The 1982

competition test showed that the 25 and 50 cm rows produced significantly

greater yields than the 75 cm rows. Nonuniform and low sicklepod pop-

ulations resulted in the overall yields to be similar in planting dates

C and D. It was expected that in both the early planting date A and









late planting date E, narrow rows would result in a yield increase over

the wide rows. However, this held true for only the late planting date

E. In planting date B, where weed population was dense and uniform,

the 25 and 50 cm yields were significantly greater than the 75 cm rows.

There were no significant differences between herbicide treatments ex-

cept when compared to the check in planting dates A, B, and E. In

planting dates C and D the check was not significantly different from

the preplant and preemergence treatments. This is indicative of the

low weed density present in planting dates C and D areas (Table 33).

Weed control ratings for planting date A are shown in Table 34.

There was no significant difference between the preplant and preemer-

gence treatments at the 50 and 75 cm row spacings. Alachlor + metri-

buzin at a 9.9 rating was significantly greater than trifluralin +

metribuzin at a 9.0 rating. Control with trifluralin + metribuzin +

toxaphene was significantly better than that obtained with the preplant

and preemergence treatments at all row spacings. Weed control in the

25 cm rows was excellent for all treatments. The 25 cm row check re-

duced sicklepod density by 40% due to soybean competition. Weed con-

trol in planting date B was similar to A except in the trifluralin +

metribuzin treatment where the rating in the 75 cm rows was signifi-

cantly lower than the 50 cm row in planting date B (Table 35). In

general, as row spacing decreased, weed control increased with the

exception of the toxaphene applications, where 100% control was ob-

tained for all row spacing. However, toxaphene may not be available

for use in soybeans in the future due to its banning by EPA.










TABLE 31.


Effect of Soybean Row Spacing and Herbicide Programs on
Sicklepod Control, 1981. Gainesville.


Treatmentst
Row Spacing Trifluralin + Trifluralin+Metribuzin+
(cm) Metribuzin Toxaphene Check

25 a9.0d b10.0d c3.9d

50 a7.1e b9.4e cO.0e

75 a5.6f b7.7f C0.0e

Means within a row preceded by the same letter, or means within a
column followed by the same letter,are not significantly different
at the 5% level of probability, as determined by Duncan's new
multiple range test.


TABLE 32.


Effect of Soybean Row Spacing on Percent Canopy Closure,
1981 rainPevile


Row Spacing Weeks After Plantingi
(cm) 4 5 6 7 8 9 10

25 85 a 91 a 96 a 97 a 97 a 96 a 97 a

50 60 b 72 b 88 b 94 a 97 a 97 a 97 a

75 34 c 45 c 60 c 80 b 88 b 96 a 96 a

Means within a column followed by the same letter are not signifi-
cantly different at the 5% level of probability, as determined by
Duncan's new multiple range test.






















0- C0
,C tro to to 0
.C
C O-)- J. 1M ,n O LO 0,1 O L to
to LU r- CT co C) Ln LO Ln OLD
=3 C)- _li co C r co rN Co cr)

o0
.0- >- CO- 0 ,0 4

o C-)

c -Q 0 .0 --- .-. Lo



ro QC *- CT L m L. r- Cro LA 3 44 E
-,> C' C C CN C) C" CO C
V) Q)






C .a .0 co
(0 r- o (0 10 .0 u 0c t
)- -C *- O
?. o cC Ci

C S >- .! r- CN CO O O i rO N. C)

0 0)-
SN
o -0 t
E C o


o r- 0-- .C ,-
to- n CD-. C m -- C 4 o
) o 0o 0-o C C m- o





CF- o 4- .0
.0 0 N m LO 0 4-.



SC > .o O tD r.. ro C- -t -
o- >- mJ Ch ro r0 (n cli -
*u > Gor



c 0U0
t t 0 4) S-





*0r- CM







CC + 0
r 0D C C C R-




J rr-. *- Oo K


; CN N CM
00 .0 *r- .0 .CC
u 0 a M a )






tE 1- N *r- 4-4 )


V3Gr a. L) 1i-Q
Co L 0) O









4 -C C to- .5 S- '0 r- C


*- 44 4- 0 +- 3E.) CO )
C0 U C r- o *- *r- I-- r--
C o LA LA ) 5 -- B .C 4- 0.
c N LU N E 0 *r- -








Co ro 0 r-)
000 0 5- an
*- .- S- 4
uo X 1- M: c: 4- a)

(L) tE M: L W
4--a CA + C4
*J (a 4r) o 4-3CCO
cQ to c S-






m l I cuin E C-- c- cn r -










TABLE 34. Effect of Soybean Row Spacing, Herbicide
Planting Date on Sicklepod Weed Control.
Date A (Mav 3). 1982. Gfinpsvillp


Programs, and
Planting


Treatments
Trifluralin +
Row Spacing Trifluralin + Alachlor + Metribuzin +
(cm) Metribuzin Metribuzin Toxaphene Check

25 a9.0d b 99d b0.d c4.0d

50 a6.3e a6.5e b10.0d c0.Oe

75 a5.7e a4.3f bl0.0d CO.Oe

tMeans within a row preceded by the same letter, or means within
a column followed by the same letter,are not significantly dif-
ferent at the 5% level of probability, as determined by Duncan's
new multiple range test.


Effect of Soybean Row Spacing, Herbicide
Planting Date on Sicklepod Weed Control.
Date B (May 17), 1982. Gainesville.


Programs, and
Planting


Treatments
Trifluralin +
Row Spacing Trifluralin + Alachlor + Metribuzin +
(cm) Metribuzin Metribuzin Toxaphene Check

25 a9.0d bl0.0d b10.0d c3.8d

50 a5.3e a5.6e bl0.0d C0.0e

75 a4.3f a4.3f b0.O0d 0.0e

Means within a row preceded by the same letter, or means within
a column followed by the same letter,are not significantly dif-
ferent at the 5% level of probability, as determined by Duncan's
new multiple range test.


TABLE 35.









The effect of soybean row spacing on percent canopy closure for

planting date A is shown in Table 36. There was no significant differ-

ence in canopy closure among row spacings at four weeks. At five weeks

the canopy closure in the 25 and 50 cm rows was significantly greater

than that of the 75 cm rows. The 25 cm rows reached 90% closure in

six weeks while the 50 and 75 cm rows required seven and nine weeks,

respectively. Planting date B (Table 37) canopy closure was more rapid

than A. At four weeks the 25 cm rows had an 81% closure compared to

only 47 and 35% for the 50 and 75 cm rows, respectively. The 25 cm

rows obtained 90% closure at five weeks and the 75 cm rows required

over ten weeks. Ninety percent closure was not achieved in planting

date C until six weeks for the 25 cm rows, eight weeks for the 50 cm

rows and nine weeks for the 75 cm rows (Table 38). Planting date D

soybean canopy closure was further delayed for all row spacings

(Table 39). The 25 cm rows did not achieve 90% canopy closure for

seven weeks. At planting date E (Table 40) the narrow rows had 90%

canopy closure at seven weeks. The 75 cm rows at ten weeks had only

81% closure. The narrow row canopy closure advantage was greatest at

planting dates B and E which also is where the narrow rows yields are

significantly greater than the yields of the wide rows.











TABLE 36. Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date A (May 3), 1982. Gainesville.

Row Spacing Weeks After Plantingt
(cm) 4 5 6 7 8 9 10

25 59 a 74 a 90 a 97 a 98 a 98 a 99 a

50 48 a 62 ab 77 ab 91 a 97 a 98 a 98 a

75 45 a 56 b 64 b 79 b 85 b 93 a 97 a

Means within a column followed by the same letter are not
significantly different at the 5% level of probability, as
determined by Duncan's new multiple range test.











TABLE 37. Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date B (May 17), 1982. Gainesville.

Row Spacing Weeks After Plantingt
(cm) 4 5 6 7 8 9 10

25 81 a 95 a 93 a 96 a 98 a 97 a 98 a

50 47 b 66 b 83 b 81 b 89 b 96 a 98 a

75 35 c 41 c 69 c 66 c 74 c 83 b 87 b

Means within a column followed by the same letter are not
significantly different at the 5% level of probability, as
determined by Duncan's new multiple range test.











TABLE 38. Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date C (May 31), 1982. Gainesville.

Row Spacing Weeks After Plantingt
(cm) 4 5 6 7 8 9 10

25 67 a 69 a 92 a 89 a 98 a 98 a 98 a

50 56 b 47 b 70 b 82 b 94 a 97 a 99 a

75 36 c 43 b 65 c 67 c 74 b 94 b 97 a

tMeans within a column followed by the same letter are not
significantly different at the 5% level of probability, as
determined by Duncan's new multiple range test.











TABLE 39. Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date D (June 14), 1982. Gainesville.

Row Spacing Weeks After Plantingt
(cm) 4 5 6 7 8 9 10

25 49 a 85 a 75 a 92 a 97 a 99 a 99 a

50 23 b 39 b 58 b 72 b 82 b 87 b 98 a

75 13 c 18 c 42 c 66 b 69 c 73 c 93 b

Means within a column followed by the same letter are not
significantly different at the 5% level of probability, as
determined by Duncan's new multiple range test.






















TABLE 40.


Effect of Soybean Row Spacing on Percent Canopy Closure.
Planting Date E (June 28), 1982. Gainesville.


Row Spacing Weeks After Plantingt
(cm) 4 5 6 7 8 9 10

25 59 a 63 a 67 a 95 a 95 a 96 a 95 a

50 44 ab 53 a 56 a 87 b 93 a 93 a 94 a

75 31 b 30 b 38 b 62 c 73 b 76 b 81 b

Means within a column followed by the same letter are not
significantly different at the 5% level of probability, as
determined by Duncan's new multiple range test.














SUMMARY AND CONCLUSIONS


Competition studies between soybeans and sicklepod were conducted

from 1980-1982. In 1980 and 1982 soybean yields were significantly

greater in the 25 cm rows than the 75 cm rows. There was no signifi-

cant difference in yield between row spacings in 1981. Soybeans in

1980 were planted late; therefore the higher soybean populations of

the narrow rows were advantageous. Soybeans in 1981 were planted at

the appropriate time; however, low rainfall suppressed yields and

treatment differences. While narrow row soybeans did not provide a

yield advantage neither did they decrease yields. Growing conditions

in 1982 were excellent. In this situation, yields from the 25 and 50

cm rows were significantly.higher than from 75 cm rows. From 1981 to

1982, soybean yield increased 25, 12 and 0% for the 25, 50, and 75 cm

rows, respectively.

Corresponding to these yield increases, sicklepod dry weight in-

creased only 1% for the 25 cm rows, decreased 17% for the 50 cm rows,

and increased 42% in the 75 cm rows. Conceding that these values

cannot be statistically compared, a trend seems apparent. With ample

moisture, the soybeans in the 25 cm rows effectively utilized the

additional water while in 75 cm rows, sicklepod was able to increase

its biomass dramatically at the expense of the crop. Soybean yield

correlated well to sicklepod dry weight in 1982 giving a curvilinear

response with a coefficient of determination of 0.81. Soybean yield

significantly decreased as sicklepod density increased in 1980. In




Full Text

PAGE 1

6,&./(32' &DVVLD REWXVLIROLD /f &203(7,7,21 :,7+ 62<%($16 $6 ,1)/8(1&(' %< 52: 63$&,1* '(16,7< 3/$17,1* '$7( $1' +(5%,&,'(6 %< -(55< +2//$1' -25'$1 -5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 ZLVK WR H[SUHVV P\ VLQFHUH DSSUHFLDWLRQ WR 'U :D\QH &XUUH\ 'U 'DYLG 7HHP 'U %DUU\ %UHFNH 'U 'RQ +HU]RJ 'U 'DYLG +DOO DQG 'U &OLII +LHEVFK IRU WKHLU VXSSRUW LQ SUHSDULQJ WKLV PDQXVFULSW HVSHFLDOO\ DFNQRZOHGJH 'U :D\QH &XUUH\ FKDLUPDQ RI P\ FRPPLWWHH DQG 'U 'DYLG 7HHP IRU DOORZLQJ PH WR FRQWLQXH P\ HGXFDWLRQ DW WKH 8QLYHUVLW\ RI )ORULGD DQG IRU JLYLQJ RI WKHLU WLPH DQG H[SHULHQFH WKXV SURYLGLQJ PH DQ HGXFDWLRQ QRW REWDLQDEOH IURP FODVVZRUN DQG WH[WERRN VWXGLHV 7KDQNV DUH H[WHQGHG WR 'U .HQ 4XHVHQEHUU\ 'U .HQ %RRWH DQG 'U -HUU\ %HQQHWW IRU WKHLU KHOSIXO VXJJHVWLRQV GXULQJ P\ UHVHDUFK 0\ XSPRVW DSSUHFLDWLRQ LV H[WHQGHG WR 0UV 0DU\ $QQ $QGUHZV IRU KHU SURIHVVLRQDO DVVLVWDQFH LQ SUHSDULQJ WKLV PDQXVFULSW 7R P\ SDUHQWV 0U DQG 0UV -HUU\ -RUGDQ WKDQN \RX IRU SUHSDULQJ PH IRU OLIH LQ D ZD\ RQO\ D ORYLQJ HQYLURQPHQW FDQ SURYLGH 7R 'RW %DLOH\ DQG -HIILH )LOJDV WKDQN \RX IRU DOO RI \RXU VXSSRUW ZLWKRXW ZKLFK WKLV PDQXVFULSW ZRXOG QRW EH SRVVLEOH 7R P\ ORYLQJ ZLIH /LVD WKDQN \RX IRU \RXU SDWLHQFH DQG XQGHUn VWDQGLQJ WKURXJKRXW P\ HGXFDWLRQ
PAGE 3

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LL /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YLLL $%675$&7 L[ ,1752'8&7,21 /,7(5$785( 5(9,(: &ODVVLILFDWLRQ DQG 'HVFULSWLRQ RI 6LFNOHSRG :HHG&URS &RPSHWLWLRQ 'HILQLWLRQ 1XWULHQW &RPSHWLWLRQ :DWHU &RPSHWLWLRQ /LJKW &RPSHWLWLRQ :HHG 'HQVLW\ 5RZ 6SDFLQJ 6LFNOHSRG &RQWURO 3URJUDPV 0$7(5,$/6 $1' 0(7+2'6 6R\EHDQ6LFNOHSRG &RPSHWLWLRQ 6WXGLHV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQVf§ +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH 6WXGLHV 5(68/76 $1' ',6&866,21 6R\EHDQ6LFNOHSRG &RPSHWLWLRQ 6WXGLHV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQVf§ +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH 6WXGLHV 6800$5< $1' &21&/86,216 LLL

PAGE 4

$33(1',&(6 $ 5$,1)$// '$7$ 48,1&< )/25,'$ % 5$,1)$// '$7$ *$,1(69,//( )/25,'$ & 5$,1)$// '$7$ *$,1(69,//( )/25,'$ 5$,1)$// '$7$ *$,1(69,//( )/25,'$ /,7(5$785( &,7(' %,2*5$3+,&$/ 6.(7&+ 79

PAGE 5

/,67 2) 7$%/(6 3$*( 7UHDWPHQW 9DULDEOHV IRU &RPSHWLWLRQ 6WXGLHV 7UHDWPHQWV IRU +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH 6WXGLHV 6R\EHDQ
PAGE 6

(IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 3HUFHQW 6LFNOHSRG /LJKW ,QWHUFHSWLRQ *DLQHVYLOOH 6R\EHDQ
PAGE 7

(IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG +HUELFLGH 3URJUDPV RQ 6LFNOHSRG &RQWURO *DLQHVYLOOH (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ RQ 3HUFHQW &DQRS\ &ORVXUH *DLQHVYLOOH (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH RQ 6R\EHDQ
PAGE 8

/,67 2) ),*85(6 ),*85( 3$*( 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ 4XLQF\ f 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ *DLQHVYLOOH f 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW 4XLQF\ f 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW *DLQHVYLOOH f 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ YL L L

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 6,&./(32' &DVVLD REWXVLIROLD /f &203(7,7,21 :,7+ 62<%($16 $6 ,1)/8(1&(' %< 52: 63$&,1* '(16,7< 3/$17,1* '$7( $1' +(5%,&,'(6 %\ -(55< +2//$1' -25'$1 -5 $SULO &KDLUPDQ 'U : / &XUUH\ 0DMRU 'HSDUWPHQW $JURQRP\ 6LFNOHSRG &DVVLD REWXVLIROLD /f FRPSHWLWLRQ ZLWK VR\EHDQV *O\FLQH PD[ /f 0HUUf DV LQIOXHQFHG E\ VR\EHDQ URZ VSDFLQJ VLFNOHSRG GHQVLW\ DQG SODQWLQJ GDWH ZDV VWXGLHG IURP WR DW 4XLQF\ DQG *DLQHVYLOOH )ORULGD 6R\EHDQ URZ VSDFLQJV ZHUH DQG FP LQ DQG DQG FP LQ DQG 6LFNOH SRG GHQVLWLHV HYDOXDWHG ZHUH DQG SHU P LQ DQG DQG SHU PA LQ DQG 6R\EHDQ \LHOGV LQ ZHUH VLJQLILFDQWO\ JUHDWHU LQ WKH FP URZV WKDQ LQ WKH DQG FP URZV ZKLOH LQ WKHUH ZDV QR GLIIHUn HQFH LQ URZ VSDFLQJV DQG LQ ERWK WKH DQG FP URZ \LHOGV ZHUH VLJQLILFDQWO\ KLJKHU WKDQ WKH FP URZV 6R\EHDQ \LHOG GHFUHDVHG DV VLFNOHSRG GHQVLW\ LQFUHDVHG LQ ,Q \LHOGV ZHUH VLPLODU DW ORZ DQG PHGLXP GHQVLWLHV ,Q \LHOGV DW WKH ]HUR DQG ORZ GHQVLWLHV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW IURP HDFK RWKHU 6R\EHDQ \LHOG UHVSRQGHG ,;

PAGE 10

FXUYLOLQHDUO\ WR ERWK VLFNOHSRG GHQVLW\ DQG GU\ ZHLJKW 6LFNOHSRG GU\ ZHLJKW VHHG SURGXFWLRQ DQG OLJKW LQWHUFHSWLRQ ZHUH DOO GHFUHDVHG E\ VR\EHDQV LQ QDUURZ URZ VSDFLQJV 0HDQ ZDWHU XVH ZDV JUHDWHU LQ WKH DQG FP URZV WKDQ LQ WKH FP URZV LQ ERWK DQG +RZHYHU XQGHU ZDWHU VWUHVV FRQn GLWLRQV WKHUH ZDV QR GLIIHUHQFH EHWZHHQ WKH QDUURZ DQG ZLGH URZV DW FP GHSWK $W FP GHSWK WKH QDUURZ URZV XVHG PRUH ZDWHU XQGHU DOO FRQGLWLRQV :KHQ KHUELFLGH WUHDWPHQWV ZHUH HYDOXDWHG ZHHG FRQWURO LQFUHDVHG DV URZ VSDFLQJ GHFUHDVHG ([FHOOHQW VLFNOHSRG FRQWURO ZDV REWDLQHG ZLWK ERWK WULIOXUDOLQ DDDWULIOXRURGLQLWUR11GLSURS\OS WROXLGLQHf PHWULEX]LQ DPLQRWHUWEXW\OPHWK\OWKLRfDV WULD]LQ+fRQHf SUHSODQW LQFRUSRUDWHG DQG DODFKORU FKORURr nGLHWK\O1PHWKR[\PHWK\OfDFHWDQLOLGHf PHWULEX]LQ SUHHPHUJHQFH 3RRU VLFNOHSRG FRQWURO UHVXOWHG ZLWK WKH VDPH KHUELFLGHV LQ ZLGH URZ VSDFLQJV 7ZR DSSOLFDWLRQV RI WR[DSKHQH FKORULQDWHG FDPSKHQHf JDYH b FRQWURO DW DOO URZ VSDFLQJV 3ODQWLQJ GDWH GLG QRW DIIHFW VLFNOHn SRG FRQWURO 6R\EHDQ \LHOGV ZHUH JUHDWHVW LQ WKH UHFRPPHQGHG SODQWLQJ GDWHV 7KH QDUURZ URZV RXW\LHOGHG WKH ZLGH URZV LQ WKH ODWH SODQWLQJ GDWH DQG LQH RQH RI WKH WKUHH UHFRPPHQGHG SODQWLQJ GDWHV [

PAGE 11

,1752'8&7,21 :HHG FRPSHWLWLRQ LV RQH RI WKH SULPDU\ OLPLWLQJ IDFWRUV LQ VR\EHDQ *\FLQH PD[ /f 0HUUf SURGXFWLRQ WKURXJKRXW WKH ZRUOG ,Q WKH VRXWKn HDVWHUQ 8QLWHG 6WDWHV VLFNOHSRG &DVVLD REWXVLIROLD /f LV D PDMRU FRPSHWLWRU LQ VR\EHDQV FRWWRQ *RVV\SLXP KLUVXWXP /f DQG SHDQXWV $UDFKLV K\SRJDHD /f f 0F&RUPLFN f OLVWV VLFNOHSRG DV RQH RI WKH WHQ PRVW WURXEOHVRPH ZHHGV RI VR\EHDQV LQ $ODEDPD )ORULGD *HRUJLD 0LVVLVVLSSL 1RUWK &DUROLQD DQG 7HQQHVVHH ,W LV DOVR LQ WKH WRS WHQ ZHHGV RI SHDQXWV FRWWRQ DQG FRUQ LQ $ODEDPD )ORULGD DQG *HRUJLD 6LFNOHSRG LV D QRQQRGXODWLQJ OHJXPH ZKRVH SHUVLVWHQFH FDQ EH DWn WULEXWHG WR LWV WROHUDQFH RI D ZLGH UDQJH RI VRLO IHUWLOLW\ S+ DQG WHPSHUDWXUHV f $OVR FRQWULEXWLQJ WR WKLV VXFFHVV DV D PDMRU SHVW LV VLFNOHSRGnV SUROLILF VHHG SURGXFWLRQ DQG WROHUDQFH WR PDQ\ FRPPRQO\ XVHG KHUELFLGHV )DUPHUV KDYH EHHQ UHOXFWDQW WR XVH QDUURZ URZV LQ WKHLU VR\EHDQ SURGXFWLRQ PDLQO\ EHFDXVH FXOWLYDWLRQ LV QR ORQJHU DQ RSWLRQ LQ WKHLU ZHHG FRQWURO SURJUDP 5HFHQW DGYDQFHV LQ FKHPLFDO ZHHG FRQWURO QRZ PDNH QDUURZ URZ VR\EHDQV DQ DOWHUQDWLYH SURJUDP 'HFUHDVLQJ URZ VSDn FLQJ LQ VR\EHDQV KDV DGYDQWDJHV DQG GLVDGYDQWDJHV 7KH LPSDFW XSRQ YDULRXV VR\EHDQ ZHHG SHVWV VXFK DV VLFNOHSRG WR WKLV FXOWXUDO SUDFn WLFH KDV QRW EHHQ FRPSOHWHO\ GHWHUPLQHG 1XPHURXV VWXGLHV KDYH LQYHVn WLJDWHG WKH FRPSHWLWLYHQHVV RI ZHHGV LQ VR\EHDQV +RZHYHU PRVW RI WKHVH LQYHVWLJDWLRQV LQYROYH ZHHGV SHU PHWHU RI OLQHDU URZ LQ VR\EHDQV

PAGE 12

RI FP URZ VSDFLQJ RU JUHDWHU 0DQ\ UHVHDUFKHUV DQG FRQVXOWDQWV DUH QRZ DGYLVLQJ JURZHUV WR GHFUHDVH URZ VSDFLQJ WR DFKLHYH PRUH UDSLG FDQRS\ FORVXUH KRZHYHU WKHUH DUH LWWOH GDWD DYDLODEOH HYDOXDWLQJ WKH LQWHUDFWLRQ EHWZHHQ ZHHG GHQVLW\ DQG FURS URZ VSDFLQJ ,QYHVWLJDWLRQV ZHUH LQLWLDWHG WR HYDOXDWH WKH HIIHFW RI GHFUHDVLQJ VR\EHDQ URZ VSDFLQJ RQ VLFNOHSRG JURZWK 7KH PDMRU REMHFWLYH RI WKLV VWXG\ ZDV WR GHWHUPLQH ZKHWKHU LPSURYHG FRQWURO RI VLFNOHSRG FRXOG EH DFKLHYHG E\ LQFUHDVLQJ FURS FRPSHWLWLRQ WKURXJK PRGLILFDWLRQ RI FXOn WXUDO SUDFWLFHV 9DULDEOHV LQYROYHG LQFOXGH URZ VSDFLQJ VLFNOHSRG GHQVLWLHV SODQWLQJ GDWHV DQG FKHPLFDO FRQWURO

PAGE 13

/,7(5$785( 5(9,(: &ODVVLILFDWLRQ DQG 'HVFULSWLRQ RI 6LFNOHSRG &DVVLD REWXVLIROLD / LV DQ HUHFW DQQXDO KHUE RI WKH IDPLO\ /HJXPLQRVDH VXEIDPLO\ &DHVDOSLQLRLGHDHf 7KH :HHG 6FLHQFH 6RFLHW\ RI $PHULFD DSSURYHG FRPPRQ QDPH LV VLFNOHSRG DOWKRXJK LW LV RIWHQ UHIHUUHG WR DV FRIIHHZHHG E\ JURZHUV LQ WKH 6RXWK 7KLV VSHFLHV KDV SLQQDWHO\ FRPSRXQG OHDYHV ZLWK OHDIOHWV RERYDWH FP ORQJ DQG QXPEHULQJ 6LFNOHSRGnV SHWLRODU JODQG LV HORQJDWH 7KLV JODQG LV DERXW PP ORQJ ,W LV ORFDWHG EHWZHHQ RU MXVW DERYH WKH SHWLROXOHV RI WKH ORZHVW SDLU RI OHDIOHWV 7KH VHSDOV DUH XQHTXDO DQG DUH PP ORQJ DQG PP ZLGH 7KH SHWDOV DUH \HOORZ DQG DUH PP ORQJ 7KHUH DUH IHUn WLOH VWDPHQV DQG VWDPLQRGHV 7KH OHJXPH LV QDUURZO\ OLQHDU VWURQJO\ FXUYHG WHWUDJRQDO PP ORQJ DQG PP EURDG 6LFNOHSRG RIWHQ UHDFKHV KHLJKWV RI PHWHUV RU PRUH XQGHU FRQGLWLRQV RI JRRG PRLVWXUH DQG IHUWLOLW\ &RIIHH VHQQD &DVVLD RFFLGHQWDOLV /f D FORVHO\ UHODWHG VSHFLHV IRXQG FRPPRQO\ WKURXJKRXW WKH VRXWKHDVW LV VHSDUDWHG IURP e REWXVLIROLD / E\ WKH QXPEHU DQG VKDSH RI WKH OHDIOHWV DQG WKH SHWLRODU JODQG ZKLFK LV ODUJHU DQG EXOEVKDSHG DW WKH EDVH RI WKH SHWLROH %RWK VSHFLHV DUH FRPPRQO\ IRXQG LQ 9LUJLQLD 1RUWK DQG 6RXWK &DUROLQD *HRUJLD )ORULGD $ODEDPD 0LVVLVVLSSL DQG 7HQQHVVHH f

PAGE 14

:HHG&URS &RPSHWLWLRQ 'HILQLWLRQ &RPSHWLWLRQ DV D FRPSUHKHQVLYH WHUP LV GHILQHG E\ 6PLWK f DV FRPPRQ XVH RI D UHVRXUFH UHJDUGOHVV RI VXSSO\ UHVXOWLQJ LQ KDUP WR RQH RUJDQLVP E\ DQRWKHU VHHNLQJ WKH UHVRXUFH 6PLWK f FRQVLGHUV FRPSHWLWLRQ WR EH RQH RI WZR W\SHV H[SORLWDWLYH RU FRQWHVW ([SORLn WDWLRQ FRPSHWLWLRQ LV ZKHUH RUJDQLVPV KDYH HTXDO DFFHVV WR D OLPLWHG UHVRXUFH &RQWHVW RU LQWHUIHUHQFH FRPSHWLWLRQ LV ZKHUH D FRPSHWLWRU LV GHQLHG DFFHVV WR D UHVRXUFH +RZHYHU WKHVH WKHRULHV ZHUH GHYHORSHG IURP DQLPDO SRSXODWLRQV &RPSHWLWLRQ EHWZHHQ SODQWV KDV EHHQ GHILQHG E\ PDQ\ DXWKRUV 2QH RI WKH ILUVW UHVHDUFKHUV WR LQYHVWLJDWH WKH VXEMHFW RI SODQW FRPSHWLWLRQ ZDV 3DYO\FKHQNR f ZKR LQ GHILQHG FRPSHWLWLRQ DV D QDWXUDO IRUFH H[HUWHG E\ HDFK OLYLQJ RUJDQLVP WHQGLQJ WR DWWDLQ PD[LPXP DGYDQWDJH DW WKH H[SHQVH RI RWKHU OLYLQJ RUJDQLVPV RFFXS\LQJ WKH VDPH VSDFH 'RQDOG VWDWHV FRPSHWLWLRQ RFFXUV ZKHQ HDFK RI WZR RU PRUH RUJDQLVPV VHHNV WKH PHDVXUH LW ZDQWV RI DQ\ SDUWLFXODU IDFWRU RU WKLQJ DQG ZKHQ WKH LPPHGLDWH VXSSO\ RI WKH IDFWRU RU WKLQJ LV EHORZ WKH FRPELQHG GHPDQG RI WKH RUJDQn LVPV f $OWKRXJK FRPSHWLWLRQ WKHRULHV DUH ZHOO GRFXPHQWHG HYHQ WKH WHUP FRPSHWLWLRQ LV VRPHZKDW FRQWURYHUVLDO +DUSHU f GLVOLNHV WKH ZRUG FRPSHWLWLRQ EHFDXVH RI LWV FRQQRWDWLRQV WR JDPHV DQG VSRUWV DQG LWV XQVFLHQWLILF PHDQLQJ +H SUHIHUV WKH WHUP LQWHUIHUHQFH ZKLFK LQFOXGHV ERWK FRPSHWLWLRQ DQG DOOHORSDWK\ $OOHORSDWK\ GHVFULEHV WKH DGGLWLRQ RI D FKHPLFDO VXEVWDQFH WR WKH HQYLURQPHQW ZKLOH FRPSHWLWLRQ LQYROYHV WKH UHPRYDO RU UHGXFWLRQ RI D QHFHVVDU\ IDFWRU IURP WKH HQYLURQPHQW f

PAGE 15

$OOHORSDWKLF HIIHFWV ZLOO QRW EH DGGUHVVHG LQ WKLV PDQXVFULSW DQG WKH WHUP FRPSHWLWLRQ XVHG 3ODQWV XVXDOO\ FRPSHWH IRU ZDWHU QXWULHQWV OLJKW R[\JHQ FDUERQ GLR[LGH DQG DJHQWV RI SROOLQDWLRQ DQG GLVSHUVDO :DWHU QXWULHQWV DQG OLJKW DUH WKH PRVW FRPPRQO\ GHILFLHQW f 1XWULHQW &RPSHWLWLRQ &RPSHWLWLRQ IRU QXWULHQWV FRQVWLWXWHV DQ LPSRUWDQW IDFWRU LQ FURS SURGXFWLRQ f 9HQJULV HW DO f GHWHUPLQHG WKDW ZHHGV DUH LPSRUWDQW FRPSHWLWRUV ZLWK FURS SODQWV IRU QLWURJHQ DQG SRWDVVLXP +LJK SKRVSKRUXV FRQWHQW RI ZHHGV HYHQ ZKHQ DYDLODEOH VRLO SKRVSKRUXV LV ORZ LQGLFDWHV ZHHGV FRPSHWH HIIHFWLYHO\ IRU WKLV HOHPHQW +RZHYHU WKLV PD\ EH GXH WR D PRUH HIILFLHQW XWLOL]DWLRQ RI VRLO SKRVSKDWHV ,Q FRPSHWLWLRQ EHWZHHQ OHJXPLQRXV FURSV DQG ZHHGV QLWURJHQ PD\ QRW EH DV LPSRUWDQW D IDFWRU DV SKRVSKRUXV RU SRWDVVLXP 2Q D VRLO DFXWHO\ GHn ILFLHQW LQ QLWURJHQ DQG SKRVSKRUXV 'RQDOG f GHWHUPLQHG WKDW JUDVV ZHHG JURZWK ZDV VLJQLILFDQWO\ GHSUHVVHG E\ JUDPLQHRXV FHUHDO FURSV EXW QRW E\ SHDV 3LVXP VSf &RQYHUVO\ WKH JURZWK RI FORYHUV ZDV GSUHVVHG E\ WKH SHDV EXW ZDV XQDIIHFWHG E\ EDUOH\ +RUGHXP YXOJDUH /f RU RDWV $YHQD VDWLYD /f 'RQDOG FRQFOXGHG WKDW WKH PDLQ IDFWRU RI FRPSHWLWLRQ EHWZHHQ WKH JUDPLQHRXV VSHFLHV ZDV QLWURJHQ ZKHUHDV EHWZHHQ WKH OHJn XPLQRXV VSHFLHV ZLWK DQ LQGHSHQGHQW QLWURJHQ VXSSO\FRPSHWLWLRQ ZDV SULPDULO\ IRU SKRVSKRUXV %ODFNPDQ DQG 7HPSLHPDQ f IRXQG WKDW DQQXDO ZHHGV LQ FHUHDO FURSV UHVXOWHG LQ ORZHU QLWURJHQ DQG SRWDVVLXP FRQWHQW RI WKH FHUHDO EXW GLG QRW DOWHU WKH SKRVSKRUXV FRQWHQW +RYHODQG HW DO f VKRZHG WKDW ZHHGV UHVSRQG WR DGGHG SRWDVVLXP DQG SKRVSKRUXV 2I WKH ZHHG VSHFLHV

PAGE 16

WKH\ VWXGLHG UHGURRW SLJZHHG $PDUDQWKXV UHWURIOH[XV /f MLPVRQZHHG 'DWXUD VWUDPRQLXP /f DQG )ORULGD EHJJDUZHHG 'HVPRGLXP WRUWXRVXP /f ZHUH WKH PRVW UHVSRQVLYH ZDUPVHDVRQ ZHHGV WR SRWDVVLXP DQG SKRVSKRUXV OHYHOV 6KRZ\ FURWDODULD &URWDODULD VSHFWDELOLV 5RWKf WDOO PRUQLQJ JORU\ ,SRPRHD SXUSXUHD /f 5RWKf VLFNOHSRG DQG FRIIHH VHQQD ZHUH WKH PRVW WROHUDQW WR ORZ VRLO SKRVSKRUXV *HQHUDOO\ ZHHGV ZHUH PRUH VHQVLWLYH WR ORZ VRLOWHVW SKRVSKRUXV WKDQ WR ORZ OHYHOV RI SRWDVVLXP &KDPEHUV DQG +ROP f IRXQG SKRVSKRUXV FRPSHWLWLRQ E\ ZHHGV WR EH PLQLPDO ,Q WKHLU WHVWV ZHHGV ZHUH IRXQG WR KDYH OHVV HIIHFW RQ SKVRSKRUXV XSWDNH WKDQ EHDQ SODQWV 9OHHGV PD\ DOVR FRPSHWH ZLWK FURSV IRU &D DQG 0J EXW QLWURJHQ LV XVXDOO\ WKH QXWULHQW PRVW VXEMHFW WR FRPSHWLWLYH XSWDNH f 5HVSRQVH RI SODQWV WR GLIIHUHQW OHYHOV RI &D LV GLIILFXOW WR PHDVXUH EHFDXVH RI LWV S+GHSHQGHQW SURSHUWLHV f ,QFUHDVHG IHUWLOLW\ OHYHOV PD\ QRW UHPHG\ QXWULHQW FRPSHWLWLRQ E\ ZHHGV EXW PD\ LQVWHDG HQKDQFH LW WKURXJK LQFUHDVHG ZHHG JURZWK WKXV UHGXFLQJ FURS \LHOG 9HQJULV HW DO f LQ D ODWHU VWXG\ FRQFOXGHG WKDW ZHHGV FRPSHWH IRU HVVHQWLDO QXWULHQWV DQG GHFUHDVH FURS \LHOG HYHQ DW KLJK IHUWLOLW\ OHYHOV 1DNRQHVKQ\ DQG )ULHVHQ f GHWHUPLQHG WKDW ZKHDW 7ULWLFXP DHVWLXXP /f \LHOG LQFUHDVHV GXH WR IHUWLOL]HU DSSOLFDWLRQV ZHUH QRW GLIIHUHQW IURP LQFUHDVHV GXH WR ZHHG UHPRYDO 6WDQLIRUWK f VWDWHG WKDW VR\EHDQ \LHOG UHGXFWLRQV GXH WR ZHHGV ZHUH JUHDWHU LQ WHVWV ZKHUH RU NJKD RI QLWURJHQ ZDV DSSOLHG WKH SUHYLRXV \HDU ,Q VWXG\LQJ FRPSHWLWLRQ ZLWK ZLOG EXFNZKHDW 3RO\JRQXP FRQYROYXOXV /f 1DOHZDMD f UHSRUWHG JUHDWHU \LHOG UHn GXFWLRQV RI ZKHDW DQG IOD[ /LQXP XVLWDWLVVLPXP /f RFFXUUHG LQ IHUWLOL]HG WUHDWPHQWV =LPGDKO f LQ KLV UHYLHZ RQ ZHHGFURS FRPSHWLWLRQ VWDWHG WKDW ZHHG FRQWURO FDQQRW EH DFKLHYHG ZLWK IHUWLOL]HU 0D[LPXP EHQHILWV

PAGE 17

IURP IHUWLOL]HU RFFXU RQO\ WR FURSV ZLWK UHODWLYHO\ IHZ ZHHGV 7KH VROXWLRQ WR QXWULHQW GHILFLHQFLHV LQ ZHHG LQIHVWHG DUHDV LV REYLRXVO\ QRW VROHO\ LQFUHDVHG IHUWLOL]HU EXW GHSHQGV RQ UHPRYDO RU UHGXFWLRQ RI WKH ZHHGV ,W LV GLIILFXOW WR VHSDUDWH QXWULHQW FRPSHWLWLRQ IURP RWKHU FRQn IRXQGLQJ IDFWRUV VXFK DV OLJKW PRLVWXUH DQG S+ VLQFH WKH\ DUH DOO LQWHUUHODWHG DQG D FKDQJH LQ RQH PD\ UHVXOW LQ D FRUUHVSRGQLQJ FKDQJH LQ WKH RWKHU 1XPHURXV LQYHVWLJDWRUV KDYH DWWHPSWHG WR VHSDUDWH OLJKW IURP QXWULHQW FRPSHWLWLRQ LQ WKH ILHOG E\ XVLQJ ZHHGV ZKLFK DUH ORZ JURZLQJ DQG KDYH VPDOOHU OHDI DUHDV f 'RQDOG LQ VWXG\LQJ QXWULHQW FRPSHWLWLRQ FRQFOXGHG WKDW VHFRQGDU\ HIIHFWV PXVW EH FRQVLGn HUHG +H VWDWHV VXFFHVV LQ JDLQLQJ D ODUJHU VKDUH RI DYDLODEOH QXn WULHQWV PD\ VWLPXODWH JURZWK LQFUHDVHV UHVXOWLQJ LQ GRPLQDQFH DV PXFK IURP FRPSHWLWLRQ IRU OLJKW DV IRU QXWULHQWV f +RZHYHU WKH DELOLW\ WR FRPSHWH IRU QXWULHQWV LV DQ LPSRUWDQW DVSHFW RI WKH VXFFHVV RI ZHHGV f 0RRODQL HW DO f FRQFOXGHG WKDW VPRRWK SLJZHHG $PDUDQWKXV K\EULGXV /f FRPSHWLWLRQ ZDV JUHDWHVW ZKHQ HDUO\ VHDVRQ UDLQIDOO ZDV KLJK .QDNH DQG 6OLIH f IRXQG WKDW JLDQW IR[WDLO 6HWDULD IDEHUL +HUUPf UHGXFHG FRUQ =HD PD\V /f DQG VR\EHDQ \LHOGV PRUH LQ \HDUV RI KLJK UDLQIDOO WKDQ LQ \HDUV RI ORZ LQLWLDO UDLQIDOO IROORZHG E\ DGHn TXDWH PLGVHDVRQ PRLVWXUH ,Q VWXG\LQJ 9HQLFH PDOORZ +LELVFXV WULRQXP /f FRPSHWLWLRQ LQ VR\EHDQV (DWRQ HW DO f GLVFRYHUHG WKDW FRPSHWn LWLRQ ZDV JUHDWHVW ZKHQ PRLVWXUH FRQGLWLRQV ZHUH JRRG LQLWLDOO\ DQG SRRU DIWHU PLGVHDVRQ WKDQ ZKHQ PRLVWXUH ZDV OLPLWHG HDUO\ EXW DGHTXDWH IURP PLGVHDVRQ RQ 6LFNOHSRG FRPSHWLWLRQ LQ VR\EHDQV ZDV IRXQG E\ 7KXUORZ DQG %XFKDQDQ f WR EH OHVV VHYHUH LQ \HDUV RI KLJK PRLVWXUH

PAGE 18

6L]H GLVWULEXWLRQ DQG GHYHORSPHQWDO UDWH RI D SODQWnV URRW V\VWHP LQIOXHQFH WKH FRPSHWLWLYHQHVV RI D SODQW IRU ZDWHU 6FRWW DQG 2OLYHU f IRXQG WKDW FRPSDUHG ZLWK WKH VR\EHDQ URRW V\VWHP WDOO PRUQLQJJORU\ URRWV ZHUH IRXQG GHHSHU DQG KDG JUHDWHU URRW GHQVLWLHV /LWWOH H[SDQVLRQ RI WKH VR\EHDQ URRW V\VWHP ZDV IRXQG DIWHU LQLWLDWLRQ RI UHSURGXFWLYH JURZWK KRZHYHU GXULQJ WKLV SKDVH WKH WDOO PRUQLQJ JORU\ URRW V\VWHP ZDV VWLOO LQFUHDVLQJ 7KH TXDQWLW\ DQG GLVWULEXWLRQ RI VHDVRQDO UDLQIDOO FDQ DOWHU WKH FRPSHWLWLYH DELOLW\ RI YDULRXV ZHHGV DV ZHOO DV FURSV :LHVH DQG 9DQGLYHU f VKRZHG WKDW VRLO FRQGLWLRQV FDQ DIIHFW WKH FRPSHWLWLYH DELOLW\ RI ZHHGV %DUQ\DUGJUDVV (FKLQRFKLRD FUXVJDOO L /f %HDXYf DQG ODUJH FUDEJUDVV 'LJLWDULD VDQJXLQDLV /f 6FRSf ZHUH IRXQG WR EH VHULRXV FRPSHWLWRUV ZKHQ DGHTXDWH VRLO PRLVWXUH ZDV DYDLODEOH +RZHYHU LQ VHPLDULG RU DULG DUHDV WKHVH ZHHGV DUH QRW SUREOHPV .RFKLD .RFKLD VFRSDULD /f 6FKUDGf 5XVVLDQ WKLVWOH 6DOVROD NDOL /f EXIIDOREXU 6RODQXP URVWUDWXP 'XQDOf DQG WXPEOHJUDVV 6FKHGRQQ DUGXV SDQLFXODWXV 1XWWf 7UHOf ZHUH PRUH FRPSHWLWLYH XQGHU GU\ FRQn GLWLRQV ZKLOH 3DOPHU DPDUDQWK $PDUDQWKXV SDOPHQn 6 :DWVf JUHZ HTXDOO\ ZHOO XQGHU KLJK DQG PRGHUDWH VRLO PRLVWXUH 2I WKH VSHFLHV VWXGLHG FRFNOHEXU ;DQWKLXP SHQV\OYDQLFXP :DOOUf ZDV WKH RQO\ ZHHG WKDW GLG QRW VXUYLYH H[WUHPH GURXJKW :DWHU &RPSHWLWLRQ :DWHU LV RIWHQ FRQVLGHUHG WR EH WKH SULPDU\ OLPLWLQJ IDFWRU LQ VR\EHDQ SURGXFWLRQ WKURXJKRXW WKH ZRUOG f 7KH HIIHFWV RI ZDWHU VWUHVV RQ JURZWK DQG \LHOG RI VR\EHDQV DUHGHSHQGHQW RQ WKH GHJUHH RI VWUHVV DQG WKH VWDJH RI JURZWK ZKHQ WKH VWUHVV RFFXUV %XUQVLGH DQG

PAGE 19

&ROYLOOH f IRXQG WKDW VR\EHDQV LUULJDWHG GXULQJ WKH ODWH EORRP VWDJH RXW\LHOGHG QRQLUULJDWHG VR\EHDQV E\ NJKD 6LRQLW DQG .UDPHU f IRXQG WKDW RI DOO JURZWK VWDJHV ZDWHU VWUHVV GXULQJ HDUO\ SRG IRUPDWLRQ UHVXOWHG LQ WKH JUHDWHVW GHFUHDVH LQ QXPEHU RI SRGV DQG VHHG DW KDUYHVW +RZHYHU VWUHVV DSSOLHG GXULQJ SRG IRUPDWLRQ RU GXULQJ SRG ILOO UHn VXOWHG LQ JUHDWHU \LHOG UHGXFWLRQV WKDQ VWUHVV DSSOLHG GXULQJ IORZHU LQGXFWLRQ RU IORZHULQJ 7KLV SKHQRPHQRQ KDV EHHQ FRQILUPHG E\ QXPHURXV LQYHVWLJDWRUV f 3HWHUV DQG -RKQVRQ f IRXQG WKDW IURP -XO\ WR 6HSWHPEHU FP RI ZDWHU ZDV UHTXLUHG WR SURGXFH NJKD RI VR\EHDQV 3HQGOHWRQ DQG +DUWZLJ f VWDWH WKDW DW WKLV UDWH LW ZRXOG WDNH FP RI ZDWHU GXULQJ WKH ODWH JURZLQJ VHDVRQ WR SURGXFH D KLJK\LHOGLQJ VR\EHDQ FURS RI NJKD ,W LV HYLGHQW IURP WKH DERYH LQYHVWLJDWLRQV WKDW VR\EHDQV UHTXLUH VXIILFLHQW PRLVWXUH HVSHFLDOO\ GXULQJ WKH ODWH JURZLQJ VHDVRQ LQ RUGHU WR SURGXFH KLJK \LHOGV :LWK WKH GHSHQGHQFH XSRQ QDWXUDO UDLQn IDOO LQ QRQLUULJDWHG VR\EHDQV DGHTXDWH PRLVWXUH LV QRW DOZD\V SUHVn HQW :KHQ ZHHGV H[LVW WKH DPRXQW RI VRLO PRLVWXUH DYDLODEOH WR WKH VR\EHDQV LV IXUWKHU GHSOHWHG 6WDQLIRUWK f IRXQG WKDW VR\EHDQ \LHOGV ZHUH RQO\ VOLJKWO\ UHGXFHG E\ \HOORZ IR[WDLO 6HWDULD OXWHVFHQV :HLJHOf +XEEf FRPSHWLWLRQ ZKHQ ZDWHU ZDV OLPLWHG LQ HDUO\ VHDVRQ EXW ZDV VXIILFLHQW ODWHU LQ WKH VHDVRQ +RZHYHU ZKHQ PRLVWXUH ZDV SOHQWLIXO HDUO\ EXW OLPLWHG LQ ODWH VHDVRQ WKHUH ZDV D b UHGXFWLRQ LQ VR\EHDQ \LHOG /LJKW &RPSHWLWLRQ &RPSHWLWLRQ IRU OLJKW LV XQLTXH DPRQJ WKH IDFWRUV IRU ZKLFK SODQWV FRPSHWH :LWK ZDWHU RU QXWULHQWV WKHUH LV D IOXFWXDWLQJ UHVHUYRLU IURP

PAGE 20

ZKLFK WR GUDZ KRZHYHU OLJKW LV DYDLODEOH IURP D FRQVWDQW VRXUFH /LJKW HQHUJ\ PXVW EH LQWHUFHSWHG DQG XWLOL]HG LQVWDQWDQHRXVO\ RU EH ORVW 'RQDOG f SRLQWV RXW WKDW WKLV LV SDUWLFXODULO\ HYLGHQW LQ WKH \RXQJ FURS ZKHUH PRVW RI WKH HQHUJ\ SDVVHV WR WKH VRLO VXUIDFH GXH WR ODFN RI OHDI DUHD &RPSHWLWLRQ IRU OLJKW DOVR GLIIHUV IURP RWKHU IDFWRUV LQ WKDW WKH FRPSHWLWLRQ LV QRW QHFHVVDULO\ EHWZHHQ VSHn FLHV RU SODQWV EXW UDWKHU DPRQJ OHDYHV 7KLV LQWUDSODQW FRPSHWLWLRQ DOVR RFFXUV IRU ZDWHU DQG QXWULHQWV EXW LW LV QRW DV LQWHQVH VLQFH ZDWHU DQG QXWULHQWV DUH WUDQVORFDWHG WKURXJKRXW WKH SODQW 7KH FRPn SHWLWLRQ DORQJ OHDYHV IRU UDGLDQW HQHUJ\ LV DPRQJ LQGLYLGXDO XQLWV ZLWKLQ WKH SODQW FDQRS\ f 7KH UROH ZKLFK OLJKW SOD\V LQ SKRWRV\QWKHWLF UHDFWLRQV KDV EHHQ ZHOO GRFXPHQWHG f 7KH SKRWRV\QWKHWLF UDWH RI D ZKROH FDQRS\ XVXDOO\ VKRZV D JUHDWHU UHVSRQVH WR OLJKW LQWHQVLW\ WKDQ WKDW RI D VLQJOH OHDI ZKLFK PD\ UHDFK OLJKW VDWXUDWLRQ DW OHVV WKDQ IXOO VXQn OLJKW 7KLV LV GXH WR FDQRS\ DUFKLWHFWXUH ZKLFK LQFOXGHV OHDI DQJOH OHDI GLVWULEXWLRQ DQG OHDI DUHD LQGH[ ZKLFK DOORZV PRUH OHDYHV WR LQWHUFHSW OLJKW DW DQ DYHUDJH ORZHU OLJKW LQWHQVLW\ ZKHUH WKH\ DUH PRUH HIILFLHQW $OWKRXJK VLQJOH OHDYHV PD\ UHDFK WKHLU PD[LPXP SKRWRV\QWKHWLF UDWH DW QHDU IXOO VXQ LQWHQVLWLHV WKH\ DUH QRW YHU\ HIILFLHQW DW XWLOL]LQJ OLJKW DW WKDW LQWHQVLW\ f %RZHV HW DO f VWDWHV WKDW WKH OLJKW VDWXUDWLRQ LQWHQVLW\ RI ILHOG JURZQ VR\EHDQV LV DSSUR[LPDWHO\ HTXDO WR WKH PD[LPXP OLJKW LQWHQVLW\ XQGHU ZKLFK WKH\ DUH JURZQ WKXV LQGLFDWLQJ WKDW VR\EHDQV DFFOLPDWH WR WKH OLJKW DYDLOn DEOH 7KHUHIRUH VR\EHDQV DSSHDU WR GHYHORS VXIILFLHQW EXW QRW H[n FHVVLYH SKRWRV\QWKHWLF FDSDFLW\ WR XWLOL]H WKH PD[LPXP DYDLODEOH OLJKW ,Q YLHZ RI WKHVH IDFWV WKH TXHVWLRQ DULVHV DV WR KRZ PXFK GHSOHWLRQ RI

PAGE 21

VR\EHDQ \LHOG SRWHQWLDO LV GXH WR WKH LQWHUFHSWLRQ RI VRODU UDGLDWLRQ FDXVHG E\ D ORZ RU LQWHUPHGLDWH SRSXODWLRQ RI ZHHGV DULVLQJ DERYH WKH VR\EHDQ FDQRS\ /LJKW LQWHUFHSWLRQ DQG VXEVHTXHQW SKRWRV\QWKHVLV GHSHQG ODUJHO\ RQ IROLDJH GHQVLW\ DQG SHUFHQW JURXQG FRYHU /HDI DUHD LQGHV /$,f WKH XQLWV RI OHDI DUHD SHU XQLW RI ODQG DUHD LV WKH EHVW FULWHULRQ IRU DQDO\]LQJ WKLV %URXJKDP f GHILQHG WKH FULWLFDO /$, DV WKDW OHDI DUHD UHTXLUHG WR UHVXOW LQ b LQWHUFHSWLRQ DW ORFDO QRRQ 7KLV YDOXH IRU VR\EHDQV LV DSSUR[LPDWHO\ f 7KH UHODWLYH OLJKW LQn WHQVLW\ WKURXJK WKH SODQW SURILOH LV UHSRUWHG WR IROORZ WKH UHODWLRQ .$ VKLS ,4 H ZKHUH UDGLDQW HQHUJ\ UHFHLYHG DW WKH ERWWRP RI DQ LQFUHPHQW /$, $ LQFLGHQW HQHUJ\ DW WKH FDQRS\ WRS H[WLQFWLRQ FRHIILFLHQW 6DNDPRWR DQG 6KDZ f GHPRQVWUDWHG E\ XVLQJ WKH DERYH HTXDWLRQ WKDW OLJKW LQWHUFHSWLRQ RFFXUUHG SULPDULO\ DW WKH SHULSKHU\ RI WKH VR\EHDQ FDQRS\ :KHQ WKH RSHQ VSDFH EHWZHHQ URZV FORVHG LQWHUFHSWLRQ ZDV SULPDULO\ DW WKH WRS RI WKH FDQRS\ 6HYHUDO LQYHVWLJDWRUV XVLQJ %HHUnV /DZ f KDYH VKRZQ WKDW OLJKW LQWHUn FHSWLRQ E\ D FDQRS\ RI OHDYHV LV H[SRQHQWLDO /LJKW LQWHQVLW\ WKHUHn IRUH GHFUHDVHV VKDUSO\ DV LW SHQHWUDWHV LQWR WKH FDQRS\ 6LQFODLUnV f HTXDWLRQ RI OLJKW DWWHQWXDWLRQ GHULYHG IURP %HHUnV /DZ VWDWHV WKDW WKH IUDFWLRQ RI SKRWRQ IOX[ GHQVLW\ 3]f UHDFKLQJ DQ\ GHSWK LQ WKH FDQRS\ LV DQ H[SRQHQWLDO IXQFWLRQ RI FXPXODWLYH OHDI DUHD IURP WKH WRS /]f H[WLQFWLRQ FRHIILFLHQW .f DQG WKH VRODU HOHYDWLRQ VLQ f ,, 3] H f 7KH PDMRULW\ RI WKH OLJKW LV WKHUHIRUH IRXQG WR EH LQWHUFHSWHG E\ WKH XSSHU XQLW RI /$, f 7KH HIIHFW WKDW ZHHGV H[WHQGLQJ DERYH WKH VR\EHDQ FDQRS\ KDYH RQ WKLV UHODWLRQVKLS KDV QRW EHHQ DGHTXDWHO\ LQYHVWLJDWHG

PAGE 22

3HUKDSV WKH VLQJOH PRVW LPSRUWDQW IDFWRU LQ ZHHGFURS FRPSHWLWLRQ IRU OLJKW LV SODQW KHLJKW %ODFNPDQ DQG 7HPSOHPDQ f VWDWHG WKDW OLJKW FRPSHWLWLRQ H[LVWHG RQO\ ZKHQ WKH ZHHG VSHFLHV LV WDOO JURZLQJ DQG WKH GHQVLW\ LV KLJK 6KDGEROW DQG +ROP f UHSRUWHG WKDW KLJK SRSXODWLRQV RI UHGURRW SLJZHHG DQG ODG\VWKXPE 3RO\JRQXP SHUVLFDULD /f SRSXODWLRQV UHGXFHG OLJKW SHQHWUDWLRQ b :HEHU DQG 6WDQLIRUWK f IRXQG WKDW VR\EHDQ \LHOGV ZHUH UHGXFHG PRUH E\ RYHUVKDGRZLQJ ZHHGV WKDQ E\ ZHHGV RI DSSUR[LPDWHO\ WKH VDPH KHLJKW DV WKH FURS 0RRODQL HW DO f IRXQG WKDW VPRRWK SLJZHHG KDG D JUHDWHU HIIHFW RQ VR\EHDQV WKDQ RQ FRUQ GXH WR WKH KHLJKW GLIIHUHQWLDO EHWZHHQ VR\EHDQ DQG SLJZHHG .QDNH DQG 6OLIH f UHSRUWHG WKDW JLDQW IR[WDLO KDG WKH JUHDWHVW HIIHFW RQ VR\EHDQV DIWHU UHSURGXFWLYH JURZWK KDG EHJXQ RU DIWHU WKH ZHHGV EHJDQ VKDGLQJ WKH VR\EHDQV ,W LV HYLGHQW WKDW OLJKW FRPSHWLWLRQ LV LQWHUUHODWHG ZLWK ZDWHU DQG QXWULHQWV DQG WKDW LQGLYLGXDO HIIHFWV DUH GLIILFXOW WR VHSDUDWH $ VKDGHG SODQW IRU H[DPSOH VXIIHUV UHGXFHG SKRWRV\QWKHVLV OHDGLQJ WR SRRUHU JURZWK DQG D VPDOOHU URRW V\VWHP DQG XOWLPDWHO\ UHGXFHG FDSDFLW\ IRU ZDWHU RU QXWULHQW XSWDNH f +RZHYHU LI ZDWHU DQG QXWULHQWV DUH LQ DGHTXDWH VXSSO\ WKHQ OLJKW ZLOO EHFRPH WKH PDMRU OLPLWLQJ IDFWRU FRQWUROOLQJ UDWH RI JURZWK DQG WKH SURGXFWLRQ RI GU\ PDWWHU f :HHG 'HQVLW\ &URS \LHOG UHGXFWLRQV GXH WR ZHHGV KDYH EHHQ GHPRQVWUDWHG E\ QXPHURXV LQYHVWLJDWRUV f ZLWK PXFK RI WKLV ZRUN LQYROYLQJ VR\EHDQV :LOVRQ DQG &ROH f UHSRUWHG WKDW VR\n EHDQ \LHOGV ZHUH UHGXFHG DQG b E\ WDOO DQG LY\OHDI PRUQLQJJORU\

PAGE 23

,SRPRHD KHGHUDFHD /f -DFTf DW GHQVLWLHV RI RQH SODQW SHU DQG FP RU URZ UHVSHFWLYHO\ 5HPRYDO RI PRUQLQJJORULHV DW VL[ WR HLJKW ZHHNV DIWHU SODQWLQJ SHUPLWWHG PD[LPXP VR\EHDQ \LHOGV 2OLYHU HW DO f IRXQG WKDW DW RQH ZHHG SHU RU FP RI URZ WDOO PRUQLQJ JORU\ FRXOG UHPDLQ IRU WHQ HLJKW DQG VL[ ZHHNV UHVSHFWLYHO\ ZLWKRXW VR\EHDQ \LHOG UHGXFWLRQ %DUUHQWLQH f LQGLFDWHG WKDW WDOO PRUQLQJ JORU\ DQG FRFNOHEXU ZHUH VLPLODU LQ FRPSHWLWLYH DELOLW\ ZLWK VR\EHDQV %XFKDQDQ DQG %XUQV f IRXQG WKDW RQH WDOO PRUQLQJJORU\ SODQW SHU FP RI URZ UHGXFHG FRWWRQ \LHOGV WR b RQ 1RUIRON VDQG\ ORDP VRLO DQG WR b RQ /XFHGDOH VDQG\ FOD\ VRLO 7DOO PRUQLQJJORU\ ZDV IRXQG WR EH PRUH FRPSHWLWLYH WKDQ VLFNOHSRG LQ WKLV VWXG\ ,Q %ORRPEHUJ DQG :D[ f VWDWHG WKDW FRPPRQ FRFNOHEXU UDQNHG DV WKH PRVW LPSRUWDQW DQG GHWULPHQWDO ZHHG LQ VR\EHDQV ,Q D WKUHH \HDU VWXG\ LQYROYLQJ FRPPRQ FRFNOHEXU LQ VR\EHDQV %DUUHQWLQH f IRXQG WKDW IXOO VHDVRQ FRPSHWLWLRQ E\ FRFNOHEXU DW DQG SODQWVKD UHGXFHG VR\EHDQ \LHOGV E\ DQG b UHVSHFWLYHO\ :KHQ FRQWUROOHG IRU WKH ILUVW IRXU ZHHNV IXUWKHU FRFNOHEXU UHPRYDO ZDV QRW QHFHVVDU\ LQ RUGHU WR REWDLQ PD[n LPXP \LHOGV ,Q VWXG\LQJ WKH HFRQRPLFV RI FRPPRQ FRFNOHEXU FRQWURO $QGHUVRQ DQG 0F:KRUWHU Of UHSRUWHG WKDW VR\EHDQ \LHOGV ZHUH LQFUHDVHG DERXW b IRU HDFK b LQFUHDVH LQ FRFNOHEXU FRQWURO 1HW UHWXUQV WR ODQG PDQDJHPHQW DQG JHQHUDO IDUP RYHUKHDG ZHUH KD ZLWK b FRQn WURO DQG KD ZLWK b FRQWURO RI FRFNOHEXU $ b ZHHG FRQWURO OHYHO ZDV UHTXLUHG WR HVFDSH ORVVHV FDXVHG E\ H[FHVVLYH VHHG PRLVWXUH +DXVHU HW DO f VWDWHG WKDW FRPPRQ FRFNOHEXU DV ZHOO DV \HOORZ QXW VHGJH &\SHUXV HVFXOHQWXV /f UHGXFHG \LHOGV b LQ H[SHULPHQWV FRQn GXFWHG LQ *HRUJLD 7KH DERYH GDWD FOHDUO\ JLYH HYLGHQFH WR VXSSRUW

PAGE 24

%ORRPEHUJnV DQG :D[nV LQLWLDO VWDWHPHQW &RWWRQ LV DOVR DGYHUVHO\ DIIHFWHG E\ FRFNOHEXU FRPSHWLWLRQ %XFKDQDQ DQG %XUQV f IRXQG WKDW ZHHGV P RI URZ UHGXFHG \LHOGV PRUH WKDQ b DQG UHGXFHG \LHOG PRUH WKDQ b 6LFNOHSRG FRPSHWLWLYHQHVV LQ VR\EHDQV LV ZHOO GRFXPHQWHG DOWKRXJK LW LV UHSRUWHGO\ OHVV FRPSHWLWLYH WKDQ FRFNOHEXU LQ VRPH UHJLRQV RI WKH FRXQWU\ 7KXUORZ DQG %XFKDQDQ f IRXQG WKDW VR\EHDQ \LHOGV ZHUH UHGXFHG OLQHDUO\ EHWZHHQ DQG ZHHGVP ,Q WZR VHSDUDWH ORFDWLRQV \LHOG ZDV UHGXFHG WR b DQG WR b UHVSHFWLYHO\ E\ GHQVLWLHV RI VLFNOHSRGP :HHGV DOORZHG WR FRPSHWH IRU WKH ILUVW IRXU ZHHNV RI FURS JURZWK IDLOHG WR UHGXFH \LHOGV &RPSHWLWLRQ IRU VL[ ZHHNV UHGXFHG \LHOGV LQ WZR RI ILYH H[SHULPHQWV $OWKRXJK HDUO\ VHDVRQ VLFNOHSRG FRPSHWLWLRQ PD\ QRW DGYHUVHO\ DIIHFW VR\EHDQ \LHOG DW WKH SUHVHQW WKHUH LV FXUUHQWO\ QR UHOLDEOH PHDQV RI VLFNOHSRG FRQWURO DIWHU WKH HDUO\ VHHGOLQJ VWDJH XQWLO D ZHHGFURS KHLJKW GLIIHUHQWLDO KDV EHHQ HVWDEOLVKHG f 7HHP f UHSRUWHG WKDW VLFNOHSRG DW DQG ZHHGVP RI URZ UHGXFHG VR\EHDQ \LHOGV DQG b UHVSHFWLYHO\ $ UHJUHVVLRQ FRHIILFLHQW RI ZDV REWDLQHG LQ WKHVH VWXGLHV LQGLFDWLQJ D UHGXFWLRQ LQ VR\EHDQ \LHOG RI IRU HDFK NJKD LQFUHDVH LQ GU\ ZHLJKW RI VLFNOHSRG ,Q VWXGLHV HYDOXDWLQJ VR\EHDQ \LHOG DV DIIHFWHG E\ VLFNOHSRG GU\ ZHLJKW RU GHQVLW\ 7HHP LQGLFDWHG WKH FRHIILFLHQW RI GHWHUPLQDWLRQ ZDV IRU WKH IRUPHU DQG IRU WKH ODWWHU WKXV LQGLFDWLQJ WKH ZHHG ZHLJKW LV D PRUH SUHFLVH PHDVXUH RI VLFNOHSRG FRPSHWLWLYHQHVV WKDQ ZHHG GHQVLW\ %XFKDQDQ DQG %XUQV f UHSRUWHG WKDW FRWWRQ \LHOGV ZHUH UHGXFHG WR b DW SODQWV P RI URZ GHSHQGLQJ RQ VRLO W\SH $ GHQVLW\ RI SODQWV P RI URZ UHVXOWHG LQ D WR b \LHOG UHGXFWLRQ

PAGE 25

7KXUORZ DQG %XFKDQDQ f VWDWHG WKDW LQ JHQHUDO VLFNOHSRG LV PRUH HIIHFWLYH LQ UHGXFLQJ FRWWRQ \LHOG WKDQ VR\EHDQ \LHOG SUREDEO\ GXH WR VR\EHDQnV VKRUWHU OLIH F\FOH 1XPHURXV RWKHU ZHHGV KDYH EHHQ IRXQG WR EH GHOHWHULRXV WR VR\EHDQ \LHOGV 0RRODQL HW DO f UHSRUWHG WKDW VR\EHDQ \LHOG UHGXFWLRQV IURP WKH KLJKHVW SRSXODWLRQ RI VPRRWK SLJZHHG DYHUDJHG b GXULQJ D WKUHH \HDU VWXG\ &REOH DQG 5LWWHU f IRXQG WKDW VR\EHDQ \LHOG ZDV UHGXFHG b E\ D GHQVLW\ RI 3HQQV\OYDQLD VPDUWZHHG 3RO\JRQXP SHQV\OYDQLFXP /f SODQWV P RI URZ )XUWKHU \LHOGV UHGXFWLRQV RI DQG b UHVXOWHG IURP IXOOVHDVRQ FRPSHWLWLRQ E\ GHQVLWLHV RI DQG ZHHGV P RI URZ UHVSHFWLYHO\ %HUJOXQG DQG 1DOHZDMD f IRXQG WKDW VR\EHDQ \LHOGV ZHUH UHGXFHG b E\ RQH ZLOG PXVWDUG %UDVVLFD NDEHU '&f / & :KHHOHUf SODQW P RI URZ 9HOYHWOHDI $EXWLOQ WKHRSKUDVWL 0HGLFf 9HQLFH PDOORZ DQG SULFNO\ VLGD 6LGD VSLQRVD /f ZHUH IRXQG WR GHFUHDVH VR\EHDQ \LHOGV DQG NJKD UHVSHFWLYHO\ 0RQRFRWV DUH DOVR UHSRUWHG WR EH FRPSHWLWLYH ZLWK VR\EHDQV 1DYH DQG :D[ f UHSRUWHG JLDQW IR[WDLO DW SODQW P RI URZ UHGXFHG VR\EHDQ \LHOGV E\ b .QDNH DQG 6OLIH f UHSRUWHG WKDW JLDQW IR[WDLO P RI URZ FDXVHG D b VR\EHDQ \LHOG UHGXFWLRQ &RPSHWLWLRQ VWXGLHV DLG JURZHUV LQ GHWHUPLQLQJ WKH IHDVLELOLW\ RI FRQWUROOLQJ SDUWLFXODU ZHHGV DW YDULRXV GHQVLWLHV 7KXV WKH WHUP HFRQRPLF WKUHVKROG KDV EHHQ FRLQHG 7KLV FRQFHSW PD\ KDYH VRPH SUDFn WLFDOLW\ RQ D VKRUW WHUP EDVLV KRZHYHU IRU D ORQJ WHUP ZHHG FRQWURO SURJUDP WKH HFRQRPLF WKUHVKROG SULQFLSOH PD\ QRW DSSO\ :KHQ HYHQ D ORZ SRSXODWLRQ RI ZHHGV LV DOORZHG WR PDWXUH DQG SURGXFH VHHG HDFK \HDU WKH VHHG UHVHUYH LQ WKH VRLO FDQ EHFRPH HQRUPRXV $ KHUELFLGH

PAGE 26

SURJUDP JLYLQJ b FRQWURO PD\ QRW EH DGHTXDWH LI WKH ZHHG SRSXODWLRQ LV H[WUHPHO\ KLJK 2QH SLJZHHG SODQW KDV EHHQ UHSRUWHG WR SURGXFH RYHU VHHG f $W WKLV UDWH RQO\ D IHZ SODQWV DUH QHHGHG WR UHVXOW LQ D KLJK ZHHG SRSXODWLRQ IRU PDQ\ \HDUV ,I ZHHGV DUH QRW SHUPLWWHG WR SURGXFH VHHG WKHQ D ORQJ WHUP ZHHG FRQWURO SURJUDP PD\ HYHQWXDOO\ EH OHVV FRVWO\ 5RZ 6SDFLQJ 6R\EHDQV KDYH WUDGLWLRQDOO\ EHHQ SODQWHG LQ WR FP URZ ZLGWKV 7KHVH ZLGWKV DUH DOVR XVHG IRU FRWWRQ FRUQ DQG JUDLQ VRUJKXP :LGH URZV ZHUH QHFHVVDU\ WR DFFRPPRGDWH FRQYHQWLRQDO FXOWLYDWLRQ HTXLSPHQW KRZHYHU ZLWK WKH GHYHORSPHQW RI VHOHFWLYH KHUELFLGHV QDUURZURZ VR\n EHDQV DUH EHFRPLQJ D YLDEOH DOWHUQDWLYH f 6HYHUDO VWXGLHV ZLWK LQGHWHUPLQDWH VR\EHDQ YDULHWLHV KDYH VKRZQ LQFUHDVHG \LHOGV ZLWK URZV QDUURZHU WKDQ FP f :D[ DQG 3HQGOHWRQ f QRWHG DQ LQFUHDVH LQ VR\EHDQ \LHOGV RI DQG b IRU DQG FP URZV UHVSHFWLYHO\ ZKHQ FRPSDUHG WR FP URZV /HKPDQ DQG /DPEHUW f IRXQG WKDW VHHG \LHOGV REn WDLQHG IURP WKH FP VSDFLQJ ZHUH DSSUR[LPDWHO\ b JUHDWHU WKDQ \LHOGV IURP WKH FP VSDFLQJ /RYHO\ HW DO f DFKLHYHG KLJKHVW \LHOGV IURP FP URZV +DPPHUWRQ f IRXQG LQ FRPSHWLWLRQ VWXGLHV ZLWK PL[HG ZHHG VWDQGV WKDW VR\EHDQV LQ FP URZV JDYH KLJKHU \LHOGV WKDQ FP URZV :HHG FRQWURO LV WKH PRVW LPSRUWDQW FRQVLGHUDWLRQ LQ WKH SURGXFWLRQ RI VR\EHDQV LQ URZV WRR QDUURZ WR DOORZ FXOWLYDWLRQ f 6WXGLHV RQ WKH LQWHUDFWLRQ RI ZHHG FRQWURO PHWKRGV DQG URZ VSDFLQJ KDYH VKRZQ WKDW VR\EHDQV LQ QDUURZ URZV SURYLGHG PRUH VKDGH EHWZHHQ WKH URZV WKHUHIRUH

PAGE 27

IHZHU FXOWLYDWLRQV ZHUH QHHGHG DIWHU LQLWLDO ZHHG FRQWURO KDG EHHQ REWDLQHG LQ WKH URZ ZLWK KHUELFLGHV f :D[ DQG 3HQGOHWRQ f GHPRQVWUDWHG DQ LQFUHDVHG ZHHG JURZWK LQ WKH ZLGHU VR\EHDQ URZ VSDF LQJV 7KH\ VWDWHG WKDW ZHHG FRQWURO E\ HLWKHU WULIOXUDOLQ DDD WULIOXURGLQLWUR11GLSURS\OSWROXLGLQHf RU FXO WLYDWLRQ ZDV PRUH HIIHFWLYH LQ FP URZV WKDQ LQ FP URZV %XUQVLGH DQG &ROYLOOH f VKRZHG WKDW VR\EHDQV SODQWHG LQ DQG FP URZV REWDLQHG FDQRS\ FORVXUH LQ DQG GD\V UHVSHFWLYHO\ 7KH\ DOVR QRWHG D \LHOG LQFUHDVH RI b IURP WKH WR FP URZV /RZHU UDWHV RI FKORUDPEHQ DPLQRGLFKORUREHQ]RLF DFLGf FRXOG EH XVHG DQG VWLOO REWDLQ DGHTXDWH ZHHG FRQWURO .XVW DQG 6PLWK f IRXQG WKDW VR\EHDQV SODQWHG LQ QDUURZ URZV ZHUH PXFK PRUH HIIHFWLYH WKDQ WKRVH SODQWHG LQ ZLGH URZV LQ VXSSUHVVLQJ WKH JURZWK RI \HOORZ IR[WDLO DQG EDUQ\DUGJUDVV ,Q DGGLWLRQ WKH\ IRXQG WKDW ORZHU UDWHV RI OLQXURQ GLFKORURSKHQ\OfOPHWKR[\PHWK\OXUHDf ZHUH UHn TXLUHG IRU FRPSDUDEOH ZHHG FRQWURO DV URZ VSDFLQJ GHFUHDVHG &RRSHU f QRWHG WKDW LI ZHHGV DUH FRQWUROOHG ZLWK KHUELFLGHV IRU IRXU WR VL[ ZHHNV DIWHU SODQWLQJ QDUURZ URZ VR\EHDQV PD\ SURYLGH PRUH VKDGLQJ WKDQ ZRXOG ZLGH URZ VR\EHDQV DQG ORZHU UDWHV RI KHUELFLGH PD\ EH UHn TXLUHG LQ QDUURZ URZV EHFDXVH RI WKH JUHDWHU VKDGLQJ E\ VR\EHDQV :HHG FRQWURO PD\ EH LQFUHDVHG LQ QDUURZ URZ VR\EHDQV ZLWK HIIHFn WLYH KHUELFLGHV EXW D VHULRXV SUREOHP PD\ DULVH LI WKH KHUELFLGHV DUH XQVXFFHVVIXO $W WKLV SRLQW FXOWLYDWLRQ RU D SRVWHPHUJHQFH GLUHFWHG VSUD\ FRXOG VDOYDJH D ZLGH URZ VR\EHDQ FURS KRZHYHU WKLV LV QRW DQ RSWLRQ ZLWK QDUURZ URZ VR\EHDQV 2QH DOWHUQDWLYH HDUO\ LQ WKH JURZLQJ VHDVRQ ZRXOG EH WKH URWDU\ KRH /RYHO\ HW DO f QRWHG WR b ZHHG FRQWURO E\ URWDU\ KRHLQJ ZKHQ ZHHGV KDG JHUPLQDWHG EXW QRW HPHUJHG

