Citation
Solute-solvent interaction free energies and retentivity of reversed phase liquid chromatography columns

Material Information

Title:
Solute-solvent interaction free energies and retentivity of reversed phase liquid chromatography columns
Creator:
Ying, Peter Tai Yuen, 1962-
Publication Date:
Language:
English
Physical Description:
ix, 130 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Dill ( jstor )
Free energy ( jstor )
Molecular interactions ( jstor )
Molecules ( jstor )
Parabens ( jstor )
Phthalates ( jstor )
Solutes ( jstor )
Solvents ( jstor )
Steepest descent method ( jstor )
Trucks ( jstor )
Liquid chromatography ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 123-129).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Peter Tai Yuen Ying.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001521240 ( ALEPH )
AHD4403 ( NOTIS )
22225694 ( OCLC )

Downloads

This item has the following downloads:


Full Text














SOLUTE-SOLVENT INTERACTION FREE ENERGIES
AND RETENTIVITY OF REVERSED PHASE
LIQUID CHROMATOGRAPHY COLUMNS
















BY

PETER TAI YUEN YING


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1989


















ACKNOWLEDGMENTS

My first acknowledgment has to go to my research director,

Professor John Dorsey. Without his patience, guidance and

encouragement, I would not have completed this work. Also, I need to

thank him for introducing me to the world of wine and Depth Charge,

although the pleasure seems to always be his. I also want to express my

thanks to Professor Ken Dill at the University of California-San

Francisco for laying the theoretical foundation of this work. The

financial support from the NIH and NSF grants for this work is greatly

appreciated.

Special thanks go to my parents and family back in Hong Kong.

Even though we are thousands of miles apart, their love and

encouragement have kept me going. Also, their financial support is

greatly appreciated.

Thanks go to the sunshine, beaches, warm weather, and all the

beautiful coeds in shorts on campus for making my four years in Florida

most enjoyable. I am going to miss all of them when I move to the Windy

city.

Lastly, I want to thank all the members in the Dorsey group for

all the wonderful times we had (I love this place). They make my four

years of graduate school experience unforgettable. I also want to thank

them for putting up with my horrible singing, ubiquitous words, and the

frequent strident noises that I make.






















TABLE OF CONTENTS


ACKNOWLEDGMENTS..........................................


LIST OF TABLES...........................................


LIST OF FIGURES......................................... ..


ABSTRACT............................................... ...


CHAPTERS


Page
............ii


.............v


............vi


..........viii


I INTRODUCTION.... ..........................................1


Solvophobic Retention Mechanism............................2
Partiton Retention Mechanism...............................5
Soltue-Solvent Interaction Constant......................13
Stationary Phase in RPLC.................................... 14


II SOLUTE-SOLVENT INTERACTION FREE ENERGIES IN REVERSED
PHASE LIQUID CHROMATOGRAPHY.............................26


Introduction. ............................................26
Experimental Procedure...................................28
Results and Discussion...................................30


III CHARACTERIZATION OF THE RETENTIVITY OF REVERSED PHASE
LIQUID CHROMATOGRAPHY COLUMNS ............................66


Introduction.... ..................... ....................66
Experimental Section......................................68
Results and Discussion..................................... 72


IV CONCLUSIONS AND FUTURE WORK.............................88


Conclusions.......................... ....................88
Future Work ...................................... ........90


APPENDICES

A


B


CHROMATOGRAPHIC RETENTION DATA...........................94


SLOPES FROM EQUATION 3-1 AND In kw....................... 109











REFERENCES ..........................................................123

BIOGRAPHICAL SKETCH.... .......... ...................................130






































































iv




















LIST OF TABLES


Table eage

2-1. Linear regression results of equation 2-2 and results of
slopes and intercepts ......................................33

2-2. Regression results of slopes from equation 2-3 versus the
van der Waals volume, Vw, of the solutes for all the
columns....................................................52

2-3. Regression results of slopes from equation 2-3 vs the
hydrocarbonaceous surface area, HSA, of the solutes for
all the columns............................................ 54

2-4. Regression results of y-intercepts at 0B=1 from equation
2-3 versus the van der Waals volume, Vw, of the solutes
for all the columns........................................ 59

2-5. Regression results of y-intercepts at OB=l from equation
2-3 vs the hydrocarbonaceous surface area, HSA, of the
solutes for all the columns ................................61

2-6. Regression results of slopes from equation 2-3 versus the
slopes of ET(30) plots for all the columns.................64

3-1. Properties of the RPLC columns as supplied by the
manufacturers ..............................................70

3-2. List of test solutes used in this study.....................71

3-3. Regression results of graphs of slopes from equation 3-1
against van der Waals volume, Vw, of the test solutes......75

3-4. Regression results of graphs of slopes from equation 3-1
against molecular connectivity index of the test
solutes....................................................77

3-5. Regression results of slopes from equation 3-1 vs In kw
of the test solutes for all the columns....................81

3-6. Phase ratio of the columns in this study calculated using
the method presented by Sentell (1988) .....................86




















LIST OF FIGURES


Xure Page

1-1. The three steps involved in the partition process
where the transfer of solute molecule S requires the
opening of a cavity in the stationary phase C and the
closing of a cavity in mobile phase A (Dorsey and
Dill, 1989) ................................................. 7

1-2. Pair interaction potential, uXy(r), for two simple
molecules. Reversible work for bringing molecules X
and Y together to their equilibrium separation r* is
WXY (Dorsey and Dill, 1989)................................. 8

1-3. Generalized bonding scheme for the synthesis of monomeric-
bonded phase using a monochlorosilane.....................18

1-4. Early models of molecular structure and organization
of the bonded phase in RPLC: a) "picket fence"; b) "fur";
c) "stacks" (Dill 1987) ...................................21

1-5. Interphase model of the bonded phase in RPLC proposed
by Dill (1987) ............................................22

2-1. Plot of 1/OB ln(k'/kw) versus OB for the solute
4-Nitrophenol using Hypersil ODS column and
acetonitrile as modifier..................................31

2-2. Histogram of coefficient of determination, r2, for the
plots of 1/1B ln(k'/kw) versus *B for all the data
sets ......................................................32

2-3. Plot of slopes from equation 2-3 versus van der Waals
volume, Vw, of the solutes for the Sepralyte C-18
column with acetonitrile as modifier......................51

2-4. Plot of slopes from equation 2-3 versus hydrocarbonaceous
surface area, HSA, of the solutes for the Sepralyte C-18
column with acetonitrile as modifier......................53

2-5. Plot of y-intercepts at =B=1 from equation 2-3 versus
van der Waals volume, Vw, of the solutes for the
Sepralyte C-18 column with acetonitrile as modifier....... 58










2-6. Plot of y-intercepts at pB=1 from equation 2-3 versus
hydrocarbonaceous surface area, HSA, of the solutes
for the Sepralyte C-18 column with acetonitrile as
modifier..................................................60

2-7. Plot slopes from ET(30) plots versus slopes from
equation 2-3 for the Sepralyte C-18 column with
acetonitrile as modifier..................................63

3-1. Plot of slopes from equation 3-1 against the van der
Waals volume, Vw, of the test solutes for the Zorbax
TMS column using acetonitrile as modifier.................74

3-2. Plot of slopes from equation 3-1 against the molecular
connectivity index of the test solutes for the Zorbax
TMS column using acetonitrile as modifier.................76

3-3. Plot of slopes from equation 3-1 against the In kw of
the test solutes for the Zorbax TMS column using
acetonitrile as modifier..................................80

3-4. Plot of slopes from equation 3-1 against the In kw of
the test solutes for all the Zorbax columns using
acetonitrile as modifier..................................84



















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SOLUTE-SOLVENT INTERACTION FREE ENERGIES
AND RETENTIVITY OF REVERSED PHASE
LIQUID CHROMATOGRAPHY COLUMNS

By

PETER TAI YUEN YING

August, 1989

Chair: John G. Dorsey
Major Department: Chemistry

Recently, a description of the molecular mechanism of retention in

reversed phase liquid chromatography (RPLC) was derived by using a

partition model and statistical mechanical theory. This theory relates

the capacity factor, k', of a solute in RPLC to the binary interaction

constant between the solute molecules and the mobile phase molecules.

The binary interaction constant is related to the interaction free

energy through the Boltzmann's constant and the absolute temperature.

Solute-solvent interaction free energies can be obtained from

chromatographic data if the partition theory of solute retention is

correct.

We have tested the validity of the predictions from this theory by

using more than 300 sets of retention data from the literature and our

laboratory. With only a few exceptions, the data confirm all "the

predictions, and the solute-solvent interaction free energies are found

to be solute size dependent, which was a case not considered when the


viii











theory was first developed.

Although RPLC is one of the most popular separation techniques,

the actual effect that the stationary phase has on solute retention is

still not completely known. Much research has been done on the role and

effects of the mobile phase on solute retention in RPLC, but there has

been a lack of systematic approaches in characterizing RPLC columns.

We have developed a simple method to classify RPLC columns in

accordance with their retentivity by using more than 20 solutes of very

different chemical structures. The solvent strength of the mobile

phase has to be accounted for before the retentivity of these columns

can be investigated. This is accomplished by plotting In k' of the


solute against the ET(30) polarity values of the mobile phase. A good


parameter that sums all the retention due to the stationary phase is the


capacity factor of the solute at 100% water, In kw. By utilizing In kw


and the slope from the ET(30) plot, a relative retentivity of RPLC


columns is obtained.


L




















CHAPTER I
INTRODUCTION

Reversed phase liquid chromatography (RPLC) is the most common

mode of high-performance liquid chromatography used today. RPLC is

estimated to account for more than 80% of chromatographic systems

currently employed (Melander and Horvath, 1980). The name "reversed

phase" was introduced by Howard and Martin (1950) when they used

non-polar liquid paraffin and n-octane as the stationary phase to

separate fatty acids. They used the term to distinguish it from "normal

phase" chromatography, which consists of a polar stationary phase and a

non-polar mobile phase. The use of RPLC has shown an overwhelming

increase when columns packed with chemically stable microparticulate-

bonded silica became available. The practical use of commercial bonded

phase packing in RPLC can be dated back to Kirkland and DeStefano

(1970).

These bonded phases add great advantages to RPLC, including the

fact that aqueous mobile phases having low toxicity and high optical

transparency can be adopted to achieve most separations. Also, the

stability of these bonded phases are superior to other stationary

phases. Aqueous mobile phases of pH between 7.5 and 2.5 are compatible

with these bonded phases. Moreover, because of the wide range of

polarity of the mobile phases that can be used with these bonded phases,











an enormous amount of chemical compounds can be separated by using

bonded phases in RPLC.

Despite the prevalence of RPLC in analytical separations, there is

a lack of full understanding of solute retention and selectivity. This

lack of understanding hinders the development of a retention index in

RPLC similar to the Kovats index (Kovats 1965) or Rohrschneider and

McReynolds (Rohrschneider 1965; McReynolds 1970) constants in gas

chromatography (GC). It also creates problems for practical

chromatographers in developing separation schemes and for comparison of

retention results obtained from different laboratories. Horvath and

coworkers (Horvath et al., 1976; Melander and Horvath 1980) explained

their solvophobic retention mechanism for RPLC using a solute

association model. This is an important step toward the deconvolution

of solute retention on the molecular basis in RPLC, although there are

many shortcomings in this theory such as the ignorance of the retention

effects due to the stationary phase. The deficiencies of this theory

have been demonstrated in the literature by many researchers (Lochmuller

and Wilder, 1979; Lochmuller et al., 1981; Sadek and Carr, 1984;

Berendsen et al., 1980; Sentell and Dorsey, 1989a). Dill and coworkers

(Dill 1987; Marqusee and Dill, 1986a; Dorsey and Dill, 1989) have put

forth a molecular basis retention mechanism for small solutes in RPLC

using a partition model. In the following sections, these two

significant retention mechanisms in RPLC will be discussed briefly.




Solvophobic Retention Mechanism

The solvophobic theory was promoted by Horvath and coworkers

(Horvath et al., 1976; Melander and Horvath, 1980) utilizing the











solvophobic interaction of solute association from Sinanoglu (1967). In

this theory, solute retention is viewed as a reversible association of

the solute with the hydrocarbonaceous ligands of the stationary phase.

The hydrophobic interactions between the solute and the stationary phase

are thought to come from the fact that the mobile phase in RPLC is

relative polar, and the nonpolar moiety of the solute is repelled and

forced to associate with the nonpolar stationary phase. As Melander and

Horvath (1980) stated, the solute retention in solvophobic theory

actually involves two steps. The first step is the opening of a cavity

in the solvent that has the same size and shape as the solute molecule.

The second step is the placement of the solute in the solvent cavity and

all the interactions between the encircled solute and the solvent

molecules are followed. These interactions are originated from the van

der Waals forces and the electrostatic interactions amid the solute and

the solvent molecules.

The free energy associated with the first step of the solvophobic

theory can be expressed as




AGe = Ke(r) A y N (1-1)




where N is Avogadro's number, y is the surface tension of the solvent, A

is the molecular surface area of the solute and Ke(r) is a proportional

factor for the cavity size. From equation 1-1, the free energy of the

solvent cavity is proportional to the surface tension of the solvent.

The free energy related to solute-solvent interactions is comprised of

two chemical effects and an entropic term












A Gint = A Gvdw + A Ges + RT In(RT/PV) (1-2)




The change in free energy from the first chemical effect, A Gvdw,

can be calculated by using van der Waals potential in condensed media

for the solute and solvent. The change in free energy from the second

chemical effect, A Ges, can be further divided into dipole interactions

and ionic interactions. The dipole interactions can be treated

according to the Onsager reaction field approach (1936) while the ionic

interactions can be estimated using the Debye-Huckel theory. The

entropic term in equation 1-2 is related to the "free volume" of the

solute and this free volume is the measure of the volume of a molecule

before it collides with another molecule. The solute's molar volume can

be used to compute the free volume (Melander and Horvath 1980).

As far as the stationary phase effects on the retention of

solutes, Melander and Horvath (1980) considered them negligible because

the stationary phase is nonpolar and the only attraction between the

solute and the stationary phase is van der Waals forces. This van der

Waals force is insignificant compared to the van der Waals interactions

between the solute and solvent molecules. Although Melander and Horvath

(1980) acknowledged that an entropic term can be used to sum up the

restricted translational freedom of the bonded hydrocarbonaceous ligands

at the silica surface, they elected to pay no attention to this term in

their theory. In summary, the solvophobic retention mechanism takes the

approach that solute retention in RPLC is largely due to the hydrophobic

interactions of the solute and solvent molecules. The stationary phase


I











is treated as a passive entity that is forced to receive the solute from

the solvent, and its contribution to solute retention is negligible.




Partition Retention Mechanism

One of the catastrophic downfalls of the solvophobic theory is

that it disregarded the effect of the stationary phase on solute

retention. Dill and coworkers (Dill 1987; Marqusee and Dill, 1986a,

Dorsey and Dill, 1989) applied the mean-field statistical mechanical

theory, lattice theories (Hill 1986) and random-mixing approximation to

explore the retention mechanism of RPLC on the molecular level. Dill

and Dorsey (1989) used a simple partition model and took into account

the stationary phase effect on solute retention. They assumed the

stationary phase in RPLC as an "interphase" and solute retention is due

to partition between the the bulk mobile phase and the interphase. In

their model, the dominating driving force of solute transfer is from the

differences amid the chemical affinity of the mobile and stationary

phase. The solute capacity factor measured in RPLC can be expressed as




k' = K ( (1-3)




where k' is the capacity factor of the solute, K is the equilibrium

constant of the partition process and I is the phase ratio of the

chromatographic system and in RPLC, this is defined as the ratio of the

volumes of stationary and mobile phases. The equilibrium constant, K,

can be related to the free energy G(S) for the solute S


in K = -( Gosta(S) Gmoobile(S) )/kT


I


(1-4)











where Gosta(S) and Gomobile(S) are the standard-state free energies of

solute S in the stationary phase and the mobile phase respectively, and

kT is the Boltzmann's constant multiplied by absolute temperature.

The actual solute transfer of this partition process is comprised

of three steps. First, a cavity having the same size as the solute

molecule is opened in the stationary phase. Second, the solute molecule

from the mobile phase is transferred into the stationary phase cavity.

Third, the cavity left behind by the solute molecule in the mobile phase

is filled by other mobile phase molecules. These three steps are shown

in Figure 1-1, and for simplification, the mobile phase is considered to

be a single component. This will be used throughout the following

discussion of this retention mechanism. For a detailed derivation of

this retention mechanism using a binary mobile phase, the readers should

refer to Dill (1987).

The free energies involved in these three steps can be calculated

using pair interactions of molecules. The pair potential, u(r*), of

bringing a spherical molecule X from an infinite separation to within an

average equilibrium separation of spherical molecule Y can be defined as




u(r*) u(o) = u(r*) = WXY (1-5)




where wxy is the reversible work. Figure 1-2 shows a pair potential,

with short-ranged repulsion and longer-ranged attraction. The partition

process in RPLC is the result of this pair potential. The exact nature

of the pair potential is difficult to identify since the partition

coefficient of the process alone does not give enough information, but






























0< **




(iii) fill cavity


(i) open cavity


Figure 1-1.


The three steps involved in the partition process
where the transfer of solute molecule S requires the
opening of a cavity in the stationary phase C and the
closing of a cavity in mobile phase A (Dorsey and
Dill, 1989).


(ii) transfer


*0*


*0*


o*0
















Uxy(r)













Wxy = Uxy(r*)


Figure 1-2. Pair interaction potential, uxy(r), for two simple
molecules. Reversible work for bringing molecules X
and Y together to their equilibrium separation r* is
wyy (Dorsey and Dill, 1939).











it is generally believed that it is related to hydrogen bonding, dipole,

ionic and van der Waals interactions.

Dill and coworkers (Dill 1987; Marqusee and Dill, 1986a; Dorsey

and Dill, 1989) stated that from the lattice theory of liquids, the

opening of the cavity in the stationary phase leaves z sides, or z/2

contact (pair of sides), without contact. The coordination number, z,

is the number of neighbors of each molecules, or of each lattice site.

This cavity opening process in the stationary phase contributes

(-z/2)wCc to the free energy of the overall process. The same argument

can be applied to the closing of the cavity in the mobile phase, and

therefore the free energy contributed is (-z/2)wAA. The solute

molecule, S, in the mobile phase is surrounded by z nearest-neighbors of

the mobile phase molecules(solute self-association is ignored here).

The transfer process of the solute from the mobile phase to the

stationary phase involves the formation of z number of contacts in the

stationary phase while breaking z number of contacts in the mobile

phase. The free energies attributed from these two processes are zwSC


and zwSA respectively. The overall free energy of transfer is shown

below.




A Transfer = z( WSC wSA + wAA/2 WCC/2) (1-6)




It is more convenient to express this free energy of transfer in terms


of the binary interaction constant, XSC and XSA'











(A Gtransfer)/kT = XSC XSA (1-7)




where kT is Boltzmann's constant multiplied by the absolute temperature.

The binary interaction constant is defined as




XXY = z/kT ( WXY (WXX + wyy)/2 ) (1-8)




Equation 1-6 can be further simplified by using the Hilderbrand

solubility parameter concept (Hilderbrand and Scott, 1950) for small

molecules. The major interactions for small molecules are the induced

dipoles and the binary interaction constant can be approximated as a

product of factors involving unitary interaction constants, 5X and 8y,

the solubility parameters




XXY = constant ( X 5Y )2 (1-9)



The solubility parameter of a compound can be measured from the enthalpy

of vaporization of the pure compound. Although solubility parameters

have been used to model chromatographic retention (Schoenmakers et al.,

1978; 1982; 1983; Tijssen et al,. 1976; Karger et al., 1978) and the

factorization can reduce the size of the data base of constants, this

approximation is generally poor compared to the binary interaction

constant except in the case when dispersion forces are the principle

interactions (Schoenmakers et al., 1978).

The underlying molecular interactions that drive this partition

process in RPLC are very complicated. Since the capacity factor of a











solute in RPLC only gives information on the equilibrium constant of the

partition process, other experimental data are needed to fully

understand these interactions (Dorsey and Dill, 1989). For example, the

entropic dependence of these interactions can be determined by measuring

the relationship between temperature and the capacity factor of the

solute. The variation of the capacity factor with pH and salt

concentration in the mobile phase can be used to uncover the effects of

the electrostatic interactions on the partition process.

The partition model is supported by many experimental findings.

First, the capacity factors of solutes in RPLC are found to be directly

proportional to the water/octanol partition coefficients (Schantz and

Martire, 1987; Opperhuizen et al., 1987; Braumann 1986; Minick et al.,

1987; Kaliszan 1986). Second, inasmuch as the cavity formation and

closing in the stationary and mobile phases are important, the capacity

factors of solutes in RPLC are linearly dependent on the size of the

solute (Colin et al., 1983; Mockel et al., 1987; Horvath et al., 1976).

Third, the partition of solutes into the stationary phase increases when

the solubility of the solutes decreases in the mobile phase and

therefore the retention of the solutes increases. This is evidenced

when salt content in the mobile phase is found to be directly

proportional to the retention of hydrocarbons in RPLC (Tanford 1980;

Melander and Horvath 1980). Fourth, the surface tension, YA, of a pure

mobile phase can be expressed as




YA wAA/2a (1-10)











where a is the area per AA contact. Although it only describes the

cavity in the mobile phase, at situations when the stationary phase

effects on the solute retention are small (i.e., the other terms in

equation 1-6 are small) the surface tension of the mobile phase should

be proportional to the retention (Melander and Horvath, 1980; Hammer et

al., 1982; Horvath et al., 1976).

Perhaps another possibility of solute retention in RPLC is by

adsorption. An adsorption mechanism related to other types of

chromatography has been developed by Martire and Boehm (1983) and

Jaroniec (1984). Dill (1987) has examined the possibility of adsorption

mechanism and compared it with the partition theory that he proposed.

He concluded that the adsorption model is inferior to the partition

model for two reasons. First, in the adsorption model, the density of

the grafted alkyl chains on the stationary phase should have no effect

on the retention of solutes. On the other hand, in the partition model,

the partitioning of solutes should decrease if the density of the

grafted alkyl chains increases because it would be entropically

expensive for the grafted chain to uptake the solutes after a critical

bonding density (Dill 1987; Dorsey and Dill, 1989). This decrease in

solute partitioning with increase in alkyl chain density has been

reported (Claudy et al., 1985; Sentell and Dorsey, 1989a). Second, if

partition is the predominant mechanism of solute retention, the In k's

of a homologous series should be a linear function of the logarithm of

the appropriate water/octanol partition coefficient, with a slope of 1.

For the adsorption mechanism, such a plot should have a slope of 1/z.

This is because in adsorption, only one side of the solute is in contact

with the alkyl chains, and therefore the transfer free energy of this


I











process is only 1/z amount of the partition process measured by the

water/octanol partition coefficient. In the partition model, the solute

is embedded by the alkyl chains, and the whole solute is in contact with

the alkyl chains. This simulates the partition process between two bulk

liquid phases, and hence the In k' of a solute in RPLC has a one-to-one

relationship with the corresponding logarithm of the water/octanol

partition coefficient, and this has been found in many systems (Butte et

al., 1981; Braumann 1986; Kaliszan 1986).

Although Dill and coworkers (Dill 1987; Marqusee and Dill, 1986a;

Dorsey and Dill, 1989) used a few assumptions and some simple

approximations on the partition mechanism, their model correctly

accounted for most of the experimental observations that cannot be

explained sufficiently by other retention mechanisms. This model does

not treat the stationary phase as an inert part of the chromatographic

separation. The stationary phase is considered to play an active role

in the solute partition process since the free energy involved in the

cavity opening procedure in the stationary phase is of significant

influence on the total energetic of the chromatographic separation in

RPLC.




Solute-Solvent Interaction Constant

The binary interaction constant X is an important parameter for

the partition mechanism and can be used to calculate the solute-solvent

free energy as seen in equation 1-7. The binary interaction constant X

is usually obtained by measuring the free energy of transfer or vapor

pressure in the Henry's law region (Hill 1986). Dill (1987) used the

partition model and predicted that in an RPLC system having a binary











mobile phase, the capacity factor of a solute can be estimated by using

the binary interaction constants among the solutes and solvents. He

calculated the capacity factors of some solutes by using the X obtained

in vapor pressure measurement for the binary solvents and X obtained

from free energy of transfer of the solutes and found good agreement

with experimental data. The scenario can be reversed by using

chromatographic capacity factors of solutes to evaluate the

solute-solvent interaction constant. This should be very beneficial

because chromatographic data are more convenient to collect and reliable

than vapor pressure measurement data.




Stationary Phase in RPLC

The retention mechanism in RPLC has been thoroughly reviewed and

it has been pointed out by the partition mechanism that the stationary

phase in RPLC contributes a great deal to solute retention and cannot be

ignored. In order to fully understand the chromatographic process and

to forge ahead the applicability of RPLC, the structure and properties

of stationary phases used in RPLC deserve an in-depth investigation.

The stationary phase in RPLC has not been under the intense study as the

mobile phase has, but recently a few articles have been published on the

structure and properties of them (Sander et al., 1983; Gilpin 1984; Carr

and Harris, 1986; Buszewski and Suprynowicz, 1987; Nawrocki and

Buszewski, 1988).

Silica is by far the most common base material used in RPLC

stationary phases because silica is the best-known inorganic, polymeric

material (Unger 1979). Many reliable methods are available to control

the size and pore size of silica, and silica of the required size and


I











shape can be produce in large quantity. Before the introduction of

chemically bonded phases, silica was used as the support for

liquid-liquid chromatography where a thin film of liquid is coated onto

the surface of the silica and then is used as the stationary phase

(Unger 1979). These liquid stationary phases suffer from instability

and irreproducibility. The evolvement of chemically bonded phases by

chemically treating the silica surface with silanes began in the middle

of 1960s. They were debuted in gas chromatography as nonpolar

stationary phase obtained by reacting silica gel with

hexadecyltrichlorosilane (Abel et al., 1966). The employment of

chemically bonded phases in liquid chromatography was first suggested by

Stewart and Perry (1968). Chemically bonded phases have excelled to

become the most frequently used stationary phases in RPLC today due to

the advancement of synthetic technology for preparing these phases.

The underlying properties of these chemically bonded phases depend

on the physical and chemical properties of the base silica, the bonding

reactions and reagents used. The base silica constitutes the major

portion of the stationary phase, and the first property of the base

silica that influences the chromatographic process is the particle size

of the silica. The size of most silica particles employed in RPLC

stationary phases are in the range of 3-10 pm. The actual effect of the

silica particle size on RPLC is inconclusive since inconsistent results

have been reported in the literature. Dewaele and Verzele (1983) have

done a study on the influence of silica particle size distribution on

the reversed phase packing, and they found that the particle size

affects chromatographic performance of the packing minimally. Gazda et

al. (1980) also had the same conclusions, but Bristow (1978) has shown











otherwise. Pore size distribution is another important physical

property of silica particles. Verzele et al. (1985) have noticed that

the mean pore diameter of the silica used as chromatographic packing

should be in the range of 6-10 nm, and the narrower the distribution

curve the better it is. Micropores of diameter 2 nm or smaller are

undesirable because they can alter the final coverage of the bonded

phase (Berendsen et al., 1980; Engelhart et al., 1982).

Apart from the physical properties, the surface chemistry of the

silica particles endure the final characteristic of the bonded phase.

Silica surface is very complex, and it has been found to consist of

various kinds of silanols and siloxane bonds. The siloxane bonds are

usually considered as rather chemically inert and therefore do not take

part in the formation of the bonded phase. Single, geminal and vicinal

forms of silanols are found on the surface of silica (Unger 1979; Majors

1980), and chromatographers have mixed feelings toward these surface

silanols. First of all, these silanols react with silanes to form the

bonded phase, but on the other hand, these silanols are one of the major

contributions to the variability of the bonded phases. Moreover, these

silanols account for the pH of the silica. Different values of pKa of

silica have been reported in the literature (Walling 1950; Karger et

al., 1980; Majors 1980). Engelhardt and Miller (1981) first observed

the divergence of surface pH of silica packing for chromatographic

purpose. This reflects the different methods of manufacturing silicas

and connects to the different chromatographic properties of silicas

(Hansen et al., 1986).

Trace metal impurities found in silica is another factor which

influences the property of the bonded phase. The effect of trace metal











impurities have been ignored by many researchers, but Marshall et al.

(1986; 1987), Nawrocki (1986; 1987) and Sadek et al. (1987) have shown

that these impurities can indeed affect the chromatographic process.

Verzele et al. (1979) have pointed out that numerous transition metals

can be found in the silicas that are used for chromatographic packing.

Sadek et al. (1987) described that silica can contain metals in three

forms: surface species, internal and secluded. The surface metals can

form surface metal hydroxides which can alter the surface pH of the

silicas, while both the surface and the internal metals can participate

in coordination with the solute or solvents using their orbitals. The

secluded metals are too far away from the surface silanols and therefore

do not exert any effect on the chromatographic process. According to

Verzele and coworkers (Verzele et al., 1979; Verzele and Dewaele, 1981;

Verzele 1983) and Sadek et al. (1987), by acid treatment of the silica,

most of the metal impurities can be leached.

Chemically bonded phases are silica particles having their surface

derivatized with alkyl chains or other functionalities such as cyano or

amino groups (Dorsey and Dill, 1989). The surface of the silica

particles can be derivatized by reacting with organochlorosilanes or

organoalkyoxysilanes, and the most common synthetic scheme is called

"monomeric reaction". In this type of reaction, a single siloxane

linkage is formed between one silanol on the surface of the silica and a

monochlorosilane or monoalkoxysilane. A simplified diagram showing this

type of monomeric reaction is depicted in Figure 1-3. The popularity of

monomeric reaction is due to the fact that it gives a uniform and

well-defined single layer coverage of the surface of the silica, and

also the reproducibility is above other types of reactions. The maximum





















c'm


ce)


O
0m




+-


0
I

* -


C)
0-


CO
- C


O
4-u

0

am
C',











number of silanols on the surface of silica are predicted to be about 8

pmol/m2 and only these silanols can react with the silanes (Unger 1979).

The most common Cg and C18 containing silanes usually produce a surface

coverage of approximately 2.5-3.0 pmol/m2. This means that there is an

immense amount of residual silanols which does not react with the

silanes. These residual silanols are accessible to solutes during the

chromatographic process and can cause adsorption and mixed retention

mechanism. A second bonding procedure is usually employed by most

manufacturers to try to minimize the residual silanols. The second

bonding procedure often makes use of trimethylsilanes to react with the

remaining silanols and is termed "end-capping" (Lochmiiller and Marshall,

1982; Sadek and Carr, 1983; Evans et al., 1980; Dewaele et al., 1982;

Marshall et al., 1987). Other methods include using silica pretreatment

(Gobet and Kovats, 1984; Marshall et al., 1984), and the use of more

reactive silanes have been reported (Buszewski et al., 1987; Lork et

al., 1986).

Much research has been done on improving the synthetic means to

increase the surface coverage or bonding density of the monomeric bonded

phase (Buszewski et al., 1987; Golding et al., 1987; Khong and Simpson,

1987; Sentell et al., 1988). This striving for higher bonding density

originated as a way to suppress the residual silanols, but it was soon

noticed that there are other advantages to high bonding density. First,

by increasing the bonding density, less silanols are exposed to the

solutes and thus eliminates most of the adsorption mechanism due to the

silanols. Second, the stability of the stationary phase can be raised

by higher bonding density because the dense alkyl chains protect the

silica from being hydrolyzed.











When a di- or trifunctional silane is used instead of a

monofunctional silane in the bonding process, a polymeric coverage

frequently results. The polymeric network is a consequence of the

reaction among one or more of the leaving groups of the silane and the

silanols on the silica surface. Sander and Wise (1984) have noted that

under a controlled manner, polymeric phases can be very reproducible and

have some chromatographic advantages. Wise and Sander (1985) showed

that these polymeric phases have shape selectivity on polycyclic

aromatic hydrocarbons and are similar to liquid crystalline phases used

in GC. They proposed that polymeric phases are more ordered than

monomeric phases.

The microscopic structure of the bonded phase is very important to

the retention and selectivity behavior of the bonded phase. Many

research groups have tried many different experimental approaches to

gain better understanding of the nature and molecular organization of

the alkyl chains that have been grafted onto the silica. In the early

stage of the bonded phase, a simplified model was suggested and is shown

in Figure 1-4 (Melander and Horvath, 1980). This model is not very

realistic because it assumes that the alkyl chains are stiff rods

without any internal degrees of freedom. This is contradictory to the

corresponding disorder structure of alkane at the temperature of

interest for chromatography. Also, the "fur" and "stack" models in

Figures 1-4b and 1-4c imply that the alkyl chains are exposed to the

mobile phase, but the mobile phase used in RPLC is of very high aqueous

content and the hydrophobic effect should prohibit this total exposition

of the nonpolar alkyl chains to the polar mobile phase (Dill 1987).







21






















i







a b c










Figure 1-4. Early models of molecular structure and organization
of the bonded phase in RPLC: a) "picket fence";
b) "fur"; c) "stacks" (Dill 1987).



























mobile phase


Without Solute


With Solute


stationary phase





Figure 1-5. Interphase model of the bonded phase in RPLC proposed
by Dill (1987).











Dill and coworkers (Dill 1987; Marqusee and Dill, 1986a; Dorsey

and Dill, 1989) have proposed an interphase model for the structure of

the bonded phase. Figure 1-5 is a simple representative of this model.

The alkyl chains that are bonded onto the surface should have the same

molecular structure and organization of other similar interfacial phases

involving chain molecules such as micelles, surfactant monolayers,

bilayers and microemulsions (Dill and Flory, 1980; 1981; Dill et al.,

1984). A typical interphase has one side of the chain molecules

anchored to an interface, and the disorder of the chains increases with

the distance from the interface (Dill et al., 1988; Brown 1984; Cabane

1977). The bonded phase in RPLC has these characteristics because one

side of it is the siloxane bond between the alkyl chains and the surface

silanol. Gilpin and coworkers (Gilpin and Gangoda, 1983; 1984; Gilpin

1984) have shown by using NMR measurements of the T1 of 13C labelled

alkyl chains that segmental motion of the alkyl chains is a function of

distance from point of surface attachment. Sander et al. (1983) used

fourier transform infrared spectroscopy to study a series of

dimethyl-n-alkyl bonded phases ranging from C1 to C22. Their results

showed that these systems have disordered chains with kinks and bends.

The molecular organization of the interphase is dominated by three

factors (Dill and Flory, 1980; 1981; Dill et al., 1984; Marqusee and

Dill, 1986b). First, the molecular organization of the interphase is

restricted by the geometry of the interface and the density and length

of the chain molecules. Second, under a poor wetting agent, the

interphase will try to reject most of the hostile solvent molecules. An

example is when alkyl stationary phase of RPLC is under aqueous mobile











phase. Third, in accordance with the attempt to gain maximum entropy,

the interphase always adopts as much disorder as possible within all the

constraints.

The interphase model of the stationary phase is very appropriate

with the partition mechanism of solute retention. In theory, the

partition of a solute molecule into the interphase having a fixed

surface density will cause ordering of the alkyl chains (Marqusee and

Dill, 1986a; Dill 1987; Dorsey and Dill, 1989), and therefore solute

retention is entropically unfavorable. The partition of the solute

should be directly proportional to the surface coverage of the alkyl

chains until it reaches a maximum where interactions between individual

chains become significant. Then the partition coefficient will decrease

to zero when the maximum chain density is reached, which is roughly 8

pmol/m2. The work by Sentell and Dorsey (1989a) using bonded phases

having different bonding densities has confirmed this prediction. Since

the end of the alkyl chains on the bonded phase are found to be in rapid

motion compared to their attached ends, the solute will prefer to

partition to the free ends of the chains. White et al. (1981) observed

this type of preferential distribution when they performed neutron

scattering experiments on similar bilayer membranes.

The importance of the interphase model is that it predicts the

essential of the stationary phase effects on solute retention and

selectivity in RPLC. Dependence of solute retention on the surface

density of alkyl chains can be explained by the model. Selectivity due

to different molecular shapes have been widely noticed (Wise and Sander,

1985; Tanaka et al., 1980; Tanaka et al., 1982; Lochmuller et al.,

1985). Using the interphase model, this shape selectivity can be











considered as arising from the fact that more free energy is required to

align solutes having shapes parallel to the alkyl chains compared to

molecules that have shapes normal to the alkyl chains. Sentell and

Dorsey (1989b) measured selectivity of six four-ring polycyclic aromatic

hydrocarbons (PAH) on stationary phases having bonding densities from

1.74-4.07 pmol/m2. They found that the selectivity of the PAHs increase

swith the surface bonding density. The increase in bonding density

causes ordering of the alkyl chains and hence elevates the shape

selectivity of these PAHs.

In this study, the partition mechanism proposed by Dill and

coworkers (Dill 1987; Marquee and Dill, 1986a; Dorsey and Dill, 1989) is

tested against an extended data base. Results will be presented in

Chapter II to show that the partition mechanism is correct and the

solute-solvent free energy of the binary mobile phase and the solutes

can be obtained from chromatographic data as predicted from the theory.

The ample number of stationary phases for RPLC available today all have

distinct retention and selectivity properties. This is likely exerted

by the different stationary phase structure and properties on the solute

retention mechanism. Many different stationary phases were

investigated, and the relative retention strength of them were found to

be related to the phase ratio 4, and the functionality of the silane

used in forming the stationary phase. Results of this study will be

introduced in Chapter III along with a simple and useful method that was

derived to classify these stationary phases according to their

retentivity towards all solutes.



















CHAPTER II
SOLUTE-SOLVENT INTERACTION FREE ENERGIES
IN REVERSED PHASE LIQUID CHROMATOGRAPHY

Introduction

Binary mobile phases of water and an organic modifier such as

acetonitrile, methanol or THF are most commonly used in RPLC. From the

partition model proposed by Dill and coworkers (Dill 1987; Marqusee and

Dill, 1986a, Dorsey and Dill, 1989), the equilibrium constant, K, of a

binary mobile phase with components A and B (a case not discussed in

detail in the previous chapter) can be defined as a simple quadratic

function of the mobile phase composition and the binary interaction

constants between the mobile phase components and the solute




ln KC/AB = (XSA XSC) + 4B (XSB XSA XAB) + OB2 XAB (2-1)




where 0 : gB 1 is the fraction of the mobile phase sites occupied by B


molecules, C is the interphase stationary phase, XSA' XSB, and XSC are

the binary interaction constants between the solute and the components A

(water), B (organic modifier), and C (stationary phase) of the

chromatographic system respectively, and XAB is the binary interaction

constant between the mobile phase components A and B.

The quadratic relationship between the equilibrium constant and

the volume fraction of organic modifier has been previously reported by











Schoenmakers and his colleagues (Schoenmakers et al., 1978; 1982; 1983)

using the solubility parameter theory (Hilderbrand and Scott,1950).

Dill and coworkers (Dill 1987; Dorsey and Dill, 1989) have suggested

that instead of the quadratic equation, a more useful linear expression

can be employed to plot the dependence of retention on mobile phase

composition. Since k'/kw = K/Kw where the subscript w refers to the


mobile phase composition when B==0, equation 2-1 can be rearranged to




1/0B In (k'/kw) = (XSB XSA XAB) + PB XAB (2-2)




As stated in Chapter I, the binary interaction constant X is often

determined by measuring the free energy of transfer or vapor pressure in

the Henry's law region (Hill 1986). A careful examination of equation

2-2 reveals that a plot of 1/4B In (k'/kw) versus #B should be linear if

all the assumptions made in the partition model hold. Also, the slope

of such a plot should give the binary interaction constant XAB, and the


y-intercept at =B=1 should be equal to (XSB XSA). This predicts that

the binary interaction constants of mobile phases used in RPLC can be

obtained from chromatographic data, and by applying equation 1-7, the

solute-solvent free energies between the solute and the two components

of the mobile phase in RPLC can be calculated.

In the original derivation of the partition model (Dill 1987), the

solute was treated as having a size comparable to the mobile phase

components. In actuality, solutes in RPLC are frequently larger than

the mobile phase components. Since the cavity term is very important in

the partition model, solutes of different sizes should create cavities











of different magnitudes. If the solute molecules are larger than

molecules of the mobile phase components, equation 2-2 can be redefined

as




1/QB In (k'/kw) = n [(XSB XSA XAB) + 4B XAB] (2-3)




where n is the ratio of the size of solute to the size of the solvent

molecules. This expression results because the number of contacts of

solute with the mobile phase components and the size of the cavities are

directly proportional to the size of the solute molecule.

Theoretical derivations are not valid until they have been proven

experimentally. With this in mind, we tested the prediction of the

composition dependence expressed in equations 2-2 and 2-3 with an

extensive data base consisting of more than 300 sets of experimental

retention data of various solutes on various RPLC columns. We hope to

uncover the underlying physical nature of the slope and intercept of

this type of composition plot. In agreement with the above predictions,

linear dependence of In k' on surface area or van der Waals volume of

solute molecules, and hence the size of the cavity, has been widely

observed (Jinno and Kawasaki, 1983a; 1983b; Funasaki et al., 1986; Arai

et al., 1987; Kaliszan 1986; Mockel et al., 1987).




Experimental Procedure

We tested the above predictions with a large data base that had

been previously used for correlations of solvatochromatic solvent

polarity measurements with reversed phase retention (Johnson et al.,

1986). The data base is used here in its entirety, with the omission of











six data sets which had retention values at only three mobile phase

compositions. Additional data sets generated in our laboratory (Michels

1989) with ethanol-water and propanol-water mobile phases are also

included.

Linear regression calculations were performed using the program

CURVE FITTER (Interactive Microware, State College, PA, USA) on an Apple

II Plus 48K microcomputer. The program was used to calculate the

coefficients of correlation, r, and determination, r2, of the data.

This program was also used to extrapolate k' to the composition of pure

water, denoted kw. The In kw values are not usually reported in the

literature as they are not easily experimentally determined. We

extrapolated plots of In k' versus ET(30) polarity to the polarity value


of 100% water to obtain the In kw values used here. This method has

been shown to give more reliable values compared to other types of

extrapolation (Snyder et al., 1979; Dolan et al., 1979; Schoemakers et

al., 1979; Antle et al., 1985; Baty and Sharp, 1988) because the

calculated In kw for a given solute is consistent among methanol-water,


ethanol-water, and acetonitrile-water mobile phases when using this

method (Michels 1989). The F-values, which are used to compare the

significance level of two variances, were obtained from the StatWorks

(Heydon and Son Inc., Philadelphia, PA, USA) program on a Macintosh SE

(Apple Computer, Inc., Cupertino, CA, USA) microcomputer. The van der

Waals volume of the solutes were calculated using methods reported by

Bondi (1964), and the hydrocarbonaceous surface area was obtained from

Woodburn (1985).











Results and Discussion


The extensive data base presented here permits certain tests of

the cavity contributions to the partition retention model, and the

ability of using chromatographic data to calculate binary interaction

constants. A typical example of this type of composition plot is shown

in Figure 2-1. In the case shown, the solute is 4-nitrophenol and the

mobile phase is a series of different acetonitrile-water mixtures. From

the figure, it is obvious that this plot provides a linear

representation of the experimental data. Table 2-1 presents an

extensive compilation of the results of plotting data in this form for a

wide range of solutes, stationary phases, and various mobile phase

mixtures commonly used in RPLC. From the correlation coefficients

shown, it is clear that the degree of linearity of this type of plot is

extremely good, with only a very small number of exceptions (Figure

2-2). More than 80% of the data sets are found to have r2 of 0.9 and

higher and almost 50% with r2 of 0.99 and higher. An F-value, which is

used to compare the significance level of fitting the data sets to a

quadratic model (Anderson 1987), is calculated and expressed as a in

Table 2-1. The results of the F-test reveal that the quadratic model

does not fit the data sets significantly better (at the 90% confidence

level), except in 148 out of 346 data sets. We conclude that the linear

fitting of the data is adequate. The principal exception in the data

set is the Sepralyte C-2 column with methanol as modifier. The

coefficient of determination, r2, for this particular data set varies

from 0.4460 to 0.9162, with an average value of 0.7287. These poor

correlations are probably observed because for the short-chain

stationary phases, adsorption is expected to be the dominant retention




































0.4 0.6 0.8


Figure 2-1. Plot of 1/OB In(k'/kw) versus OB for the solute
4-Nitrophenol using Hypersil ODS column and
acetonitrile as modifier.


1/03 ln(k'/k,)





























Frequency


0.950 0.960 0.970


0.980 0.990 1.000


Figure 2-2. Histogram of coefficient of determination, r2, for the
plots of 1/#B ln(k'/kw) versus PB for all the data
sets.


























0 N NC ot o,
N0 N *no ttt N



NHIn o 4-4i4


o a- to 0 a N C! N



ON in a- N t rN O f in Oin Oi N


oooooooooooMoo
0 ON N W 0N I i


C ~ ~ m ~mOONin' toNinNt -


0 0% tl)O t t N
i~lN CO -N 0


W' 0 ,-t W ^C to0
0OT 0 into CO to





to 0 ^. in en to 0%
to) in N* i-C en in 0 in



O~msmoWW
N e 0% 0 min en e
0 0% to en in to
en in *a' 1' ^' NT


0 to to 0% 0 to> to
to (N N Ct o to in i
ij N0 in 0%0 N? N3 0000000


t.-irtt oe-4 oN WN OOOO
.toonn- -m4 Nmo WON,-en-M
en int *O NO *< r-1 *O *H D
r~~~m ~ ~ r~r


I













O t
i1












oc























0
w,


.o. oooo

0000000


0
r 4) >1
0 a .-C
0 c 0u>,

00 004 n. ) 0 0
01~ oi (U N C ^ c C acu E:

w C 4) 4) w w 2 D 0 w n
:3 N 0 >1 1 4>4 >I 0 0 0 0 t 0
M0 0 r M X -lX-l C C 0 V .:0 0
r-I I 0 4 0 0 > i i 1U 1 1 1 ) C<
>,0sQi U 000 ) >,0c cx0 -.fl0 (uiai ca

JOX: C : 0) ^ N4 = >,i4 >.),-e *N 00 0 i-C O
-4 0 C > l 0 4-i l I I I 0'-tl xC Od -
m C a, m -HC*] CL 0.0 E 0l C.u m -Z .


O-4--n-- in-o-o---o o
-4Nen~ito~o0% 4.-,-"C, ,- ,4 ~4 U


in N to toN ^ i en NO0N in
0% to 0% 0% 0% 0% in N to to N t










U





























j .=



LALO40A00





.0-04( 4 0-

d OO~~O~ (1o-n-(OA"4


rooooooo oo oooooo





ooooooooooooooo


















a .. ... 0. 0..
000 ON ( t0 0*0003000













0( O ,OOO 0 o(1( -o0-(--






tn OLA 40 000 On 40 0(10 OL















o 000 004 40 N





-^*^












-.- I

4), 1


C)
C) r-
C) C)>

C C) E X.

C) C W (a


o 0- r I x: ( a 4a^-
Cr) 4 I ,

o : 0 rV t l >4 0 0 i0. a o VI a
0.0 0. cCx ai 0o0 N >41. >4>4-.-
0. 0.O C) a a >3 03 (0-c- 0 .0. c 04


- 0 (1 n LA : ON 001 0U (1 nJ I 1t
m z~i
rO-i ~ T f~tinA~OcT'iri^t


1`00 MU "
C r- (AnLn C)
*O r C *\ D 3
Ht-4L0A -rrt^ nr



C)
















Ica
"Mmww

























On ca mA M m ao
0














































0
0
a
C)

. (1 .O a

r Ln r- 00 n^^
CM 1-4 4-4 4-) *- l- l*
0


Nq rO Lo n1(1 C)
r n 0 (r 0( LA3 .0

000000 0
\oooooo "Q]





CM r r^OD r- o
. .0 .0 .1
O 00000 m




0(100010



0 N 00 N 0
11



ooooouuo "
C)



(4-
C





t)0 00000- r
000000








>4
C)



m




.0


>4

(0
C)











0
mmmm a>uc(Uc





ICOCN~r (U V*

* ( C) ^0r)30 i4l

*..4 0 0 E 0 a
. C ) -..0 a0- 0-
.0 C..t U CD >-
E
C)









3
(1(1(1) U
> ~ n r-o wor-
i O nn r r

































n n


S'. o 00 i a In









oorooooooooooOooo









E ..... .0o -4
,., 0.







































17
---42 -4zI 0000.
In .-4 4 0 r- ,-4 In N4 to' I n 4






o c fl In N In u 00 W 4004,00 I

0000000000000000





0000000000000000


































"r r
OI 00 0o t oD N to In >I 4-
S c 0000000000000000





o In 40 0 In -. I N 4 0 I


























0
I? DZC.< .U[-C f UC i -


w









0 0 M0
01
tJ












I 0









w ooi ow oo E





r o o 2 woo o
F 0

























o
In r r o in o
00 00 o 'mf (








-I

























000

4040000 l
0004 u uu




0 4 -4 0 *0 I)

In404U0400 0
J3C^U XIh-
o~o~~unc































z: z= ::: ::2 =z-






C :2Lenr- 11 rC I1 a 0 0
w c 0 w w
-N *---L-N -INW -- -- -









C 0

.-ee in.r- [lon 0 oe n






oon 00 "H 0
o a0 a T .- aNCI N a CN -* 4.00 0 =




LAW 0 00,4 n OA
oo ooon ooINI* oj NLAaooo 0oo oo (m ooe oo














o 0









o m mo wn n N H en d a m r-
w tr' -ti-r(-r i-f r- wwr- LA
N4

















0000000000000000 0000
-4

















.j' *^ cr in rs o r a o
0 0 (. 0 .. .I
f0













WN W ( rN r --r-Wtr- -t r-;W C 0" V X
mI OwO OcCL ,"I O DO Q









































w cO',O W90 Ow\4 0 D
r 000000000000000 00000










































m > C IOI a )O 0 f I I I i ( 0 -o
C 0



















0 -4-- --- --

01 r- r0































f\ *'3 01
E--
icir rr-rrr 0w W
0 0 .1














































4 0 ,
oo






M ~
a,.0 m4 0 w Nmr- 9: *r- *a,




0









7 c
oooooooo ooooooooooooooooo





000000,0 00000000000000000






0




m
oa a o a o
0 ^ 4 0 tM 00 a' a
























3



S1
Ua
4) u
















































r a 0 czc c o 0'0I0Ia,0-o c 0w w 0
SEo












Mo o o, o
































2222 mmet St 8. %
o0 000000 0000 0000 0000000 1
mom em em mclme madH a 0
00 0 0 0 0 0 0 r-io 'r ^'o0o o o r^Ln a












fa ..















c q\0N0'0' o .'0',-4~-4- -
(U q i
> "< '^
-' c










*Oa (Uo















01 UC ~~III(U~ ~ (/3 <















































C)
co ifl c r- o \o

ON .O Ct ca 0


m ~~m 30 1r
0 OONO)NCCC


2 N r-r -a 'a 'D Ofl NN


II










S00






Il N


ON ONON
So00






o oo


0 N
o





























oJ
0


CmO NI (N OSCOONCOONO
CO~ N ON ONOWWONONN~f


.4 ONWNINr fO(ON-C
Ca nCONNoooCOC

ON .~cN~Nr-No,-
- (N~-C~N~ C,-C,


oo N OON(Coo NCOON(N(NC~d


00 0 0 0000000000



(Noo o o ooooooo-iooo
CaN Ca iC COONOOCCAONO(NCN


0 -Cfl *~C






Ca N~~ONONONNO



0 0000000000


N NN ~O N N 00NNmoom 4d


0N 0 C0 N U (rNONmONCWNNNL













Z 2 2 ZZ 22ZZ
z z z zz zzzz
U U U Uu UUU
< < < 44: < 4 4


o o E o
O -I 0 0 --< C
o >. C -1 -(--

I_- a Halu 2or rc m cm

0 0OE O C _
C OC0 I C-' 0. O i
0) UC Q 0U 0 W a -.-I-C. 0C0
S C I '-I 1 .- C -C tO
a0. -.o o -d Z I -X X-CIF



S-,. I CT C I C. 3 1 I 11 (U


' CNn eW(N'a0N CZZZZZ(NN



ON 0.-'(N W C Ca NONON0t -C(NNN'(fl
^ 0 ^- r- .< -f -1 ^- *- rt .l -tCslf( N C-C(N N(N( (N(


S = S S S


PP ~

mm o
o*o\ or

00 0


















n

















a4 a: = 3 = = = 3 = a: a= m
S41
tL 0





















































0 In0
,




























000 eeen 0-00 e n 0
(1 fl ,e n 0l l 4fl3f0en





z 4er-oD %,in40inri r f- iY00e in4 0















0 04
t r x 0 0 t CL IT 4)
r*
















400 00o0o 00
0 >


H [
oo o o o o oo o o o o "1
g mPmO ~ m~P~~














0 z UUUz OOU UU o
W <<< <:< v, 14~: ~Ul
3 n,









l- fn ^ n)--<^^ n oc c:c c o'o' -fa o
-f~( ~OEE O~~ ^-t~ ~ ~ -^>l .xam ~ c e 1 ,C?<-l-H-4tt .<-t r -- ^^-t i>
+- C flo C C O^-^^- ^<^ a >,,^3 >X <
C~ ~ E~~U OOO0~~ Ej^ -'^ c>~QQo>3-
U Kro o~~uc~ru O U^^^UU >l~^










Ir0











40
























-e 0w 4 mar- 0
a3













II
4.D




Sw
















4 00C 0nr *-
4 ro ioo(oo ooo ~oo ooo








S O a Win i-e CN- OO M O- 0- -

a0 OCO .o l






&4 -4





















o n 'ro ('4 Ce o o p- _cM i3-
OOO00000000000
0 >4






















4-j-
I i- 4 C.4 ('4.-.". 0. .00 en in














Ei E > o o
0





nr















0E
> 0.0 ^. NO .0 0 0 0














) >i o
^ :X >^ 3 --O Q *- =
*-' j *J Q.*J u 'u' c : n)ni C >,
0~~ o u ) N N a)(i c-<'4 -i-^-^c:c:ff Q
ri ee c ,E ->i> io o o o






(0P
E-*)

























ser
nU


00 .0 .rNO
~* LA N 0 0


21 m0m% 0 %rN-


0 L 0oooo 0oo-of
o oo0rn0ooo000L0oo
en oooooooooL





o- ooso^oooo oo t i
*n 0%LDW0%C'tLr o %





o OOONr-NNNN

0 000000000


vi N NNN O r c O


0






0 0 00 0


0 U U 0U U
(n : < a: < <


0 000000U000


S == 1 SS = =














10 W L 000%e

r- LA n r- flO0 0' -4








o e n rL i0 o ooon
c^ r- m so

00000000

Nooommooo

O% 0> 0%> 0o 0% 0% 0% 0


'01 0 OO0NONNNN
0% ,4 .4,LLAOOO00
0 ~ 0LAcrLA0000
0% 0% 0%0%0%'%N0%0%


00000000


0 00 0
mm0




u uo u




0 0 u 00 000


0 0 00 00 -C 0
000000 0 0 c 0
S- >0 >0 0 A




> :>14E E E E E I- E-4 El
S1 EgoEEEE0 0 0 0 1 1 0

-e. -e i f o- LM I M 0. 0.0 0 P0 C nt p r r

L NMl lNNNO' N eONNN NAN N aNMNN N



~ ~~~~~PCPP P P PP>>@@WW


>,
I















i


o


"y



oC
3






0

uBc(
ru''






















m
r(

4.-
(4

i



.c
z



a 0 =


SnoO r: o o rn o
0' 00 N 0 N N 0
40 .0TN 40 i
N4 oo 0 N 4 N ( N o
NN44 0( [-N ^ M (N 4l 44< (N 40 44





i NNNNN o N 40 n 0 4n w


-N 0 4 4 N -
I 400N' C 0 oo 40 N N 0 N' (N
40 4 N Ns-trr 40 N 40 No 40 o 0


o0r4in4 0 in )
in *o r-4 o m

4 ^040I oN 40
rllr4r4l4r r4


00 00

N m


o4 a








odood
a c0 0
a, 00 -I





00000
(N





0






0


S
a

0
t14


44 44 N



0 0\ 0

0 0 0
d oo





0 0 0
*-




o


So <-i
N' 0 44l
0n 44< 44


m
in
sr
(3N


-4 m0 00 O 0 0

(N 0 4 N' (N I 0
N' (N N' N' N' N' LI


(N 1 z = =


-4


uuuuu U 0 .


CD IC.)C.) C


0 C

0 0000 0 C
w 00 0 0 0 0 0 0 X
.00 04 4 ( (4 ( ( 0 Cu
,aaaaao0 0 0 0 0 0 '0 0
000000 0 0 0 0 2- 0 4


Ui u U U U E E El p E n
000 0-0E-l H F- l H H L l|
N LI 40 1N) 1 C -) 0 0 N' 0 N' 0 (

(N(N(N(N( N( a(N a(n a(N a(N a(N a(n an



444444 0o 0 0 0 0 0


44


>2


I



T t


0










0
\0O in 00 o
CN4r in .( 0



















CIO.
0

44
\Lin N N N





CMm m oo mn -r
00 40D 40 4 a

0
ro
4
(0
*o
0I (N 0 -T > 4

o oo o oD En
uM o i io 0
0N4 0 -i r-l -( L(



000 40 00 00 0
( M N m ( (N

00 0 0 0 Z

r: u a) 0
oo in n o z

00 m a
CT^ C o <\ C\ (7\ '

o o( oo


.0 40 (N 0 _

0
U










0 0 0M 0
*O a\ \D n D o\




~m 1-1 o CT o





00 0 0 0 -c
>2
c






>2

040D in 40 N
mo, oo m cor-t






? ? I







= I) ( 0 0
2 in Z s z

0 U
< < o


M








; C : X: X
1 0) 1) u



in CM



0 0 0 E

C( CI) C(( CN'


) r O cri o( II
0 c>1 a I o
4 0 r0 M


oLI~o~ C.)


L 00.N a~ a~ a


Nm 0r 0 4
2 00o 0, 0 0
444 44 (N U

























4,

(H
0t
o0
:4
:4

*0
C: S : -
40


d


> I

















m



















in
0







o
CM

HL


a = = z z z =


00 o





















a00* o ooo o. o 0-
. T n oO .. i ooH-,- *









0'
r-p




























oooo ooooooooo oo o o o oooooo o
4J

. 0n 0 o
















o o o om o o ooo
S. *. C
































0
t,






0 oo
0mp" 4 0o "o"0'O" 0a0 Ho in aiO DoN N m m m
z z vn z z z z z z z NO o i 4In No in '0 0





























000000000000 00 0 0 000000 0
CONOrmflm-4ONOCNON 0 0 (N 00 oH N40-4-4l N (




4-r
















000000000000 00 0 0 000000 0a
oHcONON ON-4NN in N 40 oi-- N0 No a





























0N0mm NN nN 0N r 000 0 0 v 0N O


ooooooooo oo o- o o o o
(NON ONO .-OfNf 40


















NeON OmmO- -NHO '0 ON ^0ON4 N 0 >







0 0 0 00 00 0 0 0) oJ 0
ON ON ON 044 ONON ON 0N ON ON

0 0 0 00 0 0 0 0 Crf 0









O00000000000 00 0 0 O 0 C


(NN((NN((NN((NN(( ((N (N (N (NN((NN(





























ON


o
o =

N0 ~N0O
*r *I(( Imuu n
40 .0o-nm--oN (N
LI 0-4In(N(N(N.I


0 ONr-o o n 0 Nor on Nn ON
ov o i ..o o





m r e N 40 ON n .n -i ON

SNNN 4( 4ON40 400
(N (N (N -4-4 ^ -4 -l -4 -4-


0000000000 P00
oN ON i-N---4-i N oN


-4ON H~4 N 00I
0000000000

9 in (iN m ON ( ON ri 4040
(N ONmONmONNNOONNOO
L(oNONO~NONoN~oNOOOO
0000000000


oooddooooo









000 000000

















0


) C0(U
m 2) C 4 2)

C r ) Q ) 4 a)C



42m() C .-(04X(>4 N
442 2 M C C 0.C 4 ) X I




4 In N EO- WrON 0 N I n
(N N ( (N(N N n I n nI
(N(N(N(N N(N ( ( ( ( (


a 0 ( ON

442
000








00
u







r-0 0 I 0 n0 0




N 00 r 00 C

.A I rH N 0

Inmmm0 0
ue
00000












ON 0 O00 N
S040 0 ( S InN
- inO nONl O C






























COO .00.0 U
aI
omrl~loo
t-<
;' 0 0) @
C C ffl 0 E
t 0) ) C f) C ^










N 0 fi 0

I ; .10 0 -










m )m no n o
I s)( C C N (J


Ii







I


4-
0
0 q
c

0









SE



0





*
dP




0
U)





























in








Ct. = = = = = = = = = =
N- NO V N ,H-O






N..C .0 .N .oe.n
t-i o~e N O N 44 O e
a.
ff S

n ~ n i ~ -iD -o (

r~~ \ \ T OO ii -io
r^o *^ 'o


I


ON en oi m O NV rO O N N
.NO en .N















oNoNoooo0o ooooooo


enONONOmmO NenmeON N
Na OI nONNONOoj 'OQOCMONO


00000000000000





( c r-sn rooddoro oo o oo tp









Som
0.











aa


N dN00 NONOONO0 00 WNONONO





O n ON 0 O m O C E 14 r
00000000000000





0









.k NNN NNNNNNN




> S N: = 33
i 000 0 000
o 0 o a a, a aj ,














C a, NX:
fl) N 00 aNa4
0a Ca N aCa, .0)




0 .: C0 : a, i N 0 >- .0 >i>. X0l N

ui 0ON a CE-.141 0 ao E
I C r -4 N r en V ON ONNO O Ne
V VV VV VV VV ONON N O O

N NNN I ~ mON NNNNN


0)



11 ra

4-


















7




















oo
a

































ra co car) c
IL








































oj o\ t-i a) co us
N o ON N n o o
an o n or- Q






ono.0mr1en 4a







S00 N N en\ 0
LOOONOOO 1a)


rOi 3 in ON en o .0
SV en enrn e












oo ON Ln en ON
0 r^- 1O1 en o




0->
-H










poONONVV




w o crm o o o
o PO oo N On ON














*-H
ON\enON0en



0


ON0 ON00 ON3




U













>4





^ a = = V


a,
>4
Ca
ffl


Olm~~0010, 1



















000Wa,




a0a0a0 ON)
N 04 a, 0 a,
SOCN N V
a,.a)0c,0Nc ,

a,4^ -4 oflio ON
*N 0 0 a, 0 4.
.a,),-4.04 M 0-H ON
C



LnLnn nn o














I0
ONO O N -
Lfulf~lf
NN N





























rO




Ca a = = a:: a = a = I = a ss s a -


*0
0
0
a:


0 0
0 0 0 00
0'- N N ^ N ON N ON N Nn ON- N
o1SCNmrNcmHnHocnmn
fl N r c *!^ 1" 1^ '1')


ooooo oOD N



000N 000000 N000







No N No H NoN N oN
00000000000000


SON O o O N N N 0' O m
0' 0 im ron in in inN N


it










































'-4









ON


I
0






U'
C


0)
0 CC r
Cl 0C Q
Q 0 0)) w N C
rC CCN CC r fl)00
COO a) 0 rC 0)0 4 E
a) 4 r (D <1 o 1-
w v m c 4) (V 1
M- a)^ M >, 4 r ^ C Q ( (D 4) 4, l
(1 ) cJ M r k a) a i) 0i c c
Hca) Co 14.0 "4*4


SC rc >- I a) 0 1 1 1 1 i
410( .0 it c tiH ~C CQH.MC QXXONE-




ON ON ON ONOLN ONON ONON ON N NN N
N NN ~~~ON NNNNNN


(U
0







S 4




00





lo





mmmmm
moNON-r--O N









0
14















v
In o N NNN
000000* Co

























In






c x




o o rio
in o o N r ~ 0'
moooooo~u c









































r- o 'an^o *
-0-























ca
N H ON N









i or o r



































U
4-4
inN N(v O 0 NC
03 o r- oo oow











oooooo
4J
C
0









.1
U


C)



a a C aVO a a
U














4'H
0.



U'
CC






WC O
C00.00.0












C~,-N~f44-
ff
d





























NNNNN 0
NNNNNo Q
N
a a
0 UC
a> J j3a) c C 0 ( ^







ct

m or o -







CNCM M(UN P'


SN N N O N N O O O
00000000000000















ON



I S an s a










47















C 00













---- -
oro






c
a c: ccL
o ^



ll o a o oo oi ooooo [ ...c M T caa
E-1
S 1




















0

,, ~~ oo~~r ~
r- m m oor
ON w .1
r(0
NO4 UONONONON00~mP

44



C
(0
S0







































o wy-rf n- n^n o^^ nu o( o 0 4 n f w o 0
CL m a) r ONr O C 0.(NC4ONONr ONN50r.
4 UN CN Q ON"n 4 o n UONCL 2































4j 4j o 4j 0 >1 w 0 1 0 a) (na o
XI
C
































2, j NC N:J t
0 zr 0000cN00 (000000000rNQ '0,0,000000 0


















a, 10, MQ) m w o I I z w o- w 0 11 1
f"N~NNm~m~~~~ -





0
aAN) o N0(0* (NN N n t cN' *N0O O.( 0 0
ONUON(N00NONON~~ONONN0 0,,NUNNNCOO 4











oooooooooooooooooooooooo 7
mON,-00.-ONU ONNP4~NN,0(NON00ON.-4 0












o' W ,'U U 0 N U ( N O N N O N'~0
Sn0))(00001()0000000000000000000m



000000000000000000000000 0














4- -l O O N0,,(O N0O O N0 0 0 I 1 1 NONU
0 .0 0N A +J 4J N ^ U U
N 4O O N N ON-ONONUNON NON.-NNON













ar


*o -
ON ONON OO ONO) ON N ON O ONNO N N ON ON ON ON ON ON O
C
000000000000000000000000
0 CN


















I 4j| ^ -tON 0ON ( ON >i ON 0 UN> 0- -4 0 ON ,- ON W OO (N' 0, 0- .4- 4N'

-4 0)l-4N :UN3>i ^INX 3>tl3Hr-
I O
WY = -: .4,4 0P~~~NNO














fOX
0r 00
o 44 44 4 44 44 454 414 0 0
(.No o ON O N ON O .-(Nt0
oo 0.



aI
0

0) 00 0) 00)0 )0 ) 0 )
0)0,-)-- )t U L C 0 000-- 4
000)0 0 0 4 0O 00)0 004.4-I0



14- 0.00-I ~ T~2 rr~Z e 0. ..41 .0oo0 ~ 4 U
I 44040>0)-(4444040(0,-04444444 9
.4 ( 0 4 4 5 1 0 4 N 5 > 4 5-( .
ZZ0-( ON Z040-4 QO Z Z
5- I 101-004 ( I)04)4 i 1 1
a co Z Z NHON0 0 0O O N 0( N 'N
I 0(0NU O N N N.(0NU O N N N(N, .4c~
0) ~ 0~ ONNNNNN~ONOOOOOOOO~ NONOONNoo 0
HEE~ (NNN(((NN N(NNN(((NNN(004N,000 UC~O

































~oo o





ooN0% *r- .1110
a ni~~~p
*N,-0'n*t)0*NO

24- i n ~


ONWI N ..s





N I I m00000 000





r^in It) 10 '00 0 Cf 10
a00 o a'I)t It ) ICT)1
0'li- In In in l rIn N M N In

000000000ua


0% 0D In- I-n N^ N 0' N In
100 N 0% Nn No In 0
N N0%'0InWI0%0%WI

ooooooooo



N- Wt ND N- In In N- (N N
S oo ooooDoo
0 TiLn[
a


0%\ WI WI N~ In WI WI In NM


- 000000000
o




In
r ,





0M 0( In 0 N 100' WI N 0

0' '* rIn In In In 10 N 1010

0


01
o




o ow^
r-I ct 2 0
o Q
M S


00
o N nCoo *C N w o 00 o o
as 0%assa.I :: *0'
.1 .. I .10WI0o0In *I)-4


* .. .* **
n.N .0 *NN .NOOOO *N







EN 0NI N 0a0:O% 100%'00 N N0! 0 o















mmmooo omo oooo3o



ooooooooooooooooo
N In N N N N oI In N N 0 N WI In N N I r
SNi o N N N N In In o cN o WI 0% o0 oo 0 0 N




N In N In In In N N N NNIn o N NNI





















In 0' InN ~N WI 0 II 00 IN II
N '0 N '00 n 1 0 NInIn'00 n 01




- = 2: = = 2 2- :


H
a)
1c
44
a) 0 i

w a w wj 0 1 a1j
z 0 r4
O r0 C a0 I) C w
0 >- 0 1 N c 0)
c 4Z .04 0 r0 W W ON
0) 00000E 01.1 00 00
0 X NONO0O C(U N m c Q3

0- Q. 01.l UNC ,00P >,i ONEOO" MV J O 00. ^-t-'Q
r_ 01.ION .IE 00.InNN14to .00 CN
C .)00)I0. 0) NN 1000 0 f0 00 N >,0 ^lMC>< ^:^
0 0 0 m 0 0 0. .0>, 41 m4 000 0 1 ON.l0 W 0 > 0 4
01= ION N :N n i0 001- .00 1.0 1.1000r1.11.
0 l C 0. in T0 04 U U U tJ X C 41 40 W1 W >
0% d;CDGQCQCOWI 0 0 000 E 0 0.0 1. 0.-) SZa..L C%0%0 O


0'I'0WIONo o' 0 N OO Wi0ONNI n'In0NWMI
OOOOOONNN NNNNN NNNN NNNN
Inn~~nnO~nn~~ In ~n n nnnmr~~nnn~~


Ei












49














S0 0




1,4

c c c P:








o a .







In mO oooaoo oo d o


So oa -m ai
i 404044 4 o 0 1


































TC) o
S000






0i A10 A 4 r0.4 i 4o00
EL ra






























































cNNh CO N r r0 w
0 0n 00000 00r C>1 r cn N c w 0
mn w u Q w mo o10o ujum




























































1,4 1004 0 4 W M0 4 >


---- mmmss mmma 8a
40-
^ N0 n 0 1 c. 1





























c c to 0 c r 0 in~n~LA40 .-e-
U asa s Kssa' i 0
> iq n '^ x n nn .,,>
c: c ** ni~O~P








'-< c:u : --l4J U C 4- Or- X:Q.fl 4 >
Ol B 4 O > <> 3 in 0 --^ ; ; )
1/ C a E3 00E 0 &CUCQtQM E C & <;S *



vr~~ ~ ~ ~ +.1~ON O~~O

y o i-ic~fl ^'n ^ r^ooCm OricNr' n^ *-roc-











mechanism rather than partitioning, which is the basis of the assumption

of equations 2-2 and 2-3. Another possibility is that the residual

silanol groups are more accessible to solutes in short-chain stationary

phases than for longer chains, and they may exert a strong effect on

retention that is not treated in the partition model. Due to the

significant curvature and the poor correlation found in this data set,

we feel that the y-intercepts at =B=1 are unreliable, and therefore are

not reported in Table 2-1. Where linearity is found to be good, it

implies that the partition model, and the few assumptions applied are

valid. This linearity is expected to be limited to the intermediate

compositions explored here, because the random-mixing approximation

assumed in the original derivation is expected to fail in the limits of

extreme mobile phase composition of a few percent of either mobile phase

component (Schoenmakers et al., 1983). In those cases, solutes or the

minor component of the mobile phase may associate to form non-random

mixtures.

According to equation 2-3, the slope of the regression of this

composition plot equals the binary interaction constant characterizing

the pair interaction between molecules of the A and B components in the

mobile phase, multiplied by the size of the cavity occupied by the

solute. Tests of this prediction of the cavity-size dependence are

shown in Figures 2-3 and 2-4. The slopes of the composition plots are

found to increase with increasing cavity size created by the solute

molecules. That is, slope of I/OB In (k'/kw) versus OB = nXAB and


slope / an = XAB


(2-5)


























Slopes from
equation 2-3


40 50 60 70 80 90 100 110 120 130


Vw (cm /mol)


Figure 2-3. Plot of slopes from equation 2-3 versus van der Waals
volume, Vw, of the solutes for the Sepralyte C-18
column with acetonitrile as modifier.
















Table 2-2.


Column

Sepralyte C-2

Sepralyte C-4

Sepralyte C-8

Sepralyte C-18

Sepralyte C-4

Sepralyte C-8

Hypersil ODS

Unisil Q C-18

Ultrasphere ODS

Ultrasphere ODS

Ultrasphere ODS

Ultrasphere ODS

Silasorb C-8

Silasorb C-8


Regression results of slopes from equation 2-3 versus the
van der Waals volume, Vw, of the solutes for all the
columns.


Modifier

Acetonitrile

Acetonitrile

Acetonitrile

Acetonitrile

Methanol

Methanol

Acetonitrile

Acetonitrile

Methanol

Ethanol

1-Propanol

Acetonitrile

Methanol

Acetonitrile


Slope(xl02

16.51

16.61

7.817

9.582

7.286

6.228

12.78

8.640

10.33

5.948

4.662

18.57

3.051

2.595


2

0.9561

0.9263

0.7897

0.9164

0.9189

0.9305

0.5499

0.4106

0.9977

0.2490

0.0495

0.8091

0.2339

0.2083


























Slopes from
equation 2-3


80 100 120 140 160 180 200


220 240 260


HSA (A2)














Figure 2-4. Plot of slopes from equation 2-3 versus
hydrocarbonaceous surface area, HSA, of the solutes
for the Sepralyte C-18 column with acetonitrile as
modifier.

















Table 2-3.


Column

Sepralyte

Sepralyte

Sepralyte

Sepralyte

Sepralyte

Sepralyte


Regression results of slopes from equation 2-3 vs the
hydrocarbonaceous surface area, HSA, of the solutes for
all the columns.


C-2

C-4

C-8

C-18

C-4

C-8


Modifier

Acetonitrile

Acetonitrile

Acetonitrile

Acetonitrile

Methanol

Methanol


Slope(xl02)

8.511

8.785

4.115

5.099

3.817

3.358


,2


0.9642

0.9465

0.8226

0.9280

0.9068

0.9520











where slope is defined as the slope of equation 2-3. Values of XAB

generated from the derivative of equation 2-5 are presented in Tables

2-2 and 2-3. Due to the limited range of solute sizes available, this

linearity is observed when either the cavity volume (Figure 2-3; slopes

in Table 2-2), as measured by the van der Waals volume of the solute

molecule or cavity area, as measured by the hydrocarbonaceous surface

area of the solute molecule (Figure 2-4; slopes in Table 2-3),

represented the size of the cavity created by the solute molecule. The

binary interaction constants have different units depending on whether

cavity size is taken to be that of the solute volume or area. The

linear relationship holds well between the slopes from equation 2-3 and

the cavity size; with most of these plots having r2 of 0.9 and better.

This linearity implies that the slopes from equation 2-3 are

proportional to the size of the cavity occupied by the solutes. The

slopes from Figures 2-2 and 2-3 represent the binary interaction

constant of the mobile phase component A with B per unit volume or area

respectively. For the Sepralyte C-18 column, shown in Figure 2-4 and

Table 2-3, the interaction free energy of the mobile phase components is

found to equal



(5.099 x 10-2)kT = (5.099 x 10-2)(592 cal/mol) = 30.2 cal/mol A2 (2-6)



for these data taken at 250C.

Several columns give poor correlations for the slope of equation

2-3 versus van der Waals volume of the solutes. For the case of the

Hypersil column with acetonitrile as modifier, most of the solutes were

nitrogenous compounds such as aniline, pyridine and amino-substituted











PAHs. It has been shown that many compounds with a nitrogenous moeity

often exhibit an unsatisfactory degree of peak tailing in RPLC, and this

effect is generally considered to come from the presence of residual

silanol groups on the surface of the bonded phase (Wahlund and

Sokolowski, 1978; Bayer and Paulus, 1987; Smith et al., 1986; Hansen et

al., 1988). The retention mechanism of these compounds is most likely a

mixed partition/adsorption process because of the interactions with the

residual silanol groups, and would not be expected to fit the theory

tested here. The Unisil Q C-18 data include many isomers of substituted

benzene. The van der Waals volumes calculated from Bondi's (1964)

method for geometric isomers are identical, but they give different

slopes for equation 2-3. It has been shown in the literature that

isomeric alkylbenzenes give relatively poor correlation with van der

Waals volume (Smith 1981, Jinno and Kawasaki, 1983a). The poor

correlation in this instance most likely arises from the

misrepresentation of the calculated van der Waals volume, rather than a

breakdown of the retention theory. The poor correlations for the

ethanol and propanol data on the Ultrasphere ODS column may be caused by

the changing stationary phase environment as these more hydrophobic

modifiers are used in the mobile phase. There is not yet any theory

published on the uptake of solvent by the stationary phase chains.

Michels (1989) has recently reported that propanol appears to saturate

the stationary phase at a very low mobile phase percentage of propanol.

The poor correlations with the Silasorb column have yet to be accounted

for.

The y-intercepts at OB=1 of equation 2-3 are predicted to equal

the free energy of transfer of the solute between pure A and pure B of











the mobile phase, multiplied by the cavity size. That is, the

y-intercepts of 1/OB In (k'/k,) versus IB at (OB=1) = n(XSB XSA) and




ay-intercepts(OB=l) / an = (XSB XSA) (2-7)




The dependence of these intercepts on the cavity volume and area

can be seen in Figures 2-5 and 2-6 respectively. The correlation

coefficients of these intercepts and the cavity size are generally

greater than 0.9, and the regression results are listed in Tables 2-4

and 2-5. The intercepts are found to increase linearly with cavity size

as expected from the theory. Figure 2-6 shows a typical case, the

Sepralyte C-18 column, with acetonitrile as component B and water as

component A of the mobile phase. The exceptions noted are the same as

those discussed above. The free energy of transfer of a solute per unit

area can be calculated by utilizing Figure 2-6 and Table 2-5




(XSB XSA)kT = -(3.689 x 10-2)(592 cal/mol) = -21.8 cal/mol A2 (2-8)



and is approximately constant for the same modifier used. The above

tests confirm the predicted dependence of solute retention on cavity

size, and the chromatographic method provides a convenient way to

experimentally determine solute-solvent interaction free energies.

According to equation 2-3, the slope of the composition plot

divided by n should give the binary interaction constant of the mobile

phase components, XAB, regardless of the nature of the solutes and

stationary phases used. This binary interaction constant should depend



























y-intercepts

at OB=1 from 1

equation 2-3
-1

-1


40 50 60


70 80 90 100 110 120 130

Vw (cm3/mol)


Figure 2-5. Plot of y-intercepts at OB=1 from equation 2-3 versus
van der Waals volume, Vw, of the solutes for the
Sepralyte C-18 column with acetonitrile as modifier.

















Table 2-4.


Column

Sepralyte C-2

Sepralyte C-4

Sepralyte C-8

Sepralyte C-18

Sepralyte C-4

Sepralyte C-8

Hypersil ODS

Unisil Q C-18

Ultrasphere ODS

Ultrasphere ODS

Ultrasphere ODS

Ultrasphere ODS

Silasorb C-8

Silasorb C-8


Regression results of y-intercepts at Bg=l from equation
2-3 versus the van der Waals volume, Vw, of the solutes
for all the columns.


Modifier

Acetonitrile

Acetonitrile

Acetonitrile

Acetonitrile

Methanol

Methanol

Acetonitrile

Acetonitrile

Methanol

Ethanol

1-Propanol

Acetonitrile

Methanol

Acetonitrile


Slope(xl02)

-8.523

-7.484

-9.793

-6.936

-12.73

-12.17

-377.2

-109.0

-22.23

10.96

95.35

-345.8

721.2

629.9


.2


0.9542

0.9344

0.9112

0.9178

0.9489

0.9136

0.7089

0.5035

0.9993

0.2696

0.1945

0.5705

0.2434

0.2139



























y-intercepts
at ~B=1 from
equation 2-3





















Figure 2-6.


80 100 120 140


160 180 200 220 240 260


HSA (A2)


Plot of y-intercepts at B=' from equation 2-3 versus
hydrocarbonaceous surface area, HSA, of the solutes
for the Sepralyte C-18 column with acetonitrile as
modifier.

















Table 2-5.


Column

Sepralyte

Sepralyte

Sepralyte

Sepralyte

Sepralyte

Sepralyte


Regression results of y-intercepts at 03=1 from equation
2-3 vs the hydrocarbonaceous surface area, HSA, of the
solutes for all the columns.


C-2

C-4

C-8

C-18

C-4

C-8


Modifier

Acetonitrile

Acetonitrile

Acetonitrile

Acetonitrile

Methanol

Methanol


Slope(xl02)

-4.383

-3.957

-5.118

-3.689

-6.752

-6.378


r'

0.9658

0.9389

0.9052

0.9282

0.9460

0.9489











solely on the nature of the organic modifier in the mobile phase of

RPLC. By comparing the values of the slopes of Table 2-3, they are

found to be independent of the solutes, but not the stationary phase.

There is a factor of 2 differentiating the slopes from a short-chain

stationary phase to a long-chain stationary phase, such as Sepralyte C-2

to the Sepralyte C-18 column. This variation can be attributed to two

factors. First, in short-chain stationary phases, surface silanols are

more accessible to solutes, and the interactions between them are much

larger than in long-chain phases. Second, an alternate retention

mechanism, adsorption (Dill 1987), should dominate in short-chain

stationary phases. Both of these factors are neglected in the original

partition model (Dill 1987).

Furthermore, the y-intercept at =B=1 divided by n should only be

dependent on the nature of the solute and organic modifier. The data of

the Sepralyte columns from Table 2-4 confirm this prediction since the

same solutes are used for the Sepralyte columns. The large differences

of the values in column 3 of Table 2-4 are mainly due to the differences

in solutes employed with different stationary phases.

Johnson and coworkers (Johnson et al., 1986; Dorsey and Johnson,

1987) have shown in an earlier study that a solvatochromic dye molecule,

referred to as ET(30), can be used to probe the chemical nature of the

mobile phase and its strength as used in RPLC. The visible spectral

shift of the dye is found to be linearly proportional to the binary

interaction constant XAB of the mobile phase components (Figure 2-7).

This provides a justification for the employment of ET(30) as a probe

for the study of the mobile phase, since it appears to directly measure



























Sloces from
E-(30) plots 500--
x 10
400-


300-0I I -I I
9 10 11 12 13 14 15 16

Slopes from equation 2-3















Figure 2-7. Plot slopes from ET(30) plots versus slopes from
equation 2-3 for the Sepralyte C-18 column with
acetonitrile as modifier.

















Table 2-6.


Column

Sepralyte C-2

Sepralyte C-4

Sepralyte C-8

Sepralyte C-18

Sepralyte C-2

Sepralyte C-4

Sepralyte C-8

Silasorb C-8

Silasorb C-8

Unisil Q C-18

Hypersil ODS

Ultrasphere ODS

Ultrasphere ODS

Ultrasphere ODS

Ultrasphere ODS


Regression results of slopes from equation 2-3 versus the
slopes of ET(30) plots for all the columns.


Modifier

Acetonitrile

Acetonitrile

Acetonitrile

Acetonitrile

Methanol

Methanol

Methanol

Methanol

Acetonitrile

Acetonitrile

Acetonitrile

Methanol

Ethanol

1-Propanol

Acetonitrile


Slepe(xl021

3.238

2.699

5.396

4.047

14.67

9.315

11.03

7.342

5.137

4.913

3.671

8.055

6.166

2.467

4.066


X2

0.9996

0.9909

0.8796

0.9997

0.9956

0.9820

0.9955

0.8369

0.9987

0.9303

0.9187

0.9997

0.8827

0.2630

0.8702











the free energy of contact between components A and B of the mobile

phase.

For the Sepralyte C-18 column with acetonitrile as modifier, the

slope of these two parameters are found to be



(4.047 x 10-2) x (592 cal/mol) = 23.96 units(cal/mol) (2-9)




Other columns are observed to have the same linearity with other organic

modifiers, and the linear regression results between these two

parameters are listed in Table 2-6.

Even though the experimental data base used to test the

theoretical predictions is relatively large, the range of mobile phase

compositions is still limited to within 30 50% variation in solvent

composition. The linear expression proposed by Dill (1987) and Dorsey

and Dill (1989) tested in this work is found to hold well with the data

base used. If the partition model and other assumptions are incorrect,

nonlinearity should be observed. Since good linearity is found, the

slopes and y-intercepts generated by plotting the composition plot of

equation 2-3 should reflect, at least approximately, the binary

interaction constants of the solutes and the solvents, and can be used

to calculate the solute-solvent interaction free energies in RPLC.





















CHAPTER III
CHARACTERIZATION OF THE RETENTIVITY OF
REVERSED PHASE LIQUID CHROMATOGRAPHY COLUMNS

Introduction

There is an immense number of RPLC columns available on the market

today. The majority of them are made from Cg or C18 functional groups,

but the use of columns having other functionalities, such as phenyl and

cyano, has been on the rise. Recent studies done on commercial RPLC

columns have found that they all showed significant differences in

absolute retention and selectivity, a, for the same solute and mobile

phase, even when they are all labelled as C18 columns (Goldberg 1982;

Sander and Wise, 1988). This variability of RPLC columns is largely due

to the difference in the starting silica as well as the bonding reaction

(Dorsey and Dill, 1989). Since the stationary phase in RPLC has been

shown to have ample effects on solute retention and selectivity (Sander

1988; Dill 1987; Sentell and Dorsey, 1989a; Sentell and Dorsey, 1989b),

the variability has caused practical chromatographers many difficulties

in choosing the best column to develop optimal separations. Developed

methods are hard to transfer unless the brand and manufacturer of the

column are specified.

Many studies have been performed by investigators to characterize

the retention behavior of RPLC columns. Smith (1982a and 1982b)

employed a homologous series of alkylarylketones to develop a retention











index with a set of reference compounds to define the retention

performance of RPLC columns made from different manufacturers and

functionalities. A different set of constants for each column is

obtained for every different mobile phase composition used. These

column retention constants are not very useful since new calibration on

the column has to be done when mobile phase composition is changed.

Antle and coworkers (Antle and Snyder, 1985; Antle et al., 1985) used

gradient elution theory to characterize RPLC columns according to their

solvophobic retention. They examined columns produced from the same

base silica but having different bonded functionalities such as C18, C8,


phenyl, C1, or cyano groups. A large variety of test solutes having

very diverse chemical structure were used in their study. They combined

the volume phase ratio, 0, and the polarity of a column into an

effective phase ratio, J', which gives the retentivity of a column. A

reference and a standard column were used to acquire the relative J'

value of all columns studied. Their results revealed that the J' value

of the columns are in the order of C18 > Cg > phenyl > C1 > cyano. They

concluded that the contribution of the polarity of a column to the

retentivity is small compared to the phase ratio of the column. Cooper

and Lin (1986) have looked at the retention behavior of C8, phenyl and

cyano columns using three solutes chosen from Snyder's selectivity

triangle (Snyder 1974; 1978). They found that the polarity of these

columns is in the order of phenyl > cyano > C8, and the overall

retentivity of these columns is dominated by the phase ratio of the

columns. Other researchers have used chemometric and factor analyses to

characterize commercial columns (Delaney et al., 1987; Chretien et al.,











1986; Walczak et al., 1987), but only qualitative results were obtained

in these studies. Walczak et al. (1987) concluded that carbon loading,

nature of the organic ligands, and the accessibility of the surface

silanol groups are the main factors governing the retentivity and

selectivity of the columns. Delaney et al. (1987) summarized that their

classification of RPLC columns from chemometric results agreed well with

a qualitative scheme developed by a liquid chromatography specialist.

The present study provides a simple method to characterize the

retentivity of commercial RPLC columns. Binary mobile phases of water

and an organic modifier under isocratic conditions were used throughout

the study to avoid lengthy equation derivation, and to keep experimental

parameters simple. No reference or standard column was needed, and

solutes of many different types were employed so that the results of the

study should be applicable to all solutes.



Experimental Section

All the retention measurements were obtained either with a

Spectra-Physics SP8700 ternary proportioning LC system (Spectra-Physics,

San Jose CA, USA) or with two Spectroflow 400 pumps (ABI Analytical,

Kratos Division, Ramsey, NJ, USA). A Valco liquid chromatography

injection valve (Valco Instrument Company, Houston, TX, USA) and a 20 pl

sample loop were used to inject the solutes. The detection system was

either a Spectroflow 783 absorbance detector/gradient controller (ABI

Analytical, Kratos Division, Ramsey, NJ, USA) operated at 254 nm or a

Spectroflow 757 absorbance detector (Kratos Analytical Instruments,

Ramsey, NJ, USA) also operated at 254 nm. When the two Spectroflow 400

pumps were used, a Rainin dynamax dual chamber mixer (Rainin Instrument











Company, Inc., Woburn, MA, USA) was placed before the injection valve

for better mixing of the binary solvents. All the Zorbax columns were

commercially available from Du Pont (E. I. du Pont de Nemours and

Company, Wilmington, DE, USA), the B & J columns from Burdick & Jackson

Laboratories, Inc. (Baxter Healthcare Corp., Burdick & Jackson Division,

Muskegon, MI, USA), and the Ultrasphere column from Beckman (Beckman

Instruments, Inc., Fullerton, CA, USA). The high density column was

synthesized and packed in our laboratories (Sentell 1987). Some of the

properties of these columns as supplied by the manufacturer are listed

in Table 3-1. A Fisher Recordall Series 5000 (Fisher Scientific,

Pittsburgh, PA, USA) strip chart recorder was used to record all the

chromatographic peaks. The solvents used were HPLC grade from Fisher

Scientific (Fisher Scientific, Pittsburgh, PA, USA), and the water was

filtered through a Barnstead NANOpure II system (Barnstead Company,

Dubuque, IA, USA) before being used. The columns were maintained at

300C by a water jacket and a Haake D1 circulator (Haake, Dieselstrasse,

West Germany).

A total of 26 solutes was used and they are listed in Table 3-2.

They were from various suppliers and were used without further

purification. The solutes were grouped into mixtures containing no more

than 5 solutes based on their retention data when they were injected

individually at the beginning of the study. Peak assignments were

accomplished by identifying the peak area and elution order. The void

volume of each column was determined by the injection of water at mobile

phase composition of 75% water and 25% organic modifier. The flow rate

was maintained at 1 ml/min except for the Burdick & Jackson C-18 column

which was used with a flow rate of 1.5 ml/min. All the retention data

















Table 3-1.






Column


Zorbax ODS


Zorbax C-8


Zorbax phenyl


Zorbax TMS


Zorbax cyano


B & J C-8


B & J C-18


Properties of the RPLC columns as supplied by the
manufacturers.


Ligand


C18


Surface area(m2/Lg % Carbon loading


340 20


C8


Phenylpropyl


C1

Cyanopropyl


C8


C18


Ultrasphere C-8 Cg
















List of test solutes used in this study.


Methyl paraben

Propyl paraben

Cortisone

Toluene

Benzyl Alcohol

Propachlor

Tri-p-tolyl phosphate

Fluorobenzene

Dimethyl phthalate

Butyl benzyl phthalate

1-Methyl phenanthrene

p-Terphenyl

1,1,4,4,-Teraphenyl-1,3-butadiene


Ethyl paraben

Butyl paraben

Corticosterone

Hexylfluorobenzene

o-Nitrophenol

1-Methyl naphthalene

Methyl benzyl amine

Chloropropham

Diethyl phthalate

Dibutyl phthalate

Dioctyl phthalate

Chrysene

Octadecanophenone


Table 3-2.











were obtained from averaging at least two measurements of a solute. The

ET(30) polarity values for the different mobile phase compositions were

calculated from the quadratic relationship between percent organic

modifier and the ET(30) values reported by Dorsey and Johnson (1987).

The regression calculations were all done by using the StatWorks

(Heydon and Son Inc., Philadelphia, PA, USA) program on a Macintosh SE

(Apple Computer, Inc., Cupertino, CA, USA) microcomputer.



Results and Discussion

Since the composition of the mobile phase plays a primary role in

the retention of solutes in RPLC, it is important to have a method to

account for the solute retention contributed by the mobile phase before

the retentivity of the stationary phase can be explored. Many workers

have used solvatochromic measurements to measure the polarity of the

mobile phase used in RPLC, such as the "Z" scale (Kosower 1958), the x*

multiparameter scale (Taft and Kamlet, 1976; Kamlet et al., 1983; Taft

et al., 1985; Sadek et al., 1985), and the ET(30) scale (Johnson et al.,

1986; Dorsey and Johnson, 1987). Johnson and coworkers (Johnson et al.,

1986; Dorsey and Johnson, 1987) have shown that the In k' of a solute in

RPLC is linearly associated with the ET(30) polarity scale and has

better linearity than the volume percent of organic modifier. Their

relationship can be expressed as


In k' = m ( ET(30) ) + c


(3-1)











where ET(30) is the polarity value in kcal/mol of the mobile phase


measured by the ET(30) scale, and m and c are the slope and y-intercept


of the linear regression. The ET(30) values are found to have an

excellent quadratic relationship with most common binary mobile phases

used in RPLC (Dorsey and Johnson 1987). Moreover, the slope m has been

shown in Chapter II to be directly proportional to the size of the

solutes and the binary interaction constant of the mobile phase. We

selected to employ the slope m from equation 3-1 as the descriptor for

the mobile phase contribution to solute retention.

Molecular Descriptor Approach

Although the mobile phase effect can be accounted for by using the

slope in equation 3-1, the cavity created in the stationary phase also

is a major contribution to solute retention according to the partition

model. The first approach we took in this study was to search for a

molecular descriptor of the test solutes that can delineate the cavity

in the stationary phase, and use it to plot against slope m. The

resulting slope of this plot should only be a function of the

retentivity of the column. We first predicted that a linear

relationship should occur between the slopes from equation 3-1 and a

molecular size descriptor. It has been shown in the literature that a

linear dependence exists between In k' of a solute and some molecular

size descriptors of the solute such as the van der Waals volume, Vw,

(Hanai and Hubert, 1984a; Smith 1981; Jinno and Kawasaki, 1983a) and the

molecular connectivity index, X1 (Wells et al., 1982; 1986). Slopes

from equation 3-1 were plotted against both the van der Waals volume and

the molecular connectivity index (Figures 3-1 and 3-2) and the




























Slopes from
equation 3-1


0 100 200 300

Vw (cm3/mol)


Figure 3-1.


Plot of slopes from equation 3-1 against the van der
Waals volume, Vw, of the test solutes for the Zorbax
TMS column using acetonitrile as modifier.
















Table 3-3.


Regression results of graphs of slopes from equation 3-1
against van der Waals volume, Vw, of the test solutes.


Slopex(1031


Zorbax

Zorbax

Zorbax

Zorbax

Zorbax


ODS

C-8

phenyl

TMS

cyano


ACN

ACN

ACN

ACN

ACN


4.08

3.82

4.27

9.25

6.98


y-inter.


0.845

1.03

0.593

0.336

0.310


0.533

0.534

0.484

0.861

0.472



























Slopes from
equation 3-1


0 2 4 6 8 10 12

connectivity index


Figure 3-2. Plot of slopes from equation 3-1 against the molecular
connectivity index of the test solutes for the Zorbax
TMS column using acetonitrile as modifier.
















Table 3-4.


Column



Zorbax

Zorbax

Zorbax

Zorbax


Regression results of graphs of slopes from equation 3-1
against molecular connectivity index of the test solutes.


ODS

C-8

phenyl

TMS


Zorbax cyano


ACN

ACN

ACN

ACN

ACN


6.21

6.54

7.14

16.7

11.5


0.992

1.14

0.723

0.563

0.531


0.401

0.417

0.379

0.829

0.354











regression results of these graphs on five Zorbax columns are shown in

Table 3-3 and 3-4 respectively.

The coefficients of determination, r2, of these regressions are

all well below 0.9 meaning that there is no significant correlation

between the slopes from equation 3-1 and the two molecular size

descriptors of the solutes that we have chosen. One of the reasons for

the breakdown of our initial hypothesis is probably because the

molecular size descriptors do not account for all the interactions among

the solutes and the stationary phase. Despite Chapter II showing that

the cavity opened in the stationary phase is proportional to the size of

the solute, there are other chemical interactions such as polarity,

dipole moment, and hydrogen bonding ability between the solute and the

stationary phase. These interactions cannot be completely summed by one

single molecular size descriptor.

In kw Approach

The next approach we took was to seek a parameter that will

accurately include all the interactions between the solute and the

stationary phase. The logarithmic capacity factor of a solute at 100%

water, In kw, has been shown to have great correlation to the logarithm


of the water/octanol partition coefficient, log Po/w, of a solute

(Miyake et al., 1988; Braumann 1986; Braumann et al., 1987; Minick et

al., 1987). The linear relationship shows that both In kw and log Po/w


are measuring a similar partition process. This suggests that In kw

measures the driving force of the partition of a solute into the

stationary phase, and is the parameter that measures all the

interactions between the solute and the stationary phase.











The In kw of a solute is difficult to obtain experimentally in

RPLC due to long retention times and poor peak shapes arising from slow

mass transfer with pure water as the mobile phase. There is a popular

belief that the logarithm of the capacity factor, In k', of a solute is

linearly related to the percent by volume of organic modifier in the

mobile phase (Snyder et al., 1979; Dolan et al., 1979; Schoemakers et

al., 1979; Antle et al., 1985; Baty and Sharp, 1988). Hence, In kw is

often estimated by extrapolation from a linear regression of In k'

versus percent organic modifier back to 0% organic modifier (Reymond et

al., 1987; Braumann 1986; Braumann et al., 1987; Baty and Sharp, 1988).




In kw = S (%organic) + c' (3-2)




Unfortunately, this kind of extrapolation has been found to be not as

reliable as using the ET(30) polarity scale (Michels 1989). The ET(30)


polarity value of pure water is 63.11 kcal/mol, and therefore In kw of a

solute can be approximated by substituting 63.11 kcal/mol into equation

3-1.

Since the slopes from equation 3-1 and the In kw of the solutes

summarize the retention effects due to the mobile phase and the solute

interactions with the stationary phase respectively, the slope of a plot

of these two parameters for a column should be independent of the two

effects, and unveil the retentivity of the column (Figure 3-3). The

regression results of these plots for the columns studied are presented

in Table 3-5. The 95% confidence interval of the slopes of these




















3-




2

Slopes from
equation 3-1






0-
0 10 20 30
In kw















Figure 3-3. Plot of slopes from equation 3-1 against the In kw of
the test solutes for the Zorbax TMS column using
acetonitrile as modifier.
















Table 3-5.


Regression results of slopes from equation 3-1 vs In kw
of the test solutes for all the columns.


Column


Zorbax ODS

Zorbax C-8

Zorbax Phenyl

Zorbax TMS

Zorbax Cyano

Zorbax ODS

Zorbax C-8

Zorbax Phenyl

Zorbax TMS

Zorbax Cyano

B & J C-8

B & J C-18

Ultrasphere C-8

High Density


ACN

ACN

ACN

ACN

ACN

MeOH

MeOH

MeOH

MeOH

MeOH

MeOH

MeOH

MeOH

MeOH


0.0835

0.069

0.104

0.110

0.126

0.120

0.124

0.129

0.134

0.130

0.134

0.114

0.122

0.115


0.525

0.727

0.293

0.349

0.241

0.320

0.310

0.271

0.346

0.362

0.209

0.326

0.307

0.314


0.894

0.834

0.98

0.982

0.99

0.977

0.987

0.993

0.979

0.96

0.987

0.945

0.99

0.923


a)95% confidence interval of the slopes of the regressions


CI-@t0 .05.


0.004

0.035

0.005

0.007

0.005

0.003

0.004

0.003

0.006

0.006

0.009

0.012

0.004

0.013


y-inter. L2


Modifier Slope











regressions are calculated (Sharaf et al., 1986; Anderson 1987), and

they are listed in the last column of Table 3-5. The confidence

interval shows that almost all the slopes of the regressions are

statistically different from one another. Good linearity appears

between these two parameters with the r2 of all the columns tested above

0.9, except in the case of the Zorbax ODS and C-8 columns with

acetonitrile as modifier. The high r2 confirms that the slopes from

equation 3-1 and In kw of the test solutes are highly correlated. This


type of slope versus In kw plot is not new. Several groups (Braumann et

al., 1983; Hammer et al., 1982) have shown that plots of the slope, S,

and In kw from equation 3-2 are linear. They found the slopes and

y-intercepts of these plots formed two empirical parameters that can be

employed to classify solutes into different groups. These solute groups

can be used to recommend the use of In kw for the estimation of log


Po/w- Schoenmakers et al. (1979) found good linearity when methanol is

used as mobile phase modifier but not with acetonitrile or THF. They

have shown that when linearity is observed, the slopes of these plots

can be used to determine the shape of the gradient program. Moreover,

these slopes can be employed to predict isocratic capacity factors from

a simple gradient analysis (Schoenmakers et al., 1981). Baty and Sharp

(1988) observed good correlation between S and In kw for methanol,

acetonitrile and THF using structurally similar solutes. They tried to

use the slopes and y-intercepts of these plots to predict capacity

factors of the solutes, but they found that the slopes and y-intercepts

of these plots vary with the nature of the organic modifiers and











columns. Therefore, the chromatographic system and the solute group

have to be defined before the capacity factors can be predicted.

The general retentivity of the columns in this study for a given

organic modifier is found to be inversely proportional to the slope of

the slopes versus In kw plot. The usefulness of this relative

retentivity scale can be seen by plotting the linear regressions of the

five Zorbax columns using acetonitrile as modifier on one graph (Figure

3-4). As shown in Chapter II, the slopes from equation 3-1 are found to

be proportional to the size of the cavity created by the solutes;

therefore, at a given solute cavity size, the linear regression having

the smallest slope will have the largest In kw and hence, the largest

retentivity. From the data shown in Figure 3-4, the Zorbax cyano column

has the largest slope followed by the TMS column, phenyl column, ODS

column and C-8 column; retentivity of these column is in the order of

C-8 > ODS > phenyl > TMS > cyano. The Zorbax C-8 column seems to have a

higher retentivity than the Zorbax ODS column when acetonitrile is used

as modifier. A careful examination of the confidence interval of these

two slopes demonstrates that they actually have no statistical

difference, and the apparent higher retentivity of the Zorbax C-8 column

could very well be an experimental artifact. The apparent stronger

retentivity of the Zorbax cyano column over the TMS column with methanol

as modifier can be attributed to the hydrogen bonding between the

surface silanols and the methanol. Cyano columns have been shown to

have more accessible silanols than other columns (Cooper and Lin, 1986;

Smith and Miller, 1989). Since methanol can form hydrogen bonds with

these silanols, the surface of cyano columns is significantly modified
























Slopes from
equation 3-1


0 10 20 30


In kw of solutes


Figure 3-4.


Plot of slopes from equation 3-1 against the In kw of
the test solutes for all the Zorbax columns using
acetonitrile as modifier.











by the methanol, and hence its apparent retentivity is stronger than the

TMS column. When acetonitrile is used as modifier, due to its lack of

hydrogen bonding ability, the retentivity of the TMS column is found to

be stronger than the cyano column. Other commercial columns can be

tested using the same procedures and compared with the retentivity of

the Zorbax columns. With methanol as modifier, the B & J C-18 column is

found to have retentivity larger than any of the Zorbax columns, and the

B & J C-8 column is found to have retentivity approximately the same as

the Zorbax TMS column, while the Ultrasphere C-8 column is shown to have

retentivity between the Zorbax ODS and C-8 columns.

One interesting point raised by many researchers is the importance

of phase ratio of the column on the total retentivity of the column.

The significance of phase ratio on retentivity was also investigated in

this study. Phase ratio in RPLC can be calculated using the volume

ratio of the stationary phase to the mobile phase. Although much work

has been done on measuring the volume of the mobile phase, Vm, (Melander

et al., 1983; Smith et al., 1986; Engelhardt et al., 1984; Hennion and

Rosset, 1988) measurement of the volume of the stationary phase, Vs, is

more ambiguous (Jandera et al., 1982; Melander et al., 1980; Sander and

Field, 1980; Slaats et al., 1981; McCormick and Karger, 1980a;

Berendsen et al., 1980). By employing the Vs and Vm calculation method

presented by Sentell (1987), the phase ratios of the columns studied

were obtained and are listed in Table 3-6. In the case of the phenyl

and cyano columns, the density of the ligands are not available and the

Vs of the columns cannot be calculated. The phase ratio of these

columns are therefore not reported in Table 3-6. With the exception of

















Table 3-6.


Phase ratio of the columns in this study calculated using
the method presented by Sentell (1988).


Column

Zorbax ODS

Zorbax C-8

Zorbax phenyl

Zorbax TMS

Zorbax cyano

B & J C-8

B & J C-18

Ultrasphere C-8

High density


Phase ratio

0.367

0.226

unknown

0.172

unknown

0.0619

0.110

0.380

0.465











the two B & J columns, the phase ratio of the columns displays the same

order as the relative retentivity scale of the columns. The high

density column, which has the largest phase ratio, is found to be close

to having the highest retentivity. This result points out that the

phase ratio of a column indeed has a vital contribution to the overall

retentivity of the column.

This work exhibits a simple method that can be used to classify

commercial RPLC columns according to their overall retentivity. The

isocratic approach used has kept the data interpretation and

manipulation simple. The use of In kw in the procedure is justified and

is found to be very appropriate. The phase ratio of a column is shown

to dominate the total retentivity of the column. Since such a large

variety of test solutes were employed in this work, the relative

retentivity scale based on this study should be applicable to almost all

solutes.



















CHAPTER IV
CONCLUSIONS AND FUTURE WORK

Conclusions

The research that has been discussed in the previous chapters was

performed to confirm and apply the partition retention mechanism of

RPLC. The recognition of the partition mechanism as the correct

retention model in RPLC is very important because it can help

chromatographers to understand the processes happening in RPLC. Also,

with a sound fundamental understanding of solute retention, more robust

separation methods can be developed.

In Chapter II, we have tested the partition model with a large

data base. We found that the relationships between solute capacity

factors and mobile phase compositions are in good agreement with the

prediction from the partition model (Dill 1987; Dorsey and Dill, 1989)

with only very minor discrepancies. The partition model proposed by

Dill (1987) is based on simple lattice models and the interphase model

of the stationary phase, but the results of our tests are still very

good. With a more explicit treatment of the simple assumptions, the

theory may be able to account for the small discrepencies. The

molecular origins of these composition plots are also clarified in our

tests. The slopes of these plots are found to be a function of the

binary interaction parameter of the mobile phase components, and the

y-intercepts at OB=I are proportional to the free energy of transfer of

the solutes. The solute size plots provide a method to calculate the











solute-solvent interaction free energies, and an explanation to the

widely observed relationship between capacity factors and solute sizes

in RPLC (Hanai and Hubert, 1984b; Jinno and Kawasaki, 1983a; 1983b; Feng

et al., 1988; Mockel et al., 1987). Moreover, the slopes and

y-intercepts at OB=1 of the composition plots predicted by the theory

give a simple and reliable method to estimate solute-solvent interaction

free energies. These free energies are difficult to obtain

experimentally and are seldom reported in the literature. With this new

approach, these interaction free energies should be much easier to

access due to the availability of chromatographic data.

The partition model is put to practice in Chapter III. We

employed the partiton model as our basis to develop a relative

retentivity scale for RPLC columns. In the partiton model, the entire

stationary phase contribution to retention is summed in the In kw term

of the solutes. Although this assumption is an oversimplification of

the stationary phase effect, it has been shown that In kw is a very

effective parameter to estimate the solute partition coefficient (Miyake

et al., 1988; Braumann 1986; Braumann et al., 1987; Minick et al.,

1989). We used the In kw of the solutes and the slopes from the In k'


versus ET(30) values plots to obtain the relative retentivity values of

the RPLC columns. The correlation between these two parameters is shown

to be good, and this further supports the partition model as the

dominant solute retention mechanism. The retentivity scale is found to

be in good agreement with the literature (Antle and Snyder, 1985; Antle

et al., 1985). Also, the experimental procedures are kept relatively

simple, and therefore this retentivity scale should be useful in











classifying the retentivity of commercial RPLC columns, and should help

practical chromatographers to select the best column for their

applications. Since test solutes of various chemical structures are

employed in our study, the retentivity scale should be applicable to all

solutes. The phase ratio of the columns is found to play a major role

in determining the retentivity of the column.



Future Work

Although the data base that is used in Chapter II to test the

predictions from the partition model is rather large, it lacks a wide

range in mobile phase compositions especially at the extreme

compositions. Most of the data sets have mobile phase composition range

between 30 50% organic modifier. A test of the predictions at extreme

mobile phase compositions such as mobile phases having a few percent of

organic modifier would be interesting, since it will unveil how well the

theory holds under extreme mobile phase composition. The stationary

phase has been reported to take on a different structure as the

composition of the mobile phase changes (Yonker et al., 1982a; 1982b;

McCormick and Karger, 1980a; 1980b; Carr and Harris, 1986; 1987; McNally

and Rogers, 1985). The changing in the structure of the stationary

phase implies that the retention mechanism may switch from partition to

other forces. By testing the theory at extreme compositions, the mobile

phase composition that can significantly change the stationary phase

structure may be observed as the relationship becomes nonlinear.

Another test that is useful in testing the validity of the

partition model is to use retention data from stationary phases having

functionalities other than alkyl chains, such as phenyl and cyano











groups. The data from these stationary phases should give information

on the retention mechanism in these different phases. If linearity

exists in these columns, partition should be the dominate force. If a

nonlinear relationship occurs, a retention mechanism other than

partition should be considered for these columns.

The experimental procedures for obtaining the relative

retentiviity scale in Chapter III is simple; nevertheless it is rather

time consuming since isocratic data of more than 20 solutes have to be

collected. A possible time saving step is to find a few representative

solutes so as to eliminate the useage of all 26 test solues. The Snyder

selectivity triangle (Snyder 1974; 1978) provides a good starting place

to look for representative solutes.

Moreover, the present study only involved monomeric coverage

columns. In order to expand the practical utility of the retentivity

scale, stationary phases other than monomeric coverage should also be

tested to find out if they fit in the retentivity scales. Since

polymeric phases have been shown to have better selectivity for PAH's

than monomeric phases (Sander and Wise, 1984), and more and more

polymeric phases are available, there is a need to classify and compare

them with the monomeric phases. By using polymeric columns, the

applicability of our retentivity scale can be tested. Also, since the

retentivity scale is based on the partition model, a failure in

classifying polymeric columns with the retentivity scale may suggest

that a retention mechanism other than partition is the dominate factor

in polymeric phases. The surface coverage of polymeric phases is

usually higher than monomeric phases. It has been pointed out that

these reported values may not give the true surface coverage for




Full Text

PAGE 1

62/87(62/9(17 ,17(5$&7,21 )5(( (1(5*,(6 $1' 5(7(17,9,7< 2) 5(9(56(' 3+$6( /,48,' &+520$72*5$3+< &2/8016 %< 3(7(5 7$, <8(1 <,1* $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 0\ ILUVW DFNQRZOHGJPHQW KDV WR JR WR P\ UHVHDUFK GLUHFWRU 3URIHVVRU -RKQ 'RUVH\ :LWKRXW KLV SDWLHQFH JXLGDQFH DQG HQFRXUDJHPHQW ZRXOG QRW KDYH FRPSOHWHG WKLV ZRUN $OVR QHHG WR WKDQN KLP IRU LQWURGXFLQJ PH WR WKH ZRUOG RI ZLQH DQG 'HSWK &KDUJH DOWKRXJK WKH SOHDVXUH VHHPV WR DOZD\V EH KLV DOVR ZDQW WR H[SUHVV P\ WKDQNV WR 3URIHVVRU .HQ 'LOO DW WKH 8QLYHUVLW\ RI &DOLIRUQLD6DQ )UDQFLVFR IRU OD\LQJ WKH WKHRUHWLFDO IRXQGDWLRQ RI WKLV ZRUN 7KH ILQDQFLDO VXSSRUW IURP WKH 1,+ DQG 16) JUDQWV IRU WKLV ZRUN LV JUHDWO\ DSSUHFLDWHG 6SHFLDO WKDQNV JR WR P\ SDUHQWV DQG IDPLO\ EDFN LQ +RQJ .RQJ (YHQ WKRXJK ZH DUH WKRXVDQGV RI PLOHV DSDUW WKHLU ORYH DQG HQFRXUDJHPHQW KDYH NHSW PH JRLQJ $OVR WKHLU ILQDQFLDO VXSSRUW LV JUHDWO\ DSSUHFLDWHG 7KDQNV JR WR WKH VXQVKLQH EHDFKHV ZDUP ZHDWKHU DQG DOO WKH EHDXWLIXO FRHGV LQ VKRUWV RQ FDPSXV IRU PDNLQJ P\ IRXU \HDUV LQ )ORULGD PRVW HQMR\DEOH DP JRLQJ WR PLVV DOO RI WKHP ZKHQ PRYH WR WKH :LQG\ FLW\ /DVWO\ ZDQW WR WKDQN DOO WKH PHPEHUV LQ WKH 'RUVH\ JURXS IRU DOO WKH ZRQGHUIXO WLPHV ZH KDG ORYH WKLV SODFHf 7KH\ PDNH P\ IRXU \HDUV RI JUDGXDWH VFKRRO H[SHULHQFH XQIRUJHWWDEOH DOVR ZDQW WR WKDQN WKHP IRU SXWWLQJ XS ZLWK P\ KRUULEOH VLQJLQJ XELTXLWRXV ZRUGV DQG WKH IUHTXHQW VWULGHQW QRLVHV WKDW PDNH Q

PAGE 3

7$%/( 2) &217(176 3DFH $&.12:/('*0(176 LL /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YL $%675$&7 YLLL &+$37(56 ,1752'8&7,21 6ROYRSKRELF 5HWHQWLRQ 0HFKDQLVP 3DUWLWRQ 5HWHQWLRQ 0HFKDQLVP 6ROWXH6ROYHQW ,QWHUDFWLRQ &RQVWDQW 6WDWLRQDU\ 3KDVH LQ 53/& ,, 62/87(62/9(17 ,17(5$&7,21 )5(( (1(5*,(6 ,1 5(9(56(' 3+$6( /,48,' &+520$72*5$3+< ,QWURGXFWLRQ ([SHULPHQWDO 3URFHGXUH 5HVXOWV DQG 'LVFXVVLRQ ,,, &+$5$&7(5,=$7,21 2) 7+( 5(7(17,9,7< 2) 5(9(56(' 3+$6( /,48,' &+520$72*5$3+< &2/8016 ,QWURGXFWLRQ ([SHULPHQWDO 6HFWLRQ 5HVXOWV DQG 'LVFXVVLRQ ,9 &21&/86,216 $1' )8785( :25. &RQFOXVLRQV )XWXUH :RUN $33(1',&(6 $ &+520$72*5$3+,& 5(7(17,21 '$7$ % 6/23(6 )520 (48$7,21 $1' ,Q NZ LLL

PAGE 4

5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ LY

PAGE 5

/,67 2) 7$%/(6 7DEOH 3DJH /LQHDU UHJUHVVLRQ UHVXOWV RI HTXDWLRQ DQG UHVXOWV RI VORSHV DQG LQWHUFHSWV 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YHUVXV WKH YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU DOO WKH FROXPQV 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YV WKH K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU DOO WKH FROXPQV 5HJUHVVLRQ UHVXOWV RI \LQWHUFHSWV DW ^!E IURP HTXDWLRQ YHUVXV WKH YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU DOO WKH FROXPQV 5HJUHVVLRQ UHVXOWV RI \LQWHUFHSWV DW !E IURP HTXDWLRQ YV WKH K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU DOO WKH FROXPQV 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YHUVXV WKH VORSHV RI (Wf SORWV IRU DOO WKH FROXPQV 3URSHUWLHV RI WKH 53/& FROXPQV DV VXSSOLHG E\ WKH PDQXIDFWXUHUV /LVW RI WHVW VROXWHV XVHG LQ WKLV VWXG\ 5HJUHVVLRQ UHVXOWV RI JUDSKV RI VORSHV IURP HTXDWLRQ DJDLQVW YDQ GHU :DDOV YROXPH 9Z RI WKH WHVW VROXWHV 5HJUHVVLRQ UHVXOWV RI JUDSKV RI VORSHV IURP HTXDWLRQ DJDLQVW PROHFXODU FRQQHFWLYLW\ LQGH[ RI WKH WHVW VROXWHV 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YV ,Q NZ RI WKH WHVW VROXWHV IRU DOO WKH FROXPQV 3KDVH UDWLR RI WKH FROXPQV LQ WKLV VWXG\ FDOFXODWHG XVLQJ WKH PHWKRG SUHVHQWHG E\ 6HQWHOO f Y

