Citation
The stereochemistry of group transfer polymerization of methyl, diphenylmethyl, and triphenylmethyl methacrylates

Material Information

Title:
The stereochemistry of group transfer polymerization of methyl, diphenylmethyl, and triphenylmethyl methacrylates
Creator:
Banerjee, Krishna G., 1959-
Publication Date:
Language:
English
Physical Description:
vii, 125 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Acetals ( jstor )
Catalysts ( jstor )
Flasks ( jstor )
Ketenes ( jstor )
Methacrylates ( jstor )
Methylation ( jstor )
Money market accounts ( jstor )
Monomers ( jstor )
Polymerization ( jstor )
Polymers ( jstor )
Methyl methacrylate ( lcsh )
Polymerization ( lcsh )
Stereochemistry ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1988.
Bibliography:
Includes bibliographical references.
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Krishna G. Banerjee.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001119970 ( ALEPH )
AFL6816 ( NOTIS )
19989787 ( OCLC )

Downloads

This item has the following downloads:


Full Text










THE STEREOCHEMISTRY OF GROUP TRANSFER
POLYMERIZATION OF METHYL, DIPHENYLMETHYL, AND
TRIPHENYLMETHYL METHACRYLATES








By

KRISHNA G. BANERJEE


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE
UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1988


EU- F, UBFIUA aIF






















This dissertation is dedicated to my spiritual master, Om Visnupada
Hridayananda dasa Goswami Acaryadeva, (ardent disciple of His Divine
Grace A. C. Bhaktivedanta Swami Prabhupada) who taught me how to
dedicate one's so called assets in this world in the loving service of the
Almighty.













ACKNOWLEDGEMENTS


I am gratefully indebted to the members of my supervisory committee,
Dr. George B. Butler, Dr. John F. Helling, Dr. John Eyler, and Dr. Charles
Beaty. Special thanks and deep appreciation are due to Dr. Thieo E. Hogen-
Esch for his invaluable guidance, moral support, encouragement, patience,
and friendship. Especially valuable was his encouragement during the most
difficult times of the research project, when nothing but failures stared me in
the face.
Thanks are also due to the glassblowers Dick Mosier and Rudy
Strohschein for their fine glassblowing and ever-joking mood; to Mrs. Lorraine
Williams, the polymer floor secretary, for her kindness and motherly affection;
to Dr. Ken Wagener, for his encouragement; and to the other members of the
"polymer floor" for their association and encouragement. Last, but not the
least, I would like to acknowledge the encouragement and support of my
parents, without whom none of this work would have been possible.











TABLE OF CONTENTS



ACKNOWLEDGEMENTS ............................................................................. iii

ABSTRACT ........................................... ....................................................... vi

CHAPTER

I INTRODUCTION ........................................................................... 1

Background ................................................................................... 1
Objectives ...................................................................................... 16

II EXPERIMENTAL ...................................................................... ... 21

Catalyst Syntheses ..................................................................... 22
Synthesis and Purification of Initiators ........................................24
Monomer Syntheses and Purification .........................................35

Methyl Methacrylate (MMA) .................................. ............. 35
Silver Methacrylate ................................................................35
Triphenylmethyl (Trityl) Methacrylate........................................37
Diphenylmethyl Methacrylate..............................................40

Polymerization Reactions ............................................................41

Group Transfer Polymerization of Methyl Methacrylate .......41
Methylation of Chain End of PMMA prepared by GTP.........45
Polymer Isolation for PMMA prepared by GTP.................... 45
Group-Transfer Polymerization of Diphenylmethyl and
Triphenylmethyl Methacrylate........................................... 47
Anionic Polymerization of MMA.................................... ..47
Anionic Polymerization of TrMA..................................... ...49

Polymer Hydrolysis ...................................................................... 52

Poly TrMa ........................................................................... 52
PDMA........................................................................................52

Diazomethane Methylation .......................................... .......... 53
Titration of Alkyl Lithium Solutions.................................. .....53
Instrumentation .............................................................................. 55






CHAPTER age

Gas Chromatography .......................................................... 55
Preparative Liquid Chromatography .....................................56
NMR Spectroscopy ............................................................... 57
Size Exclusion Chromatography (SEC) ...............................58

III GROUP TRANSFER POLYMERIZATION OF METHYL
METHACRYLATE ...................................................................... 59

Background ...................................... ........................................ 59
Stereochemical Kinetics: 13C NMR Analysis of PMMA
Terminated with Labelled End Groups..................................67

Side Reactions in Group Transfer Polymerization....................82

IV GROUP TRANSFER POLYMERIZATION OF DIPHENYL-
METHYL AND TRIPHENYLMETHYL METHACRYLATES..87

Background ...................................... ..............................................87
Group Transfer Polymerization of TrMA......................................88

Methylation Attempts and the Possibility of a Dissociative
Mechanism for the GTP of TrMA.......................................94
Stereochemistry of GTP of TrMA.......................................... 101

Group Transfer Polymerization of DMA................................. 114

Experimental Conditions and SEC Results........................ 114
Stereochemistry of GTP of DMA............................................. 115

REFERENCES ................................................................................................ 120

BIOGRAPHICAL SKETCH............................................................................. 125












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


THE STEREOCHEMISTRY OF GROUP TRANSFER
POLYMERIZATION OF METHYL, DIPHENYLMETHYL, AND
TRIPHENYLMETHYL METHACRYLATES

By

Krishna G. Banerjee

August 1988

Chairman: Thieo E. Hogen-Esch
Major Department: Chemistry


The stereochemistry of the chain-end of PMMA prepared by group
transfer polymerization (GTP) and terminated with 13CH31 in the presence of
tris(dimethylamino)sulfonium difluorotrimethyl siliconate (TASSiMe3F2) was

determined by 13C NMR and compared with the tacticity of the chain. The
propagation statistics reveal consistency with a Bernoullian process for the
entire temperature range studied (-960C to 45oC), confirming previous reports
based on main chain triad tacticity data alone. The results indicate that the E
and Z stereoisomers demonstrated for these systems propagate with identical
stereochemistry and also confirm a previous suggestion that a comparison of
the stereochemistry of the end group and the main chain is a valuable new
method for analyzing the statistics of vinyl polymers.








The GTP of diphenylmethyl methacrylate (DMA) and triphenylmethyl
methacrylate (TrMA) at various temperatures using various nucleophilic
catalysts is also described. The strong fluoride ion donor catalysts appear to
be the most effective in polymerizing TrMA but are required in much higher
concentrations than for methyl methacrylate (MMA) polymerizations. The GTP
of both DMA and TrMA are affected by side reactions competing with initiation,
resulting in partial destruction of the silyl ketene acetal initiator. Molecular
weight control is poor but the molecular weight distributions remain
moderately narrow (1 < Mw/Mn < 2). Attempts to methylate the chain-end of

poly (TrMA) prepared by GTP were unsuccessful.
In contrast to the radical and anionic polymerizations of TrMA, the
stereoselectivity of GTP of TrMA increases with increasing temperature with a
higher isotactic content at room temperature. A sigmoidal curve is obtained
when the tactic content of poly(TrMA) is plotted as In (kr/km) versus 1/T. The

possibility is discussed of the polymerization proceeding through two active
species such an enolate and a silyl ketene acetal which are interconverting
rapidly during the polymerization. On the other hand, the tacticity results for
the GTP of DMA are similar to those of anionic polymerization in that the
syndiotactic content decreases and the heterotactic content increases with
increasing temperature.











CHAPTER I

INTRODUCTION


Background
Group transfer polymerization (GTP) is a new technique for the
polymerization of acrylic monomers discovered by the scientists at Dupont.1-4
This technique gives "living" polymers (polymers that are capable of further
increase in molecular weight upon the addition of additional monomer) and
can be carried out at room temperature or above, in contrast to the
corresponding anionic polymerization that only works well at low
temperatures (below -50oC). Although the method works best for
methacrylates, other monomers such as acrylates, acrylonitrile, maleimides
and vinyl ketones can also be polymerized. As block and graft copolymers
have found increasing use as elastomers, compatibilizers, adhesives and
components of high performance finishes, there has been a a great emphasis
on new synthetic methods to prepare well-characterized blocks with functional
end groups which could serve as building blocks for copolymers of
predetermined architecture. Group transfer polymerization appears to
overcome some of the major disadvantages of other types of polymerization
for the preparation of well defined functional blocks. For example, although
anionic polymerization of styrene and butadiene has been carried out
commercially, the anionic polymerization of methacrylates is uneconomical
due to the low temperatures (< -50oC) required to maintain "living" conditions.
Condensation polymerization leads to polymers with broad molecular weight
distribution and hydrolytically unstable backbone linkages although they are





2

very useful polymers of great commercial importance. Due to chain transfer
and termination reactions, and the resulting inability to rigorously control the
MW distribution, free radical polymerization is also unsuitable. Group transfer
polymerization however offers a great deal of practical advantages not offered
by any other methods, namely operability over a broad temperature range, a
wide choice of solvents, good molecular weight control, the ability to
functionalize the polymer ends and the ability to prepare block and random
copolymers. In addition, although group transfer polymerization requires
highly purified reagents and scrupulously dry conditions, a rigorously oxygen-
free atmosphere is not required.
Group transfer polymerization is an example of Michael addition of silyl
ketene acetal to an alpha,B- unsaturated carbonyl compound. It is a first
application of such chemistry to polymer formation by sequential additions.
Figure 1-1 illustrates the polymerization of methyl methacrylate (MMA)
with dimethylketene methyl trimethylsilyl acetal, 1, as initiator. The
trimethylsilyl group is transferred from the initiator and the growing end to the
incoming monomer (hence the name, "group transfer polymerization"). A
catalyst is required for the polymerization to proceed and these can be
classified into two types, the anion catalysts1-3 and the Lewis acid
catalysts.1, 4
Of the anion type, tris(dimethylamino)sulfonium bifluoride (TASHF2)

has given the best overall results and has been used most extensively.
Several other catalysts of both types used for GTP are listed in Table 1-1.









Me OMe


Me OSiMe3


CO2Me


MeO OSiMe3
TASHF2

Me
Me Me
CO2Me


TAS = [N(CH3)2]3S+


Me

CO2Me


Me OMe
COgMe Me Me Me
I FCH I O
Me PMMA. CH2-CHCO2Me --- Me --(CH2C-- OSiMe

Me + CO2Me CO2Me
M3SIOR


Fig. 1-1. Scheme illustrating group transfer polymerization of MMA.









Table 1-1. Various Anion and Lewis Acid Catalysts for GTP


Nucleophilic Catalysts
(Activate Initiator)


TASSiMe3F2
TASHF2
TASCN
TASN3
RCO2
H(RCO2)2


Lewis Acid Catalysts
(Activate Monomer)


ZnBr2
Znl2
ZnCI2
(i-Bu2AI)20
i-Bu2AICI
Et2AICI


__









The mechanism of anion catalyzed GTP5, 6 is rather complex and is far
from being completely worked out and established, in detail. However,
several experiments by the Dupont scientists strongly indicate an associative

silyl transfer mechanism rather than a dissociative (i.e., through enolate
anions) one, at least for the bifluoride catalyzed GTP of MMA. The proposed
mechanism is illustrated in Fig. 1-2. In the first step, the nucleophilic catalyst
activates the initiator by coordination to silicon, to generate a
pentacoordinated silicon species 2 (active species). The activated initiator
and monomer a were originally proposed to form a hypervalent silicon
intermediate 4_(hexacoordinated) and new C-C and Si-O bonds are formed,
cleaving the old Si-O bond. More recently however, 4 has been considered to
be unlikely as an intermediate, both by the Dupont group7 and by others
working in the GTP field.8 Instead, it has been recognized that monomer
addition may well take place in two steps, as illustrated in Figure 1-2.To test
the involvement of the hypothesized silicon species 2, a stable
pentacoordinate siliconate Z (equation 1-1) was synthesized5, 6 as a model
compound by treatment of the silane 5 with the lithium enolate of methyl
isobutyrate, i.



3 3 L,6
< CF3 CH3


(1-1)












+ Nu-


Rmo


R i R
Si
R'LACt,


.OMe


R= CH3

Nu- = nucleophilic catalyst


Nu- +


0


Nu

Si- R
R* k (


0 OMe


Nu
R., O
Si- R
RI
0


OMe


MeO'


R

R =w-. Si.-w R
o


Fig. 1-2. Proposed mechanistic scheme for bifluoride catalyzed group
transfer polymerization of MMA.


MeO


OMe









It was hypothesized that a species such as 2 should react with MMA without
added nucleophilic catalysts. Compound Z indeed reacted with MMA at room
temperature, without added catalyst to give PMMA of reasonably narrow
molecular weight distribution. Although the ligands of 2 and Z are admittedly
different, this result strongly supports (along with other corroborative
evidence) the involvement of a pentacoordinate siliconate species in GTP.
Additional evidence for the associative mechanism comes from detailed
labelling studies5, 6 (see chapter IV). In bifluoride catalyzed GTP, there is no
exchange of the silyl group on the chain end with added trialkylsilyl fluoride.
Therefore, if the function of the catalyst is to generate a small amount of
enolate anion for anionic polymerization, these anions should be recapped by
silyl fluoride, which they are not (Fig. 1-3). In addition, in a double labelling
experiment,5, 6 it was shown that exchange does not occur between living
poly(butyl methacrylate) chain ends and living poly(methyl methacrylate)
chain ends. These results rules out the dissociative route depicted in Fig. 1-4
where at any one time there would be only trace amounts of PMMA enolate
ions present.



MeC COSiR3 + Nu- Me2C CO SiNu
2 + NR3SiNu


Me Me


I R'3SiF
PMMA-C-=COSiR'3 --- PMMA-C CO
I I
OMe OMe

Fig. 1-3. Scheme illustrating the attempted recapping of enolate ions in
GTP of MMA.









\ OSiMe3 0O

O Me + Nu 7 OMe /OMe




PMMA O


> OMe



PMMA O PMMA OSiMe3 PMMA OSiMe3

e OMe < OMe

PMMA 0

OMe

Fig. 1-4. Dissociative scheme showing recapping of PMMA enolate ions by
PMMA silyl ketene acetal.



In the case of Lewis acid catalyzed GTP,1, 4 the monomer is believed to be
activated by coordination of the Lewis acid to the carbonyl oxygen, for
Michael addition of the silyl ketene acetal to MMA.
Polymerization of MMA by GTP is rapid and exothermic. Because
initiators and living polymer sites are very water-sensitive, equipment and
reagents must be scrupulously dry. The monomer to initiator ratio determines
the molecular weight which may be varied over a wide range (1000 < M >
105). Only trace amounts of catalyst (0.1-1.0 mole % of initiator for anion







catalysts and 10% for Lewis acid catalysts) are required for MMA
polymerizations. Monodisperse PMMA with molecular weight as high as
100,000 has been claimed by Dupont using highly purified solvents and
reagents. Tetrahydrofuran (THF), toluene, and acetonitrile are typical solvents
for nucleophile anionn) catalyzed GTP and toluene and halocarbons for Lewis
acid catalyzed polymerization.

PMMA prepared by GTP with the anion catalysts at ambient
temperature contains approximately a 55:45 ratio of syndiotactic and
heterotactic sequences respectively, with no measurable isotactic
components in all solvents examined. The syndiotactic content increases
from 50% at 600C to 75% at -950C for anion catalyzed GTP in THF as the
temperature is lowered, with a final syndiotactic: heterotactic ratio of 3:1.
Lewis acid catalysis of GTP of MMA generally provides a much more
syndiotactic PMMA than do anion catalysts, but detailed temperature
dependence of tacticity studies have not been reported for this system. The
tacticity of PMMA prepared by GTP appears to be independent of solvent but
is dependent on the reaction temperature and the nature of the catalyst (i.e.,
anionic vs. Lewis acid). This is in sharp contrast to the anionic polymerization
of MMA initiated by alkyllithium reagents, where the tacticity of PMMA is
dependent on the polarity of the solvent media. Thus for the anionic
polymerization of vinyl monomers of the structure CH2=C(R)C(Y)=X (X,Y = O

or N, R = H or alkyl) isotactic PMMA is obtained in the presence of Li or Mg
initiators in non-polar solvents (e.g. toluene), while polar solvents (e.g., THF)
give predominantly syndiotactic polymers.9-12
In many cases, the silyl ketene acetal is stable and may be used for
further reactions or for preparing block polymers by changing to a second
vinyl monomer.1, 3 Figure 1-5 illustrates the formation of a triblock polymer
from MMA, n-butyl methacrylate and allyl methacrylate.








OMe PMMA OMe
+ MMA -
> OSiMe3 OSiMe3

n-BUTYL METHACRYLATE



PMMA-PBMA-PAMA OMe PMMA-PBMA OBu
57% 32% 11% < __
/ \ ALLYL METHACRYLATE \
OSiMe3 OSiMe3

Fig. 1-5. Scheme illustrating the synthesis of a triblock copolymer by GTP


The figure also illustrates the point that methacrylates bearing free radical

sensitive groups can be introduced into the polymer chains by GTP. A

polymer with 11% allyl methacrylate would form a gel if prepared by free

radical initiation. Polymers with thermally sensitive functionality such as

glycidyl groups can also be prepared, but polymerization temperatures must

be maintained at OoC or lower. When mixtures of various methacrylate

monomers are used, random copolymers form.

End functionalized polyacrylates can be obtained by employing
properly designed initiators.1, 3 The corresponding living polymers can be

coupled readily to telechelic polymers. Thus, use of a (Fig. 1-6) as an initiator

for polymerization of MMA or ethyl acrylate (EA) gave polymers with protected

terminal functional groups. The existence of ia or 92 in solution was

demonstrated by reaction with a proton source (e.g. methanol) or with a

suitable alkylating agent (e.g. benzyl bromide) in the presence of

stoichiometric amounts of a strong fluoride ion source (such as
TASSi(CH3)3F2) to give 10 or 11 (Figure 1-7).









v OCH2CH20SiMe3
+ (n+1) H2C= C--COg2R
OSiMe3

OCH R'
8 I I
C-C-(CH2-C -)n OR
Me3SiOCH2CH20 I C
CH3 CO2R
R' OSiMe3

9a R= R=CH3
9b R = C2H5, R'= H


Fig. 1-6. Scheme showing the synthesis of telechelic polymers by GTP.




Deprotection of 1Q and 11 with n-Bu4NF (TBAF) gave the corresponding

polymers with 100% hydroxyl groups in one terminal position. The

functionalized polymers may be readily distinguished from the non-

functionalized species by high performance liquid chromatography (HPLC).

Size exclusion chromatography (SEC) analyses showed that the polymers
had narrow molecular weight distribution (Mw/Mn = 1.0-1.3).

When the alkylation reaction was carried out with 1,4-bis (bromomethyl)

benzene, the intermediate 9a gave after deprotection, alpha, omega -

dihydroxypoly(methyl methacrylate) 12 in a quantitative yield (Figure 1-8). The

coupling reaction was carried out in the presence of one equivalent (with
respect to the initiator) fluoride ion (TASSiMe3F2). The extent of coupling was

determined by GPC, HPLC and hydroxyl group analysis.









CH3 R'

C-C-(CH2-C --CH2 X
Me3SiOCH2CH20 I I
CH3 CO2R

11 X'= H, R = R'= CH3




1. BrCH2-OX' 2. TASSiMe3F2 (1 equivalent)


MeOH or Br2


CH3 R'
O\ F
C -C(CH2-C X
Me3SiOCH2CH20 OI I
CH3 CO2R


10aX H, R R'=CH3
10bX=Br, R=R'=CH3
10cX=H, R= C2Hs,R=H


Figure 1-7. Alkylation, halogenation and protonation of living PMMA by GTP.








9a

1. BrCH2-QCH2Br

S2. TASSiMe3F2 (1 equivalent)



SCH R' CH3 CH3
OC-[C H2CCH CH2 CH 2F CHCC-CH
Me3SiO(CH2)20 OH n CH OCH2CH2OH
CO2R CO2R



n-Bu4NF





O CH3 R' CH3 CH, 0
C-C-(CH2-C -CH, CH2.' CH) -C.
HOCH2CH20 0I In f ni OCH2CH2OH
CH3 CO2R CH3 CH3
12



Fig. 1-8. Coupling of two PMMA chains with a difunctional coupling agent.


Similarly, alpha, omega-dicarboxylpoly(methyl methacrylate) was
prepared by initiating the polymerization with 1,1'-bis (trimethylsiloxy)-2-
methylpropene-1 (13) and hydrolyzing the end group of the resulting polymer
(Figure 1-9.).

A control sample was removed before the addition of the coupling
agent. Comparison of the control with the coupled product enables one to
determine the extent of coupling. Thus the monofunctional polymer (control)










+ CO2aMe
OSiMe3 H2C
13

S CH3 CH3 CH3 OSiMe3
0C C---(CH2--C CH2- C=C
Me3SiO' I
Me CH3 CH3 OMe
14





H CH3 CH3 CH3 CH3 O
C-C-(CH C-rCH, CH-C-CH -CO
HO CH3 COPCH Ca CH3

15
1. BrCH2-- CH2Br
2. H3Ct

14

SH3C


0 CH3 CH3

-I I
HO II
S CH3 C02CH3 16

Fig. 1-9. Synthesis of alpha, omega- dicarboxy-PMMA.



had Mn = 2100, Mw = 2700, while the alpha, omega-difunctionalized coupled

product 16 had Mn = 4200 and Mw = 5600, indicating quantitative coupling.

The reaction of silyl enol ethers with tertiary alkyl halides and the direct

coupling of silyl ketene acetals with titanium tetrachloride (TiCI4) are

known.13, 14 Telechelic polymers were prepared taking advantage of these

reactions. Using a mixture of Br2 and TiCl4 as the coupling agent, living

polymers 9a and J14were reacted independently (Figure 1-10), to yield the

coupled polymers 192a and 19 b.









Star polymers can be synthesized by generating polyfunctional

initiators in situ by the Michael addition reaction of polyfunctional monomers

with silicon reagents (Fig. 1-11).1 The alternative approach would involve

initiation of GTP with polyfunctional initiators, which presents the problem of

synthesis of such large, reactive, initiators.


Br2-TiCI,
9a 2 4 -
Or CH2C2. 0C
14


- CH, CH3
S I I
C-C-H,-CH cn---Br +
CH3 CO2CH3

17a R = CH2CH2OSiMe3
17b R SiMe3

SCH3 CH3 CH3 OTiCI3
C.C---+CH2 C CH2-C =C
R CH3 CH3 OMe

18a R= CH2CH2OSiMe3
8b R = SiMe3


-BrTICI3 H30


CH3
C
COACH3
2


19a R=CH2CHO2a-
19b R=H


Fig. 1-10. Coupling of PMMA chains with bromine/TiCl4.









- CH2OOC 3

20













EA = Ethyl acrylate


> OSiMe3 (i-BuAI)20
+ 3)== -------
+ OMe
-1


4CO2Et


CO2 Me


-__ 3


Fig. 1-11. Synthesis of star polymers by GTP.


When one equivalent of a n-functional monomer is allowed to react with

n-equivalents of ketene silyl acetal initiator (1) in the presence of a Lewis acid

catalyst (such as dialkylaluminum chloride or dialkylaluminum oxide) followed

by the addition of excess monofunctional monomer, cross linking does not

occur, but, instead, star polymers are formed. Thus the reaction of 1 with a

0.33 molar equivalent of trimethylolpropane triacrylate 20 at -780C followed

by ten molar equivalents of EA gave a quantitative yield of soluble star

polymer containing no residual unsaturation with Mn = 2190, Mw = 3040, and

D = 1.39 (theoretical Mn = 3300) (Fig. 1-11).

Similarly, treatment of 1 at -78oC with 0.25 molar equivalent of

pentaerythritol tetraacrylate, 21, in the presence of diisobutylaluminum oxide

followed by ten equivalents of ethyl acrylate gave a quantitative yield of








soluble polymer with Mn = 2400, Mw = 2970, and polydispersity 1.24

(theoretical Mn = 4752)(equation 1- 2)





C C 0H OOC> 1 C(poly EA)4
E 4 2. EA

21 (1-2)




Objectives
One of our original objectives was to investigate the effect of alkyl or aryl

substitution on Si in the initiator molecule on the tacticity of PMMA prepared

by GTP. We also wanted to investigate what substituent size could be

tolerated on silicon to yield PMMA by GTP. In this regard, the effect of chiral

silicon in the initiator molecule on the stereochemistry of the prochiral carbon

was of special interest.


Chiral silicon


PMMA OSIR1 R2 R3

CHa3 OMe

Prochiral carbon



We were invested in exploring the possibility for chirality transfer on the

prochiral carbon ensuing in possible tacticity control. Hathaway and

Paquette15 tested the concept of chiral transfer with the following reaction:










'OCH3 BF.Et2 OCH3
CH3.,I Si + Ph H CH2=CH-CH2----C
I I' OPh
CH2CH=CH2 OCH3 H h



22 23 24


(1-3)


Using the allylsilane 22 and the dimethyl acetal, 2a he found about 5%
enantiomeric excess of 24. Thus there was clear evidence for the transfer of

chirality from silicon to carbon. We were interested in investigating the degree
of specificity for chirality transfer in the GTP process and how this may be
optimized by Si substitution. Pentacoordinate species such as 2. formed by
complexation of the catalyst with the initiator may racemize through
pseudorotation16-23 (an intramolecular ligand exchange process). If the rate
of pseudorotation is slow enough for measurement (and therefore slow on the

polymerization time scale) then it may be possible to monitor the racemization
by optical rotation. Racemization by pseudorotation would diminish chirality

transfer to prochiral carbon. We wanted to carry out some exploratory work in
this area by first trying to synthesize racemic and then optically active (1-
naphthyl)phenylmethylsilyl enolate of the GTP initiator, 2& (equation 1-4)
Initially we wanted to prepare the racemic compound. Preparation of the silyl
chloride, 25, involved four steps following Sommer's procedure.24












CI- Si- Ph

Me
25



However, we could not synthesise it by the usual method (equation 1-4).


Me2CHCO2Me


1. N(iPr)2Li
2. (a-Np)(P)(Me)SiCI
2. (a-Np)(Ph)(Me)SiCl


Me O-Si-Ph
Me

Me OMe


(1-4)


We did not try further to synthesize it, thinking the project highly risky for
various reasons. It is to be noted that the Dupont group, in trying to test the
intermediacy of a hexacoordinate structure 4 (which would require retention of
configuration at silicon during the transfer step as the silyl group has been
shown to remain invariant in the bifluoride catalyzed GTP process)
synthesized both diastereomers of silacyclopentane initiators (27a and 2ZL).6







Me

Me
Me O- Si


27a cis
Me OMe
Me OMe 27b trans




But these cyclic silyl ketene acetals underwent rapid pseudorotation
(stereomutation) at silicon under GTP reaction conditions. Thus, it is likely that
even if the synthesis of the target compound 26 were possible, the process of
pseudorotation would have made the optical rotation studies difficult, if the
pseudorotation process were too fast to measure, as it now seems likely.
Initially, when work on GTP began in this laboratory, Dupont was still
engaged in fundamental research in this area. As it turned out, some of our
areas of investigation were explored by them and the results published while
we were still actively engaged in that area. For example, in order to explore
the effects of alkyl (or aryl) substitution in Si on PMMA tacticity, we synthesized
a variety of silyl ketene acetals to be used as initiators for this purpose (see
experimental section), and experienced some difficulty in polymerizing MMA
using some of them under conditions of very low catalyst level with respect to
the initiator. However, before we could proceed further we learned that much
of what we were about to do was already investigated by Dupont and going to
be published.1 We also found out in this connection that substitution on
silicon in the initiator essentially had no effect on the tacticity of PMMA
prepared by GTP. This information was never published but was obtained by
private communication.25








We therefore shifted our attention to other areas of investigation in GTP,
such as the trapping of PMMA living ends with labelled groups, in order to
obtain information on the chain end stereochemistry. Comparison of the
stereochemistry of the main chain with that of the chain end has been recently
shown to be an independent method for analysing the propagation statistics in
the polymerization of vinyl monomers.26 Thus, we wanted to extend the
application of the end-group method (so far used only for anionic
polymerization in these labs) to GTP, to elucidate the propagation statistics of
PMMA prepared by GTP. Another area of investigation has been to examine
the GTP of monomers other than MMA, and the tacticity of the corresponding
polymers. Thus the GTP of diphenylmethyl methacrylate (DMA) and the
unusual monomer triphenylmethyl methacrylate (TrMA) have been
investigated in detail and the tacticities of the polymers compared to those
prepared by anionic and radical methods. In this regard, we have obtained
some evidence that the associative mechanism proposed for the GTP of MMA
by the Dupont group may not be true for other systems, such as TrMA.











CHAPTER II

EXPERIMENTAL

General
Much of the work involving carbanions was carried out under high
vacuum (10-6mm Hg). The vacuum was generated by the combination of a
mechanical pump (Welch Duo-Seal Vacuum Pump) and a mercury diffusion
pump. All stopcocks and ground glass joints were lubricated with Dow
Corning high vacuum silicone grease.
All glassware was constructed from pyrex using a natural gas/oxygen
torch. The glassware used in the vacuum line work was treated in the
following manner. First, an apparatus was rinsed successively with 5% HF,
water, and acetone. Then it was dried at 110oC in the drying oven. Prior to all
reactions on the vacuum line, further drying was carried out on the vacuum
line by flame degassing which involved heating an evacuated apparatus with
a torch.


Solvents
Tetrahydrofuran (THF) was dried by first refluxing over Na/K
(approximately 1:2 ratio) for 24 hours. About two liters of THF was then
distilled at atmospheric pressure. After flushing the distillate flask for several
minutes with argon, fresh Na and K metals were added to it (1:2 ratio of
sodium to potassium) along with 0.5 g benzophenone. The flask was then
attached to the vacuum line and degassed. The solvent turned purple within a







half hour indicating the presence of benzophenone dianion which indicated
the absence of water and oxygen.
Unless stated otherwise, all other solvents used were purified by first
stirring with CaH2 for several hours, followed by distillation from CaH2.


Catalyst Syntheses

Tris(dimethylamino)sulfonium bifluoride (TASHF2)
This was prepared1 3 from commercially available TASSiMe3F2 (Me-
TAS-SiMe3F2; Aldrich, technical grade, containing about 10% TASHF2).

2 (NMe2)3S+ SiMe3F2- + H20 -------->2 (NMe2)3S+ HF2- +(SiMe3)20 (2-1)


To the TASSiMe3F2 (5.0 g; 16 mmol) was added 0.14 mL(7.78 mmol) of water
dissolved in 6 ml of acetonitrile (distilled from CaH2). Two layers formed. The

volatiles were pumped off and to the residue were added 3ml of acetonitrile
first and then 30 ml of THF (CH3CN/THF = 1/10 ratio). Precipitation or

crystallization occurred immediately. Filtration under argon (in a dry box)
followed by drying with high vacuum gave 3.1 g (95% yield) of TASHF2 in
crystalline form. The 13C NMR (CD3CN, 25MHz) showed only one

absorbance at 37.3 ppm for the carbon corresponding to the TAS moiety.
The absence of any Si-CH3 signal indicated quantitative conversion of the
starting material (TASSiMe3F2). In the proton NMR, the protons of the TAS

moiety appeared at 3.05 ppm.
N-tetrabutylammonium acetate (NBu40Ac; Alfa) and N-
tetrabutylammonium fluoride (NBu4F; Aldrich; 1.0M solution in THF,

containing less than 5 wt% water) were used without further purification.








Tris(diethylamino)sulfonium trimethyldifluorosiliconate (Et-TASF)
This was prepared according to a patent procedure27. SF4

(Matheson) was first condensed into a graduated 10 mL cylinder under
vacuum at -780C. Some of it (1.4 ml; 0.0252 mole) of this was then distilled
through the vacuum line into the reaction flask. Diethyl ether (previously
distilled once from CaH2) was distilled again from CaH2 in vacuo into the

reaction flask. Then N,N,-Diethyltrimethylsilylamine (TMSDEA, 97%, Aldrich,
10.98 g, 75.6 mmole) was added by means of a syringe to the reaction vessel
under argon at -780C. The reaction mixture was stirred for five days (warming
up to room temp). Two liquid layers formed, the bottom layer being dark
brown. The top layer most probably was SiMe3F (a by-product of the

reaction):

3 Et2NSiMe3 + SF4---->(Et2N)3S+ Me3F2Si- + 2 SiMe3F (2-2)


The ether and trimethylfluorosilane (TMSF) were removed by evaporation in
vacuo. According to the patent procedure, one is erroneously led to believe
that at this point, that the (Et2N)3S+ Me3F2Si- will appear as light grey

crystals. However, this was not the case, thus proving the general statement
that "patents are made to claim, and not to reveal information". Even private
communication with Dupont scientists revealed that they themselves were
unable to obtain results according to the exact wordings of the patent
procedure. A dark brown oil was the final product, which even after
continuous evacuation at high vacuum (10-6 torr) for more than 24 hours did
not yield a solid. The reaction apparatus was then transferred under argon to
a dry box for preparation of NMR samples. Analysis by 1H, 13C, and 19F
NMR revealed the presence of a mixture of 2 products, (Et2N)3S+SiMe3F2







(Et-TAS-SiMe3F2) and (Et2N)3S+HF2 in approximately 85:15 ratio in
quantitative yield.
Characterization: NMR (13C, THF-d8, 50MHZ): 7.3 ppm (Si-CH3),
13.2 ppm (NCH2CH3 of ((Et2N)3S+SiMe3F2), 42.0 ppm (N-CH2 of
(Et2N)3S+SiMe3F2), 14.7 ppm (NCH2CH3 of TASHF2), 38.7 ppm (NCH2 of
TASHF2).
NMR (IH, THF-dS, 200 MHz): 0.0 ppm(s, Si-CH3), 1.28 ppm (t, N-
CH2CH3 of TASHF2, 1.43 ppm (t, NCH2C.3 of (Et2N)3S+SiMe3F2) 3.22
ppm (q, NCH2 of TASHF2), 3.54 ppm (q, NCH2 of (Et2N)3S+SiMe3F2).
NMR (19F, THF-d8, 188 MHz, CFCI3 = 0.00 ppm): -57.00 ppm
(s,TASSiMe3E2), -149.8 ppm (d, JHF = 120 Hz, TASHE2).


Synthesis and Purification of Initiators


Ketene Trialkylsilvl Acetals
These compounds were prepared according to published
procedures28-30 with some modifications. Compound 1(1-methoxv-1-
trimethylsiloxy-2-methyl-l -propene: Aldrich) was distilled first from CaH2
(350C, 15 mm Hg) and stored under argon. To this was added fresh CaH2
and the round bottom flask A containing it (see Fig. 2-1) was attached to the
side arm B. The apparatus was then attached to the vacuum line and the
contents of A were stirred for an additional 1-2 hours with CaH2 with
occasional degassing. It was finally distilled into C by heating A intermittently
with a low temperature heat gun (actually a hair dryer), while C was immersed
in a dry ice/isopropanol bath (-780C). While A and C were kept cold, the
ampoule was sealed off at the constriction D n vacuo.















HIGH VACUUM


Fig. 2-1. Apparatus used for the in-vacuo distillation of the GTP initiator into
an ampoule.







A number of ketene trialkylsilyl acetals (some are new compounds)
have been prepared according to general published preocedures (see
Table 2-1) in the hopes of using them as GTP initiators. The preparation of
28 and 32 are illustrative general procedures.
Synthesis of Methyl dimethylethylsilyl dimethyl ketene acetal(28). This
was prepared according to a literature procedure28. A three neck round
bottomed flask was flame dried under vacuum. THF (50 ml) was distilled in
through the vacuum line at -780C. Diisopropylamine (5 g; 3.6 ml; 49.4 mmol),
previously distilled from CaH2 was then added to the flask under argon

followed by addition of 30 ml of 1.5 M BuLi (45 mmol) with a syringe. The
mixture was stirred for 30 mins. while the dry ice bath was replaced by an ice-
water bath. Then methyl isobutyrate, 34.
CH(CH3)2CO2Me

34



Table 2-1. Different Silyl Ketene Acetals Synthesized for Use As Initiators in
the GTP of MMA.

(CH3)2C=C(OMe)(OSiR1 R2R3)
Compound No. B1B2B3 Method used (ref)

28 Me2Et 28
29 Me2iPr 28
30 Me2tBu 29, 30
31 Me, C6H5, vinyl 28
32 Me2, C6H5 28
33 Et3 29,30







(Aldrich; 3.0 g; 29.4 mmol), distilled from CaH2 was added dropwise under

argon with a syringe at 0oC. The reaction mixture was stirred for an additional
30 minutes at 0 C and then was treated with excess
chloroethyldimethylsilane (Aldrich) distilled from CaH2 through the vacuum

line. The mixture was stirred for an additional hour at 0oC and then allowed to
warm slowly to room temperature. It was filtered several times to remove the
inorganic salts (LiCI). Evaporation of solvent gave an oily residue which was
filtered again through glass wool. The oil was then distilled in vacuo with a
fractionating column, several fractions were collected and their purity checked
by GC. The purest fraction was determined to be 98% pure. The yield was
approximately 30%.
Compounds 28, 29, and 32 were prepared according to the above
general procedure using methyl isobutyrate and the corresponding silyl
chlorides. The yields of isolated silyl ketene acetals ranged from 20-40%.


Synthesis of methyl triethylsilyl dimethylketene acetal (3).29,30
The reaction is represented by the following equation:


CH2=C(CH3) (CO2Me) + R3SiH ----> CH2=C(CH3)(OSiR3) (2-3)


A mixture of methyl methacrylate (2.6g; 26 mmol, distilled from CaH2),

triethylsilane (3.2 g; 27.5 mole) and tris (triphenylphosphine) rhodium
chloride (Wilkinson's catalyst; Aldrich; gold label; 72.2 mg; 0.0780 mmol) was
heated at 1000C under vacuum for 2 minutes. The ketene silyl acetal was
obtained by fractional vacuum distillation in various fractions (best fraction:
90% pure by GC). The yield of combined fractions was 75%.







Compound Q0 was once unsuccessfully attempted to be prepared by
the method of Ainsworth. However the method of Yoshi29 gave a quantitative
yield of 3Q prior to fractional distillation. The purity of the crude product was
determined by GC to be 77%.
All of the silyl ketene acetals prepared above had reasonable 1H and
13C NMR spectra which are listed below.
Compound 28: 1H NMR (CDCl3, 200 MHz): 0.16 ppm (s,Si-CHL3),0.66
ppm (q, CJt2CH3), 0.99(t, CH2CH3), 1.52, 1.57 ppm (s, (CH3)2C=), 3.49 ppm
(s, OC13).
NMR (13C, CDCl3, 200 MHz): -2.1 ppm (Si-CQH3), 0.64 ppm
(CH2CH3), 0.82 (CH2CH3),16.00 and 18.00 ppm ((CH3)2C=), 56.4 (OCH3),
90.90 ppm ((CH3)2C=), 149.60 ppm (=C(OSiMe3)(OMe)).
Compound 29: 1H NMR (CDCI3, 200 MHz): 0.38 ppm (s, Si(CHi3)2),
1.1-1.38 (m, CHL(CH3)2), 1.75 and 1.80 ppm (s,(CH3)2C=), 3.75 ppm (OCJi3)
NMR (13C, 50 MHz, CDC13): -4.00 ppm (Si-.H3), 14.80 and 16.00
ppm ((CQH3)2C=), 16.80 ppm (HC(QH3)2-), 56.80 ppm (OQH3), 23.40 ppm
((CH(CH3)2), 91.0 ppm ((CH3)2C=), 150.00 ppm (.(OSiMe3)(OMe)).
Compound 30: 1H NMR (CDC13, 60 MHz): 0.22 ppm (s, Si-CH3), 1.05
ppm (s, (CH3)3C), 1.61 and 1.65 ppm ((C03)2C=), 3.57 ppm (s, OCH3).
Compound 31: 1H NMR (200 MHz, CDCI3): 0.55 ppm (Si-CH3), 1.42
and 1.46 ppm (s, (C0.3)2C=), 3.41 ppm (s, OC.3), 5.8-6.46 ppm (m, Si-
CH-=CH2), 7.33-7.80 ppm (aromatic H's).
NMR (13C, 50 MHz, CDCl3): -3.4 ppm (Si-C.H3), 16.0 and 16.4
((CH3)2C=), 57.2 (OH3), 91.40 (Me2Q=), 124.80-135.50 (vinyl and aromatic
C's), 149.50 ppm (=Q(OSiMe3)(OMe)).







Compound U2: 1H NMR (CDCI3, 200MHz): 0.48 ppm (Si-Mh), 1.51
and 1.57 ppm (s, (Ch.3)2C=), 3.42 (OMe), 7.32-7.45 ppm (3 aromatic H's),
7.52-7.72 ppm (2 aromatic H's).
NMR (13C, 50 MHz, CDCI3): -1.40 ppm (Si-CH3), 16.2 and 17.0 ppm
((CH3)2C=), 57.1 ppm (OMt), 91.50 ppm (Me2.=), 127.6, 129.8, 133.30,
137.20 ppm (aromatic C's), 149.3 ppm (=Q(OSiMe3)(OMe).
Compound 3: 1H (200MHz, CDCI3): 0.70 ppm (q, Si-Cj2Me, fine
complicated splitting), 1.00 ppm ( complicated t, Si-CH2Cd3), 1.53, 1.56 ppm
((CH3)2C=), 3.50 ppm (OCC3).
NMR (13C, 50 MHz, CDCI3): -4.8 ppm (Si-CH2CH3), 6.5 ppm
(SiCH2MQ), 15.9 and 16.60 ppm ((CH3)2C=); 56.8 ppm (OSH3), 90.80 ppm
((CH3)2C=), 149.90 ppm (=C(OSiMe3)(OMe).
In the literature, most of the silyl ketene acetals were described as
having been purified by distillation and preparative GC.28-31 They are
sensitive to moisture and decompose upon attempted separation or
purification by column chromatography.31,32 Thus, for example, the
attempted separation of 31 with neutral alumina and very dry solvents resulted
in the cleavage of the O-Si bond and the corresponding silyl alcohol
(Si(C6H5)(CH3)(CH=CH2)(OH)) was isolated as a by-product, identified by
1 H NMR spectroscopy: (60 MHz, CDCI3): 0.5 ppm (s,Si-ChL3), 2.26 ppm
(broad s, Si-OHl), 5.6-6.73 ppm multiplee, CH=CH2), 7.27-7.8 ppm (aromatic
H's). Even the C -silyl compounds decompose upon attempted separation by
column chromatography.32
The scheme for the synthesis of (1-Naphthyl)phenylmethylchlorosilane
was the same as that of Sommer24 and is shown in Fig. 2-2.








Synthesis of (1-Naphthyl) phenvlmethylmethoxvsilane (36)
This was prepared according to the literature procedure24. First the
Grignard reagent (1-NpMgBr), was prepared. A 3-neck round bottom flask
was equipped with a condenser, a drying tube and an addition funnel. Excess
magnesium turnings and a solvent mixture consisting of 2 parts (by volume)
of ether, 3 parts of toluene and one part of THF was placed inside the flask. In
the addition funnel was placed 2.99 g (14.4 mmol) of 1-bromonaphthalene,
35. and 12 ml of the above solvent mixture. The Grignard reagent was
prepared by gradual addition of the contents of the addition funnel to the 3-
neck flask. An oil bath (temp. maintained at 60-70oC) was used to warm
the mixture and iodine was added to initiate the Grignard reaction. The dark
purple color of the iodine faded as the reaction started, together with gradual
depletion of magnesium. At the end of the reaction, the color of the reaction
mixture was yellow. The apparatus was cooled using an ice-water bath and
2.73 g (15.0 mmol) of methylphenyldimethoxysilane dissolved in the above
solvent mixture was added. A white precipitate formed upon the addition of
the reagent. The ice/water bath was removed and replaced with an oil bath,
and the mixture was stirred overnight at 500C. It was then treated wlith cold
aqueous ammonium chloride (saturated) and washed three times with 30 ml
portions of water in a separatory funnel. An inorganic green precipitate was
left behind in the reaction vessel (probably HOMgBr). The organic layer was
dried over anhydrous sodiumsulfate. Filtration and removal of the solvent
provided a viscous syrup which was chromatographed by HPLC using
hexane/THF solvent mixture. At first, pure hexane was used as an eluent.
This eluted the desired compound. Hexane/THF mixture (programmed to
slowly change the composition of solvent mixture to pure THF) removed other










+ Mg


Br


1-NpBr


Ph
I
1 -Np-Si--OCH3
0


,CH(CH3)2


MgBr


2. H30


Menthol
=it----


CH30-Si-Ph
CH
CH3


H3C'


SLiAIH4


Ph
I cy
1-Np--Si-CH3 -
I
H


Ph
1-Np-Si- CH3
Cl


Fig. 2-2. Scheme illustrating the synthesis of (1-naphthyl) phenylmethyl
chlorosilane.







compounds from the column. GC showed the compound (36) to be at least
95% pure. It was characterized by 1H and 13C NMR.
NMR (1H, 60 MHz, CDCl3): 0.80 ppm (s, Si-CH3), 3.55 ppm (s,
OCH3),7.2-8.4 ppm (m, 12 aromatic H's).
NMR (13C, 50 MHz, CDC13) -2.44 ppm (Si-CH3), 50.78 ppm (OCH3),

34.69, 34.79 (C1-Si(1-NP)(Ph)(OMe)),124.96 137.34 (aromatic C's).


Synthesis of (1-Naphthyl) phenylmethylmenthoxysilane (37)
This compound was also prepared according to Sommer's
procedure24. Into a round bottom flask was placed 1.05 g (3.78 mmol) of 8,
0.300 g (1.92 X 10-3 mole) of menthol and a few grains of powdered KOH
(powdered from KOH pellets). Toluene as the reaction solvent was then
added. The reaction mixture was maintained at 125-1350 for six hours while
any MeOH-toluene azeotrope was distilled through a fractionating column.
The toluene was evaporated off from the reaction mixture and the latter was
passed through a column of silica (eluent: CHCI3 first, then THF) to remove

the basic KOH and any other fine inorganic material. Separation of the
product by HPLC (with hexane as the eluent) yielded pure 37. as judged from
GC. The material was a viscous colorless syrup. The reactions involved in
the preparation of 3Z are


Menthol + KOH -------> MenO- K+ + H20 (2-4)


MenO-K++Si(a-Naph)(Ph)(Me)(OMe) ---> Si(1-Naph)(Ph)(Me)(OMen)
+ CH3OH + KOH (2-5)








The procedure in the literature24 called for fractional distillation (173-177oC;
0.07 mm Hg), but in this case, it was obtained simply by HPLC separation.
The 1H and 13C NMR were completely consistent with the structure.
NMR (1H, 200 MHz, CDCI3): 7.2-8.2 ppm (m, 12 aromatic H's), 3.55
ppm (m, OCHR2), 0.4-2.5 ppm (m, 17 aliphatic H's).


Synthesis of (1-Naphthyl)phenvlmethylsilane (3)
This compound was prepared according to Sommer's procedure.24
Compound 3Z (1.92 g; 4.76 mmol) was dissolved in 15 ml of anhydrous ether
and the solution placed in a round bottom flask. LiAIH4 (240 mg; 6.33 mmol;

5.31 equivalents) and 15 ml of di-n-butyl ether were then added. Most of the
diethyl ether was removed by distillation as the mixture was slowly heated to
800C. Heating was continued at 80-900C for 18 hours. After decomposition
of the excess metallic hydride with acetone, treatment with crushed ice and
concentrated hydrochloric acid was followed by drying over sodium sulfate,
and filtering. Solvents and menthol were removed by heating to 1700C at 1.5
mm Hg. The remaining material was further filtered to remove some solid
impurities and chromatographed by HPLC (hexane being the eluent to afford
38 in pure form as judged from GC. The compound was characterized by 1H
and 13C NMR.
NMR (1H, 200 MHz, CDCI3): 5.40 ppm (q, Si-H), 0.70 ppm (d, Si-CJ3),
7.2-8.15 ppm (aromatic H's).
NMR (13C, 50 MHz, CDCI3): -4.0 ppm (Si-CH3), 124-138 ppm
(11 aromatic absorptions).







Synthesis of (1-naphthyl)phenylmethychlorosilane (25)
This compound was prepared using Sommer's procedure.24 In a
three-neck round bottom flask was placed 1 g (4.03 mmol) of 2a dissolved in
dry CCl4. While cooling the reaction flask in an ice bath and magnetically

stirring the contents, chlorine gas was passed into the solution by means of a
fritted glass gas dispersion tube. The reaction was very rapid (approximately
one min.), and it was possible to observe a greenish yellow end point when
the reaction of Si-H was completed. The solvent was removed by a rotary
evaporator to afford the silyl chloride 25, in quantitative yield. The compound
at this stage was 90% pure (GC) and was characterized by both 1H and 13C
NMR which were consistent with the structure.
NMR (1H, 60 MHz, CDCI3): 0.96 ppm (s, Si-Cli3), 6.90-8.33 ppm

(12 aromatic H's).
NMR (13C, 50 MHz, CDCI3): 2.70 ppm (Si-QH3), 125.00-137.00
(13 aromatic C's).
An attempt to improve the purity of 25 by HPLC separation elutingg
solvent being hexane) resulted in a mess, completely degrading the silyl
chloride. Presumably, there is a reaction involving Si-OH group of the silica
gel column with the silyl chloride yielding the corresponding silyl alcohol.


Anionic Initiators
Samples of diphenylmethyllithium (DPML) were kindly donated by
other members of the research group. They were prepared according to
established procedure.33
The DPML initiator concentrations were determined by GC using the
following procedure. About one ml of DPML solution (in THF) was reacted on
the vacuum line with dry Mel (Mel dried over CaH2). The terminated DPML







initiator was analyzed by GC to determine the presence of diphenylmethane
(as unreacted starting material or as unexpected protonated product). From
the relative intensities of the diphenylmethane and 1,1-diphenylethane peaks,
the fraction of the methylated product and therefore that of DPML was
calculated. In most cases, only negligible amounts of diphenylmethane were
detected. To a known amount of diphenylmethane was added a known
volume of the Mel terminated DPML solution. The mixture was analyzed by
GC and the concentration of the unknown DPML initiator was determined by
direct comparison of the Mel terminated DPML with diphenylmethane
standard solution. Even though the GC used employed a flame ionization
detector which responded to the number of carbon atoms a molecule
possessed (diphenylmethane, 13 C; diphenylethane 14 C), no corrections
were made for detector response in the concentration determination of DPML.
It has been previously verified33 that such analysis without corrections (for
compounds having a lot of carbon atoms but differing from each other by only
one carbon atom) results in practically no error.


Monomer Syntheses and Purification


Methyl Methacrylate (MMA)

In a 100 ml round bottom flask equipped with a reflux condenser and
CaSO4 drying tube, 50 ml MMA (Aldrich) was stirred over CaH2 at room

temperature for several hours (12-24). The MMA was then distilled under
atmospheric pressure (99-101oC) discarding the first and last few milliliters of
distillate. Fresh CaH2 was added to the distillate. The distillated was then

attached to the vacuum line and distilled in vacuo into flask A (cooled at








-780C) of the apparatus shown in Fig. 2-3. The flask was warmed to room
temperature and after the introduction of argon into the appartus,
triethylaluminum34-36 was added dropwise into A through sidearm B by
means of a double tipped needle, until the MMA turned slightly but a
persistent greenish yellow color. The flask A was cooled to -780C and
evacuated, and the constriction in B sealed off under vacuum. Then the MMA
was distilled into the side ampoule C after A was warmed to room temperature
and C cooled at -780C. Ampoule C was sealed off from the vacuum line and
the MMA later subdivided into smaller breakseal-equipped ampoules. The
MMA ampoules were stored in the freezer at -200C.


Silver Methacrylate
This was prepared according to literature procedures.33,37
Methacrylic acid was first distilled in vacuo to remove the hydroquinone
monomethyl ether inhibitor. Some of it (50 ml; 50.75 g; 590 mmol) was placed
in a 500 ml three-neck round bottom flask equipped with a mechanical stirrer
and two addition funnels. At room temperature, 35.82 ml (590 mmol) of
aqueous 28% ammonium hydroxide solution was added dropwise. The 100.2
g (590 mmol) of silver nitrate (dissolved in 200 ml ofdeionized water) was
added dropwise to the ammonium methacrylate. The silver methacrylate
(AgMA) precipitated as a grey solid.
The reaction was stirred for an additional two hours. The AgMA was
separated by filtration and recrystallized from boiling water. The final product
was either greyish or slightly purple in color. It was first dried in the vacuum
oven overnight at room temperature and then further dried on the vacuum line
(10-6 torr) for 48 hours. It was stored under high vacuum in flasks equipped








I HIGH VACUUM


Fig. 2-3. Apparatus used for the purification of MMA.







with high vacuum stopcocks (Fig. 2-4). The yield after recrystallization was
about 70%.


Triphenylmethyl (Tritvl) Methacrylate
Thils was prepared according to literature procedures33,37,38 AgMA
(10.56 g; 54.7 mmol) suspended in dry ether was placed in a 500 ml three-
neck round bottom flask equipped with an addition funnel, a reflux condenser
(with calcium sulfate drying tube), a magnetic stirrer and an oil bath.
Trityl chloride (Aldrich; 11.70 g; 42.0 mmol) was dissolved in 150 ml of
dry ether and added to the AgMA-ether suspension. The reaction was
refluxed overnight. The AgCI was collected by vacuum filtrations and the
ether filtrate was condensed on a rotary evaporator. The crude trityl trityl
methacrylate looks slightly yellowish. It is purified by a hot filtration using
celite and dry ether and then a simple recrystallization using ether. Final
product yields were 50% or less. The TrMA was ground to a fine powder and
stored under high vacuum (as in Fig. 2-3). It was characterized by melting
point, elemental analysis and 1H and 13C NMR.
M.P. 99-101oC (lit. 101-103oC).37,38
Elemental analysis: Found : C, 84.08; H, 6.15%. Calculated for
C23H2002: C, 84.12; H, 6.14%.
NMR (1H, 200 MHz, CDCI3): 7.35 ppm (m, 15 aromatic H's); 6.30 ppm
J(s, 1 vinyl H); 5.60 ppm (s, 1 vinyl H), 2.0 ppm (s, C-CJJ3).
NMR (13C, 50 MHz, CDCI3): 18.5 ppm (C-CH3), 90.0 ppm (O-CPh3),
125.5, 137,5 (vinyl C's); 127.3, 127.6, 128.2 (para, meta and ortho aromatic
C's); 143.5 (ipso aromatic C); 165.0 ppm (C=O).















































Fig. 2-4. Apparatus for the storage of solid materials under high vacuum.








According to a previous report,33 the trityl chloride was recrystallized
before use. In the present case, it didn't seem to make any difference whether
the trityl chloride was recrystallized (from a mixture of benzene and acetyl
chloride in a 4:1 v/v ratio) or not. Therefore, in most cases unrecrystallized
trityl chloride (as directly obtained from Aldrich) was used. It appears that both
trityl chloride and trityl methacrylate cannot be analyzed for purity by GC. For
example, although the 1H and the 13C NMR of TrMA looked very good in
terms of purity, the GC of the same sample often showed three peaks with the
major component being about 75%. Thus there appeared to be too much
discrepancy between GC and NMR results, indicating possible decomposition
of the material in the GC column.
The synthesis of TrMA is illustrated in Figure 2-5.


Diphenylmethyl methacrvlate (DMA)
This was prepared according to literature procedures.33,37,38 Silver
methacrylate (AgMA; 17.26 g; 89.4 mmol) and dry ether were placed in a 500
three-neck round bottom flask equipped with a reflux condenser, magnetic
stirrer, addition funnel, and an oil bath. Diphenylmethyl chloride (Aldrich; 15.0
g; 0.074 mole) was added to the flask at room temp. The reaction mixture was
refluxed overnight with stirring. AgCI was separated by vacuum filtration, and
the ether filtrate was concentrated to yield crude diphenylmethyl methacrylate
(DMA). A fraction of the crude product was kept for analysis by melting point,
elemental composition and NMR. The rest of the DMA was recrystallized by
one hot filtration using celite and ether and a simple recrystalllization from
ether. The mother liquors were kept and concentrated to give additional DMA.








CH2gC.COOH + NH CH-- CH2aCCOONH + + 0
CH3 C4l'
Methacryllc add Ammonium methacrylate

SAgNO3

CH2-CCOO- Ag
I + NIJ N03
C Hs
C(C.Hs)2-Cl Silver methacrylate C(C.H), -C



CH,.C.COCH(CH,), CH-gC.COC(C.H,),
C H, C H,
Dlphenylmethyl methacrylate Triphenylmethyl methacrytate



Fig. 2-5. Scheme illustrating the synthesis of DMA and TrMA.



The crude yield was 76%, and the recrystallized yield was about 40%, but

elemental analysis and NMR spectra showed no difference in purity between

the crude and recrystallized product, although the latter looked somewhat

whiter. In view of the analysis results, the DMA obtained from concentration of

the mother liquor filtrate from the recrystallization was kept and used for

subsequent polymerizations.

M.P.: 78-79oC (literature 790C).33,37,38
Elemental analysis: Found : C, 80.86; H, 6.39%. Calculated for C17H1602:

C, 80.95%; H, 6.35%.
1H NMR (200 MHz; CDCI3) : 7.30 ppm (m, 10 aromatic H's); 6.95 ppm (s,

Ph2CH), 6.25 ppm (s, 1 vinyl H); 5.60 (s, 1 vinyl H's); 2.00 ppm (s, C-C.-3).
13C NMR (50 MHz, CDCI3): 18.3 ppm (C-CH3), 126-128.8 ppm (3 aromatic

C's and -CHPh2), 136.6 and 140.5 (vinyl C's), 166.5 (.=O).

The synthesis of DMA is illustrated in Fig. 2-6.




















HIGH VACUUM



(D) /


Fig. 2-6. Apparatus for the GTP of MMA according to Method A








Polymerization Reactions


Group Transfer Polymerization of Methyl methacrylate (MMA)

Method A. In this method, low temperature polymerizations (-100 to -
220C) were carried out, where the MMA was added by in vacuo slow vapor
distillation to a mixture of initiator and catalyst in THF. The apparatus used is
shown in Fig. 2-6. First, the whole apparatus was evacuated on the vacuum
line and flame dried. Then flask A was cooled to -780C with dry
ice/isopropanol. Argon was admitted into the apparatus through the line A
solution of TASHF2 catalyst in acetonitrile was introduced through the side

arm B by a long syringe through the septum into the flask A. A was cooled to -
78 C and vacuum was applied slowly to the apparatus. The constriction in
side arm B sealed off under vacuum and the acetonitrile was slowly pumped
out of A (after removal of the dry ice/isopropanol bath) leaving a very thin film
of the catalyst in A. Dry THF was allowed to distil into A through the line and
the mixture of catalyst and solvent stirred for 30 mins. The break seal of the
ampoule D containing the initiator solution in THF was broken allowing the
initiator to run down into A, the contents of which were being stirred
continuously. Stopcock E was closed and the flask C was cooled with an ice
bath. The MMA ampoule breakseal (F) was broken allowing the monomer to
run down into C. With the MMA stirring in C, the stopcock in C was carefully
opened in order to allow MMA to slowly distill into A. Thirty minutes after the
addition of all of the monomer, the polymer solution in A was terminated by
distillation of methanol through the vacuum line into A.
The polymer solution was precipitated in a 10-fold volume excess of
either hexane or cyclohexane. The polymer was collected by filtration and
dried in vacuum oven at 500 C for at least 2 days.








Method B. In this method, used for higher temperature polymerization
(00C and 25oC) in vacuo, the monomer was slowly poured into a solution of
initiator and catalyst. The apparatus is shown in Fig 2-7. After evacuation and
flame drying of the apparatus, the catalyst was introduced into A under argon

through side tube B as an acetonitrile solution. The constriction in side tube B
was sealed off, and the acetonitrile was slowly pumped off, leaving a thin film
of the catalyst on the glass surface in A. After cooling A to -780C, THF was
distilled in. The apparatus was then sealed off from the vacuum line at
constriction C. The initiator ampoule (F) was then broken and the initiator
solution allowed to run down into A. The contents of A were stirred vigorously.
Flask D was cooled to -78oC and the monomer from the MMA ampoule (G)
was allowed to drain into C. The low temp. dry ice baths cooling A and C
were both removed and the apparatus was allowed to reach room
temperature. While the contents of A were being continuously stirred, the
monomer in flask D was slowly and carefully poured into A intermittently,
allowing it to polymerize. Having allowed enough time for the polymerization,
the apparatus was again hooked up to the vacuum line through side arm E
and the break seal in E broken. MeOH was distilled through the line into flask
A to terminate the reaction.
Method C. The procedure used was the same as in method B except
that a mixed solution of initiator and monomer were slowly added to the
catalyst in THF at room temperature.

Method D. The procedure was the same as in method D except that the
polymerization was carried under argon.

Method E. In this method the catalyst is added as an acetonitrile
solution by means of a syringe to a premixed solution of initiator and
monomer.













HIGH VACUUM


Fig. 2-7. Apparatus for the GTP of MMA according to Method B








Methylation of Chain End of PMMA Prepared by GTP
Several attempts (both at -780C and higher temperature) to methylate
the chain end of PMMA by first using MeLi and then 13CH31 (99% enriched

with carbon 13 label) proved to be unsuccessful (see chapter III). The
successful methylation procedure consisted of addition of 13CH31 (between

one and two equivalents) to the polymerization mixture followed by one
equivalent (with respect to the initiator) of TASSiMe3F2 under argon.

Reversing the order of addition of the reagents resulted in practically no
methylation at all as evidenced by the absence of the labelled methyl end
group in the 13C NMR spectrum of the polymer.


Polymer Isolation for PMMA Prepared by GTP
PMMA prepared by GTP with catalytic amounts (0.1 to 1 mole % with
respect to initiator) of nucleophilic catalysts were precipitated in either hexane
or cyclohexane. Reasons for employing cyclohexane in some cases was that
hexane was often not completely removed even after two days of drying in the
vacuum oven at 50oC, with the result that its signals interfered in the NMR
studies of PMMA. There is only one absorption for cyclohexane in NMR and
so even if it was not completely removed by drying, it did not interfere with
other signals from the PMMA itself. It should be noted that precipitating the
PMMA homopolymers in this way does not remove the trace amount of
catalyst which is insoluble in hexane and remains associated with the
polymer. The catalyst however does not interfere in any way with the NMR
analysis of PMMA samples.
The PMMA homopolymers prepared by GTP which are methylated
contain a much higher amount of catalyst, because of the much higher levels
of catalyst required for methylation (see "Methylation of Chain End of PMMA








prepared by GTP" below). The catalyst (actually TASI) could be removed from
the PMMA by extracting the methylated polymers with water/CHCI3, after all

the THF from the polymer solution is removed. The TASI was removed in the
aqueous layer. The chloroform layer containing the methylated PMMA was
dried with anhydrous sodium sulfate and filtered. It was then precipitated in a
10-fold excess of hexanes or cyclohexane, collected by vacuum filtration, and
dried in a vacuum oven at 50oC for at least two days. The TAS salt can also
be removed by precipitating the polymer into excess methanol (in which the
TAS salt is soluble); however, MeOH precipitation often removes low MW
oligomers of PMMA, hence it is not as good a precipitating solvent as
hexanes.

Group-Transfer Polymerization of Diphenylmethyl and Triphenvlmethyl
Methacrvlate
The apparatus used is shown in Fig. 2-8. After evacuation and flame
drying of the apparatus in vacuo, argon was introduced into the apparatus,
and the rubber septum in side arm (A) removed. A weighed amount of dry
monomer is placed into the flask (B) through a funnel. The septum was
replaced and the apparatus evacuated for 30 minutes. Dry THF was then
distilled into the flask through the vacuum line and any monomer clinging to
the sides of the flask was carefully washed off with THF by application of a
cold dauber to the appropriate regions of the flask. The monomer was made
to dissolve in THF by continuous stirring. Ampoule C was broken and the
initiator solution was allowed to run down into the flask, the contents of which
were being stirred continuously. Argon was introduced into the flask and a
solution of the catalyst in acetonitrile was injected through the septum into the
flask. Aliquots of samples were removed periodically by a long syringe under
argon to monitor the conversion with time by 1H NMR examination of residual















































Fig. 2-8. Apparatus for the GTP of TrMA or DMA.








monomer (vinyl absorption). The polymerization was complete in less than

one minute at -780C. MeOH was finally introduced into the flask either by
distillation through the vacuum line or under argon to terminate the reaction.


Anionic Polymerization of MMA

The method used was the same as that for GTP, using Method A above,
except that a solution of DPML in THF was used as the initiator which was
added to the reaction vessel by means of an ampoule equipped with a
breakseal.


Anionic Polymerization of TrMA

A predetermined amount of solid monomer was placed in a vessel
under argon illustrated in Fig. 2-9, and the monomer addition opening was
sealed with a torch. The monomer vessel was evacuated on the vacuum line
(10-6 mm Hg) for about one hour. The ampoule was then cooled to -780C
and THF was distilled through the vacuum line into it. The vessel was sealed
from the line and stored int the freezer at -20oC.

Anionic homopolymerization of TrMA was carried out in an apparatus
depicted in Fig. 2-10. The apparatus was placed on the vacuum line (10-6
torr), flame dried and cooled to -78oC. Approximately 75 ml of dry THF was
vacuum distilled into (A). The cold bath was removed and the flask was
allowed to warm to room temperature. A THF solution containing the initiator
(DPML) ampoulee (B)) was then added to the flask through the breakseal.
Any residual initiator clinging to the ampoule was washed into the THF by the
application of a cold dauber to the initiator ampoule. The vessel was cooled
to -780C, and the monomer solution (C) was added to the initiator. After
monomer addition, the initiator solution immediately became colorless. After
















































Fig. 2-9. Apparatus used to prepare THF solutions of TrMA.








HIGH VACUUM


Fig. 2.10. Apparatus used in the anionic homopolmerization of TrMA.








allowing the reaction to proceed for a given time, the polymerization was
terminated by vacuum distillation of MeOH through the line. If the polymer
(poly TrMA) was soluble in THF or CHCI3, it was precipitated in a 10 fold
excess of MeOH to remove the catalyst and unreacted monomer (if any), and
the polymer collected by vacuum filtration. If the poly (TrMA) was insoluble on
account of its high molecular weight, then it was simply collected either by
filtration or centrifugation, and the filtrate from the centrifugation was further
concentrated and precipitated in MeOH to attempt to recover any additional
polymer. The polymer was dried in a vacuum oven at 50oC for at least two
days.

Polymer Hydrolysis


The hydrolysis of PTrMA and PDMA were performed according to
literature procedures.38


Polv(TrMA)
About one gram of poly TrMA was refluxed in 50 ml of methanol
containing 1% aqueous HCI for about 4 hours. During the hydrolysis the
originally insoluble PMMA went into solution (this took less than 1 hour). The
solution then was treated by any one of two methods.
In one method, the polymer solution was condensed and the residue
was dissolved in a minimum amount of MeOH. The resulting poly methacrylicc
acid) (PMA) was precipitated in cold ether and collected by vacuum filtration.
The polymer was dried at 50oC for 2 days in a vacuum oven. NMR
measurements of the corresponding PMMA (see diazomethane methylation)
indicated quantitative hydrolysis.








In the second method, after hydrolysis of poly TrMA with acidified
MeOH, all the solvent was pumped out, and the dry mixture of PMA and trityl
alcohol was kept for diazomethane methylation.


PDMA
Approximately one gram of PDMA was refluxed in 50 ml of methanol
containing 5% HCI for at least 7 days. During the first five days, the originally
insoluble polymer slowly went into solution. After hydrolysis the solution was
condensed and dissolved in a minimum amount of MeOH. The PMA was
precipitated in ether and collected by vacuum filtraation. Alternately, after
hydrolysis, the solution was evaporated to dryness and diazomethane
methylation performed on the mixture of diphenyl methanol and PMA.


Diazomethane Methylation
Poly methacrylicc acid) (PMA) was methylated to form PMMA using the
following procedure:39 A diazomethane (CH2N2) generating apparatus

(Fig. 2-11) was constructed from three 250 ml thick wall centrifuge bottles,
condensing jacket with screw cap fittings, long stem separatory funnel with a
teflon stopcock, rubber stoppers, and fire polished glass tubing.
Approximately 10 ml of ether was placed in both collection vessels (B
and C) which were cooled in an ice-salt bath. KOH (2.0g; 0.036 mole), 4 ml
water, 4 ml ether and 13 ml of 2-(2-ethoxy)-ethoxyethane (Kodak) were placed
in centrifuge bottle A. The solution was heated to 70oC using a water bath.
N-methyl-N-nitroso-p-toluenesulfonamide (Diazald, Aldrich) dissolved in 40
ml of ether was added dropwise to A, and immediately CH2N2 was generated

(it was yellow in color), and distilled with ether into B and C.








54






















































4CC

0
mm




















0

CL
C













CD

LT-








The diazomethane-ether solution was added to dry hydrolyzed

polymer samples with a pasteur pipette. Rapid bubbling due to gas evolution

was detected. Additional diazomethane was added to each sample until there

was no further bubbling with the addition of fresh diazomethane. The PMMA

samples were usually insoluble in ether, so they could be collected either by

filtration or by evaporation of the ether and excess diazomethane. The

samples were dissolved in chloroform and precipitated in a 10 fold excess of

hexane or cyclohexane. They were then collected by vacuum filtration and

dried for several days in a vacuum oven at 50oC.


Titration of Alkyl Lithium Solutions

The concentration of MeLi in diethyl ether (Aldrich) and BuLi in hexane
(Aldrich) did not appear to change much with time as determined by periodic

titrations by the method of Winkle et al.40 employing 2,5-dimethoxybenzyl

alcohol (DMBA, Aldrich). The first equivalent of alkyl lithium deprotonates the

alcohol functionality giving the benzoxide salt which is colorless (equation 2-

6).



OMe OMe
CH20H Oe CH2O LiU
+ n-BuLi + n-BuH


OMe OMe

(2-6)
The dianion is dark red in THF and its presence indicates the end point.

A few drops of DMBA were added to a preweighed dry flask and the
flask again weighed to yield the weight of DMBA. This flask was degassed on








the vacuum line after cooling it with liquid nitrogen. Dry THF was distilled in.
A syringe with a teflon plunger was flushed with argon and the alkyl lithium
solution. The syringe was refilled with the solution. With the DMBA in THF
stirring smoothly under argon at room temperature, the alkyl lithium solution
was added dropwise after pushing the syring needle through a septum. The
persistence of the red coloration longer than 15 seconds indicated the end
point. This procedure was repeated twice and an average molarity was
calculated from these runs. The results were reproducible within 5%.


Instrumentation


Gas Chromatography
Routine analyses of samples for purity determination as well as
quantitative determination of reaction products were done on a Hewlett-
Packard Model 5880A gas chromatograph equipped with a capillary column
and a flame ionization detector. The column used (HP#19091-60750) was a
fused silica capillary (50 m long, 0.2 mm ID) coated with 0.11 uM ffilm of
silicone gum (General Electric Co. SE-54, which was methyl 5% phenyl, 1%
vinyl cross-linked polysiloxane). The carrier gas was helium.
Depending on the nature of the analysis, the column was either heated
to a fixed temperature or various step programs were used to increase the
oven temp. after specified time intervals. This all depended on the relative
importance of the desired speed of analysis and resolution.
The microprocessor reported peak retention time (minutes), integrated
areas, type, and percent of total area. Although retention times were highly
reproducible (+ 0.1% for consecutive injections), standards were nonetheless
kept and used to avoid ambiguity as to the identity of peaks.










Preparative Liquid Chromatographv
Practically all of the HPLC work was done on the separation of the
naphthylsilanes. The high performance liquid chromatograph used was an
Altex Model 332 system (now Beckman Co.) with programmable gradient
elution. The two solvent pumps were fitted with preparative heads. A
preparative cell was used in the constant wavelength (254 nm) UV detector
Model 153 for dection of the highly absorbing naphthylsilanes. The
preparative SiO2 column used was Merck's Lobar B (310 X 25 (ID)mm)

packed with 40-63 uM silica gel. It was a glass column with a pressure limit of
90 psi; the system was fitted with a pressure release valve in-line before the
injection port. The gradient elution for most of the separations was simple in
that only hexane was used to elute the compound of interest. After this, any
material still remaining in the column was eluted by using a mixture of hexane
and THF with solvent composition being 100% THF at the end (15 minutes to
change from 100% hexane to 100% THF). The flow rate was maintained at 2
ml/min. The LC fractions were also analyzed by GC for purity determination.


NMR Spectroscopy
NMR (1 H) spectra were obtained on either a Varian EM-360 L (60 MHz)
or a Varian 200 XL Superconducting spectrometer. Chemical shifts are
expressed in parts per million (ppm) downfield from tetramethylsilane (TMS)
unless otherwise noted.
NMR studies of PMMA stereochemistry were carried out in either
CDCI3 (500C) or deuterated tetrachloroethane (TCE-d2) at 90oC at

concentrations of about 200 mg per ml of solvent. The triad tacticities of the
chain were determined both by integration of the alpha-methyl protons








(0.7-1.3 ppm) as well as by integration of the alpha-methyl carbon signals (17-
23 ppm). For compounds with a carbonyl group the pulse delay was set at 1
sec. The triad fractions of the chain end were calculated from the up-and
downfield NMR signals at 23-24 and 29-30 ppm respectively corresponding to
the diastereotopic labelled methyl end groups. The relative areas of the
peaks for the chain end were determined by electronic integration and direct
determination of the relative peak areas. Enhanced resolution for many
spectra was obtained by use of the resolution enhancement (RE) processing
function. This is a line-narrowing technique that resolves Lorentzian lines that
are highly overlapped, provided the spacing between the lines is greater than
1/AT (AT= acquisition time) and there is sufficient signal-to-noise to
accomplish the desired enhancement.


Size Exclusion Chromatography (SEC)
SEC analyses were carried out at room temperature using a Waters
6000 Liquid Chromatograph. The columns used Phenomenex TSK G3000
(7.8 mm X 30 cm; 103A), TSK gel type G5000 HXL (105A) columns in series
following a filter. THF was the eluent in all cases and the flow rates used were
typically 0.7-1.5 ml/min. Both refractive index and UV (222 nm) detectors were
used. The column set was calibrated with PMMA standards (Polymer
Standards Services, Mainz, W. Germany).
From the SEC chromatogram, number average molecular weights
(Mn), weight average molecular weights (Mw), peak molecular weights (Mp)
and molecular weight distributions (Mw/Mn) were determined.
The Mn and Mw values were determined by computer analysis of a

SEC chromatogram using a PMMA calibration curve. In all analyses,
corrections were made for column band broadening caused by diffusion.














CHAPTER III
GROUP TRANSFER POLYMERIZATION OF METHYL METHACRYLATE



Background
The trapping of stereoisomers of a "living" polymer by a suitable
trapping agent has been demonstrated.26, 41 Thus the meso and racemic
chain ends of a propagating polymer anion, for instance, can be effectively

trapped with an electrophile, E+, (Fig. 3-1) and the stereochemical
compositions of the propagating chain ends can be determined.

Thus the trapping of lithium salts of stereoisomeric "living" poly (2-
vinylpyridine) and poly (4-vinylpyridine) anions by reaction with 13C- labelled
methyl iodide followed by 13C NMR analysis of the labelled end group has

H E|
1-,1,- Tr -- l-- L C(H)(E)
I T Trap C1
R R R R R R R R
m m m m


R H E R
-- A a ^- C(H)(E)
%: Trap I I I I
R R R R R R
m r m r


Fig. 3-1. The trapping of stereosomeric anions with an electrophile.







been reported.26'41 It has also been shown that a comparison of the
stereochemistry of the chain end (as obtained from the 13C NMR of a
labelled methyl end group) with that of the main chain may be an independent
and sensitive method to test chain statistics in vinyl polymerizations.26
There are several stereochemical models42 of chain statistics. The
simplest one is the one-parameter or Bernoulli model (Fig. 3-2).
This model assumes that only the last assymetric center in the
propagating chain is important in determining polymer stereochemistry. The
stereochemistry is not affected by the penultimate asymmetric or preceding
centers.

Pm and Pr, the transition or conditional probabilities of forming meso
and racemic dyads, respectively, are defined by


Pm= Rm/(Rm+ Rr); Pr = Rr/(Rm+ Rr); Pm+Pr = 1 (3-1)


where Rm and Rr are the rates for meso and racemic dyad placements

respectively. The term "n-ad" refers to a unit created by "n" adjacent
asymmetric (chiral) centers. Thus dyad tacticity Pm and Pr are synonomous
with the dyad tacticity fraction fm and fr defined as the fraction of adjacent

repeating units which are meso or isotactic-like and racemic or syndiotactic-
like, respectively. The probabilities of formation of mm (isotactic), mr
(heterotactic) and rr (syndiotactic) triads are given by


fmm = Pm2; mr=2 -Pm); frr(1-Pm)2 (3-2)


Thus the probability of forming a particular triad is the product of the
probabilities of forming the two dyads comprising the triad. The coefficient of 2














RPr R
R


PmPr = 1 R


indicates prochiral propagating center.

Fig. 3-2. The Bernoulli model of chain propagation.


for the heterotactic triad accounts for the formation of both mr and rm triads.
Analogous expressions may be derived for tetrads and higher sequences.
The next more complex stereochemical model is the 1st order Markoff
model42 which describes a polymerization where the penultimate assymetric
center is important in determining the stereochemistry of monomer addition.
Meso and racemic dyads can add in two ways as shown in Figure 3-3.
There are now four probabilities, Pmm, Pmr, Prm and Prr,
characterizing the addition process (the designation Pmr means the

probability that the monomer adds in r-fashion to an m chain end, etc.). We
also have the relationships:


Pmr + Pmm = 1; Prm + Prr = 1 (3-3)


The fractions of triads, tetrads, and higher sequences are given in the
literature.42 *










R R R
I I |rR m m


R R Ir R

m r




S RR
R ? ^ R ',^ P',r m-



R I R

r r



Fig. 3-3. The first order Markoff model of chain cropagation.



Higher order Markoff models have been described to ascribe effects to

assymetric centers further back than the penultimate one. Also, non-

Markoffian and non-Bernoullian models such as the Coleman-Fox43 and the

E-Z models44-46 have also been proposed.

The Coleman-Fox propagation mechanism postulates that a growing

polymer chain has two reaction states in dynamic equilibrium, both capable of

adding monomer, but each with its own stereospecificity. This mechanism is

proposed to explain the "stereoblock" structures which occasionally result

from homogeneous anionic polymerizations initiated by metal alkyls in which

runs of m's and r's are produced.43

The E-Z model will be discussed in some detail as there is ample

experimental evidence for the participation of E and Z geometric isomers as

intermediates in anionic polymerization of vinyl monomers of the type

CH2=C(R)C(Y)=X where X,Y = O, N, or C and R = H or alkyl. The model is

based on the demonstrated presence of E and Z isomers and their slow








interconversion relative to monomer addition. E and Z isomers have been
found as intermediates in anionic vinyl polymerization of 2-vinylpyridine, MMA
and t-butylvinyl ketone and in the group transfer polymerization (GTP) of MMA.
They may also play a role in other systems such as in the cationic
polymerization of vinyl ethers as a result of charge delocalization onto oxygen.
The interconversion between the lithio derivatives of E- and Z-39 (Figure 3-4)
generated by the reaction of n- butyllithium (BuLi) with 2-ethylpyridine in THF
has a half life of about of 5 hours at 50oC.46,47 Thus this interconversion
should not occur at -780C during polymerization since this polymerization is
quite fast even at -78oC. The lithio salt 32 is generated predominantly as the
E isomer in 16:1 (E:Z) ratio at -780C upon treatment of 2-ethylpyridine with n-
BuLi. However, upon the addition of 2-vinylpyridine, the corresponding E:Z
ratio in the dimer anion 40 and the trimer and tetramer anions was found to be
close to one.46,47 In view of the absence of E-Z interconversion in the
polymerization time scale, this distribution therefore reflects the mode of
monomer presentation during the transition state, s-cis and s-trans monomer
generating Z- and E carbanions respectively (Fig. 3-4).

In the case of GTP, propagation has been shown to be about 2000
times as fast as E-Z equilibration. In view of the E:Z ratio (1:1) found in the
anionic oligomerization of 2-vinylpyridine in THF in the presence of lithium
ion, the monomer appears completely unselective with regard to the mode of
monomer presentation (s-cis or s-trans) to the propagating carbanion. Even
though the E-Z isomers do not directly interconvert during polymerization, an
indirect "interconversion" is taking place through monomer addition. Being
diastereomers, the E and Z geometric isomers are expected to behave
differently with regard to the kinetics and stereochemistry of polymerization.
The stereochemical pathways are illustrated in Fig. 3-5.









\--Oi


H3C


Fig. 3-4. Scheme illustrating the the influence of monomer conformation on
stereochemistry of propagating species.
(Source: 44: Editor, Polymer Preprints)


S krET


kmr
E kmEl







km
Z zc


Scheme illustrating the various stereochemical pathways of the E-
Z statistical model of chain propagation. (Source: 44: Editor,
Polymer Preprints)


Fig. 3- 5.








The propagating species may be E or Z and these isomers may be
preceded by a meso or racemic diad. Thus


[mE] + [rE] = [E]; [rE + [rZ] = [Z] (3-4)


If several dyads are specified, the one next to the active center is indicated
last. Thus, rmZ specifies a Z active center preceded by a meso dyad which is
in turn preceded by a racemic dyad. The active center may be E or Z, the
monomer presentation may be s-cis or s-trans and meso or racemic dyads
may be formed. As a result, there are eight different processes specified by
bimolecular rate constants kRx,y in which x specifies the reacting carbanion

isomer (E or Z), y specifies the mode of monomer presentation, s-cis or s-trans
(C or T) and R denotes the formation of new dyad (m or r). There are several
assumptions inherent in the E-Z model:
(a). Only one type of ionic species is present (ion pairs for instance).
(b). The stereochemistry of vinyl addition is only dependent upon the
type of carbanion isomer (E or Z) and the mode of monomer addition, s-cis
(C) or s-trans (T) and not upon the stereochemistry of the chain adjacent to the
carbanion. Thus both sites, E and Z propagate according to Bernoullian
statistics. In other words, the mE and rE centers have the same reactivity and
react in a stereochemically identical manner.
(c). Steady state conditions will hold for a particular species, e.g.,


d[mE]/dt = d[rmZ]/dt = 0 (3-5)


It may be shown46 that the E-Z statistical model does not lead to
Bernoullian or first-order Markoff statistics. It, is, however, reducible to







Bernoullian or first-order Markoff chains under certain limiting conditions
(Table 3-1).
Since E-Z diastereomers have been demonstrated as intermediates in
GTP of MMA,7 we were surprised by the results of Stickler and Mueller49 who
reported the statistics of GTP of MMA to be consistent with a Bernoullian
process. The E and Z sites are each expected with a different stereochemistry
and individually propagate according to Bernoullian model giving overall non-
Bernoullian chain statistics for the GTP process. We therefore decided to
verify the results of Stickler and Mueller49 by our independent and
sensitive method involving the comparison of main chain and chain end
stereochemistry, which has been previously developed in this group.






Table 3-1. Limiting Conditions Reducing the E-Z Scheme to Bernoullian or
First-Order Markoff Chains.

No. Condition (Scheme) Statistics


1 kmET=kmZT, kmEC=kmZC, krET=KrZT, krEC=krZC Bernoulliana
2 kmETkmZC, kmEC=kmZT, krET=krZC,krEC=krZT Bernoullianb
3/4 kmZT=krZT=0 or kmEC=krEC=0 Bernoullianc
5 kmZT=kmZC=krET=krEC=O 1st Markoffd
6 kmET=kmEC=krZT=krZC=- 1st Markoffe

aE and Z sites show identical behavior,
bS-trans addition to E is identical to S-cis addition to Z and vice versa,
cOnly Z or E sites are present respectively,
dE sites lead to m-dyads, Z sites lead to r-dyads,
eE sites lead to r-dyads and Z sites lead to m dyads.
(Source: Ref. 44: Editor, Polymer Preprints)







Stereochemical Kinetics: 13p NMR Analysis of PMMA
Terminated with Labelled End Groups

Initially, conditions had to be found where the living PMMA prepared by
GTP could be successfully trapped by reaction with a suitable electrophile.
Since methylated oligomers of MMA have been separated and the various
stereoisomers completely characterized by NMR spectroscopy in this group,
the stereoisomeric composition of the chain-end could be unambiguously
ascertained for a methylated PMMA. Thus 13CH31 has been used in this

group as the electrophile for trapping anionic living polymers. The obvious
reason for employing labelled material is to be able to detect the methyl end
group of a polymer as a signal of sufficiently high intensity.
Since the living chain end of a PMMA prepared by GTP is not an anion,
but a silyl ketene acetal, mere addition of 13CH31 is not expected to methylate

the chain end. One of the first attempts to methylate the chain end was to use
methyl lithium (MeLi) first, followed by 13CH31. It was expected that MeLi

would generate the lithio enolate of PMMA which would then subsequently
methylate with 13CH31 (Fig. 3- 6).

However, this method was unsuccessful when MeLi was added either
at -780C or room temperature, followed by addition of Mel at the same
temperatures as demonstrated by the lack of a detectable 13CH3 end group

signal in 13C NMR. Experiments with the initiator 1 as a model compound for
the chain-end of PMMA showed that there was practically no methylation
when MeU was added at -78oC, followed by CH31 for several hours at -780C.

However when MeLi was added at room temperature to react with the GTP
initiator, followed by CH31 at 0oC or -780C, methyl pivalate, 41 was isolated

as the methylated product together with some other unidentified side products
(equations 3-6 and 3-7).









PMMA OSi(CH3)3 O-13Li PMMA O.
> -+ Si(CH3)4
CF6 C)CH3 CH3 COOH

13cH 31


+ Lil


aMe


Fig. 3- 6.


Scheme illustrating the attempted methylation of GTP PMMA chain
end with methyl lithium/methyl iodide.


1. MeLi, 250C
(CH3)2C=C(OMe)(OSiMe3)----------------->
2. Mel, OOC or -780C

1. MeLi, -780C
(CH3)2C=C(OMe)(OSiMe3)-------X--------->
2. Mel, -780C


Me3CCO2Me
41


As the Dupont scientists reported successful alkylation of PMMA
prepared by GTP with benzyl bromide and other electrophiles1,3 using an
equivalent of TASSiMe3F2 (with respect to the initiator), the same method

was used for successful methylation of the PMMA chain end. In other words,
13CH31 was added first followed by one equivalent of TASSiMe3F2. Based

on Noyori's reports50-52, the methylation should proceed by means of an
enolate with tris (dimethylamino) sulfonium counterion, i.e. a TAS enolate (Fig.
3-7).


(3-6)


(3-7)


13CH3












SiPMMA O TAS
PMMA OSi(CH3)3 PMMA

C OC3 TASSi(CH3)3F2 3OC H


TAS =[N(CH,),]3S+
PMWA
1. 13CH
2. TASSi(CH) HF2 Me
13cH





Fig. 3- 7. Scheme illustrating the successful methylation of the GTP living
PMMA chain.


Reversing the order of addition of the reagents (i.e. TASSiMe3F2 first
and then 13CH31), fails to give methylation of the PMMA chain end.

Presumably, this is due to to a fast competing side reaction of the fleeting TAS

enolate species resulting ultimately in protonation of the active center.

Methylation experiments with the GTP initiator using the crude THF soluble
ethyl-TAS-SiMe3F2 (i.e. TAS+ = [N(CH2CH3)213S+, actually a 85:15 mixture

of ethyl-TAS-SiMe3F2 and ethyl-TAS HF2) and methyl iodide using vinyl

pivalate as a GC internal standard showed that the yield of the methylated
product, methyl pivalate (4.L) corresponded approximately to the mole
amounts of the limiting reagent. Thus when ethyl-TAS-SiMe3F2 catalyst was

used in slight molar excess of one equivalent compared to the inititor, with a

large molar excess (approx 2-3 equivlants compared to the initiator) of methyl
iodide, the yield of methylated product was essentially quantitative and when

the catalyst was used in amounts less than one equivalent compared to the







initiator, the yield of methyl pivalate reflected approximately the proportion of
the catalyst Methylation results of the GTP initiator with Me-TAS-SiMe3F2

were often not reproducible, presumably as a result of the insolubility of the
catalyst. These results are shown in Table 3- 2.
The results are also consistent with the view that the alkylation
proceeds through a TAS enolate species formed by a 1:1 reaction of the
initiator and the catalyst. In addition, in methylation experiments of the GTP
initiator with the THF insoluble catalyst TASSiMe3F2, both methyl pivalate

and TASI were isolated and characterized, the former by 1H and 13C NMR
and the latter by C,H, N analysis.
Table 3-3 summarizes the experimental conditions of the various
polymerization reactions of MMA and the results obtained from SEC.
The reasons for employing methods C and D in some of these
polymerizations were the frequent low yields due to incomplete monomer

Table 3-2. Methylation of the GTP Initiator Under Various Conditions.


Catalyst moles of initiatora moles of catalyst moles MPb
(X 103) (X 103) (X 103)


Ac 0.60 0.73 0.57
AC 0.73 0.37 0.41
Bd 2.18 1.74 1.23
Bd 0.60 1.05 0.28

ainitiator was methyl trimethylsilyl dimethyl ketene acetal (1);
bMP = methyl pivalate (41); yield determined by GC using vinyl pivalate as
internal standard, added after quenching reaction with methanol.;
cA = Et-TAS-SiMe3F2; dB = Me-TAS-SiMe3F2





71
Table 3-3. Experimental Conditions and Results of SEC Analyses of PMMA
Prepared by GTP


Expt. T/oC Mne Mn Mw Mw/Mn Yieldf
No. (calc.) %


la -96 2255 1847 2390 1.29 100
2a -85 2460 2024 2782 1.37 100
3a -78 1800 1602 1929 1.20 100
4a -40 2200 1944 2220 1.14 100
5a -23 2915 3172 4198 1.32 100
6b 0 2050 1662 1796 1.08 23
7c 25 1500 2799 3917 1.40 91
8d 45 1200 2520 3324 1.32 70

amonomer distilled into mixture of initiator + catalyst in vacuo (method A; see
experimental);
bmonomer poured slowly into initiator + catalyst mixture in vacuo (method B);
initiator and monomer mixture added slowly to catalyst in vacuo (method C);
dinitiator + monomer mixture added to catalyst under argon (method D);
number average molecular weight calculated from mole ratio of monomer to
initiator;
based on weight of polymer isolated.


conversion obtained using method B at 0oC and higher temperatures, when
monomer was slowly added to the initiator and catalyst. This is due to
competing side reactions between the initiator and catalyst (possibly involving
initiator-catalyst complex and initiator or initiator-catalyst complex and catalyst;
see the section on "Side reactions in GTP" in this chapter), resulting in
protonation of the living chain. Although there is no mention of side reactions
in GTP in the very early papers by the Dupont group, they are mentioned in
their more recent publications1 and in publications of other scientists working
in this area.53 The rates of side reactions must be lower than the
polymerization rates however on account of the excellent yields and good MW
control at lower temperatures (runs 1-5, Table 3-3). In addition, the side







control at lower temperatures (runs 1-5, Table 3-3). In addition, the side
reactions at higher temperatures can be avoided by changing the order of
adding the reagents for the polymerization, i.e., by adding the catalyst last to a
mixture of initiator and monomer (batch polymerization) or adding a mixture of
monomer and catalyst to initiator It can be seen from Table 1, runs 7, and 8
that the yields improve drastically by employing one of the latter techniques
(mixture of monomer and initiator added to catalyst) to minimize the side
reactions. In these cases, optimum MW control appears to be lost somewhat
but the polydispersity is still well below 2.

The methylation of the chain end of PMMA prepared by GTP is shown
schematically in Fig. 3-8 .It is clear that the methylation neither creates any
new chiral center nor affects the stereochemistry of the assymetric carbons
adjoining the chain ends. Furthermore, if the stereochemical composition of
the last three dyads is known, the proportions of mm*, rm*, mr* and rr* chain
ends may be determined:


fmm* = fmmm* + frmm*; fmr* = fmmr* + frmr*
frr* = frrr* + fmrr*; frm* = frrm* + fmrm* (3- 8)


Fig. 3-9 is an entire spectrum of PMMA prepared by GTP at -230C. The
assignments of various peaks are indicated in the spectrum. Figures 3-10 and
3-11 are expanded regions of Fig. 3-9 showing the main chain alpha-methyl
region, and methyl end group region respectively.
The fractions of the syndiotactic (frr), heterotactic (fmr) and isotactic
triads (fmm) from the main chain can be obtained directly from the NMR by

integration or direct determination of relative peak areas at 16.5, 18.5 and 21-
22 ppm respectively from Fig. 3-10. The absence of nuclear overhauser effect













R = -CO2CH3

TAS = -(NMe2)3S+


kmm


R R
OCH3"
m '


krm
R-13 R 0-43


OCH3 OSiMe3 kr r


a QCH CHa3 3 13
I I 4I CHI
R R R R
mm*

'1) 3 CH31

2) TASSiMe3F2

CH3 C3 H31 aH3


mm* OHa-I OSIMe3


a2!3 3 R ICH3
R R CH
OCH3 OSiMe3
mr*

1) 3CH31

2) TASSIMe3F2


CH3- &CH3 R CH3 1 CH3
0-1 3 I H1 3 I 3
R R CH3 R
mr*


1) '3 c 31
rm* -
2) TASSiMe3F2


1) 13CH31
rr* -------
2) TASSiMe3F2


rm*




rr*


Fig. 3- 8. Scheme illustrating monomer addition to and methylation of GTP
PMMA.





(NOE) has been shown by the use of model compounds.54 The fractions of

racemic (fr) and meso dyads (fm) from the main chain can be calculated from:


fr = frr + 0.5 fmr; fm = fmm + 0.5 fmr


(3-9)



































-i I




Sco




O( '


-* 5

Q4




flo





CL


C;)
0
3: --| -L

U..)









oi
C6

il
















LL
I






a.
I-
0



m
caJ





CL)



a.
0
C-
(DJ







E
Cb
-o



CL
ca
0

0






t5r
C-
Q.
C

0
0f)
E




Ti






0
LO









cii
T--
Ch








cm,
u,


I .











rrr*











mrr*


mr*

rm* rrr*


mr*
Smrr rm*


30 224 23 PPM





Fig. 3-11. 50MHz 13C NMR spectrum of upfield and downfield regions of
13CH3 end group of PMMA prepared by GTP at -230 in THF.







The persistence ratio, p, is defined as :


p = 2 fmfr/fmr (3-10)


This should be unity for a Bernoullian process. Pmr, and Prm, the first order

Markoff probabilities can be calculated from:42


Pmr = fmr/(2fmm + fmr); Prm = mr(2frr + mr) (3-11)


For a Bernoullian process, the sum of these two probabilities, ,P(= Pmr

+ Prm) should be equal to one. From Fig. 3-11 the two diastereomeric methyl
end groups are seen as expected, to absorb at markedly different fields (23-
24 vs. 29-30 ppm). The downfield absorption is more intense, but the tacticity
signals are somewhat better resolved for the upfield absorption. The triad
tacticity assignments (given in the spectrum) are based on well defined
oligomers of MMA.54 The fraction of the chain end heterotactic triads (fmr*
and frm*) are obtained directly from the NMR as are the fractions of chain-end
tetrads (frrr* and fmrr*). The fraction frr* was calculated from equation (3-7).

The relative peak areas were determined directly by the method of cutting and
weighing of the peaks after extrapolation of overlapping peaks to Lorenzian
peak shapes. Both the methyl end groups were used for direct determination
of relative peak areas.
The first order Markoff conditional probabilites P*mr and P*rm from the
chain end, can be calculated from equation (3-12).26


P*mr = frm*/fm*; P*rm = fmr*/fr* (3- 12)


Equation 3- 12 may be derived as follows:26







Elias and co-workers55-57 have shown that differences in the
stereochemistry of the chain end and main chain of vinyl polymers are
consistent with the occurence of Markoff processes. Thus, using Fig. 3-13
and following steady state conditions, we have for chains of sufficiently high
degree of polymerization:


d[m*]/dt = krm = [r*][M] kmrlm*][M] = 0


(3-13)


so that


fm* = [m*]/([m*] + [r*]) = krm/(krm + kmr)


(3-14)


and


fr* = kmr/ (krm + kmr)


(3-15)


The meso content, fm of the chain itself is given by


fm = krm/(krm + kmr k/ km)


(3-16)


where kr = krr + krm and km = kmm + kmr denote the rate constants of

propagation for r* and m* silyl ketene acetals respectively. We also have the
following relationships, using steady state conditions:


d[mr*/dt = kmr[m*][M] kr(mr*][M] = 0
d[rm*]/dt = krm[r*][M] km[rm*][M] = 0 (3-17)


Substituting equations 3-14 and 3-15 into equation 3-17 leads to


[rm*] = krm [r*]/km or frm* = krmkmr/km(kmr + krm)


(3-18)







where

frm* = [rm*]/([r*] + [m*]). (3-19)


Similarly
fmr* = krmkmr/(kr[kmr + krm]) (3-20)


and using equations 3-14 and 3-15 leads to


frm* = (kmr/km)fm* = P*mrfm* and
fmr = (krmkr)fr* = P*rmfr* (3-21)


Rearrangement of equation 3-21 leads directly to equation 3-12. For a
genuinely Bernoullian process, it can be shown that the qualities


fm = fm*; fr = fr (3-22)
and


Pmr = P*mr; Prm = P*rm (3-23)
will hold true.26 Thus for a Bernoullian process, the stereochemistry of main
chain and chain-end should be the same. Noncompliance with equation 3-22
but compliance with equation 3-23 is consistent with a first order Markov
process. All of the tacticity results and the stereochemical parameters from the
main chain and chain end are listed in Table 3-4.
It can be seen from this table that the persistence ratio (p) and the sum
of the two first order Markov probabilities from the main chain, 7P (= Pmr +

Prm) calculated from the main chain triads are close to one, consistent with
Bernoullian statistics as reported in the literature.







Table 3-4. 13C NMR Triad Tacticity and Stereochemical Parameters for Main
Chain and Chain End of PMMA Prepared by GTP



Main Chain

Expt. T/oC fmma frra fmra frb pC Pmrd Prmd fr/fr*
No.


1 -96 <0.02 0.75 0.25 0.88 0.88 1.00 0.14 0.99
2 -87 <0.02 0.74 0.26 0.87 0.87 1.00 0.15 1.00
3 -78 0.031 0.71 0.26 0.84 1.03 0.81 0.16 0.97
4 -40 0.034 0.66 0.30 0.82 0.99 0.82 0.19 0.95
5 -23 0.027 0.64 0.33 0.81 0.94 0.86 0.20 0.91
6 0 0.054 0.61 0.34 0.78 1.03 0.76 0.22 0.99
7 25 0.046 0.58 0.38 0.77 0.95 0.80 0.25 0.93
8 45 0.054 0.56 0.39 0.75 0.97 0.78 0.26 1.04


Chain End


No..


fr*e


0.89
0.87
0.87
0.86
0.89
0.79
0.83
0.72


frm*a


0.11
0.13
0.14
0.14
0.11
0.21
0.17
0.28


fmr*a


0.12
0.14
0.15
0.15
0.19
0.20
0.21
0.18


frr*a


0.77
0.74
0.72
0.72
0.70
0.59
0.62
0.54


P*rmf


0.13
0.16
0.17
0.17
0.22
0.25
0.25
0.25


aObtained directly from 13C NMR;
calculated from equation (3-9);
Calculated from equation (3-10);
calculated from equation (3-11);
calculated from chain end triads as frr* + fmr* and equation (3-8);
calculated from equation (3-12); P'mr = 1 since frm* = fm*, no detectable
mm* signal.






81
The fraction of racemic dyads in the main chain (fr) agrees very well
with that of the chain end (fm*) at all temperatures, indicating consistency with

Bernoullian propagation statistics. In addition, the conditional first order
Markoff probability (P*rm) calculated from the chain end stereochemistry is in
excellent agreement with that from the main chain (Prm), indicating
consistency with first order Markoff chain propagation statistics. P*mr could not

be determined accurately since there was no detectable end mm* triad signal
(equation 3-8).
The temperature of methylation was either -780C or OoC. This
temperature had no effect on the chain end tacticity but it had a slight effect on
the stereochemistry of methylation. The latter is given by the ratio of the peak
areas at 29-30 ppm to that at 23-24 ppm, corresponding to the two
diastereotopic methyl groups. This ratio at -780C is 5.70 while at 0OC, it is
3.33. The increase in stereoselectivity with decreasing temperature is normal
and expected. Comparison with the analogous model oligomers of 2-
isopropenylpyridine58,59 indicate that the most shielded position at 23-24
ppm should correspond to the (a) methyl group with the (b) methyl group
absorbing at 29-30 ppm (Fig. 3-12).



(a)
03 C-13 R -i3 13,
i--- I II I I a3
R R 0-1 R (b)
mr*


R = -CO2CH3

Fig. 3-12. The two diastereotopic methyl groups at the chain-end of PMMA.
(a) meso-like (b) racemic-like.







Thus the methylation appears to have the same preferred stereochemistry as

the addition of monomer. Both occur predominantly in syndiotactic-like
manner.

It appears from our method of comparison of main chain and chain end
stereochemistry, that GTP of MMA is indeed is consistent with a Bernoullian
process. These results are indeed surprising in view of the reasons cited

earlier. The results appear to conform to the limiting cases in the E-Z model
(Table 3-5). One possibility is that the stereochemical behavior of the E and Z
sites are identical (limiting condition 1). Another possibility is that the rate of s-
trans monomer addition to the E isomer is identical to the rate of s-cis addition
to the Z isomer or vice versa (limiting condition 2). The other limiting condition
reducing the E-Z scheme to Bernoullian sites, namely the presence of only Z
or E sites appears unlikely in this case since a 70/30 E/Z mixture of silyl
ketene acetals is always found in the GTP of MMA.

In conclusion, it has been shown that the stereochemisty of the GTP of
MMA is consistent with simple Bernoullian statistics. In addition, it has been
shown that a comparison of the stereochemistry of the main chain with that of
the chain-end of a polymer is a sensitive and independent method for the
verification of statistics of vinyl polymerization and is applicable to systems
other than anionic polymerization.


Side Reactions in Group Transfer Polymerization
Considerable evidence has been given for the occurence of side
reactions in GTP. For example, in the GTP of MMA, low monomer conversions
were encountered in cases where MMA was added to a mixture of initiator
and catalyst at temperatures 0oC and higher. Also, in the GTP of TrMA
(Chapter IV) it was not possible to methylate the chain end. All these are
illustrative of side reactions involving the silyl ketene acetal functionality and








catalyst, leading to the destruction of the living character of the chain-end of
the polymer or even the ketene acetal end group. In this section, the results
are described for an experiment where the GTP initiator (1) and TASHF2

catalyst are mixed together in the absence of monomer, and changes are
followed by NMR.
The purpose of this experiment was to see what side products could be
formed by reaction of the initiator and TASHF2 catalyst. A 11:1 (mole ratio)
mixture of the initiator and TASHF2 catalyst respectively were mixed together
in vacuo at -780C in CD3CN (The catalyst is insoluble in THF). The mixture

was poured into an NMR tube after filtration in vacuo through a coarse glass
frit and sealed. The course of the reaction was followed by 1H NMR.
Figure 3-13 shows the 1H NMR spectrum of the GTP initiator alone and
the spectra of the reaction mixture after approximately 45, 75 and 120 minutes
at room temperature. The initiator is seen to disappear with time as can be
seen by the diminishing intensity of the two singlets at 1.6 ppm and the
methoxy signal at 3.45 ppm. Additional peaks are seen to be appearing at 0-
0.3, 1-1.5, 2.5, and 3.6-3.7 ppm regions. The TASHF2 catalyst has only one

absorbance at about 3 ppm (in the entire region of the spectrum shown),
corresponding to the N-CH3 protons of the TAS moiety. Comparison of the

final 1H and 13C NMR spectra of the product mixtures at the completion of the
reaction with both 1H and 13C NMR spectra of authentic methyl isobutyrate
indicates one of the reaction products to be methyl isobutyrate in
approximately an 85:15 mixture of of deuterated and nondeuterated
compounds. The presence of methyl isobutyrate was also confirmed by a GC
examination of the product mixtures.









CH3 OCH3

CH, OSi(CH3)3
(d) (a)


(c) (d)




, I. ..1 I .I .I .....
4 J


N(CH3)2
+ (CH3)2N-S + I
N(CH3)2
(e)
(a)


0
II
(CH3)2C-C-OCH3
(1) D(H) (9)
(h)


(iii)



)


K


4


(ii)
(g)


(f)




(c) (d)


i a


(iv)

(g)


U~l


1 I


60 MHz 1H NMR spectrum of the GTP initiator 1 and TASHF2
catalyst and initiator mixture (1:11 molar ratio) after various time
intervals. (i) the initiator, (ii) reaction mixture after 45 mins., (iii)
reaction mixture after 75 mins., (iv) reaction mixture after 120 mins.


Fig. 3-13.


--


"'"''" Al








The mechanism of deuteration is undoubtedly complex owing to the
presence of a number of compounds and although a detailed mechanism
cannot be given at this time, the experiment does demonstrate that there is
indeed a reaction between the initiator and catalyst, leading to the complete
destruction of the silyl ketene acetal group (by deuteration in this case). In
addition, since the initiator was in approximately 11 fold excess with respect to
the catalyst, and none of it remained at the end of the reaction, there is a
strong possibility of the polymerization catalyst acting as a deuteration
(protonation) catalyst as well.
Although several mechanisms may be possible, some of the possible
steps are given in Fig. 3-14. A likely first step is the formation of catalyst-
initiator complex, which is the same as the step involving initiator activation in
the polymerization of MMA (step 1).1 This pentacoordinate species may then
abstract a D+ ion from CD3CN (pKa = 25) to give deuterated methyl

isobutyrate in a number of ways (steps 2,3 and 5). The formation of 15%
nondeuterated methyl isobutyrate may result from the protonation of the
initiator (step 6) with HF formed in the second step or from the protonation of
the TAS enolate ( step 7). It was not possible to arrive at a detailed
mechanism for this complicated system in the context of this research. The
identity of any species other than methyl isobutyrate could not be confirmed
spectroscopically, due to the complexity of the 1H and 13C NMR spectra
resulting from the presence of a number of compounds obtained at the end of
the reaction. The catalyst destruction also could not be observed as there was
only one absorption for the TAS moiety in both the 1H and the 13C NMR,
corresponding to the N-methyl group, and the intensity of this absorption did
not change with time.









CH3 OCH3
1) + TASHF2
CH, OSi(CH 3)3



CH3 OCH3
2)--c0 TAS*
2) CH3, / -SIMe3


F


CD2CN


q


CH3 OCH3
S0 TASc
CH3 OSi(CH3)3


HF

- CD(CH3)2CO2CH3+ (CH3)3SiF

+ CD2HCN + TASF


CH, OCH3

)CH3 M
3) C'g J ^SiMe,

r FHF

D

CD2CN
4) TASF + 1 -


AS+ C 0
S- NCxOCD- SiMe3
L FHF


TAS+ --TAS-CD2CN-
I + HF + Me3SiF


CD(CH3)CO02CH3


CH3 OCHA

CH3, 0O TAS*


+ Si(CH 3)3F


CH3 OCH3
5) CH + CD3CN -TASCD2CN + CD(CH 3)20C0CH3
CH3 O- TAS


CH3 OCH3
6) >-H< + HF --
CH3 OSi(CH3)3


CH3 OCH3

CH7)
OHa 0-


(CH3)2CHCO2CH3 + SIMe3F


+ HF (CH3)2CHCO2CH3 + TASF-


TAS*


HF + TAS*CDCN- TAS-F- + CHD2CN



Fig. 3-14. Possible steps in mechanism of deuteration of GTP initiator in the
presence of TASHF2 in CD3CN.












CHAPTER IV

GROUP TRANSFER POLYMERIZATION OF DIPHENYLMETHYL AND
TRIPHENYLMETHYL METHACRYLATES


Background
The stereospecific polymerization of various methacrylate monomers
has been studied extensively.60 Among these the polymerization of
triphenylmethyl methacrylate (TrMA) is of special interest in that its
polymerization brings about some most unusual and unexpected results. This
monomer forms at -780C highly isotactic polymers (> 90%) with n-
Butyllithium (BuLi) not only in toluene but also in THF.11,38 Even the radical
polymerization of this monomer at 600C gives a highly isotactic (= 60%)
polymer.11,38,61,62 This unique nature of this polymerization has been
ascribed to the bulky trityl group and its interaction with the polymer backbone.
The large ester group also affects greatly its reactivity in the alkyl lithium
initiated copolymerization with other methacrylates, such as methyl
methacrylate (MMA) or alpha-methylbenzyl methacrylate (MBMA) in
toluene.63-65 Some of the copolymers of (S)-MBMA and TrMA show large
positive optical rotations, which are opposite in sign to the homopolymers of
(S)-MBMA. This positive rotation is attributed to the isotactic sequence of
TrMA units which has helical conformation spiraled in a single screw
sense.66-68
It has also been found by Okamoto and coworkers that polymerization
of TrMA with chiral anionic initiators also gives an optically active polymer, the
chirality of which is caused by helicity.69 This was the first







88
example of an optically active vinyl polymer the optical activity of which arose
only from the helicity of the chains.
In contrast to trityl methacrylate, the anionic polymerization of
diphenylmethyl methacrylate (DMA) and benzyl methacrylate (BMA) in THF
using BuLi yields predominantly syndiotactic polymer.38 The tacticity results
are generally very similar to MMA.
As group transfer polymerization is a new technique for polymerization
of acrylates and methacrylates, it was of great interest to look at the tacticity of
poly TrMA (PTrMA) and poly DMA (PDMA) prepared by GTP and compare the
results with those obtained from anionic and radical polymerizations. Thus the
group transfer polymerization of MMA, DMA and TrMA would constitute a
systematic study concerning the effect of the ester group on the tacticity of the
polymer.


Group Transfer Polymerization of TrMA
Initially, the GTP of TrMA was attempted under conditions similar to
those used for MMA at temperatures higher than OOC, i.e. slow addition of
monomer and intiator mixture into the catalyst suspension in THF at -780C. At
initiator to catalyst concentration ratio of about 78, virtually no polymer formed,
and all of the unreacted monomer was recovered, as judged by 1H NMR. This
indicated that conditions different from those of GTP of MMA had to be
employed for the polymerization of TrMA. The first successful polymerimation
resulted by using a molar ratio of initiator to catalyst of about one. The GTP of
TrMA is extremely fast. Even at -70oC, complete monomer conversion was
observed in less than one minute. Since the initial failure of polymerization
could have been due to insufficient catalyst concentration in the reaction
mixture, a variety of catalyst concentrations were used to see what conditions







89
would bring about quantitative conversion of TrMA into polymer. The results
of these experiments are summarized in Table 4-1.
It is apparent from this table that much higher levels of catalyst are
required (i.e. higher values of intiator to catalyst concentration ratios) for
quantitative polymerization of TrMA than for the MMA polymerizations, where
catalyst levels as low as 0.1 mole % with respect to initiator (methyl trimethyl
silyl dimethyl ketene acetal) have been found to yield narrow MW distribution
PMMA in quantitative yield.
All of the polymerizations in Table 1(except run number 17 where a
mixture of monomer and initiator were added to the catalyst) were batch
polymerizations in which the catalyst was added at one time as an acetonitrile
solution (0.1-1.0 mL depending on the mole amount of initiator) to a mixture of
monomer and intitator in THF. Several conclusions can be drawn from the
data in Table 1. The molecular weight control appears very poor in that it far
exceeds the expected molecular weight, indicating to poor initiator efficiency,
which varies from 11-53%. There does appear to be some internal
consistency however, in that the agreement between expected and actual MW
becomes poorer with increasing degree of polymerization. The poor initiator
efficiency indicates that not all of the initiator is used to initiate polymerization.
It is somewhat surprising however, that the MW distribution are fairly narrow
despite the poor initiator efficiencies. This means that initiation is indeed fast
compared to propagation but that much of it is destroyed, before initiation.
This is most likely due to side reactions involving the initiator and catalyst.
The rates of side reaction and initiation must be more competitive in this case
compared to MMA polymerization, where there usually was good agreement
between expected and actual Mn. It is not surprising that the termination

reactions are more severe in the case of the TrMA polymerization than in the









Table 4-1. SEC Results of Group Transfer Polymerization of TrMA.

Run No. Temp Catalyst mole. init. [Init.] Yield Mwe Mne Mw Calcul. Mf
(OC) X 10-3 %_
[Cat.] Mn



1 -97 Aa 0.25 1.0 > 95 4105 3196 1.28 1337
2 -95 0.70 > 95 3027 2695 1.12 1437
3 -82 0.46 > 95 4442 3642 1.21 1870
4 -70 0.29 > 95 39564 26870 1.47 2930
5 -70 0.31 > 95 3391 3094 1.11 1313
6 -70 0.21 2.6 >95 14103 11233 1.26 3030
7 -70 0.27 93.0 =30 31787 21586 1.47 2881
8 -42 0.49 1.0 > 95% 4218 3458 1.22 1440
9 -21 0.37 > 95% 3223 2768 1.16 678
10 0 1.39 >95% 8655 6953 1.24 850
11 0 0.57 >95% 8088 4951 1.63 1130
12 25 0.32 >95% 28423 15134 1.88 2720
13 25 0.69 70 9839 5846 1.68 966
14 35 0.49 <5 32317 11309 2.86 1000
15 50 0.98 <5 25705 8137 3.16 643
16 -70 Bb 0.55 1.0 100 10910 8554 1.28 1231
17 -70 Bb 0.73 78.0 <5 -
18 -70 Cc 0.61 1.0 =10 ND9 ND ND ND
19 -70 Dd 0.18 1.0 -15 NDh ND ND ND


aTASSiMe3F2,
Cn-Bu4NF,


bTASHF2,
dn-Bu40Ac,


molecular weight of the transesterified PMMA samples,
calculated from the mole ratio of monomer to initiator,
sample not transesterified but the elution volume of the poly (TrMA)
corresponded to an approximate molecular weight of 199000 based on
PMMA calibration curve, Mw/Mn > 2.0.
sample not transesterified but the elution volume of the poly (TrMA)
corresponded to a molecular weight of approximately 126000 based on
PMMA calibration curve, Mw/Mn = 1.5







91
case of MMA since in the latter case, it is reported that it is best to use the
minimum amount of catalyst in order to avoid termination reactions and to
obtain polymers of lowest polydispersity, particularly when preparing
polymers of Mn above about 20,000. Also in MMA polymerizations using a

high level of catalyst, it was found that the addition of additional monomer
after 30 minutes to a "living GTP PMMA", gave no polymerization, indicating
that the polymer formed in the presence of a high level of catalyst was no
longer living. Since a high level of catalyst is necessary to obtain complete
conversion of monomer to polymer in the case of TrMA, it is not surprising that
the polymerization is actually self-terminating. The self-termination was
demonstrated by the addition of additional monomer (TrMA) 30 mins. after an
initial polymerization of TrMA at -70oC. The second batch of polymer failed to
polymerize.
The rates of side reactions competing with initiation increases with
temperature as was demonstrated during attempted polymerizations at
temperatures higher than 25oC. Thus attempted polymerizations at 350C and
50oC, resulted in complete failure, with virtually all the monomer recovered.
The failure of the polymerization is apparently due to a lack of initiation
caused by the destruction of the silyl ketene acetal initiator. This was
demonstrated by cooling the reaction mixture of an attempted 50oC
polymerization down to OoC, and adding an additional amount of initiator. In
this case, all the monomer polymerized immediately and the color also
changed to dark orange. Thus it appears that although at higher
temperatures, initiation is inhibited due to destruction of the initiator, there is
still sufficient active catalyst left capable of catalyzing the polymerization upon
the addition of additional initiator at lower temperature. This indicates that the
destruction of the initiator may not be due to a 1:1 equimolar reaction between






92
the initiator and the catalyst. This is completely consistent with our earlier
investigations into the side reactions involving the initiator and TASHF2
catalyst in CD3CN at room temperature without the presence of monomer. In

this case, it was found that even though a large excess of initiator over catalyst
(11:1 mole ratio) was present in the reaction, all the initiator dissapeared in
approximately two hours after the start of reaction. Various color changes
were seen in the case when the initiator was added at OoC to to the reaction
mixture of an unsuccessful 50oC attempted polymerization. As more and
more initiator was added drop by drop, the color changed from slight yellow to
orange to dark brown to red and finally to green in gradual progression. It
was a colorful experiment to say the least! The reasons for these color
changes are not entirely clear at present, but could represent reactions
involving the initiator catalyst complex (2) or enolate species with a TAS
counterion (such as 42 generated in equation (4-1)):


CH3 OSI(CH3)3 CO TAS

(1 >


(4-1)


Such an enolate species, could eliminate a methoxide ion to yield a ketene,
43 in a side reaction (equation 4-2). It is to be noted however, that no direct
evidence was found for the presence of the ketene; such reactions however,
are plausible on the basis of literature findings.28









C000- TAS+
TSC -c O + TAS OMe
> = OMe
43

(4-2)
Good catalytic activity was expected from NBu4F (Aldrich; containing less than

5 weight % water) on account of its being a highly efficient source of
nucleophilic fluoride ion, and its use in the GTP of MMA. However even one
equivalent of NBu4F with respect ot initiator was incapable of catalyzing the

polymerization to complete monomer conversion (run no. 18, Table 4-1).
Undoubtedly, the reagent may still contain moisture which could
terminate the polymerization. When halides or tosylates were treated with
"anhydrous TBAF" (i.e. NBu4F, 3 H20 warmed at 400C under vacuum for

several hours) in the absence of any solvent, hydrolysis to the corresponding
alcohol of the tosylate appeared to be a significant side reaction.70 This was
explained by the presence of traces of moisture remaining in the "anhydrous"
TBAF which are rendered highly nucleophilic by the fluoride ion. However, it
is probably unlikely that the presence of water was the reason for the lack of
activity of NBu4F. If that were the case, it would not be effective in GTP of

MMA either. It is therefore not entirely clear why this catalyst failed to yield a
good yield of poly(TrMA), based on the conventional associaive mechanism of
GTP. Another catayst, NBu40AC, known to catalyse the GTP of MMA failed to

effectively catalyse the polymerization of TrMA in good yield (run no. 19).
These findings hint at the possibility of a mechanism for the GTP of TrMA
different from that postulated by the Dupont group for MMA polymerization.




Full Text

PAGE 1

7+( 67(5(2&+(0,675< 2) *5283 75$16)(5 32/<0(5,=$7,21 2) 0(7+
PAGE 2

7KLV GLVVHUWDWLRQ LV GHGLFDWHG WR P\ VSLULWXDO PDVWHU 2P 9LVQXSDGD +ULGD\DQDQGD GDVD *RVZDPL $FDU\DGHYD DUGHQW GLVFLSOH RI +LV 'LYLQH *UDFH $ & %KDNWLYHGDQWD 6ZDPL 3UDEKXSDGDf ZKR WDXJKW PH KRZ WR GHGLFDWH RQHnV VR FDOOHG DVVHWV LQ WKLV ZRUOG LQ WKH ORYLQJ VHUYLFH RI WKH $OPLJKW\

PAGE 3

$&.12:/('*(0(176 DP JUDWHIXOO\ LQGHEWHG WR WKH PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH 'U *HRUJH % %XWOHU 'U -RKQ ) +HOOLQJ 'U -RKQ (\OHU DQG 'U &KDUOHV %HDW\ 6SHFLDO WKDQNV DQG GHHS DSSUHFLDWLRQ DUH GXH WR 'U 7KLHR ( +RJHQ (VFK IRU KLV LQYDOXDEOH JXLGDQFH PRUDO VXSSRUW HQFRXUDJHPHQW SDWLHQFH DQG IULHQGVKLS (VSHFLDOO\ YDOXDEOH ZDV KLV HQFRXUDJHPHQW GXULQJ WKH PRVW GLIILFXOW WLPHV RI WKH UHVHDUFK SURMHFW ZKHQ QRWKLQJ EXW IDLOXUHV VWDUHG PH LQ WKH IDFH 7KDQNV DUH DOVR GXH WR WKH JODVVEORZHUV 'LFN 0RVLHU DQG 5XG\ 6WURKVFKHLQ IRU WKHLU ILQH JODVVEORZLQJ DQG HYHUMRNLQJ PRRG WR 0UV /RUUDLQH :LOOLDPV WKH SRO\PHU IORRU VHFUHWDU\ IRU KHU NLQGQHVV DQG PRWKHUO\ DIIHFWLRQ WR 'U .HQ :DJHQHU IRU KLV HQFRXUDJHPHQW DQG WR WKH RWKHU PHPEHUV RI WKH SRO\PHU IORRU IRU WKHLU DVVRFLDWLRQ DQG HQFRXUDJHPHQW /DVW EXW QRW WKH OHDVW ZRXOG OLNH WR DFNQRZOHGJH WKH HQFRXUDJHPHQW DQG VXSSRUW RI P\ SDUHQWV ZLWKRXW ZKRP QRQH RI WKLV ZRUN ZRXOG KDYH EHHQ SRVVLEOH

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL $%675$&7 YL &+$37(5 ,1752'8&7,21 %DFNJURXQG 2EMHFWLYHV ,, (;3(5,0(17$/ &DWDO\VW 6\QWKHVHV 6\QWKHVLV DQG 3XULILFDWLRQ RI ,QLWLDWRUV 0RQRPHU 6\QWKHVHV DQG 3XULILFDWLRQ 0HWK\O 0HWKDFU\ODWH 00$f 6LOYHU 0HWKDFU\ODWH 7ULSKHQ\OPHWK\O 7ULW\Of 0HWKDFU\ODWH 'LSKHQ\OPHWK\O 0HWKDFU\ODWH 3RO\PHUL]DWLRQ 5HDFWLRQV *URXS 7UDQVIHU 3RO\PHUL]DWLRQ RI 0HWK\O 0HWKDFU\ODWH 0HWK\ODWLRQ RI &KDLQ (QG RI 300$ SUHSDUHG E\ *73 3RO\PHU ,VRODWLRQ IRU 300$ SUHSDUHG E\ *73 *URXS7UDQVIHU 3RO\PHUL]DWLRQ RI 'LSKHQ\OPHWK\O DQG 7ULSKHQ\OPHWK\O 0HWKDFU\ODWH $QLRQLF 3RO\PHUL]DWLRQ RI 00$ $QLRQLF 3RO\PHUL]DWLRQ RI 7U0$ 3RO\PHU +\GURO\VLV 3RO\ 7U0D 3'0$ 'LD]RPHWKDQH 0HWK\ODWLRQ 7LWUDWLRQ RI $ON\O /LWKLXP 6ROXWLRQV ,QVWUXPHQWDWLRQ ,9

PAGE 5

&+$37(5 (DJH *DV &KURPDWRJUDSK\ 3UHSDUDWLYH /LTXLG &KURPDWRJUDSK\ 105 6SHFWURVFRS\ 6L]H ([FOXVLRQ &KURPDWRJUDSK\ 6(&f ,,, *5283 75$16)(5 32/<0(5,=$7,21 2) 0(7+
PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( 67(5(2&+(0,675< 2) *5283 75$16)(5 32/<0(5,=$7,21 2) 0(7+
PAGE 7

7KH *73 RI GLSKHQ\OPHWK\O PHWKDFU\ODWH '0$f DQG WULSKHQ\OPHWK\O PHWKDFU\ODWH 7U0$f DW YDULRXV WHPSHUDWXUHV XVLQJ YDULRXV QXFOHRSKLOLF FDWDO\VWV LV DOVR GHVFULEHG 7KH VWURQJ IOXRULGH LRQ GRQRU FDWDO\VWV DSSHDU WR EH WKH PRVW HIILFWLYH LQ SRO\PHUL]LQJ 7U0$ EXW DUH UHTXLUHG LQ PXFK KLJKHU FRQFHQWUDWLRQV WKDQ IRU PHWK\O PHWKDFU\ODWH 00$f SRO\PHUL]DWLRQV 7KH *73 RI ERWK '0$ DQG 7U0$ DUH DIIHFWHG E\ VLGH UHDFWLRQV FRPSHWLQJ ZLWK LQLWLDWLRQ UHVXOWLQJ LQ SDUWLDO GHVWUXFWLRQ RI WKH VLO\O NHWHQH DFHWDO LQLWLDWRU 0ROHFXODU ZHLJKW FRQWURO LV SRRU EXW WKH PROHFXODU ZHLJKW GLVWULEXWLRQV UHPDLQ PRGHUDWHO\ QDUURZ 0Z0Q f $WWHPSWV WR PHWK\ODWH WKH FKDLQHQG RI SRO\ 7U0$f SUHSDUHG E\ *73 ZHUH XQVXFFHVVIXO ,Q FRQWUDVW WR WKH UDGLFDO DQG DQLRQLF SRO\PHUL]DWLRQV RI 7U0$ WKH VWHUHRVHOHFWLYLW\ RI *73 RI 7U0$ LQFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH ZLWK D KLJKHU LVRWDFWLF FRQWHQW DW URRP WHPSHUDWXUH $ VLJPRLGDO FXUYH LV REWDLQHG ZKHQ WKH WDFWLF FRQWHQW RI SRO\7U0$f LV SORWWHG DV ,Q NUNPf YHUVXV 7 7KH SRVVLELOLW\ LV GLVFXVVHG RI WKH SRO\PHUL]DWLRQ SURFHHGLQJ WKURXJK WZR DFWLYH VSHFLHV VXFK DQ HQRODWH DQG D VLO\O NHWHQH DFHWDO ZKLFK DUH LQWHUFRQYHUWLQJ UDSLGO\ GXULQJ WKH SRO\PHUL]DWLRQ 2Q WKH RWKHU KDQG WKH WDFWLFLW\ UHVXOWV IRU WKH *73 RI '0$ DUH VLPLODU WR WKRVH RI DQLRQLF SRO\PHUL]DWLRQ LQ WKDW WKH V\QGLRWDFWLF FRQWHQW GHFUHDVHV DQG WKH KHWHURWDFWLF FRQWHQW LQFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH 9,,

PAGE 8

&+$37(5 ,1752'8&7,21 %DFNJURXQG *URXS WUDQVIHU SRO\PHUL]DWLRQ *73f LV D QHZ WHFKQLTXH IRU WKH SRO\PHUL]DWLRQ RI DFU\OLF PRQRPHUV GLVFRYHUHG E\ WKH VFLHQWLVWV DW 'XSRQWn 7KLV WHFKQLTXH JLYHV OLYLQJ SRO\PHUV SRO\PHUV WKDW DUH FDSDEOH RI IXUWKHU LQFUHDVH LQ PROHFXODU ZHLJKW XSRQ WKH DGGLWLRQ RI DGGLWLRQDO PRQRPHUf DQG FDQ EH FDUULHG RXW DW URRP WHPSHUDWXUH RU DERYH LQ FRQWUDVW WR WKH FRUUHVSRQGLQJ DQLRQLF SRO\PHUL]DWLRQ WKDW RQO\ ZRUNV ZHOO DW ORZ WHPSHUDWXUHV EHORZ r&f $OWKRXJK WKH PHWKRG ZRUNV EHVW IRU PHWKDFU\ODWHV RWKHU PRQRPHUV VXFK DV DFU\ODWHV DFU\ORQLWULOH PDOHLPLGHV DQG YLQ\O NHWRQHV FDQ DOVR EH SRO\PHUL]HG $V EORFN DQG JUDIW FRSRO\PHUV KDYH IRXQG LQFUHDVLQJ XVH DV HODVWRPHUV FRPSDWLELOL]HUV DGKHVLYHV DQG FRPSRQHQWV RI KLJK SHUIRUPDQFH ILQLVKHV WKHUH KDV EHHQ D D JUHDW HPSKDVLV RQ QHZ V\QWKHWLF PHWKRGV WR SUHSDUH ZHOOFKDUDFWHUL]HG EORFNV ZLWK IXQFWLRQDO HQG JURXSV ZKLFK FRXOG VHUYH DV EXLOGLQJ EORFNV IRU FRSRO\PHUV RI SUHGHWHUPLQHG DUFKLWHFWXUH *URXS WUDQVIHU SRO\PHUL]DWLRQ DSSHDUV WR RYHUFRPH VRPH RI WKH PDMRU GLVDGYDQWDJHV RI RWKHU W\SHV RI SRO\PHUL]DWLRQ IRU WKH SUHSDUDWLRQ RI ZHOO GHILQHG IXQFWLRQDO EORFNV )RU H[DPSOH DOWKRXJK DQLRQLF SRO\PHUL]DWLRQ RI VW\UHQH DQG EXWDGLHQH KDV EHHQ FDUULHG RXW FRPPHUFLDOO\ WKH DQLRQLF SRO\PHUL]DWLRQ RI PHWKDFU\ODWHV LV XQHFRQRPLFDO GXH WR WKH ORZ WHPSHUDWXUHV r&f UHTXLUHG WR PDLQWDLQ OLYLQJ FRQGLWLRQV &RQGHQVDWLRQ SRO\PHUL]DWLRQ OHDGV WR SRO\PHUV ZLWK EURDG PROHFXODU ZHLJKW GLVWULEXWLRQ DQG K\GURO\WLFDOO\ XQVWDEOH EDFNERQH OLQNDJHV DOWKRXJK WKH\ DUH

PAGE 9

YHU\ XVHIXO SRO\PHUV RI JUHDW FRPPHUFLDO ,PSRUWDQFH 'XH WR FKDLQ WUDQVIHU DQG WHUPLQDWLRQ UHDFWLRQV DQG WKH UHVXOWLQJ LQDELOLW\ WR ULJRURXVO\ FRQWURO WKH 0: GLVWULEXWLRQ IUHH UDGLFDO SRO\PHUL]DWLRQ LV DOVR XQVXLWDEOH *URXS WUDQVIHU SRO\PHUL]DWLRQ KRZHYHU RIIHUV D JUHDW GHDO RI SUDFWLFDO DGYDQWDJHV QRW RIIHUHG E\ DQ\ RWKHU PHWKRGV QDPHO\ RSHUDELOLW\ RYHU D EURDG WHPSHUDWXUH UDQJH D ZLGH FKRLFH RI VROYHQWV JRRG PROHFXODU ZHLJKW FRQWURO WKH DELOLW\ WR IXQFWLRQDOL]H WKH SRO\PHU HQGV DQG WKH DELOLW\ WR SUHSDUH EORFN DQG UDQGRP FRSRO\PHUV ,Q DGGLWLRQ DOWKRXJK JURXS WUDQVIHU SRO\PHUL]DWLRQ UHTXLUHV KLJKO\ SXULILHG UHDJHQWV DQG VFUXSXORXVO\ GU\ FRQGLWLRQV D ULJRURXVO\ R[\JHQ IUHH DWPRVSKHUH LV QRW UHTXLUHG *URXS WUDQVIHU SRO\PHUL]DWLRQ LV DQ H[DPSOH RI 0LFKDHO DGGLWLRQ RI VLO\O NHWHQH DFHWDO WR DQ DOSKD XQVDWXUDWHG FDUERQ\O FRPSRXQG ,W LV D ILUVW DSSOLFDWLRQ RI VXFK FKHPLVWU\ WR SRO\PHU IRUPDWLRQ E\ VHTXHQWLDO DGGLWLRQV )LJXUH LOOXVWUDWHV WKH SRO\PHUL]DWLRQ RI PHWK\O PHWKDFU\ODWH 00$f ZLWK GLPHWK\ONHWHQH PHWK\O WULPHWK\OVLO\O DFHWDO DV LQLWLDWRU 7KH WULPHWK\OVLO\O JURXS LV WUDQVIHUUHG IURP WKH LQLWLDWRU DQG WKH JURZLQJ HQG WR WKH LQFRPLQJ PRQRPHU KHQFH WKH QDPH JURXS WUDQVIHU SRO\PHUL]DWLRQf $ FDWDO\VW LV UHTXLUHG IRU WKH SRO\PHUL]DWLRQ WR SURFHHG DQG WKHVH FDQ EH FODVVLILHG LQWR WZR W\SHV WKH DQLRQ FDWDO\VWV f DQG WKH /HZLV DFLG FDWDO\VWV 2I WKH DQLRQ W\SH WULVGLPHWK\ODPLQRfVXOIRQLXP ELIOXRULGH 7$6+)f KDV JLYHQ WKH EHVW RYHUDOO UHVXOWV DQG KDV EHHQ XVHG PRVW H[WHQVLYHO\ 6HYHUDO RWKHU FDWDO\VWV RI ERWK W\SHV XVHG IRU *73 DUH OLVWHG LQ 7DEOH

PAGE 10

0H 20H 0H 26L0 26L0H 7$6 >1&+f@6 0H &2]0H &2V0H 0H 0Hf§-f§ 300$ &+f§ &+&0H 0H 0H BE 0H )&+ 0H I FKF ‘ 0H 20H 26L0H 220 220 06,25 )LJ 6FKHPH LOOXVWUDWLQJ JURXS WUDQVIHU SRO\PHUL]DWLRQ RI 00$ 7DEOH 9DULRXV $QLRQ DQG /HZLV $FLG &DWDO\VWV IRU *73 1XFOHRSKLOLF &DWDO\VWV $FWLYDWH ,QLWLDWRUf 7$66L0H) WDVKI 7$6&1 7$61 5& +5&f /HZLV $FLG &DWDO\VWV $FWLYDWH 0RQRPHUf =Q%U =QO =Q&, c%X$,f %8$,&, (W$,&,

PAGE 11

7KH PHFKDQLVP RI DQLRQ FDWDO\]HG *73 cV UDWKHU FRPSOH[ DQG LV IDU IURP EHLQJ FRPSOHWHO\ ZRUNHG RXW DQG HVWDEOLVKHG LQ GHWDLO +RZHYHU VHYHUDO H[SHULPHQWV E\ WKH 'XSRQW VFLHQWLVWV VWURQJO\ LQGLFDWH DQ DVVRFLDWLYH VLO\O WUDQVIHU PHFKDQLVP UDWKHU WKDQ D GLVVRFLDWLYH LH WKURXJK HQRODWH DQLRQVf RQH DW OHDVW IRU WKH ELIOXRULGH FDWDO\]HG *73 RI 00$ 7KH SURSRVHG PHFKDQLVP LV LOOXVWUDWHG LQ )LJ ,Q WKH ILUVW VWHS WKH QXFOHRSKLOLF FDWDO\VW DFWLYDWHV WKH LQLWLDWRU E\ FRRUGLQDWLRQ WR VLOLFRQ WR JHQHUDWH D SHQWDFRRUGLQDWHG VLOLFRQ VSHFLHV DFWLYH VSHFLHVf 7KH DFWLYDWHG LQLWLDWRU DQG PRQRPHU ZHUH RULJLQDOO\ SURSRVHG WR IRUP D K\SHUYDOHQW VLOLFRQ LQWHUPHGLDWH BKH[DFRRUGLQDWHGf DQG QHZ && DQG 6L ERQGV DUH IRUPHG FOHDYLQJ WKH ROG 6L ERQG 0RUH UHFHQWO\ KRZHYHU KDV EHHQ FRQVLGHUHG WR EH XQOLNHO\ DV DQ LQWHUPHGLDWH ERWK E\ WKH 'XSRQW JURXS DQG E\ RWKHUV ZRUNLQJ LQ WKH *73 ILHOG ,QVWHDG LW KDV EHHQ UHFRJQL]HG WKDW PRQRPHU DGGLWLRQ PD\ ZHOO WDNH SODFH LQ WZR VWHSV DV LOOXVWUDWHG LQ )LJXUH 7R WHVW WKH LQYROYHPHQW RI WKH K\SRWKHVL]HG VLOLFRQ VSHFLHV D VWDEOH SHQWDFRRUGLQDWH VLOLFRQDWH = HTXDWLRQ f ZDV V\QWKHVL]HG DV D PRGHO FRPSRXQG E\ WUHDWPHQW RI WKH VLODQH ZLWK WKH OLWKLXP HQRODWH RI PHWK\O LVREXW\UDWH /Ln f

PAGE 12

O 5 &+ U 1Xf QXFOHRSKLOLF FDWDO\VW 5 )LJ 3URSRVHG PHFKDQLVWLF VFKHPH IRU ELIOXRULGH FDWDO\]HG JURXS WUDQVIHU SRO\PHUL]DWLRQ RI 00$

PAGE 13

,W ZDV K\SRWKHVL]HG WKDW D VSHFLHV VXFK DV e VKRXOG UHDFW ZLWK 00$ ZLWKRXW DGGHG QXFOHRSKLOLF FDWDO\VWV &RPSRXQG LQGHHG UHDFWHG ZLWK 00$ DW URRP WHPSHUDWXUH ZLWKRXW DGGHG FDWDO\VW WR JLYH 300$ RI UHDVRQDEO\ QDUURZ PROHFXODU ZHLJKW GLVWULEXWLRQ $OWKRXJK WKH OLJDQGV RI e DQG DUH DGPLWWHGO\ GLIIHUHQW WKLV UHVXOW VWURQJO\ VXSSRUWV DORQJ ZLWK RWKHU FRUURERUDWLYH HYLGHQFHf WKH LQYROYHPHQW RI D SHQWDFRRUGLQDWH VLOLFRQDWH VSHFLHV LQ *73 $GGLWLRQDO HYLGHQFH IRU WKH DVVRFLDWLYH PHFKDQLVP FRPHV IURP GHWDLOHG ODEHOOLQJ VWXGLHV VHH FKDSWHU ,9f ,Q ELIOXRULGH FDWDO\]HG *73 WKHUH LV QR H[FKDQJH RI WKH VLO\O JURXS RQ WKH FKDLQ HQG ZLWK DGGHG WULDON\OVLO\O IOXRULGH 7KHUHIRUH LI WKH IXQFWLRQ RI WKH FDWDO\VW LV WR JHQHUDWH D VPDOO DPRXQW RI HQRODWH DQLRQ IRU DQLRQLF SRO\PHUL]DWLRQ WKHVH DQLRQV VKRXOG EH UHFDSSHG E\ VLO\O IOXRULGH ZKLFK WKH\ DUH QRW )LJ f ,Q DGGLWLRQ LQ D GRXEOH ODEHOOLQJ H[SHULPHQW LW ZDV VKRZQ WKDW H[FKDQJH GRHV QRW RFFXU EHWZHHQ OLYLQJ SRO\ EXW\O PHWKDFU\ODWHf FKDLQ HQGV DQG OLYLQJ SRO\PHWK\O PHWKDFU\ODWHf FKDLQ HQGV 7KHVH UHVXOWV UXOHV RXW WKH GLVVRFLDWLYH URXWH GHSLFWHG LQ )LJ ZKHUH DW DQ\ RQH WLPH WKHUH ZRXOG EH RQO\ WUDFH DPRXQWV RI 300$ HQRODWH LRQV SUHVHQW 0H& &26L5 20H 1Xn 0H& &2f 5 6L1X 0H 0H 300$& f&26L5n 20H 5n6L) 0H 300$& &2f 20H )LJ 6FKHPH c,OOXVWUDWLQJ WKH DWWHPSWHG UHFDSSLQJ RI HQRODWH LRQV LQ *73 RI 00$

PAGE 14

300$ 26L0H 20H )LJ 'LVVRFLDWLYH VFKHPH VKRZLQJ UHFDSSLQJ RI 300$ HQRODWH LRQV E\ 300$ VLO\O NHWHQH DFHWDO ,Q WKH FDVH RI /HZLV DFLG FDWDO\]HG *73! WKH PRQRPHU ,V EHOLHYHG WR EH DFWLYDWHG E\ FRRUGLQDWLRQ RI WKH /HZLV DFLG WR WKH FDUERQ\O R[\JHQ IRU 0LFKDHO DGGLWLRQ RI WKH VLO\O NHWHQH DFHWDO WR 00$ 3RO\PHUL]DWLRQ RI 00$ E\ *73 LV UDSLG DQG H[RWKHUPLF %HFDXVH LQLWLDWRUV DQG OLYLQJ SRO\PHU VLWHV DUH YHU\ ZDWHUVHQVLWLYH HTXLSPHQW DQG UHDJHQWV PXVW EH VFUXSXORXVO\ GU\ 7KH PRQRPHU WR LQLWLDWRU UDWLR GHWHUPLQHV WKH PROHFXODU ZHLJKW ZKLFK PD\ EH YDULHG RYHU D ZLGH UDQJH 0 f 2QO\ WUDFH DPRXQWV RI FDWDO\VW PROH b RI LQLWLDWRU IRU DQLRQ

PAGE 15

FDWDO\VWV DQG b IRU /HZLV DFLG FDWDO\VWVf DUH UHTXLUHG IRU 00$ SRO\PHUL]DWLRQV 0RQRGLVSHUVH 300$ ZLWK PROHFXODU ZHLJKW DV KLJK DV KDV EHHQ FODLPHG E\ 'XSRQW XVLQJ KLJKO\ SXULILHG VROYHQWV DQG UHDJHQWV 7HWUDK\GURIXUDQ 7+)f WROXHQH DQG DFHWRQLWULOH DUH W\SLFDO VROYHQWV IRU QXFOHRSKLOH DQLRQf FDWDO\]HG *73 DQG WROXHQH DQG KDORFDUERQV IRU /HZLV DFLG FDWDO\]HG SRO\PHUL]DWLRQ 300$ SUHSDUHG E\ *73 ZLWK WKH DQLRQ FDWDO\VWV DW DPELHQW WHPSHUDWXUH FRQWDLQV DSSUR[LPDWHO\ D UDWLR RI V\QGLRWDFWLF DQG KHWHURWDFWLF VHTXHQFHV UHVSHFWLYHO\ ZLWK QR PHDVXUDEOH LVRWDFWLF FRPSRQHQWV LQ DOO VROYHQWV H[DPLQHG 7KH V\QGLRWDFWLF FRQWHQW LQFUHDVHV IURP b DW r& WR b DW r& IRU DQLRQ FDWDO\]HG *73 LQ 7+) DV WKH WHPSHUDWXUH LV ORZHUHG ZLWK D ILQDO V\QGLRWDFWLF KHWHURWDFWLF UDWLR RI /HZLV DFLG FDWDO\VLV RI *73 RI 00$ JHQHUDOO\ SURYLGHV D PXFK PRUH V\QGLRWDFWLF 300$ WKDQ GR DQLRQ FDWDO\VWV EXW GHWDLOHG WHPSHUDWXUH GHSHQGHQFH RI WDFWLFLW\ VWXGLHV KDYH QRW EHHQ UHSRUWHG IRU WKLV V\VWHP 7KH WDFWLFLW\ RI 300$ SUHSDUHG E\ *73 DSSHDUV WR EH LQGHSHQGHQW RI VROYHQW EXW LV GHSHQGHQW RQ WKH UHDFWLRQ WHPSHUDWXUH DQG WKH QDWXUH RI WKH FDWDO\VW LH DQLRQLF YV /HZLV DFLGf 7KLV LV LQ VKDUS FRQWUDVW WR WKH DQLRQLF SRO\PHUL]DWLRQ RI 00$ LQLWLDWHG E\ DON\OOLWKLXP UHDJHQWV ZKHUH WKH WDFWLFLW\ RI 300$ LV GHSHQGHQW RQ WKH SRODULW\ RI WKH VROYHQW PHGLD 7KXV IRU WKH DQLRQLF SRO\PHUL]DWLRQ RI YLQ\O PRQRPHUV RI WKH VWUXFWXUH &+ &5f&
PAGE 16

20H 00$ 26L0H 300$ ,$ 20H QVL P Q%87
PAGE 17

2&+&+26c0H Qf +& 26L0H +) ‘ FRU 9 FK U 0H6c&+&+ ‘ & f&+ f§& f§!77 FK FRU 7! 25 26c0H D 5 5 &+ E 5 &+ 5n + )LJ 6FKHPH VKRZLQJ WKH V\QWKHVLV RI WHOHFKHOLF SRO\PHUV E\ *73 'HSURWHFWLRQ RI ,4 DQG + ZLWK Q%X1) 7%$)f JDYH WKH FRUUHVSRQGLQJ SRO\PHUV ZLWK b K\GUR[\O JURXSV LQ RQH WHUPLQDO SRVLWLRQ 7KH IXQFWLRQDOL]HG SRO\PHUV PD\ EH UHDGLO\ GLVWLQJXLVKHG IURP WKH QRQ IXQFWLRQDOL]HG VSHFLHV E\ KLJK SHUIRUPDQFH OLTXLG FKURPDWRJUDSK\ +3/&f 6L]H H[FOXVLRQ FKURPDWRJUDSK\ 6(&f DQDO\VHV VKRZHG WKDW WKH SRO\PHUV KDG QDUURZ PROHFXODU ZHLJKW GLVWULEXWLRQ 0Z0Q f :KHQ WKH DON\ODWLRQ UHDFWLRQ ZDV FDUULHG RXW ZLWK ELV EURPRPHWK\Of EHQ]HQH WKH LQWHUPHGLDWH 4D JDYH DIWHU GHSURWHFWLRQ DOSKD RPHJD GLK\GUR[\SRO\PHWK\O PHWKDFU\ODWHf LQ D TXDQWLWDWLYH \LHOG )LJXUH f 7KH FRXSOLQJ UHDFWLRQ ZDV FDUULHG RXW LQ WKH SUHVHQFH RI RQH HTXLYDOHQW ZLWK UHVSHFW WR WKH LQLWLDWRUf IOXRULGH LRQ 7$66L0H)f 7KH H[WHQW RI FRXSOLQJ ZDV GHWHUPLQHG E\ *3& +3/& DQG K\GUR[\O JURXS DQDO\VLV

PAGE 18

;r &+ 5n ? 0H6L&+&+ F f§ F^FKFfAFK ? &+ &5 ;n + 5 5n &+ %U&+AaA;n 7$66L0H) HTXLYDOHQWf 0H2+ RU %U n n 0H6L2&+&+ &+ 5 , &I&+D&A; FK FRU O2D; + 5 5n &+ E; %U 5 5n &+ F; + 5 &+ 5 + )LJXUH $ON\ODWLRQ KDORJHQDWLRQ DQG SURWRQDWLRQ RI OLYLQJ 300$ E\ *73

PAGE 19

D f &+%U %U&+f§ 7$66L0H) HTXLYDOHQWf &+ R Y FF nRFKFKRK FRU Q%X1) 2N "+ 9 "+ &&S+&7&+L 9&+&&+D&& +&+&+n K QD5 ?I K Q+n2&+&+2+ )LJ &RXSOLQJ RI WZR 300$ FKDLQV ZLWK D GLIXQFWLRQDO FRXSOLQJ DJHQW 6LPLODUO\ DOSKD RPHJDGLFDUER[\OSRO\PHWK\O PHWKDFU\ODWHf ZDV SUHSDUHG E\ LQLWLDWLQJ WKH SRO\PHUL]DWLRQ ZLWK nELV WULPHWK\OVLOR[\f PHWK\OSURSHQH f DQG K\GURO\]LQJ WKH HQG JURXS RI WKH UHVXOWLQJ SRO\PHU )LJXUH f $ FRQWURO VDPSOH ZDV UHPRYHG EHIRUH WKH DGGLWLRQ RI WKH FRXSOLQJ DJHQW &RPSDULVRQ RI WKH FRQWURO ZLWK WKH FRXSOHG SURGXFW HQDEOHV RQH WR GHWHUPLQH WKH H[WHQW RI FRXSOLQJ 7KXV WKH PRQRIXQFWLRQDO SRO\PHU FRQWUROf

PAGE 20

&0k ; 26c0H 26c0H +) 2 "+ &+ &+ 26L0H ; & & ‘FKFf§ff§ FK 2 ,, 0H6L2U  &+ ; 20H +2 FK &+ A&&&+ FWFK U n nQ FK FRFK &+ &+ &+ & &+rf§ &&r Lrf§ fQ &+ FK 2+ %U&+ R &+%U KFW +FW +2 FK FK A F f§F FKF n , A FK FRFK + )LJ 6\QWKHVLV RI DOSKD RPHJD GLFDUER[\300$ KDG 0Q 0Z ZKLOH WKH DOSKD RPHJDGLIXQFWLRQDOO]HG FRXSOHG SURGXFW e KDG 0Q DQG 0Z ,QGLFDWLQJ TXDQWLWDWLYH FRXSOLQJ 7KH UHDFWLRQ RI VLO\O HQRO HWKHUV ZLWK WHUWLDU\ DON\O KDOLGHV DQG WKH GLUHFW FRXSOLQJ RI VLO\O NHWHQH DFHWDOV ZLWK WLWDQLXP WHWUDFKORULGH 7&,f DUH NQRZQ 7HOHFKHOLF SRO\PHUV ZHUH SUHSDUHG WDNLQJ DGYDQWDJH RI WKHVH UHDFWLRQV 8VLQJ D PL[WXUH RI %U DQG 7&, DV WKH FRXSOLQJ DJHQW OLYLQJ SRO\PHUV D DQG ZHUH UHDFWHG LQGHSHQGHQWO\ )LJXUH f WR \LHOG WKH FRXSOHG SRO\PHUV D DQG E

PAGE 21

6WDU SRO\PHUV FDQ EH V\QWKHVL]HG E\ JHQHUDWLQJ SRO\IXQFWLRQDO LQLWLDWRUV KQ X E\ WKH 0LFKDHO DGGLWLRQ UHDFWLRQ RI SRO\IXQFWLRQDO PRQRPHUV ZLWK VLOLFRQ UHDJHQWV )LJ f 7KH DOWHUQDWLYH DSSURDFK ZRXOG LQYROYH LQLWLDWLRQ RI *73 ZLWK SRO\IXQFWLRQDO LQLWLDWRUV ZKLFK SUHVHQWV WKH SUREOHP RI V\QWKHVLV RI VXFK ODUJH UHDFWLYH LQLWLDWRUV %U7L&, D RU FKFL RrF 52 FK FK 9L L & f§ &f§I&+& A , FK FRFK D 5 &+&+26L0H E 5 6L0H FK FK FK F F W&+ F fQ L &+ f§ & FK FK D 5 &+2+26L0H E 5 6L0H F 27L&, 20H %U7L&OJ +&I 52 &+ FK D U FKFKFK E 5 + )LJ &RXSOLQJ RI 300$ FKDLQV ZLWK EURPLQH7L&9

PAGE 22

FKRRF L %X $Of 26L0H 20H 0H6L2 \ k Z )LJ 6\QWKHVLV RI VWDU SRO\PHUV E\ *73 :KHQ RQH HTXLYDOHQW RI D QIXQFWLRQDO PRQRPHU LV DOORZHG WR UHDFW ZLWK QHTXLYDOHQWV RI NHWHQH VLO\O DFHWDO LQLWLDWRU f LQ WKH SUHVHQFH RI D /HZLV DFLG FDWDO\VW VXFK DV GLDON\ODOXPLQXP FKORULGH RU GLDON\ODOXPLQXP R[LGHf IROORZHG E\ WKH DGGLWLRQ RI H[FHVV PRQRIXQFWLRQDO PRQRPHU FURVV OLQNLQJ GRHV QRW RFFXU EXW LQVWHDG VWDU SRO\PHUV DUH IRUPHG 7KXV WKH UHDFWLRQ RI ZLWK D PRODU HTXLYDOHQW RI WULPHWK\OROSURSDQH WULDFU\ODWH DW r& IROORZHG E\ WHQ PRODU HTXLYDOHQWV RI ($ JDYH D TXDQWLWDWLYH \LHOG RI VROXEOH VWDU SRO\PHU FRQWDLQLQJ QR UHVLGXDO XQVDWXUDWLRQ ZLWK 0Q 0Z DQG WKHRUHWLFDO 0Q f )LJ f 6LPLODUO\ WUHDWPHQW RI DW r& ZLWK PRODU HTXLYDOHQW RI SHQWDHU\WKULWRO WHWUDDFU\ODWH LQ WKH SUHVHQFH RI GLLVREXW\ODOXPLQXP R[LGH IROORZHG E\ WHQ HTXLYDOHQWV RI HWK\O DFU\ODWH JDYH D TXDQWLWDWLYH \LHOG RI

PAGE 23

VROXEOH SRO\PHU ZLWK 0Q 0Z DQG SRO\GLVSHUVLW\ WKHRUHWLFDO 0Q fHTXDWLRQ f &SRO\ ($f f 2EMHFWLYHV 2QH RI RXU RULJLQDO REMHFWLYHV ZDV WR LQYHVWLJDWH WKH HIIHFW RI DON\O RU DU\O VXEVWLWXWLRQ RQ 6L LQ WKH LQLWLDWRU PROHFXOH RQ WKH WDFWLFLW\ RI 300$ SUHSDUHG E\ *73 :H DOVR ZDQWHG WR LQYHVWLJDWH ZKDW VXEVWLWXHQW VL]H FRXOG EH WROHUDWHG RQ VLOLFRQ WR \LHOG 300$ E\ *73 ,Q WKLV UHJDUG WKH HIIHFW RI FKLUDO VLOLFRQ LQ WKH LQLWLDWRU PROHFXOH RQ WKH VWHUHRFKHPLVWU\ RI WKH SURFKLUDO FDUERQ ZDV RI VSHFLDO LQWHUHVW &KLUDO VLOLFRQ 3URFKLUDO FDUERQ :H ZHUH LQWHVWHG LQ H[SORULQJ WKH SRVVLELOLW\ IRU FKLUDOLW\ WUDQVIHU RQ WKH SURFKLUDO FDUERQ HQVXLQJ LQ SRVVLEOH WDFWLFLW\ FRQWURO +DWKDZD\ DQG 3DTXHWWH WHVWHG WKH FRQFHSW RI FKLUDO WUDQVIHU ZLWK WKH IROORZLQJ UHDFWLRQ

PAGE 24

2&+ &+ &+&+ &nI f 8VLQJ WKH DOO\OVLODQH DQG WKH GLPHWK\O DFHWDO KH IRXQG DERXW b HQDQWLRPHULF H[FHVV RI 7KXV WKHUH ZDV FOHDU HYLGHQFH IRU WKH WUDQVIHU RI FKLUDOLW\ IURP VLOLFRQ WR FDUERQ :H ZHUH LQWHUHVWHG LQ LQYHVWLJDWLQJ WKH GHJUHH RI VSHFLILFLW\ IRU FKLUDOLW\ WUDQVIHU LQ WKH *73 SURFHVV DQG KRZ WKLV PD\ EH RSWLPL]HG E\ 6L VXEVWLWXWLRQ 3HQWDFRRUGLQDWH VSHFLHV VXFK DV r IRUPHG E\ FRPSOH[DWLRQ RI WKH FDWDO\VW ZLWK WKH LQLWLDWRU PD\ UDFHPL]H WKURXJK SVHXGRURWDWLRQf DQ LQWUDPROHFXODU OLJDQG H[FKDQJH SURFHVVf ,I WKH UDWH RI SVHXGRURWDWLRQ LV VORZ HQRXJK IRU PHDVXUHPHQW DQG WKHUHIRUH VORZ RQ WKH SRO\PHUL]DWLRQ WLPH VFDOHf WKHQ LW PD\ EH SRVVLEOH WR PRQLWRU WKH UDFHPL]DWLRQ E\ RSWLFDO URWDWLRQ 5DFHPL]DWLRQ E\ SVHXGRURWDWLRQ ZRXOG GLPLQLVK FKLUDOLW\ WUDQVIHU WR SURFKLUDO FDUERQ :H ZDQWHG WR FDUU\ RXW VRPH H[SORUDWRU\ ZRUN LQ WKLV DUHD E\ ILUVW WU\LQJ WR V\QWKHVL]H UDFHPLF DQG WKHQ RSWLFDOO\ DFWLYH QDSKWK\OfSKHQ\OPHWK\OVLO\O HQRODWH RI WKH *73 LQLWLDWRU ee HTXDWLRQ f ,QLWLDOO\ ZH ZDQWHG WR SUHSDUH WKH UDFHPLF FRPSRXQG 3UHSDUDWLRQ RI WKH VLO\O FKORULGH e LQYROYHG IRXU VWHSV IROORZLQJ 6RPPHUnV SURFHGXUH

PAGE 25

, 0H +RZHYHU ZH FRXOG QRW V\QWKHVLVH LW E\ WKH XVXDO PHWKRG HTXDWLRQ f 0H&+&0H 1L3Uf/L ; D1Sf3Kf0Hf6L&, 26L f§3K L 0H 20H f :H GLG QRW WU\ IXUWKHU WR V\QWKHVL]H LW WKLQNLQJ WKH SURMHFW KLJKO\ ULVN\ IRU YDULRXV UHDVRQV ,W LV WR EH QRWHG WKDW WKH 'XSRQW JURXS LQ WU\LQJ WR WHVW WKH LQWHUPHGLDF\ RI D KH[DFRRUGLQDWH VWUXFWXUH ZKLFK ZRXOG UHTXLUH UHWHQWLRQ RI FRQILJXUDWLRQ DW VLOLFRQ GXULQJ WKH WUDQVIHU VWHS DV WKH VLO\O JURXS KDV EHHQ VKRZQ WR UHPDLQ LQYDULDQW LQ WKH ELIOXRULGH FDWDO\]HG *73 SURFHVVf V\QWKHVL]HG ERWK GLDVWHUHRPHUV RI VLODF\FORSHQWDQH LQLWLDWRUV D DQG E

PAGE 26

%XW WKHVH F\FOLF VLO\O NHWHQH DFHWDOV XQGHUZHQW UDSLG SVHXGRURWDWLRQ VWHUHRPXWDWLRQf DW VLOLFRQ XQGHU *73 UHDFWLRQ FRQGLWLRQV 7KXV LW LV OLNHO\ WKDW HYHQ LI WKH V\QWKHVLV RI WKH WDUJHW FRPSRXQG ZHUH SRVVLEOH WKH SURFHVV RI SVHXGRURWDWLRQ ZRXOG KDYH PDGH WKH RSWLFDO URWDWLRQ VWXGLHV GLIILFXOW LI WKH SVHXGRURWDWLRQ SURFHVV ZHUH WRR IDVW WR PHDVXUH DV LW QRZ VHHPV OLNHO\ ,QLWLDOO\ ZKHQ ZRUN RQ *73 EHJDQ LQ WKLV ODERUDWRU\ 'XSRQW ZDV VWLOO HQJDJHG LQ IXQGDPHQWDO UHVHDUFK LQ WKLV DUHD $V LW WXUQHG RXW VRPH RI RXU DUHDV RI LQYHVWLJDWLRQ ZHUH H[SORUHG E\ WKHP DQG WKH UHVXOWV SXEOLVKHG ZKLOH ZH ZHUH VWLOO DFWLYHO\ HQJDJHG LQ WKDW DUHD )RU H[DPSOH LQ RUGHU WR H[SORUH WKH HIIHFWV RI DON\O RU DU\Of VXEVWLWXWLRQ LQ 6L RQ 300$ WDFWLFLW\ ZH V\QWKHVL]HG D YDULHW\ RI VLO\O NHWHQH DFHWDOV WR EH XVHG DV LQLWLDWRUV IRU WKLV SXUSRVH VHH H[SHULPHQWDO VHFWLRQf DQG H[SHULHQFHG VRPH GLIILFXOW\ LQ SRO\PHUL]LQJ 00$ XVLQJ VRPH RI WKHP XQGHU FRQGLWLRQV RI YHU\ ORZ FDWDO\VW OHYHO ZLWK UHVSHFW WR WKH LQLWLDWRU +RZHYHU EHIRUH ZH FRXOG SURFHHG IXUWKHU ZH OHDUQHG WKDW PXFK RI ZKDW ZH ZHUH DERXW WR GR ZDV DOUHDG\ LQYHVWLJDWHG E\ 'XSRQW DQG JRLQJ WR EH SXEOLVKHG :H DOVR IRXQG RXW LQ WKLV FRQQHFWLRQ WKDW VXEVWLWXWLRQ RQ VLOLFRQ LQ WKH LQLWLDWRU HVVHQWLDOO\ KDG QR HIIHFW RQ WKH WDFWLFLW\ RI 300$ SUHSDUHG E\ *73 7KLV LQIRUPDWLRQ ZDV QHYHU SXEOLVKHG EXW ZDV REWDLQHG E\ SULYDWH FRPPXQLFDWLRQ

PAGE 27

:H WKHUHIRUH VKLIWHG RXU DWWHQWLRQ WR RWKHU DUHDV RI LQYHVWLJDWLRQ LQ *73 VXFK DV WKH WUDSSLQJ RI 300$ OLYLQJ HQGV ZLWK ODEHOOHG JURXSV LQ RUGHU WR REWDLQ LQIRUPDWLRQ RQ WKH FKDLQ HQG VWHUHRFKHPLVWU\ &RPSDULVRQ RI WKH VWHUHRFKHPLVWU\ RI WKH PDLQ FKDLQ ZLWK WKDW RI WKH FKDLQ HQG KDV EHHQ UHFHQWO\ VKRZQ WR EH DQ LQGHSHQGHQW PHWKRG IRU DQDO\VLQJ WKH SURSDJDWLRQ VWDWLVWLFV LQ WKH SRO\PHUL]DWLRQ RI YLQ\O PRQRPHUV 7KXV ZH ZDQWHG WR H[WHQG WKH DSSOLFDWLRQ RI WKH HQGJURXS PHWKRG VR IDU XVHG RQO\ IRU DQLRQLF SRO\PHUL]DWLRQ LQ WKHVH ODEVf WR *73 WR HOXFLGDWH WKH SURSDJDWLRQ VWDWLVWLFV RI 300$ SUHSDUHG E\ *73 $QRWKHU DUHD RI LQYHVWLJDWLRQ KDV EHHQ WR H[DPLQH WKH *73 RI PRQRPHUV RWKHU WKDQ 00$ DQG WKH WDFWLFLW\ RI WKH FRUUHVSRQGLQJ SRO\PHUV 7KXV WKH *73 RI GLSKHQ\OPHWK\O PHWKDFU\ODWH '0$f DQG WKH XQXVXDO PRQRPHU WULSKHQ\OPHWK\O PHWKDFU\ODWH 7U0$f KDYH EHHQ LQYHVWLJDWHG LQ GHWDLO DQG WKH WDFWLFLWLHV RI WKH SRO\PHUV FRPSDUHG WR WKRVH SUHSDUHG E\ DQLRQLF DQG UDGLFDO PHWKRGV ,Q WKLV UHJDUG ZH KDYH REWDLQHG VRPH HYLGHQFH WKDW WKH DVVRFLDWLYH PHFKDQLVP SURSRVHG IRU WKH *73 RI 00$ E\ WKH 'XSRQW JURXS PD\ QRW EH WUXH IRU RWKHU V\VWHPV VXFK DV 7U0$

PAGE 28

&+$37(5 ,, (;3(5,0(17$/ *HQHUDO 0XFK RI WKH ZRUN LQYROYLQJ FDUEDQLRQV ZDV FDUULHG RXW XQGHU KLJK YDFXXP PP +Jf 7KH YDFXXP ZDV JHQHUDWHG E\ WKH FRPELQDWLRQ RI D PHFKDQLFDO SXPS :HOFK 'XR6HDO 9DFXXP 3XPSf DQG D PHUFXU\ GLIIXVLRQ SXPS $OO VWRSFRFNV DQG JURXQG JODVV MRLQWV ZHUH OXEULFDWHG ZLWK 'RZ &RUQLQJ KLJK YDFXXP VLOLFRQH JUHDVH $OO JODVVZDUH ZDV FRQVWUXFWHG IURP S\UH[ XVLQJ D QDWXUDO JDVR[\JHQ WRUFK 7KH JODVVZDUH XVHG LQ WKH YDFXXP OLQH ZRUN ZDV WUHDWHG LQ WKH IROORZLQJ PDQQHU )LUVW DQ DSSDUDWXV ZDV ULQVHG VXFFHVVLYHO\ ZLWK b +) ZDWHU DQG DFHWRQH 7KHQ LW ZDV GULHG DW r& LQ WKH GU\LQJ RYHQ 3ULRU WR DOO UHDFWLRQV RQ WKH YDFXXP OLQH IXUWKHU GU\LQJ ZDV FDUULHG RXW RQ WKH YDFXXP OLQH E\ IODPH GHJDVVLQJ ZKLFK LQYROYHG KHDWLQJ DQ HYDFXDWHG DSSDUDWXV ZLWK D WRUFK 6ROYHQWV 7HWUDK\GURIXUDQ 7+)f ZDV GULHG E\ ILUVW UHIOX[LQJ RYHU 1D. DSSUR[LPDWHO\ UDWLRf IRU KRXUV $ERXW WZR OLWHUV RI 7+) ZDV WKHQ GLVWLOOHG DW DWPRVSKHULF SUHVVXUH $IWHU IOXVKLQJ WKH GLVWLOODWH IODVN IRU VHYHUDO PLQXWHV ZLWK DUJRQ IUHVK 1D DQG PHWDOV ZHUH DGGHG WR LW UDWLR RI VRGLXP WR SRWDVVLXPf DORQJ ZLWK J EHQ]RSKHQRQH 7KH IODVN ZDV WKHQ DWWDFKHG WR WKH YDFXXP OLQH DQG GHJDVVHG 7KH VROYHQW WXUQHG SXUSOH ZLWKLQ D

PAGE 29

KDOI KRXU LQGLFDWLQJ WKH SUHVHQFH RI EHQ]RSKHQRQH GLDQLRQ ZKLFK LQGLFDWHG WKH DEVHQFH RI ZDWHU DQG R[\JHQ 8QOHVV VWDWHG RWKHUZLVH DOO RWKHU VROYHQWV XVHG ZHUH SXULILHG E\ ILUVW VWLUULQJ ZLWK &D+ IRU VHYHUDO KRXUV IROORZHG E\ GLVWLOODWLRQ IURP &D+ &DWDO\VW 6\QWKHVHV 7ULVGLPHWKYODPLQRfVXOIRQLXP ELIOXRULGH 7$6+)f 7KLV ZDV SUHSDUHG IURP FRPPHUFLDOO\ DYDLODEOH 7$66L0H) 0H 7$66L0H) $OGULFK WHFKQLFDO JUDGH FRQWDLQLQJ DERXW b 7$6+)f 10Hf6 6L0H)n +2 10Hf6 +)f 6L0Hf f 7R WKH 7$66L0H) J PPROf ZDV DGGHG POB PPROf RI ZDWHU GLVVROYHG LQ PO RI DFHWRQLWULOH GLVWLOOHG IURP &D+f 7ZR OD\HUV IRUPHG 7KH YRODWLOHV ZHUH SXPSHG RII DQG WR WKH UHVLGXH ZHUH DGGHG PO RI DFHWRQLWULOH ILUVW DQG WKHQ PO RI 7+) &+&17+) UDWLRf 3UHFLSLWDWLRQ RU FU\VWDOOL]DWLRQ RFFXUUHG LPPHGLDWHO\ )LOWUDWLRQ XQGHU DUJRQ LQ D GU\ ER[f IROORZHG E\ GU\LQJ ZLWK KLJK YDFXXP JDYH J b \LHOGf RI 7$6+) LQ FU\VWDOOLQH IRUP 7KH A& 105 &'&1 0+]f VKRZHG RQO\ RQH DEVRUEDQFH DW SSP IRU WKH FDUERQ FRUUHVSRQGLQJ WR WKH 7$6 PRLHW\ 7KH DEVHQFH RI DQ\ 6&+ VLJQDO LQGLFDWHG TXDQWLWDWLYH FRQYHUVLRQ RI WKH VWDUWLQJ PDWHULDO 7$66L0H)f ,Q WKH SURWRQ 105 WKH SURWRQV RI WKH 7$6 PRLHW\ DSSHDUHG DW SSP 1WHWUDEXW\ODPPRQLXP DFHWDWH 1%82$& $OIDf DQG 1 WHWUDEXW\ODPPRQLXP IOXRULGH 1%8) $OGULFK 0 VROXWLRQ LQ 7+) FRQWDLQLQJ OHVV WKDQ ZWb ZDWHUf ZHUH XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ

PAGE 30

7ULVGLHWKYODPLQROVXOIRQLXP WULPHWKYOGLIOXRURVLOLFRQDWH (W7$6) 7KLV ZDV SUHSDUHG DFFRUGLQJ WR D SDWHQW SURFHGXUH 6) 0DWKHVRQf ZDV ILUVW FRQGHQVHG LQWR D JUDGXDWHG P/ F\OLQGHU XQGHU YDFXXP DW r& 6RPH RI LW PO PROHf RI WKLV ZDV WKHQ GLVWLOOHG WKURXJK WKH YDFXXP OLQH LQWR WKH UHDFWLRQ IODVN 'LHWK\O HWKHU SUHYLRXVO\ GLVWLOOHG RQFH IURP &D+f ZDV GLVWLOOHG DJDLQ IURP &D+ LQ YDFXR LQWR WKH UHDFWLRQ IODVN 7KHQ 11'LHWK\OWULPHWK\OVLO\ODPLQH 706'($ b $OGULFK J PPROHf ZDV DGGHG E\ PHDQV RI D V\ULQJH WR WKH UHDFWLRQ YHVVHO XQGHU DUJRQ DW r& 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU ILYH GD\V ZDUPLQJ XS WR URRP WHPSf 7ZR OLTXLG OD\HUV IRUPHG WKH ERWWRP OD\HU EHLQJ GDUN EURZQ 7KH WRS OD\HU PRVW SUREDEO\ ZDV 6L0H) D E\SURGXFW RI WKH UHDFWLRQf (W16L0H 6)f§!(W1f6 0H)6Ln 6L0H) f 7KH HWKHU DQG WULPHWK\OIOXRURVLODQH 706)f ZHUH UHPRYHG E\ HYDSRUDWLRQ LQ YDFXR $FFRUGLQJ WR WKH SDWHQW SURFHGXUH RQH LV HUURQHRXVO\ OHG WR EHOLHYH WKDW DW WKLV SRLQW WKDW WKH (W1f6 0H)6Lf ZLOO DSSHDU DV OLJKW JUH\ FU\VWDOV +RZHYHU WKLV ZDV QRW WKH FDVH WKXV SURYLQJ WKH JHQHUDO VWDWHPHQW WKDW SDWHQWV DUH PDGH WR FODLP DQG QRW WR UHYHDO LQIRUPDWLRQ (YHQ SULYDWH FRPPXQLFDWLRQ ZLWK 'XSRQW VFLHQWLVWV UHYHDOHG WKDW WKH\ WKHPVHOYHV ZHUH XQDEOH WR REWDLQ UHVXOWV DFFRUGLQJ WR WKH H[DFW ZRUGLQJV RI WKH SDWHQW SURFHGXUH $ GDUN EURZQ RLO ZDV WKH ILQDO SURGXFW ZKLFK HYHQ DIWHU FRQWLQXRXV HYDFXDWLRQ DW KLJK YDFXXP f WRUUf IRU PRUH WKDQ KRXUV GLG QRW \LHOG D VROLG 7KH UHDFWLRQ DSSDUDWXV ZDV WKHQ WUDQVIHUUHG XQGHU DUJRQ WR D GU\ ER[ IRU SUHSDUDWLRQ RI 105 VDPSOHV $QDO\VLV E\ + F DQFM S 105 UHYHDOHG WKH SUHVHQFH RI D PL[WXUH RI SURGXFWV (W1f66L0H)

PAGE 31

(W7$66L0H)f DQG (W1f6 +) LQ DSSUR[LPDWHO\ UDWLR LQ TXDQWLWDWLYH \LHOG &KDUDFWHUL]DWLRQ 105 & 7+)GJ 0+=f SSP 6&+f SSP 1&+e+ RI (W1f6 6L0H)f SSP 1e+ RI (W1f66L0H)f SSP 1&+e+ RI 7$6+)f SSP 1e+ RI 7$6+)f 105 !+ 7+)GJ 0+]f SSPV 6Le+f SSP W 1 &+&,, RI 7$6+) SSP W 1&+&+ RI (W1f66L0H)f SSP T 1& RI 7$6+)f SSP T 1& RI (W1f66L0H)f 105 I 7+)GJ 0+] &)&, SSPf SSP V7$66L0Hef SSP G -KI +] 7$6+ef 6\QWKHVLV DQG 3XULILFDWLRQ RI ,QLWLDWRUV .HWHQH 7ULDONYOVLOYO $FHWDOV 7KHVH FRPSRXQGV ZHUH SUHSDUHG DFFRUGLQJ WR SXEOLVKHG SURFHGXUHV ZMWK VRPH PRGLILFDWLRQV &RPSRXQG 0PHWKR[Y WULPHWKYOVLOR[YPHWKYO SURSHQH $OGULFKf ZDV GLVWLOOHG ILUVW IURP &D+ r& PP +Jf DQG VWRUHG XQGHU DUJRQ 7R WKLV ZDV DGGHG IUHVK &D+ DQG WKH URXQG ERWWRP IODVN $ FRQWDLQLQJ LW VHH )LJ f ZDV DWWDFKHG WR WKH VLGH DUP % 7KH DSSDUDWXV ZDV WKHQ DWWDFKHG WR WKH YDFXXP OLQH DQG WKH FRQWHQWV RI $ ZHUH VWLUUHG IRU DQ DGGLWLRQDO KRXUV ZLWK &D+ ZLWK RFFDVLRQDO GHJDVVLQJ ,W ZDV ILQDOO\ GLVWLOOHG LQWR & E\ KHDWLQJ $ LQWHUPLWWHQWO\ ZLWK D ORZ WHPSHUDWXUH KHDW JXQ DFWXDOO\ D KDLU GU\HUf ZKLOH & ZDV LPPHUVHG LQ D GU\ LFHLVRSURSDQRO EDWK r&f :KLOH $ DQG & ZHUH NHSW FROG WKH DPSRXOH ZDV VHDOHG RII DW WKH FRQVWULFWLRQ LQ YDFXR

PAGE 32

)LJ $SSDUDWXV XVHG IRU WKH LQYDFXR GLVWLOODWLRQ RI WKH *73 LQLWLDWRU LQWR DQ DPSRXOH

PAGE 33

$ QXPEHU RI NHWHQH WULDON\OVLO\O DFHWDOV VRPH DUH QHZ FRPSRXQGVf KDYH EHHQ SUHSDUHG DFFRUGLQJ WR JHQHUDO SXEOLVKHG SUHRFHGXUHV VHH 7DEOH f LQ WKH KRSHV RI XVLQJ WKHP DV *73 ,QLWLDWRUV 7KH SUHSDUDWLRQ RI DQG DUH LOOXVWUDWLYH JHQHUDO SURFHGXUHV 6\QWKHVLV RI 0HWK\O GLPHWKYOHWKYOVLOYO GLPHWK\O NHWHQH DFHWDO 7KLV ZDV SUHSDUHG DFFRUGLQJ WR D OLWHUDWXUH SURFHGXUH $ WKUHH QHFN URXQG ERWWRPHG IODVN ZDV IODPH GULHG XQGHU YDFXXP 7+) POf ZDV GLVWLOOHG LQ WKURXJK WKH YDFXXP OLQH DW r& 'LLVRSURS\ODPLQH J PO PPROf SUHYLRXVO\ GLVWLOOHG IURP &D+ ZDV WKHQ DGGHG WR WKH IODVN XQGHU DUJRQ IROORZHG E\ DGGLWLRQ RI PO RI 0 %X/L PPROf ZLWK D V\ULQJH 7KH PL[WXUH ZDV VWLUUHG IRU PLQV ZKLOH WKH GU\ LFH EDWK ZDV UHSODFHG E\ DQ LFH ZDWHU EDWK 7KHQ PHWK\O LVREXW\UDWH &+&+f&&!0H 7DEOH 'LIIHUHQW 6LO\O .HWHQH $FHWDOV 6\QWKHVL]HG IRU 8VH $V ,QLWLDWRUV LQ WKH *73 RI 00$ &RPSRXQG 1R &+f& &20Hf26L5L 55f %(% 0HWKRG XVHG UHIf 0H(W 0HL3U 0HW%X 0H &+ YLQ\O 0H &+ (W

PAGE 34

$OGULFK J PPROf GLVWLOOHG IURP &D+ ZDV DGGHG GURSZLVH XQGHU DUJRQ ZLWK D V\ULQJH DW r& 7KH UHDFWLRQ PL[WXUH ZDV VWLUUHG IRU DQ DGGLWLRQDO PLQXWHV DW r& DQG WKHQ ZDV WUHDWHG ZLWK H[FHVV FKORURHWK\OGLPHWK\OVLODQH $OGULFKf GLVWLOOHG IURP &D+ WKURXJK WKH YDFXXP OLQH 7KH PL[WXUH ZDV VWLUUHG IRU DQ DGGLWLRQDO KRXU DW r& DQG WKHQ DOORZHG WR ZDUP VORZO\ WR URRP WHPSHUDWXUH ,W ZDV ILOWHUHG VHYHUDO WLPHV WR UHPRYH WKH LQRUJDQLF VDOWV /L&,f (YDSRUDWLRQ RI VROYHQW JDYH DQ RLO\ UHVLGXH ZKLFK ZDV ILOWHUHG DJDLQ WKURXJK JODVV ZRRO 7KH RLO ZDV WKHQ GLVWLOOHG LQ YDFXR ZLWK D IUDFWLRQDWLQJ FROXPQ VHYHUDO IUDFWLRQV ZHUH FROOHFWHG DQG WKHLU SXULW\ FKHFNHG E\ *& 7KH SXUHVW IUDFWLRQ ZDV GHWHUPLQHG WR EH b SXUH 7KH \LHOG ZDV DSSUR[LPDWHO\ b &RPSRXQGV e DQG ZHUH SUHSDUHG DFFRUGLQJ WR WKH DERYH JHQHUDO SURFHGXUH XVLQJ PHWK\O LVREXW\UDWH DQG WKH FRUUHVSRQGLQJ VLO\O FKORULGHV 7KH \LHOGV RI LVRODWHG VLO\O NHWHQH DFHWDOV UDQJHG IURP b 6\QWKHVLV RI PHWK\O WULHWKYOVLOYO GLPHWKYONHWHQH DFHWDO ff 7KH UHDFWLRQ LV UHSUHVHQWHG E\ WKH IROORZLQJ HTXDWLRQ &+ &&+f &0Hf 56L+ f§! &+ &&+f26L5f f $ PL[WXUH RI PHWK\O PHWKDFU\ODWH J PPRO GLVWLOOHG IURP &D+f WULHWK\OVLODQH J PROHf DQG WULV WULSKHQ\OSKRVSKLQHf UKRGLXP FKORULGH :LONLQVRQnV FDWDO\VW $OGULFK JROG ODEHO PJ PPROf ZDV KHDWHG DW r& XQGHU YDFXXP IRU PLQXWHV 7KH NHWHQH VLO\O DFHWDO ZDV REWDLQHG E\ IUDFWLRQDO YDFXXP GLVWLOODWLRQ LQ YDULRXV IUDFWLRQV EHVW IUDFWLRQ b SXUH E\ *&f 7KH \LHOG RI FRPELQHG IUDFWLRQV ZDV b

PAGE 35

&RPSRXQG ZDV RQFH XQVXFFHVVIXOO\ DWWHPSWHG WR EH SUHSDUHG E\ WKH PHWKRG RI $LQVZRUWK +RZHYHU WKH PHWKRG RI
PAGE 36

&RPSRXQG n + 105 &'&, 0+]f SSP 6L0Hf DQG SSP V &Kf& f 20HO SSP DURPDWLF +fVf SSP DURPDWLF +nVf 105 F 0+] &'&,f SSP 6Le+f DQG SSP e+f& f SSP 20ILf SSP 0He f SSP DURPDWLF &nVf SSP e26L0Hf20Hf &RPSRXQG n + 0+] &'&,f SSP T 6L&0H ILQH FRPSOLFDWHG VSOLWWLQJf SSP FRPSOLFDWHG W 6&+&0f SSP &Kf& f SSP 2&+f 105 Tf 0+] &'&,f SSP 6Le+&+f SSP 6L&+0ILf DQG SSP e+f& f SSP Af SSP &+fe f SSP e26L0Hf20Hf ,Q WKH OLWHUDWXUH PRVW RI WKH VLO\O NHWHQH DFHWDOV ZHUH GHVFULEHG DV KDYLQJ EHHQ SXULILHG E\ GLVWLOODWLRQ DQG SUHSDUDWLYH *&pn 7KH\ DUH VHQVLWLYH WR PRLVWXUH DQG GHFRPSRVH XSRQ DWWHPSWHG VHSDUDWLRQ RU SXULILFDWLRQ E\ FROXPQ FKURPDWRJUDSK\ 7KXV IRU H[DPSOH WKH DWWHPSWHG VHSDUDWLRQ RI ZLWK QHXWUDO DOXPLQD DQG YHU\ GU\ VROYHQWV UHVXOWHG LQ WKH FOHDYDJH RI WKH 26L ERQG DQG WKH FRUUHVSRQGLQJ VLO\O DOFRKRO 6L&+f&+f&+ &+f2+ff ZDV LVRODWHG DV D E\SURGXFW LGHQWLILHG E\ + 105 VSHFWURVFRS\ 0+] &'&,f SSP V6L&-f SSP EURDG V 6L28f SSP PXOWLSOHW &+ &f SSP DURPDWLF +nVf (YHQ WKH & VLO\O FRPSRXQGV GHFRPSRVH XSRQ DWWHPSWHG VHSDUDWLRQ E\ FROXPQ FKURPDWRJUDSK\ 7KH VFKHPH IRU WKH V\QWKHVLV RI O1DSKWK\OfSKHQ\OPHWK\OFKORURVLODQH ZDV WKH VDPH DV WKDW RI 6RPPHU DQG LV VKRZQ LQ )LJ

PAGE 37

6\QWKHVLV RI 1DSKWKYOf SKHQYOPHWKYOPHWKR[YVLODQH ef 7KLV ZDV SUHSDUHG DFFRUGLQJ WR WKH OLWHUDWXUH SURFHGXUHA )LUVW WKH *ULJQDUG UHDJHQW 1S0J%Uf ZDV SUHSDUHG $ QHFN URXQG ERWWRP IODVN ZDV HTXLSSHG ZLWK D FRQGHQVHU D GU\LQJ WXEH DQG DQ DGGLWLRQ IXQQHO ([FHVV PDJQHVLXP WXUQLQJV DQG D VROYHQW PL[WXUH FRQVLVWLQJ RI SDUWV E\ YROXPHf RI HWKHU SDUWV RI WROXHQH DQG RQH SDUW RI 7+) ZDV SODFHG LQVLGH WKH IODVN ,Q WKH DGGLWLRQ IXQQHO ZDV SODFHG J PPROf RI EURPRQDSKWKDOHQH DQG PO RI WKH DERYH VROYHQW PL[WXUH 7KH *ULJQDUG UHDJHQW ZDV SUHSDUHG E\ JUDGXDO DGGLWLRQ RI WKH FRQWHQWV RI WKH DGGLWLRQ IXQQHO WR WKH QHFN IODVN $Q RLO EDWK WHPS PDLQWDLQHG DW r&f ZDV XVHG WR ZDUP WKH PL[WXUH DQG LRGLQH ZDV DGGHG WR LQLWLDWH WKH *ULJQDUG UHDFWLRQ 7KH GDUN SXUSOH FRORU RI WKH LRGLQH IDGHG DV WKH UHDFWLRQ VWDUWHG WRJHWKHU ZLWK JUDGXDO GHSOHWLRQ RI PDJQHVLXP $W WKH HQG RI WKH UHDFWLRQ WKH FRORU RI WKH UHDFWLRQ PL[WXUH ZDV \HOORZ 7KH DSSDUDWXV ZDV FRROHG XVLQJ DQ LFHZDWHU EDWK DQG J PPROf RI PHWK\OSKHQ\OGLPHWKR[\VLODQH GLVVROYHG LQ WKH DERYH VROYHQW PL[WXUH ZDV DGGHG $ ZKLWH SUHFLSLWDWH IRUPHG XSRQ WKH DGGLWLRQ RI WKH UHDJHQW 7KH LFHZDWHU EDWK ZDV UHPRYHG DQG UHSODFHG ZLWK DQ RLO EDWK DQG WKH PL[WXUH ZDV VWLUUHG RYHUQLJKW DW r& ,W ZDV WKHQ WUHDWHG ZOLWK FROG DTXHRXV DPPRQLXP FKORULGH VDWXUDWHGf DQG ZDVKHG WKUHH WLPHV ZLWK PO SRUWLRQV RI ZDWHU LQ D VHSDUDWRU\ IXQQHO $Q LQRUJDQLF JUHHQ SUHFLSLWDWH ZDV OHIW EHKLQG LQ WKH UHDFWLRQ YHVVHO SUREDEO\ +20J%Uf 7KH RUJDQLF OD\HU ZDV GULHG RYHU DQK\GURXV VRGLXPVXOIDWH )LOWUDWLRQ DQG UHPRYDO RI WKH VROYHQW SURYLGHG D YLVFRXV V\UXS ZKLFK ZDV FKURPDWRJUDSKHG E\ +3/& XVLQJ KH[DQH7+) VROYHQW PL[WXUH $W ILUVW SXUH KH[DQH ZDV XVHG DV DQ HOXHQW 7KLV HOXWHG WKH GHVLUHG FRPSRXQG +H[DQH7+) PL[WXUH SURJUDPPHG WR VORZO\ FKDQJH WKH FRPSRVLWLRQ RI VROYHQW PL[WXUH WR SXUH 7+)f UHPRYHG RWKHU

PAGE 38

0J 0J%U 1S%U 6L3Kf0Hf 2&+f +r 3K 1S 6Lf§&+ + 3K 1Sf§6Lf§ &+ L &O )LJ 6FKHPH LOOXVWUDWLQJ WKH V\QWKHVLV RI QDSKWK\Of SKHQ\OPHWK\O FKORURVLODQH

PAGE 39

FRPSRXQGV IURP WKH FROXPQ *& VKRZHG WKH FRPSRXQG f WR EH DW OHDVW b SXUH ,W ZDV FKDUDFWHUL]HG E\ + DQG & 105 105 + 0+] &'&,f SSP V 6L&+f SSP V 2&+f SSP P DURPDWLF +nVf 105 F 0+] &'&,f SSP 6Le+f SSP 24+f eB6L13f3Kf20Hff DURPDWLF &nVf 6\QWKHVLV RI 1DSKWK\Of SKHQYOPHWK\OPHQWKR[\VLODQH ^f 7KLV FRPSRXQG ZDV DOVR SUHSDUHG DFFRUGLQJ WR 6RPPHUnV SURFHGXUH ,QWR D URXQG ERWWRP IODVN ZDV SODFHG J PPROf RI J ; n PROHf RI PHQWKRO DQG D IHZ JUDLQV RI SRZGHUHG .2+ SRZGHUHG IURP .2+ SHOOHWVf 7ROXHQH DV WKH UHDFWLRQ VROYHQW ZDV WKHQ DGGHG 7KH UHDFWLRQ PL[WXUH ZDV PDLQWDLQHG DW r IRU VL[ KRXUV ZKLOH DQ\ 0H2+WROXHQH D]HRWURSH ZDV GLVWLOOHG WKURXJK D IUDFWLRQDWLQJ FROXPQ 7KH WROXHQH ZDV HYDSRUDWHG RII IURP WKH UHDFWLRQ PL[WXUH DQG WKH ODWWHU ZDV SDVVHG WKURXJK D FROXPQ RI VLOLFD HOXHQW &+&, ILUVW WKHQ 7+)f WR UHPRYH WKH EDVLF .2+ DQG DQ\ RWKHU ILQH LQRUJDQLF PDWHULDO 6HSDUDWLRQ RI WKH SURGXFW E\ +3/& ZLWK KH[DQH DV WKH HOXHQWf \LHOGHG SXUH / DV MXGJHG IURP *& 7KH PDWHULDO ZDV D YLVFRXV FRORUOHVV V\UXS 7KH UHDFWLRQV LQYROYHG LQ WKH SUHSDUDWLRQ RI DUH 0HQWKRO .2+ 0HQ2n + f 0HQ2n.6LD1DSKf3Kf0Hf20Hf 6L1DSKf3Kf0Hf20HQf &+2+ .2+ f

PAGE 40

7KH SURFHGXUH LQ WKH OLWHUDWXUH FDOOHG IRU IUDFWLRQDO GLVWLOODWLRQ r& PP +Jf EXW ,Q WKLV FDVH ,W ZDV REWDLQHG VLPSO\ E\ +3/& VHSDUDWLRQ 7KH + DQG F 105 ZHUH FRPSOHWHO\ FRQVLVWHQW ZLWK WKH VWUXFWXUH 105 + 0+] &'&,f SSP P DURPDWLF +nVf SSP P 2&+5f SSP P DOLSKDWLF +nVf 6\QWKHVLV RI I1DSKWKYKSKHQYOPHWKYOVLODQH f 7KLV FRPSRXQG ZDV SUHSDUHG DFFRUGLQJ WR 6RPPHUnV SURFHGXUH &RPSRXQG = J PPROf ZDV GLVVROYHG LQ PO RI DQK\GURXV HWKHU DQG WKH VROXWLRQ SODFHG LQ D URXQG ERWWRPH IODVN 8$,+ PJ PPRO HTXLYDOHQWVf DQG PO RI GLQEXW\O HWKHU ZHUH WKHQ DGGHG 0RVW RI WKH GLHWK\O HWKHU ZDV UHPRYHG E\ GLVWLOODWLRQ DV WKH PL[WXUH ZDV VORZO\ KHDWHG WR r& +HDWLQJ ZDV FRQWLQXHG DW r& IRU KRXUV $IWHU GHFRPSRVLWLRQ RI WKH H[FHVV PHWDOOLF K\GULGH ZLWK DFHWRQH WUHDWPHQW ZLWK FUXVKHG LFH DQG FRQFHQWUDWHG K\GURFKORULF DFLG ZDV IROORZHG E\ GU\LQJ RYHU VRGLXP VXOIDWH DQG ILOWHULQJ 6ROYHQWV DQG PHQWKRO ZHUH UHPRYHG E\ KHDWLQJ WR r& DW PP +J 7KH UHPDLQLQJ PDWHULDO ZDV IXUWKHU ILOWHUHG WR UHPRYH VRPH VROLG LPSXULWLHV DQG FKURPDWRJUDSKHG E\ +3/& KH[DQH EHLQJ WKH HOXHQW WR DIIRUG LQ SXUH IRUP DV MXGJHG IURP *& 7KH FRPSRXQG ZDV FKDUDFWHUL]HG E\ + DQG F 105 105 + 0+] &'&,f SSP T 6L-Gf SSP G 6&f SSP DURPDWLF +nVf 105 F 0+] &'&,f SSP 6Le+f SSP DURPDWLF DEVRUSWLRQVf

PAGE 41

6\QWKHVLV RI 0QDSKWKYKSKHQYOPHWKYFKORURVLODQH f 7KLV FRPSRXQG ZDV SUHSDUHG XVLQJ 6RPPHUnV SURFHGXUH ,Q D WKUHHQHFN URXQG ERWWRP IODVN ZDV SODFHG J PPROf RI GLVVROYHG LQ GU\ &&, :KLOH FRROLQJ WKH UHDFWLRQ IODVN LQ DQ LFH EDWK DQG PDJQHWLFDOO\ VWLUULQJ WKH FRQWHQWV FKORULQH JDV ZDV SDVVHG LQWR WKH VROXWLRQ E\ PHDQV RI D IULWWHG JODVV JDV GLVSHUVLRQ WXEH 7KH UHDFWLRQ ZDV YHU\ UDSLG DSSUR[LPDWHO\ RQH PLQf DQG LW ZDV SRVVLEOH WR REVHUYH D JUHHQLVK \HOORZ HQG SRLQW ZKHQ WKH UHDFWLRQ RI 6L+ ZDV FRPSOHWHG 7KH VROYHQW ZDV UHPRYHG E\ D URWDU\ HYDSRUDWRU WR DIIRUG WKH VLO\O FKORULGH LQ TXDQWLWDWLYH \LHOG 7KH FRPSRXQG DW WKLV VWDJH ZDV b SXUH *&f DQG ZDV FKDUDFWHUL]HG E\ ERWK + DQG T 105 ZKLFK ZHUH FRQVLVWHQW ZLWK WKH VWUXFWXUH 105 + 0+] &'&,f SSP V 6&+f SSP DURPDWLF +nVf 105 F 0+] &'&,f SSP 6Le+f DURPDWLF &nVf $Q DWWHPSW WR LPSURYH WKH SXULW\ RI E\ +3/& VHSDUDWLRQ HOXWLQJ VROYHQW EHLQJ KH[DQHf UHVXOWHG LQ D PHVV FRPSOHWHO\ GHJUDGLQJ WKH VLO\O FKORULGH 3UHVXPDEO\ WKHUH LV D UHDFWLRQ LQYROYLQJ 6L2+ JURXS RI WKH VLOLFD JHO FROXPQ ZLWK WKH VLO\O FKORULGH \LHOGLQJ WKH FRUUHVSRQGLQJ VLO\O DOFRKRO $QLRQLF ,QLWLDWRUV 6DPSOHV RI GLSKHQ\OPHWK\OOLWKLXP '30/f ZHUH NLQGO\ GRQDWHG E\ RWKHU PHPEHUV RI WKH UHVHDUFK JURXS 7KH\ ZHUH SUHSDUHG DFFRUGLQJ WR HVWDEOLVKHG SURFHGXUH 7KH '30/ LQLWLDWRU FRQFHQWUDWLRQV ZHUH GHWHUPLQHG E\ *& XVLQJ WKH IROORZLQJ SURFHGXUH $ERXW RQH PO RI '30/ VROXWLRQ LQ 7+)f ZDV UHDFWHG RQ WKH YDFXXP OLQH ZLWK GU\ 0HO 0HO GULHG RYHU &D+f 7KH WHUPLQDWHG '30/

PAGE 42

LQLWLDWRU ZDV DQDO\]HG E\ *& WR GHWHUPLQH WKH SUHVHQFH RI GLSKHQ\OPHWKDQH DV XQUHDFWHG VWDUWLQJ PDWHULDO RU DV XQH[SHFWHG SURWRQDWHG SURGXFWf )URP WKH UHODWLYH LQWHQVLWLHV RI WKH GLSKHQ\OPHWKDQH DQG GLSKHQ\OHWKDQH SHDNV WKH IUDFWLRQ RI WKH PHWK\ODWHG SURGXFW DQG WKHUHIRUH WKDW RI '30/ ZDV FDOFXODWHG ,Q PRVW FDVHV RQO\ QHJOLJLEOH DPRXQWV RI GLSKHQ\OPHWKDQH ZHUH GHWHFWHG 7R D NQRZQ DPRXQW RI GLSKHQ\OPHWKDQH ZDV DGGHG D NQRZQ YROXPH RI WKH 0HO WHUPLQDWHG '30/ VROXWLRQ 7KH PL[WXUH ZDV DQDO\]HG E\ *& DQG WKH FRQFHQWUDWLRQ RI WKH XQNQRZQ '30/ LQLWLDWRU ZDV GHWHUPLQHG E\ GLUHFW FRPSDULVRQ RI WKH 0HO WHUPLQDWHG '30/ ZLWK GLSKHQ\OPHWKDQH VWDQGDUG VROXWLRQ (YHQ WKRXJK WKH *& XVHG HPSOR\HG D IODPH LRQL]DWLRQ GHWHFWRU ZKLFK UHVSRQGHG WR WKH QXPEHU RI FDUERQ DWRPV D PROHFXOH SRVVHVVHG GLSKHQ\OPHWKDQH & GLSKHQ\OHWKDQH &f QR FRUUHFWLRQV ZHUH PDGH IRU GHWHFWRU UHVSRQVH LQ WKH FRQFHQWUDWLRQ GHWHUPLQDWLRQ RI '30/ ,W KDV EHHQ SUHYLRXVO\ YHULILHG WKDW VXFK DQDO\VLV ZLWKRXW FRUUHFWLRQV IRU FRPSRXQGV KDYLQJ D ORW RI FDUERQ DWRPV EXW GLIIHULQJ IURP HDFK RWKHU E\ RQO\ RQH FDUERQ DWRPf UHVXOWV LQ SUDFWLFDOO\ QR HUURU 0RQRPHU 6\QWKHVHV DQG 3XULILFDWLRQ 0HWKYO 0HWKDFU\ODWH 00$ ,Q D PO URXQG ERWWRP IODVN HTXLSSHG ZLWK D UHIOX[ FRQGHQVHU DQG &D6 GU\LQJ WXEH PO 00$ $OGULFKf ZDV VWLUUHG RYHU &D+ DW URRP WHPSHUDWXUH IRU VHYHUDO KRXUV f 7KH 00$ ZDV WKHQ GLVWLOOHG XQGHU DWPRVSKHULF SUHVVXUH r&f GLVFDUGLQJ WKH ILUVW DQG ODVW IHZ PLOOLOLWHUV RI GLVWLOODWH )UHVK &D+ ZDV DGGHG WR WKH GLVWLOODWH 7KH GLVWLOODWHG ZDV WKHQ DWWDFKHG WR WKH YDFXXP OLQH DQG GLVWLOOHG LQ YDFXR LQWR IODVN $ FRROHG DW

PAGE 43

r&f RI WKH DSSDUDWXV VKRZQ LQ )LJ 7KH IODVN ZDV ZDUPHG WR URRP WHPSHUDWXUH DQG DIWHU WKH LQWURGXFWLRQ RI DUJRQ LQWR WKH DSSDUWXV WULHWK\ODOXPLQXPn ZDV DGGHG GURSZLVH LQWR $ WKURXJK VLGHDUP % E\ PHDQV RI D GRXEOH WLSSHG QHHGOH XQWLO WKH 00$ WXUQHG VOLJKWO\ EXW D SHUVLVWHQW JUHHQLVK \HOORZ FRORU 7KH IODVN $ ZDV FRROHG WR r& DQG HYDFXDWHG DQG WKH FRQVWULFWLRQ LQ % VHDOHG RII XQGHU YDFXXP 7KHQ WKH 00$ ZDV GLVWLOOHG LQWR WKH VLGH DPSRXOH & DIWHU $ ZDV ZDUPHG WR URRP WHPSHUDWXUH DQG & FRROHG DW r& $PSRXOH & ZDV VHDOHG RII IURP WKH YDFXXP OLQH DQG WKH 00$ ODWHU VXEGLYLGHG LQWR VPDOOHU EUHDNVHDOHTXLSSHG DPSRXOHV 7KH 00$ DPSRXOHV ZHUH VWRUHG LQ WKH IUHH]HU DW r& 6LOYHU 0HWKDFU\ODWH 7KLV ZDV SUHSDUHG DFFRUGLQJ WR OLWHUDWXUH SURFHGXUHV 0HWKDFU\OLF DFLG ZDV ILUVW GLVWLOOHG LQ YDFXR WR UHPRYH WKH K\GURTXLQRQH PRQRPHWK\O HWKHU LQKLELWRU 6RPH RI LW PO J PPROf ZDV SODFHG LQ D PO WKUHHQHFN URXQG ERWWRP IODVN HTXLSSHG ZLWK D PHFKDQLFDO VWLUUHU DQG WZR DGGLWLRQ IXQQHOV $W URRP WHPSHUDWXUH PO PPROf RI DTXHRXV b DPPRQLXP K\GUR[LGH VROXWLRQ ZDV DGGHG GURSZLVH 7KH J PPROf RI VLOYHU QLWUDWH GLVVROYHG LQ PO RIGHLRQL]HG ZDWHUf ZDV DGGHG GURSZLVH WR WKH DPPRQLXP PHWKDFU\ODWH 7KH VLOYHU PHWKDFU\ODWH $J0$f SUHFLSLWDWHG DV D JUH\ VROLG 7KH UHDFWLRQ ZDV VWLUUHG IRU DQ DGGLWLRQDO WZR KRXUV 7KH $J0$ ZDV VHSDUDWHG E\ ILOWUDWLRQ DQG UHFU\VWDOOL]HG IURP ERLOLQJ ZDWHU 7KH ILQDO SURGXFW ZDV HLWKHU JUH\LVK RU VOLJKWO\ SXUSOH LQ FRORU ,W ZDV ILUVW GULHG LQ WKH YDFXXP RYHQ RYHUQLJKW DW URRP WHPSHUDWXUH DQG WKHQ IXUWKHU GULHG RQ WKH YDFXXP OLQH f WRUUf IRU KRXUV ,W ZDV VWRUHG XQGHU KLJK YDFXXP LQ IODVNV HTXLSSHG

PAGE 44

)LJ $SSDUDWXV XVHG WRU WKH SXULILFDWLRQ RI 00$

PAGE 45

ZLWK KLJK YDFXXP VWRSFRFNV )LJ f 7KH \LHOG DIWHU UHFU\VWDOOL]DWLRQ ZDV DERXW b 7ULSKHQYOPHWKYO 7ULWYK 0HWKDFU\ODWH 7KLOV ZDV SUHSDUHG DFFRUGLQJ WR OLWHUDWXUH SURFHGXUHV $J0$ J PPROf VXVSHQGHG LQ GU\ HWKHU ZDV SODFHG LQ D PO WKUHH QHFN URXQG ERWWRP IODVN HTXLSSHG ZLWK DQ DGGLWLRQ IXQQHO D UHIOX[ FRQGHQVHU ZLWK FDOFLXP VXOIDWH GU\LQJ WXEHf D PDJQHWLF VWLUUHU DQG DQ RLO EDWK 7ULW\O FKORULGH $OGULFK J PPROf ZDV GLVVROYHG LQ PO RI GU\ HWKHU DQG DGGHG WR WKH $J0$HWKHU VXVSHQVLRQ 7KH UHDFWLRQ ZDV UHIOX[HG RYHUQLJKW 7KH $J&, ZDV FROOHFWHG E\ YDFXXP ILOWUDWLRQV DQG WKH HWKHU ILOWUDWH ZDV FRQGHQVHG RQ D URWDU\ HYDSRUDWRU 7KH FUXGH WULW\O WULW\O PHWKDFU\ODWH ORRNV VOLJKWO\ \HOORZLVK ,W LV SXULILHG E\ D KRW ILOWUDWLRQ XVLQJ FHOLWH DQG GU\ HWKHU DQG WKHQ D VLPSOH UHFU\VWDOOL]DWLRQ XVLQJ HWKHU )LQDO SURGXFW \LHOGV ZHUH b RU OHVV 7KH 7U0$ ZDV JURXQG WR D ILQH SRZGHU DQG VWRUHG XQGHU KLJK YDFXXP DV LQ )LJ f ,W ZDV FKDUDFWHUL]HG E\ PHOWLQJ SRLQW HOHPHQWDO DQDO\VLV DQG + DQG & 105 03 r& OLW r&f m (OHPHQWDO DQDO\VLV )RXQG & ), b &DOFXODWHG IRU &+2 & + b 105 + 0+] &'&,f SSP P DURPDWLF +nVf SSP -V YLQ\O +f SSP V YLQ\O +f SSP V &&f 105 & 0+] &'&,f SSP &e+f SSP e3Kf YLQ\O &nVf SDUD PHWD DQG RUWKR DURPDWLF &nVf LSVR DURPDWLF &f SSP e f

PAGE 46

)LJ $SSDUDWXV IRU WKH VWRUDJH RI VROLG PDWHULDOV XQGHU KLJK YDFXXP

PAGE 47

$FFRUGLQJ WR D SUHYLRXV UHSRUW WKH WULW\O FKORULGH ZDV UHFU\VWDOOL]HG EHIRUH XVH ,Q WKH SUHVHQW FDVH LW GLGQnW VHHP WR PDNH DQ\ GLIIHUHQFH ZKHWKHU WKH WULW\O FKORULGH ZDV UHFU\VWDOOL]HG IURP D PL[WXUH RI EHQ]HQH DQG DFHW\O FKORULGH LQ D YY UDWLRf RU QRW 7KHUHIRUH LQ PRVW FDVHV XQUHFU\VWDOOL]HG WULW\O FKORULGH DV GLUHFWO\ REWDLQHG IURP $OGULFKf ZDV XVHG ,W DSSHDUV WKDW ERWK WULW\O FKORULGH DQG WULW\O PHWKDFU\ODWH FDQQRW EH DQDO\]HG IRU SXULW\ E\ *& )RU H[DPSOH DOWKRXJK WKH + DQG WKH & 105 RI 7U0$ ORRNHG YHU\ JRRG LQ WHUPV RI SXULW\ WKH *& RI WKH VDPH VDPSOH RIWHQ VKRZHG WKUHH SHDNV ZLWK WKH PDMRU FRPSRQHQW EHLQJ DERXW b 7KXV WKHUH DSSHDUHG WR EH WRR PXFK GLVFUHSDQF\ EHWZHHQ *& DQG 105 UHVXOWV LQGLFDWLQJ SRVVLEOH GHFRPSRVLWLRQ RI WKH PDWHULDO LQ WKH *& FROXPQ 7KH V\QWKHVLV RI 7U0$ LV LOOXVWUDWHG LQ )LJXUH 'LSKHQYOPHWKYO PHWKDFU\ODWH '0$ 7KLV ZDV SUHSDUHG DFFRUGLQJ WR OLWHUDWXUH SURFHGXUHV VLOYHU PHWKDFU\ODWH $J0$ J PPROf DQG GU\ HWKHU ZHUH SODFHG LQ D WKUHHQHFN URXQG ERWWRP IODVN HTXLSSHG ZLWK D UHIOX[ FRQGHQVHU PDJQHWLF VWLUUHU DGGLWLRQ IXQQHO DQG DQ RLO EDWK 'LSKHQ\OPHWK\O FKORULGH $OGULFK J PROHf ZDV DGGHG WR WKH IODVN DW URRP WHPS 7KH UHDFWLRQ PL[WXUH ZDV UHIOX[HG RYHUQLJKW ZLWK VWLUULQJ $J&, ZDV VHSDUDWHG E\ YDFXXP ILOWUDWLRQ DQG WKH HWKHU ILOWUDWH ZDV FRQFHQWUDWHG WR \LHOG FUXGH GLSKHQ\OPHWK\O PHWKDFU\ODWH '0$f $ IUDFWLRQ RI WKH FUXGH SURGXFW ZDV NHSW IRU DQDO\VLV E\ PHOWLQJ SRLQW HOHPHQWDO FRPSRVLWLRQ DQG 105 7KH UHVW RI WKH '0$ ZDV UHFU\VWDOOL]HG E\ RQH KRW ILOWUDWLRQ XVLQJ FHOLWH DQG HWKHU DQG D VLPSOH UHFU\VWDOOOL]DWLRQ IURP HWKHU 7KH PRWKHU OLTXRUV ZHUH NHSW DQG FRQFHQWUDWHG WR JLYH DGGLWLRQDO '0$

PAGE 48

&+MD&&22+ 1+ 2+ , &+ &+cV&&221+ + 2 r & +L 0HWKDFU\OLF DGG $PPRQLXP PHWKDFU\ODWH $J12 9 &+M&&22 a $J 1A1' &&+f&, &+&&2M&+&+f 7UOSKHQ\OPHWK\O PHWKDFU\ODWH )LJ 6FKHPH LOOXVWUDWLQJ WKH V\QWKHVLV RI '0$ DQG 7U0$ 7KH FUXGH \LHOG ZDV b DQG WKH UHFU\VWDOOL]HG \LHOG ZDV DERXW b EXW HOHPHQWDO DQDO\VLV DQG 105 VSHFWUD VKRZHG QR GLIIHUHQFH LQ SXULW\ EHWZHHQ WKH FUXGH DQG UHFU\VWDOOL]HG SURGXFW DOWKRXJK WKH ODWWHU ORRNHG VRPHZKDW ZKLWHU ,Q YLHZ RI WKH DQDO\VLV UHVXOWV WKH '0$ REWDLQHG IURP FRQFHQWUDWLRQ RI WKH PRWKHU OLTXRU ILOWUDWH IURP WKH UHFU\VWDOOL]DWLRQ ZDV NHSW DQG XVHG IRU VXEVHTXHQW SRO\PHUL]DWLRQV 03 r& OLWHUDWXUH r&f (OHPHQWDO DQDO\VLV )RXQG & + b &DOFXODWHG IRU &+2 & b + b + 105 0+] &'&,f SSP P DURPDWLF +nVf SSP V 3K&+f SSP V YLQ\O +f V YLQ\O +nVf SSP V &&+f & 105 0+] &'&,f SSP &&+f SSP DURPDWLF &nV DQG e+3Kf DQG YLQ\O &nVf e 2f 7KH V\QWKHVLV RI '0$ LV LOOXVWUDWHG LQ )LJ

PAGE 49

)LJ $SSDUDWXV IRU WKH *73 RI 00$ DFFRUGLQJ WR 0HWKRG $

PAGE 50

3RO\PHUL]DWLRQ 5HDFWLRQV *URXS 7UDQVIHU 3RO\PHUL]DWLRQ RI 0HWK\O PHWKDFU\ODWH 00$f 0HWKRG $ ,Q WKLV PHWKRG ORZ WHPSHUDWXUH SRO\PHUL]DWLRQV WR r&f ZHUH FDUULHG RXW ZKHUH WKH 00$ ZDV DGGHG E\ LQ YDFXR VORZ YDSRU GLVWLOODWLRQ WR D PL[WXUH RI LQLWLDWRU DQG FDWDO\VW LQ 7+) 7KH DSSDUDWXV XVHG LV VKRZQ LQ )LJ )LUVW WKH ZKROH DSSDUDWXV ZDV HYDFXDWHG RQ WKH YDFXXP OLQH DQG IODPH GULHG 7KHQ IODVN $ ZDV FRROHG WR r& ZLWK GU\ LFHLVRSURSDQRO $UJRQ ZDV DGPLWWHG LQWR WKH DSSDUDWXV WKURXJK WKH OLQH $ VROXWLRQ RI 7$6+) FDWDO\VW LQ DFHWRQLWULOH ZDV LQWURGXFHG WKURXJK WKH VLGH DUP % E\ D ORQJ V\ULQJH WKURXJK WKH VHSWXP LQWR WKH IODVN $ $ ZDV FRROHG WR & DQG YDFXXP ZDV DSSOLHG VORZO\ WR WKH DSSDUDWXV 7KH FRQVWULFWLRQ LQ VLGH DUP % VHDOHG RII XQGHU YDFXXP DQG WKH DFHWRQLWULOH ZDV VORZO\ SXPSHG RXW RI $ DIWHU UHPRYDO RI WKH GU\ LFHLVRSURSDQRO EDWKf OHDYLQJ D YHU\ WKLQ ILOP RI WKH FDWDO\VW LQ $ 'U\ 7+) ZDV DOORZHG WR GLVWLO LQWR $ WKURXJK WKH OLQH DQG WKH PL[WXUH RI FDWDO\VW DQG VROYHQW VWLUUHG IRU PLQV 7KH EUHDN VHDO RI WKH DPSRXOH FRQWDLQLQJ WKH LQLWLDWRU VROXWLRQ LQ 7+) ZDV EURNHQ DOORZLQJ WKH LQLWLDWRU WR UXQ GRZQ LQWR $ WKH FRQWHQWV RI ZKLFK ZHUH EHLQJ VWLUUHG FRQWLQXRXVO\ 6WRSFRFN ( ZDV FORVHG DQG WKH IODVN & ZDV FRROHG ZLWK DQ LFH EDWK 7KH 00$ DPSRXOH EUHDNVHDO )f ZDV EURNHQ DOORZLQJ WKH PRQRPHU WR UXQ GRZQ LQWR & :LWK WKH 00$ VWLUULQJ LQ & WKH VWRSFRFN LQ & ZDV FDUHIXOO\ RSHQHG LQ RUGHU WR DOORZ 00$ WR VORZO\ GLVWLOO LQWR $ 7KLUW\ PLQXWHV DIWHU WKH DGGLWLRQ RI DOO RI WKH PRQRPHU WKH SRO\PHU VROXWLRQ LQ $ ZDV WHUPLQDWHG E\ GLVWLOODWLRQ RI PHWKDQRO WKURXJK WKH YDFXXP OLQH LQWR $ 7KH SRO\PHU VROXWLRQ ZDV SUHFLSLWDWHG LQ D IROG YROXPH H[FHVV RI HLWKHU KH[DQH RU F\FORKH[DQH 7KH SRO\PHU ZDV FROOHFWHG E\ ILOWUDWLRQ DQG GULHG LQ YDFXXP RYHQ DW r & IRU DW OHDVW GD\V

PAGE 51

0HWKRG % ,Q WKLV PHWKRG XVHG IRU KLJKHU WHPSHUDWXUH SRO\PHUL]DWLRQ r& DQG r&f LQ YDFXR WKH PRQRPHU ZDV VORZO\ SRXUHG LQWR D VROXWLRQ RI LQLWLDWRU DQG FDWDO\VW 7KH DSSDUDWXV LV VKRZQ LQ )LJ $IWHU HYDFXDWLRQ DQG IODPH GU\LQJ RI WKH DSSDUDWXV WKH FDWDO\VW ZDV LQWURGXFHG LQWR $ XQGHU DUJRQ WKURXJK VLGH WXEH % DV DQ DFHWRQLWULOH VROXWLRQ 7KH FRQVWULFWLRQ LQ VLGH WXEH % ZDV VHDOHG RII DQG WKH DFHWRQLWULOH ZDV VORZO\ SXPSHG RII OHDYLQJ D WKLQ ILOP RI WKH FDWDO\VW RQ WKH JODVV VXUIDFH LQ $ $IWHU FRROLQJ $ WR r& 7+) ZDV GLVWLOOHG LQ 7KH DSSDUDWXV ZDV WKHQ VHDOHG RII IURP WKH YDFXXP OLQH DW FRQVWULFWLRQ & 7KH LQLWLDWRU DPSRXOH )f ZDV WKHQ EURNHQ DQG WKH LQLWLDWRU VROXWLRQ DOORZHG WR UXQ GRZQ LQWR $ 7KH FRQWHQWV RI $ ZHUH VWLUUHG YLJRURXVO\ )ODVN ZDV FRROHG WR r& DQG WKH PRQRPHU IURP WKH 00$ DPSRXOH *f ZDV DOORZHG WR GUDLQ LQWR & 7KH ORZ WHPS GU\ LFH EDWKV FRROLQJ $ DQG & ZHUH ERWK UHPRYHG DQG WKH DSSDUDWXV ZDV DOORZHG WR UHDFK URRP WHPSHUDWXUH :KLOH WKH FRQWHQWV RI $ ZHUH EHLQJ FRQWLQXRXVO\ VWLUUHG WKH PRQRPHU LQ IODVN ZDV VORZO\ DQG FDUHIXOO\ SRXUHG LQWR $ LQWHUPLWWHQWO\ DOORZLQJ LW WR SRO\PHUL]H +DYLQJ DOORZHG HQRXJK WLPH IRU WKH SRO\PHUL]DWLRQ WKH DSSDUDWXV ZDV DJDLQ KRRNHG XS WR WKH YDFXXP OLQH WKURXJK VLGH DUP ( DQG WKH EUHDN VHDO LQ ( EURNHQ 0H2+ ZDV GLVWLOOHG WKURXJK WKH OLQH LQWR IODVN $ WR WHUPLQDWH WKH UHDFWLRQ 0HWKRG & 7KH SURFHGXUH XVHG ZDV WKH VDPH DV LQ PHWKRG % H[FHSW WKDW D PL[HG VROXWLRQ RI LQLWLDWRU DQG PRQRPHU ZHUH VORZO\ DGGHG WR WKH FDWDO\VW LQ 7+) DW URRP WHPSHUDWXUH 0HWKRG 7KH SURFHGXUH ZDV WKH VDPH DV LQ PHWKRG H[FHSW WKDW WKH SRO\PHUL]DWLRQ ZDV FDUULHG XQGHU DUJRQ 0HWKRG ( ,Q WKLV PHWKRG WKH FDWDO\VW LV DGGHG DV DQ DFHWRQLWULOH VROXWLRQ E\ PHDQV RI D V\ULQJH WR D SUHPL[HG VROXWLRQ RI LQLWLDWRU DQG PRQRPHU

PAGE 52

KLJK YDFXXP )LJ $SSDUDWXV IRU WKH *73 RI 00$ DFFRUGLQJ WR 0HWKRG %

PAGE 53

0HWKYODWLRQ RI &KDLQ (QG RI 300$ 3UHSDUHG EY *73 6HYHUDO DWWHPSWV ERWK DW r& DQG KLJKHU WHPSHUDWXUHf WR PHWK\ODWH WKH FKDLQ HQG RI 300$ E\ ILUVW XVLQJ 0H/L DQG WKHQ &+O b HQULFKHG ZLWK FDUERQ ODEHOf SURYHG WR EH XQVXFFHVVIXO VHH FKDSWHU ,,,f 7KH VXFFHVVIXO PHWK\ODWLRQ SURFHGXUH FRQVLVWHG RI DGGLWLRQ RI &+, EHWZHHQ RQH DQG WZR HTXLYDOHQWVf WR WKH SRO\PHUL]DWLRQ PL[WXUH IROORZHG E\ RQH HTXLYDOHQW ZLWK UHVSHFW WR WKH LQLWLDWRUf RI 7$66L0H) XQGHU DUJRQ 5HYHUVLQJ WKH RUGHU RI DGGLWLRQ RI WKH UHDJHQWV UHVXOWHG LQ SUDFWLFDOO\ QR PHWK\ODWLRQ DW DOO DV HYLGHQFHG E\ WKH DEVHQFH RI WKH ODEHOOHG PHWK\O HQG JURXS LQ WKH & 105 VSHFWUXP RI WKH SRO\PHU 3RO\PHU ,VRODWLRQ IRU 300$ 3UHSDUHG EY *73 300$ SUHSDUHG E\ *73 ZLWK FDWDO\WLF DPRXQWV WR PROH b ZLWK UHVSHFW WR LQLWLDWRUf RI QXFOHRSKLOLF FDWDO\VWV ZHUH SUHFLSLWDWHG LQ HLWKHU KH[DQH RU F\FORKH[DQH 5HDVRQV IRU HPSOR\LQJ F\FORKH[DQH LQ VRPH FDVHV ZDV WKDW KH[DQH ZDV RIWHQ QRW FRPSOHWHO\ UHPRYHG HYHQ DIWHU WZR GD\V RI GU\LQJ LQ WKH YDFXXP RYHQ DW r& ZLWK WKH UHVXOW WKDW LWV VLJQDOV LQWHUIHUHG LQ WKH 105 VWXGLHV RI 300$ 7KHUH LV RQO\ RQH DEVRUSWLRQ IRU F\FORKH[DQH LQ 105 DQG VR HYHQ LI LW ZDV QRW FRPSOHWHO\ UHPRYHG E\ GU\LQJ LW GLG QRW LQWHUIHUH ZLWK RWKHU VLJQDOV IURP WKH 300$ LWVHOI ,W VKRXOG EH QRWHG WKDW SUHFLSLWDWLQJ WKH 300$ KRPRSRO\PHUV LQ WKLV ZD\ GRHV QRW UHPRYH WKH WUDFH DPRXQW RI FDWDO\VW ZKLFK LV LQVROXEOH LQ KH[DQH DQG UHPDLQV DVVRFLDWHG ZLWK WKH SRO\PHU 7KH FDWDO\VW KRZHYHU GRHV QRW LQWHUIHUH LQ DQ\ ZD\ ZLWK WKH 105 DQDO\VLV RI 300$ VDPSOHV 7KH 300$ KRPRSRO\PHUV SUHSDUHG E\ *73 ZKLFK DUH PHWK\ODWHG FRQWDLQ D PXFK KLJKHU DPRXQW RI FDWDO\VW EHFDXVH RI WKH PXFK KLJKHU OHYHOV RI FDWDO\VW UHTXLUHG IRU PHWK\ODWLRQ VHH 0HWK\ODWLRQ RI &KDLQ (QG RI 300$

PAGE 54

SUHSDUHG E\ *73 EHORZf 7KH FDWDO\VW DFWXDOO\ 7$6,f FRXOG EH UHPRYHG IURP WKH 300$ E\ H[WUDFWLQJ WKH PHWK\ODWHG SRO\PHUV ZLWK ZDWHU&+&O DIWHU DOO WKH 7+) IURP WKH SRO\PHU VROXWLRQ LV UHPRYHG 7KH 7$6, ZDV UHPRYHG LQ WKH DTXHRXV OD\HU 7KH FKORURIRUP OD\HU FRQWDLQLQJ WKH PHWK\ODWHG 300$ ZDV GULHG ZLWK DQK\GURXV VRGLXP VXOIDWH DQG ILOWHUHG ,W ZDV WKHQ SUHFLSLWDWHG LQ D IROG H[FHVV RI KH[DQHV RU F\FORKH[DQH FROOHFWHG E\ YDFXXP ILOWUDWLRQ DQG GULHG LQ D YDFXXP RYHQ DW r& IRU DW OHDVW WZR GD\V 7KH 7$6 VDOW FDQ DOVR EH UHPRYHG E\ SUHFLSLWDWLQJ WKH SRO\PHU LQWR H[FHVV PHWKDQRO LQ ZKLFK WKH 7$6 VDOW LV VROXEOHf KRZHYHU 0H2+ SUHFLSLWDWLRQ RIWHQ UHPRYHV ORZ 0: ROLJRPHUV RI 300$ KHQFH LW LV QRW DV JRRG D SUHFLSLWDWLQJ VROYHQW DV KH[DQHV *URXS7UDQVIHU 3RO\PHUL]DWLRQ RI 'LSKHQYOPHWKYO DQG 7ULSKHQYOPHWKYO 0HWKDFU\ODWH 7KH DSSDUDWXV XVHG LV VKRZQ LQ )LJ $IWHU HYDFXDWLRQ DQG IODPH GU\LQJ RI WKH DSSDUDWXV LQ YDFXR DUJRQ ZDV LQWURGXFHG LQWR WKH DSSDUDWXV DQG WKH UXEEHU VHSWXP LQ VLGH DUP $f UHPRYHG $ ZHLJKHG DPRXQW RI GU\ PRQRPHU LV SODFHG LQWR WKH IODVN %f WKURXJK D IXQQHO 7KH VHSWXP ZDV UHSODFHG DQG WKH DSSDUDWXV HYDFXDWHG IRU PLQXWHV 'U\ 7+) ZDV WKHQ GLVWLOOHG LQWR WKH IODVN WKURXJK WKH YDFXXP OLQH DQG DQ\ PRQRPHU FOLQJLQJ WR WKH VLGHV RI WKH IODVN ZDV FDUHIXOO\ ZDVKHG RII ZLWK 7+) E\ DSSOLFDWLRQ RI D FROG GDXEHU WR WKH DSSURSULDWH UHJLRQV RI WKH IODVN 7KH PRQRPHU ZDV PDGH WR GLVVROYH LQ 7+) E\ FRQWLQXRXV VWLUULQJ $PSRXOH & ZDV EURNHQ DQG WKH LQLWLDWRU VROXWLRQ ZDV DOORZHG WR UXQ GRZQ LQWR WKH IODVN WKH FRQWHQWV RI ZKLFK ZHUH EHLQJ VWLUUHG FRQWLQXRXVO\ $UJRQ ZDV LQWURGXFHG LQWR WKH IODVN DQG D VROXWLRQ RI WKH FDWDO\VW LQ DFHWRQLWULOH ZDV LQMHFWHG WKURXJK WKH VHSWXP LQWR WKH IODVN $OLTXRWV RI VDPSOHV ZHUH UHPRYHG SHULRGLFDOO\ E\ D ORQJ V\ULQJH XQGHU DUJRQ WR PRQLWRU WKH FRQYHUVLRQ ZLWK WLPH E\ + 105 H[DPLQDWLRQ RI UHVLGXDO

PAGE 55

)L Pr RU '0$

PAGE 56

PRQRPHU YLQ\O DEVRUSWLRQf 7KH SRO\PHUL]DWLRQ ZDV FRPSOHWH LQ OHVV WKDQ RQH PLQXWH DW r& 0H2+ ZDV ILQDOO\ LQWURGXFHG LQWR WKH IODVN HLWKHU E\ GLVWLOODWLRQ WKURXJK WKH YDFXXP OLQH RU XQGHU DUJRQ WR WHUPLQDWH WKH UHDFWLRQ $QLRQLF 3RO\PHUL]DWLRQ RI 00$ 7KH PHWKRG XVHG ZDV WKH VDPH DV WKDW IRU *73 XVLQJ 0HWKRG $ DERYH H[FHSW WKDW D VROXWLRQ RI '30/ LQ 7+) ZDV XVHG DV WKH LQLWLDWRU ZKLFK ZDV DGGHG WR WKH UHDFWLRQ YHVVHO E\ PHDQV RI DQ DPSRXOH HTXLSSHG ZLWK D EUHDNVHDO $QLRQLF 3RO\PHUL]DWLRQ RI 7U0$ $ SUHGHWHUPLQHG DPRXQW RI VROLG PRQRPHU ZDV SODFHG LQ D YHVVHO XQGHU DUJRQ LOOXVWUDWHG LQ )LJ DQG WKH PRQRPHU DGGLWLRQ RSHQLQJ ZDV VHDOHG ZLWK D WRUFK 7KH PRQRPHU YHVVHO ZDV HYDFXDWHG RQ WKH YDFXXP OLQH n PP +Jf IRU DERXW RQH KRXU 7KH DPSRXOH ZDV WKHQ FRROHG WR r& DQG 7+) ZDV GLVWLOOHG WKURXJK WKH YDFXXP OLQH LQWR LW 7KH YHVVHO ZDV VHDOHG IURP WKH OLQH DQG VWRUHG LQW WKH IUHH]HU DW r& $QLRQLF KRPRSRO\PHUL]DWLRQ RI 7U0$ ZDV FDUULHG RXW LQ DQ DSSDUDWXV GHSLFWHG LQ )LJ 7KH DSSDUDWXV ZDV SODFHG RQ WKH YDFXXP OLQH n WRUUf IODPH GULHG DQG FRROHG WR r& $SSUR[LPDWHO\ PO RI GU\ 7+) ZDV YDFXXP GLVWLOOHG LQWR $f 7KH FROG EDWK ZDV UHPRYHG DQG WKH IODVN ZDV DOORZHG WR ZDUP WR URRP WHPSHUDWXUH $ 7+) VROXWLRQ FRQWDLQLQJ WKH LQLWLDWRU '30/f DPSRXOH %ff ZDV WKHQ DGGHG WR WKH IODVN WKURXJK WKH EUHDNVHDO $Q\ UHVLGXDO LQLWLDWRU FOLQJLQJ WR WKH DPSRXOH ZDV ZDVKHG LQWR WKH 7+) E\ WKH DSSOLFDWLRQ RI D FROG GDXEHU WR WKH LQLWLDWRU DPSRXOH 7KH YHVVHO ZDV FRROHG WR r& DQG WKH PRQRPHU VROXWLRQ &f ZDV DGGHG WR WKH LQLWLDWRU $IWHU PRQRPHU DGGLWLRQ WKH LQLWLDWRU VROXWLRQ LPPHGLDWHO\ EHFDPH FRORUOHVV $IWHU

PAGE 57

)LJ $SSDUDWXV XVHG WR SUHSDUH 7+) VROXWLRQV RI 7U0$

PAGE 58

)LJ $SSDUDWXV XVHG LQ WKH DQLRQLF KRPRSROPHUL]DWLRQ RI 7U0$

PAGE 59

DOORZLQJ WKH UHDFWLRQ WR SURFHHG IRU D JLYHQ WLPH WKH SRO\PHUL]DWLRQ ZDV WHUPLQDWHG E\ YDFXXP GLVWLOODWLRQ RI 0H2+ WKURXJK WKH OLQH ,I WKH SRO\PHU SRO\ 7U0$f ZDV VROXEOH LQ 7+) RU &+&, LW ZDV SUHFLSLWDWHG LQ D IROG H[FHVV RI 0H2+ WR UHPRYH WKH FDWDO\VW DQG XQUHDFWHG PRQRPHU LI DQ\f DQG WKH SRO\PHU FROOHFWHG E\ YDFXXP ILOWUDWLRQ ,I WKH SRO\ 7U0$f ZDV LQVROXEOH RQ DFFRXQW RI LWV KLJK PROHFXODU ZHLJKW WKHQ LW ZDV VLPSO\ FROOHFWHG HLWKHU E\ ILOWUDWLRQ RU FHQWULIXJDWLRQ DQG WKH ILOWUDWH IURP WKH FHQWULIXJDWLRQ ZDV IXUWKHU FRQFHQWUDWHG DQG SUHFLSLWDWHG LQ 0H2+ WR DWWHPSW WR UHFRYHU DQ\ DGGLWLRQDO SRO\PHU 7KH SRO\PHU ZDV GULHG LQ D YDFXXP RYHQ DW r& IRU DW OHDVW WZR GD\V 3RO\PHU +\GURO\VLV 7KH K\GURO\VLV RI 37U0$ DQG 3'0$ ZHUH SHUIRUPHG DFFRUGLQJ WR OLWHUDWXUH SURFHGXUHV 3ROYI7U0$, $ERXW RQH JUDP RI SRO\ 7U0$ ZDV UHIOX[HG LQ PO RI PHWKDQRO FRQWDLQLQJ b DTXHRXV +&, IRU DERXW KRXUV 'XULQJ WKH K\GURO\VLV WKH RULJLQDOO\ LQVROXEOH 300$ ZHQW LQWR VROXWLRQ WKLV WRRN OHVV WKDQ KRXUf 7KH VROXWLRQ WKHQ ZDV WUHDWHG E\ DQ\ RQH RI WZR PHWKRGV ,Q RQH PHWKRG WKH SRO\PHU VROXWLRQ ZDV FRQGHQVHG DQG WKH UHVLGXH ZDV GLVVROYHG LQ D PLQLPXP DPRXQW RI 0H2+ 7KH UHVXOWLQJ SRO\ PHWKDFU\OLF DFLGf 30$f ZDV SUHFLSLWDWHG LQ FROG HWKHU DQG FROOHFWHG E\ YDFXXP ILOWUDWLRQ 7KH SRO\PHU ZDV GULHG DW r& IRU GD\V LQ D YDFXXP RYHQ 105 PHDVXUHPHQWV RI WKH FRUUHVSRQGLQJ 300$ VHH GLD]RPHWKDQH PHWK\ODWLRQf LQGLFDWHG TXDQWLWDWLYH K\GURO\VLV

PAGE 60

,Q WKH VHFRQG PHWKRG DIWHU K\GURO\VLV RI SRO\ 7U0$ ZLWK DFLGLILHG 0H2+ DOO WKH VROYHQW ZDV SXPSHG RXW DQG WKH GU\ PL[WXUH RI 30$ DQG WULW\O DOFRKRO ZDV NHSW IRU GLD]RPHWKDQH PHWK\ODWLRQ 3'0$ $SSUR[LPDWHO\ RQH JUDP RI 3'0$ ZDV UHIOX[HG LQ PO RI PHWKDQRO FRQWDLQLQJ b +&, IRU DW OHDVW GD\V 'XULQJ WKH ILUVW ILYH GD\V WKH RULJLQDOO\ LQVROXEOH SRO\PHU VORZO\ ZHQW LQWR VROXWLRQ $IWHU K\GURO\VLV WKH VROXWLRQ ZDV FRQGHQVHG DQG GLVVROYHG LQ D PLQLPXP DPRXQW RI 0H2+ 7KH 30$ ZDV SUHFLSLWDWHG LQ HWKHU DQG FROOHFWHG E\ YDFXXP ILOWUDDWLRQ $OWHUQDWHO\ DIWHU K\GURO\VLV WKH VROXWLRQ ZDV HYDSRUDWHG WR GU\QHVV DQG GLD]RPHWKDQH PHWK\ODWLRQ SHUIRUPHG RQ WKH PL[WXUH RI GLSKHQ\O PHWKDQRO DQG 30$ 'LD]RPHWKDQH 0HWKYODWLRQ 3RO\ PHWKDFU\OLF DFLGf 30$f ZDV PHWK\ODWHG WR IRUP 300$ XVLQJ WKH IROORZLQJ SURFHGXUH $ GLD]RPHWKDQH &+1f JHQHUDWLQJ DSSDUDWXV )LJ f ZDV FRQVWUXFWHG IURP WKUHH PO WKLFN ZDOO FHQWULIXJH ERWWOHV FRQGHQVLQJ MDFNHW ZLWK VFUHZ FDS ILWWLQJV ORQJ VWHP VHSDUDWRU\ IXQQHO ZLWK D WHIORQ VWRSFRFN UXEEHU VWRSSHUV DQG ILUH SROLVKHG JODVV WXELQJ $SSUR[LPDWHO\ PO RI HWKHU ZDV SODFHG LQ ERWK FROOHFWLRQ YHVVHOV % DQG &f ZKLFK ZHUH FRROHG LQ DQ LFHVDOW EDWK .2+ J PROHf PO ZDWHU PO HWKHU DQG PO RI HWKR[\fHWKR[\HWKDQH .RGDNf ZHUH SODFHG LQ FHQWULIXJH ERWWOH $ 7KH VROXWLRQ ZDV KHDWHG WR r& XVLQJ D ZDWHU EDWK 1PHWK\O1QLWURVRSWROXHQHVXOIRQDPLGH 'LD]DOG $OGULFKf GLVVROYHG LQ PO RI HWKHU ZDV DGGHG GURSZLVH WR $ DQG LPPHGLDWHO\ &+1 ZDV JHQHUDWHG LW ZDV \HOORZ LQ FRORUf DQG GLVWLOOHG ZLWK HWKHU LQWR % DQG &

PAGE 61

)LJ $SSDUDWXV XVHG LQ WKH JHQHUDWLRQ RI GLD]RPHWKDQH FQ A

PAGE 62

7KH GLD]RPHWKDQHHWKHU VROXWLRQ ZDV DGGHG WR GU\ K\GURO\]HG SRO\PHU VDPSOHV ZLWK D SDVWHXU SLSHWWH 5DSLG EXEEOLQJ GXH WR JDV HYROXWLRQ ZDV GHWHFWHG $GGLWLRQDO GLD]RPHWKDQH ZDV DGGHG WR HDFK VDPSOH XQWLO WKHUH ZDV QR IXUWKHU EXEEOLQJ ZLWK WKH DGGLWLRQ RI IUHVK GLD]RPHWKDQH 7KH 300$ VDPSOHV ZHUH XVXDOO\ LQVROXEOH LQ HWKHU VR WKH\ FRXOG EH FROOHFWHG HLWKHU E\ ILOWUDWLRQ RU E\ HYDSRUDWLRQ RI WKH HWKHU DQG H[FHVV GLD]RPHWKDQH 7KH VDPSOHV ZHUH GLVVROYHG LQ FKORURIRUP DQG SUHFLSLWDWHG LQ D IROG H[FHVV RI KH[DQH RU F\FORKH[DQH 7KH\ ZHUH WKHQ FROOHFWHG E\ YDFXXP ILOWUDWLRQ DQG GULHG IRU VHYHUDO GD\V LQ D YDFXXP RYHQ DW r& 7LWUDWLRQ RI $ONYO /LWKLXP 6ROXWLRQV 7KH FRQFHQWUDWLRQ RI 0H/L LQ GLHWK\O HWKHU $OGULFKf DQG %X/L LQ KH[DQH $OGULFKf GLG QRW DSSHDU WR FKDQJH PXFK ZLWK WLPH DV GHWHUPLQHG E\ SHULRGLF WLWUDWLRQV E\ WKH PHWKRG RI :LQNOH HW DO HPSOR\LQJ GLPHWKR[\EHQ]\O DOFRKRO '0%$ $OGULFKf 7KH ILUVW HTXLYDOHQW RI DON\O OLWKLXP GHSURWRQDWHV WKH DOFRKRO IXQFWLRQDOLW\ JLYLQJ WKH EHQ]R[LGH VDOW ZKLFK LV FRORUOHVV HTXDWLRQ f 20H 20H f 7KH GLDQLRQ LV GDUN UHG LQ 7+) DQG LWV SUHVHQFH LQGLFDWHV WKH HQG SRLQW $ IHZ GURSV RI '0%$ ZHUH DGGHG WR D SUHZHLJKHG GU\ IODVN DQG WKH IODVN DJDLQ ZHLJKHG WR \LHOG WKH ZHLJKW RI '0%$ 7KLV IODVN ZDV GHJDVVHG RQ

PAGE 63

WKH YDFXXP OLQH DIWHU FRROLQJ LW ZLWK OLTXLG QLWURJHQ 'U\ 7+) ZDV GLVWLOOHG LQ $ V\ULQJH ZLWK D WHIORQ SOXQJHU ZDV IOXVKHG ZLWK DUJRQ DQG WKH DON\O OLWKLXP VROXWLRQ 7KH V\ULQJH ZDV UHILOOHG ZLWK WKH VROXWLRQ :LWK WKH '0%$ LQ 7+) VWLUULQJ VPRRWKO\ XQGHU DUJRQ DW URRP WHPSHUDWXUH WKH DON\O OLWKLXP VROXWLRQ ZDV DGGHG GURSZLVH DIWHU SXVKLQJ WKH V\ULQJ QHHGOH WKURXJK D VHSWXP 7KH SHUVLVWHQFH RI WKH UHG FRORUDWLRQ ORQJHU WKDQ VHFRQGV LQGLFDWHG WKH HQG SRLQW 7KLV SURFHGXUH ZDV UHSHDWHG WZLFH DQG DQ DYHUDJH PRODULW\ ZDV FDOFXODWHG IURP WKHVH UXQV 7KH UHVXOWV ZHUH UHSURGXFLEOH ZLWKLQ b ,QVWUXPHQWDWLRQ *DV &KURPDWRJUDSK\ 5RXWLQH DQDO\VHV RI VDPSOHV IRU SXULW\ GHWHUPLQDWLRQ DV ZHOO DV TXDQWLWDWLYH GHWHUPLQDWLRQ RI UHDFWLRQ SURGXFWV ZHUH GRQH RQ D +HZOHWW 3DFNDUG 0RGHO $ JDV FKURPDWRJUDSK HTXLSSHG ZLWK D FDSLOODU\ FROXPQ DQG D IODPH LRQL]DWLRQ GHWHFWRU 7KH FROXPQ XVHG +3 f ZDV D IXVHG VLOLFD FDSLOODU\ P ORQJ PP ,'f FRDWHG ZLWK X0 IILOP RI VLOLFRQH JXP *HQHUDO (OHFWULF &R 6( ZKLFK ZDV PHWK\O b SKHQ\O b YLQ\O FURVVOLQNHG SRO\VLOR[DQHf 7KH FDUULHU JDV ZDV KHOLXP 'HSHQGLQJ RQ WKH QDWXUH RI WKH DQDO\VLV WKH FROXPQ ZDV HLWKHU KHDWHG WR D IL[HG WHPSHUDWXUH RU YDULRXV VWHS SURJUDPV ZHUH XVHG WR LQFUHDVH WKH RYHQ WHPS DIWHU VSHFLILHG WLPH LQWHUYDOV 7KLV DOO GHSHQGHG RQ WKH UHODWLYH LPSRUWDQFH RI WKH GHVLUHG VSHHG RI DQDO\VLV DQG UHVROXWLRQ 7KH PLFURSURFHVVRU UHSRUWHG SHDN UHWHQWLRQ WLPH PLQXWHVf LQWHJUDWHG DUHDV W\SH DQG SHUFHQW RI WRWDO DUHD $OWKRXJK UHWHQWLRQ WLPHV ZHUH KLJKO\ UHSURGXFLEOH b IRU FRQVHFXWLYH LQMHFWLRQVf VWDQGDUGV ZHUH QRQWKHOHVV NHSW DQG XVHG WR DYRLG DPELJXLW\ DV WR WKH LGHQWLW\ RI SHDNV