PAGE 28

3HWHUV DQG -RKQVRQ f IRXQG WKH URWDU\ KRH HIIHFWLYH RQ HPHUJHG ZHHGV OHVV WKDQ FP LQ KHLJKW $QRWKHU SUREOHP WKDW PD\ DULVH LQ QDUURZ URZV LV WKH SUHVHQFH RI SHUHQQLDO ZHHGV 3HUHQQLDO ZHHG VSHFLHV WKDW QRUPDOO\ GR QRW SHUVLVW LQ FXOWLYDWHG URZ FURSV PD\ LQFUHDVH LI FXOWLYDWLRQ LV HOLPLQDWHG f 1DUURZ URZ VR\EHDQV RIIHU DGYDQWDJHV RWKHU WKDQ LQFUHDVHG ZHHG FRQWURO 0DQQHULQJ DQG -RKQVRQ f IRXQG WKDW QDUURZ URZ VR\EHDQV SURYLGHG VLJQLILFDQWO\ JUHDWHU JURXQG FRYHU WKDQ ZLGH URZ VR\EHDQV DV HDUO\ DV WKUHH WR IRXU ZHHNV DIWHU SODQWLQJ UHVXOWLQJ LQ b JUHDWHU ZDWHU LQILOWUDWLRQ DQG b OHVV VRLO ORVV WR HURVLRQ +LFNV HW DO f QRWHG WKDW D JUHDWHU OHDI DUHD LQGH[ ZDV SURYLGHG HDUOLHU LQ WKH VHDVRQ ZKHQ SODQWV ZHUH VSDFHG LQ FP URZV 2QH IXUWKHU DGYDQWDJH RI QDUURZ URZV LV WKH KHLJKW RI WKH ORZHVW SRGV RQ WKH VWHPV LV UDLVHG ZKLFK FDQ KHOS UHGXFH KDUYHVW ORVVHV f %XUQVLGH DQG &ROYLOOH f IRXQG WKDW KHLJKW WR ORZHVW SRG GHFUHDVHG ZLWK LQFUHDVLQJ URZ VSDFLQJ %DVQHW HW DO f IRXQG WKDW LQ QDUURZ URZV WKH ILUVW SRGV ZHUH SURn GXFHG WR FP KLJKHU DERYH JURXQG OHYHO WKDQ WKRVH LQ ZLGHU VR\EHDQ URZ VSDFLQJV 2QH GLVDGYDQWDJH LV WKDW VR\EHDQV SODQWHG LQ QDUURZ URZV WHQG WR EH ORGJHG PRUH WKDQ ZLGH URZ VR\EHDQV f +DUWZLJ f VWDWHV WKDW SODQWLQJ PRUH WKDQ WR VR\EHDQ VHHGV SHU P RI URZ JLYHV EHWWHU HDUO\ VHDVRQ ZHHG FRQWURO EXW D JUHDWHU DPRXQW RI ORGLQJ XVXDOO\ UHVXOWV 0RVW UHVHDUFK KDV VKRZQ WKDW ZKHQ URZV DUH QDUURZHG WR OHVV WKDQ FP WKH VHHGLQJ UDWH VKRXOG EH LQFUHDVHG WR b WR KHOS DVVXUH DQ DGHTXDWH VWDQG f :DWHU XVH LV VXSSRVHGO\ DQRWKHU GLVDGYDQWDJH RI QDUURZ URZV KRZHYHU FXUUHQW GDWD GR QRW VXSSRUW WKLV -RKQVRQ HW DO f VWDWH WKDW LI QDUURZ URZV GR XVH PRUH ZDWHU LW LV EHLQJ XVHG WR

PAGE 29

SURGXFH PRUH FURS QRW MXVW ORVW WR HYDSRUDWLRQ 1DUURZ URZV PD\ QRW \LHOG PRUH WKDQ ZLGH URZV GXULQJ D GU\ \HDU QRU VKRXOG WKH\ \LHOG OHVV 'RVV DQG 7KXUORZ f UHSRUWHG WKDW DYHUDJH GDLO\ ZDWHU XVH GLIIHUHG OLWWOH EHWZHHQ URZ ZLGWKV H[FHSW IRU D SHULRG HDUO\ LQ WKH VHDVRQ ZKHQ SODQWV ZHUH WR FP KLJK $W WKLV VWDJH PRUH ZDWHU ZDV XVHG E\ WKH FP WKDQ WKH FP URZV 7KH ORZHU ZDWHU XVH UDWH RQ FP URZV SUREDEO\ UHVXOWHG IURP OHVV HYDSRUDWLRQ IURP WKH VRLO VXUIDFH GXH WR PRUH VKDGLQJ HIIHFW E\ WKH QDUURZ URZV GXULQJ WKH HDUO\ VHDVRQ 7LPPRQV HW DO f VWDWHG WKDW QHLWKHU URZ VSDFLQJ QRU SODQW SRSXODWLRQ VLJQLILFDQWO\ DOWHUHG HYDSRWUDQVSLUDWLRQ ,Q FRQWUDVW WR WKH \LHOG LQFUHDVHV IRXQG LQ WKH QRUWKHUQ 86 URZ ZLGWK VWXGLHV FRQGXFWHG LQ WKH PDMRU VR\EHDQ SURGXFLQJ DUHDV RI WKH 6RXWK LQGLFDWH WKDW WKHUH LV QR \LHOG DGYDQWDJH WR SODQWLQJ LQ URZV QDUURZHU WKDQ WR FP +DUWZLJ f LQ 0LVVLVVLSSL DQG 6PLWK f LQ )ORULGD IRXQG WKDW SODQWLQJ QDUURZ URZV KDG QR HIIHFW RQ VR\EHDQ \LHOGV +DUWZLJ f H[SODLQHG WKDW DGDSWHG VRXWKHUQ YDULHWLHV KDYH PRUH IROLDJH WKDQ QRUWKHUQ LQGHWHUPLQDWH YDULHWLHV DQG QRUPDOO\ ZLOO FRPSOHWHO\ ILOO WKH URZ PLGGOHV LQ WR FP URZV -RKQVRQ HW DO f UHSRUWHG WKDW URZ VSDFLQJ ZLOO QRW KDYH DQ HIIHFW RQ \LHOG DV ORQJ DV WKH URZV DUH VXIILFLHQWO\ QDUURZ WR FORVH WKH VR\EHDQ FDQRS\ E\ WKH WLPH WKH SODQWV KDYH EHJXQ IORZHULQJ *HQHUDOO\ WKH IDUWKHU QRUWK WKH QDUURZHU WKH RSWLPXP URZ ZLGWK EHFDXVH WKH SODQWV DUH VPDOOHU DW IORZn HULQJ +RZHYHU ODWH SODQWHG VR\EHDQV DUH PRUH OLNHO\ WR VKRZ D JUHDWHU UHVSRQVH WR QDUURZ URZV WKDQ WKRVH SODQWHG LQ WKH VSULQJ

PAGE 30

6LFNOHSRG &RQWURO 3URJUDPV 6LFNOHSRG UHPDLQV RQH RI WKH 6RXWKnV PRVW WURXEOHVRPH ZHHGV LQ VR\EHDQ SURGXFWLRQ GHVSLWH QXPHURXV LQYHVWLJDWLRQV RQ KHUELFLGH HIILn FDF\ ,Q FRUQ DQG SDVWXUHV VLFNOHSRG FDQ EH HDVLO\ FRQWUROOHG ZLWK SKHQR[\ KHUELFLGHV ZKLOH LQ VR\EHDQV WKLV LV QRW DQ RSWLRQ f 6RLO DSSOLHG KHUELFLGHV VXFK DV WULIOXUDOLQ DDDWULIOXURGLQLWUR 11GLSURS\OSWRO XLGLQHf DQG QLWUDO LQ PHWK\OVXOIRQ\OfGLQLWUR 11GLSURS\ODQLOLQHf KDYH HVVHQWLDOO\ QR DFWLYLW\ DW QRUPDO XVH UDWHV f KRZHYHU DODFKORU FKORURnnGLHWK\O0PHWKR[\PHWK\Of DFHWDQLOLGHf PHWULEX]LQ DPLQRWHUWEXW\OPHWK\OWKLRfDV WULD]LQ+fRQHf DQG YHUQRODWH 6SURS\O GLSURS\OWKLRFDUEDPDWHf KDYH EHHQ UHSRUWHG WR UHVXOW LQ IDLU WR JRRG VXSSUHVVLRQ RI VLFNOHSRG 2OLYHU HW DO f UHSRUWHG WKDW DODFKORU PHWULEX]LQ DQG YHUQRODWH JDYH DQG b FRQWURO UHVSHFWLYHO\ RI VLFNOHSRG WKXV SURYLGLQJ D KHLJKW GLIIHUHQWLDO DGHTXDWH IRU VXFFHVVIXO GLUHFWHG SRVWHPHUJHQFH KHUELFLGH DSSOLFDWLRQV +RZHYHU &XUUH\ HW DO f VWDWHG WKDW PHWULEX]LQ ZDV WKH VLQJOH PRVW HIIHFWLYH KHUELFLGH WR FRQWURO VLFNOHn SRG 7KH\ DOVR VWDWHG WKDW VLFNOHSRG FRQWURO DQG VR\EHDQ WROHUDQFH ZHUH FRQVLVWHQWO\ EHWWHU IRU SUHSODQW LQFRUSRUDWHG WKDQ IRU SUHHPHUn JHQFH WUHDWPHQWV FRQWDLQLQJ PHWULEX]LQ 7HHP f DOVR UHSRUWHG WKDW PHWULEX]LQ JDYH JUHDWHU FRQWURO RI VLFNOHSRG WKDQ HLWKHU DODFKORU RU YHUQRODWH DW QRUPDO XVH UDWHV :KLOH YHUQRODWH KDV SURYLGHG JRRG FRQWURO RI VLFNOHSRG LQ VRPH FDVHV VR\EHDQ LQMXU\ DQG VWDQG UHGXFWLRQ KDYH DOVR RFFXUUHG f 7KH PRVW HIIHFWLYH PHWKRG RI FRQWUROOLQJ VLFNOHSRG LQYROYHV WKH XVH RI SRVWHPHUJHQFH DSSOLFDWLRQV LQ DGGLWLRQ WR SUHSODQW RU SUHHPHUJHQFH

PAGE 31

WUHDWPHQWV 7R[DSKHQH FKORULQDWHG FDPSKHQHf KDV EHHQ WKH PRVW VXFFHVVn IXO RI WKHVH FKHPLFDOV ERWK LQ WHUPV RI HIILFDF\ DQG ORZ FURS LQMXU\ KRZHYHU LW ZDV QHYHU JUDQWHG D IHGHUDO XVH ODEHO DQG ZLOO QRW EH DYDLODEOH LQ WKH IXWXUH 6KHUPDQ HW DO f UHSRUWHG WKDW WR[DSKHQH DW NJKD SOXV DQ RLO FRQFHQWUDWH FRQWUROOHG DQG b RI WKH VLFNOHSRG LQ WKH FRW\OHGRQ RU ILUVW WUXHOHDI VWDJH UHVSHFWLYHO\ /XQVIRUG f IRXQG WKDW WR[DSKHQH DW NJKD SOXV DQ RLO FRQFHQn WUDWH DSSOLHG GD\V DIWHU SODQWLQJ WR VR\EHDQV LQ WKH 9 VWDJH ZKHQ VLFNOHSRG ZDV LQ WKH FRW\OHGRQ VWDJH SURYLGHG H[FHOOHQW FRQWURO $ VXEVHTXHQW DSSOLFDWLRQ ZDV QHHGHG VHYHQ WR WHQ GD\V ODWHU WR FRQWURO QHZO\ HPHUJLQJ VLFNOHSRG 2QFH VLFNOHSRG SDVVHV WKH FRW\OHGRQDU\ VWDJH WROHUDQFH WR WR[DSKHQH LQFUHDVHG f $FLIOXRUIHQ VRGLXP >FKORURWULIOXRURPHWK\OfSKHQR[\@QLWUREHQ]RDWHf KDV EHHQ VKRZQ WR SURYLGH VRPH FRQWURO RI VLFNOHSRG LQ WKH FRW\OHGRQDU\ VWDJH ZLWK D VLQJOH DSSOLFDWLRQ KRZHYHU VSOLW DSSOLFDWLRQV UHVXOWHG LQ VHYHUH VR\EHDQ LQMXU\ f $ VLQJOH DSSOLFDWLRQ RI DFLIOXRUIHQ DW NJKD JDYH RQO\ b FRQWURO RI VLFNOHSRG ZKLOH FDXVLQJ b VR\n EHDQ LQMXU\ RQ WKH 9 DQG 9 JURZWK VWDJH $ VSOLW DSSOLFDWLRQ RI DFLIOXRUIHQ DW NJKD DW 9 DQG 9 VWDJH VR\EHDQV UHVXOWHG LQ b VLFNOHSRG FRQWURO DQG b FURS LQMXU\ KRZHYHU D VSOLW DSSOLFDWLRQ RI WR[DSKHQH DW NJKD DW WKH 9 DQG 9 VR\EHDQ JURZWK VWDJH JDYH b VLFNOHSRG FRQWURO DQG QR FURS LQMXU\ f %XFKDQDQ DQG +RYHODQG f UHSRUWHG WKDW SRVWHPHUJHQFH DSSOLn FDWLRQV RI FKORUR[XURQ >SSFKORURSKHQR[\fSKHQ\O@OGLPHWK\ OXUHDf UHVXOWHG LQ DGHTXDWH FRQWURO RI VHHGOLQJ VLFNOHSRG 7KH DGGn LWLRQ RI D FURS RLO FRQFHQWUDWH LPSURYHG FRQWURO KRZHYHU VRPH FURS LQMXU\ RFFXUUHG 2OLYHU HW DO f IRXQG WKDW FKORUR[XURQ DW

PAGE 32

NJKD SOXV D VXUIDFWDQW bf UHVXOWHG LQ b FRQWURO RI VLFNOHSRG ZKLOH H[SHULPHQWV LQ )ORULGD VKRZHG WKDW b FRQWURO FRXOG EH REWDLQHG ZLWK WKH FKORUR[XURQ WUHDWPHQW f 3RVWGLUHFWHG VSUD\ WUHDWPHQWV KDYH EHHQ RQH RI WKH PRVW VXFFHVVn IXO VLFNOHSRG FRQWURO SURJUDPV DFFRUGLQJ WR UHFHQW LQYHVWLJDWLRQV XQIRUWXQDWHO\ JURZHU DFFHSWDQFH RI WKLV SUDFWLFH KDV EHHQ VORZ f 3UHHPHUJHQFH WUHDWPHQWV RI PHWULEX]LQ DODFKORU DODFKORU SOXV PHWUL EX]LQ RU YHUQRODWH DSSOLHG SUHSODQW PD\ SURYLGH VXIILFLHQW VXSSUHVVn LRQ RI VLFNOHSRG WR SURYLGH WKH KHLJKW GLIIHUHQWLDO QHFHVVDU\ IRU D SRVWGLUHFWHG VSUD\ f 6KHUPDQ HW DO f UHSRUWHG WKDW HLWKHU OLQXURQ GLFKORUR SKHQ\OfOPHWKR[\PHWK\OXUHDf DW NJKD RU PHWULEX]LQ DW DQG NJKD DSSOLHG DORQH RU DV WDQN PL[HV ZLWK '% GLFKORURSKHQR[\f EXWULF DFLGf DW NJKD SURn YLGHG JUHDWHU WKDQ b VLFNOHSRG FRQWURO ZKHQ DSSOLHG WR WKH ORZHU WR FP RU WR FP WDOO VR\EHDQV 2WKHU VXFFHVVIXO SRVWGLUHFWHG WUHDWPHQWV DUH SDUDTXDW nGLPHWK\OnELS\ULGLQLXP LRQf DORQH RU LQ FRPELQDWLRQ ZLWK HLWKHU PHWULEX]LQ RU '% f )URP WKHVH UHVXOWV LW LV FOHDU WKDW D FRPSOHWH KHUELFLGH SURJUDP LV QHFHVVDU\ IRU DGHTXDWH VLFNOHSRG FRQWURO &XUUH\ HW DO f IRXQG WKDW FRQVLVWHQWO\ DFFHSWDEOH FRQWURO RI VLFNOHSRG ZDV REWDLQHG ZLWK XVH RI D GLQLWURDQLO LQH KHUELFLGH SOXV PHWULEX]LQ SUHSODQW LQFRUSRUDWHG RU DODFKORU SOXV PHWULEX]LQ SUHHPHUJHQFH WR[DSKHQH HDUO\ SRVWHPHUJHQFH WR VHHGOLQJ VLFNOHSRG DQG D SRVWGLUHFWHG VSUD\ RI PHWULEX]LQ SOXV HLWKHU '% RU SDUDTXDW 2OLYHU HW DO f VWDWHG WKDW E\ FRPELQLQJ WKH EHVW SUHHPHUJHQFH DQG SRVWHPHUJHQFH WUHDWPHQWV H[FHOOHQW FRQWURO RI VLFNOHSRG ZDV REWDLQHG UHVXOWLQJ LQ D b LQFUHDVH LQ \LHOG RYHU WKH FKHFN

PAGE 33

0$7(5,$/6 $1' 0(7+2'6 6R\EHDQ6LFNOHSRG &RPSHWLWLRQ 6WXGLHV 6WXGLHV WR HYDOXDWH WKH FRPSHWLWLRQ RI YDULRXV GHQVLWLHV RI VLFNOHSRG ZLWK VR\EHDQV SODQWHG LQ YDULRXV URZ VSDFLQJV ZHUH FRQGXFWHG GXULQJ DW WKH 8QLYHUVLW\ RI )ORULGD $JULFXOWXUDO 5HVHDUFK DQG (GXFDWLRQ &HQWHU LQ 4XLQF\ DQG DW $JURQRP\ )DUP *UHHQ $FUHVf LQ *DLQHVYLOOH &RPSHWLWLRQ VWXGLHV ZHUH FRQWLQXHG ZLWK PRGLILFDWLRQ GXULQJ DW WKH *DLQHVYLOOH ORFDWLRQ RQO\ 7KH VRLO DW 4XLQF\ ZDV D 1RUIRON ORDP\ ILQH VDQG )LQHORDP\ 6LOLFHRXV 7KHUPLF 7\SLF 3DOHXGXOWVf ZKHUHDV WKH VRLO DW *DLQHVYLOOH ZDV D %RQQHDX ILQH VDQG /RDP\ 6LOLFHRXV 7KHUHPLF $UHQLF 3DOHXGXOWVf $ VSOLWSORW GHVLJQ ZLWK URZ VSDFLQJV DV PDLQ SORWV DQG VLFNOH SRG SRSXODWLRQV DV VXESORWV ZDV XWLOL]HG 3ORWV ZHUH P E\ P DQG UHSOLFDWHG IRXU WLPHV 7ULIOXUDOLQ ZDV DSSOLHG DW NJKD RYHU WKH HQWLUH H[SHULPHQWDO DUHD IRU DQQXDO JUDVV DQG VPDOO VHHGHG EURDG OHDI ZHHG FRQWURO 6R\EHDQ URZ VSDFLQJV DQG VLFNOHSRG GHQVLWLHV XVHG LQ WKHVH VWXGLHV DUH OLVWHG LQ 7DEOH $QDO\VLV RI YDULDQFH 'XQFDQnV 1HZ 0XOWLSOH 5DQJH 7HVW DQG UHJUHVVLRQ HTXDWLRQV ZHUH XWLOL]HG WR DQDO\]H WKH GDWD &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQVf§ f%UDJJ YDULHW\ PDWXULW\ JURXS 9,, ZDV SODQWHG RQ -XQH DQG -XQH LQ *DLQHVYLOOH DQG 4XLQF\ UHVSHFWLYHO\ 6R\EHDQ VHHGLQJ

PAGE 34

UDWHV ZHUH DQG NJKD RI VR\EHDQ VHHG IRU WKH DQG FP URZ VSDFLQJV UHVSHFWLYHO\ 6LFNOHSRG SRSXODWLRQV ZHUH HVWDEn OLVKHG DSSUR[LPDWHO\ WZR ZHHNV DIWHU SODQWLQJ DQG PDLQWDLQHG E\ KDQG ZHHGLQJ 7KH PLGGOH WZR URZV ZHUH KDUYHVWHG IURP HDFK SORW RQ 2FWREHU DQG 1RYHPEHU DW *DLQHVYLOOH DQG 4XLQF\ UHVSHFWLYHO\ 6LFNOHSRG SODQWV ZHUH KDUYHVWHG IURP D P DUHD LQ HDFK SORW DQG LWV JUHHQ DQG GU\ ZHLJKWV ZHUH UHFRUGHG 5HJUHVVLRQ DQDO\VLV ZDV XWLOL]HG WR GHWHUPLQH WKH LQIOXHQFH RI VLFNOHSRG GHQVLW\ DQG GU\ ZHLJKW RQ VR\n EHDQ \LHOG &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQf§ n%UDJJn VR\EHDQV ZHUH SODQWHG RQ 0D\ DW *DLQHVYLOOH $IWHU HPHUJHQFH WKH VR\EHDQ VWDQG ZDV WKLQQHG WR GHQVLWLHV RI DQG SODQWVKD IRU WKH DQG FP URZ VSDFLQJV UHVSHFn WLYHO\ :HHG SRSXODWLRQV ZHUH HVWDEOLVKHG DSSUR[LPDWHO\ WZR ZHHNV DIWHU SODQWLQJ DQG PDLQWDLQHG E\ KDQG ZHHGLQJ WKURXJKRXW WKH WHVW 0HUFXU\ PDQRPHWULF WHQVLRPHWHUV ZHUH SODFHG DW D GHSWK RI FP LQ HDFK SORW RI WKH ILUVW WKUHH UHSOLFDWLRQV RQ -XQH 7KHVH WHQVLRPHWHUV FRQVLVW RI D FP WXEH ZLWK D FP SRURXV FHUDPLF FXS 7KH WXEH LV SODFHG WR WKH GHVLUHG GHSWK LQ WKH VRLO DQG FRQQHFWHG WR WKH DERYH JURXQG PDQRPHWHU VFDOH E\ D VLQJOH WUDQVSDUHQW SODVWLF WXEH WKDW VHUYHG ERWK DV WKH PDQRPHWHU PHDVXULQJ WXEH DV ZHOO DV WKH FRQQHFWLQJ OLQN EHWZHHQ WKH PDQRPHWHU DVVHPEO\ DQG WKH WHQVLRPHWULF FXS WXEH 7KH SODVWLF WXEH ZDV LQVHUWHG LQWR D UHVHUYRLU FRQWDLQLQJ JUDPV RI PHUFXU\ ZLWK WKH RSSRVLWH HQG LQ WKH ZDWHU ILOOHG FXS WXEH 7KH PDQRPHWHU VFDOH ZDV JUDGXDWHG LQ PLOOLEDUV RI VRLO WHQVLRQ DQG LV D VWDQGDUG XQLW RI PHDVXUHPHQW IRU VRLO PRLVWXUH 7HQVLRPHWHUV