PAGE 6

/,67 2) ),*85(6 )LJXUH (DJH 7KH WKUHH VWHSV LQYROYHG LQ WKH SDUWLWLRQ SURFHVV ZKHUH WKH WUDQVIHU RI VROXWH PROHFXOH 6 UHTXLUHV WKH RSHQLQJ RI D FDYLW\ LQ WKH VWDWLRQDU\ SKDVH & DQG WKH FORVLQJ RI D FDYLW\ LQ PRELOH SKDVH $ 'RUVH\ DQG 'LOO f 3DLU LQWHUDFWLRQ SRWHQWLDO X;\Uf IRU WZR VLPSOH PROHFXOHV 5HYHUVLEOH ZRUN IRU EULQJLQJ PROHFXOHV ; DQG < WRJHWKHU WR WKHLU HTXLOLEULXP VHSDUDWLRQ Ur LV Z\\ 'RUVH\ DQG 'LOO f *HQHUDOL]HG ERQGLQJ VFKHPH IRU WKH V\QWKHVLV RI PRQRPHULF ERQGHG SKDVH XVLQJ D PRQRFKORURVLODQH (DUO\ PRGHOV RI PROHFXODU VWUXFWXUH DQG RUJDQL]DWLRQ RI WKH ERQGHG SKDVH LQ 53/& Df SLFNHW IHQFH Ef IXU Ff VWDFNV 'LOO f ,QWHUSKDVH PRGHO RI WKH ERQGHG SKDVH LQ 53/& SURSRVHG E\ 'LOO f 3ORW RI c!E OQNnNZf YHUVXV c! IRU WKH VROXWH 1LWURSKHQRO XVLQJ +\SHUVLO 2'6 FROXPQ DQG DFHWRQLWULOH DV PRGLILHU +LVWRJUDP RI FRHIILFLHQW RI GHWHUPLQDWLRQ UA IRU WKH SORWV RI !E OQNnNZf YHUVXV -!% IRU DOO WKH GDWD VHWV 3ORW RI VORSHV IURP HTXDWLRQ YHUVXV YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU 3ORW RI VORSHV IURP HTXDWLRQ YHUVXV K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU 3ORW RI \LQWHUFHSWV DW -!E IURP HTXDWLRQ YHUVXV YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU YL

PAGE 7

3ORW RI \LQWHUFHSWV DW c!E IURP HTXDWLRQ YHUVXV K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU 3ORW VORSHV IURP (A22f SORWV YHUVXV VORSHV IURP HTXDWLRQ IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH YDQ GHU :DDOV YROXPH 9Z RI WKH WHVW VROXWHV IRU WKH =RUED[ 706 FROXPQ XVLQJ DFHWRQLWULOH DV PRGLILHU 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH PROHFXODU FRQQHFWLYLW\ LQGH[ RI WKH WHVW VROXWHV IRU WKH =RUED[ 706 FROXPQ XVLQJ DFHWRQLWULOH DV PRGLILHU 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH ,Q NZ RI WKH WHVW VROXWHV IRU WKH =RUED[ 706 FROXPQ XVLQJ DFHWRQLWULOH DV PRGLILHU 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH ,Q NZ RI WKH WHVW VROXWHV IRU DOO WKH =RUED[ FROXPQV XVLQJ DFHWRQLWULOH DV PRGLILHU YLL

PAGE 8

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 62/87(62/9(17 ,17(5$&7,21 )5(( (1(5*,(6 $1' 5(7(17,9,7< 2) 5(9(56(' 3+$6( /,48,' &+520$72*5$3+< &2/8016 %\ 3(7(5 7$, <8(1 <,1* $XJXVW &KDLU -RKQ 'RUVH\ 0DMRU 'HSDUWPHQW &KHPLVWU\ 5HFHQWO\ D GHVFULSWLRQ RI WKH PROHFXODU PHFKDQLVP RI UHWHQWLRQ LQ UHYHUVHG SKDVH OLTXLG FKURPDWRJUDSK\ 53/&f ZDV GHULYHG E\ XVLQJ D SDUWLWLRQ PRGHO DQG VWDWLVWLFDO PHFKDQLFDO WKHRU\ 7KLV WKHRU\ UHODWHV WKH FDSDFLW\ IDFWRU Nn RI D VROXWH LQ 53/& WR WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW EHWZHHQ WKH VROXWH PROHFXOHV DQG WKH PRELOH SKDVH PROHFXOHV 7KH ELQDU\ LQWHUDFWLRQ FRQVWDQW LV UHODWHG WR WKH LQWHUDFWLRQ IUHH HQHUJ\ WKURXJK WKH %ROW]PDQQnV FRQVWDQW DQG WKH DEVROXWH WHPSHUDWXUH 6ROXWHVROYHQW LQWHUDFWLRQ IUHH HQHUJLHV FDQ EH REWDLQHG IURP FKURPDWRJUDSKLF GDWD LI WKH SDUWLWLRQ WKHRU\ RI VROXWH UHWHQWLRQ LV FRUUHFW :H KDYH WHVWHG WKH YDOLGLW\ RI WKH SUHGLFWLRQV IURP WKLV WKHRU\ E\ XVLQJ PRUH WKDQ VHWV RI UHWHQWLRQ GDWD IURP WKH OLWHUDWXUH DQG RXU ODERUDWRU\ :LWK RQO\ D IHZ H[FHSWLRQV WKH GDWD FRQILUP DOO nWKH SUHGLFWLRQV DQG WKH VROXWHVROYHQW LQWHUDFWLRQ IUHH HQHUJLHV DUH IRXQG WR EH VROXWH VL]H GHSHQGHQW ZKLFK ZDV D FDVH QRW FRQVLGHUHG ZKHQ WKH YLLL

PAGE 9

WKHRU\ ZDV ILUVW GHYHORSHG $OWKRXJK 53/& LV RQH RI WKH PRVW SRSXODU VHSDUDWLRQ WHFKQLTXHV WKH DFWXDO HIIHFW WKDW WKH VWDWLRQDU\ SKDVH KDV RQ VROXWH UHWHQWLRQ LV VWLOO QRW FRPSOHWHO\ NQRZQ 0XFK UHVHDUFK KDV EHHQ GRQH RQ WKH UROH DQG HIIHFWV RI WKH PRELOH SKDVH RQ VROXWH UHWHQWLRQ LQ 53/& EXW WKHUH KDV EHHQ D ODFN RI V\VWHPDWLF DSSURDFKHV LQ FKDUDFWHUL]LQJ 53/& FROXPQV :H KDYH GHYHORSHG D VLPSOH PHWKRG WR FODVVLI\ 53/& FROXPQV LQ DFFRUGDQFH ZLWK WKHLU UHWHQWLYLW\ E\ XVLQJ PRUH WKDQ VROXWHV RI YHU\ GLIIHUHQW FKHPLFDO VWUXFWXUHV 7KH VROYHQW VWUHQJWK RI WKH PRELOH SKDVH KDV WR EH DFFRXQWHG IRU EHIRUH WKH UHWHQWLYLW\ RI WKHVH FROXPQV FDQ EH LQYHVWLJDWHG 7KLV LV DFFRPSOLVKHG E\ SORWWLQJ ,Q Nn RI WKH VROXWH DJDLQVW WKH (7f SRODULW\ YDOXHV RI WKH PRELOH SKDVH $ JRRG SDUDPHWHU WKDW VXPV DOO WKH UHWHQWLRQ GXH WR WKH VWDWLRQDU\ SKDVH LV WKH FDSDFLW\ IDFWRU RI WKH VROXWH DW b ZDWHU ,Q NZ %\ XWLOL]LQJ ,Q NZ DQG WKH VORSH IURP WKH (7f SORW D UHODWLYH UHWHQWLYLW\ RI 53/& FROXPQV LV REWDLQHG ,;

PAGE 10

&+$37(5 ,1752'8&7,21 5HYHUVHG SKDVH OLTXLG FKURPDWRJUDSK\ 53/&f LV WKH PRVW FRPPRQ PRGH RI KLJKSHUIRUPDQFH OLTXLG FKURPDWRJUDSK\ XVHG WRGD\ 53/& LV HVWLPDWHG WR DFFRXQW IRU PRUH WKDQ b RI FKURPDWRJUDSKLF V\VWHPV FXUUHQWO\ HPSOR\HG 0HODQGHU DQG +RUYDWK f 7KH QDPH UHYHUVHG SKDVH ZDV LQWURGXFHG E\ +RZDUG DQG 0DUWLQ f ZKHQ WKH\ XVHG QRQSRODU OLTXLG SDUDIILQ DQG QRFWDQH DV WKH VWDWLRQDU\ SKDVH WR VHSDUDWH IDWW\ DFLGV 7KH\ XVHG WKH WHUP WR GLVWLQJXLVK LW IURP QRUPDO SKDVH FKURPDWRJUDSK\ ZKLFK FRQVLVWV RI D SRODU VWDWLRQDU\ SKDVH DQG D QRQSRODU PRELOH SKDVH 7KH XVH RI 53/& KDV VKRZQ DQ RYHUZKHOPLQJ LQFUHDVH ZKHQ FROXPQV SDFNHG ZLWK FKHPLFDOO\ VWDEOH PLFURSDUWLFXODWH ERQGHG VLOLFD EHFDPH DYDLODEOH 7KH SUDFWLFDO XVH RI FRPPHUFLDO ERQGHG SKDVH SDFNLQJV LQ 53/& FDQ EH GDWHG EDFN WR .LUNODQG DQG 'H6WHIDQR f 7KHVH ERQGHG SKDVHV DGG JUHDW DGYDQWDJHV WR 53/& LQFOXGLQJ WKH IDFW WKDW DTXHRXV PRELOH SKDVHV KDYLQJ ORZ WR[LFLW\ DQG KLJK RSWLFDO WUDQVSDUHQF\ FDQ EH DGRSWHG WR DFKLHYH PRVW VHSDUDWLRQV $OVR WKH VWDELOLW\ RI WKHVH ERQGHG SKDVHV DUH VXSHULRU WR RWKHU VWDWLRQDU\ SKDVHV $TXHRXV PRELOH SKDVHV RI S+ EHWZHHQ DQG DUH FRPSDWLEOH ZLWK WKHVH ERQGHG SKDVHV 0RUHRYHU EHFDXVH RI WKH ZLGH UDQJH RI SRODULW\ RI WKH PRELOH SKDVHV WKDW FDQ EH XVHG ZLWK WKHVH ERQGHG SKDVHV

PAGE 11

DQ HQRUPRXV DPRXQW RI FKHPLFDO FRPSRXQGV FDQ EH VHSDUDWHG E\ XVLQJ ERQGHG SKDVHV LQ 53/& 'HVSLWH WKH SUHYDOHQFH RI 53/& LQ DQDO\WLFDO VHSDUDWLRQV WKHUH LV D ODFN RI IXOO XQGHUVWDQGLQJ RI VROXWH UHWHQWLRQ DQG VHOHFWLYLW\ 7KLV ODFN RI XQGHUVWDQGLQJ KLQGHUV WKH GHYHORSPHQW RI D UHWHQWLRQ LQGH[ LQ 53/& VLPLODU WR WKH .RYDWV LQGH[ .RYDWV f RU 5RKUVFKQHLGHU DQG 0F5H\QROGV 5RKUVFKQHLGHU 0F5H\QROGV f FRQVWDQWV LQ JDV FKURPDWRJUDSK\ *&f ,W DOVR FUHDWHV SUREOHPV IRU SUDFWLFDO FKURPDWRJUDSKHUV LQ GHYHORSLQJ VHSDUDWLRQ VFKHPHV DQG IRU FRPSDULVRQ RI UHWHQWLRQ UHVXOWV REWDLQHG IURP GLIIHUHQW ODERUDWRULHV +RUYDWK DQG FRZRUNHUV +RUYDWK HW DO 0HODQGHU DQG +RUYDWK f H[SODLQHG WKHLU VROYRSKRELF UHWHQWLRQ PHFKDQLVP IRU 53/& XVLQJ D VROXWH DVVRFLDWLRQ PRGHO 7KLV LV DQ LPSRUWDQW VWHS WRZDUG WKH GHFRQYROXWLRQ RI VROXWH UHWHQWLRQ RQ WKH PROHFXODU EDVLV LQ 53/& DOWKRXJK WKHUH DUH PDQ\ VKRUWFRPLQJV LQ WKLV WKHRU\ VXFK DV WKH LJQRUDQFH RI WKH UHWHQWLRQ HIIHFWV GXH WR WKH VWDWLRQDU\ SKDVH 7KH GHILFLHQFLHV RI WKLV WKHRU\ KDYH EHHQ GHPRQVWUDWHG LQ WKH OLWHUDWXUH E\ PDQ\ UHVHDUFKHUV /RFKPLLOOHU DQG :LOGHU /RFKPLLOOHU HW DO 6DGHN DQG &DUU %HUHQGVHQ HW DO 6HQWHOO DQG 'RUVH\ Df 'LOO DQG FRZRUNHUV 'LOO 0DUTXVHH DQG 'LOO D 'RUVH\ DQG 'LOO f KDYH SXW IRUWK D PROHFXODU EDVLV UHWHQWLRQ PHFKDQLVP IRU VPDOO VROXWHV LQ 53/& XVLQJ D SDUWLWLRQ PRGHO ,Q WKH IROORZLQJ VHFWLRQV WKHVH WZR VLJQLILFDQW UHWHQWLRQ PHFKDQLVPV LQ 53/& ZLOO EH GLVFXVVHG EULHIO\ 6ROYRSKRELF 5HWHQWLRQ 0HFKDQLVP 7KH VROYRSKRELF WKHRU\ ZDV SURPRWHG E\ +RUYDWK DQG FRZRUNHUV +RUYDWK HW DO 0HODQGHU DQG +RUYDWK f XWLOL]LQJ WKH

PAGE 12

VROYRSKRELF LQWHUDFWLRQ RI VROXWH DVVRFLDWLRQ IURP 6LQDQRJOX f ,Q WKLV WKHRU\ VROXWH UHWHQWLRQ LV YLHZHG DV D UHYHUVLEOH DVVRFLDWLRQ RI WKH VROXWH ZLWK WKH K\GURFDUERQDFHRXV OLJDQGV RI WKH VWDWLRQDU\ SKDVH 7KH K\GURSKRELF LQWHUDFWLRQV EHWZHHQ WKH VROXWH DQG WKH VWDWLRQDU\ SKDVH DUH WKRXJKW WR FRPH IURP WKH IDFW WKDW WKH PRELOH SKDVH LQ 53/& LV UHODWLYH SRODU DQG WKH QRQSRODU PRLHW\ RI WKH VROXWH LV UHSHOOHG DQG IRUFHG WR DVVRFLDWH ZLWK WKH QRQSRODU VWDWLRQDU\ SKDVH $V 0HODQGHU DQG +RUYDWK f VWDWHG WKH VROXWH UHWHQWLRQ LQ VROYRSKRELF WKHRU\ DFWXDOO\ LQYROYHV WZR VWHSV 7KH ILUVW VWHS LV WKH RSHQLQJ RI D FDYLW\ LQ WKH VROYHQW WKDW KDV WKH VDPH VL]H DQG VKDSH DV WKH VROXWH PROHFXOH 7KH VHFRQG VWHS LV WKH SODFHPHQW RI WKH VROXWH LQ WKH VROYHQW FDYLW\ DQG DOO WKH LQWHUDFWLRQV EHWZHHQ WKH HQFLUFOHG VROXWH DQG WKH VROYHQW PROHFXOHV DUH IROORZHG 7KHVH LQWHUDFWLRQV DUH RULJLQDWHG IURP WKH YDQ GHU :DDOV IRUFHV DQG WKH HOHFWURVWDWLF LQWHUDFWLRQV DPLG WKH VROXWH DQG WKH VROYHQW PROHFXOHV 7KH IUHH HQHUJ\ DVVRFLDWHG ZLWK WKH ILUVW VWHS RI WKH VROYRSKRELF WKHRU\ FDQ EH H[SUHVVHG DV $*H .H Uf $ \ 1 f ZKHUH 1 LV $YRJDGURV QXPEHU \ LV WKH VXUIDFH WHQVLRQ RI WKH VROYHQW $ LV WKH PROHFXODU VXUIDFH DUHD RI WKH VROXWH DQG .mUf LV D SURSRUWLRQDO IDFWRU IRU WKH FDYLW\ VL]H )URP HTXDWLRQ WKH IUHH HQHUJ\ RI WKH VROYHQW FDYLW\ LV SURSRUWLRQDO WR WKH VXUIDFH WHQVLRQ RI WKH VROYHQW 7KH IUHH HQHUJ\ UHODWHG WR VROXWHVROYHQW LQWHUDFWLRQV LV FRPSULVHG RI WZR FKHPLFDO HIIHFWV DQG DQ HQWURSLF WHUP

PAGE 13

$ *LQW $ *YGZ $ *HV 57 ,Q5739f f 7KH FKDQJH LQ IUHH HQHUJ\ IURP WKH ILUVW FKHPLFDO HIIHFW $ *YFZ FDQ EH FDOFXODWHG E\ XVLQJ YDQ GHU :DDOV SRWHQWLDO LQ FRQGHQVHG PHGLD IRU WKH VROXWH DQG VROYHQW 7KH FKDQJH LQ IUHH HQHUJ\ IURP WKH VHFRQG FKHPLFDO HIIHFW $ *HV FDQ EH IXUWKHU GLYLGHG LQWR GLSROH LQWHUDFWLRQV DQG LRQLF LQWHUDFWLRQV 7KH GLSROH LQWHUDFWLRQV FDQ EH WUHDWHG DFFRUGLQJ WR WKH 2QVDJHU UHDFWLRQ ILHOG DSSURDFK f ZKLOH WKH LRQLF LQWHUDFWLRQV FDQ EH HVWLPDWHG XVLQJ WKH 'HE\H+XFNHO WKHRU\ 7KH HQWURSLF WHUP LQ HTXDWLRQ LV UHODWHG WR WKH IUHH YROXPH RI WKH VROXWH DQG WKLV IUHH YROXPH LV WKH PHDVXUH RI WKH YROXPH RI D PROHFXOH EHIRUH LW FROOLGHV ZLWK DQRWKHU PROHFXOH 7KH VROXWHnV PRODU YROXPH FDQ EH XVHG WR FRPSXWH WKH IUHH YROXPH 0HODQGHU DQG +RUYDWK f $V IDU DV WKH VWDWLRQDU\ SKDVH HIIHFWV RQ WKH UHWHQWLRQ RI VROXWHV 0HODQGHU DQG +RUYDWK f FRQVLGHUHG WKHP QHJOLJLEOH EHFDXVH WKH VWDWLRQDU\ SKDVH LV QRQSRODU DQG WKH RQO\ DWWUDFWLRQ EHWZHHQ WKH VROXWH DQG WKH VWDWLRQDU\ SKDVH LV YDQ GHU :DDOV IRUFHV 7KLV YDQ GHU :DDOV IRUFH LV LQVLJQLILFDQW FRPSDUHG WR WKH YDQ GHU :DDOV LQWHUDFWLRQV EHWZHHQ WKH VROXWH DQG VROYHQW PROHFXOHV $OWKRXJK 0HODQGHU DQG +RUYDWK f DFNQRZOHGJHG WKDW DQ HQWURSLF WHUP FDQ EH XVHG WR VXP XS WKH UHVWULFWHG WUDQVODWLRQDO IUHHGRP RI WKH ERQGHG K\GURFDUERQDFHRXV OLJDQGV DW WKH VLOLFD VXUIDFH WKH\ HOHFWHG WR SD\ QR DWWHQWLRQ WR WKLV WHUP LQ WKHLU WKHRU\ ,Q VXPPDU\ WKH VROYRSKRELF UHWHQWLRQ PHFKDQLVP WDNHV WKH DSSURDFK WKDW VROXWH UHWHQWLRQ LQ 53/& LV ODUJHO\ GXH WR WKH K\GURSKRELF LQWHUDFWLRQV RI WKH VROXWH DQG VROYHQW PROHFXOHV 7KH VWDWLRQDU\ SKDVH

PAGE 14

LV WUHDWHG DV D SDVVLYH HQWLW\ WKDW LV IRUFHG WR UHFHLYH WKH VROXWH IURP WKH VROYHQW DQG LWV FRQWULEXWLRQ WR VROXWH UHWHQWLRQ LV QHJOLJLEOH 3DUWLWLRQ 5HWHQWLRQ 0HFKDQLVP 2QH RI WKH FDWDVWURSKLF GRZQIDOOV RI WKH VROYRSKRELF WKHRU\ LV WKDW LW GLVUHJDUGHG WKH HIIHFW RI WKH VWDWLRQDU\ SKDVH RQ VROXWH UHWHQWLRQ 'LOO DQG FRZRUNHUV 'LOO 0DUTXVHH DQG 'LOO D 'RUVH\ DQG 'LOO f DSSOLHG WKH PHDQILHOG VWDWLVWLFDO PHFKDQLFDO WKHRU\ ODWWLFH WKHRULHV +LOO f DQG UDQGRPPL[LQJ DSSUR[LPDWLRQ WR H[SORUH WKH UHWHQWLRQ PHFKDQLVP RI 53/& RQ WKH PROHFXODU OHYHO 'LOO DQG 'RUVH\ f XVHG D VLPSOH SDUWLWLRQ PRGHO DQG WRRN LQWR DFFRXQW WKH VWDWLRQDU\ SKDVH HIIHFW RQ VROXWH UHWHQWLRQ 7KH\ DVVXPHG WKH VWDWLRQDU\ SKDVH LQ 53/& DV DQ LQWHUSKDVH DQG VROXWH UHWHQWLRQ LV GXH WR SDUWLWLRQ EHWZHHQ WKH WKH EXON PRELOH SKDVH DQG WKH LQWHUSKDVH ,Q WKHLU PRGHO WKH GRPLQDWLQJ GULYLQJ IRUFH RI VROXWH WUDQVIHU LV IURP WKH GLIIHUHQFHV DPLG WKH FKHPLFDO DIILQLW\ RI WKH PRELOH DQG VWDWLRQDU\ SKDVH 7KH VROXWH FDSDFLW\ IDFWRU PHDVXUHG LQ 53/& FDQ EH H[SUHVVHG DV Nn 2 f ZKHUH Nn LV WKH FDSDFLW\ IDFWRU RI WKH VROXWH LV WKH HTXLOLEULXP FRQVWDQW RI WKH SDUWLWLRQ SURFHVV DQG 2 LV WKH SKDVH UDWLR RI WKH FKURPDWRJUDSKLF V\VWHP DQG LQ 53/& WKLV LV GHILQHG DV WKH UDWLR RI WKH YROXPHV RI VWDWLRQDU\ DQG PRELOH SKDVHV 7KH HTXLOLEULXP FRQVWDQW FDQ EH UHODWHG WR WKH IUHH HQHUJ\ *6f IRU WKH VROXWH 6 ,Q *rVWD6f *rPRELOH6f fN7 f

PAGE 15

ZKHUH *rVWD6f DQG *PRELLH6f DUH WKH VWDQGDUGVWDWH IUHH HQHUJLHV RI VROXWH 6 LQ WKH VWDWLRQDU\ SKDVH DQG WKH PRELOH SKDVH UHVSHFWLYHO\ DQG N7 LV WKH %ROW]PDQQnV FRQVWDQW PXOWLSOLHG E\ DEVROXWH WHPSHUDWXUH 7KH DFWXDO VROXWH WUDQVIHU RI WKLV SDUWLWLRQ SURFHVV LV FRPSULVHG RI WKUHH VWHSV )LUVW D FDYLW\ KDYLQJ WKH VDPH VL]H DV WKH VROXWH PROHFXOH LV RSHQHG LQ WKH VWDWLRQDU\ SKDVH 6HFRQG WKH VROXWH PROHFXOH IURP WKH PRELOH SKDVH LV WUDQVIHUUHG LQWR WKH VWDWLRQDU\ SKDVH FDYLW\ 7KLUG WKH FDYLW\ OHIW EHKLQG E\ WKH VROXWH PROHFXOH LQ WKH PRELOH SKDVH LV ILOOHG E\ RWKHU PRELOH SKDVH PROHFXOHV 7KHVH WKUHH VWHSV DUH VKRZQ LQ )LJXUH DQG IRU VLPSOLILFDWLRQ WKH PRELOH SKDVH LV FRQVLGHUHG WR EH D VLQJOH FRPSRQHQW 7KLV ZLOO EH XVHG WKURXJKRXW WKH IROORZLQJ GLVFXVVLRQ RI WKLV UHWHQWLRQ PHFKDQLVP )RU D GHWDLOHG GHULYDWLRQ RI WKLV UHWHQWLRQ PHFKDQLVP XVLQJ D ELQDU\ PRELOH SKDVH WKH UHDGHUV VKRXOG UHIHU WR 'LOO f 7KH IUHH HQHUJLHV LQYROYHG LQ WKHVH WKUHH VWHSV FDQ EH FDOFXODWHG XVLQJ SDLU LQWHUDFWLRQV RI PROHFXOHV 7KH SDLU SRWHQWLDO XUrf RI EULQJLQJ D VSKHULFDO PROHFXOH ; IURP DQ LQILQLWH VHSDUDWLRQ WR ZLWKLQ DQ DYHUDJH HTXLOLEULXP VHSDUDWLRQ RI VSKHULFDO PROHFXOH < FDQ EH GHILQHG DV X Urf X rrf X Urf Z;< f ZKHUH Z;< LV WKH UHYHUVLEOH ZRUN )LJXUH VKRZV D SDLU SRWHQWLDO ZLWK VKRUWUDQJHG UHSXOVLRQ DQG ORQJHUUDQJHG DWWUDFWLRQ 7KH SDUWLWLRQ SURFHVV LQ 53/& LV WKH UHVXOW RI WKLV SDLU SRWHQWLDO 7KH H[DFW QDWXUH RI WKH SDLU SRWHQWLDO LV GLIILFXOW WR LGHQWLI\ VLQFH WKH SDUWLWLRQ FRHIILFLHQW RI WKH SURFHVV DORQH GRHV QRW JLYH HQRXJK LQIRUPDWLRQ EXW

PAGE 16

Lf RSHQ FDYLW\ )LJXUH 7KH WKUHH VWHSV LQYROYHG LQ WKH SDUWLWLRQ SURFHVV ZKHUH WKH WUDQVIHU RI VROXWH PROHFXOH 6 UHTXLUHV WKH RSHQLQJ RI D FDYLW\ LQ WKH VWDWLRQDU\ SKDVH & DQG WKH FORVLQJ RI D FDYLW\ LQ PRELOH SKDVH $ 'RUVH\ DQG 'LOO f

PAGE 17

:[< )LJXUH 3DLU LQWHUDFWLRQ SRWHQWLDO X?
PAGE 18

LW LV JHQHUDOO\ EHOLHYHG WKDW LW LV UHODWHG WR K\GURJHQ ERQGLQJ GLSROH LRQLF DQG YDQ GHU :DDOV LQWHUDFWLRQV 'LOO DQG FRZRUNHUV 'LOO 0DUTXVHH DQG 'LOO D 'RUVH\ DQG 'LOO f VWDWHG WKDW IURP WKH ODWWLFH WKHRU\ RI OLTXLGV WKH RSHQLQJ RI WKH FDYLW\ LQ WKH VWDWLRQDU\ SKDVH OHDYHV ] VLGHV RU ] FRQWDFW SDLU RI VLGHVf ZLWKRXW FRQWDFW 7KH FRRUGLQDWLRQ QXPEHU ] LV WKH QXPEHU RI QHLJKERUV RI HDFK PROHFXOHV RU RI HDFK ODWWLFH VLWH 7KLV FDYLW\ RSHQLQJ SURFHVV LQ WKH VWDWLRQDU\ SKDVH FRQWULEXWHV ]fZe WR WKH IUHH HQHUJ\ RI WKH RYHUDOO SURFHVV 7KH VDPH DUJXPHQW FDQ EH DSSOLHG WR WKH FORVLQJ RI WKH FDYLW\ LQ WKH PRELOH SKDVH DQG WKHUHIRUH WKH IUHH HQHUJ\ FRQWULEXWHG LV ]fZIW$ 7KH VROXWH PROHFXOH 6 LQ WKH PRELOH SKDVH LV VXUURXQGHG E\ ] QHDUHVWQHLJKERUV RI WKH PRELOH SKDVH PROHFXOHVVROXWH VHOIDVVRFLDWLRQ LV LJQRUHG KHUHf 7KH WUDQVIHU SURFHVV RI WKH VROXWH IURP WKH PRELOH SKDVH WR WKH VWDWLRQDU\ SKDVH LQYROYHV WKH IRUPDWLRQ RI ] QXPEHU RI FRQWDFWV LQ WKH VWDWLRQDU\ SKDVH ZKLOH EUHDNLQJ ] QXPEHU RI FRQWDFWV LQ WKH PRELOH SKDVH 7KH IUHH HQHUJLHV DWWULEXWHG IURP WKHVH WZR SURFHVVHV DUH ]ZJT DQG ]ZJ$ UHVSHFWLYHO\ 7KH RYHUDOO IUHH HQHUJ\ RI WUDQVIHU LV VKRZQ EHORZ $ WUDQVIHU f ] :6& f :6$ :$$ Z&&f f ,W LV PRUH FRQYHQLHQW WR H[SUHVV WKLV IUHH HQHUJ\ RI WUDQVIHU LQ WHUPV RI WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW ;VF DQFO ;V$n

PAGE 19

$ *WUDQVIHU!N7 b6& a r6$ f ZKHUH N7 LV %ROW]PDQQnV FRQVWDQW PXOWLSOLHG E\ WKH DEVROXWH WHPSHUDWXUH 7KH ELQDU\ LQWHUDFWLRQ FRQVWDQW LV GHILQHG DV ;[\ ]N7 :;< :;; :<
PAGE 20

VROXWH LQ 53/& RQO\ JLYHV LQIRUPDWLRQ RQ WKH HTXLOLEULXP FRQVWDQW RI WKH SDUWLWLRQ SURFHVV RWKHU H[SHULPHQWDO GDWD DUH QHHGHG WR IXOO\ XQGHUVWDQG WKHVH LQWHUDFWLRQV 'RUVH\ DQG 'LOO f )RU H[DPSOH WKH HQWURSLF GHSHQGHQFH RI WKHVH LQWHUDFWLRQV FDQ EH GHWHUPLQHG E\ PHDVXULQJ WKH UHODWLRQVKLS EHWZHHQ WHPSHUDWXUH DQG WKH FDSDFLW\ IDFWRU RI WKH VROXWH 7KH YDULDWLRQ RI WKH FDSDFLW\ IDFWRU ZLWK S+ DQG VDOW FRQFHQWUDWLRQ LQ WKH PRELOH SKDVH FDQ EH XVHG WR XQFRYHU WKH HIIHFWV RI WKH HOHFWURVWDWLF LQWHUDFWLRQV RQ WKH SDUWLWLRQ SURFHVV 7KH SDUWLWLRQ PRGHO LV VXSSRUWHG E\ PDQ\ H[SHULPHQWDO ILQGLQJV )LUVW WKH FDSDFLW\ IDFWRUV RI VROXWHV LQ 53/& DUH IRXQG WR EH GLUHFWO\ SURSRUWLRQDO WR WKH ZDWHURFWDQRO SDUWLWLRQ FRHIILFLHQWV 6FKDQW] DQG 0DUWLUH 2SSHUKXL]HQ HW DO %UDXPDQQ 0LQLFN HW DO .DOLV]DQ f 6HFRQG LQDVPXFK DV WKH FDYLW\ IRUPDWLRQ DQG FORVLQJ LQ WKH VWDWLRQDU\ DQG PRELOH SKDVHV DUH LPSRUWDQW WKH FDSDFLW\ IDFWRUV RI VROXWHV LQ 53/& DUH OLQHDUO\ GHSHQGHQW RQ WKH VL]H RI WKH VROXWH &ROLQ HW DO 0RFNHO HW DO +RUYDWK HW DO f 7KLUG WKH SDUWLWLRQ RI VROXWHV LQWR WKH VWDWLRQDU\ SKDVH LQFUHDVHV ZKHQ WKH VROXELOLW\ RI WKH VROXWHV GHFUHDVHV LQ WKH PRELOH SKDVH DQG WKHUHIRUH WKH UHWHQWLRQ RI WKH VROXWHV LQFUHDVHV 7KLV LV HYLGHQFHG ZKHQ VDOW FRQWHQW LQ WKH PRELOH SKDVH LV IRXQG WR EH GLUHFWO\ SURSRUWLRQDO WR WKH UHWHQWLRQ RI K\GURFDUERQV LQ 53/& 7DQIRUG 0HODQGHU DQG +RUYDWK f )RXUWK WKH VXUIDFH WHQVLRQ \$ RI D SXUH PRELOH SKDVH FDQ EH H[SUHVVHG DV
PAGE 21

ZKHUH D LV WKH DUHD SHU $$ FRQWDFW $OWKRXJK LW RQO\ GHVFULEHV WKH FDYLW\ LQ WKH PRELOH SKDVH DW VLWXDWLRQV ZKHQ WKH VWDWLRQDU\ SKDVH HIIHFWV RQ WKH VROXWH UHWHQWLRQ DUH VPDOO LH WKH RWKHU WHUPV LQ HTXDWLRQ DUH VPDOOf WKH VXUIDFH WHQVLRQ RI WKH PRELOH SKDVH VKRXOG EH SURSRUWLRQDO WR WKH UHWHQWLRQ 0HODQGHU DQG +RUYDWK +DPPHU HW DO +RUYDWK HW DO f 3HUKDSV DQRWKHU SRVVLELOLW\ RI VROXWH UHWHQWLRQ LQ 53/& LV E\ DGVRUSWLRQ $Q DGVRUSWLRQ PHFKDQLVP UHODWHG WR RWKHU W\SHV RI FKURPDWRJUDSK\ KDV EHHQ GHYHORSHG E\ 0DUWLUH DQG %RHKP f DQG -DURQLHF f 'LOO f KDV H[DPLQHG WKH SRVVLELOLW\ RI DGVRUSWLRQ PHFKDQLVP DQG FRPSDUHG LW ZLWK WKH SDUWLWLRQ WKHRU\ WKDW KH SURSRVHG +H FRQFOXGHG WKDW WKH DGVRUSWLRQ PRGHO LV LQIHULRU WR WKH SDUWLWLRQ PRGHO IRU WZR UHDVRQV )LUVW LQ WKH DGVRUSWLRQ PRGHO WKH GHQVLW\ RI WKH JUDIWHG DON\O FKDLQV RQ WKH VWDWLRQDU\ SKDVH VKRXOG KDYH QR HIIHFW RQ WKH UHWHQWLRQ RI VROXWHV 2Q WKH RWKHU KDQG LQ WKH SDUWLWLRQ PRGHO WKH SDUWLWLRQLQJ RI VROXWHV VKRXOG GHFUHDVH LI WKH GHQVLW\ RI WKH JUDIWHG DON\O FKDLQV LQFUHDVHV EHFDXVH LW ZRXOG EH HQWURSLFDOO\ H[SHQVLYH IRU WKH JUDIWHG FKDLQ WR XSWDNH WKH VROXWHV DIWHU D FULWLFDO ERQGLQJ GHQVLW\ 'LOO 'RUVH\ DQG 'LOO f 7KLV GHFUHDVH LQ VROXWH SDUWLWLRQLQJ ZLWK LQFUHDVH LQ DON\O FKDLQ GHQVLW\ KDV EHHQ UHSRUWHG &ODXG\ HW DO 6HQWHOO DQG 'RUVH\ Df 6HFRQG LI SDUWLWLRQ LV WKH SUHGRPLQDQW PHFKDQLVP RI VROXWH UHWHQWLRQ WKH ,Q NnV RI D KRPRORJRXV VHULHV VKRXOG EH D OLQHDU IXQFWLRQ RI WKH ORJDULWKP RI WKH DSSURSULDWH ZDWHURFWDQRO SDUWLWLRQ FRHIILFLHQW ZLWK D VORSH RI )RU WKH DGVRUSWLRQ PHFKDQLVP VXFK D SORW VKRXOG KDYH D VORSH RI ] 7KLV LV EHFDXVH LQ DGVRUSWLRQ RQO\ RQH VLGH RI WKH VROXWH LV LQ FRQWDFW ZLWK WKH DON\O FKDLQV DQG WKHUHIRUH WKH WUDQVIHU IUHH HQHUJ\ RI WKLV

PAGE 22

SURFHVV LV RQO\ ] DPRXQW RI WKH SDUWLWLRQ SURFHVV PHDVXUHG E\ WKH ZDWHURFWDQRO SDUWLWLRQ FRHIILFLHQW ,Q WKH SDUWLWLRQ PRGHO WKH VROXWH LV HPEHGGHG E\ WKH DON\O FKDLQV DQG WKH ZKROH VROXWH LV LQ FRQWDFW ZLWK WKH DON\O FKDLQV 7KLV VLPXODWHV WKH SDUWLWLRQ SURFHVV EHWZHHQ WZR EXON OLTXLG SKDVHV DQG KHQFH WKH ,Q Nn RI D VROXWH LQ 53/& KDV D RQHWRRQH UHODWLRQVKLS ZLWK WKH FRUUHVSRQGLQJ ORJDULWKP RI WKH ZDWHURFWDQRO SDUWLWLRQ FRHIILFLHQW DQG WKLV KDV EHHQ IRXQG LQ PDQ\ V\VWHPV %XWWH HW DO %UDXPDQQ .DOLV]DQ f $OWKRXJK 'LOO DQG FRZRUNHUV 'LOO 0DUTXVHH DQG 'LOO D 'RUVH\ DQG 'LOO f XVHG D IHZ DVVXPSWLRQV DQG VRPH VLPSOH DSSUR[LPDWLRQV RQ WKH SDUWLWLRQ PHFKDQLVP WKHLU PRGHO FRUUHFWO\ DFFRXQWHG IRU PRVW RI WKH H[SHULPHQWDO REVHUYDWLRQV WKDW FDQQRW EH H[SODLQHG VXIILFLHQWO\ E\ RWKHU UHWHQWLRQ PHFKDQLVPV 7KLV PRGHO GRHV QRW WUHDW WKH VWDWLRQDU\ SKDVH DV DQ LQHUW SDUW RI WKH FKURPDWRJUDSKLF VHSDUDWLRQ 7KH VWDWLRQDU\ SKDVH LV FRQVLGHUHG WR SOD\ DQ DFWLYH UROH LQ WKH VROXWH SDUWLWLRQ SURFHVV VLQFH WKH IUHH HQHUJ\ LQYROYHG LQ WKH FDYLW\ RSHQLQJ SURFHGXUH LQ WKH VWDWLRQDU\ SKDVH LV RI VLJQLILFDQW LQIOXHQFH RQ WKH WRWDO HQHUJHWLF RI WKH FKURPDWRJUDSKLF VHSDUDWLRQ LQ 53/& 6ROXWH6ROYHQW ,QWHUDFWLRQ &RQVWDQW 7KH ELQDU\ LQWHUDFWLRQ FRQVWDQW ; LV DQ LPSRUWDQW SDUDPHWHU IRU WKH SDUWLWLRQ PHFKDQLVP DQG FDQ EH XVHG WR FDOFXODWH WKH VROXWHVROYHQW IUHH HQHUJ\ DV VHHQ LQ HTXDWLRQ 7KH ELQDU\ LQWHUDFWLRQ FRQVWDQW ; LV XVXDOO\ REWDLQHG E\ PHDVXULQJ WKH IUHH HQHUJ\ RI WUDQVIHU RU YDSRU SUHVVXUH LQ WKH +HQU\nV ODZ UHJLRQ +LOO f 'LOO f XVHG WKH SDUWLWLRQ PRGHO DQG SUHGLFWHG WKDW LQ DQ 53/& V\VWHP KDYLQJ D ELQDU\

PAGE 23

PRELOH SKDVH WKH FDSDFLW\ IDFWRU RI D VROXWH FDQ EH HVWLPDWHG E\ XVLQJ WKH ELQDU\ LQWHUDFWLRQ FRQVWDQWV DPRQJ WKH VROXWHV DQG VROYHQWV +H FDOFXODWHG WKH FDSDFLW\ IDFWRUV RI VRPH VROXWHV E\ XVLQJ WKH ; REWDLQHG LQ YDSRU SUHVVXUH PHDVXUHPHQW IRU WKH ELQDU\ VROYHQWV DQG ; REWDLQHG IURP IUHH HQHUJ\ RI WUDQVIHU RI WKH VROXWHV DQG IRXQG JRRG DJUHHPHQW ZLWK H[SHULPHQWDO GDWD 7KH VFHQDULR FDQ EH UHYHUVHG E\ XVLQJ FKURPDWRJUDSKLF FDSDFLW\ IDFWRUV RI VROXWHV WR HYDOXDWH WKH VROXWHVROYHQW LQWHUDFWLRQ FRQVWDQW 7KLV VKRXOG EH YHU\ EHQHILFLDO EHFDXVH FKURPDWRJUDSKLF GDWD DUH PRUH FRQYHQLHQW WR FROOHFW DQG UHOLDEOH WKDQ YDSRU SUHVVXUH PHDVXUHPHQW GDWD 6WDWLRQDU\ 3KDVH LQ 53/& 7KH UHWHQWLRQ PHFKDQLVP LQ 53/& KDV EHHQ WKRURXJKO\ UHYLHZHG DQG LW KDV EHHQ SRLQWHG RXW E\ WKH SDUWLWLRQ PHFKDQLVP WKDW WKH VWDWLRQDU\ SKDVH LQ 53/& FRQWULEXWHV D JUHDW GHDO WR VROXWH UHWHQWLRQ DQG FDQQRW EH LJQRUHG ,Q RUGHU WR IXOO\ XQGHUVWDQG WKH FKURPDWRJUDSKLF SURFHVV DQG WR IRUJH DKHDG WKH DSSOLFDELOLW\ RI 53/& WKH VWUXFWXUH DQG SURSHUWLHV RI VWDWLRQDU\ SKDVHV XVHG LQ 53/& GHVHUYH DQ LQGHSWK LQYHVWLJDWLRQ 7KH VWDWLRQDU\ SKDVH LQ 53/& KDV QRW EHHQ XQGHU WKH LQWHQVH VWXG\ DV WKH PRELOH SKDVH KDV EXW UHFHQWO\ D IHZ DUWLFOHV KDYH EHHQ SXEOLVKHG RQ WKH VWUXFWXUH DQG SURSHUWLHV RI WKHP 6DQGHU HW DO *LOSLQ &DUU DQG +DUULV %XV]HZVNL DQG 6XSU\QRZLF] 1DZURFNL DQG %XV]HZVNL f 6LOLFD LV E\ IDU WKH PRVW FRPPRQ EDVH PDWHULDO XVHG LQ 53/& VWDWLRQDU\ SKDVHV EHFDXVH VLOLFD LV WKH EHVWNQRZQ LQRUJDQLF SRO\PHULF PDWHULDO 8QJHU f 0DQ\ UHOLDEOH PHWKRGV DUH DYDLODEOH WR FRQWURO WKH VL]H DQG SRUH VL]H RI VLOLFD DQG VLOLFD RI WKH UHTXLUHG VL]H DQG

PAGE 24

VKDSH FDQ EH SURGXFH LQ ODUJH TXDQWLW\ %HIRUH WKH LQWURGXFWLRQ RI FKHPLFDOO\ ERQGHG SKDVHV VLOLFD ZDV XVHG DV WKH VXSSRUW IRU OLTXLGOLTXLG FKURPDWRJUDSK\ ZKHUH D WKLQ ILOP RI OLTXLG LV FRDWHG RQWR WKH VXUIDFH RI WKH VLOLFD DQG WKHQ LV XVHG DV WKH VWDWLRQDU\ SKDVH 8QJHU f 7KHVH OLTXLG VWDWLRQDU\ SKDVHV VXIIHU IURP LQVWDELOLW\ DQG LUUHSURGXFLELOLW\ 7KH HYROYHPHQW RI FKHPLFDOO\ ERQGHG SKDVHV E\ FKHPLFDOO\ WUHDWLQJ WKH VLOLFD VXUIDFH ZLWK VLODQHV EHJDQ LQ WKH PLGGOH RI V 7KH\ ZHUH GHEXWHG LQ JDV FKURPDWRJUDSK\ DV QRQSRODU VWDWLRQDU\ SKDVH REWDLQHG E\ UHDFWLQJ VLOLFD JHO ZLWK KH[DGHF\OWULFKORURVLODQH $EHO HW DO f 7KH HPSOR\PHQW RI FKHPLFDOO\ ERQGHG SKDVHV LQ OLTXLG FKURPDWRJUDSK\ ZDV ILUVW VXJJHVWHG E\ 6WHZDUW DQG 3HUU\ f &KHPLFDOO\ ERQGHG SKDVHV KDYH H[FHOOHG WR EHFRPH WKH PRVW IUHTXHQWO\ XVHG VWDWLRQDU\ SKDVHV LQ 53/& WRGD\ GXH WR WKH DGYDQFHPHQW RI V\QWKHWLF WHFKQRORJ\ IRU SUHSDULQJ WKHVH SKDVHV 7KH XQGHUO\LQJ SURSHUWLHV RI WKHVH FKHPLFDOO\ ERQGHG SKDVHV GHSHQG RQ WKH SK\VLFDO DQG FKHPLFDO SURSHUWLHV RI WKH EDVH VLOLFD WKH ERQGLQJ UHDFWLRQV DQG UHDJHQWV XVHG 7KH EDVH VLOLFD FRQVWLWXWHV WKH PDMRU SRUWLRQ RI WKH VWDWLRQDU\ SKDVH DQG WKH ILUVW SURSHUW\ RI WKH EDVH VLOLFD WKDW LQIOXHQFHV WKH FKURPDWRJUDSKLF SURFHVV LV WKH SDUWLFOH VL]H RI WKH VLOLFD 7KH VL]H RI PRVW VLOLFD SDUWLFOHV HPSOR\HG LQ 53/& VWDWLRQDU\ SKDVHV DUH LQ WKH UDQJH RI fLP 7KH DFWXDO HIIHFW RI WKH VLOLFD SDUWLFOH VL]H RQ 53/& LV LQFRQFOXVLYH VLQFH LQFRQVLVWHQW UHVXOWV KDYH EHHQ UHSRUWHG LQ WKH OLWHUDWXUH 'HZDHOH DQG 9HU]HOH f KDYH GRQH D VWXG\ RQ WKH LQIOXHQFH RI VLOLFD SDUWLFOH VL]H GLVWULEXWLRQ RQ WKH UHYHUVHG SKDVH SDFNLQJV DQG WKH\ IRXQG WKDW WKH SDUWLFOH VL]H DIIHFWV FKURPDWRJUDSKLF SHUIRUPDQFH RI WKH SDFNLQJV PLQLPDOO\ *D]GD HW DO f DOVR KDG WKH VDPH FRQFOXVLRQV EXW %ULVWRZ f KDV VKRZQ

PAGE 25

RWKHUZLVH 3RUH VL]H GLVWULEXWLRQ LV DQRWKHU LPSRUWDQW SK\VLFDO SURSHUW\ RI VLOLFD SDUWLFOHV 9HU]HOH HW DO f KDYH QRWLFHG WKDW WKH PHDQ SRUH GLDPHWHU RI WKH VLOLFD XVHG DV FKURPDWRJUDSKLF SDFNLQJV VKRXOG EH LQ WKH UDQJH RI QP DQG WKH QDUURZHU WKH GLVWULEXWLRQ FXUYH WKH EHWWHU LW LV 0LFURSRUHV RI GLDPHWHU QP RU VPDOOHU DUH XQGHVLUDEOH EHFDXVH WKH\ FDQ DOWHU WKH ILQDO FRYHUDJH RI WKH ERQGHG SKDVH %HUHQGVHQ HW DO (QJHOKDUW HW DO f $SDUW IURP WKH SK\VLFDO SURSHUWLHV WKH VXUIDFH FKHPLVWU\ RI WKH VLOLFD SDUWLFOHV HQGXUH WKH ILQDO FKDUDFWHULVWLF RI WKH ERQGHG SKDVH 6LOLFD VXUIDFH LV YHU\ FRPSOH[ DQG LW KDV EHHQ IRXQG WR FRQVLVW RI YDULRXV NLQGV RI VLODQROV DQG VLOR[DQH ERQGV 7KH VLOR[DQH ERQGV DUH XVXDOO\ FRQVLGHUHG DV UDWKHU FKHPLFDOO\ LQHUW DQG WKHUHIRUH GR QRW WDNH SDUW LQ WKH IRUPDWLRQ RI WKH ERQGHG SKDVH 6LQJOH JHPLQDO DQG YLFLQDO IRUPV RI VLODQROV DUH IRXQG RQ WKH VXUIDFH RI VLOLFD 8QJHU 0DMRUV f DQG FKURPDWRJUDSKHUV KDYH PL[HG IHHOLQJV WRZDUG WKHVH VXUIDFH VLODQROV )LUVW RI DOO WKHVH VLODQROV UHDFW ZLWK VLODQHV WR IRUP WKH ERQGHG SKDVH EXW RQ WKH RWKHU KDQG WKHVH VLODQROV DUH RQH RI WKH PDMRU FRQWULEXWLRQV WR WKH YDULDELOLW\ RI WKH ERQGHG SKDVHV 0RUHRYHU WKHVH VLODQROV DFFRXQW IRU WKH S+ RI WKH VLOLFD 'LIIHUHQW YDOXHV RI S.D RI VLOLFD KDYH EHHQ UHSRUWHG LQ WKH OLWHUDWXUH :DOOLQJ .DUJHU HW DO 0DMRUV f (QJHOKDUGW DQG 0OOHU f ILUVW REVHUYHG WKH GLYHUJHQFH RI VXUIDFH S+ RI VLOLFD SDFNLQJV IRU FKURPDWRJUDSKLF SXUSRVH 7KLV UHIOHFWV WKH GLIIHUHQW PHWKRGV RI PDQXIDFWXULQJ VLOLFDV DQG FRQQHFWV WR WKH GLIIHUHQW FKURPDWRJUDSKLF SURSHUWLHV RI VLOLFDV +DQVHQ HW DO f 7UDFH PHWDO LPSXULWLHV IRXQG LQ VLOLFD LV DQRWKHU IDFWRU ZKLFK LQIOXHQFHV WKH SURSHUW\ RI WKH ERQGHG SKDVH 7KH HIIHFW RI WUDFH PHWDO

PAGE 26

LPSXULWLHV KDYH EHHQ LJQRUHG E\ PDQ\ UHVHDUFKHUV EXW 0DUVKDOO HW DO f 1DZURFNL f DQG 6DGHN HW DO f KDYH VKRZQ WKDW WKHVH LPSXULWLHV FDQ LQGHHG DIIHFW WKH FKURPDWRJUDSKLF SURFHVV 9HU]HOH HW DO f KDYH SRLQWHG RXW WKDW QXPHURXV WUDQVLWLRQ PHWDOV FDQ EH IRXQG LQ WKH VLOLFDV WKDW DUH XVHG IRU FKURPDWRJUDSKLF SDFNLQJV 6DGHN HW DO f GHVFULEHG WKDW VLOLFD FDQ FRQWDLQ PHWDOV LQ WKUHH IRUPV VXUIDFH VSHFLHV LQWHUQDO DQG VHFOXGHG 7KH VXUIDFH PHWDOV FDQ IRUP VXUIDFH PHWDO K\GUR[LGHV ZKLFK FDQ DOWHU WKH VXUIDFH S+ RI WKH VLOLFDV ZKLOH ERWK WKH VXUIDFH DQG WKH LQWHUQDO PHWDOV FDQ SDUWLFLSDWH LQ FRRUGLQDWLRQ ZLWK WKH VROXWH RU VROYHQWV XVLQJ WKHLU RUELWDOV 7KH VHFOXGHG PHWDOV DUH WRR IDU DZD\ IURP WKH VXUIDFH VLODQROV DQG WKHUHIRUH GR QRW H[HUW DQ\ HIIHFW RQ WKH FKURPDWRJUDSKLF SURFHVV $FFRUGLQJ WR 9HU]HOH DQG FRZRUNHUV 9HU]HOH HW DO 9HU]HOH DQG 'HZDHOH 9HU]HOH f DQG 6DGHN HW DO f E\ DFLG WUHDWPHQW RI WKH VLOLFD PRVW RI WKH PHWDO LPSXULWLHV FDQ EH OHDFKHG &KHPLFDOO\ ERQGHG SKDVHV DUH VLOLFD SDUWLFOHV KDYLQJ WKHLU VXUIDFH GHULYDWL]HG ZLWK DON\O FKDLQV RU RWKHU IXQFWLRQDOLWLHV VXFK DV F\DQR RU DPLQR JURXSV 'RUVH\ DQG 'LOO f 7KH VXUIDFH RI WKH VLOLFD SDUWLFOHV FDQ EH GHULYDWL]HG E\ UHDFWLQJ ZLWK RUJDQRFKORURVLODQHV RU RUJDQRDON\R[\VLODQHV DQG WKH PRVW FRPPRQ V\QWKHWLF VFKHPH LV FDOOHG PRQRPHULF UHDFWLRQ ,Q WKLV W\SH RI UHDFWLRQ D VLQJOH VLOR[DQH OLQNDJH LV IRUPHG EHWZHHQ RQH VLODQRO RQ WKH VXUIDFH RI WKH VLOLFD DQG D PRQRFKORURVLODQH RU PRQRDONR[\VLODQH $ VLPSOLILHG GLDJUDP VKRZLQJ WKLV W\SH RI PRQRPHULF UHDFWLRQ LV GHSLFWHG LQ )LJXUH 7KH SRSXODULW\ RI PRQRPHULF UHDFWLRQ LV GXH WR WKH IDFW WKDW LW JLYHV D XQLIRUP DQG ZHOOGHILQHG VLQJOH OD\HU FRYHUDJH RI WKH VXUIDFH RI WKH VLOLFD DQG DOVR WKH UHSURGXFLELOLW\ LV DERYH RWKHU W\SHV RI UHDFWLRQV 7KH PD[LPXP

PAGE 27

c+ &+ &O6L5 &+ FK L 26L5 &+ +&, 5 /LJDQGV RI GLIIHUHQW IXQFWLRQDOLW\ XUH *HQHUDOL]HG ERQGLQJ VFKHPH IRU WKH V\QWKHVLV RI PRQRPHULFERQGHG SKDVH XVLQJ D PRQRFKORURVLODQH

PAGE 28

QXPEHU RI VLODQROV RQ WKH VXUIDFH RI VLOLFD DUH SUHGLFWHG WR EH DERXW -OPROPA DQG RQO\ WKHVH VLODQROV FDQ UHDFW ZLWK WKH VLODQHV 8QJHU f 7KH PRVW FRPPRQ &J DQG &@BJ FRQWDLQLQJ VLODQHV XVXDOO\ SURGXFH D VXUIDFH FRYHUDJH RI DSSUR[LPDWHO\ LPROPA 7KLV PHDQV WKDW WKHUH LV DQ LPPHQVH DPRXQW RI UHVLGXDO VLODQROV ZKLFK GRHV QRW UHDFW ZLWK WKH VLODQHV 7KHVH UHVLGXDO VLODQROV DUH DFFHVVLEOH WR VROXWHV GXULQJ WKH FKURPDWRJUDSKLF SURFHVV DQG FDQ FDXVH DGVRUSWLRQ DQG PL[HG UHWHQWLRQ PHFKDQLVP $ VHFRQG ERQGLQJ SURFHGXUH LV XVXDOO\ HPSOR\HG E\ PRVW PDQXIDFWXUHUV WR WU\ WR PLQLPL]H WKH UHVLGXDO VLODQROV 7KH VHFRQG ERQGLQJ SURFHGXUH RIWHQ PDNHV XVH RI WULPHWK\OVLODQHV WR UHDFW ZLWK WKH UHPDLQLQJ VLODQROV DQG LV WHUPHG HQGFDSSLQJ /RFKPLLOOHU DQG 0DUVKDOO 6DGHN DQG &DUU (YDQV HW DO 'HZDHOH HW DO 0DUVKDOO HW DO f 2WKHU PHWKRGV LQFOXGH XVLQJ VLOLFD SUHWUHDWPHQW *REHW DQG .RYDWV 0DUVKDOO HW DO f DQG WKH XVH RI PRUH UHDFWLYH VLODQHV KDYH EHHQ UHSRUWHG %XV]HZVNL HW DO /RUN HW DO f 0XFK UHVHDUFK KDV EHHQ GRQH RQ LPSURYLQJ WKH V\QWKHWLF PHDQV WR LQFUHDVH WKH VXUIDFH FRYHUDJH RU ERQGLQJ GHQVLW\ RI WKH PRQRPHULF ERQGHG SKDVH %XV]HZVNL HW DO *ROGLQJ HW DO .KRQJ DQG 6LPSVRQ 6HQWHOO HW DO f 7KLV VWULYLQJ IRU KLJKHU ERQGLQJ GHQVLW\ RULJLQDWHG DV D ZD\ WR VXSSUHVV WKH UHVLGXDO VLODQROV EXW LW ZDV VRRQ QRWLFHG WKDW WKHUH DUH RWKHU DGYDQWDJHV WR KLJK ERQGLQJ GHQVLW\ )LUVW E\ LQFUHDVLQJ WKH ERQGLQJ GHQVLW\ OHVV VLODQROV DUH H[SRVHG WR WKH VROXWHV DQG WKXV HOLPLQDWHV PRVW RI WKH DGVRUSWLRQ PHFKDQLVP GXH WR WKH VLODQROV 6HFRQG WKH VWDELOLW\ RI WKH VWDWLRQDU\ SKDVH FDQ EH UDLVHG E\ KLJKHU ERQGLQJ GHQVLW\ EHFDXVH WKH GHQVH DON\O FKDLQV SURWHFW WKH VLOLFD IURP EHLQJ K\GURO\]HG

PAGE 29

:KHQ D GL RU WULIXQFWLRQDO VLODQH LV XVHG LQVWHDG RI D PRQRIXQFWLRQDO VLODQH LQ WKH ERQGLQJ SURFHVV D SRO\PHULF FRYHUDJH IUHTXHQWO\ UHVXOWV 7KH SRO\PHULF QHWZRUN LV D FRQVHTXHQFH RI WKH UHDFWLRQ DPRQJ RQH RU PRUH RI WKH OHDYLQJ JURXSV RI WKH VLODQH DQG WKH VLODQROV RQ WKH VLOLFD VXUIDFH 6DQGHU DQG :LVH f KDYH QRWHG WKDW XQGHU D FRQWUROOHG PDQQHU SRO\PHULF SKDVHV FDQ EH YHU\ UHSURGXFLEOH DQG KDYH VRPH FKURPDWRJUDSKLF DGYDQWDJHV :LVH DQG 6DQGHU f VKRZHG WKDW WKHVH SRO\PHULF SKDVHV KDYH VKDSH VHOHFWLYLW\ RQ SRO\F\FOLF DURPDWLF K\GURFDUERQV DQG DUH VLPLODU WR OLTXLG FU\VWDOOLQH SKDVHV XVHG LQ *& 7KH\ SURSRVHG WKDW SRO\PHULF SKDVHV DUH PRUH RUGHUHG WKDQ PRQRPHULF SKDVHV 7KH PLFURVFRSLF VWUXFWXUH RI WKH ERQGHG SKDVH LV YHU\ LPSRUWDQW WR WKH UHWHQWLRQ DQG VHOHFWLYLW\ EHKDYLRU RI WKH ERQGHG SKDVH 0DQ\ UHVHDUFK JURXSV KDYH WULHG PDQ\ GLIIHUHQW H[SHULPHQWDO DSSURDFKHV WR JDLQ EHWWHU XQGHUVWDQGLQJ RI WKH QDWXUH DQG PROHFXODU RUJDQL]DWLRQ RI WKH DON\O FKDLQV WKDW KDYH EHHQ JUDIWHG RQWR WKH VLOLFD ,Q WKH HDUO\ VWDJH RI WKH ERQGHG SKDVH D VLPSOLILHG PRGHO ZDV VXJJHVWHG DQG LV VKRZQ LQ )LJXUH 0HODQGHU DQG +RUYDWK f 7KLV PRGHO LV QRW YHU\ UHDOLVWLF EHFDXVH LW DVVXPHV WKDW WKH DON\O FKDLQV DUH VWLII URGV ZLWKRXW DQ\ LQWHUQDO GHJUHHV RI IUHHGRP 7KLV LV FRQWUDGLFWRU\ WR WKH FRUUHVSRQGLQJ GLVRUGHU VWUXFWXUH RI DONDQH DW WKH WHPSHUDWXUH RI LQWHUHVW IRU FKURPDWRJUDSK\ $OVR WKH IXU DQG VWDFN PRGHOV LQ )LJXUHV OE DQG OF LPSO\ WKDW WKH DON\O FKDLQV DUH H[SRVHG WR WKH PRELOH SKDVH EXW WKH PRELOH SKDVH XVHG LQ 53/& LV RI YHU\ KLJK DTXHRXV FRQWHQW DQG WKH K\GURSKRELF HIIHFW VKRXOG SURKLELW WKLV WRWDO H[SRVLWLRQ RI WKH QRQSRODU DON\O FKDLQV WR WKH SRODU PRELOH SKDVH 'LOO f

PAGE 30

?9??????9? D (LFXUH (DUO\ PRGHOV RI PROHFXODU VWUXFWXUH DQG RUJDQL]DWLRQ RI WKH ERQGHG SKDVH LQ 53/& Df SLFNHW IHQFH Ef IXU Ff VWDFNV 'LOO f

PAGE 31

PRELOH SKDVH :LWKRXW 6ROXWH :LWK 6ROXWH )LJXUH ,QWHUSKDVH PRGHO RI WKH ERQGHG SKDVH LQ 53/& SURSRVHG E\ 'LOO f

PAGE 32

'LOO DQG FRZRUNHUV 'LOO 0DUTXVHH DQG 'LOO D 'RUVH\ DQG 'LOO f KDYH SURSRVHG DQ LQWHUSKDVH PRGHO IRU WKH VWUXFWXUH RI WKH ERQGHG SKDVH )LJXUH LV D VLPSOH UHSUHVHQWDWLYH RI WKLV PRGHO 7KH DON\O FKDLQV WKDW DUH ERQGHG RQWR WKH VXUIDFH VKRXOG KDYH WKH VDPH PROHFXODU VWUXFWXUH DQG RUJDQL]DWLRQ RI RWKHU VLPLODU LQWHUIDFLDO SKDVHV LQYROYLQJ FKDLQ PROHFXOHV VXFK DV PLFHOOHV VXUIDFWDQW PRQROD\HUV ELOD\HUV DQG PLFURHPXOVLRQV 'LOO DQG )ORU\ 'LOO HW DO f $ W\SLFDO LQWHUSKDVH KDV RQH VLGH RI WKH FKDLQ PROHFXOHV DQFKRUHG WR DQ LQWHUIDFH DQG WKH GLVRUGHU RI WKH FKDLQV LQFUHDVHV ZLWK WKH GLVWDQFH IURP WKH LQWHUIDFH 'LOO HW DO %URZQ &DEDQH f 7KH ERQGHG SKDVH LQ 53/& KDV WKHVH FKDUDFWHULVWLFV EHFDXVH RQH VLGH RI LW LV WKH VLOR[DQH ERQG EHWZHHQ WKH DON\O FKDLQV DQG WKH VXUIDFH VLODQRO *LOSLQ DQG FRZRUNHUV *LOSLQ DQG *DQJRGD *LOSLQ f KDYH VKRZQ E\ XVLQJ 105 PHDVXUHPHQWV RI WKH 7cB RI ODEHOOHG DON\O FKDLQV WKDW VHJPHQWDO PRWLRQ RI WKH DON\O FKDLQV LV D IXQFWLRQ RI GLVWDQFH IURP SRLQW RI VXUIDFH DWWDFKPHQW 6DQGHU HW DO f XVHG IRXULHU WUDQVIRUP LQIUDUHG VSHFWURVFRS\ WR VWXG\ D VHULHV RI GLPHWK\OQDON\O ERQGHG SKDVHV UDQJLQJ IURP WR &f 7KHLU UHVXOWV VKRZHG WKDW WKHVH V\VWHPV KDYH GLVRUGHUHG FKDLQV ZLWK NLQNV DQG EHQGV 7KH PROHFXODU RUJDQL]DWLRQ RI WKH LQWHUSKDVH LV GRPLQDWHG E\ WKUHH IDFWRUV 'LOO DQG )ORU\ 'LOO HW DO 0DUTXVHH DQG 'LOO Ef )LUVW WKH PROHFXODU RUJDQL]DWLRQ RI WKH LQWHUSKDVH LV UHVWULFWHG E\ WKH JHRPHWU\ RI WKH LQWHUIDFH DQG WKH GHQVLW\ DQG OHQJWK RI WKH FKDLQ PROHFXOHV 6HFRQG XQGHU D SRRU ZHWWLQJ DJHQW WKH LQWHUSKDVH ZLOO WU\ WR UHMHFW PRVW RI WKH KRVWLOH VROYHQW PROHFXOHV $Q H[DPSOH LV ZKHQ DON\O VWDWLRQDU\ SKDVH RI 53/& LV XQGHU DTXHRXV PRELOH

PAGE 33

SKDVH 7KLUG LQ DFFRUGDQFH ZLWK WKH DWWHPSW WR JDLQ PD[LPXP HQWURS\ WKH LQWHUSKDVH DOZD\V DGRSWV DV PXFK GLVRUGHU DV SRVVLEOH ZLWKLQ DOO WKH FRQVWUDLQWV 7KH LQWHUSKDVH PRGHO RI WKH VWDWLRQDU\ SKDVH LV YHU\ DSSURSULDWH ZLWK WKH SDUWLWLRQ PHFKDQLVP RI VROXWH UHWHQWLRQ ,Q WKHRU\ WKH SDUWLWLRQ RI D VROXWH PROHFXOH LQWR WKH LQWHUSKDVH KDYLQJ D IL[HG VXUIDFH GHQVLW\ ZLOO FDXVH RUGHULQJ RI WKH DON\O FKDLQV 0DUTXVHH DQG 'LOO D 'LOO 'RUVH\ DQG 'LOO f DQG WKHUHIRUH VROXWH UHWHQWLRQ LV HQWURSLFDOO\ XQIDYRUDEOH 7KH SDUWLWLRQ RI WKH VROXWH VKRXOG EH GLUHFWO\ SURSRUWLRQDO WR WKH VXUIDFH FRYHUDJH RI WKH DON\O FKDLQV XQWLO LW UHDFKHV D PD[LPXP ZKHUH LQWHUDFWLRQV EHWZHHQ LQGLYLGXDO FKDLQV EHFRPH VLJQLILFDQW 7KHQ WKH SDUWLWLRQ FRHIILFLHQW ZLOO GHFUHDVH WR ]HUR ZKHQ WKH PD[LPXP FKDLQ GHQVLW\ LV UHDFKHG ZKLFK LV URXJKO\ MLPROPA 7KH ZRUN E\ 6HQWHOO DQG 'RUVH\ Df XVLQJ ERQGHG SKDVHV KDYLQJ GLIIHUHQW ERQGLQJ GHQVLWLHV KDV FRQILUPHG WKLV SUHGLFWLRQ 6LQFH WKH HQG RI WKH DON\O FKDLQV RQ WKH ERQGHG SKDVH DUH IRXQG WR EH LQ UDSLG PRWLRQ FRPSDUHG WR WKHLU DWWDFKHG HQGV WKH VROXWH ZLOO SUHIHU WR SDUWLWLRQ WR WKH IUHH HQGV RI WKH FKDLQV :KLWH HW DO f REVHUYHG WKLV W\SH RI SUHIHUHQWLDO GLVWULEXWLRQ ZKHQ WKH\ SHUIRUPHG QHXWURQ VFDWWHULQJ H[SHULPHQWV RQ VLPLODU ELOD\HU PHPEUDQHV 7KH LPSRUWDQFH RI WKH LQWHUSKDVH PRGHO LV WKDW LW SUHGLFWV WKH HVVHQWLDO RI WKH VWDWLRQDU\ SKDVH HIIHFWV RQ VROXWH UHWHQWLRQ DQG VHOHFWLYLW\ LQ 53/& 'HSHQGHQFH RI VROXWH UHWHQWLRQ RQ WKH VXUIDFH GHQVLW\ RI DON\O FKDLQV FDQ EH H[SODLQHG E\ WKH PRGHO 6HOHFWLYLW\ GXH WR GLIIHUHQW PROHFXODU VKDSHV KDYH EHHQ ZLGHO\ QRWLFHG :LVH DQG 6DQGHU 7DQDND HW DO 7DQDND HW DO /RFKPLLOOHU HW DO f 8VLQJ WKH LQWHUSKDVH PRGHO WKLV VKDSH VHOHFWLYLW\ FDQ EH

PAGE 34

FRQVLGHUHG DV DULVLQJ IURP WKH IDFW WKDW PRUH IUHH HQHUJ\ LV UHTXLUHG WR DOLJQ VROXWHV KDYLQJ VKDSHV SDUDOOHO WR WKH DON\O FKDLQV FRPSDUHG WR PROHFXOHV WKDW KDYH VKDSHV QRUPDO WR WKH DON\O FKDLQV 6HQWHOO DQG 'RUVH\ Ef PHDVXUHG VHOHFWLYLW\ RI VL[ IRXUULQJ SRO\F\FOLF DURPDWLF K\GURFDUERQV 3$+f RQ VWDWLRQDU\ SKDVHV KDYLQJ ERQGLQJ GHQVLWLHV IURP LLPROPA 7KH\ IRXQG WKDW WKH VHOHFWLYLW\ RI WKH 3$+V LQFUHDVH VZLWK WKH VXUIDFH ERQGLQJ GHQVLW\ 7KH LQFUHDVH LQ ERQGLQJ GHQVLW\ FDXVHV RUGHULQJ RI WKH DON\O FKDLQV DQG KHQFH HOHYDWHV WKH VKDSH VHOHFWLYLW\ RI WKHVH 3$+V ,Q WKLV VWXG\ WKH SDUWLWLRQ PHFKDQLVP SURSRVHG E\ 'LOO DQG FRZRUNHUV 'LOO 0DUTXHH DQG 'LOO D 'RUVH\ DQG 'LOO f LV WHVWHG DJDLQVW DQ H[WHQGHG GDWD EDVH 5HVXOWV ZLOO EH SUHVHQWHG LQ &KDSWHU ,, WR VKRZ WKDW WKH SDUWLWLRQ PHFKDQLVP LV FRUUHFW DQG WKH VROXWHVROYHQW IUHH HQHUJ\ RI WKH ELQDU\ PRELOH SKDVH DQG WKH VROXWHV FDQ EH REWDLQHG IURP FKURPDWRJUDSKLF GDWD DV SUHGLFWHG IURP WKH WKHRU\ 7KH DPSOH QXPEHU RI VWDWLRQDU\ SKDVHV IRU 53/& DYDLODEOH WRGD\ DOO KDYH GLVWLQFW UHWHQWLRQ DQG VHOHFWLYLW\ SURSHUWLHV 7KLV LV OLNHO\ H[HUWHG E\ WKH GLIIHUHQW VWDWLRQDU\ SKDVH VWUXFWXUH DQG SURSHUWLHV RQ WKH VROXWH UHWHQWLRQ PHFKDQLVP 0DQ\ GLIIHUHQW VWDWLRQDU\ SKDVHV ZHUH LQYHVWLJDWHG DQG WKH UHODWLYH UHWHQWLRQ VWUHQJWK RI WKHP ZHUH IRXQG WR EH UHODWHG WR WKH SKDVH UDWLR DQG WKH IXQFWLRQDOLW\ RI WKH VLODQH XVHG LQ IRUPLQJ WKH VWDWLRQDU\ SKDVH 5HVXOWV RI WKLV VWXG\ ZLOO EH LQWURGXFHG LQ &KDSWHU ,,, DORQJ ZLWK D VLPSOH DQG XVHIXO PHWKRG WKDW ZDV GHULYHG WR FODVVLI\ WKHVH VWDWLRQDU\ SKDVHV DFFRUGLQJ WR WKHLU UHWHQWLYLW\ WRZDUGV DOO VROXWHV

PAGE 35

&+$37(5 ,, 62/87(62/9(17 ,17(5$&7,21 )5(( (1(5*,(6 ,1 5(9(56(' 3+$6( /,48,' &+520$72*5$3+< ,QWURGXFWLRQ %LQDU\ PRELOH SKDVHV RI ZDWHU DQG DQ RUJDQLF PRGLILHU VXFK DV DFHWRQLWULOH PHWKDQRO RU 7+) DUH PRVW FRPPRQO\ XVHG LQ 53/& )URP WKH SDUWLWLRQ PRGHO SURSRVHG E\ 'LOO DQG FRZRUNHUV 'LOO 0DUTXVHH DQG 'LOO D 'RUVH\ DQG 'LOO f WKH HTXLOLEULXP FRQVWDQW RI D ELQDU\ PRELOH SKDVH ZLWK FRPSRQHQWV $ DQG % D FDVH QRW GLVFXVVHG LQ GHWDLO LQ WKH SUHYLRXV FKDSWHUf FDQ EH GHILQHG DV D VLPSOH TXDGUDWLF IXQFWLRQ RI WKH PRELOH SKDVH FRPSRVLWLRQ DQG WKH ELQDU\ LQWHUDFWLRQ FRQVWDQWV EHWZHHQ WKH PRELOH SKDVH FRPSRQHQWV DQG WKH VROXWH OQ .&$% ;6$ =6&! Wr% ;V% f ;6$ f ;D%! !E ;D% f ZKHUH f% LV WKH IUDFWLRQ RI WKH PRELOH SKDVH VLWHV RFFXSLHG E\ % PROHFXOHV & LV WKH LQWHUSKDVH VWDWLRQDU\ SKDVH ;V$n ;V%n DQFr ;VF DUH WKH ELQDU\ LQWHUDFWLRQ FRQVWDQWV EHWZHHQ WKH VROXWH DQG WKH FRPSRQHQWV $ ZDWHUf % RUJDQLF PRGLILHUf DQG & VWDWLRQDU\ SKDVHf RI WKH FKURPDWRJUDSKLF V\VWHP UHVSHFWLYHO\ DQG b$% LV WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW EHWZHHQ WKH PRELOH SKDVH FRPSRQHQWV $ DQG % 7KH TXDGUDWLF UHODWLRQVKLS EHWZHHQ WKH HTXLOLEULXP FRQVWDQW DQG WKH YROXPH IUDFWLRQ RI RUJDQLF PRGLILHU KDV EHHQ SUHYLRXVO\ UHSRUWHG E\

PAGE 36

6FKRHQPDNHUV DQG KLV FROOHDJXHV 6FKRHQPDNHUV HW DO f XVLQJ WKH VROXELOLW\ SDUDPHWHU WKHRU\ +LOGHUEUDQG DQG 6FRWWf 'LOO DQG FRZRUNHUV 'LOO 'RUVH\ DQG 'LOO f KDYH VXJJHVWHG WKDW LQVWHDG RI WKH TXDGUDWLF HTXDWLRQ D PRUH XVHIXO OLQHDU H[SUHVVLRQ FDQ EH HPSOR\HG WR SORW WKH GHSHQGHQFH RI UHWHQWLRQ RQ PRELOH SKDVH FRPSRVLWLRQ 6LQFH NnNZ ..Z ZKHUH WKH VXEVFULSW Z UHIHUV WR WKH PRELOH SKDVH FRPSRVLWLRQ ZKHQ W!% HTXDWLRQ FDQ EH UHDUUDQJHG WR OW!% ,Q NnNZf ;VE f ,6$ a ;DEA ;D% f $V VWDWHG LQ &KDSWHU WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW ; LV RIWHQ GHWHUPLQHG E\ PHDVXULQJ WKH IUHH HQHUJ\ RI WUDQVIHU RU YDSRU SUHVVXUH LQ WKH +HQU\nV ODZ UHJLRQ +LOO f $ FDUHIXO H[DPLQDWLRQ RI HTXDWLRQ UHYHDOV WKDW D SORW RI -!% ,Q NnNZf YHUVXV -f% VKRXOG EH OLQHDU LI DOO WKH DVVXPSWLRQV PDGH LQ WKH SDUWLWLRQ PRGHO KROG $OVR WKH VORSH RI VXFK D SORW VKRXOG JLYH WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW ;D%n DQFL WKH \LQWHUFHSW DW -!% VKRXOG EH HTXDO WR bVE f =VDA f 7KLV SUHGLFWV WKDW WKH ELQDU\ LQWHUDFWLRQ FRQVWDQWV RI PRELOH SKDVHV XVHG LQ 53/& FDQ EH REWDLQHG IURP FKURPDWRJUDSKLF GDWD DQG E\ DSSO\LQJ HTXDWLRQ WKH VROXWHVROYHQW IUHH HQHUJLHV EHWZHHQ WKH VROXWH DQG WKH WZR FRPSRQHQWV RI WKH PRELOH SKDVH LQ 53/& FDQ EH FDOFXODWHG ,Q WKH RULJLQDO GHULYDWLRQ RI WKH SDUWLWLRQ PRGHO 'LOO f WKH VROXWH ZDV WUHDWHG DV KDYLQJ D VL]H FRPSDUDEOH WR WKH PRELOH SKDVH FRPSRQHQWV ,Q DFWXDOLW\ VROXWHV LQ 53/& DUH IUHTXHQWO\ ODUJHU WKDQ WKH PRELOH SKDVH FRPSRQHQWV 6LQFH WKH FDYLW\ WHUP LV YHU\ LPSRUWDQW LQ WKH SDUWLWLRQ PRGHO VROXWHV RI GLIIHUHQW VL]HV VKRXOG FUHDWH FDYLWLHV

PAGE 37

RI GLIIHUHQW PDJQLWXGHV ,I WKH VROXWH PROHFXOHV DUH ODUJHU WKDQ PROHFXOHV RI WKH PRELOH SKDVH FRPSRQHQWV HTXDWLRQ FDQ EH UHGHILQHG DV ,• ,Q NnNZf Q > ;VE ;VD f =DE! !E ;DEA f ZKHUH Q LV WKH UDWLR RI WKH VL]H RI VROXWH WR WKH VL]H RI WKH VROYHQW PROHFXOHV 7KLV H[SUHVVLRQ UHVXOWV EHFDXVH WKH QXPEHU RI FRQWDFWV RI VROXWH ZLWK WKH PRELOH SKDVH FRPSRQHQWV DQG WKH VL]H RI WKH FDYLWLHV DUH GLUHFWO\ SURSRUWLRQDO WR WKH VL]H RI WKH VROXWH PROHFXOH 7KHRUHWLFDO GHULYDWLRQV DUH QRW YDOLG XQWLO WKH\ KDYH EHHQ SURYHQ H[SHULPHQWDOO\ :LWK WKLV LQ PLQG ZH WHVWHG WKH SUHGLFWLRQ RI WKH FRPSRVLWLRQ GHSHQGHQFH H[SUHVVHG LQ HTXDWLRQV DQG ZLWK DQ H[WHQVLYH GDWD EDVH FRQVLVWLQJ RI PRUH WKDQ VHWV RI H[SHULPHQWDO UHWHQWLRQ GDWD RI YDULRXV VROXWHV RQ YDULRXV 53/& FROXPQV :H KRSH WR XQFRYHU WKH XQGHUO\LQJ SK\VLFDO QDWXUH RI WKH VORSH DQG LQWHUFHSW RI WKLV W\SH RI FRPSRVLWLRQ SORW ,Q DJUHHPHQW ZLWK WKH DERYH SUHGLFWLRQV OLQHDU GHSHQGHQFH RI ,Q N RQ VXUIDFH DUHD RU YDQ GHU :DDOV YROXPH RI VROXWH PROHFXOHV DQG KHQFH WKH VL]H RI WKH FDYLW\ KDV EHHQ ZLGHO\ REVHUYHG -LQQR DQG .DZDVDNL D E )XQDVDNL HW DO $UDL HW DO .DOLV]DQ 0RFNHO HW DO f ([SHULPHQWDO 3URFHGXUH :H WHVWHG WKH DERYH SUHGLFWLRQV ZLWK D ODUJH GDWD EDVH WKDW KDG EHHQ SUHYLRXVO\ XVHG IRU FRUUHODWLRQV RI VROYDWRFKURPDWLF VROYHQW SRODULW\ PHDVXUHPHQWV ZLWK UHYHUVHG SKDVH UHWHQWLRQ -RKQVRQ HW DO f 7KH GDWD EDVH LV XVHG KHUH LQ LWV HQWLUHW\ ZLWK WKH RPLVVLRQ RI

PAGE 38

VL[ GDWD VHWV ZKLFK KDG UHWHQWLRQ YDOXHV DW RQO\ WKUHH PRELOH SKDVH FRPSRVLWLRQV $GGLWLRQDO GDWD VHWV JHQHUDWHG LQ RXU ODERUDWRU\ 0LFKHOV f ZLWK HWKDQROZDWHU DQG SURSDQROZDWHU PRELOH SKDVHV DUH DOVR LQFOXGHG /LQHDU UHJUHVVLRQ FDOFXODWLRQV ZHUH SHUIRUPHG XVLQJ WKH SURJUDP &859( ),77(5 ,QWHUDFWLYH 0LFURZDUH 6WDWH &ROOHJH 3$ 86$f RQ DQ $SSOH ,, 3OXV PLFURFRPSXWHU 7KH SURJUDP ZDV XVHG WR FDOFXODWH WKH FRHIILFLHQWV RI FRUUHODWLRQ U DQG GHWHUPLQDWLRQ UA RI WKH GDWD 7KLV SURJUDP ZDV DOVR XVHG WR H[WUDSRODWH Nn WR WKH FRPSRVLWLRQ RI SXUH ZDWHU GHQRWHG NZ 7KH ,Q NZ YDOXHV DUH QRW XVXDOO\ UHSRUWHG LQ WKH OLWHUDWXUH DV WKH\ DUH QRW HDVLO\ H[SHULPHQWDOO\ GHWHUPLQHG :H H[WUDSRODWHG SORWV RI ,Q Nn YHUVXV (USf SRODULW\ WR WKH SRODULW\ YDOXH RI b ZDWHU WR REWDLQ WKH ,Q NZ YDOXHV XVHG KHUH 7KLV PHWKRG KDV EHHQ VKRZQ WR JLYH PRUH UHOLDEOH YDOXHV FRPSDUHG WR RWKHU W\SHV RI H[WUDSRODWLRQ 6Q\GHU HW DO 'RODQ HW DO 6FKRHPDNHUV HW DO $QWOH HW DO %DW\ DQG 6KDUS f EHFDXVH WKH FDOFXODWHG ,Q NZ IRU D JLYHQ VROXWH LV FRQVLVWHQW DPRQJ PHWKDQROZDWHU HWKDQROZDWHU DQG DFHWRQLWULOHZDWHU PRELOH SKDVHV ZKHQ XVLQJ WKLV PHWKRG 0LFKHOV f 7KH )YDOXHV ZKLFK DUH XVHG WR FRPSDUH WKH VLJQLILFDQFH OHYHO RI WZR YDULDQFHV ZHUH REWDLQHG IURP WKH 6WDW:RUNV +H\GRQ DQG 6RQ ,QF 3KLODGHOSKLD 3$ 86$f SURJUDP RQ D 0DFLQWRVK 6( $SSOH &RPSXWHU ,QF &XSHUWLQR &$ 86$f PLFURFRPSXWHU 7KH YDQ GHU :DDOV YROXPH RI WKH VROXWHV ZHUH FDOFXODWHG XVLQJ PHWKRGV UHSRUWHG E\ %RQGL f DQG WKH K\GURFDUERQDFHRXV VXUIDFH DUHD ZDV REWDLQHG IURP :RRGEXUQ f

PAGE 39

5HVXOWV DQG 'LVFXVVLRQ 7KH H[WHQVLYH GDWD EDVH SUHVHQWHG KHUH SHUPLWV FHUWDLQ WHVWV RI WKH FDYLW\ FRQWULEXWLRQV WR WKH SDUWLWLRQ UHWHQWLRQ PRGHO DQG WKH DELOLW\ RI XVLQJ FKURPDWRJUDSKLF GDWD WR FDOFXODWH ELQDU\ LQWHUDFWLRQ FRQVWDQWV $ W\SLFDO H[DPSOH RI WKLV W\SH RI FRPSRVLWLRQ SORW LV VKRZQ LQ )LJXUH ,Q WKH FDVH VKRZQ WKH VROXWH LV QLWURSKHQRO DQG WKH PRELOH SKDVH LV D VHULHV RI GLIIHUHQW DFHWRQLWULOHZDWHU PL[WXUHV )URP WKH ILJXUH LW LV REYLRXV WKDW WKLV SORW SURYLGHV D OLQHDU UHSUHVHQWDWLRQ RI WKH H[SHULPHQWDO GDWD 7DEOH SUHVHQWV DQ H[WHQVLYH FRPSLODWLRQ RI WKH UHVXOWV RI SORWWLQJ GDWD LQ WKLV IRUP IRU D ZLGH UDQJH RI VROXWHV VWDWLRQDU\ SKDVHV DQG YDULRXV PRELOH SKDVH PL[WXUHV FRPPRQO\ XVHG LQ 53/& )URP WKH FRUUHODWLRQ FRHIILFLHQWV VKRZQ LW LV FOHDU WKDW WKH GHJUHH RI OLQHDULW\ RI WKLV W\SH RI SORW LV H[WUHPHO\ JRRG ZLWK RQO\ D YHU\ VPDOO QXPEHU RI H[FHSWLRQV )LJXUH f 0RUH WKDQ b RI WKH GDWD VHWV DUH IRXQG WR KDYH UA RI DQG KLJKHU DQG DOPRVW b ZLWK UA RI DQG KLJKHU $Q )YDOXH ZKLFK LV XVHG WR FRPSDUH WKH VLJQLILFDQFH OHYHO RI ILWWLQJ WKH GDWD VHWV WR D TXDGUDWLF PRGHO $QGHUVRQ f LV FDOFXODWHG DQG H[SUHVVHG DV D LQ 7DEOH 7KH UHVXOWV RI WKH )WHVW UHYHDO WKDW WKH TXDGUDWLF PRGHO GRHV QRW ILW WKH GDWD VHWV VLJQLILFDQWO\ EHWWHU DW WKH b FRQILGHQFH OHYHOf H[FHSW LQ RXW RI GDWD VHWV :H FRQFOXGH WKDW WKH OLQHDU ILWWLQJ RI WKH GDWD LV DGHTXDWH 7KH SULQFLSDO H[FHSWLRQ LQ WKH GDWD VHW LV WKH 6HSUDO\WH & FROXPQ ZLWK PHWKDQRO DV PRGLILHU 7KH FRHIILFLHQW RI GHWHUPLQDWLRQ UA IRU WKLV SDUWLFXODU GDWD VHW YDULHV IURP WR ZLWK DQ DYHUDJH YDOXH RI 7KHVH SRRU FRUUHODWLRQV DUH SUREDEO\ REVHUYHG EHFDXVH IRU WKH VKRUWFKDLQ VWDWLRQDU\ SKDVHV DGVRUSWLRQ LV H[SHFWHG WR EH WKH GRPLQDQW UHWHQWLRQ

PAGE 40

O ,Q N )LJXUH 2E 3ORW RI 2E OQNnNZf YHUVXV !E IRU WKH VROXWH 1LWURSKHQRO XVLQJ +\SHUVLO 2'6 FROXPQ DQG DFHWRQLWULOH DV PRGLILHU

PAGE 41

HTXHQF\ LJXUH U +LVWRJUDP RI FRHIILFLHQW RI GHWHUPLQDWLRQ U IRU SORWV RI !E OQNnNZf YHUVXV !% IRU DOO WKH GDWD WKH VHWV

PAGE 42

7DEOH /LQHDU UHJUHVVLRQ UHVXOWV RI HTXDWLRQ DQG UHVXOWV RI VORSHV DQG LQWHUFHSWV 6ROYHQWb ORJ NnYV (W f 6ORSH RI \OQWf 'DWD [L QL B MO Q YLQWf DW + D 5HIHUHQFH %LSKHQ\O $ $&1 :RRGEXUQ f 1DSKWKD OHQH $ 3KHQDQWKUHQH $ $QWKUDFHQH $ ‘L 3\UHQH $ 0 fL Q%XW\OEHQ]HQH $ %HQ]HQH $ 7ROXHQH $ (WK\OEHQ]HQH $ Q3URS\OEHQ]HQH $ S;\OHQH $ R;\OHQH $ P'LHWK\OEHQ]HQH $ 0 7ULPHWK\O EHQ]HQH $ )OXRUREHQ]HQH $ &KORUREHQ]HQH $ 0 %URPREHQ]HQH $ ,RGREHQ]HQH $ 0 1LWUREHQ]HQH $ )OXRUDQWKHQH $ &ROXPQ $ FP[PP O2MLP 6HSUDO\WH & $QDO\WLFKHPf \LQW \LQWHUFHSW DW % r 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 43

7DEOH OFRQWLQXHG D/LO 6ROX/F &QXPQ 6ROYHQWb 5DQJH ORJ NnYD .rM L[L f f / 6ORSH R& XXXX/OXQA L OLL ,YOQWO \OQWf MO/LWWLLU + 8 5HOHUHQFH %LSKHQ\ % $&1 :RRGEXUQ f 1DSKW KD OHQH % 0 0 3KHQDQWKUHQH % $QW KUDFHQH % 3\UHQH % f &K\UVHQH % )OXRUDQWKHQH % 0 Q%XW\EHQ]HQH % %HQ]HQH % 7ROXHQH % (WK\OEHQ]HQH % Q3URS\ EHQ]HQH % 0 S;\OHQH % 0 R;\OHQH % P'LHWK\OEHQ]HQH % 7ULPHWK\O EHQ]HQH % m ff )OXRUREHQ]HQH % } &KORUREHQ]HQH % 0 %URPREHQ]HQH % 0 ,RGREHQ]HQH % 0 1LWUREHQ]HQH % &ROXPQ % 6FP[PP _LP 6HSUDO\WH & $QDO\W OFKHPf \LQW \OQWHUFHSW DW LIJ2 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 44

7DEOH OFRQWLQXHG 'D/D 6ROXWH &QO XPQ 6RO YHQWb 5DQJH ORJ N n YV (S L[LQL f U e 6ORSH RI %LSKHQ\O F $&1 1DSKW KD OHQH F $&1 3KHQDQW KUHQH F $QWKUDFHQH F 0 3\UHQH F 0 &K\UVHQH F )OXRUDQWKHQH F rn Q%XW\OEHQ]HQH F + Q+H[\OEHQ]HQH F 0 %HQ]HQH F $&1 7ROXHQH F (WK\OEHQ]HQH F Q3URS\OEHQ]HQH F S;\OHQH F R;\OHQH F 0 P'LHWK\OEHQ]HQH F 7ULPHWK\O EHQ]HQH F )OXRUREHQ]HQH F + &KORUREHQ]HQH F %URPREHQ]HQH F ,RGREHQ]HQH F 1LWUREHQ]HQH F &ROXPQ & FP[PP O2MLP 6HSUDO\WH & $QDO\WOFKHPf \LQW \LQWHUFHSW DW \OQWf / Q \LQW? 1 D 5HIHUHQFH :RRFLEXUQ f 0 AErn 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH &R FQ

PAGE 45

7DEOH FRQWLQXRG 6ROYHQWb ORJ NnYV (Sf 6ORSH RI \OQWf 'DWD 6ROXWH &ROXPQ 5DQJH L[LDf W HTXDWLRQ L Q OYOQWf + %LSKHQ\O $&1 1DSKW KD OHQH 3KHQDQW KUHQH $QWKUDFHQH 3\UHQH &KU\VHQH Q%XW\OEHQ]HQH Q+H[\OEHQ]HQH %HQ]HQH 7ROXHQH (WK\OEHQ]HQH Q3URS\OEHQ]HQH 0 S;\OHQH 0 RR R;\OHQH nr 22 P'LHWK\OEHQ]HQH 7ULPHWK\O EHQ]HQH $&1 )OXRUREHQ]HQH 0 %URPREHQ]HQH 0 ,RGREHQ]HQH 1LWUREHQ]HQH fr &ROXPQ FP[PP O2ALP 6HSUDO\WH & $QDO\WLFKHPf \ ‘LQW \LQWHUFHSW DW % 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH 5S I F UHQFR :RRGEXUQ f 8! &7L

PAGE 46

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NfYV (W f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH I[O e HQXDWORQ ; ,=Q LYOQWf D $FHWRSKHQRQH ( $&1 $QLVOH ( %HQ]DOGHK\GH ( 0 %HQ]RQLWULOH ( %HQ]RSKHQRQH ( %HQ]RWULFKORULGH ( %URPREHQ]HQH ( 0 Q%XW\OEURPLGH ( Q%XW\OSKHQ\O FDUEDPDWH ( P&UHVRO ( R&UHVRO ( S&UHVRO ( (WK\O EHQ]RDWH ( 0HWK\O EHQ]RDWH ( 1LWUREHQ]HQH ( 3KHQHWROH ( 3KHQ\O DFHWDWH ( Q3URS\OSKHQ\ HWKHU ( &KORUREHQ]HQH ( &KORUREURPXURQ ( 'LQEXW\O HWKHU ( Q+HSWDQH ( /LQXURQ ( Q2FWDQH ( 6W\UHQH ( 5SIHUHQFH -DQGHUD f &ROXPQ ( FP[PP fLP 6LODVRUE & /DFKHPDf \LQW \LQWHUFHSW DW !% 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 47

7DEOH OFRQWLQXHG 'DO D 6ROXWH &ROXPQ 6ROYHQWb 5DQJH ORJ NnYV (W [f2f f -2 6ORSH RI FXXDOO4LL U Q cIDLQW \OQWf O G/ 1 8 5OO/X[ 1LWURSKHQRO ) $&1 +DQDL DQG +XEHUW f QR 'LQLWURSKHQRO ) %URPRSKHQRO ) &KORURPHWK\O SKHQRO ) $&1 0 E'LFKORURSKHQRO ) &KLRUR GOPHOK\ SKRQR ) } OLE 7ULFKORUR SKHQRO ) $&1 + 7HWUDFKORUR SKHQRO ) $QLOLQH ) $&1 10HWK\ODQLOLQH ) $&1 1(WK\ODQLOLQH ) 1%XW\ODQLOLQH ) $&1 11'LPHWK\ODQLOLQH ) $&1 11'LHWK\ODQLLQH ) $&1 0HWK\ODQLOLQH ) $&1 0HWK\ODQLOLQH ) 0 0HWK\ODQLOLQH ) &ROXPQ ) FP[PP fLP +\SHUVLO 2'66KDQGRQ 6RXWKHUQf \LQW \LQWHUFHSW DW -!T 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 48

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (W f 6ORSH RI \OQWf I [ 4 /" SQXDW RQ U Q IYOQW DW $J D 'LPHWK\ODQLOLQH ) $&1 +DQDL DQG +XEHUW 0HWKR[\DQLOLQH ) $&1 'LHWKR[\DQLOLQH ) $&1 &KORURDQLOLQH ) &KORURDQLOLQH ) &KORURDQLOLQH ) 'LFKORURDQLOLQH ) $&1 'LFKORURDQLOLQH ) $&1 %URPRDQLOLQH ) $&1 1LWURDQLOLQH ) $&1 1LWURDQLOLQH ) 1LWURDQLOLQH ) 3\ULGLQH ) $PLQRS\ULGLQH ) $PLQRS\ULGLQH ) 0HWK\OS\ULGLQH ) 0HWK\OS\ULGLQH ) 0HWK\OS\ULGLQH ) (WK\OS\ULGLQH ) $&1 WHUW%XW\OS\ULGLQH ) $&1 'LPHWK\OS\ULGLQH ) + &ROXPQ ) FP[PP fLP +\SHUVLO 2'66KDQGRQ 6RXWKHUQf \LQW \LQWHUFHSW DW AJ2 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 49

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (7f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH [O e HTXDWLRQ ; OOQ YOQW DW • 1 D 5HIHUHQFH 'LPHWK\OS\ULGLQH ) $&1O +DQDL DQG +XEHUW 'LPHWK\OS\ULGLQH ) $&1 3\UD]LQH ) $&1O 0HWK\LS\UD]LQH ) 0 'LPHWK\OS\UD]LQH ) 'LPHWK\OS\UD]LQH ) 0 4XLQROLQH ) $&1 0HWK\OTXLQROLQH ) fL 0HWK\OTXLQROLQH ) r ff 0HWK\OTXLQROLQH ) $PLQRLQGDQ ) ff $PLQRLQGROH ) $&1 $PL QRQDSKWKDOHQH ) $&1 $PL QRQDSKWKDOHQH ) $&1 $PLQRDQWKUDFHQH ) $&1 $PL QRS\UHQH ) $&1 &ROXPQ ) FP[PP fLP +\SHUVLO 2'66KDQGRQ 6RXWKHUQf \LQW \LQWHUFHSW DW 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 50

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (W f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH [O U (DDD/OQ U ,Q B/ DW D 5HIHUHQFH 3KHQRO $&1 +DQDL DQG 0HWK\OSKHQRO $&1 0HW K\OSKHQRO 0 0HWK\OSKHQRO $&1 ff 'LPHWK\OSKHQRO $&1 } 'LPHWK\OSKHQRO + 'LPHWK\OSKHQRO 0 ff QR 'LPRWK\SKHQRO rr ff PHWK\ SKHQRO $&1 ff 'LPHWK\OSKHQRO ff 7ULPHWK\O SKHQRO $&1 7ULPHWK\O SKHQRO nf ff 7ULPHWK\O SKHQRO 0 ff 7HWUDPHWK\O SKHQRO $&1 ff (WK\OSKHQRO $&1 ff (WK\OSKHQRO rf (WK\OSKHQRO ff &KORURSKHQRO &KORURSKHQRO ff &KORURSKHQRO 'LFKORURSKHQRO $&1 ‘F R P &ROXPQ FP[PP ILP 8QLVLO 4 &*DVXNXUR .RJ\Rf \LQW \ LQWHUFHSW DW 1 QXPEHU RI GDWD SRLQW D ) WHVW YD OXH +XEHUW f

PAGE 51

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (W f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH [O4f O H TXDWLRQ e OQ WY,QW L DW !E X D 5HIHUHQFH 'LFKORURSKHQRO $&1 +DQDL DQG +XEHUW 'LFKORURSKHQRO 'LFKORURSKHQRO 'LFKORURSKHQRO 'LFKORURSKHQRO 7ULFKORUR SKHQRO $&1 7ULFKORUR SKHQRO $&1 7ULFKORUR SKHQRO $&1 7ULFKORUR SKHQRO 0 7ULFKORUR SKHQRO 7ULFKORUR SKHQRO 7HWUDFKORUR SKHQRO 7HWUDFKORUR SKHQRO 3HQWDFKORURSKHQRO $&1 &KORURPHWK\O SKHQRO $&1 &KORURPHWK\O SKHQRO &KORURPHWK\O SKHQRO &ROXPQ FP[PP ALP 8QLVLO 4 &*DVXNXUR .RJ\Rf \LQW \ LQWHUFHSW DW -!% 1 QXPEHU RI GDWD SRLQW D ) WHVW YD OXH

PAGE 52

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NfYV (W f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH [O2 U HTXDWLRQ [ Q YOQW L` DW AT D D 5HIHUHQFH %URPRSKHQRO $&1 +DQDL DQG +XEHUW %URPRSKHQRO %URPRSKHQRO 'LEURPRSKHQRO $&1 'LEURPRSKHQRO 1LWURSKHQRO $&1 1LWURSKHQRO 1LWURSKHQRO $&1 'LQLWURSKHQRO $&1 'LQLWURSKHQRO 'LQLWURSKHQRO 'LQLWURSKHQRO +\GUR[\DFHWR SKHQRQH $&1 WHUW%XW\OSKHQRO $&1 +\GUR[\SURS\O EHQ]RDWH $&1 +\GUR[\EXW\O EHQ]RDWH &KORUR GLPHWK\OSKHQRO 'LK\GUR[\EHQ]HQH $&1 'LK\GUR[\EHQ]HQH 'LK\GUR[\EHQ]HQH +\GUR[\QDSKWKDOHQH $&1 +\GUR[\QDSKWKDOHQH 0 O+\GUR[\GLQLWUR QDSKWKDOHQH $&1 &ROXPQ FP[PP _LP 8QOVLO 4 &*DVXNXUR .RJ\Rf \LQW \ LQWHUFHSW DW _!T 1 QXPEHU RI GDWD SRLQW D ) WHVW YDOXH

PAGE 53

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (7f 6ORSH RI \LQWf 'DWD 6ROXWH $QWKUDFHQH 5DQJH -06// 0H2+ U H TXDWLRQ L U Q YLQW D/ D 5H IHUHQFH & :RRGEXUQ f 3\UHQH & Q%XW\OEHQ]HQH & %HQ]HQH & f 7ROXHQH & (WK\OEHQ]HQH & Q3URS\OEHQ]HQH & 0 S;\OHQH & R;\OHQH & RR P'LHWK\OEHQ]HQH & 7ULPHWK\O EHQ]HQH & )OXRUREHQ]HQH & &KORUREHQ]HQH F %URPREHQ]HQH F ,RGREHQ]HQH F 1LWUREHQ]HQH F &ROXPQ & FP[PP AP 6HSUDO\WH &$QDO\WLFKHPf \ LQW \LQWHUFHSW DW W!(Ur 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 54

7DEOH f§FRQWLQXHG 'DWD 6ROXWH &ROXPQ 6ROYHQWb 5DQJH ORJ NnYV (W I[O2f f U 6ORSH RI ‘ Q \LQWf 5HIHUHQFH %LSKHQ\O % 0H2+ :RRGEXUQ 1DSKWKDOHQH % 0H2+ 3KHQDQWKUHQH % 0H2+ $QWKUDFHQH % 3\UHQH % &KU\VHQH % Q%XW\OEHQ]HQH % %HQ]HQH % 0H2+ 7ROXHQH % (WK\OEHQ]HQH % Q3URS\OEHQ]HQH % 0H2+ S;\OHQH % 0H2+ R;\OHQH % 0H2+ P'LHWK\OEHQ]HQH % 7ULPHWK\O EHQ]HQH % 0H2+ )OXRUREHQ]HQH % &KORUREHQ]HQH % %URPREHQ]HQH % ,RGREHQ]HQH % 1LWUREHQ]HQH % &ROXPQ % FP[PP O2ILP 6HSUDO\WH & $QDO\W LFKHPf \LQW \LQWHUFHSW DW _!E 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 55

7DEOH f§FRQWLQXHG 6ROYHQWb ORJ NnYV (W f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH ;O2f [ HTXDWLRQ B ; Q YOQWf 1 e/ 5HIHUHQFH %LSKHQ\O $ 0H2+ RR :RRGEXUQ f 1DSKWKDOHQH $ 0 3KHQDQWKUHQH $ $QWKUDFHQH $ 0 3\UHQH $ )OXRUDQWKHQH $ Q%XW\OEHQ]HQH $ %HQ]HQH $ 7ROXHQH $ (WK\OEHQ]HQH $ Q3URS\OEHQ]HQH $ S;\OHQH $ R;\OHQH $ P'OHWK\OEHQ]HQH $ 7ULPHWK\O EHQ]HQH $ )OXRUREHQ]HQH $ &KORUREHQ]HQH $ 0 %URPREHQ]HQH $ ,RGREHQ]HQH $ 1LWUREHQ]HQH $ 0 &ROXPQ $ FP[PP O2AOP 6HSUDO\WH & $QDO\WLFKHPf \LQW \LQWHUFHSW DW _!% 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 56

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (S f 6ORSH RI \LQWf 'DWD 6ROXWH [LQL STXDWLRQ ; Q YLQWf 1 t 5HIHUHQFH S1LWURSKHQRO + (W2+ 0LFKHOV S1LWURDQLVROH + %HQ]RSKHQRQH + (W2+ 1DSKWKDOHQH + 1LWUREHQ]HQH + (W2+ %HQ]\ODPLQH + 7ROXHQH + (W2+ (WK\OEHQ]HQH + Q3URS\OEHQ]HQH + (W2+ Q%XW\OEHQ]HQH + S1LWURSKHQRO + 3U2+ S1LWURDQLVROH + 3U2+ %HQ]RSKHQRQH + 1DSKWKDOHQH + 1LWUREHQ]HQH + %HQ]\ODPLQH + 3U2+ 7ROXHQH + 3U2+ (WK\OEHQ]HQH + Q3URS\OEHQ]HQH + Q%XW\OEHQ]HQH + 1LWURDQLOLQH + $&1 -RKQVRQ @ 1LWURDQLOLQH + 1LWURDQLVROH + $&1 1LWURSKHQRO + $&1 &ROXPQ + FP[PP ALP 8OWUDVSKHUH 2'6$OWH[f \LQW \LQWHUFHSW DW ^!E Q QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 57

7DEOH OFRQWLQXHG 'DWD 6ROXWH &ROXPQ 6ROYHQWb 5DQJH ORJ NnYV (W LLLDL f ; 6ORSH RI HTXDWLRQ [ Q L\LQWO \LQWf DLf§ X D 3KHQRO ( $&1 -DQGHUD f $FHWRSKHQRQH ( 0H2+ $QLVOH ( rr %HQ]DOGHK\GH ( %HQ]RQLWULOH ( %HQ]RSKHQRQH ( %HQ]RWULFKORULGH ( %URPREHQ]HQH ( Q%XW\O EURPLGH ( fL Q%XW\OSKHQ\O FDUEDPDWH ( fL &KORUREHQ]HQH ( fL &KORUREURPXURQ ( P&UHVRO ( ‘L rr R&UHVRO ( Q S&UHVRO ( ‘L 'LQEXW\O HWKHU ( 0 (WK\O EHQ]RDWH ( Q+HSWDQH ( /LQXURQ ( 0HWK\O EHQ]RDWH ( 1LWUREHQ]HQH ( 3KHQHWROH ( 3KHQRO ( 3KHQ\O DFHWDWH ( Q3URS\OSKHQ\O HWKHU ( RR 6W\UHQH ( &ROXPQ ( FP[PP fLP 6LODVRUE &/DFKHPDf \LQW \LQWHUFHSW DW -!% 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 58

7DEOH OFRQWLQXHG 6ROYHQWb ORJ NnYV (7f 6ORSH RI \LQWf 'DWD 6ROXWH &ROXPQ 5DQJH [LQL U HDXDWLRQ ; Q L\LQWf 5 5HIHUHQFH %HQ]HQH + $&1 -RKQVRQ f %XW\OEHQ]HQH + (WK\OEHQ]HQH + ,VRSURS\OEHQ]HQH + 7ROXHQH + LL $QWKUDFHQH + $&1 3KHQDQWKUHQH + 3\UHQH + %HQ]HQH + 0H2+ %XW\OEHQ]HQH + ,VRSURS\OEHQ]HQH + 7ROXHQH + (WK\OEHQ]HQH + %LSKHQ\O & 0H2+ :RRGEXUQ f 3KHQDQWKUHQH & 0 $QWKUDFHQH + $&1 /LSIRUG f 1DSKWKDOHQH + $&1 &ROXPQ + FP[PP AOP 8OWUDVSKHUH 2'6 $OWH[f &ROXPQ & FP[PP O2ILP 6HSUDO\WH &$QDO\WLFKHPf M \LQW \LQWHUFHSW DW !E r 1 QXPEHU RI GDWD SRLQW D )WHVW YDOXH

PAGE 59

PHFKDQLVP UDWKHU WKDQ SDUWLWLRQLQJ ZKLFK LV WKH EDVLV RI WKH DVVXPSWLRQ RI HTXDWLRQV DQG $QRWKHU SRVVLELOLW\ LV WKDW WKH UHVLGXDO VLODQRO JURXSV DUH PRUH DFFHVVLEOH WR VROXWHV LQ VKRUWFKDLQ VWDWLRQDU\ SKDVHV WKDQ IRU ORQJHU FKDLQV DQG WKH\ PD\ H[HUW D VWURQJ HIIHFW RQ UHWHQWLRQ WKDW LV QRW WUHDWHG LQ WKH SDUWLWLRQ PRGHO 'XH WR WKH VLJQLILFDQW FXUYDWXUH DQG WKH SRRU FRUUHODWLRQ IRXQG LQ WKLV GDWD VHW ZH IHHO WKDW WKH \LQWHUFHSWV DW -!% DUH XQUHOLDEOH DQG WKHUHIRUH DUH QRW UHSRUWHG LQ 7DEOH :KHUH OLQHDULW\ LV IRXQG WR EH JRRG LW LPSOLHV WKDW WKH SDUWLWLRQ PRGHO DQG WKH IHZ DVVXPSWLRQV DSSOLHG DUH YDOLG 7KLV OLQHDULW\ LV H[SHFWHG WR EH OLPLWHG WR WKH LQWHUPHGLDWH FRPSRVLWLRQV H[SORUHG KHUH EHFDXVH WKH UDQGRPPL[LQJ DSSUR[LPDWLRQ DVVXPHG LQ WKH RULJLQDO GHULYDWLRQ LV H[SHFWHG WR IDLO LQ WKH OLPLWV RI H[WUHPH PRELOH SKDVH FRPSRVLWLRQ RI D IHZ SHUFHQW RI HLWKHU PRELOH SKDVH FRPSRQHQW 6FKRHQPDNHUV HW DO f ,Q WKRVH FDVHV VROXWHV RU WKH PLQRU FRPSRQHQW RI WKH PRELOH SKDVH PD\ DVVRFLDWH WR IRUP QRQUDQGRP PL[WXUHV $FFRUGLQJ WR HTXDWLRQ WKH VORSH RI WKH UHJUHVVLRQ RI WKLV FRPSRVLWLRQ SORW HTXDOV WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW FKDUDFWHUL]LQJ WKH SDLU LQWHUDFWLRQ EHWZHHQ PROHFXOHV RI WKH $ DQG % FRPSRQHQWV LQ WKH PRELOH SKDVH PXOWLSOLHG E\ WKH VL]H RI WKH FDYLW\ RFFXSLHG E\ WKH VROXWH 7HVWV RI WKLV SUHGLFWLRQ RI WKH FDYLW\VL]H GHSHQGHQFH DUH VKRZQ LQ )LJXUHV DQG 7KH VORSHV RI WKH FRPSRVLWLRQ SORWV DUH IRXQG WR LQFUHDVH ZLWK LQFUHDVLQJ FDYLW\ VL]H FUHDWHG E\ WKH VROXWH PROHFXOHV 7KDW LV VORSH RI f!% ,Q NnNZf YHUVXV -!% Q;A% DQFr GVORSH GQ ;DE f

PAGE 60

6ORSHV IURP HTXDWLRQ )LJXUH 9Z FPPROf 3ORW RI VORSHV IURP HTXDWLRQ YHUVXV YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU

PAGE 61

7DEOH 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YHUVXV WKH YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU DOO WKH FROXPQV &ROXPQ 0RGLILHU 6ORSH[O4f U 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & 0HWKDQRO 6HSUDO\WH & 0HWKDQRO +\SHUVLO 2'6 $FHWRQLWULOH 8QLVLO 4 & $FHWRQLWULOH 8OWUDVSKHUH 2'6 0HWKDQRO 8OWUDVSKHUH 2'6 (WKDQRO 8OWUDVSKHUH 2'6 3URSDQRO 8OWUDVSKHUH 2'6 $FHWRQLWULOH 6LODVRUE & 0HWKDQRO 6LODVRUE & $FHWRQLWULOH

PAGE 62

6ORSHV IURP HTXDWLRQ )LJXUH +6$ ƒf 3ORW RI VORSHV IURP HTXDWLRQ YHUVXV K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU

PAGE 63

7DEOH 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YV WKH K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU DOO WKH FROXPQV &ROXPQ 0RGLILHU 6ORSH[O4f L 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & 0HWKDQRO 6HSUDO\WH & 0HWKDQRO

PAGE 64

ZKHUH VORSH LV GHILQHG DV WKH VORSH RI HTXDWLRQ 9DOXHV RI JHQHUDWHG IURP WKH GHULYDWLYH RI HTXDWLRQ DUH SUHVHQWHG LQ 7DEOHV DQG 'XH WR WKH OLPLWHG UDQJH RI VROXWH VL]HV DYDLODEOH WKLV OLQHDULW\ LV REVHUYHG ZKHQ HLWKHU WKH FDYLW\ YROXPH )LJXUH VORSHV LQ 7DEOH f DV PHDVXUHG E\ WKH YDQ GHU :DDOV YROXPH RI WKH VROXWH PROHFXOH RU FDYLW\ DUHD DV PHDVXUHG E\ WKH K\GURFDUERQDFHRXV VXUIDFH DUHD RI WKH VROXWH PROHFXOH )LJXUH VORSHV LQ 7DEOH f UHSUHVHQWHG WKH VL]H RI WKH FDYLW\ FUHDWHG E\ WKH VROXWH PROHFXOH 7KH ELQDU\ LQWHUDFWLRQ FRQVWDQWV KDYH GLIIHUHQW XQLWV GHSHQGLQJ RQ ZKHWKHU FDYLW\ VL]H LV WDNHQ WR EH WKDW RI WKH VROXWH YROXPH RU DUHD 7KH OLQHDU UHODWLRQVKLS KROGV ZHOO EHWZHHQ WKH VORSHV IURP HTXDWLRQ DQG WKH FDYLW\ VL]H ZLWK PRVW RI WKHVH SORWV KDYLQJ U RI DQG EHWWHU 7KLV OLQHDULW\ LPSOLHV WKDW WKH VORSHV IURP HTXDWLRQ DUH SURSRUWLRQDO WR WKH VL]H RI WKH FDYLW\ RFFXSLHG E\ WKH VROXWHV 7KH VORSHV IURP )LJXUHV DQG UHSUHVHQW WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW RI WKH PRELOH SKDVH FRPSRQHQW $ ZLWK % SHU XQLW YROXPH RU DUHD UHVSHFWLYHO\ )RU WKH 6HSUDO\WH & FROXPQ VKRZQ LQ )LJXUH DQG 7DEOH WKH LQWHUDFWLRQ IUHH HQHUJ\ RI WKH PRELOH SKDVH FRPSRQHQWV LV IRXQG WR HTXDO [ f§fN7 [ f FDOPROf FDOPRO $ IRU WKHVH GDWD WDNHQ DW r& 6HYHUDO FROXPQV JLYH SRRU FRUUHODWLRQV IRU WKH VORSH RI HTXDWLRQ YHUVXV YDQ GHU :DDOV YROXPH RI WKH VROXWHV )RU WKH FDVH RI WKH +\SHUVLO FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU PRVW RI WKH VROXWHV ZHUH QLWURJHQRXV FRPSRXQGV VXFK DV DQLOLQH S\ULGLQH DQG DPLQRVXEVWLWXWHG

PAGE 65

3$+V ,W KDV EHHQ VKRZQ WKDW PDQ\ FRPSRXQGV ZLWK D QLWURJHQRXV PRHLW\ RIWHQ H[KLELW DQ XQVDWLVIDFWRU\ GHJUHH RI SHDN WDLOLQJ LQ 53/& DQG WKLV HIIHFW LV JHQHUDOO\ FRQVLGHUHG WR FRPH IURP WKH SUHVHQFH RI UHVLGXDO VLODQRO JURXSV RQ WKH VXUIDFH RI WKH ERQGHG SKDVH :DKOXQG DQG 6RNRORZVNL %D\HU DQG 3DXOXV 6PLWK HW DO +DQVHQ HW DO f 7KH UHWHQWLRQ PHFKDQLVP RI WKHVH FRPSRXQGV LV PRVW OLNHO\ D PL[HG SDUWLWLRQDGVRUSWLRQ SURFHVV EHFDXVH RI WKH LQWHUDFWLRQV ZLWK WKH UHVLGXDO VLODQRO JURXSV DQG ZRXOG QRW EH H[SHFWHG WR ILW WKH WKHRU\ WHVWHG KHUH 7KH 8QLVLO 4 & GDWD LQFOXGH PDQ\ LVRPHUV RI VXEVWLWXWHG EHQ]HQH 7KH YDQ GHU :DDOV YROXPHV FDOFXODWHG IURP %RQGLnV f PHWKRG IRU JHRPHWULF LVRPHUV DUH LGHQWLFDO EXW WKH\ JLYH GLIIHUHQW VORSHV IRU HTXDWLRQ ,W KDV EHHQ VKRZQ LQ WKH OLWHUDWXUH WKDW LVRPHULF DON\OEHQ]HQHV JLYH UHODWLYHO\ SRRU FRUUHODWLRQ ZLWK YDQ GHU :DDOV YROXPH 6PLWK -LQQR DQG .DZDVDNL Df 7KH SRRU FRUUHODWLRQ LQ WKLV LQVWDQFH PRVW OLNHO\ DULVHV IURP WKH PLVUHSUHVHQWDWLRQ RI WKH FDOFXODWHG YDQ GHU :DDOV YROXPH UDWKHU WKDQ D EUHDNGRZQ RI WKH UHWHQWLRQ WKHRU\ 7KH SRRU FRUUHODWLRQV IRU WKH HWKDQRO DQG SURSDQRO GDWD RQ WKH 8OWUDVSKHUH 2'6 FROXPQ PD\ EH FDXVHG E\ WKH FKDQJLQJ VWDWLRQDU\ SKDVH HQYLURQPHQW DV WKHVH PRUH K\GURSKRELF PRGLILHUV DUH XVHG LQ WKH PRELOH SKDVH 7KHUH LV QRW \HW DQ\ WKHRU\ SXEOLVKHG RQ WKH XSWDNH RI VROYHQW E\ WKH VWDWLRQDU\ SKDVH FKDLQV 0LFKHOV f KDV UHFHQWO\ UHSRUWHG WKDW SURSDQRO DSSHDUV WR VDWXUDWH WKH VWDWLRQDU\ SKDVH DW D YHU\ ORZ PRELOH SKDVH SHUFHQWDJH RI SURSDQRO 7KH SRRU FRUUHODWLRQV ZLWK WKH 6LODVRUE FROXPQ KDYH \HW WR EH DFFRXQWHG IRU 7KH \LQWHUFHSWV DW f RI HTXDWLRQ DUH SUHGLFWHG WR HTXDO WKH IUHH HQHUJ\ RI WUDQVIHU RI WKH VROXWH EHWZHHQ SXUH $ DQG SXUH % RI

PAGE 66

WKH PRELOH SKDVH PXOWLSOLHG E\ WKH FDYLW\ VL]H 7KDW LV WKH \LQWHUFHSWV RI -f% ,Q NnNZf YHUVXV DW f Q ;VE ;VDA DQG \LQWHUFHSWV @!% f Q ;VE ;VDr f 7KH GHSHQGHQFH RI WKHVH LQWHUFHSWV RQ WKH FDYLW\ YROXPH DQG DUHD FDQ EH VHHQ LQ )LJXUHV DQG UHVSHFWLYHO\ 7KH FRUUHODWLRQ FRHIILFLHQWV RI WKHVH LQWHUFHSWV DQG WKH FDYLW\ VL]H DUH JHQHUDOO\ JUHDWHU WKDQ DQG WKH UHJUHVVLRQ UHVXOWV DUH OLVWHG LQ 7DEOHV DQG 7KH LQWHUFHSWV DUH IRXQG WR LQFUHDVH OLQHDUO\ ZLWK FDYLW\ VL]H DV H[SHFWHG IURP WKH WKHRU\ )LJXUH VKRZV D W\SLFDO FDVH WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV FRPSRQHQW % DQG ZDWHU DV FRPSRQHQW $ RI WKH PRELOH SKDVH 7KH H[FHSWLRQV QRWHG DUH WKH VDPH DV WKRVH GLVFXVVHG DERYH 7KH IUHH HQHUJ\ RI WUDQVIHU RI D VROXWH SHU XQLW DUHD FDQ EH FDOFXODWHG E\ XWLOL]LQJ )LJXUH DQG 7DEOH ;VE ;V$fN7 [ f FDOPROf FDOPRO $ f DQG LV DSSUR[LPDWHO\ FRQVWDQW IRU WKH VDPH PRGLILHU XVHG 7KH DERYH WHVWV FRQILUP WKH SUHGLFWHG GHSHQGHQFH RI VROXWH UHWHQWLRQ RQ FDYLW\ VL]H DQG WKH FKURPDWRJUDSKLF PHWKRG SURYLGHV D FRQYHQLHQW ZD\ WR H[SHULPHQWDOO\ GHWHUPLQH VROXWHVROYHQW LQWHUDFWLRQ IUHH HQHUJLHV $FFRUGLQJ WR HTXDWLRQ WKH VORSH RI WKH FRPSRVLWLRQ SORW GLYLGHG E\ Q VKRXOG JLYH WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW RI WKH PRELOH SKDVH FRPSRQHQWV ;D%n UHJDUGOHVV RI WKH QDWXUH RI WKH VROXWHV DQG VWDWLRQDU\ SKDVHV XVHG 7KLV ELQDU\ LQWHUDFWLRQ FRQVWDQW VKRXOG GHSHQG

PAGE 67

9Z FPPROf )LJXUH 3ORW RI \LQWHUFHSWV DW r! IURP HTXDWLRQ YHUVXV YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU

PAGE 68

7DEOH 5HJUHVVLRQ UHVXOWV RI \LQWHUFHSWV DW c!J O IURP HTXDWLRQ YHUVXV WKH YDQ GHU :DDOV YROXPH 9Z RI WKH VROXWHV IRU DOO WKH FROXPQV &ROXPQ 0RGLILHU 6ORSH[O4f 2 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & 0HWKDQRO 6HSUDO\WH & 0HWKDQRO +\SHUVLO 2'6 $FHWRQLWULOH 8QLVLO 4 & $FHWRQLWULOH 8OWUDVSKHUH 2'6 0HWKDQRO 8OWUDVSKHUH 2'6 (WKDQRO 8OWUDVSKHUH 2'6 3URSDQRO 8OWUDVSKHUH 2'6 $FHWRQLWULOH 6LODVRUE & 0HWKDQRO 6LODVRUE & $FHWRQLWULOH

PAGE 69

+6$ ƒf )LJXUH 3ORW RI \LQWHUFHSWV DW c! IURP HTXDWLRQ YHUVXV K\GURFDUERQDFHRXV VXUIDFH DUHD +6$ RI WKH VROXWHV IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU

PAGE 70

HTXDWLRQ RI WKH &ROXPQ 0RGLILHU 6OR'H[OAf 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH &2 2 $FHWRQLWULOH 6HSUDO\WH &O $FHWRQLWULOH 6HSUDO\WH & 0HWKDQRO 6HSUDO\WH & 0HWKDQRO 7DEOH 5HJUHVVLRQ UHVXOWV RI \LQWHUFHSWV DW IURP YV WKH K\GURFDUERQDFHRXV VXUIDFH DUHD .6$ VROXWHV IRU DOO WKH FROXPQV

PAGE 71

VROHO\ RQ WKH QDWXUH RI WKH RUJDQLF PRGLILHU LQ WKH PRELOH SKDVH RI 53/& %\ FRPSDULQJ WKH YDOXHV RI WKH VORSHV RI 7DEOH WKH\ DUH IRXQG WR EH LQGHSHQGHQW RI WKH VROXWHV EXW QRW WKH VWDWLRQDU\ SKDVH 7KHUH LV D IDFWRU RI GLIIHUHQWLDWLQJ WKH VORSHV IURP D VKRUWFKDLQ VWDWLRQDU\ SKDVH WR D ORQJFKDLQ VWDWLRQDU\ SKDVH VXFK DV 6HSUDO\WH & WR WKH 6HSUDO\WH & FROXPQ 7KLV YDULDWLRQ FDQ EH DWWULEXWHG WR WZR IDFWRUV )LUVW LQ VKRUWFKDLQ VWDWLRQDU\ SKDVHV VXUIDFH VLODQROV DUH PRUH DFFHVVLEOH WR VROXWHV DQG WKH LQWHUDFWLRQV EHWZHHQ WKHP DUH PXFK ODUJHU WKDQ LQ ORQJFKDLQ SKDVHV 6HFRQG DQ DOWHUQDWH UHWHQWLRQ PHFKDQLVP DGVRUSWLRQ 'LOO f VKRXOG GRPLQDWH LQ VKRUWFKDLQ VWDWLRQDU\ SKDVHV %RWK RI WKHVH IDFWRUV DUH QHJOHFWHG LQ WKH RULJLQDO SDUWLWLRQ PRGHO 'LOO f )XUWKHUPRUH WKH \LQWHUFHSW DW !J O GLYLGHG E\ Q VKRXOG RQO\ EH GHSHQGHQW RQ WKH QDWXUH RI WKH VROXWH DQG RUJDQLF PRGLILHU 7KH GDWD RI WKH 6HSUDO\WH FROXPQV IURP 7DEOH FRQILUP WKLV SUHGLFWLRQ VLQFH WKH VDPH VROXWHV DUH XVHG IRU WKH 6HSUDO\WH FROXPQV 7KH ODUJH GLIIHUHQFHV RI WKH YDOXHV LQ FROXPQ RI 7DEOH DUH PDLQO\ GXH WR WKH GLIIHUHQFHV LQ VROXWHV HPSOR\HG ZLWK GLIIHUHQW VWDWLRQDU\ SKDVHV -RKQVRQ DQG FRZRUNHUV -RKQVRQ HW DO 'RUVH\ DQG -RKQVRQ f KDYH VKRZQ LQ DQ HDUOLHU VWXG\ WKDW D VROYDWRFKURPLF G\H PROHFXOH UHIHUUHG WR DV (7f FDQ EH XVHG WR SUREH WKH FKHPLFDO QDWXUH RI WKH PRELOH SKDVH DQG LWV VWUHQJWK DV XVHG LQ 53/& 7KH YLVLEOH VSHFWUDO VKLIW RI WKH G\H LV IRXQG WR EH OLQHDUO\ SURSRUWLRQDO WR WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW RI WKH PRELOH SKDVH FRPSRQHQWV )LJXUH f 7KLV SURYLGHV D MXVWLILFDWLRQ IRU WKH HPSOR\PHQW RI (7f DV D SUREH IRU WKH VWXG\ RI WKH PRELOH SKDVH VLQFH LW DSSHDUV WR GLUHFWO\ PHDVXUH

PAGE 72

FSHV IURP f f RORWV [ R 6ORSHV IURP HTXDWLRQ )LJDUH 3ORW VORSHV IURP (Wf SORWV YHUVXV VORSHV IURP HTXDWLRQ IRU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU

PAGE 73

7DEOH 5HJUHVVLRQ UHVXOWV RI V VORSHV RI HWf SORWV ORSHV IURP IRU DOO WKH HTXDWLRQ Y FROXPQV &ROXPQ 0RGLILHU 6 ORQH[ f ; 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & $FHWRQLWULOH 6HSUDO\WH & 0HWKDQRO 6HSUDO\WH & 0HWKDQRO 6HSUDO\WH & 0HWKDQRO 6LODVRUE & 0HWKDQRO 6LODVRUE & $FHWRQLWULOH 8QLVLO 4 & $FHWRQLWULOH +\SHUVLO 2'6 $FHWRQLWULOH 8OWUDVSKHUH 2'6 0HWKDQRO 8OWUDVSKHUH 2'6 (WKDQRO 8OWUDVSKHUH 2'6 3URSDQRO 8OWUDVSKHUH 2'6 $FHWRQLWULOH

PAGE 74

WKH IUHH HQHUJ\ RI FRQWDFW EHWZHHQ FRPSRQHQWV $ DQG % RI WKH PRELOH SKDVH )RU WKH 6HSUDO\WH & FROXPQ ZLWK DFHWRQLWULOH DV PRGLILHU WKH VORSH RI WKHVH WZR SDUDPHWHUV DUH IRXQG WR EH [ ff [ FDOPROf XQLWVFDOPROf f 2WKHU FROXPQV DUH REVHUYHG WR KDYH WKH VDPH OLQHDULW\ ZLWK RWKHU RUJDQLF PRGLILHUV DQG WKH OLQHDU UHJUHVVLRQ UHVXOWV EHWZHHQ WKHVH WZR SDUDPHWHUV DUH OLVWHG LQ 7DEOH (YHQ WKRXJK WKH H[SHULPHQWDO GDWD EDVH XVHG WR WHVW WKH WKHRUHWLFDO SUHGLFWLRQV LV UHODWLYHO\ ODUJH WKH UDQJH RI PRELOH SKDVH FRPSRVLWLRQV LV VWLOO OLPLWHG WR ZLWKLQ b YDULDWLRQ LQ VROYHQW FRPSRVLWLRQ 7KH OLQHDU H[SUHVVLRQ SURSRVHG E\ 'LOO f DQG 'RUVH\ DQG 'LOO f WHVWHG LQ WKLV ZRUN LV IRXQG WR KROG ZHOO ZLWK WKH GDWD EDVH XVHG ,I WKH SDUWLWLRQ PRGHO DQG RWKHU DVVXPSWLRQV DUH LQFRUUHFW QRQOLQHDULW\ VKRXOG EH REVHUYHG 6LQFH JRRG OLQHDULW\ LV IRXQG WKH VORSHV DQG \LQWHUFHSWV JHQHUDWHG E\ SORWWLQJ WKH FRPSRVLWLRQ SORW RI HTXDWLRQ VKRXOG UHIOHFW DW OHDVW DSSUR[LPDWHO\ WKH ELQDU\ LQWHUDFWLRQ FRQVWDQWV RI WKH VROXWHV DQG WKH VROYHQWV DQG FDQ EH XVHG WR FDOFXODWH WKH VROXWHVROYHQW LQWHUDFWLRQ IUHH HQHUJLHV LQ 53/&

PAGE 75

&+$37(5 ,,, &+$5$&7(5,=$7,21 2) 7+( 5(7(17,9,7< 2) 5(9(56(' 3+$6( /,48,' &+520$72*5$3+< &2/8016 ,QWURGXFWLRQ 7KHUH LV DQ LPPHQVH QXPEHU RI 53/& FROXPQV DYDLODEOH RQ WKH PDUNHW WRGD\ 7KH PDMRULW\ RI WKHP DUH PDGH IURP &J RU &AJ IXQFWLRQDO JURXSV EXW WKH XVH RI FROXPQV KDYLQJ RWKHU IXQFWLRQDOLWLHV VXFK DV SKHQ\O DQG F\DQR KDV EHHQ RQ WKH ULVH 5HFHQW VWXGLHV GRQH RQ FRPPHUFLDO 53/& FROXPQV KDYH IRXQG WKDW WKH\ DOO VKRZHG VLJQLILFDQW GLIIHUHQFHV LQ DEVROXWH UHWHQWLRQ DQG VHOHFWLYLW\ D IRU WKH VDPH VROXWH DQG PRELOH SKDVH HYHQ ZKHQ WKH\ DUH DOO ODEHOOHG DV &AJ FROXPQV *ROGEHUJ 6DQGHU DQG :LVH f 7KLV YDULDELOLW\ RI 53/& FROXPQV LV ODUJHO\ GXH WR WKH GLIIHUHQFH LQ WKH VWDUWLQJ VLOLFD DV ZHOO DV WKH ERQGLQJ UHDFWLRQ 'RUVH\ DQG 'LOO f 6LQFH WKH VWDWLRQDU\ SKDVH LQ 53/& KDV EHHQ VKRZQ WR KDYH DPSOH HIIHFWV RQ VROXWH UHWHQWLRQ DQG VHOHFWLYLW\ 6DQGHU 'LOO 6HQWHOO DQG 'RUVH\ D 6HQWHOO DQG 'RUVH\ Ef WKH YDULDELOLW\ KDV FDXVHG SUDFWLFDO FKURPDWRJUDSKHUV PDQ\ GLIILFXOWLHV LQ FKRRVLQJ WKH EHVW FROXPQ WR GHYHORS RSWLPDO VHSDUDWLRQV 'HYHORSHG PHWKRGV DUH KDUG WR WUDQVIHU XQOHVV WKH EUDQG DQG PDQXIDFWXUHU RI WKH FROXPQ DUH VSHFLILHG 0DQ\ VWXGLHV KDYH EHHQ SHUIRUPHG E\ LQYHVWLJDWRUV WR FKDUDFWHUL]H WKH UHWHQWLRQ EHKDYLRU RI 53/& FROXPQV 6PLWK D DQG Ef HPSOR\HG D KRPRORJRXV VHULHV RI DON\ODU\ONHWRQHV WR GHYHORS D UHWHQWLRQ

PAGE 76

LQGH[ ZLWK D VHW RI UHIHUHQFH FRPSRXQGV WR GHILQH WKH UHWHQWLRQ SHUIRUPDQFH RI 53/& FROXPQV PDGH IURP GLIIHUHQW PDQXIDFWXUHUV DQG IXQFWLRQDOLWLHV $ GLIIHUHQW VHW RI FRQVWDQWV IRU HDFK FROXPQ LV REWDLQHG IRU HYHU\ GLIIHUHQW PRELOH SKDVH FRPSRVLWLRQ XVHG 7KHVH FROXPQ UHWHQWLRQ FRQVWDQWV DUH QRW YHU\ XVHIXO VLQFH QHZ FDOLEUDWLRQ RQ WKH FROXPQ KDV WR EH GRQH ZKHQ PRELOH SKDVH FRPSRVLWLRQ LV FKDQJHG $QWOH DQG FRZRUNHUV $QWOH DQG 6Q\GHU $QWOH HW DO f XVHG JUDGLHQW HOXWLRQ WKHRU\ WR FKDUDFWHUL]H 53/& FROXPQV DFFRUGLQJ WR WKHLU VROYRSKRELF UHWHQWLRQ 7KH\ H[DPLQHG FROXPQV SURGXFHG IURP WKH VDPH EDVH VLOLFD EXW KDYLQJ GLIIHUHQW ERQGHG IXQFWLRQDOLWLHV VXFK DV &AJ &J SKHQ\O &A RU F\DQR JURXSV $ ODUJH YDULHW\ RI WHVW VROXWHV KDYLQJ YHU\ GLYHUVH FKHPLFDO VWUXFWXUH ZHUH XVHG LQ WKHLU VWXG\ 7KH\ FRPELQHG WKH YROXPH SKDVH UDWLR DQG WKH SRODULW\ RI D FROXPQ LQWR DQ HIIHFWLYH SKDVH UDWLR -n ZKLFK JLYHV WKH UHWHQWLYLW\ RI D FROXPQ $ UHIHUHQFH DQG D VWDQGDUG FROXPQ ZHUH XVHG WR DFTXLUH WKH UHODWLYH -n YDOXH RI DOO FROXPQV VWXGLHG 7KHLU UHVXOWV UHYHDOHG WKDW WKH -n YDOXH RI WKH FROXPQV DUH LQ WKH RUGHU RI &AJ &J SKHQ\O &A F\DQR 7KH\ FRQFOXGHG WKDW WKH FRQWULEXWLRQ RI WKH SRODULW\ RI D FROXPQ WR WKH UHWHQWLYLW\ LV VPDOO FRPSDUHG WR WKH SKDVH UDWLR RI WKH FROXPQ &RRSHU DQG /LQ f KDYH ORRNHG DW WKH UHWHQWLRQ EHKDYLRU RI &J SKHQ\O DQG F\DQR FROXPQV XVLQJ WKUHH VROXWHV FKRVHQ IURP 6Q\GHUnV VHOHFWLYLW\ WULDQJOH 6Q\GHU f 7KH\ IRXQG WKDW WKH SRODULW\ RI WKHVH FROXPQV LV LQ WKH RUGHU RI SKHQ\O F\DQR &J DQG WKH RYHUDOO UHWHQWLYLW\ RI WKHVH FROXPQV LV GRPLQDWHG E\ WKH SKDVH UDWLR RI WKH FROXPQV 2WKHU UHVHDUFKHUV KDYH XVHG FKHPRPHWULF DQG IDFWRU DQDO\VHV WR FKDUDFWHUL]H FRPPHUFLDO FROXPQV 'HODQH\ HW DO &KUHWLHQ HW DO

PAGE 77

:DOF]DN HW DO f EXW RQO\ TXDOLWDWLYH UHVXOWV ZHUH REWDLQHG LQ WKHVH VWXGLHV :DOF]DN HW DO f FRQFOXGHG WKDW FDUERQ ORDGLQJ QDWXUH RI WKH RUJDQLF OLJDQGV DQG WKH DFFHVVLELOLW\ RI WKH VXUIDFH VLODQRO JURXSV DUH WKH PDLQ IDFWRUV JRYHUQLQJ WKH UHWHQWLYLW\ DQG VHOHFWLYLW\ RI WKH FROXPQV 'HODQH\ HW DO f VXPPDUL]HG WKDW WKHLU FODVVLILFDWLRQ RI 53/& FROXPQV IURP FKHPRPHWULF UHVXOWV DJUHHG ZHOO ZLWK D TXDOLWDWLYH VFKHPH GHYHORSHG E\ D OLTXLG FKURPDWRJUDSK\ VSHFLDOLVW 7KH SUHVHQW VWXG\ SURYLGHV D VLPSOH PHWKRG WR FKDUDFWHUL]H WKH UHWHQWLYLW\ RI FRPPHUFLDO 53/& FROXPQV %LQDU\ PRELOH SKDVHV RI ZDWHU DQG DQ RUJDQLF PRGLILHU XQGHU LVRFUDWLF FRQGLWLRQV ZHUH XVHG WKURXJKRXW WKH VWXG\ WR DYRLG OHQJWK\ HTXDWLRQ GHULYDWLRQ DQG WR NHHS H[SHULPHQWDO SDUDPHWHUV VLPSOH 1R UHIHUHQFH RU VWDQGDUG FROXPQ ZDV QHHGHG DQG VROXWHV RI PDQ\ GLIIHUHQW W\SHV ZHUH HPSOR\HG VR WKDW WKH UHVXOWV RI WKH VWXG\ VKRXOG EH DSSOLFDEOH WR DOO VROXWHV ([SHULPHQWDO 6HFWLRQ $OO WKH UHWHQWLRQ PHDVXUHPHQWV ZHUH REWDLQHG HLWKHU ZLWK D 6SHFWUD3K\VLFV 63 WHUQDU\ SURSRUWLRQLQJ /& V\VWHP 6SHFWUD3K\VLFV 6DQ -RVH &$ 86$f RU ZLWK WZR 6SHFWURIORZ SXPSV $%, $QDO\WLFDO .UDWRV 'LYLVLRQ 5DPVH\ 186$f $ 9DOHR OLTXLG FKURPDWRJUDSK\ LQMHFWLRQ YDOYH 9DOHR ,QVWUXPHQW &RPSDQ\ +RXVWRQ 7; 86$f DQG D OO VDPSOH ORRS ZHUH XVHG WR LQMHFW WKH VROXWHV 7KH GHWHFWLRQ V\VWHP ZDV HLWKHU D 6SHFWURIORZ DEVRUEDQFH GHWHFWRUJUDGLHQW FRQWUROOHU $%, $QDO\WLFDO .UDWRV 'LYLVLRQ 5DPVH\ 186$f RSHUDWHG DW QP RU D 6SHFWURIORZ DEVRUEDQFH GHWHFWRU .UDWRV $QDO\WLFDO ,QVWUXPHQWV 5DPVH\ 186$f DOVR RSHUDWHG DW QP :KHQ WKH WZR 6SHFWURIORZ SXPSV ZHUH XVHG D 5DLQLQ G\QDPD[ GXDO FKDPEHU PL[HU 5DLQLQ ,QVWUXPHQW

PAGE 78

&RPSDQ\ ,QF :REXUQ 0$ 86$f ZDV SODFHG EHIRUH WKH LQMHFWLRQ YDOYH IRU EHWWHU PL[LQJ RI WKH ELQDU\ VROYHQWV $OO WKH =RUED[ FROXPQV ZHUH FRPPHUFLDOO\ DYDLODEOH IURP 'X 3RQW ( GX 3RQW GH 1HPRXUV DQG &RPSDQ\ :LOPLQJWRQ '( 86$f WKH % t FROXPQV IURP %XUGLFN t -DFNVRQ /DERUDWRULHV ,QF %D[WHU +HDOWKFDUH &RUS %XUGLFN t -DFNVRQ 'LYLVLRQ 0XVNHJRQ 0, 86$f DQG WKH 8OWUDVSKHUH FROXPQ IURP %HFNPDQ %HFNPDQ ,QVWUXPHQWV ,QF )XOOHUWRQ &$ 86$f 7KH KLJK GHQVLW\ FROXPQ ZDV V\QWKHVL]HG DQG SDFNHG LQ RXU ODERUDWRULHV 6HQWHOO f 6HPH RI WKH SURSHUWLHV RI WKHVH FROXPQV DV VXSSOLHG E\ WKH PDQXIDFWXUHU DUH OLVWHG LQ 7DEOH $ )LVKHU 5HFRUGDOO 6HULHV )LVKHU 6FLHQWLILF 3LWWVEXUJK 3$ 86$f VWULS FKDUW UHFRUGHU ZDV XVHG WR UHFRUG DOO WKH FKURPDWRJUDSKLF SHDNV 7KH VROYHQWV XVHG ZHUH +3/& JUDGH IURP )LVKHU 6FLHQWLILF )LVKHU 6FLHQWLILF 3LWWVEXUJK 3$ 86$f DQG WKH ZDWHU ZDV ILOWHUHG WKURXJK D %DUQVWHDG 1$12SXUH ,, V\VWHP %DUQVWHDG &RPSDQ\ 'XEXTXH ,$ 86$f EHIRUH EHLQJ XVHG 7KH FROXPQV ZHUH PDLQWDLQHG DW r& E\ D ZDWHU MDFNHW DQG D +DDNH FLUFXODWRU +DDNH 'LHVHOVWUDVVH :HVW *HUPDQ\f $ WRWDO RI VROXWHV ZDV XVHG DQG WKH\ DUH OLVWHG LQ 7DEOH 7KH\ ZHUH IURP YDULRXV VXSSOLHUV DQG ZHUH XVHG ZLWKRXW IXUWKHU SXULILFDWLRQ 7KH VROXWHV ZHUH JURXSHG LQWR PL[WXUHV FRQWDLQLQJ QR PRUH WKDQ VROXWHV EDVHG RQ WKHLU UHWHQWLRQ GDWD ZKHQ WKH\ ZHUH LQMHFWHG LQGLYLGXDOO\ DW WKH EHJLQQLQJ RI WKH VWXG\ 3HDN DVVLJQPHQWV ZHUH DFFRPSOLVKHG E\ LGHQWLI\LQJ WKH SHDN DUHD DQG HOXWLRQ RUGHU 7KH YRLG YROXPH RI HDFK FROXPQ ZDV GHWHUPLQHG E\ WKH LQMHFWLRQ RI ZDWHU DW PRELOH SKDVH FRPSRVLWLRQ RI b ZDWHU DQG b RUJDQLF PRGLILHU 7KH IORZ UDWH ZDV PDLQWDLQHG DW POPLQ H[FHSW IRU WKH %XUGLFN t -DFNVRQ & FROXPQ ZKLFK ZDV XVHG ZLWK D IORZ UDWH RI POPLQ $OO WKH UHWHQWLRQ GDWD

PAGE 79

7DEOH 3URSHUWLHV RI WKH 53/& FROXPQV DV VXSSOLHG E\ WKH PDQXIDFWXUHUV &ROXPQ =RUED[ 2'6 =RUED[ & =RUED[ SKHQ\O =RUED[ 706 =RUED[ F\DQR % t & % t & /LDDQG 6XUIDFH DUHDPJf b &DUERQ ORDGLQFU F F 3KHQ\OSURS\O &O &\DQRSURS\O F Lf§ 2 F 8OWUDVSKHUH &

PAGE 80

7DEOH /LVW RI WHVW VROXWHV XVHG LQ WKLV VWXG\ 0HWK\O SDUDEHQ (WK\O SDUDEHQ 3URS\O SDUDEHQ %XW\O SDUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWRO\O SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]HQH &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH %XW\O EHQ]\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HUDSKHQ\OEXWDGLHQH 2FWDGHFDQRSKHQRQH

PAGE 81

ZHUH REWDLQHG IURP DYHUDJLQJ DW OHDVW WZR PHDVXUHPHQWV RI D VROXWH 7KH (Wf SRODULW\ YDOXHV IRU WKH GLIIHUHQW PRELOH SKDVH FRPSRVLWLRQV ZHUH FDOFXODWHG IURP WKH TXDGUDWLF UHODWLRQVKLS EHWZHHQ SHUFHQW RUJDQLF PRGLILHU DQG WKH (7f YDOXHV UHSRUWHG E\ 'RUVH\ DQG -RKQVRQ f 7KH UHJUHVVLRQ FDOFXODWLRQV ZHUH DOO GRQH E\ XVLQJ WKH 6WDW:RUNV +H\GRQ DQG 6RQ ,QF 3KLODGHOSKLD 3$ 86$f SURJUDP RQ D 0DFLQWRVK 6( $SSOH &RPSXWHU ,QF &XSHUWLQR &$ 86$f PLFURFRPSXWHU 5HVXOWV DQG 'LVFXVVLRQ 6LQFH WKH FRPSRVLWLRQ RI WKH PRELOH SKDVH SOD\V D SULPDU\ UROH LQ WKH UHWHQWLRQ RI VROXWHV LQ 53/& LW LV LPSRUWDQW WR KDYH D PHWKRG WR DFFRXQW IRU WKH VROXWH UHWHQWLRQ FRQWULEXWHG E\ WKH PRELOH SKDVH EHIRUH WKH UHWHQWLYLW\ RI WKH VWDWLRQDU\ SKDVH FDQ EH H[SORUHG 0DQ\ ZRUNHUV KDYH XVHG VROYDWRFKURPLF PHDVXUHPHQWV WR PHDVXUH WKH SRODULW\ RI WKH PRELOH SKDVH XVHG LQ 53/& VXFK DV WKH = VFDOH .RVRZHU f WKH LWr PXOWLSDUDPHWHU VFDOH 7DIW DQG .DPOHW .DPOHW HW DO 7DIW HW DO 6DGHN HW DO f DQG WKH (7f VFDOH -RKQVRQ HW DO 'RUVH\ DQG -RKQVRQ f -RKQVRQ DQG FRZRUNHUV -RKQVRQ HW DO 'RUVH\ DQG -RKQVRQ f KDYH VKRZQ WKDW WKH ,Q Nn RI D VROXWH LQ 53/& LV OLQHDUO\ DVVRFLDWHG ZLWK WKH (7f SRODULW\ VFDOH DQG KDV EHWWHU OLQHDULW\ WKDQ WKH YROXPH SHUFHQW RI RUJDQLF PRGLILHU 7KHLU UHODWLRQVKLS FDQ EH H[SUHVVHG DV ,Q Nf P (7 f f F f

PAGE 82

ZKHUH (!f LV WKH SRODULW\ YDOXH LQ NFDOPRO RI WKH PRELOH SKDVH PHDVXUHG E\ WKH (7f VFDOH DQG P DQG F DUH WKH VORSH DQG \LQWHUFHSW RI WKH OLQHDU UHJUHVVLRQ 7KH (7f YDOXHV DUH IRXQG WR KDYH DQ H[FHOOHQW TXDGUDWLF UHODWLRQVKLS ZLWK PRVW FRPPRQ ELQDU\ PRELOH SKDVHV XVHG LQ 53/& 'RUVH\ DQG -RKQVRQ f 0RUHRYHU WKH VORSH P KDV EHHQ VKRZQ LQ &KDSWHU ,, WR EH GLUHFWO\ SURSRUWLRQDO WR WKH VL]H RI WKH VROXWHV DQG WKH ELQDU\ LQWHUDFWLRQ FRQVWDQW RI WKH PRELOH SKDVH :H VHOHFWHG WR HPSOR\ WKH VORSH P IURP HTXDWLRQ DV WKH GHVFULSWRU IRU WKH PRELOH SKDVH FRQWULEXWLRQ WR VROXWH UHWHQWLRQ 0ROHFXODU 'HVFULSWRU $SSURDFK $OWKRXJK WKH PRELOH SKDVH HIIHFW FDQ EH DFFRXQWHG IRU E\ XVLQJ WKH VORSH LQ HTXDWLRQ WKH FDYLW\ FUHDWHG LQ WKH VWDWLRQDU\ SKDVH DOVR LV D PDMRU FRQWULEXWLRQ WR VROXWH UHWHQWLRQ DFFRUGLQJ WR WKH SDUWLWLRQ PRGHO 7KH ILUVW DSSURDFK ZH WRRN LQ WKLV VWXG\ ZDV WR VHDUFK IRU D PROHFXODU GHVFULSWRU RI WKH WHVW VROXWHV WKDW FDQ GHOLQHDWH WKH FDYLW\ LQ WKH VWDWLRQDU\ SKDVH DQG XVH LW WR SORW DJDLQVW VORSH P 7KH UHVXOWLQJ VORSH RI WKLV SORW VKRXOG RQO\ EH D IXQFWLRQ RI WKH UHWHQWLYLW\ RI WKH FROXPQ :H ILUVW SUHGLFWHG WKDW D OLQHDU UHODWLRQVKLS VKRXOG RFFXU EHWZHHQ WKH VORSHV IURP HTXDWLRQ DQG D PROHFXODU VL]H GHVFULSWRU ,W KDV EHHQ VKRZQ LQ WKH OLWHUDWXUH WKDW D OLQHDU GHSHQGHQFH H[LVWV EHWZHHQ ,Q Nn RI D VROXWH DQG VRPH PROHFXODU VL]H GHVFULSWRUV RI WKH VROXWH VXFK DV WKH YDQ GHU :DDOV YROXPH 9Z +DQDL DQG +XEHUW D 6PLWK -LQQR DQG .DZDVDNL Df DQG WKH PROHFXODU FRQQHFWLYLW\ LQGH[ :HOOV HW DO f 6ORSHV IURP HTXDWLRQ ZHUH SORWWHG DJDLQVW ERWK WKH YDQ GHU :DDOV YROXPH DQG WKH PROHFXODU FRQQHFWLYLW\ LQGH[ )LJXUHV DQG f DQG WKH

PAGE 83

)LJXUH 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH YDQ GHU :DDOV YROXPH 9Z RI WKH WHVW VROXWHV IRU WKH =RUED[ 706 FROXPQ XVLQJ DFHWRQLWULOH DV PRGLILHU

PAGE 84

7DEOH 5HJUHVVLRQ UHVXOWV RI JUDSKV RI VORSHV IURP HTXDWLRQ DJDLQVW YDQ GHU :DDOV YROXPH 9Z RI WKH WHVW VROXWHV &ROXPQ 0RGLILHU 6ORRH[ f \LQWHU M =RUED[ 2'6 $&1 =RUED[ & $&1 =RUED[ SKHQ\O $&1 =RUED[ 706 $&1 =RUED[ F\DQR $&1

PAGE 85

6ORSHV IURP HTXDWLRQ FRQQHFWLYLW\ LQGH[ )LJXUH 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH PROHFXODU FRQQHFWLYLW\ LQGH[ RI WKH WHVW VROXWHV IRU WKH =RUED[ 706 FROXPQ XVLQJ DFHWRQLWULOH DV PRGLILHU

PAGE 86

7DEOH 5HJUHVVLRQ UHVXOWV RI JUDSKV RI VORSHV IURP HTXDWLRQ DJDLQVW PROHFXODU FRQQHFWLYLW\ LQGH[ RI WKH WHVW VROXWHV &ROXPQ 0RGLILHU 6ORSH[f \LQWHU ; =RUED[ 2'6 $&1 =RUED[ & $&1 =RUED[ SKHQ\O $&1 =RUED[ 706 $&1 =RUED[ F\DQR $&1

PAGE 87

UHJUHVVLRQ UHVXOWV RI WKHVH JUDSKV RQ ILYH =RUED[ FROXPQV DUH VKRZQ LQ 7DEOH DQG UHVSHFWLYHO\ 7KH FRHIILFLHQWV RI GHWHUPLQDWLRQ UA RI WKHVH UHJUHVVLRQV DUH DOO ZHOO EHORZ PHDQLQJ WKDW WKHUH LV QR VLJQLILFDQW FRUUHODWLRQ EHWZHHQ WKH VORSHV IURP HTXDWLRQ DQG WKH WZR PROHFXODU VL]H GHVFULSWRUV RI WKH VROXWHV WKDW ZH KDYH FKRVHQ 2QH RI WKH UHDVRQV IRU WKH EUHDNGRZQ RI RXU LQLWLDO K\SRWKHVLV LV SUREDEO\ EHFDXVH WKH PROHFXODU VL]H GHVFULSWRUV GR QRW DFFRXQW IRU DOO WKH LQWHUDFWLRQV DPRQJ WKH VROXWHV DQG WKH VWDWLRQDU\ SKDVH 'HVSLWH &KDSWHU ,, VKRZLQJ WKDW WKH FDYLW\ RSHQHG LQ WKH VWDWLRQDU\ SKDVH LV SURSRUWLRQDO WR WKH VL]H RI WKH VROXWH WKHUH DUH RWKHU FKHPLFDO LQWHUDFWLRQV VXFK DV SRODULW\ GLSROH PRPHQW DQG K\GURJHQ ERQGLQJ DELOLW\ EHWZHHQ WKH VROXWH DQG WKH VWDWLRQDU\ SKDVH 7KHVH LQWHUDFWLRQV FDQQRW EH FRPSOHWHO\ VXPPHG E\ RQH VLQJOH PROHFXODU VL]H GHVFULSWRU ,Q NX $SSURDFK 7KH QH[W DSSURDFK ZH WRRN ZDV WR VHHN D SDUDPHWHU WKDW ZLOO DFFXUDWHO\ LQFOXGH DOO WKH LQWHUDFWLRQV EHWZHHQ WKH VROXWH DQG WKH VWDWLRQDU\ SKDVH 7KH ORJDULWKPLF FDSDFLW\ IDFWRU RI D VROXWH DW b ZDWHU ,Q NZ KDV EHHQ VKRZQ WR KDYH JUHDW FRUUHODWLRQ WR WKH ORJDULWKP RI WKH ZDWHURFWDQRO SDUWLWLRQ FRHIILFLHQW ORJ 34Z RI D VROXWH 0L\DNH HW DO %UDXPDQQ %UDXPDQQ HW DO 0LQLFN HW DO f 7KH OLQHDU UHODWLRQVKLS VKRZV WKDW ERWK ,Q NZ DQG ORJ 3Z DUH PHDVXULQJ D VLPLODU SDUWLWLRQ SURFHVV 7KLV VXJJHVWV WKDW ,Q NZ PHDVXUHV WKH GULYLQJ IRUFH RI WKH SDUWLWLRQ RI D VROXWH LQWR WKH VWDWLRQDU\ SKDVH DQG LV WKH SDUDPHWHU WKDW PHDVXUHV DOO WKH LQWHUDFWLRQV EHWZHHQ WKH VROXWH DQG WKH VWDWLRQDU\ SKDVH

PAGE 88

7KH ,Q NZ RI D VROXWH LV GLIILFXOW WR REWDLQ H[SHULPHQWDOO\ LQ 53/& GXH WR ORQJ UHWHQWLRQ WLPHV DQG SRRU SHDN VKDSHV DULVLQJ IURP VORZ PDVV WUDQVIHU ZLWK SXUH ZDWHU DV WKH PRELOH SKDVH 7KHUH LV D SRSXODU EHOLHI WKDW WKH ORJDULWKP RI WKH FDSDFLW\ IDFWRU ,Q Nn RI D VROXWH LV OLQHDUO\ UHODWHG WR WKH SHUFHQW E\ YROXPH RI RUJDQLF PRGLILHU LQ WKH PRELOH SKDVH 6Q\GHU HW DO 'RODQ HW DO 6FKRHPDNHUV HW DO $QWOH HW DO %DW\ DQG 6KDUS f +HQFH ,Q NZ LV RIWHQ HVWLPDWHG E\ H[WUDSRODWLRQ IURP D OLQHDU UHJUHVVLRQ RI ,Q Nn YHUVXV SHUFHQW RUJDQLF PRGLILHU EDFN WR b RUJDQLF PRGLILHU 5H\PRQG HW DO %UDXPDQQ %UDXPDQQ HW DO %DW\ DQG 6KDUS f ,Q NZ 6 bRUJDQLFf Fn f 8QIRUWXQDWHO\ WKLV NLQG RI H[WUDSRODWLRQ KDV EHHQ IRXQG WR EH QRW DV UHOLDEOH DV XVLQJ WKH (7f SRODULW\ VFDOH 0LFKHOV f 7KH (mMf SRODULW\ YDOXH RI SXUH ZDWHU LV NFDOPRO DQG WKHUHIRUH ,Q NZ RI D VROXWH FDQ EH DSSUR[LPDWHG E\ VXEVWLWXWLQJ NFDOPRO LQWR HTXDWLRQ 6LQFH WKH VORSHV IURP HTXDWLRQ DQG WKH ,Q NZ RI WKH VROXWHV VXPPDUL]H WKH UHWHQWLRQ HIIHFWV GXH WR WKH PRELOH SKDVH DQG WKH VROXWH LQWHUDFWLRQV ZLWK WKH VWDWLRQDU\ SKDVH UHVSHFWLYHO\ WKH VORSH RI D SORW RI WKHVH WZR SDUDPHWHUV IRU D FROXPQ VKRXOG EH LQGHSHQGHQW RI WKH WZR HIIHFWV DQG XQYHLO WKH UHWHQWLYLW\ RI WKH FROXPQ )LJXUH f 7KH UHJUHVVLRQ UHVXOWV RI WKHVH SORWV IRU WKH FROXPQV VWXGLHG DUH SUHVHQWHG LQ 7DEOH 7KH b FRQILGHQFH LQWHUYDO RI WKH VORSHV RI WKHVH

PAGE 89

6ORSHV IURP HTXDWLRQ + U ,Q NZ )LJXUH 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH ,Q NZ WKH WHVW VROXWHV IRU WKH =RUED[ 706 FROXPQ XVLQJ DFHWRQLWULOH DV PRGLILHU

PAGE 90

7DEOH &ROXPQ =RUED[ 2'6 =RUED[ & =RUED[ 3KHQ\O =RUED[ 706 =RUED[ &\DQR =RUED[ 2'6 =RUED[ & =RUED[ 3KHQ\O =RUED[ 706 =RUED[ &\DQR % t & % t & 8OWUDVSKHUH & +LJK 'HQVLW\ 5HJUHVVLRQ UHVXOWV RI VORSHV IURP HTXDWLRQ YV ,Q NZ RI WKH WHVW VROXWHV IRU DOO WKH FROXPQV 0RGLILHU 6OR'H YLQWHU &,#W n $&1 s $&1 s $&1 s $&1 s $&1 s 0H2+ s 0H 2+ s 0H2+ s 0H2+ s 0H2+ s 0H2+ s 0H2+ s 0H2+ s 0H2+ s Dfb FRQILGHQFH LQWHUYDO RI WKH VORSHV RI WKH UHJUHVVLRQV

PAGE 91

UHJUHVVLRQV DUH FDOFXODWHG 6KDUDI HW DO $QGHUVRQ f DQG WKH\ DUH OLVWHG LQ WKH ODVW FROXPQ RI 7DEOH 7KH FRQILGHQFH LQWHUYDO VKRZV WKDW DOPRVW DOO WKH VORSHV RI WKH UHJUHVVLRQV DUH VWDWLVWLFDOO\ GLIIHUHQW IURP RQH DQRWKHU *RRG OLQHDULW\ DSSHDUV EHWZHHQ WKHVH WZR SDUDPHWHUV ZLWK WKH UA RI DOO WKH FROXPQV WHVWHG DERYH H[FHSW LQ WKH FDVH RI WKH =RUED[ 2'6 DQG & FROXPQV ZLWK DFHWRQLWULOH DV PRGLILHU 7KH KLJK UA FRQILUPV WKDW WKH VORSHV IURP HTXDWLRQ DQG ,Q NZ RI WKH WHVW VROXWHV DUH KLJKO\ FRUUHODWHG 7KLV W\SH RI VORSH YHUVXV ,Q NZ SORW LV QRW QHZ 6HYHUDO JURXSV %UDXPDQQ HW DO +DPPHU HW DO f KDYH VKRZQ WKDW SORWV RI WKH VORSH 6 DQG ,Q NZ IURP HTXDWLRQ DUH OLQHDU 7KH\ IRXQG WKH VORSHV DQG \LQWHUFHSWV RI WKHVH SORWV IRUPHG WZR HPSLULFDO SDUDPHWHUV WKDW FDQ EH HPSOR\HG WR FODVVLI\ VROXWHV LQWR GLIIHUHQW JURXSV 7KHVH VROXWH JURXSV FDQ EH XVHG WR UHFRPPHQG WKH XVH RI ,Q NZ IRU WKH HVWLPDWLRQ RI ORJ 3Z 6FKRHQPDNHUV HW DO f IRXQG JRRG OLQHDULW\ ZKHQ PHWKDQRO LV XVHG DV PRELOH SKDVH PRGLILHU EXW QRW ZLWK DFHWRQLWULOH RU 7+) 7KH\ KDYH VKRZQ WKDW ZKHQ OLQHDULW\ LV REVHUYHG WKH VORSHV RI WKHVH SORWV FDQ EH XVHG WR GHWHUPLQH WKH VKDSH RI WKH JUDGLHQW SURJUDP 0RUHRYHU WKHVH VORSHV FDQ EH HPSOR\HG WR SUHGLFW LVRFUDWLF FDSDFLW\ IDFWRUV IURP D VLPSOH JUDGLHQW DQDO\VLV 6FKRHQPDNHUV HW DO f %DW\ DQG 6KDUS f REVHUYHG JRRG FRUUHODWLRQ EHWZHHQ 6 DQG ,Q NZ IRU PHWKDQRO DFHWRQLWULOH DQG 7+) XVLQJ VWUXFWXUDOO\ VLPLODU VROXWHV 7KH\ WULHG WR XVH WKH VORSHV DQG \LQWHUFHSWV RI WKHVH SORWV WR SUHGLFW FDSDFLW\ IDFWRUV RI WKH VROXWHV EXW WKH\ IRXQG WKDW WKH VORSHV DQG \LQWHUFHSWV RI WKHVH SORWV YDU\ ZLWK WKH QDWXUH RI WKH RUJDQLF PRGLILHUV DQG

PAGE 92

FROXPQV 7KHUHIRUH WKH FKURPDWRJUDSKLF V\VWHP DQG WKH VROXWH JURXS KDYH WR EH GHILQHG EHIRUH WKH FDSDFLW\ IDFWRUV FDQ EH SUHGLFWHG 7KH JHQHUDO UHWHQWLYLW\ RI WKH FROXPQV LQ WKLV VWXG\ IRU D JLYHQ RUJDQLF PRGLILHU LV IRXQG WR EH LQYHUVHO\ SURSRUWLRQDO WR WKH VORSH RI WKH VORSHV YHUVXV ,Q NZ SORW 7KH XVHIXOQHVV RI WKLV UHODWLYH UHWHQWLYLW\ VFDOH FDQ EH VHHQ E\ SORWWLQJ WKH OLQHDU UHJUHVVLRQV RI WKH ILYH =RUED[ FROXPQV XVLQJ DFHWRQLWULOH DV PRGLILHU RQ RQH JUDSK )LJXUH f $V VKRZQ LQ &KDSWHU ,, WKH VORSHV IURP HTXDWLRQ DUH IRXQG WR EH SURSRUWLRQDO WR WKH VL]H RI WKH FDYLW\ FUHDWHG E\ WKH VROXWHV WKHUHIRUH DW D JLYHQ VROXWH FDYLW\ VL]H WKH OLQHDU UHJUHVVLRQ KDYLQJ WKH VPDOOHVW VORSH ZLOO KDYH WKH ODUJHVW ,Q NZ DQG KHQFH WKH ODUJHVW UHWHQWLYLW\ )URP WKH GDWD VKRZQ LQ )LJXUH WKH =RUED[ F\DQR FROXPQ KDV WKH ODUJHVW VORSH IROORZHG E\ WKH 706 FROXPQ SKHQ\O FROXPQ 2'6 FROXPQ DQG & FROXPQ UHWHQWLYLW\ RI WKHVH FROXPQ LV LQ WKH RUGHU RI & 2'6 SKHQ\O 706 F\DQR 7KH =RUED[ & FROXPQ VHHPV WR KDYH D KLJKHU UHWHQWLYLW\ WKDQ WKH =RUED[ 2'6 FROXPQ ZKHQ DFHWRQLWULOH LV XVHG DV PRGLILHU $ FDUHIXO H[DPLQDWLRQ RI WKH FRQILGHQFH LQWHUYDO RI WKHVH WZR VORSHV GHPRQVWUDWHV WKDW WKH\ DFWXDOO\ KDYH QR VWDWLVWLFDO GLIIHUHQFH DQG WKH DSSDUHQW KLJKHU UHWHQWLYLW\ RI WKH =RUED[ & FROXPQ FRXOG YHU\ ZHOO EH DQ H[SHULPHQWDO DUWLIDFW 7KH DSSDUHQW VWURQJHU UHWHQWLYLW\ RI WKH =RUED[ F\DQR FROXPQ RYHU WKH 706 FROXPQ ZLWK PHWKDQRO DV PRGLILHU FDQ EH DWWULEXWHG WR WKH K\GURJHQ ERQGLQJ EHWZHHQ WKH VXUIDFH VLODQROV DQG WKH PHWKDQRO &\DQR FROXPQV KDYH EHHQ VKRZQ WR KDYH PRUH DFFHVVLEOH VLODQROV WKDQ RWKHU FROXPQV &RRSHU DQG /LQ 6PLWK DQG 0LOOHU f 6LQFH PHWKDQRO FDQ IRUP K\GURJHQ ERQGV ZLWK WKHVH VLODQROV WKH VXUIDFH RI F\DQR FROXPQV LV VLJQLILFDQWO\ PRGLILHG

PAGE 93

)LJXUH 3ORW RI VORSHV IURP HTXDWLRQ DJDLQVW WKH ,Q NZ WKH WHVW VROXWHV IRU DOO WKH =RUED[ FROXPQV XVLQJ DFHWRQLWULOH DV PRGLILHU

PAGE 94

E\ WKH PHWKDQRO DQG KHQFH LWV DSSDUHQW UHWHQWLYLW\ LV VWURQJHU WKDQ WKH 706 FROXPQ :KHQ DFHWRQLWULOH LV XVHG DV PRGLILHU GXH WR LWV ODFN RI K\GURJHQ ERQGLQJ DELOLW\ WKH UHWHQWLYLW\ RI WKH 706 FROXPQ LV IRXQG WR EH VWURQJHU WKDQ WKH F\DQR FROXPQ 2WKHU FRPPHUFLDO FROXPQV FDQ EH WHVWHG XVLQJ WKH VDPH SURFHGXUHV DQG FRPSDUHG ZLWK WKH UHWHQWLYLW\ RI WKH =RUED[ FROXPQV :LWK PHWKDQRO DV PRGLILHU WKH % t & FROXPQ LV IRXQG WR KDYH UHWHQWLYLW\ ODUJHU WKDQ DQ\ RI WKH =RUED[ FROXPQV DQG WKH % t & FROXPQ LV IRXQG WR KDYH UHWHQWLYLW\ DSSUR[LPDWHO\ WKH VDPH DV WKH =RUED[ 706 FROXPQ ZKLOH WKH 8OWUDVSKHUH & FROXPQ LV VKRZQ WR KDYH UHWHQWLYLW\ EHWZHHQ WKH =RUED[ 2'6 DQG & FROXPQV 2QH LQWHUHVWLQJ SRLQW UDLVHG E\ PDQ\ UHVHDUFKHUV LV WKH LPSRUWDQFH RI SKDVH UDWLR RI WKH FROXPQ RQ WKH WRWDO UHWHQWLYLW\ RI WKH FROXPQ 7KH VLJQLILFDQFH RI SKDVH UDWLR RQ UHWHQWLYLW\ ZDV DOVR LQYHVWLJDWHG LQ WKLV VWXG\ 3KDVH UDWLR LQ 53/& FDQ EH FDOFXODWHG XVLQJ WKH YROXPH UDWLR RI WKH VWDWLRQDU\ SKDVH WR WKH PRELOH SKDVH $OWKRXJK PXFK ZRUN KDV EHHQ GRQH RQ PHDVXULQJ WKH YROXPH RI WKH PRELOH SKDVH 9P 0HODQGHU HW DO 6PLWK HW DO (QJHOKDUGW HW DO +HQQLRQ DQG 5RVVHW f PHDVXUHPHQW RI WKH YROXPH RI WKH VWDWLRQDU\ SKDVH 9V LV PRUH DPELJXRXV -DQGHUD HW DO 0HODQGHU HW DO 6DQGHU DQG )LHOG 6ODDWV HW DO 0F&RUPLFN DQG .DUJHU D %HUHQGVHQ HW DO f %\ HPSOR\LQJ WKH 9V DQG 9P FDOFXODWLRQ PHWKRG SUHVHQWHG E\ 6HQWHOO f WKH SKDVH UDWLRV RI WKH FROXPQV VWXGLHG ZHUH REWDLQHG DQG DUH OLVWHG LQ 7DEOH ,Q WKH FDVH RI WKH SKHQ\O DQG F\DQR FROXPQV WKH GHQVLW\ RI WKH OLJDQGV DUH QRW DYDLODEOH DQG WKH 9 RI WKH FROXPQV FDQQRW EH FDOFXODWHG 7KH SKDVH UDWLR RI WKHVH FROXPQV DUH WKHUHIRUH QRW UHSRUWHG LQ 7DEOH :LWK WKH H[FHSWLRQ RI

PAGE 95

7DEOH 3KDVH UDWLR RI WKH FROXPQV LQ WKLV VWXG\ FDOFXODWHG XVLQJ WKH PHWKRG SUHVHQWHG E\ 6HQWHOO f &ROXPQ 3KDVH UDWLR =RUED[ 2'6 =RUED[ & =RUED[ SKHQ\O XQNQRZQ =RUED[ 706 =RUED[ F\DQR XQNQRZQ % t & % t & 8OWUDVSKHUH & +LJK GHQVLW\

PAGE 96

WKH WZR % t FROXPQV WKH SKDVH UDWLR RI WKH FROXPQV GLVSOD\V WKH VDPH RUGHU DV WKH UHODWLYH UHWHQWLYLW\ VFDOH RI WKH FROXPQV 7KH KLJK GHQVLW\ FROXPQ ZKLFK KDV WKH ODUJHVW SKDVH UDWLR LV IRXQG WR EH FORVH WR KDYLQJ WKH KLJKHVW UHWHQWLYLW\ 7KLV UHVXOW SRLQWV RXW WKDW WKH SKDVH UDWLR RI D FROXPQ LQGHHG KDV D YLWDO FRQWULEXWLRQ WR WKH RYHUDOO UHWHQWLYLW\ RI WKH FROXPQ 7KLV ZRUN H[KLELWV D VLPSOH PHWKRG WKDW FDQ EH XVHG WR FODVVLI\ FRPPHUFLDO 53/& FROXPQV DFFRUGLQJ WR WKHLU RYHUDOO UHWHQWLYLW\ 7KH LVRFUDWLF DSSURDFK XVHG KDV NHSW WKH GDWD LQWHUSUHWDWLRQ DQG PDQLSXODWLRQ VLPSOH 7KH XVH RI ,Q NZ LQ WKH SURFHGXUH LV MXVWLILHG DQG LV IRXQG WR EH YHU\ DSSURSULDWH 7KH SKDVH UDWLR RI D FROXPQ LV VKRZQ WR GRPLQDWH WKH WRWDO UHWHQWLYLW\ RI WKH FROXPQ 6LQFH VXFK D ODUJH YDULHW\ RI WHVW VROXWHV ZHUH HPSOR\HG LQ WKLV ZRUN WKH UHODWLYH UHWHQWLYLW\ VFDOH EDVHG RQ WKLV VWXG\ VKRXOG EH DSSOLFDEOH WR DOPRVW DOO VROXWHV

PAGE 97

&+$37(5 ,9 &21&/86,216 $1' )8785( :25. &RQFOXVLRQV 7KH UHVHDUFK WKDW KDV EHHQ GLVFXVVHG LQ WKH SUHYLRXV FKDSWHUV ZDV SHUIRUPHG WR FRQILUP DQG DSSO\ WKH SDUWLWLRQ UHWHQWLRQ PHFKDQLVP RI 53/& 7KH UHFRJQLWLRQ RI WKH SDUWLWLRQ PHFKDQLVP DV WKH FRUUHFW UHWHQWLRQ PRGHO LQ 53/& LV YHU\ LPSRUWDQW EHFDXVH LW FDQ KHOS FKURPDWRJUDSKHUV WR XQGHUVWDQG WKH SURFHVVHV KDSSHQLQJ LQ 53/& $OVR ZLWK D VRXQG IXQGDPHQWDO XQGHUVWDQGLQJ RI VROXWH UHWHQWLRQ PRUH UREXVW VHSDUDWLRQ PHWKRGV FDQ EH GHYHORSHG ,Q &KDSWHU ,, ZH KDYH WHVWHG WKH SDUWLWLRQ PRGHO ZLWK D ODUJH GDWD EDVH :H IRXQG WKDW WKH UHODWLRQVKLSV EHWZHHQ VROXWH FDSDFLW\ IDFWRUV DQG PRELOH SKDVH FRPSRVLWLRQV DUH LQ JRRG DJUHHPHQW ZLWK WKH SUHGLFWLRQ IURP WKH SDUWLWLRQ PRGHO 'LOO 'RUVH\ DQG 'LOO f ZLWK RQO\ YHU\ PLQRU GLVFUHSDQFLHV 7KH SDUWLWLRQ PRGHO SURSRVHG E\ 'LOO f LV EDVHG RQ VLPSOH ODWWLFH PRGHOV DQG WKH LQWHUSKDVH PRGHO RI WKH VWDWLRQDU\ SKDVH EXW WKH UHVXOWV RI RXU WHVWV DUH VWLOO YHU\ JRRG :LWK D PRUH H[SOLFLW WUHDWPHQW RI WKH VLPSOH DVVXPSWLRQV WKH WKHRU\ PD\ EH DEOH WR DFFRXQW IRU WKH VPDOO GLVFUHSHQFLHV 7KH PROHFXODU RULJLQV RI WKHVH FRPSRVLWLRQ SORWV DUH DOVR FODULILHG LQ RXU WHVWV 7KH VORSHV RI WKHVH SORWV DUH IRXQG WR EH D IXQFWLRQ RI WKH ELQDU\ LQWHUDFWLRQ SDUDPHWHU RI WKH PRELOH SKDVH FRPSRQHQWV DQG WKH \LQWHUFHSWV DW `!% DUH SURSRUWLRQDO WR WKH IUHH HQHUJ\ RI WUDQVIHU RI WKH VROXWHV 7KH VROXWH VL]H SORWV SURYLGH D PHWKRG WR FDOFXODWH WKH

PAGE 98

VROXWHVROYHQW LQWHUDFWLRQ IUHH HQHUJLHV DQG DQ H[SODQDWLRQ WR WKH ZLGHO\ REVHUYHG UHODWLRQVKLS EHWZHHQ FDSDFLW\ IDFWRUV DQG VROXWH VL]HV LQ 53/& +DQDL DQG +XEHUW E -LQQR DQG .DZDVDNL D E )HQJ HW DO 0RFNHO HW DO f 0RUHRYHU WKH VORSHV DQG \LQWHUFHSWV DW !% RI WWOH FRPSRVLWLRQ SORWV SUHGLFWHG E\ WKH WKHRU\ JLYH D VLPSOH DQG UHOLDEOH PHWKRG WR HVWLPDWH VROXWHVROYHQW LQWHUDFWLRQ IUHH HQHUJLHV 7KHVH IUHH HQHUJLHV DUH GLIILFXOW WR REWDLQ H[SHULPHQWDOO\ DQG DUH VHOGRP UHSRUWHG LQ WKH OLWHUDWXUH :LWK WKLV QHZ DSSURDFK WKHVH LQWHUDFWLRQ IUHH HQHUJLHV VKRXOG EH PXFK HDVLHU WR DFFHVV GXH WR WKH DYDLODELOLW\ RI FKURPDWRJUDSKLF GDWD 7KH SDUWLWLRQ PRGHO LV SXW WR SUDFWLFH LQ &KDSWHU ,,, :H HPSOR\HG WKH SDUWLWRQ PRGHO DV RXU EDVLV WR GHYHORS D UHODWLYH UHWHQWLYLW\ VFDOH IRU 53/& FROXPQV ,Q WKH SDUWLWRQ PRGHO WKH HQWLUH VWDWLRQDU\ SKDVH FRQWULEXWLRQ WR UHWHQWLRQ LV VXPPHG LQ WKH ,Q NZ WHUP RI WKH VROXWHV $OWKRXJK WKLV DVVXPSWLRQ LV DQ RYHUVLPSOLILFDWLRQ RI WKH VWDWLRQDU\ SKDVH HIIHFW LW KDV EHHQ VKRZQ WKDW ,Q NZ LV D YHU\ HIIHFWLYH SDUDPHWHU WR HVWLPDWH WKH VROXWH SDUWLWLRQ FRHIILFLHQW 0L\DNH HW DO %UDXPDQQ %UDXPDQQ HW DO 0LQLFN HW DO f :H XVHG WKH ,Q NZ RI WKH VROXWHV DQG WKH VORSHV IURP WKH ,Q Nn YHUVXV (7f YDOXHV SORWV WR REWDLQ WKH UHODWLYH UHWHQWLYLW\ YDOXHV RI WKH 53/& FROXPQV 7KH FRUUHODWLRQ EHWZHHQ WKHVH WZR SDUDPHWHUV LV VKRZQ WR EH JRRG DQG WKLV IXUWKHU VXSSRUWV WKH SDUWLWLRQ PRGHO DV WKH GRPLQDQW VROXWH UHWHQWLRQ PHFKDQLVP 7KH UHWHQWLYLW\ VFDOH LV IRXQG WR EH LQ JRRG DJUHHPHQW ZLWK WKH OLWHUDWXUH $QWOH DQG 6Q\GHU $QWOH HW DO f $OVR WKH H[SHULPHQWDO SURFHGXUHV DUH NHSW UHODWLYHO\ VLPSOH DQG WKHUHIRUH WKLV UHWHQWLYLW\ VFDOH VKRXOG EH XVHIXO LQ

PAGE 99

FODVVLI\LQJ WKH UHWHQWLYLW\ RI FRPPHUFLDO 53/& FROXPQV DQG VKRXOG KHOS SUDFWLFDO FKURPDWRJUDSKHUV WR VHOHFW WKH EHVW FROXPQ IRU WKHLU DSSOLFDWLRQV 6LQFH WHVW VROXWHV RI YDULRXV FKHPLFDO VWUXFWXUHV DUH HPSOR\HG LQ RXU VWXG\ WKH UHWHQWLYLW\ VFDOH VKRXOG EH DSSOLFDEOH WR DOO VROXWHV 7KH SKDVH UDWLR RI WKH FROXPQV LV IRXQG WR SOD\ D PDMRU UROH LQ GHWHUPLQLQJ WKH UHWHQWLYLW\ RI WKH FROXPQ )XWXUH ZRUN $OWKRXJK WKH GDWD EDVH WKDW LV XVHG LQ &KDSWHU ,, WR WHVW WKH SUHGLFWLRQV IURP WKH SDUWLWLRQ PRGHO LV UDWKHU ODUJH LW ODFNV D ZLGH UDQJH LQ PRELOH SKDVH FRPSRVLWLRQV HVSHFLDOO\ DW WKH H[WUHPH FRPSRVLWLRQV 0RVW RI WKH GDWD VHWV KDYH PRELOH SKDVH FRPSRVLWLRQ UDQJH EHWZHHQ b RUJDQLF PRGLILHU $ WHVW RI WKH SUHGLFWLRQV DW H[WUHPH PRELOH SKDVH FRPSRVLWLRQV VXFK DV PRELOH SKDVHV KDYLQJ D IHZ SHUFHQW RI RUJDQLF PRGLILHU ZRXOG EH LQWHUHVWLQJ VLQFH LW ZLOO XQYHLO KRZ ZHOO WKH WKHRU\ KROGV XQGHU H[WUHPH PRELOH SKDVH FRPSRVLWLRQ 7KH VWDWLRQDU\ SKDVH KDV EHHQ UHSRUWHG WR WDNH RQ D GLIIHUHQW VWUXFWXUH DV WKH FRPSRVLWLRQ RI WKH PRELOH SKDVH FKDQJHV
PAGE 100

JURXSV 7KH GDWD IURP WKHVH VWDWLRQDU\ SKDVHV VKRXOG JLYH LQIRUPDWLRQ RQ WKH UHWHQWLRQ PHFKDQLVP LQ WKHVH GLIIHUHQW SKDVHV ,I OLQHDULW\ H[LVWV LQ WKHVH FROXPQV SDUWLWLRQ VKRXOG EH WKH GRPLQDWH IRUFH ,I D QRQOLQHDU UHODWLRQVKLS RFFXUV D UHWHQWLRQ PHFKDQLVP RWKHU WKDQ SDUWLWLRQ VKRXOG EH FRQVLGHUHG IRU WKHVH FROXPQV 7KH H[SHULPHQWDO SURFHGXUHV IRU REWDLQLQJ WKH UHODWLYH UHWHQWLYLLW\ VFDOH LQ &KDSWHU ,,, LV VLPSOH QHYHUWKHOHVV LW LV UDWKHU WLPH FRQVXPLQJ VLQFH LVRFUDWLF GDWD RI PRUH WKDQ VROXWHV KDYH WR EH FROOHFWHG $ SRVVLEOH WLPH VDYLQJ VWHS LV WR ILQG D IHZ UHSUHVHQWDWLYH VROXWHV VR DV WR HOLPLQDWH WKH XVHDJH RI DOO WHVW VROXHV 7KH 6Q\GHU VHOHFWLYLW\ WULDQJOH 6Q\GHU f SURYLGHV D JRRG VWDUWLQJ SODFH WR ORRN IRU UHSUHVHQWDWLYH VROXWHV 0RUHRYHU WKH SUHVHQW VWXG\ RQO\ LQYROYHG PRQRPHULF FRYHUDJH FROXPQV ,Q RUGHU WR H[SDQG WKH SUDFWLFDO XWLOLW\ RI WKH UHWHQWLYLW\ VFDOH VWDWLRQDU\ SKDVHV RWKHU WKDQ PRQRPHULF FRYHUDJH VKRXOG DOVR EH WHVWHG WR ILQG RXW LI WKH\ ILW LQ WKH UHWHQWLYLW\ VFDOHV 6LQFH SRO\PHULF SKDVHV KDYH EHHQ VKRZQ WR KDYH EHWWHU VHOHFWLYLW\ IRU 3$+nV WKDQ PRQRPHULF SKDVHV 6DQGHU DQG :LVH f DQG PRUH DQG PRUH SRO\PHULF SKDVHV DUH DYDLODEOH WKHUH LV D QHHG WR FODVVLI\ DQG FRPSDUH WKHP ZLWK WKH PRQRPHULF SKDVHV %\ XVLQJ SRO\PHULF FROXPQV WKH DSSOLFDELOLW\ RI RXU UHWHQWLYLW\ VFDOH FDQ EH WHVWHG $OVR VLQFH WKH UHWHQWLYLW\ VFDOH LV EDVHG RQ WKH SDUWLWLRQ PRGHO D IDLOXUH LQ FODVVLI\LQJ SRO\PHULF FROXPQV ZLWK WKH UHWHQWLYLW\ VFDOH PD\ VXJJHVW WKDW D UHWHQWLRQ PHFKDQLVP RWKHU WKDQ SDUWLWLRQ LV WKH GRPLQDWH IDFWRU LQ SRO\PHULF SKDVHV 7KH VXUIDFH FRYHUDJH RI SRO\PHULF SKDVHV LV XVXDOO\ KLJKHU WKDQ PRQRPHULF SKDVHV ,W KDV EHHQ SRLQWHG RXW WKDW WKHVH UHSRUWHG YDOXHV PD\ QRW JLYH WKH WUXH VXUIDFH FRYHUDJH IRU

PAGE 101

SRO\PHULF SKDVHV 6DQGHU DQG :LVH 'RUVH\ DQG 'LOO f EHFDXVH GXULQJ WKH SRO\PHUL]DWLRQ SURFHVV LW LV YHU\ OLNHO\ WKDW D UHDFWLYH VLODQH PROHFXOH ZLOO ERQG DW D SRLQW DZD\ IURP WKH VLOLFD VXUIDFH 7KH YDOLGLW\ RI WKHVH UHSRUWHG YDOXHV PD\ EH UHYHDOHG E\ FRPELQLQJ WKH SKDVH UDWLR DQG WKH UHWHQWLYLW\ YDOXHV RI WKHVH SRO\PHULF FROXPQV

PAGE 102

$33(1',; $ &+520$72*5$3+,& 5(7(17,21 '$7$

PAGE 103

8 &ROXPQ =RUED[ 2'6 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH DFHWRQLWULOH LQ WKH PRELOH SKDVH

PAGE 104

&ROXPQ =RUED[ & 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI DFHWRQLWULOH LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH ,' &Q

PAGE 105

&ROXPQ =RUED[ F\DQR 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI DFHWRQLWULOH LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH 2 R &' %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HUDSKHQ\O EXWDGLHQH 2FWDGHFDQRSKHQRQH

PAGE 106

&ROXPQ =RUED[ SKHQ\O 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI DFHWRQLWULOH LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HUDSKHQ\O EXWDGLHQH 2FWDGHFDQRSKHQRQH

PAGE 107

&ROXPQ =RUED[ 706 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q N n DW 9L ROXPH RI DFHWRU OLWU LOH LQ WKH PRELOH SK LDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH ‘ 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HUDSKHQ\O EXWDGLHQH 2FWDGHFDQRSKHQRQH 92 &2

PAGE 108

&ROXPQ =RUED[ 2'6 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q N DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO O2 R O R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH

PAGE 109

&ROXPQ =RUED[ & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH S7HUSKHQ\O &KU\VHQH ,Q Nn DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH

PAGE 110

&ROXPQ =RUED[ SKHQ\O 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q N L DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH R

PAGE 111

&ROXPQ =RUED[ 706 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH

PAGE 112

&ROXPQ =RUED[ F\DQR 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH Nn DW YROXPH b RI PHWKDQRO LQ ‘ PRELOH SKDVH

PAGE 113

&ROXPQ 8OWUDVSKHUH & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH ),XRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 0HWK\O SKHQDQWKUHQH

PAGE 114

&ROXPQ % t & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH ),XRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 0HWK\O SKHQDQWKUHQH

PAGE 115

&ROXPQ % t & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ f &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 0HWK\O SKHQDQWKUHQH

PAGE 116

&ROXPQ +LJK 'HQVLW\ 6HQWHOO f 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ,Q Nn DW YROXPH b RI PHWKDQRO LQ WKH PRELOH SKDVH 6ROXWH 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH

PAGE 117

$33(1',; % 6/23(6 )520 (48$7,21 $1' ,Q NZ

PAGE 118

&ROXPQ =RUED[ 2'6 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ OQBNZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH

PAGE 119

&ROXPQ =RUED[ & 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORQH IURP HDXDWLRQ ,Q NZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH

PAGE 120

&ROXPQ =RUED[ SKHQ\O 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ QO OQBNZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HWUDSKHQ\O EXWDGLHQH 2FWDGHFDQRSKHQRQH

PAGE 121

&ROXPQ =RUED[ 706 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ LRBLZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HWUDSKHQ\O EXWDGLHQH 2FWDGHFDQRSKHQRQH

PAGE 122

&ROXPQ =RUED[ F\DQR 0RELOH SKDVH $&1ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROY 6ORSH IURP HFUXDWLRQ -/Qf§ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWKYO QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORUFSUFSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXWYO SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH 'LRFW\O SKWKDODWH S7HUSKHQ\O &KU\VHQH 7HWUDSKHQ\O EXWDGLHQH 2FWDGHFDQRSKHQRQH

PAGE 123

&ROXPQ =RUED[ 2'6 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ OD NZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH

PAGE 124

&ROXPQ =RUED[ & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ ,Q NZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH S7HUSKHQ\O &KU\VHQH

PAGE 125

&ROXPQ =RUED[ SKHQ\O 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN VROXWH 6ORVH IUFUU HTXDWLRQ aO 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH

PAGE 126

&ROXPQ =RUED[ 706 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ LQ NZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH

PAGE 127

&ROXPQ =RUED[ F\DQR 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN VROXWH 6ORSH IURP HTXDWLRQ OQBNZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 'LEXW\O SKWKDODWH 0HWK\O SKHQDQWKUHQH %XW\O EHQ]\O SKWKDODWH

PAGE 128

&ROXPQ 8OWUDVSKHUH & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HRXDWLRQ ,Q 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 0HWK\O SKHQDQWKUHQH

PAGE 129

&ROXPQ % t & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWH 6ORSH IURP HTXDWLRQ OD 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 7ULSWR\O\ SKRVSKDWH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 0HWK\O SKHQDQWKUHQH NZ

PAGE 130

&ROXPQ % t & 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN ‘6ROXWH 6ORSH IURP HTXDWLRQ OQB NZ 0HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH 7ROXHQH +H[\OIOXRUREHQ]HQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 0HWK\O EHQ]\O DPLQH )OXRUREHQ]H]H &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH 0HWK\O SKHQDQWKUHQH

PAGE 131

&ROXPQ +LJK GHQVLW\ 6HQWHOO f 0RELOH SKDVH 0H2+ZDWHU 5HIHUHQFH 7KLV ZRUN 6ROXWV 6ORSH IURP HFUXDWLRQ ,Q N90HWK\O 3DUDEHQ (WK\O 3DUDEHQ 3URS\O 3DUDEHQ %XW\O 3DUDEHQ &RUWLVRQH &RUWLFRVWHURQH %HQ]\O $OFRKRO R1LWURSKHQRO 3URSDFKORU 0HWK\O QDSKWKDOHQH 0HWK\O EHQ]\O DPLQH &KORURSURSKDP 'LPHWK\O SKWKDODWH 'LHWK\O SKWKDODWH

PAGE 132

5()(5(1&(6 $EHO (: 3ROODUG )+ 8GHQ 3& 1LFNOHVV &KURPDWRJU $QGHUVRQ 5/ 3UDFWLFDO 6WDWLVWLFV IRU $QDO\WLFDO &KHPLVWV 9DQ 1RVWUDQG 5HLQKROG &RPSDQ\ 1HZ
PAGE 133

&KUHWLHQ -5 :DOF]DN % $OORU\ /0 'UHX[ 0 /DIRVVH 0 &KURPDWRJU &ODXG\ 3 /HWRIIH -0 *DJHW & 0RUHO 6HUSLQHW &KURPDWRJU &ROLQ + *XLRFKRQ -DQGHUD 3 $QDO &KHP &RRSHU :7 /LQ /< &KURPDWRJUDSKLD 'HODQH\ 0) 3DSDV $1 :DOWHUV 0&KURPDWRJU 'HZDHOH & 9HU]HOH 0 &KURPDWRJU 'HZDHOH & 0XVVFKH 3 9HU]HOH 0 +5&t&& 'LOO .$ 3K\V &KHP 'LOO .$ )ORU\ 3‘ 3URF 1DWO $FDG 6FL 'LOO .$ )ORU\ 3‘ 3URF 1DWO $FDG 6FL 'LOO $ .RSSHO '( &DQWRU 56 'LOO -' %HQGHGRXFK &KHQ 6+ 1DWXUH 'LOO .$ 1DJKL]DGHK 0DUTXVHH -$ $QQ 5HY 3K\V &KHP 'RODQ -: *DQW -5 6Q\GHU /5 &KURPDWRJU 'RUVH\ -* 'LOO .$ &KHP 5HY 'RUVH\ -* -RKQVRQ %3 /LT &KURPDWRJU (QJHOKDUGW + 'UH\HU % 6FKPLGW + &KURPDWRJUDSKLD (QJHOKDUGW + 0OOHU + &KURPDWRJU (QJHOKDUGW + 0OOHU + 'UH\HU % &KURPDWRJUDSKLD (YDQV 0% 'DOH $' /LWWOH &&KURPDWRJUDSKLD )HQJ < =KX 3 +X = &KURPDWRJUDSKLD )XQDVDNL 1 +DGD 6 1H\D 6 &KURPDWRJU *D]GD .DPLQVNL 0 .ODZLWHU .RZDOF]\N -6 0DNXFK % 3UXVLHZLF] 6OHG]LQVND % &KURPDWRJU *LOSLQ 5. &KURPDWRJU 6FL *LOSLQ 5. *DQJRGD 0( &KURPDWRJU 6FL *LOSLQ 5. *DQJRGD 0( $QDO &KHP

PAGE 134

*REHW .RYDWV ( $GVRUSWLRQ 6FL e 7HFKQRO *ROGEHUJ $3 $QDO &KHP *ROGLQJ 5' %DUU\ $%XUNH 0) &KURPDWRJU +DPPHUV :( 0HXUV */LQJ\ &/ &KURPDWRJU +DQDL 7 +XEHUW ‘ +5&t&& +DQDL 7 +XEHUW f &KURPDWRJU D +DQDL 7 +XEHUW ‘ &KURPDWRJU E +DQVHQ 6+ +HOERH 3 7KRPVHQ 0 &KURPDWRJU +DQVHQ 6+ +HOERH 3 7KRPVHQ 0 7U $QDO &KHP +HQQLRQ 0& 5RVVHW 5 &KURPDWRJDSKLD +LOGHEUDQG -+ 6FRWW 5/ 7KH 6ROXELOLW\ RI 1RQHOHFWURO\WHV 5HLQKROG 1HZ
PAGE 135

.DUJHU / /H3DJH -1 7DQDND 1 +LJK 3HUIRUPDQFH /LTXLG &KURPDWRJUDSK\$GYDQFHV DQG 3URSHFWLYHV 9RO $FDGHPLF 3UHVV 1HZ
PAGE 136

0F5H\QROGV :2 &KURPDWRJU 6FL 0HODQGHU : +RUYDWK & +LJK 3HUIRUPDQFH /LTXLG &KURPDWRJUDSK\ $GYDQFHV DQG 3URSHFWLYHV 9RO $FDGHPLF 3UHVV 1HZ
PAGE 137

6DQGHU /& :LVH 6$ +5&t&& 6FKDQW] 0 0DUWLUH '( &KURPDWRJU 6FKRHQPDNHUV 3%LOOLHW +$+ GH *DODQ /&KURPDWRJU 6FKRHQPDNHUV 3%LOOLHW +$+ GH *DODQ /&KURPDWRJU 6FKRHQPDNHUV 3%LOOLHW +$+ GH *DODQ /&KURPDWRJUDSKLD 6FKRHQPDNHUV 3%LOOLHW +$+ GH *DODQ /&KURPDWRJU 6FKRHQPDNHUV 3%LOOLHW +$+ 7LMVVHQ 5 GH *DODQ /&KURPDWRJU 6HQWHOO .% ,QWHUSKDVH 6ROXELOLW\ DQG &KURPDWRJUDSKLF 5HWHQWLRQ 'RFWRUDO 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD 6HQWHOO .% %DUQHV .: 'RUVH\ -* &KURPDWRJU 6HQWHOO .% 'RUVH\ -* $QDO &KHP D 6HQWHOO .% 'RUVH\ -* &KURPDWRJU E 6KDUDI 0$ ,OOPDQ '/ .RZDOVNL %5 &KHPRPHWULF -RKQ :LOH\ t 6RQV 1HZ
PAGE 138

6Q\GHU /5 'RODQ -: *DQW -5 &KURPDWRJU 6WHZDUW 3HUU\ 6* &KURPDWRJU 7DQDND 1 6DNDJDPL $UDNL 0 &KURPDWRJU 7DQDND 1 7RNXGD < ,ZDJXFKL $UDNL 0 &KURPDWRJU 7DQIRUG & 7KH +\GURSKRELF (IIHFW QG HG :LOH\,QWHUVFLHQFHV 1HZ
PAGE 139

%,2*5$3+,&$/ 6.(7&+ 3HWHU 7DL
PAGE 140

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ UD\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $QQD ) %UDMWHU7RWK $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ X >D ; 9DQHLFD <
PAGE 141

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 1XWULWLRQ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPQHWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 142

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E2C19I9DD_14NN7Q INGEST_TIME 2012-02-07T17:33:06Z PACKAGE AA00003779_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES