Citation
A subrecursive programming language for increased verifiability

Material Information

Title:
A subrecursive programming language for increased verifiability
Creator:
Schahczenski, Celia M
Publication Date:
Language:
English
Physical Description:
v, 131 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Employee orientation ( jstor )
Identifiers ( jstor )
Mathematical independent variables ( jstor )
Mathematical procedures ( jstor )
Programming languages ( jstor )
Provability logic ( jstor )
Recursion ( jstor )
Recursive functions ( jstor )
Semantics ( jstor )
Syntax ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 128-130).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Celia M. Schahczenski.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001677230 ( ALEPH )
AHY9133 ( NOTIS )
24880976 ( OCLC )

Downloads

This item has the following downloads:


Full Text






A SUBRECURSIVE PROGRAMMING LANGUAGE
FOR INCREASED VERIFIABILITY







By

CELIA M. SCHAHCZENSKI


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY




UNIVERSITY OF FLORIDA


1990











ACKNOWLEDGEMENTS


I would like to take this opportunity to express my deep appreciation to Professor

Rick Smith, my major advisor, for the guidance, support and many hours of enlight-

ening discussion. I also want to thank my wonderful husband for his unbounded

support in whatever I choose to do and his preserverance in lengthy conversations

which are interesting to him only because they are to me.















TABLE OF CONTENTS




ACKNOWLEDGEMENTS ............................... ii

ABSTRACT .............. .. ........................ iv

CHAPTERS

1 INTRODUCTION .... ...................... ....... 1

2 MINIMAL PR PROGRAMMING LANGUAGE PR .... ... .... 8

2.1 Syntax of PR .............................. 8
2.2 Semantics of CPR ............................. 9
2.3 PR Computes the Class of PR Functions ............... 16
2.4 Verification of CPR Programs ...................... 21
2.5 Soundness of PR ............................. 23
2.6 Completeness of -HpR .......................... 28

3 BLOCK LANGUAGE ............................. 41

3.1 Syntax of B ......... .. ..... ...... ..... .. 41
3.2 Semantics of LB ............................. 41
3.3 LB Computes the Class of PR Functions .... ......... 44
3.4 Verification of B Programs ....................... 45
3.5 Soundness of "13B ............................. 46
3.6 Completeness of 7-B .......................... 46

4 PARAMETERLESS PROCEDURES .. .. 49

4.1 Recursion in a PR Programming Language ................ 49
4.2 Syntax of LC ............................... 55
4.3 Semantics of C .................. .......... 59
4.4 LC Computes the Class of PR Functions ... 66
4.5 Verification of LC programs ....................... 73
4.6 Soundness of H .C ..... .................. ..... .. 81
4.7 Completeness of 'HC ................ .... 87











5 PARAMETERS............................

5.1 Syntax of D ....................
5.2 Semantics of D ...................
5.3 CD Computes the Class of PR Functions .
5.4 Verification of D Programs .............
5.5 Soundness of D ..................
5.6 Completeness of 'D .

6 CONCLUSION .......................


. 96
. 100
. 101
. 108
. 110


APPENDICES


A PRIMITIVE RECURSIVE FUNCTIONS .................. 119


B PRIMITIVE RECURSIVE ARITHMETIC ................ 120


C THE E,-ITERATION RULE IS NOT SOUND ......... .... 122


REFERENCES ..................... ............. 128


BIOGRAPHICAL SKETCH ......


. 131











Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


A SUBRECURSIVE PROGRAMMING LANGUAGE
FOR INCREASED VERIFIABILITY

By

CELIA M. SCHAHCZENSKI

December 1990

Chairman: Dr. Gerhard Ritter
Major Department: Computer and Information Sciences


Removing gotos from computer languages resulted in more understandable, main-

tainable and verifiable code. Restricting recursion to primitive recursion in computer

languages such as PASCAL has similar results. This dissertation developed a highly

structured programming language where recursion is limited to primitive recursion.

Programs in the language compute exactly the class of primitive recursive functions.

A Hoare verification system is developed for this language. It is proved that this

system is sound and complete.
















CHAPTER 1
INTRODUCTION

The term structured programming emerged in the seventies. It became neces-

sary for the advertisement of every software product to sport the word structured

several times, preferably in the product's title. This was not due simply to the

faddishness of a quickly growing field. Structured programming works. While at

first gotoless programming appeared to be taking a tool away from the developer, in

fact it provided a framework in which to reason clearly. Structured programming en-

hances programmability by organizing the programmer's thoughts. It also enhances

the verifiability and maintainability of software.

To be structured has been defined as the ability to understand the meaning of

the whole from the meaning of the parts and a few combining rules. This goes hand

in hand with modularity. Each module is a portion of the program. The meaning of

the whole comes from the meaning of each of the modules and the knowledge of how

to put these modules together.

Computer languages have become increasingly structured. For example object

oriented programming modularizes both the code and data. Looking at the con-

trol structures of sequential programming languages such as PASCAL, the author

will continue this trend towards more structured programming languages. Edmund

Clarke reported surprising results that suggest that PASCAL-like languages are too

flexible [7, 8]. He proved that there is no Hoare verification system for these languages.

A central feature of PASCAL is recursion. The author sees a similarity between gotos

and the unrestricted use of recursion. In this dissertation a powerful programming











language is developed which is more structured than PASCAL. Specifically, recursion

in this language is limited to primitive recursion.

Primitive recursion is powerful yet easy to understand. In essense primitive re-

cursion is iterating on a single variable. A function defined by primitive recursion is

defined directly at n equal to zero. For n greater than zero the function is defined

using the result of applying the function at values less than n. The programs of a

structured computer language where recursion is restricted to primitive recursion are

easier to understand, maintain and verify than programs of a structured language

which allows the unrestricted use of recursion.

The terms operational and denotational are used to contrast two methods of

specifying the meaning of programs [34]. Originally program semantics were said to

be operational if they were given in terms of operations on an abstract machine. The

idea was that, although the abstract machine was unrealistic from a practical point

of view, it was so simple that no misunderstanding could occur as to the meaning

of the program. Denotational semantics, sometimes referred to as mathematical

or functional semantics, describes the meaning of programs directly. Some type of

semantic valuation function is used which maps syntactic constructs in the program

to the abstract values which they denote.

The term operational is used more broadly today. Semantics are said to be defined

operationally if they involve describing computational sequences. A problem is that

operational semantics tend to give results of specific computations. Starting with

a particular program, and an input vector, the semantics tell us how to crank the

handle to obtain the result. Such descriptions may allow hidden ambiguities. For

some programs it may be obvious that the operational semantics are well defined.

However, when giving the semantics of a language, all programs that could possibly

be written in the language should be considered.











An operational definition can be made mathematically rigorous. However, there

is still another difference between operational and denotational semantics. In 1977

Joseph Stoy described a difference which still exists today.

The former defines the value of a program in terms of what an ab-
stract machine does with the complete program. Its structure, therefore,
need not correlate with the way the programmer thinks about his pro-
gram when he selects particular syntactic components and combines them
together in particular ways. In the denotational definition, on the other
hand, the value of a program is defined in terms of the values of its sub-
components; it is more easily possible for us to confine our treatment to
any particular part of the program we wish to examine. This may make
it a more satisfactory tool for the language designer and also for those
concerned with validating various techniques for proving the correctness
of particular programs. [34, page 20]


For many programming languages the operational semantics are defined easily

while the denotational semantics are not. In general, denotational semantics have.

not been defined for programming languages including recursion. The author suggests

that this is a result of current programming languages being too flexible.

Denotational semantics exist for the programming language presented here. Every

program can be translated into a primitive recursive function. Furthermore, since

there is a term in Primitive Recursive Arithmetic, PRA, for every primitive recursive

function, there is a PRA term which describes each program in this programming

language. There is also a PRA axiom which shows how that term was built. The

class of primitive recursive functions is defined in Appendix A. The theory of PRA

is presented in Appendix B.

This research is motivated by theoretical issues as well. In his seminal paper

"An axiomatic approach to computer programming" C.A.R. Hoare [20] introduced a

method of capturing the meaning of program constructs. This method may be used

to define a programming language or to verify programs relative to given pre and

postconditions. Hoare statements are triples of the form {P}S{Q} where P and Q










are formulas in a first order assertion language and S is a program segment. The

statement {P}S{Q} is true, if whenever P holds for the initial values of S and S is

executed, either S diverges or Q holds for the final values of S.

Verification systems should be sound and complete. A system is sound if all

statements which are provable in the system are true. Completeness implies that

all true statements are provable. When a verification system is sound and complete

the notions of provability and truth are equivalent. This allows investigators to

manipulate syntactic proofs knowing that the results will be true, and conversely, to

reason semantically knowing that a syntactic proof can be found.

A Hoare verification system consists of a set of axioms and rules, augmented

by a theory. Hoare verification systems have been proposed for many programming

languages. Apt [2] gives an excellent overview of these systems. These systems

have axioms and rules which capture the meaning of each construct in the language;

however, they are not sound and complete in the usual sense. Related to this is the

possibility that the assertion language is not able to express all necessary pre- and

postconditions. These problems will be discussed separately.

Current programming languages are universal in that they are capable of com-

puting the full class of partial recursive functions. Hoare verification systems for

these languages typically use the full theory of the model to augment their Hoare

axioms and rules. This full theory is not even a recursively axiomatizable theory. In

addition this usage obliterates the distinction between provability and truth. One

can no longer talk about soundness and completeness in the usual sense because syn-

tactic proofs depend on a particular model. Given a theory T, write =T {P}S{Q}

if for any model M of T, M 1= {P}S{Q}. A Hoare verification system, with a set

H of axioms and rules, should have a first order theory T to augment H so that a










soundness and completeness theorem would read


-HT {P}S{Q} T {P}S{Q}.

Instead the soundness and completeness theorems for universal programming lan-
guages read


-H,Theory(M) {P}S{Q} M H= {P}S{Q}.

Completeness in this sense is referred to as relative completeness since the theory is
chosen relative to a particular model.

The assertion theory may not be strong enough to express all necessary assertions.

This gives rise to the second problem. Even the relative soundness and completeness
theorem cannot be proven for these systems. There are models for which {P}S{Q}

is true but not provable with any set of Hoare axioms and rules augmented by the
full theory of that model. A model of Presburger Arithmetic provides such an exam-
ple [36]. Even though assertions P and Q may be expressed in Presburger Arithmetic,

the intermediate assertions necessary to prove {P}S{Q} may not. This results from

the inability of Presburger Arithmetic to express multiplication. Given a program-

ming language and assertion language L, a model is expressive relative to L and

L if a postcondition Q can be expressed for each assertion P and program S [12].

Soundness and completeness theorems for universal programming languages read

For all expressive models M

-H,Theory(M) {P}S{Q} M {P}S{Q}.

The above problems do not interfere with the search for Hoare axioms and rules

that capture the meaning of various programming constructs. Bergstra and Tucker

show that models of PA are expressive for a weak WHILE language [4]. However,











the following question arises. Can a truly sound and complete verification system be

developed for a powerful language which is based on a particular theory?

Subrecursive programming languages are languages whose programs compute only

a subset of the class of partial recursive functions. Since there is no reasonable

theory which captures the class of partial recursive functions, a language based on a

particular theory would need to be subrecursive. There are various classes of functions

and corresponding theories. The class of primitive recursive, PR, functions and its

theory Primitive Recursive Arithmetic, PRA. were chosen for this research. PRA

is an attractive theory because all practically computable functions are primitive

recursive, the axioms and rules of PRA are elegant, and primitive recursion itself is

easy to understand.

This dissertation shows that a truly sound and complete verification system can

be developed for a computer language based on PRA. In Chapter 2 a minimal pro-

gramming language and its verification system is presented. The remaining chapters

extend this language into a PASCAL-like language which computes exactly the class

of PR functions. The result is a powerful programming language where recurisons

are cleanly nested. Additional advantages of the system presented is that proofs in

the verification system are recursively enumerable and all programs halt.

At this stage the above advantages may appear more theoretical than practical.

They do, however, give compelling evidence that the restrictions on programming lan-

guages presented in this dissertation are legitimate and may lead to a more verifiable

programming language.

The choice of what computer language constructs to add to the minimal PR

programming language is motivated by Clarke [7]. Clarke proved that there is no rel-

atively complete Hoare system for a language containing internal procedures, global

variables, static scope, procedures as parameters and recursion. In Chapter 3 the











minimal PR programming language is extended to include the declaration of tempo-

rary variables. In the original PR programming language, work variables had to be

treated as input variables. In Chapter 4 recursive parameterless procedures are added

to the language. In this language variables are global and static scope is assumed.

Fairly severe restrictions are made so that this language does not lead outside of the

class of PR functions. These restrictions are what make the language so highly struc-

tured. Variable and procedure parameters are added to the language in Chapter 5.

The reference chain of a procedure call is a list of those procedures which must be

understood in order to understand this call. Olderog [29] showed that Clarke's in-

completeness result hinges on the possibility of a program in the language containing

a call with an unbounded reference chain. For this reason the language in Chapter 5

is restricted so that reference chains are bounded.

Each language is reported in the same format. After the syntax and semantics of

the language are defined, it is shown that programs in the language compute exactly

the class of primitive recursive functions. A Hoare verification system is presented

and in the final sections it is proved that this system is sound and complete.















CHAPTER 2
MINIMAL PR PROGRAMMING LANGUAGE PR


2.1 Syntax of PR

The tokens of CPR programs include an infinite set,VT, of variable identifiers

or simply variables. The vector X5, refers to a list xl,...,z, of variables. Addi-

tionally, there is the constant 0, the successor operator, s, and the special tokens
": =",";", "loop" and "end".

An expression language is used to specify the expressions forming the right side

of assignment statements and expressions controlling loops. The set of expressions

is defined as the closure of 0 and x under the successor operator. The more natural

notation, x + 1, is frequently used instead of s(x).

The set of program segments is defined in Backus-Naur form for variable identifier

x and expression e as follows:

S x := e S; S2 I loop e; S1 end.

The variables which appear in S and e are denoted var(S) and var(e), respectively.

In subsequent languages discussed variables may be bound. Variables which are

not bound in S are said to be free with respect to S, and are denoted free(S). In

this section free(S) = var(S). Nevertheless the terms free(S) and var(S) are not

interchangeable because this section serves as a basis for future languages where

free(S) : var(S). The free variables of program segment S will also be referred to as

the active variables of S. In the program segment loop e; S1 end it is required that

var(e)n free(Si) =0.











A program 7r in this primitive recursive programming language is a program

segment S with the free variables of S serving as r's input variables and a special

variable from free(S) serving as 7r's output variable. Thus 7r is given by the pair

(S, x) where x E free(S).


2.2 Semantics of PR

The semantics of PR programs are given in the style of Olderog [29]. First

some preliminary concepts are presented. An assertion language is used to specify

predicates describing a program's behavior. This language is an extension of the

expression language and is a first-order language in which PRA can be expressed.

The formulas in this language are defined in the usual way. The set of variables in

formula P is denoted var(P) and the set of free variables is denoted free(P).

The meaning of the expressions and formulas of the assertion language depend

on the interpretation and the values of the free variables. States assign values to

variables. A program's state is finite. It is assumed, however, that whenever reference

is made to a variable, the state will have a value for that variable. Therefore the state

can be seen as infinite. This is similar to seeing the Turing Machine tape as infinite to

the right. It is assumed that a move to the right never takes the read/write head off

the end of the tape. Thus the tape appears infinite to the right. For any terminating

program, however, the tape is finite. While it simplifies the semantics to view states

as infinite, they must be representable in each model of PRA. Therefore they must

be finite so they can be encoded.

Assume an interpretation I of the language of PRA with domain D. View the

state s as a totally defined mapping s : VI --- D. Given an interpretation I and

a state s, the evaluation of expression e, denoted I(e)(s), and the truth value of a










formula P, denoted Z(P)(s), are defined in a standard way. Write 2",s P if Z(P)(s)
is true. Write =I-P if 2=,s P is true for every state s. For theory T write =T P if
=-ZP holds for every interpretation I of T. The set of all states is denoted St. For a
state s let s{d/x} denote the state resulting from replacing the value associated with
variable identifier x by domain value d. That is s{d/x} denotes the state s' where

s'(x) = d and s'(y) = s(y) for y Z x.

For a set of variable X C VI the restriction of s to X is denoted s[X. St-(P) denotes
the set of all states expressed by P, i.e. Stj(P) = {s such that =Is P}
The concept of substitution is developed next. Substitutions can occur in a variety
of situations. The terms general substitution and substitution will be defined. For
expression ei and variable identifier xi, all xi's distinct, let p = [ei,..., en/xi,..., ,],
or equivalently p = [e,/i,], denote the mapping

{(xI,el),...,(zx,en)} U {(y,y) y E VI and y z x; 1 < i < n}}.

A general substitution p is a mapping where the replacement terms are expressions.
General substitutions on formulas, Pp, are defined as usual. Recall that bound
variables in P have to be renamed to avoid clashes with inserted variables.
In many contexts variables may only be replaced by other variables. Furthermore,
to avoid more than one variable identifier referring to the same variable, the variables
used as replacement variables must be distinct. Thus a general substitution p =

[4n/,] is called a substitution on Y if each e, is a variable identifier and for all
u, u' E Y, p(u) = p(u') -- u = u'. That is a substitution on Y must be injective on
Y.

Let p be a substitution on X. Define p on a state s by


sp(x) = s(p(x)) for x E X.










General substitutions are not defined on states. The following two lemmas link
general substitutions on formulas to replacements on states.
Lemma 1 (Substitution and replacement on terms.) For a term 7
I(T[e/x])(s) = I(r)(s{Z(e)(s)/x}).


Proof: Prove this by induction on the definition of the term 7. O

Lemma 2 (Substitution and replacement on formulas.) For a formula P
I(P[elx])(s) # I(P)(s{Z(e)(s)/x}).


Proof: Prove this by induction on the definition of a formula P. 0

Corollary 3 For a formula P

s E StZ(P[e/x]) < s{I(e)(s)/x} E StZ(P).

Corollary 4 For a formula P and y ( free(P)

s E StZ(P) s{I(x)(s)/y} E StZ(P[y/x]).

Proof:

s E StZ(P) e s E St{((P[y/x])[x/y]) y V free(P)
# s{Z(x)(s)/y} E StZ(P[y/x]) Corollary 3










Appendix A describes the class of PR functions on the natural numbers. For a
model of PRA with domain D call a function f : D --+ D PR if there is a term r in
the language of PRA such that Vz E ~ (f(x) = r(x)). To show the existence of such
a term show that if V is the set of natural numbers, N, the function f : N -* N is
PR.
For I an interpretation on N and I(e)(s) = n, let f-(e)(s) denote the nth com-
position of f. That is f0 = g where Vx(g(x) = x) and fn"+ = f o f".
The semantics fs of program segment S are given as functions between states as
follows.
S X := e
fs(s) = assign(x, e)(s) = s {(e)(s)/x}
S =S; S2
fs(s) = comp(fs,, fs,)(s) = fs o fs, (s)
S loop e; S, end
= I(e)(s)
fs(s) = loopn(e, fs,)(s) = fe)(s)s

The functions compr (fs,, fs,) and loop1(e, fs,) will frequently be written compg(S1, S2)
and loop1(e, Si), respectively.
Let X be a finite subset of VI and f be a totally defined state function. Then f
is called a program function on X if f is PR and the following properties hold:
1. If f(s) = s' then s[(VI \ X) = s' (VI \ X). This is the stability property with
respect to the variables VI \ X.
2. If si[X = s2[X then f(st) X = f(s2)[X. This is the aloofness property with
respect to the variables VI \ X.

It will be shown that state function fs is a program function on free(S).
Let p be a substitution on X and f be a state function on X. Define p on f as
follows.

()() =( f(sp)(p-'(w)) ifw E p(X)
f ) = s(w) otherwise.










Show that for program segment S, syntactical and semantical substitutions corre-
spond to each other as expected.
Lemma 5 (Pre-Substitution Lemma) For an expression e and a substitution p
Z(ep)(s) = Z(e)(sp).

Proof: Prove the lemma by induction on an expression e. CO
Lemma 6 (Substitution Lemma) For a program segment S and a substitution p which
is injective on free(S)
fsp(s) = fsp(s).

Proof: Prove the lemma by induction on a program segment S.

S = x := e
fsp(s)(x) = assignz(p(xi), ep)(s)(x)
= (s{Z(ep)(s)/p(xi})(x)
= (s{Z(e)(sp)/p(x,})(x)
SI(e)(sp) if x = p(xi)
s(x) if x / p(xi)
I(e)(sp) if x = p(xi)
sp(p-'(x)) if x p(xi)
= sp{I(e)(sp)/xz}(p-'1())
= assign1(xi, e)(sp)(p-'(x))
=assignj(xi, e)p(s)(x)
S S1; S2

The proof is straightforward.

S E loop e; Si end

First show fs, pn(s)(x) = f/ (sp)(p-'(x)) by induction on n. Use this to prove
the following.
fsp(s)(x) = loop1(ep, fs, p)(s)(x)
= frl(ep)(s)()()
fI(e)(sP)( )x
= /^""" ()(x
= (fA,)(sp)(-) (.))
= loop1(e, fs,)(sp)(p-'(x))
= loopZ(e, fs)p(s)(x)










0
Lemma 7 For program segment S, fs is a program function on free(S).

Proof: It is shown that fs is PR for I an interpretation on N in the following section.
Let free(S) = X.
To show fs is stable with respect to X prove that for x E VI\X, s(x) = fs(s)(x).
Since programs are finite and there are arbitrarily many variables there is a variable
y E VI \ X where for any state s, s(y) = fs(s)(y). Let p = [x/y].
s(x) = sp(y)
= fs(sp)(y) Choice of y
= (fs)p(s)()
= fsp(s)(x) Substitution Lemma
= fs(s)(x) x and y are inactive
Show fs is aloof with respect to X = {xi,...,Xk}. Assume si[X = s2[X and
x, E X. Let Y = {yi,..., yk} where X n Y = 0 and p = [xk/Yk]-
fs(si)(xi) = fs(sip)(yi)
= (fs)p(si)(xi)
= fsp(si)(x,) Substitution Lemma
= sl(xi) x; inactive in Sp
= s2(x;) Assumption
= fSp(S2)(xi) x, inactive in Sp
= (fs)p(s2)(xi) Substitution Lemma
= fs(s2p)(yi)
= fs(s2)(xi)


The following properties of program functions do not depend on the syntax of

PR and are important in subsequent proofs. Let f(P) C Q serve as an abbreviation
for f(StZ(P)) C StZ(Q).
Lemma 8 Let f and g be program functions on X. Then
1. assignj(x, e)(P) C Q HIP -- Q[e/x].
2. compZ(f,g)(P) C Q < 3Y C St such that f(P) C Y and g(Y) C Q.
3. loopi(e,f)(P[O/x]) C P[e/x] = f(P[y/x] A 0 < y < e) C P[s(y)/z] where xz
var(e) U X, y V var(e, P) U X, var(e) n X = 0 and P is a bounded formula.









Proof:

1.

assign1(x,e)(P) C Q
<* assignZ(x, e)(StZ(P)) C StZ(Q)
<, Vs(s E StZ(P) -- assign1(x,e)(s) E StZ(Q))
< Vs(s e Stj(P) s{Z(e)(s)/x} E St1(Q))
+ Vs(Z(P)(s) Z(Q)(s{Z(e)(s)/x}))
+ Vs(I(P)(s) -- Z(Q[e/z])(s))
:a Vs(Z(P -+ Q[e/x])(s))
S-PP- Q[e/x]


compZ(f,g)(P) C Q
9 gof(P)CQ
S3Y C St such that f(P) C Y and g(Y) C Q
(Remember that f is a totally defined function.)

3. Let x, y ( X, y V P and t be an arbitrary state. Prove the following by
induction on d.
If Vy < d = PZ,t P[y/x] implies Z.f(t) P[s(y)/x]
then =Z,t P[0/x] implies ZI,loop(d, f)(t) P[d/x].

For d = 0 Z=,t P[O/x] implies = -Joop(0, f)(t) P[O/x]. Suppose d > 0 and
Vy < d Z=,t P[y/x] implies -Zf(t) P[s(y)/x]. By the inductive hypothe-
sis Z.,t P[0/x] implies =ZZJoop(d 1, f)(t) P[d 1/x]. This is equivalent
d-1 d
to -I,f(... f(t)) P[s(.. s(O))/x] which implies =Zf(... f(t)) P[s(..- s(O))/x].
d-1 d
This is equivalent to ZI,loopZ(d, f)(t) P[d/x].

For Z(e)(s) = d, x,y V var(e), var(e) n X = 0 and P a bounded formula the
above uses bounded induction to show
If =P,t P[y/x] A 0 < y < e implies =z,f(t) P[s(y)/x]
then IZ,t P[0/x] implies =-,loopZ(e, f)(t) P[e/].











0


Given an PR program 7r = (S, xz) where free(S) = {x,,..., Xk}, the meaning of

r is the program function fs interpreted as follows: given fs(s) = s' then for inputs

s(xi),...,s(xk), 7r outputs s'(xz).


2.3 PR Computes the Class of PR Functions

A series of classes of PR functions will be defined, each class in terms of the

previous class. The final set represents the functions computed by PR programs.

This class is equivalent to the PR functions.

Throughout the remainder of this chapter underlined variables will denote hard-

coded values. That is, given a pair (xi xi), x, is to be replaced by a variable identifier

at definition time. The second xi in the pair is a regular variable which stands for an

arbitrary domain value.

Assume an interpretation I of PRA with domain D. Let X = {xI,...,xk} be

a finite set of variables and for each variable x, there is a domain value di where

s(xi) = di. Write s[X = ((xi d) ...(xk dk)). If the variable identifiers also come

from D this list can be coded and decoded within I such that for s [X as above, c a

coding function and (X)xi decoding functions,


c((xi d) ..._ (Xk dk)) = x <, (x)xi = di 1 < i < k.

Notice that a set of coding and decoding functions is being defined. A different

coding function, and set of decoding functions, is being defined for each set of variable

identifiers X.

Let c(xk dk) serve as an abbreviation for c((xa dl) (xk dk)). Call x = c(-a d4)

a state code on X = {xl,...,zk} and write var(x) = X. There is a PR predicate










which takes a set of variables Y and a state code x and determines if Y C var(x).

Cutland [13, page 41] provides an example of such a predicate.
State codes are domain objects which encode a portion of a state. The theory

of PRA is typically defined with a single type of object. Therefore states must be
coded into this type of object. An alternative would be to define PRA to be multi-
typed. That is, define PRA so that its models contain not only base elements but

more complex elements such as sets or sequences as well. The details explode in the
formalization of either method. Encoding states into state codes is a straightforward
approach.

For expression e in an Cp program define ge : D -- D, relative to I, by recursion
as follows.

e O0 ge(x)=

e = z ge(x) = (x)x

e s(ei) ge(x) = ge,(x) + 1

Notice that ge is a PR function where ge(c(s[X)) = I(e)(s).

For each variable identifier xi define the function set,, such that

Sc((i (X)x ) ... (Xi-_ (x)w,__,)
set,,(e, x)= (xi ge(x))(xi+, (x),+,) ... (Xk (X)xk)) if xi E var(x)
x otherwise.

Lemma 9 For expression e, state s and coding function c where var(e) C X =
{XI,... Xk}
set. (e, c(s X)) = c(s{I(e)(s)/lz} [X).


Proof: The proof is a straightforward application of the definitions. o










For program segment S in an PR program define gs : D --+ D, relative to 2, by
recursion as follows.

S x :=e gs(x) = set,(e,x)

S S1;S2 9s(x) = gs2(gs,(x))

S loop e; S end gs(x) = g'()(x)

Lemma 10 The function gs is PR and for free(S) = X

gs(c(s[X)) = c(fs(s) X).


Proof: Clearly gs is PR. Using Lemma 9 prove the equality by induction on program
segment S.

S i := e

gs(c(sfX)) = set,,(e,c(s[X))
= c(s{I(e)(s)/xi}[ X)
= c(fs(s) X)

S S1; S2

The proof is straightforward.

S loop e; S' end

First prove gd (c(s[X)) = c(f] (s) X) by induction on d. Use this result to
prove the following.

gs(c(sFX)) = g e(c(Srx))(c(s(X))
= g(e)(s)(c(sX))
= c(f(e)((s) X)
= c(fs(s) X)










Given program segment S with its meaning function fs, gs is a PR function

tightly tied to fs. While fs : St -- St, gs : D -- D. Given fs(s) = s' for fs

defined on variables X, gs(c(s[X)) = c(s'[X). Since gs is PR, any assertion language

in which PRA can be expressed will have a term corresponding to gs. This is the

central advantage of this system. For any program segment S there will be a term

TS in the assertion language which describes the behavior of S. Specifically, given a

domain element x which codes the variable values going into a program, rs(x) codes

the values upon exiting that program.

Next define functions which simulate PR program 7r. Given 7r = (S, x) with

free(S) = X define g, : D -* D as follows:


gr(c(s[X)) = (gs(c(s X)))X.
Lemma 11 For r = (S, x,) with free(S) = X, g, is a PR function where

g,(c(s X)) = fs(s)(x.).


Proof: Clearly g, is PR. The equality follows from Lemma 10. o

Finally, given a program r = (S, x.) with free(S) = X, and given a state s where

sFX = ((x dl) ... (xk dk)), define h, : Dk -- D as follows:


h,(di,...,dk) = M(c(sFX)).
Lemma 12 The function h, is a PR function where

h,(d,,..., dk) = fs(s)(xz).


Proof: Clearly h, is PR. The equality follows from Lemma 11. O

Theorem 13 The class of functions computed by PR programs is the class of PR
functions.











Proof: Lemma 12 guarantees that all functions computed by PR programs are PR.

It will be shown that all PR functions are computed by some CPR program. The

class of PR functions is the closure of the functions Az.O, Ax.x + 1, and Ak.xi for

1 < i < k, k > 1 under composition and primitive recursion. The functions Az.O and

Ax.x+1 are computed by the PR programs 7r = (x := 0, x) and 7r = (x := x + 1, x).

For 1 < i < k, k > 1 the function AFk.Xi is computed by r = (S, xz) for S as follows.


S: X1 := X1


Xk := Xk
Xz := Xi


Before continuing it will be useful to define a condensed notation for the PR

statements to copy the values of n variables to a distinct group of n variables. Let

the PR statements

X, := Xp
Xa3+1 := p+1


Xs+n : Xp+n

be denoted

Xsa,... Xs+n Xp. X p+n

Suppose PR function f is defined by composition as f = h o (gl,... ,g) where

f, gi, ... ,gm are n-place functions and h is an m-place function. Furthermore say h is

computed by the CPR program rKH = (H, y) where free(H) = Y = {yl,..., ym}, and

each gi is computed by the program -r, = (Gi, xz) where free(Gi) = X = {zi,..., z,}.

Without loss of generality say X, Y and {ul,...,u,} are non-overlapping sets of

variables. Then the PR program rf = (F, yz) where free(F) = X computes f for

F defined as follows.











F: ul,..., un x1,..., /* save a copy of F's input values */
G1 /* run G, on E,, */
yi := XZ /* save Gi's output */
/* Repeat the following 3 lines for i = 2,..., m */
x,...,, Xn ul,...,- Un /* get a fresh copy of n */
Gi /* run Gi on */
Yi := Xz /* save Gi's output */
/* Finish up */
H /* run F on output of Gi,...,G, */

Suppose PR function f is defined by primitive recursion as

f(O, n) = h()
f(x + 1, n) = g(x, n,, f (X, in))

Furthermore say h is computed by the PR program rh = (H, y) where free(H) =

Y = {yi,...,yn}, and g is computed by the CPR program 7r = (G,v) where
free(G) = YU{yn+, v}. Without loss of generality say {z}, YU{yn+i}, {v} and {ui,...,un+

are non-overlapping sets of variables. Then the PR program rf = (F,v) where

free(F)= {x} U Y computes f for F as follows.

F: u,...,u, *-- yi,.... /* save a copy of F's input values */
H /* run H on yn */
( := y, /* save f(O, ji) */
un+1 := 0 /* counter, 0 to x */
loop x;
Un+i := s(un+l) /* update counter */
Yi,.., Yn+i -- ul1,... ,un+/* get a fresh copy of inputs for G */
G /* run G on (counter, yn, f(counter, sn)) */
end

Thus there is a program in PR which computes every PR function. o



2.4 Verification of PR Programs

A Hoare-type verification system, HPR, is defined as a set of axioms and rules

augmented by PRA. Proof lines are formulas in the assertion language or Hoare










statements {P}S{Q}. Proof rules are of the form

Il,...,ln
In+1

This rules says that if statements 11,..., are provable then 1,+1 is provable. The
axioms and rules of HiPR are as follows.

Assignment Axiom

{P[e/x]}x := e{P}

Composition Rule
{P}S1{R}, {R}S2{Q}
{P}S; S2{Q}

Iteration Rule

{P[y/x] A 0 < y < e}S{P[y + 1/x]}
{P[Olx]}loop e; S end{P[e/x]}
for z V var(e) U free(S) and y V (var(e) U free(S) U free(P)).


Consequence Rule
P1 -- P, {PS{Q},Q -+ Q
{Pt}S{Q,}
Hoare proofs are frequently developed backwards. That is, one starts with what
is to be proved and works backwards to a list of axioms. Let the following indicate
that Hoare triple A is provable from Hoare triple B using the given rule.

A
T
Rule

B

When the Consequence Rule is used additional information is needed to show the
implications. Let the following indicate that {PI}S{Q1} is provable from {P}S{Q}










using the Consequence Rule.

{PI}S{Qi}
T
a 1 Consequence Rule T b

{P}S{Q}
The proof that H-PRA P1 P and -HPRA Q -+ Qi can be given following the
backward proof. If given, these proofs will be labeled a and 6, respectively.


2.5 Soundness of HpR

Verification system tHPR is sound if, for every interpretation I of PRA, whenever

{P}S{Q} is provable in 3HpR then {P}S{Q} is true with respect to I. A problem
arises because PRA allows induction on bounded formulas yet, as it stands, the Iter-

ation Rule allows induction on arbitrary formulas. This is an unusual case where the
syntax, specifically the Iteration Rule, is stronger than the semantics. Let E, denote

the class of formulas which can be written in the form 3liVi23x3 .. V O(-, -,... in)

or 3Y1Vi233 3 n4.(~. .... ,Y) where 6 is quantifier free. The Iteration Rule where
the loop invariant is a formula from E,, will be referred to as the En-Iteration Rule.

The relation between T and the Iteration Rule is given in the following lemma.
Lemma 14 For a complete theory T DPRA and a Hoare System H which includes
the Assignment Axiom, Consequence and Composition Rule
1. E,-Iteration Rule is sound = T En,-induction
2. T E,+1-induction => E,-Iteration Rule is sound


Proof:

1. Assume the E,-Iteration Rule is sound and for P E E,, P(O) and Vx(P(x) --
P(x + 1)) are in T. It will be shown that T I- P(a) for a new constant a. Therefore

T VxP(x), and by the deduction rule T H- (P(O)AVx(P(x) P(x+l))) VxP(x).

All that is left to prove is T P(a).










First it will be proven that for i V free(P)

-f{P[O/x]}i := O; loop a; i := i + 1 end{P[a/x]}.


{P[O/x]}i:=



{(P[0/x] A i = 0)[O/i]}i



{(P[0/x A i = 0)[0/i]i := 0
{P[0/z] A i = 0}
Assignment Axiom


O; loop a;i :=i + 1 end{P[a/x]}
T
Consequence Rule
I
:= 0; loop a; i := i + 1 end{P[a/z] A i = a}
T
Composition Rule
I
{P[0/l] A i = O}loop a; i := i + 1 end
{P[a/] Ai = a}
T
Iteration Rule
loop invariant: P[u/x] A = u

{P[y/x] A i = y A 0 < y < a}i :=i+
{P[y + 1/x] Ai = y + 1}

I
a I Consequence Rule

{(P[y + 1/x] A i = y + 1)[i + 1/i]}i := i + 1
{P[y + 1/x] Ai = y + 1}
Assignment Axiom


The proof of implication a is as follows.

P[y/z] Ai = yA 0 = P[y + l/xJ A i = y

SP[y + 1/x] A i + 1 = y + 1

S(P[y + 1/x] Ai = y + 1)[i + 1/i]










It has been assumed that the rules utitlized in this proof are sound. Therefore

for any interpretation I of T where i f free(P)

T HZ7 {P[O/x]}i := 0; loop a;i := i + 1 end{P[a/x]}.

That is, the following holds in T

Vs(s E Stz(P[O/x]) -- compZ(assignz(i, 0), loopi(a, assignz(i, i + 1)))(s) E Stz(P[a/x]).

It is assumed that T I=7 P[O/x], so the implicand holds for any state s. Program

functions are stable and i V free(P) so for any state s, s E St1(P[a/x]). Therefore

T -=T P[a/x] and since T is complete T I- P(a).

2. Assume T I- ,n,+-induction. The proof of the soundness of the Iteration Rule

results from the following for formula P, program function f on X and expression e

where x V var(e) U X, y V var(e, P) U X and var(e) fl X = 0.

f(P[y/x] A 0 < y < e) C P[s(y)/x] : loopz(e, f)(P[0/x]) C P[e/x]

The proof of this is the same as the proof of Lemma 8 part 3 with the exception that

for P E E,+-induction is used rather than bounded induction.

0

If one limits oneself to working in the natural numbers N standard induction

holds. That is, for any formula P

P(0) A Vx(P(x) P(x + 1)) Vx E N (P(x)).

Theoretically, however, there are models of PRA for which standard induction does

not hold. Therefore it is possible to define a model where utilizing the unbounded

Iteration Rule allows a false conclusion to be proved. Such a model will be non-

standard.











Peano Arithmetic (PA) is a stronger theory than PRA. In addition to the axioms

of PRA, PA contains an induction axiom for every first order formula. PRA only

allows induction on bounded formulas. Thus every model of PA is also a model of

PRA. The problem is that the models of PRA which are not also models of PA behave

in an unexpected way. One such model is developed in Appendix C. In that appendix
it is shown that the model developed is a model of PRA. An element, obtained via

Ackermann's function, is given which is not in this model. Finally it is shown that,

using the E.-Iteration Rule, it can be incorrectly proven that this element is in the

model.

There are two ways to handle the mismatch between PRA's induction axiom and

RHpR's Iteration Rule. One of the motivations of this research was to develop a
system with a clean Soundness and Completeness Theorem. That is, to develop a

system where the Soundness and Completeness Theorem reads

IPRA {P}S{Q} t _PR {P}S{Q}.

To create a sound system which maintains this clean separation between semantics

and syntax, loop invariants must be bounded. Recall that within the natural numbers

full induction holds so this restriction can be ignored.

Another way to handle this mismatch is to prove a weaker Soundness Theorem.

This Soundness Theorem would disallow those models of PRA for which full induction

does not hold. That is, the Soundness Theorem would be restricted to models of PA.

This is the approach chosen in this research. Notice that this restriction is only

required for the Soundness Theorem. The Completeness Theorem does not require a

similar restriction.
Theorem 15 (Soundness) For a Hoare triple {P}S{Q}

HPR {P}S{Q1} := PA {P}S{Q}.









Proof: Prove this by induction on the proof system "HPR. Let 2 be an interpretation
of PA.

Assignment Axiom:

=-P[e/z] -+ P[e/x]. Therefore by Lemma 8, assignZ(x, e)(P[e/x]) C P. Thus
={P[e/x]}x := e{P}.

Composition Rule:

Assume t- R {P}S1; S2{Q}. In that proof -H.PR {P}Si{R} and

HPR { R}S2{Q}. By the inductive hypothesis =jZ{P}Si{R} and =-j{R}S2{Q}.
Thus there is a set of states Y where fs,(P) C Y and fs,(Y) C Q, namely
Y = StZ(R). Therefore by Lemma 8, compZ(S, S2)(P) C Q which gives
=Z{P}SI; S2{Q}.

Iteration Rule:

Assume H-PR {P[O/x]}loop e; S end{P[e/.]}. In that proof -_pR {P[y/x] A
0 < y < e}S{P[s(y)/x]} for x V var(e) U free(S) and y V var(e) U free(S) U
free(P). By the inductive hypothesis H=-{P[y/x] A 0 < y < e}S{P[s(y)/x]}.
Thus fs(P[y/x] A 0 < y < e) C P[s(y)/x]. Therefore by Lemma 8,
loop1(e, S)(P[O/x]) C P[e/x] which gives jZ{P[O/x]}loop e; S end
{P[e/x]}.

Consequence Rule:

Assume -'HpR{P1}S{QI}. In that proof --'pRP --+ P, F-HpR{P}S{Q}
and FHPRQ -+ Q1. Therefore for any interpretation I of PRA ZP1i -+ P
and #-"Q -+ Qi. By the inductive hypothesis (j{P}S{Q}. Equivalently
St-(Pi) C StZ(P),fs(StZ(P)) C St1(Q), and Stz(Q) C StZ(Q1). Putting
these together yields fs(St$(Pi)) C StZ(Qi). Thus =Z{P1}S{Q1}.










0



2.6 Completeness of NPR

The verification system is shown to be complete as follows. Given program seg-
ment S and assertion P the existence of a Strongest Postcondition, SPC, of S and P
is shown. The SPC Theorem shows that there is a SPC Q such that I=Z{P}S{Q}
and for any valid Hoare triple =Z{P}S{R}, =-TQ -+ R. Given program segment S
and assertion P the provability of a SPC Hoare triple is also shown. For any valid
Hoare triple {P}S{R), -TPR {P}S{R} is proven by applying the Consequence Rule
to the SPC Hoare triple.
Towards this end it must be possible to translate a Hoare triple into a PRA
formula and vice versa. It will be shown that for Z = PRA and a Hoare triple

{P}S{Q}
1-{P}S{Q} e H-2Vx(P+(x) -+ Q+(gs(x)))

where P+ and Q+ are formulas on state codes obtained from P and Q, and gs is the
PR function corresponding to program segment S, possibly extended to operate on
state codes of a larger set of variables than those in free(S). It is interesting to note
that a syntactic version of the above statement does not hold. It is true that


-PR {P}S{Q} = -PRA Vx(P+(x) Q+(gs(x))).

However the proof that


-HpR {P}S{Q} = -PRA Vx(P+(x) -+ Q+(gs(x)))

depends on the soundness of 'HPR. Since for unbounded formulas P and Q the It-
eration Rule may not be sound, -PR {P}S {Q} may be provable while Vx(P+(x) --










Q+(gs(x))) does not hold in all models of PRA. The statement Vx(P+(x) -- Q+(gs(x)))
would hold in models of Peano Arithmetic. If it is required that pre- and postcondi-
tions be bounded whenever the Iteration Rule is utilized, a syntactic version of the

statement holds.

First a set of terms and predicates on state codes are defined. Recall the PR
coding and decoding functions for a state s restricted to a set of variables X. Also

recall that for any set of variables X there is a PR predicate which takes a state code

z and determines if X C var(z). Given a term r with var(r) = X define the term r+
by
7+ r((()lX ,..., (2)xk) if X C var(x)
( undefined otherwise.
Given a formula P with free(P) = X = {x1,... k} define the predicate P+ by

P+(x) holds < X C var(x)A P((x)xz,...,(x)xk).

Notice that for all x, P+(x [X) = P+(x).
Functions on state codes can be extended to functions on state codes of a larger set

of variables. Let X and Y be sets of variables where X C Y and X = {x1,..., k}.
For state code z defined on Y, let z[X = c((x- (z)x) *. (xk (Z)xk)). Say g is a

function defined from the state code of X to a domain value. Define g from g by

g(z) = g(z [X). Notice that g is defined from the state codes of Y to a domain value.
Say g is a function defined on the state codes of X. Define g from g by

((z)) ((g(z X)), if wEX
z (), otherwise
Notice that g is defined on the state codes of Y. Throughout the remainder of this

work extended functions will not be distinguished from their original functions.

To simplify the notation let v represent the set of variables X = {X1,...,zk}.

That is, let v be a function on {1,...,k} where v(i) = xz. For P((z)x,...,(x)xk)

write P((x),).









Lemma 16 For formulas P,Q where free(P) = free(Q) = X = {i,... ,xk} and a
total function f defined on the state codes of X,

F-PRA ViW(P(k) Q((f(c(& k)))v)

FPRA Vx(P+(x) -- Q+(f(x))).
Proof: The proof is a straightforward application of the definition. o
Lemma 17 For IZ PRA, a formula P, a state s and c the coding function
Z(P)(s) holds # P+(x) holds for x = c(s[free(P)).

Proof: The proof is a straightforward application of the definitions. 0
Lemma 18 For IZ PRA and Hoare formula {P}S{Q} where free(S) C free(P) =
free(Q)
HI {P}S{Q} *eH Vx(P+(x) Q+(gs(x))).

Proof: Say free(S) C free(P) = free(Q) = X = {x1,..., Xk.
(=) Assume Vs(s e StZ(P) fs(s) E Stz(Q)).

P+(x)
= Z(P)(s) for any s where x = c(s[X)
s St1(P)
: fs(s) E StZ(Q)
Q Q(fs(s)(X ),..., fs(s)(X.,))
( Q((c(fs(s)[X)) )
= Q((gs(c(srx))), )
X C var(gs)(x) A Q((gs(x)),)
+ Q+(gs(x))
(~) Assume 1=zVx(P+(x) Q+(gs(x))).

s E Stz(P)
= I(P)(s)
= P+(x) for x = c(s[X)
SQ(gs(x))
+ Q+(gs(c(s[X)))
SQ(c(fs(s) X))
SQ ((c(fs(s) [X)),)
= Q(fs(s)(x,),...,fs(s)(x,))
Sfs(s) E StZ(Q)













The concept of substitutions is extended to apply to state codes and PR functions

on those state codes. As expected, substitutions on state codes are defined similarly
to substitutions on states. and substitutions on the PR functions of state codes are

defined similarly to substitutions on program functions. Say p is a substitution on

X. For z a state code on the variables p(X) define p on z by

(zp), = (z)p,() for x E X.

For PR function g, defined from a state code of X to a domain value, define p on g

by

gp(z) = g(zp).

For any PR function g, defined on the state codes of X, define p on g by

(gp(z))p(x) = (g(zp)), for x e X.

Notice that for p a substitution on X and g defined on state codes of X, gp is defined

on state codes of p(X).
Lemma 19 (Composition of substituted functions) For PR functions gl and g2 defined
on state codes of X and p a substitution on X

g2p(gip(z)) = (g2 ogl)p(z).


Proof: The proof is a straightforward application of the definitions. O

Lemma 20 (Substitution on state code formulas) For formula P and substitution p

(Pp)+(x) P+(xp).


Proof: First prove (rp)+(x) # r+(xp) by induction on the term r. Then prove the

lemma by induction on formula P. o










Lemma 21 For a function f defined on the state codes of {xi,..., k} and p = [gYk/k]

F-PRA Vi < k(x = y;) --+ Vi < k((f(c(_k k)))x_ = (fp(c(k Yk)))yi).


Proof: Assume xi = yi for 1 < i < k, then


(f P(c(k Yk)))y_
= (fp(c((yl yl) (k yk)(Xl 2I1) *( zk))))yi
= (f(c((yi yi) (Yk Yk)(XI Z1) ''(x. k Zk))p))x
= (f(c((yi yI) Y (yk yk)(x5 yl) '''(k Yk))))Xl
= (f(c(ik YW)))xi
= f(c(ik Ak))x_


Extend f
Def. p on func.
Def. p on state code
Reduce f
Assumption


Corollary 22 For a function g which takes the state codes o f{ x,...,x k} to a domain
element and p = [yk/ k]

[-pRA Vi < k(xi = y ) -- g(c(Fk Xk)) = gp(c(y yk)).
Theorem 23 (Strongest Postcondition Theorem) Given program segment S and as-
sertion P with free(S) C free(P) = {xa,...,xk}, the SPC of S and P is

Q = 3yk(Vji < k(x, = (gsp(y))yi) A Pp)
where p = [Yk/Xk] and y = c((y_ Yi) (k Yk)).
That is the following hold:

1- kPRA {P}S{Q}
2. HPRA {P}S{R} J= PRA Q R


Proof: Let p = [Yk/;k] and X = {X ..., xk}. In the following assume i ranges from


1 to k.










1.

s e StZ(P)
= P+(c(s[X)) Lemma 17
= (3Wk(x = Yi A Pp))+(c(s[X))
S(3'k((gs(x))xi = (gsp(y))y, A Pp))+(c(s[X)) where
x = c((xl xI)-...(xk xk)) and y = c((yi yi) .. (Yk yk)) Lemma 21
= 3yk((gs(c(s[X)))xi = (gsp(y))yi A Pp)
S3yk((c(fs(s) rX))x = (gsp(y))yi A Pp) Lemma 10
= (3-k(x = (gsp(Y))y, A Pp))+(c(fs(s)[X))
= fs(s) 6 StZ(Q).

2. Assume Vs(s E StZ(P) fs(s) E StZ(R)). By Lemma 18 Vx(P+(x) --
R+(gs(x))). Say y = c((y_ _i) y ) (Yk yk)).

3Yk(xi = (gsP(Y))y, A Pp)
= 3Yk(xi = (gsp(y))yi A (Pp)+(y))
=, 39k(xi = (gs(yp))xi A P+(yp))
= 3Yk(xi = (gs(yp))x_ A R+(gs(yp)))
= R+(x) for x = c((xl xl)--(x k xk))
=R



In the SPC Theorem it is assumed that free(S) C free(P). Notice that this situation
is easily created by adding useless qualities to formula P.
A note similar to the one concerning Lemma 18 may apply to the SPC Theorem.
That is, a syntactic version of the SPC Theorem may not hold. For Q defined as in
the SPC Theorem it can be shown that -PR {P}S{Q}. However the proof given
that -HPR {P}S{R} =>PRA Q -- R depends on the soundness of the verification
system. Since for unbounded formulas P and R the system may prove a Hoare triple
which is not true in some model of PRA, -'PR {P}S{R} may be provable but

/PRA Q -+ R. If it is required that pre- and postconditions be bounded whenever
the Iteration Rule is utilized, a syntactic version of the SPC Theorem holds.










The provability of the SPC Hoare triple for a program segment S and an assertion

P is the major step in proving the completeness of the verification system. As new

constructs are added to the language most of the effort in proving the completeness

of the new system lies in showing the provability of this SPC Hoare triple. Several

lemmas are required to lay the groundwork.

Lemmas 1 and 2 link general substitutions on formulas to replacements on states.

The following two lemmas link general substitutions on formulas to replacements on

state codes.

Lemma 24 (Substitution and replacement on terms.) For a term r, an expression e,
a state code x with var(r), var(e) C var(x) and any variable identifier xj

(T[e/xj)+(x) = (rT)(setX,(e,x)).


Proof: Prove the lemma by induction on the term r. 0


Lemma 25 (Substitution and replacement on formulas.) For a formula P, an expres-
sion e and a state code x with free(P), var(e) C var(x) and any variable identifier
xj
(P[e/xjl )+(x) 4+ P+(set X,(e,z)).


Proof: This follows from Lemma 24 and induction on formula P. O


Corollary 26 (Equality before application of a function.) For a function f defined on
the state codes of {X1,..., k} and 1 < j < k

Vtlkuk(Vi < k(ui = (f(c(iCk Vk)))x) A vj = a
-Vi < k(u, = (f(set, (a, c(i~ ?Tk))))x)









Proof: Define a predicate R as follows

R Agk.Vi < k(ui = (f(c(k gk)))xi).

Notice that the lambda notation allows the u,'s to be considered fixed in R. Let
p = [X/1kVk]. For all Uk

i = (f(c(ik Uk)))x 1 < i < k A vj = a
R RAvj=a
R[a/v,]
Rp[a/xj]
= (Rp[a/xj])+(x) for x = c((xi Xi) ... (xk Xk)(v1 V1) *(vk Uk))
(Rp)+(set,, (a,x))
R+((set,, (a, x))p)
R+ (xp)
SR+ (set,,(vj,xp))
S R+(set.,(a,2:p))
= ui = (f(c((zx (set,,(a,xp))x, ) (xk (set.(a, xp))xk))))i for 1 < i < k
= u = (f(c((xz (xp)x,)... (x a) (xk (xp)xk))))X) for 1 < i < k
S u = (f(set,,(a, xp)))x for 1 < i < k
u = (f(set,,(a,c(Z gk ))))xi for 1 < i < k



Corollary 27 (Equality after application of a function.) For a function f defined on
the state codes of X = {x1,..., k} and x a state code on X
Vlfky(Vi < k, i 5 j(u, = (f(x))xi) A u2 = y
Vi < k(u, = (setr,(y,f(x)))xi)).


Proof: Define a new function f on the state codes of X by

(f (x))x, 1 < i < k,i ,j
(f(x))zi Y --

Let R = AwZ.Vi < k(u, = wi), w; = (f(x))xi for 1 < i < k and p = [xk/wk]. Notice
that for z = c((xl xl)' (xk Xk)(WI ItI) .i wk ( wk)) and 1 < i < k,i i j


(zp)x, = (z)w, = wi = (f(x))x, = (f(x))xi.









For all ULk, y

ui = (f(c(- Vk)))x 1 = ui = (f(c(_k gk))). 1 < i < k A (f'(c(ik Vk)))xz = y
=, u; wi 1 = RAwj =y
4 R[y/wj]
= Rp[y/xz]
= (Rp[y/x,])+(x) for x = c((xi xI) .-(xk Xk)(Wl wl) .. (wk Wk))
S(Rp)+ (set,,(y,aX))
4 R((set,(yzX))p)
R+(zp)
= R+(setj(y, xp))
=: u, = (set.,(y, xp))x_) for 1 < i < k
= ui = (sets,(y,f(x)))x} for 1 < i < k



Lemma 28 shows the provability of the SPC Hoare triple for this system.
Lemma 28 (SPC Hoare triple) For a program segment S and an assertion P where
free(S) C free(P) = X = {x1,...,Xk}, Y = {y,..., yk}, Xn Y = 0 and p = [Yk/k]

7-lpR {Vi < k(x = yi) A P}S{Vi < k(x, = (gsp(c(_ yk)))y) A Pp}.


Proof: Prove the lemma by induction on S. Assume i ranges from 1 to k, x =
c( _i Xk) and y = c(k Yk).

S := e


{xi = y, A P}xz := e{x, = (gsp(y))y, A Pp}
T
a [ Consequence Rule

{(xi = (gsp(y))yi A Pp)[e/xj]}xj := e
{(xi = (gsp(y))yi A Pp}
Assignment Axiom










The proof of implication a is as follows. Let R =- Aik.i = (gsp(y))yi A Pp.


xi = yi A P
= (gs(x))xz = (gsp(Y))y, A Pp
= (set.,(e,x))xi = (gsp(y))yi A Pp
R((set,, (e, ))xz,..., (set, (e, x))Xk)A
X C var(set,(e, x))
= R+ (set.,(e, ))
S (R[e/xl)+(x)
= R[e/X-])(xz,...,Xk)
(xi = (gsp(y))yi A Pp)[e/z]j


Lemma 21
Def. gs
Def. R
Def. +-ext.
Lemma 25


{x, = y, A P}Si; S2{xi = (gsp(y))yi A Pp}


Consequence Rule


{xi = y, A P}S; S2{xi = (gsP(gs, P(y)))yi A Pp}
T
Composition Rule


{x, = y2 A P}Si
{xi = (gsp(y))y; A Pp}
Inductive Hypothesis


{xi = (gsP(Y))yi A Pp}S2
' {xi = (gsp(p(gs y)))y, A Pp}
Inductive Hypothesis


The proof of implication a is as follows.

xi = (gs2p(gs, P()))y^ A Pp
= xi = ((2 o gs )p(y))yi A Pp Lemma 19
= x, = (gsp(y))yi A Pp Def. gs


S = loop e; S, end


S = S;,2











{xi = y, A P}loop e; S1 end{xi = (gsp(y))yi A Pp}
T
a 1 Consequence Rule I b
Say var(e) = Xm
R = X-ku.Xm = y, A xi = (gs, p(y))yi A Pp

{R[O/u]}loop e; S1 end{R[e/u]}
T
Iteration Rule
I
{R[v/u] A 0 < v < e}S, {R[v + L/u]}

c Consequence Rule T d
Let z = c(ik Fk), z, = (gsp(y))yi for 1 < i < k
and p' = [5ke/k]

{x, = zi A Pp}S1 {x = (gslP'(z))zi A (Pp)p'}
Inductive Hypothesis



The proof of implication a is as follows.

xi = y, A Pp
> Xm = Ym A xi = (gs, p0(y))yi A Pp
z R[0/u]

The proof of implication b is as follows. Let z = c((z xl) .. (xk Xk)(u u)).

R[e/u]
SR[e/u](xi,..., k, u) A free(R[elu]) C var(z)
= (R[e/u])+(z)
S R+(set,(e, z))
R+(c((i xjr)... (k X)(zU e(Z))))
+ Xm = Ym A xa = (gs, pg(z)(y))y_ A Pp
Sx; = (gsjPpP(Y)(y))y, A Pp
X 2i: = (gsp(y))yi A Pp









The proof of implication c is as follows.

R[v/u] A 0 < v e
= xm = ym A xi = (gspV(y))y A Pp A < v < e
= xi = zi A Pp

The proof of implication d is as follows.

xi = (gs, p(z))zi A (Pp)p'
= x, = (gsp(y))y A Pp
=: X, = (gs, p(gs, P(y)))y; A Pp
Sri = (gs p"+l(y))y_ A Pp
S x = Ym A xi = (gs, p+l(y))yi A Pp
= R[v + 1/u]

0

Theorem 29 (Completeness) For a Hoare triple {P}S{Q}

PRA {P}S{Q} t-HpR{P}S{Q}.


Proof: Assume #PRA {P}S{Q}. Without loss of generality also assume free(S) C
free(P) = X = {xl,...,xk}, Y = {yl,...,yk},X n Y = 0, p = [Yk/Xk] and y =
c( Y k). The proof of tHpR {P}S{Q} follows.


{P}S{Q}
T
a I Consequence Rule T b
I
{Vi < k(xi = yi) A P}S{Vi < k(xi = (gsp(y))yi A Pp}
SPC Hoare triple


Implication a holds since for P* defined from P by P* Axky.Vk-i < k(x, = yi)AP,

HPRA Vyk(P(k) -- P*(kk))-







40


Implication b holds because Vi < k(xi = (gsp(y))y, A Pp implies the SPC of
program segment S and assertion P. Therefore by part 2 of the SPC Theorem
Vi < k(xi = (gsp(y))yi) A Pp implies Q. D















CHAPTER 3
BLOCK LANGUAGE


3.1 Syntax of CB

The new token "begin" appears in LB. The set of program segments is defined

in Backus-Naur form for variable identifier x and expression e as follows:
S x := e S;S2 I loop e; S1 end | B
B E begin x; S, end.

For simplicity blocks with multiple variable declarations are not allowed. They can

be considered as abbreviations of nested blocks with single variable declarations.

The program segment begin x; S, end binds variable x in S1. Identifiers which are

not bound in a program segment are free in that program segment. Let the oc-

currence of an identifier x at location i be denoted (i,x). Let the x immediately

following the token begin be at location j. The defining occurrence of all occur-

rences of x in 'begin x; S end', which are not also within another program segment

'begin x; S1 end' contained in S, is (j, x).

Call a program distinguished if each defining occurrence of an identifier is unique

and no identifier appears both free and bound in the program. Program segments

S and S' are congruent, denoted S w S', if they differ only by a renaming of their

bounded identifiers.


3.2 Semantics of LB

Recall that state s is a total mapping VI --* D where D is the domain of the

interpretation. Therefore variable x in begin x; SS end will have a domain value
41










associated with it. This introduces nondeterminacy into the language in the case
that S1 reads x's value before writing it. Hence, for simplicity, variables declared
in blocks will be initialized to a fixed domain value before the body of the block is
executed. Call this value a. After S1 is executed x's original value will be restored.
The following state function gives the meaning of the variable declaration statement.

S begin x; S1 end

fs(s) = blockZ(x, fs,)(s) = (f(s{Z(a)/x})){Z(x)(s)/x}


The state function blockZ(x, fs,) will frequently be written blockZ(x, Si).

Lemma 30 (Substitution Lemma) For a program segment S and a substitution p
which is injective on free(S)
fsp(s) = fsp(s).


Proof: Prove this by induction on a program segment S. The case of a variable
declaration statement is given.

S = begin xi; S1 end

fsp(s)(x) = blockZ(p(xi), fsp)(s)(x)
= block$(p(x), fsp)(s)(x)
= (fs, p(s{(a)/p(xi)})){I(p(xi))(s)/p(xi)}(x)
I(p(xi))(s) if z = p(xi)
Sfs,p(s{I(a)/p(x,)}(x) if x $ p(xi)
(xi)(sp) if z = p(xi)
Sfs,(s{Z(a)/p(xz)}p)(p-'x) if xz p(xi)
= (fs,(sp{Z(a)lxz})){Z(xi)(sp)/x;}(p-'x)
= block1(xi, fs,)(sp)(p-'x)
= block(xi, fs, )p(s)(x)









For S = begin x; Si end, it is shown that fs is a PR function in the following
section. It can be shown that fs is stable and aloof, with respects to its inactive
variables, as it was in Chapter 2. Therefore, fs = block1(x, S1) is a program function
on free(S)
Lemma 31 (Extension to Lemma 8) Let f be a program function on X.
blockZ(x, f)(P) C Q < f(P[y/x] A x = a) C Q[y/x]
where y X U free(P V Q)

Proof: This statement will be proved if the following can be proved for y ( X U
free(P V Q).
Vs(s E Stj(P) -- f(s{I(a)/x}){I(x)(s)/xl} St1(Q))

Vs(s e St1(P[y/x] A x = a) -- f(s) e St1(Q[y/x])).
(=) Assume Vs(s e Stj(P) -- f(s{Z(a)/x}){j(x)(s)/x} e StZ(Q)).

s e St1(P[y/x] A x = a)
= s StZ(P[y/x])
= s{I(y)(s)/x} e Stj(P) Corollary 3
= ( (f(s{I(y)(s)/x}{I(a)/x})){I(x)(s
{I(y)(s)/x})/x} E Stj(Q) Assumption
j (f(s{Z(a)l/})){Z(y)(s)lxr} StZ(Q)
= (f(s)){I(y)(s)/x} e StZ(Q) s E Stj(x = a)
= (f(s)){Z(y)(f(s))/x} e Stj(Q) f is stable
= f(s) E StT(Q[y/x]) Corollary 3
(<=) Assume Vs(s E St$(P[y/x] A x = a) -- f(s) e StZ(Q[y/x])).


s e StZ(P)
= s{Z(x)(s)/y} e StZ(P[y/x])
Ss{I(x)(s)/y,Z(a)/lx} St1(P[y/lx A z = a)
= f(s{I(x)(s)/y,I(a)/x}) e St{(Q[y/x])
= f(s{I(a)/x}){I(x)(s)/y} e St1(Q[y/x])
= ((f(s{Z(a)/x}){Z(x)(s)/}){IZ(y)((f(s{Z(a)/x}))
{Z(x)(s)/y})/x} e StZ(Q)
= (f(s{Z(a)/x})){IZ(x)(s)/x} e Stj(Q)


Corollary 4

Assumption
f stable & aloof

Corollary 4










3.3 LB Computes the Class of PR Functions

Two new PR functions are needed before extending gs for variable declarations.

Define add,,, which takes a state code on X and returns a state code on X U {xz},

and drops,, which takes a state code on X U {xi} and returns a state code on X, as

follows.

For x a state code on X = {x1,..., k} and var(e) C X

add,, (e,x) = c((xI (x)x,1 ) .* (xk (x)xk)(xi ge(x))).

For x a state code on X = {x1,..., k}

drop, (x) c((x (x)xl) (x(xi-1 ( )(xi+l (x)i,,+) (xk (x)xk)) if x E X
c((Xi (X)1) ~-.. ( (xk)) if x.i X

The PR functions defined in this dissertation are for distinguished programs.

A PR function could be written to take an CB program as input and output a

distinguished version of that program. Throughout the remainder of this dissertation
it will be assumed that such a translation has already occurred.

Extend the function gs with a clause for variable declarations. For program

segment S in an PR program define gs : D --* D as in section 2.3 with the additional
clause:
S = begin xi; Si end
gs(x) = drop, (gs, (add ,(a,x)))

Lemma 32 (Extension to Lemma 10) Function gs is PR and for free(S) = X

gs(c(s[X)) = c(fs(s) X).


Proof: Function gs is PR since add, and drop, are PR functions. Prove the equality

by induction on program segment S. The cases for S = xi := e, S S1; S2 and

S = loop e; S' end are proved as they were in Chapter 2.










S E begin xi; S1 end Since S occurs in a distinguished program xi will not already
be in X.


gs(c(s X))


= drop, (gs,(add, (a, c(s[X))))
= drop,,(gs(c(s{Z(a)/xi,}[X U {x,})))
= drop, (c(fs (s{Z(a)/zi})r X U {x}))
= c(fs,(s{Z(a)x/z})rX)
= c(fs,(s{I(a)/ z}){Z(xi)(s)/x}[rX)
= c(fs(s) X)


Theorem 33 The class of functions computed by CB programs is the class of PR
functions.


Proof: The proof is the same as that given for this theorem in Chapter 2 except that
the new meaning function for gs is used. o



3.4 Verification of CB Programs

The verification system 7pR is extended to iHB by adding the following Program
and Variable Declaration Rule.

Program Rule

{P}Sd{Q}
{P}7r{Q}
for 7r = (S, z), S S Sd and Sd distinguished.


Variable Declaration Rule


{P[y/x] A z = a)S{Q[y/z]}
{P}begin x;S end{Q}
for y V free(P V Q) U free(S).


Ind. Hyp.

z2; X










3.5 Soundness of nB
Theorem 34 (Soundness) For a Hoare triple {P}S{Q}
-HB{P}S{Q} =PA {P}S{Q}

Proof: Prove this by induction on the proof system Bg. The soundness of the rules
presented in Chapter 2 is proven as it was in that chapter. Let I be an interpretation
of PA.

Variable Declaration Rule:

Assume -b {P}begin x; S end{Q}. In that proof -'HB {P[y/x] A x = a}S
{Q[y/x]} for y free(P V Q)Ufree(S). By the inductive hypothesis =j{P[y/x]A
x = a}S{Q[y/x]} or fs(P[y/x] A x = a) 9 Q[y/x]. Therefore by Lemma 31
block(x, fs)(P) c Q.


Corollary 35 For a Hoare triple {P}r{Q}

F" B{Pr{Q} =>PA {P}r{Q}.

Proof: Let I be an interpretation of PA, 7 = (S, z) and S ; Sd where Sd is distin-
guished. Assume i- B{P}r{Q}. Then in that proof, F-7 {P}Sd{Q} and by the
Soundness Theorem -=Ifsd(P) C Q. By the Substitution Lemma this is equivalent
to -Zfs(P) C Q or ~= {P)}{Q}. 0


3.6 Completeness of 7-B

Once the provability of the SPC Hoare triple is established the completeness
property of 7HB is proven as it was in Chapter 2. The following results are needed to
show the provability of the SPC Hoare triple.
Lemma 36 For expression e with var(e) C {rz,..., k}
addk+, (e, c(xk 'k)) = setk+, (e,c(-+ 4k+1))










Proof: The proof is a straightforward application of the definitions. 0
Lemma 37 For a function f defined on the state codes of {Xi,..., xk}
Vuik+lV6k+(Vi < k + 1(ui = (f(c(_k+l 6fk+i)))xi) A Vk+l = a
-+ Vi < k + l(u, = (f(add,,, (a,c( V-'))))kx))

Proof: This results from Corollary 26 and Lemma 36. O
Lemma 38 (SPC Hoare triple) For a program segment S and an assertion P where
free(S)C free(P)= X ={x,...,Xk}, Y = {y,..., k}, X nY=0 and p = [~k/&k]
-_B {Vi < k(xi = yi) A P}S{Vi < k(x, = (gsp(c(yk Yk)))y) A Pp}.

Proof: Prove the lemma by induction on S. The proof for all cases except the
Variable Declaration Rule will be the same as in Chapter 2. Let y = c( k yk).

S begin xj; Si end

Assume free(begin xj; S2 end) C free(P) = X. Since S occurs in a distin-
guished program, xj will not already be in X. Without loss of generality let
S begin xk+l; Si end.


{Vi < k(xi = yi) A P}begin Xk+l;Si end
{Vi < k(x, = (gsp(y))yi A Pp}
T
Consequence Rule f a
Let yk+i be a fresh variable, y' = c(y+1 Yfk+),
p' = [yk+1/Xk+i] and gs, be extended to operate
on the state code y' so that it leaves yk+i
unchanged.

{Vi < k + 1(xi = yi) A P}begin xk+1; S1 end
{Vi < k + 1(xi = (gs, '(y'))y_) A (P A Xk+I = a)p'}
T
Variable Declaration Rule
I
{Vi < k + 1(x, = y;) A P A Xk+i = a}Si
{Vi < k + 1(xi = (gs, '(y'))yi) A (P A Xk+1 = a)p'}
Inductive Hypothesis













The proof of implication a is as follows.

Vi < k + l(xi = (gs, p'(y))yi) A (P A Xk+1 = a)p'
= Vi < k + l(;x = (gs,'(Y'))yi) A Pp A Yk+1 = a
= Vi < k + l(xi = (gs, (y'P))xA) A Pp A yk+l = a
= Vi < k + 1(zi = (gs, (add,+, (a, yp)))x) A Pp
= Vi < k(xi = droppk, (gs, (addk+, (a, yp))))x_) A Pp
4 Vi < k(xi = (gs(yp))xi) A Pp
4 Vi < k(xi = (gsp(y))y_) A Pp.
















CHAPTER 4
PARAMETERLESS PROCEDURES



4.1 Recursion in a PR Programming Language

A minimal programming language which computes the class of PR functions has

been presented. A more useful language which computes this class of functions is de-

veloped next. In order to do this, constructs similar to those of universal programming

languages will be added. The concern here is not to construct an actual programming

language but to form the theoretical basis for such a language. Constructs such as

conditionals, case statements, bounded while loops and non-recursive procedures can

be straightforwardly added to the language. The unbounded while loop, unbounded

recursion and the goto construct can not be added. Primitive recursion is one of the

constructs between these extremes.

How should primitive recursion be formulated as a programming construct? Hope-

fully there is a general method so recursion in the language does not need to be in

the exact form of primitive recursion. Consider functions with a single output. One

way to restrict recursive procedure calls is to associate a maximum value with the

recursive procedure. If the value computed by the procedure exceeds this value sub-

sequent recursive calls to this procedure are ignored. Peter [32] refers to the function

computed by such a procedure as bounded recursion and shows that this does not

lead out of the class of elementary functions, a subset of the class of PR functions.

This approach was not adopted in this research.











Alternatively, a bound can be associated with each recursive procedure which

gives the maximum nesting depth of that procedure. This bound would restrict the

number of copies of the procedure which can be active at one time. Once this depth

has been reached subsequent calls to the procedure would be ignored. Figure 4.1 il-

lustrates bounded recursion. The programmer should be able to write an expression

for such a bound. When writing a recursive procedure the programmer should men-

tally justify that the procedure will terminate by verifying that on each recursive call

the problem is broken into a finite number of smaller problems. The expression for

the maximum procedure nesting depth can be determined from this reduction. This

is the approach utilized in this research. Throughout the remainder of this paper

bounded recursion will refer to recursion bounded by a maximum nesting depth.

Unfortunately, placing a bound on the nesting depth of a procedure does not

guarantee that the programs will compute only the class of PR functions. Acker-

mann's function is a total function which is not PR. Ackermann's function can be

defined as follows.


Acker(k, n, m) = Ek(n, m) where
Eo(n, m) = m"
Ek(0, m)= 1 for k > 0
Ek(n,m) = Ek--(Ek(n 1,m),m) for k > 0 and n > 0

It can be shown that Ackermann's function is not PR because it grows faster

than any PR function [13]. Ackermann's function is built in stages. It is built

at one stage by iterating on the function at the previous stage. The definition of

Ackermann's function given above starts with exponentiation to avoid special initial

cases. Figure 4.2 shows how quickly Ackermann's function grows on k.

















bound
procedure fib(n) n'
if n=O then z:=1
elseif n=1 then z:=1
else z:=fib(n-l)+fib(n-2)
end


When fib* is executed the recursive procedure fib is nested 3 levels deep. This is
possible if n > 3.


Figure 4.1. Bounded recursion


nb
if n=O then z:=1
elseif n=l then z:=l
else z:=

if n=O then z:=1
elseif n=l then z:=1
else z:=
fib*
R~b-----


fibf n then z:=
elseif n=1 then z:=1
else z:=

b I

ib I














Acker(O, n, m) = m"


Acker( 1, n, m)








Acker(2, n, m) =


= m
n



in
m



m


Figure 4.2. Ackermann's function Acker(k, n, m) grows quickly on k


If the following procedure is executed when z=1, it terminates with the value of

Acker(k, n, m) in variable z.


proc exp(n,m) n
LCB program to set
z to m"
end
proc acker(k,n,m) k
if k=O then exp(n,m)
else
loop n
acker(k-1,z,m)
end
end
end


The construct which leads out of the class of PR functions is the recursive call

within the body of a loop. It is this construct which allows Ackermann's function to

be built at one stage by iterating on Ackermann's function at the previous stage.











It can be argued that a recursive call within the body of a loop is not a structured

construct. Structuredness has been defined as the ability to understand the meaning

of the whole from the meaning of the parts and a few combining rules. For example, a

loop language would be considered structured if the meaning of the program segment

'loop n S end' is completely determined by the meaning of S and the knowledge

that the 'loop n' construct means to repeat the body of the loop n times. In the

above construct the meaning of the body of the recursive procedure requires knowing

the meaning of the loop body. Yet knowing the meaning of the loop body requires

knowing the meaning of the procedure body. Thus the meaning of the procedure

body and the loop body are being defined simultaneously.

Notice the relation between a program segment and the function it computes. A

program segment S; S2 translates into the nested function gs (gs (x)). Similarly the

function computed by the following program segment is a nested recursive function.

S- proc p(x) n
p(x)
p(x)
end
p(x)

If p is defined by primitive recursion as

p(0, x) = x
p(i + 1, ) = p(i,p(i, x))

then gs(x) = p(n, x). P6ter refers to such nested functions as simple nested recursive

functions and shows that this type of nesting does not lead out of the class of PR

functions. Frequently, however, nested recursion does lead out of the class of PR

functions.

Consider the program segment











loop n
S
end

which translates into the function loop(n, x) defined by

loop(0, z) = x
loop(i + 1, x) = gs(loop(i, z)).

This does not lead out of the class of PR functions as long as the function gs is known.

However, if the loop body S contains a recursive call to the procedure containing the

loop, the function gs will not be known. In this case the function loop is an example

of recursion of the first degree. That is, it is a function which depends on a function.

It can be written
loop(O,x,gs) = x
loop(i + 1,x,gs) = gs(loop(i,x,gs)).

P4ter shows that such functions can be reduced to doubly nested recursive functions

and therefore lead out of the class of PR functions.

It has been established by the Ackermann example that procedures of the follow-

ing form must be disallowed in a PR programming language.

proc p(x) m
loop n
p(x)
end
end

It is possible to simulate this procedure without using the loop construct. The fol-

lowing procedure is equivalent to the above.

proc p(x) m
proc q(x) n
q(x)
p(x)
end
q(x)
end











The loop is simulated by recursive procedure q. The offensive call is no longer a call

to the procedure itself. In this program the offensive call is a call within procedure

q to procedure p, the parent of q. Thus calls to the parent of the current procedure

must be restricted in a PR language. Since calls to parents are restricted, calls to

all direct ancestors must also be restricted since a call to a parent could easily be

simulated in a language which allowed calls to a direct ancestor.

If procedure q in the previous example was moved outside of procedure p the

resulting program would still be equivalent to a procedure containing a recursive call

within a loop.

proc p(x) m
q(x)
end
proc q(x) n
q(x)
p(x)
end

The recursive call within a loop is simulated by procedure p calling procedure q and

procedure q calling procedure p. Thus call sequences where siblings mutually call

each other, directly or indirectly, must be restricted.

A recursive call is a call to a procedure which is active at the time the call is made.

Refer to a recursive call as direct if it is a call to the current procedure. All other

recursive calls will be referred to as indirect. The previous two examples contain both

direct and indirect recursive calls.


4.2 Syntax of CC

In addition to the other tokens of CB, an infinite set of ordered procedure iden-

tifiers which is disjoint from the set of variable identifiers, and the new token "proc"










are part of the language CC. Environments are also introduced in this new language.

An environment is a sequence of procedure declarations. Procedure declarations are

of the form proc p e; S end for procedure identifier p and program segment S. Here e

is an expression for the maximum nesting depth of the procedure. This expression is

referred to as the procedure's bound. For a variable identifier x, a procedure identifier

p and an expression e the set of program segments of CC is defined in Backus-Naur

form as follows:
S 5 x := e I S;,2 loop e; S1 end I B I p
B begin x; S end begin E; S end
E I proc p e; Send I ElE2

Recall that the program segment 'begin x; S end' binds variable x in S. Similarly

the program segment

T E begin proc p e; S1 end E; S2 end

binds procedure identifier p in T. Let the p immediately following the token proc

be at location j. The defining occurrence of all occurrences of p in T, which are not

also within another program segment 'begin proc p e'; S' end E'; S' end' contained

in E or S2, is (j,p). Now both variable and procedure identifiers must be renamed

to distinguish a program.

It was shown that program segments of the language CPR and CB can be trans-

lated into PR functions. The situation is more complex for program segments in

LC. These program segments may contain calls to procedures defined outside of S

and they may be contained within a recursive routine. Define a program unit E I S as

an 'environment'/'program segment' pair where all procedure identifiers are bound

in 'begin E; S end'. Define a recursive program unit, or recursive unit as an 'envi-

ronment'/'procedure identifier'/'program segment' triple where E S is a program

unit and calls in S to p would be recursive.










Let min(E I S) denote E' I S where E' is the minimum environment such that
E' S is a program unit. Given a program unit E I S where min(E I S) = E' S,
E' is the set of procedures and idf(E I S) the set of identifiers visible from S. Make
similar definitions for a recursive unit E IP S. Olderog [29] has additional details.
A call di-graph, or call directed graph, for procedure call E I p in a distinguished
program is constructed as follows. Let E I p be the root node. For each node E I p
in the graph, where proc p e; S end E E, consider E I S.
For E I S E' I S' do the following.

E' S' =E' Ix;:=e Do nothing.

E' S' E' S1; S2 Consider E' I S1 and E' I S2 separately.

E' S' E' I loop e; S, end Consider E' S[ 1.

E' S'-=E' begin xi; S end Consider E' S.

E' S' E' | begin EL; Si end Consider Add(E1, E') I S1.

E' S' = E' q Three cases are possible. Either p =q, there is a node E" I q
which is a direct ancestor of E I p, or there is no node with procedure identifier
q which is a direct ancestor of E I p. In the first case the call E' I q is a
direct recursive call. Draw a directed edge from node E I p to itself. Note that
min(E' I q) = min(E I p). In the second case E' I q is an indirect recursive call.
Draw a directed edge from node E I p to node E" I q. Note that min(E' I q) =
min(E" I q). In the last case E' I q is a non-recursive call. Create a new node

E' I q, draw a directed edge from node E I p to node E' I q and repeat the
process for this new node.

Figure 4.3 gives an example of a procedure call and its call di-graph. For simplicity

the environments have not been shown. Notice that each cycle is entered via a single













-- proc p
q A
q
r
end
proc qqq
q
end
procr s q
S
q
end
proc s
q

end
p


Figure 4.3. Example of a procedure call and its call di-graph

node referred to as the start node of the cycle. Call all other nodes on the cycle inner

nodes. Say a cycle is complex if one of its inner nodes is the start node of another

cycle. Otherwise the cycle is simple. All cycles in the call di-graph of figure 4.3 are

simple.

Let C be the language LB without the loop construct and where bounded recursive

calls are allowed. Then the call di-graph for a program in C could contain a complex

cycle. Figure 4.4 shows such a procedure call and its call di-graph. Recall that a

procedure with the call structure given in figure 4.4 may compute a function which

is not PR. Thus the PR language must be restricted so that the call di-graph for any

program in the language contains only simple cycles.

A simple cycle which is entered via the call E ( p will be called E p's cycle

or simply p's cycle if no ambiguity will result. If each cycle on the call di-graph is












S = proc p
q
end
proc q
q






Figure 4.4. Procedure call and di-graph with complex cycles

collapsed into a single node the call di-graph becomes a tree. The height of a call

di-graph is the number of edges in the longest path of this tree, counted by passing

through each node only once.

Given the program segment loop e; S end, in the previous chapters var(e) n

free(S) = 0. In this chapter we assume var(e) n free(min(E I S)) = 0 for program

unit

E I loop e; S end

and for program unit

E I begin proc q e; S end: T end.

A program in C is a block with no free procedure identifiers where the call di-

graph of each call contains only simple cycles, and calls to the next node on a cycle

do not occur within the body of a loop. Assignment, composition, iteration, variable

declaration and procedure declaration are referred to as non-call constructs.


4.3 Semantics of C

In B the work variables can be declared using the construct begin x; S end.

Recall that the meaning of this program segment is independent of the variable











identifier x. That is, begin x; S end and begin y; S[y/x] end, where S[y/x] is the

result of replacing every free occurrence of x in S by y, have the same meaning

provided y var(S). Care must be taken when adding procedures to this language

so that this independence is maintained.

Consider the following program block. For simplicity the bounds associated with

the procedures will be ignored.

begin x
proc p

end
proc q
begin x
x := 2
P
end
end
x := 1
q
end

If this program is executed using dynamic scope of variables, z will be 2 upon com-

pletion of this program. However, if the variable identifier declared in procedure q is

changed to y so that procedure q is defined as in the following program, z will be 1

after executing the block.

proc q
begin y
y:= 2
P
end
end



Thus the meaning of the block is dependent on the variable identifier used to declare

a temporary work variable in procedure q. Static scope of variables guarantees that










the meaning of S will be independent of the variable identifier chosen. The new

language C will use static scope of identifiers.

Identifiers, both variable and procedure, will be renamed to maintain static scope.

Given a program, Hoare triples will be proved for a distinguished copy of that pro-

gram. Since there are an infinite number of distinguished programs which are con-

gruent to a given program, the identifiers chosen to distinguish a program will be

such that the next available identifier is chosen whenever a new identifier is needed.

Whenever a recursive call is made the bound identifiers in the body of the recur-

sive procedure will be renamed. Renaming procedure identifiers has no effect in C.

The groundwork is being laid for when passing procedures as parameters are allowed

and renaming procedure identifiers is necessary to maintain static scope of procedure

identifiers.

Let CI denote the function which performs the renaming necessary to maintain

static scope. The function CI takes a program segment S and a finite set of identi-

fiers I and returns a program segment S' such that S and S' are congruent and no

identifier bound in S' occurs in I. The function CI is the copy rule C60 introduced by

Olderog [29]. It performs a non-deterministic renaming of identifiers. To make this

deterministic let CI choose the next available identifier whenever a new identifier is

needed. The set I of identifiers in CI contains those identifiers which are visible when

the call is made. Thus frequently CI will be written without the subscript I as C.

The meaning of a recursive unit E IP S depends upon the current level of nesting

of that procedure. Therefore semantics must be given relative to bounded recursive

units. The bounded recursive unit E I| S denotes a recursive unit E IP S where S

is a program segment on p's cycle and active copies of this cycle may be nested b

additional times. If b = 0 calls to p will be ignored.









The semantics for CC are defined by a mapping E which, given an interpretation
2, assigns a state function E (7r) to every program of LC as follows.

S'(Ir) = E-(0 I Sd) where 7r = (S, ), Sd S and Sd is distinguished.

EZ(E x, := e) = assign1(x,e)

s2(E S; S2) = compjI(E(E I S), (E I S2))

S (E loop e; S, end) = loop1(e, S-(E I 5'))

E2(E begin xz; S, end) = blockj(x;, 1(E I Sx))

SI(E begin Ei;SI end) = S(E' I S) where E' = Add(E, E)
(IE p) E (E T) if E p is not a start node
S(E I p I(e)(s)) if E p is a start node
for proc p e; T end E E
p id ifb = 0
-E) = (E I, C(T)) if b> 0
EZ(E |P xi, := e) = assign(r, e)

E (E I S1;52) = compZ(EI(E |I SI), EZ(E I S2))

E"(E (I loop e; S1 end) = loopZ(e, SE(E I S,))

EZ(E [1 begin xi; S, end) = block-(xi, ES(E 1P Si))

SZ(E 1E begin EI; St end)= E (E' I Si) where E' = Add(E, E)
E (E I p b) ifq = p
EZ(E l q) = E(E l C(T)) if q is on p's cycle, q 0 p
E (E I q) if q is not on p's cycle
for proc q e; T end E E










Notice that for min(E I p b) = min(E' I p b), EZ(E I p b)(s) = I(E I p b)(s). Also
notice that the above semantics are operational. The meaning of a recursive procedure

call is given in terms of the copy rule applied to the body of that procedure. When
the translation is given from an CC program to the PR function which denotes that
program, denotational semantics are given. Thus, the PR functions corresponding to
program units in LC must not utilize copy rules.
Proving a property about an C program can no longer be done as a simple
induction on program segment S. Following is an example proof showing how an
arbitrary property R is proven for a program unit EI S. That is, it will be proven
that for a program unit E I S, R(E I S) holds.
The proof involves a number of inductions on a program unit E I S. These
inductions occur within two contexts; induction on a distinguished program unit

E I S, and induction on a distinguished bounded program unit E If S. First prove
that property R holds, in either context, for S a non-call construct. That is, first
prove R(E I S) and R(E If S) for S a non-call construct.
Once the above has been proven it is know that R(E I S) holds for the non-call

constructs. All that is left to show is R(E I p). Prove this by induction on the height
h of the E I p di-graph. Let proc p e; T end E E.
Say h = 0 and the call E I p is not the start node of a cycle. Show that, for E I T

a distinguished program unit, R(E I p) follows from R(E | T). Once this has been
shown, all that is left to show is that R(E I T) holds. It will have been shown that
the property R(E I T) holds for the non-call constructs. Since h = 0 there are no

calls in procedure body T.










Say h = 0 and the call E I p is the start node of one or more cycles. Show that
R(E I p) follows from R(E I p b). Once this has been shown, all that is left to show
is that R(E I p b) holds.
Prove R(E p b) by induction on bound b. Show R(E I p 0) holds. Assume

R(E I p b 1) holds for any program unit E I p. Show that, for E I T a distinguished
program unit, R(E I p b) follows from R(E |l- T).
It will have been shown that, for any b, R(E I( T) holds for the non-call constructs.
Since h = 0, calls in procedure body T can only be to the first node on a cycle.
Consider the cycles on node E I p. Label the calls participating in these cycles
according to how many calls there are between the edge representing this call and
the edge entering node E I p. That is, the nth call directly to procedure p is labeled

E, o I qn,o. Label the nth call to a procedure which is m calls away from a recursive
call to procedure E I p, En,m I q,m- Property R(E I_1 T) holds for each call

En,m P Q,,m if it can be shown that, for 0 < i < m, R(En,i I -1 qn,i).
Prove R(En,,i |_ q,,i), 0 < i < m, for any n, by induction on i. First show

R(En,o |I-I qn,o), i.e. R(En,o l-_ p), using the inductive hypothesis on b. For 0 < i <
m, proc qn,i en,i; Un,i end E En,, and E,,i, Un. distinguished, show R(En,i |-1 qn,i)
follows from R(En,i \.-1 Un,,).
It ill have been shown that R(En,i I~ Un,i) holds for the non-call constructs.
Since the cycles are simple and h = 0 the only calls in Un,i are calls of the form
En,I1 I qn',i-l. The property R(En,,i-1 ib- n q,i-1) holds for these calls by induction
on i.
Let h > 0. The proof that R(E [ p) holds where h > 0 is similar to the proof that

R(E I p) holds where h = 0 except that an additional case is needed to inductively
prove some of the equations. Only these additional cases will be discussed.










Say E I p is not a start node. In proving R(E I T) the procedure body T may
contain a procedure call. The height of the di-graph for this call will be less than h.
Thus, R(E I T) holds for this call by induction on h.
Say E p is the start node of one or more cycles. In proving R(E I T) the
procedure body T may contain one or more calls to a procedure whose node is not
on the cycle. Show that for such a call q, R(E I I- q) follows from R(E q). The
height of the E I q di-graph will be less than h. Thus, R(E I q) holds by induction
on h.
In proving R(E I|1 T) for a call to the next node on a cycle R(E,,i If-1 U,i)
must be proved. Here Un,i may contain one or more calls to a procedure whose node
is not on the cycle. This case is handled as it was in the previous paragraph.
The above shows how to prove a property of CC programs. Thus, we have a
programming language, which includes a powerful form of recursion, yet for which
properties can be proved using simple, yet tedious, nested inductions.
Lemma 39 (Substitution Lemma) For a program unit E j S and a substitution p
which is injective on free(min(E I S))

EZ((E S)p)(s) = (E(E I S))p(s).


Proof: This lemma is straightforwardly proved using the technique given in the ex-
ample proof. 1

Lemma 40 For a program unit E I S, E(E | S) is a program function on
free(min(E I S)).


Proof: It is shown that Ei(E I S) is PR for I an interpretation on N in the following
section. It can be shown that E"(E I S) is stable and aloof, with respects to its
inactive variables, as it was in Chapter 2. 0









The following properties of program functions are useful in proving the soundness
of the new verification system.
Lemma 41 (Extension to Lemma 8) Let f be a program function on X.
1. f(P[x/y]) C Q[/y] = f(P) C Q where nX =0 and yf X =0.
2. f(P[g/yj) C Q f(P) C Q where fn (X U free(Q)) = 0.


Proof:

1. Assume f(P) C Q, k n X = 0 and yA n X = 0. Let {s(k)/yk} denote the
replacement {s(xl),..., s(xk)/y1, ... yk}

s E StZ(P[F/yj)
=> s{s(Sk)/Yk} E StZ(P) Corollary 3
=* f(s{s(ik)/yk}) E StZ(Q) Assumption
4= (f(s)){s(ifk))/k} E Stj(Q) f is stable
= f(s) E StZ(Q[I/gkk]) Corollary 3

2. Assume f(P) C Q and :fk n (X U free(Q)) = 0.

s E StZ(P[4k/yk])
= s{Z(ei)(s),... ,(ek)(s)/yl,..., k} E StZ(P) Corollary 3
= f(s{Z(el)(s),...,Z(ek)(s)/yl,...,yk}) E StZ(Q) Assumption
f(s) E StZ(Q) fnk Nfree(Q) =




4.4 C Computes the Class of PR Functions

In the last two chapters the function gs was defined which simulated program
segment S. In this chapter gEls will simulate program unit E I S. Define the
function gEIS(X) as follows.
S xi := e gEIs(x) = set,(e,x)










S Si; S2 9Els(x) = 9E|S2(a9ES(X))

S loop e; S1 end gEIs(x) = 9Eg )(X)

S begin xi; S1 end gEIs(x) = dropx,(gEIs (add~,(a, )))
S = begin E1; S1 end gEls(x) = gE'lIS(x) where E' Add(E1, E)
S = p where proc p e; T end E E

EI(X) f gET(x) if E I p is not a start node
9Ep rEIp(ge(x),x) if E p is a start node


Sx ifb=0
where rfEp(b, z) = /, \
where r (b,x) 9ET(b 1,x, rEp(b 1,x)) if b > 0
follows.


and gEjPs is defined as


5 x; := e gEiPs(b,x,rE'lp(b,x)) = set,,(e,x)

S Si; S2

9EIPs(b, x, rEi'p(b, x)) = gEIPS, (b, gElpS, (b, x, rE'lp(b, x)), rE'p(b, gEjpS, (b, x, rE'Ip(b, X))))


S loop e; S5 end gEIPs(b, x, 7E1'p(b, x)) = g9E (x)

S E begin xi; Si end

9EIPS( Epb, r (b x)) = drop,( gEPs, (b, add, (a, x), rE'p(b, add, (a, x))))


S begin Ei; S, end

9E\Ps(b, x, rE'Ip(b, x)) = gE" ps(b, x, rE'\p(b, x)) where E" Add(EI, E)


S q where proc q e; T end E E
SrE'\p(b,x) if q p
gE1Pq(b,x, rE'Ip(b,x)) = gEIPT(b, x, rE'lp(b, x)) if q is on p's cycle, q p
gElq(X) if q is not on p's cycle










Notice that for min(E I p) = min(E' I p), rElp(b, x) = rE',p(b, x). With the above
definition we can now prove.
Lemma 42 For program unit E I S where free(min(E I S)) = X

gEIs(c(s[X)) = c( (E I S)(s) X).


Proof: Let 7 c(s[X). This proof uses the technique given in the example proof
on page 63. It involves a number of inductions on a program unit E I S. In each
context the treatment of the non-call constructs is the same. In these contexts the
following holds for the non-call constructs.

gEls(7) = c(ZE(E I S)(s)[X) (4.1)

9E|PS(b, 7, rEl(b,/7)) = c(E"(E |j S)(s)[X) (4.2)

The proof of equations 4.1 and 4.2 are similar. The proof of equation 4.2 will be
given.
S = X := e

9EIPS(b,-, rElp(b, )) = set,(e, 7)
= c(s{Z(e)(s)/x,} [X)
= c(assign(x;,, e)(s) X)
= c (E (E l S)(s)[X)

S S=1;S2

gElPs(b, rElp(b, -))
= gEIPS2 (b, gEPS, (b, 7, rElp(b, Y)), rElp(b, gEIPS, (b, rEIp(b, Y))))
= gEIPs,(b, c(E'(E I S)(s)rX),rEp(b, c(EZ(E jI Si)(s)[X)))
= c(E l(E IJ S2) o (KE(E I| Si)(s))rX)
= c(comp1(EZ(E I S,), (E I S2))(s)rX)
= c(EZ(E I| S)(s) X)









S loop e; S, end First prove gdls, (7) = c(E(E I S)(s) [X) by induction on d.
From that result the following holds.

gEPs(b,7,TrEp(b,7)) = gE, ()
= gE )(s)
= c(E(E I Sij)(e)(s)(s)rX)
= c(loopZ(e, EZ(E I S))(s) X)
= c(r(E ( S)(s) [X)

S begin xi; S1 end

gEIPs(b, 7, rTEp(b, 7))
= drop., (gEjPSi (b, add., (a, 7), rElp(b, add, (a, 7))))
drop, (gEIPs, (b, c(s{Z(a)/xli}rX U {x,}),
rE p(b, c(s({Z(a)/x} X U {x;,}))))
= drop, (c(EZ1E I Si)(s{I(a)/x,})rX U {.x}))
= c((E(E I' Si)(s{Z(a)/zx})){I(xi)(s)/x,} X)
= c(blockj(xji, (E [l Si))(s)rX)
= c(E(E I S)(s) F[X)

S begin Ei; S1 end

9EIpS(b, rEjp(b, -)) = gE'ps, (b, 7,rEIp(b, Y)) where E' Add(E, E)
= c(EJ(E' I Sl)(s)[X)
= c(~(E Ij S)(s)[X)

The above proof sections will be referred to multiple times in the proof of this lemma.
The proof of equation 4.1 shows that the lemma holds for the non-call constructs.
All that is left to show is that the lemma holds for the call E I p. Prove this by
induction on the height h of the E ( p di-graph. Let proc p e; T end E E.
Say h = 0 and the call E I p is not the start node of a cycle. If it can be shown
that


gEIT(Y) = c(E (E I T)(s)rX)


(4.3)









then the following holds.

gEjp(7) = 9EIT(7)
= c(E I(E T)(s)[X)
= c(E(E Ip)(s) [X)
Equation 4.3 has been proved for the non-call constructs. Since h = 0 there are no
calls in procedure body T.
Say h = 0 and the call E I p is the start node of one or more cycles. If it can be
proved that

rElp(b, -) = c(El(E I p b)(s) [X) (4.4)

then the following holds.

9gEp(7) = rEjp(9e(7), 7)
= rElp(Z(e)(s), 7)
= c( (E p Z(e)(s))(s) X)
= c(-E(E p)(s)[X)
Prove equation 4.4 by induction on b. For b = 0

1Elp(b,7) = 7-
= c(id(s) X)
= c(VI(E p b)(s)[X).
Suppose that b > 0. If it can be shown that for T distinguished

gEIpT(b 1,, 7rE(p(b 1,7)) = c(YS(E I-1 T)(s)[X) (4.5)

then the following holds.

rEp(b, 7) = gE|PT(b -1, y, rE|p(b 1, ))
= c( (E Ir-1 T)(s)[X)
= c(EY(E j1-, C(T))(s)[X)
= c(C(E (p b)(s)[X)
The proof of equation 4.2 shows that equation 4.5 holds for the non-call constructs.
Since h = 0, calls in procedure body T can only be to the first node on a cycle.









Consider the cycles on node E [ p. Label the calls participating in these cycles
according to how many calls there are between the edge representing this call and
the edge entering node E I p. That is, the nth call directly to procedure p is labeled
E,,o qn,0. Label the nth call to a procedure which is m calls away from a recursive
call to procedure E | p, En,m I qn,m. Equation 4.5 holds for each call En,m I qn, if it
can be shown that, for 0 < i < m, the following holds.

gE,,,Pq,(b 1,7, rElp(b 1, )) = c('. (En,, I-1 qn,)(s)[X) (4.6)

This will be proven for any n by induction on i.
For i = 0 if it can be shown that

rEIp(b 1,7) = c(Z(E I p b- 1)(s)fX) (4.7)

then the following holds.

gEn,olPqn,o(b 1, rElp(b 1, 7)) = gE,,o pp(b 1, 7, rEp(b 1, ))
= rTEp(b 1,7)
= c(Z (E I pb- 1)(s) X)
= c(EY(Eo I qn,o b- 1)(s)[X)
c((En,o 1-,1 qn,o)(s)[X)

Equation 4.7 holds by induction on 6.
Let 0 < i < m and proc qn,, en,i; R,,i end E En,i. If it can be shown that for Rn,i
distinguished

gE,R ,IPR,,(b 1, 7,rEp(b 1, 7)) = c(E"(En,; 1 1 Rn,i)(s)[X) (4.8)

then the following holds.

gEn,lPq,s(b- 1,yrElp(b- 1,7)) = gEn,IPR,(b- 1,7,rElp(b- 1,))
= c(Z(E,,i I-1 Rn,i)(S) X)
= c(CE(E,,i i-1 C(R.,,))(s)[X)
= c(EZ(En,i 1, q,,i)(s)[X)










Equation 4.8 holds for the non-call constructs. Since the cycles are simple and h = 0

the only calls in R,,i are calls of the form En,i-|1 q,',i-i. Equation 4.8 is proved for
these calls by induction on i.
Let h > 0. The proof that the lemma holds for the call E I p where h > 0 is

similar to the proof that the lemma holds for the call E I p where h = 0 except that
an additional case is needed to inductively prove some of the equations. Only these

additional cases will be discussed.

Say E I p is not a start node. In proving equation 4.3 the procedure body T may
contain a procedure call. The height of the di-graph for this call will be less than h.

Thus, equation 4.3 holds for this call by induction on h.
Say E | p is the start node of one or more cycles. In proving equation 4.5 the

procedure body T may contain one or more calls to a procedure whose node is not

on the cycle. If it can be shown that

gEq(Y) = c(EI(E q)(s)[X) (4.9)

then the following holds.
gEIPq(b- 1,y,rEip(b 1,7)) = gElq (Y)
= c(E(E I q)(s)[X)
= c(E(E(E 1I q)(s)rX)
The height of the E I q di-graph will be less than h. Thus, equation 4.9 holds by

induction on h.

In proving equation 4.5 for a call to the next node on a cycle equation 4.8 must

be proved. Here R,,i may contain one or more calls to a procedure whose node is not

on the cycle. This case is handled as it was in the previous paragraph. 0

The proof of Lemma 42 would be simpler if the function being recursively defined

corresponded to a procedure body. Instead the function corresponds to those proce-

dures which make up a cycle. In this chapter, the sequence of procedures making up










a cycle can be reduced to a single procedure by replacing each procedure call to an

inner node with its procedure body. Such a translation makes all recursive calls di-

rect. This translation always occur for program segments in LC whose call di-graphs

contain only simple cycles. While this translation is possible for a PR language with

parameterless procedures, or a PR language with variable parameters, it is not pos-

sible for a language with procedure parameters. Therefore such a translation will not

be utilized here.

Theorem 43 The class of functions computed by C programs is the class of PR
functions.


Proof: Notice that for an LC program 7 = (S, z), S Sd where Sd is distinguished

and free(S)=X

c(Z (r)(s) [X) = 90sd(c(s[X)).

It can be seen from the definition that the function gEls is PR. Therefore each C

program 7r computes a PR function. LC is an extension of LB and there is a program

in LB which computes every PR function. Thus, the class of PR functions and the

class of functions computed by C programs are equivalent. O



4.5 Verification of CC programs

The verification systems HpR and -B consisted of Hoare statements on program

segments. It is straightforward to modify these to Hoare Statements on program

units and bounded recursive units. In addition -C contains rules to verify Hoare

statements about parameterless procedures. The verification system HC for the new

language LC follows.









Program Rule

{P}0 I Sd{Q}
{P}r{Q}
for 7r = (S, z), S S Sd and Sd distinguished.

Assignment Axiom
{P[e/x]}E x := e{P}

Composition Rule
{P}E S1{R}, {R}E S2{Q}
{P}E I Si;S2{Q}
Invariance Rule

{P}E I S{Q}
{PA R}E I S{Q A R}
for free(R) n free(min(E S)) = 0.

Iteration Rule

{P[y/x] A 0 < y < e}E I S{P[s(y)/x]}
{P[0/x]}E I loop e; S end{P[e/x]}
for x ( var(e) U free(min(E I S)) and
y V var(e) U free(min(E I S)) U free(P).

Consequence Rule
P1 P,P}E I S{Q},Q Q,
{PI}E I S{Q1}
Variable Declaration Rule

{P[y/x] A x = aE I S{Q[y/x]}
{P}E I begin x; S end{Q}
for y free(P V Q) U free(min(E I S)).









Procedure Declaration Rule

{P}E' I S{Q}
{P}E I begin E1; S end{Q}
for E' = Add(E1, E).

Environment Rule

{P}E' I S{Q}
{P}EIS{Q}
for min(E I S) = min(E' I S).

Non-Recursive Procedure Call Rule

{P}E I S{Q}
{P}E I p{Q}
for E I p not a start node and proc p e; S end E E.

Recursive Procedure Call Rule
P[O/w] -* Q[0/w],
({P[v 1/w] A O < v e}E I_1 p{Q[v 1/w] A 0 < v < e}
t-c {P[vw] A 0 < v < e}E I|_- S{Q[v/w] A 0 < v < e})
{P[e/w]}E I p{Q[e/w]}
for proc p e; S end E E and v V free(min(E I p)) U free(P V Q).

Rules to prove Hoare triples for recursive program units E I S.

Assignment Axiom
{P[e/x]}E I' x := e{P}

Composition Rule
{P}E I' S1{R}, {R}E Ip S2{Q}
{P}E Ip S1; S2{Q}









Invariance Rule
{P}E [p S{Q}
{P AR}E S{Q A R}
for free(R) n free(min(E IP S)) = 0.

Iteration Rule
{P[y/x] A 0 < y < e}E [I S{P[s(y)/x]}
{P[0/x]}E I| loop e; S end{P[e/x]}
for x V var(e) U free(min(E IP S)) and
y V var(e) U free(min(E IP S)) U free(P).

Consequence Rule
P -- P,{P}E I S{Q},Q -+ Q
{P,}E IP S{Q1}
Variable Declaration Rule
{P[y/x] A x = a}E P S{Q[y/x]}
{P}E lp begin x; S end{Q}
for y V free(P V Q) U free(min(E IP S)).

Procedure Declaration Rule
{P}E' IS S{Q}
{P}E I begin E; S end{Q}
for E' = Add(E, E).

Environment Rule
{P}E' I| S{Q}
{P}E S{Q}
for min(E |P S) = min(E' I S).

Inner Procedure Call Rule
{P}E I S{Q}
{P}E [p q{Q}
for q on p's cycle, q 0 p and proc q e; S end E E.










Off Cycle Procedure Call Rule

{P}E q{Q}
{P}E I q{Q}
for q not on p's cycle.


Substitution Rule #1

{P}E I p{Q}
{P[F/y]}E I' p{Q[Y/y}l
where nfn free(min(E IP p)) = 0 and y'n free(min(E IP p)) = 0.


Substitution Rule #2

{P}E p{Q}
{P[e/y-}E lp p{Q}
where yn (free(min(E IP p)) U free(Q)) = 0.


Notice that the Recursive Procedure Call Rule refers to provability. A calculus
of sequents would be a more formal presentation than the natural deduction system
given here. It can be shown. however, that the system presented can be translated
to a calculus of sequents.
The Recursive Procedure Call Rule requires that a Hoare triple be proved as-
suming the provability of another Hoare triple. Frequently the Hoare triple which is
assumed needs to be modified for the proof. The Invariance Rule enables the adap-
tation of the assumed Hoare triple for the proof. The Invariance Rule can be made
obsolete with slight modifications to 1HC [2]. In fact, in 'nC the following weaker
Invariance Rule would suffice.

{P}E lp{Q}
{PA R}E lI p{Q A R}
for free(R)n ffree(min(E IP p)) = 0.










The general Invariance Rules are convenient however. Without these rules infor-

mation needed about the variables not used in a program segment must be carried

throughout the proof. This is the role assertion P played in the lemma showing

the provability of a SPC Hoare triple in Chapters 2 and 3. The general Invariance

Rules are included in 'HC since extra information in a proof tends to obscure what

is happening in that proof.

Call the variables not used in a procedure auxiliary variables of that procedure.

Here is a description of how the assumption resulting from an application of the Re-

cursive Procedure Call Rule is typically modified. Substitution Rule #1 renames one

or more auxiliary variables of the assumption. The Invariance Rule states that these

renamed variables are not changed by the procedure call. The Consequence Rule is

used to remove the auxiliary variables from the postassertion. Finally, Substitution

Rule #2 is used to replace the auxiliary variables in the preassertion by useful ones.

For r = proc p n; x := x 1; p; x := x + 1 end; p, the proof that


-H {xfz > \=x }A{ = = }

demonstrates the use of these rules. Auxiliary variable z is used to show that for

x > n program 7 does not change the value of x. Let


E procp n;x := x 1;p;x :=x+ 1 end.











{z > n Ax = z}l{ = z}
T
Procedure Declaration Rule

{z > n A x = z}E I p{x = z}
T
Consequence Rule
I
{z > n A x = z}E I p{z > n A = z}
T
Recursive Procedure Call Rule
preassertion: z > w A x = z
postassertion: >_ w A x = z

(z > 0A x= z) -- (2 > 0 A ),
Assume {z > v-lAx z AO Prove {> vA z=AO {z >vAx = zAO < v T
Assignment, Composition and Consequence Rules

{z -1 > v Az = 1 A0 < v < n}E I_ pz 1 > v- 1Ax = z- 1AO < v < n}


This final Hoare triple is the result of replacing z everywhere in the assumption
by z 1. This is done as follows.











{z- > v- Ax =z- AO {z-1 >v- lAx=z- AO T
Consequence Rule

{z 1 > v -1Ax = z 1A O < v < n Az 1 = z 1}E Iv-_ p
{z -1 > v A z AO < v < n}
T
Substitution Rule #2 with [z l/d]
Remove the auxiliary variable d from the preassertaion.
I
{d > v lA = d A O < v < nAd= 1}E p
fz 1 > v A a= z 1 A O < v T
Consequence Rule
Remove the d from the postassertaion.

{d> v- A x = d A 0 {d > v 1 A x = d A 0 < v < n Ad = z 1}
{d2>v-lAx=dAO T
Invariance Rule
Form the connection between the old and new z.
I
{d > v 1 A x = d A O < v < n}E 1'_i p
Id >v 2 1 A x = dA 0 T
Substitution Rule #1 with [d/z]
Replace z in the assumption by the inactive variable d.

{z>v 1 Ax = z AO {z > v- 1A x= z A 0 < v Assumption


This completes the example. Notice that the substitution rules would be sound even
if procedure call p was replaced by program segment S in these rules. The weaker
substitution rules suffice to provide a complete verification system for HC.










A restriction could be placed on the system that programs can not make recursive

calls with a zero bound value. This would require conditional statements in the
program, rather than the bound, to control the depth of recursion. An example of a
recursive procedure controlled by conditional statements, and a recursive procedure
controlled by the bound, are given in figure 4.5. Recursive routines are ordinarily
controlled by conditional statements. The role of the bound should be an assertion of
the maximum nesting depth on the routine. Letting the bound determine the depth
of the recursion creates a procedure more in the flavor of iteration than recursion.
Utilizing the bound as a control mechanism could be considered a misuse of the
language. If a guarantee is made that recursive calls will not be made with a zero
bound, the Recursive Procedure Call Rule simplifies to the following.
P Q,({P}E P p{Q}F-7c{P}E IP S{Q})
{P}E p{Q}
for proc p e; S end E E

This guarantee could be verified by a run time check on the value of the bound each
time a recursive call is executed. This restriction can not be guaranteed syntactically
however. Therefore, recursive calls with a zero bound will be allowed and the more
complicated Recursive Procedure Call Rule will be used.


4.6 Soundness of RC

In the previous two systems a Hoare statement {P}S{Q} is valid, in an in-
terpretation I, if the result of applying a program function fs to any state in P

yields a state in Q. That is Z-{P}S{Q} if fs(Stj(P)) c StZ(Q), or in the
shorter form fs(P) C Q. In the expanded system being presented, Hoare state-
ments are of the form {P}E I S{Q} and {P}E I~ S{Q}. Write =-Z{P}E I S{Q} if

EZ(E I S)(St1(P)) C StZ(Q), or in the shorter form, EZ(E I S)(P) C Q. Similarly








82









Recursive procedure whose depth is determined by a conditional statement.


II1 = proc add n'
if n > 0 then


n := n 1
add
n :=n+1
z := z+1


end
end
Z := m
add


#z TIn' > n}Z11{ = n + m}


Recursive procedure whose depth is determined by the bound.

II2 proc add n'
add
z:= z+
end
S:= m
add


=7 {In' = n}12{z = n + m


Figure 4.5. Example of types of recursive procedure control










write H-={P}E | S{Q} if E (E | S)(P) C Q. For program r, write HI{P}r{Q}

if EC(r)(P) C Q.

Recall that the soundness of the Iteration Rule implies that the theory support-

ing the Hoare axioms and rules proves induction on arbitrary formulas. A similar
situation exists for the Recursive Procedure Call Rule. The Recursive Procedure Call

Rule where the pre- and postconditions are formulas from En, will be referred to as

the E,-Recursive Procedure Call Rule.

Lemma 44 For a complete theory T D PRA and a Hoare system H which includes the
Assignment Axiom, Consequence, Composition. Procedure Declaration and Procedure
Call Rules
1. E,-Recursive Procedure Call Rule is sound = T F- E-induction
2. T En+1 -induction = Zn-Recursive Procedure Call Rule is sound



Proof:

1. The proof of this implication uses the same technique as the proof of this

implication in Lemma 14. Recall that P(0) and Vx(P(x) -+ P(x + 1)) are assumed,

and that P(a) is to be proven. The Hoare statement to be used to prove P(a) is that

for r = proc q a; q; i := i + 1 end; i := O;q, and i V free(P), -H f{P[O/x]}Tr{P[a/x]}.

Let E = proc q a; q; i := i + 1 end.










{P[0/x}7r {P[a/x]}
T
Procedure Declaration Rule

{P[O/x]}E i := 0; q{P[a/x]}
T
Assignment Axiom, Composition and Consequence Rules
I
{(P A i = x)[O/x]}E I q{(P A i = x)[a/x]}
T
Recursive Procedure Call Rule
precondition: (P A i = x)[O/x]
postcondition: (P A i = x)[w/x]

((P A i = x)[0/x]) -- ((P A i = x)[0/x]),
Assume {(P A i = x)[0/x] A 0 < v < a}E I_-1 q{(P A i = )v 1/x] A 0 < v < a}
(P A i = x)[0/x] A 0 < v < a}E I -_ q; i := i + 1
Prove V
{(PA i = x)[v/x]A0 < v < a}
T
Assignment Axiom, Composition and Consequence Rules

{(P A i = x)[0/x] A T
Consequence Rule T a

{(P A i = x)[0/x] A 0 < v < a}E I1, q{(P A i = x)[v 1/x] A 0 < v < a}


The proof of implicaion a is as follows.

(P A i = x)[v l/x] A 0 < v < a
= P[v- /x]Ai =v-1AO SP[v/x]Ai+1=vAO = (PAi+1= x)[v/x]AO
2. Assume T En,+i-induction. The proof of the soundness of ,E-Recursive
Procedure Call Rule, using En+i-induction, is given in the proof of the Soundness
Theorem.
0










A Hoare statement is proven correct as follows. First consider the call di-graph

of each call in the program unit. Reduce the cycles in these call di-graphs so that
the graphs become trees. Prove a Hoare statement for the leaf nodes of these trees.

Using these Hoare statements, prove Hoare statements for those nodes with calls
to the leaf nodes. Continue this way, working up the tree until the original Hoare

statement has been proven. Proving Hoare statements in this way guarantees that
proofs in the antecedent of the Recursive Procedure Call Rule do not require addi-

tional applications of the Recursive Procedure Call Rule. This is a more restricted

definition of proof than the one given by Olderog. In Olderog's proofs the Hoare

axioms and rules may be applied in any order. Proofs in the PR system presented

here are layered according to the call structure of the program. This is a stronger,

and more structured, notion of proof.

Theorem 45 (Soundness) For a Hoare triple {P}E I S{Q}

-c{P}E I S{Q} -= PA {P}E I S{Q}.


Proof: Prove this by induction on the proof system HC. The proof of the soundness

of the rules translated from -B can be straightforwardly modified for this section.

The proof of the soundness of the Procedure Declaration, Environment and the pro-

cedure call rules are straightforward from the semantics of LC. The proof of the
soundness of the substitution rules follow from Lemma 41. The soundess of the

remaining rules will be shown. Let I be an interpretation of PA.

Recursive Procedure Call Rule:

Assume -HC {P[e/w]}E I p{Q[e/w]} for proc q e; S end E E and E I p the

start node of one or more cycles. Then in that proof, HPRA P[O/w] -+ Q[O/w]

and for v free(min(E I p)) U free(P V Q), {P[v 1/w] A 0 < v < e}E |V-1









p{Q[v 1/w] A 0 < v < e}l-H {P[v/w] A 0 < v < e}E 1-_1 S{Q[v/w]}. Due
to our restricted notion of provability, the proof of the above did not require
an additional application of the Recursive Procedure Call Rule. Therefore, by
induction on the soundness of the proof system, =I-{P[v 1/w] A 0 < v <
e}E I,_, p{Q[v 1/w] A 0 < v < e) implies )=Z{P[v/w] A 0 < v < e}E |P_
S{Q[v/w]A 0 < v e}.
Let P be a E,, formula. Prove, by E,+i -induction on b, that for b > 0

-IE (E I p v)(P[v/w] A 0 < v < b) C (Q[v/w] A 0 < v < b). (4.10)

Let b = 1. Since first order logic is sound, =-P[0/w] --, Q[0/w].

IjP[O/w] -- Q[0/w]
S-lid(P[0/w]) C Q[0/w]
r TEZ (E I p O)(P[0/w]) C Q[O/w]
1z-lE I(E gp)(P[O/w]) D Q[0/w]
= I=-Z(E |_, p)(P[v 1/w] A 0 < v < b) C (Q[v 1/w] A 0 < v < b)
= I1 1(E _-1, S)(P[v/w] A 0 < v < b) C (Q[v/w] A 0 < v < b)
S=ISE(E I_- C(S))(P[v/w] A 0 < v < b) C (Q[v/w] A 0 < v < b)
=2-EZ(E I p v)(P[v/w] A 0 < v < b) C (Q[v/w] A 0 < v < b)

Assume the statement is true for b.

-jE (E I p v)(P[v/w] A 0 < v < b) C (Q[v/w] A 0 < v < b)
=> hZEJ (E l p)(P[v/w] A 0 < v < b) C (Q[v/w] A 0 < v < b)
# "=E E E-1i p)(P[v 1/w] A O < v < b+ 1)C
(Q[v- l/w] A 0 < v b + 1)
>=2- (E j( -1 S)(P[v/w] A 0 < v b+ 1) C
(Q[v/w] A < v < b+ 1)










h ZEI(E j, C(S))(P[v/w] A 0 < v < b+ 1) C
(Q[v/w] A < v b+ 1)
= l"-Z(E I p v)(P[v/w] A < v < b + 1) C (Q[v/w] A < v b+ 1)

Prove =IE'(E I p)(P[e/w]) C Q[e/w]. This holds if =jE-Z(E p I(e)(s))
(P[e/w]) C Q[e/w]. For I(e)(s) = 0 the statement holds because -TP[O/w] -+
Q[0/w]. Say Z(e)(s) > 0. Statement 4.10 where b = Z(e)(s) implies Z=E (E
p I(e)(s))(P[e/w]) C Q[e/w].

Invariance Rule:

The soundness of the Invariance Rule for a bounded program unit is shown.
The proof of the soundness of the Invariance Rule for a program unit is similar.
Assume free(R) lfree(min(E IP S)) = 0 and -HC{PPAR}E If S{QAR}. Then
in that proof, -. c{P}E |I S{Q}. By the inductive hypothesis =E (E I
S)(P) C Q. Let s E St1(P A R). Since the program function EZ(E I' S)
is stable, EZ(E Ip S)(s) E StZ(Q A R). Therefore Z-E (E [I S)(P A R) C
(QA R).




4.7 Completeness of HC(

The completeness of nC is proven similarly to how it was proven Chapter 2.
Lemma 46 ForIZ PRA and a Hoare formula {P}E I S{Q} where free(min(E I S)) C
free(P) = free(Q)
Hz {P}E I S{Q} #- Vx(P+(x) '- Q+(gEs(X))).

Proof: This proof uses the same technique as was used in Lemma 18 of Chapter 2.
O










Theorem 47 (Strongest Postcondition Theorem) Given program unit E I S and as-
sertion P with free(min(E I S)) C free(P) = X = {Xi,..., k} the SPC of E S,P
is
Q 3yk(Vi < k(x, = (gElsp(y))yi) A Pp)
where p = [Yik/yk], and y = c((yl Yi) *. (Yk yk)).

That is the following hold:

1. kPRA {P}E I S{Q
2. =PRA {P}E I S{R} =+PRA Q -' R


Proof: This proof uses the same technique as was used in the SPC Theorem of
Chapter 2. E

In Chapter 2 and 3 showing the completeness of the verification system required
showing the provability of a SPC Hoare triple for program segment S and assertion
P. That is, it was proven that for free(min(S)) C free(P) = X = {xi,...,xk},

Y = {yi,.. ,Yk}, X n Y = p = [YA/Pk] and y = c(y y'k)

t-HC {Vi < k(x, = y;) A P}S{Vi < k(x, = (gEIsP(y))ya) A Pp}.

Notice that Vi < k(xi = y;) A P =* Vi < k(xi = yi) A Pp and the free variables of
Pp are disjoint from the free variables of S. Therefore, now that the Invariance Rule
is included in 'HC, a simplified version of the SPC Hoare triple suffices to show the
verification system is complete. Rather than showing the provability of a SPC Hoare
triple, the provability of a most general formula, MGF, will be shown.
Lemma 48 (MGF) For a program unit E I S where free(min(E I S)) = X = {a,..., Xk},
Y= {y1,...,yk}, X n Y = 0, p = [y/ k] and y = c(y yk)

FHC{Vi < k(x, = y)}E I S{Vi < k(xi = (gEISP(Y))y,)}










Proof: Assume that i goes from 1 to k. The proof uses the technique given in the
example proof on page 63. Induction on a program unit E I S is used a number of
times in this proof. In each context the treatment of the non-call constructs is the
same. In these contexts the following holds for the non-call constructs.

--HC {zx = y,}E I S{xi = (gEISP(Y))yi} (4.11)

-C{xi = y,}E (~ S{x, = (gE1Psp(b,y,rEq'pp(b,y)))y} (4.12)
for a cycle entered via the call E' I p

For S an assignment, composition, iteration or a variable declaration statement,
proofs of the above use the same technique as was used in proving Lemma 28 in
Chapter 2. Equation 4.11 will be proved for S a procedure declaration statement.
The proof of equation 4.12 for a procedure declaration statement is similar.

S = begin E1; Si end and E' = Add(E1, E).

{x, = y,}E | begin E1;S, end{x, = (gsp(y))y,}
T
Procedure Declaration Rule

{x = y}I E' I S,{xi = (gsp(y))y}
T
Consequence Rule

{i = y,}E' SI,{z = (gE'Is,p(y))y_}
Inductive Hypothesis


The proof of equation 4.11 shows that the lemma holds for the non-call constructs.
The provability of a MGF for a procedure call E I p is left to show. Prove this
by induction on the height h of the E p di-graph. Notice that this induction
is not occurring within the proof system. A call di-graph has a fixed height. Let
proc p e; T end E E.










Assume h = 0 and the call E p is not the start node of a cycle.


{x, = yi}E I p{xi = (gEIpp(Y))yi}
T
Non-Recursive Procedure Call Rule

{x, = yi}E I T{xi = (gElpp(Y))y,}

Consequence Rule

{x, = yi}E I T{x( = (gEjTP(Y))yi}


The provability of the above triple has been shown for the non-call constructs. Since
h = 0 there are no calls in procedure body T.
Suppose h = 0 and the call E I p is the start node of one or more cycles.











{x, = yi}E I p{x( = (gEIpp(Y))y/}
T
Consequence Rule
Let d be a fresh variable.

{xi = yi A d = e}E I p{jz = (rEipp(d, y))yi A d = e A O< d < e}
T
Recursive Procedure Call Rule
precondition: xi = y, A d = w
postcondition: xi = (rEipP(d, y))i A d = A 0 < d < e

(xi = y, Ad = 0) -- (xi = (rEIpp(d, y))y^ Ad = 0 A 0 < d < e),
e {xi=y Ad= v 1 AO d= v-AO {Pr = yi Ad = v A 0 < v < e}E I_, T{x = (rEIp(d, y))y_
Ad= vA0 T
Consequence Rule
Let y' be the result of extending code y to include the element (d' v),
p' = [Wk/ik, d'/v] and gEIPTP be extended to operate on the state code
y' so that it leaves d' unchanged. Let g = gEPT and r rEIPp.

{xi = y, Ad = v A 0 < d < e}E T{zx = (gp'(v 1,y',rp'(v 1 y')))yiA
d = (gp'(v 1,y',rp'(v 1,y'))), A 0 < d < e}


This Hoare triple holds for the non-call constructs as follows.
{x, = y, A d = v A 0 d = (gp'(v 1, y',rp'(v 1, y'))), A 0 < d < e}
T
Invariance Rule

{x, = y, A d = v}E |_V T{xi = (gp'(v 1,y',rp'(v 1, y')))yiA
d = (gp'(v 1,y', rp'(v- 1, y')))d}
MGF


Since h = 0 calls in procedure body T can only be to the first node on a cycle.
Consider the cycles on node E I p. Label the calls participating in these cycles as










they were labeled in the example proof. That is, label them according to how many
calls there are between the edge representing this call and the edge entering node

E I p. Let gj = gE.,, Iq,, The triple is proven for each call E,,m P q,,,, if it can be
shown that, for 0 < j < n,

-HC {x = i A d = v A 0 (4.13)
rp'(v l,y')))y A d = (gjp'(v ,y',rp'(v 1,y'))), A O < d < e.3)

This is proven for any n by induction on j. Notice that this induction is not occurring
within the proof system. The length of each of a call's cycles is fixed.
Let j = 0.


{x = yi A d = v A 0 rp'(v 1,y')))y A d = (gop'(v 1,y',rp'(v 1,y')))d, A 0 < d < e}
T
Environment Rule

{x = y Ad= v A0 rp'(v 1, y')))^ A d = (g0p'(v 1, y',rp'(v 1, y')))d A 0 < d < e}
T
Consequence Rule T a

{xi= y, Ad 1 = v 1 A O < v < e}E I_- p
{xi = (rp(d 1, y))y, A d- 1 = v 1 A 0 < d -1 < e AO < v < e}


This Hoare triple is the assumption with d replaced by d 1. This translation is
proved using the Substitution, Invariance and Consequence Rules.
The proof of implication a is as follows.

xi = (rp(d l,y))yj Ad 1 = v I A 0< d -1 zi=(rp(d-1,y))y rp(vAd-1=v-A0 = xi = (rp(v 1, y))y Ad = v A O < d < e
= xi = (gop(v 1,y,rp(v l,y)))yi Ad = vA O xi = (gop'(v 1,y',rp'(v y')))y d A =
(gop'(v 1, y', rp'(v 1, y')))d A 0 < d < e










Let 0 < j < m, proc qn,j e,,; Rn,j end E En,j and gR, gE ,,,pR,,.


{xi = y; A d = v}Enj pi-1 n.
{xC = (gp'(v 1,y',rp'(v 1, y')))y^ A d = (gjp'(v 1,y',rp'(v 1,y'))),}
T
Inner Procedure Call Rule

{x, = y, A d = v}Enj I-1 Rnj
{xi = (gjp'(v 1, y',rp(v 1, y')))y Ad = (gjp'(v 1,y',rp'(v 1,y')))d,}
T
Consequence Rule

{x; = y, A d = v}En, I-i_, R,j
{xi = (gR,p'(v y',rp'(v y')))y Ad = (gR,p'(v 1,y',rp'(v l,y')))d,}



This Hoare triple is proven for the non-call constructs. The calls in R,j are of
the form En,j-1 I-i qnj-1. The Hoare triple holds for these calls by the inductive
hypothesis on j.
Let h > 0. The proof that the lemma holds for the call E I p where h > 0 is
similar to the proof that the lemma holds for the call E I p where h = 0 except that

an additional case is needed to inductively prove some of the Hoare triples. Only
these additional cases will be discussed.

Suppose E [ p is not a start node. The procedure body T may contain a procedure

call. The height of the di-graph for this call will be less than h. Thus, the lemma
holds for this call by induction on h.

Say E I p is the start node of one or more cycles. The procedure body T may
contain one or more calls to a procedure whose node is not on the cycle. The lemma

is proven for such a call as follows.











{x, = yi}E I_-1 q{xi = (gEpqp'(v 1,y',rp'(v 1,y )))yA
d = (gEPqp '( 1,y',rp(v 1, y')))d


T
Off Cycle Procedure Call Rule

{X, = yi}E q{fxi = (gEipqP'(V- 1,y',rp'(v 1, y')))y A
d = (gEjpqP'(v 1, y', rp'(v 1, y')))d,}
T
Consequence Rule

{x, = y }E I q{xi = (gEjq'(Y'))y, A d = (gEjP'(y'))_}


The height of the E I q di-graph will be less than h. Thus, the above triple is proved
by induction on h.
In proving the lemma for a call to the next node on a cycle the procedure body
Rn,i may contain one or more calls to a procedure whose node is not on the cycle.
This case is handled as it was in the previous paragraph. O

Theorem 49 (Completeness) For a Hoare triple {P}E I S{Q}

[PRA {P}E I S'{Q} : TIC{P}E I S{Q}.


Proof: Assume p-PRA {P}E I S{Q}. Without loss of generality, also assume
free(min(E S)) C free(P) = X = { 1,...,xk}, Y = {Y,...,Yk}, X n Y = ,
p = [yk/Xk] and y = c(k yk).











{P}E S{Q}
T
a Consequence Rule T b

{Vi < k(x, = y;) A Pp}E I S{Vi < k(xi = (gEIsP(Y))yi) A Pp}
T
Invariance Rule

{Vi < k(xi = yi)}E I S{Vi < k(xA = (gEIsP(Y))yi)}
MGF


Define P* from P by P" Akf~kk.Vi < k(xi = yi) A P. Implication a holds since

h-PRA Vzk(P(fk) P*(k, k)).
The formula Vi < k(xi = (gEIsp(Y))yi) A Pp implies the strongest postcondition
of E I S and P. Thus implication b holds by part 2 of the SPC Theorem. O




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EN2MMYLOP_2RI1Z4 INGEST_TIME 2017-07-13T21:37:25Z PACKAGE AA00003758_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 2

$ 68%5(&856,9( 352*5$00,1* /$1*8$*( )25 ,1&5($6(' 9(5,),$%,/,7< %\ &(/,$ 0 6&+$+&=(16., $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

$&.12:/('*(0(176 ZRXOG OLNH WR WDNH WKLV RSSRUWXQLW\ WR H[SUHVV P\ GHHS DSSUHFLDWLRQ WR 3URIHVVRU 5LFN 6PLWK P\ PDMRU DGYLVRU IRU WKH JXLGDQFH VXSSRUW DQG PDQ\ KRXUV RI HQOLJKWn HQLQJ GLVFXVVLRQ DOVR ZDQW WR WKDQN P\ ZRQGHUIXO KXVEDQG IRU KLV XQERXQGHG VXSSRUW LQ ZKDWHYHU FKRRVH WR GR DQG KLV SUHVHUYHUDQFH LQ OHQJWK\ FRQYHUVDWLRQV ZKLFK DUH LQWHUHVWLQJ WR KLP RQO\ EHFDXVH WKH\ DUH WR PH

PAGE 4

7$%/( 2) &217(176 $&.12:/('*(0(176 LL $%675$&7 LY &+$37(56 ,1752'8&7,21 0,1,0$/ 35 352*5$00,1* /$1*8$*( eS5 6YQWD[ RI e35 6HPDQWLFV RI eS5 eS5 &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV 9HULILFDWLRQ RI eS5 3URJUDPV 6RXQGQHVV RI IS5 &RPSOHWHQHVV RI ISS %/2&. /$1*8$*( 6\QWD[ RI eJ 6HPDQWLFV RI eJ eT &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV 9HULILFDWLRQ RI eJ 3URJUDPV 6RXQGQHVV RI LS &RPSOHWHQHVV RI
PAGE 5

3$5$0(7(56 6\QWD[ RI eM\ 6HPDQWLFV RI eT &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV 9HULILFDWLRQ RI eT 3URJUDPV 6RXQGQHVV RI
PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 68%5(&856,9( 352*5$00,1* /$1*8$*( )25 ,1&5($6(' 9(5,),$%,/,7< %\ &(/,$ 0 6&+$+&=(16., 'HFHPEHU &KDLUPDQ 'U *HUKDUG 5LWWHU 0DMRU 'HSDUWPHQW &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV 5HPRYLQJ JRWRV IURP FRPSXWHU ODQJXDJHV UHVXOWHG LQ PRUH XQGHUVWDQGDEOH PDLQn WDLQDEOH DQG YHULILDEOH FRGH 5HVWULFWLQJ UHFXUVLRQ WR SULPLWLYH UHFXUVLRQ LQ FRPSXWHU ODQJXDJHV VXFK DV 3$6&$/ KDV VLPLODU UHVXOWV 7KLV GLVVHUWDWLRQ GHYHORSHV D KLJKO\ VWUXFWXUHG SURJUDPPLQJ ODQJXDJH ZKHUH UHFXUVLRQ LV OLPLWHG WR SULPLWLYH UHFXUVLRQ 3URJUDPV LQ WKH ODQJXDJH FRPSXWH H[DFWO\ WKH FODVV RI SULPLWLYH UHFXUVLYH IXQFWLRQV $ +RDUH YHULILFDWLRQ V\VWHP LV GHYHORSHG IRU WKLV ODQJXDJH ,W LV SURYHG WKDW WKLV V\VWHP LV VRXQG DQG FRPSOHWH

PAGE 7

&+$37(5 ,1752'8&7,21 7KH WHUP VWUXFWXUHG SURJUDPPLQJ HPHUJHG LQ WKH VHYHQWLHV ,W EHFDPH QHFHVn VDU\ IRU WKH DGYHUWLVHPHQW RI HYHU\ VRIWZDUH SURGXFW WR VSRUW WKH ZRUG VWUXFWXUHG VHYHUDO WLPHV SUHIHUUDEO\ LQ WKH SURGXFWfV WLWOH 7KLV ZDV QRW GXH VLPSO\ WR WKH IDGGLVKQHVV RI D TXLFNO\ JURZLQJ ILHOG 6WUXFWXUHG SURJUDPPLQJ ZRUNV :KLOH DW ILUVW JRWR OHVV SURJUDPPLQJ DSSHDUHG WR EH WDNLQJ D WRRO DZD\ IURP WKH GHYHORSHU LQ IDFW LW SURYLGHG D IUDPHZRUN LQ ZKLFK WR UHDVRQ FOHDUO\ 6WUXFWXUHG SURJUDPPLQJ HQn KDQFHV SURJUDPPDELOLW\ E\ RUJDQL]LQJ WKH SURJUDPPHUfV WKRXJKWV ,W DOVR HQKDQFHV WKH YHULILDELOLW\ DQG PDLQWDLQDELOLW\ RI VRIWZDUH 7R EH VWUXFWXUHG KDV EHHQ GHILQHG DV WKH DELOLW\ WR XQGHUVWDQG WKH PHDQLQJ RI WKH ZKROH IURP WKH PHDQLQJ RI WKH SDUWV DQG D IHZ FRPELQLQJ UXOHV 7KLV JRHV KDQG LQ KDQG ZLWK PRGXODULW\ (DFK PRGXOH LV D SRUWLRQ RI WKH SURJUDP 7KH PHDQLQJ RI WKH ZKROH FRPHV IURP WKH PHDQLQJ RI HDFK RI WKH PRGXOHV DQG WKH NQRZOHGJH RI KRZ WR SXW WKHVH PRGXOHV WRJHWKHU &RPSXWHU ODQJXDJHV KDYH EHFRPH LQFUHDVLQJO\ VWUXFWXUHG )RU H[DPSOH REMHFW RULHQWHG SURJUDPPLQJ PRGXODUL]HV ERWK WKH FRGH DQG GDWD /RRNLQJ DW WKH FRQn WURO VWUXFWXUHV RI VHTXHQWLDO SURJUDPPLQJ ODQJXDJHV VXFK DV 3$6&$/ WKH DXWKRU ZLOO FRQWLQXH WKLV WUHQG WRZDUGV PRUH VWUXFWXUHG SURJUDPPLQJ ODQJXDJHV (GPXQG &ODUNH UHSRUWHG VXUSULVLQJ UHVXOWV WKDW VXJJHVW WKDW 3$6&$/OLNH ODQJXDJHV DUH WRR IOH[LEOH > @ +H SURYHG WKDW WKHUH LV QR +RDUH YHULILFDWLRQ V\VWHP IRU WKHVH ODQJXDJHV $ FHQWUDO IHDWXUH RI 3$6&$/ LV UHFXUVLRQ 7KH DXWKRU VHHV D VLPLODULW\ EHWZHHQ JRWRV DQG WKH XQUHVWULFWHG XVH RI UHFXUVLRQ ,Q WKLV GLVVHUWDWLRQ D SRZHUIXO SURJUDPPLQJ

PAGE 8

ODQJXDJH LV GHYHORSHG ZKLFK LV PRUH VWUXFWXUHG WKDQ 3$6&$/ 6SHFLILFDOO\ UHFXUVLRQ LQ WKLV ODQJXDJH LV OLPLWHG WR SULPLWLYH UHFXUVLRQ 3ULPLWLYH UHFXUVLRQ LV SRZHUIXO \HW HDV\ WR XQGHUVWDQG ,Q HVVHQVH SULPLWLYH UHn FXUVLRQ LV LWHUDWLQJ RQ D VLQJOH YDULDEOH $ IXQFWLRQ GHILQHG E\ SULPLWLYH UHFXUVLRQ LV GHILQHG GLUHFWO\ DW Q HTXDO WR ]HUR )RU Q JUHDWHU WKDQ ]HUR WKH IXQFWLRQ LV GHILQHG XVLQJ WKH UHVXOW RI DSSO\LQJ WKH IXQFWLRQ DW YDOXHV OHVV WKDQ Q 7KH SURJUDPV RI D VWUXFWXUHG FRPSXWHU ODQJXDJH ZKHUH UHFXUVLRQ LV UHVWULFWHG WR SULPLWLYH UHFXUVLRQ DUH HDVLHU WR XQGHUVWDQG PDLQWDLQ DQG YHULI\ WKDQ SURJUDPV RI D VWUXFWXUHG ODQJXDJH ZKLFK DOORZV WKH XQUHVWULFWHG XVH RI UHFXUVLRQ 7KH WHUPV RSHUDWLRQDO DQG GHQRWDWLRQDO DUH XVHG WR FRQWUDVW WZR PHWKRGV RI VSHFLI\LQJ WKH PHDQLQJ RI SURJUDPV >@ 2ULJLQDOO\ SURJUDP VHPDQWLFV ZHUH VDLG WR EH RSHUDWLRQDO LI WKH\ ZHUH JLYHQ LQ WHUPV RI RSHUDWLRQV RQ DQ DEVWUDFW PDFKLQH 7KH LGHD ZDV WKDW DOWKRXJK WKH DEVWUDFW PDFKLQH ZDV XQUHDOLVWLF IURP D SUDFWLFDO SRLQW RI YLHZ LW ZDV VR VLPSOH WKDW QR PLVXQGHUVWDQGLQJ FRXOG RFFXU DV WR WKH PHDQLQJ RI WKH SURJUDP 'HQRWDWLRQDO VHPDQWLFV VRPHWLPHV UHIHUUHG WR DV PDWKHPDWLFDO RU IXQFWLRQDO VHPDQWLFV GHVFULEHV WKH PHDQLQJ RI SURJUDPV GLUHFWO\ 6RPH W\SH RI VHPDQWLF YDOXDWLRQ IXQFWLRQ LV XVHG ZKLFK PDSV V\QWDFWLF FRQVWUXFWV LQ WKH SURJUDP WR WKH DEVWUDFW YDOXHV ZKLFK WKH\ GHQRWH 7KH WHUP RSHUDWLRQDO LV XVHG PRUH EURDGO\ WRGD\ 6HPDQWLFV DUH VDLG WR EH GHILQHG RSHUDWLRQDOO\ LI WKH\ LQYROYH GHVFULELQJ FRPSXWDWLRQDO VHTXHQFHV $ SUREOHP LV WKDW RSHUDWLRQDO VHPDQWLFV WHQG WR JLYH UHVXOWV RI VSHFLILF FRPSXWDWLRQV 6WDUWLQJ ZLWK D SDUWLFXODU SURJUDP DQG DQ LQSXW YHFWRU WKH VHPDQWLFV WHOO XV KRZ WR FUDQN WKH KDQGOH WR REWDLQ WKH UHVXOW 6XFK GHVFULSWLRQV PD\ DOORZ KLGGHQ DPELJXLWLHV )RU VRPH SURJUDPV LW PD\ EH REYLRXV WKDW WKH RSHUDWLRQDO VHPDQWLFV DUH ZHOO GHILQHG +RZHYHU ZKHQ JLYLQJ WKH VHPDQWLFV RI D ODQJXDJH DOO SURJUDPV WKDW FRXOG SRVVLEO\ EH ZULWWHQ LQ WKH ODQJXDJH VKRXOG EH FRQVLGHUHG

PAGE 9

$Q RSHUDWLRQDO GHILQLWLRQ FDQ EH PDGH PDWKHPDWLFDOO\ ULJRURXV +RZHYHU WKHUH LV VWLOO DQRWKHU GLIIHUHQFH EHWZHHQ RSHUDWLRQDO DQG GHQRWDWLRQDO VHPDQWLFV ,Q -RVHSK 6WRY GHVFULEHG D GLIIHUHQFH ZKLFK VWLOO H[LVWV WRGD\ 7KH IRUPHU GHILQHV WKH YDOXH RI D SURJUDP LQ WHUPV RI ZKDW DQ DEn VWUDFW PDFKLQH GRHV ZLWK WKH FRPSOHWH SURJUDP ,WV VWUXFWXUH WKHUHIRUH QHHG QRW FRUUHODWH ZLWK WKH ZD\ WKH SURJUDPPHU WKLQNV DERXW KLV SURn JUDP ZKHQ KH VHOHFWV SDUWLFXODU V\QWDFWLF FRPSRQHQWV DQG FRPELQHV WKHP WRJHWKHU LQ SDUWLFXODU ZD\V ,Q WKH GHQRWDWLRQDO GHILQLWLRQ RQ WKH RWKHU KDQG WKH YDOXH RI D SURJUDP LV GHILQHG LQ WHUPV RI WKH YDOXHV RI LWV VXEn FRPSRQHQWV LW LV PRUH HDVLO\ SRVVLEOH IRU XV WR FRQILQH RXU WUHDWPHQW WR DQ\ SDUWLFXODU SDUW RI WKH SURJUDP ZH ZLVK WR H[DPLQH 7KLV PD\ PDNH LW D PRUH VDWLVIDFWRU\ WRRO IRU WKH ODQJXDJH GHVLJQHU DQG DOVR IRU WKRVH FRQFHUQHG ZLWK YDOLGDWLQJ YDULRXV WHFKQLTXHV IRU SURYLQJ WKH FRUUHFWQHVV RI SDUWLFXODU SURJUDPV > SDJH @ )RU PDQ\ SURJUDPPLQJ ODQJXDJHV WKH RSHUDWLRQDO VHPDQWLFV DUH GHILQHG HDVLO\ ZKLOH WKH GHQRWDWLRQDO VHPDQWLFV DUH QRW ,Q JHQHUDO GHQRWDWLRQDO VHPDQWLFV KDYH QRW EHHQ GHILQHG IRU SURJUDPPLQJ ODQJXDJHV LQFOXGLQJ UHFXUVLRQ 7KH DXWKRU VXJJHVWV WKDW WKLV LV D UHVXOW RI FXUUHQW SURJUDPPLQJ ODQJXDJHV EHLQJ WRR IOH[LEOH 'HQRWDWLRQDO VHPDQWLFV H[LVW IRU WKH SURJUDPPLQJ ODQJXDJH SUHVHQWHG KHUH (YHU\ SURJUDP FDQ EH WUDQVODWHG LQWR D SULPLWLYH UHFXUVLYH IXQFWLRQ )XUWKHUPRUH VLQFH WKHUH LV D WHUP LQ 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF 35$ IRU HYHU\ SULPLWLYH UHFXUVLYH IXQFWLRQ WKHUH LV D 35$ WHUP ZKLFK GHVFULEHV HDFK SURJUDP LQ WKLV SURJUDPPLQJ ODQJXDJH 7KHUH LV DOVR D 35$ D[LRP ZKLFK VKRZV KRZ WKDW WHUP ZDV EXLOW 7KH FODVV RI SULPLWLYH UHFXUVLYH IXQFWLRQV LV GHILQHG LQ $SSHQGL[ $ 7KH WKHRU\ RI 35$ LV SUHVHQWHG LQ $SSHQGL[ % 7KLV UHVHDUFK LV PRWLYDWHG E\ WKHRUHWLFDO LVVXHV DV ZHOO ,Q KLV VHPLQDO SDSHU f$Q D[LRPDWLF DSSURDFK WR FRPSXWHU SURJUDPPLQJff &$5 +RDUH >@ LQWURGXFHG D PHWKRG RI FDSWXULQJ WKH PHDQLQJ RI SURJUDP FRQVWUXFWV 7KLV PHWKRG PD\ EH XVHG WR GHILQH D SURJUDPPLQJ ODQJXDJH RU WR YHULI\ SURJUDPV UHODWLYH WR JLYHQ SUH DQG SRVWFRQGLWLRQV +RDUH VWDWHPHQWV DUH WULSOHV RI WKH IRUP ^3`^4` ZKHUH 3 DQG 4

PAGE 10

DUH IRUPXODV LQ D ILUVW RUGHU DVVHUWLRQ ODQJXDJH DQG LV D SURJUDP VHJPHQW 7KH VWDWHPHQW ^3`^4` LV WUXH LI ZKHQHYHU 3 KROGV IRU WKH LQLWLDO YDOXHV RI 6 DQG 6 LV H[HFXWHG HLWKHU 6 GLYHUJHV RU 4 KROGV IRU WKH ILQDO YDOXHV RI 6 9HULILFDWLRQ V\VWHPV VKRXOG EH VRXQG DQG FRPSOHWH $ V\VWHP LV VRXQG LI DOO VWDWHPHQWV ZKLFK DUH SURYDEOH LQ WKH V\VWHP DUH WUXH &RPSOHWHQHVV LPSOLHV WKDW DOO WUXH VWDWHPHQWV DUH SURYDEOH :KHQ D YHULILFDWLRQ V\VWHP LV VRXQG DQG FRPSOHWH WKH QRWLRQV RI SURYDELOLW\ DQG WUXWK DUH HTXLYDOHQW 7KLV DOORZV LQYHVWLJDWRUV WR PDQLSXODWH V\QWDFWLF SURRIV NQRZLQJ WKDW WKH UHVXOWV ZLOO EH WUXH DQG FRQYHUVHO\ WR UHDVRQ VHPDQWLFDOO\ NQRZLQJ WKDW D V\QWDFWLF SURRI FDQ EH IRXQG $ +RDUH YHULILFDWLRQ V\VWHP FRQVLVWV RI D VHW RI D[LRPV DQG UXOHV DXJPHQWHG E\ D WKHRU\ +RDUH YHULILFDWLRQ V\VWHPV KDYH EHHQ SURSRVHG IRU PDQ\ SURJUDPPLQJ ODQJXDJHV $SW >@ JLYHV DQ H[FHOOHQW RYHUYLHZ RI WKHVH V\VWHPV 7KHVH V\VWHPV KDYH D[LRPV DQG UXOHV ZKLFK FDSWXUH WKH PHDQLQJ RI HDFK FRQVWUXFW LQ WKH ODQJXDJH KRZHYHU WKH\ DUH QRW VRXQG DQG FRPSOHWH LQ WKH XVXDO VHQVH 5HODWHG WR WKLV LV WKH SRVVLELOLW\ WKDW WKH DVVHUWLRQ ODQJXDJH LV QRW DEOH WR H[SUHVV DOO QHFHVVDU\ SUH DQG SRVWFRQGLWLRQV 7KHVH SUREOHPV ZLOO EH GLVFXVVHG VHSDUDWHO\ &XUUHQW SURJUDPPLQJ ODQJXDJHV DUH XQLYHUVDO LQ WKDW WKH\ DUH FDSDEOH RI FRPn SXWLQJ WKH IXOO FODVV RI SDUWLDO UHFXUVLYH IXQFWLRQV +RDUH YHULILFDWLRQ V\VWHPV IRU WKHVH ODQJXDJHV W\SLFDOO\ XVH WKH IXOO WKHRU\ RI WKH PRGHO WR DXJPHQW WKHLU +RDUH D[LRPV DQG UXOHV 7KLV IXOO WKHRU\ LV QRW HYHQ D UHFXUVLYHO\ D[LRPDWL]DEOH WKHRU\ ,Q DGGLWLRQ WKLV XVDJH REOLWHUDWHV WKH GLVWLQFWLRQ EHWZHHQ SURYDELOLW\ DQG WUXWK 2QH FDQ QR ORQJHU WDON DERXW VRXQGQHVV DQG FRPSOHWHQHVV LQ WKH XVXDO VHQVH EHFDXVH V\Qn WDFWLF SURRIV GHSHQG RQ D SDUWLFXODU PRGHO *LYHQ D WKHRU\ 7 ZULWH ^3`6n^` LI IRU DQ\ PRGHO 0 R 7 0 ^3`^4` $ +RDUH YHULILFDWLRQ V\VWHP ZLWK D VHW + RI D[LRPV DQG UXOHV VKRXOG KDYH D ILUVW RUGHU WKHRU\ 7 WR DXJPHQW + VR WKDW D

PAGE 11

VRXQGQHVV DQG FRPSOHWHQHVV WKHRUHP ZRXOG UHDG AOL7^3`6^4`A7^3`6^4` ,QVWHDG WKH VRXQGQHVV DQG FRPSOHWHQHVV WKHRUHPV IRU XQLYHUVDO SURJUDPPLQJ ODQn JXDJHV UHDG K+7KHRUY0f A 0 E ^A`6^` &RPSOHWHQHVV LQ WKLV VHQVH LV UHIHUUHG WR DV UHODWLYH FRPSOHWHQHVV VLQFH WKH WKHRU\ LV FKRVHQ UHODWLYH WR D SDUWLFXODU PRGHO 7KH DVVHUWLRQ WKHRU\ PD\ QRW EH VWURQJ HQRXJK WR H[SUHVV DOO QHFHVVDU\ DVVHUWLRQV 7KLV JLYHV ULVH WR WKH VHFRQG SUREOHP (YHQ WKH UHODWLYH VRXQGQHVV DQG FRPSOHWHQHVV WKHRUHP FDQQRW EH SURYHQ IRU WKHVH V\VWHPV 7KHUH DUH PRGHOV IRU ZKLFK ^3`^` LV WUXH EXW QRW SURYDEOH ZLWK DQ\ VHW RI +RDUH D[LRPV DQG UXOHV DXJPHQWHG E\ WKH IXOO WKHRU\ RI WKDW PRGHO $ PRGHO RI 3UHVEXUJHU $ULWKPHWLF SURYLGHV VXFK DQ H[DPn SOH >@ (YHQ WKRXJK DVVHUWLRQV 3 DQG 4 PD\ EH H[SUHVVHG LQ 3UHVEXUJHU $ULWKPHWLF WKH LQWHUPHGLDWH DVVHUWLRQV QHFHVVDU\ WR SURYH ^3`^` PD\ QRW 7KLV UHVXOWV IURP WKH LQDELOLW\ RI 3UHVEXUJHU $ULWKPHWLF WR H[SUHVV PXOWLSOLFDWLRQ *LYHQ D SURJUDPn PLQJ ODQJXDJH & DQG DVVHUWLRQ ODQJXDJH / D PRGHO LV H[SUHVVLYH UHODWLYH WR & DQG / LI D SRVWFRQGLWLRQ 4 FDQ EH H[SUHVVHG IRU HDFK DVVHUWLRQ 3 DQG SURJUDP 6 >@ 6RXQGQHVV DQG FRPSOHWHQHVV WKHRUHPV IRU XQLYHUVDO SURJUDPPLQJ ODQJXDJHV UHDG )RU DOO H[SUHVVLYH PRGHOV 0 n+UZ\LZ ^Lf:L"` } 0 K ^3`6^4` 7KH DERYH SUREOHPV GR QRW LQWHUIHUH ZLWK WKH VHDUFK IRU +RDUH D[LRPV DQG UXOHV WKDW FDSWXUH WKH PHDQLQJ RI YDULRXV SURJUDPPLQJ FRQVWUXFWV %HUJVWUD DQG 7XFNHU VKRZ WKDW PRGHOV RI 3$ DUH H[SUHVVLYH IRU D ZHDN :+,/( ODQJXDJH >@ +RZHYHU

PAGE 12

WKH IROORZLQJ TXHVWLRQ DULVHV &DQ D WUXO\ VRXQG DQG FRPSOHWH YHULILFDWLRQ V\VWHP EH GHYHORSHG IRU D SRZHUIXO ODQJXDJH ZKLFK LV EDVHG RQ D SDUWLFXODU WKHRU\" 6XEUHFXUVLYH SURJUDPPLQJ ODQJXDJHV DUH ODQJXDJHV ZKRVH SURJUDPV FRPSXWH RQO\ D VXEVHW RI WKH FODVV RI SDUWLDO UHFXUVLYH IXQFWLRQV 6LQFH WKHUH LV QR UHDVRQDEOH WKHRU\ ZKLFK FDSWXUHV WKH FODVV RI SDUWLDO UHFXUVLYH IXQFWLRQV D ODQJXDJH EDVHG RQ D SDUWLFXODU WKHRU\ ZRXOG QHHG WR EH VXEUHFXUVLYH 7KHUH DUH YDULRXV FODVVHV RI IXQFWLRQV DQG FRUUHVSRQGLQJ WKHRULHV 7KH FODVV RI SULPLWLYH UHFXUVLYH 35 IXQFWLRQV DQG LWV WKHRU\ 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF 35$ ZHUH FKRVHQ IRU WKLV UHVHDUFK 35$ LV DQ DWWUDFWLYH WKHRU\ EHFDXVH DOO SUDFWLFDOO\ FRPSXWDEOH IXQFWLRQV DUH SULPLWLYH UHFXUVLYH WKH D[LRPV DQG UXOHV RI 35$ DUH HOHJDQW DQG SULPLWLYH UHFXUVLRQ LWVHOI LV HDV\ WR XQGHUVWDQG 7KLV GLVVHUWDWLRQ VKRZV WKDW D WUXO\ VRXQG DQG FRPSOHWH YHULILFDWLRQ V\VWHP FDQ EH GHYHORSHG IRU D FRPSXWHU ODQJXDJH EDVHG RQ 35$ ,Q &KDSWHU D PLQLPDO SURn JUDPPLQJ ODQJXDJH DQG LWV YHULILFDWLRQ V\VWHP LV SUHVHQWHG 7KH UHPDLQLQJ FKDSWHUV H[WHQG WKLV ODQJXDJH LQWR D 3$6&$/OLNH ODQJXDJH ZKLFK FRPSXWHV H[DFWO\ WKH FODVV RI 35 IXQFWLRQV 7KH UHVXOW LV D SRZHUIXO SURJUDPPLQJ ODQJXDJH ZKHUH UHFXULVRQV DUH FOHDQO\ QHVWHG $GGLWLRQDO DGYDQWDJHV RI WKH V\VWHP SUHVHQWHG LV WKDW SURRIV LQ WKH YHULILFDWLRQ V\VWHP DUH UHFXUVLYHO\ HQXPHUDEOH DQG DOO SURJUDPV KDOW $W WKLV VWDJH WKH DERYH DGYDQWDJHV PD\ DSSHDU PRUH WKHRUHWLFDO WKDQ SUDFWLFDO 7KH\ GR KRZHYHU JLYH FRPSHOOLQJ HYLGHQFH WKDW WKH UHVWULFWLRQV RQ SURJUDPPLQJ ODQn JXDJHV SUHVHQWHG LQ WKLV GLVVHUWDWLRQ DUH OHJLWLPDWH DQG PD\ OHDG WR D PRUH YHULILDEOH SURJUDPPLQJ ODQJXDJH 7KH FKRLFH RI ZKDW FRPSXWHU ODQJXDJH FRQVWUXFWV WR DGG WR WKH PLQLPDO 35 SURJUDPPLQJ ODQJXDJH LV PRWLYDWHG E\ &ODUNH >@ &ODUNH SURYHG WKDW WKHUH LV QR UHOn DWLYHO\ FRPSOHWH +RDUH V\VWHP IRU D ODQJXDJH FRQWDLQLQJ LQWHUQDO SURFHGXUHV JOREDO YDULDEOHV VWDWLF VFRSH SURFHGXUHV DV SDUDPHWHUV DQG UHFXUVLRQ ,Q &KDSWHU WKH

PAGE 13

PLQLPDO 35 SURJUDPPLQJ ODQJXDJH LV H[WHQGHG WR LQFOXGH WKH GHFODUDWLRQ RI WHPSRn UDU\ YDULDEOHV ,Q WKH RULJLQDO 35 SURJUDPPLQJ ODQJXDJH ZRUN YDULDEOHV KDG WR EH WUHDWHG DV LQSXW YDULDEOHV ,Q &KDSWHU UHFXUVLYH SDUDPHWHUOHVV SURFHGXUHV DUH DGGHG WR WKH ODQJXDJH ,Q WKLV ODQJXDJH YDULDEOHV DUH JOREDO DQG VWDWLF VFRSH LV DVVXPHG )DLUO\ VHYHUH UHVWULFWLRQV DUH PDGH VR WKDW WKLV ODQJXDJH GRHV QRW OHDG RXWVLGH RI WKH FODVV RI 35 IXQFWLRQV 7KHVH UHVWULFWLRQV DUH ZKDW PDNH WKH ODQJXDJH VR KLJKO\ VWUXFn WXUHG 9DULDEOH DQG SURFHGXUH SDUDPHWHUV DUH DGGHG WR WKH ODQJXDJH LQ &KDSWHU 7KH UHIHUHQFH FKDLQ RI D SURFHGXUH FDOO LV D OLVW RI WKRVH SURFHGXUHV ZKLFK PXVW EH XQGHUVWRRG LQ RUGHU WR XQGHUVWDQG WKLV FDOO 2OGHURJ >@ VKRZHG WKDW &ODUNHnV LQn FRPSOHWHQHVV UHVXOW KLQJHV RQ WKH SRVVLELOLW\ RI D SURJUDP LQ WKH ODQJXDJH FRQWDLQLQJ D FDOO ZLWK DQ XQERXQGHG UHIHUHQFH FKDLQ )RU WKLV UHDVRQ WKH ODQJXDJH LQ &KDSWHU LV UHVWULFWHG VR WKDW UHIHUHQFH FKDLQV DUH ERXQGHG (DFK ODQJXDJH LV UHSRUWHG LQ WKH VDPH IRUPDW $IWHU WKH V\QWD[ DQG VHPDQWLFV RI WKH ODQJXDJH DUH GHILQHG LW LV VKRZQ WKDW SURJUDPV LQ WKH ODQJXDJH FRPSXWH H[DFWO\ WKH FODVV RI SULPLWLYH UHFXUVLYH IXQFWLRQV $ +RDUH YHULILFDWLRQ V\VWHP LV SUHVHQWHG DQG LQ WKH ILQDO VHFWLRQV LW LV SURYHG WKDW WKLV V\VWHP LV VRXQG DQG FRPSOHWH

PAGE 14

&+$37(5 0,1,0$/ 35 352*5$00,1* /$1*8$*( & 35 6\QWD[ RI eSS 7KH WRNHQV RI eSS SURJUDPV LQFOXGH DQ LQILQLWH VHW9 RI YDULDEOH LGHQWLILHUV RU VLPSO\ YDULDEOHV 7KH YHFWRU [Q UHIHUV WR D OLVW [?[Q RI YDULDEOHV $GGLn WLRQDOO\ WKHUH LV WKH FRQVWDQW WKH VXFFHVVRU RSHUDWRU V DQG WKH VSHFLDO WRNHQV fORRSf DQG fHQGf $Q H[SUHVVLRQ ODQJXDJH LV XVHG WR VSHFLI\ WKH H[SUHVVLRQV IRUPLQJ WKH ULJKW VLGH RI DVVLJQPHQW VWDWHPHQWV DQG H[SUHVVLRQV FRQWUROOLQJ ORRSV 7KH VHW RI H[SUHVVLRQV LV GHILQHG DV WKH FORVXUH RI DQG [ XQGHU WKH VXFFHVVRU RSHUDWRU 7KH PRUH QDWXUDO QRWDWLRQ [ LV IUHTXHQWO\ XVHG LQVWHDG RI V[f 7KH VHW RI SURJUDP VHJPHQWV LV GHILQHG LQ %DFNXV1DXU IRUP IRU YDULDEOH LGHQWLILHU [ DQG H[SUHVVLRQ H DV IROORZV 6 [ H 6 ORRS H 6L HQG 7KH YDULDEOHV ZKLFK DSSHDU LQ 6 DQG H DUH GHQRWHG YDU6f DQG YDUHf UHVSHFWLYHO\ ,Q VXEVHTXHQW ODQJXDJHV GLVFXVVHG YDULDEOHV PD\ EH ERXQG 9DULDEOHV ZKLFK DUH QRW ERXQG LQ 6 DUH VDLG WR EH IUHH ZLWK UHVSHFW WR DQG DUH GHQRWHG IUHH6f ,Q WKLV VHFWLRQ IUHH6f YD55f 1HYHUWKHOHVV WKH WHUPV IUHH6f DQG YD56f DUH QRW LQWHUFKDQJHDEOH EHFDXVH WKLV VHFWLRQ VHUYHV DV D EDVLV IRU IXWXUH ODQJXDJHV ZKHUH IUHH6f A YDU6f 7KH IUHH YDULDEOHV RI SURJUDP VHJPHQW 6 ZLOO DOVR EH UHIHUUHG WR DV WKH DFWLYH YDULDEOHV RI 6 ,Q WKH SURJUDP VHJPHQW ORRS H 6 HQG LW LV UHTXLUHG WKDW YD5Hf IUHH6Lf f§

PAGE 15

$ SURJUDP [ LQ WKLV SULPLWLYH UHFXUVLYH SURJUDPPLQJ ODQJXDJH LV D SURJUDP VHJPHQW 6 ZLWK WKH IUHH YDULDEOHV RI 6 VHUYLQJ DV UfV LQSXW YDULDEOHV DQG D VSHFLDO YDULDEOH IURP IUHH6f VHUYLQJ DV [fV RXWSXW YDULDEOH 7KXV [ LV JLYHQ E\ WKH SDLU [f ZKHUH [ ( IUHH6f 6HPDQWLFV RI eS5 7KH VHPDQWLFV RI eSS SURJUDPV DUH JLYHQ LQ WKH VW\OH RI 2OGHURJ >@ )LUVW VRPH SUHOLPLQDU\ FRQFHSWV DUH SUHVHQWHG $Q DVVHUWLRQ ODQJXDJH LV XVHG WR VSHFLI\ SUHGLFDWHV GHVFULELQJ D SURJUDPfV EHKDYLRU 7KLV ODQJXDJH LV DQ H[WHQVLRQ RI WKH H[SUHVVLRQ ODQJXDJH DQG LV D ILUVWRUGHU ODQJXDJH LQ ZKLFK 35$ FDQ EH H[SUHVVHG 7KH IRUPXODV LQ WKLV ODQJXDJH DUH GHILQHG LQ WKH XVXDO ZD\ 7KH VHW RI YDULDEOHV LQ IRUPXOD 3 LV GHQRWHG YDU3f DQG WKH VHW RI IUHH YDULDEOHV LV GHQRWHG IUHH3f 7KH PHDQLQJ RI WKH H[SUHVVLRQV DQG IRUPXODV RI WKH DVVHUWLRQ ODQJXDJH GHSHQG RQ WKH LQWHUSUHWDWLRQ DQG WKH YDOXHV RI WKH IUHH YDULDEOHV 6WDWHV DVVLJQ YDOXHV WR YDULDEOHV $ SURJUDPnV VWDWH LV ILQLWH ,W LV DVVXPHG KRZHYHU WKDW ZKHQHYHU UHIHUHQFH LV PDGH WR D YDULDEOH WKH VWDWH ZLOO KDYH D YDOXH IRU WKDW YDULDEOH 7KHUHIRUH WKH VWDWH FDQ EH VHHQ DV LQILQLWH 7KLV LV VLPLODU WR VHHLQJ WKH 7XULQJ 0DFKLQH WDSH DV LQILQLWH WR WKH ULJKW ,W LV DVVXPHG WKDW D PRYH WR WKH ULJKW QHYHU WDNHV WKH UHDGZULWH KHDG RII WKH HQG RI WKH WDSH 7KXV WKH WDSH DSSHDUV LQILQLWH WR WKH ULJKW )RU DQ\ WHUPLQDWLQJ SURJUDP KRZHYHU WKH WDSH LV ILQLWH :KLOH LW VLPSOLILHV WKH VHPDQWLFV WR YLHZ VWDWHV DV LQILQLWH WKH\ PXVW EH UHSUHVHQWDEOH LQ HDFK PRGHO RI 35$ 7KHUHIRUH WKH\ PXVW EH ILQLWH VR WKH\ FDQ EH HQFRGHG $VVXPH DQ LQWHUSUHWDWLRQ RI WKH ODQJXDJH RI 35$ ZLWK GRPDLQ 7! 9LHZ WKH VWDWH V DV D WRWDOO\ GHILQHG PDSSLQJ V 9, f§! *LYHQ DQ LQWHUSUHWDWLRQ DQG D VWDWH V WKH HYDOXDWLRQ RI H[SUHVVLRQ H GHQRWHG ,HfVf DQG WKH WUXWK YDOXH RI D

PAGE 16

IRUPXOD 3 GHQRWHG ;3fVf DUH GHILQHG LQ D VWDQGDUG ZD\ :ULWH M MV 3 LI 33fVf LV WUXH :ULWH M3 LI ? MV 3 LV WUXH IRU HYHU\ VWDWH V )RU WKHRU\ 7 ZULWH 3 LI M3 KROGV IRU HYHU\ LQWHUSUHWDWLRQ RI 7 7KH VHW RI DOO VWDWHV LV GHQRWHG 6W )RU D VWDWH V OHW V^G[` GHQRWH WKH VWDWH UHVXOWLQJ IURP UHSODFLQJ WKH YDOXH DVVRFLDWHG ZLWK YDULDEOH LGHQWLILHU [ E\ GRPDLQ YDOXH G 7KDW LV V^G[` GHQRWHV WKH VWDWH Vn ZKHUH Vn[f G DQG V\f V\f IRU \ A [ )RU D VHW RI YDULDEOH ; & 9, WKH UHVWULFWLRQ RI V WR ; LV GHQRWHG V>; 6WM3f GHQRWHV WKH VHW RI DOO VWDWHV H[SUHVVHG EY 3 LH 6WM3f ^V VXFK WKDW M 3` 7KH FRQFHSW RI VXEVWLWXWLRQ LV GHYHORSHG QH[W 6XEVWLWXWLRQV FDQ RFFXU LQ D YDULHW\ RI VLWXDWLRQV 7KH WHUPV JHQHUDO VXEVWLWXWLRQ DQG VXEVWLWXWLRQ ZLOO EH GHILQHG )RU H[SUHVVLRQ HW DQG YDULDEOH LGHQWLILHU [ DOO [GV GLVWLQFW OHW S >HM HQ[L [Q@ RU HTXLYDOHQWO\ S >HQ[Q@ GHQRWH WKH PDSSLQJ ^[LHf [fHff` 8 ^^\\f ? \ ( 9, DQG \ A [^ L UF`` $ JHQHUDO VXEVWLWXWLRQ S LV D PDSSLQJ ZKHUH WKH UHSODFHPHQW WHUPV DUH H[SUHVVLRQV *HQHUDO VXEVWLWXWLRQV RQ IRUPXODV 3S DUH GHILQHG DV XVXDO 5HFDOO WKDW ERXQG YDULDEOHV LQ 3 KDYH WR EH UHQDPHG WR DYRLG FODVKHV ZLWK LQVHUWHG YDULDEOHV ,Q PDQ\ FRQWH[WV YDULDEOHV PD\ RQO\ EH UHSODFHG E\ RWKHU YDULDEOHV )XUWKHUPRUH WR DYRLG PRUH WKDQ RQH YDULDEOH LGHQWLILHU UHIHUULQJ WR WKH VDPH YDULDEOH WKH YDULDEOHV XVHG DV UHSODFHPHQW YDULDEOHV PXVW EH GLVWLQFW 7KXV D JHQHUDO VXEVWLWXWLRQ S >HQ[Q@ LV FDOOHG D VXEVWLWXWLRQ RQ < LI HDFK H LV D YDULDEOH LGHQWLILHU DQG IRU DOO XXn f < SXf SXnf PL Xn 7KDW LV D VXEVWLWXWLRQ RQ < PXVW EH LQMHFWLYH RQ < /HW S EH D VXEVWLWXWLRQ RQ ; 'HILQH S RQ D VWDWH V E\ VS[f VS[ff IRU [ ;

PAGE 17

*HQHUDO VXEVWLWXWLRQV DUH QRW GHILQHG RQ VWDWHV 7KH IROORZLQJ WZR OHPPDV OLQN JHQHUDO VXEVWLWXWLRQV RQ IRUPXODV WR UHSODFHPHQWV RQ VWDWHV /HPPD 6XEVWLWXWLRQ DQG UHSODFHPHQW RQ WHUPVf )RU D WHUP W -U>H[@fVf -UfV^-HfVf[`f 3URRI 3URYH WKLV E\ LQGXFWLRQ RQ WKH GHILQLWLRQ RI WKH WHUP U Â’ /HPPD 6XEVWLWXWLRQ DQG UHSODFHPHQW RQ IRUPXODVf )RU D IRUPXOD 3 O3>H[@fVf t ,3fV^-HfVf[`f 3URRI 3URYH WKLV E\ LQGXFWLRQ RQ WKH GHILQLWLRQ RI D IRUPXOD 3 Â’ &RUROODU\ )RU D IRUPXOD 3 V e 6WM^3>H[`f r V^,^HfVf[` e 6WM3f &RUROODU\ I )RU D IRUPXOD 3 DQG \ IUHH3f V e 6WM3f e! V^-[fVf"` e 6WM3>\[@f 3URRI V e 6WM^3f V e 6WM^3>\[@f>[\@f \ e IUHH^3f V^O[fVf\` e 6WM^3>\[@f &RUROODU\ Â’

PAGE 18

$SSHQGL[ $ GHVFULEHV WKH FODVV RI 35 IXQFWLRQV RQ WKH QDWXUDO QXPEHUV )RU D PRGHO RI 35$ ZLWK GRPDLQ 7! FDOO D IXQFWLRQ 9 f§r 35 LI WKHUH LV D WHUP U LQ WKH ODQJXDJH RI 35$ VXFK WKDW 9[ ( 9 [f W[ff 7R VKRZ WKH H[LVWHQFH RI VXFK D WHUP VKRZ WKDW LI 7! LV WKH VHW RI QDWXUDO QXPEHUV 9 WKH IXQFWLRQ I 1 1 LV 35 )RU ; DQ LQWHUSUHWDWLRQ RQ 1 DQG ;HfVf U] OHW AHKVf GHQRWH WKH QWK FRPn SRVLWLRQ RI 7KDW LV Ir J ZKHUH 9[S[f [f DQG IQ R IQ 7KH VHPDQWLFV IV RI SURJUDP VHJPHQW 6 DUH JLYHQ DV IXQFWLRQV EHWZHHQ VWDWHV DV IROORZV 6 [ H V VLV 6 ORRS H 6L HQG IV^Vf DVVLJQ M[HfVf V^-HfVf[` IV^Vf FRPSM^IVLLIVfVf IV R I6O Vf IVVf RRSMHOfVf -Hf6fVf 7KH IXQFWLRQV FRPSMIVM IVf DU!G ORRSMH IVcf ZLOO IUHTXHQWO\ EH ZULWWHQ FRPSM6L 6f DQG ORRSMH 6Lf UHVSHFWLYHO\ /HW ; EH D ILQLWH VXEVHW RI 9, DQG EH D WRWDOO\ GHILQHG VWDWH IXQFWLRQ 7KHQ LV FDOOHG D SURJUDP IXQFWLRQ RQ ; LI LV 35 DQG WKH IROORZLQJ SURSHUWLHV KROG ,I Vf Vn WKHQ V>9 ? ;f Vn>9 ? ;f 7KLV LV WKH VWDELOLW\ SURSHUW\ ZLWK UHVSHFW WR WKH YDULDEOHV 9, ? ; ,I 6L >; 6 I; WKHQ IVLf?; IVf?; 7KLV LV WKH DORRIQHVV SURSHUW\ ZLWK UHVSHFW WR WKH YDULDEOHV 9, ? ; ,W ZLOO EH VKRZQ WKDW VWDWH IXQFWLRQ IV LV D SURJUDP IXQFWLRQ RQ IUHH^6f /HW S EH D VXEVWLWXWLRQ RQ ; DQG EH D VWDWH IXQFWLRQ RQ ; 'HILQH S RQ DV IROORZV IS^Vf^Zf I^VSf^S [Xff LI Z ( S^;f VZf RWKHUZLVH

PAGE 19

6KRZ WKDW IRU SURJUDP VHJPHQW V\QWDFWLFDO DQG VHPDQWLFDO VXEVWLWXWLRQV FRUUHn VSRQG WR HDFK RWKHU DV H[SHFWHG /HPPD 3UH6XEVWLWXWLRQ /HPPDf )RU DQ H[SUHVVLRQ H DQG D VXEVWLWXWLRQ S O^HSfVf O^HfVSf 3URRI 3URYH WKH OHPPD E\ LQGXFWLRQ RQ DQ H[SUHVVLRQ H Â’ /HPPD 6XEVWLWXWLRQ /HPPDf )RU D SURJUDP VHJPHQW 6 DQG D VXEVWLWXWLRQ S ZKLFK LV LQMHFWLYH RQ IUHH6f IVSVf IVSVf 3URRI 3URYH WKH OHPPD E\ LQGXFWLRQ RQ D SURJUDP VHJPHQW 6 6 [ H 6 66 IV3^Vf^[f DVVLJQMS[Lf HSfVf[f V^O^HSf^VfS[`f[f V^,HfVSfS[L`f[f OHf^VSf LI [ S[^f V[f LI ; S^;Lf ,HfVSf LI [ S[Lf VS^SaO^[ff LI [ \ S^[Wf VS^OHfVSf[`S[ff DVVLJQM[L HfVSfSa[ff DVVLJQM^[HfS>Vf^[f 7KH SURRI LV VWUDLJKWIRUZDUG 6 ORRS H 6? HQG )LUVW VKRZ IVLSQVf[f IV^VSf^S Uff E\ LQGXFWLRQ RQ Q 8VH WKLV WR SURYH WKH IROORZLQJ IV3Vf[f LRRSMHS I6O3f>Vf[f V$H0VfLf ORRSMH IVM f^VSfS O[ff ORR3OH-6LfS^Vf^[f

PAGE 20

’ /HPPD )RU SURJUDP VHJPHQW 6 IV LV D SURJUDP IXQFWLRQ RQ IUHH6f 3URRI ,W LV VKRZQ WKDW IV LV 35 IRU DQ LQWHUSUHWDWLRQ RQ 1 LQ WKH IROORZLQJ VHFWLRQ /HW IUHH6f ; 7R VKRZ IV LV VWDEOH ZLWK UHVSHFW WR ; SURYH WKDW IRU LI 9, ?; V[f f§ IVVf[f 6LQFH SURJUDPV DUH ILQLWH DQG WKHUH DUH DUELWUDULO\ PDQ\ YDULDEOHV WKHUH LV D YDULDEOH \ 9, ? ; ZKHUH IRU DQ\ VWDWH V V\f VVf\f /HW S f§ >[\@ V[f VS\f IV^VSf^\f &KRLFH RI \ LIVfSVf^[f IVSVf[f 6XEVWLWXWLRQ /HPPD IVVf[f [ DQG \ DUH LQDFWLYH 6KRZ IV LV DORRI ZLWK UHVSHFW WR ; ^[L ;N` $VVXPH 6L>; V_; DQG [ ; /HW < ^\X\N` ZKHUH ; IO < DQG S >[N\N@ ’ VVLfD?f IV^VLSf\Lf LIVfSVLf[Lf f§ IVS^V f ‘F f 6XEVWLWXWLRQ /HPPD 6O[Wf ;^ LQDFWLYH LQ 6S 6;Lf $VVXPSWLRQ IVS6f[Wf [ LQDFWLYH LQ 6S LIVfS6f^;Lf 6XEVWLWXWLRQ /HPPD IVVSf^\Lf IV^Vf[Lf 7KH IROORZLQJ SURSHUWLHV RI SURJUDP IXQFWLRQV GR QRW GHSHQG RQ WKH V\QWD[ RI DQG DUH LPSRUWDQW LQ VXEVHTXHQW SURRIV /HW I3f & 4 VHUYH DV DQ DEEUHYLDWLRQ IRU I6WM3ff & 6WM4f /HPPD /HW I DQG J EH SURJUDP IXQFWLRQV RQ ; 7KHQ DVVLJQM[ Hf3f & 4 m f M3 4>H[@ FRPSMI Jf3f & 4 A! < & 6W VXFK WKDW I3f & < DQG J[@f & 3>HD@ I3>\[@ $ \ Hf & 3>V\f[@ ZKHUH [ e YDUHf 8 ;\ YDUH 3f 8 ; YDUHf IO ; DQG 3 LV D ERXQGHG IRUPXOD

PAGE 21

3URRI DVVLJQ M[Hf3f & 4 DVVLJQM[ Hf6WM3ff & 6WM4f 9VV 6WM3f f§! DVVLJQ M[HfVf 6WM4ff m 9VV 6WM3f f§\ V^OHfVf[f 6WM4ff A 9V=3fVf -4fV^=HfVfU`ff A 9V-3fVff§! O4>H[`fVff rr 9V=3! 4>H[@fVff FRPSMIJf3f & 4 2 \R3f&4 L < & 6I VXFK WKDW 3f & 9n DQG J\I[@ LPSOLHV -Wf 3>V\f[@ WKHQ KMW A>[@ LPSOLHV KM-S7G fWf 30;@ )RU G -W 3>[@ LPSOLHV --RRSMfWf 3>r[@ 6XSSRVH G DQG 9\ G ? M W 3>\[@ LPSOLHV > M\Wf 3>V\f[@ %\ WKH LQGXFWLYH K\SRWKH VLV KOW A>[@ LPSOLHV 1MRR3MG OfWf 3AG a [@f 7KLV LV H6XLYDOHQW G  WR I M Wff A>V f f VLffn@ ZKLFK LPSOLHV ? MM \ff 3>V f f Vff[@ G G 7KLV LV HTXLYDOHQW WR ? ,LORR3,^G IfWf 3AG[A )RU -HfVf G [\ e YDUHf YDUHf ; DQG 3 D ERXQGHG IRUPXOD WKH DERYH XVHV ERXQGHG LQGXFWLRQ WR VKRZ ,I M W 3>\[@ $ \ H LPSOLHV ;IWf S?rYfO[? WKHQ W M W 3>[@ LPSOLHV W MLRRSLH fWf 3?H[?

PAGE 22

’ *LYHQ DQ eSS SURJUDP N 6[f ZKHUH IUHH6f ^[L [r` WKH PHDQLQJ RI U LV WKH SURJUDP IXQFWLRQ IV LQWHUSUHWHG DV IROORZV JLYHQ VVf Vn WKHQ IRU LQSXWV V;Lf V;MIFf 7 RXWSXWV Vn[]f eSS &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV $ VHULHV RI FODVVHV RI 35 IXQFWLRQV ZLOO EH GHILQHG HDFK FODVV LQ WHUPV RI WKH SUHYLRXV FODVV 7KH ILQDO VHW UHSUHVHQWV WKH IXQFWLRQV FRPSXWHG E\ eSSA SURJUDPV 7KLV FODVV LV HTXLYDOHQW WR WKH 35 IXQFWLRQV 7KURXJKRXW WKH UHPDLQGHU RI WKLV FKDSWHU XQGHUOLQHG YDULDEOHV ZLOO GHQRWH KDUGn FRGHG YDOXHV 7KDW LV JLYHQ D SDLU [ [f LV WR EH UHSODFHG E\ D YDULDEOH LGHQWLILHU DW GHILQLWLRQ WLPH 7KH VHFRQG [ LQ WKH SDLU LV D UHJXODU YDULDEOH ZKLFK VWDQGV IRU DQ DUELWUDU\ GRPDLQ YDOXH $VVXPH DQ LQWHUSUHWDWLRQ RI 35$ ZLWK GRPDLQ /HW ; ^[L[cW` EH D ILQLWH VHW RI YDULDEOHV DQG IRU HDFK YDULDEOH [ WKHUH LV D GRPDLQ YDOXH GO ZKHUH V[f G^ :ULWH V>; [L Lf[IF ff ,I WKH YDULDEOH LGHQWLILHUV DOVR FRPH IURP 9 WKLV OLVW FDQ EH FRGHG DQG GHFRGHG ZLWKLQ ; VXFK WKDW IRU V_; DV DERYH F D FRGLQJ IXQFWLRQ DQG [f;W GHFRGLQJ IXQFWLRQV FGAGLf ‘ ‘ ‘ ^[NBGNff [ t [f[s GL L N 1RWLFH WKDW D VHW RI FRGLQJ DQG GHFRGLQJ IXQFWLRQV LV EHLQJ GHILQHG $ GLIIHUHQW FRGLQJ IXQFWLRQ DQG VHW RI GHFRGLQJ IXQFWLRQV LV EHLQJ GHILQHG IRU HDFK VHW RI YDULDEOH LGHQWLILHUV ; /HW F[N GNf VHUYH DV DQ DEEUHYLDWLRQ IRU F[A G[f ‘ ‘ ‘ [ GNff &DOO [ F[ GNf D VWDWH FRGH RQ ; ^[M;IF` DQG ZULWH YDU[f ; 7KHUH LV D 35 SUHGLFDWH

PAGE 23

ZKLFK WDNHV D VHW RI YDULDEOHV 9 DQG D VWDWH FRGH [ DQG GHWHUPLQHV LI < & YDU[f &XWODQG > SDJH @ SURYLGHV DQ H[DPSOH RI VXFK D SUHGLFDWH 6WDWH FRGHV DUH GRPDLQ REMHFWV ZKLFK HQFRGH D SRUWLRQ RI D VWDWH 7KH WKHRU\ RI 35$ LV W\SLFDOO\ GHILQHG ZLWK D VLQJOH W\SH RI REMHFW 7KHUHIRUH VWDWHV PXVW EH FRGHG LQWR WKLV W\SH RI REMHFW $Q DOWHUQDWLYH ZRXOG EH WR GHILQH 35$ WR EH PXOWL WYSHG 7KDW LV GHILQH 35$ VR WKDW LWV PRGHOV FRQWDLQ QRW RQO\ EDVH HOHPHQWV EXW PRUH FRPSOH[ HOHPHQWV VXFK DV VHWV RU VHTXHQFHV DV ZHOO 7KH GHWDLOV H[SORGH LQ WKH IRUPDOL]DWLRQ RI HLWKHU PHWKRG (QFRGLQJ VWDWHV LQWR VWDWH FRGHV LV D VWUDLJKWIRUZDUG DSSURDFK )RU H[SUHVVLRQ H LQ DQ eScA SURJUDP GHILQH JH 7! f§! UHODWLYH WR ; E\ UHFXUVLRQ DV IROORZV H JH[f H ;L JH^[f [f[c H VHLf JH[f JH^[f 1RWLFH WKDW JH LV D 35 IXQFWLRQ ZKHUH JHFV?;ff ;HfVf )RU HDFK YDULDEOH LGHQWLILHU [ GHILQH WKH IXQFWLRQ VHW;f VXFK WKDW I FJL -f}f VHW;LH[f M [M JH[ff^[OO [f-_f f f JW [f[Mf LI [ YDU[f O [ RWKHUZLVH /HPPD )RU H[SUHVVLRQ H VWDWH V DQG FRGLQJ IXQFWLRQ F ZKHUH YDUHf & ; ^[[IF` VHWUHFV_n;ff FV^-HfVf[` >;f 3URRI 7KH SURRI LV D VWUDLJKWIRUZDUG DSSOLFDWLRQ RI WKH GHILQLWLRQV ’

PAGE 24

)RU SURJUDP VHJPHQW LQ DQ eSS SURJUDP GHILQH JV 3 f§ UHODWLYH WR 7 E\ UHFXUVLRQ DV IROORZV [ H JV[f VHW;LH[f 6 fL V[f IIV ffff 6 ORRS H 6? HQG JV[f JVI[f[f /HPPD 7KH IXQFWLRQ JV LV 35 DQG IRU IUHH6f ; JVF^V>;ff FIVVf?;f 3URRI &OHDUO\ JV LV 35 8VLQJ /HPPD SURYH WKH HTXDOLW\ E\ LQGXFWLRQ RQ SURJUDP VHJPHQW 6 6 ;L H VFV>;ff VHULFFVI;ff FV^,FfVfDL`I;f FIVVf I;f 7KH SURRI LV VWUDLJKWIRUZDUG ORRS H 6? HQG )LUVW SURYH A_LFV>;ff F_WVfI;f E\ LQGXFWLRQ RQ G 8VH WKLV UHVXOW WR SURYH WKH IROORZLQJ VFVSf 6VHO&6_;OOVS4f V6OOH06_FVUYff F-H_VfZU[f FVVfI;f ’

PAGE 25

*LYHQ SURJUDP VHJPHQW 6 ZLWK LWV PHDQLQJ IXQFWLRQ I JV LV D 35 IXQFWLRQ WLJKWO\ WLHG WR IV :KLOH 6W f§! 6W JV 7! f§! 7! *LYHQ IVVf Vn IRU I GHILQHG RQ YDULDEOHV ; VFV>;ff FVn>;f 6LQFH JV LV 35 DQ\ DVVHUWLRQ ODQJXDJH LQ ZKLFK 35$ FDQ EH H[SUHVVHG ZLOO KDYH D WHUP FRUUHVSRQGLQJ WR JV 7KLV LV WKH FHQWUDO DGYDQWDJH RI WKLV V\VWHP )RU DQ\ SURJUDP VHJPHQW 6 WKHUH ZLOO EH D WHUP 7V LQ WKH DVVHUWLRQ ODQJXDJH ZKLFK GHVFULEHV WKH EHKDYLRU RI 6 6SHFLILFDOO\ JLYHQ D GRPDLQ HOHPHQW [ ZKLFK FRGHV WKH YDULDEOH YDOXHV JRLQJ LQWR D SURJUDP WV[f FRGHV WKH YDOXHV XSRQ H[LWLQJ WKDW SURJUDP 1H[W GHILQH IXQFWLRQV ZKLFK VLPXODWH SURJUDP U *LYHQ U 6[]f ZLWK IUHH^6f ; GHILQH J. 7! f§! DV IROORZV EUFV>;ff WIVFV>; fffr /HPPD )RU LW 6[]f ZLWK IUHH6f f§ ; J. LV D 35 IXQFWLRQ ZKHUH YFV>;ff VVfAf 3URRI &OHDUO\ Jf LV 35 7KH HTXDOLW\ IROORZV IURP /HPPD ’ )LQDOO\ JLYHQ D SURJUDP U 6 []f ZLWK IUHH6f ; DQG JLYHQ D VWDWH V ZKHUH V?; [A G?f f f f [BN GNff GHILQH KZ 'N f§! DV IROORZV K.^GX f WWFV>;ff /HPPD 7KH IXQFWLRQ Kf LV D 35 IXQFWLRQ ZKHUH KrGL f IVVf[]f 3URRI &OHDUO\ KQ LV 35 7KH HTXDOLW\ IROORZV IURP /HPPD ’ 7KHRUHP 7KH FODVV RI IXQFWLRQV FRPSXWHG E\ &SURJUDPV LV WKH FODVV RI 35 IXQFWLRQV

PAGE 26

3URRI /HPPD JXDUDQWHHV WKDW DOO IXQFWLRQV FRPSXWHG E\ eSS SURJUDPV DUH 35 ,W ZLOO EH VKRZQ WKDW DOO 35 IXQFWLRQV DUH FRPSXWHG E\ VRPH eSMA SURJUDP 7KH FODVV RI 35 IXQFWLRQV LV WKH FORVXUH RI WKH IXQFWLRQV $[2 $[[ DQG ;[N[W IRU OLNN! ? XQGHU FRPSRVLWLRQ DQG SULPLWLYH UHFXUVLRQ 7KH IXQFWLRQV $[2 DQG $[[ DUH FRPSXWHG E\ WKH eSMA SURJUDPV Q [ [f DQG WW [ [ [f )RU L N N WKH IXQFWLRQ $[A[ LV FRPSXWHG E\ WW 6[]f IRU 6 DV IROORZV ;L ;O ;MIF ;N ;M ;L %HIRUH FRQWLQXLQJ LW ZLOO EH XVHIXO WR GHILQH D FRQGHQVHG QRWDWLRQ IRU WKH eSS VWDWHPHQWV WR FRS\ WKH YDOXHV RI Q YDULDEOHV WR D GLVWLQFW JURXS RI Q YDULDEOHV /HW WKH e VWDWHPHQWV [V f§ ;S ;VL ;S AVIQ f ASIQ EH GHQRWHG ; f f f ;AQ r ;SL f f f ;SQn 6XSSRVH 35 IXQFWLRQ LV GHILQHG E\ FRPSRVLWLRQ DV K R J[ JPf ZKHUH L P DUH QSODFH IXQFWLRQV DQG K LV DQ "QSODFH IXQFWLRQ )XUWKHUPRUH VD\ K LV FRPSXWHG E\ WKH eSS SURJUDP 7 f§ +\]f ZKHUH IUHH+f f§ < ^\ \P` DQG HDFK J LV FRPSXWHG E\ WKH SURJUDP ]JW []f ZKHUH IUHH*f ; f§ ^[L [f` :LWKRXW ORVV RI JHQHUDOLW\ VD\ ; < DQG ^XLXQ` DUH QRQRYHUODSSLQJ VHWV RI YDULDEOHV 7KHQ WKH eSMA SURJUDP LWc )\]f ZKHUH IUHH)f ; FRPSXWHV IRU ) GHILQHG DV IROORZV

PAGE 27

8L f f f A f f f A r VDYH D FRS\ RI )nV LQSXW YDOXHV r *? r UXQ *? RQ [Q r \L n‘ [] r VDYH *LfV RXWSXW r r 5HSHDW WKH IROORZLQJ OLQHV IRU L P r ;O ; Q r 8 IL r JHW D IUHVK FRS\ RI [Q r *L r UXQ RQ [Q r \L ‘ f§ [] r )LQLVK XS r r VDYH *eV RXWSXW r + r UXQ ) RQ RXWSXW RI *? *f r 6XSSRVH 35 IXQFWLRQ LV GHILQHG E\ SULPLWLYH UHFXUVLRQ DV \Qf K\Qf I^[ O\ff J[\Q I[\Qff )XUWKHUPRUH VD\ K LV FRPSXWHG E\ WKH SURJUDP 7 +\]f ZKHUH IUHH+f < ^ Q` DQG LV FRPSXWHG E\ WKH eSMA SURJUDP QJ *Yf ZKHUH IUHH^*f <8^MQLX` :LWKRXW ORVV RI JHQHUDOLW\ VD\ ^[` <8^WQL` ^X` DQG ^XL DUH QRQRYHUODSSLQJ VHWV RI YDULDEOHV 7KHQ WKH eSS SURJUDP [c f§ )Yf ZKHUH IUHH)f ^[` 8 < FRPSXWHV IRU ) DV IROORZV ) XM XQ ML f f f \Q + Y \ XQL r VDYH D FRS\ RI )fV LQSXW YDOXHV r r UXQ + RQ \Q r ,r VDYH \ff r r FRXQWHU WR [ r ORRS [ XQ VXQLf r XSGDWH FRXQWHU r MQL XQr JHW D IUHVK FRS\ RI LQSXWV IRU r r UXQ RQ FRXQWHU \Q FRXQWHU \Qff r HQG 7KXV WKHUH LV D SURJUDP LQ eSS ZKLFK FRPSXWHV HYHU\ 35 IXQFWLRQ ’ 9HULILFDWLRQ RI eSS 3URJUDPV $ +RDUHW\SH YHULILFDWLRQ V\VWHP :S5 LV GHILQHG DV D VHW RI D[LRPV DQG UXOHV DXJPHQWHG E\ 35$ 3URRI OLQHV DUH IRUPXODV LQ WKH DVVHUWLRQ ODQJXDJH RU +RDUH

PAGE 28

VWDWHPHQWV ^`n^` 3URRI UXOHV DUH RI WKH IRUP A f f ‘ IIO AQ 7KLV UXOHV VD\V WKDW LI VWDWHPHQWV DUH SURYDEOH WKHQ Q LV SURYDEOH 7KH D[LRPV DQG UXOHV RI DUH DV IROORZV $VVLJQPHQW $[LRP ^3>H[@`[ H^3` &RPSRVLWLRQ 5XOH ,WHUDWLRQ 5XOH ^3>\[@ $ \ H`^3>\ O[@` ^3>[@`ORRS H 6 HQG^3>HD@` IRU [ YDUHf 8 IUHH6f DQG \ e YDUHf 8 IUHH6f 8 IUHH3ff &RQVHTXHQFH 5XOH 3 3$3f6^4`4!4L ^3Lf6^4L` +RDUH SURRIV DUH IUHTXHQWO\ GHYHORSHG EDFNZDUGV 7KDW LV RQH VWDUWV ZLWK ZKDW LV WR EH SURYHG DQG ZRUNV EDFNZDUGV WR D OLVW RI D[LRPV /HW WKH IROORZLQJ LQGLFDWH WKDW +RDUH WULSOH $ LV SURYDEOH IURP +RDUH WULSOH % XVLQJ WKH JLYHQ UXOH $ 7 5XOH % :KHQ WKH &RQVHTXHQFH 5XOH LV XVHG DGGLWLRQDO LQIRUPDWLRQ LV QHHGHG WR VKRZ WKH LPSOLFDWLRQV /HW WKH IROORZLQJ LQGLFDWH WKDW LV SURYDEOH IURP ^3M6nM4`

PAGE 29

XVLQJ WKH &RQVHTXHQFH 5XOH 7 D ; &RQVHTXHQFH 5XOH I E ^3`6^4` 7KH SURRI WKDW 3SSM? 3[ f§r 3 DQG 3SSA 4 f§! 4L FDQ EH JLYHQ IROORZLQJ WKH EDFNZDUG SURRI ,I JLYHQ WKHVH SURRIV ZLOO EH ODEHOHG D DQG UHVSHFWLYHO\ 6RXQGQHVV RI +SS 9HULILFDWLRQ V\VWHP GSMA LV VRXQG LI IRU HYHU\ LQWHUSUHWDWLRQ ; RI 35$ ZKHQHYHU ^3`^4` LV SURYDEOH LQ +SS WKHQ ^`6n^` LV WUXH ZLWK UHVSHFW WR ; $ SUREOHP DULVHV EHFDXVH 35$ DOORZV LQGXFWLRQ RQ ERXQGHG IRUPXODV \HW DV LW VWDQGV WKH ,WHUn DWLRQ 5XOH DOORZV LQGXFWLRQ RQ DUELWUDU\ IRUPXODV 7KLV LV DQ XQXVXDO FDVH ZKHUH WKH V\QWD[ VSHFLILFDOO\ WKH ,WHUDWLRQ 5XOH LV VWURQJHU WKDQ WKH VHPDQWLFV /HW eQ GHQRWH WKH FODVV RI IRUPXODV ZKLFK FDQ EH ZULWWHQ LQ WKH IRUP [M9[[ f f ‘ 9[QI![L [Qf RU [9[[ f f f [QS[L [Qf ZKHUH LV TXDQWLILHU IUHH 7KH ,WHUDWLRQ 5XOH ZKHUH WKH ORRS LQYDULDQW LV D IRUPXOD IURP ef ZLOO EH UHIHUUHG WR DV WKH ef,WHUDWLRQ 5XOH 7KH UHODWLRQ EHWZHHQ 7 DQG WKH ,WHUDWLRQ 5XOH LV JLYHQ LQ WKH IROORZLQJ OHPPD /HPPD )RU D FRPSOHWH WKHRU\ 7 '35$ DQG D +RDUH 6\VWHP + ZKLFK LQFOXGHV WKH $VVLJQPHQW $[LRP &RQVHTXHQFH DQG &RPSRVLWLRQ 5XOH 8Q,WHUDWLRQ 5XOH LV VRXQG 7 3 ;QLQGXFWLRQ 7 E eQLLQGXFWLRQ )Q,WHUDWLRQ 5XOH LV VRXQG 3URRI $VVXPH WKH (Q,WHUDWLRQ 5XOH LV VRXQG DQG IRU 3 (Q! )f DQG 9[3[f f§ 3[ ff DUH LQ 7 ,W ZLOO EH VKRZQ WKDW 7 K 3Df IRU D QHZ FRQVWDQW D 7KHUHIRUH 7 3 9[3[f DQG E\ WKH GHGXFWLRQ UXOH 7 K 3f $9[3[f f§!f 3[ fff f§! 9[3[f $OO WKDW LV OHIW WR SURYH LV 7 3 3^Df

PAGE 30

)LUVW LW ZLOO EH SURYHQ WKDW IRU L e IUHH3f KA^>DU@`" ORRS D L "f HQG^3>D[@` ^3>U@` ORRS D L L HQG^3>D[@` 7 &RQVHTXHQFH 5XOH ^3>[@ $ L f§ f >  @`  ORRS D L L HQG^3>D[@ $L D` 7 &RPSRVLWLRQ 5XOH ^)>L@$" f>L@` ^3>[@ $ L f§ `ORRS D L L HQG ^3>[` $L ` ^3>Dc[? $L D@ $VVLJQPHQW $[LRP 7 ,WHUDWLRQ 5XOH ORRS LQYDULDQW 3>X[? $ L X ^3>\[@ $ L S \ $ \ D`L L ^3>\ O[@ $ L \ ` 7 D &RQVHTXHQFH 5XOH ^^3>\ D@ $ L \ f> @` L ^3>\ O[? $ L \ ` $VVLJQPHQW $[LRP 7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV 3>\[@ $L \$\D 3>\ c[@ $ L \ 3>\ [@ $ L \ ^3>\ OD@ $ L \ f> O@

PAGE 31

,W KDV EHHQ DVVXPHG WKDW WKH UXOHV XWLWOL]HG LQ WKLV SURRI DUH VRXQG 7KHUHIRUH IRU DQ\ LQWHUSUHWDWLRQ RI 7 ZKHUH L e IUHH3f 7 I M ^3>[@` ORRS D L L HQG^3>DL@` 7KDW LV WKH IROORZLQJ KROGV LQ 7 9VV 6WMU3>[@f f§! FRPSMDVVLJQMLf cRRSMD DVVLJQMLL OfffVf 6WM3>D[`f ,W LV DVVXPHG WKDW 7 ? M 3>[n@ VR WKH LPSOLFDQG KROGV IRU DQ\ VWDWH V 3URJUDP IXQFWLRQV DUH VWDEOH DQG L A IYHH3f VR IRU DQ\ VWDWH V V 6WM3?D[`f 7KHUHIRUH 7 3>D[@ DQG VLQFH 7 LV FRPSOHWH 7 3Df $VVXPH 7 K (QLQGXFWLRQ 7KH SURRI RI WKH VRXQGQHVV RI WKH ,WHUDWLRQ 5XOH UHVXOWV IURP WKH IROORZLQJ IRU IRUPXOD 3 SURJUDP IXQFWLRQ RQ ; DQG H[SUHVVLRQ H ZKHUH [ YDUHf 8 ; \ A YDUH 3f 8 ; DQG YDUHf IO ; I3>\[@ $ \ Hf & 3>V\f[@ cRRSM^H If3>[`f & 3>H[@ 7KH SURRI RI WKLV LV WKH VDPH DV WKH SURRI RI /HPPD SDUW ZLWK WKH H[FHSWLRQ WKDW IRU 3 6Q 6QMLQGXFWLRQ LV XVHG UDWKHU WKDQ ERXQGHG LQGXFWLRQ ’ ,I RQH OLPLWV RQHVHOI WR ZRUNLQJ LQ WKH QDWXUDO QXPEHUV 1 VWDQGDUG LQGXFWLRQ KROGV 7KDW LV IRU DQ\ IRUPXOD 3 3f $ 9[^3[f f§ 3[ ff f§! 9[ $U 3[ff 7KHRUHWLFDOO\ KRZHYHU WKHUH DUH PRGHOV RI 35$ ORU ZKLFK VWDQGDUG LQGXFWLRQ GRHV QRW KROG 7KHUHIRUH LW LV SRVVLEOH WR GHILQH D PRGHO ZKHUH XWLOL]LQJ WKH XQERXQGHG ,WHUDWLRQ 5XOH DOORZV D IDOVH FRQFOXVLRQ WR EH SURYHG 6XFK D PRGHO ZLOO EH QRQn VWDQGDUG

PAGE 32

3HDQR $ULWKPHWLF 3$f LV D VWURQJHU WKHRU\ WKDQ 35$ ,Q DGGLWLRQ WR WKH D[LRPV RI 35$ 3$ FRQWDLQV DQ LQGXFWLRQ D[LRP IRU HYHU\ ILUVW RUGHU IRUPXOD 35$ RQO\ DOORZV LQGXFWLRQ RQ ERXQGHG IRUPXODV 7KXV HYHU\ PRGHO RI 3$ LV DOVR D PRGHO RI 35$ 7KH SUREOHP LV WKDW WKH PRGHOV RI 35$ ZKLFK DUH QRW DOVR PRGHOV RI 3$ EHKDYH LQ DQ XQH[SHFWHG ZD\ 2QH VXFK PRGHO LV GHYHORSHG LQ $SSHQGL[ & ,Q WKDW DSSHQGL[ LW LV VKRZQ WKDW WKH PRGHO GHYHORSHG LV D PRGHO RI 35$ $Q HOHPHQW REWDLQHG YLD $FNHUPDQQfV IXQFWLRQ LV JLYHQ ZKLFK LV QRW LQ WKLV PRGHO )LQDOO\ LW LV VKRZQ WKDW XVLQJ WKH (M,WHUDWLRQ 5XOH LW FDQ EH LQFRUUHFWO\ SURYHQ WKDW WKLV HOHPHQW LV LQ WKH PRGHO 7KHUH DUH WZR ZD\V WR KDQGOH WKH PLVPDWFK EHWZHHQ 35$fV LQGXFWLRQ D[LRP DQG 7A3UfV ,WHUDWLRQ 5XOH 2QH RI WKH PRWLYDWLRQV RI WKLV UHVHDUFK ZDV WR GHYHORSH D V\VWHP ZLWK D FOHDQ 6RXQGQHVV DQG &RPSOHWHQHVV 7KHRUHP 7KDW LV WR GHYHORSH D V\VWHP ZKHUH WKH 6RXQGQHVV DQG &RPSOHWHQHVV 7KHRUHP UHDGV L SUD LQV^4@ mL+S5^S`VZf 7R FUHDWH D VRXQG V\VWHP ZKLFK PDLQWDLQV WKLV FOHDQ VHSDUDWLRQ EHWZHHQ VHPDQWLFV DQG V\QWD[ ORRS LQYDULDQWV PXVW EH ERXQGHG 5HFDOO WKDW ZLWKLQ WKH QDWXUDO QXPEHUV IXOO LQGXFWLRQ KROGV VR WKLV UHVWULFWLRQ FDQ EH LJQRUHG $QRWKHU ZD\ WR KDQGOH WKLV PLVPDWFK LV WR SURYH D ZHDNHU 6RXQGQHVV 7KHRUHP 7KLV 6RXQGQHVV 7KHRUHP ZRXOG GLVDOORZ WKRVH PRGHOV RI 35$ IRU ZKLFK IXOO LQGXFWLRQ GRHV QRW KROG 7KDW LV WKH 6RXQGQHVV 7KHRUHP ZRXOG EH UHVWULFWHG WR PRGHOV RI 3$ 7KLV LV WKH DSSURDFK FKRVHQ LQ WKLV UHVHDUFK 1RWLFH WKDW WKLV UHVWULFWLRQ LV RQO\ UHTXLUHG IRU WKH 6RXQGQHVV 7KHRUHP 7KH &RPSOHWHQHVV 7KHRUHP GRHV QRW UHTXLUH D VLPLODU UHVWULFWLRQ 7KHRUHP 6RXQGQHVVf )RU D +RDUH WULSOH ^3`^` A3$ ^3f6^4f

PAGE 33

3URRI 3URYH WKLV E\ LQGXFWLRQ RQ WKH SURRI V\VWHP +S5 /HW ; EH DQ LQWHUSUHWDWLRQ RI 3$ $VVLJQPHQW $[LRP > 3>H[@ f§A 3>H[? 7KHUHIRUH E\ /HPPD DVVLJQM[ Hf3>H[@f & 3 7KXV KM^3>H[@`[ H^3f &RPSRVLWLRQ 5XOH $VVXPH KASA ^3`L ^4` ,Q WKDW SURRI DQFA A3U,A`AA` Af9 ALH nQAXFWfYH K\SRWKHVLV ^3` DQG M^3`^"` 7KXV WKHUH LV D VHW RI VWDWHV < ZKHUH IVc^3f & < DQG IV[@`ORRS H HQG^3>H[@` ,Q WKDW SURRI AIS5 >3>\ O[? $ \ H`f^3>VLfU@` IRU [ YDUHf 8 IUHH6f DQG \ A YDUHf 8 IUHH6f 8 IUHH3f %\ WKH LQGXFWLYH K\SRWKHVLV M M^3>\[` $ \ H`6^3>V\f[@` 7KXV IV3>\[@ $ \ Hf & 3>V\f[@ 7KHUHIRUH E\ /HPPD ORRSMH 6f3>[@f & 3>H[@ ZKLFK JLYHV M^3>[@`ORRS H 6 HQG ^3>H[@` &RQVHTXHQFH 5XOH $VVXPH AA"U^3L`6^4L` ,Q WKDW SURRI fa+S5SL 3f Wf3IS5L3`L"` DQG AIS54 arr 4L 7KHUHIRUH IRU DQ\ LQWHUSUHWDWLRQ RI 35$ M3L f§ 3 DQG ? M4 f§! 4? %\ WKH LQGXFWLYH K\SRWKHVLV M^3`^A` (TXLYDOHQWO\ 6IM3Lf & 6WM3f IV6WM3ff & 6WML4f DQG 6WM4f & 3XWWLQJ WKHVH WRJHWKHU \LHOGV IV^6WM3?ff & 6WM4Lf 7KXV ? M^3?`6^4Lf

PAGE 34

’ &RPSOHWHQHVV RI "IS5 7KH YHULILFDWLRQ V\VWHP LV VKRZQ WR EH FRPSOHWH DV IROORZV *LYHQ SURJUDP VHJn PHQW 6 DQG DVVHUWLRQ 3 WKH H[LVWHQFH RI D 6WURQJHVW 3RVWFRQGLWLRQ 63& RI 6 DQG 3 LV VKRZQ 7KH 63& 7KHRUHP VKRZV WKDW WKHUH LV D 63& 4 VXFK WKDW DQG IRU DQ\ YDOLG +RDUH WULSOH I M^3`^"` ? M4 f§r 5 *LYHQ SURJUDP VHJPHQW 6 DQG DVVHUWLRQ 3 WKH SURYDELOLW\ RI D 63& +RDUH WULSOH LV DOVR VKRZQ )RU DQ\ YDOLG +RDUH WULSOH ^3`^L` ^Ef`6n^"` 3URYHQ E\ DSSO\LQJ WKH &RQVHTXHQFH 5XOH WR WKH 63& +RDUH WULSOH 7RZDUGV WKLV HQG LW PXVW EH SRVVLEOH WR WUDQVODWH D +RDUH WULSOH LQWR D 35$ IRUPXOD DQG YLFH YHUVD ,W ZLOO EH VKRZQ WKDW IRU ` 35$ DQG D +RDUH WULSOH O O^3f6^` m 1U9L3r[f 4JV[fff ZKHUH 3 DQG 4 DUH IRUPXODV RQ VWDWH FRGHV REWDLQHG IURP 3 DQG 4 DQG LV WKH 35 IXQFWLRQ FRUUHVSRQGLQJ WR SURJUDP VHJPHQW 6 SRVVLEO\ H[WHQGHG WR RSHUDWH RQ VWDWH FRGHV RI D ODUJHU VHW RI YDULDEOHV WKDQ WKRVH LQ IUHH6f ,W LV LQWHUHVWLQJ WR QRWH WKDW D V\QWDFWLF YHUVLRQ RI WKH DERYH VWDWHPHQW GRHV QRW KROG ,W LV WUXH WKDW KA35 L3`6^4f ES5$ 9[3[f WIV]fff +RZHYHU WKH SURRI WKDW +IWS5 ^3`f6n^` r ES5$ 9DU3Uf 4^JV^[fff GHSHQGV RQ WKH VRXQGQHVV RI IS5 6LQFH IRU XQERXQGHG IRUPXODV 3 DQG 4 WKH ,Wn HUDWLRQ 5XOH PD\ QRW EH VRXQG KASS ^3M6fM4` PD\ EH SURYDEOH ZKLOH 9[3[f f§

PAGE 35

4>JV^[fff GRHV QRW KROG LQ DOO PRGHOV RI 35$ 7KH VWDWHPHQW 9[3[f f§! 4JV[fff ZRXOG KROG LQ PRGHOV RI 3HDQR $ULWKPHWLF ,I LW LV UHTXLUHG WKDW SUH DQG SRVWFRQGLn WLRQV EH ERXQGHG ZKHQHYHU WKH ,WHUDWLRQ 5XOH LV XWLOL]HG D V\QWDFWLF YHUVLRQ RI WKH VWDWHPHQW KROGV )LUVW D VHW RI WHUPV DQG SUHGLFDWHV RQ VWDWH FRGHV DUH GHILQHG 5HFDOO WKH 35 FRGLQJ DQG GHFRGLQJ IXQFWLRQV IRU D VWDWH V UHVWULFWHG WR D VHW RI YDULDEOHV ; $OVR UHFDOO WKDW IRU DQ\ VHW RI YDULDEOHV ; WKHUH LV D 35 SUHGLFDWH ZKLFK WDNHV D VWDWH FRGH ] DQG GHWHUPLQHV LI ; & YDU]f *LYHQ D WHUP U ZLWK YDUUf ; GHILQH WKH WHUP U E\ U[f A‘[fA [f[Wf LI ; & YDU[f XQGHILQHG RWKHUZLVH *LYHQ D IRUPXOD 3 ZLWK IUHH3f f§ ; ^[O [rGHILQH WKH SUHGLFDWH 3 E\ 3[f KROGV R ; & YDU[f $ 3^[f;O f f f [f[IFf 1RWLFH WKDW IRU DOO [ 3[>;f 3[f )XQFWLRQV RQ VWDWH FRGHV FDQ EH H[WHQGHG WR IXQFWLRQV RQ VWDWH FRGHV RI D ODUJHU VHW RI YDULDEOHV /HW ; DQG < EH VHWV RI YDULDEOHV ZKHUH ; & < DQG ; ^[L [A` )RU VWDWH FRGH ] GHILQHG RQ < OHW ]?; FDT ]f[Lf f f f [N f[IFff 6D\ J LV D IXQFWLRQ GHILQHG IURP WKH VWDWH FRGH RI ; WR D GRPDLQ YDOXH 'HILQH J IURP J E\ J]f f§ J]?;f 1RWLFH WKDW J LV GHILQHG IURP WKH VWDWH FRGHV RI < WR D GRPDLQ YDOXH 6DY J LV D IXQFWLRQ GHILQHG RQ WKH VWDWH FRGHV RI ; 'HILQH J IURP J E\ J]ffL L.]S2N LI X! ; fA RWKHUZLVH 1RWLFH WKDW J LV GHILQHG RQ WKH VWDWH FRGHV RI < 7KURXJKRXW WKH UHPDLQGHU RI WKLV ZRUN H[WHQGHG IXQFWLRQV ZLOO QRW EH GLVWLQJXLVKHG IURP WKHLU RULJLQDO IXQFWLRQV 7R VLPSOLI\ WKH QRWDWLRQ OHW Y UHSUHVHQW WKH VHW RI YDULDEOHV ; ^[M;IF` 7KDW LV OHW Y EH D IXQFWLRQ RQ ^ $` ZKHUH YLf [ )RU A[fA Mf[f ZULWH 3[\

PAGE 36

/HPPD )RU IRUPXODV 3 4 ZKHUH IUHH3f IUHH4f ; ^[L[W` DQG WRWDO IXQFWLRQ I GHILQHG RQ WKH VWDWH FRGHV RI ; K35$ 9[IF3[IFf } 4^^I^F[M [NfffXf W K S5$9[3[f4I[fff 3URRI 7KH SURRI LV D VWUDLJKWIRUZDUG DSSOLFDWLRQ RI WKH GHILQLWLRQ ’ /HPPD )RUL I 35$ D IRUPXOD 3 D VWDWH V DQG F WKH FRGLQJ IXQFWLRQ O3fVf KROGV e! 3^[f KROGV IRU [ FV_4` }KU 9L!Lf VVLfff 3URRI 6D\ IUHH6f & IUHH3f f§ IUHH4f ; ^[L [A` !ff $VVXPH 9VV 6WM3f f§ IVVf 6LM4ff 3[f 3fVf IRU DQ\ V ZKHUH [ FVI;f V 6WM3f VVf f 6WM4f 4IVVf[LfIVVf[Nff 4F6VfU[ffff r J:FVU[fffff ; & YDUJVf[f $ &"IVrffLf 4Vrff f $VVXPH M9[3[f } 4[fff V 6WM3f 3fVf 3[f IRU [ FV>;f "Vrff 4AVF6U[fff *0V22U[ff JFVVfU[fff r 4VVf[LfVVf[rff IVVf 6WM4f

PAGE 37

’ 7KH FRQFHSW RI VXEVWLWXWLRQV LV H[WHQGHG WR DSSO\ WR VWDWH FRGHV DQG 35 IXQFWLRQV RQ WKRVH VWDWH FRGHV $V H[SHFWHG VXEVWLWXWLRQV RQ VWDWH FRGHV DUH GHILQHG VLPLODUO\ WR VXEVWLWXWLRQV RQ VWDWHV DQG VXEVWLWXWLRQV RQ WKH 35 IXQFWLRQV RI VWDWH FRGHV DUH GHILQHG VLPLODUO\ WR VXEVWLWXWLRQV RQ SURJUDP IXQFWLRQV 6D\ S LV D VXEVWLWXWLRQ RQ ; )RU D VWDWH FRGH RQ WKH YDULDEOHV S^;f GHILQH S RQ E\ r!fr ]fS[f IRU [ e ; )RU 35 IXQFWLRQ J GHILQHG IURP D VWDWH FRGH RI ; WR D GRPDLQ YDOXH GHILQH S RQ J E\ 3=f =3f )RU DQ\ 35 IXQFWLRQ GHILQHG RQ WKH VWDWH FRGHV RI ; GHILQH S RQ J E\ 3ffS: ]SffW IRU [ ( ; 1RWLFH WKDW IRU S D VXEVWLWXWLRQ RQ ; DQG J GHIQHG RQ VWDWH FRGHV RI ; JS LV GHILQHG RQ VWDWH FRGHV RI S;f /HPPD &RPSRVLWLRQ RI VXEVWLW XWHG IXQFWLRQVf )RU 35 IXQFWLRQV JL DQG J GHILQHG RQ VWDWH FRGHV RI ; DQG S D VXEVWLWXWLRQ RQ ; S?S]ff ^ rLfSaf 3URRI 7KH SURRI LV D VWUDLJKWIRUZDUG DSSOLFDWLRQ RI WKH GHILQLWLRQV ’ /HPPD 6XEVWLWXWLRQ RQ VWDWH FRGH IRUPXODVf )RU IRUPXOD 3 DQG VXEVWLWXWLRQ S 3Sf[fA3[Sf 3URRI )LUVW SURYH USfUf U[Sf E\ LQGXFWLRQ RQ WKH WHUP U 7KHQ SURYH WKH OHPPD E\ LQGXFWLRQ RQ IRUPXOD 3 ’

PAGE 38

/HPPD )RU D IXQFWLRQ I GHILQHG RQ WKH VWDWH FRGHV RI ^[M f DQG S >\N[N@ K35$ 9 N;L a \cf $fFeW rIFfff] ISF^\N tNfff\Lf 3URRI $VVXPH [ \ IRU L N WKHQ SF\ \MWfff\ !FJL \?f^\N \IFfeLrLf fffer rrffff\ ([WHQG I^F\LB\Lf\N\Nf[s=Lf^[N=NffSff[L 'HI S RQ IXQF IF\M/\Lff^\M/\Nf[[\Lf^[M/\Nffff[L 'HI S RQ VWDWH FRGH I^F[N \IFfff[ 5HGXFH I^F[N ;Nff[W $VVXPSWLRQ &RUROODU\ )RU D IXQFWLRQ J ZKLFK WDNHV WKH VWDWH FRGHV R^[L [r` WR D GRPDLQ HOHPHQW DQG S >MIN[N@ (35$ A N[L 9Lf \F/N ;Nff JS^F\A \Nff 7KHRUHP 6WURQJHVW 3RVWFRQGLWLRQ 7KHRUHPf *LYHQ SURJUDP VHTPHQW 6 DQG DVn VHUWLRQ 3 ZLWK IUHH6f & IUHH3f ^ [N` WKH 63& RI 6 DQG 3 LV 4 \MIF9 N[W ^JVS\ff\Lf $ 3Sf ZKHUH S ?\NI[N@ DQG \ F\L \[f ‘ f f \r \Nff 7KDW LV WKH IROORZLQJ KROG / I 35$ ^S`^` ? 35$ ^S`^A` !? 35$ 4 5 3URRI /HW S f§ >M7MW[MW@ DQG ; ^[M ;W` ,Q WKH IROORZLQJ DVVXPH L UDQJHV IURP WR N

PAGE 39

V 6WM3f U! 3FV?;ff /HPPD \N[L \L$3Sff^FV?;ff O\NGJVL[ffA JVSL\ffA $ 3SffFV_;ff ZKHUH [ F[L [[f f f f [r [IFff DQG \ F\L\Lf ‘ ‘ \r \rff /HPPD \rAFVI;fff[L JVS^\ff\ $ 3Sf \rFVVf3&ffr JVS\ff\LB $ 3Sf /HPPD \r[ \VS\ffJ $ 3SffFVVf>;ff IVVf 6WM4f $VVXPH 9VV 6WM3f f§! IVVf 6WM5ff %\ /HPPD 9[3[f f§! \Vrfff 6D\ \ FMA \f f f f \r \MWff \W[ \V!\ff\ $ 3Sf \LW[ \VS\ff\ D 3Sf\ff \N[ JV^\Sff[L $ 3\Sff \IF[W \V\Sff[c $ 3SV\Sfff 3[f IRU [ ;Lf f f f [IF ;IFff 3 ’ ,Q WKH 63& 7KHRUHP LW LV DVVXPHG WKDW IUHH6f & IUHH3f 1RWLFH WKDW WKLV VLWXDWLRQ LV HDVLO\ FUHDWHG E\ DGGLQJ XVHOHVV HTXDOLWLHV WR IRUPXOD 3 $ QRWH VLPLODU WR WKH RQH FRQFHUQLQJ /HPPD PD\ DSSO\ WR WKH 63& 7KHRUHP 7KDW LV D V\QWDFWLF YHUVLRQ RI WKH 63& 7KHRUHP PD\ QRW KROG )RU 4 GHILQHG DV LQ WKH 63& 7KHRUHP LW FDQ EH VKRZQ WKDW ^3`3^4` +RZHYHU WKH SURRI JLYHQ WKDW 3ASA ^3`6^3` !3S5$ 4 f§! 5 GHSHQGV RQ WKH VRXQGQHVV RI WKH YHULILFDWLRQ V\VWHP 6LQFH IRU XQERXQGHG IRUPXODV 3 DQG 5 WKH V\VWHP PD\ SURYH D +RDUH WULSOH ZKLFK LV QRW WUXH LQ VRPH PRGHO RI 35$ ^3M6nML(` PD\ EH SURYDEOH EXW S5$ 4 f§! 5 ,I LW LV UHTXLUHG WKDW SUH DQG SRVWFRQGLWLRQV EH ERXQGHG ZKHQHYHU WKH ,WHUDWLRQ 5XOH LV XWLOL]HG D V\QWDFWLF YHUVLRQ RI WKH 63& 7KHRUHP KROGV

PAGE 40

7KH SURYDELOLW\ RI WKH 63& OORDUH WULSOH IRU D SURJUDP VHJPHQW 6 DQG DQ DVVHUWLRQ 3 LV WKH PDMRU VWHS LQ SURYLQJ WKH FRPSOHWHQHVV RI WKH YHULILFDWLRQ V\VWHP $V QHZ FRQVWUXFWV DUH DGGHG WR WKH ODQJXDJH PRVW RI WKH HIIRUW LQ SURYLQJ WKH FRPSOHWHQHVV RI WKH QHZ V\VWHP OLHV LQ VKRZLQJ WKH SURYDELOLW\ RI WKLV 63& +RDUH WULSOH 6HYHUDO OHPPDV DUH UHTXLUHG WR OD\ WKH JURXQGZRUN /HPPDV DQG OLQN JHQHUDO VXEVWLWXWLRQV RQ IRUPXODV WR UHSODFHPHQWV RQ VWDWHV 7KH IROORZLQJ WZR OHPPDV OLQN JHQHUDO VXEVWLWXWLRQV RQ IRUPXODV WR UHSODFHPHQWV RQ VWDWH FRGHV /HPPD I 6XEVWLWXWLRQ DQG UHSODFHPHQW RQ WHUPVf )RU D WHUP U DQ H[SUHVVLRQ H D VWDWH FRGH [ ZLWK YDUUf YDUHf & YDU[f DQG DQ\ YDULDEOH LGHQWLILHU ;M >7>HO[L?f[f 7f^VHW;@^H[ff 3URRI 3URYH WKH OHPPD E\ LQGXFWLRQ RQ WKH WHUP U Â’ /HPPD 6XEVWLWXWLRQ DQG UHSODFHPHQW RQ IRUPXODVf )RU D IRUPXOD 3 DQ H[SUHVn VLRQ H DQG D VWDWH FRGH [ ZLWK IUHH3f YDUHf & YDU[f DQG DQ\ YDULDEOH LGHQWLILHU ;M 3>H[@f[f 3^VHW;MH[ff 3URRI 7KLV IROORZV IURP /HPPD DQG LQGXFWLRQ RQ IRUPXOD 3 Â’ &RUROODU\ (TXDOLW\ EHIRUH DSSOLFDWLRQ RI D IXQFWLRQf )RU D IXQFWLRQ I GHILQHG RQ WKH VWDWH FRGHV RI ^[L [r` DQG M N 9XNYN9L NXL F[N YNfff[Mf $ 9M D 9L NXL LVHI;MDF[IF W"rffff[M

PAGE 41

3URRI 'HILQH D SUHGLFDWH 5 DV IROORZV 5 ;YN?L NXL I^F^[N LIFfff[f 1RWLFH WKDW WKH ODPEGD QRWDWLRQ DOORZV WKH XnV WR EH FRQVLGHUHG IL[HG LQ 5 /HW S >[NYN? )RU DOO XN X f§ F[r )IFfff[ L N $ 9M D 5 $ 9M D 5>DYM@ 5S>D[M@ "R>D[@f[f IRU [ F[MB ;?f f ‘ f [r [IFfXLB L!Lf f ‘ f Wr YNff 5SfVHW;MD[ff "VHLUMD[ffSf 5[Sf 5^VHW;@YM[Sff 5VHW;MD[Sff 8L ^IF[L VHW;MD[Sff[Lf f f f [r VHL[!D [MffAffffA IRU L N } FeL [SfAf f f f ;M Df ‘ f ‘ ;IF [Af[IFffff[ IRU L N 8 I^VHW;@D[Sfff[s IRU L N X IVHW;MD F[ )ffffA IRU L N &RUROODU\ (TXDOLW\ DIWHU DSSOLFDWLRQ RM D IXQFWLRQf )RU D IXQFWLRQ I GHILQHG WKH VWDWH FRGHV RI ; f§ ^[L;IF` DQG [ D VWDWH FRGH RQ ; 9XN\9L $ L  M^X ^I^[ff[Lf $ LLM \ 9L NX ^VHW;@\I^[fff[sff RQ 3URRI 'HILQH D QHZ IXQFWLRQ RQ WKH VWDWH FRGHV RI ; E\ rffrL I[ff[ m $n L M \ r /HW ?ZN9L N^X :Lf X? I[ff[L IRU L N DQG S f§ >[NOZN@ 1RWLFH WKDW IRU ] f§ F[LB [Wf f f f [ ;IFfZL X!Lf f f f ^ZNB ZNff DQG L NL s M ^]Sf[L ^]fZs W2L [ff[L I[ff[L

PAGE 42

)RU DOO N \ X FIIF 8IFfff[ L N L M $ 8M \ F[IF )IFfff[ L N $ InF[N YNfff[MA \ X ? LN?:M \ 5 $ ZM \ 5>\ZM@ 5S>\[M@ L"A>\[M@f[f IRU [ F[L [[f f f f [IH [NfZL ZUf f f f ZIH ZNff 3SfVHIUM\[ff 3VHI;M\[ffSf 3[Sf rf 5VHW;M\[Sff X ‘VHWUM\[Sff[Lf IRU L N r XL ^VHW7M^\I^[fff;O IRU L N /HPPD VKRZV WKH SURYDELOLW\ RI WKH 63& +RDUH WULSOH IRU WKLV V\VWHP /HPPD 63& +RDUH WULSOHf )RU D SURJUDP VHJPHQW 6 DQG DQ DVVHUWLRQ 3 ZKHUH IUHH6f & IUHH^3f ; ^[[ [r` < ^UM \N` ; < DQG S >\NI[N@ A+S5^Y A rrf 9Lf $ 3`^9 t[ JVSLFL\Mn \Nfff\Lf $ 3S` 3URRI 3URYH WKH OHPPD E\ LQGXFWLRQ RQ $VVXPH L UDQJHV IURP WR N [ FLMW rNf DQG \ FA \Nf 6 a ;M H ^[ \ $ 3`;M H^[ JVSL\ffA $ 3S` 7 D &RQVHTXHQFH 5XOH ^rn VS\ff\LB $3Sf>H[M@`[H ^rm‘ 3ff\ $ 3S` $VVLJQPHQW $[LRP

PAGE 43

7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV /HW 5 $[MW[ JVS\ff\[ $ 3S [ \[ $ 3 A[ffA ^JVS\ff\LB $ 3S VH;MHDffL JVS\ff\s 5 3S 5^^VHW[c^H [ff[\ VHI H [ff[rf$ ; & YDUVHI;MH [ff !f 3VHLUH[ff A>H[M@f[f 5>H[M@f[[ [MWf rm VS\ff\ $ 3Sf>H[M@ /HPPD 'HI SV 'HI 5 'HI H[W /HPPD 6 66 ^[ \ $ 3`6L6^[ JVS\ff\LB $ 3S` 7 &RQVHTXHQFH 5XOH I D ^[ \ $ 3`6L@6^[O JVS^JVc S^\fff\s D 3S` 7 &RPSRVLWLRQ 5XOH ^[ \L $ 3`L ^D JVS^\ff\ D 3S` ,QGXFWLYH +\SRWKHVLV ^[ \VS\ff\c $ 3S` ^D VSSVS\fff\ $ 3S` ,QGXFWLYH +\SRWKHVLV 7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV [ ^JVLS^JVLS^\fff\L5 3S [ JV R J6[ fS\ff\ $ 3S /HPPD ; JVS^\ff\LB $ 3S 'HI ORRS H 6L HQG

PAGE 44

^[ \ L $ 3` ORRS H 6L HQG^[ JVS^\ffM $ 3 Sf 7 D &RQVHTXHQFH 5XOH I E 6D\ YDUHf [P 5 $[NX[P \P $ [ A SX^\ff\L $ 3S ^3>X@`ORRS H HQG^3>HWW@` 7 ,WHUDWLRQ 5XOH ^I>Y IX@ $XH`L^ 5>Y X@` 7 A F &RQVHTXHQFH 5XOH G /HW [ FN ]Nf] ^JVSY^\ff\s IRU L N DQG Sn >]N[N? ^[ ] $ 3S`6[^[L >JV[Sn$ ^3SfSn` ,QGXFWLYH +\SRWKHVLV 7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV [ \ $ 3S [P P $ [ ^J6O3r\ff\s $ 3S 3>X@ 7KH SURRI RI LPSOLFDWLRQ  LV DV IROORZV /HW ] F[A ;Lf f f f [ [AfX LWff ">HLW@[L [N Xf $ IUHH3>HWW@f & YDU[f r >HX@f]f !‘ 5VHWXH ]ff 5^F^[ ;Lf f f f ;IF ;Nf^X JH]ffff ;P \P $ ; JV\F]f^\ff\L $ 3S [ ^JV[SnS\?\ff\L $ 3S rm JVS^\ff\ D 3S

PAGE 45

7KH SURRI RI LPSOLFDWLRQ F LV DV IROORZV 5>YX@ $ Y H ;P 9P D ; L JVL3Y^\ff\s ) 3S $2 Y H [ ] $ 3S 7KH SURRI RI LPSOLFDWLRQ G LV DV IROORZV J6LSnL]ffA $ 3SfSn [W ^J6OS^\ff\LB5 3S ;L ^JV\S^JVL3Y^\fff\sK3S DU AV!f\ff\L $ 3S DP \P $ ;L VSn \ffMMB $ 3S 3>X X@ 7KHRUHP &RPSOHWHQHVVf )RU D +RDUH WULSOH ^3M3M4` 3URRI $VVXPH SSA ^3`^` :LWKRXW ORVV RI JHQHUDOLW\ DOVR DVVXPH IUHH6f & IUHH^3f ; ^[T [IF` < ^\L \r` ; < S >\rLIr@ DQG \ F^\A\Nf 7KH SURRI RI A ^3`A` IROORZV D ^3`6^4` 7 &RQVHTXHQFH 5XOH I E ^9W N[^ \f $ 3`^9 IF[ \VS\ff\ $ 3S` 63& +RDUH WULSOH ,PSOLFDWLRQ D KROGV VLQFH IRU 3r GHILQHG IURP 3 E\ 3r $[A\W9I $a[ \f$3 3S5$ nAnAN3;Nnf A 3 ^;N;Nff

PAGE 46

,PSOLFDWLRQ E KROGV EHFDXVH 9"f N[ VS\ff\ $ 3S LPSOLHV WKH 63& RI SURJUDP VHJPHQW 6 DQG DVVHUWDLRQ 3 7KHUHIRUH E\ SDUW RI WKH 63& 7KHRUHP 9r N[L JVS^\ff\Lf $ 3S LPSOLHV 4 Â’

PAGE 47

&+$37(5 %/2&. /$1*8$*( 6\QWD[ RI eJ 7KH QHZ WRNHQ fEHJLQf DSSHDUV LQ eJ 7KH VHW RI SURJUDP VHJPHQWV LV GHILQHG LQ %DFNXV1DXU IRUP IRU YDULDEOH LGHQWLILHU [ DQG H[SUHVVLRQ H DV IROORZV 6 [ H L6 ORRS H 6L HQG % % EHJLQ [ L HQG )RU VLPSOLFLW\ EORFNV ZLWK PXOWLSOH YDULDEOH GHFODUDWLRQV DUH QRW DOORZHG 7KH\ FDQ EH FRQVLGHUHG DV DEEUHYLDWLRQV RI QHVWHG EORFNV ZLWK VLQJOH YDULDEOH GHFODUDWLRQV 7KH SURJUDP VHJPHQW EHJLQ [ 6L HQG ELQGV YDULDEOH [ LQ 6L ,GHQWLILHUV ZKLFK DUH QRW ERXQG LQ D SURJUDP VHJPHQW DUH IUHH LQ WKDW SURJUDP VHJPHQW /HW WKH RFn FXUUHQFH RI DQ LGHQWLILHU [ DW ORFDWLRQ L EH GHQRWHG L[f /HW WKH [ LPPHGLDWHO\ IROORZLQJ WKH WRNHQ EHJLQ EH DW ORFDWLRQ M 7KH GHILQLQJ RFFXUUHQFH RI DOO RFFXUn UHQFHV RI [ LQ fEHJLQ [ 6 HQGf ZKLFK DUH QRW DOVR ZLWKLQ DQRWKHU SURJUDP VHJPHQW fEHJLQ [?6? HQGf FRQWDLQHG LQ LV M [f &DOO D SURJUDP GLVWLQJXLVKHG LI HDFK GHILQLQJ RFFXUUHQFH RI DQ LGHQWLILHU LV XQLTXH DQG QR LGHQWLILHU DSSHDUV ERWK IUHH DQG ERXQG LQ WKH SURJUDP 3URJUDP VHJPHQWV 6 DQG 6n DUH FRQJUXHQW GHQRWHG 6 a n LI WKH\ GLIIHU RQO\ E\ D UHQDPLQJ RI WKHLU ERXQGHG LGHQWLILHUV 6HPDQWLFV RI eS 5HFDOO WKDW VWDWH V LV D WRWDO PDSSLQJ 9, f§ 9 ZKHUH 9 LV WKH GRPDLQ RI WKH LQWHUSUHWDWLRQ 7KHUHIRUH YDULDEOH [ LQ EHJLQ [ 6L HQG ZLOO KDYH D GRPDLQ YDOXH

PAGE 48

DVVRFLDWHG ZLWK LW 7KLV LQWURGXFHV QRQGHWHUPLQDF\ LQWR WKH ODQJXDJH LQ WKH FDVH WKDW 6L UHDGV [fV YDOXH EHIRUH ZULWLQJ LW +HQFH IRU VLPSOLFLW\ YDULDEOHV GHFODUHG LQ EORFNV ZLOO EH LQLWLDOL]HG WR D IL[HG GRPDLQ YDOXH EHIRUH WKH ERG\ RI WKH EORFN LV H[HFXWHG &DOO WKLV YDOXH D $IWHU 6L LV H[HFXWHG [fV RULJLQDO YDOXH ZLOO EH UHVWRUHG 7KH IROORZLQJ VWDWH IXQFWLRQ JLYHV WKH PHDQLQJ RI WKH YDULDEOH GHFODUDWLRQ VWDWHPHQW EHJLQ [ 6L HQG IVVf EORFNM[ IVWf^Vf IV^O^Df[`ff^O[fVf[f 7KH VWDWH IXQFWLRQ EORFNM[ IVWf ZLOO IUHTXHQWO\ EH ZULWWHQ EORFNM[ 6?f /HPPD 6XEVWLWXWLRQ /HPPDf )RU D SURJUDP VHJPHQW 6 DQG D VXEVWLWXWLRQ S ZKLFK LV LQMHFWLYH RQ IUHH6f IVSVf IVS^Vf 3URRI 3URYH WKLV E\ LQGXFWLRQ RQ D SURJUDP VHJPHQW 6 7KH FDVH RI D YDULDEOH GHFODUDWLRQ VWDWHPHQW LV JLYHQ EHJLQ [ 6L HQG IVS^Vf^[f EORFNM[fVLSfVf[f EORFNMS[f I6OSf^Vf[f ^IVS^V^,^DfS^[f`ff^OS[ff^VfS[f`[f  OS^;Lff^Vf LI ; S;Lf M IVLS^V^ODfOS[Lf`[f LI ;  SLLf O[fVSf LI [ S[f O IV,V^,DfS[Lf`SfS[f LI [ S[Lf IVVS^,Df[L`ff^,[LfVSf[W`Sa[f EORFNM[ IVc fVSfSa [f EORFN M^[ I6OfSVf[f ’

PAGE 49

)RU 6 EHJLQ [ 6L HQG LW LV VKRZQ WKDW IV LV D 35 IXQFWLRQ LQ WKH IROORZLQJ VHFWLRQ ,W FDQ EH VKRZQ WKDW IV LV VWDEOH DQG DORRI ZLWK UHVSHFWV WR LWV LQDFWLYH YDULDEOHV DV LW ZDV LQ &KDSWHU 7KHUHIRUH IV f§ EORFNM[ 6Lf LV D SURJUDP IXQFWLRQ RQ IUHH6f /HPPD ([WHQVLRQ WR /HPPD f /HW I EH D SURJUDP IXQFWLRQ RQ ; EORFNM^[ If^3f & 4 I^3>\[? $ [ Df & 4>\[@ ZKHUH \ ; 8 IUHH3 9 4f 3URRI 7KLV VWDWHPHQW ZLOO EH SURYHG LI WKH IROORZLQJ FDQ EH SURYHG IRU \ e ; 8 IUHH3 9 4f 9VV 6WM3f IV^ODf[`f^O[fVf[` 6WM4ff 9VV 6WM^3>\[@ $ [ Df } IVf f 6WM^4>\[@ff !f $VVXPH 9VV 6WM3f f§! V^-Df[`f^-[fVf[` 6WM4ff V 6WM3>\[@ $ [ Df V 6WM3>\[@f V^,\fVf[`H6W[3f V^7LfVf[`^-Df[`ff^,[fV ^;\fVf[`f[` 6WM4f } V^;Df[`ff^,\fVfU` 6WM4f IVff^,\fVf[`H6W,4f IVff^O\fIVff[` 6WM4f Vf H 6WM4>L[@f &RUROODU\ $VVXPSWLRQ V 6WM[ Df LV VWDEOH &RUROODU\ f f $VVXPH 9VV WM3>"[@ $ [ Df f§rf Vf WM4>\[@ff V 6WM3f V^7[fVf\` 6WM3>\[@f &RUROODU\ V^-[fVf\O^Df[` 6WM3>\[@ $ [ Df IV^O[fVf\O^Df[`f 6WM^4>\[`f $VVXPSWLRQ IV^ODf[`f^O[f^Vf\` H 6WM4>\[@f I VWDEOH N DORRI IV^ODf[`f^O[fVf\`f^,\fIV^,Df[`ff ^O^[fVf\`f[` 6WM^4f &RUROODU\ I^V^ODf[`ff^O[fVf[` 6WM4f

PAGE 50

eS &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV 7ZR QHZ 35 IXQFWLRQV DUH QHHGHG EHIRUH H[WHQGLQJ JV IRU YDULDEOH GHFODUDWLRQV 'HILQH DGG;L ZKLFK WDNHV D VWDWH FRGH RQ ; DQG UHWXUQV D VWDWH FRGH RQ ; 8 ^[` DQG GURS[ ZKLFK WDNHV D VWDWH FRGH RQ ; 8 ^[` DQG UHWXUQV D VWDWH FRGH RQ ; DV IROORZV )RU [ D VWDWH FRGH RQ ; ^[O [rDQG YDUHf & ; DGG[IH [f FA[T [fAf f f f [r [f[IFf[ ILIH[fff )RU [ D VWDWH FRGH RQ ; ^[L [MW` GURS;L [f F[LB [f[MAf f f f [A [fULBf[ [f7_f f f f [N [f[ff LI ;L e ; F[LB [f;Of f f ‘ [A [f;IFff LI [ e ; 7KH 35 IXQFWLRQV GHILQHG LQ WKLV GLVVHUWDWLRQ DUH IRU GLVWLQJXLVKHG SURJUDPV $ 35 IXQFWLRQ FRXOG EH ZULWWHQ WR WDNH DQ SURJUDP DV LQSXW DQG RXWSXW D GLVWLQJXLVKHG YHUVLRQ RI WKDW SURJUDP 7KURXJKRXW WKH UHPDLQGHU RI WKLV GLVVHUWDWLRQ LW ZLOO EH DVVXPHG WKDW VXFK D WUDQVODWLRQ KDV DOUHDG\ RFFXUUHG ([WHQG WKH IXQFWLRQ JV ZLWK D FODXVH IRU YDULDEOH GHFODUDWLRQV )RU SURJUDP VHJPHQW 6 LQ DQ eSA SURJUDP GHILQH JV ‘ f§! 9 DV LQ VHFWLRQ ZLWK WKH DGGLWLRQDO FODXVH EHJLQ [ L HQG JV^[f GURS;LJ6LDGG;LD [fff /HPPD ([WHQVLRQ WR /HPPD f )XQFWLRQ JV LV 35 DQG IRU IUHH6f ; VFV>;ff FVVf>;f 3URRI )XQFWLRQ JV LV 35 VLQFH DGG[ DQG GURS[ DUH 35 IXQFWLRQV 3URYH WKH HTXDOLW\ E\ LQGXFWLRQ RQ SURJUDP VHJPHQW 6 7KH FDVHV IRU 6 [ H 6 6?@6 DQG ORRS H 6L HQG DUH SURYHG DV WKH\ ZHUH LQ &KDSWHU

PAGE 51

EHJLQ [ 6? HQG 6LQFH 6 RFFXUV LQ D GLVWLQJXLVKHG SURJUDP [ ZLOO QRW DOUHDG\ EH LQ ; VFV>;ff GURS;W^JVc^DGG,WDF^V?;ffff GUR3OLJ6L^F^V^O^Df[W`?; 8 ^r`fff GLn3[^FIVL^V^=^Df[L`f?; 8 ^e`ff ,QG +\S FVLV^ADf[`f>;f FVV^;Df[`f^-[fVf[,`>n;f ;L ; FIVVf?;f Â’ 7KHRUHP 7KH FODVV RI IXQFWLRQV FRPSXWHG E\ & J SURJUDPV LV WKH FODVV RI 35 IXQFWLRQV 3URRI 7KH SURRI LV WKH VDPH DV WKDW JLYHQ IRU WKLV WKHRUHP LQ &KDSWHU H[FHSW WKDW WKH QHZ PHDQLQJ IXQFWLRQ IRU J LV XVHG Â’ 9HULILFDWLRQ RI 3URJUDPV 7KH YHULILFDWLRQ V\VWHP \[` $ [ D`6^4>\J@` ^7MEHJLQ [ 6 HQG^` IRU \ IUHH3 9 4f 8 IUHH6f

PAGE 52

6RXQGQHVV RI +J 7KHRUHP 6RXQGQHVVf )RU D +RDUH WULSOH ^3-6n,4` 3URRI 3URYH WKLV E\ LQGXFWLRQ RQ WKH SURRI V\VWHP +J 7KH VRXQGQHVV RI WKH UXOHV SUHVHQWHG LQ &KDSWHU LV SURYHQ DV LW ZDV LQ WKDW FKDSWHU /HW 7 EH DQ LQWHUSUHWDWLRQ RI 3$ 9DULDEOH 'HFODUDWLRQ 5XOH $VVXPH ^3`EHJP [? 6 HQG^` ,Q WKDW SURRI 3AA ^3>\[@ $ [ f§ D`6 ^4>\[?f IRU \ IUHH3 9 4f8IUHH6f %\ WKH LQGXFWLYH K\SRWKHVLV ? M^3>\[@$ [ D`6^4>\O[?f RU IV3>\[@ $ [ Df & 4>\[@ 7KHUHIRUH E\ /HPPD E,RFN[[IVf^3f & 4 ’ &RUROODU\ )RU D +RDUH WULSOH ^3`WW^"` +Q%^Sfr^4f A? SD ^S`.^4` 3URRI /HW 7 EH DQ LQWHUSUHWDWLRQ RI 3$ Q 6n ]f DQG 6 a 6G ZKHUH 6 LV GLVWLQn JXLVKHG $VVXPH ^3`U^` 7KHQ LQ WKDW SURRI ?nAA^3`6G^4` DQG E\ WKH 6RXQGQHVV 7KHRUHP MIVG^3f 4 4 %\ WKH 6XEVWLWXWLRQ /HPPD WKLV LV HTXLYDOHQW WR EMIV^3f & RU ? M^3f[^4f ’ &RPSOHWHQHVV RI IJ 2QFH WKH SURYDELOLW\ RI WKH 63& +RDUH WULSOH LV HVWDEOLVKHG WKH FRPSOHWHQHVV SURSHUW\ RI IJ LV SURYHQ DV LW ZDV LQ &KDSWHU 7KH IROORZLQJ UHVXOWV DUH QHHGHG WR VKRZ WKH SURYDELOLW\ RI WKH 63& +RDUH WULSOH /HPPD )RU H[SUHVVLRQ H ZLWK YDUHf & ^MT DT` DGG;N^HF[N YNff VHW;NOHF[-FO YNLff

PAGE 53

3URRI 7KH SURRI LV D VWUDLJKWIRUZDUG DSSOLFDWLRQ RI WKH GHILQLWLRQV ’ /HPPD )RU D IXQFWLRQ I GHILQHG RQ WKH VWDWH FRGHV RI ^DT [r` 9XIFXrL9L N OX FIMWL MIHLfff[Mf $ YNO D r 9L N ^X DGGUIFDF[IF Xrffff[ff 3URRI 7KLV UHVXOWV IURP &RUROODU\ DQG /HPPD ’ /HPPD 63& OORDUH WULSOHf )RU D SURJUDP VHJPHQW 6 DQG DQ DVVHUWLRQ 3 ZKHUH IUHH6f & IUHH3f ; ^LO [Nf < ^\X \N` ;IO < DQG S >\N[W@ N[ \f $ 3`6^9L N^[ JVSF\N c7IFfff\f $ 3Sf 3URRI 3URYH WKH OHPPD E\ LQGXFWLRQ RQ 6 7KH SURRI IRU DOO FDVHV H[FHSW WKH 9DULDEOH 'HFODUDWLRQ 5XOH ZLOO EH WKH VDPH DV LQ &KDSWHU /HW \ F^\BN \Nf EHJLQ [M? 6L HQG $VVXPH IUHHEHJLQ [ 6 HQGf & IUHH3f f§ ; 6LQFH 6 RFFXUV LQ D GLVWLQn JXLVKHG SURJUDP [ ZLOO QRW DOUHDG\ EH LQ ; :LWKRXW ORVV RI JHQHUDOLW\ OHW 6 EHJLQ ;NLn6 HQG ^9L N[W "f $ 3MEHJLQ [NL6L HQG ^9L N[ ^JVS^\ff\s $ 3Sf 7 &RQVHTXHQFH 5XOH @ D /HW \N EH D IUHVK YDULDEOH \n F\K \Nf Sn >\N[[N@ DQG EH H[WHQGHG WR RSHUDWH RQ WKH VWDWH FRGH \n VR WKDW LW OHDYHV \NL XQFKDQJHG ^9L N O[ \Lf $ 3^EHJLQ [rL HQG ^9L N O[ ^J6L3nL\nffAf $ 3 $ ;IFL RfSn` 7 9DULDEOH 'HFODUDWLRQ 5XOH ^9L N O[ \cf $ 3 $ [WL D`L ^9L N O[ JV[3nL\nffAf $ 7r $ ;IFL DfSn` ,QGXFWLYH +\SRWKHVLV

PAGE 54

7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV 9L N O[ J6OSn^\nff\Lf $ 3 $ [NL DfS 9L N O[ JVOSn\ffcLf $ 3 $ \IFL D 9L $ O[ JV \nSnff[Lf $ 3S $ MLW D 9L IF O[ VIV DGG7NO D \SfffAf $ 3S 9L IF[I GURS;NL \V DGG;N D \Sffff[f $ 3S 9L IF[I V\Sff[If $ 3S n 9L $[ 3S\ff\f $ 3S ’

PAGE 55

&+$37(5 3$5$0(7(5/(66 352&('85(6 5HFXUVLRQ LQ D 35 3URJUDPPLQJ /DQJXDJH $ PLQLPDO SURJUDPPLQJ ODQJXDJH ZKLFK FRPSXWHV WKH FODVV RI 35 IXQFWLRQV KDV EHHQ SUHVHQWHG $ PRUH XVHIXO ODQJXDJH ZKLFK FRPSXWHV WKLV FODVV RI IXQFWLRQV LV GHn YHORSHG QH[W ,Q RUGHU WR GR WKLV FRQVWUXFWV VLPLODU WR WKRVH RI XQLYHUVDO SURJUDPPLQJ ODQJXDJHV ZLOO EH DGGHG 7KH FRQFHUQ KHUH LV QRW WR FRQVWUXFW DQ DFWXDO SURJUDPPLQJ ODQJXDJH EXW WR IRUP WKH WKHRUHWLFDO EDVLV IRU VXFK D ODQJXDJH &RQVWUXFWV VXFK DV FRQGLWLRQDOV FDVH VWDWHPHQWV ERXQGHG ZKLOH ORRSV DQG QRQUHFXUVLYH SURFHGXUHV FDQ EH VWUDLJKWIRUZDUGO\ DGGHG WR WKH ODQJXDJH 7KH XQERXQGHG ZKLOH ORRS XQERXQGHG UHFXUVLRQ DQG WKH JRWR FRQVWUXFW FDQ QRW EH DGGHG 3ULPLWLYH UHFXUVLRQ LV RQH RI WKH FRQVWUXFWV EHWZHHQ WKHVH H[WUHPHV +RZ VKRXOG SULPLWLYH UHFXUVLRQ EH IRUPXODWHG DV D SURJUDPPLQJ FRQVWUXFW" +RSHn IXOO\ WKHUH LV D JHQHUDO PHWKRG VR UHFXUVLRQ LQ WKH ODQJXDJH GRHV QRW QHHG WR EH LQ WKH H[DFW IRUP RI SULPLWLYH UHFXUVLRQ &RQVLGHU IXQFWLRQV ZLWK D VLQJOH RXWSXW 2QH ZD\ WR UHVWULFW UHFXUVLYH SURFHGXUH FDOOV LV WR DVVRFLDWH D PD[LPXP YDOXH ZLWK WKH UHFXUVLYH SURFHGXUH ,I WKH YDOXH FRPSXWHG E\ WKH SURFHGXUH H[FHHGV WKLV YDOXH VXEn VHTXHQW UHFXUVLYH FDOOV WR WKLV SURFHGXUH DUH LJQRUHG 3HWHU >@ UHIHUV WR WKH IXQFWLRQ FRPSXWHG E\ VXFK D SURFHGXUH DV ERXQGHG UHFXUVLRQ DQG VKRZV WKDW WKLV GRHV QRW OHDG RXW RI WKH FODVV RI HOHPHQWDU\ IXQFWLRQV D VXEVHW RI WKH FODVV RI 35 IXQFWLRQV 7KLV DSSURDFK ZDV QRW DGRSWHG LQ WKLV UHVHDUFK

PAGE 56

$OWHUQDWLYHO\ D ERXQG FDQ EH DVVRFLDWHG ZLWK HDFK UHFXUVLYH SURFHGXUH ZKLFK JLYHV WKH PD[LPXP QHVWLQJ GHSWK RI WKDW SURFHGXUH 7KLV ERXQG ZRXOG UHVWULFW WKH QXPEHU RI FRSLHV RI WKH SURFHGXUH ZKLFK FDQ EH DFWLYH DW RQH WLPH 2QFH WKLV GHSWK KDV EHHQ UHDFKHG VXEVHTXHQW FDOOV WR WKH SURFHGXUH ZRXOG EH LJQRUHG )LJXUH LOn OXVWUDWHV ERXQGHG UHFXUVLRQ 7KH SURJUDPPHU VKRXOG EH DEOH WR ZULWH DQ H[SUHVVLRQ IRU VXFK D ERXQG :KHQ ZULWLQJ D UHFXUVLYH SURFHGXUH WKH SURJUDPPHU VKRXOG PHQn WDOO\ MXVWLI\ WKDW WKH SURFHGXUH ZLOO WHUPLQDWH E\ YHULI\LQJ WKDW RQ HDFK UHFXUVLYH FDOO WKH SUREOHP LV EURNHQ LQWR D ILQLWH QXPEHU RI VPDOOHU SUREOHPV 7KH H[SUHVVLRQ IRU WKH PD[LPXP SURFHGXUH QHVWLQJ GHSW K FDQ EH GHWHUPLQHG IURP WKLV UHGXFWLRQ 7KLV LV WKH DSSURDFK XWLOL]HG LQ WKLV UHVHDUFK 7KURXJKRXW WKH UHPDLQGHU RI WKLV SDSHU ERXQGHG UHFXUVLRQ ZLOO UHIHU WR UHFXUVLRQ ERXQGHG E\ D PD[LPXP QHVWLQJ GHSWK 8QIRUWXQDWHO\ SODFLQJ D ERXQG RQ WKH QHVWLQJ GHSWK RI D SURFHGXUH GRHV QRW JXDUDQWHH WKDW WKH SURJUDPV ZLOO FRPSXWH RQO\ WKH FODVV RI 35 IXQFWLRQV $FNHU PDQQfV IXQFWLRQ LV D WRWDO IXQFWLRQ ZKLFK LV QRW 35 $FNHUPDQQnV IXQFWLRQ FDQ EH GHILQHG DV IROORZV $FNHUNQPf f§ (NQPf ZKHUH (RQ Pf f§ PQ (NPf IRU N (NQ Pf (Na?(N^Q f§ Pf Pf IRU N DQG Q ,W FDQ EH VKRZQ WKDW $FNHUPDQQnV IXQFWLRQ LV QRW 35 EHFDXVH LW JURZV IDVWHU WKDQ DQ\ 35 IXQFWLRQ >@ $FNHUPDQQfV IXQFWLRQ LV EXLOW LQ VWDJHV ,W LV EXLOW DW RQH VWDJH E\ LWHUDWLQJ RQ WKH IXQFWLRQ DW WKH SUHYLRXV VWDJH 7KH GHILQLWLRQ RI $FNHUPDQQfV IXQFWLRQ JLYHQ DERYH VWDUWV ZLWK H[SRQHQWLDWLRQ WR DYRLG VSHFLDO LQLWLDO FDVHV )LJXUH VKRZV KRZ TXLFNO\ $FNHUPDQQfV IXQFWLRQ JURZV RQ N

PAGE 57

SURFHGXUH LI Q HOVHLI HOVH ] ERXQG ILEQf nfQn1 WKHQ ] Q O WKHQ ] ILEQOfILEQf HQG KE LI Q WKHQ ] O HOVHLI Q O WKHQ ] O HOVH ] ILE LI Q WKHQ ] O HOVHLI Q O WKHQ ] O HOVH ] .E IL) OLE LI Q WKHQ ] HOVHLI Q O WKHQ ] O HOVH ] IL) I7) :KHQ ILEr LV H[HFXWHG WKH UHFXUVLYH SURFHGXUH ILE LV QHVWHG OHYHOV GHHS 7KLV LV SRVVLEOH LI Q )LJXUH %RXQGHG UHFXUVLRQ

PAGE 58

$FNHUQPf "]Q $FNHU Q Pf LQn $FNHU Q Pf LQn P )LJXUH $FNHUPDQQfV IXQFWLRQ $FNHUNQPf JURZV TXLFNO\ RQ N ,I WKH IROORZLQJ SURFHGXUH LV H[HFXWHG ZKHQ ] O LW WHUPLQDWHV ZLWK WKH YDOXH RI $FNHUNQPf LQ YDULDEOH ] SURF H[SQPf Q r eJ SURJUDP WR VHW r ] WR LQn HQG SURF DFNHUNQPf N LI N WKHQ H[SQPf HOVH ORRS Q DFNHUN]Pf HQG HQG HQG 7KH FRQVWUXFW ZKLFK OHDGV RXW RI WKH FODVV RI 35 IXQFWLRQV LV WKH UHFXUVLYH FDOO ZLWKLQ WKH ERG\ RI D ORRS ,W LV WKLV FRQVWUXFW ZKLFK DOORZV $FNHUPDQQfV IXQFWLRQ WR EH EXLOW DW RQH VWDJH E\ LWHUDWLQJ RQ $FNHUPDQQfV IXQFWLRQ DW WKH SUHYLRXV VWDJH

PAGE 59

,W FDQ EH DUJXHG WKDW D UHFXUVLYH FDOO ZLWKLQ WKH ERG\ RI D ORRS LV QRW D VWUXFWXUHG FRQVWUXFW 6WUXFWXUHGQHVV KDV EHHQ GHILQHG DV WKH DELOLW\ WR XQGHUVWDQG WKH PHDQLQJ RI WKH ZKROH IURP WKH PHDQLQJ RI WKH SDUWV DQG D IHZ FRPELQLQJ UXOHV )RU H[DPSOH D ORRS ODQJXDJH ZRXOG EH FRQVLGHUHG VWUXFWXUHG LI WKH PHDQLQJ RI WKH SURJUDP VHJPHQW fORRS Q 6 HQGf LV FRPSOHWHO\ GHWHUPLQHG E\ WKH PHDQLQJ RI 6 DQG WKH NQRZOHGJH WKDW WKH fORRS Qf FRQVWUXFW PHDQV WR UHSHDW WKH ERG\ RI WKH ORRS Q WLPHV ,Q WKH DERYH FRQVWUXFW WKH PHDQLQJ RI WKH ERG\ RI WKH UHFXUVLYH SURFHGXUH UHTXLUHV NQRZLQJ WKH PHDQLQJ RI WKH ORRS ERG\
PAGE 60

ORRS Q HQG ZKLFK WUDQVODWHV LQWR WKH IXQFWLRQ ORRSQ[f GHILQHG E\ ORRS [f [ ORRSL I O[f JV^ORRSL[ff 7KLV GRHV QRW OHDG RXW RI WKH FODVV RI 35 IXQFWLRQV DV ORQJ DV WKH IXQFWLRQ JV LV NQRZQ +RZHYHU LI WKH ORRS ERG\ FRQWDLQV D UHFXUVLYH FDOO WR WKH SURFHGXUH FRQWDLQLQJ WKH ORRS WKH IXQFWLRQ JV ZLOO QRW EH NQRZQ ,Q WKLV FDVH WKH IXQFWLRQ ORRS LV DQ H[DPSOH RI UHFXUVLRQ RI WKH ILUVW GHJUHH 7KDW LV LW LV D IXQFWLRQ ZKLFK GHSHQGV RQ D IXQFWLRQ ,W FDQ EH ZULWWHQ ORRS [Jf [ ORRS^L [JVf JV^ORRS^L[JVff 3HWHU VKRZV WKDW VXFK IXQFWLRQV FDQ EH UHGXFHG WR GRXEO\ QHVWHG UHFXUVLYH IXQFWLRQV DQG WKHUHIRUH OHDG RXW RI WKH FODVV RI 35 IXQFWLRQV ,W KDV EHHQ HVWDEOLVKHG E\ WKH $FNHUPDQQ H[DPSOH WKDW SURFHGXUHV RI WKH IROORZn LQJ IRUP PXVW EH GLVDOORZHG LQ D 35 SURJUDPPLQJ ODQJXDJH SURF S[f P ORRS Q S^[f HQG HQG ,W LV SRVVLEOH WR VLPXODWH WKLV SURFHGXUH ZLWKRXW XVLQJ WKH ORRS FRQVWUXFW 7KH IROn ORZLQJ SURFHGXUH LV HTXLYDOHQW WR WKH DERYH SURF S[f P SURF T[f Q T^[f S^[f HQG T[f HQG

PAGE 61

7KH ORRS LV VLPXODWHG E\ UHFXUVLYH SURFHGXUH T 7KH RIIHQVLYH FDOO LV QR ORQJHU D FDOO WR WKH SURFHGXUH LWVHOI ,Q WKLV SURJUDP WKH RIIHQVLYH FDOO LV D FDOO ZLWKLQ SURFHGXUH T WR SURFHGXUH S WKH SDUHQW RI T 7KXV FDOOV WR WKH SDUHQW RI WKH FXUUHQW SURFHGXUH PXVW EH UHVWULFWHG LQ D 35 ODQJXDJH 6LQFH FDOOV WR SDUHQWV DUH UHVWULFWHG FDOOV WR DOO GLUHFW DQFHVWRUV PXVW DOVR EH UHVWULFWHG VLQFH D FDOO WR D SDUHQW FRXOG HDVLO\ EH VLPXODWHG LQ D ODQJXDJH ZKLFK DOORZHG FDOOV WR D GLUHFW DQFHVWRU ,I SURFHGXUH T LQ WKH SUHYLRXV H[DPSOH ZDV PRYHG RXWVLGH RI SURFHGXUH S WKH UHVXOWLQJ SURJUDP ZRXOG VWLOO EH HTXLYDOHQW WR D SURFHGXUH FRQWDLQLQJ D UHFXUVLYH FDOO ZLWKLQ D ORRS SURF S[f P T^[f HQG SURF T[f Q T[f S[f HQG 7KH UHFXUVLYH FDOO ZLWKLQ D ORRS LV VLPXODWHG E\ SURFHGXUH S FDOOLQJ SURFHGXUH T DQG SURFHGXUH T FDOOLQJ SURFHGXUH S 7KXV FDOO VHTXHQFHV ZKHUH VLEOLQJV PXWXDOO\ FDOO HDFK RWKHU GLUHFWO\ RU LQGLUHFWO\ PXVW EH UHVWULFWHG $ UHFXUVLYH FDOO LV D FDOO WR D SURFHGXUH ZKLFK LV DFWLYH DW WKH WLPH WKH FDOO LV PDGH 5HIHU WR D UHFXUVLYH FDOO DV GLUHFW LI LW LV D FDOO WR WKH FXUUHQW SURFHGXUH $OO RWKHU UHFXUVLYH FDOOV ZLOO EH UHIHUUHG WR DV LQGLUHFW 7KH SUHYLRXV WZR H[DPSOHV FRQWDLQ ERWK GLUHFW DQG LQGLUHFW UHFXUVLYH FDOOV 6\QWD[ RI ,Q DGGLWLRQ WR WKH RWKHU WRNHQV RI eJ DQ LQILQLWH VHW RI RUGHUHG SURFHGXUH LGHQn WLILHUV ZKLFK LV GLVMRLQW IURP WKH VHW RI YDULDEOH LGHQWLILHUV DQG WKH QHZ WRNHQ XSURF

PAGE 62

DUH SDUW RI WKH ODQJXDJH &T (QYLURQPHQWV DUH DOVR LQWURGXFHG LQ WKLV QHZ ODQJXDJH $Q HQYLURQPHQW LV D VHTXHQFH RI SURFHGXUH GHFODUDWLRQV 3URFHGXUH GHFODUDWLRQV DUH RI WKH IRUP SURF S H 6 HQG IRU SURFHGXUH LGHQWLILHU S DQG SURJUDP VHJPHQW 6 +HUH H LV DQ H[SUHVVLRQ IRU WKH PD[LPXP QHVWLQJ GHSWK RI WKH SURFHGXUH 7KLV H[SUHVVLRQ LV UHIHUUHG WR DV WKH SURFHGXUHfV ERXQG )RU D YDULDEOH LGHQWLILHU [ D SURFHGXUH LGHQWLILHU S DQG DQ H[SUHVVLRQ H WKH VHW RI SURJUDP VHJPHQWV RI &T LV GHILQHG LQ %DFNXV1DXU IRUP DV IROORZV 6 [ H 6L?6 ORRS H 6L HQG % S EHJLQ [ 6 HQG EHJLQ ( 6 HQG ( W SURF S H 6 HQG (?( 5HFDOO WKDW WKH SURJUDP VHJPHQW fEHJLQ [ 6 HQGf ELQGV YDULDEOH [ LQ 6 6LPLODUO\ WKH SURJUDP VHJPHQW 7 EHJLQ SURF S H HQG (? 6 HQG ELQGV SURFHGXUH LGHQWLILHU S LQ 7 /HW WKH S LPPHGLDWHO\ IROORZLQJ WKH WRNHQ SURF EH DW ORFDWLRQ M 7KH GHILQLQJ RFFXUUHQFH RI DOO RFFXUUHQFHV RI S LQ 7 ZKLFK DUH QRW DOVR ZLWKLQ DQRWKHU SURJUDP VHJPHQW fEHJLQ SURF S Hn? 6n` HQG (n? 6n HQGf FRQWDLQHG LQ ( RU  LV MSf 1RZ ERWK YDULDEOH DQG SURFHGXUH LGHQWLILHUV PXVW EH UHQDPHG WR GLVWLQJXLVK D SURJUDP ,W ZDV VKRZQ WKDW SURJUDP VHJPHQWV RI WKH ODQJXDJH eSS DQG eJ FDQ EH WUDQVn ODWHG LQWR 35 IXQFWLRQV 7KH VLWXWDWLRQ LV PRUH FRPSOH[ IRU SURJUDP VHJPHQWV LQ &T 7KHVH SURJUDP VHJPHQWV PD\ FRQWDLQ FDOOV WR SURFHGXUHV GHILQHG RXWVLGH RI 6 DQG WKH\ PD\ EH FRQWDLQHG ZLWKLQ D UHFXUVLYH URXWLQH 'HILQH D SURJUDP XQLW ( ? 6 DV DQ fHQYLURQPHQWffSURJUDP VHJPHQWf SDLU ZKHUH DOO SURFHGXUH LGHQWLILHUV DUH ERXQG LQ fEHJLQ (? 6 HQGf 'HILQH D UHFXUVLYH SURJUDP XQLW RU UHFXUVLYH XQLW DV DQ fHQYLn URQPHQWffSURFHGXUH LGHQWLILHUffSURJUDP VHJPHQWf WULSOH ZKHUH ( ? 6 LV D SURJUDP XQLW DQG FDOOV LQ 6 WR S ZRXOG EH UHFXUVLYH

PAGE 63

/HW PLQ( 6f GHQRWH (n ? 6 ZKHUH (n LV WKH PLQLPXP HQYLURQPHQW VXFK WKDW (n 6 LV D SURJUDP XQLW *LYHQ D SURJUDP XQLW ( 6 ZKHUH PLQ( ? 6f (n (n LV WKH VHW RI SURFHGXUHV DQG LGI^( 6f WKH VHW RI LGHQWLILHUV YLVLEOH IURP 6 0DNH VLPLODU GHILQLWLRQV IRU D UHFXUVLYH XQLW ( _S 6 2OGHURJ >@ KDV DGGLWLRQDO GHWDLOV $ FDOO GLJUDSK RU FDOO GLUHFWHG JUDSK IRU SURFHGXUH FDOO ( ? S LQ D GLVWLQJXLVKHG SURJUDP LV FRQVWUXFWHG DV IROORZV /HW ( S EH WKH URRW QRGH )RU HDFK QRGH ( ? S LQ WKH JUDSK ZKHUH SURF S H 6 HQG ( ( FRQVLGHU ( ? 6 )RU ( 6 (n 6n GR WKH IROORZLQJ (n ? 6n (n ? ;^ H 'R QRWKLQJ (n 6n (n LS 6 &RQVLGHU (n 6L DQG (n VHSDUDWHO\ (n 6n (n ORRS H 6L HQG &RQVLGHU (n ? 6? (n 6n (n EHJLQ [ 6? HQG &RQVLGHU (n ? 6? (n 6n (n EHJLQ (L@ 6L HQG &RQVLGHU $GG([ (nf ? 6L (n ? 6n (n ? T 7KUHH FDVHV DUH SRVVLEOH (LWKHU S WKHUH LV D QRGH ( T ZKLFK LV D GLUHFW DQFHVWRU RI ( S RU WKHUH LV QR QRGH ZLWK SURFHGXUH LGHQWLILHU T ZKLFK LV D GLUHFW DQFHVWRU RI ( ? S ,Q WKH ILUVW FDVH WKH FDOO (n T LV D GLUHFW UHFXUVLYH FDOO 'UDZ D GLUHFWHG HGJH IURP QRGH ( S WR LWVHOI 1RWH WKDW PLQ(n Tf PLQ( Sf ,Q WKH VHFRQG FDVH (n T LV DQ LQGLUHFW UHFXUVLYH FDOO 'UDZ D GLUHFWHG HGJH IURP QRGH ( S WR QRGH ( T 1RWH WKDW PLQ(n Tf PLQ( Tf ,Q WKH ODVW FDVH (n T LV D QRQUHFXUVLYH FDOO &UHDWH D QHZ QRGH (n T GUDZ D GLUHFWHG HGJH IURP QRGH ( S WR QRGH (n T DQG UHSHDW WKH SURFHVV IRU WKLV QHZ QRGH )LJXUH JLYHV DQ H[DPSOH RI D SURFHGXUH FDOO DQG LWV FDOO GLJUDSK )RU VLPSOLFLW\ WKH HQYLURQPHQWV KDYH QRW EHHQ VKRZQ 1RWLFH WKDW HDFK F\FOH LV HQWHUHG YLD D VLQJOH

PAGE 64

6 SURF S U HQG SURF T HQG SURF U V HQG SURF V U HQG 3 )LJXUH ([DPSOH RI D SURFHGXUH FDOO DQG LWV FDOO GLJUDSK QRGH UHIHUUHG WR DV WKH VWDUW QRGH RI WKH F\FOH &DOO DOO RWKHU QRGHV RQ WKH F\FOH LQQHU QRGHV 6D\ D F\FOH LV FRPSOH[ LI RQH RI LWV LQQHU QRGHV LV WKH VWDUW QRGH RI DQRWKHU F\FOH 2WKHUZLVH WKH F\FOH LV VLPSOH $OO F\FOHV LQ WKH FDOO GLJUDSK RI ILJXUH DUH VLPSOH /HW & EH WKH ODQJXDJH eJ ZLWKRXW WKH ORRS FRQVWUXFW DQG ZKHUH ERXQGHG UHFXUVLYH FDOOV DUH DOORZHG 7KHQ WKH FDOO GLJUDSK IRU D SURJUDP LQ & FRXOG FRQWDLQ D FRPSOH[ F\FOH )LJXUH VKRZV VXFK D SURFHGXUH FDOO DQG LWV FDOO GLJUDSK 5HFDOO WKDW D SURFHGXUH ZLWK WKH FDOO VWUXFWXUH JLYHQ LQ ILJXUH PD\ FRPSXWH D IXQFWLRQ ZKLFK LV QRW 35 7KXV WKH 35 ODQJXDJH PXVW EH UHVWULFWHG VR WKDW WKH FDOO GLJUDSK IRU DQ\ SURJUDP LQ WKH ODQJXDJH FRQWDLQV RQO\ VLPSOH F\FOHV $ VLPSOH F\FOH ZKLFK LV HQWHUHG YLD WKH FDOO ( S ZLOO EH FDOOHG ( SnV F\FOH RU VLPSO\ SnV F\FOH LI QR DPELJXLW\ ZLOO UHVXOW ,I HDFK F\FOH RQ WKH FDOO GLJUDSK LV

PAGE 65

6 SURF S HQG SURF T S 4 HQG 3 )LJXUH 3URFHGXUH FDOO DQG GLJUDSK ZLWK FRPSOH[ F\FOHV FROODSVHG LQWR D VLQJOH QRGH WKH FDOO GLJUDSK EHFRPHV D WUHH 7KH KHLJKW RI D FDOO GLJUDSK LV WKH QXPEHU RI HGJHV LQ WKH ORQJHVW SDWK RI WKLV WUHH FRXQWHG E\ SDVVLQJ WKURXJK HDFK QRGH RQO\ RQFH *LYHQ WKH SURJUDP VHJPHQW ORRS H 6 HQG LQ WKH SUHYLRXV FKDSWHUV YDUHf IO IUHH6f ,Q WKLV FKDSWHU ZH DVVXPH YDUHf IO IUHHPLQ( 6ff IRU SURJUDP XQLW ( ORRS H HQG DQG IRU SURJUDP XQLW ( EHJLQ SURF T H 6 HQG 7 HQG $ SURJUDP LQ &T LV D EORFN ZLWK QR IUHH SURFHGXUH LGHQWLILHUV ZKHUH WKH FDOO GLn JUDSK RI HDFK FDOO FRQWDLQV RQO\ VLPSOH F\FOHV DQG FDOOV WR WKH QH[W QRGH RQ D F\FOH GR QRW RFFXU ZLWKLQ WKH ERG\ RI D ORRS $VVLJQPHQW FRPSRVLWLRQ LWHUDWLRQ YDULDEOH GHFODUDWLRQ DQG SURFHGXUH GHFODUDWLRQ DUH UHIHUUHG WR DV QRQFDOO FRQVWUXFWV 6HPDQWLFV RI &T ,Q WKH ZRUN YDULDEOHV FDQ EH GHFODUHG XVLQJ WKH FRQVWUXFW EHJLQ [ 6 HQG 5HFDOO WKDW WKH PHDQLQJ RI WKLV SURJUDP VHJPHQW LV LQGHSHQGHQW RI WKH YDULDEOH

PAGE 66

LGHQWLILHU [ 7KDW LV EHJLQ [ 6 HQG DQG EHJLQ \6>\[@ HQG ZKHUH >\[@ LV WKH UHVXOW RI UHSODFLQJ HYHU\ IUHH RFFXUUHQFH RI [ LQ 6 E\ \ KDYH WKH VDPH PHDQLQJ SURYLGHG \ A YDU6f &DUH PXVW EH WDNHQ ZKHQ DGGLQJ SURFHGXUHV WR WKLV ODQJXDJH VR WKDW WKLV LQGHSHQGHQFH LV PDLQWDLQHG &RQVLGHU WKH IROORZLQJ SURJUDP EORFN )RU VLPSOLFLW\ WKH ERXQGV DVVRFLDWHG ZLWK WKH SURFHGXUHV ZLOO EH LJQRUHG EHJLQ [ SURF S [ HQG SURF T EHJLQ [ [ 3 HQG HQG [ HQG ,I WKLV SURJUDP LV H[HFXWHG XVLQJ G\QDPLF VFRSH RI YDULDEOHV ZLOO EH XSRQ FRPn SOHWLRQ RI WKLV SURJUDP +RZHYHU LI WKH YDULDEOH LGHQWLILHU GHFODUHG LQ SURFHGXUH T LV FKDQJHG WR \ VR WKDW SURFHGXUH T LV GHILQHG DV LQ WKH IROORZLQJ SURJUDP ZLOO EH DIWHU H[HFXWLQJ WKH EORFN SURF T EHJLQ \ \ ‘ HQG HQG 7KXV WKH PHDQLQJ RI WKH EORFN LV GHSHQGHQW RQ WKH YDULDEOH LGHQWLILHU XVHG WR GHFODUH D WHPSRUDU\ ZRUN YDULDEOH LQ SURFHGXUH T 6WDWLF VFRSH RI YDULDEOHV JXDUDQWHHV WKDW

PAGE 67

WKH PHDQLQJ RI 6 ZLOO EH LQGHSHQGHQW RI WKH YDULDEOH LGHQWLILHU FKRVHQ 7KH QHZ ODQJXDJH &T ZLOO XVH VWDWLF VFRSH RI LGHQWLILHUV ,GHQWLILHUV ERWK YDULDEOH DQG SURFHGXUH ZLOO EH UHQDPHG WR PDLQWDLQ VWDWLF VFRSH *LYHQ D SURJUDP +RDUH WULSOHV ZLOO EH SURYHG IRU D GLVWLQJXLVKHG FRS\ RI WKDW SURn JUDP 6LQFH WKHUH DUH DQ LQILQLWH QXPEHU RI GLVWLQJXLVKHG SURJUDPV ZKLFK DUH FRQn JUXHQW WR D JLYHQ SURJUDP WKH LGHQWLILHUV FKRVHQ WR GLVWLQJXLVK D SURJUDP ZLOO EH VXFK WKDW WKH QH[W DYDLODEOH LGHQWLILHU LV FKRVHQ ZKHQHYHU D QHZ LGHQWLILHU LV QHHGHG :KHQHYHU D UHFXUVLYH FDOO LV PDGH WKH ERXQG LGHQWLILHUV LQ WKH ERG\ RI WKH UHFXUn VLYH SURFHGXUH ZLOO EH UHQDPHG 5HQDPLQJ SURFHGXUH LGHQWLILHUV KDV QR HIIHFW LQ &T 7KH JURXQGZRUN LV EHLQJ ODLG IRU ZKHQ SDVVLQJ SURFHGXUHV DV SDUDPHWHUV DUH DOORZHG DQG UHQDPLQJ SURFHGXUH LGHQWLILHUV LV QHFHVVDU\ WR PDLQWDLQ VWDWLF VFRSH RI SURFHGXUH LGHQWLILHUV /HW &M GHQRWH WKH IXQFWLRQ ZKLFK SHUIRUPV WKH UHQDPLQJ QHFHVVDU\ WR PDLQWDLQ VWDWLF VFRSH 7KH IXQFWLRQ &M WDNHV D SURJUDP VHJPHQW DQG D ILQLWH VHW RI LGHQWLn ILHUV DQG UHWXUQV D SURJUDP VHJPHQW 6n VXFK WKDW 6 DQG 6n DUH FRQJUXHQW DQG QR LGHQWLILHU ERXQG LQ 6n RFFXUV LQ 7KH IXQFWLRQ -M LV WKH FRS\ UXOH &HR LQWURGXFHG E\ 2OGHURJ >@ ,W SHUIRUPV D QRQGHWHUPLQLVWLF UHQDPLQJ RI LGHQWLILHUV 7R PDNH WKLV GHWHUPLQLVWLF OHW &M FKRRVH WKH QH[W DYDLODEOH LGHQWLILHU ZKHQHYHU D QHZ LGHQWLILHU LV QHHGHG 7KH VHW RI LGHQWLILHUV LQ &M FRQWDLQV WKRVH LGHQWLILHUV ZKLFK DUH YLVLEOH ZKHQ WKH FDOO LV PDGH 7KXV IUHTXHQWO\ &? ZLOO EH ZULWWHQ ZLWKRXW WKH VXEVFULSW DV & 7KH PHDQLQJ RI D UHFXUVLYH XQLW ( _S 6 GHSHQGV XSRQ WKH FXUUHQW OHYHO RI QHVWLQJ RI WKDW SURFHGXUH 7KHUHIRUH VHPDQWLFV PXVW EH JLYHQ UHODWLYH WR ERXQGHG UHFXUVLYH XQLWV 7KH ERXQGHG UHFXUVLYH XQLW ( _e 6 GHQRWHV D UHFXUVLYH XQLW ( ?S 6 ZKHUH 6 LV D SURJUDP VHJPHQW RQ SfV F\FOH DQG DFWLYH FRSLHV RI WKLV F\FOH PD\ EH QHVWHG E DGGLWLRQDO WLPHV ,I FDOOV WR S ZLOO EH LJQRUHG

PAGE 68

7KH VHPDQWLFV IRU &T DUH GHILQHG E\ D PDSSLQJ ( ZKLFK JLYHQ DQ LQWHUSUHWDWLRQ 7 DVVLJQV D VWDWH IXQFWLRQ
PAGE 69

1RWLFH WKDW IRU PLQ( S Ef PLQ(n ? S f ( ? S EfVf (A(n S EfVf $OVR QRWLFH WKDW WKH DERYH VHPDQWLFV DUH RSHUDWLRQDO 7KH PHDQLQJ RI D UHFXUVLYH SURFHGXUH FDOO LV JLYHQ LQ WHUPV RI WKH FRS\ UXOH DSSOLHG WR WKH ERG\ RI WKDW SURFHGXUH :KHQ WKH WUDQVODWLRQ LV JLYHQ IURP DQ M&Tn SURJUDP WR WKH 35 IXQFWLRQ ZKLFK GHQRWHV WKDW SURJUDP GHQRWDWLRQDO VHPDQWLFV DUH JLYHQ 7KXV WKH 35 IXQFWLRQV FRUUHVSRQGLQJ WR SURJUDP XQLWV LQ &T PXVW QRW XWLOL]H FRS\ UXOHV 3URYLQJ D SURSHUW\ DERXW DQ SURJUDP FDQ QR ORQJHU EH GRQH DV D VLPSOH LQGXFWLRQ RQ SURJUDP VHJPHQW )ROORZLQJ LV DQ H[DPSOH SURRI VKRZLQJ KRZ DQ DUELWUDU\ SURSHUW\ 5 LV SURYHQ IRU D SURJUDP XQLW ( 6 7KDW LV LW ZLOO EH SURYHQ WKDW IRU D SURJUDP XQLW e 6 5( ? 6f KROGV 7KH SURRI LQYROYHV D QXPEHU RI LQGXFWLRQV RQ D SURJUDP XQLW ( ? 6 7KHVH LQGXFWLRQV RFFXU ZLWKLQ WZR FRQWH[WV LQGXFWLRQ RQ D GLVWLQJXLVKHG SURJUDP XQLW ( DQG LQGXFWLRQ RQ D GLVWLQJXLVKHG ERXQGHG SURJUDP XQLW ( _e 6 )LUVW SURYH WKDW SURSHUW\ 5 KROGV LQ HLWKHU FRQWH[W IRU 6 D QRQFDOO FRQVWUXFW 7KDW LV ILUVW SURYH 5( ? 6f DQG 5( _e 6f IRU 6 D QRQFDOO FRQVWUXFW 2QFH WKH DERYH KDV EHHQ SURYHQ LW LV NQRZ WKDW 5( ? 6f KROGV IRU WKH QRQFDOO FRQVWUXFWV $OO WKDW LV OHIW WR VKRZ LV 5( ? Sf 3URYH WKLV E\ LQGXFWLRQ RQ WKH KHLJKW K RI WKH ( S GLJUDSK /HW SURF S H7 HQG ( 6D\ K DQG WKH FDOO ( ? S LV QRW WKH VWDUW QRGH RI D F\FOH 6KRZ WKDW IRU ( 7 D GLVWLQJXLVKHG SURJUDP XQLW 5( Sf IROORZV IURP 5( 7f 2QFH WKLV KDV EHHQ VKRZQ DOO WKDW LV OHIW WR VKRZ LV WKDW 5( 7f KROGV ,W ZLOO KDYH EHHQ VKRZQ WKDW WKH SURSHUW\ 5( ? 7f KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH K WKHUH DUH QR FDOOV LQ SURFHGXUH ERG\ 7

PAGE 70

6D\ K f§ DQG WKH FDOO ( ? S LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV 6KRZ WKDW 5( Sf IROORZV IURP 5( ? S Ef 2QFH WKLV KDV EHHQ VKRZQ DOO WKDW LV OHIW WR VKRZ LV WKDW 5( S Ef KROGV 3URYH 5( S Ef E\ LQGXFWLRQ RQ ERXQG E 6KRZ 5( ? S f KROGV $VVXPH 5( S E f§ f KROGV IRU DQ\ SURJUDP XQLW ( ? S 6KRZ WKDW IRU ( 7 D GLVWLQJXLVKHG SURJUDP XQLW 5( S Ef IROORZV IURP 5( _eBM 7f ,W ZLOO KDYH EHHQ VKRZQ WKDW IRU DQ\ E 5( _e 7f KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH K FDOOV LQ SURFHGXUH ERG\ 7 FDQ RQO\ EH WR WKH ILUVW QRGH RQ D F\FOH &RQVLGHU WKH F\FOHV RQ QRGH ( S /DEHO WKH FDOOV SDUWLFLSDWLQJ LQ WKHVH F\FOHV DFFRUGLQJ WR KRZ PDQ\ FDOOV WKHUH DUH EHWZHHQ WKH HGJH UHSUHVHQWLQJ WKLV FDOO DQG WKH HGJH HQWHULQJ QRGH ( ? S 7KDW LV WKH QWK FDOO GLUHFWO\ WR SURFHGXUH S LV ODEHOHG (QR "QR /DEHO WKH QWK FDOO WR D SURFHGXUH ZKLFK LV P FDOOV DZD\ IURP D UHFXUVLYH FDOO WR SURFHGXUH ( ? S (QBP TQcP 3URSHUW\ 5( _eBM 7f KROGV IRU HDFK FDOO (QP ?S 4QP LI LW FDQ EH VKRZQ WKDW IRU  P 5(Q`O TQLf 3URYH 5(Qc TQLf L P IRU DQ\ Q E\ LQGXFWLRQ RQ L )LUVW VKRZ 5(QAR _EB TQRf LH 5(Q Sf XVLQJ WKH LQGXFWLYH K\SRWKHVLV RQ E )RU L P SURF TQcW HQ\8Q HQG ( (QO DQG (QW ? 8QW GLVWLQJXLVKHG VKRZ 5(QB[ _ABM T8MLf IROORZV IURP 5(QWO _BM ,W LOO KDYH EHHQ VKRZQ WKDW 5(Q 8QcOf KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH WKH F\FOHV DUH VLPSOH DQG K WKH RQO\ FDOOV LQ DUH FDOOV RI WKH IRUP (QnL? TQnL 7KH SURSHUW\ "effBL _eBM TQ?f KROGV IRU WKHVH FDOOV E\ LQGXFWLRQ RQ L /HW K 7KH SURRI WKDW 5( ? Sf KROGV ZKHUH K LV VLPLODU WR WKH SURRI WKDW 5( Sf KROGV ZKHUH K f§ H[FHSW WKDW DQ DGGLWLRQDO FDVH LV QHHGHG WR LQGXFWLYHO\ SURYH VRPH RI WKH HTXDWLRQV 2QO\ WKHVH DGGLWLRQDO FDVHV ZLOO EH GLVFXVVHG

PAGE 71

6D\ ( S LV QRW D VWDUW QRGH ,Q SURYLQJ 5( 7f WKH SURFHGXUH ERG\ 7 PD\ FRQWDLQ D SURFHGXUH FDOO 7KH KHLJKW RI WKH GLJUDSK IRU WKLV FDOO ZLOO EH OHVV WKDQ K 7KXV 5( 7f KROGV IRU WKLV FDOO E\ LQGXFWLRQ RQ K 6D\ ( S LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV ,Q SURYLQJ 5( 7f WKH SURFHGXUH ERG\ 7 PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH 6KRZ WKDW IRU VXFK D FDOO T 5( _eBM Tf IROORZV IURP 5( Tf 7KH KHLJKW RI WKH ( T GLJUDSK ZLOO EH OHVV WKDQ K 7KXV 5( Tf KROGV E\ LQGXFWLRQ RQ K ,Q SURYLQJ 5( _eBM 7f IRU D FDOO WR WKH QH[W QRGH RQ D F\FOH 5(8LL _eBM 8QLf PXVW EH SURYHG +HUH 8Q PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH 7KLV FDVH LV KDQGOHG DV LW ZDV LQ WKH SUHYLRXV SDUDJUDSK 7KH DERYH VKRZV KRZ WR SURYH D SURSHUW\ RI &T SURJUDPV 7KXV ZH KDYH D SURJUDPPLQJ ODQJXDJH ZKLFK LQFOXGHV D SRZHUIXO IRUP RI UHFXUVLRQ \HW IRU ZKLFK SURSHUWLHV FDQ EH SURYHG XVLQJ VLPSOH \HW WHGLRXV QHVWHG LQGXFWLRQV /HPPD 6XEVWLWXWLRQ /HPPDf )RU D SURJUDP XQLW ( ? 6 DQG D VXEVWLWXWLRQ S ZKLFK LV LQMHFWLYH RQ IUHHPLQ( ff (-e 6fSfVf (7e 6ffSVf 3URRI 7KLV OHPPD LV VWUDLJKWIRUZDUGO\ SURYHG XVLQJ WKH WHFKQLTXH JLYHQ LQ WKH H[n DPSOH SURRI Â’ /HPPD M2 )RU D SURJUDP XQLW ( 6 <"n( 6f LV D SURJUDP IXQFWLRQ RQ IUHH^PLQ( ff 3URRI ,W LV VKRZQ WKDW
PAGE 72

7KH IROORZLQJ SURSHUWLHV RI SURJUDP IXQFWLRQV DUH XVHIXO LQ SURYLQJ WKH VRXQGQHVV RI WKH QHZ YHULILFDWLRQ V\VWHP /HPPD ([WHQVLRQ WR /HPPD f /HW I EH D SURJUDP IXQFWLRQ RQ ; I^3>[\?f 4 4>[\? I3f & 4 ZKHUH [ IO ; DQG \ IO ; I^3>H\?f 4 4 I3f 4 4 ZKHUH \ &, ; 8 IUHH4ff 3URRI $VVXPH I^3f & 4 ;N IO ; DQG IO ; /HW ^V[Nf\N` GHQRWH WKH UHSODFHPHQW ^VAf V^[Nf\L V 6WM3>[\?f V^V[NfMcN` 6WM3f &RUROODU\ I^V^V[Nf\N`f 6WM4f $VVXPSWLRQ ^I>Vff^V^[Nf\N` f 6WM4f I LV VWDEOH Vf f 6LM4>[rIF@f &RUROODU\ $VVXPH I3f & 4 DQG \cc ; 8 IUHH4ff V 6LM3>Hr\r@f V^;HLfVf -HIFfVf"\IF` 6WM3f r V^-HLfVf,HWfVf"LIF`f 6WM"f r Vf*6WMJf &RUROODU\ $VVXPSWLRQ t + IUHH4f Â’ &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV ,Q WKH ODVW WZR FKDSWHUV WKH IXQFWLRQ JV ZDV GHILQHG ZKLFK VLPXODWHG SURJUDP VHJPHQW 6 ,Q WKLV FKDSWHU JV?V ZLOO VLPXODWH SURJUDP XQLW ( 6 'HILQH WKH IXQFWLRQ e_V[f DV IROORZV 6 ;L H J(?V[f VHW;LH [f

PAGE 73

6 6L6 J(?V[f 4(A$D(AL[ff 6 ORRS H 6L HQG J(?V[f 6 EHJLQ ;L? HQG 3H_V[f GURS7 J(?V[ ^DGG7L D [fff 6 EHJLQ (? 6? HQG J(?V^[f J(_6LAf ZKHUH (n $GG([ ef 6 S ZKHUH SURF S H 7 HQG e (  H_W[f LI ( S LV QRW D VWDUW QRGH (?S[ U(?SJH[f [f LI ( S LV D VWDUW QRGH ZKHUH U(?SE[f IROORZV [ LI E J(?SU^E a?[U(?SE O[ff LI E DQG J(?SV LV GHILQHG DV 6 [W H J(?3V^E[U(L?SE[ff VHW;LH[f 6 6L6 J(?SVE [ U(?SE [ff J(?36L^A e_SV E [ U(?S^E [ff U(cSEJ(c36OE [ U(@SE [ffff ORRS HL HQG J(?3VE[U(!?S^E[ff II(?V[?[f 6 EHJLQ [W 6[ HQG J(?SVE [ U(n?SE[ff GURS;O J(?SV DGG;L>D [f UIL_S DF:7_D [ffff EHJLQ eL 6L HQG "e_SVUUem_S[ff H}_SV! UI\_S [ff ZKHUH ( $GG(X (f 6 T ZKHUH SURF T H7 HQG e ( J(?3T^E [U(n?SE [ff U(n?SE [f J(?37^E[U(L?SE [ff (_F[f LI 3 LI LV RQ SfV F\FOH A S LI T LV QRW RQ SfV F\FOH

PAGE 74

1RWLFH WKDW IRU PLQ^( Sf PLQ(n Sf U(?SE[f U(n?SE [f :LWK WKH DERYH GHILQLWLRQ ZH FDQ QRZ SURYH /HPPD -A )RU SURJUDP XQLW ( 6 ZKHUH IUHHPLQ( 6ff ; H?VFV?;ff F(-e fVfI;f 3URRI /HW FV>;f 7KLV SURRI XVHV WKH WHFKQLTXH JLYHQ LQ WKH H[DPSOH SURRI RQ SDJH ,W LQYROYHV D QXPEHU RI LQGXFWLRQV RQ D SURJUDP XQLW ( 6 ,Q HDFK FRQWH[W WKH WUHDWPHQW RI WKH QRQFDOO FRQVWUXFWV LV WKH VDPH ,Q WKHVH FRQWH[WV WKH IROORZLQJ KROGV IRU WKH QRQFDOO FRQVWUXFWV e_6f F6-e_"fVf>;f f (?SVEOU(OSEAff F6-e ?O fVf>;f f 7KH SURRI RI HTXDWLRQV DQG DUH VLPLODU 7KH SURRI RI HTXDWLRQ ZLOO EH JLYHQ ;L H (?3VEr aI U(?S>E ff VHW;WH f FV^-HfVf[`>n;f FDVVLJQM[L HfVf >;f F(-e ,I 6fVfI;f V 6X6 (?SV^Ea U(?SE ff H?SV E J(?SV U(?S^E ff U(?S J(?36L U(@S^E ffff e_}6OF(,e V9fVfU9fUQ_OOGY,I _I Vf}fU[fff Fe=e_e6fRL,e_6fVff_;f FOFRPSMLtO( ?UK 6f(Ue 6ffVf3&f F,"( _I 6fVf>;f

PAGE 75

6 ORRS H L HQG )LUVW SURYH J(?6OOf F^(A^( 6ffGVf>;f E\ LQGXFWLRQ RQ G )URP WKDW UHVXOW WKH IROORZLQJ KROGV (?UVEaLU(?S^EaLff 6 EHJLQ [@ 6 HQG (?3V^EnUU(?3Eff GURS;W J(?36O DGG;LD f U(?SE DGG7WD ffff B GURS;LJ(?36L>EF^V^ODf[L`?; 8 ^[`f U(?SEFV^ODf[L`?; 8 ^[`ffff GURSfF6-e 6fV,}fr`fU; 8 ^r`ff F(-( _I 6.VO,IR-[2.+Q.V9[MU;f F:RFLMLf6ne_I6ffVfU;f F6;e7 _I 6f6fI;f EHJLQ (? ? 6? HQG (?SVEaLU(?SELff (n_S6,L}Ue_Sff ZKHUH en $GG(X(f F6UenLUf:I;f F(-e_IfVfI;f 7KH DERYH SURRI VHFWLRQV ZLOO EH UHIHUUHG WR PXOWLSOH WLPHV LQ WKH SURRI RI WKLV OHPPD 7KH SURRI RI HTXDWLRQ VKRZV WKDW WKH OHPPD KROGV IRU WKH QRQFDOO FRQVWUXFWV $OO WKDW LV OHIW WR VKRZ LV WKDW WKH OHPPD KROGV IRU WKH FDOO ( S 3URYH WKLV E\ LQGXFWLRQ RQ WKH KHLJKW K RI WKH ( ? S GLJUDSK /HW SURF S H7 HQG ( 6D\ K DQG WKH FDOO ( ? S LV QRW WKH VWDUW QRGH RI D F\FOH ,I LW FDQ EH VKRZQ WKDW ,H!:f &O J (?6? \M ( ? 6f,AV?Vf?;f FLRRS-H6-(_ff6fU;f F6-e_e 6fVf?;f J(?7Kf F(,(?7fVf?;f f

PAGE 76

WKHQ WKH IROORZLQJ KROGV (?3^Qf H?W^Lf FI(ALU;LMU[f F([( UWVfI;f (TXDWLRQ KDV EHHQ SURYHG IRU WKH QRQFDOO FRQVWUXFWV 6LQFH WKHUH DUH QR FDOOV LQ SURFHGXUH ERG\ 7 6D\ DQG WKH FDOO ( S LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV ,I LW FDQ EH SURYHG WKDW U(?3EOf H(-e 3 fVfI;f f WKHQ WKH IROORZLQJ KROGV (?3Kf U(?S^JH^Of f Ue_S-HfVff F(Ue_S,HfVff6fU;f &6-e_SfVfU;f 3URYH HTXDWLRQ E\ LQGXFWLRQ RQ )RU Ae_3f FIGVf>;f F(-e S fVf>;f 6XSSRVH WKDW ,I LW FDQ EH VKRZQ WKDW IRU 7 GLVWLQJXLVKHG (QE OU%_S ff F6-e _eBW Uf6f>;f f WKHQ WKH IROORZLQJ KROGV U(?3^Ef J(?SU^E U(@SE ff F(;( _IB 7fVfU;f 6;( _I &Uff}fU;f S fVfU[f 7KH SURRI RI HTXDWLRQ VKRZV WKDW HTXDWLRQ KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH FDOOV LQ SURFHGXUH ERG\ 7 FDQ RQO\ EH WR WKH ILUVW QRGH RQ D F\FOH

PAGE 77

&RQVLGHU WKH F\FOHV RQ QRGH ( S /DEHO WKH FDOOV SDUWLFLSDWLQJ LQ WKHVH F\FOHV DFFRUGLQJ WR KRZ PDQ\ FDOOV WKHUH DUH EHWZHHQ WKH HGJH UHSUHVHQWLQJ WKLV FDOO DQG WKH HGJH HQWHULQJ QRGH ( S 7KDW LV WKH QWK FDOO GLUHFWO\ WR SURFHGXUH S LV ODEHOHG (QR QR /DEHO WKH QWK FDOO WR D SURFHGXUH ZKLFK LV P FDOOV DZD\ IURP D UHFXUVLYH FDOO WR SURFHGXUH ( ? S (QP ? TQP (TXDWLRQ KROGV IRU HDFK FDOO eQP TQAP LI LW FDQ EH VKRZQ WKDW IRU  P WKH IROORZLQJ KROGV (Q?STQE a f f U(?S^E a ff Fe-efW _MBL "QmfVfU;f f 7KLV ZLOO EH SURYHQ IRU DQ\ Q E\ LQGXFWLRQ RQ L )RU L LI LW FDQ EH VKRZQ WKDW U(?3E f F(;^( SE OfVfLrf f WKHQ WKH IROORZLQJ KROGV (Q?STQE a OLOU(?3^E ff eQ_3SOUe_Sff U(?S^E f§ f F7;( ? S Ef§ OfVf>;f &6--(QR_QOfVfU;f F(-(QR_/"QRfVfU[f (TXDWLRQ KROGV E\ LQGXFWLRQ RQ E /HW UQ DQG SURF TQ$ HQHQG e (QW ,I LW FDQ EH VKRZQ WKDW IRU 5QB GLVWLQJXLVKHG (Q?S5QE U(?3E f§ ff F^(,(QL _eB 5QLf^Vf I;f (Q?S5Q$Ea AAU(?SE ff F7;(QL _eB 5QLfVf?;f F7;(QcL ?OB\ Q}fVf3 WKHQ WKH IROORZLQJ KROGV (Q?STQE a OLaIU(?S^E ff f

PAGE 78

(TXDWLRQ KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH WKH F\FOHV DUH VLPSOH DQG K WKH RQO\ FDOOV LQ L"Q DUH FDOOV RI WKH IRUP (Qn? TQ?LLf (TXDWLRQ LV SURYHG IRU WKHVH FDOOV E\ LQGXFWLRQ RQ L /HW K 7KH SURRI WKDW WKH OHPPD KROGV IRU WKH FDOO ( ? S ZKHUH K LV VLPLODU WR WKH SURRI WKDW WKH OHPPD KROGV IRU WKH FDOO ( S ZKHUH K H[FHSW WKDW DQ DGGLWLRQDO FDVH LV QHHGHG WR LQGXFWLYHO\ SURYH VRPH RI WKH HTXDWLRQV 2QO\ WKHVH DGGLWLRQDO FDVHV ZLOO EH GLVFXVVHG 6D\ ( S LV QRW D VWDUW QRGH ,Q SURYLQJ HTXDWLRQ WKH SURFHGXUH ERG\ 7 PD\ FRQWDLQ D SURFHGXUH FDOO 7KH KHLJKW RI WKH GLJUDSK IRU WKLV FDOO ZLOO EH OHVV WKDQ K 7KXV HTXDWLRQ KROGV IRU WKLV FDOO E\ LQGXFWLRQ RQ K 6D\ ( S LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV ,Q SURYLQJ HTXDWLRQ WKH SURFHGXUH ERG\ 7 PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH ,I LW FDQ EH VKRZQ WKDW (_f F6,e_f6fU$nf f WKHQ WKH IROORZLQJ KROGV J(?ST^E OUe_S ff J(?TOf _IB "f6fS2 7KH KHLJKW RI WKH ( ? T GLJUDSK ZLOO EH OHVV WKDQ K 7KXV HTXDWLRQ KROGV E\ LQGXFWLRQ RQ K ,Q SURYLQJ HTXDWLRQ IRU D FDOO WR WKH QH[W QRGH RQ D F\FOH HTXDWLRQ PXVW EH SURYHG +HUH 5Q L PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH 7KLV FDVH LV KDQGOHG DV LW ZDV LQ WKH SUHYLRXV SDUDJUDSK ’ 7KH SURRI RI /HPPD ZRXOG EH VLPSOHU LI WKH IXQFWLRQ EHLQJ UHFXUVLYHO\ GHILQHG FRUUHVSRQGHG WR D SURFHGXUH ERG\ ,QVWHDG WKH IXQFWLRQ FRUUHVSRQGV WR WKRVH SURFHn GXUHV ZKLFK PDNH XS D F\FOH ,Q WKLV FKDSWHU WKH VHTXHQFH RI SURFHGXUHV PDNLQJ XS

PAGE 79

D F\FOH FDQ EH UHGXFHG WR D VLQJOH SURFHGXUH E\ UHSODFLQJ HDFK SURFHGXUH FDOO WR DQ LQQHU QRGH ZLWK LWV SURFHGXUH ERG\ 6XFK D WUDQVODWLRQ PDNHV DOO UHFXUVLYH FDOOV GLn UHFW 7KLV WUDQVODWLRQ DOZD\V RFFXU IRU SURJUDP VHJPHQWV LQ &T ZKRVH FDOO GLJUDSKV FRQWDLQ RQO\ VLPSOH F\FOHV :KLOH WKLV WUDQVODWLRQ LV SRVVLEOH IRU D 35 ODQJXDJH ZLWK SDUDPHWHUOHVV SURFHGXUHV RU D 35 ODQJXDJH ZLWK YDULDEOH SDUDPHWHUV LW LV QRW SRVn VLEOH IRU D ODQJXDJH ZLWK SURFHGXUH SDUDPHWHUV 7KHUHIRUH VXFK D WUDQVODWLRQ ZLOO QRW EH XWLOL]HG KHUH 7KHRUHP ? 7KH FODVV RI IXQFWLRQV FRPSXWHG E\ &T SURJUDPV LV WKH FODVV RI 35 IXQFWLRQV 3URRI 1RWLFH WKDW IRU DQ &T SURJUDP U f 6 a 6G ZKHUH 6G LV GLVWLQJXLVKHG DQG IUHH6f ; F6-WWfVf>;f _VGFV>;ff ,W FDQ EH VHHQ IURP WKH GHILQLWLRQ WKDW WKH IXQFWLRQ J(?V LV 35 7KHUHIRUH HDFK &T SURJUDP U FRPSXWHV D 35 IXQFWLRQ &T LV DQ H[WHQVLRQ RI eJ DQG WKHUH LV D SURJUDP LQ eJ ZKLFK FRPSXWHV HYHU\ 35 IXQFWLRQ 7KXV WKH FODVV RI 35 IXQFWLRQV DQG WKH FODVV RI IXQFWLRQV FRPSXWHG E\ &T SURJUDPV DUH HTXLYDOHQW Â’ 9HULILFDWLRQ RI &T SURJUDPV 7KH YHULILFDWLRQ V\VWHPV GSJ DQG 7IJ FRQVLVWHG RI +RDUH VWDWHPHQWV RQ SURJUDP VHJPHQWV ,W LV VWUDLJKWIRUZDUG WR PRGLI\ WKHVH WR +RDUH 6WDWHPHQWV RQ SURJUDP XQLWV DQG ERXQGHG UHFXUVLYH XQLWV ,Q DGGLWLRQ 7T FRQWDLQV UXOHV WR YHULI\ +RDUH VWDWHPHQWV DERXW SDUDPHWHUOHVV SURFHGXUHV 7KH YHULILFDWLRQ V\VWHP 7T IRU WKH QHZ ODQJXDJH &T IROORZV

PAGE 80

3URJUDP 5XOH ^I` 6G^J` ^efr^"f IRU U ]f 6 a 6G DQG 6 GLVWLQJXLVKHG $VVLJQPHQW $[LRP ^3>H[@`( [ H^3` &RPSRVLWLRQ 5XOH ^3`e_6^IL`IO`e_^4` ^3f% 6e^"` ,QYDULDQFH 5XOH ^3`e_6^4` ^3 0L`( 6^4 $ 5M IRU IUHH5f IO IUHHPLQ( ? 6ff ,WHUDWLRQ 5XOH ^3>\[` $ \ H`( ^3>V\f[@` ^3>[@`L" ORRS H 6 HQG^3>H[@` IRU [ YDUHf 8 IUHHPLQ( ? 6ff DQG \ YDUHf 8 IUHH^PLQ( ff 8 IUHH3f &RQVHTXHQFH 5XOH 3OA3^3`(?6^4`44O 9DULDEOH 'HFODUDWLRQ 5XOH ^3>\[? $ [ D`( 6^4>\[?` ^3`( EHJLQ [ 6 HQG^4` IRU \ IUHH3 9 4f 8 IUHHPLQ( 6ff

PAGE 81

3URFHGXUH 'HFODUDWLRQ 5XOH ^3`(n?6^4` ^3`( EHJLQ (L 6 HQG^4` IRU (n $GG(L (f (QYLURQPHQW 5XOH ^3`(?6^4` IRU PLQ( 6f PLQ(n 6f 1RQ5HFXUVLYH 3URFHGXUH &DOO 5XOH ^3`(?6^4` ^3`( S^4` IRU ( S QRW D VWDUW QRGH DQG SURF S H 6 HQG e ( 5HFXUVLYH 3URFHGXUH &DOO 5XOH 3>Z? ">LX@ ^3>Y f§ Z@ $ Y H`( _\B S^4>Y f§ Z? $ Y H` ?AA^3>YZ@ $ Y H`( _-BM $ Y H`f ^3>HZ@`( S^4>HZ`` IRU SURF S H 6 HQG e ( DQG Y e IUHHPLQ( ? Sff 8 IUHH3 9 4f 5XOHV WR SURYH +RDUH WULSOHV IRU UHFXUVLYH SURJUDP XQLWV ( _e 6 $VVLJQPHQW $[LRP ^3>H[``(?SE[ H^3` ^3`(?,6^5`^5`(?,6^4` ^3`(?UE6O6^4` &RPSRVLWLRQ 5XOH

PAGE 82

,QYDULDQFH 5XOH 3f3_(6^"f ^3$D`e_^6^4$-"` IRU IUHH5f IO IUHHPLQ( _S ff ,WHUDWLRQ 5XOH ^3>LOUO$2\H`J_(6^3>\fOOf ^3>[@`( _M ORRS H 6 HQG^3>H[@` IRU [ e YDUHf 8 IUHH^PLQ( _S 6ff DQG \ YDUHf 8 IUHHPLQ^( _S 6ff 8 IUHH3f &RQVHTXHQFH 5XOH !3^`(_J6^4`4}T 3-3 ,( 6^"f 9DULDEOH 'HFODUDWLRQ 5XOH ^3>\[@ Q`( _J 6^">\[@` ^3`( _e EHJLQ [ 6 HQG^4` IRU \ IUHH3 94f8 IUHH>PLQ( _S ff 3URFHGXUH 'HFODUDWLRQ 5XOH ^3`(n ^4` ^3`( EHJLQ (;6 HQG^4` IRU (n $GG(X (f (QYLURQPHQW 5XOH ^SfI _A^T` ^3`(?SE6^4` IRU PLQ( _S f PLQ(n ? 6f ,QQHU 3URFHGXUH &DOO 5XOH ^3`J_(6"` ^3f(?O m^"f IRU T RQ SnV F\FOH T A S DQG SURF T H 6 HQG e (

PAGE 83

2II &\FOH 3URFHGXUH &DOO 5XOH 3fe_G4f 3f(?8^4f IRU T QRW RQ SfV F\FOH 6XEVWLWXWLRQ 5XOH ^3`(?OS^4` ^3>[\?`( ," S^4>[+c?` ZKHUH [ IUHHPLQ( _S Sff DQG \ IUHH>PLQ( _S Sff 6XEVWLWXWLRQ 5XOH ^Sfe>\^` ^3>"O\?`(?O S^4f ZKHUH \ IO IUHHPLQ( _S Sff 8 IUHH4ff f§ 1RWLFH WKDW WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH UHIHUV WR SURYDELOLW\ $ FDOFXOXV RI VHTXHQWV ZRXOG EH D PRUH IRUPDO SUHVHQWDWLRQ WKDQ WKH QDWXUDO GHGXFWLRQ V\VWHP JLYHQ KHUH ,W FDQ EH VKRZQ KRZHYHU WKDW WKH V\VWHP SUHVHQWHG FDQ EH WUDQVODWHG WR D FDOFXOXV RI VHTXHQWV 7KH 5HFXUVLYH 3URFHGXUH &DOO 5XOH UHTXLUHV WKDW D +RDUH WULSOH EH SURYHG DVn VXPLQJ WKH SURYDELOLW\ RI DQRWKHU +RDUH WULSOH )UHTXHQWO\ WKH +RDUH WULSOH ZKLFK LV DVVXPHG QHHGV WR EH PRGLILHG IRU WKH SURRI 7KH ,QYDULDQFH 5XOH HQDEOHV WKH DGDSn WDWLRQ RI WKH DVVXPHG +RDUH WULSOH IRU WKH SURRI 7KH ,QYDULDQFH 5XOH FDQ EH PDGH REVROHWH ZLWK VOLJKW PRGLILFDWLRQV WR 7T >@ ,Q IDFW LQ +T WKH IROORZLQJ ZHDNHU ,QYDULDQFH 5XOH ZRXOG VXIILFH ^3`(?OS^4` ^3$5`(?SE3^4$5` IRU IYHH5f IO IUHHPLQ( _S Sff

PAGE 84

7KH JHQHUDO ,QYDULDQFH 5XOHV DUH FRQYHQLHQW KRZHYHU :LWKRXW WKHVH UXOHV LQIRUn PDWLRQ QHHGHG DERXW WKH YDULDEOHV QRW XVHG LQ D SURJUDP VHJPHQW PXVW EH FDUULHG WKURXJKRXW WKH SURRI 7KLV LV WKH UROH DVVHUWLRQ 3 SOD\HG LQ WKH OHPPD VKRZLQJ WKH SURYDELOLW\ RI D 63& OORDUH WULSOH LQ &KDSWHUV DQG 7KH JHQHUDO ,QYDULDQFH 5XOHV DUH LQFOXGHG LQ +T VLQFH H[WUD LQIRUPDWLRQ LQ D SURRI WHQGV WR REVFXUH ZKDW LV KDSSHQLQJ LQ WKDW SURRI &DOO WKH YDULDEOHV QRW XVHG LQ D SURFHGXUH DX[LOLDU\ YDULDEOHV RI WKDW SURFHGXUH +HUH LV D GHVFULSWLRQ RI KRZ WKH DVVXPSWLRQ UHVXOWLQJ IURP DQ DSSOLFDWLRQ RI WKH 5Hn FXUVLYH 3URFHGXUH &DOO 5XOH LV W\SLFDOO\ PRGLILHG 6XEVWLWXWLRQ 5XOH UHQDPHV RQH RU PRUH DX[LOLDU\ YDULDEOHV RI WKH DVVXPSWLRQ 7KH ,QYDULDQFH 5XOH VWDWHV WKDW WKHVH UHQDPHG YDULDEOHV DUH QRW FKDQJHG E\ WKH SURFHGXUH FDOO 7KH &RQVHTXHQFH 5XOH LV XVHG WR UHPRYH WKH DX[LOLDU\ YDULDEOHV IURP WKH SRVWDVVHUWLRQ )LQDOO\ 6XEVWLWXWLRQ 5XOH LV XVHG WR UHSODFH WKH DX[LOLDU\ YDULDEOHV LQ WKH SUHDVVHUWLRQ E\ XVHIXO RQHV )RU 7 SURF O HQGS WKH SURRI WKDW KQFA[ Q $Dn GHPRQVWUDWHV WKH XVH RI WKHVH UXOHV $X[LOLDU\ YDULDEOH ] LV XVHG WR VKRZ WKDW IRU [ Q SURJUDP Q GRHV QRW FKDQJH WKH YDOXH RI [ /HW ( SURF SQL LOSL L O HQG

PAGE 85

^ Q $L `LU^[ ` 7 3URFHGXUH 'HFODUDWLRQ 5XOH ^] Q $L ]`( S^[ ]` 7 &RQVHTXHQFH 5XOH ^] Q $ [ ]`( S^] Q $ [ ]M 7 5HFXUVLYH 3URFHGXUH &DOO 5XOH SUHDVVHUWLRQ ] Z $ [ ] SRVWDVVHUWLRQ ] Z $ [ ] ] $ [ ]f f§ ] $ [ ]f $VVXPH ^!UO$L $U Q`( _eBM S^] Y f§ O $ [ ] $ Y Q` 3URYH X $ [ U $ X Q`( _eBM [ [ f§ OS [ [ I ^!Wn$L $UQ` 7 $VVLJQPHQW &RPSRVLWLRQ DQG &RQVHTXHQFH 5XOHV ^]O!ZO$L O$UQ`e _eBM S^] f§ Y f§ $ [ ] f§ O $2 Y Q` 7KLV ILQDO OORDUH WULSOH LV WKH UHVXOW RI UHSODFLQJ ] HYHU\ZKHUH LQ WKH DVVXPSWLRQ EY f§ 7KLV LV GRQH DV IROORZV

PAGE 86

^] f§ Y f§ $ [ ] f§ O$Y Q`( _eB[ S ^] f§ Y f§ O $ [ ] f§ $2 W Q` 7 &RQVHTXHQFH 5XOH ^] f§ Y f§ O $ [ ] f§ O $ Y Q $ ] f§ O ] f§ `( _AB S ^] f§ Y f§ $L $2 Q` 7 6XEVWLWXWLRQ 5XOH ZLWK >] f§ OG? 5HPRYH WKH DX[LOLDU\ YDULDEOH G IURP WKH SUHDVVHUWDLRQ ^!XO$L $2LQ$ U `e _eBM S ^] f§ !WfO$U O$UQ` 7 &RQVHTXHQFH 5XOH 5HPRYH WKH G IURP WKH SRVWDVVHUWDLRQ ^G!Yf§?$[ G$YQ$G ] f§ `( _fBM S ^G Y f§ ? $[ G$YQ$G ] f§ ` 7 ,QYDULDQFH 5XOH )RUP WKH FRQQHFWLRQ EHWZHHQ WKH ROG DQG QHZ ^!WOO$O $-O`e _\B S ^G Y f§ $ [ G $ Y "U` 7 6XEVWLWXWLRQ 5XOH ZLWK >G]@ 5HSODFH ] LQ WKH DVVXPSWLRQ E\ WKH LQDFWLYH YDULDEOH G ^] Y f§ $U $U Q`( _AB S ^]!Y f§ ? $[ ]$YQf $VVXPSWLRQ 7KLV FRPSOHWHV WKH H[DPSOH 1RWLFH WKDW WKH VXEVWLWXWLRQ UXOHV ZRXOG EH VRXQG HYHQ LI SURFHGXUH FDOO S ZDV UHSODFHG E\ SURJUDP VHJPHQW LQ WKHVH UXOHV 7KH ZHDNHU VXEVWLWXWLRQ UXOHV VXIILFH WR SURYLGH D FRPSOHWH YHULILFDWLRQ V\VWHP IRU n+T

PAGE 87

$ UHVWULFWLRQ FRXOG EH SODFHG RQ WKH V\VWHP WKDW SURJUDPV FDQ QRW PDNH UHFXUVLYH FDOOV ZLWK D ]HUR ERXQG YDOXH 7KLV ZRXOG UHTXLUH FRQGLWLRQDO VWDWHPHQWV LQ WKH SURJUDP UDWKHU WKDQ WKH ERXQG WR FRQWURO WKH GHSWK RI UHFXUVLRQ $Q H[DPSOH RI D UHFXUVLYH SURFHGXUH FRQWUROOHG EY FRQGLWLRQDO VWDWHPHQWV DQG D UHFXUVLYH SURFHGXUH FRQWUROOHG E\ WKH ERXQG DUH JLYHQ LQ ILJXUH 5HFXUVLYH URXWLQHV DUH RUGLQDULO\ FRQWUROOHG E\ FRQGLWLRQDO VWDWHPHQWV 7KH UROH RI WKH ERXQG VKRXOG EH DQ DVVHUWLRQ RI WKH PD[LPXP QHVWLQJ GHSWK RQ WKH URXWLQH /HWWLQJ WKH ERXQG GHWHUPLQH WKH GHSWK RI WKH UHFXUVLRQ FUHDWHV D SURFHGXUH PRUH LQ WKH IODYRU RI LWHUDWLRQ WKDQ UHFXUVLRQ 8WLOL]LQJ WKH ERXQG DV D FRQWURO PHFKDQLVLP FRXOG EH FRQVLGHUHG D PLVXVH RI WKH ODQJXDJH ,I D JXDUDQWHH LV PDGH WKDW UHFXUVLYH FDOOV ZLOO QRW EH PDGH ZLWK D ]HUR ERXQG WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH VLPSOLILHV WR WKH IROORZLQJ 3 4^3`( ,} S^4f3+F^3f( 6^`f ‹75F IRU SURF S H 6 HQG ( ( 7KLV JXDUDQWHH FRXOG EH YHULILHG E\ D UXQ WLPH FKHFN RQ WKH YDOXH RI WKH ERXQG HDFK WLPH D UHFXUVLYH FDOO LV H[HFXWHG 7KLV UHVWULFWLRQ FDQ QRW EH JXDUDQWHHG V\QWDFWLFDOO\ KRZHYHU 7KHUHIRUH UHFXUVLYH FDOOV ZLWK D ]HUR ERXQG ZLOO EH DOORZHG DQG WKH PRUH FRPSOLFDWHG 5HFXUVLYH 3URFHGXUH &DOO 5XOH ZLOO EH XVHG 6RXQGQHVV RI ,Q WKH SUHYLRXV WZR V\VWHPV D OORDUH VWDWHPHQW ^3`6^` rV YDOLG LQ DQ LQn WHUSUHWDWLRQ LI WKH UHVXOW RI DSSO\LQJ D SURJUDP IXQFWLRQ IV WR DQ\ VWDWH LQ 3 \LHOGV D VWDWH LQ 4 7KDW LV A M^3M6nO&f` LI IV6WM3ff & 6WAL4f RU LQ WKH VKRUWHU IRUP IV^3f 4 4‘ ,Q WKH H[SDQGHG V\VWHP EHLQJ SUHVHQWHG OORDUH VWDWHn PHQWV DUH RI WKH IRUP ^3`( f^4` DQG ^3`( _e :ULWH ? M^3`( f^4` LI ("^( 6f6WM3ff & 6WM4f RU LQ WKH VKRUWHU IRUP (A( ? 6f3f & 4 6LPLODUO\

PAGE 88

5HFXUVLYH SURFHGXUH ZKRVH GHSWK LV GHWHUPLQHG E\ D FRQGLWLRQDO VWDWHPHQW (OL SURF DGG Qn LI Q WKHQ Q Q f§ DGG U ] HQG HQG = ,f§ DGG ? ; ^Q A Q`QL^] Q P` 5HFXUVLYH SURFHGXUH ZKRVH GHSWK LV GHWHUPLQHG E\ WKH ERXQG ,, f§ SURF DGG U DGG ] ] HQG = DGG M ^Q "L`Q^ Q P` )LJXUH ([DPSOH RI W\SHV RI UHFXUVLYH SURFHGXUH FRQWURO

PAGE 89

6 ZULWH ^3`( _e 6^"` LI 7"( _e 6f^3f & 4 )RU SURJUDP U ZULWH ? M^3`WW^4f LI 6-WWf3f & 4 5HFDOO WKDW WKH VRXQGQHVV RI WKH ,WHUDWLRQ 5XOH LPSOLHV WKDW WKH WKHRU\ VXSSRUWn LQJ WKH +RDUH D[LRPV DQG UXOHV SURYHV LQGXFWLRQ RQ DUELWUDU\ IRUPXODV $ VLPLODU VLWXDWLRQ H[LVWV IRU WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH 7KH 5HFXUVLYH 3URFHGXUH &DOO 5XOH ZKHUH WKH SUH DQG SRVWFRQGLWLRQV DUH IRUPXODV IURP eQ ZLOO EH UHIHUUHG WR DV WKH eQ5HFXUVLYH 3URFHGXUH &DOO 5XOH /HPPD )RU D FRPSOHWH WKHRU\ 7 35 $ DQG D +RDUH V\VWHP + ZKLFK LQFOXGHV WKH $VVLJQPHQW $[LRP &RQVHTXHQFH &RPSRVLWLRQ 3URFHGXUH 'HFODUDWLRQ DQG 3URFHGXUH &DOO 5XOHV eQ5HFXUVLYH 3URFHGXUH &DOO 5XOH LV VRXQG 7 K +QLQGXFWLRQ 7 ?a (QLLQGXFWLRQ n/Q5HFXUVLYH 3URFHGXUH &DOO 5XOH LV VRXQG 3URRI 7KH SURRI RI WKLV LPSOLFDWLRQ XVHV WKH VDPH WHFKQLTXH DV WKH SURRI RI WKLV LPSOLFDWLRQ LQ /HPPD 5HFDOO WKDW 3f DQG 9[)[f f§! 3[ ff DUH DVVXPHG DQG WKDW 3Df LV WR EH SURYHQ 7KH +RDUH VWDWHPHQW WR EH XVHG WR SURYH 3^Df LV WKDW IRU 7 SURF T D T L L HQG L T DQG L IUHH3f KA^3>[@`U^3>D[@` /HW ( SURF T D T L L HQG

PAGE 90

^ 3>[@` 7 ^3>D[@` 7 3URFHGXUH 'HFODUDWLRQ 5XOH ^3>[``( L T^3>D[@` 7 B $VVLJQPHQW $[LRP &RPSRVLWLRQ DQG &RQVHTXHQFH 5XOHV ^3 $ L [f>[@`3 T^3 $ L [f>D[@` 7 5HFXUVLYH 3URFHGXUH &DOO 5XOH SUHFRQGLWLRQ 3 $ L f§ [f>[@ SRVWFRQGLWLRQ 3 $ L f§ [f>Z[@ 3 $ L [f>[@f f§! 3 $ L f§ [f>[@f $VVXPH ^3 $ L f§ [f>[@ $ Y D`( _fBM T^3 $ L [f>X f§ [@ $ Y D` ^3 $ L [f>[@ $ Y D`( _-BM T? L L U29H ^3 $ L [f>Yc[? $ Y D` 7 $VVLJQPHQW $[LRP &RPSRVLWLRQ DQG &RQVHTXHQFH 5XOHV ^3 $ L [f>[@$ Y D`( _fBM J^3$  [f>U[@ $2 Y D` 7 &RQVHTXHQFH 5XOH D ^3 $L [f>[@ $ Y D`( _\BM A^3$L [f>Xf§ [@ $2 Y D` 7KH SURRI RI LPSOLFDLRQ D LV DV IROORZV 3 $ L [f >W! f§ [@ $ Y D ! 3>Y f§ [@ $L U O$UIO 3>Y[@ $ L X$ Y D 3$L Mf>U[@ $ U D $VVXPH 7 3 6QLLQGXFWLRQ 7KH SURRI RI WKH VRXQGQHVV RI ef5HFXUVLYH 3URFHGXUH &DOO 5XOH XVLQJ eQ LLQGXFWLRQ LV JLYHQ LQ WKH SURRI RI WKH 6RXQGQHVV 7KHRUHP ’

PAGE 91

$ +RDUH VWDWHPHQW LV SURYHQ FRUUHFW DV IROORZV )LUVW FRQVLGHU WKH FDOO GLJUDSK RI HDFK FDOO LQ WKH SURJUDP XQLW 5HGXFH WKH F\FOHV LQ WKHVH FDOO GLJUDSKV VR WKDW WKH JUDSKV EHFRPH WUHHV 3URYH D +RDUH VWDWHPHQW IRU WKH OHDI QRGHV RI WKHVH WUHHV 8VLQJ WKHVH +RDUH VWDWHPHQWV SURYH +RDUH VWDWHPHQWV IRU WKRVH QRGHV ZLWK FDOOV WR WKH OHDI QRGHV &RQWLQXH WKLV ZD\ ZRUNLQJ XS WKH WUHH XQWLO WKH RULJLQDO +RDUH VWDWHPHQW KDV EHHQ SURYHQ 3URYLQJ +RDUH VWDWHPHQWV LQ WKLV ZD\ JXDUDQWHHV WKDW SURRIV LQ WKH DQWHFHGHQW RI WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH GR QRW UHTXLUH DGGLn WLRQDO DSSOLFDWLRQV RI WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH 7KLV LV D PRUH UHVWULFWHG GHILQLWLRQ RI SURRI WKDQ WKH RQH JLYHQ E\ 2OGHURJ ,Q 2OGHURJnV SURRIV WKH +RDUH D[LRPV DQG UXOHV PD\ EH DSSOLHG LQ DQ\ RUGHU 3URRIV LQ WKH 35 V\VWHP SUHVHQWHG KHUH DUH OD\HUHG DFFRUGLQJ WR WKH FDOO VWUXFWXUH RI WKH SURJUDP 7KLV LV D VWURQJHU DQG PRUH VWUXFWXUHG QRWLRQ RI SURRI 7KHRUHP 6RXQGQHVVf )RU D +RDUH WULSOH ^3`( n^4` +:3`e 6^` 3$ ^3`( 6^"` 3URRI 3URYH WKLV E\ LQGXFWLRQ RQ WKH SURRI V\VWHP +T 7KH SURRI RI WKH VRXQGQHVV RI WKH UXOHV WUDQVODWHG IURP 7LQ FDQ EH VWUDLJKWIRUZDUGO\ PRGLILHG IRU WKLV VHFWLRQ 7KH SURRI RI WKH VRXQGQHVV RI WKH 3URFHGXUH 'HFODUDWLRQ (QYLURQPHQW DQG WKH SURn FHGXUH FDOO UXOHV DUH VWUDLJKWIRUZDUG IURP WKH VHPDQWLFV RI &T 7KH SURRI RI WKH VRXQGQHVV RI WKH VXEVWLWXWLRQ UXOHV IROORZ IURP /HPPD 7KH VRXQGHVV RI WKH UHPDLQLQJ UXOHV ZLOO EH VKRZQ /HW EH DQ LQWHUSUHWDWLRQ RI 3$ 5HFXUVLYH 3URFHGXUH &DOO 5XOH $VVXPH ?aAA^3>HZ@`( ? S^4>HOZ?f IRU SURF T H 6 HQG e ( DQG ( S WKH VWDUW QRGH RI RQH RU PRUH F\FOHV 7KHQ LQ WKDW SURRI 3>X@ f§! 4>4Z? DQG IRU Y A IUHHPLQ( Sff 8 IUHH3 9 4f ^3>Y f§ ?Z@ $ Y H`( _eB[

PAGE 92

S^4>Y f§ Z? $ Y H`KS\ ^3>YcZf $ Y H`( _6B 6f^4>XX!@` 'XH YY WR RXU UHVWULFWHG QRWLRQ RI SURYDELOLW\ WKH SURRI RI WKH DERYH GLG QRW UHTXLUH DQ DGGLWLRQDO DSSOLFDWLRQ RI WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH 7KHUHIRUH E\ LQGXFWLRQ RQ WKH VRXQGQHVV RI WKH SURRI V\VWHP > M^3>X f§ LW}@ $ Y H`( _eBM S^>X f§ WR@ $ Y H` LPSOLHV M>3>YZ@ $ Y H`( ?SBW 6^4>YOZ? $ Y H` /HW 3 EH D IRUPXOD 3URYH E\ +QLQGXFWLRQ RQ WKDW IRU E ? M7"( S Yf^3>YZ@ $ Y Ef & 4>YZ@ $ Y Ef f /HW 6LQFH ILUVW RUGHU ORJLF LV VRXQG M3>X!@ f§! >P@ ? M3>Z` r ">X!@ !f > MLG3>Z@f & >X!@ EMe-e S Rf3>R+f F J>RX!@ } ? ;A;^( _JSf3>+f & 4>Z@ M3" ( _-BM Sf3>W! f§ LQ@ $ Y Ef & >4>Y f§ LZ@ $ Y Ef M<"^( _ABM 6f3>YZ@ $ Y Ef & ^4>YZ? $ X f M(Aef _\B &6ff3>L!X@ $ Y f & 4>XLX@ $ Y Ef S Yf3>Y Z@ $ X f & 4>XLQ@ $ Y f $VVXPH WKH VWDWHPHQW LV WUXH IRU MeAe S Yf3>YLX@ $ X f & 4>YZ? $ Y Ef M(AeO _e Sf3>XUQ@ $ X f & 4>XLX@ $ X f EUe-e LHBM Sf3>X OZ@ $ Y f & 4>X f§ + $Xf A I M(-e ,6 f3>X+ D X f & 4>UWLf@$ Y f

PAGE 93

A I ,(,( ?SYB^ &6ff3>YZ` $ X E f & 4>YZ? $X+f M <"( S Yf3>YZ@ $Xf& 4>YZ@ $X f 3URYH ? MKAn( ? Sf3>HX!@f & 4>HZ? 7KLV KROGV LI M(A^( SOHfVff 3>HXfMf & 4>HZ@ )RU ,HfVf WKH VWDWHPHQW KROGV EHFDXVH M3>X@ f§! 4>X!@ 6D\ ;HfVf 6WDWHPHQW ZKHUH E -HfVf LPSOLHV A^( 3 AHfVffA>H+f 4 4?H:? ,QYDULDQFH 5XOH 7KH VRXQGQHVV RI WKH ,QYDULDQFH 5XOH IRU D ERXQGHG SURJUDP XQLW LV VKRZQ 7KH SURRI RI WKH VRXQGQHVV RI WKH ,QYDULDQFH 5XOH IRU D SURJUDP XQLW LV VLPLODU $VVXPH IUHH5fI@IUHHPLQ( _S ff DQG ^( $5`( _S 6^435` 7KHQ LQ WKDW SURRI KA ^3`( _S ^` %\ WKH LQGXFWLYH K\SRWKHVLV M(A( _S 6f3f & 4 /HW V f 6WM3 $ 5f 6LQFH WKH SURJUDP IXQFWLRQ (A( _S 6f LV VWDEOH (,( _e fVf f 6WM4 $ 5f 7KHUHIRUH ? M(7e ?SE 6f3 $ 5f & ^4 $ 5f ’ &RPSOHWHQHVV RI 7T 7KH FRPSOHWHQHVV RI 3&A LV SURYHQ VLPLODUO\ WR KRZ LW ZDV SURYHQ &KDSWHU /HPPD )RUL I 35$ DQG D +RDUH IRUPXOD ^3`( f"^"` ZKHUH IUHHPLQ( ? 6ff & IUHH3f IUHH4f KM ^3`( 6^4` A? 7 9[3[f JA_[fff 3URRI 7KLV SURRI XVHV WKH VDPH WHFKQLTXH DV ZDV XVHG LQ /HPPD RI &KDSWHU ’

PAGE 94

7KHRUHP A 6WURQJHVW 3RVWFRQGLWLRQ 7KHRUHPf *LYHQ SURJUDP XQLW ( 6 DQG DV VHUWLRQ 3 ZLWK IUHHPLQ^( ? 6ff & IUHH3f ; ^DT DT` WKH 63& RI ( ? 6 3 LV 4 \N:L N[^ J(?VS^\ff\Lf $ 3Sf ZKHUH S >\N[N@ DQG \ FVT \Lf ‘ ‘ ‘\N \Nff 7KDW LV WKH IROORZLQJ KROG 3 ? 35$ ^3f( 35$ ^S`( 6L5` r? 35$ 4 5 3URRI 7KLV SURRI XVHV WKH VDPH WHFKQLTXH DV ZDV XVHG LQ WKH 63& 7KHRUHP RI &KDSWHU ’ ,Q &KDSWHU DQG VKRZLQJ WKH FRPSOHWHQHVV RI WKH YHULILFDWLRQ V\VWHP UHTXLUHG VKRZLQJ WKH SURYDELOLW\ RI D 63& OORDUH WULSOH IRU SURJUDP VHJPHQW 6 DQG DVVHUWLRQ 3 7KDW LV LW ZDV SURYHQ WKDW IRU IUHHPLQ6ff & IUHH3f ; ^DT ;Nf < ^\[ D` ; & < S \N[N@ DQG \ F\A \Nf N;L 9Lf $ ‘S`f"9 N[L (?VS\ff\Lf $ 3S` 1RWLFH WKDW N[L \Wf $ 3 9" eD \f $ 3S DQG WKH IUHH YDULDEOHV RI 3S DUH GLVMRLQW IURP WKH IUHH YDULDEOHV RI 6 7KHUHIRUH QRZ WKDW WKH ,QYDULDQFH 5XOH LV LQFOXGHG LQ +T D VLPSOLILHG YHUVLRQ RI WKH 63& OORDUH WULSOH VXIILFHV WR VKRZ WKH YHULILFDWLRQ V\VWHP LV FRPSOHWH 5DWKHU WKDQ VKRZLQJ WKH SURYDELOLW\ RI D 63& +RDUH WULSOH WKH SURYDELOLW\ RI D PRVW JHQHUDO IRUPXOD 0*) ZLOO EH VKRZQ /HPPD ? 0*)f )RU D SURJUDP XQLW ( 6 ZKHUH IUHHfPLQ( ? 6ff ; ^DT [r` < ^ML f f f 9N` ; Q < S >MMN[N? DQG \ Fe \Nf K .[L 9Lff( A N;L AV_VS\ff\Lf`

PAGE 95

3URRI $VVXPH WKDW L JRHV IURP WR N 7KH SURRI XVHV WKH WHFKQLTXH JLYHQ LQ WKH H[DPSOH SURRI RQ SDJH ,QGXFWLRQ RQ D SURJUDP XQLW ( ? 6 LV XVHG D QXPEHU RI WLPHV LQ WKLV SURRI ,Q HDFK FRQWH[W WKH WUHDWPHQW RI WKH QRQFDOO FRQVWUXFWV LV WKH VDPH ,Q WKHVH FRQWH[WV WKH IROORZLQJ KROGV IRU WKH QRQFDOO FRQVWUXFWV AQ&A[n \A( 6A;L (?VS^\ff\Lf f AQ&L[n \A( ," 6;L (@UV3E\U(@SSE\fff\L` A IRU D F\FOH HQWHUHG YLD WKH FDOO (n S )RU DQ DVVLJQPHQW FRPSRVLWLRQ LWHUDWLRQ RU D YDULDEOH GHFODUDWLRQ VWDWHPHQW SURRIV RI WKH DERYH XVH WKH VDPH WHFKQLTXH DV ZDV XVHG LQ SURYLQJ /HPPD LQ &KDSWHU (TXDWLRQ ZLOO EH SURYHG IRU 6 D SURFHGXUH GHFODUDWLRQ VWDWHPHQW 7KH SURRI RI HTXDWLRQ IRU D SURFHGXUH GHFODUDWLRQ VWDWHPHQW LV VLPLODU 6 EHJLQ (?6? HQG DQG (n $GG^(? (f ^[ \c`( EHJLQ (L?6L HQG[ ^JVS\ff\Lf 7 3URFHGXUH 'HFODUDWLRQ 5XOH ^r‘ \L`(n 6LL[ LJVSL\ffA` 7 &RQVHFMXHQFH 5XOH ^U \L`(n L^[ ^J(n?VS^\ff\` ,QGXFWLYH +\SRWKHVLV 7KH SURRI RI HTXDWLRQ VKRZV WKDW WKH OHPPD KROGV IRU WKH QRQFDOO FRQVWUXFWV 7KH SURYDELOLW\ RI D 0*) IRU D SURFHGXUH FDOO ( ? S LV OHIW WR VKRZ 3URYH WKLV E\ LQGXFWLRQ RQ WKH KHLJKW K RI WKH ( ? S GLJUDSK 1RWLFH WKDW WKLV LQGXFWLRQ LV QRW RFFXUULQJ ZLWKLQ WKH SURRI V\VWHP $ FDOO GLJUDSK KDV D IL[HG KHLJKW /HW SURF S H?7 HQG ( (

PAGE 96

$VVXPH K DQG WKH FDOO ( S LV QRW WKH VWDUW QRGH RI D F\FOH ^[ \`( S^[L ^J(?3S^\ff\W` 7 1RQ5HFXUVLYH 3URFHGXUH &DOO 5XOH L ^[ \^`( 7^[ ^J(?3S^\ff"` 7 &RQVHTXHQFH 5XOH ^[ 9L`( 7^[W J(?7S\ff\` 7KH SURYDELOLW\ RI WKH DERYH WULSOH KDV EHHQ VKRZQ IRU WKH QRQFDOO FRQVWUXFWV 6LQFH Kf§ WKHUH DUH QR FDOOV LQ SURFHGXUH ERG\ 7 6XSSRVH K DQG WKH FDOO ( ? S LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV

PAGE 97

^[ \`( S^[ (?3S\ff\` 7 &RQVHTXHQFH 5XOH /HW G EH D IUHVK YDULDEOH ^[ \ $ G H`( S^[ U(?SSG \ff\ H $2  H` 7 5HFXUVLYH 3URFHGXUH &DOO 5XOH SUHFRQGLWLRQ [ \ $ G Z SRVWFRQGLWLRQ [ U(?SSG\ff\L $G LF$GH [ Mc $ G f } [ U(_SSG\ff\ $G $GHf $VVXPH $ G \ f $ Y A Hf( ,6L S^[! U(?3S^G \ff\$ G Y f§ O$GH$YH` 3URYH L[r 9L $ G Y $ Y A Hfen OYL 7^] A(_3SA \ff\s $G Y$GH$YH` 7 &RQVHTXHQFH 5XOH /HW \n EH WKH UHVXOW RI H[WHQGLQJ FRGH \ WR LQFOXGH WKH HOHPHQW GIB Yf Sn >\N[N GnY@ DQG J(?SU3 EH H[WHQGHG WR RSHUDWH RQ WKH VWDWH FRGH \n VR WKDW LW OHDYHV G XQFKDQJHG /HW \ J(?SU DQG U U(?SS ^[ \$G Y$G H`( _eBM 7^[c JSnY \nUSnY O\nfff\$ G ^JSnY \nUSnY O\nfffA$ G H` 7KLV +RDUH WULSOH KROGV IRU WKH QRQFDOO FRQVWUXFWV DV IROORZV ^[W \ $ G Y $ G H`( _eB 7^[ JSnY O\nUSn^Y O\nfff\$ G JSn^Y O\nUSn\ /\nfffA $ G H` 7 ,QYDULDQFH 5XOH ^[c \$G Y`( _6B; 7^[ ^JS?Y O\nUU O\nfff\$ G \SnX O\nUnX 7\nfffA` 0*) 6LQFH K FDOOV LQ SURFHGXUH ERG\ 7 FDQ RQO\ EH WR WKH ILUVW QRGH RQ D F\FOH &RQVLGHU WKH F\FOHV RQ QRGH ( S /DEHO WKH FDOOV SDUWLFLSDWLQJ LQ WKHVH F\FOHV DV

PAGE 98

WKH\ ZHUH ODEHOHG LQ WKH H[DPSOH SURRI 7KDW LV ODEHO WKHP DFFRUGLQJ WR KRZ PDQ\ FDOOV WKHUH DUH EHWZHHQ WKH HGJH UHSUHVHQWLQJ WKLV FDOO DQG WKH HGJH HQWHULQJ QRGH ( S /HW J J(f?STQM 7KH WULSOH LV SURYHQ IRU HDFK FDOO (QP _S QP LI LW FDQ EH VKRZQ WKDW IRU M Q A8T^; \L $G Y $ G a HA(QnM ,f TQnL^;L M3nY 7\n USn^Y Offf\ $ G ^JMSn^Y O\nUSnY O\nfffr$ G H` 7KLV LV SURYHQ IRU DQ\ Q EY LQGXFWLRQ RQ M 1RWLFH WKDW WKLV LQGXFWLRQ LV QRW RFFXUULQJ ZLWKLQ WKH SURRI V\VWHP 7KH OHQJWK RI HDFK RI D FDOOfV F\FOHV LV IL[HG /HW M ^[ \L $ G Y $ G H`(Qc _SB ^JRSnY O\n USnY O\nfff\ $ G ^JSn^Y O\nUSnY OnfffL $2 G H` 7 (QYLURQPHQW 5XOH \L $ G Y $ G H`( _SB[ S^[^ JSn^Y O\n USnY O\nfff\ $ G JRSnY \nUSn^Y O\nfffF $ G H` 7 &RQVHTXHQFH 5XOH I D ^[ \ $ G f§ Y f§ $ Y H`( ?SYB[ S ^[ ^USG f§ \ff\^ $ G f§ Y f§ O $ G f§ H$XH` 7KLV OORDUH WULSOH LV WKH DVVXPSWLRQ ZLWK G UHSODFHG E\ G f§ 7KLV WUDQVODWLRQ LV SURYHG XVLQJ WKH 6XEVWLWXWLRQ ,QYDULDQFH DQG &RQVHTXHQFH 5XOHV 7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV [ USG f§ \ff\^ $Gf§ Y f§ $ G f§ OH$YH [ USY f§ O\ff\ $G Y$GH ; ^JS^Y \USY \fff\ $G Y $2 G H [L RSn^Y O\nUSn^Y (\nfffA $ G ^JRSn^Y \?USn^Y O\nfffGL $ G H

PAGE 99

/HW 2 M P SURF TQ HQ 5Q HQG (QM DQG J5@ J(QMS5QU ^[ \L $ G Y`(Q_\B@ TQM ^;L JMSn^Y \nUSnY \fff\L $ G JMSn^Y O\nUS?Y O\nffN` 7 ,QQHU 3URFHGXUH &DOO 5XOH ^[W \L $ G Y`(Qc@ ?SYBL 5QM ^[W ^JMSnY O\fUSnY nfff\ $ G ^JMSnY O\nUSnY O\nfffL` 7 &RQVHTXHQFH 5XOH ^7 f§ ,-] $ G f§ 9` (8IM _YBM 5QM 8L ^5SnY O\nUSnY \nfff\W $ G ^J5MSn^Y O\nUSnY 5\nfffA` 7KLV +RDUH WULSOH LV SURYHQ IRU WKH QRQFDOO FRQVWUXFWV 7KH FDOOV LQ 5Q@ DUH RI WKH IRUP (QML _eBM TQM 7KH ,ORDUH WULSOH KROGV IRU WKHVH FDOOV E\ WKH LQGXFWLYH K\SRWKHVLV RQ M /HW K 7KH SURRI WKDW WKH OHPPD KROGV IRU WKH FDOO ( S ZKHUH K LV VLPLODU WR WKH SURRI WKDW WKH OHPPD KROGV IRU WKH FDOO ( S ZKHUH K H[FHSW WKDW DQ DGGLWLRQDO FDVH LV QHHGHG WR LQGXFWLYHO\ SURYH VRPH RI WKH +RDUH WULSOHV 2QO\ WKHVH DGGLWLRQDO FDVHV ZLOO EH GLVFXVVHG 6XSSRVH ( S LV QRW D VWDUW QRGH 7KH SURFHGXUH ERG\ 7 PD\ FRQWDLQ D SURFHGXUH FDOO 7KH KHLJKW RI WKH GLJUDSK IRU WKLV FDOO ZLOO EH OHVV WKDQ K 7KXV WKH OHPPD KROGV IRU WKLV FDOO E\ LQGXFWLRQ RQ K 6D\ ( S LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV 7KH SURFHGXUH ERG\ 7 PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH 7KH OHPPD LV SURYHQ IRU VXFK D FDOO DV IROORZV

PAGE 100

^[W \`( _-B; T^[L ^J(?STSn^Y \nUSnY O\nfff\$ G J(?STSnY \n US?Y \nfffr` 7 2II &\FOH 3URFHGXUH &DOO 5XOH ^[W \L`( T^[ J(?STSn^Y O\nUSnY O\nfff_.$ G ^J(?STSn^Y \nL USn^Y "nfffA` 7 &RQVHTXHQFH 5XOH ^[ \`( T^[L ^J(?TSn^\nf$ G AVnffA` 7KH KHLJKW RI WKH ( T GLJUDSK ZLOO EH OHVV WKDQ K 7KXV WKH DERYH WULSOH LV SURYHG E\ LQGXFWLRQ RQ K ,Q SURYLQJ WKH OHPPD IRU D FDOO WR WKH QH[W QRGH RQ D F\FOH WKH SURFHGXUH ERG\ 5Q[ PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH 7KLV FDVH LV KDQGOHG DV LW ZDV LQ WKH SUHYLRXV SDUDJUDSK ’ 7KHRUHP ? &RPSOHWHQHVVf )RU D +RDUH WULSOH ^3f( ^` ? 35$ ^Uf( 6^4f AQF^3`( ^f 3URRI $VVXPH M SSA :LWKRXW ORVV RI JHQHUDOLW\ DOVR DVVXPH IUHH^PLQ^( ? 6ff & IUHH3f ; ^[[[IF` < ^\X \N` ; < 3 >9N[N? DQG \ F\K \Nf

PAGE 101

^3`(?6^4` 7 D &RQVHTXHQFH 5XOH 7 E ^9L N[L \f $ 3S`( 6^9L N[ ^J(?V3\ff\cf $ 3S` 7 ,QYDULDQFH 5XOH ^9L N[^ \^f`( ^9L N[L ILUe_VS\ff\f` 0*) 'HILQH 3r IURP 3 E\ 3n $[W\W9L ] Mf $ 3 ,PSOLFDWLRQ D KROGV VLQFH KS5$ 9[MW3LIFf f§ 3n[N[Nff 7KH IRUPXOD 9L [W JALVG\ff"f $ 3S LPSOLHV WKH VWURQJHVW SRVWFRQGLWLRQ RI e DQG 3 7KXV LPSOLFDWLRQ E KROGV E\ SDUW RI WKH 63& 7KHRUHP ’

PAGE 102

&+$37(5 3$5$0(7(56 6\QWD[ RI eT 7KH ODQJXDJH eS KDV D YHUVLRQ RI IRXU RI WKH ILYH FRQVWUXFWV ZKLFK &ODUNH LGHQn WLILHG DV SUREOHPDWLF 7KDW LV eT XVHV VWDWLF VFRSH DQG DOORZV LQWHUQDO SURFHGXUHV JOREDO YDULDEOHV DQG ERXQGHG UHFXUVLRQ ,Q WKLV FKDSWHU WKH ODQJXDJH LV H[WHQGHG WR DOORZ YDULDEOH DQG SURFHGXUH SDUDPHWHUV XVLQJ FDOO E\ QDPH SDUDPHWHU SDVVLQJ ,Q FDOO E\ QDPH SDUDPHWHU SDVVLQJ WKH LGHQWLILHU LWVHOI LV SDVVHG WR D SURFHGXUH 7KH LGHD EHKLQG SDVVLQJ YDULDEOH SDUDPHWHUV LV WR DOORZ D SURFHGXUH WR SHUIRUP D IL[HG VHW RI RSHUDWLRQV RQ YDULRXV VHWV RI YDULDEOHV 7KLV ZRXOG EH IDLUO\ VWUDLJKWn IRUZDUG LI WKH IXQFWLRQDOLW\ RI D SURFHGXUH ZDV LQGHSHQGHQW RI WKH YDULDEOHV SDVVHG WR LW 7KLV LV QRW QHFHVVDULO\ WKH FDVH &RQVLGHU WKH IROORZLQJ SURFHGXUH SURF DGGPQMNf M P N Q ] M N HQG :H ZRXOG OLNH WR VD\ WKDW WKH IXQFWLRQDOLW\ RI WKH SURFHGXUH DGG LV WR SXW WKH VXP RI WKH FRQWHQWV RI WKH ILUVW DQG VHFRQG YDULDEOHV LQWR YDULDEOH 7KLV LV QRW WKH FDVH IRU WKH FDOO DGG[\ZZf ,Q WKLV FDVH WKH IXQFWLRQDOLW\ RI SURFHGXUH DGG LV WR SXW WLPHV WKH FRQWHQWV RI WKH VHFRQG YDULDEOH LQWR YDULDEOH 7R DYRLG WKH DERYH DOLDVLQJ SUREOHP WKH UHTXLUHPHQW FRXOG EH PDGH WKDW WKH YDUDLEOHV LQ D YDULDEOH SDUDPHWHU OLVW EH GLVWLQFW DQG GLIIHUHQW IURP WKH IUHH YDULDEOHV LQ WKH HQYLURQPHQW 7KLV UHVWULFWLRQ

PAGE 103

LV QRW QHFHVVDU\ KRZHYHU EHFDXVH WKH PDFKLQHU\ UHTXLUHG WR ZRUN ZLWK SURFHGXUH SDUDPHWHUV DOVR KDQGOHV VXFK DOLDVLQJ SUREOHPV *LYHQ D SURFHGXUH FDOO ( S] Uf WKH YHFWRU ] LV WKH OLVW RI YDULDEOH SDUDPHWHUV DQG UrWKH OLVW RI SURFHGXUH SDUDPHWHUV EHLQJ SDVVHG WR S ,W KDV EHHQ SURYHQ >@ WKDW D XQLYHUVDO SURJUDPPLQJ ODQJXDJH ZLWK LQWHUQDO SURFHGXUHV JOREDO YDULDEOHV VWDWLF VFRSH UHFXUVLRQ DQG SURFHGXUHV DV SDUDPHWHUV GRHV QRW KDYH D UHODWLYHO\ VRXQG DQG FRPSOHWH +RDUH YHULILFDWLRQ V\VWHP 2OGHURJ VKRZHG WKDW WKLV LV GXH WR XQERXQGHG UHIHUHQFH FKDLQV 7R XQGHUVWDQG ZKDW IXQFWLRQ D SURFHGXUH SHUIRUPV LW LV QHFHVVDU\ WR XQGHUVWDQG WKRVH SURFHGXUHV FDOOHG E\ WKH SURFHGXUH 7KH UHIHUHQFH FKDLQ RI D SURFHGXUH FDOO S KDV DQ HQWU\ IRU HDFK FDOO ZKLFK PXVW EH XQGHUVWRRG LQ RUGHU WR XQGHUVWDQG WKH FDOO WR S 7KLV LV IRUPDOL]HG E\ FRQVLGHULQJ IRUPDO FRPSXWDWLRQ SDWKV 7KHVH SDWKV DUH IRUPDO EHFDXVH WKH\ DUH DEVWUDFWHG IURP RSHUDWLRQV RQ WKH GDWD *LYHQ D SURJUDP XQLW ( GHILQH LWV IRUPDO FRPSXWDWLRQ SDWKV RU FRPSXWDWLRQ SDWKV 9(?6 (?6!(Q?6Q UHFXUVLYHO\ DV IROORZV 6 [[ H ( ? 6 f§! 6 6L6 ( 6 ( 6L DQG ( ? 6 } ( ? 6 6 ORRS H 6L HQG ( ? 6 f§r ( 6? 6 EHJLQ [W 6? HQG ( 6 f§! ( 6L 6 EHJLQ (L 6L HQG ( ? 6 f§! $GG(L (f ? 6L 6 S] Uf ZKHUH SURF S\ Wf H?7 HQG e ( ( ? 6 f§} &7>]\UW?f /HW $ GHQRWH WKH WUDQVLWLYH FORVXUH RI f§ :ULWH ( ? 6 $ (n 6n LI WKHUH LV D SDWK RI OHQJWK L VXFK WKDW ( ? 6 ([ ? 6L f§ffff§r ( ? 6L (n 6n &ODUNHfV UDQJH IXQFWLRQ >@ UHWXUQV WKH VHW RI DOO SURFHGXUH FDOOV ZKLFK RFFXU LQ D IRUPDO FRPSXWDWLRQ

PAGE 104

SDWK RI D SURJUDP XQLW 7KDW LV UDQJH( ? 6f ^(n ? S>] Uf VW ( 6 $ (n S^] If` 7ZR SURJUDP XQLWV ( 6 DQG (n ? 6n DUH VDLG WR EH VXEVWLWXWLRQDOO\ HTXLYDOHQW LI WKHUH LV D VXEVWLWXWLRQ D ZKLFK LV LQMHFWLYH RQ IUHHPLQ( 6ff ZKHUH PLQ( 6f PLQ(n 6nff $VXPPH D VLPLODU GHILQLWLRQ IRU ERXQGHG SURJUDP XQLWV 2OGHURJ XVHV WKH UHODWLRQ RI VXEVWLWXWLRQDO HTXLYDOHQFH WR VSOLW WKH HOHPHQWV RI &ODUNHfV UDQJH LQWR HTXLYDOHQFH FODVVHV 7KLV JLYHV WKH LQGH[ RI D SURJUDP XQLW 7KDW LV LQGH[( ? 6f ^(n S] Uf ZKHUH ( 6 f§! (n ? S>] Uf` 7KLV LV 2OGHURJfV &RLQGH[ >@ ,I D ODQJXDJH LV GHILQHG VXFK WKDW WKH LQGH[ RI HDFK RI LWV SURJUDPV LV ERXQGHG 2OGHURJ VD\V WKH SURFHGXUH FDOOV DUH PDVWHUHG LQ WKDW ODQJXDJH 2OGHURJ SURYHG WKDW XVLQJ FXUUHQW +RDUH V\VWHPV WKLV PDVWHULQJ RI SURFHGXUH FDOOV LV WKH FUXFLDO IDFWRU LQ WKH QRQH[LVWHQFH RI D UHODWLYHO\ VRXQG DQG FRPSOHWH +RDUH V\VWHP ,Q JHQHUDO LW LV XQGHFLGDEOH LI D SURJUDPnV SURFHGXUH FDOOV DUH PDVWHUHG 2OGHURJ SUHVHQWHG D QXPEHU RI VXIILFLHQW FRQGLWLRQV ZKLFK UHVWULFW WKH ODQJXDJH VR WKDW FDOOV DUH PDVWHUHG 2QH VXFK FRQGLWLRQ LV WR DOORZ SURFHGXUHV DV SDUDPHWHUV EXW WR GLVDOORZ JOREDO IRUPDO SURFHGXUH LGHQWLILHUV 7KLV LV WKH PHWKRG ZKLFK ZLOO EH XVHG KHUH )RU YDULDEOH LGHQWLILHUV [[ SURFHGXUH LGHQWLILHUV SUU DQG DQ H[SUHVVLRQ H WKH VHW RI SURJUDP VHJPHQWV RI LV GHILQHG LQ %DFNXV1DXU IRUP DV IROORZV 6 [ H 6L6 ORRS H 6? HQG % ? S[ Uf % EHJLQ [ 6 HQG EHJLQ (? 6 HQG ( H SURF S[ Uf H 6 HQG G(7 7KH SURFHGXUH GHFODUDWLRQ ( SURF S[ Uf H 6 HQG ERXQGV WKH YDULDEOH LGHQn WLILHUV [ DQG WKH SURFHGXUH LGHQWLILHUV I LQ SURF S[ Uf H 6 HQG ,GHQWLILHUV ZKLFK DUH ERXQG LQ WKLV ZD\ DUH UHIHUUHG WR DV IRUPDO 2WKHU ERXQG LGHQWLILHUV DUH UHIHUUHG WR DV LQIRUPDO $ JOREDO IRUPDO SURFHGXUH LGHQWLILHU LV D IRUPDO SURFHGXUH LGHQWLILHU ZKLFK RFFXUV IUHHO\ LQ VRPH SURFHGXUH GHFODUDWLRQ

PAGE 105

$ FDOO GLJUDSK IRU WKH FDOO ( S] Uf LQ D GLVWLQJXLVKHG SURJUDP LV FRQVWUXFWHG DV IROORZV /HW ( ? S] Uf EH WKH URRW QRGH )RU HDFK QRGH ( S] Uf LQ WKH JUDSK ZKHUH SURF S\ Wf H 6 HQG ( ( DQG U f§ LQGH[( ? S] )ff ^e S]^ Uf IRU L Q` FRQVLGHU WKH ERG\ RI SURFHGXUH S ( ? 6>]\UW? )RU ( 6>]\IW@ (n n IROORZ WKH GLUHFWLRQV IRU EXLOGLQJ WKH FDOO GLJUDSK JLYHQ LQ &KDSWHU ZLWK WKH IROORZLQJ FKDQJH IRU D SURFHGXUH FDOO $VVXPH ZH DUH FXUUHQWO\ DW WKH QRGH ( S] Uf (n 6n (n TZ Vf 7KUHH FDVHV DUH SRVVLEOH (LWKHU S T WKHUH LV D QRGH ( TX Yf ZKLFK LV D GLUHFW DQFHVWRU RI ( S] Uf RU WKHUH LV QR QRGH ZLWK SURFHGXUH LGHQWLILHU T ZKLFK LV D GLUHFW DQFHVWRU RI ( ? S] Uf ,Q WKH ILUVW FDVH WKH FDOO (n ? TLX Vf LV D GLUHFW UHFXUVLYH FDOO 'UDZ D GLn UHFWHG HGJH IURP QRGH ( S] Uf WR LWVHOI 1RWLFH WKDW LW QR ORQJHU KROGV WKDW PLQ(n TZ Vff PLQ( S] )ff +RZHYHU WKH FDOO (n SZ Vnf PD\ EH VXEVWLWXWLRQDOOY HTXLYDOHQW WR D FDOO DOUHDG\ PDGH WR WKLV QRGH ,I WKLV LV WKH FDVH ZH DUH GRQH ,I QRW UHSHDW WKLV SURFHVV IRU QRGH ( S] Uf XVLQJ SURJUDP XQLW (n 6>Z\VW@ ,Q WKH VHFRQG FDVH (n T Z Vf LV DQ LQGLUHFW UHFXUVLYH FDOO 'UDZ D GLUHFWHG HGJH IURP QRGH ( S] Uf WR QRGH ( ? TX Yf /HW SURF TD Ef Hn? 7 HQG ( ( 7KH FDOO (n ? TZ Vf PD\ EH VXEVWLWXWLRQDOOY HTXLYDOHQW WR D FDOO DOUHDG\ PDGH WR WKLV QRGH ,I WKLV LV WKH FDVH ZH DUH GRQH ,I QRW UHSHDW WKLV SURFHVV IRU QRGH ( TX Yf XVLQJ SURJUDP XQLW ( 7>ZDVE@ ,Q WKH ODVW FDVH (n ? TZ Vf LV D QRQUHFXUVLYH FDOO &UHDWH D QHZ QRGH (n TZ Vf 'UDZ D GLUHFWHG HGJH IURP QRGH ( ? S] Uf WR QRGH (n ? TZ Vf DQG UHSHDW WKH SURFHVV IRU WKLV QHZ QRGH $ SURJUDP LQ LV D EORFN ZLWK WKH IROORZLQJ UHVWULFWLRQV

PAGE 106

f QR IUHH SURFHGXUH LGHQWLILHUV f QR JOREDO IRUPDO SURFHGXUH LGHQWLILHUV f WKH FDOO GLJUDSK RI HDFK FDOO FRQWDLQV RQO\ VLPSOH F\FOHV DQG f FDOOV WR WKH QH[W QRGH RQ D F\FOH GR QRW RFFXU ZLWKLQ WKH ERG\ RI D ORRS 6HPDQWLFV RI &SM 7KH VHPDQWLFV RI DUH WKH VDPH DV WKH VHPDQWLFV RI &T H[FHSW IRU WKH PHDQLQJ RI SURFGXUH FDOOV / 6-e 7Sf LI ( S] Uf LV QRW D VWDUW QRGH ^( S]Uff ^ UY 7A( S] Uf 7HfVff LI ( ? S] Uf LV D VWDUW QRGH IRU SURF S\ Vf H7 HQG ( DQG S >]\ UV? =/(?9]UfEf LG LI \"^( A &7Sff LI IRU SURF S\ Vf H7 HQG ( DQG S >]\ UV?  (-( S] Uf Ef LI T S ( _e T] Uff ( ?YE &^7Sff LI T LV RQ SfV F\FOH T A S > (A( T] Iff LI T LV QRW RQ SfV F\FOH IRU SURF T\ Vf H 7 HQG ( DQG S >]\ UV? /HPPD 6XEVWLWXWLRQ /HPPDf )RU SURJUDP XQLW ( ? 6 DQG VXEVWLWXWLRQ S ZKLFK LV LQMHFWLYH RQ IUHHPLQ( ff =,(?6fSfVf =,(?6ffSVf 3URRI 7KLV OHPPD LV VWUDLJKWIRUZDUGO\ SURYHG XVLQJ WKH WHFKQLTXH JLYHQ LQ WKH H[n DPSOH SURRI RQ SDJH ’ /HPPD )RU D SURTUDP XQLW ( 6 6SnL( 6f LV D SURJUDP IXQFWLRQ RQ IUHHPLQ( ? 6ff

PAGE 107

3URRI ,W LV VKRZQ WKDW 7A( ? 6f LV 35 IRU DQ LQWHUSUHWDWLRQ RQ 1 LQ WKH IROORZLQJ VHFWLRQ ,W FDQ EH VKRZQ WKDW 6f LV VWDEOH DQG DORRI ZLWK UHVSHFWV WR LWV LQDFWLYH YDULDEOHV DV LW ZDV LQ &KDSWHU Â’ 7KH IROORZLQJ SURSHUW\ RI SURJUDP IXQFWLRQV LV XVHIXO LQ SURYLQJ WKH VRXQGQHVV RI WKH QHZ YHULILFDWLRQ V\VWHP /HPPD ([WHQVLRQ WR /HPPD 9 /HW I EH D SURJUDP IXQFWLRQ RQ ; DQG S EH DQ LQMHFWLYH VXEVWLWXWLRQ RQ ; 8 IUHH3 9 4f IS3Sf&4S I3f&4 3URRI $VVXPH I3f & 4 DQG S LV DQ LQMHFWLYH VXEVWLWXWLRQ RQ ; 8 IUHH3 9 4f )LUVW VKRZ IVSf ^ISVffS I^VSf^Zf IS^VfSZff 'HI S RQ I ISVffSZf 'HI S RQ V 8VLQJ WKLV VKRZ V 3S LPSOLHV ISVf 4S V 3S VS 3 IVSf 4 LIS^VffS 4 ISVf H 4S eSf &RPSXWHV WKH &ODVV RI 35 )XQFWLRQV 2SHUDWLRQDO VHPDQWLFV DUH JLYHQ IRU SURJUDPV LQ eS 7KH QH[W WDVN LV WR GHWHUn PLQH IRU HDFK SURJUDP WKH 35 IXQFWLRQ ZKLFK GHQRWHV WKDW SURJUDP ,Q RUGHU WR GR WKLV D VLQJOH 35 IXQFWLRQ PXVW EH GHILQHG IRU WKH LQLWLDWLQJ UHFXUVLYH FDOO WR D SURFHGXUH DQG DOO VXEVHTXHQW UHFXUVLYH FDOOV WR WKDW SURFHGXUH 7KLV VHHPV GLIILFXOW VLQFH WKH IXQFWLRQ SHUIRUPHG E\ D SURFHGXUH ZKLFK DFFHSWV SURFHGXUH SDUDPHWHUV GHn SHQGV XSRQ WKH IXQFWLRQV SHUIRUPHG E\ WKRVH SURFHGXUH SDUDPHWHUV ,Q VRPH FDVHV

PAGE 108

GLIIHUHQW SURFHGXUH SDUDPHWHUV GHQRWH WKH VDPH IXQFWLRQ 7R PDLQWDLQ VWDWLF VFRSH D SURFHGXUH PD\ EH GHFODUHG PXOWLSOH WLPHV HDFK ZLWK D GLIIHUHQW SURFHGXUH LGHQWLILHU 7KLV FUHDWHV WKH VLWXDWLRQ ZKHUH PXOWLSOH SURFHGXUH LGHQWLILHUV FDQ EH SDVVHG WR D SURFHGXUH EXW WKH SURFHGXUH ERG\ DVVRFLDWHG ZLWK HDFK RI WKHVH LGHQWLILHUV LV WKH VDPH ,I WKH ERGLHV RI WKRVH SURFHGXUHV SDVVHG DV SDUDPHWHUV SHUIRUP DUELWUDULO\ PDQ\ GLVWLQFW IXQFWLRQV KRZHYHU WKH SURFHGXUH LWVHOI PD\ SHUIRUP DUELWUDULO\ PDQ\ GLVWLQFW IXQFWLRQV ,Q WKLV FDVH D FDOO WR WKDW SURFHGXUH LV QRW PDVWHUHG 2OGHURJ SURYHG WKDW ZKHQ JOREDO IRUPDO SURFHGXUH LGHQWLILHUV DUH GLVDOORZHG WKH FDOOV DUH PDVWHUHG 7KDW LV WKH QXPEHU RI GLVWLQFW IXQFWLRQV SHUIRUPHG E\ WKRVH SURFHGXUHV SDVVHG DV SDUDPHWHUV WR D SURFHGXUH DUH ERXQGHG 7KLV PHDQV WKDW JLYHQ WKH FRQn WH[W RI D SURFHGXUH FDOO LW LV SRVVLEOH WR GHWHUPLQH DOO IXQFWLRQV ZKLFK WKDW SURFHGXUH ERG\ SHUIRUPV /HPPD *LYHQ DQ & T SURJUDP WKH LQGH[ RI HYHU\ SURJUDP XQLW LQ WKDW SURJUDP LV KRXQGHG 3URRI 7KH SURRI RI WKLV OHPPD LV GXH WR 2OGHURJ > &RUROODU\ @ ’ *LYHQ D SURJUDP XQLW ( S] Uf GHILQH WKH UHFXUVLYH LQGH[ RU UPGH[ RI WKLV SURJUDP XQLW DV WKRVH HOHPHQWV LQ WKH LQGH[ ZKLFK UHSUHVHQW UHFXUVLYH FDOOV WR S 0RUH IRUPDOO\ U f§ LQGH[( S] Uff ^( ? S^Z Wf ZKHUH ( S] Uf $ (n ? SZ If` 'HILQH WKH IXQFWLRQ JV?V DV LQ &KDSWHU PRGLI\LQJ WKH GHILQLWLRQ IRU D SURFHGXUH FDOO WR WKH IROORZLQJ 6 S] Uf ZKHUH ( S] Uf LV QRW D VWDUW QRGH SURF S\ Vf H7 HQG e ( DQG 3 >]\UV? \(?S] Uf[A f§H?WS^[f 6 S] Uf ZKHUH ( S] Uf LV D VWDUW QRGH Uf§LQGH[( ? S] Uff ^( ? S]^ UWf IRU L Q` DQG PLQ( S^] Uff PLQ(P M S]IQ UAfffD IRU D DQ LQMHFn WLYH VXEVWLWXWLRQ RQ IUHHPLQ( ? S] Ufff DQG (P ? S]IQ Uff e U f§ LQGH[( S^] Uff (?S]Uf[f U(?S^]UfA[fn[rPffD

PAGE 109

ZKHUHU(_Se UfEf[ƒf U(?S]L Uf[fDQG WKH IXQFWLRQV U(_S M DUH GHILQHG E\ VLPXOWDQHRXV UHFXUVLRQ DV IROORZV )RU L Q DQG Ue0S]LULf [f ; )RU L Q DQG S >Ur\ UV@ U( _S]cUf A [ f (?37S E I ;L U(? ?S]?I?f ^E ; f n L U (f?S]AU=f>E L frff ff /HW U 'HILQH WKH IXQFWLRQ J(?SV DV IROORZV ;L H \(_S6[U[f UQ[ff VHW;L^H[f 6 6L6 /HW D J%SVAK [ A [f UQ [ff (?SV^E [UL[f UQ[ff J(?S6L^E D UL Df UQDff ORRS H6L HQG \e_36 [ U [f UQ [ff JAVALf 6 EHJLQ [W HQG \e_S[UL[f UQ[ff GURS;W J(?SV DGG;LD [f U[ DGG[D [ff Uf DGG7!D [ffff EHJLQ (? L HQG e_SV [ Q [f Uf [ff J(n?SVE [ UM [f UQ [ff ZKHUH (n $GG(? LVf

PAGE 110

6 T] Uf ZKHUH SURF T\ Vf H?7 HQG ( DQG S >]\ UV? J(?SV^E [ QE [f UQE [ff UP[7ffRB IRU ( S] Uf B (P S]Q .ffD T a 3 (?"7S^E[ULE[fUQE[ff LI T LV RQ SfV F\FOH T s S (_"UfUf LI T LV QRW RQ SfV F\FOH /HPPD ? )RU SURJUDP XQLW ( ? 6 ZKHUH IUHHPLQ( 6ff f§ ; J(?VFV?;ff F=,(?6fVf?;f 3URRI /HW FV>;f 7KLV SURRI LV VLPLODU WR WKH SURRI /HPPD LQ &KDSWHU 7KH IROORZLQJ LV DVVXPHG WR KROG IRU WKH QRQFDOO FRQVWUXFWV %_Vf F(]ne_f:U;f f 6(9VEQ^WLUf UQE7 eff FLAO( _I 6fVf>;f f IRU D F\FOH HQWHUHG YLD WKH FDOO (n S] Uff U f§ LQGH[(n ? S] Uff f§ ^(^ ? S] Uf IRU L L Q` DQG Ur U(?S]O Qf IRU A A Qn 7KH SURRI RI WKHVH HTXDWLRQV IRU WKH QRQFDOO FRQVWUXFWV XVHV WKH VDPH WHFKQLTXH DV KDV EHHQ XVHG SUHYLRXVO\ 7KH QRWDWLRQ LV PRUH EXUGHQVRPH GXH WR WKH FRPSOH[LW\ RI KDYLQJ Q GLVWLQFW UHFXUVLYH FDOOV 3URYH WKH OHPPD IRU D FDOO ( S] Uff E\ LQGXFWLRQ RQ WKH KHLJKW K RI WKH ( S] Uf GLJUDSK /HW SURF S\ Vf H7 HQG ( DQG S f§ >]\UV? 6XSSRVH K DQG WKH FDOO ( ? S] Uf LV QRW WKH VWDUW QRGH RI D F\FOH ,I LW FDQ EH VKRZQ WKDW VPUHKf FeUe 7!fVfU9f f

PAGE 111

WKHQ WKH IROORZLQJ KROGV J(0]LQKf H?WS>Lf F(,e }Vf3 F(Ue_SLnAfrfU;f (TXDWLRQ KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH K WKHUH DUH QR FDOOV LQ SURFHGXUH ERG\ 7S 6XSSRVH K DQG WKH FDOO ( S] Uf LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV 6D\ U f§ LQGH[^( ? S] Uf ^(W S] Uf IRU L L Q` DQG PLQ( S] Uff PLQ(P S=P UAQfffD IRU VXEVWLWXWLRQ D ZKLFK LV LQMHFWLYH RQ ; 8 < /HW U U(c?S^]c UOf I27 mf ,I LW FDQ EH SURYHG WKDW UPf FU=^(P S]=L UPf fVf>;f f WKHQ WKH IROORZLQJ KROGV (?S]Wf^a f UP-HfVfFUffFUf F6-(P S]f UQf -HfVffVf>;ffD F(,(P?S]=OU=OffVDffD?;f F(A(P S^=Q UAffFUVf >;f F<"^^(P S]Q "nPfffFUVfn;f F6-(_SeUOff6f>;f (TXDWLRQ LV SURYHG LI LW FDQ EH VKRZQ WKDW IRU M M Q WKH IROORZLQJ KROGV Uf F(-^(M S^]M Uf fVf>;f f 7KLV LV SURYHG E\ LQGXFWLRQ RQ )RU M Q DQG UMf F^LG^Vf?;f F^7A(M S]M IMf fVf>;f

PAGE 112

$VVXPH E /HW S >]f\IMV? DQG J J(?37S IrU  Q ,I LW FDQ EH VKRZQ WKDW IRU M Q ME A f UQ f§ ff F7;^(M _eB 7SMf^Vf?;f f WKHQ WKH IROORZLQJ KROGV UME f JMEOUL f UQ ff FLtO( _IB 73Mff?;f _IB &73LffffP FU,(?S]fULfEfVf?;f 7KH SURRI RI HTXDWLRQ VKRZV WKDW HTXDWLRQ KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH K FDOOV LQ SURFHGXUH ERG\ 7 S FDQ RQO\ EH WR WKH ILUVW QRGH RQ D F\FOH &RQVLGHU WKH F\FOHV RQ QRGH ( ? S] Uf $V LQ WKH SURRI RI WKH H[DPSOH RQ SDJH ODEHO WKH FDOOV SDUWLFLSDWLQJ LQ WKHVH F\FOHV DFFRUGLQJ WR KRZ PDQ\ FDOOV WKHUH DUH EHWZHHQ WKH HGJH UHSUHVHQWLQJ WKLV FDOO DQG WKH HGJH HQWHULQJ QRGH ( ? S]Uf 1RWLFH WKDW HDFK FDOO (G RaR Uef LV VXEVWLWXWLRQDOO\ HTXLYDOHQW WR RQH RI WKH (^ S]L Uf ZKHUH ( S]^ Uf f U f§ LQGH[( ? S] Uff (TXDWLRQ KROGV IRU HDFK FDOO (GP _S TGP>]AP n‘ UGPf LI LW FDQ EH VKRZQ WKDW IRU L (G?3TG=GU=f^E UL f OnQ^E f§ ff F(;(GL ?8 TG$]= UffVf);f f 7KLV ZLOO EH SURYHQ E\ LQGXFWLRQ RQ L 6D\ L DQG PLQ(GL TGR^]GR nf UGff PLQ(P S]=L U=LfffY IRU DQ LQMHFWLYH VXEVWLWXWLRQ RQ ; 8 < ,I LW FDQ EH VKRZQ WKDW UPE f F^(;(P ?S S]arP UffE OfVf>;f WKHQ WKH IROORZLQJ KROGV (G?STG]GUGf^E a OQ OfUf ff f

PAGE 113

UP! WffFMB F<"(P _S S^]=L ff 2 E OfVf>;ff F(-eP ?SEB[ S]f UAffVFUff>;f F(-eP _SBM Sf UAfffUVfI;f F(-eP_SBO3 Uff7fVf>;f Fe7eR _"B[ WIGRW URffVfU;f (TXDWLRQ KROGV E\ LQGXFWLRQ RQ E /HW L SURF TGLXGL ‘ (Gf HG?5GL HQG (GW DQG SGW >]GLXGLUGLYGL@f ,I LW FDQ EH VKRZQ WKDW (G?S5GW3L;E LL7Q E UQ ,ff FLAL(GL OIF 5GL3GLf^Vf?;f f WKHQ WKH IROORZLQJ KROGV (G?f!TGO]LUL!f^E Q f Uf f§ ff (G?S5GSGE ULE UQIF ff F7=(GL _SBM 5GSGfVf?;f F(,(G_SB&L"AffVfU;f FLAL(G _eB TG$]OL UffVf;f (TXDWLRQ KROGV IRU WKH QRQFDOO FRQVWUXFWV 6LQFH WKH F\FOHV DUH VLPSOH DQG K WKH RQO\ FDOOV LQ 5GL3GL DUH FDOOV RI WKH IRUP (GnL ? TGnL?^]G?L? f‘ UGnLf (TXDn WLRQ LV SURYHG IRU WKHVH FDOOV E\ LQGXFWLRQ RQ L /HW K 7KH SURRI WKDW WKH OHPPD KROGV IRU WKH FDOO ( ? S] Uf ZKHUH K LV VLPLODU WR WKH SURRI WKDW WKH OHPPD KROGV IRU WKH FDOO ( ? S] Uf ZKHUH K H[FHSW WKDW DQ DGGLWLRQDO FDVH LV QHHGHG WR LQGXFWLYHO\ SURYH VRPH RI WKH HTXDWLRQV 2QO\ WKHVH DGGLWLRQDO FDVHV ZLOO EH GLVFXVVHG 6D\ ( S] Uf LV QRW D VWDUW QRGH ,Q SURYLQJ HTXDWLRQ WKH SURFHGXUH ERG\ 73M PD\ FRQWDLQ D SURFHGXUH FDOO 7KH KHLJKW RI WKH GLJUDSK IRU WKLV FDOO ZLOO EH OHVV WKDQ K 7KXV HTXDWLRQ KROGV IRU WKLV FDOO E\ LQGXFWLRQ RQ K

PAGE 114

,26 6D\ ( S] If LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV ,Q SURYLQJ HTXDWLRQ WKH SURFHGXUH ERG\ 7 S PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH ,I LW FDQ EH VKRZQ WKDW (M0""ff F7"(L T] UffVfI;f f WKHQ WKH IROORZLQJ KROGV J(?3TUfE a OAO a f} f f f UQE a ff (?T]7f^Of Fe;e TO UffVfU[f 7KH KHLJKW RI WKH ( ? T] Uf GLJUDSK ZLOO EH OHVV WKDQ K 7KXV HTXDWLRQ KROGV E\ LQGXFWLRQ RQ K ,Q SURYLQJ HTXDWLRQ IRU D FDOO WR WKH QH[W QRGH RQ D F\FOH HTXDWLRQ PXVW EH SURYHG +HUH 5GL3GL PD\ FRQWDLQ RQH RU PRUH FDOOV WR D SURFHGXUH ZKRVH QRGH LV QRW RQ WKH F\FOH 7KLV FDVH LV KDQGOHG DV LW ZDV LQ WKH SUHYLRXV SDUDJUDSK ’ 7KHRUHP 7KH FODVV RI IXQFWLRQV FRPSXWHG E\ &T SURJUDPV LV WKH FODVV RI 35 IXQFWLRQV 3URRI 3HWHU >@ VKRZV WKDW VLPXOWDQHRXV UHFXUVLRQ GRHV QRW OHDG RXW RI WKH FODVV RI 35 IXQFWLRQV 7KH UHPDLQGHU RI WKLV SURRI LV WKH VDPH DV WKH SURRI RI 7KHRUHP LQ &KDSWHU ’ 9HULILFDWLRQ RI 3URJUDPV 'HILQH WKH YHULILFDWLRQ V\VWHP +\f DV LQ &KDSWHU ZLWK WKH UXOHV LQYROYLQJ SURFHn GXUHV PRGLILHG WR DFFRPPRGDWH SDUDPHWHUV ,Q DGGLWLRQ D WKLUG VXEVWLWXWLRQ UXOH LV JLYHQ WR FDSWXUH WKH QRWLRQ RI VXEVWLWXWLRQDOO\ HTXLYDOHQW SURJUDPV /HW 8LMQLff GHQRWH D VHW RI Q IRUPXODV fQf

PAGE 115

1RQ5HFXUVLYH 3URFHGXUH &DOO 5XOH ^3`(?63^4` ^3`(?S]If^4` IRU ( S] Uf QRW D VWDUW QRGH SURF S\ Vf H 6 HQG e ( DQG S >]\UV? 5HFXUVLYH 3URFHGXUH &DOO 5XOH 8LLQA>AL!L0@ 4>ZXMZ@f ZXMLX@ $ Y H` (M _AB SLM Uf ^4>X OZLMZ@ $ Y H`f ALMQL^3>YZXMZ@ $ 9 H`(M _6B 6SM ^4>YZL-Xf@ $ Y H`ff ^3>HZOPZ@fD`( ? S^] Uf^4>HZLPZ?fFU` IRU SURF S\ Vf H 6 HQG e (Y e IUHHPLQ( ? S] Urfff 8 IUHH3 9 4f U LQGH[( S] Iff ^(M S]M U`f IRU M Q`SM >M\UV? IRU M Q DQG PLQ( ? S] Uff PLQ(P ? S]=L U=LfffFU ZKHUH D LV DQ LQMHFWLYH VXEVWLWXWLRQ RQ IUHH3 9 4f 8 IUHHPLQ( S] Ufff ,QQHU 3URFHGXUH &DOO 5XOH ^3`(?O 6S^4f ^3`(?8^Wf^4` IRU T RQ SnV F\FOH T A S SURF T\ Vf H 6 HQG e ( DQG S >Z\WV? 2II &\FOH 3URFHGXUH &DOO 5XOH f`J mJ U!^4f ^3`(?O "L mf^m"` IRU T QRW RQ SfV F\FOH 6XEVWLWXWLRQ 5XOH 3`J_3"Uf_4f ^3>[O\?f( ,6 S]If^4>[\_` ZKHUH [ IO IUHHPLQ( ?S S] Ufff DQG \ IO IUHHPLQ( _S S] Ufff

PAGE 116

6XEVWLWXWLRQ 5XOH ^3f(?O S6Uf^4` ^3?Pf(?O S]Uf^4f ZKHUH \ + IUHHPLQ( _S S] Ifff 8 IUHH4ff 6XEVWLWXWLRQ 5XOH ^3`e_e6^4` ^3F`(n ?O 6n^4Df ZKHUH PLQ(n 6nf PLQ( 6ffD DQG D LV D VXEVWLWXWLRQ ZKLFK LV LQMHFWLYH RQ IUHH3 9 4f 8 IUHHPLQ( _S 6ff 6RXQGQHVV RI 7L\f 7KHRUHP 6RXQGQHVVf )RU D +RDUH WULSOH ^3`( 6fM4` ,Q'^3`( ? 6^4` 3$ ^3`( ^J` 3URRI 3URYH WKLV E\ LQGXFWLRQ RQ WKH SURRI V\VWHP (DFK UXOH LV SURYHG VRXQG DV LW ZDV LQ &KDSWHU 7KH VRXQGQHVV RI 6XEVWLWXWLRQ 5XOH IROORZV IURP /HPPD 7KH SURRI RI WKH VRXQGQHVV RI WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH ZLOO EH JLYHQ 5HFXUVLYH 3URFHGXUH &DOO 5XOH $VVXPH ^^3>H:L PZ@fD`( ? S] Uf^4>HZL PZ`fM` IRU SURF T\ Vf H 6 HQG ( ( ( S] Uf D VWDUW QRGH U f§ LQGH[( S] Uff ^(M S]M IMf IRU M Q` DQG PLQ( ? S] Iff PLQ(P S]A UAfffFU IRU FU DQ LQMHFWLYH VXEVWLWXWLRQ RQ IUHH3 9 4f8IUHHPLQ( S] Urfff /HW SM >M\(MV? IRU M Q ,Q WKDW SURRI IRU M Q ES5$ 3>ZL MZ@ f§ 4>ZLMZ@ DQG IRU Y e IUHHPLQ( ? S] Ifff 8 IUHH3 9 4f 8LMQ^A>Y a OZLMZ? $ Y H`(M _6B S]M IMf ^4>Y OZLMZ@ $ Y H`f A?MQ^^3?YZXMZ? $ Y Hf(M _eBM 6SM ^4>YZXMZ@ $ Y H`f

PAGE 117

,OO 'XH WR RXU UHVWULFWHG QRWLRQ RI SURYDELOLW\ WKH DERYH SURRI GLG QRW UHTXLUH DQ DGGLWLRQDO DSSOLFDWLRQ RI WKH 5HFXUVLYH 3URFHGXUH &DOO 5XOH 7KHUHIRUH E\ LQGXFWLRQ RQ WKH VRXQGQHVV RI WKH SURRI V\VWHP 8LLQKO^A>Z f PMZ? D Y H`( _B S^]M UMf ^4>Y OZLMZ@ $ Y H`f LPSOLHV 8O MQ ? M^3>YZ-Z@ $ Y H`(M _\B 6SM ^4>YZXMZ@ $ Y H`f 7KH IROORZLQJ LV SURYHQ IRU M Q DQG E E\ LQGXFWLRQ RQ E DV LQ &KDSWHU M7"^(M S]M IMf Yf3>YZLMZ@ $ Y Ef & 4>YZL MZ@ $ Y Ef f 3URYH ? M7A( ? S] Uff^3>HZLPZ@fFUf & 4>HZLPZ@fD 7KLV KROGV LI M7,(P S^]Q UQffFUf^3>HZXPZ@fDf & ^4>HZXPZ@fD 7KLV KROGV LI I 6-eP ?S^]P Uff OHfVff3>HZLPZ@f & 4>HZPZ? )RU -HfVf WKH VWDWHPHQW KROGV EHFDXVH ? M3>4Z?PZ? f§r‘ 4>Z?PZ@ 6D\ -HfVf 6WDWHPHQW ZKHUH E f§ =HfVf DQG M P LPSOLHV ? M(,^(P S]P UQf O^HfVff3>HZXPZ@f & 4>HZXPZ? ’ &RPSOHWHQHVV RI )WS ,Q RUGHU WR SURYH WKH FRPSOHWHQHVV RI 7LS VKRZ WKH SURYDELOLW\ RI D 0*) IRU D SURJUDP XQLW ( ? 6 /HPPD 0*)f )RU D SURJUDP XQLW ( ? 6 ZKHUH IUHHPLQ( ? 6ff ; ^[L [cW` < ^\L IF` ;IO \ S >9N6N@ DQG \ Fe \Nf )AG^9 N^[ \cf`( 6^9L N[ \H_!Lff\Lf`

PAGE 118

3URRI $VVXPH WKDW L JRHV IURP WR N 7KLV SURRI LV VLPLODU WR WKH SURRI RI WKH 0*) RI &KDSWHU 7KH IROORZLQJ LV DVVXPHG WR KROG IRU WKH QRQFDOO FRQVWUXFWV K:'Ur 9Lf( ; WH_V!\ff\M f fa \A( ," (?SVSE\ULS^E\f AQSLA\fffA` IRU D F\FOH HQWHUHG YLD WKH FDOO ( S] UfU f§ LQGH[(n ? S] Uff f ^(M 3]M (Mf IRU M Qf DQG U U(@07f M Q 7KH SURRI ZLOO EH JLYHQ WKDW WKH OHPPD KROGV IRU D FDOO ( S] Uf ZKLFK LV WKH VWDUW QRGH RI RQH RU PRUH F\FOHV DQG ZKHUH WKH KHLJKW RI WKH ( S] Uf GLJUDSK LV /HW SURF S\ Vf H7 HQG ( U f§ LQGH[( S] Uff ^( SLM UMf IRU M Q` DQG PLQ( S] Uff PLQ(P ? S]=L IRU D DQ LQMHFWLYH VXEVWLWXWLRQ RQ ; 8 < /HW U U(?S6Uf )RU M Q OHW U U(M_SUf DQG S >M\IMV? )LQDOO\ VD\ U XS 5HFDOO WKDW YDUHf IO IUHH^PLQ( S^] Urfff VR DHf H ^[ \`( S] Uf^[ ^JASASLYffA` 7 D M &RQVHTXHQFH 5XOH I E /HW G EH D IUHVK YDULDEOH X FJL \LUf\r \NUff ^[W \WU $ G HfD`( S] Uf^[ USGXPff\A $ G HfD` 7 5HFXUVLYH 3URFHGXUH &DOO 5XOH SUHFRQGLWLRQ [ \U $ G LF? SRVWFRQGLWLRQ [ USGX $G :L$GH )RU M Q[ \U $ G f f§! [ USGXMff\L $ G $2 G Hf 8LMQ^AL \U $ G Y O $ Y H`(M _eB S^]M UMf^[ VVXPH USG XMff\L $ G Y f§ $ G H $ X H`f S 8L\IF^A \cU $ G Y $ Y H`(M _eBL 7SM U9H ^[ USG XMff\c $G Y$GH$Y H`f

PAGE 119

7KDW LV SURYH WKH DERYH IRU DUELWUDU\ M ^[ "n7 $ G Y $2 Y H`(M _eB 7 S ^[W USG X Mff\c $ G Y $ G H $ Y H` 7 &RQVHTXHQFH 5XOH /HW \ EH WKH UHVXOW RI H[WHQGLQJ FRGH X WR LQFOXGH WKH HOHPHQW He Xf S >\W[r GX@ DQG J(?37A3 EH H[WHQGHG WR RSHUDWH RQ WKH VWDWH FRGH \n VR WKDW LW OHDYHV G XQFKDQJHG /HW J J(?37Q ^[ \U $ G Y $ G H`(M _eB 7SM ^[ JSn^Y ?\nU[SnY \f UQSn^Y O\fff\$ G \SX O\UX O\f UQSn^Y O\fffA $ G Hf 7KLV +RDUH WULSOH KROGV IRU WKH QRQFDOO FRQVWUXFWV DV IROORZV ^[ LOL7 $G Y$G H`(M _-BW 7SM ^[ JSn^Y \nU[SnY \f UQSnY O\fff\$ W G ^JS?Y \nUSn^Y \f UQSnY O\nfffA$ G H` ,QYDULDQFH 5XOH ^[ \U $ G Y`( _eB[ 7J ^[ JSn^Y O\nULSnY \f UQSnY O\nfff\A$ G ^JSnY \ U[SnY f§ O\f f f UQSnY f§ /\fffA` 0*) 6LQFH L FDOOV LQ SURFHGXUH ERG\ 7SM FDQ RQO\ EH WR WKH ILUVW QRGH RQ D F\FOH &RQVLGHU WKH F\FOHV RQ QRGH e S] Uf /DEHO WKH FDOOV SDUWLFLSDWLQJ LQ WKHVH F\FOHV DV WKH\ ZHUH ODEHOHG LQ WKH H[DPSOH SURRI RQ SDJH 7KDW LV ODEHO WKHP DFFRUGLQJ WR KRZ PDQ\ FDOOV WKHUH DUH EHWZHHQ WKH HGJH UHSUHVHQWLQJ WKLV FDOO DQG WKH HGJH HQWHULQJ QRGH ( S] Uf 7KH WULSOH LV SURYHQ IRU HDFK FDOO e!P _S f U&Pf LI WKH IROORZLQJ FDQ EH VKRZQ IRU P /HW Jc (WL?STWW]7UU7Mff

PAGE 120

Lrn !nU $ G Y $ G H`(WLc _-B TWLWL QLf ^L ^JLSnY 8\nU[S"^Y \nfUQSn^Y O\nfff\$ f G JLSn^Y \nULSn^Y O\nfUQSfY O\nfffGLB$ G H` 7KLV LV SURYHQ IRU DQ\ I E\ LQGXFWLRQ RQ 2QO\ WKH FDVH LV JLYHQ /HW PLQ(WL _eBM TW^]R ‘ "7Rff PLQ(D _ABM S^]4 UffffU DQG X QS ^[ \L7 $ G Y $ G H`(WLR _eBW TWR]WR ‘ Rf ^[ RX UL\RnY \nf UfX OMnfff\L$ G ^JR3n^Y O\nULSnY \b UQSnY O\nfff£O$ G H` 7 F &RQVHTXHQFH 5XOH I G /HW Xn F\L\L7Yf^\s\NULff ^[ \^79 $G Y$Y HfU`eLW _eBL TWR^]R ‘ QRf ^[ USnG f§ Xn Dff\L $G Y$Y HfU` 7 6XEVWLWXWLRQ 5XOH ^[ \^7Y $ G Y $ Y H`(D _eBM S]rD Uff ^[ USnG f§ Xn RffWW $ G X $ Y H` U &RQVHTXHQFH 5XOH ^[ \c7 Y $ G f§ WfO$U H`eD _-BW S& Uff [ fSG f§ LG Dff\ $ G f§ Y f§ $ G f§ H$XH` 7KLV +RDUH WULSOH LV WKH DVVXPSWLRQ ZLWK X DSSOLHG WR \U DQG G UHSODFHG E\ G f§ 7KLV WUDQVODWLRQ LV SURYHG XVLQJ WKH 6XEVWLWXWLRQ ,QYDULDQFH DQG &RQVHTXHQFH 5XOHV 7KH SURRI RI LPSOLFDWLRQ D LV DV IROORZV e}f 9L !f [ \ $ G H !f [M\U $ G H [ \cU $ G Hf

PAGE 121

)ROORZLQJ LV D SURRI RI LPSOLFDWLRQ E [ USG Q Pff\L $ G f§ HfD [[ USIXPff7BfUf\ [D J(?3]Uf3\ff7f\O Df AV_S"If!\ff\L )ROORZLQJ LV D SURRI RI F [ 9L7 $G Y$GH !f [7 WL $ U$ZH [ \WUX $G Y$Y HfQ +HUH LV WKH SURRI RI G [ USnG f§ Xn FWff\[ $ G Y $ Y HfMU !‘ [U USnG f§ XnTffL fLf\ $G X $ Y H ^^J4Sn^G \nULSnG A UQSnGO\nfffLf\A$G Y $2 Y H ;L ^-RSnY \nULSnY \nfUQSnY O\nfff\$ G JSnY \nLMSn^Y \nf UQSn^Y OMnffN$ X H 7KHRUHP &RPSOHWHQHVVf )RU D +RDUH WULSOH ^3`( ^4` ? 35$ ^3`( 6^m` +:G^&fe V^f 3URRI 7KLV SURRI XVHV WKH VDPH WHFKQLTXH DV ZDV XVHG WR SURYH WKH &RPSOHWHQHVV 7KHRUHP RI &KDSWHU ’

PAGE 122

&+$37(5 &21&/86,21 7KH V\VWHP SUHVHQWHG LQ WKLV GLVHUWDWLRQ KDV WKH IROORZLQJ SURSHUW\ *LYHQ D SURn JUDP LQ WKH ODQJXDJH LWV LQSXWRXWSXW UHODWLRQ LV GHVFULEHG E\ D SULPLWLYH UHFXUVLYH IXQFWLRQ &DOO WKLV IXQFWLRQ WKH SURJUDPfV IXQFWLRQ 6LPLODUO\ WKH LQSXWRXWSXW UHODn WLRQ RI HYHU\ FRQVWUXFW LQ WKH SURJUDP LV GHVFULEHG E\ D SULPLWLYH UHFXUVLYH IXQFWLRQ &DOO WKHVH IXQFWLRQV WKH FRQVWUXFWVf IXQFWLRQV 7KH ZD\ WKH FRQVWUXFWV DUH JURXSHG WRJHWKHU WR PDNH XS WKH SURJUDP FRUUHVSRQGV WR WKH ZD\ WKH SURJUDPfV IXQFWLRQ LV EXLOW IURP WKH FRQVWUXFWfV IXQFWLRQV 7KHUH LV DOVR DQ D[LRP LQ 3ULPLWLYH 5HFXUn VLYH $ULWKPHWLF FRUUHVSRQGLQJ WR HDFK FRQVWUXFWLRQ 7KXV ZKLOH WKH V\QWD[ RI WKH SURJUDPPLQJ ODQJXDJH SUHVHQWHG KHUH GLIIHUV OLWWOH IURP DQ $/*2/OLNH ODQJXDJH EDVLQJ WKH ODQJXDJH RQ 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF FDXVHG WKH V\QWD[ RI WKH D SURJUDP WR FRUUHVSRQG WR WKH VWUXFWXUH RI WKH IXQFWLRQ ZKLFK GHVFULEHV WKDW SURJUDP ,Q RWKHU V\VWHPV LW PD\ EH SRVVLEOH WR ILQG D IXQFWLRQ ZKLFK GHVFULEHV D SURJUDP EXW WKLV IXQFWLRQ PD\ KDYH QR UHODWLRQ WR WKH V\QWDFWLFDO VWUXFWXUH RI WKDW SURJUDP 7KH JXLGHOLQHV IRU UHVWULFWLQJ UHFXUVLRQ LQ WKH ODQJXDJH ZHUH SURYLGHG E\ 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF ,Q RUGHU WR JXDUDQWHH WKDW DOO SURJUDPV LQ WKH ODQJXDJH FDQ EH GHVFULEHG E\ D SULPLWLYH UHFXUVLYH IXQFWLRQ UHVWULFWLRQV KDG WR EH PDGH VR WKDW DOO UHFXUVLYH FDOOV ZRXOG EH FOHDQO\ QHVWHG 7KLV UHTXLUHG WKH HOLPLQDWLRQ RI PXWXDOO\ UHFXUVLYH FDOOV DQG D UHFXUVLYH URXWLQH PDNLQJ D FDOO WR LWV SDUHQW 7KH UHVXOW LV D ODQJXDJH IRU ZKLFK DOO FDOO GLJUDSKV FDQ EH WUDQVODWHG LQWR WUHHV +HQFH SURRIV FDQ EH OD\HUHG OORDUH WULSOHV IRU WKH OHDI QRGHV DUH SURYHG ILUVW 7KHVH WULSOHV DUH XVHG WR SURYH +RDUH WULSOHV IRU WKH QRGHV FDOOLQJ WKH OHDI QRGHV ,Q WKLV ZD\ RQH PRYHV

PAGE 123

XS WKH WUHH RU GRZQ WKH WUHH DV VRPH SHRSOH SUHIHU WR VHH LW XQWLO D +RDUH WULSOH LV SURYHG IRU WKH URRW RI WKH WUHH %DVLQJ D ODQJXDJH RQ 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF DOVR SURYLGHG WKH LPSHWXV WR EULQJ YHULILFDWLRQDO LVVXHV LQWR WKH GHYHORSPHQW SURFHVV 6SHFLILFDOO\ LW IRUFHV DQ H[SUHVVLRQ IRU WKH QXPEHU RI LWHUDWLRQV RI D ORRS WR EH JLYHQ ZKHQ WKDW ORRS LV HQn WHUHG 6LPLODUO\ LW IRUFHV DQ H[SUHVVLRQ WR EH JLYHQ ZLWK HDFK UHFXUVLYH SURFHGXUH ERXQGLQJ WKH QXPEHU RI WLPHV WKDW SURFHGXUH FDQ EH QHVWHG 7KHVH ERXQGV DUH UHn TXLUHG EHFDXVH DOO SULPLWLYH UHFXUVLYH IXQFWLRQV DUH WRWDO 7KHUH LV QR KDOWLQJ SUREOHP IRU ODQJXDJHV ZKLFK FRPSXWH WKH FODVV RI SULPLWLYH UHFXUVLYH IXQFWLRQV 7KH DXWKRU VXJJHVWV WKDW UHTXLULQJ SURJUDPPHUV WR WKLQN DERXW WKH WHUPLQDWLRQ RI WKHLU SURn JUDPV DW GHYHORSPHQW WLPH UDWKHU WKDQ DW YHULILFDWLRQ WLPH IRUFHV WKHP WR UHDVRQ PRUH SUHFLVHO\ DERXW WKHLU SURJUDPV 5DWKHU WKDQ KDPSHULQJ GHYHORSPHQW WKLV PD\ HQKDQFH LW E\ SURYLGLQJ D IUDPHZRUN IRU EHWWHU FRQFHLYHG SURJUDPV 1RW DOO WRWDO IXQFWLRQV DUH SULPLWLYH UHFXUVLYH $FNHUPDQQfV IXQFWLRQ ZDV PHQn WLRQHG LQ &KDSWHU DV WKH FODVVLF H[DPSOH RI D WRWDO IXQFWLRQ ZKLFK LV QRW SULPLWLYH UHFXUVLYH $FNHUPDQQfV IXQFWLRQ JURZV VR TXLFNO\ WKDW LW PDMRUL]HV HYHU\ SULPLWLYH UHFXUVLYH IXQFWLRQ 7KH UHVWULFWLRQ WKDW UHFXUVLYH FDOOV LQ D SURJUDPPLQJ ODQJXDJH EH QHVWHG LV QHFHVVDU\ WR JXDUDQWHH WKDW D SURJUDP ZKLFK FRPSXWHV $FNHUPDQQfV IXQFWLRQ FDQQRW EH ZULWWHQ LQ WKH ODQJXDJH )XUWKHUPRUH JLYHQ D SDUWLFXODU SURn JUDP WKHUH LV D ERXQG RQ WKH QXPEHU RI UHFXUVLYH SURFHGXUHV WKDW FDQ EH QHVWHG $ UHFXUVLYH FDOO ZLWKLQ D ORRS ERG\ WR D SURFHGXUH FRQWDLQLQJ GLUHFWO\ RU LQGLUHFWO\ WKDW ORRS ZRXOG DOORZ WKH ERXQG RQ WKH QXPEHU RI UHFXUVLYH SURFHGXUHV WKDW FDQ EH QHVWHG WR EH DQ H[SUHVVLRQ RQ WKH SURJUDPnV LQSXWV 7KLV ZRXOG DOORZ D SURJUDP WR EH ZULWWHQ ZKLFK FRPSXWHV $FNHUPDQQnV IXQFWLRQ 7KXV D SULPLWLYH UHFXUVLYH SURJUDPPLQJ ODQJXDJH PXVW EH UHVWULFWHG VR WKDW VXFK D FDOO FDQQRW EH PDGH $W ILUVW WKLV UHVWULFWLRQ DSSHDUV DUELWUDU\ 1RWLFH KRZHYHU WKDW LW ZRXOG EH GLIILFXOW

PAGE 124

WR GHVFULEH WKH IXQFWLRQDOLW\ RI D ORRS ERG\ ZKLFK FRQWDLQV D FDOO WR D SURFHGXUH FRQWDLQLQJ WKDW ORRS )XUWKHUPRUH WKH FRPSXWDWLRQDO SUDFWLFDOLW\ RI VXFK D FDOO LV OLPLWHG 7KH FRPSXWDWLRQ VHTXHQFHV IRU QHVWHG UHFXUVLYH URXWLQHV DUH ORQJ 3ODFLQJ WKHVH LQ D ORRS LQFUHDVHV WKLV OHQJWK RQO\ OLQHDUO\ $ UHFXUVLYH FDOO ZLWKLQ D ORRS WR D SURFHGXUH FRQWDLQLQJ WKDW ORRS LV PXFK PRUH FRPSOH[ )RU HDFK LWHUDWLRQ RI WKH ORRS WKH UHFXUVLYH FDOO LV PDGH DQG WKH ORRS LV UHVWDUWHG UHTXLULQJ WKH UHFXUVLYH FDOO WR EH PDGH DJDLQ 7KLV LV KRZ $FNHUPDQQfV IXQFWLRQ LV DEOH WR JURZ VR TXLFNO\ :KLOH WKLV UHVWULFWLRQ LV RQO\ QHFHVVDU\ LI DOO SURJUDPV LQ WKH ODQJXDJH DUH WR FRPSXWH SULPn LWLYH UHFXUVLYH IXQFWLRQV LW PD\ EH D UHDVRQDEOH UHVWULFWLRQ IRU RWKHU SURJUDPPLQJ ODQJXDJHV DV ZHOO :KHWKHU RU QRW WKH SULPLWLYH UHFXUVLYH SURJUDPPLQJ ODQJXDJH LV EHLQJ XVHG DGKHUHQFH WR WKH SURJUDPPLQJ ODQJXDJH UHVWULFWLRQV LQ WKLV GLVVHUWDWLRQ UHVXOW LQ D PRUH XQGHUVWDQGDEOH PDLQWDLQDEOH DQG YHULILDEOH SURJUDPPLQJ ODQJXDJH 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF KDV SURYLGHG WKH JXLGHOLQHV IRU WKHVH UHVWULFWLRQV ,W ZRXOG EH LQWULJXLQJ WR FRPSDUH WKH GHYHORSPHQW RI D SULPLWLYH UHFXUVLYH SURJUDPPLQJ ODQJXDJH ZLWK WKH GHYHORSPHQW RI D ODQJXDJH EDVHG RQ DQRWKHU FODVV RI IXQFWLRQV ,W ZRXOG EH LQWHUHVWLQJ WR VHH WKLV GRQH ZLWK WKH FODVV RI HOHPHQWDU\ IXQFWLRQV RU WKH FODVV RI IXQFWLRQV ZKLFK UXQ LQ SRO\QRPLDO WLPH $QRWKHU GLUHFWLRQ IRU IXWXUH ZRUN LV WR DGG D UHVWULFWHG IRUP RI JOREDO IRUPDO SURFHGXUH LGHQWLILHUV ZKLFK ZRXOG DOORZ FDOOV WR KDYH DUELWUDULO\ ORQJ UHIHUHQFH FKDLQV :RXOG VXFK D SULPLWLYH UHFXUVLYH SURJUDPPLQJ ODQJXDJH EH VR VWUXFWXUHG WKDW HYHQ ZLWK DUELWUDU\ ORQJ UHIHUHQFH FKDLQV LW ZRXOG KDYH D VRXQG DQG FRPSOHWH +RDUH YHULILFDWLRQ V\VWHP"

PAGE 125

$33(1',; $ 35,0,7,9( 5(&856,9( )81&7,216 7KH GHILQLWLRQ RI WKH FODVV RI SULPLWLYH UHFXUVLYH IXQFWLRQV XVHG LQ WKLV GLVVHUWDWLRQ LV WKH FORVXUH RI WKH ]HUR VXFFHVVRU DQG SURMHFWLRQ IXQFWLRQV XQGHU WKH RSHUDWLRQV RI FRPSRVLWLRQ DQG SULPLWLYH UHFXUVLRQ 0RUH IRUPDOO\ WKH FODVV RI SULPLWLYH UHFXUVLYH IXQFWLRQV LV WKH VPDOOHVW FODVV RI IXQFWLRQV WKDW FRQWDLQ WKH EDVLF IXQFWLRQV J[f J[f [ DQG J[Nf IRU ] $ N DQG LV FORVHG XQGHU FRPSRVLWLRQ K R JLJPf DQG SULPLWLYH UHFXUVLRQ M7Qf K^\Qf I[ ]Iff J[\QI[\Qff

PAGE 126

$33(1',; % 35,0,7,9( 5(&856,9( $5,7+0(7,& 7KH V\PEROV RI 3ULPLWLYH 5HFXUVLYH $ULWKPHWLF RU 35$ DUH WKH FRQVWDQWV DQG DQ LQILQLWH OLVW RI YDULDEOHV WKH IXQFWLRQV ]HUR VXFF SURMf IRU L Q DQG Q ; I[ DQG WKH UHODWLRQ 7KH VHW RI 35$ WHUPV LV WKH FORVXUH RI ^` 8 ^[L e f ‘ f` XQGHU WKH ]HUR ]HURf VXFFHVVRU VXFFf SURMHFWLRQ SURMWQf [ ILW ILW f f f IXQFWLRQV )RU 35$ WHUPV U[ DQG U U[ U DQG U[ U DUH DWRPLF IRUPXODV 7KH VHW RI TXDQWLILHUIUHH IRUPXOD LV WKH FORVXUH RI DWRPLF IRUPXOD XQGHU WKH 127 f DQG $1' $f RSHUDWLRQ 7KH VHW RI 35$ IRUPXODV LV WKH FORVXUH RI WKH VHW RI TXDQWLILHUIUHH IRUPXOD XQGHU WKH )25 $// 9f RSHUDWLRQ 7KH D[LRPV RI 35$ IROORZ %DVLF $[LRPV [ f§ ) [ f§ [ [ \ \ [ [ \ ]f [ \f ] [[O O[[ [ [ [ \ \ [ [ [ [ \ [ ]f [ [ \f [ ] [ [ \ ]f [ [ \f [ [ ]f [ [ \ [ ] \ ] [ \ $ f§! [ [ ] \ [ ] ]HUR[f VXFF[f [ SURM"[ [Qf ;^ IRU L Q DQG Q 35 $[LRPV 6D\ 7M ) LV D OLVW RI DOO WKH 35 IXQFWLRQV

PAGE 127

,I )L[f )M)NO [f)NQ[ff WKHQ IL^[f IMLIN$rf r}rff LV DQ D[LRP ,I )[ f )M[f DQG )[ ] f )N)[ ]f [ ]f WKHQ [f IM[f $ [ ] f INIL[]f[]f LV DQ D[LRP ,QGXFWLRQ $[LRPV ,I LV D TXDQWLILHUIUHH IRUPXOD WKHQ f $ 9[ ![f f§ AVXFF[fff f§ 9[FA[f LV DQ D[LRP

PAGE 128

$33(1',; & 7+( (Q,7(5$7,21 58/( ,6 127 6281' ,Q WKLV DSSHQGL[ D QRQVWDQGDUG PRGHO LV GHYHORSHG IRU ZKLFK 6LQGXFWLRQ GRHV QRW KROG ,W LV VKRZQ WKDW WKLV PRGHO LV D PRGHO RI 35$ DQG WKDW IRU D D QRQVWDQGDUG HOHPHQW RI WKH PRGHO $FNHUDDf LV QRW LQ WKH PRGHO $ VPDOO eSS SURJUDP LV JLYHQ DQG D +RDUH WULSOH LV SURYHQ IRU WKDW SURJUDP 7KLV +RDUH WULSOH LPSOLHV WKDW D VHTXHQFH FDQ EH FRGHG LQ WKH PRGHO ZKLFK JLYHV WKH YDOXH RI $FNHUPDQQfV IXQFWLRQ $FNHUD Df /HW $I EH D QRQVWDQGDUG PRGHO RI 3HDQR $ULWKPHWLF 7DNH D QRQVWDQGDUG HOHn PHQW D RI $7 'HILQH WKH PRGHO $G & $I DV IROORZV $GR ^[ [ D` 0N ^[ [ \f IRU VRPH 35 IXQFWLRQ DQG \ e $LN` 0 ?-N 0N &ODLP $G LV D PRGHO RI 35$ 3URRI (DFK RI 35$fV EDVLF D[LRPV DUH XQLYHUVDO VR IRU WKHVH D[LRPV WUXWK LQ $I LPSOLHV WUXWK LQ $G 0RGHO $G LV FORVHG XQGHU WKH FODVV RI 35 IXQFWLRQV VR WKH 35 D[LRPV KROG LQ $G $OO WKDW LV OHIW WR VKRZ LV WKDW 35$fV LQGXFWLRQ D[LRP KROGV LQ $G 1RWH WKDW VWURQJ LQGXFWLRQ LPSOLHV ZHDN LQGXFWLRQ VR LW VXIILFHV WR VKRZ WKDW IRU ERXQGHG IRUPXODV VWURQJ LQGXFWLRQ KROGV LQ $G )RU D ERXQGHG IRUPXOD I! DVVXPH $G Af $ 9[9" [ I!\f f§} "!Dff 6KRZ $G 9[I![f 6XSSRVH E\ ZD\ RI FRQWUDGLFWLRQ WKDW $G A 9[A[f 7KHQ LQ $I WKHUH PXVW EH D ILUVW SODFH E ZKHUH $I A c!^Ef \HW $I M 9[ E Mf^[f 6XSSRVH E RFFXUV RXWVLGH RI $G 7KHQ E [ IRU DOO [ LQ WKH GRPDLQ RI $G 6LQFH 9[ E If[f

PAGE 129

LV D ERXQGHG IRUPXOD $I 9[ E c!^[f LPSOLHV $G 9[A![f 6XSSRVH E RFFXUV ZLWKLQ $G 6LQFH 9[ E Mf[f LV D ERXQGHG IRUPXOD $G > 9[ E I!^[f 7KLV LPSOLHV $G I!^Ef 6LQFH LV D ERXQGHG IRUPXOD WKLV IRUFHV WKH FRQWUDGLFWLRQ -?I c!^Ef ’ 'HILQH $FNHUPDQQfV IXQFWLRQ DV LW ZDV GHILQHG LQ WKH LQWURGXFWLRQ H[FHSW IL[ WKH ODVW LQSXW YDOXH WR WZR 7KDW LV GHILQH $FNHUPDQQfV IXQFWLRQ DV IROORZV $FNHU Pf P $FNHUQ f $FNHUQ P f $FNHUQ $FNHUQ 7 Pff 1RWLFH WKDW IRU P [ \ LPSOLHV $FNHU[Pf $FNHU\Pf ,W ZLOO EH VKRZQ WKDW $FNHUDDf A $GW IRU DQ\ N 7RZDUGV WKLV HQG GHILQH ZKDW LW PHDQV IRU D YDULDEOH WR EH FDSWXUHG $Q HOHPHQW [ LV FDSWXUHG LI WKHUH LV D 35 IXQFWLRQ LQFUHDVLQJ RQ HYHU\ YDULDEOH ZKHUH IRU VRPH QDWXUDO QXPEHUV L9 [ Q Df &ODLP [ e $LN [ LV FDSWXUHG 3URRI 3URYH WKH FODLP E\ LQGXFWLRQ RQ N )RU N WKH VXFFHVVRU IXQFWLRQ ZLWK WKH VLQJOH LQSXW D FDSWXUHV DOO HOHPHQWV LQ $GR $VVXPH WKH HOHPHQWV LQ $N DUH FDSWXUHG /HW [ e $GWL 7KHQ WKHUH LV D 35 IXQFWLRQ DQG DQ LQSXW YHFWRU \ e $G ZKHUH [ I^\f 3URYH [ LV FDSWXUHG E\ LQGXFWLRQ RQ 35 IXQFWLRQ )RU WKH ]HUR RU SURMHFWLRQ IXQFWLRQ [ e $$NL LPSOLHV [ e $Gr 7KXV [ LV FDSWXUHG )RU WKH VXFFHVVRU IXQFWLRQ [ LV MXVW RQH JUHDWHU WKDQ DQ HOHPHQW \ RI $GMWf 6LQFH \ ZDV FDSWXUHG LW LV VWUDLJKWIRUZDUG WR VHH WKDW [ FDQ DOVR EH FDSWXUHG 6D\ LV GHILQHG E\ FRPSRVLWLRQ DV JK? KPf 7KHQ [ e $LNL LPSOLHV [ J^KL\Uf KP\Uff ZKHUH \7 e $GMW (DFK \ LV FDSWXUHG E\ VRPH IXQFWLRQ

PAGE 130

IL DQG YHFWRU Qf e 1 /HW PW e 1 EH D YHFWRU DV ORQJ DV DQ\ RI WKH YHFWRUV Qf DQG ZKHUH IRU HDFK SRVLWLRQ M LQ HDFK YHFWRU Qf QLM QfM *LYHQ LQFUHDVLQJ IXQFWLRQ GHILQHG RQ YHFWRU QfV DQG D GHILQH IL RQ PW DV IROORZV ILUKWDf ILSURM^LQWf SURMOWUQWfDf *LYHQ DQ\ IXQFWLRQ J RQ [W ZH PD\ DVVXPH J LV LQFUHDVLQJ RQ HYHU\ YDULDEOH E\ UHSODFLQJ LW ZLWK ern er f
PAGE 131

3URRI 6XSSRVH E\ ZD\ RI FRQWUDGLFWLRQ WKDW $FNHUDDf ( 0N IRU VRPH N 7KHQ $FNHUDDf PXVW EH FDSWXUHG E\ VRPH LQFUHDVLQJ 35 IXQFWLRQ DQG D VHW RI LQn SXWV ( 1 1RWLFH WKDW Q Df IDDf IRU VRPH 35 IXQFWLRQ ID 6LQFH $FNHU PDQQfV IXQFWLRQ PDMRUL]HV HYHU\ 35 IXQFWLRQ WKHUH LV VRPH P ( 1 ZKHUH ?[ID[f $FNHUP [ff 6SHFLILFDOO\ ID^Df $FNHUPDf 7KLV OHDGV WR WKH FRQWUDGLFWLRQ $FNHUDDf IQ Df ID^Df $FNHUPDf 7KXV $FNHU D Df A $ ’ /HW [ VWDQG IRU WKH IROORZLQJ SURJUDP U ] ORRS D [ ORRS D [ [O HQG ] ]O HQG *LYHQ D VHTXHQFH FU OHW FUfQcP EH WKH YDOXH RI WKH VHTXHQFH DW ORFDWLRQ QP 1RWH WKDW VXFK D VHTXHQFH FDQ EH FRGHG DQG GHFRGHG SULPLWLYH UHFXUVLYHO\ 'HILQH $ Q Pf E\ Q f§} FUfQP Pf $ Q $ P FUffP f $ Q!$P!r IIfQP ff 'HILQH 5D f E\ 5Df FU 9Q D 9P $U Q Pf ,W ZLOO EH VKRZQ XVLQJ WKH 6,WHUDWLRQ 5XOH WKDW LW FDQ EH SURYHQ WKDW ^7`[^"D Df` 7KLV LQFRUUHFWO\ SURYHV WKDW D VHTXHQFH FDQ EH FRGHG LQ WKH PRGHO ZKLFK JLYHV WKH YDOXH RI $FNHUPDQQfV IXQFWLRQ $FNHUDDf &ODLP ?a\M ^ 7`Q^5^D Df` 35

PAGE 132

3URRI ^7`W^5D Df` 7 $VVLJQPHQW $[LRP &RPSRVLWLRQ DQG &RQVHTXHQFH 5XOHV ^] $ 9PL"] f`ORRS D [ ORRS D [ [ HQG ] ] HQG ^ D $ 9P5] Pf` 7 6 f§ ,WHUDWLRQ 5XOH ORRS LQYDULDQW ] X $ :P5]Pf ^] Y $ Pf $2 U D`[ ORRS D [ [ HQG ^ $ 9PL" Pf` 7 $VVLJQPHQW $[LRP &RPSRVLWLRQ DQG &RQVHTXHQFH 5XOHV ^ Z$[ $ 9P5] Pf $ L" [f`ORRS D [ [ HQG ^] Y$[ f§ D$ 9P5] Pf $ 5^] [f` 7 6 f§ ,WHUDWLRQ 5XOH ORRS LQYDULDQW ] Y$[ X$ 9P5] Pf $ 5] [f ^] f§ Y$[ f§ Z$ 9P" Pf $ 5] [f$ Z D`[ [ ^ U$[ LU O $ 9P5] Pf $ 5] [f` 7 D O &RQVHTXHQFH 5XOH ^ f$[ X$ 9P5] Pf $ 5] [ff>[ O[@`[ [ ^] Wf$[ WLfO$ 9"] Pf $ 5] [f` $VVLJQPHQW $[LRP ,PSOLFDWLRQ D LV SURYHQ DV IROORZV ] Y$[ Z$ 9P5] Pf $ 5] [f $ Z D ] Y$[?O ZO$ :P5] LQf $ 5] [f U$[O UH $ 9P5] Pf $ U U9Q 9 [ $W Pf $ $W Uf $ U FUf]L[f Wf$;O 8fO $ ?KOO5] f $ WM9" 9W ; $D f U$[ O m O$ ?P5]Pf $" O[ Of W"$[ f§ UH O$ 9P5]Pf $ 5] [ff>[ [@

PAGE 133

Â’ ,W LV LQWHUHVWLQJ WR FRPSDUH WKLV 7ISS SURRI ZLWK WKH 35$eLQGXFWLRQ SURRI WKDW D VHTXHQFH H[LVWV ZKLFK FRGHV WKH YDOXHV RI $FNHUPDQQfV IXQFWLRQ $FNHUDDf &ODLP ?aSIWAeLQGXFWLRQ 5DLDf 3URRI 7KH FODLP LV HVWDEOLVKHG E\ SURYLQJ ?P5YPf E\ LQGXFWLRQ RQ Y 7KH IRUPXOD 9PL"Pf KROGV VLQFH IRU DQ\ fRP P $VVXPH 9P5YPf 6KRZ 9P5Y OPf E\ LQGXFWLRQ RQ P 7KH IRUPXOD 5Y f KROGV VLQFH IRU DQ\ Q FUfQ $VVXPH 5Y I OXf 7KHQ WKH IROORZLQJ KROGV FUU9Q Y IL 9P XM IL $D Q Pf $ $D YWf $ U FUffLO8f 7KH PRGHO FRQWDLQV fYLX E\ WKH VHFRQG DVVXPSWLRQ DQG FUffL7 E\ WKH ILUVW 7KHUHn IRUH 5Y Z I f Â’ 7KH QHVWHG LQGXFWLRQ LQ WKH DERYH SURRI FRUUHVSRQGV WR WKH QHVWHG ORRSV LQ WKH SURJUDP ,Q WKH DERYH SURRI WKH ILUVW LQGXFWLRQ IRUPXOD FRUUHVSRQGV WR WKH LQYDULDQW RI WKH RXWHU SURJUDP ORRS 7KH VHFRQG LQGXFWLRQ IRUPXOD LV OHVV FRPSOH[ WKDQ WKH LQYDULDQW RI WKH LQQHU SURJUDP ORRS 7KLV LV EHFDXVH WKH FUXFLDO VWHS LQ ERWK SURRIV UHTXLUHV WZR DVVXPSWLRQV ,Q WKH DERYH SURRI WKH RXWHU DVVXPSWLRQ LV DXWRPDWLFDOO\ DYDLODEOH ,Q WKH 7ISS SURRI WKLV DVVXPSWLRQ PXVW EH FDUULHG LQ WKH ORRS LQYDULDQW 7KH LQQHU ORRS LQYDULDQW LV Y $ ?P5]Pf $ [ X $ 5] I O[f 7KH IRUPXOD ] Y $ ?P5]Pf SURYLGHV WKH ILUVW DVVXPSWLRQ 7KH IRUPXOD [ X $ 5] O[f SURYLGHV WKH VHFRQG

PAGE 134

5()(5(1&(6 >@ $OWRQ 'RQDOG $ f1DWXUDO SURJUDPPLQJ ODQJXDJHV DQG FRPSOH[LW\ PHDVXUHV IRU VXEUHFXUVLYH SURJUDPPLQJ ODQJXDJHV DQ DEVWUDFW DSSURDFKf ,Q /RQGRQ 0DWKHn PDWLFDO 6RFLHW\ /HFWXUH 1RWH 6HULHV 9RO 5HFXUVLRQ 7KHRU\ LWV *HQHUDOLVDn WLRQV DQG $SSOLFDWLRQV 3URFHHGLQJV RI /RJLF &ROORTXLXP /HHGV $XJXVW )5 'UDNH t 66 :DLQHU (GVf &DPEULGJH 8QLYHUVLW\ 3UHVV 1HZ @ $SW .U]\V]WRI 5 f7HQ \HDUV RI +RDUHfV ORJLF D VXUYH\ SDUW ,f $&0 7UDQVDFn WLRQV RQ 3URJUDPPLQJ /DQJXDJHV DQG 6\VWHPV 9RO 1R 2FWREHU 6 3J >@ %HUJVWUD -$ t -9 7XFNHU f6RPH QDWXUDO VWUXFWXUHV ZKLFK IDLO WR SRVVHVV D VRXQG DQG GHFLGDEOH +RDUHOLNH ORJLF IRU WKHLU :+,/(SURJUDPVf 7KHRUHWLFDO &RPSXWHU 6FLHQFH 9RO 3J >@ %HUJVWUD -$ t -9 7XFNHU f+RDUHfV ORJLF DQG 3HDQR $ULWKPHWLFf 7KHRUHWLFDO &RPSXWHU 6FLHQFH 9RO 3J >@ &KHUQLDYVN\ -RKQ & 9 6DPXHO 1 .DPLQ f$ FRPSOHWH DQG FRQVLVWHQW +RDUH D[LRPDWLFV IRU D VLPSOH SURJUDPPLQJ ODQJXDJHf -RXUQDO RI WKH $&0 9RO -DQXDU\ 3J >@ &ODUNH (GPXQG 0 f3URJUDP LQYDULDQWV DV IL[HG SRLQWVf &RPSXWLQJ 9RO 3J >@ &ODUNH (GPXQG 0 f3URJUDPPLQJ ODQJXDJH FRQVWUXFWV IRU ZKLFK LW LV LPSRVVLEOH WR REWDLQ JRRG +RDUH D[LRP V\VWHPVf -RXUQDO RI WKH $&0 9RO 1R -DQXDU\ 3J >@ &ODUNH (GPXQG 0 f7KH FKDUDFWHUL]DWLRQ SUREOHP IRU +RDUH ORJLFVf ,Q 0DWKn HPDWLFDO /RJLF DQG 3URJUDPPLQJ /DQJXDJHV 3UHQWLFH+DOO ,QWHUQDWLRQDO 6HULHV LQ &RPSXWHU 6FLHQFH &$5 +RDUH K -& 6KHSHUGVRQ (GVf 3UHQWLFH+DOO (QJOHZRRG &OLIIV 1HZ -HUVH\ 3J >@ &ODUNH (GPXQG 0 6WHYHQ 0 *HUPDQ t -RVHSK < +DOSHUQ f(IIHFWLYH D[LRP DWL]DWLRQV RI +RDUH ORJLFVf -RXUQDO RI WKH $&0 9RO 1R -XO\ 3J >@ &RQVWDEOH 5REHUW / f6XEUHFXUVLYH SURJUDPPLQJ ODQJXDJHV ,, RQ SURJUDP VL]Hf -RXUQDO RI &RPSXWHU DQG 6\VWHP 6FLHQFHV 9RO O 3J >@ &RQVWDEOH 5REHUW / t $OODQ % %RURGLQ f6XEUHFXUVLYH SURJUDPPLQJ ODQn JXDJHV SDUW HIILFLHQF\ DQG SURJUDP VWUXFWXUHf -RXUQDO RI WKH $&0 9RO 1R -XO\ 3J

PAGE 135

>@ &RRN 6WHSKHQ $ f6RXQGQHVV DQG FRPSOHWHQHVV RI DQ D[LRP V\VWHP IRU SURJUDP YHULILFDWLRQf 6,$0 -RXUQDO RI &RPSXWLQJ 9RO 1R )HEUXDU\ 3J >@ &XWODQG 1LJHO &RPSXWDELOLW\ $Q LQWURGXFWLRQ WR UHFXUVLYH IXQFWLRQ WKHRU\ &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH >@ GH %DNNHU -DFR 0DWKHPDWLFDO 7KHRU\ RI 3URJUDP &RUUHFWQHVV 3UHQWLFH+DOO ,QWHUQDWLRQDO /RQGRQ >@ (UQVW *HRUJH : -DLQHQGUD 1DYODNKD  :LOOLDP ) 2JGHQ f9HULILFDWLRQ RI SURJUDPV ZLWK SURFHGXUHW\SH SUDUPHWHUVf $FWD ,QIRUP£WLFD 9RO 3J >@ *HUPDQ 6WHYHQ 0 (GPXQG 0 &ODUNH t -RVHSK< +DOSHUQ f5HDVRQLQJ DERXW SURFHGXUHV DV SDUDPHWHUVf 3URFHHGLQJV RI &RQIHUHQFH RQ /RJLFV RI 3URJUDPV 9RO -XQH 3J >@ *HUPDQ 6WHYHQ 0 (GPXQG 0 &ODUNH -RVHSK< +DOSHUQ f7UXH UHODWLYH FRPSOHWHQHVV RI DQ D[LRP V\VWHP IRU WKH ODQJXDJH /f 3URFHHGLQJV RI WKH 6\Pn SRVLXP RQ /RJLF LQ &RPSXWHU 6FLHQFH -XQH 3J >@ *UDERZVNL 0LFKDO f2Q UHODWLYH FRPSOHWHQHVV RI +RDUH ORJLFVf ,QIRUPDWLRQ DQG &RQWURO 9RO 3J >@ *UHLEDFK 6KHLOD $ 7KHRU\ RI 3URJUDP 6WUXFWXUHV 6FKHPHV 6HPDQWLFV 9HULILn FDWLRQ 6SULQJHU9HUODJ 1HZ @ +RDUH &$5 f$Q D[LRPDWLF DSSURDFK WR FRPSXWHU SURJUDPPLQJf &RPPXQLn FDWLRQV RI WKH $&0 9RO 1R 2FWREHU 3J >@ +RDUH &$5 f3URFHGXUHV DQG SDUDPHWHUV DQ D[LRPDWLF DSSURDFKf ,Q /HFWXUH 1RWHV LQ 0DWKHPDWLFV 9RO 6HPDQWLFV RI $OJRULWKPLF /DQJXDJHV 6SULQJHU 9HUODJ 1HZ @ .IRXU\ $5REHUW 1 0ROO K 0LFKDHO $ $UELE $ 3URJUDPPLQJ $SSURDFK WR &RPSXWDELOLW\ 6SULQJHU9HUODJ 1HZ @ /DQJPDDFN +DQV f2Q FRUUHFW SURFHGXUH SDUDPHWHU WUDQVPLVVLRQ LQ KLJKHU SURn JUDPPLQJ ODQJXDJHVf $FWD ,QIRUP£WLFD 9RO 3J >@ /DQJPDDFN +DQV f2Q SURFHGXUHV DV RSHQ VXEURXWLQHV ,f $FWD ,QIRUP£WLFD 9RO 3J >@ /DQJPDDFN +DQV f2Q SURFHGXUHV DV RSHQ VXEURXWLQHV ,,f $FWD ,QIRUP£WLFD 9RO 3J >@ /DQJPDDFN +DQV t (UQVW5LLGLJHU 2OGHURJ f3UHVHQWGD\ ,ORDUHOLNH V\VWHPV IRU SURJUDPPLQJ ODQJXDJHV ZLWK SURFHGXUHV 3RZHU OLPLWV DQG PRVW OLNHO\ H[n WHQVLRQV f ,Q /HFWXUH 1RWHV LQ &RPSXWHU 6FLHQFH 9RO $XWRPDWD /DQJXDJHV DQG 3URJUDPPLQJ 6SULQJHU9HUODJ 1HZ
PAGE 136

>@ /LSWRQ 5LFKDUG f$ QHFHVVDU\ DQG VXIILFLHQW FRQGLWLRQ IRU WKH H[LVWHQFH RI +RDUH ORJLFVf WK $QQXDO 6\PSRVLXP RQ )RXQGDWLRQV RI &RPSXWHU 6FLHQFH 2FW 1RY 3J >@ 0H\HU $OEHUW 5 t '0 5LWFKLH f7KH FRPSOH[LW\ RI ORRS SURJUDPVf 3URFHHGn LQJV RI WKH QG 1DWLRQDO $&0 &RQIHUHQFH 3J >@ 2OGHURJ (UQVW5LLGLJHU f6RXQG DQG FRPSOHWH +RDUHOLNH FDOFXOL EDVHG RQ FRS\ UXOHVf $FWD ,QIRUP£WLFD 9RO 3J >@ 2OGHURJ (UQVW5LLGLJHU f+RDUHfV ORJLF ZLWK SURFHGXUHV :KDW KDV EHHQ DFKLHYHG"f 3URFHHGLQJV /RJLFV RI 3URJUDPV 3J >@ 2OGHURJ (UQVW5LLGLJHU f&RUUHFWQHVV RI SURJUDPV ZLWK 3$6&$/OLNH SURFHGXUHV ZLWKRXW JOREDO YDULDEOHVf ,Q 7KHRUHWLFDO &RPSXWHU 6FLHQFH 9RO 3J >@ 3WHU 5]VD 5HFXUVLYH )XQFWLRQV $FDGHPLF 3UHVV 1HZ @ 5RVH +( 6XEUHFXUVLRQ )XQFWLRQV DQG +LHUDUFKLHV 2[IRUG 8QLYHUVLW\ 3UHVV 1HZ @ 6WR\ -RVHSK ( 'HQRWDWLRQDO 6HPDQWLFV 7KH 6FRWW6WUDFKH\ $SSURDFK WR 3URn JUDPPLQJ /DQJXDJH 7KHRU\ 0,7 3UHVV &DPEULGJH >@ 7UDNKWHQEURW %$ -RVHSK < +DOSHUQ t $OEHUW 5 0H\HU f)URP GHQRWDn WLRQDO WR RSHUDWLRQDO DQG D[LRPDWLF VHPDQWLFV IRU $/*2/OLNH ODQJXDJHV $Q RYHUYLHZf ,Q /HFWXUH 1RWHV LQ &RPSXWHU 6FLHQFH 9RO 3URFHHGLQJV /RJLFV RI 3URJUDPV 6SULQJHU9HUODJ 1HZ @ :DQG 0LWFKHOO f$ QHZ LQFRPSOHWHQHVV UHVXOW IRU +RDUHfV V\VWHPf -RXUQDO RI WKH $&0 9RO 1R -DQXDU\ 3J >@
PAGE 137

%,2*5$3+,&$/ 6.(7&+ &HOLD 6FKDKF]HQVNL ZDV UDLVHG LQ &DOLIRUQLD ZKHUH VKH HDUQHG D EDFKHORUfV GHJUHH LQ PDWKHPDWLFV IURP WKH 8QLYHUVLW\ RI &DOLIRUQLD DW 6DQWD %DUEDUD LQ 8SRQ JUDGXDWLRQ VKH MRLQHG WKH 8QLWHG 6WDWHV 3HDFH &RUSV DQG WDXJKW PDWKHPDWLFV LQ %Hn OL]H &HQWUDO $PHULFD 6KH UHWXUQHG WR WKH 8QLWHG 6WDWHV LQ WR HDUQ KHU PDVWHUfV GHJUHH LQ FRPSXWHU VFLHQFH IURP WKH 8QLYHUVLW\ RI 0LVVRXUL &ROXPELD 7KHUH VKH VSHFLDOL]HG LQ FRPPXQLFDWLRQ VRIWZDUH 6KH KDV SXUVXHG KHU 3K' IURP WKH 8QLYHUn VLW\ RI )ORULGD XQGHU WKH VSRQVRUVKLS RI %HOO &RPPXQLFDWLRQV 5HVHDUFK %HOOFRUHf 6XEVHTXHQW WR JUDGXDWLRQ VKH SODQV WR ZRUN IRU %HOOFRUH

PAGE 138

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ *SM6AUG 5LWWHU &KDLU A3URIHVVRU RI &RPSXWHU DQG ,QIRUPDWLRQ V 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5LFN / 6PLWK &RFKDLU $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\
PAGE 139

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWn DEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7nLIRVHSL7f1 :LOVRQ $VVLVWDQW 3URIHVVRU RI &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (Qn JLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU L//&O f t :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ 0DGHO\Q 0 /RFNKDUW 'HDQ *UDGXDWH 6FKRRO

PAGE 140

81,9(56,7< 2) )/25,'$