PAGE 35

ZHUH SODFHG FP ODWHUDOO\ IURP RQH RI WKH PLGGOH VR\EHDQ URZV DQG WR FP IURP WKH QHDUHVW VLFNOHSRG SODQW 7HQVLRPHWULF UHDGLQJV ZHUH UHFRUGHG QLQH WLPHV IURP -XQH WR 6HSWHPEHU 6R\EHDQ FDQRS\ FORVXUH DQG VLFNOHSRG OLJKW LQWHUFHSWLRQ ZHUH HYDOXDWHG XWLOL]LQJ D LQWHUJUDWLQJ UDGLRPHWHUSKRWRPHWHU DQG OLQH TXDQWXP VHQVRU WKDW PHDVXUHG SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ 3$5f 7KH SUHIHUUHG PHDVXUHPHQW IRU 3$5 LV 3KRWRV\QWKHWLF 3KRWRQ )OX[ 'HQVLW\ 33)'f f WKH QXPEHU RI SKRWRQV LQ WKH WR QP ZDYHEDQG LQFLn GHQW SHU XQLW WLPH RQ D XQLW VXUIDFH DQG LV UHFRUGHG LQ PLFURHLQVWHLQV VHF P 7KH OLQH TXDQWXP VHQVRU ZKLFK KDV D VHQVLQJ DUHD RI P E\ PP HIIHFWLYHO\ DYHUDJHV 33)' RYHU LWV P OHQJWK WKXV HOLPLQn DWLQJ WKH QHHG IRU DYHUDJLQJ PHDVXUHPHQWV IURP QXPHURXV VPDOO GLDPHWHU VHQVRUV &DQRS\ FORVXUH ZDV GHWHUPLQHG E\ SODFLQJ WKH VHQVRU RQ WKH JURXQG SHUSHQGLFXODU WR WKH VR\EHDQ URZV DQG UHFRUGLQJ WKH RXWSXW 7KH VHQVRU ZDV WKHQ SODFHG RYHU WKH FDQRS\ DQG WKH RXWSXW DJDLQ UHFRUGHG 7KH GLIIHUHQFH ZDV FDOFXODWHG DV D SHUFHQW DQG UHFRUGHG DV DPRXQW RI FDQRS\ FORVXUH 7KLV SURFHGXUH ZDV UHSOLFDWHG IRXU WLPHV ZLWK WZR REVHUYDWLRQV SHU UHSOLFDWLRQ 6LFNOHSRG OLJKW LQWHUFHSWLRQ ZDV GHWHUPLQHG ZLWK D OLJKW DWWHQXDWLRQ HTXDWLRQ GHULYHG IURP WKH %HHU/DPEHUW ODZ RI OLJKW DEVRUEDQFH /$,f A VLQ f H R ZKHUHf§Mf§ IUDFWLRQ RI UDGLDWLRQ SHQHWUDWLQJ WR GHSWK R WUDQVPLVVLYLW\ FRQVWDQW H[WLQFWLRQ FRHIILFLHQWf /$, FXPXODWLYH OHDI DUHD LQGH[ 6LQ VRODU HOHYDWLRQ

PAGE 36

7KH IUDFWLRQ RI SKRWRQ IOX[ GHQVLW\ LV DQ H[SRQHQWLDO IXQFWLRQ RI FXPXODWLYH OHDI DUHD H[WLQFWLRQ FRHIILFLHQW DQG WKH DOWLWXGH RI WKH VXQ VLQ Hf 7KH H[WLQFWLRQ FRHIILFLHQW GHSHQGV XSRQ OHDI DQJOH UHODWLYH WR KRUL]RQWDO DQG WR WKH VRODU DQJOH 7KH YDOXH XVHG ZDV GHULYHG IURP UHVXOWV REWDLQHG E\ 6KL EOHV DQG :HEHU f 7KH OHDI DUHD LQGH[ RI WKH FDQRS\ FDQ EH GHWHUPLQHG IURP D GHULYDWLRQ RI WKH DERYH HTXDWLRQ /$, OQIUDFf [ 6LQ H 7KH VRODU HOHYDWLRQ ZDV REWDLQHG E\ WKH HTXDWLRQ 6LQ D 6LQ / 6LQ &RV / &RV &RV W ZKHUH D DOWLWXGH / ODWLWXGH GHFOLQDWLRQ RI WKH VXQ W WLPH EHIRUH ORFDO DSSDUHQW QRRQ KU r ,Q WKH VRODU HOHYDWLRQ HTXDWLRQ WKH RQO\ XQNQRZQ LV WKH GHFOLQDWLRQ RI WKH VXQ ZKLFK ZDV GHULYHG IURP WKH HTXDWLRQ A &RV >iI'f@ ZKHUH GHFOLQDWLRQ LQ UDGLDQV GD\ RI \HDU ,Q FDOFXODWLQJ WKH /$, WKH IUDFWLRQ RI OLJKW SHQHWUDWLQJ WKH FDQRS\ ZDV GHWHUPLQHG 7KH OLQH TXDQWXP VHQVRU ZDV SODFHG RQ WKH JURXQG XQGHU WKH VR\EHDQV DW D VSHFLILHG VLFNOHSRG GHQVLW\ /LJKW SHQHWUDWLQJ WKH WRWDO VR\EHDQ VLFNOHSRGf FDQRS\ ZDV UHFRUGHG WKH VLFNOHSRG SODQWV ZHUH UHPRYHG DQG WKH OLJKW UHFRUGHG DJDLQ 7KH VHQVRU ZDV WKHQ SODFHG DERYH WKH FDQRS\ WR UHFRUG WKH WRWDO 3$5 DYDLODEOH WR WKH SODQWV 7KLV IUDFWLRQ RI OLJKW ZLWK ERWK ZHHG DQG FURS ZDV LQVHUWHG LQWR WKH IRUPXOD UHVXOWLQJ LQ WKH FXPXODWLYH /$,

PAGE 37

RI WKH FDQRS\ 7KH SURFHVV ZDV GXSOLFDWHG XWLOL]LQJ WKH ZHHG UHPRYDO UHDGLQJ UHVXOWLQJ LQ VR\EHDQ /$, 6LFNOHSRG /$, ZDV REWDLQHG E\ VXEn WUDFWLQJ WKH VR\EHDQ /$, IURP WKH WRWDO /$, $ UDWLR ZDV WKHQ HVWDEn OLVKHG EHWZHHQ WRWDO /$, DQG VLFNOHSRG /$, WKXV SHUFHQW VLFNOHSRG OLJKW LQWHUFHSWLRQ FDQ EH REWDLQHG 7KHVH HTXDWLRQV DVVXPH WKDW OHDYHV DUH KRUL]RQWDO DQG WKH VR\EHDQ DQG VLFNOHSRG OHDYHV DUH LQ WKH VDPH SODQH $OO OLJKW PHDVXUHPHQWV ZHUH WDNHQ EHWZHHQ DP DQG SP 6LFNOHSRG PRUSKRORJLFDO GDWD ZHUH REWDLQHG E\ UDQGRPO\ VHOHFWLQJ SODQWV IURP HDFK SORW DQG UHFRUGLQJ WKH QXPEHU RI SRGV SHU SODQW VHHGV SHU SRG VHHGV SHU SODQW SODQW KHLJKW SODQW ZLGWK GLVWDQFH IURP JURXQG WR ILUVW ODWHUDO EUDQFK DQG SODQW GU\ ZHLJKW 6HHGV SHU KHFWDUH ZHUH DOVR FDOFXODWHG 6R\EHDQ KHLJKW PHDVXUHPHQWV ZHUH UHFRUGHG ERWK IURP VRLO WR ILUVW SRG DQG IURP VRLO WR WRS SRG 6R\EHDQV ZHUH KDQG KDUYHVWHG RQ 1RYHPEHU DQG \LHOGV UHFRUGHG 5HJUHVVLRQ DQDO\VHV ZHUH XVHG WR GHWHUPLQH WKH LQIOXHQFH RI VLFNOHSRG GHQVLW\ DQG GU\ ZHLJKW RQ VR\EHDQ \LHOG &RPSHWLWLRQ RI 6LFNOHSRG :LWK 6R\EHDQV n%UDJJn VR\EHDQV ZHUH SODQWHG RQ 0D\ $IWHU HPHUJHQFH VR\EHDQ VWDQG ZDV WKLQQHG WR GHQVLWLHV RI DQG SODQWKD IRU WKH DQG FP URZ VSDFLQJV UHVSHFWLYHO\ :HHG SRSXODWLRQV YHUH HVWDEOLVKHG WZR ZHHNV DIWHU SODQWLQJ DQG PDLQWDLQHG E\ KDQG ZHHGn LQJ WKURXJKRXW WKH WHVW 0HUFXU\ PDQFPHWULF WHQVLRPHWHUV ZHUH SODFHG LQ WKH ILUVW WZR UHSn OLFDWLRQV 7ZR WHQVLRPHWHUV DW FP GHSWK DQG RQH WHQVLRPHWHU DW FP GHSWK ZHUH SL DFHG LQ HDFK SORW LQ WKH ILUVW UHSOLFDWLRQ ,Q WKH VHFRQG UHSOLFDWLRQ RQH DW HDFK GHSWK ZDV SODFHG LQ HDFK SORW 5HDGLQJV

PAGE 38

ZHUH UHFRUGHG WLPHV IURP -XQH WR 6HSWHPEHU 6R\EHDQ FDQRS\ FORVXUH VLFNOHSRG OLJKW LQWHUFHSWLRQ DQG PRUSKRORJLFDO GDWD ZHUH PHDVXUHG E\ WKH VDPH SURFHGXUHV XVHG LQ 6R\EHDQV ZHUH KDQG KDUYHVWHG RQ 1RYHPEHU DQG \LHOGV UHFRUGHG 5HJUHVVLRQ DQDO\VHV ZHUH DJDLQ XVHG WR PHDVXUH WKH LQIOXHQFH RI VLFNOHSRG GHQVLW\ DQG GU\ ZHLJKW RQ VR\EHDQ \LHOG +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH 6WXGLHV ,Q DQG ILHOG VWXGLHV ZHUH FRQGXFWHG DW WKH 8QLYHUVLW\ RI )ORULGDnV $JURQRP\ 5HVHDUFK )DUP *UHHQ $FUHVf LQ *DLQHVYLOOH WR GHWHUPLQH WKH HIIHFW RI VR\EHDQ URZ VSDFLQJ KHUELFLGH SURJUDPV DQG SODQWLQJ GDWH RQ VLFNOHSRG FRQWURO ,Q RQH SODQWLQJ GDWH -XQH f DQG LQ ILYH SODQWLQJ GDWHV 0D\ 0D\ 0D\ -XQH DQG -XQH f ZHUH XWLOL]HG +HUHDIWHU WKHVH ILYH SODQWLQJ GDWHV ZLOO EH UHIHUUHG WR DV $ % & DQG ( 7KH UHFRPPHQGHG SODQWLQJ GDWHV IRU n%UDJJn VR\EHDQV LQ )ORULGD DUH 0D\ WKURXJK -XQH 7KHVH SODQWLQJ GDWHV DUH DSSUR[LPDWHO\ WZR ZHHNV DSDUW WKXV UHSUHVHQWLQJ RQH SODQWLQJ GDWH WZR ZHHNV SULRU WR WKUHH SODQWLQJ GDWHV GXULQJ DQG RQH SODQWLQJ GDWH WZR ZHHNV DIWHU WKH UHFRPPHQGHG SHULRG $ VSOLWSORW GHVLJQ ZDV XWLOL]HG ZLWK WKUHH UHSOLFDWLRQV LQ ZKLFK URZ VSDFLQJV ZHUH WKH PDLQ SORWV DQG KHUELFLGH WUHDWPHQWV ZHUH VXESORWV $OO KHUELFLGH WUHDWPHQWV ZHUH DSSOLHG LQ OLWHUV RI ZDWHUKHFWDUH DW NJFP ZLWK D &2A EDFNSDFN VSUD\HU ,Q HDFK SODQWLQJ GDWH ZDV FRQVLGHUHG D VHSDUDWH WHVW WKHUHIRUH GDWD IURP GLIIHUHQW SODQWLQJ GDWHV FDQQRW EH VWDWLVWLFDOO\ FRPSDUHG 3ORW GLPLQVLRQV ZHUH P E\ P 7DEOH OLVWV KHUELFLGH WUHDWPHQWV IRU DQG $QDO\VLV RI YDULDQFH 'XQFDQnV 1HZ 0XOWLSOH 5DQJH 7HVW DQG UHJUHVVLRQ HTXDWLRQV ZHUH XVHG WR DQDO\]H WKH GDWD

PAGE 39

&DQRS\ FORVXUH ZDV GHWHUPLQHG DFFRUGLQJ WR WKH SURFHGXUH XVHG LQ WKH FRPSHWLWLRQ VWXGLHV 5HDGLQJV ZHUH LQLWLDWHG IRXU ZHHNV DIWHU SODQWLQJ DQG ZHUH UHSHDWHG DW ZHHNO\ LQWHUYDOV XQWLO FDQRS\ FORVXUH :HHG FRQWURO UDWLQJV ZHUH UHFRUGHG RQFH $ VFDOH RI WR ZDV XVHG ZKHUH QR FRQWURO DQG WRWDO FRQWURO ,Q WKH ODVW WKUHH SODQWLQJ GDWHV GLG QRW FRQWDLQ VXIILFLHQW XQLIRUP VLFNOHSRG VWDQGV WR ZDUUDQW ZHHG FRQWURO UDWLQJV 6R\EHDQV ZHUH KDQG KDUYHVWHG RQ 1RYHPEHU DQG 1RYHPEHU DQG

PAGE 40

7$%/( 7UHDWPHQW 9DULDEOHV IRU &RPSHWLWLRQ 6WXGLHV 4XLQF\ *DLQHVYLOOH *DLQHVYLOOH *DLQHVYLOH 5RZ 6SDFLQJ 1DUURZFP 1DUURZFP 1DUURZFP 1DUURZFP 0HGLXPFP 0HGLXPFP 0HGLXPFP 0HGLXPFP :LGHFP :LGHFP :LGHFP :LGHFP :HHG 3RSXODWLRQ /RZOPA /RZ P /RZPA /RZPA S 0HGLXPQU 0HGLXPPA 0HGLXPPA S 0HGLXPP +LJK PA +LJKPA +LJKPA +LJKPA

PAGE 41

7$%/( 7UHDWPHQWV IRU +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH 6WXGLHV &RPPRQ 1DPH &KHPLFDO 1DPH 5DWH WULIOXUDOLQ PHWULEX]LQfn \X i DODFKORU PHWULEX]LQ DDDWULIOXURGLQLWUR11GLSURS\OSWROXGLQH DPLQRWHUWEXW\OPHWK\OWKLRfDVWULD]LQ+fRQH FKORURnnGLHWK\O1PHWKR[\PHWKXOfDFHWDQLOLGH WULIOXUDOLQ PHWULEX]LQ WR[DSKHQH3 FKORULQDWHG FDPSKHQH FKHFN fMr $SSOLHG SUHSODQW LQFRUSRUDWHG $SSOLHG SUHHPHUJHQFH i 1RW XVHG LQ WHVW 7R[DSKHQH DSSOLHG WZLFH SRVWHPHUJHQFH GD\V DSDUW NJKDf

PAGE 42

5(68/76 $1' ',6&866,21 6R\EHDQ6LFNHSRG &RPSHWLWLRQ 6WXGLHV &RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQV 6R\EHDQ \LHOGV DW ERWK 4XLQF\ DQG *DLQHVYLOOH ORFDWLRQV ZHUH VLJQLILFDQWO\ KLJKHU LQ WKH FP URZV WKDQ LQ WKH DQG FP URZV 7DEOH f 3UHYLRXV UHVHDUFK f LQ WKH VRXWKHUQ 86 KDV QRW VKRZQ D \LHOG DGYDQWDJH GXH WR QDUURZ URZ VSDFLQJ 7KH ODWH SODQWLQJ PD\ SURYLGH DQ H[SODQDWLRQ VLQFH KLJKHU VR\EHDQ SRSXODWLRQV RI QDUURZ URZ VSDFLQJV KDYH EHHQ VKRZQ WR SURGXFH KLJKHU \LHOGV WKDQ ZLGH URZV DW ODWH SODQWLQJ GDWHV f 6R\EHDQ \LHOGV VKRZHG D VLJQLILFDQW GHFUHDVH ZLWK LQFUHDVLQJ VLFNOHSRG GHQVLW\ DW ERWK ORFDWLRQV 6LFNn OHSRG GU\ ZHLJKW ZDV QRW DIIHFWHG E\ URZ VSDFLQJ LQ *DLQHVYLOOH EXW ZHHG GU\ ZHLJKW LQFUHDVHG ZLWK LQFUHDVLQJ VLFNOHSRG GHQVLW\ ,Q 4XLQF\ WKHUH ZDV D VLJQLILFDQW LQWHUDFWLRQ EHWZHHQ URZ VSDFn LQJ DQG VLFNOHSRG GHQVLW\ $W WKH KLJK ZHHG GHQVLW\ WKH QDUURZ URZ VR\EHDQV SURGXFHG WKH JUHDWHVW VLFNOHSRG GU\ PDWWHU $W WKH ORZ DQG PHGLXP GHQVLWLHV ZHHG GU\ ZHLJKW ZDV QRW DIIHFWHG E\ URZ VSDFLQJ 7DEOH f &RPSHWLWLRQ IURP WKH FP URZ VR\EHDQV UHVXOWHG LQ D GHFUHDVH LQ VLFNOHSRG GU\ ZHLJKW IURP WKDW LQ WKH FP URZV +RZHYHU DQ H[SHFWHG GHFUHDVH LQ VLFNOHSRG GU\ ZHLJKW LQ WKH FP URZV GLG QRW RFFXU 6LQFH WKH VLFNOHSRG GHQVLW\ RI P LV VR JUHDW WKH ORZHU SRSXODWHG VR\EHDQV LQ WKH DQG FP URZV GLG QRW SURGXFH D \LHOG LQFUHDVH RYHU WKH FP URZV HYHQ ZLWK D ORZHU VLFNOHSRG ELRPDVV

PAGE 43

7$%/( 6R\EHDQ
PAGE 44

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG 'U\ :HLJKW NJKDf 4XLQF\ 5RZ 6SDFLQJ FPf W 6LFNOHSRG 'HQVLW\P DH E &H DH EH & J DH E &I 0HDQV ZLWKLQ D URZ SUHFHHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 45

:LWK DOO URZ VSDFLQJV VLFNOHSRG GU\ ZHLJKW LQFUHDVHG DV GHQVLW\ LQFUHDVHG ,QFUHDVLQJ VLFNOHSRG GHQVLW\ DQG VLFNOHSRG GU\ ZHLJKW GHFUHDVHG VR\EHDQ \LHOG FXUYLOLQHDUO\ DW ERWK ORFDWLRQV )LJV f
PAGE 46

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ 4XLQF\ f 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 47

62<%($1 <,(/' NJKDf

PAGE 48

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ *DLQHVYLOOH f 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 50

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW 4XLQF\ f 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 51

D -= < OO[ [ ,f[ 5 6,&./(32' '5< :(,*+7 NJKDf

PAGE 52

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW *DLQHVYLOOH f 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 53

62<%($1 <,(/' NJKDf 6,&./(32' '5< :(,*+7 NJKDf

PAGE 54

7$%/( 6R\EHDQ
PAGE 55

ZKLOH VLFNOHSRG GHQVLWLHV GLG QRW VLJQLILFDQWO\ DOWHU VR\EHDQ KHLJKW 7KH FP URZV DOVR UHVXOWHG LQ WKH VR\EHDQnV ILUVW SRG EHLQJ VLJQLIn LFDQWO\ KLJKHU IURP WKH JURXQG WKDQ WKH RWKHU URZV WKXV UHVXOWLQJ LQ WKH SRVVLELOLW\ RI OHVV KDUYHVW ORVV DVVRFLDWHG ZLWK UHGXFHG URZ VSDFLQJ 6LFNOHSRG GU\ ZHLJKW 7DEOH f ZDV VLJQLILFDQWO\ ORZHU LQ WKH FP URZV WKDQ LQ WKH DQG FP URZV DW HDFK GHQVLW\ $JDLQ KRZHYHU WKH FP URZV UHVXOWHG LQ WKH JUHDWHVW GU\ ZHLJKW ZKLFK ZDV QRW H[n SHFWHG $OWKRXJK QRW VLJQLILFDQW WKH FP URZV RQ WKH DYHUDJH RXW \LHOGHG WKH DQG FP URZV *URZLQJ FRQGLWLRQV IRU ERWK WKH FURS DQG WKH ZHHG VHHPHG WR EH DW DQ RSWLPXP DW WKLV URZ VSDFLQJ 2Q D SHU KHFWDUH EDVLV VLFNOHSRG GU\ ZHLJKW LQFUHDVHG DV VLFNOHSRG GHQVLW\ LQFUHDVHG IRU HDFK URZ VSDFLQJ 7KLV LQFUHDVH ZDV DQG b IURP ORZ WR LQWHUPHGLDWH GHQVLW\ IRU WKH DQG FP URZV UHVSHFWLYHO\ +RZn HYHU D b LQFUHDVH LQ VLFNOHSRG ELRPDVV UHVXOWHG LQ WKH FP URZV :KHQ \LHOG ZDV FRUUHODWHG WR VLFNOHSRG GU\ ZHLJKW D FXUYLOLQHDU UHn VSRQVH ZDV REWDLQHG ZLWK D FRHIILFLHQW RI GHWHUPLQDWLRQ RI RQO\ )LJ f 6LPLODU UHVXOWV ZHUH REWDLQHG EHWZHHQ VR\EHDQ \LHOG DQG VLFNOHSRG GHQVLW\ JLYLQJ D 5 RI )LJ f 7KHVH ORZ FRUUHODWLRQV DUH LQGLFDWLYH RI WKH XQIDYRUDEOH JURZLQJ FRQGLWLRQV LQ :DWHU XVH GLG QRW GLIIHU EHWZHHQ VR\EHDQ URZ VSDFLQJV RU EHWZHHQ ZHHG GHQVLWLHV DW VDPSOLQJ WLPHV DQG 7DEOH f :DWHU XVH ZDV DOVR QRW VLJQLILFDQW DW WKHVH WLPHV EHWZHHQ GHQVLWLHV $QDO\n VLV RI YDULDQFH LQGLFDWHG D VLJQLILFDQW LQWHUDFWLRQ EHWZHHQ URZ VSDFLQJ DQG GHQVLW\ DW VDPSOLQJ WLPHV DQG ,QWHUDFWLRQV ZHUH RQO\ DQDO\]HG ZKHQ ZDWHU XVH DFURVV URZ VSDFLQJ ZDV JUHDWHU WKDQ PLOOLn EDUV WKHUHE\ RPLWWLQJ VDPSOLQJ WLPH 7KLV SURFHGXUH ZDV IROORZHG EHFDXVH ZDWHU UHVHUYRLUV ZHUH VDPSOHG DW UHDGLQJV EHORZ PLOOLEDUV

PAGE 56

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG 'U\ +HLJKW NJKDf *DLQHVYLOOH 5RZ 6SDFLQJ FPf 6LFNOHSRG 'HQVLW\Pr W DH DH EH DI DI EJ DH EI &I ‘Mr 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 57

, 7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP GHSWK *DLQHVYLOOH 6DPSOLQJ 7LPHVfn r r r A ; 5RZ 6SDFLQJ FPf D D D D D D D D D D D D D D D D D E 6LFNOHSRGP Df Df Df Df Df Df Df Df Df Df Df DEf Df Df Df Df Df Df Df Df Df Df Df Ef fMr 0HDQV ZLWKLQ D FROXPQ ZLWKLQ URZ VSDFLQJV RU ZLWKLQ GHQVLWLHV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW \ ,QWHUDFWLRQ RI VR\EHDQ URZ VSDFLQJ DQG VLFNOHSRG SRSXODWLRQV H[LWV

PAGE 58

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 59

62<%($1 <,(/' NJKDf 6,&./(32' '5< :(,*+7 NJKDf 92

PAGE 60

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 61

62<%($1 <,(/' NJKDf 6,&./(32' '(16,7
PAGE 62

WKXV QR LPPHGLDWH FRPSHWLWLRQ IRU ZDWHU ZDV RFFXUULQJ $W VDPSOLQJ WLPH WKH DQG VLFNOHSRG GHQVLWLHV VKRZHG QR VLJQLILFDQW GLIIn HUHQFHV LQ ZDWHU XVH DPRQJ URZ VSDFLQJV 7DEOH f $W GHQVLW\ WKH FP URZV XVHG PRUH ZDWHU WKDQ WKH QDUURZ URZV ZKLOH DW WKH GHQVLW\ WKH FP URZV XVHG WKH PRVW ZDWHU :LWK FP URZV ZDWHU XVH ZDV VLJQLILFDQWO\ JUHDWHU RQO\ DW WKH KLJK ZHHG GHQVLW\ 7KHUH ZDV QR VLJQLILFDQW GLIIHUHQFH LQ ZDWHU XVH EHWZHHQ GHQVLWLHV LQ WKH FP URZV ZKLOH WKH FP URZV KDG LQFUHDVHG ZDWHU XVH RQO\ DW WKH ORZ VLFNOHSRG GHQVLW\ $W VDPSOLQJ WLPH 7DEOH f LQFUHDVLQJ VLFNn OHSRG GHQVLW\ GLG QRW LQFUHDVH ZDWHU XVH H[FHSW LQ WKH FP URZV ZKHUH WKH PHGLXP DQG KLJK GHQVLWLHV DUH VLPLODU :DWHU XVH LQ WKH FP URZV ZDV VLJQLILFDQWO\ KLJKHU WKDQ LQ WKH FP URZV DW DQG GHQVLWLHV 1R GLIIHUHQFH RFFXUUHG DW WKH DQG GHQVLWLHV $W VDPSOLQJ WLPH 7DEOH f QR VLJQLILFDQW GLIIHUHQFH DPRQJ GHQVLWLHV ZDV IRXQG LQ WKH FP URZV :DWHU XVH LQ WKH FP URZV DW DQG GHQVLWLHV ZDV JUHDWHU WKDQ DW DQG GHQVLWLHV ZKHUHDV DQG GHQVLW\ ZDWHU XVH ZDV QRW VLJQLILFDQWO\ GLIIHUHQW LQ WKH FP URZV $W WKLV URZ VSDFLQJ KRZHYHU WKH JUHDWHVW ZDWHU XVH ZDV DW WKH GHQVLW\ 7KH PHDQ ZDWHU XVH 7DEOH f RI DOO URZ VSDFLQJV VKRZV WKDW WKH DQG FP URZV XVHG VLJQLILFDQWO\ PRUH ZDWHU WKDQ WKH FP URZV $FURVV VLFNn OHSRG GHQVLWLHV PHDQ ZDWHU XVH LQGLFDWHV WKDW WKH KLJK ZHHG SRSXODWLRQ XVHG PRUH ZDWHU WKDQ WKH ]HUR RU PHGLXP GHQVLW\ +RZHYHU DIWHU H[DPn LQLQJ HDFK VDPSOLQJ GDWH ZKHUH VWUHVV RFFXUUHG DYHUDJH DERYH PLOOn LEDUV IRU DW OHDVW RQH URZ VSDFLQJf WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH DQG FP URZV 7KLV LQGLFDWHV WKDW GXULQJ FRQGLWLRQV ZKHUH PRLVWXUH LV OLPLWHG QDUURZ URZV GR QRW XVH PRUH ZDWHU EXW ZKHQ ZDWHU LV SOHQWLIXO WKH QDUURZ URZV DUH XVLQJ ZDWHU WKXV SURGXFLQJ PRUH

