Citation
On the role of indium underlays for the prevention of thermal grooving in thin gold films

Material Information

Title:
On the role of indium underlays for the prevention of thermal grooving in thin gold films
Creator:
Lee, Soo Young, 1954-
Publication Date:
Language:
English
Physical Description:
vi, 139 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Annealing ( jstor )
Diameters ( jstor )
Gold ( jstor )
Grain boundaries ( jstor )
Grain size ( jstor )
Indium ( jstor )
Oxides ( jstor )
Thin films ( jstor )
X ray diffraction ( jstor )
X ray film ( jstor )
Gold films ( lcsh )
Grain boundaries ( lcsh )
Indium ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1985.
Bibliography:
Includes bibliographical references (leaves 132-138).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Soo Young Lee.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000870298 ( ALEPH )
AEG7375 ( NOTIS )
14471135 ( OCLC )

Downloads

This item has the following downloads:


Full Text














ON THE ROLE OF INDIUM UNDERLAYS
FOR THE PREVENTION OF THERMAL GROOVING
IN THIN GOLD FILMS











By

SOO YOUNG LEE


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY





UNIVERSITY OF FLORIDA


1985





























Tns cssertation.

The autor grate ac
and advice oy vrs. R ~. eHcff, ?. H. -oA 'cway and J. J. Hren.

Special :ranks c : Lee Grures in e<:ron'x rc K. K. <. r in 3GC

,"r ~neir assistance in ootaining XTEM pnctcmicrograpns.

Hyunsock and Nakyung Lee are thanked for their patience and

prayer.

Final ly, -re a.tcr gratefully acknow'ecces the Iinancial s-p,-

by ARCD and assistance rendered by the Major Analytical Insrertaticn

Center ,AIC : at :ne University of Florida.




















TABLE OF CONTENTS
Page

ACKNOWLEDGEMENT ........................................... 11ii


ABSTRACT ................................................ ...... v


CHAPTER 1.


CHAPTER 2.

2.1.


2.2.
2.2.1.
2.2.2.
2.2.3.


CHAPTER 3.


INTRODUCTION.................................. 1


THEORETICAL BACKGROUNDS....................... 5

Brief Review of Driving Forces for
the Mass Transport............................ 5

Capillary Induced Mass Transport .............. 8
Introduction.................................. 8
Theories of Thermal Grooving.................. 9
Theories of Morphological Instability......... 14


EXPERIMENTAL PROCEDURES....................... 17


3.1. Film Preparation.............................. 17

3.2. Isothermal Annealing.......................... 20

3.3. Characterization of Film Microstructures...... 21
3.3.1. Scanning Electron Microscopy.................. 21
3.3.2. Auger Electron Spectroscopy................... 22
3.3.3. Transmission Electron Microscopy.............. 23
3.3.4. Cross Sectional Transmission Electron
Microscopy.................................... 24
3.3.5. X-Ray .Diffraction............................. 29










Page


CHAPTER 4. RESULTS AND DISCUSSION........................ 30

4.1. Microstructures of Pure Au Films.............. 30
4.1.1. As Deposited Pure Au Films.................... 30
4.1.2. Annealed Pure Au Films........................ 38

4.2. Microstructures of In/Au Composite Films......44
4.2.1. As Deposited In/Au Composite Films............44
4.2.2. In/Au Composite Films Annealed in Air......... 59
4.2.3. In/Au Composite Films Annealed in Hydrogen ....83

4.3. Effects of In and In203 on the
Microstructural Evolutions................... 102
4.3.1. Effects of In and In 03 on the
Microstructural Evolution of In/Au
Composite Fi 1 lms .............................. 102
4.3.2. Effects of In 03 on the Microstructural
Evolution of In/Au Composite Films..........104


CHAPTER 5. CRITICAL CONDITIONS FOR THIN FILM
INSTABILITY BY GRAIN BOUNDARY GROOVING....... 113

5.1. Derivation of the Critical Conditions ........113
5.1.1. Grain Boundary............................... 113
5.1.2. Grain Boundary Vertex........................ 116

5.2. Parameters to Control the Groove Evolution
in Au Thin Films............................. 123


CHAPTER 6. CONCLUSIONS.................................. 130


REFERENCES ................................................... 132


BIOGRAPHICAL SKETCH .......................................... 139


















Abstract of Dissertation Presented to the Graduate School of
the University of Florida in Partial Fulfillment of the
Requirement for the Degree of Doctor of Philosophy



ON THE ROLE OF INDIUM UNDERLAYS
FOR THE PREVENTION OF THERMAL GROOVING
IN THIN GOLD FILMS

BY

SO0 YOUNG LEE

DECEMBER 1985


Chairman: Rolf E. Hummel

Major Department: Materials Science and Engineering


Preliminary studies have shown that grain boundary grooving in

thin Au films is prevented by inserting an indium underlay between gold

film and substrate. The objectives of this work was to investigate the

mechanisms for the prevention of grain boundary grooving in In/Au

composite films by comparing the microstructural evolutions of pure Au

films with In/Au composite films during isothermal annealing.

Microstructures were characterized in terms of grain size, grain

size distribution, texture and surface morphology utilizing TEM, XTEM,

SEM and X-Ray diffraction. The chemical reactions and the distribution

of the phases were monitored by SAD in TEM, and by AES sputter

profilings.











It was found that the principal mechanisms to prevent grain

boundary grooving in In/Au composite films are as follows:


1) Indium underlays modify the microstructure of Au films by

randomization of the orientation of the grains, refinement of

the grain size, uniformity of the grain size distribution and

roughening of the surface of the gold films.

2) Indium is redistributed on gold films and forms In203 on the

free surface and in the gold film during air annealing.

3) The In203 on the surface "caps" the surface of gold film and

limits the mass transport process during annealing.

4) The In203 in the gold film, presumably residing near grain

boundaries, impedes the grain growth by pinning the grain

boundary migration.

Additionally, the critical conditions, where grain boundary grooves

reach the substrate, were derived from geometrical consideration. The

critical ratio of the thickness to grain diameter for Au films was

calculated to be 0.07 using experimental values for the surface energy

and the grain boundary energy from literature.

















CHAPTER 1
INTRODUCTION



The continuing trends of increasing complexity of integrated

circuits have placed severe demands on the improved reliability of the

microelectronic devices. A significant fraction of reliability

problems in the microelectronic devices have been attributed to the

failures in thin film metallizations that interconnect individual

components. Aluminum is the most widely used principal metallization

material for providing necessary contacts and interconnections.

Despite the considerable improvements to increase the lifetime by

alloying with copper and silicon, aluminum metallizations are still

riddled by one dominant failure mechanism, such as electromigration,

which limits the reliability of the integrated circuit interconnections

[1-5].

The future trends towards further miniaturization with an

attendant decrease in the line width and the thickness of the

metallizations favor a shift from aluminum metallization to gold

metallizations because of their greater resistance to corrosion and

lower susceptibility to electromigration. Gold metallizations have

been known to have a longer life time under DC stressing, which might

be attributed to the difference in activation energy for electro-

migration being about 50 to 200% higher than that of aluminum [6-9].










However, it has been shown that several other failure mechanisms,

such as grain boundary grooving and thermotransport, also contribute

significantly to the failure of gold metallizations. In particular,

the grain boundary grooving which is driven by capillarity (surface

tension) has been known to be quite detrimental to the stability of

gold thin film metallizations [10-13].

A grain boundary groove, or thermal groove, is formed when a grain

boundary meets the free surface and its depth deepens with time. In a

sufficiently thin metallization film, this groove may reach the

substrate, leading to voids in the film or to an open circuit. Even

when the grooves do not extend all the way to the substrate, the

decrease in cross sectional area will cause increased Joule heating and

current crowding which results in a concommitant increase in

temperature and electromigration rate, so that the groove area will be

the preferred sites for the failure [14-16].

Hummel et al. have shown that indium underlays between gold and

the substrate inhibit the development of grain boundary grooving during

heat treatment in gold thin film metallizations [17,18]. Although

stabilizing effects of the indium on the grain network of gold films

have been are observed, the conclusive explanation why indium underlays

impede grain boundary grooving has not been provided.

The objective of this dissertation is to investigate the mechanism

for the inhibition of grain boundary grooving of gold thin films by the

addition of indium underlays.

In order to achieve this objective, microstructure evolutions,

chemical reactions and re-distribution of the phases during deposition









and the isothermal heat treatment are monitored. Microstructures are

characterized in terms of grain size, grain size distribution, texture,

and surface roughness, utilizing TEM (Transmission Electron

Microscope), SEM (Scanning Electron Microscope), X-ray diffraction and

XTEM (Cross-Sectional Transmission Electron Microscope). The chemical

reactions such as oxidation and the intermetallic compound formation

and the distribution of the phases are accomplished by SAD (Selective

Area Diffraction) in TEM and AES (Auger Electron Spectroscopy) sputter

profiling.

Three types of specimens have been prepared: 1) pure Au films, 2)

In/Au composite films annealed in air, 3) In/Au composite films

annealed in hydrogen gas. The effect of indium underlays upon the

microstructure of gold films during deposition is studied by comparing

the microstructure of "as deposited" pure gold films with the

microstructure of "as deposited" In/Au composite films. The effect of

In203 on a microstructural evolution during annealing has been

investigated by comparing the microstructures of annealed pure Au films

with the microstructures of annealed In/Au composite films.

Additionally, some theoretical considerations that include

instability conditions for thin films caused by grain boundary grooving

as a function of the grain size and the groove angle and the parameters

which might change the evolution of grain boundary grooves in gold thin

films are discussed.

It will be shown that In203 on the surface and in the grain

boundary are responsible for stabilizing the surface structure and for






4


inhibiting the grain growth, respectively, which in turn reduce the

grain boundary grooving of gold thin films during heat treatment.


















CHAPTER 2
THEORETICAL BACKGROUND



2.1 Brief Review of Driving Forces for the Mass Transport


There are several different kinds of driving forces to cause mass

transport in thin films. In general, the action of a driving force on

atomic motion can be written [19]


Ji = Di VCi + F ( Di / f k T ) Ci


where Ji = the atomic flux of ith constituent

Ci = the concentration of ith constituent

Di = the diffusivity of ith constituent

f = the correlation coefficient appropriate to the mechanism

responsible for the motion, and

kT has its usual meaning.

The first term represents the action of diffusion. The second term

shows the influence of an external driving force.

Driving forces derived from the electric current (electro-

transport) and by the thermal gradient (thermotransport) are briefly

reviewed below. Mass transport driven by capillarity may also be

important in thin films; capillarity effects will be discussed

separately in section 2.2.










2.1.1. Electrotransport (Electromigration)

Electrotransport, or alternatively electromigration, is the

phenomenon of mass transport arising from the driving force of electric

field or electric current. In electrotransport, the driving force is

considered to be the sum of two effects: 1) electrostatic interaction

between the electric field and the ionic core of the atoms, and 2) a

friction force between these ions and the flowing charge carriers,

which is often called the electron wind force. Accordingly, the

driving force can be expressed by [20]

F = Z* |e E = ( Zel + Z wd ) e| E

where Z = the effective charge number

e = the charge of an electron, and

E = the electric field.

From the theoretical considerations, Z* is given by

Z = + z [1 y (pd/Nd) (N /p) |m* / m*]


where z = the electron atom ratio of the material

(pd/Nd) (N /p) = the ratio of the specific
resistivity of the moving defects

to that of the lattice

m = the effective mass, and

y = a numerical constant = 0.5.


Usually the electron wind force is dominant and thus the mass

transport is presumed to occur in direction of the electron flow.










The flux of atoms due to electrotransport is given by

Ji = Ni Di / k T Z* e E

where Ni is the number of ith atoms per unit volume.



2.1.2. Thermotransport (Thermomigration)

Thermotransport, or thermomigration, is the transport of mass due

to a temperature gradient. The driving force for the thermotransport

can be expressed by [21]

Fi= Qi/T V T


where Qi = the heat of transport of ith constituent, and

VT = the temperature gradient = 3T/3x + 3T/Dy + 3T/az.

Q is the energy which flows per unit mass

transported; it has three contributions [22]:


Q = Qint + Qel + Qph

where Qint = the intrinsic contribution due to the motion

of atoms under the static temperature gradient,

Qel = the contribution due to the electron-moving
atom interaction under thermo electric field,

and

Qph = the contribution due to the heat carrier
interaction (phonon scattering).

The atomic flux along the temperature gradient can be written as


S= Ni Di Qi / k T2 V T.










The net transport of matter will be toward lower temperature if Qi

is positive and toward higher temperature if Qi negative.



2.2. Capillary Induced Mass Transport


2.2.1. Introduction

When polycrystalline metals and alloys are heated at an elevated

temperature the shape of the external surface will be altered. The

changes in surface morphology are caused by mass transport driven by

the capillarity; they have been analyzed rigorously in the theories of

thermal grooving and morphological instability. Thermal grooving

theory, or grain boundary grooving theory, deals with the formation and

the evolution of the groove which is formed at the intersection of a

grain boundary with a free surface. Morphological instability theory

deals with the conditions where the original geometry becomes unstable

due to perturbations driven by capillarity. Both thermal grooving and

morphological instability are caused by the surface curvature, which is

related to the chemical potential. However, the curvature, thus the

driving force is discontinuous at the grain boundary for the case of

the thermal grooving while it is continuous for the case of the

morphological instability.

In section 2.2.2., thermal grooving theories involving several

different mass transport mechanisms are presented. Morphological

instability theories for different geometries are given in section

2.2.3.










2.2.2. Theories of Thermal Grooving

A thermal groove is formed at the intersection of a grain boundary

and the free surface as the surface energy and the grain boundary

energy establish an equilibrium satisfying the relation

2 ys sine = Y where e is the equilibrium groove angle, ys is the

surface energy and yg is the grain boundary energy (Figure 1).

The ultimate motivation for the formation of the thermal groove is

the minimization of the total free energy of the system by reducing the

interfacial free energy [23,24]. Although the grain boundary and the

surface may quickly achieve the proper equlibrium angle where they

intersect, the groove will generally continue to grow. Thermo-

dynamically, the growth will continue until the system reaches its

lowest free energy by eliminating the grain boundary. Mechanistically,

the growth occurs in response to the chemical potential gradient which

is caused by the curvature of the groove profile. The Gibbs-Thompson

formula relating the curvature and the chemical potential shows that a

curved surface has chemical potential that is different from a flat

surface. The gradient in chemical potential drives atoms from a point

of higher chemical potential to one of lower chemical potential, with

the result that the groove deepens with time [25].

Assuming isotropic surface properties, Mullins developed a theory

of thermal grooving in which mass transport occurred under the solitary

action of: 1) evaporation-condensation mechanism, 2) surface diffusion

mechanism, and 3) volume diffusion mechanism [26]. The differential

equations describing the evolution of the groove profiles are derived

using small slope approximation.
















%s


GRA IN


GRAIN N


Figure 1. Profile of Thermal Grooving










The shapes of the groove profiles and the dimensional charac-

teristics produced by each transport mechanism are shown in Table 1.





Table 1. Shapes of Groove Profiles for Various
Mechanisms of Mass Transport


MECHANISM


SHAPE OF PROFILE


Evaporation and Condensation


Surface Diffusion


No Maxima



Maxima


Volume Diffusion









The shape of the profile depends upon m, which is the tangent of

the equilibrium angle, but is independent of time. Furthermore, the

linear dimensions of the fixed shape are proportional to tI/2, tl/4 and

t1/3 for evaporation-condensation mechanism, surface diffusion

mechanism and volume diffusion mechanism, respectively.

The three mechanisms of mass transport may operate simultaneously

[27,28]. The relative importance of each mechanism depends upon the

experimental conditions, which may affect the vapor pressure, the

diffusivity and the diffusion distance. It is found that surface

diffusion is the dominant process in the initial stage whereas the

volume diffusion and evaporation-condensation mechanisms are important

at later stages.

The predictions of Mullins theory fit reasonably well with

computer calculations and the experimental data [29-31]. Huang and Lin

have extended the Mullins theory to cases where ridges or notches are

present on the initial surface [32]. It is shown that the grooving

takes place only if the initial slope of the notch is less than /2ys ,

or if the initial surface has a ridge at a grain boundary.

The thermal grooving theory in a system where a loss of matter due

to free evaporation or corrosion occurs simultaneously with surface

diffusion has been treated numerically [33,34]. It is shown that the

groove evolution is not steady state; thus the groove shape is time

dependent and also that the groove depth and the width do not follow a

t1/4 law. It is suggested that free evaporation and corrosion effects

should not be ignored for temperatures greater than 0.65 Tm or for










lower temperatures when the reaction between the adsorbed gases and the

specimen occurs.

Without the assumption of the small slope approximation and the

steady state evolution, a numerical analysis of the groove evolution

for a plane and a wire has been performed [35]. It is predicted that

the groove evolution can lead to the failure of the wire only by

surface diffusion, which indicates the significant effect of geometry

on the evolution of thermal grooving.

Most thermal grooving theories for thin films deposited on a

substrate have been studied in the system where the films are stressed

at high current densities. The thermal groove profile therefore is

influenced, not only by temperature but also by electromigration.

Using the approach of Mullins, Ohring has derived an equation for the

groove profile caused by the applied electric field [36]. It is shown

that the unidirectional electromigration flux establishes the asymmetry

in the profile which is characterized by a fixed shape where linear

dimensions change with time as tI/4. In the case where the temperature

gradient is dominant the groove depth varies with time as tl/3. When

the divergence of the mass flux induced by the electromigration is not

equal to zero (V J / 0 ), a local mass depletion or accumulation

occurs, which accelerates thermal grooving. The electrotransported

mass is depleted at or carried from a grain boundary groove, upsetting

the equilibrium angle and thereby establishing a driving force which

promotes further groove deepening.

Effects of annealing and electromigration on grain boundary

grooving has been investigated in a bicrystal film which is









isothermally annealed and subsequently stressed at a high current

density [37]. The combination of fluxes from capillarity-induced

surface diffusion and electromigration-induced grain boundary diffusion

is shown to cause open circuit failures by developing severe mass

depletion and accumulation at the grain boundary groove.



2.2.3. Theories of Morphological Instability

The morphological changes of the surface driven by capillarity may

cause the instability of the original geometry. The break-up of a long

cylinder into spheroidal particles, the blunting of a field emmision

cathode and the rupture of a wire by thermal grooving are examples of

this phenomenon [38-41].

Instability conditions are strongly dependent upon the geometry,

dominant mass transport mechanism, the surface energy, the amplitude

and the direction of the perturbation. While small perturbations in a

nearly planar surface will decay with time to make the flat surface

stable, some perturbations in a nearly cylindrical or spherical surface

increase their amplitudes with time to make the original surface

unstable.

First-order perturbation analysis has been treated by Rayleigh for

inviscid fluids assuming the cylinder of infinite length [42].

Analogous treatment has been performed by Nichols and Mullins for

different geometries [43]. For an infinite cylinder with longitudinal

perturbation by surface diffusion the following instability conditions

are obtained.

For any longitudinal perturbation of wavelength less than o0,









which is 2TrRo, the cylinder is stable, i.e. such perturbations decay

with time. For A>\ the cylinder becomes unstable, i.e. such

perturbations increase in amplitude with time. For X= XM, the wave

length at which the perturbation develops the maximum value, the

cylinder breaks up into a line of particles with spacing xAM

The mechanism of break-up of plate-like particles has been also

predicted; a platelet will first develop a doughnut-shaped rim, which

is essentially a curved cylinder by a bulging process along its edges.

This rim will in turn break up into a ring of spheres separated by AM,

by the process discussed above. The experimental support for this

mechanism has accomplished by Yen and Coble [44]. The spherodization

of semi-infinite rods has been treated with a numerical method in which

the initially uniform circular section is spheroidized into a series of

egg-shaped particles. Nichols has analysed a finite cylinder with

hemisphere ends and has calculated the critical length to diameter

ratio (L/0D) of 7.2. Below this value only one spheroidal particle

results; above it the particle breaks up into two or more parts [45].

The energetic and the kinetics of the instability of a thin film

where an initially uniform film, which has been deposited on a

substrate, breaks up into an array of beads or islands, has been

studied by Srolovitz and Safaran [46,48]. They have calculated the

instability condition for a thin film with respect to large amplitude

perturbations, namely holes and islands using non linear perturbation

analysis. To evaluate the shape of the film, a quasi-static

approximation is employed, i.e. determine the shape of the film by

minimizing the energy of the system with respect to film shape. It is






16


found that holes which exceed a critical size, which is proportional to

the ratio of the thickness to equlibrium contact angle, grow and

eventually disconnect the film. For a potential source of these large

perturbations the grain boundary groove, especially at the vertex,

where three grain boundaries meet, is proposed.
















CHAPTER 3
EXPERIMENTAL PROCEDURES



3.1. Film Preparation


The pure Au and the In/Au composite films were prepared by using a

high vacuum deposition technique.

The substrates on which the films were deposited were optically

flat, commercial grade fused quartz plates (2.5 x 3.5 x 1 mm3), which

were polished on one or both sides. Films were deposited on the polished

side. Impurities of the quartz substrate were as follows:


A1203 : 60 100 ppm, Fe203 : 3-5 ppm, K20 : 3 ppm


Ti02 : 5 ppm, Na20 : 4 ppm, Ca : 0.5 ppm, B : 0.3 ppm


Prior to deposition the substrates were examined with the aid of

an optical microscope to discard the ones with gross defects such as

scratches, seeds and bubbles. The substrates were then ultrasonically

cleaned in the following sequences:

1) Alconox detergent (7.3% phosphorous by weight, pH 9.0 9.5)

and water in order to remove water-soluble and some organic

contaminants including oils, greases, soils and carbon products.

2) Micro and de-ionized water in order to remove water-soluble

contaminants which were introduced by the detergent.










3) Reagent grade acetone, a semi-polar solvent, acting as a vapor

degreaser.

4) Reagent grade alcohol, a less polar solvent containing fewer

inherent impurities used to continue the cleaning action initiated by

the acetone wash.


The substrates were then subjected to a stream of dry air and re-

examined optically for flaws. The substrates were mounted in spring-

loaded holders that enabled the placement of a molybdenum mask over the

substrate. These holders were then placed in the vapor deposition

chamber for film deposition.

Prior to opening the vacuum chamber to load the substrates and the

source materials, several heating tapes were wrapped around the chamber

in order to minimize impurity adsorption along the walls and the

constituent parts of the chamber. After the appropriate substrates and

source materials were placed in the chamber, the system was immediately

closed and pumped down. A mechanical pump was used to bring the

pressure in the chamber to 1.5 x 10-1 Torr within 5 minutes. This cut-

off pressure and the use of a zeolite-filled absorption trap minimized

the backstreaming of water and the hydrocarbon molecules from the

mechanical pump oil back into the chamber. Laboratory grade nitrogen

was then bled into the chamber to reduce the partial pressure of oxygen

and water vapor. This process was repeated several times before

turning on the adsorption pump. A liquid N2 cooled absorption pump

then reduced the chamber pressure 1.5 x 10-1 Torr to 2 x 10-3 Torr

(2.6 x 10-1 Pa ) by particularly reducing the partial pressures of

nitrogen, carbon dioxide, water vapor and residual hydrocarbons. After











outgassing the titanium filament of a sublimation pump, the adsorption

pump was closed off. Two sputter-ion pumps, in conjunction with the

sublimation pump, brought the system pressure down to the deposition

pressure within 3 to 5 hours. Base pressures prior to deposition were

in the range of 4-6 x 10-8 Torr (5-8 x10-6 Pa).

The Au was evaporated from a Mo boat that was resistively heated

by 180 amps generated by a 3 KVA power supply. The purity of Au wire

was 99.999%. A sufficient amount was loaded to prevent the poor

wetting of Au. Deposition was carried out with the ion pump on.

Pressure during the deposition was maintained below 1 X 10-6 Torr (1.3

x 10-4 Pa). The substrates were held at room temperature but the

radiation heating during the evaporation raised the substrate

temperature up to about 45 deg C, which was measured by the Alumel-

Chromel thermocouple attached to the substrate. Deposition rates of Au

varied from 2 A/s to 9 A/s with an average rate of approximately 3.3

A/s.

For In/Au composite films, indium of 100-150 A thickness was

deposited first on the quartz substrate by applying 120 amps to a Mo

boat. Indium wire of 99.99% was used as the source material. Base

pressure prior to deposition of In was below 6 x 10-8 Torr (8 x 10-6

Pa) and the pressures during deposition were 1-4 X 10-7 Torr (1.3-5 x

10-5 Pa). Deposition rates ranged from 2 A/s to 8 A/s with an average

rate of 4.8 A/s. After deposition, about 2 to 15 minutes were required

for the system to reach the base pressure, 6 X 10-8 Torr (8 x 10-6 Pa)

for the subsequent deposition of Au. Gold film of 700-800 A thickness

then was deposited on the indium-covered quartz. Pressures during











deposition were 1-4 X 10-6 Torr (1-5 x 10-5 Pa) and the deposition

rates ranged from 2 to 8 A/s. The thickness of the films was measured

in situ with a piezo-electric film thickness monitor calibrated for

gold.

Upon completion of the deposition, the ion pump was turned off and

the films were stored in the vacuum chamber for more than 6 hours for

cooldown. The films were inspected with an optical microscope for

probable defects prod-uced during the deposition process such as

pinholes, scratches and noticeable contaminants. The specimen with

defects were discarded.



3.2. Isothermal Annealing


Three annealing temperatures, namely 300, 400 and 500 C, were

chosen to approximate those temperature produced during the typical

electromigration tests. A 500 C anneal was chosen to accelerate any

thermally activated processes. The annealing time, unless specified,

otherwise was 1 hour.

The specimens were heated in a tube furnace where the temperature

and the atmosphere were controlled. The furnace was pre-set to the

annealing temperature and allowed to stabilize for 2 hours before the

specimen was inserted.

Annealing in an oxidizing atmosphere was accomplished by heating

the specimens in air. No purging step was taken. Upon completion of

heating, the specimens were removed from the hot zone and were allowed

to cool in air at the cold zone for 30 minutes.










Annealing in a reducing atmosphere, that is in H2, required

several precautions due to potential oxidation of films during the heat

treatment. Preliminary experimental results showed that the use of an

inert gas, for example, Ar (99.999 % pure), for purging and cooling

caused some oxidation. Therefore, only ultra high pure H2 (99.999%)

was used for purging, heating and cooling. For heating and cooling,

the specimens were inserted into the hot zone and pulled out into the

cold zone with a stainless steel rod. To avoid any oxidation, the

specimen relocations were carried out while H2 was flowing. The H2

pressure during the heating was maintained to 4 psi (2.7 x 104 Pa).

The flow rate of H2 was controlled by monitoring the gas bubbles from

an oil bath.



3.3. Characterization of Film Microstructures


3.3.1. Scanning Electron Microscopy

Surface topography of pure Au and In-alloyed Au films were

examined in a JEOL scanning electron microscope JSM 35 CF. The

specimens were mounted on an aluminum specimen holder (5mm in diameter)

with silver paint and were dried for 24 hours before examining them in

the microscope. No conducting coatings were applied.

The grain size and the grain size distribution were measured using

a line intercept method, which allows calculation of the size of the

grain from counting the number of intersection of a line of known

length with the grains.










3.3.2. Auger Electron Spectroscopy

An analysis of the atomic species contained in the films as well

as the sputter profiles for In/Au composite films were accomplished by

using a Scanning Auger Microscope. Up to 8 specimens were mounted on a

carousel holder in a single loading and sequentially rotated in front

of the analyzer. The critical conditions for the analysis were as

follows:

E-Gun beam voltage: 3 KV

Peak to peak modulation amplitude: 3 eV

Sweep rate: 3 eV/s

Detection sensitivity: 25 V

Electron multiplier: 1000 V

Base pressure: <1 X 10-9 Torr (1.3 x 10-7 Pa)

Pressure, Ar ion sputtering: 4 X 10-5 Torr (5.3 x 10-3 Pa)

Ion Gun beam voltage: 2 KV

Ion Gun emission current: 5 mA.


Identification of peaks in the Auger spectrum was accomplished

through the combined use of a chart of Principal Auger Electron

Energies and the standard spectra in the handbook [49]. Transition

peaks of NVV (69 eV), MNN (404 eV) and KLL (510 eV) were used to
identify Au, In and 0 elements, respectively. Peak to peak heights for

these peaks were measured and plotted with respect to the sputter time.

The quantitative analysis, atomic concentration (%), was obtained

from the calculation using the formula:


Cx = Ix/Sx /(Ia/Sa)










where Cx = atomic concentration, %

Sx = relative sensitivity of element X

Ix = peak to peak height of element X

Sa = relative sensitivity of element A

Ia = peak to peak height of element A.


The relative sensitivity of element X was calculated from the peak

to peak heights of element X and silver in the handbook. The relative

sensitivities of Au, In and oxygen calculated were 0.417, 0.93 and

0.484, respectively. Atomic concentration for each elements were

plotted with respect to the sputter time and these profiles were

normalized to the thickness of Au films.



3.3.3 Transmission Elecron Microscopy


The films were examined in a JOEL 200CX STEM operated at 200 KV.

A given film for conventional top view transmission electron microscopy

was floated off the quartz substrate in a 40 % concentrated

hydrofluoric acid and rinsed in DI water. The floated film was then

put on a standard 3mm copper grid with 100 mesh and dried in the

dessicator before examination in the microscope.

A grain structure of the film was obtained by image mode and the

diffraction patterns were obtained by SAD (Selective Area Diffraction)

mode. The size and the distribution of the grains were measured by

line intercept method. Phase identification was accomplished by

measuring the distance of the diffraction spot or ring from the center

(transmitted beam) and using the formula [50]:










Rx d = X xL


where R = the distance of the diffraction pattern

d = the inter-planar spacing of a phase

x = the wave length of the electron

L = the camera constant of the microscope.



3.3.4. Cross Sectional Transmission Electron Microscope


The cross sectional TEM refers to examining the specimen in cross

section by TEM. That is, the surface normal of the specimen is made

perpendicular to the electron beam. The preparation of cross section

specimens of TEM has been described by several investigators mainly for

silicon based materials [51-52]. The same type of preparation

technique was adopted for annealed In/Au composite films, although

several modifications had to be made for following reasons:

1) A very thin area is required for TEM examination for an Au

based alloy because Au has a very high atomic number, which means that

it is very difficult for electrons to transmit the specimen.

2) Since sputter rates of Au and quartz are supposed to be quite

different, a uniform thinning during ion milling is difficult.

3) As Au has very poor adhesion to most surfaces, it is critical

to apply an adhesive compound which has a good adhesion and the

mechanical strength.










The specimens were prepared in the following sequence:

1. Sectioning

The specimens were sectioned into rectangular slabs that measured

2.5 mm in width and 9 mm in length. A diamond low speed watering saw

was used for this purpose. The slabs then were degreased and

thoroughly cleaned by ultrasonic scrubbing in acetone.

2. Gluing

Two slabs were glued face to face into a composite by applying a

thermosetting adhesive epoxy compound in between them. The epoxy

compound was prepared by mixing 16g of EPOK 812, 14g of NMA (Nadic

Methyl Anhydride) and 0.58g of DMP-30 (Tris dimethylaminomethyl

phenol). The compound was very fluid so that a smooth and thin layer

could be easily applied.

The composite was then inserted into a vise and pressure was

applied by moving the crosshead toward the end plate which was made out

of teflon. The vise which was designed to hold a composite together

under even pressure during curing was then put into a convectional oven

and cured at 70 deg C for 8 hours. Subsequently, the vise was allowed

to cool for 45 minutes. Then the composite was removed from the vise

by releasing the pressure. The glue on the surface of the composite

was removed by slightly grinding with the sand paper.

3. Molding

For protection and handling purposes, the composite was embedded

into the epoxy compound by molding. This was accomplished by filling

up a rubber mold with epoxy compound, followed by inserting the

composite into the mold. Care was taken not to introduce any bubbles










during inserting the composite into the mold. The mold was then put in

an oven and cured at 70 deg C for 8 hours. After curing has been

completed, the mold was allowed to cool for 1 hour. The molded epoxy

bar which contains the composite inside was removed then from the mold.

4. Slicing and Mounting

The molded epoxy bar was sliced into several discs of 0.3 mm

thickness with a diamond watering saw. In most cases, more than 6

discs were cut from a single epoxy bar.

Up to three discs were then simultaneously mounted onto a disc

holder (1 cm in diameter and 2 cm in height) on a hot plate using a

crystal-bond wax.

5. Grinding

The disc holder was then inserted into a DISC Grinder by which the

height of the specimen grinding was controlled with an inclement of 10

m. The discs were ground by using a low speed rotating wheel using 600

grit self adhesive sand paper. Less than 3000 rpm was used as rotating

speed. Plenty of water was supplied during grinding in order that the

wax did not overheat and melt. The thickness of the disc was

frequently checked with a micrometer while the discs were still

attached to the disc holder. The grinding was terminated at a

thickness of about 150 Pm. Both the disc holder and the DISC Grinder

were cleaned thoroughly with a detergent and water. They were gently

rubbed by a cotten swab during cleaning to remove any surface

contaminants.










6. Polishing and Mounting

Three successive polishing steps were carried out using 1 um

diamond paste, 0.3 um alumina and 0.03 pm alumina on separate polishing

cloths. Rotation speeds were maintained below 2000 rpm. It was

critical to clean the disc holder and the DISC Grinder thoroughly after

each polishing step in order not to introduce scratches during

polishing.

Upon completion of the final polishing and the cleaning, the disc

holder was put on a hot plate and each disc was turned over to thin the

other side. More crystal-bond wax was applied if necessary.

7. Grinding

The other side of the discs were ground the same way as in step 5

until the thickness was less than 100 pm. Subsequent thinning the

discs from 100 pm to 20 pm was accomplished by grinding them manually

with plenty ofwater on sand paper. Special care was taken not to

apply excessive pressure during grinding. The cleaning was followed by

using the same detergent and rubbing the specimen with a cotten swab.

8. Polishing and Demounting

Final polishing was accomplished with 1 pm diamond paste on

polishing cloth. A 1000 rpm rotating speed and short polishing time

were used to avoid breakage of the disc. Cleaning followed the same

procedure as in step 7.

The disc holder was then put on a filter paper and was soaked in

acetone for 20 minutes to remove any wax. As the discs were demounted

from the holder, they remained on the filter paper, which was carefully









removed and dried. The discs were very fragile and were handled with

utmost care.

10. Gluing

In order to improve handling in the subsequent processes and the

microscope examination, the discs were glued on a standard 3 mm copper

grid having a single hole of 1 mm diameter. This was accomplished by

applying EPOXY(Double/Bubble), Harman Co., around the edge of the hole

and putting the disc on the grid. The position of the disc was

adjusted to make sure that the interface was located at the center of

the grid. The copper grid was then cured in an oven at 100 deg C for 2

hours.

11. Ion Milling

The final thinning was accomplished by ion milling the specimen in

a ion milling instrument with a terminator, where argon ions were

accelerated with 5 KV potential, a specimen current of 3 mA and a

specimen tilt of 13 degrees. The vacuum level was about 5 x 10-6 Torr

(6.6 x 10-4 Pa). The terminator measured the specimen current every 10

seconds and shut off the ion milling automatically when the current

reached the pre-set current. A total of 8 to 10 hours were taken

before the terminator stopped the milling. Once perforation was

achieved, the tilt angle was reduced to about 11 degrees for another 15

to 30 minutes ion milling without using the terminator.

Most of the cross sectional TEM examination were accomplished in

Hitachi H-800 TEM (200 KV). Some of the specimens were investigated by

EDX (Energy Dispersive X-ray Spectroscopy) analysis for the quantitative

information of the elements.







29



3.3.5 X-Ray Diffraction

X-ray diffraction patterns for pure Au and In/Au composite films

were obtained from an automated powder diffractometer operated at

45 KV. The position and the integrated intensity of the diffraction

peak was automatically measured and recorded on the chart by data

processing computer.

















I


CHAPTER 4
RESULTS AND DISCUSSIONS
The following experiments were undertaken to study the effect of
indium underlays upon microstructural evolutions of gold thin films:
1) annealing of pure Au films at 300 C, 400 C and 500 C
for 1 hr in air
2) annealing of In/Au composite films at 300 C, 400 C and 500 C
for 1 hr in air
3) annealing of In/Au composite films at 300 C, 400 C and 500 C
for 1 hr in hydrogen gas
4.1. Microstructure Studies of Pure Au Thin Films
4.1.1. As Deposited Pure Au Films
a) Grain structure
Figure 2a depicts the grain structure of an as deposited Au film
examined by TEM. This micrograph reveals a mixture of fine and coarse
grains. It is noted that, apart from the predominant grains whose mean
grain diameter is about 1000 A, much bigger grains, of a few thousand A
in diameter can be easily distinguished.


~










The presence of such large grains may suggest the preferential

growth of large nuclei along certain crystallographic direction during

deposition. The nucleation and the growth of gold evaporated on the

non reacting surface, known as "non-wetting growth," has been known to

form large nuclei because of the high mobility of adsorbed atoms,

called adatoms, along the surface [53]. Similar grain structures have

been reported by other investigators in vapor deposited gold thin films

although the mean grain size was found to be different probably due to

different deposition conditions [54,55].


b) Surface morphology

Very little detail of the surface structure were resolved by SEM

as shown in Figure 2b, which suggested that the as deposited pure Au

film had a very smooth surface. The surface roughness in the vapor

deposited thin films is determined by the statistical process of

nucleation and growth and the surface mobility of adatoms during

deposition [56]. As the surface mobility increases, the tendency to

have a smooth surface increases since the condensation can occur

preferentially at the concavities and thus smoothens the surface.

The surface mobility of adatoms increases with increasing kinetic

energy of adatoms and the substrate smoothness. The effect of kinetic

energy on the surface mobility of evaporated gold adatoms has been

studied by Chopra [57]. He showed that critical nuclei can move a

considerable distance with the momentum imparted by gold adatoms.

The surface of the substrate used in the present experiment was

polished. A very flat surface with little irregularities was observed

by the examination of the cross section of the substrate in TEM. The










surface smoothness of the as deposited pure Au films, therefore, is

believed to result from the smooth surface of the substrate and the

high kinetic energy of gold atoms during deposition.


c) Texture

X-ray diffraction patterns revealed very strong (111}, {222} peaks

and a weak {311} peak (Figure 3). SAD patterns revealed that the

intensity of {220} ring was greater than that of the {111} ring (Figure

4).

The preferred orientation, or fiber texture, in the film can be

determined by comparing the X-ray and SAD diffraction patterns with the

diffraction pattern of the randomly oriented gold powders which is

listed in JCPDS (Jointed Committee of Powder Diffraction Standard).

The randomly oriented gold powders have the most intensive {111} and

moderately intensive (200}, {220}, {311} peaks as shown in Table 2.

Therefore, the very strong (111} and (222} peaks in the X-ray

diffraction patterns suggest a (111) preferred orientation in the film.

Furthermore, since X-ray diffraction does occur from the crystals which

lie parallel to the substrate surface, it is suggested that the (111)

orientation is parallel to the substrate surface [58].

SAD patterns complement the presence of a (111) texture in the

film. The fact that the intensity of the {220} ring is greater than

that of {111} ring suggests that the incident electron beam direction

is likely to be [111] direction since electron diffraction in TEM does

occur'from the crystals which lie parallel to the incident beam

















(a)









0.2pm







(b)











Figure 2. Photomicrographs of As Deposited Pure Au Films :
a) Transmission Electron Micrograph
b) Scanning Electron Micrograph















111

222







20


Figure 3. X-Ray Diffraction Patterns of As Deposited Pure Au Films






















































Figure 4. SAD Patterns of As Deposited Pure Au Films























































Figure 4. SAD Patterns of As Deposited Pure Au Films









Table 2. X-Ray Diffraction Patterns of Au Powders Listed in JCPDS


d, A


2.355

2.04

1.442

1.23

1.177


111

200

220

311

222


lhkl/lllI %









direction [59,60]. In summary, as deposited pure Au films have a (111)

texture parallel to the substrate surface.

The preferred orientation in thin films may develop at various

stages, e.g., nucleation, growth, epitaxial growth and heat treatment.

When the substrate has a dominating influence on the orientation, in

which the substrate energetically favors the adsorption of one

geometrical arrangement atoms in nuclei over another, the epitaxial

growth will be most probable [61,62]. The structure of the substrate

used in the experiment, fused quartz, is amorphous. Thus, the

preferred orientation during epitaxial growth is not likely to occur.

The temperature of the substrate during deposition was maintained below

45 degrees C, hence texture development due to heat treatment is also

disregarded. Therefore, the (111) texture in the as deposited pure Au

film was likely to develop during the nucleation and growth stages.

According to the capillarity theory of nucleation, the texture

will occur for the orientation which gives lower interfacial free

energy, and hence a lower free energy of formation for the critical

nucleus, and a much higher nucleation rate than any other orientation

[63]. The (111) orientation of gold has been reported to have the

lowest interfacial energy [64]. Thus, the preferred nucleation of

(111) might occur during the nucleation stage.

Several empirical rules concerning texture formation during grain

growth stage have shown the principle of geometric selection during

growth stage. That is, in the growth of randomly oriented nuclei, only

those grains will survive in which the direction of maximum rate of

growth approximately coincides with the normal to the crystallization








front [65]. According to this principle, the closest-packed planes

will lie parallel to the substrate if the surface mobility of adatoms

during deposition is high. Since (111) is the closest-packed plane for

gold, the higher rate of (111) orientation than other orientation

could be achieved.

In summary, whether it is attributed to a higher nucleation rate

or a higher growth rate, or due to a combination of the two, the (111)

texture which is parallel to the substrate surface is likely to occur

during deposition. The presence of a (111) texture is in agreement

with other experiments in which gold films evaporated on the amorphous

substrate had a (111) texture after deposition [66].




4.1.2. Annealed Pure Au Films

a) Grain structure

The grain structures of pure Au films annealed at 300 C, 400 C and

500 C examined by TEM are shown in Figure 5. One observes a coarse-

grained structure throughout. A significant grain growth occurred

during annealing as shown in Figure 6, in which the mean grain

diameters are plotted with respect to the annealing temperatures. The

wide scattering in the grain size indicates the wide grain size

distribution. This becomes wider as the annealing temperature

increases. This might be caused by the higher growth of textured

grains during annealing at the expense of the small grains.




























0.2/ m


Figure 5. Transmission Electron Micrographs of Pure Au Films
Annealed at : a) 300 C, b) 400 C, c) 500 C


























0<
CO,
0



LJ
I-
wJ

0
il

i


300 400 500
T EMP ., C


Mean Grain Diameters measured from Transmission Electron
Micrographs of Pure Au Films Annealed
at Various Temperatures


Figure 6.







b) Surface morphology

Very significant morphological changes in the surface resulting

from the grain boundary grooving and the grain growth are shown in

Figure 7. Thermal grooves along the grain boundaries or at the grain

boundary vertices, where three grain boundaries meet, were observed as

dark lines or dark spots in the SEM micrograph (Figure 8a) and as

bright lines or spots in the TEM micrograph (Figure 8b). The

development of grain boundary grooving during annealing is evident and

the degree of the grooving seems to increase as the annealing

temperature increases.

The most severe grain boundary groove was observed in a gold film

annealed at 500 C, where a hole formed at the grain boundary vertex as

shown in Figure 8b. The presence of a hole at the vertex was confirmed

by the fact that there was no change in the contrast of the bright spot

during tilting the sample up to 45 degrees in TEM examination. Since

the grain boundary grooving is caused by the capillary-induced mass

transport, which is a thermally activated process, the effect of

annealing temperature on the development of the groove seems quite

significant. Development of similar grain boundary grooving in thin

gold films annealed at elevated temperatures or stressed at high

current densities has been reported [67-68]. However, large holes due

to the loss of adhesion or gas bubbles entrapped during deposition were

not observed in the present experiment.














(a)













(b)

O.2pm










(c)









Figure 7. Scanning Electron Micrographs of Pure Au Films Annealed
at : a) 300 C, b) 400 C, c) 500 C


n I

















(a)









0.2 m





(b)












Figure 8. Thermal Grooves in the Grain Boundaries and in the Grain
Boundary Vertices observed by : a) SEM, b) TEM










c) Texture

X-ray diffraction patterns revealed very strong {111} and {222}

peaks, which suggested the (111) texture parallel to the substrate

surface in the annealed pure Au films (Figure 9). The change in the

amount of the texture during annealing can be monitored by comparing

the intensities of {111} peaks. The change in the intensity of 111

peak for annealed pure Au films as a function of the annealing

temperature is shown in Figure 10. The increase of the relative

intensity as the annealing temperature increases suggests a favored

development of grains with (111) orientation during annealing.

The (111) textures in the annealed pure Au films are also evident

in the SAD patterns, in which the {220} ring is more intensive than the

{111) ring, indicating that the [111] direction is the incident beam

direction (Figure 11). The presence of a (111) texture parallel to the

substrate surface is in agreement with other experimental data, in

which the (111) texture was reported in the annealed gold films

[65,69].



4.2. Microstructure of In/Au Composite Films


4.2.1. As Deposited In/Au Composite Films


a) Grain structure

Figures 12a and 12b depict the grain structure of as deposited

In/Au composite films examined by TEM and SEM, respectively. They

reveal a uniform and fine-grained structure with a mean grain diameter

of about 700 A.











2


111


26


22


111


\*_1


20


Figure 9. X-Ray Diffraction Patterns of Pure Au Films Annealed
at : a) 300 C, b) 400 C, c) 500 C


L


2;



_J


Lc_-


22


1~1










15


0


x 10-

0
h-5












300 400 500

TE M P. C

Figure 10. Intensities of (111) Diffraction of Pure Au Films
Annealed at Various Temperatures














(a)













(b)













(c)










Figure 11. SAD Patterns of Pure
a) 300 C, b) 400 C,


Au Films Aneealed at :
c) 500 C










For comparison purposes, the grain structure of a pure indium film

(800 A in thickness deposited on a quartz substrate) was examined by

SEM (Figure 13). A rather uniform and fine-grained structure with a

mean grain diameter of 850 A was observed. It is easily noticed that

the grain structure of the In/Au composite film is qualitatively

similar to that of a pure indium film. This suggests that the

microstructure of In/Au composite films may be influenced by the

microstructure of the indium underlay film.

More careful examination shows some structural difference between

In/Au composite films and pure In film, however. These differences are

1) the mean grain diameter of pure indium film (850 A) is larger than

that of In/Au composite film (700A) and 2) the pure indium film has two

maxima, at about 700 A and 1000 A, in the grain size distribution

whereas the In/Au composite film has a single maximum at about 700 A.

These differences may be attributed to grain growth of the pure indium

film at room temperature and/or to the thickness effect on the grain

size. Since indium has a low melting temperature, 155.4 C, the

homologous temperature, T/Tm, at room temperature is about 0.7. This

is high enough to cause normal grain growth [70]. As some grains grow,

the grain size distribution with two maxima may result.

The effect of the film thickness on the grain size of deposited

thin films has been reported before for many systems [71-73]. The grain

size was observed to increase with increasing thickness. Since the

thickness of pure indium films examined was about 800 A whereas the

thickness of indium underlay in the In/Au composite film was 100 A, a

smaller grain size in the In/Au film than in the pure indium film is










expected. However, this is not generally a linear effect; i.e. the

grain size of a 100 A film is not necessarily 100 A, but more likely

about 700 A. Considering these two effects, it is suggested that the

microstructure of indium underlay affects the microstructure of the

subsequent gold film during deposition.


b) Texture

X-ray diffraction patterns revealed all possible diffractions of

gold, namely {111}, {200}, {220}, {311} and {222} (Figure 14). The

relative intensities of each peak with respect to the intensity of the

{111} peak are compared with those of randomly oriented gold powders in

Table 3. The trend is similar, which indicates that as deposited In/Au

composite films have a relatively random orientation of gold grains

with the tendency of the (111) texture. SAD patterns complement this

information by observing the {111} ring to be the most intensive

(Figure 15).

The relatively random orientation of grains in the as deposited

In/Au composite film suggests the absence of a preferred nucleation and

growth along a certain crystallographic direction. A decreased surface

mobility of adatoms has been reported to cause the random orientation

in vapor deposited thin films [74]. In summary, as deposited In/Au

composite films have the random orientation of gold grains which may

result from the decreased mobility of gold adatoms during deposition.


c) Surface morphology

The surface morphology of the as deposited In/Au composite film

examined by XTEM is shown in Figure 16. A surface roughness similar to



















(a)

















(b)














Figure 12. Photomicrographs of As Deposited In/Au Composite Films:
a) Transmission Electron Micrograph
b) Scanning Electron Micrograph












































Figure 13. Scanning Electron Micrograph of Pure Indium
of 800 A Thickness






















311


200


20


Figure 14. X-Ray Diffractions of As Deposited In/Au Composite Films









Table 3. Values of Ihkl/111 for As Deposited In/Au Composite Films


111

200

220

311

222


lhkl

Au Powder


100

52

32

36

12


I111, %
In/Au
Composite


100

16

15

15

11













































Figure 15. SAD Patterns of As Deposited In/Au Composite Films















































Figure 16. Cross Sectional Transmission Electron Micrograph of
As Deposited In/Au Composite Films






























/ Au "A


/


'I
/

I.
/
0,~


n\ I -n


SPUTTER


TIME, min


Figure 17. AES Sputter Profile of As Deposited
In/Au Composite Films


00-



80.



0


4O
0.0









Some co-deposition of indium and gold could occur either by

radiation during gold evaporation or by heat conduction through the

electrodes. This is possible because of the low melting point of

indium. It requires only about 40% electric power compared to gold

evaporation. Furthermore, the molybdenum boats were located very close

together with one of their ends connected to the same electrode.

However, if indium on the gold surface resulted from co-deposition of

indium and gold, a uniform concentration of indium within the gold film

would be expected. This has not been observed. Therefore, co-

deposition of indium during gold deposition seems not to have occurred

to a 1arge extent.

Interdiffusion of indium and gold during deposition may be aided

by the kinetic energy of the gold atoms which impinge upon the indium

surface during gold deposition. The kinetic energy imparted in this

way could promote the rapid formation of a mixed layer or intermetallic

compounds during the deposition depending upon the deposition

parameters such as deposition rate and substrate temperature. For

example, the formation and the growth of a AuIn2 phase in Au/In thin

film couples during evaporation has been reported [76,77]. A growth

mechanism was proposed which entails the rapid diffusion of indium

along the grain boundaries of AuIn2 grains to the surface. An

interdiffusion during deposition, thus, might have occurred in this

experiment. However, no intermetallic compounds or any other phases

were observed by SAD in TEM and X-ray diffraction analysis.

Interdiffusion after deposition may occur if the indium in the

underlay diffuses out to the free surface at room temperature. Rapid








diffusion of indium at room temperature has been observed by several

investigators [77,78]. Furthermore, some enrichment of indium on the

surface after deposition in Au/In composite films and Au-In alloy films

monitored by RBS and AES has been reported [79,80]. Particularly, the

accumulation of indium on the surface during AES analysis has suggested

the tendency of indium surface segregation at room temperature.

Out-diffusion of indium after deposition is most likely to occur

because of high diffusivity at room temperature. The presence of

oxygen on the surface may suggest the formation of indium oxide and

thus the oxidation might be the driving force for the out-diffusion of

indium. However, surface segregation or a concentration gradient in

the Au film also could be a driving force.



4.2.2. In/Au Composite Films Annealed in Air


a) Grain Structure

The grain structures of In/Au composite films annealed at 300 C,

400 C and 500 C in air as examined by TEM are shown in Figure 18. The

change in the mean grain diameter as a function of the annealing

temperature is shown in Figure 19, where the error bars indicate the

standard deviations. A true identification of grain boundaries in the

images of heavily faulted polycrystalline films was difficult, and the

results may be subject to some error. Nevertheless, the formation of

larger grains at higher temperatures showing grain growth during

annealing was evident.













(a)











(b)

0.2gm









(c)








Figure 18. Transmission Electron Micrographs of In/Au Composite
Films Annealed at : a) 300 C, b) 400 C, c) 500 C

















04
CO
0


2











zi




300 400 500
TEM P. 0C



Figure 19. Mean Grain Diameters measured from Transmission Electron
Micrographs of In/Au Composite Films Annealed at Various
Temperatures in Air











b) Surface morphology

Very little surface structural changes and hence no significant

grain boundary grooves in the annealed In/Au composite films were

revealed by SEM examination (Figure 20). This will be substantiated

below when XTEM results will be discussed. The mean grain diameter

after annealing measured with SEM is about 700 A, which is the same as

in the as deposited In/Au composite film. This could be interpreted

that no grain growth occurred during annealing, which is contradictory

to the result of our TEM examination in which the grain growth was

observed.

The apparent difference between the surface structure observed by

SEM and the internal structure observed by TEM can be explained by

considering some model structures:

1) Model A involves small grains of 700 A in diameter and large

grains of few thousands A in diameter at the bottom of these small

grains as shown in Figure 21a.

2) Model B involves large grains of about 1500 A in diameter

having rough surfaces whose sinusoidal "perturbation" wavelength is

about 700 A as shown in Figure 21b.

Image formation in SEM is achieved by the topographic contrast

resulting from secondary electrons which are emitted from the specimen

surface [81]. The topographic contrasts, therefore, in model A would

be caused by the fine grain structure on the surface whereas those in

model B would be caused by the surface roughness. Since the dimension

of the small grains in model A and the wavelength of the sinusoidal


























S0.
O,2pm


Figure 20. Scanning Electron Micrographs of In/Au Composite Films
Annealed in Air at : a) 300 C, b) 400 C, c) 500 C


















(a)

















(b)












Figure 21. Model Structures to explain the Apparent Difference
between the Surface Structure and the Internal
Structure : a) Model A b) Model B










"perturbation," i.e. surface roughness, are identical, the same surface

structure may be obtained by SEM for both models. Similarly, large

grains as well as small grains may be observed by TEM examination

because image formation in TEM is achieved by the diffraction contrast

of the transmitted electrons [50].

Thermodynamically, the structure of model A is less likely to

occur because it possesses a large amount of grain boundaries although

grain boundaries are expected to be eliminated during annealing in

order to reduce the total free energy by reducing interfacial energy.

Also, knowing that the as deposited In/Au composite films have the

columnar structure, in which the grains are extending through the

entire film (see Figure 16) the granular structure in model A, in which

small grains are embedded on the surface of large grains, is not likely

to develop during annealing [82].

On the other hand, the structure of model B is more likely to

occur because the as deposited In/Au composite film has a rough

surface. The evidence for the existence of model B structure, however,

was achieved by XTEM examination of In/Au composite films annealed at

400 C and 500 C. Figure 22 illustrates the cross section of the In/Au

composite film annealed at 400 C in which some large grains of about

2000 A in diameter and some surface roughness whose sinusoidal

"perturbation" wavelength and amplitude are 750 A and 100 A,

respectively, are clearly seen. Several small grains near the surface

may be attributed to columnar grains whose grain boundaries are located

under some angle with respect to substrate surface normal so that only

a section of the large grain is seen in the projected image of the











cross section of the film. A similar grain size and surface roughness

in the sample annealed at 500 C are shown in Figure 23.

In summary, the origin of the apparent difference between surface

structure and internal grain structure is believed to be due to the

surface roughness of In/Au films annealed in air.


c) Texture

X-ray diffraction patterns for annealed In/Au composite films are

shown in Figure 24. All the possible diffractions of gold, namely

{111}, {200}, {220}, {311} and {222} peaks, are observed. The relative

intensity of each peak with respect to the intensity of the {111} peak

is tabulated in Table 4. By comparing these relative intensities with

those of gold powders as listed in JCPDS, a relatively random

orientation of the grains was found. Little change in the relative

intensities with annealing temperature increase was found. This

suggests that no significant preferential grain growth along certain

crystallographic directions during annealing occurred.


d) Distribution of In and phase formation during annealing

When In/Au composite films are annealed in air, interdiffusion of

the components is likely to occur. Indium will be redistributed to

form a solid solution, intermetallic compounds, or oxides depending

upon the annealing conditions. Identification of the phases formed and

their locations in the film is essential to the understanding of the

microstrutural evolution during annealing.

The equilibrium binary phase diagram for the Au-In system (Figure

25) shows at least 6 intermetallic compounds [83-85], e.g.




































.05
0.05AM


Figure 22. Cross Sectional Transmission Electron Micrograph of
In/Au Composite Films Annealed at 400 C in Air




















epoxy
i


I quartz


0,0 5pm


Figure 23. Cross Sectional Transmission Electron Micrograph of
In/Au Composite Films Annealed at 500 C in Air









111
220


(a) 3112



20


220
111



(b)
222 311 200


20
111
220

(c)

222 311 20

20



Figure 24. X-Ray Diffraction Patterns of In/Au Composite Films
Annealed in Air at : a) 300 C, b) 400 C, c) 500 C










Table 4. Values of Ihkl/1111 for In/Au Composite Films Annealed at
Various Temperatures in Air, As Measured by X-Ray Diffraction







hkl/l111' %
In/Au Composite
Au
Powder 300 C 400 C 500 C

111 100 100 100 100

200 52 30 14 13

220 32 80 100 72

311 36 40 16 18

222 12 6 11 8

















Au-In Gold-Indium


10 20 30 40


Atomic Percentage Indium
50 60 70


80 90


0
1200 -
2100F

1100 -
Ic
1900 F
1000

1700F
900
600F

800 -
1400 F

700 -
Z1OOF (

600 -

IOOF -
500 -

SOOF *
400 -
00F -
C

300 -
SOOF

200 -
300 F
100 -
Au
J.C.C.


Figure 25. Equilibrium Binary Phase Diagram for Au-In System


30 40 50 60
Weight Percentage Indium












Au7In, Au4In, Au31n, AugIn4, AuIn and AuIn2. The solid solubilities of

indium in gold at 500 C and at room temperature are reported to be

about 10 at. % and 7 at. %, respectively. No solid solubility of gold

in indium is reported.

In addition to the intermetallic compounds, three different indium

oxides, which are stable in the temperature ranges in which the

experiments were conducted, are expected to occur [86]. These oxides

are InO, In20 and In203.

The amount of indium in the present In/Au composite films is less

than 5 at. %, assuming that all the indium would diffuse into the gold

without any chemical reaction. This may suggest that indium is

distributed in gold as a solid solution. However, since the structure

of In/Au composite films consists of a 100% gold film immediately on

top of a 100% indium underlay, any phases mentioned above may be formed

depending upon the annealing conditions such as annealing time,

temperature, and atmospheres. The identification, the distribution and

the characterization of the phase or phases formed during annealing

have been accomplished with the combinational use of TEM, AES and XTEM

with EDX techniques.

All In/Au composite films annealed in air revealed the same

additional diffraction rings in SAD patterns as shown in Figure 26.

Based upon the structural informations of the intermetal lic compounds

and oxides available in the literature and in the JCPDS data, the phase

which produces the observed rings is identified as In203. The

orientation of In203 crystals corresponding to each diffraction ring is



























(b)













(c)









Figure 26. SAD Patterns of In/Au Composite Films Annealed in Air
at : a) 300 C, b) 400 C, c) 500 C










also shown in Figure 27. The sharp ring patterns suggest that In203

has a fine-grained, polycrystalline structure.

The distributions of indium in In/Au composite films after

annealing as monitored by AES sputter profiling are shown in Figure 28.

High concentrations of In and 0 on the surface were observed in all

cases (300 C, 400 C and 500 C), which indicates the formation of an

indium oxide layer on the surface. This suggests that most of the

indium did diffuse from the underlay through gold film to the free

surface. The thickness of the oxide on the free surface was found to

grow as the annealing temperature increased as shown in Figure 29. The

thickness was measured by the sputter time required to reduce the

indium signal to 50%. In order that indium oxide can grow in excess of

a monolayer, the diffusion of either the oxygen or indium through the

oxide layer, or both is required. This will depend on the ease of

diffusion of the species through the oxide in a given annealing

condition [87]. We note that the diffusion rates are temperature

dependent following an Arehenius form. Thus, the thickness increase

with increasing annealing temperature is believed to be associated with

a higher diffusivity of indium or oxygen through the oxide layer at

higher temperatures.

The physical dimensions of the In203 grains on the surface were

studied by XTEM examination of the In/Au films annealed at 400 C as

shown in Figure 30. We observe a fine-grained oxide layer, whose mean

grain diameter and thickness are about 200 A and 100 A, respectively. To

further investigate the indium oxide layer on the surface, an EDX

analysis was carried out using the STEM mode at two different locations





75





0181

04,110
012












Figure 27. In203 Phase Identified in SAD Patterns of
In/Au Composite Films Annealed in Air










Au


(a) 0 A / \

S \ / In

15 30 45 60
SP UTT E R TIME ,min


SN Au- A

80 s /,




00
/ o\ /

0 \ J "\/

(b) / I
20 I\
2/ \\ / \


15 30 45 60
S P U T T E R TIME min

100-
F- -P" Au





80- / \ c
/ \ /

S' /
(c) I-"-- .
o40 /\




015 30 45 60
S P U T T ER TIME ,rmin

Figure 28. AES Sputter Profiles of In/Au Composite Films Annealed
in Air at : a) 300 C, b) 400 C, c) 500 C
















10


E
w



5"
cc

F-
I-

0.
(C)

300 400 500

T E M P. C



Figure 29. Thicknesses of Surface Indium Oxide in In/Au Composite
Films Annealed in Air measured from AES Sputter Profiles




































I i
O.Olm
Figure 30. Cross Sectional Transmission Electron Micrograph of
In/Au Composite Films Annealed at 400 C in Air showing
Indium Oxide at the Free Surface












in the film, i.e., the surface region and the middle region of the gold

grain. The beam size of the probe was less than 20 A in diameter. The

analysis showed that the intensity of indium signal (at 3.29 KeV) which

is obtained from the surface region (Figure 31a) was about 50% higher

than that from the middle region of a gold grain (Figure 31b). This

again suggests the presence of indium oxide on the surface.

We attempt now to estimate the thickness of the oxide layer. The

maximum thickness of In203 which is theoretically possible when all

indium from the underlay of 100 A thickness diffuses to the surface and

forms In203 is calculated as follows.

Let tin = thickness of indium, tox = thickness of In203, din

density of indium, dox = density of In203, Min = molecular weight of

indium, Mox = molecular weight of In203, A = unit area, Nin = number of

moles of indium and Nox = the number of moles of In203. The density of

indium can be.written


din = Min x in/A x tin


Rearranging,


Nin = din x A x tin/Min.


Similarly, the density of the indium oxide can be used to write


Nox = dox x A x tox/Mox.


From the reaction


2 In + 3/2 02 = In203,











in 2 Nox-

Inserting the values available in the literature [86,88], the thickness

of indium oxide is obtained by


tox = 1/2 (din/dox) (Mox/Min) x tin


= 120 A.


The maximum thickness of In203 on the surface from a 100 A indium

underlay is thus about 120 A. The experimentally observed thickness,

which is about 100 A (Figure 30), is in reasonable agreement with the

result of this calculation. We need to note that our AES sputter

profile data also showed small amounts of indium (and oxygen) in the

gold film. If we consider some indium oxide left behind in the film,

the agreement between calculation and experiment becomes even more

reasonable.

The location of indium oxide in the film was difficult to see in

electro-optical micrographs because of the small amounts involved.

However, in one case, a grain boundary as shown in Figure 32 revealed

nearly the same contrast as the surface oxide, which might suggest that

indium oxide in the film is located along some grain boundaries.

Further confirmation of indium enrichment along the grain boundaries

with EDX analysis was not possible because the area of interest was

usually too small for a reasonable analysis.

In summary, by utilizing the combination of TEM, XTEM with EDX and

AES techniques, the formation of polycrystalline In203 with a thickness


















a
Au








in


b


Au







In


10
ENERGY, KeV


20


S20b


10
ENE RG Y,KeV


Figure 31. EDX Analysis of In/Au Composite Films Annealed in Air
from Two Different Locations in the Film :
a) surface region, b) middle region


I


~







82


I I
0.02 m


Figure 32.


Cross Sectional Transmission Electron Micrograph of
In/Au Composite Films Annealed at 400 C in Air showing
Indium Oxide along the Grain Boundary











and mean grain diameter of about 100 A and 200 A, respectively, has

been observed for In/Au composite films annealed in air.



4.2.3. In/Au Composite Films Annealed in Hydrogen


a) Grain structure

The grain structures of In/Au composite films annealed at 300 C,

400 C and 500 C in H2 examined by TEM are shown in Figure 33. A

drastic increase in grain diameter with annealing is observed. The

change in the mean grain diameter as a function of the annealing

temperature is shown in Figure 34. The error bars indicate as usual

the standard deviation. The most significant grain growth was observed

in the sample annealed at 500 C, where very large grains with diameters

greater than 1 pm were easily distinguished. This substantial grain

growth accompanied by a wide grain size distribution may result from

the preferential grain growth along certain crystallographic

orientations, presumably (111) parallel to the substrate surface. As

these grains grow preferentially, other grains shrink in size and a

wider grain size distribution may result.


b) Surface morphology

SEM micrographs for In/Au composite films annealed at 300 C and

400C in H2 revealed very little structural changes of the surfaces

(Figure 35). The films annealed at 500 C will be discussed separately

below. In these films, the surface morphology of the as deposited

In/Au composite films seemed to be preserved; that is no significant

grain growth and grain boundary grooves were observed. We know from



























,0.2 m


Figure 33. Transmission Electron Micrographs of In/Au Composite
Films Annealed in H2 at : a) 300 C, b) 400 C, c) 500 C


















04 5-














0T M P. C




-Various Temperatures in H2
W f

3 T i





-













Various Temperatures in H2
















(a)








0.2pm





(b)












Figure 35. Scanning Electron Micrographs of In/Au Composite Films
Annealed in H2 at : a) 300 C, b) 400 C, c) 500 C











the results reported above that the significant grain growth which

occurred during annealing can be observed mainly by TEM. The

difference between the surface structure and the internal grain

structure is again noticed. This apparent discrepancy is believed to

be result of the surface roughness of these samples. Indeed, for an

In/Au composite film annealed at 400 C, the bright field and the dark

field cross sectional TEM micrographs shown in Figure 36a and Figure

36b reveal large grains of about 3000 A in diameter and a rough surface

whose sinusoidal "perturbation" wavelength is about 750 A. Therefore,

the fine surface structure observed by SEM is believed to be caused by

surface roughness, as before, rather than by real grain structure.

A substantially different surface morphology was observed when

In/Au films were annealed at 500 C in H2. The SEM micrograph (Figure

37) shows a very coarse-grained structure and some severe grain

boundary grooves at the grain boundary vertices. The cross sectional

TEM micrographs (Figure 38) reveal very large grains whose diameter is

greater than 7500 A and an extremely smooth surface. This suggests

that the surface roughness has been relaxed during annealing.

The flattening of the rough surface and the evolution of grain

boundary grooves are both caused by the capillary-induced mass transport

during annealing [25-27,89-91]. The mass transport, either by volume

diffusion, surface diffusion or evaporation-condensation mechanisms, is

a thermally activated process and therefore temperature dependent.

Depending on the annealing conditions, the mass transport and the

subsequent flattening or thermal grooving may not occur due to the

kinetic limit. Apparently, annealing at 300 C and 400 C for 1 hr in H2


























quartz


I I
0.0 5 Am


Figure 36.


Cross Sectional Transmission Electron Micrographs of
In/Au Composite Films Annealed at 400 C in H2 :
a) bright field image, b) dark field image

































0. 2 m


Figure 37. Scanning Electron Micrograph of In/Au Composite
Films Annealed at 500 C in H2
























quartzU
quartz


0I0
0.0 5 ym


Figure 38. Cross Sectional
In/Au Composite
a) bright field


Transmission Electron Micrographs of
Films Annealed at 500 C in H2
image, b) dark field image


I 01 1 ,69 P.Ia II8C I










did not provide the conditions to activate the mass transport so that

the relaxation of the roughness has not occurred during annealing. On

the other hand, annealing at 500 C for 1 hr in H2 did provide the

conditions to allow the flattening and the grain boundary grooving to

occur.


c) Texture

X-ray diffraction patterns for In/Au films annealed at 300 C, 400

C and 500 C are shown in Figure 39. The relative intensity of each

diffraction peak with respect to the intensity of the {111} peak is

listed in Table 5. In/Au composite films annealed at 300 C and 400 C

revealed a relatively random orientation; that is they displayed all

diffraction peaks (Figure 39a and Figure 39b). However, the In/Au

composite film which was annealed at 500 C revealed only {111} and {222}

diffraction peaks, which suggested a (111) texture parallel to the

substrate surface (Figure 39c).

SAD patterns complement this information. In/Au composite films

annealed at 300 C and 400 C in H2 revealed that the {111} diffraction

ring was the most intensive one (Figure 40a and 40b). This suggests

the random orientation of the grains in the film. However, the In/Au

composite film annealed at 500 C revealed that the {220} ring was more

intensive than the {111} ring and also showed some directionality as

well (Figure 40c), which suggests a (111) texture paral lel to the

substrate surface.

















220


220


n222 20 nill


Figure 39. X-Ray Diffraction Patterns of
Annealed in H2 at : a) 300 C,


In/Au Composite Films
b) 400 C, c) 500 C











Table 5. Values of Ihk/111 for
Various Temperatures in
Diffraction


Au
Powder


In/Au Composite Films Annealed at
H2, As Measured by X-Ray


In/Au Composite


300 C


100

20

64

22

5


400 C


100

4

26

5


500 C


100

0

0

0


hkl/111' %













(a)












(b)












(c)









Figure 40. SAD Patterns of In/Au Composite Films Annealed in H2
at : a) 300 C, b) 400 C, c) 500 C




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EJMCOEDAX_KSQIOO INGEST_TIME 2017-07-13T21:30:37Z PACKAGE AA00003815_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

21 7+( 52/( 2) ,1',80 81'(5/$<6 )25 7+( 35(9(17,21 2) 7+(50$/ *5229,1* ,1 7+,1 *2/' ),/06 %\ 622 <281* (( $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(17 L V n UFH I SU‘ nI L USUSU n X Q aH L UFU ‘ M f WULV GLVVHUWDWLRQ 7KH DXWKRU JUDWHIXOO\ DFNQRZOHGJHV YDOXDEOH FRPPHQWV DQG DGYLFH E\ UV 5 7 H+RII + +RL RZD\ DQG +UHQ 6SHFLDO WUDQNV JR WR /HH *UXUHV LQ aHWURQL[ DUF 5KRF IRU WKHLU DVVLVWDQFH LQ REWDLQLQJ ;7(0 SQFWFPLFURJUDSQV +\XQVRFN DQG 1DN\XQJ /HH DUH WKDQ[HG IRU WKHLU SDWLHQFH DQG SUD\HU )LQDOO\ WKH DXWKRU JUDWHIXOO\ DFNQRZOHGJHV WKH ILQDQFLDO V E\ $5&2 DQG DVVLVWDQFH UHQGHUHG E\ WKH 0DMRU $QDO\WLFDO ,QVWUX\H &HQWHU A0$,&f DW WKH XQLYHUVLW\ RI )ORULGD FHHV RQV SFUW DWLRQ

PAGE 3

7$%/( 2) &217(176 3DJ $&.12:/('*(0(17 LL $%675$&7 n Y &+$37(5 ,1752'8&7,21 &+$37(5 7+(25(7,&$/ %$&.*5281'6 %ULHI 5HYLHZ RI 'ULYLQJ )RUFHV IRU WKH 0DVV 7UDQVSRUW &DSLOODU\ ,QGXFHG 0DVV 7UDQVSRUW ,QWURGXFWLRQ 7KHRULHV RI 7KHUPDO *URRYLQJ 7KHRULHV RI 0RUSKRORJLFDO ,QVWDELOLW\ &+$37(5 (;3(5,0(17$/ 352&('85(6 )LOP 3UHSDUDWLRQ ,VRWKHUPDO $QQHDOLQJ &KDUDFWHUL]DWLRQ RI )LOP 0LFURVWUXFWXUHV 6FDQQLQJ (OHFWURQ 0LFURVFRS\ $XJHU (OHFWURQ 6SHFWURVFRS\ 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ ;5D\ 'L IIUDFWLRQ

PAGE 4

3DJH &+$37(5 5(68/76 $1' ',6&866,21 0LFURVWUXFWXUHV RI 3XUH $X )LOPV $V 'HSRVLWHG 3XUH $X )LOPV $QQHDOHG 3XUH $X )LOPV 0LFURVWUXFWXUHV RI ,Q$X &RPSRVLWH )LOPV $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ +\GURJHQ (IIHFWV RI ,Q DQG ,UA2A RQ WKH 0LFURVWUXFWXUDO (YROXWLRQV (IIHFWV RI ,Q DQG ,Q" RQ WKH 0LFURVWUXFWXUD (YROXWLRQ RI ,Q$X &RPSRVL WH ) L PV (IIHFWV RI ,QR2A RQ WKH 0LFURVWUXFWXUDO (YROXWLRQ RI ,Q$X &RPSRVLWH )LOPV &+$37(5 &5,7,&$/ &21',7,216 )25 7+,1 ),/0 ,167$%,/,7< %< *5$,1 %281'$5< *5229,1* 'HULYDWLRQ RI WKH &ULWLFDO &RQGLWLRQV *UDLQ %RXQGDU\ *UDLQ %RXQGDU\ 9HUWH[ 3DUDPHWHUV WR &RQWURO WKH *URRYH (YROXWLRQ LQ $X 7KLQ )LOPV &+$37(5 &21&/86,216 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQW IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 21 7+( 52/( 2) ,1',80 81'(5/$<6 )25 7+( 35(9(17,21 2) 7+(50$/ *5229,1* ,1 7+,1 *2/' ),/06 %< 6 <281* /(( '(&(0%(5 &KDLUPDQ 5ROI ( +XPPHO 0DMRU 'HSDUWPHQW 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 3UHOLPLQDU\ VWXGLHV KDYH VKRZQ WKDW JUDLQ ERXQGDU\ JURRYLQJ LQ WKLQ $X ILOPV LV SUHYHQWHG E\ LQVHUWLQJ DQ LQGLXP XQGHUOD\ EHWZHHQ JROG ILOP DQG VXEVWUDWH 7KH REMHFWLYHV RI WKLV ZRUN ZDV WR LQYHVWLJDWH WKH PHFKDQLVPV IRU WKH SUHYHQWLRQ RI JUDLQ ERXQGDU\ JURRYLQJ LQ ,Q$X FRPSRVLWH ILOPV E\ FRPSDULQJ WKH PLFURVWUXFWXUD HYROXWLRQV RI SXUH $X ILOPV ZLWK ,Q$X FRPSRVLWH ILOPV GXULQJ LVRWKHUPDO DQQHDOLQJ 0LFURVWUXFWXUHV ZHUH FKDUDFWHUL]HG LQ WHUPV RI JUDLQ VL]H JUDLQ VL]H GLVWULEXWLRQ WH[WXUH DQG VXUIDFH PRUSKRORJ\ XWLOL]LQJ 7(0 ;7(0 6(0 DQG ;5D\ GLIIUDFWLRQ 7KH FKHPLFDO UHDFWLRQV DQG WKH GLVWULEXWLRQ RI WKH SKDVHV ZHUH PRQLWRUHG E\ 6$' LQ 7(0 DQG E\ $(6 VSXWWHU SURILOLQJV Y

PAGE 6

,W ZDV IRXQG WKDW WKH SULQFLSDO PHFKDQLVPV WR SUHYHQW JUDLQ ERXQGDU\ JURRYLQJ LQ ,Q$X FRPSRVLWH ILOPV DUH DV IROORZV f ,QGLXP XQGHUOD\V PRGLI\ WKH PLFURVWUXFWXUH RI $X ILOPV E\ UDQGRPL]DWLRQ RI WKH RULHQWDWLRQ RI WKH JUDLQV UHILQHPHQW RI WKH JUDLQ VL]H XQLIRUPLW\ RI WKH JUDLQ VL]H GLVWULEXWLRQ DQG URXJKHQLQJ RI WKH VXUIDFH RI WKH JROG ILOPV f ,QGLXP LV UHGLVWULEXWHG RQ JROG ILOPV DQG IRUPV RQ WKH IUHH VXUIDFH DQG LQ WKH JROG ILOP GXULQJ DLU DQQHDOLQJ f 7KH A RQ WKH VXUIDFH FDSV WKH VXUIDFH RI JROG ILOP DQG OLPLWV WKH PDVV WUDQVSRUW SURFHVV GXULQJ DQQHDOLQJ f 7KH A LQ WKH JROG ILOP SUHVXPDEO\ UHVLGLQJ QHDU JUDLQ ERXQGDULHV LPSHGHV WKH JUDLQ JURZWK E\ SLQQLQJ WKH JUDLQ ERXQGDU\ PLJUDWLRQ $GGLWLRQDOO\ WKH FULWLFDO FRQGLWLRQV ZKHUH JUDLQ ERXQGDU\ JURRYHV UHDFK WKH VXEVWUDWH ZHUH GHULYHG IURP JHRPHWULFDO FRQVLGHUDWLRQ 7KH FULWLFDO UDWLR RI WKH WKLFNQHVV WR JUDLQ GLDPHWHU IRU $X ILOPV ZDV FDOFXODWHG WR EH XVLQJ H[SHULPHQWDO YDOXHV IRU WKH VXUIDFH HQHUJ\ DQG WKH JUDLQ ERXQGDU\ HQHUJ\ IURP OLWHUDWXUH 9,

PAGE 7

&+$37(5 ,1752'8&7,21 7KH FRQWLQXLQJ WUHQGV RI LQFUHDVLQJ FRPSOH[LW\ RI LQWHJUDWHG FLUFXLWV KDYH SODFHG VHYHUH GHPDQGV RQ WKH LPSURYHG UHOLDELOLW\ RI WKH PLFURHOHFWURQLF GHYLFHV $ VLJQLILFDQW IUDFWLRQ RI UHOLDELOLW\ SUREOHPV LQ WKH PLFURHOHFWURQLF GHYLFHV KDYH EHHQ DWWULEXWHG WR WKH IDLOXUHV LQ WKLQ ILOP PHWDO L]DWLRQV WKDW LQWHUFRQQHFW LQGLYLGXDO FRPSRQHQWV $OXPLQXP LV WKH PRVW ZLGHO\ XVHG SULQFLSDO PHWDOOL]DWLRQ PDWHULDO IRU SURYLGLQJ QHFHVVDU\ FRQWDFWV DQG LQWHUFRQQHFWLRQV 'HVSLWH WKH FRQVLGHUDEOH LPSURYHPHQWV WR LQFUHDVH WKH OLIHWLPH E\ D R\LQJ ZL WK FRSSHU DQG VL L FRQ DOXPLQXP PHWD L]DWLRQV DUH VWLOO ULGGOHG E\ RQH GRPLQDQW IDLOXUH PHFKDQLVP VXFK DV HOHFWURPLJUDWLRQ ZKLFK OLPLWV WKH UHOLDELOLW\ RI WKH LQWHJUDWHG FLUFXLW LQWHUFRQQHFWLRQV >@ 7KH IXWXUH WUHQGV WRZDUGV IXUWKHU PLQLDWXUL]DWLRQ ZLWK DQ DWWHQGDQW GHFUHDVH LQ WKH OLQH ZLGWK DQG WKH WKLFNQHVV RI WKH PHWDO L]DWLRQV IDYRU D VKLIW IURP DOXPLQXP PHWDO L]DWLRQ WR JROG PHWDOOL]DWLRQV EHFDXVH RI WKHLU JUHDWHU UHVLVWDQFH WR FRUURVLRQ DQG RZHU VXVFHSWLELLW\ WR HOHFWURPLJUDWLRQ *R G PHWD L]DWLRQV KDYH EHHQ NQRZQ WR KDYH D ORQJHU OLIH WLPH XQGHU '& VWUHVVLQJ ZKLFK PLJKW EH DWWULEXWHG WR WKH GLIIHUHQFH LQ DFWLYDWLRQ HQHUJ\ IRU HOHFWURn PLJUDWLRQ EHLQJ DERXW WR b KLJKHU WKDQ WKDW RI DOXPLQXP >@

PAGE 8

+RZHYHU LW KDV EHHQ VKRZQ WKDW VHYHUDO RWKHU IDLOXUH PHFKDQLVPV VXFK DV JUDLQ ERXQGDU\ JURRYLQJ DQG WKHUPRWUDQVSRUW DOVR FRQWULEXWH VLJQLILFDQWO\ WR WKH IDLOXUH RI JROG PHWDOOL]DWLRQV ,Q SDUWLFXODU WKH JUDLQ ERXQGDU\ JURRYLQJ ZKLFK LV GULYHQ E\ FDSLOODULW\ VXUIDFH WHQVLRQf KDV EHHQ NQRZQ WR EH TXLWH GHWULPHQWDO WR WKH VWDELOLW\ RI JROG WKLQ IL P PHWD L]DWLRQV >@ $ JUDLQ ERXQGDU\ JURRYH RU WKHUPDO JURRYH LV IRUPHG ZKHQ D JUDLQ ERXQGDU\ PHHWV WKH IUHH VXUIDFH DQG LWV GHSWK GHHSHQV ZLWK WLPH ,Q D VXIILFLHQWO\ WKLQ PHWDOOL]DWLRQ ILOP WKLV JURRYH PD\ UHDFK WKH VXEVWUDWH OHDGLQJ WR YRLGV LQ WKH ILOP RU WR DQ RSHQ FLUFXLW (YHQ ZKHQ WKH JURRYHV GR QRW H[WHQG DOO WKH ZD\ WR WKH VXEVWUDWH WKH GHFUHDVH LQ FURVV VHFWLRQDO DUHD ZLOO FDXVH LQFUHDVHG -RXOH KHDWLQJ DQG FXUUHQW FURZGLQJ ZKLFK UHVXOWV LQ D FRQFRPPLWDQW LQFUHDVH LQ WHPSHUDWXUH DQG HHFWURPLJUDWLRQ UDWH VR WKDW WKH JURRYH DUHD ZLOO EH WKH SUHIHUUHG VLWHV IRU WKH IDLOXUH >@ +XPPHO HW DO KDYH VKRZQ WKDW LQGLXP XQGHUOD\V EHWZHHQ JROG DQG WKH VXEVWUDWH LQKLELW WKH GHYHORSPHQW RI JUDLQ ERXQGDU\ JURRYLQJ GXULQJ KHDW WUHDWPHQW LQ JROG WKLQ IL P PHWD L]DWLRQV >@ $OWKRXJK VWDELOL]LQJ HIIHFWV RI WKH LQGLXP RQ WKH JUDLQ QHWZRUN RI JROG ILOPV KDYH EHHQ DUH REVHUYHG WKH FRQFOXVLYH H[SODQDWLRQ ZK\ LQGLXP XQGHUOD\V LPSHGH JUDLQ ERXQGDU\ JURRYLQJ KDV QRW EHHQ SURYLGHG 7KH REMHFWLYH RI WKLV GLVVHUWDWLRQ LV WR LQYHVWLJDWH WKH PHFKDQLVP IRU WKH LQKLELWLRQ RI JUDLQ ERXQGDU\ JURRYLQJ RI JROG WKLQ ILOPV E\ WKH DGGLWLRQ RI LQGLXP XQGHUOD\V ,Q RUGHU WR DFKLHYH WKLV REMHFWLYH PLFURVWUXFWXUH HYROXWLRQV FKHPLFDO UHDFWLRQV DQG UHGLVWULEXWLRQ RI WKH SKDVHV GXULQJ GHSRVLWLRQ

PAGE 9

DQG WKH LVRWKHUPDO KHDW WUHDWPHQW DUH PRQLWRUHG 0LFURVWUXFWXUHV DUH FKDUDFWHUL]HG LQ WHUPV RI JUDLQ VL]H JUDLQ VL]H GLVWULEXWLRQ WH[WXUH DQG VXUIDFH URXJKQHVV XWLOL]LQJ 7(0 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRSHf 6(0 6FDQQLQJ (OHFWURQ 0LFURVFRSHf ;UD\ GLIIUDFWLRQ DQG ;7(0 &URVV6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRSHf 7KH FKHPLFDO UHDFWLRQV VXFK DV R[LGDWLRQ DQG WKH LQWHUPHWDO LF FRPSRXQG IRUPDWLRQ DQG WKH GLVWULEXWLRQ RI WKH SKDVHV DUH DFFRPSOLVKHG E\ 6$' 6HOHFWLYH $UHD 'LIIUDFWLRQf LQ 7(0 DQG $(6 $XJHU (OHFWURQ 6SHFWURVFRS\f VSXWWHU SURILOLQJ 7KUHH W\SHV RI VSHFLPHQV KDYH EHHQ SUHSDUHG f SXUH $X ILOPV f ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU f ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ K\GURJHQ JDV 7KH HIIHFW RI LQGLXP XQGHUOD\V XSRQ WKH PLFURVWUXFWXUH RI JROG ILOPV GXULQJ GHSRVLWLRQ LV VWXGLHG E\ FRPSDULQJ WKH PLFURVWUXFWXUH RI DV GHSRVLWHG SXUH JROG ILOPV ZLWK WKH PLFURVWUXFWXUH RI DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV 7KH HIIHFW RI A RQ D PLFURVWUXFWXUDO HYROXWLRQ GXULQJ DQQHDOLQJ KDV EHHQ LQYHVWLJDWHG E\ FRPSDULQJ WKH PLFURVWUXFWXUHV RI DQQHDOHG SXUH $X ILOPV ZLWK WKH PLFURVWUXFWXUHV RI DQQHDOHG ,Q$X FRPSRVLWH ILOPV $GGLWLRQDOO\ VRPH WKHRUHWLFDO FRQVLGHUDWLRQV WKDW LQFOXGH LQVWDELOLW\ FRQGLWLRQV IRU WKLQ ILOPV FDXVHG E\ JUDLQ ERXQGDU\ JURRYLQJ DV D IXQFWLRQ RI WKH JUDLQ VL]H DQG WKH JURRYH DQJOH DQG WKH SDUDPHWHUV ZKLFK PLJKW FKDQJH WKH HYROXWLRQ RI JUDLQ ERXQGDU\ JURRYHV LQ JROG WKLQ ILOPV DUH GLVFXVVHG ,W ZLOO EH VKRZQ WKDW A RQ WKH VXUIDFH DQG LQ WKH JUDLQ ERXQGDU\ DUH UHVSRQVLEOH IRU VWDELOL]LQJ WKH VXUIDFH VWUXFWXUH DQG IRU

PAGE 10

LQKLELWLQJ WKH JUDLQ JURZWK UHVSHFWLYHO\ ZKLFK LQ WXUQ UHGXFH WKH JUDLQ ERXQGDU\ JURRYLQJ RI JROG WKLQ ILOPV GXULQJ KHDW WUHDWPHQW

PAGE 11

&+$37(5 7+(25(7,&$/ %$&.*5281' %ULHI 5HYLHZ RI 'ULYLQJ )RUFHV IRU WKH 0DVV 7UDQVSRUW 7KHUH DUH VHYHUDO GLIIHUHQW NLQGV RI GULYLQJ IRUFHV WR FDXVH PDVV WUDQVSRUW LQ WKLQ ILOPV ,Q JHQHUDO WKH DFWLRQ RI D GULYLQJ IRUFH RQ DWRPLF PRWLRQ FDQ EH ZULWWHQ >@ -I rL 9& A ) I N 7 f & ZKHUH -c WKH DWRPLF IOX[ RI LWK FRQVWLWXHQW &M WKH FRQFHQWUDWLRQ RI LWK FRQVWLWXHQW 'M WKH GLIIXVLYLW\ RI LWK FRQVWLWXHQW I WKH FRUUHODWLRQ FRHIILFLHQW DSSURSULDWH WR WKH PHFKDQLVP UHVSRQVLEOH IRU WKH PRWLRQ DQG N7 KDV LWV XVXDO PHDQLQJ 7KH ILUVW WHUP UHSUHVHQWV WKH DFWLRQ RI GLIIXVLRQ 7KH VHFRQG WHUP VKRZV WKH LQIOXHQFH RI DQ H[WHUQDO GULYLQJ IRUFH 'ULYLQJ IRUFHV GHULYHG IURP WKH HOHFWULF FXUUHQW HOHFWURn WUDQVSRUWf DQG E\ WKH WKHUPDO JUDGLHQW WKHUPRWUDQVSRUWf DUH EULHIO\ UHYLHZHG EHORZ 0DVV WUDQVSRUW GULYHQ E\ FDSL DULW\ PD\ DOVR EH LPSRUWDQW LQ WKLQ IL PV FDSL DUL W\ HIIHFWV ZL EH GLVFXVVHG VHSDUDWHO\ LQ VHFWLRQ

PAGE 12

(OHFWURWUDQVSRUW (OHFWURPLJUDWLRQf (OHFWURWUDQVSRUW RU DOWHUQDWLYHO\ HOHFWURPLJUDWLRQ LV WKH SKHQRPHQRQ RI PDVV WUDQVSRUW DULVLQJ IURP WKH GULYLQJ IRUFH RI HOHFWULF ILHOG RU HOHFWULF FXUUHQW ,Q HHFWURWUDQVSRUW WKH GULYLQJ IRUFH LV FRQVLGHUHG WR EH WKH VXP RI WZR HIIHFWV f HOHFWURVWDWLF LQWHUDFWLRQ EHWZHHQ WKH HOHFWULF ILHOG DQG WKH LRQLF FRUH RI WKH DWRPV DQG f D IULFWLRQ IRUFH EHWZHHQ WKHVH LRQV DQG WKH IORZLQJ FKDUJH FDUULHUV ZKLFK LV RIWHQ FDOOHG WKH HOHFWURQ ZLQG IRUFH $FFRUGLQJO\ WKH GULYLQJ IRUFH FDQ EH H[SUHVVHG E\ >@ ) f =r _Hc ( =b =rZG f _Hf ( ZKHUH =r WKH HIIHFWLYH FKDUJH QXPEHU H WKH FKDUJH RI DQ HOHFWURQ DQG ( WKH HOHFWULF ILHOG )URP WKH WKHRUHWLFDO FRQVLGHUDWLRQV =r LV JLYHQ E\ =r s ] > \ SG1Gf 1 Sf Pr_ Pr@ ZKHUH ] WKH HOHFWURQ DWRP UDWLR RI WKH PDWHULDO SG1Gf Sf UDWnn rI WKH VSHFLILF UHVLVWLYLW\ RI WKH PRYLQJ GHIHFWV WR WKDW RI WKH DWWLFH Pr WKH HIIHFWLYH PDVV DQG < D QXPHULFDO FRQVWDQW 8VXDOO\ WKH HOHFWURQ ZLQG IRUFH LV GRPLQDQW DQG WKXV WKH PDVV WUDQVSRUW LV SUHVXPHG WR RFFXU LQ GLUHFWLRQ RI WKH HOHFWURQ IORZ

PAGE 13

7KH IOX[ RI DWRPV GXH WR HOHFWURWUDQVSRUW LV JLYHQ E\ -M 1L 'M N 7 =r H ( ZKHUH LV WKH QXPEHU RI LWK DWRPV SHU XQLW YROXPH 7KHUPRWUDQVSRUW 7KHUPRPLJUDWLRQf 7KHUPRWUDQVSRUW RU WKHUPRPLJUDWLRQ LV WKH WUDQVSRUW RI PDVV GXH WR D WHPSHUDWXUH JUDGLHQW 7KH GULYLQJ IRUFH IRU WKH WKHUPRWUDQVSRUW FDQ EH H[SUHVVHG E\ >@ )M 4L7 9 7 ZKHUH 4‘ WKH KHDW RI WUDQVSRUW RI LWK FRQVWLWXHQW DQG 97 WKH WHPSHUDWXUH JUDGLHQW 7[ 7\ 7= 4 LV WKH HQHUJ\ ZKLFK IORZV SHU XQLW PDVV WUDQVSRUWHG LW KDV WKUHH FRQWULEXWLRQV >@ 4 4L Q W 4HO ASK ZKHUH 4AQW WKH LQWULQVLF FRQWULEXWLRQ GXH WR WKH PRWLRQ RI DWRPV XQGHU WKH VWDWLF WHPSHUDWXUH JUDGLHQW 4HO WKH FRQWULEXWLRQ GXH WR WKH HOHFWURQPRYLQJ DWRP LQWHUDFWLRQ XQGHU WKHUPR HOHFWULF ILHOG DQG 4SK WKH FRQWULEXWLRQ GXH WR WKH KHDW FDUULHU LQWHUDFWLRQ SKRQRQ VFDWWHULQJf 7KH DWRPLF IOX[ DORQJ WKH WHPSHUDWXUH JUDGLHQW FDQ EH ZULWWHQ DV -L 1L 4L 4L N 7 9 7

PAGE 14

7KH QHW WUDQVSRUW RI PDWWHU ZLOO EH WRZDUG ORZHU WHPSHUDWXUH LI 4c LV SRVLWLYH DQG WRZDUG KLJKHU WHPSHUDWXUH LI 4c QHJDWLYH &DSLOODU\ ,QGXFHG 0DVV 7UDQVSRUW ,QWURGXFWLRQ :KHQ SRO\FU\VWDOOLQH PHWDOV DQG DOOR\V DUH KHDWHG DW DQ HOHYDWHG WHPSHUDWXUH WKH VKDSH RI WKH H[WHUQDO VXUIDFH ZLOO EH DOWHUHG 7KH FKDQJHV LQ VXUIDFH PRUSKRORJ\ DUH FDXVHG E\ PDVV WUDQVSRUW GULYHQ E\ WKH FDSLOODULW\ WKH\ KDYH EHHQ DQDO\]HG ULJRURXVO\ LQ WKH WKHRULHV RI WKHUPDO JURRYLQJ DQG PRUSKRORJLFDO LQVWDELOLW\ 7KHUPDO JURRYLQJ WKHRU\ RU JUDLQ ERXQGDU\ JURRYLQJ WKHRU\ GHDOV ZLWK WKH IRUPDWLRQ DQG WKH HYROXWLRQ RI WKH JURRYH ZKLFK LV IRUPHG DW WKH LQWHUVHFWLRQ RI D JUDLQ ERXQGDU\ ZLWK D IUHH VXUIDFH 0RUSKRORJLFDO LQVWDELOLW\ WKHRU\ GHDOV ZLWK WKH FRQGLWLRQV ZKHUH WKH RULJLQDO JHRPHWU\ EHFRPHV XQVWDEOH GXH WR SHUWXUEDWLRQV GULYHQ E\ FDSLOODULW\ %RWK WKHUPDO JURRYLQJ DQG PRUSKRORJLFDO LQVWDELOLW\ DUH FDXVHG E\ WKH VXUIDFH FXUYDWXUH ZKLFK LV UHODWHG WR WKH FKHPLFDO SRWHQWLDO +RZHYHU WKH FXUYDWXUH WKXV WKH GULYLQJ IRUFH LV GLVFRQWLQXRXV DW WKH JUDLQ ERXQGDU\ IRU WKH FDVH RI WKH WKHUPDO JURRYLQJ ZKLOH LW LV FRQWLQXRXV IRU WKH FDVH RI WKH PRUSKRORJLFDO LQVWDELOLW\ ,Q VHFWLRQ WKHUPDO JURRYLQJ WKHRULHV LQYROYLQJ VHYHUDO GLIIHUHQW PDVV WUDQVSRUW PHFKDQLVPV DUH SUHVHQWHG 0RUSKRORJLFDO LQVWDELOLW\ WKHRULHV IRU GLIIHUHQW JHRPHWULHV DUH JLYHQ LQ VHFWLRQ

PAGE 15

7KHRULHV RI 7KHUPDO *URRYLQJ $ WKHUPDO JURRYH LV IRUPHG DW WKH LQWHUVHFWLRQ RI D JUDLQ ERXQGDU\ DQG WKH IUHH VXUIDFH DV WKH VXUIDFH HQHUJ\ DQG WKH JUDLQ ERXQGDU\ HQHUJ\ HVWDEOLVK DQ HTXLOLEULXP VDWLVI\LQJ WKH UHODWLRQ \V VLQH @ $OWKRXJK WKH JUDLQ ERXQGDU\ DQG WKH VXUIDFH PD\ TXLFNO\ DFKLHYH WKH SURSHU HTXOLEULXP DQJOH ZKHUH WKH\ LQWHUVHFW WKH JURRYH ZLOO JHQHUDOO\ FRQWLQXH WR JURZ 7KHUPRn G\QDPLFDOO\ WKH JURZWK ZLOO FRQWLQXH XQWLO WKH V\VWHP UHDFKHV LWV ORZHVW IUHH HQHUJ\ E\ HOLPLQDWLQJ WKH JUDLQ ERXQGDU\ 0HFKDQLVWLFDOO\ WKH JURZWK RFFXUV LQ UHVSRQVH WR WKH FKHPLFDO SRWHQWLDO JUDGLHQW ZKLFK LV FDXVHG E\ WKH FXUYDWXUH RI WKH JURRYH SURILOH 7KH *LEEV7KRPSVRQ IRUPXOD UHODWLQJ WKH FXUYDWXUH DQG WKH FKHPLFDO SRWHQWLDO VKRZV WKDW D FXUYHG VXUIDFH KDV FKHPLFDO SRWHQWLDO WKDW LV GLIIHUHQW IURP D IODW VXUIDFH 7KH JUDGLHQW LQ FKHPLFDO SRWHQWLDO GULYHV DWRPV IURP D SRLQW RI KLJKHU FKHPLFDO SRWHQWLDO WR RQH RI ORZHU FKHPLFDO SRWHQWLDO ZLWK WKH UHVXOW WKDW WKH JURRYH GHHSHQV ZLWK WLPH >@ $VVXPLQJ LVRWURSLF VXUIDFH SURSHUWLHV 0XOOLQV GHYHORSHG D WKHRU\ RI WKHUPDO JURRYLQJ LQ ZKLFK PDVV WUDQVSRUW RFFXUHG XQGHU WKH VROLWDU\ DFWLRQ RI f HYDSRUDWLRQFRQGHQVDWLRQ PHFKDQLVP f VXUIDFH GLIIXVLRQ PHFKDQLVP DQG f YROXPH GLIIXVLRQ PHFKDQLVP >@ 7KH GLIIHUHQWLDO HTXDWLRQV GHVFULELQJ WKH HYROXWLRQ RI WKH JURRYH SURILOHV DUH GHULYHG XVLQJ VPDOO VORSH DSSUR[LPDWLRQ

PAGE 16

)LJXUH 3URILOH RI 7KHUPDO *URRYLQJ

PAGE 17

7KH VKDSHV RI WKH JURRYH SURILOHV DQG WKH GLPHQVLRQDO FKDUDFn WHULVWLFV SURGXFHG E\ HDFK WUDQVSRUW PHFKDQLVP DUH VKRZQ LQ 7DEOH 7DEOH 6KDSHV RI *URRYH 3URILOHV IRU 9DULRXV 0HFKDQLVPV RI 0DVV 7UDQVSRUW 0(&+$1,60 6+$3( 2) 352),/( (YDSRUDWLRQ DQG &RQGHQVDWLRQ 1R 0D[LPD 6XUIDFH 'LIIXVLRQ 9ROXPH 'LIIXVLRQ 0D[LPD

PAGE 18

7KH VKDSH RI WKH SURILOH GHSHQGV XSRQ P ZKLFK LV WKH WDQJHQW RI WKH HTXLOLEULXP DQJOH EXW LV LQGHSHQGHQW RI WLPH )XUWKHUPRUH WKH OLQHDU GLPHQVLRQV RI WKH IL[HG VKDSH DUH SURSRUWLRQDO WR WA WA DQG WA IRU HYDSRUDWLRQFRQGHQVDWLRQ PHFKDQLVP VXUIDFH GLIIXVLRQ PHFKDQLVP DQG YROXPH GLIIXVLRQ PHFKDQLVP UHVSHFWLYHO\ 7KH WKUHH PHFKDQLQVPV RI PDVV WUDQVSRUW PD\ RSHUDWH VLPXOWDQHRXVO\ >@ 7KH UHODWLYH LPSRUWDQFH RI HDFK PHFKDQLVP GHSHQGV XSRQ WKH H[SHULPHQWDO FRQGLWLRQV ZKLFK PD\ DIIHFW WKH YDSRU SUHVVXUH WKH GLIIXVLYLW\ DQG WKH GLIIXVLRQ GLVWDQFH ,W LV IRXQG WKDW VXUIDFH GLIIXVLRQ LV WKH GRPLQDQW SURFHVV LQ WKH LQLWLDO VWDJH ZKHUHDV WKH YROXPH GLIIXVLRQ DQG HYDSRUDWLRQFRQGHQVDWLRQ PHFKDQLVPV DUH LPSRUWDQW DW DWHU VWDJHV 7KH SUHGLFWLRQV RI 0XOOLQV WKHRU\ ILW UHDVRQDEO\ ZHOO ZLWK FRPSXWHU FDOFXODWLRQV DQG WKH H[SHULPHQWDO GDWD >@ +XDQJ DQG /LQ KDYH H[WHQGHG WKH 0XOOLQV WKHRU\ WR FDVHV ZKHUH ULGJHV RU QRWFKHV DUH SUHVHQW RQ WKH LQLWLDO VXUIDFH >@ ,W LV VKRZQ WKDW WKH JURRYLQJ WDNHV SODFH RQO\ LI WKH LQLWLDO VORSH RI WKH QRWFK LV OHVV WKDQ\A\V! RU LI WKH LQLWLDO VXUIDFH KDV D ULGJH DW D JUDLQ ERXQGDU\ 7KH WKHUPDO JURRYLQJ WKHRU\ LQ D V\VWHP ZKHUH D ORVV RI PDWWHU GXH WR IUHH HYDSRUDWLRQ RU FRUURVLRQ RFFXUV VLPXOWDQHRXVO\ ZLWK VXUIDFH GLIIXVLRQ KDV EHHQ WUHDWHG QXPHULFDOO\ >@ ,W LV VKRZQ WKDW WKH JURRYH HYROXWLRQ LV QRW VWHDG\ VWDWH WKXV WKH JURRYH VKDSH LV WLPH GHSHQGHQW DQG DOVR WKDW WKH JURRYH GHSWK DQG WKH ZLGWK GR QRW IROORZ D WA ODZ ,W LV VXJJHVWHG WKDW IUHH HYDSRUDWLRQ DQG FRUURVLRQ HIIHFWV VKRXOG QRW EH LJQRUHG IRU WHPSHUDWXUHV JUHDWHU WKDQ 7P RU IRU

PAGE 19

ORZHU WHPSHUDWXUHV ZKHQ WKH UHDFWLRQ EHWZHHQ WKH DGVRUEHG JDVHV DQG WKH VSHFLPHQ RFFXUV :LWKRXW WKH DVVXPSWLRQ RI WKH VPDOO VORSH DSSUR[LPDWLRQ DQG WKH VWHDG\ VWDWH HYROXWLRQ D QXPHULFDO DQDO\VLV RI WKH JURRYH HYROXWLRQ IRU D SODQH DQG D ZLUH KDV EHHQ SHUIRUPHG >@ ,W LV SUHGLFWHG WKDW WKH JURRYH HYROXWLRQ FDQ OHDG WR WKH IDLOXUH RI WKH ZLUH RQO\ E\ VXUIDFH GLIIXVLRQ ZKLFK LQGLFDWHV WKH VLJQLILFDQW HIIHFW RI JHRPHWU\ RQ WKH HYROXWLRQ RI WKHUPDO JURRYLQJ 0RVW WKHUPDO JURRYLQJ WKHRULHV IRU WKLQ ILOPV GHSRVLWHG RQ D VXEVWUDWH KDYH EHHQ VWXGLHG LQ WKH V\VWHP ZKHUH WKH ILOPV DUH VWUHVVHG DW KLJK FXUUHQW GHQVLWLHV 7KH WKHUPDO JURRYH SURILOH WKHUHIRUH LV LQIOXHQFHG QRW RQO\ E\ WHPSHUDWXUH EXW DOVR E\ HOHFWURPLJUDWLRQ 8VLQJ WKH DSSURDFK RI 0XOOLQV 2KULQJ KDV GHULYHG DQ HTXDWLRQ IRU WKH JURRYH SURILOH FDXVHG E\ WKH DSSOLHG HOHFWULF ILHOG >@ ,W LV VKRZQ WKDW WKH XQLGLUHFWLRQDO HOHFWURPLJUDWLRQ IOX[ HVWDEOLVKHV WKH DV\PPHWU\ LQ WKH SURILOH ZKLFK LV FKDUDFWHUL]HG E\ D IL[HG VKDSH ZKHUH OLQHDU GLPHQVLRQV FKDQJH ZLWK WLPH DV WA ,Q WKH FDVH ZKHUH WKH WHPSHUDWXUH JUDGLHQW LV GRPLQDQW WKH JURRYH GHSWK YDULHV ZLWK WLPH DV WA :KHQ WKH GLYHUJHQFH RI WKH PDVV IOX[ LQGXFHG E\ WKH HOHFWURPLJUDWLRQ LV QRW HTXDO WR ]HUR Y L f D ORFDO PDVV GHSOHWLRQ RU DFFXPXODWLRQ RFFXUV ZKLFK DFFHOHUDWHV WKHUPDO JURRYLQJ 7KH HHFWURWUDQVSRUWHG PDVV LV GHSOHWHG DW RU FDUULHG IURP D JUDLQ ERXQGDU\ JURRYH XSVHWWLQJ WKH HTXLOLEULXP DQJOH DQG WKHUHE\ HVWDEOLVKLQJ D GULYLQJ IRUFH ZKLFK SURPRWHV IXUWKHU JURRYH GHHSHQLQJ (IIHFWV RI DQQHDOLQJ DQG HOHFWURPLJUDWLRQ RQ JUDLQ ERXQGDU\ JURRYLQJ KDV EHHQ LQYHVWLJDWHG LQ D ELFU\VWDO ILOP ZKLFK LV

PAGE 20

LVRWKHUPDOO\ DQQHDOHG DQG VXEVHTXHQWO\ VWUHVVHG DW D KLJK FXUUHQW GHQVLW\ >@ 7KH FRPELQDWLRQ RI IOX[HV IURP FDSLOODULW\LQGXFHG VXUIDFH GLIIXVLRQ DQG HOHFWURPLJUDWLRQLQGXFHG JUDLQ ERXQGDU\ GLIIXVLRQ LV VKRZQ WR FDXVH RSHQ FLUFXLW IDLOXUHV E\ GHYHORSLQJ VHYHUH PDVV GHSOHWLRQ DQG DFFXPXODWLRQ DW WKH JUDLQ ERXQGDU\ JURRYH 7KHRULHV RI 0RUSKRORJLFDO ,QVWDELOLW\ 7KH PRUSKRORJLFDO FKDQJHV RI WKH VXUIDFH GULYHQ E\ FDSL DULW\ PD\ FDXVH WKH LQVWDELOLW\ RI WKH RULJLQDO JHRPHWU\ 7KH EUHDNXS RI D ORQJ F\OLQGHU LQWR VSKHURLGDO SDUWLFOHV WKH EOXQWLQJ RI D ILHOG HPPLVLRQ FDWKRGH DQG WKH UXSWXUH RI D ZLUH E\ WKHUPDO JURRYLQJ DUH H[DPSOHV RI WKLV SKHQRPHQRQ >@ ,QVWDELOLW\ FRQGLWLRQV DUH VWURQJO\ GHSHQGHQW XSRQ WKH JHRPHWU\ GRPLQDQW PDVV WUDQVSRUW PHFKDQLVP WKH VXUIDFH HQHUJ\ WKH DPSOLWXGH DQG WKH GLUHFWLRQ RI WKH SHUWXUEDWLRQ :KLOH VPDOO SHUWXUEDWLRQV LQ D QHDUO\ SODQDU VXUIDFH ZLOO GHFD\ ZLWK WLPH WR PDNH WKH IODW VXUIDFH VWDEOH VRPH SHUWXUEDWLRQV LQ D QHDUO\ F\OLQGULFDO RU VSKHULFDO VXUIDFH LQFUHDVH WKHLU DPSOLWXGHV ZLWK WLPH WR PDNH WKH RULJLQDO VXUIDFH XQVWDEOH )LUVWRUGHU SHUWXUEDWLRQ DQDO\VLV KDV EHHQ WUHDWHG E\ 5D\OHLJK IRU LQYLVFLG IOXLGV DVVXPLQJ WKH F\OLQGHU RI LQILQLWH OHQJWK >@ $QDORJRXV WUHDWPHQW KDV EHHQ SHUIRUPHG E\ 1LFKROV DQG 0XOOLQV IRU GLIIHUHQW JHRPHWULHV >@ )RU DQ LQILQLWH F\OLQGHU ZLWK ORQJLWXGLQDO SHUWXUEDWLRQ E\ VXUIDFH GLIIXVLRQ WKH IROORZLQJ LQVWDELOLW\ FRQGLWLRQV DUH REWDLQHG )RU DQ\ ORQJLWXGLQDO SHUWXUEDWLRQ RI ZDYHOHQJWK OHVV WKDQ $

PAGE 21

ZKLFK LV WW 5T WKH F\OLQGHU LV VWDEOH LH VXFK SHUWXUEDWLRQV GHFD\ ZLWK WLPH )RU [!$ WKH F\OLQGHU EHFRPHV XQVWDEOH LH VXFK SHUWXUEDWLRQV LQFUHDVH LQ DPSOLWXGH ZLWK WLPH )RU$ $A WKH ZDYH OHQJWK DW ZKLFK WKH SHUWXUEDWLRQ GHYHORSV WKH PD[LPXP YDOXH WKH F\OLQGHU EUHDNV XS LQWR D OLQH RI SDUWLFOHV ZLWK VSDFLQJ [A 7KH PHFKDQLVP RI EUHDNXS RI SODWHOLNH SDUWLFOHV KDV EHHQ DOVR SUHGLFWHG D SODWHOHW ZLOO ILUVW GHYHORS D GRXJKQXWVKDSHG ULP ZKLFK LV HVVHQWLDOO\ D FXUYHG F\OLQGHU E\ D EXOJLQJ SURFHVV DORQJ LWV HGJHV 7KLV ULP ZLOO LQ WXUQ EUHDN XS LQWR D ULQJ RI VSKHUHV VHSDUDWHG E\ $A E\ WKH SURFHVV GLVFXVVHG DERYH 7KH H[SHULPHQWDO VXSSRUW IRU WKLV PHFKDQLVP KDV DFFRPSOLVKHG E\ @ 7KH VSKHURGL]DWLRQ RI VHPLLQILQLWH URGV KDV EHHQ WUHDWHG ZLWK D QXPHULFDO PHWKRG LQ ZKLFK WKH LQLWLDOO\ XQLIRUP FLUFXODU VHFWLRQ LV VSKHURLGL]HG LQWR D VHULHV RI HJJVKDSHG SDUWLFOHV 1LFKROV KDV DQDO\VHG D ILQLWH F\OLQGHU ZLWK KHPLVSKHUH HQGV DQG KDV FDOFXODWHG WKH FULWLFDO OHQJWK WR GLDPHWHU UDWLR /'f RI %HORZ WKLV YDOXH RQO\ RQH VSKHURLGDO SDUWLFOH UHVXOWV DERYH LW WKH SDUWLFOH EUHDNV XS LQWR WZR RU PRUH SDUWV >@ 7KH HQHUJHWLFV DQG WKH NLQHWLFV RI WKH LQVWDELOLW\ RI D WKLQ ILOP ZKHUH DQ LQLWLDOO\ XQLIRUP ILOP ZKLFK KDV EHHQ GHSRVLWHG RQ D VXEVWUDWH EUHDNV XS LQWR DQ DUUD\ RI EHDGV RU LVODQGV KDV EHHQ VWXGLHG E\ 6URORYLW] DQG 6DIDUDQ >@ 7KH\ KDYH FDOFXODWHG WKH LQVWDELOLW\ FRQGLWLRQ IRU D WKLQ ILOP ZLWK UHVSHFW WR ODUJH DPSOLWXGH SHUWXUEDWLRQV QDPHO\ KROHV DQG LVODQGV XVLQJ QRQ OLQHDU SHUWXUEDWLRQ DQDO\VLV 7R HYDOXDWH WKH VKDSH RI WKH ILOP D TXDVLVWDWLF DSSUR[LPDWLRQ LV HPSOR\HG LH GHWHUPLQH WKH VKDSH RI WKH ILOP E\ PLQLPL]LQJ WKH HQHUJ\ RI WKH V\VWHP ZLWK UHVSHFW WR ILOP VKDSH ,W LV

PAGE 22

IRXQG WKDW KROHV ZKLFK H[FHHG D FULWLFDO VL]H ZKLFK LV SURSRUWLRQDO WR WKH UDWLR RI WKH WKLFNQHVV WR HTXOLEULXP FRQWDFW DQJOH JURZ DQG HYHQWXDOO\ GLVFRQQHFW WKH ILOP )RU D SRWHQWLDO VRXUFH RI WKHVH ODUJH SHUWXUEDWLRQV WKH JUDLQ ERXQGDU\ JURRYH HVSHFLDOO\ DW WKH YHUWH[ ZKHUH WKUHH JUDLQ ERXQGDULHV PHHW LV SURSRVHG

PAGE 23

&+$37(5 (;3(5,0(17$/ 352&('85(6 )LOP 3UHSDUDWLRQ 7KH SXUH $X DQG WKH ,Q$X FRPSRVLWH ILOPV ZHUH SUHSDUHG E\ XVLQJ D KLJK YDFXXP GHSRVLWLRQ WHFKQLTXH 7KH VXEVWUDWHV RQ ZKLFK WKH ILOPV ZHUH GHSRVLWHG ZHUH RSWLFDOO\ IODW FRPPHUFLDO JUDGH IXVHG TXDUW] SODWHV [ [ PLUUf ZKLFK ZHUH SROLVKHG RQ RQH RU ERWK VLGHV )LOPV ZHUH GHSRVLWHG RQ WKH SROLVKHG VLGH ,PSXULWLHV RI WKH TXDUW] VXEVWUDWH ZHUH DV IROORZV $ SSP )H SSP .A2 SSP 7L SSP 1D SSP &D SSP % SSP 3ULRU WR GHSRVLWLRQ WKH VXEVWUDWHV ZHUH H[DPLQHG ZLWK WKH DLG RI DQ RSWLFDO PLFURVFRSH WR GLVFDUG WKH RQHV ZLWK JURVV GHIHFWV VXFK DV VFUDWFKHV VHHGV DQG EXEEOHV 7KH VXEVWUDWHV ZHUH WKHQ XOWUDVRQLFDO O\ FOHDQHG LQ WKH IROORZLQJ VHTXHQFHV f $OFRQR[ GHWHUJHQW ^b SKRVSKRURXV E\ ZHLJKW S+ f DQG ZDWHU LQ RUGHU WR UHPRYH ZDWHUVROXEOH DQG VRPH RUJDQLF FRQWDPLQDQWV LQFOXGLQJ RLOV JUHDVHV VRLOV DQG FDUERQ SURGXFWV f 0LFUR DQG GHLRQL]HG ZDWHU LQ RUGHU WR UHPRYH ZDWHUVROXEOH FRQWDPLQDQWV ZKLFK ZHUH LQWURGXFHG E\ WKH GHWHUJHQW

PAGE 24

f 5HDJHQW JUDGH DFHWRQH D VHPLSRODU VROYHQW DFWLQJ DV D YDSRU GHJUHDVHU f 5HDJHQW JUDGH DOFKRKRO D OHVV SRODU VROYHQW FRQWDLQLQJ IHZHU LQKHUHQW LPSXULWLHV XVHG WR FRQWLQXH WKH FOHDQLQJ DFWLRQ LQLWLDWHG E\ WKH DFHWRQH ZDVK 7KH VXEVWUDWHV ZHUH WKHQ VXEMHFWHG WR D VWUHDP RI GU\ DLU DQG UHn H[DPLQHG RSWLFDOO\ IRU IODZV 7KH VXEVWUDWHV ZHUH PRXQWHG LQ VSULQJ ORDGHG KROGHUV WKDW HQDEOHG WKH SODFHPHQW RI D PRO\EGHQXP PDVN RYHU WKH VXEVWUDWH 7KHVH KROGHUV ZHUH WKHQ SODFHG LQ WKH YDSRU GHSRVLWLRQ FKDPEHU IRU ILOP GHSRVLWLRQ 3ULRU WR RSHQLQJ WKH YDFXXP FKDPEHU WR ORDG WKH VXEVWUDWHV DQG WKH VRXUFH PDWHULDOV VHYHUDO KHDWLQJ WDSHV ZHUH ZUDSSHG DURXQG WKH FKDPEHU LQ RUGHU WR PLQLPL]H LPSXULW\ DGVRUSWLRQ DORQJ WKH ZDOOV DQG WKH FRQVWLWXHQW SDUWV RI WKH FKDPEHU $IWHU WKH DSSURSULDWH VXEVWUDWHV DQG VRXUFH PDWHULDOV ZHUH SODFHG LQ WKH FKDPEHU WKH V\VWHP ZDV LPPHGLDWHO\ FORVHG DQG SXPSHG GRZQ $ PHFKDQLFDO SXPS ZDV XVHG WR EULQJ WKH SUHVVXUH LQ WKH FKDPEHU WR [ nA 7RUU ZLWKLQ PLQXWHV 7KLV FXWn RII SUHVVXUH DQG WKH XVH RI D ]HROLWHILOOHG DEVRUSWLRQ WUDS PLQLPL]HG WKH EDFNVWUHDPLQJ RI ZDWHU DQG WKH K\GURFDUERQ PROHFXOHV IURP WKH PHFKDQLFDO SXPS RLO EDFN LQWR WKH FKDPEHU /DERUDWRU\ JUDGH QLWURJHQ ZDV WKHQ EOHG LQWR WKH FKDPEHU WR UHGXFH WKH SDUWLDO SUHVVXUH RI R[\JHQ DQG ZDWHU YDSRU 7KLV SURFHVV ZDV UHSHDWHG VHYHUDO WLPHV EHIRUH WXUQLQJ RQ WKH DGVRUSWLRQ SXPS $ OLTXLG A FRROHG DEVRUSWLRQ SXPS WKHQ UHGXFHG WKH FKDPEHU SUHVVXUH [ BL 7RUU WR [ 7RUU [ &7r 3D f E\ SDUWLFXODUO\ UHGXFLQJ WKH SDUWLDO SUHVVXUHV RI QLWURJHQ FDUERQ GLR[LGH ZDWHU YDSRU DQG UHVLGXDO K\GURFDUERQV $IWHU

PAGE 25

RXWJDVVLQJ WKH WLWDQLXP ILODPHQW RI D VXEOLPDWLRQ SXPS WKH DGVRUSWLRQ SXPS ZDV FORVHG RII 7ZR VSXWWHULRQ SXPSV LQ FRQMXQFWLRQ ZLWK WKH VXEOLPDWLRQ SXPS EURXJKW WKH V\VWHP SUHVVXUH GRZQ WR WKH GHSRVLWLRQ SUHVVXUH ZLWKLQ WR KRXUV %DVH SUHVVXUHV SULRU WR GHSRVLWLRQ ZHUH LQ WKH UDQJH RI [ fp 7RUU [O2fp 3Df 7KH $X ZDV HYDSRUDWHG IURP D 0R ERDW WKDW ZDV UHVLVWLYHO\ KHDWHG E\ DPSV JHQHUDWHG E\ D .9$ SRZHU VXSSO\ 7KH SXULW\ RI $X ZLUH ZDV b $ VXIILFLHQW DPRXQW ZDV ORDGHG WR SUHYHQW WKH SRRU ZHWWLQJ RI $X 'HSRVLWLRQ ZDV FDUULHG RXW ZLWK WKH LRQ SXPS RQ 3UHVVXUH GXULQJ WKH GHSRVLWLRQ ZDV PDLQWDLQHG EHORZ ; fp 7RUU [ A 3Df 7KH VXEVWUDWHV ZHUH KHOG DW URRP WHPSHUDWXUH EXW WKH UDGLDWLRQ KHDWLQJ GXULQJ WKH HYDSRUDWLRQ UDLVHG WKH VXEVWUDWH WHPSHUDWXUH XS WR DERXW GHJ & ZKLFK ZDV PHDVXUHG E\ WKH $OXPHO &KURPHO WKHUPRFRXSOH DWWDFKHG WR WKH VXEVWUDWH 'HSRVLWLRQ UDWHV RI $X YDULHG IURP $V WR $V ZLWK DQ DYHUDJH UDWH RI DSSUR[LPDWH \ $V )RU ,Q$X FRPSRVLWH ILOPV LQGLXP RI $ WKLFNQHVV ZDV GHSRVLWHG ILUVW RQ WKH TXDUW] VXEVWUDWH E\ DSSO\LQJ DPSV WR D 0R ERDW ,QGLXP ZLUH RI b ZDV XVHG DV WKH VRXUFH PDWHULDO %DVH R D SUHVVXUH SULRU WR GHSRVLWLRQ RI ,Q ZDV EHORZ [ fr 7RUU [ fX 3Df DQG WKH SUHVVXUHV GXULQJ GHSRVLWLRQ ZHUH ; fA 7RUU [ fp 3Df 'HSRVLWLRQ UDWHV UDQJHG IURP $V WR $V ZLWK DQ DYHUDJH UDWH RI $V $IWHU GHSRVLWLRQ DERXW WR PLQXWHV ZHUH UHTXLUHG IRU WKH V\VWHP WR UHDFK WKH EDVH SUHVVXUH ; fp 7RUU [ fp 3Df IRU WKH VXEVHTXHQW GHSRVLWLRQ RI $X *ROG ILOP RI $ WKLFNQHVV WKHQ ZDV GHSRVLWHG RQ WKH LQGLXPFRYHUHG TXDUW] 3UHVVXUHV GXULQJ

PAGE 26

GHSRVLWLRQ ZHUH ; fA 7RUU [ fA 3Df DQG WKH GHSRVLWLRQ UDWHV UDQJHG IURP WR $V 7KH WKLFNQHVV RI WKH ILOPV ZDV PHDVXUHG LQ VLWX ZLWK D SLH]RHOHFWULF ILOP WKLFNQHVV PRQLWRU FDOLEUDWHG IRU JROG 8SRQ FRPSOHWLRQ RI WKH GHSRVLWLRQ WKH LRQ SXPS ZDV WXUQHG RII DQG WKH ILOPV ZHUH VWRUHG LQ WKH YDFXXP FKDPEHU IRU PRUH WKDQ KRXUV IRU FRROGRZQ 7KH ILOPV ZHUH LQVSHFWHG ZLWK DQ RSWLFDO PLFURVFRSH IRU SUREDEOH GHIHFWV SURGXFHG GXULQJ WKH GHSRVLWLRQ SURFHVV VXFK DV SLQKROHV VFUDWFKHV DQG QRWLFHDEOH FRQWDPLQDQWV 7KH VSHFLPHQ ZLWK GHIHFWV ZHUH GLVFDUGHG ,VRWKHUPDO $QQHDOLQJ 7KUHH DQQHDOLQJ WHPSHUDWXUHV QDPHO\ DQG & ZHUH FKRVHQ WR DSSUR[LPDWH WKRVH WHPSHUDWXUH SURGXFHG GXULQJ WKH W\SLFDO HOHFWURPLJUDWLRQ WHVWV $ & DQQHDO ZDV FKRVHQ WR DFFHOHUDWH DQ\ WKHUPDOO\ DFWLYDWHG SURFHVVHV 7KH DQQHDOLQJ WLPH XQOHVV VSHFLILHG RWKHUZLVH ZDV KRXU 7KH VSHFLPHQV ZHUH KHDWHG LQ D WXEH IXUQDFH ZKHUH WKH WHPSHUDWXUH DQG WKH DWPRVSKHUH ZHUH FRQWUROOHG 7KH IXUQDFH ZDV SUHVHW WR WKH DQQHDOLQJ WHPSHUDWXUH DQG DOORZHG WR VWDELOL]H IRU KRXUV EHIRUH WKH VSHFLPHQ ZDV LQVHUWHG $QQHDOLQJ LQ DQ R[LGL]LQJ DWPRVSKHUH ZDV DFFRPSOLVKHG E\ KHDWLQJ WKH VSHFLPHQV LQ DLU 1R SXUJLQJ VWHS ZDV WDNHQ 8SRQ FRPSOHWLRQ RI KHDWLQJ WKH VSHFLPHQV ZHUH UHPRYHG IURP WKH KRW ]RQH DQG ZHUH DOORZHG WR FRRO LQ DLU DW WKH FROG ]RQH IRU PLQXWHV

PAGE 27

$QQHDOLQJ LQ D UHGXFLQJ DWPRVSKHUH WKDW LV LQ KA UHTXLUHG VHYHUDO SUHFDXWLRQV GXH WR SRWHQWLDO R[LGDWLRQ RI ILOPV GXULQJ WKH KHDW WUHDWPHQW 3UHOLPLQDU\ H[SHULPHQWDO UHVXOWV VKRZHG WKDW WKH XVH RI DQ LQHUW JDV IRU H[DPSOH $U b SXUHf IRU SXUJLQJ DQG FRROLQJ FDXVHG VRPH R[LGDWLRQ 7KHUHIRUH RQO\ XOWUD KLJK SXUH + bf ZDV XVHG IRU SXUJLQJ KHDWLQJ DQG FRROLQJ )RU KHDWLQJ DQG FRROLQJ WKH VSHFLPHQV ZHUH LQVHUWHG LQWR WKH KRW ]RQH DQG SXOOHG RXW LQWR WKH FROG ]RQH ZLWK D VWDLQOHVV VWHHO URG 7R DYRLG DQ\ R[LGDWLRQ WKH VSHFLPHQ UHORFDWLRQV ZHUH FDUULHG RXW ZKLOH + ZDV IORZLQJ 7KH + SUHVVXUH GXULQJ WKH KHDWLQJ ZDV PDLQWDLQHG WR SVL [ A 3Df 7KH IORZ UDWH RI + ZDV FRQWUROOHG E\ PRQLWRULQJ WKH JDV EXEEOHV IURP DQ RLO EDWK &KDUDFWHUL]DWLRQ RI )LOP 0LFURVWUXFWXUHV 6FDQQLQJ (OHFWURQ 0LFURVFRS\ 6XUIDFH WRSRJUDSK\ RI SXUH $X DQG ,QDOOR\HG $X ILOPV ZHUH H[DPLQHG LQ D -(2/ VFDQQLQJ HOHFWURQ PLFURVFRSH -60 &) 7KH VSHFLPHQV ZHUH PRXQWHG RQ DQ DOXPLQXP VSHFLPHQ KROGHU PP LQ GLDPHWHUf ZLWK VLOYHU SDLQW DQG ZHUH GULHG IRU KRXUV EHIRUH H[DPLQLQJ WKHP LQ WKH PLFURVFRSH 1R FRQGXFWLQJ FRDWLQJV ZHUH DSSOLHG 7KH JUDLQ VL]H DQG WKH JUDLQ VL]H GLVWULEXWLRQ ZHUH PHDVXUHG XVLQJ D OLQH LQWHUFHSW PHWKRG ZKLFK DOORZV FDOFXODWLRQ RI WKH VL]H RI WKH JUDLQ IURP FRXQWLQJ WKH QXPEHU RI LQWHUVHFWLRQ RI D OLQH RI NQRZQ OHQJWK ZLWK WKH JUDLQV

PAGE 28

$XJHU (OHFWURQ 6SHFWURVFRS\ $Q DQDO\VLV RI WKH DWRPLF VSHFLHV FRQWDLQHG LQ WKH ILOPV DV ZHOO DV WKH VSXWWHU SURILOHV IRU ,Q$X FRPSRVLWH ILOPV ZHUH DFFRPSOLVKHG E\ XVLQJ D 6FDQQLQJ $XJHU 0LFURVFRSH 8S WR VSHFLPHQV ZHUH PRXQWHG RQ D FDURXVHO KROGHU LQ D VLQJOH ORDGLQJ DQG VHTXHQWLDOO\ URWDWHG LQ IURQW RI WKH DQDO\]HU 7KH FULWLFDO FRQGLWLRQV IRU WKH DQDO\VLV ZHUH DV IRLORZV (*XQ EHDP YROWDJH .9 3HDN WR SHDN PRGXODWLRQ DPSOLWXGH H9 6ZHHS UDWH H9V 'HWHFWLRQ VHQVLWLYLW\ 9 (OHFWURQ PXOWLSOLHU 9 %DVH SUHVVXUH ; A 7RUU [ A 3Df 3UHVVXUH $U LRQ VSXWWHULQJ ; r 7RUU [ A 3Df ,RQ *XQ EHDP YROWDJH .9 ,RQ *XQ HPLVVLRQ FXUUHQW P$ ,GHQWLILFDWLRQ RI SHDNV LQ WKH $XJHU VSHFWUXP ZDV DFFRPSOLVKHG WKURXJK WKH FRPELQHG XVH RI D FKDUW RI 3ULQFLSDO $XJHU (OHFWURQ (QHUJLHV DQG WKH VWDQGDUG VSHFWUD LQ WKH KDQGERRN >@ 7UDQVLWLRQ SHDNV RI 199 H9f 011 H9f DQG .// H9f ZHUH XVHG WR LGHQWLI\ $X ,Q DQG HOHPHQWV UHVSHFWLYHO\ 3HDN WR SHDN KHLJKWV IRU WKHVH SHDNV ZHUH PHDVXUHG DQG SORWWHG ZLWK UHVSHFW WR WKH VSXWWHU WLPH 7KH TXDQWLWDWLYH DQDO\VLV DWRPLF FRQFHQWUDWLRQ bf ZDV REWDLQHG IURP WKH FDOFXODWLRQ XVLQJ WKH IRUPXOD F[ L[V[ 6 GDVDf

PAGE 29

ZKHUH &[ DWRPLF FRQFHQWUDWLRQ b 6[ UHODWLYH VHQVLWLYLW\ RI HOHPHQW ; ,[ SHDN WR SHDN KHLJKW RI HOHPHQW ; 6D UHODWLYH VHQVLWLYLW\ RI HOHPHQW $ ,D SHDN WR SHDN KHLJKW RI HOHPHQW $ 7KH UHODWLYH VHQVLWLYLW\ RI HOHPHQW ; ZDV FDOFXODWHG IURP WKH SHDN WR SHDN KHLJKWV RI HOHPHQW ; DQG VLOYHU LQ WKH KDQGERRN 7KH UHODWLYH VHQVLWLYLWLHV RI $X ,Q DQG R[\JHQ FDOFXODWHG ZHUH DQG UHVSHFWLYHO\ $WRPLF FRQFHQWUDWLRQ IRU HDFK HOHPHQWV ZHUH SORWWHG ZLWK UHVSHFW WR WKH VSXWWHU WLPH DQG WKHVH SURILOHV ZHUH QRUPDOL]HG WR WKH WKLFNQHVV RI $X ILOPV 7UDQVPLVVLRQ (OHFURQ 0LFURVFRS\ 7KH ILOPV ZHUH H[DPLQHG LQ D -2(/ &; 67(0 RSHUDWHG DW .9 $ JLYHQ ILOP IRU FRQYHQWLRQDO WRS YLHZ WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ ZDV IORDWHG RII WKH TXDUW] VXEVWUDWH LQ D b FRQFHQWUDWHG K\GURIOXRULF DFLG DQG ULQVHG LQ ', ZDWHU 7KH IORDWHG ILOP ZDV WKHQ SXW RQ D VWDQGDUG PP FRSSHU JULG ZLWK PHVK DQG GULHG LQ WKH GHVVLFDWRU EHIRUH H[DPLQDWLRQ LQ WKH PLFURVFRSH $ JUDLQ VWUXFWXUH RI WKH ILOP ZDV REWDLQHG E\ LPDJH PRGH DQG WKH GLIIUDFWLRQ SDWWHUQV ZHUH REWDLQHG E\ 6$' 6HOHFWLYH $UHD 'LIIUDFWLRQf PRGH 7KH VL]H DQG WKH GLVWULEXWLRQ RI WKH JUDLQV ZHUH PHDVXUHG E\ OLQH LQWHUFHSW PHWKRG 3KDVH LGHQWLILFDWLRQ ZDV DFFRPSOLVKHG E\ PHDVXULQJ WKH GLVWDQFH RI WKH GLIIUDFWLRQ VSRW RU ULQJ IURP WKH FHQWHU WUDQVPLWWHG EHDPf DQG XVLQJ WKH IRUPXOD >@

PAGE 30

5 [ G ; [ / ZKHUH 5 WKH GLVWDQFH RI WKH GLIIUDFWLRQ SDWWHUQ G WKH LQWHUSODQDU VSDFLQJ RI D SKDVH ; WKH ZDYH OHQJWK RI WKH HOHFWURQ / WKH FDPHUD FRQVWDQW RI WKH PLFURVFRSH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRSH 7KH FURVV VHFWLRQDO 7(0 UHIHUV WR H[DPLQLQJ WKH VSHFLPHQ LQ FURVV VHFWLRQ E\ 7(0 7KDW LV WKH VXUIDFH QRUPDO RI WKH VSHFLPHQ LV PDGH SHUSHQGLFXODU WR WKH HOHFWURQ EHDP 7KH SUHSDUDWLRQ RI FURVV VHFWLRQ VSHFLPHQV RI 7(0 KDV EHHQ GHVFULEHG E\ VHYHUDO LQYHVWLJDWRUV PDLQO\ IRU VLOLFRQ EDVHG PDWHULDOV >@ 7KH VDPH W\SH RI SUHSDUDWLRQ WHFKQLTXH ZDV DGRSWHG IRU DQQHDOHG ,Q$X FRPSRVLWH ILOPV DOWKRXJK VHYHUDO PRGLILFDWLRQV KDG WR EH PDGH IRU IROORZLQJ UHDVRQV f $ YHU\ WKLQ DUHD LV UHTXLUHG IRU 7(0 H[DPLQDWLRQ IRU DQ $X EDVHG DOOR\ EHFDXVH $X KDV D YHU\ KLJK DWRPLF QXPEHU ZKLFK PHDQV WKDW LW LV YHU\ GLIILFXOW IRU HOHFWURQV WR WUDQVPLW WKH VSHFLPHQ f 6LQFH VSXWWHU UDWHV RI $X DQG TXDUW] DUH VXSSRVHG WR EH TXLWH GLIIHUHQW D XQLIRUP WKLQQLQJ GXULQJ LRQ PLOOLQJ LV GLIILFXOW f $V $X KDV YHU\ SRRU DGKHVLRQ WR PRVW VXUIDFHV LW LV FULWLFDO WR DSSO\ DQ DGKHVLYH FRPSRXQG ZKLFK KDV D JRRG DGKHVLRQ DQG WKH PHFKDQLFDO VWUHQJWK

PAGE 31

7KH VSHFLPHQV ZHUH SUHSDUHG LQ WKH IROORZLQJ VHTXHQFH 6HFWLRQLQJ 7KH VSHFLPHQV ZHUH VHFWLRQHG LQWR UHFWDQJXODU VODEV WKDW PHDVXUHG PP LQ ZLGWK DQG PP LQ OHQJWK $ GLDPRQG ORZ VSHHG ZDWHULQJ VDZ ZDV XVHG IRU WKLV SXUSRVH 7KH VODEV WKHQ ZHUH GHJUHDVHG DQG WKRURXJKO\ FOHDQHG E\ XOWUDVRQLF VFUXEELQJ LQ DFHWRQH *OXLQJ 7ZR VODEV ZHUH JOXHG IDFH WR IDFH LQWR D FRPSRVLWH E\ DSSO\LQJ D WKHUPRVHWWLQJ DGKHVLYH HSR[\ FRPSRXQG LQ EHWZHHQ WKHP 7KH HSR[\ FRPSRXQG ZDV SUHSDUHG E\ PL[LQJ J RI (32. J RI 10$ 1DGLH 0HWK\O $QK\GULGHf DQG J RI '03 7ULV GLPHWK\ODPLQRPHWK\O SKHQROf 7KH FRPSRXQG ZDV YHU\ IOXLG VR WKDW D VPRRWK DQG WKLQ OD\HU FRXOG EH HDVLO\ DSSOLHG 7KH FRPSRVLWH ZDV WKHQ LQVHUWHG LQWR D YLVH DQG SUHVVXUH ZDV DSSOLHG E\ PRYLQJ WKH FURVVKHDG WRZDUG WKH HQG SODWH ZKLFK ZDV PDGH RXW RI WHIORQ 7KH YLVH ZKLFK ZDV GHVLJQHG WR KROG D FRPSRVLWH WRJHWKHU XQGHU HYHQ SUHVVXUH GXULQJ FXULQJ ZDV WKHQ SXW LQWR D FRQYHFWLRQDO RYHQ DQG FXUHG DW GHJ & IRU KRXUV 6XEVHTXHQWO\ WKH YLVH ZDV DOORZHG WR FRRO IRU PLQXWHV 7KHQ WKH FRPSRVLWH ZDV UHPRYHG IURP WKH YLVH E\ UHOHDVLQJ WKH SUHVVXUH 7KH JOXH RQ WKH VXUIDFH RI WKH FRPSRVLWH ZDV UHPRYHG E\ VOLJKWO\ JULQGLQJ ZLWK WKH VDQG SDSHU 0RO GL QJ )RU SURWHFWLRQ DQG KDQGOLQJ SXUSRVHV WKH FRPSRVLWH ZDV HPEHGGHG LQWR WKH HSR[\ FRPSRXQG E\ PROGLQJ 7KLV ZDV DFFRPSOLVKHG E\ ILOOLQJ XS D UXEEHU PROG ZLWK HSR[\ FRPSRXQG IROORZHG E\ LQVHUWLQJ WKH FRPSRVLWH LQWR WKH PROG &DUH ZDV WDNHQ QRW WR LQWURGXFH DQ\ EXEEOHV

PAGE 32

GXULQJ LQVHUWLQJ WKH FRPSRVLWH LQWR WKH PROG 7KH PROG ZDV WKHQ SXW LQ DQ RYHQ DQG FXUHG DW GHJ & IRU KRXUV $IWHU FXULQJ KDV EHHQ FRPSOHWHG WKH PROG ZDV DOORZHG WR FRRO IRU KRXU 7KH PROGHG HSR[\ EDU ZKLFK FRQWDLQV WKH FRPSRVLWH LQVLGH ZDV UHPRYHG WKHQ IURP WKH PROG 6, LFLQJ DQG 0RXQWLQJ 7KH PROGHG HSR[\ EDU ZDV VOLFHG LQWR VHYHUDO GLVFV RI PP WKLFNQHVV ZLWK D GLDPRQG ZDWHULQJ VDZ ,Q PRVW FDVHV PRUH WKDQ GLVFV ZHUH FXW IURP D VLQJOH HSR[\ EDU 8S WR WKUHH GLVFV ZHUH WKHQ VLPXOWDQHRXVO\ PRXQWHG RQWR D GLVF KROGHU FP LQ GLDPHWHU DQG FP LQ KHLJKWf RQ D KRW SODWH XVLQJ D FU\VWDOERQG ZD[ *ULQGLQJ 7KH GLVF KROGHU ZDV WKHQ LQVHUWHG LQWR D ',6& *ULQGHU E\ ZKLFK WKH KHLJKW RI WKH VSHFLPHQ JULQGLQJ ZDV FRQWUROOHG ZLWK DQ LQFOHPHQW RI P 7KH GLVFV ZHUH JURXQG E\ XVLQJ D ORZ VSHHG URWDWLQJ ZKHHO XVLQJ JULW VHOI DGKHVLYH VDQG SDSHU /HVV WKDQ USP ZDV XVHG DV URWDWLQJ VSHHG 3OHQW\ RI ZDWHU ZDV VXSSOLHG GXULQJ JULQGLQJ LQ RUGHU WKDW WKH ZD[ GLG QRW RYHUKHDW DQG PHOW 7KH WKLFNQHVV RI WKH GLVF ZDV IUHTXHQWO\ FKHFNHG ZLWK D PLFURPHWHU ZKLOH WKH GLVFV ZHUH VWLOO DWWDFKHG WR WKH GLVF KROGHU 7KH JULQGLQJ ZDV WHUPLQDWHG DW D WKLFNQHVV RI DERXW SP %RWK WKH GLVF KROGHU DQG WKH ',6& *ULQGHU ZHUH FOHDQHG WKRURXJKO\ ZLWK D GHWHUJHQW DQG ZDWHU 7KH\ ZHUH JHQWO\ UXEEHG E\ D FRWWHQ VZDE GXULQJ FOHDQLQJ WR UHPRYH DQ\ VXUIDFH FRQWDPLQDQWV

PAGE 33

3ROLVKLQJ DQG 0RXQWLQJ 7KUHH VXFFHVVLYH SROLVKLQJ VWHSV ZHUH FDUULHG RXW XVLQJ SP GLDPRQG SDVWH SP DOXPLQD DQG SP DOXPLQD RQ VHSDUDWH SROLVKLQJ FORWKV 5RWDWLRQ VSHHGV ZHUH PDLQWDLQHG EHORZ USP ,W ZDV FULWLFDO WR FOHDQ WKH GLVF KROGHU DQG WKH ',6& *ULQGHU WKRURXJKO\ DIWHU HDFK SROLVKLQJ VWHS LQ RUGHU QRW WR LQWURGXFH VFUDWFKHV GXULQJ SROLVKLQJ 8SRQ FRPSOHWLRQ RI WKH ILQDO SROLVKLQJ DQG WKH FOHDQLQJ WKH GLVF KROGHU ZDV SXW RQ D KRW SODWH DQG HDFK GLVF ZDV WXUQHG RYHU WR WKLQ WKH RWKHU VLGH 0RUH FU\VWDOERQG ZD[ ZDV DSSOLHG LI QHFHVVDU\ *ULQGLQJ 7KH RWKHU VLGH RI WKH GLVFV ZHUH JURXQG WKH VDPH ZD\ DV LQ VWHS XQWLO WKH WKLFNQHVV ZDV OHVV WKDQ SP 6XEVHTXHQW WKLQQLQJ WKH GLVFV IURP SP WR SP ZDV DFFRPSOLVKHG E\ JULQGLQJ WKHP PDQXDOO\ ZLWK SOHQW\ RIZDWHU RQ VDQG SDSHU 6SHFLDO FDUH ZDV WDNHQ QRW WR DSSO\ H[FHVVLYH SUHVVXUH GXULQJ JULQGLQJ 7KH FOHDQLQJ ZDV IROORZHG E\ XVLQJ WKH VDPH GHWHUJHQW DQG UXEELQJ WKH VSHFLPHQ ZLWK D FRWWHQ VZDE 3ROLVKLQJ DQG 'HPRXQWLQJ )LQDO SROLVKLQJ ZDV DFFRPSOLVKHG ZLWK SP GLDPRQG SDVWH RQ SROLVKLQJ FORWK $ USP URWDWLQJ VSHHG DQG VKRUW SROLVKLQJ WLPH ZHUH XVHG WR DYRLG EUHDNDJH RI WKH GLVF &OHDQLQJ IROORZHG WKH VDPH SURFHGXUH DV LQ VWHS 7KH GLVF KROGHU ZDV WKHQ SXW RQ D ILOWHU SDSHU DQG ZDV VRDNHG LQ DFHWRQH IRU PLQXWHV WR UHPRYH DQ\ ZD[ $V WKH GLVFV ZHUH GHPRXQWHG IURP WKH KROGHU WKH\ UHPDLQHG RQ WKH ILOWHU SDSHU ZKLFK ZDV FDUHIXOO\

PAGE 34

UHPRYHG DQG GULHG 7KH GLVFV ZHUH YHU\ IUDJLOH DQG ZHUH KDQGOHG ZLWK XWPRVW FDUH *OXLQJ ,Q RUGHU WR LPSURYH KDQGOLQJ LQ WKH VXEVHTXHQW SURFHVVHV DQG WKH PLFURVFRSH H[DPLQDWLRQ WKH GLVFV ZHUH JOXHG RQ D VWDQGDUG PP FRSSHU JULG KDYLQJ D VLQJOH KROH RI PP GLDPHWHU 7KLV ZDV DFFRPSOLVKHG E\ DSSO\LQJ (3;<'RXEOH%XEEO Hf +DUPDQ &R DURXQG WKH HGJH RI WKH KROH DQG SXWWLQJ WKH GLVF RQ WKH JULG 7KH SRVLWLRQ RI WKH GLVF ZDV DGMXVWHG WR PDNH VXUH WKDW WKH LQWHUIDFH ZDV ORFDWHG DW WKH FHQWHU RI WKH JULG 7KH FRSSHU JULG ZDV WKHQ FXUHG LQ DQ RYHQ DW GHJ & IRU KRXUV ,RQ 0LOOLQJ 7KH ILQDO WKLQQLQJ ZDV DFFRPSOLVKHG E\ LRQ PLOOLQJ WKH VSHFLPHQ LQ D LRQ PLOOLQJ LQVWUXPHQW ZLWK D WHUPLQDWRU ZKHUH DUJRQ LRQV ZHUH DFFHOHUDWHG ZLWK .9 SRWHQWLDO D VSHFLPHQ FXUUHQW RI P$ DQG D VSHFLPHQ WLOW RI GHJUHHV 7KH YDFXXP OHYHO ZDV DERXW [ A 7RUU [ 3Df 7KH WHUPLQDWRU PHDVXUHG WKH VSHFLPHQ FXUUHQW HYHU\ VHFRQGV DQG VKXW RII WKH LRQ PL LQJ DXWRPDWLFDO O\ ZKHQ WKH FXUUHQW UHDFKHG WKH SUHVHW FXUUHQW $ WRWDO RI WR KRXUV ZHUH WDNHQ EHIRUH WKH WHUPLQDWRU VWRSSHG WKH PLOOLQJ 2QFH SHUIRUDWLRQ ZDV DFKLHYHG WKH WLOW DQJOH ZDV UHGXFHG WR DERXW GHJUHHV IRU DQRWKHU WR PLQXWHV LRQ PLOOLQJ ZLWKRXW XVLQJ WKH WHUPLQDWRU 0RVW RI WKH FURVV VHFWLRQDO 7(0 H[DPLQDWLRQ ZHUH DFFRPSOLVKHG LQ +LWDFKL + 7(0 .9f 6RPH RI WKH VSHFLPHQV ZHUH LQYHVWLJDWHG E\ ('; (QHUJ\ 'LVSHUVLYH ;UD\ 6SHFWURVFRS\f DQDO\VLV IRU WKH TXDQWLWDWLYH LQIRUPDWLRQ RI WKH HOHPHQWV

PAGE 35

;5D\ 'LIIUDFWLRQ ;UD\ GLIIUDFWLRQ SDWWHUQV IRU SXUH $X DQG ,Q$X FRPSRVLWH ILOPV ZHUH REWDLQHG IURP DQ DXWRPDWHG SRZGHU GLIIUDFWRPHWHU RSHUDWHG DW .9 7KH SRVLWLRQ DQG WKH LQWHJUDWHG LQWHQVLW\ RI WKH GLIIUDFWLRQ SHDN ZDV DXWRPDWLFDOO\ PHDVXUHG DQG UHFRUGHG RQ WKH FKDUW E\ GDWD SURFHVVLQJ FRPSXWHU

PAGE 36

&+$37(5 5(68/76 $1' ',6&866,216 7KH IROORZLQJ H[SHULPHQWV ZHUH XQGHUWDNHQ WR VWXG\ WKH HIIHFW RI LQGLXP XQGHUOD\V XSRQ PLFURVWUXFWXUD HYROXWLRQV RI JROG WKLQ ILOPV f DQQHDOLQJ RI SXUH $X ILOPV DW & & DQG & IRU KU LQ DLU f DQQHDOLQJ RI ,Q$X FRPSRVLWH ILOPV DW & & DQG & IRU KU LQ DLU f DQQHDOLQJ RI ,Q$X FRPSRVLWH ILOPV DW & & DQG & IRU KU LQ K\GURJHQ JDV 0LFURVWUXFWXUH 6WXGLHV RI 3XUH $X 7KLQ )LOPV $V 'HSRVLWHG 3XUH $X )LOPV Df *UDLQ VWUXFWXUH )LJXUH D GHSLFWV WKH JUDLQ VWUXFWXUH RI DQ DV GHSRVLWHG $X ILOP H[DPLQHG E\ 7(0 7KLV PLFURJUDSK UHYHDOV D PL[WXUH RI ILQH DQG FRDUVH JUDLQV ,W LV QRWHG WKDW DSDUW IURP WKH SUHGRPLQDQW JUDLQV ZKRVH PHDQ JUDLQ GLDPHWHU LV DERXW $ PXFK ELJJHU JUDLQV RI D IHZ WKRXVDQG $ LQ GLDPHWHU FDQ EH HDVLO\ GLVWLQJXLVKHG

PAGE 37

7KH SUHVHQFH RI VXFK ODUJH JUDLQV PD\ VXJJHVW WKH SUHIHUHQWLDO JURZWK RI ODUJH QXFOHL DORQJ FHUWDLQ FU\VWDOORJUDSKLF GLUHFWLRQ GXULQJ GHSRVLWLRQ 7KH QXFOHDWLfRQ DQG WKH JURZWK RI JROG HYDSRUDWHG RQ WKH QRQ UHDFWLQJ VXUIDFH NQRZQ DV QRQZHWWLQJ JURZWK KDV EHHQ NQRZQ WR IRUP ODUJH QXFOHL EHFDXVH RI WKH KLJK PRELOLW\ RI DGVRUEHG DWRPV FDOOHG DGDWRPV DORQJ WKH VXUIDFH >@ 6LPLODU JUDLQ VWUXFWXUHV KDYH EHHQ UHSRUWHG E\ RWKHU LQYHVWLJDWRUV LQ YDSRU GHSRVLWHG JROG WKLQ ILOPV DOWKRXJK WKH PHDQ JUDLQ VL]H ZDV IRXQG WR EH GLIIHUHQW SUREDEO\ GXH WR GLIIHUHQW GHSRVLWLRQ FRQGLWLRQV >@ Ef 6XUIDFH PRUSKRORJ\ 9HU\ OLWWOH GHWDLO RI WKH VXUIDFH VWUXFWXUH ZHUH UHVROYHG E\ 6(0 DV VKRZQ LQ )LJXUH E ZKLFK VXJJHVWHG WKDW WKH DV GHSRVLWHG SXUH $X ILOP KDG D YHU\ VPRRWK VXUIDFH 7KH VXUIDFH URXJKQHVV LQ WKH YDSRU GHSRVLWHG WKLQ ILOPV LV GHWHUPLQHG E\ WKH VWDWLVWLFDO SURFHVV RI QXFOHDWLRQ DQG JURZWK DQG WKH VXUIDFH PRELOLW\ RI DGDWRPV GXULQJ GHSRVLWLRQ >@ $V WKH VXUIDFH PRELOLW\ LQFUHDVHV WKH WHQGHQF\ WR KDYH D VPRRWK VXUIDFH LQFUHDVHV VLQFH WKH FRQGHQVDWLRQ FDQ RFFXU SUHIHUHQWLDOO\ DW WKH FRQFDYLWLHV DQG WKXV VPRRWKHQV WKH VXUIDFH 7KH VXUIDFH PRELOLW\ RI DGDWRPV LQFUHDVHV ZLWK LQFUHDVLQJ NLQHWLF HQHUJ\ RI DGDWRPV DQG WKH VXEVWUDWH VPRRWKQHVV 7KH HIIHFW RI NLQHWLF HQHUJ\ RQ WKH VXUIDFH PRELOLW\ RI HYDSRUDWHG JROG DGDWRPV KDV EHHQ VWXGLHG E\ &KRSUD >@ +H VKRZHG WKDW FULWLFDO QXFOHL FDQ PRYH D FRQVLGHUDEOH GLVWDQFH ZLWK WKH PRPHQWXP LPSDUWHG E\ JROG DGDWRPV 7KH VXUIDFH RI WKH VXEVWUDWH XVHG LQ WKH SUHVHQW H[SHULPHQW ZDV SROLVKHG $ YHU\ I DW VXUIDFH ZLWK OLWWOH LUUHJXDULWLHV ZDV REVHUYHG E\ WKH H[DPLQDWLRQ RI WKH FURVV VHFWLRQ RI WKH VXEVWUDWH LQ 7(0 7KH

PAGE 38

VXUIDFH VPRRWKQHVV RI WKH DV GHSRVLWHG SXUH $X ILOPV WKHUHIRUH LV EHOLHYHG WR UHVXOW IURP WKH VPRRWK VXUIDFH RI WKH VXEVWUDWH DQG WKH KLJK NLQHWLF HQHUJ\ RI JROG DWRPV GXULQJ GHSRVLWLRQ Ff 7H[WXUH ;UD\ GLIIUDFWLRQ SDWWHUQV UHYHDOHG YHU\ VWURQJ ^` ^` SHDNV DQG D ZHDN ^` SHDN )LJXUH f 6$' SDWWHUQV UHYHDOHG WKDW WKH LQWHQVLW\ RI ^` ULQJ ZDV JUHDWHU WKDQ WKDW RI WKH ^` ULQJ )LJXUH f 7KH SUHIHUUHG RULHQWDWLRQ RU ILEHU WH[WXUH LQ WKH ILOP FDQ EH GHWHUPLQHG E\ FRPSDULQJ WKH ;UD\ DQG 6$' GLIIUDFWLRQ SDWWHUQV ZLWK WKH GLIIUDFWLRQ SDWWHUQ RI WKH UDQGRPO\ RULHQWHG JROG SRZGHUV ZKLFK LV OLVWHG LQ -&3'6 -RLQWHG &RPPLWWHH RI 3RZGHU 'LIIUDFWLRQ 6WDQGDUGf 7KH UDQGRPO\ RULHQWHG JROG SRZGHUV KDYH WKH PRVW LQWHQVLYH ^` DQG PRGHUDWHO\ LQWHQVLYH ^` ^` ^` SHDNV DV VKRZQ LQ 7DEOH 7KHUHIRUH WKH YHU\ VWURQJ ^` DQG ^` SHDNV LQ WKH ;UD\ GLIIUDFWLRQ SDWWHUQV VXJJHVW D f SUHIHUUHG RULHQWDWLRQ LQ WKH ILOP )XUWKHUPRUH VLQFH ;UD\ GLIIUDFWLRQ GRHV RFFXU IURP WKH FU\VWDOV ZKLFK OLH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH LW LV VXJJHVWHG WKDW WKH f RULHQWDWLRQ LV SDUDOOHO WR WKH VXEVWUDWH VXUIDFH >@ 6$' SDWWHUQV FRPSOHPHQW WKH SUHVHQFH RI D f WH[WXUH LQ WKH ILOP 7KH IDFW WKDW WKH LQWHQVLW\ RI WKH ^` ULQJ LV JUHDWHU WKDQ WKDW RI ^` ULQJ VXJJHVWV WKDW WKH LQFLGHQW HOHFWURQ EHDP GLUHFWLRQ LV OLNHO\ WR EH >@ GLUHFWLRQ VLQFH HOHFWURQ GLIIUDFWLRQ LQ 7(0 GRHV RFFXU IURP WKH FU\VWDV ZKLFK OLH SDUD H WR WKH LQFLGHQW EHDP

PAGE 39

, M/WP )LJXUH 3KRWRPLFURJUDSKV RI $V 'HSRVLWHG 3XUH $X )LOPV Df 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK Ef 6FDQQLQJ (OHFWURQ 0LFURJUDSK

PAGE 40

G )LJXUH ;5D\ 'LIIUDFWLRQ 3DWWHUQV RI $V 'HSRVLWHG 3XUH $X )LOPV

PAGE 41

)LJXUH 6$' 3DWWHUQV RI $V 'HSRVLWHG 3XUH $X )LOPV

PAGE 42

)LJXUH 6$' 3DWWHUQV RI $V 'HSRVLWHG 3XUH $X )LOPV

PAGE 43

7DEOH ;5D\ 'LIIUDFWLRQ 3DWWHUQV RI $X 3RZGHUV /LVWHG LQ -&3'6 G $ KNO} KNO

PAGE 44

GLUHFWLRQ >@ ,Q VXPPDU\ DV GHSRVLWHG SXUH $X ILOPV KDYH D f WH[WXUH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH 7KH SUHIHUUHG RULHQWDWLRQ LQ WKLQ ILOPV PD\ GHYHORS DW YDULRXV VWDJHV HJ QXFOHDWLRQ JURZWK HSLWD[LDO JURZWK DQG KHDW WUHDWPHQW :KHQ WKH VXEVWUDWH KDV D GRPLQDWLQJ LQIOXHQFH RQ WKH RULHQWDWLRQ LQ ZKLFK WKH VXEVWUDWH HQHUJHWLFDOO\ IDYRUV WKH DGVRUSWLRQ RI RQH JHRPHWULFDO DUUDQJHPHQW DWRPV LQ QXFOHL RYHU DQRWKHU WKH HSLWD[LDO JURZWK ZLOO EH PRVW SUREDEOH >@ 7KH VWUXFWXUH RI WKH VXEVWUDWH XVHG LQ WKH H[SHULPHQW IXVHG TXDUW] LV DPRUSKRXV 7KXV WKH SUHIHUUHG RULHQWDWLRQ GXULQJ HSLWD[LDO JURZWK LV QRW OLNHO\ WR RFFXU 7KH WHPSHUDWXUH RI WKH VXEVWUDWH GXULQJ GHSRVLWLRQ ZDV PDLQWDLQHG EHORZ GHJUHHV & KHQFH WH[WXUH GHYHORSPHQW GXH WR KHDW WUHDWPHQW LV DOVR GLVUHJDUGHG 7KHUHIRUH WKH f WH[WXUH LQ WKH DV GHSRVLWHG SXUH $X ILOP ZDV OLNHO\ WR GHYHORS GXULQJ WKH QXFOHDWLRQ DQG JURZWK VWDJHV $FFRUGLQJ WR WKH FDSLOODULW\ WKHRU\ RI QXFOHDWLRQ WKH WH[WXUH ZLOO RFFXU IRU WKH RULHQWDWLRQ ZKLFK JLYHV ORZHU LQWHUIDFLDO IUHH HQHUJ\ DQG KHQFH D ORZHU IUHH HQHUJ\ RI IRUPDWLRQ IRU WKH FULWLFDO QXFOHXV DQG D PXFK KLJKHU QXFOHDWLRQ UDWH WKDQ DQ\ RWKHU RULHQWDWLRQ >@ 7KH f RULHQWDWLRQ RI JROG KDV EHHQ UHSRUWHG WR KDYH WKH ORZHVW LQWHUIDFLDO HQHUJ\ >@ 7KXV WKH SUHIHUUHG QXFOHDWLRQ RI f PLJKW RFFXU GXULQJ WKH QXFOHDWLRQ VWDJH 6HYHUDO HPSLULFDO UXOHV FRQFHUQLQJ WH[WXUH IRUPDWLRQ GXULQJ JUDLQ JURZWK VWDJH KDYH VKRZQ WKH SULQFLSOH RI JHRPHWULF VHOHFWLRQ GXULQJ JURZWK VWDJH 7KDW LV LQ WKH JURZWK RI UDQGRPO\ RULHQWHG QXFOHL RQO\ WKRVH JUDLQV ZLOO VXUYLYH LQ ZKLFK WKH GLUHFWLRQ RI PD[LPXP UDWH RI JURZWK DSSUR[LPDWHO\ FRLQFLGHV ZLWK WKH QRUPDO WR WKH FU\VWDOOL]DWLRQ

PAGE 45

IURQW >@ $FFRUGLQJ WR WKLV SULQFLSOH WKH FORVHVWSDFNHG SODQHV ZLOO OLH SDUDOOHO WR WKH VXEVWUDWH LI WKH VXUIDFH PREL LW\ RI DGDWRPV GXULQJ GHSRVLWLRQ LV KLJK 6LQFH f LV WKH FORVHVWSDFNHG SODQH IRU JROG WKH KLJKHU UDWH RI f RULHQWDWLRQ WKDQ RWKHU RULHQWDWLRQ FRXO G EH DFKLHYHG ,Q VXPPDU\ ZKHWKHU LW LV DWWULEXWHG WR D KLJKHU QXFOHDWLRQ UDWH RU D KLJKHU JURZWK UDWH RU GXH WR D FRPELQDWLRQ RI WKH WZR WKH f WH[WXUH ZKLFK LV SDUDOOHO WR WKH VXEVWUDWH VXUIDFH LV OLNHO\ WR RFFXU GXULQJ GHSRVLWLRQ 7KH SUHVHQFH RI D f WH[WXUH LV LQ DJUHHPHQW ZLWK RWKHU H[SHULPHQWV LQ ZKLFK JROG ILOPV HYDSRUDWHG RQ WKH DPRUSKRXV VXEVWUDWH KDG D f WH[WXUH DIWHU GHSRVLWLRQ >@ $QQHDOHG 3XUH $X )LOPV Df *UDLQ VWUXFWXUH 7KH JUDLQ VWUXFWXUHV RI SXUH $X ILOPV DQQHDOHG DW & & DQG & H[DPLQHG E\ 7(0 DUH VKRZQ LQ )LJXUH 2QH REVHUYHV D FRDUVHn JUDLQHG VWUXFWXUH WKURXJKRXW $ VLJQLILFDQW JUDLQ JURZWK RFFXUUHG GXULQJ DQQHDOLQJ DV VKRZQ LQ )LJXUH LQ ZKLFK WKH PHDQ JUDLQ GLDPHWHUV DUH SORWWHG ZLWK UHVSHFW WR WKH DQQHDOLQJ WHPSHUDWXUHV 7KH ZLGH VFDWWHULQJ LQ WKH JUDLQ VL]H LQGLFDWHV WKH ZLGH JUDLQ VL]H GLVWULEXWLRQ 7KLV EHFRPHV ZLGHU DV WKH DQQHDOLQJ WHPSHUDWXUH LQFUHDVHV 7KLV PLJKW EH FDXVHG E\ WKH KLJKHU JURZWK RI WH[WXUHG JUDLQV GXULQJ DQQHDOLQJ DW WKH H[SHQVH RI WKH VPDOO JUDLQV

PAGE 46

)LJXUH 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI 3XUH $X )LOPV $QQHDOHG DW Df & Ef & Ff & LP

PAGE 47

7 ( 0 3 r& )LJXUH 0HDQ *UDLQ 'LDPHWHUV PHDVXUHG IURP 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI 3XUH $X )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV

PAGE 48

Ef 6XUIDFH PRUSKRRJ\ 9HU\ VLJQLILFDQW PRUSKRRJLFD FKDQJHV LQ WKH VXUIDFH UHVXOWLQJ IURP WKH JUDLQ ERXQGDU\ JURRYLQJ DQG WKH JUDLQ JURZWK DUH VKRZQ LQ )LJXUH 7KHUPDO JURRYHV DORQJ WKH JUDLQ ERXQGDULHV RU DW WKH JUDLQ ERXQGDU\ YHUWLFHV ZKHUH WKUHH JUDLQ ERXQGDULHV PHHW ZHUH REVHUYHG DV GDUN OLQHV RU GDUN VSRWV LQ WKH 6(0 PLFURJUDSK )LJXUH Df DQG DV EULJKW OLQHV RU VSRWV LQ WKH 7(0 PLFURJUDSK )LJXUH Ef 7KH GHYHORSPHQW RI JUDLQ ERXQGDU\ JURRYLQJ GXULQJ DQQHDOLQJ LV HYLGHQW DQG WKH GHJUHH RI WKH JURRYLQJ VHHPV WR LQFUHDVH DV WKH DQQHDOLQJ WHPSHUDWXUH LQFUHDVHV 7KH PRVW VHYHUH JUDLQ ERXQGDU\ JURRYH ZDV REVHUYHG LQ D JROG ILOP DQQHDOHG DW & ZKHUH D KROH IRUPHG DW WKH JUDLQ ERXQGDU\ YHUWH[ DV VKRZQ LQ )LJXUH E 7KH SUHVHQFH RI D KROH DW WKH YHUWH[ ZDV FRQILUPHG E\ WKH IDFW WKDW WKHUH ZDV QR FKDQJH LQ WKH FRQWUDVW RI WKH EULJKW VSRW GXULQJ WLOWLQJ WKH VDPSOH XS WR GHJUHHV LQ 7(0 H[DPLQDWLRQ 6LQFH WKH JUDLQ ERXQGDU\ JURRYLQJ LV FDXVHG E\ WKH FDSLOODU\LQGXFHG PDVV WUDQVSRUW ZKLFK LV D WKHUPDOO\ DFWLYDWHG SURFHVV WKH HIIHFW RI DQQHDOLQJ WHPSHUDWXUH RQ WKH GHYHORSPHQW RI WKH JURRYH VHHPV TXLWH VLJQLILFDQW 'HYHORSPHQW RI VLPLODU JUDLQ ERXQGDU\ JURRYLQJ LQ WKLQ JROG ILOPV DQQHDOHG DW HOHYDWHG WHPSHUDWXUHV RU VWUHVVHG DW KLJK FXUUHQW GHQVLWLHV KDV EHHQ UHSRUWHG >@ +RZHYHU ODUJH KROHV GXH WR WKH ORVV RI DGKHVLRQ RU JDV EXEEOHV HQWUDSSHG GXULQJ GHSRVLWLRQ ZHUH QRW REVHUYHG LQ WKH SUHVHQW H[SHULPHQW

PAGE 49

)LJXUH 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI 3XUH $X )LOPV $QQHDOHG DW Df & Ef & Ff &

PAGE 50

LP )LJXUH 7KHUPDO *URRYHV LQ WKH *UDLQ %RXQGDULHV DQG LQ WKH *UDLQ %RXQGDU\ 9HUWLFHV REVHUYHG E\ Df 6(0 Ef 7(0

PAGE 51

Ff 7H[WXUH ;UD\ GLIIUDFWLRQ SDWWHUQV UHYHDOHG YHU\ VWURQJ ^` DQG ^` SHDNV ZKLFK VXJJHVWHG WKH f WH[WXUH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH LQ WKH DQQHDOHG SXUH $X ILOPV )LJXUH f 7KH FKDQJH LQ WKH DPRXQW RI WKH WH[WXUH GXULQJ DQQHDOLQJ FDQ EH PRQLWRUHG E\ FRPSDULQJ WKH LQWHQVLWLHV RI ^` SHDNV 7KH FKDQJH LQ WKH LQWHQVLW\ RI SHDN IRU DQQHDOHG SXUH $X ILOPV DV D IXQFWLRQ RI WKH DQQHDOLQJ WHPSHUDWXUH LV VKRZQ LQ )LJXUH 7KH LQFUHDVH RI WKH UHODWLYH LQWHQVLW\ DV WKH DQQHDOLQJ WHPSHUDWXUH LQFUHDVHV VXJJHVWV D IDYRUHG GHYHORSPHQW RI JUDLQV ZLWK f RULHQWDWLRQ GXULQJ DQQHDOLQJ 7KH f WH[WXUHV LQ WKH DQQHDOHG SXUH $X ILOPV DUH DOVR HYLGHQW LQ WKH 6$' SDWWHUQV LQ ZKLFK WKH ^` ULQJ LV PRUH LQWHQVLYH WKDQ WKH ^` ULQJ LQGLFDWLQJ WKDW WKH >@ GLUHFWLRQ LV WKH LQFLGHQW EHDP GLUHFWLRQ )LJXUH f 7KH SUHVHQFH RI D f WH[WXUH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH LV LQ DJUHHPHQW ZLWK RWKHU H[SHULPHQWDO GDWD LQ ZKLFK WKH f WH[WXUH ZDV UHSRUWHG LQ WKH DQQHDOHG JROG ILOPV >@ 0LFURVWUXFWXUH RI ,Q$X &RPSRVLWH )LOPV $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV Df *UDLQ VWUXFWXUH )LJXUHV D DQG E GHSLFW WKH JUDLQ VWUXFWXUH RI DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV H[DPLQHG E\ 7(0 DQG 6(0 UHVSHFWLYHO\ 7KH\ UHYHDO D XQLIRUP DQG ILQHJUDLQHG VWUXFWXUH ZLWK D PHDQ JUDLQ GLDPHWHU RI DERXW $

PAGE 52

Df

PAGE 53

7( 0 3 r& )LJXUH ,QWHQVLWLHV RI f 'LIIUDFWLRQ RI 3XUH $X )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV

PAGE 54

)LJXUH 6$' 3DWWHUQV RI 3XUH $X )LOPV $QHHDOHG DW Df & Ef & Ff &

PAGE 55

)RU FRPSDULVRQ SXUSRVHV WKH JUDLQ VWUXFWXUH RI D SXUH LQGLXP ILOP $ LQ WKLFNQHVV GHSRVLWHG RQ D TXDUW] VXEVWUDWHf ZDV H[DPLQHG E\ 6(0 )LJXUH f $ UDWKHU XQLIRUP DQG ILQHJUDLQHG VWUXFWXUH ZLWK D PHDQ JUDLQ GLDPHWHU RI $ ZDV REVHUYHG ,W LV HDVLO\ QRWLFHG WKDW WKH JUDLQ VWUXFWXUH RI WKH ,Q$X FRPSRVLWH ILOP LV TXDOLWDWLYHO\ VLPLODU WR WKDW RI D SXUH LQGLXP ILOP 7KLV VXJJHVWV WKDW WKH PLFURVWUXFWXUH RI ,Q$X FRPSRVLWH ILOPV PD\ EH LQIOXHQFHG E\ WKH PLFURVWUXFWXUH RI WKH LQGLXP XQGHUOD\ ILOP 0RUH FDUHIXO H[DPLQDWLRQ VKRZV VRPH VWUXFWXUDO GLIIHUHQFH EHWZHHQ ,Q$X FRPSRVLWH ILOPV DQG SXUH ,Q ILOP KRZHYHU 7KHVH GLIIHUHQFHV DUH f WKH PHDQ JUDLQ GLDPHWHU RI SXUH LQGLXP ILOP $f LV ODUJHU WKDQ WKDW RI ,Q$X FRPSRVLWH ILOP $f DQG f WKH SXUH LQGLXP ILOP KDV WZR PD[LPD DW DERXW $ DQG $ LQ WKH JUDLQ VL]H GLVWULEXWLRQ ZKHUHDV WKH ,Q$X FRPSRVLWH ILOP KDV D VLQJOH PD[LPXP DW DERXW $ 7KHVH GLIIHUHQFHV PD\ EH DWWULEXWHG WR JUDLQ JURZWK RI WKH SXUH LQGLXP ILOP DW URRP WHPSHUDWXUH DQGRU WR WKH WKLFNQHVV HIIHFW RQ WKH JUDLQ VL]H 6LQFH LQGLXP KDV D ORZ PHOWLQJ WHPSHUDWXUH & WKH KRPRORJRXV WHPSHUDWXUH 77 DW URRP WHPSHUDWXUH LV DERXW 7KLV LV KLJK HQRXJK WR FDXVH QRUPDO JUDLQ JURZWK >@ $V VRPH JUDLQV JURZ WKH JUDLQ VL]H GLVWULEXWLRQ ZLWK WZR PD[LPD PD\ UHVXOW 7KH HIIHFW RI WKH ILOP WKLFNQHVV RQ WKH JUDLQ VL]H RI GHSRVLWHG WKLQ ILOPV KDV EHHQ UHSRUWHG EHIRUH IRU PDQ\ V\VWHPV >@ 7KH JUDLQ VL]H ZDV REVHUYHG WR LQFUHDVH ZLWK LQFUHDVLQJ WKLFNQHVV 6LQFH WKH WKLFNQHVV RI SXUH LQGLXP ILOPV H[DPLQHG ZDV DERXW $ ZKHUHDV WKH WKLFNQHVV RI LQGLXP XQGHUOD\ LQ WKH ,Q$X FRPSRVLWH ILOP ZDV $ D VPDOOHU JUDLQ VL]H LQ WKH ,Q$X ILOP WKDQ LQ WKH SXUH LQGLXP ILOP LV

PAGE 56

H[SHFWHG +RZHYHU WKLV LV QRW JHQHUDOO\ D OLQHDU HIIHFW LH WKH JUDLQ VL]H RI D $ ILOP LV QRW QHFHVVDULO\ $ EXW PRUH OLNHO\ DERXW $ &RQVLGHULQJ WKHVH WZR HIIHFWV LW LV VXJJHVWHG WKDW WKH PLFURVWUXFWXUH RI LQGLXP XQGHUOD\ DIIHFWV WKH PLFURVWUXFWXUH RI WKH VXEVHTXHQW JROG ILOP GXULQJ GHSRVLWLRQ Ef 7H[WXUH ;UD\ GLIIUDFWLRQ SDWWHUQV UHYHDOHG DOO SRVVLEOH GLIIUDFWLRQV RI JROG QDPHO\ ^` ^ ` ^ ` ^` DQG ^ ` )LJXUH f 7KH UHODWLYH LQWHQVLWLHV RI HDFK SHDN ZLWK UHVSHFW WR WKH LQWHQVLW\ RI WKH ^` SHDN DUH FRPSDUHG ZLWK WKRVH RI UDQGRPO\ RULHQWHG JROG SRZGHUV LQ 7DEOH 7KH WUHQG LV VLPLODU ZKLFK LQGLFDWHV WKDW DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV KDYH D UHODWLYHO\ UDQGRP RULHQWDWLRQ RI JROG JUDLQV ZLWK WKH WHQGHQF\ RI WKH f WH[WXUH 6$' SDWWHUQV FRPSOHPHQW WKLV LQIRUPDWLRQ E\ REVHUYLQJ WKH ^` ULQJ WR EH WKH PRVW LQWHQVLYH )LJXUH f 7KH UHODWLYHO\ UDQGRP RULHQWDWLRQ RI JUDLQV LQ WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOP VXJJHVWV WKH DEVHQFH RI D SUHIHUUHG QXFOHDWLRQ DQG JURZWK DORQJ D FHUWDLQ FU\VWDOORJUDSKLF GLUHFWLRQ $ GHFUHDVHG VXUIDFH PRELOLW\ RI DGDWRPV KDV EHHQ UHSRUWHG WR FDXVH WKH UDQGRP RULHQWDWLRQ LQ YDSRU GHSRVLWHG WKLQ ILOPV >@ ,Q VXPPDU\ DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV KDYH WKH UDQGRP RULHQWDWLRQ RI JROG JUDLQV ZKLFK PD\ UHVXOW IURP WKH GHFUHDVHG PRELOLW\ RI JROG DGDWRPV GXULQJ GHSRVLWLRQ Ff 6XUIDFH PRUSKRORJ\ 7KH VXUIDFH PRUSKRORJ\ RI WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOP H[DPLQHG E\ ;7(0 LV VKRZQ LQ )LJXUH $ VXUIDFH URXJKQHVV VLPLODU WR

PAGE 57

)LJXUH 3KRWRPLFURJUDSKV RI $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV Df 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK Ef 6FDQQLQJ (OHFWURQ 0LFURJUDSK

PAGE 58

)LJXUH 6FDQQLQJ (OHFWURQ 0LFURJUDSK RI 3XUH ,QGLXP RI $ 7KLFNQHVV

PAGE 59

)LJXUH ;5D\ 'LIIUDFWLRQV RI $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV

PAGE 60

7DEOH 9DOXHV RI ,KN IRU $V 'H3RVLWHG ,Q$X &RPSRVLWH )LOPV KNO f $X 3RZGHU ,Q$X &RPSRVLWH

PAGE 61

)LJXUH 6$' 3DWWHUQV RI $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV

PAGE 62

)LJXUH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK RI $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV

PAGE 63

)LJXUH $(6 6SXWWHU 3URILOH RI $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV

PAGE 64

6RPH FRGHSRVLWLRQ RI LQGLXP DQG JROG FRXOG RFFXU HLWKHU E\ UDGLDWLRQ GXULQJ JROG HYDSRUDWLRQ RU E\ KHDW FRQGXFWLRQ WKURXJK WKH HOHFWURGHV 7KLV LV SRVVLEOH EHFDXVH RI WKH ORZ PHOWLQJ SRLQW RI LQGLXP ,W UHTXLUHV RQO\ DERXW b HOHFWULF SRZHU FRPSDUHG WR JROG HYDSRUDWLRQ )XUWKHUPRUH WKH PRO\EGHQXP ERDWV ZHUH ORFDWHG YHU\ FORVH WRJHWKHU ZLWK RQH RI WKHLU HQGV FRQQHFWHG WR WKH VDPH HOHFWURGH +RZHYHU LI LQGLXP RQ WKH JROG VXUIDFH UHVXOWHG IURP FRGHSRVLWLRQ RI LQGLXP DQG JROG D XQLIRUP FRQFHQWUDWLRQ RI LQGLXP ZLWKLQ WKH JROG ILOP ZRXOG EH H[SHFWHG 7KLV KDV QRW EHHQ REVHUYHG 7KHUHIRUH FRn GHSRVLWLRQ RI LQGLXP GXULQJ JROG GHSRVLWLRQ VHHPV QRW WR KDYH RFFXUUHG WR D DUJH H[WHQW ,QWHUGLIIXVLRQ RI LQGLXP DQG JROG GXULQJ GHSRVLWLRQ PD\ EH DLGHG E\ WKH NLQHWLF HQHUJ\ RI WKH JROG DWRPV ZKLFK LPSLQJH XSRQ WKH LQGLXP VXUIDFH GXULQJ JROG GHSRVLWLRQ 7KH NLQHWLF HQHUJ\ LPSDUWHG LQ WKLV ZD\ FRXOG SURPRWH WKH UDSLG IRUPDWLRQ RI D PL[HG OD\HU RU LQWHUPHWD LF FRPSRXQGV GXULQJ WKH GHSRVLWLRQ GHSHQGLQJ XSRQ WKH GHSRVLWLRQ SDUDPHWHUV VXFK DV GHSRVLWLRQ UDWH DQG VXEVWUDWH WHPSHUDWXUH )RU H[DPSOH WKH IRUPDWLRQ DQG WKH JURZWK RI D $XOQ SKDVH LQ $X,Q WKLQ ILOP FRXSOHV GXULQJ HYDSRUDWLRQ KDV EHHQ UHSRUWHG >@ $ JURZWK PHFKDQLVP ZDV SURSRVHG ZKLFK HQWDLOV WKH UDSLG GLIIXVLRQ RI LQGLXP DORQJ WKH JUDLQ ERXQGDULHV RI $XOQ JUDLQV WR WKH VXUIDFH $Q LQWHUGLIIXVLRQ GXULQJ GHSRVLWLRQ WKXV PLJKW KDYH RFFXUUHG LQ WKLV H[SHULPHQW +RZHYHU QR LQWHUPHWDO LF FRPSRXQGV RU DQ\ RWKHU SKDVHV ZHUH REVHUYHG E\ 6$' LQ 7(0 DQG ;UD\ GLIIUDFWLRQ DQDO\VLV ,QWHUGLIIXVLRQ DIWHU GHSRVLWLRQ PD\ RFFXU LI WKH LQGLXP LQ WKH XQGHUOD\ GLIIXVHV RXW WR WKH IUHH VXUIDFH DW URRP WHPSHUDWXUH 5DSLG

PAGE 65

GLIIXVLRQ RI LQGLXP DW URRP WHPSHUDWXUH KDV EHHQ REVHUYHG E\ VHYHUDO LQYHVWLJDWRUV >@ )XUWKHUPRUH VRPH HQULFKPHQW RI LQGLXP RQ WKH VXUIDFH DIWHU GHSRVLWLRQ LQ $X,Q FRPSRVLWH ILOPV DQG $X,Q DOOR\ ILOPV PRQLWRUHG E\ 5%6 DQG $(6 KDV EHHQ UHSRUWHG >@ 3DUWLFXODUO\ WKH DFFXPXODWLRQ RI LQGLXP RQ WKH VXUIDFH GXULQJ $(6 DQDO\VLV KDV VXJJHVWHG WKH WHQGHQF\ RI LQGLXP VXUIDFH VHJUHJDWLRQ DW URRP WHPSHUDWXUH 2XWGLIIXVLRQ RI LQGLXP DIWHU GHSRVLWLRQ LV PRVW OLNHO\ WR RFFXU EHFDXVH RI KLJK GLIIXVLYLW\ DW URRP WHPSHUDWXUH 7KH SUHVHQFH RI R[\JHQ RQ WKH VXUIDFH PD\ VXJJHVW WKH IRUPDWLRQ RI LQGLXP R[LGH DQG WKXV WKH R[LGDWLRQ PLJKW EH WKH GULYLQJ IRUFH IRU WKH RXWGLIIXVLRQ RI LQGLXP +RZHYHU VXUIDFH VHJUHJDWLRQ RU D FRQFHQWUDWLRQ JUDGLHQW LQ WKH $X ILOP DOVR FRXOG EH D GULYLQJ IRUFH ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU Df *UDLQ 6WUXFWXUH 7KH JUDLQ VWUXFWXUHV RI ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & & DQG & LQ DLU DV H[DPLQHG E\ 7(0 DUH VKRZQ LQ )LJXUH 7KH FKDQJH LQ WKH PHDQ JUDLQ GLDPHWHU DV D IXQFWLRQ RI WKH DQQHDOLQJ WHPSHUDWXUH LV VKRZQ LQ )LJXUH ZKHUH WKH HUURU EDUV LQGLFDWH WKH VWDQGDUG GHYLDWLRQV $ WUXH LGHQWLILFDWLRQ RI JUDLQ ERXQGDULHV LQ WKH LPDJHV RI KHDYLO\ IDXOWHG SRO\FU\VWDO LQH ILPV ZDV GLIILFXOW DQG WKH UHVXOWV PD\ EH VXEMHFW WR VRPH HUURU 1HYHUWKHOHVV WKH IRUPDWLRQ RI ODUJHU JUDLQV DW KLJKHU WHPSHUDWXUHV VKRZLQJ JUDLQ JURZWK GXULQJ DQQHDOLQJ ZDV HYLGHQW

PAGE 66

" )LJXUH 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW Df & Ef & Ff &

PAGE 67

WHPS )LJXUH 0HDQ *UDLQ 'LDPHWHUV PHDVXUHG IURP 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV LQ $LU

PAGE 68

Ef 6XUIDFH PRUSKRRJ\ 9HU\ OLWWOH VXUIDFH VWUXFWXUDO FKDQJHV DQG KHQFH QR VLJQLILFDQW JUDLQ ERXQGDU\ JURRYHV LQ WKH DQQHDOHG ,Q$X FRPSRVLWH ILOPV ZHUH UHYHDOHG E\ 6(0 H[DPLQDWLRQ )LJXUH f 7KLV ZLOO EH VXEVWDQWLDWHG EHORZ ZKHQ ;7(0 UHVXOWV ZLOO EH GLVFXVVHG 7KH PHDQ JUDLQ GLDPHWHU DIWHU DQQHDOLQJ PHDVXUHG ZLWK 6(0 LV DERXW $ ZKLFK LV WKH VDPH DV LQ WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOP 7KLV FRXOG EH LQWHUSUHWHG WKDW QR JUDLQ JURZWK RFFXUUHG GXULQJ DQQHDOLQJ ZKLFK LV FRQWUDGLFWRU\ WR WKH UHVXOW RI RXU 7(0 H[DPLQDWLRQ LQ ZKLFK WKH JUDLQ JURZWK ZDV REVHUYHG 7KH DSSDUHQW GLIIHUHQFH EHWZHHQ WKH VXUIDFH VWUXFWXUH REVHUYHG E\ 6(0 DQG WKH LQWHUQDO VWUXFWXUH REVHUYHG E\ 7(0 FDQ EH H[SODLQHG E\ FRQVLGHULQJ VRPH PRGHO VWUXFWXUHV f 0RGHO $ LQYROYHV VPDOO JUDLQV RI $ LQ GLDPHWHU DQG ODUJH JUDLQV RI IHZ WKRXVDQGV $ LQ GLDPHWHU DW WKH ERWWRP RI WKHVH VPDO JUDLQV DV VKRZQ LQ )LJXUH D f 0RGHO % LQYROYHV ODUJH JUDLQV RI DERXW $ LQ GLDPHWHU KDYLQJ URXJK VXUIDFHV ZKRVH VLQXVRLGDO SHUWXUEDWLRQ ZDYHOHQJWK LV DERXW $ DV VKRZQ LQ )LJXUH E ,PDJH IRUPDWLRQ LQ 6(0 LV DFKLHYHG E\ WKH WRSRJUDSKLF FRQWUDVW UHVXOWLQJ IURP VHFRQGDU\ HOHFWURQV ZKLFK DUH HPLWWHG IURP WKH VSHFLPHQ VXUIDFH >@ 7KH WRSRJUDSKLF FRQWUDVWV WKHUHIRUH LQ PRGHO $ ZRXOG EH FDXVHG E\ WKH ILQH JUDLQ VWUXFWXUH RQ WKH VXUIDFH ZKHUHDV WKRVH LQ PRGHO % ZRXOG EH FDXVHG E\ WKH VXUIDFH URXJKQHVV 6LQFH WKH GLPHQVLRQ RI WKH VPDOO JUDLQV LQ PRGHO $ DQG WKH ZDYHOHQJWK RI WKH VLQXVRLGDO

PAGE 69

Df Ef Ff )LJXUH 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU DW Df & Ef & Ff &

PAGE 70

Ef )LJXUH 0RGHO 6WUXFWXUHV WR H[SODLQ WKH $SSDUHQW 'LIIHUHQFH EHWZHHQ WKH 6XUIDFH 6WUXFWXUH DQG WKH ,QWHUQDO 6WUXFWXUH Df 0RGHO $ Ef 0RGHO %

PAGE 71

SHUWXUEDWLRQ LH VXUIDFH URXJKQHVV DUH LGHQWLFDO WKH VDPH VXUIDFH VWUXFWXUH PD\ EH REWDLQHG E\ 6(0 IRU ERWK PRGHOV 6LPLODUO\ ODUJH JUDLQV DV ZHOO DV VPDOO JUDLQV PD\ EH REVHUYHG E\ 7(0 H[DPLQDWLRQ EHFDXVH LPDJH IRUPDWLRQ LQ 7(0 LV DFKLHYHG E\ WKH GLIIUDFWLRQ FRQWUDVW RI WKH WUDQVPLWWHG HOHFWURQV >@ 7KHUPRG\QDPLFDOO\ WKH VWUXFWXUH RI PRGHO $ LV OHVV OLNHO\ WR RFFXU EHFDXVH LW SRVVHVVHV D ODUJH DPRXQW RI JUDLQ ERXQGDULHV DOWKRXJK JUDLQ ERXQGDULHV DUH H[SHFWHG WR EH HOLPLQDWHG GXULQJ DQQHDOLQJ LQ RUGHU WR UHGXFH WKH WRWDO IUHH HQHUJ\ E\ UHGXFLQJ LQWHUIDFLDO HQHUJ\ $OVR NQRZLQJ WKDW WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV KDYH WKH FROXPQDU VWUXFWXUH LQ ZKLFK WKH JUDLQV DUH H[WHQGLQJ WKURXJK WKH HQWLUH ILOP VHH )LJXUH f WKH JUDQXODU VWUXFWXUH LQ PRGHO $ LQ ZKLFK VPDOO JUDLQV DUH HPEHGGHG RQ WKH VXUIDFH RI ODUJH JUDLQV LV QRW OLNHO\ WR GHYHORS GXULQJ DQQHDOLQJ >@ 2Q WKH RWKHU KDQG WKH VWUXFWXUH RI PRGHO % LV PRUH OLNHO\ WR RFFXU EHFDXVH WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOP KDV D URXJK VXUIDFH 7KH HYLGHQFH IRU WKH H[LVWHQFH RI PRGHO % VWUXFWXUH KRZHYHU ZDV DFKLHYHG E\ ;7(0 H[DPLQDWLRQ RI ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & DQG & )LJXUH LOOXVWUDWHV WKH FURVV VHFWLRQ RI WKH ,Q$X FRPSRVLWH ILOP DQQHDOHG DW & LQ ZKLFK VRPH ODUJH JUDLQV RI DERXW $ LQ GLDPHWHU DQG VRPH VXUIDFH URXJKQHVV ZKRVH VLQXVRLGDO SHUWXUEDWLRQ ZDYHOHQJWK DQG DPSOLWXGH DUH $ DQG $ UHVSHFWLYHO\ DUH FOHDUO\ VHHQ 6HYHUDO VPDOO JUDLQV QHDU WKH VXUIDFH PD\ EH DWWULEXWHG WR FROXPQDU JUDLQV ZKRVH JUDLQ ERXQGDULHV DUH ORFDWHG XQGHU VRPH DQJOH ZLWK UHVSHFW WR VXEVWUDWH VXUIDFH QRUPDO VR WKDW RQO\ D VHFWLRQ RI WKH ODUJH JUDLQ LV VHHQ LQ WKH SURMHFWHG LPDJH RI WKH

PAGE 72

FURVV VHFWLRQ RI WKH ILOP $ VLPLODU JUDLQ VL]H DQG VXUIDFH URXJKQHVV LQ WKH VDPSOH DQQHDOHG DW & DUH VKRZQ LQ )LJXUH ,Q VXPPDU\ WKH RULJLQ RI WKH DSSDUHQW GLIIHUHQFH EHWZHHQ VXUIDFH VWUXFWXUH DQG LQWHUQDO JUDLQ VWUXFWXUH LV EHOLHYHG WR EH GXH WR WKH VXUIDFH URXJKQHVV RI ,Q$X ILOPV DQQHDOHG LQ DLU Ff 7H[WXUH ;UD\ GLIIUDFWLRQ SDWWHUQV IRU DQQHDOHG ,Q$X FRPSRVLWH ILOPV DUH VKRZQ LQ )LJXUH $OO WKH SRVVLEOH GLIIUDFWLRQV RI JROG QDPHO\ ^` ^` ^` ^` DQG ^` SHDNV DUH REVHUYHG 7KH UHODWLYH LQWHQVLW\ RI HDFK SHDN ZLWK UHVSHFW WR WKH LQWHQVLW\ RI WKH ^` SHDN LV WDEXODWHG LQ 7DEOH %\ FRPSDULQJ WKHVH UHODWLYH LQWHQVLWLHV ZLWK WKRVH RI JROG SRZGHUV DV OLVWHG LQ -&3'6 D UHODWLYHO\ UDQGRP RULHQWDWLRQ RI WKH JUDLQV ZDV IRXQG /LWWOH FKDQJH LQ WKH UHODWLYH LQWHQVLWLHV ZLWK DQQHDOLQJ WHPSHUDWXUH LQFUHDVH ZDV IRXQG 7KLV VXJJHVWV WKDW QR VLJQLILFDQW SUHIHUHQWLDO JUDLQ JURZWK DORQJ FHUWDLQ FU\VWDOORJUDSKLF GLUHFWLRQV GXULQJ DQQHDOLQJ RFFXUUHG Gf 'LVWULEXWLRQ RI ,Q DQG SKDVH IRUPDWLRQ GXULQJ DQQHDOLQJ :KHQ ,Q$X FRPSRVLWH ILOPV DUH DQQHDOHG LQ DLU LQWHUGLIIXVLRQ RI WKH FRPSRQHQWV LV OLNHO\ WR RFFXU ,QGLXP ZLOO EH UHGLVWULEXWHG WR IRUP D VROLG VROXWLRQ LQWHUPHWD LF FRPSRXQGV RU R[LGHV GHSHQGLQJ XSRQ WKH DQQHDOLQJ FRQGLWLRQV ,GHQWLILFDWLRQ RI WKH SKDVHV IRUPHG DQG WKHLU ORFDWLRQV LQ WKH ILOP LV HVVHQWLDO WR WKH XQGHUVWDQGLQJ RI WKH PLFURVWUXWXUDO HYROXWLRQ GXULQJ DQQHDOLQJ 7KH HTXLOLEULXP ELQDU\ SKDVH GLDJUDP IRU WKH $X,Q V\VWHP )LJXUH f VKRZV DW OHDVW LQWHUPHWD LF FRPSRXQGV >@ HJ

PAGE 73

)LJXUH , 226$nLQ &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ $LU

PAGE 74

$ A , 0P )LJXUH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ $LU

PAGE 75

G Ef Ff G )LJXUH ;5D\ 'LIIUDFWLRQ 3DWWHUQV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU DW Df & Ef & Ff &

PAGE 76

7DEOH 9DOXHV RI ANOAOOO IRU ,S$X &RPSRVLWH )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV LQ $LU $V 0HDVXUHG E\ ;5D\ 'LIIUDFWLRQ KNO= f $X 3RZGHU & ,Q$X &RPSRVLWH & &

PAGE 77

$XOQ *ROG,QGLXP )LJXUH (TXLOLEULXP %LQDU\ 3KDVH 'LDJUDP IRU $XOQ 6\VWHP

PAGE 78

$X\,Q $XA,Q $XOQ $XJOQA $XOQ DQG $XA 7KH VROLG VROXELOLWLHV RI LQGLXP LQ JROG DW & DQG DW URRP WHPSHUDWXUH DUH UHSRUWHG WR EH DERXW DW b DQG DW b UHVSHFWLYHO\ 1R VROLG VROXELOLW\ RI JROG LQ LQGLXP LV UHSRUWHG ,Q DGGLWLRQ WR WKH LQWHUPHWDOLF FRPSRXQGV WKUHH GLIIHUHQW LQGLXP R[LGHV ZKLFK DUH VWDEOH LQ WKH WHPSHUDWXUH UDQJHV LQ ZKLFK WKH H[SHULPHQWV ZHUH FRQGXFWHG DUH H[SHFWHG WR RFFXU >@ 7KHVH R[LGHV DUH ,Q2 A DQG 7KH DPRXQW RI LQGLXP LQ WKH SUHVHQW ,Q$X FRPSRVLWH ILOPV LV OHVV WKDQ DW b DVVXPLQJ WKDW DOO WKH LQGLXP ZRXOG GLIIXVH LQWR WKH JROG ZLWKRXW DQ\ FKHPLFDO UHDFWLRQ 7KLV PD\ VXJJHVW WKDW LQGLXP LV GLVWULEXWHG LQ JROG DV D VROLG VROXWLRQ +RZHYHU VLQFH WKH VWUXFWXUH RI ,Q$X FRPSRVLWH ILOPV FRQVLVWV RI D b JROG ILOP LPPHGLDWHO\ RQ WRS RI D b LQGLXP XQGHUOD\ DQ\ SKDVHV PHQWLRQHG DERYH PD\ EH IRUPHG GHSHQGLQJ XSRQ WKH DQQHDOLQJ FRQGLWLRQV VXFK DV DQQHDOLQJ WLPH WHPSHUDWXUH DQG DWPRVSKHUHV 7KH LGHQWLILFDWLRQ WKH GLVWULEXWLRQ DQG WKH FKDUDFWHUL]DWLRQ RI WKH SKDVH RU SKDVHV IRUPHG GXULQJ DQQHDOLQJ KDYH EHHQ DFFRPSOLVKHG ZLWK WKH FRPELQDWLRQDO XVH RI 7(0 $(6 DQG ;7(0 ZLWK ('; WHFKQLTXHV $OO ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU UHYHDOHG WKH VDPH DGGLWLRQDO GLIIUDFWLRQ ULQJV LQ 6$' SDWWHUQV DV VKRZQ LQ )LJXUH %DVHG XSRQ WKH VWUXFWXUDO LQIRUPDWLRQV RI WKH LQWHUPHWDO LF FRPSRXQGV DQG R[LGHV DYDLODEOH LQ WKH OLWHUDWXUH DQG LQ WKH -&3'6 GDWD WKH SKDVH ZKLFK SURGXFHV WKH REVHUYHG ULQJV LV LGHQWLILHG DV A2J 7KH RULHQWDWLRQ RI FU\VWDOV FRUUHVSRQGLQJ WR HDFK GLIIUDFWLRQ ULQJ LV

PAGE 80

DOVR VKRZQ LQ )LJXUH 7KH VKDUS ULQJ SDWWHUQV VXJJHVW WKDW A KDV D ILQHJUDLQHG SRO\FU\VWDOOLQH VWUXFWXUH 7KH GLVWULEXWLRQV RI LQGLXP LQ ,Q$X FRPSRVLWH ILOPV DIWHU DQQHDOLQJ DV PRQLWRUHG E\ $(6 VSXWWHU SURILOLQJ DUH VKRZQ LQ )LJXUH +LJK FRQFHQWUDWLRQV RI ,Q DQG RQ WKH VXUIDFH ZHUH REVHUYHG LQ DOO FDVHV & & DQG &f ZKLFK LQGLFDWHV WKH IRUPDWLRQ RI DQ LQGLXP R[LGH OD\HU RQ WKH VXUIDFH 7KLV VXJJHVWV WKDW PRVW RI WKH LQGLXP GLG GLIIXVH IURP WKH XQGHUOD\ WKURXJK JROG ILOP WR WKH IUHH VXUIDFH 7KH WKLFNQHVV RI WKH R[LGH RQ WKH IUHH VXUIDFH ZDV IRXQG WR JURZ DV WKH DQQHDOLQJ WHPSHUDWXUH LQFUHDVHG DV VKRZQ LQ )LJXUH 7KH WKLFNQHVV ZDV PHDVXUHG E\ WKH VSXWWHU WLPH UHTXLUHG WR UHGXFH WKH LQGLXP VLJQDO WR b ,Q RUGHU WKDW LQGLXP R[LGH FDQ JURZ LQ H[FHVV RI D PRQROD\HU WKH GLIIXVLRQ RI HLWKHU WKH R[\JHQ RU LQGLXP WKURXJK WKH R[LGH OD\HU RU ERWK LV UHTXLUHG 7KLV ZLOO GHSHQG RQ WKH HDVH RI GLIIXVLRQ RI WKH VSHFLHV WKURXJK WKH R[LGH LQ D JLYHQ DQQHDOLQJ FRQGLWLRQ >@ :H QRWH WKDW WKH GLIIXVLRQ UDWHV DUH WHPSHUDWXUH GHSHQGHQW IROORZLQJ DQ $UHKHQLXV IRUP 7KXV WKH WKLFNQHVV LQFUHDVH ZLWK LQFUHDVLQJ DQQHDOLQJ WHPSHUDWXUH LV EHOLHYHG WR EH DVVRFLDWHG ZLWK D KLJKHU GLIIXVLYLW\ RI LQGLXP RU R[\JHQ WKURXJK WKH R[LGH OD\HU DW KLJKHU WHPSHUDWXUHV 7KH SK\VLFDO GLPHQVLRQV RI WKH ,UA2J JUDLQV RQ WKH VXUIDFH ZHUH VWXGLHG E\ ;7(0 H[DPLQDWLRQ RI WKH ,Q$X ILOPV DQQHDOHG DW & DV VKRZQ LQ )LJXUH :H REVHUYH D ILQHJUDLQHG R[LGH OD\HU ZKRVH PHDQ JUDLQ GLDPHWHU DQG WKLFNQHVV DUH DERXW $ DQG $ UHVSHFWLYHO\ 7R IXUWKHU LQYHVWLJDWH WKH LQGLXP R[LGH OD\HU RQ WKH VXUIDFH DQ ('; DQDO\VLV ZDV FDUULHG RXW XVLQJ WKH 67(0 PRGH DW WZR GLIIHUHQW ORFDWLRQV

PAGE 81

QLPLL+ )LJXUH ,QR 3KDVH ,GHQWLILHG LQ 6$' 3DWWHUQV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU

PAGE 82

)LJXUH $(6 6SXWWHU 3URILOHV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU DW Df & Ef & Ff &

PAGE 83

)LJXUH 7KLFNQHVVHV RI 6XUIDFH ,QGLXP 2[LGH LQ ,Q$X &RPSRVLWH )LOLQV $QQHDOHG LQ $LU PHDVXUHG IURP $(6 6SXWWHU 3URILOHV

PAGE 84

, 22O0P )LJXUH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ $LU VKRZLQJ ,QGLXP 2[LGH DW WKH )UHH 6XUIDFH -

PAGE 85

LQ WKH ILOP LH WKH VXUIDFH UHJLRQ DQG WKH PLGGOH UHJLRQ RI WKH JROG JUDLQ 7KH EHDP VL]H RI WKH SUREH ZDV OHVV WKDQ $ LQ GLDPHWHU 7KH DQDO\VLV VKRZHG WKDW WKH LQWHQVLW\ RI LQGLXP VLJQDO DW .H9f ZKLFK LV REWDLQHG IURP WKH VXUIDFH UHJLRQ )LJXUH Df ZDV DERXW b KLJKHU WKDQ WKDW IURP WKH PLGGOH UHJLRQ RI D JROG JUDLQ )LJXUH Ef 7KLV DJDLQ VXJJHVWV WKH SUHVHQFH RI LQGLXP R[LGH RQ WKH VXUIDFH :H DWWHPSW QRZ WR HVWLPDWH WKH WKLFNQHVV RI WKH R[LGH OD\HU 7KH PD[LPXP WKLFNQHVV RI A ZKLFK LV WKHRUHWLFDO O\ SRVVLEOH ZKHQ DO LQGLXP IURP WKH XQGHUOD\ RI $ WKLFNQHVV GLIIXVHV WR WKH VXUIDFH DQG IRUPV LV FDOFXODWHG DV IROORZV /HW WLQ WKLFNQHVV RI LQGLXP W4; WKLFNQHVV RI A GcQ GHQVLW\ RI LQGLXP G4; GHQVLW\ RI A 0LQ PROHFXODU ZHLJKW RI LQGLXP 04; PROHFXODU ZHLJKW RI A $ XQLW DUHD 1cQ QXPEHU RI PROHV RI LQGLXP DQG 14; WKH QXPEHU RI PROHV RI 7KH GHQVLW\ RI LQGLXP FDQ EHZULWWHQ A L Q A L Q [ A L Y A [ L Q f 5HDUUDQJLQJ A L Q A L Q [ $ [ ALQALQ 6LPLODUO\ WKH GHQVLW\ RI WKH LQGLXP R[LGH FDQ EH XVHG WR ZULWH AR[ U AR[ [ A [ WR[AR[n )URP WKH UHDFWLRQ ,Q 2 ,Q

PAGE 86

,QVHUWLQJ WKH YDOXHV DYDLODEOH LQ WKH OLWHUDWXUH >@ WKH WKLFNQHVV RI LQGLXP R[LGH LV REWDLQHG E\ AR[ ALQAR[f AR[ALQA [ ALQ $ 7KH PD[LPXP WKLFNQHVV RI A RQ WKH VXUIDFH IURP D $ LQGLXP XQGHUOD\ LV WKXV DERXW $ 7KH H[SHULPHQWDOO\ REVHUYHG WKLFNQHVV ZKLFK LV DERXW $ )LJXUH f LV LQ UHDVRQDEOH DJUHHPHQW ZLWK WKH UHVXOW RI WKLV FDOFXODWLRQ :H QHHG WR QRWH WKDW RXU $(6 VSXWWHU SURILOH GDWD DOVR VKRZHG VPDOO DPRXQWV RI LQGLXP DQG R[\JHQf MBQ WKH JROG ILOP ,I ZH FRQVLGHU VRPH LQGLXP R[LGH OHIW EHKLQG LQ WKH ILOP WKH DJUHHPHQW EHWZHHQ FDOFXODWLRQ DQG H[SHULPHQW EHFRPHV HYHQ PRUH UHDVRQDEOH 7KH ORFDWLRQ RI LQGLXP R[LGH LQ WKH ILOP ZDV GLIILFXOW WR VHH LQ HOHFWURRSWLFDO PLFURJUDSKV EHFDXVH RI WKH VPDOO DPRXQWV LQYROYHG +RZHYHU LQ RQH FDVH D JUDLQ ERXQGDU\ DV VKRZQ LQ )LJXUH UHYHDOHG QHDUO\ WKH VDPH FRQWUDVW DV WKH VXUIDFH R[LGH ZKLFK PLJKW VXJJHVW WKDW LQGLXP R[LGH LQ WKH ILOP LV ORFDWHG DORQJ VRPH JUDLQ ERXQGDULHV )XUWKHU FRQILUPDWLRQ RI LQGLXP HQULFKPHQW DORQJ WKH JUDLQ ERXQGDULHV ZLWK ('; DQDO\VLV ZDV QRW SRVVLEOH EHFDXVH WKH DUHD RI LQWHUHVW ZDV XVXDO O\ WRR VPDO IRU D UHDVRQDEOH DQDO\VLV ,Q VXPPDU\ E\ XWLOL]LQJ WKH FRPELQDWLRQ RI 7(0 ;7(0 ZLWK ('; DQG $(6 WHFKQLTXHV WKH IRUPDWLRQ RI SRO\FU\VWDOOLQH A ZLWK D WKLFNQHVV

PAGE 87

)LJXUH ('; $QDO\VLV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ $LU IURP 7ZR 'LIIHUHQW /RFDWLRQV LQ WKH )LOP Df VXUIDFH UHJLRQ Ef PLGGOH UHJLRQ

PAGE 88

XQL )LJXUH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSK RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ $LU VKRZLQJ ,QGLXP 2[LGH DORQJ WKH *UDLQ %RXQGDU\

PAGE 89

DQG PHDQ JUDLQ GLDPHWHU RI DERXW $ DQG $ UHVSHFWLYHO\ KDV EHHQ REVHUYHG IRU ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ +\GURJHQ Df *UDLQ VWUXFWXUH 7KH JUDLQ VWUXFWXUHV RI ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & & DQG & LQ +R H[DPLQHG E\ 7(0 DUH VKRZQ LQ )LJXUH $ GUDVWLF LQFUHDVH LQ JUDLQ GLDPHWHU ZLWK DQQHDOLQJ LV REVHUYHG 7KH FKDQJH LQ WKH PHDQ JUDLQ GLDPHWHU DV D IXQFWLRQ RI WKH DQQHDOLQJ WHPSHUDWXUH LV VKRZQ LQ )LJXUH 7KH HUURU EDUV LQGLFDWH DV XVXDO WKH VWDQGDUG GHYLDWLRQ 7KH PRVW VLJQLILFDQW JUDLQ JURZWK ZDV REVHUYHG LQ WKH VDPSOH DQQHDOHG DW & ZKHUH YHU\ ODUJH JUDLQV ZLWK GLDPHWHUV JUHDWHU WKDQ SP ZHUH HDVLO\ GLVWLQJXLVKHG 7KLV VXEVWDQWLDO JUDLQ JURZWK DFFRPSDQLHG E\ D ZLGH JUDLQ VL]H GLVWULEXWLRQ PD\ UHVXOW IURP WKH SUHIHUHQWLDO JUDLQ JURZWK DORQJ FHUWDLQ FU\VWDOORJUDSKLF RULHQWDWLRQV SUHVXPDEO\ f SDUDOOHO WR WKH VXEVWUDWH VXUIDFH $V WKHVH JUDLQV JURZ SUHIHUHQWLDOO\ RWKHU JUDLQV VKULQN LQ VL]H DQG D ZLGHU JUDLQ VL]H GLVWULEXWLRQ PD\ UHVXOW Ef 6XUIDFH PRUSKRORJ\ 6(0 PLFURJUDSKV IRU ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & DQG & LQ + UHYHDOHG YHU\ OLWWOH VWUXFWXUDO FKDQJHV RI WKH VXUIDFHV )LJXUH f 7KH ILOPV DQQHDOHG DW & ZLOO EH GLVFXVVHG VHSDUDWHO\ EHORZ ,Q WKHVH ILOPV WKH VXUIDFH PRUSKRORJ\ RI WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV VHHPHG WR EH SUHVHUYHG WKDW LV QR VLJQLILFDQW JUDLQ JURZWK DQG JUDLQ ERXQGDU\ JURRYHV ZHUH REVHUYHG :H NQRZ IURP

PAGE 90

)LJXUH 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ + DW Df & Ef & Ff &

PAGE 91

)LJXUH 0HDQ *UDLQ 'LDPHWHUV PHDVXUHG IURP 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV LQ

PAGE 92

)LJXUH 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ + DW Df & Ef & Ff &

PAGE 93

WKH UHVXOWV UHSRUWHG DERYH WKDW WKH VLJQLILFDQW JUDLQ JURZWK ZKLFK RFFXUUHG GXULQJ DQQHDOLQJ FDQ EH REVHUYHG PDLQO\ E\ 7(0 7KH GLIIHUHQFH EHWZHHQ WKH VXUIDFH VWUXFWXUH DQG WKH LQWHUQDO JUDLQ VWUXFWXUH LV DJDLQ QRWLFHG 7KLV DSSDUHQW GLVFUHSDQF\ LV EHOLHYHG WR EH UHVXOW RI WKH VXUIDFH URXJKQHVV RI WKHVH VDPSOHV ,QGHHG IRU DQ ,Q$X FRPSRVLWH ILOP DQQHDOHG DW & WKH EULJKW ILHOG DQG WKH GDUN ILHOG FURVV VHFWLRQDO 7(0 PLFURJUDSKV VKRZQ LQ )LJXUH D DQG )LJXUH E UHYHDO ODUJH JUDLQV RI DERXW $ LQ GLDPHWHU DQG D URXJK VXUIDFH ZKRVH VLQXVRLGDO SHUWXUEDWLRQ ZDYHOHQJWK LV DERXW $ 7KHUHIRUH WKH ILQH VXUIDFH VWUXFWXUH REVHUYHG E\ 6(0 LV EHOLHYHG WR EH FDXVHG E\ VXUIDFH URXJKQHVV DV EHIRUH UDWKHU WKDQ E\ UHDO JUDLQ VWUXFWXUH $ VXEVWDQWLDOO\ GLIIHUHQW VXUIDFH PRUSKRORJ\ ZDV REVHUYHG ZKHQ ,Q$X ILOPV ZHUH DQQHDOHG DW & LQ +A 7KH 6(0 PLFURJUDSK )LJXUH f VKRZV D YHU\ FRDUVHJUDLQHG VWUXFWXUH DQG VRPH VHYHUH JUDLQ ERXQGDU\ JURRYHV DW WKH JUDLQ ERXQGDU\ YHUWLFHV 7KH FURVV VHFWLRQDO 7(0 PLFURJUDSKV )LJXUH f UHYHDO YHU\ ODUJH JUDLQV ZKRVH GLDPHWHU LV JUHDWHU WKDQ $ DQG DQ H[WUHPHO\ VPRRWK VXUIDFH 7KLV VXJJHVWV WKDW WKH VXUIDFH URXJKQHVV KDV EHHQ UHOD[HG GXULQJ DQQHDOLQJ 7KH IODWWHQLQJ RI WKH URXJK VXUIDFH DQG WKH HYROXWLRQ RI JUDLQ ERXQGDU\ JURRYHV DUH ERWK FDXVHG E\ WKH FDSLOODU\LQGXFHG PDVV WUDQVSRUW GXULQJ DQQHDOLQJ >@ 7KH PDVV WUDQVSRUW HLWKHU E\ YROXPH GLIIXVLRQ VXUIDFH GLIIXVLRQ RU HYDSRUDWLRQFRQGHQVDWLRQ PHFKDQLVPV LV D WKHUPDOO\ DFWLYDWHG SURFHVV DQG WKHUHIRUH WHPSHUDWXUH GHSHQGHQW 'HSHQGLQJ RQ WKH DQQHDOLQJ FRQGLWLRQV WKH PDVV WUDQVSRUW DQG WKH VXEVHTXHQW IODWWHQLQJ RU WKHUPDO JURRYLQJ PD\ QRW RFFXU GXH WR WKH NLQHWLF OLPLW $SSDUHQWO\ DQQHDOLQJ DW & DQG & IRU KU LQ

PAGE 94

4XDUW] 0P Ef )LJXUH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI ,UL$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ Df EULJKW ILHOG LPDJH Ef GDUN ILHOG LPDJH

PAGE 95

, 0P )LJXUH 6FDQQLQJ (OHFWURQ 0LFURJUDSK RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ +

PAGE 96

Df Ef TXDUW] LRQ U & X X 66I 66 f 66 0P $ D ‘f6,+66,66 r )LJXUH &URVV 6HFWLRQDO 7UDQVPLVVLRQ (OHFWURQ 0LFURJUDSKV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ Df EULJKW ILHOG LPDJH Ef GDUN ILHOG LPDJH

PAGE 97

GLG QRW SURYLGH WKH FRQGLWLRQV WR DFWLYDWH WKH PDVV WUDQVSRUW VR WKDW WKH UHOD[DWLRQ RI WKH URXJKQHVV KDV QRW RFFXUUHG GXULQJ DQQHDOLQJ 2Q WKH RWKHU KDQG DQQHDOLQJ DW & IRU KU LQ A GLG SURYLGH WKH FRQGLWLRQV WR DOORZ WKH IODWWHQLQJ DQG WKH JUDLQ ERXQGDU\ JURRYLQJ WR RFFXU Ff 7H[WXUH ;UD\ GLIIUDFWLRQ SDWWHUQV IRU ,Q$X ILOPV DQQHDOHG DW & & DQG & DUH VKRZQ LQ )LJXUH 7KH UHODWLYH LQWHQVLW\ RI HDFK GLIIUDFWLRQ SHDN ZLWK UHVSHFW WR WKH LQWHQVLW\ RI WKH ^` SHDN LV OLVWHG LQ 7DEOH ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & DQG & UHYHDOHG D UHODWLYHO\ UDQGRP RULHQWDWLRQ WKDW LV WKH\ GLVSOD\HG DOO GLIIUDFWLRQ SHDNV )LJXUH D DQG )LJXUH Ef +RZHYHU WKH ,Q$X FRPSRVLWH ILOP ZKLFK ZDV DQQHDOHG DW & UHYHDOHG RQO\ ^` DQG ^` GLIIUDFWLRQ SHDNV ZKLFK VXJJHVWHG D f WH[WXUH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH )LJXUH Ff 6$' SDWWHUQV FRPSOHPHQW WKLV LQIRUPDWLRQ ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & DQG & LQ + UHYHDOHG WKDW WKH ^` GLIIUDFWLRQ ULQJ ZDV WKH PRVW LQWHQVLYH RQH )LJXUH D DQG Ef 7KLV VXJJHVWV WKH UDQGRP RULHQWDWLRQ RI WKH JUDLQV LQ WKH ILOP +RZHYHU WKH ,Q$X FRPSRVLWH ILOP DQQHDOHG DW & UHYHDOHG WKDW WKH ^` ULQJ ZDV PRUH LQWHQVLYH WKDQ WKH ^` ULQJ DQG DOVR VKRZHG VRPH GLUHFWLRQDOLW\ DV ZHOO )LJXUH Ff ZKLFK VXJJHVWV D f WH[WXUH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH

PAGE 98



PAGE 99

7DEOH 9DOXHV RI cKNOc IRU ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV LQ $V 0HDVXUHG E\ ;5D\ 'LIIUDFWLRQ KNOAf $X 3RZGHU & ,Q$X &RPSRVLWH & &

PAGE 101

Gf 'LVWULEXWLRQ RI LQGLXP DQG SKDVH IRUPDWLRQ GXULQJ DQQHDOLQJ )LJXUH D VKRZV DQ 6$' SDWWHUQ ZKLFK ZDV REWDLQHG IURP DQ ,Q$8 FRPSRVLWH ILOP DQQHDOHG DW & LQ :H QRWLFH DQ DGGLWLRQDO GLIIUDFWLRQ ULQJ LQ 6$' SDWWHUQV ZKRVH GLDPHWHU LV PP ZKHQ WKH FDPHUD OHQJWK LV FP 7KH VSRW SDWWHUQ ZKLFK ZDV WDNHQ IURP WKLV VSHFLPHQ RI D DUTH JUDLQ XVLQJ D VPDOO 6$' DSHUWXUH LV VKRZQ LQ )LJXUH E $ KH[DJRQDO V\PPHWU\ RI WKH H[WUD VSRWV DORQJ ZLWK WKH ^` GLIIUDFWLRQ VSRWV LV VKRZQ %RWK ULQJ DQG VSRW SDWWHUQV JLYH WKH LQWHUSODQDU VSDFLQJ RI $ 7KLV QHZ SDWWHUQ ZDV FRQILUPHG E\ [UD\ GLIIUDFWLRQ DW WKHWD GHJUHHV ZKLFK ZDV PHDVXUHG DW WKH IL[HG DQJOH IRU DQ H[WHQGHG FRXQWLQJ WLPH ,Q RUGHU WR LGHQWLI\ WKH SKDVH ZKLFK LV UHVSRQVLEOH IRU WKH DGGLWLRQDO GLIIUDFWLRQ VWUXFWXUDO LQIRUPDWLRQ IRU SXUH LQGLXP LQWHUPHWD LF FRPSRXQGV DQG LQGLXP R[LGHV ZHUH FRQVXOWHG 1RQH RI WKHVH SKDVHV PHW H[DFWO\ WKH REVHUYHG LQWHUSODQDU VSDFLQJ DQG WKH REVHUYHG %UDJJ DQJOH 7KH FORVHVW FDQGLGDWH DPRQJ WKH LQWHUPHWD LF FRPSRXQGV ZKLFK ZRXOG FRQWDLQ WKLV SDWWHUQ LV $X\OQ >@ +RZHYHUn LI WKLV ZRXOG EH WKH ULJKW SKDVH RWKHU GLIIUDFWLRQ ULQJV ZKRVH LQWHQVLWLHV DUH KLJKHU VKRXOG KDYH EHHQ REVHUYHG DV ZHOO 7KLV KDV QRW EHHQ REVHUYHG ZKLFK H[FOXGHV WKH SRVVLELOLW\ RI $XAQ ,W LV EHOLHYHG WKDW WKLV DQRPDORXV GLIIUDFWLRQ LV FDXVHG E\ D IRUELGGHQ GLIIUDFWLRQ RI JROG @ 7KH\ VKRZHG WKDW WKH DQRPDORXV GLIIUDFWLRQ SDWWHUQ UHVXOWV IURP UHIOHFWLRQV RI +&3 JROG 9DULRXV SK\VLFDO UHDVRQV WR FDXVH +&3 VWUXFWXUH LQ D JROG ILOP KDYH EHHQ GLVFXVVHG LQ WKH OLWHUDWXUH >@

PAGE 102

H )LJXUH 6$' 3DWWHUQV RI ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW & LQ VKRZLQJ VRPH ([WUD 'LIIUDFWLRQ 3DWWHUQV Df ULQJ SDWWHUQV Ef VSRW SDWWHUQV

PAGE 103

$PRQJ WKHP VRPH IRUP RI VXUIDFH URXJKQHVV VXFK DV NLQNV VWHSV DQG VXSHUVDWXUDWHG YDFDQFLHV DUH EHOLHYHG WR EH PRVW SUREDEOH VRXUFHV $V D PDWWHU RI IDFW WKH ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & DQG & DUH NQRZQ WR KDYH D YHU\ URXJK VXUIDFHV DV VKRZQ DERYH )XUWKHUPRUH WKH IDFW WKDW WKH DQRPDORXV GLIIUDFWLRQ ULQJ ZDV QRW VHHQ LQ WKH VSHFLPHQV DQQHDOHG DW & ZKLFK KDV D IODW VXUIDFH PD\ DGG WR WKH HYLGHQFH WKDW VXUIDFH URXJKQHVV LV UHVSRQVLEOH IRU WKH DQRPDORXV GLIIUDFWLRQ LQ JROG ILOPV 7KH GLVWULEXWLRQ RI LQGLXP LQ ,Q$X FRPSRVLWH DQQHDOHG LQ + DV PRQLWRUHG E\ $(6 VSXWWHU SURILOLQJ LV VKRZQ LQ )LJXUH $ FRQVLGHUDEOH FRQFHQWUDWLRQ RI LQGLXP DV ZHOO DV VRPH R[\JHQ LV REVHUYHG RQ WKH VXUIDFH 7KLV DJDLQ VXJJHVWV WKH IRUPDWLRQ RI LQGLXP R[LGH RQ WKH VXUIDFH +RZHYHU WKH WKLFNQHVV RI WKH R[LGH LV PXFK OHVV WKDQ WKDW RI WKH VDPH ILOPV DQQHDOHG LQ DLU 7KH R[\JHQ VLJQDO GURSSHG YHU\ UDSLGO\ WR DOPRVW ]HUR DV WKH VSXWWHULQJ VWDUWHG 2QO\ LQGLXP ZDV REVHUYHG ODWHU RQ LQ WKH JROG ILOP 7KH LQGLXP R[LGH RQ WKH VXUIDFH LV EHOLHYHG WR UHVXOW IURP DWPRVSKHULF H[SRVXUH RI WKH VSHFLPHQV GXULQJ WUDQVIHU IURP WKH DQQHDOLQJ IXUQDFH WR WKH $(6 FKDPEHU 7KLV FDQ EH GHGXFHG IURP WKH REVHUYDWLRQ WKDW WKH WKLFNQHVV RI WKH VXUIDFH R[LGH LV DOPRVW WKH VDPH IRU DOO DQQHDOLQJ WHPSHUWXUHV DV VKRZQ LQ )LJXUH 7KLV VXJJHVWV WKDW WKH R[LGDWLRQ GLG QRW WDNH SODFH GXULQJ DQQHDOLQJ LQ + $ VPDOO FDOFXODWLRQ LQYROYLQJ WKH SDUWLDO SUHVVXUH RI R[\JHQ QHHGHG WR R[LGL]H WKH ILOP LQ DLU DQG LQ + KDV EHHQ PDGH WR VXSSRUW WKLV VXJJHVWLRQ )URP WKH WKHUPRG\QDPLF GDWD UHSRUWHG E\ 6DPVRQRY >@ WKH VWDQGDUG IUHH HQHUJ\ IRUPDWLRQ RI A FDQ EH SORWWHG RQ WKH

PAGE 104

)LJXUH $(6 6SXWWHU 3URILOHV RI ,Q$X &RPSRVLWH )LOLQV $QQHDOHG LQ + DW Df & Ef & Ff &

PAGE 105

)LJXUH 7KLFNQHVVHV RI 6XUIDFH ,QGLXP 2[LGH LQ ,Q$X &RPSRVLWH )LOPV $QQHDOHG LQ + PHDVXUHG E\ $(6 6SXWWHU 3URILOHV

PAGE 106

5LFKDUGVRQnV GLDJUDP DV VKRZQ LQ )LJXUH >@ ,W LV VKRZQ WKDW LQGLXP R[LGL]HV LQ DQ DWPRVSKHUH LQ ZKLFK WKH SDUWLDO SUHVVXUH RI R[\JHQ LV ODUJHU WKDQ A DWPRVSKHUH DW URRP WHPSHUDWXUH 7KLV VXJJHVWV WKDW ZH FDQ QRW SUHYHQW WKH R[LGDWLRQ RI LQGLXP DW URRP WHPSHUDWXUH )XUWKHUPRUH LQ RUGHU WR FKHFN DQ\ NLQHWLF OLPLW IRU R[LGDWLRQ WKH LPSLQJHPHQW UDWH RI R[\JHQ PROHFXOHV LQ DLU DW URRP WHPSHUDWXUH LV FDOFXODWHG >@ $VVXPLQJ LGHDO JDV NLQHWLFV WKH "" LPSLQJHPHQW UDWH FDOFXODWHG LV DERXW [ PROHFXOHVFP VHF & 4 $VVXPLQJ WKH VXUIDFH DWRP GHQVLW\ RI LQGLXP LV DWRPVFP WKHQ PRQROD\HUV RI R[\JHQ PROHFXOHVVHF ZLOO VWULNH WKH VXUIDFH 7KLV LV PRUH WKDQ VXIILFLHQW WR DOORZ WKH R[LGH JURZWK ,Q FRQWUDVW WR WKLV R[LGDWLRQ LQ K\GURJHQ DWPRVSKHUH DW WKH WHPSHUDWXUHV DERYH & ZLOO WDNH SODFH LI WKH +RKA2 UDWLR LV VPDOOHU WKDQ A 7KH A XVHG LQ WKH H[SHULPHQW FRQWDLQHG OHVV WKDQ SSP A & UHVXOWLQJ LQ D ++2 UDWLR LQ + RI JUHDWHU WKDQ 7KXV QR R[LGDWLRQ VKRXOG KDYH WDNHQ SODFH GXULQJ DQQHDOLQJ LQ :A ,QVWHDG D UHGXFWLRQ VKRXOG KDYH RFFXUUHG ,Q VXPPDU\ QR LQWHUPHWDO LF FRPSRXQGV DQG QR R[LGHV ZHUH IRUPHG GXULQJ DQQHDOLQJ RI ,Q$X ILOPV LQ :A 7KH XQLIRUP FRQFHQWUDWLRQ RI LQGLXP LQ WKH JROG ILOP GRZQ WR WKH VXEVWUDWH VXUIDFH VXJJHVWV WKH IRUPDWLRQ RI D VROLG VROXWLRQ RI LQGLXP LQ JROG 7KH DPRXQW RI LQGLXP ZDV FDOFXODWHG WR EH OHVV WKDQ DW b ZKLFK LV OHVV WKDQ WKH VROXELOLW\ DW URRP WHPSHUDWXUH 7KHUHIRUH LQGLXP LQ WKH ,Q$X FRPSRVLWH ILOP LV GLVWULEXWHG XQLIRUPO\ DV D VROXWH LQ WKH JROG ILOP ZKHQ LW LV DQQHDOHG LQ + DWPRVSKHUH

PAGE 107

)LJXUH 6WDQGDUG )UHH (QHUJ\ RI )RUPDWLRQ RI ,QGLXP 2[LGH DV D )XQFWLRQ RI 7HPSHUDWXUH KKR

PAGE 108

(IIHFWV RI ,Q DQG ,ULJ2A RQ WKH 0LFURVWUXFWXUDO (YROXWLRQV (IIHFWV RI ,Q RQ WKH 0LFURVWUXFWXUH RI $X )LOPV 'XULQJ 'HSRVLWLRQ 7KH HIIHFWV RI LQGLXP XQGHUOD\V XSRQ WKH PLFURVWUXFWXUDO HYROXWLRQ RI JROG ILOPV GXULQJ GHSRVLWLRQ FDQ EH GHWHUPLQHG E\ FRPSDULQJ WKH PLFURVWUXFWXUH RI WKH DV GHSRVLWHG SXUH $X ILOP ZLWK WKDW RI WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOP 7KH FKDUDFWHULVWLFV RI WKH PLFURVWUXFWXUH RI WKHVH WZR W\SHV RI ILOPV DUH VXPPDUL]HG LQ 7DEOH 7KH GLIIHUHQFHV LQ WKH PLFURVWUXFWXUH DUH HYLGHQW :KLOH WKH SXUH $X ILOPV KDYH D PL[WXUH RI D ILQHJUDLQHG DQG FRDUVHJUDLQHG VWUXFWXUH ZLWK D f WH[WXUH SDUDOOHO WR WKH VXEVWUDWH VXUIDFH DQG D VRRWK VXUIDFH WKH ,Q$X FRPSRVLWH ILOPV KDYH D XQLIRUP ILQHJUDLQHG VWUXFWXUH ZLWK D UDQGRP RULHQWDWLRQ DQG D URXJK VXUIDFH 7KH PLFURVWUXFWXUH RI SXUH $X ILOPV LV EHOLHYHG WR UHVXOW IURP WKH SUHIHUUHG QXFOHDWLRQ DQGRU JURZWK GXULQJ GHSRVLWLRQ ZKLFK LV JRYHUQHG E\ WKH VPRRWKQHVV RI WKH VXEVWUDWH DQG WKH KLJK NLQHWLF HQHUJ\ RI WKH HYDSRUDWHG JROG DWRPV 7KH PLFURVWUXFWXUH RI JROG LQ ,Q$X FRPSRVLWH ILOPV LV PDLQO\ DIIHFWHG E\ WKH PLFURVWUXFWXUH RI WKH LQGLXP XQGHUOD\ ZKLFK KDV D ILQHJUDLQHG VWUXFWXUH DQG D URXJK VXUIDFH )URP WKHVH PLFURVWUXFWUD GLIIHUHQFHV WKH IROORZLQJ SDUDPHWHUV FDXVHG E\ LQGLXP XQGHUOD\V XSRQ WKH PLFURVWUXFWXUH RI JROG ILOPV FDQ EH GHGXFHG f UDQGRPL]DWLRQ RI WKH JUDLQ RULHQWDWLRQV f UHILQHPHQW RI WKH JUDLQ VL]H f XQLIRUPLW\ RI WKH JUDLQ VL]H GLVWULEXWLRQ f URXJKHQLQJ RI WKH VXUIDFH

PAGE 109

7DEOH &KDUDFWHULVWLFV LQ 0LFURVWUXFWXUHV RI $V 'HSRVLWHG 3XUH $X )LOPV DQG $V 'HSRVLWHG ,Q$X &RPSRVLWH )LOPV 3XUH $X ,Q$X &RPSRVLWH 7H[WXUH 5DQGRP *UDLQ 6L]H $ $ 6L]H 'LVWULEXWLRQ :L GH 1DUURZ 6XUIDFH 0RUSKRORJ\ 6PRRWK 5RXJK

PAGE 110

$OO WKHVH HIIHFWV DUH EHOLHYHG WR UHVXOW IURP WKH GHFUHDVHG VXUIDFH PRELOLW\ RI JROG DGDWRPV GXULQJ GHSRVLWLRQ 7KH GHFUHDVH LQ VXUIDFH PRELOLW\ RI JROG DGDWRPV LV DVVRFLDWHG ZLWK WKH ILQHJUDLQHG VWUXFWXUH DQG WKH URXJK VXUIDFH RI WKH LQGLXP XQGHUOD\ LQ WKH ,Q$X FRPSRVLWH ILOP (IIHFWV RI ,QA RQ WKH 0LFURVWUXFWXUDO (YROXWLRQ RI ,Q$X &RPSRVLWH )LOPV 7KH IRUHJRLQJ VHFWLRQV KDYH VKRZQ WKDW LQGLXP LQ ,Q$X FRPSRVLWH ILOPV R[LGL]HV WR GXULQJ DQQHDOLQJ LQ DLU 7KXV WKH HIIHFWV RI LQGLXP XSRQ WKH PLFURVWUXFWXUDO HYROXWLRQ GXULQJ DQQHDOLQJ VKRXOG EH EHWWHU UHIHUUHG WR DV WKH HIIHFWV RI 7KH HIIHFWV RI ,QAM2A GXULQJ DQQHDOLQJ FDQ EH DSSUHFLDWHG E\ FRPSDULQJ WKH PLFURVWUXFWXUHV RI ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU ZLWK WKRVH RI DQQHDOHG SXUH $X ILOPV DQG ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ KA EHFDXVH ERWK DQQHDOHG SXUH $X ILOPV DQG ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ KA GR QRW IRUP ,Q GXULQJ DQQHDOLQJ 7KH FKDUDFWHULVWLFV RI WKH PLFURVWUXFWXUHV RI DQQHDOHG $X ILOPV DQG ,Q$X ILOPV DQQHDOHG LQ DLU DQG + DUH VXPPDUL]HG LQ 7DEOH 7KH GLIIHUHQFHV LQ WKH PLFURVWUXWXUHV FDQ EH H[SUHVVHG LQ WHUPV RI JUDLQ JURZWK DQG VXUIDFH PRUSKRORJ\ Df *UDLQ JURZWK 7KH FKDQJHV LQ WKH PHDQ JUDLQ GLDPHWHUV RI DQQHDOHG SXUH $X ILOPV DQG ,Q$X FRPSRVLWH ILOPV DV D IXQFWLRQ RI DQQHDOLQJ WHPSHUDWXUH DUH VXPPDUL]HG LQ )LJXUH ,W FDQ EH VHHQ WKHUH WKDW WKH JUDLQ JURZWK IRU SXUH $X ILOPV DQQHDOHG LQ DLU DQG IRU ,Q$X FRPSRVLWH ILOP DQQHDOHG LQ + LV VXEVWDQWLDOO\ ODUJHU WKDQ IRU ,Q$X FRPSRVLWH ILOPV DQQHDOHG

PAGE 111

7DEOH &KDUDFWHULVWLFV LQ 0LFURVWUXFWXUHV RI $QQHDOHG 3XUH $X )LOPV DQG $QQHDOHG ,Q$X &RPSRVLWH )LOPV 7HPSHUDWXUH 3XUH ,Q$X $QQHDOHG LQ ,Q$X $QQHDOHG 'HJUHHV & $X $L U + UDQGRP UDQGRP 7H[WXUH UDQGRP UDQGRP UDQGRP $ $ $ *UDLQ 6L]H $ $ $ $ $ $ ZL GH QDUURZ QDUURZ 6L]H 'LVWULEXWLRQ ZL GH QDUURZ QDUURZ ZL GH QDUURZ ZLGH VPRRWK URXJK URXJK 6XUIDFH 0RUSKRORJ\ VPRRWK URXJK URXJK VHYHUH URXJK VHYHUH JURRYLQJ JURRYLQJ

PAGE 112

)LJXUH 0HDQ *UDLQ 'LDPHWHUV RI 3XUH $X )LOPV DQG ,Q$X &RPSRVLWH )LOPV $QQHDOHG DW 9DULRXV 7HPSHUDWXUHV

PAGE 113

LQ DLU 7KH ODUJH JUDLQ JURZWK IRU SXUH $X ILOPV LV EHOLHYHG WR UHVXOW IURP WKH SUHIHUHQWLDO JUDLQ JURZWK RI WKH f RULHQWHG JUDLQV GXULQJ DQQHDOLQJ 2XU VXJJHVWLRQ LV EDVHG RQ WKH REVHUYDWLRQ WKDW WKH DPRXQW RI f WH[WXUH LQFUHDVHV DV WKH DQQHDOLQJ WHPSHUDWXUH LQFUHDVHV 7KH KLJKHU JURZWK UDWH RI WKH f RULHQWHG JUDLQV GXULQJ DQQHDOLQJ LV DOVR EHOLHYHG WR EH UHVSRQVLEOH IRU WKH ODUJH JUDLQ JURZWK LQ WKH ,Q$X FRPSRVLWH ILOP DQQHDOHG DW & LQ A QRWLQJ WKDW WKH f WH[WXUH LV GHYHORSHG GXULQJ DQQHDOLQJ RI WKH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOP ZKLFK KDV D ILQHJUDLQHG VWUXFWXUH ZLWK UDQGRP RULHQWDWLRQV 7KH ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU VKRZ PXFK OHVV JUDLQ JURZWK )LJXUH f 7KH FDXVH IRU WKLV PD\ EH WUDFHG WR WKH SUHVHQFH RI LQGLXP R[LGH $OWKRXJK WKH H[DFW ORFDWLRQ RI LQGLXP R[LGH BLBQ WKH JROG ILOP LV KDUG WR GHWHUPLQH EHFDXVH RI LWV VPDOO DPRXQW WKH JUDLQ ERXQGDULHV DUH FRQVLGHUHG WR EH WKH PRVW SUREDEOH VLWHV IRU WKH IRO RZLQJ UHDVRQV f 0RVW LQGLXP DWRPV GLIIXVH WKURXJK WKH JUDLQ ERXQGDULHV RI D JROG ILOP WR IRUP A RQ WKH IUHH VXUIDFH RI JROG EHFDXVH WKH JUDLQ ERXQGDULHV DFW DV VKRUW FLUFXLWV IRU GLIIXVLRQ 7KDW LV SDUWLFXODUO\ HIIHFWLYH DW ORZHU WHPSHUDWXUHV ,I WKHUH LV VRPH LQGLXP OHIW LQ WKH JROG ILOP GXULQJ DQQHDOLQJ LW LV SUREDEO\ GLVWULEXWHG QHDU WKH JUDLQ ERXQGDULHV f 7KH XQLIRUP FRQFHQWUDWLRQ RI R[\JHQ DV ZHOO DV LQGLXP LQ WKH JROG ILOP DV ZHOO DV LQGLXP FRPSOHWHO\ GRZQ WR WKH VXUIDFH RI WKH VXEVWUDWH DV UHYHDOHG LQ $(6 VSXWWHU SURILOLQJ DQDO\VLV VXJJHVWV WKDW WKH R[\JHQ KDV GLIIXVHG LQWR WKH $X ILOP GXULQJ DQQHDOLQJ DQG IRUPV WKHVH LQGLXP R[LGH 7KH GLIIXVLRQ RI R[\JHQ HLWKHU LQ LRQLF IRUP RU

PAGE 114

DV PROHFXOHV LQWR WKHVH $X ILOPV LQ WKH WHPSHUDWXUH UDQJH H[DPLQHG KHUH LV PRVW OLNHO\ WR RFFXU WKURXJK WKH JUDLQ ERXQGDULHV RI $X ILOPV f *UDLQ ERXQGDULHV KDYH EHHQ NQRZQ WR EH WKH SUHIHUUHG QXFOHDWLRQ VLWHV IRU D QHZ SKDVH EHFDXVH RI WKHLU KLJKHU IUHH HQHUJ\ VWDWH GXH WR WKH LQWHUIDFLDO HQHUJ\ >@ ,Q VXPPDU\ LW LV TXLWH OLNHO\ WKDW LQGLXP UHVLGLQJ DORQJ WKH JUDLQ ERXQGDU\ PHHWV WKH GLIIXVLQJ R[\JHQ DQG IRUPV DQ R[LGH DW RU QHDU WKH JUDLQ ERXQGDULHV ([SHULPHQWDOO\ LQGLXP R[LGH DORQJ WKH JUDLQ ERXQGDU\ ZDV LQGHHG RFFDVLRQDOO\ REVHUYHG )LJXUH f 7KH VPDOOHU JUDLQ JURZWK LQ ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU PD\ EH H[SODLQHG E\ WKH SLQQLQJ HIIHFW RI LQGLXP R[LGH DORQJ WKH JUDLQ ERXQGDULHV 7KH UHWDUGDWLRQ RI JUDLQ ERXQGDU\ PLJUDWLRQ E\ WKH GUDJ RU SLQQLQJ LPSRVHG RQ PRYLQJ LQWHUIDFHV LV ZHOO XQGHUVWRRG >@ 'UDJ RU SLQQLQJ PD\ UHVXOW IURP LPSXULWLHV LQFOXVLRQV RU SUHFLSLWDWHV ZKLFK FDQ IRUP LQ WKH PDWUL[ RU DW DQ LQWHUIDFH VXFK DV D JUDLQ ERXQGDU\ ,W LV VXJJHVWHG WKDW LQGLXP R[LGH DORQJ WKH JUDLQ ERXQGDULHV LQKLELWV JUDLQ ERXQGDU\ PLJUDWLRQ DQG VXEVHTXHQW JUDLQ JURZWK ,Q ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ KA LQGLXP LV DVVXPHG WR EH GLVWULEXWHG DV D VROXWH LQ WKH JROG PDWUL[ 7KH HIIHFW RI WKH VROXWH RQ WKH JUDLQ JURZWK NLQHWLFV LV QRW FOHDU ,W YDULHV PDUNHGO\ IURP RQH VROXWH WR DQRWKHU LQ D JLYHQ VROYHQW >@ ,W LV KRZHYHU ZRUWKZKLOH WR HPSKDVL]H WKDW LQGLXP DV D VROXWH GRHV QRW VHHP WR KDYH DQ UHWDUGLQJ HIIHFW RQ WKH JUDLQ JURZWK RI ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & LQ +

PAGE 115

Ef 6XUIDFH PRUSKRORJ\ 7KH PRVW VLJQLILFDQW GLIIHUHQFHV LQ WKH VXUIDFH PRUSKRORJ\ DUH VKRZQ E\ FRPSDULQJ SXUH $X ILOPV DQG ,Q$X FRPSRVLWH ILOPV DQQHDOHG DW & DV VKRZQ LQ )LJXUH %RWK SXUH $X ILOPV DQG ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ UHYHDO VPRRWK VXUIDFHV ZLWK VHYHUH JUDLQ ERXQGDU\ JURRYHV DW WKH JUDLQ ERXQGDU\ YHUWLFHV ZKHUHDV WKH ,Q$X FRPSRVLWH ILOP DQQHDOHG LQ DLU UHYHDOV D URXJK VXUIDFH ZLWKRXW VHYHUH JUDLQ ERXQGDU\ JURRYHV 6LQFH DV GHSRVLWHG SXUH $X ILOPV KDYH LQLWLDOO\ YHU\ VPRRWK VXUIDFHV WKH VXUIDFH PRUSKRORJLFDO FKDQJHV LQ DQQHDOHG $X ILOPV PXVW UHVXOW IURP WKH HYROXWLRQ RI WKHUPDO JURRYHV DW WKH LQHUVHFWLRQ RI WKH JUDLQ JRXQGDULHV DQG IUHH VXUIDFHV +RZHYHU VLQFH DV GHSRVLWHG ,Q$X FRPSRVLWH ILOPV RULJLQDOO\ KDYH URXJK VXUIDFHV WKH VXUIDFH PRUSKRORJLFDO FKDQJHV LQ ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ PXVW KDYH FRQWULEXWLRQ IURP ERWK WKH JUDLQ ERXQGDU\ JURRYLQJ DQG WKH IODWWHQLQJ RI WKH URXJK VXUIDFH 7KH DEVHQFH RI JUDLQ ERXQGDU\ JURRYLQJ DQG VXUIDFH IODWWHQLQJ LQ WKH ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ DLU UHYHDOV WKH EHQHILFLDO HIIHFW RI ,UA2M RQ WKH VXUIDFH IRU VWDELOL]LQJ WKH VXUIDFH VWUXFWXUH GXULQJ KHDW WUHDWPHQW 7KH UROH RI ,QA RQ WKH JROG VXUIDFH ZKLFK FDXVHV D VWDELOL]DWLRQ RI WKH VXUIDFH VWUXFWXUH FDQ EH H[SODLQHG E\ D FDSSLQJ HIIHFW %RWK WKH JUDLQ ERXQGDU\ JURRYLQJ DQG WKH IODWWHQLQJ RI WKH URXJK VXUIDFH DUH FDXVHG E\ PDVV WUDQVSRUW GULYHQ E\ WKH VXUIDFH FXUYDWXUH ZKLFK LV UHODWHG WR WKH FKHPLFDO SRWHQWLDO 7KH WUDQVSRUW SURFHVVHV WKDW PD\ RSHUDWH DUH VXUIDFH GLIIXVLRQ YROXPH GLIIXVLRQ DQG HYDSRUDWLRQFRQGHQVDWLRQ ,Q WKH WHPSHUWXUH UDQJH RYHU ZKLFK WKH

PAGE 116

)LJXUH 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI $QQHDOHG )LOPV DW & Df SXUH $X ILOPV Ef ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ $LU Ff ,Q$X FRPSRVLWH ILOPV DQQHDOHG LQ

PAGE 117

,OO H[SHULPHQW ZDV FRQGXFWHG VXUIDFH GLIIXVLRQ LV EHOLHYHG WR EH WKH GRPLQDQW SURFHVV >@ ,I WKH VXUIDFH RI WKH JROG JUDLQV DUH FRYHUHG RU FDSSHG ZLWK VRPH ULJLG ILOPV VXFK DV WKH GLIIXVLRQ RI JROG DWRPV DORQJ WKH VXUIDFH LV QRW VR OLNHO\ WR RFFXU ,Q RUGHU WR KDYH DQ\ PRUSKRORJLFDO FKDQJHV RQ WKH VXUIDFH RI JROG ILOPV PRUSKRORJLFDO FKDQJHV LQ WKH FDSSLQJ OD\HU PXVW DOVR RFFXU )RU H[DPSOH LQ RUGHU WR KDYH JURRYLQJ RQ WKH JROG JUDLQ ERXQGDU\ WKH LQGLXP R[LGH OD\HU RQ WKH VXUIDFH PXVW EH UHPRYHG HLWKHU E\ VHYHUH JUDLQ ERXQGDU\ JURRYLQJ RI WKH LQGLXP R[LGH RU E\ VRPH ORVV RI DGKHVLRQ GXH WR VWUHVV VR WKDW JROG JUDLQV DQG JUDLQ ERXQGDULHV PLJKW EH H[SRVHG WR IUHH VXUIDFH 7KHUPDO JURRYLQJ RI LQGLXP R[LGH LV QRW OLNHO\ WR RFFXU LQ WKLV WHPSHUDWXUH UDQJH EHFDXVH RI WKH NLQHWLFV $OWKRXJK WKH VXUIDFH GLIIXVLYLW\ RI A LV QRW DYDLODEOH IURP WKH OLWHUDWXUH LW VHHPV UHDVRQDEOH WR DVVXPH WKDW WKH VXUIDFH GLIIXVLYLW\ RI A LV PXFK ORZHU WKDQ WKDW RI JROG LQ WKH WHPSHUDWXUH UDQJH XWLOL]HG KHUH EHFDXVH LQ JHQHUDO WKH GL IIXVL YLWLHV IRU WKH R[LGHV DUH PXFK ORZHU WKDQ WKRVH RI WKH PHWDOV HVSHFLDOO\ DW ORZHU WHPSHUDWXUHV (YHQ LI VHYHUH JURRYLQJ RI LQGLXP R[LGH RFFXUUHG VRPHKRZ WKH VXEVHTXHQW JUDLQ ERXQGDU\ JURRYLQJ RI JROG JUDLQV LV QRW OLNHO\ WR RFFXU GXH WR WKH LQYROYHPHQW RI DGGLWLRQDO LQWHUIDFLDO HQHUJ\ EHWZHHQ JROG DQG WKH LQGLXP R[LGH ,Q DGGLWLRQ WR WKH FDSSLQJ HIIHFW WKHUPDO VWUHVV GHYHORSHG GXH WR WKH GLIIHUHQFHV LQ WKH WKHUPDO H[SDQVLRQ FRHIILFLHQWV RI JROG DQG A PD\ DOVR SURYLGH DQ DGGLWLRQDO HIIHFW WR UHGXFH WKH VXUIDFH PRUSKRORJLFDO FKDQJHV GXULQJ DQQHDOLQJ >@ 6LQFH JROG KDV D KLJKHU WKHUPDO H[SDQVLRQ FRHIILFLHQW WKDQ WKDW RI LQGLXP R[LGH WKH

PAGE 118

FRPSUHVVLYH VWUHVV LV H[SHFWHG WR EH DSSOLHG WR JROG GXULQJ DQQHDOLQJ 7KLV FRPSUHVVLYH VWUHVV LV EHOLHYHG WR SUHYHQW WKH QXFOHDWLRQ RI FUDFNV DQG YRLGV RQ WKH JROG VXUIDFH ZKLFK FRXOG LQGXFH WKH ORVV RI DGKHVLRQ 6LPLODU EHQHILFLDO HIIHFWV RI GLHOHFWULF RYHUOD\ FRDWLQJ RQ WKH UHOLDELOLW\ RI WKLQ IL P PHWDO L]DWLRQV E\ IRUPLQJ D FRPSUHVVLYH VWUHVV KDV EHHQ UHSRUWHG E\ VHYHUDO LQYHVWLJDWRUV >@

PAGE 119

&+$37(5 &5,7,&$/ &21',7,216 )25 7+,1 ),/0 ,167$%,/,7< %< *5$,1 %281'$5< *5229,1* 'HULYDWLRQ RI &ULWLFDO &RQGLWLRQV 7KH FRQGLWLRQV ZKHUH JUDLQ ERXQGDU\ JURRYHV UHDFK WKH VXEVWUDWH DUH FULWLFDO LQ WKH VWDELOLW\ RI WKLQ ILOPV EHFDXVH WKH VXEVHTXHQW KROH IRUPDWLRQ ZLOO HYHQWXDOO\ GLVFRQQHFW WKH ILOP 7KHVH FULWLFDO FRQGLWLRQV ZKHUH HTXLOLEULXP JURRYH GHSWKV IRU D ILQLWH JUDLQ VL]H DUH HTXDO WR WKH ILOP WKLFNQHVV DUH GHULYHG IRU WZR FDVHV XVLQJ D VLPLODU DSSURDFK PDGH E\ 6URORYLW] DQG 6DIUDQ >@ f WKH JURRYH LQ WKH JUDLQ ERXQGDU\ ZKHUH WZR JUDLQV PHHW DQG f WKH JURRYH LQ WKH JUDLQ ERXQGDU\ YHUWH[ ZKHUH WKUHH JUDLQ ERXQGDULHV PHHW *UDLQ %RXQGDU\ &RQVLGHU WKH PLFURVWUXFWXUH LQ ZKLFK D WKLQ ILOP LV FRPSRVHG RI WKH KH[DJRQDVKDSHG JUDLQV ZLWK JUDLQ ERXQGDULHV H[WHQGLQJ IURP WKH IUHH VXUIDFH WR WKH VXEVWUDWH )LJXUH Df $VVXPH WKH VXUIDFH VKDSH RI WKH JUDLQ LV D VSKHULFDO FDS EHFDXVH LW KDV WKH PLQLPXP VXUIDFH DUHD $ KH[DJRQDO XQLW FHOO ZLWK D VSKHULFDO FDS LV YLVXDOL]HG $ FURVV VHFWLRQDO YLHZ RI WKH XQLW FHOO LV VKRZQ LQ )LJXUH E ZKHUH % LV WKH FHOO VL]H 5 LV WKH UDGLXV RI WKH VSKHUH ZKRVH VHJPHQW IRUPV WKH

PAGE 120

VSKHULFDO FDS RI WKH JUDLQ W DQG G DUH WKH ILOP WKLFNQHVV DQG WKH JURRYH GHSWK PHDVXUHG ZLWK UHVSHFW WR WKH WRS RI WKH VSKHULFDO FDS UHVSHFWLYHO\ DQG K LV WKH KHLJKW RI WKH VSKHULFDO FDS ZLWK UHVSHFW WR WKH VXUIDFH RI WKH IODW ILOP 7KH JURRYH DQJOH LV JLYHQ E\ VLQ \J \Vf ZKHUH \J LV WKH JUDLQ ERXQGDU\ HQHUJ\ DQG\VLV WKH VXUIDFH HQHUJ\ RI WKH JUDLQ &RQVHUYDWLRQ RI ILOP YROXPH UHTXLUHV WKDW WKH YROXPH RI WKH KH[DJRQDO FHOO RI WKLFNQHVV G 9G PXVW EH VDPH DV WKH YROXPH RI WKH VSKHULFDO FDS 9 8VLQJ WKH UHODWLRQV 5 VLQ % DQG K 5 5 FRV 9G DQG 9 V FDQ EH ZULWWHQ DV 2 9G DUHD RI KH[DJRQ [ WKLFNQHVV %F G 5 VLQ G 9V K 5 Kf 5OFRVf FRVf /HWWLQJ 9G 9 DQG UHDUUDQJLQJ \LHOGV DQ H[SUHVVLRQ IRU WKH HTXLOLEULXP JURRYH GHSWK G HJ G % FRV FRVfVLQ :KHQ WKH WKLFNQHVV RI WKH ILOP LV OHVV WKDQ WKH JURRYH GHSWK WKH JURRYH ZLOO UHDFK WKH VXEVWUDWH DQG WKH ILOP ZLOO EH GLVFRQWLQXRXV LQ WKH YHUWLFDO GLUHFWLRQ 7KH FULWLFDO UDWLR RI WKH JUDLQ VL]H WR WKH

PAGE 121

L Df Ef ? ? )LJXUH 8QLW &HOO 6WUXFWXUH XVHG IRU 'HULYDWLRQ RI &ULWLFDO 5DWLR IRU WKH *URRYHV LQ WKH *UDLQ %RXQGDULHV Df D V\PPHWULF DUUDQJHPHQW RI JUDLQV LQ WKH ILOP Ef FURVV VHFWLRQDO YLHZ RI WKH XQLW FHOO

PAGE 122

ILOP WKLFNQHVV EHORZ ZKLFK WKH JURRYH ZLOO UHDFK WKH VXEVWUDWH LV REWDLQHG W%f FRV FRVAfVLQA *UDLQ %RXQGDU\ 9HUWH[ 7KH XQLW FHOO VWUXFWXUH IRU FDOFXODWLQJ WKH HTXOLEULXP GHSWK LQ WKH JUDLQ ERXQGDU\ YHUWH[ LV VKRZQ LQ )LJXUH D 7KH JURRYHV LQ WKH JUDLQ ERXQGDULHV DQG WKH JUDLQ ERXQGDU\ YHUWLFHV DSSHDU DW WKH HGJHV DQG WKH FRUQHUV RI WKH KH[DJRQDO XQLW FHOO ZLWK D VSKHULFDO FDS ,Q )LJXUH D & LV WKH FHQWHU RI WKH VSKHUH ZLWK UDGLXV 5 ZKRVH VHJPHQW IRUPV WKH VSKHULFDO FDS % LV WKH FHOO VL]H UJ LV WKH UDGLXV RI WKH FLUFOH ZKLFK SURYLGHV WKH JURRYH SURILOH LQ WKH JUDLQ ERXQGDU\ $ DQG & DUH WKH KHLJKW RI JURRYH WLSV LQ WKH JUDLQ ERXQGDU\ DQG WKH KHLJKW LQ WKH JUDLQ ERXQGDU\ YHUWH[ ZLWK UHVSHFW WR WKH RULJLQ RI WKH VSKHUH UHVSHFWLYHO\ G LV WKH GHSWK RI WKH JURRYH LQ WKH YHUWH[ ZLWK UHVSHFW WR WKH VXUIDFH RI WKH IODW ILOP DQG K LV WKH KHLJKW RI WKH VSKHULFDO FDS ZLWK UHVSHFW WR WRS RI WKH JURRYH SURILOH LQ WKH JUDLQ ERXQGDU\ 7KH WRS DQG WKH IURQW YLHZV RI WKH XQLW FHOO DUH VKRZQ LQ )LJXUH E DQG )LJXUH F UHVSHFWLYHO\ ,Q RUGHU WR FDOFXODWH WKH YROXPH RI WKH XQLW FHO DW WKH KHLJKW EHWZHHQ $ DQG & 9$e D VXE XQLW FHOO ZKLFK LV RI WKH KH[DJRQDO XQLW FHOO LV FRQVLGHUHG )LJXUH D DQG Ef 7KLV YROXPH FDQ EH FDOFXODWHG E\ LQWHUJUDWLQJ WKH FURVV VHFWLRQDO DUHD DW ] $]f ZLWK UHVSHFW WR ] ZKHUH ] LV WKH DUELWUDU\ KHLJKW LQ EHWZHHQ $ DQG &

PAGE 123

9 & 0 )LJXUH 8QLW &HOO 6WUXFWXUH XVHG IRU 'HULYDWLRQ RI WKH &ULWLFDO 5DWLR IRU WKH *URRYHV LQ WKH 9HUWLFHV Df KH[DJRQDO XQLW FHOO ZLWK D VSKHULFDO FDS Ef WRS YLHZ RI WKH XQLW FHOO Ff IURQW YLHZ RI WKH XQLW FHOO

PAGE 124

9 )LJXUH 6XE 8QLW &HOO 6WUXFWXUH XVHG IRU &DOFXODWLQJ WKH 9ROXPH RI WKH *URRYHV LQ WKH 9HUWLFHV Df VXE XQLW FHOO ZKLFK LV RI WKH XQLW FHOO Ef FURVV VHFWLRQ RI WKH VXE XQLW FHOO DW WKH DUELWUDU\ KHLJKW ]

PAGE 125

7KH JURRYH SURILOH LQ WKH JUDLQ ERXQGDU\ LQ )LJXUH F FDQ EH H[SUHVVHG E\ WKH HTXDWLRQ RI WKH FLUFOH LH " UB \ ] U VLQFf ] T A R 6LQFH 5 % DQG U 5 ] 5 % UVLQ ] 5 ]f VLQR] 5HDUUDQJLQJ VLQ %5 ]f RU FRV %5 ]f 7KH FURVV VHFWLRQDO DUHD DW ] LV WKH VXP RI WKH DUHD RI WKH WULDQJOH $W DQG WKH DUHD RI WKH VHFWRU RI WKH FLUFOH $ DV VKRZQ LQ )LJXUH E 7KH DUHD RI WKH WULDQJOH LV JLYHQ E\ $W % U VLQ 2f % 5 % ]f DQG WKH DUHD RI WKH VHFWRU RI WKH FLUFOH LV JLYHQ E\ $V UL U WW f 5 ]f WW 4 f 7KH WRWDO FURVV VHFWLRQDO DUHD DW ] $]f LV ZULWWHQ $ ]f $A $V % 5 % ]f 5]f WW f % &]f WW 5]f WW 2 f FRV%5]fA

PAGE 126

,QWHJUDWLQJ $]f ZLWK UHVSHFW WR ] \LHOGV WKH YROXPH RI WKH FHOO DW ] 9DU >% &]f ^LUVHFO5A]A%AfA` 5]f@ G] $ /HW X ]% 7KHQ X &% DW ] & X $% DW ] $ DQG G] % GX 6XEVWLWXWLQJ IRU ] ZLWK X ]% 9$& %%^&%fX` $% ^WW VHFn5%Xff ` ^5%fX ` GX 1RWH WKDW $ & DQG 5 FDQ EH H[SUHVVHG LQ WHUPV RI % DQG /HW $ [% & \% DQG 5 ]% )URP WKH JHRPHWULFDO UHODWLRQV LQ )LJXUH E DQG )LJXUH F [ VLQ f A \ WDQH DQG ] VLQH 6XEVWLWXWLQJ $ & DQG 5 9$T % >\Xf ^WW VHFBA]XfA` ]Xf@ GX % ZKHUH >\XfA ^7UVHFBr]XfA ` ]Xf@ GX [ 6LQFH LV IXQFWLRQ RI RQO\ WKH YDOXH RI FDQ EH GHWHUPLQHG E\ QXPHULFDO LQWHJUDWLRQ &RQVHUYDWLRQ RI ILOP YROXPH UHTXLUHV WKDW WKH VXP RI WKH YROXPH RI WKH XQLW FHOO EHWZHHQ $ DQG & 9$TV DQF_ WKH YROXPH RI WKH VSKHULFDO FDS 9F PXVW EH HTXDO WR WKH YROXPH RI WKH ILOP ZLWK WKLFNQHVV G 9G 9G % G

PAGE 127

DQG 9AT 9F %A WWFRV FRVbf VLQAH %A /HWWLQJ 9$T 9F 9G WKH HTXLOLEULXP JURRYH GHSWK DW WKH JUDLQ ERXQGDU\ YHUWH[ LV ZULWWHQ G > FRVH FRVAf VLQAH@ % 7KH FULWLFDO UDWLR RI WKH JUDLQ VL]H WR ILOP WKLFNQHVV IRU D ILOP RI WKLFNQHVV W WKHUHIRUH LV REWDLQHG W%f FRVH FRVHf VLQHf % ZKHUH M7 >\AXAfA 77VHF]AXAfA ]AXAf@ GX [ 7KH FULWLFDO UDWLR W% DV D IXQFWLRQ RI WKH JURRYH DQJOH LV VKRZQ LQ )LJXUH :KHUHDV WKH JURRYHV GR QRW UHDFK WKH VXEVWUDWH LQ WKH UHJLRQ DERYH WKH FXUYH WKH JURRYHV GR UHDFK WKH VXEVWUDWH LQ WKH UHJLRQ EHORZ WKH FXUYH $V VKRZQ LQ )LJXUH WKH FULWLFDO FRQGLWLRQV DUH VWURQJO\ GHSHQGHQW XSRQ WKH VL]H RI WKH JUDLQ WKH WKLFNQHVV RI WKH ILOP DQG WKH HTXLOLEULXP JURRYH DQJOH ,Q D JLYHQ JURRYH DQJOH DV WKH WKLFNQHVV RI WKH ILOP GHFUHDVHV RU WKH JUDLQ VL]H LQFUHDVHV WKH ILOPV DUH PRUH VXVFHSWLEOH WR WKH LQVWDELOLW\ FDXVHG E\ WKH JUDLQ ERXQGDU\ JURRYLQJ 6LPLODUO\ LQ D JLYHQ JUDLQ VL]H DQG WKH WKLFNQHVV RI WKH ILOP WKH ILOP LV PRUH VXVFHSWLEOH WR WKH LQVWDELOLW\ FDXVHG E\ JUDLQ ERXQGDU\ JURRYLQJ DV WKH HTXLOLEULXP JURRYH DQJOH LQFUHDVHV

PAGE 128

)LJXUH &ULWLFDO 5DWLR RI WKH *UDLQ 6L]H WR )LOP 7KLFNQHVV 9HUVXV WKH (TXLOLEULXP *URRYH $QJOH

PAGE 129

3DUDPHWHUV WR &RQWURO WKH *URRYH (YROXWLRQ LQ $X 7KLQ )LOPV ,Q RUGHU WR DSSO\ WKH FULWLFDO FRQGLWLRQV WR WKH JUDLQ ERXQGDU\ JURRYHV REVHUYHG LQ DQQHDOHG $X ILOPV WKH HTXLOLEULXP JURRYH DQJOHV DW WKH DQQHDOLQJ WHPSHUDWXUHV VKRXOG EH NQRZQ 7KH HTXLOLEULXP JURRYH DQJOH FDQ EH FDOFXODWHG XVLQJ WKH HTXDWLRQ $J [VVLQH ZKHUH $J DQG [V DUH WKH JUDLQ ERXQGDU\ HQHUJ\ DQG WKH VXUIDFH HQHUJ\ RI WKH JUDLQ ([SHULPHQWDOO\ WKH VXUIDFH HQHUJ\ DQG WKH JUDLQ ERXQGDU\ HQHUJ\ DUH PHDVXUHG QHDU WKH PHOWLQJ SRLQW LQ RUGHU WR HOLPLQDWH WKH GHSHQGHQFH RI WKHVH HQHUJLHV RQ FU\VWDOORJUDSKLF RULHQWDWLRQ $OVR ERWK WKH VXUIDFH HQHUJ\ DQG WKH JUDLQ ERXQGDU\ HQHUJ\ DUH WHPSHUDWXUH GHSHQGHQW 7KH\ GHFUHDVH DV WHPSHUDWXUH LQFUHDVHV 7KHUHIRUH WKH UDWH RI FKDQJH RI WKH VXUIDFH HQHUJ\ DQG WKH UDWH RI FKDQJH RI WKH JUDLQ ERXQGDU\ HQHUJ\ ZLWK WHPSHUDWXUH DUH DOVR QHHGHG LQ RUGHU WR FDOFXODWH WKH HTXOLEULXP JURRYH DQJOH DW WKH LQWHUHVWHG WHPSHUDWXUHV 7KH H[SHULPHQWDO YDOXHV RI WKH VXUIDFH HQHUJ\ DQG WKH JUDLQ ERXQGDU\ HQHUJ\ RI JROG DW & DQG WKHLU UDWHV RI FKDQJH ZLWK WHPSHUDWXUH UHSRUWHG DV IROORZV >@
PAGE 130

7DEOH 9DOXHV RI 6XUIDFH (QHUJ\ *UDLQ %RXQGDU\ (QHUJ\ DQG (TXLOLEULXP *URRYH $QJOH RI $X DW 9DULRXV 7HPSHUDWXUHV 7HPSHUDWXUH b 'HJUHHV & -QU
PAGE 131

PXVW EH ODUJHU WKDQ \P LQ GLDPHWHU LQ RUGHU WR KDYH WKH JURRYH UHDFK WKH VXEVWUDWH DQG FDXVH WKH KROH IRUPDWLRQ ([DPLQDWLRQ RI WKH $X ILOP DQQHDOHG DW & ZLWK 7(0 VHH )LJXUH f VKRZV WKDW KROHV IRUPHG DW JUDLQ ERXQGDU\ YHUWLFHV RI JUDLQV WKDW DUH PXFK VPDOOHU WKDQ \P PXFK ODUJHU JUDLQV VRPHWLPHV KDG QR KROH IRUPDWLRQ DW WKH YHUWLFHV 7KLV LQGLFDWHV WKDW D KLJKHU FULWLFDO UDWLR WKDQ WKHRUHWLFDOO\ SUHGLFWHG LV YDOLG IRU WKRVH VPDOOHU JUDLQV DW ZKLFK KROHV ZHUH REVHUYHG DW WKH YHUWLFHV $VVXPLQJ WKH XQLIRUP WKLFNQHVV RI WKH ILOP D KLJKHU FULWLFDO UDWLR UHVXOWV IURP DQ LQFUHDVHG JURRYH DQJOH $V VKRZQ LQ )LJXUH WKH FULWLFDO UDWLR LQFUHDVHV DOPRVW OLQHDUO\ ZLWK LQFUHDVLQJ JURRYH DQJOH DW WKH ORZHU DQJOHV DQG LQFUHDVHV DEUXSWO\ DW WKH KLJKHU DQJOHV 7KH FULWLFDO UDWLR KDV EHHQ GHULYHG IURP WKH JHRPHWULFDO FRQVLGHUDWLRQV XQGHU WKH DVVXPSWLRQV RI LVRWURSLF VXUIDFH DQG JUDLQ ERXQGDU\ SURSHUWLHV XQLIRUP JUDLQ VWUXFWXUH DQG QR HIIHFWV IURP GHIHFWV DQG LPSXULWLHV ,Q UHDO H[SHULPHQWDO FRQGLWLRQV WKHVH DVVXPSWLRQV FDQQRW EH VDWLVILHG 7KHUHIRUH WKH HYROXWLRQ RI WKH JURRYH PLJKW EH TXLWH GLIIHUHQW IURP WKH WKHRUHWLFDOO\ SUHGLFWHG RQH 7KH SDUDPHWHUV ZKLFK PD\ GHWHUPLQH WKH DFWXDO JURRYH DQJOH DQG WKXV WKH HYROXWLRQ RI WKH JURRYHV LQ $X ILOP DUH FRQVLGHUHG EHORZ f $QLVRWURSLF VXUIDFH DQG JUDLQ ERXQGDU\ SURSHUWLHV 7KH YDULDWLRQ RI VXUIDFH HQHUJ\ DQG JUDLQ ERXQGDU\ HQHUJ\ ZLWK FU\VWDRJUDSKLF RULHQWDWLRQ KDV EHHQ VWXGLHG LQ )&& PHWDOV >@ )RU JROG WKH ORZHVW VXUIDFH HQHUJ\ KDV EHHQ REVHUYHG DW DQ f RULHQWDWLRQ >@ 7KH H[WHQW RI WKH VXUIDFH HQHUJ\ DQLVRWURS\ PHDVXUHG

PAGE 132

E\ WKH UDWLR RI WKH PD[LPXP IUHH HQHUJ\ WR WKH PLQLPXP IUHH HQHUJ\ ZDV DERXW >@ 6LQFH WKH UDWH RI FKDQJH ZLWK WHPSHUDWXUH RI VXUIDFH HQHUJ\ LV DERXW WLPHV WKDW RI JUDLQ ERXQGDU\ WKH HIIHFW RI DQLVRWURS\ ZLOO EH PRUH VLJQLILFDQW DW ORZHU WHPSHUDWXUH ,I VRPH JUDLQV KDG WKH FRPELQDWLRQ RI WZR HQHUJLHV VXFK WKDW WKH ORZHVW VXUIDFH HQHUJ\ LV HTXLOLEUDWHG ZLWK WKH KLJKHVW JUDLQ ERXQGDU\ HQHUJ\ WKH JURRYH DQJOH VKRXOG EH JUHDWHU WKDQ WKDW ZKLFK LV FDOFXODWHG XVLQJ LVRWURSLF VXUIDFH DQG JUDLQ ERXQGDU\ HQHUJLHV :LWK WKH ORZHU VXUIDFH HQHUJ\ RI f RULHQWDWLRQ DERXW D LQFUHDVH LQ WKH JURRYH DQJOH DQG WKH FULWLFDO UDWLR LV FDOFXODWHG f ,PSXULWLHV 7KH VLJQLILFDQW HIIHFW RI LPSXULWLHV XSRQ JUDLQ ERXQGDU\ JURRYLQJ LQ $X WKLQ ILOPV ZDV UHSRUWHG E\ *RKR >@ 7KH HQKDQFHG JUDLQ ERXQGDU\ JURRYLQJ DQG KROH IRUPDWLRQ REVHUYHG GXULQJ DQQHDOLQJ ZHUH DWWULEXWHG WR WKH UHGXFWLRQ RI WKH VXUIDFH HQHUJ\ RI JROG E\ DGGLQJ DONDOL HOHPHQWV 7KH HIIHFW RI WKH DGVRUSWLRQ VLWHV RI WKH DGVRUEDWH XSRQ WKH VXUIDFH HQHUJ\ RI JROG DW KLJK WHPSHUDWXUH KDV EHHQ DOVR UHSRUWHG >@ ,Q DGGLWLRQ WR WKH FKDQJH LQ WKH VXUIDFH HQHUJ\ LPSXULW\ DGVRUSWLRQ PD\ DOVR DIIHFW WKH UDWH RI JURRYH HYROXWLRQ E\ DOWHULQJ WKH NLQHWLF FRQGLWLRQV RI WKH PDVV WUDQVSRUW 6XUIDFH GLIIXVLRQ FDQ EH LQFUHDVHG RU GHFUHDVHG DV D IXQFWLRQ RI DGVRUEDWH W\SH DQG IRUP >@ 2[\JHQ DQG FDUERQ DUH NQRZQ WR UHWDUG WKH VXUIDFH GLIIXVLRQ RI JROG ZKLOH DONDOL HOHPHQWV FRXOG HQKDQFH WKH VXUIDFH GLIIXVLRQ RI JROG XSRQ DGVRUSWLRQ

PAGE 133

*M RV WHLQ UHSRUWHG WKH UHWHQWLRQ RI VPDOO DPRXQWV LPSXULWHV HYHQ GXULQJ KHDWLQJ XQGHU K\GURJHQ DQG XOWUD KLJK YDFXXP >@ ,I WKH JROG ILOPV DUH ORFDOO\ FRQWDPLQDWHG RU VPDOO DPRXQW LPSXULWLHV ZHUH DGVRUEHG GXULQJ WKH GHSRVLWLRQ DQG SRVWGHSRVLWLRQ SURFHVV VXFK DV DQQHDOLQJ WKH HYROXWLRQ RI WKH JURRYH FRXOG EH TXLWH GLIIHUHQW HLWKHU HQKDQFHG RU UHGXFHG GXH WR WKH DGVRUEHG LPSXULWLHV f *UDLQ JHRPHWU\ 0LFURVWUXFWXUHV RI DQQHDOHG $X ILOPV VKRZ WKDW JHRPHWU\ RI JUDLQV LV QRW XQLIRUP 7KH VKDSH DQG WKH VL]H RI WKH JUDLQV DUH QRW LGHQWLFDO WKHUH LV D PL[WXUH RI SRO\JRQDOVKDSHG JUDLQV UDQJLQJ IURP WULDQJOHV WR RFWDKHGURQV 7KH HIIHFW RI WKH VKDSH RI WKH JUDLQ RQ WKH JURRYH HYROXWLRQ LV GLSLFWHG LQ )LJXUH ZKHUH WKH FULWLFDO UDWLR LV SORWWHG DV D IXQFWLRQ RI WKH VKDSH RI WKH XQLW FHOO )RU D JLYHQ JURRYH DQJOH GHFUHDVLQJ QXPEHU RI VLGHV LQ WKH SRO\JRQ SURGXFHV D KLJKHU FULWLFDO UDWLR 7KH HIIHFW RI VL]H GLIIHUHQFHV RI JUDLQV LV QRW FOHDU 7KHUH PD\ EH VRPH GLIIHUHQFHV LQ WKH VXUIDFH FXUYDWXUHV EHWZHHQ WZR JUDLQV RI GLIIHUHQW JUDLQ VL]H ,I VR DQ DV\PPHWULF JURRYH SURILOH FRXOG GHYHORS 'XH WR WKH QRQXQLIRUPLW\ LQ WKH JUDLQ JHRPHWU\ WKH FULWLFDO UDWLR GHULYHG IURP WKH XQLIRUP KH[DJRQDO XQLW FHOO PD\ QRW EH H[SHFWHG WR DSSO\ WR DOO WKH JUDLQV 6RPH JUDLQV HVSHFLDOO\ WKRVH WKDW KDYH D VPDOO QXPEHU RI VLGHV VXFK DV WULDQJOHV PD\ KDYH D KLJKHU FULWLFDO UDWLR

PAGE 134

f 'HIHFWV $ ODUJH QXPHU RI GHIHFWV VXFK DV YDFDQFLHV DQG YRLGV FDQ EH LQFRUSRUDWHG LQWR WKLQ ILOPV GXULQJ GHSRVLWLRQ SURFHVV >@ )RU HYDSRUDWHG JROG ILOPV D KLJK GHQVLW\ RI VPDOO YRLGV $f ZDV GLVFRYHUHG E\ 7(0 >@ 7KHVH YRLGV DUH EHOLHYHG WR EH IRUPHG SULPDULO\ QHDU WKH ILOPVXEVWUDWH LQWHUIDFH 'XULQJ SRVWGHSRVWLRQ SURFHVVHV VXFK DV DQQHDOLQJ DQG FXUUHQW VWUHVVLQJ WKH H[FHVV YDFDQFLHV DUH UHDGLO\ DQQLKLODWHG E\ GLIIXVLRQ WR YDULRXV VLQNV DYDLODEOH LQ WKH ILOP VXFK DV WKH IUHH VXUIDFH JUDLQ ERXQGDULHV DQG SUHH[LVWLQJ YRLGV >@ 9DFDQF\ DQQLKLODWLRQ DW WKH VXUIDFH PD\ FDXVH WKH ILOP WKLFNQHVV WR EH UHGXFHG ZKLFK LV FRPPRPO\ FDOOHG WKH WKLQQLQJ HIIHFW >@ ,Q WKLV FDVH WKH JUDLQ ERXQGDU\ JURRYH FRXOG EH GHHSHU E\ WKH VDPH DPRXQW DV WKH UHGXFWLRQ RI WKH WKLFNQHVVV 9DFDQF\ DQQLKLODWLRQ DW JUDLQ ERXQGDULHV SDUWLFXODUO\ DW JURRYH WLSV PD\ XSVHW WKH HTXLOLEULXP JURRYH DQJOH DQG WKXV HVWDEOLVK D GULYLQJ IRUFH WR SURPRWH IXUWKHU JURRYLQJ 7KLV LV YHU\ VLPLODU WR WKH DFFHOHUDWHG JUDLQ ERXQGDU\ JURRYLQJ LQGXFHG E\ HOHFWURPLJUDWLRQ >@ 9DFQDF\ DQQLKLODWLRQ DW SUHH[LVWLQJ YRLGV DW WKH ILOPVXEVWUDWH LQWHUIDFH PD\ FDXVH WKH JUDLQ ERXQGDU\ JURRYLQJ DW WKLV LQWHUIDFH DV ZHOO $OO WKHVH SDUDPHWHUV PD\ DOVR DIIHFW WKH HYROXWLRQ RI WKH JURRYH 7KLV VXJJHVWV WKDW WKH DFWXDO FULWLFDO UDWLR IRU WKH LQVWDELOLW\ RI WKLQ ILOPV GXH WR JUDLQ ERXQGDU\ JURRYLQJ GHSHQGV XSRQ PDQ\ SDUDPHWHUV 7KH UHDVRQDEOH SUHGLFWLRQ RI WKH HYROXWLRQ RI D JUDLQ ERXQGDU\ JURRYH LQ SRO\FU\VWDOOLQH WKLQ ILOPV LV HYLGHQWO\ GLIILFXOW

PAGE 135

r *5229( $1*/( 4 )LJXUH &ULWLFDO 5DWLR IRU 9DULRXV 6KDSHV RI WKH 8QLW &HOO

PAGE 136

&+$37(5 &21&/86,216 7KH SUHVHQW VWXG\ RQ SXUH $X ILOPV DQG ,Q$X FRPSRVLWH ILOPV OHDGV WR WKH IROORZLQJ FRQFOXVLRQV f 3XUH $X ILOPV KDYH JUDLQ ERXQGDU\ JURRYLQJV XSRQ KHDW WUHDWLQJ f ,QGLXPJROG ILOPV KDYH QR JUDLQ ERXQGDU\ JURRYLQJV XSRQ KHDW WUHDWLQJ LQ DLU f ,QGLXP LV UHGLVWULEXWHG RQ JROG ILOPV DQG IRUPV A RQ WKH IUHH VXUIDFH DQG LQ WKH JROG ILOP GXULQJ DLU KHDW WUHDWLQJ f ,QGLXP R[LGH A RQ WKH VXUIDFH SUHYHQWV JUDLQ ERXQGDU\ JURRYLQJ LQ $X JUDLQV GXULQJ KHDW WUHDWLQJ f ,QGLXP R[LGH A RQ WKH VXUIDFH OLPLWV WKH PDVV WUDQVSRUW SURFHVV E\ FDSSLQJ WKH VXUIDFH RI JROG ILOP f ,QGLXP R[LGH A&A LQ JROG ILOP SUHVXPDEO\ UHVLGLQJ DORQJ RU QHDU JUDLQ ERXQGDULHV LPSHGHV WKH JUDLQ JURZWK E\ SLQQLQJ WKH JUDLQ ERXQGDU\ PLJUDWLRQ f 7KH HIIHFW RI LQGLXP XQGHUOD\V RQ WKH PLFURVWUXFWXUH RI JROG LV EHOLHYHG WR EH GXH WR D UDQGRPL]DWLRQ RI WKH RULHQWDWLRQV RI WKH JUDLQV WR D UHILQHPHQW RI WKH JUDLQ VL]H WR XQLIRUPLW\ RI WKH JUDLQ VL]H GLVWULEXWLRQ DQG WR URXJKHQLQJ RI WKH VXUIDFH RI JROG ILOPV

PAGE 137

f ,QGLXP R[LGH ,QA2A RQ WKH VXUIDFH ZDV IRXQG WR KDYH SRO\FU\VWDOOLQH JUDLQV ZKRVH PHDQ JUDLQ VL]H DQG WKLFNQHVV DUH $ DQG $ UHVSHFWLYHO\ f ,QGLXP LV UHGLVWULEXWHG RQ JROG ILOPV DQG IRUPV D VROLG VROXWLRQ GXULQJ K\GURJHQ DQQHDOLQJ f 7KH DSSDUHQW GLIIHUHQFH LQ PLFURVWUXFWXUHV RI DQQHDOHG ,Q$X FRPSRVLWH ILOPV H[DPLQHG E\ 6(0 DQG 7(0 UHVXOWV IURP WKH VXUIDFH URXJKQHVV RI WKH ILOPV f 7KH FULWLFDO UDWLR RI WKH WKLFNQHVV WR JUDLQ GLDPHWHU IRU $X ILOPV ZDV FDOFXODWHG WR EH XVLQJ H[SHULPHQWDO YDOXHV RI WKH VXUIDFH HQHUJ\ DQG WKH JUDLQ ERXQGDU\ HQHUJ\ LQ WKH LWHUDWXUH 7KH DERYH OLVWHG FRQFOXVLRQV VKRXOG EH VHHQ LQ WKH OLJKW RI WKH UHO LDEL LW\ RI JROG PHWDO L]DWLRQV LQ PLFURHHFWURQLF FLUFXLWV $V KDV EHHQ VWDWHG LQ WKH ,QWURGXFWLRQ JROG ILOPV KDYH D KLJKHU HOHFWURn WUDQVSRUW UH DWHG OLIH WLPH WKDQ DOXPLQXP PHWDO L]DWLRQV 7KH PDLQ IDLOXUH PHFKDQLVP LQ SXUH JROG ILOPV LV LQVWHDG FDXVHG E\ JUDLQ ERXQGDU\ JURRYLQJ 7KLV ZRUN KDV VKRZQ KRZ JUDLQ ERXQGDU\ JURRYLQJ FDQ EH VLJQLILFDQWO\ SUHYHQWHG DQG ZKLFK PHFKDQLVPV DUH UHVSRQVLEOH IRU WKLV SUHYHQWLRQ 7KH QH[W VWHS IRU OLIH WLPH LQYHVWLJDWLRQ QHHGV WR DGGUHVV LWVHOI ZKHWKHU RU QRW RQO\ LQGLXP XQGHUOD\HUV FDXVH WKH EHQLILFLDO HIIHFWV GHVFULEHG DERYH RU ZKHWKHU RU QRW RWKHU PDWHULDOV FRXOG EH XWLOL]HG LNHZLVH

PAGE 138

5()(5(1&(6 5 ( +XPPHO LQ (OHFWUR DQG 7KHUPR7UDQVSRUW LQ 0HWDOV DQG $ 7R\V HGLWHG E\ 5 ( +XPPHO DQG + % +XQWLQJWRQ $PHU ,QVW RI 0LQLQJ 0HWDOOXUJLFDO DQG 3HWUROHXP (QJLQHHUV ,QF 1HZ
PAGE 139

5 ( +XPPHO 5 7 'H+RII 6 0 *R KR DQG: 0 *RKR 7KLQ 6ROLG )LOPV f 5 ( +XPPHO 6 0 *RKR DQG 5 7 'H+RII 3URF QG $QQ 5HO 3K\ 6\PS ,((( f + % +XQWLQJWRQ 7KLQ 6ROLG )LOPV B f ) 0 Gn+HXUOH DQG 3 6 +R LQ 7KLQ )LOPV ,QWHUGLIIXVLRQ DQG 5HDFWLRQV HGLWHG E\ 0 3RDWH 1 7X DQG : 0D\HU -RKQ :L H\ DQG 6RQV 1HZ
PAGE 140

& < &KDQJ DQG + / +XDQJ $SSO 3K\V B f ) $ 1LFKROV $SSO 3K\V f $ :LOVRQ -$SS 3K\V e f $ *RJLD DQG $ 0 *RNKDOH 0HWDO 7UDQV $ f + ( &OLQH $FWD 0HW f / 5D\OHLJK 3URF /RQGRQ 0DWK 6RF BB f ) $ 1LFKROV DQG : : 0XO 7LQV 7UDQV $,0( f & )
PAGE 141

% &XOOLW\ (OHPHQWV RI ;5D\ 'LIIUDFWLRQ $GG L VRQ:HV H\ 3XEOLVKLQJ &RPSDQ\ ,QF 5HDGLQJA 0$ f 3 % +LUVFK $ +RZLH 5 % 1LFKROVRQ DQG : 3DVKOH\ (OHFWURQ 0LFURVFRS\ RI 7KLQ &U\VWDOV :L LDPV &O RZHV DQG 6RQV /WG /RQGRQ f 77L7 ) +XPSKUH\V 7H[WXUHV DQG 0LFURVWUXFWXUHV B f / &KRSUD 3K\V 6WDW 6RO f / &KRSUD 7KLQ )LOP 3KHQRPHQD .ULHJHU 3XEOLVKLQJ &RPSDQ\ 1HZ
PAGE 142

* : 3RZHO DQG %UDXQ 7UDQV $,0( f 7 )LQVWDG 7 $QGUHDVVHQ DQG 7 VHQ 7KLQ 6RO LG )L PV B f 6 7KRPDV $SSO 3K\V /HWWB f ( 1HZEXU\ 3UDFWLFDO 6FDQQLQJ (OHFWURQ 0LFURVFRS\ HGLWHG E\ *ROGVWHLQ DQG +
PAGE 143

) 5LFKDUGVRQ DQG -+( -HIIHV ,URQ 6WHHO ,QVW f $ 6RPRUMDL 3ULQFLSOHV RI 6XUIDFH &KHPLVWU\ 3UHQWLFH +DOO ,QF (QJOHZRRG &OLIIV 13 6KHZPRQ 7UDQVIRUPDWLRQ LQ 0HWDOV 0F*UDZ+LOO &RPSDQ\ 1HZ
PAGE 144

1 $ *MRVWHL Q $FWD 0HW 8 f + 3 %RQ]HO LQ 6XUIDFH 3K\VLFV RI 0DWHULDOV 9RO HGLWHG E\ 0 %ODNHO\ $FDGHPLF 3UHVV 1HZ
PAGE 145

%,2*5$3+,&$/ 6.(7&+ 6RR
PAGE 146

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ U 5ROI ( +PLH &KDLUPDQ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ In4ƒn-Un %HUW 7 'H+RII f 5REHUW 3URIHVVRU RI 0DWHULDO DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ [ R3DXO + +ROORZD\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\

PAGE 147

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7LPRWK\ $MUWGHUVRQ $VVRFLDWH 3UnRIHVVRU RI &KHPLFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ &ROOHJH RI (QJLQHHULQJ 'HDQ *UDGXDWH 6FKRRO

PAGE 148

81,9(56,7< 2) )/25,'$