PAGE 64

3UHSDUDWLYH /LTXLG &KURPDWRJUDSK\ 3UDFWLFDOO\ DOO RI WKH +3/& ZRUN ZDV GRQH RQ WKH VHSDUDWLRQ RI WKH QDSKWK\OVLODQHV 7KH KLJK SHUIRUPDQFH OLTXLG FKURPDWRJUDSK XVHG ZDV DQ $OWH[ 0RGHO V\VWHP QRZ %HFNPDQ &Rf ZLWK SURJUDPPDEOH JUDGLHQW HOXWLRQ 7KH WZR VROYHQW SXPSV ZHUH ILWWHG ZLWK SUHSDUDWLYH KHDGV $ SUHSDUDWLYH FHOO ZDV XVHG LQ WKH FRQVWDQW ZDYHOHQJWK QPf 89 GHWHFWRU 0RGHO IRU GHFWLRQ RI WKH KLJKO\ DEVRUELQJ QDSKWK\OVLODQHV 7KH SUHSDUDWLYH 62 FROXPQ XVHG ZDV 0HUFNnV /REDU % ; ,'fPPf SDFNHG ZLWK X0 VLOLFD JHO ,W ZDV D JODVV FROXPQ ZLWK D SUHVVXUH OLPLW RI SVL WKH V\VWHP ZDV ILWWHG ZLWK D SUHVVXUH UHOHDVH YDOYH LQOLQH EHIRUH WKH LQMHFWLRQ SRUW 7KH JUDGLHQW HOXWLRQ IRU PRVW RI WKH VHSDUDWLRQV ZDV VLPSOH LQ WKDW RQO\ KH[DQH ZDV XVHG WR HOXWH WKH FRPSRXQG RI LQWHUHVW $IWHU WKLV DQ\ PDWHULDO VWLOO UHPDLQLQJ LQ WKH FROXPQ ZDV HOXWHG E\ XVLQJ D PL[WXUH RI KH[DQH DQG 7+) ZLWK VROYHQW FRPSRVLWLRQ EHLQJ b 7+) DW WKH HQG PLQXWHV WR FKDQJH IURP b KH[DQH WR b 7+)f 7KH IORZ UDWH ZDV PDLQWDLQHG DW POPLQ 7KH /& IUDFWLRQV ZHUH DOVR DQDO\]HG E\ *& IRU SXULW\ GHWHUPLQDWLRQ 105 6SHFWURVFRS\ 105 +f VSHFWUD ZHUH REWDLQHG RQ HLWKHU D 9DULDQ (0 / 0+]f RU D 9DULDQ ;/ 6XSHUFRQGXFWLQJ VSHFWURPHWHU &KHPLFDO VKLIWV DUH H[SUHVVHG LQ SDUWV SHU PLOOLRQ SSPf GRZQILHOG IURP WHWUDPHWK\OVLODQH 706f XQOHVV RWKHUZLVH QRWHG 105 VWXGLHV RI 300$ VWHUHRFKHPLVWU\ ZHUH FDUULHG RXW LQ HLWKHU &'&, r&f RU GHXWHUDWHG WHWUDFKORURHWKDQH 7&(Gf DW r& DW FRQFHQWUDWLRQV RI DERXW PJ SHU PO RI VROYHQW 7KH WULDG WDFWLFLWLHV RI WKH FKDLQ ZHUH GHWHUPLQHG ERWK E\ LQWHJUDWLRQ RI WKH DOSKDPHWK\O SURWRQV

PAGE 65

SSPf DV ZHOO DV E\ LQWHJUDWLRQ RI WKH DOSKDPHWK\O FDUERQ VLJQDOV SSPf )RU FRPSRXQGV ZLWK D FDUERQ\O JURXS WKH SXOVH GHOD\ ZDV VHW DW VHF 7KH WULDG IUDFWLRQV RI WKH FKDLQ HQG ZHUH FDOFXODWHG IURP WKH XSDQG GRZQILHOG 105 VLJQDOV DW DQG SSP UHVSHFWLYHO\ FRUUHVSRQGLQJ WR WKH GLDVWHUHRWRSLF ODEHOOHG PHWK\O HQG JURXSV 7KH UHODWLYH DUHDV RI WKH SHDNV IRU WKH FKDLQ HQG ZHUH GHWHUPLQHG E\ HOHFWURQLF LQWHJUDWLRQ DQG GLUHFW GHWHUPLQDWLRQ RI WKH UHODWLYH SHDN DUHDV (QKDQFHG UHVROXWLRQ IRU PDQ\ VSHFWUD ZDV REWDLQHG E\ XVH RI WKH UHVROXWLRQ HQKDQFHPHQW 5(f SURFHVVLQJ IXQFWLRQ 7KLV LV D OLQHQDUURZLQJ WHFKQLTXH WKDW UHVROYHV /RUHQW]LDQ OLQHV WKDW DUH KLJKO\ RYHUODSSHG SURYLGHG WKH VSDFLQJ EHWZHHQ WKH OLQHV LV JUHDWHU WKDQ $7 $7 DFTXLVLWLRQ WLPHf DQG WKHUH LV VXIILFLHQW VLJQDOWRQRLVH WR DFFRPSOLVK WKH GHVLUHG HQKDQFHPHQW 6L]H ([FOXVLRQ &KURPDWRJUDSK\ 6(&f 6(& DQDO\VHV ZHUH FDUULHG RXW DW URRP WHPSHUDWXUH XVLQJ D :DWHUV /LTXLG &KURPDWRJUDSK 7KH FROXPQV XVHG 3KHQRPHQH[ 76. PP ; FP O2A$f 76. JHO W\SH +;/ A$f FROXPQV LQ VHULHV IROORZLQJ D ILOWHU 7+) ZDV WKH HOXHQW LQ DOO FDVHV DQG WKH IORZ UDWHV XVHG ZHUH W\SLFDOO\ POPLQ %RWK UHIUDFWLYH LQGH[ DQG 89 QPf GHWHFWRUV ZHUH XVHG 7KH FROXPQ VHW ZDV FDOLEUDWHG ZLLWK 300$ VWDQGDUGV 3RO\PHU 6WDQGDUGV 6HUYLFHV 0DLQ] : *HUPDQ\f )URP WKH 6(& FKURPDWRJUDP QXPEHU DYHUDJH PROHFXODU ZHLJKWV 0Qf ZHLJKW DYHUDJH PROHFXODU ZHLJKWV 0Zf SHDN PROHFXODU ZHLJKWV 0Sf DQG PROHFXODU ZHLJKW GLVWULEXWLRQV 0Z0Qf ZHUH GHWHUPLQHG 7KH 0Q DQG 0Z YDOXHV ZHUH GHWHUPLQHG E\ FRPSXWHU DQDO\VLV RI D 6(& FKURPDWRJUDP XVLQJ D 300$ FDOLEUDWLRQ FXUYH ,Q DOO DQDO\VHV FRUUHFWLRQV ZHUH PDGH IRU FROXPQ EDQG EURDGHQLQJ FDXVHG E\ GLIIXVLRQ

PAGE 66

&+$37(5 ,,, *5283 75$16)(5 32/<0(5,=$7,21 2) 0(7+
PAGE 67

EHHQ UHSRUWHG ,W KDV DOVR EHHQ VKRZQ WKDW D FRPSDULVRQ RI WKH VWHUHRFKHPLVWU\ RI WKH FKDLQ HQG DV REWDLQHG IURP WKH &105 RI D ODEHOOHG PHWK\O HQG JURXSf ZLWK WKDW RI WKH PDLQ FKDLQ PD\ EH DQ LQGHSHQGHQW DQG VHQVLWLYH PHWKRG WR WHVW FKDLQ VWDWLVWLFV LQ YLQ\O SRO\PHUL]DWLRQV 7KHUH DUH VHYHUDO VWHUHRFKHPLFDO PRGHOV RI FKDLQ VWDWLVWLFV 7KH VLPSOHVW RQH LV WKH RQHSDUDPHWHU RU %HUQRXOOL PRGHO )LJ f 7KLV PRGHO DVVXPHV WKDW RQO\ WKH ODVW DVV\PHWULF FHQWHU LQ WKH SURSDJDWLQJ FKDLQ LV LPSRUWDQW LQ GHWHUPLQLQJ SRO\PHU VWHUHRFKHPLVWU\ 7KH VWHUHRFKHPLVWU\ LV QRW DIIHFWHG E\ WKH SHQXOWLPDWH DV\PPHWULF RU SUHFHGLQJ FHQWHUV 3P DQG 3U WKH WUDQVLWLRQ RU FRQGLWLRQDO SUREDELOLWLHV RI IRUPLQJ PHVR DQG UDFHPLF G\DGV UHVSHFWLYHO\ DUH GHILQHG E\ AP 3UU3P AUfc 3U )93P 3Ufc 3P3U f ZKHUH 5P DQG 5U DUH WKH UDWHV IRU PHVR DQG UDFHPLF G\DG SODFHPHQWV UHVSHFWLYHO\ 7KH WHUP QDG UHIHUV WR D XQLW FUHDWHG E\ Q DGMDFHQW DV\PPHWULF FKLUDOf FHQWHUV 7KXV G\DG WDFWLFLW\ 3P DQG 3U DUH V\QRQRPRXV ZLWK WKH G\DG WDFWLFLW\ IUDFWLRQ IP DQG IU GHILQHG DV WKH IUDFWLRQ RI DGMDFHQW UHSHDWLQJ XQLWV ZKLFK DUH PHVR RU LVRWDFWLFOLNH DQG UDFHPLF RU V\QGLRWDFWLF OLNH UHVSHFWLYHO\ 7KH SUREDELOLWLHV RI IRUPDWLRQ RI PP LVRWDFWLFf PU KHWHURWDFWLFf DQG UU V\QGLRWDFWLFf WULDGV DUH JLYHQ E\ IPP 3P : 3P2f3Pfc 9U n3Pf f 7KXV WKH SUREDELOLW\ RI IRUPLQJ D SDUWLFXODU WULDG LV WKH SURGXFW RI WKH SUREDELOLWLHV RI IRUPLQJ WKH WZR G\DGV FRPSULVLQJ WKH WULDG 7KH FRHIILFLHQW RI

PAGE 68

r LQGLFDWHV SURFKLUDO SURSDJDWLQJ FHQWHU )LJ 7KH %HUQRXOOL PRGHO RI FKDLQ SURSDJDWLRQ IRU WKH KHWHURWDFWLF WULDG DFFRXQWV IRU WKH IRUPDWLRQ RI ERWK PU DQG UP WULDGV $QDORJRXV H[SUHVVLRQV PD\ EH GHULYHG IRU WHWUDGV DQG KLJKHU VHTXHQFHV 7KH QH[W PRUH FRPSOH[ VWHUHRFKHPLFDO PRGHO LV WKH VW RUGHU 0DUNRII PRGHO ZKLFK GHVFULEHV D SRO\PHUL]DWLRQ ZKHUH WKH SHQXOWLPDWH DVV\PHWULF FHQWHU LV LPSRUWDQW LQ GHWHUPLQLQJ WKH VWHUHRFKHPLVWU\ RI PRQRPHU DGGLWLRQ 0HVR DQG UDFHPLF G\DGV FDQ DGG LQ WZR ZD\V DV VKRZQ LQ )LJXUH 7KHUH DUH QRZ IRXU SUREDELOLWLHV 3PP 3PU 3UP DQG 3UU FKDUDFWHUL]LQJ WKH DGGLWLRQ SURFHVV WKH GHVLJQDWLRQ 3PU PHDQV WKH SUREDELOLW\ WKDW WKH PRQRPHU DGGV LQ UIDVKLRQ WR DQ P FKDLQ HQG HWFf :H DOVR KDYH WKH UHODWLRQVKLSV SPU S PP c 3UP 3UU f 7KH IUDFWLRQV RI WULDGV WHWUDGV DQG KLJKHU VHTXHQFHV DUH JLYHQ LQ WKH OLWHUDWXUH

PAGE 69

5 P 5 )LJ 7KH ILUVW RUGHU 0DUNRII PRGHO RI FKDLQ FURSDJDWLRQ +LJKHU RUGHU 0DUNRII PRGHOV KDYH EHHQ GHVFULEHG WR DVFULEH HIIHFWV WR DVV\PHWULF FHQWHUV IXUWKHU EDFN WKDQ WKH SHQXOWLPDWH RQH $OVR QRQ 0DUNRIILDQ DQG QRQ%HUQRXOOLDQ PRGHOV VXFK DV WKH &ROHPDQ)R[ DQG WKH (= PRGHOVnp KDYH DOVR EHHQ SURSRVHG 7KH &ROHPDQ)R[ SURSDJDWLRQ PHFKDQLVP SRVWXODWHV WKDW D JURZLQJ SRO\PHU FKDLQ KDV WZR UHDFWLRQ VWDWHV LQ G\QDPLF HTXLOLEULXP ERWK FDSDEOH RI DGGLQJ PRQRPHU EXW HDFK ZLWK LWV RZQ VWHUHRVSHFLILFLW\ 7KLV PHFKDQLVP LV SURSRVHG WR H[SODLQ WKH VWHUHREORFN VWUXFWXUHV ZKLFK RFFDVLRQDOO\ UHVXOW IURP KRPRJHQHRXV DQLRQLF SRO\PHUL]DWLRQV LQLWLDWHG E\ PHWDO DON\OV LQ ZKLFK UXQV RI PfV DQG UnV DUH SURGXFHG 7KH (= PRGHO ZLOO EH GLVFXVVHG LQ VRPH GHWDLO DV WKHUH LV DPSOH H[SHULPHQWDO HYLGHQFH IRU WKH SDUWLFLSDWLRQ RI ( DQG = JHRPHWULF LVRPHUV DV LQWHUPHGLDWHV LQ DQLRQLF SRO\PHUL]DWLRQ RI YLQ\O PRQRPHUV RI WKH W\SH &+ &5f&
PAGE 70

LQWHUFRQYHUVLRQ UHODWLYH WR PRQRPHU DGGLWLRQ ( DQG = LVRPHUV KDYH EHHQ IRXQG DV LQWHUPHGLDWHV LQ DQLRQLF YLQ\O SRO\PHUL]DWLRQ RI YLQ\OS\ULGLQH 00$ DQG WEXW\OYLQ\O NHWRQH DQG LQ WKH JURXS WUDQVIHU SRO\PHUL]DWLRQ *73f RI 00$ 7KH\ PD\ DOVR SOD\ D UROH LQ RWKHU V\VWHPV VXFK DV LQ WKH FDWLRQLF SRO\PHUL]DWLRQ RI YLQ\O HWKHUV DV D UHVXOW RI FKDUJH GHORFDOL]DWLRQ RQWR R[\JHQ 7KH LQWHUFRQYHUVLRQ EHWZHHQ WKH OLWKLR GHULYDWLYHV RI ( DQG = )LJXUH f JHQHUDWHG E\ WKH UHDFWLRQ RI Q EXW\OOLWKLXP %X/Lf ZLWK HWK\OS\ULGLQH LQ 7+) KDV D KDOI OLIH RI DERXW RI KRXUV DW r& 7KXV WKLV LQWHUFRQYHUVLRQ VKRXOG QRW RFFXU DW r& GXULQJ SRO\PHUL]DWLRQ VLQFH WKLV SRO\PHUL]DWLRQ LV TXLWH IDVW HYHQ DW r& 7KH OLWKLR VDOW cV JHQHUDWHG SUHGRPLQDQWO\ DV WKH ( LVRPHU LQ (=f UDWLR DW r& XSRQ WUHDWPHQW RI HWK\OS\ULGLQH ZLWK Q %X/L +RZHYHU XSRQ WKH DGGLWLRQ RI YLQ\OS\ULGLQH WKH FRUUHVSRQGLQJ (= UDWLR LQ WKH GLPHU DQLRQ e DQG WKH WULPHU DQG WHWUDPHU DQLRQV ZDV IRXQG WR EH FORVH WR RQH ,Q YLHZ RI WKH DEVHQFH RI (= LQWHUFRQYHUVLRQ LQ WKH SRO\PHUL]DWLRQ WLPH VFDOH WKLV GLVWULEXWLRQ WKHUHIRUH UHIOHFWV WKH PRGH RI PRQRPHU SUHVHQWDWLRQ GXULQJ WKH WUDQVLWLRQ VWDWH VFLV DQG VWUDQV PRQRPHU JHQHUDWLQJ = DQG ( FDUEDQLRQV UHVSHFWLYHO\ )LJ f ,Q WKH FDVH RI *73 SURSDJDWLRQ KDV EHHQ VKRZQ WR EH DERXW WLPHV DV IDVW DV (= HTXLOLEUDWLRQ ,Q YLHZ RI WKH (= UDWLR f IRXQG LQ WKH DQLRQLF ROLJRPHUL]DWLRQ RI YLQ\OS\ULGLQH LQ 7+) LQ WKH SUHVHQFH RI OLWKLXP LRQ WKH PRQRPHU DSSHDUV FRPSOHWHO\ XQVHOHFWLYH ZLWK UHJDUG WR WKH PRGH RI PRQRPHU SUHVHQWDWLRQ VFLV RU VWUDQVf WR WKH SURSDJDWLQJ FDUEDQLRQ (YHQ WKRXJK WKH (= LVRPHUV GR QRW GLUHFWO\ LQWHUFRQYHUW GXULQJ SRO\PHUL]DWLRQ DQ LQGLUHFW LQWHUFRQYHUVLRQ LV WDNLQJ SODFH WKURXJK PRQRPHU DGGLWLRQ %HLQJ GLDVWHUHRPHUV WKH ( DQG = JHRPHWULF LVRPHUV DUH H[SHFWHG WR EHKDYH GLIIHUHQWO\ ZLWK UHJDUG WR WKH NLQHWLFV DQG VWHUHRFKHPLVWU\ RI SRO\PHUL]DWLRQ 7KH VWHUHRFKHPLFDO SDWKZD\V DUH LOOXVWUDWHG LQ )LJ

PAGE 71

0r )LJ 6FKHPH LOOXVWUDWLQJ WKH WKH LQIOXHQFH RI PRQRPHU FRQIRUPDWLRQ RQ VWHUHRFKHPLVWU\ RI SURSDJDWLQJ VSHFLHV 6RXUFH (GLWRU 3RO\PHU 3UHSULQWVf )LJ 6FKHPH LOOXVWUDWLQJ WKH YDULRXV VWHUHRFKHPLFDO SDWKZD\V RI WKH ( = VWDWLVWLFDO PRGHO RI FKDLQ SURSDJDWLRQ 6RXUFH (GLWRU 3RO\PHU 3UHSULQWVf

PAGE 72

7KH SURSDJDWLQJ VSHFLHV PD\ EH ( RU = DQG WKHVH LVRPHUV PD\ EH SUHFHGHG E\ D PHVR RU UDFHPLF GLDG 7KXV >P(@ >U(@ >(@ >U( >U=@ >=@ f ,I VHYHUDO G\DGV DUH VSHFLILHG WKH RQH QH[W WR WKH DFWLYH FHQWHU LV LQGLFDWHG ODVW 7KXV UP= VSHFLILHV D = DFWLYH FHQWHU SUHFHGHG E\ D PHVR G\DG ZKLFK LV LQ WXUQ SUHFHGHG E\ D UDFHPLF G\DG 7KH DFWLYH FHQWHU PD\ EH ( RU = WKH PRQRPHU SUHVHQWDWLRQ PD\ EH VFLV RU VWUDQV DQG PHVR RU UDFHPLF G\DGV PD\ EH IRUPHG $V D UHVXOW WKHUH DUH HLJKW GLIIHUHQW SURFHVVHV VSHFLILHG E\ ELPROHFXODU UDWH FRQVWDQWV N5[ \ LQ ZKLFK [ VSHFLILHV WKH UHDFWLQJ FDUEDQLRQ LVRPHU ( RU =f \ VSHFLILHV WKH PRGH RI PRQRPHU SUHVHQWDWLRQ VFLV RU VWUDQV & RU 7f DQG 5 GHQRWHV WKH IRUPDWLRQ RI QHZ G\DG P RU Uf 7KHUH DUH VHYHUDO DVVXPSWLRQV LQKHUHQW LQ WKH (= PRGHO Df 2QO\ RQH W\SH RI LRQLF VSHFLHV LV SUHVHQW LRQ SDLUV IRU LQVWDQFHf Ef 7KH VWHUHRFKHPLVWU\ RI YLQ\O DGGLWLRQ LV RQO\ GHSHQGHQW XSRQ WKH W\SH RI FDUEDQLRQ LVRPHU ( RU =f DQG WKH PRGH RI PRQRPHU DGGLWLRQ VFLV &f RU VWUDQV 7f DQG QRW XSRQ WKH VWHUHRFKHPLVWU\ RI WKH FKDLQ DGMDFHQW WR WKH FDUEDQLRQ 7KXV ERWK VLWHV ( DQG = SURSDJDWH DFFRUGLQJ WR %HUQRXOOLDQ VWDWLVWLFV ,Q RWKHU ZRUGV WKH P( DQG U( FHQWHUV KDYH WKH VDPH UHDFWLYLW\ DQG UHDFW LQ D VWHUHRFKHPLFDOO\ LGHQWLFDO PDQQHU Ff 6WHDG\ VWDWH FRQGLWLRQV ZLOO KROG IRU D SDUWLFXODU VSHFLHV HJ G>P(@GW G>UP=@GW f ,W PD\ EH VKRZQ WKDW WKH (= VWDWLVWLFDO PRGHO GRHV QRW OHDG WR %HUQRXOOLDQ RU ILUVWRUGHU 0DUNRII VWDWLVWLFV ,W LV KRZHYHU UHGXFLEOH WR

PAGE 73

%HUQRXOOLDQ RU ILUVWRUGHU 0DUNRII FKDLQV XQGHU FHUWDLQ OLPLWLQJ FRQGLWLRQV 7DEOH f 6LQFH (= GLDVWHUHRPHUV KDYH EHHQ GHPRQVWUDWHG DV LQWHUPHGLDWHV LQ *73 RI 00$ ZH ZHUH VXUSULVHG E\ WKH UHVXOWV RI 6WLFNOHU DQG 0XHOOHU ZKR UHSRUWHG WKH VWDWLVWLFV RI *73 RI 00$ WR EH FRQVLVWHQW ZLWK D %HUQRXOOLDQ SURFHVV 7KH ( DQG = VLWHV DUH HDFK H[SHFWHG ZLWK D GLIIHUHQW VWHUHRFKHPLVWU\ DQG LQGLYLGXDOO\ SURSDJDWH DFFRUGLQJ WR %HUQRXOOLDQ PRGHO JLYLQJ RYHUDOO QRQ %HUQRXOOLDQ FKDLQ VWDWLVWLFV IRU WKH *73 SURFHVV :H WKHUHIRUH GHFLGHG WR YHULI\ WKH UHVXOWV RI 6WLFNOHU DQG 0XHOOHU E\ RXU LQGHSHQGHQW DQG VHQVLWLYH PHWKRG LQYROYLQJ WKH FRPSDULVRQ RI PDLQ FKDLQ DQG FKDLQ HQG VWHUHRFKHPLVWU\ ZKLFK KDV EHHQ SUHYLRXVO\ GHYHORSHG LQ WKLV JURXS 7DEOH /LPLWLQJ &RQGLWLRQV 5HGXFLQJ WKH (= 6FKHPH WR %HUQRXOOLDQ RU )LUVW2UGHU 0DUNRII &KDLQV 1R &RQGLWLRQ 6FKHPH f 6WDWLVWLFV NP(7 NP]7 NP(4 NP]F NU(7 .U=7 NU(& NU=& %HUQRXOOLDQ NP(7 NP=& NP(& NP=7 NU(7 NU=&NU(& NU=7 %HUQRXOOLDQE NP=7 NU=7 RU NP(4 NU(4 %HUQRXOOLDQ NP=7 NP=& NU(7 NU(& r VW 0DUNRIIE NP(7 NP(& NU=7 NU=& VW 0DUNRIIH D( DQG = VLWHV VKRZ LGHQWLFDO EHKDYLRU E6WUDQV DGGLWLRQ WR ( LV LGHQWLFDO WR 6FLV DGGLWLRQ WR = DQG YLFH YHUVD F2QO\ = RU ( VLWHV DUH SUHVHQW UHVSHFWLYHO\ G( VLWHV OHDG WR PG\DGV = VLWHV OHDG WR UG\DGV H( VLWHV OHDG WR UG\DGV DQG = VLWHV OHDG WR P G\DGV 6RXUFH 5HI (GLWRU 3RO\PHU 3UHSULQWVf

PAGE 74

6WHUHRFKHPLFDO .LQHWLFV & 105 $QDO\VLV RI 300$ 7HUPLQDWHG ZLWK /DEHOOHG (QG *URXSV ,QLWLDOO\ FRQGLWLRQV KDG WR EH IRXQG ZKHUH WKH OLYLQJ 300$ SUHSDUHG E\ *73 FRXOG EH VXFFHVVIXOO\ WUDSSHG E\ UHDFWLRQ ZLWK D VXLWDEOH HOHFWURSKLOH 6LQFH PHWK\ODWHG ROLJRPHUV RI 00$ KDYH EHHQ VHSDUDWHG DQG WKH YDULRXV VWHUHRLVRPHUV FRPSOHWHO\ FKDUDFWHUL]HG E\ 105 VSHFWURVFRS\ LQ WKLV JURXS WKH VWHUHRLVRPHULF FRPSRVLWLRQ RI WKH FKDLQHQG FRXOG EH XQDPELJXRXVO\ DVFHUWDLQHG IRU D PHWK\ODWHG 300$ 7KXV &+O KDV EHHQ XVHG LQ WKLV JURXS DV WKH HOHFWURSKLOH IRU WUDSSLQJ DQLRQLF OLYLQJ SRO\PHUV 7KH REYLRXV UHDVRQ IRU HPSOR\LQJ ODEHOOHG PDWHULDO LV WR EH DEOH WR GHWHFW WKH PHWK\O HQG JURXS RI D SRO\PHU DV D VLJQDO RI VXIILFLHQWO\ KLJK LQWHQVLW\ 6LQFH WKH OLYLQJ FKDLQ HQG RI D 300$ SUHSDUHG E\ *73 LV QRW DQ DQLRQ EXW D VLO\O NHWHQH DFHWDO PHUH DGGLWLRQ RI &+O LV QRW H[SHFWHG WR PHWK\ODWH WKH FKDLQ HQG 2QH RI WKH ILUVW DWWHPSWV WR PHWK\ODWH WKH FKDLQ HQG ZDV WR XVH PHWK\O OLWKLXP 0H/Lf ILUVW IROORZHG E\ &+O ,W ZDV H[SHFWHG WKDW 0H/L ZRXOG JHQHUDWH WKH OLWKLR HQRODWH RI 300$ ZKLFK ZRXOG WKHQ VXEVHTXHQWO\ PHWK\ODWH ZLWK &+O )LJ f +RZHYHU WKLV PHWKRG ZDV XQVXFFHVVIXO ZKHQ 0H/L ZDV DGGHG HLWKHU DW r& RU URRP WHPSHDWXUH IROORZHG E\ DGGLWLRQ RI 0HO DW WKH VDPH WHPSHUDWXUHV DV GHPRQVWUDWHG E\ WKH ODFN RI D GHWHFWDEOH &+ HQG JURXS VLJQDO LQ & 105 ([SHULPHQWV ZLWK WKH LQLWLDWRU DV D PRGHO FRPSRXQG IRU WKH FKDLQHQG RI 300$ VKRZHG WKDW WKHUH ZDV SUDFWLFDOO\ QR PHWK\ODWLRQ ZKHQ 0H/L ZDV DGGHG DW r& IROORZHG E\ &+, IRU VHYHUDO KRXUV DW r& +RZHYHU ZKHQ 0H/L ZDV DGGHG DW URRP WHPSHUDWXUH WR UHDFW ZLWK WKH *73 LQLWLDWRU IROORZHG E\ &+, DW r& RU r& PHWK\O SLYDODWH ZDV LVRODWHG DV WKH PHWK\ODWHG SURGXFW WRJHWKHU ZLWK VRPH RWKHU XQLGHQWLILHG VLGH SURGXFWV HTXDWLRQV DQG f

PAGE 75

300$ 26L& &+Mn 2&+ 26L&+f &+/L 300$ &+n 9 r 2&+ /Lk 6L&+f &+300$9 M2 f!U f &+ &0H &+ /L )LJ 6FKHPH LOOXVWUDWLQJ WKH DWWHPSWHG PHWK\ODWLRQ RI *73 300$ FKDLQ HQG ZLWK PHWK\O OLWKLXPPHWK\O LRGLGH 0H/L r& &+f& &20Hf26L0Hf 0H&&0H 0HO r& RU r& f 0H/L r& &+f& &20Hf26L0Hf ; f 0HO r& $V WKH 'XSRQW VFLHQWLVWV UHSRUWHG VXFFHVVIXO DON\ODWLRQ RI 300$ SUHSDUHG E\ *73 ZLWK EHQ]\O EURPLGH DQG RWKHU HOHFWURSKLOHV XVLQJ DQ HTXLYDOHQW RI 7$66L0H) ZLWK UHVSHFW WR WKH LQLWLDWRUf WKH VDPH PHWKRG ZDV XVHG IRU VXFFHVVIXO PHWK\ODWLRQ RI WKH 300$ FKDLQ HQG ,Q RWKHU ZRUGV &+, ZDV DGGHG ILUVW IROORZHG E\ RQH HTXLYDOHQW RI 7$66L0H) %DVHG RQ 1R\RULnV UHSRUWVA WKH PHWK\ODWLRQ VKRXOG SURFHHG E\ PHDQV RI DQ HQRODWH ZLWK WULV GLPHWK\ODPLQRf VXOIRQLXP FRXQWHULRQ LH D 7$6 HQRODWH )LJ f

PAGE 76

)LJ 6FKHPH LOOXVWUDWLQJ WKH VXFFHVVIXO PHWK\ODWLRQ RI WKH *73 OLYLQJ 300$ FKDLQ 5HYHUVLQJ WKH RUGHU RI DGGLWLRQ RI WKH UHDJHQWV LH 7$66L0H) ILUVW DQG WKHQ &+Of IDLOV WR JLYH PHWK\ODWLRQ RI WKH 300$ FKDLQ HQG 3UHVXPDEO\ WKLV LV GXH WR WR D IDVW FRPSHWLQJ VLGH UHDFWLRQ RI WKH IOHHWLQJ 7$6 HQRODWH VSHFLHV UHVXOWLQJ XOWLPDWHO\ LQ SURWRQDWLRQ RI WKH DFWLYH FHQWHU 0HWK\ODWLRQ H[SHULPHQWV ZLWK WKH *73 LQLWLDWRU XVLQJ WKH FUXGH 7+) VROXEOH HWK\O7$66L0H) LH 7$6 >1&+&+f@6 DFWXDOO\ D PL[WXUH RI HWK\O7$66L0H) DQG HWK\O7$6 +)f DQG PHWK\O LRGLGH XVLQJ YLQ\O SLYDODWH DV D *& LQWHUQDO VWDQGDUG VKRZHG WKDW WKH \LHOG RI WKH PHWK\ODWHG SURGXFW PHWK\O SLYDODWH f FRUUHVSRQGHG DSSUR[LPDWHO\ WR WKH PROH DPRXQWV RI WKH OLPLWLQJ UHDJHQW 7KXV ZKHQ HWK\O7$66L0H) FDWDO\VW ZDV XVHG LQ VOLJKW PRODU H[FHVV RI RQH HTXLYDOHQW FRPSDUHG WR WKH LQLWLWRU ZLWK D ODUJH PRODU H[FHVV DSSUR[ HTXLYODQWV FRPSDUHG WR WKH LQLWLDWRUf RI PHWK\O LRGLGH WKH \LHOG RI PHWK\ODWHG SURGXFW ZDV HVVHQWLDOO\ TXDQWLWDWLYH DQG ZKHQ WKH FDWDO\VW ZDV XVHG LQ DPRXQWV OHVV WKDQ RQH HTXLYDOHQW FRPSDUHG WR WKH

PAGE 77

LQLWLDWRU WKH \LHOG RI PHWK\O SLYDODWH UHIOHFWHG DSSUR[LPDWHO\ WKH SURSRUWLRQ RI WKH FDWDO\VW 0HWK\ODWLRQ UHVXOWV RI WKH *73 LQLWLDWRU ZLWK 0H7$66L0H) ZHUH RIWHQ QRW UHSURGXFLEOH SUHVXPDEO\ DV D UHVXOW RI WKH LQVROXELOLW\ RI WKH FDWDO\VW 7KHVH UHVXOWV DUH VKRZQ LQ 7DEOH 7KH UHVXOWV DUH DOVR FRQVLVWHQW ZLWK WKH YLHZ WKDW WKH DON\ODWLRQ SURFHHGV WKURXJK D 7$6 HQRODWH VSHFLHV IRUPHG E\ D UHDFWLRQ RI WKH LQLWLDWRU DQG WKH FDWDO\VW ,Q DGGLWLRQ LQ PHWK\ODWLRQ H[SHULPHQWV RI WKH *73 LQLWLDWRU ZLWK WKH 7+) LQVROXEOH FDWDO\VW 7$66L0H) ERWK PHWK\O SLYDODWH DQG 7$6, ZHUH LVRODWHG DQG FKDUDFWHUL]HG WKH IRUPHU E\ + DQG & 105 DQG WKH ODWWHU E\ &+ 1 DQDO\VLV 7DEOH VXPPDUL]HV WKH H[SHULPHQWDO FRQGLWLRQV RI WKH YDULRXV SRO\PHUL]DWLRQ UHDFWLRQV RI 00$ DQG WKH UHVXOWV REWDLQHG IURP 6(& 7KH UHDVRQV IRU HPSOR\LQJ PHWKRGV & DQG LQ VRPH RI WKHVH SRO\PHUL]DWLRQV ZHUH WKH IUHTXHQW ORZ \LHOGV GXH WR LQFRPSOHWH PRQRPHU 7DEOH 0HWK\ODWLRQ RI WKH *73 ,QLWLDWRU 8QGHU 9DULRXV &RQGLWLRQV &DWDO\VW PROHV RI LQLWLDWRU ; f PROHV RI FDWDO\VW ; f PROHV 03E ; f $& $F %G %G LQLWLDWRU ZDV PHWK\O WULPHWK\OVLO\O GLPHWK\O NHWHQH DFHWDO f E03 PHWK\O SLYDODWH f \LHOG GHWHUPLQHG E\ *& XVLQJ YLQ\O SLYDODWH DV LQWHUQDO VWDQGDUG DGGHG DIWHU TXHQFKLQJ UHDFWLRQ ZLWK PHWKDQRO &$ (W7$66L0H) G% 0H7$66L0H)

PAGE 78

7DEOH ([SHULPHQWDO &RQGLWLRQV DQG 5HVXOWV RI 6(& $QDO\VHV RI 300$ 3UHSDUHG E\ *73 ([SW 1R 7r& 0QH FDOFf 0Q 0Z 0Z0Q
PAGE 79

FRQWURO DW ORZHU WHPSHUDWXUHV UXQV 7DEOH f ,Q DGGLWLRQ WKH VLGH UHDFWLRQV DW KLJKHU WHPSHUDWXUHV FDQ EH DYRLGHG E\ FKDQJLQJ WKH RUGHU RI DGGLQJ WKH UHDJHQWV IRU WKH SRO\PHUL]DWLRQ LH E\ DGGLQJ WKH FDWDO\VW ODVW WR D PL[WXUH RI LQLWLDWRU DQG PRQRPHU EDWFK SRO\PHUL]DWLRQf RU DGGLQJ D PL[WXUH RI PRQRPHU DQG FDWDO\VW WR LQLWLDWRU ,W FDQ EH VHHQ IURP 7DEOH UXQV DQG WKDW WKH \LHOGV LPSURYH GUDVWLFDOO\ E\ HPSOR\LQJ RQH RI WKH ODWWHU WHFKQLTXHV PL[WXUH RI PRQRPHU DQG LQLWLDWRU DGGHG WR FDWDO\VWf WR PLQLPL]H WKH VLGH UHDFWLRQV ,Q WKHVH FDVHV RSWLPXP 0: FRQWURO DSSHDUV WR EH ORVW VRPHZKDW EXW WKH SRO\GLVSHUVLW\ LV VWLOO ZHOO EHORZ 7KH PHWK\ODWLRQ RI WKH FKDLQ HQG RI 300$ SUHSDUHG E\ *73 LV VKRZQ VFKHPDWLFDOO\ LQ )LJ ,W LV FOHDU WKDW WKH PHWK\ODWLRQ QHLWKHU FUHDWHV DQ\ QHZ FKLUDO FHQWHU QRU DIIHFWV WKH VWHUHRFKHPLVWU\ RI WKH DVV\PHWULF FDUERQV DGMRLQLQJ WKH FKDLQ HQGV )XUWKHUPRUH LI WKH VWHUHRFKHPLFDO FRPSRVLWLRQ RI WKH ODVW WKUHH G\DGV LV NQRZQ WKH SURSRUWLRQV RI PPr UPr PUr DQG UUr FKDLQ HQGV PD\ EH GHWHUPLQHG IPPf IPPPr :LPr :r IPPUr 9PUr IUUr 9UUr :Ur, 9Pr IUUPr :Pr f )LJ LV DQ HQWLUH VSHFWUXP RI 300$ SUHSDUHG E\ *73 DW r& 7KH DVVLJQPHQWV RI YDULRXV SHDNV DUH LQGLFDWHG LQ WKH VSHFWUXP )LJXUHV DQG DUH H[SDQGHG UHJLRQV RI )LJ VKRZLQJ WKH PDLQ FKDLQ DOSKDPHWK\O UHJLRQ DQG PHWK\O HQG JURXS UHJLRQ UHVSHFWLYHO\ 7KH IUDFWLRQV RI WKH V\QGLRWDFWLF IUUf KHWHURWDFWLF IPUf DQG LVRWDFWLF WULDGV IPPf IURP WKH PDLQ FKDLQ FDQ EH REWDLQHG GLUHFWO\ IURP WKH 105 E\ LQWHJUDWLRQ RU GLUHFW GHWHUPLQDWLRQ RI UHODWLYH SHDN DUHDV DW DQG SSP UHVSHFWLYHO\ IURP )LJ 7KH DEVHQFH RI QXFOHDU RYHUKDXVHU HIIHFW

PAGE 80

5 &&+ 7$6 10Hf6r 2+ Zf§ W f§ ` 2&+T P A &+V A A_ \ar 5 5 5 r 5 PPr f FKL f 7$66L0H) D/ &+ &+ Kf§_ + 5 5 PPr FK FK M 2&+ 5 &+ 26L0H &+ 2&+ &+ 26L0H f FKL f 7$66L0H) &+O &+_ 5 &+ 9X :} f§+ f§a U ,f§,f§, &+D 5 5 &+ 5 &+ 5 f§f§_ f§ 5 &+ 2&+ ‘; U r U U f FKL f 7$66L0H) f FKL f 7$66L0H) )LJ 6FKHPH LOOXVWUDWLQJ PRQRPHU DGGLWLRQ WR DQG PHWK\ODWLRQ RI *73 300$ 12(f KDV EHHQ VKRZQ E\ WKH XVH RI PRGHO FRPSRXQGV 7KH IUDFWLRQV RI UDFHPLF IUf DQG PHVR G\DGV IPf IURP WKH PDLQ FKDLQ FDQ EH FDOFXODWHG IURP IU IUU IPU IP IPP IPU f

PAGE 81

FK )LJ 0+] & 105 VSHFWUXP RI 300$ SUHSDUHG E\ *73 DW r LQ 7+) A

PAGE 82

UU )LJ P+] 105 VSHFWUXP RI WKH DOSKDPHWK\O UHJLRQ RI 300$ SUHSDUHG E\ *73 DW r& LQ 7+) FQ

PAGE 83

UUUr UUUr )LJ 0+= T QPU VSHFWUXP RI XSILHOG DQG GRZQILHOG UHJLRQV RI &+J HQG JURXS RI 300$ SUHSDUHG E\ *73 DW r LQ 7+)

PAGE 84

7KH SHUVLVWHQFH UDWLR S LV GHILQHG DV 3 IP9: f 7KLV VKRXOG EH XQLW\ IRU D %HUQRXOOLDQ SURFHVV 3PU! DQG 3UP WKH ILUVW RUGHU 0DUNRII SUREDELOLWLHV FDQ EH FDOFXODWHG IURP SPU :APP :fc SUP IPU$LUU :f f )RU D %HUQRXOOLDQ SURFHVV WKH VXP RI WKHVH WZR SUREDELOLWLHV ;3 3PU 3UPf VKRXOG EH HTXDO WR RQH )URP )LJ WKH WZR GLDVWHUHRPHULF PHWK\O HQG JURXSV DUH VHHQ DV H[SHFWHG WR DEVRUE DW PDUNHGO\ GLIIHUHQW ILHOGV YV SSPf 7KH GRZQILHOG DEVRUSWLRQ LV PRUH LQWHQVH EXW WKH WDFWLFLW\ VLJQDOV DUH VRPHZKDW EHWWHU UHVROYHG IRU WKH XSILHOG DEVRUSWLRQ 7KH WULDG WDFWLFLW\ DVVLJQPHQWV JLYHQ LQ WKH VSHFWUXPf DUH EDVHG RQ ZHOO GHILQHG ROLJRPHUV RI 00$ 7KH IUDFWLRQ RI WKH FKDLQ HQG KHWHURWDFWLF WULDGV IPUr DQG IUPrf DUH REWDLQHG GLUHFWO\ IURP WKH 105 DV DUH WKH IUDFWLRQV RI FKDLQHQG WHWUDGV IUUUr DQG IPUUrf 7KH IUDFWLRQ IUUr ZDV FDOFXODWHG IURP HTXDWLRQ f 7KH UHODWLYH SHDN DUHDV ZHUH GHWHUPLQHG GLUHFWO\ E\ WKH PHWKRG RI FXWWLQJ DQG ZHLJKLQJ RI WKH SHDNV DIWHU H[WUDSRODWLRQ RI RYHUODSSLQJ SHDNV WR /RUHQ]LDQ SHDN VKDSHV %RWK WKH PHWK\O HQG JURXSV ZHUH XVHG IRU GLUHFW GHWHUPLQDWLRQ RI UHODWLYH SHDN DUHDV 7KH ILUVW RUGHU 0DUNRII FRQGLWLRQDO SUREDELOLWHV 3rPU DQG 3rUP IURP WKH FKDLQ HQG FDQ EH FDOFXODWHG IURP HTXDWLRQ f SrPU IUPrIPr SrUP :rIUr f (TXDWLRQ PD\ EH GHULYHG DV IROORZVp

PAGE 85

(OLDV DQG FRZRUNHUV KDYH VKRZQ WKDW GLIIHUHQFHV LQ WKH VWHUHRFKHPLVWU\ RI WKH FKDLQ HQG DQG PDLQ FKDLQ RI YLQ\O SRO\PHUV DUH FRQVLVWHQW ZLWK WKH RFFXUHQFH RI 0DUNRII SURFHVVHV 7KXV XVLQJ )LJ DQG IROORZLQJ VWHDG\ VWDWH FRQGLWLRQV ZH KDYH IRU FKDLQV RI VXIILFLHQWO\ KLJK GHJUHH RI SRO\PHUL]DWLRQ G>Pr@GW NUP >Ur@>0@ NPU>Pr@>0@ f VR WKDW : >Pr@>Pr@ >Ur@f AUP$AUP APUf f DQG 9 N_: NUP NPUf f 7KH PHVR FRQWHQW IP RI WKH FKDLQ LWVHOI LV JLYHQ E\ rP r NUQ929P r9QU 0 NPf f ZKHUH NU NUU NUP DQG NP NPP NPU GHQRWH WKH UDWH FRQVWDQWV RI SURSDJDWLRQ IRU Ur DQG Pr VLO\O NHWHQH DFHWDOV UHVSHFWLYHO\ :H DOVR KDYH WKH IROORZLQJ UHODWLRQVKLSV XVLQJ VWHDG\ VWDWH FRQGLWLRQV G>PUr@GW NPU^Pr@>0@ NUPUr@>0@ G>UPr@GW NUP>Ur@>0@ NP>UPr@>0@ f 6XEVWLWXWLQJ HTXDWLRQV DQG LQWR HTXDWLRQ OHDGV WR >UPr@ NUP >Ur@NP RU IUPr NUPNPUNPNPU NUPf f

PAGE 86

ZKHUH : >UPr@>Ur@ >Pr@f f 6LPLODUO\ :r AUPAPAAUWAPU AUPOf f DQG XVLQJ HTXDWLRQV DQG OHDGV WR IUPr NPUAPAPr 3 UULU: DQFL :r NUPAUfAUr 3 UPAUr f 5HDUUDQJHPHQW RI HTXDWLRQ OHDGV GLUHFWO\ WR HTXDWLRQ )RU D JHQXLQHO\ %HUQRXOOLDQ SURFHVV LW FDQ EH VKRZQ WKDW WKH HTXDOLWLHV IP :c K 9 f DQG f ZLOO KROG WUXH 7KXV IRU D %HUQRXOOLDQ SURFHVV WKH VWHUHRFKHPLVWU\ RI PDLQ FKDLQ DQG FKDLQHQG VKRXOG EH WKH VDPH 1RQFRPSOLDQFH ZLWK HTXDWLRQ EXW FRPSOLDQFH ZLWK HTXDWLRQ LV FRQVLVWHQW ZLWK D ILUVW RUGHU 0DUNRY SURFHVV $OO RI WKH WDFWLFLW\ UHVXOWV DQG WKH VWHUHRFKHPLFDO SDUDPHWHUV IURP WKH PDLQ FKDLQ DQG FKDLQ HQG DUH OLVWHG LQ 7DEOH ,W FDQ EH VHHQ IURP WKLV WDEOH WKDW WKH SHUVLVWHQFH UDWLR Sf DQG WKH VXP RI WKH WZR ILUVW RUGHU 0DUNRY SUREDELOLWLHV IURP WKH PDLQ FKDLQ =3 3PU 3UPf FDOFXODWHG IURP WKH PDLQ FKDLQ WULDGV DUH FORVH WR RQH FRQVLVWHQW ZLWK %HUQRXOOLDQ VWDWLVWLFV DV UHSRUWHG LQ WKH OLWHUDWXUH

PAGE 87

7DEOH T 105 7ULDG 7DFWLFLW\ DQG 6WHUHRFKHPLFDO 3DUDPHWHUV IRU 0DLQ &KDLQ DQG &KDLQ (QG RI 300$ 3UHSDUHG E\ *73 0DLQ &KDLQ ([SW 1R 7r& IUUUUD nPP IUUD IUUD nPU rUE 3& 3UUG UPU 3UUUG UUP IUIUr &2 K L R L ([SW 1R IUrH I .U
PAGE 88

7KH IUDFWLRQ RI UDFHPLF G\DGV LQ WKH PDLQ FKDLQ IUf DJUHHV YHU\ ZHOO ZLWK WKDW RI WKH FKDLQ HQG IPrf DW DOO WHPSHUDWXUHV LQGLFDWLQJ FRQVLVWHQF\ ZLWK %HUQRXOOLDQ SURSDJDWLRQ VWDWLVWLFV ,Q DGGLWLRQ WKH FRQGLWLRQDO ILUVW RUGHU 0DUNRII SUREDELOLW\ 3rUPf FDOFXODWHG IURP WKH FKDLQ HQG VWHUHRFKHPLVWU\ LV LQ H[FHOOHQW DJUHHPHQW ZLWK WKDW IURP WKH PDLQ FKDLQ 3UPf! LQGLFDWLQJ FRQVLVWHQF\ ZLWK ILUVW RUGHU 0DUNRII FKDLQ SURSDJDWLRQ VWDWLVWLFV 3rPU FRXOG QRW EH GHWHUPLQHG DFFXUDWHO\ VLQFH WKHUH ZDV QR GHWHFWDEOH HQG PPr WULDG VLJQDO HTXDWLRQ f 7KH WHPSHUDWXUH RI PHWK\ODWLRQ ZDV HLWKHU r& RU r& 7KLV WHPSHUDWXUH KDG QR HIIHFW RQ WKH FKDLQ HQG WDFWLFLW\ EXW LW KDG D VOLJKW HIIHFW RQ WKH VWHUHRFKHPLVWU\ RI PHWK\ODWLRQ 7KH ODWWHU LV JLYHQ E\ WKH UDWLR RI WKH SHDN DUHDV DW SSP WR WKDW DW SSP FRUUHVSRQGLQJ WR WKH WZR GLDVWHUHRWRSLF PHWK\O JURXSV 7KLV UDWLR DW r& LV ZKLOH DW r& LW LV 7KH LQFUHDVH LQ VWHUHRVHOHFWLYLW\ ZLWK GHFUHDVLQJ WHPSHUDWXUH LV QRUPDO DQG H[SHFWHG &RPSDULVRQ ZLWK WKH DQDORJRXV PRGHO ROLJRPHUV RI LVRSURSHQ\OS\ULGLQH LQGLFDWH WKDW WKH PRVW VKLHOGHG SRVLWLRQ DW SSP VKRXOG FRUUHVSRQG WR WKH Df PHWK\O JURXS ZLWK WKH Ef PHWK\O JURXS DEVRUELQJ DW SSP )LJ f Df P Ur 5 &&+ )LJ 7KH WZR GLDVWHUHRWRSLF PHWK\O JURXSV DW WKH FKDLQHQG RI 300$ Df PHVROLNH Ef UDFHPLFOLNH

PAGE 89

7KXV WKH PHWK\ODWLRQ DSSHDUV WR KDYH WKH VDPH SUHIHUUHG VWHUHRFKHPLVWU\ DV WKH DGGLWLRQ RI PRQRPHU %RWK RFFXU SUHGRPLQDQWO\ LQ V\QGLRWDFWLFOLNH PDQQHU ,W DSSHDUV IURP RXU PHWKRG RI FRPSDULVRQ RI PDLQ FKDLQ DQG FKDLQ HQG VWHUHRFKHPLVWU\ WKDW *73 RI 00$ LV LQGHHG LV FRQVLVWHQW ZLWK D %HUQRXOOLDQ SURFHVV 7KHVH UHVXOWV DUH LQGHHG VXUSULVLQJ LQ YLHZ RI WKH UHDVRQV FLWHG HDUOLHU 7KH UHVXOWV DSSHDU WR FRQIRUP WR WKH OLPLWLQJ FDVHV LQ WKH (= PRGHO 7DEOH f 2QH SRVVLELOLW\ LV WKDW WKH VWHUHRFKHPLFDO EHKDYLRU RI WKH ( DQG = VLWHV DUH LGHQWLFDO OLPLWLQJ FRQGLWLRQ f $QRWKHU SRVVLELOLW\ LV WKDW WKH UDWH RI V WUDQV PRQRPHU DGGLWLRQ WR WKH ( LVRPHU LV LGHQWLFDO WR WKH UDWH RI VFLV DGGLWLRQ WR WKH = LVRPHU RU YLFH YHUVD OLPLWLQJ FRQGLWLRQ f 7KH RWKHU OLPLWLQJ FRQGLWLRQ UHGXFLQJ WKH (= VFKHPH WR %HUQRXOOLDQ VLWHV QDPHO\ WKH SUHVHQFH RI RQO\ = RU ( VLWHV DSSHDUV XQOLNHO\ LQ WKLV FDVH VLQFH D (= PL[WXUH RI VLO\O NHWHQH DFHWDOV LV DOZD\V IRXQG LQ WKH *73 RI 00$ ,Q FRQFOXVLRQ LW KDV EHHQ VKRZQ WKDW WKH VWHUHRFKHPLVW\ RI WKH *73 RI 00$ LV FRQVLVWHQW ZLWK VLPSOH %HUQRXOOLDQ VWDWLVWLFV ,Q DGGLWLRQ LW KDV EHHQ VKRZQ WKDW D FRPSDULVRQ RI WKH VWHUHRFKHPLVWU\ RI WKH PDLQ FKDLQ ZLWK WKDW RI WKH FKDLQHQG RI D SRO\PHU LV D VHQVLWLYH DQG LQGHSHQGHQW PHWKRG IRU WKH YHULILFDWLRQ RI VWDWLVWLFV RI YLQ\O SRO\PHUL]DWLRQ DQG LV DSSOLFDEOH WR V\VWHPV RWKHU WKDQ DQLRQLF SRO\PHUL]DWLRQ 6LGH 5HDFWLRQV LQ *URXS 7UDQVIHU 3RO\PHUL]DWLRQ &RQVLGHUDEOH HYLGHQFH KDV EHHQ JLYHQ IRU WKH RFFXUHQFH RI VLGH UHDFWLRQV LQ *73 )RU H[DPSOH LQ WKH *73 RI 00$ ORZ PRQRPHU FRQYHUVLRQV ZHUH HQFRXQWHUHG LQ FDVHV ZKHUH 00$ ZDV DGGHG WR D PL[WXUH RI LQLWLDWRU DQG FDWDO\VW DW WHPSHUDWXUHV r& DQG KLJKHU $OVR LQ WKH *73 RI 7U0$ &KDSWHU ,9f LW ZDV QRW SRVVLEOH WR PHWK\ODWH WKH FKDLQ HQG $OO WKHVH DUH LOOXVWUDWLYH RI VLGH UHDFWLRQV LQYROYLQJ WKH VLO\O NHWHQH DFHWDO IXQFWLRQDOLW\ DQG

PAGE 90

FDWDO\VW OHDGLQJ WR WKH GHVWUXFWLRQ RI WKH OLYLQJ FKDUDFWHU RI WKH FKDLQHQG RI WKH SRO\PHU RU HYHQ WKH NHWHQH DFHWDO HQG JURXS ,Q WKLV VHFWLRQ WKH UHVXOWV DUH GHVFULEHG IRU DQ H[SHULPHQW ZKHUH WKH *73 LQLWLDWRU f DQG 7$6+) FDWDO\VW DUH PL[HG WRJHWKHU LQ WKH DEVHQFH RI PRQRPHU DQG FKDQJHV DUH IROORZHG E\ 105 7KH SXUSRVH RI WKLV H[SHULPHQW ZDV WR VHH ZKDW VLGH SURGXFWV FRXOG EH IRUPHG E\ UHDFWLRQ RI WKH LQLWLDWRU DQG 7$6+) FDWDO\VW $ PROH UDWLRf PL[WXUH RI WKH LQLWLDWRU DQG 7$6+) FDWDO\VW UHVSHFWLYHO\ ZHUH PL[HG WRJHWKHU LQ YDFXR DW r& LQ &'&1 7KH FDWDO\VW LV LQVROXEOH LQ 7+)f 7KH PL[WXUH ZDV SRXUHG LQWR DQ 105 WXEH DIWHU ILOWUDWLRQ LQ YDFXR WKURXJK D FRDUVH JODVV IULW DQG VHDOHG 7KH FRXUVH RI WKH UHDFWLRQ ZDV IROORZHG E\ + 105 )LJXUH VKRZV WKH + 105 VSHFWUXP RI WKH *73 LQLWLDWRU DORQH DQG WKH VSHFWUD RI WKH UHDFWLRQ PL[WXUH DIWHU DSSUR[LPDWHO\ DQG PLQXWHV DW URRP WHPSHUDWXUH 7KH LQLWLDWRU LV VHHQ WR GLVDSSHDU ZLWK WLPH DV FDQ EH VHHQ E\ WKH GLPLQLVKLQJ LQWHQVLW\ RI WKH WZR VLQJOHWV DW SSP DQG WKH PHWKR[\ VLJQDO DW SSP $GGLWLRQDO SHDNV DUH VHHQ WR EH DSSHDULQJ DW DQG SSP UHJLRQV 7KH 7$6+) FDWDO\VW KDV RQO\ RQH DEVRUEDQFH DW DERXW SSP LQ WKH HQWLUH UHJLRQ RI WKH VSHFWUXP VKRZQf FRUUHVSRQGLQJ WR WKH 1&+ SURWRQV RI WKH 7$6 PRLHW\ &RPSDULVRQ RI WKH ILQDO + DQG & 105 VSHFWUD RI WKH SURGXFW PL[WXUHV DW WKH FRPSOHWLRQ RI WKH UHDFWLRQ ZLWK ERWK + DQG & 105 VSHFWUD RI DXWKHQWLF PHWK\O LVREXW\UDWH LQGLFDWHV RQH RI WKH UHDFWLRQ SURGXFWV WR EH PHWK\O LVREXW\UDWH LQ DSSUR[LPDWHO\ DQ PL[WXUH RI RI GHXWHUDWHG DQG QRQGHXWHUDWHG FRPSRXQGV 7KH SUHVHQFH RI PHWK\O LVREXW\UDWH ZDV DOVR FRQILUPHG E\ D *& H[DPLQDWLRQ RI WKH SURGXFW PL[WXUHV

PAGE 91

Ff Ef &+Y 2&+ 1&+f &+f16 Z\ &+ 26L&+f 1&+f Hf &+f& &2&+ If +f Jf Kf LLLf )LJ 0+] + 105 VSHFWUXP RI WKH *73 LQLWLDWRU DQG 7$6+) FDWDO\VW DQG LQLWLDWRU PL[WXUH PRODU UDWLRf DIWHU YDULRXV WLPH LQWHUYDOV Lf WKH LQLWLDWRU LLf UHDFWLRQ PL[WXUH DIWHU PLQV LLLf UHDFWLRQ PL[WXUH DIWHU PLQV LYf UHDFWLRQ PL[WXUH DIWHU PLQV

PAGE 92

7KH PHFKDQLVP RI GHXWHUDWLRQ LV XQGRXEWHGO\ FRPSOH[ RZLQJ WR WKH SUHVHQFH RI D QXPEHU RI FRPSRXQGV DQG DOWKRXJK D GHWDLOHG PHFKDQLVP FDQQRW EH JLYHQ DW WKLV WLPH WKH H[SHULPHQW GRHV GHPRQVWUDWH WKDW WKHUH LV LQGHHG D UHDFWLRQ EHWZHHQ WKH LQLWLDWRU DQG FDWDO\VW OHDGLQJ WR WKH FRPSOHWH GHVWUXFWLRQ RI WKH VLO\O NHWHQH DFHWDO JURXS E\ GHXWHUDWLRQ LQ WKLV FDVHf ,Q DGGLWLRQ VLQFH WKH LQLWLDWRU ZDV LQ DSSUR[LPDWHO\ IROG H[FHVV ZLWK UHVSHFW WR WKH FDWDO\VW DQG QRQH RI LW UHPDLQHG DW WKH HQG RI WKH UHDFWLRQ WKHUH LV D VWURQJ SRVVLELOLW\ RI WKH SRO\PHUL]DWLRQ FDWDO\VW DFWLQJ DV D GHXWHUDWLRQ SURWRQDWLRQf FDWDO\VW DV ZHOO $OWKRXJK VHYHUDO PHFKDQLVPV PD\ EH SRVVLEOH VRPH RI WKH SRVVLEOH VWHSV DUH JLYHQ LQ )LJ $ OLNHO\ ILUVW VWHS LV WKH IRUPDWLRQ RI FDWDO\VW LQLWLDWRU FRPSOH[ ZKLFK LV WKH VDPH DV WKH VWHS LQYROYLQJ LQLWLDWRU DFWLYDWLRQ LQ WKH SRO\PHUL]DWLRQ RI 00$ VWHS f 7KLV SHQWDFRRUGLQDWH VSHFLHV PD\ WKHQ DEVWUDFW D LRQ IURP &'&1 S.D f WR JLYH GHXWHUDWHG PHWK\O LVREXW\UDWH LQ D QXPEHU RI ZD\V VWHSV DQG f 7KH IRUPDWLRQ RI b QRQGHXWHUDWHG PHWK\O LVREXW\UDWH PD\ UHVXOW IURP WKH SURWRQDWLRQ RI WKH LQLWLDWRU VWHS f ZLWK +) IRUPHG LQ WKH VHFRQG VWHS RU IURP WKH SURWRQDWLRQ RI WKH 7$6 HQRODWH VWHS f ,W ZDV QRW SRVVLEOH WR DUULYH DW D GHWDLOHG PHFKDQLVP IRU WKLV FRPSOLFDWHG V\VWHP LQ WKH FRQWH[W RI WKLV UHVHDUFK 7KH LGHQWLW\ RI DQ\ VSHFLHV RWKHU WKDQ PHWK\O LVREXW\UDWH FRXOG QRW EH FRQILUPHG VSHFWURVFRSLFDOO\ GXH WR WKH FRPSOH[LW\ RI WKH + DQG & 105 VSHFWUD UHVXOWLQJ IURP WKH SUHVHQFH RI D QXPEHU RI FRPSRXQGV REWDLQHG DW WKH HQG RI WKH UHDFWLRQ 7KH FDWDO\VW GHVWUXFWLRQ DOVR FRXOG QRW EH REVHUYHG DV WKHUH ZDV RQO\ RQH DEVRUSWLRQ IRU WKH 7$6 PRLHW\ LQ ERWK WKH + DQG WKH & 105 FRUUHVSRQGLQJ WR WKH 1PHWK\O JURXS DQG WKH LQWHQVLW\ RI WKLV DEVRUSWLRQ GLG QRW FKDQJH ZLWK WLPH

PAGE 93

f &+ &+ 2&+ [r &+ f WDVKI 26L&+ f T &+ 2&+ R 7$6 26L0H ; 2&+ R 7$6 26L&+ f ) M +) &'&+f&&+ &+f6L) &'+&1 7$6) f f f 7$6) &+ &+ ; 2&+ 12&' f§ 6L0H 7$6 )+) f§7$6A&'J&1n +) 0H6L) &'&+f&&+ FK FK ; 2&+ 2A7$6r 6L&+ f) 7$6 &'&1 7$6&' &1 &'&+f&&+ f &+ &+ ; 2&+ +) &+f&+&&+ 6L0H) 26L&+f f f &+ &+ 2&+ +) &+f&+&&+ ‘‘ 7$6r) 2 7$6 +) 7$6&'&1 7$6) &+'&1 )LJ 3RVVLEOH VWHSV LQ PHFKDQLVP RI GHXWHUDWLRQ RI *73 LQLWLDWRU LQ WKH SUHVHQFH RI 7$6+) LQ &'&1

PAGE 94

&+$37(5 ,9 *5283 75$16)(5 32/<0(5,=$7,21 2) ',3+(1
PAGE 95

H[DPSOH RI DQ RSWLFDOO\ DFWLYH YLQ\O SRO\PHU WKH RSWLFDO DFWLYLW\ RI ZKLFK DURVH RQO\ IURP WKH KHOLFLW\ RI WKH FKDLQV ,Q FRQWUDVW WR WULW\O PHWKDFU\ODWH WKH DQLRQLF SRO\PHUL]DWLRQ RI GLSKHQ\OPHWK\O PHWKDFU\ODWH '0$f DQG EHQ]\O PHWKDFU\ODWH %0$f LQ 7+) XVLQJ %X/L \LHOGV SUHGRPLQDQWO\ V\QGLRWDFWLF SRO\PHU 7KH WDFWLFLW\ UHVXOWV DUH JHQHUDOO\ YHU\ VLPLODU WR 00$ $V JURXS WUDQVIHU SRO\PHUL]DWLRQ LV D QHZ WHFKQLTXH IRU SRO\PHUL]DWLRQ RI DFU\ODWHV DQG PHWKDFU\ODWHV LW ZDV RI JUHDW LQWHUHVW WR ORRN DW WKH WDFWLFLW\ RI SRO\ 7U0$ 37U0$f DQG SRO\ '0$ 3'0$f SUHSDUHG E\ *73 DQG FRPSDUH WKH UHVXOWV ZLWK WKRVH REWDLQHG IURP DQLRQLF DQG UDGLFDO SRO\PHUL]DWLRQV 7KXV WKH JURXS WUDQVIHU SRO\PHUL]DWLRQ RI 00$ '0$ DQG 7U0$ ZRXOG FRQVWLWXWH D V\VWHPDWLF VWXG\ FRQFHUQLQJ WKH HIIHFW RI WKH HVWHU JURXS RQ WKH WDFWLFLW\ RI WKH SRO\PHU *URXS 7UDQVIHU 3RO\PHUL]DWLRQ RI 7U0$ ,QLWLDOO\ WKH *73 RI 7U0$ ZDV DWWHPSWHG XQGHU FRQGLWLRQV VLPLODU WR WKRVH XVHG IRU 00$ DW WHPSHUDWXUHV KLJKHU WKDQ r& LH VORZ DGGLWLRQ RI PRQRPHU DQG LQWLDWRU PL[WXUH LQWR WKH FDWDO\VW VXVSHQVLRQ LQ 7+) DW r& $W LQLWLDWRU WR FDWDO\VW FRQFHQWUDWLRQ UDWLR RI DERXW YLUWXDOO\ QR SRO\PHU IRUPHG DQG DOO RI WKH XQUHDFWHG PRQRPHU ZDV UHFRYHUHG DV MXGJHG E\ + 105 7KLV LQGLFDWHG WKDW FRQGLWLRQV GLIIHUHQW IURP WKRVH RI *73 RI 00$ KDG WR EH HPSOR\HG IRU WKH SRO\PHUL]DWLRQ RI 7U0$ 7KH ILUVW VXFFHVVIXO SRO\PHULPDWLRQ UHVXOWHG E\ XVLQJ D PRODU UDWLR RI LQLWLDWRU WR FDWDO\VW RI DERXW RQH 7KH *73 RI 7U0$ LV H[WUHPHO\ IDVW (YHQ DW r& FRPSOHWH PRQRPHU FRQYHUVLRQ ZDV REVHUYHG LQ OHVV WKDQ RQH PLQXWH 6LQFH WKH LQLWLDO IDLOXUH RI SRO\PHUL]DWLRQ FRXOG KDYH EHHQ GXH WR LQVXIILFHQW FDWDO\VW FRQFHQWUDWLRQ LQ WKH UHDFWLRQ PL[WXUH D YDULHW\ RI FDWDO\VW FRQFHQWUDWLRQV ZHUH XVHG WR VHH ZKDW FRQGLWLRQV

PAGE 96

ZRXOG EULQJ DERXW TXDQWLWDWLYH FRQYHUVLRQ RI 7U0$ LQWR SRO\PHU 7KH UHVXOWV RI WKHVH H[SHULPHQWV DUH VXPPDUL]HG LQ 7DEOH ,W LV DSSDUHQW IURP WKLV WDEOH WKDW PXFK KLJKHU OHYHOV RI FDWDO\VW DUH UHTXLUHG LH KLJKHU YDOXHV RI LQWLDWRU WR FDWDO\VW FRQFHQWUDWLRQ UDWLRVf IRU TXDQWLWDWLYH SRO\PHUL]DWLRQ RI 7U0$ WKDQ IRU WKH 00$ SRO\PHUL]DWLRQV ZKHUH FDWDO\VW OHYHOV DV ORZ DV PROH b ZLWK UHVSHFW WR LQLWLDWRU PHWK\O WULPHWK\O VLO\O GLPHWK\O NHWHQH DFHWDOf KDYH EHHQ IRXQG WR \LHOG QDUURZ 0: GLVWULEXWLRQ 300$ LQ TXDQWLWDWLYH \LHOG $OO RI WKH SRO\PHUL]DWLRQV LQ 7DEOH H[FHSW UXQ QXPEHU ZKHUH D PL[WXUH RI PRQRPHU DQG LQLWLDWRU ZHUH DGGHG WR WKH FDWDO\VWf ZHUH EDWFK SRO\PHUL]DWLRQV LQ ZKLFK WKH FDWDO\VW ZDV DGGHG DW RQH WLPH DV DQ DFHWRQLWULOH VROXWLRQ POB GHSHQGLQJ RQ WKH PROH DPRXQW RI LQLWLDWRUf WR D PL[WXUH RI PRQRPHU DQG LQWLWDWRU LQ 7+) 6HYHUDO FRQFOXVLRQV FDQ EH GUDZQ IURP WKH GDWD LQ 7DEOH 7KH PROHFXODU ZHLJKW FRQWURO DSSHDUV YHU\ SRRU LQ WKDW LW IDU H[FHHGV WKH H[SHFWHG PROHFXODU ZHLJKW LQGLFDWLQJ WR SRRU LQLWLDWRU HIILFLHQF\ ZKLFK YDULHV IURP b 7KHUH GRHV DSSHDU WR EH VRPH LQWHUQDO FRQVLVWHQF\ KRZHYHU LQ WKDW WKH DJUHHPHQW EHWZHHQ H[SHFWHG DQG DFWXDO 0: EHFRPHV SRRUHU ZLWK LQFUHDVLQJ GHJUHH RI SRO\PHUL]DWLRQ 7KH SRRU LQLWLDWRU HIILFLHQF\ LQGLFDWHV WKDW QRW DOO RI WKH LQLWLDWRU LV XVHG WR LQLWLDWH SRO\PHUL]DWLRQ ,W LV VRPHZKDW VXUSULVLQJ KRZHYHU WKDW WKH 0: GLVWULEXWLRQ DUH IDLUO\ QDUURZ GHVSLWH WKH SRRU LQLWLDWRU HIILFLHQFLHV 7KLV PHDQV WKDW LQLWLDWLRQ LV LQGHHG IDVW FRPSDUHG WR SURSDJDWLRQ EXW WKDW PXFK RI LW LV GHVWUR\HG EHIRUH LQLWLDWLRQ 7KLV LV PRVW OLNHO\ GXH WR VLGH UHDFWLRQV LQYROYLQJ WKH LQLWLDWRU DQG FDWDO\VW 7KH UDWHV RI VLGH UHDFWLRQ DQG LQLWLDWLRQ PXVW EH PRUH FRPSHWLWLYH LQ WKLV FDVH FRPSDUHG WR 00$ SRO\PHUL]DWLRQ ZKHUH WKHUH XVXDOO\ ZDV JRRG DJUHHPHQW EHWZHHQ H[SHFWHG DQG DFWXDO 0Q ,W LV QRW VXUSULVLQJ WKDW WKH WHUPLQDWLRQ UHDFWLRQV DUH PRUH VHYHUH LQ WKH FDVH RI WKH 7U0$ SRO\PHUL]DWLRQ WKDQ LQ WKH

PAGE 97

7DEOH 6(& 5HVXOWV RI *URXS 7UDQVIHU 3RO\PHUL]DWLRQ RI 7U0$ 5XQ 1R 7HPS r&f &DWDO\VW PROH LQLW >,QLW@ ; n >&DW@
PAGE 98

FDVH RI 00$ VLQFH LQ WKH ODWWHU FDVH LW LV UHSRUWHG WKDW LW LV EHVW WR XVH WKH PLQLPXP DPRXQW RI FDWDO\VW LQ RUGHU WR DYRLG WHUPLQDWLRQ UHDFWLRQV DQG WR REWDLQ SRO\PHUV RI ORZHVW SRO\GLVSHUVLW\ SDUWLFXODUO\ ZKHQ SUHSDULQJ SRO\PHUV RI 0Q DERYH DERXW $OVR LQ 00$ SRO\PHUL]DWLRQV XVLQJ D KLJK OHYHO RI FDWDO\VW LW ZDV IRXQG WKDW WKH DGGLWLRQ RI DGGLWLRQDO PRQRPHU DIWHU PLQXWHV WR D OLYLQJ *73 300$ JDYH QR SRO\PHUL]DWLRQ LQGLFDWLQJ WKDW WKH SRO\PHU IRUPHG LQ WKH SUHVHQFH RI D KLJK OHYHO RI FDWDO\VW ZDV QR ORQJHU OLYLQJ 6LQFH D KLJK OHYHO RI FDWDO\VW LV QHFHVVDU\ WR REWDLQ FRPSOHWH FRQYHUVLRQ RI PRQRPHU WR SRO\PHU LQ WKH FDVH RI 7U0$ LW LV QRW VXUSULVLQJ WKDW WKH SRO\PHUL]DWLRQ LV DFWXDOO\ VHOIWHUPLQDWLQJ 7KH VHOIWHUPLQDWLRQ ZDV GHPRQVWUDWHG E\ WKH DGGLWLRQ RI DGGLWLRQDO PRQRPHU 7U0$f PLQV DIWHU DQ LQLWLDO SRO\PHUL]DWLRQ RI 7U0$ DW r& 7KH VHFRQG EDWFK RI SRO\PHU IDLOHG WR SRO\PHUL]H 7KH UDWHV RI VLGH UHDFWLRQV FRPSHWLQJ ZLWK LQLWLDWLRQ LQFUHDVHV ZLWK WHPSHUDWXUH DV ZDV GHPRQVWUDWHG GXULQJ DWWHPSWHG SRO\PHUL]DWLRQV DW WHPSHUDWXUHV KLJKHU WKDQ r& 7KXV DWWHPSWHG SRO\PHUL]DWLRQV DW r& DQG r& UHVXOWHG LQ FRPSOHWH IDLOXUH ZLWK YLUWXDOO\ DOO WKH PRQRPHU UHFRYHUHG 7KH IDLOXUH RI WKH SRO\PHUL]DWLRQ LV DSSDUHQWO\ GXH WR D ODFN RI LQLWLDWLRQ FDXVHG E\ WKH GHVWUXFWLRQ RI WKH VLO\O NHWHQH DFHWDO LQLWLDWRU 7KLV ZDV GHPRQVWUDWHG E\ FRROLQJ WKH UHDFWLRQ PL[WXUH RI DQ DWWHPSWHG r& SRO\PHUL]DWLRQ GRZQ WR 2& DQG DGGLQJ DQ DGGLWLRQDO DPRXQW RI LQLWLDWRU ,Q WKLV FDVH DOO WKH PRQRPHU SRO\PHUL]HG LPPHGLDWHO\ DQG WKH FRORU DOVR FKDQJHG WR GDUN RUDQJH 7KXV LW DSSHDUV WKDW DOWKRXJK DW KLJKHU WHPSHUDWXUHV LQLWLDWLRQ LV LQKLELWHG GXH WR GHVWUXFWLRQ RI WKH LQLWLDWRU WKHUH LV VWLOO VXIILFLHQW DFWLYH FDWDO\VW OHIW FDSDEOH RI FDWDO\]LQJ WKH SRO\PHUL]DWLRQ XSRQ WKH DGGLWLRQ RI DGGLWLRQDO LQLWLDWRU DW ORZHU WHPSHUDWXUH 7KLV LQGLFDWHV WKDW WKH GHVWUXFWLRQ RI WKH LQLWLDWRU PD\ QRW EH GXH WR D HTXLPRODU UHDFWLRQ EHWZHHQ

PAGE 99

WKH LQLWLDWRU DQG WKH FDWDO\VW 7KLV LV FRPSOHWHO\ FRQVLVWHQW ZLWK RXU HDUOLHU LQYHVWLJDWLRQV LQWR WKH VLGH UHDFWLRQV LQYROYLQJ WKH LQLWLDWRU DQG 7$6+) FDWDO\VW LQ &'&1 DW URRP WHPSHUDWXUH ZLWKRXW WKH SUHVHQFH RI PRQRPHU ,Q WKLV FDVH LW ZDV IRXQG WKDW HYHQ WKRXJK D ODUJH H[FHVV RI LQLWLDWRU RYHU FDWDO\VW PROH UDWLRf ZDV SUHVHQW LQ WKH UHDFWLRQ DOO WKH LQLWLDWRU GLVVDSHDUHG LQ DSSUR[LPDWHO\ WZR KRXUV DIWHU WKH VWDUW RI UHDFWLRQ 9DULRXV FRORU FKDQJHV ZHUH VHHQ LQ WKH FDVH ZKHQ WKH LQLWLDWRU ZDV DGGHG DW r& WR WR WKH UHDFWLRQ PL[WXUH RI DQ XQVXFFHVVIXO r& DWWHPSWHG SRO\PHUL]DWLRQ $V PRUH DQG PRUH LQLWLDWRU ZDV DGGHG GURS E\ GURS WKH FRORU FKDQJHG IURP VOLJKW \HOORZ WR RUDQJH WR GDUN EURZQ WR UHG DQG ILQDOO\ WR JUHHQ LQ JUDGXDO SURJUHVVLRQ ,W ZDV D FRORUIXO H[SHULPHQW WR VD\ WKH OHDVW 7KH UHDVRQV IRU WKHVH FRORU FKDQJHV DUH QRW HQWLUHO\ FOHDU DW SUHVHQW EXW FRXOG UHSUHVHQW UHDFWLRQV LQYROYLQJ WKH LQLWLDWRU FDWDO\VW FRPSOH[ f RU HQRODWH VSHFLHV ZLWK D 7$6 FRXQWHULRQ VXFK DV JHQHUDWHG LQ HTXDWLRQ ff FK 26L&+f 2&+ 7$66L&+f) ‘r} f 6XFK DQ HQRODWH VSHFLHV FRXOG HOLPLQDWH D PHWKR[LGH LRQ WR \LHOG D NHWHQH LQ D VLGH UHDFWLRQ HTXDWLRQ f ,W LV WR EH QRWHG KRZHYHU WKDW QR GLUHFW HYLGHQFH ZDV IRXQG IRU WKH SUHVHQFH RI WKH NHWHQH VXFK UHDFWLRQV KRZHYHU DUH SODXVLEOH RQ WKH EDVLV RI OLWHUDWXUH ILQGLQJV

PAGE 100

f *RRG FDWDO\WLF DFWLYLW\ ZDV H[SHFWHG IURP 1%) $OGULFK FRQWDLQLQJ OHVV WKDQ ZHLJKW b ZDWHUf RQ DFFRXQW RI LWV EHLQJ D KLJKO\ HIILFLHQW VRXUFH RI QXFOHRSKLOLF IOXRULGH LRQ DQG LWV XVH LQ WKH *73 RI 00$ +RZHYHU HYHQ RQH HTXLYDOHQW RI 1%8) ZLWK UHVSHFW RW LQLWLDWRU ZDV LQFDSDEOH RI FDWDO\]LQJ WKH SRO\PHUL]DWLRQ WR FRPSOHWH PRQRPHU FRQYHUVLRQ UXQ QR 7DEOH f 8QGRXEWHGO\ WKH UHDJHQW PD\ VWLOO FRQWDLQ PRLVWXUH ZKLFK FRXOG WHUPLQDWH WKH SRO\PHUL]DWLRQ :KHQ KDOLGHV RU WRV\ODWHV ZHUH WUHDWHG ZLWK DQK\GURXV 7%$) LH 1%8) +2 ZDUPHG DW r& XQGHU YDFXXP IRU VHYHUDO KRXUVf LQ WKH DEVHQFH RI DQ\ VROYHQW K\GURO\VLV WR WKH FRUUHVSRQGLQJ DOFRKRO RI WKH WRV\ODWH DSSHDUHG WR EH D VLJQLILFDQW VLGH UHDFWLRQ 7KLV ZDV H[SODLQHG E\ WKH SUHVHQFH RI WUDFHV RI PRLVWXUH UHPDLQLQJ LQ WKH DQK\GURXV 7%$) ZKLFK DUH UHQGHUHG KLJKO\ QXFOHRSKLOLF E\ WKH IOXRULGH LRQ +RZHYHU LW LV SUREDEO\ XQOLNHO\ WKDW WKH SUHVHQFH RI ZDWHU ZDV WKH UHDVRQ IRU WKH ODFN RI DFWLYLW\ RI 1%8) ,I WKDW ZHUH WKH FDVH LW ZRXOG QRW EH HIIHFWLYH LQ *73 RI 00$ HLWKHU ,W LV WKHUHIRUH QRW HQWLUHO\ FOHDU ZK\ WKLV FDWDO\VW IDLOHG WR \LHOG D JRRG \LHOG RI SRO\7U0$f EDVHG RQ WKH FRQYHQWLRQDO DVVRFLDWH PHFKDQLVP RI *73 $QRWKHU FDWD\VW 1%82$& NQRZQ WR FDWDO\VH WKH *73 RI 00$ IDLOHG WR HIIHFWLYHO\ FDWDO\VH WKH SRO\PHUL]DWLRQ RI 7U0$ LQ JRRG \LHOG UXQ QR f 7KHVH ILQGLQJV KLQW DW WKH SRVVLELOLW\ RI D PHFKDQLVP IRU WKH *73 RI 7U0$ GLIIHUHQW IURP WKDW SRVWXODWHG E\ WKH 'XSRQW JURXS IRU 00$ SRO\PHUL]DWLRQ

PAGE 101

0HWKYODWLRQ $WWHPSWV DQG WKH 3RVVLELOLW\ RI D 'LVVRFLDWLYH 0HFKDQLVP IRU WKH *73 RI 7U0$ 6HYHUDO H[SHULPHQWDO IDFWV IURP WKH 7U0$ SRO\PHUL]DWLRQ VWURQJO\ KLQW DW WKH SRVVLELOLW\ RI D 7$6 HQRODWH EHLQJ D SURSDJDWLQJ VSHFLHV )LUVW RQO\ WKH VWURQJ IOXRULGH LRQ GRQRUV VXFK DV 7$66L0H) DQG 7$6+) DSSHDU WR EH HIIHFWLYH FDWDO\VWV IRU SRO\PHUL]DWLRQ 7DEOH f (YHQ 1%8) DQG R[\DQLRQ FDWDO\VWV VXFK DV 1%82$& GLG QRW ZRUN ZHOO DW DOO ZKHUHDV WKH\ JDYH JRRG UHVXOWV IRU 00$ SRO\PHUL]DWLRQ $QRWKHU IDFW LV WKDW D KLJK OHYHO RI WKH VWURQJ IOXRULGH LRQ GRQRU FDWDO\VW LV UHTXLUHG 7KHVH WZR IDFWV LQGLFDWH WKDW D 7$6 HQRODWH PD\ EH D SURSDJDWLQJ VSHFLHV IRU WKH *73 RI 7U0$ DV VKRZQ LQ HTXDWLRQ f &+ RQ 7$6 V 00$ 300$ 2 7$6 U7 RY 12&+ FK ? 2&+ f 7KHUH LV QR UHSRUW LQ WKH OLWHUDWXUH RQ WKH DIILQLW\ RI DFHWDWH LRQ IRU VLOLFRQ 7KXV LQ WKH FDVH RI 1%82$& FDWDO\VLV WKH DFHWDWH LRQ FRXOG EH LQHIILFLHQW LQ WKH JHQHUDWLRQ RI DQ 1WHWUDEXW\ODPPRQLXP LRQ HQRODWH DQG GRHV QRW ZRUN ZHOO DV FDWDO\VW ,W LV LPSRUWDQW WR UHYLHZ KHUH WKH PHFKDQLVWLF VWXGLHV FRQGXFWHG E\ WKH 'XSRQW VFLHQWLVWV ZLWK UHJDUG WR HOXFLGDWLQJ WKH PHFKDQLVP IRU WKH *73 RI 00$ ,Q WKHLU VLO\O IOXRULGH ODEHOOLQJ VWXGLHV 7DEOH f ZKHUH 00$ ZDV SRO\PHUL]HG E\ SKHQ\OGLPHWK\,VLO\, LQLWLDWRU LQ WKH SUHVHQFH RI DQ HTXLPRODU TXDQWLW\ RI WRO\OGLPHWK\OVLO\O IOXRULGH DQG 7$66L0H) FDWDO\VW PROH b ZLWK UHVSHFW WR WKH LQLWLDWRUf IROORZHG E\ UHDFWLRQ TXHQFKLQJ WKH SRO\PHU HQG JURXS DQDO\VLV VKRZHG WKDW HYHQ DW ORZ WHPSHUDWXUHV DV r& WKHUH ZDV FRQVLGHUDEOH VLO\O JURXS H[FKDQJH HTXDWLRQ WDEOH f

PAGE 102

0H 0H 26L0H $ U &0E $Un6L0H) 00$ FDWDO\VW 0H 300$ 26L0H$ 20H Un 0 f 7DEOH 5HVXOWV RI 6LO\O )OXRULGH ([FKDQJH 6WXGLHV LQ WKH 3RO\PHUL]DWLRQ RI 00$ 5HIHU WR HTXDWLRQ f &DWDO\VW 7HPS7LPHr $U $Un 3RO\PHU (QGJURXS $QDO\VLVnr WDVKI r K 3K 7RO 1R GHWHFWDEOH 7RO6L0H WDVKI r K 7R 3K b 3K6L0H 7$66L0H) r K 3K 7RO 3K6L0H7RO6L0H 7$66L0H) r PLQ 3K 7RO 3K6L0H7RO6L0H 7$66L0H) r PLQ 3K 7RO 3K6L0H7RO6L0H ‘f‘GHWHUPLQHG E\ + 105 0+]f f7RWDO FRQWDFW WLPH RI VLO\O NHWHQH DFHWDO VLO\O IOXRULGH 00$ DQG FDWD\VW EHIRUH TXHQFKLQJ RI FDWDO\VW 6RXUFH 5HI (GLWRU 3RO\PHU 3UHSULQWVf $W KLJKHU WHPSHUDWXUHV WKH UDWH RI VLO\O JURXS H[FKDQJH ZLWK WKH 7$66L0H) FDWDO\VW LV XQGRXEWHGO\ IDVWHU ZKHUHDV WKH 7$6+) FDWDO\VW JDYH YHU\ OLWWOH RI WKH VLO\O H[FKDQJH SURGXFW HYHQ DW HOHYDWHG WHPSHUDWXUHV r&f 7KHLU VWXGLHV FOHDUO\ LQGLFDWH WKH GLIIHUHQFHV LQ EHKDYLRU EHWZHHQ 7$6+) DQG 7$66L0H) ,I ZH DVVXPH WKDW WKH H[FKDQJH ZDV GXH WR WKH SUHVHQFH RI GLVVRFLDWHG VSHFLHV WKHQ ZH DUH IRUFHG WR FRQFOXGH WKDW FDWDO\VLV E\ 7$66L0H) \LHOGV DQ DSSUHFLDEOH FRQFHQWUDWLRQ RI GLVVRFLDWHG VSHFLHV PRVW OLNHO\ D 7$6 HQRODWHf

PAGE 103

$Q XQHTXLYRFDO SURRI IRU WKH LQYROYHPHQW RI D 7$6 HQRODWH DV D SURSDJDWLQJ VSHFLHV ZRXOG EH WKH V\QWKHVLV DQG FRPSOHWH FKDUDFWHUL]DWLRQ RI D PRGHO 7$6 HVWHU HQRODWH DQG WKH GHPRQVWUDWLRQ RI LWV DFWLYLW\ LQ WKH SRO\PHUL]DWLRQ RI PHWKDFU\DODWHV 6HYHUDO DWWHPSWV ZHUH PDGH WR V\QWKHVLVH WKH 7$6 HQRODWH RI WKH *73 LQLWLDWRU XVLQJ WKH PHWKRG RI 1R\RUL XVLQJ 1(Wf66L0H) ZKLFK LV 7+) VROXEOHf +RZHYHU WKH UHDFWLRQ ZDV QRW DW DOO FOHDQ JLYLQJ D ZLGH YDULHW\ RI GLIIHUHQW SURGXFWV ZLWKRXW HYLGHQFH IRU WKH SUHVHQFH RI WKH 7$6 HQRODWH 7KH V\VWHP VWXGLHG E\ 1R\RUL ZDV WKH NHWRQH HQRODWH GHULYHG IURP EHQ]\O PHWK\O NHWRQH ,6 7KLV HQRODWH LV VWDELOL]HG E\ WKH SUHVHQFH RI FRQMXJDWHG GRXEOH ERQGV DQG LV VWDEOH HQRXJK IRU LVRODWLRQ DQG 105 FKDUDFWHUL]DWLRQ DW URRP WHPSHUDWXUH )RU UHDVRQV RI WLPH ZH GLG QRW XQGHUWDNH WKH V\QWKHVHV RI 7$6 HVWHU HQRODWHV D DQG E IURP D DQG E HTXDWLRQ f +RZHYHU LI VXFK FRPSRXQGV FDQ EH SUHSDUHG DQG FKDUDFWHUL]HG WKH\ PD\ VHUYH DV XVHIXO LQLWLDWRUV DQG PRGHO FRPSRXQGV IRU WKH VWXG\ RI WKH PHFKDQLVP RI SRO\PHUL]DWLRQ

PAGE 104

D 5 &+3K E 5 &3K D 5 &+3K E 5 &3K f $WWHPSWV ZHUH PDGH WR XVH K\GURVLO\ODWLRQ UHDFWLRQV WR JHQHUDWH VLO\O NHWHQH DFHWDOV DV PRGHO FRPSRXQGV IRU WKH FKDLQ HQG RI 37U0$ DQG 3'0$ QDPHO\ FRPSRXQGV IL DQG HTXDWLRQV DQG f 5K33Kf&, &+ &&+f&&3K (W6L+ !0H& &26L(Wf2&3Kf f 5K33Kf&, &+ &0Hf&&+3K 0H6L+ f§;f§! 0H& &26L0Hf2&+3Kf f ,I WKHVH PRGHO FRPSRXQGV FRXOG LQLWLWLDWH SRO\PHUL]DWLRQ RI 7U0$ DQG '0$ UHVSHFWLYHO\ XSRQ WKH DGGLWLRQ RI D WUDFH DPRXQW RI FDWDO\VW VXFK DV PROH b ZLWK UHVSHFW WR LQLWLDWRUf WKHQ WKDW ZRXOG FRQVWLWXWH HYLGHQFH WKDW WKH SRO\PHUL]DWLRQ SURFHHGV E\ PHDQV RI DFWLYDWHG VLO\O NHWHQH DFHWDOV DV REVHUYHG LQ WKH FDVH RI 00$ SRO\PHUL]DWLRQV

PAGE 105

6LO\O NHWHQH DFHWDOV DUH SURGXFHG DV WKH H[FOXVLYH RU SUHGRPLQDQW DGGXFWV LQ WKH K\GURVOO\ODWLRQ RI PHWK\O FURWRQDWH DQG PHWK\O PHWKDFU\ODWH E\ WUOHWK\OVLODQH DOWKRXJK ,Q FRQFHSW WKHUH DUH IRXU SRVVLEOH SURGXFWV LQ WKH K\GURVLO\ODWLRQ RI DOSKD XQVDWXUDWHG HVWHUV 7KHVH SURGXFWV DUH WKH DOSKD DQG DGGXFWV DGGLWLRQ WR WKH & & ERQG WKH DGGXFW SURGXFHG E\ DGGLWLRQ WR WKH FDUERQ\O JURXS DQG WKH DGGXFW 7KLV LV LOOXVWUDWHG LQ )LJ ,Q YLHZ RI WKH DERYH UHVXOWV LW ZDV H[SHFWHG WKDW WKH UHDFWLRQ RI 7U0$ ZLWK (W6L+ ZRXOG JLYH WKH FRUUHVSRQGLQJ VLO\O NHWHQH DFHWDO D DV WKH DGGLWLRQ SURGXFW +RZHYHU DIWHU WKH UHDFWLRQ ZDV FDUULHG RXW DW & IRU KRXU HVVHQWLDOO\ RQO\ VWDUWLQJ PDWHULDOV ZHUH UHFRYHUHG HTXDWLRQ f ,W ZDV )LJ 7KH +\GURVLO\ODWLRQ RI DOSKD 8QVDWXUDWHG (VWHUV WKRXJKW WKDW SHUKDSV WKH UHDFWLRQ GLG QRW WDNH SODFH EHFDXVH RI QRW DOORZLQJ HQRXJK WLPH HYHQ WKRXJK VRPH FRQYHUVLRQ WR RU DGGLWLRQ SURGXFW VKRXOG KDYH WDNHQ SODFHf RU EHFDXVH RI VWHULF SUREOHPV ZLWK WKH WULW\O JURXS 7KXV WKH QH[W UHDFWLRQ WULHG ZDV WKH K\GURVLO\ODWLRQ RI '0$ ZLWK WULPHWK\OVLODQH LQ D VHDOHG JODVV WXEH DW r& LQ EHQ]HQH IRU KRXUV (YHQ LQ WKLV FDVH WKH UHDFWLRQ GLG QRW SURFHHG DQG WKH VWDUWLQJ PDWHULDOV ZHUH UHFRYHUHG HTXDWLRQ f

PAGE 106

+RZHYHU WKH K\GURVLO\ODWLRQ RI PHWK\O PHWKDFU\ODWH ZLWK WULHWK\OVLODQH FDWDO\]HG E\ WKH VDPH :LONLQVRQnV FDWDO\VW JDYH DQ H[FHOOHQW \LHOG RI WKH FRUUHVSRQGLQJ VLO\O NHWHQH DFHWDO DV UHSRUWHG LQ WKH OLWHUDWXUHA HTXDWLRQ f 5K33Kf&, &+ &0Hf&0H (W6L+ 0H& &26L(Wf20Hf f 7KXV LW DSSHDUV WKDW WKH K\GURVLO\ODWLRQ RI '0$ DQG 7U0$ LV DGYHUVHO\ DIIHFWHG E\ WKH EXON\ HVWHU JURXS 5HIHUHQFH ZDV PDGH HDUOLHU WR WKH VHOI WHUPLQDWLQJ QDWXUH RI WKH SRO\PHUL]DWLRQ RI 7U0$ ,I WKH SURSDJDWLQJ VSHFLHV LV D QXFOHRSKLOH DFWLYDWHG VLO\O NHWHQH DFHWDO WKHQ WKLV VHOIWHUPLQDWLRQ LV PRVW OLNHO\ GXH WR WKH GHVWUXFWLRQ RI WKH VLO\O NHWHQH DFHWDO HQG JURXS E\ LWV VLGH UHDFWLRQ ZLWK WKH FDWDO\VW 7KLV LV FRUURERUDWHG E\ WKH LQDELOLW\ WR PHWK\ODWH WKH FKDLQ HQG RI 37U0$ SUHSDUHG E\ *73 ,Q D ILUVW DWWHPSW DIWHU D QRUPDO JURXS WUDQVIHU SRO\PHUL]DWLRQ RI 7U0$ FK, b HQULFKHG ZLWK WKH T ODEHOf ZDV DGGHG 7KH UHVXOWLQJ SRO\PHU KDG QR PHWK\O HQG JURXS VLJQDO DV GHWHUPLQHG E\ & 105 DQDO\VLV ,Q D VHFRQG DWWHPSW DIWHU D QRUPDO *73 SRO\PHUL]DWLQ RI 7U0$ WKH PHWK\ODWLRQ RI WKH FKDLQ HQG ZDV DWWHPSWHG E\ WKH DGGLWLRQ RI FK, IROORZHG LPPHGLDWHO\ E\ WKH DGGLWLRQ RI RQH HTXLYDOHQW ZLWK UHVSHFW WR WKH LQLWLDWRUf RI 7$66L0H) FDWDO\VW WKH VDPH FDWDO\VW WKDW ZDV XVHG LQ WKH PHWK\ODWLRQ RI *73 300$f 1R PHWK\O HQG JURXS ZDV REVHUYHG LQ WKLV FDVH HLWKHU 7KHVH WZR H[SHULPHQWV VXJJHVW WKDW WKH WULSKHQ\OPHWK\O HVWHU 7$6 HQRODWHV XQGHUZHQW VLGH UHDFWLRQV SULRU WR WKH DGGLWLRQ RI PHWK\O LRGLGH OHDGLQJ WR LWV GHVWUXFWLRQ 7KLV LV DOVR FRQVLVWHQW ZLWK WKH REVHUYDWLRQ WKDW WKH PHWK\ODWLRQ RI WKH FRUUHVSRQGLQJ OLWKLR HQRODWH LQ 7+) SURFHHGV LQ KLJK \LHOG

PAGE 107

7KH DERYH FRQFOXVLRQ LV DOVR FRUURERUDWHG E\ WKH HDUOLHU PHWK\ODWLRQ H[SHULPHQWV ZLWK WKH *73 300$ FKDLQ HQG LQ ZKLFK FDVH LW ZDV IRXQG WKDW LQ RUGHU WR PHWK\ODWH WKH FKDLQ HQG &+O KDG WR EH DGGHG ILUVW IROORZHG E\ RQH HTXLYDOHQW 7$66L0H) 5HYHUVLQJ WKH RUGHU JDYH 300$ ZLWK QR GHWHFWDEOH PHWK\O HQG JURXS VWURQJO\ VXSSRUWLQJ WKH KLJK UHDFWLYLW\ DQG WUDQVLHQW QDWXUH RI D 7$6 HQRODWH 7KH SRLQW PD\ EH UDLVHG DW WKLV WLPH WKDW LI WKH *73 RI 7U0$ LV SURFHHGLQJ E\ DQ HQRODWH PHFKDQLVP WKDW LV DQ DQLRQLF SURFHVV WKHQ WKH 0: RI WKH UHVXOWLQJ SRO\PHU VKRXOG EH FRQWUROOHG E\ WKH PROH UDWLR RI PRQRPHU WR FDWDO\VW VLQFH WKH FRQFHQWUDWLRQ RI DFWLYH VSHFLHV VKRXOG EH HTXDO WR WKH FRQFHQWUDWLRQ RI FDWDO\VW WKH DFWLYH VSHFLHV EHLQJ JHQHUDWHG E\ D RQH WR RQH VWRLFKLRPHWULF UHDFWLRQ RI LQLWLDWRU DQG FDWDO\VW +RZHYHU WKLV ZRXOG RQO\ EH WKH FDVH LQ JHQHUDO ZKHUH WKH VLWXDWLRQ LV QRW FRPSOLFDWHG PXFK E\ RWKHU VLGH UHDFWLRQV $V KDV DOUHDG\ EHHQ GLVFXVVHG DERYH KRZHYHU WKH SRO\PHUL]DWLRQ LV FRPSOLFDWHG E\ VLGH UHDFWLRQV DQG DSSHDUV WR EH VHOI WHUPLQDWLQJ ,Q VXFK D GLIILFXOW V\VWHP LW LV SHUKDSV QRW WRR VXUSULVLQJ WKDW WKH 0: LV QRW FRQWUROOHG E\ WKH PROH UDWLR RI PRQRPHU WR FDWDO\VW ,Q DQ\ FDVH WKH UHVXOWV RI WKH DERYH WZR DWWHPSWV WR PHWK\ODWH WKH FKDLQ HQG RI 37U0$ DUH FRQVLVWHQW ZLWK WKH DEVHQFH RI VLO\O NHWHQH DFHWDO HQG JURXS DW WKH 37U0$ SURSDJDWLQJ FHQWHU DOWKRXJK WKH\ GR QRW ULJRURXVO\ UXOH RXW VLO\O NHWHQH DFHWDOV DV SURSDJDWLQJ VSHFLHV ,Q D WKLUG DWWHPSW WR PHWK\ODWH WKH FKDLQ HQG RI *73 37U0$ RQH HTXLYDOHQW ZLWK UHVSHFW WR WKH LQLWLDWRUf RI 7$66L0H) ZDV DGGHG WR D PL[WXUH RI LQLWLDWRU PRQRPHU DQG &+O RQH WR WZR HTXLYDOHQWV ZLWK UHVSHFW WR LQLWLDWRUf ,W ZDV KRSHG WKDW D DPDOO DPRXQW RI PHWK\ODWHG SRO\PHU ZRXOG EH REWDLQHG 7KH UHVXOW ZDV WKDW HVVHQWLDOO\ RQO\ PHWK\ODWHG ,QLWLDWRU PHWK\O SLYDODWH & ODEHOOHG` HTXDWLRQ f ZDV REWDLQHG DV VHHQ IURP *&f ZLWK YLUWXDOO\ QR SRO\PHU 7KLV LQGLFDWHV WKDW WKH UDWH RI PHWK\ODWLRQ RI VLO\O NHWHQH DFHWDO LV IDVWHU WKDQ WKH LQLWLDWLRQ UDWH

PAGE 108

7$66c0H) &+f& &26c0Hf20Hf +& &&+f&&3K FK, &+f&&+f&& f 7KH DERYH UHVXOWV DUH VXSSRUWLYH RI D GLVVRFLDWLYH PHFKDQLVP RU D FRPELQDWLRQ RI GLVVRFLDWLYH DQG DVVRFLDWLYH PHFKDQLVPV RSHUDWLQJ VLPXOWDQHRXVO\ LQ WKH SRO\PHUL]DWLRQ RI 7U0$ 7KLV LV DOVR FRQVLVWHQW ZLWK WKH WHPSHUDWXUH GHSHQGHQW WDFWLFLW\ RI 37U0$ SUHSDUHG E\ *73 6WHUHRFKHPLVWU\ RI *73 RI 7U0$ 5HSUHVHQWDWLYH 37U0$ VDPSOHV IURP WKH UXQV LQ 7DEOH ZHUH WUDQVHVWHULILHG WR 300$ WR GHWHUPLQH WKH WDFWLFLWLHV DW YDULRXV WHPSHUDWXUHV 7KH WDFWLFLW\ GDWD DQG VHYHUDO VWHUHRFKHPLFDO SDUDPHWHUV DUH VKRZQ LQ 7DEOH 7KH OLWHUDWXUH WDFWLFLW\ UHVXOWV IRU WKH DQLRQLF DQG IUHH UDGLFDO SRO\PHUL]DWLRQ RI 7U0$ DUH VKRZQ LQ 7DEOHV DQG UHVSHFWLYHO\ IRU FRPSDULVRQ SXUSRVHV 7KH WULDG WDFWLFLWLHV ZHUH GHWHUPLQHG E\ & 105 +RZHYHU + 105 VSHFWUD ZHUH DOVR WDNHQ WR FRPSDUH WKH WDFWLFLW\ GDWD E\ WKH WZR PHWKRGV 7KH DJUHHPHQW EHWZHHQ + DQG & 105 ZDV H[FHOOHQW LQ DOO FDVHV WKH GLIIHUHQFH EHWZHHQ WKHP QHYHU H[FHHGLQJ RU bf IRU DQ\ WULDG WDFWLFLW\ IUDFWLRQ + RU 6f +RZHYHU WKH WDFWLFLW\ GHWHUPLQDWLRQ E\ & 105 ZDV SUHIHUUHG RZLQJ WR WKH VRPHZKDW EHWWHU UHVROXWLRQ RI WKH WDFWLFLW\ VLJQDOV ([DPLQDWLRQ RI 7DEOHV WR UHYHDOV WKDW WKH SRO\PHUV REWDLQHG DUH SUHGRPLQDQWO\ LVRWDFWLF IRU DOO WKH GLIIHUHQW WHPSHUDWXUHV DQG DOO WKH GLIIHUHQW PHWKRGV RI SRO\PHUL]DWLRQ DQLRQLF UDGLFDO DQG *73 +RZHYHU LQ FRQWUDVW WR WKH DQLRQLF DQG UDGLFDO SRO\PHUL]DWLRQ RI 7U0$ WKH JURXS WUDQVIHU

PAGE 109

7DEOH 7DFWLGW\ RI 300$ 'HULYHG IURP 37U0$ E\ *73 LQ 7+) 7HPS r&f IBBD nPP nPU IUUD IBE nP 3F ;3G $SfH $;3fI GHWHUPLQHG GLUHFWO\ IURP & 105 XQFHUWDLQW\ LQ PHDVXUHPHQW LV s EFDOFXODWHG IURP HTXDWLRQ f FSHUVLVWDQFH UDWLR FDOFXODWHG IURP HTXDWLRQ f GFDOFXODWHG IURP ;3 3PU 3UP DQG HTXDWLRQ f HXQFHUWDLQW\ LQ S AXQFHUWDLQW\ LQ ;3 XQFHUWDLQWLHV GHWHUPLQHG IURP DQDO\VLV RI SURSDJDWLRQ RI HUURU 7DEOH 7DFWLFLW\ RI WKH $QLRQLF 3RO\PHUL]DWLRQ RI 7U0$ LQ 7+) ,QLWLDWRU 7HPS r&f IUUUUD fPP IUAU6 nPU IUUD I_7f 3 ;3 %X/LE '30/& '30/G %X/LE GHWHUPLQHG E\ + 105 EUHIHUHQFH FGLSKHQ\OPHWK\O OLWKLXP WDFWLFLW\ GDWD IURP UHIHUHQFH GWKLV VWXG\ WKH WDFWLFLW\ GDWD IURP & 105 IRU WKH VDPH VDPSOH ZDV IPP ISQU ISS

PAGE 110

7DEOH 7DFWLFLW\ RI 5DGLFDO 3RO\PHUL]DWLRQ RI 7U0$ LQ 7ROXHQH ,QLWLDWRU 7HPS :Q 9QU IUU 3 ,3 r&f $,%1r $,%1r fWULDG WDFWLFLW\ GDWD WDNHQ IURP UHIHUHQFH f SRO\PHUL]DWLRQ DSSHDUV WR SURGXFH PRUH KLJKO\ LVRWDFWLF SRO\PHUV DV WKH WHPSHUDWXUH LQFUHDVHV 7KXV DERXW b LVRWDFWLF SRO\PHU LV REWDLQHG DW URRP WHPSHUDWXUH DV FRPSDUHG WR b DW & $W r& WKH WDFWLFLW\ GDWD IRU *73 DSSHDU WR EH PRUH VLPLODU WR WKRVH IURP IUHH UDGLFDO SRO\PHUL]DWLRQDW r& ZKLOH DW DPELHQW WHPSHUDWXUHV WKH UHVXOWV UHVHPEOHV WKRVH RI DQLRQLF SRO\PHUL]DWLRQ DW r& )LJ LV D SORW RI SHUFHQW WDFWLFLW\ YHUVXV WHPSHUDWXUH IRU WKH *73 RI 7U0$ 7KH LVRWDFWLF FRQWHQW LQFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH ZKLOH WKH V\QGLRWDFWLF DQG KHWHURWDFWLF FRQWHQWV GHFUHDVH 7KH LQFUHDVH LQ VWHUHRVHOHFWLYLW\ ZLWK LQFUHDVLQJ WHPSHUDWXUH DV IRXQG LQ WKH JURXS WUDQVIHU SRO\PHUL]DWLRQV RI 7U0$ LV UDWKHU XQXVXDO DQG FRQWUDVWV ZLWK WKH QRUPDOO\ REVHUYHG GHFUHDVHV LQ VWHUHRUHJXODULW\ DW KLJKHU WHPSHUDWXUH VHHQ LQ W\SLFDO UDGLFDO DQG DQLRQLF SRO\PHUL]DWLRQV )RU H[DPSOH LQVSHFWLRQ RI 7DEOH UHYHDOV WKDW WKH LVRWDFWLF FRQWHQW GHFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH LQ WKH Q%X/L LQLWLDWHG DQLRQLF SRO\PHUL]DWLRQ RI 7U0$ $OVR LQ ERWK DQLRQLF DQG JURXSWUDQVIHU SRO\PHUL]DWLRQ RI 00$ WKH V\QGLRWDFWLF FRQWHQW GHFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH 7KH VDPH WUHQG LV VHHQ LQ WKH UDGLFDO SRO\PHUL]DWLRQ RI 00$ DQG RI YLQ\O FKORULGH &OHDUO\ LQ WKH JURXSWUDQVIHU SRO\PHUL]DWLRQRI 7U0$ ZH KDYH DQ DQRPDORXV EHKDYLRU IRU WKH GHSHQGHQFH RI WDFWLFLW\ RQ WHPSHUDWXUH WKH SRO\PHUL]DWLRQ EHFRPLQJ PRUH VWHUHRVHOHFWLYH ZLWK LQFUHDVLQJ WHPSHUDWXUH 7KH HQVXLQJ GLVFXVVLRQV

PAGE 111

ZLOO FHQWHU RQ H[SODQDWLRQV IRU WKLV DQRPDORXV EHKDYLRU IRXQG LQ WKH *73 RI 7U0$ 7KH GHJUHH RI VWHUHRUHJXODULW\ RI D YLQ\O SRO\PHU LV VSHFLILFDOO\ GHWHUPLQHG E\ WKH NUNP UDWLR ZKHUH NU DQG NP DUH WKH UDWH FRQVWDQWV IRU V\QGLRWDFWLF DQG LVRWDFWLF SODFHPHQW RI PRQRPHU ,VRWDFWLF SRO\PHU LV SURGXFHG LI WKLV UDWLR LV VPDOO DQG V\QGLRWDFWLF SRO\PHU LI LW LV ODUJH )RU NUNP YDOXHV EHWZHHQ ]HUR DQG LQILQLW\ RQH REWDLQV D GLVWULEXWLRQ RI LVRWDFWLF DQG V\QGLRWDFWLF SODFHPHQWV UHVSHFWLYHO\6LQFH NU N7Kf H[S $*Ur57f NP N7Kf H[S $*Pr57f f f ZKHUH N DQG K DUH WKH %ROW]PDQ DQG 3ODQFNnV FRQVWDQW UHVSHFWLYHO\f GLYLVLRQ RI HTXDWLRQ f E\ HTXDWLRQ f \LHOGV NUNPf H[S$$*r57f H[S^$$6r5f$$+r57f` f ZKHUH $$*r LV WKH GLIIHUHQFH LQ IUHH HQHUJLHV RI DFWLYDWLRQ EHWZHHQ WKH V\QGLRWDFWLF DQG LVRWDFWLF SODFHPHQWV DQG LV JLYHQ E\ $$*r $*Ur $*Pr $+Ur $+Prf 7$6rU $6rPf $$+r 7$$6r f ZKHUH *Ur $+Ur 7$6Ur $*Pr $+SLr 7$6Pr $$6r $6IA $6PA f f f

PAGE 112

7DFWLFLW\ bf )LJ 3ORW SHUFHQW WDFLWLW\ YHUVXV WHPSHUDWXUH IRU WKH *73 RI 7U0D

PAGE 113

$$+r $+Ur $+Pr f $*r $+Ur DQG $6Ur DUH WKH DFWLYDWLRQ IUHH HQHUJ\ HQWKDOS\ DQG HQWURS\ IRU V\QGLRWDFWLF SODFHPHQW DQG $*Pr $+Pr DQG $6Pr DUH WKH FRUUHVSRQGLQJ TXDQWLWLHV IRU LVRWDFWLFH SODFHPHQW 7DNLQJ WKH ORJ RI ERWK VLGHV RI HTXDWLRQ f \LHOGV OQNUNPf $$*r57f $$6r5 $$+r57 f 7KXV D SORW RI ,Q NUNPf YV 7 VKRXOG \LHOG D VWUDLJKW OLQH ZLWK VORSH $$+r5 DQG LQWHUFHSW $$6r5 ,Q WKLV FDOFXODWLRQ NINPf LV VLPSO\ WDNHQ DV WKH UDWLR RI UDFHPLF DQG PHVR G\DGV 7KH GDWD LV SORWWHG LQ )LJ 6LQFH D VLJPRLGDO FXUYH LV REWDLQHG WKH FXUYH ZDV GLYLGHG LQWR WKUHH OLQHDU UHJLRQV DQG YDOXHV RI $$+r DQG $$6r ZHUH FDOFXODWHG IURP WKH VORSHV DQG LQWHUFHSWV UHVSHFWLYHO\ IURP WKHVH OLQHDU UHJLRQV 7KH YDOXHV DUH OLVWHG LQ 7DEOH 7KH YDOXHV IRU $$*r DW YDULRXV WHPSHUDWXUHV LV VKRZQ LQ 7DEOH 7KXV $$+r IDYRUV WKH IRUPDWLRQ RI U G\DGV E\ NFDOPROH ZKLOH $$6r IDYRUV WKH IRUPDWLRQ RI P G\DGV E\ HX LQ WKH HQWLUH WHPSHUDWXUH UDQJH r& WR r&f 7KH DGGLWLRQ RI PRQRPHU WR JLYH P G\DGV DSSHDUV WR EH HQWURS\ GULYHQ DV $$*r EHFRPHV PRUH SRVLWLYH ZLWK LQFUHDVLQJ WHPSHUDWXUH LH $*rP EHFRPHV PRUH QHJDWLYH FRPSDUHG WR $*rUf DV WKH FRQWULEXWLRQ RI 7$$6r WR $$*r LQFUHDVHV ZLWK WHPSHUDWXUH 7KH XQXVXDO HIIHFW RI WHPSHUDWXUH RQ VWHUHRVHOHFWLYLW\ RI SRO\ 7U0$f DQG WKH VLJPRLGDO EHKDYLRU IRU WKH WDFWLFLW\ GHSHQGHQFH RQ WHPSHUDWXUH PDNH LW SODXVLEOH WKDW WZR DFWLYH VSHFLHV DUH SDUWLFLSDWLQJ LQ WKH JURXSWUDQVIHU SRO\PHUL]DWLRQ RI 7U0$ $ VLJPRLGDO FXUYH ZDV DOVR REWDLQHG IRU WKH $UUKHQLXV SORW SORW RI ORJ N YV 7 LQ WKH SRO\PHUL]DWLRQ RI SRO\VW\UHQH LQ WKH

PAGE 114

)LJ 3ORW RI ,Q NINPf YV 7 IRU WKH *73 RI 7U0$ 7;

PAGE 115

7DEOH &DOFXODWHG YDOXHV RI $$+r DQG $$6r IURP WKUHH GLIIHUHQW UHJLRQV RI )LJ 7HPSHUDWXUH 5DQJH r&f $$+r NFDOPROHf $$6r HXf WR WR 2WR 7DEOH 9DOXHV RI $$*r DW GLIIHUHQW WHPSHUDWXUHV FDOFXODWHG IURP YDOXHV RI NU DQG NP HTXDWLRQ f 7HPSHUDWXUH r&f $$*rNFDOPROHf SUHVHQFH RI VRGLXP FRXQWHULRQ LQ 7+) ZKLFK LQYROYHG WKH VLPXOWDQHRXV SDUWLFLSDWLRQ RI VROYHQWVHSDUDWHG DQG FRQWDFW LRQSDLUV _Q WKDW FDVH WKH VLJPRLGDO FXUYH KDG WZR OLQHDU UHJLRQV ZKHUH HLWKHU WKH FRQWDFW RU WKH VROYHQWVHSDUDWHG LRQ SDLUV H[LVWHG 6LQFH 7U0$ FRXOG QRW EH SRO\PHUL]HG E\ *73 DW WHPSHUDWXUHV DERYH r& HYLGHQFH IRU OLQHDULW\ DW WKH KLJK WHPSHUDWXUH UHJLRQ LQ WKH SORW RI ,Q NUNP YHUVXV 7 FRXOG QRW EH IRXQG 7KH

PAGE 116

DQRPDORXV EHKDYLRU RI GHSHQGHQFH RI VWHUHRVHOHFWLYLW\ RQ WHPSHUDWXUH LQ WKH FDVH RI *73 FDQ EH H[SODLQHG E\ LQYRNLQJ WKH FRQFHSW RI PXOWLSOH DFWLYH VSHFLHV 7KH SUHVHQFH RI PRUH WKDQ RQH DFWLYH VSHFLHV KDV EHHQ GHPRQVWUDWHG LQ D QXPEHU RI FDVHV LQYROYLQJ WKH DQLRQLF SRO\PHUL]DWLRQ RI DOSKDVXEVWLWXWHG DFU\ODWHV DQG PHWKDFU\ODWHV SPPD KDYLQJ D PL[WXUH RI LVRWDFWLF DQG V\QGLRWDFWLF SRO\PHUV ZLWK D ORZ KHWHURWDFWLF FRQWHQW KDYH EHHQ GHWHFWHG E\ WKLQ OD\HU FKURPDWRJUDSK\ 7/&f DQG VHSDUDWHG E\ FRPSHWLWLYH DGVRUSWLRQ PHWKRG 7KH VLPXOWDQHRXV IRUPDWLRQ RI LVRWDFWLF DQG V\QGLRWDFWLF SRO\PHUV LQGLFDWHV WKDW WKHUH DUH DW OHDVW WZR W\SHV RI DFWLYH VSHFLHV ZKRVH LQWHUFRQYHUVLRQ LV YHU\ VORZ LQ WKH SRO\PHUL]DWLRQ WLPH VFDOH 7KLV ZDV GHPRQVWUDWHG E\ WKH SRO\PHUL]DWLRQ RI HWK\O PHWKDFU\ODWH E\ %X/L LQ WROXHQH ZKHUH KLJKO\ LVRWDFWLF SRO\PHUV ZHUH IRUPHG DERYH r& EXW OHVV VWHUHRUHJXODU SRO\PHUV DW ORZHU WHPSHUDWXUHV 7KH VDPSOH SUHSDUHG DW WKH ORZHU WHPSHUDWXUH FRQVLVWHG RI WZR IUDFWLRQV 2QH ZDV RI ORZ PROHFXODU ZHLJKW f LVRWDFWLF DQG VROXEOH LQ PHWKDQRO DQG WKH RWKHU ZDV KLJKHU PROHFXODU ZHLJKW !f V\QGLRWDFWLF DQG LQVROXEOH LQ PHWKDQRO 7KH \LHOG RI WKH LQVROXEOH IUDFWLRQ GHFUHDVHG VWHHSO\ ZLWK LQFUHDVLQJ WHPSHUDWXUH DQG EHFDPH ]HUR DW r& ZKLOH WKH \LHOG RI WKH VROXEOH IUDFWLRQ UHPDLQHG DOPRVW FRQVWDQW 7KHUHIRUH WKH QXPEHU RI V\QGLRWDFWLF DFWLYH VSHFLHV GHFUHDVHG DW KLJKHU WHPSHUDWXUH ZKLOH WKDW RI WKH LVRWDFWLF RQH UHPDLQHG FRQVWDQW ,Q WKH SRO\PHUL]DWLRQ RI 00$ E\ WKH VRGLXP VDOW RI ROLJRPHULF DOSKDn PHWK\OVW\UHQH LQ 7+) WKH 6(& HOXWLRQ FXUYHV RI WKH SRO\PHU VDPSOHV WDNHQ DW GLIIHUHQW FRQYHUVLRQV LQGLFDWHG WKH H[LVWHQFH RI WZR DFWLYH VSHFLHV $W ORZ FRQYHUVLRQV ELPRGDO GLVWULEXWLRQV ZLWK QDUURZ LQGLYLGXDO SHDNV ZHUH REWDLQHG WKH UDWLR RI WKH PROHFXODU ZHLJKWV DW WKH PD[LPD EHLQJ DERXW :LWK LQFUHDVLQJ FRQYHUVLRQ ERWK SHDNV PHUJHG DQG D XQLPRGDO SHDN ZDV REWDLQHG 7KHUH ZDV D VLJQLILFDQW GLIIHUHQFH LQ WKH WDFWLFLW\ RI ERWK IUDFWLRQV RI

PAGE 117

WKH ELPRGDO 6(& FKURPDWRJUDP )RU H[DPSOH DW b FRQYHUVLRQ WKH ORZ PROHFXODU ZHLJKW IUDFWLRQ ZLWK D GHJUHH RI SRO\PHUL]DWLRQ RI VKRZHG b LVRWDFWLF b KHWHURWDFWLF DQG b V\QGLRWDFWLF FRQWHQW ZKLOH WKH KLJK PROHFXODU ZHLJKW IUDFWLRQ ZLWK D GHJUHH RI SRO\PHUL]DWLRQ RI VKRZHG b LVRWDFWLF b KHWHURWDFWLF DQG b V\QGLRWDFWLF FRQWHQWV 7KH WDFWLFLW\ GDWD DQG WKH ELPRGDO QDWXUH RI WKH 6(& FKURPDWRJUDP DUH FRQVLVWHQW ZLWK WKH SDUWLFLSDWLRQ RI WZR DFWLYH VSHFLHV ZKLFK DUH LQWHUFRQYHUWLQJ VORZO\ LQ WKH SRO\PHULVDWLRQ WLPH VFDOH 7KH FDVHV GLVFXVVHG DERYH DUH H[DPSOHV RI WZR DFWLYH VSHFLHV SURSDJDLQJ ZKHUH WKH LQWHUFRQYHUVLRQ EHWZHHQ WZR VSHFLHV LV VORZ FRPSDUHG WR SRO\PHUL]DWLRQ 7KH VLWXDWLRQ IRU WKH FDVH RI UDSLG LQWHUFRQYHUVLRQ EHWZHHQ WZR VSHFLHV LV PRUH FRPSOLFDWHG ,Q VXFK D FDVH RQO\ D XQLPRGDO GLVWULEXWLRQ VKRXOG EH VHHQ LQ ZKLFK FDVH LW ZRXOG EH LPSRVVLEOH WR IUDFWLRQDWH WKH VDPSOH WR GHPRQVWUDWH GLIIHUHQW WDFWLFLWLHV DULVLQJ IURP HDFK DFWLYH VSHFLHV VLQFH WKH GLIIHUHQW WDFWLFLWLHV DUH QRZ SUHVHQW LQ D VLQJOH FKDLQ 6LQFH WKHUH VKRXOG EH VRPH GLIIHUHQFH LQ WKH WDFWLFLWLHV RI WKH WZR SRO\PHUV SURGXFHG E\ WKH WZR VSHFLHV WKH SUHVHQFH RI WZR GLIIHUHQW VSHFLHV PD\ EH LQGLFDWHG E\ DQ DQRPDORXV GHSHQGHQFH RI VWHUHRVHOHFWLYLW\ RQ WHPSHUDWXUH IRU H[DPSOH 7KLV PD\ EH D OLNHO\ H[SODQDWLRQ LQ WKH FDVH RI *73 RI 7U0$ ZKHUH IDLUO\ QDUURZ XQLPRGDO GLVWULEXWLRQV DUH REWDLQHG DW DOO WHPSHUDWXUHV 7KXV LQ )LJ WKH QHDUO\ SRUWLRQV RI WKH FXUYH DW KLJK DQG ORZ WHPSHUDWXUH H[WUHPHV UHSUHVHQW WHPSHUDWXUH UHJLRQV ZKHUH HVVHQWLDOO\ RQO\ RQH RI WKH WZR VSHFLHV H[LVWV ,Q EHWZHHQ WKHVH WZR WHPSHUDWXUH GRPDLQV ERWK VSHFLHV DUH SUHVHQW )LJ LOOXVWUDWHV WKH VLWXDWLRQ

PAGE 118

$ % 0 f0 )LJ 6FKHPH LOOXVWUDWLQJ LQWHUFRQYHUVLRQ RI WZR SURSDJDWLQJ VSHFLHV LQ WKH *73 RI 7U0$ n 7KH VFKHPH LV DFWXDOO\ D FDVH RI &ROHPDQ)R[A 6WDWLVWLFV DQG KDV EHHQ ZRUNHG RXW LQ GHWDLO +HUH LV WKH HTXLOLEULXP FRQVWDQW IRU WKH LQWHUFRQYHUVLRQ RI WKHVH WZR VSHFLHV $ DQG % DQG ZRXOG EH HTXDO WR >%@>$@ f LI LQWHUFRQYHUVLRQ RI WKH VSHFLHV LV IDVW FRPSDUHG WR N$ DQG NJ DQG NP$ DQG NU D ZRXOG EH WKH UDWH FRQVWDQW IRU PHVR DQG UDFHPLF DGGLWLRQ UHVSHFWLYHO\ IRU VSHFLHV $ ,I IU DQG IP DUH WKH IUDFWLRQV RI UDFHPLF DQG PHVR G\DG UHVSHFWLYHO\ NUNPf 9IPf NU$>$@>0@ NU %.>$@>0@`^NPf$>$@>0@ NPW%.>$@>0@` f VR WKDW NUNPf ^NU$ NA%.-INP$ NP%.` f :KHQ .m HTXDWLRQ f UHGXFHV WR NUNP NI$NP$ f

PAGE 119

ZKHUH WKH VWHUHRFKHPLVWU\ LV JRYHUQHG RQO\ E\ VSHFLHV $ DQG ZKHQ .} NUNPf UHGXFHV WR NU%NP% ZKHUH WKH VWHUHRFKHPLVWU\ LV JRYHUQHG RQO\ E\ VSHFLHV % 7KH WHPSHUDWXUH GHSHQGHQFH RI HTXDWLRQ f FDQ EH REWDLQHG E\ WDNLQJ LWV GHULYDWLYH ZLWK UHVSHFW WR 7 DP NUNPfDL7f DDL7f NU$ .NU!%fNP!$ .NPL%f f DD7f ,Q NUi$ .NU %f D7f ,Q NPL$ .NP!%f f NU!$ .NU %f DD7f NU $ .NU %f NP$ .NP %f DD7f NP!$.NPf%f f NU!$ .NU %f DDL7f NUf$ DDL7fNU% NU!% DDLUf Nf NP!$ .NP%f DDL7f NP!$ N DDL7fNP% NP% DD7f .f f DQG VLQFH GG^97f ,Q [ [f D[D7f f FDQ EH ZULWWHQ DV DLQNUNPfD7f NU!$ .NU %ff > NU$ D NU $ D7f .NU % D ,Q NUM% D7f .NU % D ,Q .D7f@ NP $ .NP %ff > NP $ D NP$ D7f .NP % D ,Q NP% D7f .NP % D ,Q .D7f@ f NU$ .NU %ff NU$$+rU$5n .NU% $+rU% .NU% $*r5f NP$ .NP %ff NP$$+rP$5 .NP % $+rU% .NP % $*r5fn f NU!$ .NU %ff NUL$$+rU$5 .NUM%$+rU!%5 $*r5ff NP$ .NP%ff r NP$$+rP$5 .NPA$+AP %5 $*r5ff f :KHQ .} LH RQO\ VSHFLHV % LV SUHVHQWf WKH DERYH H[SUHVVLRQ UHGXFHV WR

PAGE 120

OQNUNPf 7f $+rP!% $+Af%f5 $$+r%5 f )RU .m LH RQO\ VSHFLHV $ LV SUHVHQWf OQNUNPf7f NU!$frNUf$$+WUL$ffNP$fnNP$$+P$f $+AP $r $+AUf$f5 $$+r$5 f 7KXV DOWKRXJK HTXDWLRQ f LV UDWKHU FRPSOH[ XQGHU OLPLWLQJ FRQGLWLRQV ZKHQ HLWKHU RQH RI WKH WZR VSHFLHV LV SUHVHQWf LW UHGXFHV WR WKH VORSH RI WKH OLQHDU HTXDWLRQ f IRU VLQJOH VSHFLHV ZKLFK LW VKRXOG 7KH SRVVLELOLW\ RI WKH *73 RI 7U0$ SURFHHGLQJ WKURXJK DQ HQRODWH PHFKDQLVP KDV EHHQ GLVFXVVHG HDUOLHU 7KH WDFWLFLW\ UHVXOWV VXJJHVW WKH SRVVLELOLW\ RI WZR DFWLYH VSHFLHV LQ G\QDPLF HTXLOLEULXP 7KXV WKHUH LV SRVVLELOLW\ RI RQH RI WKH VSHFLHV EHLQJ WKH 7$6 HQRODWH ZKLOH WKH RWKHU FRXOG EH DQ DFWLYDWHG LH SHQWDFRRUGLQDWHGf VLO\O NHWHQH DFHWDO DV LQ WKH FDVH RI 00$ SRO\PHUL]DWLRQV ZLWK +)f LRQ 7KHUH LV \HW DQRWKHU SRVVLELOLW\ WR H[SODLQ WKH WHPSHUDWXUH GHSHQGHQFH RI WDFWLFLW\ IRU WKH *73 RI 7U0$ LQYROYLQJ WZR DFWLYH VSHFLHV 7KH UDWHV RI LQWHUFRQYHUVLRQ EHWZHHQ WKH WZR VSHFLHV PD\ EH VORZ FRPSDUHG WR WKHLU SURSDJDWLRQ UDWHV ZKLFK LQ WXUQ PD\ EH YHU\ VLPLODU IRU ERWK VSHFLHV $ XQLPRGDO 0: GLVWULEXWLRQ LV DOVR H[SHFWHG LQ WKLV FDVH +RZHYHU WKLV FDVH LV QRW DV SODXVLEOH VLQFH WKH SUREDELOLW\ IRU WKH SURSDJDWLRQ UDWHV EHLQJ YHU\ VLPLODU IRU WKH WZR VSHFLHV LV TXLWH ORZ ,I WKH UDWHV RI SRO\PHUL]DWLRQ RI WKH WZR VSHFLHV DUH VLPLODU IRU DOO WHPSHUDWXUHV QR VLJPRLGDO EHKDYLRU ZRXOG EH H[SHFWHG 1R HYLGHQFH WR GDWH KDV EHHQ SUHVHQWHG IRU VXFK D FDVH ([DPLQDWLRQ RI 7DEOH UHYHDOV WKDW WKH SHUVLVWHQFH UDWLRV Sf DW ORZHU WHPSHUDWXUHV DQG ;3 3PU 3UPf GHYLDWH FRQVLGHUDEO\ IURP XQLW\ LQGLFDWLQJ QRQ%HUQRXOOLDQ EHKDYLRU ,W VKRXOG EH QRWHG KRZHYHU WKDW D QRQ%HUQRXOOLDQ

PAGE 121

EHKDYLRU LV FRQVLVWHQW ZLWK WKH SHUVLVWHQFH RI WKH LVRWDFWLF VHTXHQFH ZKLFK ZRXOG DOVR EH FRQVLVWHQW ZLWK WKH KHOLFDO JURZWK RI SRO\ 7U0$f $ QRQ %HUQRXOOLDQ EHKDYLRU ZRXOG DOVR EH FRQVLVWHQW ZLWK WKH SUHVHQFH RI WZR RU PRUH SURSDJDWLQJ VSHFLHV %HVLGHV LW LV H[WUHPHO\ GLIILFXOW WR FKHFN VWDWLVWLFV ZKHQ WKH V\QGLRWDFWLF RU LVRWDFWLF FRQWHQW LV YHU\ KLJK $ FRPSDULVRQ RI PDLQ FKDLQ DQG FKDLQ HQG WDFWLFLW\ ZRXOG KDYH SURYLGHG IXUWKHU HYLGHQFH IRU WKH QRQ%HUQRXOOLDQ EHKDYLRU LQ WKLV V\VWHP +RZHYHU DV DOUHDG\ GLVFXVVHG DOO DWHPSWV WR PHWK\ODWH WKH FKDLQ HQG ZLWK &+O SURYHG XQVXFFHVVIXO *URXS 7UDQVIHU 3RO\PHUL]DWLRQ RI '0$ ([SHULPHQWDO &RQGLWLRQV DQG 6(& 5HVXOWV 7KH UHVXOWV RI WKH JURXS WUDQVIHU SRO\PHUL]DWLRQ RI '0$ XQGHU YDULRXV FRQGLWLRQV LQ JLYHQ LQ 7DEOH 2QFH DJDLQ WKH PROHFXODU ZHLJKW FRQWURO LV SRRU GXH WR SRRU LQLWLDWRU HIILFLHQF\ UHVXOWLQJ IURP VLGH UHDFWLRQV 8QLPRGDO 0: GLVWULEXWLRQV DUH REWDLQHG IRU DOO VDPSOHV :LWK WKH H[FHSWLRQ RI WKH r& UXQ ZKHUH WKH PROHFXODU ZHLJKW LV PXFK ORZHU WKDQ WKH UHVW RI WKH VDPSOHVf WKH 0:' DSSHDUV WR LQFUHDVH ZLWK WHPSHUDWXUH IRU WKH KLJK PROHFXODU ZHLJKW VDPSOHV SRVVLEO\ LQGLFDWLQJ LQFUHDVHV LQ UDWHV RI VLGH UHDFWLRQV ZLWK WHPSHUDWXUH :KHQ WKH SRO\PHUL]DWLRQ RI '0$ ZDV DWWHPSWHG XVLQJ RQH HTXLYDOHQW RI 1%82$& FDWDO\VW ZLWK UHVSHFW WR WKH LQLWLDWRUf DW r& QR SRO\PHUL]DWLRQ UHVXOWHG 7KDW WKLV IDLOXUH ZDV GXH WR WKH GHVWUXFWLRQ RI WKH VLO\O NHWHQH DFHWDO LQLWLDWRU DQG QRW WKH FDWD\VW ZDV GHPRQVWUDWHG E\ DGGLQJ WR WKH UHDFWLRQ PL[WXUH RI WKH DERYH XQVXFFHVVIXO SRO\PHUL]DWLRQ DQ HTXLYDOHQW RI 7$66L0H) WKH PRUH FRPPRQO\ XVHG FDWDO\VW 7KLV DOVR IDLOHG WR SRO\PHUL]H WKH '0$ +RZHYHU ZKHQ DGGLWLRQDO LQLWLDWRU ZDV DGGHG WR WKH DERYH UHDFWLRQ PL[WXUH DW r& DIWHU WKH DGGLWLRQ RI 7$66L0H) FDWDO\VW DOO RI WKH PRQRPHU SRO\PHUL]HG LQVWDQWDQHRXVO\ 7KXV WKH UHDVRQ IRU

PAGE 122

7DEOH 5HVXOWV RI *URXS 7UDQVIHU 3RO\PHUL]DWLRQ RI '0$ 7HPSr&f &DWDO\VW >,QLW@ >&DW@ ;LeWOGbf 0ZD 0QD 0\\0S_ &DOFXO0Q $E + ,I WW %H $E DPROHFXODU ZHLJKW RI WUDQVHVWHULILHG 300$ E7$66L0H) FQ%X'$F WKH RULJLQDO XQVXFFHVVIXO SRO\PHUL]DWLRQ RI '0$ ZLWK 1%82$& ZDV GXH WR GHVWUXFWLRQ RI WKH LQLWLDWRU DV D UHVXOW RI LWV VLGH UHDFWLRQ ZLWK 1%82$& 7KXV LQLWLDWLRQ FRXOG QRW WDNH SODFH LQ WKDW FDVH 6WHUHRFKHPLVWU\ RI *73 RI '0$ $OWKRXJK WKH DOSKDPHWK\O VLJQDOV RI 3'0$ VDPSOHV WKHPVHOYHV FDQ EH XVHG WR FDOFXODWH WULDG WDFWLFLW\ IUDFWLRQVp DOO WKH VDPSOHV SUHSDUHG E\ *73 ZHUH WUDQVHVWHULILHG WR 300$ IRU EHWWHU UHVROXWLRQ RI WKH DOSKDPHWK\O VLJQDOV LQ ERWK + DQG & 105 7KH WDFWLFLW\ UHVXOWV DW YDULRXV WHPSHUDWXUHV DUH VKRZQ LQ 7DEOH )RU FRPSDULVRQ SXUSRVHV WKH WDFWLFLW\ GDWD IRU DQLRQLF DQG UDGLFDO SRO\PHUL]DWLRQ RI '0$ DUH LQFOXGHG LQ 7DEOHV t UHVSHFWLYHO\ ([DPLQDWLRQ RI WKH GDWD LQ 7DEOH VKRZV WKDW WKH IUDFWLRQ RI V\QGLRWDFWLF WULDGV GHFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH ZKLOH WKH KHWHURWDFWLF IUDFWLRQ LQFUHDVHV 7KH LVRWDFWLF IUDJPHQW DSSHDUV WR LQFUHDVH YHU\ VOLJKWO\ ZLWK LQFUHDVLQJ WHPSHUDWXUH 7KHVH GDWD IRU WKH WHPSHUDWXUH GHSHQGHQFH RQ WDFWLFLW\ DUH SORWWHG LQ )LJ 7KH VDPH WUHQG LV REVHUYHG

PAGE 123

7DFWLFLW\ bf )LJ 3ORW RI SHUFHQW WDFWLFLW\ YHUVXV WHPSHUDWXUH IRU WKH *73 RI '0$

PAGE 124

7DEOH 7DFWLFLW\ DQG 6WHUHRFKHPLFDO 3DUDPHWHUV IRU 300$ 'HULYHG )URP 3'0$ LQ 7+) 7HPS r&f APP IrPU IrUU 9 3 ,3 ‘YO R L rWULDG WDFWLFLW\ GHWHUPLQHG E\ & 105 7DEOH $QLRQLF 3RO\PHUL]DWLRQ RI 'LSKHQ\LPHWK\O 0HWKDFU\ODWH LQ 7+) ,QLWLDWRU 7HPS r&f IPP Z IUU IU ,3 3 %X/LD %X/LD '30/E %X/LD R &2 %X/LD %X/LD %X/LD D WULDG WDFWLFLW\ GHWHUPLQHG E\ + 105 UHIHUHQFH AUHIHUHQFH

PAGE 125

7DEOH 5DGLFDO 3RO\PHUL]DWLRQ RI '0$ LQ 7ROXHQH ,QLWLDWRU 7HPS IPP IPU 9U IP 3 (3 r&f $,%1r $,%1r fWULDG WDFWLFLW\ GDWD WDNHQ IURP UHIHUHQFH IRU ERWK DQLRQLF DQG UDGLFDO SRO\PHUL]DWLRQV LQ FRQWUDVW WR WKH FDVH RI WKH *73 SRO\PHUL]DWLRQ RI 7U0$ ,Q WKH JURXS WUDQVIHU SRO\PHUL]DWLQ RI '0$ WKH SHUVLVWHQFH UDWLR Sf DQG WKH VXP RI WKH ILUVW RUGHU 0DUNRY SUREDELOLWLHV (3 3PU 3UPf DUH ERWK YHU\ FORVH WR XQLW\ LQGLFDWLQJ FRQVLVWHQF\ ZLWK D %HUQRXOOLDQ SURSDJDWLRQ SURFHVV +RZHYHU LQVSHFWLRQ RI WKH VDPH SDUDPHWHUV LQ WKH DQLRQLF SRO\PHUL]DWLRQ 7DEOH f UHYHDOV WKDW DW WHPSHUDWXUHV EHORZ r& WKH YDOXHV IRU WKH SHUVLVWHQFH UDWLR Sf DQG WKH VXP (3 GHYLDWH IURP XQLW\ 7KLV PD\ EH GXH WR VLGH UHDFWLRQV DQG QRW LQGLFDWLYH RI QRQ%HUQRXOOLDQ EHKDYLRU ,Q FRQFOXVLRQ LW KDV EHHQ VKRZQ WKDW 7U0$ DQG '0$ FDQ EH SRO\PHUL]HG VXFFHVVIXOO\ E\ *73 DW YDULRXV WHPSHUDWXUHV 7KH VWURQJ IOXRULGH LRQ GRQRU FDWDO\VWV DSSHDU WR EH WKH PRVW HIIHFWLYH LQ WKHVH SRO\PHUL]DWLRQV DQG DUH UHTXLUHG LQ PXFK KLJKHU FRQFHQWUDWLRQV IRU 00$ SRO\PHUL]DWLRQV %RWK V\VWHPV DUH VHYHUHO\ DIIHFWHG E\ VLGH UHDFWLRQV FRPSHWLQJ ZLWK LQLWLDWLRQ WKDW UHVXOW LQ WKH SDUWLDO GHVWUXFWLRQ RI WKH VLO\O NHWHQH DFHWDO LQLWLDWRU DQG WKH UHVXOWLQJ SRRU FRQWURO RI PROHFXODU ZHLJKW 7KLV LV DOVR VXJJHVWHG E\ WKH IDFW WKDW VHYHUDO DWWHPSWV WR PHWK\ODWH WKH FKDLQHQG RI SRO\7U0$f SUHSDUHG E\ *73 ZHUH XQVXFFHVVIXO

PAGE 126

,Q FRQWUDVW WR DQLRQLF DQG UDGLFDO PHWKRGV WKH VWHUHRVHOHFWLYLW\ RI WKH *73 RI 7U0$ LQFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH ZLWK D KLJKHU LVRWDFWLF FRQWHQW DW URRP WHPSHUDWXUH $ VLJPRLGDO FXUYH LV REWDLQHG ZKHQ WKH WDFWLF FRQWHQW RI SRO\7U0$f LV SORWWHG DV ,Q NUNPf YHUVXV 7 7KH UHVXOWV DUH FRQVLVWHQW ZLWK WKH SRO\PHUL]DWLRQ SURFHHGLQJ WKURXJK WZR DFWLYH VSHFLHV VXFK DV DQ HQRODWH DQG D VLO\O NHWHQH DFHWDO ZKLFK DUH LQWHUFRQYHUWLQJ UDSLGO\ GXULQJ WKH SRO\PHUL]DWLRQ 2Q WKH RWKHU KDQG WKH WDFWLFLW\ UHVXOWV IRU WKH *73 RI '0$ LQ 7+) DUH VLPLODU WR WKRVH RI DQLRQLF SRO\PHUL]DWLRQ RI '0$ LQ 7+) LQ WKDW WKH V\QGLRWDFWLF FRQWHQW GHFUHDVHV DQG WKH KHWHURWDFWLF FRQWHQW LQFUHDVHV ZLWK LQFUHDVLQJ WHPSHUDWXUH 7KHVH WDFWLFLW\ UHVXOWV DUH DOVR YHU\ VLPLODU WR WKH *73 DQG DQLRQLF SRO\PHUL]DWLRQ RI 00$ LQ 7+) ,Q FRQWUDVW WR 7U0$ WKH *73 RI '0$ LV FRQVLVWHQW ZLWK WKH SDUWLFLSDWLRQ RI D VLQJOH DFWLYH VSHFLHV DV LQGLFDWHG E\ WKH S DQG =3 YDOXHV ZKLFK DUH YHU\ FORVH WR XQLW\ LQ WKH HQWLUH WHPSHUDWXUH UDQJH IURP r& WR r& 7KH KLJKO\ LVRWDFWLF FRQWHQW RI SRO\7U0$f LV DOVR FRQVLVWHQW ZLWK D KHOLFDO VWUXFWXUH VSLUDOHG LQ D RQH VFUHZ VHQVH IRU WKLV SRO\PHU ZKLOH IRU SRO\'0$f D UDQGRP FRLO FRQIRUPDWLRQ LV PRUH OLNHO\ 7KH VLPLODULW\ LQ WDFWLF FRQWHQW RI SRO\7U0$f SUHSDUHG E\ DQLRQLF UDGLFDO DQG *73 FRQILUPV WKDW VWHULF IDFWRUV GRPLQDWH WKH SRO\PHUL]DWLRQ RI WKLV PRQRPHU

PAGE 127

5()(5(1&(6 6RJDK < +HUWOHU : 5 :HEVWHU 2 : &RKHQ 0 0DFURPROHFXOHV :HEVWHU 2 : +HUWOHU : 5 6RJDK < )DUQKDP : % 5DMDQEDEX 7 9 $P &KHP 6RF :HEVWHU 2 : +HUWOHU : 5 6RJDK < )DUQKDP : % 5DMDQEDEX 7 9 0DFURPRO 6FL &KHP $ :HEVWHU 2: +HUWOHU : 5 6RJDK < :HEVWHU 2 : 7URVW % 0 0DFURPROHFXOHV )DUQKDP : % 6RJDK < 3RO\P 3UHSU $P &KHP 6RF 'LY 3RO\P &KHPf f 6RJDK < )DUQKDP : % 2UJDQRVLOLFRQ DQG %ORRUJDQOF &KHPLVWU\ 6WUXFWXUHV %RQGLQJ 5HDFWLYLW\ DQG 6\QWKHWLF $SSOLFDWLRQ + 6DNXUDL (G :LOH\ 1HZ
PAGE 128

+DWKDZD\ 6 3DTXHWWH / $ 2UJ &KHP 6WHYHQVRQ ,,, : + 0DUWLQ & $P &KHP 6RF &RUULX 5 3 .RSWRQ $ 3RLULHU 0 5R\R 2UJDQRPHW &KHP & &RUULX 5 3 *XHnULQ & 0RUHDX -( 7RSLFV LQ 6WHUHRFKHPLVWU\ ( / (OLHU 6+ :LOHQ 1 / $OOLQJHU (GV :LOH\ 1HZ
PAGE 129

$OOHQ 5 /RQJ 7 ( 0F*UDWK ( $GYDQFHV LQ 3RO\PHU 6\QWKHVLV % 0 &XOEHUWVRQ ( 0F*UDWK (GV 3OHQXP 1HZ
PAGE 130

-RKQVRQ % / (OLDV + 0DNURPRO &KHP (OLDV + 0DNURPRO &KHP (OLDV + 0DFURPROHFXOHV 3OHQXP 1HZ
PAGE 131

+RJHQ(VFK 7 (c 6PLG $P &KHP 6RF +DWDGD 8PHPXUD < )XURPRWR 0 .RNDQ 6c 2KWD
PAGE 132

%,2*5$3+,&$/ 6.(7&+ .ULVKQD *RSDO %DQHUMHH %DQG\RSDG\D\Df ZDV ERUQ RQ $SULO LQ &DOFXWWD ,QGLD $IWHU VWXG\LQJ IRU WZR \HDUV DW WKH 5DPNUOVKQD 0LVVLRQ +LJK 6FKRRO $VDQVRO :HVW %HQJDO ,QGLD KH OHIW IRU /RQGRQ (QJODQG LQ $IWHU VWXG\LQJ IRU IRXU \HDUV ,Q (QJODQG DW &KULVWRSKHU :UHQ 6FKRRO DQG /DW\PHU 8SSHU 6FKRROf KH FDPH WR WKH 8QLWHG 6WDWHV ,Q $IWHU JUDGXDWLQJ IURP 7KRUQZRRG +LJK 6FKRRO 6RXWK +ROODQG ,OOLQRLV LQ KH VWXGLHG DW &DVH :HVWHUQ 5HVHUYH 8QLYHUVLW\ IRU WZR \HDUV EHIRUH WUDQVIHUULQJ WR &OHYHODQG 6WDWH 8QLYHUVLW\ +H JUDGXDWHG IURP &OHYHODQG 6WDWH 8QLYHUVLW\ LQ DQG ZRUNHG IRU VRPH WLPH DW 3\URPDWLFV ,QF &OHYHODQG 2KLR +H UHFHLYHG KLV PDVWHUfV GHJUHH LQ RUJDQLF FKHPLVWU\ IURP &OHYHODQG 6WDWH 8QLYHUVLW\ LQ 'HFHPEHU DQG HQUROOHG DW WKH 8QLYHUVLW\ RI )ORULGD LQ -DQXDU\ +H VWDUWHG ZRUNLQJ ZLWK 3URI +RJHQ(VFK LQ

PAGE 133

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 9 f W 7KLHR ( +RJHQ(VFK &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -RKQ ) +HOOLQJ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *HRUJH % %XWOHU 3URIHVVRU (PHULWXV RI &KHPLVWU\

PAGE 134

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -RKQ 5 (\OHU 3URIHVVRU RI &KH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KDUOHV / %HDWW\ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EXDZZ65SF_8QDNV3 INGEST_TIME 2012-02-07T15:09:28Z PACKAGE AA00003781_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES