Citation
Yield dynamics of soybean relative to plant population

Material Information

Title:
Yield dynamics of soybean relative to plant population
Creator:
Thompson, Peter G., 1959-
Publication Date:
Language:
English
Physical Description:
xv, 155 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Crops ( jstor )
Leaf area ( jstor )
Plant density ( jstor )
Plants ( jstor )
Population density ( jstor )
Seed pods ( jstor )
Seed productivity ( jstor )
Seeds ( jstor )
Soybeans ( jstor )
Stems ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 145-154).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Peter G. Thompson.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001613901 ( ALEPH )
AHN8319 ( NOTIS )
23536042 ( OCLC )

Downloads

This item has the following downloads:


Full Text










YIELD DYNAMICS OF SOYBEAN RELATIVE TO PLANT POPULATION


By
PETER G. THOMPSON












A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA


1990













TABLE OF CONTENTS

page
ACKNOWLEDEGMENTS ................................................................................... v
LIST OF TABLES................................................................................................... vii
LIST OF FIGURES................................................................................................. xi
ABSTRACT...................................................................................................... xvi
CHAPTERS
1 INTRODUCTION................................................................................ 1

2 LITERATURE REVIEW......................................................................... 4

The Effect of Plant Population on Soybean................................... 5
Stems and Branches.............. .......... .............................. 5
Leaves and Leaf Area Index................................... ......... 6
Flower Production and Development ................................... 7
Nodes, Pods and Seeds.................................................. 7
Biomass....................................................................................... 10
Lodging................................................................................. 10
Nitrogen and Phosphorus Accumulation............................. 10
The Structural and Yield Implications of
Density-Mediated Plastic Responses............................ 11

Explaining Soybean Yield in Plant Population Studies................. 12
Regression Analyses and Correlations of
PYCs and Yield.............................................................. 12
Plant Population Density Effect on Productivity on a
per Plant and per unit Area Basis. ................................ 13
The Yield-Plant Population Density Response.................... 19

3 MATERIALS AND METHODS..................................................... 27

Field Experiments ............................................................................. 27
Data Analysis.......................................................................................... 32
The Evaluation of Variables and Relationships
Operating in Yield-Plant Density Studies...................... 35






ii










4 RESULTS AND DISCUSSION-1987 EXPERIMENT ..................... 41
ANOVA Results..................................................... .......................... 41
Plant Population Effect ............................................. ......... 41
Cultivar Effect......................................................... ................... 46
An Explanation for Cultivar Differences
Based on ANOVA.................................... .... ........... 52
Correlation Analysis........................................................................ 56
An Explanation for Cultivar Yield Differences
Based on Correlation Analyses........................... ........ 59
The Yield Plant Population Density Response.................... 61
Conclusion........................................................................................... 65

5 RESULTS AND DISCUSSION-1988 EXPERIMENT...................... 67
Plant Population Density Effects, Yield Correlations and their
Implications for Yield.............................................................. 67
Vegetative Structures...................... .................................. 69
Nutrient Status and Linear Regression ................................ 84
Reproductive Structures.......................................................... 94
Results and Discussions of Cross Tables ............................... 102

6 AN INVESTIGATION INTO THE YIELD-PLANT DENSITY
RESPONSE WITH SOYGRO..................................................... 114
A Crop Simulation Perspective on Duncan's Assumptions ............ 116
Simulation Exercise .......................................................................... 118
Results of Model Calibration .................................................................. 123
An Investigation of Duncan's Assumptions....................................... 128
Total Light Use Efficiency--Glucose Equivalent...................... 135
Seed Yield Efficiency and Seed Yield Efficiency
-Glucose Equivalent............................................................ 135
Conclusions.............................................................................................. 140
7 SUMMARY AND CONCLUSIONS....................................................... 142








REFERENCES.............................................................................................. 145
BIO G RAPH ICAL SKETC H................................................................................. 155














ACKNOWLEDGMENTS


I am grateful to the Institute of Food and Agricultural Sciences for
providing funding; without which my studies at the University of Florida would not
have been be possible. I would also like to acknowledge the Graduate School;
specifically the Minority Program, for their generous financial support.
I would like to thank Dr. J. L. Fry who introduced me to the University of
Florida, for his constant encouragement and unwavering commitment to the
success of my program His concern, advice and thoughts also helped greatly
in resolving my frustrations as a student.
I am grateful to Dr. R. McDavis who always provided invaluable and
timely advice. His philosophy on education was always encouraging, especially
in difficult times.
I am deeply appreciative of Dr. Darell E. McCloud, whom as the chairman
of my committee was particularly understanding and wholeheartedly supported
my quest for a well-rounded education.
I am indebted to Dr. Ken J. Boote, the cochair of my committee, who
contributed significantly to my intellectual maturity by persistently placing before
me the challenge of considering academic and scientific issues that I would not
have otherwise addressed.











I would like to express my gratitude to Dr. Kuell Hinson. It has always
been a pleasure to interact with him. He has always been concerned about my
welfare as a student and his open-mindedness is reassuring.
I am indebted to Dr. Chris. O. Andrew--a mentor. Our discussions and his
sound advice always provided valuable insight. But most importantly, he has
inspired me to take a broader view of life.
I am grateful to Dr. William G. Blue, with whom I have an extremely
comfortable relationship, and whose openess and warmth never diminished his
rigorous and spirited examination of my work.
I am thankful to Dr. Goran Hyden who patiently instilled in me the
confidence to pursue issues pertinent to agricultural development. He
contributed greatly to my intellectual development by always challenging me to
take my ideas one step further.
I would like to thank Rick Hill who introduced me to the operations of the
Agronomy Farm which facilitated my field experiments. I am grateful to Frank
McGraw for his willing and invaluable practical advice on my field experiment.












LIST OF TABLES


Table aga
3-1 Summary of the plant variables measured during
1987 and 1988.................................................................. 33
3-2 A table for the interpretation of plant density-yield cross-
referenced data.................................................................... 39
4-1 The effect of plantpopulation and cultivar on total dry
weight (g m ) at R5, 1987.................................. .......... 42
4-2 Cultivar effect on total dry weight at R5,1987. ............................. 42
4-3 The effect of plant population and cultivar on soybean
plant traits at R6 stage, 1987................................................... 43
4-4 Cultivar effect on soybean plant traits at R6 stage, 1987.............. 44
4-5 The effect of plant population and cultivar on plant
traits at R8 stage, 1987.................................... .......... 45
4-6 The effect of plant population (X) on pod number (m-2)()
for each cultivar at R8 stage, 1987......................................... 53
4-7 The effect of plant population on seed number (m-2)
for each cultivar at R8 stage, 1987.......................................... 53
4-8 The effect of cultivar on pod number (m-2) for each
plant population at R8 stage, 1987........................................ 54
4-9 The effect of cultivar on seed number (m-2) for each
plant population at R8 stage,1987....................................... 54
4-10 Cultivar effect on soybean plant traits at R8 stage, 1987.............. 55
4-11 Correlation coefficients for yield and its fundamental
components (X1) at R6 with variables (X2)at
R5 and R6, 1987................................................................ 57








4-12 Correlation coefficients for the fundamental yield components
(X1) at stage R8 with variables (X2) at R5 and
R8, 1987........................................................................................ 58
4-13 Mean values and correlation coefficients for R5 total dry
weight (g m- ), seed dry weight (g m-2) and its
fundamental components at R8, 1987................................ 60
4-14 Statistical models for per plant responses (Y) of soybean
with plant density (X).............. .............................................. 60
5-1 Statistical models for soybean plant variables (Y)
with plant density (X) at R3 stage, 1988................................ 70
5-2 Statistical models for soybean plant variables (Y)
with plant density (X) at R5 stage, 1988.................................... 70
5-3 Correlation coefficients of soybean plant variables at
R3 stage with seed dry weight (g m-4) at R8, 1988.............. 74
5-4 Correlation coefficients of soybean plant variables at
R5 stage with seed dry weight (g m- ) at R8, 1988............. 74
5-5 Statistical models for soybean plant variables (Y)
with plant density (X) at R3 stage,1988....................................... 77
5-6 Statistical models for soybean plant variables (Y)
with plant density (X) at R5 stage, 1988.................................. 77
5-7 Correlation coefficients of soybean plant varjibles
at R3 stage with seed dry weight (g m") at R8,1988................. 82
5-8 Correlation coefficients of soybean plant variables
at R8 stage with seed dry weight (g m-2) at R8,1988......... 82
5-9 Statistical models for soybean plant variables (Y) at R5
stage with plant density (X), 1988..................... 86
5-10 Correlation coefficients of soybean plant variables
at R5 stage with seed weight (g m" ), 1988........................ 86
5-11 Statistical models for soybean plant variables (Y)
at R5 stage with plant density (X), 1988.............................. 93
5-12 Statistical models of plant density (X) with soybean
yield components (Y) at R8, 1988............................................. 93
5-13 Correlation coefficients of soybean plant vriables at
R5 stage with seed dry weight (g m-4) at R8,1988............ 101








5-14 Correlation coefficients of soybean plant variables at
R8 with seed dry weight (g m) at R8,1988......................... 101
5-15 Yield-Plant Density Cross-Table for soybean plant
variables highly associated with yield and
exhibiting high plant density effect at R8, 1988.................... 103
5-16 Yield-Plant Density Cross-Table for soybean plant
variables highly associated with yield and
exhibiting no plant density effect at R8, 1988..................... 105
5-17 Yield-Plant Density Cross-Table for soybean plant
variables not associated with yield and
exhibiting no plant density effect at R8, 1988............................ 106
5-18 Yield-Plant Density Cross-Table for R5 soybean plant
variables exhibiting plant density effect and high
yield association, 1988.................................................. 107
5-19 Yield-Plant Density Cross-Table for soybean plant
variables not associated with yield and not
affected by plant density at R5 and R8,1988................................ 108
5-20 Yield-Plant Density Cross-Table for soybean plant
variables not associated with yield and
exhibiting no plant density effect at R5,
and which show high association to
each other, 1988...................... ................................................. 110
5-21 Yield-Plant Density Cross-Table for soybean plant
variables highly associated with yield and
exhibiting high plant density effect at R3, 1988......... 111
5-22 Plastic and non-plastic responses of reproductive,
remobilization and photosynthetic parameters
and their impact on seed dry weight (g m-2), 1988............... 112
6-1 Yield data for Cumberland cultivar,1986. .................................... 120
6-2 Irrigation schedule for Cumberland cultivar,1986........................ 120
6-3 Definitions of soil parameters and characteristics
of M aury silt loam ........................................................................ 121
6-4 Summary of changes in genetic traits of Williams cultivar
and crop parameters in calibrating SOYGRO using
Cumberland cultivar,1 986................................. 124
6-5 Simulated yield data for Cumberland cultivar, 1986..................... 125








6-6 Total light use efficiencies as determined by SOYGRO
for Cumberland cultivar, 1986, at seventeen
plant densities............................................................................... 136
6-7 Seed yield efficiencies as determined by SOYGRO for
Cumberland cultivar,1986, at seventeen plant
densities..................................................................................... 138









LIST OF FIGURES


Figure page
2-1 Typical response for yield per unit area (a) and yield
per plant (b) to plant density................ ..................................... 21
3-1 Precipitation profile over the 1987 and 1988
growing seasons, Gainesville, FI................................................. 28
4-1 The effect of plant population density on total dry weight
at the R5 stage in soybean, 1987............................................. 47
4-2 The effect of plant population density on seed dry weight
of soybean at maturity, 1987............................................. ...... 48
4-3 The effect of plant population density on seeds pod-1
of soybean at maturity, 1987......................................................... 49
4-4 The effect of plant population density on weight seed-1
of soybean at maturity, 1987.............................................. ...... 50
4-5 The effect of plant population density on pod number m-2
of soybean at maturity, 1987...................... .................... ... 51
4-6 The effect of plant population density on dry weight per
plant of soybean at the R5 stage, 1987..................................... 62
4-7 The effect of plant population density on seed and pod
weight per plant of soybean at maturity, 1987......................... 63
4-8 The effect of plant population density on seed and pod
number per plant of soybean at maturity, 1987.................... 64
5-1 The effect of plant population density on seed and pod
weight of Kirby at maturity, 1988........... ..................... 68
5-2 The effect of plant population density on stem, leaf and total
dry weights of Kirby at the R3 stage, 1988.............................. 71
5-3 The effect of plant population density on stem, leaf and total
dry weights of Kirby at the R5 stage, 1988.................................. 72
5-4 The effect of plant population density on vegetative
dry weight of Kirby at the R3 and R5 stages,1988............... 73









5-5 The effect of plant population density on stem and leaf
fractions of Kirby at the R3 and R5 stages,1 988....................... 76
5-6 The effect of plant population density on specific leaf
area of Kirby at the R3 and R5 stages,1 988.............................. 79
5-7 The effect of plant population density on the leaf area
index of Kirby at the R3 and R5 stages, 1988............................ 80
5-8 The effect of plant population density on percent light
interception of Kirby at the R3 and R5 stages,1988.................. 81
5-9 The effect of plant population density on leaf and stem N
concentrations of Kirby at the R5 stage,1988............................ 85
5-10 The effect of plant population density on leaf and stem
N content of Kirby at the R5 stage,1 988.................................. 87
5-11 The effect of plant population density on leaf and stem P
concentrations of Kirby at the R5 stage,1988............................... 88
5-12 The effect of plant population density on leaf and stem
P content of Kirby at the R5 stage,1988.................................. 89
5-13 The effect of plant population density on N content per
unit leaf area of Kirby at the R5 stage, 1988................................. 90
5-14 The effect of plant population density on P content per
unit leaf area of Kirby at the R5 stage, 1988.............................. 91
5-15 The effect of plant population density on seed and pod
number of Kirby at maturity, 1988.................................. 95
5-16 The effect of plant population density on weight per seed
of Kirby at maturity, 1988.......................................................... 96
5-17 The effect of plant population density on seed number
per pod of Kirby at maturity, 1988..................................... 97
5-18 The effect of plant population density on seed and pod
weight per plant of Kirby at maturity, 1988................................ 98
5-19 The effect of plant population density on seed and pod
number per plant of Kirby at maturity, 1988.............................. 100
6-1 Observed and simulated effects of plant population
density on seed yield of Cumberland,
cultivar, 1986..................................... 126










6-2 Observed and simulated effects of plant population
density on weight per seed of Cumberland
cultivar,1986....................................................................................... 127
6-3 Observed and simulated effects of plant population
density on seed number per unit area of
Cumberland cultivar,1986.............................................................. 129
6-4 Observed and simulated effects of plant population
density on seed yield per plant of
Cumberland cultivar,1986.............................................................. 130
6-5 The relationship between light intercepted between R5 and
R7, and percent light absorbed at noon (R5), daily (R5)
and between R5 and R7 for Cumberland,1986....................... 131
6-6 The simulated effect of plant population density on N
mobilized per unit area for Cumberland cultivar,1986............. 133
6-7 The simulated effect of plant population density on percent
mobilized-N in seeds of Cumberland cultivar, 1986................... 134
6-8 The simulated effect of plant population density on total
light use efficiency of Cumberland cultivar,1986..................... 137
6-9 The simulated effects of plant population density on seed
yield efficiency of Cumberland cultivar,1986 with and
without the benefit of protein remobilization................................ 139













Abstract of Dissertation Presented to the Graduate School of the
University of Florida in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

YIELD DYNAMICS OF SOYBEAN RELATIVE TO PLANT POPULATION

By

PETER G. THOMPSON

August 1990

Chairman: Dr. Darell E. McCloud
Cochairman: Dr. Kenneth J. Boote
Major Department: Agronomy


Soybean [Glycine max (I.) Merr.] yield has been shown to respond to
changes in plant population. Results from numerous plant population studies
on soybean conclusively show that various crop and plant parameters which
are known to influence yield, are themselves subject to plant population effects.
However, the mechanism by which plant population exerts its influence on yield
is not well understood.
Field experiments were conducted in Gainesville, Florida (29038N)
during 1987 and 1988 to identify crop parameters and physiological and
ecological relationships which mediate the effect of plant population on yield.
SOYGRO--a process-oriented crop growth simulator, was also used to
investigate the effect of plant population on seed yield and to test published
hypotheses regarding the efficiency with which the soybean crop uses
photosynthetically active radiation (PAR) to produce seed yield.







The soybean cultivars Kirby [MG VIII], Centennial [MG VI] and Forrest
[MG V], were planted in 1987 at populations of 11.1, 25.0 and 44.4 plants m-2 in
a square arrangement. The parameters recorded at growth stages R5, R6 and
R8 included total dry weight, pod dry weight and number, and seed dry weight
and number. Plant population did not have any effect on the variables
recorded; however, all variables were significantly affected by cultivar. Seed
size and total dry weight m-2 at R5 accounted for the differences observed in
yield between the cultivars.
In 1987, Kirby [MG VIII] was planted at populations of 2.0, 4.0, 6.3, 11.1,
16.0, 25.0, 44.4 and 69.4 plants m-2 in a square arrangement. The variables
most sensitive to plant population, and which were also closely associated with
yield, were seed number and pod number at R8 and total dry weight and leaf
dry weight at R5.
The SOYGRO model which was calibrated to give responses
approximating those of observed mean yield and canopy traits to plant density,
confirmed the hypothesis that seed yield efficiency (seed yield / unit PAR
intercepted) tends to increase with plant density. This increase can be
attributed in part to an increasing ratio of mobilized-N to total-N in seeds at
higher plant densities.











CHAPTER 1
INTRODUCTION


Soybean [Glycine max (L.) Merr.], the prodigious legume which was first
domesticated approximately 3,000 years ago by the Chinese has come to be
known as the "yellow jewel" and the "wonder bean." Soybean has a tremendous
range of uses. It is used in the production of such varied products as cardboard,
paint, fire extinguisher foam and glue. However, because of its high protein and
oil content, soybean finds its most important use either directly or indirectly as
food for both humans and animals. Soybean is viewed by some as a major
weapon against world hunger. But if the full potential of soybean as a weapon
against hunger is to be realized, the processes which determine its grain yield
need to be better understood.
Soybean is grown under diverse cultural conditions and usually at plant
populations which, through trial and error, have been found to be desirable.
The study of the effect of plant population or plant population density on soybean
grain yield is of interest for two main reasons. First, for a given cropping system,
the quantitative relationship between yield and plant population density is
important in estimating i) at what density maximum or optimum yield can be
achieved and ii) in economic terms, which plant population will provide the most
profitable yield.







Secondly, plant population studies allow examining the process of yield
achievement and its determinants. The determinants of yield or potential yield
correlates (PYCs) can be defined as any morphological or physiological
characteristic of a crop, which may influence final seed yield at one time or
another during the development of the crop. An understanding of the relationship
between PYCs and yield is basic to any appreciation of the process of yield
achievement. The elucidation of the nature and the extent of the functional
relationship between PYCs and yield is facilitated by plant population studies. A
sufficiently wide range of plant populations may provide a range in magnitude of
both PYCs and yield, and this allows comprehensive regression analyses to be
conducted on the relationship of yield to PYCs.
Therefore plant population studies are important in understanding both
the physiological basis of yield and crop improvement. By establishing the
relationships i) of both PYCs and yield with plant population density, ii) between
PYCs themselves and iii) between PYCs and yield, a basis and direction for
physiological inquiry into the process of yield achievement can be attained.
Once the major determinants or PYCs of yield have been established, these
factors may also serve as effective selection criteria in crop improvement
programs which seek to achieve higher yields, and foster socioeconomic
development.
It has been pointed out by Duncan (1986) that there has yet to emerge a
theory capable of explaining soybean yield within the context of plant population
studies. In an attempt to appreciate the dynamics of yield within the context of
plant population studies, the objectives of the investigation conducted here are;
first, to develop an analytical framework for the analysis of yield-plant population




3


density data; secondly, to ascertain which biological and ecological variables
and relationships of the soybean crop mediate the influence of plant population
density on final grain yield; and thirdly, to elucidate the basis for the response
surface which characterizes yield-plant population density relationships. This
final objective which focuses on a relatively unexplored area (the response
surface) of plant population studies, will be carried out using SOYGRO a
process oriented crop growth simulation model for soybean.











CHAPTER 2
LITERATURE REVIEW


The research literature on yield-plant population density studies will be
broken down into three sections. First, the effect of plant population on the
soybean crop will be discussed. The next two sections come under the umbrella
of explaining yield, and consist of discussions on the observation that yield per
unit area increases and yield per plant decreases with increasing plant
population density, and discussions on the asymptotic or parabolic shape of
yield-plant population density responses. It is within the context of the latter
section that SOYGRO--a process oriented plant growth simulator (Jones et al.,
1989) will be discussed. Of specific interest with SOYGRO are estimations of the
impact of plant population density on the efficiency with which plants use light
inputs for seed production. Lastly, the identification of the reproductive growth
stages of soybean and the square planting pattern which are relevant to
experimental procedures will be discussed.


The Effect of Plant Population on Soybean


In plant population or yield-plant population density studies, the main
ecological force which influences crop performance is interplant competition.
With increasing density, plants tend to compete more intensely for available







resources. Plant competition is subject to a number of differing interpretations;
however, here it will be defined according to Grime (1973)--the tendency for
neighboring plants to utilize the same quantum of light, ion of a mineral, molecule
of water or volume of space.
Competitive interactions between organisms are considered to be among
the most important ecological phenomena (Snell and Burch, 1975). Competition
between organisms occupies a place of prominence in evolutionary theory,
where "survival of the fittest" determines the procreation possibilities of species.
At a more immediate level, competition holds various consequences for a
developing plant. In reacting or adapting to changes in the pressures of
competition, plants may become modified both physiologically and
morphologically. When this occurs, the plant is said to exhibit plastic responses
(Hutchings and Budd, 1981). Plastic responses may affect the productive
performance of plants and crops. It has been amply demonstrated by
researchers, that in soybean, both yield and PYCs are subject to
density-mediated plastic responses. The impact of plant population density on i)
vegetative and reproductive structures, ii) lodging and iii) nitrogen (N) and
phosphorus (P) accumulation will be discussed.


Stems and Branches


The height and thickness of soybean stems have been shown to be
affected by plant population density. It has been reported that plant height
increases with plant population density (Ramseur et al., 1985; Doss and Thurlow,
1974; Wilcox, 1974; Johnson and Harris, 1967). This increase in plant height has






been attributed to an increase in the length of the internodes, and not to
increases in the number of nodes (Dominguez and Hume, 1978; Basnet et al.,
1974; Hinson and Hansen, 1962). In some cases, plant height has been
unaffected by density (Hoggard et al., 1978; Lueschen and Hicks, 1977; Probst,
1945). In one atypical case, Dominguez and Hume (1978) reported that with the
cultivar 'Vansoy', increased density resulted in shorter plants. The diameter of
the main stem in soybean decreases with increased density (Miura and Gemma,
1986; Ramseur et al., 1985; Wright et al., 1984; Fontes and Ohlrogge, 1972).
Oba et al. (1961) also found that stem weight per plant decreases with density.
The number of branches per plant decreases with density (Basnet et al.,
1974; Fontes and Ohlrogge, 1972; Hinson and Hansen, 1962; Lehman and
Lambert, 1960). However, in their work Chaudhry and Cheema (1985) found
that the effect of density on the number of branches per plant was not significant.


Leaves and Leaf Area Index


Leaf weight per plant decreases (Oba et al., 1961) while the leaf area
index (LAI) increases with plant population density (Parvez et al., 1989; Weber et
al., 1966). Of relevance to population studies is the fact that the degree of
shading or exposure to light affects leaf anatomy. At lower light intensities leaves
develop fewer layers of palisade cells (Xu and Miao, 1988), while higher light
intensities have the opposite effect, resulting in thicker leaves (Chabot et al.,
1979; Fails et al., 1982). At higher population densities where the shading of
lower leaves occurs, it can be expected that there will be greater differences







between the specific leaf weight of leaves on the periphery of the canopy and
those deeper in the canopy itself.


Flower Production and Development




Increased population results in a reduction in the proportion of flowers
which result in mature pods (Buttery, 1969). Dominguez and Hume (1978) also
found that increased density increased the percentage of flowers aborted. They
further observed that the decrease in the number of flowers per plant observed at
high densities, was due to fewer flowers produced per node. This observation
has also been made by Lehman and Lambert (1960). Fewer flowers at higher
densities has also been attributed to fewer nodes per plant (Dominguez and
Hume, 1978).


Nodes. Pods and Seeds


The number of nodes per plant decreases with plant population density
(Dominguez and Hume, 1978; Basnet et al., 1974). However, on a per unit area
basis, the number of nodes increases with density (Parvez et al., 1989; Hruska
and Labounek, 1985). Consistent with these observations are those that the
number of pods per plant decreased (Olsen, 1986; Nakagawa et al., 1986;
Hoggard et al., 1978; Lueschen and Hicks, 1977; Basnet et al., 1974; Lehman
and Lambert, 1960), while the number of pods per unit area increased (Udoguchi
and McCloud, 1986) with plant population density. In their work, Chaudhry and







Cheema (1985) reported that the number of pods per plant was not affected by
plant population density. Pod set is also greater at lower populations (Oba et al.,
1961; Weber et al., 1966).
Seed weight per unit area increases with plant population density (Parvez
et al., 1989; Udoguchi and McCloud, 1986; Parker et al., 1981; Spilde et al.,
1980; Doss and Thurlow 1974). However, in their work, Hoggard et al. (1978)
found that seed weight per unit area decreased with increasing plant population
density. Basnet et al. (1974) and Caviness (1966) reported that seed weight per
unit area was unaffected by plant population density.
Johnson and Harris (1967) in their work, found that of the several cultivars
investigated, weight per seed decreased with plant population density only with
'Lee'. This decrease has also been reported by Parks and Manning (1980),
Wilcox (1974), and Wright et al. (1987). In thinning experiments, Weil and
Ohlrogge (1976) also reported that weight per seed increased by 11.5% with
decreased plant population density. Nedic et al. (1987) also found that the
number of filled seeds per plant decreased with density. The reduction in seed
size with increasing plant population density may be the result of increased pod
production per unit area. Other researchers reported no relationship between
weight per seed and plant population density (Dominguez and Hume, 1978;
Fontes and Ohlrogge, 1972).
The number of seeds per plant decreases with density (Lueschen and
Hicks, 1977; Fontes and Ohlrogge, 1972). Blumenthal et al. (1988) observed
that the number of seeded pods per branch decreased with population. The
number of seeds per pod decreases with plant population density (Blumenthal et
al., 1988; Herbert and Litchfield, 1982; Fontes and Ohlrogge, 1972; Lehman and







Lambert, 1960). However, in some cases it has been shown that seeds per pod
is not affected by plant population density (Chaudhry and Cheema, 1985;
Dominguez and Hume, 1978).
The distribution of pods and hence seeds within the crop and on plants is
also affected by plant population density. The height of the first pod increases
with density (Nedic et al., 1987; Olsen, 1986; Tsuchiya et al., 1986; Lueschen and
Hicks, 1977; Basnet et al., 1974). This fact is of importance in mechanical
harvesting, where it is advantageous to have the pods located away from the
ground. Parks and Manning (1980) found that the ratio of the number of seeds on
the main stem to those on the branches increased with plant population density.
Ramseur et al. (1984) also found that with decreased plant population density,
the seed number and yield on branches increased while pod number, seed
number and yield on stems decreased. Dominguez and Hume (1978) in their
work, observed that for the determinate cultivar 'Fiskeby V', an increase in plant
population density resulted in a shift in the majority of yield from the upper third to
the middle of the plant. Ramseur et al. (1984) also found that increased plant
population density reduced the contribution of the lower nodes to yield.
According to Weil and Ohlrogge (1976) thinning resulted in weight per seed
being 23.9% greater at the top of the canopy than in unthinned stands. Increased
density resulted in a reduction of the bottom portion of plants in their contribution
to total seed number (Dominguez and Hume, 1978).










It has been reported that biomass per unit area increases with plant
population density (Parvez et al., 1989; Blumenthal et al., 1988; Udoguchi and
McCloud, 1986). Biomass per plant decreases with plant population density
(Holler and Abrahamson, 1977; Wilcox, 1974). It should be noted that biomass
per unit area tends to increase with plant population density at all stages of plant
development. However, biomass per plant will decrease with plant population
density only when there is appreciable interplant competition.


Lodging


Lodging increases with plant population density (Tsuchiya et al., 1986;
Fontes and Ohlrogge, 1972; Probst, 1945). Lueschen and Hicks (1977) found a
significant linear relationship between plant population and lodging. Johnson
and Harris (1967) in studying a number of soybean cultivars reported that
cultivars with larger stem diameters, such as 'Hardee', tended not to lodge in
response to increased plant population density. Increased lodging was also
associated with taller plants (Cooper, 1971). Increased density increased plant
height and decreased stem diameter (Wright et al., 1984).


Nitrogen and Phosphorus Accumulation


According to Abrahamson and Caswell (1982), biomass allocation in
plants has been correlated to various degrees to the allocation of minerals and







energy. Hanway and Weber(1971) from their work, also showed that N, P and K
accumulation mirrored biomass allocation. Nelson and Weaver (1980) reported
that the lowest planting density exhibited the highest rate of acetylene reducing
activity per plant. This finding has been attributed to the greater nodule mass on
plants at the lowest plant population density, since the specific activity of nodules
was only slightly affected by plant population density. Buttery (1969) reported that
N concentration decreased with density, and he attributed this to increased
competition for N between plants at higher plant population densities.
The nutrient status of plants is directly related to crop productivity in two
ways. First, the photosynthetic capacity of plant tissue depends upon the
concentration of nutrients, especially in the leaves. Secondly, the status of N
and P also determines the amount of nutrient which may be available for seed
production via the process of nutrient remobilization.


The Structural and Yield Implications of Density-Mediated Plastic Responses


Plastic responses, which are embodied in morphological and
physiological changes, hold both structural and yield implications for soybean.
Structurally, plants are exposed to various physical stresses. Plants which
undergo density-mediated plastic responses must compensate for changing
stresses to avoid the mechanical failure of their axes (that is, breakage and
lodging). Accordingly, plants preferentially form and lay down specialized tissues
of varying material properties, in different regions of the plant (Niklas and
O'Rouke, 1982). Pianka (1972) suggested that in organisms with "plastic







abilities," it can be expected that the manner and pattern of resource allocation
will be influenced by different competitive environments.
The process of adjusting to the forces of interplant competition, therefore,
influences canopy arrangement, light interception, stem thickness, pod number
and distribution, mineral concentrations and contents, the amount of nutrients
which can be remobilized, the number of seeds and so forth. The entire process
whereby light energy is converted into chemical energy and is allocated and
stored, is affected by plant population density.


Explaining Soybean Yield in Plant Population Studies


In attempting to explain soybean yield within the context of plant
population studies, three areas of overlapping research can be identified: i) the
correlation or regression of PYCs with yield, ii) the exploration of the
physiological basis for the observation that yield per unit area increases, while
yield per plant decreases with increasing plant population density, and iii) the
examination of the physiological basis of asymptotic and parabolic yield-plant
population density responses.


Regression Analyses and Correlation of PYCs and Yield


The correlation or association of various plant and crop characteristics
with seed yield is standard practice in yield improvement programs and in yield
analysis. Outside the context of plant population density studies (using different
soybean genotypes and productive environments), the following characteristics







are correlated with yield per plant in soybean: stem weight, stem thickness and
branch number (Taguchi et al., 1958), pod number and the number of fertile
nodes (Board, 1985). Yield per unit area has been shown to be highly
associated with LAI and number of seeds per unit area, but only moderately
correlated with dry matter production (Basuchaudhuri, 1987). In their work, Kaw
and Menon (1972) found that pod number and seed number per unit area were
highly correlated with yield per unit area. Characteristics showing the lowest
correlation with yield per plant include seeds per pod and weight per seed
(Board, 1985; Tandojam,1986; Johnson et al., 1955). Hartwig and Edwards
(1970) in their studies on morphological characters which affect yield per unit
area, reported that seed number per pod did not affect yield. However, Ma
(1946) (cited by Anand and Torrie (1963)) found that seed number per pod was
correlated with yield, and Weber and Moorthy (1952) reported that there was a
high positive correlation between weight per seed and yield per unit area.
Within population studies the following characteristics are highly
correlated with yield per plant: stem diameter and pod number per plant (Fontes
and Ohlrogge, 1972). The following were correlated with yield per unit area: pod
number and total dry matter (Parvez et al., 1989; Udoguchi and McCloud, 1986).
Leaf area index was not correlated with yield per unit area (Ramseur et al., 1985;
Costa et al., 1980).


Plant Population Density Effect on Productivity on a per Plant and per Unit Area
Basis


Light interception and canopy structure form the main basis of discussions
which seek to explain the impact of plant population density on yield per plant







and yield per unit area. To a lesser extent, the significance of N and P status has
also been addressed. Writing in 1966, Weber et al. argued that in order to
understand how plants respond to changes in density, it is necessary to
investigate the 'spatial relationships' in canopies, solar energy interception and
leaf area accumulation. The amount of light intercepted by a crop is determined
by the arrangement of the canopy (branching, leaf area, etc.)
Lueschen and Hicks (1977) reported that soybean plants are capable of
compensating for low plant population densities by producing more branches
and pods per plant. Acock and Acock (1987) found that the growth and
development of branches on a plant depended on the amount of light received.
Shading reduced the photosynthetic rate of plants at high densities, resulting in
carbon shortages (per plant) and a tendency to produce fewer branches. These
findings are consistent with those of Charles-Edwards (1984), Charles-Edwards
and Beech (1984), Bunce (1988) and Johnston et al. (1969).
Yield per unit area has been positively correlated with vegetative dry
matter production per unit area (Egli et al., 1987). It has also been established
that dry matter production is a function of solar radiation intercepted (Shibles and
Weber, 1966; Brougham, 1956; Davidson, 1958; Watson, 1958). Brougham
(1956) found that both the rate of dry matter production per unit area and the
percent solar radiation intercepted increased with LAI. Johnston and Pendleton
(1968) argued that due to its large leaves and phyllotaxy, soybeans tend to have
a closed canopy. Soybeans intercepted as much as 90% of the incoming solar
radiation near the top and periphery of the canopy (Sakamoto and Shaw, 1967).
Thus there is a tendency for lower leaves to be shaded. If increased plant
population density is accompanied by increased shading, it can be expected that






the light intercepted per plant will decrease which will subsequently result in a
reduction in yield per plant.
Leaf area index increases with plant population density (Parvez et al.,
1989; Weber et al., 1966; Costa et al., 1980). The extent of photosynthetic activity
not only depends on LAI and the amount of light intercepted, but also upon the
photosynthetic capacity of the leaves intercepting the light. Bunce (1988) found
that photosynthetic capacity was lower at higher densities, even though LAIs are
higher. Reduced photosynthetic capacity resulted from the shading of lower
leaves, and the longer period of time that young developing leaves spent in the
shade at high stand densities. These findings corroborate the work of
Nichiporovich et al. (1969) and the suggestion by Johnson et al. (1969) that due
to both inter- and intra-plant competition for light, middle and bottom soybean
leaves do not reach their full photosynthetic potential.
Differences in light intensity also results in photomorphogenic changes in
leaves. Phytochrome provides the sensory pigment which enables plant cells to
react to light quality and intensity. The light-regulated ratio of
phytochrome-far-red to total phytochrome serves to influence protein synthesis
and enzyme activity (Song 1984; Schopfer 1984). Photomorphogenic effects
have implications for photosynthetic activity. Increased irradiance results in
thicker leaves, and this has been attributed to increased thickness of the palisade
mesophyll layer (Reginer et al., 1988; Chabot et al., 1979). Therefore,
photosynthetic tissue per unit leaf area is increased. Ford et al. (1983) found
that carbon dioxide exchange rate was moderately and positively correlated with
specific leaf weight. Wells et al. (1986a) also found that differences in canopy
photosynthesis between soybean cultivars was associated with differences in







specific leaf weight. However, by contrast, Secor et al. (1982) found that specific
leaf weight was able to explain only 4% of the variation in total photosynthesis
among 110 lines of soybean. Nelson and Schweitzer (1988) found that specific
leaf weight in soybean is an effective selection trait, as it tends not to be greatly
influenced by the environment.
Wells et al. (1986b) reported that the quantity of RUBPcase per unit leaf
area was positively correlated with specific leaf weight. Reginer et al. (1988)
reported that when soybean plants were grown at low versus high irradiance, the
total soluble protein per unit leaf area decreased by as much as 40%, RuBPcase
per unit area decreased by 31%, and chlorophyll content per unit leaf area
decreased by 15%. These factors contribute to reduced photosynthetic rates at
lower irradiance. However, in soybean, shaded leaves are not 'parasitic,'
because their respiration rates decrease along with reductions in photosynthetic
capacity (Shibles and Weber 1965; Duncan et al., 1967).
The status of N in both leaf tissue, and the entire plant, is important to the
processes of photosynthesis and remobilization, both of which are related to
seed yield. The rate of carbon dioxide assimilation, chlorophyll content and
RuBPcase activity are proportional to leaf N (Evans, 1983). It has been shown by
Boote et al. (1978) that a decline in photosynthesis was correlated with
decreases in leaf N. Lugg and Sinclair (1981) reported that in lower leaflets
and below a critical protein content per unit leaf area (13 to 16 g m-2) in
uppermost leaflets, there existed a linear relationship between estimated protein
content per unit area and photosynthesis. Buttery (1969) found that N
concentration decreased with increasing plant population density and attributed
this to an inadequate supply of N. Soluble protein and N content in the leaf reach







a maxima during the early reproductive phase (Boon-Long et al., 1983,
Thibodeau and Jaworski, 1975). Pod number and seed yield are correlated with
N accumulation in leaves in the early reproductive phase (Zheng et al., 1987).
Phosphorus status also affects the productive capacity of soybean
canopies. Fredeen et al. (1989) found that low P decreased soybean growth
primarily through effects on the rate of expansion of leaf surfaces. Photosynthetic
rates were also reduced (Fredeen et al., 1989). Sawada et al. (1983) in their
P-stress experiments reported that decreases in photosynthetic activity can be
partially attributed to P deficiency (lack of phosphate compounds in the
photosynthetic machinery). Phosphorus deficiency reduced photosynthetic
capacity (Foyer and Cooper, 1986). Photosynthetic CO2 fixation diminished with
reduced P concentration in leaves (Terry and Ulrich, 1973). Keogh et al. (1972)
found that P levels in 10 soybean cultivars from three maturity groups ranged
from 3.4 to 3.7 g kg-1, with low standard deviations. Nutrient concentration did
not vary much except Ca which was higher in higher-yielding cultivars.
Miller et al. (1961) reported that in the canopy of soybean, upper leaves
tend to have a higher P concentration than lower leaves. They also found a
positive relationship between P concentration (in upper leaves) and yield when
percent K was greater than 1.2 g kg-1. Saturating irradiance for photosynthesis
in P-deficient plants was found to be 30% less than in the control, however, P
deficiency did not affect photosynthetic activity at low irradiances (Sawada et al.,
1983). Thus at higher plant population densities (if there are no deficiencies due
to interplant competition) low P would affect leaves atop the canopy.
Photosynthetic capacity and seed production are also affected by the
process of nutrient remobilization. Nitrogen and P are accumulated in the leaves,







petioles and stems until the pod production stage, after which they are rapidly lost
from these parts and accumulated in the developing seeds (Hanway and Weber,
1971). In upper leaves, N and P concentrations were 50.5 and 3.7 g kg"1
respectively, while in the bottom leaves (older and undergoing translocation) N
and P concentrations were 23.0 and 3.0 g kg"1 respectively (Terman, 1977).
The extent to which developing fruits draw upon nutrient reserves of
vegetative tissue has led to the suggestion that nutrient remobilization leads to
senescence. Depodding prevented senescence and the gradual reinstatement
of senescence as an increasing number of pods is allowed to develop on each
plant (Lindoo and Nooden, 1977). However, Nooden et al. (1978) indicate that
the development of seeds is separable from the senescence response in
soybeans and that seeds may function as more than sinks. They found that sink
size does not parallel foliar senescence; the senescence response is saturated at
a level far below the maximum level of dry weight and nitrogen accumulation in
the seeds. Although drain and diversion may be involved in the monocarpic
senescence of soybeans, it seems unlikely that developing seeds exert such a
remarkable correlative influence simply by functioning as a sink (Nooden et al.,
1978).
Carbon assimilated early in the life cycle has virtually no direct relevance
to fruit nutrition. Therefore, carbon fixed during reproductive development must
be primarily relied upon to furnish the seed's requirement for this element. The
extremely low rate of transfer of early-fixed carbon to seeds is resolved as being
partly due to the fact that much of this carbon has been dissipated in respiration
before flowering has commenced, and partly to the fact that carbon which







survives until fruiting is bound into materials from which it cannot be readily
retrieved during the senescence of vegetative parts (Pate and Flinn, 1973).
On the other hand, Pate and Flinn found that N assimilated early in the
life cycle is released for seed development with great efficiency. Therefore, it
should be theoretically possible to increase rates of transfer to seeds by
arranging for larger reserves of N to have accumulated by the time when
flowering commences. Mobilization is a gradual process which gathers
momentum as fruiting proceeds. Hocking and Pate (1977) in studying legumes
reported that N, P and K are highly mobile and 60 to 90% are usually retrieved.
Approximately half of the N and P in mature seeds appears to have been in other
plant parts prior to pod development (Hanway and Weber,1971). Therefore,
since nutrient accumulation mirrors biomass accumulation, at higher plant
population densities more substrate will be available per unit area for
remobilization making higher seed yields possible.


The Yield-Plant Population Density Response


Explanations of the dynamics of yield in population studies, go beyond
justifying that yield per area tends to increase while yield per plant tends to
decrease with plant population density. The asymptotic or parabolic shape of the
yield-plant population density response needs to be investigated. The main
areas of interest in explaining the shape of yield-plant population density
reponses are light interception, the efficiency with which the crop and plant use
production inputs, biomass accumulation, lodging and barreness. In this
subsection, first, the fundamental and obvious characteristics of the yield-plant







population density response will be discussed; secondly, Duncan's (1986)
theory on yield-plant population density response in soybean will be critically
reviewed; thirdly, the relevance of SOYGRO to investigations of yield-plant
population density responses will be outlined; and fourthly, the possible basis for
changes in the efficiency with which plants use inputs for seed production and its
relevance to yield-plant population density responses will be discussed.


The fundamentals of yield-plant population density responses


In Fig. 2-1 (a) and Fig. 2-1 (b) the typical yield plant population density
responses are shown. Using plant population density as a basis for categorizing
sections of these responses, the following phases are identified: between plant
population densities DO and D1, yield per plant is at a maximum and is constant,
and yield per area assumes a strict linear relationship with plant population
density. At density D1, interplant competition commences and yield per plant
begins to decrease. After plant population density D1, yield per area begins to
deviate from linearity and the slope of the response begins to decrease.
Between plant population densities D1 and D4, although yield per plant
decreases, yield per area increases because plant population density increases
at a rate greater in magnitude than the rate of reduction in yield per plant. At
plant population density D2 the yield per plant response assumes its steepest
negative slope, and between plant population densities D2 and D3 (which occurs
at an early stage of interplant competition) interplant competition has its greatest
impact on the reduction of yield per plant. This impact is given by the magnitude





















- ~(a


DO D1 D2


D4 DS


Plants m-2


Fig. 2-1. Typical responses for yield per unit area (a) and yield per
plant (b) to plant density.







of the negative slope of the relationship between yield per plant and plant
population density between D2 and D3.
At plant population density D3, there is a reduction in the rate of decrease
in yield per plant with plant population density. This reduction may be indicative
of plant adaptation to interplant competition, and possibly implies an increased
efficiency with which the plant is using inputs for seed production.
Between plant population densities D4 and D5 yield per area assumes a
maximum and constant value. A number of crop and plant requirements for
achieving maximum yield per area have been suggested. It has been suggested
that insolation interception must approach 100% early in reproductive growth to
maximize yield per area (Shibles and Weber, 1965; Hawkins, 1982), specifically,
prior to the period of grain production (Shibles and Weber, 1966). Duncan
(1986) argued that complete interception needed to occur only before fruit or
seed number reached a maximum, in order to maximize fruits per unit area.
Duncan's view may be consistent with the findings of Egli et al. (1985) that fruit
number increased even after growth stage R5. However, Johnson et al. (1982)
have suggested that complete light interception is required at the earlier growth
stage of R1, if yield is to be maximized.
Vegetative mass has also been correlated to seed number. This
observation reveals the possible importance of vegetative dry weight in
contributing to differences in yield where light interception is constant, as pointed
out by Duncan (1986). Egli et al. (1987) reported that increasing the vegetative
dry weight to a limit of 500 to 600 g m-2 increased seed number per unit area.
Fruit and seed numbers may be associated with the availability of assimilate
during flowering and fruit set (Stephenson 1981; Heitholt et al., 1985). Christy







and Porter (1982) further point out that seed number per unit area is closely
associated with canopy photosynthesis during flowering and pod set.
At plant population density D5 yield per plant continues to decrease.
However, yield per unit area may also begin to decrease. This decrease in yield
per area is attributed to the traumatic events of lodging and barrenness. Lodging
and barrenness at high densities, are important in explaining parabolic
yield-plant population density responses. At high densities, plants tend to lodge
because of the failure of their mechanical axes as they undergo plastic
responses caused by increased interplant competition. Apart from the reduced
yield that occurs when mechanical harvesting is used on lodged crops, lodged
plants in comparison to upright plants have lower yields. This yield reduction has
been attributed to reduced light interception in lodged plants (Johnston and
Pendleton, 1988). At very high populations plants become barren. Barrenness
can probably be attributed to the low levels of light interception per plant. Fontes
and Ohlrogge (1972) stated that these barren plants utilize light and nutrients, but
do not produce any yield. At high densities, both yield per unit area and yield per
plant decrease resulting in a parabolic response. Leffel (1961), however,
reported that natural lodging of soybeans did not significantly affect yield when
compared to unlodged plants.


Duncan's theory on yield-plant population density responses


Duncan (1986) developed a theory to explain yield-plant population
density responses based on two postulates. First, within soybean planting
patterns there is a range of densities within which seed yield per unit area







increases without an increase in light interception by the fully developed leaf
canopy (this occurs at growth stage R5). Secondly, within limits, the greater the
vegatative weight of a soybean plant during the seed initiation period (which
begins at R5) the more seed it will yield, all other conditions remaining the same.
Duncan further argued that seed yield per unit area was affected by two dominant
considerations: i) the fraction of total photosynthetically active radiation (PAR)
intercepted by the crop and ii), the efficiency with which the intercepted PAR is
used for seed production. Based on the statements above, Duncan defined three
Phases (which correspond to plant population density ranges), which are used to
explain yield-plant population density responses.
In Phase I, there is no appreciable competition between the plants for
light ; light intercepted per plant and seed yield per plant are constant and seed
yield per unit area is influenced only by the fraction of total light intercepted.
Between Phases I and II, there is an increasing degree of mutual shading as
plant population density increases. Light interception per plant decreases;
however, the total light intercepted (per area) increases. Increases in yield per
unit area in this transitional region are due to both increased light intercepted per
unit area, and increased efficiency with which intercepted light is used.
In Phase II, all of the incoming radiation is intercepted at full canopy
development (this occurs at growth stage R5). Therefore, in Phase II light
intercepted at seed initiation is constant, and increases in seed yield per unit
area in this phase are due to the increased efficiency with which intercepted light
is used to produce seed. Phase II ends where seed yield per unit area reaches a
maximum.







In Phase III seed yield per unit area remains constant at a maximum for
the cultivar and the environment. Duncan (1986) was able to identify Phases II
and III using data from Wiggans (1939) and Parks et al. (1983). Egli (1988a) in
his work with 'Cumberland' found that at R5 and a density of 5.1 plants m -2 there
was an apparent increased efficiency with which intercepted light was used for
seed production. This finding supports the existence of Duncan's (1986) Phase
II. Photosynthetically active radiation intercepted attained a maximum of 95%,
after which yield continued to increase with density. The R5 growth stage (seed
initiation) is important in light interception studies because it is at this stage that
LAI attains a maximum (Koller et al., 1970). Egli's (1988a) data supports
Duncan's (1986) argument that plant population densities providing complete
insolation interception by the fully developed leaf canopy, may not be high
enough to maximize yield.

A basis for changes in the efficiency with which plants use inputs for seed
production


In appreciating the possible effect of density-mediated plasticity on the
efficiency with which a plant produces seed, an obvious point of departure is
Huxley's law of allometry, which states that the relative distribution of biomass
among the parts of a plant depends on plant size (Willey and Heath, 1969). Kira
et al. (1956) also observed that the weight of a plant part could be related to the
weight of the whole plant via

wp = kwh w = whole plant weight

w = weight of a plant part k = a constant
P








Plant population density has an obvious effect on plant size, in addition to
other photomorphogenic and plastic effects. A plant's biomass is allocated to
vegetative, photosynthetic, and structural tissues and reproductive organs and.
Obviously, interplant competition has much potential for affecting the efficiency
with which inputs are used by plants in seed production.
Several studies illustrate that soybeans respond to reduced competition
by increasing the size of the metabolic sink sites (Buttery, 1969; Johnston et al.,
1969; Lehman and Lambert, 1960 ) where seed number and seed growth rate
are increased. At higher densities, however, the observed tendency for plants to
utilize intercepted light more efficiently may be of evolutionary significance.
Soybean plants may be exhibiting vestiges of an evolutionary strategy. Holler
and Abrahamson (1977), Ogden, (1974) and Thomas (1974) reported that at high
densities plants tend to maximize seed production. Abrahamson (1975)
suggested that this is a strategy to promote seed dispersal away from an
unfavorable site. Egli's (1988b) work, however, suggested that the partitioning of
assimilate during this growth stage (flowering and fruit set), may not be altered by
changes in plant size and plant population density. Shibles and Weber (1966)
suggested that at higher populations, the period of vegetative production is
longer than at lower densities. As a consequence, the vegetative production
period encroaches upon the seed production period, resulting in competition
within the plant for available carbohydrates. Hence there is less carbohydrate for
seed production. Whatever the possible basis for changes in seed yield
efficiency, it is probably one of the least understood areas in yield-plant
population density relations.












CHAPTER 3
MATERIALS AND METHODS


The experimental procedures used in the field are described prior to
discussions of data analysis. The discussion on data analysis involves the
development of an analytical framework for the analysis of yield-plant population
density data. The materials and method used with SOYGRO will be discussed
along with crop simulation results in chapter 6.


Field Experiments


This study was conducted at Gainesville, Florida (290 38') in 1987 and
1988. The soil was classified as a Kendrick fine sand (a loamy siliceous
hyperthermic family of Arenic Paleudults). The previous crop consisted of small
grains. Rainfall data were collected from a nearby Agronomy Meteorological
Station (Fig. 3-1).
In all the field experiments a square planting arrangement was used.
Wiggans (1939) found that the nearer the arrangement of plants on a given area
approaches a square pattern, the greater the yield per unit area. Safo-Kantanka
and Lawson (1980) observed that the number of pods per plant, seed size and





















600
550 1987 growing season
500
? 450 U 1987 1988 growing season
E 400 [ 1988

g 350
S300
g 250







MAY JUN JUL AUG SEP OCT
MONTH



Fig. 3-1. Precipitation profile over the 1987 and 1988 growing
seasons, Gainesville, Fl.
I-- / V











seasons, Gainesville, Fl.









yield per unit area increased as a square planting pattern was approached. This
finding was corroborated by Parvez et al. (1989) in their work. Buttery (1969), in
citing Donald (1963) and Holliday (1963) stated that it was difficult to
demonstrate any depressing effects of small deviations from squareness on yield.
Square planting is of both analytical and production importance. A
constant square planting arrangement ensures that the differences observed in
plant population studies, resulted from plant population and not plant
arrangement. The square planting arrangement minimizes inter-plant competition
and maximizes insolation interception per unit land area (Miura and Gemma,
1986; Harper, 1983).
In 1987 the soybean cultivars Kirby [MG VIII], Centennial [MG VI] and
Forrest [MG V] were planted on 27-29 May, using planting boards which gave a
square planting arrangement. The inter-row distances of 30, 20 and 15 cm gave
the plant population densities of 11.1, 25.0 and 44.4 plants m-2, respectively.
Vermiculite was used to fill seeded-holes to ensure even germination. The
experimental design was a split-plot with plant population density as the main
plot and cultivar as the subplot. Subplots measured 3.7 by 3.0 m. The resulting
three main plots with their combined total of nine subplots were replicated four
times. Fertilizer, 10-10-10 (N-P205-K20) was applied at a rate of 785 kg ha"1 at
seed-bed preparation. An overhead sprinkler irrigation system was used during
periods of water stress. The plots were hand weeded. In cases where gaps
appeared in stands, soybean plants were transplanted in from border rows.
Transplantation often resulted in weak plants.









The corn ear worm, Heliothis zea (Boddie) was controlled with lannate,
(methomyl S-methyl N [(methylcarbamyl) oxy] thioacetamidate which was applied
in a solution containing 2 g L"1 of active ingredient at a rate of 140 L ha"1. The
cyst nematode, Heterodera glycines affected crop productivity, especially for the
less nematode resistant cultivars, Forrest and Centennial.
The following reproductive growth stages of soybean described by Fehr et
al. (1971) were used in sampling procedures:


R1-One flower at any node
R2-Flower at node immediately below the uppermost nodes with a
completely unrolled leaf.
R3-Pod 0.5 cm long at one of the four uppermost nodes with a
completely unrolled leaf
R4-Pod 2 cm long at one of the four uppermost nodes with a
completely unrolled leaf.
R5-Beans beginning to develop (can be felt when the pod is squeezed
at one of the four uppermost nodes with a completely unrolled leaf.
R6-Pod containing full size green beans at one of the four uppermost
nodes with a completely unrolled leaf.
R7-Pods yellowing; 50% of leaves yellow: physiological maturity.
R8-95% of pods brown: harvest maturity.


Whole plants were hand sampled at the R5, R6 and R8 growth stages (89,
132 and 144 d after planting, respectively). The samples were dried to constant
weight in a forced-draft oven at 60 C. Total dry weights and where appropriate,
pod and seed weights and numbers were determined.
Because of the severe effects of nematode infestation on soybean
production in 1987, the nematode resistant cultivar Kirby was used in 1988.








Plantings took place between 28 -29 June, with planting boards, which gave a
square planting pattern. The plant population densities of 2.0, 4.0, 6.3, 11.1,
16.0, 25.0, 44.4, and 69.4 plants m-2 were achieved. Seeded-holes were filled
with builder's sand to ensure even germination.
The experimental design was a randomized complete block with plots
measuring 4.3 by 3.7 m. Each block consisted of eight plots and was replicated
four times. Fertilizer, 0-10-20 (N-P205-K20) was applied at a rate of 504 kg
ha-1. Aldicarb, [2-methyl-2 (methylthio) propionaldehyde o-(methylcarbamyl)
oxime] was applied at a rate of 27 kg ha"1, at seed bed preparation for nematode
control. The herbicide alachlor, 2-chloro 2' 6'-diethyl-N-(methoxymethyl)
acetanilide was applied two days after planting at a rate of 4.67 L ha1, in a
solution containing 480 g L -1 of active ingredient. An overhead sprinkler
irrigation system was used. Lannate was effective in controlling the corn ear
worm, Heliothis zea (Boddie), however, it was ineffective in controlling the severe
infestation by white flies, Aleyrodidae aleurocanphus woglumi, Ashby. The 'sooty
mold', Capnodium spp. also blackened leaves as they thrived on carbohydrate
exudates of the white flies. It has been shown that the 'sooty mold' interferes with
normal photosynthesis (Vaishampayan and Kogan, 1980). Arioglu et al. (1989)
found that there was a significant negative correlation between white fly
infestation and seed yield.
At R3 and R5, (56 and 68 d after planting, respectively) light interception
above and below the canopy, as well as reflectance, were measured, at or near
solar noon, with a line quantum sensor (LI-COR model 188). Whole plant
samples were taken at R3, R5 and R8. It was not possible to take samples









between R5 and R8 due to the deterioration of vegetative structures brought on
by white flies and extremely wet conditions (Fig. 3-1).
Pods and seeds were retrieved at R8. Subsamples were separated into
their component parts (stems and petioles were kept together). Leaf area was
determined using a leaf area meter (LI-COR 3100). Samples were dried in a
forced-draft oven at 60 OC to constant weight. Vegetative dry weights, pod and
seed weights and numbers were measured.
Subsamples of stems and leaves from R5 were analyzed for N and P.
The samples were chopped in a hammer mill, and then ground in a Wiley mill,
using a 1 mm screen. The samples were digested using a modification of the
aluminum block digestion procedure of Gallaher et al. (1975). To 0.3g of sample,
3.2 g of 9:1 K2S04:CuSO4, were added and digestion carried out for 4 h at
400 OC, using 10 ml H2SO4 and 2 ml H202. Ammonia in the digestate and P
were determined by semiautomated colorometery (Hambleton, 1977) using a
Technicon Autoanalyzer II. The plant variables measured during 1987 and 1988
are provided in Table 3-1.


Data Analysis


The analytical framework developed here for the analysis of yield-plant
density data is based on:


i) the identification of the biological and ecological variables
and relationships existing in yield-plant density studies,










Table 3-1. Summary of the plant variables measured during 1987 and
1988.

-1987
Variables Growth stage

Total dry weight (g m"2) R5,R6,R8
Seed dry weight (g m2) R6,R8
Pod dry weight (g m-2) R6,R8
Seed number ( m2) R6,R8
Pod number ( m2) R6,R8
.--------------------1988------------
Total dry weight (g m-2) R3,R5
Leaf dry weight (g m-2) R3,R5
Stem dry weight (g m-2) R3,R5
Leaf area ( m2) R3,R5
Percent light intercepted R3,R5
Leaf N concentration (g kg -1) R5
Stem N concentration (g kg -1) R5
Leaf P concentration (g kg -1) R5
Stem P concentration (g kg 1) R5
Seed dry weight (g m-2) R8
Pod dry weight (g m-2) R5,R8
Seed number (m-2) R8
Pod number (m-2) R5,R8








the use of analyses of variance (ANOVA), linear regression
and correlations to determine the importance and strength
of these relationships,


the cross referencing of plant population density effects
and yield associations to assess the effect of plant
population density on a) ecological and b) biological
relationships which determine or are associated with yield.


The basic data set
calculated variables:

Stem fraction

Leaf fraction

Leaf area index(LAI)

Specific leaf area (m2 g-1)

Specific leaf weight (g m-2)

Seed number Pod-1

Weight seed"1 (g)

Leaf N (g m-2)

Leaf N (g m'2(leaf area))

Stem N (g m-2)


(Table 3-1.) was expanded to include the following


= Stem weight / Total dry weight

= Leaf dry weight / Total dry weight

= Leaf area / Harvested area

= Leaf area / Leaf dry weight

= Leaf dry weight / Leaf area

= Seed number/ Pod number

= Seed dry weight / Seed number

= Leaf dry weight X Leaf N concentration X 0.01

= Leaf N (g m-2) / LAI

= Stem dry weight X Stem N concentration X 0.01








Leaf P (g m-2) = Leaf dry weight X Leaf P concentration X 0.01

Leaf P (g m-2(leaf area)) = Leaf P (g m-2) / LAI

Stem P (g m-2) = Stem dry weight X Stem P concentration X 0.01




The Evaluation of Variables and Relationships Operating in Yield-Plant
Population Density Studies


In studying the yield determining relationships (both ecological and
biological) existing in crops which are subject to varying plant population
densities, these relationships first need to be classified; secondly, they need to
be measured; and thirdly, their influence on yield needs to be evaluated.


The classification of variables and relationships


In investigating the process of yield achievement, variables and the
relationships between variables, may contribute to or affect three spheres of crop
productivity. These spheres are, photosynthetic activity, nutrient remobilization
and reproductive parameters (i.e., the size and number of 'sinks'). Variables and
their inter-relationships in contributing to these various productive spheres, in
yield-plant density studies, may be either plastic or non-plastic. For example,
weight seed-1 is known to be non-plastic, being largely under genetic and not
under environmental control. In this investigation, variables and relationships
described as not being related nor associated with yield, refer specifically to the
tendency of these variables not to undergo changes similar in magnitude to








changes in the magnitude of yield. The extent of the contribution of 'plastic' and
'non-plastic' variables to yield is not being investigated.
The number of relationships between measured responses (including
those which have been calculated) is given by,



nCr = nPr ( r!)-1 = n (r!(n-r)!)-1

nCr = the total number of relationships, taking two responses at a
time
nPr = the total number of permutations of n responses taken r at a
time
n = number of measured or calculated responses
r = the number of responses assessed at a time (i.e., two)


For the 1988 experiment, there is a combined total of 28 variables from
the R5 and R8 stages. The total number of possible relationships between the R5
and R8 variables is 378 ( 28! (2! x 26!) -1). There are 406 (378 + 28 (plant
population density relationships)) relationships which may be analyzed.


Techniques for determining relationships in yield-plant density studies


The three basic techniques which will be used in measuring the extent of
the relationships operating in yield-plant density studies are the analysis of
variance (ANOVA), linear regression and correlations. The ANOVA will be used
to determine density and cultivar effects on measured variables. Differences
between cultivars will be determined using Duncan's Multiple Range Test








(DMRT). Ordinarily, it is the aim of linear regression analysis to describe a
functional relationship between Y and X (i.e., plant population density) ( Sachs,
1982). However, results of the linear regression analyses obtained in this
investigation will not be seen as describing the functional relationship between
plant population density (X) and a given variable (Y). This is because linear
regressions are not always appropriate for providing exact relationships
between variables in complex biological systems. Linear regression analyses of
plant population density effects, are used here strictly as statistical tests, which
establish the extent of the impact of plant population density on a given variable.
Therefore, of specific interest are the R2 values obtained in linear regressions.
In using linear regression as a statistical test, logarithmic transformations serve
the dual function of linearizing the data and stabilizing the variance (Montgomery,
1984). The Pearson product moment correlation coefficient (r) which will be
used here as a statistic for the strength of the relationship between two variables.
Correlations will be used to assess the strength and nature (whether it is positive
or negative) of primary, secondary and tertiary relationships.


The evaluation of the relationships operating in yield-plant density studies


The evaluation of the ecological and biological relationships which may
be yield-determining will be conducted by cross referencing i), plant population
density effects on variables, and ii), the association of these variables with yield.
The first step is the determination of the strength of the effect of plant population
density on measured variables. Secondly, the strength of the association








between measured variables and yield per unit area is determined. These
relationships are then categorized based on R2 (from linear regression) and r
(from correlations) values into high (H) (0.75 1.00), moderate (M) (0.50 0.74)
and low (L) (0.00 0.49) categories. The next step which will be illustrated using
only the 'high' (H) and 'low' (L) categories, involves the correlation of 'responses
classified with respect to their relationship with yield' against 'responses
classified with respect to their relationship with plant population density'. The
resulting r, is then used to determine the possible contribution of primary,
secondary and tertiary relationships to yield per unit area, in plant population
density studies.
Based on R2 and r values, variables can be classified into those; affected
by plant population density (HDV); not affected by plant population density (LDV);
associated with yield (HYV); and not associated with yield (LYV). In some
instances, HDVs and HYVs may be the same. The types of relationships which
may exist between these variables are,



HDVs x HYVs
HDVs x LYVs
LDVs x HYVs
LDVs x LYVs


The interpretation of the strength of these relationships as determined by r
values are outlined in Table 3-2. The relationships which are of greatest interest
are those involving HDVs X HYVs, and LDVs X LYVs with high r values. The
former identifies variables and relationships which are particularly plastic, and









Table 3-2. A table for the interpretation of plant
cross-referenced data.


population density yield,


Type of relation A high r A low r


A strong relationship which
is most likely to be yield
determining and which is
under plant population
density effect.





A strong relationship,
however, this relationship,
cannot explain yield as a
plant density-mediated
process.




A strong relationship,
however, this relationship,
cannot explain yield as a
plant density-mediated
process.






A strong relationship between
variables which are not
associated with yield and
are not affected by plant
density.


A weak relationship, however
the HYVs are greatly associated
with yield, and the HDVs are
under plant population density
effect. This relationship cannot
be yield determining in plant
population density studies.



A weak relationship not
capable of explaining yield,
however, the HDVs are
under plant population density
effect.




Although the HYVs are
closely associated with yield,
this weak relationship is not
capable of explaining yield
as a plant density-mediated
process.





A weak relationship between
variables which are not
associated with yield
and are not affected
by plant population density.





40


which are most likely to be responsible for the changes in the magnitude of yield
per unit area with changes with plant population density. The latter identifies
variables and relationships, which are not particularly plastic (which are probably
under much genetic control) and cannot explain changes in the magnitude of
yield per unit area with changes in plant population density.












CHAPTER 4
RESULTS AND DISCUSSION -1987 EXPERIMENT


Plant population had no significant effect on any of the variables
measured. In the absence of significant plant population effect on crop variables,
the cross referencing of the effect of plant population density on variables with the
'yield association' of variables is not possible. However, the cultivar effect on crop
variables and the effect of plant population density at levels above the 5%
significance level, allows for the use of ANOVA and correlation analyses for yield
investigation.


ANOVA Results


Plant Population Effect
Plant population had no effect on any of the variables investigated at R5
(Table 4-1), R6 (Table 4-3), and R8 (Table 4-5). In instances where this result
was unexpected (such as with seed and total dry weight per unit area), it may be
attributed to a combination of i), the plant populations used were not sufficiently
discriminating, and ii), nematode infestation. The nematode resistant soybean
varieties recommended for Florida (IFAS, 1983), does not include Kirby and
Forrest. Centennial, however, is recommended. Analyses conducted on root
and soil samples showed that the cyst nematode (Heterodera) (race unidentified,
and mostly juveniles), and root knot nematode (Meloidogyne incognita,









Table 4-1. The effect of plant population and cultivar on total dry
weight (g m'") at R5, 1987.

Source of variation F

Population 5.56
Cultivar 31.8*
Population X Cultivar 1.96

*, *, significance at the 5 and 1% levels, respectively.








Table 4-2 Cultivar effect on total dry weight at R5,
1987.

Cuttivar Total dry weight (g m-2)

Kirby 957a*
Centennial 723b
Forrest 551 c

* observations followed by the same letter are not
significantly different (DMRT, 5%).













Table 4-3 The effect of plant population and cultivar on soybean plant traits at R6
stage, 1987.

Variable Source of variation F


Total dry weight (g m-2)


Pod weight (g m-2)


Seed dry weight (g m-2)


Pod number (m-2)


Seed number (m-2)


Seed number Pod -1



Weight seed 1 (g)


Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar

Population
Cultivar
Population X cultivar


*, *, significance at the 5 and 1% levels, respectively.


0.21
10.84**
1.91
0.15
12.06**
2.28
0.27
10.26**
1.92
0.34
1.90
2.18
0.28
2.69
2.24
2.32
0.56
1.27

1.07
33.37**
0.73


















soybean plant traits at R6 stage, 1987.


Cultivar


Kirby


Centennial


Forrest


Total dry weight (g m"2) 644 a* 598 a 443 b
Pod weight (g m'2) 298 a 318 a 223 b
Seed dry weight (g m"2) 159 b 198 a 141 b
Pod number (m-2) 1236 a 1213 a 1056 a
Seed number (m-2) 2400 a 2294 a 2015 a
Seed number Pod -1 1.95 a 1.90 a 1.94 a
Weight seed -1(g) 0.07 b 0.09 a 0.07 b

* observations followed by the same letter are not significantly
different (DMRT, 5%).


Variable


Table 4-4. Cultivar effect on









Table 4-5. The effect of plant population and cultivar on soybean plant traits at R8
stage, 1987.

Variable Source of variation F


Pod weight (g m-2)


Seed dry weight (g m-2)


Pod number (m-2)


Seed number (m-2)


Seed number Pod -1



Weight seed -1 (g)


Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar
Population
Cultivar
Population X cultivar

Population
Cultivar
Population X cultivar


*, ", significance at the 5 and 1% levels, respectively.


2.14
11.82**
1.92
1.08
12.76**
1.85
0.73
1.95
4.03*
1.53
2.29
4.36*
0.57
8.67**
0.42

0.40
14.69**
1.73








'Southern') populations were sufficient to hinder grain production in all three
cultivars.
At R5, total dry weight (g m -2) tended to increase with population (Fig.
4-1). Although such an observation is consistent with the results of Udoguchi and
McCloud (1986), Blumenthal et al. (1988) and Parvez et al. (1989), the
population effect was not significant (p = 0.07) (Table 4-1). There was no
significant difference in seed dry weight between plant populations at R8 (Fig.
4-2) (Table 4-5), and this can be attributed to the effect of plant population density
on yield components. The number of seeds per pod (R8) was not affected by
plant population (Fig. 4-3) (Table 4-5). This result corroborates those of
Chaudhry and Cheema (1985) and Dominguez and Hume (1978). Weight per
seed (R8) (g) remained unchanged with plant population (Fig. 4-4) (Table 4-5),
and this is similar to the results obtained by Dominguez and Hume (1978), and
Fontes and Ohlrogge (1972). Pod number m'2 was unaffected by plant
population density (Fig 4-5) (Table 4-5). With none of the yield components
being affected by plant population, the absence of plant population effect on seed
dry weight (g m-2) at R8 is expected.


Cultivar Effect
Total dry weight (g m-2) at R5 was affected by cultivar (Table 4-1) with
Kirby, Centennial and Forrest providing 970, 723 and 551 g m-2, respectively
(Table 4-2 ). At R6, pod number m-2, seed number m"2 and seed number pod"1
were not affected by cultivar (Table 4-3). However, total dry weight (g m-2), pod
dry weight (g m-2), seed dry weight (g m-2) and weight per seed (g), were all
























900


850-


800-


750 -


700


650-


n -


uIJIJ


I I I I *I I I I
10 15 20 25 30 35 40 45


Plants m-2


Fig. 4-1. The effect of plant population density on total dry
weight at the R5 stage in soybean, 1987.







































10 15 20 25


30 35 40 45 50


Plants m"2


Fig. 4-2. The effect of plant population density on seed dry
weight of soybean at maturity, 1987.


260


250


240


230


220


210




49

















1.96


1.94-


7 1.92

CL
0
0 1.90


1.88


1.86- .
10 15 20 25 30 35 40 45 50

Plants m-2



Fig. 4-3. The effect of plant population density on seeds pod" of
soybean at maturity, 1987.




50
















0.091


0.090


7 0.089


Ca 0.088


0.087


0.086 -
10 15 20 25 30 35 40 45 50

Plants m-2


Fig. 4-4. The effect of plant population density on weight seed of
soybean at maturity, 1987.





















1600


1550


1500


E 1450
E
^ 1400-


1350


1300 ,. ,i i
10 15 20 25 30 35 40 45 50

Plants m-2


Fig. 4-5. The effect of plant population density on pod number m-2
of soybean at maturity, 1987.








affected by cultivar. These results are summarized in Tables 4-3 and 4-4. At R8
(Table 4-5), all variables were affected by cultivar. The interaction of cultivar and
population on seed number m-2, and pod number m'2 warranted further
investigation; upon analysing the cultivars individually, for both pod number m'2
(Table 4-6) and seed number m"2 (Table 4-7) there was no population effect in
either case. At each plant population, there was no cultivar effect on pod number
m"2 (Table 4-8) and seed number m'2 (Table 4-9). A summary of the cultivar
effects at R8 is provided in Table 4-10.


An Explanation for Cultivar Yield Differences Based on ANOVA


In Table 4-10. a comparison of seed dry weight (R8) (g m-2) between
Kirby, Centennial and Forrest shows that yields were 268, 270 and 178 g m -2,
respectively, with yield of Forrest being significantly lower. A review of yield
components and total dry weight (R5) (g m-2) shows that pod number m-2, and
seed number pod -1, are unable to account for differences in seed dry weight (g
m-2). Weight seed -(g) and total dry weight (R5) (g m"2) appear to be
responsible for the seed dry weight (g m-2) differences observed for these
genotypes.
It has been shown that pod number m-2, and seed number pod-1, are
unable to account for differences in seed dry weight (g m-2). Kirby and
Centennial are from higher maturity groups than Forrest and, therefore, have
longer grain filling periods, and this may have attributed to Kirby and Centennial
having larger seeds. Also, of the three cultivars, Forrest was the least nematode
resistant and this may have taken away further from the ability of Forrest to








Table 4-6. The effect of plant population (X) on pod number (m-2) (Y) for each
cultivar at R8 stage, 1987.


Cultivar Statistical model R2


Kirby InY = 0.01 InX + 7.29 0.00
Centennial InY = -0.32 InX + 8.27 0.35
Forrest InY = 0.26 InX + 6.29 0.37


*,* significance at the 5 and 1% levels, respectively.





Table 4-7. The effect of plant population on seed number (m-2) for each cultivar
at R8 stage, 1987.


Cultivar Statistical model R2


Kirby In Y = -0.05 InX + 8.03 0.02
Centennial In Y = -0.32 InX + 8.94 0.37
Forrest In Y = 0.23 InX + 7.04 0.35


*,** significance at the 5 and 1% levels, respectively.










Table 4-8. The effect of cultivar on pod number (m-2) for each plant population at
R8 stage,1987.


Plant population Source of variation F


44.4 plants m"2 Cultivar 3.53

25.0 plants m"2 Cultivar 2.20

11.1 plants m"2 Cultivar 4.22

*,* significance at the 5 and 1% levels, respectively.


Table 4-9. The effect of cultivar on seed number (m-2) for each plant population
at R8 stage, 1987.


Plant population Source of variation F


44.4 plants m"2 Cultivar 3.01

25.0 plants m-2 Cultivar 3.11

11.1 plants m'2 Cultivar 4.50


*,significance at the 5 and 1% levels, respectively.













Table 4-10. Cultivar effect on soybean plant traits at R8 stage, 1987.


Cultivar
Variable Kirby Centennial Forrest
Pod weight (g m-2) 405 a 385 a 266 b
Seed dry weight (g m-2) 268 a 270 a 178 b
Pod number (m-2) 1493 a 1499 a 1265 a
Seed number (m-2) 2701 a 2964 a 2457 a
Seed number Pod -1 1.81 b 1.99 a 1.95 a
Weight seed -1(g) 0.10 a 0.09 a 0.07 b

* observations followed by the same letter are not significantly different
(DMRT, 5%)







perform. Forrest also had the lowest vegetative dry weight at R5, and this means
that in comparison to Kirby and Centennial, less nutrients were available for
remobilization.



Correlation Analysis


The correlation of variables at R5 and R6, and R5 and R8, with seed dry
weight (g m-2) and yield components, are provided in Tables 4-11 and 4-12,
respectively. Total dry weight (g m-2) at R5 was poorly correlated with seed dry
weight (g m-2) at R6 (r = 0.34, p < .05). Total dry weight (g m-2) at R5 was
moderately correlated with seed dry weight (g m-2) at R8 (r = 0.56, p < .01). Total
dry weight (g m-2) at R5 was also moderately correlated with all yield
components at R8.
At both R6 and R8, pod dry weight (g m-2), pod number (m-2) and seed
number (m-2) were highly correlated with seed dry weight (g m-2).
Basuchaudhari (1987), Kaw and Menon (1972), Fontes and Ohlrogge (1972),
and Parvez et al. (1989) had similar findings. Weight seed -1 (g) was
moderately correlated with seed dry weight (g m-2) at both R6 and R8. These
results are contrary to those obtained by Board (1985), Tandojam (1986),
Johnson et al. (1955). However, Moorthy (1952) found that there was a high
correlation between weight seed '1(g) and seed dry weight (g m-2). At R6 there
was moderate correlation between seed dry weight (g m-2) and seed number
pod'1, this result was also obtained by Ma (1946). At R8, seed number pod"1
was not correlated with seed dry weight (g m-2). This result corroborates those
obtained by Hartwig and Edwards (1970), Board (1985), Tandojam (1986) and







Table 4-11. Correlation coefficients for seed yield and its fundamental
components (X1) at R6 with variables (X2) at R5 and R6, 1987.

Xl X2 r


Seed dry weight (R6)(g m-2)







Pod number (R6) (m-2)







Seed number Pod-1 (R6)







Weight seed -1 (R6) (g)


Total dry weight (R5)(g m-2)
Total dry weight (R6)(g m-2)
Pod dry weight (R6)(g m-2)
Pod number (R6)(m-')
Seed number (R6) m-2)
Seed number Pod- (R6)
Weight seed -1 (R6) (g)

Total dry weight (R5)(g m-2)
Total dry weight (R6)(g m-2)
Pod dry weight (R6) (g m-2
Seed dry weight (R6) (g ma )
Seed number (R6) (m-)
Seed number Pod- (R6)
Weight seed -1 (R6) (g)

Total dry weight (R5)(g m-2)
Total dry weight (R6)(g m-2)
Pod dry weight (R6) (g m-2
Seed dry weight (R6) g m)
Pod number (R6) (m-
Seed number R6) (m-)
Weight seed (R6) (g)

Total dry weight (R5)(g m-2)
Total dry weight (R6)(g m-2)
Pod dry weight (R6) (g m-2
Seed dry weight (R6) g m")
Pod number (R6) (m-
Seed number (R6) (m-')
Seed number (R6) Pod-1


'," significance at the 5 and 1% levels, respectively.


0.34*
0.82**
0.93**
0.83**
0.81**
-0.48*
-0.56**

0.55**
0.87**
0.88**
0.83**
0.97**
-0.56**
0.06

-0.21
-0.35
-0.42*
-0.48*
-0.56**
-0.34
-0.35

-0.12
0.14
0.33
0.56*
0.06
-0.03
-0.35








Table 4-12. Correlation coefficients for the fundamental yield components (X1) at
stage R8 with variables (X2) at R5 and R8, 1987.


Xl X2 r


Seed dry weight (R8)(g m-2)


Pod number (R8) (m-2)





Seed number Pod-1 (R8)





Weight seed -1 (R8) (g)


Total dry weight (R5) (g m-2)
Pod dry weight (R8) (g m'2)
Pod number (R8) (m'"I
Seed number (R8) m' )
Seed number Pod' (R8)
Weight seed -1 (R8) (g)

Total dry weight (R5) (g m-2)
Pod dry weight (R8) (g m"2
Seed dry weight (R8) (g m")
Seed number (R8) (m' )
Seed number Pod" (R8)
Weight seed -1 (R8) (g)

Total dry weight (R5) (g m-2)
Pod dry weight (R8) (g m"2,
Seed dry weight (R8)Pg m' )
Pod number (R8) (m'-
Seed number R8) (m'")
Weight seed (R8) (g)

Total dry weight (R5) (g m-2)
Pod dry weight (R8) (g m-2
Seed dry weight (R8) g m')
Pod number (R8) (m'
Seed number (R8) (m" )
Seed number Pod' (R8)


*,** significance at the 5 and 1% levels, respectively.


0.56"
0.98"
0.83"
0.83"
-0.13
0.45*

0.43*
0.79"
0.83"
0.97"
-0.28
-0.06

-0.56*
-0.15
-0.13
-0.28
-0.04
-0.16

0.55"
0.47*
0.45*
-0.06
-0.11
-0.16








Johnson et al. (1955). Among yield components at both R6 and R8, seed number
pod-1 and weight seed1 (g) are the least correlated with the variables measured,
and this may indicate that these yield components are largely under genetic
control.

An Explanation for Cultivar Yield Differences Based on Correlation
Analyses


Based on DMRT, it has already been shown that weight seed -1(g) and
total dry weight (R5) (g m-2) appear to be associated with cultivar seed dry weight
(g m"2) differences (Table 4-11). However, a number of important points are
brought out in attempting to explain differences observed in seed dry weight
(g m-2) between Kirby, Centennial and Forrest using correlations. First, weight
seed -1 and total dry weight (R5) (g m-2), which, based on DMRT, can explain
cultivar differences in seed dry weight (g m-2) are not highly correlated with seed
dry weight (g m-2) (Table 4-13). This raises the point that the investigation of the
effect of individual variables on yield, as i), with DMRT analyses (Table 4-10) or
ii), the correlation of a single variable with seed dry weight (g m-2) has limitations.
Cultivar differences observed in seed dry weight (g m-2) are evidently attributable
to a number of variables acting together, and the investigation of the effect of one
variable on seed dry weight (g m-2) yields an incomplete result.
Secondly, in Table 4-13, the combined data from all cultivars, when
regressed against seed dry weight (g m-2), provides r values which do not
represent r values obtained for each cultivar. This discrepancy is particularly the
case for seed pod -1 and total dry weight (g m-2). Therefore, the individual yield
dynamics of cultivars and the differential response of cultivars to plant population









Table 4-13. Mean values and correlation coefficients for R5 total dry weight
(g m-2), seed dry weight (g m ') and its fundamental components at R8,1987.


CuLIi


Kihtu


nrntanrnil


Fnrrect


All
^i intiu!re


Seed dry weight~g m-2)
Pod number (m")
Seed Pod -1
Weight seed -1(g)
Total dry weight(R5)(g m-2)


268a+
1493a (.77*)@
1.81b (.33)
0.10a (.48)
957a (.30)


270a
1499a (.96"*)
1.99a (-.52)
0.09a (-.47)
723b (.35)


178b
1265a (.93**)
1.95a (-.33)
0.07b (-.21)
551c (.56)


+ observations followed by the same letter are not significantly different
(DMRT, 5%).

@Correlation coefficients (r) of variables with seed dry weight (g m-2) are in
parentheses.

*,** significance at the 5 and 1% levels, respectively.



Table 4-14. Statistical models for per plant responses (Y) of soybean with plant
density (X)


Variable (Y) Statistical model R2


Vegetative dry weight Plant -1 (R5) InY = -0.811nX + 5.99 0.74**

Pod dry weight Plant -1 (R8) InY = -1.021nX + 5.90 0.84**

Seed dry weight Plant -1 (R8) InY = -1.041nX + 5.55 0.80**

Pod number Plant -1 (R8) InY = -1.021nX + 7.28 0.82**

Seed number Plant -1 (R8) InY = -1.041nX + 8.01 0.84*


*, significance at the 5 and 1% levels, respectively.


(.83")
(-.13)
(.45*)
(.56")


ra~crr~ I\PA








density, indicates that in depth yield-plant population density studies should
focus on a single cultivar.


The Yield-Plant Population Density Response.


Seed weight (g m-2) was not affected by plant population density, and no
lodging was observed at the highest plant population densities. However, the
vegetative dry weight (R5) (Fig 4-6), seed weight and pod weight (Fig. 4-7 ), and
seed and pod number (Fig. 4-8), on a per plant basis were all significantly
affected by plant population density (Table 4-14). The reduction in vegetative dry
weight per plant with density (Fig. 4-6), indicates a reduction in the amount of
nutrients which may be remobilized for seed production. Individual plants clearly
adjusted plastically to increased plant competition; at higher plant population
densities they reduced the number of sink sites which is consistent with reduced
inputs at higher plant population densities. It appeared that interplant
competition had its greatest effect between the plant population densities of 11.1
and 25.0 plants m-2, where vegetative dry weight and yield reduction occurred at
the greatest rate. As population density approached 44.4 plants m-2, plastic
adjustments within the plant reduced the rate of yield decrease with plant
population density--that is, the plants were adapting and responding positively to
the negative forces of interplant competition.





62















60

55-
50-

45-
40

r 35

30
0 25

20
15

10 -
10 15 20 25 30 35 40 45 50

Plants m-2

Fig. 4-6. The effect of plant population density on dry weight per
plant of soybean at the R5 stage, 1987.






















40

35-

30-

25-

20-

15-


----Pod
-- Seed


10 15 20 25 30 35 40 45
10 15 20 25 30 35 40 45


Plants m -2

Fig. 4-7. The effect of plant population density on seed and pod
weight per plant of soybean at maturity, 1987.




64















300

SP-od
250 Seed


200

E
S 150

z 100


50


0-
10 15 20 25 30 35 40 45 50

Plants m-2


Fig. 4-8. The effect of plant population density on seed and pod
number per plant of soybean at maturity, 1987.








Conclusion


Although plant population had no significant effect on the variables
measured at R5, R6 and R8, the effect of cultivar on variables allowed for yield
investigations. Total dry weight (g m -2) was moderately correlated with all yield
components, however, it was negatively correlated with seed number pod -1
Correlation analyses on the data sets for each cultivar, and for the combined
data set of all cultivars, at both R6 and R8, showed that pod dry weight
(g m -2), seed number (m-2), and pod number (m -2) were all highly correlated
with seed dry weight (g m-2). Seed number pod-1, was unaffected by plant
population density, and Kirby had the lowest value. However the greater weight
seed -1 (g) of Kirby, contributed to Kirby having a greater seed dry weight
(g m -2) at R8 than Forrest.
Weight seed -1 (g) was neither plastic nor was it highly correlated with
seed dry weight (g m-2). However, among yield components, weight seed -1
accounts for the yield difference observed in cultivar. This apparent contradiction
in the influence of weight seed -1 (g) highlights the following point. Weight
seed-1 (g) determines final seed dry weight (g m-2); however, being under
genetic control, it can account for differences in genotypes, but weight seed -1
(g) is unable to account for the plastic response of seed weight (g m-2).
The combination and subsequent analysis of data obtained from different
cultivars in yield-plant population density studies, poses a major challenge.
Cultivars may differ greatly in their yield dynamics, and as such they may respond
differently to changes in plant population. If this is the case, then the analysis of




66


combined data sets from different cultivars may yield results which misrepresent
biological and ecological realities.













CHAPTER 5
RESULTS AND DISCUSSION-1988 EXPERIMENT


The first section of this chapter focuses on i) the effect of plant population
density on crop variables ii), the extent of the correlation of these variables with
seed dry weight per unit area and iii), the yield implications of i) and ii). In the
second section the cross referencing of plant population density effects with the
strength of the yield association of variable, is used to establish yield determining
relationships (between variables) which are of importance in yield-plant
population density studies.


Plant Population Density Effects. Yield Correlations and their Implications
for Yield


Seed dry weight (g m-2) increased with plant population density
(Fig. 5-1). Attempts to explain this result were done by categorizing the variables
which have been measured as being i) vegetative ii), related to nutrient status
and iii), reproductive. The effect of plant population density on R3, R5 and R8
variables was determined by conducting linear regressions on data which were
linearized through logarithmic transformations. These models only show if plant
population density had a significant effect on the variables in question, and with
the aid of the model's slope, whether this effect was positive or negative.




68
















500

450 -- Seed
400 -- Pod
350
E
S 300 -
S 250
S 200
150-

100-
50-

0 10 20 30 40 50 60 70 80

PI3M-2
Plants m-2


Fig. 5-1. The effect of plant population density on seed and pod
weight of Kirby at maturity, 1988.








Correlations of variables with seed dry weight (g m -2) were determined for
untransformed data.


Vegetative Structures

Dry weight response to plant population density


At R3, total dry weight (g m-2) leaf dry weight (g m-2) and stem dry matter
(g m-2) (Fig 5-2) (Table 5-1), were all positively affected by plant population
density. At R5, total dry weight (g m-2), leaf dry weight (g m-2) and stem dry
weight (g m-2) (Fig. 5-3) (Table 5-2) were all positively affected by plant
population density. These results are consistent with those of other researchers
(Parvez et al., 1989; Blumenthal et al., 1988; Udoguchi and McCloud, 1986).
At R3 and R5 total dry weight per plant decreased (Fig. 5-4) and was
significantly affected by plant population density (Tables 5-1 and 5-2). Total dry
weight decreased sharply up to a density of 25 plants m-2, and tended to level off
after 44.4 plants m-2, for both R3 and R5 (Fig. 5-4). Obviously at higher densities,
increases in plant population density were not as effective in reducing plant dry
weight.


Dry weights (a m-2) and correlations to seed yield.


Total dry weight (g m-2), leaf dry weight (g m-2) and stem dry weight
(g m-2) at R3 were positively and highly correlated with seed dry weight (g m-2)
at R8 (Table 5-3). Similar results were obtained at R5 where total dry weight










Table 5-1. Statistical models for soybean plant variables
density (X) at R3 stage, 1988.


Variable (Y)


(Y) with plant


Statistical model


Total dry weight(g m'2)
Leaf dry weight (g m'-2
Stem dry weight (g m'
Total dry weight plant *(g)


InY = 0.411nX + 5.14
InY = 0.341nX + 4.43
InY = 0.471nX + 4.47
InY = 0.581nX + 5.14


* ,** significance at the 5 and 1% levels, respectively.









Table 5-2. Statistical models for soybean plant variables (Y) at R5 stage with
plant density (X), 1988.


Variable (Y)


Total dry weight (g m-2)
Leaf dry weight (g m-2)
Stem dry weight (g m'
Total dry weight plant (g)


Statistical model


InY = 0.431nX + 5.34
InY = 0.411nX + 4.49
InY = 0.411nX + 4.78
InY = 0.521nX + 5.28


*,significance at the 5 and 1% levels, respectively.


0.86*
0.78*
0.88**
0.92*


0.79"
0.75"
0.56"
0.87"






















1400

1200 ---- Stem
Leaf
1000 --- Total

E 800

S 600

C 400

200

0-
0 10 20 30 40 50 60 70 80

Plants m"2


Fig. 5-2. The effect of plant population density on stem, leaf and
total dry weights of Kirby at the R3 stage,1988.





















2000

1750 --- Total
Leaf
. 1500 -- Stem

>E 1250

. 1000

" 750

500

250-

0
0 10 20 30 40 50 60 70 80

Plants m-2


Fig. 5-3. The effect of plant population density on stem, leaf and
total dry weights of Kirby at the R5 stage, 1 988.






















140

120

100-

80

60

40

20

0 -
0


10 20 30 40


Plants m-2


5 6 7I 8
50 60 70 80


Fig. 5-4. The effect of plant population density on vegetative dry
weight of Kirby at the R3 and R5 stages, 1 988.


---a- R5
R3


I*1*1*I














Table 5-3. Correlation oefficients of soybean plant variables at R3 stage with
seed dry weight (g m'") at R8, 1988.
Variable r
Total dry weight (g m-2) 0.80"
Leaf dry weight (g m~ 0.77**
Stem dry weight (g m') 0.81

*, significance at the 5 and 1% levels, respectively.







Table 5-4. Correladon coefficients of soybean plant variables at R5 stage with
seed weight (g m'") at R8, 1988.
Variable (Y) r

Total dry weight (g m"2) 0.63*
Leaf dry weight (g m-22 0.65"
Stem dry weight (g m'2) 0.54*


*,* significance at the 5 and 1% levels, respectively.









(g m-2), leaf dry weight (g m-2) and stem dry weight (g m-2) at R5, were
moderately correlated with seed dry weight (g m-2) at R8 (Table 5-4). Udoguchi
and McCloud (1986) and Parvez et al. (1989) also had similar findings.
However, Basuchaudhari (1987) found only moderate correlations.




Yield implications.


Total vegetative dry weight per plant decreased with plant population
density and therefore, there was less potential for higher yields on a per plant
basis. However, the increase in plant population offset the reduction in total dry
weight per plant, and as a result total dry weights (g m-2) increased with plant
population density. The high correlation of dry weight (g m-2) with seed dry
weight (g m -2), indicates that accompanying such dry weight increases per unit
area are i) increased photosynthetic capacity per unit land area and ii), increased
amounts of nutrients per unit land area for remobilization. A better appreciation
of the role of dry weight in productive processes comes with examining measures
of its distribution--specifically leaf fractions, the leaf area index, etc.


Leaf fraction, leaf area and light intercepted and linear regressions


At R3, the stem fraction was positively affected while leaf fraction was
negatively affected by plant population density (Fig. 5-5) (Table 5-5). However,
at R5 plant population density had no significant effect on the stem and leaf




















1.0-

0.9-

0.8-

0.7-

0.6-

0.5-

0.4-

03


0 10 20 30 40 50 60 70 80


Plants m'2



Fig. 5-5. The effect of plant population density on stem and leaf
fractions of Kirby at the R3 and R5 stages, 1988.


---- R5 leaf
R5 stem
-- R3 leaf
--- R3 stem








_- ----


."













Table 5-5. Statistical models for soybean plant variables
density (X) at R3 stage, 1988.


(Y) with plant


Variable (Y) Statistical model R2


Stem fraction
Leaf fraction
Percent light intercepted
Leaf area index
Specific leaf area (m2 g-1
Specific leaf weight (gm m )


InY = 0.051nX .66
InY = -0.071nX .71
InY = 0.091nX + 4.29
InY = 0.401nX + .63
InY = 0.071nX 3.81
InY = -0.071nX + 3.81


*,* significance at the 5 and 1% levels, respectively.


Table 5-6 Statistical models for soybean plant variables
(X) at R5 stage, 1988.


(Y) with plant density


Variable (Y) Statistical model R2


Percent light intercepted
Stem fraction
Leaf fraction
Leaf area index
Specific leaf area (m2 g-1
Specific leaf weight(g m' )


InY = 0.071nX + 4.35
InY = -0.021nX .56
InY = -0.021nX .85
InY = 0.381nX + .80
InY = -0.031nX 3.69
InY = 0.031nX + 3.69


*,** significance at the 5 and 1% levels, respectively.


0.61"*
0.63"
0.59"
0.83"
0.25*
0.25*


0.56"
0.01
0.02
0.67**
0.01
0.01








fractions (Fig. 5-5) (Table 5-6), although the plant density trends were similar to
those at R3. At R3, specific leaf area (m2 g'l) (Fig. 5-6) and specific leaf weight
(g m-2) were affected by plant population density (Table 5-6). At R5, specific leaf
area (m2 g -1) (Fig. 5-6) and specific leaf weight (g m-2) were not affected by
plant population density (Table 5-6). By comparison, Nelson and Schweitzer
(1988), observed that specific leaf weight (g m-2) (and hence, specific leaf area
(m2 g-1) ) was not greatly affected by environments.
At higher plant population densities, due to soybean's phyllotaxy, it is
expected that a greater proportion of leaves will be shaded. However, the lack of
differences in specific leaf weight at R5, may have been due to the fact that there
was probably greater differences within canopies, than between canopies. The
specific leaf weights and specific leaf areas taken were average measures over
the whole canopy and they do not indicate differences with height in canopies.
At R3, the leaf area index (Fig. 5-7) and percent light intercepted (Fig. 5-8), were
affected by plant population density (Table 5-5). At R5, both the leaf area index
( Fig. 5-7 ,Table 5-6 ) and the percent light intercepted ( Fig. 5-8, Table 5-6 ) were
affected by plant population density. Light interception reached a maximum of
99% and leveled off at a population density of 25 plants m2.


Leaf fraction, leaf area and light Intercepted and correlations with seed yield.


At R3, stem and leaf fractions were highly correlated with seed dry weight
(g m-2) at R8 (Table 5-7). However, at R5 stem and leaf fractions were not
correlated with seed dry weight (g m-2) (Table 5-8). At R3, specific leaf weight























---- R5
- R3


4. -


0.032-

0.030-

0.028-

0.026-

0.024-

0.022-

0.020-

0.018-

0.016


50 60 70 80


Fig. 5-6. The effect of plant population density on specific leaf area
of Kirby at the R3 and R5 stages, 1988.


10 20 30 40

Plants m2


























10-


. R 5s
8R3


2 I I I I I I I
0 10 20 30 40 50 60 70 80

Plants m-2

Fig. 5-7. The effect of plant population density on the leaf
area index of Kirby at the R3 and R5 stages, 1988.




81















100

95

.2 90

S 85

-c 80-
= --- R5
R3
a- 70 -

65-

60 i -, ,, -, ,
0 10 20 30 40 50 60 70 80

Plants m -2



Fig. 5-8. The effect or plant population density on percent
light interception of Kirby at the R3 and R5 stages, 1988.
















Table 5-7. Correlation coefficients of soybean plant variables at R3 stage
with seed weight (g m'") at R8, 1988.

Variable r

Stem fraction 0.69*
Leaf fraction -0.69"
Percent light intercepted 0.67*
Leaf area index 0.79*
Specific leaf area (m2 g-1 0.41'
Specific leaf weight (g m ") -0.46*

*,* significance at the 5 and 1% levels, respectively.







Table 5-8. Correla~jon coefficients of soybean plant variables at R5 stage with
seed weight (g m'") at R8, 1988.

Variable r

Percent light intercepted 0.65"
Stem fraction -0.11
Leaf fraction 0.07
Leaf area index 0.65
Specific leaf area (m2 g'l~ -0.10
Specific leaf weight (g m'-) -0.10


*," significance at the 5 and 1% levels, respectively.








(g m-2) and specific leaf area (m2 g -1) were moderately correlated with seed
weight (g m-2) at R8. At R5 specific leaf weight(g m-2) and specific leaf area
(m2 g -1) were poorly correlated with seed weight (g m-2) at R8.
Leaf area index and percent light intercepted at R3, were highly
correlated with seed weight (g m-2) at R8 (Table 5-7). Leaf area index and
percent light intercepted at R5 were highly correlated with seed weight (g m-2) at
R8 (Table 5-8). This is consistent with the findings of Basuchaudhari (1987).
However, Ramseur et al. (1985) and Costa et al. (1980) found that LAI was not
correlated with yield.


Yield implications


At R3 with increasing plant population density the stem fraction increased.
However, at R5 the plant population effect on the stem fraction was not
significant. Specific leaf weights tended to be poorly correlated with seed dry
weight.
Bunce (1988) indicated that even though LAI increased with plant
population density, the photosynthetic capacity per unit leaf area decreased,
because of the reduced photosynthetic capacity of shaded leaves. The lower
respiration rate of shaded leaves results in them not being parasitic (Shibles and
Weber, 1965; Duncan et al. 1967). However, it is likely that the increase in leaf
photosynthetic area per unit land area, more than makes up for reduced
photosynthetic capacity per unit leaf area, thereby, increasing the potential for
increased yields with increased plant population density.








Nutrient Status and Linear Regression.


At R5, plant population density had no effect on N concentrations in the
stems and leaves (Fig. 5-9 and Table 5-9 ). However, N content (g m-2) in the
stems and leaves were affected significantly (Fig. 5-10, Table 5-9 ). At R5, plant
population density had no effect on P concentrations in either stems or leaves (
Fig. 5-11 and Table 5-9 ). Phosphorus content (g m-2) in the stems and leaves
were affected significantly ( Fig. 5-12 and Table 5-9). These results corroborate
those of Abrahamson and Caswell (1982) and Hanway and Weber (1971).
Unlike the findings of Buttery (1969), N concentration did not decrease because
of inter-plant competition for limited N resources. Nitrogen (g) per unit leaf
area ( Fig. 5-13, Table 5-9 ), and P (g) per unit leaf area ( Fig. 5-14, Table 5-9)
were not affected by plant population density. Leaf N (g m-2) appeared to be
greater in the leaves than in the stems, (the intercept and slopes of the statistical
models for N (g m-2) and P (g m-2) imply this) and this observation is consistent
with the findings of Wang and Liu (1987).


Nutrient status and correlations.


The correlation results are provided in Table 5-10. The concentrations of
N in both stems and leaves at R5 were not correlated with seed dry weight
(g m-2) at R8. The concentration of P in both stems and leaves at R5 were not
correlated with seed dry weight (g m-2) at R8. N and P content per unit leaf area
was not correlated with seed dry weight, and therefore were not a basis for






















60


50 -


40


30


20


lu 1 I I I I I I i
0 10 20 30 40 50 60 70 80
Plants m-2



Fig. 5-9. The effect of plant population density on leaf and stem
N concentrations of Kirby at the R5 stage, 1988.


----- Leaf
--- Stem




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ETO8XJULZ_0EK22H INGEST_TIME 2017-07-13T21:52:10Z PACKAGE AA00003761_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 2

<,(/' '<1$0,&6 2) 62<%($1 5(/$7,9( 72 3/$17 3238/$7,21 %\ 3(7(5 7+203621 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

7$%/( 2) &217(176 SDJH $&.12:/('(*0(176 Y /,67 2) 7$%/(6 YLL /,67 2) ),*85(6 [L $%675$&7 [YL &+$37(56 ,1752'8&7,21 /,7(5$785( 5(9,(: 7KH (IIHFW RI 3ODQW 3RSXODWLRQ RQ 6R\EHDQ 6WHPV DQG %UDQFKHV /HDYHV DQG /HDI $UHD ,QGH[ )ORZHU 3URGXFWLRQ DQG 'HYHORSPHQW 1RGHV 3RGV DQG 6HHGV %LRPDVV /RGJLQJ 1LWURJHQ DQG 3KRVSKRUXV $FFXPXODWLRQ 7KH 6WUXFWXUDO DQG
PAGE 4

5(68/76 $1' ',6&866,21 (;3(5,0(17 $129$ 5HVXOWV 3ODQW 3RSXODWLRQ (IIHFW &XOWLYDU (IIHFW $Q ([SODQDWLRQ IRU &XOWLYDU 'LIIHUHQFHV %DVHG RQ $129$ &RUUHODWLRQ $QDO\VLV $Q ([SODQDWLRQ IRU &XOWLYDU
PAGE 5

5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 6

$&.12:/('*0(176 DP JUDWHIXO WR WKH ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV IRU SURYLGLQJ IXQGLQJ ZLWKRXW ZKLFK P\ VWXGLHV DW WKH 8QLYHUVLW\ RI )ORULGD ZRXOG QRW KDYH EHHQ EH SRVVLEOH ZRXOG DOVR OLNH WR DFNQRZOHGJH WKH *UDGXDWH 6FKRRO VSHFLILFDOO\ WKH 0LQRULW\ 3URJUDP IRU WKHLU JHQHURXV ILQDQFLDO VXSSRUW ZRXOG OLNH WR WKDQN 'U / )U\ ZKR LQWURGXFHG PH WR WKH 8QLYHUVLW\ RI )ORULGD IRU KLV FRQVWDQW HQFRXUDJHPHPW DQG XQZDYHULQJ FRPPLWWPHQW WR WKH VXFFHVV RI P\ SURJUDP +LV FRQFHUQ DGYLFH DQG WKRXJKWV DOVR KHOSHG JUHDWO\ LQ UHVROYLQJ P\ IUXVWUDWLRQV DV D VWXGHQW DP JUDWHIXO WR 'U 5 0F'DYLV ZKR DOZD\V SURYLGHG LQYDOXDEOH DQG WLPHO\ DGYLFH +LV SKLORVRSK\ RQ HGXFDWLRQ ZDV DOZD\V HQFRXUDJLQJ HVSHFLDOO\ LQ GLIILFXOW WLPHV DP GHHSO\ DSSUHFLDWLYH RI 'U 'DUHOO ( 0F&ORXG ZKRP DV WKH FKDLUPDQ RI P\ FRPPLWWHH ZDV SDUWLFXODUO\ XQGHUVWDQGLQJ DQG ZKROHKHDUWHGO\ VXSSRUWHG P\ TXHVW IRU D ZHOOURXQGHG HGXFDWLRQ DP LQGHEWHG WR 'U .HQ %RRWH WKH FRFKDLU RI P\ FRPPLWWHH ZKR FRQWULEXWHG VLJQLILFDQWO\ WR P\ LQWHOOHFWXDO PDWXULW\ E\ SHUVLVWHQWO\ SODFLQJ EHIRUH PH WKH FKDOOHQJH RI FRQVLGHULQJ DFDGHPLF DQG VFLHQWLILF LVVXHV WKDW ZRXOG QRW KDYH RWKHUZLVH DGGUHVVHG Y

PAGE 7

, ZRXOG OLNH WR H[SUHVV P\ JUDWLWXGH WR 'U .XHOO +LQVRQ ,W KDV DOZD\V EHHQ D SOHDVXUH WR LQWHUDFW ZLWK KLP +H KDV DOZD\V EHHQ FRQFHUQHG DERXW P\ ZHOIDUH DV D VWXGHQW DQG KLV RSHQPLQGHGQHVV LV UHDVVXULQJ DP LQGHEWHG WR 'U &KULV 2 $QGUHZD PHQWRU 2XU GLVFXVVLRQV DQG KLV VRXQG DGYLFH DOZD\V SURYLGHG YDOXDEOH LQVLJKW %XW PRVW LPSRUWDQWO\ KH KDV LQVSLUHG PH WR WDNH D EURDGHU YLHZ RI OLIH DP JUDWHIXO WR 'U :LOOLDP %OXH ZLWK ZKRP KDYH DQ H[WUHPHO\ FRPIRUWDEOH UHODWLRQVKLS DQG ZKRVH RSHQHVV DQG ZDUPWK QHYHU GLPLQLVKHG KLV ULJRURXV DQG VSLULWHG H[DPLQDWLRQ RI P\ ZRUN DP WKDQNIXO WR 'U *RUDQ +\GHQ ZKR SDWLHQWO\ LQVWLOOHG LQ PH WKH FRQILGHQFH WR SXUVXH LVVXHV SHUWLQHQW WR DJULFXOWXUDO GHYHORSPHQW +H FRQWULEXWHG JUHDWO\ WR P\ LQWHOOHFWXDO GHYHORSPHQW E\ DOZD\V FKDOOHQJLQJ PH WR WDNH P\ LGHDV RQH VWHS IXUWKHU ZRXOG OLNH WR WKDQN 5LFN +LOO ZKR LQWURGXFHG PH WR WKH RSHUDWLRQV RI WKH $JURQRP\ )DUP ZKLFK IDFLOLWDWHG P\ ILHOG H[SHULPHQWV DP JUDWHIXO WR )UDQN 0F*UDZ IRU KLV ZLOOLQJ DQG LQYDOXDEOH SUDFWLFDO DGYLFH RQ P\ ILHOG H[SHULPHQW 9,

PAGE 8

/,67 2) 7$%/(6 7DEOH SDJH 6XPPDU\ RI WKH SODQW YDULDEOHV PHDVXUHG GXULQJ DQG $ WDEOH IRU WKH LQWHUSUHWDWLRQ RI SODQW GHQVLW\\LHOG FURVV UHIHUHQFHG GDWD 7KH HIIHFW RI SODQWSRSXODWLRQ DQG FXOWLYDU RQ WRWDO GU\ ZHLJKW J Prf DW 5 &XOWLYDU HIIHFW RQ WRWDO GU\ ZHLJKW DW 5 7KH HIIHFW RI SODQW SRSXODWLRQ DQG FXOWLYDU RQ VR\EHDQ SODQW WUDLWV DW 5 VWDJH &XOWLYDU HIIHFW RQ VR\EHDQ SODQW WUDLWV DW 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ DQG FXOWLYDU RQ SODQW WUDLWV DW 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ ;f RQ SRG QXPEHU Pff
PAGE 9

&RUUHODWLRQ FRHIILFLHQWV IRU WKH IXQGDPHQWDO \LHOG FRPSRQHQWV ;f DW VWDJH 5 ZLWK YDULDEOHV ;f DW 5 DQG 5 0HDQ YDOXHV DQG FRUUHODWLRQ FRHIILFLHQWV IRU 5 WRWDO GU\ ZHLJKW J Pf VHHG GU\ ZHLJKW J Pf DQG LWV IXQGDPHQWDO FRPSRQHQWV DW 5 6WDWLVWLFDO PRGHOV IRU SHU SODQW UHVSRQVHV
PAGE 10

&RUUHODWLRQ FRHIILFLHQWV RI VR\EHDQ SODQW YDULDEOHV DW 5 ZLWK VHHG GU\ ZHLJKW J Pnf DW 5
PAGE 11

7RWDO OLJKW XVH HIILFLHQFLHV DV GHWHUPLQHG E\ 62<*52 IRU &XPEHUODQG FXOWLYDU DW VHYHQWHHQ SODQW GHQVLWLHV 6HHG \LHOG HIILFLHQFLHV DV GHWHUPLQHG E\ 62<*52 IRU &XPEHUODQG FXOWLYDU DW VHYHQWHHQ SODQW GHQVLWLHV [

PAGE 12

/,67 2) ),*85(6 )LJXUH SDJH 7\SLFDO UHVSRQVH IRU \LHOG SHU XQLW DUHD Df DQG \LHOG SHU SODQW Ef WR SODQW GHQVLW\ 3UHFLSLWDWLRQ SURILOH RYHU WKH DQG JURZLQJ VHDVRQV *DLQHVYLOOH ), 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WRWDO GU\ ZHLJKW DW WKH 5 VWDJH LQ VR\EHDQ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG GU\ ZHLJKW RI VR\EHDQ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHGV SRG RI VR\EHDQ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ ZHLJKW VHHGn RI VR\EHDQ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ SRG QXPEHU P RI VR\EHDQ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ GU\ ZHLJKW SHU SODQW RI VR\EHDQ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG ZHLJKW SHU SODQW RI VR\EHDQ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG QXPEHU SHU SODQW RI VR\EHDQ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG ZHLJKW RI .LUE\ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VWHP OHDI DQG WRWDO GU\ ZHLJKWV RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VWHP OHDI DQG WRWDO GU\ ZHLJKWV RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ YHJHWDWLYH GU\ ZHLJKW RI .LUE\ DW WKH 5 DQG 5 VWDJHV ;,

PAGE 13

7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VWHP DQG OHDI IUDFWLRQV RI .LUE\ DW WKH 5 DQG 5 VWDJHV 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VSHFLILF OHDI DUHD RI NLUE\ DW WKH 5 DQG 5 VWDJHV 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WKH OHDI DUHD LQGH[ RI .LUE\ DW WKH 5 DQG 5 VWDJHV 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ SHUFHQW OLJKW LQWHUFHSWLRQ RI .LUE\ DW WKH 5 DQG 5 VWDJHV 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 1 FRQFHQWUDWLRQV RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 1 FRQWHQW RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 3 FRQFHQWUDWLRQV RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 3 FRQWHQW RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ 1 FRQWHQW SHU XQLW OHDI DUHD RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ 3 FRQWHQW SHU XQLW OHDI DUHD RI .LUE\ DW WKH 5 VWDJH 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG QXPEHU RI .LUE\ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ ZHLJKW SHU VHHG RI .LUE\ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG QXPEHU SHU SRG RI .LUE\ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG ZHLJKW SHU SODQW RI .LUE\ DW PDWXULW\ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG QXPEHU SHU SODQW RI .LUE\ DW PDWXULW\ 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG \LHOG RI &XPEHUODQG FXOWLYDU [LL

PAGE 14

2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ ZHLJKW SHU VHHG RI &XPEHUODQG FXOWLYDU 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG QXPEHU SHU XQLW DUHD RI &XPEHUODQG FXOWLYDU 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG \LHOG SHU SODQW RI &XPEHUODQG FXOWLYDU 7KH UHODWLRQVKLS EHWZHHQ OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 DQG SHUFHQW OLJKW DEVRUEHG DW QRRQ 5f GDLO\ 5f DQG EHWZHHQ 5 DQG 5 IRU &XPEHUODQG 7KH VLPXODWHG HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ 1 PRELOL]HG SHU XQLW DUHD IRU &XPEHUODQG FXOWLYDU 7KH VLPXODWHG HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ SHUFHQW PRELOL]HG1 LQ VHHGV RI &XPEHUODQG FXOWLYDU 7KH VLPXODWHG HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WRWDO OLJKW XVH HIILFLHQF\ RI &XPEHUODQG FXOWLYDU 7KH VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG \LHOG HIILFLHQF\ RI &XPEHUODQG FXOWLYDU ZLWK DQG ZLWKRXW WKH EHQHILW RI SURWHLQ UHPRELOL]DWLRQ ;,,,

PAGE 15

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ <,(/' '<1$0,&6 2) 62<%($1 5(/$7,9( 72 3/$17 3238/$7,21 %\ 3(7(5 7+203621 $XJXVW &KDLUPDQ 'U 'DUHOO ( 0F&ORXG &RFKDLUPDQ 'U .HQQHWK %RRWH 0DMRU 'HSDUWPHQW $JURQRP\ 6R\EHDQ >*O\FLQH PD[ ,f 0HUU@ \LHOG KDV EHHQ VKRZQ WR UHVSRQG WR FKDQJHV LQ SODQW SRSXODWLRQ 5HVXOWV IURP QXPHURXV SODQW SRSXODWLRQ VWXGLHV RQ VR\EHDQ FRQFOXVLYHO\ VKRZ WKDW YDULRXV FURS DQG SODQW SDUDPHWHUV ZKLFK DUH NQRZQ WR LQIOXHQFH \LHOG DUH WKHPVHOYHV VXEMHFW WR SODQW SRSXODWLRQ HIIHFWV +RZHYHU WKH PHFKDQLVP E\ ZKLFK SODQW SRSXODWLRQ H[HUWV LWV LQIOXHQFH RQ \LHOG LV QRW ZHOO XQGHUVWRRG )LHOG H[SHULPHQWV ZHUH FRQGXFWHG LQ *DLQHVYLOOH )ORULGD r1f GXULQJ DQG WR LGHQWLI\ FURS SDUDPHWHUV DQG SK\VLRORJLFDO DQG HFRORJLFDO UHODWLRQVKLSV ZKLFK PHGLDWH WKH HIIHFW RI SODQW SRSXODWLRQ RQ \LHOG 62<*52D SURFHVVRULHQWHG FURS JURZWK VLPXODWRU ZDV DOVR XVHG WR LQYHVWLJDWH WKH HIIHFW RI SODQW SRSXODWLRQ RQ VHHG \LHOG DQG WR WHVW SXEOLVKHG K\SRWKHVHV UHJDUGLQJ WKH HIILFLHQF\ ZLWK ZKLFK WKH VR\EHDQ FURS XVHV SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ 3$5f WR SURGXFH VHHG \LHOG ;,9

PAGE 16

7KH VR\EHDQ FXOWLYDUV .LUE\ >0* 9,,,@ &HQWHQQLDO >0* 9,@ DQG )RUUHVW >0* 9@ ZHUH SODQWHG LQ DW SRSXODWLRQV RI DQG SODQWV QU LQ D VTXDUH DUUDQJHPHQW 7KH SDUDPHWHUV UHFRUGHG DW JURZWK VWDJHV 5 5 DQG 5 LQFOXGHG WRWDO GU\ ZHLJKW SRG GU\ ZHLJKW DQG QXPEHU DQG VHHG GU\ ZHLJKW DQG QXPEHU 3ODQW SRSXODWLRQ GLG QRW KDYH DQ\ HIIHFW RQ WKH YDULDEOHV UHFRUGHG KRZHYHU DOO YDULDEOHV ZHUH VLJQLILFDQWO\ DIIHFWHG E\ FXOWLYDU 6HHG VL]H DQG WRWDO GU\ ZHLJKW P DW 5 DFFRXQWHG IRU WKH GLIIHUHQFHV REVHUYHG LQ \LHOG EHWZHHQ WKH FXOWLYDUV ,Q .LUE\ >0* 9,,,@ ZDV SODQWHG DW SRSXODWLRQV RI DQG SODQWV QU LQ D VTXDUH DUUDQJHPHQW 7KH YDULDEOHV PRVW VHQVLWLYH WR SODQW SRSXODWLRQ DQG ZKLFK ZHUH DOVR FORVHO\ DVVRFLDWHG ZLWK \LHOG ZHUH VHHG QXPEHU DQG SRG QXPEHU DW 5 DQG WRWDO GU\ ZHLJKW DQG OHDI GU\ ZHLJKW DW 5 7KH 62<*52 PRGHO ZKLFK ZDV FDOLEUDWHG WR JLYH UHVSRQVHV DSSUR[LPDWLQJ WKRVH RI REVHUYHG PHDQ \LHOG DQG FDQRS\ WUDLWV WR SODQW GHQVLW\ FRQILUPHG WKH K\SRWKHVLV WKDW VHHG \LHOG HIILFLHQF\ VHHG \LHOG XQLW 3$5 LQWHUFHSWHGf WHQGV WR LQFUHDVH ZLWK SODQW GHQVLW\ 7KLV LQFUHDVH FDQ EH DWWULEXWHG LQ SDUW WR DQ LQFUHDVLQJ UDWLR RI PRELOL]HG1 WR WRWDO1 LQ VHHGV DW KLJKHU SODQW GHQVLWLHV [Y

PAGE 17

&+$37(5 ,1752'8&7,21 6R\EHDQ >*OYFLQH PD[ /f 0HUU@ WKH SURGLJLRXV OHJXPH ZKLFK ZDV ILUVW GRPHVWLFDWHG DSSUR[LPDWHO\ \HDUV DJR E\ WKH &KLQHVH KDV FRPH WR EH NQRZQ DV WKH \HOORZ MHZHO DQG WKH ZRQGHU EHDQ 6R\EHDQ KDV D WUHPHQGRXV UDQJH RI XVHV ,W LV XVHG LQ WKH SURGXFWLRQ RI VXFK YDULHG SURGXFWV DV FDUGERDUG SDLQW ILUH H[WLQJXLVKHU IRDP DQG JOXH +RZHYHU EHFDXVH RI LWV KLJK SURWHLQ DQG RLO FRQWHQW VR\EHDQ ILQGV LWV PRVW LPSRUWDQW XVH HLWKHU GLUHFWO\ RU LQGLUHFWO\ DV IRRG IRU ERWK KXPDQV DQG DQLPDOV 6R\EHDQ LV YLHZHG E\ VRPH DV D PDMRU ZHDSRQ DJDLQVW ZRUOG KXQJHU %XW LI WKH IXOO SRWHQWLDO RI VR\EHDQ DV D ZHDSRQ DJDLQVW KXQJHU LV WR EH UHDOL]HG WKH SURFHVVHV ZKLFK GHWHUPLQH LWV JUDLQ \LHOG QHHG WR EH EHWWHU XQGHUVWRRG 6R\EHDQ LV JURZQ XQGHU GLYHUVH FXOWXUDO FRQGLWLRQV DQG XVXDOO\ DW SODQW SRSXODWLRQV ZKLFK WKURXJK WULDO DQG HUURU KDYH EHHQ IRXQG WR EH GHVLUDEOH 7KH VWXG\ RI WKH HIIHFW RI SODQW SRSXODWLRQ RU SODQW SRSXODWLRQ GHQVLW\ RQ VR\EHDQ JUDLQ \LHOG LV RI LQWHUHVW IRU WZR PDLQ UHDVRQV )LUVW IRU D JLYHQ FURSSLQJ V\VWHP WKH TXDQWLWDWLYH UHODWLRQVKLS EHWZHHQ \LHOG DQG SODQW SRSXODWLRQ GHQVLW\ LV LPSRUWDQW LQ HVWLPDWLQJ Lf DW ZKDW GHQVLW\ PD[LPXP RU RSWLPXP \LHOG FDQ EH DFKLHYHG DQG LLf LQ HFRQRPLF WHUPV ZKLFK SODQW SRSXODWLRQ ZLOO SURYLGH WKH PRVW SURILWDEOH \LHOG

PAGE 18

6HFRQGO\ SODQW SRSXODWLRQ VWXGLHV DOORZ H[DPLQLQJ WKH SURFHVV RI \LHOG DFKLHYHPHQW DQG LWV GHWHUPLQDQWV 7KH GHWHUPLQDQWV RI \LHOG RU SRWHQWLDO \LHOG FRUUHODWHV 3<&Vf FDQ EH GHILQHG DV DQ\ PRUSKRORJLFDO RU SK\VLRORJLFDO FKDUDFWHULVWLF RI D FURS ZKLFK PD\ LQIOXHQFH ILQDO VHHG \LHOG DW RQH WLPH RU DQRWKHU GXULQJ WKH GHYHORSPHQW RI WKH FURS $Q XQGHUVWDQGLQJ RI WKH UHODWLRQVKLS EHWZHHQ 3<&V DQG \LHOG LV EDVLF WR DQ\ DSSUHFLDWLRQ RI WKH SURFHVV RI \LHOG DFKLHYHPHQW 7KH HOXFLGDWLRQ RI WKH QDWXUH DQG WKH H[WHQW RI WKH IXQFWLRQDO UHODWLRQVKLS EHWZHHQ 3<&V DQG \LHOG LV IDFLOLWDWHG E\ SODQW SRSXODWLRQ VWXGLHV $ VXIILFLHQWO\ ZLGH UDQJH RI SODQW SRSXODWLRQV PD\ SURYLGH D UDQJH LQ PDJQLWXGH RI ERWK 3<&V DQG \LHOG DQG WKLV DOORZV FRPSUHKHQVLYH UHJUHVVLRQ DQDO\VHV WR EH FRQGXFWHG RQ WKH UHODWLRQVKLS RI \LHOG WR 3<&V 7KHUHIRUH SODQW SRSXODWLRQ VWXGLHV DUH LPSRUWDQW LQ XQGHUVWDQGLQJ ERWK WKH SK\VLRORJLFDO EDVLV RI \LHOG DQG FURS LPSURYHPHQW %\ HVWDEOLVKLQJ WKH UHODWLRQVKLSV Lf RI ERWK 3<&V DQG \LHOG ZLWK SODQW SRSXODWLRQ GHQVLW\ LLf EHWZHHQ 3<&V WKHPVHOYHV DQG LLLf EHWZHHQ 3<&V DQG \LHOG D EDVLV DQG GLUHFWLRQ IRU SK\VLRORJLFDO LQTXLU\ LQWR WKH SURFHVV RI \LHOG DFKLHYHPHQW FDQ EH DWWDLQHG 2QFH WKH PDMRU GHWHUPLQDQWV RU 3<&V RI \LHOG KDYH EHHQ HVWDEOLVKHG WKHVH IDFWRUV PD\ DOVR VHUYH DV HIIHFWLYH VHOHFWLRQ FULWHULD LQ FURS LPSURYHPHQW SURJUDPV ZKLFK VHHN WR DFKLHYH KLJKHU \LHOGV DQG IRVWHU VRFLRHFRQRPLF GHYHORSPHQW ,W KDV EHHQ SRLQWHG RXW E\ 'XQFDQ f WKDW WKHUH KDV \HW WR HPHUJH D WKHRU\ FDSDEOH RI H[SODLQLQJ VR\EHDQ \LHOG ZLWKLQ WKH FRQWH[W RI SODQW SRSXODWLRQ VWXGLHV ,Q DQ DWWHPSW WR DSSUHFLDWH WKH G\QDPLFV RI \LHOG ZLWKLQ WKH FRQWH[W RI SODQW SRSXODWLRQ VWXGLHV WKH REMHFWLYHV RI WKH LQYHVWLJDWLRQ FRQGXFWHG KHUH DUH ILUVW WR GHYHORS DQ DQDO\WLFDO IUDPHZRUN IRU WKH DQDO\VLV RI \LHOGSODQW SRSXODWLRQ

PAGE 19

GHQVLW\ GDWD VHFRQGO\ WR DVFHUWDLQ ZKLFK ELRORJLFDO DQG HFRORJLFDO YDULDEOHV DQG UHODWLRQVKLSV RI WKH VR\EHDQ FURS PHGLDWH WKH LQIOXHQFH RI SODQW SRSXODWLRQ GHQVLW\ RQ ILQDO JUDLQ \LHOG DQG WKLUGO\ WR HOXFLGDWH WKH EDVLV IRU WKH UHVSRQVH VXUIDFH ZKLFK FKDUDFWHUL]HV \LHOGSODQW SRSXODWLRQ GHQVLW\ UHODWLRQVKLSV 7KLV ILQDO REMHFWLYH ZKLFK IRFXVHV RQ D UHODWLYHO\ XQH[SORUHG DUHD WKH UHVSRQVH VXUIDFHf RI SODQW SRSXODWLRQ VWXGLHV ZLOO EH FDUULHG RXW XVLQJ 62<*52 D SURFHVV RULHQWHG FURS JURZWK VLPXODWLRQ PRGHO IRU VR\EHDQ

PAGE 20

&+$37(5 /,7(5$785( 5(9,(: 7KH UHVHDUFK OLWHUDWXUH RQ \LHOGSODQW SRSXODWLRQ GHQVLW\ VWXGLHV ZLOO EH EURNHQ GRZQ LQWR WKUHH VHFWLRQV )LUVW WKH HIIHFW RI SODQW SRSXODWLRQ RQ WKH VR\EHDQ FURS ZLOO EH GLVFXVVHG 7KH QH[W WZR VHFWLRQV FRPH XQGHU WKH XPEUHOOD RI H[SODLQLQJ \LHOG DQG FRQVLVW RI GLVFXVVLRQV RQ WKH REVHUYDWLRQ WKDW \LHOG SHU XQLW DUHD LQFUHDVHV DQG \LHOG SHU SODQW GHFUHDVHV ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ GHQVLW\ DQG GLVFXVVLRQV RQ WKH DV\PSWRWLF RU SDUDEROLF VKDSH RI \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV ,W LV ZLWKLQ WKH FRQWH[W RI WKH ODWWHU VHFWLRQ WKDW 62<*52D SURFHVV RULHQWHG SODQW JURZWK VLPXODWRU -RQHV HW DO f ZLOO EH GLVFXVVHG 2I VSHFLILF LQWHUHVW ZLWK 62<*52 DUH HVWLPDWLRQV RI WKH LPSDFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WKH HIILFLHQF\ ZLWK ZKLFK SODQWV XVH OLJKW LQSXWV IRU VHHG SURGXFWLRQ /DVWO\ WKH LGHQWLILFDWLRQ RI WKH UHSURGXFWLYH JURZWK VWDJHV RI VR\EHDQ DQG WKH VTXDUH SODQWLQJ SDWWHUQ ZKLFK DUH UHOHYDQW WR H[SHULPHQWDO SURFHGXUHV ZLOO EH GLVFXVVHG 7KH (IIHFW RI 3ODQW 3RSXODWLRQ RQ 6R\EHDQ ,Q SODQW SRSXODWLRQ RU \LHOGSODQW SRSXODWLRQ GHQVLW\ VWXGLHV WKH PDLQ HFRORJLFDO IRUFH ZKLFK LQIOXHQFHV FURS SHUIRUPDQFH LV LQWHUSODQW FRPSHWLWLRQ :LWK LQFUHDVLQJ GHQVLW\ SODQWV WHQG WR FRPSHWH PRUH LQWHQVHO\ IRU DYDLODEOH

PAGE 21

UHVRXUFHV 3ODQW FRPSHWLWLRQ LV VXEMHFW WR D QXPEHU RI GLIIHULQJ LQWHUSUHWDWLRQV KRZHYHU KHUH LW ZLOO EH GHILQHG DFFRUGLQJ WR *ULPH fWKH WHQGHQF\ IRU QHLJKERULQJ SODQWV WR XWLOL]H WKH VDPH TXDQWXP RI OLJKW LRQ RI D PLQHUDO PROHFXOH RI ZDWHU RU YROXPH RI VSDFH &RPSHWLWLYH LQWHUDFWLRQV EHWZHHQ RUJDQLVPV DUH FRQVLGHUHG WR EH DPRQJ WKH PRVW LPSRUWDQW HFRORJLFDO SKHQRPHQD 6QHOO DQG %XUFK f &RPSHWLWLRQ EHWZHHQ RUJDQLVPV RFFXSLHV D SODFH RI SURPLQHQFH LQ HYROXWLRQDU\ WKHRU\ ZKHUH VXUYLYDO RI WKH ILWWHVW GHWHUPLQHV WKH SURFUHDWLRQ SRVVLELOLWLHV RI VSHFLHV $W D PRUH LPPHGLDWH OHYHO FRPSHWLWLRQ KROGV YDULRXV FRQVHTXHQFHV IRU D GHYHORSLQJ SODQW ,Q UHDFWLQJ RU DGDSWLQJ WR FKDQJHV LQ WKH SUHVVXUHV RI FRPSHWLWLRQ SODQWV PD\ EHFRPH PRGLILHG ERWK SK\VLRORJLFDOO\ DQG PRUSKRORJLFDOO\ :KHQ WKLV RFFXUV WKH SODQW LV VDLG WR H[KLELW SODVWLF UHVSRQVHV +XWFKLQJV DQG %XGG f 3ODVWLF UHVSRQVHV PD\ DIIHFW WKH SURGXFWLYH SHUIRUPDQFH RI SODQWV DQG FURSV ,W KDV EHHQ DPSO\ GHPRQVWUDWHG E\ UHVHDUFKHUV WKDW LQ VR\EHDQ ERWK \LHOG DQG 3<&V DUH VXEMHFW WR GHQVLW\PHGLDWHG SODVWLF UHVSRQVHV 7KH LPSDFW RI SODQW SRSXODWLRQ GHQVLW\ RQ Lf YHJHWDWLYH DQG UHSURGXFWLYH VWUXFWXUHV LLf ORGJLQJ DQG LLLf QLWURJHQ 1f DQG SKRVSKRUXV 3f DFFXPXODWLRQ ZLOO EH GLVFXVVHG 6WHPV DQG %UDQFKHV 7KH KHLJKW DQG WKLFNQHVV RI VR\EHDQ VWHPV KDYH EHHQ VKRZQ WR EH DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ ,W KDV EHHQ UHSRUWHG WKDW SODQW KHLJKW LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 5DPVHXU HW DO 'RVV DQG 7KXUORZ :LOFR[ -RKQVRQ DQG +DUULV f 7KLV LQFUHDVH LQ SODQW KHLJKW KDV

PAGE 22

EHHQ DWWULEXWHG WR DQ LQFUHDVH LQ WKH OHQJWK RI WKH LQWHUQRGHV DQG QRW WR LQFUHDVHV LQ WKH QXPEHU RI QRGHV 'RPLQJXH] DQG +XPH %DVQHW HW DO +LQVRQ DQG +DQVHQ f ,Q VRPH FDVHV SODQW KHLJKW KDV EHHQ XQDIIHFWHG E\ GHQVLW\ +RJJDUG HW DO /XHVFKHQ DQG +LFNV 3UREVW f ,Q RQH DW\SLFDO FDVH 'RPLQJXH] DQG +XPH f UHSRUWHG WKDW ZLWK WKH FXOWLYDU f9DQVR\n LQFUHDVHG GHQVLW\ UHVXOWHG LQ VKRUWHU SODQWV 7KH GLDPHWHU RI WKH PDLQ VWHP LQ VR\EHDQ GHFUHDVHV ZLWK LQFUHDVHG GHQVLW\ 0LXUD DQG *HPPD 5DPVHXU HW DO :ULJKW HW DO )RQWHV DQG 2KOURJJH f 2ED HW DO f DOVR IRXQG WKDW VWHP ZHLJKW SHU SODQW GHFUHDVHV ZLWK GHQVLW\ 7KH QXPEHU RI EUDQFKHV SHU SODQW GHFUHDVHV ZLWK GHQVLW\ %DVQHW HW DO )RQWHV DQG 2KOURJJH +LQVRQ DQG +DQVHQ /HKPDQ DQG /DPEHUW f +RZHYHU LQ WKHLU ZRUN &KDXGKU\ DQG &KHHPD f IRXQG WKDW WKH HIIHFW RI GHQVLW\ RQ WKH QXPEHU RI EUDQFKHV SHU SODQW ZDV QRW VLJQLILFDQW /HDYHV DQG /HDI $UHD ,QGH[ /HDI ZHLJKW SHU SODQW GHFUHDVHV 2ED HW DO f ZKLOH WKH OHDI DUHD LQGH[ /$,f LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 3DUYH] HW DO :HEHU HW DO f 2I UHOHYDQFH WR SRSXODWLRQ VWXGLHV LV WKH IDFW WKDW WKH GHJUHH RI VKDGLQJ RU H[SRVXUH WR OLJKW DIIHFWV OHDI DQDWRP\ $W ORZHU OLJKW LQWHQVLWLHV OHDYHV GHYHORS IHZHU OD\HUV RI SDOLVDGH FHOOV ;X DQG 0LDR f ZKLOH KLJKHU OLJKW LQWHQVLWLHV KDYH WKH RSSRVLWH HIIHFW UHVXOWLQJ LQ WKLFNHU OHDYHV &KDERW HW DO )DLOV HW DO f $W KLJKHU SRSXODWLRQ GHQVLWLHV ZKHUH WKH VKDGLQJ RI ORZHU OHDYHV RFFXUV LW FDQ EH H[SHFWHG WKDW WKHUH ZLOO EH JUHDWHU GLIIHUHQFHV

PAGE 23

EHWZHHQ WKH VSHFLILF OHDI ZHLJKW RI OHDYHV RQ WKH SHULSKHU\ RI WKH FDQRS\ DQG WKRVH GHHSHU LQ WKH FDQRS\ LWVHOI )ORZHU 3URGXFWLRQ DQG 'HYHORSPHQW ,QFUHDVHG SRSXODWLRQ UHVXOWV LQ D UHGXFWLRQ LQ WKH SURSRUWLRQ RI IORZHUV ZKLFK UHVXOW LQ PDWXUH SRGV %XWWHU\ f 'RPLQJXH] DQG +XPH f DOVR IRXQG WKDW LQFUHDVHG GHQVLW\ LQFUHDVHG WKH SHUFHQWDJH RI IORZHUV DERUWHG 7KH\ IXUWKHU REVHUYHG WKDW WKH GHFUHDVH LQ WKH QXPEHU RI IORZHUV SHU SODQW REVHUYHG DW KLJK GHQVLWLHV ZDV GXH WR IHZHU IORZHUV SURGXFHG SHU QRGH 7KLV REVHUYDWLRQ KDV DOVR EHHQ PDGH E\ /HKPDQ DQG /DPEHUW f )HZHU IORZHUV DW KLJKHU GHQVLWLHV KDV DOVR EHHQ DWWULEXWHG WR IHZHU QRGHV SHU SODQW 'RPLQJXH] DQG +XPH f 1RGHV 3RGV DQG 6HHGV 7KH QXPEHU RI QRGHV SHU SODQW GHFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 'RPLQJXH] DQG +XPH %DVQHW HW DO f +RZHYHU RQ D SHU XQLW DUHD EDVLV WKH QXPEHU RI QRGHV LQFUHDVHV ZLWK GHQVLW\ 3DUYH] HW DO +UXVND DQG /DERXQHN f &RQVLVWHQW ZLWK WKHVH REVHUYDWLRQV DUH WKRVH WKDW WKH QXPEHU RI SRGV SHU SODQW GHFUHDVHG 2OVHQ 1DNDJDZD HW DO +RJJDUG HW DO /XHVFKHQ DQG +LFNV %DVQHW HW DO /HKPDQ DQG /DPEHUW f ZKLOH WKH QXPEHU RI SRGV SHU XQLW DUHD LQFUHDVHG 8GRJXFKL DQG 0F&ORXG f ZLWK SODQW SRSXODWLRQ GHQVLW\ ,Q WKHLU ZRUN &KDXGKU\ DQG

PAGE 24

&KHHPD f UHSRUWHG WKDW WKH QXPEHU RI SRGV SHU SODQW ZDV QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 3RG VHW LV DOVR JUHDWHU DW ORZHU SRSXODWLRQV 2ED HW DO :HEHU HW DO f 6HHG ZHLJKW SHU XQLW DUHD LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 3DUYH] HW DO 8GRJXFKL DQG 0F&ORXG 3DUNHU HW DO 6SLOGH HW DO 'RVV DQG 7KXUORZ f +RZHYHU LQ WKHLU ZRUN +RJJDUG HW DO f IRXQG WKDW VHHG ZHLJKW SHU XQLW DUHD GHFUHDVHG ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ GHQVLW\ %DVQHW HW DO f DQG &DYLQHVV f UHSRUWHG WKDW VHHG ZHLJKW SHU XQLW DUHD ZDV XQDIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ -RKQVRQ DQG +DUULV f LQ WKHLU ZRUN IRXQG WKDW RI WKH VHYHUDO FXOWLYDUV LQYHVWLJDWHG ZHLJKW SHU VHHG GHFUHDVHG ZLWK SODQW SRSXODWLRQ GHQVLW\ RQO\ ZLWK f/HHn 7KLV GHFUHDVH KDV DOVR EHHQ UHSRUWHG E\ 3DUNV DQG 0DQQLQJ f :LOFR[ f DQG :ULJKW HW DO f ,Q WKLQQLQJ H[SHULPHQWV :HLO DQG 2KOURJJH f DOVR UHSRUWHG WKDW ZHLJKW SHU VHHG LQFUHDVHG E\ b ZLWK GHFUHDVHG SODQW SRSXODWLRQ GHQVLW\ 1HGLF HW DO f DOVR IRXQG WKDW WKH QXPEHU RI ILOOHG VHHGV SHU SODQW GHFUHDVHG ZLWK GHQVLW\ 7KH UHGXFWLRQ LQ VHHG VL]H ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ GHQVLW\ PD\ EH WKH UHVXOW RI LQFUHDVHG SRG SURGXFWLRQ SHU XQLW DUHD 2WKHU UHVHDUFKHUV UHSRUWHG QR UHODWLRQVKLS EHWZHHQ ZHLJKW SHU VHHG DQG SODQW SRSXODWLRQ GHQVLW\ 'RPLQJXH] DQG +XPH )RQWHV DQG 2KOURJJH f 7KH QXPEHU RI VHHGV SHU SODQW GHFUHDVHV ZLWK GHQVLW\ /XHVFKHQ DQG +LFNV )RQWHV DQG 2KOURJJH f %OXPHQWKDO HW DO f REVHUYHG WKDW WKH QXPEHU RI VHHGHG SRGV SHU EUDQFK GHFUHDVHG ZLWK SRSXODWLRQ 7KH QXPEHU RI VHHGV SHU SRG GHFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ %OXPHQWKDO HW DO +HUEHUW DQG /LWFKILHOG )RQWHV DQG 2KOURJJH /HKPDQ DQG

PAGE 25

/DPEHUW f +RZHYHU LQ VRPH FDVHV LW KDV EHHQ VKRZQ WKDW VHHGV SHU SRG LV QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ &KDXGKU\ DQG &KHHPD 'RPLQJXH] DQG +XPH f 7KH GLVWULEXWLRQ RI SRGV DQG KHQFH VHHGV ZLWKLQ WKH FURS DQG RQ SODQWV LV DOVR DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7KH KHLJKW RI WKH ILUVW SRG LQFUHDVHV ZLWK GHQVLW\ 1HGLF HW DO 2OVHQ 7VXFKL\D HW DO /XHVFKHQ DQG +LFNV %DVQHW HW DO f 7KLV IDFW LV RI LPSRUWDQFH LQ PHFKDQLFDO KDUYHVWLQJ ZKHUH LW LV DGYDQWDJHRXV WR KDYH WKH SRGV ORFDWHG DZD\ IURP WKH JURXQG 3DUNV DQG 0DQQLQJ f IRXQG WKDW WKH UDWLR RI WKH QXPEHU RI VHHGV RQ WKH PDLQ VWHP WR WKRVH RQ WKH EUDQFKHV LQFUHDVHG ZLWK SODQW SRSXODWLRQ GHQVLW\ 5DPVHXU HW DO f DOVR IRXQG WKDW ZLWK GHFUHDVHG SODQW SRSXODWLRQ GHQVLW\ WKH VHHG QXPEHU DQG \LHOG RQ EUDQFKHV LQFUHDVHG ZKLOH SRG QXPEHU VHHG QXPEHU DQG \LHOG RQ VWHPV GHFUHDVHG 'RPLQJXH] DQG +XPH f LQ WKHLU ZRUN REVHUYHG WKDW IRU WKH GHWHUPLQDWH FXOWLYDU f)LVNHE\ 9 DQ LQFUHDVH LQ SODQW SRSXODWLRQ GHQVLW\ UHVXOWHG LQ D VKLIW LQ WKH PDMRULW\ RI \LHOG IURP WKH XSSHU WKLUG WR WKH PLGGOH RI WKH SODQW 5DPVHXU HW DO f DOVR IRXQG WKDW LQFUHDVHG SODQW SRSXODWLRQ GHQVLW\ UHGXFHG WKH FRQWULEXWLRQ RI WKH ORZHU QRGHV WR \LHOG $FFRUGLQJ WR :HLO DQG 2KOURJJH f WKLQQLQJ UHVXOWHG LQ ZHLJKW SHU VHHG EHLQJ b JUHDWHU DW WKH WRS RI WKH FDQRS\ WKDQ LQ XQWKLQQHG VWDQGV ,QFUHDVHG GHQVLW\ UHVXOWHG LQ D UHGXFWLRQ RI WKH ERWWRP SRUWLRQ RI SODQWV LQ WKHLU FRQWULEXWLRQ WR WRWDO VHHG QXPEHU 'RPLQJXH] DQG +XPH f

PAGE 26

3L"PD"J ,W KDV EHHQ UHSRUWHG WKDW ELRPDVV SHU XQLW DUHD LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 3DUYH] HW DO %OXPHQWKDO HW DO 8GRJXFKL DQG 0F&ORXG f %LRPDVV SHU SODQW GHFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ +ROOHU DQG $EUDKDPVRQ :LOFR[ f ,W VKRXOG EH QRWHG WKDW ELRPDVV SHU XQLW DUHD WHQGV WR LQFUHDVH ZLWK SODQW SRSXODWLRQ GHQVLW\ DW DOO VWDJHV RI SODQW GHYHORSPHQW +RZHYHU ELRPDVV SHU SODQW ZLOO GHFUHDVH ZLWK SODQW SRSXODWLRQ GHQVLW\ RQO\ ZKHQ WKHUH LV DSSUHFLDEOH LQWHUSODQW FRPSHWLWLRQ /RGJLQJ /RGJLQJ LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 7VXFKL\D HW DO )RQWHV DQG 2KOURJJH 3UREVW f /XHVFKHQ DQG +LFNV f IRXQG D VLJQLILFDQW OLQHDU UHODWLRQVKLS EHWZHHQ SODQW SRSXODWLRQ DQG ORGJLQJ -RKQVRQ DQG +DUULV f LQ VWXG\LQJ D QXPEHU RI VR\EHDQ FXOWLYDUV UHSRUWHG WKDW FXOWLYDUV ZLWK ODUJHU VWHP GLDPHWHUV VXFK DV n+DUGHHn WHQGHG QRW WR ORGJH LQ UHVSRQVH WR LQFUHDVHG SODQW SRSXODWLRQ GHQVLW\ ,QFUHDVHG ORGJLQJ ZDV DOVR DVVRFLDWHG ZLWK WDOOHU SODQWV &RRSHU f ,QFUHDVHG GHQVLW\ LQFUHDVHG SODQW KHLJKW DQG GHFUHDVHG VWHP GLDPHWHU :ULJKW HW DO f 1LWURJHQ DQG 3KRVSKRUXV $FFXPXODWLRQ $FFRUGLQJ WR $EUDKDPVRQ DQG &DVZHOO f ELRPDVV DOORFDWLRQ LQ SODQWV KDV EHHQ FRUUHODWHG WR YDULRXV GHJUHHV WR WKH DOORFDWLRQ RI PLQHUDOV DQG

PAGE 27

HQHUJ\ +DQZD\ DQG :HEHUf IURP WKHLU ZRUN DOVR VKRZHG WKDW 1 3 DQG DFFXPXODWLRQ PLUURUHG ELRPDVV DOORFDWLRQ 1HOVRQ DQG :HDYHU f UHSRUWHG WKDW WKH ORZHVW SODQWLQJ GHQVLW\ H[KLELWHG WKH KLJKHVW UDWH RI DFHW\OHQH UHGXFLQJ DFWLYLW\ SHU SODQW 7KLV ILQGLQJ KDV EHHQ DWWULEXWHG WR WKH JUHDWHU QRGXOH PDVV RQ SODQWV DW WKH ORZHVW SODQW SRSXODWLRQ GHQVLW\ VLQFH WKH VSHFLILF DFWLYLW\ RI QRGXOHV ZDV RQO\ VOLJKWO\ DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ %XWWHU\ f UHSRUWHG WKDW 1 FRQFHQWUDWLRQ GHFUHDVHG ZLWK GHQVLW\ DQG KH DWWULEXWHG WKLV WR LQFUHDVHG FRPSHWLWLRQ IRU 1 EHWZHHQ SODQWV DW KLJKHU SODQW SRSXODWLRQ GHQVLWLHV 7KH QXWULHQW VWDWXV RI SODQWV LV GLUHFWO\ UHODWHG WR FURS SURGXFWLYLW\ LQ WZR ZD\V )LUVW WKH SKRWRV\QWKHWLF FDSDFLW\ RI SODQW WLVVXH GHSHQGV XSRQ WKH FRQFHQWUDWLRQ RI QXWULHQWV HVSHFLDOO\ LQ WKH OHDYHV 6HFRQGO\ WKH VWDWXV RI 1 DQG 3 DOVR GHWHUPLQHV WKH DPRXQW RI QXWULHQW ZKLFK PD\ EH DYDLODEOH IRU VHHG SURGXFWLRQ YLD WKH SURFHVV RI QXWULHQW UHPRELOL]DWLRQ 7KH 6WUXFWXUDO DQG
PAGE 28

DELOLWLHV LW FDQ EH H[SHFWHG WKDW WKH PDQQHU DQG SDWWHUQ RI UHVRXUFH DOORFDWLRQ ZLOO EH LQIOXHQFHG E\ GLIIHUHQW FRPSHWLWLYH HQYLURQPHQWV 7KH SURFHVV RI DGMXVWLQJ WR WKH IRUFHV RI LQWHUSODQW FRPSHWLWLRQ WKHUHIRUH LQIOXHQFHV FDQRS\ DUUDQJHPHQW OLJKW LQWHUFHSWLRQ VWHP WKLFNQHVV SRG QXPEHU DQG GLVWULEXWLRQ PLQHUDO FRQFHQWUDWLRQV DQG FRQWHQWV WKH DPRXQW RI QXWULHQWV ZKLFK FDQ EH UHPRELOL]HG WKH QXPEHU RI VHHGV DQG VR IRUWK 7KH HQWLUH SURFHVV ZKHUHE\ OLJKW HQHUJ\ LV FRQYHUWHG LQWR FKHPLFDO HQHUJ\ DQG LV DOORFDWHG DQG VWRUHG LV DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ ([SODLQLQJ 6R\EHDQ
PAGE 29

DUH FRUUHODWHG ZLWK \LHOG SHU SODQW LQ VR\EHDQ VWHP ZHLJKW VWHP WKLFNQHVV DQG EUDQFK QXPEHU 7DJXFKL HW DO f SRG QXPEHU DQG WKH QXPEHU RI IHUWLOH QRGHV %RDUG f
PAGE 30

DQG \LHOG SHU XQLW DUHD 7R D OHVVHU H[WHQW WKH VLJQLILFDQFH RI 1 DQG 3 VWDWXV KDV DOVR EHHQ DGGUHVVHG :ULWLQJ LQ :HEHU HW DO DUJXHG WKDW LQ RUGHU WR XQGHUVWDQG KRZ SODQWV UHVSRQG WR FKDQJHV LQ GHQVLW\ LW LV QHFHVVDU\ WR LQYHVWLJDWH WKH nVSDWLDO UHODWLRQVKLSVn LQ FDQRSLHV VRODU HQHUJ\ LQWHUFHSWLRQ DQG OHDI DUHD DFFXPXODWLRQ 7KH DPRXQW RI OLJKW LQWHUFHSWHG E\ D FURS LV GHWHUPLQHG E\ WKH DUUDQJHPHQW RI WKH FDQRS\ EUDQFKLQJ OHDI DUHD HWFf /XHVFKHQ DQG +LFNV f UHSRUWHG WKDW VR\EHDQ SODQWV DUH FDSDEOH RI FRPSHQVDWLQJ IRU ORZ SODQW SRSXODWLRQ GHQVLWLHV E\ SURGXFLQJ PRUH EUDQFKHV DQG SRGV SHU SODQW $FRFN DQG $FRFN f IRXQG WKDW WKH JURZWK DQG GHYHORSPHQW RI EUDQFKHV RQ D SODQW GHSHQGHG RQ WKH DPRXQW RI OLJKW UHFHLYHG 6KDGLQJ UHGXFHG WKH SKRWRV\QWKHWLF UDWH RI SODQWV DW KLJK GHQVLWLHV UHVXOWLQJ LQ FDUERQ VKRUWDJHV SHU SODQWf DQG D WHQGHQF\ WR SURGXFH IHZHU EUDQFKHV 7KHVH ILQGLQJV DUH FRQVLVWHQW ZLWK WKRVH RI &KDUOHV(GZDUGV f &KDUOHV(GZDUGV DQG %HHFK f %XQFH f DQG -RKQVWRQ HW DO f
PAGE 31

WKH OLJKW LQWHUFHSWHG SHU SODQW ZLOO GHFUHDVH ZKLFK ZLOO VXEVHTXHQWO\ UHVXOW LQ D UHGXFWLRQ LQ \LHOG SHU SODQW /HDI DUHD LQGH[ LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 3DUYH] HW DO :HEHU HW DO &RVWD HW DO f 7KH H[WHQW RI SKRWRV\QWKHWLF DFWLYLW\ QRW RQO\ GHSHQGV RQ /$, DQG WKH DPRXQW RI OLJKW LQWHUFHSWHG EXW DOVR XSRQ WKH SKRWRV\QWKHWLF FDSDFLW\ RI WKH OHDYHV LQWHUFHSWLQJ WKH OLJKW %XQFH f IRXQG WKDW SKRWRV\QWKHWLF FDSDFLW\ ZDV ORZHU DW KLJKHU GHQVLWLHV HYHQ WKRXJK /$,V DUH KLJKHU 5HGXFHG SKRWRV\QWKHWLF FDSDFLW\ UHVXOWHG IURP WKH VKDGLQJ RI ORZHU OHDYHV DQG WKH ORQJHU SHULRG RI WLPH WKDW \RXQJ GHYHORSLQJ OHDYHV VSHQW LQ WKH VKDGH DW KLJK VWDQG GHQVLWLHV 7KHVH ILQGLQJV FRUURERUDWH WKH ZRUN RI 1LFKLSRURYLFK HW DO f DQG WKH VXJJHVWLRQ E\ -RKQVRQ HW DO f WKDW GXH WR ERWK LQWHU DQG LQWUDSODQW FRPSHWLWLRQ IRU OLJKW PLGGOH DQG ERWWRP VR\EHDQ OHDYHV GR QRW UHDFK WKHLU IXOO SKRWRV\QWKHWLF SRWHQWLDO 'LIIHUHQFHV LQ OLJKW LQWHQVLW\ DOVR UHVXOWV LQ SKRWRPRUSKRJHQLF FKDQJHV LQ OHDYHV 3K\WRFKURPH SURYLGHV WKH VHQVRU\ SLJPHQW ZKLFK HQDEOHV SODQW FHOOV WR UHDFW WR OLJKW TXDOLW\ DQG LQWHQVLW\ 7KH OLJKWUHJXODWHG UDWLR RI SK\WRFKURPHIDUUHG WR WRWDO SK\WRFKURPH VHUYHV WR LQIOXHQFH SURWHLQ V\QWKHVLV DQG HQ]\PH DFWLYLW\ 6RQJ 6FKRSIHU f 3KRWRPRUSKRJHQLF HIIHFWV KDYH LPSOLFDWLRQV IRU SKRWRV\QWKHWLF DFWLYLW\ ,QFUHDVHG LUUDGLDQFH UHVXOWV LQ WKLFNHU OHDYHV DQG WKLV KDV EHHQ DWWULEXWHG WR LQFUHDVHG WKLFNQHVV RI WKH SDOLVDGH PHVRSK\OO OD\HU 5HJLQHU HW DO &KDERW HW DO f 7KHUHIRUH SKRWRV\QWKHWLF WLVVXH SHU XQLW OHDI DUHD LV LQFUHDVHG )RUG HW DO f IRXQG WKDW FDUERQ GLR[LGH H[FKDQJH UDWH ZDV PRGHUDWHO\ DQG SRVLWLYHO\ FRUUHODWHG ZLWK VSHFLILF OHDI ZHLJKW :HOOV HW DO Df DOVR IRXQG WKDW GLIIHUHQFHV LQ FDQRS\ SKRWRV\QWKHVLV EHWZHHQ VR\EHDQ FXOWLYDUV ZDV DVVRFLDWHG ZLWK GLIIHUHQFHV LQ

PAGE 32

VSHFLILF OHDI ZHLJKW +RZHYHU E\ FRQWUDVW 6HFRU HW DO f IRXQG WKDW VSHFLILF OHDI ZHLJKW ZDV DEOH WR H[SODLQ RQO\ b RI WKH YDULDWLRQ LQ WRWDO SKRWRV\QWKHVLV DPRQJ OLQHV RI VR\EHDQ 1HOVRQ DQG 6FKZHLW]HU f IRXQG WKDW VSHFLILF OHDI ZHLJKW LQ VR\EHDQ LV DQ HIIHFWLYH VHOHFWLRQ WUDLW DV LW WHQGV QRW WR EH JUHDWO\ LQIOXHQFHG E\ WKH HQYLURQPHQW :HOOV HW DO Ef UHSRUWHG WKDW WKH TXDQWLW\ RI 58%3FDVH SHU XQLW OHDI DUHD ZDV SRVLWLYHO\ FRUUHODWHG ZLWK VSHFLILF OHDI ZHLJKW 5HJLQHU HW DO f UHSRUWHG WKDW ZKHQ VR\EHDQ SODQWV ZHUH JURZQ DW ORZ YHUVXV KLJK LUUDGLDQFH WKH WRWDO VROXEOH SURWHLQ SHU XQLW OHDI DUHD GHFUHDVHG E\ DV PXFK DV b 5X%3FDVH SHU XQLW DUHD GHFUHDVHG E\ b DQG FKORURSK\OO FRQWHQW SHU XQLW OHDI DUHD GHFUHDVHG E\ b 7KHVH IDFWRUV FRQWULEXWH WR UHGXFHG SKRWRV\QWKHWLF UDWHV DW ORZHU LUUDGLDQFH +RZHYHU LQ VR\EHDQ VKDGHG OHDYHV DUH QRW nSDUDVLWLFn EHFDXVH WKHLU UHVSLUDWLRQ UDWHV GHFUHDVH DORQJ ZLWK UHGXFWLRQV LQ SKRWRV\QWKHWLF FDSDFLW\ 6KLEOHV DQG :HEHU 'XQFDQ HW DO f 7KH VWDWXV RI 1 LQ ERWK OHDI WLVVXH DQG WKH HQWLUH SODQW LV LPSRUWDQW WR WKH SURFHVVHV RI SKRWRV\QWKHVLV DQG UHPRELOL]DWLRQ ERWK RI ZKLFK DUH UHODWHG WR VHHG \LHOG 7KH UDWH RI FDUERQ GLR[LGH DVVLPLODWLRQ FKORURSK\OO FRQWHQW DQG 5X%3FDVH DFWLYLW\ DUH SURSRUWLRQDO WR OHDI 1 (YDQV f ,W KDV EHHQ VKRZQ E\ %RRWH HW DO f WKDW D GHFOLQH LQ SKRWRV\QWKHVLV ZDV FRUUHODWHG ZLWK GHFUHDVHV LQ OHDI 1 /XJJ DQG 6LQFODLU f UHSRUWHG WKDW LQ ORZHU OHDIOHWV DQG EHORZ D FULWLFDO SURWHLQ FRQWHQW SHU XQLW OHDI DUHD WR J Pnf cQ XSSHUPRVW OHDIOHWV WKHUH H[LVWHG D OLQHDU UHODWLRQVKLS EHWZHHQ HVWLPDWHG SURWHLQ FRQWHQW SHU XQLW DUHD DQG SKRWRV\QWKHVLV %XWWHU\ f IRXQG WKDW 1 FRQFHQWUDWLRQ GHFUHDVHG ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ GHQVLW\ DQG DWWULEXWHG WKLV WR DQ LQDGHTXDWH VXSSO\ RI 1 6ROXEOH SURWHLQ DQG 1 FRQWHQW LQ WKH OHDI UHDFK

PAGE 33

D PD[LPD GXULQJ WKH HDUO\ UHSURGXFWLYH SKDVH %RRQ/RQJ HW DO 7KLERGHDX DQG -DZRUVNL f 3RG QXPEHU DQG VHHG \LHOG DUH FRUUHODWHG ZLWK 1 DFFXPXODWLRQ LQ OHDYHV LQ WKH HDUO\ UHSURGXFWLYH SKDVH =KHQJ HW DO f 3KRVSKRUXV VWDWXV DOVR DIIHFWV WKH SURGXFWLYH FDSDFLW\ RI VR\EHDQ FDQRSLHV )UHGHHQ HW DO f IRXQG WKDW ORZ 3 GHFUHDVHG VR\EHDQ JURZWK SULPDULO\ WKURXJK HIIHFWV RQ WKH UDWH RI H[SDQVLRQ RI OHDI VXUIDFHV 3KRWRV\QWKHWLF UDWHV ZHUH DOVR UHGXFHG )UHGHHQ HW DO f 6DZDGD HW DO f LQ WKHLU 3VWUHVV H[SHULPHQWV UHSRUWHG WKDW GHFUHDVHV LQ SKRWRV\QWKHWLF DFWLYLW\ FDQ EH SDUWLDOO\ DWWULEXWHG WR 3 GHILFLHQF\ ODFN RI SKRVSKDWH FRPSRXQGV LQ WKH SKRWRV\QWKHWLF PDFKLQHU\f 3KRVSKRUXV GHILFLHQF\ UHGXFHG SKRWRV\QWKHWLF FDSDFLW\ )R\HU DQG &RRSHU f 3KRWRV\QWKHWLF & IL[DWLRQ GLPLQLVKHG ZLWK UHGXFHG 3 FRQFHQWUDWLRQ LQ OHDYHV 7HUU\ DQG 8OULFK f .HRJK HW DO f IRXQG WKDW 3 OHYHOV LQ VR\EHDQ FXOWLYDUV IURP WKUHH PDWXULW\ JURXSV UDQJHG IURP WR J NJn ZLWK ORZ VWDQGDUG GHYLDWLRQV 1XWULHQW FRQFHQWUDWLRQ GLG QRW YDU\ PXFK H[FHSW &D ZKLFK ZDV KLJKHU LQ KLJKHU\LHOGLQJ FXOWLYDUV 0LOOHU HW DO f UHSRUWHG WKDW LQ WKH FDQRS\ RI VR\EHDQ XSSHU OHDYHV WHQG WR KDYH D KLJKHU 3 FRQFHQWUDWLRQ WKDQ ORZHU OHDYHV 7KH\ DOVR IRXQG D SRVLWLYH UHODWLRQVKLS EHWZHHQ 3 FRQFHQWUDWLRQ LQ XSSHU OHDYHVf DQG \LHOG ZKHQ SHUFHQW ZDV JUHDWHU WKDQ J NJn 6DWXUDWLQJ LUUDGLDQFH IRU SKRWRV\QWKHVLV LQ 3GHILFLHQW SODQWV ZDV IRXQG WR EH b OHVV WKDQ LQ WKH FRQWURO KRZHYHU 3 GHILFLHQF\ GLG QRW DIIHFW SKRWRV\QWKHWLF DFWLYLW\ DW ORZ LUUDGLDQFHV 6DZDGD HW DO f 7KXV DW KLJKHU SODQW SRSXODWLRQ GHQVLWLHV LI WKHUH DUH QR GHILFLHQFLHV GXH WR LQWHUSODQW FRPSHWLWLRQf ORZ 3 ZRXOG DIIHFW OHDYHV DWRS WKH FDQRS\ 3KRWRV\QWKHWLF FDSDFLW\ DQG VHHG SURGXFWLRQ DUH DOVR DIIHFWHG E\ WKH SURFHVV RI QXWULHQW UHPRELOL]DWLRQ 1LWURJHQ DQG 3 DUH DFFXPXODWHG LQ WKH OHDYHV

PAGE 34

SHWLROHV DQG VWHPV XQWLO WKH SRG SURGXFWLRQ VWDJH DIWHU ZKLFK WKH\ DUH UDSLGO\ ORVW IURP WKHVH SDUWV DQG DFFXPXODWHG LQ WKH GHYHORSLQJ VHHGV +DQZD\ DQG :HEHU f ,Q XSSHU OHDYHV 1 DQG 3 FRQFHQWUDWLRQV ZHUH DQG J NJn UHVSHFWLYHO\ ZKLOH LQ WKH ERWWRP OHDYHV ROGHU DQG XQGHUJRLQJ WUDQVORFDWLRQf 1 DQG 3 FRQFHQWUDWLRQV ZHUH DQG J NJn UHVSHFWLYHO\ 7HUPDQ f 7KH H[WHQW WR ZKLFK GHYHORSLQJ IUXLWV GUDZ XSRQ QXWULHQW UHVHUYHV RI YHJHWDWLYH WLVVXH KDV OHG WR WKH VXJJHVWLRQ WKDW QXWULHQW UHPRELOL]DWLRQ OHDGV WR VHQHVFHQFH 'HSRGGLQJ SUHYHQWHG VHQHVFHQFH DQG WKH JUDGXDO UHLQVWDWHPHQW RI VHQHVFHQFH DV DQ LQFUHDVLQJ QXPEHU RI SRGV LV DOORZHG WR GHYHORS RQ HDFK SODQW /LQGRR DQG 1RRGHQ f +RZHYHU 1RRGHQ HW DO f LQGLFDWH WKDW WKH GHYHORSPHQW RI VHHGV LV VHSDUDEOH IURP WKH VHQHVFHQFH UHVSRQVH LQ VR\EHDQV DQG WKDW VHHGV PD\ IXQFWLRQ DV PRUH WKDQ VLQNV 7KH\ IRXQG WKDW VLQN VL]H GRHV QRW SDUDOOHO IROLDU VHQHVFHQFH WKH VHQHVFHQFH UHVSRQVH LV VDWXUDWHG DW D OHYHO IDU EHORZ WKH PD[LPXP OHYHO RI GU\ ZHLJKW DQG QLWURJHQ DFFXPXODWLRQ LQ WKH VHHGV $OWKRXJK GUDLQ DQG GLYHUVLRQ PD\ EH LQYROYHG LQ WKH PRQRFDUSLF VHQHVFHQFH RI VR\EHDQV LW VHHPV XQOLNHO\ WKDW GHYHORSLQJ VHHGV H[HUW VXFK D UHPDUNDEOH FRUUHODWLYH LQIOXHQFH VLPSO\ E\ IXQFWLRQLQJ DV D VLQN 1RRGHQ HW DO f &DUERQ DVVLPLODWHG HDUO\ LQ WKH OLIH F\FOH KDV YLUWXDOO\ QR GLUHFW UHOHYDQFH WR IUXLW QXWULWLRQ 7KHUHIRUH FDUERQ IL[HG GXULQJ UHSURGXFWLYH GHYHORSPHQW PXVW EH SULPDULO\ UHOLHG XSRQ WR IXUQLVK WKH VHHGnV UHTXLUHPHQW IRU WKLV HOHPHQW 7KH H[WUHPHO\ ORZ UDWH RI WUDQVIHU RI HDUO\IL[HG FDUERQ WR VHHGV LV UHVROYHG DV EHLQJ SDUWO\ GXH WR WKH IDFW WKDW PXFK RI WKLV FDUERQ KDV EHHQ GLVVLSDWHG LQ UHVSLUDWLRQ EHIRUH IORZHULQJ KDV FRPPHQFHG DQG SDUWO\ WR WKH IDFW WKDW FDUERQ ZKLFK

PAGE 35

VXUYLYHV XQWLO IUXLWLQJ LV ERXQG LQWR PDWHULDOV IURP ZKLFK LW FDQQRW EH UHDGLO\ UHWULHYHG GXULQJ WKH VHQHVFHQFH RI YHJHWDWLYH SDUWV 3DWH DQG )OLQQ f 2Q WKH RWKHU KDQG 3DWH DQG )OLQQ IRXQG WKDW 1 DVVLPLODWHG HDUO\ LQ WKH OLIH F\FOH LV UHOHDVHG IRU VHHG GHYHORSPHQW ZLWK JUHDW HIILFLHQF\ 7KHUHIRUH LW VKRXOG EH WKHRUHWLFDOO\ SRVVLEOH WR LQFUHDVH UDWHV RI WUDQVIHU WR VHHGV E\ DUUDQJLQJ IRU ODUJHU UHVHUYHV RI 1 WR KDYH DFFXPXODWHG E\ WKH WLPH ZKHQ IORZHULQJ FRPPHQFHV 0RELOL]DWLRQ LV D JUDGXDO SURFHVV ZKLFK JDWKHUV PRPHQWXP DV IUXLWLQJ SURFHHGV +RFNLQJ DQG 3DWH f LQ VWXG\LQJ OHJXPHV UHSRUWHG WKDW 1 3 DQG DUH KLJKO\ PRELOH DQG WR b DUH XVXDOO\ UHWULHYHG $SSUR[LPDWHO\ KDOI RI WKH 1 DQG 3 LQ PDWXUH VHHGV DSSHDUV WR KDYH EHHQ LQ RWKHU SODQW SDUWV SULRU WR SRG GHYHORSPHQW +DQZD\ DQG :HEHUf 7KHUHIRUH VLQFH QXWULHQW DFFXPXODWLRQ PLUURUV ELRPDVV DFFXPXODWLRQ DW KLJKHU SODQW SRSXODWLRQ GHQVLWLHV PRUH VXEVWUDWH ZLOO EH DYDLODEOH SHU XQLW DUHD IRU UHPRELOL]DWLRQ PDNLQJ KLJKHU VHHG \LHOGV SRVVLEOH 7KH
PAGE 36

SRSXODWLRQ GHQVLW\ UHVSRQVH ZLOO EH GLVFXVVHG VHFRQGO\ 'XQFDQnV f WKHRU\ RQ \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVH LQ VR\EHDQ ZLOO EH FULWLFDOO\ UHYLHZHG WKLUGO\ WKH UHOHYDQFH RI 62<*52 WR LQYHVWLJDWLRQV RI \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV ZLOO EH RXWOLQHG DQG IRXUWKO\ WKH SRVVLEOH EDVLV IRU FKDQJHV LQ WKH HIILFLHQF\ ZLWK ZKLFK SODQWV XVH LQSXWV IRU VHHG SURGXFWLRQ DQG LWV UHOHYDQFH WR \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV ZLOO EH GLVFXVVHG 7KH IXQGDPHQWDOV RI \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV ,Q )LJ Df DQG )LJ Ef WKH W\SLFDO \LHOG SODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV DUH VKRZQ 8VLQJ SODQW SRSXODWLRQ GHQVLW\ DV D EDVLV IRU FDWHJRUL]LQJ VHFWLRQV RI WKHVH UHVSRQVHV WKH IROORZLQJ SKDVHV DUH LGHQWLILHG EHWZHHQ SODQW SRSXODWLRQ GHQVLWLHV '2 DQG \LHOG SHU SODQW LV DW D PD[LPXP DQG LV FRQVWDQW DQG \LHOG SHU DUHD DVVXPHV D VWULFW OLQHDU UHODWLRQVKLS ZLWK SODQW SRSXODWLRQ GHQVLW\ $W GHQVLW\ LQWHUSODQW FRPSHWLWLRQ FRPPHQFHV DQG \LHOG SHU SODQW EHJLQV WR GHFUHDVH $IWHU SODQW SRSXODWLRQ GHQVLW\ \LHOG SHU DUHD EHJLQV WR GHYLDWH IURP OLQHDULW\ DQG WKH VORSH RI WKH UHVSRQVH EHJLQV WR GHFUHDVH %HWZHHQ SODQW SRSXODWLRQ GHQVLWLHV DQG DOWKRXJK \LHOG SHU SODQW GHFUHDVHV \LHOG SHU DUHD LQFUHDVHV EHFDXVH SODQW SRSXODWLRQ GHQVLW\ LQFUHDVHV DW D UDWH JUHDWHU LQ PDJQLWXGH WKDQ WKH UDWH RI UHGXFWLRQ LQ \LHOG SHU SODQW $W SODQW SRSXODWLRQ GHQVLW\ WKH \LHOG SHU SODQW UHVSRQVH DVVXPHV LWV VWHHSHVW QHJDWLYH VORSH DQG EHWZHHQ SODQW SRSXODWLRQ GHQVLWLHV DQG ZKLFK RFFXUV DW DQ HDUO\ VWDJH RI LQWHUSODQW FRPSHWLWLRQf LQWHUSODQW FRPSHWLWLRQ KDV LWV JUHDWHVW LPSDFW RQ WKH UHGXFWLRQ RI \LHOG SHU SODQW 7KLV LPSDFW LV JLYHQ E\ WKH PDJQLWXGH

PAGE 37


PAGE 38

RI WKH QHJDWLYH VORSH RI WKH UHODWLRQVKLS EHWZHHQ \LHOG SHU SODQW DQG SODQW SRSXODWLRQ GHQVLW\ EHWZHHQ DQG $W SODQW SRSXODWLRQ GHQVLW\ WKHUH LV D UHGXFWLRQ LQ WKH UDWH RI GHFUHDVH LQ \LHOG SHU SODQW ZLWK SODQW SRSXODWLRQ GHQVLW\ 7KLV UHGXFWLRQ PD\ EH LQGLFDWLYH RI SODQW DGDSWDWLRQ WR LQWHUSODQW FRPSHWLWLRQ DQG SRVVLEO\ LPSOLHV DQ LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK WKH SODQW LV XVLQJ LQSXWV IRU VHHG SURGXFWLRQ %HWZHHQ SODQW SRSXODWLRQ GHQVLWLHV DQG \LHOG SHU DUHD DVVXPHV D PD[LPXP DQG FRQVWDQW YDOXH $ QXPEHU RI FURS DQG SODQW UHTXLUHPHQWV IRU DFKLHYLQJ PD[LPXP \LHOG SHU DUHD KDYH EHHQ VXJJHVWHG ,W KDV EHHQ VXJJHVWHG WKDW LQVRODWLRQ LQWHUFHSWLRQ PXVW DSSURDFK b HDUO\ LQ UHSURGXFWLYH JURZWK WR PD[LPL]H \LHOG SHU DUHD 6KLEOHV DQG :HEHU +DZNLQV f VSHFLILFDOO\ SULRU WR WKH SHULRG RI JUDLQ SURGXFWLRQ 6KLEOHV DQG :HEHU f 'XQFDQ f DUJXHG WKDW FRPSOHWH LQWHUFHSWLRQ QHHGHG WR RFFXU RQO\ EHIRUH IUXLW RU VHHG QXPEHU UHDFKHG D PD[LPXP LQ RUGHU WR PD[LPL]H IUXLWV SHU XQLW DUHD 'XQFDQfV YLHZ PD\ EH FRQVLVWHQW ZLWK WKH ILQGLQJV RI (JOL HW DO f WKDW IUXLW QXPEHU LQFUHDVHG HYHQ DIWHU JURZWK VWDJH 5 +RZHYHU -RKQVRQ HW DO f KDYH VXJJHVWHG WKDW FRPSOHWH OLJKW LQWHUFHSWLRQ LV UHTXLUHG DW WKH HDUOLHU JURZWK VWDJH RI 5 LI \LHOG LV WR EH PD[LPL]HG 9HJHWDWLYH PDVV KDV DOVR EHHQ FRUUHODWHG WR VHHG QXPEHU 7KLV REVHUYDWLRQ UHYHDOV WKH SRVVLEOH LPSRUWDQFH RI YHJHWDWLYH GU\ ZHLJKW LQ FRQWULEXWLQJ WR GLIIHUHQFHV LQ \LHOG ZKHUH OLJKW LQWHUFHSWLRQ LV FRQVWDQW DV SRLQWHG RXW E\ 'XQFDQ f (JOL HW DO f UHSRUWHG WKDW LQFUHDVLQJ WKH YHJHWDWLYH GU\ ZHLJKW WR D OLPLW RI WR J UUI LQFUHDVHG VHHG QXPEHU SHU XQLW DUHD )UXLW DQG VHHG QXPEHUV PD\ EH DVVRFLDWHG ZLWK WKH DYDLODELOLW\ RI DVVLPLODWH GXULQJ IORZHULQJ DQG IUXLW VHW 6WHSKHQVRQ +HLWKROW HW DO f &KULVW\

PAGE 39

DQG 3RUWHU f IXUWKHU SRLQW RXW WKDW VHHG QXPEHU SHU XQLW DUHD LV FORVHO\ DVVRFLDWHG ZLWK FDQRS\ SKRWRV\QWKHVLV GXULQJ IORZHULQJ DQG SRG VHW $W SODQW SRSXODWLRQ GHQVLW\ \LHOG SHU SODQW FRQWLQXHV WR GHFUHDVH +RZHYHU \LHOG SHU XQLW DUHD PD\ DOVR EHJLQ WR GHFUHDVH 7KLV GHFUHDVH LQ \LHOG SHU DUHD LV DWWULEXWHG WR WKH WUDXPDWLF HYHQWV RI ORGJLQJ DQG EDUUHQQHVV /RGJLQJ DQG EDUUHQQHVV DW KLJK GHQVLWLHV DUH LPSRUWDQW LQ H[SODLQLQJ SDUDEROLF \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV $W KLJK GHQVLWLHV SODQWV WHQG WR ORGJH EHFDXVH RI WKH IDLOXUH RI WKHLU PHFKDQLFDO D[HV DV WKH\ XQGHUJR SODVWLF UHVSRQVHV FDXVHG E\ LQFUHDVHG LQWHUSODQW FRPSHWLWLRQ $SDUW IURP WKH UHGXFHG \LHOG WKDW RFFXUV ZKHQ PHFKDQLFDO KDUYHVWLQJ LV XVHG RQ ORGJHG FURSV ORGJHG SODQWV LQ FRPSDULVRQ WR XSULJKW SODQWV KDYH ORZHU \LHOGV 7KLV \LHOG UHGXFWLRQ KDV EHHQ DWWULEXWHG WR UHGXFHG OLJKW LQWHUFHSWLRQ LQ ORGJHG SODQWV -RKQVWRQ DQG 3HQGOHWRQ f $W YHU\ KLJK SRSXODWLRQV SODQWV EHFRPH EDUUHQ %DUUHQQHVV FDQ SUREDEO\ EH DWWULEXWHG WR WKH ORZ OHYHOV RI OLJKW LQWHUFHSWLRQ SHU SODQW )RQWHV DQG 2KOURJJH f VWDWHG WKDW WKHVH EDUUHQ SODQWV XWLOL]H OLJKW DQG QXWULHQWV EXW GR QRW SURGXFH DQ\ \LHOG $W KLJK GHQVLWLHV ERWK \LHOG SHU XQLW DUHD DQG \LHOG SHU SODQW GHFUHDVH UHVXOWLQJ LQ D SDUDEROLF UHVSRQVH /HIIHO f KRZHYHU UHSRUWHG WKDW QDWXUDO ORGJLQJ RI VR\EHDQV GLG QRW VLJQLILFDQWO\ DIIHFW \LHOG ZKHQ FRPSDUHG WR XQORGJHG SODQWV 'XQFDQnV WKHRU\ RQ \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV 'XQFDQ f GHYHORSHG D WKHRU\ WR H[SODLQ \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV EDVHG RQ WZR SRVWXODWHV )LUVW ZLWKLQ VR\EHDQ SODQWLQJ SDWWHUQV WKHUH LV D UDQJH RI GHQVLWLHV ZLWKLQ ZKLFK VHHG \LHOG SHU XQLW DUHD

PAGE 40

LQFUHDVHV ZLWKRXW DQ LQFUHDVH LQ OLJKW LQWHUFHSWLRQ E\ WKH IXOO\ GHYHORSHG OHDI FDQRS\ WKLV RFFXUV DW JURZWK VWDJH 5f 6HFRQGO\ ZLWKLQ OLPLWV WKH JUHDWHU WKH YHJDWDWLYH ZHLJKW RI D VR\EHDQ SODQW GXULQJ WKH VHHG LQLWLDWLRQ SHULRG ZKLFK EHJLQV DW 5f WKH PRUH VHHG LW ZLOO \LHOG DOO RWKHU FRQGLWLRQV UHPDLQLQJ WKH VDPH 'XQFDQ IXUWKHU DUJXHG WKDW VHHG \LHOG SHU XQLW DUHD ZDV DIIHFWHG E\ WZR GRPLQDQW FRQVLGHUDWLRQV Lf WKH IUDFWLRQ RI WRWDO SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ 3$5f LQWHUFHSWHG E\ WKH FURS DQG LLf WKH HIILFLHQF\ ZLWK ZKLFK WKH LQWHUFHSWHG 3$5 LV XVHG IRU VHHG SURGXFWLRQ %DVHG RQ WKH VWDWHPHQWV DERYH 'XQFDQ GHILQHG WKUHH 3KDVHV ZKLFK FRUUHVSRQG WR SODQW SRSXODWLRQ GHQVLW\ UDQJHVf ZKLFK DUH XVHG WR H[SODLQ \LHOGSODQW SRSXODWLRQ GHQVLW\ UHVSRQVHV ,Q 3KDVH WKHUH LV QR DSSUHFLDEOH FRPSHWLWLRQ EHWZHHQ WKH SODQWV IRU OLJKW OLJKW LQWHUFHSWHG SHU SODQW DQG VHHG \LHOG SHU SODQW DUH FRQVWDQW DQG VHHG \LHOG SHU XQLW DUHD LV LQIOXHQFHG RQO\ E\ WKH IUDFWLRQ RI WRWDO OLJKW LQWHUFHSWHG %HWZHHQ 3KDVHV DQG ,, WKHUH LV DQ LQFUHDVLQJ GHJUHH RI PXWXDO VKDGLQJ DV SODQW SRSXODWLRQ GHQVLW\ LQFUHDVHV /LJKW LQWHUFHSWLRQ SHU SODQW GHFUHDVHV KRZHYHU WKH WRWDO OLJKW LQWHUFHSWHG SHU DUHDf LQFUHDVHV ,QFUHDVHV LQ \LHOG SHU XQLW DUHD LQ WKLV WUDQVLWLRQDO UHJLRQ DUH GXH WR ERWK LQFUHDVHG OLJKW LQWHUFHSWHG SHU XQLW DUHD DQG LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK LQWHUFHSWHG OLJKW LV XVHG ,Q 3KDVH ,, DOO RI WKH LQFRPLQJ UDGLDWLRQ LV LQWHUFHSWHG DW IXOO FDQRS\ GHYHORSPHQW WKLV RFFXUV DW JURZWK VWDJH 5f 7KHUHIRUH LQ 3KDVH ,, OLJKW LQWHUFHSWHG DW VHHG LQLWLDWLRQ LV FRQVWDQW DQG LQFUHDVHV LQ VHHG \LHOG SHU XQLW DUHD LQ WKLV SKDVH DUH GXH WR WKH LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK LQWHUFHSWHG OLJKW LV XVHG WR SURGXFH VHHG 3KDVH ,, HQGV ZKHUH VHHG \LHOG SHU XQLW DUHD UHDFKHV D PD[LPXP

PAGE 41

,Q 3KDVH ,,, VHHG \LHOG SHU XQLW DUHD UHPDLQV FRQVWDQW DW D PD[LPXP IRU WKH FXOWLYDU DQG WKH HQYLURQPHQW 'XQFDQ f ZDV DEOH WR LGHQWLI\ 3KDVHV ,, DQG ,,, XVLQJ GDWD IURP :LJJDQV f DQG 3DUNV HW DO f (JOL Df LQ KLV ZRUN ZLWK n&XPEHUODQGn IRXQG WKDW DW 5 DQG D GHQVLW\ RI SODQWV P n WKHUH ZDV DQ DSSDUHQW LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK LQWHUFHSWHG OLJKW ZDV XVHG IRU VHHG SURGXFWLRQ 7KLV ILQGLQJ VXSSRUWV WKH H[LVWHQFH RI 'XQFDQnV f 3KDVH ,, 3KRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ LQWHUFHSWHG DWWDLQHG D PD[LPXP RI b DIWHU ZKLFK \LHOG FRQWLQXHG WR LQFUHDVH ZLWK GHQVLW\ 7KH 5 JURZWK VWDJH VHHG LQLWLDWLRQf LV LPSRUWDQW LQ OLJKW LQWHUFHSWLRQ VWXGLHV EHFDXVH LW LV DW WKLV VWDJH WKDW /$, DWWDLQV D PD[LPXP .ROOHU HW DO f (JOLnV Df GDWD VXSSRUWV 'XQFDQnV f DUJXPHQW WKDW SODQW SRSXODWLRQ GHQVLWLHV SURYLGLQJ FRPSOHWH LQVRODWLRQ LQWHUFHSWLRQ E\ WKH IXOO\ GHYHORSHG OHDI FDQRS\ PD\ QRW EH KLJK HQRXJK WR PD[LPL]H \LHOG $ EDVLV IRU FKDQJHV LQ WKH HIILFLHQF\ ZLWK ZKLFK SODQWV XVH LQSXWV IRU VHHG SURGXFWLRQ ,Q DSSUHFLDWLQJ WKH SRVVLEOH HIIHFW RI GHQVLW\PHGLDWHG SODVWLFLW\ RQ WKH HIILFLHQF\ ZLWK ZKLFK D SODQW SURGXFHV VHHG DQ REYLRXV SRLQW RI GHSDUWXUH LV +X[OH\fV ODZ RI DOORPHWU\ ZKLFK VWDWHV WKDW WKH UHODWLYH GLVWULEXWLRQ RI ELRPDVV DPRQJ WKH SDUWV RI D SODQW GHSHQGV RQ SODQW VL]H :LOOH\ DQG +HDWK f .LUD HW DO f DOVR REVHUYHG WKDW WKH ZHLJKW RI D SODQW SDUW FRXOG EH UHODWHG WR WKH ZHLJKW RI WKH ZKROH SODQW YLD :S NZA :S ZHLJKW RI D SODQW SDUW Z ZKROH SODQW ZHLJKW N D FRQVWDQW

PAGE 42

3ODQW SRSXODWLRQ GHQVLW\ KDV DQ REYLRXV HIIHFW RQ SODQW VL]H LQ DGGLWLRQ WR RWKHU SKRWRPRUSKRJHQLF DQG SODVWLF HIIHFWV $ SODQWnV ELRPDVV LV DOORFDWHG WR YHJHWDWLYH SKRWRV\QWKHWLF DQG VWUXFWXUDO WLVVXHV DQG UHSURGXFWLYH RUJDQV DQG 2EYLRXVO\ LQWHUSODQW FRPSHWLWLRQ KDV PXFK SRWHQWLDO IRU DIIHFWLQJ WKH HIILFLHQF\ ZLWK ZKLFK LQSXWV DUH XVHG E\ SODQWV LQ VHHG SURGXFWLRQ 6HYHUDO VWXGLHV LOOXVWUDWH WKDW VR\EHDQV UHVSRQG WR UHGXFHG FRPSHWLWLRQ E\ LQFUHDVLQJ WKH VL]H RI WKH PHWDEROLF VLQN VLWHV %XWWHU\ -RKQVWRQ HW DO /HKPDQ DQG /DPEHUW f ZKHUH VHHG QXPEHU DQG VHHG JURZWK UDWH DUH LQFUHDVHG $W KLJKHU GHQVLWLHV KRZHYHU WKH REVHUYHG WHQGHQF\ IRU SODQWV WR XWLOL]H LQWHUFHSWHG OLJKW PRUH HIILFLHQWO\ PD\ EH RI HYROXWLRQDU\ VLJQLILFDQFH 6R\EHDQ SODQWV PD\ EH H[KLELWLQJ YHVWLJHV RI DQ HYROXWLRQDU\ VWUDWHJ\ +ROOHU DQG $EUDKDPVRQ f 2JGHQ f DQG 7KRPDV f UHSRUWHG WKDW DW KLJK GHQVLWLHV SODQWV WHQG WR PD[LPL]H VHHG SURGXFWLRQ $EUDKDPVRQ f VXJJHVWHG WKDW WKLV LV D VWUDWHJ\ WR SURPRWH VHHG GLVSHUVDO DZD\ IURP DQ XQIDYRUDEOH VLWH (JOLfV Ef ZRUN KRZHYHU VXJJHVWHG WKDW WKH SDUWLWLRQLQJ RI DVVLPLODWH GXULQJ WKLV JURZWK VWDJH IORZHULQJ DQG IUXLW VHWf PD\ QRW EH DOWHUHG E\ FKDQJHV LQ SODQW VL]H DQG SODQW SRSXODWLRQ GHQVLW\ 6KLEOHV DQG :HEHU f VXJJHVWHG WKDW DW KLJKHU SRSXODWLRQV WKH SHULRG RI YHJHWDWLYH SURGXFWLRQ LV ORQJHU WKDQ DW ORZHU GHQVLWLHV $V D FRQVHTXHQFH WKH YHJHWDWLYH SURGXFWLRQ SHULRG HQFURDFKHV XSRQ WKH VHHG SURGXFWLRQ SHULRG UHVXOWLQJ LQ FRPSHWLWLRQ ZLWKLQ WKH SODQW IRU DYDLODEOH FDUERK\GUDWHV +HQFH WKHUH LV OHVV FDUERK\GUDWH IRU VHHG SURGXFWLRQ :KDWHYHU WKH SRVVLEOH EDVLV IRU FKDQJHV LQ VHHG \LHOG HIILFLHQF\ LW LV SUREDEO\ RQH RI WKH OHDVW XQGHUVWRRG DUHDV LQ \LHOGSODQW SRSXODWLRQ GHQVLW\ UHODWLRQV

PAGE 43

&+$37(5 0$7(5,$/6 $1' 0(7+2'6 7KH H[SHULPHQWDO SURFHGXUHV XVHG LQ WKH ILHOG DUH GHVFULEHG SULRU WR GLVFXVVLRQV RI GDWD DQDO\VLV 7KH GLVFXVVLRQ RQ GDWD DQDO\VLV LQYROYHV WKH GHYHORSPHQW RI DQ DQDO\WLFDO IUDPHZRUN IRU WKH DQDO\VLV RI \LHOGSODQW SRSXODWLRQ GHQVLW\ GDWD 7KH PDWHULDOV DQG PHWKRG XVHG ZLWK 62<*52 ZLOO EH GLVFXVVHG DORQJ ZLWK FURS VLPXODWLRQ UHVXOWV LQ FKDSWHU )LHOG ([SHULPHQWV 7KLV VWXG\ ZDV FRQGXFWHG DW *DLQHVYLOOH )ORULGD r nf LQ DQG 7KH VRLO ZDV FODVVLILHG DV D .HQGULFN ILQH VDQG D ORDP\ VLOLFHRXV K\SHUWKHUPLF IDPLO\ RI $UHQLF 3DOHXGXOWVf 7KH SUHYLRXV FURS FRQVLVWHG RI VPDOO JUDLQV 5DLQIDOO GDWD ZHUH FROOHFWHG IURP D QHDUE\ $JURQRP\ 0HWHRURORJLFDO 6WDWLRQ )LJ f ,Q DOO WKH ILHOG H[SHULPHQWV D VTXDUH SODQWLQJ DUUDQJHPHQW ZDV XVHG :LJJDQV f IRXQG WKDW WKH QHDUHU WKH DUUDQJHPHQW RI SODQWV RQ D JLYHQ DUHD DSSURDFKHV D VTXDUH SDWWHUQ WKH JUHDWHU WKH \LHOG SHU XQLW DUHD 6DIR.DQWDQND DQG /DZVRQ f REVHUYHG WKDW WKH QXPEHU RI SRGV SHU SODQW VHHG VL]H DQG

PAGE 44

7RWD@ SUHFLSLWDWLRQ PPf + ‘ ’ JURZLQJ VHDVRQ JURZLQJ VHDVRQ OOL f§;=$ 0$< -81 -8/ $8* 6(3 2&7 0217+ )LJ 3UHFLSLWDWLRQ SURILOH 2
PAGE 45

\LHOG SHU XQLW DUHD LQFUHDVHG DV D VTXDUH SODQWLQJ SDWWHUQ ZDV DSSURDFKHG 7KLV ILQGLQJ ZDV FRUURERUDWHG E\ 3DUYH] HW DO f LQ WKHLU ZRUN %XWWHU\ f LQ FLWLQJ 'RQDOG f DQG +ROOLGD\ f VWDWHG WKDW LW ZDV GLIILFXOW WR GHPRQVWUDWH DQ\ GHSUHVVLQJ HIIHFWV RI VPDOO GHYLDWLRQV IURP VTXDUHQHVV RQ \LHOG 6TXDUH SODQWLQJ LV RI ERWK DQDO\WLFDO DQG SURGXFWLRQ LPSRUWDQFH $ FRQVWDQW VTXDUH SODQWLQJ DUUDQJHPHQW HQVXUHV WKDW WKH GLIIHUHQFHV REVHUYHG LQ SODQW SRSXODWLRQ VWXGLHV UHVXOWHG IURP SODQW SRSXODWLRQ DQG QRW SODQW DUUDQJHPHQW 7KH VTXDUH SODQWLQJ DUUDQJHPHQW PLQLPL]HV LQWHUSODQW FRPSHWLWLRQ DQG PD[LPL]HV LQVRODWLRQ LQWHUFHSWLRQ SHU XQLW ODQG DUHD 0LXUD DQG *HPPD +DUSHU f ,Q WKH VR\EHDQ FXOWLYDUV .LUE\ >0* 9,,,@ &HQWHQQLDO >0* 9,@ DQG )RUUHVW >0* 9@ ZHUH SODQWHG RQ 0D\ XVLQJ SODQWLQJ ERDUGV ZKLFK JDYH D VTXDUH SODQWLQJ DUUDQJHPHQW 7KH LQWHUURZ GLVWDQFHV RI DQG FP JDYH WKH SODQW SRSXODWLRQ GHQVLWLHV RI DQG SODQWV Pn UHVSHFWLYHO\ 9HUPLFXOLWH ZDV XVHG WR ILOO VHHGHGKROHV WR HQVXUH HYHQ JHUPLQDWLRQ 7KH H[SHULPHQWDO GHVLJQ ZDV D VSOLWSORW ZLWK SODQW SRSXODWLRQ GHQVLW\ DV WKH PDLQ SORW DQG FXOWLYDU DV WKH VXESORW 6XESORWV PHDVXUHG E\ P 7KH UHVXOWLQJ WKUHH PDLQ SORWV ZLWK WKHLU FRPELQHG WRWDO RI QLQH VXESORWV ZHUH UHSOLFDWHG IRXU WLPHV )HUWLOL]HU 132.2f ZDV DSSOLHG DW D UDWH RI NJ KDn DW VHHGEHG SUHSDUDWLRQ $Q RYHUKHDG VSULQNOHU LUULJDWLRQ V\VWHP ZDV XVHG GXULQJ SHULRGV RI ZDWHU VWUHVV 7KH SORWV ZHUH KDQG ZHHGHG ,Q FDVHV ZKHUH JDSV DSSHDUHG LQ VWDQGV VR\EHDQ SODQWV ZHUH WUDQVSODQWHG LQ IURP ERUGHU URZV 7UDQVSODQWDWLRQ RIWHQ UHVXOWHG LQ ZHDN SODQWV

PAGE 46

7KH FRUQ HDU ZRUP +HOLRWKLV ]HD %RGGLHf ZDV FRQWUROOHG ZLWK ODQQDWH PHWKRP\O 6PHWK\O 1 >PHWK\OFDUEDP\Of R[\@ WKLRDFHWDPOGDWH ZKLFK ZDV DSSOLHG LQ D VROXWLRQ FRQWDLQLQJ J /nA RI DFWLYH LQJUHGLHQW DW D UDWH RI / KDnA 7KH F\VW QHPDWRGH +HWHURGHUD JOYFLQHV DIIHFWHG FURS SURGXFWLYLW\ HVSHFLDOO\ IRU WKH OHVV QHPDWRGH UHVLVWDQW FXOWLYDUV )RUUHVW DQG &HQWHQQLDO 7KH IROORZLQJ UHSURGXFWLYH JURZWK VWDJHV RI VR\EHDQ GHVFULEHG E\ )HKU HW DO f ZHUH XVHG LQ VDPSOLQJ SURFHGXUHV 52QH IORZHU DW DQ\ QRGH 5)ORZHU DW QRGH LPPHGLDWHO\ EHORZ WKH XSSHUPRVW QRGHV ZLWK D FRPSOHWHO\ XQUROOHG OHDI 53RG FP ORQJ DW RQH RI WKH IRXU XSSHUPRVW QRGHV ZLWK D FRPSOHWHO\ XQUROOHG OHDI 53RG FP ORQJ DW RQH RI WKH IRXU XSSHUPRVW QRGHV ZLWK D FRPSOHWHO\ XQUROOHG OHDI 5%HDQV EHJLQQLQJ WR GHYHORS FDQ EH IHOW ZKHQ WKH SRG LV VTXHHH]HG DW RQH RI WKH IRXU XSSHUPRVW QRGHV ZLWK D FRPSOHWHO\ XQUROOHG OHDI 53RG FRQWDLQLQJ IXOO VL]H JUHHQ EHDQV DW RQH RI WKH IRXU XSSHUPRVW QRGHV ZLWK D FRPSOHWHO\ XQUROOHG OHDI 53RGV \HOORZLQJ b RI OHDYHV \HOORZ SK\VLRORJLFDO PDWXULW\ 5b RI SRGV EURZQ KDUYHVW PDWXULW\ :KROH SODQWV ZHUH KDQG VDPSOHG DW WKH 5 5 DQG 5 JURZWK VWDJHV DQG G DIWHU SODQWLQJ UHVSHFWLYHO\f 7KH VDPSOHV ZHUH GULHG WR FRQVWDQW ZHLJKW LQ D IRUFHGGUDIW RYHQ DW r& 7RWDO GU\ ZHLJKWV DQG ZKHUH DSSURSULDWH SRG DQG VHHG ZHLJKWV DQG QXPEHUV ZHUH GHWHUPLQHG %HFDXVH RI WKH VHYHUH HIIHFWV RI QHPDWRGH LQIHVWDWLRQ RQ VR\EHDQ SURGXFWLRQ LQ WKH QHPDWRGH UHVLVWDQW FXOWLYDU .LUE\ ZDV XVHG LQ

PAGE 47

3ODQWLQJV WRRN SODFH EHWZHHQ -XQH ZLWK SODQWLQJ ERDUGV ZKLFK JDYH D VTXDUH SODQWLQJ SDWWHUQ 7KH SODQW SRSXODWLRQ GHQVLWLHV RI DQG SODQWV Pn ZHUH DFKLHYHG 6HHGHGKROHV ZHUH ILOOHG ZLWK EXLOGHUnV VDQG WR HQVXUH HYHQ JHUPLQDWLRQ 7KH H[SHULPHQWDO GHVLJQ ZDV D UDQGRPL]HG FRPSOHWH EORFN ZLWK SORWV PHDVXULQJ E\ P (DFK EORFN FRQVLVWHG RI HLJKW SORWV DQG ZDV UHSOLFDWHG IRXU WLPHV )HUWLOL]HU 132.2f ZDV DSSOLHG DW D UDWH RI NJ KDn $OGLFDUE >PHWK\O PHWK\OWKLRf SURSLRQDOGHK\GH RPHWK\OFDUEDP\Of R[LPH@ ZDV DSSOLHG DW D UDWH RI NJ KDn DW VHHG EHG SUHSDUDWLRQ IRU QHPDWRGH FRQWURO 7KH KHUELFLGH DODFKORU FKORUR n nGLHWK\O1PHWKR[\PHWK\Of DFHWDQLOLGH ZDV DSSOLHG WZR GD\V DIWHU SODQWLQJ DW D UDWH RI / KDn LQ D VROXWLRQ FRQWDLQLQJ J / r RI DFWLYH LQJUHGLHQW $Q RYHUKHDG VSULQNOHU LUULJDWLRQ V\VWHP ZDV XVHG /DQQDWH ZDV HIIHFWLYH LQ FRQWUROOLQJ WKH FRUQ HDU ZRUP +HOLRWKLV ]HD %RGGLHf KRZHYHU LW ZDV LQHIIHFWLYH LQ FRQWUROOLQJ WKH VHYHUH LQIHVWDWLRQ E\ ZKLWH IOLHV $OHYURGLGDH DOHXURFDQSKXV ZRJOXPL $VKE\ 7KH nVRRW\ PROGn &DSQRGLXP VSS DOVR EODFNHQHG OHDYHV DV WKH\ WKULYHG RQ FDUERK\GUDWH H[XGDWHV RI WKH ZKLWH IOLHV ,W KDV EHHQ VKRZQ WKDW WKH nVRRW\ PROGn LQWHUIHUHV ZLWK QRUPDO SKRWRV\QWKHVLV 9DLVKDPSD\DQ DQG .RJDQ f $ULRJOX HW DO f IRXQG WKDW WKHUH ZDV D VLJQLILFDQW QHJDWLYH FRUUHODWLRQ EHWZHHQ ZKLWH IO\ LQIHVWDWLRQ DQG VHHG \LHOG $W 5 DQG 5 DQG G DIWHU SODQWLQJ UHVSHFWLYHO\f OLJKW LQWHUFHSWLRQ DERYH DQG EHORZ WKH FDQRS\ DV ZHOO DV UHIOHFWDQFH ZHUH PHDVXUHG DW RU QHDU VRODU QRRQ ZLWK D OLQH TXDQWXP VHQVRU /,&25 PRGHO f :KROH SODQW VDPSOHV ZHUH WDNHQ DW 5 5 DQG 5 ,W ZDV QRW SRVVLEOH WR WDNH VDPSOHV

PAGE 48

EHWZHHQ 5 DQG 5 GXH WR WKH GHWHULRUDWLRQ RI YHJHWDWLYH VWUXFWXUHV EURXJKW RQ E\ ZKLWH IOLHV DQG H[WUHPHO\ ZHW FRQGLWLRQV )LJ f 3RGV DQG VHHGV ZHUH UHWULHYHG DW 5 6XEVDPSOHV ZHUH VHSDUDWHG LQWR WKHLU FRPSRQHQW SDUWV VWHPV DQG SHWLROHV ZHUH NHSW WRJHWKHUf /HDI DUHD ZDV GHWHUPLQHG XVLQJ D OHDI DUHD PHWHU /,&25 f 6DPSOHV ZHUH GULHG LQ D IRUFHGGUDIW RYHQ DW r& WR FRQVWDQW ZHLJKW 9HJHWDWLYH GU\ ZHLJKWV SRG DQG VHHG ZHLJKWV DQG QXPEHUV ZHUH PHDVXUHG 6XEVDPSOHV RI VWHPV DQG OHDYHV IURP 5 ZHUH DQDO\]HG IRU 1 DQG 3 7KH VDPSOHV ZHUH FKRSSHG LQ D KDPPHU PLOO DQG WKHQ JURXQG LQ D :LOH\ PLOO XVLQJ D PP VFUHHQ 7KH VDPSOHV ZHUH GLJHVWHG XVLQJ D PRGLILFDWLRQ RI WKH DOXPLQXP EORFN GLJHVWLRQ SURFHGXUH RI *DOODKHU HW DO f 7R J RI VDPSOH J RI .A62A&X6&A ZHUH DGGHG DQG GLJHVWLRQ FDUULHG RXW IRU K DW r& XVLQJ PO +62 DQG PO + $PPRQLD LQ WKH GLJHVWDWH DQG 3 ZHUH GHWHUPLQHG E\ VHPLDXWRPDWHG FRORURPHWHU\ +DPEOHWRQ f XVLQJ D 7HFKQLFRQ $XWRDQDO\]HU ,, 7KH SODQW YDULDEOHV PHDVXUHG GXULQJ DQG DUH SURYLGHG LQ 7DEOH 'DWD $QDO\VLV 7KH DQDO\WLFDO IUDPHZRUN GHYHORSHG KHUH IRU WKH DQDO\VLV RI \LHOGSODQW GHQVLW\ GDWD LV EDVHG RQ Lf WKH LGHQWLILFDWLRQ RI WKH ELRORJLFDO DQG HFRORJLFDO YDULDEOHV DQG UHODWLRQVKLSV H[LVWLQJ LQ \LHOGSODQW GHQVLW\ VWXGLHV

PAGE 49

7DEOH 6XPPDU\ RI WKH SODQW YDULDEOHV PHDVXUHG GXULQJ DQG 9DULDEOHV 7RWDO GU\ ZHLJKW J Pnf 6HHG GU\ ZHLJKW J Pnf 3RG GU\ ZHLJKW J Pnf 6HHG QXPEHU Pnf 3RG QXPEHU UUIf IWILIO B B *URZWK VWDDH 555 55 55 55 55 7RWDO GU\ ZHLJKW J Pf 55 /HDI GU\ ZHLJKW J Pnf 55 6WHP GU\ ZHLJKW J Pnf 55 /HDI DUHD Pf 55 3HUFHQW OLJKW LQWHUFHSWHG 55 /HDI 1 FRQFHQWUDWLRQ J NJnf 5 6WHP 1 FRQFHQWUDWLRQ J NJnf 5 /HDI 3 FRQFHQWUDWLRQ J NJ nf 5 6WHP 3 FRQFHQWUDWLRQ J NJnf 5 6HHG GU\ ZHLJKW J Pnf 5 3RG GU\ ZHLJKW J Pnf 55 6HHG QXPEHU Pnf 5 3RG QXPEHU Pnf 55

PAGE 50

cLf WKH XVH RI DQDO\VHV RI YDULDQFH $129$f OLQHDU UHJUHVVLRQ DQG FRUUHODWLRQV WR GHWHUPLQH WKH LPSRUWDQFH DQG VWUHQJWK RI WKHVH UHODWLRQVKLSV LLLf WKH FURVV UHIHUHQFLQJ RI SODQW SRSXODWLRQ GHQVLW\ HIIHFWV DQG \LHOG DVVRFLDWLRQV WR DVVHVV WKH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ Df HFRORJLFDO DQG Ef ELRORJLFDO UHODWLRQVKLSV ZKLFK GHWHUPLQH RU DUH DVVRFLDWHG ZLWK \LHOG 7KH EDVLF GDWD VHW FDOFXODWHG YDULDEOHV 6WHP IUDFWLRQ /HDI IUDFWLRQ /HDI DUHD LQGH[/$,f 6SHFLILF OHDI DUHD P Jnf 6SHFLILF OHDI ZHLJKW J Pnf 6HHG QXPEHU 3RGn :HLJKW VHHGn Jf /HDI 1 J Pnf /HDI 1 J PnOHDI DUHDff 6WHP 1 J Pnf 7DEOH f ZDV H[SDQGHG WR LQFOXGH WKH IROORZLQJ 6WHP ZHLJKW 7RWDO GU\ ZHLJKW /HDI GU\ ZHLJKW 7RWDO GU\ ZHLJKW /HDI DUHD +DUYHVWHG DUHD /HDI DUHD /HDI GU\ ZHLJKW /HDI GU\ ZHLJKW /HDI DUHD 6HHG QXPEHU3RG QXPEHU 6HHG GU\ ZHLJKW 6HHG QXPEHU /HDI GU\ ZHLJKW ; /HDI 1 FRQFHQWUDWLRQ ; /HDI 1 J P nf /$, 6WHP GU\ ZHLJKW ; 6WHP 1 FRQFHQWUDWLRQ ;

PAGE 51

/HDI 3 J UUIf /HDI 3 J PnOHDI DUHDff 6WHP 3 J UUIf /HDI GU\ ZHLJKW ; /HDI 3 FRQFHQWUDWLRQ ; /HDI 3 J Pnf /$, 6WHP GU\ ZHLJKW ; 6WHP 3 FRQFHQWUDWLRQ ; 7LLH (YDOXDWLRQ RI 9DULDEOHV DQG 5HODWLRQVKLSV 2SHUDWLQJ LQ
PAGE 52

FKDQJHV LQ WKH PDJQLWXGH RI \LHOG 7KH H[WHQW RI WKH FRQWULEXWLRQ RI nSODVWLFn DQG nQRQSODVWLFn YDULDEOHV WR \LHOG LV QRW EHLQJ LQYHVWLJDWHG 7KH QXPEHU RI UHODWLRQVKLSV EHWZHHQ PHDVXUHG UHVSRQVHV LQFOXGLQJ WKRVH ZKLFK KDYH EHHQ FDOFXODWHGf LV JLYHQ E\ Q&U Q3UUf Q UQUff Q&U WKH WRWDO QXPEHU RI UHODWLRQVKLSV WDNLQJ WZR UHVSRQVHV DW D WLPH Q3U WKH WRWDO QXPEHU RI SHUPXWDWLRQV RI Q UHVSRQVHV WDNHQ U DW D WLPH Q QXPEHU RI PHDVXUHG RU FDOFXODWHG UHVSRQVHV U WKH QXPEHU RI UHVSRQVHV DVVHVVHG DW D WLPH LH WZRf )RU WKH H[SHULPHQW WKHUH LV D FRPELQHG WRWDO RI YDULDEOHV IURP WKH 5 DQG 5 VWDJHV 7KH WRWDO QXPEHU RI SRVVLEOH UHODWLRQVKLSV EHWZHHQ WKH 5 DQG 5 YDULDEOHV LV [ f rf 7KHUH DUH SODQW SRSXODWLRQ GHQVLW\ UHODWLRQVKLSVff UHODWLRQVKLSV ZKLFK PD\ EH DQDO\]HG 7HFKQLTXHV IRU GHWHUPLQLQJ UHODWLRQVKLSV LQ \LHOGSODQW GHQVLW\ VWXGLHV 7KH WKUHH EDVLF WHFKQLTXHV ZKLFK ZLOO EH XVHG LQ PHDVXULQJ WKH H[WHQW RI WKH UHODWLRQVKLSV RSHUDWLQJ LQ \LHOGSODQW GHQVLW\ VWXGLHV DUH WKH DQDO\VLV RI YDULDQFH $129$f OLQHDU UHJUHVVLRQ DQG FRUUHODWLRQV 7KH $129$ ZLOO EH XVHG WR GHWHUPLQH GHQVLW\ DQG FXOWLYDU HIIHFWV RQ PHDVXUHG YDULDEOHV 'LIIHUHQFHV EHWZHHQ FXOWLYDUV ZLOO EH GHWHUPLQHG XVLQJ 'XQFDQnV 0XOWLSOH 5DQJH 7HVW

PAGE 53

'057f 2UGLQDULO\ LW LV WKH DLP RI OLQHDU UHJUHVVLRQ DQDO\VLV WR GHVFULEH D IXQFWLRQDO UHODWLRQVKLS EHWZHHQ < DQG ; LH SODQW SRSXODWLRQ GHQVLW\f 6DFKV f +RZHYHU UHVXOWV RI WKH OLQHDU UHJUHVVLRQ DQDO\VHV REWDLQHG LQ WKLV LQYHVWLJDWLRQ ZLOO QRW EH VHHQ DV GHVFULELQJ WKH IXQFWLRQDO UHODWLRQVKLS EHWZHHQ SODQW SRSXODWLRQ GHQVLW\ ;f DQG D JLYHQ YDULDEOH
PAGE 54

EHWZHHQ PHDVXUHG YDULDEOHV DQG \LHOG SHU XQLW DUHD LV GHWHUPLQHG 7KHVH UHODWLRQVKLSV DUH WKHQ FDWHJRUL]HG EDVHG RQ 5 IURP OLQHDU UHJUHVVLRQf DQG U IURP FRUUHODWLRQVf YDOXHV LQWR KLJK +f f PRGHUDWH 0f f DQG ORZ /f f FDWHJRULHV 7KH QH[W VWHS ZKLFK ZLOO EH LOOXVWUDWHG XVLQJ RQO\ WKH nKLJKn +f DQG nORZn /f FDWHJRULHV LQYROYHV WKH FRUUHODWLRQ RI nUHVSRQVHV FODVVLILHG ZLWK UHVSHFW WR WKHLU UHODWLRQVKLS ZLWK \LHOGn DJDLQVW nUHVSRQVHV FODVVLILHG ZLWK UHVSHFW WR WKHLU UHODWLRQVKLS ZLWK SODQW SRSXODWLRQ GHQVLW\f 7KH UHVXOWLQJ U LV WKHQ XVHG WR GHWHUPLQH WKH SRVVLEOH FRQWULEXWLRQ RI SULPDU\ VHFRQGDU\ DQG WHUWLDU\ UHODWLRQVKLSV WR \LHOG SHU XQLW DUHD LQ SODQW SRSXODWLRQ GHQVLW\ VWXGLHV %DVHG RQ 5 DQG U YDOXHV YDULDEOHV FDQ EH FODVVLILHG LQWR WKRVH DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ +'9f QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ /'9f DVVRFLDWHG ZLWK \LHOG +<9f DQG QRW DVVRFLDWHG ZLWK \LHOG /<9f ,Q VRPH LQVWDQFHV +'9V DQG +<9V PD\ EH WKH VDPH 7KH W\SHV RI UHODWLRQVKLSV ZKLFK PD\ H[LVW EHWZHHQ WKHVH YDULDEOHV DUH +'9V [ +<9V +'9V [ /<9V /'9V [ +<9V /'9V[ /<9V 7KH LQWHUSUHWDWLRQ RI WKH VWUHQJWK RI WKHVH UHODWLRQVKLSV DV GHWHUPLQHG E\ U YDOXHV DUH RXWOLQHG LQ 7DEOH 7KH UHODWLRQVKLSV ZKLFK DUH RI JUHDWHVW LQWHUHVW DUH WKRVH LQYROYLQJ +'9V ; +<9V DQG /'9V ; /<9V ZLWK KLJK U YDOXHV 7KH IRUPHU LGHQWLILHV YDULDEOHV DQG UHODWLRQVKLSV ZKLFK DUH SDUWLFXODUO\ SODVWLF DQG

PAGE 55

7DEOH $ WDEOH IRU WKH LQWHUSUHWDWLRQ RI SODQW SRSXODWLRQ GHQVLW\ \LHOG FURVVUHIHUHQFHG GDWD 7\SH RI UHODWLRQ $ KLJK U $ ORZ U +'9V[ +<9V $ VWURQJ UHODWLRQVKLS ZKLFK LV PRVW OLNHO\ WR EH \LHOG GHWHUPLQLQJ DQG ZKLFK LV XQGHU SODQW SRSXODWLRQ GHQVLW\ HIIHFW $ ZHDN UHODWLRQVKLS KRZHYHU WKH +<9V DUH JUHDWO\ DVVRFLDWHG ZLWK \LHOG DQG WKH +'9V DUH XQGHU SODQW SRSXODWLRQ GHQVLW\ HIIHFW 7KLV UHODWLRQVKLS FDQQRW EH \LHOG GHWHUPLQLQJ LQ SODQW SRSXODWLRQ GHQVLW\ VWXGLHV +'9V [ /<9V $ VWURQJ UHODWLRQVKLS KRZHYHU WKLV UHODWLRQVKLS FDQQRW H[SODLQ \LHOG DV D SODQW GHQVLW\PHGLDWHG SURFHVV $ ZHDN UHODWLRQVKLS QRW FDSDEOH RI H[SODLQLQJ \LHOG KRZHYHU WKH +'9V DUH XQGHU SODQW SRSXODWLRQ GHQVLW\ HIIHFW /'9V [ +<9V $ VWURQJ UHODWLRQVKLS KRZHYHU WKLV UHODWLRQVKLS FDQQRW H[SODLQ \LHOG DV D SODQW GHQVLW\PHGLDWHG SURFHVV $OWKRXJK WKH +<9V DUH FORVHO\ DVVRFLDWHG ZLWK \LHOG WKLV ZHDN UHODWLRQVKLS LV QRW FDSDEOH RI H[SODLQLQJ \LHOG DV D SODQW GHQVLW\PHGLDWHG SURFHVV /'9V [ /<9V $ VWURQJ UHODWLRQVKLS EHWZHHQ $ ZHDN UHODWLRQVKLS EHWZHHQ YDULDEOHV ZKLFK DUH QRW YDULDEOHV ZKLFK DUH QRW DVVRFLDWHG ZLWK \LHOG DQG DVVRFLDWHG ZLWK \LHOG DUH QRW DIIHFWHG E\ SODQW DQG DUH QRW DIIHFWHG GHQVLW\ E\ SODQW SRSXODWLRQ GHQVLW\

PAGE 56

ZKLFK DUH PRVW OLNHO\ WR EH UHVSRQVLEOH IRU WKH FKDQJHV LQ WKH PDJQLWXGH RI \LHOG SHU XQLW DUHD ZLWK FKDQJHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 7KH ODWWHU LGHQWLILHV YDULDEOHV DQG UHODWLRQVKLSV ZKLFK DUH QRW SDUWLFXODUO\ SODVWLF ZKLFK DUH SUREDEO\ XQGHU PXFK JHQHWLF FRQWUROf DQG FDQQRW H[SODLQ FKDQJHV LQ WKH PDJQLWXGH RI \LHOG SHU XQLW DUHD ZLWK FKDQJHV LQ SODQW SRSXODWLRQ GHQVLW\

PAGE 57

&+$37(5 5(68/76 $1' ',6&866,21 (;3(5,0(17 3ODQW SRSXODWLRQ KDG QR VLJQLILFDQW HIIHFW RQ DQ\ RI WKH YDULDEOHV PHDVXUHG ,Q WKH DEVHQFH RI VLJQLILFDQW SODQW SRSXODWLRQ HIIHFW RQ FURS YDULDEOHV WKH FURVV UHIHUHQFLQJ RI WKH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ YDULDEOHV ZLWK WKH n\LHOG DVVRFLDWLRQn RI YDULDEOHV LV QRW SRVVLEOH +RZHYHU WKH FXOWLYDU HIIHFW RQ FURS YDULDEOHV DQG WKH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ DW OHYHOV DERYH WKH b VLJQLILFDQFH OHYHO DOORZV IRU WKH XVH RI $129$ DQG FRUUHODWLRQ DQDO\VHV IRU \LHOG LQYHVWLJDWLRQ $129$ 5HVXOWV 3ODQW 3RSXODWLRQ (IIHFW 3ODQW SRSXODWLRQ KDG QR HIIHFW RQ DQ\ RI WKH YDULDEOHV LQYHVWLJDWHG DW 5 7DEOH f 5 7DEOH f DQG 5 7DEOH f ,Q LQVWDQFHV ZKHUH WKLV UHVXOW ZDV XQH[SHFWHG VXFK DV ZLWK VHHG DQG WRWDO GU\ ZHLJKW SHU XQLW DUHDf LW PD\ EH DWWULEXWHG WR D FRPELQDWLRQ RI Lf WKH SODQW SRSXODWLRQV XVHG ZHUH QRW VXIILFLHQWO\ GLVFULPLQDWLQJ DQG LLf QHPDWRGH LQIHVWDWLRQ 7KH QHPDWRGH UHVLVWDQW VR\EHDQ YDULHWLHV UHFRPPHQGHG IRU )ORULGD ,)$6 f GRHV QRW LQFOXGH .LUE\ DQG )RUUHVW &HQWHQQLDO KRZHYHU LV UHFRPPHQGHG $QDO\VHV FRQGXFWHG RQ URRW DQG VRLO VDPSOHV VKRZHG WKDW WKH F\VW QHPDWRGH +HWHURGHUDO UDFH XQLGHQWLILHG DQG PRVWO\ MXYHQLOHVf DQG URRW NQRW QHPDWRGH 0HORLGRSYQH LQFRJQLWD

PAGE 58

7DEOH 7KH HIIHFW RI SODQW SRSXODWLRQ DQG FXOWLYDU RQ WRWDO GU\ ZHLJKW J Pnf DW 5 6RXUFH RI YDULDWLRQ ) 3RSXODWLRQ &XOWLYDU rr 3RSXODWLRQ ; &XOWLYDU r rr VLJQLILFDQFH DW WKH DQG b OHYHOV UHVSHFWLYHO\ 7DEOH &XOWLYDU HIIHFW RQ WRWDO GU\ ZHLJKW DW 5 &XOWLYDU 7RWDO GU\ ZHLJKW J Pnf .LUE\ Dr &HQWHQQLDO E )RUUHVW F r REVHUYDWLRQV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW '057 bf

PAGE 59

7DEOH 7KH HIIHFW RI SODQW SRSXODWLRQ DQG FXOWLYDU RQ VR\EHDQ SODQW WUDLWV DW 5 VWDJH 9DULDEOH 6RXUFH RI YDULDWLRQ ) 7RWDO GU\ ZHLJKW J Pff 3RSXODWLRQ &XOWLYDU rr 3RSXODWLRQ ; FXOWLYDU 3RG ZHLJKW J Pnf 3RSXODWLRQ &XOWLYDU rr 3RSXODWLRQ ; FXOWLYDU 6HHG GU\ ZHLJKW J Pnf 3RSXODWLRQ &XOWLYDU rr 3RSXODWLRQ ; FXOWLYDU 3RG QXPEHU Pnf 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU 6HHG QXPEHU Pff 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU 6HHG QXPEHU 3RG n 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU :HLJKW VHHG n Jf 3RSXODWLRQ &XOWLYDU rr 3RSXODWLRQ ; FXOWLYDU r rr VLJQLILFDQFH DW WKH DQG b OHYHOV UHVSHFWLYHO\

PAGE 60

7DEOH &XOWLYDU HIIHFW RQ VR\EHDQ SODQW WUDLWV DW 5 VWDJH 9DULDEOH &XOWLYDU .LUE\ &HQWHQQLDO )RUUHVW 7RWDO GU\ ZHLJKW J Pnf Dr D E 3RG ZHLJKW J Pff D D E 6HHG GU\ ZHLJKW J Pnf E D E 3RG QXPEHU Pf D D D 6HHG QXPEHU UUIf D D D 6HHG QXPEHU 3RG B D D D :HLJKW VHHG nJf E D E r REVHUYDWLRQV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW '057 bf

PAGE 61

7DEOH 7KH HIIHFW RI SODQW SRSXODWLRQ DQG FXOWLYDU RQ VR\EHDQ SODQW WUDLWV DW 5 VWDJH 9DULDEOH 6RXUFH RI YDULDWLRQ ) 3RG ZHLJKW J UUIf 3RSXODWLRQ &XOWLYDU f 3RSXODWLRQ ; FXOWLYDU 6HHG GU\ ZHLJKW J Pnf 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU 3RG QXPEHU UUIf 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU r 6HHG QXPEHU Pnf 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU r 6HHG QXPEHU 3RG 3RSXODWLRQ &XOWLYDU r 3RSXODWLRQ ; FXOWLYDU :HLJKW VHHG f Jf 3RSXODWLRQ &XOWLYDU 3RSXODWLRQ ; FXOWLYDU r rr VLJQLILFDQFH DW WKH DQG b OHYHOV UHVSHFWLYHO\

PAGE 62

f6RXWKHUQff SRSXODWLRQV ZHUH VXIILFLHQW WR KLQGHU JUDLQ SURGXFWLRQ LQ DOO WKUHH FXOWLYDUV $W 5 WRWDO GU\ ZHLJKW J P f WHQGHG WR LQFUHDVH ZLWK SRSXODWLRQ )LJ f $OWKRXJK VXFK DQ REVHUYDWLRQ LV FRQVLVWHQW ZLWK WKH UHVXOWV RI 8GRJXFKL DQG 0F&ORXG f %OXPHQWKDO HW DO f DQG 3DUYH] HW DO f WKH SRSXODWLRQ HIIHFW ZDV QRW VLJQLILFDQW S f 7DEOH f 7KHUH ZDV QR VLJQLILFDQW GLIIHUHQFH LQ VHHG GU\ ZHLJKW EHWZHHQ SODQW SRSXODWLRQV DW 5 )LJ f 7DEOH f DQG WKLV FDQ EH DWWULEXWHG WR WKH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ \LHOG FRPSRQHQWV 7KH QXPEHU RI VHHGV SHU SRG 5f ZDV QRW DIIHFWHG E\ SODQW SRSXODWLRQ )LJ f 7DEOH f 7KLV UHVXOW FRUURERUDWHV WKRVH RI &KDXGKU\ DQG &KHHPD f DQG 'RPLQJXH] DQG +XPH f :HLJKW SHU VHHG 5f Jf UHPDLQHG XQFKDQJHG ZLWK SODQW SRSXODWLRQ )LJ f 7DEOH f DQG WKLV LV VLPLODU WR WKH UHVXOWV REWDLQHG E\ 'RPLQJXH] DQG +XPH f DQG )RQWHV DQG 2KOURJJH f 3RG QXPEHU P ZDV XQDIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ )LJ f 7DEOH f :LWK QRQH RI WKH \LHOG FRPSRQHQWV EHLQJ DIIHFWHG E\ SODQW SRSXODWLRQ WKH DEVHQFH RI SODQW SRSXODWLRQ HIIHFW RQ VHHG GU\ ZHLJKW J Pf DW 5 LV H[SHFWHG &XOWLYDU (IIHFW 7RWDO GU\ ZHLJKW J QUf DW 5 ZDV DIIHFWHG E\ FXOWLYDU 7DEOH f ZLWK .LUE\ &HQWHQQLDO DQG )RUUHVW SURYLGLQJ DQG J UUI UHVSHFWLYHO\ 7DEOH f $W 5 SRG QXPEHU Pn VHHG QXPEHU Pn DQG VHHG QXPEHU SRG ZHUH QRW DIIHFWHG E\ FXOWLYDU 7DEOH f +RZHYHU WRWDO GU\ ZHLJKW J Pf SRG GU\ ZHLJKW J Pnf VHHG GU\ ZHLJKW J Pf DQG ZHLJKW SHU VHHG Jf ZHUH DOO

PAGE 63

'U\ZHLJKWJPn )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WRWDO GU\ ZHLJKW DW WKH 5 VWDJH LQ VR\EHDQ

PAGE 64

6HHG GU\YHLJKWIJP )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG GU\ ZHLJKW RI VR\EHDQ DW PDWXULW\

PAGE 65

6HHG SRG )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHGV SRG RI VR\EHDQ DW PDWXULW\

PAGE 66

:HLJKWVHHG BO Jf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ ZHLJKW VHHG RI VR\EHDQ DW PDWXULW\

PAGE 67

3RGQXPEHU P )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ SRG QXPEHU UUIA RI VR\EHDQ DW PDWXULW\

PAGE 68

DIIHFWHG E\ FXOWLYDU 7KHVH UHVXOWV DUH VXPPDUL]HG LQ 7DEOHV DQG $W 5 7DEOH f DOO YDULDEOHV ZHUH DIIHFWHG E\ FXOWLYDU 7KH LQWHUDFWLRQ RI FXOWLYDU DQG SRSXODWLRQ RQ VHHG QXPEHU Pn DQG SRG QXPEHU Pn ZDUUDQWHG IXUWKHU LQYHVWLJDWLRQ XSRQ DQDO\VLQJ WKH FXOWLYDUV LQGLYLGXDOO\ IRU ERWK SRG QXPEHU Pn 7DEOH f DQG VHHG QXPEHU Pn 7DEOH f WKHUH ZDV QR SRSXODWLRQ HIIHFW LQ HLWKHU FDVH $W HDFK SODQW SRSXODWLRQ WKHUH ZDV QR FXOWLYDU HIIHFW RQ SRG QXPEHU UUI 7DEOH f DQG VHHG QXPEHU UUI 7DEOH f $ VXPPDU\ RI WKH FXOWLYDU HIIHFWV DW 5 LV SURYLGHG LQ 7DEOH $Q ([SODQDWLRQ IRU &XOWLYDU
PAGE 69

7DEOH 7KH HIIHFW RI SODQW SRSXODWLRQ ;f RQ SRG QXPEHU Pff
PAGE 70

7DEOH 7KH HIIHFW RI FXOWLYDU RQ SRG QXPEHU Pnf IRU HDFK SODQW SRSXODWLRQ DW 5 VWDJH 3ODQW SRSXODWLRQ 6RXUFH RI YDULDWLRQ ) SODQWV Pn &XOWLYDU SODQWV Pn &XOWLYDU SODQWV Pr &XOWLYDU
PAGE 71

7DEOH &XOWLYDU HIIHFW RQ VR\EHDQ SODQW WUDLWV DW 5 VWDJH &XOWLYDU 9DULDEOH .LUEY &HQWHQQLDO )RUUHVW 3RG ZHLJKW J Pnf D D E 6HHG GU\ ZHLJKW J UUIf D D E 3RG QXPEHU Pnf D D D 6HHG QXPEHU Pnf D D D 6HHG QXPEHU 3RG n E D D :HLJKW VHHG r Jf D D E r REVHUYDWLRQV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW '057 bf

PAGE 72

SHUIRUP )RUUHVW DOVR KDG WKH ORZHVW YHJHWDWLYH GU\ ZHLJKW DW 5 DQG WKLV PHDQV WKDW LQ FRPSDULVRQ WR .LUE\ DQG &HQWHQQLDO OHVV QXWULHQWV ZHUH DYDLODEOH IRU UHPRELOL]DWLRQ &RUUHODWLRQ $QDO\VLV 7KH FRUUHODWLRQ RI YDULDEOHV DW 5 DQG 5 DQG 5 DQG 5 ZLWK VHHG GU\ ZHLJKW J UUIf DQG \LHOG FRPSRQHQWV DUH SURYLGHG LQ 7DEOHV DQG UHVSHFWLYHO\ 7RWDO GU\ ZHLJKW J UUIf DW 5 ZDV SRRUO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DW 5 U S f 7RWDO GU\ ZHLJKW J Pnf DW 5 ZDV PRGHUDWHO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DW 5 U S f 7RWDO GU\ ZHLJKW J Pnf DW 5 ZDV DOVR PRGHUDWHO\ FRUUHODWHG ZLWK DOO \LHOG FRPSRQHQWV DW 5 $W ERWK 5 DQG 5 SRG GU\ ZHLJKW J Pnf SRG QXPEHU UUIf DQG VHHG QXPEHU Pnf ZHUH KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf %DVXFKDXGKDUL f .DZ DQG 0HQRQ f )RQWHV DQG 2KOURJJH f DQG 3DUYH] HW DO f KDG VLPLODU ILQGLQJV :HLJKW VHHG Jf ZDV PRGHUDWHO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DW ERWK 5 DQG 5 7KHVH UHVXOWV DUH FRQWUDU\ WR WKRVH REWDLQHG E\ %RDUG f 7DQGRMDP f -RKQVRQ HW DO f +RZHYHU 0RRUWK\ f IRXQG WKDW WKHUH ZDV D KLJK FRUUHODWLRQ EHWZHHQ ZHLJKW VHHG rJf DQG VHHG GU\ ZHLJKW J UUIf $W 5 WKHUH ZDV PRGHUDWH FRUUHODWLRQ EHWZHHQ VHHG GU\ ZHLJKW J UUIf DQG VHHG QXPEHU SRG WKLV UHVXOW ZDV DOVR REWDLQHG E\ 0D f $W 5 VHHG QXPEHU SRG ZDV QRW FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pf 7KLV UHVXOW FRUURERUDWHV WKRVH REWDLQHG E\ +DUWZLJ DQG (GZDUGV f %RDUG f 7DQGRMDP f DQG

PAGE 73

7DEOH &RUUHODWLRQ FRHIILFLHQWV IRU VHHG \LHOG DQG LWV IXQGDPHQWDO FRPSRQHQWV ;f DW 5 ZLWK YDULDEOHV ;f DW 5 DQG 5 ; ; U 6HHG GU\ ZHLJKW 5fJ UUIf 7RWDO GU\ ZHLJKW 5fJ Pnf r 7RWDO GU\ ZHLJKW 5fJ Pf f 3RG GU\ ZHLJKW 5fJ Pnf rr 3RG QXPEHU 5fPaf rr 6HHG QXPEHU 5f UUIf f 6HHG QXPEHU 3RGn 5f r :HLJKW VHHG 5f Jf f 3RG QXPEHU 5f UUIf 7RWDO GU\ ZHLJKW 5fJ UUIf rr 7RWDO GU\ ZHLJKW 5fJ Pf rr 3RG GU\ ZHLJKW 5f J Pnf f 6HHG GU\ ZHLJKW 5f D UUIf f 6HHG QXPEHU 5f UUIf f 6HHG QXPEHU 3RGn 5f rr :HLJKW VHHG n 5f Jf 6HHG QXPEHU 3RGn 5f 7RWDO GU\ ZHLJKW 5fJ Pnf 7RWDO GU\ ZHLJKW 5fJ Pnf 3RG GU\ ZHLJKW 5f J UUIf r 6HHG GU\ ZHLJKW 5f J Pf r 3RG QXPEHU 5f UUIW f 6HHG QXPEHU 5f Pf :HLJKW VHHG 5f Jf :HLJKW VHHG n 5f Jf 7RWDO GU\ ZHLJKW 5fJ Pf 7RWDO GU\ ZHLJKW 5fJ Pnf 3RG GU\ ZHLJKW 5f J UUIf 6HHG GU\ ZHLJKW 5f J Pf f 3RG QXPEHU 5f UUIf 6HHG QXPEHU 5f QUIf 6HHG QXPEHU 5f 3RGn rf VLJQLILFDQFH DW WKH DQG b OHYHOV UHVSHFWLYHO\

PAGE 74

7DEOH &RUUHODWLRQ FRHIILFLHQWV IRU WKH IXQGDPHQWDO \LHOG FRPSRQHQWV ;f DW VWDJH 5 ZLWK YDULDEOHV ;f DW 5 DQG 5 ; 6HHG GU\ ZHLJKW 5fJ Pf 3RG QXPEHU 5f QUIf 6HHG QXPEHU 3RGn 5f :HLJKW VHHG n 5f Jf ; U 7RWDO GU\ ZHLJKW 5f J Pnf rr 3RG GU\ ZHLJKW 5f D Pf rr 3RG QXPEHU 5f Prf f 6HHG QXPEHU 5f IPnf rr 6HHG QXPEHU 3RGn 5f :HLJKW VHHG 5f Jf r 7RWDO GU\ ZHLJKW 5f J Pnf r 3RG GU\ ZHLJKW 5f J Pnf rr 6HHG GU\ ZHLJKW 5f J Pf rr 6HHG QXPEHU 5f Pnf rr 6HHG QXPEHU 3RGn 5f :HLJKW VHHG n 5f Jf 7RWDO GU\ ZHLJKW 5f J Pnf r 3RG GU\ ZHLJKW 5f J Pnf 6HHG GU\ ZHLJKW 5f J Pf 3RG QXPEHU 5f Pf 6HHG QXPEHU 5f Pf :HLJKW VHHG n 5f Jf 7RWDO GU\ ZHLJKW 5f J Pnf rr 3RG GU\ ZHLJKW 5f J Pnf r 6HHG GU\ ZHLJKW 5f J Pf 3RG QXPEHU 5f Pnf r 6HHG QXPEHU 5f Pnf 6HHG QXPEHU 3RGn 5f
PAGE 75

-RKQVRQ HW DO f $PRQJ \LHOG FRPSRQHQWV DW ERWK 5 DQG 5 VHHG QXPEHU SRG DQG ZHLJKW VHHGJf DUH WKH OHDVW FRUUHODWHG ZLWK WKH YDULDEOHV PHDVXUHG DQG WKLV PD\ LQGLFDWH WKDW WKHVH \LHOG FRPSRQHQWV DUH ODUJHO\ XQGHU JHQHWLF FRQWURO $Q ([SODQDWLRQ IRU &XOWLYDU
PAGE 76

7DEOH 0HDQ YDOXHV DQG FRUUHODWLRQ FRHIILFLHQWV IRU 5 WRWDO GU\ ZHLJKW J Pnf VHHG GU\ ZHLJKW J Prf DQG LWV IXQGDPHQWDO FRPSRQHQWV DW 5 9DULDEOH &XKYDU $OO .NE\ &HQWHQQLDO )RUUHVW FXOWLYDUH 6HHG GU\ ZHLJKW\ Pnf 3RG QXPEHU QUf 6HHG 3RG n :HLJKW VHHG fJf 7RWDO GU\ ZHLJKW5fJ Pnf D D rf# E f D f D f D E D rrf D rrf rrf D f D f f D f E f rf E f F f frrf REVHUYDWLRQV IROORZHG E\ WKH VDPH OHWWHU DUH QRW VLJQLILFDQWO\ GLIIHUHQW '057 bf A&RUUHODWLRQ FRHIILFLHQWV Uf RI YDULDEOHV ZLWK VHHG GU\ ZHLJKW J Q7f DUH LQ SDUHQWKHVHV rrr VLJQLILFDQFH DW WKH DQG b OHYHOV UHVSHFWLYHO\ 7DEOH 6WDWLVWLFDO PRGHOV IRU SHU SODQW UHVSRQVHV
PAGE 77

GHQVLW\ LQGLFDWHV WKDW LQ GHSWK \LHOGSODQW SRSXODWLRQ GHQVLW\ VWXGLHV VKRXOG IRFXV RQ D VLQJOH FXOWLYDU 7KH
PAGE 78

'U\ ZHLJKW 3ODQWn Jf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ GU\ ZHLJKW SHU SODQW RU VR\EHDQ DW WKH 5 VWDJH

PAGE 79

'U\ ZHLJKW SODQWn Jf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG ZHLJKW SHU SODQW RI VR\EHDQ DW PDWXULW\

PAGE 80

1XPEHU P )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG QXPEHU SHU SODQW RI VR\EHDQ DW PDWXULW\

PAGE 81

&RQFOXVLQ $OWKRXJK SODQW SRSXODWLRQ KDG QR VLJQLILFDQW HIIHFW RQ WKH YDULDEOHV PHDVXUHG DW 5 5 DQG 5 WKH HIIHFW RI FXOWLYDU RQ YDULDEOHV DOORZHG IRU \LHOG LQYHVWLJDWLRQV 7RWDO GU\ ZHLJKW J P nf ZDV PRGHUDWHO\ FRUUHODWHG ZLWK DOO \LHOG FRPSRQHQWV KRZHYHU LW ZDV QHJDWLYHO\ FRUUHODWHG ZLWK VHHG QXPEHU SRG r &RUUHODWLRQ DQDO\VHV RQ WKH GDWD VHWV IRU HDFK FXOWLYDU DQG IRU WKH FRPELQHG GDWD VHW RI DOO FXOWLYDUV DW ERWK 5 DQG 5 VKRZHG WKDW SRG GU\ ZHLJKW J P nf VHHG QXPEHU QUf DQG SRG QXPEHU P rf ZHUH DOO KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf 6HHG QXPEHU SRGn ZDV XQDIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ DQG .LUE\ KDG WKH ORZHVW YDOXH +RZHYHU WKH JUHDWHU ZHLJKW VHHG n Jf RI .LUE\ FRQWULEXWHG WR .LUE\ KDYLQJ D JUHDWHU VHHG GU\ ZHLJKW J P nf DW 5 WKDQ )RUUHVW :HLJKW VHHG n Jf ZDV QHLWKHU SODVWLF QRU ZDV LW KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf +RZHYHU DPRQJ \LHOG FRPSRQHQWV ZHLJKW VHHG n DFFRXQWV IRU WKH \LHOG GLIIHUHQFH REVHUYHG LQ FXOWLYDU 7KLV DSSDUHQW FRQWUDGLFWLRQ LQ WKH LQIOXHQFH RI ZHLJKW VHHG n Jf KLJKOLJKWV WKH IROORZLQJ SRLQW :HLJKW VHHGn Jf GHWHUPLQHV ILQDO VHHG GU\ ZHLJKW J Pnf KRZHYHU EHLQJ XQGHU JHQHWLF FRQWURO LW FDQ DFFRXQW IRU GLIIHUHQFHV LQ JHQRW\SHV EXW ZHLJKW VHHG n Jf LV XQDEOH WR DFFRXQW IRU WKH SODVWLF UHVSRQVH RI VHHG ZHLJKW J Pnf 7KH FRPELQDWLRQ DQG VXEVHTXHQW DQDO\VLV RI GDWD REWDLQHG IURP GLIIHUHQW FXOWLYDUV LQ \LHOGSODQW SRSXODWLRQ GHQVLW\ VWXGLHV SRVHV D PDMRU FKDOOHQJH &XOWLYDUV PD\ GLIIHU JUHDWO\ LQ WKHLU \LHOG G\QDPLFV DQG DV VXFK WKH\ PD\ UHVSRQG GLIIHUHQWO\ WR FKDQJHV LQ SODQW SRSXODWLRQ ,I WKLV LV WKH FDVH WKHQ WKH DQDO\VLV RI

PAGE 82

FRPELQHG GDWD VHWV IURP GLIIHUHQW FXOWLYDUV PD\ \LHOG UHVXOWV ZKLFK PLVUHSUHVHQW ELRORJLFDO DQG HFRORJLFDO UHDOLWLHV

PAGE 83

&+$37(5 5(68/76 $1' ',6&866,21 (;3(5,0(17 7KH ILUVW VHFWLRQ RI WKLV FKDSWHU IRFXVHV RQ Lf WKH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ FURS YDULDEOHV LLf WKH H[WHQW RI WKH FRUUHODWLRQ RI WKHVH YDULDEOHV ZLWK VHHG GU\ ZHLJKW SHU XQLW DUHD DQG LLLf WKH \LHOG LPSOLFDWLRQV RI Lf DQG LLf ,Q WKH VHFRQG VHFWLRQ WKH FURVV UHIHUHQFLQJ RI SODQW SRSXODWLRQ GHQVLW\ HIIHFWV ZLWK WKH VWUHQJWK RI WKH \LHOG DVVRFLDWLRQ RI YDULDEOH LV XVHG WR HVWDEOLVK \LHOG GHWHUPLQLQJ UHODWLRQVKLSV EHWZHHQ YDULDEOHVf ZKLFK DUH RI LPSRUWDQFH LQ \LHOGSODQW SRSXODWLRQ GHQVLW\ VWXGLHV 3ODQW 3RSXODWLRQ 'HQVLW\ (IIHFWV
PAGE 84

'U\ZHLJKWIJP )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG ZHLJKW RI .LUE\ DW PDWXULW\

PAGE 85

&RUUHODWLRQV RI YDULDEOHV ZLWK VHHG GU\ ZHLJKW J P rf ZHUH GHWHUPLQHG IRU XQWUDQVIRUPHG GDWD 9HJHWDWLYH 6WUXFWXUHV 'U\ ZHLJKW UHVSRQVH WR SODQW SRSXODWLRQ GHQVLW\ $W 5 WRWDO GU\ ZHLJKW J Pnf OHDI GU\ ZHLJKW J Pnf DQG VWHP GU\ PDWWHU J Pnf )LJ f 7DEOH f ZHUH DOO SRVLWLYHO\ DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ $W 5 WRWDO GU\ ZHLJKW J UUIf OHDI GU\ ZHLJKW J Prf DQG VWHP GU\ ZHLJKW J UUIf )LJ f 7DEOH f ZHUH DOO SRVLWLYHO\ DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7KHVH UHVXOWV DUH FRQVLVWHQW ZLWK WKRVH RI RWKHU UHVHDUFKHUV 3DUYH] HW DO %OXPHQWKDO HW DO 8GRJXFKL DQG 0F&ORXG f $W 5 DQG 5 WRWDO GU\ ZHLJKW SHU SODQW GHFUHDVHG )LJ f DQG ZDV VLJQLILFDQWO\ DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7DEOHV DQG f 7RWDO GU\ ZHLJKW GHFUHDVHG VKDUSO\ XS WR D GHQVLW\ RI SODQWV Pn DQG WHQGHG WR OHYHO RII DIWHU SODQWV QU IRU ERWK 5 DQG 5 )LJ f 2EYLRXVO\ DW KLJKHU GHQVLWLHV LQFUHDVHV LQ SODQW SRSXODWLRQ GHQVLW\ ZHUH QRW DV HIIHFWLYH LQ UHGXFLQJ SODQW GU\ ZHLJKW 'UY ZHLJKWV D PnO DQG FRUUHODWLRQV WR VHHG \LHOG 7RWDO GU\ ZHLJKW J Pnf OHDI GU\ ZHLJKW J Pnf DQG VWHP GU\ ZHLJKW J Pff DW 5 ZHUH SRVLWLYHO\ DQG KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf DW 5 7DEOH f 6LPLODU UHVXOWV ZHUH REWDLQHG DW 5 ZKHUH WRWDO GU\ ZHLJKW

PAGE 86

7DEOH 6WDWLVWLFDO PRGHOV IRU VR\EHDQ SODQW YDULDEOHV
PAGE 87

'U\ ZHLJKW J P 3ODQWV Pf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VWHP OHDI DQG WRWDO GU\ ZHLJKWV RI .LUE\ DW WKH 5 VWDJH

PAGE 88

'U\ ZHLJKW JP )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VWHP OHDI DQG WRWDO GU\ ZHLJKWV RI .LUE\ DW WKH 5 VWDJH

PAGE 89

'U\YHLJKW SODQWn Jf 3ODQWV Pn )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ YHJHWDWLYH GUA ZHLJKW RI .LUE\ DW WKH 5 DQG 5 VWDJHV

PAGE 90

7DEOH &RUUHODWLRQ[RHIILFLHQWV RI VR\EHDQ SODQW YDULDEOHV DW 5 VWDJH ZLWK VHHG GU\ ZHLJKW J Pnf DW 5 9DULDEOH U 7RWDO GU\ ZHLJKW J Pnf rr /HDI GU\ ZHLJKW J Pnf rr 6WHP GU\ ZHLJKW J Pnf rr rr VLJQLILFDQFH DW WKH DQG b OHYHOV UHVSHFWLYHO\ 7DEOH &RUUHODWLRQ FRHIILFLHQWV RI VR\EHDQ SODQW YDULDEOHV DW 5 VWDJH ZLWK VHHG ZHLJKW J Pnf DW 5 9DULDEOH
PAGE 91

J QUf OHDI GU\ ZHLJKW J Pnf DQG VWHP GU\ ZHLJKW J Prf DW 5 ZHUH PRGHUDWHO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf DW 5 7DEOH f 8GRJXFKL DQG 0F&ORXG f DQG 3DUYH] HW DO f DOVR KDG VLPLODU ILQGLQJV +RZHYHU %DVXFKDXGKDUL f IRXQG RQO\ PRGHUDWH FRUUHODWLRQV
PAGE 92

)UDFWLRQ 3ODQWV P ) LJ 7KH HIIHFW RI S OD QW SRS X ODWL Q GH QV LW\ R Q VWHP D QG OHDI IUDFWLRQV RI .LUE\ DW WKH 5 DQG 5 VWDJHV

PAGE 93

7DEOH 6WDWLVWLFDO PRGHOV IRU VR\EHDQ SODQW YDULDEOHV
PAGE 94

IUDFWLRQV )LJ f 7DEOH f DOWKRXJK WKH SODQW GHQVLW\ WUHQGV ZHUH VLPLODU WR WKRVH DW 5 $W 5 VSHFLILF OHDI DUHD P Jff )LJ f DQG VSHFLILF OHDI ZHLJKW J Pnf ZHUH DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7DEOH f $W 5 VSHFLILF OHDI DUHD P J nf )LJ f DQG VSHFLILF OHDI ZHLJKW J Pnf ZHUH QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7DEOH f %\ FRPSDULVRQ 1HOVRQ DQG 6FKZHLW]HU f REVHUYHG WKDW VSHFLILF OHDI ZHLJKW J Pnf DQG KHQFH VSHFLILF OHDI DUHD P Jnff ZDV QRW JUHDWO\ DIIHFWHG E\ HQYLURQPHQWV $W KLJKHU SODQW SRSXODWLRQ GHQVLWLHV GXH WR VR\EHDQfV SK\OORWD[\ LW LV H[SHFWHG WKDW D JUHDWHU SURSRUWLRQ RI OHDYHV ZLOO EH VKDGHG +RZHYHU WKH ODFN RI GLIIHUHQFHV LQ VSHFLILF OHDI ZHLJKW DW 5 PD\ KDYH EHHQ GXH WR WKH IDFW WKDW WKHUH ZDV SUREDEO\ JUHDWHU GLIIHUHQFHV ZLWKLQ FDQRSLHV WKDQ EHWZHHQ FDQRSLHV 7KH VSHFLILF OHDI ZHLJKWV DQG VSHFLILF OHDI DUHDV WDNHQ ZHUH DYHUDJH PHDVXUHV RYHU WKH ZKROH FDQRS\ DQG WKH\ GR QRW LQGLFDWH GLIIHUHQFHV ZLWK KHLJKW LQ FDQRSLHV $W 5 WKH OHDI DUHD LQGH[ )LJ f DQG SHUFHQW OLJKW LQWHUFHSWHG )LJ f ZHUH DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7DEOH f $W 5 ERWK WKH OHDI DUHD LQGH[ )LJ 7DEOH f DQG WKH SHUFHQW OLJKW LQWHUFHSWHG )LJ 7DEOH f ZHUH DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ /LJKW LQWHUFHSWLRQ UHDFKHG D PD[LPXP RI b DQG OHYHOHG RII DW D SRSXODWLRQ GHQVLW\ RI SODQWV Pn /HDI IUDFWLRQ OHDI DUHD DQG OLJKW ,QWHUFHSWHG DQG FRUUHODWLRQV ZLWK VHHG \LHOG $W 5 VWHP DQG OHDI IUDFWLRQV ZHUH KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf DW 5 7DEOH f +RZHYHU DW 5 VWHP DQG OHDI IUDFWLRQV ZHUH QRW FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf 7DEOH f $W 5 VSHFLILF OHDI ZHLJKW

PAGE 95

6SHFLILF OHDI DUHDP )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VSHFLILF OHDI DUHD RI .LUE\ DW WKH 5 DQG 5 VWDJHV

PAGE 96

/HD DUHDLQGH[ 3ODQWV PA )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WKH OHDI DUHD LQGH[ RI .LUE\ DW WKH 5 DQG 5 VWDJHV

PAGE 97

3HUFHQW OLJKW LQHWUFHSWLRQ )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ SHUFHQW OLJKW LQWHUFHSWLRQ RI .LUE\ DW WKH 5 DQG 5 VWDJHV

PAGE 98

7DEOH &RUUHODWLRQ FRHIILFLHQWV RI VR\EHDQ SODQW YDULDEOHV DW 5 VWDJH ZLWK VHHG ZHLJKW J Pnf DW 5 9DULDEOH U 6WHP IUDFWLRQ rr /HDI IUDFWLRQ rr 3HUFHQW OLJKW LQWHUFHSWHG rr /HDI DUHD LQGH[ rr 6SHFLILF OHDI DUHD P Jn r 6SHFLILF OHDI ZHLJKW J P rf rr
PAGE 99

J Pff DQG VSHFLILF OHDI DUHD P J Bf ZHUH PRGHUDWHO\ FRUUHODWHG ZLWK VHHG ZHLJKW J Pnf DW 5 $W 5 VSHFLILF OHDI ZHLJKWJ Pnf DQG VSHFLILF OHDI DUHD P J ff ZHUH SRRUO\ FRUUHODWHG ZLWK VHHG ZHLJKW J Pnf DW 5 /HDI DUHD LQGH[ DQG SHUFHQW OLJKW LQWHUFHSWHG DW 5 ZHUH KLJKO\ FRUUHODWHG ZLWK VHHG ZHLJKW J Prf DW 5 7DEOH f /HDI DUHD LQGH[ DQG SHUFHQW OLJKW LQWHUFHSWHG DW 5 ZHUH KLJKO\ FRUUHODWHG ZLWK VHHG ZHLJKW J Pnf DW 5 7DEOH f 7KLV LV FRQVLVWHQW ZLWK WKH ILQGLQJV RI %DVXFKDXGKDUL f +RZHYHU 5DPVHXU HW DO f DQG &RVWD HW DO f IRXQG WKDW /$, ZDV QRW FRUUHODWHG ZLWK \LHOG
PAGE 100

1XWULHQW 6WDWXV DQG /LQHDU 5HJUHVVLRQ $W 5 SODQW SRSXODWLRQ GHQVLW\ KDG QR HIIHFW RQ 1 FRQFHQWUDWLRQV LQ WKH VWHPV DQG OHDYHV )LJ DQG 7DEOH f +RZHYHU 1 FRQWHQW J UUIf LQ WKH VWHPV DQG OHDYHV ZHUH DIIHFWHG VLJQLILFDQWO\ )LJ 7DEOH f $W 5 SODQW SRSXODWLRQ GHQVLW\ KDG QR HIIHFW RQ 3 FRQFHQWUDWLRQV LQ HLWKHU VWHPV RU OHDYHV )LJ DQG 7DEOH f 3KRVSKRUXV FRQWHQW J UUIf LQ WKH VWHPV DQG OHDYHV ZHUH DIIHFWHG VLJQLILFDQWO\ )LJ DQG 7DEOH f 7KHVH UHVXOWV FRUURERUDWH WKRVH RI $EUDKDPVRQ DQG &DVZHOO f DQG +DQZD\ DQG :HEHU f 8QOLNH WKH ILQGLQJV RI %XWWHU\ f 1 FRQFHQWUDWLRQ GLG QRW GHFUHDVH EHFDXVH RI LQWHUSODQW FRPSHWLWLRQ IRU OLPLWHG 1 UHVRXUFHV 1LWURJHQ Jf SHU XQLW OHDI DUHD )LJ 7DEOH f DQG 3 Jf SHU XQLW OHDI DUHD )LJ 7DEOH f ZHUH QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ /HDI 1 J Pnf DSSHDUHG WR EH JUHDWHU LQ WKH OHDYHV WKDQ LQ WKH VWHPV WKH LQWHUFHSW DQG VORSHV RI WKH VWDWLVWLFDO PRGHOV IRU 1 J Pnf DQG 3 J UUIf LPSO\ WKLVf DQG WKLV REVHUYDWLRQ LV FRQVLVWHQW ZLWK WKH ILQGLQJV RI :DQJ DQG /LX f 1XWULHQW VWDWXV DQG FRUUHODWLRQV 7KH FRUUHODWLRQ UHVXOWV DUH SURYLGHG LQ 7DEOH 7KH FRQFHQWUDWLRQV RI 1 LQ ERWK VWHPV DQG OHDYHV DW 5 ZHUH QRW FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DW 5 7KH FRQFHQWUDWLRQ RI 3 LQ ERWK VWHPV DQG OHDYHV DW 5 ZHUH QRW FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DW 5 1 DQG 3 FRQWHQW SHU XQLW OHDI DUHD ZDV QRW FRUUHODWHG ZLWK VHHG GU\ ZHLJKW DQG WKHUHIRUH ZHUH QRW D EDVLV IRU

PAGE 101

1LWUR JHQ LQ /HDYHV DQG 6WHPV J NJ )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 1 FRQFHQWUDWLRQV RI .LUE\ DW WKH 5 VWDJH

PAGE 102

7DEOH 6WDWLVWLFDO PRGHOV IRU VR\EHDQ SODQW YDULDEOHV
PAGE 103

1LWURJHQ LQ /HDYHV DQG 6WHPV J P 3ODQWV P )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 1 FRQWHQW RI .LUE\ DW WKH 5 VWDJH

PAGE 104

3KRVSKRUXV LQ /HDYHV DQG6WHPVJ NJ )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 3 FRQFHQWUDWLRQV RI .LUE\ DW WKH 5 VWDJH

PAGE 105

3KRVSKRUXV LQ /HDYHV DQG 6WHPV J P )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ OHDI DQG VWHP 3 FRQWHQW RI .LUE\ DW WKH 5 VWDJH

PAGE 106

1LWURJHQ LQ /HD J P RI OHDDUHDf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ 1 FRQWHQW SHU XQLW DUHD RI .LUE\ DW WKH 5 VWDJH

PAGE 107

3KRVSKRUXV LQ /HDYHV J P RI OHDI DUHDf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ 3 FRQWHQWSHU XQLW OHDI DUHD RI .LUE\ DW WKH 5 VWDJH

PAGE 108

GLIIHULQJ SKRWRV\QWKHWLF FDSDFLW\ +RZHYHU OHDI 1 DQG 3 FRQWHQW ZHUH KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf DW 5 ZKLOH VWHP 1 DQG 3 FRQWHQW ZHUH PRGHUDWHO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf DW 5
PAGE 109

7DEOH 6WDWLVWLFDO PRGHOV IRU VR\EHDQ SODQW YDULDEOHV
PAGE 110

5HSURGXFWLYH 6WUXFWXUHV /LQHDU UHJUHVVLRQ RI UHSURGXFWLYH VWUXFWXUHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 3RG GU\ ZHLJKW J Pf DQG SRG QXPEHU Pnf DW 5 ZHUH VLJQLILFDQWO\ DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7DEOH f 7KHUHIRUH LW ZDV QRW VXUSULVLQJ WKDW WKHVH WZR YDULDEOHV ZHUH DOVR VKRZQ WR EH DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ DW 5 SRG GU\ ZHLJKW J Pnf )LJ 7DEOH f DQG SRG QXPEHU UUUf )LJ 7DEOH f 6HHG GU\ ZHLJKW J UUUf ZDV DIIHFWHG SRVLWLYHO\ E\ SODQW SRSXODWLRQ GHQVLW\ )LJ 7DEOH f 7KLV UHVXOW LV FRQVLVWHQW ZLWK WKH UHVXOWV RI 3DUYH] HW DO f 6SLOGH HW DO f 'RVV DQG 7KXUORZ f DQG &DYLQHVV f 6HHG QXPEHU UUU DW 5 LQFUHDVHG ZLWK SODQW SRSXODWLRQ GHQVLW\ )LJ 7DEOH f 7KLV UHVXOW FRUURERUDWHV WKH ILQGLQJV RI /HXVFKHQ DQG +LFNV f DQG )RQWHV DQG 2KOURJJH f :HLJKW VHHG rJf ZDV QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ )LJ f 6HHG QXPEHU SRGn ZDV QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ )LJ f 'RPLQJXH] DQG +XPH f DQG )RQWHV DQG 2KOURJJH f KDG VLPLODU UHVXOWV +RZHYHU WKLV ILQGLQJ ZDV FRQWUDU\ WR WKRVH RI -RKQVRQ DQG +DUULV f ZLWK WKH VR\EHDQ FXOWLYDU n/HHnf 3DUNV DQG 0DQQLQJ f :LOFR[ f :ULJKW HW DO f DQG :HLO DQG 2KOURJJH f 6HHG ZHLJKW DQG SRG GU\ ZHLJKW SHU SODQW )LJ f GHFUHDVHG ZLWK SODQW SRSXODWLRQ GHQVLW\ DQG ZHUH DOVR VLJQLILFDQWO\ DIIHFWHG 7DEOH f 3RG

PAGE 111

6HHG DQG 3RG 1XPEHU P )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG QXPEHU RI .LUE\ DW PDWXULW\

PAGE 112

6HHG :HLJKW J VHHG 3ODQWV Pf )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ ZHLJKW SHU VHHG RI .LUE\ DW PDWXULW\

PAGE 113

6HHG 1XPEHU VHHG SRG )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ RQ VHHG QXPEHU SHU SRG RI .LUE\ DW PDWXULW\

PAGE 114

'U\ :HLJKW J SODQW 3ODQWV Pn )LJ 7KH HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG ZHLJKW SHU SODQW RI .LUE\ DW PDWXULW\

PAGE 115

DQG VHHG QXPEHU SHU SODQW UHVSRQGHG LQ D VLPLODU PDQQHU )LJ 7DEOH f $OO YDULDEOHV WHQGLQJ WR OHYHO RII DW DERYH SODQWV UUI &RUUHODWLRQV RI UHSURGXFWLYH VWUXFWXUHV ZLWK \LHOG 3RG GU\ ZHLJKW J UUIf DQG SRG QXPEHU UUIf DW 5 ZHUH ERWK KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DW 5 7DEOH f $PRQJ 5 YDULDEOHV 7DEOH f SRG GU\ ZHLJKW J QUIf VHHG QXPEHU UUIf DQG SRG QXPEHU Pf ZHUH DOO KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf 7DEOH f 7KHVH UHVXOWV DUH FRQVLVWHQW ZLWK WKRVH RI %DVXFKDXGKDUL f .DZ DQG 0HQRQ f )RQWHV DQG 2KOURJJH f 3DUYH] HW DO f 6HHG QXPEHU SHU SRG DQG ZHLJKW SHU VHHG Jf ZHUH QRW FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf 7DEOH f 7KHVH ILQGLQJV DUH FRQVLVWHQW ZLWK WKRVH RI %RDUG f 7DQGRMDP f -RKQVRQ HW DO f DQG +DUWZLJ DQG (GZDUGV f +RZHYHU 0D f IRXQG WKDW VHHG SHU SRG ZDV FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J UUIf DQG :HEHU DQG 0RRUWK\ f UHSRUWHG WKDW WKHUH ZDV D KLJK SRVLWLYH FRUUHODWLRQ EHWZHHQ ZHLJKW SHU VHHG DQG VHHG GU\ ZHLJKW J UUIf 7DEOH f
PAGE 116

6HHG DQG 3RG1XPEHU SODQW 3ODQWV Pf )LJ 7KH HIIHFW R SODQW SRSXODWLRQ GHQVLW\ RQ VHHG DQG SRG QXPEHU SHU SODQW RI .LUE\ DW PDWXULW\

PAGE 117

7DEOH &RUUHODWLRQ FRHIILFLHQWV RI VR\EHDQ SODQW YDULDEOHV DW 5 VWDJH ZLWK VHHG ZHLJKW J Pnf DW 5 9DULDEOH
PAGE 118

VXEMHFW WR FKDQJHV LQ SODQW SRSXODWLRQ GHQVLW\ ,W VKRXOG EH HPSKDVL]HG WKDW ZHLJKW VHHG rJf DQG VHHG SRG PDNH YLWDO FRQWULEXWLRQV WR ILQDO \LHOG EXW WKH\ DUH XQDEOH WR DFFRXQW IRU WKH SODQWGHQVLW\PHGLDWHG YDULDWLRQV LQ \LHOG 5HVXOWV DQG 'LVFXVVLRQV RI &URVV 7DEOHV ,Q WKLV VXEVHFWLRQ WKH UHODWLRQVKLS EHWZHHQ YDULDEOHV ZLOO EH H[DPLQHG XVLQJ WKH IROORZLQJ nGHJUHHRIFRUUHODWLRQn FODVVLILFDWLRQ V\VWHP +LJKO\ FRUUHODWHG ZLWK \LHOG RU DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ U RU 5 s +f 0RGHUDWHO\ FRUUHODWHG ZLWK \LHOG RU DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ U RU 5 s 0f /RZ FRUUHODWLRQ ZLWK \LHOG RU QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ U RU 5 s /f
PAGE 119

7DEOH
PAGE 120

D ODQG DUHD EDVLV 6HFRQGO\ SRG QXPEHU DQG VHHG QXPEHU DUH UHODWHG YLD VHHGV SRG n DQG LW KDV EHHQ VKRZQ WKDW VHHG SRGn LV QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ 7KHUHIRUH VHHG QXPEHU DQG SRG QXPEHU ZLOO WHQG WR YDU\ ZLWK HDFK RWKHU UHVXOWLQJ LQ D KLJK U YDOXH $OO RWKHU UHODWLRQVKLSV EHWZHHQ SRG GU\ ZHLJKW J Pnf SRG QXPEHU Pnf DQG VHHG QXPEHU Pf DOVR VHHP WR EH WKH SULPDU\ UHODWLRQVKLSV RI JUHDW LPSRUWDQFH LQ \LHOG GHWHUPLQDWLRQ $JDLQ WKLV REVHUYDWLRQ LQ SDUW FDQ EH DWWULEXWHG WR WKH IDFW WKDW WKHVH YDULDEOHV DUH H[SUHVVHG RQ D SHU DUHD EDVLV 7KH SRRU UHODWLRQVKLSV EHWZHHQ \LHOG FRPSRQHQWV QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ QDPHO\ VHHG SRG DQG ZHLJKW VHHGn DQG FRPSRQHQWV KLJKO\ DVVRFLDWHG ZLWK \LHOG 7DEOH f UHLQIRUFHV WKH SRLQW WKDW VHHG SRGn DQG ZHLJKW VHHGn DUH IDU UHPRYHG IURP PHGLDWLQJ SODQW SRSXODWLRQ GHQVLW\ HIIHFWV RQ \LHOG ,W LV LQWHUHVWLQJ WR QRWH WKDW VHHG SRGn DQG ZHLJKW VHHG DUH SRRUO\ FRUUHODWHG 7DEOH f 7KHUHIRUH HYHQ LI WKHUH DUH PRUH VHHGV SRGn ZHLJKW VHHGn WHQGV WR UHPDLQ FRQVWDQW $W 5 WKH YDULDEOHV WRWDO GU\ ZHLJKW J Pnf DQG OHDI GU\ ZHLJKW J Pnf ZKLFK H[KLELW KLJK SODQW SRSXODWLRQ GHQVLW\ HIIHFW DUH PRGHUDWHO\ FRUUHODWHG ZLWK SRG GU\ ZHLJKW J Pnf VHHG QXPEHU Pnf DQG SRG QXPEHU Pnf DW 5 7DEOH f 7KH SK\VLRORJLFDO EDVLV RI WKLV LV WR EH IRXQG LQ Lf JUHDWHU YHJHWDWLYH GU\ ZHLJKW UHVXOWV LQ D JUHDWHU FDSDFLW\ WR UHPRELOL]H QXWULHQWV DQG LLf OHDI GU\ ZHLJKW LV D UHIOHFWLRQ RI WKH SKRWRV\QWKHWLF FDSDFLW\ RI D FURS 7DEOH OLVWV YDULDEOHV ZKLFK DUH QRW DVVRFLDWHG ZLWK \LHOG DQG DUH QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ $OO WKH YDULDEOHV H[FHSW IRU VWHP 1 DQG 3 FRQWHQWV DUH H[SUHVVHG LQ XQLWV RWKHU WKDQ RQ D ODQG DUHD EDVLV DQG WKLV PD\

PAGE 121

7DEOH
PAGE 122

7DEOH
PAGE 123

7DEOH
PAGE 124

7DEOH
PAGE 125

H[SODLQ VRPH RI WKH XQUHVSRQVLYHQHVV RI WKHVH YDULDEOHV 7DEOH SURYLGHV VRPH LQWHUHVWLQJ UHODWLRQVKLSV EHWZHHQ YDULDEOHV QRW DVVRFLDWHG ZLWK \LHOG DQG QRW DIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ $W 5 3 FRQFHQWUDWLRQ LV PRGHUDWHO\ DQG SRVLWLYHO\ FRUUHODWHG WR VSHFLILF OHDI DUHD WKLV PD\ EH GXH WR WKH IDFW WKDW 3 SOD\V DQ LPSRUWDQW LQ OHDI H[SDQVLRQ $OVR OHDI 1 DQG 3 SHU XQLW OHDI DUHD DUH KLJKO\ DQG SRVLWLYHO\ FRUUHODWHG WR VSHFLILF OHDI ZHLJKW 7KHUHIRUH WKLFNHU OHDYHV VKRXOG EH H[SHFWHG WR KDYH D ODUJHU SKRWRV\QWKHWLF DSSDUDWXV $W 5 UHODWLRQVKLSV ZKLFK KDYH FRQVLGHUDEOH SRWHQWLDO IRU PHGLDWLQJ SODQW SRSXODWLRQ GHQVLW\ HIIHFWV RQ \LHOG DUH WRWDO GU\ ZHLJKW OHDI GU\ ZHLJKW VWHP GU\ ZHLJKW DQG OHDI DUHD LQGH[ 7DEOH f 6LQFH VSHFLILF OHDI ZHLJKW LV XQDIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ LW VKRXOG QRW EH VXUSULVLQJ WKDW OHDI DUHD DV /$,f LV FORVHO\ DVVRFLDWHG ZLWK OHDI GU\ ZHLJKW 7KH UHPDLQLQJ UHODWLRQVKLSV WKRXJK LPSRUWDQW SURYLGH QRWKLQJ UHYHDOLQJ DV PRVW DUH GLUHFWO\ UHODWHG VXFK DV OHDI GU\ ZHLJKW DQG WRWDO GU\ ZHLJKW $ VXPPDU\ DQG WKH UHOHYDQFH RI FURVVUHIHUHQFLQJ LQ \LHOGSODQW SRSXODWLRQ GHQVLW\ VWXGLHV LV JLYHQ LQ 7DEOH ZKHUH LW LV FOHDUO\ VKRZQ WKDW DOO UHSURGXFWLYH SKRWRV\QWKHWLF DQG UHPRELOL]DWLRQ SDUDPHWHUV ZKLFK KDYH EHHQ IRXQG WR EH SODVWLF DUH DVVRFLDWHG ZLWK VHHG ZHLJKW J Pnf ,Q FRQFOXVLRQ WKH YDULDEOHV ZKLFK WKURXJK WKHLU UHODWLRQVKLSV KDYH WKH JUHDWHVW SRWHQWLDO IRU H[SODLQLQJ SODQWGHQVLW\PHGLDWHG HIIHFWV RQ \LHOG DUH VHHG QXPEHU 5f Pnf SRG QXPEHU 5f UUIf SRG GU\ ZHLJKW 5f J Pnf WRWDO GU\ ZHLJKW 5f J UUIf DQG OHDI GU\ ZHLJKW 5f J Prf 7KH IRUPHU WZR RZH WKHLU LPSRUWDQFH WR \LHOG EHFDXVH WKH\ DUH \LHOG FRPSRQHQWV ZKLFK DUH H[SUHVVHG RQ ODQG DUHD EDVHV SRG GU\ ZHLJKW EHFDXVH LW LQFRUSRUDWHV \LHOG DQG WRWDO GU\ ZHLJKW 5f DQG OHDI

PAGE 126

7DEOH
PAGE 127

7DEOH
PAGE 128

7DEOH 3ODVWLF DQG QRQSODVWLF FURS UHVSRQVHV RI UHSURGXFWLYH UHPRELOL]DWLRQ DQG SKRWRV\QWKHWLF SDUDPHWHUV DQG WKHLU LPSDFW RQ VHHG GU\ ZHLJKW J Pnf 5HSURGXFWLYH 3DUDPHWHUV r 9 r 9 3ODVWLF UHVSRQVHV 3RG QXPEHU 5fPnf 3RG GU\ ZHLJKW5fT Pf 3RG QXPEHU 5fPnf 6HHG QXPEHU 5fPnf 3RG GU\ ZHLJKW5fJ Pf 1RQSODVWLF UHVSRQVHV 6HHG QXPEHU 3RG nn5f :HLJKW VHHG r5f 5HPRELOL]DWLRQ 3DUDPHWHUV 3ODVWLF UHVSRQVHV 1RQSODVWLF UHVSRQVHV 7RWDO GU\ ZHLJKW 5fJ Pnf /HDI 1 FRQFHQWUDWLRQ 5f J NJn rY /HDI GU\ ZHLJKW 5fJ Pnf /HDI 3 FRQFHQWUDWLRQ 5f J NJn r 9 6WHP GU\ ZHLJKW 5fJ Prf /HDI 1 5fJ Pnf 6WHP 1 FRQFHQWUDWLRQ 5f J NJ rY 6WHP 3 FRQFHQWUDWLRQ 5f J NJ /HDI 3 5fJ Pnf 6WHP 1 5f J Pnf rY 6WHP 3 5f J Pnf 3KRWRV\QWKHWLF 3DUDPHWHUV 3ODVWLF UHVSRQVHV 1RQSODVWLF UHVSRQVHV 6SHFLILF OHDI DUHD 5fP Jnf /HDI DUHD LQGH[ 5f r 9 /HDI GU\ ZHLJKW 5f J Pnf 6SHFLILF OHDI ZHLJKW5fJ Pnf r 9 3HUFHQW OLJKW LQWHUFHSWHG5f /HDI 1 FRQFHQWUDWLRQ 5f J NJn /HDI 1 5f J Pnf /HDI 3 FRQFHQWUDWLRQ 5f J NJn /HDI 3 5f J Pnf /HDI 1 5f J PnOHDI DUHDf /HDI IUDFWLRQ 5f ? 9 UHVSRQVHV DIIHFWHG E\ SODQW GHQVLW\ DQG DVVRFLDWHG ZLWK VHHG ZHLJKW J Pnf UHVSHFWLYHO\

PAGE 129

GU\ ZHLJKW 5f EHFDXVH RI WKHLU UHOHYDQFH WR WKH SURFHVVHV RI SKRWRV\QWKHVLV DQG UHPRELOL]DWLRQ

PAGE 130

&+$37(5 $1 ,19(67,*$7,21 ,172 7+( <,(/'3/$17 '(16,7< 5(63216( :,7+ 62<*52 ,Q WKLV FKDSWHU WKH SURFHVVRULHQWHG FURS JURZWK VLPXODWRU IRU VR\EHDQ 62<*52 LV XVHG WR LQYHVWLJDWH 'XQFDQfV IROORZLQJ DVVXPSWLRQV RQ \LHOGSODQW GHQVLW\ UHODWLRQV Lf WKDW SHUFHQW OLJKW LQWHUFHSWLRQ DW JURZWK VWDJH 5 SURYLGHV DQ HIIHFWLYH EDVLV IRU GHWHUPLQLQJ DQG FRPSDULQJ WKH VHHG \LHOG HIILFLHQFLHV RI FURSV RI GLIIHUHQW SODQW GHQVLWLHV 6HHG \LHOG HIILFLHQF\ LV GHILQHG DV VHHG \LHOG GLYLGHG E\ SHUFHQW OLJKW LQWHUFHSWLRQ DW 5 LLf WKDW WKH FRQWULEXWLRQ RI UHPRELOL]DWLRQ WR VHHG \LHOG KDV QR GLIIHUHQWLDO HIIHFW RQ WKH FDOFXODWLRQ RI VHHG \LHOG HIILFLHQFLHV DFURVV GLIIHUHQW SODQWLQJ GHQVLWLHV DQG LLLf WKDW ZLWK WKH RQVHW RI LQWHUSODQW FRPSHWLWLRQ WKHUH LV DQ LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK D FURS XVHV OLJKW IRU VHHG SURGXFWLRQ 'XQFDQfV WKHRU\ UHOLHV LQ ODUJH SDUW RQ WKHVH WKUHH DVVXPSWLRQV )LUVW E\ UHO\LQJ RQ SHUFHQW OLJKW LQWHUFHSWLRQ DW 5 DV D EDVLV IRU FDOFXODWLQJ VHHG \LHOG HIILFLHQF\ 'XQFDQ DVVXPHG WKDW WKH DPRXQW RI OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 LV GLUHFWO\ SURSRUWLRQDO WR WKH SHUFHQW RI OLJKW LQWHUFHSWHG DW 5 )RU H[DPSOH LQ 3KDVH ,, ZKHUH GLIIHUHQW SODQW GHQVLWLHV LQWHUFHSW DQ HTXLYDOHQW b RI WKH LQFRPLQJ OLJKW LW LV DVVXPHG WKDW HDFK SODQW GHQVLW\ LQWHUFHSWV WKH VDPH DPRXQW RI OLJKW EHWZHHQ 5 DQG 5 7KLV ZDV WKH EDVLV IRU 'XQFDQnV VWDWHPHQW WKDW LQ

PAGE 131

3KDVH ,, LI \LHOG SHU XQLW DUHD LQFUHDVHV DQG VLQFH SHUFHQW OLJKW LQWHUFHSWLRQ LV FRQVWDQWf WKHQ VHHG \LHOG HIILFLHQF\ EDVHG RQ OLJKW LQWHUFHSWLRQf KDV WR LQFUHDVH 7KH ILQGLQJV RI 6KLEOHV DQG :HEHU f WKDW VR\EHDQ FURS JURZWK UDWH SHU XQLW JURXQG DUHD VKRXOG EH PD[LPL]HG DQG EH FRQVWDQW ZKHQ WKH FDQRS\ H[KLELWV FRPSOHWH LQVRODWLRQ LQWHUFHSWLRQ PD\ DSSHDU WR VXSSRUW 'XQFDQnV DVVXPSWLRQ +RZHYHU WKLV VWDWHPHQW LV QRW WR EH WDNHQ DV PHDQLQJ WKDW WRWDO FDQRS\ SKRWRV\QWKHVLV JURZWK UDWHf EHWZHHQ 5 DQG 5 LV DW D PD[LPXP DQG LV FRQVWDQW RYHU D JLYHQ UDQJH RI SODQW GHQVLWLHV *LYHQ WKDW FDQRS\ VWUXFWXUH OHDI GLVWULEXWLRQ DQG GHJUHH RI VKDGLQJ DUH DOO JUHDWO\ LQIOXHQFHG E\ SODQW GHQVLW\ LW LV KDUGO\ OLNHO\ WKDW SODQW GHQVLWLHV FRUUHVSRQGLQJ WR FRQVWDQW \LHOG SHU DUHD ZLOO FRQVLVW RI FURSV ZLWK VLPLODU FDQRS\ VWUXFWXUHV :KHQ WKH LPSDFW RI QXWULHQW UHPRELOL]DWLRQ DQG LWV HIIHFW XSRQ OHDI ORVV DQG FDQRS\ VWUXFWXUH DUH FRQVLGHUHG LW LV KDUGO\ OLNHO\ WKDW WKH OLJKW LQWHUFHSWHG EHWZHHQ JURZWK VWDJHV 5 DQG 5 ZLOO FRQVWDQW RYHU D UDQJH RI SODQW GHQVLWLHV ZKLFK SURYLGH PD[LPXP \LHOG )LQDOO\ 'XQFDQ GHILQHG nVHHG \LHOG HIILFLHQF\n DV WKH HIILFLHQF\ ZLWK ZKLFK LQWHUFHSWHG 3$5 LV XVHG LQ VHHG SURGXFWLRQ EHWZHHQ 5 DQG 5 'XQFDQ WKHUHIRUH FRQILQHG WKH GHWHUPLQDWLRQ RI nVHHG \LHOG HIILFLHQF\f DQG WKXV GLIIHUHQFHV LQ \LHOG EHWZHHQ SODQW GHQVLWLHV WR WKH DPRXQW RI OLJKW LQWHUFHSWHG GXULQJ 5 WR 5 )URP 'XQFDQnV SHUVSHFWLYH WKH SURFHVV RI QXWULHQW UHPRELOL]DWLRQ ZKLFK FRPPHQFHV DW 5 ZDV VHHQ VWULFWO\ DV D SK\VLRORJLFDO SURFHVV ZKRVH SRWHQWLDO LV GHWHUPLQHG E\ WKH YHJHWDWLYH ZHLJKW RI WKH SODQW DW 5 5HPRELOL]DWLRQ DOWKRXJK VHHQ E\ 'XQFDQ DV D SURFHVV LPSDFWLQJ XSRQ \LHOG ZDV QRW VHHQ DV D SURFHVV ZKLFK GLIIHUHQWLDOO\ LPSDFWV XSRQ WKH nVHHG \LHOG HIILFLHQF\n HTXDWLRQ 'XQFDQnV GLVUHJDUG IRU UHPRELOL]DWLRQ LV MXVWLILHG LI Lf WKH SURSRUWLRQ RI UHPRELOL]HG QXWULHQWV IURP YHJHWDWLYH RUJDQV WR VHHGV LV FRQVWDQW

PAGE 132

DQG DOVR LI LLf WKH SURSRUWLRQ RI UHPRELOL]HG QXWULHQWV LQ WKH VHHG LV FRQVWDQW RYHU DOO GHQVLWLHV LQYHVWLJDWHG ,I WUXH WKHQ GLIIHUHQFHV LQ VHHG \LHOG HIILFLHQF\ FRXOG QRW EH DWWULEXWHG WR GLIIHUHQFHV LQ WKH UDWH RI QXWULHQW UHPRELOL]DWLRQ LQVWHDG \LHOG GLIIHUHQFHV ZRXOG EH GXH WR GLIIHUHQFHV LQ WKH HIILFLHQF\ ZLWK OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 LV XVHG ,I WKLV LV WKH FDVH WKHQ 'XQFDQnV DUJXPHQWV RQ LQFUHDVHG VHHG \LHOG HIILFLHQF\ LQ 3KDVH ,, ZRXOG KROG DOWKRXJK WKH FDOFXODWHG VHHG \LHOG HIILFLHQFLHV ZRXOG EH DUWLILFLDOO\ KLJK ,I 'XQFDQnV DVVXPSWLRQ GRHV QRW KROG WKHQ WKH SURFHVV RI UHPRELOL]DWLRQ FRQIRXQGV DQ\ FDOFXODWLRQ RI VHHG \LHOG HIILFLHQF\ ZKLFK UHOLHV VWULFWO\ RQ OLJKW LQWHUFHSWLRQ DW RU DIWHU 5 'XQFDQnV WKLUG DVVXPSWLRQ ZDV WKDW EHWZHHQ 3KDVH DQG 3KDVH ,, WKHUH LV D UDQJH RI SODQW GHQVLWLHV ZLWKLQ ZKLFK WKHUH LV DQ LQFUHDVLQJ GHJUHH RI PXWXDO VKDGLQJ DV GHQVLW\ LQFUHDVHV 7KH LQFUHDVH LQ \LHOG SHU XQLW DUHD REVHUYHG ZLWKLQ WKLV UDQJH RI SODQW GHQVLWLHV LV DVVXPHG WR EH GXH ERWK WR WKH LQFUHDVH LQ OLJKW LQWHUFHSWHG DQG WR DQ LQFUHDVH LQ WKH HIILFLHQF\ ZLWK ZKLFK OLJKW LV XVHG +RZHYHU 'XQFDQ SURYLGHG QR EDVLV IRU KLV YLHZ WKDW ZLWK WKH RQVHW RI VKDGLQJ WKH HQG RI 3KDVH ,f WKHUH LV DQ LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK 3$5 LV XVHG LQ VHHG SURGXFWLRQ $ &URS 6LPXODWLRQ 3HUVSHFWLYH RQ 'XQFDQnV $VVXPSWLRQV 'XQFDQnV WKRXJKW H[SHULPHQW DQG WKH DVVXPSWLRQV KH PDGH KDYH \HW WR EH FULWLFDOO\ LQYHVWLJDWHG (JOLnV f UHVHDUFK HIIRUWV ZHUH GLUHFWHG VSHFLILFDOO\ WRZDUGV 'XQFDQnV \LHOGUHVSRQVH WKHRU\ +RZHYHU (JOL GLG QRW TXHVWLRQ WKH YDOLGLW\ RI WKH DVVXPSWLRQV XQGHUO\LQJ 'XQFDQnV WKHRU\ LQVWHDG KH DFFHSWHG 'XQFDQnV SRVWXODWHV DQG REWDLQHG UHVXOWV ZKLFK FOHDUO\ VKRZHG WKH H[LVWHQFH RI

PAGE 133

'XQFDQnV WKUHH 3KDVHV :KLOH DFWXDO GDWD DUH LGHDO LQ DUULYLQJ DW FRQFOXVLRQV FRQFHUQLQJ SK\VLRORJLFDO DQG HFRORJLFDO SURFHVVHV RSHUDWLQJ LQ \LHOGSODQW GHQVLW\ UHODWLRQVKLSV FURSVLPXODWLRQ PRGHOLQJ FDQ VHUYH DV D XVHIXO WRRO LQ Lf GHYHORSLQJ WKHRULHV DQG K\SRWKHVHV DQG LLf WHVWLQJ WKH YDOLGLW\ RI WKHRULHV 2QH VXFK PRGHO ZKLFK KROGV PXFK SRWHQWLDO IRU LQYHVWLJDWLQJ 'XQFDQnV WKHRU\ DQG IRU WKH GHYHORSPHQW RI K\SRWKHVHV ZKLFK DGGUHVV \LHOGSODQW GHQVLW\ UHVSRQVHV LQ VR\EHDQ LV 62<*52 -RQHV HW DO f 62<*52 LV D SURFHVVRULHQWHG VR\EHDQ FURS JURZWK VLPXODWRU GHYHORSHG DW WKH 8QLYHUVLW\ RI )ORULGD E\ DQ LQWHUGLVFLSOLQDU\ UHVHDUFK WHDP 7KH VLPXODWRU SUHGLFWV GDLO\ JURZWK SDUWLWLRQLQJ VRLOFURS ZDWHU EDODQFH DQG VHHG \LHOG UHVSRQVH WR GDLO\ ZHDWKHU VRODU UDGLDWLRQ PD[LPXP DQG PLQLPXP WHPSHUDWXUH DQG UDLQIDOOf 7KH VLPXODWRU LV VHQVLWLYH WR URZ DQG SODQW VSDFLQJ SODQW SRSXODWLRQ SODQWLQJ GDWH DQG FXOWLYDU VHOHFWLRQ DQG LUULJDWLRQ PDQDJHPHQW RSWLRQV $ YHUVLRQ RI 62<*52 KDV UHFHQWO\ EHHQ DGDSWHG WR LQFOXGH D KHGJHURZ SKRWRV\QWKHVLV OLJKW LQWHUFHSWLRQ VXEURXWLQH ZKLFK RSHUDWHV RQ D KRXUO\ VWHS ZLWKLQ WKH PRGHO %RRWH HW DO f 7KLV YHUVLRQ SUHGLFWV KRXUO\ DQG GDLO\ f OLJKW LQWHUFHSWLRQ DQG FDQRS\ SKRWRV\QWKHVLV DV D IXQFWLRQ RI WKH GD\ RI \HDU ODWLWXGH VRODU UDGLDWLRQ WHPSHUDWXUH UDLQIDOO OHDI DUHD LQGH[ FDQRS\ KHLJKW DQG FDQRS\ ZLGWK 7KH ODWWHU WKUHH YDULDEOHV DUH SUHGLFWHG LQWHUQDO WR WKH PRGHO $GGLWLRQDOO\ WKHVH DUH H[WHUQDO PRGHO SDUDPHWHUV ZKLFK PRGLI\ WKH LQFUHDVH LQ KHLJKW DQG ZLGWK DV D IXQFWLRQ RI YHJHWDWLYH VWDJH WHPSHUDWXUH SKRWRV\QWKHWLFDOO\ DFWLYH UDGLDWLRQ 3$5f DQG ZDWHU GHILFLW 7KH KHGJHURZ YHUVLRQ RI 62<*52 PDNHV LW VXLWHG WR HYDOXDWH UHVSRQVH RI OLJKW LQWHUFHSWLRQ DQG \LHOG WR SODQW SRSXODWLRQ 7KLV YHUVLRQ RI 62<*52 LV VWLOO LQ LWV GHYHORSPHQWDO

PAGE 134

VWDJH DQG VLQFH WKH PRGHO KDV RQO\ EHHQ WHVWHG DJDLQVW URZ VSDFLQJ GDWD LW LV DOVR GHVLUDEOH WR WHVW LWV UHVSRQVH WR HTXLGLVWDQW SODQW SRSXODWLRQ VWXGLHV RI (JOL f (JOLnV GDWD VHW FRYHUHG DQ DGHTXDWH UDQJH RI SODQW GHQVLWLHV KRZHYHU KLV GDWD VHW KDG LQVXIILFLHQW GU\ PDWWHU DFFXPXODWLRQ OLJKW LQWHUFHSWLRQ DQG QLWURJHQ VWDWXV GDWD IRU WKH LQYHVWLJDWLRQ RI \LHOGSODQW GHQVLW\ UHVSRQVHV DQG WKH H[DPLQDWLRQ RI 'XQFDQnV WKHRU\ 62<*52 ZDV XVHG WR JHQHUDWH OLJKW LQWHUFHSWLRQ GU\ PDWWHU DFFXPXODWLRQ 1 VWDWXV GDWD DV ZHOO DV SUHGLFW \LHOG UHVSRQVH WR SODQW GHQVLW\ 0RGHOV WKHPVHOYHV KRZHYHU DUH RQO\ DV YDOLG DV WKH DVVXPSWLRQV XQGHU ZKLFK WKH\ RSHUDWH ,W LV IURP WKLV SHUVSHFWLYH WKDW WKH DVVXPSWLRQV LQ 62<*52 ZLOO EH GLVFXVVHG UHODWLYH WR LWV SUHGLFWLRQV RI \LHOGSODQW GHQVLW\ UHVSRQVHV 6LPXODWLRQ ([HUFLVH 7KH FURS VLPXODWLRQ H[HUFLVH ZDV FRQGXFWHG RQ \LHOG GDWD IURP (JOLnV f VWXG\ RQ WKH HIIHFW RI SODQW GHQVLW\ RQ VR\EHDQ \LHOG 7KLV H[SHULPHQW ZDV FRQGXFWHG LQ QHDU /H[LQJWRQ .HQWXFN\ r1 /DWf ZLWK WKH VR\EHDQ FXOWLYDU &XPEHUODQG >0* ,,,@ ZKLFK KDV DQ LQGHWHUPLQDWH JURZWK KDELW 7KH VRLO ZDV D 0DXU\ VLOW ORDP ILQH PL[HG PHVLF 7\SLF 3DOHXGDOIf DQG SODQWLQJ ZDV GRQH LQ ZDJRQ ZKHHO GHVLJQ ZKLFK UHVXOWHG LQ DQ DSSUR[LPDWH VTXDUH SODQWLQJ DUUDQJHPHQW FRQVLVWLQJ RI SODQW SRSXODWLRQV
PAGE 135

7KH \LHOG 7DEOH f LUULJDWLRQ VFKHGXOH 7DEOH f DQG ZHDWKHU GDWD ZHUH SURYLGHG E\ (JOL 6RLO SDUDPHWHUV ZHUH GHWHUPLQHG XVLQJ UHVXOWV IURPDQDO\VHV RI WKH 8QLWHG 6WDWHV 6RLO &RQVHUYDWLRQ 6HUYLFH f DQG WKHVH LQFOXGHG SHUFHQW VORSH KRUL]RQ WKLFNQHVV DQG IRU HDFK KRUL]RQ WKH EXON GHQVLW\ UHODWLYH URRW SUHVHQFH RUJDQLF FDUERQ FRQFHQWUDWLRQ S+ SHUFHQW VDQG SHUFHQW VLOW DQG SHUFHQW FOD\ 8VLQJ D SURFHGXUH DYDLODEOH DV SDUW RI WKH ,%61$7 ,QWHUQDWLRQDO %HQFKPDUN 6LWHV 1HWZRUN IRU $JURWHFKQRORJ\ 7UDQVIHUf FURS JURZWK PRGHOV WKH VDWXUDWHG ZDWHU FRQWHQW WKH GUDLQHG XSSHU OLPLW WKH ORZHU OLPLW RI SODQWH[WUDFWDEOH ZDWHU DQG WKH VDWXUDWHG K\GUDXOLF FRQGXFWLYLW\ ZHUH GHULYHG IURP SHUFHQW VDQG SHUFHQW VLOW SHUFHQW FOD\ DQG RUJDQLF FDUERQ &KDUDFWHULVWLFV RI WKH GHULYHG VRLO ZKLFK UHSUHVHQW WKH 0DXU\ VLOW ORDP XVHG E\ (JOL DUH JLYHQ LQ 7DEOH 7KH PRGHO ZDV FDOLEUDWHG E\ DOWHULQJ JHQHWLF DQG FURS JURZWK SDUDPHWHUV 7KH GDWD SURYLGHG E\ (JOL IRU PRGHO FDOLEUDWLRQ LQFOXGHG VHHG \LHOG SHU XQLW DUHD VHHG \LHOG SHU SODQW VHHG QXPEHU SHU XQLW DUHD DQG ZHLJKW SHU VHHG ,Q DGGLWLRQ WR WKHVH \LHOG YDULDEOHV 62<*52 VLPXODWHG YDOXHV ZHUH RXWSXW IRU SHUFHQW OLJKW LQWHUFHSWHG RYHU WKH JURZLQJ VHDVRQ SHUFHQW OLJKW LQWHUFHSWHG ERWK DW QRRQ DQG GDLO\ DW JURZWK VWDJH 5 EHJLQQLQJ VHHG DQ\ZKHUH RQ WKH SODQWf WRWDO OLJKW LQWHUFHSWHG GXULQJ WKH YHJHWDWLYH DQG UHSURGXFWLYH SKDVHV DQG VHDVRQDO OLJKW LQWHUFHSWHG 7KH PD[LPXP YHJHWDWLYH QLWURJHQ FRQWHQW PRELOL]HG QLWURJHQ DQG QLWURJHQ FRQWHQW RI VHHGV ZHUH DOVR SUHGLFWHG 1R SUHYLRXV DWWHPSWV KDG EHHQ PDGH WR PRGHO &XPEHUODQG FXOWLYDU ZLWK 62<*52 7KXV PRGHO WUDLWV IRU :LOOLDPV >0* ,,,@ ZHUH XVHG LQLWLDOO\ DQG

PAGE 136

7DEOH
PAGE 137

7DEOH 'HILQLWLRQV RI VRLO SDUDPHWHUV DQG FKDUDFWHULVWLFV RI 0DXU\ VLOW ORDP 6$/% 8 6:&21 &1 7$9 $03 '02' 6:&21 6:&21 6:&21 5:80; 3+$& '/$<5 '8/ 6$7 6: 9-5 P 44 (+ 6$/% X 6:&21 &1 7$9 $03 '02' 6:&21 6:&21 6:&21 5:80; 3+)$& '/$<5 /f // /f '8/ /f 6$7 /f 6: /f :5 /f %' /f 2& /f 3+ /f %DUH VRLO DOEHGR QR XQLWVf 8SSHU OLPLW RI VWDJH VRLO HYDSRUDWLRQ PPf 6RLO ZDWHU GUDLQDJH FRQVWDQW IUDFWLRQ GUDLQHG SHU GD\ 6&6 FXUYH QXPEHU XVHG WR FDOFXODWH GDLO\ UXQRII $QQXDO DYHUDJH DPELHQW WHPSHUDWXUH r&f $QQXDO DPSOLWXGH LQ PHDQ PRQWKO\ WHPSHUDWXUH r &f =HURWRXQLW\ IDFWRU ZKLFK UHGXFHV WKH UDWH FRQVWDQW IRU PLQHUDOL]DWLRQ RI WKH KXPXV SRRO IRU VRLOV ZKLFK DUH SRRU PLQHUDOL]HUV GXH WR FKHPLFDO RU SK\VLFDO SURWHFWLRQ RI WKH RUJDQLF PDWWHU GHIDXOW f &RHIILFLHQW LQ WKH VWHDG\ VWDWH VROXWLRQ WR WKH UDGLDO IORZ URRW XSWDNH HTXDWLRQ FP FP URRWGD\ GHIDXOW f &RHIILFLHQW LQ WKH VWHDG\ VWDWH VROXWLRQ WR WKH UDGLDO IORZ URRW XSWDNH HTXDWLRQ FP FP URRWGD\ YDOXH FDOFXODWHG E\ UHWULHYDO SURJUDPf &RHIILFLHQW LQ WKH VWHDG\ VWDWH VROXWLRQ WR WKH UDGLDO IORZ URRW XSWDNH HTXDWLRQ FP FP URRWGD\ GHIDXOW f 0D[LPXP GDLO\ URRW ZDWHU XSWDNH SHU XQLW URRW OHQJWK FP FP URRWGD\ GHIDXOW f 9DULDEOH WR UHGXFH DSSDUHQW SKRWRV\QWKHVLV DWWULEXWHG WR VRLO IHUWLOLW\ IRU JUDLQ OHJXPH PRGHOV GHIDXOW f 7KLFNQHVV RI VRLO OD\HU / FP /RZHU OLPLW RI SODQWH[WUDFWDEOH VRLO ZDWHU IRU VRLO OD\HU / FPFP 'UDLQHG XSSHU OLPLW VRLO ZDWHU FRQWHQW IRU VRLO OD\HU / FPFP 6DWXUDWHG ZDWHU FRQWHQW IRU VRLO OD\HU / FPFP 'HIDXOW VRLO ZDWHU FRQWHQW IRU VRLO OD\HU / FUUUFP :HLJKWLQJ IDFWRU IRU VRLO GHSWK / WR GHWHUPLQH QHZ URRW JURZWK GLVWULEXWLRQ QR XQLWV 0RLVW EXON GHQVLW\ RI VRLO LQ VRLO OD\HU / JFP 2UJDQLF FDUERQ FRQFHQWUDWLRQ LQ VRLO OD\HU / b S+ RI VRLO LQ VRLO OD\HU / LQ D VRLO ZDWHU VOXUU\

PAGE 138

PRGLILHG 7KH JHQHWLF DQG SODQW SDUDPHWHUV ZKLFK ZHUH DOWHUHG LQ PRGHO FDOLEUDWLRQ ZHUH 6+9$5 0D[LPXP UDWH RI GU\ PDWWHU DFFXPXODWLRQ SHU VKHOO SRG ZDOOVf DW RSWLPXP WHPSHUDWXUH DQG DVVLPLODWLRQ VXSSO\ 6'9$5 0D[LPXP UDWH RI GU\ PDWWHU DFFXPXODWLRQ SHU VHHG GXULQJ WKH OLQHDU ILOOLQJ SHULRG DQG XQGHU RSWLPXP WHPSHUDWXUH DQG DVVLPLODWH VXSSO\ 9$57+ f 3KRWRWKHUPDO WLPH IURP 5 WR WKH WLPH RI EHJLQQLQJ RI SRGVHW 9$57+ f 3KRWRWKHUPDO WLPH IURP 5 WR 5 EHJLQQLQJ PDWXULW\f 32'9$5 0D[LPXP QXPEHU RI SRGV SURGXFHG SHU P SHU GD\ XQGHU VKRUW GD\V DQG RSWLPXP WHPSHUDWXUH DQG DVVLPLODWH VXSSO\ )/:9$5 0D[LPXP QXPEHU RI IORZHUV SURGXFHG SHU P SHU GD\ XQGHU VKRUW GD\V DQG RSWLPXP WHPSHUDWXUH DQG DVVLPLODWH VXSSO\ 6&9 6FDWWHULQJ FRHIILFLHQW IRU OLJKW IUDFWLRQ UHIOHFWHG DQG WUDQVPLWWHG E\ D VLQJOH OHDIf /)0$; /LJKWVDWXUDWHG SKRWRV\QWKHWLF UDWH RI DQ XSSHU PDWXUH OHDI DW RSWLPXP WHPSHUDWXUH 1 DQG ZDWHU VWDWXV <96+7 3DUDPHWHUV ZKLFK GHWHUPLQH FDQRS\ KHLJKW YLD H[SHFWHG LQWHUQRGH OHQJWK DV D IXQFWLRQ RI YHJHWDWLYH VWDJH <96:+ 3DUDPDWHUV ZKLFK GHWHUPLQH FDQRS\ ZLGWK YLD SHWLROH DQG OHDI H[WHQVLRQ DV D IXQFWLRQ RI YHJHWDWLYH VWDJH %HJLQQLQJ ZLWK JHQHWLF DQG FURS WUDLWV RI :LOOLDPV FXOWLYDU >0* ,,,@ WKH 5 GDWH ZDV SUHGLFWHG ZLWKLQ GD\ EXW VHHG VL]H DQG VHHG \LHOG ZHUH WRR ORZ 6LQFH (JOL KDG QRW REVHUYHG WKH 5 GDWH DQG EHFDXVH 62<*52 KDG SUHYLRXVO\ SUHGLFWHG WRR HDUO\ PDWXULW\ IRU WKH :LOOLDPV FXOWLYDU DW WKH /H[LQJWRQ VLWH JHQHWLF WUDLWV 9$57+ ff ZHUH DOWHUHG WR LQFUHDVH WKH VHHG ILOO SHULRG WLPH WR 5 f DQG LQFUHDVH VHHG VL]H 6+9$5 DQG 6'9$5f 9DUWK f ZDV UHGXFHG WR LQLWLDWH

PAGE 139

SRGVHW VRRQHU DIWHU 5 /)0$; 32'9$5 DQG )/:9$5 ZHUH DOO LQFUHDVHG WR LQFUHDVH VHHG \LHOG 7DEOH f ,QFUHDVLQJ /)0$; KDV WKH HIIHFW RI LQFUHDVLQJ VHHG \LHOG DERXW b SHU b LQFUHDVH LQ /)0$; 7KH 6&9 YDOXH ZDV UHGXFHG WR LQFUHDVH OLJKW FDSWXUH HVSHFLDOO\ DW KLJKHU SODQW GHQVLWLHV LQ RUGHU WR LQFUHDVH OLJKW LQWHUFHSWLRQ WR YDOXHV FRPSDUDEOH WR OLPLWHG GDWD IURP (JOL f /HQJWK SHU LQWHUQRGH ZDV UHGXFHG IURP FPLQWHUQRGH WR FPLQWHUQRGH 3HWLROHOHDIOHW H[WHQVLRQ SODQW GLDPHWHUf SHU YHJHWDWLYH VWDJH ZDV UHGXFHG IURP WR FP 7KH UHGXFWLRQ RI WKH KHLJKW DQG ZLGWK RI WKH FDQRS\ KHGJHURZ ZDV GRQH WR UHGXFH OLJKW DEVRUSWLRQ DQG KHQFH SKRWRV\QWKHVLV RI ZLGHO\ VSDFHG SODQWV UHODWLYH WR KLJKHU SODQW GHQVLWLHV FORVHG FDQRSLHVf 7KLV FDOLEUDWLRQ UHVXOWHG LQ D SODQW VLPXODWHG KHLJKW DQG ZLGWK RI DQG FP UHVSHFWLYHO\ DW PD[LPXP VL]H DQG D YHJHWDWLYH VWDJH RI 7KLV FDOLEUDWLRQ LQIOXHQFHG WKH VKDSH RI WKH \LHOG UHVSRQVH WR GHQVLW\ SULPDULO\ WKH UDSLG \LHOG LQFUHDVH SKDVH 5HVXOWV RI 0RGHO &DOLEUDWLRQ 0RGHO FDOLEUDWLRQ ZDV FRQGXFWHG XVLQJ (JOLnV f \LHOG GDWD 6LPXODWHG \LHOG GDWD LV SURYLGHG LQ 7DEOH 6LPXODWHG VHHG ZHLJKW J Pf GDWD JHQHUDWHG E\ 62<*52 DSSUR[LPDWHG WR (JOLnV f REVHUYHG GDWD )LJ f +RZHYHU WKHUH ZDV D WHQGHQF\ IRU 62<*52 WR XQGHUHVWLPDWH VHHG ZHLJKW GDWD DW SODQW GHQVLWLHV JUHDWHU WKDQ WZR SODQWV UUI 6LPXODWHG DQG REVHUYHG ZHLJKW VHHG r VKRZHG RSSRVLWH WUHQGV WKH IRUPHU LQFUHDVHG ZKLOH WKH ODWWHU GHFUHDVHG ZLWK SODQW GHQVLW\ )LJ f +RZHYHU DYHUDJH ZHLJKWV VHHG IRU VLPXODWHG GDWD DQG REVHUYHG GDWD DSSUR[LPDWHG WR HDFK RWKHU 6HHG QXPEHU

PAGE 140

7DEOH 6XPPDU\ RI FKDQJHV LQ JHQHWLF SDUDPHWHUV RI :LOOLDPV FXOWLYDU DQG FURSSDUDPHWHUV LQ FDOLEUDWLQJ 62<*52 XVLQJ &XPEHUODQG FXOWLYDU *HQHWLF SDUDPHWHUV :LOOLDPV LQLWLDO FXOWLYDU &XPEHUODQG FXOWLYDU 6+9$5 PJ VKHOOn Gnf 6'9$5 PJ VHHGn Gnf 9$57+ f 37 GD\Vrf 9$57+ f 37 GD\Vf 32'9$5 SRGV Pn Gn f )/:9$5 IORZHUV Pr Gn f /)0$; PJ & Pn Vnf &URS SDUDPHWHUV ,QLWLDO 1HZ 6&9 IUDFWLRQf <96+7 FP LQWHUQRGHnf <96:+ FP LQWHUQRGHnf r SKRWRWKHUPDO GD\V

PAGE 141

7DEOH 6LPXODWHG \LHOG GDWD IRU &XPEHUODQG FXOWLYDU 3ODQWV UUI
PAGE 142

6HHG\LHOGJ P 3ODQWV UUIA )LJ 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG \LHOG RI &XPEHUODQG FXOWLYDU DW PDWXULW\

PAGE 143

6HHG ZHLJKW J VHHG 3ODQWV Pn )LJ 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ ZHLJKW SHU VHHG RI &XPEHUODQG FXOWLYDU DW PDWXULW\

PAGE 144

UUIf GDWD EHKDYHG LQ D PDQQHU VLPLODU WR VHHG ZHLJKW J QUf EXW WKHUH ZDV D WHQGHQF\ IRU 62<*52 WR XQGHUHVWLPDWH VHHG QXPEHU QUf GDWD DW SODQW GHQVLWLHV JUHDWHU WKDQ WZR SODQWV Pr )LJ f 6LPXODWHG \LHOG SHU SODQW GDWD FORVHO\ DSSUR[LPDWHG REVHUYHG GDWD )LJ f $Q ,QYHVWLJDWLRQ RI 'XQFDQfV $VVXPSWLRQV 'XQFDQ FRQVLGHUHG SHUFHQW OLJKW LQWHUFHSWLRQ DW 5 DV DQ HVWLPDWH RI WKH DPRXQW RI OLJKW LQWHUFHSWHG E\ WKH FURS EHWZHHQ 5 DQG 5 SK\VLRORJLFDO PDWXULW\f +RZHYHU )LJ VKRZV WKDW SHUFHQW OLJKW LQWHUFHSWHG DW 5 QRRQ DQG GDLO\f DUH QRW WUXH PHDVXUHV RI OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 LW LV RQO\ FXPXODWLYH SHUFHQW OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 ZKLFK LV D GLUHFW PHDVXUH RI OLJKW LQWHUFHSWHG GXULQJ WKH UHSURGXFWLYH SHULRG 7KH JUHDWHU SHUFHQW OLJKW LQWHUFHSWLRQ REVHUYHG IRU WKH 5 WR 5 SHULRG PD\ EH GXH WR WKH IDFW WKDW IRU LQGHWHUPLQDWH FXOWLYDUV 62<*52 SUHGLFWV 5 IURP WKH EHJLQQLQJ RI VHHG LQLWLDWLRQ DW ORZHU QRGHV KRZHYHU EHJLQQLQJ RI VHHG LQLWLDWLRQ RFFXUV SULRU WR WKH HQG RI OHDI H[SDQVLRQ KHQFH D JUHDWHU SHUFHQW RI OLJKW ZLOO EH LQWHUFHSWHG E\ WKH FURS DIWHU WKH EHJLQQLQJ RI VHHG JURZWK RQ LQGHWHUPLQDWHV 7KH SUREOHP VWHPV IURP WKH 5 GHILQLWLRQ RI )HKU HW DO f $OWKRXJK 5 LV FDOOHG EHJLQQLQJ VHHG LQ IDFW WKH VWDJH LV REVHUYHG RQO\ DW WKH XSSHU IRXU H[SDQGLQJ QRGHV DQ GDFWXDO VHHG JURZWK ZDV LQLWLDWHG VHYHUDO ZHHNV HDUOLHU DW ORZHU QRGHV RQ LQGHWHUPLQDWH SODQWV )RU GHWHUPLQDWH FXOWLYDUV WKLV SUREOHP LV OHVV DFXWH )URP 'XQFDQnV SHUVSHFWLYH UHPRELOL]DWLRQ FRQWULEXWHV WR ILQDO \LHOG +RZHYHU LQ HVWLPDWLQJ FKDQJHV LQ VHHG \LHOG HIILFLHQF\ ZLWK SODQW GHQVLW\ UHPRELOL]DWLRQ ZDV GLVUHJDUGHG DV D SURFHVV ZKLFK FDQ DFFRXQW IRU FKDQJHV LQ

PAGE 145

6HHG QXPEHU P 3ODQWV Pn )LJ 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG QXPEHU SHU XQLW DUHD RI &XPEHUODQG FXOWLYDU DW PDWXULW\

PAGE 146

6HHG GU\ ZHLJKW J SODQW 3ODQWV P )LJ 2EVHUYHG DQG VLPXODWHG HIIHFWV RI SODQW SRSXODWLRQ GHQVLW\ RQ VHHG \LHOG SHU SODQW RI &XPEHUODQG FXOWLYDU DW PDWXULW\

PAGE 147

3HUFHQW /LJKW ,QWHUFHSWHG bf /LJKW LQWHUFHSWHG 55f 0f )LJ 7KH UHODWLRQVKLSV EHWZHHQ OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 DQG SHUFHQW OLJKW DEVRUEHG DW QRRQ 5f GDLO\ 5f DQG EHWZHHQ 5 DQG 5 IRU &XPEHUODQG

PAGE 148

WKH HIILFLHQF\ ZLWK ZKLFK LQSXWV DUH XVHG WR SURGXFH VHHG ,Q )LJ WKH WRWDO 1 SHU XQLW DUHD PRELOL]HG LQFUHDVHV ZLWK SODQW SRSXODWLRQ GHQVLW\ 7KLV UHVXOW LV H[SHFWHG EHFDXVH DW KLJKHU SODQW SRSXODWLRQ GHQVLWLHV WKHUH DUH PRUH QXWULHQWV SHU XQLW DUHD IRU UHPRELOL]DWLRQ +RZHYHU WKH H[WHQW RI UHPRELOL]DWLRQ DV HVWLPDWHG E\ WKH SHUFHQW RI PRELOL]HG QLWURJHQ LQ VHHGV DOVR WHQGV WR LQFUHDVH ZLWK SODQW GHQVLW\ )LJ f 7R WKH H[WHQW WKDW WKH SHUFHQWDJH RI PRELOL]HG 1 LQ VHHG LV LQFUHDVHG WKDW IUDFWLRQ RI VHHG ZDV SURGXFHG ZLWK OHVV SKRWRV\QWKDWH VLQFH WKH FRVW RI 1 IL[DWLRQ ZDV SDLG IRU GXULQJ YHJHWDWLYH JURZWK DQG VRPH & DWRPV ZHUH UHPRELOL]HG ZLWK WKH DPLQR DFLGV 7KH HIIHFW ZRXOG EH LQFUHDVHG DSSDUHQW OLJKW XVH HIILFLHQF\ 7KHUHIRUH WKH SURFHVV RI UHPRELOL]DWLRQ ZLOO FRQIRXQG FRPSDULVRQV RI VHHG \LHOG HIILFLHQFLHV PDGH EHWZHHQ FURSV RI GLIIHUHQW SODQW GHQVLWLHV ,I SHUFHQW UHPRELOL]HG 1 LQ WKH VHHG UHPDLQHG FRQVWDQW ZLWK FKDQJHV ZLWK SODQW GHQVLW\ WKH UHPRELOL]DWLRQ ZRXOG LPSDFW RQO\ XSRQ \LHOG GLIIHUHQFHV DQG QRW GLIIHUHQFHV LQ VHHG \LHOG HIILFLHQF\ %DVHG RQ WKH UHVXOWV RI 62<*52 'XQFDQnV ILUVW WZR DVVXPSWLRQV GR QRW KROG DQG KHQFH WKH IROORZLQJ DUH FOHDU )LUVW LW LV LQDSSURSULDWH WR XVH WKH OLJKW LQWHUFHSWLRQ DW 5 WR FDOFXODWH WKH HIILFLHQF\ ZLWK ZKLFK OLJKW LV XVHG WR SURGXFH VHHG EHWZHHQ 5 DQG 5 6HFRQGO\ UHPRELOL]DWLRQ KDV D GLIIHUHQWLDO HIIHFW RQ VHHG \LHOG DQG WKHUHIRUH FRQIRXQGV FDOFXODWLRQV RI VHHG \LHOG HIILFLHQF\ 7KHUHIRUH VHHG \LHOG HIILFLHQFLHV XVLQJ OLJKW LQWHUFHSWHG EHWZHHQ 5 DQG 5 DUH LQYDOLG XQOHVV WKH GLIIHUHQWLDOUHPRELOL]DWLRQHIIHFW LV UHPRYHG ,Q FDOFXODWLQJ DQG FRPSDULQJ WKH HIILFLHQF\ ZLWK ZKLFK OLJKW LV XVHG E\ FURSV JURZQ DW GLIIHUHQW SODQW GHQVLWLHV WKUHH DSSURDFKHV ZLOO EH XVHG WRWDO OLJKW XVH HIILFLHQF\JOXFRVH HTXLYDOHQW VHHG \LHOG HIILFLHQF\ DQG VHHG \LHOG HIILFLHQF\JOXFRVH HTXLYDOHQW

PAGE 149

&0 L ( D! UYM R )LJ 7KH VLPXODWHG HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ 1 PRELOL]HG SHU XQLW DUHD IRU &XPEHUODQG FXOWLYDU

PAGE 150

3HUFHQW RI WRWD1 LQ VHHGV t F 2 U?M R ( ( R &' F ( R R 3ODQWV P )LJ 7KH VLPXODWHG HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ SHUFHQW PRE L L]HG1 LQ VHHGV RI &XPEHUODQG FXOWLYDU

PAGE 151

7RWDO /LJKW 8VH (IILFLHQF\*OXFRVH (TXLYDOHQW 7RWDO OLJKW XVH HIILFLHQF\ RI D FURS LV GHWHUPLQHG E\ FRQYHUWLQJ WKH WRWDO ELRPDVV SURGXFHG LQFOXGLQJ DEVFLVHG RUJDQVf E\ D FURS LQWR LWV JOXFRVH HTXLYDOHQW DQG GLYLGLQJ WKLV YDOXH E\ WKH WRWDO OLJKW LQWHUFHSWHG E\ WKH FURS ,W LV DVVXPHG WKDW WKH ZHLJKWUDWLR RI YHJHWDWLYH SDUWV RI WKH VR\EHDQ FURS LV QRW DIIHFWHG E\ SODQW GHQVLW\ 7KLV UDWLR IRU VWHP WR OHDI WR VKHOO WR URRW ZKLFK LV GHULYHG IURP 62<*52 LV WR WR WR UHVSHFWLYHO\ -RQHV HW DOf ,W LV DOVR DVVXPHG WKDW WR SURGXFH RQH JUDP RI VWHP OHDI VKHOO DQG URRW WLVVXH DQG JUDPV RI JOXFRVH DUH UHTXLUHG UHVSHFWLYHO\ 7KHUHIRUH WKH DYHUDJH FRVW LQ JOXFRVH SHU JUDP RI YHJHWDWLYH WLVVXH SURGXFHG LV J 6HHG SURGXFWLRQ LV DVVXPHG WR FRVW J RI JOXFRVH IRU HDFK JUDP RI VHHG SURGXFHG ZLWK IL[HG 1 DQG J RI JOXFRVH IRU HDFK JUDP RI VHHG SURGXFHG ZLWK PRELOL]HG 1 7KH HIIHFW RI SODQW GHQVLW\ RQ WRWDO DQG VHHG \LHOG OLJKW XVH HIILFLHQF\ LV JLYHQ LQ 7DEOH DQG )LJ %HWZHHQ SRSXODWLRQV RI DQG SODQWV P ZKHUH LQWHUSODQW FRPSHWLWLRQ LV QHJOLJLEOH LW DSSHDUHG WKDW WRWDO OLJKW XVH HIILFLHQF\ ZDV FRQVWDQW 7KH LQFUHDVH LQ WRWDO OLJKW XVH HIILFLHQF\ ZLWK LQFUHDVLQJ SODQW GHQVLW\ LV FDXVHG E\ D JUHDWHU IUFDWLRQ RI WKH OHDI DUHD RSHUDWLQJ DW ORZHU OLJKW LQWHQVLWLHV ZKHUH WKHLU TXDQWXP HIILFLHQF\ LV JUHDWHU 6HHG
PAGE 152

7DEOH 7RWDO OLJKW XVH HIILFLHQFLHV DV GHWHUPLQHG E\ 62<*52 IRU &XPEHUODQG FXOWLYDU DW VHYHQWHHQ SODQW GHQVLWLHV *OXFRVH HTXLYDOHQWV J JOXFRVH P nf 3ODQW GHQVLW\ 9HJHWDWLRQ 6HHG 7RWDO 7RWDO OLJKW DEVRUEHG 7RWDO OLJKW XVH HIILFLHQF\ 3ODQWV Pn 0P nf J JOXFRVH 0nf

PAGE 153

7RWDO /LJKW 8H (IILFLHQF\ )LJ 7KH VLPXODWHG HIIHFW RI SODQW SRSXODWLRQ GHQVLW\ RQ WRWDO OLJKW XVH HIILFLHQF\ RI &XPEHUODQG FXOWLYDU

PAGE 154

7DEOH 6HHG \LHOG HIILFLHQFLHV DV GHWHUPLQHG E\ 62<*52 IRU &XPEHUODQG FXOWLYDU DW VHYHQWHHQ SODQW GHQVLWLHV 1R PRELOL]DWLRQ 0RELOL]DWLRQ 3ODQW GHQVLW\ 6HHG GU\ ZHLJKW /LJKW DEVRUEHG 6HHG \LHOG HIILFLHQF\ 6HHG \LHOG HIILFLHQF\ 6HHG \LHOG HIILFLHQF\ 3ODQWV P P nf 5 5f 0P nf J 0-rf J JOXFRVH 0f 0-rf

PAGE 155

6HHG
PAGE 156

PXVW EH WKHRUHWLFDOO\ GLVFDUGHG DQG QRW SXW LQWR VHHG SURGXFWLRQ 7KH UHVXOWLQJ VHHG \LHOG DFKLHYHG VWULFWO\ WKH UHVXOW RI SKRWRV\QWKHWLF DFWLYLW\ EHWZHHQ 5 DQG 5f ZDV WKHQ GLYLGHG E\ WKH OLJKW LQWHUFHSWHG E\ WKH FURS EHWZHHQ JURZWK VWDJHV 5 DQG 5 7KH UHVXOWV DV K\SRWKHVL]HG DUH SURYLGHG LQ 7DEOH DQG )LJ :LWK QR SURWHLQ PRELOL]DWLRQ WUXH VHHG \LHOG HIILFLHQF\ LQFUHDVHG ZLWK SODQW SRSXODWLRQ GHQVLW\ IRU ERWK KDUYHVWHG VHHG PDWHULDO DQG JOXFRVH HTXLYDOHQWV $SSDUHQW VHHG \LHOG HIILFLHQF\ ZDV LQFUHDVHG DV D UHVXOW RI SURWHLQ UHPRELOL]DWLRQ DW DOO SODQW GHQVLWLHV EXW WKH HIIHFW ZDV JUHDWHU DV SODQW GHQVLW\ LQFUHDVHG &RQFOXVLRQV 5HVXOWV RI 62<*52 VKRZHG Lf 'XQFDQnV DVVXPSWLRQV WKDW OLJKW LQWHUFHSWLRQ DW 5 LV DQ HIIHFWLYH EDVLV IRU FDOFXODWLQJ DQG FRPSDULQJ WKH VHHG \LHOG HIILFLHQFLHV RI FURSV JURZQ DW GLIIHUHQW SODQW SRSXODWLRQ GHQVLWLHV GRHV QRW DSSHDU WR KROG LLf UHPRELOL]DWLRQ LV DIIHFWHG E\ SODQW GHQVLW\ DQG WKHUHIRUH KDV D GLIIHUHQWLDO LPSDFW RQ VHHG \LHOG $V D UHVXOW FDOFXODWLRQV RI VHHG \LHOG HIILFLHQF\ WR DFFXUDWHO\ HVWLPDWH D FURSnV SURGXFWLYH FDSDFLW\ DIWHU 5 EHJLQQLQJ VHHGf PXVW UHPRYH WKH HIIHFW RI UHPRELOL]DWLRQ RQ VHHG \LHOG 62<*52 HVWLPDWLRQV RI WRWDO OLJKW XVH HIILFLHQF\ JOXFRVH HTXLYDOHQWVf DQG VHHG \LHOG HIILFLHQF\ UHPRELOL]DWLRQ HIIHFW UHPRYHGf LQGLFDWHG WKDW 'XQFDQnV DVVXPSWLRQ WKDW ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ WKHUH LV DQ LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK OLJKW LV XVHG IRU VHHG SURGXFWLRQ DSSHDUV WR KROG 62<*52 KROGV PXFK SRWHQWLDO IRU IXUWKHU LQYHVWLJDWLRQV RI \LHOGSODQW GHQVLW\ UHVSRQVHV )XWXUH VWXGLHV VKRXOG IRFXV RQ WKH PRUSKRORJLFDO RU

PAGE 157

SK\VLRORJLFDO EDVLV IRU WKH LQFUHDVHG WRWDO DQG VHHG \LHOG HIILFLHQFLHV SUHGLFWHG E\ 62<*52

PAGE 158

&+$37(5 6800$5< $1' &21&/86,216 ([SHULPHQWDO UHVXOWV VKRZ WKDW GHQVLW\PHGLDWHG SODVWLF UHVSRQVHV DQG JHQRW\SH SOD\ D PDMRU UROH LQ WKH SURFHVV RI \LHOG DFKLHYHPHQW LQ VR\EHDQ >*OYFLQH PD[ ,f 0HUU@ 3UHOLPLQDU\ LQYHVWLJDWLRQV LQWR \LHOGSODQW GHQVLW\ UHVSRQVHV ZLWK 62<*52D SURFHVV RULHQWHG FURS JURZWK VLPXODWRU IRU VR\EHDQ VKRZ WKDW RQH FRQVHTXHQFH RI GHQVLW\PHGLDWHG SODVWLF UHVSRQVHV LV DQ LQFUHDVHG HIILFLHQF\ ZLWK ZKLFK LQWHUFHSWHG OLJKW LV XVHG IRU VHHG SURGXFWLRQ ,Q WKH ILHOG H[SHULPHQW SODQW SRSXODWLRQ KDG QR VLJQLILFDQW HIIHFW RQ WKH YDULDEOHV PHDVXUHG DW 5 5 DQG 5 +RZHYHU WKH HIIHFW RI FXOWLYDU RQ VR\EHDQ WUDLWV DOORZHG IRU \LHOG LQYHVWLJDWLRQV &RUUHODWLRQ DQDO\VHV RQ WKH GDWD VHWV IRU HDFK FXOWLYDU DQG IRU WKH FRPELQHG GDWD VHW RI DOO FXOWLYDUV DW ERWK 5 DQG 5 VKRZHG WKDW SRG GU\ ZHLJKW J P nf VHHG QXPEHU Pnf DQG SRG QXPEHU P nf ZHUH DOO KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf 6HHG QXPEHU SRGn ZDV XQDIIHFWHG E\ SODQW SRSXODWLRQ GHQVLW\ DQG .LUE\ KDG WKH ORZHVW YDOXH +RZHYHU WKH JUHDWHU ZHLJKW VHHG n Jf RI .LUE\ FRQWULEXWHG WR .LUE\ KDYLQJ D JUHDWHU VHHG GU\ ZHLJKW J P nf DW 5 WKDQ )RUUHVW :HLJKW VHHG n Jf ZDV QHLWKHU SODVWLF QRU ZDV LW KLJKO\ FRUUHODWHG ZLWK VHHG GU\ ZHLJKW J Pnf +RZHYHU DPRQJ \LHOG FRPSRQHQWV ZHLJKW VHHG n DFFRXQWHG IRU WKH \LHOG GLIIHUHQFH REVHUYHG DPRQJ FXOWLYDUV %HLQJ XQGHU

PAGE 159

JHQHWLF FRQWURO ZHLJKW VHHG n FDQ DFFRXQW IRU GLIIHUHQFHV LQ JHQRW\SHV EXW LV XQDEOH WR DFFRXQW IRU GHQVLW\PHGLDWHG SODVWLF UHVSRQVH RI VHHG \LHOG ,Q WKH ILHOG H[SHULPHQW WKH YDULDEOHV PHDVXUHG DW JURZWK VWDJHV 5 5 DQG 5 LQFOXGHG WRWDO GU\ ZHLJKW OHDI VWHP DQG SRG IUDFWLRQV OHDI DUHD LQGH[ OLJKW LQWHUFHSWLRQ 1 DQG 3 FRQFHQWUDWLRQV RI OHDI WLVVXH SRG GU\ ZHLJKW DQG QXPEHU DQG VHHG GU\ ZHLJKW DQG QXPEHU ,W ZDV VKRZQ WKDW DOO UHSURGXFWLYH SKRWRV\QWKHWLF DQG UHPRELOL]DWLRQ SDUDPHWHUV ZKLFK ZHUH SODVWLF ZHUH DVVRFLDWHG ZLWK VHHG \LHOG 7KH YDULDEOHV PRVW VHQVLWLYH WR SODQW SRSXODWLRQ DQG ZKLFK ZHUH DOVR FORVHO\ DVVRFLDWHG ZLWK \LHOG ZHUH VHHG QXPEHU DQG SRG QXPEHU DW 5 DQG WRWDO GU\ ZHLJKW DQG OHDI GU\ ZHLJKW DW 5 1XWULHQW FRQWHQW J Pff ZDV PRGHUDWHO\ DVVRFLDWHG ZLWK \LHOG KRZHYHU QXWULHQW FRQFHQWUDWLRQ ZDV QHLWKHU DVVRFLDWHG ZLWK \LHOG QRU ZDV LW DIIHFWHG E\ SODQW GHQVLW\ 5HVXOWV RI 62<*52 VKRZHG Lf 'XQFDQnV DVVXPSWLRQV WKDW OLJKW LQWHUFHSWLRQ DW 5 LV DQ HIIHFWLYH EDVLV IRU FDOFXODWLQJ DQG FRPSDULQJ WKH VHHG \LHOG HIILFLHQFLHV RI FURSV JURZQ DW GLIIHUHQW SODQW SRSXODWLRQ GHQVLWLHV GRHV QRW DSSHDU WR KROG LLf UHPRELOL]DWLRQ LV DIIHFWHG E\ SODQW GHQVLW\ DQG WKHUHIRUH KDV D GLIIHUHQWLDO LPSDFW RQ VHHG \LHOG $V D UHVXOW FDOFXODWLRQV RI VHHG \LHOG HIILFLHQF\ ZKLFK HVWLPDWH D FURSnV SURGXFWLYH FDSDFLW\ DIWHU 5 EHJLQQLQJ VHHGf PXVW UHPRYH WKH HIIHFW RI UHPRELOL]DWLRQ RQ VHHG \LHOG WR EH DFFXUDWH 62<*52 HVWLPDWLRQV RI WRWDO OLJKW XVH HIILFLHQF\ JOXFRVH HTXLYDOHQWVf DQG VHHG \LHOG HIILFLHQF\ UHPRELOL]DWLRQ HIIHFW UHPRYHGf LQGLFDWHG WKDW 'XQFDQnV DVVXPSWLRQ WKDW ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ WKHUH LV DQ LQFUHDVHG HIILFLHQF\

PAGE 160

ZLWK ZKLFK OLJKW LV XVHG IRU VHHG SURGXFWLRQ DSSHDUV WR KROG 7KH UHPRELOL]DWLRQ HIIHFW DGGV WR WKH LQFUHDVH LQ DSSDUHQW VHHG \LHOG HIILFLHQF\ ZLWK LQFUHDVLQJ SODQW SRSXODWLRQ )XUWKHU LQYHVWLJDWLRQV LQWR WKH HFRORJLFDO DQG SK\VLRORJLFDO PHFKDQLVPV E\ ZKLFK SODQW SRSXODWLRQ GHQVLW\ DIIHFWV VHHG \LHOG DSSHDUHG WR UHTXLUH WKH FROOHFWLRQ RI GDWD RYHU WKH HQWLUH JURZLQJ VHDVRQ 6XFK GDWD VKRXOG LQFOXGH SODQW GHPRJUDSKLF YDULDEOHV VXFK DV OHDI SRG EUDQFK QXPEHU DQG GLVWULEXWLRQ DOVR QHHGHG DUH VHDVRQDO OLJKW LQWHUFHSWLRQ GDWD 62<*52 KDV DQ LPSRUWDQW UROH WR SOD\ LQ GHYHORSLQJ K\SRWKHVHV DQG JXLGLQJ UHVHDUFK HIIRUWV LQWR \LHOGSODQW GHQVLW\ UHVSRQVHV

PAGE 161

5()(5(1&(6 $EUDKDPVRQ : 5HSURGXFWLYH VWUDWHJLHV LQ GHZEHUULHV (FRO $EUDKDPVRQ : DQG + &DVZHOO 2Q WKH FRPSDUDWLYH DOORFDWLRQ RI ELRPDVV HQHUJ\ DQG QXWULHQWV LQ SODQWV (FRO f $FRFN % DQG 0 $FRFN 3HULRGLF VKDGLQJ DQG WKH ORFDWLRQ DQG WLPLQJ RI EUDQFKHV LQ VR\EHDQ $JURQ $QDQG 6 & DQG + 7RUULH +HULWDELOLW\ RI \LHOG DQG RWKHU WUDLWV DQG LQWHUUHODWLRQVKLSV DPRQJ WUDLWV LQ WKH ) DQG ) JHQHUDWLRQV RI WKUHH VR\EHDQ FURVVHV &URS 6FL $ULRJOX + + ) 2]JXU DQG 1 ,VOHU 7KH HIIHFW RI ZKLWHIO\ GDPDJH RQ \LHOG DQG \LHOG FRPSRQHQWV LQ GRXEOHFURSSHG VR\EHDQ SURGXFWLRQ 6R\EHDQ *HQHWLFV 1HZVOHWWHU %DVQHW % ( / 0DGHU DQG & 1LFNHOO ,QIOXHQFH RI EHWZHHQ DQG ZLWKLQURZ VSDFLQJ RQ DJURQRPLF FKDUDFWHULVWLFV RI LUULJDWHG VR\EHDQV $JURQ %OXPHQWKDO 0 9 3 4XDFK DQG 3 ( 6HDUOH (IIHFW RI VR\EHDQ SRSXODWLRQ GHQVLW\ RQ VR\EHDQ \LHOG QLWURJHQ DFFXPXODWLRQ DQG UHVLGXDO QLWURJHQ $XVW ([S $JULH %RDUG ( :KDW \LHOG FRPSRQHQWV UHVXOW LQ KLJK \LHOGV LQ VR\EHDQV" /RXLVLDQLD $JULH %RRQORQJ 3 % (JOL DQG ( /HJJHWW /HDI 1 DQG SKRWRV\QWKHVLV GXULQJ UHSURGXFWLYH JURZWK LQ VR\EHDQV &URS 6FL %RRWH 5 1 *DOODKHU : 5REHUWVRQ +LQVRQ DQG / & +DPPRQG (IIHFW RI IROLDU IHUWLOL]DWLRQ RQ SKRWRV\QWKHVLV OHDI QXWULWLRQ DQG \LHOG RI VR\EHDQV $JURQ %URXJKDP 5 : (IIHFW RI LQWHQVLW\ RI GHIROLDWLRQ RQ UHJURZWK RI SDVWXUH $XVW $JULH 5HV

PAGE 162

%XQFH $ 0XWXDO VKDGLQJ DQG SKRWRV\QWKHWLF FDSDFLW\ RI H[SRVHG OHDYHV RI ILHOG JURZQ VR\EHDQV 3KRWRV\Q 5HV %XWWHU\ % 5 (IIHFWV RI SODQW SRSXODWLRQ DQG IHUWLOL]HU RQ WKH JURZWK DQG \LHOG RI VR\EHDQV &DQ 3ODQW 6FL &DYLQHVV & ( 6SDFLQJ VWXGLHV ZLWK VR\EHDQV %XOOHWLQ $JUL ([S 6WQ 8QLY RI $UNDQVDV )D\HWWHYLOOH &DYLQHVV & ( 9LWRRQYLWLDODN DQG :LGLFN 5RZ VSDFLQJ LQIOXHQFH RQ SHUIRUPDQFH RI VR\EHDQV $UNDQVDV )DUP 5HVHDUFK 1RY'HF &KDERW % ) 7 : -XULN DQG ) &KDERW ,QIOXHQFH RI LQVWDQWDQHRXV DQG LQWHJUDWHG OLJKW IOX[ GHQVLW\ RQ OHDI DQDWRP\ DQG SKRWRV\QWKHVLV $P RI %RW &KDUOHV(GZDUGV $ 2Q WKH RUGHUHG GHYHORSPHQW RI SODQWV DQ K\SRWKHVLV $QQ %RW &KDUOHV(GZDUGV '$ DQG ') %HHFK 2Q WKH RUGHUHG GHYHORSPHQW RI SODQWV EUDQFKLQJ E\ WKH JUDLQ OHJXPH &YDPRSVLV WHWUDJRQRORED JXDUf $QQ %RW &KDXGKU\ $ DQG 1 0 &KHHPD (IIHFW RI URZ ZLGWK RQ WKH \LHOG DQG \LHOG FRPSRQHQWV LQ VHYHQ VR\EHDQ FXOWLYDUV XQGHU UDLQIHG FRQGLWLRQV $JULH 5HV &KULVW\ $ / DQG $ 3RUWHU &DQRS\ SKRWRV\QWKHVLV DQG \LHOG LQ VR\EHDQ ,Q *RYLQGMHH HGf 3KRWRV\QWKHVLV 'HYHORSPHQW &DUERQ 0HWDEROLVP DQG 3ODQW 3URGXFWLYLW\ 9RO ,, $FDGHPLF 3UHVV 1HZ
PAGE 163

'RVV % DQG / 7KXUORZ ,UULJDWLRQ URZ ZLGWK DQG SODQW SRSXODWLRQ LQ UHODWLRQ WR JURZWK FKDUDFWHULVWLFV RI WZR VR\EHDQ YDULHWLHV $JURQ 'XQFDQ : 3ODQWLQJ SDWWHUQV DQG VR\EHDQ \LHOGV &URS 6FL 'XQFDQ : 5 6 /RRPLV : $ :LOOLDPV DQG 5 $ +DQDX +LOJDUGLD (JOL % D 3ODQW GHQVLW\ DQG VR\EHDQ \LHOG &URS 6FL (JOL % E $OWHUDWLRQV LQ SODQW JURZWK DQG GU\ PDWWHU GLVWULEXWLRQ LQ VR\EHDQ $JURQ (JOL % 5 *XII\ DQG -+LHWKROW )DFWRUV DVVRFLDWHG ZLWK UHGXFHG \LHOGV RI GHOD\HG SODQWLQJV RI VR\EHDQ $JURQ DQG &URS 6FL (JOL % 5 *XII\ DQG -( /HJJHWW SDUWLRQLQJ RI DVVLPLODWH EHWZHHQ YHJDWDWLYH DQG UHSURGXFWLYH JURZWK LQ VR\EHDQ $JURQ (YDQV 5 1LWURJHQ DQG SKRWRV\QWKHVLV LQ WKH IODJ OHDI RI ZKHDW 7ULWLFXP DHVWLYXP /f 3ODQW 3K\VLRO )HKU : 5 & ( &DYLQHVV 7 %XUPZRRG DQG 6 3HQQLQJWRQ 6WDJH RI GHYHORSPHQW GHVFULSWLRQV IRU VR\EHDQV *O\FLQH PD[ /f 0HUULO &URS 6FL )RQWHV / $ 1 DQG $ 2KOURJJH ,QIOXHQFH RI VHHG VL]H DQG SRSXODWLRQ RQ \LHOG DQG RWKHU FKDUDFWHULVWLFV RI VR\EHDQ $JURQ )RUG 0 5 6KLEOHV DQG ( *UHHQ *URZWK DQG \LHOG RI VR\EHDQ OLQHV VHOHFWHG IRU GLYHUJHQW OHDI SKRWRV\QWKHWLF DELOLW\ &URS 6FL )UHGHHQ $ / 0DGKXVXGDQD 5DR DQG 1 7HUU\ ,QIOXHQFH RI SKRVSKRUXV QXWULWLRQ RQ JURZWK DQG FDUERQ SDUWLWLRQLQJ LQ *OYFLQH PD[ 3ODQW 3K\VLRO *DOODKHU 5 1 & 2 :HOGRQ DQG )XWXUDO $Q DOXPLQXP EORFN GLJHVWHU IRU SODQW VRLO DQDO\VLV 6RLO 6FL 6RFL RI $P 3URF *ULPH 3 &RPSHWLWLRQ DQG GLYHUVLW\ LQ KHUEDFHRXV YHJHWDWLRQ D UHSO\ 1DWXUH

PAGE 164

+DPEOHWRQ / 6HPLDXWRPDWHG PHWKRG IRU VLPXOWDQHRXVO\ GHWHUPLQDWLRQ RI SKRVSKRUXV FDOFLXP DQG FUXGH SURWHLQ LQ DQLPDO IHHGV $P 2II $JULH &KHPLVWV +DQZD\ DQG & 5 :HEHU $FFXPXODWLRQ RI 1 3 E\ VR\EHDQ *OYFLQH PD[ 0HUULOOf SODQWV $JURQ +DUWZLJ ( ( DQG & (GZDUGV (IIHFWV RI PRUSKRORJLFDO FKDUDFWHULVWLFV XSRQ VHHG \LHOG LQ VR\EHDQ $JURQ +DZNLQV $ ) /LJKW LQWHUFHSWLRQ SKRWRV\QWKHVLV DQG FURS SURGXFWLYLW\ 2XWORRN RQ $JULFXOWXUH +HLWKROW % (JOL DQG ( /HJJHWW &KDUDFWHULVWLFV RI UHSURGXFWLYH DERUWLRQ LQ VR\EHDQ &URS 6FL +HUEHUW 6 DQG 9 /LWFKILHOG 3DUWLRQLQJ VR\EHDQ VHHG \LHOG FRPSRQHQWV &URS 6FL +LQVRQ DQG : +DQVRQ &RPSHWLWLRQ VWXGLHV LQ VR\EHDQV &URS 6FL +RFNLQJ 3 DQG 6 3DWH 0RELOL]DWLRQ RI PLQHUDOV WR GHYHORSLQJ VHHGV RI OHJXPHV $QQ %RW +RJJDUG $ / *URYHU 6KDQQRQ DQG 5 -RKQVRQ (IIHFW RI SODQW SRSXODWLRQ RQ \LHOG DQG KHLJKW FKDUDFWHULVWLFV LQ GHWHUPLQDWH VR\EHDQV $JURQ +ROOHU / & DQG : $EUDKDPVRQ 6HHG DQG YHJHWDWLYH SURGXFWLRQ LQ UHODWLRQ WR GHQVLW\ LQ )UDJDULD YLUJLQLDQD URVDFHDHf $P %RW +ROOLGD\ 5 7KH HIIHFW RI URZ ZLGWK RQ WKH \LHOG RI FHUHDOV )LHOG &URS $EVWUDFWV +UXVND / DQG 9 /DERXQHN (IIHFW RI FURS GHQVLW\ DQG YDULHW\ RQ \LHOG VWUXFWXUH LQ VR\EHDQ $FWD 8QLYHUVLWDWLV $JULFXOWXUDH %URQ +XWFKLQJV 0 DQG & %XGG 3ODQW FRPSHWLWLRQ DQG LWV FRXUVH WKURXJK WLPH %LRVFL ,QVWLWLWH RI )RRG DQG $JULFXOWXUDO 6FLHQFH 1HPDWRORJ\ SODQW SURWHFWLRQ SRLQWHU VR\EHDQ QHPDWRGHUHVLVWDQW YDULHWLHV DQG QHPDWLFLGHV 1333 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH ),

PAGE 165

-RKQVRQ % DQG + % +DUULV ,QIOXHQFH RI SODQW SRSXODWLRQ RQ \LHOG DQG RWKHU FKDUDFWHULVWLFV RI VR\EHDQ $JURQ -RKQVRQ + : + ) 5RELQVRQ DQG 5 ( &RPVWRFN *HQRW\SLF DQG SKHQRW\SLF FRUUHODWLRQV LQ VR\EHDQV DQG WKHLU LPSOLFDWLRQV LQ VHOHFWLRQ $JURQ -RKQVWRQ 7 DQG : 3HQGOHWRQ &RQWULEXWLRQ RI OHDYHV DW GLIIHUHQW FDQRS\ OHYHOV WR VHHG SURGXFWLRQ RI XSULJKW DQG ORGJHG VR\EHDQV *OYFLQH PD[ /f 0HUULOOf &URS 6FL -RKQVWRQ 7 % 3HWHUV DQG 5 +LFNV ,QIOXHQFH RI VXSSOHPHQWDO OLJKW RQ DSSDUHQW SKRWRV\QWKHVLV \LHOG DQG \LHOG FRPSRQHQWV RI VR\EHDQV &URS 6FL .DZ 5 1 DQG 3 0HQRQ $VVRFLDWLRQ EHWZHHQ \LHOG DQG \LHOG FRPSRQHQWV LQ VR\EHDQ ,QGLDQ *HQHW 3ODQW %UHHGLQJ .HRJK / : ( 6DEEH DQG & ( &DYLQHVV 1XWULHQW FRQFHQWUDWLRQ RI VHOHFWHG VR\EHDQ FXOWLYDUV &RPP 6RLO 6FL 3ODQW $QDO\VLV .LUD 7 + 2JDZD +R]XPL + .R\DPD DQG
PAGE 166

0LOOHU 5 7 3HVHN DQG +DQZD\ 5HODWLRQVKLSV EHWZHHQ VR\EHDQ \LHOG DQG FRQFHQWUDWLRQV RI SKRVSKRUXV DQG SRWDVVLXP LQ SODQW SDUWV $JURQ 0LXUD + DQG 7 *HPPD (IIHFW RI VTXDUH SODQWLQJ RQ \LHOG DQG LWV FRPSRQHQWV RI VR\EHDQ XQGHU GLIIHUHQW OHYHOV RI SODQWLQJ GHQVLW\ -DSDQHVH &URS 6FL 0RQWJRPHU\ & 'HVLJQ DQG DQDO\VLV RI H[SHULPHQWV -RKQ :LOH\ t 6RQV 1HZ
PAGE 167

3DUNHU 0 % : + 0DUFKDQW DQG % 0XOOLQ[ 'DWH RI SODQWLQJ DQG URZ VSDFLQJ HIIHFWV RQ IRXU VR\EHDQ FXOWLYDUV $JURQ 3DUNV : / 'DYLV 5 (YDQV 0 6PLWK 7 0F&XWFKHQ / 6DIOH\ DQG : 6DQGHUV 6R\EHDQ \LHOGV DV DIIHFWHG E\ URZ VSDFLQJ DQG ZLWKLQ URZ SODQW GHQVLW\ %XOOHWLQ 8QLY RI 7HQQ $JUL ([ 6WQ .QR[YLOOH 3DUNV : / DQG & 0DQQLQJ 7KH HIIHFW RI URZ VSDFLQJ DQG SODQW SRSXODWLRQ RQ WKH IUXLWLQJ FKDUDFWHULVWLFV DQG \LHOG RI IRXU VR\EHDQ YDULHWLHV 7HQQHVVH )DUP DQG +RPH 6FLHQFH -XO\ $XJ 6HSW 3DUYH] $ 4 ) 3 *DUGQHU DQG %RRWH 'HWHUPLQDWHDQG LQGHWHUPLQDWHW\SH VR\EHDQ FXOWLYDU UHVSRQVHV WR SDWWHUQ GHQVLW\ DQG SODQWLQJ GDWH &URS 6FL 3DWH 6 DQG $ 0 )OLQQ &DUERQ DQG QLWURJHQ WUDQVIHU IURP YHJHWDWLYH RUJDQV WR ULSHQLQJ VHHGV RI ILHOG SHD 3LVXP DUYHQVH /f ([S %RW 3LDQND ( 5 U DQG VHOHFWLRQ RU E DQG G VHOHFWLRQ" $PHULFDQ 1DWXUDOLVW 3UREVW $ + ,QIOXHQFH RI VSDFLQJ RQ \LHOG DQG RWKHU FKDUDFWHULVWLFV LQ VR\EHDQV $P 6RF RI $JURQ 5DPVHXU ( / 6 8 :DOODFH DQG 9/ 4XLVHQEHUU\ *URZWK RI n%UD[WRQn VR\EHDQV DV LQIOXHQFHG E\ LUULJDWLRQ DQG LQWUDURZ VSDFLQJ $JURQ 5DPVHXU ( / 9 / 4XLVHQEHUU\ 68 :DOODFH DQG -+ 3DOPHU
PAGE 168

6DNDPRWR & 0 DQG 5 + 6KDZ /LJKW GLVWULEXWLRQ LQ ILHOG VR\EHDQ FDQRSLHV $JURQ 6DZDGD 6 7 ,JDUDVKL DQG 6 0L\DFKL (IIHFWV RI SKRVSKDWH QXWULWLRQ RQ SKRWRV\QWKHVLV VWDUFK DQG WRWDO SKRVSKRUXV OHYHOV LQ VLQJOH URRWHG OHDI RI GZDUI EHDQ 3KRWRV\QWKHWLFD 6FKRSIHU 3 3KRWRPRUSKRJHQHVLV ,Q 0 % :LONLQV HGf $GYDQFHG SODQW 3K\VLRORJ\ 3LWPDQ 3XEOLVKLQJ ,QF 0DUVKILHOG 0DVVDFKXVHWWV SS 6HFRU 5 0F&DUW\ 5 6KLEOHV DQG ( *UHHQ 9DULDELOLW\ DQG VHOHFWLRQ IRU OHDI SKRWRV\QWKHVLV LQ DGYDQFHG JHQHUDWLRQV RI VR\EHDQV &URS 6FL 6KLEOHV 5 0 DQG & 5 :HEHU ,QWHUFHSWLRQ RI VRODU UDGLDWLRQ DQG GU\ PDWWHU SURGXFWLRQ E\ YDULRXV VR\EHDQ SODQWLQJ SDWWHUQV &URS 6FL 6KLEOHV 5 0 DQG & 5 :HEHU /HDI DUHD VRODU UDGLDWLRQ LQWHUFHSWLRQ DQG GU\ PDWWHU SURGXFWLRQ E\ VR\EHDQV &URS 6FL 6QHOO 7 : DQG %XUFK 7KH HIIHFWV RI GHQVLW\ RQ UHVRXUFH SDUWLWLRQLQJ LQ &KDPDHVYFH KLUWD (XSKRUELDFHDHf (FRO 6RQJ 3LOOVRRQ 3K\WRFKURPH ,Q 0 % :LONLQV HGf $GYDQFHG 3ODQW 3K\VLRORJ\ 3LWPDQ 3XEOLVKLQJ ,QF 0DUVKILHOG 0DVVDFKXVHWWV SS 6SLOGH / $ $ :KLWHG DQG 5 6HWWHODQG 7KH HIIHFW RI URZ VSDFLQJ RQ VR\EHDQ \LHOGV 1RUWK 'DNRWD )DUP 5HVHDUFK 6WHSKHQVRQ $ )ORZHU DQG IUXLW DERUWLRQ SUR[LPDWH FDXVHV DQG XOWLPDWH IXQFWLRQV $QQ 5HY (FRO 6\VW 7DJXFKL .HLVDNX DQG 2ED 7RUDR 2Q WKH UHODWLRQV EHWZHHQ YHJHWDWLYH JURZWK DQG JUDLQ \LHOG RI VR\EHDQ SODQWV %XOO 7RKRNX $JU ([S 6WQ 7DQGRMDP 6LQG 3DWKFRHIILFLHQW DQDO\VLV DQG \LHOG FRPSRQHQWV LQ VR\EHDQ 6R\EHDQ *HQHWLFV 1HZVOHWWHU 7HUPDQ /
PAGE 169

7KLERGHDX 3 6 DQG ( -DZRUVNL 3DWWHUQV RI QLWURJHQ XWLOL]DWLRQ LQ WKH VR\EHDQ 3ODQWD 7KRPDV $ 5HSURGXFWLYH VWUDWHJLHV RI +LHUDFLXP 3ODQW 3RSXODWLRQ '\QDPLFV 6\PSRVLXP $,%6 PHHWLQJV 7HPSH $UL]RQD 7VXFKL\D 7 0 .DPL\D DQG 6DVDNL 9DULDELOLW\ LQ WKH ORZHVW SRG KHLJKW RI VR\EHDQV ZLWK UHJDUG WR \HDU RI VRZLQJ DQG SODQW GHQVLW\ %XOOHWLQ RI +RNNDLGR 3UHIHFWXUDO $JULFXOWXUDO ([SHULPHQW 6WQ -DSDQ 8GRJXFKL $ DQG ( 0F&ORXG 5HODWLRQVKLS EHWZHHQ YHJHWDWLYH GU\ PDWWHU DQG \LHOG RI WKUHH VR\EHDQ FXOWLYDUV 6RLO DQG &URS 6FL 6RF ), 3URF 8QLWHG 6WDWHV 6RLO &RQVHUYDWLRQ 6HUYLFH 6RLO VXUYH\ RI -HVVDPLQH DQG :RRGUXII &RXQWLHV .HQWXFN\ 8QLWHG 6WDWHV 6RLO &RQVHUYDWLRQ 6HUYLFH 6RLO VXUYH\ RI )D\HWWH &RXQW\ .HQWXFN\ 9DLVKDPSD\DQ $ DQG 0 .RJDQ 6DPSOLQJ ZKLWHIOLHV RQ VR\EHDQ ,Q 0 0RUJDQ DQG & +HU]RJ HGVf 6DPSOLQJ 0HWKRGV LQ 6R\EHDQ (QWRPRORJ\ 6SULQJHU9HUODJ 1HZ
PAGE 170

:HOOV 5 $ $VKOH\ DQG + 5 %RHUPD E 3K\VLRORJLFDO FRPSDULVRQV RI WZR VR\EHDQ FXOWLYDUV GLIIHULQJ LQ FDQRS\ SKRWRV\QWKHVLV ,, YDULDWLRQ LQ VSHFLILF OHDI ZHLJKW QLWURJHQ DQG SURWHLQ FRPSRQHQWV 3KRWRV\Q 5HV :LJJDQV 5 7KH LQIOXHQFH RI VSDFH DQG DUUDQJHPHQW RQ WKH SURGXFWLRQ RI VR\EHDQ SODQWV $P 6RF RI $JURQ :LOFR[ 5 5HVSRQVH RI WKUHH VR\EHDQ VWUDLQV WR HTXLGLVWDQW VSDFLQJV $JURQ :LOOH\ 5 : DQG 6 % +HDWK 7KH TXDQWLWDWLYH UHODWLRQVKLS EHWZHHQ SODQW SRSXODWLRQ DQG FURS \LHOG $GY $JURQ :ULJKW / ) 0 6KRNHV DQG 5 6SUHQNHO 3ODQWLQJ PHWKRG DQG SODQW SRSXODWLRQ LQIOXHQFH RQ VR\EHDQV $JURQ ;X 6 0 DQG < 1 0LDR 6WXG\ RI WKH SK\VLRORJLFDO HFRORJ\ RI SKRWRV\QWKHVLV LQ VR\DEHDQ 6R\DEHDQ OHDI VWUXFWXUH DQG LWV GHYHORSPHQW 6R\EHDQ 6FL =KHQJ 3 < ; &DR DQG 5 ) :DQJ 9DULDWLRQV RI FDUERK\GUDWH DQG QLWURJHQ FRPSRXQGV LQ VXPPHU VR\DEHDQ SODQWV DQG WKHLU HIIHFWV RQ VHHG \LHOG 2LO &URSV RI &KLQD

PAGE 171

%,2*5$3+,&$/ 6.(7&+ 3HWHU 7KRPSVRQ ZDV ERUQ RQ 0D\ LQ 0DQGHYLOOH -DPDLFD +H UHFHLYHG KLV %DFKHORU RI 6FLHQFH LQ &KHPLVWU\ IURP WKH 8QLYHUVLW\ RI WKH :HVW ,QGLHV 0RQD -DPDLFD LQ +H HQUROOHG DW 5XWJHUV 8QLYHUVLW\ 1HZ %UXQVZLFN 1HZ -HUVH\ LQ DQG JUDGXDWHG ZLWK D 0DVWHUV RI 6FLHQFH LQ 6RLOV DQG &URSV LQ +H HQUROOHG DW WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH LQ WR SXUVXH WKH 3K' GHJUHH LQ $JURQRP\ :KLOH DW WKH 8QLYHUVLW\ RI )ORULGD KH KDV DOVR SXUVXHG WKUHH PLQRUV IDUPLQJ V\VWHPV GHYHORSPHQW DGPLQLVWUDWLRQ DQG LQWHUQDWLRQDO DJULFXOWXUDO GHYHORSPHQW 3HWHUnV SULPDU\ FDUHHU LQWHUHVWV DUH LQ DJULFXOWXUDO GHYHORSPHQW LQ OHVVHUGHYHORSHG QDWLRQV 3HWHU KDV EHHQ DFWLYH LQ VSRUWV DQG KDV FDSWDLQHG WKH -DPDLFD 1DWLRQDO )LHOG +RFNH\ WHDP LQ YDULRXV LQWHUQDWLRQDO WRXUQDPHQWV +H KDV SODQV WR UHHQWHU VSRUWV DFWLYHO\ RQFH WKURXJK ZLWK KLV GHJUHH SURJUDP DW WKH 8QLYHUVLW\ RI )ORULGD

PAGE 172

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ r f 1Y\r 'DUHOO ( 0F&ORXG &KDLU 3URIHVVRU (PHULWXV RI $JURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -U .HQQHWK %RRWH &RFKDLU 3URIHVVRU RI $JURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ --ÂœXMO .XHOO +LQVRQ $GMXQFW 3URIHVVRU RI $JURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH 3URIHVVRU RI 6RLO 6FLHQFH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP %OXH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI'RFISU RM83IWWIDVRSK\ UO &KULV 2 $QRUHZ 3URIHVVRU RI )RRG DQG 5HVRXUFH (FRQRPLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DFMLH\MXAWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLO QX/X *RUDQ 6 +\GHQ 3URIHVVRU RI 3ROLWLFDO 6FLHQFH

PAGE 173

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ OLHJH RI $JULFWIX XUH 'HDQ *UDGXDWH 6FKRRO

PAGE 174

0LQLQJr1 A25,'$ 2 2IW R n