PAGE 63

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP GHSWK 6DPSOLQJ 7LPH *DLQHVYL H 5RZ 6SDFLQJ FPf 6LFNOHSRG 'HQVLWLHVP W DF D& D& E& DOOO& D& D& DO G DO & EG D& DG r 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWK LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW 7$%/( (IIHFW RQ 6RLO 7LPH RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 0RLVWXUH PLOOLEDUVf DW FP 'HSWK *DLQHVYLOOH 'HQVLWLHV 6DP SL LQJ 5RZ 6SDFLQJ 6LFNOHSRG W 'HQVLW\P FPf DO & DFG D& EF DPF D& & DG DG DG D& DG A0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 64

SKRWRV\QWKDWH $OWKRXJK WKLV PD\ RU PD\ QRW LQFUHDVH \LHOGV LW VKRXOG LQFUHDVH HDUO\ OHDI DUHD DQG WKHUHIRUH TXLFNHU FDQRS\ FORVXUH ,Q DGGLWLRQ ZKHQ VRLO PRLVWXUH LV PRVW FULWLFDO WKH SHULRG GXULQJ IORZHULQJ WKURXJK SRG ILOO VDPSOH WLPHV f WKHUH ZHUH QR VLJQLILn FDQW GLIIHUHQFHV EHWZHHQ WKH DQG FP URZV 1R VLJQLILFDQW FRUUHODWLRQ H[LVWHG EHWZHHQ PHDQ ZDWHU XVH DQG VR\EHDQ \LHOG 7KLV LV H[SHFWHG VLQFH KLJK ZDWHU XVH DW ILHOG FDn SDFLW\ ZRXOG LQFUHDVH SURGXFWLRQ ZKLOH VWUHVV VLWXDWLRQV ZRXOG GHn FUHDVH SURGXFWLRQ LI ZDWHU XVH ZHUH KLJK $ SDUDPHWHU WKDW FRXOG DOWHU VR\EHDQ FRPSHWLWLYHQHVV ZLWK VLFNOH SRG LV FDQRS\ FORVXUH 7KH SURJUHVVLRQ RI FDQRS\ FORVXUH LV VKRZQ LQ 7DEOH $W IRXU ZHHNV DIWHU SODQWLQJ WKH FP URZ FDQRS\ KDG D FDQRS\ FORVXUH RI b ZKLFK ZDV VLJQLILFDQWO\ KLJKHU WKDQ WKH DQG FP URZV ZKLFK ZHUH DQG b UHVSHFWLYHO\ )LYH ZHHNV DIWHU SODQWLQJ FDQRS\ FORVXUHVLQ WKH FP URZV ZHUH VWLOO VLJQLILFDQWO\ KLJKHU WKDQ WKH RWKHU VSDFLQJV &DQRS\ FORVXUH GLG QRW HTXDOL]H EHn WZHHQ URZ VSDFLQJV XQWLO WHQ ZHHNV DIWHU SODQWLQJ )LYH ZHHNV ZHUH UHTXLUHG IRU WKH FP URZV WR UHDFK b FORVXUH ZKLOH WKH FP URZV UHTXLUHG QLQH ZHHNV 2WKHU VLFNOHSRG FKDUDFWHULVWLFV HYDOXDWHG LQFOXGH VLFNOHSRG KHLJKW ZLGWK ILUVW EUDQFK KHLJKW VHHG SHU SODQW DQG VHHG SHU KHFWDUH 6LFNOHSRG KHLJKW ZDV QRW DOWHUHG E\ URZ VSDFLQJ RU VLFNOHSRG GHQVLW\ 7DEOH f $ VLJQLILFDQW LQWHUDFWLRQ ZDV GHWHFWHG EHWZHHQ ERWK URZ VSDFLQJ DQG VLFNOHSRG GHQVLW\ UHODWLYH WR VLFNOHSRG SODQW ZLGWK 7DEOH f $ GHFUHDVH LQ SODQW ZLGWK RFFXUUHG DV GHQVLW\ LQFUHDVHG DW DOO URZ VSDFLQJV 6LFNOHSRG ZLGWK ZDV DOVR OHVV LQ WKH FP URZV GXH WR WKH FRPSHWLWLYH DELOLW\ RI WKH VR\EHDQV 7KH VR\EHDQV LQ WKH

PAGE 65

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP 'HSWK 6DPSOLQJ 7LPH *DLQHVYLOOH 5RZ 6SDFLQJ LPO 6LFNOHSRG W 'HQVLW\P DG EG DO G EG DG DH DG I EH &G DH EH 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH HWWHU RU PHDQV ZLWK LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW 7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ RQ 3HUFHQW &DQRS\ &ORVXUH *DLQHVYLOOH 5RZ 6SDFLQJ FPf :HHNV $IWHU 3, DQWLQTr D D D D D D D E E D E D D D F F E F E D D fM 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 66

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG +HLJKW FPf *DLQHVYLOOH 3DUDPHWHUV r f 08 ,,9 9 ,, 9 f 6LFNOHSRG +HLJKW I A FPf 5RZ 6SDFLQJ FPf D E E 6LFNHSRGP Ef Ef Ef 0HDQV LQ D FROXPQ ZLWKLQ URZ VSDFLQJV RU ZLWKLQ GHQVLWLHV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW < 1R LQWHUDFWLRQ H[LVWV EHWZHHQ URZ VSDFLQJV DQG VLFNOHSRG GHQVLWLHV

PAGE 67

FP URZV KDG WKH JUHDWHVW SODQW ZLGWK WKH VDPH URZ ZLGWK ZKLFK SURGXFHG WKH PRVW VLFNOHSRG GU\ ZHLJKW 6LFNOHSRG SODQWV GHOD\HG ODWHUDO EUDQFK LQLWLDWLRQ LQ WKH FP URZV XQWLO EUHDNWKURXJK RI WKH VR\EHDQ FDQRS\ RFFXUUHG 7DEOH f 7KH HIIHFW RI URZ VSDFLQJ DQG VLFNOHSRG GHQVLW\ RQ VLFNOHSRG VHHG SURGXFWLRQ LV VKRZQ LQ 7DEOH ,Q WKH FP URZV RQO\ WKH KLJK GHQVLW\ SURGXFHG VLJQLILFDQWO\ JUHDWHU ZHHG VHHG ,Q WKH FP URZV WKH ZHHG VHHG SURGXFWLRQ LQ ORZ DQG PHGLXP GHUVLWLHV ZDV QRW VLJQLIn LFDQWO\ GLIIHUHQW EXW ERWK GLG SURGXFH VLJQLILFDQWO\ OHVV VHHG WKDQ WKH KLJK GHQVLW\ $V VLFNOHSRG GHQVLW\ LQFUHDVHG LQ WKH FP URZV ZHHG VHHG SURGXFWLRQ DOVR LQFUHDVHG $W DOO GHQVLWLHV VLFNOHSRG VHHG SHU KHFWDUH ZDV OHDVW LQ WKH FP URZV DQG JUHDWHVW LQ WKH FP URZV 7KH FP URZV UHGXFHG VLFNOHSRG VHHG SURGXFWLRQ DQ DYHUDJH RI b FRPSDUHG WR WKH FP URZV DQG b FRPSDUHG WR WKH FP URZV 7KLV UHGXFWLRQ ZDV GXH WR VR\EHDQ FRPSHWLWLRQ ZLWK WKH VLFNO HSRG 2QH LPSRUWDQW FRPSHWLWLRQ YDULDEOH LV OLJKW 1R VLJQLILFDQW GLIIHUHQFH ZDV PHDVXUHG EHWZHHQ OLJKW LQWHUFHSWHG DW WKH ORZ DQG PHGLXP GHQVLW\ LQ DOO URZ VSDFLQJV 7DEOH f /LJKW LQWHUFHSWLRQ ZDV JUHDWHVW DW WKH KLJK GHQVLW\ RI VLFNOHSRG LQ HDFK URZ VSDFLQJ $W HDFK GHQVLW\ WKH VLFNOHSRG LQWHUFHSWHG WKH OHDVW OLJKW LQ WKH FP URZV 2YHU DOO GHQVLWLHV WKH VLFNOHSRG LQ WKH FP URZV LQWHUFHSWHG b PRUH OLJKW WKDQ WKRVH LQ WKH FP URZV ZKLOH WKRVH LQ WKH FP URZV LQWHUFHSWHG b PRUH OLJKW WKDQ WKRVH LQ WKH FP URZV $ UHn GXFWLRQ LQ VLFNOHSRG ELRPDVV E\ VR\EHDQ FRPSHWLWLRQ FDXVHG WKH UHn GXFWLRQ RI OLJKW LQWHUFHSWLRQ E\ VLFNOHSRG LQ WKH QDUURZ URZ VSDFLQJ

PAGE 68

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG :LGWK FPf *DLQHVYLOOH 5RZ 6SDFLQJ 6LFNOHSRG 'HQVLW\Q W FPf EH DEH 2&2 UW! EI DE DJ E EI DI 0HDQV ZLWKLQ LQ D FROXPQ GLIIHUHQW DW 'XQFDQnV QHZ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWK IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ PXOWLSOH UDQJH WHVW 7$%/( (IIHFW RI 6R\EHDQ RQ 6LFN HSRG VW 5RZ 6SDFLQJ DQG 6LFNOHSRG %UDQFK +HLJKW FPf 'HQVLWLHV *DLQHVYLOOH 5RZ 6SDFLQJ W 6LFNOHSRG 'HQVLW\P FPf DH DH EH DI DI DI DI DJ DI rIr 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 69

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG 6HHG SHU KDf *DLQHVYLOOH 5RZ 6SDFLQJ W 6LFNOHSRG 'HQVLW\P FPf DH D EH DI DI EO DO H E I &I 0HDQV ZLWKLQ LQ D FROXPQ GLIIHUHQW DW 'XQFDQnV QHZ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWK IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ PXOWLSOH UDQJH WHVW 7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 3HUFHQW 6LFNOHSRG /LJKW ,QWHUFHSWLRQ *DLQHVYLOOH 5RZ 6SDFLQJ W 6LFNOHSRG 'HQVLW\P FPf DH DH EH DI DI EI DJ DI E6 Ir 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 70

&RPSHWLWLRQ RI 6LFNOHSRG ZLWK 6R\EHDQV 8QOLNH WKH UHVXOWV VLJQLILFDQW GLIIHUHQFHV EHWZHHQ VR\EHDQ \LHOGV DFURVV URZ VSDFLQJV ZHUH REVHUYHG 7DEOH f
PAGE 71

7$%/( 6R\EHDQ
PAGE 72

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG 'U\ :HLJKW NTKDf *DLQHVYLOOH 5RZ 6SDFLQJ FPf W 6LFNOHSRG 'HQVLW\P DH DH EH D H DHI EI DH DI EO 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 73

b ZKLOH \LHOG GLG QRW LQFUHDVH 7KXV LQ WKH FP URZV WKH DGGLWLRQn DO ZDWHU ZRXOG DSSHDU WR EH XWLOL]HG PRUH HIILFLHQWO\ E\ WKH VR\EHDQV ZKLOH LQ WKH FP URZV WKH VLFNOHSRG ZDV XVLQJ WKH DGGLWLRQDO ZDWHU 7KHVH UHVXOWV LQGLFDWH WKDW QDUURZ URZ VR\EHDQV LQ D GU\ JURZLQJ VHDVRQ \LHOG VLPLODUO\ WR WKH ZLGH URZV +RZHYHU LQ D ZHW JURZLQJ VHDVRQ QDUURZ URZV PD\ EH PRUH EHQHILFLDO $ FXUYLOLQHDU UHVSRQVH ZDV REWDLQHG ZKHQ \LHOG ZDV FRUUHODWHG WR VLFNOHSRG GU\ ZHLJKW )LJ f DQG VLFNOHSRG GHQVLW\ LQ )LJ f $ FRHIILFLHQW RI GHWHUPLQDWLRQ RI DQG ZDV FDOFXODWHG IRU GU\ ZHLJKW DQG GHQVLW\ UHVSHFWLYHO\ 7KHVH UHVXOWV LQGLFDWH WKDW GU\ ZHLJKW RI ZHHGV LV D PRUH SUHFLVH LQGLFDWRU RI VR\EHDQ \LHOG WKDQ ZHHG GHQVLW\ 7HHP f UHSRUWHG VLPLODU UHVXOWV ZLWK GU\ ZHLJKW DQG GHQVLW\ FRUUHODWLRQV 0HDQ ZDWHU XVH DW WKH FP GHSWK ZDV VLJQLILFDQWO\ JUHDWHU LQ WKH FP URZV WKDQ LQ WKH FP URZV 7DEOH f +RZHYHU QR GLIIHUHQFH ZDV REVHUYHG EHWZHHQ DQG FP URZV :KHQ H[DPLQLQJ LQGLYLGXDO VDPSOLQJ WLPH ZKHUH VWUHVV ZDV DSSURDFKHG DYHUDJH DERYH PLOOLEDUV IRU DW OHDVW RQH URZ VSDFLQJf WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHn WZHHQ DQG FP URZV b RI WKH WLPH 7KXV LQGLFDWLQJ WKDW HYHQ WKRXJK WKH PHDQ WHQVLRPHWHU YDOXH LV JUHDWHU GXULQJ WKH UHDGLQJV LQ VWUHVV VLWXDWLRQV WKH QDUURZ URZV PD\ QRW EH GHSOHWLQJ PRUH VRLO PRLVWXUH WKDQ WKH ZLGH URZV 7KLV WUHQG ZDV DOVR VKRZQ LQ WKH GDWD 7DEOH f 0HDQ ZDWHU XVH DFURVV VLFNOHSRG GHQVLWLHV UHYHDOHG WKDW RQO\ WKH KLJK ZHHG SRSXODWLRQ XVHG VLJQLILFDQWO\ PRUH ZDWHU 7KLV LV QRW VXUSULVLQJ FRQVLGHULQJ WKH KHDY\ UDLQIDOO LQ WKH JURZLQJ VHDVRQ

PAGE 74

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GU\ ZHLJKW 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 75

62<%($1 <,(/' NJKDf

PAGE 76

)LJXUH 6R\EHDQ \LHOG DV LQIOXHQFHG E\ VLFNOHSRG GHQVLW\ 6\PEROV UHSUHVHQW DYHUDJH RI IRXU UHSOLFDWLRQV

PAGE 77

r R -2 ? 2f >@ 4 *M A /G 2 0  < [ [ 5 &9 f FP 5RZ r FP 5RZ D FP 5RZ 6,&./(32' '(16,7
PAGE 78

7$%/( 7 (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP 'HSWK *DLQHVYLOOH 6DPSOLQJ 7LPHV 5RZ 6SDFLQJ FPf D D D DE D D DE D D D D D D D D D D D D D E E D D E D D 6LFN HSRGP Df Df Df Df DEf DEf Df Df Df Df Df Df Df DEf DEf Df Df DEf Df Df Df Df Ef Ef Df Df DEf Df Df Df Df Df Df Df Df Ef 0HDQV LQ D FROXPQ ZLWKLQ URZ VSDFLQJ RU GHQVLWLHV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 79

7$%/( FRQWLQXHG 6DPSOLQJ 7LPHV ; 5RZ 6SDFLQJ FPf D D D D D D D D D DE D D D D D D E D E E D D D D D E E 6LFNHSRGP Df Df Df Df Df Df Df Df Df DEf Df Df Df Df Df Df Df Df DEf DEf Df Df Df Df Df Df Df Ef Ef Df Df Df Df Df Df Ef 0HDQV LQ D FROXPQ ZLWKLQ URZ VSDFLQJV RU GHQVLWLHV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 80

$W WKH FP GHSWK WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH LQ PHDQ ZDWHU XVH EHWZHHQ DQG FP URZV 7DEOH f EXW WKH ZDWHU XVH ZDV JUHDWHU WKDQ WKDW IRU WKH FP URZV 2QO\ b RI WKH WLPH ZDV WKHUH QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH DQG FP URZV GXULQJ SHULRGV RI VWUHVV DV FRPSDUHG WR b DW WKH FP GHSWK 'LIIHUHQFH LQ URZ VSDFLQJ ZDWHU XVH LV JUHDWHU DW WKH FP GHSWK WKDQ DW WKH FP GHSWK 'U\LQJ RI WKH VRLO LV IDVWHU DW WKH VKDOORZ GHSWK DQG WKH KLJKHU SRSXn ODWLRQV RI VR\EHDQV LQ WKH FP URZV XVH WKH VRLO PRLVWXUH DW WKLV GHSWK PRUH UDSLGO\ +RZHYHU DW WKH JURZLQJ VHDVRQ ZKHUH VR\EHDQ URRWV FDQ XWLOL]H ZDWHU LQ WKH FP GHSWK UDQJH ZDWHU XVH GLIIHUHQFH LV QRW DV JUHDW EHWZHHQ WKH URZ VSDFLQJV $ VLJQLILFDQW LQWHUDFWLRQ ZLWK WKH WHQVLRPHWHU PHDVXUHPHQWV ZDV SUHVHQW DW VDPSOLQJ WLPHV DQG 7DEOH f $W VDPn SOLQJ WLPH 7DEOH f WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH LQ ZDWHU XVH EHWZHHQ URZ VSDFLQJV DW DQG GHQVLWLHV 'HQVLW\ VKRZHG KLJKHU WHQVLRPHWHU UHDGLQJV IRU WKH DQG FP URZV WKDQ IRU WKH FP URZV DQG DW GHQVLW\ WKH FP URZ UHDGLQJV ZHUH JUHDWHU WKDQ WKRVH IURP WKH DQG FP URZV :LWKLQ URZ VSDFLQJ WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ GHQVLWLHV DW FP ZKLOH RQO\ WKH VLFNOHSRGP GHQVLW\ ZDV KLJKHU LQ WKH FP URZV ,Q WKH FP URZV WKH DQG GHQVLWLHV ZHUH VLPLODU $W VDPSOH WLPH WKH FP URZV ZHUH JUHDWHU WKDQ WKH FP URZV DW DQG GHQVLWLHV 7DEOH f :LWKLQ URZ VSDFLQJ WKHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ GHQVLn WLHV LQ WKH DQG FP URZV ,Q WKH FP URZV DQG VLFNOHSRG GHQVLWLHV ZHUH JUHDWHU WKDQ WKH DQG GHQVLWLHV $W VDPSOLQJ WLPH DV VLFNOHSRG GHQVLW\ LQFUHDVHG ZDWHU XVH GLG QRW LQFUHDVH IRU WKH DQG FP URZV EXW LQ WKH FP URZV ZDWHU XVH LQ WKH ORZ

PAGE 81

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP 'HSWK *DLQHVYLOOH 6DPSOLQJ 7LPHV 5RZ 6SDFLQJ FPf D D D D D D E DE D D D D F E D D D D 6LFNOHSRGP Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Df Ef Ef Df 0HDQV LQ D FROXPQ ZLWKLQ URZ VSDFLQJV RU GHQVLWLHV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW ,QWHUDFWLRQ RI VR\EHDQ URZ VSDFLQJ DQG VLFNOHSRG SRSXODWLRQV H[LVWV

PAGE 82

7$%/( FRQWLQXHG 6DPSOLQJ 7LPHV r ; 5RZ 6SDFLQJ FPf D D D D D D D D D D D E E D E 6LFNOHSRGP Df Df Df Df Df DEf Df Df Df Df DEf Ef DEf Df Df Ef Ef Ef Df Ef 0HDQV LQ D FROXPQ ZLWKLQ URZ VSDFLQJV RU GHQVLWLHV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW ,QWHUDFWLRQ RI VR\EHDQ URZ VSDFLQJ DQG VLFNOHSRG SRSXODWLRQV H[LVWV

PAGE 83

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP 'HSWK 6DPSOLQJ 7LPH *DLQHVYLOOH 5RZ 6SDFLQJ 6LFNO HSRG W 'HQVLW\P FPf DOO DH EH EH D DEH DH EI f D DH DI DLRRI 0HDQV ZLWKLQ LQ D FROXPQ GLIIHUHQW DW 'XQFDQnV QHZ D URZ SUHFHGHG E\ WKH VDPH IROORZHG E\ WKH VDPH OHWWHU WKH b OHYHO RI SUREDELOLW\ PXOWLSOH UDQJH WHVW OHWWHU RU PHDQV ZLWK DUH QRW VLJQLILFDQWO\ DV GHWHUPLQHG E\ 7$%/( (IIHFW RQ 6RLO 7LPH RI 6R\EHDQ 5RZ 6SDFLQJ DQG 0RLVWXUH PLOOLEDUVf DW *DLQHVYLOOH 6LFNOHSRG FP 'HSWK 'HQVLWLHV 6DPSO LQJ 5RZ 6SDFLQJ W 6LFNOHSRG 'HQVLW\P FPf DH EH H DH DH DI DH DI DI D DI DI 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQfV QHZ PXOWLSOH UDQJH WHVW

PAGE 84

DQG KLJK VLFNOHSRG GHQVLWLHV ZDV VLJQLILFDQWO\ JUHDWHU WKDQ ZDWHU XVH DW WKH ]HUR DQG PHGLXP GHQVLWLHV 7DEOH f :DWHU XVH DW WKLV WLPH ZDV VLJQLILFDQWO\ JUHDWHU LQ WKH FP URZV FRPSDUHG WR WKH FP URZV DW WKH ]HUR DQG PHGLXP VLFNOHSRG GHQVLWLHV 7KH PHDQ WHQVLRPHWHU UHDGn LQJ DFURVV VLFNOHSRG GHQVLWLHV ZDV VLJQLILFDQWO\ KLJKHU RQO\ DW WKH KLJK GHQVLW\ ZKLFK LV VLPLODU WR WKH FP GHSWK 7KH HIIHFW RI VR\EHDQ URZ VSDFLQJ DQG GHQVLWLHV RQ FDQRS\ FORVXUH IRU LV VKRZQ LQ 7DEOH $W IRXU ZHHNV DIWHU SODQWLQJ FDQRS\ FORVXUH ZDV b LQ WKH FP URZV ZKLFK ZDV VLJQLILFDQWO\ JUHDWHU WKDQ WKH FP URZV DW b DQG WKH FP URZV DW b $W ILYH ZHHNV WKH FP URZV KDG JUHDWHU FDQRS\ FORVXUH WKDQ WKH DQG FP URZV *UHDWHU WKDQ b FDQRS\ FORVXUH RFFXUUHG ILYH ZHHNV DIWHU SODQWLQJ LQ WKH FP URZV DQG QRW XQWLO VHYHQ DQG QLQH ZHHNV IRU WKH DQG FP URZV UHVSHFWLYHO\ $V LQ VLFNOHSRG KHLJKW ZLGWK ILUVW EUDQFK KHLJKW VHHG SHU SODQW DQG VHHG SHU KHFWDUH ZHUH PHDVXUHG 6LFNOHSRG KHLJKW LQFUHDVHG DV GHQVLW\ LQFUHDVHG LQ WKH DQG FP URZV 7DEOH f 6LFNOHSRG KHLJKW LQ WKH FP URZV ZDV JUHDWHU WKDQ LQ WKH FP URZV DW DOO GHQVLWLHV 6LFNOHSRG ZLGWK ZDV XQDIIHFWHG E\ GHQVLW\ LQ HDFK URZ VSDFLQJ 7DEOH f ,Q WKH FP URZV VLFNOHSRG ZLGWK ZDV VLJQLILn FDQW ORZHU WKDQ WKH DQG FP URZV DW DOO GHQVLWLHV 6LFNOHSRG ILUVW EUDQFK KHLJKW ZDV JUHDWHVW LQ WKH FP URZV LQGLFDWLQJ ODWHUDO EUDQFKLQJ ZDV GHOD\HG XQWLO WKH VR\EHDQ FDQRS\ ZDV SHQHWUDWHG E\ WKH SODQW 7DEOH f 6LFNOHSRG VHHG SHU KHFWDUH LQFUHDVHG VLJQLILFDQWO\ DW WKH KLJK VLFNOHSRG GHQVLW\ IRU DOO URZ VSDFLQJV 7DEOH f $W WKH PHGLXP DQG KLJK GHQVLWLHV VHHG SHU KHFWDUH ZDV VLJQLILFDQWO\ ORZHU LQ WKH FP

PAGE 85

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6RLO 0RLVWXUH PLOOLEDUVf DW FP 'HSWK 6DPSOLQJ 7LPH *DLQHVYLOOH 5RZ 6SDFLQJ W 6LFNOHSRG 'HQVLW\P FPf 2 f f 2 DH Ep DH ELRRH DI DH DI DI DI DH DI DH 0HDQV ZLWKLQ D URZ D FROXPQ IROORZHG IHUHQW DW WKH b QHZ PXOWLSLH UDQJH SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKLQ E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLI HYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV WHVW 7$%/( (IIHFW RI 6R\EHDQ *DLQHVYLOOH 5RZ 6SDFLQJ RQ 3HUFHQW f &DQRS\ &ORVXUH 5RZ 6SDFLQJ :HHNV $IWHU 3ODQWLQJ FPf D D D D D D D E E D D D D D F F E E E E D fMr 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILn FDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 86

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG +HLJKW FPf *DLQHVYLOOH 5RZ 6SDFLQJ W 6LFNOHSRG 'HQVLW\P FPf DH EH &H E DH EH DI EI &I 0HDQV ZLWKLQ LQ D FROXPQ GLIIHUHQW DW 'XQFDQnV QHZ D URZ SUHFHGG IROORZHG E\ WKH WKH b HYHO RI PXOWLSOH UDQJH E\ WKH VDPH OHWWHU RU PHDQV ZLWK VDPH OHWWHU DUH QRW VLJQLILFDQWO\ SUREDELOLW\ DV GHWHUPLQHG E\ WHVW 7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG RQ 6LFNOHSRG :LGWK FPf *DLQHVYLOOH 'HQVLWLHV 5RZ 6SDFLQJ 6LFNOHSRG 'HQVLW\P FPf DH DH DH DI DI DI DI DJ DJ rMr 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 87

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG VW %UDQFK +HLJKW FPf *DLQHVYLOOH 5RZ 6SDFLQJ 6LFNOHSRG 'HQVLW\PA FPf DH DH DH DI DI EI DO DI f ‘Mr 0HDQV ZLWKLQ LQ D FROXPQ GLIIHUHQW DW 'XQFDQnV QHZ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWK IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ PXOWLSOH UDQJH WHVW 7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 6LFNOHSRG 6HHG SHU KDf *DLQHVYLOOH 5RZ 6SDFLQJ FPf W 6LFNOHSRG 'HQVLW\P D H DOH EH DH DHI EI D H DI EOJ rIr 0HDQV ZLWKLQ LQ D FROXPQ GLIIHUHQW DW 'XQFDQnV QHZ D URZ SUHFHGG E\ WKH VDPH OHWWHU RU PHDQV ZLWK IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ PXOWLSOH UDQJH WHVW

PAGE 88

URZV WKDQ LQ WKH FP URZV 7KHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHn WZHHQ URZ VSDFLQJV DW WKH ORZ GHQVLW\ 7KH FP URZV UHGXFHG VLFNOHSRG VHHG SHU KHFWDUH DQ DYHUDJH RI b IURP WKH FP URZV DQG b IURP WKH FP URZV 7KH JUHDWHVW VLFNOHSRG VHHG SURGXFWLRQ ZDV PLOOLRQ VHHGVKD SURGXFHG LQ WKH FP URZV DW WKH KLJK GHQVLW\ 7KH HIIHFW RI VR\EHDQ URZ VSDFLQJ DQG VLFNOHSRG GHQVLWLHV RQ SHUn FHQW OLJKW LQWHUFHSWLRQ E\ VLFNOHSRG LV VKRZQ LQ 7DEOH ,Q WKH FP URZV OLJKW LQWHUFHSWLRQ ZDV VLJQLILFDQWO\ JUHDWHU LQ WKH PHGLXP DQG KLJK GHQVLWLHV WKDQ LQ WKH ORZ VLFNOHSRG GHQVLW\ ,Q WKH DQG FP URZV WKH ORZ DQG PHGLXP GHQVLWLHV DUH VLPLODU EXW VLJQLILFDQWO\ ORZHU WKDQ WKH KLJK GHQVLW\ 6LFNOHSRG OLJKW LQWHUFHSWLRQ ZDV OHDVW LQ WKH FP URZV DW WKH ORZ DQG KLJK GHQVLWLHV DQG ORZHU WKDQ WKH FP URZV DW DOO GHQVLWLHV 7KH VLFNOHSRG LQ WKH FP URZV RQ WKH DYHUDJH RI DOO GHQVLWLHV LQWHUFHSWHG b PRUH OLJKW WKDQ WKRVH LQ WKH FP URZV 7KH VLFNOHSRG LQ WKH FP URZV LQWHUFHSWHG b PRUH OLJKW WKDQ WKRVH LQ WKH FP URZV +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH 6WXGLHV (IIHFWV RI VR\EHDQ URZ VSDFLQJ DQG KHUELFLGH SURJUDPV RQ VR\EHDQ \LHOG LQ DUH VKRZQ LQ 7DEOH 7KHUH ZDV QR VLJQLILFDQW GLIIHUn HQFH LQ VR\EHDQ \LHOG DPRQJ URZ VSDFLQJV ZKLFK LV VLPLODU WR WKH UHn VXOWV REWDLQHG IURP WKH FRPSHWLWLRQ VWXGLHV LQ )RU DOO KHUELFLGH WUHDWPHQWV QR GLIIHUHQFH LQ VR\EHDQ \LHOG ZDV IRXQG EHWZHHQ WULIOXU DOLQ PHWULEX]LQ DQG WULIOXUDOLQ PHWULEX]LQ WR[DSKHQH ZKLFK ZHUH ERWK JUHDWHU WKDQ WKH FKHFN ([FHOOHQW ZHHG FRQWURO LQ WKH QDUURZ URZV 7DEOH f VHHPHG WR PDVN WKH HIIHFW RI WKH WZR WUHDWPHQWV RQ VR\EHDQ \LHOG $OWKRXJK WKH WR[DSKHQH WUHDWPHQW UHVXOWHG LQ VLJQLILFDQWO\

PAGE 89

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG 6LFNOHSRG 'HQVLWLHV RQ 3HUFHQW /LJKW ,QWHUFHSWLRQ E\ 6LFNOHSRG *DLQHVYLOOH 5RZ 6SDFLQJ FPf 6LFNOHSRG 'HQVLW\P DH EH EH DI DH EI D D I EJ fMr 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKn LQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 90

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG +HUELFLGH 3URJUDPV RQ 6R\EHDQ
PAGE 91

JUHDWHU ZHHG FRQWURO UDWLQJV WKDQ WKH SUHSODQW WUHDWPHQW DORQH DW DOO URZ VSDFLQJV WKH DFWXDO GLIIHUHQFHV ZHUH QRW JUHDW HQRXJK WR GHFUHDVH \LHOG VLJQLILFDQWO\ 7KH FP URZV DW DOO GHQVLWLHV UHVXOWHG LQ WKH EHVW ZHHG FRQWURO 7KH WULIOXUDOLQ PHWULEX]LQ WR[DSKHQH WUHDWPHQW SURYLGHG H[FHOOHQW VLFNOHSRG FRQWURO LQ ERWK WKH DQG FP URZV $Q XQH[SHFWHG UHVXOW ZDV b UHGXFWLRQ RI VLFNOHSRG LQ WKH FP URZV UHFHLYLQJ QR KHUELFLGH DSSOLFDWLRQ GXH WR FRPSHWLWLRQ RI WKH VR\EHDQV ZLWK VLFNOHSRG 'LUHFWO\ DIIHFWLQJ ZHHG FRQWURO LV WKH UDWH RI VR\EHDQ FDQRS\ FORVXUH $W IRXU ZHHNV DIWHU SODQWLQJ WKH FP URZV KDG D FDQRS\ FORVXUH RI b ZKLFK LV VLJQLILFDQWO\ JUHDWHU WKDQ ERWK FP URZV DW b DQG WKH FP URZV DW b 7DEOH f 7KH FP URZV ZHUH RYHU b FORVHG DIWHU RQO\ ILYH ZHHNV ZKHUHDV WKH FP URZV UHTXLUHG VHYHQ ZHHNV DQG WKH FP URZV QHHGHG QLQH ZHHNV 7KH HDUO\ FDQRS\ FORVXUH RI WKH FP URZV LV UHVSRQVLEOH IRU WKH H[FHOOHQW ZHHG FRQWURO ZLWK RQO\ D SUHSODQW KHUELFLGH WUHDWPHQW ZKLFK JDYH HDUO\ VXSSUHVVLRQ RI VLFNOHSRG +RZHYHU LQ WKH ZLGH URZV ZKHQ DGGLWLRQDO VLFNOHSRG SODQWV HPHUJHGWKHUH ZHUH DGHTXDWH OLJKW DQG VSDFH IRU WKH ZHHG WR EHFRPH HVn WDEOLVKHG ,Q ILYH SODQWLQJ GDWHV ZHUH XVHG DQG DQ DGGLWLRQDO KHUELFLGH WUHDWPHQW RI DODFKORU PHWULEX]LQ 6R\EHDQ \LHOG IURP GLIIHUHQW URZ VSDFLQJV ZDV DIIHFWHG DW SODQWLQJ GDWHV $ DQG & ZKLOH DW SODQWLQJ GDWH QR GLIIHUHQFH ZDV IRXQG EHWZHHQ WKH DQG FP URZV 7KH FRPSHWLWLRQ WHVW VKRZHG WKDW WKH DQG FP URZV SURGXFHG VLJQLILFDQWO\ JUHDWHU \LHOGV WKDQ WKH FP URZV 1RQXQLIRUP DQG ORZ VLFNOHSRG SRSn XODWLRQV UHVXOWHG LQ WKH RYHUDOO \LHOGV WR EH VLPLODU LQ SODQWLQJ GDWHV & DQG ,W ZDV H[SHFWHG WKDW LQ ERWK WKH HDUO\ SODQWLQJ GDWH $ DQG

PAGE 92

ODWH SODQWLQJ GDWH ( QDUURZ URZV ZRXOG UHVXOW LQ D \LHOG LQFUHDVH RYHU WKH ZLGH URZV +RZHYHU WKLV KHOG WUXH IRU RQO\ WKH ODWH SODQWLQJ GDWH ( ,Q SODQWLQJ GDWH % ZKHUH ZHHG SRSXODWLRQ ZDV GHQVH DQG XQLIRUP WKH DQG FP \LHOGV ZHUH VLJQLILFDQWO\ JUHDWHU WKDQ WKH FP URZV 7KHUH ZHUH QR VLJQLILFDQW GLIIHUHQFHV EHWZHHQ KHUELFLGH WUHDWPHQWV H[n FHSW ZKHQ FRPSDUHG WR WKH FKHFN LQ SODQWLQJ GDWHV $ % DQG ( ,Q SODQWLQJ GDWHV & DQG WKH FKHFN ZDV QRW VLJQLILFDQWO\ GLIIHUHQW IURP WKH SUHSODQW DQG SUHHPHUJHQFH WUHDWPHQWV 7KLV LV LQGLFDWLYH RI WKH ORZ ZHHG GHQVLW\ SUHVHQW LQ SODQWLQJ GDWHV & DQG DUHDV 7DEOH f :HHG FRQWURO UDWLQJV IRU SODQWLQJ GDWH $ DUH VKRZQ LQ 7DEOH 7KHUH ZDV QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH SUHSODQW DQG SUHHPHUn JHQFH WUHDWPHQWV DW WKH DQG FP URZ VSDFLQJV $ODFKORU PHWUL EX]LQ DW D UDWLQJ ZDV VLJQLILFDQWO\ JUHDWHU WKDQ WULIOXUDOLQ PHWULEX]LQ DW D UDWLQJ &RQWURO ZLWK WULIOXUDOLQ PHWULEX]LQ WR[DSKHQH ZDV VLJQLILFDQWO\ EHWWHU WKDQ WKDW REWDLQHG ZLWK WKH SUHSODQW DQG SUHHPHUJHQFH WUHDWPHQWV DW DOO URZ VSDFLQJV :HHG FRQWURO LQ WKH FP URZV ZDV H[FHOOHQW IRU DOO WUHDWPHQWV 7KH FP URZ FKHFN UHn GXFHG VLFNOHSRG GHQVLW\ E\ b GXH WR VR\EHDQ FRPSHWLWLRQ :HHG FRQn WURO LQ SODQWLQJ GDWH % ZDV VLPLODU WR $ H[FHSW LQ WKH WULIOXUDOLQ PHWULEX]LQ WUHDWPHQW ZKHUH WKH UDWLQJ LQ WKH FP URZV ZDV VLJQLILn FDQWO\ ORZHU WKDQ WKH FP URZ LQ SODQWLQJ GDWH % 7DEOH f ,Q JHQHUDO DV URZ VSDFLQJ GHFUHDVHG ZHHG FRQWURO LQFUHDVHG ZLWK WKH H[FHSWLRQ RI WKH WR[DSKHQH DSSOLFDWLRQV ZKHUH b FRQWURO ZDV REn WDLQHG IRU DOO URZ VSDFLQJ +RZHYHU WR[DSKHQH PD\ QRW EH DYDLODEOH IRU XVH LQ VR\EHDQV LQ WKH IXWXUH GXH WR LWV EDQQLQJ E\ (3$

PAGE 93

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ DQG +HUELFLGH 3URJUDPV RQ 6LFNOHSRG &RQWURO *DLQHVYLOOH 5RZ 6SDFLQJ FPf 7UHDWPHQWVA 7ULIO XUDO LQ 0HWULEX]LQ 7ULIOXUDOLQ0HWULEX]LQ 7R[DSKHQH &KHFN DG EG &G DH EH FRRH DI EI FRRH 0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHUDUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSLH UDQJH WHVW 7$%/( (IIHFW RI 6R\EHDQ *DLQHVYLOOH 5RZ 6SDFLQJ RQ 3HUFHQW &DQRS\ &ORVXUH 5RZ 6SDFLQJ FPf :HHNV $IWHU r-r 3ODQWLQJ D D D D D D D E E E D D D D F F F E E D D fIr 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILn FDQWO\ GLIIHUHQW DW WKH EW OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 94

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH RQ 6R\EHDQ
PAGE 95

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ +HUELFLGH 3URJUDPV DQG 3ODQWLQJ 'DWH RQ 6LFNOHSRG :HHG &RQWURO 3ODQWLQJ 'DWH $ 0D\ f *DLQHVYLOOH rf§ f XX L P M } L f L Y f 7UHDWPHQWVA 5RZ 6SDFLQJ FPf 7ULIO XUDO LQ 0HWULEX]LQ $ODFKORU 0HWULEX] LQ 7ULIO XUDO LQ 0HWULEX]LQ 7R[DSKHQH &KHFN DG EG 9RG &G DH DH ELRRG FRRH DH DI EG &H A0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH IHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV QHZ PXOWLSOH UDQJH WHVW OHWWHU RU PHDQV ZLWKLQ QRW VLJQLILFDQWO\ GLI GHWHUPLQHG E\ 'XQFDQnV 7$%/( (IIHFW RI 6R\EHDQ 3ODQWLQJ 'DWH RQ 'DWH % 0D\ f 5RZ 6SDFLQJ +HUELFLGH 3URJUDPV DQG 6LFNOHSRG :HHG &RQWURO 3ODQWLQJ *DLQHVYLOOH 5RZ 6SDFLQJ FPf 7UHDWPHQWVA 7ULIOXUDOLQ 0HWULEX]LQ $ODFKORU 0HWULEX]LQ 7UL IO XUDO L Q 0HWULEX]LQ 7R[DSKHQH &KHFN DG EG EG FG D DH EG FRRH DI DI EG FH A0HDQV ZLWKLQ D URZ SUHFHGHG E\ WKH VDPH OHWWHU RU PHDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIn IHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 96

7KH HIIHFW RI VR\EHDQ URZ VSDFLQJ RQ SHUFHQW FDQRS\ FORVXUH IRU SODQWLQJ GDWH $ LV VKRZQ LQ 7DEOH 7KHUH ZDV QR VLJQLILFDQW GLIIHUn HQFH LQ FDQRS\ FORVXUH DPRQJ URZ VSDFLQJV DW IRXU ZHHNV $W ILYH ZHHNV WKH FDQRS\ FORVXUH LQ WKH DQG FP URZV ZDV VLJQLILFDQWO\ JUHDWHU WKDQ WKDW RI WKH FP URZV 7KH FP URZV UHDFKHG b FORVXUH LQ VL[ ZHHNV ZKLOH WKH DQG FP URZV UHTXLUHG VHYHQ DQG QLQH ZHHNV UHVSHFWLYHO\ 3ODQWLQJ GDWH % 7DEOH f FDQRS\ FORVXUH ZDV PRUH UDSLG WKDQ $ $W IRXU ZHHNV WKH FP URZV KDG DQ b FORVXUH FRPSDUHG WR RQO\ DQG b IRU WKH DQG FP URZV UHVSHFWLYHO\ 7KH FP URZV REWDLQHG b FORVXUH DW ILYH ZHHNV DQG WKH FP URZV UHTXLUHG RYHU WHQ ZHHNV 1LQHW\ SHUFHQW FORVXUH ZDV QRW DFKLHYHG LQ SODQWLQJ GDWH & XQWLO VL[ ZHHNV IRU WKH FP URZV HLJKW ZHHNV IRU WKH FP URZV DQG QLQH ZHHNV IRU WKH FP URZV 7DEOH f 3ODQWLQJ GDWH VR\EHDQ FDQRS\ FORVXUH ZDV IXUWKHU GHOD\HG IRU DOO URZ VSDFLQJV 7DEOH f 7KH FP URZV GLG QRW DFKLHYH b FDQRS\ FORVXUH IRU VHYHQ ZHHNV $W SODQWLQJ GDWH ( 7DEOH f WKH QDUURZ URZV KDG b FDQRS\ FORVXUH DW VHYHQ ZHHNV 7KH FP URZV DW WHQ ZHHNV KDG RQO\ b FORVXUH 7KH QDUURZ URZ FDQRS\ FORVXUH DGYDQWDJH ZDV JUHDWHVW DW SODQWLQJ GDWHV % DQG ( ZKLFK DOVR LV ZKHUH WKH QDUURZ URZV \LHOGV DUH VLJQLILFDQWO\ JUHDWHU WKDQ WKH \LHOGV RI WKH ZLGH URZV

PAGE 97

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ RQ 3HUFHQW &DQRS\ &ORVXUH 3ODQWLQJ 'DWH $ 0D\ f *DLQHVYLOOH 5RZ 6SDFLQJ :HHNV r $IWHU 3ODQWLQJ FPf D D D D D D D D DE DE D D D D D E E E E D D 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH OHWWHU DUH QRW SUREDELOLW\ DV WHVW 7$%/( (IIHFW RI 3ODQWLQT 6R\EHDQ 5RZ 6SDFLQJ RQ 'DWH % 0D\ f 3HUFHQW &DQRS\ &ORVXUH *DLQHVYLOOH 5RZ 6SDFLQJ FPf :HHNV $IWHU 3ODQWLQJA D D D D D D D E E E E E D D F F F F F E E fMr 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 98

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ RQ 3HUFHQW &DQRS\ &ORVXUH 3ODQWLQJ 'DWH & 0D\ f *DLQHVYLOOH 5RZ 6SDFLQJ :HHNV $IWHU 3ODQWLQJA FPf 7R D D D D D D D E E E E D D D F E F F E E D 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH OHWWHU DUH QRW SUREDELOLW\ DV WHVW 7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ RQ 3ODQWLQJ 'DWH -XQH f 3HUFHQW &DQRS\ *DLQHVYLOOH &ORVXUH 5RZ 6SDFLQJ FPf :HHNV $IWHU 3ODQWLQJA D D D D D D D E E E E E E D F F F E F F E 0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 99

7$%/( (IIHFW RI 6R\EHDQ 5RZ 6SDFLQJ RQ 3HUFHQW &DQRS\ &ORVXUH 3ODQWLQJ 'DWH ( -XQH f *DLQHVYLOOH 5RZ 6SDFLQJ FPf :HHNV $IWHU 3ODQWLQJ D D D D D D D DE D D E D D D E E E F E E E A0HDQV ZLWKLQ D FROXPQ IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW DW WKH b OHYHO RI SUREDELOLW\ DV GHWHUPLQHG E\ 'XQFDQnV QHZ PXOWLSOH UDQJH WHVW

PAGE 100

6800$5< $1' &21&/86,216 &RPSHWLWLRQ VWXGLHV EHWZHHQ VR\EHDQV DQG VLFNOHSRG ZHUH FRQGXFWHG IURP ,Q DQG VR\EHDQ \LHOGV ZHUH VLJQLILFDQWO\ JUHDWHU LQ WKH FP URZV WKDQ WKH FP URZV 7KHUH ZDV QR VLJQLILn FDQW GLIIHUHQFH LQ \LHOG EHWZHHQ URZ VSDFLQJV LQ 6R\EHDQV LQ ZHUH SODQWHG ODWH WKHUHIRUH WKH KLJKHU VR\EHDQ SRSXODWLRQV RI WKH QDUURZ URZV ZHUH DGYDQWDJHRXV 6R\EHDQV LQ ZHUH SODQWHG DW WKH DSSURSULDWH WLPH KRZHYHU ORZ UDLQIDOO VXSSUHVVHG \LHOGV DQG WUHDWPHQW GLIIHUHQFHV :KLOH QDUURZ URZ VR\EHDQV GLG QRW SURYLGH D \LHOG DGYDQWDJH QHLWKHU GLG WKH\ GHFUHDVH \LHOGV *URZLQJ FRQGLWLRQV LQ ZHUH H[FHOOHQW ,Q WKLV VLWXDWLRQ \LHOGV IURP WKH DQG FP URZV ZHUH VLJQLILFDQWO\ KLJKHU WKDQ IURP FP URZV )URP WR VR\EHDQ \LHOG LQFUHDVHG DQG b IRU WKH DQG FP URZV UHVSHFWLYHO\ &RUUHVSRQGLQJ WR WKHVH \LHOG LQFUHDVHV VLFNOHSRG GU\ ZHLJKW LQn FUHDVHG RQO\ b IRU WKH FP URZV GHFUHDVHG b IRU WKH FP URZV DQG LQFUHDVHG b LQ WKH FP URZV &RQFHGLQJ WKDW WKHVH YDOXHV FDQQRW EH VWDWLVWLFDOO\ FRPSDUHG D WUHQG VHHPV DSSDUHQW :LWK DPSOH PRLVWXUH WKH VR\EHDQV LQ WKH FP URZV HIIHFWLYHO\ XWLOL]HG WKH DGGLWLRQDO ZDWHU ZKLOH LQ FP URZV VLFNOHSRG ZDV DEOH WR LQFUHDVH LWV ELRPDVV GUDPDWLFDOO\ DW WKH H[SHQVH RI WKH FURS 6R\EHDQ \LHOG FRUUHODWHG ZHOO WR VLFNOHSRG GU\ ZHLJKW LQ JLYLQJ D FXUYLOLQHDU UHVSRQVH ZLWK D FRHIILFLHQW RI GHWHUPLQDWLRQ RI 6R\EHDQ \LHOG VLJQLILFDQWO\ GHFUHDVHG DV VLFNOHSRG GHQVLW\ LQFUHDVHG LQ ,Q

PAGE 101

ORZ DQG PHGLXP ZHHG GHQVLWLHV FRQWDLQHG VLPLODU VR\EHDQ \LHOGV ZKLOH LQ ]HUR DQG ORZ GHQVLWLHV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW 0HDQ SODQW ZDWHU XVH ZDV VLJQLILFDQWO\ JUHDWHU LQ WKH DQG FP URZV WKDQ LQ WKH FP URZV LQ ERWK DQG +RZHYHU XQGHU VWUHVV FRQGLWLRQV WKHUH ZDV QR GLIIHUHQFH EHWZHHQ WKH QDUURZ DQG ZLGH URZV DW WKH FP GHSWK LQ ,Q QR VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH WZR ZHUH IRXQG b RI WKH WLPH 7KLV LQGLFDWHV WKDW DW WKLV GHSWK ZKHQ XQGHU ZDWHU VWUHVV QDUURZ URZV GR QRW XVH PRUH ZDWHU WKDQ ZLGH URZV :KHQ ZDWHU LV SOHQWLIXO WKH QDUURZ URZV DUH XWLOL]LQJ PRUH ZDWHU DQG WKHUHIRUH DUH SURGXFLQJ PRUH SKRWRV\QWKDWH $W WKH FP GHSWK LQ QDUURZ URZV XVHG PRUH ZDWHU LQ DOO FRQGLWLRQV 7KH GLIIHUHQFH LQ URZ VSDFLQJ ZDWHU XVH LV JUHDWHU DW WKH FP GHSWK WKDQ DW WKH FP GHSWK 6RLO HYDSRUDWLRQ SOD\V D PRUH LPSRUWDQW SDUW LQ GU\LQJ RXW DW WKH FP GHSWK WKDQ DW WKH FP GHSWK /DWHU LQ WKH JURZLQJ VHDVRQ ZKHQ VR\EHDQ URRWV FDQ XWLOL]H ZDWHU DW DQG EHORZ WKH FP GHSWK VRLO HYDSRUDWLRQ PD\ QRW EH DV LPSRUWDQW 2QH RI WKH PRVW LPSRUWDQW DVSHFWV RI QDUURZ URZ VR\EHDQV PD\ EH WKH UHGXFWLRQ RI VLFNOHSRG VHHG SURGXFWLRQ 7KH FP URZV UHGXFHG WKH VLFNOHSRG VHHG QXPEHU SHU KHFWDUH b FRPSDUHG WR FP URZV DQG b FRPSDUHG WR FP URZV LQ 7KH UHGXFWLRQ LQ ZDV VLPLODU ZLWK D b GURS LQ VHHG IURP WR FP URZV 7KH DYHUDJH QXPEHU RI VLFNOHn SRG VHHG SHU SODQW LQ ZDV 7KHVH UHVXOWV VKRZ WKDW LI RQH SODQW ZDV DOORZHG WR PDWXUH DQG SURGXFH VHHG \LHOGV ZRXOG QRW VXIIHU EXW VLFNOHSRG VHHG UHVHUYHV LQ WKH VRLO ZRXOG LQFUHDVH ,Q WKH FP URZV WKHUH ZHUH RYHU PLOOLRQ VLFNOHSRG VHHG SHU KHFWDUH SURGXFHG DW WKH ORZ VLFNOHSRG GHQVLW\ (YHQ LI RQO\ b JHUPLQDWHG WKH IROORZn LQJ \HDU WKHUH ZRXOG EH RYHU VLFNOHSRG SODQWV SHU KHFWDUH WR

PAGE 102

FRQWHQG ZLWK 6LQFH WR[DSKHQH ZLOO QR ORQJHU EH DQ RSWLRQ LQ WKH IXWXUH IXOO VHDVRQ FRQWURO ZRXOG EH D GLIILFXOW WDVN /RQJ WHUP ZHHG FRQWURO QHHGV WR EH H[DPLQHG IXUWKHU $ORQJ ZLWK ZDWHU RQH RI WKH PDMRU JURZWK IDFWRUV LQ SODQW FRPSHn WLWLRQ LV OLJKW ,Q VLFNOHSRG LQ WKH FP URZV LQWHUFHSWHG b PRUH OLJKW WKDQ WKRVH LQ WKH FP URZV 6LPLODU UHVXOWV ZHUH REWDLQHG LQ ZLWK b PRUH OLJKW EHLQJ LQWHUFHSWHG 6LFNOHSRG ELRPDVV ZDV UHGXFHG GUDPDWLFDOO\ E\ FRPSHWLWLRQ RI WKH VR\EHDQV LQ WKH FP URZV 1RW RQO\ ZRXOG WKHVH VPDOO VLFNOHSRG SODQWV LQWHUFHSW OHVV OLJKW EXW WKH\ SUHVHQW IHZHU SUREOHPV DW KDUYHVW WKDQ ODUJHU SODQWV :KHQ KHUELFLGH WUHDWPHQWV ZHUH HYDOXDWHG ZHHG FRQWURO LPSURYHG DV URZ VSDFLQJ GHFUHDVHG 7ULIOXUDOLQ PHWULEX]LQ SSL JDYH b FRQWURO RI VLFNOHSRG LQ WKH FP URZV GXULQJ FRPSDUHG WR DQG b FRQWURO LQ WKH DQG FP URZV UHVSHFWLYHO\ $ODFKORU PHWULEX]LQ FUHDWHG VLPLODU UHVXOWV ZLWK b FRQWURO LQ WKH FP URZV FRPSDUHG WR DQG b LQ WKH DQG FP URZV UHVSHFWLYHO\ 7ZR DSSOLFDWLRQV RI WR[DSKHQH JDYH b FRQWURO DW DOO URZ VSDFLQJV ,Q WKH FP URZ FKHFN VLFNOHSRG ZDV UHGXFHG b GXH WR FRPSHWLWLRQ RI WKH VR\EHDQV 2YHU b FDQRS\ FORVXUH ZDV DFKLHYHG LQ WKH FP URZV ILYH ZHHNV DIWHU SODQWLQJ DW WKH UHFRPPHQGHG SODQWLQJ GDWH ,I WKH SUHSODQW RU SUHHPHUJHQFH KHUELFLGHV ZLOO VXSSUHVV VLFNOHSRG HPHUJHQFH IRU IRXU WR ILYH ZHHNV WKH VR\EHDQ FDQRS\ LQ WKH FP URZV LV FDSDEOH RI SUHYHQWLQJ VHULRXV FRPSHWLWLRQ 7KLV UHVHDUFK LQGLFDWHV WKDW VR\EHDQV SODQWHG LQ QDUURZ URZV PD\ EH EHQHILFLDO LQ WKH PDQDJHPHQW RI ZHHGV VXFK DV VLFNOHSRG )XWXUH LQYHVWLJDWLRQV LQWR ZDWHU XVH HIILFLHQF\ DQG OLJKW FRPSHWLWLRQ VKRXOG

PAGE 103

EH LQWHQVLILHG 7KH ORZ ZDWHU KROGLQJ FDSDFLW\ RI )ORULGDnV VDQG\ VRLOV LQFUHDVHV FULWLFDO FRPSHWLWLRQ EHWZHHQ FURSV DQG ZHHGV IRU PRLVWXUH 7KH HIIHFW RI QDUURZ URZV RQ RWKHU ZHHGV QHHGV WR EH HYDOXDWHG 6HOGRP GRHV D JURZHU RQO\ KDYH D VLQJOH ZHHG VSHFLHV SUHVHQW $ PXOWLSOH VSHFWUXP RI ZHHG SRSXODWLRQV LV XVXDOO\ HYLGHQW $QRWKHU DUHD RI UHVHDUFK IRU WKH IXWXUH PLJKW LQYROYH WKH HYDOXDWLRQ RI VR\EHDQ FXOWLYDUV IRU YDULDWLRQ LQ FRPSHWLWLYH DELOLW\ )ORULGDnV FOLPDWH LV XQLTXH LQ WKDW VR\EHDQV FRXOG EH SODQWHG PXFK HDUOLHU WKDQ LQ RWKHU VWDWHV ([WUHPH HDUO\ SODQWLQJ ZLWK HDUO\ PDWXULQJ YDULHWLHV FRXOG SRVVLEO\ JHW D KHDG VWDUW RQ HPHUJHQFH RI VRPH ZHHGV ,Q WRGD\nV HFRQRP\ RQO\ WKH HIILFLHQW IDUPHU ZLOO EH VXFFHVVIXO 1DUURZ URZ VR\EHDQV PD\ EH RQH DOWHUQDWLYH IRU PRUH HIILFLHQW VR\EHDQ SURGXFWLRQ

PAGE 104

$33(1',; $ 5$,1)$// '$7$ $5& 48,1&< )/25,'$ '$< 0$< -81( -8/< $8*867 6(37(0%(5 7 727$/ f7

PAGE 105

$33(1',; % 5$,1)$// '$7$ *$,1(69,//( )/25,'$ '$< 0$< -81( -8/< $8*867 6(37(0%(5 7 7 7 a7a 7 7 7 7 7 7 a 727$/

PAGE 106

$33(1',; & 5$,1)$// '$7$ *$,1(69,//( )/25,'$ '$< 0$< -81( -8/< $8*867 6(37 2&7 /2 2 f R /2 R f 7 R 2' r 7 727$/

PAGE 107

$33(1',; 5$,1)$// '$7$ *$,1(69,//( )/25,'$ '$< 0$5&+ $35,/ 0$< -81( -8/< $8*867 7 7 7 &2 R f 7 7 7 727$/

PAGE 108

/,7(5$785( &,7(' $QGHUVRQ 0 DQG & 0F:KRUWHU 7KH HFRQRPLFV RI FRPPRQ FRFNOHEXU FRQWURO LQ VR\EHDQ SURGXFWLRQ :HHG 6FL $QGHUVRQ : 3 :HHG 6FLHQFH 3ULQFLSOHV :HVW 3XEOLVKLQJ &RPSDQ\ 1HZ
PAGE 109

%XFKDQDQ $ DQG ( 5 %XUQV D :HHG FRPSHWLWLRQ LQ FRWWRQ 6LFNOHSRG DQG WDOO PRUQLQJJORU\ :HHG 6FL %XFKDQDQ $ DQG ( 5 %XUQV E :HHG FRPSHWLWLRQ LQ FRWWRQ ,, &RFNOHEXU DQG UHGURRW SLJZHHG :HHG 6FL %XFKDQDQ $ ( : +DXVHU : (WKUHGJH DQG 6 5 &HFLO &RPSHWLWLRQ RI )ORULGD EHJJDUZHHG DQG VLFNOHSRG ZLWK SHDQXWV ,, (IIHFWV RI FXOWLYDWLRQ ZHHGV DQG 6$'+ :HHG 6FL %XFKDQDQ $ DQG & 6 +RYHODQG 6LFNOHSRG6XFFHVV VWRU\ RI D ZHHG DQG KRZ WR FRQWURO LW LQ VR\EHDQV :HHGV 7RGD\ f %XFKDQDQ $ / 7KXUORZ DQG + 7 5RJHUV &RQWURO RI VLFNOHSRG &DVVLD REWXVLIROLD /f LQ VR\EHDQV 3URF 6R :HHG 6FL 6RF %XUQVLGH & DQG : / &ROYLOOH D 6R\EHDQ DQG ZHHG \LHOGV DV DIIHFWHG E\ LUULJDWLRQ URZVSDFLQJ WLOODJH DQG DPL EHQ :HHGV %XUQVLGH & DQG : / &ROYLOOH E
PAGE 110

&XUUH\ : / + 7HHP DQG + -RUGDQ 6LFNOHSRG FRPSHWLWLRQ DQG FRQWURO SURJUDPV LQ )ORULGD VR\EHDQV 3URF 6R :HHG 6H L 6RF 'RQDOG & 0 &RPSHWLWLRQ DPRQJ SDVWXUH SODQWV $XVW $JUL 5HV 'RQDOG & 0 &RPSHWLWLRQ IRU OLJKW LQ FURSV DQG SDVWXUHV 3DJHV LQ 6RFLHW\ IRU ([SHULPHQWDO %LRORJ\ 6\PSRVLD 0HFKDQLVPV LQ %LRORJLFDO &RPSHWLWLRQ $FDGHPLF 3UHVV ,QF 1HZ
PAGE 111

+DPPHUWRQ / (IIHFWV RI ZHHG FRPSHWLWLRQ GHIROLDWLRQ DQG WLPH RI KDUYHVW RQ VR\EHDQV ([S $JU +DUSHU / )DFWRUV FRQWUROOLQJ SODQW QXPEHUV SS ,Q 7KH %LRORJ\ RI :HHGV HG / +DUSHU %ODFNZHOO 6FL 3XE 2[IRUG SS +DUWZLJ ( ( 5RZ ZLGWK DQG UDWHV RI SODQWLQJ LQ WKH VRXWKHUQ VWDWHV 6R\EHDQ 'LJ f +DXVHU ( : $ %XFKDQDQ DQG : (WKUHGJH &RPSHn WLWLRQ RI )ORULGD EHJJDUZHHG DQG VLFNOHSRG ZLWK SHDQXWV (IIHFWV RI SHULRGV RI ZHHGIUHH PDLQWHQDQFH RQ ZHHG FRPSHn WLWLRQ :HHG 6FL +DXVHU ( : & & 'RZOHU DQG : + 0DUFKDQW 3URJUHVV UHSRUW V\VWHPV RI ZHHG FRQWURO IRU VR\EHDQV 3URF 6R :HHG 6FL 6RF +HVNHWK DQG %DNHU /LJKW DQG FDUERQ DVVHPLODWLRQ E\ SODQW FRPPXQLWLHV &URS 6FL +LFNV 5 : 3HQGOHWRQ 5 / %HUQDUG DQG 7 -RKQVWRQ 5HVSRQVH RI VR\EHDQ SODQW W\SHV WR SODQWLQJ SDWWHUQ $JURQ +RYHODQG & 6 $ %XFKDQDQ DQG 0 & +DUULV 5HVSRQVH RI ZHHGV WR VRLO SKRVSKRUXV DQG SRWDVVLXP :HHG 6FL +RYHUPDOH & + DQG + 5 +XUVW &RQWURO RI VLFNOHSRG &DVVLD REWXVLIROLD /f LQ VR\EHDQV 3URF 6R :HHG 6FL 6RF ,UZLQ + DQG % / 7XUQHU &KURPRVRPDO UHODWLRQVKLSV DQG WD[RQRPLF FRQVLGHUDWLRQV LQ WKH JHQXV &DVVLD $P %RW -RKQVRQ 5 5 ( *UHHQ DQG & : -RUGDQ :KDW LV WKH EHVW VR\EHDQ URZ ZLGWK" $ 8 6 SHUVSHFWLYH &56 $ f .QDNH ( / DQG ) : 6OLIH &RPSHWWLRQ RI 6HWDULD IDEHUL ZLWK FRUQ DQG VR\EHDQV :HHGV .QDNH ( / DQG ) : 6OLIH (IIHFW RI WLPH RI JLDQW IR[WDLO UHPRYDO IURP FRUQ DQG VR\EHDQV :HHG 6FL .XVW & $ DQG 5 5 6PLWK ,QWHUDFWLRQ RI OLQXURQ DQG URZ VSDFLQJ IRU FRQWURO RI \HOORZ IR[WDLO DQG EDUQ\DUGJUDVV LQ VR\EHDQV :HHG 6FL

PAGE 112

/HKPDQ : ) DQG : /DPEHUW (IIHFWV RI VSDFLQJ RI VR\EHDQ SODQWV EHWZHHQ DQG ZLWKLQ URZV RQ \LHOG DQG LWV FRPSRQHQWV $JURQ /RRPLV : ( %DVLF VWXGLHV LQ ERWDQ\ HFRORJ\ DQG SODQW SK\VLRORJ\ 3URF 1RUWK &HQW :HHG &RQW &RQI /RRPLV 5 : : $ :LOOLDPV DQG : 'XQFDQ &RPPXQLW\ DUFKLWHFWXUH DQG WKH SURGXFWLYLW\ RI WHUUHVWULDO SODQW FRPn PXQLWLHV 3DJHV LQ +DUYHVWLQJ WKH 6XQ HG $ 6DQ 3LHWUR $FDGHPLF 3UHVV 1HZ
PAGE 113

2OLYHU / 5 5 ( )UDQV DQG 5 ( 7DOEHUW )LHOG FRPSHWLWLRQ EHWZHHQ WDOO PRUQLQJJORU\ DQG VR\EHDQ *URZWK DQDO\VLV :HHG 6FL 2OLYHU / 5 : 0 /DPEHUW DQG $ % -DPHV 6LFNOHSRG FRQWURO LQ VR\EHDQV 3URF 6R :HHG 6FL 6RF 3DYO\FKHQNR 7 3ODQW FRPSHWLWLRQ DQG ZHHG FRQWURO $JU ,QVW 5HY f 3HQGOHWRQ : DQG ( ( +DUWZLJ 3DJHV LQ 6R\EHDQV ,PSURYHPHQW 3URGXFWLRQ DQG 8VHV HG % ( &DOGZHOO $PHULFDQ 6RFLHW\ RI $JURQRP\ 0DGLVRQ :LVFRQVLQ SS 3HWHUV ( 0 5 *HEKDUGW DQG ) 6WULW]NH ,QWHUn UHODWLRQV RI URZ VSDFLQJV FXOWLYDWLRQV DQG KHUELFLGHV IRU ZHHG FRQWURO LQ VR\EHDQV :HHGV 3HWHUV ( / .OLQJPDQ DQG 5 : /DUVRQ 5RWDU\ KRHLQJ LQ FRPELQDWLRQ ZLWK KHUELFLGHV DQG RWKHU FXOWLYDWLRQV IRU ZHHG FRQWURO LQ VR\EHDQV :HHGV 3HWHUV % DQG / & -RKQVRQ 6RLO PRLVWXUH XVH E\ VR\EHDQV $PHU 6RF $JURQ 3UREVW $ + ,QIOXHQFH RI VSDFLQJ RQ \LHOG DQG RWKHU FKDUDFWHUV LQ VR\EHDQV $JURQ 5DGIRUG $ ( + ( $KOHV DQG & 5 %HOO 9DVFXODU )ORUD RI WKH &DUROLQDV 3 %RRN ([FKDQJH 8QLY RI 1 &DUROLQD &KDSHO +LOO 1 &DUROLQD SS 5XQJH ( & $ DQG 5 7 2GHOO 7KH UHODWLRQVKLSV EHWZHHQ SUHFLSLWDWLRQ WHPSHUDWXUH DQG WKH \LHOG RI VR\EHDQV RQ WKH $JURQRP\ 6RXWK )DUP 8UEDQD ,OOLQRLV $JURQ 6DNDPRWR & 0 DQG 5 + 6KDZ /LJKW GLVWULEXWLRQ LQ VR\EHDQ FDQRSLHV $JURQ 6FRWW + DQG / 5 2OLYHU )LHOG FRPSHWLWLRQ EHWZHHQ WDOO PRUQLQJJORU\ DQG VR\EHDQV ,, 'HYHORSPHQW DQG GLVn WULEXWLRQ RI URRW V\VWHPV :HHG 6FL 6KDGKROW & $ DQG / +ROP 6RPH TXDQWLWDWLYH DVSHFWV RI ZHHG FRPSHWLWLRQV LQ YHJHWDEOH FURSV :HHGV 6KDZ 5 + DQG 5 /DLQJ 3DJHV LQ 3ODQW (QYLURQPHQW DQG (IILFLHQW :DWHU 8VH $PHULFDQ 6RFLHW\ RI $JURQRP\ 0DGLVRQ :LVFRQVLQ SS

PAGE 114

6KHHWV 7 DQG : $ 6NURFK +HUELFLGH LQMXU\ V\PSn WRPV DQG GLDJQRVLV &RRSHUDWLYH ([WHQVLRQ 6HUYLFH ,)$6 8QLYHUVLW\ RI )ORULGD SS 6KHUPDQ 0 ( / 7KRPSVRQ DQG 7 0 %XQQ 6LFNOHSRG PDQDJHPHQW LQ VR\EHDQV 3URF 6R :HHG 6FL 6RF 6KLEOHV 5 0 DQG & 5 :HEHU /HDI DUHD VRODU UDGn LDWLRQ LQWHUFHSWLRQ DQG GU\ PDWWHU SURGXFWLRQ E\ VR\EHDQV &URS 6FL 6LQFODLU 7 5 6RODU UDGLDWLRQ LQ YHJHWDWLYH FDQRSLHV DQG LWV SK\VLRORJLFDO LPSOLFDWLRQV :KDWnV 1HZ ,Q 3ODQW 3K\VLRORJ\ 6LRQLW 1 DQG 3 .UDPHU (IIHFWV RI ZDWHU VWUHVV GXULQJ GLIIHUHQW VWDJHV RI JURZWK RI VR\EHDQV $JURQ 6PLWK 5 / (IIHFW RI GDWH RI SODQWLQJ DQG URZ ZLGWK RQ \LHOG RI VR\EHDQV 6RLO &URS 6FL 6RF )OD 3URF 6PLWK 5 / (FRORJ\ DQG )LHOG %LRORJ\ +DUSHU DQG 5RZ 1HZ
PAGE 115

7LPPRQV : 0 'UDNH : &ROE\ DQG %DUW &KHPLFDO FRPSRVLWLRQ RI ZHHGV DQG DFFRPSDQ\LQJ FURS SODQWV $JURQ 9HQJULV : &ROE\ DQG 0 'UDNH 3ODQW QXWULWLRQ FRPSHWLWLRQ EHWZHHQ ZHHGV DQG FRUQ $JURQ :D[ / 0 : 5 1DYH DQG 5 &RRSHU :HHG FRQWURO LQ QDUURZ DQG ZLGHURZ VR\EHDQV :HHG 6FL :D[ / 0 DQG : 3HQGOHWRQ (IIHFW RI URZ VSDFLQJ RQ ZHHG FRQWURO LQ VR\EHDQV :HHG 6FL :HEHU & 5 DQG : 6WDQLZRUWK &RPSHWLWLYH UHODWLRQn VKLSV LQ YDULDEOH ZHHG DQG VR\EHDQ VWDQGV $JURQ :HHG 6FLHQFH 7HUPLQRORJ\ &RPPLWWHH &RPSRVLWH OLVW RI ZHHGV :HHG 6FL :HL EDQN 3 $ FRPSDULVRQ RI FRPSHWLWLYH HIIHFWV RQ VRPH FRPPRQ ZHHG VSHFLHV $QQ $SSO %LRO :LHVH $ ) DQG & : 9DQGLYHU 6RLO PRLVWXUH HIIHFWV RQ FRPSHWLWLYH DELOLW\ RI ZHHGV :HHG 6FL :LJJDQV 5 7KH LQIOXHQFH RI VSDFH DQG DUUDQJHPHQW RQ WKH SURGXFWLRQ RI VR\EHDQ SODQWV $PHU 6RF $JURQ :LONLQVRQ 5 ( 6LFNOHSRG K\GURFDUERQ UHVSRQVH WR SKRWRSHULRG 3K\WRFKHPLVWU\ :LOVRQ + 3 DQG 5 + &ROH 0RUQLQJJORU\ FRPSHWLWLRQ LQ VR\EHDQV :HHGV =LPGDKO 5 / :HHGFURS FRPSHWLWLRQ D UHYLHZ ,QWHUn QDWLRQDO 3ODQW 3URWHFWLRQ &HQWHU 2UHJRQ 6WDWH 8QLYHUVLW\ &RUYDOOLV 2UHJRQ SS

PAGE 116

%,2*5$3+,&$/ 6.(7&+ -HUU\ +ROODQG -RUGDQ -U ZDV ERUQ $XJXVW LQ 7XSHOR 0LVVLVVLSSL +H JUDGXDWHG IURP 7XSHOR +LJK 6FKRRO LQ -XQH ,Q 6HSWHPEHU KH HQWHUHG ,WDZDPED -XQLRU &ROOHJH )XOWRQ 0LVVLVVLSSL DQG UHFHLYHG KLV $VVRFLDWHV RI $UWV GHJUHH LQ 0D\ ,Q 6HSWHPEHU KH HQWHUHG 0LVVLVVLSSL 6WDWH 8QLYHUVLW\ DQG UHFHLYHG WKH %DFKHORU RI 6FLHQFH GHJUHH LQ SODQW SDWKRORJ\ DQG ZHHG VFLHQFH LQ +H UHFHLYHG KLV 0DVWHU RI 6FLHQFH GHJUHH LQ ZHHG VFLHQFH IURP 0LVVLVVLSSL 6WDWH 8QLYHUVLW\ LQ 6LQFH WKDW WLPH KH KDV EHHQ HQUROOHG LQ WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD WR SXUVXH WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ZLWK D PDMRU LQ DJURQRP\ +ROODQG -RUGDQ LV PDUULHG WR WKH IRUPHU /LVD *ULIILQ DQG WKH\ KDYH WZR FKLOGUHQ $SULO 0LFKHOOH DQG %UHWW +ROODQG

PAGE 117

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ : / &SUUH\ &KDLUPDQ $VVRFLDWH 3URIHVVRU RI $ QRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ W/ + 7HHP $VVRFLDWH 3URIHVVRU RI $JURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ % M %UHFNH $VVRFLDWH 3URIHVVRU RI $JURQRP\

PAGE 118

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ & +HU]RJ $VVRFLDL OHVVRU RI (QWRPRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ + +DOO $VVRFLDWH 3URIHVVRU RI %RWDQ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ & +LHEVFK $VVLVWDQW 3URIHVVRU RI $JURQRP\

PAGE 119

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $SULO \HW D $ A 'HDQ !\ROOHJH RI $JULFXOWXUH 'HDQ IRU *UDGXDWH 6WXGLHV DQG 5HVHDUFK

PAGE 120

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EYEB1LJID_4D3AT6 INGEST_TIME 2011-10-24T15:41:13Z PACKAGE AA00003838_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES