Citation
The relationship between palpal morphology and host-seeking behavior in adult mosquitoes (Diptera: culicidae), especially Culiseta melanura (Coq.)

Material Information

Title:
The relationship between palpal morphology and host-seeking behavior in adult mosquitoes (Diptera: culicidae), especially Culiseta melanura (Coq.)
Creator:
Choate, Paul Merrill, 1948-
Publication Date:
Language:
English
Physical Description:
ix, 302 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Birds ( jstor )
Carbon dioxide ( jstor )
Female animals ( jstor )
Host preferences ( jstor )
Hydrocarbons ( jstor )
Insects ( jstor )
Mammals ( jstor )
Palps ( jstor )
Species ( jstor )
Surface areas ( jstor )
City of Lake Butler ( local )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1989.
Bibliography:
Includes bibliographical references (leaves 242-301).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Paul Merrill Choate, Jr.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
022465246 ( ALEPH )
AHH1977 ( NOTIS )
22608266 ( OCLC )

Downloads

This item has the following downloads:


Full Text













THE RELATIONSHIP BETWEEN PALPAL MORPHOLOGY AND HOST-
SEEKING BEHAVIOR IN ADULT MOSQUITOES (DIPTERA: CULICIDAE),
ESPECIALLY CULISETA MELANURA (COQ.)




















By

PAUL MERRILL CHOATE, JR.


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1989
















ACKNOWLEDGEMENTS

Many people have directly or indirectly influenced the

direction and completion of this dissertation. Dr. Tom Walker

first introduced me to the complexities of insect ecology.

Dr. Reece Sailer (deceased) agreed to chair my earlier

master's degree research in taxonomy of Coleoptera. Dr. P.

J. Darlington (deceased) offered encouragement during my

studies of Carabidae. He was always quick to provide

literature and advice. Dr. George Ball (Alberta) has

continued to prod me to completion of a graduate degree,

although both he and I at one time envisioned that work in

carabid taxonomy would lead to a graduate degree in

entomology. Leon Croizat openly corresponded with me during

a time when I was wandering between total abandonment of a

career in entomology and pursuit of a graduate degree. Fellow

coleopterists have always provided support and constructive

criticism. Many enjoyable days have been spent in the field

with good friends and colleagues. Among these are Scott

Gross, Lloyd Davis, Robert Davidson, Don Wilson, Dave Brozska,

and Mike Thomas.

Although our careers have diverged in different

directions, I owe Dr. Robert Woodruff many thanks for his









encouragement from the time of my arrival at the University

of Florida. Despite our differences of opinion concerning

personal priorities and areas of research, I still owe him a

debt of gratitude. I also thank Dr. Howard Weems for his

personal and financial support for publications.

No acknowledgements are complete without thanking the

people personally responsible for providing financial and

logistical support. Dr. Donald W. Hall graciously accepted

me back into the graduate student world, agreeing to support

me both as cochairman and research advisor. Dr. Dan Kline

(USDA) provided an assistantship and found the means to keep

me headed in the right direction in spite of my affinity for

wandering. Dr. Howard Frank has enthusiastically encouraged

me to complete my graduate degree program. His continued

interest and investment of energy have been important. Dr.

Dave Carlson (USDA) graciously provided space and equipment

for my gas chromatography research.

Research projects would not succeed without the

availability of study sites. Mr. John Whitehead has

generously provided unlimited access to his Lake Butler farm.

A special thanks is given to him and his family for allowing

my unannounced visits to his farm.

Dr. J. Paul Gibbs introduced me to vector surveillance

and its related problems while working on Eastern Equine

Encephalomyelitis. The many unknown aspects of this disease

led me to work on mosquitoes and host preference.


iii









Jimmy Becnel has provided SEM expertise, darkroom

facilities, company in the field, and listened patiently to

the ideas presented here. Likewise, Bill Oldacre helped me

to understand the physics behind detection of signals, energy,

and all things mathematical of which we tend to be

conveniently ignorant. Julio Hector, chemist, computer

programmer, and friend, often worked late to help me finish

data analysis and produce the chromatograms that are used

here. Without his expertise and self sacrifice, this project

would never have been completed within the necessary time

frame. Genie Avery gave willingly of her time and computer

expertise, helping to sort and arrange this lengthy document.

Hank McKeithen willingly permitted me the use of his computer

during many unannounced visits.

Family members suffer the most and gain the least during

a graduate program. My parents have patiently waited to see

me finish, despite many indications to the contrary. I thank

them for their many years of love and support.

Our daughter Teresa had to withstand the pressure of a

graduate student/father. It wasn't easy having a tired

graduate student to come home to. Finally, my wife Angela

provided the tolerance, support, forgiveness, and love that

are vital to the success of a graduate student.


















TABLE OF CONTENTS


ACKNOWLEDGEMENTS ...................................ii

ABSTRACT .........................................vii

CHAPTERS

1. INTRODUCTION ................................1

2. BIOLOGY AND SEASONAL ABUNDANCE OF CULISETA
MELANURA AT LAKE BUTLER, FLORIDA .........19

General Biology .......................... 19
Seasonal Abundance .......................23

3. VARIATION IN CUTICULAR HYDROCARBON PROFILES
IN CULISETA MELANURA .....................38

Introduction ............................ 38
Methods and Materials ....................41
Results ...................................45
Conclusions ...............................81
Discussion ................................82

4. HOST PREFERENCE IN MOSQUITOES, A REVIEW ...84

Introduction ..............................84
Literature Review ........................85
Host Preference in Culiseta melanura and
Cs. inornata ...........................106
Discussion ...............................107

5. MORPHOLOGY OF SENSORY STRUCTURES .........108

Introduction .............................108
Methods and materials ................... 128
Results ..................................128










6. LARVAL REARING TEMPERATURE AND ITS EFFECT
ON ADULT MOSQUITO MORPHOLOGY, ESPECIALLY
PALPAL OLFACTORY STRUCTURES .............185

Introduction ............................ 185
Methods and materials ...................196
Results ..................................199
Conclusions ..............................216
Discussion ...............................217

7. QUANTIFICATION OF HOST EMANATIONS, TYPES,
AND THE IMPLICATION FOR ATTRACTION OF
ADULT MOSQUITOES .........................220

Introduction ...........................220
Host emanations (especially CO2)-quantity
and detection .......................... 225
Quantification of host emanations, espec-
ially CO2 ................................227
Calculation of respired volumes of gases
and CO2 .................. ............. 229
Calculation of body surface area for var-
ious animals ........................... 232

8. DISCUSSION, SUMMARY, PROPOSAL FOR FUTURE
RESEARCH .................................236

Discussion and summary ..................236
Proposal for future research ............240

REFERENCES ........................................242

BIOGRAPHICAL SKETCH ............................... 302















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

THE RELATIONSHIP BETWEEN PALPAL MORPHOLOGY AND HOST-SEEKING
BEHAVIOR IN ADULT MOSQUITOES (DIPTERA: CULICIDAE), ESPECIALLY
CULISETA MELANURA (COQ.)

By

Paul Merrill Choate, Jr.

August, 1989

Chairman: Donald W. Hall
Major Department: Entomology and Nematology


Analysis of cuticular hydrocarbon profiles of adult

Culiseta melanura (Coquillett) from New Hampshire, Vermont

(new record), and Florida showed no evidence of cryptic

species. Variation (within site) was as great as variation

between sites. Cuticular hydrocarbon profiles are also

illustrated for Culex territans Walker, Uranotaenia

sapphirina (Osten Sacken), and Cs. melanura from New

Hampshire. Percent composition of hydrocarbons showed

seasonal variation in Cs. melanura from Lake Butler, Florida.

Larval rearing temperature is one factor contributing to

variation in hydrocarbon profiles.

Larval rearing temperatures produced intra-specific

variation in body size, palpal surface area, and the number

of sensory structures within Ae. aegypti (Linnaeus) and Cs.


vii









melanura. Palpal configurations and surface area are

presented for Cs. melanura, Cs. inornata Williston, Culex

territans, Cx. restuans Theobald, Cx. quinquefasciatus Say,

Cx. salinarius Coquillett, Cx. nigripalpus Theobald, Cx.

tarsalis Coquillett, Uranotaenia sapphirina, Psorophora ferox

(Humboldt), Ps. ciliata (Fabricius), Aedes aegypti, Ae.

albopictus (Skuse), Ae. canadensis Theobald, Ae. vexans

(Meigen), Ae. triseriatus (Say), Ae. infirmatus Dyar & Knab,

Ae. atlanticus Dyar & Knab, Ae. sticticus (Meigen), Ae.

mitchellae Dyar, Ae. sollicitans (Walker), Ae.

taeniorhynchus (Weidemann), and Orthopodomyia signifera

(Coquillett).

A correlation exists between sensory capabilities of

mosquitoes and the size range of preferred hosts as defined

by host body weight and surface area. Estimates are given

for respired volumes of gases and surface area for selected

animals. Sensory capabilities are defined as palpal surface

area containing olfactory structures/number of sensory

structures per palp, compared to the volume of air sampled

between palpi during flight. Evidence for a morphological

basis for host preference and host preference shift is

presented. Host preference is proposed to be a function of the

volume of host emanations of common compounds, rather than

specific odors. Variation in host preference is correlated

with seasonal change in adult mosquito structure. A

hypothetical cycle involving host preference shift is


viii









presented to demonstrate the possibility that a single species

such as Cs. melanura may be capable of vectoring diseases such

as Eastern Equine Encephalomyelitis from birds to mammals.















CHAPTER 1

INTRODUCTION

The structures involved in host seeking are only now

beginning to be recognized. The chemical aspects of host

detection and location are not at all understood. Preference

for different hosts is suggested by bloodmeal analysis, but

the criteria for one host being preferred remain unclear.

Females of most mosquito species will seek a blood meal

at some time during their adult life. Autogenous species may

postpone blood meals until the second gonotrophic cycle

(O'Meara, 1985). The presence or absence of autogeny within

a population may in part be due to larval nutrition and

density (Lounibos et al., 1982). Various factors such as

chemical attraction, possible host specificity, physiological

age, host availability, and environmental conditions, interact

in various combinations to accomplish host seeking and a

successful blood meal. Mosquito species vary in nutritional

requirements for egg development (Woke, 1937). The genus

Toxorhynchites has females which never take a blood meal.

Mosquitoes will feed on sugar in addition to blood, using

nectar from flowers as the sugar source (Bidlingmayer & Hem,

1973; Magnarelli, 1977b, 1980; Nasci & Edman, 1984; Nayar

& Sauerman, 1975; Philip, 1941; and Van Handel, 1972, 1985).









2

Seasonal distribution, habitat preference, and host

behavior influence host seeking and behavior. It is this

host seeking behavior that adult mosquito surveillance

attempts to exploit.

Numerous references in the literature document species

composition of mosquito collections. Many different

collecting techniques are employed, including light traps,

CO2 baited traps, animal baited traps, resting boxes, and ramp

traps (Bast & Rehn, 1963; Bellamy & Reeves, 1952; Breeland

& Pickard, 1965; Bidlingmayer & Hem, 1981; Davis, 1978; Edman

et al., 1968; Furlow & Young, 1970; Gui et al., 1942;

Gunstream & Chew, 1967; Harden et al., 1970; Harrison et al.,

1982; Hauff & Burgess, 1960; Huffaker & Back, 1943; Kinzer

et al., 1978; Meyer, 1977; Minson et al., 1970; Provost,

1959; Schreck et al., 1972; Service, 1976; Stryker & Young,

1970; Vickery et al., 1966; and Villavaso & Steelman, 1970).

Reports in these publications reveal that no single trap type

collects all species, and therefore one collection technique

will not adequately sample the mosquito fauna of a given area.

Adult surveillance assumes those species present will be

collected. During discussion of New Jersey traps for sampling

mosquito populations, Huffaker & Bach (1943) stated the

following:

It has been assumed by the great majority of
mosquito control workers using the trap that,
because of the very nature of the method, the
various species are caught in numbers proportional
to their respective occurrences in the heterogeneous
mosquito population.











This assumption is based upon fallacious grounds
the mosquitoes possess all degrees of variation
particular to common living things it would
be hard to see why it is not wholly logical to
expect that different species of mosquitoes will
exhibit marked variations in their responses .
It is, furthermore, a fundamental biological
principle that ecological variation is not a
respecter of phylogenetic ties. Hence, it may be
expected that marked differences in behavior exist
even within a genus.(p.561)

The same may be said for all current sampling techniques.

Additional "ground truthing" by larval sampling will usually

reveal the presence of other species that for various reasons

are not being collected in the traps being used. Recognition

of these difficulties results in the following observation.

We really do not understand the complex actions involved in

host seeking by even one species of mosquito.

Before we are able to analyze the behavior of a

particular species, correct recognition (identification) of

that species is essential. Unfortunately, adult mosquitoes

are very fragile insects, easily dismembered and denuded of

the very structures used to identify them. Personal

experience has revealed an alarming incidence of

misidentification of specimens used in reports of surveillance

collections. In the absence of voucher specimens, the

researcher has to consider the possibility of

misidentifications when interpreting reports in the

literature.

Several available techniques are currently being used for

species recognition. All named forms of mosquitoes for the









4

entire world are listed in Knight and Stone, 1977. Knight

(1974) reviewed the history of mosquito taxonomy in the United

States. Identification manuals for North American mosquitoes

include Darsie & Ward (1981) and Carpenter & LaCasse (1955).

Southeastern United States is covered in King et al., 1960.

These manuals include morphological keys to adults and larvae,

and are the standard identification manuals for North American

mosquito workers (Zavortink, 1974). Keys to the pupae of some

mosquitoes were presented in Tinker and Stojanovich (1962).

Additional techniques are being used to study intra-specific

variation more closely, sibling species, and species complexes

in insects. Among these are chromosomal cytogenetic studies

(Kitzmiller et al., 1967; Rao & Rai, 1987), amino acid

identification (Ball, 1952; Ball & Clark, 1953; Micks &

Ellis, 1951; Micks et al., 1966) cuticular hydrocarbon

analyses (Castner & Nation, 1984; Carlson, 1982, 1983; Carlson

& Bolton, 1984; Carlson & Walsh, 1981; Carlson & Service,

1979, 1980; Carlson & Yocom, 1986; and Milligan et al., 1986),

electrophoretic comparisons (Ayala and Powell, 1972; Makela

& Richardson, 1977),and comparison of sensory structure

arrangement on antennae in Anopheles (Ismail & Hammond, 1968).

Integration of these techniques should provide the taxonomic

detail necessary for analysis of behavior of a particular

species (Barr, 1974; Eldridge, 1974; Faran, 1979; Rogers,

1974). Interpretation of behavioral data is done with more

confidence when specimens are identified accurately.









5

Host seeking by female mosquitoes is in part dependent

upon the physiological age of the insect. Various techniques

for the determination of the physiological and chronological

age (age grading) of insects have been employed (Biscoe-

Tyndal, 1984; Christophers, 1911; Corbet, 1960, 1962;

Detinova, 1962, 1968; Hitchcock, 1968; Johnston & Ellison,

1982; Lewis, 1958; Magnarelli, 1976; Magnarelli & Anderson,

1981; Magnarelli et al., 1984; Mullens & Schmidtmann, 1982;

Rosay, 1961; Schlein, 1979; and Schlein & Gratz, 1972). If

it is possible to determine the approximate physiological age

of adult mosquitoes, then it may become possible to make

predictions concerning host seeking and population dynamics.

Field observations on the parity of biting flies have included

studies by Scholl et al., 1979; Samarawickrema, 1968; and

Magnarelli et al., 1984. Age grading of mosquitoes has been

done by ovarian examination. Mer (1936) found that ovarian

dissection could be used to recognize prehibernation females

of Anopheles elutus Edwards. Corbet (1960) determined that

adult mosquitoes parasitized by water mites were nulliparous

98% of the time. Lanciani (1979a, 1979b, 1986), Lanciani &

Boyett (1980), and Lanciani & Boyt (1977) determined that

water mite parasitism affected adult longevity.

Each physiological stage of an adult female (nulliparous,

parous, gravid, bloodfed) elicits a behavioral shift that

greatly influences (bias) interpretation of any one trapping

technique. Host-seeking females are generally those











mosquitoes that are collected in baited traps. Resting boxes,

truck traps, ramp traps, and malaise traps are assumed to be

less biased in their collections, but even these may be shown

to attract disproportionate numbers of certain physiological

states of adults. Therefore, several techniques must be

employed simultaneously, and each collection compared. Then

a more representative sample of the age structure of a given

population will be achieved.

Since most adult females will at some time seek a blood

meal, the type of blood meal sought may help explain the

functional significance of different sensory structures known

to exist on the mouthparts and antennae of biting flies,

including mosquitoes. Bloodmeal analysis reveals an apparent

wide host range. Host records range from amphibians and

reptiles to birds, fish, and mammals, including man. While a

complete review of bloodmeal records is not the intention of

this paper, the following citations will give the reader a

representation of the variety of host preference records, as

well as some of the discrepancies regarding the application

of the term host preference. Articles dealing with bloodmeal

analysis include the following: Anderson, 1967; Beir et al.,

1988; Bertsch & Norment, 1983; Boorman, 1961; Boreham & Snow,

1973; Brown, 1966; Burkot & DeFoliart, 1982; Chandler et al.,

1975; Christopher & Reuben, 1971; Crans, 1964, 1965, 1970;

Crans & Rockel, 1968; Davis, 1940; Dow et al., 1957; Downe,

1960, 1962, 1963; Edman, 1971, 1974, 1979a, 1979b; Edman &









7

Bidlingmayer, 1969; Edman & Downe, 1964; Edman & Haeger,

1977; Edman et al., 1972; Gunstream et al., 1971; Hayes,

1961; Hayes et al., 1973; Hopla, 1965; Irby & Apperson,

1988; Laarman, 1955, 1958; LeDuc et al., 1972; Magnarelli,

1977a; McClelland & Weitz, 1963; McIver, 1968; Means, 1968;

Murphey et al., 1967; Nasci, 1982b, 1984, 1985, 1986b; Nasci

& Edman, 1981a; Nolan et al., 1965; Rempel et al., 1946;

Schaefer & Steelman, 1969; Shalaby, 1969; Shemanchuk, 1969;

Smith & Weitz, 1959; Snow & Boreham, 1973; Suyemoto et al.,

1973; Takahashi & Shimizu, 1971; Tempelis, 1970, 1975;

Tempelis et al., 1967, 1970; Washino & Tempelis, 1983; Woke,

1937; and Wright & DeFoliart, 1970. Some species appear

restricted to cold-blooded vertebrates (Crans, 1970). Others

use a wide range of hosts, exhibiting a marked seasonal host

shift (Edman & Taylor, 1968). Culiseta melanura is considered

to be an avian feeder, but records exist for other hosts,

including man and horses (Edman et al., 1972; Hayes & Doane,

1958; Joseph & Bickley, 1969; Moussa et al., 1966; and

Schober, 1964). iMuch speculation exists as to the nature of

attractiveness of different hosts. The recognition of a

particular vertebrate species by a mosquito is a function of

the combined senses of olfaction, thermal reception, and

visual cues (Altner & Prillinger, 1980; Sippell & Brown,

1953). We are currently unable to state with certainty which

of these factors are most important at any particular

distance. Only a few of the many structures on the surface











of the adult mosquito have been studied. Among these are the

carbon dioxide receptors on the palpi, and thermal receptors

and other olfactory structures on the antennae. Their

chemical thresholds have not been determined, but indirect

evidence suggests that the numbers of these structures are

somehow related to the amount of chemical odor detectable by

the individual mosquito (Chapman, 1971). Variation in

perceived host preference has been considered by some to be

a reflection of host availability. However, for the present

I will consider host preference a real phenomenon, and will

examine the implication of such a phenomenon. If in fact host

preference exists, then the ability to discriminate between

hosts must exist. If this ability to discriminate exists, it

should be revealed in some variation of sensory structures

used in host seeking and location. What are the stimuli

believed to be important in host seeking? How and where are

these received?

In order to analyze seasonal host preference records for

any species of mosquito, seasonal variation in adult behavior

and morphology should be considered. Smith (1961) noted that

the site of resting places for An. gambiae Giles and An.

pharoensis Theobald were seasonally different. Michener

(1945) observed that in mosquitoes the winter individuals of

a species are often larger than the summer ones, as well as

being differently colored. He noted that overwintering forms

of An. maculipennis freeborni Aitken were larger and darker









9

than the summer ones. The same appeared true for An.

quadrimaculatus Say. Even more striking were the seasonal

morphs of Culex apicalis (= territans) and Cx. nigripalpus.

The seasonal forms of these species were sufficiently

different to pose a problem in correct identification.

Seasonal variation in size has also been reported in Cx.

tarsalis (Boch & Milby, 1981), with the smallest individuals

occurring in the hottest months. Associated with reduced size

in Cx. tarsalis was a decrease in attractiveness to traps of

the same type that were attractive during the cooler months

when larger individuals were present.

Fish (1985) noted significant variability in the size of

biting females of many vector and pest species of mosquitoes.

Citing Takahashi (1976), Baqar et al. (1980), and Grimstad &

Haramis (1984), Fish stated that it was becoming apparent that

vector competence can be affected by the size of individuals

comprising a population. He concluded that an analysis of

size variation for natural populations of vector species

should be a first step in the study of vectorial capacity in

mosquitoes. Haramis (1985) noted that larval nutrition had

a direct effect on fitness of adult mosquitoes, with small

adults having reduced survival and fecundity, but transmitting

LaCrosse virus more effectively than large mosquitoes.

Landry et al. (1988) noted significant seasonal variation

in the size of adult female Aedes triseriatus. Craig and

Vandehey (1962) noted that rearing temperatures affected









10

certain color mutations in Ae. aevypti. Zuska and Berg (1974)

documented seasonal temperature as one of the primary factors

affecting color variation in South American Tetanoceroides

(Diptera: Sciomyzidae). Rearing temperature affected the rate

of loss of general characters in Ae. nigromaculis and Culex

pipiens quinquefasciatus, with rotation of male genitalia

occurring 12 hours after emergence at 280C, but not for 51

hours at 17C (Rosay, 1961).

The ability of mosquitoes to become infected with and

transmit viruses has also been shown to be temperature-

related (Turell et al., 1985). Since the size of individual

mosquitoes is related to the seasonal temperatures, and the

ability to transmit also is temperature-related, it follows

that viral activity would be predicted to be highest during

the summer months. This is known to be true for many of the

encephalitis viruses (Hess et al., 1963). Grimstad (1983)

proposed a reduced gut barrier to viral particles in smaller

individuals as the mechanism behind higher infection rates in

smaller individuals. These same smaller individuals also were

shown to take proportionately more infectious viral particles

in a bloodmeal. Included among viral diseases transmitted by

mosquitoes is eastern equine encephalomyelitis (EEE). This

virus is believed to involve an enzootic cycle maintained

within avian hosts by one or more species of aviphilic

mosquitoes, then somehow transmitted to larger mammalian hosts

such as man and horses, where fatalities are frequent. The











mechanism behind transmission to dead-end hosts is as yet

unknown. The primary enzootic vector is believed to be Cs.

melanura, although approximately twenty species of insects

have had the virus of EEE isolated from them.

The study site for this research was 3 km east of Lake

Butler, Florida,in Union Co., on the property of John

Whitehead. This farm was chosen because of 2 confirmed cases

of EEE that occurred in 1985 and 1986. Field studies had

demonstrated a stable population of Cs. melanura on the

property. A wide variety of animals, including a herd of

cattle, horses, dogs, pigs, guinea fowl, deer, turkey and

rabbits was found within the confines of the property. Three

chicken houses contained 75,000 chickens during part of the

year. Large open tracts of pasture were surrounded by pine

woods, red-maple and gum swamps, and river flood plain.

Preliminary data and personal field observations

indicated the presence of a larger, darker winter form of Cs.

melanura which was gradually replaced by a lighter, smaller

summer form. Adult seasonal variation in size and

susceptibility to C02-baited CDC miniature light traps were

the main catalysts behind the research. If vector

surveillance for mosquitoes is so dependent upon collecting

particular species, the mechanisms behind a behavioral shift,

either in terms of host preference, or in terms of

attractiveness to traps, need to be investigated and

understood.











My original purpose for working at this study site was

to collect adult female mosquitoes for virus isolation.

Presumably those mosquitoes transmitting EEE to horses would

be collected and identified as the vector(s) by virus

isolation. Therefore, the first object of this research was

to determine the mosquito species that occurred at the study

site. A preliminary year of collection data confirmed the

existence of approximately 30 species of mosquitoes. These

included: An. crucians, An. punctipennis, An.

quadrimaculatus, Toxorhynchites rutilus, Ae. aegypti, Ae.

triseriatus, Ae. hendersoni, Ae. sticticus, Ae. mitchellae,

Ae. dupreei, Ae. atlanticus, Ae. infirmatus, Ae. vexans, Ae.

canadensis, Ae. fulvus pallens, Psorophora howardii, Ps.

ciliata, Ps. columbiae, Ps. ferox, Cx. quinquefasciatus, Cx.

salinarius, Cx. nigripalpus, Cx. pilosus, Cx. territans, Cx.

restuans, Cx. erraticus, Cs. melanura, Cs. inornata,

Uranotaenia sapphirina, Ur. lowii, Orthopodomyia signifera,

and Coquillettidia perturbans.

Of these, only eight were definitely present throughout

the entire year. These were An. crucians, An. punctipennis,

An. quadrimaculatus, Cx. quinquefasciatus, Cx. salinarius, Cx.

nigripalpus, Cx. territans, and Cs. melanura. Additionally,

Cx. erraticus, Aedes aeqypti, Orthopodomyia siqnifera, and

Aedes triseriatus may have been present all year. Since both

Aedes species and Orthopodomyia are seldom collected as

adults, their presence throughout the year was not confirmed.









13

Sampling techniques for Cs. melanura consisted of larval

collections to verify breeding, adult collections from resting

boxes (Edman et al., 1968) and CDC miniature light traps

baited with dry ice as a CO2 source. Resting box collections

were made on the same days that CDC collections were made.

Unfortunately, at the end of the seventh month of this

research the swamp being used for collections was clear-cut

for eventual planting of pine. As a result, collections that

previously were being made in wooded areas became open area

collections. I chose to leave traps and resting boxes in the

same locations for the remainder of the year. The data for

these collections are only used here to confirm the presence

of adult Cs. melanura throughout the year. No statistical

analysis of the collection data is possible due to the

complete disruption of the study site for one-third of the

collection period.

Many investigations into the occurrence of EEE have

correlated the presence of Cs. melanura with viral activity

(Bryant et al., 1973; Chamberlain, 1958; Chamberlain et al.,

1951, 1954; Dardiri et al., 1957; Dougherty & Price, 1960;

Feemster, 1938, 1957; Ferguson, 1954; Goldfield & Sussman,

1968; Grady et al., 1978; Grimstad, 1983; Hayes et al.,

1962; Jaynes et al., 1962; Kelser, 1933; LeDuc et al.,

1972, 1975; Main et al., 1979; Muul et al., 1975; Oglesby,

1948; Srihongse et al., 1980; Stamm et al., 1962; Sudia et

al., 1968; Wallis, 1959; Wallis et al., 1958, 1974; and









14

Williams et al., 1971, 1972, 1974). Some investigators feel

that the presence of this species is necessary for the virus

to cycle within resident bird populations, to later somehow

be transmitted to other hosts. One measure for estimating

potential viral activity involves monitoring populations of

Cs. melanura. I decided to monitor the seasonal occurrence

of this species at the Lake Butler site. To insure that

behavioral and structural comparison were reported accurately,

one of the first questions to be answered was what insect

species was actually being studied? A necessary part of this

study was to insure that in fact Cs. melanura was, by all

available parameters, the Cs. melanura described in the

literature. With this in mind, I obtained collections from

the type locality (New Hampshire) for comparison. No

morphological differences were apparent between New Hampshire

and Florida specimens. Since evidence exists for cryptic

species within other mosquito species complexes, I felt that

an additional comparison would reinforce my belief that only

one species was in fact involved here. Cuticular hydrocarbons

were chosen for further comparisons. These comparisons are

presented in Chapter 3. As a result of these comparisons,

several questions arose concerning variation in the adult

hydrocarbon patterns? Was this variation correlated with the

two seasonal morphs in the wild populations of Cs. melanura

at Lake Butler? If seasonal shifts in hydrocarbon patterns

occur, how might this affect the use of this technique to









15

solve taxonomic problems? How much of a difference would be

necessary to correctly interpret species differences?

Cuticular hydrocarbons constitute a part of the chemical

makeup of individual insects. Chemical composition within a

species may be environmentally changed (Bryant, 1974). I felt

that if the chemical identity of a species could be

environmentally shifted the possibility certainly must exist

for behavioral changes also being influenced by environmental

parameters. Before conducting experimental analysis of the

effect of one environmental parameter (temperature) on adult

mosquito olfactory structures, I reviewed host preference

records to search for suggestion of seasonal differences.

Host preference records are numerous in the literature.

However, most reports are based on pooled samples collected

over several years from several locations. While these reports

document host preference variation, they seldom discuss

seasonal host preference variation. By reanalyzing the data

from several different authors, trends in host preference

began to emerge, and seasonal patterns were suggested. These

patterns are discussed in Chapter 4.

The morphology of sensory structures in mosquitoes

reveals much interspecific variation. Do structural

differences affect the ability to select certain hosts? Could

the morphological variation be correlated with seasonal

behavioral changes? Could host detection capabilities be

correlated with morphology? If morphology could be correlated









16

with host preference, what effect might a change in morphology

have on host preference? What might be a practical method to

measure sensory capabilities?

Based on the possibility of morphological variation

within host detection sensory structures, I decided to look

at the variation within the overall configuration of these

same structures in several species. The actual structures

involved in host detection are illustrated and discussed in

detail to clarify the shape and configurations that occur in

mosquitoes. A thorough understanding of the structures

involved is necessary to understand host preference.

Interspecific variation in these structures is discussed in

Chapter 5. Having documented variation between species, and

using the suggestions that resulted from data presented in

Chapter 3 regarding the effect of temperature on the chemical

makeup of cuticular hydrocarbon profiles, I then compare the

effect of varied larval rearing temperature on the sensory

structures of Ae. aegypti and Cs. melanura. Aedes aegypti was

chosen because of its rapid development time, ease in rearing,

and accessibility. Wild Cs. melanura were chosen to determine

if field observed variation could be duplicated in the lab.

These results are presented in Chapter 6.

Variation within the number of sensory structures within

a species left unanswered the question of how to quantify the

effect of changes in morphology on host detection

capabilities. I decided to estimate the surface area of the









17

palpal segment that contains the CO2 receptors, and to see how

this was affected by changes in the size of the adult females

that were produced at varied temperatures. Using these

calculations, I then decided to look for correlations between

surface area and host preference. Recognizing that the

surface of the palp that contacts air for host detection

actually represents the inner half of each palp, and that the

volume of air that is sampled by a female mosquito is a

function of the volume of air contained between the palpi at

any point in time, I compared the volumes of air sampled by

various sized palpi. These comparisons are presented in

Chapter 7.

My hypothesis is that host preference records for various

mosquitoes are attributable to the morphology of the female

mosquito and to the volume of odors given off by various

animals. In order to compare these two factors, a measure of

host emanations must be estimated. I calculated volume of

respired gases for a wide range of animal species, and then

arranged them by groups according to similar amounts of

expired volume. These calculations were then compared with

reported host preference records. Three factors, host surface

area, host respired volume, and respired volume of CO2/minute,

were found to be correlated with host preference. From these

comparisons a pattern emerged that is proposed as an

explanation for host preference and as a means to reexamine

trap design.









18

The application and testing of the ideas presented here

will involve long-term studies, involving many different

disciplines. What began as a simple examination into the

behavior of a single species has raised questions concerning

the concepts of trap design and the validity of the term host

preference. I hope that the documentation and comparison

interspecificc and intraspecific) of sensory structures known

to be involved in host seeking will form the basis for

investigations into various attractants, and possibly offer

an explanation for the variation in host preferences that have

been reported in the literature. Based on the few common

emanations that occur in mammals, a design should be possible

to maximize the attraction and collection of mosquitoes that

prefer a certain host size range. This in turn should

maximize our ability to survey for vectors of diseases such

as encephalitis.















CHAPTER 2

BIOLOGY AND SEASONAL ABUNDANCE OF Culiseta melanura AT
LAKE BUTLER, FLORIDA

General Biology


Culiseta melanura occurs as far north as eastern Canada,

as far west as the Mississippi River, and as far south and

east as Texas to the Gulf of Mexico and Florida (Darsie &

Ward, 1981). This species has been a popular insect to study

since its implication as the enzootic vector of Eastern Equine

Encephalomyelitis (EEE) in Louisiana (Chamberlain et al.,

1951). Among the species of Florida Culicini mosquitoes, Cs.

melanura females are easily recognized by their uniform dark

brown color, lack of dorsal abdominal banding patterns,

extremely long curved proboscis, and a tuft of several long

setae on the underside of the wing at the anterior proximal

margin of the subcostal vein. Males are less easily

recognized, but may be identified by palpi extending beyond

the proboscis, no dorsal abdominal banding pattern, uniform

color, and the same tuft of hair on the underside of the

wings. Larvae are readily recognized in the field, being very

elongate, having a long slender siphon, and characteristically

colored with a horizontal banding pattern caused by

pigmentation of each segment. Larvae that are collected from









20

burrows are typically very pale, while those collected from

open pools are much darker.

Culiseta melanura have a characteristic egg raft unlike

any other mosquito observed in Florida (Fig. 2-1). Eggs are

attached in a circular doughnut-shaped, concave raft.

Numerous papers have been written dealing with various aspects

of the biology of this species. The reader is referred to

these for a comprehensive review: (Burbutis & Lake, 1956;

Edman et al., 1968; 1972; Favorite & Davis, 1958; Hayes, 1958;

1961; 1962; Joseph & Bickley, 1969; Lake et al., 1962; Love

& Goodwin, 1961; 1963; Mokry, 1984; Morris & Srihongse, 1978;

Morris et al., 1976; 1980; Moussa et al., 1966; Muul et al.,

1975; Nasci & Edman, 1981a; 1981b; 1984; Reeves et al., 1948;

Scott et al., 1984; Siverly & Schoof, 1962; Spielman, 1964;

Wallis, 1954; 1962; Wallis & Whitman, 1967; and Wirth, 1947).

This species has been reported from all but one county of

Florida, although voucher specimens are lacking to confirm

most records. Because of the difficulty in separating

specimens that have been damaged in trap collections, the

southern distribution of this species in Florida awaits

confirmation. Adult activity occurs throughout the year in

Florida. The number of generations per year must vary

according to seasonal fluctuations in rainfall and

temperature. A minimum number of 2 generations per year

occurs. Gravid females are present throughout the year.

Since adults are known to live for several months, and since









Fig. 2.1. Egg raft of Culiseta melanura, 4 hours old. Gravid
female collected in resting box, Lake Butler, Florida.













































































































j -











populations tend to be overlapping with little apparent

synchrony in Florida, the actual number of generations becomes

difficult to determine. There are, however, 2 distinct

seasonal morphs in Florida which replace each other. A large

dark cool weather morph appears in early winter and is the

predominant form until late spring and early summer, where it

is gradually replaced by a smaller lighter form. Replacement

is never absolute, perhaps owing to the longevity of adult

females.

Seasonal abundance

Collections were made weekly to determine seasonal

abundance at the study site. These collections included four

CDC miniature light traps baited with 5 pounds of dry ice per

trap, and resting box collections. Each CDC trap had a

resting box (Fig. 2.2) placed nearby. Trap collections were

pooled by months collected. Several notable events occurred

during the study period. The primary collection site centered

around a small cypress dome surrounded by pine flatwoods.

Typically this habitat dries completely during the early

summer months. Periods during which no water was present in

the swamp occurred in April,May, and June. Unfortunately

during November the pine woods were clear cut, exposing the

cypress and leaving the cypress dome as a small island in the

middle of a vast expanse of open field. Catches declined

dramatically following the loss of surrounding woods.

Although the site continued to be a source of Cs. melanura,

















































(0



0
4




U


-4



0
C)
0

r-I






0
0






C"
0

(n














larval populations declined steadily, and now only a few

larvae may be found there. This is perhaps due to the

unattractiveness of the open habitat. Larvae may only be

found there in stump holes (Fig. 2.3) and under root systems

(Fig.2.4). Prior to the clear-cut operations, larvae were

abundant in the open but shaded pools throughout the cypress

dome. As water levels receded, larvae were found closer and

closer to the overhangs of the hummocks that were occupied by

Vaccinium sp. Adult populations retreated to woods that were

left undisturbed by the logging operations. There adult

populations were sampled regularly by the methods described

above. Numerous burrows within these woods provided abundant

oviposition sites, and larval populations were present as long

as water levels were high enough to pool water at the ends of

the burrow systems. When water levels dropped below the level

of the burrow systems, larvae were absent. However, larvae

reappeared very soon after burrows became reflooded.

Resting box collections dropped dramatically after the

woods were cut, but C02-baited trap catch numbers rose. This

may represent more host-seeking activity into the now exposed

open areas. Previously adults may have left the swamps to

venture into the open woods in search of a blood meal.

Personal experience has demonstrated that the poorest bait

collections are made close to the oviposition sites for Cs.

melanura. Conversely, these are the preferred sites for

maximum resting box collections. These factors influence the

effectiveness of surveillance techniques.









Fig. 2.3. Rot hole at base of pine tree, leading down to
underground larval collection site of Culiseta melanura.









28








...





. ,,


A ,I I ql
.N' ;.


i Jt ,
r w


5 'jl'4 "









Fig. 2.4. Rotted stump cavity in which Culiseta melanura
adults and larvae were collected throughout the year at Lake
Butler, Florida.












31

To illustrate the seasonal collection records for Cs. melanura

at Lake Butler, Florida, data are presented in Tables 2.1 &

2.2. Table 2.1 consists of a comparison between total monthly

catches (male & female) using CDC miniature bait traps and

resting boxes. Table 2.2 is a further breakdown of the female

monthly resting box catches subdivided into physiological

states. Since the habitat was altered severely in November,

these data are presented to illustrate the fact that CO2-

baited traps alone appear to miss periods of summer activity

of Cs. melanura in Florida, whereas resting boxes may do the

same in winter. Location of these traps presumably plays a

significant role in the effectiveness of either technique.

Larvae were abundant during February 1986. The swamp

gradually dried up until in late April no surface water was

present. Egg rafts were present in March and early April

right up to the time that surface water disappeared. The

swamp remained dry for the month of May. Heavy showers

occasionally pooled water for a few days, but no permanent

water was present until June. Larvae were not present (Cs.

melanura) until July. These were early instar. Whether these

were the result of oviposition in April, or from recent

oviposition is unclear. During the drought I dug down to

water level, a depth of 30 inches. At about 10 inches the

leaf litter and detritus was possibly sufficiently moist to

sustain larvae during drought periods. Early instars were

collected from the freshly dug holes. I cannot say for


j









32

Table 2.1

Seasonal abundance of Culiseta melanura at Lake Butler, Florida
(Feb. 1986 Mar. 1987)
CDC-C02 Resting Boxes

Month Males Females Males Females

February 0 2 10 5
March 1 20 139 123
April 0 63 195 230
May 0 134 86 398
June 0 8 42 230
July 0 5 28 77
August 0 0 10 65
September 0 15 156 290
October 0 19 289 277
November* 0 2 8 9
December 0 9 68 26
January 0 77 26 9
February 0 77 13 12
March 0 178 7 3

swamp clear-cut


certain that oviposition did not occur in the holes. However,

later rearing experiments with Cs. melanura demonstrated that

even after 2 months at moderate temperatures (up to 30"C) and

in the presence of food, some larvae appeared to be still

second instar despite the fact that the majority of their

siblings had pupated. This may offer a mechanism for larval

survival during extended drought. If larval dormancy is

partially induced by high temperatures in Florida (as it

apparently is cold-induced in the north), the larvae might

survive for several months below the surface of the ground,

sustained by high humidity in moist detritus, but otherwise

remaining inactive. This is a matter that merits further

investigation.









33

One of the important factors that needs to be monitored

in female mosquitoes is their physiological state. Periods

of host-seeking activity will be followed by the presence of

gravid and ovipositing females. The timing of these

activities is better monitored by resting box collections.

Light trap collections usually consist of nulliparous females

that are presumed to be seeking hosts. Gravid and bloodfed

females are rarely attracted to baited traps. Host seeking and

bloodfeeding apparently occurred throughout the year at the

study site in Florida. Yearly resting box collections for

females are presented in Table 2. About 50% of the females

collected were graded as non-blooded and non-gravid. This

classification does not distinguish between those females that

were taking their first or second bloodmeal.

Resting box collections provided the largest collections

of Cs. melanura at the Lake Butler site. Evidence of year

round biting activity, as well as presence of males, indicates

tremendous plasticity within this species. Peaks of adult

abundance (Tables 2.1 & 2.2.) correspond to May/June and

September/October. Miniature CDC traps (Table 2.1) support

the May/June period of activity. However, the single large

collection of Cs. melanura females in May occurred on a night

in which the first rainfall in several weeks fell. This

agrees with numerous reports in the literature that Cs.

melanura adults are most active during periods of rain and

inclement weather. The November destruction of the collection









34

Table 2.2
Seasonal abundance and physiological state of Culiseta
melanura females collected from resting boxes, Lake Butler,
Fla. (Feb. 1986 March 1987). nbg=non blooded, non-gravid;
b=blooded; bg=blood-gravid; g=gravid; n=total/month;()=
percent of monthly total
Month nbc b bq g n

February 2(50) 2(50) 0 0 4
March 114(74) 15(9.7) 8(5.2) 17(11) 154
April 166(72) 2(1) 22(9.5) 42(18) 232
May 311(80) 4(1) 34(8.7) 41(10.5) 390
June 104(47) 5(2.2) 51(23) 61(27.6) 221
July 39(49) 3(3.8) 11(14) 26(33) 79
August 34(52) 8(12.3) 19(29) 4(6) 65
September 171(60) 4(1.3) 70(24) 42(14.6) 287
October 142(52) 2(1) 72(26.4) 57(21) 273
November 0 0 0 2(100) 2
December 12(50) 5(21) 3(12.5) 4(16.7) 24
January 8(62) 1(7.6) 3(23) 1(7.6) 13
February 11(92) 0 1(8) 0 12
March 2(50) 0 0 2(50) 4


site occurred at just the time when a seasonal shift should

have been most apparent. This re-emphasizes that trapping

data are biased by environmental conditions. In this example

one day of rainfall following an extended drought totally

shifted the response to baited traps. From the above data

the following points may be made. Year round activity of Cs.

melanura occurred at the Lake Butler study site. Males were

present throughout the year. There is a suggestion of

seasonal variation in the attractiveness of CO-baited traps.

Based on the resting box collections, male densities appeared

to peak one month prior to female densities. CDC collections

were greatest on nights with some precipitation. Male Cs.

melanura are not attracted to CDC CO2-baited traps in any

numbers. This fact was later determined to be a function of









35

the trap design. Simple inversion of the CDC trap (Fig. 2.5)

so that the fan pulled upwards increased all catches,

including males of other species that are normally not

collected.

During subsequent years (1988-1989) much oviposition was

noted during October, November, and December. Adults were

again present throughout the summer, and bloodfed females were

collected throughout the year. Larval activity was not

apparent during the summer months. Either larval activity

is restricted to subsurface water levels or larvae suspend

development until late summer when rains raise water levels.

Other species occurring with Cs. melanura at Lake Butler,

Florida were Cx. territans, Anopheles crucians and

Uranotaenia sapphirina. Culex territans and Ur. sapphirina

also occurred with Cs. melanura at the New Hampshire locality.

During periods of high water in summertime, Cx. pilosus

(Dyar & Knab) occurred in larger pools of open areas at the

margin of the swamp, as did various Aedes and Psorophora

species. However, within the restricted habitat of stump

holes and burrows, Cs. melanura was either the sole occupant

or occasionally shared the habitat with Cx. territans.









Fig. 2.5. Inverted CDC miniature light trap at Lake Butler,
Florida.




































i















CHAPTER 3

VARIATION IN CUTICULAR HYDROCARBON PROFILES
IN Culiseta melanura

Introduction

Cuticular hydrocarbon composition is an expression of a

genotype, thus making it a potential taxonomic character.

Lockey (1988) reviewed insect cuticular lipid composition,

stating that hydrocarbon composition is related to

taxonomically grouped species, and that closely related

species tended to have qualitatively similar hydrocarbon

patterns, with different proportions. Less closely related

species tended to have hydrocarbon patterns differing both

qualitatively and quantitatively. Within mosquitoes, species

separation has been confined to the genus Anopheles (Carlson,

1982, 1984; Carlson & Service, 1979, 1980; Milligan et al.,

1986). Despite similarities in chromatograms, species

separation within the Anopheles gambiae complex was achieved

by comparing the relative abundance of selected peaks (Carlson

& Service, 1979, 1980). Using percentage composition of

various classes of hydrocarbons, Lockey (1978, 1988) was able

to separate 3 species of Tenebrionidae.

When hydrocarbon profiles are applied to cryptic species

or to analysis of intraspecific variation, the mechanism











behind such comparisons is typically a quantitative

(statistical) comparison of peak ratios between selected

hydrocarbons. These are identified by a 4 digit number, their

Kovats Index (Kovats, 1965). Larger peaks constitute the

major percent composition of a particular sample.

Underlying statistical comparison of peak percentages or

peak ratios is the major assumption that the variation in

these values is normally distributed. In order to apply most

standard statistical comparisons, normality of distribution

of the variable of interest is assumed. Knowledge of the

normality of a sample may confirm or reject certain hypotheses

about the factor affecting the phenomenon of interest. If

non-normal distribution is found, this may indicate certain

factors affecting the variable of interest (Sokal & Rohlf,

1969). If normal distribution is assumed, predictions and

tests of hypotheses are based upon this assumption.

Statistical conclusions are only as valid as our assumptions

about the data.

Adult specimens of Cs. melanura were collected from

various localities at different times of the year. As part

of the ongoing study concerning the behavior and ecology of

hostseeking in mosquitoes, I decided to characterize Cs.

melanura by means of hydrocarbon profiles. Since the only

published data relating hydrocarbon patterns in mosquitoes was

for the genus Anopheles, I felt that the new information

provided by this technique would provide a baseline for









40

further investigations into the usefulness of this technique

for comparison of mosquito species other than Anopheles. I

was also interested in determining whether or not any evidence

existed to suggest a polytypic species. Preliminary field

observations had revealed a larger, darker winter form of this

species in Florida. To illustrate congeneric differences, I

compared Culiseta melanura chromatograms with those of Cs.

inornata. To illustrate intergeneric differences, Culex

territans and Uranotaenia sapphirina were compared from the

same habitat and location as Cs. melanura.

The type locality for Cs. melanura is New Hampshire

(Knight & Stone, 1977). Specimens were collected from New

Hampshire and Vermont (new collection record) and compared

with Florida specimens. Since one of the reported advantages

of hydrocarbon analysis is that the patterns are stable,

regardless of the age of the specimen, it was felt that a

comparison between geographic extremes of the range of this

mosquito species might reveal maximum differences (geographic)

as well as possibly revealing the existence of cryptic

species. As more and more hydrocarbon profiles were compared,

variation appeared to be at least as extreme within one site

as between geographic limits. This perplexing situation led

to the following attempt at isolating some of the sources of

variation seen in wild specimens. Before I could characterize

Cs. melanura by this technique, I felt that an attempt should

be made to explain as much of the individual variation as











possible. I present preliminary data here and suggest partial

explanations for the hydrocarbon profile variability. Also,

I discuss the implication of this variability relative to the

application of this technique to the solving of taxonomic

questions.

Methods and Materials

Wild adult Cs. melanura were collected in resting boxes

(Florida) and by CDC miniature light traps (New Hampshire &

Florida). Dry ice was added to the CDC traps in Florida, with

nightly amounts being approximately 5 pounds per trap. This

bait was suspended beside the trap, and traps were placed

about 2 feet above the ground. Because I had no previous

indication of seasonal variation in hydrocarbon patterns,

collections were made as material was needed. Specimens from

the same collection date were later pooled for analyzing

seasonal variation.

Cuticular hydrocarbons were extracted by soaking

individual mosquitoes in hexane for at least ten minutes.

This extract was then cleaned by passage through a silica-gel

hexane column. This column permitted the passage of the non-

polar hydrocarbons, but retained the polar lipids and fats.

The extracted hydrocarbons were collected into 3 ml of hexane

extract, then concentrated by evaporation with nitrogen gas.

The final extract was re-constituted and 1/10 microliter was

injected into the gas chromatograph (GC) by an on-column

injector(SGE). A Varian Model 3200 flame ionization GC









42

instrument was used. The column type was a 30 meter DB-1,

0.32 mm. diameter capillary tube. The carrier gas was helium.

The oven temperature was programmed from 60*C to 320*C at

12*C/minute for 35 minutes. The GC was coupled through a 760

series interface and a Nelson Analytical System to an IBM

PC/XT computer, an Epsom FX 80+ printer, and a Hewlett-Packard

7470A plotter for data quantification and output. Samples were

compared with alkane standards (C14 C44) for calculation of

their respective Kovats Index (KI).

Frequency distribution normality for peak percent

composition was tested using the graphic ranked deviates

(rankits) of Sokal & Rohlf (1969). Ranked deviates were

plotted for wild adult females of Cs. melanura. After

determination of non-normal distribution within the wild

sample, additional statistical comparisons were made for wild

individuals and for individuals from known environmental

conditions. Initial statistical comparisons were made between

wild New Hampshire and Florida females. Since a non-normal

distribution was suggested by the ranked deviate test, a non-

parametric ANOVA and Kruskal-Wallis test were conducted on

these data. These tests were expanded to include comparisons

between Florida samples categorized by months collected, as

well as between specimens reared at 2 different temperatures.

Discriminant analysis was performed on data from all sample

categories (New Hampshire, Florida by months, and 2 rearing

temperatures) to look for trends in similarity measured by











mean square distances. From these comparisons I was able to

correlate variation within samples with seasonality and to

suggest temperature variation as a factor influencing change

in hydrocarbon profiles. To test for the effect of

temperature upon the KI peaks of interest, 6 females from each

adult population of 15C and 30"C reared larvae were compared.

Actual percent composition for peaks with KI 3100, 3135,

3165, 3300, 3335, 3365, 4225, 4245, 4280, 4425, and 4445 were

examined initially. These 11 peaks were then made to equal

100 percent composition and adjusted percentages were

calculated for each of these peaks. These adjusted values were

used in all statistical tests, as well as in all graphs and

tables presented here.

Field-collected gravid females were placed in cages for

oviposition. These cages were plexiglass with dimensions of

45cm X 37cm X 37cm. Oviposition was at first unsuccessful

since most of the females died before laying eggs. This was

partially resolved by placing filtered water from field

collection larval sites into black oviposition jars. Some

oviposition was obtained. However, a high mortality still

occurred among gravid females. Culiseta melanura adults in

the field had been observed hanging suspended on the upper

roof of the mammal burrows that they frequented. Oviposition

cups were then modified to include a lid that covered one half

of the overall opening to the water. A higher percentage of

oviposition was achieved quickly. This technique is strongly











suggested for those interested in obtaining large numbers of

egg rafts from wild gravid females.

Egg rafts obtained in this manner were hatched in

filtered water from the Lake Butler site. Larvae were reared

in water collected from underground burrows at the same site.

These burrows consistently harbored adult and larval Cs.

melanura for more than three years. Larval rearing was

accomplished in both enamel pans and 1 liter plastic bottles.

Since the burrows are seldom if ever exposed to direct light,

larval rearing was conducted in darkened rooms at 2 different

temperatures (15"C & 30"C). Ground hog chow was added

initially to larval rearing water, but proved to foul rearing

containers quickly. Therefore, feeding consisted of the

addition of field-collected water from the same habitat,

replacing equally the water volume lost by evaporation.

Larvae reared at 30C required 2 weeks from egg hatch to

pupation, while those reared at 15*C required 4-6 weeks.

Variation in development time within the colder temperature

was quite evident. In every case, at time of initial pupation

of the cold temperature larvae there would also be larvae that

appeared to still be 2nd instar. This was rarely seen at

30*C, but did also occur. Larvae that were reared at the

warmer temperature were well synchronized.

Egg rafts were hatched at room temperature (27"C), then

split into 2 approximately equal batches to examine the effect

of temperature on larval development and hydrocarbon profiles.











One half was reared at 30*C, the other half was reared at

15C.

Results

Intergeneric differences in hydrocarbon profiles are

illustrated in Fig. 3.1. Culex territans, Ur. sapphirina,

and Cs. melanura are all quite different, both qualitatively

and quantitatively.

Intrageneric differences between Cs. melanura and Cs.

inornata are illustrated in Fig. 3.2(males) and Fig. 3.3

(females). Again, differences are readily observed between

these species. However, when the distribution frequencies of

selected KI peaks 3100, 3135, 3165, 3300, 3335, 3365, 4225,

4245, 4280, 4425, and 4445 were examined within Cs. melanura,

considerable variation was seen to exist.

Initial comparisons between specimens from New Hampshire

and Lake Butler, Florida showed similarities between the sexes

(Fig. 3.4 & Fig. 3.5). No obvious geographic variation was

suggested from the chromatograms. Comparisons between sexes

from the Florida site showed little to suggest obvious sexual

dimorphism. However, if the relative percent composition for

any of the larger peaks had been compared, it might have been

possible to separate males and females. Gas

chromatography/Mass Spectroscopy data on this await

interpretation. Examination of Fig. 3.6 shows KI 3100 peak

in males to be significantly larger than the same peak in

females. Similarly, KI 3300 peak is virtually absent in









Fig. 3.1. Cuticular hydrocarbon profiles for adult female
Culex territans, Uranotaenia sapphirina, and Culiseta melanura
from Durham, New Hampshire. Specimens were collected
September 15, 1988, near Spruce Hole bog.


























































15 20 25
Retention Time (min.)









Fig. 3.2. Cuticular hydrocarbon profiles for adult Culiseta
inornata and Cs. melanura males from Florida. Cs. inornata
specimens were field-collected as pupae, Gainesville, Florida,
January, 1989. Culiseta melanura specimens were collected as
pupae, Lake Butler, Florida, January, 1989.



























































15 20 25
Retention Time (min.)









Fig. 3.3. Cuticular hydrocarbon profiles for adult Culiseta
inornata and Cs. melanura females from Florida. Culiseta
inornata specimens were field-collected as pupae, Gainesville,
Florida, January, 1989. Culiseta melanura specimens were
collected as pupae, Lake Butler, Florida, January, 1989.






































NI


AAL A ~ Ii~ I


I I
S15 20 25
Retention Time (min.)


Cs. inornata Female
Lab


Cs. melanura Female
Lake Butler, FL


S


N
" I



S |


UULI









Fig. 3.4. Comparison between cuticular hydrocarbon profiles
of adult female Culiseta melanura from New Hampshire and
Florida.












Cs. milanura Female
New Hampshire


Cs. melanura Female
Lake Butler, FL


15 20 25 30
Retention Time (min.)









Fig. 3.5. Comparison between cuticular hydrocarbon profiles
of adult male Culiseta melanura from New Hampshire and
Florida.












Cs. melonura Male
New Hampshire


Cs. melanura Male
Lake Butler, FL


20
Retention Time (min.)









Fig. 3.6. Comparison between cuticular hydrocarbon profiles
of adult male and female Culiseta melanura from Lake Butler,
Florida.












Cs. melanura Female
Lake Butler, FL


Cs. molanuro Male
Lake Butler, FL


15 20 25 30
Retention Time (min.)











females, but present in males. The KI 3410 peak is obvious in

males, but absent in females. These differences, if

considered mathematically, might be shown to be significantly

different. Variation of this magnitude within samples of the

same species necessitated the test for non-normal frequency

distribution.

Sufficient variation existed in values for relative

percent composition for the 11 KI peaks to require further

investigation. Table 3.1 illustrates the means and standard

deviations for KI peaks from wild specimens separated by

locality and by month. Much overlap exists between

collections, but a shift in mean values is also suggested.

Two of the larger peaks (KI 3365 and 4280) were selected for

testing for normal distribution frequencies. Raw data used

for the Rankit test for normality for peaks KI 3365 & KI 4280

are presented in Table 3.2. These data are plotted in Fig.

3.7 and Fig. 3.8. As revealed by the graphs, the data are not

normally distributed. Distribution frequencies are considered

to be non-normal if the line of plotted rankit values is not

straight. If any points deviate from a perfect linear

relationship, the distribution is considered non-normal.

These same wild caught-females used in the ranked deviate

test were plotted by months of capture to see if a seasonal

shift in values in percent composition occurred. These values

are plotted and graphed in Fig. 3.9. To check for

corresponding seasonal variation in geographic location,












Table 3.1


Mean and Standard Deviation of


melanura.
KI NH
3100 Sept
AVG 0.78
STD 0.31

3135
AVG 5.64
STD 0.81

3165
AVG 3.89
STD 3.68

3300
AVG 0.45
STD 0.45

3335
AVG 5.11
STD 0.83

3365
AVG 20.43
STD 3.40

4225
AVG 7.30
STD 0.88

4245
AVG 8.91
STD 1.14

4280
AVG 5.97
STD 2.45


FLORIDA
March
2.66
5.36


4.56
0.60


1.84
0.37


2.15
3.51


5.73
0.80


April
0.96
0.51


4.13
1.47


1.40
0.72


0.37
0.29


6.22
2.94


16.53 14.24
2.71 6.95


6.22
1.13


8.76
1.17


8.50
2.06


6.60
1.12


8.42
1.97


8.20
3.24


KI values of Wild Culiseta

FL


May
2.71
2.14


5.58
1.36


2.02
0.47


3.02
2.00


7.74
2.26


17.19
3.68


6.15
0.87


6.32
1.64


4.58
2.11


August
1.44
0.55


5.47
0.92


1.05
0.37


2.35
3.66


11.80
1.28


19.59
2.14


4.71
0.88


3.71
0.84


2.71
0.89


1.93
3.17


4.79
1.33


1.63
0.63


1.80
2.74


7.24
2.92


16.36
5.02


6.12
1.20


7.34
2.35


6.64
3.30


23.65 28.47
3.27 4.67


19.40
2.41


20.98
4.14


26.06 29.12 26.61
2.64 3.19 4.25


18.61
1.66


18.05
1.86


19.55
3.12


4425
AVG
STD

4445
AVG
STD


22.16
2.19


19.36
1.74












Table 3.2. Rankit values for percent composition of KI 3365
and 4280 among wild adult female Culiseta melanura. (Bi =
Rankit value)

KI 3365 Bi KI 4280 Bi
% Comp. %Comp.
30.37 2.66 12.87 1.99
25.82 1.75 12.85 1.98
24.26 1.44 12.02 1.72
23.48 1.29 11.36 1.51
22.87 1.16 11.27 1.48
22.81 1.15 11.20 1.46
22.54 1.10 10.74 1.32
22.46 1.08 10.62 1.28
22.02 1.00 10.44 1.22
21.96 0.98 10.16 1.14
21.49 0.89 9.77 1.01
21.30 0.85 9.67 0.98
20.95 0.78 8.40 0.58
20.00 0.59 8.11 0.49
19.76 0.55 7.89 0.43
19.49 0.49 7.75 0.38
19.30 0.46 7.54 0.32
18.84 0.36 7.43 0.28
18.83 0.36 7.27 0.23
18.57 0.31 7.22 0.21
18.10 0.22 6.77 0.07
17.96 0.19 6.77 0.07
17.47 0.09 6.73 0.06
17.14 0.03 6.69 0.05
16.95 -0.01 6.67 0.04
16.54 -0.09 6.42 -0.04
16.23 -0.16 6.30 -0.07
16.20 -0.16 6.05 -0.15
16.08 -0.18 6.05 -0.15
16.05 -0.19 5.99 -0.17
15.77 -0.25 5.94 -0.19
15.34 -0.33 5.32 -0.38
14.85 -0.43 4.90 -0.51
14.47 -0.51 4.82 -0.54
14.46 -0.51 4.50 -0.64
14.19 -0.56 4.43 -0.66
13.96 -0.61 4.03 -0.78
13.77 -0.64 4.00 -0.79
13.63 -0.67 3.64 -0.91
13.60 -0.68 3.36 -0.99
13.59 -0.68 3.24 -1.03
13.06 -0.79 3.21 -1.04
12.70 -0.86 3.06 -1.09
12.62 -0.87 3.02 -1.10
12.21 -0.96 2.60 -1.23
9.43 -1.51 1.74 -1.50












Table 3.2 (cont.)

KI 3365 KI 4280
% Comp. Bi % Comp. Bi
8.17 -1.76 1.65 -1.53
6.91 -2.01 1.58 -1.55
6.27 -2.14 1.38 -1.62
5.83 -2.22 1.20 -1.67

17.01 6.53
5.03 3.19


male samples from New Hampshire and Florida were also compared

(Fig. 3.10) with females (Fig. 3.11). In all samples plotted

seasonal variation appeared in percent composition values for

KI peaks presented. Since seasonal variation occurred within

my Florida site, statistical analyses (1 Way ANOVA and

Kruskal-Wallis test) were conducted to determine whether these

observed differences were statistically significant. These

results are presented in Table 3.3. Several factors could

explain this variation. Among the possibilities are age, and

temperature. Since differences were seen in seasonal

patterns, and since I already knew of the existence of 2

seasonal morphs for Cs. melanura in Florida, an obvious factor

to test for was the effect of temperature on hydrocarbon

profiles.

Comparisons between KI 3100, 3135, 3165, 3300, 3335,

3365, 4225, 4245, 4280, 4425, and 4445 relative percent

composition for males and females reared at 15"C and 30*C are

illustrated in Fig. 3.12. The relative percent composition

of KI peaks 3335 and 3365 are higher at 30'C than 15"C, and

the reverse is true for KI peaks 4280 and 4445. Chromatograms










62

Table 3.3
ANOVA and Kruskal-Wallis results of comparisons between New
Hampshire versus Florida wild caught female Culiseta melanura
and Florida population separated by months.


NH vs FL
ANOVA
KI F P K-W
3100 1.0080 0.3204 0.0853

3135 2.9320 0.0933 0.0310

3165 13.2380 0.0007 0.0005

3300 1.8350 0.1819 0.0236

3335 4.0300 0.0503 0.0253

3365 4.6330 0.0364 0.0229

4225 6.7910 0.0122 0.0129

4245 3.2540 0.7750 0.0955

4280 0.2900 0.5928 0.5082

4425 8.0100 0.0068 0.0046

4445 0.0260 0.8726 0.7508


F
0.8700

3.4300

5.1440

2.1970

11.2890

1.8170

4.3000

16.1540

10.7910

4.3590

1.8090


FL by Months
ANOVA
P K-W
0.4649 0.0121

0.0265 0.0094

0.0044 0.0041

0.1042 0.0004

0.0001 0.0011

0.1605 0.0615

0.0105 0.0127

0.0001 0.0001

0.0001 0.0001

0.0098 0.0108

0.1619 0.2334


illustrating the effect of temperature on hydrocarbon profiles

are presented in Fig. 3.13 and Fig. 3.14. Statistical

comparisons (1 Way ANOVA and Kruskal-Wallis) between hot

(30*C) and cold (15"C) showed statistically significant

differences at the 0.05 level for 7 of the 11 peaks compared.

These results are presented in Table 3.4. Since hydrocarbon

profile variation appears to be at least in part affected by

larval rearing temperature, I then reexamined wild caught

females by month of capture.












Table 3.4
ANOVA and Kruskal-Wallis results of comparisons between
Laboratory Culiseta melanura at two different temperatures.
Hot = 30*C, cold = 15C
HOT VS COLD
ANOVA Kruskal-Wallis
KI F P
3100 5.8230 0.0250 0.0045

3135 12.5440 0.0019 0.0037

3165 0.3530 0.5588 0.6983

3300 0.5750 0.4566 0.5184

3335 44.1060 0.0001 0.0002

3365 3.8320 0.0637 0.0527

4225 8.0170 0.0100 0.0067

4245 28.1240 0.0001 0.0004

4280 10.1750 0.0044 0.0016

4425 0.9940 0.3302 0.6985

4445 6.1500 0.0217 0.0012



Discriminant analysis was applied to each of the samples to

classify specimens into seasonal categories, and to look for

trends in groupings. Table 3.5 shows how each sample is

broken down by season, illustrating areas of overlap and

separation. Table 3.6 illustrates the generated squared mean

distances for each class of specimens.














ra
r-q

'-4
0144


~44
LO
>4 c1



-29




r. 0
4






0 t


44 0

r0


4J 4-4

4.,
4JO


.4-4 0
r.M

0)4
bH
a)4




















41~.




41- 0 ()

0
.4OC




















040 (1
*rq















4.4i 4






.Q -4


04 -4 (0
'd-



r-UW
~4-

dIG PI
4 '
V4QI 4





























0
94-










0




0c
*M






*r-










E--4
-P


Cd


l ) M .
N.


CM 1O


0 0 I I
I I


sgjuUD o


rl-
0
r)












CM





0
10






GO
In




E
0

r-


.4a







(0

I-














--4


M
0 4
O
4-

0
4J N
.r-I q
r-4
AH


0 C





u2'U


4J *

-4 0
0 (0






0


U







0
(d 0





0
Q) -
M. W



0
SHC
t) 0)





Sa,
r-



0U



0 H 0)
c 0 w



r -4

* 4
c40)



a-r
a^ 3i
m +> u
^i ui
u -i )

ta r-
r0k
>i6~

























0
O









0
rT
gd
^1

O


u-i
6


0 10
6


c
0


c E

0
-W

a0
0>
Ot


S10
Jl-"
I


suoyDJ














H "-4


0





4-)



4)





0
4-41
Enc

to 0
>












41~
UO
rg(












40)
>


4r4m










.-HO

Q)
44 (d














0
.r4 4.)
4J F-

"- :j
4-)
anl
4V


'-4
~'O



















0
ctH

cI):




kHIt
10




















GN(-4 U~
rz4
ON I
>)































Q)
Cd


u






bd
U


0 U0 0 L0 0 l0 0
Ir,) to CN -


U,









---0
It)




C4

II





Ul)



x
I












00
n
















co
U,














1 N


>0
CM


o








''











x~-o
I 0
10 0


U9GOJgd G8A!DI|9














a)
HZ




0 04


p a)




00
C44

















> 1
0a(
4-)


U,4


0En
0)z4





















0rq0
4(a
4Jk























0 (04

Q)
OH



























0 0
r-I 44
0r4m


















tp -i O
or q A %
-H > =
-4OH




4.iU
HHr



U,


OH

E:



OW
r4
-H C






























p4




'U)
Pc


Co


0
0S
ctf
S.~
CO
(D
a3


0 U) 0 t 0 ') 0
f4. n t )- t-


U,)



LO



10







CD



r)


co


V-



i r
10





So
-o








U) 0


IuaGJjd GAitDI88













H




44J



0 II
41

) 0)






0
ua
zo4

0







O-














0 0
-UA








)H -H
0--4 0
.- II
o H
(Q)











.- i I- ,
(0



























H0Q
*H4-1
c





a*











,. o
Q
vl *~

4- + (
o Q 'a



*--I k -






*P fi




























-.-
,/ -"
//'














1tn
a*


















OL
S-



















--
..-

























a + X < DO
N )I I I I N W W
Ct N o x





r-
od O *


(x *-... Xb aL


'-0)0)'' 00 r)




^ I-M


C) N- v- v- v-
-~~~~ ~ Oi 01 0 1wmD-
II I r -
*^\



'^J
N O OOCO ^ O O O C O O O t-CM o^
n n S CM CM S CM ^ i ^- ^


ue8.J9d GA!IDlj8













LO
in

H





l4
0
O -







Ocl

0 0


0
r.-1







WO








r-4
0) 0)
0
*














1) OH

4J l

M 'C


0 4
S II









0) 0
U I





















0)












H4-4
( 0












0 4
'- t C
H MQ)





44 e P
Cl cr) I)
0) -1ra-l
Q< (
e'
u)
*p m n











Cr0a


















Ul)
CVJ




04


i co
rN
















C14
W

















0
cd Cu





rn



a t L to

a + 0 1


Ln 0 LO 0 n 0 Lnp

r) n NC I


IUGO.Jd GA!IDMON









Fig. 3.13. Cuticular hydrocarbon profiles of adult female
Culiseta melanura reared at 15"C and 30C, compared to wild
adult female from Lake Butler, Florida (winter specimen).












Cs. melonuro Female
Lab. 15 C


Cs. melanura Female
Lob. 30 C


e on


Cs. melanura Female
Lake Butler, FL


Retention Time (min.)









Fig. 3.14. Cuticular hydrocarbon profiles of adult male
Culiseta melanura reared at 15"C and 30"C, compared to wild
adult male from Lake Butler, Florida, (winter specimen).








79


Cs. melanura Male
Lab. 15 C












Cs. melanura Male
Lab. 30 C












Cs. melonura Male
Lake Butler, FL


S;1



8 s I



10 15 20 25 30
Retention Time (min.)












Table 3.5


Discriminant Analysis Classification Summary for Culiseta
melanura. Number of Observations and Percentages Classified
by month:


MONTH APR


APR


AUG


COLD


HOT


MAR


MAY


6
42.86


AUG COLD


1 4
7.14 28.57


0 6
0.00 100.00


1
6.67


0
0.00


HOT MAR MAY


0
0.00


0
0.00


0 11 1
0.00 73.33 6.67


1 0
12.50 0.00


1 0
8.33 0.00


1 0
10.00 0.00


0
0.00


Total 10
Per. 13.70


0
0.00


0
0.00


0
0.00


0
0.00


0
0.00


7 15
9.59 20.55


7
87.50


0
0.00


0
0.00


0
0.00


8
10.96


1 2
7.14 14.29


0
0.00


1
6.67


0
0.00


11
91.67


0
0.00


0
0.00


13
17.81


0
0.00


0
0.00


0
0.00


0
0.00


8
80.00


NH Total


0 14
0.00 100.00


0 6
0.00 100.00


1 15
6.67 100.00


0 8
0.00 100.00


0 12
0.00 100.00


1 10
10.00 100.00


0 8 8
0.00 100.00 100.00


10 10 73
13.70 13.70 100.00










81

Table 3.6

Generalized Squared Distance to each corresponding Cluster.

REG APR AUG COLD HOT MAR MAY NH
APR 0 15.76 2.77 20.63 2.82 6.70 15.01
AUG 15.76 0 20.61 7.53 23.69 14.09 42.88
COLD 2.77 20.61 0 20.19 7.91 11.83 21.02
HOT 20.63 7.53 20.19 0 33.69 24.14 54.38
MAR 2.82 23.69 7.91 33.69 0 7.20 10.14
MAY 6.70 14.09 11.83 24.14 7.20 0 11.76
NH 15.01 42.88 21.02 54.38 10.14 11.76 0

Conclusions

Hydrocarbon profiles do in fact show clear species

differences between non-closely related species. However,

within species variation is sufficient to merit further

consideration. My specimens were separable statistically by

month of collection and by rearing temperature. Both of these

results are new to science. When samples are measured by

discriminate analysis, degree of similarity is measured by

close values in squared mean distances. From this we see that

April specimens are equally close to cold (15"C) and March

specimens. May follows April which is followed by New

Hampshire, August, and finally hot (30"C). This suggests that

the variation seen in the winter and spring months is due to

cooler temperatures, and the summer-fall variation is due to

warm temperatures. Hydrocarbon profiles do not appear fixed

within a species, but are subject to significant variation due

to at least 1 factor, temperature. The warm months 8(August)

and 5(May) showed patterns similar to 30*C reared larvae, and

the colder months 4(April) and 3(March) showed patterns











similar to 15"C larvae. This suggests a seasonal shift in

hydrocarbon profile patterns that would vary in timing from

year to year depending on water level and temperature.

Discussion

Considerable variation between individuals suggests the

need for further investigation into the role of such factors

as nutrition (larval and adult), age, sex, and water quality

on the hydrocarbon profile of any particular species. Caution

is advised in interpreting differences between individuals on

a purely statistical basis. Other criteria such as structure,

behavior, seasonality, and geographic distribution need to be

considered when attempting to distinguish forms. Interaction

between these factors is likely, and needs to be addressed.

A re-examination of published articles on the use of

hydrocarbon profiles as taxonomic tools shows that variation

exhibited by specimens may not fit within the expected normal

frequency distribution pattern. This may be due to the small

sample size that was available for analysis. A 1-way ANOVA

was typically used for comparisons. This test has several

assumptions, one of which is normality of distribution.

When dealing with closely related species or suspected

siblings, sample size becomes the major factor in the ability

to separate similar forms. Since the percent composition will

be a function of quantitative differences, researchers are at

the mercy of the specimens provided and the accuracy of data

that accompanies insects. Species that are considered to be

less closely related show qualitative differences in their









83

respective GC peaks. However, closely related species appear

to show only small quantitative differences. As presented

here, sufficient variation exists within GC peaks to cause

overlap of data sets. Once the relationship between GC

profile, temperature of larval development, adult age, and

adult nutrition are understood, precise definition of a

particular species may be possible.















CHAPTER 4
HOST PREFERENCE IN MOSQUITOES, A REVIEW

Introduction


One method of discussing host preference is to analyse

the numerous articles published on the subject. I believe

that sufficient data are available in the literature to

develop an argument for host preference being other than

preference for a species of animal. This chapter contains

condensations, re-examinations, and summaries of a few

publications dealing with the subject of host preference. I

have tried to provide sufficient examples to illustrate

diversity of hosts for particular species, as well as citing

inconsistencies in applying the term host preference. This

review is presented to develop the hypothesis that host

preference involves something more than recognition of a

particular animal species. Host preference implies that the

mosquito somehow prefers certain animals for bloodmeals. If

blood alone is the primary motivating factor, then logically

almost any animal would do.

Florida has 71 known species and subspecies of

mosquitoes. Of these, 20 never bite man. This means that for

one or more reasons man is neither a suitable host nor a

preferred host for 28% of the Florida mosquitoes. For the











remaining 50 species, man is at times an acceptable host, but

no species uses man for bloodmeals to the exclusion of all

other animals .

Host preference records are usually determined by

bloodmeal analysis, preference being determined by calculated

percentages of types of animal blood meals from collections

of bloodfed female mosquitoes.

Literature Review

Crans (1965) divided mosquito populations into 4 major

categories according to their bloodmeal sources: (1) mammalian

feeders which only occasionally fed on birds; (2) avian

feeders which rarely feed on mammals; (3) general feeders

which are indiscriminate feeders on either mammals or birds;

and (4) amphibian feeders which feed primarily on cold-blooded

animals.

Rempel et al. (1946) studied the feeding habits of some

Saskatchewan Aedes mosquitoes and concluded that none of the

species studied showed a host preference. The degree to which

a species fed upon a particular host appeared to be a function

of the availability of that host. Multiple bloodmeals (from

multiple hosts) were detected in one third of the samples

studied. Examination of their data showed that for the 4

study sites Aedes spencerii (Theobald) showed average

preferences for equine (24%), human (16%), bovine (9%), and

avian hosts (9%).











Downe (1960) concluded that host preference for mammals

was correlated with body surface area of the hosts, and that

the Aedes species studied had no preference for particular

mammals. When there were 2 or more mammals close together,

larger hosts were chosen only by chance. He also noted that

bloodmeal records did not appear to be correlated with the

weights of the animals. Dow et al. (1957) reported the numbers

of Culex tarsalis (Coq.) attracted to birds to be proportional

to the size of the birds. They also stated that birds of

different species but of similar sizes attracted similar

numbers of Cx. tarsalis. Downe (1962) studied Coquillettidia

perturbans (Walker)and reported a decided preference for

birds, with some mammalian bloodmeals. He reported a

considerable number attracted to mammal hosts without feeding.

In contrast, the majority attracted to birds took bloodmeals.

Multiple feedings were common suggesting that Cg. perturbans

may be unable to complete a successful bloodmeal on a

mammalian host. This capacity for mammalian-bird multiple

feeding makes this species a prime candidate as the vector of

EEE.

Hayes & Doane (1958) reported the first record of

Culiseta melanura biting man. No bloodmeal was taken, but

skin penetration was accomplished, resulting in swelling at

the site of the bite. Culiseta melanura is considered to be

almost exclusively a bird-feeder.









87

Karstad (1961) studied reptiles in southeast Georgia.

He found snakes, turtles, and alligators to possess

significant EEE antibodies, indicating exposure to the virus.

Very few mosquitoes are thought to feed on reptiles.

DeFoliart (1967) reported Ae. canadensis readily feeding on

a variety of turtles. Crans (1964) reported the following host

bloodmeal records from New Jersey: Anopheles quadrimaculatus

preferred mammal blood, mostly deer but included man and dogs;

Cg. perturbans preferred mammals (deer & rodent), with only

a single bird record. Aedes sollicitans fed mainly on deer,

but also on larger shore birds, humans, rabbits, and pigs.

Culiseta melanura fed almost exclusively on passerine birds,

but also fed on larger birds, deer, opossum, rodents, raccoon,

and frogs. Culex pipiens was exclusively a bird feeder.

Culex salinarius fed equally on mammals and birds, and Cx.

territans fed mostly on frogs, but also on birds, rodents,

raccoon, and turtles.

Crans (1970) studied Cx. territans in New Jersey. Of 315

bloodmeals, 279 were amphibian, 19 were reptile (6 turtle, 3

snake), 6 were avian, and 2 mammalian (rabbit & rodent). Most

often the frogs being fed upon were the bullfrog Rana

catesbeiana Shaw and the green frog R. clamitans Latreille.

Other frogs included the spring peeper (Hyla crucifer Weid.),

the southern leopard frog (Rana pipiens Schreber) and the

carpenter frog (R. virgatipes Cope). Means (1968) however

reported Cx. territans biting man.









88

Murphey et al. (1967) studied 14 species of mosquitoes

and their attraction to bird, mammal, and reptile-baited

traps. Bird hosts included mallard duck, Canada goose, common

egret, barn owl, red winged blackbird, turkey vulture, and

chicken. Mammal hosts included woodchuck, muskrat, raccoon,

opossum, red fox, meadow vole, river otter, and guinea pig.

A breakdown of some of their data is presented in table 4.1.

Although various mosquito species were collected, no distinct

host preference pattern was seen by the authors. What was

apparent was that if mosquitoes came to these hosts, most

took a bloodmeal on that particular host. The diversity of

hosts that are acceptable to the species (see table 4.1) would

suggest no host preference, as reported by the authors.

However, as shown in Chapter 7, these animals have much in

common, and in fact the data suggest a preference by the

mosquitoes for amount of respired volume of gases. Not all

hosts were used for the same number of trapping nights. The

number collected in Table 4.1 represents the number collected

per night per trial for that particular host. If the total

number of mosquitoes collected per host is divided by the

number of trials for that host, the resulting number collected

per trial per host becomes mallard (110), Canada goose (117),

common egret (128), barn owl (85), red winged blackbird

(128), turkey vulture (108), chicken (164),

muskrat (168), raccoon (150), opossum (140), red fox (97),

meadow vole (144), river otter (85), and guinea pig (180).












Table 4.1

SDecies of mosquitoes attracted to various hosts


Species
Mosquitoes


Bird


Cx. salinarius


Ae. sollicitans









Ae. cantator









Ae. vexans









Cx. pipiens


Bait Host


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


Number %
/Niaht Fed


79
95
94
94
84
100
89


86
92
93
80
87
94
91


64
41
92
100
92
89
84


78
76
100
86
79
86
83


83
70
83
100
94
100
84


Mammals
Bait Host


woodchuck
muskrat
raccoon
opossum
red fox
vole
otter
guinea pig

woodchuck
muskrat
raccoon
opossum
red fox
vole
otter
guinea pig

woodchuck
muskrat
raccoon
opossum
red fox
vole
otter
guinea pig

woodchuck
muskrat
raccoon
opossum
red fox
vole
otter
guinea pig

woodchuck
muskrat
raccoon
opossum
red fox
vole
otter
guinea pig


Number %
/niaht Fed


- --' ... -Bai ----- Hos t. -- j















Table 4.1 (Cont.)


An. quad.









Coq. perturbans









An. crucians









Cx. restuans


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


mallard
goose
egret
owl
blackbird
vulture
chicken


An. punctipennis mallard
goose
egret
owl
blackbird
vulture
chicken


4
0.5
2
3
6
6
3


12
79
83
100
80
100
76


71
95
85
62
88
88
90


100
69
70
100
82
100
76


17
79
75
67
78
50
84


woodchuck 17
muskrat 21
raccoon 12
opossum 14
red fox 15
vole 21
otter 4
guinea pig 6

woodchuck 11
muskrat 14
raccoon 16
opossum 4
red fox 6
vole 5
otter 0
guinea pig 6

woodchuck 9
muskrat 13
raccoon 14
opossum 11
red fox 5
vole 19
otter 9
guinea pig 2

woodchuck 0.7
muskrat 0.5
raccoon 0.5
opossum 0.33
red fox 0
vole 0
otter 0
guinea pig 0


woodchuck
muskrat
raccoon
opossum
red fox
vole
otter
guinea pig


4.8
1
3
4
1
2
1
7


Far fewer mosquitoes were attracted to reptiles. Those species

that showed some attraction to reptiles included Cx.


81
83
87
83
87
81
50
81

80
89
93
75
100
80
0
83

83
85
84
94
40
84
78
83

66
100
100
100
0
0
0
0

68
100
42
75
100
100
100
71









91

territans, An. quadrimaculatus, Ae. sollicitans, Cq.

perturbans, Cx. pipiens, and Cx.salinarius. Culex salinarius

and Cx. pipiens failed to bloodfeed on the reptiles, while Cq.

perturbans fed on snakes but not on turtles. Aedes

sollicitans fed on a kingsnake and snapping turtle, but not

on a watersnake and box turtle. Anopheles quadrimaculatus

fed on a watersnake, snapping turtle, and box turtle. Culex

territans fed on a kingsnake, watersnake, snapping turtle, and

box turtle. The total numbers of mosquitoes attracted to

reptiles were Cx. territans (104), An. quadrimaculatus (11),

Ae. sollicitans (25), Cq. perturbans (14), Cx. pipiens (19),

and Cx. salinarius (15). Culex territans was not collected

in mammal baited traps. All of the above data were extracted

from various total numbers reported by Murphey et al.(loc.

cit.). The authors attempted to correlate mosquito species

with host preference but were unable to do so.

Edman & Taylor (1968) documented a seasonal shift from

bloodfeeding on birds to mammals in Cx. nigripalpus. Increase

in mammal-feeding started in early summer, reached a maximum

between July and October, and was followed in the fall by a

return to mainly avian hosts during winter and spring. The

shift in feeding could not be related to any shift in the

availability of hosts at either study site. Rabbits were

frequent hosts at one site but were replaced by armadillos at

the other. The authors suggested that since seasonal

abundance of hosts did not explain the shift, perhaps seasonal




Full Text
THE RELATIONSHIP BETWEEN PALPAL MORPHOLOGY AND HOST¬
SEEKING BEHAVIOR IN ADULT MOSQUITOES (DIPTERA: CULICIDAE),
ESPECIALLY CULISETA MELANURA (COQ.)
By
PAUL MERRILL CHOATE, JR.
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1989

ACKNOWLEDGEMENTS
Many people have directly or indirectly influenced the
direction and completion of this dissertation. Dr. Tom Walker
first introduced me to the complexities of insect ecology.
Dr. Reece Sailer (deceased) agreed to chair my earlier
master's degree research in taxonomy of Coleóptera. Dr. P.
%
J. Darlington (deceased) offered encouragement during my
studies of Carabidae. He was always quick to provide
literature and advice. Dr. George Ball (Alberta) has
continued to prod me to completion of a graduate degree,
although both he and I at one time envisioned that work in
carabid taxonomy would lead to a graduate degree in
entomology. Leon Croizat openly corresponded with me during
a time when I was wandering between total abandonment of a
career in entomology and pursuit of a graduate degree. Fellow
coleopterists have always provided support and constructive
criticism. Many enjoyable days have been spent in the field
with good friends and colleagues. Among these are Scott
Gross, Lloyd Davis, Robert Davidson, Don Wilson, Dave Brozska,
and Mike Thomas.
Although our careers have diverged in different
directions, I owe Dr. Robert Woodruff many thanks for his
ii

encouragement from the time of my arrival at the University
of Florida. Despite our differences of opinion concerning
personal priorities and areas of research, I still owe him a
debt of gratitude. I also thank Dr. Howard Weems for his
personal and financial support for publications.
No acknowledgements are complete without thanking the
people personally responsible for providing financial and
logistical support. Dr. Donald W. Hall graciously accepted
me back into the graduate student world, agreeing to support
me both as cochairman and research advisor. Dr. Dan Kline
(USDA) provided an assistantship and found the means to keep
me headed in the right direction in spite of my affinity for
wandering. Dr. Howard Frank has enthusiastically encouraged
me to complete my graduate degree program. His continued
interest and investment of energy have been important. Dr.
Dave Carlson (USDA) graciously provided space and equipment
for my gas chromatography research.
Research projects would not succeed without the
availability of study sites. Mr. John Whitehead has
generously provided unlimited access to his Lake Butler farm.
A special thanks is given to him and his family for allowing
my unannounced visits to his farm.
Dr. J. Paul Gibbs introduced me to vector surveillance
and its related problems while working on Eastern Equine
Encephalomyelitis. The many unknown aspects of this disease
led me to work on mosquitoes and host preference.
in

Jimmy Becnel has provided SEM expertise, darkroom
facilities, company in the field, and listened patiently to
the ideas presented here. Likewise, Bill Oldacre helped me
to understand the physics behind detection of signals, energy,
and all things mathematical of which we tend to be
conveniently ignorant. Julio Hector, chemist, computer
programmer, and friend, often worked late to help me finish
data analysis and produce the chromatograms that are used
here. Without his expertise and self sacrifice, this project
would never have been completed within the necessary time
frame. Genie Avery gave willingly of her time and computer
expertise, helping to sort and arrange this lengthy document.
Hank McKeithen willingly permitted me the use of his computer
during many unannounced visits.
Family members suffer the most and gain the least during
a graduate program. My parents have patiently waited to see
me finish, despite many indications to the contrary. I thank
them for their many years of love and support.
Our daughter Teresa had to withstand the pressure of a
graduate student/father. It wasn't easy having a tired
graduate student to come home to. Finally, my wife Angela
provided the tolerance, support, forgiveness, and love that
are vital to the success of a graduate student.
IV

TABLE OF CONTENTS
ACKNOWLEDGEMENTS ii
ABSTRACT vii
CHAPTERS
1. INTRODUCTION 1
2. BIOLOGY AND SEASONAL ABUNDANCE OF CULISETA
MELANURA AT LAKE BUTLER, FLORIDA 19
General Biology 19
Seasonal Abundance 2 3
3. VARIATION IN CUTICULAR HYDROCARBON PROFILES
IN CULISETA MELANURA 38
Introduction 38
Methods and Materials 41
Results 4 5
Conclusions 81
Discussion 82
4. HOST PREFERENCE IN MOSQUITOES, A REVIEW ...84
Introduction 84
Literature Review 8 5
Host Preference in Culiseta melanura and
Cs. inornata 106
Discussion 107
5. MORPHOLOGY OF SENSORY STRUCTURES 108
Introduction 108
Methods and materials 128
Results 128
v

6. LARVAL REARING TEMPERATURE AND ITS EFFECT
ON ADULT MOSQUITO MORPHOLOGY, ESPECIALLY
PALPAL OLFACTORY STRUCTURES 185
Introduction 185
Methods and materials 196
Results 199
Conclusions 216
Discussion 217
7. QUANTIFICATION OF HOST EMANATIONS, TYPES,
AND THE IMPLICATION FOR ATTRACTION OF
ADULT MOSQUITOES 220
Introduction 220
Host emanations (especially C02)-quantity
and detection 225
Quantification of host emanations, espec¬
ially C02 227
Calculation of respired volumes of gases
and C02 229
Calculation of body surface area for var¬
ious animals 232
8. DISCUSSION, SUMMARY, PROPOSAL FOR FUTURE
RESEARCH 236
Discussion and summary 236
Proposal for future research 240
REFERENCES 242
BIOGRAPHICAL SKETCH 3 02
vi

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
THE RELATIONSHIP BETWEEN PALPAL MORPHOLOGY AND HOST-SEEKING
BEHAVIOR IN ADULT MOSQUITOES (DIPTERA: CULICIDAE), ESPECIALLY
CULISETA MELANURA (COQ.)
By
Paul Merrill Choate, Jr.
August, 1989
Chairman: Donald W. Hall
Major Department: Entomology and Nematology
Analysis of cuticular hydrocarbon profiles of adult
Culiseta melanura (Coquillett) from New Hampshire, Vermont
(new record), and Florida showed no evidence of cryptic
species. Variation (within site) was as great as variation
between sites. Cuticular hydrocarbon profiles are also
illustrated for Culex territans Walker, Uranotaenia
sapphirina (Osten Sacken), and Cs. melanura from New
Hampshire. Percent composition of hydrocarbons showed
seasonal variation in Cs. melanura from Lake Butler, Florida.
Larval rearing temperature is one factor contributing to
variation in hydrocarbon profiles.
Larval rearing temperatures produced intra-specific
variation in body size, palpal surface area, and the number
of sensory structures within Ae. aegypti (Linnaeus) and Cs.
Vll

melanura. Palpal configurations and surface area are
presented for Cs. melanura. Cs. inornata Williston, Culex
territans. Cx. restuans Theobald, Cx. quinquéfasciatus Say,
Cx. salinarius Coquillett, Cx. niqripalpus Theobald, Cx.
tarsalis Coquillett. Uranotaenia sapphirina. Psorophora ferox
(Humboldt), Ps. ciliata (Fabricius), Aedes aegypti. Ae.
albopictus (Skuse), Ae. canadensis Theobald, Ae. vexans
(Meigen), Ae. triseriatus (Say), Ae. infirmatus Dyar & Knab,
Ae. atlanticus Dyar & Knab, Ae. sticticus (Meigen), Ae.
mitchellae Dyar, Ae. sollicitans (Walker), Ae.
taeniorhynchus (Weidemann), and Orthopodomyia signifera
(Coquillett).
A correlation exists between sensory capabilities of
mosquitoes and the size range of preferred hosts as defined
by host body weight and surface area. Estimates are given
for respired volumes of gases and surface area for selected
animals. Sensory capabilities are defined as palpal surface
area containing olfactory structures/number of sensory
structures per palp, compared to the volume of air sampled
between palpi during flight. Evidence for a morphological
basis for host preference and host preference shift is
presented. Host preference is proposed to be a function of the
volume of host emanations of common compounds, rather than
specific odors. Variation in host preference is correlated
with seasonal change in adult mosquito structure. A
hypothetical cycle involving host preference shift is
vm

presented to demonstrate the possibility that a single species
such as Cs. melanura may be capable of vectoring diseases such
as Eastern Equine Encephalomyelitis from birds to mammals.
IX

CHAPTER 1
INTRODUCTION
The structures involved in host seeking are only now
beginning to be recognized. The chemical aspects of host
detection and location are not at all understood. Preference
for different hosts is suggested by bloodmeal analysis, but
the criteria for one host being preferred remain unclear.
Females of most mosquito species will seek a blood meal
at some time during their adult life. Autogenous species may
postpone blood meals until the second gonotrophic cycle
(O'Meara, 1985). The presence or absence of autogeny within
a population may in part be due to larval nutrition and
density (Lounibos et al., 1982). Various factors such as
chemical attraction, possible host specificity, physiological
age, host availability, and environmental conditions, interact
in various combinations to accomplish host seeking and a
successful blood meal. Mosquito species vary in nutritional
requirements for egg development (Woke, 1937). The genus
Toxorhvnchites has females which never take a blood meal.
Mosquitoes will feed on sugar in addition to blood, using
nectar from flowers as the sugar source (Bidlingmayer & Hem,
1973; Magnarelli, 1977b, 1980; Nasci & Edman, 1984; Nayar
& Sauerman, 1975; Philip, 1941; and Van Handel, 1972, 1985).
1

2
Seasonal distribution, habitat preference, and host
behavior influence host seeking and behavior. It is this
host seeking behavior that adult mosquito surveillance
attempts to exploit.
Numerous references in the literature document species
composition of mosquito collections. Many different
collecting techniques are employed, including light traps,
C02 baited traps, animal baited traps, resting boxes, and ramp
traps (Bast & Rehn, 1963; Bellamy & Reeves, 1952; Breeland
& Pickard, 1965; Bidlingmayer & Hem, 1981; Davis, 1978; Edman
et al., 1968; Furlow & Young, 1970; Gui et al., 1942 ;
Gunstream & Chew, 1967; Harden et al., 1970; Harrison et al.,
1982; Hauff & Burgess, 1960; Huffaker & Back, 1943; Kinzer
et al., 1978; Meyer, 1977; Minson et al., 1970; Provost,
1959; Schreck et al., 1972; Service, 1976; Stryker & Young,
1970; Vickery et al. , 1966; and Villavaso & Steelman, 1970).
Reports in these publications reveal that no single trap type
collects all species, and therefore one collection technique
will not adequately sample the mosquito fauna of a given area.
Adult surveillance assumes those species present will be
collected. During discussion of New Jersey traps for sampling
mosquito populations, Huffaker & Bach (1943) stated the
following:
It has been assumed by the great majority of
mosquito control workers using the trap that,
because of the very nature of the method, the
various species are caught in numbers proportional
to their respective occurrences in the heterogeneous
mosquito population.

3
This assumption is based upon fallacious grounds .
. . the mosquitoes possess all degrees of variation
particular to common living things ... it would
be hard to see why it is not wholly logical to
expect that different species of mosquitoes will
exhibit marked variations in their responses . . .
It is, furthermore, a fundamental biological
principle that ecological variation is not a
respecter of phylogenetic ties. Hence, it may be
expected that marked differences in behavior exist
even within a genus.(p.561)
The same may be said for all current sampling techniques.
Additional "ground truthing" by larval sampling will usually
reveal the presence of other species that for various reasons
are not being collected in the traps being used. Recognition
of these difficulties results in the following observation.
We really do not understand the complex actions involved in
host seeking by even one species of mosquito.
Before we are able to analyze the behavior of a
particular species, correct recognition (identification) of
that species is essential. Unfortunately, adult mosquitoes
are very fragile insects, easily dismembered and denuded of
the very structures used to identify them. Personal
experience has revealed an alarming incidence of
misidentification of specimens used in reports of surveillance
collections.
In
the absence of
voucher specimens,
the
researcher
has
to consider
the
possibility
of
misidentifications
when interpreting
reports in
the
literature.
Several available techniques are currently being used for
species recognition. All named forms of mosquitoes for the

4
entire world are listed in Knight and Stone, 1977. Knight
(1974) reviewed the history of mosquito taxonomy in the United
States. Identification manuals for North American mosquitoes
include Darsie & Ward (1981) and Carpenter & LaCasse (1955).
Southeastern United States is covered in King et al., 1960.
These manuals include morphological keys to adults and larvae,
and are the standard identification manuals for North American
mosquito workers (Zavortink, 1974) . Keys to the pupae of some
mosquitoes were presented in Tinker and Stojanovich (1962).
Additional techniques are being used to study intra-specific
variation more closely, sibling species, and species complexes
in insects. Among these are chromosomal cytogenetic studies
(Kitzmiller et al., 1967; Rao & Rai, 1987), amino acid
identification (Ball, 1952; Ball & Clark, 1953; Micks &
Ellis, 1951; Micks et al., 1966) cuticular hydrocarbon
analyses (Castner & Nation, 1984; Carlson, 1982, 1983; Carlson
& Bolton, 1984; Carlson & Walsh, 1981; Carlson & Service,
1979, 1980; Carlson & Yocom, 1986; and Milligan et al., 1986),
electrophoretic comparisons (Ayala and Powell, 1972; Makela
& Richardson, 1977),and comparison of sensory structure
arrangement on antennae in Anopheles (Ismail & Hammond, 1968).
Integration of these techniques should provide the taxonomic
detail necessary for analysis of behavior of a particular
species (Barr, 1974; Eldridge, 1974; Faran, 1979; Rogers,
1974). Interpretation of behavioral data is done with more
confidence when specimens are identified accurately.

5
Host seeking by female mosquitoes is in part dependent
upon the physiological age of the insect. Various techniques
for the determination of the physiological and chronological
age (age grading) of insects have been employed (Biscoe-
Tyndal, 1984; Christophers, 1911; Corbet, 1960, 1962;
Detinova, 1962, 1968; Hitchcock, 1968; Johnston & Ellison,
1982; Lewis, 1958; Magnarelli, 1976; Magnarelli & Anderson,
1981; Magnarelli et al., 1984; Mullens & Schmidtmann, 1982;
Rosay, 1961; Schlein, 1979; and Schlein & Gratz, 1972). If
it is possible to determine the approximate physiological age
of adult mosquitoes, then it may become possible to make
predictions concerning host seeking and population dynamics.
Field observations on the parity of biting flies have included
studies by Scholl et al., 1979; Samarawickrema, 1968; and
Magnarelli et al., 1984. Age grading of mosquitoes has been
done by ovarian examination. Mer (1936) found that ovarian
dissection could be used to recognize prehibernation females
of Anopheles elutus Edwards. Corbet (1960) determined that
adult mosquitoes parasitized by water mites were nulliparous
98% of the time. Lanciani (1979a, 1979b, 1986), Lanciani &
Boyett (1980), and Lanciani & Boyt (1977) determined that
water mite parasitism affected adult longevity.
Each physiological stage of an adult female (nulliparous,
parous, gravid, bloodied) elicits a behavioral shift that
greatly influences (bias) interpretation of any one trapping
technique. Host-seeking females are generally those

6
mosquitoes that are collected in baited traps. Resting boxes,
truck traps, ramp traps, and malaise traps are assumed to be
less biased in their collections, but even these may be shown
to attract disproportionate numbers of certain physiological
states of adults. Therefore, several techniques must be
employed simultaneously, and each collection compared. Then
a more representative sample of the age structure of a given
population will be achieved.
Since most adult females will at some time seek a blood
meal, the type of blood meal sought may help explain the
functional significance of different sensory structures known
to exist on the mouthparts and antennae of biting flies,
including mosquitoes. Bloodmeal analysis reveals an apparent
wide host range. Host records range from amphibians and
reptiles to birds, fish, and mammals, including man. While a
complete review of bloodmeal records is not the intention of
this paper, the following citations will give the reader a
representation of the variety of host preference records, as
well as some of the discrepancies regarding the application
of the term host preference. Articles dealing with bloodmeal
analysis include the following: Anderson, 1967; Beir et al.,
1988; Bertsch & Norment, 1983; Boorman, 1961; Boreham & Snow,
1973; Brown, 1966; Burkot & DeFoliart, 1982; Chandler et al.,
1975; Christopher & Reuben, 1971; Crans, 1964, 1965, 1970;
Crans & Rockel, 1968; Davis, 1940; Dow et al., 1957; Downe,
1960, 1962, 1963; Edman, 1971, 1974, 1979a, 1979b; Edman &

7
Bidlingmayer, 1969; Edman & Downe, 1964; Edman & Haeger,
1977; Edman et al., 1972; Gunstream et al., 1971; Hayes,
1961; Hayes et al., 1973; Hopla, 1965; Irby & Apperson,
1988; Laarman, 1955, 1958; LeDuc et al., 1972; Magnarelli,
1977a; McClelland & Weitz, 1963; Mclver, 1968; Means, 1968;
Murphey et al., 1967; Nasci, 1982b, 1984, 1985, 1986b; Nasci
& Edman, 1981a; Nolan et al., 1965; Rempel et al., 1946;
Schaefer & Steelman, 1969; Shalaby, 1969; Shemanchuk, 1969;
Smith & Weitz, 1959; Snow & Boreham, 1973; Suyemoto et al.,
1973; Takahashi & Shimizu, 1971; Tempelis, 1970, 1975;
Tempelis et al., 1967, 1970; Washino & Tempelis, 1983; Woke,
1937; and Wright & DeFoliart, 1970. Some species appear
restricted to cold-blooded vertebrates (Crans, 197 0) . Others
use a wide range of hosts, exhibiting a marked seasonal host
shift (Edman & Taylor, 1968). Culiseta melanura is considered
to be an avian feeder, but records exist for other hosts,
including man and horses (Edman et al., 1972; Hayes & Doane,
1958; Joseph & Bickley, 1969; Moussa et al., 1966; and
Schober, 1964). Much speculation exists as to the nature of
attractiveness of different hosts. The recognition of a
particular vertebrate species by a mosquito is a function of
the combined senses of olfaction, thermal reception, and
visual cues (Altner & Prillinger, 1980; Sippell & Brown,
1953). We are currently unable to state with certainty which
of these factors are most important at any particular
distance. Only a few of the many structures on the surface

8
of the adult mosquito have been studied. Among these are the
carbon dioxide receptors on the palpi, and thermal receptors
and other olfactory structures on the antennae. Their
chemical thresholds have not been determined, but indirect
evidence suggests that the numbers of these structures are
somehow related to the amount of chemical odor detectable by
the individual mosquito (Chapman, 1971). Variation in
perceived host preference has been considered by some to be
a reflection of host availability. However, for the present
I will consider host preference a real phenomenon, and will
examine the implication of such a phenomenon. If in fact host
preference exists, then the ability to discriminate between
hosts must exist. If this ability to discriminate exists, it
should be revealed in some variation of sensory structures
used in host seeking and location. What are the stimuli
believed to be important in host seeking? How and where are
these received?
In order to analyze seasonal host preference records for
any species of mosquito, seasonal variation in adult behavior
and morphology should be considered. Smith (1961) noted that
the site of resting places for An. gambiae Giles and An.
pharoensis Theobald were seasonally different. Michener
(1945) observed that in mosquitoes the winter individuals of
a species are often larger than the summer ones, as well as
being differently colored. He noted that overwintering forms
of An. maculipennis freeborni Aitken were larger and darker

9
than the summer ones. The same appeared true for An.
cruadrimaculatus Say. Even more striking were the seasonal
morphs of Culex apicalis (= territans) and Cx. nicrripalpus.
The seasonal forms of these species were sufficiently
different to pose a problem in correct identification.
Seasonal variation in size has also been reported in Cx.
tarsalis (Boch & Milby, 1981) , with the smallest individuals
occurring in the hottest months. Associated with reduced size
in Cx. tarsalis was a decrease in attractiveness to traps of
the same type that were attractive during the cooler months
when larger individuals were present.
Fish (1985) noted significant variability in the size of
biting females of many vector and pest species of mosquitoes.
Citing Takahashi (1976), Baqar et al. (1980), and Grimstad &
Haramis (1984), Fish stated that it was becoming apparent that
vector competence can be affected by the size of individuals
comprising a population. He concluded that an analysis of
size variation for natural populations of vector species
should be a first step in the study of vectorial capacity in
mosquitoes. Haramis (1985) noted that larval nutrition had
a direct effect on fitness of adult mosquitoes, with small
adults having reduced survival and fecundity, but transmitting
Lacrosse virus more effectively than large mosquitoes.
Landry et al. (1988) noted significant seasonal variation
in the size of adult female Aedes triseriatus. Craig and
Vandehey (1962) noted that rearing temperatures affected

10
certain color mutations in Ae. aegypti. Zuska and Berg (1974)
documented seasonal temperature as one of the primary factors
affecting color variation in South American Tetanoceroides
(Diptera: Sciomyzidae). Rearing temperature affected the rate
of loss of teneral characters in Ae. nigromaculis and Culex
pjpiens guinguefasciatus. with rotation of male genitalia
occurring 12 hours after emergence at 28 °C, but not for 51
hours at 17°C (Rosay, 1961).
The ability of mosquitoes to become infected with and
transmit viruses has also been shown to be temperature-
related (Turell et al., 1985). Since the size of individual
mosquitoes is related to the seasonal temperatures, and the
ability to transmit also is temperature-related, it follows
that viral activity would be predicted to be highest during
the summer months. This is known to be true for many of the
encephalitis viruses (Hess et al., 1963). Grimstad (1983)
proposed a reduced gut barrier to viral particles in smaller
individuals as the mechanism behind higher infection rates in
smaller individuals. These same smaller individuals also were
shown to take proportionately more infectious viral particles
in a bloodmeal. Included among viral diseases transmitted by
mosquitoes is eastern equine encephalomyelitis (EEE). This
virus is believed to involve an enzootic cycle maintained
within avian hosts by one or more species of aviphilic
mosquitoes, then somehow transmitted to larger mammalian hosts
such as man and horses, where fatalities are frequent. The

11
mechanism behind transmission to dead-end hosts is as yet
unknown. The primary enzootic vector is believed to be Cs.
melanura. although approximately twenty species of insects
have had the virus of EEE isolated from them.
The study site for this research was 3 km east of Lake
Butler, Florida,in Union Co., on the property of John
Whitehead. This farm was chosen because of 2 confirmed cases
of EEE that occurred in 1985 and 1986. Field studies had
demonstrated a stable population of Cs. melanura on the
property. A wide variety of animals, including a herd of
cattle, horses, dogs, pigs, guinea fowl, deer, turkey and
rabbits was found within the confines of the property. Three
chicken houses contained 75,000 chickens during part of the
year. Large open tracts of pasture were surrounded by pine
woods, red-maple and gum swamps, and river flood plain.
Preliminary data and personal field observations
indicated the presence of a larger, darker winter form of Cs.
melanura which was gradually replaced by a lighter, smaller
summer form. Adult seasonal variation in size and
susceptibility to C02-baited CDC miniature light traps were
the main catalysts behind the research. If vector
surveillance for mosguitoes is so dependent upon collecting
particular species, the mechanisms behind a behavioral shift,
either in terms of host preference, or in terms of
attractiveness to traps, need to be investigated and
understood.

12
My original purpose for working at this study site was
to collect adult female mosguitoes for virus isolation.
Presumably those mosquitoes transmitting EEE to horses would
be collected and identified as the vector(s) by virus
isolation. Therefore, the first object of this research was
to determine the mosquito species that occurred at the study
site. A preliminary year of collection data confirmed the
existence of approximately 30 species of mosquitoes. These
included: An. crucians. An. punctipennis. An.
quadrimaculatus. Toxorhvnchites rutilus. Ae. aeqypti. Ae.
triseriatus. Ae. hendersoni. Ae. sticticus. Ae. mitchellae.
Ae. dupreei. Ae. atlanticus. Ae. infirmatus. Ae. vexans. Ae.
canadensis. Ae. fulvus pallens. Psorophora howardii. Ps.
ciliata. Ps. columbiae. Ps. ferox. Cx. quinquefasciatus. Cx.
salinarius. Cx. nigripalpus. Cx. pilosus. Cx. territans. Cx.
restuans. Cx. erraticus. Cs. melanura, Cs. inornata.
Uranotaenia sapphirina. Ur. lowii, Orthopodomyia signífera.
and Coquillettidia perturbans.
Of these, only eight were definitely present throughout
the entire year. These were An. crucians, An. punctipennis.
An. quadrimaculatus. Cx. quinquefasciatus. Cx. salinarius. Cx.
nigripalpus. Cx. territans. and Cs. melanura. Additionally,
Cx. erraticus. Aedes aeqypti. Orthopodomyia signífera, and
Aedes triseriatus may have been present all year. Since both
Aedes species and Orthopodomyia are seldom collected as
adults, their presence throughout the year was not confirmed.

13
Sampling techniques for Cs. melanura consisted of larval
collections to verify breeding, adult collections from resting
boxes (Edman et al., 1968) and CDC miniature light traps
baited with dry ice as a C02 source. Resting box collections
were made on the same days that CDC collections were made.
Unfortunately, at the end of the seventh month of this
research the swamp being used for collections was clear-cut
for eventual planting of pine. As a result, collections that
previously were being made in wooded areas became open area
collections. I chose to leave traps and resting boxes in the
same locations for the remainder of the year. The data for
these collections are only used here to confirm the presence
of adult Cs. melanura throughout the year. No statistical
analysis of the collection data is possible due to the
complete disruption of the study site for one-third of the
collection period.
Many investigations into the occurrence of EEE have
correlated the presence of Cs. melanura with viral activity
(Bryant et al., 1973; Chamberlain, 1958; Chamberlain et al.,
1951, 1954; Dardiri et al., 1957; Dougherty & Price, 1960;
Feemster, 1938, 1957; Ferguson, 1954; Goldfield & Sussman,
1968; Grady et al. , 1978; Grimstad, 1983 ; Hayes et al.,
1962; Jaynes et al., 1962; Kelser, 1933; LeDuc et al.,
1972, 1975; Main et al., 1979; Muul et al., 1975; Oglesby,
1948; Srihongse et al., 1980; Stamm et al., 1962; Sudia et
al., 1968; Wallis, 1959; Wallis et al., 1958, 1974; and

14
Williams et al., 1971, 1972, 1974). Some investigators feel
that the presence of this species is necessary for the virus
to cycle within resident bird populations, to later somehow
be transmitted to other hosts. One measure for estimating
potential viral activity involves monitoring populations of
Cs. melanura. I decided to monitor the seasonal occurrence
of this species at the Lake Butler site. To insure that
behavioral and structural comparison were reported accurately,
one of the first questions to be answered was what insect
species was actually being studied? A necessary part of this
study was to insure that in fact Cs. melanura was, by all
available parameters, the Cs. melanura described in the
literature. With this in mind, I obtained collections from
the type locality (New Hampshire) for comparison. No
morphological differences were apparent between New Hampshire
and Florida specimens. Since evidence exists for cryptic
species within other mosquito species complexes, I felt that
an additional comparison would reinforce my belief that only
one species was in fact involved here. Cuticular hydrocarbons
were chosen for further comparisons. These comparisons are
presented in Chapter 3. As a result of these comparisons,
several questions arose concerning variation in the adult
hydrocarbon patterns? Was this variation correlated with the
two seasonal morphs in the wild populations of Cs. melanura
at Lake Butler? If seasonal shifts in hydrocarbon patterns
occur, how might this affect the use of this technique to

15
solve taxonomic problems? How much of a difference would be
necessary to correctly interpret species differences?
Cuticular hydrocarbons constitute a part of the chemical
makeup of individual insects. Chemical composition within a
species may be environmentally changed (Bryant, 1974). I felt
that if the chemical identity of a species could be
environmentally shifted the possibility certainly must exist
for behavioral changes also being influenced by environmental
parameters. Before conducting experimental analysis of the
effect of one environmental parameter (temperature) on adult
mosquito olfactory structures, I reviewed host preference
records to search for suggestion of seasonal differences.
Host preference records are numerous in the literature.
However, most reports are based on pooled samples collected
over several years from several locations. While these reports
document host preference variation, they seldom discuss
seasonal host preference variation. By reanalyzing the data
from several different authors, trends in host preference
began to emerge, and seasonal patterns were suggested. These
patterns are discussed in Chapter 4.
The morphology of sensory structures in mosquitoes
reveals much interspecific variation. Do structural
differences affect the ability to select certain hosts? Could
the morphological variation be correlated with seasonal
behavioral changes? Could host detection capabilities be
correlated with morphology? If morphology could be correlated

16
with host preference, what effect might a change in morphology
have on host preference? What might be a practical method to
measure sensory capabilities?
Based on the possibility of morphological variation
within host detection sensory structures, I decided to look
at the variation within the overall configuration of these
same structures in several species. The actual structures
involved in host detection are illustrated and discussed in
detail to clarify the shape and configurations that occur in
mosquitoes. A thorough understanding of the structures
involved is necessary to understand host preference.
Interspecific variation in these structures is discussed in
Chapter 5. Having documented variation between species, and
using the suggestions that resulted from data presented in
Chapter 3 regarding the effect of temperature on the chemical
makeup of cuticular hydrocarbon profiles, I then compare the
effect of varied larval rearing temperature on the sensory
structures of Ae. aeqypti and Cs. melanura. Aedes aegypti was
chosen because of its rapid development time, ease in rearing,
and accessibility. Wild Cs. melanura were chosen to determine
if field observed variation could be duplicated in the lab.
These results are presented in Chapter 6.
Variation within the number of sensory structures within
a species left unanswered the question of how to quantify the
effect of changes in morphology on host detection
capabilities. I decided to estimate the surface area of the

17
palpal segment that contains the C02 receptors, and to see how
this was affected by changes in the size of the adult females
that were produced at varied temperatures. Using these
calculations, I then decided to look for correlations between
surface area and host preference. Recognizing that the
surface of the palp that contacts air for host detection
actually represents the inner half of each palp, and that the
volume of air that is sampled by a female mosquito is a
function of the volume of air contained between the palpi at
any point in time, I compared the volumes of air sampled by
various sized palpi. These comparisons are presented in
Chapter 7.
My hypothesis is that host preference records for various
mosquitoes are attributable to the morphology of the female
mosquito and to the volume of odors given off by various
animals. In order to compare these two factors, a measure of
host emanations must be estimated. I calculated volume of
respired gases for a wide range of animal species, and then
arranged them by groups according to similar amounts of
expired volume. These calculations were then compared with
reported host preference records. Three factors, host surface
area, host respired volume, and respired volume of C02/minute,
were found to be correlated with host preference. From these
comparisons a pattern emerged that is proposed as an
explanation for host preference and as a means to reexamine
trap design.

18
The application and testing of the ideas presented here
will involve long-term studies, involving many different
disciplines. What began as a simple examination into the
behavior of a single species has raised guestions concerning
the concepts of trap design and the validity of the term host
preference. I hope that the documentation and comparison
(interspecific and intraspecific) of sensory structures known
to be involved in host seeking will form the basis for
investigations into various attractants, and possibly offer
an explanation for the variation in host preferences that have
been reported in the literature. Based on the few common
emanations that occur in mammals, a design should be possible
to maximize the attraction and collection of mosguitoes that
prefer a certain host size range. This in turn should
maximize our ability to survey for vectors of diseases such
as encephalitis.

CHAPTER 2
BIOLOGY AND SEASONAL ABUNDANCE OF Culiseta melanura AT
LAKE BUTLER, FLORIDA
General Biology
Culiseta melanura occurs as far north as eastern Canada,
as far west as the Mississippi River, and as far south and
east as Texas to the Gulf of Mexico and Florida (Darsie &
Ward, 1981). This species has been a popular insect to study
since its implication as the enzootic vector of Eastern Equine
Encephalomyelitis (EEE) in Louisiana (Chamberlain et al.,
1951). Among the species of Florida Culicini mosquitoes, Cs.
melanura females are easily recognized by their uniform dark
brown color, lack of dorsal abdominal banding patterns,
extremely long curved proboscis, and a tuft of several long
setae on the underside of the wing at the anterior proximal
margin of the subcostal vein. Males are less easily
recognized, but may be identified by palpi extending beyond
the proboscis, no dorsal abdominal banding pattern, uniform
color, and the same tuft of hair on the underside of the
wings. Larvae are readily recognized in the field, being very
elongate, having a long slender siphon, and characteristically
colored with a horizontal banding pattern caused by
pigmentation of each segment. Larvae that are collected from
19

20
burrows are typically very pale, while those collected from
open pools are much darker.
Culiseta melanura have a characteristic egg raft unlike
any other mosquito observed in Florida (Fig. 2-1). Eggs are
attached in a circular doughnut-shaped, concave raft.
Numerous papers have been written dealing with various aspects
of the biology of this species. The reader is referred to
these for a comprehensive review: (Burbutis & Lake, 1956;
Edman et al., 1968; 1972; Favorite & Davis, 1958; Hayes, 1958;
1961; 1962; Joseph & Bickley, 1969; Lake et al., 1962; Love
& Goodwin, 1961; 1963; Mokry, 1984; Morris & Srihongse, 1978;
Morris et al., 1976; 1980; Moussa et al., 1966; Muul et al.,
1975; Nasci & Edman, 1981a; 1981b; 1984; Reeves et al., 1948;
Scott et al., 1984; Siverly & Schoof, 1962; Spielman, 1964;
Wallis, 1954; 1962; Wallis & Whitman, 1967; and Wirth, 1947).
This species has been reported from all but one county of
Florida, although voucher specimens are lacking to confirm
most records. Because of the difficulty in separating
specimens that have been damaged in trap collections, the
southern distribution of this species in Florida awaits
confirmation. Adult activity occurs throughout the year in
Florida. The number of generations per year must vary
according to seasonal fluctuations in rainfall and
temperature. A minimum number of 2 generations per year
occurs. Gravid females are present throughout the year.
Since adults are known to live for several months, and since

Fig. 2.1. Egg raft of Culiseta melanura. 4 hours old. Gravid
female collected in resting box, Lake Butler, Florida.

22

23
populations tend to be overlapping with little apparent
synchrony in Florida, the actual number of generations becomes
difficult to determine. There are, however, 2 distinct
seasonal morphs in Florida which replace each other. A large
dark cool weather morph appears in early winter and is the
predominant form until late spring and early summer, where it
is gradually replaced by a smaller lighter form. Replacement
is never absolute, perhaps owing to the longevity of adult
females.
Seasonal abundance
Collections were made weekly to determine seasonal
abundance at the study site. These collections included four
CDC miniature light traps baited with 5 pounds of dry ice per
trap, and resting box collections. Each CDC trap had a
resting box (Fig. 2.2) placed nearby. Trap collections were
pooled by months collected. Several notable events occurred
during the study period. The primary collection site centered
around a small cypress dome surrounded by pine flatwoods.
Typically this habitat dries completely during the early
summer months. Periods during which no water was present in
the swamp occurred in April,May, and June. Unfortunately
during November the pine woods were clear cut, exposing the
cypress and leaving the cypress dome as a small island in the
middle of a vast expanse of open field. Catches declined
dramatically following the loss of surrounding woods.
Although the site continued to be a source of Cs. melanura,

Fig. 2.2.
Resting box for collection of Culiseta melanura.


26
larval populations declined steadily, and now only a few
larvae may be found there. This is perhaps due to the
unattractiveness of the open habitat. Larvae may only be
found there in stump holes (Fig. 2.3) and under root systems
(Fig.2.4). Prior to the clear-cut operations, larvae were
abundant in the open but shaded pools throughout the cypress
dome. As water levels receded, larvae were found closer and
closer to the overhangs of the hummocks that were occupied by
Vaccinium sp. Adult populations retreated to woods that were
left undisturbed by the logging operations. There adult
populations were sampled regularly by the methods described
above. Numerous burrows within these woods provided abundant
oviposition sites, and larval populations were present as long
as water levels were high enough to pool water at the ends of
the burrow systems. When water levels dropped below the level
of the burrow systems, larvae were absent. However, larvae
reappeared very soon after burrows became reflooded.
Resting box collections dropped dramatically after the
woods were cut, but C02-baited trap catch numbers rose. This
may represent more host-seeking activity into the now exposed
open areas. Previously adults may have left the swamps to
venture into the open woods in search of a blood meal.
Personal experience has demonstrated that the poorest bait
collections are made close to the oviposition sites for Cs.
melanura. Conversely, these are the preferred sites for
maximum resting box collections. These factors influence the
effectiveness of surveillance techniques.

Fig. 2.3. Rot hole at base of pine tree, leading down to
underground larval collection site of Culiseta melanura.

28

Fig. 2.4. Rotted stump cavity in which Culiseta melanupa
adults and larvae were collected throughout the year at Lake
Butler, Florida.

30

31
To illustrate the seasonal collection records for Cs. melanura
at Lake Butler, Florida, data are presented in Tables 2.1 &
2.2. Table 2.1 consists of a comparison between total monthly
catches (male & female) using CDC miniature bait traps and
resting boxes. Table 2.2 is a further breakdown of the female
monthly resting box catches subdivided into physiological
states. Since the habitat was altered severely in November,
these data are presented to illustrate the fact that C02-
baited traps alone appear to miss periods of summer activity
of Cs. melanura in Florida, whereas resting boxes may do the
same in winter. Location of these traps presumably plays a
significant role in the effectiveness of either technique.
Larvae were abundant during February 1986. The swamp
gradually dried up until in late April no surface water was
present. Egg rafts were present in March and early April
right up to the time that surface water disappeared. The
swamp remained dry for the month of May. Heavy showers
occasionally pooled water for a few days, but no permanent
water was present until June. Larvae were not present (Cs.
melanura) until July. These were early instar. Whether these
were the result of oviposition in April, or from recent
oviposition is unclear. During the drought I dug down to
water level, a depth of 30 inches. At about 10 inches the
leaf litter and detritus was possibly sufficiently moist to
sustain larvae during drought periods. Early instars were
collected from the freshly dug holes. I cannot say for

32
Table 2.1
Seasonal abundance of Culiseta melanura at Lake Butler, Florida
(Feb. 1986
- Mar. 1987)
CDC-CO-,
Restinq
Boxes
Month
Males
Females
Males
Females
February
0
2
10
5
March
1
20
139
123
April
0
63
195
230
May
0
134
86
398
June
0
8
42
230
July
0
5
28
77
August
0
0
10
65
September
0
15
156
290
October
0
19
289
277
November*
0
2
8
9
December
0
9
68
26
January
0
77
26
9
February
0
77
13
12
March
0
178
7
3
* swamp clear-cut
certain that oviposition did not occur in the holes. However,
later rearing experiments with Cs. melanura demonstrated that
even after 2 months at moderate temperatures (up to 30°C) and
in the presence of food, some larvae appeared to be still
second instar despite the fact that the majority of their
siblings had pupated. This may offer a mechanism for larval
survival during extended drought. If larval dormancy is
partially induced by high temperatures in Florida (as it
apparently is cold-induced in the north), the larvae might
survive for several months below the surface of the ground,
sustained by high humidity in moist detritus, but otherwise
remaining inactive. This is a matter that merits further
investigation.

33
One of the important factors that needs to be monitored
in female mosquitoes is their physiological state. Periods
of host-seeking activity will be followed by the presence of
gravid and ovipositing females. The timing of these
activities is better monitored by resting box collections.
Light trap collections usually consist of nulliparous females
that are presumed to be seeking hosts. Gravid and bloodied
females are rarely attracted to baited traps. Host seeking and
bloodfeeding apparently occurred throughout the year at the
study site in Florida. Yearly resting box collections for
females are presented in Table 2. About 50% of the females
collected were graded as non-blooded and non-gravid. This
classification does not distinguish between those females that
were taking their first or second bloodmeal.
Resting box collections provided the largest collections
of Cs. melanura at the Lake Butler site. Evidence of year
round biting activity, as well as presence of males, indicates
tremendous plasticity within this species. Peaks of adult
abundance (Tables 2.1 & 2.2.) correspond to May/June and
September/October. Miniature CDC traps (Table 2.1) support
the May/June period of activity. However, the single large
collection of Cs. melanura females in May occurred on a night
in which the first rainfall in several weeks fell. This
agrees with numerous reports in the literature that Cs.
melanura adults are most active during periods of rain and
inclement weather. The November destruction of the collection

34
Table 2.2
Seasonal abundance and physiological state of Culiseta
melanura females collected from resting boxes, Lake Butler,
Fla. (Feb. 1986 - March 1987). nbg=non blooded, non-gravid;
b=blooded;
bg=blood-
-gravid; g=
=gravid;
n=tota1/month
percent of
monthly total
Month
nbg
b
bC[
3
n
February
2(50)
2(50)
0
0
4
March
114(74)
15(9.7)
8(5.2)
17(11)
154
April
166(72)
2(1)
22(9.5)
42(18)
232
May
311(80)
4(1)
34(8.7)
41(10.5)
390
June
104(47)
5(2.2)
51(23)
61(27.6)
221
July
39(49)
3(3.8)
11(14)
26(33)
79
August
34 (52)
8(12.3)
19(29)
4(6)
65
September
171(60)
4(1.3)
70(24)
42(14.6)
287
October
142(52)
2(1)
72(26.4)
57(21)
273
November
0
0
0
2(100)
2
December
12(50)
5(21)
3(12.5)
4(16.7)
24
January
8(62)
1(7.6)
3(23)
1(7.6)
13
February
11(92)
0
1(8)
0
12
March
2 (50)
0
0
2 (50)
4
site occurred at just the time when a seasonal shift should
have been most apparent. This re-emphasizes that trapping
data are biased by environmental conditions. In this example
one day of rainfall following an extended drought totally
shifted the response to baited traps. From the above data
the following points may be made. Year round activity of Cs.
melanura occurred at the Lake Butler study site. Males were
present throughout the year. There is a suggestion of
seasonal variation in the attractiveness of C02-baited traps.
Based on the resting box collections, male densities appeared
to peak one month prior to female densities. CDC collections
were greatest on nights with some precipitation. Male Cs.
melanura are not attracted to CDC C02-baited traps in any
numbers. This fact was later determined to be a function of

35
the trap design. Simple inversion of the CDC trap (Fig. 2.5)
so that the fan pulled upwards increased all catches,
including males of other species that are normally not
collected.
During subsequent years (1988-1989) much oviposition was
noted during October, November, and December. Adults were
again present throughout the summer, and bloodfed females were
collected throughout the year. Larval activity was not
apparent during the summer months. Either larval activity
is restricted to subsurface water levels or larvae suspend
development until late summer when rains raise water levels.
Other species occurring with Cs. melanura at Lake Butler,
Florida were Cx. territans. Anopheles crucians , and
Uranotaenia sapphirina. Culex territans and Ur. sapphirina
also occurred with Cs. melanura at the New Hampshire locality.
During periods of high water in summertime, Cx. pilosus
(Dyar & Knab) occurred in larger pools of open areas at the
margin of the swamp, as did various Aedes and Psorophora
species. However, within the restricted habitat of stump
holes and burrows, Cs. melanura was either the sole occupant
or occasionally shared the habitat with Cx. territans.

Fig. 2.5. Inverted CDC miniature light trap at Lake Butler,
Florida.

37

CHAPTER 3
VARIATION IN CUTICULAR HYDROCARBON PROFILES
IN Culiseta melanura
Introduction
Cuticular hydrocarbon composition is an expression of a
genotype, thus making it a potential taxonomic character.
Lockey (1988) reviewed insect cuticular lipid composition,
stating that hydrocarbon composition is related to
taxonomically grouped species, and that closely related
species tended to have qualitatively similar hydrocarbon
patterns, with different proportions. Less closely related
species tended to have hydrocarbon patterns differing both
qualitatively and quantitatively. Within mosquitoes, species
separation has been confined to the genus Anopheles (Carlson,
1982, 1984; Carlson & Service, 1979, 1980; Milligan et al.,
1986). Despite similarities in chromatograms, species
separation within the Anopheles gambiae complex was achieved
by comparing the relative abundance of selected peaks (Carlson
& Service, 1979, 1980). Using percentage composition of
various classes of hydrocarbons, Lockey (1978, 1988) was able
to separate 3 species of Tenebrionidae.
When hydrocarbon profiles are applied to cryptic species
or to analysis of intraspecific variation, the mechanism
38

39
behind such comparisons is typically a quantitative
(statistical) comparison of peak ratios between selected
hydrocarbons. These are identified by a 4 digit number, their
Kovats Index (Kovats, 1965). Larger peaks constitute the
major percent composition of a particular sample.
Underlying statistical comparison of peak percentages or
peak ratios is the major assumption that the variation in
these values is normally distributed. In order to apply most
standard statistical comparisons, normality of distribution
of the variable of interest is assumed. Knowledge of the
normality of a sample may confirm or reject certain hypotheses
about the factor affecting the phenomenon of interest. If
non-normal distribution is found, this may indicate certain
factors affecting the variable of interest (Sokal & Rohlf,
1969). If normal distribution is assumed, predictions and
tests of hypotheses are based upon this assumption.
Statistical conclusions are only as valid as our assumptions
about the data.
Adult specimens of Cs. melanura were collected from
various localities at different times of the year. As part
of the ongoing study concerning the behavior and ecology of
hostseeking in mosquitoes, I decided to characterize Cs.
melanura by means of hydrocarbon profiles. Since the only
published data relating hydrocarbon patterns in mosquitoes was
for the genus Anopheles. I felt that the new information
provided by this technique would provide a baseline for

40
further investigations into the usefulness of this technique
for comparison of mosquito species other than Anopheles. I
was also interested in determining whether or not any evidence
existed to suggest a polytypic species. Preliminary field
observations had revealed a larger, darker winter form of this
species in Florida. To illustrate congeneric differences, I
compared Culiseta melanura chromatograms with those of Cs.
inornata. To illustrate intergeneric differences, Culex
territans and Uranotaenia sapphirina were compared from the
same habitat and location as Cs. melanura.
The type locality for Cs. melanura is New Hampshire
(Knight & Stone, 1977) . Specimens were collected from New
Hampshire and Vermont (new collection record) and compared
with Florida specimens. Since one of the reported advantages
of hydrocarbon analysis is that the patterns are stable,
regardless of the age of the specimen, it was felt that a
comparison between geographic extremes of the range of this
mosquito species might reveal maximum differences (geographic)
as well as possibly revealing the existence of cryptic
species. As more and more hydrocarbon profiles were compared,
variation appeared to be at least as extreme within one site
as between geographic limits. This perplexing situation led
to the following attempt at isolating some of the sources of
variation seen in wild specimens. Before I could characterize
Cs. melanura by this technique, I felt that an attempt should
be made to explain as much of the individual variation as

41
possible. I present preliminary data here and suggest partial
explanations for the hydrocarbon profile variability. Also,
I discuss the implication of this variability relative to the
application of this technique to the solving of taxonomic
questions.
Methods and Materials
Wild adult Cs. melanura were collected in resting boxes
(Florida) and by CDC miniature light traps (New Hampshire &
Florida). Dry ice was added to the CDC traps in Florida, with
nightly amounts being approximately 5 pounds per trap. This
bait was suspended beside the trap, and traps were placed
about 2 feet above the ground. Because I had no previous
indication of seasonal variation in hydrocarbon patterns,
collections were made as material was needed. Specimens from
the same collection date were later pooled for analyzing
seasonal variation.
Cuticular hydrocarbons were extracted by soaking
individual mosquitoes in hexane for at least ten minutes.
This extract was then cleaned by passage through a silica-gel
hexane column. This column permitted the passage of the non¬
polar hydrocarbons, but retained the polar lipids and fats.
The extracted hydrocarbons were collected into 3 ml of hexane
extract, then concentrated by evaporation with nitrogen gas.
The final extract was re-constituted and 1/10 microliter was
injected into the gas chromatograph (GC) by an on-column
injector(SGE). A Varian Model 3200 flame ionization GC

42
instrument was used. The column type was a 3 0 meter DB-1,
0.32 mm. diameter capillary tube. The carrier gas was helium.
The oven temperature was programmed from 60 °C to 320 °C at
12°C/minute for 35 minutes. The GC was coupled through a 760
series interface and a Nelson Analytical System to an IBM
PC/XT computer, an Epsom FX 80+ printer, and a Hewlett-Packard
7470A plotter for data quantification and output. Samples were
compared with alkane standards (C14 - C44) for calculation of
their respective Kovats Index (KI).
Frequency distribution normality for peak percent
composition was tested using the graphic ranked deviates
(rankits) of Sokal & Rohlf (1969). Ranked deviates were
plotted for wild adult females of Cs. melanura. After
determination of non-normal distribution within the wild
sample, additional statistical comparisons were made for wild
individuals and for individuals from known environmental
conditions. Initial statistical comparisons were made between
wild New Hampshire and Florida females. Since a non-normal
distribution was suggested by the ranked deviate test, a non-
parametric ANOVA and Kruskal-Wallis test were conducted on
these data. These tests were expanded to include comparisons
between Florida samples categorized by months collected, as
well as between specimens reared at 2 different temperatures.
Discriminant analysis was performed on data from all sample
categories (New Hampshire, Florida by months, and 2 rearing
temperatures) to look for trends in similarity measured by

43
mean square distances. From these comparisons I was able to
correlate variation within samples with seasonality and to
suggest temperature variation as a factor influencing change
in hydrocarbon profiles. To test for the effect of
temperature upon the KI peaks of interest, 6 females from each
adult population of 15 °C and 3 0 "C reared larvae were compared.
Actual percent composition for peaks with KI 3100, 3135,
3165, 3300, 3335, 3365, 4225, 4245, 4280, 4425, and 4445 were
examined initially. These 11 peaks were then made to equal
100 percent composition and adjusted percentages were
calculated for each of these peaks. These adjusted values were
used in all statistical tests, as well as in all graphs and
tables presented here.
Field-collected gravid females were placed in cages for
oviposition. These cages were plexiglass with dimensions of
45cm X 37cm X 37cm. Oviposition was at first unsuccessful
since most of the females died before laying eggs. This was
partially resolved by placing filtered water from field
collection larval sites into black oviposition jars. Some
oviposition was obtained. However, a high mortality still
occurred among gravid females. Culiseta melanura adults in
the field had been observed hanging suspended on the upper
roof of the mammal burrows that they frequented. Oviposition
cups were then modified to include a lid that covered one half
of the overall opening to the water. A higher percentage of
oviposition was achieved quickly. This technique is strongly

44
suggested for those interested in obtaining large numbers of
egg rafts from wild gravid females.
Egg rafts obtained in this manner were hatched in
filtered water from the Lake Butler site. Larvae were reared
in water collected from underground burrows at the same site.
These burrows consistently harbored adult and larval Cs.
melanura for more than three years. Larval rearing was
accomplished in both enamel pans and 1 liter plastic bottles.
Since the burrows are seldom if ever exposed to direct light,
larval rearing was conducted in darkened rooms at 2 different
temperatures (15°C & 30°C). Ground hog chow was added
initially to larval rearing water, but proved to foul rearing
containers guickly. Therefore, feeding consisted of the
addition of field-collected water from the same habitat,
replacing equally the water volume lost by evaporation.
Larvae reared at 30 °C required 2 weeks from egg hatch to
pupation, while those reared at 15"C required 4-6 weeks.
Variation in development time within the colder temperature
was quite evident. In every case, at time of initial pupation
of the cold temperature larvae there would also be larvae that
appeared to still be 2nd instar. This was rarely seen at
3 0°C, but did also occur. Larvae that were reared at the
warmer temperature were well synchronized.
Egg rafts were hatched at room temperature (27°C), then
split into 2 approximately equal batches to examine the effect
of temperature on larval development and hydrocarbon profiles.

45
One half was reared at 30°C, the other half was reared at
15 ° C.
Results
Intergeneric differences in hydrocarbon profiles are
illustrated in Fig. 3.1. Culex territans. Ur. saoohirina.
and Cs. melanura are all guite different, both qualitatively
and quantitatively.
Intrageneric differences between Cs. melanura and Cs.
inornata are illustrated in Fig. 3.2 (males) and Fig. 3.3
(females). Again, differences are readily observed between
these species. However, when the distribution frequencies of
selected KI peaks 3100, 3135, 3165, 3300, 3335, 3365, 4225,
4245, 4280, 4425, and 4445 were examined within Cs. melanura,
considerable variation was seen to exist.
Initial comparisons between specimens from New Hampshire
and Lake Butler, Florida showed similarities between the sexes
(Fig. 3.4 & Fig. 3.5). No obvious geographic variation was
suggested from the chromatograms. Comparisons between sexes
from the Florida site showed little to suggest obvious sexual
dimorphism. However, if the relative percent composition for
any of the larger peaks had been compared, it might have been
possible to separate males and females. Gas
chromatography/Mass Spectroscopy data on this await
interpretation. Examination of Fig. 3.6 shows KI 3100 peak
in males to be significantly larger than the same peak in
females. Similarly, KI 3300 peak is virtually absent in

Fig. 3.1. Cuticular hydrocarbon profiles for adult female
Culex territans. Uranotaenia sapphirina. and Culiseta melanura
from Durham, New Hampshire. Specimens were collected
September 15, 1988, near Spruce Hole bog.

47
10 15 20 25 30
Rotontion Timo (min.)

Fig. 3.2. Cuticular hydrocarbon profiles for adult Culiseta
inornata and Cs. melanura males from Florida. Cs. inornata
specimens were field-collected as pupae, Gainesville, Florida,
January, 1989. Culiseta melanura specimens were collected as
pupae, Lake Butler, Florida, January, 1989.

49
10 15 20 25 30
Retention Time (min.)

Fig. 3.3. Cuticular hydrocarbon profiles for adult Culiseta
inornata and Cs. melanura females from Florida. Culiseta
inornata specimens were field-collected as pupae, Gainesville,
Florida, January, 1989. Culiseta melanura specimens were
collected as pupae, Lake Butler, Florida, January, 1989.

51
10 15 20 25 30
Ratontion Time (min.)

Fig. 3.4. Comparison between cuticular hydrocarbon profiles
of adult female Culiseta melanura from New Hampshire and
Florida.

53
10 15 20 25 30
Retention Time (min.)

Fig. 3.5. Comparison between cuticular hydrocarbon profiles
of adult male Culiseta melanura from New Hampshire and
Florida.

55
10 15 20 25 30
Retention Tima (min.)

Fig. 3.6. Comparison between cuticular hydrocarbon profiles
of adult male and female Culiseta melanura from Lake Butler,
Florida.

57
10 15 20 25 30
Rotontion Timo (rain.)

58
females, but present in males. The KI 3410 peak is obvious in
males, but absent in females. These differences, if
considered mathematically, might be shown to be significantly
different. Variation of this magnitude within samples of the
same species necessitated the test for non-normal frequency
distribution.
Sufficient variation existed in values for relative
percent composition for the 11 KI peaks to require further
investigation. Table 3.1 illustrates the means and standard
deviations for KI peaks from wild specimens separated by
locality and by month. Much overlap exists between
collections, but a shift in mean values is also suggested.
Two of the larger peaks (KI 3365 and 4280) were selected for
testing for normal distribution frequencies. Raw data used
for the Rankit test for normality for peaks KI 3365 & KI 4280
are presented in Table 3.2. These data are plotted in Fig.
3.7 and Fig. 3.8. As revealed by the graphs, the data are not
normally distributed. Distribution frequencies are considered
to be non-normal if the line of plotted rankit values is not
straight. If any points deviate from a perfect linear
relationship, the distribution is considered non-normal.
These same wild caught-females used in the ranked deviate
test were plotted by months of capture to see if a seasonal
shift in values in percent composition occurred. These values
are plotted and graphed in Fig. 3.9. To check for
corresponding seasonal variation in geographic location,

59
Table 3.1
Mean and Standard Deviation of KI values of Wild Culiseta
melanura.
KI
3100
AVG
STD
NH
Sept
0.78
0.31
FLORIDA
March April
2.66 0.96
5.36 0.51
May
2.71
2.14
August
1.44
0.55
FL
1.93
3.17
3135
AVG
STD
5.64
0.81
4.56
0.60
4.13
1.47
5.58
1.36
5.47
0.92
4.79
1.33
3165
AVG
STD
3.89
3.68
1.84
0.37
1.40
0.72
2.02
0.47
1.05
0.37
1.63
0.63
3300
AVG
STD
0.45
0.45
2.15
3.51
0.37
0.29
3.02
2.00
2.35
3.66
1.80
2.74
3335
AVG
STD
5.11
0.83
5.73
0.80
6.22
2.94
7.74
2.26
11.80
1.28
7.24
2.92
3365
AVG
STD
20.43
3.40
16.53
2.71
14.24
6.95
17.19
3.68
19.59
2.14
16.36
5.02
4225
AVG
STD
7.30
0.88
6.22
1.13
6.60
1.12
6.15
0.87
4.71
0.88
6.12
1.20
4245
AVG
STD
8.91
1.14
8.76
1.17
8.42
1.97
6.32
1.64
3.71
0.84
7.34
2.35
4280
AVG
STD
5.97
2.45
8.50
2.06
8.20
3.24
4.58
2.11
2.71
0.89
6.64
3.30
4425
AVG
STD
22.16
2.19
23.65
3.27
28.47
4.67
26.06
2.64
29.12
3.19
26.61
4.25
4445
AVG
STD
19.36
1.74
19.40
2.41
20.98
4.14
18.61
1.66
18.05
1.86
19.55
3.12

60
Table 3.2. Rankit values for percent composition of KI 3365
and 4280 among wild adult female Culiseta melanura. (Bi =
Rankit value)
KI
3365 Bi
KI
4280 Bi
Comp.
30.37
2.66
%Comp.
12.87
1.99
25.82
1.75
12.85
1.98
24.26
1.44
12.02
1.72
23.48
1.29
11.36
1.51
22.87
1.16
11.27
1.48
22.81
1.15
11.20
1.46
22.54
1.10
10.74
1.32
22.46
1.08
10.62
1.28
22.02
1.00
10.44
1.22
21.96
0.98
10.16
1.14
21.49
0.89
9.77
1.01
21.30
0.85
9.67
0.98
20.95
0.78
8.40
0.58
20.00
0.59
8.11
0.49
19.76
0.55
7.89
0.43
19.49
0.49
7.75
0.38
19.30
0.46
7.54
0.32
18.84
0.36
7.43
0.28
18.83
0.36
7.27
0.23
18.57
0.31
7.22
0.21
18.10
0.22
6.77
0.07
17.96
0.19
6.77
0.07
17.47
0.09
6.73
0.06
17.14
0.03
6.69
0.05
16.95
-0.01
6.67
0.04
16.54
-0.09
6.42
-0.04
16.23
-0.16
6.30
-0.07
16.20
-0.16
6.05
-0.15
16.08
-0.18
6.05
-0.15
16.05
-0.19
5.99
-0.17
15.77
-0.25
5.94
-0.19
15.34
-0.33
5.32
-0.38
14.85
-0.43
4.90
-0.51
14.47
-0.51
4.82
-0.54
14.46
-0.51
4.50
-0.64
14.19
-0.56
4.43
-0.66
13.96
-0.61
4.03
-0.78
13.77
-0.64
4.00
-0.79
13.63
-0.67
3.64
-0.91
13.60
-0.68
3.36
-0.99
13.59
-0.68
3.24
-1.03
13.06
-0.79
3.21
-1.04
12.70
-0.86
3.06
-1.09
12.62
-0.87
3.02
-1.10
12.21
-0.96
2.60
-1.23
9.43
-1.51
1.74
-1.50

61
Table
3.2 (cont.)
KI 3365
KI
4280
Comp.
Bi
% Comp.
Bi
8.17
-1.76
1.65
-1.53
6.91
-2.01
1.58
-1.55
6.27
-2.14
1.38
-1.62
5.83
-2.22
1.20
-1.67
17.01
6.53
5.03
3.19
male samples from New Hampshire and Florida were also compared
(Fig. 3.10) with females (Fig. 3.11). In all samples plotted
seasonal variation appeared in percent composition values for
KI peaks presented. Since seasonal variation occurred within
my Florida site, statistical analyses (1 Way ANOVA and
Kruskal-Wallis test) were conducted to determine whether these
observed differences were statistically significant. These
results are presented in Table 3.3. Several factors could
explain this variation. Among the possibilities are age, and
temperature. Since differences were seen in seasonal
patterns, and since I already knew of the existence of 2
seasonal morphs for Cs. melanura in Florida, an obvious factor
to test for was the effect of temperature on hydrocarbon
profiles.
Comparisons between KI 3100, 3135, 3165, 3300, 3335,
3365, 4225, 4245, 4280, 4425, and 4445 relative percent
composition for males and females reared at 15"C and 30"C are
illustrated in Fig. 3.12. The relative percent composition
of KI peaks 3335 and 3365 are higher at 30°C than 15°C, and
the reverse is true for KI peaks 4280 and 4445. Chromatograms

62
Table 3.3
ANOVA and Kruskal-Wallis results of comparisons between New
Hampshire versus Florida wild caught female Culiseta melanura
and Florida population separated by months.
NH vs FL
ANOVA
FL by Months
ANOVA
KI
3100
F
1.0080
P
0.3204
K-W
0.0853
F
0.8700
P
0.4649
K-W
0.0121
3135
2.9320
0.0933
0.0310
3.4300
0.0265
0.0094
3165
13.2380
0.0007
0.0005
5.1440
0.0044
0.0041
3300
1.8350
0.1819
0.0236
2.1970
0.1042
0.0004
3335
4.0300
0.0503
0.0253
11.2890
0.0001
0.0011
3365
4.6330
0.0364
0.0229
1.8170
0.1605
0.0615
4225
6.7910
0.0122
0.0129
4.3000
0.0105
0.0127
4245
3.2540
0.7750
0.0955
16.1540
0.0001
0.0001
4280
0.2900
0.5928
0.5082
10.7910
0.0001
0.0001
4425
8.0100
0.0068
0.0046
4.3590
0.0098
0.0108
4445
0.0260
0.8726
0.7508
1.8090
0.1619
0.2334
illustrating the effect of temperature on hydrocarbon profiles
are presented in Fig. 3.13 and Fig. 3.14. Statistical
comparisons (1 Way ANOVA and Kruskal-Wallis) between hot
(30°C) and cold (15°C) showed statistically significant
differences at the 0.05 level for 7 of the 11 peaks compared.
These results are presented in Table 3.4. Since hydrocarbon
profile variation appears to be at least in part affected by
larval rearing temperature, I then reexamined wild caught
females by month of capture.

63
Table 3.4
ANOVA and Kruskal-Wallis results of comparisons between
Laboratory Culiseta melanura at two different temperatures.
Hot = 30°C, cold = 15"C
HOT VS COLD
ANOVA Kruskal-Wallis
KI
3100
F
5.8230
P
0.0250
0.0045
3135
12.5440
0.0019
0.0037
3165
0.3530
0.5588
0.6983
3300
0.5750
0.4566
0.5184
3335
44.1060
0.0001
0.0002
3365
3.8320
0.0637
0.0527
4225
8.0170
0.0100
0.0067
4245
28.1240
0.0001
0.0004
4280
10.1750
0.0044
0.0016
4425
0.9940
0.3302
0.6985
4445
6.1500
0.0217
0.0012
Discriminant analysis was applied to each of the samples to
classify specimens into seasonal categories, and to look for
trends in groupings. Table 3.5 shows how each sample is
broken down by season, illustrating areas of overlap and
separation. Table 3.6 illustrates the generated squared mean
distances for each class of specimens.

Fig. 3.7. Graph of plotted Rankit values used in the Rankit test for normality for
frequency distribution of the average percent composition of hydrocarbon KI 3365 for wild
adult female Culiseta melanura.

Rankits
Rankit Test For Normality for KI 3365

Pig. 3.8. Graph of plotted Rankit values used in the Rankit test for normality for
frequency distribution of the average percent composition of hydrocarbon KI 4280 for wild
adult female Culiseta melanura.

Rankits
2
Rankit Test For Normality for KI 4280
Avg. Percent Composition

Fig. 3.9. Seasonal distribution of relative percent values for selected
values for wild Florida adult female Culiseta melanura. 8 = August, 5 ;
3 = March.
hydrocarbon KI
: May, 4 = April,

Relative Percent
40
Wild Caught Females
By Months
3100 3135 3165 3300 3335 3365 4225 4245 4280 4425 4445
Retention Index

Fig. 3.10. Seasonal distribution of relative percent values for selected hydrocarbon KI
values for wild adult male Culiseta melanura. 12 = December (Florida), 9 = September (New
Hampshire), 8 = August (Florida).

Relative Percent
Pooled Males Samples
Retention Index

Fig. 3.11. Seasonal distribution of relative percent values for selected hydrocarbon KI
values for wild adult female Culiseta melanura. 12 = December (Florida), 9 = September
(New Hampshire), 8 = August (Florida).

Relative Percent
Pooled Females Samples
Retention Index

Fig. 3.12. Effect of temperature on the relative percent of selected hydrocarbon KI
values for adult male and female Culiseta melanura. 30 = 30 degrees centigrade, 15 = 15
degrees centigrade, M = male, F = female.

Relative Percent
Lab Reared Siblings
Retention Index

Fig. 3.13. Cuticular hydrocarbon profiles of adult female
Culiseta melanura reared at 15°C and 30°C, compared to wild
adult female from Lake Butler, Florida (winter specimen).

77

Fig. 3.14. Cuticular hydrocarbon profiles of adult male
Culiseta melanura reared at 15°C and 30°C, compared to wild
adult male from Lake Butler, Florida, (winter specimen).

79
15 20 25
Retention Time Cmin. )
10
30

80
Table 3.5
Discriminant Analysis Classification Summary for Culiseta
melanura. Number of Observations and Percentages Classified
by month:
MONTH
APR
AUG
COLD
HOT
MAR
MAY
NH
Total
APR
6
42.86
1
7.14
4
28.57
0
0.00
1
7.14
2
14.29
0
0.00
14
100.00
AUG
0
0.00
6
100.00
0
0.00
0
0.00
0
0.00
0
0.00
0
0.00
6
100.00
COLD
1
6.67
0
0.00
11
73.33
1
6.67
1
6.67
0
0.00
1
6.67
15
100.00
HOT
1
12.50
0
0.00
0
0.00
7
87.50
0
0.00
0
0.00
0
0.00
8
100.00
MAR
1
8.33
0
0.00
0
0.00
0
0.00
11
91.67
0
0.00
0
0.00
12
100.00
MAY
1
10.00
0
0.00
0
0.00
0
0.00
0
0.00
8
80.00
1
10.00
10
100.00
NH
0
0.00
0
0.00
0
0.00
0
0.00
0
0.00
0
0.00
8
100.00
8
100.00
Total
Per.
10
13.70
7
9.59
15
20.55
8
10.96
13
17.81
10
13.70
10
13.70
73
100.00

81
Table 3.6
Generalized Squared Distance to each corresponding Cluster.
REG
APR
AUG
COLD
APR
0
15.76
2.77
AUG
15.76
0
20.61
COLD
2.77
20.61
0
HOT
20.63
7.53
20.19
MAR
2.82
23.69
7.91
MAY
6.70
14.09
11.83
NH
15.01
42.88
21.02
HOT
MAR
MAY
NH
20.63
2.82
6.70
15.01
7.53
23.69
14.09
42.88
20.19
7.91
11.83
21.02
0
33.69
24.14
54.38
33.69
0
7.20
10.14
24.14
7.20
0
11.76
54.38
10.14
11.76
0
Conclusions
Hydrocarbon profiles do in fact show clear species
differences between non-closely related species. However,
within species variation is sufficient to merit further
consideration. My specimens were separable statistically by
month of collection and by rearing temperature. Both of these
results are new to science. When samples are measured by
discriminate analysis, degree of similarity is measured by
close values in squared mean distances. From this we see that
April specimens are equally close to cold (15°C) and March
specimens. May follows April which is followed by New
Hampshire, August, and finally hot (30°C). This suggests that
the variation seen in the winter and spring months is due to
cooler temperatures, and the summer-fall variation is due to
warm temperatures. Hydrocarbon profiles do not appear fixed
within a species, but are subject to significant variation due
to at least 1 factor, temperature. The warm months 8(August)
and 5(May) showed patterns similar to 30“C reared larvae, and
the colder months 4(April) and 3(March) showed patterns

82
similar to 15 "C larvae. This suggests a seasonal shift in
hydrocarbon profile patterns that would vary in timing from
year to year depending on water level and temperature.
Discussion
Considerable variation between individuals suggests the
need for further investigation into the role of such factors
as nutrition (larval and adult), age, sex, and water guality
on the hydrocarbon profile of any particular species. Caution
is advised in interpreting differences between individuals on
a purely statistical basis. Other criteria such as structure,
behavior, seasonality, and geographic distribution need to be
considered when attempting to distinguish forms. Interaction
between these factors is likely, and needs to be addressed.
A re-examination of published articles on the use of
hydrocarbon profiles as taxonomic tools shows that variation
exhibited by specimens may not fit within the expected normal
frequency distribution pattern. This may be due to the small
sample size that was available for analysis. A 1-way ANOVA
was typically used for comparisons. This test has several
assumptions, one of which is normality of distribution.
When dealing with closely related species or suspected
siblings, sample size becomes the major factor in the ability
to separate similar forms. Since the percent composition will
be a function of quantitative differences, researchers are at
the mercy of the specimens provided and the accuracy of data
that accompanies insects. Species that are considered to be
less closely related show qualitative differences in their

83
respective GC peaks. However, closely related species appear
to show only small quantitative differences. As presented
here, sufficient variation exists within GC peaks to cause
overlap of data sets. Once the relationship between GC
profile, temperature of larval development, adult age, and
adult nutrition are understood, precise definition of a
particular species may be possible.

CHAPTER 4
HOST PREFERENCE IN MOSQUITOES, A REVIEW
Introduction
One method of discussing host preference is to analyse
the numerous articles published on the subject. I believe
that sufficient data are available in the literature to
develop an argument for host preference being other than
preference for a species of animal. This chapter contains
condensations, re-examinations, and summaries of a few
publications dealing with the subject of host preference. I
have tried to provide sufficient examples to illustrate
diversity of hosts for particular species, as well as citing
inconsistencies in applying the term host preference. This
review is presented to develop the hypothesis that host
preference involves something more than recognition of a
particular animal species. Host preference implies that the
mosquito somehow prefers certain animals for bloodmeals. If
blood alone is the primary motivating factor, then logically
almost any animal would do.
Florida has 71 known species and subspecies of
mosquitoes. Of these, 20 never bite man. This means that for
one or more reasons man is neither a suitable host nor a
preferred host for 28% of the Florida mosquitoes. For the
84

85
remaining 50 species, man is at times an acceptable host, but
no species uses man for bloodmeals to the exclusion of all
other animals .
Host preference records are usually determined by
bloodmeal analysis, preference being determined by calculated
percentages of types of animal blood meals from collections
of bloodied female mosguitoes.
Literature Review
Crans (1965) divided mosguito populations into 4 major
categories according to their bloodmeal sources: (1) mammalian
feeders which only occasionally fed on birds; (2) avian
feeders which rarely feed on mammals; (3) general feeders
which are indiscriminate feeders on either mammals or birds;
and (4) amphibian feeders which feed primarily on cold-blooded
animals.
Rempel et al. (1946) studied the feeding habits of some
Saskatchewan Aedes mosquitoes and concluded that none of the
species studied showed a host preference. The degree to which
a species fed upon a particular host appeared to be a function
of the availability of that host. Multiple bloodmeals (from
multiple hosts) were detected in one third of the samples
studied. Examination of their data showed that for the 4
study sites Aedes spencerii (Theobald) showed average
preferences for equine (24%), human (16%), bovine (9%), and
avian hosts (9%) .

86
Downe (1960) concluded that host preference for mammals
was correlated with body surface area of the hosts, and that
the Aedes species studied had no preference for particular
mammals. When there were 2 or more mammals close together,
larger hosts were chosen only by chance. He also noted that
bloodmeal records did not appear to be correlated with the
weights of the animals. Dow et al. (1957) reported the numbers
of Culex tarsalis (Cog.) attracted to birds to be proportional
to the size of the birds. They also stated that birds of
different species but of similar sizes attracted similar
numbers of Cx. tarsalis. Downe (1962) studied Coguillettidia
perturbans (Walker)and reported a decided preference for
birds, with some mammalian bloodmeals. He reported a
considerable number attracted to mammal hosts without feeding.
In contrast, the majority attracted to birds took bloodmeals.
Multiple feedings were common suggesting that Cg. perturbans
may be unable to complete a successful bloodmeal on a
mammalian host. This capacity for mammalian-bird multiple
feeding makes this species a prime candidate as the vector of
EEE.
Hayes & Doane (1958) reported the first record of
Culiseta melanura biting man. No bloodmeal was taken, but
skin penetration was accomplished, resulting in swelling at
the site of the bite. Culiseta melanura is considered to be
almost exclusively a bird-feeder.

87
Karstad (1961) studied reptiles in southeast Georgia.
He found snakes, turtles, and alligators to possess
significant EEE antibodies, indicating exposure to the virus.
Very few mosquitoes are thought to feed on reptiles.
DeFoliart (1967) reported Ae. canadensis readily feeding on
a variety of turtles. Crans (1964) reported the following host
bloodmeal records from New Jersey: Anopheles guadrimaculatus
preferred mammal blood, mostly deer but included man and dogs;
Cq. perturbans preferred mammals (deer & rodent), with only
a single bird record. Aedes sollicitans fed mainly on deer,
but also on larger shore birds, humans, rabbits, and pigs.
Culiseta melanura fed almost exclusively on passerine birds,
but also fed on larger birds, deer, opossum, rodents, raccoon,
and frogs. Culex pipiens was exclusively a bird feeder.
Culex salinarius fed equally on mammals and birds, and Cx.
territans fed mostly on frogs, but also on birds, rodents,
raccoon, and turtles.
Crans (1970) studied Cx. territans in New Jersey. Of 315
bloodmeals, 279 were amphibian, 19 were reptile (6 turtle, 3
snake), 6 were avian, and 2 mammalian (rabbit & rodent). Most
often the frogs being fed upon were the bullfrog Rana
catesbeiana Shaw and the green frog R. clamitans Latreille.
Other frogs included the spring peeper (Hyla crucifer Weid.),
the southern leopard frog (Rana pipiens Schreber) and the
carpenter frog (R. virgatipes Cope). Means (1968) however
reported Cx. territans biting man.

88
Murphey et al. (1967) studied 14 species of mosquitoes
and their attraction to bird, mammal, and reptile-baited
traps. Bird hosts included mallard duck, Canada goose, common
egret, barn owl, red winged blackbird, turkey vulture, and
chicken. Mammal hosts included woodchuck, muskrat, raccoon,
opossum, red fox, meadow vole, river otter, and guinea pig.
A breakdown of some of their data is presented in table 4.1.
Although various mosquito species were collected, no distinct
host preference pattern was seen by the authors. What was
apparent was that if mosquitoes came to these hosts, most
took a bloodmeal on that particular host. The diversity of
hosts that are acceptable to the species (see table 4.1) would
suggest no host preference, as reported by the authors.
However, as shown in Chapter 7, these animals have much in
common, and in fact the data suggest a preference by the
mosquitoes for amount of respired volume of gases. Not all
hosts were used for the same number of trapping nights. The
number collected in Table 4.1 represents the number collected
per night per trial for that particular host. If the total
number of mosquitoes collected per host is divided by the
number of trials for that host, the resulting number collected
per trial per host becomes mallard (110), Canada goose (117),
common egret (128), barn owl (85), red winged blackbird
(128), turkey vulture (108), chicken (164),
muskrat (168), raccoon (150), opossum (140), red fox (97),
meadow vole (144), river otter (85), and guinea pig (180).

89
Table 4.1
Species of mosquitoes attracted to various hosts
Species
Mosquitoes
Cx. salinarius
Ae. sollicitans
Ae. cantator
Ae. vexans
Cx. pipiens
Bird
Bait Host
Number
/Niqht
%
Fed
Mammals Number
Bait Host /niqht
%
Fed
mallard
19
79
woodchuck
37
91
goose
21
95
muskrat
35
84
egret
36
94
raccoon
27
82
owl
17
94
opossum
24
92
blackbird
25
84
red fox
24
79
vulture
18
100
vole
30
87
chicken
41
89
otter
28
86
guinea pig
29
86
mallard
14
86
woodchuck
45
89
goose
18
92
muskrat
33
91
egret
15
93
raccoon
29
91
owl
20
80
opossum
32
91
blackbird
28
87
red fox
14
86
vulture
16
94
vole
29
90
chicken
21
91
otter
21
90
guinea pig
37
89
mallard
14
64
woodchuck
26
81
goose
11
41
muskrat
19
87
egret
13
92
raccoon
19
91
owl
6
100
opossum
21
90
blackbird
14
92
red fox
17
94
vulture
18
89
vole
13
92
chicken
18
84
otter
9
78
guinea pig
37
91
mallard
9
78
woodchuck
21
84
goose
9
76
muskrat
24
88
egret
10
100
raccoon
21
89
owl
8
86
opossum
20
85
blackbird
13
79
red fox
13
69
vulture
7
86
vole
19
89
chicken
12
83
otter
10
70
guinea pig
13
81
mallard
7
83
woodchuck
8
34
goose
27
70
muskrat
6
33
egret
7
83
raccoon
5
81
owl
12
100
opossum
4
50
blackbird
13
94
red fox
2
0
vulture
12
100
vole
2
50
chicken
29
84
otter
3
33
guinea pig
10
45

90
Table
An. quad. mallard
goose
egret
owl
blackbird
vulture
chicken
Coq. perturbans mallard
goose
egret
owl
blackbird
vulture
chicken
An. crucians mallard
goose
egret
owl
blackbird
vulture
chicken
Cx. restuans mallard
goose
egret
owl
blackbird
vulture
chicken
An. punctipennis mallard
goose
egret
owl
blackbird
vulture
chicken
(Cont.)
12
woodchuck
17
81
79
muskrat
21
83
83
raccoon
12
87
100
opossum
14
83
80
red fox
15
87
100
vole
21
81
76
otter
4
50
guinea pig
6
81
71
woodchuck
11
80
95
muskrat
14
89
85
raccoon
16
93
62
opossum
4
75
88
red fox
6
100
88
vole
5
80
90
otter
0
0
guinea pig
6
83
100
woodchuck
9
83
69
muskrat
13
85
70
raccoon
14
84
100
opossum
11
94
82
red fox
5
40
100
vole
19
84
76
otter
9
78
guinea pig
2
83
17
woodchuck
0.7
66
79
muskrat
0.5
100
75
raccoon
0.5
100
67
opossum 0
.33
100
78
red fox
0
0
50
vole
0
0
84
otter
0
0
guinea pig
0
0
50
woodchuck
4.8
68
0
muskrat
1
100
0
raccoon
3
42
33
opossum
4
75
50
red fox
1
100
0
vole
2
100
58
otter
1
100
guinea pig
7
71
4.1
17
7
7
2
6
4
8
17
10
8
13
10
17
12
1
6
10
1
6
3
10
6
7
12
3
7
4
11
4
0.5
2
3
6
6
3
Far fewer mosquitoes were attracted to reptiles. Those species
that showed some attraction to reptiles included Cx.

91
territans. An. quadrimaculatus. Ae. sollicitans. Cq.
perturbans. Cx. pipiens. and Cx.salinarius. Culex salinarius
and Cx. pipiens failed to bloodfeed on the reptiles, while Cq.
perturbans fed on snakes but not on turtles. Aedes
sollicitans fed on a kingsnake and snapping turtle, but not
on a watersnake and box turtle. Anopheles quadrimaculatus
fed on a watersnake, snapping turtle, and box turtle. Culex
territans fed on a kingsnake, watersnake, snapping turtle, and
box turtle. The total numbers of mosquitoes attracted to
reptiles were Cx. territans (104). An. quadrimaculatus (11),
Ae. sollicitans (25), Cq. perturbans (14), Cx. pipiens (19),
and Cx. salinarius (15). Culex territans was not collected
in mammal baited traps. All of the above data were extracted
from various total numbers reported by Murphey et al.(loc.
cit.). The authors attempted to correlate mosquito species
with host preference but were unable to do so.
Edman & Taylor (1968) documented a seasonal shift from
bloodfeeding on birds to mammals in Cx. nigripalpus. Increase
in mammal-feeding started in early summer, reached a maximum
between July and October, and was followed in the fall by a
return to mainly avian hosts during winter and spring. The
shift in feeding could not be related to any shift in the
availability of hosts at either study site. Rabbits were
frequent hosts at one site but were replaced by armadillos at
the other. The authors suggested that since seasonal
abundance of hosts did not explain the shift, perhaps seasonal

92
weather conditions (temperature and moisture) might influence
feeding behavior or the ability to find one class of hosts
more readily than the other.
Nolan et al. (1965) recorded Ae. canadensis and Ae.
triseriatus feeding on turtles on the Pocomoke Swamp,
Maryland, in June. The painted turtle and box turtle were
hosts. A single Ae. triseriatus was collected, while 43 Ae.
canadensis were collected.
Gunstream et al. (1971) studied blood meals for 6 species
of California mosguitoes. Aedes dorsalis (Meigen) fed mainly
on cattle (47%), followed by horse (29%), dog (16%), human
(3%), and rabbit, cat, pig, and chicken (1%). Aedes vexans
fed on cattle (40%), horse (25%), dog and humans (10%), rabbit
(7%), chicken (3.4%), and passeriform birds (1.7%).
Psorophora confinnis (= columbiae) fed on cattle (49%), horses
(32%), dogs (9%), pigs (2.8%), and humans, rodents, and birds
(0.3%). Culex ervthrothorax Dyar fed on cricetid rodents
(34%), cattle and rabbit (1.5%), chicken (3%), columbiform
birds (13.4%), passeriform birds (10.4%), ciconiiform birds
(22.4%), gruiform and anseriform birds (1.5%) . Culex tarsalis
fed on cattle (18.2%), horses (10.9%), rabbit (2.4%), human
(2%), chicken (14.6%), guail (1.2%), columbiform birds (3.2%),
passeriform birds (15.8%), gruiform birds (2.4%), and
anseriform birds (1.6%). Culiseta inornata fed on cattle
(56.2%), horse (25.2%), dog (6.2%), rabbit (4%), and chicken
(4.2%).

93
While Cx. tarsalis totaled a near 1:1 mammal - to - bird
feeding ratio, the seasonal ratios of mammal/bird were 11:43
(fall & winter), 68:63 (spring), and 40:14 (summer). The
authors attributed the shift to seasonal changes in host
availability.
Tempelis et al. (1967) studied Cx. tarsalis. Cx. pipiens.
Cs. inornata. Aedes vexans, Ae. sticticus. Ae. dorsalis. and
Ae. melanimon from Colorado. Cattle were the predominant
blood meal for all Aedes tested, with only 3 of 934 bloodmeals
avian. Culiseta inornata fed principally on horses and
cattle; less than 1% on birds. Culex pipiens had 95% avian
bloodmeals, predominantly columbiformes. Culex tarsalis had
69% avian feeding.
Four species of mosquitoes were studied in Hawaii for
their bloodfeeding habits (Tempelis et al., 1970). Culex
quinquefasciatus fed mainly on birds but also on a wide range
of mammals including dogs and cattle. Aedes vexans fed only
on mammals, mainly cattle and horses. Aedes albopictus
(Skuse) and Ae. aeqypti fed almost exclusively on mammals,
with Ae. aeqypti feeding mainly on man but also feeding on
dogs and a wide range of other mammals. Birds were not favored
by either Ae. aeqypti or Ae. albopictus.
Suyemoto et al. (1973) looked at 700 blood meals for 28
species of mosquitoes from 4 southern and southwestern states
for July and August. Little host specificity was observed.
However, preference for mammals vs. birds was observed. Aedes

94
atlanticus-tormentor had 14/16 bloodmeals mammalian (rabbit
6, human 3, bovid 1, deer 1, dog 1, opossum 1) with 1
bloodmeal identified as gruiform bird. Aedes dupreei had both
meals mammalian (rabbit 1, deer - goat - bovine 1) . Aedes
fulvus pallens had rabbit bloodmeals. Aedes nigromaculis
preferred horse (20), goat - sheep (17), deer (6), bovine (1),
pig (1), rabbit (9), and deer - goat - bovine (14). Aedes
thelcter had 7/9 bloodmeals rabbit. Aedes vexans had goat -
sheep (38), horse (15), deer - goat - bovine (36), rabbit
(7), deer (6), bovine (1), and cat (1). Anopheles crucians
had goat - sheep (1) , horse (1) . Anopheles pseudopunctipennis
(Theobald) had 1 horse bloodmeal. Anopheles punctipennis had
1 rabbit bloodmeal. Anopheles guadrimaculatus had 1 deer and
1 pig bloodmeal. Culex coronator Dyar & Knab had 7/7
bloodmeals rabbit. Culex salinarius had 132/137 mammalian
bloodmeals with 2 bird and 3 reptile bloodmeals. Mammalian
bloodmeals consisted of goat - sheep (32), deer (30), rabbit
(12), horse (1), opossum (3), pig (1), raccoon (1), dog (5),
and bovine (4). Culex tarsalis had 20/26 mammalian
bloodmeals, with 6 avian bloodmeals. Mammalian bloodmeals
consisted of goat - sheep (5), bovine (4), horse (2), rabbit
(2), opossum (1), pig (1), deer - goat - bovine (6), and dog
(1). Psorophora ciliata (Fabricius) had 3 mammalian
bloodmeals analyzed: goat - sheep (1) and deer -goat -bovine
(2) . Psorophora confinnis (=columbiae) had 67/72 mammalian
bloodmeals, with 5 reptile bloodmeals also. Mammalian

95
bloodmeals were goat - sheep (29), horse (19), rabbit (7),
bovine (3), deer (2), and human (1). Psorophora cvanescens
(Coquillett) had 108/114 bloodmeals mammalian, horse (69),
rabbit (13), deer (6), goat - sheep (9), human (4), opossum
(1) , and pig (2) . Psorophora ferox (Humboldt) had 1 human and
1 rabbit bloodmeal. Psorophora signipennis (Coquillett) had
horse (4), rabbit (6), pig (1), goat - sheep (1).
Hayes et al. (1973) studied host preference in Hale
County, Texas over a period of 4 years. Seven species of
mosquito were analyzed for blood meal type. Aedes vexans had
95% mammalian, 5% avian bloodmeals. Culex tarsalis had 31%
mammalian, 68% avian. Culex quinquéfasciatus had 96% avian
bloodmeal, 3% mammal. Psorophora siqnipennis and Cs. inornata
were 100% mammalian feeders. Mammalian bloodmeals for Cx.
tarsalis and Ae. vexans consisted primarily of bovine and
equine. Avian bloodmeals for Cx. tarsalis consisted of
chickens and passeriform birds.
Magnarelli (1977a) studied host feeding patterns of
Connecticut mosquitoes. Among the Aedes species, Ae.
abserratus (Felt & Young) showed a marked preference for horse
(24%), bovine (18%), and deer (17%). Other mammals included
humans (4.3%), dog (8.6%), rabbit (2.9%), cat (1.4%), mouse
(1.4%), raccoon (1.4%), sheep (4.3%), and birds (8.6%). Aedes
canadensis had a bloodmeal composition of dog (13.5%),
squirrel (13.5%), sheep (10.8%), human, bovine, horse, rabbit,
and raccoon all 5.4%, deer (2.7%), birds (8.1%), and frog

96
(5.4%). Aedes cantator had bovine (32.8%), passeriform birds
(12.9%), human (10%), horse (10%), rabbit (7.9%), dog (7.1%),
sheep (7.1%), goat (1.4%), and raccoon (1.4%). Aedes cinereus
(Meigen) had bovine (18%), dog (18%), horse (12%), rabbit
(12%), mouse (12%), raccoon (6%), goat (6%), deer (6%), and
bird (1%). Aedes excrucians (Walker) had sheep and bovine
(16%), horse (20%), rabbit (12%), raccoon (4.2%), and goat
(4.2%). Aedes stimulans (Walker) had dog (36%), human
(18.2%), sguirrel (18.2%), and opossum (18.2%). Aedes
sollicitans had bloodmeals of dog (25%) , bovine and horses
(18%), rabbit (12%), sheep (12%), and human (6%). Aedes
triseriatus had bloodmeals of dog (35%), mouse (28%) , sguirrel
(14%), and raccoon (7%). Aedes vexans had bovine (41%) , horse
(16%), sheep (14%), deer (4.8%), human, rabbit, cat, and mouse
each 1.6%, and bird 3%. Culex pipiens had all avian
bloodmeals, with 69% passeriform and 25% columbiform. Culex
restuans also had 100% avian bloodmeals, with 83%
passeriforms. Culiseta melanura had 95% passeriform birds.
Culiseta morsitans had 94% passeriforms. Coguilleftidia
perturbans had human (9%), dog (14%), bovine (19%), rabbit
(9%),and raccoon (5%). Psorophora ferox had bloodmeals of
humans (25%), dogs (16%), bovine (18%), horse (15%), deer and
raccoon (6%), and passeriform birds 6%.
Wright & DeFoliart (1970) studied Wisconsin mosquitoes
and their associated vertebrate hosts. Their mosquitoes were
collected into a large cage inside which different hosts were

97
placed. The counts of numbers attracted vs. number engorged
for each species showed that some animals were very attractive
but do not appear to be suitable as hosts for bloodmeals. If
a breakdown of their data by number of specimens attracted to
each host vs. percent engorged is analyzed, the following
pattern emerges. Whitetail deer fawn attracted 2362 Aedes
comprising 8 species with an engorgement rate of 65%. Two
species (Ae. trivittatus and Ae. triseriatus) did not engorge
on the deer. Raccoons attracted 5005 specimens representing
8 Aedes species, with an engorgement rate of 50%. However,
in spite of making up 20% of the total numbers attracted to
raccoon bait, Ae. stimulans and Ae. vexans only averaged 23%
engorgement.
The following pattern emerged for the 20 species
collected in the study. Each species of host was attractive
to most of the mosquitoes, but the numbers of attracted
females did not correlate with the percent engorgement for
each host and species of mosquito. If the relative size of the
animal is compared to the number attracted for the Aedes,
whitetail deer attracted Ae. sticticus (1804), Ae. vexans
(386), Ae. canadensis (111). Ae. cinereus (18), Ae. stimulans
(15), and Ae. abserratus - punctor (25). The raccoon
attracted Ae. sticticus (1887), Ae. trivittatus (1194), Ae.
vexans (800), Ae. stimulans (313), Ae. cinereus (373), Ae.
canadensis (332) , Ae. triseriatus (54), and Ae. abserratus-
punctor (102). The authors concluded that the population

98
levels of mosquitoes exerted an influence on the type of host
used. They theorized that in the presence of large
populations of mosquitoes, hosts were fed upon that normally
are not used when populations are lower. Larger hosts seemed
to show a higher attack rate for the Aedes. The authors
coined the phrase host acceptability in place of host
preference. What emerged from their study was the fact that
a variety of different hosts will attract a mosquito species
into a cage, but actual engorgement rates were varied. Among
the Cx. pipiens attracted, the largest numbers were attracted
to the smallest mammals, but the highest engorgement rate
occurred on birds. This suggests that body size (warmth) is
the initial distance attractant. Body size is correlated with
body surface area. Olfaction and proper amount(volume) of
chemicals take over at close range and influence host
selection once the mosquito has been drawn to the properly
sized animal.
Tempelis (1975) expanded the categories for host ranges
of mosquitoes to 9 from the 4 proposed by Crans (1971) . These
include (1) almost entirely mammals, (2) entirely birds, (3)
both birds and mammals, (4) exclusively amphibian, (5)
predominantly reptiles but occasionally warm-blooded, (6)
entirely on fish (Ur. lateralis) , (7) cold and warm-blooded
animals, (8) birds in spring, mammals in summer and fall, and
(9) exclusively mammals in 1 area, birds in another. Tempelis
(1975) recorded feeding preferences for various species of

99
mosquito to illustrate each of the above categories. Among
Florida species he compared An. crucians which Edman (1971)
stated used rabbit as the primary host, but which Schaefer &
Steelman (1969) reported using cattle as the primary host in
Louisiana. Anopheles quadrimaculatus was reported as
preferring bovines in Louisiana and ruminants in Florida.
Tempelis (loc. cit.) reported domestic mammals (cattle in
Illinois, horses in Minnesota) for An. punctipennis. He stated
that little doubt exists about hosts preferred by Anopheles
being dependent upon the availability of certain mammals.
Culex tarsalis was again noted for its spring bird feeding and
shift to mammals in mid-July lasting until the end of the
summer. He also noted that as with Cx. tarsalis. the seasonal
shift reported in Cx. nigripalpus could not be attributed to
changes in host availability and behavior. Culex pipiens and
pipiens quinquefasciatus are reported by Tempelis to differ
in feeding preference. Culex pipiens prefers birds
exclusively, while pipiens quinquefasciatus feeds readily on
birds and mammals. Among the other Culex species Tempelis
(1975) reported the following as avian feeders: Cx. restuans.
Cx. erraticus. Cx. peus. and Cx. thriambus Dyar.
Culex salinarius from Louisiana were found to feed on
mammals 99% of the time, primarily cattle (Schaefer &
Steelman, 1969) . This same species in Texas was found to have
fed entirely on mammals, but in Minnesota was found to be
principally a feeder on passeriform birds (Tempelis, 1975).

100
In New Jersey Cx. territans had 88% amphibian bloodmeals
(Crans, 1970). California specimens of Cx. apicalis Adams fed
on reptiles in one area and passeriform birds in another.
Culex ervthrothorax from 3 western states showed 3
different feeding patterns; birds in Utah, mammals in the San
Joaquin valley, and equally birds and mammals in southeastern
California (Tempelis, 1970; Gunstream et al., 1971).
Aedes aeqypti fed on man in Hawaii 53% of the time and
83% in Florida (Tempelis, 1970). Domestic mammals were also
used as hosts, and feeding by Ae. aeqypti on birds is rare
under most circumstances. In Africa a wide range of hosts was
reported for this species, with man the primary host but
including also bovine and rodents. Twenty five percent of
specimens collected in one village had fed on reptiles
(McClelland & Weitz, 1963). Aedes albopictus feeds on domestic
mammals and man as well, with a much lower percentage feeding
on birds.
Aedes vexans is a pest of large domestic mammals and man
(Horsfall et al., 1973; Takahashi et al., 1971). In Canada,
however, Ae. vexans were attracted to and fed on chicken-
baited traps (Shemanchuk,1969).
Burkot & DeFoliart (1982) analysed bloodmeal sources in
Ae. triseriatus and Ae. vexans in southern Wisconsin. Deer
made up 65% of bloodmeals for Ae. triseriatus and 95% of
bloodmeals for Ae. vexans. Of 196 bloodmeals identified from
Ae. triseriatus 127 were deer, 2 dog, 2 raccoon, 5 human, 5

101
rabbit, 15 chipmunk, 32 gray squirrel, 2 woodchuck
(grounghog) , 4 mouse, 2 bird, and 1 reptile/amphibian.
However, approximately 45% of the bloodmeals tested for these
two species were not reactive to the antisera used.
Bertsch and Norment (1983) studied host-feeding patterns
of Cx. guincruefasciatus in Mississippi. They observed a
preference for avian bloodmeals, but with a marked decrease
of bird feeding during the warmer months. Of the mammal
hosts, equine and bovine were preferred, with June, July, and
August being the months of highest mammalian feeding activity.
Rabbit-feeding was greatest at the end of the large-mammal-
feeding period, reaching its highest level in September. No
data were collected for the period October -February. Chicken
bloodmeals were the highest during the same months as larger
mammals, with the highest percentage occurring in the fall.
Passeriform bird bloodmeals were taken in highest numbers in
late fall.
Nasci (1982b) studied hosts for Ae. triseriatus and Ae.
hendersoni in Indiana. He found that Ae. triseriatus fed
predominantly on chipmunk and deer. Aedes hendersoni fed
mainly on tree squirrels and raccoon. Nasci (1984) also
studied Ae. vexans and Ae. trivittatus (Coquillett) feeding
patterns in Indiana. Aedes vexans preferred large mammals
(deer, cow, and horse), with lesser attraction to dog, rabbit,
humans, pig, and goat. Aedes trivittatus preferred dog,
rabbit, and cat at one site; horse, deer, and raccoon at

102
another, and deer and raccoon at a third site. These host
preferences varied over such a short distance that Nasci floe,
cit.) suggested that the variation in feeding was in response
to environmental factors such as differences in host density
and weather factors. Fluctuating host densities appeared to
be the cause of daily variation in bloodfeeding. He also
stated that while Ae. vexans appeared to be an opportunistic
feeder on available large mammals, the opportunistic feeding
did not appear to include feeding on other types of hosts such
as smaller mammals and birds. In discussing these
discrepancies and differences between the two species, Nasci
suggested that the possibility exists that Ae. vexans and Ae.
trivittatus search for hosts in different habitats, or that
they respond to different images, or that they have different
thresholds to C02 sensitivity. This concept of host image and
C02 sensitivity is the concept that will be developed in the
later chapters here. Nasci (1984) is the first reference
encountered that has tried to use a combination of host image
and C02 sensitivity of the mosguito to explain host
preference. All that is lacking here is the mechanism behind
the different sensitivity capability of mosguitoes and the
relationship between host image and C02 levels. A hypothesis
for this relationship is presented and analyzed later.
In a series of papers (Edman, 1971, 1972, 1974, 1979b;
Edman & Haeger, 1977) the feeding preferences for Florida
mosguitoes were examined. The genus Wyeomyia contains 3

103
species in Florida. Of these, Wy. mitchelli (Theobald) and
Wv. vanduzeei (Dyar & Knab) were found to prefer rabbits.
These two species occur in the southern half of peninsular
Florida and oviposit in bromeliads. The third species (Wv.
havnei Dodge) oviposits in the pitcher plant Sarracenia
purpurea L. that grows in bogs in north-west Florida all the
way north to the New England states. This species is totally
autogenous in the north portion of its range, but will take
bloodmeals in the southern portion of its range.
Bloodmeals for the anautogenous species of Wveomyia
included raccoon, armadillo, ruminants (possibly also deer),
and birds. These species are daytime biters.
Culex (Melanoconion) were discussed by Edman (1979b).
The species Cx. erraticus and Cx. iolambdis Dyar fed primarily
on the Ciconiiformes (herons, storks, & egrets), Cx. peccator
Dyar & Knab and Cx. pilosus fed primarily on reptiles. Culex
opisthopus Komp fed primarily on small mammals, especially
rodents. A further breakdown of bloodmeals from Cx. erraticus
revealed 80% bird (Ciconiiformes), 19% mammal (including
rabbit, ruminant, raccoon, opossum, armadillo, & rodent), and
2 reptiles (turtle and snake). Culex pilosus had 28% mammal
(rabbit, ruminant, & raccoon) and 71% reptile and amphibians
(mostly snakes and lizards). Culex peccator had 36% birds,
57% snakes, and 7% mammals.
Edman (1974) looked at host-feeding in Culex and
Neoculex. Culex territans was identified as a cold-blooded

104
animal feeder. Culex pjpiens guinguefasciatus was a general
feeder on domestic birds and mammals, as well as passerine
birds. Culex salinarius was a general feeder, but fed
primarily on mammals in certain habitats. Culex nigripalpus
had a wide variety of hosts including cattle, rabbits,
ciconiiform, passerine, and galliform birds. As discussed
earlier, Cx. nigripalpus shows a seasonal host shift. Edman
(1974) discussed the possibility of 2 distinct seasonally
adapted biotypes within Cx. nigripalpus. each having a
different host preference and season of abundance. No direct
differences were seen between feeding habits of Cx.
nigripalpus when they were offered marsh rabbits and cockerels
(birds) as hosts.
Other Florida genera (Aedes, Psorophora. Anopheles,
Coguillettidia. and Mansonia were compared for host preference
(Edman, 1971). As noted from the the many earlier papers,
discrepancies between host availability and host preference
were noted. Some species of common mammals were rarely used,
while other mammals were at times fed on disproportionately
to their numbers. Despite absences of certain hosts within
a radius of up to 5 km, these hosts were found in blood meal
analyses, indicating at least a 5 km radius of host seeking
by some mosguitoes, despite the apparent abundance of a
variety of other hosts. The only mosquito species collected
at all study areas was Ps. confinnis ( = columbiae). In area
1 Ps. confinnis showed a preference of rabbits to ruminants

105
in a 2:1 ratio; in area 2 the ratio was 54% ruminants, 45%
rabbits and armadillos; and in area 3, 27% ruminants, 69%
rabbits and armadillos. Several other species had feeding
patterns which appeared aberrant with respect to mammalian
abundance. Psorophora howardii. An. crucians. and Ae.
sollicitans showed disproportionately greater feeding on
rabbits, while Mansonia titillans and Ps. ciliata showed
minimal feeding on this host. Similarly, Ae. atlanticus. Ae.
infirmatus. and especially Ae. fulvus pallens fed on
armadillos more frequently than any other species. Aedes
vexans and Ps. howardii rarely engorged on armadillos.
Edman (loc. cit.) noted that many mammals, though
abundant in study areas, were seldom fed upon by mosquito
species. He proposed 3 reasons they were inaccessible; (1)
defensive anti-mosquito behavior (2) physical location
(burrows, trees) made them unavailable and (3) the least
likely possibility. that they were unattractive to the
mosquitoes.
Irby and Apperson (1988) analyzed the bloodmeals from 24
species of North Carolina mosquitoes. Notable among these
were Ps. ferox which fed mostly on mammals, of which 81% were
deer. Aedes atlanticus had 50% deer, Cx. salinarius had 83%
dog/fox, Ae. fulvus pallens had 7 dog/fox, 3 deer, and 2
rabbit, Ae. hendersoni had 13/13 mammal bloodmeals of rabbit,
Ae. triseriatus had 10 rabbit, 5 dog/fox, and 3 deer, and all
bloodmeals of Ae. dupreei (Coquillett) were passerine birds.

106
Host Preference In Culiseta melanura & Cs. inornata
Culiseta inornata is apparently a winter immigrant into
central Florida, arriving soon after the first few nights of
freezing temperatures. No records exist for this species
occurring in Florida during summer and fall. During warm
winters this species may be totally absent locally. The few
records of host feeding indicate a preference for large
mammals in Florida (Edman et al., 1972). Culiseta melanura
by all accounts is predominantly an avian feeder. Florida
feeding records (Edman et al., loc. cit.) showed 98% avian
bloodmeals, primarily passeriform, but also including
ciconiiform. Other records include ruminant, rabbit, rodent,
snake, and lizard.
Nasci & Edman (1981a) analysed bloodmeals for Cs.
melanura in Massachusetts. Again, 98% bloodmeals were avian,
predominantly passeriform. Non avian bloodmeals included dog,
rabbit, cat, snake, reptiles, and amphibians. The first
report of man being bitten by Cs. melanura was by Hayes and
Doane (1958). Schroeber (1964) reported man as a host in New
York. Moussa et al. (1966) reported a high percent of mammal
blood meals in Maryland in the fall for Cs. melanura. All
reported human bloodmeals have been in September.
Perhaps the most comprehensive study of Cs. melanura was
that of Joseph & Bickley (1969). Their study took place in
Maryland. During the years of their study overall bloodmeal
for this species were largely avian. However, exceptions were

107
noted. Single host records were obtained for man and a horse.
They reported a collection station where 60% of the specimens
were bird-fed, but 39% were also mammalian (including dogs
and cats). Precipitin data by their own account showed a
lower percentage of bird-feeding in September. The authors
noted a slight seasonal shift in feeding habits, with a
decrease in birdfeeding from May to July, reaching a seasonal
low in September.
Discussion
From all of the above discussion numerous discrepancies
emerge regarding species host preferences. Seemingly,
depending on geography and seasonality, host preference may
be totally different. What also emerges is the suggestion
that host availability is probably not the single most
important factor in defining host preference. In the
following chapters I will examine the type of host, the
morphology of the host detection structures, and the gaseous
discharges from various hosts to see if a pattern emerges.
From these data some predictions should be possible regarding
host preference, species of mosguito, and attractants to be
used in traps.

CHAPTER 5
MORPHOLOGY OF SENSORY STRUCTURES
Introduction
Bloodmeal-taking and apparent host preference are the
end result of a series of events that begins with host-
detection, leads to host-location, host-selection, and finally
host-feeding. Distance attractants are most likely thermal
(radiant energy) and possibly olfactory. At close range
olfaction is most likely the process that determines the
suitability of a host. The known locations of sensory
structures used in host seeking occur on the antennae and
palpi. Receptors for other than host olfaction (tactile,
thermal, and chemical) may be located on the legs, proboscis,
and abdomen. As far as is known, all distance chemoreceptors
occur on the antennae and palpi of adult mosquitoes. Males
have the same type of sensory structures as the female,
although fewer in number (Mclver, 1982).
The types of sensory structures are similar between
species of mosquitoes. Anopheles are unique in their
coeloconic sensilla on antennal segments (Fig. 5.1). The non¬
bloodfeeding Toxorhynchites lacks several of the structures
associated with host seeking. Of the species examined by me,
only the number and location of sensory structures varied
108

109
between species. No unusual type of structure was unique to
any species examined by me. What did emerge was a pattern of
palpal and antennal configuration more or less unique to each
species. This interspecific variation in the arrangement of
common structures suggested a correlation with host preference
and morphology.
Taxonomic use of sensory structures in mosquitoes has
been limited to Anopheles (Ismail, 1962; 1964; Ismail &
Hammond, 1968). Palpal differences are seldom used in North
American mosquito taxonomy. The most extensive use of palpal
morphology was seen in the treatment of the mosquito fauna of
Japan and Korea (Tanaka et al., 1979). Here is to be found
the first major use of palpal morphology for taxonomic
separation of species. To better understand palpal structure
the reader is referred to the Taxonomist's Glossary of
Mosquito Anatomy (Harbach & Knight, 1980). The following
discussion of palpi and their application to taxonomy is taken
from Tanaka et al. (loc. cit.). The palpus in mosquitoes may
consist of 1 to 5 segments. Segment 1 is considered to be
part of the stipes and usually has no setae or scales. Many
setae are present on the apparent segment 2 , except among some
species of Culex. Males generally have 5-segmented palpi.
Females may appear to have 4 to 5 segments, depending on the
presence or absence of a minute apical segment. However, the
true number of segments is 3 to 4. The third segment is
always the longest, with the 4th minute or lacking. Within

110
the Culicini female palpi are 3-4 segmented. Male palpi are
extremely variable.
Within the genus Culiseta palpal segment 4 is present in
the form of a small papilliform knob. The genus Orthopodomyia
has a long palpus, with segment 4 frequently present and
scaled. Adults do not bite man, but are attracted to and bite
chickens. The feeding habits of this genus are undocumented
in North America, although the species are believed to be
canopy bird feeders. Mansonia and Coquillettidia also have
palpal segment 4, as either a small knob or a conical
projection. Culex (sensu latu) generally lacks a segment 4
on female palpi. I have not observed any segment 4 on Florida
Culex. Within the Japanese fauna, Cx. tritaeniorhvnchus Giles
is the known vector of Japanese Encephalitis virus. Females
of this species are severe man-biters, but also feed on
livestock and birds, and occasionally on reptiles. Among the
subgenus Neoculex are species which do not bite man, just as
in the North American fauna.
Segment 4 is frequently present among Aedes. Aedes
esoensis Yamada was reported as an aggressive biter of man
(Hattori, 1958), but other authors (Kamimura, 1976) claimed
it does not bite man.
Within the Uranotaeniini the palpus is unsegmented, with
the male's palpus resembling the female's. Females are
attracted to light traps, and adults are common in shrubbery
along streams. In North America the genus Uranotaenia is

Ill
believed to be exclusively a cold-blooded host feeder (King
et al., 1960).
Within the Sabethini the palpus is from 1 to 3 segments.
This tribe contains the bizarre genus Malaya which obtains its
food from ants. This mosquito has modified mouthparts that
enable it to take food directly from the mouths of
Crematogaster ants. Within Florida this tribe contains the
single genus Wveomvia.
The Florida genera Psorophora and Deinocerites do not
occur in Japan and Korea. The shape and descriptions of the
palpal morphology of the genera of female mosquitoes from
these two regions (southeast Asia and North America) are
virtually identical.
Even though the proboscis is involved in actual feeding,
I will be concerned here with factors influencing detection
of the host. Friend & Smith (1977) reviewed factors affecting
actual feeding once the host has been located. The reader
should consult this article for further information. They
concluded that 3 factors (temperature, olfactory, and visual
signals) are involved in detecting and locating a host.
The location of thermal and olfactory receptors on
insects has been studied by many people. Insects other than
mosquitoes that have been studied are Hemiptera: Reduviidae
(Mclver & Siemicki, 1984a, 1985); Cimicidae (Steinbrecht &
Muller, 1976); Coleóptera: Chrysomelidae (Rees, 1969);
Scolytidae (Moeck, 1969); Orthoptera: Blattidae (Tominaga &

112
Yokohari, 1982; Yokohari, 1978, 1981); Díptera:
Ceratopogonidae (Chu-Wang et al., 1975; Rowley & Cornford,
1972; Jobling, 1928); Simuliidae (Mercer & Mclver, 1973;
Sutcliffe et al., 1987); and Hyxnenoptera: Apidae (Yokohari et
al., 1982; Yokohari, 1983).
Slifer (1970) reviewed the structure of arthropod
chemoreceptors. She stated that insect chemoreceptors are
composed of 3 types of parts; cuticular parts, sensory
neurons, and sheath cells. The cuticular parts were
classified into thick walled and thin walled chemoreceptors.
Thickwalled chemoreceptors take the form of hairs, pegs, or
papillae. Aedes aeqypti was reported as having no thick
walled chemoreceptors on the antennae, but with some on the
tarsi. These are considered contact chemoreceptors (Slifer,
loc. cit.). Thin walled chemoreceptors are abundant on the
antennae of insects, including mosguitoes. These may take the
form of hairs, pegs, or plates. Thin walled chemoreceptors
may be separated from thick walled chemoreceptors by their
difference in uptake of crystal violet stain (Slifer, loc.
cit.) . Grooved pegs are found on the antennae of Ae. aegypti.
Zacharuk (1980) described the ultrastructure and function of
chemosensilla, concluding that the effectiveness of "stimulus
trapping" was related in part to the number and distribution
of chemosensilla. Altner & Prillinger (1980) presented a
broad overview and discussion of chemo-, hygro-, and
thermoreceptors of invertebrates. Steward & Atwood (1963)

113
detailed the sense organs of antennae of adult male and female
mosquitoes. They found 7 types of setae on the antennae.
Differences were found in numbers and location of sensilla
between the sexes. Also, Anopheles were determined to have
a unique type of sensillum, termed sensillum coeloconicum,
occurring on both female and male antennae (Fig. 5.1) . Ismail
& Hammond (1968) used the number of sensilla coeloconica on
antennal segments to separate members of the Anopheles qambiae
Giles complex. Additional studies on mosquito antennae
include the following: Boo, 1980a, 1980b; Boo & Mclver,
1975, 1976; Mclver, 1969, 1970, 1971, 1973; Mclver &
Hutchinson, 1972; Ismail, 1964; and Lacher, 1969.
Both antennae and palpi are used in host seeking. Roth
(1951) demonstrated by removal of various combinations of
antennae and/or palpi (Ae. aeqypti and An. quadrimaculatus) that
eyes were not necessary for host location, that females with
partially removed antennae were capable of locating a host and
feeding, that females with totally removed antennae remained
quiescent but would feed when placed upon a host, that females
lacking terminal palpal segments were attracted to and fed
upon a host, that removal of antennae and palpi eliminated
probing, and that removal of antennae destroyed thermal
attraction. The conclusion of this study was that antennae
possess sense organs which receive host stimuli from a
distance, that antennae function as directional distance
thermoreceptors, and that antennae and palpi are the chief

114
organs used to locate a host. He also determined that unlike
Ae. aegypti. An. quadrimaculatus may use its hind legs as
sense organs near the host. This work was carried out in a
small cage, so the results must be considered carefully.
However, additional work by several authors supported many of
Roth's conclusions. Studies on the function and morphology
of mosguito palpi include the following; Chaika (1977), Omer
& Gillies (1971), Kellogg (1970), Mclver (1971, 1972),
Mclver & Hudson (1972), and Mclver & Siemicki (1984b).
In an extensive review article, Mclver (1982) summarized
information pertaining to sensilla on mosquitoes. She stated
that the palpi were sites of mechano- and olfactory
perception. Experimental studies have demonstrated that C02
concentrations are in fact detected by the palpi. Antennae
possess 5 types of sensilla: sensilla chaetica, sensilla
trichodea, grooved pegs, small sensilla coeloconica, and
sensilla ampullacea. The large conspicuous sensilla
coeloconica (Fig. 5.1), are lacking in culicines and
toxorhynchitines. Sensilla chaetica are probably
mechanosensilla (Fig. 5.2). Small sensilla coeloconica
(culicine mosquitoes) are located at the tips of antennae of
both sexes and are probably heat sensitive (Fig. 5.3). These
have been demonstrated electrophysiologically (Davis &
Sokolove, 1975) to consist of warm sensitive and cold
sensitive receptors, able to detect temperature differences
as small as 0.2 degrees centigrade. Sensilla ampullacea are

115
also suspected to be heat sensitive, but this has yet to be
confirmed. Large sensilla coeloconica in Anopheles are
probably olfactory. Grooved pegs (Fig. 5.4) are chemically
sensitive, having responded to ammonia and fatty acids.
Lactic acid and C02 did not appear to stimulate grooved pegs.
Sensilla trichodea (Fig. 5.5) are olfactory, and occur in two
shapes. Long pointed trichodea (Fig. 5.5) are excited by
fatty acids, especially long chain fatty acids. Blunt tipped
trichodea (Fig. 5.5) respond to chemicals known to be used in
location of oviposition sites. No response occurred in blunt
trichodea to host related stimuli and repellents. The blunt-
tipped trichodea in male Ae. aegypti are sensitive to
oviposition attractants, but also to floral and other plant
derivatives (geraniol and amyl acetate). In female Ae.
aegypti plant related odors are detected by long-pointed
trichodea (Lacher, 1969).
Mclver (1982) listed 5 types of stimuli used to locate
hosts; vision, water vapor, heat, C02, and body odor. Carbon
dioxide detection is accomplished by capitate pegs on the
inner surface of the palpi (Fig. 5.6). The number of palpal
and antennal sensory structures varies between species as well
as between sexes of the same species. Mclver (loc. cit.)
summarized the number of palpal and antennal sensory sensilla
for 34 species of mosquitoes. In all species studied males
had fewer palpal pegs than females, and no two species had the
same number. Despite the variation in number

Fig. 5.1. Coeloconic sensilla on antennal segments of
Anopheles punctipennis adult female from Lake Butler, Florida.
Phase contrast microscopy (300X). Cs = coeloconic sensillum.


Fig. 5.2. Antennal segments of adult
quinquefasciatus from Lake Butler, Florida,
microscopy (300X). Sc = sensillum chaeticum.
female Culex
Phase contrast

119

Fig. 5.3. Scanning electron micrograph of antennal tip of
adult female Culiseta melanura. Line = 5 microns. Arrow
indicates the location of heat sensitive small sensilla
coeloconica.


Fig. 5.4. Scanning electron micrograph of grooved antennal
pegs on antennae of adult Culiseta melanura. This structure
is believed to be the site of detection of lactic acid. Line
= 5 microns.

123

Fig. 5.5. Scanning electron micrograph of antennal segment
of adult female Culiseta melanura. Line = 5 microns. Lp =
long pointed trichodea; Bp = blunt pointed sensilla trichodea;
Gp = grooved peg.

125

Fig. 5.6. Scanning electron micrograph of inner surface of
palpus of adult female Culiseta melanura showing capitate pegs
known to be the site of C02 detection. Cp = capitate peg.
Line = 50 microns.

127

128
Mclver was unable to associate sensory structure numbers with
host preference. The variation in these numbers was not
discussed in any detail, nor were the possible evolutionary
consequences of varied host detection capabilities
mentioned.
Methods and Materials
Species variation in palpal morphology was studied from
field-collected female mosquitoes. Specimens were collected
alive in the field, brought back to the lab, and decapitated.
The entire head with mouthparts were placed into a drop of
Euparol mounting medium, covered with coverslip, and placed
on a slide warmer for 24 hours. Compression of the head
capsule obscured mouthparts, so eyes and proboscis were teased
away from the antennae and palpi with insect pins. Slides
were ready for examination approximately 1 day after mounting.
Slides were photographed on a Zeiss Photomicroscope II.
Measurements and counts were taken from slides and compared
with photographic enlargements of the slides. For
calculations of the surface area of palpi, measurements were
taken directly from photographs. This was done to standardize
measurement error that may be caused by the orientation of the
slide.
Results
Even though all host-seeking females appear to have the
same types of sensory structures on their antennae and palpi,
the shapes of these supporting structures vary between

129
species. Within a genus several species may appear very
similar, other quite different. If the 2 species of Culiseta
that occur in Florida are compared, their palpal shapes are
quite different (Figs. 5.7 vs. Fig. 5.8). If , however, we
compare Culiseta melanura (Fig. 5.7) and Orthopodomyia
signífera (Fig. 5.9) much similarity is evident. Culiseta
melanura is known to be an avian feeder, but the preferred
hosts for Orthopodomy ia are only suspected to be avian.
Comparisons of their mouthparts would suggest similar host
types. Both species have long palpi, with segment 3 by far
the longest and with an obvious knob (segment 4) at the apex
of each palp. If species of Culex are compared, the most
obvious difference from the above 2 genera is the lack of an
apical knob on the palpi in all Florida Culex. However, among
the species that are believed to prefer birds for at least
part of the year (Cx. restuans (Fig. 5.10), Cx. salinarius
(Fig. 5.11 & Fig. 5.12), Cx. quinqué fascia tus (Fig. 5.13 &
Fig. 5.14), and Cx. nigripalpus (Fig. 5.15 & Fig. 5.16), two
different palpal morphs are evident. Specimens of Cx.
quinquéfasciatus and Cx. salinarius occur with longer palpi
(Fig. 5.13 & Fig. 5.11). Individuals with dramatically
shorter palpi (Fig. 5.14 & Fig. 5.12) also occur. Culex
tarsalis has palpal shape shown in Fig. 5.17. Within Aedes
many species have a well defined palpal knob and fairly long
segment 3. Representative species are illustrated in Figures
5.18 to Fig. 5.28. Psorophora ciliata is a species that

130
approaches the size of Toxorhvnchites. Despite its large size
and long palpi, the C02 receptors are clustered onto a small
area near the apex of segment 3 (Fig. 5.29). Psorophora ferox
was first seen to have palpal shape of Fig. 5.30, but
additional specimens showed a wide range of overall shapes
(Figs. 5.31 & 5.32). The effect of this variation was felt
to somehow be connected with host preference. The search for
the source of this variation led to the experiment presented
in the next chapter.
Uranotaenia sapphirina is primarily a frog feeder. Its
palpal configuration (Fig. 5.33 ) consists of a single segment
with very few hairs but larger setae and approximately 20 C02
capitate pegs per palp.
Having examined the variation that exists within palpal
size and shape, I question the impact this variation has on
the mosquito's ability to detect and locate a host. Since
temperature (larval rearing) appeared to be one factor
contributing to the variation in cuticular hydrocarbon
profiles, I decided to investigate whether or not larval
temperature affected the size and number of sensory structures
on the palpi of adult female mosquitoes. This is presented
in the following chapter.

Fig. 5.7. Palpi of adult female Culiseta melanura from Lake
Butler, Florida, January, 1989. Phase contrast microscope,
3 00X.

»«/

Fig. 5.8. Palpus of adult female Culiseta inornata from
Gainesville, Florida, January, 1989. Phase contrast
microscope, 300X.

I

Fig. 5.9. Palpus of adult female Orthopodomyia
from Gainesville, Florida, March, 1988. Phase
microscope, 300X.
signífera
contrast

136

Fig. 5.10. Palpi of adult female Culex restuans from Lake
Butler, Florida, January, 1989. Phase contrast microscope,
3 00X.


Fig. 5.11.
salinarius.
microscope,
Palpi of larger winter form of adult female Culex
Lake Butler, Florida, March, 1988. Phase contrast
3 00X.

14

Fig. 5.12. Palpi of small summer form of adult female Culex
salinarius. Lake Butler, Florida, August, 1988. Phase
contrast microscope, 300X.


Fig. 5.13. Palpi of larger winter form of adult female Culex
quinquefasciatus. Lake Butler, Florida, January, 1989. Phase
contrast microscope, 300X.

144

Fig. 5.14. Palpi of small summer form of adult female Culex
quinquefasciatus. Lake Butler, Florida, August, 1988. Phase
contrast microscope, 300X.

r
146

Fig. 5.15. Palpi of larger winter form of adult female Culex
niqripalpus. Lake Butler, Florida, December, 1988. Phase
contrast microscope, 300X.

148

Fig. 5.16. Palpi of small summer form of adult female Culex
niqripalpus. Lake Butler, Florida, August, 1988. Phase
contrast microscope, 300X.

150

Fig. 5.17. Palpi of adult female Culex tarsalis
US DA, IAMAL, Gainesville, Florida. Phase contrast
3 00X.
, colony at
microscope,

r
152

Fig. 5.18. Palpi of adult female Aedes vexans. Lake Butler,
Florida, March, 1988. Phase contrast microscope, 300X.

r

Fig. 5.19. Palpi of adult female Aedes triseriatus, Lake
Butler, Florida, March, 1988. Phase contrast microscope,
300x.

156

Fig. 5.20. Palpi of adult female Aedes sticticus
Gainesville, Florida, San Felasco Hammock, March, 1988
Specimen collected biting a horse. Phase contrast microscope
3 00X.


Fig. 5.22. Palpi of adult female Aedes atlanticus. Lake
Butler, Florida, March, 1988. Phase contrast microscope,
3 00X.


Fig. 5.21. Palpi of adult female Aedes infirmatus. Lake
Butler, Florida, March, 1988. Phase contrast microscope, 300X.

162
KV '

Fig. 5.23. Palpi of adult female Aedes mitchellae. Lake
Butler, Florida, March, 1988. Phase contrast microscope,
3 00X.


Fig. 5.24. Palpi of adult female Aedes canadensis. Lake
Butler, Florida, March, 1988. Phase contrast microscope,
3 00X.

1

Fig. 5.25. Palpus of adult female Aedes sollicitans. pupa
collected 9 miles south of Steinhatchee, Florida, December,
1988. Phase contrast microscope, 300X.


Fig. 5.26. Palpi of adult female Aedes taeniorhynchus. colony
USDA, IAMAL, Gainesville, Florida. Phase contrast microscope,
3 00X.

170

Fig. 5.27. Palpi of adult female Aedes albopictus. colony
US DA, IAMAL, Gainesville, Florida. Phase contrast microscope,
3 00X.

172

Fig. 5.28. Palpi of adult female Aedes aegypti, Gainesville,
Florida. Phase contrast microscope, 300X.

r

Fig. 5.29. Apex of palp of adult female Psorophora ciliata,
Lake Butler, Florida, July, 1988. Phase contrast microscope,
300X.

176

Fig. 5.30. Palpi of adult female Psorophora ferox
Gainesville, Florida, March, 1988. Collected biting a horse
Phase contrast microscope, 300X.


Fig. 5.31. Palpi of adult female Psorophora ferox, Lake
Butler, Florida, March, 1988. Phase contrast microscope,
3 00X.


Fig. 5.32. Palpi of adult female Psorophora ferox
Gainesville, Florida, March, 1988. Phase contrast microscope
300X.

182

Fig. 5.33. Palpi of adult female Uranotaenia sapphirina, Lake
Butler, Florida, December, 1988. Collected in CDC light trap.
Phase contrast microscope, 300X.

184

CHAPTER 6
LARVAL REARING TEMPERATURE AND ITS EFFECT ON ADULT MOSQUITO
MORPHOLOGY, ESPECIALLY PALPAL OLFACTORY STRUCTURES
Introduction
Maxillary palpi of adult mosquitoes are the sites of many
olfactory receptors that are involved in host detection.
Recent investigations (Mclver, 1982) have determined that a
major activator of host-seeking and host-location is the
concentration of C02 given off by an organism. The structures
responsible for this detection are capitate pegs (Fig. 6.1)
located on at least the subapical segment of the maxillary
palpi of most adult female (and some male) mosquitoes.
Kellogg (1970) determined that each capitate peg is innervated
by 3 neurons, with just 1 being C02 sensitive. These pegs are
porous (Fig. 6.2), and arranged in ill-defined rows along the
inner surface of each palp. Dorsally the palpi are covered
with scales (Fig. 6.3) that occupy the surface that capitate
pegs might otherwise use. Each palp may consist of up to 5
well defined segments (Anopheles) , but usually only 3 or 4
segments are present. The genus Uranotaenia has a single
palpal segment (Fig. 5.33). Some genera contain species that
have well defined apical palpal knobs, while other species
within the same genus seem to lack these knobs. Within the
genus Anopheles capitate pegs are found on palpal segments 3
185

186
and 4 (Fig. 6.4). Among the genera with 4 palpal segments the
capitate pegs are only found on segment 3. This includes
those species that have an apical knob which is considered to
be segment 4. Those genera without apical knobs have the
capitate pegs restricted to the apical or segment 3. With the
exception of Anopheles all other genera have the C02 receptors
located on a single segment. These pegs are not uniformly
distributed over the entire surface of the palpal segment on
which they occur, occupying the inner 1/2 of the palpal
surface, with numbers decreasing as you get further away from
the apex of the palp. Some species have all capitate pegs
concentrated in a small area near the apex. This is seen in
Psorophora ciliata (Fig. 5.29). Others have capitate pegs
fairly uniformly scattered over the entire inner surface as
seen in Cx. tarsalis (Fig. 5.17) . The capitate pegs are known
to be sensitive to C02, n-heptane, acetone, and amyl acetate
(Kellogg, loc. cit.). Sensitivity of the capitate pegs is
such that an increase of only 0.01% C02 concentration may be
detectable. This response is approximately logarithmic from
a concentration of 0.01% C02 to a saturation level of 0.05 to
0.5%. Concentration levels of 10% elicit little additional
response. Carbon dioxide acts as either an attractant or a
repellent, depending on the species of mosquito. However,
since the biological range of C02 concentrations within animal
species is between 3% and 5%, it is not surprising that levels
as high as 10% elicit little additional response.

187
Fig. 6.1. Scanning electron micrograph of capitate pegs on
palpi of adult female Culiseta melanura. Pg = capitate peg.
Line = 5 microns.

188
J

Fig. 6.2. Scanning electron micrograph of capitate pegs
showing porous surface. Adult female Culiseta melanura. Line
= 5 microns.

1

Fig. 6.3. Scanning electron micrograph of dorsal surface of
palpi of adult female Culiseta melanura showing covering of
scales and the position of palpi at rest. Line = 50 microns.

192

Fig. 6.4. Phase contrast microscope (300X) of the palpi of
Anopheles guadrimaculatus. adult female, showing location of
capitate pegs. Cp = capitate pegs.

194

195
This alone is a strong argument to rethink our concept
of what C02 concentrations are really being used in our traps.
In reality the concentration at the source approaches 100%
C02, far removed from the biological realm. A likely
consequence of this is that most mosquitoes are following the
diluted C02 plume to the vicinity of the trap, but never
actually getting close enough to be collected. Personal
observations of the palpal morphology of field-collected
material have revealed a wide variation in palpal
segmentation, size, and olfactory structure configuration.
Mclver (1982) reported that the number of capitate pegs on the
maxillary palps ranged in females from 36 per mosquito
(Uranotaenia lateralis) to 204 (Culex torrentium Martini) .
In males the range was 16 (Aedes communis DeGeer) to 56
(Culiseta bergrothi (Edwards)).
Many studies have been conducted involving the
relationship between rearing temperature and resulting adult
size in insects (Akey et al., 1978; Barnes, 1976; Bock &
Milby, 1981; Haramis, 1985; ). Increase in body size has
generally resulted in increased fecundity and parity (Haramis,
1983; Nasci, 1986a; LePrince & Jolicoeur, 1986). Nasci
(1986b) found that small Ae. aegypti females exhibited reduced
blood-feeding success and most likely reduced survival when
compared with larger adults. He also found that nulliparous
host seeking females were significantly smaller than parous
host-seeking females.

196
This investigation was initiated to determine the effect
of larval rearing temperature on the resulting adult female
population as measured by 2 guantitative factors, body size
and number of capitate pegs, and 1 gualitative factor, the
presence or absence of an apical palpal knob.
If the surface area of the palpi is taken into
consideration when analyzing host detection, then the larger
the surface area the greater volume of air that would be
sampled at any one time. If, however, a decrease in body size
is also accompanied by a decrease in surface area as well as
a decrease in number of structures, then logically the ability
to sample air volume will have been diminished by some factor
involving number of structures and surface area. Therefore,
larvae of Ae. aegypti and Cs. melanura were reared at 20"C and
34°C and compared for surface area of palpi.
Methods and Materials
For the 3 different temperatures the source of mosquitoes
was a colony strain of Ae. aegypti maintained at the USDA,
Insects Affecting Man and Animals Laboratory, Gainesville,
Florida. Eggs from this colony were hatched at room
temperature (27°C). Equal numbers (100) of newly hatched
larvae (<2 hours old) were placed in enamel pans with 500 ml
of water. Food was supplied in excess to eliminate nutrition
as a factor. Larvae were reared to pupation at 20°C, 27°C,
and 34°C. Daylight/dark was 12 hr/12hr. Adults that emerged
were decapitated and mouthparts were placed on slides with

197
Euparol for slide mountant. Both wings of each individual
female were mounted on the same slide with the mouthparts.
Mouthparts were examined with phase contrast microscopy. Wing
measurements were made with an ocular micrometer at 10X
magnification. Units for the wing length measurements are
micrometer units and have not been converted to any particular
unit of measurement. These rearing combinations were
replicated 4 times. A subsample from 1 trial was randomly
collected, scored, and analyzed for statistical differences.
Both the number of olfactory capitate pegs and wing length of
adult females were analyzed (1 way ANOVA; SAS Proc. GLM). The
counting of the capitate pegs was extremely difficult due to
the three dimension shape of the palpi, and the fact that the
structures are present on a curved surface. Scoring was
accomplished by focusing up and down through different planes,
taking 3 counts per palp, and averaging this number. On other
species this was not a difficult task due to the shape of
palpi. After this initial comparison of three different
temperatures, I decided to rear this species and also Cs.
melanura at 20°C and 34 °C to compare the effect of rearing
temperature on the surface area of the palpi. These 2
temperatures were chosen because I believe that they approach
the seasonal extremes that perennial species are exposed to
in Florida. Within the Culicini C02 olfactory receptors are
restricted to palpal segment 3, which is also the longest
segment. Initially the shape of this segment was believed by

198
me to approximate the shape of a right cylinder cone.
However, as palpal measurements were taken I determined that
the shape of a palpal segment more closely approximated that
of the frustum of right cylinder cone. Using the formula for
the lateral surface area of the frustum of right cylinder cone
as defined in Figure 6.7, dimensions were taken from
photographs of palpi of female specimens of Ae. aegypti and
Cs. melanura for the various rearing temperatures. Since the
C02 receptors on the palpi are not uniformly distributed over
the entire surface of palpal segment 3, a necessary comparison
is the actual total surface area of the palpal segment with
the area covered by the C02 receptors. Within species such as
Ps. ciliata the palpi are guite long in comparison with other
species. However, only a small portion of the apex of segment
3 contains all the C02 receptors (Fig. 5.29). Simply
comparing the total surface area of these palpi with other
species would be misleading. A subjective assessment of the
surface occupied by these structures indicates that most
species have proportionately more receptors as the apex of
palpal segment 3 is reached. However, decreasing numbers of
receptors often are found scattered almost to the base of
segment 3. Therefore, unless an obvious clustering of
structures is indicated in such species as Ps. ciliata. I
consider one half of the total surface area of palpal segment
3 as a fair approximation of the surface area occupied by the
C02 receptors. Since each member of the pair of palps on a

199
mosquito will have the same surface area, an approximation of
the total surface area covered by C02 receptors will be
considered equal to the total surface area of 1 entire palpal
seqment 3. With these assumptions and definitions I then
calculated the surface area for wild specimens of various
species.
Palpal surface area and volume calculations were made
using the formulas for calculation of lateral surface area
(Fig. 6.7) and volume of a frustum of a right circular
cone(Fig. 6.7). Formulas are illustrated in Fig. 6.7, Fig.
6.8, and Fig. 6.9, and actual calculation for a female
Culiseta melanura are presented in Table 6.3. This shape
(frustum of right circular cone) most closely approximates the
shape of the segment that bears the C02 receptors, and the
shape of volume of air contained during times when palpi are
laterally extended (for volume calculations). When the
mosquito is at rest the shape of volume of air contained by
the palpi form a right cylinder, whose volume is also
calculated by formula in Fig. 6.8. Measurements were taken
from photographs of the individual specimens.
Results
Larval mortalities between temperatures and within each
temperature were not significantly different. The first pupae
at 34 ° C appeared in just three days, those at 27°C in 4 days,
and those at 20°C in 8 days. Pupation was complete in 7 days
at 34 ° C, in 8 days at 27°C, and in 15 days at 20°C.

200
Larvae of the mosquito Aedes aegypti were reared at 20 °C,
27 °C, and 34°C. The adults from these temperatures were
measured and compared for differences in wing length and
number of maxillary palpal C02 olfactory capitate pegs. Size
(wing length) and number of pegs were significantly different
(p< 0.0001) for each temperature. Surface area of palpal
segments containing C02 receptors was calculated for adult
Aedes aegypti and Cs. melanura from larvae raised at 20°C and
34 "C. Surface area of palpal segments were also significantly
different (p< 0.05) for each temperature. Surface area and
number of olfactory pegs decreased with an increase in larval
rearing temperature.
Representative data from the above trials are listed in
Table 6.1 for 1 of the 3 temperatures that Ae. aegypti were
reared at.

201
Table 6.1
Values for wing length and no. of capitate pegs
for adult female Aedes aegypti reared at 20"C
Wing Length
No. CO.
180
22
182
20
175
18
181
18
180
14
180
22
179
18
190
15
185
18
190
19
188
21
185
18
177
15
180
17
179
18
178
19
187
17
178
16
175
20
183
18
The effect of temperature on adult wing length in Ae. aegypti
is illustrated in Fig. 6.5. Corresponding effect on numbers
of C02 receptors is illustrated in Fig. 6.6.
Both the number of olfactory capitate pegs and wing
length of adult female Aedes aegypti were found to be
significantly different for each temperature (P < 0.0001).
The resulting linear regressions for wing length as a function
of temperature was Y = -2.49188X + 232.1785, and the number
of olfactory pegs, Y = -0.51623X + 28.64285. The Waller-
Duncan K-ratio T test determined the mean wing length and mean
number of olfactory pegs to also be significantly different
for all 3 temperatures.

Fig. 6.5.
Effect of rearing temperature on wing length of adult female Aedes aegypti.

Wing Length
200
Effect of Temperature on Wing Length
203

Fig. 6.6. Effect of rearing temperature on the number of palpal C02 receptors in adult
female Aedes aegypti.

Pegs per Palp
Effect of Temperature on Numbers of C02 Receptors
205

Fig. 6.7. Illustration of the shape of a generalized palpal segment, illustrating how the
formulas for lateral surface area (S) and volume (V) are applied to the calculations
described in the text. S = lateral surface area, h = length of palpal segment, s = slant
height, rl and r2 are the radii of the palpal segment at the apex and base.

207
-i

Fig. 6.8. Illustration of palpal dimensions used to calculate
the volume of air contained between palpi of an adult female
Culiseta melanura at rest. See text for details.

209
V =7T r2h
366u
10Ou
I- M
267u

Fig. 6.9. Illustration of change in volume of air contained between palpi of adult female
Culiseta melanura as the palpi are extended laterally through various positions of (a)
resting position, (b) 10 degrees extension, and (c) 30 degrees extension.

211
O

212
The above data suggest that smaller individuals have
fewer olfactory structures, therefore reducing the sensory
capabilities of the individual.
Table 6.2
Surface area of palpal segment 3 (sguare microns)
Temperature
Avg.
2 0 ° C
33,898
30,743
27.256
29,666
36,461
34.257
32,950
28,342
28,887
32,930
29,364
35,445
37,793
31,692
33.410
32,182*
34 °C
25,159
31,110
24,168
30,643
28,236
27,177
28,235
30,590
30,590
27,467
32,990
29,665
30,763
26,819
32,906
29,101
*temperature regulator failed to keep rearing temperature
below 25"C.
The mean values of the above data were compared using a t-test
with 14 degrees of freedom, and found to not be significantly
different (p< 0.05). However, a trend is indicated for a
decrease in surface area of palp with an increase in
temperature, despite an inconsistent maintenance of the lower
larval rearing temperature. This rearing experiment was
repeated 3 additional times, and each time the surface area
decreased with an increase in larval rearing temperature, with
the average surface area for 20“C rearing equal to 34,322
square microns, and 27,548 square microns for 34 °C.
The 3

213
replicates in which temperature control was successful were
compared by the same t-test. Their mean differences were
significantly different (p< 0.05), indicating different
surface area for palpi according to rearing conditions of the
larvae.
Of equal interest to me was the determination of whether
or not similar variation might be seen in wild specimens of
other species. I then collected specimens of various species
to see if interspecific differences occurred. These results
are presented in Table 6.3. The same rearing experiment was
conducted with Cs. melanura. A much more dramatic difference
was evident between the resulting surface areas of palpi at
the 2 temperatures. Those larvae reared at 34 °C produced adult
females with palpal segment 3 surface area averaging 26,393
square microns, and 49,606 square microns at 20°C.
The volume of air being sampled at any one moment by the
female mosquito is determined by the overall length of palpi
and the surface area of segment 3 that contains the C02
receptors. Therefore, if an estimation is made of both the
total volume of air contained between the palpi, and the
volume of air contained by the palpal segments with the C02
receptors, we will be able to estimate the actual air being
sampled by the C02 receptors relative to the total air
available between palpi. The calculations for this estimation
are illustrated in Table 6.4. Examples are given for various
angle of palpal extension for Cs. melanura. Measurements were

214
Table 6.3
Surface Area of Palpal Segment 3
Species
Culiseta melanura
Orthopodomvia siqnifera
Psorophora ferox
Ps. ciliata
Aedes triseriatus
Ae. infirmatus
Ae. atlanticus
Ae. sticticus
Ae. canadensis
Ae. vexans
Culex salinarius
Cx. territans
Cx. quinquefasciatus
Cx. nigripalpus
Cx. tarsalis
Cx. restuans
Uranotaenia sapphirina
Area(square microns)
48,251
56,172
76,204
348,318
65,445
45,275
46,566
35,032
41,609
54,133
41,969
28,786
39,254
28,289
39,278
43,049
16,764
taken from a female specimen collected during the winter at
Lake Butler, Florida. Using formulas from Fig. 6.8 and Fig.
6.9, the palpi of a female Cs. melanura were measured and
found to have the following dimensions. If we compare these
figures with the calculation of the volume of air contained
within the region of just the C02 receptors, the following
example shows the dramatic shift from rest to flight that
accompanies an extension of the palpi. At rest, using the same
specimen, the volume of air for the region of the segment 3
becomes a function of the following values. The vertical
height becomes 366 microns. The volume becomes 2,874,557 cubic
microns, compared with the 4,971,570 cubic microns for the
entire palp. This means that at rest 58% of the air space
between the palpi can potentially pass over the C02

215
Table 6.4
Calculation of volume of air between palpi at rest and in
flight (Culiseta melanura female)
1. Total length of palpi = 633 microns
2. Length of segment 3 = 366 microns
3. Distance between palpi = 100 microns
4. Radius = 1/2 (lOOmicrons) = 50microns
5. Volume of air between palpi at rest with above dimensions
is equal to 4,971,570 cubic microns using formula from Fig.
6.8.
6. If the palpi are opened 10 degrees (Fig. 6.9, position b),
the formula for calculating the volume becomes the
volume of frustum of right cylinder cone (Fig.6.7, no.3).
7. Using trigonometric function for sine of angle of right
triangle = side opposite/hypotenuse, cosine of same angle
= side adjacent/hypotenuse, the resulting dimension for a
10 degree palp extension become rl = 50 microns, r2 =
50+107, = 157 microns; h = 633 microns, and vertical height
of figure = 620 microns. The vertical height replaces h
in the calculations, and has to be recalculated for each
shape change. The resulting volume of air between the
palpi with 10 degrees of extension V= 22,960,518 cubic
microns. Calculated volumes for 20 degrees, 30 degrees, 40
degrees, and 45 degrees are V= 53,569,522 cubic microns,
V= 89,746,913 cubic microns, V= 1,170,000,000 cubic
microns, and V= 1,300,000,000 cubic microns, respectively.
receptors. However, when the palps are extended 10 degrees
laterally, the volume between the palpal segments 3 becomes
18,266,738, or 80% of the air volume is now contained between
the C02 receptors. At a lateral extension of 30 degrees, the
volume between palpi segment 3 becomes 78,614,391 cubic
microns, or 88% of the total air volume between the palpi.
This value increases until at 40 degrees almost 95% of the air
volume between the palpi is contained between the C02
receptors.

216
Conclusions
Change in available sensory surface area is proposed as
the mechanism behind host preference shift. Host preference
changes within a population of mosquitoes is proposed to be
a function of the size range of the adult females and the size
range of potential hosts. Smaller individuals have a
decreased sensitivity level to olfactory cues due to a
reduction in sensory structure numbers. This suggests larval
environmental conditions as a possible explanation for
reported intraspecific host preferences.
Since the volume of air sampled by the palpi during rest
or during flight is directly related to the length of palpal
segments and the surface area containing olfactory structures,
I estimated the volume of air contained between palpi at any
point in time. The volume contained between the palpi is
dependent upon the angle of the palpi in relation to the axis
of flight. I calculated representative volumes for different
angles using specimen data from Cs. melanura. The proportion
of air actually sampled by the olfactory structures is
dependent upon the volume of air that passes over the surface
which contains the C02 receptors. Therefore, I compared the
total volume of air contained within the palpi at various
angles of palpal extension, and then compared the volume of
air contained within just the area with C02 receptors. This
revealed that when the insect is at rest approximately 58% of
the air volume contained between the palpi is also being

217
exposed to C02 receptors. However, a lateral extension of
only 10 degrees from resting position raises this to 80%, and
by 30 degrees, almost 90% of the air within the palpi is also
exposed to the olfactory receptors.
Discussion
This pilot study suggests the following: 1) larvae that
develop at higher temperatures result in smaller individuals
even when food resources are not a limiting factor; 2) the
number of olfactory pegs decreases with a decrease in body
size and 3) these morphological changes fit a predictable
model involving temperature of water that larvae develop in.
The possibility now exists that observed host preference
differences (both inter- and intraspecific) may be
attributable to a morphological change in host-seeking ability
and detection capability as influenced by body size and number
of olfactory structures. This correlation should be expressed
by a seasonal host shift in records of host-feeding in
relation to the warmer months versus cooler months. Larvae
that develop during warmer months should produce smaller
adults with reduced sensory capabilities requiring larger
amounts of attractant to be present to elicit a response. This
would mean that smaller individuals within a population of
mosquitoes will seek a different host size than larger
individuals, which in turn means that a species which
normally feeds on small mammals and birds should show a shift
to larger animals during the warmer months of the year.

218
A wide variation in surface area of palpal segment 3 is
apparent from the above examples. However,equal surface area
may occur on 2 differently shaped objects. Therefore, surface
area alone will not be a sufficient character for comparison
among species. Since we are trying to establish a
relationship between number and location of C02 receptors and
host preference, the number of receptors must also be taken
into account. Mclver (1982) listed the number of capitate
pegs for 34 species of mosquitoes. Among the species listed
were the following; Cx. territans (39/palp), Cx.
tarsalis(72/palp), Cx. restuans (89/palp),and Cx. pipiens
(78/palp; 88/palp). To these I add from Florida; Cx. restuans
(35/palp), Cx. tarsalis (51/palp), Cx. quinquéfasciatus (36-
56/palp) , Cx. niqripalpus (30/palp), Cx. salinarius (62/palp),
Cs. melanura (74/palp), and Uranotaenia sapphirina (18/palp).
The threshold level that receptors respond to is a
function of the number of receptors, the volume of gas, and
the concentration of particular compounds.
Based on the above illustrations it becomes possible to
estimate the differences between species and the relative
amounts of air that might be sampled by their olfactory
receptors both at rest and in flight. These differences will
be part of the reason for mosquitoes being attracted to
various hosts, for the ability to sample the host emanations
will be determined by the amount of host volume given off and
the size of the palpi and antennal lengths that contain the

219
various receptors. Numbers and arrangement of C02 receptors
have been shown to differ. Generalizations from these
examples would suggest that the longer the palpi the more air
that could be sampled, and the less necessary to be given off
by hosts. This would mean in simplest terms that the
mosquitoes that respond to small hosts should have longer
palpi than those that respond to larger hosts, all other
factors being equal. However, interjected into this are the
variations in number of receptors and their location on the
palpi. The length of the segment that contains the C02
receptors has been shown to determine what percent of the
total air volume is sampled. If a mosquito has short palpi,
the segment with the C02 receptors may sample almost 100% of
the air at rest, with little extension necessary. The number
of C02 receptors should determine the relative volume of host
emanation required to elicit a response. A minimum number of
neurons will have to be stimulated before a response is
generated. Combinations of numbers of receptors, volume of
air, and size of palpi will interact to determine the host
detection capability. This should mean that trapping
techniques need to be reevaluated, especially the combinations
and volumes of odors used for attraction. The reasons for
this are discussed in the next chapter.

CHAPTER 7
QUANTIFICATION OF HOST EMANATIONS, TYPES, AND THE
IMPLICATION FOR ATTRACTION OF ADULT MOSQUITOES
Introduction
Biting flies, including mosquitoes, are attracted to
hosts by several different means, including heat and chemicals
given off by each animal. One of the more abundant components
of respired gases is carbon dioxide (C02) . This gas is used
as attractant in most baited traps and surveillance programs.
Typically dry ice (variously sized chunks) are placed in a
container and suspended fairly close to the trap. Mosquitoes
are attracted to the trap vicinity where they are pulled into
the trap by fans or directed into collection devices by
funnels. However, many species do not respond well to the
frozen chunks of dry ice. Other species are collected in
relatively large numbers. The population density of host¬
seeking females will greatly affect the numbers that are
collected. An attractant such as C02 may be very attractive
in the concentrations or volumes used, but will not appear so
if there are few females in the vicinity of the trap. The
amount of C02 given off by the trap may attract or repel,
depending on the species of mosquito. A prior knowledge of
the abundance of any species of mosquito is necessary.
220

221
A great many articles have been published dealing with
the relative attractiveness of various concentrations of C02.
A few selected references are listed here: Barynin & Wilson
(1972); Brown (1966); Fallis & Smith (1964); Gillies (1980);
Gillies & Wilkes (1969, 1970, 1972, 1974); Hansell (1969);
Harden et al. (1970); Hocking (1963); Kellogg (1970);
Kennedy (1978); Omer & Gillies (1985); Price et al. (1979);
Reeves (1951, 1953); Schreck et al. (1972); Service (1976);
Snow (1970, 1976); Stryker & Young (1970); Vale (1980,
1983); Vickey et al. (1966); Warnes & Finlayson (1985);
Wensler (1972); and Wilson et al. (1966).
The authors of many of these articles use concentration
and flow rate interchangeably. This leads to the
misconception that change in flow rate from a C02 source is
the same as a change in concentration. Concentration is a
measure of the number of molecules of a compound (in this case
gas) per unit volume. When an author states that he is using
a concentration of 250 ml/min. of C02, what is really
occurring is a flow rate of 250ml/min. of 100% C02. Variation
of this flow rate does not change the concentration of C02 at
the source. As the C02 is dispensed it is quickly diluted
until at some distance from the source it becomes the same as
background C02 or between 0.03% and 0.04% concentration. From
the source of C02 (100 %) to the dilution point of 0.04% C02
a gradient of concentration levels is created that varies with
the distance from the source. The biological range of C02

222
levels of animal emanation falls between 3% and 4%, a 100-
fold increase above background levels of C02, but well below
that of our traps. Respired C02 is pure C02, but this respired
volume of C02 is mixed with the overall volume of respired
gases given off by the organism, resulting in a 3% - 4%
concentration level of respired C02 at the source. The rate
of respired C02 respired may approach or exceed the release
rate used in our traps, but the concentration levels in an
animal never come close to the ranges used by us in our traps.
Do different vertebrates have different odors that are
perceived by mosquitoes as part of their apparent host
selection mechanism? In other words, does a mouse smell
differently from a chicken to a mosquito? Mclver (1968)
studied host preference and discrimination by Ae. aegypti and
Cx. tarsalis. Animal odors were collected and separated from
carbon dioxide. The mosquitoes were unable to separate mouse
odor from chick odor when present in equal amounts. Human
odor of the forearm was as attractive to Ae. aegypti as chick
odor. No attractive odor was discovered for frogs or lizards.
Culex tarsalis was attracted to amphibians, but still
preferred mice or chicks. Mclver (loc. cit.) concluded that
with all factors being equal, the mosquitoes preferred
whichever odor was most abundant. The addition of C02
increased the relative attractiveness of mouse odor. However,
once the threshold level of C02 was achieved (5 ml/min.) , more
C02 did not increase attraction. Mclver suggested that host

223
discrimination may really be a preference for the amount of
odor rather than type of odor.
Reeves (1951) demonstrated that several species of
mosquitoes were attracted to C02 gas. He suggested that C02
chemotropism might be a large portion of host selection.
Reeves (1953) compared 3 different rates of C02 and their
relative attractiveness to various species of mosquitoes.
Using 25 ml/min. (= chicken), 250 ml/min. (= man), and 2500
ml/min. (= horse or cow) , he found that increased C02 rates
attracted proportionately more Cx. tarsalis, but decreased the
attractiveness to Cx. quinquefasciatus. Aedes nigromaculis
and Ae. dorsalis were attracted in largest numbers to the
highest rate (2500 ml/min), but almost none of these were
collected at the low rate (25 ml/min.). Reeves (1953) stated
the following:
It is possible that Ae. nigromaculis is not attracted to
birds because this mosquito may not be able to detect the
relatively small amounts of carbon dioxide released by
chickens and smaller birds, and finds them only occasionally
and by accident in a random search for hosts. As
concentrations of the stimulant are increased, as though by
larger hosts, the range of detection is entered and the hosts
are easily found; the optimum range may be the amounts of
this gas given off by larger animals.
In contrast are the reaction of Cx. quinquéfaseiatus and
Cx. tarsalis. The relatively lower concentrations of carbon
dioxide given off by avian hosts may have the maximal
attractiveness for the first of these two species, which
apparently is attracted less as concentrations increase. A
pattern of this type would be expected of an aviphilic
species.(p.328)
However, Reeves (1953) also observed that Cx. tarsalis was
collected in large numbers at all levels of C02, increasing

224
proportionately with increase in C02.
A mosquito must first be able to detect a host before
being able to locate it. Various authors have debated whether
C02 is really an attractant or merely an activator. In a
series of publications, Gillies & Wilkes (1969, 1970, 1972,
1974) concluded that most species in their study were
orienting to the bait from a distance of 20 to 40 meters, and
that host emanations other than C02 were of little importance
within this range. However, female Anopheles melas appeared
to be able to orient to animal baits at greater distances than
believed reached by C02, suggesting long range orientation to
other olfactory cues in this species. Using rates of 250
ml/min.(=man) and 500 ml/min. (=large animal) Gillies & Wilkes
(1972) determined that female mosquitoes responded to a 2 -
animal bait from up to 20 - 30 meters, 1 - animal bait up to
18 meters. Approximately the same response was indicated for
equivalent rates of C02 (250 ml/min. = 1 animal). However,
certain species of Culex and Coquillettidia showed little or
no response to either the calf-baited or C02-equivalent-baited
traps. They observed that C02 rates used in this study were
10 - 25 times those given off by a large fowl, but then
suggested that olfactory cues other than C02 must be involved
here. They made no mention of the possibility of too high a
flow rate acting as a repellent, as probably happened for the
avian feeders. Also, they observed that females parasitized
by mites were almost exclusively nulliparous. Curiously the

225
mite-infested females responded differently to the baits than
did the non-infested females. C02 thus appeared to be a
distance stimulus, affecting various species according to
concentrations (actually flow rates) being emitted.
Snow (1970) demonstrated that carbon dioxide has little
effect on response to close range stimuli. He found that
significantly fewer mosquitoes of 2 species approached the
host with a reduced C02 output, but reduced C02 output had no
effect on the proportion of mosquitoes attempting to feed once
within close range of the host. C02 thus appears to be at
least a medium range attractant to many species of mosquitoes.
Host emanations (especially C02)-quantity and detection
We now know that C02 is detected by capitate pegs found
on the palpi of adult mosquitoes. Mclver (1982) reported
variation in number of these structures for 34 species of
mosquitoes. Although she could show interspecific difference
in number, she was unable to correlate numbers with host
preference. If the numbers of receptors alone are not obvious
indicators of host preference, than alternative hypotheses
must be looked for. How do numbers relate to detection
capabilities? The relationship between concentration levels
of a substance and the ability of a structure to detect the
substance was summarized by Chapman (1971):
For a response to occur a given number of molecules of
the stimulation odor must impinge on the receptor sites (this
is facilitated by the large number of sensilla usually
present, by the presence in each sensillum of a number of
sensory neurons, and by the multiplication of nerve endings
in the wall of the sensory peg.

226
Correlated with this it appears that thresholds to smells
are lowest when the number of sensilla present is highest,
and, perhaps also reflecting differences in the numbers of
sensilla, the different organs of an insect have different
sensitivities. The number of impulses produced is
proportional to the concentration of stimulating substances.
The effect of stimulation by odours is to promote
activity; some substances attract insects, some lead to
rejection or an attempted avoidance of the stimulus, while in
some cases the response varies with the concentration of the
odour.
Whether a stimulating odour is attractive or repellant
is determined by the genetical constitution of the insect,
(p.626-627)
If the above theory is applied it to C02 detection, then
the probability of a molecule of C02 being detected by a
receptor would be a function of the concentration (sensu
strictu), the volume of respired gases, and the number of
structures present on the surface of the palpi. Therefore,
an approximation of the surface area of the palpi, the
location and number of C02 receptors, and a measure of the
respired volumes of various gases by various animals should
begin to give a clearer picture of what host preference
actually involves. One additional factor must be considered.
While at rest the female mosquito holds the palpi parallel
and close to the proboscis. Since the C02 receptors are on
the inner surface of the palpi, little if any host detection
by the C02 receptors is likely while the mosquito is at rest.
However, while in flight the palpi and antennae are held out
at an angle of approximately 45 degrees to the direction of
flight. The volume of air sampled by the mosquito at any
moment becomes a function of the volume of air contacting the

227
surface of the palpi. Since the surface area of the palpi
which contain the C02 receptors may be approximated, a
mechanism now exists to test for host detection capabilities
in relation to size of mosquito as measured by palpal length,
surface area of palpi, number of receptors, and volume of
respired gases for various animals. From this emerges a
relationship that connects host emanations, host size,
mosquito size, and sensory structures with a reinterpretation
of what is meant by host preference.
Quantification of host emanations, especially C0-,
Each animal gives off a certain volume of respired gases,
variously measured by different authors. A measure of breath
intake and output for one time is called the animal's tidal
volume. Respired gases for a period of time may be calculated
and expressed in ml/min. Blood gases are assumed to be at
equilibrium with alveolar pressures expressed in mm of Hg.
These measures provide a means of calculating concentration
levels of respired gases that are contained in known volumes
of expired gases by the animal. As an example, if the total
respired volume of gas in an animal is 200 ml/min., and its
blood C02 has a tension of 28mm. Hg, then 28/760 (760 mm Hg
= 1 atmosphere) gives an approximation of the percent
concentration of C02 contained within the total respired
volume of gases. If in this example the fraction obtained
from 27/760 is multiplied by the volume (200 ml) we find that
for 1 minute the animal respires 0.036 x 200, or 7 ml of C02

228
in one minute. The concentration of C02 during this minute is
3.6%. This method is used in an article dealing with the
relationship between expired volumes of gases and body size
in birds and mammals (Lasiewski & Calder, 1971).
According to Lasiewski & Calder (loc. cit.) the volume
of gases given off by birds and mammals fits allometric
equations using body weight as the variable. Using the
allometric equations of these authors, it is possible to
calculate minute volume of respired gases for birds (Y = 284
x body wt. in kg raised to 0.77 power) and for mammals (Y =
379 x body wt. in kg raised to 0.80 power). Thus from body
weight alone an estimate is arrived at for respired volumes.
Once the total respired volume has been determined, an
estimate of respired volume of C02 in ml/min. may be
calculated using arterial C02 tension (Lahiri, 1975). If
equilibrium is assumed between arterial C02 and alveolar
surface, than the ratio of blood C02 to surface pressure in
mm Hg will provide the factor by which the total respired
volume can be multiplied to approximate C02 volume respired
per minute. Birds average a blood C02 of 28mm Hg, mammals
average 41mm Hg. (Chiodi & Terman, 1965; Calder & Schmitt-
Nielsen, 1968; Tenney & Bartlett, 1967).
Lahiri (loc. cit.) questioned the values for mammals.
He calculated that body weight was a significant factor in
explaining blood C02 in small mammals (< 200 g) , but was less
significant in larger animals (2.8 - 50 kg). However, while

229
he disagreed with the value of 41 mm Hg for all mammals, his
range was from 29.4 mm. Hg (cat)to 45mm Hg (sheep). Man had
a blood C02 of 38mm Hg at 37 °C. For the purposes of my
estimates here I chose to use 4 0mm Hg for mammals at 7 60mm
pressure, and 28mm Hg for birds at 7 60mm pressure. These
provide values of 5% C02 by volume for mammals and 3.7% C02
by volume for birds. Using these figures, I calculated total
respired volume for various species of animals, then C02
respired volume per minute for each of the animals. These
calculations are presented in the following table. Since body
surface area is also considered a factor in host preference
(Downe, 1960) , I calculated body surface area for the same
animals using the allometric equations of Y = 0.11 x body wt.
in kg raised to 0.65 power (mammals) and Y = 0.09 x body wt.
in kg raised to 0.74 power (birds) (Lasiewski & Calder, loc.
cit.).
Calculation of respired volumes of gases and C0-,
The determination of respired volumes of gases is a
function of the size of the individual. All animals exhibit
a size range that begins at birth and changes until adult size
is reached. Within adults there are obvious size ranges. For
this reason alone the size range even within one species must
be considered when comparing host records for mosquitoes.
Therefore I have calculated a range of values for each animal
to illustrate the overlap that occurs in host emanation
amounts between diverse groups of vertebrates. From this

230
emerges the indication that mosquitoes that seem to prefer one
host or a few hosts actually prefers an amount of attractant,
not a species of animal. This is the phenomenon of host
attraction, and will be discussed following the presentation
of the calculated volumes of gases and surface areas for the
animals below.
Table 7.1
Amount of respired gases for various vertebrates
Animal
Wt.(kg)
Tot.
resp.
CO.,
vol.
ml/min.
ml/min.
Moose
455
60872
3200
Horse
136 -
455
19296
-
60872
1022-
•3200
Bear
136 -
273
19296
-
33695
1022
-
1785
Cow
136 -
273
19296
-
33695
1022
-
1785
Ostrich
88
8924
330
Calf
52 -
91
8942
-
13991
474
-
742
Deer
52 -
91
8942
-
13991
474
-
742
Fawn
1.4 -
6.8
496
-
1760
26
-
93
Goat
25
4977
263
Sheep
33
6215
329
Man
52 -
91
8942
-
13991
474
-
742
Coyote
23
4705
249
Beaver
12 -
30
2767
-
5759
146
-
305
Bobcat
7 -
20
1798
-
4163
95
-
220
Dog
9 -
27
2198
-
5293
116
-
280
Turkey
10
1672
62
Goose
6.8
1242
46
Otter
5 -
9
1373
-
2198
72
-
116
Gray Fox
3 -
6
912
-
1200
48
-
63
Raccoon
4 -
12
1149
-
2766
61
-
146
Red Fox
4 -
5
1149
-
1373
61
-
73
Skunk
1 -
3.4
379
-
1008
20
-
54
Duck
1.6
407
15
Cat
2.6
814
43
Chicken
2.6
592
22
Armadillo
1.4 -
4.5
485
-
1262
26
-
67
Opossum
1.8 -
5.5
606
-
1482
32
-
78
Woodchuck
2.7 -
5.5
838
-
1482
44
-
78
Muskrat
0.7 -
1.8
285
-
606
15
-
32

231
Rabbit
Table
3 - 4.5
7.1
912
(cont.)
- 1262
48 -
67
(domestic)
(cotton t.
)0.8 - 1.3
317
- 468
17 -
25
Squirrel
0.9 - 1.2
348
- 438
18 -
23
(fox)
Guinea pig
Squirrel
0.7
0.3 - 0.7
275
145
- 285
15
8 -
15
(gray)
Pigeon
Squirrel
0.4
0.16- 0.2
127
87
- 104
5
4.6 -
5.5
(red)
Bird (sm.)
Weasel
0.14
0.06 - 0.2
63
40
- 105
2.3
2 -
5.5
Chipmunk
0.07 - 0.11
45
- 65
2.4 -
3.4
Squirrel
0.05 - 0.07
35
- 45
2 -
2.4
(flying)
Mouse
0.02 - 0.03
17
- 23
0.9 -
1.2
(deer)
mouse
0.02 - 0.03
17
- 23
0.9 -
1.2
Shrew
0.01
9.5
0.5
(s. tail)
Vole
0.02 - 0.06
17
- 40
2.1
(meadow)
Based on body weight smaller individuals of any particular
species (especially young) would fall well outside the range
of adults in terms of C02 production. If volume of C02 is a
factor in host preference, then we would predict that we might
see a supposed bird feeder with mammal blood meals, in this
case it might be a small mammal or a larger bird.
Unfortunately there are no tests currently available to
distinguish the bloodmeals of young animals from those of
adults. Based on the above data a small bird-feeder should
be equally attracted to small rodents and weasels. Given the
range in body size and volume of C02 given off, many different
animals should be equally attractive to a mosquito that
selects for amount of odor rather than type of animal. After

232
calculating the body surface areas for the above animals, I
will examine the literature to see if evidence exists for
amount of odor preference rather than type of host preference.
Calculation of body surface for various animals
As mentioned earlier, body surface area for mammals may
be calculated from body weight (kg) using the allometric
equations of Y = 0.11 x body wt. in kg raised to the 0.65
power (mammals) and Y = 0.09 x body wt. in kg raised to the
0.74 power (birds).
Table 7.2
Body surface area for various vertebrates
Animal
Body wt. (kcr)
Surface area
Moose
455
5.88
Horse
136
-
455
2.68
-
5.88
Bear
136
-
273
2.68
-
4.22
Cow
136
-
273
2.68
-
4.22
Ostrich
88
2.47
Calf
52
-
91
1.43
-
2.06
Deer
52
-
91
1.43
-
2.06
Fawn
1.4
-
6.8
0.14
-
0.38
Goat
25
0.89
Sheep
33
1.07
Man
52
-
91
1.43
-
2.06
Coyote
23
0.84
Beaver
12
-
30
0.55
-
1.00
Bobcat
7
-
20
0.39
-
0.77
Dog
9
-
27
0.46
-
0.94
Turkey
10
0.49
Goose
6.8
0.37
Otter
5
-
9
0.31
-
0.46
Gray Fox
3
-
6
0.23
-
0.35
Raccoon
4
-
12
0.27
-
0.55
Red Fox
4
-
5
0.27
-
0.31
Skunk
1
-
3.4
0.11
-
0.24
Cat
2 .
6
0.20
Chicken
2 .
6
0.18
Armadillo
1.4
-
4.5
0.14
-
0.29
Opossum
1.8
-
5.5
0.16
-
0.33
Woodchuck
2.7
-
5.5
0.21
-
0.33
Muskrat
0.7
-
1.8
0.09
-
0.16
Duck
1.
6
0.13

233
Table 7.2 (Cont.)
Rabbit
3
- 4.5
0.22 -
0.29
(domestic)
(cotton tl.)
0.8
- 1.3
o.io -
0.13
Squirrel
0.9
- 1.2
0.10 -
0.12
(fox)
Guinea pig
Squirrel
0.7
0.3
- 0.7
0.09
0.05 -
0.09
(gray)
Pigeon
Squirrel
0.4
0.16
- 0.2
0.05
0.03 -
0.04
(red)
Bird (small)
Weasel
0.14
0.06
- 0.2
0.02
0.02 -
0.04
Chipmunk
0.07
- 0.11
0.02 -
0.03
Squirrel
0.05
- 0.07
0.02
(flying)
Mouse (deer)
0.02
- 0.03
0.01
(house)
0.02
- 0.03
0.01
Shrew
Vole
0.01
0.02
- 0.06
0.006
0.01 -
0.02
(meadow)
Size ranges for the various animals listed above are taken
from various wildlife handbooks. The majority of mammal sizes
came from Godin (1977) .
There are several physiological differences between the
respiratory systems of birds and mammals. In birds the total
respiratory system volume is 3 times that of a comparable size
mammal. However, their respiratory rate is 1/3 that of a
similar size mammal. Therefore, their respired volume per
minute ends up being less than that of a comparably size
mammal due to their lower blood C02 (28mm Hg vs. 40mm Hg in
mammals). In addition to the respiratory portion of the lungs
in birds there are membranous air sacs which are filled at
inspiration and that sweep the used air out of the lungs at

234
expiration, thus avoiding the dead air space of unrespired air
which is considerable in mammals (Young, 1962) . When the bird
is at rest the air sacs contain air with a high content of
C02, but during periods of activity the air sacs contain
little C02.
Little information was found concerning the respiration
of amphibians. The frog has a very vascular skin, especially
in the region of the buccal cavity. This plays a large part
in respiration, actually serving to remove more C02 than do
the lungs. There is little power to vary the amount of
exchange through the skin, which is therefore constant
throughout the year (Young, loc. cit.).
From the above tables are seen that various sizes of
vertebrates give off different amounts of C02. However, most
importantly, a wide variety of animals may be included within
the same range in amount of respired volume of gases. This
is a strong indication that the concept of host preference
needs to be redefined according to amount of respired gases,
not type of animal. Based on the above comparisons many
different species of animals will appear the same to a
mosguito that perceives its host by the volume of respired
gases including levels of C02. This is the primary reason
that I believe obvious host preference has not been detected.
There does not appear to be any species of mosquito that is
specific to one species of animal. Many mosquitoes, however,
are able to detect various quantities of odor, including C02.

235
If, as suggested by Downe (1960) that what really is
important is the surface area of the host, and not the
specificity of the host, then host preference may be able to
be re-interpreted as host size. The surface area of an
organism certainly appears to be correlated with the amount
of bodily aroma given off.

CHAPTER 8
DISCUSSION, SUMMARY,PROPOSAL FOR FUTURE RESEARCH
Discussion and summary
From the preceding chapters suggestions of the
interaction between host size, volume of respired gases, size
of mosquito, and resulting morphological changes in sensory
configuration that accompanies change in adult size are seen.
If host preference records are re-examined based on 1)
grouping hosts by size and volume of respired gases and 2)
mosquito species by season and/or size measured by palpal
configuration, the following pattern emerges for female
mosquitoes.
Crans (1964) listed host records for several species.
Anopheles quadrimaculatus had hosts of deer, man, and dogs.
Examination of Table 7.1 reveals that these animals all
overlap in amount of respired volumes of gas and amount of
C02. Therefore they are equivalent in terms of their respired
gases that are known. This same principle is seen throughout
the literature. Using the table in chapter 7, a common theme
is revealed. Despite a wide range of species as host for
blood meals, the majority will cluster into 1 or 2 groups
based on respired volumes and body surface area. Since most
records of bloodmeal analysis are not separated by season, nor
236

237
are they able to distinguish between young (smaller) and older
(bigger) individuals of the same species, this proposal is
based upon mathematical and morphological grounds. The
behavioral evidence to support this hypothesis will require
many individuals and much time . Much speculation exists
concerning the transmission of viruses such as equine
encephalitis. People generally assume that the virus is
maintained within the bird population by 1 or more species of
mosquito, then somehow gets to the dead end host by another
mosquito. Implicated as the vector to horses and man are
Aedes vexans. Aedes sollicitans, and Coquillettidia
perturbans. These have been implicated for 2 major reasons.
The most abundant mosquito at the time of outbreaks becomes
the likely candidate for vectoring the disease. Secondly, the
virus has been recovered from these species. However, the
virus has also been recovered from 19 other species of
mosquito. Does this mean that 22 species are vectoring the
disease. The answer is most likely no.
Laboratory tests have shown that although the virus may
be recovered from the mosquito, not all mosquitoes have good
vectorial capacity. Additionally, within species that will
experimentally transmit the virus, it is the smaller
individuals that appear to be the best vectors. Smaller
individuals are produced during the warmer months as mentioned
above and shown by rearing experiments. The warmer months are
the months during which host shift occurs in species such as

238
Cx. tarsalis. Cx. nigripalpus, and suggested for Cs. melanura.
Therefore, although many species have been exposed to a virus
in the wild, only a few appear to be able to transmit to other
hosts. I would present the following scenario as the most
likely to lead to the transmission of this virus from birds
to mammals by a single species of mosquito. This is not to
rule out the possibility that other mosquitoes do not at times
transmit a disease.
A mosquito species must occur throughout the year in
order to exhibit seasonal host shift. This means that the
short lived Aedes and Psorophora are unlikely candidates for
transmission of the disease unless some mechanism allows the
virus to survive as in eggs. During the winter (cooler)
months a mosquito such as Cs. melanura feeds primarily on
small birds. Adults that develop in the south are larger and
darker in the cooler months. As waters warm up and larvae are
exposed to spring and gradually warming conditions, smaller
individuals begin to emerge. These individuals will seek
larger animals (either larger birds or smaller mammals).
During this time the virus may reside in various hosts that
cover a wide range of sizes. As summer months approach with
hotter temperatures, smaller individual mosquitoes will
emerge, resulting in a gradual shift in host preference. This
shift will be gradual due to the longevity of the adults and
the locations of the mosquito larvae. It will be during this
shift to larger and larger hosts that the virus transmission

239
will occur. Smaller mosquitoes will take blood from larger
shore birds which have 2 characteristics. They are of the same
size range as mammals such as small humans and small horses,
and they harbor the virus. Examination of medical records
show that the individuals that typically die from the virus
are small children and young horses. This has been attributed
to the immune system deficiencies of young animals.
Accompanied by this are the physiological differences between
young and old individuals. Younger animals give off different
amounts of various body emanations. So do healthy and sick
individuals of the same age (Sastry et al., 1980).
The records of host shift in mosquitoes have been
restricted to members of the culicine mosquitoes. These are
also the known vectors of many viral diseases. A high
correlation exists between the persistence throughout the
year, host preference shift, and transmission of disease.
Even in the north where some species must overwinter, adults
that emerge from warmer months are probably the most likely
candidate for transmission of encephalitis.
Species that show a shift to larger hosts in the summer
are also known to gradually shift back to smaller hosts and
birds as the fall and winter approach. This would keep the
cycle of transmission going both within the reservoir host and
its disease vector in the summer months.
Tropical species would not appear to be exposed to
extreme temperature shifts. What mechanism would produce the

240
same morphological shift as the one proposed above? Changes
in larval densities would also produce reduced sized
individuals, both in the tropics and elsewhere. Therefore,
a mechanism exists for possible disease transmission under
crowded larval conditions as well as under warmer conditions.
These factors should be considered when modelling disease
transmission probabilities within mosguitoes.
Proposal for future research
Many areas of research will be necessary before the
suggestion and hypotheses presented here are tested. Of
utmost importance is the guantification of the maximum
attractive amount of odor for collecting adult mosquitoes.
A mixture of several compounds will no doubt be optimal.
Since the concentration levels of living animal gases vary
only between 3% and 5%, traps will have to consider volume of
respired gases that will produce this concentration at the
correct volume of the animal size range being tested. A
plastic bottle of 1 liter volume was tried at my study site.
I filled the bottle to various volumes of water, leaving a
known volume of air space. My outside C02 source was piped
into the bottle at known flow rates, through a tubing that
released the gas beneath the surface of the water. Bubbled
C02 mixed with the volume of air and exited via a tube of
identical size at the top of the bottle. A replacement source
for displaced air consisted of a tube leading to the outside
of the bottle, entering the bottle in a position where the

241
exiting mixed gas would not interfere with the incoming air.
To this combination various amounts of attractants may be
added to the known volume of water and air, and thus able to
simulate the respired volumes and concentration levels of
different animals. This design needs to be further refined
and tested, but catch results were very encouraging.
The major premise behind this dissertation is that the
size of the individual mosquito directly effects the selection
of host odor amounts. What will be needed in the future will
be carefully controlled tests where mosquitoes are reared
under controlled conditions, offered various hosts to
determine if size of host matters, and to test for responses
to different amounts of attractants.
Most importantly, if the ideas presented here are able
to be confirmed, then a mechanism to start understanding
attraction has been found. If attraction is understood, then
the problem of developing adequate repellents becomes
solvable. This is the major practical long term research that
may come form this. Along with this hopefully will be the
development of much more sophisticated approaches to
attraction, trapping, and surveillance for vector individuals
within a population. I hope that these proposals will be
pursued in the near future.

REFERENCES
Aeree Jr., F., R. B. Turner, H. K. Gouck, M. Beroza, and N.
Smith. 1968. L-lactic acid: A mosquito attractant
isolated from mosquitoes. Science 161: 1346-1347.
Agudelo-silva, F. and A. Spielman. 1984. Paradoxical
effects of simulated larviciding on production of adult
mosquitoes. Am. J. Trop. Med. Hyg. 33: 1267-1269.
Akey, D. H., H. W. Potter, and R. H. Jones. 1978. Effects
of rearing temperature and larval density on longevity,
size, and fecundity in the biting gnat Culicoides
variipennis. Ann. Ent. Soc. Amer. 71: 411-418.
Altner, H. and L. Prillinger. 1980. Ultrastructure of
invertebrate chemo-, thermo-, and hygroreceptors and
its functional significance. Int. Rev. Cytology 67:
69-139.
Altner, H., L. Schaller-Selzen, H. Stetter, and I. Wohlrab.
1983. Poreless sensilla with inflexible sockets. A
comparative study of a fundamental type of sensilla
probably comprising thermo- and hygroreceptors. Cell
Tissue Res. 234: 279-307.
Anderson, D. 1967. Ecological studies on Sindbis and West
Nile viruses on South Africa. III. Host preferences of
mosquitoes as determined by the precipitin test. S.
Afr. J. Med. Sci. 32: 34-39.
Anderson, J. R., V. H. Lee, S. Vadlamudi, R. P. Hanson, and
G. R. DeFoliart. 1961. Isolation of eastern
encephalitis virus from Diptera in Wisconsin. Mosq.
News. 21: 244-248.
Ayala, F. J. and J. R. Powell. 1972. Allozymes as
diagnostic characters of sibling species of
Drosophila. Proc. Nat. Acad. Sci. 69: 1094-1096.
Baker, F. C.
1936
. A
new species
of Orthopodomvia, 0. alba
sp. n.
Proc.
Ent.
Soc.
Wash.
38: 1-7.
Ball, G. H.
1952.
The
free
amino
acids in the whole bodies
of culicine mosquitoes. Exper. Parasit. 1: 339-346.
242

243
Ball, G. H. and E. W. Clark. 1953. Species differences in
amino acids of Culex mosquitoes. Syst. Zool. 2:
138-141.
Baqar, S., C. G. Hayes, and T. Ahmed. 1980. The effect of
larval rearinq conditions and adult aqe on the
susceptibility of Culex tritaeniorhvnchus to infection
with West Nile virus. Mosq. News. 40: 165-171.
Barnes, J. K. 1976. Effect of temperature on development,
survival, oviposition, and diapause in laboratory
populations of Sepedón fuscipennis (Diptera:
Sciomyzidae). Env. Ent. 5(6): 1089-1098.
Baroff, H. G. and E. M. Prinqle. 1941. Enerqy and gaseous
metabolism of the hen as affected by temperature.
Jour. Nutr. 22: 273-286.
Barr, A. R. 1974. New concepts of mosquito taxonomy.
Mosq. Syst. 6: 134-136.
Barr, A. R. 1988. Literature references for mosquitoes and
mosquito-borne diseases. 1988-Part 2. J. Amer. Mosq.
Control Assoc. 4: 220-232.
Barynin, J. J. and M. J. Wilson. 1972. Outdoor experiments
on smell. Atmosph. Environ. 6: 197-207.
Bar-Zeev, M., H. I. Maibath, and A. A. Khan. 1977. Studies
on the attraction of Aedes aeqypti (Diptera: Culicidae)
to man. J. Med. Entomol. 14: 113-120.
Bast, T. F. 1963. Chemical nature of mosquito breeding
waters. Proc. N. J. Mosq. Exterm. Assoc. 50: 335-339.
Bast, T. F. and J. W. Rehn. 1963. Vertical distribution of
mosquitoes as indicated by light trap collections in
two environments. Proc. New Jersey Mosq. Cont. Assoc.
50: 219-229.
Beaty, B. J. and W. H. Thompson. 1976. Delineation of
LaCrosse virus in developmental stages of transo-
varially infected Aedes triseriatus. Amer. J. Trop.
Med. Hyg. 25: 505-512.
Begon, M. 1979. Investigating animal abundance. Capture-
recapture for biologists. Univ. Park Press, Baltimore.

244
Beir, J. C. , W. J. Berry, and G. B. Craig Jr. 1982.
Horizontal distribution of adult Aedes triseriatus
(Diptera: Culicidae) in relation to habitat structure,
oviposition, and other mosquito species. J. Med. Ent.
19: 239-247.
Beir, J. C., P. V. Perkins, R. A. Wirtz, J. Koros, D. Diggs,
T. P. Gargan II, and D. K. Koech. 1988. Bloodmeal
identification by direct enzyme-linked immunosorbent
assay (ELISA), tested on Anopheles in Kenya. J. Med.
Ent. 25: 9-16.
Beir, J. C. and M. Trpis. 1981. Local distribution of
Aedes triseriatus at the Baltimore zoo. Mosq. News.
41: 447-455.
Bell, G. 1980. The costs of reproduction and their
consequences. Am. Nat. 116: 45-76.
Bellamy, R. E., and G. K. Bracken. 1971. Quantitative
aspects of ovarian development in mosquitoes. Can.
Entomol. 103: 763-773.
Bellamy, R. E., and P. S. Corbet. 1974. Occurrence of
ovariolar diatations in nulliparous mosquitoes. Mosq.
News 34: 334.
Bellamy, R. E. and W. C. Reeves. 1952. A portable mosquito
bait trap. Mosq. News 12: 256-258.
Bellamy, R. E., W. C. Reeves, and R. P. Scrivani. 1958.
Relationships of mosquito vectors to winter survival of
encephalitis viruses. II. Under experimental
conditions. Amer. J. Hyg. 67: 90-100.
Bender, E. A., T. J. Case, and M. E. Gilpin. 1984.
Perturbation experiments in community ecology: theory
and practice. Ecology 65: 1-13.
Bentley, M. D., I. N. McDaniel, H. P. Lee, B. Steihl, and M.
Yatagi. 1976. Studies of Aedes triseriatus
oviposition attractants produced by larvae of Aedes
triseriatus and Aedes atropalpus. J. Med. Entomol.
13: 112-115.
Bertsch, M. L. and B. R. Norment. 1983. The host-feeding
patterns of Culex quinquefasciatus in Mississippi.
Mosq. News. 43: 203-206.
Bickley, W. E. 1981. Notes on the geographical
distribution of Aedes canadensis mathesoni. Mosq.
Syst. 13: 150-152.

245
Bickley, W. E. 1987. Selected literature references to
mosquitoes and mosquito-borne diseases. 1987, part 1.
J. Amer. Mosq. Cont. Assoc. 3: 116-123.
Bidlingmayer, W. L. 1974. The influence of environmental
factors and physiological stage on flight patterns of
mosquitoes taken in the vehicle aspirator and truck,
suction, bait, and New Jersey light traps. J. Med.
Ent. 11: 119-146.
Bidlingmayer, W. L. 1985. The measurement of adult
mosquito population changes—some considerations. J.
Amer. Mosq. Control Assoc. 1: 328-348.
Bidlingmayer W L. and D. G. Hem. 1973. Sugar feeding by
Florida mosquitoes. Mosq. News. 33: 535-538.
Bidlingmayer W. L. and D. G. Hem. 1981. Mosquito flight
paths in relation to the environment effect of the
forest edge upon trap catches in the field. Mosq.
News. 41: 55-59.
Birch, L. C. 1948. The intrinsic rate of natural increase
of an insect population. J. Animal Ecology 17: 15-26.
Birch, L. C. 1979. The effect of species of animals which
share common resources on one another's distribution
and adundance. Fortschr. Zool. 25: 197-221.
Biscoe-Tyndal, M. 1984. Age-grading methods in adult
insects: a review. Bull. Ent. Res. 74: 341-377.
Blaskovic, D. and J. Nosek. 1972. The ecological approach
to the study of tick-borne encephalitis. Prog. Med.
Virol. 14: 275.
Blickle, R. L. 1952. Notes on the mosquitoes of New
Hampshire. Proc. N. J. Mosq. Exterm. Assoc. 39: 198-
202 .
Blueweiss, L., H. Fox, V. Kudzma, D. Nakashima, R. Peters,
and S. Sams. 1978. Relationships between body size and
some life history parameters. Oecologia (Berl.). 37:
257-272.
Blum, M. S. 1985. Fundamentals of Insect Physiology. Wiley
Interscience Pub., John Wiley and Sons, New York.
Bock, M. E. and M. M. Milby. 1981. Seasonal variations of
wing length and egg raft size in Culex tarsalis. Proc.
Calif. Mosq. Vector Control Assoc. 49: 64-66.

246
Bohart, R. M. 1948. The subgenus Neoculex in America north
of Mexico. Ann. Ent. Soc. Amer. 41: 330-345.
Boo, K. S. 1980a. Fine structure of the antennal sensory
hairs in female Anopheles stephensi. Z. Parasitenkd.
61: 161-171.
Boo, K. S. 1980b. Antennal sensory receptors of the male
mosquito, Anopheles stephensi. Z. Parasitenkd. 61:
249-264.
Boo, K. S. and S. B. Mclver. 1975. Fine structure of
sunken thickwalled pegs (sensilla ampullacea and
coeloconica) on the antennae of mosquitoes. Can. J.
Zool. 53: 262-266.
Boo, K. S. and S. B. Mclver. 1976. Fine structure of
surface and sunken grooved pegs on the antenna of
female Anopheles stephensi. Can. J. Zool. 54:
235-244.
Boorman, J. P. T. 1961. Observations on the habits of
mosquitoes of Plateau Province, northern Nigeria, with
particular reference to Aedes (Steaomvia) vittatus
(Bigot). Bull. Ent. Res. 52: 709-725.
Boreham, P. F. L., and W. F. Snow. 1973. Further
information on the food sources of Culex (Culex) decens
Theo. (Diptera: Culicidae). Trans. Roy. Soc. Trop. Med.
Hyg. 67: 724-725.
Boromisa, R. D., R. S. Copeland, and P. R. Grimstad. 1987.
Oral transmission of eastern equine encephalomyelitis
virus by a north Indiana strain of Cocmilletidia
perturbans. J. Am. Mosq. Cont. Assoc. 3: 102-104.
Bos, H. J. and J. J. Laarman. 1975. Guinea pigs, lysine,
cadaverine and estradiol as attractants for the
malaria mosquito Anopheles stephensi. Ext. Exp. Appl.
18: 161-172.
Bossert, W. H. and E. 0. Wilson. 1963. The analysis of
olfactory communication among animals. J. Theor. Biol.
5: 443-469.
Boyce, M. S. 1984. Restitution of r- and K- selection as a
model of density-dependent natural selection. Ann.
Rev. Ecol. Syst. 15: 427-447.
Bradley, G. H. and R. F. Fritz. 1945. Observations on
seasonal occurence and abundance of Anopheles
cruadrimaculatus Say. J. Nat. Malaria Soc. 4: 251-262.

247
Bradshaw, W. E. 1973. Photoperiodism in Orthopodomvia
signífera. Can. J. Zool. 51: 355-357.
Brady, U. E. 1983. Prostaglandin in insects. Insect
Biochem. 13: 443-451.
Breeland, S. G. and E. Pickard. 1965. The malaise trap—
an efficient and unbiased mosquito collecting device.
Mosq. News. 25: 19-21.
Breland, O. P. 1960. Restoration of the name, Aedes
hendersoni Cockerell, and its elevation to full
specific rank (Diptera: Culicidae). Ann. Ent. Soc.
Amer. 53: 600-606.
Brenner, R. J. and E. W. Cupp. 1980. Preliminary
observations on parity and nectar feeding in the black
fly, Simulium ienningsi. Mosq. News. 40: 390-393.
Brenner, R. J. and M. J. Wargo. 1984. Observations on
adult bionomics and larval ecology of Leptoconops
torrens (Diptera: Ceratopogonidae) during an outbreak
in the Coachella valley of southern California,
U.S.A.. J. Med. Ent. 21: 460-469.
Brenner, R. J., M. J. Wargo, and M. S. Mulla. 1984.
Bionomics and vector potential of Leptoconops foulki &
L. knowltoni (Diptera: Ceratopogonidae) in the lower
desert of southern California, USA. J. Med. Ent. 21:
447-459.
Brenner, R. J., M. J. Wargo, G. S. Stains, and M. S. Mulla.
1984. The dispersal of Culicoides mohave (Diptera:
Ceratopogonidae) in the desert of southern California.
Mosq. News. 44: 343-350.
Brown, A. W. A. 1966. The attraction of mosquitoes to
hosts. J. Amer. Med. Assoc. 196: 249-257.
Brown, A. W. A. and A. G. Carmichael. 1961. Lysine and
alanine as mosquito attractants. J. Econ. Entomol.
54: 317-324.
Bryant, E. H. 1974. On the adaptive significance of enzyme
polymorphisms in relation to environmental variability.
Amer. Naturalist 108: 1-28.
Bryant, E. S., C. R. Anderson, and L. van der Heide. 1973.
Case report—an epizootic of eastern equine encephalo¬
myelitis in Connecticut. Avian Diseases. 17: 861-867.

248
Burbutis, P. P., and D. M. Jobbins. 1958. Studies on the
use of a diurnal resting box for the collection of
Culiseta melanura. Bull. Brook. Ent. Soc. 54: 53-58.
Burbutis, P. R. and R. W. Lake. 1956. The biology of
Culiseta melanura (Coquillet) in New Jersey. Proc. N.
J. Mosq. Exterm. Assoc. 43: 155-161.
Burkot, T. R. and G. R. DeFoliart. 1982. Blood meal
sources of Aedes triseriatus and Aedes vexans in a
southern Wisconsin forest endemic for Lacrosse
encephalitis virus. Am. J. Trop. Med. Hyg. 31:
376-381.
Bursell, E., A. J. E. Gough, P. S. Beevor, A. Cork, and
D. R. Hall. 1988. Identification of components of
cattle urine attractive to tsetse flies, Glossina spp.
(Diptera: Glossinidae). Bull. Ent. Res. 78: 281-291.
Buttiker, W. 1958. Observations on the physiology of adult
anophelines in Asia. Bull. WHO 19: 1063-1071.
Calder, W. A. 1968. Respiratory and heart rates of birds at
rest. Condor 70: 358-365.
Calder, W. A., and K. Schmidt-Nielsen. 1968. Panting and
blood carbon dioxide in birds. Amer. J. Physiol. 215:
477-482.
Calisher, C. H., K. S. C. Maness, R. D. Lord, and P. H.
Coleman. 1971. Identification of two South American
strains of eastern equine encephalomyelitis virus from
migrant birds captured on the Mississippi delta.
Amer. J. Epidemiol. 94: 172-178.
Callahan, P. S. 1965a. Are arthropods infra red and
microwave detectors? Proc. North Central Branch Ent.
Soc. Amer. 20: 20-31.
Callahan, P. S. 1965b. An infrared electromagnetic theory
of diapause inducement and control in insects. Ann.
Ent. Soc. Amer. 58: 561-564.
Callahan, P. S. 1967a. Insect molecular bioelectronics.
Mise. Publ. Ent. Soc. Amer. 5: 315-347.
Callahan, P. S. 1967b. Insect molecular bioelectronics. A
theoretical and experimental study of insect sensilla
as tubular waveguides, with particular emphasis on
their dielectric and thermelectret properties. Mise.
Pub. Ent. Soc. Amer. 5: 315-347.

249
Callahan, P. S. 1971. Far infrared stimulation of insects
with the glagolewa-arkadiewa mass radiator. Fla.
Entomol. 54: 201-204.
Callahan, P. S. 1973. Studies on the shootborer Hypsipyla
qrandella (Zeller) (Lepidoptera, Pyralidae). XIX. The
antenna of insects as a electromagnetic sensory organ.
Turrialba 23: 263-274.
Callahan, P. S. 1975a. The insect antenna as a dielectric
array for the detection of infrared radiation from
molecules. Int. Conf. Biomed. Transducers 1: 133-138.
Callahan, P. S. 1975b. Insect antennae with special
reference to the mechanism of scent detection and the
evolution of the sensilla. Int. J. Insect Morphol. and
Embryol. 4: 381-430.
Callahan, P. S. 1977. Moth and candle: the candle flame as
a sexual mimic of the coded infrared wavelengths from a
moth scent (pheromone). Applied Optics 16: 3089-3097.
Callahan, P. S. 1979a. Evolution of antennae, their
sensilla and the mechanism of scent detection in
Arthropoda. p.259-298. In: Arthropod Phylogeny; A. P.
Gupta, ed., Van Nostrand Reinhold Co., New York, N. Y.
Callahan, P. S. 1979b. John Tyndall: unifier of 19th
century science. Applied Optics 18: 255-258.
Callahan, P. S. 1980. Stimulated maser-like infrared
emission from water vapor doped with ammonia and insect
sex attractant: biological implications. Physiol.
Chemistry & Physics 12: 31-38.
Callahan, P. S. 1984. Non linear maserlike radiation in
biological systems, p. 337-339. In: Insect
neurochemistry and neurophysiology. A. B. Borkovec and
T. J. Kelly, eds., Plenum Pub. Corp.
Callahan, P. S. 1985a. Picket-fence interferometer on the
antennae of the Noctuidae and Pyralidae moths. Applied
Optics 24: 2217-2220.
Callahan, P. S. 1985b. Dielectric waveguide modeling at
3.0 cm. of the antenna sensilla of the lovebug, Plecia
nearctica Hardy. Applied Optics 24: 1094-1097.
Callahan, P. S., and T. C. Carlysle. 1971. A function of
the ephiphysis on the foreleg of the corn earworm moth,
Heliothis zea. Ann. Ent. Soc. Amer. 64: 309-311.

250
Callahan, P. S., T. C. Carlysle, and H. A. Denmark. 1985.
Mechanism of attraction of the lovebug, Plecia
nearctica. to southern highways: further evidence for
the IR-dielectric waveguide theory of insect olfaction.
Appl. Optics 24: 1088-1093.
Callahan, P. S., and H. A. Denmark. 1973. Attraction of
the lovebug Plecia nearctica (Diptera: Bibionidae) to
UV irradiated automobile exhaust fumes. Fla. Entomol.
56: 113-119.
Callahan, P. S., and L. Goldman. 1970. Response of Aedes
aeqypti to 10.6 micron radiation. First quarterly
report, USDA, ARS, Insect attractants, behavior and
basic biology research lab, Gainesville, Florida.
Callahan, P. S., and F. Lee. 1974. A vector analysis of
the infra red emission of night flying moths, with a
discussion of the system as a directional homing
device. Ann. Ent. Soc. Amer. 67: 341-355.
Callahan, P. S., J. C. Nickerson, and W. H. Whitcomb. 1982.
Attraction of ants to narrow-band (maser-like) far
infrared radiation as evidence for an insect infrared
communication system. Physiol. Chem. & Physics 14:
139-144.
Carlson, D. A. 1973. Yellow fever mosquitoes: compounds
related to lactic acid that attract females. J. Econ.
Entomol. 66: 329-331.
Carlson, D. A. 1983. Chemical taxonomy in Tsetse flies
(Glossina spp.) by analysis of cuticular components.
Proc. OAU Mtgs., ISC TRC, Arusha, Tanzania, No. 110:
420-430.
Carlson, D. A. 1984. Chemical taxonomy: analysis of
cuticular hydrocarbons for identification of Simulium.
Anopheles. and Glossina species, p. 131 - 150. IN: New
approaches to the identification of parasites and their
vectors. B. N. Newton and F. Michal, eds.. WHO Trop.
Res. Ser. 5.
Carlson, D. A. and A. B. Bolton. 1984. Identification of
Africanized and European honey bees, using extracted
hydrocarbons. Bull. Ent. Soc. Amer. 30: 32-35.
Carlson, D. A., and M. W. Service. 1979. Differentiation
between species of the Anopheles gambiae Giles complex
(Diptera: Culicidae) by analysis of cuticular
hydrocarbons. Ann. Trop. Med. Parasitol. 73: 589-592.

251
Carlson, D. A. and M. W. Service. 1980. Identification of
mosquitoes of Anopheles gambiae species complex A and
B by analysis of cuticular components. Science 207:
1089-1091.
Carlson, D. A. and J. F. Walsh. 1981. Identification of
two West African black flies (Diptera: Simuliidae) of
the Simulium damnosum species complex by analysis of
cuticular paraffins. Acta Tropica 38: 225-239.
Carlson, D. A. and S. R. Yocom. 1986. Cuticular
hydrocarbons from six species of Tephritid fruit flies.
Arch. Insect Biochem. & Physiol. 3: 397-412.
Carpenter, S. J. and W. J. LaCasse. 1955. Mosquitoes of
North America (north of Mexico). Univ. Cal. Press,
Berkeley & Los Angeles. 361p. + 127 pis.
Carpenter, S. R. 1983. Resource limitation of larval
treehole mosquitoes subsisting on beech detritus.
Ecology 64: 219-223.
Case, T.
J.
1981.
Niche
separation
and resource scaling
Am.
Nat.
118:
554-560.
Case, T.
J.
1984 .
Niche
overlap and
resource weighting
terms. Amer. Nat. 124: 604-608.
Castner, J. L. and J. L. Nation. 1984. Cuticular lipids
for species recognition of mole crickets (Orthoptera:
Gryllotalpidae). I. Scapteriscus didactvlus,
Scapteriscus imitatus. and Scapteriscus vicinus. Fla.
Ent. 67: 155-160.
Caswell, H. and A. Hastings. 1980. Fecundity, development
time, and population growth rate: an analytical
solution. Theor. Pop. Biol. 17: 71-79.
Catts, E. P. 1979. Hilltop aggregation and mating behavior
by Gasterophilus intestinalis (Diptera:
Gasterophilidae). J. Med. Entomol. 16: 461-464.
Cave, R. D. and M. J. Gaylor. 1987. Antennal sensilla of
male and female Telenomus revnoldsi Gordh & Coker
(Hymenoptera: Scelionidae). Int. J. Insect Morph. &
Embryol. 16: 27-39.
Chaika, S. Yu. 1977. Relationship of the number of
club-shaped palpal sensilla to the type of attack on
the host by blood-sucking mosquitoes. (In Russian,
English summary). Vestn. Mosk. Univ. Ser. XVI Biol.
2: 85-87.

252
Chamberlain, R. W. 1955. Laboratory observations on a
mosquito, Culiseta melanura. Mosq. News. 15: 18-21.
Chamberlain, R. W. 1958. Vector relationships of the
arthropod-borne encephalitides in North America. Ann.
N. Y. Acad. Sci. 70: 312-319.
Chamberlain, R. W., E. C. Corriston, and R. K. Sikes. 1954.
Studies on the North American arthropod-borne
encephalitides. V. The extrinsic incubation of eastern
and western equine encephalitis in mosquitoes. Amer.
J. Hyg. 60: 269-277.
Chamberlain, R. W., R. E. Kissling, and R. K. Sikes. 1954.
Studies on the North American arthropod-borne
encephalitides. VII. Estimation of amount of eastern
equine encephalitis virus inoculated by infected Aedes
aegypti. Am. J. Hyg. 60: 286-291.
Chamberlain, R. W., R. E. Kissling, D. D. Stamm, D. B.
Nelson, and R. K. Sikes. 1956. Venezuelan equine
encephalomyelitis in wild birds. Amer. J. Hyg. 63:
261-273.
Chamberlain, R. W., H. Rubin, R. E. Kissling, and M. E.
Eidson. 1951. Recovery of the virus of eastern equine
encephalomyelitis from a mosquito, Culiseta melanura.
Proc. Soc. Expt. Biol. Med. 77: 396-397.
Chamberlain, R. W., R. K. Sikes, and D. B. Nelson. 1956.
Infection of Mansonia perturbans and Psorophora ferox
mosquitoes with Venezuelan equine encephalomyelitis
virus. Proc. Soc. Exper. Biol. & Med. 91: 215-216.
Chamberlain, R. W., R. K. Sikes, D. B. Nelson, and W. D.
Sudia. 1954. Studies on the north American
arthropod-borne encephalitides. VI. Quantitative
determinations of virus-vector relationships. Amer. J.
Hyg. 278-285.
Chamberlain, R. W. and W. D. Sudia. 1955. The effects of
temperature upon the extrinsic incubation of eastern
equine encephalitis in mosquitoes. Amer. J. Hyg. 62:
295-305.
Chamberlain, R. W. and W. D. Sudia. 1957a. The North
American arthropod-borne encephalitis viruses in Culex
tarsalis. Amer. J. Hyg. 66: 151-159.
Chamberlain, R. W. and W. D. Sudia. 1957b. Dual infections
of eastern and western equine encephalitis viruses in
Culex tarsalis. J. Infectious Dis. 101: 233-236.

253
Chamberlain, R. W. and W. D. Sudia. 1961. Mechanisms of
transmission of viruses by mosquitoes. Ann. Rev. Ent.
6: 371-390.
Chamberlain, R. W., W. D. Sudia, P. P. Burbutis, and M. D.
Boque. 1958. Recent isolations of arthropod-borne
viruses from mosquitoes in eastern United States.
Mosq. News. 18: 305-308.
Chamberlain, R. W., W. D. Sudia, P. H. Coleman, and L. D.
Beadle. 1964. Vector studies in the St. Louis
encephalitis epidemic, Tampa Bay area, Florida, 1962.
Amer. J. Trop. Med. Hyg. 13: 456-461.
Chamberlain, R. W., W. D. Sudia, P. H. Coleman, Johnston
Jr., J. G. , and T. H. Work. 1969. Arbovirus
isolations from mosquitoes collected in Waycross,
Georgia, 1963, during an outbreak of equine
encephalitis. Amer. J. Epidemiol. 89: 82-88.
Chamberlain, R. W., W. D. Sudia, and D. B. Nelsen. 1955.
Laboratory observations on a mosquito, Culiseta
melanura. Mosq. News. 15: 18-21.
Chandler, J. A., P. F. L. Boreham, R. B. Highton, and M. N.
Hill. 1975. A study of host selection patterns of the
mosquitoes of the Kisumu area of Kenya. Trans. Roy.
Soc. Trop. Med. & Hyg. 69: 415-425.
Chapman, H. C. 1964. Observations on the biology and
ecology of Orthopodomvia californica. Mosq. News. 24:
432-438.
Chapman, R. F. 1971. The insects structure and function.
American Elsevier Pub. Co., New York, N.Y. vi + 819p.
Charlesworth, D., and B. Charlesworth. 1975. Sexual
selection and polymorphism. Amer. Nat. 109: 465-470.
Chiang, C., and W. C. Reeves. 1962. Statistical estimation
of virus infection rates in mosquito vector
populations. Amer. J. Hyg. 75: 377-391.
Chiodi, H., and J. W. Terman. 1965. Arterial blood gases of
the domestic hen. Am. J. Physiol. 208: 798 - 800.
Christophers, S. R. 1911. The development of the egg
follicle in anophelines. Paludism 2: 73-89.

254
Christopher, S., and R. Reuben. 1971. Studies on the
mosquitoes of North Arcot District, Madras State,
India. Part 4: Host preferences as shown by precipitin
tests. J. Med. Ent. 8: 314-318.
Chu-Wang, I-Wu, R. C. Axtell, and D. L. Kline. 1975.
Antennal and palpal sensilla of the sand fly Culicoides
furens (Poey). Int. J. Insect Morphol. & Embryol. 4:
131-149.
Clark, G. G., W. J. Crans, and C. L. Crabbs. 1985. Absence
of eastern equine encephalitis (EEE) virus in immature
Coquillettidia perturbans associated with equine cases
of EEE. J. Amer. Mosq. Control Assoc. 1: 540-542.
Clements, A. N. 1963. The Physiology of Mosquitoes.
International series of monographs on pure and applied
biology. 17. The Macmillan Comp., New York.
Cockburn, T. A., E. R. Price, and J. A. Rowe. 1951.
Encephalitis in the midwest: I. A review of the
problem. J. Kansas Med. Soc. 52: 316-318.
Cole, L. C. 1954. The population consequences of life
history phenomena. Quart. Rev. Biol. 29: 103-137.
Collins, W. E. 1962. Transtadial passage of St. Louis
encephalitis virus in Aedes aegypti mosquitoes. Amer.
J. Trop. Med. Hyg. 11: 535-538.
Collins, W. E. 1963. Transmission of St. Louis
encephalitis virus by larval-infected Culex
quinquefasciatus mosquitoes. Ann. Ent. Soc. Amer. 56:
237-239.
Collins, W. E., A. J. Harrison, and J. R. Jumper. 1966.
Transmission of eastern equine encephalitis virus by
Aedes aegypti infected by larval exposure and menbrane
feeding. Mosq. News. 26: 364-367.
Coluzzi, M. 1964. Morphological divergences in the
Anopheles qambiae complex. Riv. Malar. 43: 197-232.
Colwell, R. K. and E. R. Fuente. 1975. Experimental
studies of the niche. Ann. Rev. Ecol. Syst. 6:
281-310.
Connell, J. H. 1961. The influence of interspecific
competition and other factors on the distribution of
barnacles. Ecology 42: 710-723.

255
Copeland, R. S. 1986. The biology of Ae. thibaulti in
northern Indiana. J. Amer. Mosq. Con. Assoc. 2: 1-6.
Copeland, R. S. and E. D. Walker. 1986. Sewage-associated
breeding of Ae. sollicitans and Ae. dorsalis in
southwestern Michigan. J. Amer. Mosq. Control Assoc.
2: 91.
Coquillett, D. W. 1902. New forms of Culicidae from North
America. J. New York Ent. Soc. 10: 191-194.
Corbet, P. S. 1960. Recognition of nulliparous mosquitoes
without dissection. Nature (London) 187: 525-526.
Corbet, P. S. 1962. The age composition of biting mosquito
populations according to time and level, a further
study. Bull. Ent. Res. 53: 409-416.
Corbet, P. S. 1967. Facultative autogeny in arctic
mosquitoes. Nature 215: 662-663.
Corbet, P. S. and H. V. Danks. 1973. Seasonal emergence
and activity of mosquitoes in a high arctic locality.
Can. Ent. 105: 837-872.
Corbiere-Tichane, G. 1971. Structure nerveuse enematique
dans l'antenne de la larve du Speophvtes lucidulus
Dilar (Coleoptere cavernicole de la sous-famille des
Bathysciinae). Etude au microscope electronique. J.
Microscopie 10: 191-202.
Corbiere-Tichane, G., and N. Bermond. 1972. Sensilles
enematiques de l'antenne de certaines coleopteres.
Etude comparative au microscope electronique. Z.
Zellforsch. Mikrosk. Anat. 127: 9-33.
Craig, G. B. and R. C. Vandehey. 1962. Genetic variability
in Aedes aegypti. I. Mutations affecting color
pattern. Ann. Ent. Soc. Amer. 55: 47-58.
Crane, G. T. and E. E. Robert. 1977. Transovarial
transmission of California encephalitis virus in the
mosquito Aedes dorsalis at Blue Lake, Utah. Mosq.
News. 37: 479-482.
Crans, W. J. 1964. Continued host preference studies with
New Jersey mosquitoes. Proc. N. J. Mosq. Exterm.
Assoc. 51: 50-58.
Crans, W. J. 1965. Host preference studies with New Jersey
mosquitoes. Bull. Serol. Mus. 33: 1-4.

256
Crans, W. J. 1970. The blood-feeding habits of Culex
territans Walker. Mosq. News. 30: 445-447.
Crans. W. J., J. McNelly, T. L. Schulze, and A. Main. 1986.
Isolation of eastern equine encephalitis virus from Ae.
sollicitans during an epizootic in southern New Jersey.
J. Amer. Mosq. Control Assoc. 2: 68-72.
Crans, W. J. and E. G. Rockel. 1968. The mosquitoes
attracted to turtles. Mosq. News 28: 332-337.
Crawford, E. C., and R. C. Lasiewski. 1968. Oxygen
consumption and respiratory evaporation of the emu and
rhea. Condor 70: 333 - 339.
Cupp, E. W., W. F. Scherer, J. B. Lok, R. J. Brenner, Dziem,
G. M. , and J. V. Ordonez. 1986. Entomological
stidies at an epizootic Venezuelan equine encephalitis
virus focus in Guatemala, 1977-1980. Am. J. Trop. Med.
& Hyg. 35: 851-859.
Dalrymple, J. M., O. P. Young, B. F. Eldridge, and P. K.
Russell. 1972. Ecology of arboviruses in a Maryland
freshwater swamp. III. Vertebrate hosts. Amer. J.
Epidemiol. 96: 129-140.
Dardiri, A. H., V. J. Yates, P. W. Chang, G. H. Wheatly, and
D. E. Fry. 1957. The isolation of eastern equine
encephalomyelitis virus from brains of sparrows. J.
Amer. Vet. Med. Assoc. 130: 409-410.
Darsie, R. F. and R. A. Ward. 1981. Identification and
geographical distribution of mosquitoes of North
America north of Mexico. Mosq. Syst. Suppl. 1: 1-313.
Davidson, G. 1964. Anopheles gambiae, a complex of
species. Bull. Wld. Hlth. Org. 31: 625-634.
Davis, E. E. 1974. Identification of antennal
chemoreceptors of the mosquito, Aedes aegypti: a
correction. Experimentia 30: 1282.
Davis, E. E. 1976. A receptor sensitive to oviposition
site attractants on the antennae of the mosquito,
Aedes aegypti. J. Insect Physiol. 22: 1371-1376.
Davis, E. E. 1977a. Response of antennal receptors of the
male Aedes aegypti mosquito. J. Insect Physiol. 23:
613-617.

257
Davis, E. E. 1977b. Structure-activity relationship of the
lactic acid sensitive neurons on the mosquito antenna,
p. 351. IN: Olfaction and taste. VI. J. LeMagnon & J.
P. Macleod, eds., Information Retrieval, Washington.
Davis, E. E. and C. S. Rebert. 1972. Elements of olfactory
receptor coding in the yellow fever mosquito, Aedes
aeqypti. J. Econ. Entomol. 65: 1058-1061.
Davis, E. E. and P. G. Sokolove. 1975. Temperature
responses of the antennal receptors of the mosquito,
Aedes aeqypti. J. Comp. Physiol. 96: 223-233.
Davis, E. E. and P. G. Sokolove. 1976. Lactic acid
sensitive receptors on the antennae of the mosquito,
Aedes aeqypti. J. Comp. Physiol. 43-54.
Davis, E. E. and F. T. Takahashi. 1980. Humoral alteration
of chemoreceptor sensitivity in the mosquito, p. 139-
142. IN: Olfaction and taste VII. Information
Retrieval, Washington.
Davis, H. G. 1978. Recycling treated sewage effluents
through cypress swamps: Its effects on mosquito
populations and arbovirus implications. Ph. D.
dissertation, University of Florida, Gainesville.
Davis, W. A. 1940. A study of birds and mosquitoes as
hosts for the virus of eastern equine
encephalomyelitis. Amer. J. Hyg. 32: 45-59.
Daykin, P. N., F. E. Kellogg, and R. H. Wright. 1965. Host
finding and repulsion of Aedes aeqypti. Can. Ent. 97:
239-263.
DeFoliart, G. R. 1967. Aedes canadensis feeding on
Blandings turtle. J. Med. Ent. 4: 31.
DeFoliart, G. R., R. 0. Anslow, R. P. Hanson, C. D. Morris,
0. Papadopoulos, and G. E. Sather. 1969. Isolation of
Jamestown Canyon serotype of California encephalitis
virus from naturally infected Aedes mosquitoes and
tabanids. Amer. J. Trop. Med. & Hyg. 18: 440-447.
DeFoliart, G. R. and M. A. Lisitza. 1980. Activity by
Aedes triseriatus in open terrain. Mosq. News. 40:
650-652.
Depner, K. R. and R. F. Harwood. 1966. Photoperiodic
responses of two latitudinally diverse groups of
Anopheles freeborni (Diptera: Culicidae). Ann. Ent.
Soc. Amer. 59: 7-11.

258
Dethier, M. N. and D. 0. Duggins. 1984. An "indirect
commensalism" between marine herbivores and the
importance of competitive hierarchies. Am. Nat. 124:
205-219.
Dethier, V. G. 1963. The Physiology of Insect Senses. John
Wiley and Sons, New York.
Detinova, T. S. 1962. Age-grouping methods in Diptera of
medical importance, with special reference to some
vectors of malaria. Wld. Hlth. Org. Pub., Geneva.
216p.
Detinova, T. S. 1968. Age structure of insect populations
of medical importance. Ann. Rev. Entomol. 13:
427-450.
Dodge, H. R. 1947. A new species of Wyeomyia from the
pitcher plant. Proc. Ent. Soc. Wash. 49: 117-122.
Dominey, W. J. 1984. Alternative mating tactics and
evolutionary stable strategies. Am. Zool. 24:
385-396.
Dougherty, E. and J. I. Price. 1960. Eastern encephalitis
in white Pekin ducklings on Long Island. Avian Dis.
4: 247-258.
Dow, R. P. 1971. The dispersal of Culex nigripalpus marked
with high concentrations of radio phosphorus. J. Med.
Ent. 8: 353-363.
Dow, R. P., P. H. Coleman, K. E. Meadows, and T. H. Work.
1964. Isolation of St. Louis encephalitis viruses from
mosguitoes in the Tampa Bay area of Florida during the
epidemic of 1962. Amer. J. Trop. Med. Hyg. 13:
462-468.
Dow, R. P., W. C. Reeves, and R. E. Bellamy. 1957. Field
tests of avian host preference of Culex tarsalis Coq..
Amer. J. Trop. Med. Hyg. 6: 294-303.
Downe, A. E. R. 1960. Blood-meal sources and notes on host
preference of some Aedes mosquitoes. Can. J. Zool.
38: 689-699.
Downe, A. E. R. 1962. Some aspects of host selection by
Mansonia perturbans (Walker). Can. J. Zool. 40:
725-732.
Downe, A. E. R. 1963. Mosguitoes: comparative serology of
four species of Aedes. Science 139: 1286-1287.

259
Downe, A. E. R. 1975. Internal regulation of rate of
digestion of blood meals in the mosquito. J. Ins.
Physiol. 21: 1835-1839.
Downes, J. A. 1958. Assembly and mating in the biting
Nematocera. Proc. 10th Int. Cong. Ent. 2: 425-434.
Downs, W. G., T. H. G. Aitken, and L. Spence. 1959.
Eastern equine encephalitis virus isolated from Culex
niqripalpus in Trinidad. Science 130: 1471.
DuBose, W. P. J. and R. C. Axtell. 1968. Sensilla on the
antennal flagella of Hippelates eye gnats. Ann. Ent.
Soc. Amer. 61: 1547-1561.
Eads, R. B. 1976. An unusual larval habitat for Culiseta
melanura. Mosquito News 36: 544.
Eddleman, C. D. 1967. Morphological and biometrical
differentiation of the larval instars of mosquitoes.
I. Culex territans. Ann. Ent. Soc. Amer. 60: 33-41.
Edman, J. D. 1971. Host feeding patterns of Florida
mosquitoes. I. Aedes, Anopheles, Coquillettidia,
Mansonia. & Psorophora. J. Med. Ent. 8: 687-695.
Edman, J. D. 1974. Host feeding patterns of Florida
mosquitoes. III. Culex (Culex) and Culex (Neoculex).
J. Med. Ent. 11: 95-104.
Edman, J. D. 1979a. Orientation of some Florida mosquitoes
(Diptera: Culicidae) toward small vertebrates and
carbon dioxide in the field. J. Med. Entomol. 15:
292-296.
Edman, J. D. 1979b. Host feeding patterns of Florida
mosquitoes. VI. Culex (Melanoconion). J. Med.
Entomol. 15: 521-525.
Edman, J. D. and W. L. Bidlingmayer. 1969. Flight capacity
of blood-engorged mosquitoes. Mosq. News. 29:
386-392.
Edman, J. D. and A. E. R. Downe. 1964. Host-blood sources
and multiple feeding habits in Kansas. Mosq. News.
24: 154-160.
Edman, J. D., F. D. Evans, and J. A. Williams. 1968.
Development of a diurnal resting box to collect
Culiseta melanura (Coq.). Amer. J. Trop. Med. Hyg.
17: 451-456.

260
Edman, J. D. and J. S. Haeger. 1977. Host feeding patterns
of Florida mosquitoes. V. Wveomvia. J. Med. Ent. 14:
477-479.
Edman, J. D. and D. J. Taylor. 1968. Culex nigripalpus:
seasonal shift in the bird-mammal feeding ratio in a
mosquito vector of human encephalitis. Science 161:
67-68.
Edman, J. D., L. A. Webber, and H. W. Kale. 1972. Host
feeding patterns of Florida mosquitoes. II. Culiseta.
J. Med. Ent. 9: 429-434.
Edwards, F. W. 1916. On the systematic position of the
genus Mycetobia Mg. (Diptera: Nematocera). Ann. Mag.
Nat. Hist. 8: 108-116.
Edwards, F. W. 1923. Oligocene mosquitoes in the British
Museum, with a summary of our present knowledge
concerning fossil Culicidae. Q. J. Geol. Soc. Lond.
79: 139-155.
Eklund, C. M., J. F. Bell, and J. M. Brennan. 1951.
Antibody survey following an outbreak of human and
equine cases in the Dominican Republic. Amer. J.
Trop. Med. 31: 312-328.
Eldridge, B. F. 1974. The value of mosquito taxonomy to
the study of mosquito-borne diseases and their control.
Mosq. Syst. 6: 125-129.
Ellison, J. R., and E. N. Hampton. 1982. Age determination
using the apódeme structure in adult screwworm flies
(Cochliomvia hominovorax). J. Insect Physiol. 28:
731-736.
Emmons, R. W., and G. Grodhaus. 1976. Surveillance and
prevention of arboviral disease in California. Vector
Views 23: 9-14.
Fallis, A. M., and S. M. Smith. 1964. Ether extracts from
birds and C02 as attractants for some ornithophilic
simuliids. Can. J. Zool. 42: 724-730.
Faran, M. E. 1979. The importance of an integrated
approach in solving a problem in mosquito systematics.
Mosq. Syst. 11: 280-288.
Favorite, F. G. and R. Davis. 1958. Some observations on
the mosquito fauna of the Okefenokee swamp. Mosq.
News. 18: 284-287.

261
Feemster, R. F. 1938. Outbreak of encephalitis in man due
to eastern virus of equine encephalomyelitis. Amer.
J. Pub. Hlth. 28: 1403-1410.
Feemster, R. F. 1957. Equine encephalitis in
Massachusetts. New Engl. J. Med. 257: 701-704.
Feinsod, F. M. and A. Spielman. 1980. Nutrient-mediated
juvenile hormone secretion in mosquitoes. J. Insect
Physiol. 26: 113-117.
Ferguson, F. F. 1954. Biological factors in the
transmission of american arthropod-borne virus
encephalitides. A summary. U. S. Pub. Hlth. Serv.
Monog. no. 23, 37p.
Fish, D. 1985. An analysis of adult size variation within
natural mosquito populations, p. 419-429. IN: Ecology
of mosquitoes: Proceedings of a workshop. L. P.
Lounibos, J. R. Rey, and J. H. Frank, eds. Fla. Med.
Ent. Lab., Vero Bch., Fla.
Fish, D. and D. W. Hall. 1978. Succession and strati¬
fication of aquatic insects inhabiting the leaves of
the insectivorous pitcher plant, Sarracenia purpurea.
Amer. Midi. Nat. 99: 172-183.
Fothergill, L. D., J. H. Dingle, S. Farber, and M. L.
Connerley. 1938. Human encephalitis caused by the
virus of the eastern variety of equine
encephalomyelitis. New Engl. J. Med. 219: 411.
Friend, W. G. and J. J. B. Smith. 1977. Factors affecting
feeding by bloodsucking insects. Ann. Rev. Entomol.
22: 309-331.
Furlow, B. M. and W. W. Young. 1970. Larval surveys com¬
pared to ovitrap surveys for detecting Aedes aegypti
and Aedes triseriatus. Mosq. News. 30: 468-470.
Gadgil, M. D. and 0. T. Solbrig. 1972. The concept of r-
and K- selection: evidence from wild flowers and some
theoretical consideration. Am. Nat. 106: 14-31.
Gadgil, M. and W. H. Bossert. 1970. Life historical con¬
sequences of natural selection. Am. Nat. 104: 1-24.
Garcia, R. 1962. Carbon dioxide as an attractant for
certain ticks. (Acariña: Argasidae and Ixodidae). Ann.
Ent. Soc. Amer. 55: 605.

262
Gargan, T. P., II, C. L. Bailey, G. A. Higbee, A. Gad, and
S. E. Said. 1983. The effect of laboratory
colonization on the vector-pathogen interactions of
Egyptian Culex pipiens and Rift Valley fever virus.
Amer. J. Trop. Med. Hyg. 32: 1154-1163.
Garry, C. E. and G. R. DeFoliart. 1975. The effect of
basal treehole closure on suppression of Aedes
triseriatus. Mosq. News. 35: 289-297.
Gatehouse, A. G. 1970. Interactions between stimuli in the
induction of probing by Stomoxvs calcitrans . J.
Insect Physiol. 16: 991-1000.
Gill, D. E. 1974. Intrinsic rate of increase, saturation
density, and competitive ability. II. The evolution of
competitive ability. Am. Nat. 108: 103-116.
Gillett, J. D. 1955. The inherited basis of variation in
hatching response of Aedes eggs. Bull. Ent. Res. 46:
255-265.
Gillett, J. D. 1957. Variation in the time of release of
ovarian developmental hormone in Aedes aegypti.
Nature (London) 180: 441-456.
Gillies, M. T. and T. J. Wilkes. 1970. The range of
attraction of single baits for some West African
mosquitoes. Bull. Ent. Res. 60: 225-235.
Gillies, M. T. and T. J. Wilkes. 1972. The range of
attraction of animal baits and carbon dioxide for
mosquitoes. Studies in a freshwater area of West
Africa. Bull. Ent. Res. 61: 389-404.
Gillies, M. T. and T. J. Wilkes. 1974. The range of
attraction of birds as baits for some West African
mosquitoes. Bull. Ent. Res. 63: 573-581.
Gilyard, R. D. 1944. Mosquito transmission of Venezuelan
virus of equine encephalomyelitis in Trinidad. Bull.
U.S. Army Med. Dept. no. 75: 96-107.
Godin, A. J. 1977. Wild mammals of New England. DeLorme
Pub. Co., Freeport, Me.
Goldfield, M. and O. Sussman. 1968. The 1959 outbreak of
eastern encephalitis in New Jersey. I. Introduction
and description of outbreak. Amer. J. Epidemiol. 87:
1-10.

263
Goodwin, M. H. 1942. Studies on artificial resting places
of Anopheles cruadrimaculatus Say. J. Nat. Malaria Soc.
1: 93-99.
Grady, G. F., H. K. Maxfield, S. W. Hildreth, R. Timpeir
Jr., J. , R. F. Gilfillan, B. J. Rosemar, D. B.
Francey, C. H. Calishar, L. C. Manns, and M. A. Madoff.
1978. Eastern equine encephalitis in Massachusetts,
1957-1976. A prospective study centered upon analyses
of mosquitoes. Amer. J. Epidemiol. 107: 170-178.
Grant, G. R. M. 1948. The sensory pits of insects
considered as dielectric waveguides and resonators to
infrared rays. Proc. Roy. Soc. Queensland 60: 89-98.
Grant, P. R. 1972. Interspecific competition among
rodents. Ann. Rev. Ecol. Syst. 3: 79-106.
Grimstad, P. R. 1983. Mosquitoes and the incidence of
encephalitis. Advances in virus research. 28: 357-
438.
Grimstad, P. R., C. E. Garry, and G. R. DeFoliart. 1974.
Aedes hendersoni and Aedes triseriatus (Diptera:
Culicidae) in Wisconsin: characterization of larvae,
larval hybrids, and comparison of adult and hybrid
mesoscutal patterns. Ann. Ent. Soc. Amer. 67:
795.804.
Grimstad, P. R. and L. D. Haramis. 1984. Aedes triseriatus
(Diptera:Culicidae) and La Crosse virus. III. Enhanced
oral transmission by nutrition-deprived mosquitoes. J.
Med. Entomol. 21: 249-256.
Gui, H. L., L. C. Porter, and G. F. Prideau. 1942.
Response of insects to color, intensity, and
distribution of light. Agr. Ent. 23: 51-58.
Gunstream, S. E. and R. M. Chew. 1967. A comparison of
mosquito collection by malaise and miniature light
traps. J. Med. Ent. 4: 495-496.
Gunstream, S. E., R. W. Chew, D. W. Hagstrum, and C. H.
Tempelis. 1971. Feeding patterns of six species of
mosquitoes in arid southeastern California. Mosq.
News. 31: 99-101.
Gwadz, R. W. 1969. Regulation of blood meal size in the
mosquito. J. Insect Physiol. 15: 2039-2044.

264
Hagstrum, D. W. and S. E. Gunstream. 1971. Salinity, pH,
and organic nitrogen relation to presence of mosquito
larvae. Ann. Ent. Soc. Amer. 64: 465-467.
Hall, D. W. 1988. Three Culex salinarius gynandromorphs.
J. Amer. Mosquito Contr. Assoc. 4: 196-197.
Hansell, M. H. 1969. A field study on the attraction of
female Anopheles pharoensis Theobald to carbon
dioxide. Revue Comportement Anim. 3: 65-68.
Haramis, L. D. 1983. Increased adult size correlated with
parity in Aedes triseriatus. Mosq. News. 43: 77-79.
Haramis, L. D. 1984. Aedes triseriatus: a comparison of
density in tree holes vs. discarded tires. Mosq.
News. 44: 485-489.
Haramis, L. D. 1985. Larval nutrition, adult body size,
and the biology of Aedes triseriatus. p. 431-437. IN
Ecology of mosquitoes: Proceedings of a workshop. L.
P. Lounibos, J. R. Rey, and J. H. Frank, eds. Fla. Med
Ent. Lab, Vero Bch., Fla.
Haramis, L. D. and W. A. Foster. 1983. survival and
population density of Aedes triseriatus in a woodlot
in central Ohio. J. Med. Ent. 20: 391-398.
Harbach, R. E. and K. L. Knight. 1980. Taxonomists'
Glossary of Mosquito Anatomy. Plexus Pub. Co.,
Marlton, N. J..
Harden, F. W. and B. J. Poolson. 1969. Seasonal
distribution of mosquitoes of Hancock County,
Mississippi, 1964-1968. Mosq. News. 29: 407-414.
Harden, F. W., B. J. Poolson, L. W. Bennett, and R. C.
Gaski. 1970. Analysis of C02 supplemented adult
mosquito landing rate counts. Mosq. News. 30:
369-374.
Harrison, B. A., M. C. Callahan, D. M. Watts, and L.
Panthusiri. 1982. An efficient floating larval trap
for sampling Aedes aegypti populations. J. Med. Ent.
19: 722-727.
Hauff, W. 0. and L. Burgess. 1960. Design and efficiency
of mosquito traps based on visual response patterns.
92: 124-140.

265
Hayes, L. G. and R. C. Wallis. 1977. Ecology of western
equine encephalomyelitis in the eastern United States.
Adv. Virus Res. 21: 37-83.
Hayes, R. 0. 1958. Observations on the swarming of
Culiseta melanura. Mosq. News. 18: 70-77.
Hayes, R. 0. 1961. Host preferences of Culiseta melanura
and related mosquitoes. Mosq. News. 21: 179-187.
Hayes, R. 0. 1962. The diel activity cycles of Culiseta
melanura (Coq.) and allied mosquitoes. Mosq. News.
22: 352-356.
Hayes, R. 0., L. D. Beadle, A. D. Hess, 0. Sussman, Bonese,
and M. J. 1962. Entomological aspects of the 1959
outbreak of eastern encephalitis in New Jersey. Amer.
J. Trop. Med. Hyg. 11: 115-121.
Hayes, R. 0. and O. W. Doan Jr. 1958. Primary record of
Culiseta melanura biting man in nature. Mosq. News.
18: 216-217.
Hayes, R. 0. and A. D. Hess. 1964. Climatological
conditions associated with outbreaks of eastern
encephalitis. Am. J. Trop. Med. Hyg. 13: 851-858.
Hayes, R. O., L. C. Lamotte, and P. Holden. 1967. Ecology
of arboviruses in Hale County, Texas, during 1965.
Amer. J. Trop. Med. Hyg. 16: 675-687.
Hayes, R. 0., L. C. Lamotte, L. A. White, and L. D. Beadle.
1960. Isolation of eastern encephalitis virus from the
mosquito Culex restuans collected in New Jersey during
1959. Mosq. News 20: 190.
Hayes, R. 0. and H. K. Maxfield. 1967. Interruption of
diapause and rearing larvae of Culiseta melanura
(Coq.). Mosq. News 27: 458-459.
Hayes, R. 0., C. H. Tempelis, A. D. Hess, and R. C. Reeves.
1973. Mosquito host preference studies in Hale County,
Texas. Am. J. Trop. Med. Hyg. 22: 270-277.
Hazard, E. I., M. S. Mayer, and K. E. Savage. 1967.
Attraction and oviposition stimulation of gravid female
mosquitoes by bacteria isolated from hay infusions.
Mosq. News 27: 133-136.
Headlee, T. J. 1937. Some facts underlying the attraction
of mosquitoes to sources of radiant energy. J. Econ.
Ent. 30: 309-312.

266
Headlee, T. J. 1941. New Jersey mosquito problems.
Proc.New Jersey Mosq. Exterm. Ass. 28: 7-12.
Henderson, B. E., C. H. Calisher, P. H. Coleman, B. Fields,
N., and T. H. Work. 1969. Gumbo Limbo, a new group C
arbovirus from the Florida Everglades. Amer. J.
Epidemiol. 89: 227-231.
Henderson, B. E., A. W. R. McCrae, B. G. Kirya, Ssenkubuge,
Y., and S. D. K. Sempala. 1972. Arbovirus epizootics
involving man, mosquitoes, and vertebrates at Lunyo,
Uganda, 1968. Ann. Trop. Med. & Paras. 66: 343-355.
Hesperheide, H. A. 1973. Ecological inferences from
morphological data. Ann. Rev. Syst. Ecol. 4: 213-229.
Hess, A. D., C. E. Cherubin, and L. C. Lamotte. 1963.
Relation of temperature to activity of Western and St.
Louis Encephalitis viruses. Am. J. Trop. Med. Hyg. 12
657-667.
Hess, A. D. and R. 0. Hayes. 1970. Relative potentials of
domestic animals for zooprophylaxis against mosquito
vectors of encephalitis. Amer. J. Trop. Med. Hyg. 19
327-334.
Hitchcock, J. C. Jr. 1968. Age composition of a natural
population of Anopheles quadrimaculatus Say in
Maryland,USA. J. Med. Ent. 5: 125-134.
Hoch, A. L., M. J. Turell, and C. L. Bailey. 1984.
Replication of Rift Valley Fever virus in the sand fly
Lutzomvia longipalpis. Amer. J. Trop. Med. Hyg. 33:
295-299.
Hocking, B. 1963. The use of attractants and repellents i
vector control. Bull. Wld. Hlth. Org. 29: 121-126.
Hocking, B. 1971. Blood-sucking behavior of terrestrial
arthropods. Ann. Rev. Entomol. 16: 1-26.
Hocking, B. and A. Khan. 1966. The mode of action of
repellent chemicals against bloodsucking flies. Can.
Ent. 98: 821-831.
Holzapfel, C. M. and W. E. Bradshaw. 1981. Geography of
larval dormancy in the tree hole mosquito Ae.
triseriatus. Can. J. Zool. 59: 1014-1021.
Hopla, C. E. 1965. The feeding habits of Alaskan
mosquitoes. Bull. Brook. Ent. Soc. 59/60: 88-127.

267
Horsfall, W. R. 1937. Mosquitoes of southeastern Arkansas.
J. Econ. Ent. 30: 743-748.
Horsfall, W. R., H. W. Fowler, Jr., L. J. Monetti, and J. R.
Larsen. 1973. Bionomics and Embryology of the Inland
Floodwater Mosquito Aedes vexans. Univ. Illinois
Press, Urbana.
Howitt, B. F., H. R. Dodge, L. K. Bishop, and R. H. Gorrie.
1949. Recovery of the virus of eastern equine
encephalomyelitis from mosquitoes (Mansonia
perturbans) collected in Georgia. Science 110:
141-142.
Hudson, A. 1970. Notes on the piercing mouthparts of three
species of mosquitoes (Diptera:Culicidae) viewed with
the scanning electron microscope. Can. Ent. 102:
501-509.
Huffaker, C. B. and R. C. Back. 1943. A study of methods
of sampling mosquito populations. J. Econ. Ent. 36:
561-569.
Hurlbert, S. H. 1978. The measurement of niche overlap and
some relatives. Ecology 59: 67-77.
Hurlbert, S. H. 1981. A gentle depilation of the niche;
Dicean resource sets in resource- hyperspace. Evol.
Theory 5: 177-184.
Hurlbert, S. H. 1984. Pseudoreplication and the design of
ecological field experiments. Ecol. Monogr. 54:
187-211.
Imms, A. D. 1945. On the constitution of the maxillae and
labium in Mecoptera and Diptera. Quart. J. Microscop.
Sci. 85: 73-96.
Irby, W. S. and C. S. Apperson. 1988. Hosts of mosquitoes
in the coastal plain of North Carolina. J. Med. Ent.
25: 85-93.
Ismail, I. A. H. 1962. Sense organs in the antennae of
Anopheles maculipennis atroparvus (V.Thiel), and their
possible function in relation to the attraction of
female mosquito to man. Acta Tropica 19: 1-58.
Ismail, I. A. H. 1964. Comparative study of sense organs
in the antennae of culicine and anopheline female
mosquitoes. Acta Tropica 21: 155-168.

268
Ismail, I. A. H. and E. I. Hammond. 1968. The use of
coeloconic sensillae on the female antennae in
differentiating members of the Anopheles gambiae Giles
complex. Bull. Wld. Hlth. Org. 38: 814-821.
Istock, C. A., K. J. Vavra, and H. Zimmer. 1976. Ecology
and evolution of the pitcher-plant mosquito. 3.
Resource tracking by a natural population. Evolution
30: 548-557.
Jackson, L. L. 1983. Cuticular hydrocarbons of the
milkweed bug, Oncopeltus fasciatus by age and sex.
Insect Biochem. 13: 19-25.
Jaynes, H. A., L. Párente, and R. C. Wallis. 1962.
Potential encephalitis vectors in Hamden, Connecticut.
Mosq. News. 22: 357-360.
Jenkins, D. W. and S. J. Carpenter. 1946. Ecology of the
tree hole breeding mosquitoes of nearctic North
America. Ecol. Monog. 16: 32-47.
Jennings, W. L., R. H. Allen, and A. L. Lewis. 1966.
Western equine encephalomyelitis in a Florida horse.
Amer. J. Trop. Med. and Hyg. 15: 96-97.
Jobling, B. 1928. The structure of the head and mouthparts
in Culicoides pulicaris L..(Diptera:Nematocera).
Bull. Ent. Res. 18: 211-236.
Johnson, W. E. Jr. 1968. Ecology of mosquitoes in the
Wichita mountains wildlife refuge. Ann. Ent. Soc.
Amer. 61: 1129-1141.
Johnston, J. S. and J. R. Ellison. 1982. Exact age
determination in laboratory and field caught
Drosophila. J. Insect Physiol. 28: 773-779.
Jones, R. H., H. W. Potter Jr., and H. A. Rhodes. 1972.
Ceratopogonidae atacking horses in south Texas during
the 1971 VEE epidemic. Mosq. News. 32.
Joseph, S. R. and W. E. Bickley. 1969. Culiseta melanura
(Coquillett) on the eastern shore of Maryland.
(Diptera:Culicidae). Univ. Md. Agr. Exp. Sta. Bull.
A-161, 84p.
Joslyn, D. J. and D. Fish. 1986. Adult dispersal of Aedes
communis using giemsa selfmarking. J. Amer. Mosq.
Cont. Assoc. 2: 89-90.

269
Juric, D., B. E. Eno, and G. Parikh. 1974. Mathematical
modeling of a virus vector, Culex tarsalis. Biomed.
Sci. Instrum. 10: 23-28.
Kale, H. W. , J. D. Edman, and L. A. Webber. 1972. Effect of
behavior and age of individual ciconiiform birds on
mosquito feeding success. Mosq. News 32: 343 - 350.
Karstad, L. 1961. Reptiles as possible reservoir hosts for
eastern encephalitis virus. N. Amer. Wildlife Conf.
Trans. 26: 186-201.
Karstad, L. H., O. K. Fletcher, J. Spalatin, R. Roberts, and
R. P. Hanson. 1957. Eastern equine encephalomyelitis
virus isolated from 3 species of Diptera from Georgia.
Science 125: 395-396.
Karstad, L. H. and R. P. Hanson. 1958. Infections in
wildlife with the viruses of vesicular stomatitis and
eastern equine encephalomyelitis. Trans. 23rd N. A.
Wild. Conf., p. 175-186.
Karstad, L. H. and R. P. Hanson. 1959. Natural and
experimental infections in swine with the virus of
eastern equine encephalitis. J. Inf. Dis. 105:
293-296.
Karstad, L. H., S. Vadlamudi, R. P. Hanson, D. 0. Trainer,
Jr., and V. H. Lee. 1960. Eastern equine encephalitis
studies in Wisconsin. J. Inf. Dis. 106: 53-59.
Kellogg, F. E. 1970. Water vapour and carbon dioxide
receptors in Aedes aegypti. J. Insect Physiol. 16:
99-108.
Kelser, R. A. 1933. Mosquitoes as vectors of the virus of
equine encephalomyelitis. J. Amer. Vet. Med. Assoc.
82: 767-771.
Kelser, R. A. 1937. Equine encephalomyelitis in Panama. U.
S. Army Vet. Bull. 31: 19-21.
Kennedy, J. S. 1978. The concepts of olfactory
'arrestment' and 'attraction'. Physiol. Entomol. 3:
91-98.
King, W. V. 1939. Varieties of Anopheles crucians Wied.
Amer. J. Trop. Med. 19: 461-471.
King, W. V., G. H. Bradley, C. N. Smith, and W. C. McDuffie.
1960. A Handbook of the Mosquitoes of the Southeastern
United States. Agr. Handbook no. 173, USDA ARS.

270
Kinzer, H. G., J. M. Reeves, and J. W. Atmar. 1978. Host
location by the horn fly: PA field attraction of an
artificial device for measuring attraction to various
stimuli. Environ. Ent. 7: 375-378.
Kiorpes, A. L. and T. M. Yuill. 1975. Environmental
modification of western equine encephalomyelitis
infection in the snowshoe hare (Lepus americanus) .
Infection & Immunity 11: 986-990.
Kissling, R. E., R. W. Chamberlain, M. E. Eidson, R. K.
Sikes, and M. A. Bucea. 1954. Studies on the North
American arthropod-borne encephalitides. II. Eastern
equine encephalitis in horses. Amer. J. Hyg. 60:
237-250.
Kissling, R. E., R. W. Chamberlain, D. B. Nelson, and D. D.
Stamm. 1955. Studies on the North Amercian
arthropod-borne encephalitides. VIII. Equine
encephalitis studies in Louisiana. Amer. J. Hyg. 62:
233-254.
Kissling, R. E., R. W. Chamberlain, R. K. Sikes, and M. E.
Eidson. 1954. Studies on the North American
arthropod-borne encephalitides. III. Eastern equine
encephalitis in wild birds. Amer. J. Hyg. 60:
251-265.
Kitching, R. L. 1971. An ecological study of water filled
treeholes and their position in the woodland
ecosystem. J. Animal Ecol. 40: 281-302.
Kitzmiller, J. B., G. Frizzi, and R. H. Baker. 1967.
Evolution and speciation within the maculipennis
complex of the genus Anopheles. IN: Genetics of
insect vectors of disease. p. 151-210. J. W. Wright
and R. Pals, eds.. Elsevier Pub. Co., Amsterdam.
Klein, T. A., D. G. Young, and S. R. Telfor Jr. 1987.
Vector incrimination and experimental transmission of
Plasmodium floridense by bites of infected Culex
(Melaniconion) erraticus. J. Amer. Mosq. Cont. Assoc.
3: 165-175.
Knight, K. L. 1974. History of mosquito taxonomy in the
United States of America. Mosq. Syst. 6: 113-120.
Knight, K. L. and A. Stone. 1977. A Catalog of the
Mosquitoes of the World (Diptera: Culicidae).2nd
edition. Ent. Soc. Amer., Thomas Say Foundation,
Philadelphia.

271
Knowlton, G. F. and J. A. Rowe. 1937. Preliminary studies
of insect transmission of equine encephalomyelitis.
Utah Acad. Sci., Arts & Letters Proc. 11: 267-270.
Kovats, E. 1965. Gas chromatographic characterization of
organic substances in the retention index system. Adv.
Chromatogr. 1: 229-247.
Kubes, V. and F. A. Rios. 1939. Causative agent of
infectious equine encephalomyelitis in Venezuela.
Science 90: 20.
Kurz, H., and R. K. Godfrey. 1976. Trees of northern
Florida. Omni Press, Inc., Sarasota, Fla..
Laarman, J. J. 1955. The host-seeking behavior of the
malaria mosquito Anopheles maculipennis atroparvus.
Acta Leidensia 25: 1-144.
Laarman, J. J. 1958. The host seeking behavior of
anopheline mosquitoes. Trop. Geogr. Med. 10: 293-305.
Lacher, V. 1969. A new type of sensillum on the antennae
of female mosquitoes, Aedes aegypti. Experimentia.
25: 768-769 (in German).
Lahiri, S. 1975. Blood oxygen affinity and alveolar
ventilation in relation to body weight in mammals.
Amer. J. Physiol. 229: 529 - 536.
Lanciani, C. A. 1979a. Detachment of parasitic water mites
from the mosquito Anopheles crucians
(Diptera:Culicidae). J. Med. Entomol. 15: 99-102.
Lanciani, C. A. 1979b. Water mite-induced mortality in a
natural population of the mosquito Anopheles crucians
(Diptera: Culicidae). J. Med. Ent. 15: 529-532.
Lanciani, C. A. 1986. Effect of the water mite Arrenurus
pseudotenuicollis (Acariformes: Arrenuridae) on the
longevity of captive Anopheles guadrimaculatus
(Diptera:Culicidae). Fla. Entomol. 69: 436-437.
Lanciani, C. A. 1987. Mortality in mite-infested male
Anopheles crucians. J. Am. Mosq. Cont. Assoc. 3:
107-108.
Lanciani, C. A. 1987. Teaching quantitative concepts of
population ecology in general biology courses. Bull.
Ecol. Soc. Amer. 68: 492-495.

272
Lanciani, C. A. 1988. Defensive consumption of parasitic
mites by Anopheles crucians larvae. Jour. Amer. Mosq.
Contr. Assoc. 4: 195.
Lanciani, C. A. and J. M. Boyett. 1980. Demonstrating
parasitic water mite-induced mortality in natural host
populations. Parasitology 81: 465-475.
Lanciani, C. A. and A. D. Boyt. 1977. The effect of a
parasitic water mite, Arrenurus pseudotenuicollis
(Acari: Hydrachnellae), on the survival and
reproduction of the mosquito Anopheles crucians
(Diptera: Culicidae). J. Med. Ent. 14: 10-15.
Landry, S. V. and G. R. DeFoliart. 1986. Attraction of
Aedes triseriatus to carbon dioxide. Jour. Amer. Mosq.
Contr. Assoc. 2: 355-357.
Lang, J. T. 1977. Contact sex pheromone in the mosquito
Culiseta inornata. J. Med. Ent. 14: 448-454.
Lang, J. T., and W. A. Foster. 1976. Is there a female sex
pheromone in the mosquito Culiseta inornata? Environ.
Entomol. 5: 1109-1115.
Lasiewski, R. C., and W. R. Dawson. 1967. A re-examination
of the relation between standard metabolic rate and
body weight in birds. Condor 69: 13 - 23.
Lasiewski, R. C., and W. R. Dawson. 1969. Calculation and
miscalculation of the equations relating avian standard
metabolism to body weight. Condor 71: 335 - 336.
Lasiewski, R. C., and W. A. Calder, Jr.. 1971. A preliminary
allometric analysis of respiratory variables in resting
birds. Resp. Physiol. 11: 152 - 166.
Laughlin, R. 1965. Capacity for increase: a useful
population statistic. J. Animal Ecol. 34: 77-91.
Lawlor, L. R. 1980. Overlap, similarity, and competition
coefficients. Ecology 61: 245-251.
LeDuc, J. W., W. Suyemoto, B. F. Eldridge, P. K. Russell,
and A. R. Barr. 1975. Ecology of California
encephalitis viruses on the Del Mar Va Peninsula. II.
Demonstration of transovarial transmission. Amer. J.
Trop. Med. Hyg. 24: 124-126.

273
LeDuc, J. W. , W. Suyemoto, B. F. Eldridge, and E. S.
Saugstad. 1972. Ecology of arboviruses in a Maryland
freshwater swamp. II. Blood feeding patterns of
potential mosquito vectors. Am. J. Epidemiology. 96:
123-128.
LeDuc, J. W. , W. Suyemoto, T. J. Keefe, J. F. Burger, B. F.
Eldridge, and P. K. Russell. 1975. Ecology of
California encephalitis viruses on the Del Mar Va
peninsula. I. Virus isolations from mosquitoes. Amer.
J. Trop. Med. Hyg. 24: 118-123.
Leprince, D. J. and M. Bigras-poulin. 1988. Seasonal
variation in body size and the relationships among body
size, parity, and fecundity of host seeking Tabanus
quinquevittatus females. J. Med. Ent. 25: 105-110.
Leprince, D. J. and P. Jolicoeur. 1986a. Response to
carbon dioxide of Tabanus quinquevittatus Wiedemann
females (Diptera: Tabanidae) in relation to relative
abundance, parity, follicle development, and sperm and
fructose presence. Can. Ent. 118: 1273-1277.
Leprince, D. J. and P. Jolicoeur. 1986b. Annual, intra-,
and inter-specific variations in body size and
potential fecundity of some Tabanus species (Diptera:
Tabanidae). Can. Ent. 118: 1265-1272.
Levy, C. E., J. M. Doll, and M. E. Wright. 1987. Control
of an outbreak of mosquito-borne encephalitis along the
Colorado River in 1983. J. Amer. Mosq. Cont. Assoc.
3: 100-101.
Lewis, D. J. 1958. The recognition of nulliparous and
parous Anopheles gambiae by examining the ovarioles.
Trans. R. Soc. Trop. Med. Hyg. 52: 456-461.
Lewis, L. F. and T. W. Tucker. 1978. Fabrication of
artificial treeholes and their performance in field
tests with Aedes sierrensis and Orthopodomvia
siqnifera. Mosq. News. 38: 132-135.
Linam, J. H. and L. T. Nielson. 1970. The distribution and
evolution of the Culex mosquitoes of the subgenus
Neoculex in the New World. Mosq. Syst. Newsletter 2:
149-157.
Linthicum, K. J., F. G. Davies, and A. Kairo. 1985. Rift
Valley Fever virus (family Bunyaviridae, genus
Phlebovirus). Isolation from Diptera collected during
an inter-epizootic period in Kenya. J. Hyg. Camb. 95:
197-209.

274
Lisitza, M. A., G. R. DeFoliart, G. R., T. M. Yuill, M.
Karandinos, and G. 1977. Prevalence rates of Lacrosse
virus in larvae from overwintered eggs of Aedes
triseriatus. Mosq. News. 37: 745-750.
Livdahl, T. 1982. Competition within and between hatching
cohorts of a treehole mosquito. Ecology 63:
1751-1760.
Lockey, K. H. 1982. Cuticular hydrocarbons of adult
Onvmacris marginipennis (Breme) (Coleóptera:
Tenebrionidae). Comp. Biochem. Physiol. 73B: 275-282.
Lockey, K. H. 1984. Hydrocarbons of Metriopus depressus
(Haag) and Renatiella scrobipennis (Haag) (Coleóptera:
Tenebrionidae). Insect Biochem. 14: 65-75.
Lockey, K. H. 1988. Review. Lipids of the insect cuticle:
origin, composition, and function. Comp. Biochem.
Physiol. 89b: 595 - 645.
Lockey, K. H. and B. Dularay. 1986. Cuticular
methylalkanes of adult cockroaches, Blatella orientalis
and Periplaneta americana. Comp. Biochem. Physiol.
85B: 567-572.
Loor, K. A. and G. R. DeFoliart. 1970. Field observations
on the biology of Aedes triseriatus. Mosq. News. 30:
60-64.
Lord, R. D. and C. H. Calisher. 1970. Further evidence of
southward transport of arboviruses by migrating birds.
Amer. J. Epidemiology 92: 73-78.
Lounibos, L. P. 1981. Habitat segregation among African
treehole mosquitoes. Ecol. Ent. 6: 129-154.
Lounibos, L. P. 1983. The mosquito community of treeholes
in subtropical Florida, p. 223-246. IN: Phytotelmata:
Terrestrial plants as hosts for aquatic insect
communities. Plexus Pub. Co., New York.
Lounibos, L. P., C. V. Dover, and G. F. O'Meara. 1982.
Fecundity, autogeny, and the larval environment of the
pitcher-plant mosquito, Wveomvia smithii. Oecologia
(Berl). 55: 160-164.
Lounibos, L. P. and R. L. Escher. 1983. Seasonality and
sampling of Coauillettidia perturbans (Diptera:
Culicidae) in south Florida. Env. Ent. 12: 1087-1093.

275
Lounibos, L. P., J. R. Rey, and J. H. Frank, eds. 1985.
Ecology of mosquitoes: Proceedings of a workshop.
Florida Med. Ent. Lab., Vero Bch., Fla..
Love, G. J. and W. W. Smith. 1958. The stratification of
mosquitoes. Mosg. News. 18: 279-283.
Love, G. J., R. B. Platt, and M. H. Goodwin Jr. 1963.
Obervations on the spatial distribution of mosquitoes
in southwest Georgia. Mosq. News. 23: 13-22.
Luckinbill, L. S. 1978. r- and K- selection in
experimental populations of EL. coli. Science 202:
1201-1203.
Luckinbill, L. S. 1984. An experimental analysis of a life
history theory. Ecology 65: 1170-1184.
Lunt, S. R. 1977. Morphological characteristics of the
larvae of Aedes triseriatus and Ae. hendersoni in
Nebraska. Mosq. News. 37: 654-656.
MacArthur, R. H. 1962. Some generalized theorems of
natural selection. Proc. Natl. Acad. Sci. USA. 48:
1893-1897.
MacArthur, R. H. and E. Pianka. 1966. On optimal use of a
patchy environment. Amer. Nat. 100: 603-609.
Magnarelli, L. A. 1976. Physiological age of Tabanidae in
eastern New York State. J. Med. Ent. 12: 679-682.
Magnarelli, L. A. 1977a. Host feeding patterns of
Connecticut mosquitoes. Amer. J. Trop. Med. Hyg. 26:
547-552.
Magnarelli, L. A. 1977b. Nectar feeding by Aedes
sollicitans and its relation to gonotrophic activity.
Envir. Ent. 6: 237-242.
Magnarelli, L. A. 1980. Bionomics of Psorophora ferox:
seasonal occurrence and aquisition of sugars. J. Med.
Ent. 17: 328-332.
Magnarelli, L. A. 1985. Caloric reserves in salt marsh
deer flies Chrvsops fuliginosus. Ann. Ent. Soc. Amer.
78: 594-599.
Magnarelli, L. A. and J. F. Anderson. 1981. Sugar feeding
by female tabanids and its relation to gonotrophic
activity. J. Med. Ent. 18: 429-433.

276
Magnarelli, L. A., D. J. Leprince, J. F. Burger, and J. F.
Butler. 1982. Oviposition behavior and fecundity in
Chrvsops cincticornis (Diptera: Tabanidae). J. Med.
Ent. 19: 597-600.
Magnarelli, L. A., G. B. Modi, and R. B. Tesh. 1984.
Follicular development and parity in phlebotomine sand
flies (Diptera:Psychodidae). J. Med. Ent. 21:
681-689.
Main, A. J., S. E. Brown, and R. C. Wallis. 1979.
Arbovirus surveillance in Connecticut. II. California
serogroup. Mosq. News 39: 552-559.
Main, A. J., R. O. Hayes, and R. J. Tonn. 1968. Seasonal
abundance of mosquitoes in southeastern Massachusetts.
Mosq. News 28: 619-626.
Main, A. J., S. W. Hildreth, and R. C. Wallis. 1979.
Arbovirus surveillance in Connecticut. III. Flanders
virus. Mosq. News 39: 560-565.
Main, A. J., A. L. Smith, and R. C. Wallis. 1979.
Arbovirus surveillance in Connecticut. I. Group A
viruses. Mosq. News 39: 544-551.
Main, A. J., R. J. Tonn, E. J. Randall, and K. S. Anderson.
1966. Mosquito densities at heights of five and
twenty-five feet in southeastern Massachusetts. Mosq.
News 26: 243-248.
Makela, M. E. and R. H. Richardson. 1977. The detection of
sympatric sibling species using genetic correlation
analysis. I. Two loci, two gamodemes. Genetics 86:
665-678.
Maloney, J. M. and R. C. Wallis. 1976. Response of
colonized Culiseta melanura to photoperiod and
temperature. Mosq. News 36: 190-196.
Mangum, C. L., and P. S. Callahan. 1968. Attraction of
near-infrared to Aedes aegypti. J. Econ. Ent. 61: 36-
37.
Marks, R. G. 1982a. Designing a research project. The
basics of biomedical research methodology. Lifetime
Learning Publications, Wadsworth, Inc., Belmont, Cal.
Marks, R. G. 1982b. Research data. The basics of
biomedical research methodology. Lifetime Learning
Publications, Wadsworth, Inc., Belmont, Cal.

277
Martin, P. and H. C. Kraemer. 1987. Individual differences
in behavior and their statistical consequences.
Animal Behavior 35: 1366-1375.
Martinez, T. and H. H. Hagedorn. 1987. Development of
responsiveness to hormones after a blood meal in the
mosquito Aedes aeqypti. Insect Biochemistry: 17:
1095-1098.
Mather, T. N. and G. R. DeFoliart. 1983. Effect of host
blood source on the gonotrophic cycle of Aedes
triseriatus. Amer. Jour. Trop. Med. Hyg. 32: 189-193.
Matheson/ R. 1945. Family Culicidae, the mosquitoes, guide
to the insects of Connecticut. Part VI., fase. 2.
Conn. State Geol. & Nat. Hist. Surv. Bull. 68: 1-48.
Mattingly, P. F. 1970. Mosquito eggs. X. Oviposition in
Neoculex. Mosq. Syst. Newsletter 2: 158-159.
Mattingly, P. F. 1971. Ecological aspects of mosquito
evolution. Parassitologica 13: 31-65.
May, R. M. 1973a. Stability in randomly fluctuating vs.
deterministic environments. Amer. Nat. 107: 621-650.
May, R. M. 1973b. Time-delay versus stability in
population models with two and three trophic levels.
Ecology 54: 315-325.
May, R. M. 1975. Some notes on estimating the competition
matrix. Ecology 56: 737-741.
McClelland, G. A. H., and B. Weitz. 1963. Serological
identification of the natural hosts of Aedes aeqypti
(L.) and some other mosquitoes (Diptera: Culicidae)
caught resting in vegetation in Kenya and Uganda.
Amer. Trop. Med. Parasitol. 57: 214 -224.
McIntosh, B. M. 1975. Mosquitoes as vectors of viruses in
southern Africa. Entomol. Mem. Dep. Agrie. Tech. Serv.
Report S. Afr. no. 43, 19p.
Mclver, S. B. 1968. Host preference and discrimination by
the mosquitoes Ae. aeqypti and Culex tarsalis. J.
Med. Ent. 5: 422-428.
Mclver, S. B. 1969. Antennal sense organs of female Culex
tarsalis. Ann. Ent. Soc. Amer. 62: 1455-1461.

278
Mclver, S. B. 1970. Comparative study of the antennal
sense organs of female culicine mosquitoes. Can. Ent.
102: 1258-1268.
Mclver, S. B. 1971. Comparative studies on the sense
organs on the antennae and maxillary palps of selected
culicine mosguitoes. Can. J. Zool. 49: 235-239.
Mclver, S. B. 1972. Fine structure of pegs on the palps of
female culicine mosguitoes. Can. J. Zool. 50:
571-576.
Mclver, S. B. 1973. Fine structure of antennal sensilla
coeloconica of culicine mosguitoes. Tissue & Cell 5:
105-112.
Mclver, S. B. 1982. Review article. Sensillae of
mosquitoes. J. Med. Ent. 19: 489-535.
Mclver, S. B. and M. Beech. 1986. Prey finding behavior
and mechano-sensilla of larval Toxorhynchites
brevioalois Theobald. Int. J. Insect Morph. & Embryol.
15: 213-225.
Mclver, S. B. and C. C. Charlton. 1970. Studies on the
sense organs on the palps of selected culicine
mosquitoes. Can. J. Zool. 48: 293-295.
Mclver, S. B. and A. Hudson. 1972. Sensilla on the
antennae and palps of selected Wveomvia mosquitoes.
J. Med. Ent. 9: 337-345.
Mclver, S. B. and S. A. Hutchinson. 1972. Coeloconic
sensilla on the antennae of the yellow fever mosquito.
Experimentia 28: 323.
Mclver, S. B. and R. Siemicki. 1984a. Fine structure of
antennal mechanosensilla of adult Rhodnius prolixus
Stal (Hemiptera: Reduviidae). J. Morph. 180: 19-28.
Mclver, S. B. and R. Siemicki. 1984b. Fine structure of
pegs on the maxillary palps of adult Toxorhynchites
brevipalpis Theobald. Int. J. Insect Morph. & Embryol.
13: 11-20.
Mclver, S. B. and R. Siemicki. 1985. Fine structure of
antennal putative thermo-hygro sensilla of adult
Rhodnius prolixus Stal(Hemiptera: Reduviidae). J.
Morph. 183: 15-23.
McNab, B. K. 1966. An analysis of the body temperature of
birds. Condor 68: 47 - 55.

279
McNaughton, S. J. 1975. r- and K- selection in Typha. Am.
Nat. 109: 251-261.
McNeel, T. E. 1932. Observations on the biology of
Mansonia perturbans (Walk.) Diptera, Culicidae. Proc.
N. J. Mosg. Exterm. Assoc. 19: 91-96.
Means, R. G. 1968. Host preferences of mosquitoes in
Suffolk County, New York. Ann. Ent. Soc. Amer. 61:
116-120.
Means, R. G., M. Grayson, and E. Blakemore. 1977.
Preliminary studies on two biologically different
strains of Aedes triseriatus in New York. Mosq. News.
37: 609-615.
Mer, G. G. 1936. Experimental study on the development of
the ovary in Anopheles elutus Edw. Bull. Ent. Res.
27: 351-359.
Mercer, K. L. and S. B. Mclver. 1973. Studies on the
antennal sensilla of selected blackflies (Diptera:
Simuliidae). Can. J. Zool. 51: 729-734.
Merrill, M. H. and T. Broeck. 1935. The transmission of
equine encephalomyelitis virus by Aedes aeqypti. J.
Expt. Med. 62: 687-695.
Merrill, M. H., D. W. Lasaillade, and C. T. Broeck. 1934.
Mosquito transmission of equine encephalomyelitis.
Science 80: 251-252.
Messenger, P. S. 1964. Use of life tables in a
bio-climatic study of an experimental aphid-braconid
wasp host-paraiste system. Ecology 45: 119-131.
Meyer, K. F. 1932. A summary of recent studies on equine
encephalomyelitis. Ann. Int. Med. 6: 645-654.
Meyer, K. F. 1933. Equine encephalomyelitis. North Amer.
Vet. 14: 30-48.
Meyer, R. P. 1977. Fall and winter populations of
mosquitoes sampled by dry ice baited CDC miniature
light traps in central California. Proc. Cal. Mosq.
Cont. Assoc. 45: 176-180.
Meyer, R. P., R. K. Washino, and T. L. McKenzie. 1982.
Comparisons of factors affecting preimaginal production
of Culiseta inornata (Williston) (Diptera: Culicidae)
in two different habitats of central California. Env.
Ent. 11: 1233-1241.

280
Meyer, R. P., R. K. Washino, and T. L. McKenzie. 1982.
Studies on the biology of Culiseta inornata (Diptera:
Culicidae) in three regions of central California,
USA. J. Med. Entomol. 19: 558-568.
Michener, C. D. 1945. Seasonal variations in certain
species of mosquitoes. J. New York Ent. Soc. 53:
293-300.
Michener, C. D. 1947. Mosquitoes of a limited area in
southern Mississippi. Amer. Midi. Nat. 37: 325-374.
Micks, D. W. and J. P. Ellis. 1951. Free amino acids in
adult mosquitoes. Proc. Soc. Exptl. Biol. & Med. 78:
69-72.
Micks, D. W., A. Rehmet, and J. Jennings. 1966.
Biochemical differentiation of morphologically
indistinguishable strains of Aedes aegypti (Diptera:
Culicidae). Ann. Ent. Soc. Amer. 59: 239-246.
Milligan, P. J. M., A. Phillips, and D. H. Molyneux. 1986.
Differentiation of Anopheles culicifacies Giles
(Diptera: Culicidae) sibling species by analysis of
cuticular components. Bull. Ent. Res. 76: 529 - 537.
Milner, K. C., G. P. Kelly, and M. F. Shaffer. 1947. Human
infection with virus of equine encephalomyelitis,
eastern type, in Louisiana. New Orleans Med. & Surg.
Jour. 100: 270-273.
Minson, K. L., J. E. Graham, and G. C. Collett. 1970. A
comparison of light traps and larval surveys to measure
mosquito abundance. Mosq. News. 30: 474-476.
Mitchell, B. K. 1976. ATP reception by the Tsetse fly,
Glossina morsitans West. Experimentia 32: 192-193.
Mitchell, C. J., F. A. Cabrera, S. A. Daggers, and W. L.
Jakob. 1979. Arthropods collected in the Dominican
Republic during an outbreak of eastern equine
encephalitis. Mosq. News. 39: 263-267.
Mitchell, L. and C. L. Rockett. 1979. Vertical
stratification preferences of adult female mosquitoes
in a sylvan habitat. Great Lakes Entomol. 12:
219-223.
Moeck, H. A. 1969. Electron microscopic studies of
antennal sensilla in the ambrosia beetle Trypodendron
lineaturn (Olivier). (Scolytidae). Can. J. Zool. 46:
521-556.

281
Mokry, J. 1984. Notes on the Culiseta species of
Newfoundland, with report of a new record. Mosq.
Syst. 16: 168-171.
Moore, C. G. and B. R. Fisher. 1969. Competition in
mosquitoes. Density and species ratio effects on
growth, mortality, fecundity, and production of growth
retardant. Ann. Ent. Soc. Amer. 1325-1331.
Morris, C. D. 1981. A structural and operational analysis
of diurnal resting shelters for mosquitoes. J. Med.
Ent. 18: 419-424.
Morris, C. D., M. E. Corey, D. E. Emord, and J. J. Howard.
1980. Epizootiology of eastern equine
encephalomyelitis virus in upstate New York, USA. I.
Introduction, demography, and natural environment of
an endemic focus. J. Med. Ent. 17: 442-452.
Morris, C. D. and S. Srihongse. 1978. An evolution of the
hypothesis of transovarial transmission of eastern
equine encephalomyelitis virus by Culiseta melanura.
Amer. J. Trop. Med. Hyg. 27: 1246-1250.
Morris, C. D. and R. H. Zimmerman. 1981. Epizootiology of
EEE virus in upstate New York, USA. III. Population
dynamics and vector potential of adult Culiseta
morsitans. J. Med. Ent. 18: 313-316.
Morris, C. D., R. H. Zimmerman, and J. D. Edman. 1980.
Epizootiology of eastern equine encephalomyelitis virus
in upstate New York, USA. II. Population dynamics and
vector potential of adult Culiseta melanura in
relation to distance from breeding site. J. Med. Ent.
17: 453-465.
Morris, C. D., R. H. Zimmerman, and L. A. Magnarelli. 1976.
The bionomics of Culiseta melanura and Culiseta
morsitans dvari in central New York state. Ann. Ent.
Soc. Amer. 69: 101-105.
Moussa, M. A., D. J. Gould, M. P. Nolan Jr., and D. E.
Hayes. 1966. Observations on Culiseta melanura
(Coquillett) in relation to encephalitis in southern
Maryland. Mosq. News. 26: 385-393.
Mullens, B. A. and E. T. Schidtmann. 1982. The gonotrophic
cycle of Culicoides variipennis (Diptera:
Ceratopogonidae) and its implications in age grading
field populations in New York state, USA. J. Med. Ent.
19: 340-349.

282
Murphey, F. J., P. P. Burbutis, and D. F. Bray. 1967.
Bionomics of Culex salinarius Coquillett. II. Host
acceptance and feeding by adult females of C.
salinarius and other mosquito species. Mosq. News.
27: 366-376.
Muul, I., B. K. Johnson, and B. A. Harrison. 1975.
Ecological studies in Culiseta melanura in relation to
eastern and western equine encephalomyelitis viruses
on the eastern shore of Maryland. J. Med. Ent. 11:
739-748.
Nasci, R. S. 1982a. Activity of gravid Aedes triseriatus
in wooded fencerows. Mosq. News. 42: 408-412.
Nasci, R. S. 1982b. Differences in host choices between
the sibling species of treehole mosquitoes Aedes
triseriatus and Aedes hendersoni. Amer. J. Trop. Med.
Hyg. 31: 411-415.
Nasci, R. S. 1984. Variations in the blood-feeding
patterns of Aedes vexans and Ae. trivittatus. J. Med.
Ent. 21: 95-99.
Nasci, R. S. 1985. Behavioral ecology of variation in
blood-feeding and its effect on mosquito-borne
diseases, p. 293-305. IN: Ecology of mosquitoes:
Proceedings of a workshop. L. P. Lounibos, J. R. Rey,
and J. H. Frank, eds. Fla. Med. Ent. Lab., Vero Bch.,
Fla. .
Nasci, R. S. 1986a. Relationships between adult mosquito
body size and parity in field populations. Environ.
Ent. 15: 874-876.
Nasci, R. S. 1986b. The size of emerging and host-seeking
Aedes aegypti and the relation of size to
blood-feeding success in the field. J. Am. Mosq.
Control Assoc. 2: 61-62.
Nasci, R. S. and J. D. Edman. 1981a. Blood-feeding
patterns of Culiseta melanura and associated sylvan
mosquitoes in southeastern Massachusetts eastern equine
encephalitis enzootic foci. J. Med. Ent. 18:
493-500.
Nasci, R. S. and J. D. Edman. 1981b. Vertical and temporal
flight activity of the mosquito Culiseta melanura in
southeastern Massachusetts. J. Med. Ent. 18: 501-504.

283
Nasci, R. S. and J. D. Edman. 1984. Culiseta melanura
(Díptera: Culicidae); population structure and nectar
feeding in a freshwater swamp and surrounding areas in
southeastern Massachusetts, USA. J. Med. Ent. 21:
567-572.
Nayar, J. K. 1968. The biology of Culex niaripalpus
Theobald. Part 2. Adult characteristcs at emergence
and adult survival without nourishment. J. Med. Ent.
5: 203-210.
Nayar, J. K. 1982. Wyeomvia mitchelli: observations on
dispersal, survival, nutrition, insemination, and
ovarian development in a Florida population. Mosq.
News. 42: 416-425.
Nayar, J. K. and P. A. Pierce. 1980. The effects of diet
on survival, insemination, and oviposition of Culex
niaripalpus Theobald. Mosq. News. 40: 210-217.
Nayar, J. K., M. W. Provost, and C. W. Hanson. 1980.
Quantitative bionomics of Culex niaripalpus populations
in Florida. J. Med. Ent. 17: 40-50.
Nayar, J. K., M. W. Provost, D. M. N. Sauerman, Jr., and R.
A. Crossman, Jr. 1979. Quantitative bionomics of
Culex niaripalpus populations in Florida. I.
Phosphorus-32 marking techniques. J. Med. Ent. 15:
239-245.
Nayar, J. K. and D. M. Sauerman, Jr. 1970a. A comparative
study of growth and development in Florida mosquitoes.
Part 1: Effects of environmental factors on
ontogenetic timings, endogenous diurnal rhythm, and
synchrony of pupation and emergence. J. Med. Ent. 7:
163-174.
Nayar, J. K. and D. M. Sauerman, Jr. 1970b. A comparative
study of growth and development in Florida mosquitoes.
Part 2: Effects of larval nurture on adult
characteristics at emergence. J. Med. Ent. 7: 235-
241.
Nayar, J. K. and D. M. Sauerman, Jr. 1973. A comparative
study of growth and development in Florida mosquitoes.
Part 4. Effects of temporary crowding during larval
stages on female flight activity patterns. J. Med.
Ent. 10: 37-42.
Nayar, J. K. and D. M. Sauerman, Jr. 1974. Osmoregulation
in larvae of the salt marsh mosquito, Aedes
taeniorhvnchus. Entomol. Exp. Appl. 17: 367-380.

284
Nayar, J. K. and D. M. Sauerman, Jr. 1975. The effects of
nutrition on survival and fecundity in Florida
mosquitoes. Part 3. Utilization of blood and sugar for
fecundity. J. Med. Ent. 12: 220-225.
Nelsen, D. R., and D. A. Carlson. 1986. Cuticular
hydrocarbons of the tsetse flies Glossina morsitans
morsitans. G. austeni. and G^. pallidipes. Insect
Biochem. 16: 403-416.
Nelsen, D. R., J. W. Dillwith, and G. J. Blomquist. 1981.
Cuticular hydrocarbons of the housefly, Musca
domestica. Insect Biochem. 11: 187-197.
Nelsen, D. R., C. L. Fatland, R. W. Howard, C. A. McDaniel,
and G. J. Blomquist. 1980. Re-analysis of the
cuticular methylalkanes of Solenopsis invicta and S.
richteri. Insect Biochem. 10: 163-168.
Nelsen, D. R., N. J. Nunn, and L. Jackson. 1984. Re¬
analysis of the methylalkanes of the grasshoppers,
Melanoplus differentialis. M. packardi. and M.
sanguinipes. Insect Biochem. 14: 677-683.
Neter, J. and W. Wasserman. 1974. Applied Linear
Statistical Models. Regression, analysis of variance,
and experimental designs. Richard D. Irwin, Inc..
Homewood, Illinois.
Nielsen, E. T. and J. S. Haeger. 1960. Swarming and mating
in mosquitoes. Mise. Publ. Ent. Soc. Amer. 1: 71-95.
Nielsen, E. T. and H. T. Nielsen. 1963. The swarming
habits of some Danish mosquitoes. Entomologiske
Meddelelser 32: 99-170.
Nijhout, H. F. and G. B. Craig Jr. 1971. Reproductive
isolation in Stegomvia mosquitoes. III. Evidence for a
sexual pheromone. Ent. Exp. & Appl. 14: 399-412.
Nolan, M. P. J., M. A. Moussa, and D. E. Hayes. 1965.
Aedes mosquitoes feeding on turtles in nature. Mosq.
News. 25: 218-219.
Norris, M. 1946. Recovery of a strain of equine
encephalitis virus from Culex restuans (Theob.). Can.
J. Res., E. 24: 63-70.
Novak, R. J., J. Peloquin, and R. Rohrer. 1981. Vertical
distribution of adult mosquitoes in a northern
deciduous forest in Indiana. J. Med. Ent. 18:
116-122.

285
Oglesby, W. T. 1948. 1947 outbreak of infectious equine
encephalomyelitis in Louisiana. J. Amer. Vet. M. A.
113: 267-270.
O'Meara, G. F. 1985. Ecology of autogeny in mosquitoes, p.
459-479. IN: Ecology of mosquitoes: Proceedings of a
workshop. L. P. Lounibos, J. R. Ray, & J. H. Frank,
eds.. Fla. Med. Ent. Lab., Vero Bch., Fla..
Omer, S. M. and M. T. Gillies. 1971. Short communication.
Loss of response to carbon dioxide in palpectomized
female mosquitoes. Ent. Exp. & Appl. 14: 251-252.
Osteen, O. L. 1939. Infectious equine encephalomyelitis:
midwinter case. J. Amer. Vet. M. A. 94: 441-442.
Otis, A. B., W. D. Fenn, and H. Rahn. 1950. Mechanics of
breathing in man. J. Appl. Physiol. 2: 592 - 607.
Owen, W. B. 1963. The contact chemoreceptor organs of the
mosquito and their function in feeding behavior. J.
Ins. Physiol. 9: 73-87.
Penfound, W. T. 1952. Southern swamps and marshes. Botan.
Rev. 18: 413-446.
Perdran, J. R. 1936. The Australian epidemic of
encephalomyelitis (X-disease). J. Path. Bact. 42: 62-
65.
Philip, C. B. 1941. Flowers as a suggested source of
mosquitoes during encephalitis studies, and incidental
mosquito records. J. Parasit. 29: 328-329.
Philip, C. B. and J. E. Smadel. 1943. Transmission of West
Nile virus by infected Aedes albopictus. Proc. Soc.
Exp. Biol. & Med. 53: 49-50.
Pianka, E. R. 1970. On r- and K- selection. Am. Nat.
104: 592-597.
Pianka, E. R. 1972. r- and K- selection, or b and d
selection. Am. Nat. 581-588.
Piper, J., K. Pfeifer, and P. Scheid. 1969. Carbon dioxide
diffusing capacity of the respiratory system in the
domestic fowl. Respir. Physiol. 6: 309-317.

286
Price, G. D., N. Smith, and D. A. Carlson. 1979. The
attraction of female mosquitoes (Anopheles
quadrimaculatus Say) to stored human emanations in
conjunction with adjusted levels of relative humidity,
temperature, and carbon dioxode. J. Chem. Ecol. 5:
383-395.
Price, R. D. 1961. Biological notes on Culiseta minnesotae
Barr and Culiseta morsitans (Theobald) Diptera:
Culicidae. J. Kans. Ent. Soc. 34: 22-26.
Provost, M. W. 1959. The influence of moonlight on
light-trap catches of mosquitoes. Ann. Ent. Soc. Amer.
52: 261-271.
Provost, M. W. 1969. The natural history of Culex
nigripalpus. pp. 46-62. Fla. State Brd. Hlth. Monogr.
Ser. no. 12, "St. Louis encephalitis in Florida."
Provost, M. W. 1972. Environmental hazards in the control
of disease vectors. Env. Ent. 1: 333-339.
Putnam, P. and R. C. Shannon. 1934. The biology of
Steqomvia under laboratory conditions. Proc. Ent. Soc.
Wash. 36: 217-242.
Rao, P. N. and K. S. Rai. 1987. Comparative karyotypes and
chromosomal evaluation in some genera of nematocerous
(Diptera: Nematocera) families. Ann. Ent. Soc. Am.
80: 321-332.
Rees, C. J. C. 1969. Chemoreceptor specificity associated
with choice of feeding site by the beetle, Chrvsolina
brunvicensis on its foodplant, Hypericum hirsutum.
Ent. Exp. & Appl. 12: 565-583.
Reeves, W. C. 1941. The genus Orthopodomvia in California.
Pan. Pac. Ent. 17: 69-72.
Reeves, W. C. 1951. Field studies on carbon dioxide as a
possible host stimulant to mosquitoes. Proc. Soc.
Exp. Biol. Med. 77: 64-66.
Reeves, W. C. 1953. Quantitative field studies on a carbon
dioxide chemotropism of mosquitoes. Amer. J. Trop.
Med. Hyg. 2: 325-331.
Reeves, W. C. 1961. Overwintering of arthropod-borne
viruses. Progr. Med. Virol. 3: 59-78.

287
Reeves, W. C. 1971. Mosquito vector and vertebrate host
interaction: The key to maintenance of certain
arboviruses. p. 223-231. IN: " Ecology and physiology
of parasites," symposium. Univ. Toronto, 19-20 Feb.,
1970. A. M. Fallis, ed., Univ. Toronto Press.
Reeves, W. C. 1974. Overwintering of arboviruses. Progr.
Med. Virol. 17: 193-220.
Reeves, W. C. 1987a. Importance of vector overwintering to
disease maintenance. Bull. Soc. Vect. Ecol. 12: 561-
563.
Reeves, W. C. 1987b. The future of arboviruses in North
America. Bull. Soc. Vect. Ecol. 12: 564-567.
Reeves, W. C., R. E. Bellamy, and R. P. Scrivani. 1958.
Relationships of mosquito vectors to winter survival of
encephalitis viruses. I. Under natural conditions.
Amer. J. Hyg. 67: 78-89.
Reeves, W. C., B. Brookman, and W. McD Hammon. 1948.
Studies on the flight range of certain Culex mosquitoes
using a flourescent dye, with notes on Culiseta &
Anopheles. Mosq. News. 8: 61-69.
Reisen, W. K., and R. W. Emory. 1977. Intraspecific
competition in Anopheles stephensi (Diptera:
Culicidae). II. The effects of more crowded densities
and the addition of antibiotics. Can. Ent. 109: 1475-
1480.
Reisen, W. K. 1987. Overwintering mechanisms of North
American Culiseta. Bull. Soc. Vector Ecol. 12: 568-
579.
Rempel, J. G., W. A. Riddell, and E. M. McNelly. 1946.
Multiple feeding habits of Saskatchewan mosquitoes.
Can. J. Res. 24(E): 71-78.
Richards, A. G. 1952. Studies on the arthropod cuticle.
VII. The antennal cuticle of honeybees, with
particular reference to the sense plates. Biol. Bull.
103: 201-225.
Riley, W. A. 1938. The role of insects and allied forms in
the transmission of diseases due to filterable
viruses. Minnesota Med. 21: 817-821.

288
Roberts, D. R. and J. E. Scanlon. 1979. An evaluation of
morphological characters for separating females of
Aedes fOchlerotatus) atlanticus Dyar & Knab and Aedes
(Ochlerotatus) tormentor Dyar & Knab. Mosg. Syst. 11:
203-209.
Robinson, G. G. 1939. The mouthparts and their function in
the female mosquito, Anopheles maculipennis.
Parasitology 31: 212-242.
Roessler, P. 1961. Versuche zur gerulichen Anlockung
welblicher Stechmucken (Aedes aegypti L., Culicidae).
Z. vergl. Physiol. 44: 184-231.
Rogers, A. J. 1974. The value of mosquito taxonomy to pest
mosquito control. Mosq. Syst. 6: 121-124.
Root, R. B. 1967. The niche exploitation pattern of the
blue-gray gnatcatcher. Ecol. Monogr. 37: 317-350.
Rosay, B. 1961. Anatomical indicators for assessing the
age of mosquitoes. Ann. Ent. Soc. Amer. 54: 526-529.
Roth, L. M. 1951. Loci of sensory end-organs used by
mosquitoes (Aedes aegypti (L.) and Anopheles
guadrimaculatus Say) in receiving host stimuli. Ann.
Ent. Soc. Amer. 44: 59-74.
Roubaud, E. 1928. Nouvelles recherches sur 1'evolution
zoophile des faunes d'Anopheles en Europe (A.
maculipennis) d'apres les donnees de l'armant
maxillaire. Ann. Institut Pasteur 42: 553-618.
Roughgarden, J. 1971. Density dependent natural selection.
Ecology 52: 453-468.
Roughgarden, J. 1972. Evolution of niche width. Amer.
Nat. 106: 683-718.
Roughgarden, J. 1976. Resource partitioning among competing
species—A coevolutionary approach. Theor. Pop. Biol.
9: 388-424.
Rowley, W. A. and M. Cornford. 1972. Scanning electron
microscopy of the pit of the maxillary palp of
selected species of Culicoides. Can. J. Zool. 50:
1207-1210.
Rozeboom, L. E. 1969. Arthropod populations as vectors and
reservoirs of disease. Biology of populations. B. K.
Sladen & F. B. Band, eds., Amer. Elsevier Pub. Co., New
York.

289
Rozeboom, L. E. , and R. W. Burgess. 1962. Dry-season
survival of some plant-cavity breeding mosquitoes in
Liberia. Ann. Ent. Soc. Amer. 55: 521-524.
Rush, W. A., R. C. Kennedy, and C. M. Eklund. 1963.
Evidence against winter carryover of western equine
encephalomyelitis virus by Culex tarsalis. Mosq. News.
23: 285-286.
Rutledge, L. C., and R. A. Ward. 1965. Notes on some
laboratory reared Culiseta melanura (Coquillett).
Mosq. News 25: 219-220.
Sabath, M. D. 1974. Niche breadth and genetic variability
in sympatric natural populations of drosophilid flies.
Amer. Natur. 108: 533-540.
Samarawickrema, W. A. 1968. Biting cycles and parity of
the mosquito, Mansonia uniformis in Ceylon. Bull.
Ent. Res. 58: 299-314.
Sastry, S. D., K. T. Buck, J. Janak, M. Dressier, and G.
Preti. 1980. Volatiles emitted by humans. p. 1086-
1129. In: Biochemical application of mass
spectrometry. G. R. Walker & O. C. Dermer, eds. J.
Wiley and Co., New York.
Saugstad, E. S., J. M. Dalrymple, and B. F. Eldridge. 1972.
Ecology of arboviruses in a Maryland freshwater swamp.
I. Population dynamics and habitat distribution of
potential mosquito vectors. Amer. J. Epidemiol. 96:
114-122.
Schaeffer, M. and E. H. Arnold. 1954. Studies in the north
American arthropod-borne encephalitides. I.
Introduction. Contribution of newer field-laboratory
approaches. Amer. J. Hyg. 60: 231-236.
Schaefer, R. E., and C. D. Steelman. 1969. Determination of
mosquito hosts in salt marsh areas of Louisiana. J.
Med. Ent. 6: 131-134.
Scheider, D., and R. A. Steinbrecht. 1968. Checklist of
insect olfactory sensilla. IN: Invertebrate
receptors. Symp. Zool. Soc. Lond. 23: 279-297.
Schlein, Y. 1979. Age grouping of anopheline malaria
vectors by the cuticular growth lines. J. Med. Ent.
16: 502-506.

290
Schlein, Y. and N. G. Gratz. 1972. Age determination of
some flies and mosquitoes by daily growth layers.
Bull. Wld. Hlth. Org. 47: 71-76.
Schlotthauer, C. F. 1941. The susceptibility of dogs to
virus of equine encephalomyelitis. J. Amer. Vet. Med.
Assoc. 388-390.
Schmidt - Nielsen, K., J. Kanwisher, R. C. Lasiewski, J. E.
Cohn, and W. L. Bretz. 1969. Temperature regulation
and respiration in the ostrich. Condor 71: 341 - 352.
Schober, H. 1964. Notes on the behavior of Culiseta
melanura (Coq.) with three instances of its biting man.
Mosq. News 24: 67.
Schoener, T. W. 1974. Resource partitioning in ecological
communities. Science 185: 27-39.
Scholl, P. J. and G. R. DeFoliart. 1977. Aedes triseriatus
and Ae. hendersoni. Vertical and temporal distribution
as measured by oviposition. Env. Ent. 6: 355-358.
Scholl, P. J., G. R. DeFoliart, and P. B. Nemenyi. 1979.
Vertical distribution of biting activity by Aedes
triseriatus. Ann. Ent. Soc. Amer. 72: 537-539.
Scholl, P. J., C. H. Porter, and G. R. DeFoliart. 1979.
Aedes triseriatus: persistence of nulliparous females
under field conditions. Mosq. News. 39: 368-371.
Schreck, C. E., H. K. Gouck, and K. H. Posey. 1972. The
range of effectiveness and trapping efficiency of a
plexiglass mosquito trap baited with carbon dioxide.
Mosq. News. 32: 496-501.
Schreck, C. E., H. K. Gouk, and N. Smith. 1967. An
improved olfactometer for studying mosquito
attractants. J. Econ. Ent. 60: 1188-1190.
Scott, T. W., S. W. Hildreth, and B. J. Beat. 1984. The
distribution and development of eastern equine
encephalitis virus in its enzootic mosquito vector,
Culiseta melanura. Amer. J. Trop. Med. Hyg. 33:
300-310.
Senior-White, R. 1926. Physical factors in mosquito
ecology. Bull. Ent. Res. 16: 187-248.
Service, M. W. 1976. Mosquito Ecology. Field sampling
methods. Applied Science, Barking, England.

291
Service, M. W. 1980. Effects of wind on the behavior and
distribution of mosquitoes and blackflies. Int. J.
Biometereol. 24: 347-353.
Shahan, M. S., L. T. Giltner, and H. W. Schoening. 1938. A
review of the 1938 outbreak of infectious equine
encephalomyelitis in the United States. Proc. U. S.
Livestock Sanitary Assoc., 42nd. Ann. Mtg. 1938:
145-151.
Shalaby, A. M. 1969. Host preference observations on
Anopheles culicifacies (Diptera: Culicidae) in Gujarat
State, India. Ann. Ent. Soc. Amer. 62: 1270-1273.
Shemanchuk, J. A. 1969. Epidemiology of western
encephalitis in Alberta; response of natural
populations of mosquitoes to avian host. J. Med. Ent.
6: 269 - 275.
Sheppard, G. E., and J. D. Stranathan. 1941. Effect of
pressure on the surface charge of an electret. Phys.
Rev. 60: 360-361.
Shields, S. E. 1938. Tennessee valley mosquito
collections. J. Econ. Ent. 31: 426-430.
Shields, S. E. and J. B. Lackey. 1938. Conditions
affecting mosquito breeding, with specific reference to
Ae. thibaulti. J. Econ Ent. 31: 95-102.
Sinsko, M. J. and G. B. Craig. 1979. Dynamics of an
isolated population of Aedes triseriatus I. Population
size. J. Med. Entomol. 15: 89-98.
Sippell, W. L. and A. W. Brown. 1953. Studies of the
responses of the female Aedes mosquito. V. The role of
visual factors. Bull. Ent. Res. 43: 567-574.
Siverly, R. E. 1966. Occurrence of Culiseta melanura in
Illinois. Mosq. News 26: 95-96.
Siverly, R. E. and H. F. Schoof. 1962. Biology of Culiseta
melanura in southeast Georgia. Mosq. News. 22:
274-282.
Siverly, R. E. 1967. Occurrence of Aedes abserratus (Felt
& Young) and Culiseta morsitans (Theobald) in Indiana.
Mosq. News 27: 116.
Slatkin, M., and R. Lande. 1976. Niche width in a
fluctuating environment - density independent model.
Amer. Nat. 110: 31-55.

292
Slifer, E. H. 1960. A rapid and sensitive method for
identifying permeable permeable areas in the body wall
of insects. Ent. News. 71: 179-182.
Slifer, E. H. 1970. The structure of arthropod
chemoreceptors. Ann. Rev. Ent. 15: 121-142.
Slifer, E. H. and S. S. Sekhon. 1962. The fine structure
of the sense organs on the antennal flagellum of the
yellow fever mosquito Aedes aegypti (Linnaeus). J.
Morphol. Ill: 49-67.
Smith, A. 1961. Resting habits of Anopheles gambiae and
Anopheles pharaoensis in salt bush and crevices in the
ground. Nature 190: 1220-1221.
Smith, A. and B. Weitz. 1959. The feeding habits of
Anopheles gambiae. with particular reference to sub¬
sidiary hosts. Ann. Trop. Med. Parasitol. 53: 414-415.
Smith. C. N., N. Smith, H. K. Gouk, D. E. Weidhaas, I. H.
Gilbert, M. S. Mayer, B. J. Smittle, and A. Hofbauer.
1970. L - lactic acid as a factor in the attraction of
Aedes aegypti (Diptera: Culicidae) to human hosts.
Ann. Ent. Soc. Amer. 63: 760-770.
Snow, W. F. 1970. The effect of reduction in expired
carbon dioxide on the attractiveness of human subjects
to mosquitoes. Bull. Ent. Res. 60: 43-48.
Snow, W. F. 1976. The direction of flight of mosquitoes
(Diptera: Culicidae) near the ground in West African
savanna in relation to wind direction, in the presence
and absence of bait. Bull. Ent. Res. 65: 555-562.
Snow, W. F., and P. F. L. Boreham. 1973. The feeding habits
of some West African Culex (Diptera; Culicidae)
mosquitoes. Bull. Ent. Res. 62: 517-526.
Sokal, R. R. and F. J. Rohlf. 1969. Biometry. The
Principles and Practice of Statistics in Biological
Research. W. H. Freeman & Co., San Francisco.
Sokal, R. R. and F. J. Rohlf. 1973. Introduction to
Biostatistics. W. H. Freeman & Co., San Francisco.
Spalatin, J., L. Karstad, J. R. Anderson, L. Lauerman, and
R. P. Hanson. 1960. Natural and experimental
infections in Wisconsin turkeys with the virus of
eastern encephalitis. Zoonoses Res. 1: 29-48.

293
Spielman, A. 1964. Swamp mosquito, Culiseta melanura
occurrence in an urban habitat. Science 143: 361-362.
Srihongse, S., and P. Galindo. 1967. The isolation of
eastern equine encephalitis virus from Culex
(Melanoconion) taeniopus Dyar and Knab in Panama.
Mosq. News 27: 74-76.
Srihongse, S., J. P. Woodall, M. A. Grayson, and R. Deibel.
1980. Arboviruses in New York State: surveillance in
arthropods and nonhuman vertebrates, 1972-1977. Mosq.
News. 40: 269-276.
Stahl, W. R. 1967. Scaling of respiratory variables in
mammals. J. Appl. Physiol. 22: 453-460.
Stamm, D. D. 1958. Studies on the ecology of equine
encephalomyelitis. Amer. J. Pub. Hlth. 48: 328-335.
Stamm, D. D., R. W. Chamberlain, and W. D. Sudia. 1962.
Arbovirus studies in south Alabama, 1957-1958. Am. J.
Hyg. 76: 61-81.
Statz, G. 1944. Neue Dipteren (Nematocera) aus dem
Oberoligocaen von Rott. V. Familie Culicidae
(Stechmuecken). Palaentographica 95A: 108-121.
Stearns, S. C. 1976. Life history tactics; a review of the
ideas. Q. Rev. Biol. 51: 3-47.
Stearns, S. C. 1977. The evolution of life history traits:
A critique of the theory and a review of the data.
Ann. Rev. Ecol. & Syst. 8: 145-171.
Steel, R. G. D. and J. H. Torrie. 1960. Principles and
Procedures of Statistics with Special Reference to the
Biological Sciences. McGraw-Hill Book Co., Inc., New
York.
Steinbrecht, R. A. and B. Muller. 1976. Fine structure of
the antennal receptors of the bed bug, Cimex
lectularis L. Tissue & Cell 8: 615-636.
Steward, C. C. and C. E. Atwood. 1963. The sensory organs
of the mosquito antenna. Can. J. Zool. 41: 577-594.
Stinner, R. E., A. P. Gutierrez, and G. D. Butler Jr. 1974.
An algorithm for temperature - dependent growth rate
simulation. Can. Ent. 106: 519-524.

294
Stryker, G. and W. W. Young. 1970. Effectiveness of carbon
dioxide and L(+) lactic acid in mosquito light traps
with and without light. Mosq. News 30: 388-393.
Sudia, W. D., R. W. Chamberlain, and P. H. Coleman. 1968.
Arbovirus isolations from mosquitoes collected in south
Alabama, 1959-1963, and serologic evidence of human
infection. Amer. J. Epidemiology 87: 112-126.
Sudia, W. D., V. F. Newhouse, C. H. Calisher, R.
Chamberlain., and W. 1971. California group
arboviruses: isolations from mosquitoes in North
America. Mosq. News. 31: 576-600.
Sudia, W. D., D. D. Stamm, R. W. Chamberlain, and R. E.
Kissling. 1956. Transmission of eastern equine
encephalitis to horses by Aedes sollicitans
mosquitoes. Amer. J. Trop. Med. Hyg. 5: 802-808.
Sulkin, S. E., R. Allen, and R. Sims. 1963. Studies of
arthropod-borne virus infections in Chiroptera. I.
Susceptibility of insectivorous species to experimental
infection with Japanese B and St. Louis encephalitis
viruses. Amer. J. Trop. Med. Hyg. 12: 800-814.
Sutcliffe, J. F., J. L. Shipp, and E. G. Kokko. 1987.
Ultrastructure of the palpal bulb sensilla of the black
fly Simulium arcticum (Diptera:Simuliidae). J. Med.
Ent. 24: 324-331.
Suyemoto, W., B. A. Schiefer, and B. F. Eldridge. 1973.
Precipitin tests of blood-fed mosquitoes collected
during the VEE surveillance survey in the southern
United States in 1971. Mosq. News. 33: 392-395.
Syverton, J. T. and G. P. Berry. 1937. The tick as a
vector for the virus disease, equine encephalitis. J.
Bact. 33: 60.
Syverton, J. T. and G. P. Berry. 1940. Host range of
equine encephalomyelitis susceptibility of the North
American cottontail rabbit, jack rabbit, field vole,
woodchuck, and opposum to experimental infection.
Amer. J. Hyg. 32 (sect. B): 19-23.
Syverton, J. T. and G. P. Berry. 1941a. The transmission
of equine encephalomyelitis to the western burrowing
owl. Amer. J. Hyg. 33: 37-41.

295
Syverton, J. T. and G. P. Berry. 1941b. Hereditary
transmission of western type of equine encephalo¬
myelitis virus in the wood tick. J. Exper. Med. 73:
507-530.
Takahashi, M. 1976. The effects of environmental and
physiological conditions of Culex tritaeniorhvnchus on
the pattern of transmission of Japanese encephalitis
virus. J. Med. Ent. 13: 275-284.
Takahashi, M., and Y. Shimizu. 1971. Observations of the
feeding habits of some mosquitoes in Guarnan Prefecture,
Japan. Jap. J. Med. Sci. Biol. 24: 163-169.
Tanaka, K., K. Mizusawa, and E. S. Saugstad. 1979. A
revision of the adult and larval mosquitoes of Japan
(including the Ryukyu Archipelago and the Ogasawara
Islands) and Korea (Diptera: Culicidae). Cont. Amer.
Ent. Inst. 16: vii + 987p.
Taylor, D. J., K. E. Meadows, and I. E. Baughman. 1966.
Comparison of chick-baited trap with the CDC miniature
light trap. Mosq. News 26: 502-506.
Tempelis, C. H. 1970. Host preferences of mosquitoes, pp.
15-28. Proc. Pap. 38th Conf. Calif. Mosq. Cont. Assoc.
Tempelis, C. H. 1975. Host feeding patterns of mosquitoes,
with a review of advances in analysis of blood meals
by serology. J. Med. Ent. 11: 635-653.
Tempelis, C. H., D. B. Francey, R. O. Hayes, and M. F. Lofy.
1967. Variations in feeding patterns of seven culicine
mosquitoes on vertebrate hosts in Weld and Larimer
counties, Colorado. Am. J. Trop. Med. Hyg. 16:
111-119.
Templis, C. H., R. O. Hayes, A. D. Hess, and W. C. Reeves.
1970. Blood-feeding habits of four species of mosquito
found in Hawaii. Amer. J. Trop. Med. Hyg. 19:
335-341.
Tempelis, C. H. and M. F. Lofy. 1963. A modified
precipitin method for the identification of mosquito
blood-meals. Amer. J. Trop. Med. Hyg. 12: 825-831.
Ten Broeck, C., and M. H. Merrill. 1933. Serological
diference between eastern and western equine encephalo¬
myelitis virus. Proc. Soc. Exper. Biol, and Med. 31:
217-220.

296
Tenney, S. M., and D. Bartlett, Jr. 1967. Comparative
quantitative morphology of the mammalian lung: trachea.
Resp. Physiol. 3: 130-135.
Thibault, J. K. Jr. 1910. Notes on the mosquitoes of
Arkansas. Ent. Soc. Wash. Proc. 12: 13-26.
Thiemann, S. and H. C. Kraemer. 1984. Sources of
behavioral variance: implications for sample size
decisions. Am. J. Primatol. 7: 367-375.
Thomas, L. A. and C. M. Eklund. 1960. Overwintering of
western equine encephalomyelitis virus in
experimentally infected garter snakes and transmission
to mosquitoes. Proc. Soc. Exp. Biol. 105: 52-55.
Thomas, L. A., C. M. Eklund, and W. A. Rush. 1958.
Susceptibility of garter snake (Thamnoplius) to western
equine encephalomyelitis virus. Proc. Soc. Exp. Biol.
99: 698-700.
Thompson, W. H. and S. L. Inhorn. 1967. Arthropod-borne
California group viral encephlitis in Wisconsin. Wise.
Med. J. 66: 250-253.
Thompson, W. H., B. Kalfayan, and R. O. Anslow. 1965.
Isolation of California group virus from a fatal human
illness. Amer. J. Epidemiol. 81: 245-253.
Thompson, W., II, D. 0. Trainer, V. Allen, and J. B. Hale.
1963. The exposure of wildlife workers in Wisconsin to
ten zoonotic diseases. Trans. 28th N. Amer. Wildlife
Natur. Res. Conf., p. 215-225.
Tilman, D. 1977. Resource competition between planktonic
algae: an experimental and theoretical approach.
Ecology 338-348.
Tinker, M. E. and C. J. Stojanovich. 1962. Identification
of the pupae of receptacle-breeding mosquitoes. Ann.
Ent. Soc. Amer. 55: 577-582.
Titman, D. 1976. Ecological competition between algae:
experimental confirmation of resource based
competition. Science 192: 463-465.
Tominaga, Y. and F. Yokohari. 1982. External structure of
the sensillum capitulum, a hygro- and thermoreceptive
sensillum of the cockroach, Periplaneta americana.
Cell Tissue Res. 226: 309-318.

297
Townes, C. H. 1965. Production of coherent radiation by
atoms and molecules. Science 149: 831-841.
Trpis, M. and W. Horsfall. 1967. Eggs of floodwater
mosguitoes. XI. Effect of medium on hatching of Aedes
sticticus. Ann. Ent. Soc. Amer. 60: 1150-1152.
Turell, M. J., C. L. Bailey, and C. A. Rossi. 1984.
Increased mosquito feeding on Rift Valley Fever virus-
infected
1238.
lambs.
Am. J.
Trop. Med. Hyg.
33: 1232-
Turell, M. J.,
T. P.
Gargan,
Ill, and C. L.
Bailey. 1984
Replication and dissemination of Rift Valley fever
virus in Culex pipiens. Amer. J. Trop. Med. Hyg. 33:
176-181.
Turell, M. J., C. A. Rossi, and C. L. Bailey. 1985. Effect
of extrinsic incubation temperature on the ability of
Aedes taeniorhvnchus and Culex pipiens to transmit Rift
Valley Fever virus. Am. J. Trop. Med. Hyg. 34: 1211-
1218.
Vale, G. A. 1980. Field studies of the responses of tsetse
flies (Glossinidae) and other Diptera to carbon
dioxide, acetone, and other chemicals. Bull. Ent. Res.
70: 563-570.
Vale, G. A. 1983. The effects of odours, wind direction,
and wind speed on the distribution of Glossina
(Diptera: Glossinidae) and other insets near
stationary targets. Bull. Ent. Res. 73: 53-64.
Vandry, S. V., G. R. DeFoliart, and D. B. Hogg. 1988. Adult
body size and survivorship in a field population of
Aedes triseriatus. J. Amer. Mosq. Cont. Assoc. 4:
121-128.
Van Handel, E. 1972. The detection of nectar in
mosquitoes. Mosq. News 32: 458.
Van Handel, E. 1985. Rapid determination of glycogen and
sugars in mosquitoes. J. Am. Mosq. Cont. Assoc. 1:
299-301.
Van Valen, L. 1965. Morphological variation and width of
ecological niche. Amer. Natur. 99: 377-390.
Veazey, J., D. Adam, and W. Gusciora. 1980. Arbovirus
surveillance for EEE in N. J. mosquitoes during the
years 1960-1969. Part I. An overview. Proc. New Jersey
Mosq. Cont. Assoc. 67: 160-171.

298
Vickery, C. A. Jr, K. E. Meadows, and I. E. Baughman. 1966.
Synergism of carbon dioxide and chick as bait for Culex
niqripalpus. Mosq. News 26: 507-508.
Villavaso, E. J. and C. D. Steelman. 1970. A collapsible
dog-baited mosquito trap. Mosq. News 30: 39-42.
Vines, R. A. 1960. Trees, shrubs, and woody vines of the
southwest. Univ. Texas Press, Austin, Tex.
Waldbauer, G. P. 1962. The mouthparts of female Psorophora
ciliata (Diptera: Culicidae) with new interpretation
of the function of the labral muscle. J. Morphol.
Ill: 201-215.
Walker, E. D., R. S. Copeland, S. L. Paulson, and L. E.
Munstermann. 1987. Adult survivorship, population
density, and body size in sympatric populations of
Aedes triseriatus and Aedes hendersoni. J. Med. Ent.
24: 485-493.
Wallis, R. C. 1959. Culiseta melanura (Coquillet) and
eastern equine encephalitis in Connecticut. Mosq.
News 19: 157-158.
Wallis, R. C. 1962. Overwintering Culiseta melanura larvae.
Proc. Ent. Soc. Wash. 64: 119-122.
Wallis, R. C. 1988. Sex difference in pupation of larval
Culiseta melanura. J. Amer. Mosq. Contr. Assoc. 4:
192-194.
Wallis, R. C., J. J. Howard, A. J. Main, C. Frazier, and C.
Hayes. 1974. An increase of Culiseta melanura
cooinciding with an epizootic of eastern equine
encephalitis in Connecticut. Mosq. News 34: 63-65.
Wallis, R. C., E. L. Jungherr, R. E. Luginbuhl, C.
Helmboldt, F. , S. F. Satriano, L. A. Williamson, and
A. L. Lamson. 1958. Investigation of eastern equine
encephalomyelitis. V. Entomologic and ecologic field
studies.
Amer.
J.
Hyg.
67: 35-45.
Wallis, R. C.
and A.
J.
Main.
1974. Eastern equine
encephalitis in Connecticut: progress and problems.
Mem. Conn. Ent. Soc. 1974: 117-144.
Wallis, R. C., R. M. Taylor, and J. R. Henderson. 1960.
Isolation of eastern equine encephalomyelitis virus
from Aedes vexans in Connecticut. Proc. Soc. Exp.
Biol. & Med. 103: 442-444.

299
Wallis, R. C., R. M. Taylor, R. W. McCollum, and J. T.
Riordan. 1958. Study of hibernating mosquitoes in
eastern equine encephalomyelitis epidemic areas in
Connecticut. Mosq. News 18: 1-4.
Wallis, R. C., and L. Whitman. 1967. Culiseta melanura
(Coquillet) breeding in artificial containers. J. Med.
Ent. 4: 273-274.
Wallis, R. C., and L. Whitman. 1969. Colonization of
Culiseta melanura (Coq.) in the laboratory. Mosq. News
29: 255-258.
Warnes, M. L. and L. H. Finlayson. 1985. Responses of the
stable fly, Stomoxvs calcitrans (L.) (Diptera:
Muscidae) to carbon dioxide and host odours. I.
Activation. Bull. Ent. Res. 75: 519-528.
Washino, R. and C. H. Tempelis. 1983. Mosquito host
bloodmeal identification: methodology and data
analysis. Ann. Rev. Ent. 28: 179-201.
Watts, D. M., G. G. Clark, C. L. Crabbs, C. A. Rossi, Olin,
T. R., and C. L. Bailey. 1987. Ecological evidence
against vertical transmission of eastern equine
encephalitis virus by mosquitoes on the Delmarva
peninsula, USA. J. Med. Ent. 24: 91-98.
Watts, D. M. and B. F. Eldridge. 1975. Transovarial
transmission of arboviruses by mosquitoes: a review.
Med. Biol. 53: 271-278.
Watts, D. M., S. Pantuwantana, G. R. DeFoliart, T. M. Yuill,
and W. H. Thompson. 1973. Transovarial transmission
of LaCrosse virus (California encephalitis group) in
the mosquito, Aedes triseriatus. Science 182:
1140-1141.
Wensler, R. J. D. 1972. The effect of odors on the
behavior of adult Aedes aeqypti and some factors
limiting responsiveness. Can. J. Zool. 50: 415-420.
Wesselhoeft, C., E. C. Smith, and C. F. Blanch. 1938.
Human encephalitis. Eight fatal cases, with four due to
the virus of equine encephalomyelitis. J. Amer. Med.
Assoc. Ill: 1735-1741.
White, G. B. 1977. The place of morphological studies in
the investigation of Anopheles species complexes.
Mosq. Syst. 1-24.

300
White, M. J. D. 1949. Cytological evidence on the
phylogeny and classification of the Diptera.
Evolution 3: 252-261.
Whittaker, R. H., S. A. Levin, and R. B. Root. 1973.
Niche, habitat, and ecotope. Airier. Nat. 107: 321-338.
Wilkins, O. P. and O. P. Breeland. 1951. The larval stages
and biology of the mosguito, Orthopodomyia alba. J.
New York Ent. Soc. 59: 225-240.
Williams, J. E., D. M. Watts, and T. J. Reed Marylan. 1971.
Distribution of culicine mosquitoes within the Pocomoke
Cypress swamp. Mosq. News 31: 371-378.
Williams, J. E., D. M. Watts, 0. P. Young, and T. J. Reed.
1972. Transmission of (EEE) and WEE to bobwhite
sentinels in relation to density of Culiseta melanura
mosquitoes. Mosq. News 32: 188-192.
Williams, J. E., O. P. Young, and D. M. Watts. 1974.
Relationship of density of Culiseta melanura mosquitoes
to infection of wild birds with eastern and western
equine encephalitis viruses. J. Med. Ent. 11:
352-354.
Williams, J. E., 0. P. Young, D. M. Watts, and T. J. Reed.
1971. Wild birds as eastern (EEE) and western (WEE)
equine encephalitis sentinels. J. Wildlife Dis. 7:
188-194.
Wilson, B. H., N. P. Tugwell, and E. C. Burns. 1966.
Attraction of tabanids to traps baited with dry ice
under field conditions in Louisiana. J. Med. Ent. 3:
148-149.
Windle, P. N. and E. H. Franz. 1979. The effects of
parasitism on plant competition; green bugs and
barley. Ecology 60: 521-529.
Woke, P. A. 1937. Comparative effects of the blood of
different species of vertebrates on egg production of
Ae. aegypti. Am. J. Trop. Med. 17: 729-745.
Wright, R. E. and G. R. DeFoliart. 1970. Association of
Wisconsin mosquitoes and woodland vertebrate hosts.
Ann. Ent. Soc. Amer. 63: 777-786.
Wright, R. H. 1954. Odour and molecular vibration. I.
Quantum and thermodynamic considerations. J. Appl.
Chem. 4: 611-615.

301
Wright, R. H. 1975. Why mosquito repellents repel. Sci.
Amer. 233: 104-111.
Wright, R. H., P. N. Daykin, and F. E. Kellogg. 1965.
Reaction of flying mosquitoes to various stimuli.
Proc. XII Int. Cong. Ent. 1964: 281-282.
Yodzis, P. 1988. The indeterminary of ecological
interactions as received through perturbation
experiments. Ecology 69: 508-515.
Yokohari, F. 1978. Hygroreceptor mechanism in the antenna
of the cockroach Periplaneta. J. Comp. Physiol. 125:
53-60.
Yokohari, F. 1981. The sensillum capitulum, an antennal
hygro- and thermoreceptive sensillum of the cockroach,
Periplaneta americana L. Cell Tissue Res. 216:
525-543.
Yokohari, F. 1983. The coelocapitular sensillum, an
antennal hygro-and thermoreceptive sensillum of the
honeybee, Apis mellifera L. Cell Tissue Res. 233:
355-365.
Yokohari, F., Y. Tominaga, and H. Tateda. 1982. Antennal
hygroreceptors of the honeybee, Apis mellifera L. Cell
Tissue Res. 226: 63-73.
Young, J. Z. 1962. The Life of Vertebrates. 2nd. ed.,
Oxford Univ. Press. New York + Oxford.
Zacharuk, R. Y. 1980. Ultrastructure and function of
insect chemosensilla. Ann. Rev. Ent. 25: 27-47.
Zar, J. H. 1970. On the fitting of equations relating avain
standard metabolism to body weight. Condor 72: 247
Zavortink, T. J. 1974. The status of taxonomy of
mosquitoes by the use of morphological characters.
Mosq. Syst. 6: 130-133.
Zeuthen, E. 1942. The ventilation of the respiratory tract
in birds. K. Danske Videnskat. Selsk. Biol. Medd. 17:
1 - 50.
Zuska, J. and C. O. Berg. 1974. A revision of the South
American genus Tetanoceroides (Diptera: Sciomyzidae),
with notes on colour variations correlated with mean
temperatures. Trans. R. Ent. Soc. London. 125:
329-362.

BIOGRAPHICAL SKETCH
Paul Merrill Choate, Jr., was born April 17, 1948, in
St. Johnsbury, Vermont. Preschool and elementary school
days were passed in the small rural community of Monroe, New
Hampshire. Childhood hobbies consisted of fishing and
hunting. High school education was spent at the college
preparatory school, Choate School, Wallingford, Connecticut,
from 1962 to 1966. First college attendance was at the
University of Vermont at Burlington with a major in pre-
veterinary medicine. After three years of college, studies
were terminated and a military tour of duty begun in the
United States Air Force, lasting from 1969 to 1973,
including a year of duty in the Republic of Vietnam. Upon
leaving the military, return to a college program was
initiated at the University of New Hampshire, Durham. A
Bachelor of Science degree in entomology was received in
1975. Graduate studies in entomology were begun at the
University of Florida in 1975, interrupted from 1978 to
1986, and reinstated from 1986 to the present. Paul is
married to Angela Luplow, residing in Gainesville, Florida.
302

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
u).
Donald W. Hall, Chairman
Professor of Entomology and
Nematology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Daniel L. Kline, Cochairman
Associate Professor of
Entomology and Nematology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
J.l|.7r^l<
J. H. Frank
Professor of Entomology and
Nematology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
a.
Carmine A. Lanciani
Professor of Zoology

This dissertation was submitted to the Graduate Faculty
of the College of Agriculture and to the Graduate School and
was accepted as partial fulfillment of the requirements for
the degree of Doctor of Philosophy.
August 1989
"¿ara
Dean, College of Agriculture
Dean, Graduate School

UNIVERSITY OF FI nomi




PAGE 1

7+( 5(/$7,216+,3 %(7:((1 3$/3$/ 0253+2/2*< $1' +267n 6((.,1* %(+$9,25 ,1 $'8/7 02648,72(6 ',37(5$ &8/,&,'$(f (63(&,$//< &8/,6(7$ 0(/$185$ &24f %\ 3$8/ 0(55,// &+2$7( -5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 0DQ\ SHRSOH KDYH GLUHFWO\ RU LQGLUHFWO\ LQIOXHQFHG WKH GLUHFWLRQ DQG FRPSOHWLRQ RI WKLV GLVVHUWDWLRQ 'U 7RP :DONHU ILUVW LQWURGXFHG PH WR WKH FRPSOH[LWLHV RI LQVHFW HFRORJ\ 'U 5HHFH 6DLOHU GHFHDVHGf DJUHHG WR FKDLU P\ HDUOLHU PDVWHUnV GHJUHH UHVHDUFK LQ WD[RQRP\ RI &ROHSWHUD 'U 3 b 'DUOLQJWRQ GHFHDVHGf RIIHUHG HQFRXUDJHPHQW GXULQJ P\ VWXGLHV RI &DUDELGDH +H ZDV DOZD\V TXLFN WR SURYLGH OLWHUDWXUH DQG DGYLFH 'U *HRUJH %DOO $OEHUWDf KDV FRQWLQXHG WR SURG PH WR FRPSOHWLRQ RI D JUDGXDWH GHJUHH DOWKRXJK ERWK KH DQG DW RQH WLPH HQYLVLRQHG WKDW ZRUN LQ FDUDELG WD[RQRP\ ZRXOG OHDG WR D JUDGXDWH GHJUHH LQ HQWRPRORJ\ /HRQ &URL]DW RSHQO\ FRUUHVSRQGHG ZLWK PH GXULQJ D WLPH ZKHQ ZDV ZDQGHULQJ EHWZHHQ WRWDO DEDQGRQPHQW RI D FDUHHU LQ HQWRPRORJ\ DQG SXUVXLW RI D JUDGXDWH GHJUHH )HOORZ FROHRSWHULVWV KDYH DOZD\V SURYLGHG VXSSRUW DQG FRQVWUXFWLYH FULWLFLVP 0DQ\ HQMR\DEOH GD\V KDYH EHHQ VSHQW LQ WKH ILHOG ZLWK JRRG IULHQGV DQG FROOHDJXHV $PRQJ WKHVH DUH 6FRWW *URVV /OR\G 'DYLV 5REHUW 'DYLGVRQ 'RQ :LOVRQ 'DYH %UR]VND DQG 0LNH 7KRPDV $OWKRXJK RXU FDUHHUV KDYH GLYHUJHG LQ GLIIHUHQW GLUHFWLRQV RZH 'U 5REHUW :RRGUXII PDQ\ WKDQNV IRU KLV LL

PAGE 3

HQFRXUDJHPHQW IURP WKH WLPH RI P\ DUULYDO DW WKH 8QLYHUVLW\ RI )ORULGD 'HVSLWH RXU GLIIHUHQFHV RI RSLQLRQ FRQFHUQLQJ SHUVRQDO SULRULWLHV DQG DUHDV RI UHVHDUFK VWLOO RZH KLP D GHEW RI JUDWLWXGH DOVR WKDQN 'U +RZDUG :HHPV IRU KLV SHUVRQDO DQG ILQDQFLDO VXSSRUW IRU SXEOLFDWLRQV 1R DFNQRZOHGJHPHQWV DUH FRPSOHWH ZLWKRXW WKDQNLQJ WKH SHRSOH SHUVRQDOO\ UHVSRQVLEOH IRU SURYLGLQJ ILQDQFLDO DQG ORJLVWLFDO VXSSRUW 'U 'RQDOG : +DOO JUDFLRXVO\ DFFHSWHG PH EDFN LQWR WKH JUDGXDWH VWXGHQW ZRUOG DJUHHLQJ WR VXSSRUW PH ERWK DV FRFKDLUPDQ DQG UHVHDUFK DGYLVRU 'U 'DQ .OLQH 86'$f SURYLGHG DQ DVVLVWDQWVKLS DQG IRXQG WKH PHDQV WR NHHS PH KHDGHG LQ WKH ULJKW GLUHFWLRQ LQ VSLWH RI P\ DIILQLW\ IRU ZDQGHULQJ 'U +RZDUG )UDQN KDV HQWKXVLDVWLFDOO\ HQFRXUDJHG PH WR FRPSOHWH P\ JUDGXDWH GHJUHH SURJUDP +LV FRQWLQXHG LQWHUHVW DQG LQYHVWPHQW RI HQHUJ\ KDYH EHHQ LPSRUWDQW 'U 'DYH &DUOVRQ 86'$f JUDFLRXVO\ SURYLGHG VSDFH DQG HTXLSPHQW IRU P\ JDV FKURPDWRJUDSK\ UHVHDUFK 5HVHDUFK SURMHFWV ZRXOG QRW VXFFHHG ZLWKRXW WKH DYDLODELOLW\ RI VWXG\ VLWHV 0U -RKQ :KLWHKHDG KDV JHQHURXVO\ SURYLGHG XQOLPLWHG DFFHVV WR KLV /DNH %XWOHU IDUP $ VSHFLDO WKDQNV LV JLYHQ WR KLP DQG KLV IDPLO\ IRU DOORZLQJ P\ XQDQQRXQFHG YLVLWV WR KLV IDUP 'U 3DXO *LEEV LQWURGXFHG PH WR YHFWRU VXUYHLOODQFH DQG LWV UHODWHG SUREOHPV ZKLOH ZRUNLQJ RQ (DVWHUQ (TXLQH (QFHSKDORP\HOLWLV 7KH PDQ\ XQNQRZQ DVSHFWV RI WKLV GLVHDVH OHG PH WR ZRUN RQ PRVTXLWRHV DQG KRVW SUHIHUHQFH LQ

PAGE 4

-LPP\ %HFQHO KDV SURYLGHG 6(0 H[SHUWLVH GDUNURRP IDFLOLWLHV FRPSDQ\ LQ WKH ILHOG DQG OLVWHQHG SDWLHQWO\ WR WKH LGHDV SUHVHQWHG KHUH /LNHZLVH %LOO 2OGDFUH KHOSHG PH WR XQGHUVWDQG WKH SK\VLFV EHKLQG GHWHFWLRQ RI VLJQDOV HQHUJ\ DQG DOO WKLQJV PDWKHPDWLFDO RI ZKLFK ZH WHQG WR EH FRQYHQLHQWO\ LJQRUDQW -XOLR +HFWRU FKHPLVW FRPSXWHU SURJUDPPHU DQG IULHQG RIWHQ ZRUNHG ODWH WR KHOS PH ILQLVK GDWD DQDO\VLV DQG SURGXFH WKH FKURPDWRJUDPV WKDW DUH XVHG KHUH :LWKRXW KLV H[SHUWLVH DQG VHOI VDFULILFH WKLV SURMHFW ZRXOG QHYHU KDYH EHHQ FRPSOHWHG ZLWKLQ WKH QHFHVVDU\ WLPH IUDPH *HQLH $YHU\ JDYH ZLOOLQJO\ RI KHU WLPH DQG FRPSXWHU H[SHUWLVH KHOSLQJ WR VRUW DQG DUUDQJH WKLV OHQJWK\ GRFXPHQW +DQN 0F.HLWKHQ ZLOOLQJO\ SHUPLWWHG PH WKH XVH RI KLV FRPSXWHU GXULQJ PDQ\ XQDQQRXQFHG YLVLWV )DPLO\ PHPEHUV VXIIHU WKH PRVW DQG JDLQ WKH OHDVW GXULQJ D JUDGXDWH SURJUDP 0\ SDUHQWV KDYH SDWLHQWO\ ZDLWHG WR VHH PH ILQLVK GHVSLWH PDQ\ LQGLFDWLRQV WR WKH FRQWUDU\ WKDQN WKHP IRU WKHLU PDQ\ \HDUV RI ORYH DQG VXSSRUW 2XU GDXJKWHU 7HUHVD KDG WR ZLWKVWDQG WKH SUHVVXUH RI D JUDGXDWH VWXGHQWIDWKHU ,W ZDVQnW HDV\ KDYLQJ D WLUHG JUDGXDWH VWXGHQW WR FRPH KRPH WR )LQDOO\ P\ ZLIH $QJHOD SURYLGHG WKH WROHUDQFH VXSSRUW IRUJLYHQHVV DQG ORYH WKDW DUH YLWDO WR WKH VXFFHVV RI D JUDGXDWH VWXGHQW ,9

PAGE 5

7$%/( 2) &217(176 $&.12:/('*(0(176 LL $%675$&7 YLL &+$37(56 ,1752'8&7,21 %,2/2*< $1' 6($621$/ $%81'$1&( 2) &8/,6(7$ 0(/$185$ $7 /$.( %87/(5 )/25,'$ *HQHUDO %LRORJ\ 6HDVRQDO $EXQGDQFH 9$5,$7,21 ,1 &87,&8/$5 +<'52&$5%21 352),/(6 ,1 &8/,6(7$ 0(/$185$ ,QWURGXFWLRQ 0HWKRGV DQG 0DWHULDOV 5HVXOWV &RQFOXVLRQV 'LVFXVVLRQ +267 35()(5(1&( ,1 02648,72(6 $ 5(9,(: ,QWURGXFWLRQ /LWHUDWXUH 5HYLHZ +RVW 3UHIHUHQFH LQ &XOLVHWD PHODQXUD DQG &V LQRUQDWD 'LVFXVVLRQ 0253+2/2*< 2) 6(1625< 6758&785(6 ,QWURGXFWLRQ 0HWKRGV DQG PDWHULDOV 5HVXOWV Y

PAGE 6

/$59$/ 5($5,1* 7(03(5$785( $1' ,76 ())(&7 21 $'8/7 02648,72 0253+2/2*< (63(&,$//< 3$/3$/ 2/)$&725< 6758&785(6 ,QWURGXFWLRQ 0HWKRGV DQG PDWHULDOV 5HVXOWV &RQFOXVLRQV 'LVFXVVLRQ 48$17,),&$7,21 2) +267 (0$1$7,216 7<3(6 $1' 7+( ,03/,&$7,21 )25 $775$&7,21 2) $'8/7 02648,72(6 ,QWURGXFWLRQ +RVW HPDQDWLRQV HVSHFLDOO\ &fTXDQWLW\ DQG GHWHFWLRQ 4XDQWLILFDWLRQ RI KRVW HPDQDWLRQV HVSHFn LDOO\ & &DOFXODWLRQ RI UHVSLUHG YROXPHV RI JDVHV DQG & &DOFXODWLRQ RI ERG\ VXUIDFH DUHD IRU YDUn LRXV DQLPDOV ',6&866,21 6800$5< 352326$/ )25 )8785( 5(6($5&+ 'LVFXVVLRQ DQG VXPPDU\ 3URSRVDO IRU IXWXUH UHVHDUFK 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ YL

PAGE 7

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( 5(/$7,216+,3 %(7:((1 3$/3$/ 0253+2/2*< $1' +2676((.,1* %(+$9,25 ,1 $'8/7 02648,72(6 ',37(5$ &8/,&,'$(f (63(&,$//< &8/,6(7$ 0(/$185$ &24f %\ 3DXO 0HUULOO &KRDWH -U $XJXVW &KDLUPDQ 'RQDOG : +DOO 0DMRU 'HSDUWPHQW (QWRPRORJ\ DQG 1HPDWRORJ\ $QDO\VLV RI FXWLFXODU K\GURFDUERQ SURILOHV RI DGXOW &XOLVHWD PHODQXUD &RTXLOOHWWf IURP 1HZ +DPSVKLUH 9HUPRQW QHZ UHFRUGf DQG )ORULGD VKRZHG QR HYLGHQFH RI FU\SWLF VSHFLHV 9DULDWLRQ ZLWKLQ VLWHf ZDV DV JUHDW DV YDULDWLRQ EHWZHHQ VLWHV &XWLFXODU K\GURFDUERQ SURILOHV DUH DOVR LOOXVWUDWHG IRU &XOH[ WHUULWDQV :DONHU 8UDQRWDHQLD VDSSKLULQD 2VWHQ 6DFNHQf DQG &V PHODQXUD IURP 1HZ +DPSVKLUH 3HUFHQW FRPSRVLWLRQ RI K\GURFDUERQV VKRZHG VHDVRQDO YDULDWLRQ LQ &V PHODQXUD IURP /DNH %XWOHU )ORULGD /DUYDO UHDULQJ WHPSHUDWXUH LV RQH IDFWRU FRQWULEXWLQJ WR YDULDWLRQ LQ K\GURFDUERQ SURILOHV /DUYDO UHDULQJ WHPSHUDWXUHV SURGXFHG LQWUDVSHFLILF YDULDWLRQ LQ ERG\ VL]H SDOSDO VXUIDFH DUHD DQG WKH QXPEHU RI VHQVRU\ VWUXFWXUHV ZLWKLQ $H DHJ\SWL /LQQDHXVf DQG &V 9OO

PAGE 8

PHODQXUD 3DOSDO FRQILJXUDWLRQV DQG VXUIDFH DUHD DUH SUHVHQWHG IRU &V PHODQXUD &V LQRUQDWD :LOOLVWRQ &XOH[ WHUULWDQV &[ UHVWXDQV 7KHREDOG &[ TXLQTXIDVFLDWXV 6D\ &[ VDOLQDULXV &RTXLOOHWW &[ QLTULSDOSXV 7KHREDOG &[ WDUVDOLV &RTXLOOHWW 8UDQRWDHQLD VDSSKLULQD 3VRURSKRUD IHUR[ +XPEROGWf 3V FLOLDWD )DEULFLXVf $HGHV DHJ\SWL $H DOERSLFWXV 6NXVHf $H FDQDGHQVLV 7KHREDOG $H YH[DQV 0HLJHQf $H WULVHULDWXV 6D\f $H LQILUPDWXV '\DU t .QDE $H DWODQWLFXV '\DU t .QDE $H VWLFWLFXV 0HLJHQf $H PLWFKHOODH '\DU $H VROOLFLWDQV :DONHUf $H WDHQLRUK\QFKXV :HLGHPDQQf DQG 2UWKRSRGRP\LD VLJQLIHUD &RTXLOOHWWf $ FRUUHODWLRQ H[LVWV EHWZHHQ VHQVRU\ FDSDELOLWLHV RI PRVTXLWRHV DQG WKH VL]H UDQJH RI SUHIHUUHG KRVWV DV GHILQHG E\ KRVW ERG\ ZHLJKW DQG VXUIDFH DUHD (VWLPDWHV DUH JLYHQ IRU UHVSLUHG YROXPHV RI JDVHV DQG VXUIDFH DUHD IRU VHOHFWHG DQLPDOV 6HQVRU\ FDSDELOLWLHV DUH GHILQHG DV SDOSDO VXUIDFH DUHD FRQWDLQLQJ ROIDFWRU\ VWUXFWXUHVQXPEHU RI VHQVRU\ VWUXFWXUHV SHU SDOS FRPSDUHG WR WKH YROXPH RI DLU VDPSOHG EHWZHHQ SDOSL GXULQJ IOLJKW (YLGHQFH IRU D PRUSKRORJLFDO EDVLV IRU KRVW SUHIHUHQFH DQG KRVW SUHIHUHQFH VKLIW LV SUHVHQWHG +RVW SUHIHUHQFH LV SURSRVHG WR EH D IXQFWLRQ RI WKH YROXPH RI KRVW HPDQDWLRQV RI FRPPRQ FRPSRXQGV UDWKHU WKDQ VSHFLILF RGRUV 9DULDWLRQ LQ KRVW SUHIHUHQFH LV FRUUHODWHG ZLWK VHDVRQDO FKDQJH LQ DGXOW PRVTXLWR VWUXFWXUH $ K\SRWKHWLFDO F\FOH LQYROYLQJ KRVW SUHIHUHQFH VKLIW LV YP

PAGE 9

SUHVHQWHG WR GHPRQVWUDWH WKH SRVVLELOLW\ WKDW D VLQJOH VSHFLHV VXFK DV &V PHODQXUD PD\ EH FDSDEOH RI YHFWRULQJ GLVHDVHV VXFK DV (DVWHUQ (TXLQH (QFHSKDORP\HOLWLV IURP ELUGV WR PDPPDOV ,;

PAGE 10

&+$37(5 ,1752'8&7,21 7KH VWUXFWXUHV LQYROYHG LQ KRVW VHHNLQJ DUH RQO\ QRZ EHJLQQLQJ WR EH UHFRJQL]HG 7KH FKHPLFDO DVSHFWV RI KRVW GHWHFWLRQ DQG ORFDWLRQ DUH QRW DW DOO XQGHUVWRRG 3UHIHUHQFH IRU GLIIHUHQW KRVWV LV VXJJHVWHG E\ EORRGPHDO DQDO\VLV EXW WKH FULWHULD IRU RQH KRVW EHLQJ SUHIHUUHG UHPDLQ XQFOHDU )HPDOHV RI PRVW PRVTXLWR VSHFLHV ZLOO VHHN D EORRG PHDO DW VRPH WLPH GXULQJ WKHLU DGXOW OLIH $XWRJHQRXV VSHFLHV PD\ SRVWSRQH EORRG PHDOV XQWLO WKH VHFRQG JRQRWURSKLF F\FOH 2n0HDUD f 7KH SUHVHQFH RU DEVHQFH RI DXWRJHQ\ ZLWKLQ D SRSXODWLRQ PD\ LQ SDUW EH GXH WR ODUYDO QXWULWLRQ DQG GHQVLW\ /RXQLERV HW DO f 9DULRXV IDFWRUV VXFK DV FKHPLFDO DWWUDFWLRQ SRVVLEOH KRVW VSHFLILFLW\ SK\VLRORJLFDO DJH KRVW DYDLODELOLW\ DQG HQYLURQPHQWDO FRQGLWLRQV LQWHUDFW LQ YDULRXV FRPELQDWLRQV WR DFFRPSOLVK KRVW VHHNLQJ DQG D VXFFHVVIXO EORRG PHDO 0RVTXLWR VSHFLHV YDU\ LQ QXWULWLRQDO UHTXLUHPHQWV IRU HJJ GHYHORSPHQW :RNH f 7KH JHQXV 7R[RUKYQFKLWHV KDV IHPDOHV ZKLFK QHYHU WDNH D EORRG PHDO 0RVTXLWRHV ZLOO IHHG RQ VXJDU LQ DGGLWLRQ WR EORRG XVLQJ QHFWDU IURP IORZHUV DV WKH VXJDU VRXUFH %LGOLQJPD\HU t +HP 0DJQDUHOOL E 1DVFL t (GPDQ 1D\DU t 6DXHUPDQ 3KLOLS DQG 9DQ +DQGHO f

PAGE 11

6HDVRQDO GLVWULEXWLRQ KDELWDW SUHIHUHQFH DQG KRVW EHKDYLRU LQIOXHQFH KRVW VHHNLQJ DQG EHKDYLRU ,W LV WKLV KRVW VHHNLQJ EHKDYLRU WKDW DGXOW PRVTXLWR VXUYHLOODQFH DWWHPSWV WR H[SORLW 1XPHURXV UHIHUHQFHV LQ WKH OLWHUDWXUH GRFXPHQW VSHFLHV FRPSRVLWLRQ RI PRVTXLWR FROOHFWLRQV 0DQ\ GLIIHUHQW FROOHFWLQJ WHFKQLTXHV DUH HPSOR\HG LQFOXGLQJ OLJKW WUDSV & EDLWHG WUDSV DQLPDO EDLWHG WUDSV UHVWLQJ ER[HV DQG UDPS WUDSV %DVW t 5HKQ %HOODP\ t 5HHYHV %UHHODQG t 3LFNDUG %LGOLQJPD\HU t +HP 'DYLV (GPDQ HW DO )XUORZ t
PAGE 12

7KLV DVVXPSWLRQ LV EDVHG XSRQ IDOODFLRXV JURXQGV WKH PRVTXLWRHV SRVVHVV DOO GHJUHHV RI YDULDWLRQ SDUWLFXODU WR FRPPRQ OLYLQJ WKLQJV LW ZRXOG EH KDUG WR VHH ZK\ LW LV QRW ZKROO\ ORJLFDO WR H[SHFW WKDW GLIIHUHQW VSHFLHV RI PRVTXLWRHV ZLOO H[KLELW PDUNHG YDULDWLRQV LQ WKHLU UHVSRQVHV ,W LV IXUWKHUPRUH D IXQGDPHQWDO ELRORJLFDO SULQFLSOH WKDW HFRORJLFDO YDULDWLRQ LV QRW D UHVSHFWHU RI SK\ORJHQHWLF WLHV +HQFH LW PD\ EH H[SHFWHG WKDW PDUNHG GLIIHUHQFHV LQ EHKDYLRU H[LVW HYHQ ZLWKLQ D JHQXVSf 7KH VDPH PD\ EH VDLG IRU DOO FXUUHQW VDPSOLQJ WHFKQLTXHV $GGLWLRQDO JURXQG WUXWKLQJ E\ ODUYDO VDPSOLQJ ZLOO XVXDOO\ UHYHDO WKH SUHVHQFH RI RWKHU VSHFLHV WKDW IRU YDULRXV UHDVRQV DUH QRW EHLQJ FROOHFWHG LQ WKH WUDSV EHLQJ XVHG 5HFRJQLWLRQ RI WKHVH GLIILFXOWLHV UHVXOWV LQ WKH IROORZLQJ REVHUYDWLRQ :H UHDOO\ GR QRW XQGHUVWDQG WKH FRPSOH[ DFWLRQV LQYROYHG LQ KRVW VHHNLQJ E\ HYHQ RQH VSHFLHV RI PRVTXLWR %HIRUH ZH DUH DEOH WR DQDO\]H WKH EHKDYLRU RI D SDUWLFXODU VSHFLHV FRUUHFW UHFRJQLWLRQ LGHQWLILFDWLRQf RI WKDW VSHFLHV LV HVVHQWLDO 8QIRUWXQDWHO\ DGXOW PRVTXLWRHV DUH YHU\ IUDJLOH LQVHFWV HDVLO\ GLVPHPEHUHG DQG GHQXGHG RI WKH YHU\ VWUXFWXUHV XVHG WR LGHQWLI\ WKHP 3HUVRQDO H[SHULHQFH KDV UHYHDOHG DQ DODUPLQJ LQFLGHQFH RI PLVLGHQWLILFDWLRQ RI VSHFLPHQV XVHG LQ UHSRUWV RI VXUYHLOODQFH FROOHFWLRQV ,Q WKH DEVHQFH RI YRXFKHU VSHFLPHQV WKH UHVHDUFKHU KDV WR FRQVLGHU WKH SRVVLELOLW\ RI PLVLGHQWLILFDWLRQV ZKHQ LQWHUSUHWLQJ UHSRUWV LQ WKH OLWHUDWXUH 6HYHUDO DYDLODEOH WHFKQLTXHV DUH FXUUHQWO\ EHLQJ XVHG IRU VSHFLHV UHFRJQLWLRQ $OO QDPHG IRUPV RI PRVTXLWRHV IRU WKH

PAGE 13

HQWLUH ZRUOG DUH OLVWHG LQ .QLJKW DQG 6WRQH .QLJKW f UHYLHZHG WKH KLVWRU\ RI PRVTXLWR WD[RQRP\ LQ WKH 8QLWHG 6WDWHV ,GHQWLILFDWLRQ PDQXDOV IRU 1RUWK $PHULFDQ PRVTXLWRHV LQFOXGH 'DUVLH t :DUG f DQG &DUSHQWHU t /D&DVVH f 6RXWKHDVWHUQ 8QLWHG 6WDWHV LV FRYHUHG LQ .LQJ HW DO 7KHVH PDQXDOV LQFOXGH PRUSKRORJLFDO NH\V WR DGXOWV DQG ODUYDH DQG DUH WKH VWDQGDUG LGHQWLILFDWLRQ PDQXDOV IRU 1RUWK $PHULFDQ PRVTXLWR ZRUNHUV =DYRUWLQN f .H\V WR WKH SXSDH RI VRPH PRVTXLWRHV ZHUH SUHVHQWHG LQ 7LQNHU DQG 6WRMDQRYLFK f $GGLWLRQDO WHFKQLTXHV DUH EHLQJ XVHG WR VWXG\ LQWUDVSHFLILF YDULDWLRQ PRUH FORVHO\ VLEOLQJ VSHFLHV DQG VSHFLHV FRPSOH[HV LQ LQVHFWV $PRQJ WKHVH DUH FKURPRVRPDO F\WRJHQHWLF VWXGLHV .LW]PLOOHU HW DO 5DR t 5DL f DPLQR DFLG LGHQWLILFDWLRQ %DOO %DOO t &ODUN 0LFNV t (OOLV 0LFNV HW DO f FXWLFXODU K\GURFDUERQ DQDO\VHV &DVWQHU t 1DWLRQ &DUOVRQ &DUOVRQ t %ROWRQ &DUOVRQ t :DOVK &DUOVRQ t 6HUYLFH &DUOVRQ t
PAGE 14

+RVW VHHNLQJ E\ IHPDOH PRVTXLWRHV LV LQ SDUW GHSHQGHQW XSRQ WKH SK\VLRORJLFDO DJH RI WKH LQVHFW 9DULRXV WHFKQLTXHV IRU WKH GHWHUPLQDWLRQ RI WKH SK\VLRORJLFDO DQG FKURQRORJLFDO DJH DJH JUDGLQJf RI LQVHFWV KDYH EHHQ HPSOR\HG %LVFRH 7\QGDO &KULVWRSKHUV &RUEHW 'HWLQRYD +LWFKFRFN -RKQVWRQ t (OOLVRQ /HZLV 0DJQDUHOOL 0DJQDUHOOL t $QGHUVRQ 0DJQDUHOOL HW DO 0XOOHQV t 6FKPLGWPDQQ 5RVD\ 6FKOHLQ DQG 6FKOHLQ t *UDW] f ,I LW LV SRVVLEOH WR GHWHUPLQH WKH DSSUR[LPDWH SK\VLRORJLFDO DJH RI DGXOW PRVTXLWRHV WKHQ LW PD\ EHFRPH SRVVLEOH WR PDNH SUHGLFWLRQV FRQFHUQLQJ KRVW VHHNLQJ DQG SRSXODWLRQ G\QDPLFV )LHOG REVHUYDWLRQV RQ WKH SDULW\ RI ELWLQJ IOLHV KDYH LQFOXGHG VWXGLHV E\ 6FKROO HW DO 6DPDUDZLFNUHPD DQG 0DJQDUHOOL HW DO $JH JUDGLQJ RI PRVTXLWRHV KDV EHHQ GRQH E\ RYDULDQ H[DPLQDWLRQ 0HU f IRXQG WKDW RYDULDQ GLVVHFWLRQ FRXOG EH XVHG WR UHFRJQL]H SUHKLEHUQDWLRQ IHPDOHV RI $QRSKHOHV HOXWXV (GZDUGV &RUEHW f GHWHUPLQHG WKDW DGXOW PRVTXLWRHV SDUDVLWL]HG E\ ZDWHU PLWHV ZHUH QXOOLSDURXV b RI WKH WLPH /DQFLDQL D E f /DQFLDQL t %R\HWW f DQG /DQFLDQL t %R\W f GHWHUPLQHG WKDW ZDWHU PLWH SDUDVLWLVP DIIHFWHG DGXOW ORQJHYLW\ (DFK SK\VLRORJLFDO VWDJH RI DQ DGXOW IHPDOH QXOOLSDURXV SDURXV JUDYLG EORRGLHGf HOLFLWV D EHKDYLRUDO VKLIW WKDW JUHDWO\ LQIOXHQFHV ELDVf LQWHUSUHWDWLRQ RI DQ\ RQH WUDSSLQJ WHFKQLTXH +RVWVHHNLQJ IHPDOHV DUH JHQHUDOO\ WKRVH

PAGE 15

PRVTXLWRHV WKDW DUH FROOHFWHG LQ EDLWHG WUDSV 5HVWLQJ ER[HV WUXFN WUDSV UDPS WUDSV DQG PDODLVH WUDSV DUH DVVXPHG WR EH OHVV ELDVHG LQ WKHLU FROOHFWLRQV EXW HYHQ WKHVH PD\ EH VKRZQ WR DWWUDFW GLVSURSRUWLRQDWH QXPEHUV RI FHUWDLQ SK\VLRORJLFDO VWDWHV RI DGXOWV 7KHUHIRUH VHYHUDO WHFKQLTXHV PXVW EH HPSOR\HG VLPXOWDQHRXVO\ DQG HDFK FROOHFWLRQ FRPSDUHG 7KHQ D PRUH UHSUHVHQWDWLYH VDPSOH RI WKH DJH VWUXFWXUH RI D JLYHQ SRSXODWLRQ ZLOO EH DFKLHYHG 6LQFH PRVW DGXOW IHPDOHV ZLOO DW VRPH WLPH VHHN D EORRG PHDO WKH W\SH RI EORRG PHDO VRXJKW PD\ KHOS H[SODLQ WKH IXQFWLRQDO VLJQLILFDQFH RI GLIIHUHQW VHQVRU\ VWUXFWXUHV NQRZQ WR H[LVW RQ WKH PRXWKSDUWV DQG DQWHQQDH RI ELWLQJ IOLHV LQFOXGLQJ PRVTXLWRHV %ORRGPHDO DQDO\VLV UHYHDOV DQ DSSDUHQW ZLGH KRVW UDQJH +RVW UHFRUGV UDQJH IURP DPSKLELDQV DQG UHSWLOHV WR ELUGV ILVK DQG PDPPDOV LQFOXGLQJ PDQ :KLOH D FRPSOHWH UHYLHZ RI EORRGPHDO UHFRUGV LV QRW WKH LQWHQWLRQ RI WKLV SDSHU WKH IROORZLQJ FLWDWLRQV ZLOO JLYH WKH UHDGHU D UHSUHVHQWDWLRQ RI WKH YDULHW\ RI KRVW SUHIHUHQFH UHFRUGV DV ZHOO DV VRPH RI WKH GLVFUHSDQFLHV UHJDUGLQJ WKH DSSOLFDWLRQ RI WKH WHUP KRVW SUHIHUHQFH $UWLFOHV GHDOLQJ ZLWK EORRGPHDO DQDO\VLV LQFOXGH WKH IROORZLQJ $QGHUVRQ %HLU HW DO %HUWVFK t 1RUPHQW %RRUPDQ %RUHKDP t 6QRZ %URZQ %XUNRW t 'H)ROLDUW &KDQGOHU HW DO &KULVWRSKHU t 5HXEHQ &UDQV &UDQV t 5RFNHO 'DYLV 'RZ HW DO 'RZQH (GPDQ D E (GPDQ t

PAGE 16

%LGOLQJPD\HU (GPDQ t 'RZQH (GPDQ t +DHJHU (GPDQ HW DO *XQVWUHDP HW DO +D\HV +D\HV HW DO +RSOD ,UE\ t $SSHUVRQ /DDUPDQ /H'XF HW DO 0DJQDUHOOL D 0F&OHOODQG t :HLW] 0FOYHU 0HDQV 0XUSKH\ HW DO 1DVFL E E 1DVFL t (GPDQ D 1RODQ HW DO 5HPSHO HW DO 6FKDHIHU t 6WHHOPDQ 6KDODE\ 6KHPDQFKXN 6PLWK t :HLW] 6QRZ t %RUHKDP 6X\HPRWR HW DO 7DNDKDVKL t 6KLPL]X 7HPSHOLV 7HPSHOLV HW DO :DVKLQR t 7HPSHOLV :RNH DQG :ULJKW t 'H)ROLDUW 6RPH VSHFLHV DSSHDU UHVWULFWHG WR FROGEORRGHG YHUWHEUDWHV &UDQV f 2WKHUV XVH D ZLGH UDQJH RI KRVWV H[KLELWLQJ D PDUNHG VHDVRQDO KRVW VKLIW (GPDQ t 7D\ORU f &XOLVHWD PHODQXUD LV FRQVLGHUHG WR EH DQ DYLDQ IHHGHU EXW UHFRUGV H[LVW IRU RWKHU KRVWV LQFOXGLQJ PDQ DQG KRUVHV (GPDQ HW DO +D\HV t 'RDQH -RVHSK t %LFNOH\ 0RXVVD HW DO DQG 6FKREHU f 0XFK VSHFXODWLRQ H[LVWV DV WR WKH QDWXUH RI DWWUDFWLYHQHVV RI GLIIHUHQW KRVWV 7KH UHFRJQLWLRQ RI D SDUWLFXODU YHUWHEUDWH VSHFLHV E\ D PRVTXLWR LV D IXQFWLRQ RI WKH FRPELQHG VHQVHV RI ROIDFWLRQ WKHUPDO UHFHSWLRQ DQG YLVXDO FXHV $OWQHU t 3ULOOLQJHU 6LSSHOO t %URZQ f :H DUH FXUUHQWO\ XQDEOH WR VWDWH ZLWK FHUWDLQW\ ZKLFK RI WKHVH IDFWRUV DUH PRVW LPSRUWDQW DW DQ\ SDUWLFXODU GLVWDQFH 2QO\ D IHZ RI WKH PDQ\ VWUXFWXUHV RQ WKH VXUIDFH

PAGE 17

RI WKH DGXOW PRVTXLWR KDYH EHHQ VWXGLHG $PRQJ WKHVH DUH WKH FDUERQ GLR[LGH UHFHSWRUV RQ WKH SDOSL DQG WKHUPDO UHFHSWRUV DQG RWKHU ROIDFWRU\ VWUXFWXUHV RQ WKH DQWHQQDH 7KHLU FKHPLFDO WKUHVKROGV KDYH QRW EHHQ GHWHUPLQHG EXW LQGLUHFW HYLGHQFH VXJJHVWV WKDW WKH QXPEHUV RI WKHVH VWUXFWXUHV DUH VRPHKRZ UHODWHG WR WKH DPRXQW RI FKHPLFDO RGRU GHWHFWDEOH E\ WKH LQGLYLGXDO PRVTXLWR &KDSPDQ f 9DULDWLRQ LQ SHUFHLYHG KRVW SUHIHUHQFH KDV EHHQ FRQVLGHUHG E\ VRPH WR EH D UHIOHFWLRQ RI KRVW DYDLODELOLW\ +RZHYHU IRU WKH SUHVHQW ZLOO FRQVLGHU KRVW SUHIHUHQFH D UHDO SKHQRPHQRQ DQG ZLOO H[DPLQH WKH LPSOLFDWLRQ RI VXFK D SKHQRPHQRQ ,I LQ IDFW KRVW SUHIHUHQFH H[LVWV WKHQ WKH DELOLW\ WR GLVFULPLQDWH EHWZHHQ KRVWV PXVW H[LVW ,I WKLV DELOLW\ WR GLVFULPLQDWH H[LVWV LW VKRXOG EH UHYHDOHG LQ VRPH YDULDWLRQ RI VHQVRU\ VWUXFWXUHV XVHG LQ KRVW VHHNLQJ DQG ORFDWLRQ :KDW DUH WKH VWLPXOL EHOLHYHG WR EH LPSRUWDQW LQ KRVW VHHNLQJ" +RZ DQG ZKHUH DUH WKHVH UHFHLYHG" ,Q RUGHU WR DQDO\]H VHDVRQDO KRVW SUHIHUHQFH UHFRUGV IRU DQ\ VSHFLHV RI PRVTXLWR VHDVRQDO YDULDWLRQ LQ DGXOW EHKDYLRU DQG PRUSKRORJ\ VKRXOG EH FRQVLGHUHG 6PLWK f QRWHG WKDW WKH VLWH RI UHVWLQJ SODFHV IRU $Q JDPELDH *LOHV DQG $Q SKDURHQVLV 7KHREDOG ZHUH VHDVRQDOO\ GLIIHUHQW 0LFKHQHU f REVHUYHG WKDW LQ PRVTXLWRHV WKH ZLQWHU LQGLYLGXDOV RI D VSHFLHV DUH RIWHQ ODUJHU WKDQ WKH VXPPHU RQHV DV ZHOO DV EHLQJ GLIIHUHQWO\ FRORUHG +H QRWHG WKDW RYHUZLQWHULQJ IRUPV RI $Q PDFXOLSHQQLV IUHHERUQL $LWNHQ ZHUH ODUJHU DQG GDUNHU

PAGE 18

WKDQ WKH VXPPHU RQHV 7KH VDPH DSSHDUHG WUXH IRU $Q FUXDGULPDFXODWXV 6D\ (YHQ PRUH VWULNLQJ ZHUH WKH VHDVRQDO PRUSKV RI &XOH[ DSLFDOLV WHUULWDQVf DQG &[ QLFUULSDOSXV 7KH VHDVRQDO IRUPV RI WKHVH VSHFLHV ZHUH VXIILFLHQWO\ GLIIHUHQW WR SRVH D SUREOHP LQ FRUUHFW LGHQWLILFDWLRQ 6HDVRQDO YDULDWLRQ LQ VL]H KDV DOVR EHHQ UHSRUWHG LQ &[ WDUVDOLV %RFK t 0LOE\ f ZLWK WKH VPDOOHVW LQGLYLGXDOV RFFXUULQJ LQ WKH KRWWHVW PRQWKV $VVRFLDWHG ZLWK UHGXFHG VL]H LQ &[ WDUVDOLV ZDV D GHFUHDVH LQ DWWUDFWLYHQHVV WR WUDSV RI WKH VDPH W\SH WKDW ZHUH DWWUDFWLYH GXULQJ WKH FRROHU PRQWKV ZKHQ ODUJHU LQGLYLGXDOV ZHUH SUHVHQW )LVK f QRWHG VLJQLILFDQW YDULDELOLW\ LQ WKH VL]H RI ELWLQJ IHPDOHV RI PDQ\ YHFWRU DQG SHVW VSHFLHV RI PRVTXLWRHV &LWLQJ 7DNDKDVKL f %DTDU HW DO f DQG *ULPVWDG t +DUDPLV f )LVK VWDWHG WKDW LW ZDV EHFRPLQJ DSSDUHQW WKDW YHFWRU FRPSHWHQFH FDQ EH DIIHFWHG E\ WKH VL]H RI LQGLYLGXDOV FRPSULVLQJ D SRSXODWLRQ +H FRQFOXGHG WKDW DQ DQDO\VLV RI VL]H YDULDWLRQ IRU QDWXUDO SRSXODWLRQV RI YHFWRU VSHFLHV VKRXOG EH D ILUVW VWHS LQ WKH VWXG\ RI YHFWRULDO FDSDFLW\ LQ PRVTXLWRHV +DUDPLV f QRWHG WKDW ODUYDO QXWULWLRQ KDG D GLUHFW HIIHFW RQ ILWQHVV RI DGXOW PRVTXLWRHV ZLWK VPDOO DGXOWV KDYLQJ UHGXFHG VXUYLYDO DQG IHFXQGLW\ EXW WUDQVPLWWLQJ /DFURVVH YLUXV PRUH HIIHFWLYHO\ WKDQ ODUJH PRVTXLWRHV /DQGU\ HW DO f QRWHG VLJQLILFDQW VHDVRQDO YDULDWLRQ LQ WKH VL]H RI DGXOW IHPDOH $HGHV WULVHULDWXV &UDLJ DQG 9DQGHKH\ f QRWHG WKDW UHDULQJ WHPSHUDWXUHV DIIHFWHG

PAGE 19

FHUWDLQ FRORU PXWDWLRQV LQ $H DHJ\SWL =XVND DQG %HUJ f GRFXPHQWHG VHDVRQDO WHPSHUDWXUH DV RQH RI WKH SULPDU\ IDFWRUV DIIHFWLQJ FRORU YDULDWLRQ LQ 6RXWK $PHULFDQ 7HWDQRFHURLGHV 'LSWHUD 6FLRP\]LGDHf 5HDULQJ WHPSHUDWXUH DIIHFWHG WKH UDWH RI ORVV RI WHQHUDO FKDUDFWHUV LQ $H QLJURPDFXOLV DQG &XOH[ SMSLHQV JXLQJXHIDVFLDWXV ZLWK URWDWLRQ RI PDOH JHQLWDOLD RFFXUULQJ KRXUV DIWHU HPHUJHQFH DW r& EXW QRW IRU KRXUV DW r& 5RVD\ f 7KH DELOLW\ RI PRVTXLWRHV WR EHFRPH LQIHFWHG ZLWK DQG WUDQVPLW YLUXVHV KDV DOVR EHHQ VKRZQ WR EH WHPSHUDWXUH UHODWHG 7XUHOO HW DO f 6LQFH WKH VL]H RI LQGLYLGXDO PRVTXLWRHV LV UHODWHG WR WKH VHDVRQDO WHPSHUDWXUHV DQG WKH DELOLW\ WR WUDQVPLW DOVR LV WHPSHUDWXUHUHODWHG LW IROORZV WKDW YLUDO DFWLYLW\ ZRXOG EH SUHGLFWHG WR EH KLJKHVW GXULQJ WKH VXPPHU PRQWKV 7KLV LV NQRZQ WR EH WUXH IRU PDQ\ RI WKH HQFHSKDOLWLV YLUXVHV +HVV HW DO f *ULPVWDG f SURSRVHG D UHGXFHG JXW EDUULHU WR YLUDO SDUWLFOHV LQ VPDOOHU LQGLYLGXDOV DV WKH PHFKDQLVP EHKLQG KLJKHU LQIHFWLRQ UDWHV LQ VPDOOHU LQGLYLGXDOV 7KHVH VDPH VPDOOHU LQGLYLGXDOV DOVR ZHUH VKRZQ WR WDNH SURSRUWLRQDWHO\ PRUH LQIHFWLRXV YLUDO SDUWLFOHV LQ D EORRGPHDO ,QFOXGHG DPRQJ YLUDO GLVHDVHV WUDQVPLWWHG E\ PRVTXLWRHV LV HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV (((f 7KLV YLUXV LV EHOLHYHG WR LQYROYH DQ HQ]RRWLF F\FOH PDLQWDLQHG ZLWKLQ DYLDQ KRVWV E\ RQH RU PRUH VSHFLHV RI DYLSKLOLF PRVTXLWRHV WKHQ VRPHKRZ WUDQVPLWWHG WR ODUJHU PDPPDOLDQ KRVWV VXFK DV PDQ DQG KRUVHV ZKHUH IDWDOLWLHV DUH IUHTXHQW 7KH

PAGE 20

PHFKDQLVP EHKLQG WUDQVPLVVLRQ WR GHDGHQG KRVWV LV DV \HW XQNQRZQ 7KH SULPDU\ HQ]RRWLF YHFWRU LV EHOLHYHG WR EH &V PHODQXUD DOWKRXJK DSSUR[LPDWHO\ WZHQW\ VSHFLHV RI LQVHFWV KDYH KDG WKH YLUXV RI ((( LVRODWHG IURP WKHP 7KH VWXG\ VLWH IRU WKLV UHVHDUFK ZDV NP HDVW RI /DNH %XWOHU )ORULGDLQ 8QLRQ &R RQ WKH SURSHUW\ RI -RKQ :KLWHKHDG 7KLV IDUP ZDV FKRVHQ EHFDXVH RI FRQILUPHG FDVHV RI ((( WKDW RFFXUUHG LQ DQG )LHOG VWXGLHV KDG GHPRQVWUDWHG D VWDEOH SRSXODWLRQ RI &V PHODQXUD RQ WKH SURSHUW\ $ ZLGH YDULHW\ RI DQLPDOV LQFOXGLQJ D KHUG RI FDWWOH KRUVHV GRJV SLJV JXLQHD IRZO GHHU WXUNH\ DQG UDEELWV ZDV IRXQG ZLWKLQ WKH FRQILQHV RI WKH SURSHUW\ 7KUHH FKLFNHQ KRXVHV FRQWDLQHG FKLFNHQV GXULQJ SDUW RI WKH \HDU /DUJH RSHQ WUDFWV RI SDVWXUH ZHUH VXUURXQGHG E\ SLQH ZRRGV UHGPDSOH DQG JXP VZDPSV DQG ULYHU IORRG SODLQ 3UHOLPLQDU\ GDWD DQG SHUVRQDO ILHOG REVHUYDWLRQV LQGLFDWHG WKH SUHVHQFH RI D ODUJHU GDUNHU ZLQWHU IRUP RI &V PHODQXUD ZKLFK ZDV JUDGXDOO\ UHSODFHG E\ D OLJKWHU VPDOOHU VXPPHU IRUP $GXOW VHDVRQDO YDULDWLRQ LQ VL]H DQG VXVFHSWLELOLW\ WR &EDLWHG &'& PLQLDWXUH OLJKW WUDSV ZHUH WKH PDLQ FDWDO\VWV EHKLQG WKH UHVHDUFK ,I YHFWRU VXUYHLOODQFH IRU PRVJXLWRHV LV VR GHSHQGHQW XSRQ FROOHFWLQJ SDUWLFXODU VSHFLHV WKH PHFKDQLVPV EHKLQG D EHKDYLRUDO VKLIW HLWKHU LQ WHUPV RI KRVW SUHIHUHQFH RU LQ WHUPV RI DWWUDFWLYHQHVV WR WUDSV QHHG WR EH LQYHVWLJDWHG DQG XQGHUVWRRG

PAGE 21

0\ RULJLQDO SXUSRVH IRU ZRUNLQJ DW WKLV VWXG\ VLWH ZDV WR FROOHFW DGXOW IHPDOH PRVJXLWRHV IRU YLUXV LVRODWLRQ 3UHVXPDEO\ WKRVH PRVTXLWRHV WUDQVPLWWLQJ ((( WR KRUVHV ZRXOG EH FROOHFWHG DQG LGHQWLILHG DV WKH YHFWRUVf E\ YLUXV LVRODWLRQ 7KHUHIRUH WKH ILUVW REMHFW RI WKLV UHVHDUFK ZDV WR GHWHUPLQH WKH PRVTXLWR VSHFLHV WKDW RFFXUUHG DW WKH VWXG\ VLWH $ SUHOLPLQDU\ \HDU RI FROOHFWLRQ GDWD FRQILUPHG WKH H[LVWHQFH RI DSSUR[LPDWHO\ VSHFLHV RI PRVTXLWRHV 7KHVH LQFOXGHG $Q FUXFLDQV $Q SXQFWLSHQQLV $Q TXDGULPDFXODWXV 7R[RUKYQFKLWHV UXWLOXV $H DHT\SWL $H WULVHULDWXV $H KHQGHUVRQL $H VWLFWLFXV $H PLWFKHOODH $H GXSUHHL $H DWODQWLFXV $H LQILUPDWXV $H YH[DQV $H FDQDGHQVLV $H IXOYXV SDOOHQV 3VRURSKRUD KRZDUGLL 3V FLOLDWD 3V FROXPELDH 3V IHUR[ &[ TXLQTXHIDVFLDWXV &[ VDOLQDULXV &[ QLJULSDOSXV &[ SLORVXV &[ WHUULWDQV &[ UHVWXDQV &[ HUUDWLFXV &V PHODQXUD &V LQRUQDWD 8UDQRWDHQLD VDSSKLULQD 8U ORZLL 2UWKRSRGRP\LD VLJQIHUD DQG &RTXLOOHWWLGLD SHUWXUEDQV 2I WKHVH RQO\ HLJKW ZHUH GHILQLWHO\ SUHVHQW WKURXJKRXW WKH HQWLUH \HDU 7KHVH ZHUH $Q FUXFLDQV $Q SXQFWLSHQQLV $Q TXDGULPDFXODWXV &[ TXLQTXHIDVFLDWXV &[ VDOLQDULXV &[ QLJULSDOSXV &[ WHUULWDQV DQG &V PHODQXUD $GGLWLRQDOO\ &[ HUUDWLFXV $HGHV DHT\SWL 2UWKRSRGRP\LD VLJQIHUD DQG $HGHV WULVHULDWXV PD\ KDYH EHHQ SUHVHQW DOO \HDU 6LQFH ERWK $HGHV VSHFLHV DQG 2UWKRSRGRP\LD DUH VHOGRP FROOHFWHG DV DGXOWV WKHLU SUHVHQFH WKURXJKRXW WKH \HDU ZDV QRW FRQILUPHG

PAGE 22

6DPSOLQJ WHFKQLTXHV IRU &V PHODQXUD FRQVLVWHG RI ODUYDO FROOHFWLRQV WR YHULI\ EUHHGLQJ DGXOW FROOHFWLRQV IURP UHVWLQJ ER[HV (GPDQ HW DO f DQG &'& PLQLDWXUH OLJKW WUDSV EDLWHG ZLWK GU\ LFH DV D & VRXUFH 5HVWLQJ ER[ FROOHFWLRQV ZHUH PDGH RQ WKH VDPH GD\V WKDW &'& FROOHFWLRQV ZHUH PDGH 8QIRUWXQDWHO\ DW WKH HQG RI WKH VHYHQWK PRQWK RI WKLV UHVHDUFK WKH VZDPS EHLQJ XVHG IRU FROOHFWLRQV ZDV FOHDUFXW IRU HYHQWXDO SODQWLQJ RI SLQH $V D UHVXOW FROOHFWLRQV WKDW SUHYLRXVO\ ZHUH EHLQJ PDGH LQ ZRRGHG DUHDV EHFDPH RSHQ DUHD FROOHFWLRQV FKRVH WR OHDYH WUDSV DQG UHVWLQJ ER[HV LQ WKH VDPH ORFDWLRQV IRU WKH UHPDLQGHU RI WKH \HDU 7KH GDWD IRU WKHVH FROOHFWLRQV DUH RQO\ XVHG KHUH WR FRQILUP WKH SUHVHQFH RI DGXOW &V PHODQXUD WKURXJKRXW WKH \HDU 1R VWDWLVWLFDO DQDO\VLV RI WKH FROOHFWLRQ GDWD LV SRVVLEOH GXH WR WKH FRPSOHWH GLVUXSWLRQ RI WKH VWXG\ VLWH IRU RQHWKLUG RI WKH FROOHFWLRQ SHULRG 0DQ\ LQYHVWLJDWLRQV LQWR WKH RFFXUUHQFH RI ((( KDYH FRUUHODWHG WKH SUHVHQFH RI &V PHODQXUD ZLWK YLUDO DFWLYLW\ %U\DQW HW DO &KDPEHUODLQ &KDPEHUODLQ HW DO 'DUGLUL HW DO 'RXJKHUW\ t 3ULFH )HHPVWHU )HUJXVRQ *ROGILHOG t 6XVVPDQ *UDG\ HW DO *ULPVWDG +D\HV HW DO -D\QHV HW DO .HOVHU /H'XF HW DO 0DLQ HW DO 0XXO HW DO 2JOHVE\ 6ULKRQJVH HW DO 6WDPP HW DO 6XGLD HW DO :DOOLV :DOOLV HW DO DQG

PAGE 23

:LOOLDPV HW DO f 6RPH LQYHVWLJDWRUV IHHO WKDW WKH SUHVHQFH RI WKLV VSHFLHV LV QHFHVVDU\ IRU WKH YLUXV WR F\FOH ZLWKLQ UHVLGHQW ELUG SRSXODWLRQV WR ODWHU VRPHKRZ EH WUDQVPLWWHG WR RWKHU KRVWV 2QH PHDVXUH IRU HVWLPDWLQJ SRWHQWLDO YLUDO DFWLYLW\ LQYROYHV PRQLWRULQJ SRSXODWLRQV RI &V PHODQXUD GHFLGHG WR PRQLWRU WKH VHDVRQDO RFFXUUHQFH RI WKLV VSHFLHV DW WKH /DNH %XWOHU VLWH 7R LQVXUH WKDW EHKDYLRUDO DQG VWUXFWXUDO FRPSDULVRQ ZHUH UHSRUWHG DFFXUDWHO\ RQH RI WKH ILUVW TXHVWLRQV WR EH DQVZHUHG ZDV ZKDW LQVHFW VSHFLHV ZDV DFWXDOO\ EHLQJ VWXGLHG" $ QHFHVVDU\ SDUW RI WKLV VWXG\ ZDV WR LQVXUH WKDW LQ IDFW &V PHODQXUD ZDV E\ DOO DYDLODEOH SDUDPHWHUV WKH &V PHODQXUD GHVFULEHG LQ WKH OLWHUDWXUH :LWK WKLV LQ PLQG REWDLQHG FROOHFWLRQV IURP WKH W\SH ORFDOLW\ 1HZ +DPSVKLUHf IRU FRPSDULVRQ 1R PRUSKRORJLFDO GLIIHUHQFHV ZHUH DSSDUHQW EHWZHHQ 1HZ +DPSVKLUH DQG )ORULGD VSHFLPHQV 6LQFH HYLGHQFH H[LVWV IRU FU\SWLF VSHFLHV ZLWKLQ RWKHU PRVTXLWR VSHFLHV FRPSOH[HV IHOW WKDW DQ DGGLWLRQDO FRPSDULVRQ ZRXOG UHLQIRUFH P\ EHOLHI WKDW RQO\ RQH VSHFLHV ZDV LQ IDFW LQYROYHG KHUH &XWLFXODU K\GURFDUERQV ZHUH FKRVHQ IRU IXUWKHU FRPSDULVRQV 7KHVH FRPSDULVRQV DUH SUHVHQWHG LQ &KDSWHU $V D UHVXOW RI WKHVH FRPSDULVRQV VHYHUDO TXHVWLRQV DURVH FRQFHUQLQJ YDULDWLRQ LQ WKH DGXOW K\GURFDUERQ SDWWHUQV" :DV WKLV YDULDWLRQ FRUUHODWHG ZLWK WKH WZR VHDVRQDO PRUSKV LQ WKH ZLOG SRSXODWLRQV RI &V PHODQXUD DW /DNH %XWOHU" ,I VHDVRQDO VKLIWV LQ K\GURFDUERQ SDWWHUQV RFFXU KRZ PLJKW WKLV DIIHFW WKH XVH RI WKLV WHFKQLTXH WR

PAGE 24

VROYH WD[RQRPLF SUREOHPV" +RZ PXFK RI D GLIIHUHQFH ZRXOG EH QHFHVVDU\ WR FRUUHFWO\ LQWHUSUHW VSHFLHV GLIIHUHQFHV" &XWLFXODU K\GURFDUERQV FRQVWLWXWH D SDUW RI WKH FKHPLFDO PDNHXS RI LQGLYLGXDO LQVHFWV &KHPLFDO FRPSRVLWLRQ ZLWKLQ D VSHFLHV PD\ EH HQYLURQPHQWDOO\ FKDQJHG %U\DQW f IHOW WKDW LI WKH FKHPLFDO LGHQWLW\ RI D VSHFLHV FRXOG EH HQYLURQPHQWDOO\ VKLIWHG WKH SRVVLELOLW\ FHUWDLQO\ PXVW H[LVW IRU EHKDYLRUDO FKDQJHV DOVR EHLQJ LQIOXHQFHG E\ HQYLURQPHQWDO SDUDPHWHUV %HIRUH FRQGXFWLQJ H[SHULPHQWDO DQDO\VLV RI WKH HIIHFW RI RQH HQYLURQPHQWDO SDUDPHWHU WHPSHUDWXUHf RQ DGXOW PRVTXLWR ROIDFWRU\ VWUXFWXUHV UHYLHZHG KRVW SUHIHUHQFH UHFRUGV WR VHDUFK IRU VXJJHVWLRQ RI VHDVRQDO GLIIHUHQFHV +RVW SUHIHUHQFH UHFRUGV DUH QXPHURXV LQ WKH OLWHUDWXUH +RZHYHU PRVW UHSRUWV DUH EDVHG RQ SRROHG VDPSOHV FROOHFWHG RYHU VHYHUDO \HDUV IURP VHYHUDO ORFDWLRQV :KLOH WKHVH UHSRUWV GRFXPHQW KRVW SUHIHUHQFH YDULDWLRQ WKH\ VHOGRP GLVFXVV VHDVRQDO KRVW SUHIHUHQFH YDULDWLRQ %\ UHDQDO\]LQJ WKH GDWD IURP VHYHUDO GLIIHUHQW DXWKRUV WUHQGV LQ KRVW SUHIHUHQFH EHJDQ WR HPHUJH DQG VHDVRQDO SDWWHUQV ZHUH VXJJHVWHG 7KHVH SDWWHUQV DUH GLVFXVVHG LQ &KDSWHU 7KH PRUSKRORJ\ RI VHQVRU\ VWUXFWXUHV LQ PRVTXLWRHV UHYHDOV PXFK LQWHUVSHFLILF YDULDWLRQ 'R VWUXFWXUDO GLIIHUHQFHV DIIHFW WKH DELOLW\ WR VHOHFW FHUWDLQ KRVWV" &RXOG WKH PRUSKRORJLFDO YDULDWLRQ EH FRUUHODWHG ZLWK VHDVRQDO EHKDYLRUDO FKDQJHV" &RXOG KRVW GHWHFWLRQ FDSDELOLWLHV EH FRUUHODWHG ZLWK PRUSKRORJ\" ,I PRUSKRORJ\ FRXOG EH FRUUHODWHG

PAGE 25

ZLWK KRVW SUHIHUHQFH ZKDW HIIHFW PLJKW D FKDQJH LQ PRUSKRORJ\ KDYH RQ KRVW SUHIHUHQFH" :KDW PLJKW EH D SUDFWLFDO PHWKRG WR PHDVXUH VHQVRU\ FDSDELOLWLHV" %DVHG RQ WKH SRVVLELOLW\ RI PRUSKRORJLFDO YDULDWLRQ ZLWKLQ KRVW GHWHFWLRQ VHQVRU\ VWUXFWXUHV GHFLGHG WR ORRN DW WKH YDULDWLRQ ZLWKLQ WKH RYHUDOO FRQILJXUDWLRQ RI WKHVH VDPH VWUXFWXUHV LQ VHYHUDO VSHFLHV 7KH DFWXDO VWUXFWXUHV LQYROYHG LQ KRVW GHWHFWLRQ DUH LOOXVWUDWHG DQG GLVFXVVHG LQ GHWDLO WR FODULI\ WKH VKDSH DQG FRQILJXUDWLRQV WKDW RFFXU LQ PRVTXLWRHV $ WKRURXJK XQGHUVWDQGLQJ RI WKH VWUXFWXUHV LQYROYHG LV QHFHVVDU\ WR XQGHUVWDQG KRVW SUHIHUHQFH ,QWHUVSHFLILF YDULDWLRQ LQ WKHVH VWUXFWXUHV LV GLVFXVVHG LQ &KDSWHU +DYLQJ GRFXPHQWHG YDULDWLRQ EHWZHHQ VSHFLHV DQG XVLQJ WKH VXJJHVWLRQV WKDW UHVXOWHG IURP GDWD SUHVHQWHG LQ &KDSWHU UHJDUGLQJ WKH HIIHFW RI WHPSHUDWXUH RQ WKH FKHPLFDO PDNHXS RI FXWLFXODU K\GURFDUERQ SURILOHV WKHQ FRPSDUH WKH HIIHFW RI YDULHG ODUYDO UHDULQJ WHPSHUDWXUH RQ WKH VHQVRU\ VWUXFWXUHV RI $H DHJ\SWL DQG &V PHODQXUD $HGHV DHJ\SWL ZDV FKRVHQ EHFDXVH RI LWV UDSLG GHYHORSPHQW WLPH HDVH LQ UHDULQJ DQG DFFHVVLELOLW\ :LOG &V PHODQXUD ZHUH FKRVHQ WR GHWHUPLQH LI ILHOG REVHUYHG YDULDWLRQ FRXOG EH GXSOLFDWHG LQ WKH ODE 7KHVH UHVXOWV DUH SUHVHQWHG LQ &KDSWHU 9DULDWLRQ ZLWKLQ WKH QXPEHU RI VHQVRU\ VWUXFWXUHV ZLWKLQ D VSHFLHV OHIW XQDQVZHUHG WKH TXHVWLRQ RI KRZ WR TXDQWLI\ WKH HIIHFW RI FKDQJHV LQ PRUSKRORJ\ RQ KRVW GHWHFWLRQ FDSDELOLWLHV GHFLGHG WR HVWLPDWH WKH VXUIDFH DUHD RI WKH

PAGE 26

SDOSDO VHJPHQW WKDW FRQWDLQV WKH & UHFHSWRUV DQG WR VHH KRZ WKLV ZDV DIIHFWHG E\ FKDQJHV LQ WKH VL]H RI WKH DGXOW IHPDOHV WKDW ZHUH SURGXFHG DW YDULHG WHPSHUDWXUHV 8VLQJ WKHVH FDOFXODWLRQV WKHQ GHFLGHG WR ORRN IRU FRUUHODWLRQV EHWZHHQ VXUIDFH DUHD DQG KRVW SUHIHUHQFH 5HFRJQL]LQJ WKDW WKH VXUIDFH RI WKH SDOS WKDW FRQWDFWV DLU IRU KRVW GHWHFWLRQ DFWXDOO\ UHSUHVHQWV WKH LQQHU KDOI RI HDFK SDOS DQG WKDW WKH YROXPH RI DLU WKDW LV VDPSOHG E\ D IHPDOH PRVTXLWR LV D IXQFWLRQ RI WKH YROXPH RI DLU FRQWDLQHG EHWZHHQ WKH SDOSL DW DQ\ SRLQW LQ WLPH FRPSDUHG WKH YROXPHV RI DLU VDPSOHG E\ YDULRXV VL]HG SDOSL 7KHVH FRPSDULVRQV DUH SUHVHQWHG LQ &KDSWHU 0\ K\SRWKHVLV LV WKDW KRVW SUHIHUHQFH UHFRUGV IRU YDULRXV PRVTXLWRHV DUH DWWULEXWDEOH WR WKH PRUSKRORJ\ RI WKH IHPDOH PRVTXLWR DQG WR WKH YROXPH RI RGRUV JLYHQ RII E\ YDULRXV DQLPDOV ,Q RUGHU WR FRPSDUH WKHVH WZR IDFWRUV D PHDVXUH RI KRVW HPDQDWLRQV PXVW EH HVWLPDWHG FDOFXODWHG YROXPH RI UHVSLUHG JDVHV IRU D ZLGH UDQJH RI DQLPDO VSHFLHV DQG WKHQ DUUDQJHG WKHP E\ JURXSV DFFRUGLQJ WR VLPLODU DPRXQWV RI H[SLUHG YROXPH 7KHVH FDOFXODWLRQV ZHUH WKHQ FRPSDUHG ZLWK UHSRUWHG KRVW SUHIHUHQFH UHFRUGV 7KUHH IDFWRUV KRVW VXUIDFH DUHD KRVW UHVSLUHG YROXPH DQG UHVSLUHG YROXPH RI &PLQXWH ZHUH IRXQG WR EH FRUUHODWHG ZLWK KRVW SUHIHUHQFH )URP WKHVH FRPSDULVRQV D SDWWHUQ HPHUJHG WKDW LV SURSRVHG DV DQ H[SODQDWLRQ IRU KRVW SUHIHUHQFH DQG DV D PHDQV WR UHH[DPLQH WUDS GHVLJQ

PAGE 27

7KH DSSOLFDWLRQ DQG WHVWLQJ RI WKH LGHDV SUHVHQWHG KHUH ZLOO LQYROYH ORQJWHUP VWXGLHV LQYROYLQJ PDQ\ GLIIHUHQW GLVFLSOLQHV :KDW EHJDQ DV D VLPSOH H[DPLQDWLRQ LQWR WKH EHKDYLRU RI D VLQJOH VSHFLHV KDV UDLVHG JXHVWLRQV FRQFHUQLQJ WKH FRQFHSWV RI WUDS GHVLJQ DQG WKH YDOLGLW\ RI WKH WHUP KRVW SUHIHUHQFH KRSH WKDW WKH GRFXPHQWDWLRQ DQG FRPSDULVRQ LQWHUVSHFLILF DQG LQWUDVSHFLILFf RI VHQVRU\ VWUXFWXUHV NQRZQ WR EH LQYROYHG LQ KRVW VHHNLQJ ZLOO IRUP WKH EDVLV IRU LQYHVWLJDWLRQV LQWR YDULRXV DWWUDFWDQWV DQG SRVVLEO\ RIIHU DQ H[SODQDWLRQ IRU WKH YDULDWLRQ LQ KRVW SUHIHUHQFHV WKDW KDYH EHHQ UHSRUWHG LQ WKH OLWHUDWXUH %DVHG RQ WKH IHZ FRPPRQ HPDQDWLRQV WKDW RFFXU LQ PDPPDOV D GHVLJQ VKRXOG EH SRVVLEOH WR PD[LPL]H WKH DWWUDFWLRQ DQG FROOHFWLRQ RI PRVJXLWRHV WKDW SUHIHU D FHUWDLQ KRVW VL]H UDQJH 7KLV LQ WXUQ VKRXOG PD[LPL]H RXU DELOLW\ WR VXUYH\ IRU YHFWRUV RI GLVHDVHV VXFK DV HQFHSKDOLWLV

PAGE 28

&+$37(5 %,2/2*< $1' 6($621$/ $%81'$1&( 2) &XOLVHWD PHODQXUD $7 /$.( %87/(5 )/25,'$ *HQHUDO %LRORJ\ &XOLVHWD PHODQXUD RFFXUV DV IDU QRUWK DV HDVWHUQ &DQDGD DV IDU ZHVW DV WKH 0LVVLVVLSSL 5LYHU DQG DV IDU VRXWK DQG HDVW DV 7H[DV WR WKH *XOI RI 0H[LFR DQG )ORULGD 'DUVLH t :DUG f 7KLV VSHFLHV KDV EHHQ D SRSXODU LQVHFW WR VWXG\ VLQFH LWV LPSOLFDWLRQ DV WKH HQ]RRWLF YHFWRU RI (DVWHUQ (TXLQH (QFHSKDORP\HOLWLV (((f LQ /RXLVLDQD &KDPEHUODLQ HW DO f $PRQJ WKH VSHFLHV RI )ORULGD &XOLFLQL PRVTXLWRHV &V PHODQXUD IHPDOHV DUH HDVLO\ UHFRJQL]HG E\ WKHLU XQLIRUP GDUN EURZQ FRORU ODFN RI GRUVDO DEGRPLQDO EDQGLQJ SDWWHUQV H[WUHPHO\ ORQJ FXUYHG SURERVFLV DQG D WXIW RI VHYHUDO ORQJ VHWDH RQ WKH XQGHUVLGH RI WKH ZLQJ DW WKH DQWHULRU SUR[LPDO PDUJLQ RI WKH VXEFRVWDO YHLQ 0DOHV DUH OHVV HDVLO\ UHFRJQL]HG EXW PD\ EH LGHQWLILHG E\ SDOSL H[WHQGLQJ EH\RQG WKH SURERVFLV QR GRUVDO DEGRPLQDO EDQGLQJ SDWWHUQ XQLIRUP FRORU DQG WKH VDPH WXIW RI KDLU RQ WKH XQGHUVLGH RI WKH ZLQJV /DUYDH DUH UHDGLO\ UHFRJQL]HG LQ WKH ILHOG EHLQJ YHU\ HORQJDWH KDYLQJ D ORQJ VOHQGHU VLSKRQ DQG FKDUDFWHULVWLFDOO\ FRORUHG ZLWK D KRUL]RQWDO EDQGLQJ SDWWHUQ FDXVHG E\ SLJPHQWDWLRQ RI HDFK VHJPHQW /DUYDH WKDW DUH FROOHFWHG IURP

PAGE 29

EXUURZV DUH W\SLFDOO\ YHU\ SDOH ZKLOH WKRVH FROOHFWHG IURP RSHQ SRROV DUH PXFK GDUNHU &XOLVHWD PHODQXUD KDYH D FKDUDFWHULVWLF HJJ UDIW XQOLNH DQ\ RWKHU PRVTXLWR REVHUYHG LQ )ORULGD )LJ f (JJV DUH DWWDFKHG LQ D FLUFXODU GRXJKQXWVKDSHG FRQFDYH UDIW 1XPHURXV SDSHUV KDYH EHHQ ZULWWHQ GHDOLQJ ZLWK YDULRXV DVSHFWV RI WKH ELRORJ\ RI WKLV VSHFLHV 7KH UHDGHU LV UHIHUUHG WR WKHVH IRU D FRPSUHKHQVLYH UHYLHZ %XUEXWLV t /DNH (GPDQ HW DO )DYRULWH t 'DYLV +D\HV -RVHSK t %LFNOH\ /DNH HW DO /RYH t *RRGZLQ 0RNU\ 0RUULV t 6ULKRQJVH 0RUULV HW DO 0RXVVD HW DO 0XXO HW DO 1DVFL t (GPDQ D E 5HHYHV HW DO 6FRWW HW DO 6LYHUO\ t 6FKRRI 6SLHOPDQ :DOOLV :DOOLV t :KLWPDQ DQG :LUWK f 7KLV VSHFLHV KDV EHHQ UHSRUWHG IURP DOO EXW RQH FRXQW\ RI )ORULGD DOWKRXJK YRXFKHU VSHFLPHQV DUH ODFNLQJ WR FRQILUP PRVW UHFRUGV %HFDXVH RI WKH GLIILFXOW\ LQ VHSDUDWLQJ VSHFLPHQV WKDW KDYH EHHQ GDPDJHG LQ WUDS FROOHFWLRQV WKH VRXWKHUQ GLVWULEXWLRQ RI WKLV VSHFLHV LQ )ORULGD DZDLWV FRQILUPDWLRQ $GXOW DFWLYLW\ RFFXUV WKURXJKRXW WKH \HDU LQ )ORULGD 7KH QXPEHU RI JHQHUDWLRQV SHU \HDU PXVW YDU\ DFFRUGLQJ WR VHDVRQDO IOXFWXDWLRQV LQ UDLQIDOO DQG WHPSHUDWXUH $ PLQLPXP QXPEHU RI JHQHUDWLRQV SHU \HDU RFFXUV *UDYLG IHPDOHV DUH SUHVHQW WKURXJKRXW WKH \HDU 6LQFH DGXOWV DUH NQRZQ WR OLYH IRU VHYHUDO PRQWKV DQG VLQFH

PAGE 30

)LJ (JJ UDIW RI &XOLVHWD PHODQXUD KRXUV ROG *UDYLG IHPDOH FROOHFWHG LQ UHVWLQJ ER[ /DNH %XWOHU )ORULGD

PAGE 32

SRSXODWLRQV WHQG WR EH RYHUODSSLQJ ZLWK OLWWOH DSSDUHQW V\QFKURQ\ LQ )ORULGD WKH DFWXDO QXPEHU RI JHQHUDWLRQV EHFRPHV GLIILFXOW WR GHWHUPLQH 7KHUH DUH KRZHYHU GLVWLQFW VHDVRQDO PRUSKV LQ )ORULGD ZKLFK UHSODFH HDFK RWKHU $ ODUJH GDUN FRRO ZHDWKHU PRUSK DSSHDUV LQ HDUO\ ZLQWHU DQG LV WKH SUHGRPLQDQW IRUP XQWLO ODWH VSULQJ DQG HDUO\ VXPPHU ZKHUH LW LV JUDGXDOO\ UHSODFHG E\ D VPDOOHU OLJKWHU IRUP 5HSODFHPHQW LV QHYHU DEVROXWH SHUKDSV RZLQJ WR WKH ORQJHYLW\ RI DGXOW IHPDOHV 6HDVRQDO DEXQGDQFH &ROOHFWLRQV ZHUH PDGH ZHHNO\ WR GHWHUPLQH VHDVRQDO DEXQGDQFH DW WKH VWXG\ VLWH 7KHVH FROOHFWLRQV LQFOXGHG IRXU &'& PLQLDWXUH OLJKW WUDSV EDLWHG ZLWK SRXQGV RI GU\ LFH SHU WUDS DQG UHVWLQJ ER[ FROOHFWLRQV (DFK &'& WUDS KDG D UHVWLQJ ER[ )LJ f SODFHG QHDUE\ 7UDS FROOHFWLRQV ZHUH SRROHG E\ PRQWKV FROOHFWHG 6HYHUDO QRWDEOH HYHQWV RFFXUUHG GXULQJ WKH VWXG\ SHULRG 7KH SULPDU\ FROOHFWLRQ VLWH FHQWHUHG DURXQG D VPDOO F\SUHVV GRPH VXUURXQGHG E\ SLQH IODWZRRGV 7\SLFDOO\ WKLV KDELWDW GULHV FRPSOHWHO\ GXULQJ WKH HDUO\ VXPPHU PRQWKV 3HULRGV GXULQJ ZKLFK QR ZDWHU ZDV SUHVHQW LQ WKH VZDPS RFFXUUHG LQ $SULO0D\ DQG -XQH 8QIRUWXQDWHO\ GXULQJ 1RYHPEHU WKH SLQH ZRRGV ZHUH FOHDU FXW H[SRVLQJ WKH F\SUHVV DQG OHDYLQJ WKH F\SUHVV GRPH DV D VPDOO LVODQG LQ WKH PLGGOH RI D YDVW H[SDQVH RI RSHQ ILHOG &DWFKHV GHFOLQHG GUDPDWLFDOO\ IROORZLQJ WKH ORVV RI VXUURXQGLQJ ZRRGV $OWKRXJK WKH VLWH FRQWLQXHG WR EH D VRXUFH RI &V PHODQXUD

PAGE 33

)LJ 5HVWLQJ ER[ IRU FROOHFWLRQ RI &XOLVHWD PHODQXUD

PAGE 35

ODUYDO SRSXODWLRQV GHFOLQHG VWHDGLO\ DQG QRZ RQO\ D IHZ ODUYDH PD\ EH IRXQG WKHUH 7KLV LV SHUKDSV GXH WR WKH XQDWWUDFWLYHQHVV RI WKH RSHQ KDELWDW /DUYDH PD\ RQO\ EH IRXQG WKHUH LQ VWXPS KROHV )LJ f DQG XQGHU URRW V\VWHPV )LJf 3ULRU WR WKH FOHDUFXW RSHUDWLRQV ODUYDH ZHUH DEXQGDQW LQ WKH RSHQ EXW VKDGHG SRROV WKURXJKRXW WKH F\SUHVV GRPH $V ZDWHU OHYHOV UHFHGHG ODUYDH ZHUH IRXQG FORVHU DQG FORVHU WR WKH RYHUKDQJV RI WKH KXPPRFNV WKDW ZHUH RFFXSLHG E\ 9DFFLQLXP VS $GXOW SRSXODWLRQV UHWUHDWHG WR ZRRGV WKDW ZHUH OHIW XQGLVWXUEHG E\ WKH ORJJLQJ RSHUDWLRQV 7KHUH DGXOW SRSXODWLRQV ZHUH VDPSOHG UHJXODUO\ E\ WKH PHWKRGV GHVFULEHG DERYH 1XPHURXV EXUURZV ZLWKLQ WKHVH ZRRGV SURYLGHG DEXQGDQW RYLSRVLWLRQ VLWHV DQG ODUYDO SRSXODWLRQV ZHUH SUHVHQW DV ORQJ DV ZDWHU OHYHOV ZHUH KLJK HQRXJK WR SRRO ZDWHU DW WKH HQGV RI WKH EXUURZ V\VWHPV :KHQ ZDWHU OHYHOV GURSSHG EHORZ WKH OHYHO RI WKH EXUURZ V\VWHPV ODUYDH ZHUH DEVHQW +RZHYHU ODUYDH UHDSSHDUHG YHU\ VRRQ DIWHU EXUURZV EHFDPH UHIORRGHG 5HVWLQJ ER[ FROOHFWLRQV GURSSHG GUDPDWLFDOO\ DIWHU WKH ZRRGV ZHUH FXW EXW &EDLWHG WUDS FDWFK QXPEHUV URVH 7KLV PD\ UHSUHVHQW PRUH KRVWVHHNLQJ DFWLYLW\ LQWR WKH QRZ H[SRVHG RSHQ DUHDV 3UHYLRXVO\ DGXOWV PD\ KDYH OHIW WKH VZDPSV WR YHQWXUH LQWR WKH RSHQ ZRRGV LQ VHDUFK RI D EORRG PHDO 3HUVRQDO H[SHULHQFH KDV GHPRQVWUDWHG WKDW WKH SRRUHVW EDLW FROOHFWLRQV DUH PDGH FORVH WR WKH RYLSRVLWLRQ VLWHV IRU &V PHODQXUD &RQYHUVHO\ WKHVH DUH WKH SUHIHUUHG VLWHV IRU PD[LPXP UHVWLQJ ER[ FROOHFWLRQV 7KHVH IDFWRUV LQIOXHQFH WKH HIIHFWLYHQHVV RI VXUYHLOODQFH WHFKQLTXHV

PAGE 36

)LJ 5RW KROH DW EDVH RI SLQH WUHH OHDGLQJ GRZQ WR XQGHUJURXQG ODUYDO FROOHFWLRQ VLWH RI &XOLVHWD PHODQXUD

PAGE 38

)LJ 5RWWHG VWXPS FDYLW\ LQ ZKLFK &XOLVHWD PHODQXUD DGXOWV DQG ODUYDH ZHUH FROOHFWHG WKURXJKRXW WKH \HDU DW /DNH %XWOHU )ORULGD

PAGE 40

7R LOOXVWUDWH WKH VHDVRQDO FROOHFWLRQ UHFRUGV IRU &V PHODQXUD DW /DNH %XWOHU )ORULGD GDWD DUH SUHVHQWHG LQ 7DEOHV t 7DEOH FRQVLVWV RI D FRPSDULVRQ EHWZHHQ WRWDO PRQWKO\ FDWFKHV PDOH t IHPDOHf XVLQJ &'& PLQLDWXUH EDLW WUDSV DQG UHVWLQJ ER[HV 7DEOH LV D IXUWKHU EUHDNGRZQ RI WKH IHPDOH PRQWKO\ UHVWLQJ ER[ FDWFKHV VXEGLYLGHG LQWR SK\VLRORJLFDO VWDWHV 6LQFH WKH KDELWDW ZDV DOWHUHG VHYHUHO\ LQ 1RYHPEHU WKHVH GDWD DUH SUHVHQWHG WR LOOXVWUDWH WKH IDFW WKDW & EDLWHG WUDSV DORQH DSSHDU WR PLVV SHULRGV RI VXPPHU DFWLYLW\ RI &V PHODQXUD LQ )ORULGD ZKHUHDV UHVWLQJ ER[HV PD\ GR WKH VDPH LQ ZLQWHU /RFDWLRQ RI WKHVH WUDSV SUHVXPDEO\ SOD\V D VLJQLILFDQW UROH LQ WKH HIIHFWLYHQHVV RI HLWKHU WHFKQLTXH /DUYDH ZHUH DEXQGDQW GXULQJ )HEUXDU\ 7KH VZDPS JUDGXDOO\ GULHG XS XQWLO LQ ODWH $SULO QR VXUIDFH ZDWHU ZDV SUHVHQW (JJ UDIWV ZHUH SUHVHQW LQ 0DUFK DQG HDUO\ $SULO ULJKW XS WR WKH WLPH WKDW VXUIDFH ZDWHU GLVDSSHDUHG 7KH VZDPS UHPDLQHG GU\ IRU WKH PRQWK RI 0D\ +HDY\ VKRZHUV RFFDVLRQDOO\ SRROHG ZDWHU IRU D IHZ GD\V EXW QR SHUPDQHQW ZDWHU ZDV SUHVHQW XQWLO -XQH /DUYDH ZHUH QRW SUHVHQW &V PHODQXUDf XQWLO -XO\ 7KHVH ZHUH HDUO\ LQVWDU :KHWKHU WKHVH ZHUH WKH UHVXOW RI RYLSRVLWLRQ LQ $SULO RU IURP UHFHQW RYLSRVLWLRQ LV XQFOHDU 'XULQJ WKH GURXJKW GXJ GRZQ WR ZDWHU OHYHO D GHSWK RI LQFKHV $W DERXW LQFKHV WKH OHDI OLWWHU DQG GHWULWXV ZDV SRVVLEO\ VXIILFLHQWO\ PRLVW WR VXVWDLQ ODUYDH GXULQJ GURXJKW SHULRGV (DUO\ LQVWDUV ZHUH FROOHFWHG IURP WKH IUHVKO\ GXJ KROHV FDQQRW VD\ IRU

PAGE 41

7DEOH 6HDVRQDO DEXQGDQFH RI &XOLVHWD PHODQXUD DW /DNH %XWOHU )ORULGD )HE 0DU f &'&&2 5HVWLQT %R[HV 0RQWK 0DOHV )HPDOHV 0DOHV )HPDOHV )HEUXDU\ 0DUFK $SULO 0D\ -XQH -XO\ $XJXVW 6HSWHPEHU 2FWREHU 1RYHPEHUr 'HFHPEHU -DQXDU\ )HEUXDU\ 0DUFK r VZDPS FOHDUFXW FHUWDLQ WKDW RYLSRVLWLRQ GLG QRW RFFXU LQ WKH KROHV +RZHYHU ODWHU UHDULQJ H[SHULPHQWV ZLWK &V PHODQXUD GHPRQVWUDWHG WKDW HYHQ DIWHU PRQWKV DW PRGHUDWH WHPSHUDWXUHV XS WR r&f DQG LQ WKH SUHVHQFH RI IRRG VRPH ODUYDH DSSHDUHG WR EH VWLOO VHFRQG LQVWDU GHVSLWH WKH IDFW WKDW WKH PDMRULW\ RI WKHLU VLEOLQJV KDG SXSDWHG 7KLV PD\ RIIHU D PHFKDQLVP IRU ODUYDO VXUYLYDO GXULQJ H[WHQGHG GURXJKW ,I ODUYDO GRUPDQF\ LV SDUWLDOO\ LQGXFHG E\ KLJK WHPSHUDWXUHV LQ )ORULGD DV LW DSSDUHQWO\ LV FROGLQGXFHG LQ WKH QRUWKf WKH ODUYDH PLJKW VXUYLYH IRU VHYHUDO PRQWKV EHORZ WKH VXUIDFH RI WKH JURXQG VXVWDLQHG E\ KLJK KXPLGLW\ LQ PRLVW GHWULWXV EXW RWKHUZLVH UHPDLQLQJ LQDFWLYH 7KLV LV D PDWWHU WKDW PHULWV IXUWKHU LQYHVWLJDWLRQ

PAGE 42

2QH RI WKH LPSRUWDQW IDFWRUV WKDW QHHGV WR EH PRQLWRUHG LQ IHPDOH PRVTXLWRHV LV WKHLU SK\VLRORJLFDO VWDWH 3HULRGV RI KRVWVHHNLQJ DFWLYLW\ ZLOO EH IROORZHG E\ WKH SUHVHQFH RI JUDYLG DQG RYLSRVLWLQJ IHPDOHV 7KH WLPLQJ RI WKHVH DFWLYLWLHV LV EHWWHU PRQLWRUHG E\ UHVWLQJ ER[ FROOHFWLRQV /LJKW WUDS FROOHFWLRQV XVXDOO\ FRQVLVW RI QXOOLSDURXV IHPDOHV WKDW DUH SUHVXPHG WR EH VHHNLQJ KRVWV *UDYLG DQG EORRGLHG IHPDOHV DUH UDUHO\ DWWUDFWHG WR EDLWHG WUDSV +RVW VHHNLQJ DQG EORRGIHHGLQJ DSSDUHQWO\ RFFXUUHG WKURXJKRXW WKH \HDU DW WKH VWXG\ VLWH LQ )ORULGD
PAGE 43

7DEOH 6HDVRQDO DEXQGDQFH DQG SK\VLRORJLFDO VWDWH RI &XOLVHWD PHODQXUD IHPDOHV FROOHFWHG IURP UHVWLQJ ER[HV /DNH %XWOHU )OD )HE 0DUFK f QEJ QRQ EORRGHG QRQJUDYLG E EORRGHG EJ EORRG JUDYLG J JUDYLG Q WRWDPRQWK SHUFHQW RI PRQWKO\ WRWDO 0RQWK QEJ E E&> D Q )HEUXDU\ f f 0DUFK f f f f $SULO f f f f 0D\ f f f f -XQH f f f f -XO\ f f f f $XJXVW f f f f 6HSWHPEHU f f f f 2FWREHU f f f f 1RYHPEHU f 'HFHPEHU f f f f -DQXDU\ f f f f )HEUXDU\ f f 0DUFK f f VLWH RFFXUUHG DW MXVW WKH WLPH ZKHQ D VHDVRQDO VKLIW VKRXOG KDYH EHHQ PRVW DSSDUHQW 7KLV UHHPSKDVL]HV WKDW WUDSSLQJ GDWD DUH ELDVHG E\ HQYLURQPHQWDO FRQGLWLRQV ,Q WKLV H[DPSOH RQH GD\ RI UDLQIDOO IROORZLQJ DQ H[WHQGHG GURXJKW WRWDOO\ VKLIWHG WKH UHVSRQVH WR EDLWHG WUDSV )URP WKH DERYH GDWD WKH IROORZLQJ SRLQWV PD\ EH PDGH
PAGE 44

WKH WUDS GHVLJQ 6LPSOH LQYHUVLRQ RI WKH &'& WUDS )LJ f VR WKDW WKH IDQ SXOOHG XSZDUGV LQFUHDVHG DOO FDWFKHV LQFOXGLQJ PDOHV RI RWKHU VSHFLHV WKDW DUH QRUPDOO\ QRW FROOHFWHG 'XULQJ VXEVHTXHQW \HDUV f PXFK RYLSRVLWLRQ ZDV QRWHG GXULQJ 2FWREHU 1RYHPEHU DQG 'HFHPEHU $GXOWV ZHUH DJDLQ SUHVHQW WKURXJKRXW WKH VXPPHU DQG EORRGIHG IHPDOHV ZHUH FROOHFWHG WKURXJKRXW WKH \HDU /DUYDO DFWLYLW\ ZDV QRW DSSDUHQW GXULQJ WKH VXPPHU PRQWKV (LWKHU ODUYDO DFWLYLW\ LV UHVWULFWHG WR VXEVXUIDFH ZDWHU OHYHOV RU ODUYDH VXVSHQG GHYHORSPHQW XQWLO ODWH VXPPHU ZKHQ UDLQV UDLVH ZDWHU OHYHOV 2WKHU VSHFLHV RFFXUULQJ ZLWK &V PHODQXUD DW /DNH %XWOHU )ORULGD ZHUH &[ WHUULWDQV $QRSKHOHV FUXFLDQV DQG 8UDQRWDHQLD VDSSKLULQD &XOH[ WHUULWDQV DQG 8U VDSSKLULQD DOVR RFFXUUHG ZLWK &V PHODQXUD DW WKH 1HZ +DPSVKLUH ORFDOLW\ 'XULQJ SHULRGV RI KLJK ZDWHU LQ VXPPHUWLPH &[ SLORVXV '\DU t .QDEf RFFXUUHG LQ ODUJHU SRROV RI RSHQ DUHDV DW WKH PDUJLQ RI WKH VZDPS DV GLG YDULRXV $HGHV DQG 3VRURSKRUD VSHFLHV +RZHYHU ZLWKLQ WKH UHVWULFWHG KDELWDW RI VWXPS KROHV DQG EXUURZV &V PHODQXUD ZDV HLWKHU WKH VROH RFFXSDQW RU RFFDVLRQDOO\ VKDUHG WKH KDELWDW ZLWK &[ WHUULWDQV

PAGE 45

)LJ ,QYHUWHG &'& PLQLDWXUH OLJKW WUDS DW /DNH %XWOHU )ORULGD

PAGE 47

&+$37(5 9$5,$7,21 ,1 &87,&8/$5 +<'52&$5%21 352),/(6 ,1 &XOLVHWD PHODQXUD ,QWURGXFWLRQ &XWLFXODU K\GURFDUERQ FRPSRVLWLRQ LV DQ H[SUHVVLRQ RI D JHQRW\SH WKXV PDNLQJ LW D SRWHQWLDO WD[RQRPLF FKDUDFWHU /RFNH\ f UHYLHZHG LQVHFW FXWLFXODU OLSLG FRPSRVLWLRQ VWDWLQJ WKDW K\GURFDUERQ FRPSRVLWLRQ LV UHODWHG WR WD[RQRPLFDOO\ JURXSHG VSHFLHV DQG WKDW FORVHO\ UHODWHG VSHFLHV WHQGHG WR KDYH TXDOLWDWLYHO\ VLPLODU K\GURFDUERQ SDWWHUQV ZLWK GLIIHUHQW SURSRUWLRQV /HVV FORVHO\ UHODWHG VSHFLHV WHQGHG WR KDYH K\GURFDUERQ SDWWHUQV GLIIHULQJ ERWK TXDOLWDWLYHO\ DQG TXDQWLWDWLYHO\ :LWKLQ PRVTXLWRHV VSHFLHV VHSDUDWLRQ KDV EHHQ FRQILQHG WR WKH JHQXV $QRSKHOHV &DUOVRQ &DUOVRQ t 6HUYLFH 0LOOLJDQ HW DO f 'HVSLWH VLPLODULWLHV LQ FKURPDWRJUDPV VSHFLHV VHSDUDWLRQ ZLWKLQ WKH $QRSKHOHV JDPELDH FRPSOH[ ZDV DFKLHYHG E\ FRPSDULQJ WKH UHODWLYH DEXQGDQFH RI VHOHFWHG SHDNV &DUOVRQ t 6HUYLFH f 8VLQJ SHUFHQWDJH FRPSRVLWLRQ RI YDULRXV FODVVHV RI K\GURFDUERQV /RFNH\ f ZDV DEOH WR VHSDUDWH VSHFLHV RI 7HQHEULRQLGDH :KHQ K\GURFDUERQ SURILOHV DUH DSSOLHG WR FU\SWLF VSHFLHV RU WR DQDO\VLV RI LQWUDVSHFLILF YDULDWLRQ WKH PHFKDQLVP

PAGE 48

EHKLQG VXFK FRPSDULVRQV LV W\SLFDOO\ D TXDQWLWDWLYH VWDWLVWLFDOf FRPSDULVRQ RI SHDN UDWLRV EHWZHHQ VHOHFWHG K\GURFDUERQV 7KHVH DUH LGHQWLILHG E\ D GLJLW QXPEHU WKHLU .RYDWV ,QGH[ .RYDWV f /DUJHU SHDNV FRQVWLWXWH WKH PDMRU SHUFHQW FRPSRVLWLRQ RI D SDUWLFXODU VDPSOH 8QGHUO\LQJ VWDWLVWLFDO FRPSDULVRQ RI SHDN SHUFHQWDJHV RU SHDN UDWLRV LV WKH PDMRU DVVXPSWLRQ WKDW WKH YDULDWLRQ LQ WKHVH YDOXHV LV QRUPDOO\ GLVWULEXWHG ,Q RUGHU WR DSSO\ PRVW VWDQGDUG VWDWLVWLFDO FRPSDULVRQV QRUPDOLW\ RI GLVWULEXWLRQ RI WKH YDULDEOH RI LQWHUHVW LV DVVXPHG .QRZOHGJH RI WKH QRUPDOLW\ RI D VDPSOH PD\ FRQILUP RU UHMHFW FHUWDLQ K\SRWKHVHV DERXW WKH IDFWRU DIIHFWLQJ WKH SKHQRPHQRQ RI LQWHUHVW ,I QRQQRUPDO GLVWULEXWLRQ LV IRXQG WKLV PD\ LQGLFDWH FHUWDLQ IDFWRUV DIIHFWLQJ WKH YDULDEOH RI LQWHUHVW 6RNDO t 5RKOI f ,I QRUPDO GLVWULEXWLRQ LV DVVXPHG SUHGLFWLRQV DQG WHVWV RI K\SRWKHVHV DUH EDVHG XSRQ WKLV DVVXPSWLRQ 6WDWLVWLFDO FRQFOXVLRQV DUH RQO\ DV YDOLG DV RXU DVVXPSWLRQV DERXW WKH GDWD $GXOW VSHFLPHQV RI &V PHODQXUD ZHUH FROOHFWHG IURP YDULRXV ORFDOLWLHV DW GLIIHUHQW WLPHV RI WKH \HDU $V SDUW RI WKH RQJRLQJ VWXG\ FRQFHUQLQJ WKH EHKDYLRU DQG HFRORJ\ RI KRVWVHHNLQJ LQ PRVTXLWRHV GHFLGHG WR FKDUDFWHUL]H &V PHODQXUD E\ PHDQV RI K\GURFDUERQ SURILOHV 6LQFH WKH RQO\ SXEOLVKHG GDWD UHODWLQJ K\GURFDUERQ SDWWHUQV LQ PRVTXLWRHV ZDV IRU WKH JHQXV $QRSKHOHV IHOW WKDW WKH QHZ LQIRUPDWLRQ SURYLGHG E\ WKLV WHFKQLTXH ZRXOG SURYLGH D EDVHOLQH IRU

PAGE 49

IXUWKHU LQYHVWLJDWLRQV LQWR WKH XVHIXOQHVV RI WKLV WHFKQLTXH IRU FRPSDULVRQ RI PRVTXLWR VSHFLHV RWKHU WKDQ $QRSKHOHV ZDV DOVR LQWHUHVWHG LQ GHWHUPLQLQJ ZKHWKHU RU QRW DQ\ HYLGHQFH H[LVWHG WR VXJJHVW D SRO\W\SLF VSHFLHV 3UHOLPLQDU\ ILHOG REVHUYDWLRQV KDG UHYHDOHG D ODUJHU GDUNHU ZLQWHU IRUP RI WKLV VSHFLHV LQ )ORULGD 7R LOOXVWUDWH FRQJHQHULF GLIIHUHQFHV FRPSDUHG &XOLVHWD PHODQXUD FKURPDWRJUDPV ZLWK WKRVH RI &V LQRUQDWD 7R LOOXVWUDWH LQWHUJHQHULF GLIIHUHQFHV &XOH[ WHUULWDQV DQG 8UDQRWDHQLD VDSSKLULQD ZHUH FRPSDUHG IURP WKH VDPH KDELWDW DQG ORFDWLRQ DV &V PHODQXUD 7KH W\SH ORFDOLW\ IRU &V PHODQXUD LV 1HZ +DPSVKLUH .QLJKW t 6WRQH f 6SHFLPHQV ZHUH FROOHFWHG IURP 1HZ +DPSVKLUH DQG 9HUPRQW QHZ FROOHFWLRQ UHFRUGf DQG FRPSDUHG ZLWK )ORULGD VSHFLPHQV 6LQFH RQH RI WKH UHSRUWHG DGYDQWDJHV RI K\GURFDUERQ DQDO\VLV LV WKDW WKH SDWWHUQV DUH VWDEOH UHJDUGOHVV RI WKH DJH RI WKH VSHFLPHQ LW ZDV IHOW WKDW D FRPSDULVRQ EHWZHHQ JHRJUDSKLF H[WUHPHV RI WKH UDQJH RI WKLV PRVTXLWR VSHFLHV PLJKW UHYHDO PD[LPXP GLIIHUHQFHV JHRJUDSKLFf DV ZHOO DV SRVVLEO\ UHYHDOLQJ WKH H[LVWHQFH RI FU\SWLF VSHFLHV $V PRUH DQG PRUH K\GURFDUERQ SURILOHV ZHUH FRPSDUHG YDULDWLRQ DSSHDUHG WR EH DW OHDVW DV H[WUHPH ZLWKLQ RQH VLWH DV EHWZHHQ JHRJUDSKLF OLPLWV 7KLV SHUSOH[LQJ VLWXDWLRQ OHG WR WKH IROORZLQJ DWWHPSW DW LVRODWLQJ VRPH RI WKH VRXUFHV RI YDULDWLRQ VHHQ LQ ZLOG VSHFLPHQV %HIRUH FRXOG FKDUDFWHUL]H &V PHODQXUD E\ WKLV WHFKQLTXH IHOW WKDW DQ DWWHPSW VKRXOG EH PDGH WR H[SODLQ DV PXFK RI WKH LQGLYLGXDO YDULDWLRQ DV

PAGE 50

SRVVLEOH SUHVHQW SUHOLPLQDU\ GDWD KHUH DQG VXJJHVW SDUWLDO H[SODQDWLRQV IRU WKH K\GURFDUERQ SURILOH YDULDELOLW\ $OVR GLVFXVV WKH LPSOLFDWLRQ RI WKLV YDULDELOLW\ UHODWLYH WR WKH DSSOLFDWLRQ RI WKLV WHFKQLTXH WR WKH VROYLQJ RI WD[RQRPLF TXHVWLRQV 0HWKRGV DQG 0DWHULDOV :LOG DGXOW &V PHODQXUD ZHUH FROOHFWHG LQ UHVWLQJ ER[HV )ORULGDf DQG E\ &'& PLQLDWXUH OLJKW WUDSV 1HZ +DPSVKLUH t )ORULGDf 'U\ LFH ZDV DGGHG WR WKH &'& WUDSV LQ )ORULGD ZLWK QLJKWO\ DPRXQWV EHLQJ DSSUR[LPDWHO\ SRXQGV SHU WUDS 7KLV EDLW ZDV VXVSHQGHG EHVLGH WKH WUDS DQG WUDSV ZHUH SODFHG DERXW IHHW DERYH WKH JURXQG %HFDXVH KDG QR SUHYLRXV LQGLFDWLRQ RI VHDVRQDO YDULDWLRQ LQ K\GURFDUERQ SDWWHUQV FROOHFWLRQV ZHUH PDGH DV PDWHULDO ZDV QHHGHG 6SHFLPHQV IURP WKH VDPH FROOHFWLRQ GDWH ZHUH ODWHU SRROHG IRU DQDO\]LQJ VHDVRQDO YDULDWLRQ &XWLFXODU K\GURFDUERQV ZHUH H[WUDFWHG E\ VRDNLQJ LQGLYLGXDO PRVTXLWRHV LQ KH[DQH IRU DW OHDVW WHQ PLQXWHV 7KLV H[WUDFW ZDV WKHQ FOHDQHG E\ SDVVDJH WKURXJK D VLOLFDJHO KH[DQH FROXPQ 7KLV FROXPQ SHUPLWWHG WKH SDVVDJH RI WKH QRQn SRODU K\GURFDUERQV EXW UHWDLQHG WKH SRODU OLSLGV DQG IDWV 7KH H[WUDFWHG K\GURFDUERQV ZHUH FROOHFWHG LQWR PO RI KH[DQH H[WUDFW WKHQ FRQFHQWUDWHG E\ HYDSRUDWLRQ ZLWK QLWURJHQ JDV 7KH ILQDO H[WUDFW ZDV UHFRQVWLWXWHG DQG PLFUROLWHU ZDV LQMHFWHG LQWR WKH JDV FKURPDWRJUDSK *&f E\ DQ RQFROXPQ LQMHFWRU6*(f $ 9DULDQ 0RGHO IODPH LRQL]DWLRQ *&

PAGE 51

LQVWUXPHQW ZDV XVHG 7KH FROXPQ W\SH ZDV D PHWHU '% PP GLDPHWHU FDSLOODU\ WXEH 7KH FDUULHU JDV ZDV KHOLXP 7KH RYHQ WHPSHUDWXUH ZDV SURJUDPPHG IURP r& WR r& DW r&PLQXWH IRU PLQXWHV 7KH *& ZDV FRXSOHG WKURXJK D VHULHV LQWHUIDFH DQG D 1HOVRQ $QDO\WLFDO 6\VWHP WR DQ ,%0 3&;7 FRPSXWHU DQ (SVRP ); SULQWHU DQG D +HZOHWW3DFNDUG $ SORWWHU IRU GDWD TXDQWLILFDWLRQ DQG RXWSXW 6DPSOHV ZHUH FRPSDUHG ZLWK DONDQH VWDQGDUGV & &f IRU FDOFXODWLRQ RI WKHLU UHVSHFWLYH .RYDWV ,QGH[ .,f )UHTXHQF\ GLVWULEXWLRQ QRUPDOLW\ IRU SHDN SHUFHQW FRPSRVLWLRQ ZDV WHVWHG XVLQJ WKH JUDSKLF UDQNHG GHYLDWHV UDQNLWVf RI 6RNDO t 5RKOI f 5DQNHG GHYLDWHV ZHUH SORWWHG IRU ZLOG DGXOW IHPDOHV RI &V PHODQXUD $IWHU GHWHUPLQDWLRQ RI QRQQRUPDO GLVWULEXWLRQ ZLWKLQ WKH ZLOG VDPSOH DGGLWLRQDO VWDWLVWLFDO FRPSDULVRQV ZHUH PDGH IRU ZLOG LQGLYLGXDOV DQG IRU LQGLYLGXDOV IURP NQRZQ HQYLURQPHQWDO FRQGLWLRQV ,QLWLDO VWDWLVWLFDO FRPSDULVRQV ZHUH PDGH EHWZHHQ ZLOG 1HZ +DPSVKLUH DQG )ORULGD IHPDOHV 6LQFH D QRQQRUPDO GLVWULEXWLRQ ZDV VXJJHVWHG E\ WKH UDQNHG GHYLDWH WHVW D QRQ SDUDPHWULF $129$ DQG .UXVNDO:DOOLV WHVW ZHUH FRQGXFWHG RQ WKHVH GDWD 7KHVH WHVWV ZHUH H[SDQGHG WR LQFOXGH FRPSDULVRQV EHWZHHQ )ORULGD VDPSOHV FDWHJRUL]HG E\ PRQWKV FROOHFWHG DV ZHOO DV EHWZHHQ VSHFLPHQV UHDUHG DW GLIIHUHQW WHPSHUDWXUHV 'LVFULPLQDQW DQDO\VLV ZDV SHUIRUPHG RQ GDWD IURP DOO VDPSOH FDWHJRULHV 1HZ +DPSVKLUH )ORULGD E\ PRQWKV DQG UHDULQJ WHPSHUDWXUHVf WR ORRN IRU WUHQGV LQ VLPLODULW\ PHDVXUHG E\

PAGE 52

PHDQ VTXDUH GLVWDQFHV )URP WKHVH FRPSDULVRQV ZDV DEOH WR FRUUHODWH YDULDWLRQ ZLWKLQ VDPSOHV ZLWK VHDVRQDOLW\ DQG WR VXJJHVW WHPSHUDWXUH YDULDWLRQ DV D IDFWRU LQIOXHQFLQJ FKDQJH LQ K\GURFDUERQ SURILOHV 7R WHVW IRU WKH HIIHFW RI WHPSHUDWXUH XSRQ WKH ., SHDNV RI LQWHUHVW IHPDOHV IURP HDFK DGXOW SRSXODWLRQ RI r& DQG & UHDUHG ODUYDH ZHUH FRPSDUHG $FWXDO SHUFHQW FRPSRVLWLRQ IRU SHDNV ZLWK ., DQG ZHUH H[DPLQHG LQLWLDOO\ 7KHVH SHDNV ZHUH WKHQ PDGH WR HTXDO SHUFHQW FRPSRVLWLRQ DQG DGMXVWHG SHUFHQWDJHV ZHUH FDOFXODWHG IRU HDFK RI WKHVH SHDNV 7KHVH DGMXVWHG YDOXHV ZHUH XVHG LQ DOO VWDWLVWLFDO WHVWV DV ZHOO DV LQ DOO JUDSKV DQG WDEOHV SUHVHQWHG KHUH )LHOGFROOHFWHG JUDYLG IHPDOHV ZHUH SODFHG LQ FDJHV IRU RYLSRVLWLRQ 7KHVH FDJHV ZHUH SOH[LJODVV ZLWK GLPHQVLRQV RI FP ; FP ; FP 2YLSRVLWLRQ ZDV DW ILUVW XQVXFFHVVIXO VLQFH PRVW RI WKH IHPDOHV GLHG EHIRUH OD\LQJ HJJV 7KLV ZDV SDUWLDOO\ UHVROYHG E\ SODFLQJ ILOWHUHG ZDWHU IURP ILHOG FROOHFWLRQ ODUYDO VLWHV LQWR EODFN RYLSRVLWLRQ MDUV 6RPH RYLSRVLWLRQ ZDV REWDLQHG +RZHYHU D KLJK PRUWDOLW\ VWLOO RFFXUUHG DPRQJ JUDYLG IHPDOHV &XOLVHWD PHODQXUD DGXOWV LQ WKH ILHOG KDG EHHQ REVHUYHG KDQJLQJ VXVSHQGHG RQ WKH XSSHU URRI RI WKH PDPPDO EXUURZV WKDW WKH\ IUHTXHQWHG 2YLSRVLWLRQ FXSV ZHUH WKHQ PRGLILHG WR LQFOXGH D OLG WKDW FRYHUHG RQH KDOI RI WKH RYHUDOO RSHQLQJ WR WKH ZDWHU $ KLJKHU SHUFHQWDJH RI RYLSRVLWLRQ ZDV DFKLHYHG TXLFNO\ 7KLV WHFKQLTXH LV VWURQJO\

PAGE 53

VXJJHVWHG IRU WKRVH LQWHUHVWHG LQ REWDLQLQJ ODUJH QXPEHUV RI HJJ UDIWV IURP ZLOG JUDYLG IHPDOHV (JJ UDIWV REWDLQHG LQ WKLV PDQQHU ZHUH KDWFKHG LQ ILOWHUHG ZDWHU IURP WKH /DNH %XWOHU VLWH /DUYDH ZHUH UHDUHG LQ ZDWHU FROOHFWHG IURP XQGHUJURXQG EXUURZV DW WKH VDPH VLWH 7KHVH EXUURZV FRQVLVWHQWO\ KDUERUHG DGXOW DQG ODUYDO &V PHODQXUD IRU PRUH WKDQ WKUHH \HDUV /DUYDO UHDULQJ ZDV DFFRPSOLVKHG LQ ERWK HQDPHO SDQV DQG OLWHU SODVWLF ERWWOHV 6LQFH WKH EXUURZV DUH VHOGRP LI HYHU H[SRVHG WR GLUHFW OLJKW ODUYDO UHDULQJ ZDV FRQGXFWHG LQ GDUNHQHG URRPV DW GLIIHUHQW WHPSHUDWXUHV r& t r&f *URXQG KRJ FKRZ ZDV DGGHG LQLWLDOO\ WR ODUYDO UHDULQJ ZDWHU EXW SURYHG WR IRXO UHDULQJ FRQWDLQHUV JXLFNO\ 7KHUHIRUH IHHGLQJ FRQVLVWHG RI WKH DGGLWLRQ RI ILHOGFROOHFWHG ZDWHU IURP WKH VDPH KDELWDW UHSODFLQJ HTXDOO\ WKH ZDWHU YROXPH ORVW E\ HYDSRUDWLRQ /DUYDH UHDUHG DW r& UHTXLUHG ZHHNV IURP HJJ KDWFK WR SXSDWLRQ ZKLOH WKRVH UHDUHG DW & UHTXLUHG ZHHNV 9DULDWLRQ LQ GHYHORSPHQW WLPH ZLWKLQ WKH FROGHU WHPSHUDWXUH ZDV TXLWH HYLGHQW ,Q HYHU\ FDVH DW WLPH RI LQLWLDO SXSDWLRQ RI WKH FROG WHPSHUDWXUH ODUYDH WKHUH ZRXOG DOVR EH ODUYDH WKDW DSSHDUHG WR VWLOO EH QG LQVWDU 7KLV ZDV UDUHO\ VHHQ DW r& EXW GLG DOVR RFFXU /DUYDH WKDW ZHUH UHDUHG DW WKH ZDUPHU WHPSHUDWXUH ZHUH ZHOO V\QFKURQL]HG (JJ UDIWV ZHUH KDWFKHG DW URRP WHPSHUDWXUH r&f WKHQ VSOLW LQWR DSSUR[LPDWHO\ HTXDO EDWFKHV WR H[DPLQH WKH HIIHFW RI WHPSHUDWXUH RQ ODUYDO GHYHORSPHQW DQG K\GURFDUERQ SURILOHV

PAGE 54

2QH KDOI ZDV UHDUHG DW r& WKH RWKHU KDOI ZDV UHDUHG DW r & 5HVXOWV ,QWHUJHQHULF GLIIHUHQFHV LQ K\GURFDUERQ SURILOHV DUH LOOXVWUDWHG LQ )LJ &XOH[ WHUULWDQV 8U VDRRKLULQD DQG &V PHODQXUD DUH DOO JXLWH GLIIHUHQW ERWK TXDOLWDWLYHO\ DQG TXDQWLWDWLYHO\ ,QWUDJHQHULF GLIIHUHQFHV EHWZHHQ &V PHODQXUD DQG &V LQRUQDWD DUH LOOXVWUDWHG LQ )LJ PDOHVf DQG )LJ IHPDOHVf $JDLQ GLIIHUHQFHV DUH UHDGLO\ REVHUYHG EHWZHHQ WKHVH VSHFLHV +RZHYHU ZKHQ WKH GLVWULEXWLRQ IUHTXHQFLHV RI VHOHFWHG ., SHDNV DQG ZHUH H[DPLQHG ZLWKLQ &V PHODQXUD FRQVLGHUDEOH YDULDWLRQ ZDV VHHQ WR H[LVW ,QLWLDO FRPSDULVRQV EHWZHHQ VSHFLPHQV IURP 1HZ +DPSVKLUH DQG /DNH %XWOHU )ORULGD VKRZHG VLPLODULWLHV EHWZHHQ WKH VH[HV )LJ t )LJ f 1R REYLRXV JHRJUDSKLF YDULDWLRQ ZDV VXJJHVWHG IURP WKH FKURPDWRJUDPV &RPSDULVRQV EHWZHHQ VH[HV IURP WKH )ORULGD VLWH VKRZHG OLWWOH WR VXJJHVW REYLRXV VH[XDO GLPRUSKLVP +RZHYHU LI WKH UHODWLYH SHUFHQW FRPSRVLWLRQ IRU DQ\ RI WKH ODUJHU SHDNV KDG EHHQ FRPSDUHG LW PLJKW KDYH EHHQ SRVVLEOH WR VHSDUDWH PDOHV DQG IHPDOHV *DV FKURPDWRJUDSK\0DVV 6SHFWURVFRS\ GDWD RQ WKLV DZDLW LQWHUSUHWDWLRQ ([DPLQDWLRQ RI )LJ VKRZV ., SHDN LQ PDOHV WR EH VLJQLILFDQWO\ ODUJHU WKDQ WKH VDPH SHDN LQ IHPDOHV 6LPLODUO\ ., SHDN LV YLUWXDOO\ DEVHQW LQ

PAGE 55

)LJ &XWLFXODU K\GURFDUERQ SURILOHV IRU DGXOW IHPDOH &XOH[ WHUULWDQV 8UDQRWDHQLD VDSSKLULQD DQG &XOLVHWD PHODQXUD IURP 'XUKDP 1HZ +DPSVKLUH 6SHFLPHQV ZHUH FROOHFWHG 6HSWHPEHU QHDU 6SUXFH +ROH ERJ

PAGE 56

5RWRQWLRQ 7LPR PLQf

PAGE 57

)LJ &XWLFXODU K\GURFDUERQ SURILOHV IRU DGXOW &XOLVHWD LQRUQDWD DQG &V PHODQXUD PDOHV IURP )ORULGD &V LQRUQDWD VSHFLPHQV ZHUH ILHOGFROOHFWHG DV SXSDH *DLQHVYLOOH )ORULGD -DQXDU\ &XOLVHWD PHODQXUD VSHFLPHQV ZHUH FROOHFWHG DV SXSDH /DNH %XWOHU )ORULGD -DQXDU\

PAGE 58

5HWHQWLRQ 7LPH PLQf

PAGE 59

)LJ &XWLFXODU K\GURFDUERQ SURILOHV IRU DGXOW &XOLVHWD LQRUQDWD DQG &V PHODQXUD IHPDOHV IURP )ORULGD &XOLVHWD LQRUQDWD VSHFLPHQV ZHUH ILHOGFROOHFWHG DV SXSDH *DLQHVYLOOH )ORULGD -DQXDU\ &XOLVHWD PHODQXUD VSHFLPHQV ZHUH FROOHFWHG DV SXSDH /DNH %XWOHU )ORULGD -DQXDU\

PAGE 60

5RWRQWLRQ 7LPX PLQf

PAGE 61

)LJ &RPSDULVRQ EHWZHHQ FXWLFXODU K\GURFDUERQ SURILOHV RI DGXOW IHPDOH &XOLVHWD PHODQXUD IURP 1HZ +DPSVKLUH DQG )ORULGD

PAGE 62

5HWHQWLRQ 7LPH PLQf

PAGE 63

)LJ &RPSDULVRQ EHWZHHQ FXWLFXODU K\GURFDUERQ SURILOHV RI DGXOW PDOH &XOLVHWD PHODQXUD IURP 1HZ +DPSVKLUH DQG )ORULGD

PAGE 64

5HWHQWLRQ 7LPD PLQf

PAGE 65

)LJ &RPSDULVRQ EHWZHHQ FXWLFXODU K\GURFDUERQ SURILOHV RI DGXOW PDOH DQG IHPDOH &XOLVHWD PHODQXUD IURP /DNH %XWOHU )ORULGD

PAGE 66

5RWRQWLRQ 7LPR UDLQf

PAGE 67

IHPDOHV EXW SUHVHQW LQ PDOHV 7KH ., SHDN LV REYLRXV LQ PDOHV EXW DEVHQW LQ IHPDOHV 7KHVH GLIIHUHQFHV LI FRQVLGHUHG PDWKHPDWLFDOO\ PLJKW EH VKRZQ WR EH VLJQLILFDQWO\ GLIIHUHQW 9DULDWLRQ RI WKLV PDJQLWXGH ZLWKLQ VDPSOHV RI WKH VDPH VSHFLHV QHFHVVLWDWHG WKH WHVW IRU QRQQRUPDO IUHTXHQF\ GLVWULEXWLRQ 6XIILFLHQW YDULDWLRQ H[LVWHG LQ YDOXHV IRU UHODWLYH SHUFHQW FRPSRVLWLRQ IRU WKH ., SHDNV WR UHTXLUH IXUWKHU LQYHVWLJDWLRQ 7DEOH LOOXVWUDWHV WKH PHDQV DQG VWDQGDUG GHYLDWLRQV IRU ., SHDNV IURP ZLOG VSHFLPHQV VHSDUDWHG E\ ORFDOLW\ DQG E\ PRQWK 0XFK RYHUODS H[LVWV EHWZHHQ FROOHFWLRQV EXW D VKLIW LQ PHDQ YDOXHV LV DOVR VXJJHVWHG 7ZR RI WKH ODUJHU SHDNV ., DQG f ZHUH VHOHFWHG IRU WHVWLQJ IRU QRUPDO GLVWULEXWLRQ IUHTXHQFLHV 5DZ GDWD XVHG IRU WKH 5DQNLW WHVW IRU QRUPDOLW\ IRU SHDNV ., t ., DUH SUHVHQWHG LQ 7DEOH 7KHVH GDWD DUH SORWWHG LQ )LJ DQG )LJ $V UHYHDOHG E\ WKH JUDSKV WKH GDWD DUH QRW QRUPDOO\ GLVWULEXWHG 'LVWULEXWLRQ IUHTXHQFLHV DUH FRQVLGHUHG WR EH QRQQRUPDO LI WKH OLQH RI SORWWHG UDQNLW YDOXHV LV QRW VWUDLJKW ,I DQ\ SRLQWV GHYLDWH IURP D SHUIHFW OLQHDU UHODWLRQVKLS WKH GLVWULEXWLRQ LV FRQVLGHUHG QRQQRUPDO 7KHVH VDPH ZLOG FDXJKWIHPDOHV XVHG LQ WKH UDQNHG GHYLDWH WHVW ZHUH SORWWHG E\ PRQWKV RI FDSWXUH WR VHH LI D VHDVRQDO VKLIW LQ YDOXHV LQ SHUFHQW FRPSRVLWLRQ RFFXUUHG 7KHVH YDOXHV DUH SORWWHG DQG JUDSKHG LQ )LJ 7R FKHFN IRU FRUUHVSRQGLQJ VHDVRQDO YDULDWLRQ LQ JHRJUDSKLF ORFDWLRQ

PAGE 68

7DEOH 0HDQ DQG 6WDQGDUG 'HYLDWLRQ RI ., YDOXHV RI :LOG &XOLVHWD PHODQXUD ., $9* 67' 1+ 6HSW )/25,'$ 0DUFK $SULO 0D\ $XJXVW )/ $9* 67' $9* 67' $9* 67' $9* 67' $9* 67' $9* 67' $9* 67' $9* 67' $9* 67' $9* 67'

PAGE 69

7DEOH 5DQNLW YDOXHV IRU SHUFHQW FRPSRVLWLRQ RI ., DQG DPRQJ ZLOG DGXOW IHPDOH &XOLVHWD PHODQXUD %L 5DQNLW YDOXHf ., %L ., %L &RPS b&RPS

PAGE 70

7DEOH FRQWf ., ., &RPS %L b &RPS %L PDOH VDPSOHV IURP 1HZ +DPSVKLUH DQG )ORULGD ZHUH DOVR FRPSDUHG )LJ f ZLWK IHPDOHV )LJ f ,Q DOO VDPSOHV SORWWHG VHDVRQDO YDULDWLRQ DSSHDUHG LQ SHUFHQW FRPSRVLWLRQ YDOXHV IRU ., SHDNV SUHVHQWHG 6LQFH VHDVRQDO YDULDWLRQ RFFXUUHG ZLWKLQ P\ )ORULGD VLWH VWDWLVWLFDO DQDO\VHV :D\ $129$ DQG .UXVNDO:DOOLV WHVWf ZHUH FRQGXFWHG WR GHWHUPLQH ZKHWKHU WKHVH REVHUYHG GLIIHUHQFHV ZHUH VWDWLVWLFDOO\ VLJQLILFDQW 7KHVH UHVXOWV DUH SUHVHQWHG LQ 7DEOH 6HYHUDO IDFWRUV FRXOG H[SODLQ WKLV YDULDWLRQ $PRQJ WKH SRVVLELOLWLHV DUH DJH DQG WHPSHUDWXUH 6LQFH GLIIHUHQFHV ZHUH VHHQ LQ VHDVRQDO SDWWHUQV DQG VLQFH DOUHDG\ NQHZ RI WKH H[LVWHQFH RI VHDVRQDO PRUSKV IRU &V PHODQXUD LQ )ORULGD DQ REYLRXV IDFWRU WR WHVW IRU ZDV WKH HIIHFW RI WHPSHUDWXUH RQ K\GURFDUERQ SURILOHV &RPSDULVRQV EHWZHHQ ., DQG UHODWLYH SHUFHQW FRPSRVLWLRQ IRU PDOHV DQG IHPDOHV UHDUHG DW & DQG & DUH LOOXVWUDWHG LQ )LJ 7KH UHODWLYH SHUFHQW FRPSRVLWLRQ RI ., SHDNV DQG DUH KLJKHU DW r& WKDQ r& DQG WKH UHYHUVH LV WUXH IRU ., SHDNV DQG &KURPDWRJUDPV

PAGE 71

7DEOH $129$ DQG .UXVNDO:DOOLV UHVXOWV RI FRPSDULVRQV EHWZHHQ 1HZ +DPSVKLUH YHUVXV )ORULGD ZLOG FDXJKW IHPDOH &XOLVHWD PHODQXUD DQG )ORULGD SRSXODWLRQ VHSDUDWHG E\ PRQWKV 1+ YV )/ $129$ )/ E\ 0RQWKV $129$ ., ) 3 .: ) 3 .: LOOXVWUDWLQJ WKH HIIHFW RI WHPSHUDWXUH RQ K\GURFDUERQ SURILOHV DUH SUHVHQWHG LQ )LJ DQG )LJ 6WDWLVWLFDO FRPSDULVRQV :D\ $129$ DQG .UXVNDO:DOOLVf EHWZHHQ KRW r&f DQG FROG r&f VKRZHG VWDWLVWLFDOO\ VLJQLILFDQW GLIIHUHQFHV DW WKH OHYHO IRU RI WKH SHDNV FRPSDUHG 7KHVH UHVXOWV DUH SUHVHQWHG LQ 7DEOH 6LQFH K\GURFDUERQ SURILOH YDULDWLRQ DSSHDUV WR EH DW OHDVW LQ SDUW DIIHFWHG E\ ODUYDO UHDULQJ WHPSHUDWXUH WKHQ UHH[DPLQHG ZLOG FDXJKW IHPDOHV E\ PRQWK RI FDSWXUH

PAGE 72

7DEOH $129$ DQG .UXVNDO:DOOLV UHVXOWV RI FRPSDULVRQV EHWZHHQ /DERUDWRU\ &XOLVHWD PHODQXUD DW WZR GLIIHUHQW WHPSHUDWXUHV +RW r & FROG r & +27 96 &2/' $129$ .UXVNDO:DOOLV ., ) 3 'LVFULPLQDQW DQDO\VLV ZDV DSSOLHG WR HDFK RI WKH VDPSOHV WR FODVVLI\ VSHFLPHQV LQWR VHDVRQDO FDWHJRULHV DQG WR ORRN IRU WUHQGV LQ JURXSLQJV 7DEOH VKRZV KRZ HDFK VDPSOH LV EURNHQ GRZQ E\ VHDVRQ LOOXVWUDWLQJ DUHDV RI RYHUODS DQG VHSDUDWLRQ 7DEOH LOOXVWUDWHV WKH JHQHUDWHG VTXDUHG PHDQ GLVWDQFHV IRU HDFK FODVV RI VSHFLPHQV

PAGE 73

)LJ *UDSK RI SORWWHG 5DQNLW YDOXHV XVHG LQ WKH 5DQNLW WHVW IRU QRUPDOLW\ IRU IUHTXHQF\ GLVWULEXWLRQ RI WKH DYHUDJH SHUFHQW FRPSRVLWLRQ RI K\GURFDUERQ ., IRU ZLOG DGXOW IHPDOH &XOLVHWD PHODQXUD

PAGE 74

5DQNLWV 5DQNLW 7HVW )RU 1RUPDOLW\ IRU .,

PAGE 75

3LJ *UDSK RI SORWWHG 5DQNLW YDOXHV XVHG LQ WKH 5DQNLW WHVW IRU QRUPDOLW\ IRU IUHTXHQF\ GLVWULEXWLRQ RI WKH DYHUDJH SHUFHQW FRPSRVLWLRQ RI K\GURFDUERQ ., IRU ZLOG DGXOW IHPDOH &XOLVHWD PHODQXUD

PAGE 76

5DQNLWV 5DQNLW 7HVW )RU 1RUPDOLW\ IRU ., $YJ 3HUFHQW &RPSRVLWLRQ

PAGE 77

)LJ 6HDVRQDO GLVWULEXWLRQ RI UHODWLYH SHUFHQW YDOXHV IRU VHOHFWHG YDOXHV IRU ZLOG )ORULGD DGXOW IHPDOH &XOLVHWD PHODQXUD $XJXVW 0DUFK K\GURFDUERQ ., 0D\ $SULO

PAGE 78

5HODWLYH 3HUFHQW :LOG &DXJKW )HPDOHV %\ 0RQWKV 5HWHQWLRQ ,QGH[

PAGE 79

)LJ 6HDVRQDO GLVWULEXWLRQ RI UHODWLYH SHUFHQW YDOXHV IRU VHOHFWHG K\GURFDUERQ ., YDOXHV IRU ZLOG DGXOW PDOH &XOLVHWD PHODQXUD 'HFHPEHU )ORULGDf 6HSWHPEHU 1HZ +DPSVKLUHf $XJXVW )ORULGDf

PAGE 80

5HODWLYH 3HUFHQW 3RROHG 0DOHV 6DPSOHV 5HWHQWLRQ ,QGH[

PAGE 81

)LJ 6HDVRQDO GLVWULEXWLRQ RI UHODWLYH SHUFHQW YDOXHV IRU VHOHFWHG K\GURFDUERQ ., YDOXHV IRU ZLOG DGXOW IHPDOH &XOLVHWD PHODQXUD 'HFHPEHU )ORULGDf 6HSWHPEHU 1HZ +DPSVKLUHf $XJXVW )ORULGDf

PAGE 82

5HODWLYH 3HUFHQW 3RROHG )HPDOHV 6DPSOHV 5HWHQWLRQ ,QGH[

PAGE 83

)LJ (IIHFW RI WHPSHUDWXUH RQ WKH UHODWLYH SHUFHQW RI VHOHFWHG K\GURFDUERQ ., YDOXHV IRU DGXOW PDOH DQG IHPDOH &XOLVHWD PHODQXUD GHJUHHV FHQWLJUDGH GHJUHHV FHQWLJUDGH 0 PDOH ) IHPDOH

PAGE 84

5HODWLYH 3HUFHQW /DE 5HDUHG 6LEOLQJV 5HWHQWLRQ ,QGH[

PAGE 85

)LJ &XWLFXODU K\GURFDUERQ SURILOHV RI DGXOW IHPDOH &XOLVHWD PHODQXUD UHDUHG DW r& DQG r& FRPSDUHG WR ZLOG DGXOW IHPDOH IURP /DNH %XWOHU )ORULGD ZLQWHU VSHFLPHQf

PAGE 87

)LJ &XWLFXODU K\GURFDUERQ SURILOHV RI DGXOW PDOH &XOLVHWD PHODQXUD UHDUHG DW r& DQG r& FRPSDUHG WR ZLOG DGXOW PDOH IURP /DNH %XWOHU )ORULGD ZLQWHU VSHFLPHQf

PAGE 88

5HWHQWLRQ 7LPH &PLQ f

PAGE 89

7DEOH 'LVFULPLQDQW $QDO\VLV &ODVVLILFDWLRQ 6XPPDU\ IRU &XOLVHWD PHODQXUD 1XPEHU RI 2EVHUYDWLRQV DQG 3HUFHQWDJHV &ODVVLILHG E\ PRQWK 0217+ $35 $8* &2/' +27 0$5 0$< 1+ 7RWDO $35 $8* &2/' +27 0$5 0$< 1+ 7RWDO 3HU

PAGE 90

7DEOH *HQHUDOL]HG 6TXDUHG 'LVWDQFH WR HDFK FRUUHVSRQGLQJ &OXVWHU 5(* $35 $8* &2/' $35 $8* &2/' +27 0$5 0$< 1+ +27 0$5 0$< 1+ &RQFOXVLRQV +\GURFDUERQ SURILOHV GR LQ IDFW VKRZ FOHDU VSHFLHV GLIIHUHQFHV EHWZHHQ QRQFORVHO\ UHODWHG VSHFLHV +RZHYHU ZLWKLQ VSHFLHV YDULDWLRQ LV VXIILFLHQW WR PHULW IXUWKHU FRQVLGHUDWLRQ 0\ VSHFLPHQV ZHUH VHSDUDEOH VWDWLVWLFDOO\ E\ PRQWK RI FROOHFWLRQ DQG E\ UHDULQJ WHPSHUDWXUH %RWK RI WKHVH UHVXOWV DUH QHZ WR VFLHQFH :KHQ VDPSOHV DUH PHDVXUHG E\ GLVFULPLQDWH DQDO\VLV GHJUHH RI VLPLODULW\ LV PHDVXUHG E\ FORVH YDOXHV LQ VTXDUHG PHDQ GLVWDQFHV )URP WKLV ZH VHH WKDW $SULO VSHFLPHQV DUH HTXDOO\ FORVH WR FROG r&f DQG 0DUFK VSHFLPHQV 0D\ IROORZV $SULO ZKLFK LV IROORZHG E\ 1HZ +DPSVKLUH $XJXVW DQG ILQDOO\ KRW r&f 7KLV VXJJHVWV WKDW WKH YDULDWLRQ VHHQ LQ WKH ZLQWHU DQG VSULQJ PRQWKV LV GXH WR FRROHU WHPSHUDWXUHV DQG WKH VXPPHUIDOO YDULDWLRQ LV GXH WR ZDUP WHPSHUDWXUHV +\GURFDUERQ SURILOHV GR QRW DSSHDU IL[HG ZLWKLQ D VSHFLHV EXW DUH VXEMHFW WR VLJQLILFDQW YDULDWLRQ GXH WR DW OHDVW IDFWRU WHPSHUDWXUH 7KH ZDUP PRQWKV $XJXVWf DQG 0D\f VKRZHG SDWWHUQV VLPLODU WR f& UHDUHG ODUYDH DQG WKH FROGHU PRQWKV $SULOf DQG 0DUFKf VKRZHG SDWWHUQV

PAGE 91

VLPLODU WR & ODUYDH 7KLV VXJJHVWV D VHDVRQDO VKLIW LQ K\GURFDUERQ SURILOH SDWWHUQV WKDW ZRXOG YDU\ LQ WLPLQJ IURP \HDU WR \HDU GHSHQGLQJ RQ ZDWHU OHYHO DQG WHPSHUDWXUH 'LVFXVVLRQ &RQVLGHUDEOH YDULDWLRQ EHWZHHQ LQGLYLGXDOV VXJJHVWV WKH QHHG IRU IXUWKHU LQYHVWLJDWLRQ LQWR WKH UROH RI VXFK IDFWRUV DV QXWULWLRQ ODUYDO DQG DGXOWf DJH VH[ DQG ZDWHU JXDOLW\ RQ WKH K\GURFDUERQ SURILOH RI DQ\ SDUWLFXODU VSHFLHV &DXWLRQ LV DGYLVHG LQ LQWHUSUHWLQJ GLIIHUHQFHV EHWZHHQ LQGLYLGXDOV RQ D SXUHO\ VWDWLVWLFDO EDVLV 2WKHU FULWHULD VXFK DV VWUXFWXUH EHKDYLRU VHDVRQDOLW\ DQG JHRJUDSKLF GLVWULEXWLRQ QHHG WR EH FRQVLGHUHG ZKHQ DWWHPSWLQJ WR GLVWLQJXLVK IRUPV ,QWHUDFWLRQ EHWZHHQ WKHVH IDFWRUV LV OLNHO\ DQG QHHGV WR EH DGGUHVVHG $ UHH[DPLQDWLRQ RI SXEOLVKHG DUWLFOHV RQ WKH XVH RI K\GURFDUERQ SURILOHV DV WD[RQRPLF WRROV VKRZV WKDW YDULDWLRQ H[KLELWHG E\ VSHFLPHQV PD\ QRW ILW ZLWKLQ WKH H[SHFWHG QRUPDO IUHTXHQF\ GLVWULEXWLRQ SDWWHUQ 7KLV PD\ EH GXH WR WKH VPDOO VDPSOH VL]H WKDW ZDV DYDLODEOH IRU DQDO\VLV $ ZD\ $129$ ZDV W\SLFDOO\ XVHG IRU FRPSDULVRQV 7KLV WHVW KDV VHYHUDO DVVXPSWLRQV RQH RI ZKLFK LV QRUPDOLW\ RI GLVWULEXWLRQ :KHQ GHDOLQJ ZLWK FORVHO\ UHODWHG VSHFLHV RU VXVSHFWHG VLEOLQJV VDPSOH VL]H EHFRPHV WKH PDMRU IDFWRU LQ WKH DELOLW\ WR VHSDUDWH VLPLODU IRUPV 6LQFH WKH SHUFHQW FRPSRVLWLRQ ZLOO EH D IXQFWLRQ RI TXDQWLWDWLYH GLIIHUHQFHV UHVHDUFKHUV DUH DW WKH PHUF\ RI WKH VSHFLPHQV SURYLGHG DQG WKH DFFXUDF\ RI GDWD WKDW DFFRPSDQLHV LQVHFWV 6SHFLHV WKDW DUH FRQVLGHUHG WR EH OHVV FORVHO\ UHODWHG VKRZ TXDOLWDWLYH GLIIHUHQFHV LQ WKHLU

PAGE 92

UHVSHFWLYH *& SHDNV +RZHYHU FORVHO\ UHODWHG VSHFLHV DSSHDU WR VKRZ RQO\ VPDOO TXDQWLWDWLYH GLIIHUHQFHV $V SUHVHQWHG KHUH VXIILFLHQW YDULDWLRQ H[LVWV ZLWKLQ *& SHDNV WR FDXVH RYHUODS RI GDWD VHWV 2QFH WKH UHODWLRQVKLS EHWZHHQ *& SURILOH WHPSHUDWXUH RI ODUYDO GHYHORSPHQW DGXOW DJH DQG DGXOW QXWULWLRQ DUH XQGHUVWRRG SUHFLVH GHILQLWLRQ RI D SDUWLFXODU VSHFLHV PD\ EH SRVVLEOH

PAGE 93

&+$37(5 +267 35()(5(1&( ,1 02648,72(6 $ 5(9,(: ,QWURGXFWLRQ 2QH PHWKRG RI GLVFXVVLQJ KRVW SUHIHUHQFH LV WR DQDO\VH WKH QXPHURXV DUWLFOHV SXEOLVKHG RQ WKH VXEMHFW EHOLHYH WKDW VXIILFLHQW GDWD DUH DYDLODEOH LQ WKH OLWHUDWXUH WR GHYHORS DQ DUJXPHQW IRU KRVW SUHIHUHQFH EHLQJ RWKHU WKDQ SUHIHUHQFH IRU D VSHFLHV RI DQLPDO 7KLV FKDSWHU FRQWDLQV FRQGHQVDWLRQV UHH[DPLQDWLRQV DQG VXPPDULHV RI D IHZ SXEOLFDWLRQV GHDOLQJ ZLWK WKH VXEMHFW RI KRVW SUHIHUHQFH KDYH WULHG WR SURYLGH VXIILFLHQW H[DPSOHV WR LOOXVWUDWH GLYHUVLW\ RI KRVWV IRU SDUWLFXODU VSHFLHV DV ZHOO DV FLWLQJ LQFRQVLVWHQFLHV LQ DSSO\LQJ WKH WHUP KRVW SUHIHUHQFH 7KLV UHYLHZ LV SUHVHQWHG WR GHYHORS WKH K\SRWKHVLV WKDW KRVW SUHIHUHQFH LQYROYHV VRPHWKLQJ PRUH WKDQ UHFRJQLWLRQ RI D SDUWLFXODU DQLPDO VSHFLHV +RVW SUHIHUHQFH LPSOLHV WKDW WKH PRVTXLWR VRPHKRZ SUHIHUV FHUWDLQ DQLPDOV IRU EORRGPHDOV ,I EORRG DORQH LV WKH SULPDU\ PRWLYDWLQJ IDFWRU WKHQ ORJLFDOO\ DOPRVW DQ\ DQLPDO ZRXOG GR )ORULGD KDV NQRZQ VSHFLHV DQG VXEVSHFLHV RI PRVTXLWRHV 2I WKHVH QHYHU ELWH PDQ 7KLV PHDQV WKDW IRU RQH RU PRUH UHDVRQV PDQ LV QHLWKHU D VXLWDEOH KRVW QRU D SUHIHUUHG KRVW IRU b RI WKH )ORULGD PRVTXLWRHV )RU WKH

PAGE 94

UHPDLQLQJ VSHFLHV PDQ LV DW WLPHV DQ DFFHSWDEOH KRVW EXW QR VSHFLHV XVHV PDQ IRU EORRGPHDOV WR WKH H[FOXVLRQ RI DOO RWKHU DQLPDOV +RVW SUHIHUHQFH UHFRUGV DUH XVXDOO\ GHWHUPLQHG E\ EORRGPHDO DQDO\VLV SUHIHUHQFH EHLQJ GHWHUPLQHG E\ FDOFXODWHG SHUFHQWDJHV RI W\SHV RI DQLPDO EORRG PHDOV IURP FROOHFWLRQV RI EORRGLHG IHPDOH PRVJXLWRHV /LWHUDWXUH 5HYLHZ &UDQV f GLYLGHG PRVJXLWR SRSXODWLRQV LQWR PDMRU FDWHJRULHV DFFRUGLQJ WR WKHLU EORRGPHDO VRXUFHV f PDPPDOLDQ IHHGHUV ZKLFK RQO\ RFFDVLRQDOO\ IHG RQ ELUGV f DYLDQ IHHGHUV ZKLFK UDUHO\ IHHG RQ PDPPDOV f JHQHUDO IHHGHUV ZKLFK DUH LQGLVFULPLQDWH IHHGHUV RQ HLWKHU PDPPDOV RU ELUGV DQG f DPSKLELDQ IHHGHUV ZKLFK IHHG SULPDULO\ RQ FROGEORRGHG DQLPDOV 5HPSHO HW DO f VWXGLHG WKH IHHGLQJ KDELWV RI VRPH 6DVNDWFKHZDQ $HGHV PRVTXLWRHV DQG FRQFOXGHG WKDW QRQH RI WKH VSHFLHV VWXGLHG VKRZHG D KRVW SUHIHUHQFH 7KH GHJUHH WR ZKLFK D VSHFLHV IHG XSRQ D SDUWLFXODU KRVW DSSHDUHG WR EH D IXQFWLRQ RI WKH DYDLODELOLW\ RI WKDW KRVW 0XOWLSOH EORRGPHDOV IURP PXOWLSOH KRVWVf ZHUH GHWHFWHG LQ RQH WKLUG RI WKH VDPSOHV VWXGLHG ([DPLQDWLRQ RI WKHLU GDWD VKRZHG WKDW IRU WKH VWXG\ VLWHV $HGHV VSHQFHULL 7KHREDOGf VKRZHG DYHUDJH SUHIHUHQFHV IRU HTXLQH bf KXPDQ bf ERYLQH bf DQG DYLDQ KRVWV bf

PAGE 95

'RZQH f FRQFOXGHG WKDW KRVW SUHIHUHQFH IRU PDPPDOV ZDV FRUUHODWHG ZLWK ERG\ VXUIDFH DUHD RI WKH KRVWV DQG WKDW WKH $HGHV VSHFLHV VWXGLHG KDG QR SUHIHUHQFH IRU SDUWLFXODU PDPPDOV :KHQ WKHUH ZHUH RU PRUH PDPPDOV FORVH WRJHWKHU ODUJHU KRVWV ZHUH FKRVHQ RQO\ E\ FKDQFH +H DOVR QRWHG WKDW EORRGPHDO UHFRUGV GLG QRW DSSHDU WR EH FRUUHODWHG ZLWK WKH ZHLJKWV RI WKH DQLPDOV 'RZ HW DO f UHSRUWHG WKH QXPEHUV RI &XOH[ WDUVDOLV &RJf DWWUDFWHG WR ELUGV WR EH SURSRUWLRQDO WR WKH VL]H RI WKH ELUGV 7KH\ DOVR VWDWHG WKDW ELUGV RI GLIIHUHQW VSHFLHV EXW RI VLPLODU VL]HV DWWUDFWHG VLPLODU QXPEHUV RI &[ WDUVDOLV 'RZQH f VWXGLHG &RJXLOOHWWLGLD SHUWXUEDQV :DONHUfDQG UHSRUWHG D GHFLGHG SUHIHUHQFH IRU ELUGV ZLWK VRPH PDPPDOLDQ EORRGPHDOV +H UHSRUWHG D FRQVLGHUDEOH QXPEHU DWWUDFWHG WR PDPPDO KRVWV ZLWKRXW IHHGLQJ ,Q FRQWUDVW WKH PDMRULW\ DWWUDFWHG WR ELUGV WRRN EORRGPHDOV 0XOWLSOH IHHGLQJV ZHUH FRPPRQ VXJJHVWLQJ WKDW &J SHUWXUEDQV PD\ EH XQDEOH WR FRPSOHWH D VXFFHVVIXO EORRGPHDO RQ D PDPPDOLDQ KRVW 7KLV FDSDFLW\ IRU PDPPDOLDQELUG PXOWLSOH IHHGLQJ PDNHV WKLV VSHFLHV D SULPH FDQGLGDWH DV WKH YHFWRU RI ((( +D\HV t 'RDQH f UHSRUWHG WKH ILUVW UHFRUG RI &XOLVHWD PHODQXUD ELWLQJ PDQ 1R EORRGPHDO ZDV WDNHQ EXW VNLQ SHQHWUDWLRQ ZDV DFFRPSOLVKHG UHVXOWLQJ LQ VZHOOLQJ DW WKH VLWH RI WKH ELWH &XOLVHWD PHODQXUD LV FRQVLGHUHG WR EH DOPRVW H[FOXVLYHO\ D ELUGIHHGHU

PAGE 96

.DUVWDG f VWXGLHG UHSWLOHV LQ VRXWKHDVW *HRUJLD +H IRXQG VQDNHV WXUWOHV DQG DOOLJDWRUV WR SRVVHVV VLJQLILFDQW ((( DQWLERGLHV LQGLFDWLQJ H[SRVXUH WR WKH YLUXV 9HU\ IHZ PRVTXLWRHV DUH WKRXJKW WR IHHG RQ UHSWLOHV 'H)ROLDUW f UHSRUWHG $H FDQDGHQVLV UHDGLO\ IHHGLQJ RQ D YDULHW\ RI WXUWOHV &UDQV f UHSRUWHG WKH IROORZLQJ KRVW EORRGPHDO UHFRUGV IURP 1HZ -HUVH\ $QRSKHOHV JXDGULPDFXODWXV SUHIHUUHG PDPPDO EORRG PRVWO\ GHHU EXW LQFOXGHG PDQ DQG GRJV &T SHUWXUEDQV SUHIHUUHG PDPPDOV GHHU t URGHQWf ZLWK RQO\ D VLQJOH ELUG UHFRUG $HGHV VROOLFLWDQV IHG PDLQO\ RQ GHHU EXW DOVR RQ ODUJHU VKRUH ELUGV KXPDQV UDEELWV DQG SLJV &XOLVHWD PHODQXUD IHG DOPRVW H[FOXVLYHO\ RQ SDVVHULQH ELUGV EXW DOVR IHG RQ ODUJHU ELUGV GHHU RSRVVXP URGHQWV UDFFRRQ DQG IURJV &XOH[ SLSLHQV ZDV H[FOXVLYHO\ D ELUG IHHGHU &XOH[ VDOLQDULXV IHG HTXDOO\ RQ PDPPDOV DQG ELUGV DQG &[ WHUULWDQV IHG PRVWO\ RQ IURJV EXW DOVR RQ ELUGV URGHQWV UDFFRRQ DQG WXUWOHV &UDQV f VWXGLHG &[ WHUULWDQV LQ 1HZ -HUVH\ 2I EORRGPHDOV ZHUH DPSKLELDQ ZHUH UHSWLOH WXUWOH VQDNHf ZHUH DYLDQ DQG PDPPDOLDQ UDEELW t URGHQWf 0RVW RIWHQ WKH IURJV EHLQJ IHG XSRQ ZHUH WKH EXOOIURJ 5DQD FDWHVEHLDQD 6KDZ DQG WKH JUHHQ IURJ 5 FODPLWDQV /DWUHLOOH 2WKHU IURJV LQFOXGHG WKH VSULQJ SHHSHU +\OD FUXFLIHU :HLGf WKH VRXWKHUQ OHRSDUG IURJ 5DQD SLSLHQV 6FKUHEHUf DQG WKH FDUSHQWHU IURJ 5 YLUJDWLSHV &RSHf 0HDQV f KRZHYHU UHSRUWHG &[ WHUULWDQV ELWLQJ PDQ

PAGE 97

0XUSKH\ HW DO f VWXGLHG VSHFLHV RI PRVTXLWRHV DQG WKHLU DWWUDFWLRQ WR ELUG PDPPDO DQG UHSWLOHEDLWHG WUDSV %LUG KRVWV LQFOXGHG PDOODUG GXFN &DQDGD JRRVH FRPPRQ HJUHW EDUQ RZO UHG ZLQJHG EODFNELUG WXUNH\ YXOWXUH DQG FKLFNHQ 0DPPDO KRVWV LQFOXGHG ZRRGFKXFN PXVNUDW UDFFRRQ RSRVVXP UHG IR[ PHDGRZ YROH ULYHU RWWHU DQG JXLQHD SLJ $ EUHDNGRZQ RI VRPH RI WKHLU GDWD LV SUHVHQWHG LQ WDEOH $OWKRXJK YDULRXV PRVTXLWR VSHFLHV ZHUH FROOHFWHG QR GLVWLQFW KRVW SUHIHUHQFH SDWWHUQ ZDV VHHQ E\ WKH DXWKRUV :KDW ZDV DSSDUHQW ZDV WKDW LI PRVTXLWRHV FDPH WR WKHVH KRVWV PRVW WRRN D EORRGPHDO RQ WKDW SDUWLFXODU KRVW 7KH GLYHUVLW\ RI KRVWV WKDW DUH DFFHSWDEOH WR WKH VSHFLHV VHH WDEOH f ZRXOG VXJJHVW QR KRVW SUHIHUHQFH DV UHSRUWHG E\ WKH DXWKRUV +RZHYHU DV VKRZQ LQ &KDSWHU WKHVH DQLPDOV KDYH PXFK LQ FRPPRQ DQG LQ IDFW WKH GDWD VXJJHVW D SUHIHUHQFH E\ WKH PRVTXLWRHV IRU DPRXQW RI UHVSLUHG YROXPH RI JDVHV 1RW DOO KRVWV ZHUH XVHG IRU WKH VDPH QXPEHU RI WUDSSLQJ QLJKWV 7KH QXPEHU FROOHFWHG LQ 7DEOH UHSUHVHQWV WKH QXPEHU FROOHFWHG SHU QLJKW SHU WULDO IRU WKDW SDUWLFXODU KRVW ,I WKH WRWDO QXPEHU RI PRVTXLWRHV FROOHFWHG SHU KRVW LV GLYLGHG E\ WKH QXPEHU RI WULDOV IRU WKDW KRVW WKH UHVXOWLQJ QXPEHU FROOHFWHG SHU WULDO SHU KRVW EHFRPHV PDOODUG f &DQDGD JRRVH f FRPPRQ HJUHW f EDUQ RZO f UHG ZLQJHG EODFNELUG f WXUNH\ YXOWXUH f FKLFNHQ f PXVNUDW f UDFFRRQ f RSRVVXP f UHG IR[ f PHDGRZ YROH f ULYHU RWWHU f DQG JXLQHD SLJ f

PAGE 98

7DEOH 6SHFLHV RI PRVTXLWRHV DWWUDFWHG WR YDULRXV KRVWV 6SHFLHV 0RVTXLWRHV &[ VDOLQDULXV $H VROOLFLWDQV $H FDQWDWRU $H YH[DQV &[ SLSLHQV %LUG %DLW +RVW 1XPEHU 1LTKW b )HG 0DPPDOV 1XPEHU %DLW +RVW QLTKW b )HG PDOODUG ZRRGFKXFN JRRVH PXVNUDW HJUHW UDFFRRQ RZO RSRVVXP EODFNELUG UHG IR[ YXOWXUH YROH FKLFNHQ RWWHU JXLQHD SLJ PDOODUG ZRRGFKXFN JRRVH PXVNUDW HJUHW UDFFRRQ RZO RSRVVXP EODFNELUG UHG IR[ YXOWXUH YROH FKLFNHQ RWWHU JXLQHD SLJ PDOODUG ZRRGFKXFN JRRVH PXVNUDW HJUHW UDFFRRQ RZO RSRVVXP EODFNELUG UHG IR[ YXOWXUH YROH FKLFNHQ RWWHU JXLQHD SLJ PDOODUG ZRRGFKXFN JRRVH PXVNUDW HJUHW UDFFRRQ RZO RSRVVXP EODFNELUG UHG IR[ YXOWXUH YROH FKLFNHQ RWWHU JXLQHD SLJ PDOODUG ZRRGFKXFN JRRVH PXVNUDW HJUHW UDFFRRQ RZO RSRVVXP EODFNELUG UHG IR[ YXOWXUH YROH FKLFNHQ RWWHU JXLQHD SLJ

PAGE 99

7DEOH $Q TXDG PDOODUG JRRVH HJUHW RZO EODFNELUG YXOWXUH FKLFNHQ &RT SHUWXUEDQV PDOODUG JRRVH HJUHW RZO EODFNELUG YXOWXUH FKLFNHQ $Q FUXFLDQV PDOODUG JRRVH HJUHW RZO EODFNELUG YXOWXUH FKLFNHQ &[ UHVWXDQV PDOODUG JRRVH HJUHW RZO EODFNELUG YXOWXUH FKLFNHQ $Q SXQFWLSHQQLV PDOODUG JRRVH HJUHW RZO EODFNELUG YXOWXUH FKLFNHQ &RQWf ZRRGFKXFN PXVNUDW UDFFRRQ RSRVVXP UHG IR[ YROH RWWHU JXLQHD SLJ ZRRGFKXFN PXVNUDW UDFFRRQ RSRVVXP UHG IR[ YROH RWWHU JXLQHD SLJ ZRRGFKXFN PXVNUDW UDFFRRQ RSRVVXP UHG IR[ YROH RWWHU JXLQHD SLJ ZRRGFKXFN PXVNUDW UDFFRRQ RSRVVXP UHG IR[ YROH RWWHU JXLQHD SLJ ZRRGFKXFN PXVNUDW UDFFRRQ RSRVVXP UHG IR[ YROH RWWHU JXLQHD SLJ )DU IHZHU PRVTXLWRHV ZHUH DWWUDFWHG WR UHSWLOHV 7KRVH VSHFLHV WKDW VKRZHG VRPH DWWUDFWLRQ WR UHSWLOHV LQFOXGHG &[

PAGE 100

WHUULWDQV $Q TXDGULPDFXODWXV $H VROOLFLWDQV &T SHUWXUEDQV &[ SLSLHQV DQG &[VDOLQDULXV &XOH[ VDOLQDULXV DQG &[ SLSLHQV IDLOHG WR EORRGIHHG RQ WKH UHSWLOHV ZKLOH &T SHUWXUEDQV IHG RQ VQDNHV EXW QRW RQ WXUWOHV $HGHV VROOLFLWDQV IHG RQ D NLQJVQDNH DQG VQDSSLQJ WXUWOH EXW QRW RQ D ZDWHUVQDNH DQG ER[ WXUWOH $QRSKHOHV TXDGULPDFXODWXV IHG RQ D ZDWHUVQDNH VQDSSLQJ WXUWOH DQG ER[ WXUWOH &XOH[ WHUULWDQV IHG RQ D NLQJVQDNH ZDWHUVQDNH VQDSSLQJ WXUWOH DQG ER[ WXUWOH 7KH WRWDO QXPEHUV RI PRVTXLWRHV DWWUDFWHG WR UHSWLOHV ZHUH &[ WHUULWDQV f $Q TXDGULPDFXODWXV f $H VROOLFLWDQV f &T SHUWXUEDQV f &[ SLSLHQV f DQG &[ VDOLQDULXV f &XOH[ WHUULWDQV ZDV QRW FROOHFWHG LQ PDPPDO EDLWHG WUDSV $OO RI WKH DERYH GDWD ZHUH H[WUDFWHG IURP YDULRXV WRWDO QXPEHUV UHSRUWHG E\ 0XUSKH\ HW DOORF FLWf 7KH DXWKRUV DWWHPSWHG WR FRUUHODWH PRVTXLWR VSHFLHV ZLWK KRVW SUHIHUHQFH EXW ZHUH XQDEOH WR GR VR (GPDQ t 7D\ORU f GRFXPHQWHG D VHDVRQDO VKLIW IURP EORRGIHHGLQJ RQ ELUGV WR PDPPDOV LQ &[ QLJULSDOSXV ,QFUHDVH LQ PDPPDOIHHGLQJ VWDUWHG LQ HDUO\ VXPPHU UHDFKHG D PD[LPXP EHWZHHQ -XO\ DQG 2FWREHU DQG ZDV IROORZHG LQ WKH IDOO E\ D UHWXUQ WR PDLQO\ DYLDQ KRVWV GXULQJ ZLQWHU DQG VSULQJ 7KH VKLIW LQ IHHGLQJ FRXOG QRW EH UHODWHG WR DQ\ VKLIW LQ WKH DYDLODELOLW\ RI KRVWV DW HLWKHU VWXG\ VLWH 5DEELWV ZHUH IUHTXHQW KRVWV DW RQH VLWH EXW ZHUH UHSODFHG E\ DUPDGLOORV DW WKH RWKHU 7KH DXWKRUV VXJJHVWHG WKDW VLQFH VHDVRQDO DEXQGDQFH RI KRVWV GLG QRW H[SODLQ WKH VKLIW SHUKDSV VHDVRQDO

PAGE 101

ZHDWKHU FRQGLWLRQV WHPSHUDWXUH DQG PRLVWXUHf PLJKW LQIOXHQFH IHHGLQJ EHKDYLRU RU WKH DELOLW\ WR ILQG RQH FODVV RI KRVWV PRUH UHDGLO\ WKDQ WKH RWKHU 1RODQ HW DO f UHFRUGHG $H FDQDGHQVLV DQG $H WULVHULDWXV IHHGLQJ RQ WXUWOHV RQ WKH 3RFRPRNH 6ZDPS 0DU\ODQG LQ -XQH 7KH SDLQWHG WXUWOH DQG ER[ WXUWOH ZHUH KRVWV $ VLQJOH $H WULVHULDWXV ZDV FROOHFWHG ZKLOH $H FDQDGHQVLV ZHUH FROOHFWHG *XQVWUHDP HW DO f VWXGLHG EORRG PHDOV IRU VSHFLHV RI &DOLIRUQLD PRVJXLWRHV $HGHV GRUVDOLV 0HLJHQf IHG PDLQO\ RQ FDWWOH bf IROORZHG E\ KRUVH bf GRJ bf KXPDQ bf DQG UDEELW FDW SLJ DQG FKLFNHQ bf $HGHV YH[DQV IHG RQ FDWWOH bf KRUVH bf GRJ DQG KXPDQV bf UDEELW bf FKLFNHQ bf DQG SDVVHULIRUP ELUGV bf 3VRURSKRUD FRQILQQLV FROXPELDHf IHG RQ FDWWOH bf KRUVHV bf GRJV bf SLJV bf DQG KXPDQV URGHQWV DQG ELUGV bf &XOH[ HUYWKURWKRUD[ '\DU IHG RQ FULFHWLG URGHQWV bf FDWWOH DQG UDEELW bf FKLFNHQ bf FROXPELIRUP ELUGV bf SDVVHULIRUP ELUGV bf FLFRQLLIRUP ELUGV bf JUXLIRUP DQG DQVHULIRUP ELUGV bf &XOH[ WDUVDOLV IHG RQ FDWWOH bf KRUVHV bf UDEELW bf KXPDQ bf FKLFNHQ bf JXDLO bf FROXPELIRUP ELUGV bf SDVVHULIRUP ELUGV bf JUXLIRUP ELUGV bf DQG DQVHULIRUP ELUGV bf &XOLVHWD LQRUQDWD IHG RQ FDWWOH bf KRUVH bf GRJ bf UDEELW bf DQG FKLFNHQ bf

PAGE 102

:KLOH &[ WDUVDOLV WRWDOHG D QHDU PDPPDO WR ELUG IHHGLQJ UDWLR WKH VHDVRQDO UDWLRV RI PDPPDOELUG ZHUH IDOO t ZLQWHUf VSULQJf DQG VXPPHUf 7KH DXWKRUV DWWULEXWHG WKH VKLIW WR VHDVRQDO FKDQJHV LQ KRVW DYDLODELOLW\ 7HPSHOLV HW DO f VWXGLHG &[ WDUVDOLV &[ SLSLHQV &V LQRUQDWD $HGHV YH[DQV $H VWLFWLFXV $H GRUVDOLV DQG $H PHODQLPRQ IURP &RORUDGR &DWWOH ZHUH WKH SUHGRPLQDQW EORRG PHDO IRU DOO $HGHV WHVWHG ZLWK RQO\ RI EORRGPHDOV DYLDQ &XOLVHWD LQRUQDWD IHG SULQFLSDOO\ RQ KRUVHV DQG FDWWOH OHVV WKDQ b RQ ELUGV &XOH[ SLSLHQV KDG b DYLDQ EORRGPHDOV SUHGRPLQDQWO\ FROXPELIRUPHV &XOH[ WDUVDOLV KDG b DYLDQ IHHGLQJ )RXU VSHFLHV RI PRVTXLWRHV ZHUH VWXGLHG LQ +DZDLL IRU WKHLU EORRGIHHGLQJ KDELWV 7HPSHOLV HW DO f &XOH[ TXLQTXHIDVFLDWXV IHG PDLQO\ RQ ELUGV EXW DOVR RQ D ZLGH UDQJH RI PDPPDOV LQFOXGLQJ GRJV DQG FDWWOH $HGHV YH[DQV IHG RQO\ RQ PDPPDOV PDLQO\ FDWWOH DQG KRUVHV $HGHV DOERSLFWXV 6NXVHf DQG $H DHT\SWL IHG DOPRVW H[FOXVLYHO\ RQ PDPPDOV ZLWK $H DHT\SWL IHHGLQJ PDLQO\ RQ PDQ EXW DOVR IHHGLQJ RQ GRJV DQG D ZLGH UDQJH RI RWKHU PDPPDOV %LUGV ZHUH QRW IDYRUHG E\ HLWKHU $H DHT\SWL RU $H DOERSLFWXV 6X\HPRWR HW DO f ORRNHG DW EORRG PHDOV IRU VSHFLHV RI PRVTXLWRHV IURP VRXWKHUQ DQG VRXWKZHVWHUQ VWDWHV IRU -XO\ DQG $XJXVW /LWWOH KRVW VSHFLILFLW\ ZDV REVHUYHG +RZHYHU SUHIHUHQFH IRU PDPPDOV YV ELUGV ZDV REVHUYHG $HGHV

PAGE 103

DWODQWLFXVWRUPHQWRU KDG EORRGPHDOV PDPPDOLDQ UDEELW KXPDQ ERYLG GHHU GRJ RSRVVXP f ZLWK EORRGPHDO LGHQWLILHG DV JUXLIRUP ELUG $HGHV GXSUHHL KDG ERWK PHDOV PDPPDOLDQ UDEELW GHHU JRDW ERYLQH f $HGHV IXOYXV SDOOHQV KDG UDEELW EORRGPHDOV $HGHV QLJURPDFXOLV SUHIHUUHG KRUVH f JRDW VKHHS f GHHU f ERYLQH f SLJ f UDEELW f DQG GHHU JRDW ERYLQH f $HGHV WKHOFWHU KDG EORRGPHDOV UDEELW $HGHV YH[DQV KDG JRDW VKHHS f KRUVH f GHHU JRDW ERYLQH f UDEELW f GHHU f ERYLQH f DQG FDW f $QRSKHOHV FUXFLDQV KDG JRDW VKHHS f KRUVH f $QRSKHOHV SVHXGRSXQFWLSHQQLV 7KHREDOGf KDG KRUVH EORRGPHDO $QRSKHOHV SXQFWLSHQQLV KDG UDEELW EORRGPHDO $QRSKHOHV JXDGULPDFXODWXV KDG GHHU DQG SLJ EORRGPHDO &XOH[ FRURQDWRU '\DU t .QDE KDG EORRGPHDOV UDEELW &XOH[ VDOLQDULXV KDG PDPPDOLDQ EORRGPHDOV ZLWK ELUG DQG UHSWLOH EORRGPHDOV 0DPPDOLDQ EORRGPHDOV FRQVLVWHG RI JRDW VKHHS f GHHU f UDEELW f KRUVH f RSRVVXP f SLJ f UDFFRRQ f GRJ f DQG ERYLQH f &XOH[ WDUVDOLV KDG PDPPDOLDQ EORRGPHDOV ZLWK DYLDQ EORRGPHDOV 0DPPDOLDQ EORRGPHDOV FRQVLVWHG RI JRDW VKHHS f ERYLQH f KRUVH f UDEELW f RSRVVXP f SLJ f GHHU JRDW ERYLQH f DQG GRJ f 3VRURSKRUD FLOLDWD )DEULFLXVf KDG PDPPDOLDQ EORRGPHDOV DQDO\]HG JRDW VKHHS f DQG GHHU JRDW ERYLQH f 3VRURSKRUD FRQILQQLV FROXPELDHf KDG PDPPDOLDQ EORRGPHDOV ZLWK UHSWLOH EORRGPHDOV DOVR 0DPPDOLDQ

PAGE 104

EORRGPHDOV ZHUH JRDW VKHHS f KRUVH f UDEELW f ERYLQH f GHHU f DQG KXPDQ f 3VRURSKRUD FYDQHVFHQV &RTXLOOHWWf KDG EORRGPHDOV PDPPDOLDQ KRUVH f UDEELW f GHHU f JRDW VKHHS f KXPDQ f RSRVVXP f DQG SLJ f 3VRURSKRUD IHUR[ +XPEROGWf KDG KXPDQ DQG UDEELW EORRGPHDO 3VRURSKRUD VLJQLSHQQLV &RTXLOOHWWf KDG KRUVH f UDEELW f SLJ f JRDW VKHHS f +D\HV HW DO f VWXGLHG KRVW SUHIHUHQFH LQ +DOH &RXQW\ 7H[DV RYHU D SHULRG RI \HDUV 6HYHQ VSHFLHV RI PRVTXLWR ZHUH DQDO\]HG IRU EORRG PHDO W\SH $HGHV YH[DQV KDG b PDPPDOLDQ b DYLDQ EORRGPHDOV &XOH[ WDUVDOLV KDG b PDPPDOLDQ b DYLDQ &XOH[ TXLQTXIDVFLDWXV KDG b DYLDQ EORRGPHDO b PDPPDO 3VRURSKRUD VLTQLSHQQLV DQG &V LQRUQDWD ZHUH b PDPPDOLDQ IHHGHUV 0DPPDOLDQ EORRGPHDOV IRU &[ WDUVDOLV DQG $H YH[DQV FRQVLVWHG SULPDULO\ RI ERYLQH DQG HTXLQH $YLDQ EORRGPHDOV IRU &[ WDUVDOLV FRQVLVWHG RI FKLFNHQV DQG SDVVHULIRUP ELUGV 0DJQDUHOOL Df VWXGLHG KRVW IHHGLQJ SDWWHUQV RI &RQQHFWLFXW PRVTXLWRHV $PRQJ WKH $HGHV VSHFLHV $H DEVHUUDWXV )HOW t
PAGE 105

bf $HGHV FDQWDWRU KDG ERYLQH bf SDVVHULIRUP ELUGV bf KXPDQ bf KRUVH bf UDEELW bf GRJ bf VKHHS bf JRDW bf DQG UDFFRRQ bf $HGHV FLQHUHXV 0HLJHQf KDG ERYLQH bf GRJ bf KRUVH bf UDEELW bf PRXVH bf UDFFRRQ bf JRDW bf GHHU bf DQG ELUG bf $HGHV H[FUXFLDQV :DONHUf KDG VKHHS DQG ERYLQH bf KRUVH bf UDEELW bf UDFFRRQ bf DQG JRDW bf $HGHV VWLPXODQV :DONHUf KDG GRJ bf KXPDQ bf VJXLUUHO bf DQG RSRVVXP bf $HGHV VROOLFLWDQV KDG EORRGPHDOV RI GRJ bf ERYLQH DQG KRUVHV bf UDEELW bf VKHHS bf DQG KXPDQ bf $HGHV WULVHULDWXV KDG EORRGPHDOV RI GRJ bf PRXVH bf VJXLUUHO bf DQG UDFFRRQ bf $HGHV YH[DQV KDG ERYLQH bf KRUVH bf VKHHS bf GHHU bf KXPDQ UDEELW FDW DQG PRXVH HDFK b DQG ELUG b &XOH[ SLSLHQV KDG DOO DYLDQ EORRGPHDOV ZLWK b SDVVHULIRUP DQG b FROXPELIRUP &XOH[ UHVWXDQV DOVR KDG b DYLDQ EORRGPHDOV ZLWK b SDVVHULIRUPV &XOLVHWD PHODQXUD KDG b SDVVHULIRUP ELUGV &XOLVHWD PRUVLWDQV KDG b SDVVHULIRUPV &RJXLOOHIWLGLD SHUWXUEDQV KDG KXPDQ bf GRJ bf ERYLQH bf UDEELW bfDQG UDFFRRQ bf 3VRURSKRUD IHUR[ KDG EORRGPHDOV RI KXPDQV bf GRJV bf ERYLQH bf KRUVH bf GHHU DQG UDFFRRQ bf DQG SDVVHULIRUP ELUGV b :ULJKW t 'H)ROLDUW f VWXGLHG :LVFRQVLQ PRVTXLWRHV DQG WKHLU DVVRFLDWHG YHUWHEUDWH KRVWV 7KHLU PRVTXLWRHV ZHUH FROOHFWHG LQWR D ODUJH FDJH LQVLGH ZKLFK GLIIHUHQW KRVWV ZHUH

PAGE 106

SODFHG 7KH FRXQWV RI QXPEHUV DWWUDFWHG YV QXPEHU HQJRUJHG IRU HDFK VSHFLHV VKRZHG WKDW VRPH DQLPDOV ZHUH YHU\ DWWUDFWLYH EXW GR QRW DSSHDU WR EH VXLWDEOH DV KRVWV IRU EORRGPHDOV ,I D EUHDNGRZQ RI WKHLU GDWD E\ QXPEHU RI VSHFLPHQV DWWUDFWHG WR HDFK KRVW YV SHUFHQW HQJRUJHG LV DQDO\]HG WKH IROORZLQJ SDWWHUQ HPHUJHV :KLWHWDLO GHHU IDZQ DWWUDFWHG $HGHV FRPSULVLQJ VSHFLHV ZLWK DQ HQJRUJHPHQW UDWH RI b 7ZR VSHFLHV $H WULYLWWDWXV DQG $H WULVHULDWXVf GLG QRW HQJRUJH RQ WKH GHHU 5DFFRRQV DWWUDFWHG VSHFLPHQV UHSUHVHQWLQJ $HGHV VSHFLHV ZLWK DQ HQJRUJHPHQW UDWH RI b +RZHYHU LQ VSLWH RI PDNLQJ XS b RI WKH WRWDO QXPEHUV DWWUDFWHG WR UDFFRRQ EDLW $H VWLPXODQV DQG $H YH[DQV RQO\ DYHUDJHG b HQJRUJHPHQW 7KH IROORZLQJ SDWWHUQ HPHUJHG IRU WKH VSHFLHV FROOHFWHG LQ WKH VWXG\ (DFK VSHFLHV RI KRVW ZDV DWWUDFWLYH WR PRVW RI WKH PRVTXLWRHV EXW WKH QXPEHUV RI DWWUDFWHG IHPDOHV GLG QRW FRUUHODWH ZLWK WKH SHUFHQW HQJRUJHPHQW IRU HDFK KRVW DQG VSHFLHV RI PRVTXLWR ,I WKH UHODWLYH VL]H RI WKH DQLPDO LV FRPSDUHG WR WKH QXPEHU DWWUDFWHG IRU WKH $HGHV ZKLWHWDLO GHHU DWWUDFWHG $H VWLFWLFXV f $H YH[DQV f $H FDQDGHQVLV f $H FLQHUHXV f $H VWLPXODQV f DQG $H DEVHUUDWXV SXQFWRU f 7KH UDFFRRQ DWWUDFWHG $H VWLFWLFXV f $H WULYLWWDWXV f $H YH[DQV f $H VWLPXODQV f $H FLQHUHXV f $H FDQDGHQVLV f $H WULVHULDWXV f DQG $H DEVHUUDWXV SXQFWRU f 7KH DXWKRUV FRQFOXGHG WKDW WKH SRSXODWLRQ

PAGE 107

OHYHOV RI PRVTXLWRHV H[HUWHG DQ LQIOXHQFH RQ WKH W\SH RI KRVW XVHG 7KH\ WKHRUL]HG WKDW LQ WKH SUHVHQFH RI ODUJH SRSXODWLRQV RI PRVTXLWRHV KRVWV ZHUH IHG XSRQ WKDW QRUPDOO\ DUH QRW XVHG ZKHQ SRSXODWLRQV DUH ORZHU /DUJHU KRVWV VHHPHG WR VKRZ D KLJKHU DWWDFN UDWH IRU WKH $HGHV 7KH DXWKRUV FRLQHG WKH SKUDVH KRVW DFFHSWDELOLW\ LQ SODFH RI KRVW SUHIHUHQFH :KDW HPHUJHG IURP WKHLU VWXG\ ZDV WKH IDFW WKDW D YDULHW\ RI GLIIHUHQW KRVWV ZLOO DWWUDFW D PRVTXLWR VSHFLHV LQWR D FDJH EXW DFWXDO HQJRUJHPHQW UDWHV ZHUH YDULHG $PRQJ WKH &[ SLSLHQV DWWUDFWHG WKH ODUJHVW QXPEHUV ZHUH DWWUDFWHG WR WKH VPDOOHVW PDPPDOV EXW WKH KLJKHVW HQJRUJHPHQW UDWH RFFXUUHG RQ ELUGV 7KLV VXJJHVWV WKDW ERG\ VL]H ZDUPWKf LV WKH LQLWLDO GLVWDQFH DWWUDFWDQW %RG\ VL]H LV FRUUHODWHG ZLWK ERG\ VXUIDFH DUHD 2OIDFWLRQ DQG SURSHU DPRXQWYROXPHf RI FKHPLFDOV WDNH RYHU DW FORVH UDQJH DQG LQIOXHQFH KRVW VHOHFWLRQ RQFH WKH PRVTXLWR KDV EHHQ GUDZQ WR WKH SURSHUO\ VL]HG DQLPDO 7HPSHOLV f H[SDQGHG WKH FDWHJRULHV IRU KRVW UDQJHV RI PRVTXLWRHV WR IURP WKH SURSRVHG E\ &UDQV f 7KHVH LQFOXGH f DOPRVW HQWLUHO\ PDPPDOV f HQWLUHO\ ELUGV f ERWK ELUGV DQG PDPPDOV f H[FOXVLYHO\ DPSKLELDQ f SUHGRPLQDQWO\ UHSWLOHV EXW RFFDVLRQDOO\ ZDUPEORRGHG f HQWLUHO\ RQ ILVK 8U ODWHUDOLVf f FROG DQG ZDUPEORRGHG DQLPDOV f ELUGV LQ VSULQJ PDPPDOV LQ VXPPHU DQG IDOO DQG f H[FOXVLYHO\ PDPPDOV LQ DUHD ELUGV LQ DQRWKHU 7HPSHOLV f UHFRUGHG IHHGLQJ SUHIHUHQFHV IRU YDULRXV VSHFLHV RI

PAGE 108

PRVTXLWR WR LOOXVWUDWH HDFK RI WKH DERYH FDWHJRULHV $PRQJ )ORULGD VSHFLHV KH FRPSDUHG $Q FUXFLDQV ZKLFK (GPDQ f VWDWHG XVHG UDEELW DV WKH SULPDU\ KRVW EXW ZKLFK 6FKDHIHU t 6WHHOPDQ f UHSRUWHG XVLQJ FDWWOH DV WKH SULPDU\ KRVW LQ /RXLVLDQD $QRSKHOHV TXDGULPDFXODWXV ZDV UHSRUWHG DV SUHIHUULQJ ERYLQHV LQ /RXLVLDQD DQG UXPLQDQWV LQ )ORULGD 7HPSHOLV ORF FLWf UHSRUWHG GRPHVWLF PDPPDOV FDWWOH LQ ,OOLQRLV KRUVHV LQ 0LQQHVRWDf IRU $Q SXQFWLSHQQLV +H VWDWHG WKDW OLWWOH GRXEW H[LVWV DERXW KRVWV SUHIHUUHG E\ $QRSKHOHV EHLQJ GHSHQGHQW XSRQ WKH DYDLODELOLW\ RI FHUWDLQ PDPPDOV &XOH[ WDUVDOLV ZDV DJDLQ QRWHG IRU LWV VSULQJ ELUG IHHGLQJ DQG VKLIW WR PDPPDOV LQ PLG-XO\ ODVWLQJ XQWLO WKH HQG RI WKH VXPPHU +H DOVR QRWHG WKDW DV ZLWK &[ WDUVDOLV WKH VHDVRQDO VKLIW UHSRUWHG LQ &[ QLJULSDOSXV FRXOG QRW EH DWWULEXWHG WR FKDQJHV LQ KRVW DYDLODELOLW\ DQG EHKDYLRU &XOH[ SLSLHQV DQG SLSLHQV TXLQTXHIDVFLDWXV DUH UHSRUWHG E\ 7HPSHOLV WR GLIIHU LQ IHHGLQJ SUHIHUHQFH &XOH[ SLSLHQV SUHIHUV ELUGV H[FOXVLYHO\ ZKLOH SLSLHQV TXLQTXHIDVFLDWXV IHHGV UHDGLO\ RQ ELUGV DQG PDPPDOV $PRQJ WKH RWKHU &XOH[ VSHFLHV 7HPSHOLV f UHSRUWHG WKH IROORZLQJ DV DYLDQ IHHGHUV &[ UHVWXDQV &[ HUUDWLFXV &[ SHXV DQG &[ WKULDPEXV '\DU &XOH[ VDOLQDULXV IURP /RXLVLDQD ZHUH IRXQG WR IHHG RQ PDPPDOV b RI WKH WLPH SULPDULO\ FDWWOH 6FKDHIHU t 6WHHOPDQ f 7KLV VDPH VSHFLHV LQ 7H[DV ZDV IRXQG WR KDYH IHG HQWLUHO\ RQ PDPPDOV EXW LQ 0LQQHVRWD ZDV IRXQG WR EH SULQFLSDOO\ D IHHGHU RQ SDVVHULIRUP ELUGV 7HPSHOLV f

PAGE 109

,Q 1HZ -HUVH\ &[ WHUULWDQV KDG b DPSKLELDQ EORRGPHDOV &UDQV f &DOLIRUQLD VSHFLPHQV RI &[ DSLFDOLV $GDPV IHG RQ UHSWLOHV LQ RQH DUHD DQG SDVVHULIRUP ELUGV LQ DQRWKHU &XOH[ HUYWKURWKRUD[ IURP ZHVWHUQ VWDWHV VKRZHG GLIIHUHQW IHHGLQJ SDWWHUQV ELUGV LQ 8WDK PDPPDOV LQ WKH 6DQ -RDTXLQ YDOOH\ DQG HTXDOO\ ELUGV DQG PDPPDOV LQ VRXWKHDVWHUQ &DOLIRUQLD 7HPSHOLV *XQVWUHDP HW DO f $HGHV DHT\SWL IHG RQ PDQ LQ +DZDLL b RI WKH WLPH DQG b LQ )ORULGD 7HPSHOLV f 'RPHVWLF PDPPDOV ZHUH DOVR XVHG DV KRVWV DQG IHHGLQJ E\ $H DHT\SWL RQ ELUGV LV UDUH XQGHU PRVW FLUFXPVWDQFHV ,Q $IULFD D ZLGH UDQJH RI KRVWV ZDV UHSRUWHG IRU WKLV VSHFLHV ZLWK PDQ WKH SULPDU\ KRVW EXW LQFOXGLQJ DOVR ERYLQH DQG URGHQWV 7ZHQW\ ILYH SHUFHQW RI VSHFLPHQV FROOHFWHG LQ RQH YLOODJH KDG IHG RQ UHSWLOHV 0F&OHOODQG t :HLW] f $HGHV DOERSLFWXV IHHGV RQ GRPHVWLF PDPPDOV DQG PDQ DV ZHOO ZLWK D PXFK ORZHU SHUFHQWDJH IHHGLQJ RQ ELUGV $HGHV YH[DQV LV D SHVW RI ODUJH GRPHVWLF PDPPDOV DQG PDQ +RUVIDOO HW DO 7DNDKDVKL HW DO f ,Q &DQDGD KRZHYHU $H YH[DQV ZHUH DWWUDFWHG WR DQG IHG RQ FKLFNHQ EDLWHG WUDSV 6KHPDQFKXNf %XUNRW t 'H)ROLDUW f DQDO\VHG EORRGPHDO VRXUFHV LQ $H WULVHULDWXV DQG $H YH[DQV LQ VRXWKHUQ :LVFRQVLQ 'HHU PDGH XS b RI EORRGPHDOV IRU $H WULVHULDWXV DQG b RI EORRGPHDOV IRU $H YH[DQV 2I EORRGPHDOV LGHQWLILHG IURP $H WULVHULDWXV ZHUH GHHU GRJ UDFFRRQ KXPDQ

PAGE 110

UDEELW FKLSPXQN JUD\ VTXLUUHO ZRRGFKXFN JURXQJKRJf PRXVH ELUG DQG UHSWLOHDPSKLELDQ +RZHYHU DSSUR[LPDWHO\ b RI WKH EORRGPHDOV WHVWHG IRU WKHVH WZR VSHFLHV ZHUH QRW UHDFWLYH WR WKH DQWLVHUD XVHG %HUWVFK DQG 1RUPHQW f VWXGLHG KRVWIHHGLQJ SDWWHUQV RI &[ JXLQFUXHIDVFLDWXV LQ 0LVVLVVLSSL 7KH\ REVHUYHG D SUHIHUHQFH IRU DYLDQ EORRGPHDOV EXW ZLWK D PDUNHG GHFUHDVH RI ELUG IHHGLQJ GXULQJ WKH ZDUPHU PRQWKV 2I WKH PDPPDO KRVWV HTXLQH DQG ERYLQH ZHUH SUHIHUUHG ZLWK -XQH -XO\ DQG $XJXVW EHLQJ WKH PRQWKV RI KLJKHVW PDPPDOLDQ IHHGLQJ DFWLYLW\ 5DEELWIHHGLQJ ZDV JUHDWHVW DW WKH HQG RI WKH ODUJHPDPPDO IHHGLQJ SHULRG UHDFKLQJ LWV KLJKHVW OHYHO LQ 6HSWHPEHU 1R GDWD ZHUH FROOHFWHG IRU WKH SHULRG 2FWREHU )HEUXDU\ &KLFNHQ EORRGPHDOV ZHUH WKH KLJKHVW GXULQJ WKH VDPH PRQWKV DV ODUJHU PDPPDOV ZLWK WKH KLJKHVW SHUFHQWDJH RFFXUULQJ LQ WKH IDOO 3DVVHULIRUP ELUG EORRGPHDOV ZHUH WDNHQ LQ KLJKHVW QXPEHUV LQ ODWH IDOO 1DVFL Ef VWXGLHG KRVWV IRU $H WULVHULDWXV DQG $H KHQGHUVRQL LQ ,QGLDQD +H IRXQG WKDW $H WULVHULDWXV IHG SUHGRPLQDQWO\ RQ FKLSPXQN DQG GHHU $HGHV KHQGHUVRQL IHG PDLQO\ RQ WUHH VTXLUUHOV DQG UDFFRRQ 1DVFL f DOVR VWXGLHG $H YH[DQV DQG $H WULYLWWDWXV &RTXLOOHWWf IHHGLQJ SDWWHUQV LQ ,QGLDQD $HGHV YH[DQV SUHIHUUHG ODUJH PDPPDOV GHHU FRZ DQG KRUVHf ZLWK OHVVHU DWWUDFWLRQ WR GRJ UDEELW KXPDQV SLJ DQG JRDW $HGHV WULYLWWDWXV SUHIHUUHG GRJ UDEELW DQG FDW DW RQH VLWH KRUVH GHHU DQG UDFFRRQ DW

PAGE 111

DQRWKHU DQG GHHU DQG UDFFRRQ DW D WKLUG VLWH 7KHVH KRVW SUHIHUHQFHV YDULHG RYHU VXFK D VKRUW GLVWDQFH WKDW 1DVFL IORH FLWf VXJJHVWHG WKDW WKH YDULDWLRQ LQ IHHGLQJ ZDV LQ UHVSRQVH WR HQYLURQPHQWDO IDFWRUV VXFK DV GLIIHUHQFHV LQ KRVW GHQVLW\ DQG ZHDWKHU IDFWRUV )OXFWXDWLQJ KRVW GHQVLWLHV DSSHDUHG WR EH WKH FDXVH RI GDLO\ YDULDWLRQ LQ EORRGIHHGLQJ +H DOVR VWDWHG WKDW ZKLOH $H YH[DQV DSSHDUHG WR EH DQ RSSRUWXQLVWLF IHHGHU RQ DYDLODEOH ODUJH PDPPDOV WKH RSSRUWXQLVWLF IHHGLQJ GLG QRW DSSHDU WR LQFOXGH IHHGLQJ RQ RWKHU W\SHV RI KRVWV VXFK DV VPDOOHU PDPPDOV DQG ELUGV ,Q GLVFXVVLQJ WKHVH GLVFUHSDQFLHV DQG GLIIHUHQFHV EHWZHHQ WKH WZR VSHFLHV 1DVFL VXJJHVWHG WKDW WKH SRVVLELOLW\ H[LVWV WKDW $H YH[DQV DQG $H WULYLWWDWXV VHDUFK IRU KRVWV LQ GLIIHUHQW KDELWDWV RU WKDW WKH\ UHVSRQG WR GLIIHUHQW LPDJHV RU WKDW WKH\ KDYH GLIIHUHQW WKUHVKROGV WR & VHQVLWLYLW\ 7KLV FRQFHSW RI KRVW LPDJH DQG & VHQVLWLYLW\ LV WKH FRQFHSW WKDW ZLOO EH GHYHORSHG LQ WKH ODWHU FKDSWHUV KHUH 1DVFL f LV WKH ILUVW UHIHUHQFH HQFRXQWHUHG WKDW KDV WULHG WR XVH D FRPELQDWLRQ RI KRVW LPDJH DQG & VHQVLWLYLW\ RI WKH PRVJXLWR WR H[SODLQ KRVW SUHIHUHQFH $OO WKDW LV ODFNLQJ KHUH LV WKH PHFKDQLVP EHKLQG WKH GLIIHUHQW VHQVLWLYLW\ FDSDELOLW\ RI PRVJXLWRHV DQG WKH UHODWLRQVKLS EHWZHHQ KRVW LPDJH DQG & OHYHOV $ K\SRWKHVLV IRU WKLV UHODWLRQVKLS LV SUHVHQWHG DQG DQDO\]HG ODWHU ,Q D VHULHV RI SDSHUV (GPDQ E (GPDQ t +DHJHU f WKH IHHGLQJ SUHIHUHQFHV IRU )ORULGD PRVJXLWRHV ZHUH H[DPLQHG 7KH JHQXV :YHRPYLD FRQWDLQV

PAGE 112

VSHFLHV LQ )ORULGD 2I WKHVH :\ PLWFKHOOL 7KHREDOGf DQG :Y YDQGX]HHL '\DU t .QDEf ZHUH IRXQG WR SUHIHU UDEELWV 7KHVH WZR VSHFLHV RFFXU LQ WKH VRXWKHUQ KDOI RI SHQLQVXODU )ORULGD DQG RYLSRVLW LQ EURPHOLDGV 7KH WKLUG VSHFLHV :Y KDYQHL 'RGJHf RYLSRVLWV LQ WKH SLWFKHU SODQW 6DUUDFHQLD SXUSXUHD / WKDW JURZV LQ ERJV LQ QRUWKZHVW )ORULGD DOO WKH ZD\ QRUWK WR WKH 1HZ (QJODQG VWDWHV 7KLV VSHFLHV LV WRWDOO\ DXWRJHQRXV LQ WKH QRUWK SRUWLRQ RI LWV UDQJH EXW ZLOO WDNH EORRGPHDOV LQ WKH VRXWKHUQ SRUWLRQ RI LWV UDQJH %ORRGPHDOV IRU WKH DQDXWRJHQRXV VSHFLHV RI :YHRP\LD LQFOXGHG UDFFRRQ DUPDGLOOR UXPLQDQWV SRVVLEO\ DOVR GHHUf DQG ELUGV 7KHVH VSHFLHV DUH GD\WLPH ELWHUV &XOH[ 0HODQRFRQLRQf ZHUH GLVFXVVHG E\ (GPDQ Ef 7KH VSHFLHV &[ HUUDWLFXV DQG &[ LRODPEGLV '\DU IHG SULPDULO\ RQ WKH &LFRQLLIRUPHV KHURQV VWRUNV t HJUHWVf &[ SHFFDWRU '\DU t .QDE DQG &[ SLORVXV IHG SULPDULO\ RQ UHSWLOHV &XOH[ RSLVWKRSXV .RPS IHG SULPDULO\ RQ VPDOO PDPPDOV HVSHFLDOO\ URGHQWV $ IXUWKHU EUHDNGRZQ RI EORRGPHDOV IURP &[ HUUDWLFXV UHYHDOHG b ELUG &LFRQLLIRUPHVf b PDPPDO LQFOXGLQJ UDEELW UXPLQDQW UDFFRRQ RSRVVXP DUPDGLOOR t URGHQWf DQG UHSWLOHV WXUWOH DQG VQDNHf &XOH[ SLORVXV KDG b PDPPDO UDEELW UXPLQDQW t UDFFRRQf DQG b UHSWLOH DQG DPSKLELDQV PRVWO\ VQDNHV DQG OL]DUGVf &XOH[ SHFFDWRU KDG b ELUGV b VQDNHV DQG b PDPPDOV (GPDQ f ORRNHG DW KRVWIHHGLQJ LQ &XOH[ DQG 1HRFXOH[ &XOH[ WHUULWDQV ZDV LGHQWLILHG DV D FROGEORRGHG

PAGE 113

DQLPDO IHHGHU &XOH[ SMSLHQV TXLQTXHIDVFLDWXV ZDV D JHQHUDO IHHGHU RQ GRPHVWLF ELUGV DQG PDPPDOV DV ZHOO DV SDVVHULQH ELUGV &XOH[ VDOLQDULXV ZDV D JHQHUDO IHHGHU EXW IHG SULPDULO\ RQ PDPPDOV LQ FHUWDLQ KDELWDWV &XOH[ QLJULSDOSXV KDG D ZLGH YDULHW\ RI KRVWV LQFOXGLQJ FDWWOH UDEELWV FLFRQLLIRUP SDVVHULQH DQG JDOOLIRUP ELUGV $V GLVFXVVHG HDUOLHU &[ QLJULSDOSXV VKRZV D VHDVRQDO KRVW VKLIW (GPDQ f GLVFXVVHG WKH SRVVLELOLW\ RI GLVWLQFW VHDVRQDOO\ DGDSWHG ELRW\SHV ZLWKLQ &[ QLJULSDOSXV HDFK KDYLQJ D GLIIHUHQW KRVW SUHIHUHQFH DQG VHDVRQ RI DEXQGDQFH 1R GLUHFW GLIIHUHQFHV ZHUH VHHQ EHWZHHQ IHHGLQJ KDELWV RI &[ QLJULSDOSXV ZKHQ WKH\ ZHUH RIIHUHG PDUVK UDEELWV DQG FRFNHUHOV ELUGVf DV KRVWV 2WKHU )ORULGD JHQHUD $HGHV 3VRURSKRUD $QRSKHOHV &RTXLOOHWWLGLD DQG 0DQVRQLD ZHUH FRPSDUHG IRU KRVW SUHIHUHQFH (GPDQ f $V QRWHG IURP WKH WKH PDQ\ HDUOLHU SDSHUV GLVFUHSDQFLHV EHWZHHQ KRVW DYDLODELOLW\ DQG KRVW SUHIHUHQFH ZHUH QRWHG 6RPH VSHFLHV RI FRPPRQ PDPPDOV ZHUH UDUHO\ XVHG ZKLOH RWKHU PDPPDOV ZHUH DW WLPHV IHG RQ GLVSURSRUWLRQDWHO\ WR WKHLU QXPEHUV 'HVSLWH DEVHQFHV RI FHUWDLQ KRVWV ZLWKLQ D UDGLXV RI XS WR NP WKHVH KRVWV ZHUH IRXQG LQ EORRG PHDO DQDO\VHV LQGLFDWLQJ DW OHDVW D NP UDGLXV RI KRVW VHHNLQJ E\ VRPH PRVJXLWRHV GHVSLWH WKH DSSDUHQW DEXQGDQFH RI D YDULHW\ RI RWKHU KRVWV 7KH RQO\ PRVTXLWR VSHFLHV FROOHFWHG DW DOO VWXG\ DUHDV ZDV 3V FRQILQQLV FROXPELDHf ,Q DUHD 3V FRQILQQLV VKRZHG D SUHIHUHQFH RI UDEELWV WR UXPLQDQWV

PAGE 114

LQ D UDWLR LQ DUHD WKH UDWLR ZDV b UXPLQDQWV b UDEELWV DQG DUPDGLOORV DQG LQ DUHD b UXPLQDQWV b UDEELWV DQG DUPDGLOORV 6HYHUDO RWKHU VSHFLHV KDG IHHGLQJ SDWWHUQV ZKLFK DSSHDUHG DEHUUDQW ZLWK UHVSHFW WR PDPPDOLDQ DEXQGDQFH 3VRURSKRUD KRZDUGLL $Q FUXFLDQV DQG $H VROOLFLWDQV VKRZHG GLVSURSRUWLRQDWHO\ JUHDWHU IHHGLQJ RQ UDEELWV ZKLOH 0DQVRQLD WLWLOODQV DQG 3V FLOLDWD VKRZHG PLQLPDO IHHGLQJ RQ WKLV KRVW 6LPLODUO\ $H DWODQWLFXV $H LQILUPDWXV DQG HVSHFLDOO\ $H IXOYXV SDOOHQV IHG RQ DUPDGLOORV PRUH IUHTXHQWO\ WKDQ DQ\ RWKHU VSHFLHV $HGHV YH[DQV DQG 3V KRZDUGLL UDUHO\ HQJRUJHG RQ DUPDGLOORV (GPDQ ORF FLWf QRWHG WKDW PDQ\ PDPPDOV WKRXJK DEXQGDQW LQ VWXG\ DUHDV ZHUH VHOGRP IHG XSRQ E\ PRVTXLWR VSHFLHV +H SURSRVHG UHDVRQV WKH\ ZHUH LQDFFHVVLEOH f GHIHQVLYH DQWLPRVTXLWR EHKDYLRU f SK\VLFDO ORFDWLRQ EXUURZV WUHHVf PDGH WKHP XQDYDLODEOH DQG f WKH OHDVW OLNHO\ SRVVLELOLW\ WKDW WKH\ ZHUH XQDWWUDFWLYH WR WKH PRVTXLWRHV ,UE\ DQG $SSHUVRQ f DQDO\]HG WKH EORRGPHDOV IURP VSHFLHV RI 1RUWK &DUROLQD PRVTXLWRHV 1RWDEOH DPRQJ WKHVH ZHUH 3V IHUR[ ZKLFK IHG PRVWO\ RQ PDPPDOV RI ZKLFK b ZHUH GHHU $HGHV DWODQWLFXV KDG b GHHU &[ VDOLQDULXV KDG b GRJIR[ $H IXOYXV SDOOHQV KDG GRJIR[ GHHU DQG UDEELW $H KHQGHUVRQL KDG PDPPDO EORRGPHDOV RI UDEELW $H WULVHULDWXV KDG UDEELW GRJIR[ DQG GHHU DQG DOO EORRGPHDOV RI $H GXSUHHL &RTXLOOHWWf ZHUH SDVVHULQH ELUGV

PAGE 115

+RVW 3UHIHUHQFH ,Q &XOLVHWD PHODQXUD t &V LQRUQDWD &XOLVHWD LQRUQDWD LV DSSDUHQWO\ D ZLQWHU LPPLJUDQW LQWR FHQWUDO )ORULGD DUULYLQJ VRRQ DIWHU WKH ILUVW IHZ QLJKWV RI IUHH]LQJ WHPSHUDWXUHV 1R UHFRUGV H[LVW IRU WKLV VSHFLHV RFFXUULQJ LQ )ORULGD GXULQJ VXPPHU DQG IDOO 'XULQJ ZDUP ZLQWHUV WKLV VSHFLHV PD\ EH WRWDOO\ DEVHQW ORFDOO\ 7KH IHZ UHFRUGV RI KRVW IHHGLQJ LQGLFDWH D SUHIHUHQFH IRU ODUJH PDPPDOV LQ )ORULGD (GPDQ HW DO f &XOLVHWD PHODQXUD E\ DOO DFFRXQWV LV SUHGRPLQDQWO\ DQ DYLDQ IHHGHU )ORULGD IHHGLQJ UHFRUGV (GPDQ HW DO ORF FLWf VKRZHG b DYLDQ EORRGPHDOV SULPDULO\ SDVVHULIRUP EXW DOVR LQFOXGLQJ FLFRQLLIRUP 2WKHU UHFRUGV LQFOXGH UXPLQDQW UDEELW URGHQW VQDNH DQG OL]DUG 1DVFL t (GPDQ Df DQDO\VHG EORRGPHDOV IRU &V PHODQXUD LQ 0DVVDFKXVHWWV $JDLQ b EORRGPHDOV ZHUH DYLDQ SUHGRPLQDQWO\ SDVVHULIRUP 1RQ DYLDQ EORRGPHDOV LQFOXGHG GRJ UDEELW FDW VQDNH UHSWLOHV DQG DPSKLELDQV 7KH ILUVW UHSRUW RI PDQ EHLQJ ELWWHQ E\ &V PHODQXUD ZDV E\ +D\HV DQG 'RDQH f 6FKURHEHU f UHSRUWHG PDQ DV D KRVW LQ 1HZ
PAGE 116

QRWHG 6LQJOH KRVW UHFRUGV ZHUH REWDLQHG IRU PDQ DQG D KRUVH 7KH\ UHSRUWHG D FROOHFWLRQ VWDWLRQ ZKHUH b RI WKH VSHFLPHQV ZHUH ELUGIHG EXW b ZHUH DOVR PDPPDOLDQ LQFOXGLQJ GRJV DQG FDWVf 3UHFLSLWLQ GDWD E\ WKHLU RZQ DFFRXQW VKRZHG D ORZHU SHUFHQWDJH RI ELUGIHHGLQJ LQ 6HSWHPEHU 7KH DXWKRUV QRWHG D VOLJKW VHDVRQDO VKLIW LQ IHHGLQJ KDELWV ZLWK D GHFUHDVH LQ ELUGIHHGLQJ IURP 0D\ WR -XO\ UHDFKLQJ D VHDVRQDO ORZ LQ 6HSWHPEHU 'LVFXVVLRQ )URP DOO RI WKH DERYH GLVFXVVLRQ QXPHURXV GLVFUHSDQFLHV HPHUJH UHJDUGLQJ VSHFLHV KRVW SUHIHUHQFHV 6HHPLQJO\ GHSHQGLQJ RQ JHRJUDSK\ DQG VHDVRQDOLW\ KRVW SUHIHUHQFH PD\ EH WRWDOO\ GLIIHUHQW :KDW DOVR HPHUJHV LV WKH VXJJHVWLRQ WKDW KRVW DYDLODELOLW\ LV SUREDEO\ QRW WKH VLQJOH PRVW LPSRUWDQW IDFWRU LQ GHILQLQJ KRVW SUHIHUHQFH ,Q WKH IROORZLQJ FKDSWHUV ZLOO H[DPLQH WKH W\SH RI KRVW WKH PRUSKRORJ\ RI WKH KRVW GHWHFWLRQ VWUXFWXUHV DQG WKH JDVHRXV GLVFKDUJHV IURP YDULRXV KRVWV WR VHH LI D SDWWHUQ HPHUJHV )URP WKHVH GDWD VRPH SUHGLFWLRQV VKRXOG EH SRVVLEOH UHJDUGLQJ KRVW SUHIHUHQFH VSHFLHV RI PRVJXLWR DQG DWWUDFWDQWV WR EH XVHG LQ WUDSV

PAGE 117

&+$37(5 0253+2/2*< 2) 6(1625< 6758&785(6 ,QWURGXFWLRQ %ORRGPHDOWDNLQJ DQG DSSDUHQW KRVW SUHIHUHQFH DUH WKH HQG UHVXOW RI D VHULHV RI HYHQWV WKDW EHJLQV ZLWK KRVW GHWHFWLRQ OHDGV WR KRVWORFDWLRQ KRVWVHOHFWLRQ DQG ILQDOO\ KRVWIHHGLQJ 'LVWDQFH DWWUDFWDQWV DUH PRVW OLNHO\ WKHUPDO UDGLDQW HQHUJ\f DQG SRVVLEO\ ROIDFWRU\ $W FORVH UDQJH ROIDFWLRQ LV PRVW OLNHO\ WKH SURFHVV WKDW GHWHUPLQHV WKH VXLWDELOLW\ RI D KRVW 7KH NQRZQ ORFDWLRQV RI VHQVRU\ VWUXFWXUHV XVHG LQ KRVW VHHNLQJ RFFXU RQ WKH DQWHQQDH DQG SDOSL 5HFHSWRUV IRU RWKHU WKDQ KRVW ROIDFWLRQ WDFWLOH WKHUPDO DQG FKHPLFDOf PD\ EH ORFDWHG RQ WKH OHJV SURERVFLV DQG DEGRPHQ $V IDU DV LV NQRZQ DOO GLVWDQFH FKHPRUHFHSWRUV RFFXU RQ WKH DQWHQQDH DQG SDOSL RI DGXOW PRVTXLWRHV 0DOHV KDYH WKH VDPH W\SH RI VHQVRU\ VWUXFWXUHV DV WKH IHPDOH DOWKRXJK IHZHU LQ QXPEHU 0FOYHU f 7KH W\SHV RI VHQVRU\ VWUXFWXUHV DUH VLPLODU EHWZHHQ VSHFLHV RI PRVTXLWRHV $QRSKHOHV DUH XQLTXH LQ WKHLU FRHORFRQLF VHQVLOOD RQ DQWHQQDO VHJPHQWV )LJ f 7KH QRQn EORRGIHHGLQJ 7R[RUK\QFKLWHV ODFNV VHYHUDO RI WKH VWUXFWXUHV DVVRFLDWHG ZLWK KRVW VHHNLQJ 2I WKH VSHFLHV H[DPLQHG E\ PH RQO\ WKH QXPEHU DQG ORFDWLRQ RI VHQVRU\ VWUXFWXUHV YDULHG

PAGE 118

EHWZHHQ VSHFLHV 1R XQXVXDO W\SH RI VWUXFWXUH ZDV XQLTXH WR DQ\ VSHFLHV H[DPLQHG E\ PH :KDW GLG HPHUJH ZDV D SDWWHUQ RI SDOSDO DQG DQWHQQDO FRQILJXUDWLRQ PRUH RU OHVV XQLTXH WR HDFK VSHFLHV 7KLV LQWHUVSHFLILF YDULDWLRQ LQ WKH DUUDQJHPHQW RI FRPPRQ VWUXFWXUHV VXJJHVWHG D FRUUHODWLRQ ZLWK KRVW SUHIHUHQFH DQG PRUSKRORJ\ 7D[RQRPLF XVH RI VHQVRU\ VWUXFWXUHV LQ PRVTXLWRHV KDV EHHQ OLPLWHG WR $QRSKHOHV ,VPDLO ,VPDLO t +DPPRQG f 3DOSDO GLIIHUHQFHV DUH VHOGRP XVHG LQ 1RUWK $PHULFDQ PRVTXLWR WD[RQRP\ 7KH PRVW H[WHQVLYH XVH RI SDOSDO PRUSKRORJ\ ZDV VHHQ LQ WKH WUHDWPHQW RI WKH PRVTXLWR IDXQD RI -DSDQ DQG .RUHD 7DQDND HW DO f +HUH LV WR EH IRXQG WKH ILUVW PDMRU XVH RI SDOSDO PRUSKRORJ\ IRU WD[RQRPLF VHSDUDWLRQ RI VSHFLHV 7R EHWWHU XQGHUVWDQG SDOSDO VWUXFWXUH WKH UHDGHU LV UHIHUUHG WR WKH 7D[RQRPLVWnV *ORVVDU\ RI 0RVTXLWR $QDWRP\ +DUEDFK t .QLJKW f 7KH IROORZLQJ GLVFXVVLRQ RI SDOSL DQG WKHLU DSSOLFDWLRQ WR WD[RQRP\ LV WDNHQ IURP 7DQDND HW DO ORF FLWf 7KH SDOSXV LQ PRVTXLWRHV PD\ FRQVLVW RI WR VHJPHQWV 6HJPHQW LV FRQVLGHUHG WR EH SDUW RI WKH VWLSHV DQG XVXDOO\ KDV QR VHWDH RU VFDOHV 0DQ\ VHWDH DUH SUHVHQW RQ WKH DSSDUHQW VHJPHQW H[FHSW DPRQJ VRPH VSHFLHV RI &XOH[ 0DOHV JHQHUDOO\ KDYH VHJPHQWHG SDOSL )HPDOHV PD\ DSSHDU WR KDYH WR VHJPHQWV GHSHQGLQJ RQ WKH SUHVHQFH RU DEVHQFH RI D PLQXWH DSLFDO VHJPHQW +RZHYHU WKH WUXH QXPEHU RI VHJPHQWV LV WR 7KH WKLUG VHJPHQW LV DOZD\V WKH ORQJHVW ZLWK WKH WK PLQXWH RU ODFNLQJ :LWKLQ

PAGE 119

WKH &XOLFLQL IHPDOH SDOSL DUH VHJPHQWHG 0DOH SDOSL DUH H[WUHPHO\ YDULDEOH :LWKLQ WKH JHQXV &XOLVHWD SDOSDO VHJPHQW LV SUHVHQW LQ WKH IRUP RI D VPDOO SDSLOOLIRUP NQRE 7KH JHQXV 2UWKRSRGRP\LD KDV D ORQJ SDOSXV ZLWK VHJPHQW IUHTXHQWO\ SUHVHQW DQG VFDOHG $GXOWV GR QRW ELWH PDQ EXW DUH DWWUDFWHG WR DQG ELWH FKLFNHQV 7KH IHHGLQJ KDELWV RI WKLV JHQXV DUH XQGRFXPHQWHG LQ 1RUWK $PHULFD DOWKRXJK WKH VSHFLHV DUH EHOLHYHG WR EH FDQRS\ ELUG IHHGHUV 0DQVRQLD DQG &RTXLOOHWWLGLD DOVR KDYH SDOSDO VHJPHQW DV HLWKHU D VPDOO NQRE RU D FRQLFDO SURMHFWLRQ &XOH[ VHQVX ODWXf JHQHUDOO\ ODFNV D VHJPHQW RQ IHPDOH SDOSL KDYH QRW REVHUYHG DQ\ VHJPHQW RQ )ORULGD &XOH[ :LWKLQ WKH -DSDQHVH IDXQD &[ WULWDHQLRUKYQFKXV *LOHV LV WKH NQRZQ YHFWRU RI -DSDQHVH (QFHSKDOLWLV YLUXV )HPDOHV RI WKLV VSHFLHV DUH VHYHUH PDQELWHUV EXW DOVR IHHG RQ OLYHVWRFN DQG ELUGV DQG RFFDVLRQDOO\ RQ UHSWLOHV $PRQJ WKH VXEJHQXV 1HRFXOH[ DUH VSHFLHV ZKLFK GR QRW ELWH PDQ MXVW DV LQ WKH 1RUWK $PHULFDQ IDXQD 6HJPHQW LV IUHTXHQWO\ SUHVHQW DPRQJ $HGHV $HGHV HVRHQVLV
PAGE 120

,OO EHOLHYHG WR EH H[FOXVLYHO\ D FROGEORRGHG KRVW IHHGHU .LQJ HW DO f :LWKLQ WKH 6DEHWKLQL WKH SDOSXV LV IURP WR VHJPHQWV 7KLV WULEH FRQWDLQV WKH EL]DUUH JHQXV 0DOD\D ZKLFK REWDLQV LWV IRRG IURP DQWV 7KLV PRVTXLWR KDV PRGLILHG PRXWKSDUWV WKDW HQDEOH LW WR WDNH IRRG GLUHFWO\ IURP WKH PRXWKV RI &UHPDWRJDVWHU DQWV :LWKLQ )ORULGD WKLV WULEH FRQWDLQV WKH VLQJOH JHQXV :YHRPYLD 7KH )ORULGD JHQHUD 3VRURSKRUD DQG 'HLQRFHULWHV GR QRW RFFXU LQ -DSDQ DQG .RUHD 7KH VKDSH DQG GHVFULSWLRQV RI WKH SDOSDO PRUSKRORJ\ RI WKH JHQHUD RI IHPDOH PRVTXLWRHV IURP WKHVH WZR UHJLRQV VRXWKHDVW $VLD DQG 1RUWK $PHULFDf DUH YLUWXDOO\ LGHQWLFDO (YHQ WKRXJK WKH SURERVFLV LV LQYROYHG LQ DFWXDO IHHGLQJ ZLOO EH FRQFHUQHG KHUH ZLWK IDFWRUV LQIOXHQFLQJ GHWHFWLRQ RI WKH KRVW )ULHQG t 6PLWK f UHYLHZHG IDFWRUV DIIHFWLQJ DFWXDO IHHGLQJ RQFH WKH KRVW KDV EHHQ ORFDWHG 7KH UHDGHU VKRXOG FRQVXOW WKLV DUWLFOH IRU IXUWKHU LQIRUPDWLRQ 7KH\ FRQFOXGHG WKDW IDFWRUV WHPSHUDWXUH ROIDFWRU\ DQG YLVXDO VLJQDOVf DUH LQYROYHG LQ GHWHFWLQJ DQG ORFDWLQJ D KRVW 7KH ORFDWLRQ RI WKHUPDO DQG ROIDFWRU\ UHFHSWRUV RQ LQVHFWV KDV EHHQ VWXGLHG E\ PDQ\ SHRSOH ,QVHFWV RWKHU WKDQ PRVTXLWRHV WKDW KDYH EHHQ VWXGLHG DUH +HPLSWHUD 5HGXYLLGDH 0FOYHU t 6LHPLFNL D f &LPLFLGDH 6WHLQEUHFKW t 0XOOHU f &ROHSWHUD &KU\VRPHOLGDH 5HHV f 6FRO\WLGDH 0RHFN f 2UWKRSWHUD %ODWWLGDH 7RPLQDJD t

PAGE 121


PAGE 122

GHWDLOHG WKH VHQVH RUJDQV RI DQWHQQDH RI DGXOW PDOH DQG IHPDOH PRVTXLWRHV 7KH\ IRXQG W\SHV RI VHWDH RQ WKH DQWHQQDH 'LIIHUHQFHV ZHUH IRXQG LQ QXPEHUV DQG ORFDWLRQ RI VHQVLOOD EHWZHHQ WKH VH[HV $OVR $QRSKHOHV ZHUH GHWHUPLQHG WR KDYH D XQLTXH W\SH RI VHQVLOOXP WHUPHG VHQVLOOXP FRHORFRQLFXP RFFXUULQJ RQ ERWK IHPDOH DQG PDOH DQWHQQDH )LJ f ,VPDLO t +DPPRQG f XVHG WKH QXPEHU RI VHQVLOOD FRHORFRQLFD RQ DQWHQQDO VHJPHQWV WR VHSDUDWH PHPEHUV RI WKH $QRSKHOHV TDPELDH *LOHV FRPSOH[ $GGLWLRQDO VWXGLHV RQ PRVTXLWR DQWHQQDH LQFOXGH WKH IROORZLQJ %RR D E %RR t 0FOYHU 0FOYHU 0FOYHU t +XWFKLQVRQ ,VPDLO DQG /DFKHU %RWK DQWHQQDH DQG SDOSL DUH XVHG LQ KRVW VHHNLQJ 5RWK f GHPRQVWUDWHG E\ UHPRYDO RI YDULRXV FRPELQDWLRQV RI DQWHQQDH DQGRU SDOSL $H DHT\SWL DQG $Q TXDGULPDFXODWXVf WKDW H\HV ZHUH QRW QHFHVVDU\ IRU KRVW ORFDWLRQ WKDW IHPDOHV ZLWK SDUWLDOO\ UHPRYHG DQWHQQDH ZHUH FDSDEOH RI ORFDWLQJ D KRVW DQG IHHGLQJ WKDW IHPDOHV ZLWK WRWDOO\ UHPRYHG DQWHQQDH UHPDLQHG TXLHVFHQW EXW ZRXOG IHHG ZKHQ SODFHG XSRQ D KRVW WKDW IHPDOHV ODFNLQJ WHUPLQDO SDOSDO VHJPHQWV ZHUH DWWUDFWHG WR DQG IHG XSRQ D KRVW WKDW UHPRYDO RI DQWHQQDH DQG SDOSL HOLPLQDWHG SURELQJ DQG WKDW UHPRYDO RI DQWHQQDH GHVWUR\HG WKHUPDO DWWUDFWLRQ 7KH FRQFOXVLRQ RI WKLV VWXG\ ZDV WKDW DQWHQQDH SRVVHVV VHQVH RUJDQV ZKLFK UHFHLYH KRVW VWLPXOL IURP D GLVWDQFH WKDW DQWHQQDH IXQFWLRQ DV GLUHFWLRQDO GLVWDQFH WKHUPRUHFHSWRUV DQG WKDW DQWHQQDH DQG SDOSL DUH WKH FKLHI

PAGE 123

RUJDQV XVHG WR ORFDWH D KRVW +H DOVR GHWHUPLQHG WKDW XQOLNH $H DHJ\SWL $Q TXDGULPDFXODWXV PD\ XVH LWV KLQG OHJV DV VHQVH RUJDQV QHDU WKH KRVW 7KLV ZRUN ZDV FDUULHG RXW LQ D VPDOO FDJH VR WKH UHVXOWV PXVW EH FRQVLGHUHG FDUHIXOO\ +RZHYHU DGGLWLRQDO ZRUN E\ VHYHUDO DXWKRUV VXSSRUWHG PDQ\ RI 5RWKnV FRQFOXVLRQV 6WXGLHV RQ WKH IXQFWLRQ DQG PRUSKRORJ\ RI PRVJXLWR SDOSL LQFOXGH WKH IROORZLQJ &KDLND f 2PHU t *LOOLHV f .HOORJJ f 0FOYHU f 0FOYHU t +XGVRQ f DQG 0FOYHU t 6LHPLFNL Ef ,Q DQ H[WHQVLYH UHYLHZ DUWLFOH 0FOYHU f VXPPDUL]HG LQIRUPDWLRQ SHUWDLQLQJ WR VHQVLOOD RQ PRVTXLWRHV 6KH VWDWHG WKDW WKH SDOSL ZHUH VLWHV RI PHFKDQR DQG ROIDFWRU\ SHUFHSWLRQ ([SHULPHQWDO VWXGLHV KDYH GHPRQVWUDWHG WKDW & FRQFHQWUDWLRQV DUH LQ IDFW GHWHFWHG E\ WKH SDOSL $QWHQQDH SRVVHVV W\SHV RI VHQVLOOD VHQVLOOD FKDHWLFD VHQVLOOD WULFKRGHD JURRYHG SHJV VPDOO VHQVLOOD FRHORFRQLFD DQG VHQVLOOD DPSXOODFHD 7KH ODUJH FRQVSLFXRXV VHQVLOOD FRHORFRQLFD )LJ f DUH ODFNLQJ LQ FXOLFLQHV DQG WR[RUK\QFKLWLQHV 6HQVLOOD FKDHWLFD DUH SUREDEO\ PHFKDQRVHQVLOOD )LJ f 6PDOO VHQVLOOD FRHORFRQLFD FXOLFLQH PRVTXLWRHVf DUH ORFDWHG DW WKH WLSV RI DQWHQQDH RI ERWK VH[HV DQG DUH SUREDEO\ KHDW VHQVLWLYH )LJ f 7KHVH KDYH EHHQ GHPRQVWUDWHG HOHFWURSK\VLRORJLFDOO\ 'DYLV t 6RNRORYH f WR FRQVLVW RI ZDUP VHQVLWLYH DQG FROG VHQVLWLYH UHFHSWRUV DEOH WR GHWHFW WHPSHUDWXUH GLIIHUHQFHV DV VPDOO DV GHJUHHV FHQWLJUDGH 6HQVLOOD DPSXOODFHD DUH

PAGE 124

DOVR VXVSHFWHG WR EH KHDW VHQVLWLYH EXW WKLV KDV \HW WR EH FRQILUPHG /DUJH VHQVLOOD FRHORFRQLFD LQ $QRSKHOHV DUH SUREDEO\ ROIDFWRU\ *URRYHG SHJV )LJ f DUH FKHPLFDOO\ VHQVLWLYH KDYLQJ UHVSRQGHG WR DPPRQLD DQG IDWW\ DFLGV /DFWLF DFLG DQG & GLG QRW DSSHDU WR VWLPXODWH JURRYHG SHJV 6HQVLOOD WULFKRGHD )LJ f DUH ROIDFWRU\ DQG RFFXU LQ WZR VKDSHV /RQJ SRLQWHG WULFKRGHD )LJ f DUH H[FLWHG E\ IDWW\ DFLGV HVSHFLDOO\ ORQJ FKDLQ IDWW\ DFLGV %OXQW WLSSHG WULFKRGHD )LJ f UHVSRQG WR FKHPLFDOV NQRZQ WR EH XVHG LQ ORFDWLRQ RI RYLSRVLWLRQ VLWHV 1R UHVSRQVH RFFXUUHG LQ EOXQW WULFKRGHD WR KRVW UHODWHG VWLPXOL DQG UHSHOOHQWV 7KH EOXQW WLSSHG WULFKRGHD LQ PDOH $H DHJ\SWL DUH VHQVLWLYH WR RYLSRVLWLRQ DWWUDFWDQWV EXW DOVR WR IORUDO DQG RWKHU SODQW GHULYDWLYHV JHUDQLRO DQG DP\O DFHWDWHf ,Q IHPDOH $H DHJ\SWL SODQW UHODWHG RGRUV DUH GHWHFWHG E\ ORQJSRLQWHG WULFKRGHD /DFKHU f 0FOYHU f OLVWHG W\SHV RI VWLPXOL XVHG WR ORFDWH KRVWV YLVLRQ ZDWHU YDSRU KHDW & DQG ERG\ RGRU &DUERQ GLR[LGH GHWHFWLRQ LV DFFRPSOLVKHG E\ FDSLWDWH SHJV RQ WKH LQQHU VXUIDFH RI WKH SDOSL )LJ f 7KH QXPEHU RI SDOSDO DQG DQWHQQDO VHQVRU\ VWUXFWXUHV YDULHV EHWZHHQ VSHFLHV DV ZHOO DV EHWZHHQ VH[HV RI WKH VDPH VSHFLHV 0FOYHU ORF FLWf VXPPDUL]HG WKH QXPEHU RI SDOSDO DQG DQWHQQDO VHQVRU\ VHQVLOOD IRU VSHFLHV RI PRVTXLWRHV ,Q DOO VSHFLHV VWXGLHG PDOHV KDG IHZHU SDOSDO SHJV WKDQ IHPDOHV DQG QR WZR VSHFLHV KDG WKH VDPH QXPEHU 'HVSLWH WKH YDULDWLRQ LQ QXPEHU

PAGE 125

)LJ &RHORFRQLF VHQVLOOD RQ DQWHQQDO VHJPHQWV RI $QRSKHOHV SXQFWLSHQQLV DGXOW IHPDOH IURP /DNH %XWOHU )ORULGD 3KDVH FRQWUDVW PLFURVFRS\ ;f &V FRHORFRQLF VHQVLOOXP

PAGE 127

)LJ $QWHQQDO VHJPHQWV RI DGXOW TXLQTXHIDVFLDWXV IURP /DNH %XWOHU )ORULGD PLFURVFRS\ ;f 6F VHQVLOOXP FKDHWLFXP IHPDOH &XOH[ 3KDVH FRQWUDVW

PAGE 129

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI DQWHQQDO WLS RI DGXOW IHPDOH &XOLVHWD PHODQXUD /LQH PLFURQV $UURZ LQGLFDWHV WKH ORFDWLRQ RI KHDW VHQVLWLYH VPDOO VHQVLOOD FRHORFRQLFD

PAGE 131

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI JURRYHG DQWHQQDO SHJV RQ DQWHQQDH RI DGXOW &XOLVHWD PHODQXUD 7KLV VWUXFWXUH LV EHOLHYHG WR EH WKH VLWH RI GHWHFWLRQ RI ODFWLF DFLG /LQH PLFURQV

PAGE 133

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI DQWHQQDO VHJPHQW RI DGXOW IHPDOH &XOLVHWD PHODQXUD /LQH PLFURQV /S ORQJ SRLQWHG WULFKRGHD %S EOXQW SRLQWHG VHQVLOOD WULFKRGHD *S JURRYHG SHJ

PAGE 135

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI LQQHU VXUIDFH RI SDOSXV RI DGXOW IHPDOH &XOLVHWD PHODQXUD VKRZLQJ FDSLWDWH SHJV NQRZQ WR EH WKH VLWH RI & GHWHFWLRQ &S FDSLWDWH SHJ /LQH PLFURQV

PAGE 137

0FOYHU ZDV XQDEOH WR DVVRFLDWH VHQVRU\ VWUXFWXUH QXPEHUV ZLWK KRVW SUHIHUHQFH 7KH YDULDWLRQ LQ WKHVH QXPEHUV ZDV QRW GLVFXVVHG LQ DQ\ GHWDLO QRU ZHUH WKH SRVVLEOH HYROXWLRQDU\ FRQVHTXHQFHV RI YDULHG KRVW GHWHFWLRQ FDSDELOLWLHV PHQWLRQHG 0HWKRGV DQG 0DWHULDOV 6SHFLHV YDULDWLRQ LQ SDOSDO PRUSKRORJ\ ZDV VWXGLHG IURP ILHOGFROOHFWHG IHPDOH PRVTXLWRHV 6SHFLPHQV ZHUH FROOHFWHG DOLYH LQ WKH ILHOG EURXJKW EDFN WR WKH ODE DQG GHFDSLWDWHG 7KH HQWLUH KHDG ZLWK PRXWKSDUWV ZHUH SODFHG LQWR D GURS RI (XSDURO PRXQWLQJ PHGLXP FRYHUHG ZLWK FRYHUVOLS DQG SODFHG RQ D VOLGH ZDUPHU IRU KRXUV &RPSUHVVLRQ RI WKH KHDG FDSVXOH REVFXUHG PRXWKSDUWV VR H\HV DQG SURERVFLV ZHUH WHDVHG DZD\ IURP WKH DQWHQQDH DQG SDOSL ZLWK LQVHFW SLQV 6OLGHV ZHUH UHDG\ IRU H[DPLQDWLRQ DSSUR[LPDWHO\ GD\ DIWHU PRXQWLQJ 6OLGHV ZHUH SKRWRJUDSKHG RQ D =HLVV 3KRWRPLFURVFRSH ,, 0HDVXUHPHQWV DQG FRXQWV ZHUH WDNHQ IURP VOLGHV DQG FRPSDUHG ZLWK SKRWRJUDSKLF HQODUJHPHQWV RI WKH VOLGHV )RU FDOFXODWLRQV RI WKH VXUIDFH DUHD RI SDOSL PHDVXUHPHQWV ZHUH WDNHQ GLUHFWO\ IURP SKRWRJUDSKV 7KLV ZDV GRQH WR VWDQGDUGL]H PHDVXUHPHQW HUURU WKDW PD\ EH FDXVHG E\ WKH RULHQWDWLRQ RI WKH VOLGH 5HVXOWV (YHQ WKRXJK DOO KRVWVHHNLQJ IHPDOHV DSSHDU WR KDYH WKH VDPH W\SHV RI VHQVRU\ VWUXFWXUHV RQ WKHLU DQWHQQDH DQG SDOSL WKH VKDSHV RI WKHVH VXSSRUWLQJ VWUXFWXUHV YDU\ EHWZHHQ

PAGE 138

VSHFLHV :LWKLQ D JHQXV VHYHUDO VSHFLHV PD\ DSSHDU YHU\ VLPLODU RWKHU TXLWH GLIIHUHQW ,I WKH VSHFLHV RI &XOLVHWD WKDW RFFXU LQ )ORULGD DUH FRPSDUHG WKHLU SDOSDO VKDSHV DUH TXLWH GLIIHUHQW )LJV YV )LJ f ,I KRZHYHU ZH FRPSDUH &XOLVHWD PHODQXUD )LJ f DQG 2UWKRSRGRP\LD VLJQIHUD )LJ f PXFK VLPLODULW\ LV HYLGHQW &XOLVHWD PHODQXUD LV NQRZQ WR EH DQ DYLDQ IHHGHU EXW WKH SUHIHUUHG KRVWV IRU 2UWKRSRGRP\ LD DUH RQO\ VXVSHFWHG WR EH DYLDQ &RPSDULVRQV RI WKHLU PRXWKSDUWV ZRXOG VXJJHVW VLPLODU KRVW W\SHV %RWK VSHFLHV KDYH ORQJ SDOSL ZLWK VHJPHQW E\ IDU WKH ORQJHVW DQG ZLWK DQ REYLRXV NQRE VHJPHQW f DW WKH DSH[ RI HDFK SDOS ,I VSHFLHV RI &XOH[ DUH FRPSDUHG WKH PRVW REYLRXV GLIIHUHQFH IURP WKH DERYH JHQHUD LV WKH ODFN RI DQ DSLFDO NQRE RQ WKH SDOSL LQ DOO )ORULGD &XOH[ +RZHYHU DPRQJ WKH VSHFLHV WKDW DUH EHOLHYHG WR SUHIHU ELUGV IRU DW OHDVW SDUW RI WKH \HDU &[ UHVWXDQV )LJ f &[ VDOLQDULXV )LJ t )LJ f &[ TXLQTX IDVFLD WXV )LJ t )LJ f DQG &[ QLJULSDOSXV )LJ t )LJ f WZR GLIIHUHQW SDOSDO PRUSKV DUH HYLGHQW 6SHFLPHQV RI &[ TXLQTXIDVFLDWXV DQG &[ VDOLQDULXV RFFXU ZLWK ORQJHU SDOSL )LJ t )LJ f ,QGLYLGXDOV ZLWK GUDPDWLFDOO\ VKRUWHU SDOSL )LJ t )LJ f DOVR RFFXU &XOH[ WDUVDOLV KDV SDOSDO VKDSH VKRZQ LQ )LJ :LWKLQ $HGHV PDQ\ VSHFLHV KDYH D ZHOO GHILQHG SDOSDO NQRE DQG IDLUO\ ORQJ VHJPHQW 5HSUHVHQWDWLYH VSHFLHV DUH LOOXVWUDWHG LQ )LJXUHV WR )LJ 3VRURSKRUD FLOLDWD LV D VSHFLHV WKDW

PAGE 139

DSSURDFKHV WKH VL]H RI 7R[RUKYQFKLWHV 'HVSLWH LWV ODUJH VL]H DQG ORQJ SDOSL WKH & UHFHSWRUV DUH FOXVWHUHG RQWR D VPDOO DUHD QHDU WKH DSH[ RI VHJPHQW )LJ f 3VRURSKRUD IHUR[ ZDV ILUVW VHHQ WR KDYH SDOSDO VKDSH RI )LJ EXW DGGLWLRQDO VSHFLPHQV VKRZHG D ZLGH UDQJH RI RYHUDOO VKDSHV )LJV t f 7KH HIIHFW RI WKLV YDULDWLRQ ZDV IHOW WR VRPHKRZ EH FRQQHFWHG ZLWK KRVW SUHIHUHQFH 7KH VHDUFK IRU WKH VRXUFH RI WKLV YDULDWLRQ OHG WR WKH H[SHULPHQW SUHVHQWHG LQ WKH QH[W FKDSWHU 8UDQRWDHQLD VDSSKLULQD LV SULPDULO\ D IURJ IHHGHU ,WV SDOSDO FRQILJXUDWLRQ )LJ f FRQVLVWV RI D VLQJOH VHJPHQW ZLWK YHU\ IHZ KDLUV EXW ODUJHU VHWDH DQG DSSUR[LPDWHO\ & FDSLWDWH SHJV SHU SDOS +DYLQJ H[DPLQHG WKH YDULDWLRQ WKDW H[LVWV ZLWKLQ SDOSDO VL]H DQG VKDSH TXHVWLRQ WKH LPSDFW WKLV YDULDWLRQ KDV RQ WKH PRVTXLWRnV DELOLW\ WR GHWHFW DQG ORFDWH D KRVW 6LQFH WHPSHUDWXUH ODUYDO UHDULQJf DSSHDUHG WR EH RQH IDFWRU FRQWULEXWLQJ WR WKH YDULDWLRQ LQ FXWLFXODU K\GURFDUERQ SURILOHV GHFLGHG WR LQYHVWLJDWH ZKHWKHU RU QRW ODUYDO WHPSHUDWXUH DIIHFWHG WKH VL]H DQG QXPEHU RI VHQVRU\ VWUXFWXUHV RQ WKH SDOSL RI DGXOW IHPDOH PRVTXLWRHV 7KLV LV SUHVHQWHG LQ WKH IROORZLQJ FKDSWHU

PAGE 140

)LJ 3DOSL RI DGXOW IHPDOH &XOLVHWD PHODQXUD IURP /DNH %XWOHU )ORULGD -DQXDU\ 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 142

)LJ 3DOSXV RI DGXOW IHPDOH &XOLVHWD LQRUQDWD IURP *DLQHVYLOOH )ORULGD -DQXDU\ 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 143

,

PAGE 144

)LJ 3DOSXV RI DGXOW IHPDOH 2UWKRSRGRP\LD IURP *DLQHVYLOOH )ORULGD 0DUFK 3KDVH PLFURVFRSH ; VLJQIHUD FRQWUDVW

PAGE 146

)LJ 3DOSL RI DGXOW IHPDOH &XOH[ UHVWXDQV IURP /DNH %XWOHU )ORULGD -DQXDU\ 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 148

)LJ VDOLQDULXV PLFURVFRSH 3DOSL RI ODUJHU ZLQWHU IRUP RI DGXOW IHPDOH &XOH[ /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW ;

PAGE 150

)LJ 3DOSL RI VPDOO VXPPHU IRUP RI DGXOW IHPDOH &XOH[ VDOLQDULXV /DNH %XWOHU )ORULGD $XJXVW 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 152

)LJ 3DOSL RI ODUJHU ZLQWHU IRUP RI DGXOW IHPDOH &XOH[ TXLQTXHIDVFLDWXV /DNH %XWOHU )ORULGD -DQXDU\ 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 154

)LJ 3DOSL RI VPDOO VXPPHU IRUP RI DGXOW IHPDOH &XOH[ TXLQTXHIDVFLDWXV /DNH %XWOHU )ORULGD $XJXVW 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 155

U

PAGE 156

)LJ 3DOSL RI ODUJHU ZLQWHU IRUP RI DGXOW IHPDOH &XOH[ QLTULSDOSXV /DNH %XWOHU )ORULGD 'HFHPEHU 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 158

)LJ 3DOSL RI VPDOO VXPPHU IRUP RI DGXOW IHPDOH &XOH[ QLTULSDOSXV /DNH %XWOHU )ORULGD $XJXVW 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 160

)LJ 3DOSL RI DGXOW IHPDOH &XOH[ WDUVDOLV 86 '$ ,$0$/ *DLQHVYLOOH )ORULGD 3KDVH FRQWUDVW ; FRORQ\ DW PLFURVFRSH

PAGE 161

U

PAGE 162

)LJ 3DOSL RI DGXOW IHPDOH $HGHV YH[DQV /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 163

U

PAGE 164

)LJ 3DOSL RI DGXOW IHPDOH $HGHV WULVHULDWXV /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH [

PAGE 166

)LJ 3DOSL RI DGXOW IHPDOH $HGHV VWLFWLFXV *DLQHVYLOOH )ORULGD 6DQ )HODVFR +DPPRFN 0DUFK 6SHFLPHQ FROOHFWHG ELWLQJ D KRUVH 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 168

)LJ 3DOSL RI DGXOW IHPDOH $HGHV DWODQWLFXV /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 170

)LJ 3DOSL RI DGXOW IHPDOH $HGHV LQILUPDWXV /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 172

)LJ 3DOSL RI DGXOW IHPDOH $HGHV PLWFKHOODH /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 174

)LJ 3DOSL RI DGXOW IHPDOH $HGHV FDQDGHQVLV /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 176

)LJ 3DOSXV RI DGXOW IHPDOH $HGHV VROOLFLWDQV SXSD FROOHFWHG PLOHV VRXWK RI 6WHLQKDWFKHH )ORULGD 'HFHPEHU 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 178

)LJ 3DOSL RI DGXOW IHPDOH $HGHV WDHQLRUK\QFKXV FRORQ\ 86'$ ,$0$/ *DLQHVYLOOH )ORULGD 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 180

)LJ 3DOSL RI DGXOW IHPDOH $HGHV DOERSLFWXV FRORQ\ 86 '$ ,$0$/ *DLQHVYLOOH )ORULGD 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 182

)LJ 3DOSL RI DGXOW IHPDOH $HGHV DHJ\SWL *DLQHVYLOOH )ORULGD 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 183

U

PAGE 184

)LJ $SH[ RI SDOS RI DGXOW IHPDOH 3VRURSKRUD FLOLDWD /DNH %XWOHU )ORULGD -XO\ 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 186

)LJ 3DOSL RI DGXOW IHPDOH 3VRURSKRUD IHUR[ *DLQHVYLOOH )ORULGD 0DUFK &ROOHFWHG ELWLQJ D KRUVH 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 188

)LJ 3DOSL RI DGXOW IHPDOH 3VRURSKRUD IHUR[ /DNH %XWOHU )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 190

)LJ 3DOSL RI DGXOW IHPDOH 3VRURSKRUD IHUR[ *DLQHVYLOOH )ORULGD 0DUFK 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 192

)LJ 3DOSL RI DGXOW IHPDOH 8UDQRWDHQLD VDSSKLULQD /DNH %XWOHU )ORULGD 'HFHPEHU &ROOHFWHG LQ &'& OLJKW WUDS 3KDVH FRQWUDVW PLFURVFRSH ;

PAGE 194

&+$37(5 /$59$/ 5($5,1* 7(03(5$785( $1' ,76 ())(&7 21 $'8/7 02648,72 0253+2/2*< (63(&,$//< 3$/3$/ 2/)$&725< 6758&785(6 ,QWURGXFWLRQ 0D[LOODU\ SDOSL RI DGXOW PRVTXLWRHV DUH WKH VLWHV RI PDQ\ ROIDFWRU\ UHFHSWRUV WKDW DUH LQYROYHG LQ KRVW GHWHFWLRQ 5HFHQW LQYHVWLJDWLRQV 0FOYHU f KDYH GHWHUPLQHG WKDW D PDMRU DFWLYDWRU RI KRVWVHHNLQJ DQG KRVWORFDWLRQ LV WKH FRQFHQWUDWLRQ RI & JLYHQ RII E\ DQ RUJDQLVP 7KH VWUXFWXUHV UHVSRQVLEOH IRU WKLV GHWHFWLRQ DUH FDSLWDWH SHJV )LJ f ORFDWHG RQ DW OHDVW WKH VXEDSLFDO VHJPHQW RI WKH PD[LOODU\ SDOSL RI PRVW DGXOW IHPDOH DQG VRPH PDOHf PRVTXLWRHV .HOORJJ f GHWHUPLQHG WKDW HDFK FDSLWDWH SHJ LV LQQHUYDWHG E\ QHXURQV ZLWK MXVW EHLQJ & VHQVLWLYH 7KHVH SHJV DUH SRURXV )LJ f DQG DUUDQJHG LQ LOOGHILQHG URZV DORQJ WKH LQQHU VXUIDFH RI HDFK SDOS 'RUVDOO\ WKH SDOSL DUH FRYHUHG ZLWK VFDOHV )LJ f WKDW RFFXS\ WKH VXUIDFH WKDW FDSLWDWH SHJV PLJKW RWKHUZLVH XVH (DFK SDOS PD\ FRQVLVW RI XS WR ZHOO GHILQHG VHJPHQWV $QRSKHOHVf EXW XVXDOO\ RQO\ RU VHJPHQWV DUH SUHVHQW 7KH JHQXV 8UDQRWDHQLD KDV D VLQJOH SDOSDO VHJPHQW )LJ f 6RPH JHQHUD FRQWDLQ VSHFLHV WKDW KDYH ZHOO GHILQHG DSLFDO SDOSDO NQREV ZKLOH RWKHU VSHFLHV ZLWKLQ WKH VDPH JHQXV VHHP WR ODFN WKHVH NQREV :LWKLQ WKH JHQXV $QRSKHOHV FDSLWDWH SHJV DUH IRXQG RQ SDOSDO VHJPHQWV

PAGE 195

DQG )LJ f $PRQJ WKH JHQHUD ZLWK SDOSDO VHJPHQWV WKH FDSLWDWH SHJV DUH RQO\ IRXQG RQ VHJPHQW 7KLV LQFOXGHV WKRVH VSHFLHV WKDW KDYH DQ DSLFDO NQRE ZKLFK LV FRQVLGHUHG WR EH VHJPHQW 7KRVH JHQHUD ZLWKRXW DSLFDO NQREV KDYH WKH FDSLWDWH SHJV UHVWULFWHG WR WKH DSLFDO RU VHJPHQW :LWK WKH H[FHSWLRQ RI $QRSKHOHV DOO RWKHU JHQHUD KDYH WKH & UHFHSWRUV ORFDWHG RQ D VLQJOH VHJPHQW 7KHVH SHJV DUH QRW XQLIRUPO\ GLVWULEXWHG RYHU WKH HQWLUH VXUIDFH RI WKH SDOSDO VHJPHQW RQ ZKLFK WKH\ RFFXU RFFXS\LQJ WKH LQQHU RI WKH SDOSDO VXUIDFH ZLWK QXPEHUV GHFUHDVLQJ DV \RX JHW IXUWKHU DZD\ IURP WKH DSH[ RI WKH SDOS 6RPH VSHFLHV KDYH DOO FDSLWDWH SHJV FRQFHQWUDWHG LQ D VPDOO DUHD QHDU WKH DSH[ 7KLV LV VHHQ LQ 3VRURSKRUD FLOLDWD )LJ f 2WKHUV KDYH FDSLWDWH SHJV IDLUO\ XQLIRUPO\ VFDWWHUHG RYHU WKH HQWLUH LQQHU VXUIDFH DV VHHQ LQ &[ WDUVDOLV )LJ f 7KH FDSLWDWH SHJV DUH NQRZQ WR EH VHQVLWLYH WR & QKHSWDQH DFHWRQH DQG DP\O DFHWDWH .HOORJJ ORF FLWf 6HQVLWLYLW\ RI WKH FDSLWDWH SHJV LV VXFK WKDW DQ LQFUHDVH RI RQO\ b & FRQFHQWUDWLRQ PD\ EH GHWHFWDEOH 7KLV UHVSRQVH LV DSSUR[LPDWHO\ ORJDULWKPLF IURP D FRQFHQWUDWLRQ RI b & WR D VDWXUDWLRQ OHYHO RI WR b &RQFHQWUDWLRQ OHYHOV RI b HOLFLW OLWWOH DGGLWLRQDO UHVSRQVH &DUERQ GLR[LGH DFWV DV HLWKHU DQ DWWUDFWDQW RU D UHSHOOHQW GHSHQGLQJ RQ WKH VSHFLHV RI PRVTXLWR +RZHYHU VLQFH WKH ELRORJLFDO UDQJH RI & FRQFHQWUDWLRQV ZLWKLQ DQLPDO VSHFLHV LV EHWZHHQ b DQG b LW LV QRW VXUSULVLQJ WKDW OHYHOV DV KLJK DV b HOLFLW OLWWOH DGGLWLRQDO UHVSRQVH

PAGE 196

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI FDSLWDWH SHJV RQ SDOSL RI DGXOW IHPDOH &XOLVHWD PHODQXUD 3J FDSLWDWH SHJ /LQH PLFURQV

PAGE 197

-

PAGE 198

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI FDSLWDWH SHJV VKRZLQJ SRURXV VXUIDFH $GXOW IHPDOH &XOLVHWD PHODQXUD /LQH PLFURQV

PAGE 200

)LJ 6FDQQLQJ HOHFWURQ PLFURJUDSK RI GRUVDO VXUIDFH RI SDOSL RI DGXOW IHPDOH &XOLVHWD PHODQXUD VKRZLQJ FRYHULQJ RI VFDOHV DQG WKH SRVLWLRQ RI SDOSL DW UHVW /LQH PLFURQV

PAGE 202

)LJ 3KDVH FRQWUDVW PLFURVFRSH ;f RI WKH SDOSL RI $QRSKHOHV JXDGULPDFXODWXV DGXOW IHPDOH VKRZLQJ ORFDWLRQ RI FDSLWDWH SHJV &S FDSLWDWH SHJV

PAGE 203

,

PAGE 204

7KLV DORQH LV D VWURQJ DUJXPHQW WR UHWKLQN RXU FRQFHSW RI ZKDW & FRQFHQWUDWLRQV DUH UHDOO\ EHLQJ XVHG LQ RXU WUDSV ,Q UHDOLW\ WKH FRQFHQWUDWLRQ DW WKH VRXUFH DSSURDFKHV b & IDU UHPRYHG IURP WKH ELRORJLFDO UHDOP $ OLNHO\ FRQVHTXHQFH RI WKLV LV WKDW PRVW PRVTXLWRHV DUH IROORZLQJ WKH GLOXWHG & SOXPH WR WKH YLFLQLW\ RI WKH WUDS EXW QHYHU DFWXDOO\ JHWWLQJ FORVH HQRXJK WR EH FROOHFWHG 3HUVRQDO REVHUYDWLRQV RI WKH SDOSDO PRUSKRORJ\ RI ILHOGFROOHFWHG PDWHULDO KDYH UHYHDOHG D ZLGH YDULDWLRQ LQ SDOSDO VHJPHQWDWLRQ VL]H DQG ROIDFWRU\ VWUXFWXUH FRQILJXUDWLRQ 0FOYHU f UHSRUWHG WKDW WKH QXPEHU RI FDSLWDWH SHJV RQ WKH PD[LOODU\ SDOSV UDQJHG LQ IHPDOHV IURP SHU PRVTXLWR 8UDQRWDHQLD ODWHUDOLVf WR &XOH[ WRUUHQWLXP 0DUWLQLf ,Q PDOHV WKH UDQJH ZDV $HGHV FRPPXQLV 'H*HHUf WR &XOLVHWD EHUJURWKL (GZDUGVff 0DQ\ VWXGLHV KDYH EHHQ FRQGXFWHG LQYROYLQJ WKH UHODWLRQVKLS EHWZHHQ UHDULQJ WHPSHUDWXUH DQG UHVXOWLQJ DGXOW VL]H LQ LQVHFWV $NH\ HW DO %DUQHV %RFN t 0LOE\ +DUDPLV f ,QFUHDVH LQ ERG\ VL]H KDV JHQHUDOO\ UHVXOWHG LQ LQFUHDVHG IHFXQGLW\ DQG SDULW\ +DUDPLV 1DVFL D /H3ULQFH t -ROLFRHXU f 1DVFL Ef IRXQG WKDW VPDOO $H DHJ\SWL IHPDOHV H[KLELWHG UHGXFHG EORRGIHHGLQJ VXFFHVV DQG PRVW OLNHO\ UHGXFHG VXUYLYDO ZKHQ FRPSDUHG ZLWK ODUJHU DGXOWV +H DOVR IRXQG WKDW QXOOLSDURXV KRVW VHHNLQJ IHPDOHV ZHUH VLJQLILFDQWO\ VPDOOHU WKDQ SDURXV KRVWVHHNLQJ IHPDOHV

PAGE 205

7KLV LQYHVWLJDWLRQ ZDV LQLWLDWHG WR GHWHUPLQH WKH HIIHFW RI ODUYDO UHDULQJ WHPSHUDWXUH RQ WKH UHVXOWLQJ DGXOW IHPDOH SRSXODWLRQ DV PHDVXUHG E\ JXDQWLWDWLYH IDFWRUV ERG\ VL]H DQG QXPEHU RI FDSLWDWH SHJV DQG JXDOLWDWLYH IDFWRU WKH SUHVHQFH RU DEVHQFH RI DQ DSLFDO SDOSDO NQRE ,I WKH VXUIDFH DUHD RI WKH SDOSL LV WDNHQ LQWR FRQVLGHUDWLRQ ZKHQ DQDO\]LQJ KRVW GHWHFWLRQ WKHQ WKH ODUJHU WKH VXUIDFH DUHD WKH JUHDWHU YROXPH RI DLU WKDW ZRXOG EH VDPSOHG DW DQ\ RQH WLPH ,I KRZHYHU D GHFUHDVH LQ ERG\ VL]H LV DOVR DFFRPSDQLHG E\ D GHFUHDVH LQ VXUIDFH DUHD DV ZHOO DV D GHFUHDVH LQ QXPEHU RI VWUXFWXUHV WKHQ ORJLFDOO\ WKH DELOLW\ WR VDPSOH DLU YROXPH ZLOO KDYH EHHQ GLPLQLVKHG E\ VRPH IDFWRU LQYROYLQJ QXPEHU RI VWUXFWXUHV DQG VXUIDFH DUHD 7KHUHIRUH ODUYDH RI $H DHJ\SWL DQG &V PHODQXUD ZHUH UHDUHG DW & DQG r& DQG FRPSDUHG IRU VXUIDFH DUHD RI SDOSL 0HWKRGV DQG 0DWHULDOV )RU WKH GLIIHUHQW WHPSHUDWXUHV WKH VRXUFH RI PRVTXLWRHV ZDV D FRORQ\ VWUDLQ RI $H DHJ\SWL PDLQWDLQHG DW WKH 86'$ ,QVHFWV $IIHFWLQJ 0DQ DQG $QLPDOV /DERUDWRU\ *DLQHVYLOOH )ORULGD (JJV IURP WKLV FRORQ\ ZHUH KDWFKHG DW URRP WHPSHUDWXUH r&f (TXDO QXPEHUV f RI QHZO\ KDWFKHG ODUYDH KRXUV ROGf ZHUH SODFHG LQ HQDPHO SDQV ZLWK PO RI ZDWHU )RRG ZDV VXSSOLHG LQ H[FHVV WR HOLPLQDWH QXWULWLRQ DV D IDFWRU /DUYDH ZHUH UHDUHG WR SXSDWLRQ DW r& r& DQG r& 'D\OLJKWGDUN ZDV KUKU $GXOWV WKDW HPHUJHG ZHUH GHFDSLWDWHG DQG PRXWKSDUWV ZHUH SODFHG RQ VOLGHV ZLWK

PAGE 206

(XSDURO IRU VOLGH PRXQWDQW %RWK ZLQJV RI HDFK LQGLYLGXDO IHPDOH ZHUH PRXQWHG RQ WKH VDPH VOLGH ZLWK WKH PRXWKSDUWV 0RXWKSDUWV ZHUH H[DPLQHG ZLWK SKDVH FRQWUDVW PLFURVFRS\ :LQJ PHDVXUHPHQWV ZHUH PDGH ZLWK DQ RFXODU PLFURPHWHU DW ; PDJQLILFDWLRQ 8QLWV IRU WKH ZLQJ OHQJWK PHDVXUHPHQWV DUH PLFURPHWHU XQLWV DQG KDYH QRW EHHQ FRQYHUWHG WR DQ\ SDUWLFXODU XQLW RI PHDVXUHPHQW 7KHVH UHDULQJ FRPELQDWLRQV ZHUH UHSOLFDWHG WLPHV $ VXEVDPSOH IURP WULDO ZDV UDQGRPO\ FROOHFWHG VFRUHG DQG DQDO\]HG IRU VWDWLVWLFDO GLIIHUHQFHV %RWK WKH QXPEHU RI ROIDFWRU\ FDSLWDWH SHJV DQG ZLQJ OHQJWK RI DGXOW IHPDOHV ZHUH DQDO\]HG ZD\ $129$ 6$6 3URF */0f 7KH FRXQWLQJ RI WKH FDSLWDWH SHJV ZDV H[WUHPHO\ GLIILFXOW GXH WR WKH WKUHH GLPHQVLRQ VKDSH RI WKH SDOSL DQG WKH IDFW WKDW WKH VWUXFWXUHV DUH SUHVHQW RQ D FXUYHG VXUIDFH 6FRULQJ ZDV DFFRPSOLVKHG E\ IRFXVLQJ XS DQG GRZQ WKURXJK GLIIHUHQW SODQHV WDNLQJ FRXQWV SHU SDOS DQG DYHUDJLQJ WKLV QXPEHU 2Q RWKHU VSHFLHV WKLV ZDV QRW D GLIILFXOW WDVN GXH WR WKH VKDSH RI SDOSL $IWHU WKLV LQLWLDO FRPSDULVRQ RI WKUHH GLIIHUHQW WHPSHUDWXUHV GHFLGHG WR UHDU WKLV VSHFLHV DQG DOVR &V PHODQXUD DW r& DQG r& WR FRPSDUH WKH HIIHFW RI UHDULQJ WHPSHUDWXUH RQ WKH VXUIDFH DUHD RI WKH SDOSL 7KHVH WHPSHUDWXUHV ZHUH FKRVHQ EHFDXVH EHOLHYH WKDW WKH\ DSSURDFK WKH VHDVRQDO H[WUHPHV WKDW SHUHQQLDO VSHFLHV DUH H[SRVHG WR LQ )ORULGD :LWKLQ WKH &XOLFLQL & ROIDFWRU\ UHFHSWRUV DUH UHVWULFWHG WR SDOSDO VHJPHQW ZKLFK LV DOVR WKH ORQJHVW VHJPHQW ,QLWLDOO\ WKH VKDSH RI WKLV VHJPHQW ZDV EHOLHYHG E\

PAGE 207

PH WR DSSUR[LPDWH WKH VKDSH RI D ULJKW F\OLQGHU FRQH +RZHYHU DV SDOSDO PHDVXUHPHQWV ZHUH WDNHQ GHWHUPLQHG WKDW WKH VKDSH RI D SDOSDO VHJPHQW PRUH FORVHO\ DSSUR[LPDWHG WKDW RI WKH IUXVWXP RI ULJKW F\OLQGHU FRQH 8VLQJ WKH IRUPXOD IRU WKH ODWHUDO VXUIDFH DUHD RI WKH IUXVWXP RI ULJKW F\OLQGHU FRQH DV GHILQHG LQ )LJXUH GLPHQVLRQV ZHUH WDNHQ IURP SKRWRJUDSKV RI SDOSL RI IHPDOH VSHFLPHQV RI $H DHJ\SWL DQG &V PHODQXUD IRU WKH YDULRXV UHDULQJ WHPSHUDWXUHV 6LQFH WKH & UHFHSWRUV RQ WKH SDOSL DUH QRW XQLIRUPO\ GLVWULEXWHG RYHU WKH HQWLUH VXUIDFH RI SDOSDO VHJPHQW D QHFHVVDU\ FRPSDULVRQ LV WKH DFWXDO WRWDO VXUIDFH DUHD RI WKH SDOSDO VHJPHQW ZLWK WKH DUHD FRYHUHG E\ WKH & UHFHSWRUV :LWKLQ VSHFLHV VXFK DV 3V FLOLDWD WKH SDOSL DUH JXLWH ORQJ LQ FRPSDULVRQ ZLWK RWKHU VSHFLHV +RZHYHU RQO\ D VPDOO SRUWLRQ RI WKH DSH[ RI VHJPHQW FRQWDLQV DOO WKH & UHFHSWRUV )LJ f 6LPSO\ FRPSDULQJ WKH WRWDO VXUIDFH DUHD RI WKHVH SDOSL ZLWK RWKHU VSHFLHV ZRXOG EH PLVOHDGLQJ $ VXEMHFWLYH DVVHVVPHQW RI WKH VXUIDFH RFFXSLHG E\ WKHVH VWUXFWXUHV LQGLFDWHV WKDW PRVW VSHFLHV KDYH SURSRUWLRQDWHO\ PRUH UHFHSWRUV DV WKH DSH[ RI SDOSDO VHJPHQW LV UHDFKHG +RZHYHU GHFUHDVLQJ QXPEHUV RI UHFHSWRUV RIWHQ DUH IRXQG VFDWWHUHG DOPRVW WR WKH EDVH RI VHJPHQW 7KHUHIRUH XQOHVV DQ REYLRXV FOXVWHULQJ RI VWUXFWXUHV LV LQGLFDWHG LQ VXFK VSHFLHV DV 3V FLOLDWD FRQVLGHU RQH KDOI RI WKH WRWDO VXUIDFH DUHD RI SDOSDO VHJPHQW DV D IDLU DSSUR[LPDWLRQ RI WKH VXUIDFH DUHD RFFXSLHG E\ WKH & UHFHSWRUV 6LQFH HDFK PHPEHU RI WKH SDLU RI SDOSV RQ D

PAGE 208

PRVTXLWR ZLOO KDYH WKH VDPH VXUIDFH DUHD DQ DSSUR[LPDWLRQ RI WKH WRWDO VXUIDFH DUHD FRYHUHG E\ & UHFHSWRUV ZLOO EH FRQVLGHUHG HTXDO WR WKH WRWDO VXUIDFH DUHD RI HQWLUH SDOSDO VHTPHQW :LWK WKHVH DVVXPSWLRQV DQG GHILQLWLRQV WKHQ FDOFXODWHG WKH VXUIDFH DUHD IRU ZLOG VSHFLPHQV RI YDULRXV VSHFLHV 3DOSDO VXUIDFH DUHD DQG YROXPH FDOFXODWLRQV ZHUH PDGH XVLQJ WKH IRUPXODV IRU FDOFXODWLRQ RI ODWHUDO VXUIDFH DUHD )LJ f DQG YROXPH RI D IUXVWXP RI D ULJKW FLUFXODU FRQH)LJ f )RUPXODV DUH LOOXVWUDWHG LQ )LJ )LJ DQG )LJ DQG DFWXDO FDOFXODWLRQ IRU D IHPDOH &XOLVHWD PHODQXUD DUH SUHVHQWHG LQ 7DEOH 7KLV VKDSH IUXVWXP RI ULJKW FLUFXODU FRQHf PRVW FORVHO\ DSSUR[LPDWHV WKH VKDSH RI WKH VHJPHQW WKDW EHDUV WKH & UHFHSWRUV DQG WKH VKDSH RI YROXPH RI DLU FRQWDLQHG GXULQJ WLPHV ZKHQ SDOSL DUH ODWHUDOO\ H[WHQGHG IRU YROXPH FDOFXODWLRQVf :KHQ WKH PRVTXLWR LV DW UHVW WKH VKDSH RI YROXPH RI DLU FRQWDLQHG E\ WKH SDOSL IRUP D ULJKW F\OLQGHU ZKRVH YROXPH LV DOVR FDOFXODWHG E\ IRUPXOD LQ )LJ 0HDVXUHPHQWV ZHUH WDNHQ IURP SKRWRJUDSKV RI WKH LQGLYLGXDO VSHFLPHQV 5HVXOWV /DUYDO PRUWDOLWLHV EHWZHHQ WHPSHUDWXUHV DQG ZLWKLQ HDFK WHPSHUDWXUH ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW 7KH ILUVW SXSDH DW r & DSSHDUHG LQ MXVW WKUHH GD\V WKRVH DW r& LQ GD\V DQG WKRVH DW r& LQ GD\V 3XSDWLRQ ZDV FRPSOHWH LQ GD\V DW r & LQ GD\V DW r& DQG LQ GD\V DW r&

PAGE 209

/DUYDH RI WKH PRVTXLWR $HGHV DHJ\SWL ZHUH UHDUHG DW r& r& DQG r& 7KH DGXOWV IURP WKHVH WHPSHUDWXUHV ZHUH PHDVXUHG DQG FRPSDUHG IRU GLIIHUHQFHV LQ ZLQJ OHQJWK DQG QXPEHU RI PD[LOODU\ SDOSDO & ROIDFWRU\ FDSLWDWH SHJV 6L]H ZLQJ OHQJWKf DQG QXPEHU RI SHJV ZHUH VLJQLILFDQWO\ GLIIHUHQW S f IRU HDFK WHPSHUDWXUH 6XUIDFH DUHD RI SDOSDO VHJPHQWV FRQWDLQLQJ & UHFHSWRUV ZDV FDOFXODWHG IRU DGXOW $HGHV DHJ\SWL DQG &V PHODQXUD IURP ODUYDH UDLVHG DW r& DQG & 6XUIDFH DUHD RI SDOSDO VHJPHQWV ZHUH DOVR VLJQLILFDQWO\ GLIIHUHQW S f IRU HDFK WHPSHUDWXUH 6XUIDFH DUHD DQG QXPEHU RI ROIDFWRU\ SHJV GHFUHDVHG ZLWK DQ LQFUHDVH LQ ODUYDO UHDULQJ WHPSHUDWXUH 5HSUHVHQWDWLYH GDWD IURP WKH DERYH WULDOV DUH OLVWHG LQ 7DEOH IRU RI WKH WHPSHUDWXUHV WKDW $H DHJ\SWL ZHUH UHDUHG DW

PAGE 210

7DEOH 9DOXHV IRU ZLQJ OHQJWK DQG QR RI FDSLWDWH SHJV IRU DGXOW IHPDOH $HGHV DHJ\SWL UHDUHG DW & :LQJ /HQJWK 1R &2 7KH HIIHFW RI WHPSHUDWXUH RQ DGXOW ZLQJ OHQJWK LQ $H DHJ\SWL LV LOOXVWUDWHG LQ )LJ &RUUHVSRQGLQJ HIIHFW RQ QXPEHUV RI & UHFHSWRUV LV LOOXVWUDWHG LQ )LJ %RWK WKH QXPEHU RI ROIDFWRU\ FDSLWDWH SHJV DQG ZLQJ OHQJWK RI DGXOW IHPDOH $HGHV DHJ\SWL ZHUH IRXQG WR EH VLJQLILFDQWO\ GLIIHUHQW IRU HDFK WHPSHUDWXUH 3 f 7KH UHVXOWLQJ OLQHDU UHJUHVVLRQV IRU ZLQJ OHQJWK DV D IXQFWLRQ RI WHPSHUDWXUH ZDV < ; DQG WKH QXPEHU RI ROIDFWRU\ SHJV < ; 7KH :DOOHU 'XQFDQ .UDWLR 7 WHVW GHWHUPLQHG WKH PHDQ ZLQJ OHQJWK DQG PHDQ QXPEHU RI ROIDFWRU\ SHJV WR DOVR EH VLJQLILFDQWO\ GLIIHUHQW IRU DOO WHPSHUDWXUHV

PAGE 211

)LJ (IIHFW RI UHDULQJ WHPSHUDWXUH RQ ZLQJ OHQJWK RI DGXOW IHPDOH $HGHV DHJ\SWL

PAGE 212

:LQJ /HQJWK (IIHFW RI 7HPSHUDWXUH RQ :LQJ /HQJWK

PAGE 213

)LJ (IIHFW RI UHDULQJ WHPSHUDWXUH RQ WKH QXPEHU RI SDOSDO & UHFHSWRUV LQ DGXOW IHPDOH $HGHV DHJ\SWL

PAGE 214

3HJV SHU 3DOS (IIHFW RI 7HPSHUDWXUH RQ 1XPEHUV RI & 5HFHSWRUV

PAGE 215

)LJ ,OOXVWUDWLRQ RI WKH VKDSH RI D JHQHUDOL]HG SDOSDO VHJPHQW LOOXVWUDWLQJ KRZ WKH IRUPXODV IRU ODWHUDO VXUIDFH DUHD 6f DQG YROXPH 9f DUH DSSOLHG WR WKH FDOFXODWLRQV GHVFULEHG LQ WKH WH[W 6 ODWHUDO VXUIDFH DUHD K OHQJWK RI SDOSDO VHJPHQW V VODQW KHLJKW UO DQG U DUH WKH UDGLL RI WKH SDOSDO VHJPHQW DW WKH DSH[ DQG EDVH

PAGE 216

L

PAGE 217

)LJ ,OOXVWUDWLRQ RI SDOSDO GLPHQVLRQV XVHG WR FDOFXODWH WKH YROXPH RI DLU FRQWDLQHG EHWZHHQ SDOSL RI DQ DGXOW IHPDOH &XOLVHWD PHODQXUD DW UHVW 6HH WH[W IRU GHWDLOV

PAGE 218

9 7 UK X 2X 0 X

PAGE 219

)LJ ,OOXVWUDWLRQ RI FKDQJH LQ YROXPH RI DLU FRQWDLQHG EHWZHHQ SDOSL RI DGXOW IHPDOH &XOLVHWD PHODQXUD DV WKH SDOSL DUH H[WHQGHG ODWHUDOO\ WKURXJK YDULRXV SRVLWLRQV RI Df UHVWLQJ SRVLWLRQ Ef GHJUHHV H[WHQVLRQ DQG Ff GHJUHHV H[WHQVLRQ

PAGE 220

2

PAGE 221

7KH DERYH GDWD VXJJHVW WKDW VPDOOHU LQGLYLGXDOV KDYH IHZHU ROIDFWRU\ VWUXFWXUHV WKHUHIRUH UHGXFLQJ WKH VHQVRU\ FDSDELOLWLHV RI WKH LQGLYLGXDO 7DEOH 6XUIDFH DUHD RI SDOSDO VHJPHQW VJXDUH PLFURQVf 7HPSHUDWXUH $YJ r & r r& rWHPSHUDWXUH UHJXODWRU IDLOHG WR NHHS UHDULQJ WHPSHUDWXUH EHORZ & 7KH PHDQ YDOXHV RI WKH DERYH GDWD ZHUH FRPSDUHG XVLQJ D WWHVW ZLWK GHJUHHV RI IUHHGRP DQG IRXQG WR QRW EH VLJQLILFDQWO\ GLIIHUHQW S f +RZHYHU D WUHQG LV LQGLFDWHG IRU D GHFUHDVH LQ VXUIDFH DUHD RI SDOS ZLWK DQ LQFUHDVH LQ WHPSHUDWXUH GHVSLWH DQ LQFRQVLVWHQW PDLQWHQDQFH RI WKH ORZHU ODUYDO UHDULQJ WHPSHUDWXUH 7KLV UHDULQJ H[SHULPHQW ZDV UHSHDWHG DGGLWLRQDO WLPHV DQG HDFK WLPH WKH VXUIDFH DUHD GHFUHDVHG ZLWK DQ LQFUHDVH LQ ODUYDO UHDULQJ WHPSHUDWXUH ZLWK WKH DYHUDJH VXUIDFH DUHD IRU f& UHDULQJ HTXDO WR VTXDUH PLFURQV DQG VTXDUH PLFURQV IRU r& 7KH

PAGE 222

UHSOLFDWHV LQ ZKLFK WHPSHUDWXUH FRQWURO ZDV VXFFHVVIXO ZHUH FRPSDUHG E\ WKH VDPH WWHVW 7KHLU PHDQ GLIIHUHQFHV ZHUH VLJQLILFDQWO\ GLIIHUHQW S f LQGLFDWLQJ GLIIHUHQW VXUIDFH DUHD IRU SDOSL DFFRUGLQJ WR UHDULQJ FRQGLWLRQV RI WKH ODUYDH 2I HTXDO LQWHUHVW WR PH ZDV WKH GHWHUPLQDWLRQ RI ZKHWKHU RU QRW VLPLODU YDULDWLRQ PLJKW EH VHHQ LQ ZLOG VSHFLPHQV RI RWKHU VSHFLHV WKHQ FROOHFWHG VSHFLPHQV RI YDULRXV VSHFLHV WR VHH LI LQWHUVSHFLILF GLIIHUHQFHV RFFXUUHG 7KHVH UHVXOWV DUH SUHVHQWHG LQ 7DEOH 7KH VDPH UHDULQJ H[SHULPHQW ZDV FRQGXFWHG ZLWK &V PHODQXUD $ PXFK PRUH GUDPDWLF GLIIHUHQFH ZDV HYLGHQW EHWZHHQ WKH UHVXOWLQJ VXUIDFH DUHDV RI SDOSL DW WKH WHPSHUDWXUHV 7KRVH ODUYDH UHDUHG DW r& SURGXFHG DGXOW IHPDOHV ZLWK SDOSDO VHJPHQW VXUIDFH DUHD DYHUDJLQJ VTXDUH PLFURQV DQG VTXDUH PLFURQV DW r& 7KH YROXPH RI DLU EHLQJ VDPSOHG DW DQ\ RQH PRPHQW E\ WKH IHPDOH PRVTXLWR LV GHWHUPLQHG E\ WKH RYHUDOO OHQJWK RI SDOSL DQG WKH VXUIDFH DUHD RI VHJPHQW WKDW FRQWDLQV WKH & UHFHSWRUV 7KHUHIRUH LI DQ HVWLPDWLRQ LV PDGH RI ERWK WKH WRWDO YROXPH RI DLU FRQWDLQHG EHWZHHQ WKH SDOSL DQG WKH YROXPH RI DLU FRQWDLQHG E\ WKH SDOSDO VHJPHQWV ZLWK WKH & UHFHSWRUV ZH ZLOO EH DEOH WR HVWLPDWH WKH DFWXDO DLU EHLQJ VDPSOHG E\ WKH & UHFHSWRUV UHODWLYH WR WKH WRWDO DLU DYDLODEOH EHWZHHQ SDOSL 7KH FDOFXODWLRQV IRU WKLV HVWLPDWLRQ DUH LOOXVWUDWHG LQ 7DEOH ([DPSOHV DUH JLYHQ IRU YDULRXV DQJOH RI SDOSDO H[WHQVLRQ IRU &V PHODQXUD 0HDVXUHPHQWV ZHUH

PAGE 223

7DEOH 6XUIDFH $UHD RI 3DOSDO 6HJPHQW 6SHFLHV &XOLVHWD PHODQXUD 2UWKRSRGRPYLD VLTQLIHUD 3VRURSKRUD IHUR[ 3V FLOLDWD $HGHV WULVHULDWXV $H LQILUPDWXV $H DWODQWLFXV $H VWLFWLFXV $H FDQDGHQVLV $H YH[DQV &XOH[ VDOLQDULXV &[ WHUULWDQV &[ TXLQTXIDVFLDWXV &[ QLJULSDOSXV &[ WDUVDOLV &[ UHVWXDQV 8UDQRWDHQLD VDSSKLULQD $UHDVTXDUH PLFURQVf WDNHQ IURP D IHPDOH VSHFLPHQ FROOHFWHG GXULQJ WKH ZLQWHU DW /DNH %XWOHU )ORULGD 8VLQJ IRUPXODV IURP )LJ DQG )LJ WKH SDOSL RI D IHPDOH &V PHODQXUD ZHUH PHDVXUHG DQG IRXQG WR KDYH WKH IROORZLQJ GLPHQVLRQV ,I ZH FRPSDUH WKHVH ILJXUHV ZLWK WKH FDOFXODWLRQ RI WKH YROXPH RI DLU FRQWDLQHG ZLWKLQ WKH UHJLRQ RI MXVW WKH & UHFHSWRUV WKH IROORZLQJ H[DPSOH VKRZV WKH GUDPDWLF VKLIW IURP UHVW WR IOLJKW WKDW DFFRPSDQLHV DQ H[WHQVLRQ RI WKH SDOSL $W UHVW XVLQJ WKH VDPH VSHFLPHQ WKH YROXPH RI DLU IRU WKH UHJLRQ RI WKH VHJPHQW EHFRPHV D IXQFWLRQ RI WKH IROORZLQJ YDOXHV 7KH YHUWLFDO KHLJKW EHFRPHV PLFURQV 7KH YROXPH EHFRPHV FXELF PLFURQV FRPSDUHG ZLWK WKH FXELF PLFURQV IRU WKH HQWLUH SDOS 7KLV PHDQV WKDW DW UHVW b RI WKH DLU VSDFH EHWZHHQ WKH SDOSL FDQ SRWHQWLDOO\ SDVV RYHU WKH &

PAGE 224

7DEOH &DOFXODWLRQ RI YROXPH RI DLU EHWZHHQ SDOSL DW UHVW DQG LQ IOLJKW &XOLVHWD PHODQXUD IHPDOHf 7RWDO OHQJWK RI SDOSL PLFURQV /HQJWK RI VHJPHQW PLFURQV 'LVWDQFH EHWZHHQ SDOSL PLFURQV 5DGLXV O22PLFURQVf PLFURQV 9ROXPH RI DLU EHWZHHQ SDOSL DW UHVW ZLWK DERYH GLPHQVLRQV LV HTXDO WR FXELF PLFURQV XVLQJ IRUPXOD IURP )LJ ,I WKH SDOSL DUH RSHQHG GHJUHHV )LJ SRVLWLRQ Ef WKH IRUPXOD IRU FDOFXODWLQJ WKH YROXPH EHFRPHV WKH YROXPH RI IUXVWXP RI ULJKW F\OLQGHU FRQH )LJ QRf 8VLQJ WULJRQRPHWULF IXQFWLRQ IRU VLQH RI DQJOH RI ULJKW WULDQJOH VLGH RSSRVLWHK\SRWHQXVH FRVLQH RI VDPH DQJOH VLGH DGMDFHQWK\SRWHQXVH WKH UHVXOWLQJ GLPHQVLRQ IRU D GHJUHH SDOS H[WHQVLRQ EHFRPH UO PLFURQV U PLFURQV K PLFURQV DQG YHUWLFDO KHLJKW RI ILJXUH PLFURQV 7KH YHUWLFDO KHLJKW UHSODFHV K LQ WKH FDOFXODWLRQV DQG KDV WR EH UHFDOFXODWHG IRU HDFK VKDSH FKDQJH 7KH UHVXOWLQJ YROXPH RI DLU EHWZHHQ WKH SDOSL ZLWK GHJUHHV RI H[WHQVLRQ 9 FXELF PLFURQV &DOFXODWHG YROXPHV IRU GHJUHHV GHJUHHV GHJUHHV DQG GHJUHHV DUH 9 FXELF PLFURQV 9 FXELF PLFURQV 9 FXELF PLFURQV DQG 9 FXELF PLFURQV UHVSHFWLYHO\ UHFHSWRUV +RZHYHU ZKHQ WKH SDOSV DUH H[WHQGHG GHJUHHV ODWHUDOO\ WKH YROXPH EHWZHHQ WKH SDOSDO VHJPHQWV EHFRPHV RU b RI WKH DLU YROXPH LV QRZ FRQWDLQHG EHWZHHQ WKH & UHFHSWRUV $W D ODWHUDO H[WHQVLRQ RI GHJUHHV WKH YROXPH EHWZHHQ SDOSL VHJPHQW EHFRPHV FXELF PLFURQV RU b RI WKH WRWDO DLU YROXPH EHWZHHQ WKH SDOSL 7KLV YDOXH LQFUHDVHV XQWLO DW GHJUHHV DOPRVW b RI WKH DLU YROXPH EHWZHHQ WKH SDOSL LV FRQWDLQHG EHWZHHQ WKH & UHFHSWRUV

PAGE 225

&RQFOXVLRQV &KDQJH LQ DYDLODEOH VHQVRU\ VXUIDFH DUHD LV SURSRVHG DV WKH PHFKDQLVP EHKLQG KRVW SUHIHUHQFH VKLIW +RVW SUHIHUHQFH FKDQJHV ZLWKLQ D SRSXODWLRQ RI PRVJXLWRHV LV SURSRVHG WR EH D IXQFWLRQ RI WKH VL]H UDQJH RI WKH DGXOW IHPDOHV DQG WKH VL]H UDQJH RI SRWHQWLDO KRVWV 6PDOOHU LQGLYLGXDOV KDYH D GHFUHDVHG VHQVLWLYLW\ OHYHO WR ROIDFWRU\ FXHV GXH WR D UHGXFWLRQ LQ VHQVRU\ VWUXFWXUH QXPEHUV 7KLV VXJJHVWV ODUYDO HQYLURQPHQWDO FRQGLWLRQV DV D SRVVLEOH H[SODQDWLRQ IRU UHSRUWHG LQWUDVSHFLILF KRVW SUHIHUHQFHV 6LQFH WKH YROXPH RI DLU VDPSOHG E\ WKH SDOSL GXULQJ UHVW RU GXULQJ IOLJKW LV GLUHFWO\ UHODWHG WR WKH OHQJWK RI SDOSDO VHJPHQWV DQG WKH VXUIDFH DUHD FRQWDLQLQJ ROIDFWRU\ VWUXFWXUHV HVWLPDWHG WKH YROXPH RI DLU FRQWDLQHG EHWZHHQ SDOSL DW DQ\ SRLQW LQ WLPH 7KH YROXPH FRQWDLQHG EHWZHHQ WKH SDOSL LV GHSHQGHQW XSRQ WKH DQJOH RI WKH SDOSL LQ UHODWLRQ WR WKH D[LV RI IOLJKW FDOFXODWHG UHSUHVHQWDWLYH YROXPHV IRU GLIIHUHQW DQJOHV XVLQJ VSHFLPHQ GDWD IURP &V PHODQXUD 7KH SURSRUWLRQ RI DLU DFWXDOO\ VDPSOHG E\ WKH ROIDFWRU\ VWUXFWXUHV LV GHSHQGHQW XSRQ WKH YROXPH RI DLU WKDW SDVVHV RYHU WKH VXUIDFH ZKLFK FRQWDLQV WKH & UHFHSWRUV 7KHUHIRUH FRPSDUHG WKH WRWDO YROXPH RI DLU FRQWDLQHG ZLWKLQ WKH SDOSL DW YDULRXV DQJOHV RI SDOSDO H[WHQVLRQ DQG WKHQ FRPSDUHG WKH YROXPH RI DLU FRQWDLQHG ZLWKLQ MXVW WKH DUHD ZLWK & UHFHSWRUV 7KLV UHYHDOHG WKDW ZKHQ WKH LQVHFW LV DW UHVW DSSUR[LPDWHO\ b RI WKH DLU YROXPH FRQWDLQHG EHWZHHQ WKH SDOSL LV DOVR EHLQJ

PAGE 226

H[SRVHG WR & UHFHSWRUV +RZHYHU D ODWHUDO H[WHQVLRQ RI RQO\ GHJUHHV IURP UHVWLQJ SRVLWLRQ UDLVHV WKLV WR b DQG E\ GHJUHHV DOPRVW b RI WKH DLU ZLWKLQ WKH SDOSL LV DOVR H[SRVHG WR WKH ROIDFWRU\ UHFHSWRUV 'LVFXVVLRQ 7KLV SLORW VWXG\ VXJJHVWV WKH IROORZLQJ f ODUYDH WKDW GHYHORS DW KLJKHU WHPSHUDWXUHV UHVXOW LQ VPDOOHU LQGLYLGXDOV HYHQ ZKHQ IRRG UHVRXUFHV DUH QRW D OLPLWLQJ IDFWRU f WKH QXPEHU RI ROIDFWRU\ SHJV GHFUHDVHV ZLWK D GHFUHDVH LQ ERG\ VL]H DQG f WKHVH PRUSKRORJLFDO FKDQJHV ILW D SUHGLFWDEOH PRGHO LQYROYLQJ WHPSHUDWXUH RI ZDWHU WKDW ODUYDH GHYHORS LQ 7KH SRVVLELOLW\ QRZ H[LVWV WKDW REVHUYHG KRVW SUHIHUHQFH GLIIHUHQFHV ERWK LQWHU DQG LQWUDVSHFLILFf PD\ EH DWWULEXWDEOH WR D PRUSKRORJLFDO FKDQJH LQ KRVWVHHNLQJ DELOLW\ DQG GHWHFWLRQ FDSDELOLW\ DV LQIOXHQFHG E\ ERG\ VL]H DQG QXPEHU RI ROIDFWRU\ VWUXFWXUHV 7KLV FRUUHODWLRQ VKRXOG EH H[SUHVVHG E\ D VHDVRQDO KRVW VKLIW LQ UHFRUGV RI KRVWIHHGLQJ LQ UHODWLRQ WR WKH ZDUPHU PRQWKV YHUVXV FRROHU PRQWKV /DUYDH WKDW GHYHORS GXULQJ ZDUPHU PRQWKV VKRXOG SURGXFH VPDOOHU DGXOWV ZLWK UHGXFHG VHQVRU\ FDSDELOLWLHV UHTXLULQJ ODUJHU DPRXQWV RI DWWUDFWDQW WR EH SUHVHQW WR HOLFLW D UHVSRQVH 7KLV ZRXOG PHDQ WKDW VPDOOHU LQGLYLGXDOV ZLWKLQ D SRSXODWLRQ RI PRVTXLWRHV ZLOO VHHN D GLIIHUHQW KRVW VL]H WKDQ ODUJHU LQGLYLGXDOV ZKLFK LQ WXUQ PHDQV WKDW D VSHFLHV ZKLFK QRUPDOO\ IHHGV RQ VPDOO PDPPDOV DQG ELUGV VKRXOG VKRZ D VKLIW WR ODUJHU DQLPDOV GXULQJ WKH ZDUPHU PRQWKV RI WKH \HDU

PAGE 227

$ ZLGH YDULDWLRQ LQ VXUIDFH DUHD RI SDOSDO VHJPHQW LV DSSDUHQW IURP WKH DERYH H[DPSOHV +RZHYHUHTXDO VXUIDFH DUHD PD\ RFFXU RQ GLIIHUHQWO\ VKDSHG REMHFWV 7KHUHIRUH VXUIDFH DUHD DORQH ZLOO QRW EH D VXIILFLHQW FKDUDFWHU IRU FRPSDULVRQ DPRQJ VSHFLHV 6LQFH ZH DUH WU\LQJ WR HVWDEOLVK D UHODWLRQVKLS EHWZHHQ QXPEHU DQG ORFDWLRQ RI & UHFHSWRUV DQG KRVW SUHIHUHQFH WKH QXPEHU RI UHFHSWRUV PXVW DOVR EH WDNHQ LQWR DFFRXQW 0FOYHU f OLVWHG WKH QXPEHU RI FDSLWDWH SHJV IRU VSHFLHV RI PRVTXLWRHV $PRQJ WKH VSHFLHV OLVWHG ZHUH WKH IROORZLQJ &[ WHUULWDQV SDOSf &[ WDUVDOLVSDOSf &[ UHVWXDQV SDOSfDQG &[ SLSLHQV SDOS SDOSf 7R WKHVH DGG IURP )ORULGD &[ UHVWXDQV SDOSf &[ WDUVDOLV SDOSf &[ TXLQTXIDVFLDWXV SDOSf &[ QLTULSDOSXV SDOSf &[ VDOLQDULXV SDOSf &V PHODQXUD SDOSf DQG 8UDQRWDHQLD VDSSKLULQD SDOSf 7KH WKUHVKROG OHYHO WKDW UHFHSWRUV UHVSRQG WR LV D IXQFWLRQ RI WKH QXPEHU RI UHFHSWRUV WKH YROXPH RI JDV DQG WKH FRQFHQWUDWLRQ RI SDUWLFXODU FRPSRXQGV %DVHG RQ WKH DERYH LOOXVWUDWLRQV LW EHFRPHV SRVVLEOH WR HVWLPDWH WKH GLIIHUHQFHV EHWZHHQ VSHFLHV DQG WKH UHODWLYH DPRXQWV RI DLU WKDW PLJKW EH VDPSOHG E\ WKHLU ROIDFWRU\ UHFHSWRUV ERWK DW UHVW DQG LQ IOLJKW 7KHVH GLIIHUHQFHV ZLOO EH SDUW RI WKH UHDVRQ IRU PRVTXLWRHV EHLQJ DWWUDFWHG WR YDULRXV KRVWV IRU WKH DELOLW\ WR VDPSOH WKH KRVW HPDQDWLRQV ZLOO EH GHWHUPLQHG E\ WKH DPRXQW RI KRVW YROXPH JLYHQ RII DQG WKH VL]H RI WKH SDOSL DQG DQWHQQDO OHQJWKV WKDW FRQWDLQ WKH

PAGE 228

YDULRXV UHFHSWRUV 1XPEHUV DQG DUUDQJHPHQW RI & UHFHSWRUV KDYH EHHQ VKRZQ WR GLIIHU *HQHUDOL]DWLRQV IURP WKHVH H[DPSOHV ZRXOG VXJJHVW WKDW WKH ORQJHU WKH SDOSL WKH PRUH DLU WKDW FRXOG EH VDPSOHG DQG WKH OHVV QHFHVVDU\ WR EH JLYHQ RII E\ KRVWV 7KLV ZRXOG PHDQ LQ VLPSOHVW WHUPV WKDW WKH PRVTXLWRHV WKDW UHVSRQG WR VPDOO KRVWV VKRXOG KDYH ORQJHU SDOSL WKDQ WKRVH WKDW UHVSRQG WR ODUJHU KRVWV DOO RWKHU IDFWRUV EHLQJ HTXDO +RZHYHU LQWHUMHFWHG LQWR WKLV DUH WKH YDULDWLRQV LQ QXPEHU RI UHFHSWRUV DQG WKHLU ORFDWLRQ RQ WKH SDOSL 7KH OHQJWK RI WKH VHJPHQW WKDW FRQWDLQV WKH & UHFHSWRUV KDV EHHQ VKRZQ WR GHWHUPLQH ZKDW SHUFHQW RI WKH WRWDO DLU YROXPH LV VDPSOHG ,I D PRVTXLWR KDV VKRUW SDOSL WKH VHJPHQW ZLWK WKH & UHFHSWRUV PD\ VDPSOH DOPRVW b RI WKH DLU DW UHVW ZLWK OLWWOH H[WHQVLRQ QHFHVVDU\ 7KH QXPEHU RI & UHFHSWRUV VKRXOG GHWHUPLQH WKH UHODWLYH YROXPH RI KRVW HPDQDWLRQ UHTXLUHG WR HOLFLW D UHVSRQVH $ PLQLPXP QXPEHU RI QHXURQV ZLOO KDYH WR EH VWLPXODWHG EHIRUH D UHVSRQVH LV JHQHUDWHG &RPELQDWLRQV RI QXPEHUV RI UHFHSWRUV YROXPH RI DLU DQG VL]H RI SDOSL ZLOO LQWHUDFW WR GHWHUPLQH WKH KRVW GHWHFWLRQ FDSDELOLW\ 7KLV VKRXOG PHDQ WKDW WUDSSLQJ WHFKQLTXHV QHHG WR EH UHHYDOXDWHG HVSHFLDOO\ WKH FRPELQDWLRQV DQG YROXPHV RI RGRUV XVHG IRU DWWUDFWLRQ 7KH UHDVRQV IRU WKLV DUH GLVFXVVHG LQ WKH QH[W FKDSWHU

PAGE 229

&+$37(5 48$17,),&$7,21 2) +267 (0$1$7,216 7<3(6 $1' 7+( ,03/,&$7,21 )25 $775$&7,21 2) $'8/7 02648,72(6 ,QWURGXFWLRQ %LWLQJ IOLHV LQFOXGLQJ PRVTXLWRHV DUH DWWUDFWHG WR KRVWV E\ VHYHUDO GLIIHUHQW PHDQV LQFOXGLQJ KHDW DQG FKHPLFDOV JLYHQ RII E\ HDFK DQLPDO 2QH RI WKH PRUH DEXQGDQW FRPSRQHQWV RI UHVSLUHG JDVHV LV FDUERQ GLR[LGH &f 7KLV JDV LV XVHG DV DWWUDFWDQW LQ PRVW EDLWHG WUDSV DQG VXUYHLOODQFH SURJUDPV 7\SLFDOO\ GU\ LFH YDULRXVO\ VL]HG FKXQNVf DUH SODFHG LQ D FRQWDLQHU DQG VXVSHQGHG IDLUO\ FORVH WR WKH WUDS 0RVTXLWRHV DUH DWWUDFWHG WR WKH WUDS YLFLQLW\ ZKHUH WKH\ DUH SXOOHG LQWR WKH WUDS E\ IDQV RU GLUHFWHG LQWR FROOHFWLRQ GHYLFHV E\ IXQQHOV +RZHYHU PDQ\ VSHFLHV GR QRW UHVSRQG ZHOO WR WKH IUR]HQ FKXQNV RI GU\ LFH 2WKHU VSHFLHV DUH FROOHFWHG LQ UHODWLYHO\ ODUJH QXPEHUV 7KH SRSXODWLRQ GHQVLW\ RI KRVWn VHHNLQJ IHPDOHV ZLOO JUHDWO\ DIIHFW WKH QXPEHUV WKDW DUH FROOHFWHG $Q DWWUDFWDQW VXFK DV & PD\ EH YHU\ DWWUDFWLYH LQ WKH FRQFHQWUDWLRQV RU YROXPHV XVHG EXW ZLOO QRW DSSHDU VR LI WKHUH DUH IHZ IHPDOHV LQ WKH YLFLQLW\ RI WKH WUDS 7KH DPRXQW RI & JLYHQ RII E\ WKH WUDS PD\ DWWUDFW RU UHSHO GHSHQGLQJ RQ WKH VSHFLHV RI PRVTXLWR $ SULRU NQRZOHGJH RI WKH DEXQGDQFH RI DQ\ VSHFLHV RI PRVTXLWR LV QHFHVVDU\

PAGE 230

$ JUHDW PDQ\ DUWLFOHV KDYH EHHQ SXEOLVKHG GHDOLQJ ZLWK WKH UHODWLYH DWWUDFWLYHQHVV RI YDULRXV FRQFHQWUDWLRQV RI & $ IHZ VHOHFWHG UHIHUHQFHV DUH OLVWHG KHUH %DU\QLQ t :LOVRQ f %URZQ f )DOOLV t 6PLWK f *LOOLHV f *LOOLHV t :LONHV f +DQVHOO f +DUGHQ HW DO f +RFNLQJ f .HOORJJ f .HQQHG\ f 2PHU t *LOOLHV f 3ULFH HW DO f 5HHYHV f 6FKUHFN HW DO f 6HUYLFH f 6QRZ f 6WU\NHU t
PAGE 231

OHYHOV RI DQLPDO HPDQDWLRQ IDOOV EHWZHHQ b DQG b D IROG LQFUHDVH DERYH EDFNJURXQG OHYHOV RI & EXW ZHOO EHORZ WKDW RI RXU WUDSV 5HVSLUHG & LV SXUH & EXW WKLV UHVSLUHG YROXPH RI & LV PL[HG ZLWK WKH RYHUDOO YROXPH RI UHVSLUHG JDVHV JLYHQ RII E\ WKH RUJDQLVP UHVXOWLQJ LQ D b b FRQFHQWUDWLRQ OHYHO RI UHVSLUHG & DW WKH VRXUFH 7KH UDWH RI UHVSLUHG & UHVSLUHG PD\ DSSURDFK RU H[FHHG WKH UHOHDVH UDWH XVHG LQ RXU WUDSV EXW WKH FRQFHQWUDWLRQ OHYHOV LQ DQ DQLPDO QHYHU FRPH FORVH WR WKH UDQJHV XVHG E\ XV LQ RXU WUDSV 'R GLIIHUHQW YHUWHEUDWHV KDYH GLIIHUHQW RGRUV WKDW DUH SHUFHLYHG E\ PRVTXLWRHV DV SDUW RI WKHLU DSSDUHQW KRVW VHOHFWLRQ PHFKDQLVP" ,Q RWKHU ZRUGV GRHV D PRXVH VPHOO GLIIHUHQWO\ IURP D FKLFNHQ WR D PRVTXLWR" 0FOYHU f VWXGLHG KRVW SUHIHUHQFH DQG GLVFULPLQDWLRQ E\ $H DHJ\SWL DQG &[ WDUVDOLV $QLPDO RGRUV ZHUH FROOHFWHG DQG VHSDUDWHG IURP FDUERQ GLR[LGH 7KH PRVTXLWRHV ZHUH XQDEOH WR VHSDUDWH PRXVH RGRU IURP FKLFN RGRU ZKHQ SUHVHQW LQ HTXDO DPRXQWV +XPDQ RGRU RI WKH IRUHDUP ZDV DV DWWUDFWLYH WR $H DHJ\SWL DV FKLFN RGRU 1R DWWUDFWLYH RGRU ZDV GLVFRYHUHG IRU IURJV RU OL]DUGV &XOH[ WDUVDOLV ZDV DWWUDFWHG WR DPSKLELDQV EXW VWLOO SUHIHUUHG PLFH RU FKLFNV 0FOYHU ORF FLWf FRQFOXGHG WKDW ZLWK DOO IDFWRUV EHLQJ HTXDO WKH PRVTXLWRHV SUHIHUUHG ZKLFKHYHU RGRU ZDV PRVW DEXQGDQW 7KH DGGLWLRQ RI & LQFUHDVHG WKH UHODWLYH DWWUDFWLYHQHVV RI PRXVH RGRU +RZHYHU RQFH WKH WKUHVKROG OHYHO RI & ZDV DFKLHYHG POPLQf PRUH & GLG QRW LQFUHDVH DWWUDFWLRQ 0FOYHU VXJJHVWHG WKDW KRVW

PAGE 232

GLVFULPLQDWLRQ PD\ UHDOO\ EH D SUHIHUHQFH IRU WKH DPRXQW RI RGRU UDWKHU WKDQ W\SH RI RGRU 5HHYHV f GHPRQVWUDWHG WKDW VHYHUDO VSHFLHV RI PRVTXLWRHV ZHUH DWWUDFWHG WR & JDV +H VXJJHVWHG WKDW & FKHPRWURSLVP PLJKW EH D ODUJH SRUWLRQ RI KRVW VHOHFWLRQ 5HHYHV f FRPSDUHG GLIIHUHQW UDWHV RI & DQG WKHLU UHODWLYH DWWUDFWLYHQHVV WR YDULRXV VSHFLHV RI PRVTXLWRHV 8VLQJ POPLQ FKLFNHQf POPLQ PDQf DQG POPLQ KRUVH RU FRZf KH IRXQG WKDW LQFUHDVHG & UDWHV DWWUDFWHG SURSRUWLRQDWHO\ PRUH &[ WDUVDOLV EXW GHFUHDVHG WKH DWWUDFWLYHQHVV WR &[ TXLQTXHIDVFLDWXV $HGHV QLJURPDFXOLV DQG $H GRUVDOLV ZHUH DWWUDFWHG LQ ODUJHVW QXPEHUV WR WKH KLJKHVW UDWH POPLQf EXW DOPRVW QRQH RI WKHVH ZHUH FROOHFWHG DW WKH ORZ UDWH POPLQf 5HHYHV f VWDWHG WKH IROORZLQJ ,W LV SRVVLEOH WKDW $H QLJURPDFXOLV LV QRW DWWUDFWHG WR ELUGV EHFDXVH WKLV PRVTXLWR PD\ QRW EH DEOH WR GHWHFW WKH UHODWLYHO\ VPDOO DPRXQWV RI FDUERQ GLR[LGH UHOHDVHG E\ FKLFNHQV DQG VPDOOHU ELUGV DQG ILQGV WKHP RQO\ RFFDVLRQDOO\ DQG E\ DFFLGHQW LQ D UDQGRP VHDUFK IRU KRVWV $V FRQFHQWUDWLRQV RI WKH VWLPXODQW DUH LQFUHDVHG DV WKRXJK E\ ODUJHU KRVWV WKH UDQJH RI GHWHFWLRQ LV HQWHUHG DQG WKH KRVWV DUH HDVLO\ IRXQG WKH RSWLPXP UDQJH PD\ EH WKH DPRXQWV RI WKLV JDV JLYHQ RII E\ ODUJHU DQLPDOV ,Q FRQWUDVW DUH WKH UHDFWLRQ RI &[ TXLQTXIDVHLDWXV DQG &[ WDUVDOLV 7KH UHODWLYHO\ ORZHU FRQFHQWUDWLRQV RI FDUERQ GLR[LGH JLYHQ RII E\ DYLDQ KRVWV PD\ KDYH WKH PD[LPDO DWWUDFWLYHQHVV IRU WKH ILUVW RI WKHVH WZR VSHFLHV ZKLFK DSSDUHQWO\ LV DWWUDFWHG OHVV DV FRQFHQWUDWLRQV LQFUHDVH $ SDWWHUQ RI WKLV W\SH ZRXOG EH H[SHFWHG RI DQ DYLSKLOLF VSHFLHVSf +RZHYHU 5HHYHV f DOVR REVHUYHG WKDW &[ WDUVDOLV ZDV FROOHFWHG LQ ODUJH QXPEHUV DW DOO OHYHOV RI & LQFUHDVLQJ

PAGE 233

SURSRUWLRQDWHO\ ZLWK LQFUHDVH LQ & $ PRVTXLWR PXVW ILUVW EH DEOH WR GHWHFW D KRVW EHIRUH EHLQJ DEOH WR ORFDWH LW 9DULRXV DXWKRUV KDYH GHEDWHG ZKHWKHU & LV UHDOO\ DQ DWWUDFWDQW RU PHUHO\ DQ DFWLYDWRU ,Q D VHULHV RI SXEOLFDWLRQV *LOOLHV t :LONHV f FRQFOXGHG WKDW PRVW VSHFLHV LQ WKHLU VWXG\ ZHUH RULHQWLQJ WR WKH EDLW IURP D GLVWDQFH RI WR PHWHUV DQG WKDW KRVW HPDQDWLRQV RWKHU WKDQ & ZHUH RI OLWWOH LPSRUWDQFH ZLWKLQ WKLV UDQJH +RZHYHU IHPDOH $QRSKHOHV PHODV DSSHDUHG WR EH DEOH WR RULHQW WR DQLPDO EDLWV DW JUHDWHU GLVWDQFHV WKDQ EHOLHYHG UHDFKHG E\ & VXJJHVWLQJ ORQJ UDQJH RULHQWDWLRQ WR RWKHU ROIDFWRU\ FXHV LQ WKLV VSHFLHV 8VLQJ UDWHV RI POPLQ PDQf DQG POPLQ ODUJH DQLPDOf *LOOLHV t :LONHV f GHWHUPLQHG WKDW IHPDOH PRVTXLWRHV UHVSRQGHG WR D DQLPDO EDLW IURP XS WR PHWHUV DQLPDO EDLW XS WR PHWHUV $SSUR[LPDWHO\ WKH VDPH UHVSRQVH ZDV LQGLFDWHG IRU HTXLYDOHQW UDWHV RI & POPLQ DQLPDOf +RZHYHU FHUWDLQ VSHFLHV RI &XOH[ DQG &RTXLOOHWWLGLD VKRZHG OLWWOH RU QR UHVSRQVH WR HLWKHU WKH FDOIEDLWHG RU &HTXLYDOHQWEDLWHG WUDSV 7KH\ REVHUYHG WKDW & UDWHV XVHG LQ WKLV VWXG\ ZHUH WLPHV WKRVH JLYHQ RII E\ D ODUJH IRZO EXW WKHQ VXJJHVWHG WKDW ROIDFWRU\ FXHV RWKHU WKDQ & PXVW EH LQYROYHG KHUH 7KH\ PDGH QR PHQWLRQ RI WKH SRVVLELOLW\ RI WRR KLJK D IORZ UDWH DFWLQJ DV D UHSHOOHQW DV SUREDEO\ KDSSHQHG IRU WKH DYLDQ IHHGHUV $OVR WKH\ REVHUYHG WKDW IHPDOHV SDUDVLWL]HG E\ PLWHV ZHUH DOPRVW H[FOXVLYHO\ QXOOLSDURXV &XULRXVO\ WKH

PAGE 234

PLWHLQIHVWHG IHPDOHV UHVSRQGHG GLIIHUHQWO\ WR WKH EDLWV WKDQ GLG WKH QRQLQIHVWHG IHPDOHV & WKXV DSSHDUHG WR EH D GLVWDQFH VWLPXOXV DIIHFWLQJ YDULRXV VSHFLHV DFFRUGLQJ WR FRQFHQWUDWLRQV DFWXDOO\ IORZ UDWHVf EHLQJ HPLWWHG 6QRZ f GHPRQVWUDWHG WKDW FDUERQ GLR[LGH KDV OLWWOH HIIHFW RQ UHVSRQVH WR FORVH UDQJH VWLPXOL +H IRXQG WKDW VLJQLILFDQWO\ IHZHU PRVTXLWRHV RI VSHFLHV DSSURDFKHG WKH KRVW ZLWK D UHGXFHG & RXWSXW EXW UHGXFHG & RXWSXW KDG QR HIIHFW RQ WKH SURSRUWLRQ RI PRVTXLWRHV DWWHPSWLQJ WR IHHG RQFH ZLWKLQ FORVH UDQJH RI WKH KRVW & WKXV DSSHDUV WR EH DW OHDVW D PHGLXP UDQJH DWWUDFWDQW WR PDQ\ VSHFLHV RI PRVTXLWRHV +RVW HPDQDWLRQV HVSHFLDOO\ &fTXDQWLW\ DQG GHWHFWLRQ :H QRZ NQRZ WKDW & LV GHWHFWHG E\ FDSLWDWH SHJV IRXQG RQ WKH SDOSL RI DGXOW PRVTXLWRHV 0FOYHU f UHSRUWHG YDULDWLRQ LQ QXPEHU RI WKHVH VWUXFWXUHV IRU VSHFLHV RI PRVTXLWRHV $OWKRXJK VKH FRXOG VKRZ LQWHUVSHFLILF GLIIHUHQFH LQ QXPEHU VKH ZDV XQDEOH WR FRUUHODWH QXPEHUV ZLWK KRVW SUHIHUHQFH ,I WKH QXPEHUV RI UHFHSWRUV DORQH DUH QRW REYLRXV LQGLFDWRUV RI KRVW SUHIHUHQFH WKDQ DOWHUQDWLYH K\SRWKHVHV PXVW EH ORRNHG IRU +RZ GR QXPEHUV UHODWH WR GHWHFWLRQ FDSDELOLWLHV" 7KH UHODWLRQVKLS EHWZHHQ FRQFHQWUDWLRQ OHYHOV RI D VXEVWDQFH DQG WKH DELOLW\ RI D VWUXFWXUH WR GHWHFW WKH VXEVWDQFH ZDV VXPPDUL]HG E\ &KDSPDQ f )RU D UHVSRQVH WR RFFXU D JLYHQ QXPEHU RI PROHFXOHV RI WKH VWLPXODWLRQ RGRU PXVW LPSLQJH RQ WKH UHFHSWRU VLWHV WKLV LV IDFLOLWDWHG E\ WKH ODUJH QXPEHU RI VHQVLOOD XVXDOO\ SUHVHQW E\ WKH SUHVHQFH LQ HDFK VHQVLOOXP RI D QXPEHU RI VHQVRU\ QHXURQV DQG E\ WKH PXOWLSOLFDWLRQ RI QHUYH HQGLQJV LQ WKH ZDOO RI WKH VHQVRU\ SHJ

PAGE 235

&RUUHODWHG ZLWK WKLV LW DSSHDUV WKDW WKUHVKROGV WR VPHOOV DUH ORZHVW ZKHQ WKH QXPEHU RI VHQVLOOD SUHVHQW LV KLJKHVW DQG SHUKDSV DOVR UHIOHFWLQJ GLIIHUHQFHV LQ WKH QXPEHUV RI VHQVLOOD WKH GLIIHUHQW RUJDQV RI DQ LQVHFW KDYH GLIIHUHQW VHQVLWLYLWLHV 7KH QXPEHU RI LPSXOVHV SURGXFHG LV SURSRUWLRQDO WR WKH FRQFHQWUDWLRQ RI VWLPXODWLQJ VXEVWDQFHV 7KH HIIHFW RI VWLPXODWLRQ E\ RGRXUV LV WR SURPRWH DFWLYLW\ VRPH VXEVWDQFHV DWWUDFW LQVHFWV VRPH OHDG WR UHMHFWLRQ RU DQ DWWHPSWHG DYRLGDQFH RI WKH VWLPXOXV ZKLOH LQ VRPH FDVHV WKH UHVSRQVH YDULHV ZLWK WKH FRQFHQWUDWLRQ RI WKH RGRXU :KHWKHU D VWLPXODWLQJ RGRXU LV DWWUDFWLYH RU UHSHOODQW LV GHWHUPLQHG E\ WKH JHQHWLFDO FRQVWLWXWLRQ RI WKH LQVHFW Sf ,I WKH DERYH WKHRU\ LV DSSOLHG LW WR & GHWHFWLRQ WKHQ WKH SUREDELOLW\ RI D PROHFXOH RI & EHLQJ GHWHFWHG E\ D UHFHSWRU ZRXOG EH D IXQFWLRQ RI WKH FRQFHQWUDWLRQ VHQVX VWULFWXf WKH YROXPH RI UHVSLUHG JDVHV DQG WKH QXPEHU RI VWUXFWXUHV SUHVHQW RQ WKH VXUIDFH RI WKH SDOSL 7KHUHIRUH DQ DSSUR[LPDWLRQ RI WKH VXUIDFH DUHD RI WKH SDOSL WKH ORFDWLRQ DQG QXPEHU RI & UHFHSWRUV DQG D PHDVXUH RI WKH UHVSLUHG YROXPHV RI YDULRXV JDVHV E\ YDULRXV DQLPDOV VKRXOG EHJLQ WR JLYH D FOHDUHU SLFWXUH RI ZKDW KRVW SUHIHUHQFH DFWXDOO\ LQYROYHV 2QH DGGLWLRQDO IDFWRU PXVW EH FRQVLGHUHG :KLOH DW UHVW WKH IHPDOH PRVTXLWR KROGV WKH SDOSL SDUDOOHO DQG FORVH WR WKH SURERVFLV 6LQFH WKH & UHFHSWRUV DUH RQ WKH LQQHU VXUIDFH RI WKH SDOSL OLWWOH LI DQ\ KRVW GHWHFWLRQ E\ WKH & UHFHSWRUV LV OLNHO\ ZKLOH WKH PRVTXLWR LV DW UHVW +RZHYHU ZKLOH LQ IOLJKW WKH SDOSL DQG DQWHQQDH DUH KHOG RXW DW DQ DQJOH RI DSSUR[LPDWHO\ GHJUHHV WR WKH GLUHFWLRQ RI IOLJKW 7KH YROXPH RI DLU VDPSOHG E\ WKH PRVTXLWR DW DQ\ PRPHQW EHFRPHV D IXQFWLRQ RI WKH YROXPH RI DLU FRQWDFWLQJ WKH

PAGE 236

VXUIDFH RI WKH SDOSL 6LQFH WKH VXUIDFH DUHD RI WKH SDOSL ZKLFK FRQWDLQ WKH & UHFHSWRUV PD\ EH DSSUR[LPDWHG D PHFKDQLVP QRZ H[LVWV WR WHVW IRU KRVW GHWHFWLRQ FDSDELOLWLHV LQ UHODWLRQ WR VL]H RI PRVTXLWR DV PHDVXUHG E\ SDOSDO OHQJWK VXUIDFH DUHD RI SDOSL QXPEHU RI UHFHSWRUV DQG YROXPH RI UHVSLUHG JDVHV IRU YDULRXV DQLPDOV )URP WKLV HPHUJHV D UHODWLRQVKLS WKDW FRQQHFWV KRVW HPDQDWLRQV KRVW VL]H PRVTXLWR VL]H DQG VHQVRU\ VWUXFWXUHV ZLWK D UHLQWHUSUHWDWLRQ RI ZKDW LV PHDQW E\ KRVW SUHIHUHQFH 4XDQWLILFDWLRQ RI KRVW HPDQDWLRQV HVSHFLDOO\ & (DFK DQLPDO JLYHV RII D FHUWDLQ YROXPH RI UHVSLUHG JDVHV YDULRXVO\ PHDVXUHG E\ GLIIHUHQW DXWKRUV $ PHDVXUH RI EUHDWK LQWDNH DQG RXWSXW IRU RQH WLPH LV FDOOHG WKH DQLPDOnV WLGDO YROXPH 5HVSLUHG JDVHV IRU D SHULRG RI WLPH PD\ EH FDOFXODWHG DQG H[SUHVVHG LQ POPLQ %ORRG JDVHV DUH DVVXPHG WR EH DW HTXLOLEULXP ZLWK DOYHRODU SUHVVXUHV H[SUHVVHG LQ PP RI +J 7KHVH PHDVXUHV SURYLGH D PHDQV RI FDOFXODWLQJ FRQFHQWUDWLRQ OHYHOV RI UHVSLUHG JDVHV WKDW DUH FRQWDLQHG LQ NQRZQ YROXPHV RI H[SLUHG JDVHV E\ WKH DQLPDO $V DQ H[DPSOH LI WKH WRWDO UHVSLUHG YROXPH RI JDV LQ DQ DQLPDO LV POPLQ DQG LWV EORRG & KDV D WHQVLRQ RI PP +J WKHQ PP +J DWPRVSKHUHf JLYHV DQ DSSUR[LPDWLRQ RI WKH SHUFHQW FRQFHQWUDWLRQ RI & FRQWDLQHG ZLWKLQ WKH WRWDO UHVSLUHG YROXPH RI JDVHV ,I LQ WKLV H[DPSOH WKH IUDFWLRQ REWDLQHG IURP LV PXOWLSOLHG E\ WKH YROXPH POf ZH ILQG WKDW IRU PLQXWH WKH DQLPDO UHVSLUHV [ RU PO RI &

PAGE 237

LQ RQH PLQXWH 7KH FRQFHQWUDWLRQ RI & GXULQJ WKLV PLQXWH LV b 7KLV PHWKRG LV XVHG LQ DQ DUWLFOH GHDOLQJ ZLWK WKH UHODWLRQVKLS EHWZHHQ H[SLUHG YROXPHV RI JDVHV DQG ERG\ VL]H LQ ELUGV DQG PDPPDOV /DVLHZVNL t &DOGHU f $FFRUGLQJ WR /DVLHZVNL t &DOGHU ORF FLWf WKH YROXPH RI JDVHV JLYHQ RII E\ ELUGV DQG PDPPDOV ILWV DOORPHWULF HTXDWLRQV XVLQJ ERG\ ZHLJKW DV WKH YDULDEOH 8VLQJ WKH DOORPHWULF HTXDWLRQV RI WKHVH DXWKRUV LW LV SRVVLEOH WR FDOFXODWH PLQXWH YROXPH RI UHVSLUHG JDVHV IRU ELUGV < [ ERG\ ZW LQ NJ UDLVHG WR SRZHUf DQG IRU PDPPDOV < [ ERG\ ZW LQ NJ UDLVHG WR SRZHUf 7KXV IURP ERG\ ZHLJKW DORQH DQ HVWLPDWH LV DUULYHG DW IRU UHVSLUHG YROXPHV 2QFH WKH WRWDO UHVSLUHG YROXPH KDV EHHQ GHWHUPLQHG DQ HVWLPDWH RI UHVSLUHG YROXPH RI & LQ POPLQ PD\ EH FDOFXODWHG XVLQJ DUWHULDO & WHQVLRQ /DKLUL f ,I HTXLOLEULXP LV DVVXPHG EHWZHHQ DUWHULDO & DQG DOYHRODU VXUIDFH WKDQ WKH UDWLR RI EORRG & WR VXUIDFH SUHVVXUH LQ PP +J ZLOO SURYLGH WKH IDFWRU E\ ZKLFK WKH WRWDO UHVSLUHG YROXPH FDQ EH PXOWLSOLHG WR DSSUR[LPDWH & YROXPH UHVSLUHG SHU PLQXWH %LUGV DYHUDJH D EORRG & RI PP +J PDPPDOV DYHUDJH PP +J &KLRGL t 7HUPDQ &DOGHU t 6FKPLWW 1LHOVHQ 7HQQH\ t %DUWOHWW f /DKLUL ORF FLWf TXHVWLRQHG WKH YDOXHV IRU PDPPDOV +H FDOFXODWHG WKDW ERG\ ZHLJKW ZDV D VLJQLILFDQW IDFWRU LQ H[SODLQLQJ EORRG & LQ VPDOO PDPPDOV Jf EXW ZDV OHVV VLJQLILFDQW LQ ODUJHU DQLPDOV NJf +RZHYHU ZKLOH

PAGE 238

KH GLVDJUHHG ZLWK WKH YDOXH RI PP +J IRU DOO PDPPDOV KLV UDQJH ZDV IURP PP +J FDWfWR PP +J VKHHSf 0DQ KDG D EORRG & RI PP +J DW r& )RU WKH SXUSRVHV RI P\ HVWLPDWHV KHUH FKRVH WR XVH PP +J IRU PDPPDOV DW PP SUHVVXUH DQG PP +J IRU ELUGV DW PP SUHVVXUH 7KHVH SURYLGH YDOXHV RI b & E\ YROXPH IRU PDPPDOV DQG b & E\ YROXPH IRU ELUGV 8VLQJ WKHVH ILJXUHV FDOFXODWHG WRWDO UHVSLUHG YROXPH IRU YDULRXV VSHFLHV RI DQLPDOV WKHQ & UHVSLUHG YROXPH SHU PLQXWH IRU HDFK RI WKH DQLPDOV 7KHVH FDOFXODWLRQV DUH SUHVHQWHG LQ WKH IROORZLQJ WDEOH 6LQFH ERG\ VXUIDFH DUHD LV DOVR FRQVLGHUHG D IDFWRU LQ KRVW SUHIHUHQFH 'RZQH f FDOFXODWHG ERG\ VXUIDFH DUHD IRU WKH VDPH DQLPDOV XVLQJ WKH DOORPHWULF HTXDWLRQV RI < [ ERG\ ZW LQ NJ UDLVHG WR SRZHU PDPPDOVf DQG < [ ERG\ ZW LQ NJ UDLVHG WR SRZHU ELUGVf /DVLHZVNL t &DOGHU ORF FLWf &DOFXODWLRQ RI UHVSLUHG YROXPHV RI JDVHV DQG & 7KH GHWHUPLQDWLRQ RI UHVSLUHG YROXPHV RI JDVHV LV D IXQFWLRQ RI WKH VL]H RI WKH LQGLYLGXDO $OO DQLPDOV H[KLELW D VL]H UDQJH WKDW EHJLQV DW ELUWK DQG FKDQJHV XQWLO DGXOW VL]H LV UHDFKHG :LWKLQ DGXOWV WKHUH DUH REYLRXV VL]H UDQJHV )RU WKLV UHDVRQ DORQH WKH VL]H UDQJH HYHQ ZLWKLQ RQH VSHFLHV PXVW EH FRQVLGHUHG ZKHQ FRPSDULQJ KRVW UHFRUGV IRU PRVTXLWRHV 7KHUHIRUH KDYH FDOFXODWHG D UDQJH RI YDOXHV IRU HDFK DQLPDO WR LOOXVWUDWH WKH RYHUODS WKDW RFFXUV LQ KRVW HPDQDWLRQ DPRXQWV EHWZHHQ GLYHUVH JURXSV RI YHUWHEUDWHV )URP WKLV

PAGE 239

HPHUJHV WKH LQGLFDWLRQ WKDW PRVTXLWRHV WKDW VHHP WR SUHIHU RQH KRVW RU D IHZ KRVWV DFWXDOO\ SUHIHUV DQ DPRXQW RI DWWUDFWDQW QRW D VSHFLHV RI DQLPDO 7KLV LV WKH SKHQRPHQRQ RI KRVW DWWUDFWLRQ DQG ZLOO EH GLVFXVVHG IROORZLQJ WKH SUHVHQWDWLRQ RI WKH FDOFXODWHG YROXPHV RI JDVHV DQG VXUIDFH DUHDV IRU WKH DQLPDOV EHORZ 7DEOH $PRXQW RI UHVSLUHG JDVHV IRU YDULRXV YHUWHEUDWHV $QLPDO :WNJf 7RW UHVS &2 YRO POPLQ POPLQ 0RRVH +RUVH f %HDU &RZ 2VWULFK &DOI 'HHU )DZQ *RDW 6KHHS 0DQ &R\RWH %HDYHU %REFDW 'RJ 7XUNH\ *RRVH 2WWHU *UD\ )R[ 5DFFRRQ 5HG )R[ 6NXQN 'XFN &DW &KLFNHQ $UPDGLOOR 2SRVVXP :RRGFKXFN 0XVNUDW

PAGE 240

5DEELW 7DEOH FRQWf GRPHVWLFf FRWWRQ W f 6TXLUUHO IR[f *XLQHD SLJ 6TXLUUHO JUD\f 3LJHRQ 6TXLUUHO UHGf %LUG VPf :HDVHO &KLSPXQN 6TXLUUHO IO\LQJf 0RXVH GHHUf PRXVH 6KUHZ V WDLOf 9ROH PHDGRZf %DVHG RQ ERG\ ZHLJKW VPDOOHU LQGLYLGXDOV RI DQ\ SDUWLFXODU VSHFLHV HVSHFLDOO\ \RXQJf ZRXOG IDOO ZHOO RXWVLGH WKH UDQJH RI DGXOWV LQ WHUPV RI & SURGXFWLRQ ,I YROXPH RI & LV D IDFWRU LQ KRVW SUHIHUHQFH WKHQ ZH ZRXOG SUHGLFW WKDW ZH PLJKW VHH D VXSSRVHG ELUG IHHGHU ZLWK PDPPDO EORRG PHDOV LQ WKLV FDVH LW PLJKW EH D VPDOO PDPPDO RU D ODUJHU ELUG 8QIRUWXQDWHO\ WKHUH DUH QR WHVWV FXUUHQWO\ DYDLODEOH WR GLVWLQJXLVK WKH EORRGPHDOV RI \RXQJ DQLPDOV IURP WKRVH RI DGXOWV %DVHG RQ WKH DERYH GDWD D VPDOO ELUGIHHGHU VKRXOG EH HTXDOO\ DWWUDFWHG WR VPDOO URGHQWV DQG ZHDVHOV *LYHQ WKH UDQJH LQ ERG\ VL]H DQG YROXPH RI & JLYHQ RII PDQ\ GLIIHUHQW DQLPDOV VKRXOG EH HTXDOO\ DWWUDFWLYH WR D PRVTXLWR WKDW VHOHFWV IRU DPRXQW RI RGRU UDWKHU WKDQ W\SH RI DQLPDO $IWHU

PAGE 241

FDOFXODWLQJ WKH ERG\ VXUIDFH DUHDV IRU WKH DERYH DQLPDOV ZLOO H[DPLQH WKH OLWHUDWXUH WR VHH LI HYLGHQFH H[LVWV IRU DPRXQW RI RGRU SUHIHUHQFH UDWKHU WKDQ W\SH RI KRVW SUHIHUHQFH &DOFXODWLRQ RI ERG\ VXUIDFH IRU YDULRXV DQLPDOV $V PHQWLRQHG HDUOLHU ERG\ VXUIDFH DUHD IRU PDPPDOV PD\ EH FDOFXODWHG IURP ERG\ ZHLJKW NJf XVLQJ WKH DOORPHWULF HTXDWLRQV RI < [ ERG\ ZW LQ NJ UDLVHG WR WKH SRZHU PDPPDOVf DQG < [ ERG\ ZW LQ NJ UDLVHG WR WKH SRZHU ELUGVf 7DEOH %RG\ VXUIDFH DUHD IRU YDULRXV YHUWHEUDWHV $QLPDO %RG\ ZW NFUf 6XUIDFH DUHD 0RRVH +RUVH %HDU &RZ 2VWULFK &DOI 'HHU )DZQ *RDW 6KHHS 0DQ &R\RWH %HDYHU %REFDW 'RJ 7XUNH\ *RRVH 2WWHU *UD\ )R[ 5DFFRRQ 5HG )R[ 6NXQN &DW &KLFNHQ $UPDGLOOR 2SRVVXP :RRGFKXFN 0XVNUDW 'XFN

PAGE 242

7DEOH &RQWf 5DEELW GRPHVWLFf FRWWRQ WOf RLR 6TXLUUHO IR[f *XLQHD SLJ 6TXLUUHO JUD\f 3LJHRQ 6TXLUUHO UHGf %LUG VPDOOf :HDVHO &KLSPXQN 6TXLUUHO IO\LQJf 0RXVH GHHUf KRXVHf 6KUHZ 9ROH PHDGRZf 6L]H UDQJHV IRU WKH YDULRXV DQLPDOV OLVWHG DERYH DUH WDNHQ IURP YDULRXV ZLOGOLIH KDQGERRNV 7KH PDMRULW\ RI PDPPDO VL]HV FDPH IURP *RGLQ f 7KHUH DUH VHYHUDO SK\VLRORJLFDO GLIIHUHQFHV EHWZHHQ WKH UHVSLUDWRU\ V\VWHPV RI ELUGV DQG PDPPDOV ,Q ELUGV WKH WRWDO UHVSLUDWRU\ V\VWHP YROXPH LV WLPHV WKDW RI D FRPSDUDEOH VL]H PDPPDO +RZHYHU WKHLU UHVSLUDWRU\ UDWH LV WKDW RI D VLPLODU VL]H PDPPDO 7KHUHIRUH WKHLU UHVSLUHG YROXPH SHU PLQXWH HQGV XS EHLQJ OHVV WKDQ WKDW RI D FRPSDUDEO\ VL]H PDPPDO GXH WR WKHLU ORZHU EORRG & PP +J YV PP +J LQ PDPPDOVf ,Q DGGLWLRQ WR WKH UHVSLUDWRU\ SRUWLRQ RI WKH OXQJV LQ ELUGV WKHUH DUH PHPEUDQRXV DLU VDFV ZKLFK DUH ILOOHG DW LQVSLUDWLRQ DQG WKDW VZHHS WKH XVHG DLU RXW RI WKH OXQJV DW

PAGE 243

H[SLUDWLRQ WKXV DYRLGLQJ WKH GHDG DLU VSDFH RI XQUHVSLUHG DLU ZKLFK LV FRQVLGHUDEOH LQ PDPPDOV
PAGE 244

,I DV VXJJHVWHG E\ 'RZQH f WKDW ZKDW UHDOO\ LV LPSRUWDQW LV WKH VXUIDFH DUHD RI WKH KRVW DQG QRW WKH VSHFLILFLW\ RI WKH KRVW WKHQ KRVW SUHIHUHQFH PD\ EH DEOH WR EH UHLQWHUSUHWHG DV KRVW VL]H 7KH VXUIDFH DUHD RI DQ RUJDQLVP FHUWDLQO\ DSSHDUV WR EH FRUUHODWHG ZLWK WKH DPRXQW RI ERGLO\ DURPD JLYHQ RII

PAGE 245

&+$37(5 ',6&866,21 6800$5<352326$/ )25 )8785( 5(6($5&+ 'LVFXVVLRQ DQG VXPPDU\ )URP WKH SUHFHGLQJ FKDSWHUV VXJJHVWLRQV RI WKH LQWHUDFWLRQ EHWZHHQ KRVW VL]H YROXPH RI UHVSLUHG JDVHV VL]H RI PRVTXLWR DQG UHVXOWLQJ PRUSKRORJLFDO FKDQJHV LQ VHQVRU\ FRQILJXUDWLRQ WKDW DFFRPSDQLHV FKDQJH LQ DGXOW VL]H DUH VHHQ ,I KRVW SUHIHUHQFH UHFRUGV DUH UHH[DPLQHG EDVHG RQ f JURXSLQJ KRVWV E\ VL]H DQG YROXPH RI UHVSLUHG JDVHV DQG f PRVTXLWR VSHFLHV E\ VHDVRQ DQGRU VL]H PHDVXUHG E\ SDOSDO FRQILJXUDWLRQ WKH IROORZLQJ SDWWHUQ HPHUJHV IRU IHPDOH PRVTXLWRHV &UDQV f OLVWHG KRVW UHFRUGV IRU VHYHUDO VSHFLHV $QRSKHOHV TXDGULPDFXODWXV KDG KRVWV RI GHHU PDQ DQG GRJV ([DPLQDWLRQ RI 7DEOH UHYHDOV WKDW WKHVH DQLPDOV DOO RYHUODS LQ DPRXQW RI UHVSLUHG YROXPHV RI JDV DQG DPRXQW RI & 7KHUHIRUH WKH\ DUH HTXLYDOHQW LQ WHUPV RI WKHLU UHVSLUHG JDVHV WKDW DUH NQRZQ 7KLV VDPH SULQFLSOH LV VHHQ WKURXJKRXW WKH OLWHUDWXUH 8VLQJ WKH WDEOH LQ FKDSWHU D FRPPRQ WKHPH LV UHYHDOHG 'HVSLWH D ZLGH UDQJH RI VSHFLHV DV KRVW IRU EORRG PHDOV WKH PDMRULW\ ZLOO FOXVWHU LQWR RU JURXSV EDVHG RQ UHVSLUHG YROXPHV DQG ERG\ VXUIDFH DUHD 6LQFH PRVW UHFRUGV RI EORRGPHDO DQDO\VLV DUH QRW VHSDUDWHG E\ VHDVRQ QRU

PAGE 246

DUH WKH\ DEOH WR GLVWLQJXLVK EHWZHHQ \RXQJ VPDOOHUf DQG ROGHU ELJJHUf LQGLYLGXDOV RI WKH VDPH VSHFLHV WKLV SURSRVDO LV EDVHG XSRQ PDWKHPDWLFDO DQG PRUSKRORJLFDO JURXQGV 7KH EHKDYLRUDO HYLGHQFH WR VXSSRUW WKLV K\SRWKHVLV ZLOO UHTXLUH PDQ\ LQGLYLGXDOV DQG PXFK WLPH 0XFK VSHFXODWLRQ H[LVWV FRQFHUQLQJ WKH WUDQVPLVVLRQ RI YLUXVHV VXFK DV HTXLQH HQFHSKDOLWLV 3HRSOH JHQHUDOO\ DVVXPH WKDW WKH YLUXV LV PDLQWDLQHG ZLWKLQ WKH ELUG SRSXODWLRQ E\ RU PRUH VSHFLHV RI PRVTXLWR WKHQ VRPHKRZ JHWV WR WKH GHDG HQG KRVW E\ DQRWKHU PRVTXLWR ,PSOLFDWHG DV WKH YHFWRU WR KRUVHV DQG PDQ DUH $HGHV YH[DQV $HGHV VROOLFLWDQV DQG &RTXLOOHWWLGLD SHUWXUEDQV 7KHVH KDYH EHHQ LPSOLFDWHG IRU PDMRU UHDVRQV 7KH PRVW DEXQGDQW PRVTXLWR DW WKH WLPH RI RXWEUHDNV EHFRPHV WKH OLNHO\ FDQGLGDWH IRU YHFWRULQJ WKH GLVHDVH 6HFRQGO\ WKH YLUXV KDV EHHQ UHFRYHUHG IURP WKHVH VSHFLHV +RZHYHU WKH YLUXV KDV DOVR EHHQ UHFRYHUHG IURP RWKHU VSHFLHV RI PRVTXLWR 'RHV WKLV PHDQ WKDW VSHFLHV DUH YHFWRULQJ WKH GLVHDVH 7KH DQVZHU LV PRVW OLNHO\ QR /DERUDWRU\ WHVWV KDYH VKRZQ WKDW DOWKRXJK WKH YLUXV PD\ EH UHFRYHUHG IURP WKH PRVTXLWR QRW DOO PRVTXLWRHV KDYH JRRG YHFWRULDO FDSDFLW\ $GGLWLRQDOO\ ZLWKLQ VSHFLHV WKDW ZLOO H[SHULPHQWDOO\ WUDQVPLW WKH YLUXV LW LV WKH VPDOOHU LQGLYLGXDOV WKDW DSSHDU WR EH WKH EHVW YHFWRUV 6PDOOHU LQGLYLGXDOV DUH SURGXFHG GXULQJ WKH ZDUPHU PRQWKV DV PHQWLRQHG DERYH DQG VKRZQ E\ UHDULQJ H[SHULPHQWV 7KH ZDUPHU PRQWKV DUH WKH PRQWKV GXULQJ ZKLFK KRVW VKLIW RFFXUV LQ VSHFLHV VXFK DV

PAGE 247

&[ WDUVDOLV &[ QLJULSDOSXV DQG VXJJHVWHG IRU &V PHODQXUD 7KHUHIRUH DOWKRXJK PDQ\ VSHFLHV KDYH EHHQ H[SRVHG WR D YLUXV LQ WKH ZLOG RQO\ D IHZ DSSHDU WR EH DEOH WR WUDQVPLW WR RWKHU KRVWV ZRXOG SUHVHQW WKH IROORZLQJ VFHQDULR DV WKH PRVW OLNHO\ WR OHDG WR WKH WUDQVPLVVLRQ RI WKLV YLUXV IURP ELUGV WR PDPPDOV E\ D VLQJOH VSHFLHV RI PRVTXLWR 7KLV LV QRW WR UXOH RXW WKH SRVVLELOLW\ WKDW RWKHU PRVTXLWRHV GR QRW DW WLPHV WUDQVPLW D GLVHDVH $ PRVTXLWR VSHFLHV PXVW RFFXU WKURXJKRXW WKH \HDU LQ RUGHU WR H[KLELW VHDVRQDO KRVW VKLIW 7KLV PHDQV WKDW WKH VKRUW OLYHG $HGHV DQG 3VRURSKRUD DUH XQOLNHO\ FDQGLGDWHV IRU WUDQVPLVVLRQ RI WKH GLVHDVH XQOHVV VRPH PHFKDQLVP DOORZV WKH YLUXV WR VXUYLYH DV LQ HJJV 'XULQJ WKH ZLQWHU FRROHUf PRQWKV D PRVTXLWR VXFK DV &V PHODQXUD IHHGV SULPDULO\ RQ VPDOO ELUGV $GXOWV WKDW GHYHORS LQ WKH VRXWK DUH ODUJHU DQG GDUNHU LQ WKH FRROHU PRQWKV $V ZDWHUV ZDUP XS DQG ODUYDH DUH H[SRVHG WR VSULQJ DQG JUDGXDOO\ ZDUPLQJ FRQGLWLRQV VPDOOHU LQGLYLGXDOV EHJLQ WR HPHUJH 7KHVH LQGLYLGXDOV ZLOO VHHN ODUJHU DQLPDOV HLWKHU ODUJHU ELUGV RU VPDOOHU PDPPDOVf 'XULQJ WKLV WLPH WKH YLUXV PD\ UHVLGH LQ YDULRXV KRVWV WKDW FRYHU D ZLGH UDQJH RI VL]HV $V VXPPHU PRQWKV DSSURDFK ZLWK KRWWHU WHPSHUDWXUHV VPDOOHU LQGLYLGXDO PRVTXLWRHV ZLOO HPHUJH UHVXOWLQJ LQ D JUDGXDO VKLIW LQ KRVW SUHIHUHQFH 7KLV VKLIW ZLOO EH JUDGXDO GXH WR WKH ORQJHYLW\ RI WKH DGXOWV DQG WKH ORFDWLRQV RI WKH PRVTXLWR ODUYDH ,W ZLOO EH GXULQJ WKLV VKLIW WR ODUJHU DQG ODUJHU KRVWV WKDW WKH YLUXV WUDQVPLVVLRQ

PAGE 248

ZLOO RFFXU 6PDOOHU PRVTXLWRHV ZLOO WDNH EORRG IURP ODUJHU VKRUH ELUGV ZKLFK KDYH FKDUDFWHULVWLFV 7KH\ DUH RI WKH VDPH VL]H UDQJH DV PDPPDOV VXFK DV VPDOO KXPDQV DQG VPDOO KRUVHV DQG WKH\ KDUERU WKH YLUXV ([DPLQDWLRQ RI PHGLFDO UHFRUGV VKRZ WKDW WKH LQGLYLGXDOV WKDW W\SLFDOO\ GLH IURP WKH YLUXV DUH VPDOO FKLOGUHQ DQG \RXQJ KRUVHV 7KLV KDV EHHQ DWWULEXWHG WR WKH LPPXQH V\VWHP GHILFLHQFLHV RI \RXQJ DQLPDOV $FFRPSDQLHG E\ WKLV DUH WKH SK\VLRORJLFDO GLIIHUHQFHV EHWZHHQ \RXQJ DQG ROG LQGLYLGXDOV
PAGE 249

VDPH PRUSKRORJLFDO VKLIW DV WKH RQH SURSRVHG DERYH" &KDQJHV LQ ODUYDO GHQVLWLHV ZRXOG DOVR SURGXFH UHGXFHG VL]HG LQGLYLGXDOV ERWK LQ WKH WURSLFV DQG HOVHZKHUH 7KHUHIRUH D PHFKDQLVP H[LVWV IRU SRVVLEOH GLVHDVH WUDQVPLVVLRQ XQGHU FURZGHG ODUYDO FRQGLWLRQV DV ZHOO DV XQGHU ZDUPHU FRQGLWLRQV 7KHVH IDFWRUV VKRXOG EH FRQVLGHUHG ZKHQ PRGHOOLQJ GLVHDVH WUDQVPLVVLRQ SUREDELOLWLHV ZLWKLQ PRVJXLWRHV 3URSRVDO IRU IXWXUH UHVHDUFK 0DQ\ DUHDV RI UHVHDUFK ZLOO EH QHFHVVDU\ EHIRUH WKH VXJJHVWLRQ DQG K\SRWKHVHV SUHVHQWHG KHUH DUH WHVWHG 2I XWPRVW LPSRUWDQFH LV WKH JXDQWLILFDWLRQ RI WKH PD[LPXP DWWUDFWLYH DPRXQW RI RGRU IRU FROOHFWLQJ DGXOW PRVTXLWRHV $ PL[WXUH RI VHYHUDO FRPSRXQGV ZLOO QR GRXEW EH RSWLPDO 6LQFH WKH FRQFHQWUDWLRQ OHYHOV RI OLYLQJ DQLPDO JDVHV YDU\ RQO\ EHWZHHQ b DQG b WUDSV ZLOO KDYH WR FRQVLGHU YROXPH RI UHVSLUHG JDVHV WKDW ZLOO SURGXFH WKLV FRQFHQWUDWLRQ DW WKH FRUUHFW YROXPH RI WKH DQLPDO VL]H UDQJH EHLQJ WHVWHG $ SODVWLF ERWWOH RI OLWHU YROXPH ZDV WULHG DW P\ VWXG\ VLWH ILOOHG WKH ERWWOH WR YDULRXV YROXPHV RI ZDWHU OHDYLQJ D NQRZQ YROXPH RI DLU VSDFH 0\ RXWVLGH & VRXUFH ZDV SLSHG LQWR WKH ERWWOH DW NQRZQ IORZ UDWHV WKURXJK D WXELQJ WKDW UHOHDVHG WKH JDV EHQHDWK WKH VXUIDFH RI WKH ZDWHU %XEEOHG & PL[HG ZLWK WKH YROXPH RI DLU DQG H[LWHG YLD D WXEH RI LGHQWLFDO VL]H DW WKH WRS RI WKH ERWWOH $ UHSODFHPHQW VRXUFH IRU GLVSODFHG DLU FRQVLVWHG RI D WXEH OHDGLQJ WR WKH RXWVLGH RI WKH ERWWOH HQWHULQJ WKH ERWWOH LQ D SRVLWLRQ ZKHUH WKH

PAGE 250

H[LWLQJ PL[HG JDV ZRXOG QRW LQWHUIHUH ZLWK WKH LQFRPLQJ DLU 7R WKLV FRPELQDWLRQ YDULRXV DPRXQWV RI DWWUDFWDQWV PD\ EH DGGHG WR WKH NQRZQ YROXPH RI ZDWHU DQG DLU DQG WKXV DEOH WR VLPXODWH WKH UHVSLUHG YROXPHV DQG FRQFHQWUDWLRQ OHYHOV RI GLIIHUHQW DQLPDOV 7KLV GHVLJQ QHHGV WR EH IXUWKHU UHILQHG DQG WHVWHG EXW FDWFK UHVXOWV ZHUH YHU\ HQFRXUDJLQJ 7KH PDMRU SUHPLVH EHKLQG WKLV GLVVHUWDWLRQ LV WKDW WKH VL]H RI WKH LQGLYLGXDO PRVTXLWR GLUHFWO\ HIIHFWV WKH VHOHFWLRQ RI KRVW RGRU DPRXQWV :KDW ZLOO EH QHHGHG LQ WKH IXWXUH ZLOO EH FDUHIXOO\ FRQWUROOHG WHVWV ZKHUH PRVTXLWRHV DUH UHDUHG XQGHU FRQWUROOHG FRQGLWLRQV RIIHUHG YDULRXV KRVWV WR GHWHUPLQH LI VL]H RI KRVW PDWWHUV DQG WR WHVW IRU UHVSRQVHV WR GLIIHUHQW DPRXQWV RI DWWUDFWDQWV 0RVW LPSRUWDQWO\ LI WKH LGHDV SUHVHQWHG KHUH DUH DEOH WR EH FRQILUPHG WKHQ D PHFKDQLVP WR VWDUW XQGHUVWDQGLQJ DWWUDFWLRQ KDV EHHQ IRXQG ,I DWWUDFWLRQ LV XQGHUVWRRG WKHQ WKH SUREOHP RI GHYHORSLQJ DGHTXDWH UHSHOOHQWV EHFRPHV VROYDEOH 7KLV LV WKH PDMRU SUDFWLFDO ORQJ WHUP UHVHDUFK WKDW PD\ FRPH IRUP WKLV $ORQJ ZLWK WKLV KRSHIXOO\ ZLOO EH WKH GHYHORSPHQW RI PXFK PRUH VRSKLVWLFDWHG DSSURDFKHV WR DWWUDFWLRQ WUDSSLQJ DQG VXUYHLOODQFH IRU YHFWRU LQGLYLGXDOV ZLWKLQ D SRSXODWLRQ KRSH WKDW WKHVH SURSRVDOV ZLOO EH SXUVXHG LQ WKH QHDU IXWXUH

PAGE 251

5()(5(1&(6 $HUHH -U ) 5 % 7XUQHU + *RXFN 0 %HUR]D DQG 1 6PLWK /ODFWLF DFLG $ PRVTXLWR DWWUDFWDQW LVRODWHG IURP PRVTXLWRHV 6FLHQFH $JXGHORVLOYD ) DQG $ 6SLHOPDQ 3DUDGR[LFDO HIIHFWV RI VLPXODWHG ODUYLFLGLQJ RQ SURGXFWLRQ RI DGXOW PRVTXLWRHV $P 7URS 0HG +\J $NH\ + + : 3RWWHU DQG 5 + -RQHV (IIHFWV RI UHDULQJ WHPSHUDWXUH DQG ODUYDO GHQVLW\ RQ ORQJHYLW\ VL]H DQG IHFXQGLW\ LQ WKH ELWLQJ JQDW &XOLFRLGHV YDULLSHQQLV $QQ (QW 6RF $PHU $OWQHU + DQG / 3ULOOLQJHU 8OWUDVWUXFWXUH RI LQYHUWHEUDWH FKHPR WKHUPR DQG K\JURUHFHSWRUV DQG LWV IXQFWLRQDO VLJQLILFDQFH ,QW 5HY &\WRORJ\ $OWQHU + / 6FKDOOHU6HO]HQ + 6WHWWHU DQG :RKOUDE 3RUHOHVV VHQVLOOD ZLWK LQIOH[LEOH VRFNHWV $ FRPSDUDWLYH VWXG\ RI D IXQGDPHQWDO W\SH RI VHQVLOOD SUREDEO\ FRPSULVLQJ WKHUPR DQG K\JURUHFHSWRUV &HOO 7LVVXH 5HV $QGHUVRQ (FRORJLFDO VWXGLHV RQ 6LQGELV DQG :HVW 1LOH YLUXVHV RQ 6RXWK $IULFD ,,, +RVW SUHIHUHQFHV RI PRVTXLWRHV DV GHWHUPLQHG E\ WKH SUHFLSLWLQ WHVW 6 $IU 0HG 6FL $QGHUVRQ 5 9 + /HH 6 9DGODPXGL 5 3 +DQVRQ DQG 5 'H)ROLDUW ,VRODWLRQ RI HDVWHUQ HQFHSKDOLWLV YLUXV IURP 'LSWHUD LQ :LVFRQVLQ 0RVT 1HZV $\DOD ) DQG 5 3RZHOO $OOR]\PHV DV GLDJQRVWLF FKDUDFWHUV RI VLEOLQJ VSHFLHV RI 'URVRSKLOD 3URF 1DW $FDG 6FL %DNHU ) & $ QHZ VSHFLHV RI 2UWKRSRGRPYLD DOED VS Q 3URF (QW 6RF :DVK %DOO + 7KH IUHH DPLQR DFLGV LQ WKH ZKROH ERGLHV RI FXOLFLQH PRVTXLWRHV ([SHU 3DUDVLW

PAGE 252

%DOO + DQG ( : &ODUN 6SHFLHV GLIIHUHQFHV LQ DPLQR DFLGV RI &XOH[ PRVTXLWRHV 6\VW =RRO %DTDU 6 & +D\HV DQG 7 $KPHG 7KH HIIHFW RI ODUYDO UHDULQT FRQGLWLRQV DQG DGXOW DTH RQ WKH VXVFHSWLELOLW\ RI &XOH[ WULWDHQLRUKYQFKXV WR LQIHFWLRQ ZLWK :HVW 1LOH YLUXV 0RVT 1HZV %DUQHV (IIHFW RI WHPSHUDWXUH RQ GHYHORSPHQW VXUYLYDO RYLSRVLWLRQ DQG GLDSDXVH LQ ODERUDWRU\ SRSXODWLRQV RI 6HSHGQ IXVFLSHQQLV 'LSWHUD 6FLRP\]LGDHf (QY (QW f %DURII + DQG ( 0 3ULQTOH (QHUT\ DQG JDVHRXV PHWDEROLVP RI WKH KHQ DV DIIHFWHG E\ WHPSHUDWXUH -RXU 1XWU %DUU $ 5 1HZ FRQFHSWV RI PRVTXLWR WD[RQRP\ 0RVT 6\VW %DUU $ 5 /LWHUDWXUH UHIHUHQFHV IRU PRVTXLWRHV DQG PRVTXLWRERUQH GLVHDVHV 3DUW $PHU 0RVT &RQWURO $VVRF %DU\QLQ DQG 0 :LOVRQ 2XWGRRU H[SHULPHQWV RQ VPHOO $WPRVSK (QYLURQ %DU=HHY 0 + 0DLEDWK DQG $ $ .KDQ 6WXGLHV RQ WKH DWWUDFWLRQ RI $HGHV DHT\SWL 'LSWHUD &XOLFLGDHf WR PDQ 0HG (QWRPRO %DVW 7 ) &KHPLFDO QDWXUH RI PRVTXLWR EUHHGLQJ ZDWHUV 3URF 1 0RVT ([WHUP $VVRF %DVW 7 ) DQG : 5HKQ 9HUWLFDO GLVWULEXWLRQ RI PRVTXLWRHV DV LQGLFDWHG E\ OLJKW WUDS FROOHFWLRQV LQ WZR HQYLURQPHQWV 3URF 1HZ -HUVH\ 0RVT &RQW $VVRF %HDW\ % DQG : + 7KRPSVRQ 'HOLQHDWLRQ RI /D&URVVH YLUXV LQ GHYHORSPHQWDO VWDJHV RI WUDQVR YDULDOO\ LQIHFWHG $HGHV WULVHULDWXV $PHU 7URS 0HG +\J %HJRQ 0 ,QYHVWLJDWLQJ DQLPDO DEXQGDQFH &DSWXUH UHFDSWXUH IRU ELRORJLVWV 8QLY 3DUN 3UHVV %DOWLPRUH

PAGE 253

%HLU & : %HUU\ DQG % &UDLJ -U +RUL]RQWDO GLVWULEXWLRQ RI DGXOW $HGHV WULVHULDWXV 'LSWHUD &XOLFLGDHf LQ UHODWLRQ WR KDELWDW VWUXFWXUH RYLSRVLWLRQ DQG RWKHU PRVTXLWR VSHFLHV 0HG (QW %HLU & 3 9 3HUNLQV 5 $ :LUW] .RURV 'LJJV 7 3 *DUJDQ ,, DQG .RHFK %ORRGPHDO LGHQWLILFDWLRQ E\ GLUHFW HQ]\PHOLQNHG LPPXQRVRUEHQW DVVD\ (/,6$f WHVWHG RQ $QRSKHOHV LQ .HQ\D 0HG (QW %HLU & DQG 0 7USLV /RFDO GLVWULEXWLRQ RI $HGHV WULVHULDWXV DW WKH %DOWLPRUH ]RR 0RVT 1HZV %HOO 7KH FRVWV RI UHSURGXFWLRQ DQG WKHLU FRQVHTXHQFHV $P 1DW %HOODP\ 5 ( DQG %UDFNHQ 4XDQWLWDWLYH DVSHFWV RI RYDULDQ GHYHORSPHQW LQ PRVTXLWRHV &DQ (QWRPRO %HOODP\ 5 ( DQG 3 6 &RUEHW 2FFXUUHQFH RI RYDULRODU GLDWDWLRQV LQ QXOOLSDURXV PRVTXLWRHV 0RVT 1HZV %HOODP\ 5 ( DQG : & 5HHYHV $ SRUWDEOH PRVTXLWR EDLW WUDS 0RVT 1HZV %HOODP\ 5 ( : & 5HHYHV DQG 5 3 6FULYDQL 5HODWLRQVKLSV RI PRVTXLWR YHFWRUV WR ZLQWHU VXUYLYDO RI HQFHSKDOLWLV YLUXVHV ,, 8QGHU H[SHULPHQWDO FRQGLWLRQV $PHU +\J %HQGHU ( $ 7 &DVH DQG 0 ( *LOSLQ 3HUWXUEDWLRQ H[SHULPHQWV LQ FRPPXQLW\ HFRORJ\ WKHRU\ DQG SUDFWLFH (FRORJ\ %HQWOH\ 0 1 0F'DQLHO + 3 /HH % 6WHLKO DQG 0
PAGE 254

%LFNOH\ : ( 6HOHFWHG OLWHUDWXUH UHIHUHQFHV WR PRVTXLWRHV DQG PRVTXLWRERUQH GLVHDVHV SDUW $PHU 0RVT &RQW $VVRF %LGOLQJPD\HU : / 7KH LQIOXHQFH RI HQYLURQPHQWDO IDFWRUV DQG SK\VLRORJLFDO VWDJH RQ IOLJKW SDWWHUQV RI PRVTXLWRHV WDNHQ LQ WKH YHKLFOH DVSLUDWRU DQG WUXFN VXFWLRQ EDLW DQG 1HZ -HUVH\ OLJKW WUDSV 0HG (QW %LGOLQJPD\HU : / 7KH PHDVXUHPHQW RI DGXOW PRVTXLWR SRSXODWLRQ FKDQJHVf§VRPH FRQVLGHUDWLRQV $PHU 0RVT &RQWURO $VVRF %LGOLQJPD\HU : / DQG +HP 6XJDU IHHGLQJ E\ )ORULGD PRVTXLWRHV 0RVT 1HZV %LGOLQJPD\HU : / DQG +HP 0RVTXLWR IOLJKW SDWKV LQ UHODWLRQ WR WKH HQYLURQPHQW HIIHFW RI WKH IRUHVW HGJH XSRQ WUDS FDWFKHV LQ WKH ILHOG 0RVT 1HZV %LUFK / & 7KH LQWULQVLF UDWH RI QDWXUDO LQFUHDVH RI DQ LQVHFW SRSXODWLRQ $QLPDO (FRORJ\ %LUFK / & 7KH HIIHFW RI VSHFLHV RI DQLPDOV ZKLFK VKDUH FRPPRQ UHVRXUFHV RQ RQH DQRWKHUnV GLVWULEXWLRQ DQG DGXQGDQFH )RUWVFKU =RRO %LVFRH7\QGDO 0 $JHJUDGLQJ PHWKRGV LQ DGXOW LQVHFWV D UHYLHZ %XOO (QW 5HV %ODVNRYLF DQG 1RVHN 7KH HFRORJLFDO DSSURDFK WR WKH VWXG\ RI WLFNERUQH HQFHSKDOLWLV 3URJ 0HG 9LURO %OLFNOH 5 / 1RWHV RQ WKH PRVTXLWRHV RI 1HZ +DPSVKLUH 3URF 1 0RVT ([WHUP $VVRF %OXHZHLVV / + )R[ 9 .XG]PD 1DNDVKLPD 5 3HWHUV DQG 6 6DPV 5HODWLRQVKLSV EHWZHHQ ERG\ VL]H DQG VRPH OLIH KLVWRU\ SDUDPHWHUV 2HFRORJLD %HUOf %OXP 0 6 )XQGDPHQWDOV RI ,QVHFW 3K\VLRORJ\ :LOH\ ,QWHUVFLHQFH 3XE -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 255

%RKDUW 5 0 7KH VXEJHQXV 1HRFXOH[ LQ $PHULFD QRUWK RI 0H[LFR $QQ (QW 6RF $PHU %RR 6 D )LQH VWUXFWXUH RI WKH DQWHQQDO VHQVRU\ KDLUV LQ IHPDOH $QRSKHOHV VWHSKHQVL = 3DUDVLWHQNG %RR 6 E $QWHQQDO VHQVRU\ UHFHSWRUV RI WKH PDOH PRVTXLWR $QRSKHOHV VWHSKHQVL = 3DUDVLWHQNG %RR 6 DQG 6 % 0FOYHU )LQH VWUXFWXUH RI VXQNHQ WKLFNZDOOHG SHJV VHQVLOOD DPSXOODFHD DQG FRHORFRQLFDf RQ WKH DQWHQQDH RI PRVTXLWRHV &DQ =RRO %RR 6 DQG 6 % 0FOYHU )LQH VWUXFWXUH RI VXUIDFH DQG VXQNHQ JURRYHG SHJV RQ WKH DQWHQQD RI IHPDOH $QRSKHOHV VWHSKHQVL &DQ =RRO %RRUPDQ 3 7 2EVHUYDWLRQV RQ WKH KDELWV RI PRVTXLWRHV RI 3ODWHDX 3URYLQFH QRUWKHUQ 1LJHULD ZLWK SDUWLFXODU UHIHUHQFH WR $HGHV 6WHDRPYLDf YLWWDWXV %LJRWf %XOO (QW 5HV %RUHKDP 3 ) / DQG : ) 6QRZ )XUWKHU LQIRUPDWLRQ RQ WKH IRRG VRXUFHV RI &XOH[ &XOH[f GHFHQV 7KHR 'LSWHUD &XOLFLGDHf 7UDQV 5R\ 6RF 7URS 0HG +\J %RURPLVD 5 5 6 &RSHODQG DQG 3 5 *ULPVWDG 2UDO WUDQVPLVVLRQ RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV E\ D QRUWK ,QGLDQD VWUDLQ RI &RFPLOOHWLGLD SHUWXUEDQV $P 0RVT &RQW $VVRF %RV + DQG /DDUPDQ *XLQHD SLJV O\VLQH FDGDYHULQH DQG HVWUDGLRO DV DWWUDFWDQWV IRU WKH PDODULD PRVTXLWR $QRSKHOHV VWHSKHQVL ([W ([S $SSO %RVVHUW : + DQG ( :LOVRQ 7KH DQDO\VLV RI ROIDFWRU\ FRPPXQLFDWLRQ DPRQJ DQLPDOV 7KHRU %LRO %R\FH 0 6 5HVWLWXWLRQ RI U DQG VHOHFWLRQ DV D PRGHO RI GHQVLW\GHSHQGHQW QDWXUDO VHOHFWLRQ $QQ 5HY (FRO 6\VW %UDGOH\ + DQG 5 ) )ULW] 2EVHUYDWLRQV RQ VHDVRQDO RFFXUHQFH DQG DEXQGDQFH RI $QRSKHOHV FUXDGULPDFXODWXV 6D\ 1DW 0DODULD 6RF

PAGE 256

%UDGVKDZ : ( 3KRWRSHULRGLVP LQ 2UWKRSRGRPYLD VLJQIHUD &DQ =RRO %UDG\ 8 ( 3URVWDJODQGLQ LQ LQVHFWV ,QVHFW %LRFKHP %UHHODQG 6 DQG ( 3LFNDUG 7KH PDODLVH WUDSf§ DQ HIILFLHQW DQG XQELDVHG PRVTXLWR FROOHFWLQJ GHYLFH 0RVT 1HZV %UHODQG 2 3 5HVWRUDWLRQ RI WKH QDPH $HGHV KHQGHUVRQL &RFNHUHOO DQG LWV HOHYDWLRQ WR IXOO VSHFLILF UDQN 'LSWHUD &XOLFLGDHf $QQ (QW 6RF $PHU %UHQQHU 5 DQG ( : &XSS 3UHOLPLQDU\ REVHUYDWLRQV RQ SDULW\ DQG QHFWDU IHHGLQJ LQ WKH EODFN IO\ 6LPXOLXP LHQQLQJVL 0RVT 1HZV %UHQQHU 5 DQG 0 :DUJR 2EVHUYDWLRQV RQ DGXOW ELRQRPLFV DQG ODUYDO HFRORJ\ RI /HSWRFRQRSV WRUUHQV 'LSWHUD &HUDWRSRJRQLGDHf GXULQJ DQ RXWEUHDN LQ WKH &RDFKHOOD YDOOH\ RI VRXWKHUQ &DOLIRUQLD 86$ 0HG (QW %UHQQHU 5 0 :DUJR DQG 0 6 0XOOD %LRQRPLFV DQG YHFWRU SRWHQWLDO RI /HSWRFRQRSV IRXONL t / NQRZOWRQL 'LSWHUD &HUDWRSRJRQLGDHf LQ WKH ORZHU GHVHUW RI VRXWKHUQ &DOLIRUQLD 86$ 0HG (QW %UHQQHU 5 0 :DUJR 6 6WDLQV DQG 0 6 0XOOD 7KH GLVSHUVDO RI &XOLFRLGHV PRKDYH 'LSWHUD &HUDWRSRJRQLGDHf LQ WKH GHVHUW RI VRXWKHUQ &DOLIRUQLD 0RVT 1HZV %URZQ $ : $ 7KH DWWUDFWLRQ RI PRVTXLWRHV WR KRVWV $PHU 0HG $VVRF %URZQ $ : $ DQG $ &DUPLFKDHO /\VLQH DQG DODQLQH DV PRVTXLWR DWWUDFWDQWV (FRQ (QWRPRO %U\DQW ( + 2Q WKH DGDSWLYH VLJQLILFDQFH RI HQ]\PH SRO\PRUSKLVPV LQ UHODWLRQ WR HQYLURQPHQWDO YDULDELOLW\ $PHU 1DWXUDOLVW %U\DQW ( 6 & 5 $QGHUVRQ DQG / YDQ GHU +HLGH &DVH UHSRUWf§DQ HSL]RRWLF RI HDVWHUQ HTXLQH HQFHSKDORn P\HOLWLV LQ &RQQHFWLFXW $YLDQ 'LVHDVHV

PAGE 257

%XUEXWLV 3 3 DQG 0 -REELQV 6WXGLHV RQ WKH XVH RI D GLXUQDO UHVWLQJ ER[ IRU WKH FROOHFWLRQ RI &XOLVHWD PHODQXUD %XOO %URRN (QW 6RF %XUEXWLV 3 5 DQG 5 : /DNH 7KH ELRORJ\ RI &XOLVHWD PHODQXUD &RTXLOOHWf LQ 1HZ -HUVH\ 3URF 1 0RVT ([WHUP $VVRF %XUNRW 7 5 DQG 5 'H)ROLDUW %ORRG PHDO VRXUFHV RI $HGHV WULVHULDWXV DQG $HGHV YH[DQV LQ D VRXWKHUQ :LVFRQVLQ IRUHVW HQGHPLF IRU /DFURVVH HQFHSKDOLWLV YLUXV $P 7URS 0HG +\J %XUVHOO ( $ ( *RXJK 3 6 %HHYRU $ &RUN DQG 5 +DOO ,GHQWLILFDWLRQ RI FRPSRQHQWV RI FDWWOH XULQH DWWUDFWLYH WR WVHWVH IOLHV *ORVVLQD VSS 'LSWHUD *ORVVLQLGDHf %XOO (QW 5HV %XWWLNHU : 2EVHUYDWLRQV RQ WKH SK\VLRORJ\ RI DGXOW DQRSKHOLQHV LQ $VLD %XOO :+2 &DOGHU : $ 5HVSLUDWRU\ DQG KHDUW UDWHV RI ELUGV DW UHVW &RQGRU &DOGHU : $ DQG 6FKPLGW1LHOVHQ 3DQWLQJ DQG EORRG FDUERQ GLR[LGH LQ ELUGV $PHU 3K\VLRO &DOLVKHU & + 6 & 0DQHVV 5 /RUG DQG 3 + &ROHPDQ ,GHQWLILFDWLRQ RI WZR 6RXWK $PHULFDQ VWUDLQV RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV IURP PLJUDQW ELUGV FDSWXUHG RQ WKH 0LVVLVVLSSL GHOWD $PHU (SLGHPLRO &DOODKDQ 3 6 D $UH DUWKURSRGV LQIUD UHG DQG PLFURZDYH GHWHFWRUV" 3URF 1RUWK &HQWUDO %UDQFK (QW 6RF $PHU &DOODKDQ 3 6 E $Q LQIUDUHG HOHFWURPDJQHWLF WKHRU\ RI GLDSDXVH LQGXFHPHQW DQG FRQWURO LQ LQVHFWV $QQ (QW 6RF $PHU &DOODKDQ 3 6 D ,QVHFW PROHFXODU ELRHOHFWURQLFV 0LVH 3XEO (QW 6RF $PHU &DOODKDQ 3 6 E ,QVHFW PROHFXODU ELRHOHFWURQLFV $ WKHRUHWLFDO DQG H[SHULPHQWDO VWXG\ RI LQVHFW VHQVLOOD DV WXEXODU ZDYHJXLGHV ZLWK SDUWLFXODU HPSKDVLV RQ WKHLU GLHOHFWULF DQG WKHUPHOHFWUHW SURSHUWLHV 0LVH 3XE (QW 6RF $PHU

PAGE 258

&DOODKDQ 3 6 )DU LQIUDUHG VWLPXODWLRQ RI LQVHFWV ZLWK WKH JODJROHZDDUNDGLHZD PDVV UDGLDWRU )OD (QWRPRO &DOODKDQ 3 6 6WXGLHV RQ WKH VKRRWERUHU +\SVLS\OD TUDQGHOOD =HOOHUf /HSLGRSWHUD 3\UDOLGDHf ;,; 7KH DQWHQQD RI LQVHFWV DV D HOHFWURPDJQHWLF VHQVRU\ RUJDQ 7XUULDOED &DOODKDQ 3 6 D 7KH LQVHFW DQWHQQD DV D GLHOHFWULF DUUD\ IRU WKH GHWHFWLRQ RI LQIUDUHG UDGLDWLRQ IURP PROHFXOHV ,QW &RQI %LRPHG 7UDQVGXFHUV &DOODKDQ 3 6 E ,QVHFW DQWHQQDH ZLWK VSHFLDO UHIHUHQFH WR WKH PHFKDQLVP RI VFHQW GHWHFWLRQ DQG WKH HYROXWLRQ RI WKH VHQVLOOD ,QW ,QVHFW 0RUSKRO DQG (PEU\RO &DOODKDQ 3 6 0RWK DQG FDQGOH WKH FDQGOH IODPH DV D VH[XDO PLPLF RI WKH FRGHG LQIUDUHG ZDYHOHQJWKV IURP D PRWK VFHQW SKHURPRQHf $SSOLHG 2SWLFV &DOODKDQ 3 6 D (YROXWLRQ RI DQWHQQDH WKHLU VHQVLOOD DQG WKH PHFKDQLVP RI VFHQW GHWHFWLRQ LQ $UWKURSRGD S ,Q $UWKURSRG 3K\ORJHQ\ $ 3 *XSWD HG 9DQ 1RVWUDQG 5HLQKROG &R 1HZ
PAGE 259

&DOODKDQ 3 6 7 & &DUO\VOH DQG + $ 'HQPDUN 0HFKDQLVP RI DWWUDFWLRQ RI WKH ORYHEXJ 3OHFLD QHDUFWLFD WR VRXWKHUQ KLJKZD\V IXUWKHU HYLGHQFH IRU WKH ,5GLHOHFWULF ZDYHJXLGH WKHRU\ RI LQVHFW ROIDFWLRQ $SSO 2SWLFV &DOODKDQ 3 6 DQG + $ 'HQPDUN $WWUDFWLRQ RI WKH ORYHEXJ 3OHFLD QHDUFWLFD 'LSWHUD %LELRQLGDHf WR 89 LUUDGLDWHG DXWRPRELOH H[KDXVW IXPHV )OD (QWRPRO &DOODKDQ 3 6 DQG / *ROGPDQ 5HVSRQVH RI $HGHV DHT\SWL WR PLFURQ UDGLDWLRQ )LUVW TXDUWHUO\ UHSRUW 86'$ $56 ,QVHFW DWWUDFWDQWV EHKDYLRU DQG EDVLF ELRORJ\ UHVHDUFK ODE *DLQHVYLOOH )ORULGD &DOODKDQ 3 6 DQG ) /HH $ YHFWRU DQDO\VLV RI WKH LQIUD UHG HPLVVLRQ RI QLJKW IO\LQJ PRWKV ZLWK D GLVFXVVLRQ RI WKH V\VWHP DV D GLUHFWLRQDO KRPLQJ GHYLFH $QQ (QW 6RF $PHU &DOODKDQ 3 6 & 1LFNHUVRQ DQG : + :KLWFRPE $WWUDFWLRQ RI DQWV WR QDUURZEDQG PDVHUOLNHf IDU LQIUDUHG UDGLDWLRQ DV HYLGHQFH IRU DQ LQVHFW LQIUDUHG FRPPXQLFDWLRQ V\VWHP 3K\VLRO &KHP t 3K\VLFV &DUOVRQ $
PAGE 260

&DUOVRQ $ DQG 0 : 6HUYLFH ,GHQWLILFDWLRQ RI PRVTXLWRHV RI $QRSKHOHV JDPELDH VSHFLHV FRPSOH[ $ DQG % E\ DQDO\VLV RI FXWLFXODU FRPSRQHQWV 6FLHQFH &DUOVRQ $ DQG ) :DOVK ,GHQWLILFDWLRQ RI WZR :HVW $IULFDQ EODFN IOLHV 'LSWHUD 6LPXOLLGDHf RI WKH 6LPXOLXP GDPQRVXP VSHFLHV FRPSOH[ E\ DQDO\VLV RI FXWLFXODU SDUDIILQV $FWD 7URSLFD &DUOVRQ $ DQG 6 5
PAGE 261

&KDPEHUODLQ 5 : /DERUDWRU\ REVHUYDWLRQV RQ D PRVTXLWR &XOLVHWD PHODQXUD 0RVT 1HZV &KDPEHUODLQ 5 : 9HFWRU UHODWLRQVKLSV RI WKH DUWKURSRGERUQH HQFHSKDOLWLGHV LQ 1RUWK $PHULFD $QQ 1 < $FDG 6FL &KDPEHUODLQ 5 : ( & &RUULVWRQ DQG 5 6LNHV 6WXGLHV RQ WKH 1RUWK $PHULFDQ DUWKURSRGERUQH HQFHSKDOLWLGHV 9 7KH H[WULQVLF LQFXEDWLRQ RI HDVWHUQ DQG ZHVWHUQ HTXLQH HQFHSKDOLWLV LQ PRVTXLWRHV $PHU +\J &KDPEHUODLQ 5 : 5 ( .LVVOLQJ DQG 5 6LNHV 6WXGLHV RQ WKH 1RUWK $PHULFDQ DUWKURSRGERUQH HQFHSKDOLWLGHV 9,, (VWLPDWLRQ RI DPRXQW RI HDVWHUQ HTXLQH HQFHSKDOLWLV YLUXV LQRFXODWHG E\ LQIHFWHG $HGHV DHJ\SWL $P +\J &KDPEHUODLQ 5 : 5 ( .LVVOLQJ ' 6WDPP % 1HOVRQ DQG 5 6LNHV 9HQH]XHODQ HTXLQH HQFHSKDORP\HOLWLV LQ ZLOG ELUGV $PHU +\J &KDPEHUODLQ 5 : + 5XELQ 5 ( .LVVOLQJ DQG 0 ( (LGVRQ 5HFRYHU\ RI WKH YLUXV RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV IURP D PRVTXLWR &XOLVHWD PHODQXUD 3URF 6RF ([SW %LRO 0HG &KDPEHUODLQ 5 : 5 6LNHV DQG % 1HOVRQ ,QIHFWLRQ RI 0DQVRQLD SHUWXUEDQV DQG 3VRURSKRUD IHUR[ PRVTXLWRHV ZLWK 9HQH]XHODQ HTXLQH HQFHSKDORP\HOLWLV YLUXV 3URF 6RF ([SHU %LRO t 0HG &KDPEHUODLQ 5 : 5 6LNHV % 1HOVRQ DQG : 6XGLD 6WXGLHV RQ WKH QRUWK $PHULFDQ DUWKURSRGERUQH HQFHSKDOLWLGHV 9, 4XDQWLWDWLYH GHWHUPLQDWLRQV RI YLUXVYHFWRU UHODWLRQVKLSV $PHU +\J &KDPEHUODLQ 5 : DQG : 6XGLD 7KH HIIHFWV RI WHPSHUDWXUH XSRQ WKH H[WULQVLF LQFXEDWLRQ RI HDVWHUQ HTXLQH HQFHSKDOLWLV LQ PRVTXLWRHV $PHU +\J &KDPEHUODLQ 5 : DQG : 6XGLD D 7KH 1RUWK $PHULFDQ DUWKURSRGERUQH HQFHSKDOLWLV YLUXVHV LQ &XOH[ WDUVDOLV $PHU +\J &KDPEHUODLQ 5 : DQG : 6XGLD E 'XDO LQIHFWLRQV RI HDVWHUQ DQG ZHVWHUQ HTXLQH HQFHSKDOLWLV YLUXVHV LQ &XOH[ WDUVDOLV ,QIHFWLRXV 'LV

PAGE 262

&KDPEHUODLQ 5 : DQG : 6XGLD 0HFKDQLVPV RI WUDQVPLVVLRQ RI YLUXVHV E\ PRVTXLWRHV $QQ 5HY (QW &KDPEHUODLQ 5 : : 6XGLD 3 3 %XUEXWLV DQG 0 %RTXH 5HFHQW LVRODWLRQV RI DUWKURSRGERUQH YLUXVHV IURP PRVTXLWRHV LQ HDVWHUQ 8QLWHG 6WDWHV 0RVT 1HZV &KDPEHUODLQ 5 : : 6XGLD 3 + &ROHPDQ DQG / %HDGOH 9HFWRU VWXGLHV LQ WKH 6W /RXLV HQFHSKDOLWLV HSLGHPLF 7DPSD %D\ DUHD )ORULGD $PHU 7URS 0HG +\J &KDPEHUODLQ 5 : : 6XGLD 3 + &ROHPDQ -RKQVWRQ -U DQG 7 + :RUN $UERYLUXV LVRODWLRQV IURP PRVTXLWRHV FROOHFWHG LQ :D\FURVV *HRUJLD GXULQJ DQ RXWEUHDN RI HTXLQH HQFHSKDOLWLV $PHU (SLGHPLRO &KDPEHUODLQ 5 : : 6XGLD DQG % 1HOVHQ /DERUDWRU\ REVHUYDWLRQV RQ D PRVTXLWR &XOLVHWD PHODQXUD 0RVT 1HZV &KDQGOHU $ 3 ) / %RUHKDP 5 % +LJKWRQ DQG 0 1 +LOO $ VWXG\ RI KRVW VHOHFWLRQ SDWWHUQV RI WKH PRVTXLWRHV RI WKH .LVXPX DUHD RI .HQ\D 7UDQV 5R\ 6RF 7URS 0HG t +\J &KDSPDQ + & 2EVHUYDWLRQV RQ WKH ELRORJ\ DQG HFRORJ\ RI 2UWKRSRGRPYLD FDOLIRUQLFD 0RVT 1HZV &KDSPDQ 5 ) 7KH LQVHFWV VWUXFWXUH DQG IXQFWLRQ $PHULFDQ (OVHYLHU 3XE &R 1HZ
PAGE 263

&KULVWRSKHU 6 DQG 5 5HXEHQ 6WXGLHV RQ WKH PRVTXLWRHV RI 1RUWK $UFRW 'LVWULFW 0DGUDV 6WDWH ,QGLD 3DUW +RVW SUHIHUHQFHV DV VKRZQ E\ SUHFLSLWLQ WHVWV 0HG (QW &KX:DQJ ,:X 5 & $[WHOO DQG / .OLQH $QWHQQDO DQG SDOSDO VHQVLOOD RI WKH VDQG IO\ &XOLFRLGHV IXUHQV 3RH\f ,QW ,QVHFW 0RUSKRO t (PEU\RO &ODUN * : &UDQV DQG & / &UDEEV $EVHQFH RI HDVWHUQ HTXLQH HQFHSKDOLWLV (((f YLUXV LQ LPPDWXUH &RTXLOOHWWLGLD SHUWXUEDQV DVVRFLDWHG ZLWK HTXLQH FDVHV RI ((( $PHU 0RVT &RQWURO $VVRF &OHPHQWV $ 1 7KH 3K\VLRORJ\ RI 0RVTXLWRHV ,QWHUQDWLRQDO VHULHV RI PRQRJUDSKV RQ SXUH DQG DSSOLHG ELRORJ\ 7KH 0DFPLOODQ &RPS 1HZ
PAGE 264

&RSHODQG 5 6 7KH ELRORJ\ RI $H WKLEDXOWL LQ QRUWKHUQ ,QGLDQD $PHU 0RVT &RQ $VVRF &RSHODQG 5 6 DQG ( :DONHU 6HZDJHDVVRFLDWHG EUHHGLQJ RI $H VROOLFLWDQV DQG $H GRUVDOLV LQ VRXWKZHVWHUQ 0LFKLJDQ $PHU 0RVT &RQWURO $VVRF &RTXLOOHWW : 1HZ IRUPV RI &XOLFLGDH IURP 1RUWK $PHULFD 1HZ
PAGE 265

&UDQV : 7KH EORRGIHHGLQJ KDELWV RI &XOH[ WHUULWDQV :DONHU 0RVT 1HZV &UDQV : 0F1HOO\ 7 / 6FKXO]H DQG $ 0DLQ ,VRODWLRQ RI HDVWHUQ HTXLQH HQFHSKDOLWLV YLUXV IURP $H VROOLFLWDQV GXULQJ DQ HSL]RRWLF LQ VRXWKHUQ 1HZ -HUVH\ $PHU 0RVT &RQWURO $VVRF &UDQV : DQG ( 5RFNHO 7KH PRVTXLWRHV DWWUDFWHG WR WXUWOHV 0RVT 1HZV &UDZIRUG ( & DQG 5 & /DVLHZVNL 2[\JHQ FRQVXPSWLRQ DQG UHVSLUDWRU\ HYDSRUDWLRQ RI WKH HPX DQG UKHD &RQGRU &XSS ( : : ) 6FKHUHU % /RN 5 %UHQQHU ']LHP 0 DQG 9 2UGRQH] (QWRPRORJLFDO VWLGLHV DW DQ HSL]RRWLF 9HQH]XHODQ HTXLQH HQFHSKDOLWLV YLUXV IRFXV LQ *XDWHPDOD $P 7URS 0HG t +\J 'DOU\PSOH 0 2 3
PAGE 266

'DYLV ( ( E 6WUXFWXUHDFWLYLW\ UHODWLRQVKLS RI WKH ODFWLF DFLG VHQVLWLYH QHXURQV RQ WKH PRVTXLWR DQWHQQD S ,1 2OIDFWLRQ DQG WDVWH 9, /H0DJQRQ t 3 0DFOHRG HGV ,QIRUPDWLRQ 5HWULHYDO :DVKLQJWRQ 'DYLV ( ( DQG & 6 5HEHUW (OHPHQWV RI ROIDFWRU\ UHFHSWRU FRGLQJ LQ WKH \HOORZ IHYHU PRVTXLWR $HGHV DHT\SWL (FRQ (QWRPRO 'DYLV ( ( DQG 3 6RNRORYH 7HPSHUDWXUH UHVSRQVHV RI WKH DQWHQQDO UHFHSWRUV RI WKH PRVTXLWR $HGHV DHT\SWL &RPS 3K\VLRO 'DYLV ( ( DQG 3 6RNRORYH /DFWLF DFLG VHQVLWLYH UHFHSWRUV RQ WKH DQWHQQDH RI WKH PRVTXLWR $HGHV DHT\SWL &RPS 3K\VLRO 'DYLV ( ( DQG ) 7 7DNDKDVKL +XPRUDO DOWHUDWLRQ RI FKHPRUHFHSWRU VHQVLWLYLW\ LQ WKH PRVTXLWR S ,1 2OIDFWLRQ DQG WDVWH 9,, ,QIRUPDWLRQ 5HWULHYDO :DVKLQJWRQ 'DYLV + 5HF\FOLQJ WUHDWHG VHZDJH HIIOXHQWV WKURXJK F\SUHVV VZDPSV ,WV HIIHFWV RQ PRVTXLWR SRSXODWLRQV DQG DUERYLUXV LPSOLFDWLRQV 3K GLVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH 'DYLV : $ $ VWXG\ RI ELUGV DQG PRVTXLWRHV DV KRVWV IRU WKH YLUXV RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV $PHU +\J 'D\NLQ 3 1 ) ( .HOORJJ DQG 5 + :ULJKW +RVW ILQGLQJ DQG UHSXOVLRQ RI $HGHV DHT\SWL &DQ (QW 'H)ROLDUW 5 $HGHV FDQDGHQVLV IHHGLQJ RQ %ODQGLQJV WXUWOH 0HG (QW 'H)ROLDUW 5 5 $QVORZ 5 3 +DQVRQ & 0RUULV 3DSDGRSRXORV DQG ( 6DWKHU ,VRODWLRQ RI -DPHVWRZQ &DQ\RQ VHURW\SH RI &DOLIRUQLD HQFHSKDOLWLV YLUXV IURP QDWXUDOO\ LQIHFWHG $HGHV PRVTXLWRHV DQG WDEDQLGV $PHU 7URS 0HG t +\J 'H)ROLDUW 5 DQG 0 $ /LVLW]D $FWLYLW\ E\ $HGHV WULVHULDWXV LQ RSHQ WHUUDLQ 0RVT 1HZV 'HSQHU 5 DQG 5 ) +DUZRRG 3KRWRSHULRGLF UHVSRQVHV RI WZR ODWLWXGLQDOO\ GLYHUVH JURXSV RI $QRSKHOHV IUHHERUQL 'LSWHUD &XOLFLGDHf $QQ (QW 6RF $PHU

PAGE 267

'HWKLHU 0 1 DQG 'XJJLQV $Q LQGLUHFW FRPPHQVDOLVP EHWZHHQ PDULQH KHUELYRUHV DQG WKH LPSRUWDQFH RI FRPSHWLWLYH KLHUDUFKLHV $P 1DW 'HWKLHU 9 7KH 3K\VLRORJ\ RI ,QVHFW 6HQVHV -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 268

'RZQH $ ( 5 ,QWHUQDO UHJXODWLRQ RI UDWH RI GLJHVWLRQ RI EORRG PHDOV LQ WKH PRVTXLWR ,QV 3K\VLRO 'RZQHV $ $VVHPEO\ DQG PDWLQJ LQ WKH ELWLQJ 1HPDWRFHUD 3URF WK ,QW &RQJ (QW 'RZQV : 7 + $LWNHQ DQG / 6SHQFH (DVWHUQ HTXLQH HQFHSKDOLWLV YLUXV LVRODWHG IURP &XOH[ QLTULSDOSXV LQ 7ULQLGDG 6FLHQFH 'X%RVH : 3 DQG 5 & $[WHOO 6HQVLOOD RQ WKH DQWHQQDO IODJHOOD RI +LSSHODWHV H\H JQDWV $QQ (QW 6RF $PHU (DGV 5 % $Q XQXVXDO ODUYDO KDELWDW IRU &XOLVHWD PHODQXUD 0RVTXLWR 1HZV (GGOHPDQ & 0RUSKRORJLFDO DQG ELRPHWULFDO GLIIHUHQWLDWLRQ RI WKH ODUYDO LQVWDUV RI PRVTXLWRHV &XOH[ WHUULWDQV $QQ (QW 6RF $PHU (GPDQ +RVW IHHGLQJ SDWWHUQV RI )ORULGD PRVTXLWRHV $HGHV $QRSKHOHV &RTXLOOHWWLGLD 0DQVRQLD t 3VRURSKRUD 0HG (QW (GPDQ +RVW IHHGLQJ SDWWHUQV RI )ORULGD PRVTXLWRHV ,,, &XOH[ &XOH[f DQG &XOH[ 1HRFXOH[f 0HG (QW (GPDQ D 2ULHQWDWLRQ RI VRPH )ORULGD PRVTXLWRHV 'LSWHUD &XOLFLGDHf WRZDUG VPDOO YHUWHEUDWHV DQG FDUERQ GLR[LGH LQ WKH ILHOG 0HG (QWRPRO (GPDQ E +RVW IHHGLQJ SDWWHUQV RI )ORULGD PRVTXLWRHV 9, &XOH[ 0HODQRFRQLRQf 0HG (QWRPRO (GPDQ DQG : / %LGOLQJPD\HU )OLJKW FDSDFLW\ RI EORRGHQJRUJHG PRVTXLWRHV 0RVT 1HZV (GPDQ DQG $ ( 5 'RZQH +RVWEORRG VRXUFHV DQG PXOWLSOH IHHGLQJ KDELWV LQ .DQVDV 0RVT 1HZV (GPDQ ) (YDQV DQG $ :LOOLDPV 'HYHORSPHQW RI D GLXUQDO UHVWLQJ ER[ WR FROOHFW &XOLVHWD PHODQXUD &RTf $PHU 7URS 0HG +\J

PAGE 269

(GPDQ DQG 6 +DHJHU +RVW IHHGLQJ SDWWHUQV RI )ORULGD PRVTXLWRHV 9 :YHRPYLD 0HG (QW (GPDQ DQG 7D\ORU &XOH[ QLJULSDOSXV VHDVRQDO VKLIW LQ WKH ELUGPDPPDO IHHGLQJ UDWLR LQ D PRVTXLWR YHFWRU RI KXPDQ HQFHSKDOLWLV 6FLHQFH (GPDQ / $ :HEEHU DQG + : .DOH +RVW IHHGLQJ SDWWHUQV RI )ORULGD PRVTXLWRHV ,, &XOLVHWD 0HG (QW (GZDUGV ) : 2Q WKH V\VWHPDWLF SRVLWLRQ RI WKH JHQXV 0\FHWRELD 0J 'LSWHUD 1HPDWRFHUDf $QQ 0DJ 1DW +LVW (GZDUGV ) : 2OLJRFHQH PRVTXLWRHV LQ WKH %ULWLVK 0XVHXP ZLWK D VXPPDU\ RI RXU SUHVHQW NQRZOHGJH FRQFHUQLQJ IRVVLO &XOLFLGDH 4 *HRO 6RF /RQG (NOXQG & 0 ) %HOO DQG 0 %UHQQDQ $QWLERG\ VXUYH\ IROORZLQJ DQ RXWEUHDN RI KXPDQ DQG HTXLQH FDVHV LQ WKH 'RPLQLFDQ 5HSXEOLF $PHU 7URS 0HG (OGULGJH % ) 7KH YDOXH RI PRVTXLWR WD[RQRP\ WR WKH VWXG\ RI PRVTXLWRERUQH GLVHDVHV DQG WKHLU FRQWURO 0RVT 6\VW (OOLVRQ 5 DQG ( 1 +DPSWRQ $JH GHWHUPLQDWLRQ XVLQJ WKH DSGHPH VWUXFWXUH LQ DGXOW VFUHZZRUP IOLHV &RFKOLRPYLD KRPLQRYRUD[f ,QVHFW 3K\VLRO (PPRQV 5 : DQG *URGKDXV 6XUYHLOODQFH DQG SUHYHQWLRQ RI DUERYLUDO GLVHDVH LQ &DOLIRUQLD 9HFWRU 9LHZV )DOOLV $ 0 DQG 6 0 6PLWK (WKHU H[WUDFWV IURP ELUGV DQG & DV DWWUDFWDQWV IRU VRPH RUQLWKRSKLOLF VLPXOLLGV &DQ =RRO )DUDQ 0 ( 7KH LPSRUWDQFH RI DQ LQWHJUDWHG DSSURDFK LQ VROYLQJ D SUREOHP LQ PRVTXLWR V\VWHPDWLFV 0RVT 6\VW )DYRULWH ) DQG 5 'DYLV 6RPH REVHUYDWLRQV RQ WKH PRVTXLWR IDXQD RI WKH 2NHIHQRNHH VZDPS 0RVT 1HZV

PAGE 270

)HHPVWHU 5 ) 2XWEUHDN RI HQFHSKDOLWLV LQ PDQ GXH WR HDVWHUQ YLUXV RI HTXLQH HQFHSKDORP\HOLWLV $PHU 3XE +OWK )HHPVWHU 5 ) (TXLQH HQFHSKDOLWLV LQ 0DVVDFKXVHWWV 1HZ (QJO 0HG )HLQVRG ) 0 DQG $ 6SLHOPDQ 1XWULHQWPHGLDWHG MXYHQLOH KRUPRQH VHFUHWLRQ LQ PRVTXLWRHV ,QVHFW 3K\VLRO )HUJXVRQ ) ) %LRORJLFDO IDFWRUV LQ WKH WUDQVPLVVLRQ RI DPHULFDQ DUWKURSRGERUQH YLUXV HQFHSKDOLWLGHV $ VXPPDU\ 8 6 3XE +OWK 6HUY 0RQRJ QR S )LVK $Q DQDO\VLV RI DGXOW VL]H YDULDWLRQ ZLWKLQ QDWXUDO PRVTXLWR SRSXODWLRQV S ,1 (FRORJ\ RI PRVTXLWRHV 3URFHHGLQJV RI D ZRUNVKRS / 3 /RXQLERV 5 5H\ DQG + )UDQN HGV )OD 0HG (QW /DE 9HUR %FK )OD )LVK DQG : +DOO 6XFFHVVLRQ DQG VWUDWLn ILFDWLRQ RI DTXDWLF LQVHFWV LQKDELWLQJ WKH OHDYHV RI WKH LQVHFWLYRURXV SLWFKHU SODQW 6DUUDFHQLD SXUSXUHD $PHU 0LGL 1DW )RWKHUJLOO / + 'LQJOH 6 )DUEHU DQG 0 / &RQQHUOH\ +XPDQ HQFHSKDOLWLV FDXVHG E\ WKH YLUXV RI WKH HDVWHUQ YDULHW\ RI HTXLQH HQFHSKDORP\HOLWLV 1HZ (QJO 0HG )ULHQG : DQG % 6PLWK )DFWRUV DIIHFWLQJ IHHGLQJ E\ EORRGVXFNLQJ LQVHFWV $QQ 5HY (QWRPRO )XUORZ % 0 DQG : :
PAGE 271

*DUJDQ 7 3 ,, & / %DLOH\ $ +LJEHH $ *DG DQG 6 ( 6DLG 7KH HIIHFW RI ODERUDWRU\ FRORQL]DWLRQ RQ WKH YHFWRUSDWKRJHQ LQWHUDFWLRQV RI (J\SWLDQ &XOH[ SLSLHQV DQG 5LIW 9DOOH\ IHYHU YLUXV $PHU 7URS 0HG +\J *DUU\ & ( DQG 5 'H)ROLDUW 7KH HIIHFW RI EDVDO WUHHKROH FORVXUH RQ VXSSUHVVLRQ RI $HGHV WULVHULDWXV 0RVT 1HZV *DWHKRXVH $ ,QWHUDFWLRQV EHWZHHQ VWLPXOL LQ WKH LQGXFWLRQ RI SURELQJ E\ 6WRPR[YV FDOFLWUDQV ,QVHFW 3K\VLRO *LOO ( ,QWULQVLF UDWH RI LQFUHDVH VDWXUDWLRQ GHQVLW\ DQG FRPSHWLWLYH DELOLW\ ,, 7KH HYROXWLRQ RI FRPSHWLWLYH DELOLW\ $P 1DW *LOOHWW 7KH LQKHULWHG EDVLV RI YDULDWLRQ LQ KDWFKLQJ UHVSRQVH RI $HGHV HJJV %XOO (QW 5HV *LOOHWW 9DULDWLRQ LQ WKH WLPH RI UHOHDVH RI RYDULDQ GHYHORSPHQWDO KRUPRQH LQ $HGHV DHJ\SWL 1DWXUH /RQGRQf *LOOLHV 0 7 DQG 7 :LONHV 7KH UDQJH RI DWWUDFWLRQ RI VLQJOH EDLWV IRU VRPH :HVW $IULFDQ PRVTXLWRHV %XOO (QW 5HV *LOOLHV 0 7 DQG 7 :LONHV 7KH UDQJH RI DWWUDFWLRQ RI DQLPDO EDLWV DQG FDUERQ GLR[LGH IRU PRVTXLWRHV 6WXGLHV LQ D IUHVKZDWHU DUHD RI :HVW $IULFD %XOO (QW 5HV *LOOLHV 0 7 DQG 7 :LONHV 7KH UDQJH RI DWWUDFWLRQ RI ELUGV DV EDLWV IRU VRPH :HVW $IULFDQ PRVTXLWRHV %XOO (QW 5HV *LO\DUG 5 0RVTXLWR WUDQVPLVVLRQ RI 9HQH]XHODQ YLUXV RI HTXLQH HQFHSKDORP\HOLWLV LQ 7ULQLGDG %XOO 86 $UP\ 0HG 'HSW QR *RGLQ $ :LOG PDPPDOV RI 1HZ (QJODQG 'H/RUPH 3XE &R )UHHSRUW 0H *ROGILHOG 0 DQG 2 6XVVPDQ 7KH RXWEUHDN RI HDVWHUQ HQFHSKDOLWLV LQ 1HZ -HUVH\ ,QWURGXFWLRQ DQG GHVFULSWLRQ RI RXWEUHDN $PHU (SLGHPLRO

PAGE 272

*RRGZLQ 0 + 6WXGLHV RQ DUWLILFLDO UHVWLQJ SODFHV RI $QRSKHOHV FUXDGULPDFXODWXV 6D\ 1DW 0DODULD 6RF *UDG\ ) + 0D[ILHOG 6 : +LOGUHWK 5 7LPSHLU -U 5 ) *LOILOODQ % 5RVHPDU % )UDQFH\ & + &DOLVKDU / & 0DQQV DQG 0 $ 0DGRII (DVWHUQ HTXLQH HQFHSKDOLWLV LQ 0DVVDFKXVHWWV $ SURVSHFWLYH VWXG\ FHQWHUHG XSRQ DQDO\VHV RI PRVTXLWRHV $PHU (SLGHPLRO *UDQW 5 0 7KH VHQVRU\ SLWV RI LQVHFWV FRQVLGHUHG DV GLHOHFWULF ZDYHJXLGHV DQG UHVRQDWRUV WR LQIUDUHG UD\V 3URF 5R\ 6RF 4XHHQVODQG *UDQW 3 5 ,QWHUVSHFLILF FRPSHWLWLRQ DPRQJ URGHQWV $QQ 5HY (FRO 6\VW *ULPVWDG 3 5 0RVTXLWRHV DQG WKH LQFLGHQFH RI HQFHSKDOLWLV $GYDQFHV LQ YLUXV UHVHDUFK *ULPVWDG 3 5 & ( *DUU\ DQG 5 'H)ROLDUW $HGHV KHQGHUVRQL DQG $HGHV WULVHULDWXV 'LSWHUD &XOLFLGDHf LQ :LVFRQVLQ FKDUDFWHUL]DWLRQ RI ODUYDH ODUYDO K\EULGV DQG FRPSDULVRQ RI DGXOW DQG K\EULG PHVRVFXWDO SDWWHUQV $QQ (QW 6RF $PHU *ULPVWDG 3 5 DQG / +DUDPLV $HGHV WULVHULDWXV 'LSWHUD&XOLFLGDHf DQG /D &URVVH YLUXV ,,, (QKDQFHG RUDO WUDQVPLVVLRQ E\ QXWULWLRQGHSULYHG PRVTXLWRHV 0HG (QWRPRO *XL + / / & 3RUWHU DQG ) 3ULGHDX 5HVSRQVH RI LQVHFWV WR FRORU LQWHQVLW\ DQG GLVWULEXWLRQ RI OLJKW $JU (QW *XQVWUHDP 6 ( DQG 5 0 &KHZ $ FRPSDULVRQ RI PRVTXLWR FROOHFWLRQ E\ PDODLVH DQG PLQLDWXUH OLJKW WUDSV 0HG (QW *XQVWUHDP 6 ( 5 : &KHZ : +DJVWUXP DQG & + 7HPSHOLV )HHGLQJ SDWWHUQV RI VL[ VSHFLHV RI PRVTXLWRHV LQ DULG VRXWKHDVWHUQ &DOLIRUQLD 0RVT 1HZV *ZDG] 5 : 5HJXODWLRQ RI EORRG PHDO VL]H LQ WKH PRVTXLWR ,QVHFW 3K\VLRO

PAGE 273

+DJVWUXP : DQG 6 ( *XQVWUHDP 6DOLQLW\ S+ DQG RUJDQLF QLWURJHQ UHODWLRQ WR SUHVHQFH RI PRVTXLWR ODUYDH $QQ (QW 6RF $PHU +DOO : 7KUHH &XOH[ VDOLQDULXV J\QDQGURPRUSKV $PHU 0RVTXLWR &RQWU $VVRF +DQVHOO 0 + $ ILHOG VWXG\ RQ WKH DWWUDFWLRQ RI IHPDOH $QRSKHOHV SKDURHQVLV 7KHREDOG WR FDUERQ GLR[LGH 5HYXH &RPSRUWHPHQW $QLP +DUDPLV / ,QFUHDVHG DGXOW VL]H FRUUHODWHG ZLWK SDULW\ LQ $HGHV WULVHULDWXV 0RVT 1HZV +DUDPLV / $HGHV WULVHULDWXV D FRPSDULVRQ RI GHQVLW\ LQ WUHH KROHV YV GLVFDUGHG WLUHV 0RVT 1HZV +DUDPLV / /DUYDO QXWULWLRQ DGXOW ERG\ VL]H DQG WKH ELRORJ\ RI $HGHV WULVHULDWXV S ,1 (FRORJ\ RI PRVTXLWRHV 3URFHHGLQJV RI D ZRUNVKRS / 3 /RXQLERV 5 5H\ DQG + )UDQN HGV )OD 0HG (QW /DE 9HUR %FK )OD +DUDPLV / DQG : $ )RVWHU VXUYLYDO DQG SRSXODWLRQ GHQVLW\ RI $HGHV WULVHULDWXV LQ D ZRRGORW LQ FHQWUDO 2KLR 0HG (QW +DUEDFK 5 ( DQG / .QLJKW 7D[RQRPLVWVn *ORVVDU\ RI 0RVTXLWR $QDWRP\ 3OH[XV 3XE &R 0DUOWRQ 1 +DUGHQ ) : DQG % 3RROVRQ 6HDVRQDO GLVWULEXWLRQ RI PRVTXLWRHV RI +DQFRFN &RXQW\ 0LVVLVVLSSL 0RVT 1HZV +DUGHQ ) : % 3RROVRQ / : %HQQHWW DQG 5 & *DVNL $QDO\VLV RI & VXSSOHPHQWHG DGXOW PRVTXLWR ODQGLQJ UDWH FRXQWV 0RVT 1HZV +DUULVRQ % $ 0 & &DOODKDQ 0 :DWWV DQG / 3DQWKXVLUL $Q HIILFLHQW IORDWLQJ ODUYDO WUDS IRU VDPSOLQJ $HGHV DHJ\SWL SRSXODWLRQV 0HG (QW +DXII : DQG / %XUJHVV 'HVLJQ DQG HIILFLHQF\ RI PRVTXLWR WUDSV EDVHG RQ YLVXDO UHVSRQVH SDWWHUQV

PAGE 274

+D\HV / DQG 5 & :DOOLV (FRORJ\ RI ZHVWHUQ HTXLQH HQFHSKDORP\HOLWLV LQ WKH HDVWHUQ 8QLWHG 6WDWHV $GY 9LUXV 5HV +D\HV 5 2EVHUYDWLRQV RQ WKH VZDUPLQJ RI &XOLVHWD PHODQXUD 0RVT 1HZV +D\HV 5 +RVW SUHIHUHQFHV RI &XOLVHWD PHODQXUD DQG UHODWHG PRVTXLWRHV 0RVT 1HZV +D\HV 5 7KH GLHO DFWLYLW\ F\FOHV RI &XOLVHWD PHODQXUD &RTf DQG DOOLHG PRVTXLWRHV 0RVT 1HZV +D\HV 5 / %HDGOH $ +HVV 6XVVPDQ %RQHVH DQG 0 (QWRPRORJLFDO DVSHFWV RI WKH RXWEUHDN RI HDVWHUQ HQFHSKDOLWLV LQ 1HZ -HUVH\ $PHU 7URS 0HG +\J +D\HV 5 DQG 2 : 'RDQ -U 3ULPDU\ UHFRUG RI &XOLVHWD PHODQXUD ELWLQJ PDQ LQ QDWXUH 0RVT 1HZV +D\HV 5 DQG $ +HVV &OLPDWRORJLFDO FRQGLWLRQV DVVRFLDWHG ZLWK RXWEUHDNV RI HDVWHUQ HQFHSKDOLWLV $P 7URS 0HG +\J +D\HV 5 2 / & /DPRWWH DQG 3 +ROGHQ (FRORJ\ RI DUERYLUXVHV LQ +DOH &RXQW\ 7H[DV GXULQJ $PHU 7URS 0HG +\J +D\HV 5 / & /DPRWWH / $ :KLWH DQG / %HDGOH ,VRODWLRQ RI HDVWHUQ HQFHSKDOLWLV YLUXV IURP WKH PRVTXLWR &XOH[ UHVWXDQV FROOHFWHG LQ 1HZ -HUVH\ GXULQJ 0RVT 1HZV +D\HV 5 DQG + 0D[ILHOG ,QWHUUXSWLRQ RI GLDSDXVH DQG UHDULQJ ODUYDH RI &XOLVHWD PHODQXUD &RTf 0RVT 1HZV +D\HV 5 & + 7HPSHOLV $ +HVV DQG 5 & 5HHYHV 0RVTXLWR KRVW SUHIHUHQFH VWXGLHV LQ +DOH &RXQW\ 7H[DV $P 7URS 0HG +\J +D]DUG ( 0 6 0D\HU DQG ( 6DYDJH $WWUDFWLRQ DQG RYLSRVLWLRQ VWLPXODWLRQ RI JUDYLG IHPDOH PRVTXLWRHV E\ EDFWHULD LVRODWHG IURP KD\ LQIXVLRQV 0RVT 1HZV +HDGOHH 7 6RPH IDFWV XQGHUO\LQJ WKH DWWUDFWLRQ RI PRVTXLWRHV WR VRXUFHV RI UDGLDQW HQHUJ\ (FRQ (QW

PAGE 275

+HDGOHH 7 1HZ -HUVH\ PRVTXLWR SUREOHPV 3URF1HZ -HUVH\ 0RVT ([WHUP $VV +HQGHUVRQ % ( & + &DOLVKHU 3 + &ROHPDQ % )LHOGV 1 DQG 7 + :RUN *XPER /LPER D QHZ JURXS & DUERYLUXV IURP WKH )ORULGD (YHUJODGHV $PHU (SLGHPLRO +HQGHUVRQ % ( $ : 5 0F&UDH % .LU\D 6VHQNXEXJH < DQG 6 6HPSDOD $UERYLUXV HSL]RRWLFV LQYROYLQJ PDQ PRVTXLWRHV DQG YHUWHEUDWHV DW /XQ\R 8JDQGD $QQ 7URS 0HG t 3DUDV +HVSHUKHLGH + $ (FRORJLFDO LQIHUHQFHV IURP PRUSKRORJLFDO GDWD $QQ 5HY 6\VW (FRO +HVV $ & ( &KHUXELQ DQG / & /DPRWWH 5HODWLRQ RI WHPSHUDWXUH WR DFWLYLW\ RI :HVWHUQ DQG 6W /RXLV (QFHSKDOLWLV YLUXVHV $P 7URS 0HG +\J +HVV $ DQG 5 +D\HV 5HODWLYH SRWHQWLDOV RI GRPHVWLF DQLPDOV IRU ]RRSURSK\OD[LV DJDLQVW PRVTXLWR YHFWRUV RI HQFHSKDOLWLV $PHU 7URS 0HG +\J +LWFKFRFN & -U $JH FRPSRVLWLRQ RI D QDWXUDO SRSXODWLRQ RI $QRSKHOHV TXDGULPDFXODWXV 6D\ LQ 0DU\ODQG86$ 0HG (QW +RFK $ / 0 7XUHOO DQG & / %DLOH\ 5HSOLFDWLRQ RI 5LIW 9DOOH\ )HYHU YLUXV LQ WKH VDQG IO\ /XW]RPYLD ORQJLSDOSLV $PHU 7URS 0HG +\J +RFNLQJ % 7KH XVH RI DWWUDFWDQWV DQG UHSHOOHQWV L YHFWRU FRQWURO %XOO :OG +OWK 2UJ +RFNLQJ % %ORRGVXFNLQJ EHKDYLRU RI WHUUHVWULDO DUWKURSRGV $QQ 5HY (QWRPRO +RFNLQJ % DQG $ .KDQ 7KH PRGH RI DFWLRQ RI UHSHOOHQW FKHPLFDOV DJDLQVW EORRGVXFNLQJ IOLHV &DQ (QW +RO]DSIHO & 0 DQG : ( %UDGVKDZ *HRJUDSK\ RI ODUYDO GRUPDQF\ LQ WKH WUHH KROH PRVTXLWR $H WULVHULDWXV &DQ =RRO +RSOD & ( 7KH IHHGLQJ KDELWV RI $ODVNDQ PRVTXLWRHV %XOO %URRN (QW 6RF

PAGE 276

+RUVIDOO : 5 0RVTXLWRHV RI VRXWKHDVWHUQ $UNDQVDV (FRQ (QW +RUVIDOO : 5 + : )RZOHU -U / 0RQHWWL DQG 5 /DUVHQ %LRQRPLFV DQG (PEU\RORJ\ RI WKH ,QODQG )ORRGZDWHU 0RVTXLWR $HGHV YH[DQV 8QLY ,OOLQRLV 3UHVV 8UEDQD +RZLWW % ) + 5 'RGJH / %LVKRS DQG 5 + *RUULH 5HFRYHU\ RI WKH YLUXV RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV IURP PRVTXLWRHV 0DQVRQLD SHUWXUEDQVf FROOHFWHG LQ *HRUJLD 6FLHQFH +XGVRQ $ 1RWHV RQ WKH SLHUFLQJ PRXWKSDUWV RI WKUHH VSHFLHV RI PRVTXLWRHV 'LSWHUD&XOLFLGDHf YLHZHG ZLWK WKH VFDQQLQJ HOHFWURQ PLFURVFRSH &DQ (QW +XIIDNHU & % DQG 5 & %DFN $ VWXG\ RI PHWKRGV RI VDPSOLQJ PRVTXLWR SRSXODWLRQV (FRQ (QW +XUOEHUW 6 + 7KH PHDVXUHPHQW RI QLFKH RYHUODS DQG VRPH UHODWLYHV (FRORJ\ +XUOEHUW 6 + $ JHQWOH GHSLODWLRQ RI WKH QLFKH 'LFHDQ UHVRXUFH VHWV LQ UHVRXUFH K\SHUVSDFH (YRO 7KHRU\ +XUOEHUW 6 + 3VHXGRUHSOLFDWLRQ DQG WKH GHVLJQ RI HFRORJLFDO ILHOG H[SHULPHQWV (FRO 0RQRJU ,PPV $ 2Q WKH FRQVWLWXWLRQ RI WKH PD[LOODH DQG ODELXP LQ 0HFRSWHUD DQG 'LSWHUD 4XDUW 0LFURVFRS 6FL ,UE\ : 6 DQG & 6 $SSHUVRQ +RVWV RI PRVTXLWRHV LQ WKH FRDVWDO SODLQ RI 1RUWK &DUROLQD 0HG (QW ,VPDLO $ + 6HQVH RUJDQV LQ WKH DQWHQQDH RI $QRSKHOHV PDFXOLSHQQLV DWURSDUYXV 97KLHOf DQG WKHLU SRVVLEOH IXQFWLRQ LQ UHODWLRQ WR WKH DWWUDFWLRQ RI IHPDOH PRVTXLWR WR PDQ $FWD 7URSLFD ,VPDLO $ + &RPSDUDWLYH VWXG\ RI VHQVH RUJDQV LQ WKH DQWHQQDH RI FXOLFLQH DQG DQRSKHOLQH IHPDOH PRVTXLWRHV $FWD 7URSLFD

PAGE 277

,VPDLO $ + DQG ( +DPPRQG 7KH XVH RI FRHORFRQLF VHQVLOODH RQ WKH IHPDOH DQWHQQDH LQ GLIIHUHQWLDWLQJ PHPEHUV RI WKH $QRSKHOHV JDPELDH *LOHV FRPSOH[ %XOO :OG +OWK 2UJ ,VWRFN & $ 9DYUD DQG + =LPPHU (FRORJ\ DQG HYROXWLRQ RI WKH SLWFKHUSODQW PRVTXLWR 5HVRXUFH WUDFNLQJ E\ D QDWXUDO SRSXODWLRQ (YROXWLRQ -DFNVRQ / / &XWLFXODU K\GURFDUERQV RI WKH PLONZHHG EXJ 2QFRSHOWXV IDVFLDWXV E\ DJH DQG VH[ ,QVHFW %LRFKHP -D\QHV + $ / 3£UHQWH DQG 5 & :DOOLV 3RWHQWLDO HQFHSKDOLWLV YHFWRUV LQ +DPGHQ &RQQHFWLFXW 0RVJ 1HZV -HQNLQV : DQG 6 &DUSHQWHU (FRORJ\ RI WKH WUHH KROH EUHHGLQJ PRVTXLWRHV RI QHDUFWLF 1RUWK $PHULFD (FRO 0RQRJ -HQQLQJV : / 5 + $OOHQ DQG $ / /HZLV :HVWHUQ HTXLQH HQFHSKDORP\HOLWLV LQ D )ORULGD KRUVH $PHU 7URS 0HG DQG +\J -REOLQJ % 7KH VWUXFWXUH RI WKH KHDG DQG PRXWKSDUWV LQ &XOLFRLGHV SXOLFDULV /'LSWHUD1HPDWRFHUDf %XOO (QW 5HV -RKQVRQ : ( -U (FRORJ\ RI PRVTXLWRHV LQ WKH :LFKLWD PRXQWDLQV ZLOGOLIH UHIXJH $QQ (QW 6RF $PHU -RKQVWRQ 6 DQG 5 (OOLVRQ ([DFW DJH GHWHUPLQDWLRQ LQ ODERUDWRU\ DQG ILHOG FDXJKW 'URVRSKLOD ,QVHFW 3K\VLRO -RQHV 5 + + : 3RWWHU -U DQG + $ 5KRGHV &HUDWRSRJRQLGDH DWDFNLQJ KRUVHV LQ VRXWK 7H[DV GXULQJ WKH 9(( HSLGHPLF 0RVT 1HZV -RVHSK 6 5 DQG : ( %LFNOH\ &XOLVHWD PHODQXUD &RTXLOOHWWf RQ WKH HDVWHUQ VKRUH RI 0DU\ODQG 'LSWHUD&XOLFLGDHf 8QLY 0G $JU ([S 6WD %XOO $ S -RVO\Q DQG )LVK $GXOW GLVSHUVDO RI $HGHV FRPPXQLV XVLQJ JLHPVD VHOIPDUNLQJ $PHU 0RVT &RQW $VVRF

PAGE 278

-XULF % ( (QR DQG 3DULNK 0DWKHPDWLFDO PRGHOLQJ RI D YLUXV YHFWRU &XOH[ WDUVDOLV %LRPHG 6FL ,QVWUXP .DOH + : (GPDQ DQG / $ :HEEHU (IIHFW RI EHKDYLRU DQG DJH RI LQGLYLGXDO FLFRQLLIRUP ELUGV RQ PRVTXLWR IHHGLQJ VXFFHVV 0RVT 1HZV .DUVWDG / 5HSWLOHV DV SRVVLEOH UHVHUYRLU KRVWV IRU HDVWHUQ HQFHSKDOLWLV YLUXV 1 $PHU :LOGOLIH &RQI 7UDQV .DUVWDG / + )OHWFKHU 6SDODWLQ 5 5REHUWV DQG 5 3 +DQVRQ (DVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV LVRODWHG IURP VSHFLHV RI 'LSWHUD IURP *HRUJLD 6FLHQFH .DUVWDG / + DQG 5 3 +DQVRQ ,QIHFWLRQV LQ ZLOGOLIH ZLWK WKH YLUXVHV RI YHVLFXODU VWRPDWLWLV DQG HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV 7UDQV UG 1 $ :LOG &RQI S .DUVWDG / + DQG 5 3 +DQVRQ 1DWXUDO DQG H[SHULPHQWDO LQIHFWLRQV LQ VZLQH ZLWK WKH YLUXV RI HDVWHUQ HTXLQH HQFHSKDOLWLV ,QI 'LV .DUVWDG / + 6 9DGODPXGL 5 3 +DQVRQ 7UDLQHU -U DQG 9 + /HH (DVWHUQ HTXLQH HQFHSKDOLWLV VWXGLHV LQ :LVFRQVLQ ,QI 'LV .HOORJJ ) ( :DWHU YDSRXU DQG FDUERQ GLR[LGH UHFHSWRUV LQ $HGHV DHJ\SWL ,QVHFW 3K\VLRO .HOVHU 5 $ 0RVTXLWRHV DV YHFWRUV RI WKH YLUXV RI HTXLQH HQFHSKDORP\HOLWLV $PHU 9HW 0HG $VVRF .HOVHU 5 $ (TXLQH HQFHSKDORP\HOLWLV LQ 3DQDPD 8 6 $UP\ 9HW %XOO .HQQHG\ 6 7KH FRQFHSWV RI ROIDFWRU\ nDUUHVWPHQWn DQG nDWWUDFWLRQn 3K\VLRO (QWRPRO .LQJ : 9 9DULHWLHV RI $QRSKHOHV FUXFLDQV :LHG $PHU 7URS 0HG .LQJ : 9 + %UDGOH\ & 1 6PLWK DQG : & 0F'XIILH $ +DQGERRN RI WKH 0RVTXLWRHV RI WKH 6RXWKHDVWHUQ 8QLWHG 6WDWHV $JU +DQGERRN QR 86'$ $56

PAGE 279

.LQ]HU + 0 5HHYHV DQG : $WPDU +RVW ORFDWLRQ E\ WKH KRUQ IO\ 3$ ILHOG DWWUDFWLRQ RI DQ DUWLILFLDO GHYLFH IRU PHDVXULQJ DWWUDFWLRQ WR YDULRXV VWLPXOL (QYLURQ (QW .LRUSHV $ / DQG 7 0
PAGE 280

.QRZOWRQ ) DQG $ 5RZH 3UHOLPLQDU\ VWXGLHV RI LQVHFW WUDQVPLVVLRQ RI HTXLQH HQFHSKDORP\HOLWLV 8WDK $FDG 6FL $UWV t /HWWHUV 3URF .RYDWV ( *DV FKURPDWRJUDSKLF FKDUDFWHUL]DWLRQ RI RUJDQLF VXEVWDQFHV LQ WKH UHWHQWLRQ LQGH[ V\VWHP $GY &KURPDWRJU .XEHV 9 DQG ) $ 5LRV &DXVDWLYH DJHQW RI LQIHFWLRXV HTXLQH HQFHSKDORP\HOLWLV LQ 9HQH]XHOD 6FLHQFH .XU] + DQG 5 *RGIUH\ 7UHHV RI QRUWKHUQ )ORULGD 2PQL 3UHVV ,QF 6DUDVRWD )OD /DDUPDQ 7KH KRVWVHHNLQJ EHKDYLRU RI WKH PDODULD PRVTXLWR $QRSKHOHV PDFXOLSHQQLV DWURSDUYXV $FWD /HLGHQVLD /DDUPDQ 7KH KRVW VHHNLQJ EHKDYLRU RI DQRSKHOLQH PRVTXLWRHV 7URS *HRJU 0HG /DFKHU 9 $ QHZ W\SH RI VHQVLOOXP RQ WKH DQWHQQDH RI IHPDOH PRVTXLWRHV $HGHV DHJ\SWL ([SHULPHQWLD LQ *HUPDQf /DKLUL 6 %ORRG R[\JHQ DIILQLW\ DQG DOYHRODU YHQWLODWLRQ LQ UHODWLRQ WR ERG\ ZHLJKW LQ PDPPDOV $PHU 3K\VLRO /DQFLDQL & $ D 'HWDFKPHQW RI SDUDVLWLF ZDWHU PLWHV IURP WKH PRVTXLWR $QRSKHOHV FUXFLDQV 'LSWHUD&XOLFLGDHf 0HG (QWRPRO /DQFLDQL & $ E :DWHU PLWHLQGXFHG PRUWDOLW\ LQ D QDWXUDO SRSXODWLRQ RI WKH PRVTXLWR $QRSKHOHV FUXFLDQV 'LSWHUD &XOLFLGDHf 0HG (QW /DQFLDQL & $ (IIHFW RI WKH ZDWHU PLWH $UUHQXUXV SVHXGRWHQXLFROOLV $FDULIRUPHV $UUHQXULGDHf RQ WKH ORQJHYLW\ RI FDSWLYH $QRSKHOHV JXDGULPDFXODWXV 'LSWHUD&XOLFLGDHf )OD (QWRPRO /DQFLDQL & $ 0RUWDOLW\ LQ PLWHLQIHVWHG PDOH $QRSKHOHV FUXFLDQV $P 0RVT &RQW $VVRF /DQFLDQL & $ 7HDFKLQJ TXDQWLWDWLYH FRQFHSWV RI SRSXODWLRQ HFRORJ\ LQ JHQHUDO ELRORJ\ FRXUVHV %XOO (FRO 6RF $PHU

PAGE 281

/DQFLDQL & $ 'HIHQVLYH FRQVXPSWLRQ RI SDUDVLWLF PLWHV E\ $QRSKHOHV FUXFLDQV ODUYDH -RXU $PHU 0RVT &RQWU $VVRF /DQFLDQL & $ DQG 0 %R\HWW 'HPRQVWUDWLQJ SDUDVLWLF ZDWHU PLWHLQGXFHG PRUWDOLW\ LQ QDWXUDO KRVW SRSXODWLRQV 3DUDVLWRORJ\ /DQFLDQL & $ DQG $ %R\W 7KH HIIHFW RI D SDUDVLWLF ZDWHU PLWH $UUHQXUXV SVHXGRWHQXLFROOLV $FDUL +\GUDFKQHOODHf RQ WKH VXUYLYDO DQG UHSURGXFWLRQ RI WKH PRVTXLWR $QRSKHOHV FUXFLDQV 'LSWHUD &XOLFLGDHf 0HG (QW /DQGU\ 6 9 DQG 5 'H)ROLDUW $WWUDFWLRQ RI $HGHV WULVHULDWXV WR FDUERQ GLR[LGH -RXU $PHU 0RVT &RQWU $VVRF /DQJ 7 &RQWDFW VH[ SKHURPRQH LQ WKH PRVTXLWR &XOLVHWD LQRUQDWD 0HG (QW /DQJ 7 DQG : $ )RVWHU ,V WKHUH D IHPDOH VH[ SKHURPRQH LQ WKH PRVTXLWR &XOLVHWD LQRUQDWD" (QYLURQ (QWRPRO /DVLHZVNL 5 & DQG : 5 'DZVRQ $ UHH[DPLQDWLRQ RI WKH UHODWLRQ EHWZHHQ VWDQGDUG PHWDEROLF UDWH DQG ERG\ ZHLJKW LQ ELUGV &RQGRU /DVLHZVNL 5 & DQG : 5 'DZVRQ &DOFXODWLRQ DQG PLVFDOFXODWLRQ RI WKH HTXDWLRQV UHODWLQJ DYLDQ VWDQGDUG PHWDEROLVP WR ERG\ ZHLJKW &RQGRU /DVLHZVNL 5 & DQG : $ &DOGHU -U $ SUHOLPLQDU\ DOORPHWULF DQDO\VLV RI UHVSLUDWRU\ YDULDEOHV LQ UHVWLQJ ELUGV 5HVS 3K\VLRO /DXJKOLQ 5 &DSDFLW\ IRU LQFUHDVH D XVHIXO SRSXODWLRQ VWDWLVWLF $QLPDO (FRO /DZORU / 5 2YHUODS VLPLODULW\ DQG FRPSHWLWLRQ FRHIILFLHQWV (FRORJ\ /H'XF : : 6X\HPRWR % ) (OGULGJH 3 5XVVHOO DQG $ 5 %DUU (FRORJ\ RI &DOLIRUQLD HQFHSKDOLWLV YLUXVHV RQ WKH 'HO 0DU 9D 3HQLQVXOD ,, 'HPRQVWUDWLRQ RI WUDQVRYDULDO WUDQVPLVVLRQ $PHU 7URS 0HG +\J

PAGE 282

/H'XF : : 6X\HPRWR % ) (OGULGJH DQG ( 6 6DXJVWDG (FRORJ\ RI DUERYLUXVHV LQ D 0DU\ODQG IUHVKZDWHU VZDPS ,, %ORRG IHHGLQJ SDWWHUQV RI SRWHQWLDO PRVTXLWR YHFWRUV $P (SLGHPLRORJ\ /H'XF : : 6X\HPRWR 7 .HHIH ) %XUJHU % ) (OGULGJH DQG 3 5XVVHOO (FRORJ\ RI &DOLIRUQLD HQFHSKDOLWLV YLUXVHV RQ WKH 'HO 0DU 9D SHQLQVXOD 9LUXV LVRODWLRQV IURP PRVTXLWRHV $PHU 7URS 0HG +\J /HSULQFH DQG 0 %LJUDVSRXOLQ 6HDVRQDO YDULDWLRQ LQ ERG\ VL]H DQG WKH UHODWLRQVKLSV DPRQJ ERG\ VL]H SDULW\ DQG IHFXQGLW\ RI KRVW VHHNLQJ 7DEDQXV TXLQTXHYLWWDWXV IHPDOHV 0HG (QW /HSULQFH DQG 3 -ROLFRHXU D 5HVSRQVH WR FDUERQ GLR[LGH RI 7DEDQXV TXLQTXHYLWWDWXV :LHGHPDQQ IHPDOHV 'LSWHUD 7DEDQLGDHf LQ UHODWLRQ WR UHODWLYH DEXQGDQFH SDULW\ IROOLFOH GHYHORSPHQW DQG VSHUP DQG IUXFWRVH SUHVHQFH &DQ (QW /HSULQFH DQG 3 -ROLFRHXU E $QQXDO LQWUD DQG LQWHUVSHFLILF YDULDWLRQV LQ ERG\ VL]H DQG SRWHQWLDO IHFXQGLW\ RI VRPH 7DEDQXV VSHFLHV 'LSWHUD 7DEDQLGDHf &DQ (QW /HY\ & ( 0 'ROO DQG 0 ( :ULJKW &RQWURO RI DQ RXWEUHDN RI PRVTXLWRERUQH HQFHSKDOLWLV DORQJ WKH &RORUDGR 5LYHU LQ $PHU 0RVT &RQW $VVRF /HZLV 7KH UHFRJQLWLRQ RI QXOOLSDURXV DQG SDURXV $QRSKHOHV JDPELDH E\ H[DPLQLQJ WKH RYDULROHV 7UDQV 5 6RF 7URS 0HG +\J /HZLV / ) DQG 7 : 7XFNHU )DEULFDWLRQ RI DUWLILFLDO WUHHKROHV DQG WKHLU SHUIRUPDQFH LQ ILHOG WHVWV ZLWK $HGHV VLHUUHQVLV DQG 2UWKRSRGRPYLD VLTQLIHUD 0RVT 1HZV /LQDP + DQG / 7 1LHOVRQ 7KH GLVWULEXWLRQ DQG HYROXWLRQ RI WKH &XOH[ PRVTXLWRHV RI WKH VXEJHQXV 1HRFXOH[ LQ WKH 1HZ :RUOG 0RVT 6\VW 1HZVOHWWHU /LQWKLFXP ) 'DYLHV DQG $ .DLUR 5LIW 9DOOH\ )HYHU YLUXV IDPLO\ %XQ\DYLULGDH JHQXV 3KOHERYLUXVf ,VRODWLRQ IURP 'LSWHUD FROOHFWHG GXULQJ DQ LQWHUHSL]RRWLF SHULRG LQ .HQ\D +\J &DPE

PAGE 283

/LVLW]D 0 $ 5 'H)ROLDUW 5 7 0
PAGE 284

/RXQLERV / 3 5 5H\ DQG + )UDQN HGV (FRORJ\ RI PRVTXLWRHV 3URFHHGLQJV RI D ZRUNVKRS )ORULGD 0HG (QW /DE 9HUR %FK )OD /RYH DQG : : 6PLWK 7KH VWUDWLILFDWLRQ RI PRVTXLWRHV 0RVJ 1HZV /RYH 5 % 3ODWW DQG 0 + *RRGZLQ -U 2EHUYDWLRQV RQ WKH VSDWLDO GLVWULEXWLRQ RI PRVTXLWRHV LQ VRXWKZHVW *HRUJLD 0RVT 1HZV /XFNLQELOO / 6 U DQG VHOHFWLRQ LQ H[SHULPHQWDO SRSXODWLRQV RI (BcB FROL 6FLHQFH /XFNLQELOO / 6 $Q H[SHULPHQWDO DQDO\VLV RI D OLIH KLVWRU\ WKHRU\ (FRORJ\ /XQW 6 5 0RUSKRORJLFDO FKDUDFWHULVWLFV RI WKH ODUYDH RI $HGHV WULVHULDWXV DQG $H KHQGHUVRQL LQ 1HEUDVND 0RVT 1HZV 0DF$UWKXU 5 + 6RPH JHQHUDOL]HG WKHRUHPV RI QDWXUDO VHOHFWLRQ 3URF 1DWO $FDG 6FL 86$ 0DF$UWKXU 5 + DQG ( 3LDQND 2Q RSWLPDO XVH RI D SDWFK\ HQYLURQPHQW $PHU 1DW 0DJQDUHOOL / $ 3K\VLRORJLFDO DJH RI 7DEDQLGDH LQ HDVWHUQ 1HZ
PAGE 285

0DJQDUHOOL / $ /HSULQFH ) %XUJHU DQG ) %XWOHU 2YLSRVLWLRQ EHKDYLRU DQG IHFXQGLW\ LQ &KUYVRSV FLQFWLFRUQLV 'LSWHUD 7DEDQLGDHf 0HG (QW 0DJQDUHOOL / $ % 0RGL DQG 5 % 7HVK )ROOLFXODU GHYHORSPHQW DQG SDULW\ LQ SKOHERWRPLQH VDQG IOLHV 'LSWHUD3V\FKRGLGDHf 0HG (QW 0DLQ $ 6 ( %URZQ DQG 5 & :DOOLV $UERYLUXV VXUYHLOODQFH LQ &RQQHFWLFXW ,, &DOLIRUQLD VHURJURXS 0RVT 1HZV 0DLQ $ 5 2 +D\HV DQG 5 7RQQ 6HDVRQDO DEXQGDQFH RI PRVTXLWRHV LQ VRXWKHDVWHUQ 0DVVDFKXVHWWV 0RVT 1HZV 0DLQ $ 6 : +LOGUHWK DQG 5 & :DOOLV $UERYLUXV VXUYHLOODQFH LQ &RQQHFWLFXW ,,, )ODQGHUV YLUXV 0RVT 1HZV 0DLQ $ $ / 6PLWK DQG 5 & :DOOLV $UERYLUXV VXUYHLOODQFH LQ &RQQHFWLFXW *URXS $ YLUXVHV 0RVT 1HZV 0DLQ $ 5 7RQQ ( 5DQGDOO DQG 6 $QGHUVRQ 0RVTXLWR GHQVLWLHV DW KHLJKWV RI ILYH DQG WZHQW\ILYH IHHW LQ VRXWKHDVWHUQ 0DVVDFKXVHWWV 0RVT 1HZV 0DNHOD 0 ( DQG 5 + 5LFKDUGVRQ 7KH GHWHFWLRQ RI V\PSDWULF VLEOLQJ VSHFLHV XVLQJ JHQHWLF FRUUHODWLRQ DQDO\VLV 7ZR ORFL WZR JDPRGHPHV *HQHWLFV 0DORQH\ 0 DQG 5 & :DOOLV 5HVSRQVH RI FRORQL]HG &XOLVHWD PHODQXUD WR SKRWRSHULRG DQG WHPSHUDWXUH 0RVT 1HZV 0DQJXP & / DQG 3 6 &DOODKDQ $WWUDFWLRQ RI QHDULQIUDUHG WR $HGHV DHJ\SWL (FRQ (QW 0DUNV 5 D 'HVLJQLQJ D UHVHDUFK SURMHFW 7KH EDVLFV RI ELRPHGLFDO UHVHDUFK PHWKRGRORJ\ /LIHWLPH /HDUQLQJ 3XEOLFDWLRQV :DGVZRUWK ,QF %HOPRQW &DO 0DUNV 5 E 5HVHDUFK GDWD 7KH EDVLFV RI ELRPHGLFDO UHVHDUFK PHWKRGRORJ\ /LIHWLPH /HDUQLQJ 3XEOLFDWLRQV :DGVZRUWK ,QF %HOPRQW &DO

PAGE 286

0DUWLQ 3 DQG + & .UDHPHU ,QGLYLGXDO GLIIHUHQFHV LQ EHKDYLRU DQG WKHLU VWDWLVWLFDO FRQVHTXHQFHV $QLPDO %HKDYLRU 0DUWLQH] 7 DQG + + +DJHGRUQ 'HYHORSPHQW RI UHVSRQVLYHQHVV WR KRUPRQHV DIWHU D EORRG PHDO LQ WKH PRVTXLWR $HGHV DHT\SWL ,QVHFW %LRFKHPLVWU\ 0DWKHU 7 1 DQG 5 'H)ROLDUW (IIHFW RI KRVW EORRG VRXUFH RQ WKH JRQRWURSKLF F\FOH RI $HGHV WULVHULDWXV $PHU -RXU 7URS 0HG +\J 0DWKHVRQ 5 )DPLO\ &XOLFLGDH WKH PRVTXLWRHV JXLGH WR WKH LQVHFWV RI &RQQHFWLFXW 3DUW 9, IDVH &RQQ 6WDWH *HRO t 1DW +LVW 6XUY %XOO 0DWWLQJO\ 3 ) 0RVTXLWR HJJV ; 2YLSRVLWLRQ LQ 1HRFXOH[ 0RVT 6\VW 1HZVOHWWHU 0DWWLQJO\ 3 ) (FRORJLFDO DVSHFWV RI PRVTXLWR HYROXWLRQ 3DUDVVLWRORJLFD 0D\ 5 0 D 6WDELOLW\ LQ UDQGRPO\ IOXFWXDWLQJ YV GHWHUPLQLVWLF HQYLURQPHQWV $PHU 1DW 0D\ 5 0 E 7LPHGHOD\ YHUVXV VWDELOLW\ LQ SRSXODWLRQ PRGHOV ZLWK WZR DQG WKUHH WURSKLF OHYHOV (FRORJ\ 0D\ 5 0 6RPH QRWHV RQ HVWLPDWLQJ WKH FRPSHWLWLRQ PDWUL[ (FRORJ\ 0F&OHOODQG $ + DQG % :HLW] 6HURORJLFDO LGHQWLILFDWLRQ RI WKH QDWXUDO KRVWV RI $HGHV DHT\SWL /f DQG VRPH RWKHU PRVTXLWRHV 'LSWHUD &XOLFLGDHf FDXJKW UHVWLQJ LQ YHJHWDWLRQ LQ .HQ\D DQG 8JDQGD $PHU 7URS 0HG 3DUDVLWRO 0F,QWRVK % 0 0RVTXLWRHV DV YHFWRUV RI YLUXVHV LQ VRXWKHUQ $IULFD (QWRPRO 0HP 'HS $JULH 7HFK 6HUY 5HSRUW 6 $IU QR S 0FOYHU 6 % +RVW SUHIHUHQFH DQG GLVFULPLQDWLRQ E\ WKH PRVTXLWRHV $H DHT\SWL DQG &XOH[ WDUVDOLV 0HG (QW 0FOYHU 6 % $QWHQQDO VHQVH RUJDQV RI IHPDOH &XOH[ WDUVDOLV $QQ (QW 6RF $PHU

PAGE 287

0FOYHU 6 % &RPSDUDWLYH VWXG\ RI WKH DQWHQQDO VHQVH RUJDQV RI IHPDOH FXOLFLQH PRVTXLWRHV &DQ (QW 0FOYHU 6 % &RPSDUDWLYH VWXGLHV RQ WKH VHQVH RUJDQV RQ WKH DQWHQQDH DQG PD[LOODU\ SDOSV RI VHOHFWHG FXOLFLQH PRVTXLWRHV &DQ =RRO 0FOYHU 6 % )LQH VWUXFWXUH RI SHJV RQ WKH SDOSV RI IHPDOH FXOLFLQH PRVTXLWRHV &DQ =RRO 0FOYHU 6 % )LQH VWUXFWXUH RI DQWHQQDO VHQVLOOD FRHORFRQLFD RI FXOLFLQH PRVTXLWRHV 7LVVXH t &HOO 0FOYHU 6 % 5HYLHZ DUWLFOH 6HQVLOODH RI PRVTXLWRHV 0HG (QW 0FOYHU 6 % DQG 0 %HHFK 3UH\ ILQGLQJ EHKDYLRU DQG PHFKDQRVHQVLOOD RI ODUYDO 7R[RUK\QFKLWHV EUHYLRDORLV 7KHREDOG ,QW ,QVHFW 0RUSK t (PEU\RO 0FOYHU 6 % DQG & & &KDUOWRQ 6WXGLHV RQ WKH VHQVH RUJDQV RQ WKH SDOSV RI VHOHFWHG FXOLFLQH PRVTXLWRHV &DQ =RRO 0FOYHU 6 % DQG $ +XGVRQ 6HQVLOOD RQ WKH DQWHQQDH DQG SDOSV RI VHOHFWHG :YHRPYLD PRVTXLWRHV 0HG (QW 0FOYHU 6 % DQG 6 $ +XWFKLQVRQ &RHORFRQLF VHQVLOOD RQ WKH DQWHQQDH RI WKH \HOORZ IHYHU PRVTXLWR ([SHULPHQWLD 0FOYHU 6 % DQG 5 6LHPLFNL D )LQH VWUXFWXUH RI DQWHQQDO PHFKDQRVHQVLOOD RI DGXOW 5KRGQLXV SUROL[XV 6WDO +HPLSWHUD 5HGXYLLGDHf 0RUSK 0FOYHU 6 % DQG 5 6LHPLFNL E )LQH VWUXFWXUH RI SHJV RQ WKH PD[LOODU\ SDOSV RI DGXOW 7R[RUK\QFKLWHV EUHYLSDOSLV 7KHREDOG ,QW ,QVHFW 0RUSK t (PEU\RO 0FOYHU 6 % DQG 5 6LHPLFNL )LQH VWUXFWXUH RI DQWHQQDO SXWDWLYH WKHUPRK\JUR VHQVLOOD RI DGXOW 5KRGQLXV SUROL[XV 6WDO+HPLSWHUD 5HGXYLLGDHf 0RUSK 0F1DE % $Q DQDO\VLV RI WKH ERG\ WHPSHUDWXUH RI ELUGV &RQGRU

PAGE 288

0F1DXJKWRQ 6 U DQG VHOHFWLRQ LQ 7\SKD $P 1DW 0F1HHO 7 ( 2EVHUYDWLRQV RQ WKH ELRORJ\ RI 0DQVRQLD SHUWXUEDQV :DONf 'LSWHUD &XOLFLGDH 3URF 1 0RVJ ([WHUP $VVRF 0HDQV 5 +RVW SUHIHUHQFHV RI PRVTXLWRHV LQ 6XIIRON &RXQW\ 1HZ
PAGE 289

0H\HU 5 3 5 :DVKLQR DQG 7 / 0F.HQ]LH 6WXGLHV RQ WKH ELRORJ\ RI &XOLVHWD LQRUQDWD 'LSWHUD &XOLFLGDHf LQ WKUHH UHJLRQV RI FHQWUDO &DOLIRUQLD 86$ 0HG (QWRPRO 0LFKHQHU & 6HDVRQDO YDULDWLRQV LQ FHUWDLQ VSHFLHV RI PRVTXLWRHV 1HZ
PAGE 290

0RNU\ 1RWHV RQ WKH &XOLVHWD VSHFLHV RI 1HZIRXQGODQG ZLWK UHSRUW RI D QHZ UHFRUG 0RVT 6\VW 0RRUH & DQG % 5 )LVKHU &RPSHWLWLRQ LQ PRVTXLWRHV 'HQVLW\ DQG VSHFLHV UDWLR HIIHFWV RQ JURZWK PRUWDOLW\ IHFXQGLW\ DQG SURGXFWLRQ RI JURZWK UHWDUGDQW $QQ (QW 6RF $PHU 0RUULV & $ VWUXFWXUDO DQG RSHUDWLRQDO DQDO\VLV RI GLXUQDO UHVWLQJ VKHOWHUV IRU PRVTXLWRHV 0HG (QW 0RUULV & 0 ( &RUH\ ( (PRUG DQG +RZDUG (SL]RRWLRORJ\ RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV LQ XSVWDWH 1HZ
PAGE 291

0XUSKH\ ) 3 3 %XUEXWLV DQG ) %UD\ %LRQRPLFV RI &XOH[ VDOLQDULXV &RTXLOOHWW ,, +RVW DFFHSWDQFH DQG IHHGLQJ E\ DGXOW IHPDOHV RI & VDOLQDULXV DQG RWKHU PRVTXLWR VSHFLHV 0RVT 1HZV 0XXO % -RKQVRQ DQG % $ +DUULVRQ (FRORJLFDO VWXGLHV LQ &XOLVHWD PHODQXUD LQ UHODWLRQ WR HDVWHUQ DQG ZHVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXVHV RQ WKH HDVWHUQ VKRUH RI 0DU\ODQG 0HG (QW 1DVFL 5 6 D $FWLYLW\ RI JUDYLG $HGHV WULVHULDWXV LQ ZRRGHG IHQFHURZV 0RVT 1HZV 1DVFL 5 6 E 'LIIHUHQFHV LQ KRVW FKRLFHV EHWZHHQ WKH VLEOLQJ VSHFLHV RI WUHHKROH PRVTXLWRHV $HGHV WULVHULDWXV DQG $HGHV KHQGHUVRQL $PHU 7URS 0HG +\J 1DVFL 5 6 9DULDWLRQV LQ WKH EORRGIHHGLQJ SDWWHUQV RI $HGHV YH[DQV DQG $H WULYLWWDWXV 0HG (QW 1DVFL 5 6 %HKDYLRUDO HFRORJ\ RI YDULDWLRQ LQ EORRGIHHGLQJ DQG LWV HIIHFW RQ PRVTXLWRERUQH GLVHDVHV S ,1 (FRORJ\ RI PRVTXLWRHV 3URFHHGLQJV RI D ZRUNVKRS / 3 /RXQLERV 5 5H\ DQG + )UDQN HGV )OD 0HG (QW /DE 9HUR %FK )OD 1DVFL 5 6 D 5HODWLRQVKLSV EHWZHHQ DGXOW PRVTXLWR ERG\ VL]H DQG SDULW\ LQ ILHOG SRSXODWLRQV (QYLURQ (QW 1DVFL 5 6 E 7KH VL]H RI HPHUJLQJ DQG KRVWVHHNLQJ $HGHV DHJ\SWL DQG WKH UHODWLRQ RI VL]H WR EORRGIHHGLQJ VXFFHVV LQ WKH ILHOG $P 0RVT &RQWURO $VVRF 1DVFL 5 6 DQG (GPDQ D %ORRGIHHGLQJ SDWWHUQV RI &XOLVHWD PHODQXUD DQG DVVRFLDWHG V\OYDQ PRVTXLWRHV LQ VRXWKHDVWHUQ 0DVVDFKXVHWWV HDVWHUQ HTXLQH HQFHSKDOLWLV HQ]RRWLF IRFL 0HG (QW 1DVFL 5 6 DQG (GPDQ E 9HUWLFDO DQG WHPSRUDO IOLJKW DFWLYLW\ RI WKH PRVTXLWR &XOLVHWD PHODQXUD LQ VRXWKHDVWHUQ 0DVVDFKXVHWWV 0HG (QW

PAGE 292

1DVFL 5 6 DQG (GPDQ &XOLVHWD PHODQXUD 'SWHUD &XOLFLGDHf SRSXODWLRQ VWUXFWXUH DQG QHFWDU IHHGLQJ LQ D IUHVKZDWHU VZDPS DQG VXUURXQGLQJ DUHDV LQ VRXWKHDVWHUQ 0DVVDFKXVHWWV 86$ 0HG (QW 1D\DU 7KH ELRORJ\ RI &XOH[ QLDULSDOSXV 7KHREDOG 3DUW $GXOW FKDUDFWHULVWFV DW HPHUJHQFH DQG DGXOW VXUYLYDO ZLWKRXW QRXULVKPHQW 0HG (QW 1D\DU :\HRPYLD PLWFKHOOL REVHUYDWLRQV RQ GLVSHUVDO VXUYLYDO QXWULWLRQ LQVHPLQDWLRQ DQG RYDULDQ GHYHORSPHQW LQ D )ORULGD SRSXODWLRQ 0RVT 1HZV 1D\DU DQG 3 $ 3LHUFH 7KH HIIHFWV RI GLHW RQ VXUYLYDO LQVHPLQDWLRQ DQG RYLSRVLWLRQ RI &XOH[ QLDULSDOSXV 7KHREDOG 0RVT 1HZV 1D\DU 0 : 3URYRVW DQG & : +DQVRQ 4XDQWLWDWLYH ELRQRPLFV RI &XOH[ QLDULSDOSXV SRSXODWLRQV LQ )ORULGD 0HG (QW 1D\DU 0 : 3URYRVW 0 1 6DXHUPDQ -U DQG 5 $ &URVVPDQ -U 4XDQWLWDWLYH ELRQRPLFV RI &XOH[ QLDULSDOSXV SRSXODWLRQV LQ )ORULGD 3KRVSKRUXV PDUNLQJ WHFKQLTXHV 0HG (QW 1D\DU DQG 0 6DXHUPDQ -U D $ FRPSDUDWLYH VWXG\ RI JURZWK DQG GHYHORSPHQW LQ )ORULGD PRVTXLWRHV 3DUW (IIHFWV RI HQYLURQPHQWDO IDFWRUV RQ RQWRJHQHWLF WLPLQJV HQGRJHQRXV GLXUQDO UK\WKP DQG V\QFKURQ\ RI SXSDWLRQ DQG HPHUJHQFH 0HG (QW 1D\DU DQG 0 6DXHUPDQ -U E $ FRPSDUDWLYH VWXG\ RI JURZWK DQG GHYHORSPHQW LQ )ORULGD PRVTXLWRHV 3DUW (IIHFWV RI ODUYDO QXUWXUH RQ DGXOW FKDUDFWHULVWLFV DW HPHUJHQFH 0HG (QW 1D\DU DQG 0 6DXHUPDQ -U $ FRPSDUDWLYH VWXG\ RI JURZWK DQG GHYHORSPHQW LQ )ORULGD PRVTXLWRHV 3DUW (IIHFWV RI WHPSRUDU\ FURZGLQJ GXULQJ ODUYDO VWDJHV RQ IHPDOH IOLJKW DFWLYLW\ SDWWHUQV 0HG (QW 1D\DU DQG 0 6DXHUPDQ -U 2VPRUHJXODWLRQ LQ ODUYDH RI WKH VDOW PDUVK PRVTXLWR $HGHV WDHQLRUKYQFKXV (QWRPRO ([S $SSO

PAGE 293

1D\DU DQG 0 6DXHUPDQ -U 7KH HIIHFWV RI QXWULWLRQ RQ VXUYLYDO DQG IHFXQGLW\ LQ )ORULGD PRVTXLWRHV 3DUW 8WLOL]DWLRQ RI EORRG DQG VXJDU IRU IHFXQGLW\ 0HG (QW 1HOVHQ 5 DQG $ &DUOVRQ &XWLFXODU K\GURFDUERQV RI WKH WVHWVH IOLHV *ORVVLQD PRUVLWDQV PRUVLWDQV DXVWHQL DQG *A SDOOLGLSHV ,QVHFW %LRFKHP 1HOVHQ 5 : 'LOOZLWK DQG %ORPTXLVW &XWLFXODU K\GURFDUERQV RI WKH KRXVHIO\ 0XVFD GRPHVWLFD ,QVHFW %LRFKHP 1HOVHQ 5 & / )DWODQG 5 : +RZDUG & $ 0F'DQLHO DQG %ORPTXLVW 5HDQDO\VLV RI WKH FXWLFXODU PHWK\ODONDQHV RI 6ROHQRSVLV LQYLFWD DQG 6 ULFKWHUL ,QVHFW %LRFKHP 1HOVHQ 5 1 1XQQ DQG / -DFNVRQ 5Hn DQDO\VLV RI WKH PHWK\ODONDQHV RI WKH JUDVVKRSSHUV 0HODQRSOXV GLIIHUHQWLDOLV 0 SDFNDUGL DQG 0 VDQJXLQLSHV ,QVHFW %LRFKHP 1HWHU DQG : :DVVHUPDQ $SSOLHG /LQHDU 6WDWLVWLFDO 0RGHOV 5HJUHVVLRQ DQDO\VLV RI YDULDQFH DQG H[SHULPHQWDO GHVLJQV 5LFKDUG ,UZLQ ,QF +RPHZRRG ,OOLQRLV 1LHOVHQ ( 7 DQG 6 +DHJHU 6ZDUPLQJ DQG PDWLQJ LQ PRVTXLWRHV 0LVH 3XEO (QW 6RF $PHU 1LHOVHQ ( 7 DQG + 7 1LHOVHQ 7KH VZDUPLQJ KDELWV RI VRPH 'DQLVK PRVTXLWRHV (QWRPRORJLVNH 0HGGHOHOVHU 1LMKRXW + ) DQG % &UDLJ -U 5HSURGXFWLYH LVRODWLRQ LQ 6WHJRPYLD PRVTXLWRHV ,,, (YLGHQFH IRU D VH[XDO SKHURPRQH (QW ([S t $SSO 1RODQ 0 3 0 $ 0RXVVD DQG ( +D\HV $HGHV PRVTXLWRHV IHHGLQJ RQ WXUWOHV LQ QDWXUH 0RVT 1HZV 1RUULV 0 5HFRYHU\ RI D VWUDLQ RI HTXLQH HQFHSKDOLWLV YLUXV IURP &XOH[ UHVWXDQV 7KHREf &DQ 5HV ( 1RYDN 5 3HORTXLQ DQG 5 5RKUHU 9HUWLFDO GLVWULEXWLRQ RI DGXOW PRVTXLWRHV LQ D QRUWKHUQ GHFLGXRXV IRUHVW LQ ,QGLDQD 0HG (QW

PAGE 294

2JOHVE\ : 7 RXWEUHDN RI LQIHFWLRXV HTXLQH HQFHSKDORP\HOLWLV LQ /RXLVLDQD $PHU 9HW 0 $ 2n0HDUD ) (FRORJ\ RI DXWRJHQ\ LQ PRVTXLWRHV S ,1 (FRORJ\ RI PRVTXLWRHV 3URFHHGLQJV RI D ZRUNVKRS / 3 /RXQLERV 5 5D\ t + )UDQN HGV )OD 0HG (QW /DE 9HUR %FK )OD 2PHU 6 0 DQG 0 7 *LOOLHV 6KRUW FRPPXQLFDWLRQ /RVV RI UHVSRQVH WR FDUERQ GLR[LGH LQ SDOSHFWRPL]HG IHPDOH PRVTXLWRHV (QW ([S t $SSO 2VWHHQ 2 / ,QIHFWLRXV HTXLQH HQFHSKDORP\HOLWLV PLGZLQWHU FDVH $PHU 9HW 0 $ 2WLV $ % : )HQQ DQG + 5DKQ 0HFKDQLFV RI EUHDWKLQJ LQ PDQ $SSO 3K\VLRO 2ZHQ : % 7KH FRQWDFW FKHPRUHFHSWRU RUJDQV RI WKH PRVTXLWR DQG WKHLU IXQFWLRQ LQ IHHGLQJ EHKDYLRU ,QV 3K\VLRO 3HQIRXQG : 7 6RXWKHUQ VZDPSV DQG PDUVKHV %RWDQ 5HY 3HUGUDQ 5 7KH $XVWUDOLDQ HSLGHPLF RI HQFHSKDORP\HOLWLV ;GLVHDVHf 3DWK %DFW 3KLOLS & % )ORZHUV DV D VXJJHVWHG VRXUFH RI PRVTXLWRHV GXULQJ HQFHSKDOLWLV VWXGLHV DQG LQFLGHQWDO PRVTXLWR UHFRUGV 3DUDVLW 3KLOLS & % DQG ( 6PDGHO 7UDQVPLVVLRQ RI :HVW 1LOH YLUXV E\ LQIHFWHG $HGHV DOERSLFWXV 3URF 6RF ([S %LRO t 0HG 3LDQND ( 5 2Q U DQG VHOHFWLRQ $P 1DW 3LDQND ( 5 U DQG VHOHFWLRQ RU E DQG G VHOHFWLRQ $P 1DW 3LSHU 3IHLIHU DQG 3 6FKHLG &DUERQ GLR[LGH GLIIXVLQJ FDSDFLW\ RI WKH UHVSLUDWRU\ V\VWHP LQ WKH GRPHVWLF IRZO 5HVSLU 3K\VLRO

PAGE 295

3ULFH 1 6PLWK DQG $ &DUOVRQ 7KH DWWUDFWLRQ RI IHPDOH PRVTXLWRHV $QRSKHOHV TXDGULPDFXODWXV 6D\f WR VWRUHG KXPDQ HPDQDWLRQV LQ FRQMXQFWLRQ ZLWK DGMXVWHG OHYHOV RI UHODWLYH KXPLGLW\ WHPSHUDWXUH DQG FDUERQ GLR[RGH &KHP (FRO 3ULFH 5 %LRORJLFDO QRWHV RQ &XOLVHWD PLQQHVRWDH %DUU DQG &XOLVHWD PRUVLWDQV 7KHREDOGf 'LSWHUD &XOLFLGDH .DQV (QW 6RF 3URYRVW 0 : 7KH LQIOXHQFH RI PRRQOLJKW RQ OLJKWWUDS FDWFKHV RI PRVTXLWRHV $QQ (QW 6RF $PHU 3URYRVW 0 : 7KH QDWXUDO KLVWRU\ RI &XOH[ QLJULSDOSXV SS )OD 6WDWH %UG +OWK 0RQRJU 6HU QR 6W /RXLV HQFHSKDOLWLV LQ )ORULGD 3URYRVW 0 : (QYLURQPHQWDO KD]DUGV LQ WKH FRQWURO RI GLVHDVH YHFWRUV (QY (QW 3XWQDP 3 DQG 5 & 6KDQQRQ 7KH ELRORJ\ RI 6WHTRPYLD XQGHU ODERUDWRU\ FRQGLWLRQV 3URF (QW 6RF :DVK 5DR 3 1 DQG 6 5DL &RPSDUDWLYH NDU\RW\SHV DQG FKURPRVRPDO HYDOXDWLRQ LQ VRPH JHQHUD RI QHPDWRFHURXV 'LSWHUD 1HPDWRFHUDf IDPLOLHV $QQ (QW 6RF $P 5HHV & & &KHPRUHFHSWRU VSHFLILFLW\ DVVRFLDWHG ZLWK FKRLFH RI IHHGLQJ VLWH E\ WKH EHHWOH &KUYVROLQD EUXQYLFHQVLV RQ LWV IRRGSODQW +\SHULFXP KLUVXWXP (QW ([S t $SSO 5HHYHV : & 7KH JHQXV 2UWKRSRGRPYLD LQ &DOLIRUQLD 3DQ 3DF (QW 5HHYHV : & )LHOG VWXGLHV RQ FDUERQ GLR[LGH DV D SRVVLEOH KRVW VWLPXODQW WR PRVTXLWRHV 3URF 6RF ([S %LRO 0HG 5HHYHV : & 4XDQWLWDWLYH ILHOG VWXGLHV RQ D FDUERQ GLR[LGH FKHPRWURSLVP RI PRVTXLWRHV $PHU 7URS 0HG +\J 5HHYHV : & 2YHUZLQWHULQJ RI DUWKURSRGERUQH YLUXVHV 3URJU 0HG 9LURO

PAGE 296

5HHYHV : & 0RVTXLWR YHFWRU DQG YHUWHEUDWH KRVW LQWHUDFWLRQ 7KH NH\ WR PDLQWHQDQFH RI FHUWDLQ DUERYLUXVHV S ,1 (FRORJ\ DQG SK\VLRORJ\ RI SDUDVLWHV V\PSRVLXP 8QLY 7RURQWR )HE $ 0 )DOOLV HG 8QLY 7RURQWR 3UHVV 5HHYHV : & 2YHUZLQWHULQJ RI DUERYLUXVHV 3URJU 0HG 9LURO 5HHYHV : & D ,PSRUWDQFH RI YHFWRU RYHUZLQWHULQJ WR GLVHDVH PDLQWHQDQFH %XOO 6RF 9HFW (FRO 5HHYHV : & E 7KH IXWXUH RI DUERYLUXVHV LQ 1RUWK $PHULFD %XOO 6RF 9HFW (FRO 5HHYHV : & 5 ( %HOODP\ DQG 5 3 6FULYDQL 5HODWLRQVKLSV RI PRVTXLWR YHFWRUV WR ZLQWHU VXUYLYDO RI HQFHSKDOLWLV YLUXVHV 8QGHU QDWXUDO FRQGLWLRQV $PHU +\J 5HHYHV : & % %URRNPDQ DQG : 0F' +DPPRQ 6WXGLHV RQ WKH IOLJKW UDQJH RI FHUWDLQ &XOH[ PRVTXLWRHV XVLQJ D IORXUHVFHQW G\H ZLWK QRWHV RQ &XOLVHWD t $QRSKHOHV 0RVT 1HZV 5HLVHQ : DQG 5 : (PRU\ ,QWUDVSHFLILF FRPSHWLWLRQ LQ $QRSKHOHV VWHSKHQVL 'LSWHUD &XOLFLGDHf ,, 7KH HIIHFWV RI PRUH FURZGHG GHQVLWLHV DQG WKH DGGLWLRQ RI DQWLELRWLFV &DQ (QW 5HLVHQ : 2YHUZLQWHULQJ PHFKDQLVPV RI 1RUWK $PHULFDQ &XOLVHWD %XOO 6RF 9HFWRU (FRO 5HPSHO : $ 5LGGHOO DQG ( 0 0F1HOO\ 0XOWLSOH IHHGLQJ KDELWV RI 6DVNDWFKHZDQ PRVTXLWRHV &DQ 5HV (f 5LFKDUGV $ 6WXGLHV RQ WKH DUWKURSRG FXWLFOH 9,, 7KH DQWHQQDO FXWLFOH RI KRQH\EHHV ZLWK SDUWLFXODU UHIHUHQFH WR WKH VHQVH SODWHV %LRO %XOO 5LOH\ : $ 7KH UROH RI LQVHFWV DQG DOOLHG IRUPV LQ WKH WUDQVPLVVLRQ RI GLVHDVHV GXH WR ILOWHUDEOH YLUXVHV 0LQQHVRWD 0HG

PAGE 297

5REHUWV 5 DQG ( 6FDQORQ $Q HYDOXDWLRQ RI PRUSKRORJLFDO FKDUDFWHUV IRU VHSDUDWLQJ IHPDOHV RI $HGHV I2FKOHURWDWXVf DWODQWLFXV '\DU t .QDE DQG $HGHV 2FKOHURWDWXVf WRUPHQWRU '\DU t .QDE 0RVJ 6\VW 5RELQVRQ * 7KH PRXWKSDUWV DQG WKHLU IXQFWLRQ LQ WKH IHPDOH PRVTXLWR $QRSKHOHV PDFXOLSHQQLV 3DUDVLWRORJ\ 5RHVVOHU 3 9HUVXFKH ]XU JHUXOLFKHQ $QORFNXQJ ZHOEOLFKHU 6WHFKPXFNHQ $HGHV DHJ\SWL / &XOLFLGDHf = YHUJO 3K\VLRO 5RJHUV $ 7KH YDOXH RI PRVTXLWR WD[RQRP\ WR SHVW PRVTXLWR FRQWURO 0RVT 6\VW 5RRW 5 % 7KH QLFKH H[SORLWDWLRQ SDWWHUQ RI WKH EOXHJUD\ JQDWFDWFKHU (FRO 0RQRJU 5RVD\ % $QDWRPLFDO LQGLFDWRUV IRU DVVHVVLQJ WKH DJH RI PRVTXLWRHV $QQ (QW 6RF $PHU 5RWK / 0 /RFL RI VHQVRU\ HQGRUJDQV XVHG E\ PRVTXLWRHV $HGHV DHJ\SWL /f DQG $QRSKHOHV JXDGULPDFXODWXV 6D\f LQ UHFHLYLQJ KRVW VWLPXOL $QQ (QW 6RF $PHU 5RXEDXG ( 1RXYHOOHV UHFKHUFKHV VXU nHYROXWLRQ ]RRSKLOH GHV IDXQHV Gn$QRSKHOHV HQ (XURSH $ PDFXOLSHQQLVf GnDSUHV OHV GRQQHHV GH OnDUPDQW PD[LOODLUH $QQ ,QVWLWXW 3DVWHXU 5RXJKJDUGHQ 'HQVLW\ GHSHQGHQW QDWXUDO VHOHFWLRQ (FRORJ\ 5RXJKJDUGHQ (YROXWLRQ RI QLFKH ZLGWK $PHU 1DW 5RXJKJDUGHQ 5HVRXUFH SDUWLWLRQLQJ DPRQJ FRPSHWLQJ VSHFLHVf§$ FRHYROXWLRQDU\ DSSURDFK 7KHRU 3RS %LRO 5RZOH\ : $ DQG 0 &RUQIRUG 6FDQQLQJ HOHFWURQ PLFURVFRS\ RI WKH SLW RI WKH PD[LOODU\ SDOS RI VHOHFWHG VSHFLHV RI &XOLFRLGHV &DQ =RRO 5R]HERRP / ( $UWKURSRG SRSXODWLRQV DV YHFWRUV DQG UHVHUYRLUV RI GLVHDVH %LRORJ\ RI SRSXODWLRQV % 6ODGHQ t ) % %DQG HGV $PHU (OVHYLHU 3XE &R 1HZ
PAGE 298

5R]HERRP / ( DQG 5 : %XUJHVV 'U\VHDVRQ VXUYLYDO RI VRPH SODQWFDYLW\ EUHHGLQJ PRVTXLWRHV LQ /LEHULD $QQ (QW 6RF $PHU 5XVK : $ 5 & .HQQHG\ DQG & 0 (NOXQG (YLGHQFH DJDLQVW ZLQWHU FDUU\RYHU RI ZHVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV E\ &XOH[ WDUVDOLV 0RVT 1HZV 5XWOHGJH / & DQG 5 $ :DUG 1RWHV RQ VRPH ODERUDWRU\ UHDUHG &XOLVHWD PHODQXUD &RTXLOOHWWf 0RVT 1HZV 6DEDWK 0 1LFKH EUHDGWK DQG JHQHWLF YDULDELOLW\ LQ V\PSDWULF QDWXUDO SRSXODWLRQV RI GURVRSKLOLG IOLHV $PHU 1DWXU 6DPDUDZLFNUHPD : $ %LWLQJ F\FOHV DQG SDULW\ RI WKH PRVTXLWR 0DQVRQLD XQLIRUPLV LQ &H\ORQ %XOO (QW 5HV 6DVWU\ 6 7 %XFN -DQDN 0 'UHVVLHU DQG 3UHWL 9RODWLOHV HPLWWHG E\ KXPDQV S ,Q %LRFKHPLFDO DSSOLFDWLRQ RI PDVV VSHFWURPHWU\ 5 :DONHU t 2 & 'HUPHU HGV :LOH\ DQG &R 1HZ
PAGE 299

6FKOHLQ < DQG 1 *UDW] $JH GHWHUPLQDWLRQ RI VRPH IOLHV DQG PRVTXLWRHV E\ GDLO\ JURZWK OD\HUV %XOO :OG +OWK 2UJ 6FKORWWKDXHU & ) 7KH VXVFHSWLELOLW\ RI GRJV WR YLUXV RI HTXLQH HQFHSKDORP\HOLWLV $PHU 9HW 0HG $VVRF 6FKPLGW 1LHOVHQ .DQZLVKHU 5 & /DVLHZVNL ( &RKQ DQG : / %UHW] 7HPSHUDWXUH UHJXODWLRQ DQG UHVSLUDWLRQ LQ WKH RVWULFK &RQGRU 6FKREHU + 1RWHV RQ WKH EHKDYLRU RI &XOLVHWD PHODQXUD &RTf ZLWK WKUHH LQVWDQFHV RI LWV ELWLQJ PDQ 0RVT 1HZV 6FKRHQHU 7 : 5HVRXUFH SDUWLWLRQLQJ LQ HFRORJLFDO FRPPXQLWLHV 6FLHQFH 6FKROO 3 DQG 5 'H)ROLDUW $HGHV WULVHULDWXV DQG $H KHQGHUVRQL 9HUWLFDO DQG WHPSRUDO GLVWULEXWLRQ DV PHDVXUHG E\ RYLSRVLWLRQ (QY (QW 6FKROO 3 5 'H)ROLDUW DQG 3 % 1HPHQ\L 9HUWLFDO GLVWULEXWLRQ RI ELWLQJ DFWLYLW\ E\ $HGHV WULVHULDWXV $QQ (QW 6RF $PHU 6FKROO 3 & + 3RUWHU DQG 5 'H)ROLDUW $HGHV WULVHULDWXV SHUVLVWHQFH RI QXOOLSDURXV IHPDOHV XQGHU ILHOG FRQGLWLRQV 0RVT 1HZV 6FKUHFN & ( + *RXFN DQG + 3RVH\ 7KH UDQJH RI HIIHFWLYHQHVV DQG WUDSSLQJ HIILFLHQF\ RI D SOH[LJODVV PRVTXLWR WUDS EDLWHG ZLWK FDUERQ GLR[LGH 0RVT 1HZV 6FKUHFN & ( + *RXN DQG 1 6PLWK $Q LPSURYHG ROIDFWRPHWHU IRU VWXG\LQJ PRVTXLWR DWWUDFWDQWV (FRQ (QW 6FRWW 7 : 6 : +LOGUHWK DQG % %HDW 7KH GLVWULEXWLRQ DQG GHYHORSPHQW RI HDVWHUQ HTXLQH HQFHSKDOLWLV YLUXV LQ LWV HQ]RRWLF PRVTXLWR YHFWRU &XOLVHWD PHODQXUD $PHU 7URS 0HG +\J 6HQLRU:KLWH 5 3K\VLFDO IDFWRUV LQ PRVTXLWR HFRORJ\ %XOO (QW 5HV 6HUYLFH 0 : 0RVTXLWR (FRORJ\ )LHOG VDPSOLQJ PHWKRGV $SSOLHG 6FLHQFH %DUNLQJ (QJODQG

PAGE 300

6HUYLFH 0 : (IIHFWV RI ZLQG RQ WKH EHKDYLRU DQG GLVWULEXWLRQ RI PRVTXLWRHV DQG EODFNIOLHV ,QW %LRPHWHUHRO 6KDKDQ 0 6 / 7 *LOWQHU DQG + : 6FKRHQLQJ $ UHYLHZ RI WKH RXWEUHDN RI LQIHFWLRXV HTXLQH HQFHSKDORP\HOLWLV LQ WKH 8QLWHG 6WDWHV 3URF 8 6 /LYHVWRFN 6DQLWDU\ $VVRF QG $QQ 0WJ 6KDODE\ $ 0 +RVW SUHIHUHQFH REVHUYDWLRQV RQ $QRSKHOHV FXOLFLIDFLHV 'LSWHUD &XOLFLGDHf LQ *XMDUDW 6WDWH ,QGLD $QQ (QW 6RF $PHU 6KHPDQFKXN $ (SLGHPLRORJ\ RI ZHVWHUQ HQFHSKDOLWLV LQ $OEHUWD UHVSRQVH RI QDWXUDO SRSXODWLRQV RI PRVTXLWRHV WR DYLDQ KRVW 0HG (QW 6KHSSDUG ( DQG 6WUDQDWKDQ (IIHFW RI SUHVVXUH RQ WKH VXUIDFH FKDUJH RI DQ HOHFWUHW 3K\V 5HY 6KLHOGV 6 ( 7HQQHVVHH YDOOH\ PRVTXLWR FROOHFWLRQV (FRQ (QW 6KLHOGV 6 ( DQG % /DFNH\ &RQGLWLRQV DIIHFWLQJ PRVTXLWR EUHHGLQJ ZLWK VSHFLILF UHIHUHQFH WR $H WKLEDXOWL (FRQ (QW 6LQVNR 0 DQG % &UDLJ '\QDPLFV RI DQ LVRODWHG SRSXODWLRQ RI $HGHV WULVHULDWXV 3RSXODWLRQ VL]H 0HG (QWRPRO 6LSSHOO : / DQG $ : %URZQ 6WXGLHV RI WKH UHVSRQVHV RI WKH IHPDOH $HGHV PRVTXLWR 9 7KH UROH RI YLVXDO IDFWRUV %XOO (QW 5HV 6LYHUO\ 5 ( 2FFXUUHQFH RI &XOLVHWD PHODQXUD LQ ,OOLQRLV 0RVT 1HZV 6LYHUO\ 5 ( DQG + ) 6FKRRI %LRORJ\ RI &XOLVHWD PHODQXUD LQ VRXWKHDVW *HRUJLD 0RVT 1HZV 6LYHUO\ 5 ( 2FFXUUHQFH RI $HGHV DEVHUUDWXV )HOW t
PAGE 301

6OLIHU ( + $ UDSLG DQG VHQVLWLYH PHWKRG IRU LGHQWLI\LQJ SHUPHDEOH SHUPHDEOH DUHDV LQ WKH ERG\ ZDOO RI LQVHFWV (QW 1HZV 6OLIHU ( + 7KH VWUXFWXUH RI DUWKURSRG FKHPRUHFHSWRUV $QQ 5HY (QW 6OLIHU ( + DQG 6 6 6HNKRQ 7KH ILQH VWUXFWXUH RI WKH VHQVH RUJDQV RQ WKH DQWHQQDO IODJHOOXP RI WKH \HOORZ IHYHU PRVTXLWR $HGHV DHJ\SWL /LQQDHXVf 0RUSKRO ,OO 6PLWK $ 5HVWLQJ KDELWV RI $QRSKHOHV JDPELDH DQG $QRSKHOHV SKDUDRHQVLV LQ VDOW EXVK DQG FUHYLFHV LQ WKH JURXQG 1DWXUH 6PLWK $ DQG % :HLW] 7KH IHHGLQJ KDELWV RI $QRSKHOHV JDPELDH ZLWK SDUWLFXODU UHIHUHQFH WR VXEn VLGLDU\ KRVWV $QQ 7URS 0HG 3DUDVLWRO 6PLWK & 1 1 6PLWK + *RXN ( :HLGKDDV + *LOEHUW 0 6 0D\HU % 6PLWWOH DQG $ +RIEDXHU / ODFWLF DFLG DV D IDFWRU LQ WKH DWWUDFWLRQ RI $HGHV DHJ\SWL 'LSWHUD &XOLFLGDHf WR KXPDQ KRVWV $QQ (QW 6RF $PHU 6QRZ : ) 7KH HIIHFW RI UHGXFWLRQ LQ H[SLUHG FDUERQ GLR[LGH RQ WKH DWWUDFWLYHQHVV RI KXPDQ VXEMHFWV WR PRVTXLWRHV %XOO (QW 5HV 6QRZ : ) 7KH GLUHFWLRQ RI IOLJKW RI PRVTXLWRHV 'LSWHUD &XOLFLGDHf QHDU WKH JURXQG LQ :HVW $IULFDQ VDYDQQD LQ UHODWLRQ WR ZLQG GLUHFWLRQ LQ WKH SUHVHQFH DQG DEVHQFH RI EDLW %XOO (QW 5HV 6QRZ : ) DQG 3 ) / %RUHKDP 7KH IHHGLQJ KDELWV RI VRPH :HVW $IULFDQ &XOH[ 'LSWHUD &XOLFLGDHf PRVTXLWRHV %XOO (QW 5HV 6RNDO 5 5 DQG ) 5RKOI %LRPHWU\ 7KH 3ULQFLSOHV DQG 3UDFWLFH RI 6WDWLVWLFV LQ %LRORJLFDO 5HVHDUFK : + )UHHPDQ t &R 6DQ )UDQFLVFR 6RNDO 5 5 DQG ) 5RKOI ,QWURGXFWLRQ WR %LRVWDWLVWLFV : + )UHHPDQ t &R 6DQ )UDQFLVFR 6SDODWLQ / .DUVWDG 5 $QGHUVRQ / /DXHUPDQ DQG 5 3 +DQVRQ 1DWXUDO DQG H[SHULPHQWDO LQIHFWLRQV LQ :LVFRQVLQ WXUNH\V ZLWK WKH YLUXV RI HDVWHUQ HQFHSKDOLWLV =RRQRVHV 5HV

PAGE 302

6SLHOPDQ $ 6ZDPS PRVTXLWR &XOLVHWD PHODQXUD RFFXUUHQFH LQ DQ XUEDQ KDELWDW 6FLHQFH 6ULKRQJVH 6 DQG 3 *DOLQGR 7KH LVRODWLRQ RI HDVWHUQ HTXLQH HQFHSKDOLWLV YLUXV IURP &XOH[ 0HODQRFRQLRQf WDHQLRSXV '\DU DQG .QDE LQ 3DQDPD 0RVT 1HZV 6ULKRQJVH 6 3 :RRGDOO 0 $ *UD\VRQ DQG 5 'HLEHO $UERYLUXVHV LQ 1HZ
PAGE 303

6WU\NHU DQG : :
PAGE 304

6\YHUWRQ 7 DQG 3 %HUU\ E +HUHGLWDU\ WUDQVPLVVLRQ RI ZHVWHUQ W\SH RI HTXLQH HQFHSKDORn P\HOLWLV YLUXV LQ WKH ZRRG WLFN ([SHU 0HG 7DNDKDVKL 0 7KH HIIHFWV RI HQYLURQPHQWDO DQG SK\VLRORJLFDO FRQGLWLRQV RI &XOH[ WULWDHQLRUKYQFKXV RQ WKH SDWWHUQ RI WUDQVPLVVLRQ RI -DSDQHVH HQFHSKDOLWLV YLUXV 0HG (QW 7DNDKDVKL 0 DQG < 6KLPL]X 2EVHUYDWLRQV RI WKH IHHGLQJ KDELWV RI VRPH PRVTXLWRHV LQ *XDUQDQ 3UHIHFWXUH -DSDQ -DS 0HG 6FL %LRO 7DQDND . 0L]XVDZD DQG ( 6 6DXJVWDG $ UHYLVLRQ RI WKH DGXOW DQG ODUYDO PRVTXLWRHV RI -DSDQ LQFOXGLQJ WKH 5\XN\X $UFKLSHODJR DQG WKH 2JDVDZDUD ,VODQGVf DQG .RUHD 'LSWHUD &XOLFLGDHf &RQW $PHU (QW ,QVW YLL S 7D\ORU ( 0HDGRZV DQG ( %DXJKPDQ &RPSDULVRQ RI FKLFNEDLWHG WUDS ZLWK WKH &'& PLQLDWXUH OLJKW WUDS 0RVT 1HZV 7HPSHOLV & + +RVW SUHIHUHQFHV RI PRVTXLWRHV SS 3URF 3DS WK &RQI &DOLI 0RVT &RQW $VVRF 7HPSHOLV & + +RVW IHHGLQJ SDWWHUQV RI PRVTXLWRHV ZLWK D UHYLHZ RI DGYDQFHV LQ DQDO\VLV RI EORRG PHDOV E\ VHURORJ\ 0HG (QW 7HPSHOLV & + % )UDQFH\ 5 2 +D\HV DQG 0 ) /RI\ 9DULDWLRQV LQ IHHGLQJ SDWWHUQV RI VHYHQ FXOLFLQH PRVTXLWRHV RQ YHUWHEUDWH KRVWV LQ :HOG DQG /DULPHU FRXQWLHV &RORUDGR $P 7URS 0HG +\J 7HPSOLV & + 5 2 +D\HV $ +HVV DQG : & 5HHYHV %ORRGIHHGLQJ KDELWV RI IRXU VSHFLHV RI PRVTXLWR IRXQG LQ +DZDLL $PHU 7URS 0HG +\J 7HPSHOLV & + DQG 0 ) /RI\ $ PRGLILHG SUHFLSLWLQ PHWKRG IRU WKH LGHQWLILFDWLRQ RI PRVTXLWR EORRGPHDOV $PHU 7URS 0HG +\J 7HQ %URHFN & DQG 0 + 0HUULOO 6HURORJLFDO GLIHUHQFH EHWZHHQ HDVWHUQ DQG ZHVWHUQ HTXLQH HQFHSKDORn P\HOLWLV YLUXV 3URF 6RF ([SHU %LRO DQG 0HG

PAGE 305

7HQQH\ 6 0 DQG %DUWOHWW -U &RPSDUDWLYH TXDQWLWDWLYH PRUSKRORJ\ RI WKH PDPPDOLDQ OXQJ WUDFKHD 5HVS 3K\VLRO 7KLEDXOW -U 1RWHV RQ WKH PRVTXLWRHV RI $UNDQVDV (QW 6RF :DVK 3URF 7KLHPDQQ 6 DQG + & .UDHPHU 6RXUFHV RI EHKDYLRUDO YDULDQFH LPSOLFDWLRQV IRU VDPSOH VL]H GHFLVLRQV $P 3ULPDWRO 7KRPDV / $ DQG & 0 (NOXQG 2YHUZLQWHULQJ RI ZHVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV LQ H[SHULPHQWDOO\ LQIHFWHG JDUWHU VQDNHV DQG WUDQVPLVVLRQ WR PRVTXLWRHV 3URF 6RF ([S %LRO 7KRPDV / $ & 0 (NOXQG DQG : $ 5XVK 6XVFHSWLELOLW\ RI JDUWHU VQDNH 7KDPQRSOLXVf WR ZHVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV 3URF 6RF ([S %LRO 7KRPSVRQ : + DQG 6 / ,QKRUQ $UWKURSRGERUQH &DOLIRUQLD JURXS YLUDO HQFHSKOLWLV LQ :LVFRQVLQ :LVH 0HG 7KRPSVRQ : + % .DOID\DQ DQG 5 2 $QVORZ ,VRODWLRQ RI &DOLIRUQLD JURXS YLUXV IURP D IDWDO KXPDQ LOOQHVV $PHU (SLGHPLRO 7KRPSVRQ : ,, 7UDLQHU 9 $OOHQ DQG % +DOH 7KH H[SRVXUH RI ZLOGOLIH ZRUNHUV LQ :LVFRQVLQ WR WHQ ]RRQRWLF GLVHDVHV 7UDQV WK 1 $PHU :LOGOLIH 1DWXU 5HV &RQI S 7LOPDQ 5HVRXUFH FRPSHWLWLRQ EHWZHHQ SODQNWRQLF DOJDH DQ H[SHULPHQWDO DQG WKHRUHWLFDO DSSURDFK (FRORJ\ 7LQNHU 0 ( DQG & 6WRMDQRYLFK ,GHQWLILFDWLRQ RI WKH SXSDH RI UHFHSWDFOHEUHHGLQJ PRVTXLWRHV $QQ (QW 6RF $PHU 7LWPDQ (FRORJLFDO FRPSHWLWLRQ EHWZHHQ DOJDH H[SHULPHQWDO FRQILUPDWLRQ RI UHVRXUFH EDVHG FRPSHWLWLRQ 6FLHQFH 7RPLQDJD < DQG )
PAGE 306

7RZQHV & + 3URGXFWLRQ RI FRKHUHQW UDGLDWLRQ E\ DWRPV DQG PROHFXOHV 6FLHQFH 7USLV 0 DQG : +RUVIDOO (JJV RI IORRGZDWHU PRVJXLWRHV ;, (IIHFW RI PHGLXP RQ KDWFKLQJ RI $HGHV VWLFWLFXV $QQ (QW 6RF $PHU 7XUHOO 0 & / %DLOH\ DQG & $ 5RVVL ,QFUHDVHG PRVTXLWR IHHGLQJ RQ 5LIW 9DOOH\ )HYHU YLUXV LQIHFWHG ODPEV $P 7URS 0HG +\J 7XUHOO 0 7 3 *DUJDQ ,OO DQG & / %DLOH\ 5HSOLFDWLRQ DQG GLVVHPLQDWLRQ RI 5LIW 9DOOH\ IHYHU YLUXV LQ &XOH[ SLSLHQV $PHU 7URS 0HG +\J 7XUHOO 0 & $ 5RVVL DQG & / %DLOH\ (IIHFW RI H[WULQVLF LQFXEDWLRQ WHPSHUDWXUH RQ WKH DELOLW\ RI $HGHV WDHQLRUKYQFKXV DQG &XOH[ SLSLHQV WR WUDQVPLW 5LIW 9DOOH\ )HYHU YLUXV $P 7URS 0HG +\J 9DOH $ )LHOG VWXGLHV RI WKH UHVSRQVHV RI WVHWVH IOLHV *ORVVLQLGDHf DQG RWKHU 'LSWHUD WR FDUERQ GLR[LGH DFHWRQH DQG RWKHU FKHPLFDOV %XOO (QW 5HV 9DOH $ 7KH HIIHFWV RI RGRXUV ZLQG GLUHFWLRQ DQG ZLQG VSHHG RQ WKH GLVWULEXWLRQ RI *ORVVLQD 'LSWHUD *ORVVLQLGDHf DQG RWKHU LQVHWV QHDU VWDWLRQDU\ WDUJHWV %XOO (QW 5HV 9DQGU\ 6 9 5 'H)ROLDUW DQG % +RJJ $GXOW ERG\ VL]H DQG VXUYLYRUVKLS LQ D ILHOG SRSXODWLRQ RI $HGHV WULVHULDWXV $PHU 0RVT &RQW $VVRF 9DQ +DQGHO ( 7KH GHWHFWLRQ RI QHFWDU LQ PRVTXLWRHV 0RVT 1HZV 9DQ +DQGHO ( 5DSLG GHWHUPLQDWLRQ RI JO\FRJHQ DQG VXJDUV LQ PRVTXLWRHV $P 0RVT &RQW $VVRF 9DQ 9DOHQ / 0RUSKRORJLFDO YDULDWLRQ DQG ZLGWK RI HFRORJLFDO QLFKH $PHU 1DWXU 9HD]H\ $GDP DQG : *XVFLRUD $UERYLUXV VXUYHLOODQFH IRU ((( LQ 1 PRVTXLWRHV GXULQJ WKH \HDUV 3DUW $Q RYHUYLHZ 3URF 1HZ -HUVH\ 0RVT &RQW $VVRF

PAGE 307

9LFNHU\ & $ -U ( 0HDGRZV DQG ( %DXJKPDQ 6\QHUJLVP RI FDUERQ GLR[LGH DQG FKLFN DV EDLW IRU &XOH[ QLTULSDOSXV 0RVT 1HZV 9LOODYDVR ( DQG & 6WHHOPDQ $ FROODSVLEOH GRJEDLWHG PRVTXLWR WUDS 0RVT 1HZV 9LQHV 5 $ 7UHHV VKUXEV DQG ZRRG\ YLQHV RI WKH VRXWKZHVW 8QLY 7H[DV 3UHVV $XVWLQ 7H[ :DOGEDXHU 3 7KH PRXWKSDUWV RI IHPDOH 3VRURSKRUD FLOLDWD 'LSWHUD &XOLFLGDHf ZLWK QHZ LQWHUSUHWDWLRQ RI WKH IXQFWLRQ RI WKH ODEUDO PXVFOH 0RUSKRO ,OO :DONHU ( 5 6 &RSHODQG 6 / 3DXOVRQ DQG / ( 0XQVWHUPDQQ $GXOW VXUYLYRUVKLS SRSXODWLRQ GHQVLW\ DQG ERG\ VL]H LQ V\PSDWULF SRSXODWLRQV RI $HGHV WULVHULDWXV DQG $HGHV KHQGHUVRQL 0HG (QW :DOOLV 5 & &XOLVHWD PHODQXUD &RTXLOOHWf DQG HDVWHUQ HTXLQH HQFHSKDOLWLV LQ &RQQHFWLFXW 0RVT 1HZV :DOOLV 5 & 2YHUZLQWHULQJ &XOLVHWD PHODQXUD ODUYDH 3URF (QW 6RF :DVK :DOOLV 5 & 6H[ GLIIHUHQFH LQ SXSDWLRQ RI ODUYDO &XOLVHWD PHODQXUD $PHU 0RVT &RQWU $VVRF :DOOLV 5 & +RZDUG $ 0DLQ & )UD]LHU DQG & +D\HV $Q LQFUHDVH RI &XOLVHWD PHODQXUD FRRLQFLGLQJ ZLWK DQ HSL]RRWLF RI HDVWHUQ HTXLQH HQFHSKDOLWLV LQ &RQQHFWLFXW 0RVT 1HZV :DOOLV 5 & ( / -XQJKHUU 5 ( /XJLQEXKO & +HOPEROGW ) 6 ) 6DWULDQR / $ :LOOLDPVRQ DQG $ / /DPVRQ ,QYHVWLJDWLRQ RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV 9 (QWRPRORJLF DQG HFRORJLF ILHOG VWXGLHV $PHU +\J :DOOLV 5 & DQG $ 0DLQ (DVWHUQ HTXLQH HQFHSKDOLWLV LQ &RQQHFWLFXW SURJUHVV DQG SUREOHPV 0HP &RQQ (QW 6RF :DOOLV 5 & 5 0 7D\ORU DQG 5 +HQGHUVRQ ,VRODWLRQ RI HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV YLUXV IURP $HGHV YH[DQV LQ &RQQHFWLFXW 3URF 6RF ([S %LRO t 0HG

PAGE 308

:DOOLV 5 & 5 0 7D\ORU 5 : 0F&ROOXP DQG 7 5LRUGDQ 6WXG\ RI KLEHUQDWLQJ PRVTXLWRHV LQ HDVWHUQ HTXLQH HQFHSKDORP\HOLWLV HSLGHPLF DUHDV LQ &RQQHFWLFXW 0RVT 1HZV :DOOLV 5 & DQG / :KLWPDQ &XOLVHWD PHODQXUD &RTXLOOHWf EUHHGLQJ LQ DUWLILFLDO FRQWDLQHUV 0HG (QW :DOOLV 5 & DQG / :KLWPDQ &RORQL]DWLRQ RI &XOLVHWD PHODQXUD &RTf LQ WKH ODERUDWRU\ 0RVT 1HZV :DUQHV 0 / DQG / + )LQOD\VRQ 5HVSRQVHV RI WKH VWDEOH IO\ 6WRPR[YV FDOFLWUDQV /f 'LSWHUD 0XVFLGDHf WR FDUERQ GLR[LGH DQG KRVW RGRXUV $FWLYDWLRQ %XOO (QW 5HV :DVKLQR 5 DQG & + 7HPSHOLV 0RVTXLWR KRVW EORRGPHDO LGHQWLILFDWLRQ PHWKRGRORJ\ DQG GDWD DQDO\VLV $QQ 5HY (QW :DWWV 0 * &ODUN & / &UDEEV & $ 5RVVL 2OLQ 7 5 DQG & / %DLOH\ (FRORJLFDO HYLGHQFH DJDLQVW YHUWLFDO WUDQVPLVVLRQ RI HDVWHUQ HTXLQH HQFHSKDOLWLV YLUXV E\ PRVTXLWRHV RQ WKH 'HOPDUYD SHQLQVXOD 86$ 0HG (QW :DWWV 0 DQG % ) (OGULGJH 7UDQVRYDULDO WUDQVPLVVLRQ RI DUERYLUXVHV E\ PRVTXLWRHV D UHYLHZ 0HG %LRO :DWWV 0 6 3DQWXZDQWDQD 5 'H)ROLDUW 7 0
PAGE 309

:KLWH 0 &\WRORJLFDO HYLGHQFH RQ WKH SK\ORJHQ\ DQG FODVVLILFDWLRQ RI WKH 'LSWHUD (YROXWLRQ :KLWWDNHU 5 + 6 $ /HYLQ DQG 5 % 5RRW 1LFKH KDELWDW DQG HFRWRSH $LULHU 1DW :LONLQV 2 3 DQG 2 3 %UHHODQG 7KH ODUYDO VWDJHV DQG ELRORJ\ RI WKH PRVJXLWR 2UWKRSRGRP\LD DOED 1HZ
PAGE 310

:ULJKW 5 + :K\ PRVTXLWR UHSHOOHQWV UHSHO 6FL $PHU :ULJKW 5 + 3 1 'D\NLQ DQG ) ( .HOORJJ 5HDFWLRQ RI IO\LQJ PRVTXLWRHV WR YDULRXV VWLPXOL 3URF ;,, ,QW &RQJ (QW
PAGE 311

%,2*5$3+,&$/ 6.(7&+ 3DXO 0HUULOO &KRDWH -U ZDV ERUQ $SULO LQ 6W -RKQVEXU\ 9HUPRQW 3UHVFKRRO DQG HOHPHQWDU\ VFKRRO GD\V ZHUH SDVVHG LQ WKH VPDOO UXUDO FRPPXQLW\ RI 0RQURH 1HZ +DPSVKLUH &KLOGKRRG KREELHV FRQVLVWHG RI ILVKLQJ DQG KXQWLQJ +LJK VFKRRO HGXFDWLRQ ZDV VSHQW DW WKH FROOHJH SUHSDUDWRU\ VFKRRO &KRDWH 6FKRRO :DOOLQJIRUG &RQQHFWLFXW IURP WR )LUVW FROOHJH DWWHQGDQFH ZDV DW WKH 8QLYHUVLW\ RI 9HUPRQW DW %XUOLQJWRQ ZLWK D PDMRU LQ SUH YHWHULQDU\ PHGLFLQH $IWHU WKUHH \HDUV RI FROOHJH VWXGLHV ZHUH WHUPLQDWHG DQG D PLOLWDU\ WRXU RI GXW\ EHJXQ LQ WKH 8QLWHG 6WDWHV $LU )RUFH ODVWLQJ IURP WR LQFOXGLQJ D \HDU RI GXW\ LQ WKH 5HSXEOLF RI 9LHWQDP 8SRQ OHDYLQJ WKH PLOLWDU\ UHWXUQ WR D FROOHJH SURJUDP ZDV LQLWLDWHG DW WKH 8QLYHUVLW\ RI 1HZ +DPSVKLUH 'XUKDP $ %DFKHORU RI 6FLHQFH GHJUHH LQ HQWRPRORJ\ ZDV UHFHLYHG LQ *UDGXDWH VWXGLHV LQ HQWRPRORJ\ ZHUH EHJXQ DW WKH 8QLYHUVLW\ RI )ORULGD LQ LQWHUUXSWHG IURP WR DQG UHLQVWDWHG IURP WR WKH SUHVHQW 3DXO LV PDUULHG WR $QJHOD /XSORZ UHVLGLQJ LQ *DLQHVYLOOH )ORULGD

PAGE 312

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ Xf 'RQDOG : +DOO &KDLUPDQ 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DQLHO / .OLQH &RFKDLUPDQ $VVRFLDWH 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -O_UAO + )UDQN 3URIHVVRU RI (QWRPRORJ\ DQG 1HPDWRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ D &DUPLQH $ /DQFLDQL 3URIHVVRU RI =RRORJ\

PAGE 313

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORtTSK\ $XJXVW 'HDQ &ROOHJH RI $JULFXOWXUH 'HDQ *UDGXDWH 6FKRRO

PAGE 314

81,9(56,7< 2) ), QRPL


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E4GLTAZPA_0POKGX INGEST_TIME 2017-07-13T21:55:00Z PACKAGE AA00003764_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES