Citation
Production temperature effects on anatomy, morphology, physiology and postharvest longevity of leatherleaf fern (Rumohra adiantiformis (Forst.) Ching)

Material Information

Title:
Production temperature effects on anatomy, morphology, physiology and postharvest longevity of leatherleaf fern (Rumohra adiantiformis (Forst.) Ching)
Creator:
Stamps, R. H ( Robert Huguenor ), 1948-
Publication Date:
Language:
English
Physical Description:
xvi, 122 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Conductivity ( jstor )
Ferns ( jstor )
High temperature ( jstor )
Leaves ( jstor )
Surface areas ( jstor )
Temperature control ( jstor )
Tracheids ( jstor )
Transpiration ( jstor )
Water temperature ( jstor )
Water uptake ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1984.
Bibliography:
Includes bibliographical references (leaves 108-120).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Robert Huguenor Stamps.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000481646 ( ALEPH )
ACP9243 ( NOTIS )
30651055 ( OCLC )

Downloads

This item has the following downloads:


Full Text










PRODUCTION TEMPERATURE EFFECTS ON
ANATOMY, MORPHOLOGY, PHYSIOLOGY AND POSTHARVEST LONGEVITY OF
LEATHERLEAF FERN [Rumohra adiantiformis (Forst.) Ching]











BY

ROBERT HUGUENOR STAMPS


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY



UNIVERSITY OF FLORIDA


1984































Copyright 1984

by

Robert Huguenor Stamps































TO THE MEMORY OF MY PARENTS,
NINA M. HUGUENOR AND FREDERICK W. STAMPS,
AND TO LORETTA















ACKNOWLEDGEMENTS


I would like to sincerely thank my graduate committee chairman, Dr.

Terril A. Nell, for his guidance, support and criticism during my

graduate career at the University of Florida. His well-considered

advice helped me on many occasions.

Hearty thanks are also extended to the other members of my

committee, Dr. James E. Rarrett, Dr. Charles A. Conover, Dr. Frederick

S. Davies and Dr. Terry W. Lucansky, for their advice, assistance and

friendship. Special thanks go to Ms. Debbi A. Gaw for her considerable

assistance to this "commuting" student.

To the myriad other faculty, staff, friends and fellow students, at

Gainesville and Apopka, who contributed to this endeavor, many thanks.

Thanks are offered to Dr. Carlos Blazquez, Mr. George Edwards and Mr.

Leonard Blesius at Lake Alfred for the use of the LMS.

Special gratitude is extended to Dr. Charles A. Conover for

encouraging me along this path and for allowing me the leave of absence

that made this possible.

Above all, I am grateful to my wife, Loretta Satterthwaite.

Without her support and help the completion of this dissertation could

not have been successful given the time constraints involved.













TABLE OF CONTENTS


Page

ACKNOWLEDGEMENTS . ... ...... iv

LIST OF TABLES . ... ... viii

LIST OF FIGURES . x

KEY TO SYMBOLS AND ABBREVIATIONS ... xiii

ABSTRACT . ... xv

INTRODUCTION . ... 1

CHAPTERS

I LITERATURE REVIEW .. 6

Growth .. .. ... .. .. 6

Morphology and Anatomy. ... 8
Leaf length and surface area 8
Leaf thickness . 8
Specific leaf weight and leaf density thickness. 9
Stomatal distribution 9
Stomatal frequency 9
Cuticle thickness and integrity .. 10
Epidermis . 10
Endodermis . 11
Tracheids . 11

Physiology. .... ... 11
Carbon exchange .... 11
Carbohydrates .. 17
Chlorophyll .... 18
Transpiration ... 18
Water use efficiency .... ..18
Diffusive conductance ... 18
Hydraulic conductivity ... 19

Postharvest . 21








Page

Plant Material .. .. 23

II TEMPERATURE AFFECTS THE DEVELOPMENT AND POSTHARVEST
LONGEVITY OF LEATHERLEAF FERN FRONDS .... 24

Materials and Methods .... 26

Plant material and treatments ... 26

Growth and development .... 28
Frond length .... 28
Sori development .... 28

Morphology and anatomy ... 29
Frond surface area .... 29
Frond thickness ... 29
Stipe cross-sectional area .... 29
Stomatal density .. ....... 29
Cuticle thickness and number of epidermal
cell layers ..... ....... 30
Tracheid numbers and cross-sectional areas 30

Physiology . 31
Carbon exchange .. 31
Transpiration ..... 38
Chlorophyll content 39
Diffusive conductance 39
Carbohydrates .. .. 39
Stipe hydraulic conductivity ... 40

Postharvest ... .. 41
Postharvest water uptake ... 42
Postharvest weight changes .... 42
Postharvest longevity .... 42

Results and Discussion . .. 43

Experiment 1 . 43

Experiment 2 . 51

Experiment 3 . 65

Experiment 4 . 80
Harvest I . .. 80
Harvest 2 . 83

Conclusions ... 92







Page

APPENDIX . .. .100

LITERATURE CITED . 108

BIOGRAPHICAL SKETCH .. .. .. 121















LIST OF TABLES


Table Page

0-1 Annual change in movement of leatherleaf fern in
Florida for crop years 1977-78 through 1983-84 2

2-1 Production temperatures affect sori development on
leatherleaf fern fronds grown in controlled environ-
ment chambers 45

2-2 Physiological characteristics for leatherleaf fern
fronds grown under low and high temperature regimes 49

2-3 Anatomical, morphological and postharvest character-
istics of leatherleaf fern fronds grown under low and
high temperature regimes 56

2-4 Anatomical, morphological, physiological and post-
harvest characteristics for leatherleaf fern fronds
grown under low and high temperature regimes 73

2-5 Effects of former production temperature treatments
(FT) and latter production temperature treatments (LT)
on leatherleaf fern frond characteristics. Temperature
treatments were changed February 26, 1984, crosiers were
tagged March 4, 1984, and fronds were harvested May 5,
1984 85

2-6 Association of vase life and frond morphological
characteristics of leatherleaf fern fronds harvested
May 5, 1984 86

2-7 Effects of former production temperature treatments
(FT) and latter production temperature treatments (LT)
on water uptake of cut leatherleaf fern fronds. Temper-
ature treatments were changed February 26, 1984, crosiers
were tagged May 5, 1984, and fronds were harvested
July 4, 1984 88

2-8 Effects of former production temperature treatments (FT)
and latter production temperature treatments (LT) on
leatherleaf fern frond characteristics. Temperature
treatments were changed February 26, 1984, crosiers
were tagged May 5, 1984, and harvested July 4, 1984 91


viii








Table Page

A-i Association of vase life, water uptake, and leatherleaf
fern frond anatomical, morphological and physiological
characteristics for Experiment 2. Fern was grown under
high temperature regime (30 day/250 night) or low
temperature regime (200 day/150 night) 100

A-2 Association of vase life, water uptake, and leatherleaf
fern frond anatomical, morphological and physiological
characteristics for Experiment 3. Fern was grown under
high temperature regime (300 day/250 night) or low
temperature regime (20 day/150 night) 102

A-3 Association of vase life, water uptake, and leatherleaf
fern frond morphological and physiological character-
istics for Experiment 4, harvest 1. Plants had been
grown under 1 of 2 former temperature treatments (FT)
and fronds were produced under 1 of 2 latter
temperature treatments (LT). The temperature treat-
ments were low (200 day/150 night) temperature regime,
LTR, and high (300/250) temperature regime, HTR 104

A-4 Association of vase life, water uptake, and leatherleaf
fern frond morphological and physiological character-
istics for Experiment 4, harvest 2. Plants had been
grown under 1 of 2 former temperature treatments (FT)
and fronds were produced under 1 of 2 latter
temperature treatments (LT). The temperature treat-
ments were low (200 day/150 night) temperature regime,
LTR, and high (300/250) temperature regime, HTR 106















LIST OF FIGURES


Figure Page

0-1 Association of cooling degree days (18.30 C base)
and the percentage of fronds that curled or yellowed
12 days postharvest 4

2-1 Photomicrograph of vascular bundle in stipe of leatherleaf
fern frond (top), digitized image of the same vascular
bundle (middle), and enhanced digitized image of the
lumina of the tracheids in that vascular bundle (bottom) 33

2-2 Schematic diagram of open system used to measure
carbon exchange and transpiration of leatherleaf
fern fronds 34

2-3 Acrylic plastic cuvette used in carbon exchange and
transpiration determinations of leatherleaf fern fronds 37

2-4 Effect of production temperatures in controlled
environment chambers on growth of leatherleaf fern
fronds 44

2-5 Abaxial diffusive conductances (A), leaf temper-
atures (B), and transpiration (C) of leatherleaf fern
fronds grown in controlled environment chambers under
temperatures of 200C day/150 night, or 30
day/250 night, ---- and relative humidities at the
time of measurement (D) 46

2-6 Effect of photosynthetic photon flux density (PPFD) on
carbon exchange (CER) of leatherleaf fern fronds grown
under 2 temperature regimes 48

2-7 Quantum efficiencies of leatherleaf fern fronds grown
under 2 temperature regimes 50

2-8 Effect of photosynthetic photon flux density (PPFD) on
transpiration (T) of leatherleaf fern fronds grown
under 2 temperature regimes 52








Figure Page

2-9 Photomicrographs of leatherleaf fern pinnules showing
A) abaxial pinna surface with stomata, B) adaxial pinna
surface, C) close-up of a stoma and D) cross section of
a pinnule showing stomatal complex and substomatal
chamber 54

2-10 Association of fresh weight and surface area for
leatherleaf fern fronds grown under 2 temperature
regimes 57

2-11 Pinnae from high (300C day/250 night) temperature
regime, HTR, frond (left) and low (200 day/150 night)
temperature regime, LTR, frond (right) showing
reduced venation and increased marginal incision of
HTR pinnules 59

2-12 Scanning electron micrographs of cross sections of
pinnules of leatherleaf fern grown under low (200C
day/150 night) temperature regime (top) and high
(300 day/250 night) temperature regime (bottom) 61

2-13. Postharvest water uptake of cut leatherleaf fern fronds
grown under 2 temperature regimes 63

2-14. Postharvest weight changes of cut leatherleaf fern
fronds grown under 2 temperature regimes 64

2-15. Postharvest water uptake of cut leatherleaf fern fronds
grown under 2 temperature regimes 66

2-16. Effect of recutting stipe bases 1 or 2 days post-
storage on water uptake of leatherleaf fern fronds
grown under temperatures of 200 C day/15 night,
or 30 day/250 night, ---- 67

2-17. Effect of recutting stipe bases 3 or 5 days post-
storage on water uptake of leatherleaf fern fronds
grown under temperatures of 200C day/15 night, --
or 30 day/250 night, --- 68

2-18. Postharvest decline of relative conductivity, k, of
cut leatherleaf fern frond stipe bases 70

2-19. Changes in abaxial diffusive conductance and
transpiration due to recutting stipe bases of
leatherleaf fern fronds 6 days postharvest.
Fronds were grown under temperatures of 200C
day/15 night, or 300 day/250 night, ---- 71








Figure Page

2-20. Postharvest weight changes of cut leatherleaf fern
fronds grown under 2 temperature regimes 72

2-21. Scanning electron micrographs of a leatherleaf fern
stipe showing A) a cross section with vascular bundles
(vb) containing tracheids, B) the location of tracheids
(t) in a vascular bundle, C) close-up of tracheids and
D) scalariform pitting of the cell walls of tracheids 76

2-22. Cross sections of vascular bundles in stipe bases of
leatherleaf fern fronds, grown under 200C day/150
night (top) and 30 day/250 night (bottom) in
controlled environment chambers, showing the greater
thickening of the outer tangential wall of the
uniseriate endodermis of the 200/150 grown frond 78

2-23. Poststorage water uptake of cut leatherleaf fern fronds
grown under 1 of 2 former temperature treatments
and 1 of 2 latter temperature treatments 81

2-24. Abaxial diffusive conductance and transpiration during
the first 90 hr after recutting stipes of leatherleaf
fern fronds stored for 1 day 82

2-25. Poststorage weight changes of cut leatherleaf fern
fronds grown under 1 of 2 former temperature
treatments and 1 of 2 latter temperature treatments 84

2-26. Postharvest water uptake of cut leatherleaf fern fronds
grown under 1 of 2 former temperature treatments and
1 of 2 latter temperature treatments 87

2-27. Postharvest weight changes of cut leatherleaf fern
fronds grown under 1 of 2 former temperature
treatments and 1 of 2 latter temperature treatments 90

2-28. Plot of actual versus predicted weight changes of
leatherleaf fern fronds determined using the
transpiration and water uptake from Experiment 4,
harvest 1 96














KEY TO SYMBOLS AND ABBREVIATIONS USED IN TEXT


Where appropriate, magnitudes or typical units are indicated in
parenthesis.



Quantity Description

a total lumen area (mm2)

A cross-sectional area of stipe (cm2)

CER carbon exchange rate, carbon flux density, or

Pnet (mg CO2 dm2 hr-1)
chl chlorophyll

n viscosity (MPa-s, 0.9142 for water at 240C)

EY early yellowing

FCS frond curl syndrome

FT former production temperature treatment

g gram
res
gres residual conductance to carbon dioxide
2
gwv diffusive conductance to water vapor
c
g cuticlar diffusive conductance to water vapor

leaf leaf diffusive conductance to water vapor
hr hour

HTR high temperature regime (300 day/250 night)

Ic light compensation point, LCP mol. s- m-2)


xiii







KEY TO SYMBOLS AND ABBREVIATIONS (continued)


Quantity Description

Is light saturation point, LSP (imols- *m-2)

k relative conductivity (cm-2)

LDT leaf density thickness (g fresh wt-area- )

LT latter production temperature treatment

LTR low temperature regime (200 day/150 night)

Jm micrometer (10-6m)

PPFD photosynthetic photon flux density (pmols-1.m-2)

Rd dark respiration (mg C02*dm2 hr-1)

r w boundary layer resistance to water vapor (s*cm- )
wv
a conductivity

SLW specific leaf weight (g dry wt-area-1)

T transpiration, E (mg H20*dm 2*hr1)

VPO vapor pressure difference

WUE water use efficiency (mg C02:mg H20)


xiv













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy



PRODUCTION TEMPERATURE EFFECTS ON
ANATOMY, MORPHOLOGY, PHYSIOLOGY AND POSTHARVEST LONGEVITY OF
LEATHERLEAF FERN [Rumohra adiantiformis (Forst.) Ching]

by

ROBERT HUGUENOR STAMPS

December 1984

Chairman: Terril A. Nell
Major Department: Horticultural Science

Leatherleaf fern, Rumohra adiantiformis (Forst.) Ching, was grown

under 2 temperature regimes in controlled environment chambers. The

chambers had the same photosynthetic photon flux density, but half the

chambers had high (300C day/250 night) and the other half had low

(200/150) temperature regimes. These regimes approximate those found

in Florida during the months when postharvest longevity of leatherleaf

fern fronds are low and high, respectively.

Fronds produced under the high temperature regime (HTR) grew faster

initially and produced sori sooner than low temperature regime (LTR)

ones. Fronds from both treatments were hypostomatous, anomocytic, and

stipe tracheids had scalariform pitting.

Light saturated carbon exchange, quantum efficiences, and dark

respiration were lower for HTR grown fronds than LTR fronds when

measured at 30.50. Light compensation points, water use efficiency,







photosynthetic efficiency, and soluble sugar and starch content were

similar for fronds from both treatments. Abaxial diffusive conductance

(gwv) of HTR fronds was lower than for fronds grown under the LTR. The
lower g may have been due to greater physiological age or to

preconditioning of HTR fronds.

Temperature treatments did not affect frond weights, surface areas,

water content, stomatal density, cuticle thickness, or number of

epidermal layers, but leaf density thickness, specific leaf weights,

pinnule thickness and vascularization, endodermal wall thickening, and

stipe vascular bundle numbers and cross-sectional areas were reduced

for HTR fronds. Relative conductivities of freshly harvested stipes

were 39% lower for HTR fronds than LTR fronds.

Postharvest water uptake of HTR fronds was 36 to 50% lower than LTR

uptake. In 3 experiments, vase life of HTR fronds was reduced 28 to

66% compared to LTR fronds. HTR fronds lost weight more rapidly after

harvest. Vase life was positively correlated with stipe

cross-sectional area and initial water uptake. Stipe recutting 1 to 6

days postharvest increased gwv and water uptake of both frond types.

Plants were switched from one temperature regime to the other.

Former production temperature effects predominated for the first

harvest of fronds produced under the latter temperature regime. The

second crop of fronds was mainly influenced by the latter production

temperature regime.













INTRODUCTION


Temperature is one of the more important environmental factors

influencing the development and physiology of plants. Production

temperatures may affect crop performance both before and after harvest,

and can have both beneficial and detrimental effects, depending on the

crop and other environmental factors.

Leatherleaf fern, Rumohra adiantiformis (Forst.) Ching (151), is

one of the most important ornamental crops produced in Florida.

Estimates place the annual wholesale crop value at approximately

$60,000,000 (133), with leatherleaf fern accounting for approximately

85% of cut foliage use nationally (129). In the past several years

leatherleaf fern has become one of Florida's major farm exports (49)

and is one of the few remaining floricultural cut crops whose

production is predominantly domestic and is increasing (Table 0-1).

The preeminence of Florida in the production of this crop is

threatened by many factors. The most immediate problems threatening

the industry are the occurrence of frond curl syndrome (FCS) and early

yellowing (EY) of fronds. Both conditions greatly reduce vase life

(112, 137). Florists are looking for other sources of leatherleaf fern

fronds and/or other cut foliage crops to replace leatherleaf fern

because of these problems (129). The incidence of FCS and EY is quite

seasonal and occurs mainly during the months of July, August,

September and October (32, 98). Fronds harvested during these months





















Table 0-1. Annual change in movement of leatherleaf fern in
Florida for crop years 1977-78 through 1982-83 (133).



p Y Shipments Change
SYear (cartons) (%)


1977-78 1,057,000

1978-79 1,286,000 +22

1979-80 1,480,000 +15

1980-81 1,615,000 + 9

1981-82 1,723,000 + 7

1982-83 1,983,000 +15

1983-84 2,367,000 +19








develop during the 4 hottest months of the year (June, July, August,

September). Figure 0-1 shows the association of temperature, expressed

as base 18.30 C cooling degree days, and FCS plus EY. Previous

research (112) suggests that some factors) other than postharvest

dessication predispose(s) the fern to frond curl. It therefore seems

possible that production temperatures may be a factor involved in the

reduction of vase life. A preliminary experiment (Stamps,

unpublished), conducted using controlled environment chambers to

simulate production temperatures during those periods when vase life

was found to be greatest and least, indicated that vase life of fronds

produced at high temperatures was reduced 36% compared to those grown

at lower temperatures. This difference in vase life due to production

temperatures was still present after all the plants were grown together

under the same conditions for 1 week in a greenhouse.

The ability to predict and/or decrease the incidence of reduced

vase life would benefit the leatherleaf fern industry. Almost no data

are available on the effects of production temperatures on leatherleaf

fern development and physiology. No studies have been made on the

effects of this factor on the postharvest longevity of harvested

fronds. Indeed, not a great deal of research has been done on the

physiology of fern sporophytes in general. For example, Dyer (40), in

his book The Experimental Biology of Ferns, does not devote any space

to carbon exchange rates, transpiration, dark respiration or other

physiological aspects of fern sporophytes. These and other

physiological factors, as well as anatomical and morphological factors,

could effect the postharvest longevity of leatherleaf fern fronds.

These experiments were undertaken to examine some of the effects of












o8
S III
W-J


s\NIIIIIIII


t11II
NIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

S\\\\\\ lll llllllllsllllI llllilllllllllllllllllllllllllIII
L\\\\\\\ \\\\IllI llII1lll lN XIIIIIIIIIIIIIII













X\\NIII
\\llllu 111111111111111 1 1 1111111111111
X1111111 III1111111111Il IIIIIII1 IIIII1 1 1
Z 1\\ IIIIIIIIIII l I1111111111 111111111111 I
k \ 1llllllllllllllllllllllllllllll


~IIII






~\\\IhhhIhIIIIIIIIII1hh IIIIIIIIIIIIhIIIIIhIIII


0 0 0 0 0 0 0 0 0 0 0 0 0
o o co t'- O 0 i- rO oj -- 0 0
N


(%)SGNONJ

G3MO0173k ONV a37-1f9


3SV 30 o'81 SAVO

33d930 9NI71000


r==


0








* -



I <



0
z
0
o
'I 7)


MI


5








2








<
M
O











mn (


-0
"o
a,
-- +-



CU
J a,



a0




-




1-- 0
*1-



0) 0w
C+-> 0
+-,>





SL E
.C- c



S0}


a a,

s '0
W L
L -


0 c---








,o 4- 4L
>cuM- E
<0 i-
-0n i
-0 n
0) .^








U t


-1->4-'


~YIIIIIIIIIIIIII
I I


N\\\N


I





5


production temperatures on the developmental, morphological,

anatomical, physiological and postharvest aspects of this important

crop, leatherleaf fern.













CHAPTER I
LITERATURE REVIEW


Effects of Production Temperatures on development,
Physiology and Postharvest Longevity of Plants



Most chemical reactions and physiological processes respond to

temperature. Therefore, considerable research has been carried out to

study the effects of production (preharvest) temperature on plant

development and physiology. Considerable research has also been

directed at storage (postharvest) temperature effects on many

agricultural commodities (91, 158). Until recently, however, little

research has addressed the question of what are the effects of

production temperatures on the post-production quality and longevity of

horticultural commodities even though it was shown over three decades

ago that production temperatures might affect the postharvest

respiration rates of a certain variety of greenhouse tomato (1). No

such production temperature studies have been carried out for

leatherleaf fern; however, there is no a priori reason to expect that

leatherleaf fern would respond differently from other plants,

especially other C3 plants.


Growth


Most processes of living organisms are controlled by enzyme

reactions and, therefore, growth phenomena tend to exhibit temperature








response curves similar to those for enzymes (149). In addition to

affecting enzymatic processes, temperature may affect physical

processes, such as oxygen diffusion (115), which may affect growth.

Many studies have shown that increased production temperatures, day

and/or night, soil and/or air, increase growth and developmental rates

provided other factors such as light, CO2 and water are not limiting

and temperatures are not so high as to cause thermal injury. Went

(156) found that growth of tomato plants at a constant 260 C day

temperature increased as night temperatures were increased from 40 to

200. Friend et al. (54) found that raising the temperature by 50

intervals between 100 and 250 resulted in progressively higher rates of

emergence and expansion of wheat leaves. Similarly, Ballantine and

Forde (9) found that soybean plants grown in high temperature (27.50

day/22.50 night) controlled environment conditions grew more rapidly

than those at lower (20.00 day/12.5 night) temperatures. Woledge and

Jewiss (161) presented data from Robson showing increased relative

growth rates of tall fescue plants grown at high (200 day/150 night)

versus low (100 day/50 night) temperatures. Kramer (84) found that the

growth of red oak improved with increasing temperature up to 300.

Caladiums (31), Campanula (106), cucumbers (103), Dipladenia (60),

loblolly pine and red oak (84), roses (20, 104, 165), Salvinia-an

aquatic fern-and sunflower (16) and tropical foliage plants (126) are a

few of the crops that exhibit increased growth and developmental rates

at moderately high temperatures compared to lower ones. Staghorn fern

sporophytes grown over the temperature range of 120 to 300 grew best at

260 (144). Therefore, most plants respond to increasing temperatures

with increased growth and development rates, provided the temperatures

are not excessive.







Morphology and Anatomy


Leaf length and surface area. Leaf length and surface area are

important because the leaf is the major light collecting and water

vapor radiating organ of most terrestrial plants. Friend et al. (54)

found that winter wheat leaf area was greatest when grown at 200 than

when grown at higher or lower temperatures. Plants grown at 250 had

longer leaf laminae compared to plants grown at 100, 150, 200 or 300.

In a later study, Friend and Pomeroy (55) found that leaf length of

wheat increased with increasing production temperatures over the range

from 100 to 250. Leaf length and surface area are particularly

important for cut foliage crops due to their use as decorative filler

in floral arrangements.

Leaf thickness. Numerous authors have found that leaf thickness

decreases with increasing temperature. Chabot and Chabot (25) found

that Fragaria vesca leaf thickness decreased with increasing production

temperatures up to 300 day/200 night. Higher temperatures caused cell

damage. Peet (120) reported a decrease in Phaseolus leaf thickness

with increasing temperature. Charles-Edwards et al. (28) also found a

similar decrease in leaf thickness for Lolium grown over the

temperature range of 100 to 280. Leaf thickness of Marquis wheat

decreased with increasing temperature in other studies (53, 54).

However, Nobel (113) did not show a decrease in leaf thickness with

increasing temperature for Plectranthus.

Leaf thickness may be of physiological importance because Pieters

(122) and Wilson and Cooper (160) have shown that carbon exchange (CER)

is positively correlated to leaf thickness.







Specific leaf weight and leaf density thickness. Specific leaf

weight (SLW, leaf dry weight area- ) and carbon exchange rate are

positively correlated in many plants (38, 100, 122). Holmgren (74)

found that SLW was highly correlated with mesophyll [i.e., residual

conductance of Solidago leaves and suggests that increasing

cross-sectional area (per unit leaf area) of the pathways of CO2

transfer increases residual conductance and photosynthesis. Specific

leaf weights of Fragaria increased with increased temperature from 100

day/20 night to 300/200 (25). McMillen and McClendon (102) prefer leaf

density thickness (LDT, leaf fresh weight area-1) to SLW and state

that LOT is important in photosynthetic adaptation of plants.

Blackman's data (16) showed that LDT for Helianthus and Lemna was lower

for leaves grown at 240 than 150. Blackman et al. (17) found that

sunflower LDTs decreased seasonally from May through September due to

the rising temperature.

Stomatal distribution. Stomata may occur on one (epistomatous,

hypostomatous) or both (amphistomatous) leaf surfaces (149). Parkhurst

(117) found that hypostomatous leaves occurred most frequently in mesic

habitats, less frequently in hydric ones, and least frequently in xeric

habitats. Stomata generally occur on the abaxial surface of leaves of

leptosporangiate ferns (52, 89, 116). Of the 35 fern species studied

by Linskens and Schoof-van Pelt (89), Ludlow and Wolf (90), Pisek et

al. (123), Nobel (114) and Biswal et al. (11) all were essentially

hypostomatous even though the fern ranged from a desert fern,

Notholaena parryi, to ferns of mesic habitats.

Stomatal frequency. Stomatal frequency can vary greatly (61).

Verduin (153), using data of Eckerson (41), reported that wheat had a








-2
stomatal frequency of 14-mm-2. Davies et al. (36) found stomatal

frequencies as high as 634*mm-2 for Rhus typhina. Lin et al. (88)

found a range of densities from 377 to 1180.mm-2 for different species

of Pistacia. Typical fern stomatal densities range from 10mm-2 for

Phyllitis scolopendrium (123) to 169-mm-2 for Alsophila australe (113).

However, Starzecki (142) reports stomatal densities exceeding 300.mm-2

for fern, Asplenium trichomanes and A. ruta-muraria, growing at a cave

entrance. Friend and Pomeroy (55) report higher stomatal densities for

Kharkov winter wheat grown at 32,280 lux (approximately 375

pmol.m-2 s- ) at high (250) versus low (150) temperatures. At light

levels of 5380 lux (approximately 62.5 umol*m-2 s- ) there were no

differences in stomatal density due to temperature.

Cuticle thickness and integrity. Water permeability of cuticles of

terrestrial plants is very low (135); however, cuticular transpiration

can exceed 10% or more of total transpiration of some plants (75, 86,

149). Cuticle thickness across species is not a reliable indicator of

water permeability (135) but may be of value when comparing plants of a

given species. As leaves age, cracks may develop and cause an increase

in water permeability (115). Holmgren et al. (75) found that cuticular

conductance (g v) of three species was greatly increased by an increase

in temperature from 170 to 220 and leveled off or decreased slightly at

higher temperatures.

Epidermis. The epidermis is the outer layer of cells of the

primary plant body. The epidermis is usually one layer of cells in

thickness (44) and functions in water vapor and gas exchange as well as

in protection. Studies relating production temperatures with the

epidermis are not available.








Endodermis. The endodermis is the innermost layer of the cortex

and forms a sheath around the vascular region of the stems and roots of

lower vascular plants (44). Possible functions of the endodermis of

the stem are the storage of materials and as a barrier to gas exchange

and the entrance of pathogens. The highly suberized endodermis between

the ground tissue (cortex, pith) and the stele is an effective

waterproof barrier to apoplastic water transport across the endodermis

(149). Studies of temperature effects on the endodermis were not

found.

Tracheids. Tracheids, the characteristic water conducting cells in

lower vascular plants, have thick, lignified secondary cell walls (44).

Typical fern tracheids are long, slender, tapered and scalariformly

pitted (157). Scalariformly pitted tracheids are considered to be the

primitive type of tracheid in fern (157). Huber and Schmidt (77)

measured vessel diameters from 16 um for Carpinus betulus to 400 Um for

Robinia pseudacacia. Petty (121) found a mean vessel diameter of 59 pm

for birch wood. Jeje and Zimmermann (81) measured Plantago vessel

diameters from 5.4 um to 11.6 um and found that ring thickness and

spacing caused changes in resistance to flow. Nobel (114) reports fern

stipe tracheid lumen diameters of 7.8 um in stipes of Notholaena

parryi. Woodhouse and Nobel (163) reported ranges for tracheid

diameters from 7.9 pm to 18.9 um and for the number of tracheids from

27.7 to 228 in stipes of 7 fern species.


Physiology


Carbon exchange. Considerable research has dealt with the effects

of temperature on carbon exchange (CER, carbon flux density) and







photorespiration. Optimum temperatures for CERs of C3, C4 and CAM

plants have been determined (15). However, much less research has

dealt with the effects of production temperatures preconditioningg) on

subsequent CERs. Temperature preconditioning effects should be

considered in planning or evaluating measurements of CERs (85, 107).

Fragaria vesca grown at moderate temperatures (100/20, 200/100,

300/200; day/night) showed a general trend towards increased CERs with

increased production temperatures, even though CERs were measured at

the same temperatures (25). Plants grown at 400/300 had a reduced CER

at low temperatures and only at 350 did their CERs equal those of

plants grown at 300/200. Strawberry plant CERs varied significantly

when plants were grown at a common mean temperature (250) but different

day/night amplitudes (250/250, 300/200, 350/150). Chabot and Lewis

(26) found that, when day/night temperatures were asymmetrically

distributed around a daily mean, CERs of Quercus rubra seedlings

acclimated to those temperatures experienced for the major portion of

the 24 hr period such that CER was most favorable at the predominant

temperature. Nobel (114) found that the temperature optimum for CERs

of a desert fern, Notholaena parryi, shifted from 130 in midwinter

(daily mean air temperature of 110) to 190 in early fall (air

temperature of 230). Blackman et al. (17) determined that CERs of

sunflower were positively correlated with temperature. Many studies

have shown that the temperature of maximum CER increases with

increasing growth temperatures (27, 108, 134, 146, 154, 161). Rook

(131) grew Pinus radiata seedlings at 150/100 and 330/280 and then

switched some plants from each chamber to the other. He found that

most of the adaptation of the seedlings occurred within 2 days and

after about 5 days at the new temperatures the seedlings were







similar in CER behavior to seedlings that had been raised entirely

under the changed conditions. Not all studies have shown significant

acclimation in the temperature dependence of CER for plants grown under

different temperature regimes (43).

Endogenous factors influenced by temperature, such as leaf

physiological age and residual conductance (gC05), can affect CER.

CERs generally increase as immature leaves develop, reach a maximum

when leaves fully expand, and decline as the leaves age (see 148 for

references). Jewiss and Woledge (82) found that the CER of tall fescue

progressively declined with increasing age. Leaves of greenhouse roses

have been shown to exhibit a similar decline with age (19). Silsbury

(136) reports that light saturated CER of ryegrass leaves decreased

when leaves began to senesce. Holmgren (74) suggests that mesophyll

[residual] conductance increases with increased cross-sectional area

(per unit leaf area) of the pathways of CO2 transfer in the mesophyll

from cell surfaces to reaction sites. Higher temperatures generally J/

lead to smaller cells and up to a 40% higher ratio of the total area of

the cell walls of mesophyll cells that is exposed to the intercellular

air spaces to the area of one side of the same leaf (Ames/A) (115).

Charles-Edwards et al. (27) found that, within a given grass variety,

plants grown at a higher temperature had a lower CER. In a later study

(28) they found that the stimulation of CERs per unit leaf area of

grasses disappeared when the data were expressed on a volume basis due

to the thicker leaves of grasses grown at the low temperature.

McClendon (100) and McMillen and McClendon (102) report that leaf

density thickness is positively correlated to CER. Dornhoff and

Shibles (38) suggest that soybean varietal differences in CER were







mainly a result of differences in diffusive conductances. Leaf density

thickness increased linearly during the test period (July 11 to August

4) and CER increased starting August 4. Since the CER increase

coincided with the beginning of seed filling, increased sink demand was

probably the cause of the CER increase in this experiment.

Light saturation (Is or LSP) of CERs of shade-adapted leaves is
-1 -2
usually in the vicinity of 280 umol*s- *m (149). CER of weeping figs

grown under 75% light exclusion was light saturated at about 300

umol-s-1*m-2 (45). Alocasia macrorrhiza and Cordyline rubra growing on

the rainforest floor reached light saturation at irradiance levels
-1 -2
below 100 umol-s *m (14). Many ferns have I s between 100 and 200

umols-1.m-2 (71, 90, 113, 114), with the Is for leatherleaf fern being
-1 -2
reported as 500 umol*s *m2 (97).

Light saturated CERs under natural conditions range from 1 to 4 mg

C02*dm-2 hr-1 for some CAM plants to 35-70 mg C02*dm2* hr-1 for C4
plants (132). Light saturated CERs for C3 species such as leatherleaf

fern are generally between 5 and 40 mg C02*dm2hr-1 (43). For

example, reported Is CERs for a typical C3 crop such as soybeans range

between 12 and 50 mg C02*dm-2*hr- depending on the variety (34, 38).

Light saturated CERs for ferns are generally lower, 3 to 5 mg

C02'dm-2hr1 (86). Assuming 1 g fresh weight is approximately equal

to 0.5 dm2 of leaf surface area (132), Hew and Suan (70) recorded I

CERs from 2.2 mg CO 2dm-2*hr- for cut fronds of Asplenium nidis to 12
2 -1
mg C02*dm-2hr1 for cut fronds of Gleichenia linearis. CERs at Is for

intact nonsenescent fern fronds range from 0.9 for Adiantum pedatum to

27.6 mg C02*dm-2'hr-1 for Alsophila australis (71, 90, 113, 164).







Maximum CER for shadehouse grown Rumohra adiantiformis is reported as

7.5 mg C02.dm-2-hr-1 (97).

Survival of plants [or plant parts] under low light depends [in

part] upon the efficiency with which leaves capture and utilize

available light, and upon control of respiratory losses (45). The

quantum efficiency (slope of light intensity curve below

photosaturation) of a plant is, to a large extent, dependent on leaf

morphology (79). Ehleringer and Bjorkman (42) found that typical

quantum yields of C3 plants were 0.0524 mol C02/absorbed mol photons.

In a later study (43) they found that species of Encelia with high

photosynthetic rates had quantum yields (on an incident light basis) of

0.033 to 0.041 nmol CO2/mol photons. The quantum efficiency for an

Alocasia leaf in situ was found to be 0.07 mol C02/mol photons (14).

Ouantum efficiencies for wheat grown at 50 to 70 or 250/200

temperatures were not different when measured at 250 (134). Quantum

efficiencies of 6 grasses were also not affected by different growth

temperatures (28).

Photosynthetic efficiency (CO2 fixed per unit chlorophyll per unit

time) can vary among species (85) and according to growth environment

(66). Light saturated photosynthetic efficiencies of 1.5 to 0.8 mg

CO2mg chl- 1hr- for Pteris ferns have been reported (66).

The light compensation point (Ic or LCP), the light intensity where

photosynthesis just equals respiration, is especially important when

plants or plant parts are grown in or moved to very low light

environments (132). Light intensities in home and office environments

are usually low and low Ics may be beneficial under such conditions.

Light compensation points for C3 species are usually on the order of







-1 -2 -1 -2
11 Umolos *m for shade-adapted leaves and 31 ymolos *m for

sun-adapted leaves (149). Greenhouse grown tropical foliage plants

were found to have Ics from 14 to 34 ymol*s- *m-2 except for a monocot
-2 -1
that had an I of 11q9 mol.m *s- (51). Alocasia in extreme shade
-1 -9
habitats are reported to have I s of 0.5 to 2 Umol.s l m -? (14).

Bannister and Wildish (10) measured Ics for detached fronds of 4 fern

species of 0.5 to 2.0 ymolos-1 m-2 and found that specific leaf areas

showed a significant negative correlation with Ics. Similar extremely

low Ic values for Pteris fern have been reported (66). Many authors

attribute very low light compensation points to low rates of

respiratory CO2 release (10, 14, 51, 101, 118). Salisbury and Ross

(132) state that differences in Ics are caused primarily by differences

in respiration rates. Most Ic values for fern are in the 6 to 40
-1 -2
umol-s *m range (62, 71, 90, 118) and the one report of an Ic for

shadehouse grown leatherleaf fern was 44 umol.s-.m-2 (97).

Ting (149) writes that dark respiration (Rd) by green leaves is

generally 1 to 10 mg C02*dm-2 hr-1. Studies of the Rd of the ferns

Nephrolepis (118) and Rumohra (97) fit this range; however, studies of

cut fronds of 6 fern species (70) and attached fronds of 14 others (90,
-2 -1
164) yielded Rd values from 0.13 to 0.45 mg C02odm-2hr-.

Factors such as substrate availability, temperature, and type and

age of plant affect respiration (132). Azcon-Bieto et al. (8)

concluded that the level of respiratory substrate in leaves of spinach

and wheat determines their Rd. Wager (154) found that the Rds of

arctic plants were higher than those of temperate plants and suggested

that the differences were due to differences in carbohydrate

concentrations rather than to differences in enzyme activity. Warren








Wilson (155) reports similar results. Rook (131) found that Rds of

Pinus seedlings grown under 150/100 conditions were double those of

plants preconditioned at 240/190 or 330/280. Woledge and Jewiss (161)

and Bjtrkman (12) report similar results and attribute the higher Rds

to higher carbohydrate levels. Chabot and Chabot (25) found that Rd

expressed on an area basis was positively correlated with SLW and leaf

thickness, but when expressed on a weight basis it was negatively

correlated with both morphological variables. The rate of respiration

of an organ decreases as it ages (154). Bozarth et al. (19) state that

Rd of rose leaves decreased throughout most of their development. The

greater rates of decline in Rd due to higher temperatures may, in fact,

be due to increased aging (59).

Strain and Chase (145) measured reduced Rd rates at 4 prevailing

temperatures (100,200,300,400) for high temperature (400/250) grown

desert shrubs. They hypothesized that either a depletion of

respiratory substrates or a change in enzyme activity with increasing

temperature is a possible explanation (128). Alban et al. (1) showed a

trend for fruits from one variety of tomato, but not for another, to

have higher postharvest respiration rates when grown at higher

temperatures. However, their data were not analyzed statistically.

Carbohydrates. Carbohydrates are the direct products of

photosynthesis and foliar levels of non-structural carbohydrates can

vary greatly on diurnal (8) and seasonal (85) cycles. Temperature

affects carbohydrate concentrations of plants. Sawada and Miyachi

(134) found total sucrose in wheat grown at low temperatures was higher

than in high temperature grown plants. Ballantine and Forde (9) showed

that soybeans grown at high temperatures had reduced starch content







compared to low temperature grown soybeans. Carbohydrate

concentrations of ostrich fern were lower when grown at 240/180 than at

180/12' (127).

Chlorophyll. Published chlorophyll contents for fern range from

0.81 to 55 mg chlorophyll-dm-2 (43, 65, 90, 114). Some studies have

shown decreases in chlorophyll content (on an area basis) due to high

temperatures (9), while other studies have not (43).

Transpiration. Water loss is an inevitable consequence of stomatal

opening necessary for CO2 uptake. Usual daytime transpiration flux

densities (T) are in the range of 0.1 to 2.5 g H20*dm-2 hr (0.15 to

3.9 mmol *m 2s- ) (149). Transpiration values for soybeans were higher

(2.75 to 3.79 g H20*dm-2hr-1) (38). Nobel (114) calculated maximum T

of 1.47 g H20'dm-2 hr-1 (2.27 mmol*m-2*s 1) for the xeric fern

Notholaena parryi.

Water use efficiency. Water use efficiency (WUE) relates the

amount of CO2 fixed to the amount of water lost. WUE on a mass basis

of a leaf of a representative mesophyte is 4.9 x 103 mg C02.(mg H20)-1

(115). The WUE reported for a desert fern during the daytime in situ

was 5.8 x 10-3 mg C02.(mg H20)-1 (114).

Diffusive conductance. Abaxial water vapor diffusive conductance
-2 -1
(gw) for crops when stomata are open range from 80 to 400 mmol*m *s

(115). Abaxial g wvs for trees are generally lower (20 to 120
-~2 -1 leaf
mmol *m -s ). Leaf conductance (g a ) of C and C plants commonly

increases during the morning, reaches a peak in late morning or early

afternoon and decreases during the rest of the day (29, 88). Two

epiphytic CAM ferns had leaf of 3.3 to 80 mmol'm-2s-1 and exhibited
the typical CAM reverse pattern of low g during the day and high
the typical CAM reverse pattern of low gleaf during the day and high
WV







leaf leaf
leaf at night (162). Preharvest leatherleaf fern abaxial gea were
354 and 1333 mmol*m n*s- and values were 69 and 286 mmol*m *s-1 3 hr
leaf d-2 -1
postharvest (112). After 4 days gea dropped to 14.5 mmol*m s.

Davis et al. (37) found that diffusive conductance of bean leaves

exposed to constant light decreased continuously with age. Stomatal

conductance (g s), one component of g is largely independent of

transpiration rate [flux density] from the leaf as a whole (80).

Fisher (50), using a leaf disc assay to provide a uniform environment,

found that the ability of stomata to open reached a maximum for newly

fully expanded leaves and declined with aging.

Other factors, besides leaf age, that affect stomatal functioning
leafleaf
influence g wf. Hall and Kaufmann (64) found that gle of sesame

plants decreased when the humidity gradient between leaf and air was

increased. The decrease was mainly due to reductions in stomatal

aperature; however, stomatal response to humidity was not present at
leaf
high (340) leaf temperatures. Lasko (87) showed that CERs and gwv of

apple trees were positively correlated with each other and that the

leaf water potential required to close stomates decreased by 2.5 MPa

between May and September.

Hydraulic conductivity. Much confusion exists in the literature

regarding definition and calculation of conductivity (used in a general

sense). Relative conductivity, k, formerly called specific

conductivity (47), describes the flow of water through a stem or

petiole of given cross-sectional area and length and under a known

pressure. Relative conductivity is calculated as follows:


k = Qln/Ap








where 0 = flow (volume*time-)
1 = length
n = viscosity
A = cross-sectional area
p = pressure


and has the dimensions 12 (67). Published k values often are not

corrected for n (47, 119, 163). Assuming a n value of 0.9142 MPa.s,

Woodhouse and Nobel's reported relative conductivities for 7 fern

species range from 2.1 to 61.7 cm2 (163).

Alsophila australis had the highest relative conductance and also

the greatest tracheid number and diameter of the 7 species studied.

Carlquist (22) states that longer and wider tracheids could be said to

have a conductive advantage of fewer, longer overlap areas per unit

length of conductive tissue and this could make for more rapid

conductivity per unit transaction. Woodhouse and Nobel (163) contend

that low conductance is an advantage for ferns exposed to drought and

may allow species with such an adaptation to survive in a greater range

of habitats.

Conductivity, a, as defined by Heine (67), differs from relative

conductivity in that it is based on lumen area rather than the cross-

sectional area of the plant part. Conductivity is calculated as

follows:


a= Ql/ap


where a = total lumen area


Murroz et al. (109), using Huber's (78) definition of specific

conductivity, found that hydraulic conductivity of detached peach stems

decreased logarithmically over time. The authors suggest that initial








reductions in relative conductivity possibly were due to increased sap

viscosity resulting from enzymatic activity upon cell wall material.

Decreased conductivity over time was positively correlated with a

decrease in the percentage of functional vessels and negatively

correlated with an increase in the number of plugged vessels.


Postharvest


Vase life of many cut flowers and cut foliage is terminated

because proper water balance cannot be maintained (39, 56, 63, 112,

130, 141). Maintenance of satisfactory water balance depends on the

ratio between water uptake and water loss. Uptake of untreated water

by cut flowers and foliage generally declines rapidly after about the

first or second day postharvest (23, 33, 93, 112, 141). This decline

is usually attributed to stomatal closure and/or vascular blockage (58,

63, 93, 109). Halevy and Mayak (63) review the factors such as

solution pH and quality, microbial and physiological plugging, and

solution constituents that may contribute to vascular blockage.

Research has shown that pulsing and holding solutions can increase

rates of solution uptake of leatherleaf fern. However, high rates of

solution uptake do not appear to be an important factor in extending

longevity of leatherleaf fern (138, 141). A similar lack of

correlation between high rates of solution uptake and flower longevity

has been reported for roses (33) and peaches (35). Camprubi and

Fontarnau (21) did not find a correlation between the effects of

chemicals on the water conductance in carnation stems and the effects

of the chemicals on flower longevity. On the other hand, other







researchers (56, 94, 152) have found floral preservative chemicals

decrease vascular blockage and increase longevity of roses and

maidenhair fern.

A partial explanation for these differences may be that some

chemicals influence stomatal closure. Marousky (94) reported higher

vascular conductance and greater stomatal closure for roses treated

with chemicals and this treatment resulted in better maintenance of

fresh weight and increased longevity of cut roses. Chemicals which

increase solution uptake but reduce longevity may interfere with

stomatal closure, as evidenced by the rapid weight loss of leatherleaf

fern fronds in one study (141). In that study and another (138), the

fronds that had the highest solution uptake had the shortest vase life.

As mentioned previously, stomatal closure by cut leatherleaf fern

fronds is slow (112). This may be why antitranspirants have enhanced

the vase life of leatherleaf fern during periods when frond curl

syndrome is a problem (96, 111).

When mechanical rather than chemical methods are used to increase

water uptake, leatherleaf fern fronds increase in weight. Henny (69)

has shown that recutting the base of the stipe of leatherleaf fern

fronds can cause increased uptake and increased frond weight. Marousky

(95) found that postharvest retrimming of stipes greatly reduced frond

curl. One study (57) showed no benefit from recutting the stipe base

of leatherleaf fern, but the fern in that study did not exhibit

symptoms of frond curl syndrome (FCS) and had normal longevity.

Cut leatherleaf fern fronds generally have a vase life of 2 weeks

or more (32, 56, 68, 97, 98, 137, 140). Longevity is reduced during

certain times of the year, especially late summer and early fall (32,







98), due to the occurrence of FCS (112). Attempts to correlate FCS

with the presence of disease organisms or level of nematode infestation

have not been successful (32). A similar seasonal reduction in

longevity, which may be due to reduced substrate levels, has been

observed for carnations (46). Moe (105) found that production

temperature affected longevity of cut roses. Roses grown at high

(270C) temperatures had reduced longevity compared to roses grown at

lower (240, 210, 180) temperatures. Treatment of leatherleaf fern

fronds with floral preservatives, with and without carbohydrate

sources, has not been beneficial (Marousky, unpublished; Stamps,

unpublished). Treatment of cut fern fronds with ethylene synthesis and

action inhibitors did not increase vase life (141) and exposure to high

(1%) atmospheric concentrations of ethylene did not reduce vase life

(Marousky, personal communication). Poole et al. (125) found a

negative correlation between frond age and vase life. Conover et al.

(32) suggest that the basic physiology of the fern is altered during

the summer to produce weak stems with large thin walled cells and that

this may be a factor in FCS.

Plant Material


Leatherleaf fern, Rumohra adiantiformis (Forst.) Ching, is a

leptosporangiate fern and is a member of the order Ficales or "true

ferns" (52). Although taxonomists have placed leatherleaf fern with

the Davalliaceae (76) and Dryopteridaceae (83), the systematic position

of leatherleaf fern remains unclear.

Leatherleaf fern is primarily circum-austral in distribution (151)

and is terrestrial, rupestral and epiphytic (110, 151). It grows in a

variety of habitats from open sandy strand and dunes to forests (151).













CHAPTER II
TEMPERATURE AFFECTS THE DEVELOPMENT
AND POSTHARVEST LONGEVITY
OF LEATHERLEAF FERN FRONnS


Leatherleaf fern, Rumohra adiantiformis (Forst.) Ching (151), is

the cut foliage most frequently used in floral arrangements in the

United States (129). The majority of the world's production of

leatherleaf fern occurs in Florida where it is grown under 60-80% light

exclusion provided by polypropylene shade fabric, brush, lath, or oak

trees (30, 68, 137). Vase life of cut leatherleaf fern fronds is

usually 2 weeks or longer (32, 57, 68, 98, 99), even if stored for a

month prior to use (68, 140). However, studies have shown that

postharvest longevity of leatherleaf fern is greatly reduced when

harvested during certain months of the year, especially July, August,

September and October (32, 98). During these months the average daily

temperatures in the major production areas of Florida generally exceed

270 C (2, 3, 5, 6). A similar reduction in postharvest longevity

during this period of the year has been observed for carnations in

Colorado (46). Roses grown at 270 had reduced postharvest longevity

compared to ones grown at lower (240, 210, 180) temperatures (105).

Reduced postharvest longevity of leatherleaf fern is due mainly to the

occurrence of frond curl syndrome, FCS, (112) and to a lesser degree to

earlier yellowing, EY, of noncurling fronds (98).

Commercial postharvest handling of cut fronds is essentially the

same throughout the year (68). Harvesting starts around 0800 hr and

24








may continue until 1600 hr. Fronds are cut by hand using clippers,

stacked in bunches of 20 to 25 and rubber-handed together. Bunches are

picked up every 1 to 4 hr and transported in bulk, either covered or

uncovered, to packing sheds. Upon arrival bunches are sprayed with or

dipped in water and are packed into waxed nonperforated corrugated

fiberboard cartons. The water in which the fronds are dipped may

contain a fungicide. Research (140) has shown that these fungicide

treatments do not affect vase life. Most packed fern is stored at 20

to 50 prior to shipment.

Frond curl, although influenced by postharvest frond desiccation

(112), does not appear to be a problem of postharvest origin. However,

postharvest trimming of stipe bases reduced the severity but did not

prevent frond curl in one study (95) and in another study frond curl

could be reversed by recutting the stipe base when fronds began to curl

(69). Mathur (96) reports that leatherleaf fern fronds given a 5

minute dip in any of 3 different antitranspirants lasted 20 days longer

than untreated control fronds. Fronds were held at 300 and all the

untreated fronds had yellowed by day 4. Other researchers (Conover,

unpublished; Nell, unpublished) have had more ambiguous results when

treating fronds with antitranspirants.

Data on the effects of production temperature on leatherleaf fern

prior to and following harvest are lacking. These experiments were

conducted to study the effects of production temperatures on the

development, physiology and postharvest longevity of leatherleaf fern

fronds.







Materials and Methods


Four experiments were conducted to study the effects of 2

production temperature regimes on leatherleaf fern. The experiments

are briefly outlined below and the following sections describe in

detail how the numerous types of data were taken in each experiment.

Experiment 1. Growth and physiological characteristics of intact

fronds of similar chronological ages were compared.

Experiment 2. Anatomical and morphological attributes and

postharvest behavior of detached fronds were studied.

Experiment 3. The effects of stipe recutting 0, 1, 2, 3 and 5 days

postharvest on water uptake, diffusive conductance and frond longevity,

as well as hydraulic conductivity changes over that time period were

determined.

Experiment 4. Pots of leatherleaf fern that had been grown under

one temperature regime were switched to the other regime and

morphological and postharvest characteristics of detached fronds were

evaluated 9 weeks and again 18 weeks after the switch.


Plant Material and Treatments


On Aug. 22, 1982, leatherleaf fern growing in 15.3-cm plastic pots

were repotted into 25.3-cm pots using a 1:1:1 (peat:sand:perlite) mix

amended with 5.6 kg dolomite, 2.9 kg superphosphate, and 1.8 kg PERKT

(a micronutrient blend manufactured by Estech General Chemical Corp.,

Chicago, IL). Twenty pots, 10 for each temperature regime, were placed

into controlled environment chambers (Sherer Controlled Environment

Lab. Model CEL 512-37, Sherer-Gillett Co., Marshall, MI) set for








day/night temperatures of 200/150 (low temperature regime, LTR) and

30/250(high temperature regime, HTR). The day/night temperature

fluctuations were kept the same (50) for both regimes because the

amplitude of temperature variation in controlled environments has been

shown to affect the development and physiology of plants (26).

Day/night relative humidities were 75/80% 10% and 65/75% 15% for

the low and high temperature chambers, respectively. These relative

humidities and temperatures are similar to those found during the

months of March and July (6) when the incidence of frond curl is low

and high, respectively (98).

Lighting in each chamber consisted of eight 2.4-m cool white

fluorescent lamps (Sylvania Lifeline F96T12/CW/VHO, Sylvania Lighting

Products Group, GTE Products Corp., Danvers, MA 01923) and four 60 watt

incandescent bulbs for a photosynthetic photon flux density (PPFD) at

the top of the plant canopy (35.6 cm above the top of the pot) of 120
-1 -2
Vmol*s *m2 as measured before and after each growth cycle with a

quantum radiometer (LI-COR Model LI-185A, LI-COR, Inc., Lincoln, NE

68504). Fronds from these temperature treatments were used as the

experimental units in experiments 1, 2 and 3. The temperature regimes

in the chambers were reversed February 26, 1984, and one half of the

pots at each temperature regime were switched to the other regime.

Fronds from these switched regimes were the experimental units in

experiment 4, harvest 1. On May 13, 1984, the pots were moved to

different controlled environment chambers (Plant Growth Chamber E 30B,

Percival Manufacturing Co., Boone, IA 50036) where the temperature
-1 -2
regimes were maintained and the light levels were 180 pmolos -m-2

Light in each of the second set of chambers consisted of six 60.9-cm







cool white fluorescent lamps (GE F24T12.CW.HO, General Electric Co.,

Nela Park, Cleveland, OH 44112) and two 25 watt tubular incandescent

bulbs. In these chambers, as well as the previously-mentioned ones,

the total watt input provided with incandescent lamps was kept in the

10 to 20% range recommended by Cathey and Campbell (24). Fronds from

these chambers were used in experiment 4, harvest 2.

Plants were fertilized with 1 liter of complete liquid fertilizer

(Peters Florida Special 20-10-20, W. R. Grace & Co., Horticultural

Products, Cambridge, MA) at a concentration of 400 or 500 ppm N Ix/week

for the low and high temperature treatments, respectively.

Fertilization maintained conductivity readings and pHs with a 2:1

(volume:volume, water:medium) extract procedure between 400-600

micromhos'cm-1 (Hach Model 2511, Hach Chemical Co., Ames, IA) and

5.5-5.9, respectively. Plants were watered daily. Just emerging

crosiers (fiddleheads) were tagged on September 4 and October 13, 1983,

and March 17 and May 5, 1984. Same aged fronds were used in each of

4 experiments to reduce variability and because research (95, 124, 125)

suggests that frond age is an influencing factor in frond longevity.


Growth and Development


Frond length. Measurements of the lengths of tagged fronds, 2

fronds per pot, were made at weekly intervals starting September 11,

1983.

Sori development. Dates when fronds first developed sori visible

to the unaided eye were recorded.







Morphology and Anatomy


Frond surface area. Surface areas were measured using area meters

(LI-COR Portable Area Meter Model LI-3000 with Accessory Belt Conveyor

LI-3050A, LI-COR Model LI-3100).

Frond thickness. Frond thickness was measured from the video

display of a scanning electron microscope (Hitachi S-450, Hitachi,

Ltd., Tokyo, Japan) operating at an accelerating voltage of 20 kV.

Pinnules obtained from a middle pinna of the rachis were fixed in 3%

glutaraldehyde in sodium cacodylate buffer (pH 6.9), post-fixed in

buffered 1% osmium tetroxide, dehydrated using an ethanol dehydration

series, and critical point dryed (Tousimis Model No. Samdri-regulated,

Tousimis Research Corporation, Rockville, MD) using liquid CO2.

Samples were then attached to aluminum stubs with low resistance

contact cement (Ernest F. Fullam, Inc., Schenectady, NY) and sputter

coated with a 50 nm layer of gold-palladium (Technics Hummer V,

Technics EMS, Inc., Springfield, VA).

Stipe cross-sectional area. Stipe diameters, narrow and wide for

each stipe, were measured 14 cm below the lowest pinna using a

micrometer. Stipe cross-sectional areas were approximated using the

formula for an ellipse:

(narrow diameter/2 x wide diameter/2) x r.

Stomatal density. Stomatal densities were measured using

photographs obtained using the scanning electron microscope (SEM) as

outlined above for frond thickness. Stomatal numbers were determined

for 2 fields for each frond.







Cuticle thickness and number of epidermal cell layers. Cuticle

thickness and number of epidermal layers were determined as described

for frond thickness above.

Tracheid numbers and cross-sectional areas. Tracheid numbers and

cross-sectional areas were determined from stained sections mounted in

Permount" (Fisher Scientific, Pittsburgh, PA) using a video image

analysis system (Linear Measuring Set system, Measuronics Corporation).

The stipe sections used were those from the hydraulic conductivity

experiments. The tissue was fixed in FAA and then embedded in medium

grade LR White resin (London Resin Co. Ltd., Hampshire, England) using

an aliquot mixer (Model 4651, Ames Co., Div. Miles Laboratories, Inc.,

Elkhart, IN) to enhance infiltration. Conventional paraffin embedding

techniques are generally not suitable for use with leatherleaf fern

stipe sections due to the sclerenchymatous nature of the stipe and the

great range in tissue hardness across the stipe (D. B. McConnell,

personal communication). Gelatin capsules were used to hold the tissue

and resin. The resin was polymerized using heat (600) and the embedded

tissue was affixed to aluminum stubs using epoxy cement. Sections were

obtained using a steel knife on a rotary microtome (AO", American

Optical Co., Buffalo, NY). Section thickness ranged from 1 to 5 um.

Sections were stained in an aqueous 1% toluidine blue 0 solution made

with 1% sodium tetraborate (48, 73, 150).

Photomicrographs on 35 mm color transparency film were made of each

vascular bundle in the stipe sections. A stage micrometer (American

Optical Co.) was also photographed at each magnification used to

photograph the vascular bundles using the same light microscope

(Olympus BH-2, Olympus Optical Co., Tokyo, Japan) and photography








system (Olympus AD exposure control unit and C-35A camera). The

micrometer transparencies were used to calibrate the video image

analysis system. The transparencies were placed on a light stage

(Omega type DII enlarger condenser, Simmons Bros., Long Island, NY)

covered with opal glass. A high resolution color video camera (RCA

with Canon TV zoom V6x18 lens equipped with a #4 close-up lens) and

video recorder (Hitachi VT-6500A) were used to generate a video image

for image analysis using the LMS digitizer. The LMS was interfaced

with a computer (Apple II plus, Apple Computer, Inc., Cupertino, CA

95014). The digitized images were corrected and enhanced using system

software and a light pen prior to the extraction of the geometric

information. Figure 2-1 shows a representative photomicrograph of a

vascular bundle and the digitized and enhanced digitized images of the

same bundle.


Physiology


Carbon exchange. An infrared gas analyzer (IRGA) (Anarad model

AR-600R, Anarad, Inc., Santa Barbara, CA) in an open system was used to

measure net CO2 fluxes of individual leatherleaf fern fronds (Figure

2-2). Standard gases of 265 and 350 ppm CO2 in nitrogen were used to

calibrate the IRGA for CO2. An internal calibration wedge was used to

calibrate for water vapor. Flow meters (Dwyer Instruments, Inc.,

Michigan City, IN) were used to regulate flow rates from 1 to 4

litermin-1. High density polyethylene tubing was used throughout the

system because of its relatively low cost, water absorption and CO2

permeability (18). The incoming air stream was saturated with water

vapor using an air-stone submerged in deionized water. A circulating































Figure 2-1. Photomicrograph of vascular bundle in stipe of leatherleaf
fern frond (top), digitized image of the same vascular
bundle (middle), and enhanced digitized image of the
lumina of the tracheids in that vascular bundle (bottom).













JL


0
(I)
nU)
CO

LU


cr
0-

-o


0






w-L
LJ
-J


L-
0
C
0,
4-o



L







C







O
.0
L

a)



















c
CL











C:
r-


L-









I
.Z 4








-o
LV
uv


C)
L)



UI





















LL
0

-0




































03
CT>








pump (Model 907CA182, Thomas Industries Inc., Power Air Division,

Sheboygan, WI) operating at a flow rate of 21.5 liter.min-1 and a fan

(Acme 600", Acme, Miami, FL) with a 10.2-cm blade were used to mix the

air in the 45-cm by 45-cm by 5-cm acrylic plastic cuvette (Figure 2-3).

This system exhibited reciprocity at the flow rates used. At high

photosynthetically active photon flux densities the high flow rates

were used to limit CO2 concentration reductions to 25 ppm or less. The

fronds were supported on a galvinized wire fabric with a 6-mm square

mesh. A polystyrene base held the wire above the fan blade and was

colored black to reduce the albedo. The turbulence caused by the fan,

the circulating pump and the air flowing through the cuvette were

intended to increase boundary layer conductance to physiologically

insignificant levels (147). Light was supplied from a fixture (HI-TEK,

Division of Lithonia Lighting, Crawfordsville, IN) equipped with a 400

watt high pressure sodium vapor lamp (Sylvania Lumalux LU400). The

lamp was allowed to warm up to full output (approximately 30 min)

before any readings were made. Light compensation points were
-1 -2
determined by reducing intensities from a maximum 673 pmol*s m-2

using layers of cheesecloth until the net CO2 flux was zero. Net CO2

fluxes were measured at up to 21 light levels per plant. Dark

respiration measurements were made when the recorder (Varian Model

9176, Varian Aerograph, Walnut Creek, CA) reached a stable reading

after the lamp was extinguished. Temperatures were maintained at 30.50

1.50 using a water filled heat sink below the light and a

temperature regulating water bath (Lauda K-21R, Brinkman Instruments,

Inc., Westbury, NY). These temperatures, which are representative of

the average daily high temperatures during the months when curl is most
































Figure 2-3. Acrylic plastic cuvette used in carbon exchange and
transpiration determinations of leatherleaf fern fronds.




































































































































I







severe (6), were monitored using copper-constantan thermocouples and a

digital thermometer (Model AD2036, Analog Devices, Norwood, MS). Yadav

et al. (164) have also found that 300 is the optimum temperature for

CER and dark respiration of 8 fern species in India. Barometric

pressure was determined using a barometer (Airguide Instrument Co.,

Chicago, IL). Carbon exchange was computed using the equation


CER = (C a SA) x ((FxMW) MV) x (273 T) x (P 0.1013)


where C = CO2 differential (vpm x 10-6)
SA = surface area, 1 side (dm2)
F = flow rate (l.hr-1)
MW = mole wt. of CO2 (44,010 mg)
MV = mole volume of CO2 (22.414 1)
T = temperature (0K)
P = barometric pressure (kPa)


The order of running CER determinations was randomized over treatments

to eliminate bias due to possible hysteresis or biological rhythms

(45). CER determinations were made, 1 replication per day, during the

period from November 18, 1983, to December 18, 1983 (Experiment 1).

Plants were thoroughly watered the day before and again the day

readings were made.

Transpiration. Net fluxes of water vapor in the air stream during

the CER measurements were determined using the above system.

Transpiration (T or E) was determined as follows:


T = H x F SA


where H = H20 differential (ugoml-I)
F = flow rate (ml*hr-1)
SA = surface area, 1 side (dm2)







Chlorophyll content. Chlorophyll determinations were made using a

modification of MacKinney's (92) and Arnon's (7) procedures. Two

0.27-cm2 leaf discs, obtained using a cork borer, were punched from

pinnules of each frond used for CER measurements. The discs were

quartered using a razor blade and placed in 5 ml of acidified (10% HC1)

methanol. Dark extraction was for 48 hr at -15. Optical density was

measured at 652 nm using a spectrophotometer (Spectronic 710, Bausch &

Lomb, Rochester, NY). Optical density (OD) was converted to mg/liter

using Arnon's (7) formula,

-1
(OD x 1,000) 34.5 = mg.liter-.


Milligrams*liter- were corrected for sample size as follows:

-1 2
mg*liter- x 0.005 liter x 187.3 leaf disc samples/dm2


Diffusive conductance. Diffusive conductance, transpiration and

pinnule temperatures were measured using a steady state porometer

(LI-COR LI-1600) with 0.6- and 1-cm2 apertures. Tests indicated that

adaxial transpiration was about 10% of total transpiration during the

lighted portion of the day so only abaxial readings were made.

Measurements were made on dark green, mature, non-sporulating fronds at

a terminal pinnule of the central pinna on attached and detached fronds

in growth chambers and postharvest holding rooms, respectively.

Temperatures and relative humidities were measured in the growth

chambers and holding rooms using the porometer.

Carbohydrates. Fronds used for CER determinations were

freeze-dried at -400 and 4.0 Pa (Virtis Model 10-MR-TR, Virtis

Freezemobile II, The Virtis Co., Gardiner, NY 12525) immediately after







CERs and surface areas were measured. Freeze-drying lasted 72 hr or

more and tissue was then stored in a desiccator at -150. Tissue was

then ground through a 20 mesh screen (Wiley Mill, Arthur H. Thomas Co.,

Philadelphia, PA), boiled in 80% ethanol and centrifuged at 10,500 rpm

(Model HT Centrifuge, International Equipment Co., Division of Damon)

for 1 hr. One-half milliliter of supernatant was diluted for soluble

sugar determinations with 9.5 ml deionized water. The centrifuged

pellet was combined with 5 ml of enzyme solution (40 ml of 20 mM

phosphate buffer + 20 mg a-amylase + 20 mg amyloglucosidase + 17.6 mg

CaCI2) and incubated for 12 hr at 340 using a constant temperature bath

(Magni Whirl Constant Temperature Bath, Blue M Electric Co., Blue

Island, IL). The sample was centrifuged as above and 0.5 ml of

supernatant was diluted with 9.5 ml of deionized water and starch

content of the sample was determined using a phenol-sulfuric acid

assay. One-half milliliter of 5% phenol and 2.5 ml of concentrated

H2SO4 were added to 0.5 ml of each diluted sample and allowed to cool;

then optical density was measured at 490 nm using a spectrophotometer.

Standards were prepared using D-glucose and deionized water.

Stipe hydraulic conductivity. The amount of time required to force

0.2 ml of deionized water through a stipe section 4-cm long using a

pressure of 0.5 MPa was determined using a pipet, a stopwatch and a

pressure chamber (Soil Moisture Equipment Corp., Santa Barbara, CA)

powered by compressed nitrogen gas. Section orientation was maintained

as when attached to the frond, proximal end of the stipe down, and the

bases were placed in a deionized water reservoir inside the pressure

chamber. The stipe sections were obtained from the base of fronds

subsequently used for postharvest evaluation. Previous research (69)







has shown that removal of 1 cm from the base of the stipe can cause

curled fronds to recover and removal of 2 cm gave no added benefit.

Relative conductivity, k, was calculated as defined by Farmer (47) and

subsequently modified by Heine (67):


k = Q1n/Ap


where Q = flow (ml.s- )
1 = stipe length (cm)
n = viscosity (MPa.s)
A = cross-sectional area (cm2)
p = pressure (MPa)


Conductivity, a, was calculated using the lumen area rather than the

cross-sectional area of the plant part (67):


a = Ql/pa


where a = total lumen area


Postharvest


Fronds were harvested with clippers by cutting the stipe near the

rhizome. Each stipe was recut with a razor blade to a 14-cm length and

placed through a small hole in Parafilm@ "M" (American Can Co.,

Greenwich, CT) which covered the opening of a 100-ml graduated

cylinder filled with deionized water. Harvested fronds were held in

holding rooms that approximated home or office conditions.

Temperatures were maintained at 24 1, relative humidities were 60%

15%, and light levels were 17 Pmol.s-*m-2 obtained using cool white

fluorescent lamps.







Postharvest water uptake. Water uptake for each frond was

determined by observing the change in water level in each cylinder and

refilling the cylinders to the 100-ml line. This was done daily for

the first week and when fronds were terminated. One tagged frond from

each pot, the same age as those used for CER determinations, was

harvested December 10, 1983, and the stipes were cleaned of scales

(Experiment 2).

Fronds for subsequent postharvest experiments were handled

similarly except as noted below. Forty fronds from each growing

temperature, 5 fronds from each of 8 pots, were harvested January 8,

1984 (Experiment 3). This second group of fronds, as well as a third

group harvested May 5, 1984 (Experiment 4), was stored in polyethylene

bags at 40 for 1 day prior to being placed in graduated cylinders. A

fourth set of fronds, from the second set of growth chambers, was

harvested July 4, 1984 (Experiment 4) and handled the same as the first

group.

Postharvest weight changes. Initial frond weights were taken

before fronds were placed in the graduated cylinders. Fronds were

placed in the cylinders which were then filled to the 100-ml line with

deionized water and weighed. Cylinders were thereafter weighed with

the water level at the 100-ml line. This procedure obviated the need

to remove the fronds from the water which might have caused the

formation of air embolisms. Preliminary tests showed that cylinders

could be refilled to the line with little variation ( 0.05 g).

Postharvest longevity. Fronds were checked daily and were

discarded if they showed signs of yellowing (>5% of frond yellowed),

curling infoldingg of pinnae along the midvein) (68, 112, 137), or

overall desiccation (wilting accompanied by graying).







Results and Discussion

Experiment 1


Growth of fronds was greater at the high temperature regime, HTR,

than at the low one, LTR (Figure 2-4). Poole et al. (125) have found

that, in shadehouses, crosiers emerging during the warmer months also

grew more rapidly. Both HTR and LTR growth curves were logarithmic and

had similar slopes; however, early growth of fronds produced under the

HTR was greater as evidenced by the different intercepts 1 week after

fronds were tagged. Also, HTR fronds produced visible sori sooner

(Table 2-1). Sori development of the LTR fronds had reached that of

the HTR fronds by 5 weeks after emergence of fronds. Increased growth

and development due to higher production temperatures have been

reported for many crops (9, 16, 53, 60, 84, 104, 126, 161).

Abaxial diffusive conductance (g w) and leaf temperatures increased

during the light period (Figure 2-5A,B). Both measurements were

different for fronds at the 2 temperature regimes throughout the day

cycle, with the diffusive conductance lower for HTR grown fronds.

Abaxial g ws of LTR fronds were on the low side for crops and abaxial

g ws for LTR and HTR were similar to those of many trees (115), many of
which are hypostomatous. Diffusive conductances for fronds at both

regimes were similar to those for 2 epiphytic CAM ferns (162) and

considerably lower than those previously reported for field grown

leatherleaf fern fronds (112). The differences for leatherleaf fern

g ws may have been due to the lower light levels and relative
humidities in the controlled environment chambers. Since potential

vapor pressure increases with temperature and the relative humidities






44






L


SO 01(


'I-

.4-'f
4 *r-




>
E r-
I O -' c Q




00
0 Z L" ..,---






S0 )C aav
\ O O OU O -"
I
r' I=: .- a)


I-O O. C C-
o- 0 .-O -


\ 5 z,-
Z Z (-

C O a) 4. ,.-
S\ 0 c



+ 0 0 o



nL L c

0 *. 0-
\ 4-- o -
\ \ ,, C )

I -' 0 -




\ 4J m a.- ti
\ C 0L l
\W < I a1 *



z C 4- a)
\ \ n -8



0 E *4- 4-
LL C:
\ L C -*


U C *- 4c
O* Cr- 4-
0*- a) .- 4'
IN 0 4- c
CL C 0
\ \0. t- c- -


L- \ 1 a)
\0 4-) a )o u
\a) 4-> t




\4-- : CL
\ L 4-'


o0 '-
0 I \ I 0 I 0 I 0a



0(W) H \ON01 0 NO
U L i .-
~~C \3 \F dc.

~00 \ =St- *
10 v "^ < **-
^j \ 04-
4.W \ \ t- C7>
+ \\ 0.4 -r-


























Table 2-1. Production temperatures
leatherleaf fern fronds
chambers.


affect sori development on
grown in controlled environment


Day/night production Frond age (days)
temperatures
(C) 7 14 21 28 35

Fronds with sori (%)

200/150 0 0 0 0 53.3
300/250 0 0 0 52.9 58.8


Significance level
based on t test


1.000 1.000 1.000 0.007


0.612










--a--


A


31" B
30

29

28

27

26

25

24

23

22

21

20

19

18

17

16
1i5


10 1-


48


46


44


.- /


0-2 L__, 38[
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 8(
TIME OF DAY


Figure 2-5.


a













b.
I'b
i/



0 I


a





0


)0 900 1000 1100 1200 1300 1400 1500 1600 1700 1800
TIME OF DAY


Abaxial diffusive conductances (A), leaf temperatures (B),
and transpiration (C) of leatherleaf fern fronds grown in
controlled environment chambers under temperatures of 200C
day/15 night, or 30 day/250 night, -, and
relative humidities at the time of measurement (D).
(Letters are means of 6 replications and different letters
indicate significant differences for t test comparisons at
the 2% level within time of day for treatments.)


W
LJ
i~2
ha

LL
-I


50 t


35-


N. ,


bbb b




b


S0.9
E
E 0.8

z
S07


0i 0.6

CL
H- -


/
/
/
/
/
/
/
0


^
,^
/
/
/
/
/
/
/
/


D


/"







were lower in the high temperature chambers (Figure 2-50), the vapor

pressure deficit (VPD) was greater in the high temperature chambers.

This greater VPD resulted in there being no transpiration differences

between treatments in spite of the lower gwv s for HTR grown fronds

(Figure 2-5C).

The CER curves were logarithmic and CERs for fronds grown at the 2
-1 -2
temperature regimes were different at PPFDs above 430 umols -*m-2

(Figure 2-6). At light saturation (Is), the CER for HTR fronds was 34%

lower than for LTR ones (Table 2-2). The LTR I CER was about 14%

lower than that previously reported by Mathur and Bhagsari (97) for

leatherleaf fern grown in a shadehouse at higher light intensities than

were used in this study. Numerous studies have documented increased I

CERs for plants grown at higher light intensities compared to plants of

the same species grown under lower production light levels (13, 45, 53,

159).

Quantum efficiencies, on an incident light basis, were different

(P < .01) for HTR and LTR grown fronds, as determined by a test of

homogeneity of the slopes (143) of the CER curves below photosaturation

(Figure 2-7). Quantum efficiencies for HTR and LTR fronds were 0.0195

and 0.0223 mol C02/mol, respectively. Chlorophyll content was also

lower for HTR fronds, and this is probably the reason for the lower

quantum efficiencies. Chlorophyll is the primary photon trap in both

photosystems I and II (149). Light saturated CER efficiencies

(chlorophyll basis) were the same for LTR and HTR fronds, and these

efficiencies indicated that there were probably no qualitative

biochemical differences in photosynthesis due to production

temperatures (Table 2-2).






48






4-


C


) r-


O '-'
0 ao





S4-CO
( 0 -b









4 -n CL -4
0*.-4-.





o u-c
0 0 0 co, 0j


+ CA O -
a) 4 -o





C -) 04
( 0 >. th *e
"to L la c o L
S- C *


'C CL CL
c0 0 0o o
S.











3 4+ C --)
O.*r-* 0- ) g

.1-- "- W









0 00 ..
I cL Q
I o o o c-










I C-- 4 -
I C*,-
w c *r-









\ -.'.u ) 4 I-
I E ) .
S- 4- E U
\HI 0 W- :
\~ a C) .- 9c











o co k
o o \ o anu L 1
\U .n 0- 0
r') \ OC CL (






I^ \ i 0s- o >
z \ 4.-




S0 0 r4-4-
0 \)-C TLi




">.4 Cn T.
*- \o \ c rUo -









L





49


Table 2-2. Physiological characteristicsz for leatherleaf fern fronds
grown under low and high temperature regimes.


Day/night production temperature
(C)

Significace
200/150 300/250 level


Light saturated CER
(mg CO2 dm-2 hr-1) 6.42 0.77

Chlorophyll (chl)
(mg dm-2) 6.91 0.48

CER efficiency
(mg CO2 mg chl1 hr-1) 0.92 0.08

Light compensation
point (pmol s-1 m-2) 13.0 2.58

Dark respiration
(mg CO2 dm-2 hr-1) 0.51 0.12

Soluble sugars
(mg g dry wt-1) 208 25.0

Starch
(mg g dry wt-i) 34.3 6.23

Nonstructural
carbohydrates
(mg g dry wt-1) 242 27.2

Transpiration (at I )
(mg H20 dm-2 hr1) 564 25.4

Water use efficiency
(mg CO2 : mg H20 10-2) 1.30 0.15

ZMeans of 10 replications SE.
YPlants were grown in controlled environment
and 12 hr nights.
XSignificance based on t test.


4.25


5.20


0.81


7.4


0.17


191


35.1



226


475


1.06


0.51


0.21


0.08


2.13


0.03


16.7


2.56



18.4


35.4


0.12


0.030


0.007


0.343


0.114


0.022


0.583


0.910



0.631


0.067


0.354


chambers with 12 hr days




















/
/ /











0.035 x y= 0.015 + 0.031x
r =0.99***
00/








or













---A-- GROWN AT 300/250 C (DAY/NIGHT)
-o- GROWN AT 200/150 C (DAY/NIGHT)


0 9 18 27 36 45 54
PPFD (pmol-s'- m2)


Figure 2-7.


63 72 81 90


Quantum efficiencies of leatherleaf fern fronds grown
under 2 temperature regimes. (*** indicates significance
at the 0.1% level.)


y = -0.166 +
r = 0.99**


E


O
E
LU



0


U.


0.3


0.0


-0.3


-0.6







Light compensation points were low and not different, but dark

respiration rates (Rds) were different and lower for HTR fronds.

Soluble sugars, starch and nonstructural carbohydrate levels were

similar for both temperature treatments and, therefore, substrate

levels do not seem responsible for the differences in Rd rates. The

reduced Rds for HTR fronds may be due to increased (physiological)

aging of HTR compared to LTR fronds due to more rapid development at

the higher production temperatures (59). Dark respiration has been

shown to decrease with aging (19, 59, 154).

The transpiration (T) curves were logarithmic and similar in shape

and orientation to those for CERs (Figure 2-8). Transpiration was

lower (P < .05) for HTR fronds at PPFD levels between 183 and 431 and
-1 -2
below 32 Umol-s *m The ability of stomata to open, as measured by

the size of the stomatal aperature, has been shown to decrease as

leaves age (50). If the HTR fronds were significantly older,
st
physiologically, gw could be responsible for the reduced T. The

stomata of HTR fronds may also have been preconditioned to lower

conductivity. Transpiration and WUE (mass basis) at Is were similar

for fronds from both temperature treatments (Table 2-2).


Experiment 2


Fronds from both temperature treatments were found to be

hypostomatous and anomocytic, i.e., with no specialized subsidiary

cells associated with the guard cells (Figure 2-9). Cracks in the

cuticle were not detected for either treatment. No differences in

initial fresh weights, surface areas, adaxial and abaxial cuticle

thickness, upper and lower epidermal cell layers or stomatal densities
















x
c

c(
t0)

+ *

C\J )
_d
I IIt
>1 ..


N..


N> .0 -.
o' Xo


0 0 0 0 0 0
In jo 0o o
I T r)O ro) rO


( IL. uJwp- OH b6 ) 1
I C -


o


IC

I


OD 0


\It
IT\







I


:E
0
Z
>-s

O



o U
u.) u,)

0 0



z z
3: 3
0 0
cr cr
(D (D





I


-



4- c >
4-(0C (U

c ra)




C c *

In a)

~4-)
C- -
coa



S(0 4e
-- *V)





4L --
La a)
*.- a)




- 4- 0
(# J a) 4

urt cr C)





C-L M -




-a ) a







L-L~
CL L In
+- a 4-3
QU CC

CJ= L
.- C 4- Q)
4C) -> 4- '









- 4->U
a- c u
CL In -(







C.
4- U- 4-

C-- a)C4C


Lc 4-o














*0


















U4-
1 L U a

.C C CC


Ocn) i




4v- C- )
a) C C4 .3




CU- t
r Sc t-







t : JQ
o J o
t- 0
4- 4 t


\
\


o0
0


0 0
tO ,D
%I-


I I I I I I 1 I ly)































Figure 2-9. Photomicrographs of leatherleaf fern pinnules showing
A) abaxial pinna surface with stomata, B) adaxial pinna
surface, C) close-up of a stoma and D) cross section of a
pinnule showing stomatal complex and substomatal chamber.




54








due to the production temperatures were noted (Table 2-3). The

association of frond fresh weights to surface areas was strongly linear

for fronds grown at both temperature regimes (Figure 2-10). The test

of the homogeneity of the 2 slopes (143) was not significant (P < .20).

The surfaces (laminae) for water loss were, therefore, somewhat

similar; however, pinnules from HTR fronds had more incised margins,

less pronounced venation (Figure 2-11) and were 24% thinner than LTR

fronds (Table 2-3, Figure 2-12). Chabot and Chabot (25),

Charles-Edwards et al. (28), Friend (53), Friend et al. (54) and Peet

(120) have reported similar decreases in leaf thickness with increased

production temperatures. Carbon exchange (Experiment 1 fronds) appears

positively correlated with leaf thickness (Experiment 2 fronds) since

fronds for both experiments were tagged and produced concurrently in

the same pots. Such a correlation has been reported previously for

other crops (122, 160).

The stipe of the fronds differed markedly due to production

temperature treatments. Stipe diameters, cross-sectional area and

relative conductivity were reduced for HTR grown fronds (Table 2-3).

Vase life was positively correlated with stipe narrow diameter

(r = 0.58, P < 0.007) and cross-sectional area (r = 0.52, P < 0.018).

Differences in stipe conductivity may have significance to the water

balance and postharvest longevity of leatherleaf fern fronds. The

ratio of the surface area (one side) of the fronds to the stipe

cross-sectional area for HTR fronds was about 30% greater than that of

LTR fronds (Table 2-3). This ratio was negatively correlated

(r = -0.43) with vase life at P < 0.061.








Table 2-3. Anatomical, morphological and postharvest characteristicsz
of leatherleaf fern fronds grown under low and high
temperature regimesy.



Day/night production temperature
(C)

Significance
200/150 300/250 levelx


Fresh weight (g)

Surface area = SA (cm2)

Adaxial cuticle thickness
(p)m)

Abaxial cuticle thickness
(Nm)

Upper epidermal layers

Lower epidermal layers

Stomatal density (*mm-2)

Leaf thickness (um)

Stipe narrow diameter (cm)

Stipe wide diameter (cm)

Stipe (cross-sectional)
area (cm2)

Relative conductivity
(cm2)

Ratio of SA:stipe area
(.102)

Uptake (ml frond-1)

Vase life (days)

Discard weight

(% of initial weight)


15.9

430


1.29

33.0


1.27 0.12


1.29

1.50

1.00

169

191

0.31 +

0.37


0.15

0.17

0.00

13.0

8.35

0.01

0.02


0.09 0.01


1.04 0.10


48.8

122

25.6


2.02

13.0

1.33


90.1 2.24


15.3

430


2.00

54.7


1.18 0.11


1.02

1.60

1.00

161

144

0.26

0.32


0.04

0.15

0.00

8.33

3.09

0.02

0.01


0.07 0.01


0.63 0.11


63.6

78.2

16.3


3.56

9.04

1.51


89.2 3.15


zMeans of 10 replications t SE.


YPlants were grown in controlled environment
and 12 hr nights.
XSignificance level based on t test.


chambers with 12 hr days


0.820

1.000


0.592


0.103

0.655



0.603

0.0001

0.048

0.073


0.048


0.012


0.002

0.013

0.0002



0.822











-0- GROWN AT 200/150C (DAY/NIGHT)


A o
/ I


500

475

450

425

400

375

350


y = 11.44+ 27.34x.
r = 0.93***


-o
/
4'


-y =23.57+25.63x
r =0.98***


------ GROWN AT 300/250C (DAY/NIGHT)


I I


I I I I i ,
4 5 6 7 8 9 10 II 12 13 14 15 16 17

FRESH WEIGHT (g)




Figure 2-10. Association of fresh weight and surface area for
leatherleaf fern fronds grown under 2 temperature
regimes. (*** indicates significance at the 0.1% level.)


/ /O
A /
/


325


300

275

250

225

200

175


150

125

100


































Figure 2-11. Pinnae from high (30C day/250 night) temperature regime,
HTR, frond (left) and low (200 day/150 night) temperature
regime, LTR, frond (right) showing reduced venation and
increased marginal incision of HTR pinnules.





59






























Figure 2-12.


Scanning electron micrographs of cross sections of
pinnules of leatherleaf fern grown under low (20C
day/150 night) temperature regime (top) and high (30
day/250 night) temperature regime (bottom).




























































~V~wQ~


" ~L ~j
4;n
-
I* i








Water uptake by HTR fronds was lower than that of LTR ones starting

3 days postharvest and both curves were negatively logarithmic (Figure

2-13). Water uptake 7 days postharvest was positively correlated with

stipe wide diameter (r = 0.55, P < 0.012) and cross-sectional area

(r = 0.46 P < 0.043). Postharvest weight changes of cut fronds were

similar for LTR and HTR fronds for the first 9 days postharvest, but

HTR fronds appeared to be losing weight more rapidly (Figure 2-14).

The 2 lines appeared to be diverging, and this may be due to the

observed differences in water uptake and/or to differences in rates of

water loss. Mean overall water uptake per frond was 36% less for HTR

fronds than that of LTR fronds (Table 2-3).

Vase life was reduced 36% for HTR fronds (Table 2-3). LTR fronds

lasted almost 4 weeks and were discarded due to yellowing. Fifty

percent of the HTR fronds yellowed and 50% showed symptoms of

dessication. Frond curl syndrome did not occur on fronds produced

under either the HTR or LTR conditions.

Stipe narrow and wide diameters, stipe cross-sectional area and

frond surface areas of LTR fronds were all positively correlated with r

values of 0.9 or greater (Table A-i, Appendix). Leaf thickness was

positively correlated with adaxial cuticle thickness (r = 0.83) and

number of upper epidermal layers (r = 0.68). Total frond water uptake

was positively correlated with stipe narrow (r = 0.87) and wide

(r = 0.91) diameters, stipe cross-sectional area (r = 0.90) and frond

surface area (r = 0.91). No factors were correlated with vase life of

LTR grown fronds.

The results were similar for HTR grown fronds. Stipe narrow and

wide diameters, cross-sectional area, number of upper epidermal layers




63










-- GROWN AT 20/15C
(DAY/NIGHT)
--- GROWN AT 300/250C







y =0.088- 0.045 In x
r =0.94***










\ y = 0.071- 0.0371n x




b b a*rZO.94b
b -b


I 2 3 4 5 6 7 8 9


DAYS POSTHARVEST


Figure 2-13.


Postharvest water uptake of cut leatherleaf fern fronds
grown under 2 temperature regimes. (Letters are means of
10 replications and different letters indicate
significant differences for t test comparisons within
days postharvest for treatments. *, **, and *** indicate
significance at the 5%, 1% and 0.1% level, respectively.)


IoF




















,O


104


103


102


101-


100


99


98


97-


96


95


94


93


'-0


--- GROWN AT
--- GROWN AT


200/150 C
(DAY/NIGHT)
30/25C


I 2 3 4 5 6 7 8 9


DAYS POSTHARVEST


Figure 2-14.


Postharvest weight changes of cut leatherleaf fern fronds
grown under 2 temperature regimes. (Letters are means of
10 replications and indicate t test comparisons at the 5%
level within days for treatments.)


a a
0L


0^-







and frond surface area were positively correlated with r values from

0.68 to 0.97 (Table A-i, Appendix). Total frond water uptake was

positively correlated with stipe narrow (r = 0.75) and wide (r = 0.83)

diameters, stipe cross-sectional area (r = 0.83) and frond surface area

(r = 0.80). The association of vase life with relative conductivity

for HTR fronds was negative with an r value of -0.79. The HTR fronds

with the highest relative conductivity had the shortest vase life.

The discard weights (weight at termination initial weight) for

LTR (90.1%) and HTR (89.1%) fronds were not different which indicates

that HTR fronds lost weight more rapidly than LTR ones. This

similarity suggests that HTR fronds lack effective postharvest stomatal

function and water loss control.


Experiment 3


Water uptake by cut leatherleaf fern fronds (Figure 2-15) was very

similar to that in Experiment 2 (Figure 2-13). Day 1 poststorage in

this experiment is equivalent to day 2 postharvest in the previous

experiment due to the storage of the fronds for 1 day. Initial (day 1)

water uptake was positively correlated (r = 0.49, P < 0.0001) with vase

life. Water uptake by HTR fronds was approximately 50% of the uptake

observed for LTR fronds. Recutting stipe bases 1, 2 (Figure 2-16) and

even 3 or 5 days (Figure 2-17) poststorage caused water uptake to

return to nearly the day 1 poststorage levels. The rate of decline

(slope of the curve) in uptake after stipe cutting was similar for HTR

fronds regardless of when they were recut. Comparison of the water

uptake curves shows that the same was true for LTR fronds; however, the

uptake for LTR fronds was higher than for HTR fronds.








































d



C -
0

II II


*0-
o -























I -








o ..
I )


X
_-
CM

0
*

rto
n co
0 0)
d d
to II


ro cN 0


- LD I0 Tf


t O


L0

ot
0
F-
U)


0
'-

U)


E V
1/)





C-- U
E --
.-r-- a

..- L- a)
4) ~- C L

-C a)
LU *r-
ac4- U,
E *r- -0
a)CCL
4 _> n ro a)







c x r
La)

C4-) CU

0 *
CC C II
3 *- 4-

SC 4 >
CD LE









"-"-
1"- 4-) ro "-

LOLn



L 0 .-
4- 4- CL a)





4- *
) 4-) -
.- -o A a)
SC 4- C >








r- ro ro
-C oC-
.o c





a1 0 0 -
r- .- to
4- 0-&
o a) 4
L (r- C-
0) 3


to
4-) 4- C I3

n 0 0-













L Cj L0--
CL 4- In
a-) U,(




: 0
4c U










a)
in


U-


L I I I 1 I I I


(Oz--_wUo'.iwu) 3>vidln d31VM



























































Figure 2-16.


-y= 0.049-0.0251n x
r =0.97**


Na


-y=0.037-0.019 In x
r=0.97**
.-. .
a a
a-
a -- --- --- a


y = 0.049-0.025 In x


-y=0.032 -0.018 In x
r =0.97**


'b \ **



b -b
bb ^- ---- a* -


I 2 3 4 5 6 7 8

DAYS POSTSTORAGE


Effect of recutting stipe bases 1 or 2 days poststorage
on water uptake of leatherleaf fern fronds grown under
temperatures of 200C day/150 night, -- or 300 day/250
night, --- (Letters are means of 8 replications and
different letters indicate significant differences for t
test comparisons within days poststorage for treatments.
*, **, and *** indicate significance at the 5%, 1% and
0.1% level, respectively. x = days after stipes recut.)





** Ts


\ Is
S













S0.051- 0.0251n x
S0.99**


S
T
PI
A E

R

T
0 S
\ 0


.y 0.050 0.0271n x
r =0.99***


0.035-0.02
-v= 0.035-0.02 In x


\ **


"b --
b --b


1 2 3 4 5 6 7 8


DAYS POSTSTORAGE


Figure 2-17.


Effect of recutting stipe bases 3 or 5 days poststorage
on water uptake of leatherleaf fern fronds grown under
temperatures of 200C day/15 night, or 30 day/250
night, ---- (Letters are means of 8 replications and
different letters indicate significant differences for t
test comparisons within days poststorage for treatments.
*, **, and *** indicate significance at the 5%, 1% and
0.1% level, respectively. x = days after stipes recut.)


I I







Relative conductivity, k, also declined logarithmically with time

(Figure 2-18); however, there were no differences between HTR and LTR

fronds on any date. This lack of relative conductivity differences

suggests that there may be no qualitative difference between the

hydraulic conductivity of HTR and LTR stipes.

Figure 2-19 illustrates the effect of stipe recutting 5 days

poststorage on gleaf and T. Both statistics increase within 15 minutes
wv
and after 1 hr begin to decline slowly. Transpiration and gleaf reach
wv
near zero values 2.7 days after recutting. Within about 2 hr of stipe
leaf
recutting, gleaf values for HTR fronds were lower than LTR ones, as was

found for attached fronds in Experiment 1 (Figure 2-5). Assuming that

internal leaf relative humidity was 100% (4), T also differed after

about 6.5 hr (Figure 2-19). High temperature regime fronds lost weight

more rapidly than LTR fronds (Figure 2-20), indicating that, in spite
Sleaf
of reduced gwv HTR fronds were losing water relative to uptake at a

higher rate than LTR fronds.

Morphological characteristics of HTR and LTR fronds were similar to

those observed in Experiment 2. Initial fresh weights, dry weights,

surface areas and frond water content were not different due to

production temperatures (Table 2-4). Leaf density thickness (LDT),

specific leaf weights (SLW), stipe narrow and wide diameters, and stipe

cross-sectional areas were lower for HTR fronds. Initial water uptake

was positively correlated with LDT (r = 0.83, P < 0.0001), SLW

(r = 0.38, P < 0.0006), stipe narrow (r = 0.38, P < 0.0005) and wide

(r = 0.38, P < 0.0005) diameters, and stipe cross-sectional area

(r = 0.38, P < 0.0006). Vase life was also positively correlated with

LDT (r = 0.63, P < 0.009), stipe narrow (r = 0.43, P < 0.0001) and wide











2.0


1.8


1.6


I 2 3
DAYS POSTHARVEST


Figure 2-18.


Postharvest decline of relative conductivity, k, of cut
leatherleaf fern frond stipe bases. (Each point
indicates the mean of 8 replications and indicates
significance at the 5% level.)


-0- GROWN AT 200/15C
(DAY/NIGHT)
--A-- GROWN AT 300/150C



















= 1.62-1.02 In x
= 0.94*


\k-y = 1.64-0.97 In x
\r= 0.95*




n0
0 0


S1.4


5 1.2
C-)

I 1.0
z
0

w 0.8


S0.6


0.4


0.2


0.0

















/
/
/
/

/
/
/
I
I
/


r- 0 oo 0 0 01 0 0 0
SN N -D -- Q Q
o o o oo o o o


(4S.Z.uJ.IOUJJ) NOIIV IdSNVJI


f( o
o0 0 0
coo~


4-

o o0

aw C\j 4-
U) 0

a)oE


V 4-- 6


*n L
c- 4-




4--)





C 0 .. m
o ac)










0r-"



*c- C
L a) -A



)C Ct
=o m. 4-'





40 I 0 r-











U t-- L-

LCn
-o 0



*r- U
4 L4 -C




to t *
w0 0) L

4- )L I
Cr I -
















r- 4J *-
'4 t 4 0
+ C C I

a) a) a)
c *-- Lu




mn ) c




> e 0 4-1



3 C--e c



i-4- C






- 4 4 O-





0 CO >, Q.0
NCI-0
c drh


0 U.o 0 o Q o )0 P 0 o nm 0
o r- r0 t ui 0 'N d d
c(s u N3 N NvONOO -
(is. wu.io uIu) 33NtifnGN03 BAISfJJdIO


t I I i I I I


<










-a


-aa

a-a
o .- a


a
a


bb
\\

b
\

\b
\\
\\


GROWN AT 200/150C
(DAY/NIGHT)
GROWN AT 30/250C


DAYS POSTSTORAGE


Figure 2-20.


Postharvest weight changes of cut leatherleaf fern fronds
grown under 2 temperature regimes. (Letters are means of
8 replications and different letters indicate significant
differences for t test comparisons at the 5% level within
days for treatments.)


101.0


100.5


100.0


99.5


99.0


98.5


98.0


97.5


97.0


96.5


96.0









Table 2-4.


Anatomical, morphological, physiological and postharvest
characteristics for leatherleaf fern fronds grown under
low and high temperature regimes


Day/night production temperature
(C)

Significance
200/150 300/250 level


Fresh weight (g)

Dry weight (g)

Water content (%)

Surface area SA (cm2)

Leaf density thickness
(g fresh wt/cm2- 10-2)

Specific leaf weight
(g dry wt/cm2 10-3)

Stipe narrow diameter (cm)

Stipe wide diameter (cm)

Stipe (cross-sectional)
area (cm2)

Ratio of SA:stipe area
( 102)

Tracheid number

Tracheid lumen area
(mm2 10-1)

Parenchyma cell area
(m2. 10-3)

Average lumen area
(mm2. 10-4)

Vascular bundle number

Conductivity
(cm2 MPa-15s-1.102)

Vase life (days)

Discard weight
(% of initial weight)


12.7

2.96 +

76.2

347 +


12.8

2.60 +

78.8

356


3.73 0.13


8.46

0.29

0.33


1.79

0.20

1.18

23.5


3.15 0.06


0.21

0.007

0.009


0.08 0.004


45.2 1.34

379 82.2


1.60 0.42


4.61 0.44


4.16 0.27

9.56 0.26


1.47 0.49

27.5 1.14


88.6 t 3.51


Z
Means SE.
YPlants were grown in controlled environment
and 12 hr nights.
x
Significance level hased on t test.


7.27 t

0.25

0.28 +


0.20

0.006

0.008


0.06 0.003


65.2 2.28

346 75.3


1.03 0.16


5.44 0.45


3.04 t 0.16

8.38 0.40


0.74 0.57

19.9 0.92


87.7 2.25


chambers with 12 hr days


0.961

0.182

0.141

0.761


0.001


0.0001

0.0001

0.0001


0.0001


0.0001

0.786


0.276


0.225


0.022

0.048


0.388

0.0001


0.839







(r = 0.43, P < 0.0001) diameters and stipe cross-sectional area

(r = 0.43, P < 0.0001). The frond surface area to stipe

cross-sectional area ratio was 38% greater for HTR fronds. As was

found in Experiment 2, this ratio was negatively correlated (r = -0.23,

P < 0.011) with vase life.

Tracheids of stipes of leatherleaf fern were scalariformly pitted

(Figure 2-21). Differences in tracheid numbers and total tracheid

lumen area per stipe cross section were not detected (Table 2-4) and

this was probably due to the limited sample number (3 replications).

The number of tracheids per stipe cross section were higher than

reported for other fern species (163). However, the ratio of frond

surface area to tracheid numbers in this research is the same as was

found for the smaller-leaved fern species examined in that study.

Lumen areas appear to differ in size due to the temperature treatments.

However, this may be an artifact of the LMS system which tends to

underestimate tracheid numbers in stipe sections and, therefore,

overestimate average lumen areas under the low magnification necessary

for the large vascular bundles of LTR fronds. Lumen areas reported

here are larger than Woodhouse and Nobel (163) found for 6

smaller-leaved species of fern. Total tracheid lumen area comprised

2.06% and 1.87% of stipe cross-sectional areas of LTR and HTR fronds,

respectively. Vascular bundles were less numerous in HTR stipes than

in LTR stipes. The secondary thickening of the outer tangential wall

of the endodermal cells was greater for LTR fronds (Figure 2-22). This

thickening may increase the structural strength of the stipe and also

reduce movement of water out of the stele and into the ground tissue of

the stipe. This could increase the amount of water available to distal





























Figure 2-21. Scanning electron micrographs of a leatherleaf fern stipe
showing A) a cross section with vascular bundles (vb)
containing tracheids, B) the location of tracheids (t) in
a vascular bundle, C) close-up of tracheids and
D) scalariform pitting of the cell walls of tracheids.








































DI.




























Figure 2-22.


Cross sections of vascular bundles in stipe bases of
leatherleaf fern fronds, grown under 200C day/150 night
(top) and 30 day/250 night (bottom) in controlled
environment chambers, showing the greater thickening of
the outer tangential wall of the uniseriate endodermis of
the 200/150 grown frond. (x850) e: endodermal cell,
s: sieve cell, t: tracheid.






78


















b h












t r zr ~ rop



.. t4L








~gt" ; rci .eel








tissues of the lamina. Frond curl syndrome usually starts at the

periphery of the frond and progresses downward and inward. The size of

the parenchyma cells of the ground tissue were similar (Table 2-4).

Conductivity, a, was not different between treatments and this suggests

that there are no qualitative differences, such as differences in

tracheid cell wall pitting, in the vascular tissue of LTR and HTR

fronds.

Vase life of HTR fronds was 28% less than for LTR fronds (Table

2-4). Since the discard weights (termination weight initial weight)

of LTR and HTR fronds were the same, the reduction in vase life of HTR

fronds was due to their losing weight faster than the LTR fronds and

not to any bias during termination evaluations. This supports results

observed in Experiment 2. Stipe recutting did not affect vase life,

and there was no interaction of temperature treatment and stipe

recutting. The stipe bases were recut once in this experiment. In an

experiment where stipes of fronds grown under a single environmental

regime were recut daily, the recut fronds did not lose weight over an

18 day period, whereas the control plants lost 19% of their initial

weight (Henny, unpublished). None of Henny's recut fronds exhibited

FCS, but 55% of the control fronds were terminated due to

curling/dessication.

Numerous correlations existed between frond anatomical and

morphological characteristics for LTR fronds (Table A-2, Appendix). No

characteristic was highly correlated with vase life. Surface area

(r = 0.35, P < 0.045), relative conductivity (r = 0.32, P < 0.045) and

initial (day 1) water uptake (r = 0.35, P < 0.027) were weakly

positively correlated and specific leaf weight was weakly negatively







correlated (r = -0.38, P < 0.016) with vase life (Table A-2, Appendix).

Stipe relative conductivity was positively correlated with the number

of tracheids in the stipe (r = 0.80, P < 0.02) and conductivity and

relative conductivity were positively correlated with tracheid lumen

area (r = 0.99).

There were numerous correlations between frond anatomical and

morphological characteristics for HTR fronds (Table A-2, Appendix).

Specific leaf weight (r = -0.38, P < 0.017) and water uptake on the

eighth day poststorage (r = -0.35, P < 0.028) were negatively

correlated with vase life.


Experiment 4


Harvest 1. Water uptake curves in this experiment were similar to

those in Experiments 2 and 3 (Figure 2-23). The main effect of the

former temperature treatment (FT) was significant (P < 0.044) for the

first 90 hr poststorage (post-stipe recutting) and fronds from pots

that were formerly grown under HTR had reduced uptake compared to

fronds formerly grown under LTR. The temperature treatment under which

the tagged fronds developed (LT) had no effect on uptake and no

interactions were found between the former and latter temperature

treatments. Abaxial diffusive conductance and transpiration were not

different during the first 90 hr as determined by analysis of variance

(Figure 2-24). Abaxial diffusive conductance values were considerably

lower than have been found for cut field grown leatherleaf fern (112)

and may have been partially due to stomatal closure during storage and

to differences in environmental conditions mentioned in Experiment 1.

Weight loss effects due to FT were detected (P < 0.035) 90 hr after the
















































0.0


Figure 2-23.


TEMPERATURE DURING GROWTH (DAY/NIGHT)
FORMER LATTER
-----0 200/150 200/150
n----- 300/250 300/250
----- 300/25" 200/150
----- 207/150 300/25











y=0.0040-0.0009 In x
r =0.96**
y=0.0041-0.0010 In x
Sr =0.96**
y=0.0031-0.00071n x
r = 0.95*
r y=0.0029-0.0007 In x
S/ r=0.96**


I I I I I I I I I i
0 10 20 30 40 50 60 70 80 90
HOURS


Poststorage water uptake of cut leatherleaf fern fronds
grown under 1 of 2 former temperature treatments and 1 of
2 latter temperature treatments. (Circles and triangles
represent the means of 5 replications. and ** indicate
significance at the 5% and 1% levels, respectively.)


4.0 r


3.5 1


3.0 F


2.5 -


2.0 F


1.5 1


1.0 -


0.5 1




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EO2UH5HTT_91992J INGEST_TIME 2017-07-13T21:41:31Z PACKAGE AA00003829_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 2

352'8&7,21 7(03(5$785( ())(&76 21 $1$720< 0253+2/2*< 3+<6,2/2*< $1' 3267+$59(67 /21*(9,7< 2) /($7+(5/($) )(51 >5XPRKUD DGLDQWLIRUPLV )RUVWf &KLQJ@ %< 52%(57 +8*8(125 67$036 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

&RS\ULJKW E\ 5REHUW +XJXHQRU 6WDPSV

PAGE 4

72 7+( 0(025< 2) 0< 3$5(176 1,1$ 0 +8*8(125 $1' )5('(5,&. : 67$036 $1' 72 /25(77$

PAGE 5

$&.12:/('*(0(176 ZRXOG OLNH WR VLQFHUHO\ WKDQN P\ JUDGXDWH FRPPLWWHH FKDLUPDQ 'U 7HUULO $ 1HOO IRU KLV JXLGDQFH VXSSRUW DQG FULWLFLVP GXULQJ P\ JUDGXDWH FDUHHU DW WKH 8QLYHUVLW\ RI )ORULGD +LV ZHOOFRQVLGHUHG DGYLFH KHOSHG PH RQ PDQ\ RFFDVLRQV +HDUW\ WKDQNV DUH DOVR H[WHQGHG WR WKH RWKHU PHPEHUV RI P\ FRPPLWWHH 'U -DPHV ( %DUUHWW +U &KDUOHV $ &RQRYHU 'U )UHGHULFN 6 'DYLHV DQG 'U 7HUU\ : /XFDQVN\ IRU WKHLU DGYLFH DVVLVWDQFH DQG IULHQGVKLS 6SHFLDO WKDQNV JR WR 0V 'HEEL $ &DZ IRU KHU FRQVLGHUDEOH DVVLVWDQFH WR WKLV FRPPXWLQJ VWXGHQW 7R WKH P\ULDG RWKHU IDFXOW\ VWDII IULHQGV DQG IHOORZ VWXGHQWV DW *DLQHVYLOOH DQG $SRSND ZKR FRQWULEXWHG WR WKLV HQGHDYRU PDQ\ WKDQNV 7KDQNV DUH RIIHUHG WR 'U &DUORV 5OD]TXH] 0U *HRUJH (GZDUGV DQG 0U /HRQDUG %OHVLXV DW /DNH $OIUHG IRU WKH XVH RI WKH /06 6SHFLDO JUDWLWXGH LV H[WHQGHG WR 'U &KDUOHV $ &RQRYHU IRU HQFRXUDJLQJ PH DORQJ WKLV SDWK DQG IRU DOORZLQJ PH WKH OHDYH RI DEVHQFH WKDW PDGH WKLV SRVVLKOH $ERYH DOO DP JUDWHIXO WR P\ ZLIH /RUHWWD 6DWWHUWKZDLWH :LWKRXW KHU VXSSRUW DQG KHOS WKH FRPSOHWLRQ RI WKLV GLVVHUWDWLRQ FRXOG QRW KDYH EHHQ VXFFHVVIXO JLYHQ WKH WLPH FRQVWUDLQWV LQYROYHG

PAGE 6

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LY /,67 2) 7$%/(6 YLLL /,67 2) ),*85(6 [ .(< 72 6<0%2/6 $1' $%%5(9,$7,216 [LLL $%675$&7 [Y ,1752'8&7,21 &+$37(56 /,7(5$785( 5(9,(: *URZWK 0RUSKRORJ\ DQG $QDWRP\ /HDI OHQJWK DQG VXUIDFH DUHD /HDI WKLFNQHVV 6SHFLILF OHDI ZHLJKW DQG OHDI GHQVLW\ WKLFNQHVV 6WRPDWDO GLVWULEXWLRQ 6WRPDWDO IUHTXHQF\ &XWLFOH WKLFNQHVV DQG LQWHJULW\ (SLGHUPLV (QGRGHUPLV 7UDFKHLGV 3K\VLRORJ\ &DUERQ H[FKDQJH &DUERK\GUDWHV &KORURSK\OO 7UDQVSLUDWLRQ :DWHU XVH HIILFLHQF\ 'LIIXVLYH FRQGXFWDQFH +\GUDXOLF FRQGXFWLYLW\ 3RVWKDUYHVW Y

PAGE 7

3DJH 3ODQW 0DWHULDO ,, 7(03(5$785( $))(&76 7+( '(9(/230(17 $1' 3267+$59(67 /21*(9,7< 2) /($7+(5/($) )(51 )521'6 0DWHULDOV DQG 0HWKRGV 3ODQW PDWHULDO DQG WUHDWPHQWV *URZWK DQG GHYHORSPHQW )URQG OHQJWK 6RUL GHYHORSPHQW 0RUSKRORJ\ DQG DQDWRP\ )URQG VXUIDFH DUHD )URQG WKLFNQHVV 6WLSH FURVVVHFWLRQDO DUHD 6WRPDWDO GHQVLW\ &XWLFOH WKLFNQHVV DQG QXPEHU RI HSLGHUPDO FHOO OD\HUV 7UDFKHLG QXPEHUV DQG FURVVVHFWLRQDO DUHDV 3K\VLRORJ\ &DUERQ H[FKDQJH 7UDQVSLUDWLRQ &KORURSK\OO FRQWHQW 'LIIXVLYH FRQGXFWDQFH &DUERK\GUDWHV 6WLSH K\GUDXOLF FRQGXFWLYLW\ 3RVWKDUYHVW 3RVWKDUYHVW ZDWHU XSWDNH 3RVWKDUYHVW ZHLJKW FKDQJHV 3RVWKDUYHVW ORQJHYLW\ 5HVXOWV DQG 'LVFXVVLRQ ([SHULPHQW ([SHULPHQW ([SHULPHQW ([SHULPHQW +DUYHVW +DUYHVW &RQFOXVLRQV YL

PAGE 8

3DJH $33(1',; /,7(5$785( &,7(' %,2*5$3+,&$/ 6.(7&+ YL L

PAGE 9

/,67 2) 7$%/(6 7DEH 3DJH $QQXDO FKDQJH LQ PRYHPHQW RI OHDWKHUOHDI IHUQ LQ )ORULGD IRU FURS \HDUV WKURXJK 3URGXFWLRQ WHPSHUDWXUHV DIIHFW VRUL GHYHORSPHQW RQ OHDWKHUOHDI IHUQ IURQGV JURZQ LQ FRQWUROOHG HQYLURQn PHQW FKDPEHUV 3K\VLRORJLFDO FKDUDFWHULVWLFV IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHV $QDWRPLFDO PRUSKRORJLFDO DQG SRVWKDUYHVW FKDUDFWHUn LVWLFV RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHV $QDWRPLFDO PRUSKRORJLFDO SK\VLRORJLFDO DQG SRVW KDUYHVW FKDUDFWHULVWLFV IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHV (IIHFWV RI IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV )7f DQG ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV /7f RQ OHDWKHUOHDI IHUQ IURQG FKDUDFWHULVWLFV 7HPSHUDWXUH WUHDWPHQWV ZHUH FKDQJHG )HEUXDU\ FURVLHUV ZHUH WDJJHG 0DUFK DQG IURQGV ZHUH KDUYHVWHG 0D\ $VVRFLDWLRQ RI YDVH OLIH DQG IURQG PRUSKRORJLFDO FKDUDFWHULVWLFV RI OHDWKHUOHDI IHUQ IURQGV KDUYHVWHG 0D\ (IIHFWV RI IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV )7f DQG ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV /7f RQ ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV 7HPSHUn DWXUH WUHDWPHQWV ZHUH FKDQJHG )HEUXDU\ FURVLHUV ZHUH WDJJHG 0D\ DQG IURQGV ZHUH KDUYHVWHG -XO\ (IIHFWV RI IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV )7f DQG ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV /7f RQ OHDWKHUOHDI IHUQ IURQG FKDUDFWHULVWLFV 7HPSHUDWXUH WUHDWPHQWV ZHUH FKDQJHG )HEUXDU\ FURVLHUV ZHUH WDJJHG 0D\ DQG KDUYHVWHG -XO\ YL L L

PAGE 10

7DEOH 3DJH $O $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG DQDWRPLFDO PRUSKRORJLFDO DQG SK\VLRORJLFDO FKDUDFWHULVWLHV IRU ([SHULPHQW )HUQ ZDV JURZQ XQGHU KLJK WHPSHUDWXUH UHJLPH r GD\r QLJKWf RU ORZ WHPSHUDWXUH UHJLPH r GD\r QLJKWf $ $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG DQDWRPLFDO PRUSKRORJLFDO DQG SK\VLRORJLFDO FKDUDFWHULVWLFV IRU ([SHULPHQW )HUQ ZDV JURZQ XQGHU KLJK WHPSHUDWXUH UHJLPH r GD\r QLJKWf RU ORZ WHPSHUDWXUH UHJLPH r GD\r QLJKWf $ $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG PRUSKRORJLFDO DQG SK\VLRORJLFDO FKDUDFWHUn LVWLFV IRU ([SHULPHQW KDUYHVW 3ODQWV KDG EHHQ JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV )7f DQG IURQGV ZHUH SURGXFHG XQGHU RI ODWWHU WHPSHUDWXUH WUHDWPHQWV /7f 7KH WHPSHUDWXUH WUHDWn PHQWV ZHUH ORZ r GD\r QLJKWf WHPSHUDWXUH UHJLPH /75 DQG KLJK rrf WHPSHUDWXUH UHJLPH +75 $ $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG PRUSKRORJLFDO DQG SK\VLRORJLFDO FKDUDFWHUn LVWLFV IRU ([SHULPHQW KDUYHVW 3ODQWV KDG EHHQ JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV )7f DQG IURQGV ZHUH SURGXFHG XQGHU RI ODWWHU WHPSHUDWXUH WUHDWPHQWV /7f 7KH WHPSHUDWXUH WUHDWn PHQWV ZHUH ORZ r GD\r QLJKWf WHPSHUDWXUH UHJLPH /75 DQG KLJK rrf WHPSHUDWXUH UHJLPH +75

PAGE 11

/,67 2) ),*85(6 )LJXUH 3DJH $VVRFLDWLRQ RI FRROLQJ GHJUHH GD\V r & EDVHf DQG WKH SHUFHQWDJH RI IURQGV WKDW FXUOHG RU \HOORZHG GD\V SRVWKDUYHVW 3KRWRPLFURJUDSK RI YDVFXODU EXQGOH LQ VWLSH RI OHDWKHUOHDI IHUQ IURQG WRSf GLJLWL]HG LPDJH RI WKH VDPH YDVFXODU EXQGOH PLGGOHf DQG HQKDQFHG GLJLWL]HG LPDJH RI WKH OXPLQD RI WKH WUDFKHLGV LQ WKDW YDVFXODU EXQGOH ERWWRPf 6FKHPDWLF GLDJUDP RI RSHQ V\VWHP XVHG WR PHDVXUH FDUERQ H[FKDQJH DQG WUDQVSLUDWLRQ RI OHDWKHUOHDI IHUQ IURQGV $FU\OLF SODVWLF FXYHWWH XVHG LQ FDUERQ H[FKDQJH DQG WUDQVSLUDWLRQ GHWHUPLQDWLRQV RI OHDWKHUOHDI IHUQ IURQGV (IIHFW RI SURGXFWLRQ WHPSHUDWXUHV LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV RQ JURZWK RI OHDWKHUOHDI IHUQ IURQGV $ED[LDO GLIIXVLYH FRQGXFWDQFHV $f OHDI WHPSHUn DWXUHV %f DQG WUDQVSLUDWLRQ &f RI OHDWKHUOHDI IHUQ IURQGV JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV XQGHU WHPSHUDWXUHV RI r& GD\r QLJKW RU r GD\r QLJKW DQG UHODWLYH KXPLGLWLHV DW WKH WLPH RI PHDVXUHPHQW 'f (IIHFW RI SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ 33)'f RQ FDUERQ H[FKDQJH &(5f RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV 4XDQWXP HIILFLHQFLHV RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV (IIHFW RI SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ 33)'f RQ WUDQVSLUDWL RQ 7f RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV [

PAGE 12

)LJXUH 3DJH 3KRWRPLFURJUDSKV RI OHDWKHUOHDI IHUQ SLQQXOHV VKRZLQJ $f DED[LDO SLQQD VXUIDFH ZLWK VWRPDWD %f DGD[LDO SLQQD VXUIDFH &f FORVHXS RI D VWRPD DQG 'f FURVV VHFWLRQ RI D SLQQXOH VKRZLQJ VWRPDWDO FRPSOH[ DQG VXEVWRPDWDO FKDPEHU $VVRFLDWLRQ RI IUHVK ZHLJKW DQG VXUIDFH DUHD IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV 3LQQDH IURP KLJK r& GD\r QLJKWf WHPSHUDWXUH UHJLPH +75 IURQG OHIWf DQG ORZ r GD\r QLJKWf WHPSHUDWXUH UHJLPH /75 IURQG ULJKWf VKRZLQJ UHGXFHG YHQDWLRQ DQG LQFUHDVHG PDUJLQDO LQFLVLRQ RI +75 SLQQXOHV 6FDQQLQJ HOHFWURQ PLFURJUDSKV RI FURVV VHFWLRQV RI SLQQXOHV RI OHDWKHUOHDI IHUQ JURZQ XQGHU ORZ r& GD\r QLJKWf WHPSHUDWXUH UHJLPH WRSf DQG KLJK r GD\r QLJKWf WHPSHUDWXUH UHJLPH ERWWRPf 3RVWKDUYHVW ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV 3RVWKDUYHVW ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV (IIHFW RI UHFXWWLQJ VWLSH EDVHV RU GD\V SRVW VWRUDJH RQ ZDWHU XSWDNH RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUHV RI r & GD\r QLJKW RU r GD\r QLJKW (IIHFW RI UHFXWWLQJ VWLSH EDVHV RU GD\V SRVW VWRUDJH RQ ZDWHU XSWDNH RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUHV RI r& GD\r QLJKW RU r GD\r QLJKW 3RVWKDUYHVW GHFOLQH RI UHODWLYH FRQGXFWLYLW\ N RI FXW OHDWKHUOHDI IHUQ IURQG VWLSH EDVHV &KDQJHV LQ DED[LDO GLIIXVLYH FRQGXFWDQFH DQG WUDQVSLUDWLRQ GXH WR UHFXWWLQJ VWLSH EDVHV RI OHDWKHUOHDI IHUQ IURQGV GD\V SRVWKDUYHVW )URQGV ZHUH JURZQ XQGHU WHPSHUDWXUHV RI r& GD\r QLJKW RU r GD\r QLJKW f§ ;,

PAGE 13

)LJXUH 3DJH 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV 6FDQQLQJ HOHFWURQ PLFURJUDSKV RI D OHDWKHUOHDI IHUQ VWLSH VKRZLQJ $f D FURVV VHFWLRQ ZLWK YDVFXODU EXQGOHV YEf FRQWDLQLQJ WUDFKHLGV %f WKH ORFDWLRQ RI WUDFKHLGV Wf LQ D YDVFXODU EXQGOH &f FORVHXS RI WUDFKHLGV DQG 'f VFDODULIRUP SLWWLQJ RI WKH FHOO ZDOOV RI WUDFKHLGV &URVV VHFWLRQV RI YDVFXODU EXQGOHV LQ VWLSH EDVHV RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU r& GD\r QLJKW WRSf DQG r GD\r QLJKW ERWWRPf LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV VKRZLQJ WKH JUHDWHU WKLFNHQLQJ RI WKH RXWHU WDQJHQWLDO ZDOO RI WKH XQL VHULDWH HQGRGHUPLV RI WKH rr JURZQ IURQG 3RVWVWRUDJH ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV $ED[LDO GLIIXVLYH FRQGXFWDQFH DQG WUDQVSLUDWLRQ GXULQJ WKH ILUVW KU DIWHU UHFXWWLQJ VWLSHV RI OHDWKHUOHDI IHUQ IURQGV VWRUHG IRU GD\ 3RVWVWRUDJH ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV 3RVWKDUYHVW ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV 3ORW RI DFWXDO YHUVXV SUHGLFWHG ZHLJKW FKDQJHV RI OHDWKHUOHDI IHUQ IURQGV GHWHUPLQHG XVLQJ WKH WUDQVSLUDWLRQ DQG ZDWHU XSWDNH IURP ([SHULPHQW KDUYHVW

PAGE 14

.(< 72 6<0%2/6 $12 $%%5(9,$7,216 86(' ,1 7(;7 :KHUH DSSURSULDWH PDJQLWXGHV RU W\SLFDO XQLWV DUH LQGLFDWHG LQ SDUHQWKHVLV 4XDQWLW\ D $ &(5 FKL Q (< )&6 )7 J OHDI DZY KU +75 'HVFULSWLRQ WRWDO OXPHQ DUHD PP f FURVVVHFWLRQDO DUHD RI VWLSH FP f FDUERQ H[FKDQJH UDWH FDUERQ IOX[ GHQVLW\ RU 3QHW P &2AGPAKUf FKLRURSK\O YLVFRVLW\ 03DrV IRU ZDWHU DW r&f HDUO\ \HORZLQJ IURQG FXUO V\QGURPH IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQW JUDP UHVLGXDO FRQGXFWDQFH WR FDUERQ GLR[LGH GLIIXVLYH FRQGXFWDQFH WR ZDWHU YDSRU FXWLFODU GLIIXVLYH FRQGXFWDQFH WR ZDWHU YDSRU OHDI GLIIXVLYH FRQGXFWDQFH WR ZDWHU YDSRU KRXU KLJK WHPSHUDWXUH UHJLPH r GD\r QLJKWf OLJKW FRPSHQVDWLRQ SRLQW /&3 P PROr VB-r P f [L L L

PAGE 15

.(< 72 6<0%2/6 $1' $%%5(9,$7,216 FRQWLQXHGf 4XDQWLW\ N /27 /7 /75 \ P 33)' 5G UEO ZY D 6/: 7 932 :8( 'HVFULSWLRQ OLJKW VDWXUDWLRQ SRLQW /63 XPROrV rP f BR UHODWLYH FRQGXFWLYLW\ FP f OHDI GHQVLW\ WKLFNQHVV J IUHVK ZWrDUHDf0 ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQW ORZ WHPSHUDWXUH UHJLPH r GD\r QLJKWf PLFURPHWHU EPf SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ \PROrV rP f GDUN UHVSLUDWLRQ PJ &!rGP rKU f ERXQGDU\ OD\HU UHVLVWDQFH WR ZDWHU YDSRU VrFPAf FRQGXFWLYLW\ VSHFLILF OHDI ZHLJKW J GU\ ZW}DUHDfAf WUDQVSLUDWLRQ ( PJ (A2nGP rKU f YDSRU SUHVVXUH GLIIHUHQFH ZDWHU XVH HIILFLHQF\ PJ &PJ +A2f [L Y

PAGE 16

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 352'8&7,21 7(03(5$785( ())(&76 21 $1$720< 0253+2/2*< 3+<6,2/2*< $1' 3267+$59(67 /21*(9,7< 2) /($7+(5/($) )(51 >5XPRKUD DGLDQWLIRUPLV )RUVWf &KLQJ@ E\ 52%(57 +8*8(125 67$036 'HFHPEHU &KDLUPDQ 7HUUL $ 1HOO 0DMRU 'HSDUWPHQW +RUWLFXOWXUDO 6FLHQFH /HDWKHUOHDI IHUQ 5XPRKUD DGLDQWLIRUPLV )RUVWf &KLQJ ZDV JURZQ XQGHU WHPSHUDWXUH UHJLPHV LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV 7KH FKDPEHUV KDG WKH VDPH SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ EXW KDOI WKH FKDPEHUV KDG KLJK r& GD\r QLJKWf DQG WKH RWKHU KDOI KDG ORZ rrf WHPSHUDWXUH UHJLPHV 7KHVH UHJLPHV DSSUR[LPDWH WKRVH IRXQG LQ )ORULGD GXULQJ WKH PRQWKV ZKHQ SRVWKDUYHVW ORQJHYLW\ RI OHDWKHUOHDI IHUQ IURQGV DUH ORZ DQG KLJK UHVSHFWLYHO\ )URQGV SURGXFHG XQGHU WKH KLJK WHPSHUDWXUH UHJLPH +75f JUHZ IDVWHU LQLWLDOO\ DQG SURGXFHG VRUL VRRQHU WKDQ ORZ WHPSHUDWXUH UHJLPH /75f RQHV )URQGV IURP ERWK WUHDWPHQWV ZHUH K\SRVWRPDWRXV DQRPRF\WLF DQG VWLSH WUDFKHLGV KDG VFDODULIRUP SLWWLQJ /LJKW VDWXUDWHG FDUERQ H[FKDQJH TXDQWXP HIILFLHQFHV DQG GDUN UHVSLUDWLRQ ZHUH ORZHU IRU +75 JURZQ IURQGV WKDQ /75 IURQGV ZKHQ PHDVXUHG DW r /LJKW FRPSHQVDWLRQ SRLQWV ZDWHU XVH HIILFLHQF\ [Y

PAGE 17

SKRWRV\QWKHWLF HIILFLHQF\ DQG VROXEOH VXJDU DQG VWDUFK FRQWHQW ZHUH VLPLODU IRU IURQGV IURP ERWK WUHDWPHQWV $ED[LDO GLIIXVLYH FRQGXFWDQFH J f RI +75 IURQGV ZDV ORZHU WKDQ IRU IURQGV JURZQ XQGHU WKH /75 7KH ORZHU JZY PD\ KDYH EHHQ GXH WR JUHDWHU SK\VLRORJLFDO DJH RU WR SUHFRQGLWLRQLQJ RI +75 IURQGV 7HPSHUDWXUH WUHDWPHQWV GLG QRW DIIHFW IURQG ZHLJKWV VXUIDFH DUHDV ZDWHU FRQWHQW VWRPDWDO GHQVLW\ FXWLFOH WKLFNQHVV RU QXPEHU RI HSLGHUPDO OD\HUV EXW OHDI GHQVLW\ WKLFNQHVV VSHFLILF OHDI ZHLJKWV SLQQXOH WKLFNQHVV DQG YDVFXODUL]DWLRQ HQGRGHUPDO ZDOO WKLFNHQLQJ DQG VWLSH YDVFXODU EXQGOH QXPEHUV DQG FURVVVHFWLRQDO DUHDV ZHUH UHGXFHG IRU +75 IURQGV 5HODWLYH FRQGXFWLYLWLHV RI IUHVKO\ KDUYHVWHG VWLSHV ZHUH b ORZHU IRU +75 IURQGV WKDQ /75 IURQGV 3RVWKDUYHVW ZDWHU XSWDNH RI +75 IURQGV ZDV WR b ORZHU WKDQ /75 XSWDNH ,Q H[SHULPHQWV YDVH OLIH RI +75 IURQGV ZDV UHGXFHG WR b FRPSDUHG WR /75 IURQGV +75 IURQGV ORVW ZHLJKW PRUH UDSLGO\ DIWHU KDUYHVW 9DVH OLIH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VWLSH FURVVVHFWLRQDO DUHD DQG LQLWLDO ZDWHU XSWDNH 6WLSH UHFXWWLQJ WR GD\V SRVWKDUYHVW LQFUHDVHG JAY DQG ZDWHU XSWDNH RI ERWK IURQG W\SHV 3ODQWV ZHUH VZLWFKHG IURP RQH WHPSHUDWXUH UHJLPH WR WKH RWKHU )RUPHU SURGXFWLRQ WHPSHUDWXUH HIIHFWV SUHGRPLQDWHG IRU WKH ILUVW KDUYHVW RI IURQGV SURGXFHG XQGHU WKH ODWWHU WHPSHUDWXUH UHJLPH 7KH VHFRQG FURS RI IURQGV ZDV PDLQO\ LQIOXHQFHG E\ WKH ODWWHU SURGXFWLRQ WHPSHUDWXUH UHJLPH [YL

PAGE 18

,1752'8&7,21 7HPSHUDWXUH LV RQH RI WKH PRUH LPSRUWDQW HQYLURQPHQWDO IDFWRUV LQIOXHQFLQJ WKH GHYHORSPHQW DQG SK\VLRORJ\ RI SODQWV 3URGXFWLRQ WHPSHUDWXUHV PD\ DIIHFW FURS SHUIRUPDQFH ERWK EHIRUH DQG DIWHU KDUYHVW DQG FDQ KDYH ERWK EHQHILFLDO DQG GHWULPHQWDO HIIHFWV GHSHQGLQJ RQ WKH FURS DQG RWKHU HQYLURQPHQWDO IDFWRUV /HDWKHUOHDI IHUQ 5XPRKUD DGLDQWLIRUPLV )RUVWf &KLQJ f LV RQH RI WKH PRVW LPSRUWDQW RUQDPHQWDO FURSV SURGXFHG LQ )ORULGD (VWLPDWHV SODFH WKH DQQXDO ZKROHVDOH FURS YDOXH DW DSSUR[LPDWHO\ f ZLWK OHDWKHUOHDI IHUQ DFFRXQWLQJ IRU DSSUR[LPDWHO\ b RI FXW IROLDJH XVH QDWLRQDOO\ f ,Q WKH SDVW VHYHUDO \HDUV OHDWKHUOHDI IHUQ KDV EHFRPH RQH RI )ORULGDnV PDMRU IDUP H[SRUWV f DQG LV RQH RI WKH IHZ UHPDLQLQJ IORULFXOWXUDO FXW FURSV ZKRVH SURGXFWLRQ LV SUHGRPLQDQWO\ GRPHVWLF DQG LV LQFUHDVLQJ 7DEOH f 7KH SUHHPLQHQFH RI )ORULGD LQ WKH SURGXFWLRQ RI WKLV FURS LV WKUHDWHQHG E\ PDQ\ IDFWRUV 7KH PRVW LPPHGLDWH SUREOHPV WKUHDWHQLQJ WKH LQGXVWU\ DUH WKH RFFXUUHQFH RI IURQG FXUO V\QGURPH )&6f DQG HDUO\ \HOORZLQJ (
PAGE 19

7DEOH $QQXDO FKDQJH LQ PRYHPHQW RI OHDWKHUOHDI IHUQ LQ )ORULGD IRU FURS \HDUV WKURXJK f &URS
PAGE 20

GHYHORS GXULQJ WKH KRWWHVW PRQWKV RI WKH \HDU -XQH -XO\ $XJXVW 6HSWHPEHUf )LJXUH VKRZV WKH DVVRFLDWLRQ RI WHPSHUDWXUH H[SUHVVHG DV EDVH r & FRROLQJ GHJUHH GD\V DQG )&6 SOXV (< 3UHYLRXV UHVHDUFK f VXJJHVWV WKDW VRPH IDFWRUVf RWKHU WKDQ SRVWKDUYHVW GHVVLFDWLRQ SUHGLVSRVHVf WKH IHUQ WR IURQG FXUO ,W WKHUHIRUH VHHPV SRVVLEOH WKDW SURGXFWLRQ WHPSHUDWXUHV PD\ EH D IDFWRU LQYROYHG LQ WKH UHGXFWLRQ RI YDVH OLIH $ SUHOLPLQDU\ H[SHULPHQW 6WDPSV XQSXEOLVKHGf FRQGXFWHG XVLQJ FRQWUROOHG HQYLURQPHQW FKDPEHUV WR VLPXODWH SURGXFWLRQ WHPSHUDWXUHV GXULQJ WKRVH SHULRGV ZKHQ YDVH OLIH ZDV IRXQG WR EH JUHDWHVW DQG OHDVW LQGLFDWHG WKDW YDVH OLIH RI IURQGV SURGXFHG DW KLJK WHPSHUDWXUHV ZDV UHGXFHG b FRPSDUHG WR WKRVH JURZQ DW ORZHU WHPSHUDWXUHV 7KLV GLIIHUHQFH LQ YDVH OLIH GXH WR SURGXFWLRQ WHPSHUDWXUHV ZDV VWLOO SUHVHQW DIWHU DOO WKH SODQWV ZHUH JURZQ WRJHWKHU XQGHU WKH VDPH FRQGLWLRQV IRU ZHHN LQ D JUHHQKRXVH 7KH DELOLW\ WR SUHGLFW DQGRU GHFUHDVH WKH LQFLGHQFH RI UHGXFHG YDVH OLIH ZRXOG EHQHILW WKH OHDWKHUOHDI IHUQ LQGXVWU\ $OPRVW QR GDWD DUH DYDLODEOH RQ WKH HIIHFWV RI SURGXFWLRQ WHPSHUDWXUHV RQ OHDWKHUOHDI IHUQ GHYHORSPHQW DQG SK\VLRORJ\ 1R VWXGLHV KDYH EHHQ PDGH RQ WKH HIIHFWV RI WKLV IDFWRU RQ WKH SRVWKDUYHVW ORQJHYLW\ RI KDUYHVWHG IURQGV ,QGHHG QRW D JUHDW GHDO RI UHVHDUFK KDV EHHQ GRQH RQ WKH SK\VLRORJ\ RI IHUQ VSRURSK\WHV LQ JHQHUDO )RU H[DPSOH '\HU f LQ KLV ERRN 7KH ([SHULPHQWDO %LRORJ\ RI )HUQV GRHV QRW GHYRWH DQ\ VSDFH WR FDUERQ H[FKDQJH UDWHV WUDQVSLUDWLRQ GDUN UHVSLUDWLRQ RU RWKHU SK\VLRORJLFDO DVSHFWV RI IHUQ VSRURSK\WHV 7KHVH DQG RWKHU SK\VLRORJLFDO IDFWRUV DV ZHOO DV DQDWRPLFDO DQG PRUSKRORJLFDO IDFWRUV FRXOG HIIHFW WKH SRVWKDUYHVW ORQJHYLW\ RI OHDWKHUOHDI IHUQ IURQGV 7KHVH H[SHULPHQWV ZHUH XQGHUWDNHQ WR H[DPLQH VRPH RI WKH HIIHFWV RI

PAGE 21

<(//2:(' &85/(' $0--$621'-)0$0--$621')0$0--$621' -)0 $VVRFLDWLRQ RI FRROLQJ GHJUHH GD\V r & EDVHf UURQGV WKDW FXUOHG RU \HOORZHG GD\V SRVWKDUYHVW f ZLFH PRQWKO\ IURP FRPPHUFLDO IHUQHULHV IURP f DQG WKH SHUFHQWDJH RI 7ZHQW\ IURQGV ZHUH KDUYHVWHG f

PAGE 22

SURGXFWLRQ WHPSHUDWXUHV RQ WKH GHYHORSPHQWDO PRUSKRORJLFDO DQDWRPLFDO SK\VLRORJLFDO DQG SRVWKDUYHVW DVSHFWV RI WKLV LPSRUWDQW FURS OHDWKHUOHDI IHUQ

PAGE 23

&+$37(5 /,7(5$785( 5(9,(: (IIHFWV RI 3URGXFWLRQ 7HPSHUDWXUHV RQ 'HYHORSPHQW 3K\VLRORJ\ DQG 3RVWKDUYHVW /RQJHYLW\ RI 3ODQWV 0RVW FKHPLFDO UHDFWLRQV DQG SK\VLRORJLFDO SURFHVVHV UHVSRQG WR WHPSHUDWXUH 7KHUHIRUH FRQVLGHUDEOH UHVHDUFK KDV EHHQ FDUULHG RXW WR VWXG\ WKH HIIHFWV RI SURGXFWLRQ SUHKDUYHVWf WHPSHUDWXUH RQ SODQW GHYHORSPHQW DQG SK\VLRORJ\ &RQVLGHUDEOH UHVHDUFK KDV DOVR EHHQ GLUHFWHG DW VWRUDJH SRVWKDUYHVWf WHPSHUDWXUH HIIHFWV RQ PDQ\ DJULFXOWXUDO FRPPRGLWLHV f 8QWLO UHFHQWO\ KRZHYHU OLWWOH UHVHDUFK KDV DGGUHVVHG WKH TXHVWLRQ RI ZKDW DUH WKH HIIHFWV RI SURGXFWLRQ WHPSHUDWXUHV RQ WKH SRVWSURGXFWLRQ TXDOLW\ DQG ORQJHYLW\ RI KRUWLFXOWXUDO FRPPRGLWLHV HYHQ WKRXJK LW ZDV VKRZQ RYHU WKUHH GHFDGHV DJR WKDW SURGXFWLRQ WHPSHUDWXUHV PLJKW DIIHFW WKH SRVWKDUYHVW UHVSLUDWLRQ UDWHV RI D FHUWDLQ YDULHW\ RI JUHHQKRXVH WRPDWR f 1R VXFK SURGXFWLRQ WHPSHUDWXUH VWXGLHV KDYH EHHQ FDUULHG RXW IRU OHDWKHUOHDI IHUQ KRZHYHU WKHUH LV QR D SULRUL UHDVRQ WR H[SHFW WKDW OHDWKHUOHDI IHUQ ZRXOG UHVSRQG GLIIHUHQWO\ IURP RWKHU SODQWV HVSHFLDOO\ RWKHU &A SODQWV *URZWK 0RVW SURFHVVHV RI OLYLQJ RUJDQLVPV DUH FRQWUROOHG E\ HQ]\PH UHDFWLRQV DQG WKHUHIRUH JURZWK SKHQRPHQD WHQG WR H[KLELW WHPSHUDWXUH

PAGE 24

UHVSRQVH FXUYHV VLPLODU WR WKRVH IRU HQ]\PHV f ,Q DGGLWLRQ WR DIIHFWLQJ HQ]\PDWLF SURFHVVHV WHPSHUDWXUH PD\ DIIHFW SK\VLFDO SURFHVVHV VXFK DV R[\JHQ GLIIXVLRQ f ZKLFK PD\ DIIHFW JURZWK 0DQ\ VWXGLHV KDYH VKRZQ WKDW LQFUHDVHG SURGXFWLRQ WHPSHUDWXUHV GD\ DQGRU QLJKW VRLO DQGRU DLU LQFUHDVH JURZWK DQG GHYHORSPHQWDO UDWHV SURYLGHG RWKHU IDFWRUV VXFK DV OLJKW &2A DQG ZDWHU DUH QRW OLPLWLQJ DQG WHPSHUDWXUHV DUH QRW VR KLJK DV WR FDXVH WKHUPDO LQMXU\ :HQW f IRXQG WKDW JURZWK RI WRPDWR SODQWV DW D FRQVWDQW r & GD\ WHPSHUDWXUH LQFUHDVHG DV QLJKW WHPSHUDWXUHV ZHUH LQFUHDVHG IURP r WR r )ULHQG HW DO f IRXQG WKDW UDLVLQJ WKH WHPSHUDWXUH E\ r LQWHUYDOV EHWZHHQ r DQG r UHVXOWHG LQ SURJUHVVLYHO\ KLJKHU UDWHV RI HPHUJHQFH DQG H[SDQVLRQ RI ZKHDW OHDYHV 6LPLODUO\ 5DOODQWLQH DQG )RUGH f IRXQG WKDW VR\EHDQ SODQWV JURZQ LQ KLJK WHPSHUDWXUH r GD\r QLJKWf FRQWUROOHG HQYLURQPHQW FRQGLWLRQV JUHZ PRUH UDSLGO\ WKDQ WKRVH DW ORZHU r GD\r QLJKWf WHPSHUDWXUHV :ROHGJH DQG -HZLVV f SUHVHQWHG GDWD IURP 5REVRQ VKRZLQJ LQFUHDVHG UHODWLYH JURZWK UDWHV RI WDOO IHVFXH SODQWV JURZQ DW KLJK r GD\r QLJKWf YHUVXV ORZ r GD\r QLJKWf WHPSHUDWXUHV .UDPHU f IRXQG WKDW WKH JURZWK RI UHG RDN LPSURYHG ZLWK LQFUHDVLQJ WHPSHUDWXUH XS WR r &DODGLXPV f &DPSDQXOD f FXFXPEHUV f 3L SLDGHQLD f OREOROO\ SLQH DQG UHG RDN f URVHV f 6DO YLQLDDQ DTXDWLF IHUQDQG VXQIORZHU f DQG WURSLFDO IROLDJH SODQWV f DUH D IHZ RI WKH FURSV WKDW H[KLELW LQFUHDVHG JURZWK DQG GHYHORSPHQWDO UDWHV DW PRGHUDWHO\ KLJK WHPSHUDWXUHV FRPSDUHG WR ORZHU RQHV 6WDJKRUQ IHUQ VSRURSK\WHV JURZQ RYHU WKH WHPSHUDWXUH UDQJH RI r WR r JUHZ EHVW DW r f 7KHUHIRUH PRVW SODQWV UHVSRQG WR LQFUHDVLQJ WHPSHUDWXUHV ZLWK LQFUHDVHG JURZWK DQG GHYHORSPHQW UDWHV SURYLGHG WKH WHPSHUDWXUHV DUH QRW H[FHVVLYH

PAGE 25

0RUSKRORJ\ DQG $QDWRP\ /HDI OHQJWK DQG VXUIDFH DUHD /HDI OHQJWK DQG VXUIDFH DUHD DUH LPSRUWDQW EHFDXVH WKH OHDI LV WKH PDMRU OLJKW FROOHFWLQJ DQG ZDWHU YDSRU UDGLDWLQJ RUJDQ RI PRVW WHUUHVWULDO SODQWV )ULHQG HW DO f IRXQG WKDW ZLQWHU ZKHDW OHDI DUHD ZDV JUHDWHVW ZKHQ JURZQ DW r WKDQ ZKHQ JURZQ DW KLJKHU RU ORZHU WHPSHUDWXUHV 3ODQWV JURZQ DW r KDG ORQJHU OHDI ODPLQDH FRPSDUHG WR SODQWV JURZQ DW r r r RU r ,Q D ODWHU VWXG\ )ULHQG DQG 3RPHUR\ f IRXQG WKDW OHDI OHQJWK RI ZKHDW LQFUHDVHG ZLWK LQFUHDVLQJ SURGXFWLRQ WHPSHUDWXUHV RYHU WKH UDQJH IURP r WR r /HDI OHQJWK DQG VXUIDFH DUHD DUH SDUWLFXODUO\ LPSRUWDQW IRU FXW IROLDJH FURSV GXH WR WKHLU XVH DV GHFRUDWLYH ILOOHU LQ IORUDO DUUDQJHPHQWV /HDI WKLFNQHVV 1XPHURXV DXWKRUV KDYH IRXQG WKDW OHDI WKLFNQHVV GHFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH &KDERW DQG &KDERW f IRXQG WKDW )UDJDULD YHVFD OHDI WKLFNQHVV GHFUHDVHG ZLWK LQFUHDVLQJ SURGXFWLRQ WHPSHUDWXUHV XS WR r GD\r QLJKW +LJKHU WHPSHUDWXUHV FDXVHG FHOO GDPDJH 3HHW f UHSRUWHG D GHFUHDVH LQ 3KDVHROXV OHDI WKLFNQHVV ZLWK LQFUHDVLQJ WHPSHUDWXUH &KDULHV(GZDUGV HW DO f DOVR IRXQG D VLPLODU GHFUHDVH LQ OHDI WKLFNQHVV IRU /ROLXUQ JURZQ RYHU WKH WHPSHUDWXUH UDQJH RI r WR r /HDI WKLFNQHVV RI 0DUTXLV ZKHDW GHFUHDVHG ZLWK LQFUHDVLQJ WHPSHUDWXUH LQ RWKHU VWXGLHV f +RZHYHU 1REHO f GLG QRW VKRZ D GHFUHDVH LQ OHDI WKLFNQHVV ZLWK LQFUHDVLQJ WHPSHUDWXUH IRU 3,HFWUDQWKXV /HDI WKLFNQHVV PD\ EH RI SK\VLRORJLFDO LPSRUWDQFH EHFDXVH 3LHWHUV f DQG :LOVRQ DQG &RRSHU f KDYH VKRZQ WKDW FDUERQ H[FKDQJH &(5f LV SRVLWLYHO\ FRUUHODWHG WR OHDI WKLFNQHVV

PAGE 26

T 6SHFLILF OHDI ZHLJKW DQG OHDI GHQVLW\ WKLFNQHVV 6SHFLILF OHDI ZHLJKW 6/: OHDI GU\ ZHLJKW f DUHD rf DQG FDUERQ H[FKDQJH UDWH DUH SRVLWLYHO\ FRUUHODWHG LQ PDQ\ SODQWV O""f +ROPJUHQ f IRXQG WKDW 6/: ZDV KLJKO\ FRUUHODWHG ZLWK PHVRSK\OO >LH UHVLGXDO FRQGXFWDQFH RI 6ROLGDJR OHDYHV DQG VXJJHVWV WKDW LQFUHDVLQJ FURVVVHFWLRQDO DUHD SHU XQLW OHDI DUHDf RI WKH SDWKZD\V RI &" WUDQVIHU LQFUHDVHV UHVLGXDO FRQGXFWDQFH DQG SKRWRV\QWKHVLV 6SHFLILF OHDI ZHLJKWV RI )UDJDULD LQFUHDVHG ZLWK LQFUHDVHG WHPSHUDWXUH IURP r GD\r QLJKW WR rr f 0F0LOOHQ DQG 0F&OHQGRQ f SUHIHU OHDI GHQVLW\ WKLFNQHVV /27 OHDI IUHVK ZHLJKW f DUHDfAf WR 6/: DQG VWDWH WKDW /27 LV LPSRUWDQW LQ SKRWRV\QWKHWLF DGDSWDWLRQ RI SODQWV %ODFNPDQnV GDWD f VKRZHG WKDW /27 IRU +HLDQWKXV DQG /HPQD ZDV ORZHU IRU OHDYHV JURZQ DW r WKDQ r %ODFNPDQ HW DO f IRXQG WKDW VXQIORZHU /27V GHFUHDVHG VHDVRQDOO\ IURP 0D\ WKURXJK 6HSWHPEHU GXH WR WKH ULVLQJ WHPSHUDWXUH 6WRPDWD GLVWULEXWLRQ 6WRPDWD PD\ RFFXU RQ RQH HSLVWRPDWRXV K\SRVWRPDWRXVf RU ERWK DPSKLVWRPDWRXVf OHDI VXUIDFHV f 3DUNKXUVW f IRXQG WKDW K\SRVWRPDWRXV OHDYHV RFFXUUHG PRVW IUHTXHQWO\ LQ PHVLF KDELWDWV OHVV IUHTXHQWO\ LQ K\GULF RQHV DQG OHDVW IUHTXHQWO\ LQ [HULF KDELWDWV 6WRPDWD JHQHUDOO\ RFFXU RQ WKH DED[LDO VXUIDFH RI OHDYHV RI HSWRVSRUDQJLDWH IHUQV f 2I WKH IHUQ VSHFLHV VWXGLHG E\ /LQVNHQV DQG 6FKRRIYDQ 3HOW f /XGORZ DQG :ROI f 3LVHN HW DO f 1REHO f DQG %LVZDO HW DO f DOO ZHUH HVVHQWLDOO\ K\SRVWRPDWRXV HYHQ WKRXJK WKH IHUQ UDQJHG IURP D GHVHUW IHUQ 1RWKRODHQD SDUU\L WR IHUQV RI PHVLF KDELWDWV 6WRPDWDO IUHTXHQF\ 6WRPDWDO IUHTXHQF\ FDQ YDU\ JUHDWO\ f 9HUGXLQ f XVLQJ GDWD RI (FNHUVRQ f UHSRUWHG WKDW ZKHDW KDG D

PAGE 27

B VWRPDWDO IUHTXHQF\ RI }PP 'DYLHV HW DO f IRXQG VWRPDWDO B IUHTXHQFLHV DV KLJK DV rPP IRU 5KXV W\SKLQD /LQ HW DO f B IRXQG D UDQJH RI GHQVLWLHV IURP WR }PP IRU GLIIHUHQW VSHFLHV 2 RI 3LVWDFLD 7\SLFDO IHUQ VWRPDWDO GHQVLWLHV UDQJH IURP rPP IRU 3K\OOLWLV VFRORSHQGULXUQ f WR rPPa IRU $OVRSKLOD DXVWUDOH f 2 +RZHYHU 6WDU]HFNL f UHSRUWV VWRPDWDO GHQVLWLHV H[FHHGLQJ }PPa IRU IHUQ $VSOHQLXP WULFKRPDQHV DQG $B UXWDPXUDULD JURZLQJ DW D FDYH HQWUDQFH )ULHQG DQG 3RPHUR\ f UHSRUW KLJKHU VWRPDWDO GHQVLWLHV IRU .KDUNRY ZLQWHU ZKHDW JURZQ DW OX[ DSSUR[LPDWHO\ SPRO}P }V f DW KLJK rf YHUVXV ORZ rf WHPSHUDWXUHV $W OLJKW f" f OHYHOV RI OX[ DSSUR[LPDWHO\ \PROrP f V f WKHUH ZHUH QR GLIIHUHQFHV LQ VWRPDWDO GHQVLW\ GXH WR WHPSHUDWXUH &XWLFOH WKLFNQHVV DQG LQWHJULW\ :DWHU SHUPHDELOLW\ RI FXWLFOHV RI WHUUHVWULDO SODQWV LV YHU\ ORZ f KRZHYHU FXWLFXODU WUDQVSLUDWLRQ FDQ H[FHHG b RU PRUH RI WRWDO WUDQVSLUDWLRQ RI VRPH SODQWV f &XWLFOH WKLFNQHVV DFURVV VSHFLHV LV QRW D UHOLDEOH LQGLFDWRU RI ZDWHU SHUPHDELOLW\ f EXW PD\ EH RI YDOXH ZKHQ FRPSDULQJ SODQWV RI D JLYHQ VSHFLHV $V OHDYHV DJH FUDFNV PD\ GHYHORS DQG FDXVH DQ LQFUHDVH LQ ZDWHU SHUPHDELOLW\ f +ROPJUHQ HW DO f IRXQG WKDW FXWLFXODU FRQGXFWDQFH JAYf RI WKUHH VSHFLHV ZDV JUHDWO\ LQFUHDVHG E\ DQ LQFUHDVH LQ WHPSHUDWXUH IURP r WR r DQG OHYHOHG RII RU GHFUHDVHG VOLJKWO\ DW KLJKHU WHPSHUDWXUHV (SLGHUPLV 7KH HSLGHUPLV LV WKH RXWHU OD\HU RI FHOOV RI WKH SULPDU\ SODQW ERG\ 7KH HSLGHUPLV LV XVXDOO\ RQH OD\HU RI FHOOV LQ WKLFNQHVV f DQG IXQFWLRQV LQ ZDWHU YDSRU DQG JDV H[FKDQJH DV ZHOO DV LQ SURWHFWLRQ 6WXGLHV UHODWLQJ SURGXFWLRQ WHPSHUDWXUHV ZLWK WKH HSLGHUPLV DUH QRW DYDLODEOH

PAGE 28

(QGRGHUPLV 7KH HQGRGHUPLV LV WKH LQQHUPRVW OD\HU RI WKH FRUWH[ DQG IRUPV D VKHDWK DURXQG WKH YDVFXODU UHJLRQ RI WKH VWHPV DQG URRWV RI ORZHU YDVFXODU SODQWV f 3RVVLEOH IXQFWLRQV RI WKH HQGRGHUPLV RI WKH VWHP DUH WKH VWRUDJH RI PDWHULDOV DQG DV D EDUULHU WR JDV H[FKDQJH DQG WKH HQWUDQFH RI SDWKRJHQV 7KH KLJKO\ VXEHUL]HG HQGRGHUPLV EHWZHHQ WKH JURXQG WLVVXH FRUWH[ SLWKf DQG WKH VWHOH LV DQ HIIHFWLYH ZDWHUSURRI EDUULHU WR DSRSODVWLF ZDWHU WUDQVSRUW DFURVV WKH HQGRGHUPLV f 6WXGLHV RI WHPSHUDWXUH HIIHFWV RQ WKH HQGRGHUPLV ZHUH QRW IRXQG 7UDFKHLGV 7UDFKHLGV WKH FKDUDFWHULVWLF ZDWHU FRQGXFWLQJ FHOOV LQ ORZHU YDVFXODU SODQWV KDYH WKLFN OLJQLILHG VHFRQGDU\ FHOO ZDOOV f 7\SLFDO IHUQ WUDFKHLGV DUH ORQJ VOHQGHU WDSHUHG DQG VHDODULIRUPO\ SLWWHG f 6HDO DULIRUPO\ SLWWHG WUDFKHLGV DUH FRQVLGHUHG WR EH WKH SULPLWLYH W\SH RI WUDFKHLG LQ IHUQ f +XEHU DQG 6FKPLGW f PHDVXUHG YHVVHO GLDPHWHUV IURP SP IRU &DUSLQXV EHWXOXV WR XUQ IRU 5RELQLD SVHXGDFDFLD 3HWW\ f IRXQG D PHDQ YHVVHO GLDPHWHU RI \P IRU ELUFK ZRRG -HMH DQG =LPPHUPDQQ f PHDVXUHG 3,DQWDJR YHVVHO GLDPHWHUV IURP \P WR \P DQG IRXQG WKDW ULQJ WKLFNQHVV DQG VSDFLQJ FDXVHG FKDQJHV LQ UHVLVWDQFH WR IORZ 1REHO f UHSRUWV IHUQ VWLSH WUDFKHLG OXPHQ GLDPHWHUV RI \P LQ VWLSHV RI 1RWKRODHQD SDUU\L :RRGKRXVH DQG 1REHO f UHSRUWHG UDQJHV IRU WUDFKHLG GLDPHWHUV IURP \P WR \P DQG IRU WKH QXPEHU RI WUDFKHLGV IURP WR LQ VWLSHV RI IHUQ VSHFLHV 3K\VLRORJ\ &DUERQ H[FKDQJH &RQVLGHUDEOH UHVHDUFK KDV GHDOW ZLWK WKH HIIHFWV RI WHPSHUDWXUH RQ FDUERQ H[FKDQJH &(5 FDUERQ IOX[ GHQVLW\f DQG

PAGE 29

SKRWRUHVSLUDWLRQ 2SWLPXP WHPSHUDWXUHV IRU &(5V RI &A DQG &$0 SODQWV KDYH EHHQ GHWHUPLQHG f +RZHYHU PXFK OHVV UHVHDUFK KDV GHDOW ZLWK WKH HIIHFWV RI SURGXFWLRQ WHPSHUDWXUHV SUHFRQGLWLRQLQJf RQ VXEVHTXHQW &(5V 7HPSHUDWXUH SUHFRQGLWLRQLQJ HIIHFWV VKRXOG EH FRQVLGHUHG LQ SODQQLQJ RU HYDOXDWLQJ PHDVXUHPHQWV RI &(5V f )UDJDULD YHVFD JURZQ DW PRGHUDWH WHPSHUDWXUHV rr rr rr GD\QLJKWf VKRZHG D JHQHUDO WUHQG WRZDUGV LQFUHDVHG &(5V ZLWK LQFUHDVHG SURGXFWLRQ WHPSHUDWXUHV HYHQ WKRXJK &(5V ZHUH PHDVXUHG DW WKH VDPH WHPSHUDWXUHV f 3ODQWV JURZQ DW rr KDG D UHGXFHG &(5 DW ORZ WHPSHUDWXUHV DQG RQO\ DW r GLG WKHLU &(5V HTXDO WKRVH RI SODQWV JURZQ DW rr 6WUDZEHUU\ SODQW &(5V YDULHG VLJQLILFDQWO\ ZKHQ SODQWV ZHUH JURZQ DW D FRPPRQ PHDQ WHPSHUDWXUH rf EXW GLIIHUHQW GD\QLJKW DPSOLWXGHV rr rr rrf &KDERW DQG /HZLV f IRXQG WKDW ZKHQ GD\QLJKW WHPSHUDWXUHV ZHUH DV\PPHWULFDOO\ GLVWULEXWHG DURXQG D GDLO\ PHDQ &(5V RI 4XHUFXV UXEUD VHHGOLQJV DFFOLPDWHG WR WKRVH WHPSHUDWXUHV H[SHULHQFHG IRU WKH PDMRU SRUWLRQ RI WKH KU SHULRG VXFK WKDW &(5 ZDV PRVW IDYRUDEOH DW WKH SUHGRPLQDQW WHPSHUDWXUH 1REHO f IRXQG WKDW WKH WHPSHUDWXUH RSWLPXP IRU &(5V RI D GHVHUW IHUQ 1RWKRODHQD SDUU\L VKLIWHG IURP r LQ PLGZLQWHU GDLO\ PHDQ DLU WHPSHUDWXUH RI rf WR r LQ HDUO\ IDOO DLU WHPSHUDWXUH RI rf %ODFNPDQ HW DO f GHWHUPLQHG WKDW &(5V RI VXQIORZHU ZHUH SRVLWLYHO\ FRUUHODWHG ZLWK WHPSHUDWXUH 0DQ\ VWXGLHV KDYH VKRZQ WKDW WKH WHPSHUDWXUH RI PD[LPXP &(5 LQFUHDVHV ZLWK LQFUHDVLQJ JURZWK WHPSHUDWXUHV f 5RRN f JUHZ 3LQXV UDGLDWD VHHGOLQJV DW rr DQG rr DQG WKHQ VZLWFKHG VRPH SODQWV IURP HDFK FKDPEHU WR WKH RWKHU +H IRXQG WKDW PRVW RI WKH DGDSWDWLRQ RI WKH VHHGOLQJV RFFXUUHG ZLWKLQ GD\V DQG DIWHU DERXW GD\V DW WKH QHZ WHPSHUDWXUHV WKH VHHGOLQJV ZHUH

PAGE 30

VLPLODU LQ &(5 EHKDYLRU WR VHHGOLQJV WKDW KDG EHHQ UDLVHG HQWLUHO\ XQGHU WKH FKDQJHG FRQGLWLRQV 1RW DOO VWXGLHV KDYH VKRZQ VLJQLILFDQW DFFOLPDWLRQ LQ WKH WHPSHUDWXUH GHSHQGHQFH RI &(5 IRU SODQWV JURZQ XQGHU GLIIHUHQW WHPSHUDWXUH UHJLPHV f (QGRJHQRXV IDFWRUV LQIOXHQFHG E\ WHPSHUDWXUH VXFK DV OHDI SK\VLRORJLFDO DJH DQG UHVLGXDO FRQGXFWDQFH JAVf FDQ DIIHFW &(5 &(5V JHQHUDOO\ LQFUHDVH DV LPPDWXUH OHDYHV GHYHORS UHDFK D PD[LPXP ZKHQ OHDYHV IXOO\ H[SDQG DQG GHFOLQH DV WKH OHDYHV DJH VHH IRU UHIHUHQFHVf -HZLVV DQG :ROHGJH f IRXQG WKDW WKH &(5 RI WDOO IHVFXH SURJUHVVLYHO\ GHFOLQHG ZLWK LQFUHDVLQJ DJH /HDYHV RI JUHHQKRXVH URVHV KDYH EHHQ VKRZQ WR H[KLELW D VLPLODU GHFOLQH ZLWK DJH f 6LOVEXU\ f UHSRUWV WKDW OLJKW VDWXUDWHG &(5 RI U\HJUDVV OHDYHV GHFUHDVHG ZKHQ OHDYHV EHJDQ WR VHQHVFH +ROPJUHQ f VXJJHVWV WKDW PHVRSK\OO >UHVLGXDO@ FRQGXFWDQFH LQFUHDVHV ZLWK LQFUHDVHG FURVVVHFWLRQDO DUHD SHU XQLW OHDI DUHDf RI WKH SDWKZD\V RI &2A WUDQVIHU LQ WKH PHVRSK\OO IURP FHOO VXUIDFHV WR UHDFWLRQ VLWHV +LJKHU WHPSHUDWXUHV JHQHUDOO\ ? OHDG WR VPDOOHU FHOOV DQG XS WR D b KLJKHU UDWLR RI WKH WRWDO DUHD RI WKH FHOO ZDOOV RI PHVRSK\OO FHOOV WKDW LV H[SRVHG WR WKH LQWHUFHOOXODU DLU VSDFHV WR WKH DUHD RI RQH VLGH RI WKH VDPH OHDI $PHV$f f &KDULHV(GZDUGV HW DO f IRXQG WKDW ZLWKLQ D JLYHQ JUDVV YDULHW\ SODQWV JURZQ DW D KLJKHU WHPSHUDWXUH KDG D ORZHU &(5 ,Q D ODWHU VWXG\ f WKH\ IRXQG WKDW WKH VWLPXODWLRQ RI &(5V SHU XQLW OHDI DUHD RI JUDVVHV GLVDSSHDUHG ZKHQ WKH GDWD ZHUH H[SUHVVHG RQ D YROXPH EDVLV GXH WR WKH WKLFNHU OHDYHV RI JUDVVHV JURZQ DW WKH ORZ WHPSHUDWXUH 0F&OHQGRQ f DQG 0F0LOOHQ DQG 0F&OHQGRQ f UHSRUW WKDW OHDI GHQVLW\ WKLFNQHVV LV SRVLWLYHO\ FRUUHODWHG WR &(5 'RUQKRII DQG 6KLEOHV f VXJJHVW WKDW VR\EHDQ YDULHWDO GLIIHUHQFHV LQ &(5 ZHUH

PAGE 31

PDLQO\ D UHVXOW RI GLIIHUHQFHV LQ GLIIXVLYH FRQGXFWDQFHV /HDI GHQVLW\ WKLFNQHVV LQFUHDVHG OLQHDUO\ GXULQJ WKH WHVW SHULRG -XO\ WR $XJXVW f DQG &(5 LQFUHDVHG VWDUWLQJ $XJXVW 6LQFH WKH &(5 LQFUHDVH FRLQFLGHG ZLWK WKH EHJLQQLQJ RI VHHG ILOOLQJ LQFUHDVHG VLQN GHPDQG ZDV SUREDEO\ WKH FDXVH RI WKH &(5 LQFUHDVH LQ WKLV H[SHULPHQW /LJKW VDWXUDWLRQ RU /63f RI &(5V RI VKDGHDGDSWHG OHDYHV LV XVXDOO\ LQ WKH YLFLQLW\ RI XPROrV rP f &(5 RI ZHHSLQJ ILJV JURZQ XQGHU b OLJKW H[FOXVLRQ ZDV OLJKW VDWXUDWHG DW DERXW \PROrV rP f $ORFDVLD PDFURUUKL]D DQG &RUG\OLQH UXEUD JURZLQJ RQ WKH UDLQIRUHVW IORRU UHDFKHG OLJKW VDWXUDWLRQ DW LUUDGLDQFH OHYHOV EHORZ \PROrV rP f 0DQ\ IHUQV KDYH ,V EHWZHHQ DQG \PROr VfArPA f ZLWK WKH IRU OHDWKHUOHDI IHUQ EHLQJ UHSRUWHG DV \PROrV rP f /LJKW VDWXUDWHG &(5V XQGHU QDWXUDO FRQGLWLRQV UDQJH IURP WR PJ &2ArGPaAr KUA IRU VRPH &$0 SODQWV WR PJ &2r GPaAr KUfnn IRU &A SODQWV f /LJKW VDWXUDWHG &(5V IRU &A VSHFLHV VXFK DV OHDWKHUOHDI IHUQ DUH JHQHUDOO\ EHWZHHQ DQG PJ &2AGQ7fKU f )RU H[DPSOH UHSRUWHG &(5V IRU D W\SLFDO &A FURS VXFK DV VR\EHDQV UDQJH EHWZHHQ DQG PJ &rGP rKU GHSHQGLQJ RQ WKH YDULHW\ f /LJKW VDWXUDWHG &(5V IRU IHUQV DUH JHQHUDOO\ ORZHU WR PJ &2AGP fKU f $VVXPLQJ J IUHVK ZHLJKW LV DSSUR[LPDWHO\ HTXDO WR GP RI OHDI VXUIDFH DUHD f +HZ DQG 6XDQ f UHFRUGHG &(5V IURP PJ &rGP rKU IRU FXW IURQGV RI $VSOHQLXP QLGLV WR PJ &ArGP rKU IRU FXW IURQGV RI *OHLFKHQLD OLQHDULV &(5V DW IRU LQWDFW QRQVHQHVFHQW IHUQ IURQGV UDQJH IURP IRU $GLDQWXP SHGDWXP WR PJ &ArGP AfKUfA IRU $OVRSKLOD DXVWUDOLV f

PAGE 32

0D[LPXP &(5 IRU VKDGHKRXVH JURZQ 5XPRKUD DGLDQWLIRUPLV LV UHSRUWHG DV PJ &W\GQIKUB f 6XUYLYDO RI SODQWV >RU SODQW SDUWV XQGHU ORZ OLJKW GHSHQGV >LQ SDUW@ XSRQ WKH HIILFLHQF\ ZLWK ZKLFK OHDYHV FDSWXUH DQG XWLOL]H DYDLODEOH OLJKW DQG XSRQ FRQWURO RI UHVSLUDWRU\ ORVVHV f 7KH TXDQWXP HIILFLHQF\ VORSH RI OLJKW LQWHQVLW\ FXUYH EHORZ SKRWRVDWXUDWLRQf RI D SODQW LV WR D ODUJH H[WHQW GHSHQGHQW RQ OHDI PRUSKRORJ\ f (KOHULQJHU DQG %MRUNPDQ f IRXQG WKDW W\SLFDO TXDQWXP \LHOGV RI SODQWV ZHUH PRO &2SDEVRUEHG PRO SKRWRQV ,Q D ODWHU VWXG\ f WKH\ IRXQG WKDW VSHFLHV RI (QFHOLD ZLWK KLJK SKRWRV\QWKHWLF UDWHV KDG TXDQWXP \LHOGV RQ DQ LQFLGHQW OLJKW EDVLVf RI WR QPRO &SPRO SKRWRQV 7KH TXDQWXP HIILFLHQF\ IRU DQ $ORFDVLD OHDI LQ VLWX ZDV IRXQG WR EH PRO &SPRO SKRWRQV f 4XDQWXP HIILFLHQFLHV IRU ZKHDW JURZQ DW r WR r RU rr WHPSHUDWXUHV ZHUH QRW GLIIHUHQW ZKHQ PHDVXUHG DW r f 4XDQWXP HIILFLHQFLHV RI JUDVVHV ZHUH DOVR QRW DIIHFWHG E\ GLIIHUHQW JURZWK WHPSHUDWXUHV f 3KRWRV\QWKHWLF HIILFLHQF\ &S IL[HG SHU XQLW FKORURSK\OO SHU XQLW WLPHf FDQ YDU\ DPRQJ VSHFLHV f DQG DFFRUGLQJ WR JURZWK HQYLURQPHQW f /LJKW VDWXUDWHG SKRWRV\QWKHWLF HIILFLHQFLHV RI WR PJ &SrPJ FKOrKU IRU 3WHULV IHUQV KDYH EHHQ UHSRUWHG f 7KH OLJKW FRPSHQVDWLRQ SRLQW ,F RU /&3f WKH OLJKW LQWHQVLW\ ZKHUH SKRWRV\QWKHVLV MXVW HTXDOV UHVSLUDWLRQ LV HVSHFLDOO\ LPSRUWDQW ZKHQ SODQWV RU SODQW SDUWV DUH JURZQ LQ RU PRYHG WR YHU\ ORZ OLJKW HQYLURQPHQWV f /LJKW LQWHQVLWLHV LQ KRPH DQG RIILFH HQYLURQPHQWV DUH XVXDOO\ ORZ DQG ORZ ,AV PD\ EH EHQHILFLDO XQGHU VXFK FRQGLWLRQV /LJKW FRPSHQVDWLRQ SRLQWV IRU VSHFLHV DUH XVXDOO\ RQ WKH RUGHU RI

PAGE 33

\PROrV 7Q IRU VKDGHDGDSWHG OHDYHV DQG XPROrV rP IRU VXQDGDSWHG OHDYHV f *UHHQKRXVH JURZQ WURSLFDO IROLDJH SODQWV ZHUH IRXQG WR KDYH ,FV IURP WR \PROrV f P H[FHSW IRU D PRQRFRW WKDW KDG DQ RI fMPROrP rV f $ RFDVLD LQ H[WUHPH VKDGH KDELWDWV DUH UHSRUWHG WR KDYH V RI WR fMPROrV }P n f %DQQLVWHU DQG :LOGLVK f PHDVXUHG ,AV IRU GHWDFKHG IURQGV RI IHUQ VSHFLHV RI WR \PROrV rP DQG IRXQG WKDW VSHFLILF OHDI DUHDV VKRZHG D VLJQLILFDQW QHJDWLYH FRUUHODWLRQ ZLWK ,AV 6LPLODU H[WUHPHO\ ORZ YDOXHV IRU 3WHULV IHUQ KDYH EHHQ UHSRUWHG f 0DQ\ DXWKRUV DWWULEXWH YHU\ ORZ OLJKW FRPSHQVDWLRQ SRLQWV WR ORZ UDWHV RI UHVSLUDWRU\ &2A UHOHDVH f 6DOLVEXU\ DQG 5RVV f VWDWH WKDW GLIIHUHQFHV LQ ,V DUH FDXVHG SULPDULO\ E\ GLIIHUHQFHV LQ UHVSLUDWLRQ UDWHV 0RVW YDOXHV IRU IHUQ DUH LQ WKH WR \PROrV rP UDQJH f DQG WKH RQH UHSRUW RI DQ IRU VKDGHKRXVH JURZQ OHDWKHUOHDI IHUQ ZDV \PRO}V rP f 7LQJ f ZULWHV WKDW GDUN UHVSLUDWLRQ 5UIf E\ JUHHQ OHDYHV LV JHQHUDOO\ WR PJ &2ArGP }KU 6WXGLHV RI WKH 5A RI WKH IHUQV 1HSKUROHSLV f DQG 5XPRKUD f ILW WKLV UDQJH KRZHYHU VWXGLHV RI FXW IURQGV RI IHUQ VSHFLHV f DQG DWWDFKHG IURQGV RI RWKHUV f \LHOGHG 5A YDOXHV IURP WR PJ &2r GP nmKU )DFWRUV VXFK DV VXEVWUDWH DYDLODELOLW\ WHPSHUDWXUH DQG W\SH DQG DJH RI SODQW DIIHFW UHVSLUDWLRQ f $]F2Q%LHWR HW DO f FRQFOXGHG WKDW WKH OHYHO RI UHVSLUDWRU\ VXEVWUDWH LQ OHDYHV RI VSLQDFK DQG ZKHDW GHWHUPLQHV WKHLU 5A :DJHU f IRXQG WKDW WKH 5GV RI DUFWLF SODQWV ZHUH KLJKHU WKDQ WKRVH RI WHPSHUDWH SODQWV DQG VXJJHVWHG WKDW WKH GLIIHUHQFHV ZHUH GXH WR GLIIHUHQFHV LQ FDUERK\GUDWH FRQFHQWUDWLRQV UDWKHU WKDQ WR GLIIHUHQFHV LQ HQ]\PH DFWLYLW\ :DUUHQ

PAGE 34

:LOVRQ f UHSRUWV VLPLODU UHVXOWV 5RRN f IRXQG WKDW 5AV RI 3LQXV VHHGOLQJV JURZQ XQGHU 'r FRQGLWLRQV ZHUH GRXEOH WKRVH RI SODQWV SUHFRQGLWLRQHG DW rr RU rr :ROHGJH DQG -HZLVV f DQG %M2UNPDQ f UHSRUW VLPLODU UHVXOWV DQG DWWULEXWH WKH KLJKHU 5AV WR KLJKHU FDUERK\GUDWH OHYHOV &KDERW DQG &KDERW f IRXQG WKDW 5A H[SUHVVHG RQ DQ DUHD EDVLV ZDV SRVLWLYHO\ FRUUHODWHG ZLWK 6/: DQG OHDI WKLFNQHVV EXW ZKHQ H[SUHVVHG RQ D ZHLJKW EDVLV LW ZDV QHJDWLYHO\ FRUUHODWHG ZLWK ERWK PRUSKRORJLFDO YDULDEOHV 7KH UDWH RI UHVSLUDWLRQ RI DQ RUJDQ GHFUHDVHV DV LW DJHV f %R]DUWK HW DO f VWDWH WKDW 5A RI URVH OHDYHV GHFUHDVHG WKURXJKRXW PRVW RI WKHLU GHYHORSPHQW 7KH JUHDWHU UDWHV RI GHFOLQH LQ 5A GXH WR KLJKHU WHPSHUDWXUHV PD\ LQ IDFW EH GXH WR LQFUHDVHG DJLQJ f 6WUDLQ DQG &KDVH f PHDVXUHG UHGXFHG 5A UDWHV DW SUHYDLOLQJ WHPSHUDWXUHV rrrrf IRU KLJK WHPSHUDWXUH rrf JURZQ GHVHUW VKUXEV 7KH\ K\SRWKHVL]HG WKDW HLWKHU D GHSOHWLRQ RI UHVSLUDWRU\ VXEVWUDWHV RU D FKDQJH LQ HQ]\PH DFWLYLW\ ZLWK LQFUHDVLQJ WHPSHUDWXUH LV D SRVVLEOH H[SODQDWLRQ f $OEDQ HW DO f VKRZHG D WUHQG IRU IUXLWV IURP RQH YDULHW\ RI WRPDWR EXW QRW IRU DQRWKHU WR KDYH KLJKHU SRVWKDUYHVW UHVSLUDWLRQ UDWHV ZKHQ JURZQ DW KLJKHU WHPSHUDWXUHV +RZHYHU WKHLU GDWD ZHUH QRW DQDO\]HG VWDWLVWLFDOO\ &DUERK\GUDWHV &DUERK\GUDWHV DUH WKH GLUHFW SURGXFWV RI SKRWRV\QWKHVLV DQG IROLDU OHYHOV RI QRQVWUXFWXUDO FDUERK\GUDWHV FDQ YDU\ JUHDWO\ RQ GLXUQDO f DQG VHDVRQDO f F\FOHV 7HPSHUDWXUH DIIHFWV FDUERK\GUDWH FRQFHQWUDWLRQV RI SODQWV 6DZDGD DQG 0L\DFKL f IRXQG WRWDO VXFURVH LQ ZKHDW JURZQ DW ORZ WHPSHUDWXUHV ZDV KLJKHU WKDQ LQ KLJK WHPSHUDWXUH JURZQ SODQWV %DOO DQWLQH DQG )RUGH f VKRZHG WKDW VR\EHDQV JURZQ DW KLJK WHPSHUDWXUHV KDG UHGXFHG VWDUFK FRQWHQW

PAGE 35

FRPSDUHG WR ORZ WHPSHUDWXUH JURZQ VR\EHDQV &DUERK\GUDWH FRQFHQWUDWLRQV RI RVWULFK IHUQ ZHUH ORZHU ZKHQ JURZQ DW rr WKDQ DW rr f &KLRURSK\O 3XEOLVKHG FKORURSK\OO FRQWHQWV IRU IHUQ UDQJH IURP R WR PJ FKL RURSK\O mGP f 6RPH VWXGLHV KDYH VKRZQ GHFUHDVHV LQ FKORURSK\OO FRQWHQW RQ DQ DUHD EDVLVf GXH WR KLJK WHPSHUDWXUHV f ZKLOH RWKHU VWXGLHV KDYH QRW f 7UDQVSLUDWL RQ :DWHU ORVV LV DQ LQHYLWDEOH FRQVHTXHQFH RI VWRPDWDO RSHQLQJ QHFHVVDU\ IRU &" XSWDNH 8VXDO GD\WLPH WUDQVSLUDWL RQ IOX[ S GHQVLWLHV 7f DUH LQ WKH UDQJH RI WR J +rGPa KU WR PPRO rP rV f f 7UDQVSLUDWLRQ YDOXHV IRU VR\EHDQV ZHUH KLJKHU WR J +A2 rGPa rKUaAf f 1REHO f FDOFXODWHG PD[LPXP 7 RI J +"rGP rKU PPRO rP rV f IRU WKH [HULF IHUQ 1RWKRODHQD SDUU\L :DWHU XVH HIILFLHQF\ :DWHU XVH HIILFLHQF\ :8(f UHODWHV WKH DPRXQW RI &2J IL[HG WR WKH DPRXQW RI ZDWHU ORVW :8( RQ D PDVV EDVLV RI D OHDI RI D UHSUHVHQWDWLYH PHVRSK\WH LV [ PJ &2APJ IA2f f 7KH :8( UHSRUWHG IRU D GHVHUW IHUQ GXULQJ WKH GD\WLPH LQ VLWX ZDV [ n PJ &2APJ +A2f f 'LIIXVLYH FRQGXFWDQFH $ED[LDO ZDWHU YDSRU GLIIXVLYH FRQGXFWDQFH J f IRU FURSV ZKHQ VWRPDWD DUH RSHQ UDQJH IURP WR PPRO rP rV f $ED[LDO JZ\V IRU WUHHV DUH JHQHUDOO\ ORZHU WR PPRO rVBf /HDI FRQGXFWDQFH JAnAf RI &A DQG &A SODQWV FRPPRQO\ LQFUHDVHV GXULQJ WKH PRUQLQJ UHDFKHV D SHDN LQ ODWH PRUQLQJ RU HDUO\ DIWHUQRRQ DQG GHFUHDVHV GXULQJ WKH UHVW RI WKH GD\ f 7ZR HSLSK\WLF &$0 IHUQV KDG JA\A WR PPRO rP rV DQG H[KLELWHG Ub D I W WKH W\SLFDO &$0 UHYHUVH SDWWHUQ RI ORZ JZYr GXULQJ WKH GD\ DQG KLJK

PAGE 36

JAHDA DW QLJKW f 3UHKDUYHVW OHDWKHUOHDI IHUQ DED[LDO JAHDI ZHUH ZY ZY DQG PPROr P rV DQG YDOXHV ZHUH DQG PPROr P rV KU SRVWKDUYHVW f $IWHU GD\V JADA GURSSHG WR PPROr PaAr Vr 'DYLV HW DO f IRXQG WKDW GLIIXVLYH FRQGXFWDQFH RI EHDQ OHDYHV H[SRVHG WR FRQVWDQW OLJKW GHFUHDVHG FRQWLQXRXVO\ ZLWK DJH 6WRPDWDO FRQGXFWDQFH JAf RQH FRPSRQHQW RI JZY LV ODUJHO\ LQGHSHQGHQW RI WUDQVSLUDWLRQ UDWH >IOX[ GHQVLW\@ IURP WKH OHDI DV D ZKROH f )LVKHU f XVLQJ D OHDI GLVF DVVD\ WR SURYLGH D XQLIRUP HQYLURQPHQW IRXQG WKDW WKH DELOLW\ RI VWRPDWD WR RSHQ UHDFKHG D PD[LPXP IRU QHZO\ IXOO\ H[SDQGHG OHDYHV DQG GHFOLQHG ZLWK DJLQJ 2WKHU IDFWRUV EHVLGHV OHDI DJH WKDW DIIHFW VWRPDWDO IXQFWLRQLQJ LQIOXHQFH JAHD" +DOO DQG .DXIPDQQ f IRXQG WKDW J?pDA RI VHVDPH ZY ZY SODQWV GHFUHDVHG ZKHQ WKH KXPLGLW\ JUDGLHQW EHWZHHQ OHDI DQG DLU ZDV LQFUHDVHG 7KH GHFUHDVH ZDV PDLQO\ GXH WR UHGXFWLRQV LQ VWRPDWDO DSHUDWXUH KRZHYHU VWRPDWDO UHVSRQVH WR KXPLGLW\ ZDV QRW SUHVHQW DW KLJK rf OHDI WHPSHUDWXUHV /DVNR f VKRZHG WKDW &(5V DQG JApD" RI DSSOH WUHHV ZHUH SRVLWLYHO\ FRUUHODWHG ZLWK HDFK RWKHU DQG WKDW WKH OHDI ZDWHU SRWHQWLDO UHTXLUHG WR FORVH VWRPDWHV GHFUHDVHG E\ 03D EHWZHHQ 0D\ DQG 6HSWHPEHU +\GUDXOLF FRQGXFWLYLW\ 0XFK FRQIXVLRQ H[LVWV LQ WKH OLWHUDWXUH UHJDUGLQJ GHILQLWLRQ DQG FDOFXODWLRQ RI FRQGXFWLYLW\ XVHG LQ D JHQHUDO VHQVHf 5HODWLYH FRQGXFWLYLW\ N IRUPHUO\ FDOOHG VSHFLILF FRQGXFWLYLW\ f GHVFULEHV WKH IORZ RI ZDWHU WKURXJK D VWHP RU SHWLROH RI JLYHQ FURVVVHFWLRQDO DUHD DQG OHQJWK DQG XQGHU D NQRZQ SUHVVXUH 5HODWLYH FRQGXFWLYLW\ LV FDOFXODWHG DV IROORZV N 4OQ$S

PAGE 37

ZKHUH IORZ YROXPH fWLPHAf OHQJWK Q YLVFRVLW\ $ FURVVVHFWLRQDO DUHD S SUHVVXUH DQG KDV WKH GLPHQVLRQV f f 3XEOLVKHG N YDOXHV RIWHQ DUH QRW FRUUHFWHG IRU Q f $VVXPLQJ D Q YDOXH RI 03DrV :RRGKRXVH DQG 1REHOnV UHSRUWHG UHODWLYH FRQGXFWLYLWLHV IRU IHUQ R VSHFLHV UDQJH IURP WR FP f $OVRSKLOD DXVWUDOLV KDG WKH KLJKHVW UHODWLYH FRQGXFWDQFH DQG DOVR WKH JUHDWHVW WUDFKHLG QXPEHU DQG GLDPHWHU RI WKH VSHFLHV VWXGLHG &DUOTXLVW f VWDWHV WKDW ORQJHU DQG ZLGHU WUDFKHLGV FRXOG EH VDLG WR KDYH D FRQGXFWLYH DGYDQWDJH RI IHZHU ORQJHU RYHUODS DUHDV SHU XQLW OHQJWK RI FRQGXFWLYH WLVVXH DQG WKLV FRXOG PDNH IRU PRUH UDSLG FRQGXFWLYLW\ SHU XQLW WUDQVHFWLRQ :RRGKRXVH DQG 1REHO f FRQWHQG WKDW ORZ FRQGXFWDQFH LV DQ DGYDQWDJH IRU IHUQV H[SRVHG WR GURXJKW DQG PD\ DOORZ VSHFLHV ZLWK VXFK DQ DGDSWDWLRQ WR VXUYLYH LQ D JUHDWHU UDQJH RI KDELWDWV &RQGXFWLYLW\ D DV GHILQHG E\ +HLQH f GLIIHUV IURP UHODWLYH FRQGXFWLYLW\ LQ WKDW LW LV EDVHG RQ OXPHQ DUHD UDWKHU WKDQ WKH FURVV VHFWLRQDO DUHD RI WKH SODQW SDUW &RQGXFWLYLW\ LV FDOFXODWHG DV IROORZV R 4DS ZKHUH D WRWDO OXPHQ DUHD 0XUUR] HW DO f XVLQJ +XEHUnV f GHILQLWLRQ RI VSHFLILF FRQGXFWLYLW\ IRXQG WKDW K\GUDXOLF FRQGXFWLYLW\ RI GHWDFKHG SHDFK VWHPV GHFUHDVHG ORJDULWKPLFDOO\ RYHU WLPH 7KH DXWKRUV VXJJHVW WKDW LQLWLDO

PAGE 38

UHGXFWLRQV LQ UHODWLYH FRQGXFWLYLW\ SRVVLEO\ ZHUH GXH WR LQFUHDVHG VDS YLVFRVLW\ UHVXOWLQJ IURP HQ]\PDWLF DFWLYLW\ XSRQ FHOO ZDOO PDWHULDO 'HFUHDVHG FRQGXFWLYLW\ RYHU WLPH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK D GHFUHDVH LQ WKH SHUFHQWDJH RI IXQFWLRQDO YHVVHOV DQG QHJDWLYHO\ FRUUHODWHG ZLWK DQ LQFUHDVH LQ WKH QXPEHU RI SOXJJHG YHVVHOV 3RVWKDUYHVW 9DVH OLIH RI PDQ\ FXW IORZHUV DQG FXW IROLDJHV LV WHUPLQDWHG EHFDXVH SURSHU ZDWHU EDODQFH FDQQRW EH PDLQWDLQHG f 0DLQWHQDQFH RI VDWLVIDFWRU\ ZDWHU EDODQFH GHSHQGV RQ WKH UDWLR EHWZHHQ ZDWHU XSWDNH DQG ZDWHU ORVV 8SWDNH RI XQWUHDWHG ZDWHU E\ FXW IORZHUV DQG IROLDJHV JHQHUDOO\ GHFOLQHV UDSLGO\ DIWHU DERXW WKH ILUVW RU VHFRQG GD\ SRVWKDUYHVW f 7KLV GHFOLQH LV XVXDOO\ DWWULEXWHG WR VWRPDWDO FORVXUH DQGRU YDVFXODU EORFNDJH f +DOHY\ DQG 0D\DN f UHYLHZ WKH IDFWRUV VXFK DV VROXWLRQ S+ DQG TXDOLW\ PLFURELDO DQG SK\VLRORJLFDO SOXJJLQJ DQG VROXWLRQ FRQVWLWXHQWV WKDW PD\ FRQWULEXWH WR YDVFXODU EORFNDJH 5HVHDUFK KDV VKRZQ WKDW SXOVLQJ DQG KROGLQJ VROXWLRQV FDQ LQFUHDVH UDWHV RI VROXWLRQ XSWDNH RI OHDWKHUOHDI IHUQ +RZHYHU KLJK UDWHV RI VROXWLRQ XSWDNH GR QRW DSSHDU WR EH DQ LPSRUWDQW IDFWRU LQ H[WHQGLQJ ORQJHYLW\ RI OHDWKHUOHDI IHUQ f $ VLPLODU ODFN RI FRUUHODWLRQ EHWZHHQ KLJK UDWHV RI VROXWLRQ XSWDNH DQG IORZHU ORQJHYLW\ KDV EHHQ UHSRUWHG IRU URVHV f DQG SHDFKHV f &DPSUXEL DQG )RQWDUQDX f GLG QRW ILQG D FRUUHODWLRQ EHWZHHQ WKH HIIHFWV RI FKHPLFDOV RQ WKH ZDWHU FRQGXFWDQFH LQ FDUQDWLRQ VWHPV DQG WKH HIIHFWV RI WKH FKHPLFDOV RQ IORZHU ORQJHYLW\ 2Q WKH RWKHU KDQG RWKHU

PAGE 39

UHVHDUFKHUV f KDYH IRXQG IORUDO SUHVHUYDWLYH FKHPLFDOV GHFUHDVH YDVFXODU EORFNDJH DQG LQFUHDVH ORQJHYLW\ RI URVHV DQG PDLGHQKDLU IHUQ $ SDUWLDO H[SODQDWLRQ IRU WKHVH GLIIHUHQFHV PD\ EH WKDW VRPH FKHPLFDOV LQIOXHQFH VWRPDWDO FORVXUH 0DURXVN\ f UHSRUWHG KLJKHU YDVFXODU FRQGXFWDQFH DQG JUHDWHU VWRPDWDO FORVXUH IRU URVHV WUHDWHG ZLWK FKHPLFDOV DQG WKLV WUHDWPHQW UHVXOWHG LQ EHWWHU PDLQWHQDQFH RI IUHVK ZHLJKW DQG LQFUHDVHG ORQJHYLW\ RI FXW URVHV &KHPLFDOV ZKLFK LQFUHDVH VROXWLRQ XSWDNH EXW UHGXFH ORQJHYLW\ PD\ LQWHUIHUH ZLWK VWRPDWDO FORVXUH DV HYLGHQFHG E\ WKH UDSLG ZHLJKW ORVV RI OHDWKHUOHDI IHUQ IURQGV LQ RQH VWXG\ f ,Q WKDW VWXG\ DQG DQRWKHU f WKH IURQGV WKDW KDG WKH KLJKHVW VROXWLRQ XSWDNH KDG WKH VKRUWHVW YDVH OLIH $V PHQWLRQHG SUHYLRXVO\ VWRPDWDO FORVXUH E\ FXW OHDWKHUOHDI IHUQ IURQGV LV VORZ f 7KLV PD\ EH ZK\ DQWLWUDQVSLUDQWV KDYH HQKDQFHG WKH YDVH OLIH RI OHDWKHUOHDI IHUQ GXULQJ SHULRGV ZKHQ IURQG FXUO V\QGURPH LV D SUREOHP f :KHQ PHFKDQLFDO UDWKHU WKDQ FKHPLFDO PHWKRGV DUH XVHG WR LQFUHDVH ZDWHU XSWDNH OHDWKHUOHDI IHUQ IURQGV LQFUHDVH LQ ZHLJKW +HQQ\ f KDV VKRZQ WKDW UHFXWWLQJ WKH EDVH RI WKH VWLSH RI OHDWKHUOHDI IHUQ IURQGV FDQ FDXVH LQFUHDVHG XSWDNH DQG LQFUHDVHG IURQG ZHLJKW 0DURXVN\ f IRXQG WKDW SRVWKDUYHVW UHWULPPLQJ RI VWLSHV JUHDWO\ UHGXFHG IURQG FXUO 2QH VWXG\ f VKRZHG QR EHQHILW IURP UHFXWWLQJ WKH VWLSH EDVH RI OHDWKHUOHDI IHUQ EXW WKH IHUQ LQ WKDW VWXG\ GLG QRW H[KLELW V\PSWRPV RI IURQG FXUO V\QGURPH )&6f DQG KDG QRUPDO ORQJHYLW\ &XW OHDWKHUOHDI IHUQ IURQGV JHQHUDOO\ KDYH D YDVH OLIH RI ZHHNV RU PRUH f /RQJHYLW\ LV UHGXFHG GXULQJ FHUWDLQ WLPHV RI WKH \HDU HVSHFLDOO\ ODWH VXPPHU DQG HDUO\ IDOO

PAGE 40

f GXH WR WKH RFFXUUHQFH RI )&6 f $WWHPSWV WR FRUUHODWH )&6 ZLWK WKH SUHVHQFH RI GLVHDVH RUJDQLVPV RU OHYHO RI QHPDWRGH LQIHVWDWLRQ KDYH QRW EHHQ VXFFHVVIXO f $ VLPLODU VHDVRQDO UHGXFWLRQ LQ ORQJHYLW\ ZKLFK PD\ EH GXH WR UHGXFHG VXEVWUDWH OHYHOV KDV EHHQ REVHUYHG IRU FDUQDWLRQV f 0RH f IRXQG WKDW SURGXFWLRQ WHPSHUDWXUH DIIHFWHG ORQJHYLW\ RI FXW URVHV 5RVHV JURZQ DW KLJK r&f WHPSHUDWXUHV KDG UHGXFHG ORQJHYLW\ FRPSDUHG WR URVHV JURZQ DW ORZHU r r rf WHPSHUDWXUHV 7UHDWPHQW RI OHDWKHUOHDI IHUQ IURQGV ZLWK IORUDO SUHVHUYDWLYHV ZLWK DQG ZLWKRXW FDUERK\GUDWH VRXUFHV KDV QRW EHHQ EHQHILFLDO 0DURXVN\ XQSXEOLVKHG 6WDPSV XQSXEOLVKHGf 7UHDWPHQW RI FXW IHUQ IURQGV ZLWK HWK\OHQH V\QWKHVLV DQG DFWLRQ LQKLELWRUV GLG QRW LQFUHDVH YDVH OLIH f DQG H[SRVXUH WR KLJK ,;f DWPRVSKHULF FRQFHQWUDWLRQV RI HWK\OHQH GLG QRW UHGXFH YDVH OLIH 0DURXVN\ SHUVRQDO FRPPXQLFDWLRQf 3RROH HW DO f IRXQG D QHJDWLYH FRUUHODWLRQ EHWZHHQ IURQG DJH DQG YDVH OLIH &RQRYHU HW DO f VXJJHVW WKDW WKH EDVLF SK\VLRORJ\ RI WKH IHUQ LV DOWHUHG GXULQJ WKH VXPPHU WR SURGXFH ZHDN VWHPV ZLWK ODUJH WKLQ ZDOOHG FHOOV DQG WKDW WKLV PD\ EH D IDFWRU LQ )&6 3ODQW 0DWHULDO /HDWKHUOHDI IHUQ 5XPRKUD DGLDQWLIRUPLV )RUVWf &KLQJ LV D HSWRVSRUDQJLDWH IHUQ DQG LV D PHPEHU RI WKH RUGHU )LFDOHV RU WUXH IHUQV f $OWKRXJK WD[RQRPLVWV KDYH SODFHG OHDWKHUOHDI IHUQ ZLWK WKH 'DYDOOLDFHDH f DQG 'U\RSWHULGDFHDH f WKH V\VWHPDWLF SRVLWLRQ RI OHDWKHUOHDI IHUQ UHPDLQV XQFOHDU /HDWKHUOHDI IHUQ LV SULPDULO\ FLUFXPDXVWUDO LQ GLVWULEXWLRQ f DQG LV WHUUHVWULDO UXSHVWUDO DQG HSLSK\WLF f ,W JURZV LQ D YDULHW\ RI KDELWDWV IURP RSHQ VDQG\ VWUDQG DQG GXQHV WR IRUHVWV f

PAGE 41

&+$37(5 ,, 7(03(5$785( $))(&76 7+( '(9(/230(17 $1' 3267+$59(67 /21*(9,7< 2) /($7+(5/($) )(51 )521'6 /HDWKHUOHDI IHUQ 5XPRKUD DGLDQWLIRUPLV )RUVWf &KLQJ f LV WKH FXW IROLDJH PRVW IUHTXHQWO\ XVHG LQ IORUDO DUUDQJHPHQWV LQ WKH 8QLWHG 6WDWHV f 7KH PDMRULW\ RI WKH ZRUOGnV SURGXFWLRQ RI OHDWKHUOHDI IHUQ RFFXUV LQ )ORULGD ZKHUH LW LV JURZQ XQGHU b OLJKW H[FOXVLRQ SURYLGHG E\ SRO\SURS\OHQH VKDGH IDEULF EUXVK ODWK RU RDN WUHHV f 9DVH OLIH RI FXW OHDWKHUOHDI IHUQ IURQGV LV XVXDOO\ ZHHNV RU ORQJHU f HYHQ LI VWRUHG IRU D PRQWK SULRU WR XVH f +RZHYHU VWXGLHV KDYH VKRZQ WKDW SRVWKDUYHVW ORQJHYLW\ RI OHDWKHUOHDI IHUQ LV JUHDWO\ UHGXFHG ZKHQ KDUYHVWHG GXULQJ FHUWDLQ PRQWKV RI WKH \HDU HVSHFLDOO\ -XO\ $XJXVW 6HSWHPEHU DQG 2FWREHU f 'XULQJ WKHVH PRQWKV WKH DYHUDJH GDLO\ WHPSHUDWXUHV LQ WKH PDMRU SURGXFWLRQ DUHDV RI )ORULGD JHQHUDOO\ H[FHHG r & f $ VLPLODU UHGXFWLRQ LQ SRVWKDUYHVW ORQJHYLW\ GXULQJ WKLV SHULRG RI WKH \HDU KDV EHHQ REVHUYHG IRU FDUQDWLRQV LQ &RORUDGR f 5RVHV JURZQ DW r KDG UHGXFHG SRVWKDUYHVW ORQJHYLW\ FRPSDUHG WR RQHV JURZQ DW ORZHU r r rf WHPSHUDWXUHV f 5HGXFHG SRVWKDUYHVW ORQJHYLW\ RI OHDWKHUOHDI IHUQ LV GXH PDLQO\ WR WKH RFFXUUHQFH RI IURQG FXUO V\QGURPH )&6 f DQG WR D OHVVHU GHJUHH WR HDUOLHU \HOORZLQJ (< RI QRQFXUOLQJ IURQGV f &RPPHUFLDO SRVWKDUYHVW KDQGOLQJ RI FXW IURQGV LV HVVHQWLDOO\ WKH VDPH WKURXJKRXW WKH \HDU f +DUYHVWLQJ VWDUWV DURXQG KU DQG

PAGE 42

PD\ FRQWLQXH XQWLO KU )URQGV DUH FXW E\ KDQG XVLQJ FOLSSHUV VWDFNHG LQ EXQFKHV RI WR DQG UXEEHUEDQGHG WRJHWKHU %XQFKHV DUH SLFNHG XS HYHU\ WR KU DQG WUDQVSRUWHG LQ EXON HLWKHU FRYHUHG RU XQFRYHUHG WR SDFNLQJ VKHGV 8SRQ DUULYDO EXQFKHV DUH VSUD\HG ZLWK RU GLSSHG LQ ZDWHU DQG DUH SDFNHG LQWR ZD[HG QRQSHUIRUDWHG FRUUXJDWHG ILEHUERDUG FDUWRQV 7KH ZDWHU LQ ZKLFK WKH IURQGV DUH GLSSHG PD\ FRQWDLQ D IXQJLFLGH 5HVHDUFK f KDV VKRZQ WKDW WKHVH IXQJLFLGH WUHDWPHQWV GR QRW DIIHFW YDVH OLIH 0RVW SDFNHG IHUQ LV VWRUHG DW r WR r SULRU WR VKLSPHQW )URQG FXUO DOWKRXJK LQIOXHQFHG E\ SRVWKDUYHVW IURQG GHVLFFDWLRQ f GRHV QRW DSSHDU WR EH D SUREOHP RI SRVWKDUYHVW RULJLQ +RZHYHU SRVWKDUYHVW WULPPLQJ RI VWLSH EDVHV UHGXFHG WKH VHYHULW\ EXW GLG QRW SUHYHQW IURQG FXUO LQ RQH VWXG\ f DQG LQ DQRWKHU VWXG\ IURQG FXUO FRXOG EH UHYHUVHG E\ UHFXWWLQJ WKH VWLSH EDVH ZKHQ IURQGV EHJDQ WR FXUO f 0DWKXU f UHSRUWV WKDW OHDWKHUOHDI IHUQ IURQGV JLYHQ D PLQXWH GLS LQ DQ\ RI GLIIHUHQW DQWLWUDQVSLUDQWV ODVWHG GD\V ORQJHU WKDQ XQWUHDWHG FRQWURO IURQGV )URQGV ZHUH KHOG DW r DQG DOO WKH XQWUHDWHG IURQGV KDG \HOORZHG E\ GD\ 2WKHU UHVHDUFKHUV &RQRYHU XQSXEOLVKHG 1HOO XQSXEOLVKHGf KDYH KDG PRUH DPELJXRXV UHVXOWV ZKHQ WUHDWLQJ IURQGV ZLWK DQWLWUDQVSLUDQWV 'DWD RQ WKH HIIHFWV RI SURGXFWLRQ WHPSHUDWXUH RQ OHDWKHUOHDI IHUQ SULRU WR DQG IROORZLQJ KDUYHVW DUH ODFNLQJ 7KHVH H[SHULPHQWV ZHUH FRQGXFWHG WR VWXG\ WKH HIIHFWV RI SURGXFWLRQ WHPSHUDWXUHV RQ WKH GHYHORSPHQW SK\VLRORJ\ DQG SRVWKDUYHVW ORQJHYLW\ RI OHDWKHUOHDI IHUQ IURQGV

PAGE 43

0DWHULDOV DQG 0HWKRGV )RXU H[SHULPHQWV ZHUH FRQGXFWHG WR VWXG\ WKH HIIHFWV RI SURGXFWLRQ WHPSHUDWXUH UHJLPHV RQ OHDWKHUOHDI IHUQ 7KH H[SHULPHQWV DUH EULHIO\ RXWOLQHG EHORZ DQG WKH IROORZLQJ VHFWLRQV GHVFULEH LQ GHWDLO KRZ WKH QXPHURXV W\SHV RI GDWD ZHUH WDNHQ LQ HDFK H[SHULPHQW ([SHULPHQW *URZWK DQG SK\VLRORJLFDO FKDUDFWHULVWLHV RI LQWDFW IURQGV RI VLPLODU FKURQRORJLFDO DJHV ZHUH FRPSDUHG ([SHULPHQW $QDWRPLFDO DQG PRUSKRORJLFDO DWWULEXWHV DQG SRVWKDUYHVW EHKDYLRU RI GHWDFKHG IURQGV ZHUH VWXGLHG ([SHULPHQW 7KH HIIHFWV RI VWLSH UHFXWWLQJ DQG GD\V SRVWKDUYHVW RQ ZDWHU XSWDNH GLIIXVLYH FRQGXFWDQFH DQG IURQG ORQJHYLW\ DV ZHOO DV K\GUDXOLF FRQGXFWLYLW\ FKDQJHV RYHU WKDW WLPH SHULRG ZHUH GHWHUPLQHG ([SHULPHQW 3RWV RI OHDWKHUOHDI IHUQ WKDW KDG EHHQ JURZQ XQGHU RQH WHPSHUDWXUH UHJLPH ZHUH VZLWFKHG WR WKH RWKHU UHJLPH DQG PRUSKRORJLFDO DQG SRVWKDUYHVW FKDUDFWHULVWLFV RI GHWDFKHG IURQGV ZHUH HYDOXDWHG ZHHNV DQG DJDLQ ZHHNV DIWHU WKH VZLWFK 3ODQW 0DWHULDO DQG 7UHDWPHQWV 2Q $XJ OHDWKHUOHDI IHUQ JURZLQJ LQ FP SODVWLF SRWV ZHUH UHSRWWHG LQWR FP SRWV XVLQJ D SHDWVDQGSHUOLWHf PL[ DPHQGHG ZLWK NJ GRORPLWH NJ VXSHUSKRVSKDWH DQG NJ 3(5.P D PLFURQXWULHQW EOHQG PDQXIDFWXUHG E\ (VWHFK *HQHUDO &KHPLFDO &RUS &KLFDJR ,,f 7ZHQW\ SRWV IRU HDFK WHPSHUDWXUH UHJLPH ZHUH SODFHG LQWR FRQWUROOHG HQYLURQPHQW FKDPEHUV 6KHUHU &RQWUROOHG (QYLURQPHQW /DE 0RGHO &(/ 6KHUHU*LHWW &R 0DUVKDOO 0,f VHW IRU

PAGE 44

GD\QLJKW WHPSHUDWXUHV RI 'rr ORZ WHPSHUDWXUH UHJLPH /75f DQG rrKLJK WHPSHUDWXUH UHJLPH +75f 7KH GD\QLJKW WHPSHUDWXUH IOXFWXDWLRQV ZHUH NHSW WKH VDPH rf IRU ERWK UHJLPHV EHFDXVH WKH DPSOLWXGH RI WHPSHUDWXUH YDULDWLRQ LQ FRQWUROOHG HQYLURQPHQWV KDV EHHQ VKRZQ WR DIIHFW WKH GHYHORSPHQW DQG SK\VLRORJ\ RI SODQWV f 'D\QLJKW UHODWLYH KXPLGLWLHV ZHUH ; s b DQG b s b IRU WKH ORZ DQG KLJK WHPSHUDWXUH FKDPEHUV UHVSHFWLYHO\ 7KHVH UHODWLYH KXPLGLWLHV DQG WHPSHUDWXUHV DUH VLPLODU WR WKRVH IRXQG GXULQJ WKH PRQWKV RI 0DUFK DQG -XO\ f ZKHQ WKH LQFLGHQFH RI IURQG FXUO LV ORZ DQG KLJK UHVSHFWLYHO\ f /LJKWLQJ LQ HDFK FKDPEHU FRQVLVWHG RI HLJKW P FRRO ZKLWH IOXRUHVFHQW ODPSV 6\OYDQLD /LIHOLQH )7&:9+ 6\OYDQLD /LJKWLQJ 3URGXFWV *URXS *7( 3URGXFWV &RUS 2DQYHUV 0$ f DQG IRXU ZDWW LQFDQGHVFHQW EXOEV IRU D SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ 33)'f DW WKH WRS RI WKH SODQW FDQRS\ FP DERYH WKH WRS RI WKH SRWf RI XPRO}V rP DV PHDVXUHG EHIRUH DQG DIWHU HDFK JURZWK F\FOH ZLWK D TXDQWXP UDGLRPHWHU /,&25 0RGHO /,$ /,&25 ,QF /LQFROQ 1( f )URQGV IURP WKHVH WHPSHUDWXUH WUHDWPHQWV ZHUH XVHG DV WKH H[SHULPHQWDO XQLWV LQ H[SHULPHQWV DQG 7KH WHPSHUDWXUH UHJLPHV LQ WKH FKDPEHUV ZHUH UHYHUVHG )HEUXDU\ DQG RQH KDOI RI WKH SRWV DW HDFK WHPSHUDWXUH UHJLPH ZHUH VZLWFKHG WR WKH RWKHU UHJLPH )URQGV IURP WKHVH VZLWFKHG UHJLPHV ZHUH WKH H[SHULPHQWDO XQLWV LQ H[SHULPHQW KDUYHVW 2Q 0D\ WKH SRWV ZHUH PRYHG WR GLIIHUHQW FRQWUROOHG HQYLURQPHQW FKDPEHUV 3ODQW *URZWK &KDPEHU ( 3HUFLYDO 0DQXIDFWXULQJ &R %RRQH ,$ f ZKHUH WKH WHPSHUDWXUH UHJLPHV ZHUH PDLQWDLQHG DQG WKH OLJKW OHYHOV ZHUH \PROrV rP /LJKW LQ HDFK RI WKH VHFRQG VHW RI FKDPEHUV FRQVLVWHG RI VL[ FP

PAGE 45

FRRO ZKLWH IOXRUHVFHQW ODPSV *( )7r&:r+ *HQHUDO (OHFWULF &R 1HOD 3DUN &OHYHODQG 2+ f DQG WZR ZDWW WXEXODU LQFDQGHVFHQW EXOEV ,Q WKHVH FKDPEHUV DV ZHOO DV WKH SUHYLRXVO\PHQWLRQHG RQHV WKH WRWDO ZDWW LQSXW SURYLGHG ZLWK LQFDQGHVFHQW ODPSV ZDV NHSW LQ WKH WR b UDQJH UHFRPPHQGHG E\ &DWKH\ DQG &DPSEHOO f )URQGV IURP WKHVH FKDPEHUV ZHUH XVHG LQ H[SHULPHQW KDUYHVW 3ODQWV ZHUH IHUWLOL]HG ZLWK OLWHU RI FRPSOHWH OLTXLG IHUWLOL]HU 3HWHUVp )ORULGD 6SHFLDO : 5 *UDFH t &R +RUWLFXOWXUDO 3URGXFWV &DPEULGJH 0$f DW D FRQFHQWUDWLRQ RI RU SSP 1 O[ZHHN IRU WKH ORZ DQG KLJK WHPSHUDWXUH WUHDWPHQWV UHVSHFWLYHO\ )HUWLOL]DWLRQ PDLQWDLQHG FRQGXFWLYLW\ UHDGLQJV DQG S+V ZLWK D YROXPHUYROXPH ZDWHUPHGLXUQf H[WUDFW SURFHGXUH EHWZHHQ PLFURPKRVfFPfA +DFK 0RGHO +DFK &KHPLFDO &R $PHV ,$f DQG UHVSHFWLYHO\ 3ODQWV ZHUH ZDWHUHG GDLO\ -XVW HPHUJLQJ FURVLHUV ILGGOHKHDGVf ZHUH WDJJHG RQ 6HSWHPEHU DQG 2FWREHU DQG 0DUFK DQG 0D\ 6DPH DJHG IURQGV ZHUH XVHG LQ HDFK RI H[SHULPHQWV WR UHGXFH YDULDELOLW\ DQG EHFDXVH UHVHDUFK f VXJJHVWV WKDW IURQG DJH LV DQ LQIOXHQFLQJ IDFWRU LQ IURQG ORQJHYLW\ *URZWK DQG 'HYHORSPHQW )URQG OHQJWK 0HDVXUHPHQWV RI WKH OHQJWKV RI WDJJHG IURQGV IURQGV SHU SRW ZHUH PDGH DW ZHHNO\ LQWHUYDOV VWDUWLQJ 6HSWHPEHU 6RUL GHYHORSPHQW 'DWHV ZKHQ IURQGV ILUVW GHYHORSHG VRUL YLVLEOH WR WKH XQDLGHG H\H ZHUH UHFRUGHG

PAGE 46

0RUSKRORJ\ DQG $QDWRP\ )URQG VXUIDFH DUHD 6XUIDFH DUHDV ZHUH PHDVXUHG XVLQJ DUHD PHWHUV /,&25 3RUWDEOH $UHD 0HWHU 0RGHO /, ZLWK $FFHVVRU\ %HOW &RQYH\RU /,$ /,&25 0RGHO /,f )URQG WKLFNQHVV )URQG WKLFNQHVV ZDV PHDVXUHG IURP WKH YLGHR GLVSOD\ RI D VFDQQLQJ HOHFWURQ PLFURVFRSH +LWDFKL 6 +LWDFKL /WG 7RN\R -DSDQf RSHUDWLQJ DW DQ DFFHOHUDWLQJ YROWDJH RI N9 3LQQXOHV REWDLQHG IURP D PLGGOH SLQQD RI WKH UDFKLV ZHUH IL[HG LQ b JOXWDUDOGHK\GH LQ VRGLXP FDFRG\ODWH EXIIHU S+ f SRVWIL[HG LQ EXIIHUHG b RVPLXP WHWUR[LGH GHK\GUDWHG XVLQJ DQ HWKDQRO GHK\GUDWLRQ VHULHV DQG FULWLFDO SRLQW GU\HG 7RXVLPLV 0RGHO 1R 6DPGULUHJXODWHG 7RXVLPLV 5HVHDUFK &RUSRUDWLRQ 5RFNYLOOH 02f XVLQJ OLTXLG &" 6DPSOHV ZHUH WKHQ DWWDFKHG WR DOXPLQXP VWXEV ZLWK ORZ UHVLVWDQFH FRQWDFW FHPHQW (UQHVW ) )XOO DP ,QF 6FKHQHFWDG\ 1
PAGE 47

&XWLFOH WKLFNQHVV DQG QXPEHU RI HSLGHUPDO FHOO OD\HUV &XWLFOH WKLFNQHVV DQG QXPEHU RI HSLGHUPDO OD\HUV ZHUH GHWHUPLQHG DV GHVFULEHG IRU IURQG WKLFNQHVV DERYH 7UDFKHLG QXPEHUV DQG FURVVVHFWLRQDO DUHDV 7UDFKHLG QXPEHUV DQG FURVVVHFWLRQDO DUHDV ZHUH GHWHUPLQHG IURP VWDLQHG VHFWLRQV PRXQWHG LQ 3HUPRXQWf )LVKHU 6FLHQWLILF 3LWWVEXUJK 3$f XVLQJ D YLGHR LPDJH DQDO\VLV V\VWHP /LQHDU 0HDVXULQJ 6HW V\VWHP 0HDVXURQLFV &RUSRUDWLRQf 7KH VWLSH VHFWLRQV XVHG ZHUH WKRVH IURP WKH K\GUDXOLF FRQGXFWLYLW\ H[SHULPHQWV 7KH WLVVXH ZDV IL[HG LQ )$$ DQG WKHQ HPEHGGHG LQ PHGLXP JUDGH /5 :KLWH UHVLQ /RQGRQ 5HVLQ &R /WG +DPSVKLUH (QJODQGf XVLQJ DQ DOLTXRW PL[HU 0RGHO $PHV &R 'LY 0LOHV /DERUDWRULHV ,QF (ONKDUW ,1f WR HQKDQFH LQILOWUDWLRQ &RQYHQWLRQDO SDUDIILQ HPEHGGLQJ WHFKQLTXHV DUH JHQHUDOO\ QRW VXLWDEOH IRU XVH ZLWK OHDWKHUOHDI IHUQ VWLSH VHFWLRQV GXH WR WKH VFOHUHQFK\PDWRXV QDWXUH RI WKH VWLSH DQG WKH JUHDW UDQJH LQ WLVVXH KDUGQHVV DFURVV WKH VWLSH % 0F&RQQHOO SHUVRQDO FRPPXQLFDWLRQf *HODWLQ FDSVXOHV ZHUH XVHG WR KROG WKH WLVVXH DQG UHVLQ 7KH UHVLQ ZDV SRO\PHUL]HG XVLQJ KHDW rf DQG WKH HPEHGGHG WLVVXH ZDV DIIL[HG WR DOXPLQXP VWXEV XVLQJ HSR[\ FHPHQW 6HFWLRQV ZHUH REWDLQHG XVLQJ D VWHHO NQLIH RQ D URWDU\ PLFURWRPH $2r1 $PHULFDQ 2SWLFDO &R %XIIDOR 1
PAGE 48

V\VWHP 2O\PSXV $' H[SRVXUH FRQWURO XQLW DQG &$ FDPHUDf 7KH PLFURPHWHU WUDQVSDUHQFLHV ZHUH XVHG WR FDOLEUDWH WKH YLGHR LPDJH DQDO\VLV V\VWHP 7KH WUDQVSDUHQFLHV ZHUH SODFHG RQ D OLJKW VWDJH 2PHJD W\SH ',, HQODUJHU FRQGHQVRU 6LPPRQV %URV /RQJ ,VODQG 1
PAGE 49

)LJXUH 3KRWRPLFURJUDSK RI YDVFXODU EXQGOH LQ VWLSH RI OHDWKHUOHDI IHUQ IURQG WRSf GLJLWL]HG LPDJH RI WKH VDPH YDVFXODU EXQGOH PLGGOHf DQG HQKDQFHG GLJLWL]HG LPDJH RI WKH OXPLQD RI WKH WUDFKHLGV LQ WKDW YDVFXODU EXQGOH ERWWRPf

PAGE 51

)LJXUH 6FKHPDWLF GLDJUDP RI RSHQ V\VWHP XVHG WR PHDVXUH FDUERQ H[FKDQJH DQG WUDQVSLUDWLRQ RI OHDWKHUOHDI IHUQ IURQGV

PAGE 52

SXPS 0RGHO &$ 7KRPDV ,QGXVWULHV ,QF 3RZHU $LU 'LYLVLRQ 6KHER\JDQ :,f RSHUDWLQJ DW D IORZ UDWH RI OLWHUrPLQ DQG D IDQ $FPH r1 $FPH 0LDPL )/f ZLWK D FP EODGH ZHUH XVHG WR PL[ WKH DLU LQ WKH FP E\ FP E\ FP DFU\OLF SODVWLF FXYHWWH )LJXUH f 7KLV V\VWHP H[KLELWHG UHFLSURFLW\ DW WKH IORZ UDWHV XVHG $W KLJK SKRWRV\QWKHWLFDOO\ DFWLYH SKRWRQ IOX[ GHQVLWLHV WKH KLJK IORZ UDWHV ZHUH XVHG WR OLPLW &A FRQFHQWUDWLRQ UHGXFWLRQV WR SSP RU OHVV 7KH IURQGV ZHUH VXSSRUWHG RQ D JDOYLQL]HG ZLUH IDEULF ZLWK D PP VTXDUH PHVK $ SRO\VW\UHQH EDVH KHOG WKH ZLUH DERYH WKH IDQ EODGH DQG ZDV FRORUHG EODFN WR UHGXFH WKH DOEHGR 7KH WXUEXOHQFH FDXVHG E\ WKH IDQ WKH FLUFXODWLQJ SXPS DQG WKH DLU IORZLQJ WKURXJK WKH FXYHWWH ZHUH LQWHQGHG WR LQFUHDVH ERXQGDU\ OD\HU FRQGXFWDQFH WR SK\VLRORJLFDOO\ LQVLJQLILFDQW OHYHOV f /LJKW ZDV VXSSOLHG IURP D IL[WXUH +,7(. 'LYLVLRQ RI /LWKRQLD /LJKWLQJ &UDZIRUGVYLOOH ,1f HTXLSSHG ZLWK D ZDWW KLJK SUHVVXUH VRGLXP YDSRU ODPS 6\OYDQLD /XPDOX[ /8f 7KH ODPS ZDV DOORZHG WR ZDUP XS WR IXOO RXWSXW DSSUR[LPDWHO\ PLQf EHIRUH DQ\ UHDGLQJV ZHUH PDGH /LJKW FRPSHQVDWLRQ SRLQWV ZHUH GHWHUPLQHG E\ UHGXFLQJ LQWHQVLWLHV IURP D PD[LPXP \PROrV rP XVLQJ OD\HUV RI FKHHVHFORWK XQWLO WKH QHW &e IOX[ ZDV ]HUR 1HW &2A IOX[HV ZHUH PHDVXUHG DW XS WR OLJKW OHYHOV SHU SODQW 'DUN UHVSLUDWLRQ PHDVXUHPHQWV ZHUH PDGH ZKHQ WKH UHFRUGHU 9DULDQ 0RGHO 9DULDQ $HURJUDSK :DOQXW &UHHN &$f UHDFKHG D VWDEOH UHDGLQJ DIWHU WKH ODPS ZDV H[WLQJXLVKHG 7HPSHUDWXUHV ZHUH PDLQWDLQHG DW r s r XVLQJ D ZDWHU ILOOHG KHDW VLQN EHORZ WKH OLJKW DQG D WHPSHUDWXUH UHJXODWLQJ ZDWHU EDWK /DXGD .5 %ULQNPDQ ,QVWUXPHQWV ,QF :HVWEXU\ 1
PAGE 53

)LJXUH $FU\OLF SODVWLF FXYHWWH XVHG LQ FDUERQ H[FKDQJH DQG WUDQVSLUDWLRQ GHWHUPLQDWLRQV RI OHDWKHUOHDI IHUQ IURQGV

PAGE 55

VHYHUH f ZHUH PRQLWRUHG XVLQJ FRSSHUFRQVWDQWDQ WKHUPRFRXSOHV DQG D GLJLWDO WKHUPRPHWHU 0RGHO $' $QDORJ 'HYLFHV 1RUZRRG 06f
PAGE 56

&KORURSK\OO FRQWHQW &KORURSK\OO GHWHUPLQDWLRQV ZHUH PDGH XVLQJ D PRGLILFDWLRQ RI 0DF.LQQH\nV f DQG $UQRQnV f SURFHGXUHV 7ZR FP OHDI GLVFV REWDLQHG XVLQJ D FRUN ERUHU ZHUH SXQFKHG IURP SLQQXOHV RI HDFK IURQG XVHG IRU &(5 PHDVXUHPHQWV 7KH GLVFV ZHUH TXDUWHUHG XVLQJ D UD]RU EODGH DQG SODFHG LQ PO RI DFLGLILHG b +&f PHWKDQRO 'DUN H[WUDFWLRQ ZDV IRU KU DW r 2SWLFDO GHQVLW\ ZDV PHDVXUHG DW QP XVLQJ D VSHFWURSKRWRPHWHU 6SHFWURQLF %DXVFK ; /RPE 5RFKHVWHU 1
PAGE 57

&(5V DQG VXUIDFH DUHDV ZHUH PHDVXUHG )UHH]HGU\LQJ ODVWHG KU RU PRUH DQG WLVVXH ZDV WKHQ VWRUHG LQ D GHVLFFDWRU DW r 7LVVXH ZDV WKHQ JURXQG WKURXJK D PHVK VFUHHQ :LOH\ 0LOO $UWKXU + 7KRPDV &R 3KLODGHOSKLD 3$f ERLOHG LQ b HWKDQRO DQG FHQWULIXJHG DW USP 0RGHO +7 &HQWULIXJH ,QWHUQDWLRQDO (TXLSPHQW &R 'LYLVLRQ RI 'DPRQf IRU KU 2QHKDOI PLOOLOLWHU RI VXSHUQDWDQW ZDV GLOXWHG IRU VROXEOH VXJDU GHWHUPLQDWLRQV ZLWK PO GHLRQL]HG ZDWHU 7KH FHQWULIXJHG SHOOHW ZDV FRPELQHG ZLWK PO RI HQ]\PH VROXWLRQ PO RI P0 SKRVSKDWH EXIIHU PJ DDP\ODVH PJ DP\ORJOXFRVLGDVH PJ &D&OAf DQG LQFXEDWHG IRU KU DW r XVLQJ D FRQVWDQW WHPSHUDWXUH EDWK 0DJQL :KLUO &RQVWDQW 7HPSHUDWXUH %DWK %OXH 0 (OHFWULF &R %OXH ,VODQG ,/f 7KH VDPSOH ZDV FHQWULIXJHG DV DERYH DQG PO RI VXSHUQDWDQW ZDV GLOXWHG ZLWK PO RI GHLRQL]HG ZDWHU DQG VWDUFK FRQWHQW RI WKH VDPSOH ZDV GHWHUPLQHG XVLQJ D SKHQROVXOIXULF DFLG DVVD\ 2QHKDOI PLOOLOLWHU RI b SKHQRO DQG PO RI FRQFHQWUDWHG +A62A ZHUH DGGHG WR PO RI HDFK GLOXWHG VDPSOH DQG DOORZHG WR FRRO WKHQ RSWLFDO GHQVLW\ ZDV PHDVXUHG DW QP XVLQJ D VSHFWURSKRWRPHWHU 6WDQGDUGV ZHUH SUHSDUHG XVLQJ 'JOXFRVH DQG GHLRQL]HG ZDWHU 6WLSH K\GUDXOLF FRQGXFWLYLW\ 7KH DPRXQW RI WLPH UHTXLUHG WR IRUFH PO RI GHLRQL]HG ZDWHU WKURXJK D VWLSH VHFWLRQ FP ORQJ XVLQJ D SUHVVXUH RI 03D ZDV GHWHUPLQHG XVLQJ D SLSHW D VWRSZDWFK DQG D SUHVVXUH FKDPEHU 6RLO 0RLVWXUH (TXLSPHQW &RUS 6DQWD %DUEDUD &$f SRZHUHG E\ FRPSUHVVHG QLWURJHQ JDV 6HFWLRQ RULHQWDWLRQ ZDV PDLQWDLQHG DV ZKHQ DWWDFKHG WR WKH IURQG SUR[LPDO HQG RI WKH VWLSH GRZQ DQG WKH EDVHV ZHUH SODFHG LQ D GHLRQL]HG ZDWHU UHVHUYRLU LQVLGH WKH SUHVVXUH FKDPEHU 7KH VWLSH VHFWLRQV ZHUH REWDLQHG IURP WKH EDVH RI IURQGV VXEVHTXHQWO\ XVHG IRU SRVWKDUYHVW HYDOXDWLRQ 3UHYLRXV UHVHDUFK f

PAGE 58

KDV VKRZQ WKDW UHPRYDO RI FP IURP WKH EDVH RI WKH VWLSH FDQ FDXVH FXUOHG IURQGV WR UHFRYHU DQG UHPRYDO RI FP JDYH QR DGGHG EHQHILW 5HODWLYH FRQGXFWLYLW\ N ZDV FDOFXODWHG DV GHILQHG E\ )DUPHU f DQG VXEVHTXHQWO\ PRGLILHG E\ +HLQH f N 4OQ$S ZKHUH 4 IORZ PO}Varf VWLSH OHQJWK FPf Q YLVFRVLW\ 03DrVf R $ FURVVVHFWLRQDO DUHD FP f S SUHVVXUH 03Df &RQGXFWLYLW\ R ZDV FDOFXODWHG XVLQJ WKH OXPHQ DUHD UDWKHU WKDQ WKH FURVVVHFWLRQDO DUHD RI WKH SODQW SDUW f D 4SD ZKHUH D WRWDO OXPHQ DUHD 3RVWKDUYHVW )URQGV ZHUH KDUYHVWHG ZLWK FOLSSHUV E\ FXWWLQJ WKH VWLSH QHDU WKH UKL]RPH (DFK VWLSH ZDV UHFXW ZLWK D UD]RU EODGH WR D FP OHQJWK DQG SODFHG WKURXJK D VPDOO KROH LQ 3DUDILOPp 0 $PHULFDQ &DQ &R *UHHQZLFK &7f ZKLFK FRYHUHG WKH RSHQLQJ RI D PO JUDGXDWHG F\OLQGHU ILOOHG ZLWK GHLRQL]HG ZDWHU +DUYHVWHG IURQGV ZHUH KHOG LQ KROGLQJ URRPV WKDW DSSUR[LPDWHG KRPH RU RIILFH FRQGLWLRQV 7HPSHUDWXUHV ZHUH PDLQWDLQHG DW s ,R UHODWLYH KXPLGLWLHV ZHUH b s b DQG OLJKW OHYHOV ZHUH XPROrV rP REWDLQHG XVLQJ FRRO ZKLWH IOXRUHVFHQW ODPSV

PAGE 59

3RVWKDUYHVW ZDWHU XSWDNH :DWHU XSWDNH IRU HDFK IURQG ZDV GHWHUPLQHG E\ REVHUYLQJ WKH FKDQJH LQ ZDWHU OHYHO LQ HDFK F\OLQGHU DQG UHILOOLQJ WKH F\OLQGHUV WR WKH PO OLQH 7KLV ZDV GRQH GDLO\ IRU WKH ILUVW ZHHN DQG ZKHQ IURQGV ZHUH WHUPLQDWHG 2QH WDJJHG IURQG IURP HDFK SRW WKH VDPH DJH DV WKRVH XVHG IRU &(5 GHWHUPLQDWLRQV ZDV KDUYHVWHG 'HFHPEHU DQG WKH VWLSHV ZHUH FOHDQHG RI VFDOHV ([SHULPHQW f )URQGV IRU VXEVHTXHQW SRVWKDUYHVW H[SHULPHQWV ZHUH KDQGOHG VLPLODUO\ H[FHSW DV QRWHG EHORZ )RUW\ IURQGV IURP HDFK JURZLQJ WHPSHUDWXUH IURQGV IURP HDFK RI SRWV ZHUH KDUYHVWHG -DQXDU\ ([SHULPHQW f 7KLV VHFRQG JURXS RI IURQGV DV ZHOO DV D WKLUG JURXS KDUYHVWHG 0D\ ([SHULPHQW f ZDV VWRUHG LQ SRO\HWK\OHQH EDJV DW r IRU GD\ SULRU WR EHLQJ SODFHG LQ JUDGXDWHG F\OLQGHUV $ IRXUWK VHW RI IURQGV IURP WKH VHFRQG VHW RI JURZWK FKDPEHUV ZDV KDUYHVWHG -XO\ ([SHULPHQW f DQG KDQGOHG WKH VDPH DV WKH ILUVW JURXS 3RVWKDUYHVW ZHLJKW FKDQJHV ,QLWLDO IURQG ZHLJKWV ZHUH WDNHQ EHIRUH IURQGV ZHUH SODFHG LQ WKH JUDGXDWHG F\OLQGHUV )URQGV ZHUH SODFHG LQ WKH F\OLQGHUV ZKLFK ZHUH WKHQ ILOOHG WR WKH PO OLQH ZLWK GHLRQL]HG ZDWHU DQG ZHLJKHG &\OLQGHUV ZHUH WKHUHDIWHU ZHLJKHG ZLWK WKH ZDWHU OHYHO DW WKH PO OLQH 7KLV SURFHGXUH REYLDWHG WKH QHHG WR UHPRYH WKH IURQGV IURP WKH ZDWHU ZKLFK PLJKW KDYH FDXVHG WKH IRUPDWLRQ RI DLU HPEROLVPV 3UHOLPLQDU\ WHVWV VKRZHG WKDW F\OLQGHUV FRXOG EH UHILOOHG WR WKH OLQH ZLWK OLWWOH YDULDWLRQ s Jf 3RVWKDUYHVW ORQJHYLW\ )URQGV ZHUH FKHFNHG GDLO\ DQG ZHUH GLVFDUGHG LI WKH\ VKRZHG VLJQV RI \HOORZLQJ !b RI IURQG \HOORZHGf FXUOLQJ LQIROGLQJ RI SLQQDH DORQJ WKH PLGYHLQf f RU RYHUDOO GHVLFFDWLRQ ZLOWLQJ DFFRPSDQLHG E\ JUD\LQJf

PAGE 60

5HVXOWV DQG 'LVFXVVLRQ ([SHULPHQW *URZWK RI IURQGV ZDV JUHDWHU DW WKH KLJK WHPSHUDWXUH UHJLPH +75 WKDQ DW WKH ORZ RQH /75 )LJXUH f 3RROH HW DO f KDYH IRXQG WKDW LQ VKDGHKRXVHV FURVLHUV HPHUJLQJ GXULQJ WKH ZDUPHU PRQWKV DOVR JUHZ PRUH UDSLGO\ %RWK +75 DQG /75 JURZWK FXUYHV ZHUH ORJDULWKPLF DQG KDG VLPLODU VORSHV KRZHYHU HDUO\ JURZWK RI IURQGV SURGXFHG XQGHU WKH +75 ZDV JUHDWHU DV HYLGHQFHG E\ WKH GLIIHUHQW LQWHUFHSWV ZHHN DIWHU IURQGV ZHUH WDJJHG $OVR +75 IURQGV SURGXFHG YLVLEOH VRUL VRRQHU 7DEOH f 6RUL GHYHORSPHQW RI WKH /75 IURQGV KDG UHDFKHG WKDW RI WKH +75 IURQGV E\ ZHHNV DIWHU HPHUJHQFH RI IURQGV ,QFUHDVHG JURZWK DQG GHYHORSPHQW GXH WR KLJKHU SURGXFWLRQ WHPSHUDWXUHV KDYH EHHQ UHSRUWHG IRU PDQ\ FURSV f $ED[LDO GLIIXVLYH FRQGXFWDQFH JZ\f DQG OHDI WHPSHUDWXUHV LQFUHDVHG GXULQJ WKH OLJKW SHULRG )LJXUH $%f %RWK PHDVXUHPHQWV ZHUH GLIIHUHQW IRU IURQGV DW WKH WHPSHUDWXUH UHJLPHV WKURXJKRXW WKH GD\ F\FOH ZLWK WKH GLIIXVLYH FRQGXFWDQFH ORZHU IRU +75 JURZQ IURQGV $ED[LDO T V RI /75 IURQGV ZHUH RQ WKH ORZ VLGH IRU FURSV DQG DED[LDO JZ\V IRU /75 DQG +75 ZHUH VLPLODU WR WKRVH RI PDQ\ WUHHV f PDQ\ RI ZKLFK DUH K\SRVWRPDWRXV 'LIIXVLYH FRQGXFWDQFHV IRU IURQGV DW ERWK UHJLPHV ZHUH VLPLODU WR WKRVH IRU HSLSK\WLF &$0 IHUQV f DQG FRQVLGHUDEO\ ORZHU WKDQ WKRVH SUHYLRXVO\ UHSRUWHG IRU ILHOG JURZQ OHDWKHUOHDI IHUQ IURQGV f 7KH GLIIHUHQFHV IRU OHDWKHUOHDI IHUQ JZ\V PD\ KDYH EHHQ GXH WR WKH ORZHU OLJKW OHYHOV DQG UHODWLYH KXPLGLWLHV LQ WKH FRQWUROOHG HQYLURQPHQW FKDPEHUV 6LQFH SRWHQWLDO YDSRU SUHVVXUH LQFUHDVHV ZLWK WHPSHUDWXUH DQG WKH UHODWLYH KXPLGLWLHV

PAGE 61

)521' /(1*7+ FPf )521' $*( GD\V DIWHU HPHUJHQFHf )LJXUH (IIHFW RI SURGXFWLRQ WHPSHUDWXUHV LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV RQ JURZWK RI OHDWKHUOHDI IHUQ IURQGV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV DW WKH b OHYHO ZLWKLQ GD\V IRU WUHDWPHQWV rrr LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHOf S!

PAGE 62

7DEOH 3URGXFWLRQ WHPSHUDWXUHV DIIHFW VRUL GHYHORSPHQW RQ OHDWKHUOHDI IHUQ IURQGV JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV 'D\QLJKW SURGXFWLRQ WHPSHUDWXUHV r&f )URQG DJH GD\Vf )URQGV ZLWK VRUL bf r r 6LJQLILFDQFH OHYHO EDVHG RQ W WHVW

PAGE 63

75$163,5$7,21 PPRO Pn Vf ',))86,9( &21'8&7$1&( PPRO UUY Vff 2R W FU /2 4 % 022 > D 7,0( 2) '$< 7,0( 2) '$< )LJXUH $ED[LDO GLIIXVLYH FRQGXFWDQFHV $f OHDI WHPSHUDWXUHV %f DQG WUDQVSLUDWLRQ &f RI OHDWKHUOHDI IHUQ IURQGV JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV XQGHU WHPSHUDWXUHV RI r& GD\r QLJKW RU r GD\r QLJKW DQG UHODWLYH KXPLGLWLHV DW WKH WLPH RI PHDVXUHPHQW 'f /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV DW WKH b OHYHO ZLWKLQ WLPH RI GD\ IRU WUHDWPHQWVf

PAGE 64

ZHUH ORZHU LQ WKH KLJK WHPSHUDWXUH FKDPEHUV )LJXUH 'f WKH YDSRU SUHVVXUH GHILFLW 93'f ZDV JUHDWHU LQ WKH KLJK WHPSHUDWXUH FKDPEHUV 7KLV JUHDWHU 93' UHVXOWHG LQ WKHUH EHLQJ QR WUDQVSLUDWL RQ GLIIHUHQFHV EHWZHHQ WUHDWPHQWV LQ VSLWH RI WKH ORZHU J V IRU +75 JURZQ IURQGV Z Y )LJXUH &f 7KH &(5 FXUYHV ZHUH ORJDULWKPLF DQG &(5V IRU IURQGV JURZQ DW WKH WHPSHUDWXUH UHJLPHV ZHUH GLIIHUHQW DW 33)'V DERYH \PROrV rP )LJXUH f $W OLJKW VDWXUDWLRQ ,f WKH &(5 IRU +75 IURQGV ZDV ; ORZHU WKDQ IRU /75 RQHV 7DEOH f 7KH /75 &(5 ZDV DERXW b ORZHU WKDQ WKDW SUHYLRXVO\ UHSRUWHG E\ 0DWKXU DQG %KDJVDUL f IRU OHDWKHUOHDI IHUQ JURZQ LQ D VKDGHKRXVH DW KLJKHU OLJKW LQWHQVLWLHV WKDQ ZHUH XVHG LQ WKLV VWXG\ 1XPHURXV VWXGLHV KDYH GRFXPHQWHG LQFUHDVHG &(5V IRU SODQWV JURZQ DW KLJKHU OLJKW LQWHQVLWLHV FRPSDUHG WR SODQWV RI WKH VDPH VSHFLHV JURZQ XQGHU ORZHU SURGXFWLRQ OLJKW OHYHOV f 4XDQWXP HIILFLHQFLHV RQ DQ LQFLGHQW OLJKW EDVLV ZHUH GLIIHUHQW 3 f IRU +75 DQG /75 JURZQ IURQGV DV GHWHUPLQHG E\ D WHVW RI KRPRJHQHLW\ RI WKH VORSHV f RI WKH &(5 FXUYHV EHORZ SKRWRVDWXUDWLRQ )LJXUH f 4XDQWXP HIILFLHQFLHV IRU +75 DQG /75 IURQGV ZHUH DQG PRO &2APRO UHVSHFWLYHO\ &KORURSK\OO FRQWHQW ZDV DOVR ORZHU IRU +75 IURQGV DQG WKLV LV SUREDEO\ WKH UHDVRQ IRU WKH ORZHU TXDQWXP HIILFLHQFLHV &KORURSK\OO LV WKH SULPDU\ SKRWRQ WUDS LQ ERWK SKRWRV\VWHPV DQG ,, f /LJKW VDWXUDWHG &(5 HIILFLHQFLHV FKORURSK\OO EDVLVf ZHUH WKH VDPH IRU /75 DQG +75 IURQGV DQG WKHVH HIILFLHQFLHV LQGLFDWHG WKDW WKHUH ZHUH SUREDEO\ QR TXDOLWDWLYH ELRFKHPLFDO GLIIHUHQFHV LQ SKRWRV\QWKHVLV GXH WR SURGXFWLRQ WHPSHUDWXUHV 7DEOH f

PAGE 65

*52:1 $7 ,r& RR )LJXUH (IIHFW RI SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ 33)'f RQ FDUERQ H[FKDQJH &(5f RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV DW WKH b OHYHO ZLWKLQ 33)' IRU WUHDWPHQWV rrr LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHOf

PAGE 66

7DEOH 3K\VLRORJLFDO FKDUDFWHUAVWLFV] IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHVA 'D\QLJKW SURGXFWLRQ WHPSHUDWXUH r&f rr rr 6LJQLIL FDQHH OHYHO[ /LJKW VDWXUDWHG &(5 PJ &2A f GPfA f KUf s s &KORURSK\OO FKLf PJ f GP f s s &(5 HIILFLHQF\ PJ &" f PJ FKOA f KUAf s s /LJKW FRPSHQVDWLRQ f f SRLQW \PRO f V f P f s s 'DUN UHVSLUDWLRQ PJ &&! f GPfA f KUfrf s s 6ROXEOH VXJDUV PJ f J GU\ ZWnf s s 6WDUFK PJ f J GU\ ZW s s 1RQVWUXFWXUDO FDUERK\GUDWHV PJ f J GU\ ZWarf s s 7UDQVSLUDWLRQ DW ,f PJ +A2 f GPA f KUrf s s :DWHU XVH HIILFLHQF\ PJ &" PJ +A2 f fAf s s ]0HDQV RI UHSOLFDWLRQV s 6( A3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV [ 6LJQLILFDQFH EDVHG RQ W WHVW

PAGE 67

‘ 9 rnfr *52:1 $7 ,r& '$<1,*+7f *52:1 $7 r& \ ,Q [ U r r r \ ,Q [ U r r f 33)' [PRO VnnUQf )LJXUH (IIHFW RI SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ 33)'f RQ FDUERQ H[FKDQJH &(5f RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU BW WHVW FRPSDULVRQV DW WKH b OHYHO ZLWKLQ 33)' IRU WUHDWPHQWV rrr LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHOf A LV 0 4

PAGE 68

7DEOH 3K\VLRORJLFDO FKDUDFWHUAVWLFV] IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHVA 'D\QLJKW SURGXFWLRQ WHPSHUDWXUH r&f 6LJQLILFDQHH rr rr OHYHO; /LJKW VDWXUDWHG &(5 PJ &A f GPfA f KUrf s s &KORURSK\OO FKLf PJ f GP f s s &(5 HIILFLHQF\ PJ &" f PJ FKLr f KUrf s s /LJKW FRPSHQVDWLRQ SRLQW SPRO f V f P f s s 'DUN UHVSLUDWLRQ PJ &2A f GPA f KUrf s s 6ROXEOH VXJDUV PJ f J GU\ ZWf s s 6WDUFK PJ f J GU\ ZWrf s s 1RQVWUXFWXUDO FDUERK\GUDWHV PJ f J GU\ ZWf s s 7UDQVSLUDWLRQ DW f PJ +A2 f GPA f KUrf s s :DWHU XVH HIILFLHQF\ PJ &" PJ +A2 f Af s s ]0HDQV RI UHSOLFDWLRQV s 6( ‘A3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV [6L JQL IL FDQHH EDVHG RQ WB WHVW

PAGE 69

33)' \UQROV f P f )LJXUH 4XDQWXP HIILFLHQFLHV RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV rrr LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHO f

PAGE 70

/LJKW FRPSHQVDWLRQ SRLQWV ZHUH ORZ DQG QRW GLIIHUHQW EXW GDUN UHVSLUDWLRQ UDWHV 5AVf ZHUH GLIIHUHQW DQG ORZHU IRU +75 IURQGV 6ROXEOH VXJDUV VWDUFK DQG QRQVWUXFWXUDO FDUERK\GUDWH OHYHOV ZHUH VLPLODU IRU ERWK WHPSHUDWXUH WUHDWPHQWV DQG WKHUHIRUH VXEVWUDWH OHYHOV GR QRW VHHP UHVSRQVLEOH IRU WKH GLIIHUHQFHV LQ 5G UDWHV 7KH UHGXFHG 5AV IRU +75 IURQGV PD\ EH GXH WR LQFUHDVHG SK\VLRORJLFDOf DJLQJ RI +75 FRPSDUHG WR /75 IURQGV GXH WR PRUH UDSLG GHYHORSPHQW DW WKH KLJKHU SURGXFWLRQ WHPSHUDWXUHV f 'DUN UHVSLUDWLRQ KDV EHHQ VKRZQ WR GHFUHDVH ZLWK DJLQJ f 7KH WUDQVSLUDWLRQ 7f FXUYHV ZHUH ORJDULWKPLF DQG VLPLODU LQ VKDSH DQG RULHQWDWLRQ WR WKRVH IRU &(5V )LJXUH f 7UDQVSLUDWLRQ ZDV ORZHU 3 f IRU +75 IURQGV DW 33)' OHYHOV EHWZHHQ DQG DQG EHORZ XPROrV }P 7KH DELOLW\ RI VWRPDWD WR RSHQ DV PHDVXUHG E\ WKH VL]H RI WKH VWRPDWD DSHUDWXUH KDV EHHQ VKRZQ WR GHFUHDVH DV OHDYHV DJH f ,I WKH +75 IURQGV ZHUH VLJQLILFDQWO\ ROGHU FI SK\VLRORJLFDOO\ JZY FRXOG EH UHVSRQVLEOH IRU WKH UHGXFHG 7 7KH VWRPDWD RI +75 IURQGV PD\ DOVR KDYH EHHQ SUHFRQGLWLRQHG WR ORZHU FRQGXFWLYLW\ 7UDQVSLUDWLRQ DQG :8( PDVV EDVLVf DW ZHUH VLPLODU IRU IURQGV IURP ERWK WHPSHUDWXUH WUHDWPHQWV 7DEOH f ([SHULPHQW )URQGV IURP ERWK WHPSHUDWXUH WUHDWPHQWV ZHUH IRXQG WR EH K\SRVWRPDWRXV DQG DQRPRF\WLF LH ZLWK QR VSHFLDOL]HG VXEVLGLDU\ FHOOV DVVRFLDWHG ZLWK WKH JXDUG FHOOV )LJXUH f &UDFNV LQ WKH FXWLFOH ZHUH QRW GHWHFWHG IRU HLWKHU WUHDWPHQW 1R GLIIHUHQFHV LQ LQLWLDO IUHVK ZHLJKWV VXUIDFH DUHDV DGD[LDO DQG DED[LDO FXWLFOH WKLFNQHVV XSSHU DQG ORZHU HSLGHUPDO FHOO OD\HUV RU VWRPDWDO GHQVLWLHV

PAGE 71

n ( 9 W! E *52:1 $7 r & '$<1,*+7f *52:1 $7 r& FQ W?M L L L L L 33)' PRO f VnOPOf IHHW RI SKRWRV\QWKHWLF SKRWRQ IOX[ GHQVLW\ 33)'f RQ WUDQVSLUDWLRQ 7f RI OHDWKHUOHDI UQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG IIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WA WHVW FRPSDULVRQV DW WKH b OHYHO WKLQ 33)' IRU WUHDWPHQWV rrr LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHOf

PAGE 72

)LJXUH 3KRWRPLFURJUDSKV RI OHDWKHUOHDI IHUQ SLQQXOHV VKRZLQJ $f DED[LDO SLQQD VXUIDFH ZLWK VWRPDWD %f DGD[LDO SLQQD VXUIDFH &f FORVHXS RI D VWRPD DQG 'f FURVV VHFWLRQ RI D SLQQXOH VKRZLQJ VWRPDWDO FRPSOH[ DQG VXEVWRPDWDO FKDPEHU

PAGE 74

GXH WR WKH SURGXFWLRQ WHPSHUDWXUHV ZHUH QRWHG 7DEOH f 7KH DVVRFLDWLRQ RI IURQG IUHVK ZHLJKWV WR VXUIDFH DUHDV ZDV VWURQJO\ OLQHDU IRU IURQGV JURZQ DW ERWK WHPSHUDWXUH UHJLPHV )LJXUH f 7KH WHVW RI WKH KRPRJHQHLW\ RI WKH VORSHV f ZDV QRW VLJQLILFDQW 3 f 7KH VXUIDFHV ODPLQDHf IRU ZDWHU ORVV ZHUH WKHUHIRUH VRPHZKDW VLPLODU KRZHYHU SLQQXOHV IURP +75 IURQGV KDG PRUH LQFLVHG PDUJLQV OHVV SURQRXQFHG YHQDWLRQ )LJXUH f DQG ZHUH b WKLQQHU WKDQ /75 IURQGV 7DEOH )LJXUH f &KDERW DQG &KDERW f &KDULHV(GZDUGV HW DO f )ULHQG f )ULHQG HW DO f DQG 3HHW f KDYH UHSRUWHG VLPLODU GHFUHDVHV LQ OHDI WKLFNQHVV ZLWK LQFUHDVHG SURGXFWLRQ WHPSHUDWXUHV &DUERQ H[FKDQJH ([SHULPHQW IURQGVf DSSHDUV SRVLWLYHO\ FRUUHODWHG ZLWK OHDI WKLFNQHVV ([SHULPHQW IURQGVf VLQFH IURQGV IRU ERWK H[SHULPHQWV ZHUH WDJJHG DQG SURGXFHG FRQFXUUHQWO\ LQ WKH VDPH SRWV 6XFK D FRUUHODWLRQ KDV EHHQ UHSRUWHG SUHYLRXVO\ IRU RWKHU FURSV f 7KH VWLSH RI WKH IURQGV GLIIHUHG PDUNHGO\ GXH WR SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV 6WLSH GLDPHWHUV FURVVVHFWLRQDO DUHD DQG UHODWLYH FRQGXFWLYLW\ ZHUH UHGXFHG IRU +75 JURZQ IURQGV 7DEOH f 9DVH OLIH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VWLSH QDUURZ GLDPHWHU U 3 f DQG FURVVVHFWLRQDO DUHD U 3 f 'LIIHUHQFHV LQ VWLSH FRQGXFWLYLW\ PD\ KDYH VLJQLILFDQFH WR WKH ZDWHU EDODQFH DQG SRVWKDUYHVW ORQJHYLW\ RI OHDWKHUOHDI IHUQ IURQGV 7KH UDWLR RI WKH VXUIDFH DUHD RQH VLGHf RI WKH IURQGV WR WKH VWLSH FURVVVHFWLRQDO DUHD IRU +75 IURQGV ZDV DERXW b JUHDWHU WKDQ WKDW RI /75 IURQGV 7DEOH f 7KLV UDWLR ZDV QHJDWLYHO\ FRUUHODWHG U f ZLWK YDVH OLIH DW 3

PAGE 75

7DEOH $QDWRPLFDO PRUSKRORJLFDO DQG SRVWKDUYHVW FKDUDFWHULVWLFV RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHVA 'D\QLJKW SURGXFWLRQ WHPSHUDWXUH r&f 6LJQLIL FDQHH rr rr HYHOr )UHVK ZHLJKW Jf s s R 6XUIDFH DUHD 6$ FP f s s $GD[LDO FXWLFOH WKLFNQHVV \Pf s s $ED[LDO FXWLFOH WKLFNQHVV \Pf s s 8SSHU HSLGHUPDO OD\HUV s s /RZHU HSLGHUPDO OD\HUV s s B 6WRPDWDO GHQVLW\ fPP rf s s /HDI WKLFNQHVV \Pf s s 6WLSH QDUURZ GLDPHWHU FPf s s 6WLSH ZLGH GLDPHWHU FPf s s 6WLSH FURVVVHFWLRQDOf DUHD FP f s s 5HODWLYH FRQGXFWLYLW\ FPf s s 5DWLR RI 6$VWLSH DUHD ff s s 8SWDNH POrIURQGrf s s 9DVH OLIH GD\Vf s s 'LVFDUG ZHLJKW b RI LQLWLDO ZHLJKWf s s =0HDQV RI UHSOLFDWLRQV s 6( A3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV [ 6LJQLILFDQFH OHYHO EDVHG RQ WB WHVW

PAGE 76

)L JXQ 2 *52:1 $7 r& '$<1,*+7f *52:1 $7 r& '$<1,*+7f 0 c )5(6+ :(,*+7 Jf $VVRFLDWLRQ RI IUHVK ZHLJKW DQG VXUIDFH DUHD IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV rrr LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHOf

PAGE 77

)LJXUH 3LQQDH IURP KLJK r& GD\r QLJKWf WHPSHUDWXUH UHJLPH +75 IURQG OHIWf DQG ORZ r GD\r QLJKWf WHPSHUDWXUH UHJLPH /75 IURQG ULJKWf VKRZLQJ UHGXFHG YHQDWLRQ DQG LQFUHDVHG PDUJLQDO LQFLVLRQ RI +75 SLQQXOHV

PAGE 79

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSKV RI FURVV VHFWLRQV RI SLQQXOHV RI OHDWKHUOHDI IHUQ JURZQ XQGHU ORZ r& GD\r QLJKWf WHPSHUDWXUH UHJLPH WRSf DQG KLJK r GD\r QLJKWf WHPSHUDWXUH UHJLPH ERWWRPf

PAGE 81

:DWHU XSWDNH E\ +75 IURQGV ZDV ORZHU WKDQ WKDW RI /75 RQHV VWDUWLQJ GD\V SRVWKDUYHVW DQG ERWK FXUYHV ZHUH QHJDWLYHO\ ORJDULWKPLF )LJXUH f :DWHU XSWDNH GD\V SRVWKDUYHVW ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VWLSH ZLGH GLDPHWHU U 3 f DQG FURVVVHFWLRQDO DUHD U 3 f 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW IURQGV ZHUH VLPLODU IRU /75 DQG +75 IURQGV IRU WKH ILUVW GD\V SRVWKDUYHVW EXW +75 IURQGV DSSHDUHG WR EH ORVLQJ ZHLJKW PRUH UDSLGO\ )LJXUH f 7KH OLQHV DSSHDUHG WR EH GLYHUJLQJ DQG WKLV PD\ EH GXH WR WKH REVHUYHG GLIIHUHQFHV LQ ZDWHU XSWDNH DQGRU WR GLIIHUHQFHV LQ UDWHV RI ZDWHU ORVV 0HDQ RYHUDOO ZDWHU XSWDNH SHU IURQG ZDV b OHVV IRU +75 IURQGV WKDQ WKDW RI /75 IURQGV 7DEOH f 9DVH OLIH ZDV UHGXFHG b IRU +75 IURQGV 7DEOH f /75 IURQGV ODVWHG DOPRVW ZHHNV DQG ZHUH GLVFDUGHG GXH WR \HOORZLQJ )LIW\ SHUFHQW RI WKH +75 IURQGV \HOORZHG DQG b VKRZHG V\PSWRPV RI GHVVLFDWLRQ )URQG FXUO V\QGURPH GLG QRW RFFXU RQ IURQGV SURGXFHG XQGHU HLWKHU WKH +75 RU /75 FRQGLWLRQV 6WLSH QDUURZ DQG ZLGH GLDPHWHUV VWLSH FURVVVHFWLRQDO DUHD DQG IURQG VXUIDFH DUHDV RI /75 IURQGV ZHUH DOO SRVLWLYHO\ FRUUHODWHG ZLWK U YDOXHV RI RU JUHDWHU 7DEOH $O $SSHQGL[f /HDI WKLFNQHVV ZDV SRVLWLYHO\ FRUUHODWHG ZLWK DGD[LDO FXWLFOH WKLFNQHVV U f DQG QXPEHU RI XSSHU HSLGHUPDO OD\HUV U f 7RWDO IURQG ZDWHU XSWDNH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VWLSH QDUURZ U f DQG ZLGH U f GLDPHWHUV VWLSH FURVVVHFWLRQDO DUHD U f DQG IURQG VXUIDFH DUHD U f 1R IDFWRUV ZHUH FRUUHODWHG ZLWK YDVH OLIH RI /75 JURZQ IURQGV 7KH UHVXOWV ZHUH VLPLODU IRU +75 JURZQ IURQGV 6WLSH QDUURZ DQG ZLGH GLDPHWHUV FURVVVHFWLRQDO DUHD QXPEHU RI XSSHU HSLGHUPDO OD\HUV

PAGE 82

:$7(5 837$.( POFPn02 )LJXUH 3RVWKDUYHVW ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV ZLWKLQ GD\V SRVWKDUYHVW IRU WUHDWPHQWV r rr DQG rrr LQGLFDWH VLJQLILFDQFH DW WKH b b DQG b OHYHO UHVSHFWLYHO\f

PAGE 83

, , , / '$<6 3267+$59(67 )LJXUH 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG LQGLFDWH WB WHVW FRPSDULVRQV DW WKH b OHYHO ZLWKLQ GD\V IRU WUHDWPHQWVf

PAGE 84

DQG IURQG VXUIDFH DUHD ZHUH SRVLWLYHO\ FRUUHODWHG ZLWK U YDOXHV IURP WR 7DEOH $O $SSHQGL[f 7RWDO IURQG ZDWHU XSWDNH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VWLSH QDUURZ U f DQG ZLGH U f GLDPHWHUV VWLSH FURVVVHFWLRQDO DUHD U f DQG IURQG VXUIDFH DUHD U f 7KH DVVRFLDWLRQ RI YDVH OLIH ZLWK UHODWLYH FRQGXFWLYLW\ IRU +75 IURQGV ZDV QHJDWLYH ZLWK DQ U YDOXH RI 7KH +75 IURQGV ZLWK WKH KLJKHVW UHODWLYH FRQGXFWLYLW\ KDG WKH VKRUWHVW YDVH OLIH 7KH GLVFDUG ZHLJKWV ZHLJKW DW WHUPLQDWLRQ LQLWLDO ZHLJKWf IRU /75 bf DQG +75 bf IURQGV ZHUH QRW GLIIHUHQW ZKLFK LQGLFDWHV WKDW +75 IURQGV ORVW ZHLJKW PRUH UDSLGO\ WKDQ /75 RQHV 7KLV VLPLODULW\ VXJJHVWV WKDW +75 IURQGV ODFN HIIHFWLYH SRVWKDUYHVW VWRPDWDO IXQFWLRQ DQG ZDWHU ORVV FRQWURO ([SHULPHQW :DWHU XSWDNH E\ FXW OHDWKHUOHDI IHUQ IURQGV )LJXUH f ZDV YHU\ VLPLODU WR WKDW LQ ([SHULPHQW )LJXUH f 'D\ SRVWVWRUDJH LQ WKLV H[SHULPHQW LV HTXLYDOHQW WR GD\ SRVWKDUYHVW LQ WKH SUHYLRXV H[SHULPHQW GXH WR WKH VWRUDJH RI WKH IURQGV IRU GD\ ,QLWLDO GD\ f ZDWHU XSWDNH ZDV SRVLWLYHO\ FRUUHODWHG U 3 f ZLWK YDVH OLIH :DWHU XSWDNH E\ +75 IURQGV ZDV DSSUR[LPDWHO\ b RI WKH XSWDNH REVHUYHG IRU /75 IURQGV 5HFXWWLQJ VWLSH EDVHV )LJXUH f DQG HYHQ RU GD\V )LJXUH f SRVWVWRUDJH FDXVHG ZDWHU XSWDNH WR UHWXUQ WR QHDUO\ WKH GD\ SRVWVWRUDJH OHYHOV 7KH UDWH RI GHFOLQH VORSH RI WKH FXUYHf LQ XSWDNH DIWHU VWLSH FXWWLQJ ZDV VLPLODU IRU +75 IURQGV UHJDUGOHVV RI ZKHQ WKH\ ZHUH UHFXW &RPSDULVRQ RI WKH ZDWHU XSWDNH FXUYHV VKRZV WKDW WKH VDPH ZDV WUXH IRU /75 IURQGV KRZHYHU WKH XSWDNH IRU /75 IURQGV ZDV KLJKHU WKDQ IRU +75 IURQGV

PAGE 85

2, &7O '$<6 32676725$*( )LJXUH 3RVWKDUYHVW ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV ZLWKLQ GD\V SRVWVWRUDJH IRU WUHDWPHQWV r rr DQG rrr LQGLFDWH VLJQLILFDQFH DW WKH b b DQG b OHYHO UHVSHFWLYHO\ [ GD\V DIWHU VWLSHV UHFXWf

PAGE 86

)LJXUH (IIHFW RI UHFXWWLQJ VWLSH EDVHV RU GD\V SRVWVWRUDJH RQ ZDWHU XSWDNH RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUHV RI r& GD\r QLJKW RU r GD\r QLJKW /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV ZLWKLQ GD\V SRVWVWRUDJH IRU WUHDWPHQWV r rr DQG rrr LQGLFDWH VLJQLILFDQFH DW WKH b b DQG b OHYHO UHVSHFWLYHO\ [ GD\V DIWHU VWLSHV UHFXWf

PAGE 87

$ $ Rrrr -/ '$<6 32676725$*( )IHFW RI UHFXWWLQJ VWLSH EDVHV RU GD\V SRVWVWRUDJH L ZDWHU XSWDNH RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU "PSHUDWXUHV RI r& GD\r QLJKW RU r GD\F LJKW /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG LIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB "VW FRPSDULVRQV ZLWKLQ GD\V SRVWVWRUDJH IRU WUHDWPHQWV rr DQG rrr LQGLFDWH VLJQLILFDQFH DW WKH b b DQG b OHYHO UHVSHFWLYHO\ [ GD\V DIWHU VWLSHV UHFXWf

PAGE 88

5HODWLYH FRQGXFWLYLW\ N DOVR GHFOLQHG ORJDULWKPLFDOO\ ZLWK WLPH )LJXUH f KRZHYHU WKHUH ZHUH QR GLIIHUHQFHV EHWZHHQ +75 DQG /75 IURQGV RQ DQ\ GDWH 7KLV ODFN RI UHODWLYH FRQGXFWLYLW\ GLIIHUHQFHV VXJJHVWV WKDW WKHUH PD\ EH QR TXDOLWDWLYH GLIIHUHQFH EHWZHHQ WKH K\GUDXOLF FRQGXFWLYLW\ RI +75 DQG /75 VWLSHV )LJXUH LOOXVWUDWHV WKH HIIHFW RI VWLSH UHFXWWLQJ GD\V A SRVWVWRUDJH RQ JA\ DQG 7 %RWK VWDWLVWLFV LQFUHDVH ZLWKLQ PLQXWHV SDI DQG DIWHU KU EHJLQ WR GHFOLQH VORZO\ 7UDQVSLUDWLRQ DQG JZY UHDFK QHDU ]HUR YDOXHV GD\V DIWHU UHFXWWLQJ :LWKLQ DERXW KU RI VWLSH UHFXWWLQJ JAD" YDOXHV IRU +75 IURQGV ZHUH ORZHU WKDQ /75 RQHV DV ZDV IRXQG IRU DWWDFKHG IURQGV LQ ([SHULPHQW )LJXUH f $VVXPLQJ WKDW LQWHUQDO OHDI UHODWLYH KXPLGLW\ ZDV b f 7 DOVR GLIIHUHG DIWHU DERXW KU )LJXUH f +LJK WHPSHUDWXUH UHJLPH IURQGV ORVW ZHLJKW PRUH UDSLGO\ WKDQ /75 IURQGV )LJXUH f LQGLFDWLQJ WKDW LQ VSLWH A RI UHGXFHG JZY +75 IURQGV ZHUH ORVLQJ ZDWHU UHODWLYH WR XSWDNH DW D KLJKHU UDWH WKDQ /75 IURQGV 0RUSKRORJLFDO FKDUDFWHULVWLFV RI +75 DQG /75 IURQGV ZHUH VLPLODU WR WKRVH REVHUYHG LQ ([SHULPHQW ,QLWLDO IUHVK ZHLJKWV GU\ ZHLJKWV VXUIDFH DUHDV DQG IURQG ZDWHU FRQWHQW ZHUH QRW GLIIHUHQW GXH WR SURGXFWLRQ WHPSHUDWXUHV 7DEOH f /HDI GHQVLW\ WKLFNQHVV /27f VSHFLILF OHDI ZHLJKWV 6/:f VWLSH QDUURZ DQG ZLGH GLDPHWHUV DQG VWLSH FURVVVHFWLRQDO DUHDV ZHUH ORZHU IRU +75 IURQGV ,QLWLDO ZDWHU XSWDNH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK /27 U 3 f 6/: U 3 f VWLSH QDUURZ U 3 f DQG ZLGH U 3 f GLDPHWHUV DQG VWLSH FURVVVHFWLRQDO DUHD U 3 f 9DVH OLIH ZDV DOVR SRVLWLYHO\ FRUUHODWHG ZLWK /27 U 3 f VWLSH QDUURZ U 3 f DQG ZLGH

PAGE 89

5(/$7,9( &21'8&7,9,7< FPf '$<6 3267+$59(67 )LJXUH 3RVWKDUYHVW GHFOLQH RI UHODWLYH FRQGXFWLYLW\ N RI FXW OHDWKHUOHDI IHUQ IURQG VWLSH EDVHV (DFK SRLQW LQGLFDWHV WKH PHDQ RI UHSOLFDWLRQV DQG r LQGLFDWHV VLJQLILFDQFH DW WKH b OHYHOf

PAGE 90

',))86,9( &21'8&7$1&( PPRO 0,187(6 $)7(5 5(&877,1* 67,3(6 A F( R ( i 5 V FR e 0,187(6 $)7(5 5(&877,1* 67,3(6 )LJXUH &KDQJHV LQ DED[LDO GLIIXVLYH FRQGXFWDQFH DQG WUDQVSLUDWLRQ GXH WR UHFXWWLQJ VWLSH EDVHV RI OHDWKHUOHDI IHUQ IURQGV GD\V SRVWKDUYHVW )URQGV ZHUH JURZQ XQGHU WHPSHUDWXUHV RI r& GD\r QLJKW RU r GD\r QLJKW (DFK SRLQW UHSUHVHQWV WKH PHDQ RI UHSOLFDWLRQV r LQGLFDWHV BW WHVW GLIIHUHQFHV ZLWKLQ WLPH DW WKH b OHYHOf RR

PAGE 91

3(5&(17 2) ,1,7,$/ :(,*+7 '$<6 32676725$*( )LJXUH 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU WHPSHUDWXUH UHJLPHV /HWWHUV DUH PHDQV RI UHSOLFDWLRQV DQG GLIIHUHQW OHWWHUV LQGLFDWH VLJQLILFDQW GLIIHUHQFHV IRU WB WHVW FRPSDULVRQV DW WKH b OHYHO ZLWKLQ GD\V IRU WUHDWPHQWVf

PAGE 92

7DEOH $QDWRPLFDO PRUSKRORJLFDO SK\VLRORJLFDO DQG SRVWKDUYHVW FKDUDFWHUVWL FV] IRU OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU ORZ DQG KLJK WHPSHUDWXUH UHJLPHV 'D\QLJKW SURGXFWLRQ WHPSHUDWXUH r&f 6LJQLILFDQFH r r r r OHYH3 )UHVK ZHLJKW Jf s s 'U\ ZHLJKW Jf s s :DWHU FRQWHQW >bf s s 6XUIDFH DUHD 6$ FP f s W /HDI GHQVLW\ WKLFNQHVV J IUHVK ZWFP af s s 6SHFLILF OHDI ZHLJKW J GU\ ZWFP af s s 6WLSH QDUURZ GLDPHWHU FPf s s 6WLSH ZLGH GLDPHWHU FPf s s 6WLSH FURVVVHFWLRQDOf R DUHD FP f s s 5DWLR RI 6$VWLSH DUHD f LRf s s 7UDFKHLG QXPEHU s s 7UDFKHLG OXPHQ DUHD PP nf s s 3DUHQFK\PD FHOO DUHD LQQ f s s $YHUDJH OXPHQ DUHD PP nf s s 9DVFXODU EXQGOH QXPEHU s s &RQGXFWLYLW\ FP03Dn Vn f s s 9DVH OLIH GD\Vf s s 'LVFDUG ZHLJKW b RI LQLWLDO ZHLJKWf s s 0HDQV s 6( \ 3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV [ 6LJQLILFDQFH OHYHO EDVHG RQ W WHVW

PAGE 93

U 3 f GLDPHWHUV DQG VWLSH FURVVVHFWLRQDO DUHD U 3 f 7KH IURQG VXUIDFH DUHD WR VWLSH FURVVVHFWLRQDO DUHD UDWLR ZDV b JUHDWHU IRU +75 IURQGV $V ZDV IRXQG LQ ([SHULPHQW WKLV UDWLR ZDV QHJDWLYHO\ FRUUHODWHG U 3 f ZLWK YDVH OLIH W 7UDFKHLGV RI VWLSHV RI OHDWKHUOHDI IHUQ ZHUH VHDODULIRUPO\ SLWWHG )LJXUH f 2LIIHUHQFHV LQ WUDFKHLG QXPEHUV DQG WRWDO WUDFKHLG OXPHQ DUHD SHU VWLSH FURVV VHFWLRQ ZHUH QRW GHWHFWHG 7DEOH f DQG WKLV ZDV SUREDEO\ GXH WR WKH OLPLWHG VDPSOH QXPEHU UHSOLFDWLRQVf 7KH QXPEHU RI WUDFKHLGV SHU VWLSH FURVV VHFWLRQ ZHUH KLJKHU WKDQ UHSRUWHG IRU RWKHU IHUQ VSHFLHV f +RZHYHU WKH UDWLR RI IURQG VXUIDFH DUHD WR WUDFKHLG QXPEHUV LQ WKLV UHVHDUFK LV WKH VDPH DV ZDV IRXQG IRU WKH VPDOOHUOHDYHG IHUQ VSHFLHV H[DPLQHG LQ WKDW VWXG\ /XPHQ DUHDV DSSHDU WR GLIIHU LQ VL]H GXH WR WKH WHPSHUDWXUH WUHDWPHQWV +RZHYHU WKLV PD\ EH DQ DUWLIDFW RI WKH /06 V\VWHP ZKLFK WHQGV WR XQGHUHVWLPDWH WUDFKHLG QXPEHUV LQ VWLSH VHFWLRQV DQG WKHUHIRUH RYHUHVWLPDWH DYHUDJH OXPHQ DUHDV XQGHU WKH ORZ PDJQLILFDWLRQ QHFHVVDU\ IRU WKH ODUJH YDVFXODU EXQGOHV RI /75 IURQGV /XPHQ DUHDV UHSRUWHG KHUH DUH ODUJHU WKDQ :RRGKRXVH DQG 1REHO f IRXQG IRU VPDOOHUOHDYHG VSHFLHV RI IHUQ 7RWDO WUDFKHLG OXPHQ DUHD FRPSULVHG b DQG b RI VWLSH FURVVVHFWLRQDO DUHDV RI /75 DQG +75 IURQGV UHVSHFWLYHO\ 9DVFXODU EXQGOHV ZHUH OHVV QXPHURXV LQ +75 VWLSHV WKDQ LQ /75 VWLSHV 7KH VHFRQGDU\ WKLFNHQLQJ RI WKH RXWHU WDQJHQWLDO ZDOO RI WKH HQGRGHUPDO FHOOV ZDV JUHDWHU IRU /75 IURQGV )LJXUH f 7KLV WKLFNHQLQJ PD\ LQFUHDVH WKH VWUXFWXUDO VWUHQJWK RI WKH VWLSH DQG DOVR UHGXFH PRYHPHQW RI ZDWHU RXW RI WKH VWHOH DQG LQWR WKH JURXQG WLVVXH RI WKH VWLSH 7KLV FRXOG LQFUHDVH WKH DPRXQW RI ZDWHU DYDLODEOH WR GLVWDO

PAGE 94

)LJXUH 6FDQQLQJ HOHFWURQ PLFURJUDSKV RI D OHDWKHUOHDI IHUQ VWLSH VKRZLQJ $f D FURVV VHFWLRQ ZLWK YDVFXODU EXQGOHV YEf FRQWDLQLQJ WUDFKHLGV %f WKH ORFDWLRQ RI WUDFKHLGV Wf LQ D YDVFXODU EXQGOH &f FORVHXS RI WUDFKHLGV DQG 'f VFDODULIRUP SLWWLQJ RI WKH FHOO ZDOOV RI WUDFKHLGV

PAGE 96

)LJXUH &URVV VHFWLRQV RI YDVFXODU EXQGOHV LQ VWLSH EDVHV RI OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU r& GD\r QLJKW WRSf DQG r GD\r QLJKW ERWWRPf LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV VKRZLQJ WKH JUHDWHU WKLFNHQLQJ RI WKH RXWHU WDQJHQWLDO ZDOO RI WKH XQLVHULDWH HQGRGHUPLV RI WKH rr JURZQ IURQG [f H HQGRGHUPDO FHOO V VLHYH FHOO W WUDFKHLG

PAGE 98

WLVVXHV RI WKH ODPLQD )URQG FXUO V\QGURPH XVXDOO\ VWDUWV DW WKH SHULSKHU\ RI WKH IURQG DQG SURJUHVVHV GRZQZDUG DQG LQZDUG 7KH VL]H RI WKH SDUHQFK\PD FHOOV RI WKH JURXQG WLVVXH ZHUH VLPLODU 7DEOH f &RQGXFWLYLW\ R ZDV QRW GLIIHUHQW EHWZHHQ WUHDWPHQWV DQG WKLV VXJJHVWV WKDW WKHUH DUH QR TXDOLWDWLYH GLIIHUHQFHV VXFK DV GLIIHUHQFHV LQ WUDFKHLG FHOO ZDOO SLWWLQJ LQ WKH YDVFXODU WLVVXH RI /75 DQG +75 IURQGV 9DVH OLIH RI +75 IURQGV ZDV b OHVV WKDQ IRU /75 IURQGV 7DEOH f 6LQFH WKH GLVFDUG ZHLJKWV WHUPLQDWLRQ ZHLJKW r LQLWLDO ZHLJKWf RI /75 DQG +75 IURQGV ZHUH WKH VDPH WKH UHGXFWLRQ LQ YDVH OLIH RI +75 IURQGV ZDV GXH WR WKHLU ORVLQJ ZHLJKW IDVWHU WKDQ WKH /75 IURQGV DQG QRW WR DQ\ ELDV GXULQJ WHUPLQDWLRQ HYDOXDWLRQV 7KLV VXSSRUWV UHVXOWV REVHUYHG LQ ([SHULPHQW 6WLSH UHFXWWLQJ GLG QRW DIIHFW YDVH OLIH DQG WKHUH ZDV QR LQWHUDFWLRQ RI WHPSHUDWXUH WUHDWPHQW DQG VWLSH UHFXWWLQJ 7KH VWLSH EDVHV ZHUH UHFXW RQFH LQ WKLV H[SHULPHQW ,Q DQ H[SHULPHQW ZKHUH VWLSHV RI IURQGV JURZQ XQGHU D VLQJOH HQYLURQPHQWDO UHJLPH ZHUH UHFXW GDLO\ WKH UHFXW IURQGV GLG QRW ORVH ZHLJKW RYHU DQ GD\ SHULRG ZKHUHDV WKH FRQWURO SODQWV ORVW b RI WKHLU LQLWLDO ZHLJKW +HQQ\ XQSXEOLVKHGf 1RQH RI +HQQ\nV UHFXW IURQGV H[KLELWHG )&6 EXW b RI WKH FRQWURO IURQGV ZHUH WHUPLQDWHG GXH WR FXUOLQJGHVVLFDWLRQ 1XPHURXV FRUUHODWLRQV H[LVWHG EHWZHHQ IURQG DQDWRPLFDO DQG PRUSKRORJLFDO FKDUDFWHULVWLFV IRU /75 IURQGV 7DEOH $ $SSHQGL[f 1R FKDUDFWHULVWLF ZDV KLJKO\ FRUUHODWHG ZLWK YDVH OLIH 6XUIDFH DUHD U 3 f UHODWLYH FRQGXFWLYLW\ U 3 f DQG LQLWLDO GD\ f ZDWHU XSWDNH U 3 f ZHUH ZHDNO\ SRVLWLYHO\ FRUUHODWHG DQG VSHFLILF OHDI ZHLJKW ZDV ZHDNO\ QHJDWLYHO\

PAGE 99

FRUUHODWHG U 3 f ZLWK YDVH OLIH 7DEOH $ $SSHQGL[f 6WLSH UHODWLYH FRQGXFWLYLW\ ZDV SRVLWLYHO\ FRUUHODWHG ZLWK WKH QXPEHU RI WUDFKHLGV LQ WKH VWLSH U 3 f DQG FRQGXFWLYLW\ DQG UHODWLYH FRQGXFWLYLW\ ZHUH SRVLWLYHO\ FRUUHODWHG ZLWK WUDFKHLG OXPHQ DUHD U f 7KHUH ZHUH QXPHURXV FRUUHODWLRQV EHWZHHQ IURQG DQDWRPLFDO DQG PRUSKRORJLFDO FKDUDFWHULVWLFV IRU +75 IURQGV 7DEOH $ $SSHQGL[f 6SHFLILF OHDI ZHLJKW U 3 f DQG ZDWHU XSWDNH RQ WKH HLJKWK GD\ SRVWVWRUDJH U 3 f ZHUH QHJDWLYHO\ FRUUHODWHG ZLWK YDVH OLIH ([SHULPHQW +DUYHVW :DWHU XSWDNH FXUYHV LQ WKLV H[SHULPHQW ZHUH VLPLODU WR WKRVH LQ ([SHULPHQWV DQG )LJXUH f 7KH PDLQ HIIHFW RI WKH IRUPHU WHPSHUDWXUH WUHDWPHQW )7f ZDV VLJQLILFDQW 3 f IRU WKH ILUVW KU SRVWVWRUDJH SRVWVWLSH UHFXWWLQJf DQG IURQGV IURP SRWV WKDW ZHUH IRUPHUO\ JURZQ XQGHU +75 KDG UHGXFHG XSWDNH FRPSDUHG WR IURQGV IRUPHUO\ JURZQ XQGHU /75 7KH WHPSHUDWXUH WUHDWPHQW XQGHU ZKLFK WKH WDJJHG IURQGV GHYHORSHG /7f KDG QR HIIHFW RQ XSWDNH DQG QR LQWHUDFWLRQV ZHUH IRXQG EHWZHHQ WKH IRUPHU DQG ODWWHU WHPSHUDWXUH WUHDWPHQWV $ED[LDO GLIIXVLYH FRQGXFWDQFH DQG WUDQVSLUDWLRQ ZHUH QRW GLIIHUHQW GXULQJ WKH ILUVW KU DV GHWHUPLQHG E\ DQDO\VLV RI YDULDQFH )LJXUH f $ED[LDO GLIIXVLYH FRQGXFWDQFH YDOXHV ZHUH FRQVLGHUDEO\ ORZHU WKDQ KDYH EHHQ IRXQG IRU FXW ILHOG JURZQ OHDWKHUOHDI IHUQ f DQG PD\ KDYH EHHQ SDUWLDOO\ GXH WR VWRPDWDO FORVXUH GXULQJ VWRUDJH DQG WR GLIIHUHQFHV LQ HQYLURQPHQWDO FRQGLWLRQV PHQWLRQHG LQ ([SHULPHQW :HLJKW ORVV HIIHFWV GXH WR )7 ZHUH GHWHFWHG 3 f KU DIWHU WKH

PAGE 100

:$7(5 837$.( PO f FPf f f )LJXUH 3RVWVWRUDJH ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV &LUFOHV DQG WULDQJOHV UHSUHVHQW WKH PHDQV RI UHSOLFDWLRQV r DQG rr LQGLFDWH VLJQLILFDQFH DW WKH b DQG b OHYHOV UHVSHFWLYHO\f

PAGE 101

JL 7(03(5$785( '85,1* *52:7+ '$< 1,*+7f )250(5 /$77(5 Rf§ f§2 rr r $f§ f§$ r r $f§ ‘$ r r ff§ f§ r n fL +2856 FR UR UH $ED[LDO GLIIXVLYH FRQGXFWDQFH DQG WUDQVSLUDWLRQ GXULQJ WKH ILUVW KU DIWHU UHFXWWLQJ VWLSHV RI OHDWKHUOHDI IHUQ IURQGV VWRUHG IRU GD\ r DQG rr LQGLFDWH VLJQLILFDQFH DW WKH b DQG b OHYHO UHVSHFWLYHO\f

PAGE 102

VWLSHV ZHUH UHFXW )LJXUH f )URQGV IURP SRWV WKDW ZHUH RULJLQDOO\ KHOG XQGHU +75 ORVW ZHLJKW PRUH UDSLGO\ WKDQ WKRVH RULJLQDOO\ JURZQ XQGHU /75 (IIHFWV RI /7 DQG )7 [ /7 ZHUH QRW VLJQLILFDQW 7KH KLJKHU UDWH RI ZHLJKW ORVV DQG GHFUHDVHG ZDWHU XSWDNH IRU +75)7 IURQGV ZDV SDUDOOHOHG E\ D UHGXFWLRQ LQ YDVH OLIH 7DEOH f 7KH +75)7 IURQGV KDG b VKRUWHU YDVH OLIH WKDQ /75)7 IURQGV +LJK WHPSHUDWXUH UHJLPH IURQGV ZHUH PRVWO\ bf WHUPLQDWHG GXH WR GHVVLFDWLRQ ZKHUHDV RQO\ b RI /75 IURQGV ZHUH WHUPLQDWHG GXH WR GHVVLFDWLRQ DQG b ZHUH WHUPLQDWHG GXH WR \HOORZLQJ ,QLWLDO IUHVK ZHLJKWV ZHUH DIIHFWHG E\ DQ LQWHUDFWLRQ RI )7 DQG /7 7KH /75)7+75/7 IURQGV ZHUH KHDYLHU WKDQ /75)7/75/7 IURQGV DQG +75)7+75/7 IURQGV ZHUH OLJKWHU WKDQ +75)7/75/7 7DEOH f )URQG JURVV PRUSKRORJLFDO FKDUDFWHULVWLFV VXFK DV VXUIDFH DQG VWLSH FURVVVHFWLRQDO DUHDV ZHUH QRW DIIHFWHG E\ IRUPHU RU ODWWHU JURZLQJ WHPSHUDWXUHV 9DVH OLIH ZDV QHJDWLYHO\ FRUUHODWHG ZLWK OHDI GHQVLW\ WKLFNQHVV IRU /75)7/75/7 IURQGV 7DEOH f 1R RWKHU IURQG FKDUDFWHULVWLHV ZHUH FRUUHODWHG ZLWK YDVH OLIH IRU IURQGV NHSW FRQWLQXRXVO\ XQGHU /75 7DEOH $ $SSHQGL[f &RQWLQXRXV +75 IURQG YDVH OLIH ZDV SRVLWLYHO\ FRUUHODWHG ZLWK IURQG VXUIDFH DUHD 9DVH OLIH RI /75)7+75/7 IURQGV ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VWLSH GLDPHWHUV DQG FURVVVHFWLRQDO DUHD ZKLOH +75)7/75/7 IURQG YDVH OLIH GLG QRW FRUUHODWH ZLWK DQ\ VWDWLVWLF 7DEOH 7DEOH $ $SSHQGL[f +DUYHVW :DWHU XSWDNH ZDV VLPLODU WR KDUYHVW H[FHSW WKDW /7 WUHDWPHQWV KDG DQ HIIHFW DW WKLV KDUYHVW )LJXUH f 7KHUH ZHUH QR LQWHUDFWLRQ HIIHFWV RQ XSWDNH $W GD\ SRVWKDUYHVW /7 KDG WKH GRPLQDQW HIIHFW ZLWK +75 IURQGV KDYLQJ FKDUDFWHULVWLFDOO\ ORZHU ZDWHU XSWDNH 7DEOH f 7KLV LQLWLDO ZDWHU XSWDNH ZDV SRVLWLYHO\

PAGE 103

+2856 )LJXUH 3RVWVWRUDJH ZHLJKW FKDQJHV RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV &LUFOHV DQG WULDQJOHV UHSUHVHQW WKH PHDQV RI UHSOLFDWLRQVf

PAGE 104

7DEOH (IIHFWV RI IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV )7f DQG ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV /7f RQ OHDWKHUOHDI IHUQ IURQG FKDUDFWHULVWLFV 7HPSHUDWXUH WUHDWPHQWVA ZHUH FKDQJHG )HEUXDU\ FURVLHUV ZHUH WDJJHG 0DUFK DQG IURQGV ZHUH KDUYHVWHG 0D\ 'D\QLJKW WHPSHUDWXUH WUHDWPHQWV r&f 9DVH L IH )UHVK ZHLJKW 6WLSH GLDPHWHUV 6W L SH DUHD 6XUIDFH DUHD6$ 5DWL R RI 6$ WR VWLSH /HDI GHQVLW\ WKLFNQHVV QDUURZ ZL GH )RUPHU /DWWHU GD\Vf Jf FPf FPf FPf FP f DUHD JFPf rr rr rr rr rr rr 6LJQLILFDQFH OHYHO IURP DQDO\VLV RI YDULDQFH )RUPHU WUHDWPHQW )7f /DWWHU WUHDWPHQW /7f ,QWHUDFWLRQ )7 [ /7f ]0HDQV RI UHSOLFDWLRQV \ 3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV

PAGE 105

7DEOH $VVRFLDWLRQ RI YDVH OLIH DQG IURQG PRUSKRORJLFDO FKDUDFWHULVWLHV RI OHDWKHUOHDI IHUQ IURQGV KDUYHVWHG 0D\ 'D\QLJKW WHPSHUDWXUH WUHDWPHQWV r&f /HDI GHQVLW\ WKLFNQHVV 6WLSH GLDPHWHUV 6WLSH DUHD )URQG VXUIDFH DUHD )RUPHU /DWWHU QDUURZ ZLGH rr rr ] RRVt\ rr rr rr rr &RUUHODWLRQ FRHIILFLHQW &L JQL I L FDQHH HYHO

PAGE 106

)LJXUH 3RVWKDUYHVW ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV 2SHQ DQG ILOOHG V\PEROV UHSUHVHQW PHDQV RI DQG UHSOLFDWLRQV UHVSHFWLYHO\ r rr DQG rrr LQGLFDWH VLJQLILFDQFH DW WKH b b DQG b OHYHOV UHVSHFWLYHO\f

PAGE 107

7DEOH (IIHFWV RI IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV )7f DQG ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV /7f RQ ZDWHU XSWDNH RI FXW OHDWKHUOHDI IHUQ IURQGV 7HPSHUDWXUH WUHDWPHQWV ZHUH FKDQJHG )HEUXDU\ FURVLHUV ZHUH WDJJHG 0D\ DQG IURQGV ZHUH KDUYHVWHG -XO\ 'D\QLJKW WHPSHUDWXUH WUHDWPHQWV r&f :DWHU XSWDNH POmFPf fGD\ ff 'D\V SRVWKDUYHVW )RUPHU /DWWHU rr rr r rr rr rr 6LJQLILFDQFH OHYHO IURP DQDO\VLV RI YDUL DQHH )RUPHU WUHDWPHQW )7f /DWWHU WUHDWPHQW /7f ,QWHUDFWLRQ )7 [ /7f ]3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV

PAGE 108

FRUUHODWHG U 3 f ZLWK YDVH OLIH DV ZDV IRXQG LQ ([SHULPHQW )URP GD\ WR GD\ )7 DQG /7 UHGXFHG XSWDNH RI +75 IURQGV FRPSDUHG WR WKH /75 HTXLYDOHQWV 7UHDWPHQW HIIHFWV ZHUH QRW DSSDUHQW DW b OHYHOf DIWHU GD\V SRVWKDUYHVW &KDQJHV LQ IUHVK ZHLJKW IROORZHG WKH SDWWHUQ SUHYLRXVO\ REVHUYHG IRU +75 IURQGV :DWHU XSWDNH ZDV UHGXFHG DQG ZHLJKW ORVV ZDV PRUH UDSLG IRU +75 IURQGV WKDQ IRU /75 IURQGV )LJXUH f /DWWHU WUHDWPHQW HIIHFWV RQ SRVWKDUYHVW ZHLJKW FKDQJHV ZHUH KLJKO\ VLJQLILFDQW 3 f /DWWHU WUHDWPHQW DIIHFWHG YDVH OLIH ZLWK +75 IURQGV ODVWLQJ RQO\ DV ORQJ DV /75 IURQGV 7DEOH f 'HVVLFDWLRQ ZDV WKH UHDVRQ IRU WHUPLQDWLRQ IRU ERWK /75 DQG +75 IURQGV %\ WKLV VHFRQG KDUYHVW ZHHNV DIWHU WKH WHPSHUDWXUH UHJLPHV ZHUH VZLWFKHG WKH +75/7 KDG SURGXFHG VWLSH DUHD UHGXFWLRQV 7DEOH f DV LW GLG LQ ([SHULPHQW 7KH UHGXFWLRQ LQ VWLSH VL]H IRU +75 IURQGV ZDV DSSDUHQW IURP D FRPSDULVRQ RI WKH VXUIDFH DUHD RQH VLGHf RI WKH VWLSH DQG UDFKLV 7DEOH f $V ZDV IRXQG LQ SUHYLRXV H[SHULPHQWV WKH UDWLR RI IURQG VXUIDFH DUHD RQH VLGHf WR VWLSH FURVVVHFWLRQDO DUHDV ZDV JUHDWHU DQG OHDI GHQVLW\ WKLFNQHVV ZDV ORZHU IRU +75 IURQGV WKDQ IRU /75 RQHV 7UHDWPHQWV GLG QRW DIIHFW ODPLQD DQG WRWDO IURQG VXUIDFH DUHDV 7KH RQO\ IURQG FKDUDFWHULVWLF WKDW ZDV FRUUHODWHG ZLWK YDVH OLIH ZDV VXUIDFH DUHD U 3 f DQG WKLV FRUUHODWLRQ RFFXUUHG RQO\ IRU +75)7/75/7 IURQGV 7DEOH $ $SSHQGL[f 7KH UHVXOWV LQ WKLV H[SHULPHQW LQGLFDWH WKDW WKHUH LV D ODJ SHULRG IURP WKH WLPH WKH WHPSHUDWXUHV DUH FKDQJHG XQWLO WKH QHZ WHPSHUDWXUH UHJLPH KDV D GRPLQDQW HIIHFW :KHWKHU WKLV ODJ SHULRG LV GXH WR HIIHFWV RI WKH IRUPHU WHPSHUDWXUH UHJLPH RQ WKH UKL]RPH LWV VKRRW DSH[

PAGE 109

)LJXUH 3RVWKDUYHVW ZHLJKW FKDQJHV RI FXW LHDWKHUOHDI IHUQ IURQGV JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV DQG RI ODWWHU WHPSHUDWXUH WUHDWPHQWV 2SHQ DQG ILOOHG V\PEROV UHSUHVHQW PHDQV RI DQG UHSOLFDWLRQV UHVSHFWLYHO\f

PAGE 110

7DEOH (IIHFWV RI IRUPHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV )7f DQG ODWWHU SURGXFWLRQ WHPSHUDWXUH WUHDWPHQWV /7f RQ OHDWKHUOHDI IHUQ IURQG FKDUDFWHULVWLFV 7HPSHUDWXUH WUHDWPHQWV ZHUH FKDQJHG )HEUXDU\ FURVLHUV ZHUH WDJJHG 0D\ DQG KDUYHVWHG -XO\ 'D\QLJKW WHPSHUDWXUH WUHDWPHQWV r&f 9DVH L IH GD\Vf )UHVK ZHLJKW Jf 6WLSH GLDPHWHUV 6WL SH DUHD FPf 6XUIDFH DUHD6$ FPf /DPLQD VXUIDFH DUHD FPf 6WLSH DQG UDFKLV VXUIDFH DUHD FPf 5DWLR RI 6$ WR VWLSH DUHD /HDI GHQVLW\ WKLFNQHVV JFPf QDUURZ FPf ZLGH FPf )RUPHU /DWWHU r rr ,6 r rr r r 6LJQLILFDQFH OHYHO IURP DQDO\VLV RI YDULDQFH )RUPHU WUHDWPHQW )7f /DWWHU WUHDWPHQW /7f ,QWHUDFWLRQ )7 [ /7f ]0HDQV A3ODQWV ZHUH JURZQ LQ FRQWUROOHG HQYLURQPHQW FKDPEHUV ZLWK KU GD\V DQG KU QLJKWV

PAGE 111

RU WKH OHDI SULPRUGLD ZDV QRW GHWHUPLQHG LQ WKLV H[SHULPHQW +RZHYHU WKHVH UHVXOWV PD\ H[SODLQ ZK\ WKH LQFLGHQFH RI )&6 DQG (< DSSHDU WR ODJ EHKLQG WKH RFFXUUHQFH RI KRW ZHDWKHU E\ DERXW D PRQWK )LJXUH f 3RROH HW DO f DOVR VKRZHG WKDW WHPSHUDWXUHV GXULQJ GHYHORSPHQW LQIOXHQFH YDVH OLIH PRUH WKDQ WHPSHUDWXUHV DW WKH WLPH RI KDUYHVW &RQFOXVLRQV 7KH GLIIHUHQFHV LQ WKH HIIHFWV RI WKH SURGXFWLRQ WHPSHUDWXUHV ZHUH JHQHUDOO\ RI D PRUH TXDQWLWDWLYH UDWKHU WKDQ TXDOLWDWLYH QDWXUH 7KH r& GD\r QLJKW SURGXFWLRQ WHPSHUDWXUH UHJLPH +75f GHFUHDVHG &(5V DQG TXDQWXP HIILFLHQFLHV RI OHDWKHUOHDI IHUQ IURQGV FRPSDUHG WR IURQGV JURZQ DW rr WHPSHUDWXUHV /75f 7KLV GLIIHUHQFH PD\ KDYH EHHQ GXH WR WKH UHGXFWLRQV LQ OHDI WKLFNQHVV VSHFLILF OHDI ZHLJKW DQG OHDI GHQVLW\ WKLFNQHVV REVHUYHG LQ WKHVH H[SHULPHQWV 5HGXFWLRQV LQ &(5V DQG TXDQWXP HIILFLHQFLHV DVVRFLDWHG ZLWK VXFK UHGXFWLRQV KDYH EHHQ UHSRUWHG IRU RWKHU FURSV f +ROPJUHQ f IRXQG WKDW 6/: ZDV KLJKO\ FRUUHODWHG ZLWK JAJ DQG VXJJHVWHG WKDW LQFUHDVLQJ SS F FURVVVHFWLRQDO DUHD RI WKH SDWKZD\V RI &A WUDQVIHU LQFUHDVHV JA DQG &(5 7KH UHGXFWRQ LQ &(5 DQG TXDQWXP HIILFLHQFLHV RI +75 FRPSDUHG WR /75 IURQGV PD\ VLPSO\ EH GXH WR WKH UHGXFHG FKORURSK\OO OHYHOV LQ +75 IURQGV &DUERQ H[FKDQJH HIILFLHQFLHV RQ D FKORURSK\OO EDVLV ZHUH QRW GLIIHUHQW IRU +75 DQG /75 IURQGV 'DUN UHVSLUDWLRQ ZDV ORZHU IRU +75 IURQGV DQG GLG QRW DSSHDU WR EH GXH WR ORZHUHG FDUERK\GUDWH UHVHUYHV 7KH ORZHUHG 5AV PD\ KDYH EHHQ WKH UHVXOW RI JUHDWHU SK\VLRORJLFDO DJH IRU WKH +75 IURQGV WKDQ WKH /75 RQHV VLQFH WKH JURZWK UDWHV ZHUH KLJKHU XQGHU WKH +75 6RUL DOVR GHYHORSHG VRRQHU XQGHU WKH +75 WKDQ WKH /75 UHJLPH

PAGE 112

+LJK WHPSHUDWXUH UHJLPH IURQGV KDG UHGXFHG DED[LDO JA VR WKDW WUDQVSLUDWLRQ XQGHU WKH JUHDWHU DSSUR[LPDWHO\ WLPHV JUHDWHUf YDSRU SUHVVXUH JUDGLHQWV LQ WKH +75 FKDPEHUV ZDV QRW GLIIHUHQW IURP 7 RI /75 IURQGV LQ WKH /75 FKDPEHUV 7KH UHGXFHG T ZRXOG EH RI ZY I DGDSWLYH DGYDQWDJH LQ UHGXFLQJ ZDWHU ORVV 7KH UHGXFWLRQ LQ JZY PD\ EH GXH LQ SDUW WR D UHGXFWLRQ LQ WKH ZLGWK RI WKH VWRPDWDO DSHUDWXUH EHFDXVH VWRPDWDO GHQVLWLHV ZHUH QRW GLIIHUHQW GXH WR WKH WHPSHUDWXUH WUHDWPHQWV 7KLV UHGXFHG DELOLW\ RI WKH VWRPDWD WR RSHQ PD\ EH GXH WR JUHDWHU SK\VLRORJLFDO DJH RI +75 IURQGV +LJK WHPSHUDWXUH UHJLPH IURQG JZYV GHFOLQHG PRUH VORZO\ SRVWKDUYHVW WKDQ /75 ZYV +LJK WHPSHUDWXUH UHJLPH IURQGV KDG UHGXFHG VWLSH GLDPHWHUV DQG FURVVVHFWLRQDO DUHDV DQG LQ ([SHULPHQW UHGXFHG UHODWLYH FRQGXFWLYLWLHV 5HODWLYH FRQGXFWLYLWLHV PHDVXUHG IRU OHDWKHUOHDI IHUQ ZHUH VLPLODU WR WKRVH RI WKH GHVHUW IHUQ 1RWKRODHQD SDUU\L f :RRGKRXVH DQG 1REHO f DUJXH WKDW ORZ K\GUDXOLFf FRQGXFWDQFH LV DQ DGYDQWDJH DOORZLQJ D VSHFLHV WR VXUYLYH LQ D JUHDWHU UDQJH RI KDELWDWV /HDWKHUOHDI IHUQ JURZV LQ D ZLGH YDULHW\ RI KDELWDWV f DQG DSSHDUV WR EH OLPLWHG LQ GLVWULEXWLRQ PDLQO\ E\ LWV FROG LQWROHUDQFH /HDWKHUOHDI IHUQ IUHTXHQWO\ JURZV DV DQ HSLSK\WH f (YHQ ZKHQ +75 DQG /75 VWLSH UHODWLYH FRQGXFWLYLWLHV ZHUH VLPLODU WKH ZDWHU FRQGXFWLQJ SRWHQWLDO RI /75 VWLSHV ZDV KLJKHU GXH WR JUHDWHU FURVVVHFWLRQDO DUHD WKDQ WKDW RI +75 VWLSHV ,I WKH VPDOOHU +75 WUDFKHLG OXPHQ DUHDV LQ +75 IURQGV DUH UHDO DQG QRW DQ DUWLIDFW WKLV FKDUDFWHULVWLF ZRXOG EH D VWUXFWXUDO DGYDQWDJH XQGHU FRQGLWLRQV RI KLJK WUDQVSLUDWLRQ f EXW PLJKW OLPLW PD[LPXP 7 ,QWHUHVWLQJO\ GLIIHUHQFHV LQ ZDWHU XVH HIILFLHQFLHV RI LQWDFW IURQGV DW VDWXUDWLQJ OLJKW LQWHQVLWLHV GLG QRW RFFXU GXH WR WHPSHUDWXUH WUHDWPHQWV

PAGE 113

:DWHU XSWDNH E\ FXW OHDWKHUOHDI IHUQ IURQGV SDUDOOHOHG WKH FRQGXFWLYLW\ GDWD 8SWDNH E\ +75 IURQGV ZDV FRQVLVWHQWO\ ORZHU WKDQ /75 IURQGV DQG XSWDNH IRU ERWK W\SHV RI IURQGV GHFOLQHG RJDUWKPLFDOO\ RYHU WLPH 7KLV GHFOLQH LQ ZDWHU XSWDNH FRXOG EH GXH WR LQFUHDVHV LQ VDS YLVFRVLW\ FDXVHG E\ EUHDNGRZQ RI FHOOV RU FHOO FRQVWLWXHQWV DQGRU WR SOXJJLQJ RI WUDFKHLGV &RQFXUUHQW ZLWK WKH XSWDNH GHFOLQH ZDV D ORJDULWKPLF GHFUHDVH LQ VWLSH EDVH FRQGXFWLYLW\ :KHQ WKH EDVH RI WKH VWLSH ZDV UHFXW ZDWHU XSWDNH UHWXUQHG WR LQLWLDO UDWHV DQG WKHQ UHSHDWHG LWV ORJDULWKPLF GHFOLQH DV GLG JADI? 5HVHDUFK +HQQ\ XQSXEOLVKHGf KDV VKRZQ WKDW ZLWK GDLO\ UHFXWWLQJ IURQG ZHLJKW FDQ UHPDLQ FRQVWDQW IRU DW OHDVW GD\V SRVWKDUYHVW (YHQ WKRXJK DED[LDO GLIIXVLYH FRQGXFWDQFH RI +75 IURQGV ZDV OHVV WKDQ /75 RQHV WKH ZDWHU EDODQFH RI FXW +75 IURQGV ZDV PRUH QHJDWLYH WKDQ IRU /75 IURQGV DV HYLGHQFHG E\ WKH PRUH UDSLG ZHLJKW ORVV DIWHU KDUYHVW 7KHVH UHVXOWV VXJJHVW WKDW UHGXFHG RYHUDOO ZDWHU WUDQVSRUW LQ WKH VWLSH PD\ EH D FULWLFDO IDFWRU UHGXFLQJ YDVH OLIH LQ WKHVH H[SHULPHQWV 3URGXFWLRQ WHPSHUDWXUHV GLG QRW DIIHFW GLVFDUG ZHLJKWV RI WHUPLQDWHG IURQGV EXW WKH +75 RQHV ORVW ZHLJKW PRUH UDSLGO\ 1HOO HW DO f UHSRUWHG WKDW WUDQVSLUDWLRQ RI FXW JUHHQKRXVH JURZQ OHDWKHUOHDI IHUQ IURQGV H[FHHGHG ZDWHU XSWDNH DV HYLGHQFHG E\ D GHFOLQH LQ IURQG ZDWHU SRWHQWLDOV 7KH TXDQWLWDWLYH UHGXFWLRQ LQ WLVVXH DYDLODEOH WR VXSSO\ ZDWHU PD\ EH RQH RI WKH IDFWRUV SUHGLVSRVLQJ IURQGV WR )&6 f DV VXJJHVWHG E\ &RQRYHU HW DO f 8VLQJ ZDWHU XSWDNH DQG DED[LDO WUDQVSLUDWLRQ IOX[HV IRU /75)7/75/7 DQG +75)7+75/7 IURQGV IURP ([SHULPHQW KDUYHVW D VLPSOH PRGHO ZDV GHYLVHG WR SUHGLFW ZHLJKW FKDQJHV RI FXW IURQGV GXULQJ WKH ILUVW KU SRVWVWRUDJH 7KH ZDWHU XSWDNH HTXDWLRQV ZHUH

PAGE 114

PXOWLSOLHG E\ WR FKDQJH XQLWV IURP PO +A2rFP WR PO +A2}GP DQG WKH 7 HTXDWLRQV ZHUH GLYLGHG E\ f WR FRQYHUW XQLWV WR J +A2rGP ,W ZDV DVVXPHG WKDW WKH GHQVLW\ RI ZDWHU ZDV JrPO f DQG WKHUHIRUH WKH EDVH ZHLJKW FKDQJH HTXDWLRQ IRU WKH /75 IURQGV ZDV 4IL b > [ ,Q [ff [ @ > [ ,Q [ff r @ G[ DQG IRU WKH +75 IURQGV ZDV cr >& [ ,Q [ff [ @ > [ ,Q [ff r @ G[ ,QWHJUDWLRQV XVLQJ 6LPSVRQnV UXOH ZHUH SHUIRUPHG IRU WKH WLPH LQWHUYDOV DQG KU SRVWVWRUDJH 7KH EDVH HTXDWLRQV ZHUH PRGLILHG WR LQFOXGH DGD[LDO FXWLFXODU 7 YDOXHV RI b DQG b RI LQLWLDO DED[LDO 7 YDOXHV IRU /75 DQG +75 IURQGV UHVSHFWLYHO\ 7KHVH SHUFHQWDJHV ZHUH GHWHUPLQHG LQ ([SHULPHQW $ED[LDO 7 ZDV FRUUHFWHG DFFRUGLQJ WR WKH DPRXQW RI WLPH GXULQJ HDFK LQWHUYDO WKDW WKH OLJKWV ZHUH RQ LQ WKH KROGLQJ URRPV 7KH UHVXOWV RI WKH VLPSOH PRGHO )LJXUH f VKRZ WKH SDWWHUQ RI JUHDWHU ZHLJKW ORVV IRU +75 IURQGV FRPSDUHG WR /75 IURQGV GXH WR WKH UHGXFHG XSWDNH DQG VORZHU GHFOLQH LQ J RI +75 IURQGV 7KH SUHGLFWHG YDOXHV GHFOLQH PRUH UDSLGO\ WKDQ WKH PHDVXUHG YDOXHV DQG WKLV LV SUREDEO\ GXH LQ SDUW WR WKH DVVXPSWLRQ LQ WKH PRGHO WKDW FXWLFXODU 7 UHPDLQHG FRQVWDQW LQ VSLWH RI GHFOLQLQJ IURQG ZDWHU SRWHQWLDOV &XWLFXODU UHVLVWDQFHV XVXDOO\ LQFUHDVH PDWHULDOO\ DV OHDYHV EHFRPH GHK\GUDWHG f $QRWKHU IDFWRU UHVSRQVLEOH IRU WKH LQFUHDVHG ZHLJKW ORVVHV RI WKH PRGHO FRPSDUHG WR

PAGE 115

3(5&(17 2) ,1,7,$/ :(,*+7 +2856 )LJXUH 3ORW RI DFWXDO YHUVXV SUHGLFWHG ZHLJKW FKDQJHV RI OHDWKHUOHDI IHUQ IURQGV GHWHUPLQHG XVLQJ WKH WUDQVSLUDWLRQ DQG ZDWHU XSWDNH YDOXHV IURP ([SHULPHQW KDUYHVW

PAGE 116

WKH REVHUYHG RQHV ZRXOG EH DUWLILFLDOO\ KLJK 7 GXULQJ PHDVXUHPHQW FDXVHG E\ WKH PL[LQJ IDQ LQ WKH SRURPHWHU FXYHWWH 7KH PL[LQJ IDQ LV XVHG WR SURGXFH D SUHGLFWDEOH VKDOORZ DSSUR[LPDWHO\ VrFPAf ERXQGDU\ OD\HU UHVLVWDQFH UMAf DQG WKH UA ZRXOG EH JUHDWHU LQ WKH UHODWLYHO\ VWLOO DLU RI WKH KROGLQJ URRPV f 7KH HUURU LQYROYHG ZRXOG QRW DIIHFW WKH UHODWLYH 7 UHODWLRQVKLS EHWZHHQ /75 DQG +75 IURQGV +DG +75 IURQGV EHHQ WHUPLQDWHG LQ WKH H[SHULPHQWV ZKHQ WKH VWLSHV EHQW D VLJQ RI D ZHDN VWLSH WKH GLIIHUHQFHV LQ YDVH OLIH GXH WR WKH WHPSHUDWXUH WUHDWPHQWV ZRXOG KDYH EHHQ PXFK PRUH VWULNLQJ 7HUPLQDWLRQ GXH WR VWLSH EHQGLQJ ZDV QRW GRQH VLQFH FRPPHUFLDOO\ IURQGV DUH QRW RIWHQ XVHG LQ WKHLU HQWLUHW\ RU VLQJO\ DQG WKHUHIRUH DUH OHVV SURQH WR H[KLELW VWLSH EHQGLQJ 7KH ODFN RI )&6 LQ WKHVH H[SHULPHQWV PD\ EH GXH WR WKH UHGXFHG JAY FRPSDUHG WR ILHOG JURZQ IURQGV f 'HVVLFDWHG IURQGV VKRZHG V\PSWRPV RI )&6 ZLWK WLPH DQG )&6 PD\ VLPSO\ EH D VHYHUH FDVH RI GHVVLFDWLRQ 7KLV LV VXJJHVWHG E\ WKH H[WUHPHO\ UDSLG ZHLJKW ORVV RI FXUOLQJ IURQGV f )URQG FXUO V\QGURPH ZDV WKH PDMRU FDXVH IRU WHUPLQDWLRQ RI +75 IURQGV LQ D SUHOLPLQDU\ H[SHULPHQW 6WDPSV XQSXEOLVKHGf ZKHUH GD\WLPH +75 WHPSHUDWXUHV ZHUH KLJKHU WKDQ LQ WKHVH H[SHULPHQWV 7KH DSSHDUDQFH RI GHWHFWDEOH HIIHFWV RI FKDQJLQJ SURGXFWLRQ WHPSHUDWXUHV RQ WKH DQDWRP\ DQG PRUSKRORJ\ RI OHDWKHUOHDI IHUQ IURQGV ZDV GHOD\HG 7KH ILUVW FURS RI IURQGV ZDV QRW JUHDWO\ LQIOXHQFHG E\ WKH ODWWHU SURGXFWLRQ WHPSHUDWXUHV ZKHUHDV WKH VHFRQG FURS ZDV JUHDWO\ LQIOXHQFHG E\ WKH QHZ SURGXFWLRQ WHPSHUDWXUHV 7KH UHVXOWV RI ([SHULPHQW FRQFXU ZLWK ILHOG REVHUYDWLRQV f DQG LQGLFDWH WKDW FRQGLWLRQV GXULQJ WKH ODWHU VWDJHV RI IURQG SURGXFWLRQ PD\ QRW EH WRR

PAGE 117

LPSRUWDQW H[FHSW DV WKH\ DIIHFW VWRPDWDO IXQFWLRQLQJ 3UHOLPLQDU\ ILHOG VWXGLHV f KDYH IRXQG WKDW IURQGV KDUYHVWHG LQ -XO\ LQ WKH DIWHUQRRQ KUf ORVH ZHLJKW OHVV UDSLGO\ DQG ODVW ORQJHU WKDQ IURQGV KDUYHVWHG LQ WKH PRUQLQJ KUf 6WRPDWDO FRQGXFWDQFH RI ZHOOZDWHUHG OHDWKHUOHDI IHUQ JURZQ LQ D JUHHQKRXVH KDV EHHQ IRXQG WR UHDFK D PD[LPXP GXULQJ WKH PLGGOH RI WKH PRUQLQJ DQG WR GHFOLQH GXULQJ WKH DIWHUQRRQ 6WDPSV XQSXEOLVKHGf 7LPH RI KDUYHVW KDG QR HIIHFW LQ ODWH 2FWREHU ZKHQ )&6 ZDV QRW SUHYDOHQW $W ZKDW VWDJH WKH IURQG LV VXVFHSWLEOH WR WHPSHUDWXUH HIIHFWV DQG ZKHWKHU WKH HIIHFW LV GLUHFW RU GXH WR FKDQJHV LQ WKH UKL]RPH DUH XQNQRZQ $GGLWLRQDO ZRUN QHHGV WR EH GRQH WR GHWHUPLQH LI WKH GLIIHUHQFHV IRXQG LQ WKHVH FRQWUROOHG HQYLURQPHQW VWXGLHV DOVR RFFXU LQ WKH ILHOG 7KH FDXVH RI WKH GHFOLQH LQ VWLSH K\GUDXOLF FRQGXFWLYLW\ PHDVXUHG LQ WKLV H[SHULPHQW DQG VXJJHVWHG HOVHZKHUH f QHHGV WR EH HOXFLGDWHG $GGLWLRQDOO\ WKH IDFWRUV DIIHFWLQJ VWRPDWDO FORVXUH DQG ADU RI OHDWKHUOHDI IHUQ LQ WKH ILHOG QHHG WR EH GHWHUPLQHG /DVWO\ EHWWHU PHWKRGV WR KDVWHQ VWRPDWDO FORVXUH DQGRU UHGXFH JA VXFK DV ZLWK WKH XVH RI DQWLWUDQVSLUDQWV QHHG WR EH VWXGLHG

PAGE 118

$33(1',;

PAGE 119

7DEOH $O $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG DQDWRPLFDO PRUSKRORJLFDO DQG SK\VLRORJLFDO FKDUDFWHUn LVWLFV IRU ([SHULPHQW )HUQ ZDV JURZQ XQGHU KLJK WHPSHUDn WXUH UHJLPHrr GD\r QLJKWf RU ORZ WHPSHUDWXUH UHJLPH r GD\r QLJKWf 7RS QXPEHU LV FRUUHODWLRQ FRHIILFLHQW ERWWRP QXPEHU LV VLJQLILFDQFH OHYHO DQG Q f 9DVH L IH 1DUURZ VWLSHf G D :LGH VWLSHf GL D 6WLSH [VHF DUHD 5HODWLYH FRQGXFn WLYLW\ $ED[LDO FXWLFOH WKLFNQHVV $GD[LDO FXWLFOH WKLFNQHVV /RZHU HSLGHUPDO D\HUV 9DVH OLIH r 1DUURZ r GLDPHWHU :LGH r GLDPHWHU 6WLSH r DUHD r 5HODWLYH r FRQGXFWLY r $ED[LDO r FXWLFOH $GD[LDO FXWLFOH r /RZHU r HSLGHUPLV 8SSHU HSLGHUPLV 6WRPDWDO GHQVLW\ /HDI WKLFNQHVV 6XUIDFH DUHD 'U\ ZHLJKW 6$ WR 673$5($ 7RWDO A XSWDNH 8SWDNH GD\ 8SWDNH GD\ + JK r WHPSHUDWXUH /RZ r UHJLPH WHPSHUDWXUH r +75f UHJLPH r /75f

PAGE 120

7DEOH $O FRQWLQXHG 8SSHU HSLGHUPDO D\HUV 6WRPDWDO GHQVLW\ /HDI WKLFNQHVV 6XUIDFH $UHD 'U\ :HLJKW 6XUIDFH $UHD WR 6WLSH DUHD 7RWDO IURQG + XSWDNH 8SWDNH GD\ 8SWDNH GD\ f r r r r r r r r r r r r

PAGE 121

7DEOH $ $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG DQDWRPLFDO PRUSKRORJLFDO DQG SK\VLRORJLFDO FKDUDFWHUn LVWLFV IRU ([SHULPHQW )HUQ ZDV JURZQ XQGHU KLJK WHPSHUDn WXUH UHJLPH r GD\r QLJKWf RU ORZ WHPSHUDWXUH UHJLPH r GD\r QLJKWf 7RS QXPEHU LV FRUUHODWLRQ FRHIILFLHQW ERWWRP QXPEHU LV VLJQLILFDQFH OHYHO DQG Q H[FHSW DV LQGLFDWHGf 9DVH OLIH 1DUURZ VWLSHf Z GWK :LGH VWLSHf ZLGWK 6WLSH DUHD 673$5($f 5HODWLYH FRQGXFWLn YLW\ &RQGXFn WLn YLW\ /HDI GHQVLW\ WKLFNQHVVA 6SHFLILF OHDI ZHLJKW 9DVH 8IH A r 1DUURZ ZLGWK r :LGH ZLGWK 6WL SH DUHD 5HODWLYH r FRQGXFWLYLW\ r &RQGXF WLYLW\] r /HDI GHQVLW\ ‘N WKLFNQHVV\ 6SHFLILF r HDI ZW r 6XUIDFH DUHD 'U\ ZHLJKW )UHVK ZHLJKWA 6$ WR 673$5($ 8SWDNH GD\ 8SWDNH GD\ 9DVFXODU EXQGOH 7UDFKHLG QXPEHU /XPHQ DUHD r +LJK ]Q r WHPSHUDWXUH AQ /RZ r UHJLPH WHPSHUDWXUH r +75f UHJLPH r /75f

PAGE 122

7DEOH $ FRQWLQXHG 6XUIDFH DUHD 6$f 'U\ ZHLJKW )UHVK ZHLJKWA 6$ WR 673$5($ 8SWDNH GD\ 8SWDNH GD\ 9DVFXODU EXQGOH QXPEHUA 7UDFKHLG QXPEHU /XPHQ FURVVVHF DUHD r r r r r f r r r r

PAGE 123

7DEOH $ $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG PRUSKRORJLFDO DQG SK\VLRn ORJLFDO FKDUDFWHULVWLFV IRU ([SHULPHQW KDUYHVW 3ODQWV KDG EHHQ JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV )7f DQG IURQGV ZHUH SURGXFHG XQGHU RI ODWWHU WHPSHUDWXUH WUHDWPHQWV /7f 7KH WHPSHUDWXUH WUHDWPHQWV ZHUH ORZ r GD\r QLJKWf WHPSHUDWXUH UHJLPH /75 DQG KLJK rrf WHPSHUDWXUH UHJLPH +75 7RS QXPEHU LV FRUUHODWLRQ FRHIILFLHQW DQG ERWWRP QXPEHU LV VLJQLILFDQFH OHYHO Q H[FHSW DV LQGLFDWHGf 9DVH OLIH 1DUURZ VWLSHf ZLGWK :LGH VWLSHf ZLGWK 6WLSH DUHD 673$5($f /HDI GHQVLW\ WKLFNQHVV 6XUIDFH DUHD 6$f 'U\ ZHLJKW )UHVK ZHLJKW 6$ WR 673$5($ 7FWDO XSWDNH 8SWDNH DW KUV 8SWDNH DW KUV 'LIIXVLYH FRQGXFWDQFH DW KUV] 'LIIXVLYH FRQGXFWDQFH DW KUV 9DVH 8IH r r 1DUURZ r ZLGWK r :LGH r ZLGWK 6WLSH r DUHD r /HDI GHQV r WKLFNQHVV r 6XUIDFH r DUHD r 'U\ ZHLJKW r )UHVK ZHLJKW r 6$ WR r 673$5($ r 7RWDO r XSWDNH r 8SWDNH DW KUV r 8SWDNH r DW KUV r QLII FRQG r DW KUV] r 2LII FRQG A DW KUV] r r %RWK )7 DQG ]Q r /7 r +LJK %RWK r WHPSHUDWXUH )7 DQG r UHJLPH /7 r /RZ r +75f WHPSHUDWXUH r UHJLPH /75f r

PAGE 124

7DEOH $ FRQWLQXHG 9DVH 8IH 1DUURZ VWLSHf ZLGWK :LGH VWLSHf ZLGWK 6WLSH DUHD 673$5($f /HDI GHQVLW\ WKLFNQHVV 6XUIDFH DUHD 6$f 'U\ ZHLJKW )UHVK ZHLJKW 6$ WR 7RWDO 673$5($ XSWDNH 8SWDNH DW KUV 8SWDNH DW KUV 'L IIXVLYH FRQGXFWDQFH DW KUVr 2L IIXVLYH FRQGXFWDQFL DW KUV] 9DVH 8IH r r 1DUURZ r ZLGWK r :LGH ‘N ZLGWK r 6WLSH r 25 DUHD r /HDI GHQV r WKLFNQHVV r 6XUIDFH r DUHD r 'U\ r ZHLJKW r )UHVK r ZHLJKW r 6$ WR r 673$5($ r 7RWDO r XSWDNH r 8SWDNH r f DW KUV r 8SWDNH r DW KUV r QLII FRQG r DW KUV= r II FRQG r DW KUVr r /75)7 DQG ] Q +75/7 +75)7 DQG /75/7

PAGE 125

7DEOH $ $VVRFLDWLRQ RI YDVH OLIH ZDWHU XSWDNH DQG OHDWKHUOHDI IHUQ IURQG PRUSKRORJLFDO DQG SK\VLRn ORJLFDO FKDUDFWHULVWLFV IRU ([SHULPHQW KDUYHVW 3ODQWV KDG EHHQ JURZQ XQGHU RI IRUPHU WHPSHUDWXUH WUHDWPHQWV )7f DQG IURQGV ZHUH SURGXFHG XQGHU RI ODWWHU WHPSHUDWXUH WUHDWPHQWV /7f 7KH WHPSHUDWXUH WUHDWPHQWV ZHUH ORZ r GD\r QLJKWf WHPSHUDWXUH UHJLPH /75 DQG KLJK rrf WHPSHUDWXUH UHJLPH +75 7RS QXPEHU LV FRUUHODWLRQ FRHIILFLHQW DQG ERWWRP QXPEHU LV VLJQLILFDQFH OHYHO Q LQ WKH WRS KDOI DQG LQ WKH ERWWRP KDOI RI WKH WDEOHf Q f 9DVH OLIH 1DUURZ VWLSHf ZLGWK :LGH VWLSHf ZLGWK 6WLSH DUHD 673$5($f /HDI GHQVLW\ WKLFNQHVV 6XUIDFH )UHVK DUHD ZHLJKW 6$f 6$ WR 673$5($ 7RWDO XSWDNH 8SWDNH GD\ 8SWDNH GD\ 9DVH OLIH r 1DUURZ ZL GWK r :LGH ZLGWK 6WL SH DUHD r /HDI GHQVLW\ WKLFNQHVV 6XUIDFH DUHD r )UHVK ZHLJKW 6$ WR 673$5($ r 7RWDO XSWDNH r 8SWDNH r GD\ 8SWDNH r GD\ r %RWK )7 DQG r /7 +LJK %RWK r WHPSHUDWXUH )7 DQG r UHJLPH /7 /RZ r +75f WHPSHUDWXUH r UHJLPH /75f r

PAGE 126

7DEOH $ FRQWLQXHG Qf 9DVH 8IH 1DUURZ VWLSHf ZLGWK :LGH VWLSHf ZLGWK 6WL SH DUHD 673$5($f /HDI GHQVLW\ WKLFNQHVV 6XUIDFH DUHD 6$f )UHVK ZHJKW 6$ WR 673$5($ 7RWDO XSWDNH 8SWDNH GD\ 8SWDNH GD\ 9DVH 8IH r r 1DUURZ r ZLGWK r :LGH ZLGWK r 6WLSH r DUHD r /HDI GHQVLW\ r WKLFNQHVV r 6XUIDFH r DUHD )UHVK r ZHJKW r 6$ WR 673$5($ r 7RWDO XSWDNH r 8SWDNH GD\ r 8SWDNH r GD\ r r /75)7 r DQG +75)7 r +75/7 DQG r /75/7

PAGE 127

/,7(5$785( &,7(' $OEDQ ( + : )RUG DQG ) 6 +RZOHWW $ SUHOLPLQDU\ UHSRUW RQ WKH HIIHFW RI YDULRXV FXOWXUDO SUDFWLFHV ZLWK JUHHQKRXVH WRPDWRHV RQ WKH UHVSLUDWLRQ UDWH RI WKH KDUYHVWHG IUXLW 3URF $PHU 6RF +RUW 6FL $QRQ\PRXV /RFDO FOLPDWRORJLFDO GDWD DQQXDO VXPPDU\ ZLWK FRPSDUDWLYH GDWD 'D\WRQD %HDFK )/ 1DWLRQDO &OLPDWLF &HQWHU $VKHYLOOH 1& $QRQ\PRXV /RFDO FOLPDWRORJLFDO GDWD DQQXDO VXPPDU\ ZLWK FRPSDUDWLYH GDWD 'D\WRQD %HDFK )/ 1DWLRQDO &OLPDWLF &HQWHU $VKHYLOOH 1& $QRQ\PRXV /, VWHDG\VWDWH SRURPHWHU LQVWUXFWLRQ PDQXDO 3XEOLFDWLRQ QR 5 /,&25 /LQFROQ 1( $QRQ\PRXV /RFDO FOLPDWRORJLFDO GDWD DQQXDO VXPPDU\ ZLWK FRPSDUDWLYH GDWD 'D\WRQD %HDFK )/ 1DWLRQDO &OLPDWLF &HQWHU $VKHYLOOH 1& $QRQ\PRXV /RFDO FOLPDWRORJLFDO GDWD DQQXDO VXPPDU\ ZLWK FRPSDUDWLYH GDWD 'D\WRQD %HDFK )/ 1DWLRQDO &OLPDWLF &HQWHU $VKHYLOOH 1& $UQRQ &RSSHU HQ]\PHV LQ LVRODWHG FKLRURSODVWV 3RO\SKHQROR[LGDVH LQ %HWD YXOJDULV 3ODQW 3K\VLRO $]FEQ%LHWR + /DPEHUV DQG $ 'D\ (IIHFW RI SKRWRV\QWKHVLV DQG FDUERK\GUDWH VWDWXV RQ UHVSLUDWRU\ UDWHV DQG WKH LQYROYHPHQW RI WKH DOWHUQDWLYH SDWKZD\ LQ OHDI UHVSLUDWLRQ 3ODQW 3K\VLRO %DOODQWLQH ) 0 DQG % )RUGH 7KH HIIHFW RI OLJKW LQWHQVLW\ DQG WHPSHUDWXUH RQ SODQW JURZWK $PHU %RW %DQQLVWHU 3 DQG / :LOGLVK /LJKW FRPSHQVDWLRQ SRLQWV DQG VSHFLILF OHDI DUHDV LQ VRPH 1HZ =HDODQG IHUQV 1HZ =HDO %RW

PAGE 128

%LVZDO ) 1 &KRXGKXU\ 3 6DKX DQG 8 & %LVZDO 6HQHVFHQFH RI GHWDFKHG IHUQ OHDYHV 3ODQW &HOO 3K\VLRO %MUNPDQ &RPSDUDWLYH VWXGLHV RI SKRWRV\QWKHVLV DQG UHVSLUDWLRQ LQ HFRORJLFDO UDFHV %ULWWRQLD %MRUNPDQ 1 %RDUGPDQ 0 $QGHUVRQ 6 : 7KRUQH *RRGFKLOG DQG 1 $ 3\OLRWLV (IIHFW RI OLJKW LQWHQVLW\ GXULQJ JURZWK RI $WUL SL H[ SDWXOD RQ WKH FDSDFLW\ RI SKRWRV\QWKHWLF UHDFWLRQV FKORURSODVW FRPSRQHQWV DQG VWUXFWXUH &DUQHJLH ,QVW :DVK
PAGE 129

QR &DUSHQWHU : DQG + 3 5DVPXVVHQ :DWHU XSWDNH UDWHV E\ FXW URVHV 5RVD K\EULGDf LQ OLJKW DQG GDUN $PHU 6RF +RUW 6FL &DWKH\ + 0 DQG / ( &DPSEHOO /LJKW DQG OLJKWLQJ V\VWHPV IRU KRUWLFXOWXUDO SODQWV S ,Q -DQLFN HGf +RUWLFXOWXUDO UHYLHZ 9RO $9, 3XEOLVKLQJ &R ,QF :HVWSRUW &7 &KDERW % ) DQG ) &KDERW (IIHFWV RI OLJKW DQG WHPSHUDWXUH RQ OHDI DQDWRP\ DQG SKRWRV\QWKHVLV LQ )UDJDULD YHVFD 2HFRORJLD &KDERW % ) DQG $ 5 /HZLV 7KHUPDO DFFOLPDWLRQ RI SKRWRV\QWKHVLV LQ QRUWKHUQ UHG RDN 3KRWRV\QWKHWLFD &KDULHV(GZDUGV $ &KDULHV(GZDUGV DQG 3 &RRSHU 7KH LQIOXHQFH RI WHPSHUDWXUH RQ SKRWRV\QWKHVLV DQG WUDQVSLUDWLRQ LQ WHQ WHPSHUDWH JUDVV YDULHWLHV JURZQ LQ IRXU GLIIHUHQW HQYLURQPHQWV ([SW %RW &KDULHV(GZDUGV $ &KDULHV(GZDUGV DQG ) 6DQW /HDI SKRWRV\QWKHWLF DFWLYLW\ LQ VL[ WHPSHUDWH JUDVV YDULHWLHV JURZQ LQ FRQWUDVWLQJ OLJKW DQG WHPSHUDWXUH HQYLURQPHQWV ([SW %RW &RKHQ 6 DQG 9 &RKHQ )LHOG VWXGLHV RI OHDI FRQGXFWDQFH UHVSRQVH WR HQYLURQPHQWDO YDULDEOHV LQ FLWUXV $SSO (FRO &RQRYHU & $ DQG / / /RDGKROW] /HDWKHUOHDI IHUQ SURGXFWLRQ LQ )ORULGD )OD &RRS ([W 6HUY ,QVW )RRG DQG $JU 6FL 8QLY RI )OD 2UQDPHQWDO +RUW 5SW &RQRYHU & $ DQG 5 7 3RROH ,QIOXHQFH RI VKDGH OHYHO DQG VRLO WHPSHUDWXUH RQ IRUFLQJ RI &DODGLXP ELFRORU 3URF )OD 6WDWH +RUW 6RF &RQRYHU & $ 5 7 3RROH DQG / / /RDGKROW] 8SGDWH RQ OHDWKHUOHDI IHUQ ZLOW 8QLY RI )OD $JU 5HV &QWU$SRSND 5HV 5SW 5+ &RQUDGR / / 5 6KDQDKDQ DQG : (LVLQJHU (IIHFWV RI S+ RVPRODULW\ DQG R[\JHQ RQ VROXWLRQ XSWDNH E\ FXW URVH IORZHUV $PHU 6RF +RUW 6FL &XUWLV 3 ( : / 2JUHQ DQG 5 + +DJHPDQ 9DULHWDO GLIIHUHQFHV LQ VR\EHDQ SKRWRV\QWKHVLV &URS 6FL 'DYLHV ) 6 & ( 0XKR] DQG : % 6KHUPDQ 2SHQLQJ DQG YDVHOLIH H[WHQVLRQ RI FXW SHDFK IORZHUV XVLQJ VXFURVH DQG HWKDQRO $PHU 6RF +RUW 6FL

PAGE 130

,OO 2DYLHV : 7 7 .R]ORZVNL : 5 &KDQH\ DQG /HH (IIHFWV RI WUDQVSODQWLQJ RQ SK\VLRORJLFDO UHVSRQVHV DQG JURZWK RI VKDGH WUHHV 3URF ,QW 6KDGH 7UHH &RQI WK S 'DYLV 6 & + YDQ %DYHO DQG 0F&UHH (IIHFW RI OHDI DJLQJ XSRQ VWRPDWDO UHVLVWDQFH LQ EHDQ SODQWV &URS 6FL 'RUQKRII 0 DQG 5 0 6KLEOHV 9DULHWDO GLIIHUHQFHV LQ QHW SKRWRV\QWKHVLV RI VR\EHDQ OHDYHV &URS 6FL 2XUNLQ DQG 5 .XF 9DVFXODU EORFNDJH DQG VHQHVFHQFH RI WKH FXW URVH IORZHU 3URF $PHU 6RF +RUW 6FL '\HU $ ) 7KH H[SHULPHQWDO ELRORJ\ RI IHUQV $FDGHPLF 3UHVV 1HZ
PAGE 131

)RQWHQR : & DQG ( / 0F:LOOLDPV /LJKW FRPSHQVDWLRQ SRLQWV DQG DFFOLPDWL]DWLRQ RI IRXU WURSLFDO IROLDJH SODQWV $PHU 6RF +RUW 6FL )RVWHU $ 6 DQG ( 0 *LIIRUG -U &RPSDUDWLYH PRUSKRORJ\ RI YDVFXODU SODQWV QG HGLWLRQ : + )UHHPDQ DQG &R 6DQ )UDQFLVFR &$ )ULHQG & $GDSWDWLRQ DQG DGMXVWPHQW RI SKRWRV\QWKHWLF FKDUDFWHULVWLFV RI JDPHWRSK\WHV DQG VSRURSK\WHV RI +DZDLLDQ WUHHIHUQ &LERWLXP JODXFXPf JURZQ DW GLIIHUHQW LUUDGLDQFHV 3KRWRV\QWKHWLFD )ULHQG & 9 $ +HOVRQ DQG ( )LVKHU /HDI JURZWK LQ 0DUTXLV ZKHDW DV UHJXODWHG E\ WHPSHUDWXUH OLJKW LQWHQVLW\ DQG GD\OHQJWK &DQ %RW )ULHQG & DQG 0 ( 3RPHUR\ &KDQJHV LQ FHOO VL]H DQG QXPEHU DVVRFLDWHG ZLWK WKH HIIHFWV RI OLJKW LQWHQVLW\ DQG WHPSHUDWXUH RQ WKH OHDI PRUSKRORJ\ RI ZKHDW &DQ %RW )XMLQR : DQG 0 6 5HLG )DFWRUV DIIHFWLQJ WKH YDVH OLIH RI IURQGV RI PDLGHQKDLU IHUQ 6FLHQWLD +RUW )XMLQR : 0 6 5HLG DQG $ 0 .RIUDQHN 9DVH OLIH RI FXW JUHHQV )ORZHU DQG 1XUVHU\ 5SW :LQWHU 8QLY &DOLI &RRS ([W )XMLQR : 0 6 5HLG DQG ( 9DQGHUPROHQ ,GHQWLILFDWLRQ RI YDVFXODU EORFNDJHV LQ UDFKLGHV RI FXW PDLGHQKDLU $GLDQWXP UDGGLDQXPf IURQGV 6FLHQWLD +RUW *HUQLPR DQG + %HHYHUV (IIHFWV RI DJLQJ DQG WHPSHUDWXUH RQ UHVSLUDWRU\ PHWDEROLVP RI JUHHQ OHDYHV 3ODQW 3K\VLRO *HUWVVRQ 8 ( (IIHFW RI WHPSHUDWXUH GD\OHQJWK DQG OLJKW LQWHQVLW\ RQ JURZWK DQG GHYHORSPHQW RI 'LSODGHQLD VDQGHUL +HPV n5RVHDn 6FLHQWLD +RUW *XSWD % &RUUHODWLRQ RI WLVVXHV LQ OHDYHV DEVROXWH VWRPDWDO QXPEHUV $QQ %RW +DJDU : DQG $ )UHHEHUJ 3KRWRV\QWKHWLF UDWHV RI VSRURSK\WHV DQG JDPHWRSK\WHV RI WKH IHUQ 7RGHD EDUEDUD 3ODQW 3K\VLRO +DOHY\ $ + DQG 6 0D\DN 6HQHVFHQFH DQG SRVWKDUYHVW SK\VLRORJ\ RI FXW IORZHUV 3DUW S ,Q -DQLFN HGf +RUWLFXOWXUDO UHYLHZV 9RO $9, 3XEOLVKLQJ &R ,QF :HVWSRUW &7

PAGE 132

+DOO $ ( DQG 0 5 .DXIPDQQ 6WRPDWDO UHVSRQVH WR HQYLURQPHQW ZLWK 6HVDPXP LQGL FXP / 3ODQW 3K\VLRO +DULUL 0 DQG %UDQJHRQ /LJKWLQGXFHG DGDSWLYH UHVSRQVHV XQGHU JUHHQKRXVH DQG FRQWUROOHG FRQGLWLRQV LQ WKH IHUQ 3WHULV FUWLFD YDU RXYUDUGLL 6WUXFWXUDO DQG LQIUDVWUXFWXUDO IHDWXUHV 3K\VLRO 3ODQW +DULUL 0 DQG / 3ULRXO /LJKWLQGXFHG DGDSWLYH UHVSRQVHV WLQGHU JUHHQKRXVH DQG FRQWUROOHG FRQGLWLRQV LQ WKH IHUQ 3WHULV FUWLFD YDU RXYUDUGL L ,, 3KRWRV\QWKHWLF FDSDFLWLHV 3K\VLRO 3ODQW +HLQH 5 : +\GUDXOLF FRQGXFWLYLW\ LQ WUHHV ([SW %RW +HQOH\ 5 : % 7MLD DQG / / /RDGKROW] &RPPHUFLDO OHDWKHUOHDI IHUQ SURGXFWLRQ LQ )ORULGD )OD &RRS ([W 6HUY ,QVW )RRG DQG $JU 6FL ,-QLY RI )OD %XL +HQQ\ 5 5HYHUVLQJ SRVWKDUYHVW ZLOW RI OHDWKHUOHDI IHUQ ,-QLY RI )OD $JU 5HV &QWU$SRSND 5HV 5SW 5+ +HZ & 6 DQG : < 6XDQ 3KRWRV\QWKHVLV DQG UHVSLUDWLRQ RI IHUQV LQ UHODWLRQ WR WKHLU KDELWDW $PHU )HUQ +LOO 5 + &RPSDUDWLYH SDWWHUQV RI FDUERQ GLR[LGH H[FKDQJH RI WKUHH IHUQ VSHFLHV RI VRXWKHDVWHUQ 0LFKLJDQ 0LFK $FDG +RGJPDQ & HGf +DQGERRN RI FKHPLVWU\ DQG SK\VLFV VW HGLWLRQ &KHPLFDO 5XEEHU 3XEOLVKLQJ &R &OHYHODQG 2+ +RHIHUW / / 3RO\FKURPDWLF VWDLQV IRU WKLQ VHFWLRQV RI %HWD HPEHGGHG LQ HSR[\ UHVLQ 6WDLQ 7HFKQRORJ\ +ROPJUHQ 3 /HDI IDFWRUV DIIHFWLQJ OLJKW VDWXUDWHG SKRWRV\QWKHVLV LQ HFRW\SHV RI 6ROL GDJR YLUJDXUHD IURP H[SRVHG DQG VKDGHG KDELWDWV 3K\VLRO 3ODQW +ROPJUHQ 3 3 -DUYLV DQG 0 6 -DUYLV 5HVLVWDQFHV WR FDUERQ GLR[LGH DQG ZDWHU YDSRXU WUDQVIHU LQ OHDYHV RI GLIIHUHQW SODQW VSHFLHV 3K\VLRO 3ODQW +ROWWXP 5 ( $ UHYLVHG FODVVLILFDWLRQ RI HSWRVSRUDQJLDWH IHUQV /LQQ 6RF %RW +XEHU % DQG ( 6FKPLGW (LQH NRPSHQVDWLRQVPHWKRGH ]XU WKHUPRHOHNWULVFKHQ PHVVXQJ ODQJVDPHU VDIWVWURPH %HU GWVFK ERW *HV

PAGE 133

+XEHU & 'LH *HIDVVOHLWXQJ S ,Q : 5XKODQG HGf (QF\FORSHGLD RI SODQW SK\VLRORJ\ 9RO 6SULQJHU9HUODJ %HUOLQ -DJHOV 5 3KRWRV\QWKHWLF DSSDUDWXV LQ 6HODJLQHOOD PRUSKRORJ\ DQG SKRWRV\QWKHVLV XQGHU GLIIHUHQW OLJKW DQG WHPSHUDWXUH UHJLPHV &DQ %RW -DUYLV 3 DQG / 0RULVRQ 7KH FRQWURO RI WUDQVSLUDWLRQ DQG SKRWRV\QWKHVLV E\ WKH VWRPDWD S ,Q 3 -DUYLV DQG 7 $ 0DQVILHOG HGVf 6WRPDWDO SK\VLRORJ\ &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH (QJODQG -HMH $ $ DQG 0 + =LPPHUPDQQ 5HVLVWDQFH WR ZDWHU IORZ LQ [\OHP YHVVHOV ([SW %RW -HZLVV 5 DQG :ROHGJH 7KH HIIHFW RI DJH RQ WKH UDWH RI DSSDUHQW SKRWRV\QWKHVLV LQ OHDYHV RI WDOO IHVFXH )HVWXFD DUXQGLQDFHD 6FKUHEf $QQ %RW .DWR 0 $ QRWH RQ WKH V\VWHPDWLF SRVLWLRQ RI 5XPRKUD DGLDQWLIRUPLV $FWD 3K\WRWD[ *HRERW .UDPHU 3 7KHUPRSHULRGLVP LQ WUHHV S ,Q 9 7KLPDQQ HGf 7KH SK\VLRORJ\ RI IRUHVW WUHHV 5RQDOG 3UHVV 1HZ
PAGE 134

0DF.LQQH\ $EVRUSWLRQ RI OLJKW E\ FKORURSK\OO VROXWLRQV -RXU %LRO &KHP 0DURXVN\ ) 9DVFXODU EORFNDJH ZDWHU DEVRUSWLRQ VWRPDWDO RSHQLQJ DQG UHVSLUDWLRQ RI FXW n%HWWHU 7LPHVn URVHV WUHDWHG ZLWK %K\GUR[\TXLQROLQH FLWUDWH DQG VXFURVH $PHU 6RF +RUW 6FL 0DURXVN\ ) ,QKLELWLRQ RI YDVFXODU EORFNDJH DQG LQFUHDVHG PRLVWXUH UHWHQWLRQ LQ FXW URVHV LQGXFHG E\ S+ K\GUR[\TXLQROLQH FLWUDWH DQG VXFURVH $PHU 6RF +RUW 6FL 0DURXVN\ ) 3UHPDWXUH ZLOW RI OHDWKHUOHDI IHUQ ZLWK GLIIHUHQW SLQQDH PDWXULW\ IURP YDULRXV JURZLQJ HQYLURQPHQWV 3URF )OD 6WDWH +RUW 6RF 0DWKXU ' (IIHFW RI DQWLWUDQVSLUDQWV RQ YDVH OLIH RI OHDWKHUOHDI IHUQ &RPP )HUQ *URZHU f 0DWKXU ' DQG $ 6 %KDJVDUL (IIHFW RI SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ WHPSHUDWXUH DQG DQWLWUDQVSLUDQWV RQ SKRWRV\QWKHVLV DQG UHVSLUDWLRQ RI OHDWKHUOHDI IHUQ +RUW6FLHQFH 0DWKXU 5 + 6WDPSV DQG & $ &RQRYHU 3RVWKDUYHVW ZLOW DQG \HOORZLQJ RI OHDWKHUOHDI IHUQ 3URF )OD 6WDWH +RUW 6RF 0DWKXU ' 5 + 6WDPSV DQG & $ &RQRYHU 5HVSRQVH RI 5XPRKUD DGLDQWLIRUPLV WR ZDWHU DSSOLFDWLRQ OHYHO DQG QLWURJHQ IRUP +RUW6FLHQFH 0F&OHQGRQ + 7KH UHODWLRQVKLS EHWZHHQ WKH WKLFNQHVV RI GHFLGXRXV OHDYHV DQG WKHLU PD[LPXP SKRWRV\QWKHWLF UDWH $PHU %RW 0F&UHH / (TXDWLRQV IRU WKH UDWH RI GDUN UHVSLUDWLRQ RI ZKLWH FORYHU DQG JUDLQ VRUJKXP DV D IXQFWLRQ RI GU\ ZHLJKW SKRWRV\QWKHWLF UDWH DQG WHPSHUDWXUH &URS 6FL 0F0LOOHQ * DQG + 0F&OHQGRQ 'HSHQGHQFH RI SKRWRV\QWKHWLF UDWHV RQ OHDI GHQVLW\ WKLFNQHVV LQ GHFLGXRXV ZRRG\ SODQWV JURZQ LQ VXQ DQG VKDGH 3ODQW 3K\VLRO 0LOWKRUSH ) / 6WXGLHV RQ WKH H[SDQVLRQ RI WKH OHDI VXUIDFH 7KH LQIOXHQFH RI WHPSHUDWXUH ([SW %RW 0RH 5 (IIHFW RI GD\OHQJWK OLJKW LQWHQVLW\ DQG WHPSHUDWXUH RQ JURZWK DQG IORZHULQJ LQ URVHV $PHU 6RF +RUW 6FL

PAGE 135

0RH 5 7KH HIIHFW RI JURZLQJ WHPSHUDWXUH RQ NHHSLQJ TXDOLW\ RI FXW URVHV $FWD +RUW 0RH 5 (IIHFW RI OLJKW WHPSHUDWXUH DQG &a RQ WKH JURZWK RI &DPSDQXOD LVRSK\OOD VWRFN SODQWV DQG RQ VXEVHTXHQW JURZWK DQG GHYHORSPHQW RI WKHLU FXWWLQJV 6FLHQWLD +RUW 0RRQH\ + $ DQG $ 7 +DUULVRQ 7KH LQIOXHQFH RI FRQGLWLRQLQJ WHPSHUDWXUH RQ VXEVHTXHQW WHPSHUDWXUHUHODWHG SKRWRV\QWKHWLF FDSDFLW\ LQ KLJKHU SODQWV S ,Q 3UHGLFWLRQ DQG PHDVXUHPHQW RI SKRWRV\QWKHVLV SURGXFWLYLW\ 38'2& :DJHQLQJHQ 0RRQH\ + $ DQG 0 :HVW 3KRWRV\QWKHWLF DFFOLPDWLRQ RI SODQWV RI GLYHUVH RULJLQ $PHU %RW 0XR] & ( ) 6 'DYLHV DQG : % 6KHUPDQ +\GUDXOLF FRQGXFWLYLW\ DQG HWK\OHQH SURGXFWLRQ LQ GHWDFKHG IORZHULQJ SHDFK VKRRWV +RUW6FLHQFH 1DNDLNH 7 $ FRQWULEXWLRQ WR WKH IHUQ IORUD RI 1HZ *XLQHD 3DUW %XOO 1DWO 6FL 0XV 6HU % %RWf f 1HOO 7 $ $QWLWUDQVSLUDQWV LQFUHDVH IHUQ ORQJHYLW\ &RPP )HUQ *URZHU fO 1HOO 7 $ $ %DUUHWW DQG 5 + 6WDPSV :DWHU UHODWLRQV DQG IURQG FXUO RI FXW OHDWKHUOHDI IHUQ $PHU 6RF +RUW 6FL 1REHO 3 6 ,QWHUQDO OHDI DUHD DQG FHOOXODU &2A UHVLVWDQFH 3KRWRV\QWKHWLF LPSOLFDWLRQV RI YDULDWLRQ ZLWK JURZWK FRQGLWLRQV DQG SODQW VSHFLHV 3K\VLRO 3ODQW 1REHO 3 6 0LFURKDELWDW ZDWHU UHODWLRQV DQG SKRWRV\QWKHVLV RI D GHVHUW IHUQ 1RWKDODHQD SDUU\L 2HFRORJLD 1REHO 3 6 %LRSK\VLFDO SODQW SK\VLRORJ\ DQG HFRORJ\ : + )UHHPDQ DQG &R 6DQ )UDQFLVFR &$ 2JXUD < &RPSDUDWLYH DQDWRP\ RI YHJHWDWLYH RUJDQV RI WKH SWHULGRSK\WHV QG UHYLVHG HGLWLRQ *HEU8GHU %RUQWUDHJHU %HUO L Q 3DUNKXUVW '$ 7KH DGDSWLYH VLJQLILFDQFH RI VWRPDWDO RFFXUUHQFH RQ RQH RU ERWK VXUIDFHV RI OHDYHV (FRO 3DVV 5 DQG ( +DUWOH\ 1HW SKRWRV\QWKHVLV RI WKUHH IROLDJH SODQWV XQGHU ORZ LUUDGLDWLRQ OHYHOV $PHU 6RF +RUW 6FL

PAGE 136

3HHO $ 2Q WKH FRQGXFWLYLW\ RI WKH [\OHP LQ WUHHV $QQ %RW 3HHW 0 0 3K\VLRORJLFDO UHVSRQVH RI 3KDVHROXV YXOJDULV FXOWLYDUV WR JURZWK HQYLURQPHQW 3K' +LVVHUWDWLRQ &RUQHOO 8QLYHUVLW\ ,WKDFD 1< 3HWW\ $ )OXLG IORZ WKURXJK WKH YHVVHOV RI ELUFK ZRRG ([SW %RW 3LHWHUV $ 2Q WKH UHODWLRQ EHWZHHQ WKH WKLFNQHVV RI WKH PHVRSK\OO LQ VXQ DQG VKDGH OHDYHV RI $FHU SVHXGRSODWDQXV / 0HGHGHO /DQGERXZKRJHVFK :DJHQLQJHQ f 3LVHN 9 $ + .QDSS DQG 'LWWHUVWRUIHU 0D[LPDOH RIIQXQJVZHLWH XQG EDX GHU VWRPDWD PLW DQJDEHQ XEHU LKUH JUREH XQG ]DKO )ORUD 3RROH 5 7 DQG & $ &RQRYHU 2EVHUYDWLRQV RQ SRVVLEOH FDXVHV RI IHUQ ZLOW &RPP )HUQ *URZHU fO 3RROH 5 7 & $ &RQRYHU DQG 5 + 6WDPSV 9DVH OLIH RI OHDWKHUOHDI IHUQ KDUYHVWHG DW YDULRXV WLPHV RI WKH \HDU DQG DW YDULRXV IURQG DJHV 3URF )OD 6WDWH +RUW 6RF ,Q SUHVVf 3RROH 5 7 DQG : ( :DWHUV 6RLO WHPSHUDWXUH DQG GHYHORSPHQW RI FXWWLQJV DQG VHHGOLQJV RI WURSLFDO IROLDJH +RUW6FLHQFH 3UDQJH 5 DQG 3 2UPURG (IIHFWV RI DPPRQLXP DQG QLWUDWH QXWULWLRQ RQ WKH RVWULFK IHUQ 0DWWHXFFLD VWUXWKLRSWHULVf &DQ 3ODQW 6FL 3URVVHU & / *HQHUDO VXPPDU\ WKH QDWXUH RI SK\VLRORJLFDO DGDSWDWLRQV S ,Q & / 3URVVHU HGf 3K\VLRORJLFDO DGDSWDWLRQ D V\PSRVLXP $PHU 3K\VLRO 6RF :DVKLQJWRQ & 5REHUWVRQ / / &KDWILHOG DQG 7 3ULQFH $OO DERXW IROLDJH )ORU 5HY 5RJHUV 0 1 $ KLVWRULFDO DQG FULWLFDO UHYLHZ RI SRVWKDUYHVW SK\VLRORJ\ UHVHDUFK RQ FXW IORZHUV +RUW6FLHQFH 5RRN $ 7KH LQIOXHQFH RI JURZLQJ WHPSHUDWXUH RQ SKRWRV\QWKHVLV DQG UHVSLUDWLRQ RI 3LQXV UDGLDWD VHHGOLQJV 1HZ =HDO 5RW 6DOLVEXU\ ) % DQG & : 5RVV 3ODQW SK\VLRORJ\ :DGVZRUWK 3XEOLVKLQJ &R ,QF %HOPRQW &$

PAGE 137

6DQFKH] % 0DUNHWLQJ )ORULGD RUQDPHQWDO FURSV IUHVK IORZHUV DQG IHUQV VXPPDU\ VHDVRQ )HGHUDO6WDWH 0DUNHW 1HZV 6HUYLFH :LQWHU 3DUN )/ 6DZDGD 6 DQG 6 0L\DFKL (IIHFWV RI JURZWK WHPSHUDWXUH RQ SKRWRV\QWKHWLF FDUERQ PHWDEROLVP LQ JUHHQ SODQWV 3KRWRV\QWKHWLF DFWLYLWLHV RI YDULRXV SODQWV DFFOLPDWL]HG WR YDULHG WHPSHUDWXUHV 3ODQW &HOO 3K\VLRO 6FKRQKHUU 5HVLVWDQFH RI SODQW VXUIDFHV WR ZDWHU ORVV WUDQVSRUW SURSHUWLHV RI FXWLQ VXEHULQ DQG DVVRFLDWHG OLSLGV S ,Q 6 /DQJH 3 6 1REHO & % 2VPRQG DQG + =LHJOHU HGVf 3K\VLRORJLFDO SODQW HFRORJ\ ,, :DWHU UHODWLRQV DQG FDUERQ DVVLPLODWLRQ 6SULQJHU9HUODJ %HUOLQ 6LOVEXU\ + 9DULDWLRQV DPRQJ U\HJUDVVHV LQ UDWHV RI DSSDUHQW SKRWRV\QWKHVLV &DUQHJLH ,QVW :DVK
PAGE 138

6WUDLQ % 5 DQG 9 & &KDVH (IIHFW RI SDVW DQG SUHYDLOLQJ WHPSHUDWXUHV RQ WKH FDUERQ GLR[LGH H[FKDQJH FDSDFLWLHV RI VRPH GHVHUW SHUHQQLDOV (FRORJ\ 6WUDLQ % 5 +LJJLQERWKDP DQG & 0XOUR\ 7HPSHUDWXUH SUHFRQGLWLRQLQJ DQG SKRWRV\QWKHWLF FDSDFLW\ RI 3LQXV WDHGD / 3KRWRV\QWKHWLFD 6\YHUWVHQ 3 DQG 0 / 6PLWK -U $Q LQH[SHQVLYH OHDI FKDPEHU IRU PHDVXULQJ QHW JDV H[FKDQJH +RUW6FLHQFH 7KRPDV 0 (IIHFWV RI HFRORJLFDO IDFWRUV RQ SKRWRV\QWKHVLV $QQX 5HY 3ODQW 3K\VLRO 7LQJ 3 3ODQW SK\VLRORJ\ $GGLVRQ:HVOH\ 3XEOLVKLQJ &R 5HDGLQJ 0$ 7UXPS % ) ( $ 6PXFNOHU DQG ( 3 %HQGLWW $ PHWKRG IRU VWDLQLQJ HSR[\ VHFWLRQV IRU OLJKW PLFURVFRS\ 8OWUDVWUXFW 5HV 7U\RQ 5 0 DQG $ ) 7U\RQ )HUQV DQG DOOLHG SODQWV ZLWK VSHFLDO UHIHUHQFH WR WURSLFDO $PHULFD 6SULQJHU9HUODJ 1HZ
PAGE 139

:LOO PRW $ DQG 3 0RRUH $GDSWDWLRQ WR OLJKW LQWHQVLW\ LQ 6LOHQH DOED DQG 6B GLRLFD 2LNRV :LOVRQ DQG 3 &RRSHU $VVLPLODWLRQ RI /ROLXUQ LQ UHODWLRQ WR OHDI PHVRSK\OO 1DWXUH :ROHGJH DQG 5 -HZLVV 7KH HIIHFW RI WHPSHUDWXUH GXULQJ JURZWK RQ WKH VXEVHTXHQW UDWH RI SKRWRV\QWKHVLV LQ OHDYHV RI WDOO IHVFXH )HVWXFD DUXQGLQDFHD 6FKUHEf $QQ %RW :RQJ 6 & DQG & 6 +HZ 'LIIXVLYH UHVLVWDQFH WLWUDWDEOH DFLGLW\ DQG & IL[DWLRQ LQ WZR WURSLFDO HSLSK\WLF IHUQV $PHU )HUQ :RRGKRXVH 5 0 DQG 3 6 1REHO 6WLSH DQDWRP\ ZDWHU SRWHQWLDOV DQG [\OHP FRQGXFWDQFHV LQ VHYHQ VSHFLHV RI IHUQV )LLFRSVLGDf $PHU %RW
PAGE 140

%,2*5$3+,&$/ 6.(7&+ 5REHUW +XJXHQRU 6WDPSV ZDV ERUQ -XQH LQ /RXLVYLOOH .HQWXFN\ +H PRYHG WR ,OOLQRLV LQ DQG JUDGXDWHG IURP +LQVGDOH 7RZQVKLS +LJK 6FKRRO LQ -XQH RI +H HQWHUHG &RH &ROOHJH LQ 6HSWHPEHU RI PDMRULQJ LQ WKH SK\VLFDO DQG ELRORJLFDO VFLHQFHV DQG UHFHLYHG D %DFKHORU RI $UWV GHJUHH LQ 2FWREHU RI :KLOH DW &RH KH ZRUNHG DV D ODERUDWRU\ DVVLVWDQW DQG ZDV DQ KRQRUV SDUWLFLSDQW LQ WKH $VVRFLDWHG &ROOHJHV RI WKH 0LGZHVWnV )LHOG 6WDWLRQ 3URJUDP DQG $UJRQQH 6HPHVWHU ,Q 6HSWHPEHU KH HQWHUHG WKH 8QLYHUVLW\ RI ,OOLQRLV DQG ZDV DZDUGHG D 0DVWHU RI 6FLHQFH GHJUHH LQ HQYLURQPHQWDO VFLHQFH LQ -DQXDU\ 'XULQJ KLV \HDUV DW WKH 8QLYHUVLW\ RI ,OOLQRLV KH ZRUNHG DV D JUDGXDWH WHDFKLQJ DVVLVWDQW ,Q $XJXVW LPPHGLDWHO\ DIWHU FRPSOHWLRQ RI KLV 0 6 %RE EHJDQ ZRUN DV D 5HVHDUFK $VVRFLDWH ZLWK *UDYL0HFKDQLFV &RPSDQ\ 1DSHUYLOOH ,OOLQRLV ,Q ZKHQ WKDW FRPSDQ\ VWDUWHG D VXEVLGLDU\ RSHUDWLRQ $VWURSRQLFV RI $PHULFD LQ :LQWHU *DUGHQ )ORULGD %RE PRYHG WR VXQQ\ )ORULGD WR UXQ WKDW FRPSDQ\ DV 'LUHFWRU RI *URZHU 2SHUDWLRQV :KLOH ZLWK $VWURSRQLFV KH DWWHQGHG 9DOHQFLD &RPPXQLW\ &ROOHJH DQG VWXGLHG WKH KRUWLFXOWXUDO VFLHQFHV ,Q %RE MRLQHG WKH IDFXOW\ DW WKH 8QLYHUVLW\ RI )ORULGD $JULFXOWXUDO 5HVHDUFK &HQWHU LQ $SRSND )ORULGD DV DQ $VVLVWDQW LQ

PAGE 141

+RUWLFXOWXUH :KHQ WKDW RQH \HDU DSSRLQWPHQW WHUPLQDWHG KH EHFDPH D 6HQLRU %LRORJLVW DW WKH VDPH LQVWLWXWLRQ %RE VWDUWHG ZRUN RQ D 'RFWRU RI 3KLORVRSK\ GHJUHH LQ KRUWLFXOWXUDO VFLHQFH DW WKH 8QLYHUVLW\ RI )ORULGD LQ $XJXVW +H ZRUNHG DV D JUDGXDWH UHVHDUFK DQG WHDFKLQJ DVVLVWDQW GXULQJ WKDW WLPH %RE LV D PHPEHU RI 3KL 7KHWD .DSSD 3L $OSKD ;L DQG 6DFKHP $ SRVLWLRQ DV $VVLVWDQW 3URIHVVRU RI 2UQDPHQWDO +RUWLFXOWXUH DW WKH 8QLYHUVLW\ RI )ORULGD $JULFXOWXUDO 5HVHDUFK DQG (GXFDWLRQ &HQWHU LQ $SRSND )ORULGD DZDLWV WKH DXWKRU XSRQ FRPSOHWLRQ RI WKLV GHJUHH

PAGE 142

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV DGHTXDWH 'RFWRU RI WR DFFHSWDEOH LQ VFRSH DQG 3KL RVRSK\ VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI n Q W 4 n$GL &K AML $ ‘ 7SUULO $ 1HOO &KDLUPDQ $VVRFLDWH 3URIHVVRU RI 2UQDPHQWDO +RUWLFXOWXUH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ tIP F U? DPHV ( %DUUHWW $VVRFLDWH 3URIHVVRU RI 2UQDPHQWDO +RUWLFXOWXUH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH FMHJUHH RI 'RFWRU RI 3KLORVRSK\ &KDUOHV $ 3URIHVVRU &RQRYHU RI 2UQDPHQWDO +RUWLFXOWXUH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ )UHGHULFN 6 'DYLHV $VVRFLDWH 3URIHVVRU RI +RUWLFXOWXUDO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7HUU\ : /XFDQVN\ $VVRFLDWH 3URIHVVRU RI %RW ORWFLQ\

PAGE 143

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU FLA. = ; \\/ : 'HDQ &2OHJH RI $JULFXOW 'HDQ IRU *UDGXDWH 6WXGLHV DQG 5HVHDUFK

PAGE 144

81,9,656,7< RI )/25,'$ R +,