Citation
A revision of Rigodium (Musci:Rigodiaceae)

Material Information

Title:
A revision of Rigodium (Musci:Rigodiaceae)
Creator:
Zomlefer, Wendy B
Publication Date:
Language:
English
Physical Description:
viii, 258 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Branches ( jstor )
Capsules ( jstor )
Cells ( jstor )
Forests ( jstor )
Genera ( jstor )
Internet search systems ( jstor )
Leaves ( jstor )
Lectotypes ( jstor )
Mull ( jstor )
Species ( jstor )
Mosses -- Classification ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 248-253).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Wendy B. Zomlefer.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
021814419 ( ALEPH )
AJG0218 ( NOTIS )
26371961 ( OCLC )

Downloads

This item has the following downloads:


Full Text











A REVISION OF RIGODIUM (MUSCI: RIGODIACEAE)


By

WENDY B. ZOMLEFER



















A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1991
































Copyright 1991

by

Wendy B. Zomlefer














ACKNOWLEDGMENTS


I express my deepest appreciation and gratitude to Dana

Griffin, III, for his limitless patience and enthusiastic

guidance throughout my graduate program. I also thank

Walter S. Judd, who also generously provided much

encouragement and many helpful criticisms. The other

members of my committee, Bruce J. MacFadden, Jonathan

Reiskind, and James W. Kimbrough have also greatly assisted

in my project and have improved the quality of the

dissertation with their comments. A very special thank-you

goes to Kent D. Perkins for his help in all computerized

aspects of this study, including data-base management, word

processing and processing of loans. I appreciate also the

advice and hospitality of William R. Buck and Richard Harris

(curators at the New York Botanical Garden) during my two

trips to their institution; Bill Buck has been especially

instrumental in my development as a bryologist.

I could not have completed this revision without the

time and patience of many other individuals. Thomas J.

Whitmore, Stephen B. Linda, and Carmine A. Lanciani helped

with aspects of the statistics; W. Mark Whitten, Stephen J.

Walsh, and Douglas D. Turley assisted as computer

consultants. Donna S. Williams spent numerous hours helping

me with the preparation of my specimens for the SEM. Norris


iii









H. Williams, my job supervisor at the Florida Museum of

Natural History, has been especially generous with his

computer facilities, as well as sympathetic to the problems

surrounding my concurrent employment and school activities.

Howard Crum provided excellent instruction during my tenure

as his assistant at the University of Michigan Biological

Station and graciously sent me an unpublished manuscript

related to my dissertation work. Daniel B. Ward and Dan H.

Nicholson advised me on several difficult nomenclatural

problems. Rhoda J. Bryant and Dianna C. Carver helped with

word processing.

I thank also the curators of the herbaria listed in the

materials and methods section for the extended loans of

their specimens. Travel money for three trips to study

bryophytes (one to Michigan and two to Puerto Rico) was

provided by the Department of Botany at the University of

Florida.

By their consistent concern about my graduate program

over the past five years, Graig D. Shaak, Gary S. Morgan,

and Laurie Wilkins (all of the Florida Museum of Natural

History), helped to keep my spirits up. In this regard, I

also thank Susan W. Williams and my sister, Kayla S.

Zomlefer, for their cheerful support.

Finally, I thank my parents, Jack and Dorothy Zomlefer,

who have always encouraged and supported my academic

pursuits, even in my formative years when females were

neither expected nor encouraged to excel in the sciences.















TABLE OF CONTENTS

pace
ACKNOWLEDGMENTS......................................... iii

ABSTRACT................................................. vii

INTRODUCTION............................. ................ 1

TAXONOMIC HISTORY....................................... 3

MATERIALS AND METHODS .................................. 20

MORPHOLOGY .................. ..................... ..... 25

Axes ....... .................... ............ ....... 25
Leaves ............ ........... ... ................. 28
Axillary Hairs.................................... 30
Paraphyllia and Pseudoparaphyllia................. 31
Perichaetia and Perigonia........................... 32
Sporophyte........................................... 33
Spores.............................................. 34
Chromosome Number.................................. 34

PHYLOGENY.. ................... ......................... 57

Characters for Analysis of Representative
Genera of Superfamily Leskeacanae............... 66
Results of Analyses of Genera...................... 69
Characters for Rigodium Species.................... 72
Results of Analyses of Rigodium species............ 74
Taxonomic Philosophy Concerning Species............ 77

PHENETIC STUDIES......................................... 99

Choice of OTUs and Choice of Specimens............. 100
Choice of Characters............................... 103
Results of the Principal Component Analyses......... 105

PHYTOGEOGRAPHY ............. .......................... 117

TAXONOMIC TREATMENT.................................. 122

Key to the Species of Rigodium..................... 125
1. Rigodium toxarion (Schwagr.) Jaeg............... 130
2. Rigodium brachypodium (C. Mull.) Par............ 167
3. Rigodium adpressum Zomlefer.................... 194









4. Rigodium implexum Kunze ex Schwagr.............. 207
5. Rigodium pseudo-thuidium Dus.................... 220

NOMINA AMBIGUA AND NUDA.................................. 234

LITERATURE CITED....................................... 238

APPENDICES

A OTUS (COLLECTIONS) USED IN THE PHENETIC
ANALYSES .............................. ............ 248

B DETERMINATION OF MINIMUM NUMBER OF
MEASUREMENTS PER CHARACTER...................... 254

BIOGRAPHICAL SKETCH..................................... 258








Abstract of Dissertation Presented to the Graduate School of
the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

A REVISION OF RIGODIUM (MUSCI: RIGODIACEAE)

By

Wendy B. Zomlefer

May 1991

Chairman: Dana Griffin, III
Major Department: Botany

Rigodium Kunze ex Schwagr., a genus of tropical to

austral-temperate pleurocarpous mosses, is comprised of five

species (plus two varieties). Prior to this study, 26

species were recognized, with five additional species

generally accepted as belonging to other genera. Species of

Rigodium, all dioicous, have wiry stems and branches,

strongly dimorphic stem and branch leaves, extremely

incrassate leaf cells that are prorulose to varying degrees

(depending on the species), and hypnoid peristomes. The

habit varies from arborescent with a well-developed stipe

(B. toxarion, R. adpressum, and R. brachypodium) to more

derived forms with either prolific (R. implexum) or reduced

(R. pseudo-thuidium) branching.

The genus has a disjunct distribution in Central and

South America and southeastern Africa. The plants, usually

epiphytic or terrestrial, generally grow in moist, montane

forests. The center of diversity, where all five species

occur, is in the Andean Cordillera along the Chilean-

Argentinian border in central Chile.


vii









Observations of morphology, including those made with

scanning electron microscopy (SEM), compose the basis of

this revision, which includes computer-assisted analyses of

phenetics (Principal Component Analysis, PCA) and cladistics

(Phylogenetic Analysis Using Parsimony, PAUP). One

previously undescribed species (R. adpressum) and two new

combinations at the varietal level (R. toxarion var.

robustum and R. brachypodium var. tamarix) are presented.

Rigodium is maintained within the monotypic Rigodiaceae,

possibly related to the Thuidiaceae.


viii














INTRODUCTION


As treated here, the genus Ricodium Kunze ex Schwagr.

consists of five species (including two varieties) of

austral-temperate to tropical pleurocarpous mosses from

Hispaniola, Central and South America, eastern Africa, and

Madagascar. The center of diversity of Rigodium, where all

five species occur, is in the Andean Cordillera along the

Chilean-Argentinian border in central Chile. The plants

typically grow as epiphytes (or less often terrestrial,

corticolous, or saxicolous) in moist forests at moderately

high altitudes (up to ca 3800 m).

Although 31 species have been included within Rigodium,

no comprehensive work had been published for the genus until

the present revision. The genus itself is well-defined and

recognizable by the dendroid to frondose habit with wiry

stems and branches and often a well-differentiated stipe

(lower secondary stem). The strongly dimorphic stem and

branch leaves are unusual in the marked tendency toward

ecostate stem leaves (at least those of the "stipe" or lower

stem). Stem leaves are typically strongly spreading to

squarrose, wet or dry. Leaf cells are generally rounded-

quadrate (alar region and margins) to oblong (upper and

midlaminar areas) and incrassate throughout. The plants are









dioicous, and the peristome is hypnoid (Zomlefer and Buck,

1990).

This treatment represents the first attempt to

completely review all pertinent literature and specimens in

order to (1) ascertain the species and their relationships

within the genus and (2) to determine the position of the

genus (in a monotypic family) within the scheme of bryophyte

phylogeny using cladistics. The results presented here are

based on qualitative and quantitative analysis of

morphology, ecology, and anatomy of over 2,400 herbarium

specimens. This study is especially pertinent since many of

the habitats where Rigodium occurs (mainly subtropical to

temperate rain forests) are threatened by human activities

(as for example, logging in the Valdivian forests in Chile).














TAXONOMIC HISTORY


The genus Rigodium was established by Schwagrichen in

1845 with original material of the new species, Rigodium

implexum, coming from southern Chile (Schwagrichen, 1845;

Zomlefer, 1990). The name is taken from the Greek word

"rigos" (= rigid) in reference to the extremely stiff and

wiry stems and branches. Although Muller (1845, 1851)

initially suggested maintaining this new genus rather as a

section within Hypnum, the name became well-accepted in the

literature, with even Muller himself eventually describing

six species using Rigodium as the genus name.

In addition to R. implexum, 19 new species were later

described, plus 11 more transferred to Rigodium from Hypnum

(ten species) and Leskea (one species). Of these 31 valid

species names (Wijk et al., 1967, 1969; Crosby, 1979), five

have been now generally accepted as belonging to other

genera: R. dentatum Dix. = Rhvnchostegiella zevheri (C.

Mull.) Broth., R. reflexum (Stark.) Kindb. = Brachythecium

reflexum (Stark.) B. S. G., R. schlosseri (Sendtn.) Kindb. =

Camptochaete schlosseri (Sendtn.) Par., R. vaqum (C. Mull.)

Reichdt. = Camptochaete vaga (C. Mull.) Broth., and R.

varium (Hedw.) Kindb. = Amblystegium varium (Hedw.) Lindb.

In addition, four more Rigodium types examined in the

initial stages of this study have also been reassessed









(Zomlefer & Buck, 1990): R. toxarioides Broth. & Par. (Fig.

1) and R. crassicostatum Bartr. in Christ. (Fig. 2) both =

Eurhynchium praelonaum (Hedw.) B. S. G.; R.

pteriyvnandroides (Broth.) Broth. (Fig. 3) = Helicodontium

pervirens (C. Mull.) Par.; and R. riparium Sehnem (Fig. 4) =

Helicodontium complanatum Broth. This leaves a total of 22

valid epithets (Table 1) incorporated into the present

study--20 associated with Hispaniola and Central and South

America, and one each with eastern Africa and with

Madagascar.

The authors of the original species descriptions have

generally emphasized subtle differences in characters, such

as the relative size and fragility of the plants and the

coarseness of the serrations on the leaves. By apparently

comparing type specimens only, the authors did not

sufficiently evaluate the intergradation of these characters

throughout the genus and thus may have overlooked numerous

specimens which bridged the apparent morphological gaps

between the type specimens. The most obvious "species"

based on the old literature are R. pseudothuidium/R.

hvlocomioides (both with distinct habit and a reduced costa

in the stem leaves) and R. implexum (very stiff plants with

unusual right-angle branching). Certain names tended to be

associated only with collections from the particular country

of the type specimen, such as "R. solutum" with Ecuador and

"B. leptodendron" with Bolivia (see Table 1). Adding to the

confusion, authors of floristic treatments tended to lump









indiscriminately several names in synonymy, such as Jaeger

[1878; R. toxarion = R. implexum, B. brachypodium, and

Hypnum (Riqodium) solutum], Muller [1882, Hvpnum (Riqodium)

argentinicum = E. implexum and R. brachypelma

(brachypodium)], and Mitten [1869; Hypnum (Rigodium)

toxarion = H. implexum, H. brachypodium, H. solutum, and R.

lechleri (arborescens)]. Brotherus' (1925) key to 17

species separates out only the few obvious forms (i.e., R.

implexum, R. hvlocomioides, and several species no longer

included in Rigodium) and lumps the remaining 12 species (by

country) under the first general dichotomy of the key (habit

type).

The great need for a full-scale revision of Rigodium

has been noted by authors from Reimers (1926) to Robinson

(1975). In reviewing Chilean collections of bryophytes and

examining numerous specimens of Rigodium in particular,

Reimers (1926) and Herzog (1938, 1954) both concluded that

making any decisions about the taxonomic validity of

Rigodium species was virtually unfeasible without

monographic studies. In fact, Reimers promised a

forthcoming revision (which never appeared). Herzog (1939)

and Bartram (1960) each described a new species of Rigodium

(R. pendulum and R. crassicostatum, respectively), while at

the same time admitting the near impossibility of applying

any specific names without a critical revision of the entire

genus.









Other than the keys of Brotherus (1909, 1925), no

attempt has been made to distinguish all the species of the

genus, although several workers have treated a few species

of Rigodium with a regional, floristic perspective. Most

floras do not include descriptions or keys but only list

those species names (and sometimes the specimens) associated

with the area (e.g., Seki, 1976). Notable exceptions are

the floras of Sehnem (1976) and Robinson (1975), which

include keys and some discussion comparing several species.

These two floras, however, are restricted in scope and do

not address Rigodium as a whole. Sehnem's keys for seven

species of Rigodium in his treatment of the mosses of

southern Brazil use vague characters such as a "delicate

habit, similar in aspect to Pterqynandrum or Thuidium." He

described two new species, R. riparium and R. pallidum.

Rigodium riparium Sehnem is actually Helicodontium

complanatum Broth. (Zomlefer & Buck, 1990), and R. pallidum

Sehnem has been reduced to synonymy with R. toxarion

(Schwagr.) Jaeg. in the present study. Robinson's treatment

of the mosses of the well-collected Juan Fernandez Islands

includes detailed discussions of four species (B.

arborescens, R. hvlocomioides, R. toxarion and R. robustum)

with comments on his opinions of synonomy and relationships

to several other species on mainland Chile. By

concentrating on a small, well-collected area, he apparently

made some assumptions about Riqodium species that reflect

better the local variation rather than that found throughout









whole range of the genus. His conclusions are commented on

under the appropriate species in this study.

Coupled with problems in delimitation of the species is

a lack of agreement on the affinities of Rigodium to other

groups. As with many pleurocarpous taxa, Rigodium was

initially allied with Hypnum/Hypnaceae (e.g., Muller, 1851).

By the early twentieth century, more pleurocarpous families

had been delimited, and Rigodium was moved to the

Brachytheciaceae by Brotherus (1909). Later, he (1925)

transferred it to the Lembophyllaceae. Associating the

genus with these two families has persisted until recently.

For example, Robinson (1975) placed Riqodium in the

Brachytheciaceae due to its similarity stipess and strong

heterophylly) with Stokesiella [hom. illeq.; = Eurhynchium

fide Buck (1988)]. More recent publications (Crosby &

Magill, 1981; Vitt, 1982; Walther, 1983) maintain Ricodium

under the Lembophyllaceae, although the validity of this

family, as first conceived by Brotherus, has continued to be

questioned (Crum, 1991). Buck (1980a) reduced the

Lembophyllaceae to two genera (Camptochaete and

Lembophyllum) and suggested placement of Rigodium in the

Thuidiaceae, a move supported by Vitt (1984). According to

Buck, pertinent characters linking Rigodium to the

Thuidiaceae include the pinnate branching, similar leaf

shapes, short leaf cells, and strong single costae.

Bartram (1949) was the first to suggest placement of

Rigodium in a separate family, if not the Brachytheciaceae









or Leskeaceae (in which he included the Thuidiaceae). Crum

(1981, 1984) recently erected the monotypic family

Rigodiaceae, which has been accepted by some authors (Buck &

Vitt, 1986), and tentatively supported by others (Walther,

1983). Although he later (1991) agrees with Buck (1980a)

and acknowledges a close resemblance of Rigodium to the

Thuidiaceae, Crum maintains that the "stipitate growth,

smooth leaf cells, and absence of paraphyllia" merit

separate familial status for the genus.

The present study recognizes five species (including

two varieties) of Rigodium, including one species described

here for the first time: R. adpressum Zomlefer, R.

brachypodium (C. Mull.) Par. var. brachypodium, E.

brachypodium (C. Mull.) Par. var. tamarix (C. Mull.)

Zomlefer, R. implexum Kunze ex Schwagr., R. pseudo-thuidium

Dus., B. toxarion (Schwagr.) Jaeg. var. toxarion, and R.

toxarion (Schwagr.) Jaeg. var. robustum (Broth. in Skottsb.)

Zomlefer. Considering the initial 22 epithets, the

recognition of only five species represents a 77% rate of

over-description. This figure is consistent with moss

revisions in general: according to Touw's (1974) survey, 73

to 79% of published specific and infraspecific names have

been reduced in synonymy in moss revisions from 1901 to

1974.

The results of the preliminary cladistic study and

character analysis in this revision indicate that Rigodium

is phylogenetically intermediate between Echinodium







9

(Echinodiaceae) and Thuidium (Thuidiaceae), and that all

three taxa are basal in Buck and Vitt's (1986) superfamily

Leskeacanae of the Hypnales (see detailed discussion in

section on phylogeny). With Echinodium as an outgroup for

Rigodium, cladistic analyses identify E. toxarion as the

most ancestral species, R. implexum and R. pseudo-thuidium

as the most derived sister-species in the genus, and R.

brachypodium and R. adpressum as phylogenetic intermediates.




















FIG. 1. Type of Rigodium toxarioides Broth. & Par. =
Eurhynchium praelonqum (Hedw.) B. S. G. A. Habit. B.
Detail of stem. C. Stem leaf. D. Branch leaf. E-H.
Areolation of leaf. E-F. Basal cells. G. Median cells. H.
Detail of upper costa showing dorsal spine. All from
Apollinaire s.n., 1905 (H-BR). Copyright 1990 by the
American Bryological and Lichenological Society. Reprinted
with permission from The Bryologist 93 (3): 305.

















D

if


I30
30Orm


50,um





















FIG. 2. Type of Rigodium crassicostatum Bartr. in
Christ. = Eurhynchium praelonqum (Hedw.) B. S. G. A. Habit.
B. Detail of stem. C. Stem leaf. D. Branch leaf. E-H.
Areolation of leaf. E-F. Basal cells. G. Median cells. H.
Detail of upper costa showing dorsal spine. All from
Christophersen & Meiland 907 (BM). A and B copyright 1990
by the American Bryological and Lichenological Society.
Reprinted with permission from The Bryologist 93 (3): 305.


















D


30,um


0.25 mm





















FIG. 3. Type of Rigodium pteriqynandroides (Broth.)
Broth. = Helicodontium pervirens (C. Mull.) Par. A. Habit.
B. Stem leaf. C. Branch leaf. D-G. Areolation of leaf.
D. Basal cells. E. Median cells. F. Acumen. G. Detail of
upper costa showing dorsal spine. H. Capsule. All from
Lindman 52 (H-BR). Copyright 1990 by the American
Bryological and Lichenological Society. Reprinted with
permission from The Bryologist 93 (3): 306.













B C
0.25mm G





A 0.5mm


A E


30,m


30,m





















FIG. 4. Type of Riqodium riparium Sehnem =
Helicodontium complanatum Broth. A. Habit. B. Portion of
plant with sporophyte and perigonia. C. Stem leaf. D.
Branch leaves. E-G. Areolation of leaf. E. Basal cells.
F. Median cells. G. Acumen. H. Capsule. All from Sehnem
21515 pacaA). Copyright 1990 by the American Bryological
and Lichenological Society. Reprinted with permission from
The BryoloQist 93 (3): 307.













r


0.5 mm

F


0.25mm















*-
'0
CO
COO C
0 0
0 0 0
*4-l A *A
X 0 X
O 0


KI KI al


4-4
0
U,
0 t
>i
C





-,4
o w
0 0



MC





CO
0)


'0





O w
0 0
U U

Q)c 4
o0 a
4P 0


,) --4 41

G-M .P(


14 -4





W E-4

*^ C
* *09






Ot
0 (0
:0





w 9
-4 CO



X -H
.0 w
o 0



S-H a
* C


-'0 0-






aU
1-1


c c
0 0
*H *H
4 4
0 0
X X
o0


.I aI


U)
r-I
(0 3
-H 0
0 o
0 0 -1


'0
*4



'0

C










(1
C Q
0


Ua -4

- *H







H C
U 0































0
CM





r-H





-4

0


z 0 0
X -4 -A
W) -4 -4
r.1 (0 (0
6 0 0
4.3 4.

*I -PI I


.4-H














cI







0
p4
0 3







0






-.



0




0
'4



-4


r-4 (0
(0 U
P ^
CO
04:











co
-4
















0



.)
a



O


(0


5 5 O





co .0 N IQ H1
3 30 3
C C C
0 0 0
> > >

COJ3 N3 H 4
eo ml a ui c
CO1 W- r l -













3 0

3 C 'OX
C 4 C C C C C C1 C 0-H C
00 0 0 0 0 0 I OE0 0 4 0
.--4 *r -H -4 *HH 0 3 *- > (a -H
4O 4 4 4 W Wc '0 kW.Q w 1c 54
(a0 al ( (c R% 4) (U : (0 0 (o 0( t (0
Xw X X X X 4) X 4) X54 X (04J x
0 O O O 0 0 n 0 0 1 0

* (U 0 (
MI> rI I Xi I c MI 1I PI > 1i 9I > 1I


C0 iS
U UC
0) w0 U 4- -Hr
C Q) & *M Q) *^ *H c C
4 H N H N N U )
,4H .- 0 r -- 4
M r i 0 (0 0 (
H U z co U O M m 4


o %o %0 ON i-I H- LI
M, N r- M 0 0 0O


*4
C
a) w 4
Z4 0 0
C '0

30 0
bH M


Z 0


,e ) -a, 4r
X 4 *E 00
u < aI- ) co


c I


-o H o i
a a


H
4 r-H
') :
E4

0 U
) *
C N r

-49








Oipl Ol K


4
51





0 )
H
(U





H
0
o 4)

IU X



I PI

MI KI


*'
a,
-4

0



(U
C


*5

E-4




0
H
MI


+1
0
o


-4







o 0
0 0
0 0
w














MATERIALS AND METHODS


In the course of this study over 2,400 specimens were

examined from the collections of 43 herbaria: ALTA, B, BA,

BM, BR, C, CANM, CHR, DUIS, E, F, FH, FLAS, G, GB, GOET, H,

IA, JE, KRAM, L, LPB, M, MANCH, MEXU, MICH, MO, MPU, NAM,

NY, O, OXF, P, PACA, RB, RO, S, TENN, U, UPS, UWM, VBI, and

W. The acronyms are standardized according to Holmgren et

al. (1990); specimens indicated as from "Herb. Matteri" are

from the personal herbarium of C. Matteri. The label data

from each specimen were entered into a data base on an IBM-

compatible PC. The user interface for the program, similar

in structure to dBase III PLUS (Ashton-Tate, registered

trademark), was compiled by Kent D. Perkins specifically for

this project using CLIPPER (Nantucket Corp., registered

trademark) language. As exsiccatae are common in bryology,

cataloging the numerous specimens with a data base greatly

facilitated the identification of duplicates and fragmentary

specimens that had incomplete or missing data on the labels.

As computer "records," the specimens could also then be

quickly sorted into any appropriate category ("field")--such

as by collector, country, elevation, type designation, or

reproductive state--for use in specimen citations, ranges,

and exsiccatae lists. The modern spellings of geographical

names are according to the United States Office of









Geography's Official Standard Names gazetteer volumes for

Latin America (1955, 1956, 1957, 1963, 1967, and 1968).

Hydrated specimens and permanent slides were examined

for the detailed measurements and qualitative characters

used in the descriptions, phenetic studies, and cladistic

analyses. (The specific methodologies for the cladistic and

phenetic analyses are discussed in their particular

chapters.) Prior to examining them, appropriate portions of

specimens were steeped for several minutes in boiling water.

Occasionally, the entire contents of a packet were soaked if

the plants were inextricably intertwined. The strongly

clasping stem and stipe leaves (only ca 0.45 1.70 mm long)

were individually teased off the stems with fine-tipped

forceps. At least ten to twenty leaves were mounted for

each stipe and stem leaf slide. Leaves, stems, and capsules

were sectioned by hand using single-edged razor blades.

Capsules were cut vertically and the columnae and spores

flushed out. The two capsule sections were then cut into

fourths for the slide.

Permanent slides of whole leaves and sectioned parts

were prepared with Hoyer's solution (Anderson, 1954). The

slides were then heated following application of the cover

slips to clear the air bubbles and flatten the specimens.

Temporary water mounts were prepared of capsules from

specimens with scanty sporophyte material, which was

returned to its packet after examination. At least five

slides were made of each specimen examined, including whole









mounts of the leaves (stipe, stem, branch, perigonial, and

perichaetial) and sections of the stem, stem leaves, and

capsules.

Measurements of the stems, branches, and capsules, as

well as qualitative observations on habit features (e.g.,

leaf position), were made with the aid of a Wild M5A

Stereomicroscope. Specimens on slides (leaves, cells,

peristome features, and spores) were measured with a Wild

M20 compound microscope equipped with drawing tube.

Measurements were made with an appropriately scaled gauge on

outlines sketched with the drawing tube or directly on the

projected image from the drawing tube. Detailed data

sheets, which included xerox copies of the actual (hydrated)

specimen as a record of the habit, were compiled to organize

the measurements.

The surface details of stem and perichaetial leaves

papillaee, prorosities), peristomes, and spores were

examined and photographed using a Hitachi S-450 scanning

electron microscope (SEM). Specimens were attached to studs

with double-sided tape and then plated with gold in an Eiko

IB-2 ion coater for five minutes at 8 mA prior to SEM

examination. Capsules peristomess) did not require

rehydration and were attached to the stubs in the dry

condition directly from the herbarium specimen.

Spores and leaves, which tended to be collapsed in the

dried state, required special preparation. Stem leaves were

left attached to ca 0.5 1.0 cm stem segments, perichaetia









were removed as a whole unit, and spores were left in their

capsules during rehydration. Due to their small size,

perichaetia and capsules with spores were sandwiched between

1 cm Nucleopore polycarbonate filter papers placed in

modified Beem capsules. All leaves and spores were first

hydrated for 15 minutes in warm water. The leaves of

Rigodium toxarion and R. brachypodium were next placed

through a series of successive ten-minute washes in 25, 50,

75, and 95% ethanol, respectively, followed by two

successive ten-minute rinses in 100% ethanol. The specimens

were subsequently subjected to a critical point drying

sequence composed of five fifteen-minute wash cycles of

liquid CO2 in a Balzers CPD-101 Critical Point Dryer. These

leaves were then coated with gold as described above.

The perichaetia and stem leaves of R. adpressum and all

spores required fixation prior to ethanol rinses and

critical point drying. Otherwise, entire spores and the low

papillae at the base of the perichaetial leaves tended to

collapse, and the decurrent portion of the stem leaves of R.

adpressum curled over. After rehydration in water, these

specimens were soaked in 5% gluteraldehyde in .2M

NaCacodylate buffer for two hours. They were then rinsed

three times in .05M buffer for five minutes and placed in a

1% solution of osmium tetroxide (Os04) in buffer overnight.

After four rinses with distilled water, these specimens were

taken through the alcohol washes, critical point drying








24

sequence, and coating preparation as described above for the

capsules and other leaves.
















GENERAL MORPHOLOGY


Salient morphological features of the genus Rigodium

are included in this chapter, along with a discussion on the

terminology (particularly that of the axes and corresponding

leaves) incorporated in this monograph.

Axes

Traditionally, bryologists have used the terms

"primary" and "secondary" to distinguish the stoloniferous

vs. the erect/pendent axes, respectively, of a pleurocarpous

habit (e.g., Arzeni, 1954). Argent (1973) describes in

detail the difficulty in applying these designations to the

different types of shoots in the Pterobryaceae, a

pleurocarpous group. His simplified terminology (stolon,

stems, branches, and flagella) has been adopted by others

(e.g., Allen & Crosby, 1986). Some of Argent's ideas have

been incorporated into this monograph, with the addition of

a few terms peculiar to the habit of Rigodium (stipe vs.

stem, primary, secondary, and tertiary branches), and are

defined below:

1. "Stolons" (or rhizomes) are often referred to as

"primary stems" by other authors (e.g., Crum, 1981, 1984).

These axes are usually creeping, deeply colored (brown-red

to dark brown) and bear rhizoids. Leaves, when present, are










often achlorophyllous and less well-developed than those on

other axes.

2. "Stems" and stipess" are general terms for the two

parts of the main axis (or secondary stem of some authors)

of plants which are erect (or pendulous) and are derived

from the stolons. The stipe is the lower, unbranched

portion of the main shoot which is often darkly pigmented.

In Rigodium, stipe leaves are ecostate but are otherwise

well-developed. The term "stem" refers here to the upper,

branched portion of Rigodium plants where the leaves are

generally costate.

3. Branches are ranked in this study as primary,

secondary, and tertiary. Primary branches arise from stems

and are characterized by leaves intermediate in shape and

size of those of the stem/stipe and secondary/tertiary

branches. Secondary branches, which arise from the primary

branches, have narrowly ovate leaves without a well-

developed acumen. Tertiary branches are borne on secondary

branches. The leaves are similar in shape but smaller than

those of the secondary branches.

The delimitation of these types of axes outlined above

is not always clear-cut in Rigodium since they may

intergrade with one another. Allen and Crosby (1986)

suggest that this intergradation in Squamidium is due to

probably very weak genetic control coupled with

environmental influences, which may also be the case in

Rigodium. For example, in addition to the secondary










branches, the upper main axis (stem) may give rise directly

to new main axes (stems), resulting in "stem-like primary

branches" (Figs. 7H-J, 8H-J) that are similar to the

innovations in genera such as Hylocomium (Crum & Anderson,

1981). In Rigodium, though, these "innovations" are not

necessarily restricted to the area just below the

inflorescences, but may arise anywhere along the stem.

Although the term is not used here, Rigodium species also

have "flagellae" as defined by Allen and Crosby (1986): axes

stolonss) which develop from the tips of branches. However,

in Rigodium both branches and stems may root at the tips and

produce new plants (produce either stolons or stems; Fig.

5). Rhizoids, then, may be found at the tips of rooting

stems and branches as well as on the substrate sides of

stolons and stems.

The branching in Rigodium is monopodial (as defined by

Crum & Anderson, 1981) with irregularly pinnate branching.

Three of the species (R. brachypodium, R. adpressum and R.

toxarion) are dendroid with distinct creeping vs. pendulous

(or erect) portions. In R. pseudo-thuidium and R. implexum

the stipe is less distinct and short. R. implexum is

profusely branched, forming well-developed cushions (Fig.

43A). Plants of R. pseudo-thuidium have very little

secondary branching (Fig. 46A).

The various types of axes are similar in anatomy

although branches are much smaller in diameter and with a

less-developed central strand. In all species, several









layers (three to six rows) of small and incrassate epidermal

cells (Fig. 6A and B) form a well-developed rind which

probably contributes to the characteristic stiffness of the

plants. The epidermis has a furrowed appearance in surface

view (Fig. 11C). The cortex (Fig. 6B) consists of large,

hyaline thin-walled cells which usually become smaller

toward the center of the axis. Sometimes the smaller cells

of the cortex form a loosely organized ring around the

central strand as in Fig. 6B. Small, reddish, incrassate

cells comprise the central strand which varies in degree of

development (Fig. 6C and D) but generally consists of ten to

twenty (or sometimes more) cells.

Leaves

Riaodium is unusual in having ecostate lower stem

(stipe) leaves and costate upper stem leaves, in addition to

the dimorphic stem and branch leaves. Due to intergradation

of axes and corresponding leaf forms, care must be taken in

assigning and comparing "leaf types." Figures 7 and 8 show

the relative changes in size and morphology of leaves along

particular axes in R. toxarion (long acumen) and R.

brachypodium (short acumen). In this study (phenetic

analysis and all descriptions), "stipe leaves" are defined

as those ecostate leaves from the mid-stipe, "stem leaves,"

as those from the mid- to upper stem, and "branch leaves,"

as those from the secondary branches (Fig. 23A).

In all species, stipe and stem leaves are broadly ovate

and taper abruptly to a long or short acumen. The strongly









clasping and concave leaf bases tend to be decurrent (in R.

adpressum, strongly so). All species show a tendency to

form auriculae (Fig. 9A-E), although this character is most

consistent in R. pseudo-thuidium. Stipe and stem leaves are

typically wide-spreading to squarrose, wet or dry, but the

leaves of R. adpressum are appressed with spreading tips.

Branch leaves are consistently ovate (R. pseudo-thuidium) to

usually narrowly ovate (all other species) and are typically

erect to spreading.

Leaf cells are incrassate throughout and the alars are

not differentiated. Cell walls vary from even (R. toxarion)

to uneven (E. brachypodium). Due to the thick walls, the

cells are consistently prorulose, most weakly so in R.

toxarion (Fig. 10A). In the most extreme case (R.

brachypodium), the midlaminar cells project as well-

developed papillae (prorulae) on the dorsal surface (Fig.

10C and D). Although leaf cells in Rigodium are reported as

smooth (Crum, 1981, 1984, 1991), central papillae occur on

the dorsal side of some cells in the decurrent portion of

the stem and stipe leaves of R. adpressum (Figs. 11D, 40F

and G) and at the base of perichaetial leaves of some

specimens of all species (discussed below under perigonia

and perichaetia).

An outstanding feature of the areolation of Rigodium

stem, stipe, and branch leaves is an apparent intramarginal

border very visible at low power (Fig. 12A and B) and also

distinguishable in cross sectional view of the leaves (Fig.









12C), as well as in surface view with the SEM (Fig. 10B).

The border is formed by four to nine rows of cells that have

much thicker walls than those of the midlaminar cells. The

cells comprising this border are often a different shape

than those of the midlaminar portion of the leaf, as well.

For example, the seven- to ten-cell border in R. pseudo-

thuidium typically is composed of longer and wider cells

than the rest of the leaf, while the narrower border (four

to six cells) of R. adpressum consists of much shorter

cells. The intramarginal border is always present to some

degree but its appearance varies from weak (R. toxarion) to

very strong (R. adpressum), depending on the relative

thickness of the cell walls in comparison to the midlaminar

cells.

The costa is absent from the stipe leaves and is

usually present in the stem leaves. The stem leaves of all

species, however, show a tendency for a reduced costa (e.g.,

Fig. 9F-I), which is most consistent and characteristic of

R. pseudo-thuidium. The costa is strongest in R. implexum

(five-stratose in the thickest part) and to a lesser extent,

R. brachypodium (47-96 um wide at base). Branch leaves are

always costate in Riaodium, although the costa may be weak

in R. pseudo-thuidium (Fig. 9H and I).

Axillary Hairs

Recently (Griffin & Buck, 1989), axillary hairs have

been emphasized as useful characters for characterizing

taxonomic groups, especially genera (Saito, 1975) or









groupings of genera, such as subfamilies (Griffin, 1990).

Although not useful for distinguishing between species of

Rigodium, the structure of the axillary hairs is consistent

within the genus: two pigmented basal cells and an elongate,

hyaline terminal cell (Fig. 6E-I). The lower basal cell is

sometimes very lightly pigmented and difficult to see. The

axillary hairs are profuse at the tips of stems and branches

and are easiest to locate in E. adpressum appressedd leaves

which prevent loss of the delicate hairs) and R. pseudo-

thuidium (relatively large leaves with broad bases).

Paraphvllia and Pseudoparaphyllia

Paraphyllia and pseudoparaphyllia are small,

chlorophyllous, filamentous or foliose structures arising on

the stems of pleurocarpous mosses (Rohrer, 1985).

Historically, distinctions between the two structures have

been blurred until recently with the investigations of

Iwatsuki (1963) and Ireland (1971). Paraphyllia, usually

abundant when present, occur everywhere on stems and

branches (Ireland, 1971). Rigodium lacks these structures.

Pseudoparaphyllia, not particularly abundant when found

on moss plants, are restricted to areas around the branch

primordia and mature branches. The structures, distinct for

many species, have recently been emphasized in moss taxonomy

(Buck, 1984). However, foliose pseudoparaphyllia and

rudimentary branch leaves are sometimes confused (Allen,

1987). Generally, pseudoparaphyllia arise strictly on the

stem, while immature branch leaves occur at the base of









branches (Buck, 1984). Ovate, foliose, ecostate structures

occur at the base of branches of Rigodium (e.g., Figs. 7K,

8K). These intergrade with the branch leaves above (Figs.

7L-O, 8L-O) and are interpreted here as rudimentary branch

leaves and not as pseudoparaphyllia. Pseudoparaphyllia do

not occur in Rigodium.

Perichaetia and Perigonia

Rigodium is dioicous, and male and female plants are

indistinguishable. Reports of monoicism in the literature

(e.g., Sehnem, 1976) were due to the inclusion of discordant

elements within the genus, such as species of Helicodontium

(Zomlefer & Buck, 1990). Specimens with archegonial plants

are much more common than those with antheridia. The

infrequency of male populations compared to female in

dioicous mosses has been noted often (Longton & Greene,

1979; Stark, 1987) but not explained.

Both perichaetia and perigonia are bud-like structures

arising laterally along the axes of the plant. Perichaetia

are most common along the stems (but also occur on the

primary branches), whereas perigonia are most frequent along

primary branches, occurring much less often on the stems

(and secondary branches as well). Perigonial leaves (e.g.,

Fig. 28F) are similar to branch leaves in shape and

areolation but are ecostate and also tend to be more broadly

ovate. The inner perigonial leaves may also taper to a

somewhat longer acumen. Perichaetial leaves, weakly costate

to ecostate, are consistently subulate with spreading to









squarrose acumens in all species. The areolation, oblong to

rhombic cells at the base and shorter flexuous cells above,

thus differs from that of the stem leaves (shorter cells

below, cells above not flexuous). In addition, dorsal

central papillae may be found within the some cells near the

base of the outer perichaetial leaves (Figs. 11A and B, 41B

and C). These papillae are consistent on all available

collections of R. adpressum with archegonial plants and are

occasionally to frequently present in the other four species

as well (e.g., Fig. 35B).

Representative examples of gametangia and paraphyses of

Rigodium are illustrated in Figs. 13A-D. Of note is that

the structure of the paraphyses is somewhat similar to that

of the axillary hairs: usually two (but sometimes more)

pigmented cells at the base plus elongate hyaline terminal

cells (several as opposed to one in the axillary hairs).

The paraphyses subtending the antheridia (Fig. 13C) tend to

be stouter than those found within perichaetia (Fig. 13A).

Sporophvte

Mature sporophytes are not commonly found on Rigodium

specimens. The morphology of the capsule is consistent

among the species, although the urns of R. pseudo-thuidium

(Fig. 47H) are somewhat larger than those of the other

species. The asymmetric, horizontal to inclined capsule of

Rigodium has a well-developed rostrum (Fig. 13F) on the

operculum. The annulus, consisting of two rows of

incrassate cells, is illustrated in Fig. 13H. The









phaneroporous stomates (Fig. 13G) occur at the base of the

urn.

Rigodium has a typical hypnaceous peristome, which does

not vary in structure between species (Figs. 131, 14). The

exostome teeth, cross striolate below (Fig. 14C and D) and

papillose above (Fig. 14B), have well-developed lamellae on

the ventral side (Fig. 14E and F). The endostome consists

of a high basal membrane, well-developed segments (Fig. 14A)

and usually two to three cilia.

Spores

The typical spherical and papillose spores are

illustrated in Figs. 13J and 15A-D.

Chromosome Number

A chromosome number of n = 11 has recently been

reported by Deguchi and Oginuma (1990) for "Rigodium

implexum" (Dequchi 31548, KOCH; specimen not seen).





















FIG. 5. General Morphological Features of Rigodium:
Rooting at Tips. From T. Muller 2635 (L).
















































5mm





















FIG. 6. General Morphological Features of Rigodium:
Stem Anatomy and Axillary Hairs. A-D. Stem cross sections.
A. Whole stem section indicating position of wedge featured
in B. B. Detail of section showing rind, cortex and well-
developed central strand. C-D. Variation in the development
of the central strand. C. Weak central strand. D. Typical
development of the central strand. A-B from Sehnem 4686
(PACA, E. toxarion); C from Crosby 12984 (MO, R. toxarion);
D from Skottsberq & Skottsberg 418 (S, R. toxarion). E-I.
Representative axillary hairs from each species. E. R.
adpressum (Roivainen 1597, H). F. R. toxarion (Wasum et al.
3964, FLAS). G. R. brachvpodium (Matteri 2274, BA). H. R.
implexum (Crosby 12504, MO). I. R. pseudo-thuidium
(Schiavone 2451, BA).
























A


r------a -
S----------


0.2mm







C


50,jm


E








25um





















FIG 7. General Morphological Features of Rigodium:
Changes in Leaf Morphology (Leaf with Long Acumen) along
Various Axes. A. Habit. B. Leaf from stolon. C-E. Stipe
leaves. C. Leaf from stipe base. D. Leaf from mid-stipe.
E. Leaf from stipe apex. F-G. Stem leaves. F. Leaf from
mid-stem. G. Leaf from stem apex. H-J. Leaves from "stem-
like" branch (innovation). H. Leaves from innovation base.
I. Leaf from mid-innovation. J. Leaf from innovation apex.
K-M. Primary branch leaves. K. Leaves from branch base.
L. Leaf from mid-branch. M. Leaf from branch apex. N.
Leaves from secondary branch base (left) to apex (right).
O. Leaves from tertiary branch base (left) to apex (right).
All from Tonduz rPittier No:1 5667 (BR, E. toxarion).



























































0.3mm





















FIG. 8. General Morphological Features of Rigodium:
Changes in Leaf Morphology (Leaf with Short Acumen) along
Various Axes. A. Habit. B. Leaf from stolon. C-E. Stipe
leaves. C. Leaf from stipe base. D. Leaf from mid-stipe.
E. Leaf from stipe apex. F-G. Stem leaves. F. Leaf from
mid-stem. G. Leaf from stem apex. H-J. Leaves from "stem-
like" branch (innovation). H. Leaves from innovation base.
I. Leaf from mid-innovation. J. Leaf from innovation apex.
K-M. Primary branch leaves. K. Leaves from branch base.
L. Leaf from mid-branch. M. Leaf from branch apex. N.
Leaves from secondary branch base (left) to apex (right).
O. Leaves from tertiary branch base (left) to apex (right).
All from Elliott 139 (H, R. brachypodium).
























































0.3mm





















FIG. 9. General Morphological Features of Rigodium:
Aspects in Leaf Morphology. A-E. Examples of auriculate
leaves in the various species (rare in all but R. pseudo-
thuidium). A. R. pseudo-thuidium (Halle & Skottsberq 842,
S). B. R. brachvyodium (Dusen 357, W). C. R. adpressum
(Kuhnemann 5260, ALTA). D. R. implexum (Poeppia s.n., BM).
E. R. toxarion (Landrum 240, MO). F-I. Stem leaves from a
collection of R. toxarion, showing unusual variation in
costa development (Tonduz rPittier No:1 5667, BR).







































0.3mm


0.3mm





















FIG. 10. General Morphological Features of Rigodium:
Scanning Electron Micrographs of Leaf Surfaces. A. Dorsal
side of R. toxarion stem leaf showing weakly prorulose
midlaminar cells. B. Ventral side of R. brachypodium stem
leaf (arrow indicates intramarginal band of cells). C.
Dorsal side of R. brachypodium stem leaf showing projecting
end walls (prorulae) of midlaminar cells. D. Detail of C.
A from Tonduz [Pittier No:l 5667 (BR); B-D from Crosby 12992
(MO). A: line = 25 um; B, C: = 50 um; D: = 10 um.







46





















FIG. 11. General Morphological Features of Rigodium:
Scanning Electron Micrographs of Leaf Surfaces in R.
adpressum. A. Whole perichaetium (arrow indicates position
of detail in B). B. Detail of dorsal surface of
perichaetial leaf base showing papillae. C. Stem leaves
(arrow indicates decurrent portion). D. Detail of
decurrency showing papillae. A-B from Dusen 397 (S), C from
Matter & Schiavone 4985 (Herb. Matteri, D from Cantino M-
11 (MO). A: line = 250 um; B: = 15 um; C: = 100 um; D: = 25
um.







48





















FIG 12. General Morphological Features of Rigodium:
Areolation of Stem Leaf. A. Stem leaf showing location of
view in B. B. Portion of stem leaf with various zones
labelled. C. Cross section of stem leaf with zones
corresponding to B. All from Claude-Joseph 5775 (FH, R.
implexum).


























/ '0.2mm



intramarginal
-*-costa -midlaminar cells -cells marginal cells







5030 frn ,q
80 0 \




0 00 SS225S22235^
0^ 50AIm- 41





















FIG. 13. General Morphological Features of Rigodium:
Sporophytic and Associated Gametophytic Structures. A.
Paraphysis from perichaetium. B. Archegonium. C.
Paraphysis from perigonium. D. Antheridium. E. Calyptra
from developing sporophyte. F. Capsule. G. Stomate at base
of capsule urn. H. Annulus (still attached to urn and
operculum). I. Portion of peristome. J. Spore. A-B from
Kuhnemann 5260 (ALTA, R. adpressum); C-D from Ruthsatz s.n.
(H, R. adpressum); E from Matteri 432 (BA, R. adpressum); F
from Lechler 629 (MICH, R. brachypodium); G from Stevermark
32769 (F, R. toxarion); H from Ventura 18869a (MEXU, R.
toxarion), I from Hammen et al. 2676 (FLAS, B. toxarion); J
from Matteri & Schiavone 4985 (Herb. Matteri, R. adpressum).




















3q


E











0.5mm


A


H 25jm


I I
100jum


" ', /


10Jum


operculum


annulus



urn


50 um


100um





















FIG. 14. General Morphological Features of Rigodium:
Scanning Electron Micrographs of the Peristome. A. Overview
of peristome. B. Apex of exostome tooth showing papillose
outer surface. C. Base of peristome tooth showing cross-
striolations on the outer surface. D. Detail of C. E.
Inner surface of peristome tooth showing lamellae. F.
Detail of E. A from Kunkel 2029 (H, R. brachypodium); B-D
from Barrandequv 345 (MO, R. pseudo-thuidium); E-F from
Neaer 10 (L, R. brachypodium). A: line = 100 um; B, C: = 25
um; D, F: = 10 um; E: = 50 um.







54





















FIG. 15. General Morphological Features of Rigodium:
Scanning Electron Micrographs of Spores. A-D.
Representative spores. A-B from Hollermayer 281 Ep.. (S, R.
brachypodium); C-D from P6cs 6782/B (VBI, R. toxarion). All
lines = 5 um.







56















PHYLOGENY


Cladistic methodology has been developing in zoology

and botany over the past three decades, but has been

infrequently applied to systematic studies in the

bryophytes. The disadvantages of using bryophytes as the

subjects for cladistic study are discussed in detail by

several bryologists, such as Robinson (1985, 1986) and Buck

(1986). However, these problems with cladistics (e.g.,

difficulty of determining homology, choosing outgroups, and

dealing with character loss) exist in "traditional"

taxonomic work as well (Mishler, 1986). The primary

benefits of cladistic analysis are: (1) the care in which

characters is presented: the characters, their polarity, and

their level of universality must be stated explicitly in

order to support a cladogram, and (2) the ability to

construct an explicit hypothesis of genealogical

relationships.

Few studies have incorporated pleurocarpous groups

(including Rigodium) in a phylogenetic framework.

Historically, most bryologists have concentrated on

describing new species and genera; few have dealt with

delimitation of groups based on phylogeny (Buck & Crum,

1990). Family definitions, established at the turn of the









century and generally based on European taxa, became more

and more heterogeneous as newly described genera were added.

Recently, the circumscriptions of moss families and genera,

particularly those of the pleurocarps, are being radically

revised, but no scheme using strict Hennigian principles for

the pleurocarps has yet been published.

Trees showing relationships among pleurocarpous

families have been presented by Vitt (1984) and Buck and

Vitt (1986). Vitt (1984) applies character analysis at the

subordinal level (= orders in other classifications, i.e.,

Bryineae, Hypnineae, Leucodontineae, Hookeriineae) for the

Bryales, but his dendrogram of the families groups them

"according to similarity." In this scheme, Rigodium is

included within Thuidiaceae, shown as a sister group to the

Echinodiaceae. The survey of pleurocarpous families

presented by Buck and Vitt (1986) results in some

revolutionary alignments of families, some of which are

shifted between orders. The authors admittedly use both

symplesiomorphies and synapomorphies in the construction of

their "pseudocladogram." Explanations of the polarities of

characters, as well as their level of universality, are not

often offered but are convincing when given (e.g., for

peristomal development characters and leaf cell shape).

Figure 16 is a redrawn version of their cladogram of the

Hypnales with the cited plesiomorphic characters deleted,

resulting in unresolved branching points in the

superfamilies Hypnacanae and Brachytheciacanae. For









simplicity, autapomorphies are not included here as the

assumption is being made that the families are monophyletic.

The numbers of the character sets, listed in Table 2, follow

the original list of Buck and Vitt (1986). Numbers for the

plesiomorphic and autapomorphic characters are deleted here.

According to Buck and Vitt, the members of the Hypnales

lineage, all pleurocarpous, are characterized additionally

by hypnoid peristomes, elongate leaf cells, horizontal and

asymmetric capsules, and distinctive exostomal ornamentation

(outer surface cross-striolate below and coarsely papillose

above; inner surface with projecting trabeculae). The

Hypnales are further divided into three suborders: the

Hypnodendrineae, Fontinalineae, and Hypnineae. The

Rigodiaceae are classified within the Hypnineae, the most

advanced hypnalean suborder, characterized by well-developed

peristomal development (character 11, shouldered teeth).

The division of this suborder into three superfamilies is

based on gametophytic characters: the families of the basal

superfamily Leskeacanae (in which the Rigodiaceae are

included) are linked by the strong synapomorphy of

secondarily shortened leaf cells, plus a weaker character

cited as a tendency for papillosity (of various types) of

leaf cells. (That the latter character is found in other

groups is not directly addressed by the authors, and

additionally, the various kinds of papillae found in these

and other families are not distinguished.) The authors









postulate that these characters may be adaptations for water

retention in exposed habitats.

The five families composing the Leskeacanae

(Pterigynandraceae, Leskeaceae, Thuidiaceae, Echinodiaceae

and Rigodiaceae) have undergone numerous and ongoing

revisions. The family Pterigynandraceae was erected by Buck

(1980a) as a monotypic family, which has been recently

expanded to include four more genera (Buck & Crum, 1990).

The family is characterized by reduced costae, prorulose

leaf cells, and reduced peristome (smooth exostome;

endostome reduced to slender segments).

The Leskeaceae have historically been considered part

of, or close to, the Thuidiaceae (e.g., Grout, 1932) and due

to the reduced peristome of some genera, have even been

included within the Isobryales (Leucodontales; Buck, 1980a;

Vitt 1982, 1984). Buck and Vitt (1986) recognize a more

restricted Leskeaceae, as first suggested by Crum (1973),

with Anomodon and allies excluded. According to their

definition, the family is reduced to Leskea and Pseudoleskea

plus their associated relatives and are characterized by

strong tendencies of cells to be papillose over the lumina,

limited presence of paraphyllia, and orange exostome with

reduced striations (usually papillose). Recently, Buck and

Crum (1990) transferred several genera (e.g.,

Brvohaplocladium and Claopodium, discussed below) to the

Leskeaceae from the Thuidiaceae, primarily recognizing the

family on the basis of gametophytic characters and









perceiving "a habitat-driven, sporophytic reduction series

with Leskea as the reductionary extreme."

The Thuidiaceae s.l., sometimes combined with the

Leskeaceae, historically included several subfamilies (see

Watanabe, 1972). Buck and Vitt (1986) excluded Anomodon

from the family and simply defined it on the basis of

papillose leaf cells and abundant paraphyllia. Buck and

Crum (1990) further reduced the family to only the subfamily

Thuidioideae, with members of the other subfamilies

transferred to other families (discussed below).

The Echinodiaceae, a small monotypic family, have

sometimes been included in the Isobryales (e.g., Walther,

1983), but according to Buck and Vitt (1986) and Churchill

(1986), the plants have a standard hypnalean peristome. The

coarse, poorly branched plants have an unusual (and possibly

relict) Macaronesian-Australian-New Zealand distribution.

The monophyly of the superfamily Leskeacanae is based

on Buck's and Vitt's suite of characters represented by "12"

in Fig. 16; of these, the secondarily derived short leaf

cells is their strongest and best defined synapomorphy. For

the purposes of this study, the assumption is being made

that the superfamily is a natural and monophyletic group,

until such a time when a higher level phylogenetic analysis

(based on shared derived characters) is completed on all the

families of the Hypnales (as well as for the Leucodontales

and Hookeriales). These families continue to undergo much

redefinition, including transfer of genera between them









(even since the cladogram of Buck and Vitt was published).

The following representative genera of the superfamily have

been chosen for a preliminary cladistic analysis in an

attempt to better ascertain the phylogenetic position of

Riqodium. The affinities of several of the genera

themselves, as outlined below, have also not been agreed

upon as they are shifted around between families of the

Leskeacanae.

Pteriqynandrum, a monotypic genus (Buck, 1980b), was

included in the Entodontaceae (Crosby & Magill, 1981; Vitt,

1982) and tentatively in the Leskeaceae in the Isobryales

(Vitt, 1984). The genus initially comprised the

Pterigynandraceae (Buck, 1980a) until Buck and Crum (1990)

expanded the family. Buck (1980b) stated that the genus was

clearly an isolated group with no obvious connections to

other genera, but Buck and Crum (1990) acknowledge a

relationship with Leskeaceae and Thuidiaceae.

Leskea and Pseudoleskea represent the major groups of

Leskeaceae s.s., with Pseudoleskea characterized by a normal

hypnalean peristome, and Leskea, having the reductionary

extreme of the sporophyte.

Thuidium, Brvohaplocladium, Claopodium, Heterocladium,

and Helodium represent the diverse Thuidiaceae s.1.

Thuidium, Bryohaplocladium [= Haplocladium nom. ille fide

Watanabe & Iwatsuki (1981)], and Claopodium have been

included in the subfamily Thuidioideae s.l. The close

relationship between Claopodium and Brvohaplocladium has









long been recognized (Noguchi, 1964; Watanabe, 1972), and

the genera have been sometimes included within the

Anomodontaceae, as well as the Thuidiaceae. Buck and Crum

(1990) recently transferred them to the Leskeaceae as part

of the reduction series within the family. Of note here is

that Noguchi (1964) in his monograph of Claopodium suggested

that it may possibly not be monophyletic. Heterocladium,

previously within the subfamily Heterocladioideae of the

Thuidiaceae s.l., has been added to the expanded

Pterigynandraceae (Buck & Crum, 1990) as part of a reduction

series within that family. Helodium, a small genus of three

species (Abramova & Abramov, 1972), was formerly included

within the subfamily Helodioideae. Buck and Crum (1990),

somewhat unsure of its placement, erected the new monotypic

family, Helodiaceae, to accommodate it.

Echinodium is the small genus of six species comprising

the Echinodiaceae. According to Churchill (1986), the

monophyly of the genus is questionable since it is not well-

defined on the basis of shared derived characters.

The problems in placement and previous inclusion of

Rigodium within various families (Brachytheciaceae,

Lembophyllaceae, Thuidiaceae) are discussed in detail in the

section on "Taxonomic History." Crum (1981, 1984) recently

circumscribed the monotypic Rigodiaceae.

Phylogenetic reconstruction and character polarization

depend on the proper selection of an outgroup. Often a

functional or provisional outgroup is the best available









choice (see Watrous & Wheeler, 1981). According to Buck and

Vitt (1986; Fig. 16), the suborders Fontinalineae

(Fontinalaceae) and Hypnodendrineae (Pterobryellaceae,

Thamnobryaceae, Pleuroziopsidaceae, and Hypnodendraceae) are

the outgroups for the suborder Hypnineae (including

superfamily Leskeacanae). The choice of using these groups

is problematical for the following reasons. Most of these

families had been scattered among several orders and are

tentatively allied by Buck and Vitt in the Hypnales for the

first time. The use of characters of the Fontinalaceae

(traditionally in the Isobryales) is difficult due to the

extreme modifications in both the sporophyte and gametophyte

for an aquatic habitat. The synapomorphies (character set

2: exostome teeth long, gametophores dendroid, endostome

segments gaping, leaves coarsely serrate) for the

Hypnodendrineae may be weak, as arguments concerning the use

and polarities of these particular characters are not

presented. Two of these families, the Pterobryellaceae and

Thamnobryaceae, were previously subfamilies of the

Neckeraceae (subfamily Pterobyelloideae and Thamnoideae,

respectively) in the order Isobryales (Vitt, 1982, 1984).

(Buck and Vitt maintain the rest of the Neckeraceae in the

Isobryales.) The monotypic Pleuroziopsis comprises the

Pleuroziopsidaceae (Ireland, 1968), previously allied with

the Climaciaceae (Isobryales), but now segregated into its

own family due to several unusual characters. The

Hypnodendraceae have traditionally been considered as an









acrocarpous family in the Bryales (Vitt, 1982, 1984), but

Buck and Vitt (1986) follow Touw (1971) in interpreting the

habit as having compressed pinnate branching.

For the preliminary investigation of the representative

genera of superfamily Leskeacanae, Pleuroziopsis

(Pleuroziopsidaceae) and Thamnobryum (Thamnobryaceae) were

chosen as provisional outgroups for rooting the trees

presented here (Figs. 17, 18). As discussed below, the

results of these analyses suggest Echinodium as the possible

outgroup for the cladistic analysis of RiQodium species,

enabling the polarization of characters within Riqodium in

an effort to determine the possible phylogenetic

relationships of the species. These cladistic analyses were

generated using the software program Phylogenetic Analysis

Using Parsimony (PAUP), Version 3.0 (Swofford, 1990) on a

Macintosh computer. PAUP and similar software are

summarized and compared by Platnick (1987). The cladograms

were rooted using the particular outgroups as indicated in

the discussions below under the appropriate analyses. The

searches for the shortest trees included the heuristic

option "MULPARS" (multiple parsimony) along with branch-

swapping, as well as branch-and-bound. Equivalent results

were obtained with both methods. When more than one minimal

tree resulted from an analysis, a strict consensus tree also

was calculated. Characters for multistate taxa, as coded in

Tables 3 and 5, were included and interpreted as

"polymorphism" (as opposed to "uncertainty").










Autapomorphies were excluded from the computer analyses (so

as to not influence the consistency index); those of the

Rigodium species are listed in the discussion of that

analysis. For autapomorphies of the families for

superfamily Leskeacanae, see Buck and Vitt (1986).

Characters for Analysis of Representative Genera of
Superfamily Leskeacanae

Out of numerous possible features examined, only those

with the potential for elucidating phylogenetic

relationships (i.e., those potential synapomorphies) were

included in the PAUP analyses. Table 3 represents the basic

data set for the three analyses of the ten representative

genera of superfamily Leskeacanae (plus two outgroups). The

18 characters are listed numerically and discussed briefly

below.

1. Development of the stipe (0 = well-developed). As

discussed in the section on morphology, the stipe is the

unbranched part of the lower stem and is an indication of

the development of an arborescent habit type.

2. Differentiation of secondary orders of branching (0

= differentiated branching). Some genera, such as Thuidium

and Thamnobryum are characterized by secondary (and even

tertiary) branching, while in others, such as Leskea, the

primary branches do not ramify.

3. Organization of the axes into stems vs. branches (0

= well-organized stems and branches). In Leskea and

Pseudoleskea, for example, the few branches that do occur










are not very well-developed and are not distinguishable from

the main stems. In Thuidium, or even Bryohaplocladium (with

essentially no secondary branching), the branches are

numerous and well-developed.

4. Presence and types of paraphyllia (0 = no

paraphyllia). Riqodium lacks these structures, which are

discussed in detail under morphology. The three forms of

paraphyllia filamentouss, branched and foliose) are numbered

(but not ordered) differently in the matrix (see Table 3).

Note that a genus may be characterized by more than one

morphology.

5. Presence of pseudoparaphyllia (= 0).

Pseudoparaphyllia, also absent in Ricodium, are discussed

with paraphyllia in the section on morphology.

6. Dimorphic stem and branch leaves (0 = no

dimorphism). In certain genera (e.g., Rigodium and

Thuidium), the stem leaves are broadly ovate at the base and

taper to an acumen, but the branch leaves are narrowly ovate

and acute. Pleuroziopsis, with very broadly ovate and blunt

stem leaves and ovate, deeply toothed branch leaves, here is

considered to have a different type of leaf dimorphism.

7. + Subulate stem leaves (0 = non-acuminate leaves).

These stem leaves are ovate at the base and more or less

abruptly taper to an acumen (e.g., Claopodium and Rigodium).

This feature is related to character 7, but not all genera

with this stem leaf shape have dimorphic stem and branch

leaves (e.g., Echinodium).









8. Reduced costa (0 = costa present). A very weak to

absent costa is present in genera such as Heterocladium (as

well as certain species of Rigodium).

9. Quadrate alar cells in rows (0 = alars not

differentiated). Pterigynandrum, Leskea and Pseudoleskea

share this feature, but in the other genera, the alar region

is either undifferentiated or not differentiated in this

manner.

10. Prorulose midlaminar cells (0 = cells non-

prorulose). A distinction is made here between papillose

("11" below) and prorulose cells, in which the end walls

project dorsally, sometimes even forming well-developed

papillosities (prorulae) as in Pteriqynandrum and Rigodium.

11. Papillose leaf cells (0 = smooth leaf cells). A

loose interpretation of "papillose" is applied here,

including mammillose (low papillose) and multiple papillate

forms. Mammillose cells bulge in the lumen as well as in

the wall. Basically, all of these wall projection types

occur centrally in the cell.

12. Autoicous sexual condition (0 = dioicous). This

indication of sexuality was included in the analysis as a

few taxa (e.g., Bryohaplocladium and some species of

Helodium) differed from the rest of the group (dioicous).

13. Lack of cilia (0 = cilia present). This character

is an indication of a reduced hypnalean endostome, as found

in Leskea, Pseudoleskea, and Pteriqynandrum.










14. Reduced ornamentation of exostome (0 = standard

exostome ornamentation). As discussed by Buck and Vitt

(1986), the standard hypnalean exostome tooth is cross-

striolate below and papillose above; teeth of Leskea and

Pseudoleskea demonstrate irregularly striolate to entirely

papillose ornamentations.

15. Erect capsules (0 = inclined to horizontal

capsules). (See below).

16. Symmetric capsules (0 = asymmetric capsules).

Erect and symmetric capsules may be correlated characters.

A typical hypnalean capsule is horizontal to inclined and

asymmetric in shape.

17. Reduction of the annulus (0 = well-developed

annulus). In Leskea and Pseudoleskea, the annulus is

reduced to absent.

18. Conic operculum (0 = rostrate operculum).

Opercula are either rostrate (e.g., Rigodium) or lack the

beak (conic), as in Leskea.

Results of Analyses of Genera

Three analyses were evaluated using the basic matrix in

Table 3. In one analysis, Thamnobryum functioned as the

outgroup (Pleuroziopsis deleted), and in the second,

Pleuroziopsis was the designated outgroup (Thamnobryum

omitted). In the third analysis, both genera were included

as outgroups. Thus, certain characters are polarized

differently according to the particular outgroup(s) chosen.










Only one most parsimonious tree (50 steps, CI=0.760;

Fig. 17) was generated when Thamnobryum was used as the

outgroup. Echinodium is basal (as opposed to terminal in

Buck and Vitt's cladogram, Fig. 16), with Riqodium

positioned between it and Thuidium. In addition, Leskea-

Pseudoleskea-Pteriqynandrum, basal in Fig. 16, are the most

derived groups here. The cladogram also does not support

Buck and Crum's (1990) transfer of Bryohaplocladium and

Claopodium from Thuidiaceae to Leskeaceae, as inclusion of

these two genera with Leskea and Pseudoleskea in one family

would result in a polyphyletic group. Bryohaplocladium and

Claopodium appear phylogenetically closer to Leskea than to

Thuidium, however. Likewise, Pterigvnandrum and

Heterocladium (Pterigynandraceae; Buck and Crum, 1990) are

not shown as sister groups. The several homoplasies on the

lineage leading to Pteriqynandrum, however, may indicate

problems with its placement in this cladogram.

Thirteen characters (1, 2, 5, 6, 7, 9, 11, 13, 14, 15,

16, 17, 18) do not exhibit parallelism, although reversals

(in 5, 6, 7, 14, 11) and polymorphism (5, 11, 15, 16, 18; in

multistate taxa) occur. Also, six of these characters (9,

13, 15, 16, 17, 18) are associated with the Ptericvnandrum-

Leskea-Pseudoleskea group.

Rigodium and Echinodium (and other taxa; see Fig. 17)

share characters 7 acuminatee leaves) and 11 (papillose

cells); the synapomorphy of lack of pseudoparaphyllia (5)

and dimorphic leaf shape (6) link Rigodium to Thuidium (and









other taxa). The Rigodium lineage is characterized by

prorulose cells (10, a feature showing homoplasy), and the

polymorphic features of the weak costa (8) and papillose

cells (11), change from 0->1,0 and 1->1,0, respectively.

In the second analysis (Pleuroziopsis as outgroup), the

results are much less resolved; 27 equally parsimonious

trees (53 steps, CI=0.717) were discovered. The consensus

tree (Fig. 18B) is basically polytomous, although

Pteriqynandrum, Leskea, and Pseudoleskea are established as

a monophyletic group. However, one of the 27 trees is

identical in topology to the cladogram derived with

Thamnobryum as the outgroup (Fig. 17), and in many trees,

(e.g., Fig. 18A), Echinodium is basal within the group, with

Ricodium phylogenetically adjacent.

With Thamnobrvum and Pleuroziopsis functioning as a

combined outgroup, 33 most parsimonious trees were generated

(54 steps, CI=0.704). The use of both taxa simultaneously

to root cladograms was problematical as one or the other of

these genera appears within the ingroup in several of the

trees (i.e., the tree could not be rooted so that the

ingroup was monophyletic). This issue weakens the validity

of using both these taxa as outgroups. However, several of

the trees (where the combined Pteriqynandrum-Thamnobryum

does appear as the outgroup) are similar in topology to

those discussed above (e.g., Fig. 17) and have Echinodium in

a cladistically basal position, followed by Riqodium and

Thuidium.









The consensus tree of the previous analysis (Fig. 18B)

indicates that more detailed phylogenetic investigations

(with more genera) are needed to better define the

relationships of the families within the Leskeacanae. The

present analyses do support maintaining Rigodiaceae as a

monotypic family, since inclusion with Thuidiaceae

(Thuidium) would result in a paraphyletic family.

Characters for Rigodium Species

The matrices of Tables 4 and 5 are the data sets used

in the analyses of Rigodium species. Eight characters were

polarized using Echinodium as the outgroup. Although the

number of OTUs differ (see discussion following), the number

of characters remained constant for both analyses. Six

characters are qualitative, and two are quantitative (one

continuous and one discontinuous). The problems in forming

taxonomic characters from measurements are summarized in

Almeida and Busby (1984). The approach in this revision

(see Fig. 19A and B) involves the traditional method of

scanning the full range of the material and partitioning the

scale into classes of varied range. The character states

are, thus, somewhat arbitrarily delimited. Only the

characters with an obvious gap (number of cells in the

intramarginal band, Fig. 19A; stem leaf decurrency/total

leaf length, Fig. 19B) were used in the cladistic analysis,

although three other characters (intramarginal vs.

midlaminar cell length, Fig. 19C; stem leaf length/width,

Fig. 19D; and stem leaf acumen length/length from point of









insertion, Fig. 19E) show basic trends. These three latter

features are discussed under the appropriate species

discussions following the diagnoses in this revision.

The following lists the characters as their derived

state ("1" in Tables 4 and 5; character 6 has two derived

states, "1" and "2.")

1. Rooting at tips. As discussed in the morphology

section, several species of Rigodium (e.g., R. toxarion)

develop rhizoid clusters at the tips of stem and branches

and thereby form new plants.

2. Loss of well-differentiated stipe. Two species (R.

implexum and R. pseudo-thuidium) lack the arborescent habit

and the associated well-developed stipe (lower unbranched

portion of the stem).

3. Right angle branching. In R. brachypodium var.

tamarix (Fig. 38A), B. implexum (Fig. 44G), and R. pseudo-

thuidium (Fig. 46A), the primary branches are spreading,

evenly spaced and arise at right angles to the stem.

4. Decurrent stem leaves. Stem leaves were ranked as

"decurrent" when the stem leaf decurrency/total leaf length

ratio exceeded 8% (Fig. 19B). Note that a percentage

greater than 14 is an autapomorphy for R. adpressum.

5. Uneven midlaminar cell walls. In R. toxarion, (as

in Echinodium), these cell walls are not very porose (Fig.

27J), compared to the other species with conspicuously

uneven walls (e.g., R. pseudo-thuidium, Fig. 46M).









6. Visibly prorulose midlaminar cells. In R.

toxarion, the cells are prorulose, but not easily

discernible (Fig. 27J), while in R. adpressum, R. implexum

and R. pseudo-thuidium these cells are noticeably thickened

at the end walls (e.g., Fig. 46M). In R. brachypodium (both

varieties) the end walls project as dorsal papillae

(prorulae; Fig. 10C and D). In the matrices, the thickened

but not papillose condition is indicated as "1," and the

papillose extreme, as "2." This does not, however, mean

that condition "2" is necessarily more derived that "1;"

other than the fact that "0" is basal (outgroup comparison),

the actual sequence of events (i.e., 0->1->2, 0->2->1, or

1<-0->2) is unknown here (see discussion of results).

7. Seven or greater cell rows in intramarginal band.

A natural division in the number of cell rows is apparent at

seven cells (Fig. 19A), with R. implexum and R. pseudo-

thuidium both characterized by this derived condition..

8. Extremely thickened cell walls of intramarginal

band. In E. toxarion (Fig. 27K) the intramarginal band is

barely visible, even in cross section (Fig. 271). In the

other four species, the walls are extremely incrassate and

easily distinguished from the midlaminar cells, even in

surface view (e.g., Fig. 46L).

Results of Analyses of Rigodium Species

The data sets (Tables 4 and 5) for the two analyses

were identical except for the configuration of R.

brachypodium. In the first analysis, this species was split









into its two varieties, R. brachypodium var. brachypodium

and R. brachypodium var. tamarix, in order to test the

monophyly of the species (Table 4). In the second

examination (Table 5), the species was assumed to be

monophyletic with two polymorphous character states (3,

right angle branching; 4, decurrent stem leaves).

Figure 20 is the single most parsimonious tree (11

steps, CI=0.818) for Riqodium species with the two varieties

of R. brachypodium designated as separate OTUs. Ricodium

toxarion is basal, followed by R. brachypodium and R.

adpressum, and R. pseudo-thuidium and R. implexum are

derived sister-species. Of interest is that R. brachypodium

is not monophyletic here, but paraphyletic.

The only parallelism involves character 3 (right angle

branching) for R. brachypodium var. tamarix and the R.

implexum-R. pseudo-thuidium clade, which may reflect that

the ramification is actually different in these two

instances. In R. brachypodium var. tamarix the branches are

regularly pinnate (Fig. 38A), while the branching of the

other two species is irregularly pinnate. In fact, the

habit type of R. implexum (Fig. 22A) may have been derived

from a form like R. pseudo-thuidium with several innovations

arising from the main stem (Fig. 22B); see also discussion

under R. pseudo-thuidium).

The only reversal in the cladogram is where "rooting at

the tips" (1) was lost for the R. implexum-R. pseudo-

thuidium clade, possibly because this feature is correlated









with the loss of the aborescent or frondose habit. This

analysis also suggests that the direction within character 6

(degree of prorulosity) is 0->2->1, i.e., the less prorulose

state (1) is secondarily derived from the extreme papillose

type (2).

In the second analysis, R. brachypodium was considered

to be a monophyletic multistate taxon (polymorphic

characters 3 and 4; Table 5). Two equally parsimonious

cladograms were generated (12 steps, CI=0.917; Fig. 21A and

B), with one tree (Fig. 21B) equivalent to the strict

consensus tree. In contrast to the previous analysis, where

R. adpressum is more derived than R. brachypodium (which is

paraphyletic), the position of the former species here is

either phylogenetically intermediate between R. toxarion and

E. brachypodium (Fig. 21A) or unresolved (Fig. 21B). The

other portions of the tree (R. toxarion basal; R. implexum-

R. pseudo-thuidium terminal sister-taxa) are supported as in

the previous analysis.

Within the multistate E. brachypodium, homoplasy is

indicated for characters 3 (right angle branching) and 4

(decurrent stem leaves). Also, the direction of evolution

for character 6 is towards increasing degree of prorulosity

(0->1->2), instead of the secondarily derived reduction in

the previous analysis.

For both analyses, character 1 (rooting at tips--which

reverses within the terminal portion) is a defining feature

of Rigodium. In addition to this feature, autapomorphies of









the genus (i.e., synapomorphies of its species) include the

presence of a differentiated intramarginal band of cells and

extremely incrassate cells. Thus, the genus is clearly

monophyletic.

Taxonomic Philosophy Concerning Species

As suggested in Budd and Mishler (1990), the working

definitions of species used by taxonomists are, in general,

either phenetic or basically cladistic. In this revision, a

species was defined primarily as a phenetically cohesive

unit that is separated from other similar entities by a

consistent morphological gap. Monophyly cladisticc

approach) was examined secondarily in the analyses discussed

above. Rigodium toxarion (the basal species) is

metaphyletic (Donoghue, 1985; Mishler, 1985), as no

autapomorphies define it. Rigodium adpressum, R. implexum

and R. pseudo-thuidium are monophyletic, each distinguished

by the following autapomorphies: (1) R. adpressum: appressed

leaves, strongly revolute leaf margins, decurrency of stem

leaf greater than 14% of total leaf length (Fig. 19B), low

central papillae in some cells of the stem leaf decurrency,

and intramarginal cells shorter than the midlaminar cells

(Fig. 19C); (2) R. pseudo-thuidium: reduction of secondary

and loss of tertiary branching and loss/reduction of stem

leaf costae; and (3) R. implexum: free-living, terrestrial

"tumbleweed" habit with extremely wiry axes and profuse

branching. As discussed above, R. brachypodium may be

monophyletic or paraphyletic. Since the strong character 6









(end walls with prorulae) and intermediate habit forms

(detailed in the discussion of R. brachypodium var.

brachypodium) link the two varieties, from a practical

standpoint this taxon is considered as a single species in

this revision, and it is considered probably monophyletic.

A variety here is defined as a monophyletic (or

metaphyletic) group within a species that is separated from

other such entities by a small morphological gap (Wilken &

Hartman, 1991). Thus, the variety in the traditional sense

of an allopatric race (Mayr, 1969), i.e., having one to few

conspicuous differences associated with a certain

geographical range, is not applied in this revision (see

Stuessy, 1990, for discussion on infraspecific categories).

The category of variety is applied within two species, R.

toxarion and R. brachvyodium. Although both varieties of R.

toxarion are sympatric, the traditional varietal concept

somewhat applies since R. toxarion var. robustum is

restricted to the Juan Fernandez Islands. This variety is

additionally defined by the autapomorphy of narrow branch

leaves (see details under discussion of R. toxarion var.

robustum), while R. toxarion var. toxarion is metaphyletic.

As discussed above, the two varieties of R. brachypodium

here are considered to comprise one species due to the

presumed synapomorphy of prorulae, as well as intermediates

in habit type. Rigodium brachypodium var. tamarix is

defined by the autapomorphy of the habit type (elongated







79

stems with regularly pinnate branching), while R.

brachypodium var. brachypodium is considered metaphyletic.

















0)
0 (0




w1




03-i
to

Cr O
) a
Q3i











4.)


00)
04
0*4



















oE-1
C
aO

















- 0)
0


a) o
cu




04



4 4
0)







~-P
>* 0
*C


ax




CO *










Xi4-
u w
OQi-



















w
w
<
w z



.wZa.


cDo#
^2








Table 2. A list of the synapomorphic characters for the
order Hypnales as featured in the cladogram (Fig. 16)
modified from Buck and Vitt (1986). The characters
indicated by the authors as symplesiomorphic and
autapomorphic are deleted here, hence the
discontinuities in the numbering system on the
cladogram and for their characters listed below.


1. Peristome hypnoid; capsules horizontal, asymmetric; leaf

cells elongate

2. Exostome teeth long; gametophores dendroid; endostome

segments gaping; leaves coarsely serrate

3. Leaf cells thin-walled; alar cells thin-walled, quadrate

5. Leaf cells long

7. Opercula + rostrate; leaves with thickened margins

11. Exostomial shoulder well-developed

12. Leaf cells + papillose; alar cells reduced; leaf cells

secondarily short; plants xerophytic

13. Leaves subulate

14. Capsules erect; costa weak; paraphyllia reduced;

peristome reduced

16. Stem leaves differentiated; branching well-developed

21. Leaf cells long

22. Leaves varying around lanceolate

25. Peristome yellow-brown; costa poorly developed; leaf

cells shortened

26. Alar cells small; capsules short; substrate of wood and

rocks









Table 2--continued


29. Alar cells covering costal base; pseudoparaphyllia

filamentous

30. Costal spine present

34. Leaf cells short; peristome reduced; plants epiphytic

37. Costa lost

40. Exostome shoulder amplified; opercula long-rostrate;

alar cells amplified (shape)

45. Plants flattened








84
Table 3. Data matrix for the cladistic analysis of selected
genera of the superfamily Leskeacanae. "?" = missing
data. Polymorphous characters are indicated as: a =
1,2,3, b = 1,2; c = 0,2; d = 0,1. Thamnobryum and
Pleuroziopsis functioned as outgroups in the analyses.


Genus Characters



1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8
111111111
123456789012345678

Thamnobryum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pleuroziopsis 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 ? ?

Bryohaplocladium 1 1 0 a 1 1 1 0 0 1 1 0 O O O 0 d

Claopodium 1 1 0 c 1 d 1 0 O 0 1 0 O O O O O O

Echinodium O0 1 0 O 0 1 0 O 0 d 0 O O O O O 0

Helodium 1 1 0 a 1 O 1 0 0 1 1 d O O O O O O

Heterocladium 1 1 0 b d 1 1 1 0 1 1 0 O O O 0 d

Leskea 1 1 1 b 1 0 0 0 1 0 1 1 1 1 1 1 1 1

Pseudoleskea 1 1 1 b 1 0 1 0 1 0 1 0 1 0 dd 1 1

Pterivqnandrum 1 1 1 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0

Riqodium O O O0 1 1 1 d 0 1 d O O O O O O0

Thuidium 1 0 0 a 1 1 1 0 O 0 1 0 O O O O O O





















FIG. 17. Most parsimonious tree for representative
genera of the superfamily Leskeacanae using Thamnobryum as
the outgroup. Characters are listed in the text; for the
character states see data matrix (Table 3).

























o 0 0 0 -


' parallelism
=reversal


polymorphic characters
a =1,2,3 c = 0,2
b=1,2 d =0,1


tham





















FIG. 18. Representative trees for the genera of the
superfamily Leskeacanae using Pleuroziopsis as the outgroup.
A. Sample tree (out of 27 equally parsimonious cladograms).
Characters are listed in the text; for the character states
see data matrix (Table 3). B. Consensus tree.







88




. o 0 o 0 0 L- .
S C) r) D
0 "-C r- 0 -C C. _. Q.

1a2 6d' c8,11 4b1' 14
18d \ 4 12 b' .15d',16d'
a4a' (2 1718
8 1 \ \12d' 10'
4b'1
4a' 5d' 7,13
8d' 10' 18d' 3'15',16'
3' 1 1d' 10'
5
10' 6
11d'


2y parallelism
= reversal
1
4(0-2) polymorphic characters
a = 1,2,3 c = 0,2
b=1,2 d=0,1
7,11,13
pleu a'


o o -oo r- o o- o "
S 0 _? M.





















FIG. 19. Morphological Trends in Rigodium species. A.
Number of cell rows in the intramarginal band of stem
leaves, showing division at 8 cells. B. Range of variation
in stem leaf decurrency length/total leaf length, showing
gaps at 8 and 13. C. Range in intramarginal and marginal
cell lengths. D. Range in stem leaf length/width. E.
Range in stem leaf acumen length/leaf length from point of
insertion. TOX = R. toxarion; BRAB = R. brachypodium var.
brachypodium; BRAT = R. brachypodium var. tamarix; ADP = R.
adpressum; PSE = E. pseudo-thuidium; IMP = R. implexum.
Asterisks (*) in B and C indicate autapomorphies (for R.
adpressum). Character groupings depicted in A and B were
used in cladistic analyses.




















t--- m-- r

v -$
..--o



-NrC
------
m---<


4 6 8 10
Number of Cells


B
IMP

PSE

ADP

BRAT

BRAB

TOX


V V

-I
*


I I


5 10 15 20
Decurrency L/Total Leaf L


I------ --

I --------------------l
II
-.-- .-- -

r ^---^

I ---------
S--------------
-
.


10.0 20.0
Cell Length (um)


I III


0.75 1.25 1.75
Stem Leaf L/W


30.0 40.0
intramarginal
--- -imidlaminar


IMP

PSE

ADP

BRAT

BRAB

TOX


I II


20 o 0 60
Acumen L/Leaf L


A
IMP

PSE

ADP

BRAT

BRAB

TOX


C IMP

PSE

ADP

BRAT

BRAB

TOX







D
IMP

PSE

ADP

BRAT

BRAB

TOX


- -' -- --'- --- -- ---- ----- ---- --- -- ----










Table 4. Data matrix for the cladistic analysis of
Rigodium species where the varieties of R.
brachypodium are treated as separate OTUs.
Echinodium functioned as the outgroup in the
analysis.


Species


Echinodium

R. toxarion

R. brachypodium var. brachypodium

R. brachypodium var. tamarix

R. adpressum

R. implexum

R. pseudo-thuidium


Characters

1 2 3 4 5 6 7

0 0 0 0 0 0 0

1 0 0 0 0 0 0


1 0

1 0

1 0

0 1

0 1


2 0

2 0

1 0

1 1

1 1






















FIG. 20. Most parsimonious tree in analysis of
Rigodium species with the two varieties of R. brachypodium
("brat" and "brab") treated as separate OTUs. For
characters see the text; for the character states see Table
4.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EL2V1WPU6_W3LS47 INGEST_TIME 2017-07-13T22:01:59Z PACKAGE AA00003736_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES


A REVISION OF RIGODIUM (MUSCI: RIGODIACEAE)
By
WENDY B. ZOMLEFER
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1991

Copyright 1991
by
Wendy B. Zomlefer

ACKNOWLEDGMENTS
I express my deepest appreciation and gratitude to Dana
Griffin, III, for his limitless patience and enthusiastic
guidance throughout my graduate program. I also thank
Walter S. Judd, who also generously provided much
encouragement and many helpful criticisms. The other
members of my committee, Bruce J. MacFadden, Jonathan
Reiskind, and James W. Kimbrough have also greatly assisted
in my project and have improved the quality of the
dissertation with their comments. A very special thank-you
goes to Kent D. Perkins for his help in all computerized
aspects of this study, including data-base management, word
processing and processing of loans. I appreciate also the
advice and hospitality of William R. Buck and Richard Harris
(curators at the New York Botanical Garden) during my two
trips to their institution; Bill Buck has been especially
instrumental in my development as a bryologist.
I could not have completed this revision without the
time and patience of many other individuals. Thomas J.
Whitmore, Stephen B. Linda, and Carmine A. Lanciani helped
with aspects of the statistics; W. Mark Whitten, Stephen J.
Walsh, and Douglas D. Turley assisted as computer
consultants. Donna S. Williams spent numerous hours helping
me with the preparation of my specimens for the SEM. Norris
iii

H. Williams, my job supervisor at the Florida Museum of
Natural History, has been especially generous with his
computer facilities, as well as sympathetic to the problems
surrounding my concurrent employment and school activities.
Howard Crum provided excellent instruction during my tenure
as his assistant at the University of Michigan Biological
Station and graciously sent me an unpublished manuscript
related to my dissertation work. Daniel B. Ward and Dan H.
Nicholson advised me on several difficult nomenclatural
problems. Rhoda J. Bryant and Dianna C. Carver helped with
word processing.
I thank also the curators of the herbaria listed in the
materials and methods section for the extended loans of
their specimens. Travel money for three trips to study
bryophytes (one to Michigan and two to Puerto Rico) was
provided by the Department of Botany at the University of
Florida.
By their consistent concern about my graduate program
over the past five years, Graig D. Shaak, Gary S. Morgan,
and Laurie Wilkins (all of the Florida Museum of Natural
History), helped to keep my spirits up. In this regard, I
also thank Susan W. Williams and my sister, Kayla S.
Zomlefer, for their cheerful support.
Finally, I thank my parents, Jack and Dorothy Zomlefer,
who have always encouraged and supported my academic
pursuits, even in my formative years when females were
neither expected nor encouraged to excel in the sciences.
IV

TABLE OF CONTENTS
P.aq.e
ACKNOWLE DGMENTS iii
ABSTRACT VÜ
INTRODUCTION 1
TAXONOMIC HISTORY 3
MATERIALS AND METHODS 2 0
MORPHOLOGY 2 5
Axes 2 5
Leaves 28
Axillary Hairs 30
Paraphyllia and Pseudoparaphyllia 31
Perichaetia and Perigonia 32
Sporophyte 3 3
Spores 34
Chromosome Number 34
PHYLOGENY 57
Characters for Analysis of Representative
Genera of Superfamily Leskeacanae 66
Results of Analyses of Genera 69
Characters for Riaodium Species 72
Results of Analyses of Riaodium species 74
Taxonomic Philosophy Concerning Species 77
PHENETIC STUDIES 99
Choice of OTUs and Choice of Specimens 100
Choice of Characters 103
Results of the Principal Component Analyses 105
PHYTOGEOGRAPHY 117
TAXONOMIC TREATMENT 122
Key to the Species of Riaodium 125
1. Riaodium toxarion (Schwágr.) Jaeg 13 0
2. Riaodium brachypodium (C. MÜ11.) Par 167
3. Riaodium adpressum Zomlefer 194
v

4. Rigodium imülexum Kunze ex Schwágr 207
5. Riqodium pseudo-thuidium Dus 22 0
NOMINA AMBIGUA AND NUDA 234
LITERATURE CITED 238
APPENDICES
A OTUS (COLLECTIONS) USED IN THE PHENETIC
ANALYSES 248
B DETERMINATION OF MINIMUM NUMBER OF
MEASUREMENTS PER CHARACTER 254
BIOGRAPHICAL SKETCH 2 58
vi

Abstract of Dissertation Presented to the Graduate School of
the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
A REVISION OF RIGODIUM (MUSCI: RIGODIACEAE)
By
Wendy B. Zomlefer
May 1991
Chairman: Dana Griffin, III
Major Department: Botany
Rigodium Kunze ex Schwágr., a genus of tropical to
austral-temperate pleurocarpous mosses, is comprised of five
species (plus two varieties). Prior to this study, 26
species were recognized, with five additional species
generally accepted as belonging to other genera. Species of
Rigodium. all dioicous, have wiry stems and branches,
strongly dimorphic stem and branch leaves, extremely
incrassate leaf cells that are prorulose to varying degrees
(depending on the species), and hypnoid peristomes. The
habit varies from arborescent with a well-developed stipe
(R. toxarion, R. adpressum. and R. brachvpodium) to more
derived forms with either prolific (R. implexum) or reduced
(R. pseudo-thuidium) branching.
The genus has a disjunct distribution in Central and
South America and southeastern Africa. The plants, usually
epiphytic or terrestrial, generally grow in moist, montane
forests. The center of diversity, where all five species
occur, is in the Andean Cordillera along the Chilean-
Argentinian border in central Chile.
vii

Observations of morphology, including those made with
scanning electron microscopy (SEM), compose the basis of
this revision, which includes computer-assisted analyses of
phenetics (Principal Component Analysis, PCA) and cladistics
(Phylogenetic Analysis Using Parsimony, PAUP). One
previously undescribed species (R. adpressum) and two new
combinations at the varietal level (R. toxarion var.
robustum and R. brachvpodium var. tamarix) are presented.
Riaodium is maintained within the monotypic Rigodiaceae,
possibly related to the Thuidiaceae.
viii

INTRODUCTION
As treated here, the genus Rigodium Kunze ex Schwágr.
consists of five species (including two varieties) of
austral-temperate to tropical pleurocarpous mosses from
Hispaniola, Central and South America, eastern Africa, and
Madagascar. The center of diversity of Rigodium. where all
five species occur, is in the Andean Cordillera along the
Chilean-Argentinian border in central Chile. The plants
typically grow as epiphytes (or less often terrestrial,
corticolous, or saxicolous) in moist forests at moderately
high altitudes (up to ca 3800 m).
Although 31 species have been included within Rigodium.
no comprehensive work had been published for the genus until
the present revision. The genus itself is well-defined and
recognizable by the dendroid to frondose habit with wiry
stems and branches and often a well-differentiated stipe
(lower secondary stem). The strongly dimorphic stem and
branch leaves are unusual in the marked tendency toward
ecostate stem leaves (at least those of the "stipe" or lower
stem). Stem leaves are typically strongly spreading to
squarrose, wet or dry. Leaf cells are generally rounded-
quadrate (alar region and margins) to oblong (upper and
midlaminar areas) and incrassate throughout. The plants are
1

dioicous, and the peristome is hypnoid (Zomlefer and Buck,
1990) .
2
This treatment represents the first attempt to
completely review all pertinent literature and specimens in
order to (1) ascertain the species and their relationships
within the genus and (2) to determine the position of the
genus (in a monotypic family) within the scheme of bryophyte
phylogeny using cladistics. The results presented here are
based on qualitative and quantitative analysis of
morphology, ecology, and anatomy of over 2,400 herbarium
specimens. This study is especially pertinent since many of
the habitats where Rigodium occurs (mainly subtropical to
temperate rain forests) are threatened by human activities
(as for example, logging in the Valdivian forests in Chile).

TAXONOMIC HISTORY
The genus Rigodium was established by Schwágrichen in
1845 with original material of the new species, Rigodium
implexum. coming from southern Chile (Schwágrichen, 1845;
Zomlefer, 1990). The name is taken from the Greek word
"rigos" (= rigid) in reference to the extremely stiff and
wiry stems and branches. Although Müller (1845, 1851)
initially suggested maintaining this new genus rather as a
section within Hvpnum. the name became well-accepted in the
literature, with even Müller himself eventually describing
six species using Rigodium as the genus name.
In addition to R. implexum. 19 new species were later
described, plus 11 more transferred to Rigodium from Hvpnum
(ten species) and Leskea (one species). Of these 31 valid
species names (Wijk et ad., 1967, 1969; Crosby, 1979), five
have been now generally accepted as belonging to other
genera: R. dentatum Dix. = Rhvnchostegiella zevheri (C.
MÜ11.) Broth., R. reflexum (Stark.) Kindb. = Brachvthecium
reflexum (Stark.) B. S. G., R. schlosseri (Sendtn.) Kindb. =
Camptochaete schlosseri (Sendtn.) Par., R. vagum (C. MÜ11.)
Reichdt. = Camptochaete vaga (C. Müll.) Broth., and R.
varium (Hedw.) Kindb. = Amblvstegium varium (Hedw.) Lindb.
In addition, four more Rigodium types examined in the
initial stages of this study have also been reassessed
3

4
(Zomlefer & Buck, 1990) : R. toxarioides Broth. & Par. (Fig.
1) and R. crassicostatum Bartr. in Christ. (Fig. 2) both =
Eurhvnchium praelongum (Hedw.) B. S. G.; R.
pteriavnandroides (Broth.) Broth. (Fig. 3) = Helicodontium
pervirens (C. MÜ11.) Par.; and R. riparium Sehnem (Fig. 4) =
Helicodontium complanatum Broth. This leaves a total of 22
valid epithets (Table 1) incorporated into the present
study—20 associated with Hispaniola and Central and South
America, and one each with eastern Africa and with
Madagascar.
The authors of the original species descriptions have
generally emphasized subtle differences in characters, such
as the relative size and fragility of the plants and the
coarseness of the serrations on the leaves. By apparently
comparing type specimens only, the authors did not
sufficiently evaluate the intergradation of these characters
throughout the genus and thus may have overlooked numerous
specimens which bridged the apparent morphological gaps
between the type specimens. The most obvious "species"
based on the old literature are R. pseudothuidium/R.
hvlocomioides (both with distinct habit and a reduced costa
in the stem leaves) and R. implexum (very stiff plants with
unusual right-angle branching). Certain names tended to be
associated only with collections from the particular country
of the type specimen, such as "R. solutum" with Ecuador and
"R. leptodendron" with Bolivia (see Table 1). Adding to the
confusion, authors of floristic treatments tended to lump

5
indiscriminately several names in synonymy, such as Jaeger
[1878; R. toxarion = R. implexum. R. brachvpodium. and
Hvpnum (Rigodium) solutum], Müller [1882, Hvpnum (Rigodium)
araentinicum = R. implexum and R. brachvpelma
(brachvpodium)1. and Mitten [1869; Hvpnum (Rigodium)
toxarion = H. implexum. H. brachvpodium. H. solutum. and R.
lechleri (arborescens)1. Brotherus' (1925) key to 17
species separates out only the few obvious forms (i.e., R.
implexum. R. hvlocomioides. and several species no longer
included in Rigodium) and lumps the remaining 12 species (by
country) under the first general dichotomy of the key (habit
type).
The great need for a full-scale revision of Rigodium
has been noted by authors from Reimers (1926) to Robinson
(1975). In reviewing Chilean collections of bryophytes and
examining numerous specimens of Rigodium in particular,
Reimers (1926) and Herzog (1938, 1954) both concluded that
making any decisions about the taxonomic validity of
Rigodium species was virtually unfeasible without
monographic studies. In fact, Reimers promised a
forthcoming revision (which never appeared). Herzog (1939)
and Bartram (1960) each described a new species of Rigodium
(R. pendulum and R. crassicostatum. respectively), while at
the same time admitting the near impossibility of applying
any specific names without a critical revision of the entire
genus.

6
Other than the keys of Brotherus (1909, 1925), no
attempt has been made to distinguish all the species of the
genus, although several workers have treated a few species
of Rjqodium with a regional, floristic perspective. Most
floras do not include descriptions or keys but only list
those species names (and sometimes the specimens) associated
with the area (e.g., Seki, 1976). Notable exceptions are
the floras of Sehnem (1976) and Robinson (1975), which
include keys and some discussion comparing several species.
These two floras, however, are restricted in scope and do
not address Rjqodium as a whole. Sehnem's keys for seven
species of Rjqodium in his treatment of the mosses of
southern Brazil use vague characters such as a "delicate
habit, similar in aspect to Pterqvnandrum or Thuidium.11 He
described two new species, R. rioarium and R. pallidum.
Rjqodium rioarium Sehnem is actually Helicodontium
complanatum Broth. (Zomlefer & Buck, 1990), and R. pallidum
Sehnem has been reduced to synonymy with R. toxarion
(Schwágr.) Jaeg. in the present study. Robinson's treatment
of the mosses of the well-collected Juan Fernández Islands
includes detailed discussions of four species (R.
arborescens. R. hvlocomioides. R. toxarion and R. robustum)
with comments on his opinions of synonomy and relationships
to several other species on mainland Chile. By
concentrating on a small, well-collected area, he apparently
made some assumptions about Rjqodium species that reflect
better the local variation rather than that found throughout

7
whole range of the genus. His conclusions are commented on
under the appropriate species in this study.
Coupled with problems in delimitation of the species is
a lack of agreement on the affinities of Riaodium to other
groups. As with many pleurocarpous taxa, Riaodium was
initially allied with Hvonum/Hypnaceae (e.g., Müller, 1851).
By the early twentieth century, more pleurocarpous families
had been delimited, and Riaodium was moved to the
Brachytheciaceae by Brotherus (1909). Later, he (1925)
transferred it to the Lembophyllaceae. Associating the
genus with these two families has persisted until recently.
For example, Robinson (1975) placed Riaodium in the
Brachytheciaceae due to its similarity (stipes and strong
heterophylly) with Stokesiella [horn, illea.; = Eurhvnchium
fide Buck (1988)]. More recent publications (Crosby &
Magill, 1981; Vitt, 1982; Walther, 1983) maintain Riaodium
under the Lembophyllaceae, although the validity of this
family, as first conceived by Brotherus, has continued to be
questioned (Crum, 1991). Buck (1980a) reduced the
Lembophyllaceae to two genera (Camptochaete and
Lembophvllum) and suggested placement of Riaodium in the
Thuidiaceae, a move supported by Vitt (1984). According to
Buck, pertinent characters linking Riaodium to the
Thuidiaceae include the pinnate branching, similar leaf
shapes, short leaf cells, and strong single costae.
Bartram (1949) was the first to suggest placement of
Riaodium in a separate family, if not the Brachytheciaceae

8
or Leskeaceae (in which he included the Thuidiaceae). Crum
(1981, 1984) recently erected the monotypic family
Rigodiaceae, which has been accepted by some authors (Buck &
Vitt, 1986), and tentatively supported by others (Walther,
1983). Although he later (1991) agrees with Buck (1980a)
and acknowledges a close resemblance of Riqodium to the
Thuidiaceae, Crum maintains that the "stipitate growth,
smooth leaf cells, and absence of paraphyllia" merit
separate familial status for the genus.
The present study recognizes five species (including
two varieties) of Riqodium. including one species described
here for the first time: R. adoressum Zomlefer, R.
brachvpodium (C. Müll.) Par. var. brachvpodium. R.
brachvpodium (C. Müll.) Par. var. tamarix (C. Müll.)
Zomlefer, R. implexum Kunze ex Schwágr., R. pseudo-thuidium
Dus., R. toxarion (Schwágr.) Jaeg. var. toxarion, and R.
toxarion (Schwágr.) Jaeg. var. robustum (Broth, in Skottsb.)
Zomlefer. Considering the initial 22 epithets, the
recognition of only five species represents a 77% rate of
over-description. This figure is consistent with moss
revisions in general: according to Touw's (1974) survey, 73
to 79% of published specific and infraspecific names have
been reduced in synonymy in moss revisions from 1901 to
1974.
The results of the preliminary cladistic study and
character analysis in this revision indicate that Riqodium
is phylogenetically intermediate between Echinodium

9
(Echinodiaceae) and Thuidium (Thuidiaceae), and that all
three taxa are basal in Buck and Vitt's (1986) superfamily
Leskeacanae of the Hypnales (see detailed discussion in
section on phylogeny). With Echinodium as an outgroup for
Riqodium. cladistic analyses identify R. toxarion as the
most ancestral species, R. implexum and R. pseudo-thuidium
as the most derived sister-species in the genus, and R.
brachvpodium and R. adpressum as phylogenetic intermediates.

FIG. 1. Type of Riqodium toxarioides Broth. & Par. =
Eurhvnchium praelonqum (Hedw.) B. S. G. A. Habit. B.
Detail of stem. C. Stem leaf. D. Branch leaf. E-H.
Areolation of leaf. E-F. Basal cells. G. Median cells. H.
Detail of upper costa showing dorsal spine. All from
Apollinaire s.n., 1905 (H-BR). Copyright 1990 by the
American Bryological and Lichenological Society. Reprinted
with permission from The Brvologist 93 (3): 305.

11

FIG. 2. Type of Riqodium crassicostatum Bartr. in
Christ. = Eurhvnchium praelonctum (Hedw.) B. S. G. A. Habit
B. Detail of stem. C. Stem leaf. D. Branch leaf. E-H.
Areolation of leaf. E-F. Basal cells. G. Median cells. H
Detail of upper costa showing dorsal spine. All from
Christophersen & Meiland 907 (BM). A and B copyright 1990
by the American Bryological and Lichenological Society.
Reprinted with permission from The Brvoloaist 93 (3): 305.

ex

FIG. 3. Type of Riqodium pteriqvnandroides (Broth.)
Broth. = Helicodontium pervirens (C. Müll.) Par. A. Habit.
B. Stem leaf. C. Branch leaf. D-G. Areolation of leaf.
D. Basal cells. E. Median cells. F. Acumen. G. Detail of
upper costa showing dorsal spine. H. Capsule. All from
Lindman 52 (H-BR). Copyright 1990 by the American
Bryological and Lichenological Society. Reprinted with
permission from The Brvoloqist 93 (3): 306.

3
O
wwgg'o
i i

FIG. 4. Type of Riqodium riparium Sehnem =
Helicodontium complanatum Broth. A. Habit. B. Portion of
plant with sporophyte and perigonia. C. Stem leaf. D.
Branch leaves. E-G. Areolation of leaf. E. Basal cells.
F. Median cells. G. Acumen. H. Capsule. All from Sehnem
21515 (PACA). Copyright 1990 by the American Bryological
and Lichenological Society. Reprinted with permission from
The Brvologist 93 (3): 307.

17
30yum

Table 1. The distributions of the 22 valid epithets of Riqodium and the synonyms
established in this study. The "range" indicates the presumed endemic area of
distribution as reported in the original literature.
Name & author
Year
described
Range
(original
literature)
Synonym
in present
study
R. araucarieti C. Mull.
1901
Brazil
R.
toxarion
R. arborescens (C. Mull.} Broth.
1858
(sub Hvonum)
Chile
R.
brachvoodium
R. arcjentinicum ÍC. Mull.} Kindb.
1882
(sub Hvonum}
Argentina
R.
toxarion
R. brachvoodium (C. MÜ11.} Par.
1851
(sub Hvonum}
Chile
R.
brachvoodium
R. aracile Ren. & Card.
1894
Central
America
R.
toxarion
R. hamirameum C. Mull.
1901
Brazil
R.
toxarion
R. hvlocomioides Card. & Broth.
1923
S.Chile (&
R.
pseudo-thuidium
Argentina)
R. implexum Kunz. ex Schwágr.
1845
Chile
B-
implexum
R. kilimandscharicum (Broth.} Par.
1897
(sub Hvonum}
Eastern
Africa
R-
toxarion
R. leptodendron C. Mull.
1897
Bolivia
R.
toxarion

Table 1—continued
R.
looseri Thér.
1928
Juan Fern.
Islands
R. toxarion
var. robustum
R.
nano-fasciculatum C. MÜ11 ex Thér.
1930
Chile
R. toxarion
R.
niveum Thér.
1926
Madagascar
R. toxarion
R.
pallidum Sehnem
1976
Brazil
R. toxarion
R.
pendulum Herz. & Thér
1939
Chile
R. toxarion
R.
penicilliferum C. Miill.
1901
Brazil
not seen
R.
pertenue C. Miill.
1901
Brazil
R. toxarion
R.
pseudo-thuidium Dus.
1905
S. Chile (&
R. pseudo-thiudium
Argentina)
R.
robustum Broth, in Skottsb.
1924
Juan Fern.
Islands
R. toxarion
var. robustum
R.
solutum ÍTayl-í Par.
1846
fsub Hvpnum)
Ecuador
R. toxarion
R.
tamarix C. Miill.
1897
Chile &
Argentina
R. brachvoodium
var. tamarix
R.
toxarion (Schwaar.) Jaea.
1816
isub Hvpnum)
Hispaniola,
Central &
South Amer.
R. toxarion

MATERIALS AND METHODS
In the course of this study over 2,400 specimens were
examined from the collections of 43 herbaria: ALTA, B, BA,
BM,
BR,
C, CANM,
CHR,
DUIS, E, F, FH,
FLAS,
G, GB, GOET, H,
IA,
JE,
KRAM, L,
LPB,
M, MANCH, MEXU,
MICH,
MO, MPU, NAM,
NY, O, OXF, P, PACA, RB, RO, S, TENN, U, UPS, UWM, VBI, and
W. The acronyms are standardized according to Holmgren et
al. (1990); specimens indicated as from "Herb. Matteri" are
from the personal herbarium of C. Matteri. The label data
from each specimen were entered into a data base on an IBM-
compatible PC. The user interface for the program, similar
in structure to dBase III PLUS (Ashton-Tate, registered
trademark), was compiled by Kent D. Perkins specifically for
this project using CLIPPER (Nantucket Corp., registered
trademark) language. As exsiccatae are common in bryology,
cataloging the numerous specimens with a data base greatly
facilitated the identification of duplicates and fragmentary
specimens that had incomplete or missing data on the labels.
As computer "records," the specimens could also then be
quickly sorted into any appropriate category ("field")—such
as by collector, country, elevation, type designation, or
reproductive state—for use in specimen citations, ranges,
and exsiccatae lists. The modern spellings of geographical
names are according to the United States Office of
20

21
Geography's Official Standard Names gazetteer volumes for
Latin America (1955, 1956, 1957, 1963, 1967, and 1968).
Hydrated specimens and permanent slides were examined
for the detailed measurements and qualitative characters
used in the descriptions, phenetic studies, and cladistic
analyses. (The specific methodologies for the cladistic and
phenetic analyses are discussed in their particular
chapters.) Prior to examining them, appropriate portions of
specimens were steeped for several minutes in boiling water.
Occasionally, the entire contents of a packet were soaked if
the plants were inextricably intertwined. The strongly
clasping stem and stipe leaves (only ca 0.45 - 1.70 mm long)
were individually teased off the stems with fine-tipped
forceps. At least ten to twenty leaves were mounted for
each stipe and stem leaf slide. Leaves, stems, and capsules
were sectioned by hand using single-edged razor blades.
Capsules were cut vertically and the columnae and spores
flushed out. The two capsule sections were then cut into
fourths for the slide.
Permanent slides of whole leaves and sectioned parts
were prepared with Hoyer's solution (Anderson, 1954). The
slides were then heated following application of the cover
slips to clear the air bubbles and flatten the specimens.
Temporary water mounts were prepared of capsules from
specimens with scanty sporophyte material, which was
returned to its packet after examination. At least five
slides were made of each specimen examined, including whole

22
mounts of the leaves (stipe, stem, branch, perigonial, and
perichaetial) and sections of the stem, stem leaves, and
capsules.
Measurements of the stems, branches, and capsules, as
well as qualitative observations on habit features (e.g.,
leaf position), were made with the aid of a Wild M5A
Stereomicroscope. Specimens on slides (leaves, cells,
peristome features, and spores) were measured with a Wild
M20 compound microscope equipped with drawing tube.
Measurements were made with an appropriately scaled gauge on
outlines sketched with the drawing tube or directly on the
projected image from the drawing tube. Detailed data
sheets, which included xerox copies of the actual (hydrated)
specimen as a record of the habit, were compiled to organize
the measurements.
The surface details of stem and perichaetial leaves
(papillae, prorosities), peristomes, and spores were
examined and photographed using a Hitachi S-450 scanning
electron microscope (SEM). Specimens were attached to studs
with double-sided tape and then plated with gold in an Eiko
IB-2 ion coater for five minutes at 8 mA prior to SEM
examination. Capsules (peristomes) did not require
rehydration and were attached to the stubs in the dry
condition directly from the herbarium specimen.
Spores and leaves, which tended to be collapsed in the
dried state, required special preparation. Stem leaves were
left attached to ca 0.5 - 1.0 cm stem segments, perichaetia

23
were removed as a whole unit, and spores were left in their
capsules during rehydration. Due to their small size,
perichaetia and capsules with spores were sandwiched between
1 cm Nucleopore polycarbonate filter papers placed in
modified Beem capsules. All leaves and spores were first
hydrated for 15 minutes in warm water. The leaves of
Rigodium toxarion and R. brachypodium were next placed
through a series of successive ten-minute washes in 25, 50,
75, and 95% ethanol, respectively, followed by two
successive ten-minute rinses in 100% ethanol. The specimens
were subsequently subjected to a critical point drying
sequence composed of five fifteen-minute wash cycles of
liquid CO2 in a Balzers CPD-101 Critical Point Dryer. These
leaves were then coated with gold as described above.
The perichaetia and stem leaves of R. adpressum and all
spores required fixation prior to ethanol rinses and
critical point drying. Otherwise, entire spores and the low
papillae at the base of the perichaetial leaves tended to
collapse, and the decurrent portion of the stem leaves of R.
adpressum curled over. After rehydration in water, these
specimens were soaked in 5% gluteraldehyde in .2M
NaCacodylate buffer for two hours. They were then rinsed
three times in .05M buffer for five minutes and placed in a
1% solution of osmium tetroxide (OSO4) in buffer overnight.
After four rinses with distilled water, these specimens were
taken through the alcohol washes, critical point drying

24
sequence, and coating preparation as described above for the
capsules and other leaves.

GENERAL MORPHOLOGY
Salient morphological features of the genus Riaodium
are included in this chapter, along with a discussion on the
terminology (particularly that of the axes and corresponding
leaves) incorporated in this monograph.
Axes
Traditionally, bryologists have used the terms
"primary" and "secondary" to distinguish the stoloniferous
vs. the erect/pendent axes, respectively, of a pleurocarpous
habit (e.g., Arzeni, 1954). Argent (1973) describes in
detail the difficulty in applying these designations to the
different types of shoots in the Pterobryaceae, a
pleurocarpous group. His simplified terminology (stolon,
stems, branches, and flagella) has been adopted by others
(e.g., Allen & Crosby, 1986). Some of Argent's ideas have
been incorporated into this monograph, with the addition of
a few terms peculiar to the habit of Riaodium (stipe vs.
stem, primary, secondary, and tertiary branches), and are
defined below:
1. "Stolons" (or rhizomes) are often referred to as
"primary stems" by other authors (e.g., Crum, 1981, 1984).
These axes are usually creeping, deeply colored (brown-red
to dark brown) and bear rhizoids. Leaves, when present, are
25

26
often achlorophyllous and less well-developed than those on
other axes.
2. "Stems" and "stipes" are general terms for the two
parts of the main axis (or secondary stem of some authors)
of plants which are erect (or pendulous) and are derived
from the stolons. The stipe is the lower, unbranched
portion of the main shoot which is often darkly pigmented.
In Rigodium. stipe leaves are ecostate but are otherwise
well-developed. The term "stem" refers here to the upper,
branched portion of Rigodium plants where the leaves are
generally costate.
3. Branches are ranked in this study as primary,
secondary, and tertiary. Primary branches arise from stems
and are characterized by leaves intermediate in shape and
size of those of the stem/stipe and secondary/tertiary
branches. Secondary branches, which arise from the primary
branches, have narrowly ovate leaves without a well-
developed acumen. Tertiary branches are borne on secondary
branches. The leaves are similar in shape but smaller than
those of the secondary branches.
The delimitation of these types of axes outlined above
is not always clear-cut in Rigodium since they may
intergrade with one another. Allen and Crosby (1986)
suggest that this intergradation in Sguamidium is due to
probably very weak genetic control coupled with
environmental influences, which may also be the case in
Rigodium. For example, in addition to the secondary

27
branches, the upper main axis (stem) may give rise directly
to new main axes (stems), resulting in "stem-like primary
branches" (Figs. 7H-J, 8H-J) that are similar to the
innovations in genera such as Hvlocomium (Crum & Anderson,
1981). In Riaodium. though, these "innovations" are not
necessarily restricted to the area just below the
inflorescences, but may arise anywhere along the stem.
Although the term is not used here, Riaodium species also
have "flagellae" as defined by Allen and Crosby (1986): axes
(stolons) which develop from the tips of branches. However,
in Riaodium both branches and stems may root at the tips and
produce new plants (produce either stolons or stems; Fig.
5). Rhizoids, then, may be found at the tips of rooting
stems and branches as well as on the substrate sides of
stolons and stems.
The branching in Riaodium is monopodial (as defined by
Crum & Anderson, 1981) with irregularly pinnate branching.
Three of the species (R. brachvpodium. R. adpressum and R.
toxarion) are dendroid with distinct creeping vs. pendulous
(or erect) portions. In R. pseudo-thuidium and R. implexum
the stipe is less distinct and short. R. implexum is
profusely branched, forming well-developed cushions (Fig.
43A). Plants of R. pseudo-thuidium have very little
secondary branching (Fig. 46A).
The various types of axes are similar in anatomy
although branches are much smaller in diameter and with a
less-developed central strand. In all species, several

28
layers (three to six rows) of small and incrassate epidermal
cells (Fig. 6A and B) form a well-developed rind which
probably contributes to the characteristic stiffness of the
plants. The epidermis has a furrowed appearance in surface
view (Fig. 11C). The cortex (Fig. 6B) consists of large,
hyaline thin-walled cells which usually become smaller
toward the center of the axis. Sometimes the smaller cells
of the cortex form a loosely organized ring around the
central strand as in Fig. 6B. Small, reddish, incrassate
cells comprise the central strand which varies in degree of
development (Fig. 6C and D) but generally consists of ten to
twenty (or sometimes more) cells.
Leaves
Rjqodium is unusual in having ecostate lower stem
(stipe) leaves and costate upper stem leaves, in addition to
the dimorphic stem and branch leaves. Due to intergradation
of axes and corresponding leaf forms, care must be taken in
assigning and comparing "leaf types." Figures 7 and 8 show
the relative changes in size and morphology of leaves along
particular axes in R. toxarion (long acumen) and R.
brachvpodium (short acumen). In this study (phenetic
analysis and all descriptions), "stipe leaves" are defined
as those ecostate leaves from the mid-stipe, "stem leaves,"
as those from the mid- to upper stem, and "branch leaves,"
as those from the secondary branches (Fig. 23A).
In all species, stipe and stem leaves are broadly ovate
and taper abruptly to a long or short acumen. The strongly

29
clasping and concave leaf bases tend to be decurrent (in R.
adpressum. strongly so). All species show a tendency to
form auriculae (Fig. 9A-E), although this character is most
consistent in R. pseudo-thuidium. Stipe and stem leaves are
typically wide-spreading to squarrose, wet or dry, but the
leaves of R. adpressum are appressed with spreading tips.
Branch leaves are consistently ovate (R. pseudo-thuidium) to
usually narrowly ovate (all other species) and are typically
erect to spreading.
Leaf cells are incrassate throughout and the alars are
not differentiated. Cell walls vary from even (R. toxarion)
to uneven (R. brachvpodium). Due to the thick walls, the
cells are consistently prorulose, most weakly so in R.
toxarion (Fig. 10A). In the most extreme case (R.
brachvpodium), the midlaminar cells project as well-
developed papillae (prorulae) on the dorsal surface (Fig.
IOC and D). Although leaf cells in Riaodium are reported as
smooth (Crum, 1981, 1984, 1991), central papillae occur on
the dorsal side of some cells in the decurrent portion of
the stem and stipe leaves of R. adpressum (Figs. 11D, 40F
and G) and at the base of perichaetial leaves of some
specimens of all species (discussed below under perigonia
and perichaetia).
An outstanding feature of the areolation of Riqodium
stem, stipe, and branch leaves is an apparent intramarginal
border very visible at low power (Fig. 12A and B) and also
distinguishable in cross sectional view of the leaves (Fig.

30
12C), as well as in surface view with the SEM (Fig. 10B).
The border is formed by four to nine rows of cells that have
much thicker walls than those of the midlaminar cells. The
cells comprising this border are often a different shape
than those of the midlaminar portion of the leaf, as well.
For example, the seven- to ten-cell border in R. pseudo-
thuidium typically is composed of longer and wider cells
than the rest of the leaf, while the narrower border (four
to six cells) of R. adpressum consists of much shorter
cells. The intramarginal border is always present to some
degree but its appearance varies from weak (R. toxarion) to
very strong (R. adpressum), depending on the relative
thickness of the cell walls in comparison to the midlaminar
cells.
The costa is absent from the stipe leaves and is
usually present in the stem leaves. The stem leaves of all
species, however, show a tendency for a reduced costa (e.g.,
Fig. 9F-I), which is most consistent and characteristic of
R. pseudo-thuidium. The costa is strongest in R. implexum
(five-stratose in the thickest part) and to a lesser extent,
R. brachvpodium (47-96 um wide at base). Branch leaves are
always costate in Rigodium. although the costa may be weak
in R. pseudo-thuidium (Fig. 9H and I).
Axillary Hairs
Recently (Griffin & Buck, 1989), axillary hairs have
been emphasized as useful characters for characterizing
taxonomic groups, especially genera (Saito, 1975) or

31
groupings of genera, such as subfamilies (Griffin, 1990).
Although not useful for distinguishing between species of
Riaodium. the structure of the axillary hairs is consistent
within the genus: two pigmented basal cells and an elongate,
hyaline terminal cell (Fig. 6E-I). The lower basal cell is
sometimes very lightly pigmented and difficult to see. The
axillary hairs are profuse at the tips of stems and branches
and are easiest to locate in R. adpressum (appressed leaves
which prevent loss of the delicate hairs) and R. pseudo-
thuidium (relatively large leaves with broad bases).
Paraphvllia and Pseudoparaphvllia
Paraphyllia and pseudoparaphyllia are small,
chlorophyllous, filamentous or foliose structures arising on
the stems of pleurocarpous mosses (Rohrer, 1985).
Historically, distinctions between the two structures have
been blurred until recently with the investigations of
Iwatsuki (1963) and Ireland (1971). Paraphyllia, usually
abundant when present, occur everywhere on stems and
branches (Ireland, 1971). Riqodium lacks these structures.
Pseudoparaphyllia, not particularly abundant when found
on moss plants, are restricted to areas around the branch
primordia and mature branches. The structures, distinct for
many species, have recently been emphasized in moss taxonomy
(Buck, 1984). However, foliose pseudoparaphyllia and
rudimentary branch leaves are sometimes confused (Allen,
1987). Generally, pseudoparaphyllia arise strictly on the
stem, while immature branch leaves occur at the base of

32
branches (Buck, 1984). Ovate, foliose, ecostate structures
occur at the base of branches of Rigodium (e.g., Figs. 7K,
8K). These intergrade with the branch leaves above (Figs.
7L-0, 8L-0) and are interpreted here as rudimentary branch
leaves and not as pseudoparaphyllia. Pseudoparaphyllia do
not occur in Rigodium.
Perichaetia and Perigonia
Rigodium is dioicous, and male and female plants are
indistinguishable. Reports of monoicism in the literature
(e.g., Sehnem, 1976) were due to the inclusion of discordant
elements within the genus, such as species of Helicodontium
(Zomlefer & Buck, 1990). Specimens with archegonial plants
are much more common than those with antheridia. The
infrequency of male populations compared to female in
dioicous mosses has been noted often (Longton & Greene,
1979; Stark, 1987) but not explained.
Both perichaetia and perigonia are bud-like structures
arising laterally along the axes of the plant. Perichaetia
are most common along the stems (but also occur on the
primary branches), whereas perigonia are most frequent along
primary branches, occurring much less often on the stems
(and secondary branches as well). Perigonial leaves (e.g.,
Fig. 28F) are similar to branch leaves in shape and
areolation but are ecostate and also tend to be more broadly
ovate. The inner perigonial leaves may also taper to a
somewhat longer acumen. Perichaetial leaves, weakly costate
to ecostate, are consistently subulate with spreading to

33
squarrose acumens in all species. The areolation, oblong to
rhombic cells at the base and shorter flexuous cells above,
thus differs from that of the stem leaves (shorter cells
below, cells above not flexuous). In addition, dorsal
central papillae may be found within the some cells near the
base of the outer perichaetial leaves (Figs. 11A and B, 41B
and C). These papillae are consistent on all available
collections of R. adoressum with archegonial plants and are
occasionally to frequently present in the other four species
as well (e.g., Fig. 35B).
Representative examples of gametangia and paraphyses of
Riqodium are illustrated in Figs. 13A-D. Of note is that
the structure of the paraphyses is somewhat similar to that
of the axillary hairs: usually two (but sometimes more)
pigmented cells at the base plus elongate hyaline terminal
cells (several as opposed to one in the axillary hairs).
The paraphyses subtending the antheridia (Fig. 13C) tend to
be stouter than those found within perichaetia (Fig. 13A).
Sporophvte
Mature sporophytes are not commonly found on Riqodium
specimens. The morphology of the capsule is consistent
among the species, although the urns of R. pseudo-thuidium
(Fig. 47H) are somewhat larger than those of the other
species. The asymmetric, horizontal to inclined capsule of
Riqodium has a well-developed rostrum (Fig. 13F) on the
operculum. The annulus, consisting of two rows of
incrassate cells, is illustrated in Fig. 13H. The

34
phaneroporous stomates (Fig. 13G) occur at the base of the
urn.
Riqodium has a typical hypnaceous peristome, which does
not vary in structure between species (Figs. 131, 14). The
exostome teeth, cross striolate below (Fig. 14C and D) and
papillose above (Fig. 14B), have well-developed lamellae on
the ventral side (Fig. 14E and F). The endostome consists
of a high basal membrane, well-developed segments (Fig. 14A)
and usually two to three cilia.
Spores
The typical spherical and papillose spores are
illustrated in Figs. 13J and 15A-D.
Chromosome Number
A chromosome number of n = 11 has recently been
reported by Deguchi and Oginuma (1990) for "Riqodium
implexum" (Deguchi 31548. KOCH; specimen not seen).

FIG. 5. General Morphological Features of Riqodium
Rooting at Tips. From T. Müller 2635 (L).


FIG. 6. General Morphological Features of Rigodium:
Stem Anatomy and Axillary Hairs. A-D. Stem cross sections.
A. Whole stem section indicating position of wedge featured
in B. B. Detail of section showing rind, cortex and well-
developed central strand. C-D. Variation in the development
of the central strand. C. Weak central strand. D. Typical
development of the central strand. A-B from Sehnem 4686
(PACA, R. tgxarion)? C from Crosby 12984 (MO, R. tgxarign);
D from Skottsberg & Skottsberg 418 (S, R. tgxarion). E-I.
Representative axillary hairs from each species. E. R.
adpressum (Roivainen 1597, H). F. R. toxarion (Wasum et al.
3964, FLAS). G. R. brachvpodium (Matteri 2274. BA). H. R.
implexum (Crosby 12504. MO). I. R. pseudo-thuidium
(Schiavone 2451. BA).

38
0.2mm
fill
C

FIG 7. General Morphological Features of Rigodium:
Changes in Leaf Morphology (Leaf with Long Acumen) along
Various Axes. A. Habit. B. Leaf from stolon. C-E. Stipe
leaves. C. Leaf from stipe base. D. Leaf from mid-stipe.
E. Leaf from stipe apex. F-G. Stem leaves. F. Leaf from
mid-stem. G. Leaf from stem apex. H-J. Leaves from "stem¬
like" branch (innovation). H. Leaves from innovation base.
I. Leaf from mid-innovation. J. Leaf from innovation apex.
K-M. Primary branch leaves. K. Leaves from branch base.
L. Leaf from mid-branch. M. Leaf from branch apex. N.
Leaves from secondary branch base (left) to apex (right).
0. Leaves from tertiary branch base (left) to apex (right).
All from Tonduz fPittier No:1 5667 (BR, R. toxarion).

40
0.3mm

FIG. 8. General Morphological Features of Rigodium:
Changes in Leaf Morphology (Leaf with Short Acumen) along
Various Axes. A. Habit. B. Leaf from stolon. C-E. Stipe
leaves. C. Leaf from stipe base. D. Leaf from mid-stipe.
E. Leaf from stipe apex. F-G. Stem leaves. F. Leaf from
mid-stem. G. Leaf from stem apex. H-J. Leaves from "stem¬
like" branch (innovation). H. Leaves from innovation base.
I. Leaf from mid-innovation. J. Leaf from innovation apex.
K-M. Primary branch leaves. K. Leaves from branch base.
L. Leaf from mid-branch. M. Leaf from branch apex. N.
Leaves from secondary branch base (left) to apex (right).
0. Leaves from tertiary branch base (left) to apex (right).
All from Elliott 139 (H, R. brachypodium).

42
M

FIG. 9. General Morphological Features of Rigodium:
Aspects in Leaf Morphology. A-E. Examples of auriculate
leaves in the various species (rare in all but R. pseudo-
thuidium). A. R. pseudo-thuidium (Halle & Skottsbera 842.
S). B. R. brachvpodium (Dusén 357. W). C. R. adpressum
(Kühnemann 5260. ALTA). D. R. implexum (Poeppjg s.n., BM)
E. R. toxarion (Landrum 240. MO). F-I. Stem leaves from
collection of R. toxarion. showing unusual variation in
costa development (Tonduz TPittier No: 1 5667. BR) .

44

FIG. 10. General Morphological Features of Riqodium;
Scanning Electron Micrographs of Leaf Surfaces. A. Dorsal
side of R. toxarion stem leaf showing weakly prorulose
midlaminar cells. B. Ventral side of R. brachypodium stem
leaf (arrow indicates intramarginal band of cells). C.
Dorsal side of R. brachypodium stem leaf showing projecting
end walls (prorulae) of midlaminar cells. D. Detail of C.
A from Tonduz \Pittier No:1 5667 (BR); B-D from Crosby 12992
(MO). A: line = 25 urn; B, C: = 50 urn; D: = 10 urn.

46

FIG. 11. General Morphological Features of Riqodium:
Scanning Electron Micrographs of Leaf Surfaces in R.
adpressum. A. Whole perichaetium (arrow indicates position
of detail in B). B. Detail of dorsal surface of
perichaetial leaf base showing papillae. C. Stem leaves
(arrow indicates decurrent portion). D. Detail of
decurrency showing papillae. A-B from Dusén 397 (S), C from
Matteri &. Schiavone 4985 (Herb. Matteri) , D from Cantino M-
11 (MO). A: line = 250 um; B: = 15 urn; C: = 100 urn; D: = 25
urn.

48

FIG 12. General Morphological Features of Rigodium:
Areolation of Stem Leaf. A. Stem leaf showing location of
view in B. B. Portion of stem leaf with various zones
labelled. C. Cross section of stem leaf with zones
corresponding to B. All from Claude-Joseoh 5775 (FH, R.
implexum).

50

FIG. 13. General Morphological Features of Riqodium:
Sporophytic and Associated Gametophytic Structures. A.
Paraphysis from perichaetium. B. Archegonium. C.
Paraphysis from perigonium. D. Antheridium. E. Calyptra
from developing sporophyte. F. Capsule. G. Stomate at base
of capsule urn. H. Annulus (still attached to urn and
operculum). I. Portion of peristome. J. Spore. A-B from
Kühnemann 5260 (ALTA, R. adpressum); C-D from Ruthsatz s.n.
(H, R. adpressum); E from Matteri 432 (BA, R. adpressum); F
from Lechler 629 (MICH, R. brachvpodium); G from Stevermark
32769 (F, R. toxarion); H from Ventura 18869a (MEXU, R.
toxarion), I from Hammen et al. 2676 (FLAS, R. toxarion); J
from Matteri & Schiavone 4985 (Herb. Matteri, R. adpressum).

turfos
H
zs

FIG. 14. General Morphological Features of Riqodium:
Scanning Electron Micrographs of the Peristome. A. Overview
of peristome. B. Apex of exostome tooth showing papillose
outer surface. C. Base of peristome tooth showing cross-
striolations on the outer surface. D. Detail of C. E.
Inner surface of peristome tooth showing lamellae. F.
Detail of E. A from Kunkel 2029 (H, R. brachvpodium); B-D
from Barrandeauv 345 (MO, R. pseudo-thuidium); E-F from
Neaer 10 (L, R. brachvpodium). A: line = 100 urn; B, C: = 25
urn; D, F: = 10 urn; E: = 50 urn.

54

FIG. 15. General Morphological Features of Riqodium:
Scanning Electron Micrographs of Spores. A-D.
Representative spores. A-B from Hollermaver 281 p.p. (S, R.
brachvpodium); C-D from Pócs 6782/B (VBI, R. toxarion). All
lines = 5 um.

UJ
b6

PHYLOGENY
Cladistic methodology has been developing in zoology
and botany over the past three decades, but has been
infrequently applied to systematic studies in the
bryophytes. The disadvantages of using bryophytes as the
subjects for cladistic study are discussed in detail by
several bryologists, such as Robinson (1985, 1986) and Buck
(1986). However, these problems with cladistics (e.g.,
difficulty of determining homology, choosing outgroups, and
dealing with character loss) exist in "traditional"
taxonomic work as well (Mishler, 1986). The primary
benefits of cladistic analysis are: (1) the care in which
characters is presented: the characters, their polarity, and
their level of universality must be stated explicitly in
order to support a cladogram, and (2) the ability to
construct an explicit hypothesis of genealogical
relationships.
Few studies have incorporated pleurocarpous groups
(including Rigodium) in a phylogenetic framework.
Historically, most bryologists have concentrated on
describing new species and genera; few have dealt with
delimitation of groups based on phylogeny (Buck & Crum,
1990). Family definitions, established at the turn of the
57

58
century and generally based on European taxa, became more
and more heterogeneous as newly described genera were added.
Recently, the circumscriptions of moss families and genera,
particularly those of the pleurocarps, are being radically
revised, but no scheme using strict Hennigian principles for
the pleurocarps has yet been published.
Trees showing relationships among pleurocarpous
families have been presented by Vitt (1984) and Buck and
Vitt (1986). Vitt (1984) applies character analysis at the
subordinal level (= orders in other classifications, i.e.,
Bryineae, Hypnineae, Leucodontineae, Hookeriineae) for the
Bryales, but his dendrogram of the families groups them
"according to similarity." In this scheme, Riaodium is
included within Thuidiaceae, shown as a sister group to the
Echinodiaceae. The survey of pleurocarpous families
presented by Buck and Vitt (1986) results in some
revolutionary alignments of families, some of which are
shifted between orders. The authors admittedly use both
symplesiomorphies and synapomorphies in the construction of
their "pseudocladogram." Explanations of the polarities of
characters, as well as their level of universality, are not
often offered but are convincing when given (e.g., for
peristomal development characters and leaf cell shape).
Figure 16 is a redrawn version of their cladogram of the
Hypnales with the cited plesiomorphic characters deleted,
resulting in unresolved branching points in the
superfamilies Hypnacanae and Brachytheciacanae. For

59
simplicity, autapomorphies are not included here as the
assumption is being made that the families are monophyletic.
The numbers of the character sets, listed in Table 2, follow
the original list of Buck and Vitt (1986). Numbers for the
plesiomorphic and autapomorphic characters are deleted here.
According to Buck and Vitt, the members of the Hypnales
lineage, all pleurocarpous, are characterized additionally
by hypnoid peristomes, elongate leaf cells, horizontal and
asymmetric capsules, and distinctive exostomal ornamentation
(outer surface cross-striolate below and coarsely papillose
above; inner surface with projecting trabeculae). The
Hypnales are further divided into three suborders: the
Hypnodendrineae, Fontinalineae, and Hypnineae. The
Rigodiaceae are classified within the Hypnineae, the most
advanced hypnalean suborder, characterized by well-developed
peristomal development (character 11, shouldered teeth).
The division of this suborder into three superfamilies is
based on gametophytic characters: the families of the basal
superfamily Leskeacanae (in which the Rigodiaceae are
included) are linked by the strong synapomorphy of
secondarily shortened leaf cells, plus a weaker character
cited as a tendency for papillosity (of various types) of
leaf cells. (That the latter character is found in other
groups is not directly addressed by the authors, and
additionally, the various kinds of papillae found in these
and other families are not distinguished.) The authors

60
postulate that these characters may be adaptations for water
retention in exposed habitats.
The five families composing the Leskeacanae
(Pterigynandraceae, Leskeaceae, Thuidiaceae, Echinodiaceae
and Rigodiaceae) have undergone numerous and ongoing
revisions. The family Pterigynandraceae was erected by Buck
(1980a) as a monotypic family, which has been recently
expanded to include four more genera (Buck & Crum, 1990).
The family is characterized by reduced costae, prorulose
leaf cells, and reduced peristome (smooth exostome;
endostome reduced to slender segments).
The Leskeaceae have historically been considered part
of, or close to, the Thuidiaceae (e.g., Grout, 1932) and due
to the reduced peristome of some genera, have even been
included within the Isobryales (Leucodontales; Buck, 1980a;
Vitt 1982, 1984). Buck and Vitt (1986) recognize a more
restricted Leskeaceae, as first suggested by Crum (1973),
with Anomodon and allies excluded. According to their
definition, the family is reduced to Leskea and Pseudoleskea
plus their associated relatives and are characterized by
strong tendencies of cells to be papillose over the lumina,
limited presence of paraphyllia, and orange exostome with
reduced striations (usually papillose). Recently, Buck and
Crum (1990) transferred several genera (e.g.,
Brvohaplocladium and Claopodium. discussed below) to the
Leskeaceae from the Thuidiaceae, primarily recognizing the
family on the basis of gametophytic characters and

61
perceiving "a habitat-driven, sporophytic reduction series
with Leskea as the reductionary extreme."
The Thuidiaceae s.1., sometimes combined with the
Leskeaceae, historically included several subfamilies (see
Watanabe, 1972). Buck and Vitt (1986) excluded Anomodon
from the family and simply defined it on the basis of
papillose leaf cells and abundant paraphyllia. Buck and
Crum (1990) further reduced the family to only the subfamily
Thuidioideae, with members of the other subfamilies
transferred to other families (discussed below).
The Echinodiaceae, a small monotypic family, have
sometimes been included in the Isobryales (e.g., Walther,
1983), but according to Buck and Vitt (1986) and Churchill
(1986), the plants have a standard hypnalean peristome. The
coarse, poorly branched plants have an unusual (and possibly
relict) Macaronesian-Australian-New Zealand distribution.
The monophyly of the superfamily Leskeacanae is based
on Buck's and Vitt's suite of characters represented by "12"
in Fig. 16; of these, the secondarily derived short leaf
cells is their strongest and best defined synapomorphy. For
the purposes of this study, the assumption is being made
that the superfamily is a natural and monophyletic group,
until such a time when a higher level phylogenetic analysis
(based on shared derived characters) is completed on all the
families of the Hypnales (as well as for the Leucodontales
and Hookeriales). These families continue to undergo much
redefinition, including transfer of genera between them

62
(even since the cladogram of Buck and Vitt was published).
The following representative genera of the superfamily have
been chosen for a preliminary cladistic analysis in an
attempt to better ascertain the phylogenetic position of
Riqodium. The affinities of several of the genera
themselves, as outlined below, have also not been agreed
upon as they are shifted around between families of the
Leskeacanae.
Pteriavnandrum. a monotypic genus (Buck, 1980b), was
included in the Entodontaceae (Crosby & Magill, 1981; Vitt,
1982) and tentatively in the Leskeaceae in the Isobryales
(Vitt, 1984). The genus initially comprised the
Pterigynandraceae (Buck, 1980a) until Buck and Crum (1990)
expanded the family. Buck (1980b) stated that the genus was
clearly an isolated group with no obvious connections to
other genera, but Buck and Crum (1990) acknowledge a
relationship with Leskeaceae and Thuidiaceae.
Leskea and Pseudoleskea represent the major groups of
Leskeaceae s.s., with Pseudoleskea characterized by a normal
hypnalean peristome, and Leskea. having the reductionary
extreme of the sporophyte.
Thuidium, Brvohaplocladium. Claopodium. Heterocladium.
and Helodium represent the diverse Thuidiaceae s.l.
Thuidium. Brvohaplocladium [= Haplocladium nom. illeq. fide
Watanabe & Iwatsuki (1981)], and Claopodium have been
included in the subfamily Thuidioideae s.l. The close
relationship between Claopodium and Brvohaplocladium has

63
long been recognized (Noguchi, 1964; Watanabe, 1972), and
the genera have been sometimes included within the
Anomodontaceae, as well as the Thuidiaceae. Buck and Crum
(1990) recently transferred them to the Leskeaceae as part
of the reduction series within the family. Of note here is
that Noguchi (1964) in his monograph of Claopodium suggested
that it may possibly not be monophyletic. Heterocladium.
previously within the subfamily Heterocladioideae of the
Thuidiaceae s.l., has been added to the expanded
Pterigynandraceae (Buck & Crum, 1990) as part of a reduction
series within that family. Helodium. a small genus of three
species (Abramova & Abramov, 1972), was formerly included
within the subfamily Helodioideae. Buck and Crum (1990),
somewhat unsure of its placement, erected the new monotypic
family, Helodiaceae, to accommodate it.
Echinodium is the small genus of six species comprising
the Echinodiaceae. According to Churchill (1986), the
monophyly of the genus is questionable since it is not well-
defined on the basis of shared derived characters.
The problems in placement and previous inclusion of
Riaodium within various families (Brachytheciaceae,
Lembophyllaceae, Thuidiaceae) are discussed in detail in the
section on "Taxonomic History." Crum (1981, 1984) recently
circumscribed the monotypic Rigodiaceae.
Phylogenetic reconstruction and character polarization
depend on the proper selection of an outgroup. Often a
functional or provisional outgroup is the best available

64
choice (see Watrous & Wheeler, 1981). According to Buck and
Vitt (1986; Fig. 16), the suborders Fontinalineae
(Fontinalaceae) and Hypnodendrineae (Pterobryellaceae,
Thamnobryaceae, Pleuroziopsidaceae, and Hypnodendraceae) are
the outgroups for the suborder Hypnineae (including
superfamily Leskeacanae). The choice of using these groups
is problematical for the following reasons. Most of these
families had been scattered among several orders and are
tentatively allied by Buck and Vitt in the Hypnales for the
first time. The use of characters of the Fontinalaceae
(traditionally in the Isobryales) is difficult due to the
extreme modifications in both the sporophyte and gametophyte
for an aquatic habitat. The synapomorphies (character set
2: exostome teeth long, gametophores dendroid, endostome
segments gaping, leaves coarsely serrate) for the
Hypnodendrineae may be weak, as arguments concerning the use
and polarities of these particular characters are not
presented. Two of these families, the Pterobryellaceae and
Thamnobryaceae, were previously subfamilies of the
Neckeraceae (subfamily Pterobyelloideae and Thamnoideae,
respectively) in the order Isobryales (Vitt, 1982, 1984).
(Buck and Vitt maintain the rest of the Neckeraceae in the
Isobryales.) The monotypic Pleuroziopsis comprises the
Pleuroziopsidaceae (Ireland, 1968) , previously allied with
the Climaciaceae (Isobryales), but now segregated into its
own family due to several unusual characters. The
Hypnodendraceae have traditionally been considered as an

65
acrocarpous family in the Bryales (Vitt, 1982, 1984), but
Buck and Vitt (1986) follow Touw (1971) in interpreting the
habit as having compressed pinnate branching.
For the preliminary investigation of the representative
genera of superfamily Leskeacanae, Pleuroziopsis
(Pleuroziopsidaceae) and Thamnobrvum (Thamnobryaceae) were
chosen as provisional outgroups for rooting the trees
presented here (Figs. 17, 18). As discussed below, the
results of these analyses suggest Echinodium as the possible
outgroup for the cladistic analysis of Rigodium species,
enabling the polarization of characters within Rigodium in
an effort to determine the possible phylogenetic
relationships of the species. These cladistic analyses were
generated using the software program Phylogenetic Analysis
Using Parsimony (PAUP), Version 3.0 (Swofford, 1990) on a
Macintosh computer. PAUP and similar software are
summarized and compared by Platnick (1987). The cladograms
were rooted using the particular outgroups as indicated in
the discussions below under the appropriate analyses. The
searches for the shortest trees included the heuristic
option "MULPARS" (multiple parsimony) along with branch¬
swapping, as well as branch-and-bound. Equivalent results
were obtained with both methods. When more than one minimal
tree resulted from an analysis, a strict consensus tree also
was calculated. Characters for multistate taxa, as coded in
Tables 3 and 5, were included and interpreted as
"polymorphism" (as opposed to "uncertainty").

66
Autapomorphi.es were excluded from the computer analyses (so
as to not influence the consistency index); those of the
Rjqodium species are listed in the discussion of that
analysis. For autapomorphies of the families for
superfamily Leskeacanae, see Buck and Vitt (1986).
Characters for Analysis of Representative Genera of
Superfamilv Leskeacanae
Out of numerous possible features examined, only those
with the potential for elucidating phylogenetic
relationships (i.e., those potential synapomorphies) were
included in the PAUP analyses. Table 3 represents the basic
data set for the three analyses of the ten representative
genera of superfamily Leskeacanae (plus two outgroups). The
18 characters are listed numerically and discussed briefly
below.
1. Development of the stipe (0 = well-developed). As
discussed in the section on morphology, the stipe is the
unbranched part of the lower stem and is an indication of
the development of an arborescent habit type.
2. Differentiation of secondary orders of branching (0
= differentiated branching). Some genera, such as Thuidium
and Thamnobrvum are characterized by secondary (and even
tertiary) branching, while in others, such as Leskea. the
primary branches do not ramify.
3. Organization of the axes into stems vs. branches (0
= well-organized stems and branches). In Leskea and
Pseudoleskea. for example, the few branches that do occur

67
are not very well-developed and are not distinguishable from
the main stems. In Thuidium. or even Bryohaplocladium (with
essentially no secondary branching), the branches are
numerous and well-developed.
4. Presence and types of paraphyllia (0 = no
paraphyllia). Riaodium lacks these structures, which are
discussed in detail under morphology. The three forms of
paraphyllia (filamentous, branched and foliose) are numbered
(but not ordered) differently in the matrix (see Table 3).
Note that a genus may be characterized by more than one
morphology.
5. Presence of pseudoparaphyllia (= 0).
Pseudoparaphyllia, also absent in Riaodium. are discussed
with paraphyllia in the section on morphology.
6. Dimorphic stem and branch leaves (0 = no
dimorphism). In certain genera (e.g., Riaodium and
Thuidium), the stem leaves are broadly ovate at the base and
taper to an acumen, but the branch leaves are narrowly ovate
and acute. Pleurozioosis. with very broadly ovate and blunt
stem leaves and ovate, deeply toothed branch leaves, here is
considered to have a different type of leaf dimorphism.
7. + Subulate stem leaves (0 = non-acuminate leaves).
These stem leaves are ovate at the base and more or less
abruptly taper to an acumen (e.g., Claopodium and Riaodium).
This feature is related to character 7, but not all genera
with this stem leaf shape have dimorphic stem and branch
leaves (e.g., Echinodium).

68
8. Reduced costa (0 = costa present). A very weak to
absent costa is present in genera such as Heterocladium (as
well as certain species of Rigodium).
9. Quadrate alar cells in rows (0 = alars not
differentiated). Pteriovnandrum. Leskea and Pseudoleskea
share this feature, but in the other genera, the alar region
is either undifferentiated or not differentiated in this
manner.
10. Prorulose midlaminar cells (0 = cells non-
prorulose). A distinction is made here between papillose
("11" below) and prorulose cells, in which the end walls
project dorsally, sometimes even forming well-developed
papillosities (prorulae) as in Pteriovnandrum and Riaodium.
11. Papillose leaf cells (0 = smooth leaf cells). A
loose interpretation of "papillose" is applied here,
including mammillose (low papillose) and multiple papillate
forms. Mammillose cells bulge in the lumen as well as in
the wall. Basically, all of these wall projection types
occur centrally in the cell.
12. Autoicous sexual condition (0 = dioicous). This
indication of sexuality was included in the analysis as a
few taxa (e.g., Brvohaplocladium and some species of
Helgdium) differed from the rest of the group (dioicous).
13. Lack of cilia (0 = cilia present). This character
is an indication of a reduced hypnalean endostome, as found
in Leskea. Pseudoleskea. and Pteriovnandrum.

69
14. Reduced ornamentation of exostome (0 = standard
exostome ornamentation). As discussed by Buck and Vitt
(1986), the standard hypnalean exostome tooth is cross-
striolate below and papillose above? teeth of Leskea and
Pseudoleskea demonstrate irregularly striolate to entirely
papillose ornamentations.
15. Erect capsules (0 = inclined to horizontal
capsules). (See below).
16. Symmetric capsules (0 = asymmetric capsules).
Erect and symmetric capsules may be correlated characters.
A typical hypnalean capsule is horizontal to inclined and
asymmetric in shape.
17. Reduction of the annulus (0 = well-developed
annulus). In Leskea and Pseudoleskea. the annulus is
reduced to absent.
18. Conic operculum (0 = rostrate operculum).
Opercula are either rostrate (e.g., Rigodium) or lack the
beak (conic), as in Leskea.
Results of Analyses of Genera
Three analyses were evaluated using the basic matrix in
Table 3. In one analysis, Thamnobrvum functioned as the
outgroup (Pleurozioosis deleted), and in the second,
Pleurozioosis was the designated outgroup (Thamnobrvum
omitted). In the third analysis, both genera were included
as outgroups. Thus, certain characters are polarized
differently according to the particular outgroup(s) chosen.

70
Only one most parsimonious tree (50 steps, CI=0.760;
Fig. 17) was generated when Thamnobrvum was used as the
outgroup. Echinodium is basal (as opposed to terminal in
Buck and Vitt's cladogram, Fig. 16), with Rigodium
positioned between it and Thuidium. In addition, Leskea-
Pseudoleskea-Pterigvnandrum. basal in Fig. 16, are the most
derived groups here. The cladogram also does not support
Buck and Crum's (1990) transfer of Brvohaplocladium and
Claooodium from Thuidiaceae to Leskeaceae, as inclusion of
these two genera with Leskea and Pseudoleskea in one family
would result in a polyphyletic group. Brvohaplocladium and
Claopodium appear phylogenetically closer to Leskea than to
Thuidium. however. Likewise, Pterigvnandrum and
Heterocladium (Pterigynandraceae? Buck and Crum, 1990) are
not shown as sister groups. The several homoplasies on the
lineage leading to Pterigvnandrum. however, may indicate
problems with its placement in this cladogram.
Thirteen characters (1, 2, 5, 6, 7, 9, 11, 13, 14, 15,
16, 17, 18) do not exhibit parallelism, although reversals
(in 5, 6, 7, 14, 11) and polymorphism (5, 11, 15, 16, 18; in
multistate taxa) occur. Also, six of these characters (9,
13, 15, 16, 17, 18) are associated with the Pterigvnandrum-
Leskea-Pseudoleskea group.
Rigodium and Echinodium (and other taxa; see Fig. 17)
share characters 7 (acuminate leaves) and 11 (papillose
cells); the synapomorphy of lack of pseudoparaphyllia (5)
and dimorphic leaf shape (6) link Rigodium to Thuidium (and

71
other taxa). The Riqodium lineage is characterized by
prorulose cells (10, a feature showing homoplasy), and the
polymorphic features of the weak costa (8) and papillose
cells (11), change from 0->l,0 and 1->1,0, respectively.
In the second analysis (Pleuroziopsis as outgroup), the
results are much less resolved; 27 equally parsimonious
trees (53 steps, CI=0.717) were discovered. The consensus
tree (Fig. 18B) is basically polytomous, although
Pteriavnandrum. Leskea, and Pseudoleskea are established as
a monophyletic group. However, one of the 27 trees is
identical in topology to the cladogram derived with
Thamnobrvum as the outgroup (Fig. 17), and in many trees,
(e.g., Fig. 18A), Echinodium is basal within the group, with
Riqodium phylogenetically adjacent.
With Thamnobrvum and Pleuroziopsis functioning as a
combined outgroup, 33 most parsimonious trees were generated
(54 steps, CI=0.704). The use of both taxa simultaneously
to root cladograms was problematical as one or the other of
these genera appears within the ingroup in several of the
trees (i.e., the tree could not be rooted so that the
ingroup was monophyletic). This issue weakens the validity
of using both these taxa as outgroups. However, several of
the trees (where the combined Pteriqvnandrum-Thamnobrvum
does appear as the outgroup) are similar in topology to
those discussed above (e.g., Fig. 17) and have Echinodium in
a cladistically basal position, followed by Riqodium and
Thuidium.

72
The consensus tree of the previous analysis (Fig. 18B)
indicates that more detailed phylogenetic investigations
(with more genera) are needed to better define the
relationships of the families within the Leskeacanae. The
present analyses do support maintaining Rigodiaceae as a
monotypic family, since inclusion with Thuidiaceae
(Thuidium) would result in a paraphyletic family.
Characters for Riqodium Species
The matrices of Tables 4 and 5 are the data sets used
in the analyses of Riqodium species. Eight characters were
polarized using Echinodium as the outgroup. Although the
number of OTUs differ (see discussion following), the number
of characters remained constant for both analyses. Six
characters are qualitative, and two are quantitative (one
continuous and one discontinuous). The problems in forming
taxonomic characters from measurements are summarized in
Almeida and Busby (1984). The approach in this revision
(see Fig. 19A and B) involves the traditional method of
scanning the full range of the material and partitioning the
scale into classes of varied range. The character states
are, thus, somewhat arbitrarily delimited. Only the
characters with an obvious gap (number of cells in the
intramarginal band, Fig. 19A; stem leaf decurrency/total
leaf length, Fig. 19B) were used in the cladistic analysis,
although three other characters (intramarginal vs.
midlaminar cell length, Fig. 19C; stem leaf length/width,
Fig. 19D; and stem leaf acumen length/length from point of

73
insertion, Fig. 19E) show basic trends. These three latter
features are discussed under the appropriate species
discussions following the diagnoses in this revision.
The following lists the characters as their derived
state ("1" in Tables 4 and 5; character 6 has two derived
states, "1" and "2.")
1. Rooting at tips. As discussed in the morphology-
section, several species of Riqodium (e.g., R. toxarion)
develop rhizoid clusters at the tips of stem and branches
and thereby form new plants.
2. Loss of well-differentiated stipe. Two species (R.
implexum and R. pseudo-thuidiunU lack the arborescent habit
and the associated well-developed stipe (lower unbranched
portion of the stem).
3. Right angle branching. In R. brachvpodium var.
tamarix (Fig. 38A), R. implexum (Fig. 44G), and R. pseudo-
thuidium (Fig. 46A), the primary branches are spreading,
evenly spaced and arise at right angles to the stem.
4. Decurrent stem leaves. Stem leaves were ranked as
"decurrent" when the stem leaf decurrency/total leaf length
ratio exceeded 8% (Fig. 19B). Note that a percentage
greater than 14 is an autapomorphy for R. adpressum.
5. Uneven midlaminar cell walls. In R. toxarion. (as
in Echinodium), these cell walls are not very porose (Fig.
27J), compared to the other species with conspicuously
uneven walls (e.g., R. pseudo-thuidium. Fig. 46M).

74
6. Visibly prorulose midlaminar cells. In R.
toxarion. the cells are prorulose, but not easily
discernible (Fig. 27J), while in R. adpressum. R. implexum
and R. pseudo-thuidium these cells are noticeably thickened
at the end walls (e.g., Fig. 46M). In R. brachvpodium (both
varieties) the end walls project as dorsal papillae
(prorulae; Fig. IOC and D). In the matrices, the thickened
but not papillose condition is indicated as "1," and the
papillose extreme, as "2." This does not, however, mean
that condition "2” is necessarily more derived that "1;"
other than the fact that "0" is basal (outgroup comparison),
the actual sequence of events (i.e., 0->l->2, 0->2->l, or
l<-0->2) is unknown here (see discussion of results).
7. Seven or greater cell rows in intramarginal band.
A natural division in the number of cell rows is apparent at
seven cells (Fig. 19A), with R. implexum and R. pseudo-
thuidium both characterized by this derived condition..
8. Extremely thickened cell walls of intramarginal
band. In R. toxarion (Fig. 27K) the intramarginal band is
barely visible, even in cross section (Fig. 271). In the
other four species, the walls are extremely incrassate and
easily distinguished from the midlaminar cells, even in
surface view (e.g., Fig. 46L).
Results of Analyses of Riaodium Species
The data sets (Tables 4 and 5) for the two analyses
were identical except for the configuration of R.
brachvpodium. In the first analysis, this species was split

75
into its two varieties, R. brachvpodium var. brachvpodium
and R. brachvpodium var. tamarix. in order to test the
monophyly of the species (Table 4). In the second
examination (Table 5), the species was assumed to be
monophyletic with two polymorphous character states (3,
right angle branching; 4, decurrent stem leaves).
Figure 20 is the single most parsimonious tree (11
steps, CI=0.818) for Riqodium species with the two varieties
of R. brachvpodium designated as separate OTUs. Riqodium
toxarion is basal, followed by R. brachvpodium and R.
adpressum, and R. pseudo-thuidium and R. implexum are
derived sister-species. Of interest is that R. brachvpodium
is not monophyletic here, but paraphyletic.
The only parallelism involves character 3 (right angle
branching) for R. brachvpodium var. tamarix and the R.
implexum-R. pseudo-thuidium clade, which may reflect that
the ramification is actually different in these two
instances. In R. brachvpodium var. tamarix the branches are
regularly pinnate (Fig. 38A), while the branching of the
other two species is irregularly pinnate. In fact, the
habit type of R. implexum (Fig. 22A) may have been derived
from a form like R. pseudo-thuidium with several innovations
arising from the main stem (Fig. 22B); see also discussion
under R. pseudo-thuidium).
The only reversal in the cladogram is where "rooting at
the tips" (1) was lost for the R. implexum-R. pseudo-
thuidium clade, possibly because this feature is correlated

76
with the loss of the aborescent or frondose habit. This
analysis also suggests that the direction within character 6
(degree of prorulosity) is 0->2->l, i.e., the less prorulose
state (1) is secondarily derived from the extreme papillose
type (2).
In the second analysis, R. brachvpodium was considered
to be a monophyletic multistate taxon (polymorphic
characters 3 and 4; Table 5). Two equally parsimonious
cladograms were generated (12 steps, CI=0.917; Fig. 21A and
B), with one tree (Fig. 21B) equivalent to the strict
consensus tree. In contrast to the previous analysis, where
R. adpressum is more derived than R. brachvpodium (which is
paraphyletic), the position of the former species here is
either phylogenetically intermediate between R. toxarion and
R. brachvpodium (Fig. 21A) or unresolved (Fig. 21B). The
other portions of the tree (R. toxarion basal; R. implexum-
R. pseudo-thuidium terminal sister-taxa) are supported as in
the previous analysis.
Within the multistate R. brachvpodium. homoplasy is
indicated for characters 3 (right angle branching) and 4
(decurrent stem leaves). Also, the direction of evolution
for character 6 is towards increasing degree of prorulosity
(0—>1—>2), instead of the secondarily derived reduction in
the previous analysis.
For both analyses, character 1 (rooting at tips—which
reverses within the terminal portion) is a defining feature
of Rigodium. In addition to this feature, autapomorphies of

77
the genus (i.e., synapomorphies of its species) include the
presence of a differentiated intramarginal band of cells and
extremely incrassate cells. Thus, the genus is clearly
monophyletic.
Taxonomic Philosophy Concerning Species
As suggested in Budd and Mishler (1990), the working
definitions of species used by taxonomists are, in general,
either phenetic or basically cladistic. In this revision, a
species was defined primarily as a phenetically cohesive
unit that is separated from other similar entities by a
consistent morphological gap. Monophyly (cladistic
approach) was examined secondarily in the analyses discussed
above. Riaodium toxarion (the basal species) is
metaphyletic (Donoghue, 1985; Mishler, 1985), as no
autapomorphies define it. Riaodium adpressum. R. implexum
and R. pseudo-thuidium are monophyletic, each distinguished
by the following autapomorphies; (1) R. adpressum: appressed
leaves, strongly revolute leaf margins, decurrency of stem
leaf greater than 14% of total leaf length (Fig. 19B), low
central papillae in some cells of the stem leaf decurrency,
and intramarginal cells shorter than the midlaminar cells
(Fig. 19C); (2) R. pseudo-thuidium: reduction of secondary
and loss of tertiary branching and loss/reduction of stem
leaf costae; and (3) R. implexum: free-living, terrestrial
"tumbleweed" habit with extremely wiry axes and profuse
branching. As discussed above, R. brachvpodium may be
monophyletic or paraphyletic. Since the strong character 6

78
(end walls with prorulae) and intermediate habit forms
(detailed in the discussion of R. brachvpodium var.
brachvpodium) link the two varieties, from a practical
standpoint this taxon is considered as a single species in
this revision, and it is considered probably monophyletic.
A variety here is defined as a monophyletic (or
metaphyletic) group within a species that is separated from
other such entities by a small morphological gap (Wilken &
Hartman, 1991). Thus, the variety in the traditional sense
of an allopatric race (Mayr, 1969), i.e., having one to few
conspicuous differences associated with a certain
geographical range, is not applied in this revision (see
Stuessy, 1990, for discussion on infraspecific categories).
The category of variety is applied within two species, R.
toxarion and R. brachvpodium. Although both varieties of R.
toxarion are sympatric, the traditional varietal concept
somewhat applies since R. toxarion var. robustum is
restricted to the Juan Fernández Islands. This variety is
additionally defined by the autapomorphy of narrow branch
leaves (see details under discussion of R. toxarion var.
robustum), while R. toxarion var. toxarion is metaphyletic.
As discussed above, the two varieties of R. brachvpodium
here are considered to comprise one species due to the
presumed synapomorphy of prorulae, as well as intermediates
in habit type. Rigodium brachvpodium var. tamarix is
defined by the autapomorphy of the habit type (elongated

stems with +
brachypodium
regularly pinnate branching), while R.
var. brachypodium is considered metaphyletic.

FIG. 16. Proposed phylogeny of the order Hypnales, adapted from
Buck and Vitt (1986). The characters corresponding to the numbers are
listed in Table 2.

SUBORDER I
SUBORDERS
I HYPNINEAE
II FONTINALINEAE
HI HYPNODENDRINEAE

82
Table 2. A list of the synapomorphic characters for the
order Hypnales as featured in the cladogram (Fig. 16)
modified from Buck and Vitt (1986). The characters
indicated by the authors as symplesiomorphic and
autapomorphic are deleted here, hence the
discontinuities in the numbering system on the
cladogram and for their characters listed below.
1. Peristome hypnoid; capsules horizontal, asymmetric; leaf
cells elongate
2. Exostome teeth long; gametophores dendroid; endostome
segments gaping; leaves coarsely serrate
3. Leaf cells thin-walled; alar cells thin-walled, quadrate
5. Leaf cells long
7. Opercula + rostrate; leaves with thickened margins
11. Exostomial shoulder well-developed
12. Leaf cells + papillose; alar cells reduced; leaf cells
secondarily short; plants xerophytic
13. Leaves subulate
14. Capsules erect; costa weak; paraphyllia reduced;
peristome reduced
16. Stem leaves differentiated; branching well-developed
21. Leaf cells long
22. Leaves varying around lanceolate
25. Peristome yellow-brown; costa poorly developed; leaf
cells shortened
26. Alar cells small; capsules short; substrate of wood and
rocks

83
Table 2—continued
29. Alar cells covering costal base; pseudoparaphyllia
filamentous
30. Costal spine present
34. Leaf cells short; peristome reduced; plants epiphytic
37. Costa lost
40. Exostome shoulder amplified; opercula long-rostrate;
alar cells amplified (shape)
45. Plants flattened

84
Table 3. Data matrix for the cladistic analysis of selected
genera of the superfamily Leskeacanae. "?" = missing
data. Polymorphous characters are indicated as: a =
1,2,3, b = 1,2; c = 0,2; d = 0,1. Thamnobrvum and
Pleuroziopsis functioned as outgroups in the analyses.
Genus
Characters
1
1
1
1
1
1
1
1
1
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
Thamnobrvum
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Pleuroziopsis
0
0
0
0
1
0
0
1
0
1
0
0
1
0
0
0
7
7
Brvohaplocladium
1
1
0
a
1
1
1
0
0
0
1
1
0
0
0
0
0
d
Claopodium
1
1
0
c
1
d
1
0
0
0
1
0
0
0
0
0
0
0
Echinodium
0
0
1
0
0
0
1
0
0
0
d
0
0
0
0
0
0
0
Helodium
1
1
0
a
1
0
1
0
0
1
1
d
0
0
0
0
0
0
Heterocladium
1
1
0
b
d
1
1
1
0
1
1
0
0
0
0
0
0
d
Leskea
1
1
1
b
1
0
0
0
1
0
1
1
1
1
1
1
1
1
Pseudoleskea
1
1
1
b
1
0
1
0
1
0
1
0
1
0
d
d
1
1
Pteriavnandrum
1
1
1
0
0
0
0
1
1
1
0
0
1
1
1
1
0
0
Riaodium
0
0
0
0
1
1
1
d
0
1
d
0
0
0
0
0
0
0
Thuidium
1
0
0
a
1
1
1
0
0
0
1
0
0
0
0
0
0
0

FIG. 17. Most parsimonious tree for representative
genera of the superfamily Leskeacanae using Thamnobrvum as
the outgroup. Characters are listed in the text; for the
character states see data matrix (Table 3).

echi
rigo
thui
bryo
clao
hete
helo
pter
lesk
pseu
oo

FIG. 18. Representative trees for the genera of the
superfamily Leskeacanae using Pleuroziopsis as the outgroup.
A. Sample tree (out of 27 equally parsimonious cladograms).
Characters are listed in the text? for the character states
see data matrix (Table 3). B. Consensus tree.

00
00

FIG. 19. Morphological Trends in Rigodium species. A.
Number of cell rows in the intramarginal band of stem
leaves, showing division at 8 cells. B. Range of variation
in stem leaf decurrency length/total leaf length, showing
gaps at 8 and 13. C. Range in intramarginal and marginal
cell lengths. D. Range in stem leaf length/width. E.
Range in stem leaf acumen length/leaf length from point of
insertion. TOX = R. toxarion; BRAB = R. brachypodium var.
brachvpodium; BRAT = R. brachypodium var. tamarix; ADP = R.
adpressum; PSE = R. pseudo-thuidium; IMP = R. implexum.
Asterisks (*) in B and C indicate autapomorphies (for R.
adpressum). Character groupings depicted in A and B were
used in cladistic analyses.

90
B
Cell Length (pm)
i intramarginal
i nmidlaminar
IMP
PSE .
ADP .
BRAT .
BRAB .
TOX
20 40 60
Acumen L/Leaf L

91
Table 4. Data matrix for the cladistic analysis of
Rigodium species where the varieties of R.
brachvoodium are treated as separate OTUs.
Echinodium functioned as the outgroup in the
analysis.
Species
Echinodium
R. toxarion
R. brachvpodium var. brachvpodium
R. brachvpodium var. tamarix
R. adpressum
R. implexum
R. pseudo-thuidium
Characters
12345678
00000000
10000000
10011201
10101201
10011101
01111111
01111111

FIG. 20. Most parsimonious tree in analysis of
Rigodium species with the two varieties of R. brachypodium
("brat" and "brab") treated as separate OTUs. For
characters see the text; for the character states see Table
4.

VO
OJ

94
Table 5. Data matrix for the cladistic analysis of Rigodium
species where R. brachvpodium is treated as
monophyletic (both varieties = 1 OTU). Echinodium
functioned as the outgroup in the analysis.
Polymorphic character: a = 0,1.
Species
Characters
1
2
3
4
5
6
7
8
Echinodium
0
0
0
0
0
0
0
0
R. toxarion
1
0
0
0
0
0
0
0
R. brachvoodium
1
0
a
a
1
2
0
1
R. adoressum
1
0
0
1
1
1
0
1
R. imolexum
0
1
1
1
1
1
1
1
R. oseudo-thuidium
0
1
1
1
1
1
1
1

FIG. 21. The two most parsimonious trees in analysis
of Riqodium with R. brachvpodium ("bra") treated as one OTU
(i.e., monophyletic). Cladogram B is also equivalent to the
consensus tree. For characters see the text; for the
character states see Table 5.

' parallelism
=reversal

FIG. 22. Habits of sister groups R. implexum and R.
pseudo-thuidium. A. R. implexum (Dusén 409. O). B. R.
pseudo-thuidium plant with innovations, mistaken for R.
implexum (Dusén 618. JE).

2cm

PHENETIC STUDIES
As noted in the introduction and taxonomic history, the
numerous described "species" of Rigodium are very similar
morphologically and are often confused with one another in
floristic literature. Preliminary examinations of the
specimens indicated two apparently well-defined groups due
to their distinctive habits (R^ implexum and R_j_ pseudo-
thuidium/R. hvlocomioides), and two more variable and
overlapping complexes encompassing most of the other species
names (e.g., a R^. toxarion/qracile group and R.
brachvpodium/arborescens group). Phenetic analyses were
conducted in order to evaluate more objectively the possible
morphological boundaries of these presumed species.
The multivariate ordination technique, principal
component analysis (PCA), was employed using the software
package NTSYS-pc (Rohlf, 1989) on an IBM-compatible PC.
Sneath and Sokal (1973), Wiley (1981) and Duncan and Baum
(1981) discuss this multivariate technique in more detail.
Basically, principal components analysis is a method of data
reduction that aids in detecting patterns in the data (i.e.,
measurements of characters) and relationships between
"operational taxonomic units" (OTUs, specimens in this
study), without a priori subdivision of OTUs into discrete
groups. The characters are unweighted. The results,
99

100
complex "scatter diagrams" used in evaluating the phenetic
gaps between the OTUs, are produced from the ordination of
the OTUs along generated axes ("principal components").
These principal components (axes) are actually
representations of the characters, each of which vary in
their relative contribution ("factor loading") to each PC
axis. Each principal component represents a percentage (per
cent of trace) of the total variation between the OTUs. A
higher eigenvalue indicates that more variance is accounted
for by that particular principal component. Usually, only
the first two or three principal components, which have the
highest eigenvalues and typically encompass most of the
variation, are used for the graphs. The principal component
analysis also produces an index of highly correlated (and
possibly redundant) characters in a correlation matrix.
Highly correlated characters may then be reevaluated and
perhaps deleted. Care must be taken with each step of the
process, including selection of appropriate OTUs and
characters (discussed below).
Choice of OTUs and Choice of Specimens
The operational taxonomic unit in this study is defined
as all specimens of a particular collector's collection
number (one "record" or collection). Since many bryophyte
collections were distributed as exsiccatae, duplicates have
been deposited at many institutions, resulting in a wealth
of material for many collections. Each collection number
represents a sample of a natural population, and often even

101
within one packet, individual plants are not easily
discernible.
As stated in the introduction, approximately 2,400
specimens were received on loan for this study. After
taking into account duplicates and deleting those specimens
misidentified as Riaodium. the data base contained a total
of 1240 records. Of these, 50 were designated "Anonymous
s.n.," usually with fragmentary material and little or no
label data (country, location, etc.), and thus not suitable
for inclusion in the phenetic study. It was not uncommon
for moss collections to be split up, and incompletely copied
label data accompanied the derivative specimens to their new
institutions. About 300 more specimens with complete label
data (but with missing collection numbers) were probable
duplicates of other specimens: the collectors, dates, and
localities exactly matched other specimens with collection
numbers. Taking these into account, a total of 890 more or
less suitable OTUs ("records" or collections) were available
from which to chose a sample set representing the variation
within the genus.
These specimens seemed to adeguately represent the
variation in the genus over its geographical range as
described in the literature. For example, most (ca 660) of
these 890 records were from Chile (560 specimens) and
Argentina (100 specimens), apparently the area of greatest
variation due to the number of epithets associated with
these areas (see Table 1). Of note are the approximately

102
120 Chilean specimens from the well-collected Juan Fernández
Islands. The over-representation of this area within the
890 specimen pool was taken into account when specimens were
selected.
Starting with localities in Hispaniola and Central
America and working southward, specimens were carefully-
examined to cull the sample set to be used in the phenetic
analysis. Besides geography, the specimens were evaluated
on the basis of variation in characters, quality and
abundance of material, ecology, and presence of sporophytes.
A total of 140 specimens were initially chosen for the
sample set. After much closer examination of these, 120
(approximately 14% out of the original 890) eventually were
evaluated for the phenetic analysis and are listed in
Appendix A. Fifty-two of these had mature sporophytes (seta
plus at least the capsule urn with peristome teeth).
This method of non-random selection may have actually
biased the sample set towards increased variability in
comparison to a traditional typologically based study where
variability often tends to be ignored (e.g., the methodology
espoused by Frahm, 1989). The choice of specimens for this
study was thus not influenced by typological preconceptions
(i.e., not with a priori grouping as in Stark, 1987). Type
specimens were included only to demonstrate that most of the
epithets were redundant (type OTUs scattered throughout the
variation of the group) and to assign the oldest epithets in

103
naming groupings of the PCA (but see also discussion of
phylogeny).
Choice of Characters
The particular morphological characters measured for
the phenetic study were selected on the basis of observation
in variation of numerous features in a detailed preliminary
study of 40 specimens. Several of the types were included
at this stage in order to gain a perspective on the
historical importance of some characters mentioned in the
literature. Table 6 lists the characters used in the PC
analyses depicted in Figs. 24 and 25. Thirty-six of these
characters are gametophytic and 11 are sporophytic. Missing
data (perichaetial leaves and sporophytes) were accommodated
by the NTSYS-pc software program.
Five measurements were obtained for each character on
an OTU, except for some sporophytic features for which
material was lacking. Five samples (measurements) of each
character per OTU were determined to be the minimum number
sufficient to obtain a mean which adequately estimates the
actual mean (measurements of that character) for an OTU.
This was ascertained by the mathematical relationship
between sample size (n) and the 95% confidence interval for
the actual mean of a given OTU (ju) shown in the statistical
correlations presented in Appendix B.
The general techniques involved in specimen preparation
and mensuration are described in the previous section on
general materials and methods. Equivalent structures were

104
measured on each specimen (Fig. 23), and the scheme of
measuring each character was also standardized. As an index
of the habit form and size, the stem width and the stipe,
stem, and longest primary branch lengths were included. The
stem width was measured from a cross section taken from the
midpoint of the stem (Fig. 23B). The stipe leaves were
removed at mid-stipe (Fig. 23C) because the leaves here
typically had well-developed acumens (in comparison to the
leaves below with usually shorter acumens) and were ecostate
(in comparison to the leaves above where traces of the costa
first appear). In plants with a poorly developed stipe
(i.e., non-arborescent habit), the stipe leaves were also
taken from the middle of the basal portion of the stem
before it branched, and here the leaves were found to be
ecostate, as well. The stem leaves were taken consistently
from the mid-stem (Fig. 23D). The branch leaves were from
the secondary branches (Fig. 231), as those of the primary
branches were often transitional forms (Figs. 7K-L, 8K-L).
Costa width was measured at the base (at its maximum).
The first five complete leaves (stipe, stem, branch,
and perichaetial) encountered in scanning each slide were
measured. A representative stem leaf was chosen for the
measurements for five each of the alar, marginal,
intramarginal, and midlaminar cells at the locations
indicated in Fig. 23D-H. The marginal, intramarginal and
laminar cell measurements were included as an attempt to
quantify the leaf "border" mentioned under the morphology

105
section. The longest (inner) post-fertilization
perichaetial leaves were measured (Fig. 23J). Although the
sporophytic characters appeared to be more or less
consistent among the OTUs, they were included in the PC
analyses to see if any subtle differences could be detected
Fig. 23K-M).
Results of the Principal Component Analyses
As emphasized by Wiley (1981), PCA is not really a
clustering technigue designed to discriminate between
groups, but it can aid in distinguishing between groups not
readily apparent in the original data. The best results of
several PC analyses are presented in Figs. 24 and 25. The
first analysis (Fig. 24) included all 120 OTUs (listed in
Appendix A), and the second (Fig. 25), the 85 OTUs of the R.
toxarion var. toxarion and R. brachvpodium var. brachvpodium
complexes (indicated with asterisks in the list in Appendix
A). In the graphs, the OTUs are labelled (with the outlying
points connected) according to the final species
determination in this monograph (see phylogeny). The type
specimens are indicated by numbers as listed in Appendix A.
The characters that most influence (i.e., have the highest
eigenvalues) each principal component (axis) are listed
along the appropriate axes. Of note is PC 3 of the second
analysis (Fig. 25B) in which only features of the sporophyte
(seven characters) had high factor loadings.
All ordinations show some overlap of OTU complexes,
reflecting the sometimes subtle differences between the five

106
recognized species. In addition, the actual separation of
species in these plots may not be adequately depicted since
each graph represents only approximately 32 to 41% of the
total variation. Finally, some distinctive qualitative
characters have not been included in the data.
For example, the most distinctive group, R. pseudo-
thuidium (including R. hvlocomioides), separates best along
PC 2 in Fig. 24A due to the ecostate stem leaves (and to a
lesser extent, along PC 1 due to an unusual habit). The R.
implexum OTUs, although consistently overlapping within the
R.brachvpodium complex, generally form a relatively tight
group. Riqodium implexum is primarily characterized by an
unusual habit probably not well-revealed in these analyses.
The new species, R. adpressum. is also characterized by
some qualitative features, such as centralized, dorsal
papillae in the decurrent portion of the leaf and the
extremely thick walls of the intramarginal cells. The
overlap between R. adpressum and R. brachvpodium and R.
toxarion reflects the similar habit of the three species.
Also the stipe and stem leaf shape of R. adpressum is more
or less intermediate between that of R. brachvpodium and R.
toxarion (Zomlefer, 1992).
The large and extremely variable R. toxarion and R.
brachvpodium clusters show some overlap in all scatter
diagrams, even in Fig. 25 where the the OTUs of the other
three species were deleted. This analysis supports the
hypothesis of R. brachvpodium (OTU number 5) and R.

107
arborescens (OTU number 3) as belonging to the same entity,
phenetically close to the R. toxarion complex. Characters
of PC 1 (habit type, stipe and stem leaf size and shape,
intramarginal and midlaminar cell size and shape) best
separate these two complexes. The variable specimens of the
R. toxarion cluster include the types for 15 species, with
13 from Central and South America (see Table 1). The
intermixing of the African OTUs ("R. kilimandscharicum" of
continental Africa and "R. niveum" of Madagascar) within R.
toxarion proper (Central and South America) in both analyses
indicates that these African "species" are conspecific and
express the genetic variation shown in the group in general
in the New World.
Of note is that measurements of the various cell types
(characters 19-30) tended to be highly correlated, as did
the sporophytic features (37-47) .
In summary, the PC analyses generally support the five
species of Rigodium presented in this monograph. R. pseudo-
thuidium is the most distinctive due to the habit (little
branched) and ecostate upper stem leaves. R. implexum and
R. adpressum are best characterized by gualitative features
discussed above and under their respective descriptions
which follow. R. brachvpodium (including R. arborescens) is
best distinguished from R. toxarion on the basis of leaf
characters, including the size and shape of the
intramarginal and midlaminar cells. The scatter diagrams
generally depict the inclusion of the types of 15 species

108
(including 2 from Africa) within R. toxarion. The concept
of a more variable R. toxarion thus has a disjunct
distribution (Central/South America and Africa), expanded
from the original restricted range of Hispaniola and Central
America.

109
Table 6. Characters used in the phenetic analyses of
Riqodium.
1.
2 .
3 .
4.
5.
6.
7.
8.
9.
10.
11.
12.
13 .
14.
15.
16.
17.
18.
19.
20.
21.
22 .
23.
24 .
25.
stipe length
stem length
longest primary branch length
stem width
stipe leaf length (from point of insertion)
stipe leaf width
stipe leaf acumen length
stipe leaf length/width
stipe leaf acumen length/leaf length
stem leaf length (from point of insertion)
stem leaf width
stem leaf acumen length
stem leaf length/width
stem leaf acumen length/leaf length
stem leaf decurrency length
stem leaf decurrency length/total leaf length
costa length
costa width at base
alar cell length
alar cell width
alar cell length/width
marginal cell length
marginal cell width
marginal cell length/width
intramarginal cell length

110
Table 6--
-continued
26,
. intramarginal cell width
27,
. intramarginal cell length/width
28,
. midlaminar cell length
29,
, midlaminar cell width
30,
. midlaminar cell length/width
31.
. branch leaf length (from point of insertion)
32 .
. branch leaf width
33 .
. branch leaf length/width
34.
, perichaetial leaf length
35.
, perichaetial leaf width
36.
. perichaetial leaf acumen length
37.
. seta length
38.
. capsule urn length
39.
. capsule urn width
40.
operculum length
41.
capsule mouth width
42 .
beak length
43 .
exostome tooth length
44 .
exostome tooth width
45.
endostome tooth length
46.
basal membrane height
47 .
cilia length

FIG. 23. Morphological Features Measured for PC
Analyses. A. Habit. B. Cross section of stem. C. Stipe
leaf. D. Stem leaf. E. Alar cell. F. Marginal cell. G.
Intramarginal cell. H. Midlaminar cell. I. Secondary
branch leaf. J. Perichaetial leaf. K. Sporophyte. L.
Capsule. M. Portion of peristome. A-L from Tonduz fPittier
No;1 5667 (BR, R. toxarion); M from Matteri & Schiavone 4985
(Herb. Matteri, R. adpressum). See Table 6 for numbered
character list.

112
0.3mm

FIG. 24. Plots of the First Three Principal Components
for Phenetic Analysis of all Rigodium Species. A. PC 1 vs.
PC 2. B. PC 1 vs. PC 3. Numbered points correspond to type
material listed in Appendix A.

PC 3(1 1%) (stipe and stem leaves) 03 PC 2 (12%) (costa, sporophyte)
114
PC 1 (21%) (habit, stipe and stem leaves, intramarginal cells, branch leaf)

FIG. 25. Plots of the First Three Principal Components
for Phenetic Analysis for R. toxarion var. toxarion and R.
brachvpodium var. brachypodium. A. PC 1 vs. PC 2. B. PC 1
vs. PC 3. Numbered points correspond to type material
listed in Appendix A.

PC 3 (8%) (sporophyte) CO PC 2 (14%) (stipe and stem leaves)
116

PHYTOGEOGRAPHY
The distribution of Rigodium (Fig. 26) consists of four
endemic austral South American species (R. brachvpodium. R.
adpressum. R. implexum. and R. pseudo-thuidium; Figs. 37,
42, 45, and 48, respectively) and a single species disjunct
between South America and Africa (R. toxarion; Fig. 30).
The disjunct R. toxarion has a much more widespread
neotropical range than the other four species, which are
generally restricted to the Andean Cordillera in southern
Chile and Argentina. The range of R. toxarion includes
Hispaniola and the Central American Cordillera, as well as
the Andean Cordillera through Bolivia, Ecuador, and Peru to
Chile. Rigodium toxarion occurs also in the highlands of
Venezuela and Colombia and along the coastal ranges (Serra
do Mar and Serra do Espinhago) of southeastern Brazil, but
has been collected only in the highlands near Tucumán in
Argentina. In southeast Africa, R. toxarion is restricted
to the elevated ranges from just south of the equator to the
tip of Africa; the species occurs also at one locality in
northern Madagascar.
This type of disjunct South American-southeastern
African distribution pattern has been noted for several
genera of bryophytes (see Griffin et al., 1982; Gradstein
et a¿. , 1989). Two basic theories, discussed in detail in
117

118
Gradstein et al. (1983), have been espoused as explanations
for intercontinental disjunctions among bryophytes. Some
bryologists (e.g., Schuster, 1983) advocate long-distance
dispersal, while others (e.g., Buck and Griffin, 1984)
emphasize continental drift as the primary factor.
Riaodium has a range similar to that of Squamidium
brasiliense. discussed by Allen and Crosby (1986). The
authors follow Schuster's (1983) assumption that conditions
for wind dispersal are extremely plausible, considering the
proximity of the continents and the latitudinal range of
strong westerlies. However, in their overview of bryophytes
with South America-African distribution, Buck and Griffin
(1984) conclude that long-distance dispersal is unlikely as
the sole agent considering the taxonomic, distributional,
and ecological diversity of those disjuncts. Further, spore
survival studies by van Zanten (1976, 1983, 1984? & Poes,
1981) indicate that tropical bryophyte spores are less
likely than those of temperate species to survive the rigors
of intercontinental long-distance dispersal due to their
greater sensitivity to desiccation and dry-freezing. In
addition, the spores of mosses from mesic habitats (e.g.,
Riaodium) tend to have little resistance to extended periods
of desiccation, and pleurocarpous mosses are less drought
resistant than acrocarps. Van Zanten (1983) concludes that
such transoceanic transport across the equator via dry air-
streams, in general, is difficult.

119
The fact that the distribution of Rigodium in Africa is
restricted to the southeastern portion of the continent
indicates that the genus may not be able to cross even
moderate sized barriers: Rigodium is not found in montane
western Africa, although suitable, high altitude habitats
exist there (e.g., in Cameroon; Griffin, per. comm.).
Continental drift and the effects of the Pleistocene
glaciation may thus be the reasons for the extant disjunct
range, possibly representing a relict distribution from one
originally widespread in Gondwanaland during the Mesozoic.
Increasing aridity may have caused the subsequent extinction
fo the genus in western Africa.
The center of diversity, where all five species occur,
is in the Andean Cordillera along the Chilean-Argentinian
border in central Chile. As discussed above, the most
ancestral species, R. toxarion. has a disjunct and a more
tropical distribution (to ca 45°S), and the four derived
species evidently are better adapted for temperate latitudes
(to 550 S). This may indicate that Rigodium radiated (and
subsequently speciated) from the northern latitudes
southwards throughout South America. Speculation about the
original ranges of the other four species is not possible:
they are all basically sympatric and have probably spread
along the Andean Cordillera to the tip of South America by
"short-distance" dispersal.

FIG. 26. Distribution of the Genus Riaodium.

121

TAXONOMIC TREATMENT
Riqodium Kunze ex Schwágr., Linnaea 18: 559. 1844 [1845].
Type: R. implexum Kunze ex Schwágr.
Hvpnum Hedw. section Riqodium (Schwágr.) C. MÜ11., Svn. 2:
418. 1851.
Plants predominantly medium-sized to moderately robust,
wiry, dendroid, frondose, to rarely subsimple, erect,
pendent, or creeping, irregularly to + regularly pinnately
branched, sometimes highly branched and forming unattached
mats, occasionally rooting at tips of stems and primary
branches, green, yellow-green to yellowish brown or brownish
green, on tree trunks and branches or occasionally on logs,
soil or rocks. Rhizoids red-brown, smooth, with oblique end
walls, occurring on substrate sides of stolons and stems,
sometimes clustered at tips of stems and primary branches.
Stolons reddish brown to brown, creeping and adnate to
substrate, often with + less-developed leaves than the rest
of the plant; in cross-section with an outer rind of (3-)4-
5(-6) rows of small, incrassate cells and an inner cortex of
larger, thin-walled cells surrounding a central strand of
(6-)10-20(-50) very small, thin-walled cells. Main axes in
cross-section similar to stolon, often differentiated into
unbranched, reddish-brown stipe and branched stem; surface
122

123
furrowed. Branches widespread to closely spaced on steins,
curved or straight, sometimes flagellate. Axillary hairs
abundant in leaf axils at stem and branch tips, 57-72 urn
long, consisting of 3 cells per hair; basal cells 2, square,
pigmented (lower one sometimes lightly pigmented); terminal
cell elongate, rounded at apex, hyaline. Paraphvllia none.
Pseudooaraphvllia none. Leaves trimorphic (stipe, stem and
branch) or sometimes dimorphic; cells incrassate throughout,
+ porose with even to usually uneven walls at base and
midlaminar regions, prorulose, rounded-quadrate (base and
margins) to oblong, rhombic or rhomboidal (upper and
midlaminar regions), 3-10 + larger, thicker-walled cells
commonly forming intramarginal band of cells; alar regions
not differentiated. Stem leaves commonly crowded on stems,
broadly ovate-cordate at base and abruptly narrowed to a
well-developed acumen, sometimes subulate, usually wide-
spreading to squarrose (+ spreading to appressed in R.
adpressum). with clasping and concave bases, sometimes
longitudinally undulate, sometimes auriculate, sometimes
decurrent (then occasionally some cells of decurrent
portions with central papilla on the dorsal side); margins
erect to plane to more commonly reflexed to revolute,
serrulate to dentate above and serrulate, dentate to
sometimes crenulate at base; costa present and well-
developed (occasionally weak to absent), ending in the base
of acumen, with an A-type cross-section (see Kawai, 1968),
2-5-stratose in the lower half, rugose on dorsal surface.

124
Stipe leaves with similar shape, orientation and areolation
as stem leaves, often widespread on axis; costa absent or
rarely present and then very weak or double. Branch leaves
broadly to narrowly ovate, acute to slightly acuminate,
erect to spreading; margins serrate or serrulate to base;
costa single, usually well-developed, strongly bulging
abaxially, 2-3-stratose in the lower half, ending below leaf
apex. Digicoms; antheridial and archegonial plants
identical, archegonial plants more commonly found.
Perigonia small and bud-like, lateral, mostly along primary
branches but also along stems and secondary branches.
Perigonial leaves ovate, acute to shortly acuminate,
concave; margins entire at base and serrulate above; costa
absent; cells oblong to rhombic below and becoming shorter
above. Antheridia commonly (3-)4 per perigonium,
subcylindric, orange or tinged with orange; paraphyses 6-12
cells long, surpassing the antheridia, composed distally of
hyaline rectangular cells and commonly with 2 quadrate,
thinner-walled, pigmented cells at base. Perichaetia
lateral, mostly along stems but also along primary branches.
Perichaetial leaves subulate from a narrowly obovate
sheathing base, keeled in the lower half, concave, often
with whitish or orange-tinged base, with spreading to
squarrose tips; costa absent to very weak; margins + entire,
sinuous to denticulate near base and deeply serrate above;
cells oblong to rhombic at base and becoming shorter and
flexuous above, porose at base, with basal cells frequently

125
papillose (bearing one large central papilla on the dorsal
side), prorulose. Archegonia numerous per perichaetium;
paraphyses 9-19 cells long, surpassing the archegonia,
composed distally of hyaline rectangular cells and commonly
with 2(-4) quadrate, thinner-walled, pigmented cells at
base. Sporophvtes infrequent. Seta elongate, reddish,
smooth. Capsules exserted, horizontal to inclined,
asymmetric, cylindric; exothecial cells incrassate
throughout, irregularly hexagonal-rhombic at mouth, rhombic
at mid-urn, linear at neck. Stomata few at base of urn,
elevated, superficial (phaneroporous), often heavily
pigmented, surrounded by (7-)8(-10) subsidiary cells.
Annulus deciduous, consisting of 2 rows of rectangular
incrassate cells. Operculum short- to long-rostrate.
Peristome double. Exostome teeth 16, yellow-orange,
inflexed when wet and reflexed when dry, linear-lanceolate,
gradually tapered, cross-striolate below and papillose above
on the front surface, with zig-zag median line, bordered,
weakly trabeculate on front, strongly trabeculate at back.
Endostome segments 16, arising from well-developed basal
membrane, linear-lanceolate, gradually tapered, keeled,
perforate, as long as or shorter than teeth, finely
papillose; cilia (l)-2-3, nodose, papillose. Spores
spherical, papillose. Calvptra cucullate, smooth, naked.
Key to the Species of Rigodium
The bases of Rigodium stem and stipe leaves encircle
and tightly clasp the axes. Care must be taken to remove

126
the entire leaf from the stem, including the decurrent basal
portions when present (Fig. 9C). Several leaves should be
examined in order to adequately sample the range of
variation within a specimen. "Stem leaves" are defined as
those from the middle to lower half of the stem, i.e.,
through the branched portion of the main axis (Figs. 7F,
8F). The "intramarginal band of cells" (Fig. 12) is best
discerned under low power.
1. Plants extremely wiry and profusely branched with
secondary and tertiary branches at wide angles to the
stems, often terrestrial and typically forming large,
tangled, stiff, unattached mats ("tumbleweeds"); costa
of stem leaves very well-developed (4- to 5-stratose in
lower half). 4. R. implexum.
1. Plants somewhat stiff to lax without branching pattern
as described above, attached to substrate; costa of stem
leaves 2- to 3-stratose or absent.
2. Stem and stipe leaves closely appressed to stem
(tips slightly spreading when wet), with prominent,
elongate, decurrent, auriculate projection at base
containing at least a few cells with a single
central "papilla;" intramarginal border very well-
differentiated with 5-6 rows of cells with much
thicker walls and much shorter and wider lumens than
those of the median cells. 3. R. adpressum.

127
2.Stem and stipe leaves strongly spreading to
squarrose wet or dry, + auriculate but without well-
developed elongate auriculae as above; intramarginal
border weak to strong (and when well-developed,
usually of cells with longer and wider lumens than
those of the median cells).
3.Acumen of stem leaves very long, at least one
half of the total length of the leaf.
4.Intramarginal border strong, of 3-5 rows of
larger cells; median cells distinctly
prorulose and occasionally with end walls
projecting prominently as well-developed
papillae (prorulae) on the dorsal surface;
plants with long straggling stems and
widely-spaced, ± regularly pinnately-
branched primary branches.
2b. R. brachvpodium var. tamarix.
4. Intramarginal border weak to slightly
developed; median cells + prorulose (not
projecting dorsally as prominent papillae);
habit various but usually arborescent or
stems lax and subsimple to irregularly
branched.
la. R. toxarion var. toxarion.
3. Acumen of stem leaves shorter, less than one
half of the total length of the leaf.

128
5.Intramarginal border not well-
differentiated (intramarginal cells
intergrading with median cells); leaf
cells + prorulose; median cell walls
evenly thickened; acumen of stem leaves
generally greater than 2/5 of the total
leaf length.
6.Secondary branch leaves ovate, less
than 2 1/4 times as long as wide.
la. R. toxarion var. toxarion.
6. Branch leaves lanceolate to narrowly
ovate, at least 2 1/4 times as long
as wide; (Juan Fernández Islands
endemic).
lb. R. toxarion var. robustum.
5. Intramarginal border well-differentiated
with (4)-6-(9) rows of cells with much
thicker walls and larger lumens than
those of the median cells; leaf cells
prorulose; median cell walls unevenly
thickened; acumen of stem leaves
generally less than 2/5 of the total
leaf length.
7.Habit arborescent with clearly
differentiated stipe, stem, and
branch system; primary branches
closely spaced on stem; costa of

129
stem leaves well-developed?
median leaf cells extremely
prorulose with the end walls
occasionally projecting as well-
developed papillae (prorulae).
2b. R. brachvpodium
var. brachvpodium.
7. Habit without clearly
differentiated stipe and stem,
usually with very little
secondary and essentially no
tertiary branching; primary
branches widespread and remote;
stem leaves often ecostate or
with a short, double or weak
costa; median leaf cells
prorulose without dorsally
projecting papillae.
5. R. pseudo-thuidium.

130
1. Rigodium toxarion (Schwágr.) Jaeq.
Hypnum toxarion Schwágr., Spec. Mus. Supp. 1(2): 283. 1816.
Rigodium toxarion (Schwágr.) Jaeg., Ber. S. Gall.
Naturw. Ges. 1876-77: 244. 1878 (Ad. 2: 310). Type:
Hispaniola. Insula St. Domingo [Dominican Republic?],
no date, Anonymous s.n. (lectotype here designated
[probable holotype]: G!). The original citation of
Schwágrichen (1816) has little identifying information.
Only one specimen from Hedwig's (Schwágrichen's)
herbarium at G is from "St. Domingo" (labelled as
"Hypnum toxarion") and is likely original material, if
not the holotype itself. However, a conservative
approach is followed here as espoused by Ortiz (1989)
and discussed in Zomlefer (1991) in avoiding the term
"holotype" in instances of uncertainty; "lectotype" is
therefore used in this situation.
Hypnum solutum Tayl., London J. Bot. 5: 65. 1846. Rigodium
solutum (Tayl.) Par., Ind. Brvol. 1140. 1898. Types:
Ecuador. Imbabura: Ridge of Pisagua, near Otovalo,
10,000 feet [3000 m], 1827, Dr. Greville's Herbarium,
Jameson s.n. (lectotype: FH!); Trees on ridge of
Pisagua, 1827, Jameson s.n. (probable isolectotype:
E!); lectotypification in Zomlefer (1991).
Hypnum argentinicum C. MÜ11., Linnaea 43: 480. 1882.
Rigodium argentinicum (C. Müll.) Kindb., Enum. Brvin.
Exot. 103. 1891. Type: Argentina. Tucumán:

131
Tucamensis [Tucumán] prope Juntas, 1872, Lorentz s.n.
(lectotype, BM! : possible isolectotype as s.n. with no
date: NY!); lectotypification in Zomlefer (1991).
Riqodium qracile Ren. & Card., Bull. Soc. R. Bot. Belg.
32(1): 197. 1894. Types: Costa Rica. San
José/Cartago: Foréts du Volcán Irázu, 10 Jul 1891,
Tonduz ÍPittier No:1 5666 (lectotype here designated:
PC!; isolectotypes: BR (2 specimens)!, G!, NY!); Foréts
de l'Irázu, 1891, Tonduz íPittier No:1 5666-5667
(syntypes: H!, S!,); Foréts de l'Irázu, 10 Jul 1891,
Tonduz ÍPittier No:1 5667 (syntypes: BR (2 specimens)!,
PC!); San José: Foréts du Barba, 2700-2800 m, 6 Feb
1890, Biollev ÍPittier No:1 5668 (syntypes: BR!, PC!);
Puntarenas: Foréts á Général [General], 1891, Tonduz
ÍPittier No:1 5725 (syntypes: NY!, PC!). With the
original description, Renauld and Cardot (1894) cited
several specimens associated with Pittier plus
collection numbers, giving the impression that Pittier
himself collected all of these types. Examination of
the labels on the specimens clearly reveals that
Pittier assigned his own numbers to these unnumbered
collections of Tonduz (Pittier1s assistant; see Sayre,
1975) and Biolley as indicated above.
Hvpnum kilimandscharicum Broth., Bot. Jahrb. 24: 280. 1897.
Riqodium kilimandscharicum (Broth.) Par., Ind. Brvol.
1140. 1897 [1900], Types: Tanzania. Kilimanjaro:

132
Kilimanscharo, Wald bei Marangu, ünterer Gürtelwald, an
Báumen, 2100 m, 13 Jun 1894, Volkens 2349 (lectotype
here designated: H-BRÍ; isolectotypes: JE!, S!;
possible isolectotype as s.n., M!).
Riaodium leptodendron C. Müll., Nuovo Giorn. Bot. Ital. n.
ser. 4: 158. 1897. Types: Bolivia. Cochabomba: Prope
Choquecamata, Jun 1889, Germain ÍMüller No:1 1166
(lectotype here designated: NY!; isolectotypes: G!, H-
BR!, JE!, M!, S!).
Riaodium hamirameum C. Müll., Hedwiaia 40: 81. 1901.
Types: Brazil. Santa Catarina: Serra Geral, am
Wasserfall des Capivare, Jan 1890, Ule 892 (lectotype
here designated: M!; isolectotype: H-BR!).
Riaodium pertenue C. Müll., Hedwiaia 40: 81. 1901. Types:
Brazil. Rio De Janeiro: Serra do Itatiaia [Itatiaya],
an Felsen der Agulhas Negras [Pico das Agulhas Negras],
2500 m, Dec 1895, Ule 2135 (lectotype here designated:
M! ; isolectotypes: FH!, H-BR!).
Riaodium araucarieti C. Müll., Hedwiaia 40: 82. 1901.
Types: Brazil. Santa Catarina: Serra Geral, auf dem
Boden der Araucarienwalden, Apr 1889, Ule 524
(lectotype: H-BR!); ad lapides, May 1890, Ule 677
(syntype: specimen not seen; possible syntype as s.n.:
FH!); lectotypification in Zomlefer (1991).

133
Riqodium araucarieti var. catenulatum C. MÜ11., Hedwigia 40:
82. 1901. Types: Brazil. Rio Grande do Sul: Ex-
colonia Pto. Angelo, ad truncos putrescentes terrae
incumbentes silva primavae, 1893, Lindman 176
(lectotype: H-BR!; isolectotypes as B176: S (2
specimens)!, UPS!; probable isolectotype as s.n.: S!);
Forromecco [Forromeco], 1888, Kunert s.n. (probable
syntype: KRAM!); lectotypification in Zomlefer (1991).
Riqodium niveum Thér., Recueil Publ. Soc. Havraise Etud.
Div. 1925: 144. Unnumbered plate, Figs. 1-7. 1925.
Type: Madagascar. Mt. Tsaratanana [or Mt. Madagascar],
1200-2400 m, Apr 1924, Perrier de la Báthie 168
(lectotype here designated: PC!; probable isolectotypes
as s.n.: S (2 specimens)!). Although Thériot (1925)
did not specify a collection number for Perrier de la
Báthie's collection, the label data of Perrier de la
Báthie 168 (from Thériot's herbarium at PC) matches the
date and elevation of Thériot's citation.
Additionally, the specimen is labelled as "Riqodium
niveum Thér. sp. nov."
Riqodium nano-fasciculatum C. Müll. ex Thér., Rev. Brvol. n.
sér. 2: 232. 1929 [1930]. Types: Chile. Concepción:
Isla Quirigunda [Guiriquina] in truncis
arborum/putridis, 20 Sep 1896, Dusén 225 (lectotype:
PC!; isolectotypes: BM!, FH!, FLAS!, GB!, H-BR!, JE!,
M!, MICH!, NY!, O!, S!, W!; possible isolectotype as

(225) A29: NY!; Chile. Malleco: Victoria, Mar 1916,
Campo 10B p.p. (original material: PC!);
lectotypification in Zomlefer (1991) .
Riaodium pendulum Herz. & Thér. in Herz. et al., Beih. Bot.
Centralbl. 60: 31. 1939. Types: Chile. Chiloé:
Westpatagonien, Puyuhuapi [Puerto Puyuguapi],
Waldhagen, am Rand des Talsumpfes an Arayanstammen, 9
Feb 1938, Schwabe 79/b2 (lectotype: JE!; isolectotypes
JE!, PC!; Schwabe 79/bl (syntypes: JE (2 specimens)!);
lectotypification in Zomlefer (1991).
Riaodium pallidum Sehnem, Pesquisas. Bot. 30: 38. Plate
XIID. 1976. Type: Brazil. Rio Grande De Sul: Sao
Francisco de Paula, Taimbé, ad arborum, 900 m, 26 Feb
1959, Sehnem 7367 (holotype: PACA!). Index Muscorum
Supplementum: 1976-1977 (Crosby, 1979) lists the
location of the holotype as unknown. The single
specimen at PACA is clearly indicated as "holotype" on
the label by the author. No duplicates (isotypes) are
known to be deposited elsewhere (Ronaldo Wasum, pers.
comm.).
Plants small to large, dendroid or occasionally
subsimple, erect, pendent, or sometimes creeping,
irregularly pinnately branched, on tree trunks and branches
or occasionally on logs, rocks, or soil, green to yellow-
green, sometimes rooting at tips of stems and primary

135
branches. Stipes well-developed, to 2.5 cm long. Stems to
4.5(-12.0) cm long, 215-530 urn in diameter. Primary
branches generally 10-25(-60) per stem, spaced 1.0-3.0 mm
apart along the stem, proximal ones to 2.9 cm long,
gradually becoming much shorter above, sometimes attenuate
(and then often rooting at tips). Secondary branches
generally 5-25 per primary branch, to 1.0 cm long. Tertiary
branches present. Stem leaves ovate at base and abruptly
narrowed to a well-developed + long acumen, subulate, 0.47-
1.67 x 0.31-1.57 mm, generally much longer than wide with
length/width ratio (1.00-)1.31(-1.74), spreading to
squarrose, with clasping and concave base, rarely
auriculate, barely decurrent with decurrent portion 0.03-
0.08 mm long (3-8% of total leaf length); acumen 0.30-0.98
mm long, (38-)50(-60)% of leaf length measured from point of
insertion; margins erect to plane or narrowly reflexed, +
entire, sinuous, crenulate, to serrate at base and serrate
above; costa single, well-developed but relatively slender,
0.27-1.18 mm long, 17-56(-70) urn wide at base, 2-3-stratose
in lower half; alar cells quadrate to oblate, 6.6-11.9 x
6.4-12.1 urn; marginal cells 1-2-seriate, oblong-rhombic,
8.1-17.2 x 3.3-6.2 um; intramarginal cells 3-4(-5)-seriate,
oblong, 8.9-21.5 x 5.0-9.1 um, with + thicker walls than the
midlaminar cells and forming a very weak intramarginal band;
midlaminar cells oblong to rhombic or rhomboidal, 13.0-27.6
x 3.8-7.3 um, with even walls, weakly prorulose. Stipe
leaves with similar shape and orientation as stem leaves,

136
0.52-1.27 x 0.20-1.00 mm; acumen 0.22-0.70 mm long; costa
absent or rarely present and then very weak. Secondary
branch leaves narrowly ovate, acute, 0.28-1.33 x 0.14-0.49
mm, with length/width ratio (1.48-)2.00(-3.12), erect-
spreading to spreading; margins serrate. Perigonial leaves
ovate, acute to shortly acuminate, 0.57-1.04 x 0.27-0.41 mm.
Antheridia 300-390 x 75-125 um; paraphyses 6-12 cells long,
300-510 um long. Perichaetial leaves subulate, 1.10-3.35 x
0.36-0.98 mm, long-acuminate with acumens 0.33-0.80 mm long;
basal cells rhomboidal, 26.0-60.7 x 7.7-14.0 um, weakly
prorulose, sometimes papillose with one large central
papilla; apical cells rhombic, + sinuous, 17.3-30.6 x 2.0-
7.7 um. Archeaonia 310-550 um long, 35-50 wide at venter;
paraphyses 10-23 cells long, 375-830 um. Seta to 3.0 cm
long. Capsule urn 1.23-1.73 x 0.40-0.67 mm; upper
exothecial cells 16.3-25.0 x 14.3-25.0 um; median exothecial
cells 41.7-70.0 x 21.0-32.3; cells in neck 25.0-56.7 x 10.7-
21.0. Operculum 0.40-0.70 mm long, long-rostrate with beak
0.25-0.63 mm long. Exostome teeth 463-730 um long, 88-120
um wide at base. Endostome segments 180-465 um long, 40-65
um wide at base; basal membrane 150-290 um high; cilia (1-
)2(-3), 180-465 um long. Spores 16-24 um in diameter.
Calvptra to 3.1 mm long.
la. Rigodium toxarion (Schwaqr.) Jaeq. var. toxarion
Plants small to large, dendroid or occasionally
subsimple, erect, pendent or sometimes creeping. Stipes to
2.5 cm long. Stems to 3.7(-12.0) cm long, 215-530 um in

137
diameter. Stem leaves ovate at base and abruptly narrowed
to a well-developed long acumen, subulate, 0.47-1.67 x 0.31-
1.06 mm, generally much longer than wide with length/width
ratio (1.00-)1.30(-1.74); acumen 0.30-0.98 mm long, (38-
)50(-60)% of leaf length measured from point of insertion.
Secondary branch leaves narrowly ovate, 0.28-0.55 x 0.14-
0.34 mm, with length/width ratio (1.48-)1.95(-2.21).
Representative specimens examined. CENTRAL AND SOUTH
AMERICA. ARGENTINA. TUCUMAN: Argentina subtropica
Tucamensis [Tucumán] prope Juntas, 1873, Lorentz s.n. (S,
W) .
BOLIVIA. AYOPAYA: Depto. Cochabamba, Sailapata, wet
forest, epiphyte, 2700m, Nov 1935, Gardenas 3229 (NY).
INQUISIVI: Depto. La Paz, 2 km above Quime, 67°14'W,
16 ° 59'S, transitional area between humid and semi-humid
forests, stone at base of cliffs in shady ravine forest,
3380m, 1987, Lewis 87-978 (LPB). SANTA CRUZ: In Nebenwald
über Comarapa, 2600m, Mar 1911, Herzog 3817 (FH, H, JE, L,
M, NY, O, S, W).
BRAZIL. ESPIRITO SANTO: Domingos Martins, Reserva
Forestal Pedra Azul, 20°25'S, 41°01'W, 1180m, 9 Oct 1988,
Schafer-Verwimp & Verwimp 10111 (NY). PARANÁ: Balsa Nova,
in truncis putridis, 28 Jul 1909, Dusén 8496 (GB, S). RIO
DE JANEIRO: Serra do Itatiaia [Pico das Agulhas Negras],
2200m, Jun 1902, Dusén 461 (S). RIO GRANDE DO SUL:
Gramado, ad lignum siccum in silva, 800m, 27 Dec 1949,
Sehnem 4686 (FLAS, PACA); Estagao Sao Salvador Montenegro,

138
ad rupes in silva, 500m, 14 Dec 1935, Sehnem 315 (FLAS,
PACA); Jaquirana, Fazenda Boa Vista, sobre tronco, interior
da mata, 900m, 23 Apr 1988, Wasum et al. 3964 (FLAS). SANTA
CATARINA: Campo dos Padres, Bom Retiro, epifito, da mata,
1900m, 20 Dec 1948, Reitz 2610 (F, FH, FLAS, G, JE, NY, U);
Campo dos Padres, Bom Retiro, ad arborem, 1700m, 17 Jan
1957, Sehnem 7087 (FLAS, PACA); Serra Geral, ad saxa in
araucarieto, May 1890, Ule 93 (C, DUIS, FH, FLAS, G, GOET,
H, JE, L, NY, S, UPS, UWM, W) . SAO LEOPOLDO: Sáo Salvador,
sur une pierre, 500m, Dec 1975, Sehnem 144 (JE). SÁ0 PAULO:
Municipio de Piedade, 19 Sep 1973, Vital 2598 (FLAS, MO).
CHILE. AISEN: Patagonia occidentalis, in valle
fluminis Aysen [Aisén] in truncis arborum, 5 Jul 1897, Dusén
A20 (BM, GB, H, MICH, S). ARAUCO: Ridge S of Cerro
Lanalhue, SW of Lago Lanalhue, Fundo Tranquivora, 9.5 km
along road which intersects road P-70, western foothills of
Cordillera Nahuelbuta, 37“58'S, 73°20'W, on slender
branches, 200m, 25 Feb 1976, Crosbv 13027 (MO). CAUTIN:
Fundo El Manzano, ca 10 km E of Cuneo which in turn is ca 70
km SE of Temuco, forest mainly of Nothofagus oblicrua and N.
alpina. on log in wet forest, 500m, Jun 1970, Landrum 240
(MO). CHILOE: Westpatagonien, Puerto Puyuhuapi, no date,
Herzog 48 (JE). CONCEPCION: Maulé N om Coronel, skog,
skuggiga, fuktiga stállen [forest, shady damp places], 28
Jul 1917, Skottsberq & Skottsbera 444 (GB). COQUIMBO:
Constitución, Monte Fray Jorge, an Baurnen, Sep 1904, Reiche
6 (H); Nordchile, Fray Jorge [Monte Fray Jorge], 8 May 1941,

139
Herzog 197 (JE). JUAN FERNANDEZ ISLANDS: Isla Más Afuera
[Isla Alejandro Selkirk], in jugo supra Varadero, in silva
Dicksonia, 800-900m, 22 Feb 1917, Skottsbera & Skottsbera
409 (GB, H, NY, S, UPS); Isla Más a Tierra [Isla Róbinson
Crusoe], Valle Colonial, Quebrada Seca, stubbar v.
stambaser, 435m, 20 Dec 1916, Skottsbera & Skottsbera 418
(GB, H, S); Isla Más Afuera [Isla Alejandro Selkirk],
Quebrada del Mono, skog, in silva, 475m, 20 Feb 1917,
Skottsbera & Skottsbera 439 (BM, GB, H, NY, S). LLANQUIHUE:
Bei Cayutué, Lago Todos Santos, auf Fallholz, 1924,
Wolffhüael s.n. (JE). MALLECO: Along trail from western
entrance of Parque Nacional Contulmo, 7 km by road E on
Contulmo, Cordillera Nahuelbuta, 38°00'S, 73°10'W, on tree
base, 330-360m, 24 Feb 1976, Crosbv 12962 (MO), 12984 (FLAS,
MO). OSORNO: Parque Nacional Puyehue, ca 74 km E of
Osorno, Aguas Calientes, forest mainly of Nothofaaus spp.
and Eucryphia cordifolia. Myrtaceae forest, on fallen trunk,
500m, 20-25 Feb 1971, Landrum 588 (MO). VALDIVIA: 2.1 km
by road N of Mehuin, S of Queule, 39026'S, 73°13'W, stream
valley in well shaded forest, pendent from tree, 15m, 25 Jan
1976, Crosbv 12022 (MO); Auf Baumwurzeln bei Valdivia, Dec
1911, Herzog 5227 (FH, BM, H, JE, M); Cunco-Panguipulli, ad
arbores, Aug 1921, Hollermaver 281a (S, W). VALPARAISO:
Limache (Quebrada Loreto), sur une grande roche humide, 10
Apr 1932, Looser 2452 (G).
COLOMBIA. BOYACA: Camino de Soatá al Alto de Onzaga,
en quebrada a la izquierda del camino, bosque con quercetum,

140
2800m, 23 Nov 1967, Hammen & Jaramillo 2008 (FLAS). CAUCA:
Above Tacueyó, río López, NW slopes of Nevado del Huila,
Cordillera Central, Cinchona forest, 2450-2750m, 4 May 1943,
Steere 7931 (FLAS). CUDINAMARCA: Buschgürtel über
Zipaquira bei Bogotá, 3000m, 1929, Troll 2017 (JE, S).
NORTE DE SANTANDER: Pampolona, no date, Ariste-Joseph 1911
(NY). VALLE: Municipio El Cerrito, páramo de Pan de
Azúcar, ca. 03°45'N, 76°05W, bosque muy húmedo montano,
sobre tronco horizontal, 3500m, 27 Jun 1987, Churchill et
al. 15339 (FLAS, MEXU, MO, NY).
COSTA RICA. ALAJUELA: Gallito de Heredia, 19 Dec
1933, Brenes 35 (NY). HEREDIA: S slope Volcán Barba, ca 1
km WNW of río Ciruelas, near where road 114 crosses stream,
8.2 km from San José de la Montaña by road, 10.07°N,
84.07 °W, woods and stream valley, tree near stream, 1920m, 3
May 1975, Crosbv 9917 (MO). SAN JOSE: Valle de Copey, ca
30 km al sur de Cartago, bosque primario montano bajo muy
húmedo y potreros, 2000m, 4 Feb 1979, Griffin & Morales B100
(ALTA, B, BR, CANM, F, FLAS, MO, NAM, NY).
DOMINICAN REPUBLIC. INDEPENDENCIA: Near crest of
Sierra de Neiba, Carretera Internacional along Haitian
border, virgin rainforest on limestone mountains, 1700-
2000m, Jul 1967, Norris et al. 6692 (FLAS, NY). SAN JUAN:
Trail up Pico Duarte, along stream just E of "La
Compartición," 19°02'N, 70°58'W, 2350m, rocks and adjacent
vegetation, 14 Jan 1987, Buck 14189 (NY). LA VEGA:
Vicinity of pyramids, 13.8 km S of Valle Nuevo, 44.7 km S of

141
Constanza, humid steep ravine (Arroyo Domingo) and adjacent
fields, 2250m, 30 Apr 1982, Buck 8078 (NY).
ECUADOR. AZUAY: Area Nacional de Recreación "Cajas,"
S of "Surrochucho" (Laguna Llaviuco) SW of Sayausi, 2°55'S,
79°09'W, forested hill, tree trunk, humid forest, 3250m, 8
Dec 1978, Levis 78-3220 (F, NY). CARCHI: Páramo on SW
slope of Volcán de Chiles above Tamba Sucal, Cordillera
Occidental, 3500m, 10 Oct 1943, Steere 9030 (FLAS, NY).
IMBABURA: Cordillera Oriental, Ibarra-Mariana Acosta road,
E slope above Mariana Acosta, ca 00°22'N 78°00'W, steep
remnant cloud forest, 3750m, 27 Oct 1983, Steere 26825
(CANM, DUIS, DUKE, FLAS, G, H, KRAM, MEXU, NY, U). NAPO:
Salcedo-Napo road, at km 45, cloud forest, 3600m, 16-18 Nov
1984, Laeaaard 54159H (NY). PICHINCHA: W shore of Laguna
San Marcos on N slope of Volcán Cayambe, cloud forest,
3450m, 10 Oct 1984, Laeaaard & Steere 27582A (FLAS, NY,
ALTA).
EL SALVADOR. CHALATENANGO: Between road and Los
Planes del Monte Cristo, bath through cloud forest, clearcut
and pine forest, on trunk of Dendropanax leptopodus lm above
ground, 28 Oct 1977, Watson ES-0063 (MO).
GUATEMALA. JALAPA: Between Miramundo and summit of
Montaña Miramundo, between Jalapa and Mataquescuintla, 6 mi
S of Miramundo, epiphyte on trunk in cloud forest, 2000-
2500m, 5 Dec 1939, Stevermark 32769 (F, FH, MICH, NY).
SUCHITEPEQUEZ: Volcán Santa Clara, between Finca El Naranjo

142
and upper slopes, epiphyte on tree bark, 1250-2650m, 23 May
1942, Stevermark 46662 (CANM, F, FH, MICH).
HAITI. ARTIBONITE: Morne de La Selle [Montagne
Terrible], Osman, trees/stumps in hardwood forest, 1650m, 15
May 1945, Holdridae 3023 (FH, FLAS, MICH, NY). OUEST:
Mornes des Commissaires [Mont de Commissaires], hardwood
area in pinelands, on bark, 19 Apr 1944, Mackaness 44 (MICH,
NY) .
MEXICO. Cerca de Teotitlán, 2100m, 4 Sep 1966, Düll 17
(ALTA, MEXU). CHIAPAS: N slope of Cerro Hueytepec, near
Las Casas, on small boulder, 2680m, 22 Apr 1945, Sharp 3477
(MEXU, MICH, NY, TENN). HIDALGO: Above Tenango de Doria,
trunk of Carpinus. 1890m, 16 Sep 1945, Sharp 4090 (MEXU,
MICH, TENN). OAXACA: Along Hwy 175 from Tuxtpec ca 67 mi
toward Oaxaca, Sierra Juárez Gap, oak-pine cloud forest,
2750m, 27 Dec 1970, Smith et al. 433 (F, MEXU, TENN).
PUEBLA: 8 km SE de Huauchinango, bosque mezclado de Pinus
patula y Liauidambar stvraciflúa con Ouercus sp., tronco,
lugares sombreados y secos, 1600m, 7 Mar 1967, Delgadillo
1379 (ALTA, DUIS, MEXU, MO). VERACRUZ: Loma Plan,
Municipio de Chiconquiaco, Cañada con bosque de encino,
1800m, 27 Jul 1981, Ventura 18869a (ALTA, DUKE, FLAS, MEXU,
NY, U).
PANAMA. CHIRIQUI: Ridge immediately S of Cerro
Horqueta peak, N of Boquete, epiphytic, 1760m, 13 Apr 1966,
Crosby 3996B (DUKE, MO).

143
PERU. CONTUMAZA: Depto. Cajamarca, Pass des Cero
Cunantan südlich von Contumazá, Baum und Strauch, 2900m, 16
Sep 1973, Heaewald & Heaevald 7309 (FLAS, NY). HUANUCO:
Vicinity of Mito, about 20 km N of Huanuco, wet shaded bank
in canyon, 2750m, 8-18 Apr 1923, Bryan 405 (F, MO, NY).
URUGUAY. RIVERA: Subida de Méndez (NW de Tranqueras),
r. Uruguay [Uruguay River], 22 Feb 1947, Castellanos s.n.
(FH) .
VENEZUELA. Prope Coloniam Tovar, 1854-5, Fendler 135
(BM, FH, FLAS, G, H, NY, O, S). MERIDA: Distrito Rivas
Dávila, Páramo La Negra above the town of Bailadores, on
trunk of tree, 3000m, 18 Sep 1972, Griffin et al. 2063
(ALTA, CANM, DUKE, F, FLAS, MICH, MO, NAM, NY, U).
TRUJILLO: La Quebrada Cortijo, along Lara-Trujillo boundary
line, above Humocaro Bajo, dense woods below páramo and
ridge top, 2600-2800m, 16 Feb 1944, Stevermark 55328 (F,
FH). ZULIA: Distrito Perijá, Serranía de los Motilones-
Sierra de Perijá, dense mixed broad-leaved forest, 3000m, 27
Jun - 5 Jul 1974, Tillet et al. 747-819 (FLAS).
AFRICA. MADAGASCAR. Mt. Tsaratanana [or Mt.
Madagascar], 1200-2400m, Mar 1924, Perrier de la Báthie s.n.
(H) .
MALAWI. MULANJE: Southern Province, Muíanje Mts.,
Lichenya Plateau, 15°58'S, 35°30'E, 1800-2000m, 9-10 Mar
1973, Rwarden 11792 (O, VBI) .

144
MOZAMBIQUE. MANICA E SOFALA: Gorongosa Mt., near Gogo
Peak, stream bank rock, deep shade, in forest, 1700m, 6 Jul
1955, Scheloe 5552 (BM, C, S).
RHODESIA [ZIMBABWE]. INYANGA: Inyanga District, W
slope of Little Inyangani, 1832B4, 36KVQ874795, mixed
evergreen forest, on tree, 1860m, 30 Oct 1976, T. Müller
2635 (L, MO).
SOUTH AFRICA. TRANSVAAL: Mariepskop Plantation Nature
Reserve, 40 km N of Pilgrim's Rest, 23.31S, 30.52E (grid
23.30DB), vicinity of power plant just below radar station,
terrestrial, in shade of rocks, 2050m, 12 Jan 1973, Crosby &
Crosby 7637 (DUKE, L, MO); Mariepskop, central summit,
Widdringtonia-Podocarpus stand, on ground and epiphytic,
1900m, 2 Dec 1969, Vorster 1761b (L).
TANZANIA. ARUSHA: Arusha National Park, E slopes of
Meru Crater, along trails between Kitoto and Cabin at Njeku,
ca 3 km ESE of summit of ash cone in Meru Crater, 3.14°S,
34.47 ° E, near stream, on tree, 23 Dec 1973, Crosby & Crosby
13266A (MO). KILIMANJARO: Kilimanjaro Mts., behind the
Mandara/Bismark Hut, high altitude mossy forest of Haqenia
abyssinica-Podocarpus milaniianus. 2700m, 14 Sep 1970, Poes
6243/B (VBI). MOROGORO: Morogoro District, Uluguru Mts.,
NE ridge of Bondwa peak, high altitude mossy forest, on
bark, 1800-1950m, 7 Sep 1972, Pócs 6782/B (G, L, MO, VBI).
TANGA: West Usambara Mts., Shagayu Forest Reserve, 2 km SW
of the Shagein peak, on a summit, mossy cloud forest,

145
lignicolous, 2000-2150m, 15 Mar 1984, Borhidi 8445/AB (F, G,
MO, UPS, VBI).
Rigodium toxarion var. toxarion commonly is an epiphyte
(on tree trunks and branches) and also grows on a variety of
other substrates (logs, rocks, stumps, soil). Generally the
species occurs in damp, high elevation forests (rain
forests, cloud forests, fog forests, elfin forests), as well
as in more exposed habitats such as páramos, ravines, and
disturbed areas. As defined here, R. toxarion var. toxarion
is the most widespread taxon in the genus with a disjunct
distribution in Central/South America and eastern Africa
(Fig. 30). In Africa, R. toxarion var. toxarion occurs at
1750 to 2700 m, generally in mixed evergreen rain forests
(dominated by Podocarous. Ocotea, Cvathea. and Erica) or in
elfin forests or fog forests (dominated by plants such as
tree ferns, Cvathea). In Central America, the variety has
been collected in high altitude forests (ca 1500 to 3000 m)
characterized by such tree species as Magnolia (Dominican
Republic) or Pinus. Ouercus. Podocarous. Alnus, Liauidambar.
and Clethra (Mexico). In northern South America (Colombia,
Venezuela, Ecuador, Peru, and Bolivia) a range of relatively
higher elevations of 2400 to 3750 is reported. Colombian
forests are dominated by Ouercus. Weinmannia. Clethra and
Chinchona; in Venezuela, R. toxarion var. toxarion has been
collected in the paramos. Collections from southeastern
Brazil (where Araucaria commonly dominates the forest) cite

146
relatively lower altitudes (30 to 100 m) than in the
northern parts of South America, although a few specimens
were collected at 1900 to 2500 m. Finally, at the
southernmost limit of the distribution (along the Andean
Cordillera in Chile, Fig. 32), R. toxarion var. toxarion
consistently occurs at lower elevations (200 to 900 m) than
in the rest of its range, commonly in forests dominated by
Nothofagus (with Eucrvphia. Mvrceuqenia. Aextoxicon,
Laurelia. and Weinmannia). In addition, this variety is
found on both islands (Isla Alejandro Selkirk and Isla
Robinson Crusoe) of the Juan Fernández Islands.
Riqodium toxarion is basal in the phylogeny of Riqodium
species (Figs. 20, 21) and is metaphyletic as well, since no
autapomorphies define it. The plants are typically
arborescent with the ancestral leaf type (Figs. 19B, 27A and
D), i.e., with a weak decurrency (see chapter on phylogeny).
The stem leaves also tend to be longer than wide (Fig. 19D)
with long acumens (Fig. 19E). The intramarginal band,
although differentiated, is composed of cells + larger and
very slightly thicker-walled than the midlaminar cells (Fig.
271) and is almost indiscernible in surface view (Fig. 27K).
In addition, the midlaminar cells are very weakly prorulose
with even walls (Fig. 27J), in marked comparison to the
other species in the genus.
The epithet of R. toxarion is the oldest in the genus,
originally described sub Hypnum (Schwágrichen, 1816) and
later transferred to Riqodium (Jaeger, 1878). Since R.

147
toxarion is a widespread and variable species spanning two
continents, populations characterized by certain slight
variations were often assigned individual species names. As
noted in the chapter on Taxonomic History, this process
resulted in much confusion concerning the delimitation of
species within the whole genus, especially the 13 epithets
that are reduced in synonymy under R. toxarion var. toxarion
in this revision (see Table 1).
For example, although R. toxarion was originally
described from Hispaniola, the name commonly became
associated in floras with specimens from South America,
while "R. qracile" (originally described from Costa Rica)
was associated with Central America. Some collections in
Brazil ("R. nano-fasciculatum11 and to a lesser extent, "R.
araucarieti" and "R. hamirameum") tend to have acumen
lengths at the shorter end of the spectrum for R. toxarion,
a feature which is found throughout the range of variation
of the species. "Rigodium leptodendron.11 associated with
Bolivia, presumably is characterized by abundant capsules
(Müller, 1897a), a feature also found to be unexceptional
within the total variation of R. toxarion. Much confusion
in the literature concerns "R. solutum," originally
described from Ecuador by Taylor (1846). Müller (1851)
noted its similarity to R. implexum and later (1882)
distinguished R. argentinicum from R. solutum on the basis
of capsule characters, without specifying these characters
or describing either capsule type. Mitten (1869) confused

148
matters further by placing R. (Hypnum) solutum in synonymy
with R. (Hvpnum) toxarion. along with R. (Hvpnum) implexum
and R. (Hvpnum) brachypodium.
Probably due to the great distance separating Africa
and South America, it apparently did not occur to
bryologists that collections from these two continents may
be equivalent. Brotherus (1897) distinguished R.
kilimandscharicum (from Tanzania) from the South American
Riqodium species by the "delicate' appearance of the African
plants which had attenuate branches frequently rooting at
the tips (Fig. 29K). This feature is actually not at all
uncommon in the South American specimens of R. toxarion var.
toxarion. In fact, the African collections exhibit a wide
range of morphological variation in plant and leaf size
(Fig. 29L-N) comparable to that found in the South American
specimens (Fig. 27F-H). Thériot (1925) demarcated R. niveum
(Madagascar) from R. kilimandscharicum (continental Africa)
on the basis of the entire to weakly sinuate margins, oblong
median cells and round marginal cells of the former (Fig.
29D)—all character states found within the various
specimens in eastern Africa (Fig. 29A-J), as well as those
from Central and South America.
Some specimens of R. toxarion var. toxarion are lax,
poorly branched, and sterile (Fig. 31A), although the
collections may contain profuse stems. These lax and
sterile specimens found in the loan material exhibit a
curious distribution (Fig. 32): they are restricted to

149
locations at the southernmost part of the range of R.
toxarion in Chile (ca 35°S to 46°S), where the species
occurs at much lower altitudes than further north in South
America or in Africa. A species ("R. pendulum") was
described for this form by Herzog and Thériot (in Herzog,
1939). In addition to the poorly developed stems, the stem
leaves are also very reduced (Fig. 3IB), but have the
characteristics of larger R. toxarion var. toxarion leaves.
In addition, sometimes a specimen with a typical robust
arborescent habit has such lax stems attached (Fig. 31C-E),
thereby establishing "R. pendulum" as a minor variant of R.
toxarion growing at the limit of the range of the species.
lb. Rigodium toxarion var. robustum (Broth, in Skottsb.)
Zomlefer. var. nov.
Rigodium robustum Broth, in Skottsb., Nat. Hist. Juan
Fernandez 2(3): 443. 1924. Types: Chile. Juan
Fernández Islands: Más a Tierra [Isla Róbinson
Crusoe], Salsipuedes, snár-skog á stenig kam/in silva
lapidosa jugi, 625 m, 13 Jan 1917, Skottsbera &
Skottsbera 429 (lectotype here designated: H-BR!;
isolectotypes: GB!, JE!, S!; isolectotype as 429 p.p.:
S!) .
Rigodium looseri Thér., Rev. Chil. Hist. Nat. 31: 257. Plate
XVII, Figs. 3a-f. 1928. Types: Chile. Juan Fernández
Islands: Isla Más a Tierra [Isla Róbinson Crusoe],
chemin au Portezuelo, 13 Feb 1927, Looser 8 p.p.
(lectotype here designated: PC!; isolectotypes: G!;

150
probable isolectotype as 84B: B!; possible
isolectotypes as s.n.: FH!, W!); CHILE. Juan Fernández
Islands: Apr 1830, Bertero s.n. (syntypes: G!, PC!).
Plants medium to large, dendroid, erect or sometimes
pendent. Stipes to 2.1 cm long. Stems to 4.5 cm long, 220-
475 urn in diameter. Stem leaves ovate at base and abruptly
narrowed to a well-developed + long acumen, + subulate,
0.70-1.60 x 0.42-1.00 mm, longer than wide with length/width
ratio (1.08-)1.30(-1.51); acumen 0.38-0.66 mm long, (41-
)44(-50)% of leaf length measured from point of insertion.
Secondary branch leaves very narrowly ovate, 0.35-1.33 x
0.15-0.50 mm, with length/width ratio (2.26-)2.44(-3.12).
Representative specimens examined. CHILE. JUAN
FERNANDEZ ISLANDS: Isla Más Afuera [Isla Alejandro
Selkirk], innermost accessible part of Quebrada Casas, moist
shaded ledge of cliff beside stream, 29 Nov 1965, Hatcher &
Engel 116A (FH, NY); Más a Tierra [Isla Robinson Crusoe],
Quebrada Frances, slope of Cordon Chifladores, on Drimvs. 6
Jan 1955, Kunkel M74 (H)? Isla Más Afuera [Isla Alejandro
Selkirk], Quebrada de las Casas, in canyon on moist wall, 20
Jan 1955, Skottsbera & Skottsbera M98 (H, S); Isla Más
Afuera [Isla Alejandro Selkirk], Sanchez-Tolten forest, on
dead prostrate luma rMvrceugenial trunk, 700m, 17 Feb 1955,
Skottsbera & Skottsbera M197 (FH, GB, H, S, UPS); Isla Más a
Tierra [Isla Robinson Crusoe], Quebrada Damajuana, in humid
forest, 400-450m, 3 Mar 1955, Skottsbera & Skottsbera M306

151
(S); Isla Más a Tierra [Isla Robinson Crusoe], ridge between
Rabanal and Quebrada Piedra Agujereada, 500m, 12 Mar 1955,
Soarre M317 (H, S, UPS).
Riqodium toxarion var. robustum is restricted to Isla
Alejandro Selkirk (Isla Más Afuera) and Isla Róbinson Crusoe
(Isla Más a Tierra) of the Juan Fernández Islands. The
variety occurs in moist forests and also more exposed areas
(such as road and stream banks) at relatively low elevations
(200 to 700 m).
This variety shares the characters discussed for R.
toxarion var. toxarion. and has the autapomorphy of narrow
branch leaves (length/width ratio averaging 2.44 compared to
ca 1.95 for R. toxarion var. toxarion), in addition to the
restricted distribution. The stem leaves of R. toxarion
var. robustum tend to be large (ca 1.30 x 0.90 mm) within
the size range of the species, and the upper stem leaves, in
particular, tend to gradually (rather than abruptly) taper
to a relatively "short" acumen (Fig. 33C and D). As noted
by Robinson (1975), specimens of R. toxarion var. robustum
("R. robustum") are not necessarily large, although
Brotherus (1924) originally described the plants as "robust"
with the naked eye. However, many habits do have a stout
appearance (Fig. 33A), probably due to the large stem leaves
and the spreading, narrowly lanceolate branch leaves (Fig.
33E), which may add to the appearance of bulk to the stems
and branches, respectively. Due to the often large stem

152
leaves with somewhat short acumens, specimens R. toxarion
var. robustum (as R. robustum) have often been annotated as
"R. arborescens" (= R. brachvpodium in the present study).
The confusion concerning these species is discussed in
detail under R. brachvpodium. but basically R. toxarion var.
robustum lacks the apomorphic character states (e.g., strong
border, prorulose and porose midlaminar cells) that define
R. brachvpodium.
Ricrodium looseri is tentatively placed in synonymy
here, a transfer advocated by Robinson (1975). The branch
leaves of the type specimens of R. looseri are the widest
found for this variety (length/width ratio 2.26), although
still much narrower than branch leaves of R. toxarion var.
toxarion. In addition, the stem leaves are relatively small
(ca 0.70 x 0.42 mm) but gradually taper to relatively short
acumens. The phenetic analysis is inconclusive as far as
supporting the inclusion of R. looseri (see Fig. 24A and B,
#13) since only three specimens (including the lectotype of
R. looseri) were eventually determined as R. toxarion var.
robustum. However, the specimen of R. looseri does not
appear to be phenetically close to the other two specimens
included in the phenetic study.

FIG. 27. Rigodium toxarion var. toxarion: Gametophytic
Features. A. Habit. B. Portion of stem showing position of
leaves. C. Stipe leaf. D. Stem leaf. E. Branch leaf. F-
H. Stem leaves from various South American specimens,
showing variation in size and morphology. F. Relatively
large stem leaf (Chile). G. Slender stem leaf (Peru). H.
Stem leaf with relatively short acumen (Brazil). I. Cross
section of stem leaf. J-K. Areolation of leaf. J.
Midlaminar cells. K. Marginal and intramarginal cells. A-
E, I-K from Tonduz íPittier No:1 5667 (BR, syntype R.
qracile); F from Reiche 6 (H); G from Brvan 405 (MO); H from
Wasum et al. 3964 (FLAS).

154

FIG. 28. Rigodium toxarion var. toxarion: Sporophytic
and Related Gametophytic Features. A. Perichaetial leaf.
B-C. Areolation of perichaetial leaf. B. Basal cells. C.
Upper cells. D. Portion of primary branch with perigonia.
E. Perigonium. F. Perigonial leaves. G. Capsule. A-C, G
from Tonduz rPittier No:1 5667 (BR, syntype R. gracile) ; D-F
from Ventura 18869a (FLAS).

156

FIG. 29. Rigodium toxarion var. toxarion: Variation in
African Specimens. A-J. Areolation of stem leaves from
various specimens. A-F. Variation in leaf margins. G-J.
Variation in midlaminar cells. K. Habit with attenuate
branches. L-M. Stem leaves from various specimens showing
variation in size and morphology. A, G, N from Scheloe 5552
(S); B, H, K, L from Volkens 2349 (JE, isolectotype R.
kilimandscharicuitü ; C, I from Pócs 6782/B (MO) ; D, J, M from
Perrier de la Báthie 168 (PC, lectotype R. niveum); E from
T. Müller 2635 (MO); F from Rvvarden 11792 (VBI).

luuieo
8ST

FIG. 30. Distribution of Riqodium toxarion.

T
40'
Distribution of R. toxarion
20°
20
40
CENTRAL AND SOUTH AMERICA,
SOUTHEASTERN AFRICA 500km
160

Fig. 31. Riqodium toxarion var. toxarion: Lax,
Sparsely Branched Specimens. A. Habit. B. Stem leaf. C.
Habit with both arborescent and lax, sparsely branched
stems. D. Stem leaf from arborescent stem. E. Stem leaf
from lax stem. A-B from Schwabe 79/b2 (JE, lectotype R.
pendulum); C-E from Skottsberq & Skottsberg 409 (GB).

162

FIG. 32. Southernmost Range of Rigodium toxarion var.
toxarion.

164
Southernmost Range of R. toxarion
70° 65°

FIG. 33. Riqodium toxarion var. robustum. A. Habit.
B. Stipe leaf. C-D. Stem leaves from various specimens.
Portion of secondary branch. F-H. Branch leaves from
various specimens. I. Areolation (marginal to midlaminar
cells) of stem leaf. A-C, E, F, I from Skottsberq &
Skottsberq 429 (S, isolectotype R. robustum); D, G from
Skottsberq & Skottsberq M98 (H); H from Skottsberq &
Skottsberq 423 (GB).

166
1mm
U I
0.3mm
40jum

167
2. Rigodium brachvpodium CC. MÜ11.1 Par.
Hvpnum brachvpodium C. MÜ11., Svn. 2: 445. 1851. Rigodium
brachvpodium (C. Miill.) Par., Ind. Brvol. 1140. 1898.
Types: Chile. Valparaiso: Valparaiso, no date, Bertero
s.n. (lectotype: BM!; possible isolectotype as
Anonymous s.n.: L!); lectotypification in Zomlefer
(1991).
Hvpnum arborescens C. Miill. , Bot♦ Zeit. 16: 172. 1858.
Rigodium arborescens (C. Miill.) Broth., Nat. Pfl. 1(3):
1160. 1909. Types: Chile. Valdivia: Ad truncos
arborum prope coloniam Arique [also spelled "Arrique"
on specimen labels], Jul 1851, Lechler 629 (lectotype
here designated: BM!; isolectotypes: BM (4 specimens)!,
BR (2 specimens)!, G!, GB!, H!, L (2 specimens)!,
MICH!, NY (3 specimens)!, O!, S (4 specimens)!, UPS!, W
(3 specimens)!).
Plants medium to large, dendroid (or very rarely
subsimple), erect, pendent, or sometimes creeping,
irregularly to + regularly pinnately branched, on tree
trunks and branches or sometimes on logs, rocks or soil,
green, yellow-green to yellowish brown, sometimes rooting at
tips of stems and primary branches. Stipes + well-
developed, to 4.0 cm long. Stems to 9.0 cm long, 275-680 um
in diameter. Primary branches generally 15-35 per stem,
spaced 1.0-10.0 mm apart along the stem, proximal ones to
3.5 cm long, gradually becoming shorter above, sometimes

168
attenuate (and then often rooting at tips). Secondary
branches generally 5-20 per primary branch, to 2.0 cm long.
Tertiary branches present. Stem leaves broadly ovate at
base and abruptly narrowed to a well-developed acumen, 0.68-
1.60 x 0.72-1.39 mm, with length/width ratio (0.93-)1.10(-
1.30), spreading to squarrose, with clasping and concave
base, longitudinally undulate, occasionally auriculate,
somewhat decurrent with decurrent portion 0.06-0.14 mm long
(5-13% of total leaf length); acumen 0.14-0.75 mm long, (20-
) 32 (-56)% of leaf length measured from point of insertion;
margins erect to reflexed, generally serrate throughout;
costa single, 0.43-1.25 mm long, 33-96 um wide at base, 2-3-
stratose in lower half; alar cells quadrate to oblate, 5.8-
12.7 x 7.1-13.3 um; marginal cells 1-2-seriate, oblong-
rhombic, 10.6-22.7 x 3.3-6.3 um; intramarginal cells (4-)5-
7-seriate, short-oblong, 14.7-29.5 x 7.8-12.6 um, with
thicker walls than the midlaminar cells and forming a
moderately strong intramarginal band; midlaminar cells
rhombic to rhomboidal, 18.1-33.2 x 3.9-6.8 um, porose with
walls somewhat uneven, very prorulose and often with (upper)
end walls projecting prominently as well-developed papillae
(prorulae) on the dorsal surface. Stipe leaves with similar
shape and orientation as stem leaves, 0.74-1.44 x 0.67-1.14
mm; acumen 0.17-0.76 mm long; costa absent or rarely present
and then very weak. Secondary branch leaves narrowly ovate,
acute, 0.28-0.61 x 0.19-0.37 mm, with length/width ratio
(1.43-)1.82(-2.25), erect-spreading to spreading; margins

169
serrate. Perigonial leaves ovate, acute to shortly
acuminate, 0.51-0.85 x 0.26-0.52 mm. Antheridia 240-475 x
90-155 urn; paraphyses 7-12 cells long, 300-550 um long.
Perichaetial leaves subulate, 1.16-2.68 x 0.35-0.92 mm,
long-acuminate with acumens 0.28-0.60 mm long; basal cells
rhomboidal, 30.0-105.0 x 7.0-11.3 um, porose, prorulose,
frequently papillose with one large central papilla; apical
cells rhombic, + sinuous, 18.3-36.0 x 3.3-6.7 um.
Archegonia 350-590 um long, 40-60 wide at venter; paraphyses
9-19 cells long, 425-700 um. Seta to 2.3 cm long. Capsule
urn 1.10-1.90 x 0.45-0.77 mm; upper exothecial cells 16.7-
25.0 x 14.0-23.3 um; median exothecial cells 31.7-61.8 x
23.3-34.0; cells in neck 23.3-52.0 x 9.7-16.0. Operculum
0.50-0.88 mm long, long-rostrate with beak 0.20-0.50 mm
long. Exostome teeth 527-690 um long, 80-120 um wide at
base. Endostome segments 255-383 um long, 38-62 um wide at
base; basal membrane 160-242 um high; cilia (l-)2-3, 148-328
um long. Spores 16-22 um in diameter. Calvptra to 3.0 mm
long.
2a. Riqodium brachvpodium (C. MÜ11.) Par, var. brachypodium
Plants dendroid (or rarely subsimple), erect, pendent
or sometimes creeping, irregularly pinnately branched.
Stipes well-developed, to 4.0 cm long. Stems to 5.5 cm
long, 320-680 um in diameter. Primary branches generally
15-30 per stem, spaced 1.0-3.5 mm apart along the stem,
proximal ones to 3.5 cm long, gradually becoming much
shorter above, sometimes attenuate (and then often rooting

170
at tips). Secondary branches generally 5-15 per primary
branch, to 2.0 cm long. Stem leaves broadly ovate at base
and abruptly narrowed to a well-developed short acumen,
0.68-1.60 x 0.72-1.39 mm, ca as long as wide with
length/width ratio (0.93-)1.07(-1.27), somewhat decurrent
with decurrent portion 0.07-0.14 mm long (8-13% of total
leaf length); acumen 0.14-0.61 mm long, (20-)29(-45)% of
leaf length measured from point of insertion; margins erect
to reflexed; costa single, relatively broad and well-
developed, 0.43-1.25 mm long, 45-96 urn wide at base;
intramarginal cells short-oblong, 14.7-29.5 x 7.8-12.6 urn;
midlaminar cells 18.1-33.2 x 3.9-6.8 urn. Stipe leaves 0.74-
1.34 x 0.67-1.14 mm; acumen 0.17-0.65 mm long.
Representative specimens examined. ARGENTINA. CHUBUT:
Lago Menéndez, 2 Nov 1945, Castellanos s.n. (FH); Lago
Menéndez, at the end of SW arm of lake, on level ground on S
side of a river, Nothofaaus dombeyi forest, 20 Jan 1938,
Kalela B244f (H); Lago Menéndez, on river uniting Lago
Menéndez and Lago Rutalaufquén, top of river bank,
Nothofagus dombevi forest with Austrocedrus and Lomatia. 21
Jan 1938, Kalela B249i (H) . NEUQUEN: Lago Correntoso, on
road a few hundred meters from hotel, Nothofagus dombevi-
Mavtenus forest, 6 Nov 1937, Kalela B3e (H); Isla Victoria
(Lago Nahuel Huapi), 820m, 21 Jan 1951, Sleumer 1718 (B, S).
RIO NEGRO: Lago Nahuel Huapi, in valley leading from Puerto
Blest to Lago Frias, at foot of E slope, Nothofagus dombevi-
Laurelia forest, 30 Nov 1937, Kalela B93a. B93f (H); Lago

171
Mascardi, in deep depression ca 8 km S of Hotel Tronador,
Nothofagus dombevi forest, 8 Dec 1937, Kalela B130a (H);
Lago Mascardi, El Maitenal, 3-4 km N of park warden's
residence, Nothofagus dombevi-Austrocedrus forest, 9 Dec
1937, Kalela B133c (H) . SANTA CRUZ: Southernmost end of
Lago Argentina, W side of Laguna Fria, 51°S, 73°W, mature
forest dominated by Nothofagus pumilio. with N. betuloides
and N. antárctica in places, 15-18 Mar 1972, Cantino M-41
(MO); Depto. Lago Argentino, Seno Mayo, Bahia Toro, 50°17'S,
73 °16'W, bosque mixto de Nothofagus betuloides y N. pumilio
con Drimvs winteri. Mavtenus magellanica. con cascada
fértil, 30 Jan 1988, Matteri & Schiavone 4925 (Herb.
Matteri).
CHILE. AISEN: Patagonia occidentalis in valle
fluminis Aysen [Aisén] in truncis putridis, 24 Jan 1897,
Dusén 482 (BM, FLAS, H, JE, MICH, NY, 0, S, W);
Westpatagonien, Punta Leopardo [Leopardos], 24 Feb 1921,
Hicken 126 (JE). CAUTIN: Termas de Palguin, along rio
Palguin, 39°22'S, 71°44'W, Nothofagus forest, moist bank,
beyond baños, 730m, 22 Jan 1976, Crosby 11841 (FLAS, MO);
Depto. Villarrica: Pucón, im Urwald auf des Halbinsel, auf
Baurnen, 7 Feb 1935, Hosseus 147 (JE) ; Anden von
Villarrica, auf Baumstammen, 1897, Neqer [Dusén No:] 10 (L).
CHILOE: Isla Chiloé, Chepu, S side of rio Chepu, 42°03'S,
74 ° 02'W, forest (Nothofagus nítida, Laurelia. Weinmannia,
Chusguea. etc.), on tree base, 0m, 3 Feb 1976, Crosby 12365
(MO); Tepuhueico [Lago Tepuhueco], 15 Mar 1958, Oberdorfer

172
279b (JE). CONCEPCION: Chile australis prope Talcahuano
oppidam in terra, 9 Sep 1896, Dusén 202 (CHR, FLAS, GB, H,
JE, NY, S); Concepción, Dec 1903, Elliott 139 (H, L, O).
COQUIMBO: Chaopa, Cerro Talinay 5 km al N de Huentelauquen;
bosque de Mirtáceas, en tronco de Myrceuqenia correalfolia.
600m, 15-16 Jul 1978, Mahu 12530 (MO). CURICO: Fundo El
Manzano, at La Montaña, ca 40 km E of Curico on the north
side of the rio Teño, forest mainly of Nothofaqus oblicma.
on rock in open forest, 30 Apr 1970, Landrum 166 (MO). JUAN
FERNANDEZ ISLANDS: Isla Más Afuera [Isla Alejandro
Selkirk], Quebrada Casas [Quebrada Baquedano], innermost
accessible part, wet shaded boulders in stream bed, 9 Nov
1965, Hatcher & Enael 631 (DUKE, G, MICH, NY). LINARES:
Bullileo ca 50 km E of Parral in the pre-cordillera, near
Laguna Amargo, forest of Nothofaqus obligua and N. glauca on
slopes, forest and thickets of Myrtaceae in low wet areas,
rock in forest, 17 Mar 1971, Landrum 1510b (MO).
LLANQUIHUE: Chile australis, lacus Llanquihue ad Puerto
Octay, Dec 1896, Dusén s.n. (S); Lago Todos los Santos,
41°10'S, 72 0 20'W, on shady andesite cliff, 160m, 10 Feb
1967, Seki 64 (H). MAGALLANES: West Patagonia, Smith
Channel [Canal Smith], Dec 1923, Gusinde 380 (GB, S, W);
106-107 km from Punta Arenas, gallery forest along the brook
between Morro Chico and Laguna Blanca, some 10-15m broad
Nothofaqus antárctica stand steppe on both sides, 7 Feb
1938, Kalela B282c (H). MALLECO: Along trail from western
entrance of Parque Nacional Contulmo, 7 km by road E of

173
Contulmo, Cordillera Nahuelbuta, 38°00'S, 73°10'W, on
rotting log, 330-360m, 24 Feb 1976, Crosbv 12992 (MO); Chile
australis in monte "Cordillera de la Costa" supra Angol
oppidam, in truncis arborum, 800m, 5 Nov 1896, Dusén 357
(BM, DUIS, FH, H, JE, MICH, NY, O, S, UPS, W). MAULE:
Empedrado, in the Cordillera de la Costa, ca 43 km SE of
Constitución, deciduous forest mainly of Nothofagus oblicua.
N. glauca and N. alessandri. on rock in wet forest, Aug
1970, Landrum 304. 305 (MO). NUBLE: San Fabian ca 60 km E
of San Carlos, about 2-5 km from San Fabian along trail to
Lago Valiente, on rock with humus, 19 Mar 1971, Landrum
1509a (MO); Recinto, ad saxa, 800m, 14 Apr 1929, Roivainen
970 (H). OSORNO: Agua Caliente, margin of rio Chanleufú
near falls, 4 km by road from Termas de Puyehue along road
to Refugio Antillanca, 40°43'S, 72°20'W, on rocks, 400m, 27
Jan 1976, Crosbv 12038 (MO); Fundo Colimahuida, 1940, Herzog
s.n. (JE). VALDIVIA: Forest (Nothofagus. Weinmannia.
Saxegothaea. Drimvs. Chusguea, etc.) on W slope of
Cordillera Pelada, 8.8 km by road W of El Mirador on road
between La Union and Punta Hueicolla, 40°07'S, 73°16'W, on
tree trunk, 580m, 18 Feb 1976, Crosbv 12794 (MO) ; 1887-88,
Hahn s.n. (B, BM, C, CANM, DUKE, F, FLAS, MICH, MO, OXF, NY,
S); Panguipulli, an der Rinde von Waldbaumen, 240m, 10 Jun
1921, Hollermaver 259 (B, S, W); Cunco-Panguipulli, Aug
1921, Hollermaver 281o.p. (S); Rio Blanco, zwischen dichten
Chusguea-Bestanden verbreitet, Dec 1953, Kunkel 2029 (B, H).

174
VALPARAISO: Guillota, ad rupes et arborum locio umbrosis in
sylva de la Palma, 1829, Bertero 1054 (BM).
Rigodium brachvpodium var. brachvpodium is typically an
epiphyte (on tree trunks and branches), but also
occasionally grows on logs, stumps, rocks, and soil. The
species is widespread in damp shady forests dominated by
Nothofaqus (with Podocarpus. Mvrceuqenia. Weinmannia.
Saxegothaea. Drimvs. Chusauea. Austrocedrus. Mavtenus. and
Laurelia) and sometimes occurs in disturbed, open areas as
well, at altitudes typically 500 to 1350 m, with elevations
of 0 to 500 m not infrequently cited on the labels. The
distribution of R. brachvpodium (along the Andean Cordillera
of Chile-Argentina, ca 31°S to 55°S, Fig. 37) and R. pseudo-
thuidium define the southernmost range of the genus, but the
range of R. brachvpodium does not extend as far eastward as
that of R. pseudo-thuidium (i.e., no collections from Tierra
del Fuego, Argentina). Like R. pseudo-thuidium. R.
brachvpodium also occurs in the Juan Fernández Islands only
on Isla Alejandro Selkirk (Isla Más Afuera) and not on Isla
Robinson Crusoe (Isla Más a Tierra).
Riqodium brachvpodium var. brachvpodium retains the
ancestral arborescent habit, while exhibiting some
apomorphic character states of a strong intramarginal band
of cells (Fig. 34H and J) and a moderately decurrent leaf
base (8 to 13% of the total leaf length; Fig. 19B). The
cell border, however, is narrow (four to seven cells wide),

175
although the cells themselves have much thicker walls than
those of R. toxarion. The stem leaves are likely to be ca
as long as wide (Fig. 19D) with short acumens (Fig. 19E).
The costa of the stem leaves of this variety tend to have a
very strong, broad costa (to ca 96 urn wide at base), and the
plants tend to develop a robust habit.
The autapomorphy of the species (i.e., occurring in R.
brachvpodium var. tamarix as well) is the extremely
prorulose condition of the midlaminar cells, the ends of
which often project as well-developed papillae (prorulae) on
the dorsal surface (Figs. IOC and D, 34J). This character
was evidently first noted by Robinson (1975) who described
them as "knobs on end walls projecting abaxially as
papillae." Although not all specimens have prorulose
midlaminar cells as illustrated here, a few such projecting
cells may be found on any given stem leaf. In addition, the
walls of the midlaminar cells are porose (but not as uneven
as in R. imolexurn and R. pseudo-thuidium). Although Thériot
(1917) reported that R. brachvpodium (as R. arborescens)
frequently fruits and often has two setae per perichaetia,
examination of numerous specimens of R. brachvpodium over
its entire range does not reveal any exceptional amount of
sporophyte production in comparison to other species of
Riqodium.
The epithet of R. arborescens has been more commonly
used both with collections and in the literature than the
name R. brachvpodium. possibly because the situation

176
concerning the type(s) of R. brachypodium was unclear (see
Zomlefer, 1991), in addition to the vague description
provided by Müller (1851), the original author. Müller
(1851) did indicate that R. brachypodium was definitely far
removed from R. implexum and R. toxarion. but did not
specify the distinguishing characters. Despite these
problems, however, Riaodium brachypodium is the older name
with priority. The stem leaves of the type specimen of R.
brachypodium (Fig. 34F) are much smaller than most
representatives of the species (Fig. 34D). In contrast, the
nomen nudum, "R. carnosulum" (Dusén, 1903; Dusén 482) .
represents the largest and most robust plants with the
largest stem leaves (Fig. 34G) in R. brachypodium.
As noted in the initial discussion of the distribution,
R. brachypodium var. brachypodium occurs on the Juan
Fernández Islands (Isla Alejandro Selkirk), and is
represented here in the loan material by one specimen
(Hatcher & Engel 631). Although he annotated this specimen
as "R. arborescens11 in 1965, Robinson (1975) later includes
this specimen in his concept of "R. robustum" in his moss
flora of the Juan Fernández Islands. Here he maintains that
R. arborescens is restricted to mainland Chile. The
specimen in question, however, fits even his concept of R.
arborescens (= R. brachypodium): the stem leaves have a
moderately strong intramarginal border and very prorulose
and porose midlaminar cells (some of which project as dorsal
papillae). The stem leaves of "R. robustum” (= R. toxarion

177
var. robustum in this revision), though, have a weak border
and weakly prorulose midlaminar cells with even walls. I do
agree with Robinson's annotations of Brotherus' (1925) and
Bartram's (1959) "R. arborescens" (R. brachvpodium)
specimens as R. robustum (= R. toxarion var. robustum)/R.
toxarion (= R. toxarion var. toxarion).
As discussed in the chapter on phylogenetics, the
cladistic analyses indicate that R. brachvpodium may be
paraphyletic (compare Figs. 20 and 21). However,
intermediates in habit form link the two varieties, as well
as the synapomorphy of the midlaminar cells with prorulae
(see discussion in chapter on phylogeny). Occasionally when
stems of R. brachvpodium var. brachypodium become elongated,
the arborescent form is less distinct and the branching
pattern approaches + regularly pinnate. These tendencies
for the development of regularly pinnate branching and loss
of well-developed stipe are carried to the extreme in R.
brachvpodium var. tamarix (discussed below).
In some situations R. brachvpodium var. brachvpodium
exhibits the retention of the stem leaf ancestral morphology
(a relatively short decurrency), as well as the tendency for
a long acumen (greater than one third of the leaf length).
When the stems become attenuate and root at the tips, the
leaves in the elongated area may have a different shape
(short decurrency, long acumens; Fig. 36A). This tendency
is consistent in R. brachvpodium var. tamarix (discussed
below) in which all the stem leaves are long acuminate. Out

178
of the hundreds of R. brachvpodium var. brachvpodium
specimens examined, one transitional arborescent specimen
(Hollermaver 281p.p.) has numerous stem leaves with long
acumens (Fig. 36B). Other minor variants (in habit) are a
few very poor specimens with lax, sparsely branched plants
(as in R. toxarion and R. adpressum. both also arborescent
species), generally scattered throughout the north central
part of the range of R. brachypodium (Cautin and Valdivia,
Chile; Chubut and Rio Negro, Argentina) and are probably the
result of localized unfavorable environmental conditions.
2b. Riaodium brachvpodium var. tamarix (C. Müll.) Zomlefer,
var. nov.
Riaodium tamarix C. Müll., Hedwiaia 36: 139. 1897.
Type(s): Chile. Aisén: Hale Bay, canali occid.
patagonia, [voyage of the] Viaggio Carocciolo, 3 Jul
1884, de Amezaga s.n. (lectotype: RO!); Fuegia, Hale
Bay, Hb. Horti Romani, Hb. Müller 1885, Anonymous s.n.
(probable isolectotype: BM!)? Hale Bay, West Channel,
[voyage of the] Viaggio Carocciolo, Erbario Roma, com.
Pirotta, 3 Jul 1882, Anonymous s.n. (possible
isolectotype: SI); lectotypification in Zomlefer
(1991).
Plants pendent or creeping, + regularly pinnately
branched. Stipes + well-developed, to 2.1 cm long. Stems
long and straggling, to 9.0 cm long, 275-370 um in diameter.
Primary branches generally 15-35 per stem, spaced 3.0-10.0
mm apart along the stem, proximal ones to 2.5 cm long,

179
gradually becoming + shorter above. Secondary branches
generally 5-20 per primary branch, to 1.2 cm long. Stem
leaves broadly ovate at base and abruptly narrowed to a
well-developed long acumen, subulate, 0.93-1.13 x 0.76-0.87
mm, longer than wide with length/width ratio (1.22-)1.28(-
1.34), barely decurrent with decurrent portion 0.06-0.08 mm
long (5-7% of total leaf length); acumen 0.40-0.75 mm long,
(43-)52(-56)% of leaf length measured from point of
insertion; margins erect to plane or narrowly reflexed;
costa single, well-developed but relatively slender, 0.67-
0.71 mm long, 33-46 urn wide at base; intramarginal cells
elongate, 20.6-26.8 x 8.9-12.0 urn; midlaminar cells 21.6-
28.5 x 4.2-4.7 urn. Stipe leaves 0.93-1.44 x 0.69-1.01 mm;
acumen 0.47-0.76 mm long.
Representative specimens examined. ARGENTINA.
NEUQUEN: Depto. Los Lagos, Isla Victoria (Lago Nahuel
Huapi), 820m, 21 Jan 1950, Sleumer 1712 (B). RIO NEGRO:
Puerto Blest, 21 Dec 1944, Mever 7348 (FH).
CHILE. AISEN: Patagonia occidentalis, Puerto
Chacabuco, truncis d'arbores, 1908, Halle 840 (H, S, UPS);
Puerto Aysén [Aisén], Laguna de San Rafael, 2 Jan 1959,
Pizzaro 6435 (NY). CHILOE: Isla Chiloé, Cordillera San
Pedro, near aserradera at San Pedro, 42°25'S, 73°50'W, well-
shaded forest on steep slope along rio Puidi, terrestrial,
320m, 5 Feb 1976, Crosby 12454 (MO); Patagonia occidentalis,
Isles Guaitecas, Isla Westroff pá marken ruttna stockar, 20
Apr 1897, Dusén 623 (JE, S). LLANQUIHUE: Zwischen Petrojue

180
[Petrohué] über Ensenada (Lago Todos Santos), 2 Mar 1927,
Schiller 34 (JE). VALDIVIA: Forest at Fundo Santa Rosa, 8
km by road N of Puente Callecalle, 39°44'S, 73°14'W, on
rotting log, 0m, 16 Feb 1976, Crosby 12736 (MO); Depto. La
Unión, La Gualleria (Hualle-Huapi), temperate rain forest,
on trunks, 700m, 24 Dec 1947, Soarre 3714 (FH, S); Corral,
1905-06, Thaxter 83 (FH, FLAS, MICH, NY).
Rigodium brachvpodium var. tamarix has a distribution
(ca 39°S to 48°S; Fig. 39) sympatric with and restricted to
the central range of R. brachvpodium var. brachvpodium (Fig.
37). Nineteen collections (34 specimens) of this variety
have been identified from the loan material. The stem
leaves of R. brachvpodium var. tamarix. longer than wide
with a long acumen, express the ancestral leaf shape (weakly
decurrent; Fig. 38B). This morphology is similar to that of
R. toxarion and is also exhibited under certain conditions
by R. brachvpodium var. brachvpodium (see discussion above).
The stem leaves of R. brachvpodium var. tamarix are
consistently spreading to sguarrose, although Robinson
(1975) describes them as "more appressed, nearly sheathing."
Rigodium brachvpodium var. tamarix and R. brachvpodium
var. brachvpodium share the derived feature of the well-
developed intramarginal band of cells (Fig. 38C); the
species itself may be defined by the strongly prorulose
midlaminar cells with the end walls projecting as papillae
(prorulae). Rigodium brachvpodium var. tamarix is further

181
defined by the autapomorphy of the loss of the arborescent
habit and the development of elongated, sprawling stems with
± regular pinnate branching (Fig. 38A), which is unique
among Riqodium species. Curiously, this unusual branching
pattern was not noted by Müller (1897b), the original
author, but was emphasized by later bryologists such as
Thériot (1934) and Robinson (1975).

FIG. 34. Rigodium brachypodium var. brachypodium:
Gametophytic Features. A. Habit. B. Portion of stem
showing position of leaves. C. Stipe leaf. D. Stem leaf.
E. Branch leaf. F-G. Stem leaves from two specimens showing
variation in size. H. Cross section of stem leaf. I-J.
Areolation of leaf. I. Midlaminar cells (note projecting
end walls). J. Marginal and intramarginal cells. A-E from
Elliott 139 (H); F from Bertero s.n. (BM, lectotype R.
brachypodium); G from Dusén 482 (O); H-J from Crosby 12992
(MO) .

183

FIG. 35. Rigodium brachvpodium var. brachvpodium:
Sporophytic and Related Gametophytic Features. A.
Perichaetial leaf. B-C. Areolation of perichaetial leaf.
B. Basal cells. C. Upper cells. D. Primary branch with
perigonia. E. Perigonium. F. Perigonial leaves. G.
Capsule. A-C from Crosby 12992 (MO); D-G from Lechler 629
(MICH, isolectotype R. arborescens).

185

FIG. 36. Rigodium brachvpodium var. brachvpodium: Stem
leaves with Long Acumens. A. Leaf from elongate stem
rooting at the tips (other stem leaves with short acumens).
B. Stem leaf from unusual specimen of this species (see text
for discussion). A from Lechler 629 (W, isolectotype R.
arborescensl; B from Hollermaver 281 p.p. (S).

187

FIG. 37. Distribution of Rigodium brachvpodium var.
brachvpodium.

189

FIG. 38. Riqodium brachvoodium var. tamarix. A.
Habit. B. Stem leaf. C-D. Areolation of stem leaf. C
Marginal and intramarginal cells. D. Midlaminar cells,
from Crosby 12613 (MO).
All

wrfofr
161

FIG. 39. Distribution of Rigodium brachypodium var.
tamarix.

193
Distribution of R. brachypodium var. tamarix
IP

194
3. Rigodium adpressum Zomlefer. sp. nov.
Rigodium adpressum Zomlefer, Svst. Bot. 17(1): (in press).
Figs. 2-3, 1992. Types: Argentina. Chubut: Lago
Menéndez, 1 Dec 1940, Kühnemann 5260 (holotype: H!;
isotypes: ALTA!, U!)
Plants medium to large, dendroid, erect or more
commonly pendent, irregularly pinnately branched, on tree
trunks and branches, sometimes on logs or rarely on rocks,
green, yellow-green to yellowish brown, rarely rooting at
tips of stems and primary branches. Stipes well-developed,
to 2.5 cm long. Stems to 3.8(-4.7) cm long, 270-480 um in
diameter. Primary branches generally 10-20 per stem, spaced
1.0-2.5 mm apart along the stem, proximal ones to 2.2 cm
long, gradually becoming much shorter above, occasionally
attenuate. Secondary branches generally 8-20 per primary
branch, to 0.9 cm long. Tertiary branches present. Stem
leaves ovate at base and abruptly narrowed to a well-
developed acumen, + subulate, 0.68-1.21 x 0.50-0.78 mm, ca
longer than wide with length/width ratio (1.23-) 1.41(-1.56) ,
strongly appressed with + spreading-erect tips, with
clasping and concave base, auriculate, strongly decurrent
with decurrent portion 0.20-0.26 mm long (14-22% of total
leaf length) and with some cells of decurrency with a
central papilla; acumen 0.33-0.64 mm long, (32-)39(-43)% of
leaf length measured from point of insertion; margins
strongly revolute, + entire or sinuous at base and serrate

195
above; costa single, well-developed, 0.61-1.33 mm long, 41-
62 urn wide at base, 2-3-stratose in lower half; alar cells
quadrate to oblate, 6.3-11.7 x 7.7-11.1 um; marginal cells
1-2-seriate, oblong-rhombic, 10.7-17.7 x 3.6-5.3 um;
intramarginal cells (4-)5-6-seriate, short-oblong, 18.0-21.0
x 7.7-11.3 um, with much thicker walls than the midlaminar
cells and forming a very strong intramarginal band;
midlaminar cells rhombic to rhomboidal, 22.1-32.2 x 3.8-6.2
um, porose with walls very uneven, prorulose. Stipe leaves
with similar shape and orientation as stem leaves, 0.68-1.21
x 0.50-0.78 mm; acumen 0.29-0.52 mm long; costa absent or
rarely single and then very weak. Secondary branch leaves
narrowly ovate, acute, 0.32-0.45 x 0.16-0.27 mm, with
length/width ratio (1.61-)2.02(-2.26), appressed to erect,
often decurrent; margins strongly revolute, serrate.
Periaonial leaves ovate, acute to shortly acuminate, 0.66-
0.74 x 0.30-0.34 mm. Antheridia 250-275 x 100-140 um;
paraphyses 8-9 cells long, 310-540 um long. Perichaetial
leaves subulate, 1.35-2.47 x 0.49-0.82 mm, long-acuminate
with acumens 0.34-0.54 mm long; basal cells rhomboidal,
37.3-57.3 x 8.3-10.7 um, porose, prorulose, frequently
papillose with one large central papilla; apical cells
rhombic, + sinuous, 18.7-28.0 x 4.0-6.0 um. Archegonia 340-
500 um long, 38-55 wide at venter; paraphyses 11-19 cells
long, 390-620 um. Seta to 1.5 cm long. Capsule urn 1.60-
1.80 x 0.60 mm; upper exothecial cells 13.0-20.2 x 13.0-15.0
um; median exothecial cells 63.3-65.0 x 30.0-35.0; cells in

196
neck 40.0-45.0 x 10.0-12.3. Operculum 0.92 mm long, long-
rostrate with beak 0.56 mm long (only 1 intact operculum
seen). Exostome teeth 650-710 urn long, 85-95 urn wide at
base. Endostome segments 310-350 urn long, 40-50 urn wide at
base; basal membrane 190-240 urn high; cilia 2-3, 240-290 urn
long. Spores 18-20 urn in diameter. Calyptra to 1.8 mm
long.
Representative specimens examined. ARGENTINA. CHUBUT:
SW arm of Lago Menéndez, SE slope, Nothofagus dombevi
forest, 20 Jan 1938, Kalela B246h (H); Lago Rivadavia, 13
Dec 1940, Kühnemann 5195 (ALTA, U). NEUQUEN: Lago
Correntoso, steep slope by brook running through isthmus
between Lago Correntoso and Lago Espejo, Nothofagus dombevi
forest, 9 Nov 1937, Kalela B28n (H); Parque Nacional Lanin,
Peninsula de Pucará, 3 Feb 1969, Matteri 432 (BA). RIO
NEGRO: Parque Nacional Argentino [Parque Nacional Nahuel
Huapi], Nahuel Huapi, Puerto Pañuelo, 800 m, 13 Jun 1936,
Donat 2 (JE); Lago Mascardi, slope above lake, ca 5-6 km N
of El Maitenal, Nothofagus dombevi forest with Austrocedrus.
9 Dec 1937, Kalela B136g (H). SANTA CRUZ: S end of Lago
Argentina, W side of Laguna Fria, 51°S, 73°W, mature forest
dominated by Nothofagus pumilio with N. betuloides and N.
antárctica. 15-18 Mar 1972, Cantino M-ll. M-17. M-35 (all
MO); Depto. Lago Argentino, Bahia Ameghino al N del rio
(refugio), bosque mixto de Nothofagus betuloides. N.
pumilio. Drimvs winteri, Mavtenus magellanica. M. disticha y

197
abundancia de heléchos, 50°24'S, 73°15'W, 30 Jan 1988,
Matteri &. Schiavone 4985 (Herb. Matteri) .
CHILE. AISEN: Patagonia occidentalis, rio Aysen
[Aisén], in truncis, 5 Jan 1897, Dusén 397 (CHR, DUKE, FH,
FLAS, GB, NY, S). CAUTIN: Depto. Villarrica, Pucón, auf
dem Weg nach dem Vulcan Villarrica, auf Báumen, 8 Feb 1935,
Hosseus 226 (JE); Parque Nacional Conguillio, al S de la
Laguna en el roquerio frente las Cabanas, 1110 m, 6 Feb
1976, Mahu 10733 (MO); Volcán Llaima, auf morschen
Baumstámmen, 1080 m, 15 Feb 1966, Ruthsatz s.n. (H).
MAGALLANES: Puerto Arturo, no date, Benove 64 (H); Puerto
Arturo, sobre árbol pútrido, 3 Mar 1922, Benove 65 (H).
MALLECO: Depto. Angol, Estero Aguas Calientes, Parque
Nacional de Nahuelbuta, frente a casa de Pincheira, 1250 m,
1 Apr 1971, Mahu 6076 (FLAS). MALLECO/ARAUCO: Parque
Nacional Nahuelbuta, Cordillera Nahuelbuta, 6.3 km W of park
entrance, 44 km W of Angol, 37°46'S, 73°00'W, Nothofacrus
forest, on rock, 1300 m, 26 Feb 1976, Crosbv 13093 (MO).
NUBLE: Recinto, Las Francas, el Purgatorio, in silva
Nothofaaus dombevi. 1200 m, 12 Apr 1929, Roivainen 1597 (FH,
H). VALDIVIA: Cordillera Pelada [La Pelada], Mischwald, auf
Baumrinde, 780 m, Jan 1966, Ruthsatz s.n. (H).
VALDIVIA/ORSONO: Forest reserve at Planta Hidroeléctrica
Pilmaiquén, 2 km W of Entre Lagos, along rio Pilmaiquén,
near top of Salto Brujo, 40°40'S, 72°40'W, on tree, some
stems pendent, 100 m, 29 Jan 1976, Crosby 12210 (MO).

198
Riqodium adpressum is usually epiphytic on tree trunks
and branches (also sometimes occurring on logs and rocks) in
forests dominated by Nothofaaus species (with Mvrceugenia.
Austrocedrus. Drimvs. and Mavtenus). The elevation is
usually 800 to 1200 m, although lower altitudes (100 m) are
occasionally cited on the specimen labels. The range, along
the Andean Cordillera in Chile-Argentina, extends from ca
37 ° S to 53 °S (Fig. 42) .
Thirty-one collections (45 specimens) of R. adpressum
have been determined from the loan material (Zomlefer,
1992). It is somewhat surprising that a distinct (i.e.,
numerous autapomorphies) and well-collected species had been
overlooked by previous authors, considering the abundance of
Riqodium species descriptions and the number of epithets
reduced in synonymy in this revision (see Table 1). The
majority of the R. adpressum specimens had not been
identified to species; the remainder had been labelled as R.
toxarion. R. nano-faseiculatum (= R. toxarion in the present
study) or R. arborescens (= R. brachvpodium in the present
study). Riqodium adpressum is phenetically close to R.
brachvpodium var. brachvpodium and R. toxarion var.
toxarion. as shown graphically in the results of the PC
analysis (Fig. 24A and B).
All three species share the plesiomorphic character of
the arborescent habit with a well-developed stipe (Fig.
40A). In addition, the new species and R. brachvpodium both
have obvious intramarginal borders (derived character) on

199
the stem and stipe leaves. Rjqodium adpressum stem leaves,
which are longer than wide (Fig. 19D), are somewhat similar
in shape to those of R. toxarion. The appressed position
(Fig. 40B) of the stem and stipe leaves of R. adpressum.
however, is very unlike that of other Rjqodium species,
which are wide-spreading to squarrose. Also easily
discernible with the dissecting microscope at low power
(Fig. 4OB) are the strongly revolute leaf margins (Fig.
40H), compared to the plane to weakly reflexed condition of
the other species. In addition, the cells of the
intramarginal band (Fig. 401) have extremely thick walls and
are much shorter than the midlaminar cells, another
autapomorphy for the species (see Fig. 19C).
The stem, stipe, and sometimes branch leaves of the new
species have the additional autapomorphic feature of a long
decurrency (over 14% of the total leaf length; Figs. 19B,
40C and D). Several cells of the decurrent portion contain
a large, low, central papilla (Fig. 40G) on the dorsal side.
As noted in the chapter on general morphology, similar
papillae are occasionally to frequently present at the base
of the outer perichaetial leaves in all Rjqodium species,
but occur consistently on all the available collections of
R. adpressum with archegonial plants (Fig. 41B and C).
As discussed in detail in the cladistic analysis (Figs.
20 and 21), R. adpressum is phylogenetically intermediate
within the genus, although the exact relationship of R.
adpressum to the other species is unclear. The new species

200
may be positioned between R. brachypodium and the R.
implexum/R. pseudo-thuidium clade (see Fig. 20), if R.
brachypodium is paraphyletic, or R. adpressum may possibly
be less derived than R. brachypodium. if the latter species
is monophyletic (Fig. 21A).
Minor variants of the new species are found in the
collections of Crosby 12210 and Dusén 397. which generally
exhibit the distinguishing characters of R. adpressum but
have weakly spreading leaves. In addition, as noted for R.
toxarion and R. adpressum (both also arborescent), a few
collections of R. adpressum feature a lax, sparsely branched
habit (e.g., Hosseus 163 \Zomlefer aJJ , probably due to less
than optimal environmental conditions.

FIG. 40. Rigodium adpressum: Gametophytic Features.
A. Habit. B. Portion of stem. C. Stipe leaf. D. Stem
leaf. E. Branch leaves. F. Cross section of stem taken at
location indicated by arrow in B (i.e., through decurrent
portion of stem leaf). G-J. Areolation of leaf. G. Cells
of basal decurrency. H. Cross section of stem leaf. I.
Marginal and intramarginal cells. J. Midlaminar cells. All
from Kühnemann 5260 (ALTA, isotype).

202

FIG. 41. Rigodium adpressum: Sporophytic and Related
Gametophytic Features. A. Perichaetial leaf. B. Basal
areolation of perichaetial leaf. C. Cross section of
perichaetial leaf taken near base. D. Areolation of upper
perichaetial leaf. E. Branch with perigonia. F.
Perigonium. G. Outer perigonial leaf. H. Inner perigonial
leaf. I. Operculate capsule (rostrum broken). J. Detached
operculum. K. Deoperculate capsule. A-D: Kühnemann 5260
(ALTA, isotype). E-H: Ruthsatz s.n.. Volcán Llaima (H). I
and K: Matteri &. Schiavone 4985 (Herb. Matteri) . J: Dusén
397 (NY).

LULUS'O
I 1
toz

FIG. 42. Distribution of Rigodium adpressum.

206
Distribution
of
R. adpressum
SOUTHERN CHILE
AND
ARGENTINA
i 1 i
0 300km

207
4. Riqodium implexum Kunze ex Schwágr.
Riaodium implexum Kunze ex Schwágr., Linnaea 18: 559. Plate
9. 1844 [1845]. Hvpnum implexum (Schwáegr.) C. MÜ11.,
Linnaea 18: 676. 1844 [1845]. Heterocladium implexum
(Schwágr.) Lor., Bot. Zeit. 24: 189. 1866. Type:
Chile. Bio-Bio: Chile australis, Andes de Antuco, in
sylvis densis, Dec 1828, Poeppjq s.n. (lectotype: BM!)?
Chile australis, Andes de Antuco, no date, Poeppjq s.n.
(original material, FH!); Chile. 1829, Poeppjq s.n.
(original material, BM!); Chile. no date, Poeppjq s.n.
(original material, BM!); Chile. no date, Poeppjq s.n.
(original material, JE!); lectotypification in Zomlefer
(1990).
Plants medium to large, extremely wiry, often forming
large tangled and unattached mats, profusely irregularly
pinnately branched with primary and secondary branches at
wide angles to the stems, usually on soil or occasionally on
tree trunks or branches, dark green to brownish green.
Stipes not well-differentiated, to 0.5 cm long. Stems to
6.1 cm long, 330-615 um in diameter. Primary branches
generally 15-30 per stem, spaced 3.0-4.0 mm apart along the
stem, proximal ones to 4.0 cm long, gradually becoming much
shorter above. Secondary branches generally 10-20 per
primary branch, to 3.0 cm long. Tertiary branches present,
profuse. Stem leaves broadly ovate at base and abruptly
narrowed to a well-developed acumen, 0.68-1.20 x 0.72-1.11

208
mm, ca as long as wide with length/width ratio (0.95-)1.05
(-1.14), strongly squarrose, with clasping and concave base,
longitudinally undulate, occasionally auriculate, somewhat
decurrent with decurrent portion 0.06-0.11 mm long [(7—)8—
11% of total leaf length]; acumen 0.23-0.55 mm long, (33-)
39(-46)% of leaf length measured from point of insertion;
margins plane to weakly reflexed, serrate throughout; costa
single, relatively well-developed, 0.51-0.89 mm long, 58-66
um wide at base, (3-)4-5-stratose in lower half; alar cells
quadrate to oblate, 6.6-12.4 x 6.4-10.3 um; marginal cells
1-2-seriate, oblong-rhombic, 13.9-18.9 x 4.1-7.3 um;
intramarginal cells (7-)8-9(-10)-seriate, oblong to
elongate, 20.5-25.8 x 7.3-10.7 um, with thicker walls than
the midlaminar cells and forming a moderately strong
intramarginal band; midlaminar cells rhombic to rhomboidal,
21.1-28.5 x 3.6-6.7 um, porose with walls + uneven, +
prorulose. Stipe leaves with similar shape and orientation
as stem leaves, 0.59-0.81 x 0.71-0.92 mm; acumen 0.12-0.36
mm long; costa absent. Secondary branch leaves narrowly
ovate, acute, 0.33-0.48 x 0.25-0.32 mm, with length/width
ratio (1.22-)1.45(-1.68), spreading to squarrose; margins
serrate. Perigonial leaves ovate, acute to shortly
acuminate, 0.49-0.65 x 0.21-0.30 mm. Antheridia 380-410 x
100-110 um; paraphyses 9-12 cells long, 410-425 um long.
Perichaetial leaves subulate, 1.31-1.92 x 0.45-0.77 mm,
long-acuminate with acumens 0.35-0.51 mm long; basal cells
rhomboidal, 42.0-74.7 x 7.7-12.0 um, porose, prorulose,

209
sometimes papillose with one large central papilla; apical
cells rhombic, + sinuous, 20.3-28.0 x 3.0-7.0 urn.
Archeaonia 380-560 urn long, 40-50 wide at venter; paraphyses
10-16 cells long, 475-620 urn. Seta to 2.0 cm long. Capsule
urn 1.37-1.80 x 0.50-0.73 mm; upper exothecial cells 18.3-
25.0 x 19.0-21.7 urn; median exothecial cells 46.7-63.3 x
23.3-35.0; cells in neck 27.3-40.0 x 11.3-17.0. Operculum
0.60-0.80 mm long, long-rostrate with beak 0.30-0.45 mm
long. Exostome teeth 645-718 urn long, 110-127 urn wide at
base. Endostome segments 325-385 um long, 45-65 um wide at
base; basal membrane 210-240 um high; cilia 2-3, 180-225 um
long. Spores 17-20 um in diameter. Calvptra to 2.5 mm
long.
Representative specimens examined. ARGENTINA.
NEUQUEN: Parque Nacional Lanin, Pucará, bosque de
Nothofaaus nervosa y N. dombevi. en el suelo, May 1966,
Eskuche 941-13 (H); Lago Correntoso, on road to hotel,
Nothofagus dombevi forest, 6 Nov 1937, Kalela B4c (H).
CHILE. AISEN: Patagonia occidentalis in valle
fluminis Aysen [Aisén] in terra, 5 Jan 1897, Dusén 409 (BM,
CHR, DUIS, FH, H, JE, M, MICH, NY, O, S, UPS, W); Patagonia
occidentalis, Canal Moraledas [Moraleda Canal], Puerto
Chacabuco, ad terram, 7 Jul 1908, Halle 837 (H, S, UPS).
CAUTIN; Depto. Villarrica, Pucón, auf dem Weg nach dem
Vulkan Villarrica, auf Erde, 8 Feb 1935, C_¡_ Hosseus 235 (FH,
JE, M). CHILOE: Isla Chiloé, forest at Chadmo Central,
just N of Puente San Juan along Ruta 5, 20.9 km by road N of

210
Quellón, 42°57'S, 73°46'W, terrestrial, not attached to
substrate, 50m, 6 Feb 1976, Crosbv 12504 (ALTA, CANM, CHR,
FLAS, H, KRAM, MICH, MO, NY, S, U); Chepu, Nothofaqus nitida
forest, free-living on forest floor, 3 Oct 1958, Godlev 105
(BM, CHR, FLAS, H). CONCEPCION: Talcahuano, 30 Jul 1921,
Asolund 62 (S). LLANQUIHUE: Yerbas Buenas, Centro de
Recreación Las Cascadas, al Este de Las Cabañas, 41°07'S,
72 ° 3 6'11"W, bosque de Nothofaqus dombevi. en suelo sobre
hierbas y hojarasca, 20m, 18 Jan 1986, Mahu & Tapia 21333
(MO); Roblewald bei Corte Alto, südlich von Osorno, 1958,
Oberdorfer 178a (JE). MALLECO: Chile australis in monte
"Cordillera de la Costa" supra Angol oppidam, in terra, 5
Nov 1896, Dusén 356 (B, FH, GB, JE, O, S, W); Cordillera de
Nahuelbuta, on ground in Araucaria-Nothofaqus forest, 1100-
1300m, 6 Apr 1948, Sparre 5065 (S). OSORNO: Near province
Valdivia boundary, Anticura, vicinity of Salto del Indio, 19
km by road E of Termas de Puyehue along international
highway, 40°39'S, 72°10'W, in forest, terrestrial, not
attached to substrate, 300m, 30 Jan 1976, Crosbv 12295
(FLAS, L, MICH, MO, NY); Salto de Pilmaiquén, on ground in
shadowy forest, 13 Feb 1948, Sparre 4465 (S). VALDIVIA: 1
mi E of point where rio Bueno leaves Lago Raneo, 40°S, 72°W,
loose on forest floor like tiny tumbleweeds, 11 Feb 1972,
Cantino 71 (MO); Isla Teja, W of Parque de Exposiciones
Saval, 39°48S, 73°16'W, low mucky stream-cut area, dense
shrubs, terrestrial, 0m, 11 Jan 1976, Crosbv 11565 (FLAS,
MO); Corral, pá stenar vid backar, 5 Jun 1896, Dusén 75 (H,

211
S) ; Prope coloniam Arique, ad terrain, Aug no year, Lechler
620a (BM, BR, G, H, L, NY, O, OXF, S, UPS, W).
Riqodium implexum generally occurs on well-shaded, damp
to swampy ground in forests dominated by species of
Nothofagus (along with Araucaria, Laurelia. Weinmannia.
Chusquea. and Eucrvphia) at altitudes usually reported at 0
to 400 m, although higher elevations (800 to 1300 m) are
sometimes cited on the labels. The range (Fig. 45), ca 37°S
to 47 ° S (along the Andean Cordillera in Chile-Argentina), is
the most restricted of the Riqodium species. Riqodium
implexum is one of the most common mosses in the Valdivian
rainforests (Herzog, 1939). Besides Valdivia, the species
has been collected extensively in the provinces of Cautin
and Llanquihue, as well as on the island of Chiloé.
The genus Riqodium was first described by Schwágrichen
(1844) with specimens of R. implexum as the type(s). The
situation concerning the original material, nomenclature,
and lectotypification of R. implexum is discussed in detail
in Zomlefer (1990). Due to confusion in the literature
concerning the epithets of Riqodium, herbarium specimens of
R. implexum are often labelled as "R. toxarion," the oldest
epithet in the genus. The species, however, is one of the
easiest in the genus to identify due to the unusual and
derived habit type (Fig. 43A). The extremely wiry stems and
branches (of all orders) arise at right angles and spread in
all directions (Herzog, 1939), eventually forming

212
unattached, irregularly "spherical masses" (Middleton s.n.;
Crosby 12057), also described by collectors as "Kugeln"
("globes" or "spheres," Sleumer 1733). "Halbkugeln"
("hemispheres," Poeppig s.n.)» "sponge-like masses"
(Middleton s.n.), "tiny tumbleweeds" (Cantinp 7J.) , and "lana
de pobre" ("poor man's wool;" Herzog, 1939; Schwabe 80;
Crosby 12504). Although most commonly terrestrial and
unattached to the substrate, the species is also rarely
reported growing as an epiphyte on low branches.
With R. pseudo-thuidium. R. implexum is
phylogenetically advanced within Riqodium. sharing the four
following derived characters with its sister species (Figs.
20, 21): loss of rooting at the tips of branches (a
reversal), loss of well-developed stipe, spreading branches
that arise at right angles to the stems (discussed above),
and a well-developed intramarginal band. The stem leaves of
both species also tend to be ca as long as wide (Fig. 19D)
with short acumens (19E). The intramarginal band (Fig. 43F
and H) consists of up to ten rows of cells that are usually
longer than those of the midlaminar region (Fig. 19C). The
midlaminar cells (Fig. 43G) have uneven walls and are
prorulose, but not to the same extent as R. pseudo-thuidium.
As noted by several authors (Brotherus, 1925; Robinson,
1975), the stem leaves of R. implexum are strongly
squarrose, wet or dry (Fig. 43B). In addition, the costae
of R. implexum stem leaves tend to be well-differentiated,

213
4- to 5-stratose in the lower half (Fig. 43F), as opposed to
2- to 3-stratose (or absent) in other species of Rigodium.

FIG. 43. Riqodium implexum: Gametophytic Features. A
Habit. B. Portion of stem showing position of leaves. C.
"Stipe" (low stem) leaf. D. Stem leaf. E. Branch leaf. F
Cross section of leaf. G-H. Areolation of leaf. G.
Midlaminar cells. H. Marginal and intramarginal cells. A
from Dusén 409 (0); B-H from Claude-Joseph 2775 (FH).

215
2cm 'M // \\ 0.3mm

FIG. 44. Riaodium implexum: Sporophytic and Related
Gametophytic Features. A. Perichaetial leaf. B-C.
Areolation of perichaetial leaf. B. Basal cells. C. Upper
cells. D. Secondary branch with perigonia. E. Perigonium.
F. Perigonial leaves. G. Stem with sporophytes. H.
Capsule. A-C, G, H from Claude-Joseoh 2775 (FH); D-F from
Crosby 12057 (UPS).

217

FIG. 45. Distribution of Riaodium implexum.

219
Distribution of R. implexum

220
5. Rigodium pseudo-thuidium Dus.
Rigodium pseudo-thuidium Dus., Bot. Not. 1905: 310. 1905.
Types: Chile. Aisén: Patagonia occidentale, in valle
fluminis Aysen [Aisén] in terra, 26 Jan 1897, Dusén 481
(lectotype: S!; isolectotypes: BM!, CHR!, FH (2
specimens)!, FIAS!, JE!, M!, NY (2 specimens)!, 0!, S
(5 specimens)!, UPS!, W!); Chile: Magallanes: Fuegia,
Port Gallant [Puerto Gallant], in terra, 20 Mar 1896,
Dusén 350 (original material: M!, S!, UPS!); Tierra
del Fuego, Fuegia australis, rio Azopardo, in terra, 1
Mar 1896, Dusén 196 (original material: CHR!, H!, S (2
specimens)!, UPS!, W (2 specimens)!); Fuegia
australis, cerre de tere, rio Azopardo, in truncis
arborum, in humo, 2 Feb 1896, Dusén 206 (original
material: CHR!, FH!, H!, JE!, L!, S (2 specimens)!,
UPS!); lectotypification in Zomlefer (1991).
Rigodium hvlocomioides Card. & Broth., Bih. K. Svensk. Vet.
Ak. Handl. 63(10): 69. Plate III, Figs. 15a-c. 1923.
Types: Chile. Magallanes: Fuegia, Almirantazgo [Seno
del Almirantazgo], Hope Bay, in dumetris, 3 Feb 1908,
Halle & Skottsberg 842 (lectotype here designated: PC!;
isolectotypes: S!, UPS!); Patagonia australis, Skyring
[Lake Skyring], Puerto Pinto, foréts á feuilles
persistantes, 23 Apr 1908, Halle & Skottsberg 841
(syntypes: BM!, JE!, PC!, S!, UPS!, W!; possible
syntype as s.n.: S!); Fretum magellanicum [Strait of

221
Magellan], Isla Dawson, Harris Bay, 25 Feb 1908,
Skottsberg 843 (syntypes: PC!, UPS!).
Riaodium hvlocomioides var. qracilius Card. & Broth., Bih.
K. Svensk. Vet. Ak. Handl. 63(10): 69. 1923. Types:
Chile. Chiloé: Islas Guaitecas, Melinca, ad truncos, 1
Aug 1908, Halle 844 (lectotype here designated: PC!;
isolectotypes: S!, UPS!); Chile. Magallanes: Patagonia
occidentale, Smyth Channel, O'Connor Cove, etait
milangi Acrocladium auriculatum. 25 Jun 1908, Halle 845
(syntype: UPS!).
Plants medium to large, little branched (once to twice
pinnate), pendent or creeping, on tree trunks and branches
or occasionally on logs, rocks, or soil, green or more
commonly yellow-green to yellowish brown. Stipes not well-
differentiated, to 0.7 cm long. Stems to 13.0 cm long, 320-
750 urn in diameter. Primary branches generally 25-35(-60)
per stem, spaced 3.0-6.0(-10.0) mm apart along the stem,
proximal ones to 2.6 cm long, not becoming noticeably
shorter above, recurved. Secondary branches generally 3-
10(-15) per primary branch, to 1.4 cm long. Tertiary
branches rarely present. Stem leaves broadly ovate at base
and abruptly narrowed to a short acumen, 0.84-1.22 x 0.85-
1.31 mm, ca shorter than wide with length/width ratio
(0.76-)0.93(-1.21), spreading to squarrose, with broad
clasping and concave base, strongly longitudinally undulate,
auriculate, somewhat decurrent with decurrent portion 0.09-

222
0.14 mm long (9-12% of total leaf length); acumen 0.17-0.43
mm long, (21-)34(-46)% of leaf length measured from point of
insertion; margins reflexed, serrate throughout; costa
absent or occasionally present (then very weak or double);
alar cells quadrate to oblate, 7.7-14.3 x 5.7-12.2 urn;
marginal cells 1-2-seriate, oblong-rhombic, 14.3-28.9 x 3.6-
6.9 um; intramarginal cells (7-)8-9(-10)-seriate, oblong to
elongate, 17.2-31.4 x 4.9-10.9 um, with thicker walls than
the midlaminar cells and forming a strong intramarginal
band; midlaminar cells rhombic to rhomboidal, 24.6-40.9 x
4.1-6.4 um, porose with walls very uneven, very prorulose.
Stipe leaves with similar shape and orientation as stem
leaves, 0.69-1.13 x 0.83-1.20 mm; acumen 0.20-0.53 mm long;
costa absent. Secondary branch leaves broadly ovate to
ovate, acute, 0.38-0.69 x 0.27-0.44 mm, with length/width
ratio (1.03-)1.67(-2.06), erect-spreading to spreading;
margins serrate; costa often weak. Periqonial leaves
broadly ovate, acute to shortly acuminate, 0.74-0.82 x 0.31-
0.35 mm. Antheridia 300-360 x 65-90 um; paraphyses 9-10
cells long, 400-475 um long. Perichaetial leaves subulate,
1.38-2.39 x 0.47-0.80 mm, long-acuminate with acumens 0.28-
0.59 mm long; basal cells rhomboidal, 33.3-64.7 x 5.8-11.7
um, porose, very prorulose, sometimes papillose with one
large central papilla; apical cells rhombic, + sinuous,
14.7-41.0 x 3.0-5.0 um. Archegonia 425-560 um long, 40-60
wide at venter; paraphyses 13-17 cells long, 490-720 um.
Seta to 2.4 cm long. Capsule urn 1.45-1.90 x 0.47-0.95 mm;

223
upper exothecial cells 17.0-21.0 x 19.3-21.7 urn; median
exothecial cells 36.7-53.0 x 22.0-41.7; cells in neck 20.0-
30.0 x 10.7-13.3. Operculum not seen. Exostome teeth 565-
718 urn long, 107-113 urn wide at base. Endostome segments
257-333 um long, 45-60 um wide at base; basal membrane 212-
290 um high; cilia 2-3, 215-270 um long. Spores 18-20 um in
diameter. Calvptra to 3.5 mm long.
Representative specimens examined. ARGENTINA.
NEUQUEN: Lago Espejo, 0.5 km towards Correntoso from the
park warden's residence, on top of small hill, 8 Nov 1937,
Kalela B14f (H); Lago Espejo, N of campsite, on steep slope,
10 Nov 1937, Kalela B30a (H). RIO NEGRO: Lago Mascardi, on
very gentle slope above lake ca 3 km S of Hotel Tronador,
Nothofaaus dombevi-Austrocedrus forest, 8 Dec 1937, Kalela
B125e (H); Lago Nahuel Huapi, excursion von Campamento II, 6
May 1933, Liungner 1315 (JE, S). SANTA CRUZ: Santa Cruz
(Patagonien), an Quellen, no date, Hicken s.n. (JE). TIERRA
DEL FUEGO: Bahia Buen Suceso, en turbera de Sphagnum
magellanicum sobre la costa Sur del rio Bove, 54°48'S,
65 °151W, 18 Jan? 1986, Matteri & Schiavone 3525 (Herb.
Matteri); Isla de los Estados, B. Liberty, forest floor near
sea coast, 2 Nov 1971, Matteri 1501 (Herb. Matteri).
CHILE. AISEN: Patagonia occidentalis, rio Aysen
[Aisén], in truncis arborum, 15 Jan 1897, Dusén 417 (GB, S);
Patagonien, Punta Lagunas N Ultima Esperanza [Canal], 22 Apr
1924, Gusinde 4492 (B, BM, BR, C, F, G, GB, H, KRAM, L, M,
O, S, W); Puerto Aysen [Aisén], 28 Feb 1934, Vergara 2917

224
(G). CAUTIN: Parque Nacional Villarrica, north slope of
Volcán Villarrica very near upper limit of forest and
Refugio Villarrica, 6.1 km by road S of park entrance,
39°22'S, 71° 57'W, on tree base, 1150m, 19 Jan 1976, Crosbv
11809 (FLAS, MO); Depto. Villarrica, Pucón, auf dem Weg nach
dem Vulkan Villarrica, auf Baurnen, 8 Feb 1935, C_¡_ Hosseus
33B (JE). CHILOE: Patagonia occidentalis, in insulis
Guaitecas, Melinca, in terra, 23 Apr 1897, Dusén 625 (BM, S,
W); Peninsula Tres Montes, Puerto Barroso, in margine húmido
silvae sempervirantis, 2 Apr 1929, Roivainen 1595 (H). JUAN
FERNANDEZ ISLANDS: Isla Más Afuera [Isla Alejandro
Selkirk], below summit of Los Innocentes, open grassy glade
among ferns, 1220m, 1 Dec 1965, Hatcher & Engel 235 (DUKE,
FH, G, H, MICH). LLANQUIHUE: Along road to Calbuco, ca 30
km S of Puerto Montt, on stump in swampy forest of
Podocarous. Saxeqothaea. Drimvs. and Nothofaqus. 50m, 17 Dec
1970, Landrum 465 (MO); Volcán Antillanca, Nothofaqus
pumilio Wald an der Baumgrenze, am Fuss der Báume, 1180m, 18
Feb 1966, Ruthsatz s.n. (H). MAGALLANES: Fuegia
occidentalis, Insula Desolación [Isla Desolación], Puerto
Angusto [Angosto], 6 Apr 1896, Dusén 329 (GB, S, UPS); Seno
Ultima Esperanza, 51°35'S, 73°20'W, Fuchsia magellanica
community, 1965-6, Tsudqii & Yoshida 844 (H). MALLECO:
Chile australis in monte Cordillera de la Costa supra Angol,
terricola, 1896-97, Dusén 235 rZomlefer b] (BM, F, FH, JE,
L, MANCH, MO, S, W). OSORNO: Agua Calientes, en el Parque
Nacional Puyehue, sobre corteza, 10 Jan 1979, Barrandeguv

225
345 (MO); Huitrapulli-Aleucapi, an Boden über Stámmen, 82 0-
700m, Mar 1958, Herzog 28 rZomlefer bj_ (JE). VALDIVIA:
Volcán Quetrupillán, Forestal Trafán, forest on SW slope,
39 ° 341S, 710 47W, tree base, 1300m, 18 Jan 1976, Crosbv 11761
(MO); Volcán Choshuenco [Shoshuenco], Nothofagus pumilio
Wald, auf Felsblocken und Erdboden, 1080m, 23 Feb 1966,
Ruthsatz s.n. (H).
Rigodium pseudo-thuidium is mostly epiphytic on tree
bases and branches, or much less commonly occurring on logs,
rocks, or soil. The habitat varies from dense, wet to
swampy forests (Nothofagus. Austrocedrus. Saxegothaea.
Drimvs. and Podocarpus) to moist, open grassy or mossy areas
that are sometimes disturbed. Of the few altitudes reported
on the labels, most fall within the range of 700 to 1350 m,
with a few reported at ca sea level (0 to 100 m). The
distribution (Fig. 48) of R. pseudo-thuidium extends from ca
38°S along the Andean Cordillera (Chile-Argentina)
throughout Patagonia to 55°S, and east to Isla de los
Estados, Argentina. Along with R. brachvpodium. the species
delimits the southernmost distribution of the genus.
Rigodium pseudo-thuidium also occurs in the Juan Fernández
Islands on Isla Alejandro Selkirk (Isla Más Afuera), but not
on Isla Robinson Crusoe (Isla Más a Tierra).
Autapomorphies of the habit (reduced branching) and
stem leaves (reduced costa), discussed below, distinguish R.
pseudo-thuidium. Although R. pseudo-thuidium has a

226
characteristic habit (Fig. 46A), specimens have occasionally
been misidentified as R. implexum (e.g., some specimens of
Dusén 618. Fig. 22B) due to stem-like branches (innovations)
that sometimes arise from the stems, giving the specimen a
somewhat superficial resemblance to R. implexum. its sister
group. As discussed under R. implexum. the two species are
the most derived in Riqodium (Figs. 20, 21) and are defined
by several synapomorphies including right-angle branching
and the lack of a well-developed stipe. However, unlike the
profusion of branching in R. implexum. the orders of
branching are very reduced in R. pseudo-thuidium (Fig. 46A).
Secondary branches are few (generally 3 to 10 per primary
branch) and tertiary branching is rare.
The stem leaves of R. pseudo-thuidium (Fig. 46C),
nearly always auriculate, are very broad at the base and
terminate with a short acumen (ca one third of the leaf
length). As discussed under general morphology, the
tendency for stem leaves to form auriculae is found in all
species of Riqodium. but is most pronounced and consistent
in R. pseudo-thuidium. Another outstanding feature of the
stem leaves is the poorly developed costa (i.e., weak or
double). Although reported as strictly ecostate (Dusén,
1905), even stem leaves which appear ecostate in surface
view (Fig. 46C) show a trace of the costa in cross section
(Fig. 46K). Probably due to the lack of support (i.e., lack
of costa), the stem leaves are very strongly longitudinally
undulate with strongly recurved tips (Fig. 46B). The
v

227
intramarginal band is very broad (up to ten cells across;
Fig. 46L), and the cells tend to be generally much longer
and wider than those of the midlaminar region (Fig. 19C).
Midlaminar cells of both stem and perichaetial leaves are
extremely porose and prorulose (but end walls not projecting
as dorsal papillae). Branch leaves tend to be broader (up
to 0.44 mm wide) than in the other species of Riqodium and
often have weak costae as well. As supported by the PC
analyses (Fig. 24A and B), the sporophyte of R. pseudo-
thuidium tends to be larger than those in the other species
(e.g., capsule urn up to 1.9 x 0.95 mm).
The concept of R. pseudo-thuidium here includes R.
hvlocomioides Card. & Broth, (both R. hvlocomioides var.
hvlocomioides and R. hvlocomioides var. gracilius). Cardot
and Brotherus (1923) distinguished R. hvlocomioides from R.
pseudo-thuidium on the basis of the narrower "branch" leaves
(branch order not defined) of the former species. Branch
leaves, however, do not differ when the variation over the
total range of the composite group is considered. Comparing
the type specimens of the two species, the primary branch
leaves of R. pseudo-thuidium (Fig. 46F) are somewhat more
broadly ovate than those of R. hvlocomioides (Fig. 46G), but
the secondary branch leaves are identical in shape (Fig. 46H
vs. 461). In addition, R. hvlocomioides var. gracilius was
separated on the basis of vague habit characters (smaller
plants with little-branched stems and no secondary/tertiary
branches) that are typical for the group as a whole.

FIG. 46. Rigodium pseudo-thuidium; Gametophytic
Features. A. Habit. B. Portion of stem showing position of
leaves. C-E. Stem leaves showing various reduced conditions
of costa. F-G. Primary branch leaves. H-I. Secondary
branch leaves. J. Cross section of leaf. K. Cross section
through costal area of leaf in C. L-M. Areolation of leaf.
L. Marginal and intramarginal cells. M. Midlaminar cells.
A-C, E, G, I, K-M from Halle &. Skottsbera 842 (S,
isolectotype R. hvlocomioides); D, J from Halle 844 (UPS,
isolectotype R. hvlocomioides var. gracilius); F, H from
Dusén 481 (S, lectotype R. pseudo-thuidium).

229

FIG. 47. Riqodium pseudo-thuidium: Sporophytic and
Related Gametophytic Features. A. Perichaetial leaf. B-C.
Areolation of perichaetial leaf. B. Basal cells. C. Upper
cells. D. Primary branch with perigonia. E. Perigonium.
F. Perigonial leaves. G. Portion of stem with sporophyte.
H. Capsule. A-C, G, H from Dusén 481 (S, lectotype R.
pseudo-thuidium)? D-F from Halle 844 (UPS, isolectotype R.
hvlocomioides var. gracilius).

231

Distribution of Rigodium pseudo-thuidium.

233
Distribution

NOMINA AMBIGUA AND NUDA
Eurhvnchium striatellum Schimp. in Mitt., J. Linn. Soc. Bot.
12: 557. 1869, nom. inval. in svnon. = R. toxarion fide
Mitt., J. Linn. Soc. Bot. 12: 557. 1869. Rhvnchosteqium
striatellum Schimp. ex Par., Ind. Brvol. 1197. 1898,
nom. nud. in svnon. err, pro Eurhvnchium striatellum.
Heterocladium lechleri Schimp. in Lor., Bot. Zeit. 24: 189.
1866, nom. nud. in svnon. = R. arborescens cf. Lor., Bot.
Zeit. 24: 189. 1866, et p.p. R. toxarion cf. Mitt., J.
Linn. Soc. Bot. 12: 557. 1869. Heterocladium prolixum
Schimp. in Lor., Bot. Zeit 24: 189. 1866, nom. nud. in
svnon. = Heterocladium lechleri.
Hypnum alaiuelae C. MÜ11., J. Bot. 15 (n.s. 6): 230. 1877,
nom. nud. Riqodium alaiuelae Kindb., Enum. Brvin. Exot.
103. 1891, nom. nud. Riqodium alaquelae Par., Ind.
Brvol. 1140. 1898, nom. nud. err, pro R. alaiuelae
Kindb. Evidently, the specimen Müller (1877) originally
examined was from Costa Rica, and may, then, possibly be
R. toxarion. the only species of Riqodium occurring
there.
234

235
Hvpnum araucarieti C. MÜ11., Hedwigia 38 (Beil.): 58. 1899,
nom. nud. The epithet was later validated in by Müller
(1901).
Hvpnum brachvpelma C. Müll., Linnaea 43: 481. 1882, nom.
inval. err, pro. H. brachvpodium.
Hvpnum neei Mohr in C. Müll., Svn. 2: 445. 1851, nom. nud. in
svnon. = R. implexum cf. Hampe fide C. Müll., Syn. 2:
445. 1851.
Riaodium acuminatum Card, in Skottsb., K. Svensk. Vet. Ak.
Handl. 51 (9): 65. 1914, nom. nud. From Juan Fernández
Islands, where three species of Rigodium occur.
Rigodium breviramulosum Broth, in Ren. & Card., Bull. Soc.
Roy. Bot. Belg. 32 (1): 198. 1893 [1894], nom. nud.
rAnonymous s.n., com Cardot, Brazil, H-BR] = R. toxarion.
Rigodium carnosulum Dus., Rep. Princeton Univ. Exp. Patag. 8:
125. 1903, nom. nud. [Dusén 482: BM (2 specimens), FLAS,
H, JE, MICH, NY, 0, S (2 specimens), W)] = R.
brachvpodium var. brachvpodium.
Rigodium concatenatum Lindb. in C. Müll., Linnaea 43: 481.
1882, nom. nud. The undesignated specimen Müller (1882)
mentioned was from Brazil and, thus, may possibly be R.
toxarion. the only species which occurs there.

236
Riqodium eleqantulum Card, in Skottsb., Bih. K. Svensk. Vet.
Ak. Handl. 51(9): 63. 1914, nom. nud. [Halle 840: H, S,
UPS; Cunningham 227: BM] = R. brachvpodium var. tamarix.
Riqodium eleqantulum var. fernandezianum Card, in Skottsb.,
Bih. K. Svensk. Vet. Ak. Handl. 51(9): 63. 1914, nom.
nud. in svnon. = R. tamarix fide Card. & Broth., Bih. K.
Svensk. Vet. Ak. Handl. 63(10): 69. 1923.
Riqodium kunerti C. Müll. in Par., Ind. Brvol. 1140. 1898,
nom. nud. = R. araucarieti var. catenulatum fide C.
MÜ11., Hedwiqia 40: 82. 1901. Hvpnum kunerti (C. MÜ11.)
Broth., Bih. K. Svensk. Vet. Ak. Handl. 26 Afd. 3: 54.
1900, nom. nud.
Riqodium lechleri Schimp. in C. Müll., Bot. Zeit. 16: 172.
1858, nom. nud. [Lechler 629: type R. arborescensl = R.
brachvpodium var. brachvpodium.
Riqodium lonqostipitatum Broth, in C. Müll., Hedwiqia 40: 82.
1901, nom. nud. fLindman 176: type R. araucarieti var.
catenulatum1 = R. toxarion var. toxarion.
Riqodium nano-fasciculare C. Müll. ex Kindb., Enum. Brvin.
Exot. 103. 1891, nom. nud. orthoqr. pro Riqodium nano-
fasciculatum. Riqodium nano-fasciculatum C. Müll ex
Dus., Rep. Princeton Univ. Exp. Patag. 8: 119. 1903,
nom. nud. Riqodium nano-fasciculatum C. Müll. ex Thér.,
Rev. Chilena 22: 90. Plate VI, Figs. 2a-f, 1918, nom.

237
nud. sub Art. 44.1. The epithet was later validated by
Müller (in Thériot, 1929; see Zomlefer, 1991).
Riaodium penicilliferum C. MÜ11., Hedwiaia 40: 81. 1901.
TYPE: BRAZIL. SANTA CATARINA: Sao José, in via cava
prope Praia-comprida, cum Helicodontio associatum, Jan
1887, Ule s.n. (specimen not seen). Although Ule's
exsiccatae were well-distributed (Sayre, 1971), none
among the numerous of his collections on loan for this
study match the locality and date cited by Müller (1901) .
Brotherus, who even distributed many of Ule's
collections, stated in his keys to Riaodium (1909, 1925)
that he had not seen any examples of R. penicilliferum.
Subseguent to the publication of Brotherus' keys, the
specimen(s) may have been lost when Müller's herbarium at
B was mostly destroyed (Sayre, 1977). Riaodium
penicilliferum may be synonymous with R. toxarion. the
only species which occurs in Brazil.
Riaodium pseudo-thuidium Dus., Rep. Princeton Univ. Exp.
Pataa. 8: 125. 1903, nom. nud. The epithet was later
validated by Dusén (1905).
Riaodium ptvchomnioides Broth., Nat. Pfl. 1(3): 1160. 1909,
nom. nud. rCunningham 84: BM (2 specimens), H-BR] = R.
pseudo-thuidium.
The following names occurring on specimens have not been
mentioned in the literature: "R. bipinnatum Card." (Thaxter

TCardot No:1 26 and 90, both FH) = R. brachvpodium var.
tamarix; "R. intermedium Card." (Dusén s.n., 1896, H-BR)
pseudo-thuidium; and "R. molliculum Broth." (Hinsch, s.n.
s.d., Brazil, H-BR) = R. toxarion.

LITERATURE CITED
Abramova, A. L. & I. I. Abramov. 1972. On the span of the
genus Helodium (Sull.) Warnst. J. Hattori Bot. Lab.
35: 371-381.
Allen, B. 1987. On distinguishing Pterobryaceae and
Meteoriaceae by means of pseudoparaphyllia.
Bryological Times 42: 1-3.
& M. R. Crosby. 1986. Revision of the genus
Scruamidium (Musci: Meteoriaceae) . J. Hattori Bot. Lab.
61: 423-476.
Almeida, M. T. & F. A. Busby. 1984. A simple method for
establishing taxonomic characters from measurement
data. Taxon 33: 405-409.
Anderson, L. E. 1954. Hoyer's solution as a rapid
permanent mounting medium for bryophytes. Bryologist
77: 242-244.
Argent, G. C. G. 1973. A taxonomic study of African
Pterobryaceae and Meteoriaceae. I. Pterobryaceae. J.
Bryol. 7: 353-378.
Arzeni, C. B. 1954. The Pterobryaceae of the southern
United States, Central America, and the West Indies.
Amer. Midi. Naturalist 52: 1-67.
Bartram, E. B. 1949. Mosses of Guatemala. Fieldiana, Bot.
25: 1-442.
. 1959. Mosses collected during Dr. and Mrs. C.
Skottsberg's second expedition to the Juan Fernandez
Islands, December 1954 to March 1955. Ark. Bot., n.s.
4 (Ht. 1): 29-43.
. 1960. Mosses of Tristan da Cunha. In E.
Christophersen (ed.), Results of the Norwegian
Scientific Expedition to Tristan da Cunha 1937-1938.
5(48): 1-49. Norske Videnskaps-Akademi, Oslo.
Brotherus, V. F. 1897. Musci africani. II. In A. Engler
(ed.), Beitráge zur Flora von Afrika, XIV. Bot. Jahrb.
Syst. 24: 232-284.
239

240
. 1909. Musci (Laubmoose). In A. Engler & K. Prantl
(eds.), Die natürlichen Pflanzenfamilien, Vol, 1, Part
3. Engelmann, Leipzig.
. 1924. The Musci of the Juan Fernandez Islands. Pp.
409-447 in C. Skottsberg (ed.), The Natural History of
Juan Fernandez and Easter Island, Vol. 2, Part 3.
Almquist & Wiksells Boktryckeria-A.B., Uppsala.
. 1925. Musci (Laubmoose). In A. Engler & K. Prantl
(eds.), Die natürlichen Pflanzenfamilien, 2nd ed., Vol.
11. Engelmann, Leipzig.
Buck, W. R. 1980a. A generic revision of the
Entodontaceae. J. Hattori Bot. Lab. 48: 7-159.
. 1980b [1981]. Animadversions on Pteriavnandrum with
special commentary on Forsstroemia and
Leotooteriovnandrum. Bryologist 83: 451-465.
. 1984. On pseudoparaphyllia. Evansia 1: 9-11.
. 1986. Traditional methods in taxonomy: a personal
approbation. Taxon 35: 306-309.
. 1988. Taxonomic and nomenclatural notes on West
Indian Amblystegiaceae and Brachytheciaceae. Beih.
Nova Hedwigia 90: 337-343.
& H. Crum. 1990. An evaluation of familial limits
among the genera traditionally aligned with the
Thuidiaceae and Leskeaceae. Contr. Univ. Michigan
Herb. 17: 55-69.
& D. Griffin. 1984. Trachvphvllum. a moss genus new
to South America with notes on African-South American
bryogeography. J. Nat. Hist. 18: 63-69.
& D. H. Vitt. 1986. Suggestions for a new familial
classification of pleurocarpous mosses. Taxon 35: 21-
60.
Budd, A. F. & B. D. Mishler. 1990. Species and evolution
in clonal organisms—summary and discussion. Syst.
Bot. 15: 166-171.
Cardot, J. & V. F. Brotherus. 1923. Botanische Ergebnisse
der schwedischen Expedition nach Patagonien und dem
Feuerlande 1907-1909. X. Les Mousses. Bih. Kongl.
Svenska Vetensk.-Acad. Handl. 63: 1-74.
Churchill, S. P. 1986. A revision of Echinodium Jur.
(Echinodiaceae: Hynobryales). J. Bryol. 14: 117-133.

241
Crosby, M. R. 1979. Index muscorum supplementing: 1976-
1977. Taxon 28: 237-264.
& R. E. Magill. 1981. A dictionary of mosses. 3rd
ed. Monogr. Syst. Bot., Missouri Bot. Gard, St. Louis.
Crum, H. 1973. Mosses of the Great Lakes. Contr. Univ.
Michigan Herb. 10: 1-404.
. 1981. Taxonomic and nomenclatural notes on middle
American mosses. Bryologist 84: 390-393.
. 1984. Notes on tropical American mosses.
Bryologist 87: 203-216.
. 1991. A partial clarification of the
Lembophyllaceae. J. Hattori Bot. Lab. 69: 313-322.
& L. E. Anderson. 1981. Mosses of eastern North
America. Vol. 2. Columbia University Press, New York.
Deguchi, H. & K. Oginuma. 1990. Chromosome number of seven
Chilean mosses. Bull. Natl. Sci. Mus., Ser. B 16(3):
105-108.
Donoghue, M. J. 1985. A critique of the biological species
concept and recommendations for a phylogenetic
alternative. Bryologist 88: 172-181.
Duncan, T. & B. R. Baum. 1981. Numerical phenetics: its
uses in botanical systematics. Ann. Rev. Ecol. Syst.
12: 387-404.
Dusén, P. 1903. III. Patagonian and Fuegian mosses. Rep.
Princeton Univ. Exped. Patagonia 8 (Bot., No. 1): 63-
125.
. 1905. Musci nonnulli novi e Fuegia et Patagonia
reportati. Bot. Not. 1905: 299-310.
Frahm, J. -P. 1989. Taxonomic methodology in bryology.
Bryological Times. 49: 1-3.
Gradstein, S. R., T. Pócs, & J. Váña. 1983. Disjunct
Hepaticae in tropical America and Africa. Acta Bot.
Hung. 29: 127-171.
, G. B. A. van Reenen, & D. Griffin. 1989. Species
richness and origin of the bryophyte flora of the
Colombian Andes. Acta Bot. Neerl. 38: 439-448.
Griffin, D. 1990. The use of axillary hairs in the
taxonomy of two neotropical Bartramiaceae. J. Bryol.
16: 61-65.

242
& W. R. Buck. 1989. Taxonomic and phylogenetic
studies on the Bartramiaceae. Bryologist 92: 368-380.
, S. R. Gradstein, & C. Aguirre. 1982. Studies on
Colombian cryptogams XVII. On a new antipodal element
in the neotropical páramos—Dendrocrvpheae latifolia
sp. nov. (Musci). Acta Bot. Neerl. 31: 175-184.
Grout, A. J. 1932. Moss flora of North America. Vol. Ill,
Part 3. "Published by the author," Newfane, Vermont.
Herzog, T. 1938. Contribución al conocimiento de la flora
briofita del sur de Chile. a. Parte sistemática.
Archivos Esc. Farm. Cordoba, No. 7 (Sección
Cientifica): 3-56.
. 1939. I. Verzeichnis der gesammelten Bryophyten.
In T. Herzog, G. H. Schwabe & E. Schwabe (eds.), Zur
Bryophytenflora Südchiles. Beih. Bot. Centralbl. 60:
1-35.
. 1954. Zur Bryophytenflora Chiles. Rev. Bryol.
Lichénol. 23 (Fase. 1-2): 27-99.
Holmgren, P. K., N. H. Holmgren, & L. C. Barnett. 1990.
Index herbariorum. Reg. Veg. 120: 1-693.
Ireland, R. R. 1968. Pleuroziopsidaceae, a new family of
mosses. J. Hattori Bot. Lab. 31: 59-64.
. 1971. Moss pseudoparaphyllia. Bryologist 74: 312-
330.
Iwatsuki, Z. 1963. Bryological miscellanies XII-XIII. J.
Hattori Bot. Lab. 26: 63-74.
Jaeger, A. 1878. Genera et species muscorum systematicae
disposita seu adumbratio florae muscorum totius orbis
terrarum. Ber. Thátigk. St. Gallischen Naturwiss. Ges.
1876-77: 211-454.
Kawai, I. 1968. Taxonomic studies on the midrib of Musci
(1). Significance of the midrib in systematic botany.
Sci. Rep. Kanazawa Univ., Biol. 13: 127-157.
Longton, R. E. & S. W. Greene. 1979. Experimental studies
of growth and reproduction in the moss Pleurozium
schreberi (Brid.) Mitt. J. Bryol. 10: 321-338.
Mayr, E. 1969. Principles of systematic zoology. McGraw-
Hill, Inc., New York.

243
Mishler, B. D. 1985. The morphological, developmental, and
phylogenetic basis of species concepts in the
bryophytes. Bryologist 88: 207-214.
. 1986. A Hennigian approach to bryophyte phylogeny.
J. Bryol. 14: 71-81.
Mitten, W. 1869. Musci austro-americani. J. Linn. Soc.,
Bot. 12: 1-659.
Müller, C. 1844 [1845]. Beitráge zu einer Flora der
Aequinoctial-Gegenden. Laubmoose. Linnaea 18 (Ht. 6):
667-709.
. 1851. Synopsis muscorum frondosorum omnium hucusque
cognitorum. Vol 2. Musci vegetationis pleurocarpicae.
Alb. Foerstner, Berlin.
. 1877. Bryophytas et cormophytas Costaricenses.
Bryaceae. J. Bot. 15 (n.s. 6): 227-230.
. 1882. Prodromus bryologiae Argentinicae. II.
Linnaea 43 (Ht. 5-6): 341-486.
. 1897a. Prodromus bryologiae Bolivianae. Nuovo
Giorn. Bot. Ital., n.s. 4: 1-172.
. 1897b. Prodromus bryologiae Argentinicae atque
regionum vicinarum. III. Hedwigia 36 (Ht. 2,3): 84-
144.
. 1901. Symbolae ad bryologiam Brasiliae et regionum
vicinarum. (Continuatio.) Hewigia 40 (Ht.l): 55-99.
Noguchi, A. 1964. A revision of the genus Claopodium. J.
Hattori Bot. Lab. 27: 20-46.
Ortiz, S. 1989. On the correct use of the term 'holotype.'
Taxon 38: 635-636.
Platnick, N. I. 1987. An empirical comparison of
microcomputer parsimony programs. Cladistics 3: 121-
144.
Reimers, H. 1926. Beitráge zur Bryophytenflora
Südamerikas. I. Die von Pater A. Hollermayer in Chile
1918/1923 gesammelten Leber- und Laubmoose. Hedwigia
66: 27-75.
Renauld, F. & J. Cardot. 1893 [1894]. Musci. Deuxiéme
article. In T. Durand & H. Pittier (eds.), Primitiae
florae Costaricensis. Bull. Soc. Roy. Bot. Belgique
32: 174-201.

244
Robinson, H. 1975. The mosses of Juan Fernandez Islands.
Smithsonian Contr. Bot. 27: 1-88.
. 1985. Comments on the cladistic approach to the
phylogeny of the "bryophytes" by Mishler and Churchill.
Brittonia 37: 279-281.
. 1986. A key to the common errors of cladistics.
Taxon 35: 309-311.
Rohlf, F. J. 1989. NTSYS-pc. Numerical taxonomy and
multivariate analysis system. Version 1.50. Exeter
Publishing, Ltd., Setauket, New York.
Rohrer, J. R. 1985. A phenetic and phylogenetic analysis
of the Hylocomiaceae and Rhytidiaceae. J. Hattori Bot.
Lab. 59: 185-240.
Saito, K. 1975. A monograph of Japanese Pottiaceae
(Musci). J. Hattori Bot. Lab. 39: 373-537.
Sayre, G. 1971. Cryptogamae exsicattae—an annotated
bibilography of published exsiccatae of Algae,
Lichenes, Hepaticae, and Musci. IV. Bryophyta. Mem.
New York Bot. Gard. 19: 175-276.
. 1975. Cryptogamae exsiccatae—an annotated
bibliography of exsiccatae of Algae, Lichenes,
Hepaticae, and Musci. V. Unpublished exsiccatae. I.
Collectors. Mem. New York Bot. Gard. 19: 277-423.
. 1977. Authors of names of bryophytes and the
present location of their herbaria. Bryologist 80:
502-521.
Schuster, R. M. 1983. Phytogeography of the Bryophyta.
Pp. 461-626 in R. M. Schuster (ed.), New Manual of
Bryology, Vol. 1. Hattori Botanical Laboratory,
Nichinan, Japan.
Schwágrichen, F. 1816. Joannis Hedwig. Species muscorum
frondosorum. Supplementum primum. Joaniis Ambrosii
Barth, Lipsiae
. 1844 [1845]. Ueber einige Moose. Linnaea 18 (Ht.
5): 557-562.
Sehnem, A. 1976. Musgos sul-brasileiros IV. Pesquisas,
Bot. 30: 34-40.
Seki, T. 1974 [1976]. A moss flora of Provinicia de Aisén,
Chile. Results of the second scientific expedition to
Patagonia by Hokkaido and Hiroshima Universities, 1967.

245
Sci. Hiroshima Univ., Ser. B, Div. 2 (Botany). 15: 9-
101.
Sneath, P. H. A. & R. R. Sokal. 1973. Numerical taxonomy:
the principles and practice of numerical
classification. W. H. Freeman and Co., San Francisco.
Stark, L. R. 1987. A taxonomic monograph of Forsstroemia
Lindb. (Bryopsida: Leptodontaceae). J. Hattori Bot.
Lab. 63: 133-218.
Stuessy, T. F. 1990. Plant taxonomy. Columbia University
Press, New York.
Swofford, D. L. 1990. PAUP: Phylogenetic analysis using
parsimony. Version 3.0. Illinois Natural History
Survey, Champaign.
Taylor, T. 1846. The distinctive characters of some new
species of Musci, collected by Professor William
Jameson, in the vicinity of Quito, and by Mr. James
Drummond at Swan River. London J. Bot. 5: 41-67.
Thériot, I. 1917. Contribution á la flore bryologique du
Chili, II. Revista Chilena Hist. Nat. 21: 6-37.
. 1925. Cinquiéme contribution á la flore bryologique
de Madagascar. Recueil Publ. Soc. Havraise Etudes
Diverses 92: 122-151.
. 1929 [1930]. Mousses critiques. Rev. Bryol.
Lichénol., n.s. 2 (Fase. 3-4): 231-233.
. 1934 [1935]. Contribution á la flore bryologique du
Chili, lie article. Rev. Bryol. Lichénol., n.s. 7
(Fase. 3-4): 167-183.
Touw, A. 1971. A taxonomic revision of the Hypnodendraceae
(Musci). Blumea 19: 211-353.
. 1974. Notes on taxonomic and floristic research on
exotic mosses. J. Hattori Bot. Lab. 38: 123-128.
U. S. Office of Geography. 1955, 1956, 1957, 1963, 1967,
1968. Official Standard Names. Gazetteer Nos. 4,
(Bolivia), 18 (Costa Rica), 36 (Ecuador), 71 (Brazil),
6 (Chile, 2nd ed.), 103 (Argentina). United States
Board on Geographic Names, Department of the Interior,
Washington, D. C.
Vitt, D. H. 1982. Bryopsida. Pp. 307-336 in S. P. Parker
(ed.), Synopsis and classification of living organisms,
Vol. 1. McGraw-Hill Book Co., New York.

246
. 1984. Classification of the Bryopsida. Pp. 696-759
in R. M. Schuster (ed.), New manual of bryology, Vol.
2. Hattori Botanical Laboratory, Nichinan, Japan.
Walther, K. 1983. Bryophytina. Laubmoose. In J. Gerloff
& J. Poelt (eds.), A. Engler's Syllabus der
Pflanzenfamilien. Aufl. 13, V(2): 1-108. Gebrüder
Borntraeger, Berlin.
Watanabe, R. 1972. A revision of the family Thuidiaceae in
Japan and adjacent areas. J. Hattori Bot. Lab. 36:
171-320.
& Z. Iwatsuki. 1981. New name for Haolocladium (C.
Muell.) C. Muell. (Musci). J. Jap. Bot. 56: 259-261.
Watrous, L. E. & Q. D. Wheeler. 1981. The out-group
comparison method of character analysis. Syst. Zool.
30: 1-11.
Wijk, R. van der, W. D. Margadant, & P. A. Florschütz.
1967, 1969. Index Muscorum. Vol. 4 (P-S). Vol. 5 (T-
Z, addenda). Reg. Veg. 48: 1-604, 65: 1-922.
Wiley, E. 0. 1981. Phylogenetics. John Wiley & Sons,
Inc., New York.
Wilken, D. & R. L. Hartman. 1991. A revision of the
Ioomopsis spicata complex (Polemoniaceae). Syst. Bot.
16: 143-161.
Zanten, B. 0. van. 1976. Preliminary report on germination
experiments designed to estimate the survival chances
of moss spores during aerial trans-oceanic long-range
dispersal in the Southern Hemisphere, with particular
reference to New Zealand. J. Hattori Bot. Lab. 41:
133-140.
. 1983. Possibilities of long-range dispersal in
bryophytes with special reference to the Southern
Hemisphere. Sonderbd. Naturwiss. Ver. Hamburg 7: 49-
64.
. 1984. Some considerations on the feasibility of
long-distance transport in bryophytes. Acta Bot.
Neerl. 33: 231-232.
& T. Pócs. 1981. Distribution and dispersal of
bryophytes. In W. Schultze-Motel (ed.), Advances in
bryology, 1: 479-562.
Zomlefer, W. B. 1990. Lectotypification of Riqodium Kunze
ex Schwaegr. (Musci). Taxon: 39: 499-500.

247
. 1991. Identification of types and original material
for some epithets of Riaodium Kunze ex Schwágr. J.
Bryol. 16: 397-402.
. 1992. A new species of Riaodium (Musci:
Rigodiaceae) from Chile and Argentina. Svst. Bot.
17(1): (in press).
& W. R. Buck. 1990. A reassessment of four Riaodium
types. Bryologist 93: 303-308.

APPENDIX A
OTUS (COLLECTIONS) USED IN THE PHENETIC ANALYSES
The following lists the OTUs (collections) used in the
phenetic analyses. All 120 OTUs were incorporated in the
first study (Fig. 24)? the starred (*) 85 OTUs were included
for the second analysis of R. brachvpodium var. brachvpodium
and R. toxarion var. toxarion complexes (Fig. 25). The
first 23 OTUs listed are type material. "Chile-J.F" refers
to the Juan Fernández Islands.
Type material:
*1. Ule 524, Brazil (type R. araucarieti; H-BR)
*2. Lindman 176. Brazil (type R. araucarieti var.
catenulatum; H-BR, S, UPS)
*3. Lechler 629. Chile (type R. arborescens; BM, BR, G, GB,
H, L, MICH, NY, O, S, UPS, W)
*4. Lorentz s.n., Argentina (type R. argentinicum; BM, NY)
*5. Bertero s.n., Chile (type R. brachvpodium; BM)
*6. Tonduz TPitter No:1 5666, Costa Rica (type R. gracile;
BR, G, NY, PC)
*7. Ule 892. Brazil (type R. hamirameum; H-BR, M)
8. Halle & Skottsberg 842. Chile (type R. hvlocomioides;
PC, S, UPS)
9. Halle 844. Chile (type R. hvlocomioides var. grácilius;
PC, S, UPS)
248

249
10. Poeppig s.n., Chile (type R. implexum; BM)
*11. Volkens 2349. Tanzania (type R. kilimandscharicum; H-
BR, JE, M, S)
*12. Germain [Müller No:1 1166. Bolivia (type R.
leptodendron; G, H-BR, JE, M, NY, S)
13. Looser 8p.p.. Chile (type R. looseri; G, PC)
*14. Dusén 225. Chile (type R. nano-fasciculatum; BM, FH,
FLAS, GB, H-BR, JE, M, MICH, NY, O, PC, S, W)
*15. Perrier de la Báthie 168, Madagascar (type R. niveum;
PC)
*16. Sehnem 7367. Brazil (type R. pallidum; PACA)
*17. Schwabe 79/b2. Chile (type R. pendulum; JE, PC)
*18. Ule 2135, Brazil (type R. pertenue; FH, H-BR, M)
19. Dusén 481. Chile (type R. pseudo-thuidium; BM, CHR, FH,
FLAS, JE, M, NY, 0, S, UPS, W)
20. Skottsbera & Skottsbera 429, Chile (type R. robustum;
GB, H-BR, JE, S)
*21. Jameson s.n., Ecuador (type R. solutum; E, FH)
22. Anonymous s.n., Hale Bay, Chile (type R. tamarix; BM)
*23. Anonymous s.n., Hispaniola (type R. toxarion. G)
Central and South American OTUs:
*24. Holdridae 3023. Haiti (FH, FLAS, MICH, NY)
*25. DÜ11 17, Mexico (ALTA, MEXU)
*26. Sharp 4090. Mexico (MEXU, MICH, TENN)
*27. Ventura 18869a. Mexico (ALTA, DUKE, FLAS, MEXU, NY, U)
*28. Stevermark 32769. Guatemala (F, FH, MICH, NY)
Watson ES-0063. El Salvador (MO)
*29.

250
*30. Crosby 3996B. Panama (DUKE, MO)
*31. Hammen et aJ. 2676, Colombia (FLAS)
*32. Troll 2017. Colombia (JE, S)
*33. Fendler 135. Venezuela (BM, FH, FLAS, G, H, NY, O, S)
*34. Laeaaard & Steere 27582A. Ecuador (ALTA, FLAS, NY)
*35. Steere 9030. Ecuador (FLAS, NY)
*36. Brvan 405. Peru (F, MO, NY)
*37. Gardenas 3229. Bolivia (NY)
*38. Herzog 3817. Bolivia (FH, H, JE, L, M, NY, O, S, W)
*39. Castellanos TLIL No:1 8806, Uruguay (FH)
*40. Reitz 2610. Brazil (F, FH, FLAS, G, JE, NY, U)
*41. Sehnem 315. Brazil (FLAS, PACA)
*42. Sehnem 4686. Brazil (FLAS, PACA)
*43. Sehnem 7087, Brazil (FLAS, PACA)
*44. Ule 93/ Brazil (C, DUIS, FH, FLAS, G, GOET, H, JE, L,
NY, S, UPS, UWM, W)
*45. Wasum 3964. Brazil (FLAS)
*46. Cantino M-41. Argentina (MO)
*47. Castellanos TLIL No:1 2201. Argentina (FH)
48. Donat 2, Argentina (JE)
*49.
Kalela
B3 e.
Argentina (H)
50.
Kalela
B4c, .
Argentina (H)
*51.
Kalela
B93a.
Argentina
(H)
*52 .
Kalela
B93f.
Argentina
(H)
*53.
Kalela
B130a
, Argentina
(H)
*54 .
Kalela
B133C
, Argentina
(H)
55.
Kalela
B136a
, Argentina
(H)

251
*56,
*57,
58,
59,
60,
61,
62 ,
*63 .
64.
65.
66.
*67.
*68.
*69.
70.
*71.
*72 .
*73 .
*74 .
Kalela B244f. Argentina (H)
Kalela B249~i . Argentina (H)
Kühnemann 5195. Argentina (ALTA, U)
Kühnemann 5260. Argentina (ALTA, H, U)
Liungner 1315. Argentina (JE, S)
Matteri &. Schiavone 3525. Argentina (Herb. Matteri)
Matteri & Schiavone 4985. Argentina (Herb. Matteri)
Sleumer 1718. Argentina (B, S)
Barrandeguv 345. Chile (MO)
Benove 65, Chile (H)
Claude-Joseoh 5775. Chile (FH)
Crosbv 11841. Chile (FLAS, MO)
Crosby 12022. Chile (MO)
Crosbv 12038. Chile (MO)
Crosbv 12295. Chile (FLAS, L, MICH, MO, NY)
Crosbv 12365. Chile (MO)
Crosbv 12984. Chile (FLAS, MO)
Crosbv 12992. Chile (MO)
Crosbv 13027. Chile (MO)
75.
Dusén
25,
Chile
(H, S)
76.
Dusén
196,
Chile
(CHR, H, S, UPS, W)
*77.
Dusén
357,
Chile
(BM, DUIS, FH, H, JE, MICH, NY, O, S,
UPS, W)
78.
Dusén
397,
Chile
(CHR, DUKE, FH, FLAS, GB, NY, S)
79.
Dusén
409,
Chile
(BM, CHR, DUIS, FH, H, JE, M, MICH,
NY, 0,
S, UPS, W)
*80.
Dusén
482 .
Chile
(BM, FLAS, H, JE, MICH, NY, O, S, W)

252
81.
Dusén 625. Chile (BM, S, W)
*82.
Dusén s.n., lac Llanquihue,
Chile (S)
*83 .
Elliott 139. Chile (H, L, 0)
•
CO
Godlev 105. Chile (BM, FLAS,
H)
85.
Guisinde 4492, Chile (B, BM,
BR, C, F,
L, M, 0, S, W)
*86.
Hahn s.n., Chile (B, BM, C,
CANM, DUKE
MO, OXF, NY, S)
87.
Halle 840. Chile (H, S, UPS)
*88 .
Hollermaver 259. Chile (B, S
w)
*89.
Hollermaver 281a. Chile (S,
W)
*90.
Hosseus 147. Chile (JE)
*91.
Kunkel 2029. Chile (B, H)
*92 .
Landrum 167. Chile (MO)
*93 .
Landrum 240. Chile (MO)
*94.
Landrum 588, Chile (MO)
95.
Lechler 620a, Chile (BM, BR,
G, H, L,
UPS, W)
*96.
Mahu 12530. Chile (MO)
*97.
Neaer 10, Chile (S)
VO
03
•
Oberdorfer 178a, Chile (JE)
*99 .
Oberdorfer 279b. Chile (JE)
*100
. Reiche 6, Chile (H)
101
. Roivainen 1595. Chile (H)
102
. Roivainen 1597, Chile (FH, H)
*103
. Schwabe 197, Chile (JE)
GB, H, KRAM,
FLAS, MICH,
O, OXF, S,
*104. Schwabe s.n., 1940, Chile (JE)

253
*105. Seki 64, Chile (H)
106. Thaxter rCardot No:1 83. Chile (FH, FLAS
107. Tsudaii & Yoshida 844. Chile (H)
108. Vergara 2917. Chile (G)
*109. Hatcher & Enael 631. Chile-J.F. (DUKE, G
110. Skottsbera & Skottsbera M197. Chile-J.F.
S, UPS)
*111. Skottsbera & Skottsbera 409. Chile-J.F.
UPS)
*112. Skottsbera &. Skottsbera 418. Chile-J.F.
*113. Skottsbera & Skottsbera 439. Chile-J.F.
NY, S)
African OTUs:
*114. Crosby & Crosbv 13266A. Tanzania (MO)
*115. Pócs 6782/B. Tanzania (G, L, MO, VBI)
*116. Rwarden 11792. Malawi (O, VBI)
*117. Müller 2635. Zimbabwe (L, MO)
*118. Scheloe 5552. Mozambique (BM, C, S)
*119. Crosby & Crosbv 7637. South Africa (DUKE
*120. Vorster 1761b. South Africa (L)
, MICH, NY)
, MICH, NY)
(FH, GB, H,
(GB, H, NY, S,
(GB, H, S)
(BM, GB, H,
, L, MO)

APPENDIX B
DETERMINATION OF MINIMUM NUMBER OF MEASUREMENTS PER
CHARACTER
Below is justification for the choice of five
measurements (for each character per OTU) as sufficient to
obtain a mean which is an adequate estimation of the actual
mean for that character for an OTU (Steven Linda, pers.
comm.)* These equations demonstrate a relationship between
sample size (n) and the 95 per cent confidence interval for
the actual mean (p) of a given OTU. For y, the sample mean
of a measurement for a particular character for a given OTU,
the variance of y or V(y) is:
V(y) = £i_2 * N - n
n N
O ... . • • .
where a is the variability (variance) within a specimen
and N is the actual total number of characters on an OTU
(e.g., all the stem leaves in a collection). When N is
sufficiently large, as in this study with moss exsiccatae,
N-n = 1,
N
resulting in:
n
The 95 per cent confidence interval for u (the actual mean
of a given OTU) is:
254

255
M = Y ± t (n-l) , 0.025J . . . . . O
Note that the variability within a specimen ( o£ ) is
inversely proportional to the sample size (n). The t
statistic (n-l degrees of freedom, at alpha level, 0.025) is
also dependent on the value of n and also decreases as n
increases. Simplifying the eguation further:
— t / 2
M = V ± (n-l) . 0.025 / a,
/“
A plot of t (n-l), 0.025//~ñ vs. n (Fig. 49A) shows an
apparent leveling of the curve around n values of four or
five measurements. An additional plot (Fig. 49B) of the
difference between between two consecutive numbers t(n_2)/
0.025/Jn-l - t(n_i)^ 0.02 5/vs* n shows that the effect
adding one additional measurement again levels off around
four measurements.

FIG. 49. Plots of the Relationship Between Number of
Measurements (n) per OTU and the t Statistic. A. Graph
showing relationship between n and the t statistic as
expressed in the equation (presented in the text) for the 95
per cent confidence interval for the actual mean (ju) . B.
Graph showing the difference between two consecutive
numbers.

CD
3
* V n-1 VrT
O to 4k OS
>
*(n—1, 0.025)
O IO A O) 00
257

BIOGRAPHICAL SKETCH
Wendy B. Zomlefer was born in Fitchburg, Massachusetts,
on September 22, 1954. She attended public schools in
Leominster, Massachusetts, and graduated from Leominster High
School in 1972. In 1976, she received the Bachelor of Science
degree in botany from the University of Vermont. From 1976 to
1978, she was employed as a botanical illustrator and
herbarium assistant at the Marie Selby Botanical Gardens in
Sarasota, Florida. For the next two years, Wendy studied
under Walter S. Judd at the University of Florida in
Gainesville, receiving the degree of Master of Science in
botany in December 1980. For the past ten years, she has held
the position of Medical Illustrator for the Natural Sciences
Department at the Florida Museum of Natural History,
University of Florida. Her graduate studies towards the
Doctor of Philosophy degree in botany under the direction of
Dana Griffin, III, were begun in September 1986.
258

I certify that I have read this study and that in my
opinion it conforms to the acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degreef of Do^tgr p£ Philosophy.
U b
JJ'sâ– 
Dima GGriffj
Professor of
III,l Chair
I certify that I have read this study and that in my
opinion it conforms to the acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
' W W.
Walter S. Judd Tj
Associate Professor of Botany
I certify that I have read this study and that in my
opinion it conforms to the acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
■'ÍVÍC-
CO â– 
James W. Kimbro
/professor of PI
I certify that I have read this study and that in my
opinion it conforms to the acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Bruce /J7. MacFadden
Professor of Zoology
I certify that I have read this study and that in my
opinion it conforms to the acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of—Philosophy.
'Jonathan Reiskind
Associate Professor of Zoology

This dissertation was submitted to the Graduate Faculty
of the College of Agriculture and to the Graduate School and
was accepted as partial fulfillment of the requirements for
the degree of Doctor of Philosophy. ñ
May 1991
Dean, Collegs
' CuÁ.
of Agricu<3r£ui
re
Dean, Graduate School

UNIVERSITY OF FLORIDA
| III III inn â–  "" X j.a
3 1262 08554 0473




PAGE 1

$ 5(9,6,21 2) 5,*2',80 086&, 5,*2',$&($(f %\ :(1'< % =20/()(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW E\ :HQG\ % =RPOHIHU

PAGE 3

$&.12:/('*0(176 H[SUHVV P\ GHHSHVW DSSUHFLDWLRQ DQG JUDWLWXGH WR 'DQD *ULIILQ ,,, IRU KLV OLPLWOHVV SDWLHQFH DQG HQWKXVLDVWLF JXLGDQFH WKURXJKRXW P\ JUDGXDWH SURJUDP DOVR WKDQN :DOWHU 6 -XGG ZKR DOVR JHQHURXVO\ SURYLGHG PXFK HQFRXUDJHPHQW DQG PDQ\ KHOSIXO FULWLFLVPV 7KH RWKHU PHPEHUV RI P\ FRPPLWWHH %UXFH 0DF)DGGHQ -RQDWKDQ 5HLVNLQG DQG -DPHV : .LPEURXJK KDYH DOVR JUHDWO\ DVVLVWHG LQ P\ SURMHFW DQG KDYH LPSURYHG WKH TXDOLW\ RI WKH GLVVHUWDWLRQ ZLWK WKHLU FRPPHQWV $ YHU\ VSHFLDO WKDQN\RX JRHV WR .HQW 3HUNLQV IRU KLV KHOS LQ DOO FRPSXWHUL]HG DVSHFWV RI WKLV VWXG\ LQFOXGLQJ GDWDEDVH PDQDJHPHQW ZRUG SURFHVVLQJ DQG SURFHVVLQJ RI ORDQV DSSUHFLDWH DOVR WKH DGYLFH DQG KRVSLWDOLW\ RI :LOOLDP 5 %XFN DQG 5LFKDUG +DUULV FXUDWRUV DW WKH 1HZ
PAGE 4

+ :LOOLDPV P\ MRE VXSHUYLVRU DW WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ KDV EHHQ HVSHFLDOO\ JHQHURXV ZLWK KLV FRPSXWHU IDFLOLWLHV DV ZHOO DV V\PSDWKHWLF WR WKH SUREOHPV VXUURXQGLQJ P\ FRQFXUUHQW HPSOR\PHQW DQG VFKRRO DFWLYLWLHV +RZDUG &UXP SURYLGHG H[FHOOHQW LQVWUXFWLRQ GXULQJ P\ WHQXUH DV KLV DVVLVWDQW DW WKH 8QLYHUVLW\ RI 0LFKLJDQ %LRORJLFDO 6WDWLRQ DQG JUDFLRXVO\ VHQW PH DQ XQSXEOLVKHG PDQXVFULSW UHODWHG WR P\ GLVVHUWDWLRQ ZRUN 'DQLHO % :DUG DQG 'DQ + 1LFKROVRQ DGYLVHG PH RQ VHYHUDO GLIILFXOW QRPHQFODWXUDO SUREOHPV 5KRGD %U\DQW DQG 'LDQQD & &DUYHU KHOSHG ZLWK ZRUG SURFHVVLQJ WKDQN DOVR WKH FXUDWRUV RI WKH KHUEDULD OLVWHG LQ WKH PDWHULDOV DQG PHWKRGV VHFWLRQ IRU WKH H[WHQGHG ORDQV RI WKHLU VSHFLPHQV 7UDYHO PRQH\ IRU WKUHH WULSV WR VWXG\ EU\RSK\WHV RQH WR 0LFKLJDQ DQG WZR WR 3XHUWR 5LFRf ZDV SURYLGHG E\ WKH 'HSDUWPHQW RI %RWDQ\ DW WKH 8QLYHUVLW\ RI )ORULGD %\ WKHLU FRQVLVWHQW FRQFHUQ DERXW P\ JUDGXDWH SURJUDP RYHU WKH SDVW ILYH \HDUV *UDLJ 6KDDN *DU\ 6 0RUJDQ DQG /DXULH :LONLQV DOO RI WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\f KHOSHG WR NHHS P\ VSLULWV XS ,Q WKLV UHJDUG DOVR WKDQN 6XVDQ : :LOOLDPV DQG P\ VLVWHU .D\OD 6 =RPOHIHU IRU WKHLU FKHHUIXO VXSSRUW )LQDOO\ WKDQN P\ SDUHQWV -DFN DQG 'RURWK\ =RPOHIHU ZKR KDYH DOZD\V HQFRXUDJHG DQG VXSSRUWHG P\ DFDGHPLF SXUVXLWV HYHQ LQ P\ IRUPDWLYH \HDUV ZKHQ IHPDOHV ZHUH QHLWKHU H[SHFWHG QRU HQFRXUDJHG WR H[FHO LQ WKH VFLHQFHV ,9

PAGE 5

7$%/( 2) &217(176 3DTH $&.12:/( '*0(176 LLL $%675$&7 9 ,1752'8&7,21 7$;2120,& +,6725< 0$7(5,$/6 $1' 0(7+2'6 0253+2/2*< $[HV /HDYHV $[LOODU\ +DLUV 3DUDSK\OOLD DQG 3VHXGRSDUDSK\OOLD 3HULFKDHWLD DQG 3HULJRQLD 6SRURSK\WH 6SRUHV &KURPRVRPH 1XPEHU 3+
PAGE 6

5LJRGLXP LPOH[XP .XQ]H H[ 6FKZ£JU 5LTRGLXP SVHXGRWKXLGLXP 'XV 120,1$ $0%,*8$ $1' 18'$ /,7(5$785( &,7(' $33(1',&(6 $ 2786 &2//(&7,216f 86(' ,1 7+( 3+(1(7,& $1$/<6(6 % '(7(50,1$7,21 2) 0,1,080 180%(5 2) 0($685(0(176 3(5 &+$5$&7(5 %,2*5$3+,&$/ 6.(7&+ YL

PAGE 7

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 5(9,6,21 2) 5,*2',80 086&, 5,*2',$&($(f %\ :HQG\ % =RPOHIHU 0D\ &KDLUPDQ 'DQD *ULIILQ ,,, 0DMRU 'HSDUWPHQW %RWDQ\ 5LJRGLXP .XQ]H H[ 6FKZ£JU D JHQXV RI WURSLFDO WR DXVWUDOWHPSHUDWH SOHXURFDUSRXV PRVVHV LV FRPSULVHG RI ILYH VSHFLHV SOXV WZR YDULHWLHVf 3ULRU WR WKLV VWXG\ VSHFLHV ZHUH UHFRJQL]HG ZLWK ILYH DGGLWLRQDO VSHFLHV JHQHUDOO\ DFFHSWHG DV EHORQJLQJ WR RWKHU JHQHUD 6SHFLHV RI 5LJRGLXP DOO GLRLFRXV KDYH ZLU\ VWHPV DQG EUDQFKHV VWURQJO\ GLPRUSKLF VWHP DQG EUDQFK OHDYHV H[WUHPHO\ LQFUDVVDWH OHDI FHOOV WKDW DUH SURUXORVH WR YDU\LQJ GHJUHHV GHSHQGLQJ RQ WKH VSHFLHVf DQG K\SQRLG SHULVWRPHV 7KH KDELW YDULHV IURP DUERUHVFHQW ZLWK D ZHOOGHYHORSHG VWLSH 5 WR[DULRQ 5 DGSUHVVXP DQG 5 EUDFKYSRGLXPf WR PRUH GHULYHG IRUPV ZLWK HLWKHU SUROLILF 5 LPSOH[XPf RU UHGXFHG 5 SVHXGRWKXLGLXPf EUDQFKLQJ 7KH JHQXV KDV D GLVMXQFW GLVWULEXWLRQ LQ &HQWUDO DQG 6RXWK $PHULFD DQG VRXWKHDVWHUQ $IULFD 7KH SODQWV XVXDOO\ HSLSK\WLF RU WHUUHVWULDO JHQHUDOO\ JURZ LQ PRLVW PRQWDQH IRUHVWV 7KH FHQWHU RI GLYHUVLW\ ZKHUH DOO ILYH VSHFLHV RFFXU LV LQ WKH $QGHDQ &RUGLOOHUD DORQJ WKH &KLOHDQ $UJHQWLQLDQ ERUGHU LQ FHQWUDO &KLOH YLL

PAGE 8

2EVHUYDWLRQV RI PRUSKRORJ\ LQFOXGLQJ WKRVH PDGH ZLWK VFDQQLQJ HOHFWURQ PLFURVFRS\ 6(0f FRPSRVH WKH EDVLV RI WKLV UHYLVLRQ ZKLFK LQFOXGHV FRPSXWHUDVVLVWHG DQDO\VHV RI SKHQHWLFV 3ULQFLSDO &RPSRQHQW $QDO\VLV 3&$f DQG FODGLVWLFV 3K\ORJHQHWLF $QDO\VLV 8VLQJ 3DUVLPRQ\ 3$83f 2QH SUHYLRXVO\ XQGHVFULEHG VSHFLHV 5 DGSUHVVXPf DQG WZR QHZ FRPELQDWLRQV DW WKH YDULHWDO OHYHO 5 WR[DULRQ YDU UREXVWXP DQG 5 EUDFKYSRGLXP YDU WDPDUL[f DUH SUHVHQWHG 5LDRGLXP LV PDLQWDLQHG ZLWKLQ WKH PRQRW\SLF 5LJRGLDFHDH SRVVLEO\ UHODWHG WR WKH 7KXLGLDFHDH YLLL

PAGE 9

,1752'8&7,21 $V WUHDWHG KHUH WKH JHQXV 5LJRGLXP .XQ]H H[ 6FKZ£JU FRQVLVWV RI ILYH VSHFLHV LQFOXGLQJ WZR YDULHWLHVf RI DXVWUDOWHPSHUDWH WR WURSLFDO SOHXURFDUSRXV PRVVHV IURP +LVSDQLROD &HQWUDO DQG 6RXWK $PHULFD HDVWHUQ $IULFD DQG 0DGDJDVFDU 7KH FHQWHU RI GLYHUVLW\ RI 5LJRGLXP ZKHUH DOO ILYH VSHFLHV RFFXU LV LQ WKH $QGHDQ &RUGLOOHUD DORQJ WKH &KLOHDQ$UJHQWLQLDQ ERUGHU LQ FHQWUDO &KLOH 7KH SODQWV W\SLFDOO\ JURZ DV HSLSK\WHV RU OHVV RIWHQ WHUUHVWULDO FRUWLFRORXV RU VD[LFRORXVf LQ PRLVW IRUHVWV DW PRGHUDWHO\ KLJK DOWLWXGHV XS WR FD Pf $OWKRXJK VSHFLHV KDYH EHHQ LQFOXGHG ZLWKLQ 5LJRGLXP QR FRPSUHKHQVLYH ZRUN KDG EHHQ SXEOLVKHG IRU WKH JHQXV XQWLO WKH SUHVHQW UHYLVLRQ 7KH JHQXV LWVHOI LV ZHOOGHILQHG DQG UHFRJQL]DEOH E\ WKH GHQGURLG WR IURQGRVH KDELW ZLWK ZLU\ VWHPV DQG EUDQFKHV DQG RIWHQ D ZHOOGLIIHUHQWLDWHG VWLSH ORZHU VHFRQGDU\ VWHPf 7KH VWURQJO\ GLPRUSKLF VWHP DQG EUDQFK OHDYHV DUH XQXVXDO LQ WKH PDUNHG WHQGHQF\ WRZDUG HFRVWDWH VWHP OHDYHV DW OHDVW WKRVH RI WKH VWLSH RU ORZHU VWHPf 6WHP OHDYHV DUH W\SLFDOO\ VWURQJO\ VSUHDGLQJ WR VTXDUURVH ZHW RU GU\ /HDI FHOOV DUH JHQHUDOO\ URXQGHG TXDGUDWH DODU UHJLRQ DQG PDUJLQVf WR REORQJ XSSHU DQG PLGODPLQDU DUHDVf DQG LQFUDVVDWH WKURXJKRXW 7KH SODQWV DUH

PAGE 10

GLRLFRXV DQG WKH SHULVWRPH LV K\SQRLG =RPOHIHU DQG %XFN f 7KLV WUHDWPHQW UHSUHVHQWV WKH ILUVW DWWHPSW WR FRPSOHWHO\ UHYLHZ DOO SHUWLQHQW OLWHUDWXUH DQG VSHFLPHQV LQ RUGHU WR f DVFHUWDLQ WKH VSHFLHV DQG WKHLU UHODWLRQVKLSV ZLWKLQ WKH JHQXV DQG f WR GHWHUPLQH WKH SRVLWLRQ RI WKH JHQXV LQ D PRQRW\SLF IDPLO\f ZLWKLQ WKH VFKHPH RI EU\RSK\WH SK\ORJHQ\ XVLQJ FODGLVWLFV 7KH UHVXOWV SUHVHQWHG KHUH DUH EDVHG RQ TXDOLWDWLYH DQG TXDQWLWDWLYH DQDO\VLV RI PRUSKRORJ\ HFRORJ\ DQG DQDWRP\ RI RYHU KHUEDULXP VSHFLPHQV 7KLV VWXG\ LV HVSHFLDOO\ SHUWLQHQW VLQFH PDQ\ RI WKH KDELWDWV ZKHUH 5LJRGLXP RFFXUV PDLQO\ VXEWURSLFDO WR WHPSHUDWH UDLQ IRUHVWVf DUH WKUHDWHQHG E\ KXPDQ DFWLYLWLHV DV IRU H[DPSOH ORJJLQJ LQ WKH 9DOGLYLDQ IRUHVWV LQ &KLOHf

PAGE 11

7$;2120,& +,6725< 7KH JHQXV 5LJRGLXP ZDV HVWDEOLVKHG E\ 6FKZ£JULFKHQ LQ ZLWK RULJLQDO PDWHULDO RI WKH QHZ VSHFLHV 5LJRGLXP LPSOH[XP FRPLQJ IURP VRXWKHUQ &KLOH 6FKZ£JULFKHQ =RPOHIHU f 7KH QDPH LV WDNHQ IURP WKH *UHHN ZRUG ULJRV ULJLGf LQ UHIHUHQFH WR WKH H[WUHPHO\ VWLII DQG ZLU\ VWHPV DQG EUDQFKHV $OWKRXJK 0OOHU f LQLWLDOO\ VXJJHVWHG PDLQWDLQLQJ WKLV QHZ JHQXV UDWKHU DV D VHFWLRQ ZLWKLQ +YSQXP WKH QDPH EHFDPH ZHOODFFHSWHG LQ WKH OLWHUDWXUH ZLWK HYHQ 0OOHU KLPVHOI HYHQWXDOO\ GHVFULELQJ VL[ VSHFLHV XVLQJ 5LJRGLXP DV WKH JHQXV QDPH ,Q DGGLWLRQ WR 5 LPSOH[XP QHZ VSHFLHV ZHUH ODWHU GHVFULEHG SOXV PRUH WUDQVIHUUHG WR 5LJRGLXP IURP +YSQXP WHQ VSHFLHVf DQG /HVNHD RQH VSHFLHVf 2I WKHVH YDOLG VSHFLHV QDPHV :LMN HW DG &URVE\ f ILYH KDYH EHHQ QRZ JHQHUDOO\ DFFHSWHG DV EHORQJLQJ WR RWKHU JHQHUD 5 GHQWDWXP 'L[ 5KYQFKRVWHJLHOOD ]HYKHUL & 0f %URWK 5 UHIOH[XP 6WDUNf .LQGE %UDFKYWKHFLXP UHIOH[XP 6WDUNf % 6 5 VFKORVVHUL 6HQGWQf .LQGE &DPSWRFKDHWH VFKORVVHUL 6HQGWQf 3DU 5 YDJXP & 0f 5HLFKGW &DPSWRFKDHWH YDJD & 0OOf %URWK DQG 5 YDULXP +HGZf .LQGE $PEOYVWHJLXP YDULXP +HGZf /LQGE ,Q DGGLWLRQ IRXU PRUH 5LJRGLXP W\SHV H[DPLQHG LQ WKH LQLWLDO VWDJHV RI WKLV VWXG\ KDYH DOVR EHHQ UHDVVHVVHG

PAGE 12

=RPOHIHU t %XFN f 5 WR[DULRLGHV %URWK t 3DU )LJ f DQG 5 FUDVVLFRVWDWXP %DUWU LQ &KULVW )LJ f ERWK (XUKYQFKLXP SUDHORQJXP +HGZf % 6 5 SWHULDYQDQGURLGHV %URWKf %URWK )LJ f +HOLFRGRQWLXP SHUYLUHQV & 0f 3DU DQG 5 ULSDULXP 6HKQHP )LJ f +HOLFRGRQWLXP FRPSODQDWXP %URWK 7KLV OHDYHV D WRWDO RI YDOLG HSLWKHWV 7DEOH f LQFRUSRUDWHG LQWR WKH SUHVHQW VWXG\f§ DVVRFLDWHG ZLWK +LVSDQLROD DQG &HQWUDO DQG 6RXWK $PHULFD DQG RQH HDFK ZLWK HDVWHUQ $IULFD DQG ZLWK 0DGDJDVFDU 7KH DXWKRUV RI WKH RULJLQDO VSHFLHV GHVFULSWLRQV KDYH JHQHUDOO\ HPSKDVL]HG VXEWOH GLIIHUHQFHV LQ FKDUDFWHUV VXFK DV WKH UHODWLYH VL]H DQG IUDJLOLW\ RI WKH SODQWV DQG WKH FRDUVHQHVV RI WKH VHUUDWLRQV RQ WKH OHDYHV %\ DSSDUHQWO\ FRPSDULQJ W\SH VSHFLPHQV RQO\ WKH DXWKRUV GLG QRW VXIILFLHQWO\ HYDOXDWH WKH LQWHUJUDGDWLRQ RI WKHVH FKDUDFWHUV WKURXJKRXW WKH JHQXV DQG WKXV PD\ KDYH RYHUORRNHG QXPHURXV VSHFLPHQV ZKLFK EULGJHG WKH DSSDUHQW PRUSKRORJLFDO JDSV EHWZHHQ WKH W\SH VSHFLPHQV 7KH PRVW REYLRXV VSHFLHV EDVHG RQ WKH ROG OLWHUDWXUH DUH 5 SVHXGRWKXLGLXP5 KYORFRPLRLGHV ERWK ZLWK GLVWLQFW KDELW DQG D UHGXFHG FRVWD LQ WKH VWHP OHDYHVf DQG 5 LPSOH[XP YHU\ VWLII SODQWV ZLWK XQXVXDO ULJKWDQJOH EUDQFKLQJf &HUWDLQ QDPHV WHQGHG WR EH DVVRFLDWHG RQO\ ZLWK FROOHFWLRQV IURP WKH SDUWLFXODU FRXQWU\ RI WKH W\SH VSHFLPHQ VXFK DV 5 VROXWXP ZLWK (FXDGRU DQG 5 OHSWRGHQGURQ ZLWK %ROLYLD VHH 7DEOH f $GGLQJ WR WKH FRQIXVLRQ DXWKRUV RI IORULVWLF WUHDWPHQWV WHQGHG WR OXPS

PAGE 13

LQGLVFULPLQDWHO\ VHYHUDO QDPHV LQ V\QRQ\P\ VXFK DV -DHJHU > 5 WR[DULRQ 5 LPSOH[XP 5 EUDFKYSRGLXP DQG +YSQXP 5LJRGLXPf VROXWXP@ 0OOHU > +YSQXP 5LJRGLXPf DUJHQWLQLFXP 5 LPSOH[XP DQG 5 EUDFKYSHOPD EUDFKYSRGLXPf DQG 0LWWHQ > +YSQXP 5LJRGLXPf WR[DULRQ + LPSOH[XP + EUDFKYSRGLXP + VROXWXP DQG 5 OHFKOHUL DUERUHVFHQVf %URWKHUXVn f NH\ WR VSHFLHV VHSDUDWHV RXW RQO\ WKH IHZ REYLRXV IRUPV LH 5 LPSOH[XP 5 KYORFRPLRLGHV DQG VHYHUDO VSHFLHV QR ORQJHU LQFOXGHG LQ 5LJRGLXPf DQG OXPSV WKH UHPDLQLQJ VSHFLHV E\ FRXQWU\f XQGHU WKH ILUVW JHQHUDO GLFKRWRP\ RI WKH NH\ KDELW W\SHf 7KH JUHDW QHHG IRU D IXOOVFDOH UHYLVLRQ RI 5LJRGLXP KDV EHHQ QRWHG E\ DXWKRUV IURP 5HLPHUV f WR 5RELQVRQ f ,Q UHYLHZLQJ &KLOHDQ FROOHFWLRQV RI EU\RSK\WHV DQG H[DPLQLQJ QXPHURXV VSHFLPHQV RI 5LJRGLXP LQ SDUWLFXODU 5HLPHUV f DQG +HU]RJ f ERWK FRQFOXGHG WKDW PDNLQJ DQ\ GHFLVLRQV DERXW WKH WD[RQRPLF YDOLGLW\ RI 5LJRGLXP VSHFLHV ZDV YLUWXDOO\ XQIHDVLEOH ZLWKRXW PRQRJUDSKLF VWXGLHV ,Q IDFW 5HLPHUV SURPLVHG D IRUWKFRPLQJ UHYLVLRQ ZKLFK QHYHU DSSHDUHGf +HU]RJ f DQG %DUWUDP f HDFK GHVFULEHG D QHZ VSHFLHV RI 5LJRGLXP 5 SHQGXOXP DQG 5 FUDVVLFRVWDWXP UHVSHFWLYHO\f ZKLOH DW WKH VDPH WLPH DGPLWWLQJ WKH QHDU LPSRVVLELOLW\ RI DSSO\LQJ DQ\ VSHFLILF QDPHV ZLWKRXW D FULWLFDO UHYLVLRQ RI WKH HQWLUH JHQXV

PAGE 14

2WKHU WKDQ WKH NH\V RI %URWKHUXV f QR DWWHPSW KDV EHHQ PDGH WR GLVWLQJXLVK DOO WKH VSHFLHV RI WKH JHQXV DOWKRXJK VHYHUDO ZRUNHUV KDYH WUHDWHG D IHZ VSHFLHV RI 5MTRGLXP ZLWK D UHJLRQDO IORULVWLF SHUVSHFWLYH 0RVW IORUDV GR QRW LQFOXGH GHVFULSWLRQV RU NH\V EXW RQO\ OLVW WKRVH VSHFLHV QDPHV DQG VRPHWLPHV WKH VSHFLPHQVf DVVRFLDWHG ZLWK WKH DUHD HJ 6HNL f 1RWDEOH H[FHSWLRQV DUH WKH IORUDV RI 6HKQHP f DQG 5RELQVRQ f ZKLFK LQFOXGH NH\V DQG VRPH GLVFXVVLRQ FRPSDULQJ VHYHUDO VSHFLHV 7KHVH WZR IORUDV KRZHYHU DUH UHVWULFWHG LQ VFRSH DQG GR QRW DGGUHVV 5MTRGLXP DV D ZKROH 6HKQHPnV NH\V IRU VHYHQ VSHFLHV RI 5MTRGLXP LQ KLV WUHDWPHQW RI WKH PRVVHV RI VRXWKHUQ %UD]LO XVH YDJXH FKDUDFWHUV VXFK DV D GHOLFDWH KDELW VLPLODU LQ DVSHFW WR 3WHUTYQDQGUXP RU 7KXLGLXP +H GHVFULEHG WZR QHZ VSHFLHV 5 ULRDULXP DQG 5 SDOOLGXP 5MTRGLXP ULRDULXP 6HKQHP LV DFWXDOO\ +HOLFRGRQWLXP FRPSODQDWXP %URWK =RPOHIHU t %XFN f DQG 5 SDOOLGXP 6HKQHP KDV EHHQ UHGXFHG WR V\QRQ\P\ ZLWK 5 WR[DULRQ 6FKZ£JUf -DHJ LQ WKH SUHVHQW VWXG\ 5RELQVRQnV WUHDWPHQW RI WKH PRVVHV RI WKH ZHOOFROOHFWHG -XDQ )HUQ£QGH] ,VODQGV LQFOXGHV GHWDLOHG GLVFXVVLRQV RI IRXU VSHFLHV 5 DUERUHVFHQV 5 KYORFRPLRLGHV 5 WR[DULRQ DQG 5 UREXVWXPf ZLWK FRPPHQWV RQ KLV RSLQLRQV RI V\QRQRP\ DQG UHODWLRQVKLSV WR VHYHUDO RWKHU VSHFLHV RQ PDLQODQG &KLOH %\ FRQFHQWUDWLQJ RQ D VPDOO ZHOOFROOHFWHG DUHD KH DSSDUHQWO\ PDGH VRPH DVVXPSWLRQV DERXW 5MTRGLXP VSHFLHV WKDW UHIOHFW EHWWHU WKH ORFDO YDULDWLRQ UDWKHU WKDQ WKDW IRXQG WKURXJKRXW

PAGE 15

ZKROH UDQJH RI WKH JHQXV +LV FRQFOXVLRQV DUH FRPPHQWHG RQ XQGHU WKH DSSURSULDWH VSHFLHV LQ WKLV VWXG\ &RXSOHG ZLWK SUREOHPV LQ GHOLPLWDWLRQ RI WKH VSHFLHV LV D ODFN RI DJUHHPHQW RQ WKH DIILQLWLHV RI 5LDRGLXP WR RWKHU JURXSV $V ZLWK PDQ\ SOHXURFDUSRXV WD[D 5LDRGLXP ZDV LQLWLDOO\ DOOLHG ZLWK +YRQXP+\SQDFHDH HJ 0OOHU f %\ WKH HDUO\ WZHQWLHWK FHQWXU\ PRUH SOHXURFDUSRXV IDPLOLHV KDG EHHQ GHOLPLWHG DQG 5LDRGLXP ZDV PRYHG WR WKH %UDFK\WKHFLDFHDH E\ %URWKHUXV f /DWHU KH f WUDQVIHUUHG LW WR WKH /HPERSK\OODFHDH $VVRFLDWLQJ WKH JHQXV ZLWK WKHVH WZR IDPLOLHV KDV SHUVLVWHG XQWLO UHFHQWO\ )RU H[DPSOH 5RELQVRQ f SODFHG 5LDRGLXP LQ WKH %UDFK\WKHFLDFHDH GXH WR LWV VLPLODULW\ VWLSHV DQG VWURQJ KHWHURSK\OO\f ZLWK 6WRNHVLHOOD >KRUQ LOOHD (XUKYQFKLXP ILGH %XFN f@ 0RUH UHFHQW SXEOLFDWLRQV &URVE\ t 0DJLOO 9LWW :DOWKHU f PDLQWDLQ 5LDRGLXP XQGHU WKH /HPERSK\OODFHDH DOWKRXJK WKH YDOLGLW\ RI WKLV IDPLO\ DV ILUVW FRQFHLYHG E\ %URWKHUXV KDV FRQWLQXHG WR EH TXHVWLRQHG &UXP f %XFN Df UHGXFHG WKH /HPERSK\OODFHDH WR WZR JHQHUD &DPSWRFKDHWH DQG /HPERSKYOOXPf DQG VXJJHVWHG SODFHPHQW RI 5LDRGLXP LQ WKH 7KXLGLDFHDH D PRYH VXSSRUWHG E\ 9LWW f $FFRUGLQJ WR %XFN SHUWLQHQW FKDUDFWHUV OLQNLQJ 5LDRGLXP WR WKH 7KXLGLDFHDH LQFOXGH WKH SLQQDWH EUDQFKLQJ VLPLODU OHDI VKDSHV VKRUW OHDI FHOOV DQG VWURQJ VLQJOH FRVWDH %DUWUDP f ZDV WKH ILUVW WR VXJJHVW SODFHPHQW RI 5LDRGLXP LQ D VHSDUDWH IDPLO\ LI QRW WKH %UDFK\WKHFLDFHDH

PAGE 16

RU /HVNHDFHDH LQ ZKLFK KH LQFOXGHG WKH 7KXLGLDFHDHf &UXP f UHFHQWO\ HUHFWHG WKH PRQRW\SLF IDPLO\ 5LJRGLDFHDH ZKLFK KDV EHHQ DFFHSWHG E\ VRPH DXWKRUV %XFN t 9LWW f DQG WHQWDWLYHO\ VXSSRUWHG E\ RWKHUV :DOWKHU f $OWKRXJK KH ODWHU f DJUHHV ZLWK %XFN Df DQG DFNQRZOHGJHV D FORVH UHVHPEODQFH RI 5LTRGLXP WR WKH 7KXLGLDFHDH &UXP PDLQWDLQV WKDW WKH VWLSLWDWH JURZWK VPRRWK OHDI FHOOV DQG DEVHQFH RI SDUDSK\OOLD PHULW VHSDUDWH IDPLOLDO VWDWXV IRU WKH JHQXV 7KH SUHVHQW VWXG\ UHFRJQL]HV ILYH VSHFLHV LQFOXGLQJ WZR YDULHWLHVf RI 5LTRGLXP LQFOXGLQJ RQH VSHFLHV GHVFULEHG KHUH IRU WKH ILUVW WLPH 5 DGRUHVVXP =RPOHIHU 5 EUDFKYSRGLXP & 0OOf 3DU YDU EUDFKYSRGLXP 5 EUDFKYSRGLXP & 0OOf 3DU YDU WDPDUL[ & 0OOf =RPOHIHU 5 LPSOH[XP .XQ]H H[ 6FKZ£JU 5 SVHXGRWKXLGLXP 'XV 5 WR[DULRQ 6FKZ£JUf -DHJ YDU WR[DULRQ DQG 5 WR[DULRQ 6FKZ£JUf -DHJ YDU UREXVWXP %URWK LQ 6NRWWVEf =RPOHIHU &RQVLGHULQJ WKH LQLWLDO HSLWKHWV WKH UHFRJQLWLRQ RI RQO\ ILYH VSHFLHV UHSUHVHQWV D b UDWH RI RYHUGHVFULSWLRQ 7KLV ILJXUH LV FRQVLVWHQW ZLWK PRVV UHYLVLRQV LQ JHQHUDO DFFRUGLQJ WR 7RXZnV f VXUYH\ WR b RI SXEOLVKHG VSHFLILF DQG LQIUDVSHFLILF QDPHV KDYH EHHQ UHGXFHG LQ V\QRQ\P\ LQ PRVV UHYLVLRQV IURP WR 7KH UHVXOWV RI WKH SUHOLPLQDU\ FODGLVWLF VWXG\ DQG FKDUDFWHU DQDO\VLV LQ WKLV UHYLVLRQ LQGLFDWH WKDW 5LTRGLXP LV SK\ORJHQHWLFDOO\ LQWHUPHGLDWH EHWZHHQ (FKLQRGLXP

PAGE 17

(FKLQRGLDFHDHf DQG 7KXLGLXP 7KXLGLDFHDHf DQG WKDW DOO WKUHH WD[D DUH EDVDO LQ %XFN DQG 9LWWnV f VXSHUIDPLO\ /HVNHDFDQDH RI WKH +\SQDOHV VHH GHWDLOHG GLVFXVVLRQ LQ VHFWLRQ RQ SK\ORJHQ\f :LWK (FKLQRGLXP DV DQ RXWJURXS IRU 5LTRGLXP FODGLVWLF DQDO\VHV LGHQWLI\ 5 WR[DULRQ DV WKH PRVW DQFHVWUDO VSHFLHV 5 LPSOH[XP DQG 5 SVHXGRWKXLGLXP DV WKH PRVW GHULYHG VLVWHUVSHFLHV LQ WKH JHQXV DQG 5 EUDFKYSRGLXP DQG 5 DGSUHVVXP DV SK\ORJHQHWLF LQWHUPHGLDWHV

PAGE 18

),* 7\SH RI 5LTRGLXP WR[DULRLGHV %URWK t 3DU (XUKYQFKLXP SUDHORQTXP +HGZf % 6 $ +DELW % 'HWDLO RI VWHP & 6WHP OHDI %UDQFK OHDI (+ $UHRODWLRQ RI OHDI () %DVDO FHOOV 0HGLDQ FHOOV + 'HWDLO RI XSSHU FRVWD VKRZLQJ GRUVDO VSLQH $OO IURP $SROOLQDLUH VQ +%5f &RS\ULJKW E\ WKH $PHULFDQ %U\RORJLFDO DQG /LFKHQRORJLFDO 6RFLHW\ 5HSULQWHG ZLWK SHUPLVVLRQ IURP 7KH %UYRORJLVW f

PAGE 19

,7

PAGE 20

),* 7\SH RI 5LTRGLXP FUDVVLFRVWDWXP %DUWU LQ &KULVW (XUKYQFKLXP SUDHORQFWXP +HGZf % 6 $ +DELW % 'HWDLO RI VWHP & 6WHP OHDI %UDQFK OHDI (+ $UHRODWLRQ RI OHDI () %DVDO FHOOV 0HGLDQ FHOOV + 'HWDLO RI XSSHU FRVWD VKRZLQJ GRUVDO VSLQH $OO IURP &KULVWRSKHUVHQ t 0HLODQG %0f $ DQG % FRS\ULJKW E\ WKH $PHULFDQ %U\RORJLFDO DQG /LFKHQRORJLFDO 6RFLHW\ 5HSULQWHG ZLWK SHUPLVVLRQ IURP 7KH %UYRORDLVW f

PAGE 22

),* 7\SH RI 5LTRGLXP SWHULTYQDQGURLGHV %URWKf %URWK +HOLFRGRQWLXP SHUYLUHQV & 0OOf 3DU $ +DELW % 6WHP OHDI & %UDQFK OHDI '* $UHRODWLRQ RI OHDI %DVDO FHOOV ( 0HGLDQ FHOOV ) $FXPHQ 'HWDLO RI XSSHU FRVWD VKRZLQJ GRUVDO VSLQH + &DSVXOH $OO IURP /LQGPDQ +%5f &RS\ULJKW E\ WKH $PHULFDQ %U\RORJLFDO DQG /LFKHQRORJLFDO 6RFLHW\ 5HSULQWHG ZLWK SHUPLVVLRQ IURP 7KH %UYRORDLVW f

PAGE 23

2 ZZJJnR L L

PAGE 24

),* 7\SH RI 5LTRGLXP ULSDULXP 6HKQHP +HOLFRGRQWLXP FRPSODQDWXP %URWK $ +DELW % 3RUWLRQ RI SODQW ZLWK VSRURSK\WH DQG SHULJRQLD & 6WHP OHDI %UDQFK OHDYHV (* $UHRODWLRQ RI OHDI ( %DVDO FHOOV ) 0HGLDQ FHOOV $FXPHQ + &DSVXOH $OO IURP 6HKQHP 3$&$f &RS\ULJKW E\ WKH $PHULFDQ %U\RORJLFDO DQG /LFKHQRORJLFDO 6RFLHW\ 5HSULQWHG ZLWK SHUPLVVLRQ IURP 7KH %UYRORJLVW f

PAGE 25

MP

PAGE 26

7DEOH 7KH GLVWULEXWLRQV RI WKH YDOLG HSLWKHWV RI 5LTRGLXP DQG WKH V\QRQ\PV HVWDEOLVKHG LQ WKLV VWXG\ 7KH UDQJH LQGLFDWHV WKH SUHVXPHG HQGHPLF DUHD RI GLVWULEXWLRQ DV UHSRUWHG LQ WKH RULJLQDO OLWHUDWXUH 1DPH t DXWKRU
PAGE 27

7DEOH f§FRQWLQXHG 5 ORRVHUL 7KU -XDQ )HUQ ,VODQGV 5 WR[DULRQ YDU UREXVWXP 5 QDQRIDVFLFXODWXP & 0 H[ 7KU &KLOH 5 WR[DULRQ 5 QLYHXP 7KU 0DGDJDVFDU 5 WR[DULRQ 5 SDOOLGXP 6HKQHP %UD]LO 5 WR[DULRQ 5 SHQGXOXP +HU] t 7KU &KLOH 5 WR[DULRQ 5 SHQLFLOOLIHUXP & 0LLOO %UD]LO QRW VHHQ 5 SHUWHQXH & 0LLOO %UD]LO 5 WR[DULRQ 5 SVHXGRWKXLGLXP 'XV 6 &KLOH t 5 SVHXGRWKLXGLXP $UJHQWLQDf 5 UREXVWXP %URWK LQ 6NRWWVE -XDQ )HUQ ,VODQGV 5 WR[DULRQ YDU UREXVWXP 5 VROXWXP 7D\O 3DU VXE +YSQXPf (FXDGRU 5 WR[DULRQ 5 WDPDUL[ & 0 &KLOH t $UJHQWLQD 5 EUDFKYRRGLXP YDU WDPDUL[ 5 WR[DULRQ 6FKZ£DUf -DHD LVXE +YSQXPf +LVSDQLROD &HQWUDO t 6RXWK $PHU 5 WR[DULRQ

PAGE 28

0$7(5,$/6 $1' 0(7+2'6 ,Q WKH FRXUVH RI WKLV VWXG\ RYHU VSHFLPHQV ZHUH H[DPLQHG IURP WKH FROOHFWLRQV RI KHUEDULD $/7$ % %$ %0 %5 & &$10 &+5 '8,6 ( ) )+ )/$6 *% *2(7 + ,$ -( .5$0 / /3% 0 0$1&+ 0(;8 0,&+ 02 038 1$0 1< 2 2;) 3 3$&$ 5% 52 6 7(11 8 836 8:0 9%, DQG : 7KH DFURQ\PV DUH VWDQGDUGL]HG DFFRUGLQJ WR +ROPJUHQ HW DO f VSHFLPHQV LQGLFDWHG DV IURP +HUE 0DWWHUL DUH IURP WKH SHUVRQDO KHUEDULXP RI & 0DWWHUL 7KH ODEHO GDWD IURP HDFK VSHFLPHQ ZHUH HQWHUHG LQWR D GDWD EDVH RQ DQ ,%0 FRPSDWLEOH 3& 7KH XVHU LQWHUIDFH IRU WKH SURJUDP VLPLODU LQ VWUXFWXUH WR G%DVH ,,, 3/86 $VKWRQ7DWH UHJLVWHUHG WUDGHPDUNf ZDV FRPSLOHG E\ .HQW 3HUNLQV VSHFLILFDOO\ IRU WKLV SURMHFW XVLQJ &/,33(5 1DQWXFNHW &RUS UHJLVWHUHG WUDGHPDUNf ODQJXDJH $V H[VLFFDWDH DUH FRPPRQ LQ EU\RORJ\ FDWDORJLQJ WKH QXPHURXV VSHFLPHQV ZLWK D GDWD EDVH JUHDWO\ IDFLOLWDWHG WKH LGHQWLILFDWLRQ RI GXSOLFDWHV DQG IUDJPHQWDU\ VSHFLPHQV WKDW KDG LQFRPSOHWH RU PLVVLQJ GDWD RQ WKH ODEHOV $V FRPSXWHU UHFRUGV WKH VSHFLPHQV FRXOG DOVR WKHQ EH TXLFNO\ VRUWHG LQWR DQ\ DSSURSULDWH FDWHJRU\ ILHOGff§VXFK DV E\ FROOHFWRU FRXQWU\ HOHYDWLRQ W\SH GHVLJQDWLRQ RU UHSURGXFWLYH VWDWHf§IRU XVH LQ VSHFLPHQ FLWDWLRQV UDQJHV DQG H[VLFFDWDH OLVWV 7KH PRGHUQ VSHOOLQJV RI JHRJUDSKLFDO QDPHV DUH DFFRUGLQJ WR WKH 8QLWHG 6WDWHV 2IILFH RI

PAGE 29

*HRJUDSK\nV 2IILFLDO 6WDQGDUG 1DPHV JD]HWWHHU YROXPHV IRU /DWLQ $PHULFD DQG f +\GUDWHG VSHFLPHQV DQG SHUPDQHQW VOLGHV ZHUH H[DPLQHG IRU WKH GHWDLOHG PHDVXUHPHQWV DQG TXDOLWDWLYH FKDUDFWHUV XVHG LQ WKH GHVFULSWLRQV SKHQHWLF VWXGLHV DQG FODGLVWLF DQDO\VHV 7KH VSHFLILF PHWKRGRORJLHV IRU WKH FODGLVWLF DQG SKHQHWLF DQDO\VHV DUH GLVFXVVHG LQ WKHLU SDUWLFXODU FKDSWHUVf 3ULRU WR H[DPLQLQJ WKHP DSSURSULDWH SRUWLRQV RI VSHFLPHQV ZHUH VWHHSHG IRU VHYHUDO PLQXWHV LQ ERLOLQJ ZDWHU 2FFDVLRQDOO\ WKH HQWLUH FRQWHQWV RI D SDFNHW ZHUH VRDNHG LI WKH SODQWV ZHUH LQH[WULFDEO\ LQWHUWZLQHG 7KH VWURQJO\ FODVSLQJ VWHP DQG VWLSH OHDYHV RQO\ FD PP ORQJf ZHUH LQGLYLGXDOO\ WHDVHG RII WKH VWHPV ZLWK ILQHWLSSHG IRUFHSV $W OHDVW WHQ WR WZHQW\ OHDYHV ZHUH PRXQWHG IRU HDFK VWLSH DQG VWHP OHDI VOLGH /HDYHV VWHPV DQG FDSVXOHV ZHUH VHFWLRQHG E\ KDQG XVLQJ VLQJOHHGJHG UD]RU EODGHV &DSVXOHV ZHUH FXW YHUWLFDOO\ DQG WKH FROXPQDH DQG VSRUHV IOXVKHG RXW 7KH WZR FDSVXOH VHFWLRQV ZHUH WKHQ FXW LQWR IRXUWKV IRU WKH VOLGH 3HUPDQHQW VOLGHV RI ZKROH OHDYHV DQG VHFWLRQHG SDUWV ZHUH SUHSDUHG ZLWK +R\HUnV VROXWLRQ $QGHUVRQ f 7KH VOLGHV ZHUH WKHQ KHDWHG IROORZLQJ DSSOLFDWLRQ RI WKH FRYHU VOLSV WR FOHDU WKH DLU EXEEOHV DQG IODWWHQ WKH VSHFLPHQV 7HPSRUDU\ ZDWHU PRXQWV ZHUH SUHSDUHG RI FDSVXOHV IURP VSHFLPHQV ZLWK VFDQW\ VSRURSK\WH PDWHULDO ZKLFK ZDV UHWXUQHG WR LWV SDFNHW DIWHU H[DPLQDWLRQ $W OHDVW ILYH VOLGHV ZHUH PDGH RI HDFK VSHFLPHQ H[DPLQHG LQFOXGLQJ ZKROH

PAGE 30

PRXQWV RI WKH OHDYHV VWLSH VWHP EUDQFK SHULJRQLDO DQG SHULFKDHWLDOf DQG VHFWLRQV RI WKH VWHP VWHP OHDYHV DQG FDSVXOHV 0HDVXUHPHQWV RI WKH VWHPV EUDQFKHV DQG FDSVXOHV DV ZHOO DV TXDOLWDWLYH REVHUYDWLRQV RQ KDELW IHDWXUHV HJ OHDI SRVLWLRQf ZHUH PDGH ZLWK WKH DLG RI D :LOG 0$ 6WHUHRPLFURVFRSH 6SHFLPHQV RQ VOLGHV OHDYHV FHOOV SHULVWRPH IHDWXUHV DQG VSRUHVf ZHUH PHDVXUHG ZLWK D :LOG 0 FRPSRXQG PLFURVFRSH HTXLSSHG ZLWK GUDZLQJ WXEH 0HDVXUHPHQWV ZHUH PDGH ZLWK DQ DSSURSULDWHO\ VFDOHG JDXJH RQ RXWOLQHV VNHWFKHG ZLWK WKH GUDZLQJ WXEH RU GLUHFWO\ RQ WKH SURMHFWHG LPDJH IURP WKH GUDZLQJ WXEH 'HWDLOHG GDWD VKHHWV ZKLFK LQFOXGHG [HUR[ FRSLHV RI WKH DFWXDO K\GUDWHGf VSHFLPHQ DV D UHFRUG RI WKH KDELW ZHUH FRPSLOHG WR RUJDQL]H WKH PHDVXUHPHQWV 7KH VXUIDFH GHWDLOV RI VWHP DQG SHULFKDHWLDO OHDYHV SDSLOODH SURURVLWLHVf SHULVWRPHV DQG VSRUHV ZHUH H[DPLQHG DQG SKRWRJUDSKHG XVLQJ D +LWDFKL 6 VFDQQLQJ HOHFWURQ PLFURVFRSH 6(0f 6SHFLPHQV ZHUH DWWDFKHG WR VWXGV ZLWK GRXEOHVLGHG WDSH DQG WKHQ SODWHG ZLWK JROG LQ DQ (LNR ,% LRQ FRDWHU IRU ILYH PLQXWHV DW P$ SULRU WR 6(0 H[DPLQDWLRQ &DSVXOHV SHULVWRPHVf GLG QRW UHTXLUH UHK\GUDWLRQ DQG ZHUH DWWDFKHG WR WKH VWXEV LQ WKH GU\ FRQGLWLRQ GLUHFWO\ IURP WKH KHUEDULXP VSHFLPHQ 6SRUHV DQG OHDYHV ZKLFK WHQGHG WR EH FROODSVHG LQ WKH GULHG VWDWH UHTXLUHG VSHFLDO SUHSDUDWLRQ 6WHP OHDYHV ZHUH OHIW DWWDFKHG WR FD FP VWHP VHJPHQWV SHULFKDHWLD

PAGE 31

ZHUH UHPRYHG DV D ZKROH XQLW DQG VSRUHV ZHUH OHIW LQ WKHLU FDSVXOHV GXULQJ UHK\GUDWLRQ 'XH WR WKHLU VPDOO VL]H SHULFKDHWLD DQG FDSVXOHV ZLWK VSRUHV ZHUH VDQGZLFKHG EHWZHHQ FP 1XFOHRSRUH SRO\FDUERQDWH ILOWHU SDSHUV SODFHG LQ PRGLILHG %HHP FDSVXOHV $OO OHDYHV DQG VSRUHV ZHUH ILUVW K\GUDWHG IRU PLQXWHV LQ ZDUP ZDWHU 7KH OHDYHV RI 5LJRGLXP WR[DULRQ DQG 5 EUDFK\SRGLXP ZHUH QH[W SODFHG WKURXJK D VHULHV RI VXFFHVVLYH WHQPLQXWH ZDVKHV LQ DQG b HWKDQRO UHVSHFWLYHO\ IROORZHG E\ WZR VXFFHVVLYH WHQPLQXWH ULQVHV LQ b HWKDQRO 7KH VSHFLPHQV ZHUH VXEVHTXHQWO\ VXEMHFWHG WR D FULWLFDO SRLQW GU\LQJ VHTXHQFH FRPSRVHG RI ILYH ILIWHHQPLQXWH ZDVK F\FOHV RI OLTXLG &2 LQ D %DO]HUV &3' &ULWLFDO 3RLQW 'U\HU 7KHVH OHDYHV ZHUH WKHQ FRDWHG ZLWK JROG DV GHVFULEHG DERYH 7KH SHULFKDHWLD DQG VWHP OHDYHV RI 5 DGSUHVVXP DQG DOO VSRUHV UHTXLUHG IL[DWLRQ SULRU WR HWKDQRO ULQVHV DQG FULWLFDO SRLQW GU\LQJ 2WKHUZLVH HQWLUH VSRUHV DQG WKH ORZ SDSLOODH DW WKH EDVH RI WKH SHULFKDHWLDO OHDYHV WHQGHG WR FROODSVH DQG WKH GHFXUUHQW SRUWLRQ RI WKH VWHP OHDYHV RI 5 DGSUHVVXP FXUOHG RYHU $IWHU UHK\GUDWLRQ LQ ZDWHU WKHVH VSHFLPHQV ZHUH VRDNHG LQ b JOXWHUDOGHK\GH LQ 0 1D&DFRG\ODWH EXIIHU IRU WZR KRXUV 7KH\ ZHUH WKHQ ULQVHG WKUHH WLPHV LQ 0 EXIIHU IRU ILYH PLQXWHV DQG SODFHG LQ D b VROXWLRQ RI RVPLXP WHWUR[LGH 262f LQ EXIIHU RYHUQLJKW $IWHU IRXU ULQVHV ZLWK GLVWLOOHG ZDWHU WKHVH VSHFLPHQV ZHUH WDNHQ WKURXJK WKH DOFRKRO ZDVKHV FULWLFDO SRLQW GU\LQJ

PAGE 32

VHTXHQFH DQG FRDWLQJ SUHSDUDWLRQ DV GHVFULEHG DERYH IRU WKH FDSVXOHV DQG RWKHU OHDYHV

PAGE 33

*(1(5$/ 0253+2/2*< 6DOLHQW PRUSKRORJLFDO IHDWXUHV RI WKH JHQXV 5LDRGLXP DUH LQFOXGHG LQ WKLV FKDSWHU DORQJ ZLWK D GLVFXVVLRQ RQ WKH WHUPLQRORJ\ SDUWLFXODUO\ WKDW RI WKH D[HV DQG FRUUHVSRQGLQJ OHDYHVf LQFRUSRUDWHG LQ WKLV PRQRJUDSK $[HV 7UDGLWLRQDOO\ EU\RORJLVWV KDYH XVHG WKH WHUPV SULPDU\ DQG VHFRQGDU\ WR GLVWLQJXLVK WKH VWRORQLIHURXV YV WKH HUHFWSHQGHQW D[HV UHVSHFWLYHO\ RI D SOHXURFDUSRXV KDELW HJ $U]HQL f $UJHQW f GHVFULEHV LQ GHWDLO WKH GLIILFXOW\ LQ DSSO\LQJ WKHVH GHVLJQDWLRQV WR WKH GLIIHUHQW W\SHV RI VKRRWV LQ WKH 3WHUREU\DFHDH D SOHXURFDUSRXV JURXS +LV VLPSOLILHG WHUPLQRORJ\ VWRORQ VWHPV EUDQFKHV DQG IODJHOODf KDV EHHQ DGRSWHG E\ RWKHUV HJ $OOHQ t &URVE\ f 6RPH RI $UJHQWfV LGHDV KDYH EHHQ LQFRUSRUDWHG LQWR WKLV PRQRJUDSK ZLWK WKH DGGLWLRQ RI D IHZ WHUPV SHFXOLDU WR WKH KDELW RI 5LDRGLXP VWLSH YV VWHP SULPDU\ VHFRQGDU\ DQG WHUWLDU\ EUDQFKHVf DQG DUH GHILQHG EHORZ 6WRORQV RU UKL]RPHVf DUH RIWHQ UHIHUUHG WR DV SULPDU\ VWHPV E\ RWKHU DXWKRUV HJ &UXP f 7KHVH D[HV DUH XVXDOO\ FUHHSLQJ GHHSO\ FRORUHG EURZQUHG WR GDUN EURZQf DQG EHDU UKL]RLGV /HDYHV ZKHQ SUHVHQW DUH

PAGE 34

RIWHQ DFKORURSK\OORXV DQG OHVV ZHOOGHYHORSHG WKDQ WKRVH RQ RWKHU D[HV 6WHPV DQG VWLSHV DUH JHQHUDO WHUPV IRU WKH WZR SDUWV RI WKH PDLQ D[LV RU VHFRQGDU\ VWHP RI VRPH DXWKRUVf RI SODQWV ZKLFK DUH HUHFW RU SHQGXORXVf DQG DUH GHULYHG IURP WKH VWRORQV 7KH VWLSH LV WKH ORZHU XQEUDQFKHG SRUWLRQ RI WKH PDLQ VKRRW ZKLFK LV RIWHQ GDUNO\ SLJPHQWHG ,Q 5LJRGLXP VWLSH OHDYHV DUH HFRVWDWH EXW DUH RWKHUZLVH ZHOOGHYHORSHG 7KH WHUP VWHP UHIHUV KHUH WR WKH XSSHU EUDQFKHG SRUWLRQ RI 5LJRGLXP SODQWV ZKHUH WKH OHDYHV DUH JHQHUDOO\ FRVWDWH %UDQFKHV DUH UDQNHG LQ WKLV VWXG\ DV SULPDU\ VHFRQGDU\ DQG WHUWLDU\ 3ULPDU\ EUDQFKHV DULVH IURP VWHPV DQG DUH FKDUDFWHUL]HG E\ OHDYHV LQWHUPHGLDWH LQ VKDSH DQG VL]H RI WKRVH RI WKH VWHPVWLSH DQG VHFRQGDU\WHUWLDU\ EUDQFKHV 6HFRQGDU\ EUDQFKHV ZKLFK DULVH IURP WKH SULPDU\ EUDQFKHV KDYH QDUURZO\ RYDWH OHDYHV ZLWKRXW D ZHOO GHYHORSHG DFXPHQ 7HUWLDU\ EUDQFKHV DUH ERUQH RQ VHFRQGDU\ EUDQFKHV 7KH OHDYHV DUH VLPLODU LQ VKDSH EXW VPDOOHU WKDQ WKRVH RI WKH VHFRQGDU\ EUDQFKHV 7KH GHOLPLWDWLRQ RI WKHVH W\SHV RI D[HV RXWOLQHG DERYH LV QRW DOZD\V FOHDUFXW LQ 5LJRGLXP VLQFH WKH\ PD\ LQWHUJUDGH ZLWK RQH DQRWKHU $OOHQ DQG &URVE\ f VXJJHVW WKDW WKLV LQWHUJUDGDWLRQ LQ 6JXDPLGLXP LV GXH WR SUREDEO\ YHU\ ZHDN JHQHWLF FRQWURO FRXSOHG ZLWK HQYLURQPHQWDO LQIOXHQFHV ZKLFK PD\ DOVR EH WKH FDVH LQ 5LJRGLXP )RU H[DPSOH LQ DGGLWLRQ WR WKH VHFRQGDU\

PAGE 35

EUDQFKHV WKH XSSHU PDLQ D[LV VWHPf PD\ JLYH ULVH GLUHFWO\ WR QHZ PDLQ D[HV VWHPVf UHVXOWLQJ LQ VWHPOLNH SULPDU\ EUDQFKHV )LJV ++-f WKDW DUH VLPLODU WR WKH LQQRYDWLRQV LQ JHQHUD VXFK DV +YORFRPLXP &UXP t $QGHUVRQ f ,Q 5LDRGLXP WKRXJK WKHVH LQQRYDWLRQV DUH QRW QHFHVVDULO\ UHVWULFWHG WR WKH DUHD MXVW EHORZ WKH LQIORUHVFHQFHV EXW PD\ DULVH DQ\ZKHUH DORQJ WKH VWHP $OWKRXJK WKH WHUP LV QRW XVHG KHUH 5LDRGLXP VSHFLHV DOVR KDYH IODJHOODH DV GHILQHG E\ $OOHQ DQG &URVE\ f D[HV VWRORQVf ZKLFK GHYHORS IURP WKH WLSV RI EUDQFKHV +RZHYHU LQ 5LDRGLXP ERWK EUDQFKHV DQG VWHPV PD\ URRW DW WKH WLSV DQG SURGXFH QHZ SODQWV SURGXFH HLWKHU VWRORQV RU VWHPV )LJ f 5KL]RLGV WKHQ PD\ EH IRXQG DW WKH WLSV RI URRWLQJ VWHPV DQG EUDQFKHV DV ZHOO DV RQ WKH VXEVWUDWH VLGHV RI VWRORQV DQG VWHPV 7KH EUDQFKLQJ LQ 5LDRGLXP LV PRQRSRGLDO DV GHILQHG E\ &UXP t $QGHUVRQ f ZLWK LUUHJXODUO\ SLQQDWH EUDQFKLQJ 7KUHH RI WKH VSHFLHV 5 EUDFKYSRGLXP 5 DGSUHVVXP DQG 5 WR[DULRQf DUH GHQGURLG ZLWK GLVWLQFW FUHHSLQJ YV SHQGXORXV RU HUHFWf SRUWLRQV ,Q 5 SVHXGRWKXLGLXP DQG 5 LPSOH[XP WKH VWLSH LV OHVV GLVWLQFW DQG VKRUW 5 LPSOH[XP LV SURIXVHO\ EUDQFKHG IRUPLQJ ZHOOGHYHORSHG FXVKLRQV )LJ $f 3ODQWV RI 5 SVHXGRWKXLGLXP KDYH YHU\ OLWWOH VHFRQGDU\ EUDQFKLQJ )LJ $f 7KH YDULRXV W\SHV RI D[HV DUH VLPLODU LQ DQDWRP\ DOWKRXJK EUDQFKHV DUH PXFK VPDOOHU LQ GLDPHWHU DQG ZLWK D OHVVGHYHORSHG FHQWUDO VWUDQG ,Q DOO VSHFLHV VHYHUDO

PAGE 36

OD\HUV WKUHH WR VL[ URZVf RI VPDOO DQG LQFUDVVDWH HSLGHUPDO FHOOV )LJ $ DQG %f IRUP D ZHOOGHYHORSHG ULQG ZKLFK SUREDEO\ FRQWULEXWHV WR WKH FKDUDFWHULVWLF VWLIIQHVV RI WKH SODQWV 7KH HSLGHUPLV KDV D IXUURZHG DSSHDUDQFH LQ VXUIDFH YLHZ )LJ &f 7KH FRUWH[ )LJ %f FRQVLVWV RI ODUJH K\DOLQH WKLQZDOOHG FHOOV ZKLFK XVXDOO\ EHFRPH VPDOOHU WRZDUG WKH FHQWHU RI WKH D[LV 6RPHWLPHV WKH VPDOOHU FHOOV RI WKH FRUWH[ IRUP D ORRVHO\ RUJDQL]HG ULQJ DURXQG WKH FHQWUDO VWUDQG DV LQ )LJ % 6PDOO UHGGLVK LQFUDVVDWH FHOOV FRPSULVH WKH FHQWUDO VWUDQG ZKLFK YDULHV LQ GHJUHH RI GHYHORSPHQW )LJ & DQG 'f EXW JHQHUDOO\ FRQVLVWV RI WHQ WR WZHQW\ RU VRPHWLPHV PRUHf FHOOV /HDYHV 5MTRGLXP LV XQXVXDO LQ KDYLQJ HFRVWDWH ORZHU VWHP VWLSHf OHDYHV DQG FRVWDWH XSSHU VWHP OHDYHV LQ DGGLWLRQ WR WKH GLPRUSKLF VWHP DQG EUDQFK OHDYHV 'XH WR LQWHUJUDGDWLRQ RI D[HV DQG FRUUHVSRQGLQJ OHDI IRUPV FDUH PXVW EH WDNHQ LQ DVVLJQLQJ DQG FRPSDULQJ OHDI W\SHV )LJXUHV DQG VKRZ WKH UHODWLYH FKDQJHV LQ VL]H DQG PRUSKRORJ\ RI OHDYHV DORQJ SDUWLFXODU D[HV LQ 5 WR[DULRQ ORQJ DFXPHQf DQG 5 EUDFKYSRGLXP VKRUW DFXPHQf ,Q WKLV VWXG\ SKHQHWLF DQDO\VLV DQG DOO GHVFULSWLRQVf VWLSH OHDYHV DUH GHILQHG DV WKRVH HFRVWDWH OHDYHV IURP WKH PLGVWLSH VWHP OHDYHV DV WKRVH IURP WKH PLG WR XSSHU VWHP DQG EUDQFK OHDYHV DV WKRVH IURP WKH VHFRQGDU\ EUDQFKHV )LJ $f ,Q DOO VSHFLHV VWLSH DQG VWHP OHDYHV DUH EURDGO\ RYDWH DQG WDSHU DEUXSWO\ WR D ORQJ RU VKRUW DFXPHQ 7KH VWURQJO\

PAGE 37

FODVSLQJ DQG FRQFDYH OHDI EDVHV WHQG WR EH GHFXUUHQW LQ 5 DGSUHVVXP VWURQJO\ VRf $OO VSHFLHV VKRZ D WHQGHQF\ WR IRUP DXULFXODH )LJ $(f DOWKRXJK WKLV FKDUDFWHU LV PRVW FRQVLVWHQW LQ 5 SVHXGRWKXLGLXP 6WLSH DQG VWHP OHDYHV DUH W\SLFDOO\ ZLGHVSUHDGLQJ WR VTXDUURVH ZHW RU GU\ EXW WKH OHDYHV RI 5 DGSUHVVXP DUH DSSUHVVHG ZLWK VSUHDGLQJ WLSV %UDQFK OHDYHV DUH FRQVLVWHQWO\ RYDWH 5 SVHXGRWKXLGLXPf WR XVXDOO\ QDUURZO\ RYDWH DOO RWKHU VSHFLHVf DQG DUH W\SLFDOO\ HUHFW WR VSUHDGLQJ /HDI FHOOV DUH LQFUDVVDWH WKURXJKRXW DQG WKH DODUV DUH QRW GLIIHUHQWLDWHG &HOO ZDOOV YDU\ IURP HYHQ 5 WR[DULRQf WR XQHYHQ 5 EUDFKYSRGLXPf 'XH WR WKH WKLFN ZDOOV WKH FHOOV DUH FRQVLVWHQWO\ SURUXORVH PRVW ZHDNO\ VR LQ 5 WR[DULRQ )LJ $f ,Q WKH PRVW H[WUHPH FDVH 5 EUDFKYSRGLXPf WKH PLGODPLQDU FHOOV SURMHFW DV ZHOO GHYHORSHG SDSLOODH SURUXODHf RQ WKH GRUVDO VXUIDFH )LJ ,2& DQG 'f $OWKRXJK OHDI FHOOV LQ 5LJRGLXP DUH UHSRUWHG DV VPRRWK &UXP f FHQWUDO SDSLOODH RFFXU RQ WKH GRUVDO VLGH RI VRPH FHOOV LQ WKH GHFXUUHQW SRUWLRQ RI WKH VWHP DQG VWLSH OHDYHV RI 5 DGSUHVVXP )LJV ) DQG *f DQG DW WKH EDVH RI SHULFKDHWLDO OHDYHV RI VRPH VSHFLPHQV RI DOO VSHFLHV GLVFXVVHG EHORZ XQGHU SHULJRQLD DQG SHULFKDHWLDf $Q RXWVWDQGLQJ IHDWXUH RI WKH DUHRODWLRQ RI 5LJRGLXP VWHP VWLSH DQG EUDQFK OHDYHV LV DQ DSSDUHQW LQWUDPDUJLQDO ERUGHU YHU\ YLVLEOH DW ORZ SRZHU )LJ $ DQG %f DQG DOVR GLVWLQJXLVKDEOH LQ FURVV VHFWLRQDO YLHZ RI WKH OHDYHV )LJ

PAGE 38

&f DV ZHOO DV LQ VXUIDFH YLHZ ZLWK WKH 6(0 )LJ %f 7KH ERUGHU LV IRUPHG E\ IRXU WR QLQH URZV RI FHOOV WKDW KDYH PXFK WKLFNHU ZDOOV WKDQ WKRVH RI WKH PLGODPLQDU FHOOV 7KH FHOOV FRPSULVLQJ WKLV ERUGHU DUH RIWHQ D GLIIHUHQW VKDSH WKDQ WKRVH RI WKH PLGODPLQDU SRUWLRQ RI WKH OHDI DV ZHOO )RU H[DPSOH WKH VHYHQ WR WHQFHOO ERUGHU LQ 5 SVHXGR WKXLGLXP W\SLFDOO\ LV FRPSRVHG RI ORQJHU DQG ZLGHU FHOOV WKDQ WKH UHVW RI WKH OHDI ZKLOH WKH QDUURZHU ERUGHU IRXU WR VL[ FHOOVf RI 5 DGSUHVVXP FRQVLVWV RI PXFK VKRUWHU FHOOV 7KH LQWUDPDUJLQDO ERUGHU LV DOZD\V SUHVHQW WR VRPH GHJUHH EXW LWV DSSHDUDQFH YDULHV IURP ZHDN 5 WR[DULRQf WR YHU\ VWURQJ 5 DGSUHVVXPf GHSHQGLQJ RQ WKH UHODWLYH WKLFNQHVV RI WKH FHOO ZDOOV LQ FRPSDULVRQ WR WKH PLGODPLQDU FHOOV 7KH FRVWD LV DEVHQW IURP WKH VWLSH OHDYHV DQG LV XVXDOO\ SUHVHQW LQ WKH VWHP OHDYHV 7KH VWHP OHDYHV RI DOO VSHFLHV KRZHYHU VKRZ D WHQGHQF\ IRU D UHGXFHG FRVWD HJ )LJ ),f ZKLFK LV PRVW FRQVLVWHQW DQG FKDUDFWHULVWLF RI 5 SVHXGRWKXLGLXP 7KH FRVWD LV VWURQJHVW LQ 5 LPSOH[XP ILYHVWUDWRVH LQ WKH WKLFNHVW SDUWf DQG WR D OHVVHU H[WHQW 5 EUDFKYSRGLXP XP ZLGH DW EDVHf %UDQFK OHDYHV DUH DOZD\V FRVWDWH LQ 5LJRGLXP DOWKRXJK WKH FRVWD PD\ EH ZHDN LQ 5 SVHXGRWKXLGLXP )LJ + DQG ,f $[LOODU\ +DLUV 5HFHQWO\ *ULIILQ t %XFN f D[LOODU\ KDLUV KDYH EHHQ HPSKDVL]HG DV XVHIXO FKDUDFWHUV IRU FKDUDFWHUL]LQJ WD[RQRPLF JURXSV HVSHFLDOO\ JHQHUD 6DLWR f RU

PAGE 39

JURXSLQJV RI JHQHUD VXFK DV VXEIDPLOLHV *ULIILQ f $OWKRXJK QRW XVHIXO IRU GLVWLQJXLVKLQJ EHWZHHQ VSHFLHV RI 5LDRGLXP WKH VWUXFWXUH RI WKH D[LOODU\ KDLUV LV FRQVLVWHQW ZLWKLQ WKH JHQXV WZR SLJPHQWHG EDVDO FHOOV DQG DQ HORQJDWH K\DOLQH WHUPLQDO FHOO )LJ (,f 7KH ORZHU EDVDO FHOO LV VRPHWLPHV YHU\ OLJKWO\ SLJPHQWHG DQG GLIILFXOW WR VHH 7KH D[LOODU\ KDLUV DUH SURIXVH DW WKH WLSV RI VWHPV DQG EUDQFKHV DQG DUH HDVLHVW WR ORFDWH LQ 5 DGSUHVVXP DSSUHVVHG OHDYHV ZKLFK SUHYHQW ORVV RI WKH GHOLFDWH KDLUVf DQG 5 SVHXGR WKXLGLXP UHODWLYHO\ ODUJH OHDYHV ZLWK EURDG EDVHVf 3DUDSKYOOLD DQG 3VHXGRSDUDSKYOOLD 3DUDSK\OOLD DQG SVHXGRSDUDSK\OOLD DUH VPDOO FKORURSK\OORXV ILODPHQWRXV RU IROLRVH VWUXFWXUHV DULVLQJ RQ WKH VWHPV RI SOHXURFDUSRXV PRVVHV 5RKUHU f +LVWRULFDOO\ GLVWLQFWLRQV EHWZHHQ WKH WZR VWUXFWXUHV KDYH EHHQ EOXUUHG XQWLO UHFHQWO\ ZLWK WKH LQYHVWLJDWLRQV RI ,ZDWVXNL f DQG ,UHODQG f 3DUDSK\OOLD XVXDOO\ DEXQGDQW ZKHQ SUHVHQW RFFXU HYHU\ZKHUH RQ VWHPV DQG EUDQFKHV ,UHODQG f 5LTRGLXP ODFNV WKHVH VWUXFWXUHV 3VHXGRSDUDSK\OOLD QRW SDUWLFXODUO\ DEXQGDQW ZKHQ IRXQG RQ PRVV SODQWV DUH UHVWULFWHG WR DUHDV DURXQG WKH EUDQFK SULPRUGLD DQG PDWXUH EUDQFKHV 7KH VWUXFWXUHV GLVWLQFW IRU PDQ\ VSHFLHV KDYH UHFHQWO\ EHHQ HPSKDVL]HG LQ PRVV WD[RQRP\ %XFN f +RZHYHU IROLRVH SVHXGRSDUDSK\OOLD DQG UXGLPHQWDU\ EUDQFK OHDYHV DUH VRPHWLPHV FRQIXVHG $OOHQ f *HQHUDOO\ SVHXGRSDUDSK\OOLD DULVH VWULFWO\ RQ WKH VWHP ZKLOH LPPDWXUH EUDQFK OHDYHV RFFXU DW WKH EDVH RI

PAGE 40

EUDQFKHV %XFN f 2YDWH IROLRVH HFRVWDWH VWUXFWXUHV RFFXU DW WKH EDVH RI EUDQFKHV RI 5LJRGLXP HJ )LJV .f 7KHVH LQWHUJUDGH ZLWK WKH EUDQFK OHDYHV DERYH )LJV / /f DQG DUH LQWHUSUHWHG KHUH DV UXGLPHQWDU\ EUDQFK OHDYHV DQG QRW DV SVHXGRSDUDSK\OOLD 3VHXGRSDUDSK\OOLD GR QRW RFFXU LQ 5LJRGLXP 3HULFKDHWLD DQG 3HULJRQLD 5LJRGLXP LV GLRLFRXV DQG PDOH DQG IHPDOH SODQWV DUH LQGLVWLQJXLVKDEOH 5HSRUWV RI PRQRLFLVP LQ WKH OLWHUDWXUH HJ 6HKQHP f ZHUH GXH WR WKH LQFOXVLRQ RI GLVFRUGDQW HOHPHQWV ZLWKLQ WKH JHQXV VXFK DV VSHFLHV RI +HOLFRGRQWLXP =RPOHIHU t %XFN f 6SHFLPHQV ZLWK DUFKHJRQLDO SODQWV DUH PXFK PRUH FRPPRQ WKDQ WKRVH ZLWK DQWKHULGLD 7KH LQIUHJXHQF\ RI PDOH SRSXODWLRQV FRPSDUHG WR IHPDOH LQ GLRLFRXV PRVVHV KDV EHHQ QRWHG RIWHQ /RQJWRQ t *UHHQH 6WDUN f EXW QRW H[SODLQHG %RWK SHULFKDHWLD DQG SHULJRQLD DUH EXGOLNH VWUXFWXUHV DULVLQJ ODWHUDOO\ DORQJ WKH D[HV RI WKH SODQW 3HULFKDHWLD DUH PRVW FRPPRQ DORQJ WKH VWHPV EXW DOVR RFFXU RQ WKH SULPDU\ EUDQFKHVf ZKHUHDV SHULJRQLD DUH PRVW IUHTXHQW DORQJ SULPDU\ EUDQFKHV RFFXUULQJ PXFK OHVV RIWHQ RQ WKH VWHPV DQG VHFRQGDU\ EUDQFKHV DV ZHOOf 3HULJRQLDO OHDYHV HJ )LJ )f DUH VLPLODU WR EUDQFK OHDYHV LQ VKDSH DQG DUHRODWLRQ EXW DUH HFRVWDWH DQG DOVR WHQG WR EH PRUH EURDGO\ RYDWH 7KH LQQHU SHULJRQLDO OHDYHV PD\ DOVR WDSHU WR D VRPHZKDW ORQJHU DFXPHQ 3HULFKDHWLDO OHDYHV ZHDNO\ FRVWDWH WR HFRVWDWH DUH FRQVLVWHQWO\ VXEXODWH ZLWK VSUHDGLQJ WR

PAGE 41

VTXDUURVH DFXPHQV LQ DOO VSHFLHV 7KH DUHRODWLRQ REORQJ WR UKRPELF FHOOV DW WKH EDVH DQG VKRUWHU IOH[XRXV FHOOV DERYH WKXV GLIIHUV IURP WKDW RI WKH VWHP OHDYHV VKRUWHU FHOOV EHORZ FHOOV DERYH QRW IOH[XRXVf ,Q DGGLWLRQ GRUVDO FHQWUDO SDSLOODH PD\ EH IRXQG ZLWKLQ WKH VRPH FHOOV QHDU WKH EDVH RI WKH RXWHU SHULFKDHWLDO OHDYHV )LJV $ DQG % % DQG &f 7KHVH SDSLOODH DUH FRQVLVWHQW RQ DOO DYDLODEOH FROOHFWLRQV RI 5 DGSUHVVXP ZLWK DUFKHJRQLDO SODQWV DQG DUH RFFDVLRQDOO\ WR IUHTXHQWO\ SUHVHQW LQ WKH RWKHU IRXU VSHFLHV DV ZHOO HJ )LJ %f 5HSUHVHQWDWLYH H[DPSOHV RI JDPHWDQJLD DQG SDUDSK\VHV RI 5LTRGLXP DUH LOOXVWUDWHG LQ )LJV $' 2I QRWH LV WKDW WKH VWUXFWXUH RI WKH SDUDSK\VHV LV VRPHZKDW VLPLODU WR WKDW RI WKH D[LOODU\ KDLUV XVXDOO\ WZR EXW VRPHWLPHV PRUHf SLJPHQWHG FHOOV DW WKH EDVH SOXV HORQJDWH K\DOLQH WHUPLQDO FHOOV VHYHUDO DV RSSRVHG WR RQH LQ WKH D[LOODU\ KDLUVf 7KH SDUDSK\VHV VXEWHQGLQJ WKH DQWKHULGLD )LJ &f WHQG WR EH VWRXWHU WKDQ WKRVH IRXQG ZLWKLQ SHULFKDHWLD )LJ $f 6SRURSKYWH 0DWXUH VSRURSK\WHV DUH QRW FRPPRQO\ IRXQG RQ 5LTRGLXP VSHFLPHQV 7KH PRUSKRORJ\ RI WKH FDSVXOH LV FRQVLVWHQW DPRQJ WKH VSHFLHV DOWKRXJK WKH XUQV RI 5 SVHXGRWKXLGLXP )LJ +f DUH VRPHZKDW ODUJHU WKDQ WKRVH RI WKH RWKHU VSHFLHV 7KH DV\PPHWULF KRUL]RQWDO WR LQFOLQHG FDSVXOH RI 5LTRGLXP KDV D ZHOOGHYHORSHG URVWUXP )LJ )f RQ WKH RSHUFXOXP 7KH DQQXOXV FRQVLVWLQJ RI WZR URZV RI LQFUDVVDWH FHOOV LV LOOXVWUDWHG LQ )LJ + 7KH

PAGE 42

SKDQHURSRURXV VWRPDWHV )LJ *f RFFXU DW WKH EDVH RI WKH XUQ 5LTRGLXP KDV D W\SLFDO K\SQDFHRXV SHULVWRPH ZKLFK GRHV QRW YDU\ LQ VWUXFWXUH EHWZHHQ VSHFLHV )LJV f 7KH H[RVWRPH WHHWK FURVV VWULRODWH EHORZ )LJ & DQG 'f DQG SDSLOORVH DERYH )LJ %f KDYH ZHOOGHYHORSHG ODPHOODH RQ WKH YHQWUDO VLGH )LJ ( DQG )f 7KH HQGRVWRPH FRQVLVWV RI D KLJK EDVDO PHPEUDQH ZHOOGHYHORSHG VHJPHQWV )LJ $f DQG XVXDOO\ WZR WR WKUHH FLOLD 6SRUHV 7KH W\SLFDO VSKHULFDO DQG SDSLOORVH VSRUHV DUH LOOXVWUDWHG LQ )LJV DQG $' &KURPRVRPH 1XPEHU $ FKURPRVRPH QXPEHU RI Q KDV UHFHQWO\ EHHQ UHSRUWHG E\ 'HJXFKL DQG 2JLQXPD f IRU 5LTRGLXP LPSOH[XP 'HJXFKL .2&+ VSHFLPHQ QRW VHHQf

PAGE 43

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LTRGLXP 5RRWLQJ DW 7LSV )URP 7 0OOHU /f

PAGE 45

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LJRGLXP 6WHP $QDWRP\ DQG $[LOODU\ +DLUV $' 6WHP FURVV VHFWLRQV $ :KROH VWHP VHFWLRQ LQGLFDWLQJ SRVLWLRQ RI ZHGJH IHDWXUHG LQ % % 'HWDLO RI VHFWLRQ VKRZLQJ ULQG FRUWH[ DQG ZHOO GHYHORSHG FHQWUDO VWUDQG &' 9DULDWLRQ LQ WKH GHYHORSPHQW RI WKH FHQWUDO VWUDQG & :HDN FHQWUDO VWUDQG 7\SLFDO GHYHORSPHQW RI WKH FHQWUDO VWUDQG $% IURP 6HKQHP 3$&$ 5 WJ[DULRQf & IURP &URVE\ 02 5 WJ[DULJQf IURP 6NRWWVEHUJ t 6NRWWVEHUJ 6 5 WJ[DULRQf (, 5HSUHVHQWDWLYH D[LOODU\ KDLUV IURP HDFK VSHFLHV ( 5 DGSUHVVXP 5RLYDLQHQ +f ) 5 WR[DULRQ :DVXP HW DO )/$6f 5 EUDFKYSRGLXP 0DWWHUL %$f + 5 LPSOH[XP &URVE\ 02f 5 SVHXGRWKXLGLXP 6FKLDYRQH %$f

PAGE 46

PP II+ &

PAGE 47

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LDRGLXP &KDQJHV LQ /HDI 0RUSKRORJ\ /HDI ZLWK /RQJ $FXPHQf DORQJ 9DULRXV $[HV $ +DELW % /HDI IURP VWRORQ &( 6WLSH OHDYHV & /HDI IURP VWLSH EDVH /HDI IURP PLGVWLSH ( /HDI IURP VWLSH DSH[ )* 6WHP OHDYHV ) /HDI IURP PLGVWHP /HDI IURP VWHP DSH[ +/HDYHV IURP VWHPn OLNH EUDQFK LQQRYDWLRQf + /HDYHV IURP LQQRYDWLRQ EDVH /HDI IURP PLGLQQRYDWLRQ /HDI IURP LQQRYDWLRQ DSH[ .0 3ULPDU\ EUDQFK OHDYHV /HDYHV IURP EUDQFK EDVH / /HDI IURP PLGEUDQFK 0 /HDI IURP EUDQFK DSH[ 1 /HDYHV IURP VHFRQGDU\ EUDQFK EDVH OHIWf WR DSH[ ULJKWf /HDYHV IURP WHUWLDU\ EUDQFK EDVH OHIWf WR DSH[ ULJKWf $OO IURP 7RQGX] I3LWWLHU 1R %5 5 WR[DULRQf

PAGE 48

PP

PAGE 49

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LJRGLXP &KDQJHV LQ /HDI 0RUSKRORJ\ /HDI ZLWK 6KRUW $FXPHQf DORQJ 9DULRXV $[HV $ +DELW % /HDI IURP VWRORQ &( 6WLSH OHDYHV & /HDI IURP VWLSH EDVH /HDI IURP PLGVWLSH ( /HDI IURP VWLSH DSH[ )* 6WHP OHDYHV ) /HDI IURP PLGVWHP /HDI IURP VWHP DSH[ +/HDYHV IURP VWHP OLNH EUDQFK LQQRYDWLRQf + /HDYHV IURP LQQRYDWLRQ EDVH /HDI IURP PLGLQQRYDWLRQ /HDI IURP LQQRYDWLRQ DSH[ .0 3ULPDU\ EUDQFK OHDYHV /HDYHV IURP EUDQFK EDVH / /HDI IURP PLGEUDQFK 0 /HDI IURP EUDQFK DSH[ 1 /HDYHV IURP VHFRQGDU\ EUDQFK EDVH OHIWf WR DSH[ ULJKWf /HDYHV IURP WHUWLDU\ EUDQFK EDVH OHIWf WR DSH[ ULJKWf $OO IURP (OOLRWW + 5 EUDFK\SRGLXPf

PAGE 50

0

PAGE 51

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LJRGLXP $VSHFWV LQ /HDI 0RUSKRORJ\ $( ([DPSOHV RI DXULFXODWH OHDYHV LQ WKH YDULRXV VSHFLHV UDUH LQ DOO EXW 5 SVHXGR WKXLGLXPf $ 5 SVHXGRWKXLGLXP +DOOH t 6NRWWVEHUD 6f % 5 EUDFKYSRGLXP 'XVQ :f & 5 DGSUHVVXP .KQHPDQQ $/7$f 5 LPSOH[XP 3RHSSMJ VQ %0f ( 5 WR[DULRQ /DQGUXP 02f ), 6WHP OHDYHV IURP FROOHFWLRQ RI 5 WR[DULRQ VKRZLQJ XQXVXDO YDULDWLRQ LQ FRVWD GHYHORSPHQW 7RQGX] I3LWWLHU 1R %5f

PAGE 53

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LTRGLXP 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI /HDI 6XUIDFHV $ 'RUVDO VLGH RI 5 WR[DULRQ VWHP OHDI VKRZLQJ ZHDNO\ SURUXORVH PLGODPLQDU FHOOV % 9HQWUDO VLGH RI 5 EUDFK\SRGLXP VWHP OHDI DUURZ LQGLFDWHV LQWUDPDUJLQDO EDQG RI FHOOVf & 'RUVDO VLGH RI 5 EUDFK\SRGLXP VWHP OHDI VKRZLQJ SURMHFWLQJ HQG ZDOOV SURUXODHf RI PLGODPLQDU FHOOV 'HWDLO RI & $ IURP 7RQGX] ?3LWWLHU 1R %5f %' IURP &URVE\ 02f $ OLQH XUQ % & XUQ XUQ

PAGE 55

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LTRGLXP 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI /HDI 6XUIDFHV LQ 5 DGSUHVVXP $ :KROH SHULFKDHWLXP DUURZ LQGLFDWHV SRVLWLRQ RI GHWDLO LQ %f % 'HWDLO RI GRUVDO VXUIDFH RI SHULFKDHWLDO OHDI EDVH VKRZLQJ SDSLOODH & 6WHP OHDYHV DUURZ LQGLFDWHV GHFXUUHQW SRUWLRQf 'HWDLO RI GHFXUUHQF\ VKRZLQJ SDSLOODH $% IURP 'XVQ 6f & IURP 0DWWHUL t 6FKLDYRQH +HUE 0DWWHULf IURP &DQWLQR 0 02f $ OLQH XP % XUQ & XUQ XUQ

PAGE 57

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LJRGLXP $UHRODWLRQ RI 6WHP /HDI $ 6WHP OHDI VKRZLQJ ORFDWLRQ RI YLHZ LQ % % 3RUWLRQ RI VWHP OHDI ZLWK YDULRXV ]RQHV ODEHOOHG & &URVV VHFWLRQ RI VWHP OHDI ZLWK ]RQHV FRUUHVSRQGLQJ WR % $OO IURP &ODXGH-RVHRK )+ 5 LPSOH[XPf

PAGE 58

, PP FRVWD PLGODPLQDU FHOOV LQWUDPDUJLQDO $AFHOOV A PDUJLQDO FHOOV

PAGE 59

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LTRGLXP 6SRURSK\WLF DQG $VVRFLDWHG *DPHWRSK\WLF 6WUXFWXUHV $ 3DUDSK\VLV IURP SHULFKDHWLXP % $UFKHJRQLXP & 3DUDSK\VLV IURP SHULJRQLXP $QWKHULGLXP ( &DO\SWUD IURP GHYHORSLQJ VSRURSK\WH ) &DSVXOH 6WRPDWH DW EDVH RI FDSVXOH XUQ + $QQXOXV VWLOO DWWDFKHG WR XUQ DQG RSHUFXOXPf 3RUWLRQ RI SHULVWRPH 6SRUH $% IURP .KQHPDQQ $/7$ 5 DGSUHVVXPf &' IURP 5XWKVDW] VQ + 5 DGSUHVVXPf ( IURP 0DWWHUL %$ 5 DGSUHVVXPf ) IURP /HFKOHU 0,&+ 5 EUDFKYSRGLXPf IURP 6WHYHUPDUN ) 5 WR[DULRQf + IURP 9HQWXUD D 0(;8 5 WR[DULRQf IURP +DPPHQ HW DO )/$6 5 WR[DULRQf IURP 0DWWHUL t 6FKLDYRQH +HUE 0DWWHUL 5 DGSUHVVXPf

PAGE 61

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LJRGLXP 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI WKH 3HULVWRPH $ 2YHUYLHZ RI SHULVWRPH % $SH[ RI H[RVWRPH WRRWK VKRZLQJ SDSLOORVH RXWHU VXUIDFH & %DVH RI SHULVWRPH WRRWK VKRZLQJ FURVV VWULRODWLRQV RQ WKH RXWHU VXUIDFH 'HWDLO RI & ( ,QQHU VXUIDFH RI SHULVWRPH WRRWK VKRZLQJ ODPHOODH ) 'HWDLO RI ( $ IURP .XQNHO + 5 EUDFKYSRGLXPf %' IURP %DUUDQGHDXY 02 5 SVHXGRWKXLGLXPf () IURP 1HDHU / 5 EUDFKYSRGLXPf $ OLQH XUQ % & XUQ ) XUQ ( XUQ

PAGE 63

),* *HQHUDO 0RUSKRORJLFDO )HDWXUHV RI 5LTRGLXP 6FDQQLQJ (OHFWURQ 0LFURJUDSKV RI 6SRUHV $' 5HSUHVHQWDWLYH VSRUHV $% IURP +ROOHUPDYHU SS 6 5 EUDFKYSRGLXPf &' IURP 3FV % 9%, 5 WR[DULRQf $OO OLQHV XP

PAGE 64

E

PAGE 65

3+
PAGE 66

FHQWXU\ DQG JHQHUDOO\ EDVHG RQ (XURSHDQ WD[D EHFDPH PRUH DQG PRUH KHWHURJHQHRXV DV QHZO\ GHVFULEHG JHQHUD ZHUH DGGHG 5HFHQWO\ WKH FLUFXPVFULSWLRQV RI PRVV IDPLOLHV DQG JHQHUD SDUWLFXODUO\ WKRVH RI WKH SOHXURFDUSV DUH EHLQJ UDGLFDOO\ UHYLVHG EXW QR VFKHPH XVLQJ VWULFW +HQQLJLDQ SULQFLSOHV IRU WKH SOHXURFDUSV KDV \HW EHHQ SXEOLVKHG 7UHHV VKRZLQJ UHODWLRQVKLSV DPRQJ SOHXURFDUSRXV IDPLOLHV KDYH EHHQ SUHVHQWHG E\ 9LWW f DQG %XFN DQG 9LWW f 9LWW f DSSOLHV FKDUDFWHU DQDO\VLV DW WKH VXERUGLQDO OHYHO RUGHUV LQ RWKHU FODVVLILFDWLRQV LH %U\LQHDH +\SQLQHDH /HXFRGRQWLQHDH +RRNHULLQHDHf IRU WKH %U\DOHV EXW KLV GHQGURJUDP RI WKH IDPLOLHV JURXSV WKHP DFFRUGLQJ WR VLPLODULW\ ,Q WKLV VFKHPH 5LDRGLXP LV LQFOXGHG ZLWKLQ 7KXLGLDFHDH VKRZQ DV D VLVWHU JURXS WR WKH (FKLQRGLDFHDH 7KH VXUYH\ RI SOHXURFDUSRXV IDPLOLHV SUHVHQWHG E\ %XFN DQG 9LWW f UHVXOWV LQ VRPH UHYROXWLRQDU\ DOLJQPHQWV RI IDPLOLHV VRPH RI ZKLFK DUH VKLIWHG EHWZHHQ RUGHUV 7KH DXWKRUV DGPLWWHGO\ XVH ERWK V\PSOHVLRPRUSKLHV DQG V\QDSRPRUSKLHV LQ WKH FRQVWUXFWLRQ RI WKHLU SVHXGRFODGRJUDP ([SODQDWLRQV RI WKH SRODULWLHV RI FKDUDFWHUV DV ZHOO DV WKHLU OHYHO RI XQLYHUVDOLW\ DUH QRW RIWHQ RIIHUHG EXW DUH FRQYLQFLQJ ZKHQ JLYHQ HJ IRU SHULVWRPDO GHYHORSPHQW FKDUDFWHUV DQG OHDI FHOO VKDSHf )LJXUH LV D UHGUDZQ YHUVLRQ RI WKHLU FODGRJUDP RI WKH +\SQDOHV ZLWK WKH FLWHG SOHVLRPRUSKLF FKDUDFWHUV GHOHWHG UHVXOWLQJ LQ XQUHVROYHG EUDQFKLQJ SRLQWV LQ WKH VXSHUIDPLOLHV +\SQDFDQDH DQG %UDFK\WKHFLDFDQDH )RU

PAGE 67

VLPSOLFLW\ DXWDSRPRUSKLHV DUH QRW LQFOXGHG KHUH DV WKH DVVXPSWLRQ LV EHLQJ PDGH WKDW WKH IDPLOLHV DUH PRQRSK\OHWLF 7KH QXPEHUV RI WKH FKDUDFWHU VHWV OLVWHG LQ 7DEOH IROORZ WKH RULJLQDO OLVW RI %XFN DQG 9LWW f 1XPEHUV IRU WKH SOHVLRPRUSKLF DQG DXWDSRPRUSKLF FKDUDFWHUV DUH GHOHWHG KHUH $FFRUGLQJ WR %XFN DQG 9LWW WKH PHPEHUV RI WKH +\SQDOHV OLQHDJH DOO SOHXURFDUSRXV DUH FKDUDFWHUL]HG DGGLWLRQDOO\ E\ K\SQRLG SHULVWRPHV HORQJDWH OHDI FHOOV KRUL]RQWDO DQG DV\PPHWULF FDSVXOHV DQG GLVWLQFWLYH H[RVWRPDO RUQDPHQWDWLRQ RXWHU VXUIDFH FURVVVWULRODWH EHORZ DQG FRDUVHO\ SDSLOORVH DERYH LQQHU VXUIDFH ZLWK SURMHFWLQJ WUDEHFXODHf 7KH +\SQDOHV DUH IXUWKHU GLYLGHG LQWR WKUHH VXERUGHUV WKH +\SQRGHQGULQHDH )RQWLQDOLQHDH DQG +\SQLQHDH 7KH 5LJRGLDFHDH DUH FODVVLILHG ZLWKLQ WKH +\SQLQHDH WKH PRVW DGYDQFHG K\SQDOHDQ VXERUGHU FKDUDFWHUL]HG E\ ZHOOGHYHORSHG SHULVWRPDO GHYHORSPHQW FKDUDFWHU VKRXOGHUHG WHHWKf 7KH GLYLVLRQ RI WKLV VXERUGHU LQWR WKUHH VXSHUIDPLOLHV LV EDVHG RQ JDPHWRSK\WLF FKDUDFWHUV WKH IDPLOLHV RI WKH EDVDO VXSHUIDPLO\ /HVNHDFDQDH LQ ZKLFK WKH 5LJRGLDFHDH DUH LQFOXGHGf DUH OLQNHG E\ WKH VWURQJ V\QDSRPRUSK\ RI VHFRQGDULO\ VKRUWHQHG OHDI FHOOV SOXV D ZHDNHU FKDUDFWHU FLWHG DV D WHQGHQF\ IRU SDSLOORVLW\ RI YDULRXV W\SHVf RI OHDI FHOOV 7KDW WKH ODWWHU FKDUDFWHU LV IRXQG LQ RWKHU JURXSV LV QRW GLUHFWO\ DGGUHVVHG E\ WKH DXWKRUV DQG DGGLWLRQDOO\ WKH YDULRXV NLQGV RI SDSLOODH IRXQG LQ WKHVH DQG RWKHU IDPLOLHV DUH QRW GLVWLQJXLVKHGf 7KH DXWKRUV

PAGE 68

SRVWXODWH WKDW WKHVH FKDUDFWHUV PD\ EH DGDSWDWLRQV IRU ZDWHU UHWHQWLRQ LQ H[SRVHG KDELWDWV 7KH ILYH IDPLOLHV FRPSRVLQJ WKH /HVNHDFDQDH 3WHULJ\QDQGUDFHDH /HVNHDFHDH 7KXLGLDFHDH (FKLQRGLDFHDH DQG 5LJRGLDFHDHf KDYH XQGHUJRQH QXPHURXV DQG RQJRLQJ UHYLVLRQV 7KH IDPLO\ 3WHULJ\QDQGUDFHDH ZDV HUHFWHG E\ %XFN Df DV D PRQRW\SLF IDPLO\ ZKLFK KDV EHHQ UHFHQWO\ H[SDQGHG WR LQFOXGH IRXU PRUH JHQHUD %XFN t &UXP f 7KH IDPLO\ LV FKDUDFWHUL]HG E\ UHGXFHG FRVWDH SURUXORVH OHDI FHOOV DQG UHGXFHG SHULVWRPH VPRRWK H[RVWRPH HQGRVWRPH UHGXFHG WR VOHQGHU VHJPHQWVf 7KH /HVNHDFHDH KDYH KLVWRULFDOO\ EHHQ FRQVLGHUHG SDUW RI RU FORVH WR WKH 7KXLGLDFHDH HJ *URXW f DQG GXH WR WKH UHGXFHG SHULVWRPH RI VRPH JHQHUD KDYH HYHQ EHHQ LQFOXGHG ZLWKLQ WKH ,VREU\DOHV /HXFRGRQWDOHV %XFN D 9LWW f %XFN DQG 9LWW f UHFRJQL]H D PRUH UHVWULFWHG /HVNHDFHDH DV ILUVW VXJJHVWHG E\ &UXP f ZLWK $QRPRGRQ DQG DOOLHV H[FOXGHG $FFRUGLQJ WR WKHLU GHILQLWLRQ WKH IDPLO\ LV UHGXFHG WR /HVNHD DQG 3VHXGROHVNHD SOXV WKHLU DVVRFLDWHG UHODWLYHV DQG DUH FKDUDFWHUL]HG E\ VWURQJ WHQGHQFLHV RI FHOOV WR EH SDSLOORVH RYHU WKH OXPLQD OLPLWHG SUHVHQFH RI SDUDSK\OOLD DQG RUDQJH H[RVWRPH ZLWK UHGXFHG VWULDWLRQV XVXDOO\ SDSLOORVHf 5HFHQWO\ %XFN DQG &UXP f WUDQVIHUUHG VHYHUDO JHQHUD HJ %UYRKDSORFODGLXP DQG &ODRSRGLXP GLVFXVVHG EHORZf WR WKH /HVNHDFHDH IURP WKH 7KXLGLDFHDH SULPDULO\ UHFRJQL]LQJ WKH IDPLO\ RQ WKH EDVLV RI JDPHWRSK\WLF FKDUDFWHUV DQG

PAGE 69

SHUFHLYLQJ D KDELWDWGULYHQ VSRURSK\WLF UHGXFWLRQ VHULHV ZLWK /HVNHD DV WKH UHGXFWLRQDU\ H[WUHPH 7KH 7KXLGLDFHDH V VRPHWLPHV FRPELQHG ZLWK WKH /HVNHDFHDH KLVWRULFDOO\ LQFOXGHG VHYHUDO VXEIDPLOLHV VHH :DWDQDEH f %XFN DQG 9LWW f H[FOXGHG $QRPRGRQ IURP WKH IDPLO\ DQG VLPSO\ GHILQHG LW RQ WKH EDVLV RI SDSLOORVH OHDI FHOOV DQG DEXQGDQW SDUDSK\OOLD %XFN DQG &UXP f IXUWKHU UHGXFHG WKH IDPLO\ WR RQO\ WKH VXEIDPLO\ 7KXLGLRLGHDH ZLWK PHPEHUV RI WKH RWKHU VXEIDPLOLHV WUDQVIHUUHG WR RWKHU IDPLOLHV GLVFXVVHG EHORZf 7KH (FKLQRGLDFHDH D VPDOO PRQRW\SLF IDPLO\ KDYH VRPHWLPHV EHHQ LQFOXGHG LQ WKH ,VREU\DOHV HJ :DOWKHU f EXW DFFRUGLQJ WR %XFN DQG 9LWW f DQG &KXUFKLOO f WKH SODQWV KDYH D VWDQGDUG K\SQDOHDQ SHULVWRPH 7KH FRDUVH SRRUO\ EUDQFKHG SODQWV KDYH DQ XQXVXDO DQG SRVVLEO\ UHOLFWf 0DFDURQHVLDQ$XVWUDOLDQ1HZ =HDODQG GLVWULEXWLRQ 7KH PRQRSK\O\ RI WKH VXSHUIDPLO\ /HVNHDFDQDH LV EDVHG RQ %XFNnV DQG 9LWWnV VXLWH RI FKDUDFWHUV UHSUHVHQWHG E\ LQ )LJ RI WKHVH WKH VHFRQGDULO\ GHULYHG VKRUW OHDI FHOOV LV WKHLU VWURQJHVW DQG EHVW GHILQHG V\QDSRPRUSK\ )RU WKH SXUSRVHV RI WKLV VWXG\ WKH DVVXPSWLRQ LV EHLQJ PDGH WKDW WKH VXSHUIDPLO\ LV D QDWXUDO DQG PRQRSK\OHWLF JURXS XQWLO VXFK D WLPH ZKHQ D KLJKHU OHYHO SK\ORJHQHWLF DQDO\VLV EDVHG RQ VKDUHG GHULYHG FKDUDFWHUVf LV FRPSOHWHG RQ DOO WKH IDPLOLHV RI WKH +\SQDOHV DV ZHOO DV IRU WKH /HXFRGRQWDOHV DQG +RRNHULDOHVf 7KHVH IDPLOLHV FRQWLQXH WR XQGHUJR PXFK UHGHILQLWLRQ LQFOXGLQJ WUDQVIHU RI JHQHUD EHWZHHQ WKHP

PAGE 70

HYHQ VLQFH WKH FODGRJUDP RI %XFN DQG 9LWW ZDV SXEOLVKHGf 7KH IROORZLQJ UHSUHVHQWDWLYH JHQHUD RI WKH VXSHUIDPLO\ KDYH EHHQ FKRVHQ IRU D SUHOLPLQDU\ FODGLVWLF DQDO\VLV LQ DQ DWWHPSW WR EHWWHU DVFHUWDLQ WKH SK\ORJHQHWLF SRVLWLRQ RI 5LTRGLXP 7KH DIILQLWLHV RI VHYHUDO RI WKH JHQHUD WKHPVHOYHV DV RXWOLQHG EHORZ KDYH DOVR QRW EHHQ DJUHHG XSRQ DV WKH\ DUH VKLIWHG DURXQG EHWZHHQ IDPLOLHV RI WKH /HVNHDFDQDH 3WHULDYQDQGUXP D PRQRW\SLF JHQXV %XFN Ef ZDV LQFOXGHG LQ WKH (QWRGRQWDFHDH &URVE\ t 0DJLOO 9LWW f DQG WHQWDWLYHO\ LQ WKH /HVNHDFHDH LQ WKH ,VREU\DOHV 9LWW f 7KH JHQXV LQLWLDOO\ FRPSULVHG WKH 3WHULJ\QDQGUDFHDH %XFN Df XQWLO %XFN DQG &UXP f H[SDQGHG WKH IDPLO\ %XFN Ef VWDWHG WKDW WKH JHQXV ZDV FOHDUO\ DQ LVRODWHG JURXS ZLWK QR REYLRXV FRQQHFWLRQV WR RWKHU JHQHUD EXW %XFN DQG &UXP f DFNQRZOHGJH D UHODWLRQVKLS ZLWK /HVNHDFHDH DQG 7KXLGLDFHDH /HVNHD DQG 3VHXGROHVNHD UHSUHVHQW WKH PDMRU JURXSV RI /HVNHDFHDH VV ZLWK 3VHXGROHVNHD FKDUDFWHUL]HG E\ D QRUPDO K\SQDOHDQ SHULVWRPH DQG /HVNHD KDYLQJ WKH UHGXFWLRQDU\ H[WUHPH RI WKH VSRURSK\WH 7KXLGLXP %UYRKDSORFODGLXP &ODRSRGLXP +HWHURFODGLXP DQG +HORGLXP UHSUHVHQW WKH GLYHUVH 7KXLGLDFHDH VO 7KXLGLXP %UYRKDSORFODGLXP > +DSORFODGLXP QRP LOOHT ILGH :DWDQDEH t ,ZDWVXNL f@ DQG &ODRSRGLXP KDYH EHHQ LQFOXGHG LQ WKH VXEIDPLO\ 7KXLGLRLGHDH VO 7KH FORVH UHODWLRQVKLS EHWZHHQ &ODRSRGLXP DQG %UYRKDSORFODGLXP KDV

PAGE 71

ORQJ EHHQ UHFRJQL]HG 1RJXFKL :DWDQDEH f DQG WKH JHQHUD KDYH EHHQ VRPHWLPHV LQFOXGHG ZLWKLQ WKH $QRPRGRQWDFHDH DV ZHOO DV WKH 7KXLGLDFHDH %XFN DQG &UXP f UHFHQWO\ WUDQVIHUUHG WKHP WR WKH /HVNHDFHDH DV SDUW RI WKH UHGXFWLRQ VHULHV ZLWKLQ WKH IDPLO\ 2I QRWH KHUH LV WKDW 1RJXFKL f LQ KLV PRQRJUDSK RI &ODRSRGLXP VXJJHVWHG WKDW LW PD\ SRVVLEO\ QRW EH PRQRSK\OHWLF +HWHURFODGLXP SUHYLRXVO\ ZLWKLQ WKH VXEIDPLO\ +HWHURFODGLRLGHDH RI WKH 7KXLGLDFHDH VO KDV EHHQ DGGHG WR WKH H[SDQGHG 3WHULJ\QDQGUDFHDH %XFN t &UXP f DV SDUW RI D UHGXFWLRQ VHULHV ZLWKLQ WKDW IDPLO\ +HORGLXP D VPDOO JHQXV RI WKUHH VSHFLHV $EUDPRYD t $EUDPRY f ZDV IRUPHUO\ LQFOXGHG ZLWKLQ WKH VXEIDPLO\ +HORGLRLGHDH %XFN DQG &UXP f VRPHZKDW XQVXUH RI LWV SODFHPHQW HUHFWHG WKH QHZ PRQRW\SLF IDPLO\ +HORGLDFHDH WR DFFRPPRGDWH LW (FKLQRGLXP LV WKH VPDOO JHQXV RI VL[ VSHFLHV FRPSULVLQJ WKH (FKLQRGLDFHDH $FFRUGLQJ WR &KXUFKLOO f WKH PRQRSK\O\ RI WKH JHQXV LV TXHVWLRQDEOH VLQFH LW LV QRW ZHOO GHILQHG RQ WKH EDVLV RI VKDUHG GHULYHG FKDUDFWHUV 7KH SUREOHPV LQ SODFHPHQW DQG SUHYLRXV LQFOXVLRQ RI 5LDRGLXP ZLWKLQ YDULRXV IDPLOLHV %UDFK\WKHFLDFHDH /HPERSK\OODFHDH 7KXLGLDFHDHf DUH GLVFXVVHG LQ GHWDLO LQ WKH VHFWLRQ RQ 7D[RQRPLF +LVWRU\ &UXP f UHFHQWO\ FLUFXPVFULEHG WKH PRQRW\SLF 5LJRGLDFHDH 3K\ORJHQHWLF UHFRQVWUXFWLRQ DQG FKDUDFWHU SRODUL]DWLRQ GHSHQG RQ WKH SURSHU VHOHFWLRQ RI DQ RXWJURXS 2IWHQ D IXQFWLRQDO RU SURYLVLRQDO RXWJURXS LV WKH EHVW DYDLODEOH

PAGE 72

FKRLFH VHH :DWURXV t :KHHOHU f $FFRUGLQJ WR %XFN DQG 9LWW )LJ f WKH VXERUGHUV )RQWLQDOLQHDH )RQWLQDODFHDHf DQG +\SQRGHQGULQHDH 3WHUREU\HOODFHDH 7KDPQREU\DFHDH 3OHXUR]LRSVLGDFHDH DQG +\SQRGHQGUDFHDHf DUH WKH RXWJURXSV IRU WKH VXERUGHU +\SQLQHDH LQFOXGLQJ VXSHUIDPLO\ /HVNHDFDQDHf 7KH FKRLFH RI XVLQJ WKHVH JURXSV LV SUREOHPDWLFDO IRU WKH IROORZLQJ UHDVRQV 0RVW RI WKHVH IDPLOLHV KDG EHHQ VFDWWHUHG DPRQJ VHYHUDO RUGHUV DQG DUH WHQWDWLYHO\ DOOLHG E\ %XFN DQG 9LWW LQ WKH +\SQDOHV IRU WKH ILUVW WLPH 7KH XVH RI FKDUDFWHUV RI WKH )RQWLQDODFHDH WUDGLWLRQDOO\ LQ WKH ,VREU\DOHVf LV GLIILFXOW GXH WR WKH H[WUHPH PRGLILFDWLRQV LQ ERWK WKH VSRURSK\WH DQG JDPHWRSK\WH IRU DQ DTXDWLF KDELWDW 7KH V\QDSRPRUSKLHV FKDUDFWHU VHW H[RVWRPH WHHWK ORQJ JDPHWRSKRUHV GHQGURLG HQGRVWRPH VHJPHQWV JDSLQJ OHDYHV FRDUVHO\ VHUUDWHf IRU WKH +\SQRGHQGULQHDH PD\ EH ZHDN DV DUJXPHQWV FRQFHUQLQJ WKH XVH DQG SRODULWLHV RI WKHVH SDUWLFXODU FKDUDFWHUV DUH QRW SUHVHQWHG 7ZR RI WKHVH IDPLOLHV WKH 3WHUREU\HOODFHDH DQG 7KDPQREU\DFHDH ZHUH SUHYLRXVO\ VXEIDPLOLHV RI WKH 1HFNHUDFHDH VXEIDPLO\ 3WHURE\HOORLGHDH DQG 7KDPQRLGHDH UHVSHFWLYHO\f LQ WKH RUGHU ,VREU\DOHV 9LWW f %XFN DQG 9LWW PDLQWDLQ WKH UHVW RI WKH 1HFNHUDFHDH LQ WKH ,VREU\DOHVf 7KH PRQRW\SLF 3OHXUR]LRSVLV FRPSULVHV WKH 3OHXUR]LRSVLGDFHDH ,UHODQG f SUHYLRXVO\ DOOLHG ZLWK WKH &OLPDFLDFHDH ,VREU\DOHVf EXW QRZ VHJUHJDWHG LQWR LWV RZQ IDPLO\ GXH WR VHYHUDO XQXVXDO FKDUDFWHUV 7KH +\SQRGHQGUDFHDH KDYH WUDGLWLRQDOO\ EHHQ FRQVLGHUHG DV DQ

PAGE 73

DFURFDUSRXV IDPLO\ LQ WKH %U\DOHV 9LWW f EXW %XFN DQG 9LWW f IROORZ 7RXZ f LQ LQWHUSUHWLQJ WKH KDELW DV KDYLQJ FRPSUHVVHG SLQQDWH EUDQFKLQJ )RU WKH SUHOLPLQDU\ LQYHVWLJDWLRQ RI WKH UHSUHVHQWDWLYH JHQHUD RI VXSHUIDPLO\ /HVNHDFDQDH 3OHXUR]LRSVLV 3OHXUR]LRSVLGDFHDHf DQG 7KDPQREUYXP 7KDPQREU\DFHDHf ZHUH FKRVHQ DV SURYLVLRQDO RXWJURXSV IRU URRWLQJ WKH WUHHV SUHVHQWHG KHUH )LJV f $V GLVFXVVHG EHORZ WKH UHVXOWV RI WKHVH DQDO\VHV VXJJHVW (FKLQRGLXP DV WKH SRVVLEOH RXWJURXS IRU WKH FODGLVWLF DQDO\VLV RI 5LJRGLXP VSHFLHV HQDEOLQJ WKH SRODUL]DWLRQ RI FKDUDFWHUV ZLWKLQ 5LJRGLXP LQ DQ HIIRUW WR GHWHUPLQH WKH SRVVLEOH SK\ORJHQHWLF UHODWLRQVKLSV RI WKH VSHFLHV 7KHVH FODGLVWLF DQDO\VHV ZHUH JHQHUDWHG XVLQJ WKH VRIWZDUH SURJUDP 3K\ORJHQHWLF $QDO\VLV 8VLQJ 3DUVLPRQ\ 3$83f 9HUVLRQ 6ZRIIRUG f RQ D 0DFLQWRVK FRPSXWHU 3$83 DQG VLPLODU VRIWZDUH DUH VXPPDUL]HG DQG FRPSDUHG E\ 3ODWQLFN f 7KH FODGRJUDPV ZHUH URRWHG XVLQJ WKH SDUWLFXODU RXWJURXSV DV LQGLFDWHG LQ WKH GLVFXVVLRQV EHORZ XQGHU WKH DSSURSULDWH DQDO\VHV 7KH VHDUFKHV IRU WKH VKRUWHVW WUHHV LQFOXGHG WKH KHXULVWLF RSWLRQ 08/3$56 PXOWLSOH SDUVLPRQ\f DORQJ ZLWK EUDQFKn VZDSSLQJ DV ZHOO DV EUDQFKDQGERXQG (TXLYDOHQW UHVXOWV ZHUH REWDLQHG ZLWK ERWK PHWKRGV :KHQ PRUH WKDQ RQH PLQLPDO WUHH UHVXOWHG IURP DQ DQDO\VLV D VWULFW FRQVHQVXV WUHH DOVR ZDV FDOFXODWHG &KDUDFWHUV IRU PXOWLVWDWH WD[D DV FRGHG LQ 7DEOHV DQG ZHUH LQFOXGHG DQG LQWHUSUHWHG DV SRO\PRUSKLVP DV RSSRVHG WR XQFHUWDLQW\f

PAGE 74

$XWDSRPRUSKLHV ZHUH H[FOXGHG IURP WKH FRPSXWHU DQDO\VHV VR DV WR QRW LQIOXHQFH WKH FRQVLVWHQF\ LQGH[f WKRVH RI WKH 5MTRGLXP VSHFLHV DUH OLVWHG LQ WKH GLVFXVVLRQ RI WKDW DQDO\VLV )RU DXWDSRPRUSKLHV RI WKH IDPLOLHV IRU VXSHUIDPLO\ /HVNHDFDQDH VHH %XFN DQG 9LWW f &KDUDFWHUV IRU $QDO\VLV RI 5HSUHVHQWDWLYH *HQHUD RI 6XSHUIDPLOY /HVNHDFDQDH 2XW RI QXPHURXV SRVVLEOH IHDWXUHV H[DPLQHG RQO\ WKRVH ZLWK WKH SRWHQWLDO IRU HOXFLGDWLQJ SK\ORJHQHWLF UHODWLRQVKLSV LH WKRVH SRWHQWLDO V\QDSRPRUSKLHVf ZHUH LQFOXGHG LQ WKH 3$83 DQDO\VHV 7DEOH UHSUHVHQWV WKH EDVLF GDWD VHW IRU WKH WKUHH DQDO\VHV RI WKH WHQ UHSUHVHQWDWLYH JHQHUD RI VXSHUIDPLO\ /HVNHDFDQDH SOXV WZR RXWJURXSVf 7KH FKDUDFWHUV DUH OLVWHG QXPHULFDOO\ DQG GLVFXVVHG EULHIO\ EHORZ 'HYHORSPHQW RI WKH VWLSH ZHOOGHYHORSHGf $V GLVFXVVHG LQ WKH VHFWLRQ RQ PRUSKRORJ\ WKH VWLSH LV WKH XQEUDQFKHG SDUW RI WKH ORZHU VWHP DQG LV DQ LQGLFDWLRQ RI WKH GHYHORSPHQW RI DQ DUERUHVFHQW KDELW W\SH 'LIIHUHQWLDWLRQ RI VHFRQGDU\ RUGHUV RI EUDQFKLQJ GLIIHUHQWLDWHG EUDQFKLQJf 6RPH JHQHUD VXFK DV 7KXLGLXP DQG 7KDPQREUYXP DUH FKDUDFWHUL]HG E\ VHFRQGDU\ DQG HYHQ WHUWLDU\f EUDQFKLQJ ZKLOH LQ RWKHUV VXFK DV /HVNHD WKH SULPDU\ EUDQFKHV GR QRW UDPLI\ 2UJDQL]DWLRQ RI WKH D[HV LQWR VWHPV YV EUDQFKHV ZHOORUJDQL]HG VWHPV DQG EUDQFKHVf ,Q /HVNHD DQG 3VHXGROHVNHD IRU H[DPSOH WKH IHZ EUDQFKHV WKDW GR RFFXU

PAGE 75

DUH QRW YHU\ ZHOOGHYHORSHG DQG DUH QRW GLVWLQJXLVKDEOH IURP WKH PDLQ VWHPV ,Q 7KXLGLXP RU HYHQ %U\RKDSORFODGLXP ZLWK HVVHQWLDOO\ QR VHFRQGDU\ EUDQFKLQJf WKH EUDQFKHV DUH QXPHURXV DQG ZHOOGHYHORSHG 3UHVHQFH DQG W\SHV RI SDUDSK\OOLD QR SDUDSK\OOLDf 5LDRGLXP ODFNV WKHVH VWUXFWXUHV ZKLFK DUH GLVFXVVHG LQ GHWDLO XQGHU PRUSKRORJ\ 7KH WKUHH IRUPV RI SDUDSK\OOLD ILODPHQWRXV EUDQFKHG DQG IROLRVHf DUH QXPEHUHG EXW QRW RUGHUHGf GLIIHUHQWO\ LQ WKH PDWUL[ VHH 7DEOH f 1RWH WKDW D JHQXV PD\ EH FKDUDFWHUL]HG E\ PRUH WKDQ RQH PRUSKRORJ\ 3UHVHQFH RI SVHXGRSDUDSK\OOLD f 3VHXGRSDUDSK\OOLD DOVR DEVHQW LQ 5LDRGLXP DUH GLVFXVVHG ZLWK SDUDSK\OOLD LQ WKH VHFWLRQ RQ PRUSKRORJ\ 'LPRUSKLF VWHP DQG EUDQFK OHDYHV QR GLPRUSKLVPf ,Q FHUWDLQ JHQHUD HJ 5LDRGLXP DQG 7KXLGLXPf WKH VWHP OHDYHV DUH EURDGO\ RYDWH DW WKH EDVH DQG WDSHU WR DQ DFXPHQ EXW WKH EUDQFK OHDYHV DUH QDUURZO\ RYDWH DQG DFXWH 3OHXUR]LRRVLV ZLWK YHU\ EURDGO\ RYDWH DQG EOXQW VWHP OHDYHV DQG RYDWH GHHSO\ WRRWKHG EUDQFK OHDYHV KHUH LV FRQVLGHUHG WR KDYH D GLIIHUHQW W\SH RI OHDI GLPRUSKLVP 6XEXODWH VWHP OHDYHV QRQDFXPLQDWH OHDYHVf 7KHVH VWHP OHDYHV DUH RYDWH DW WKH EDVH DQG PRUH RU OHVV DEUXSWO\ WDSHU WR DQ DFXPHQ HJ &ODRSRGLXP DQG 5LDRGLXPf 7KLV IHDWXUH LV UHODWHG WR FKDUDFWHU EXW QRW DOO JHQHUD ZLWK WKLV VWHP OHDI VKDSH KDYH GLPRUSKLF VWHP DQG EUDQFK OHDYHV HJ (FKLQRGLXPf

PAGE 76

5HGXFHG FRVWD FRVWD SUHVHQWf $ YHU\ ZHDN WR DEVHQW FRVWD LV SUHVHQW LQ JHQHUD VXFK DV +HWHURFODGLXP DV ZHOO DV FHUWDLQ VSHFLHV RI 5LJRGLXPf 4XDGUDWH DODU FHOOV LQ URZV DODUV QRW GLIIHUHQWLDWHGf 3WHULTYQDQGUXP /HVNHD DQG 3VHXGROHVNHD VKDUH WKLV IHDWXUH EXW LQ WKH RWKHU JHQHUD WKH DODU UHJLRQ LV HLWKHU XQGLIIHUHQWLDWHG RU QRW GLIIHUHQWLDWHG LQ WKLV PDQQHU 3URUXORVH PLGODPLQDU FHOOV FHOOV QRQ SURUXORVHf $ GLVWLQFWLRQ LV PDGH KHUH EHWZHHQ SDSLOORVH EHORZf DQG SURUXORVH FHOOV LQ ZKLFK WKH HQG ZDOOV SURMHFW GRUVDOO\ VRPHWLPHV HYHQ IRUPLQJ ZHOOGHYHORSHG SDSLOORVLWLHV SURUXODHf DV LQ 3WHULTYQDQGUXP DQG 5LJRGLXP 3DSLOORVH OHDI FHOOV VPRRWK OHDI FHOOVf $ ORRVH LQWHUSUHWDWLRQ RI SDSLOORVH LV DSSOLHG KHUH LQFOXGLQJ PDPPLOORVH ORZ SDSLOORVHf DQG PXOWLSOH SDSLOODWH IRUPV 0DPPLOORVH FHOOV EXOJH LQ WKH OXPHQ DV ZHOO DV LQ WKH ZDOO %DVLFDOO\ DOO RI WKHVH ZDOO SURMHFWLRQ W\SHV RFFXU FHQWUDOO\ LQ WKH FHOO $XWRLFRXV VH[XDO FRQGLWLRQ GLRLFRXVf 7KLV LQGLFDWLRQ RI VH[XDOLW\ ZDV LQFOXGHG LQ WKH DQDO\VLV DV D IHZ WD[D HJ %UYRKDSORFODGLXP DQG VRPH VSHFLHV RI +HOJGLXPf GLIIHUHG IURP WKH UHVW RI WKH JURXS GLRLFRXVf /DFN RI FLOLD FLOLD SUHVHQWf 7KLV FKDUDFWHU LV DQ LQGLFDWLRQ RI D UHGXFHG K\SQDOHDQ HQGRVWRPH DV IRXQG LQ /HVNHD 3VHXGROHVNHD DQG 3WHULTYQDQGUXP

PAGE 77

5HGXFHG RUQDPHQWDWLRQ RI H[RVWRPH VWDQGDUG H[RVWRPH RUQDPHQWDWLRQf $V GLVFXVVHG E\ %XFN DQG 9LWW f WKH VWDQGDUG K\SQDOHDQ H[RVWRPH WRRWK LV FURVV VWULRODWH EHORZ DQG SDSLOORVH DERYH" WHHWK RI /HVNHD DQG 3VHXGROHVNHD GHPRQVWUDWH LUUHJXODUO\ VWULRODWH WR HQWLUHO\ SDSLOORVH RUQDPHQWDWLRQV (UHFW FDSVXOHV LQFOLQHG WR KRUL]RQWDO FDSVXOHVf 6HH EHORZf 6\PPHWULF FDSVXOHV DV\PPHWULF FDSVXOHVf (UHFW DQG V\PPHWULF FDSVXOHV PD\ EH FRUUHODWHG FKDUDFWHUV $ W\SLFDO K\SQDOHDQ FDSVXOH LV KRUL]RQWDO WR LQFOLQHG DQG DV\PPHWULF LQ VKDSH 5HGXFWLRQ RI WKH DQQXOXV ZHOOGHYHORSHG DQQXOXVf ,Q /HVNHD DQG 3VHXGROHVNHD WKH DQQXOXV LV UHGXFHG WR DEVHQW &RQLF RSHUFXOXP URVWUDWH RSHUFXOXPf 2SHUFXOD DUH HLWKHU URVWUDWH HJ 5LJRGLXPf RU ODFN WKH EHDN FRQLFf DV LQ /HVNHD 5HVXOWV RI $QDO\VHV RI *HQHUD 7KUHH DQDO\VHV ZHUH HYDOXDWHG XVLQJ WKH EDVLF PDWUL[ LQ 7DEOH ,Q RQH DQDO\VLV 7KDPQREUYXP IXQFWLRQHG DV WKH RXWJURXS 3OHXUR]LRRVLV GHOHWHGf DQG LQ WKH VHFRQG 3OHXUR]LRRVLV ZDV WKH GHVLJQDWHG RXWJURXS 7KDPQREUYXP RPLWWHGf ,Q WKH WKLUG DQDO\VLV ERWK JHQHUD ZHUH LQFOXGHG DV RXWJURXSV 7KXV FHUWDLQ FKDUDFWHUV DUH SRODUL]HG GLIIHUHQWO\ DFFRUGLQJ WR WKH SDUWLFXODU RXWJURXSVf FKRVHQ

PAGE 78

2QO\ RQH PRVW SDUVLPRQLRXV WUHH VWHSV &, )LJ f ZDV JHQHUDWHG ZKHQ 7KDPQREUYXP ZDV XVHG DV WKH RXWJURXS (FKLQRGLXP LV EDVDO DV RSSRVHG WR WHUPLQDO LQ %XFN DQG 9LWWnV FODGRJUDP )LJ f ZLWK 5LJRGLXP SRVLWLRQHG EHWZHHQ LW DQG 7KXLGLXP ,Q DGGLWLRQ /HVNHD 3VHXGROHVNHD3WHULJYQDQGUXP EDVDO LQ )LJ DUH WKH PRVW GHULYHG JURXSV KHUH 7KH FODGRJUDP DOVR GRHV QRW VXSSRUW %XFN DQG &UXPnV f WUDQVIHU RI %UYRKDSORFODGLXP DQG &ODRRRGLXP IURP 7KXLGLDFHDH WR /HVNHDFHDH DV LQFOXVLRQ RI WKHVH WZR JHQHUD ZLWK /HVNHD DQG 3VHXGROHVNHD LQ RQH IDPLO\ ZRXOG UHVXOW LQ D SRO\SK\OHWLF JURXS %UYRKDSORFODGLXP DQG &ODRSRGLXP DSSHDU SK\ORJHQHWLFDOO\ FORVHU WR /HVNHD WKDQ WR 7KXLGLXP KRZHYHU /LNHZLVH 3WHULJYQDQGUXP DQG +HWHURFODGLXP 3WHULJ\QDQGUDFHDH" %XFN DQG &UXP f DUH QRW VKRZQ DV VLVWHU JURXSV 7KH VHYHUDO KRPRSODVLHV RQ WKH OLQHDJH OHDGLQJ WR 3WHULJYQDQGUXP KRZHYHU PD\ LQGLFDWH SUREOHPV ZLWK LWV SODFHPHQW LQ WKLV FODGRJUDP 7KLUWHHQ FKDUDFWHUV f GR QRW H[KLELW SDUDOOHOLVP DOWKRXJK UHYHUVDOV LQ f DQG SRO\PRUSKLVP LQ PXOWLVWDWH WD[Df RFFXU $OVR VL[ RI WKHVH FKDUDFWHUV f DUH DVVRFLDWHG ZLWK WKH 3WHULJYQDQGUXP /HVNHD3VHXGROHVNHD JURXS 5LJRGLXP DQG (FKLQRGLXP DQG RWKHU WD[D VHH )LJ f VKDUH FKDUDFWHUV DFXPLQDWH OHDYHVf DQG SDSLOORVH FHOOVf WKH V\QDSRPRUSK\ RI ODFN RI SVHXGRSDUDSK\OOLD f DQG GLPRUSKLF OHDI VKDSH f OLQN 5LJRGLXP WR 7KXLGLXP DQG

PAGE 79

RWKHU WD[Df 7KH 5LTRGLXP OLQHDJH LV FKDUDFWHUL]HG E\ SURUXORVH FHOOV D IHDWXUH VKRZLQJ KRPRSODV\f DQG WKH SRO\PRUSKLF IHDWXUHV RI WKH ZHDN FRVWD f DQG SDSLOORVH FHOOV f FKDQJH IURP !O DQG UHVSHFWLYHO\ ,Q WKH VHFRQG DQDO\VLV 3OHXUR]LRSVLV DV RXWJURXSf WKH UHVXOWV DUH PXFK OHVV UHVROYHG HTXDOO\ SDUVLPRQLRXV WUHHV VWHSV &, f ZHUH GLVFRYHUHG 7KH FRQVHQVXV WUHH )LJ %f LV EDVLFDOO\ SRO\WRPRXV DOWKRXJK 3WHULDYQDQGUXP /HVNHD DQG 3VHXGROHVNHD DUH HVWDEOLVKHG DV D PRQRSK\OHWLF JURXS +RZHYHU RQH RI WKH WUHHV LV LGHQWLFDO LQ WRSRORJ\ WR WKH FODGRJUDP GHULYHG ZLWK 7KDPQREUYXP DV WKH RXWJURXS )LJ f DQG LQ PDQ\ WUHHV HJ )LJ $f (FKLQRGLXP LV EDVDO ZLWKLQ WKH JURXS ZLWK 5LTRGLXP SK\ORJHQHWLFDOO\ DGMDFHQW :LWK 7KDPQREUYXP DQG 3OHXUR]LRSVLV IXQFWLRQLQJ DV D FRPELQHG RXWJURXS PRVW SDUVLPRQLRXV WUHHV ZHUH JHQHUDWHG VWHSV &, f 7KH XVH RI ERWK WD[D VLPXOWDQHRXVO\ WR URRW FODGRJUDPV ZDV SUREOHPDWLFDO DV RQH RU WKH RWKHU RI WKHVH JHQHUD DSSHDUV ZLWKLQ WKH LQJURXS LQ VHYHUDO RI WKH WUHHV LH WKH WUHH FRXOG QRW EH URRWHG VR WKDW WKH LQJURXS ZDV PRQRSK\OHWLFf 7KLV LVVXH ZHDNHQV WKH YDOLGLW\ RI XVLQJ ERWK WKHVH WD[D DV RXWJURXSV +RZHYHU VHYHUDO RI WKH WUHHV ZKHUH WKH FRPELQHG 3WHULTYQDQGUXP7KDPQREUYXP GRHV DSSHDU DV WKH RXWJURXSf DUH VLPLODU LQ WRSRORJ\ WR WKRVH GLVFXVVHG DERYH HJ )LJ f DQG KDYH (FKLQRGLXP LQ D FODGLVWLFDOO\ EDVDO SRVLWLRQ IROORZHG E\ 5LTRGLXP DQG 7KXLGLXP

PAGE 80

7KH FRQVHQVXV WUHH RI WKH SUHYLRXV DQDO\VLV )LJ %f LQGLFDWHV WKDW PRUH GHWDLOHG SK\ORJHQHWLF LQYHVWLJDWLRQV ZLWK PRUH JHQHUDf DUH QHHGHG WR EHWWHU GHILQH WKH UHODWLRQVKLSV RI WKH IDPLOLHV ZLWKLQ WKH /HVNHDFDQDH 7KH SUHVHQW DQDO\VHV GR VXSSRUW PDLQWDLQLQJ 5LJRGLDFHDH DV D PRQRW\SLF IDPLO\ VLQFH LQFOXVLRQ ZLWK 7KXLGLDFHDH 7KXLGLXPf ZRXOG UHVXOW LQ D SDUDSK\OHWLF IDPLO\ &KDUDFWHUV IRU 5LTRGLXP 6SHFLHV 7KH PDWULFHV RI 7DEOHV DQG DUH WKH GDWD VHWV XVHG LQ WKH DQDO\VHV RI 5LTRGLXP VSHFLHV (LJKW FKDUDFWHUV ZHUH SRODUL]HG XVLQJ (FKLQRGLXP DV WKH RXWJURXS $OWKRXJK WKH QXPEHU RI 278V GLIIHU VHH GLVFXVVLRQ IROORZLQJf WKH QXPEHU RI FKDUDFWHUV UHPDLQHG FRQVWDQW IRU ERWK DQDO\VHV 6L[ FKDUDFWHUV DUH TXDOLWDWLYH DQG WZR DUH TXDQWLWDWLYH RQH FRQWLQXRXV DQG RQH GLVFRQWLQXRXVf 7KH SUREOHPV LQ IRUPLQJ WD[RQRPLF FKDUDFWHUV IURP PHDVXUHPHQWV DUH VXPPDUL]HG LQ $OPHLGD DQG %XVE\ f 7KH DSSURDFK LQ WKLV UHYLVLRQ VHH )LJ $ DQG %f LQYROYHV WKH WUDGLWLRQDO PHWKRG RI VFDQQLQJ WKH IXOO UDQJH RI WKH PDWHULDO DQG SDUWLWLRQLQJ WKH VFDOH LQWR FODVVHV RI YDULHG UDQJH 7KH FKDUDFWHU VWDWHV DUH WKXV VRPHZKDW DUELWUDULO\ GHOLPLWHG 2QO\ WKH FKDUDFWHUV ZLWK DQ REYLRXV JDS QXPEHU RI FHOOV LQ WKH LQWUDPDUJLQDO EDQG )LJ $ VWHP OHDI GHFXUUHQF\WRWDO OHDI OHQJWK )LJ %f ZHUH XVHG LQ WKH FODGLVWLF DQDO\VLV DOWKRXJK WKUHH RWKHU FKDUDFWHUV LQWUDPDUJLQDO YV PLGODPLQDU FHOO OHQJWK )LJ & VWHP OHDI OHQJWKZLGWK )LJ DQG VWHP OHDI DFXPHQ OHQJWKOHQJWK IURP SRLQW RI

PAGE 81

LQVHUWLRQ )LJ (f VKRZ EDVLF WUHQGV 7KHVH WKUHH ODWWHU IHDWXUHV DUH GLVFXVVHG XQGHU WKH DSSURSULDWH VSHFLHV GLVFXVVLRQV IROORZLQJ WKH GLDJQRVHV LQ WKLV UHYLVLRQ 7KH IROORZLQJ OLVWV WKH FKDUDFWHUV DV WKHLU GHULYHG VWDWH LQ 7DEOHV DQG FKDUDFWHU KDV WZR GHULYHG VWDWHV DQG f 5RRWLQJ DW WLSV $V GLVFXVVHG LQ WKH PRUSKRORJ\ VHFWLRQ VHYHUDO VSHFLHV RI 5LRRGLXP HJ 5 WR[DULRQf GHYHORS UKL]RLG FOXVWHUV DW WKH WLSV RI VWHP DQG EUDQFKHV DQG WKHUHE\ IRUP QHZ SODQWV /RVV RI ZHOOGLIIHUHQWLDWHG VWLSH 7ZR VSHFLHV 5 LPSOH[XP DQG 5 SVHXGRWKXLGLXQ8 ODFN WKH DUERUHVFHQW KDELW DQG WKH DVVRFLDWHG ZHOOGHYHORSHG VWLSH ORZHU XQEUDQFKHG SRUWLRQ RI WKH VWHPf 5LJKW DQJOH EUDQFKLQJ ,Q 5 EUDFKYSRGLXP YDU WDPDUL[ )LJ $f 5 LPSOH[XP )LJ *f DQG 5 SVHXGR WKXLGLXP )LJ $f WKH SULPDU\ EUDQFKHV DUH VSUHDGLQJ HYHQO\ VSDFHG DQG DULVH DW ULJKW DQJOHV WR WKH VWHP 'HFXUUHQW VWHP OHDYHV 6WHP OHDYHV ZHUH UDQNHG DV GHFXUUHQW ZKHQ WKH VWHP OHDI GHFXUUHQF\WRWDO OHDI OHQJWK UDWLR H[FHHGHG b )LJ %f 1RWH WKDW D SHUFHQWDJH JUHDWHU WKDQ LV DQ DXWDSRPRUSK\ IRU 5 DGSUHVVXP 8QHYHQ PLGODPLQDU FHOO ZDOOV ,Q 5 WR[DULRQ DV LQ (FKLQRGLXPf WKHVH FHOO ZDOOV DUH QRW YHU\ SRURVH )LJ -f FRPSDUHG WR WKH RWKHU VSHFLHV ZLWK FRQVSLFXRXVO\ XQHYHQ ZDOOV HJ 5 SVHXGRWKXLGLXP )LJ 0f

PAGE 82

9LVLEO\ SURUXORVH PLGODPLQDU FHOOV ,Q 5 WR[DULRQ WKH FHOOV DUH SURUXORVH EXW QRW HDVLO\ GLVFHUQLEOH )LJ -f ZKLOH LQ 5 DGSUHVVXP 5 LPSOH[XP DQG 5 SVHXGRWKXLGLXP WKHVH FHOOV DUH QRWLFHDEO\ WKLFNHQHG DW WKH HQG ZDOOV HJ )LJ 0f ,Q 5 EUDFKYSRGLXP ERWK YDULHWLHVf WKH HQG ZDOOV SURMHFW DV GRUVDO SDSLOODH SURUXODH )LJ ,2& DQG 'f ,Q WKH PDWULFHV WKH WKLFNHQHG EXW QRW SDSLOORVH FRQGLWLRQ LV LQGLFDWHG DV DQG WKH SDSLOORVH H[WUHPH DV 7KLV GRHV QRW KRZHYHU PHDQ WKDW FRQGLWLRQ LV QHFHVVDULO\ PRUH GHULYHG WKDW RWKHU WKDQ WKH IDFW WKDW LV EDVDO RXWJURXS FRPSDULVRQf WKH DFWXDO VHTXHQFH RI HYHQWV LH !O! !!O RU O!f LV XQNQRZQ KHUH VHH GLVFXVVLRQ RI UHVXOWVf 6HYHQ RU JUHDWHU FHOO URZV LQ LQWUDPDUJLQDO EDQG $ QDWXUDO GLYLVLRQ LQ WKH QXPEHU RI FHOO URZV LV DSSDUHQW DW VHYHQ FHOOV )LJ $f ZLWK 5 LPSOH[XP DQG 5 SVHXGR WKXLGLXP ERWK FKDUDFWHUL]HG E\ WKLV GHULYHG FRQGLWLRQ ([WUHPHO\ WKLFNHQHG FHOO ZDOOV RI LQWUDPDUJLQDO EDQG ,Q 5 WR[DULRQ )LJ .f WKH LQWUDPDUJLQDO EDQG LV EDUHO\ YLVLEOH HYHQ LQ FURVV VHFWLRQ )LJ f ,Q WKH RWKHU IRXU VSHFLHV WKH ZDOOV DUH H[WUHPHO\ LQFUDVVDWH DQG HDVLO\ GLVWLQJXLVKHG IURP WKH PLGODPLQDU FHOOV HYHQ LQ VXUIDFH YLHZ HJ )LJ /f 5HVXOWV RI $QDO\VHV RI 5LDRGLXP 6SHFLHV 7KH GDWD VHWV 7DEOHV DQG f IRU WKH WZR DQDO\VHV ZHUH LGHQWLFDO H[FHSW IRU WKH FRQILJXUDWLRQ RI 5 EUDFKYSRGLXP ,Q WKH ILUVW DQDO\VLV WKLV VSHFLHV ZDV VSOLW

PAGE 83

LQWR LWV WZR YDULHWLHV 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP DQG 5 EUDFKYSRGLXP YDU WDPDUL[ LQ RUGHU WR WHVW WKH PRQRSK\O\ RI WKH VSHFLHV 7DEOH f ,Q WKH VHFRQG H[DPLQDWLRQ 7DEOH f WKH VSHFLHV ZDV DVVXPHG WR EH PRQRSK\OHWLF ZLWK WZR SRO\PRUSKRXV FKDUDFWHU VWDWHV ULJKW DQJOH EUDQFKLQJ GHFXUUHQW VWHP OHDYHVf )LJXUH LV WKH VLQJOH PRVW SDUVLPRQLRXV WUHH VWHSV &, f IRU 5LTRGLXP VSHFLHV ZLWK WKH WZR YDULHWLHV RI 5 EUDFKYSRGLXP GHVLJQDWHG DV VHSDUDWH 278V 5LTRGLXP WR[DULRQ LV EDVDO IROORZHG E\ 5 EUDFKYSRGLXP DQG 5 DGSUHVVXP DQG 5 SVHXGRWKXLGLXP DQG 5 LPSOH[XP DUH GHULYHG VLVWHUVSHFLHV 2I LQWHUHVW LV WKDW 5 EUDFKYSRGLXP LV QRW PRQRSK\OHWLF KHUH EXW SDUDSK\OHWLF 7KH RQO\ SDUDOOHOLVP LQYROYHV FKDUDFWHU ULJKW DQJOH EUDQFKLQJf IRU 5 EUDFKYSRGLXP YDU WDPDUL[ DQG WKH 5 LPSOH[XP5 SVHXGRWKXLGLXP FODGH ZKLFK PD\ UHIOHFW WKDW WKH UDPLILFDWLRQ LV DFWXDOO\ GLIIHUHQW LQ WKHVH WZR LQVWDQFHV ,Q 5 EUDFKYSRGLXP YDU WDPDUL[ WKH EUDQFKHV DUH UHJXODUO\ SLQQDWH )LJ $f ZKLOH WKH EUDQFKLQJ RI WKH RWKHU WZR VSHFLHV LV LUUHJXODUO\ SLQQDWH ,Q IDFW WKH KDELW W\SH RI 5 LPSOH[XP )LJ $f PD\ KDYH EHHQ GHULYHG IURP D IRUP OLNH 5 SVHXGRWKXLGLXP ZLWK VHYHUDO LQQRYDWLRQV DULVLQJ IURP WKH PDLQ VWHP )LJ %f VHH DOVR GLVFXVVLRQ XQGHU 5 SVHXGRWKXLGLXPf 7KH RQO\ UHYHUVDO LQ WKH FODGRJUDP LV ZKHUH URRWLQJ DW WKH WLSV f ZDV ORVW IRU WKH 5 LPSOH[XP5 SVHXGR WKXLGLXP FODGH SRVVLEO\ EHFDXVH WKLV IHDWXUH LV FRUUHODWHG

PAGE 84

ZLWK WKH ORVV RI WKH DERUHVFHQW RU IURQGRVH KDELW 7KLV DQDO\VLV DOVR VXJJHVWV WKDW WKH GLUHFWLRQ ZLWKLQ FKDUDFWHU GHJUHH RI SURUXORVLW\f LV !!O LH WKH OHVV SURUXORVH VWDWH f LV VHFRQGDULO\ GHULYHG IURP WKH H[WUHPH SDSLOORVH W\SH f ,Q WKH VHFRQG DQDO\VLV 5 EUDFKYSRGLXP ZDV FRQVLGHUHG WR EH D PRQRSK\OHWLF PXOWLVWDWH WD[RQ SRO\PRUSKLF FKDUDFWHUV DQG 7DEOH f 7ZR HTXDOO\ SDUVLPRQLRXV FODGRJUDPV ZHUH JHQHUDWHG VWHSV &, )LJ $ DQG %f ZLWK RQH WUHH )LJ %f HTXLYDOHQW WR WKH VWULFW FRQVHQVXV WUHH ,Q FRQWUDVW WR WKH SUHYLRXV DQDO\VLV ZKHUH 5 DGSUHVVXP LV PRUH GHULYHG WKDQ 5 EUDFKYSRGLXP ZKLFK LV SDUDSK\OHWLFf WKH SRVLWLRQ RI WKH IRUPHU VSHFLHV KHUH LV HLWKHU SK\ORJHQHWLFDOO\ LQWHUPHGLDWH EHWZHHQ 5 WR[DULRQ DQG 5 EUDFKYSRGLXP )LJ $f RU XQUHVROYHG )LJ %f 7KH RWKHU SRUWLRQV RI WKH WUHH 5 WR[DULRQ EDVDO 5 LPSOH[XP 5 SVHXGRWKXLGLXP WHUPLQDO VLVWHUWD[Df DUH VXSSRUWHG DV LQ WKH SUHYLRXV DQDO\VLV :LWKLQ WKH PXOWLVWDWH 5 EUDFKYSRGLXP KRPRSODV\ LV LQGLFDWHG IRU FKDUDFWHUV ULJKW DQJOH EUDQFKLQJf DQG GHFXUUHQW VWHP OHDYHVf $OVR WKH GLUHFWLRQ RI HYROXWLRQ IRU FKDUDFWHU LV WRZDUGV LQFUHDVLQJ GHJUHH RI SURUXORVLW\ f§!f§!f LQVWHDG RI WKH VHFRQGDULO\ GHULYHG UHGXFWLRQ LQ WKH SUHYLRXV DQDO\VLV )RU ERWK DQDO\VHV FKDUDFWHU URRWLQJ DW WLSVf§ZKLFK UHYHUVHV ZLWKLQ WKH WHUPLQDO SRUWLRQf LV D GHILQLQJ IHDWXUH RI 5LJRGLXP ,Q DGGLWLRQ WR WKLV IHDWXUH DXWDSRPRUSKLHV RI

PAGE 85

WKH JHQXV LH V\QDSRPRUSKLHV RI LWV VSHFLHVf LQFOXGH WKH SUHVHQFH RI D GLIIHUHQWLDWHG LQWUDPDUJLQDO EDQG RI FHOOV DQG H[WUHPHO\ LQFUDVVDWH FHOOV 7KXV WKH JHQXV LV FOHDUO\ PRQRSK\OHWLF 7D[RQRPLF 3KLORVRSK\ &RQFHUQLQJ 6SHFLHV $V VXJJHVWHG LQ %XGG DQG 0LVKOHU f WKH ZRUNLQJ GHILQLWLRQV RI VSHFLHV XVHG E\ WD[RQRPLVWV DUH LQ JHQHUDO HLWKHU SKHQHWLF RU EDVLFDOO\ FODGLVWLF ,Q WKLV UHYLVLRQ D VSHFLHV ZDV GHILQHG SULPDULO\ DV D SKHQHWLFDOO\ FRKHVLYH XQLW WKDW LV VHSDUDWHG IURP RWKHU VLPLODU HQWLWLHV E\ D FRQVLVWHQW PRUSKRORJLFDO JDS 0RQRSK\O\ FODGLVWLF DSSURDFKf ZDV H[DPLQHG VHFRQGDULO\ LQ WKH DQDO\VHV GLVFXVVHG DERYH 5LDRGLXP WR[DULRQ WKH EDVDO VSHFLHVf LV PHWDSK\OHWLF 'RQRJKXH 0LVKOHU f DV QR DXWDSRPRUSKLHV GHILQH LW 5LDRGLXP DGSUHVVXP 5 LPSOH[XP DQG 5 SVHXGRWKXLGLXP DUH PRQRSK\OHWLF HDFK GLVWLQJXLVKHG E\ WKH IROORZLQJ DXWDSRPRUSKLHV f 5 DGSUHVVXP DSSUHVVHG OHDYHV VWURQJO\ UHYROXWH OHDI PDUJLQV GHFXUUHQF\ RI VWHP OHDI JUHDWHU WKDQ b RI WRWDO OHDI OHQJWK )LJ %f ORZ FHQWUDO SDSLOODH LQ VRPH FHOOV RI WKH VWHP OHDI GHFXUUHQF\ DQG LQWUDPDUJLQDO FHOOV VKRUWHU WKDQ WKH PLGODPLQDU FHOOV )LJ &f f 5 SVHXGRWKXLGLXP UHGXFWLRQ RI VHFRQGDU\ DQG ORVV RI WHUWLDU\ EUDQFKLQJ DQG ORVVUHGXFWLRQ RI VWHP OHDI FRVWDH DQG f 5 LPSOH[XP IUHHOLYLQJ WHUUHVWULDO WXPEOHZHHG KDELW ZLWK H[WUHPHO\ ZLU\ D[HV DQG SURIXVH EUDQFKLQJ $V GLVFXVVHG DERYH 5 EUDFKYSRGLXP PD\ EH PRQRSK\OHWLF RU SDUDSK\OHWLF 6LQFH WKH VWURQJ FKDUDFWHU

PAGE 86

HQG ZDOOV ZLWK SURUXODHf DQG LQWHUPHGLDWH KDELW IRUPV GHWDLOHG LQ WKH GLVFXVVLRQ RI 5 EUDFKYSRGLXP YDU EUDFKYSRGLXPf OLQN WKH WZR YDULHWLHV IURP D SUDFWLFDO VWDQGSRLQW WKLV WD[RQ LV FRQVLGHUHG DV D VLQJOH VSHFLHV LQ WKLV UHYLVLRQ DQG LW LV FRQVLGHUHG SUREDEO\ PRQRSK\OHWLF $ YDULHW\ KHUH LV GHILQHG DV D PRQRSK\OHWLF RU PHWDSK\OHWLFf JURXS ZLWKLQ D VSHFLHV WKDW LV VHSDUDWHG IURP RWKHU VXFK HQWLWLHV E\ D VPDOO PRUSKRORJLFDO JDS :LONHQ t +DUWPDQ f 7KXV WKH YDULHW\ LQ WKH WUDGLWLRQDO VHQVH RI DQ DOORSDWULF UDFH 0D\U f LH KDYLQJ RQH WR IHZ FRQVSLFXRXV GLIIHUHQFHV DVVRFLDWHG ZLWK D FHUWDLQ JHRJUDSKLFDO UDQJH LV QRW DSSOLHG LQ WKLV UHYLVLRQ VHH 6WXHVV\ IRU GLVFXVVLRQ RQ LQIUDVSHFLILF FDWHJRULHVf 7KH FDWHJRU\ RI YDULHW\ LV DSSOLHG ZLWKLQ WZR VSHFLHV 5 WR[DULRQ DQG 5 EUDFKYSRGLXP $OWKRXJK ERWK YDULHWLHV RI 5 WR[DULRQ DUH V\PSDWULF WKH WUDGLWLRQDO YDULHWDO FRQFHSW VRPHZKDW DSSOLHV VLQFH 5 WR[DULRQ YDU UREXVWXP LV UHVWULFWHG WR WKH -XDQ )HUQ£QGH] ,VODQGV 7KLV YDULHW\ LV DGGLWLRQDOO\ GHILQHG E\ WKH DXWDSRPRUSK\ RI QDUURZ EUDQFK OHDYHV VHH GHWDLOV XQGHU GLVFXVVLRQ RI 5 WR[DULRQ YDU UREXVWXPf ZKLOH 5 WR[DULRQ YDU WR[DULRQ LV PHWDSK\OHWLF $V GLVFXVVHG DERYH WKH WZR YDULHWLHV RI 5 EUDFKYSRGLXP KHUH DUH FRQVLGHUHG WR FRPSULVH RQH VSHFLHV GXH WR WKH SUHVXPHG V\QDSRPRUSK\ RI SURUXODH DV ZHOO DV LQWHUPHGLDWHV LQ KDELW W\SH 5LJRGLXP EUDFKYSRGLXP YDU WDPDUL[ LV GHILQHG E\ WKH DXWDSRPRUSK\ RI WKH KDELW W\SH HORQJDWHG

PAGE 87

VWHPV ZLWK EUDFKYSRGLXP UHJXODUO\ SLQQDWH EUDQFKLQJf ZKLOH 5 YDU EUDFK\SRGLXP LV FRQVLGHUHG PHWDSK\OHWLF

PAGE 88

),* 3URSRVHG SK\ORJHQ\ RI WKH RUGHU +\SQDOHV DGDSWHG IURP %XFN DQG 9LWW f 7KH FKDUDFWHUV FRUUHVSRQGLQJ WR WKH QXPEHUV DUH OLVWHG LQ 7DEOH

PAGE 89

68%25'(5 68%25'(56 +<31,1($( ,, )217,1$/,1($( +, +<312'(1'5,1($(

PAGE 90

7DEOH $ OLVW RI WKH V\QDSRPRUSKLF FKDUDFWHUV IRU WKH RUGHU +\SQDOHV DV IHDWXUHG LQ WKH FODGRJUDP )LJ f PRGLILHG IURP %XFN DQG 9LWW f 7KH FKDUDFWHUV LQGLFDWHG E\ WKH DXWKRUV DV V\PSOHVLRPRUSKLF DQG DXWDSRPRUSKLF DUH GHOHWHG KHUH KHQFH WKH GLVFRQWLQXLWLHV LQ WKH QXPEHULQJ V\VWHP RQ WKH FODGRJUDP DQG IRU WKHLU FKDUDFWHUV OLVWHG EHORZ 3HULVWRPH K\SQRLG FDSVXOHV KRUL]RQWDO DV\PPHWULF OHDI FHOOV HORQJDWH ([RVWRPH WHHWK ORQJ JDPHWRSKRUHV GHQGURLG HQGRVWRPH VHJPHQWV JDSLQJ OHDYHV FRDUVHO\ VHUUDWH /HDI FHOOV WKLQZDOOHG DODU FHOOV WKLQZDOOHG TXDGUDWH /HDI FHOOV ORQJ 2SHUFXOD URVWUDWH OHDYHV ZLWK WKLFNHQHG PDUJLQV ([RVWRPLDO VKRXOGHU ZHOOGHYHORSHG /HDI FHOOV SDSLOORVH DODU FHOOV UHGXFHG OHDI FHOOV VHFRQGDULO\ VKRUW SODQWV [HURSK\WLF /HDYHV VXEXODWH &DSVXOHV HUHFW FRVWD ZHDN SDUDSK\OOLD UHGXFHG SHULVWRPH UHGXFHG 6WHP OHDYHV GLIIHUHQWLDWHG EUDQFKLQJ ZHOOGHYHORSHG /HDI FHOOV ORQJ /HDYHV YDU\LQJ DURXQG ODQFHRODWH 3HULVWRPH \HOORZEURZQ FRVWD SRRUO\ GHYHORSHG OHDI FHOOV VKRUWHQHG $ODU FHOOV VPDOO FDSVXOHV VKRUW VXEVWUDWH RI ZRRG DQG URFNV

PAGE 91

7DEOH f§FRQWLQXHG $ODU FHOOV FRYHULQJ FRVWDO EDVH SVHXGRSDUDSK\OOLD ILODPHQWRXV &RVWDO VSLQH SUHVHQW /HDI FHOOV VKRUW SHULVWRPH UHGXFHG SODQWV HSLSK\WLF &RVWD ORVW ([RVWRPH VKRXOGHU DPSOLILHG RSHUFXOD ORQJURVWUDWH DODU FHOOV DPSOLILHG VKDSHf 3ODQWV IODWWHQHG

PAGE 92

7DEOH 'DWD PDWUL[ IRU WKH FODGLVWLF DQDO\VLV RI VHOHFWHG JHQHUD RI WKH VXSHUIDPLO\ /HVNHDFDQDH PLVVLQJ GDWD 3RO\PRUSKRXV FKDUDFWHUV DUH LQGLFDWHG DV D E F G 7KDPQREUYXP DQG 3OHXUR]LRSVLV IXQFWLRQHG DV RXWJURXSV LQ WKH DQDO\VHV *HQXV &KDUDFWHUV 7KDPQREUYXP 3OHXUR]LRSVLV %UYRKDSORFODGLXP D G &ODRSRGLXP F G (FKLQRGLXP G +HORGLXP D G +HWHURFODGLXP E G G /HVNHD E 3VHXGROHVNHD E G G 3WHULDYQDQGUXP 5LDRGLXP G G 7KXLGLXP D

PAGE 93

),* 0RVW SDUVLPRQLRXV WUHH IRU UHSUHVHQWDWLYH JHQHUD RI WKH VXSHUIDPLO\ /HVNHDFDQDH XVLQJ 7KDPQREUYXP DV WKH RXWJURXS &KDUDFWHUV DUH OLVWHG LQ WKH WH[W IRU WKH FKDUDFWHU VWDWHV VHH GDWD PDWUL[ 7DEOH f

PAGE 94

HFKL ULJR WKXL EU\R FODR KHWH KHOR SWHU OHVN SVHX RR

PAGE 95

),* 5HSUHVHQWDWLYH WUHHV IRU WKH JHQHUD RI WKH VXSHUIDPLO\ /HVNHDFDQDH XVLQJ 3OHXUR]LRSVLV DV WKH RXWJURXS $ 6DPSOH WUHH RXW RI HTXDOO\ SDUVLPRQLRXV FODGRJUDPVf &KDUDFWHUV DUH OLVWHG LQ WKH WH[W" IRU WKH FKDUDFWHU VWDWHV VHH GDWD PDWUL[ 7DEOH f % &RQVHQVXV WUHH

PAGE 97

),* 0RUSKRORJLFDO 7UHQGV LQ 5LJRGLXP VSHFLHV $ 1XPEHU RI FHOO URZV LQ WKH LQWUDPDUJLQDO EDQG RI VWHP OHDYHV VKRZLQJ GLYLVLRQ DW FHOOV % 5DQJH RI YDULDWLRQ LQ VWHP OHDI GHFXUUHQF\ OHQJWKWRWDO OHDI OHQJWK VKRZLQJ JDSV DW DQG & 5DQJH LQ LQWUDPDUJLQDO DQG PDUJLQDO FHOO OHQJWKV 5DQJH LQ VWHP OHDI OHQJWKZLGWK ( 5DQJH LQ VWHP OHDI DFXPHQ OHQJWKOHDI OHQJWK IURP SRLQW RI LQVHUWLRQ 72; 5 WR[DULRQ %5$% 5 EUDFK\SRGLXP YDU EUDFKYSRGLXP %5$7 5 EUDFK\SRGLXP YDU WDPDUL[ $'3 5 DGSUHVVXP 36( 5 SVHXGRWKXLGLXP ,03 5 LPSOH[XP $VWHULVNV rf LQ % DQG & LQGLFDWH DXWDSRPRUSKLHV IRU 5 DGSUHVVXPf &KDUDFWHU JURXSLQJV GHSLFWHG LQ $ DQG % ZHUH XVHG LQ FODGLVWLF DQDO\VHV

PAGE 98

% &HOO /HQJWK MPf L LQWUDPDUJLQDO L QPLGODPLQDU ,03 36( $'3 %5$7 %5$% 72; $FXPHQ //HDI /

PAGE 99

7DEOH 'DWD PDWUL[ IRU WKH FODGLVWLF DQDO\VLV RI 5LJRGLXP VSHFLHV ZKHUH WKH YDULHWLHV RI 5 EUDFKYRRGLXP DUH WUHDWHG DV VHSDUDWH 278V (FKLQRGLXP IXQFWLRQHG DV WKH RXWJURXS LQ WKH DQDO\VLV 6SHFLHV &KDUDFWHUV (FKLQRGLXP 5 WR[DULRQ 5 EUDFKYRRGLXP YDU EUDFKYRRGLXP 5 EUDFKYRRGLXP YDU WDPDUL[ 5 DGRUHVVXP 5 LPROH[XP 5 RVHXGRWKXLGLXP

PAGE 100

),* 0RVW SDUVLPRQLRXV WUHH LQ DQDO\VLV RI 5LJRGLXP VSHFLHV ZLWK WKH WZR YDULHWLHV RI 5 EUDFK\SRGLXP EUDW DQG EUDEf WUHDWHG DV VHSDUDWH 278V )RU FKDUDFWHUV VHH WKH WH[W IRU WKH FKDUDFWHU VWDWHV VHH 7DEOH

PAGE 101

[ R &/ 2 FH &' LQ &/ &/ (

PAGE 102

7DEOH 'DWD PDWUL[ IRU WKH FODGLVWLF DQDO\VLV RI 5LJRGLXP VSHFLHV ZKHUH 5 EUDFKYSRGLXP LV WUHDWHG DV PRQRSK\OHWLF ERWK YDULHWLHV 278f (FKLQRGLXP IXQFWLRQHG DV WKH RXWJURXS LQ WKH DQDO\VLV 3RO\PRUSKLF FKDUDFWHU D 6SHFLHV &KDUDFWHUV (FKLQRGLXP 5 WR[DULRQ 5 EUDFKYRRGLXP D D 5 DGRUHVVXP 5 LPROH[XP 5 RVHXGRWKXLGLXP

PAGE 103

),* 7KH WZR PRVW SDUVLPRQLRXV WUHHV LQ DQDO\VLV RI 5LTRGLXP ZLWK 5 EUDFKYSRGLXP EUDf WUHDWHG DV RQH 278 LH PRQRSK\OHWLFf &ODGRJUDP % LV DOVR HTXLYDOHQW WR WKH FRQVHQVXV WUHH )RU FKDUDFWHUV VHH WKH WH[W IRU WKH FKDUDFWHU VWDWHV VHH 7DEOH

PAGE 104

n SDUDOOHOLVP UHYHUVDO D?

PAGE 105

),* +DELWV RI VLVWHU JURXSV 5 LPSOH[XP DQG 5 SVHXGRWKXLGLXP $ 5 LPSOH[XP 'XVQ 2f % 5 SVHXGRWKXLGLXP SODQW ZLWK LQQRYDWLRQV PLVWDNHQ IRU 5 LPSOH[XP 'XVQ -(f

PAGE 107

3+(1(7,& 678',(6 $V QRWHG LQ WKH LQWURGXFWLRQ DQG WD[RQRPLF KLVWRU\ WKH QXPHURXV GHVFULEHG VSHFLHV RI 5LJRGLXP DUH YHU\ VLPLODU PRUSKRORJLFDOO\ DQG DUH RIWHQ FRQIXVHG ZLWK RQH DQRWKHU LQ IORULVWLF OLWHUDWXUH 3UHOLPLQDU\ H[DPLQDWLRQV RI WKH VSHFLPHQV LQGLFDWHG WZR DSSDUHQWO\ ZHOOGHILQHG JURXSV GXH WR WKHLU GLVWLQFWLYH KDELWV 5A LPSOH[XP DQG 5BMB SVHXGR WKXLGLXP5 KYORFRPLRLGHVf DQG WZR PRUH YDULDEOH DQG RYHUODSSLQJ FRPSOH[HV HQFRPSDVVLQJ PRVW RI WKH RWKHU VSHFLHV QDPHV HJ D 5A WR[DULRQTUDFLOH JURXS DQG 5 EUDFKYSRGLXPDUERUHVFHQV JURXSf 3KHQHWLF DQDO\VHV ZHUH FRQGXFWHG LQ RUGHU WR HYDOXDWH PRUH REMHFWLYHO\ WKH SRVVLEOH PRUSKRORJLFDO ERXQGDULHV RI WKHVH SUHVXPHG VSHFLHV 7KH PXOWLYDULDWH RUGLQDWLRQ WHFKQLTXH SULQFLSDO FRPSRQHQW DQDO\VLV 3&$f ZDV HPSOR\HG XVLQJ WKH VRIWZDUH SDFNDJH 176<6SF 5RKOI f RQ DQ ,%0FRPSDWLEOH 3& 6QHDWK DQG 6RNDO f :LOH\ f DQG 'XQFDQ DQG %DXP f GLVFXVV WKLV PXOWLYDULDWH WHFKQLTXH LQ PRUH GHWDLO %DVLFDOO\ SULQFLSDO FRPSRQHQWV DQDO\VLV LV D PHWKRG RI GDWD UHGXFWLRQ WKDW DLGV LQ GHWHFWLQJ SDWWHUQV LQ WKH GDWD LH PHDVXUHPHQWV RI FKDUDFWHUVf DQG UHODWLRQVKLSV EHWZHHQ RSHUDWLRQDO WD[RQRPLF XQLWV 278V VSHFLPHQV LQ WKLV VWXG\f ZLWKRXW D SULRUL VXEGLYLVLRQ RI 278V LQWR GLVFUHWH JURXSV 7KH FKDUDFWHUV DUH XQZHLJKWHG 7KH UHVXOWV

PAGE 108

FRPSOH[ VFDWWHU GLDJUDPV XVHG LQ HYDOXDWLQJ WKH SKHQHWLF JDSV EHWZHHQ WKH 278V DUH SURGXFHG IURP WKH RUGLQDWLRQ RI WKH 278V DORQJ JHQHUDWHG D[HV SULQFLSDO FRPSRQHQWVf 7KHVH SULQFLSDO FRPSRQHQWV D[HVf DUH DFWXDOO\ UHSUHVHQWDWLRQV RI WKH FKDUDFWHUV HDFK RI ZKLFK YDU\ LQ WKHLU UHODWLYH FRQWULEXWLRQ IDFWRU ORDGLQJf WR HDFK 3& D[LV (DFK SULQFLSDO FRPSRQHQW UHSUHVHQWV D SHUFHQWDJH SHU FHQW RI WUDFHf RI WKH WRWDO YDULDWLRQ EHWZHHQ WKH 278V $ KLJKHU HLJHQYDOXH LQGLFDWHV WKDW PRUH YDULDQFH LV DFFRXQWHG IRU E\ WKDW SDUWLFXODU SULQFLSDO FRPSRQHQW 8VXDOO\ RQO\ WKH ILUVW WZR RU WKUHH SULQFLSDO FRPSRQHQWV ZKLFK KDYH WKH KLJKHVW HLJHQYDOXHV DQG W\SLFDOO\ HQFRPSDVV PRVW RI WKH YDULDWLRQ DUH XVHG IRU WKH JUDSKV 7KH SULQFLSDO FRPSRQHQW DQDO\VLV DOVR SURGXFHV DQ LQGH[ RI KLJKO\ FRUUHODWHG DQG SRVVLEO\ UHGXQGDQWf FKDUDFWHUV LQ D FRUUHODWLRQ PDWUL[ +LJKO\ FRUUHODWHG FKDUDFWHUV PD\ WKHQ EH UHHYDOXDWHG DQG SHUKDSV GHOHWHG &DUH PXVW EH WDNHQ ZLWK HDFK VWHS RI WKH SURFHVV LQFOXGLQJ VHOHFWLRQ RI DSSURSULDWH 278V DQG FKDUDFWHUV GLVFXVVHG EHORZf &KRLFH RI 278V DQG &KRLFH RI 6SHFLPHQV 7KH RSHUDWLRQDO WD[RQRPLF XQLW LQ WKLV VWXG\ LV GHILQHG DV DOO VSHFLPHQV RI D SDUWLFXODU FROOHFWRUnV FROOHFWLRQ QXPEHU RQH UHFRUG RU FROOHFWLRQf 6LQFH PDQ\ EU\RSK\WH FROOHFWLRQV ZHUH GLVWULEXWHG DV H[VLFFDWDH GXSOLFDWHV KDYH EHHQ GHSRVLWHG DW PDQ\ LQVWLWXWLRQV UHVXOWLQJ LQ D ZHDOWK RI PDWHULDO IRU PDQ\ FROOHFWLRQV (DFK FROOHFWLRQ QXPEHU UHSUHVHQWV D VDPSOH RI D QDWXUDO SRSXODWLRQ DQG RIWHQ HYHQ

PAGE 109

ZLWKLQ RQH SDFNHW LQGLYLGXDO SODQWV DUH QRW HDVLO\ GLVFHUQLEOH $V VWDWHG LQ WKH LQWURGXFWLRQ DSSUR[LPDWHO\ VSHFLPHQV ZHUH UHFHLYHG RQ ORDQ IRU WKLV VWXG\ $IWHU WDNLQJ LQWR DFFRXQW GXSOLFDWHV DQG GHOHWLQJ WKRVH VSHFLPHQV PLVLGHQWLILHG DV 5LDRGLXP WKH GDWD EDVH FRQWDLQHG D WRWDO RI UHFRUGV 2I WKHVH ZHUH GHVLJQDWHG $QRQ\PRXV VQ XVXDOO\ ZLWK IUDJPHQWDU\ PDWHULDO DQG OLWWOH RU QR ODEHO GDWD FRXQWU\ ORFDWLRQ HWFf DQG WKXV QRW VXLWDEOH IRU LQFOXVLRQ LQ WKH SKHQHWLF VWXG\ ,W ZDV QRW XQFRPPRQ IRU PRVV FROOHFWLRQV WR EH VSOLW XS DQG LQFRPSOHWHO\ FRSLHG ODEHO GDWD DFFRPSDQLHG WKH GHULYDWLYH VSHFLPHQV WR WKHLU QHZ LQVWLWXWLRQV $ERXW PRUH VSHFLPHQV ZLWK FRPSOHWH ODEHO GDWD EXW ZLWK PLVVLQJ FROOHFWLRQ QXPEHUVf ZHUH SUREDEOH GXSOLFDWHV RI RWKHU VSHFLPHQV WKH FROOHFWRUV GDWHV DQG ORFDOLWLHV H[DFWO\ PDWFKHG RWKHU VSHFLPHQV ZLWK FROOHFWLRQ QXPEHUV 7DNLQJ WKHVH LQWR DFFRXQW D WRWDO RI PRUH RU OHVV VXLWDEOH 278V UHFRUGV RU FROOHFWLRQVf ZHUH DYDLODEOH IURP ZKLFK WR FKRVH D VDPSOH VHW UHSUHVHQWLQJ WKH YDULDWLRQ ZLWKLQ WKH JHQXV 7KHVH VSHFLPHQV VHHPHG WR DGHJXDWHO\ UHSUHVHQW WKH YDULDWLRQ LQ WKH JHQXV RYHU LWV JHRJUDSKLFDO UDQJH DV GHVFULEHG LQ WKH OLWHUDWXUH )RU H[DPSOH PRVW FD f RI WKHVH UHFRUGV ZHUH IURP &KLOH VSHFLPHQVf DQG $UJHQWLQD VSHFLPHQVf DSSDUHQWO\ WKH DUHD RI JUHDWHVW YDULDWLRQ GXH WR WKH QXPEHU RI HSLWKHWV DVVRFLDWHG ZLWK WKHVH DUHDV VHH 7DEOH f 2I QRWH DUH WKH DSSUR[LPDWHO\

PAGE 110

&KLOHDQ VSHFLPHQV IURP WKH ZHOOFROOHFWHG -XDQ )HUQ£QGH] ,VODQGV 7KH RYHUUHSUHVHQWDWLRQ RI WKLV DUHD ZLWKLQ WKH VSHFLPHQ SRRO ZDV WDNHQ LQWR DFFRXQW ZKHQ VSHFLPHQV ZHUH VHOHFWHG 6WDUWLQJ ZLWK ORFDOLWLHV LQ +LVSDQLROD DQG &HQWUDO $PHULFD DQG ZRUNLQJ VRXWKZDUG VSHFLPHQV ZHUH FDUHIXOO\ H[DPLQHG WR FXOO WKH VDPSOH VHW WR EH XVHG LQ WKH SKHQHWLF DQDO\VLV %HVLGHV JHRJUDSK\ WKH VSHFLPHQV ZHUH HYDOXDWHG RQ WKH EDVLV RI YDULDWLRQ LQ FKDUDFWHUV TXDOLW\ DQG DEXQGDQFH RI PDWHULDO HFRORJ\ DQG SUHVHQFH RI VSRURSK\WHV $ WRWDO RI VSHFLPHQV ZHUH LQLWLDOO\ FKRVHQ IRU WKH VDPSOH VHW $IWHU PXFK FORVHU H[DPLQDWLRQ RI WKHVH DSSUR[LPDWHO\ b RXW RI WKH RULJLQDO f HYHQWXDOO\ ZHUH HYDOXDWHG IRU WKH SKHQHWLF DQDO\VLV DQG DUH OLVWHG LQ $SSHQGL[ $ )LIW\WZR RI WKHVH KDG PDWXUH VSRURSK\WHV VHWD SOXV DW OHDVW WKH FDSVXOH XUQ ZLWK SHULVWRPH WHHWKf 7KLV PHWKRG RI QRQUDQGRP VHOHFWLRQ PD\ KDYH DFWXDOO\ ELDVHG WKH VDPSOH VHW WRZDUGV LQFUHDVHG YDULDELOLW\ LQ FRPSDULVRQ WR D WUDGLWLRQDO W\SRORJLFDOO\ EDVHG VWXG\ ZKHUH YDULDELOLW\ RIWHQ WHQGV WR EH LJQRUHG HJ WKH PHWKRGRORJ\ HVSRXVHG E\ )UDKP f 7KH FKRLFH RI VSHFLPHQV IRU WKLV VWXG\ ZDV WKXV QRW LQIOXHQFHG E\ W\SRORJLFDO SUHFRQFHSWLRQV LH QRW ZLWK D SULRUL JURXSLQJ DV LQ 6WDUN f 7\SH VSHFLPHQV ZHUH LQFOXGHG RQO\ WR GHPRQVWUDWH WKDW PRVW RI WKH HSLWKHWV ZHUH UHGXQGDQW W\SH 278V VFDWWHUHG WKURXJKRXW WKH YDULDWLRQ RI WKH JURXSf DQG WR DVVLJQ WKH ROGHVW HSLWKHWV LQ

PAGE 111

QDPLQJ JURXSLQJV RI WKH 3&$ EXW VHH DOVR GLVFXVVLRQ RI SK\ORJHQ\f &KRLFH RI &KDUDFWHUV 7KH SDUWLFXODU PRUSKRORJLFDO FKDUDFWHUV PHDVXUHG IRU WKH SKHQHWLF VWXG\ ZHUH VHOHFWHG RQ WKH EDVLV RI REVHUYDWLRQ LQ YDULDWLRQ RI QXPHURXV IHDWXUHV LQ D GHWDLOHG SUHOLPLQDU\ VWXG\ RI VSHFLPHQV 6HYHUDO RI WKH W\SHV ZHUH LQFOXGHG DW WKLV VWDJH LQ RUGHU WR JDLQ D SHUVSHFWLYH RQ WKH KLVWRULFDO LPSRUWDQFH RI VRPH FKDUDFWHUV PHQWLRQHG LQ WKH OLWHUDWXUH 7DEOH OLVWV WKH FKDUDFWHUV XVHG LQ WKH 3& DQDO\VHV GHSLFWHG LQ )LJV DQG 7KLUW\VL[ RI WKHVH FKDUDFWHUV DUH JDPHWRSK\WLF DQG DUH VSRURSK\WLF 0LVVLQJ GDWD SHULFKDHWLDO OHDYHV DQG VSRURSK\WHVf ZHUH DFFRPPRGDWHG E\ WKH 176<6SF VRIWZDUH SURJUDP )LYH PHDVXUHPHQWV ZHUH REWDLQHG IRU HDFK FKDUDFWHU RQ DQ 278 H[FHSW IRU VRPH VSRURSK\WLF IHDWXUHV IRU ZKLFK PDWHULDO ZDV ODFNLQJ )LYH VDPSOHV PHDVXUHPHQWVf RI HDFK FKDUDFWHU SHU 278 ZHUH GHWHUPLQHG WR EH WKH PLQLPXP QXPEHU VXIILFLHQW WR REWDLQ D PHDQ ZKLFK DGHTXDWHO\ HVWLPDWHV WKH DFWXDO PHDQ PHDVXUHPHQWV RI WKDW FKDUDFWHUf IRU DQ 278 7KLV ZDV DVFHUWDLQHG E\ WKH PDWKHPDWLFDO UHODWLRQVKLS EHWZHHQ VDPSOH VL]H Qf DQG WKH b FRQILGHQFH LQWHUYDO IRU WKH DFWXDO PHDQ RI D JLYHQ 278 MXf VKRZQ LQ WKH VWDWLVWLFDO FRUUHODWLRQV SUHVHQWHG LQ $SSHQGL[ % 7KH JHQHUDO WHFKQLTXHV LQYROYHG LQ VSHFLPHQ SUHSDUDWLRQ DQG PHQVXUDWLRQ DUH GHVFULEHG LQ WKH SUHYLRXV VHFWLRQ RQ JHQHUDO PDWHULDOV DQG PHWKRGV (TXLYDOHQW VWUXFWXUHV ZHUH

PAGE 112

PHDVXUHG RQ HDFK VSHFLPHQ )LJ f DQG WKH VFKHPH RI PHDVXULQJ HDFK FKDUDFWHU ZDV DOVR VWDQGDUGL]HG $V DQ LQGH[ RI WKH KDELW IRUP DQG VL]H WKH VWHP ZLGWK DQG WKH VWLSH VWHP DQG ORQJHVW SULPDU\ EUDQFK OHQJWKV ZHUH LQFOXGHG 7KH VWHP ZLGWK ZDV PHDVXUHG IURP D FURVV VHFWLRQ WDNHQ IURP WKH PLGSRLQW RI WKH VWHP )LJ %f 7KH VWLSH OHDYHV ZHUH UHPRYHG DW PLGVWLSH )LJ &f EHFDXVH WKH OHDYHV KHUH W\SLFDOO\ KDG ZHOOGHYHORSHG DFXPHQV LQ FRPSDULVRQ WR WKH OHDYHV EHORZ ZLWK XVXDOO\ VKRUWHU DFXPHQVf DQG ZHUH HFRVWDWH LQ FRPSDULVRQ WR WKH OHDYHV DERYH ZKHUH WUDFHV RI WKH FRVWD ILUVW DSSHDUf ,Q SODQWV ZLWK D SRRUO\ GHYHORSHG VWLSH LH QRQDUERUHVFHQW KDELWf WKH VWLSH OHDYHV ZHUH DOVR WDNHQ IURP WKH PLGGOH RI WKH EDVDO SRUWLRQ RI WKH VWHP EHIRUH LW EUDQFKHG DQG KHUH WKH OHDYHV ZHUH IRXQG WR EH HFRVWDWH DV ZHOO 7KH VWHP OHDYHV ZHUH WDNHQ FRQVLVWHQWO\ IURP WKH PLGVWHP )LJ 'f 7KH EUDQFK OHDYHV ZHUH IURP WKH VHFRQGDU\ EUDQFKHV )LJ f DV WKRVH RI WKH SULPDU\ EUDQFKHV ZHUH RIWHQ WUDQVLWLRQDO IRUPV )LJV ./ ./f &RVWD ZLGWK ZDV PHDVXUHG DW WKH EDVH DW LWV PD[LPXPf 7KH ILUVW ILYH FRPSOHWH OHDYHV VWLSH VWHP EUDQFK DQG SHULFKDHWLDOf HQFRXQWHUHG LQ VFDQQLQJ HDFK VOLGH ZHUH PHDVXUHG $ UHSUHVHQWDWLYH VWHP OHDI ZDV FKRVHQ IRU WKH PHDVXUHPHQWV IRU ILYH HDFK RI WKH DODU PDUJLQDO LQWUDPDUJLQDO DQG PLGODPLQDU FHOOV DW WKH ORFDWLRQV LQGLFDWHG LQ )LJ '+ 7KH PDUJLQDO LQWUDPDUJLQDO DQG ODPLQDU FHOO PHDVXUHPHQWV ZHUH LQFOXGHG DV DQ DWWHPSW WR TXDQWLI\ WKH OHDI ERUGHU PHQWLRQHG XQGHU WKH PRUSKRORJ\

PAGE 113

VHFWLRQ 7KH ORQJHVW LQQHUf SRVWIHUWLOL]DWLRQ SHULFKDHWLDO OHDYHV ZHUH PHDVXUHG )LJ -f $OWKRXJK WKH VSRURSK\WLF FKDUDFWHUV DSSHDUHG WR EH PRUH RU OHVV FRQVLVWHQW DPRQJ WKH 278V WKH\ ZHUH LQFOXGHG LQ WKH 3& DQDO\VHV WR VHH LI DQ\ VXEWOH GLIIHUHQFHV FRXOG EH GHWHFWHG )LJ .0f 5HVXOWV RI WKH 3ULQFLSDO &RPSRQHQW $QDO\VHV $V HPSKDVL]HG E\ :LOH\ f 3&$ LV QRW UHDOO\ D FOXVWHULQJ WHFKQLJXH GHVLJQHG WR GLVFULPLQDWH EHWZHHQ JURXSV EXW LW FDQ DLG LQ GLVWLQJXLVKLQJ EHWZHHQ JURXSV QRW UHDGLO\ DSSDUHQW LQ WKH RULJLQDO GDWD 7KH EHVW UHVXOWV RI VHYHUDO 3& DQDO\VHV DUH SUHVHQWHG LQ )LJV DQG 7KH ILUVW DQDO\VLV )LJ f LQFOXGHG DOO 278V OLVWHG LQ $SSHQGL[ $f DQG WKH VHFRQG )LJ f WKH 278V RI WKH 5 WR[DULRQ YDU WR[DULRQ DQG 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP FRPSOH[HV LQGLFDWHG ZLWK DVWHULVNV LQ WKH OLVW LQ $SSHQGL[ $f ,Q WKH JUDSKV WKH 278V DUH ODEHOOHG ZLWK WKH RXWO\LQJ SRLQWV FRQQHFWHGf DFFRUGLQJ WR WKH ILQDO VSHFLHV GHWHUPLQDWLRQ LQ WKLV PRQRJUDSK VHH SK\ORJHQ\f 7KH W\SH VSHFLPHQV DUH LQGLFDWHG E\ QXPEHUV DV OLVWHG LQ $SSHQGL[ $ 7KH FKDUDFWHUV WKDW PRVW LQIOXHQFH LH KDYH WKH KLJKHVW HLJHQYDOXHVf HDFK SULQFLSDO FRPSRQHQW D[LVf DUH OLVWHG DORQJ WKH DSSURSULDWH D[HV 2I QRWH LV 3& RI WKH VHFRQG DQDO\VLV )LJ %f LQ ZKLFK RQO\ IHDWXUHV RI WKH VSRURSK\WH VHYHQ FKDUDFWHUVf KDG KLJK IDFWRU ORDGLQJV $OO RUGLQDWLRQV VKRZ VRPH RYHUODS RI 278 FRPSOH[HV UHIOHFWLQJ WKH VRPHWLPHV VXEWOH GLIIHUHQFHV EHWZHHQ WKH ILYH

PAGE 114

UHFRJQL]HG VSHFLHV ,Q DGGLWLRQ WKH DFWXDO VHSDUDWLRQ RI VSHFLHV LQ WKHVH SORWV PD\ QRW EH DGHTXDWHO\ GHSLFWHG VLQFH HDFK JUDSK UHSUHVHQWV RQO\ DSSUR[LPDWHO\ WR b RI WKH WRWDO YDULDWLRQ )LQDOO\ VRPH GLVWLQFWLYH TXDOLWDWLYH FKDUDFWHUV KDYH QRW EHHQ LQFOXGHG LQ WKH GDWD )RU H[DPSOH WKH PRVW GLVWLQFWLYH JURXS 5 SVHXGR WKXLGLXP LQFOXGLQJ 5 KYORFRPLRLGHVf VHSDUDWHV EHVW DORQJ 3& LQ )LJ $ GXH WR WKH HFRVWDWH VWHP OHDYHV DQG WR D OHVVHU H[WHQW DORQJ 3& GXH WR DQ XQXVXDO KDELWf 7KH 5 LPSOH[XP 278V DOWKRXJK FRQVLVWHQWO\ RYHUODSSLQJ ZLWKLQ WKH 5EUDFKYSRGLXP FRPSOH[ JHQHUDOO\ IRUP D UHODWLYHO\ WLJKW JURXS 5LTRGLXP LPSOH[XP LV SULPDULO\ FKDUDFWHUL]HG E\ DQ XQXVXDO KDELW SUREDEO\ QRW ZHOOUHYHDOHG LQ WKHVH DQDO\VHV 7KH QHZ VSHFLHV 5 DGSUHVVXP LV DOVR FKDUDFWHUL]HG E\ VRPH TXDOLWDWLYH IHDWXUHV VXFK DV FHQWUDOL]HG GRUVDO SDSLOODH LQ WKH GHFXUUHQW SRUWLRQ RI WKH OHDI DQG WKH H[WUHPHO\ WKLFN ZDOOV RI WKH LQWUDPDUJLQDO FHOOV 7KH RYHUODS EHWZHHQ 5 DGSUHVVXP DQG 5 EUDFKYSRGLXP DQG 5 WR[DULRQ UHIOHFWV WKH VLPLODU KDELW RI WKH WKUHH VSHFLHV $OVR WKH VWLSH DQG VWHP OHDI VKDSH RI 5 DGSUHVVXP LV PRUH RU OHVV LQWHUPHGLDWH EHWZHHQ WKDW RI 5 EUDFKYSRGLXP DQG 5 WR[DULRQ =RPOHIHU f 7KH ODUJH DQG H[WUHPHO\ YDULDEOH 5 WR[DULRQ DQG 5 EUDFKYSRGLXP FOXVWHUV VKRZ VRPH RYHUODS LQ DOO VFDWWHU GLDJUDPV HYHQ LQ )LJ ZKHUH WKH WKH 278V RI WKH RWKHU WKUHH VSHFLHV ZHUH GHOHWHG 7KLV DQDO\VLV VXSSRUWV WKH K\SRWKHVLV RI 5 EUDFKYSRGLXP 278 QXPEHU f DQG 5

PAGE 115

DUERUHVFHQV 278 QXPEHU f DV EHORQJLQJ WR WKH VDPH HQWLW\ SKHQHWLFDOO\ FORVH WR WKH 5 WR[DULRQ FRPSOH[ &KDUDFWHUV RI 3& KDELW W\SH VWLSH DQG VWHP OHDI VL]H DQG VKDSH LQWUDPDUJLQDO DQG PLGODPLQDU FHOO VL]H DQG VKDSHf EHVW VHSDUDWH WKHVH WZR FRPSOH[HV 7KH YDULDEOH VSHFLPHQV RI WKH 5 WR[DULRQ FOXVWHU LQFOXGH WKH W\SHV IRU VSHFLHV ZLWK IURP &HQWUDO DQG 6RXWK $PHULFD VHH 7DEOH f 7KH LQWHUPL[LQJ RI WKH $IULFDQ 278V 5 NLOLPDQGVFKDULFXP RI FRQWLQHQWDO $IULFD DQG 5 QLYHXP RI 0DGDJDVFDUf ZLWKLQ 5 WR[DULRQ SURSHU &HQWUDO DQG 6RXWK $PHULFDf LQ ERWK DQDO\VHV LQGLFDWHV WKDW WKHVH $IULFDQ VSHFLHV DUH FRQVSHFLILF DQG H[SUHVV WKH JHQHWLF YDULDWLRQ VKRZQ LQ WKH JURXS LQ JHQHUDO LQ WKH 1HZ :RUOG 2I QRWH LV WKDW PHDVXUHPHQWV RI WKH YDULRXV FHOO W\SHV FKDUDFWHUV f WHQGHG WR EH KLJKO\ FRUUHODWHG DV GLG WKH VSRURSK\WLF IHDWXUHV f ,Q VXPPDU\ WKH 3& DQDO\VHV JHQHUDOO\ VXSSRUW WKH ILYH VSHFLHV RI 5LJRGLXP SUHVHQWHG LQ WKLV PRQRJUDSK 5 SVHXGR WKXLGLXP LV WKH PRVW GLVWLQFWLYH GXH WR WKH KDELW OLWWOH EUDQFKHGf DQG HFRVWDWH XSSHU VWHP OHDYHV 5 LPSOH[XP DQG 5 DGSUHVVXP DUH EHVW FKDUDFWHUL]HG E\ JXDOLWDWLYH IHDWXUHV GLVFXVVHG DERYH DQG XQGHU WKHLU UHVSHFWLYH GHVFULSWLRQV ZKLFK IROORZ 5 EUDFKYSRGLXP LQFOXGLQJ 5 DUERUHVFHQVf LV EHVW GLVWLQJXLVKHG IURP 5 WR[DULRQ RQ WKH EDVLV RI OHDI FKDUDFWHUV LQFOXGLQJ WKH VL]H DQG VKDSH RI WKH LQWUDPDUJLQDO DQG PLGODPLQDU FHOOV 7KH VFDWWHU GLDJUDPV JHQHUDOO\ GHSLFW WKH LQFOXVLRQ RI WKH W\SHV RI VSHFLHV

PAGE 116

LQFOXGLQJ IURP $IULFDf ZLWKLQ 5 WR[DULRQ 7KH FRQFHSW RI D PRUH YDULDEOH 5 WR[DULRQ WKXV KDV D GLVMXQFW GLVWULEXWLRQ &HQWUDO6RXWK $PHULFD DQG $IULFDf H[SDQGHG IURP WKH RULJLQDO UHVWULFWHG UDQJH RI +LVSDQLROD DQG &HQWUDO $PHULFD

PAGE 117

7DEOH &KDUDFWHUV XVHG LQ WKH SKHQHWLF DQDO\VHV RI 5LTRGLXP VWLSH OHQJWK VWHP OHQJWK ORQJHVW SULPDU\ EUDQFK OHQJWK VWHP ZLGWK VWLSH OHDI OHQJWK IURP SRLQW RI LQVHUWLRQf VWLSH OHDI ZLGWK VWLSH OHDI DFXPHQ OHQJWK VWLSH OHDI OHQJWKZLGWK VWLSH OHDI DFXPHQ OHQJWKOHDI OHQJWK VWHP OHDI OHQJWK IURP SRLQW RI LQVHUWLRQf VWHP OHDI ZLGWK VWHP OHDI DFXPHQ OHQJWK VWHP OHDI OHQJWKZLGWK VWHP OHDI DFXPHQ OHQJWKOHDI OHQJWK VWHP OHDI GHFXUUHQF\ OHQJWK VWHP OHDI GHFXUUHQF\ OHQJWKWRWDO OHDI OHQJWK FRVWD OHQJWK FRVWD ZLGWK DW EDVH DODU FHOO OHQJWK DODU FHOO ZLGWK DODU FHOO OHQJWKZLGWK PDUJLQDO FHOO OHQJWK PDUJLQDO FHOO ZLGWK PDUJLQDO FHOO OHQJWKZLGWK LQWUDPDUJLQDO FHOO OHQJWK

PAGE 118

7DEOH FRQWLQXHG LQWUDPDUJLQDO FHOO ZLGWK LQWUDPDUJLQDO FHOO OHQJWKZLGWK PLGODPLQDU FHOO OHQJWK PLGODPLQDU FHOO ZLGWK PLGODPLQDU FHOO OHQJWKZLGWK EUDQFK OHDI OHQJWK IURP SRLQW RI LQVHUWLRQf EUDQFK OHDI ZLGWK EUDQFK OHDI OHQJWKZLGWK SHULFKDHWLDO OHDI OHQJWK SHULFKDHWLDO OHDI ZLGWK SHULFKDHWLDO OHDI DFXPHQ OHQJWK VHWD OHQJWK FDSVXOH XUQ OHQJWK FDSVXOH XUQ ZLGWK RSHUFXOXP OHQJWK FDSVXOH PRXWK ZLGWK EHDN OHQJWK H[RVWRPH WRRWK OHQJWK H[RVWRPH WRRWK ZLGWK HQGRVWRPH WRRWK OHQJWK EDVDO PHPEUDQH KHLJKW FLOLD OHQJWK

PAGE 119

),* 0RUSKRORJLFDO )HDWXUHV 0HDVXUHG IRU 3& $QDO\VHV $ +DELW % &URVV VHFWLRQ RI VWHP & 6WLSH OHDI 6WHP OHDI ( $ODU FHOO ) 0DUJLQDO FHOO ,QWUDPDUJLQDO FHOO + 0LGODPLQDU FHOO 6HFRQGDU\ EUDQFK OHDI 3HULFKDHWLDO OHDI 6SRURSK\WH / &DSVXOH 0 3RUWLRQ RI SHULVWRPH $/ IURP 7RQGX] I3LWWLHU 1R %5 5 WR[DULRQf 0 IURP 0DWWHUL t 6FKLDYRQH +HUE 0DWWHUL 5 DGSUHVVXPf 6HH 7DEOH IRU QXPEHUHG FKDUDFWHU OLVW

PAGE 120

PP

PAGE 121

),* 3ORWV RI WKH )LUVW 7KUHH 3ULQFLSDO &RPSRQHQWV IRU 3KHQHWLF $QDO\VLV RI DOO 5LJRGLXP 6SHFLHV $ 3& YV 3& % 3& YV 3& 1XPEHUHG SRLQWV FRUUHVSRQG WR W\SH PDWHULDO OLVWHG LQ $SSHQGL[ $

PAGE 122

3& bf VWLSH DQG VWHP OHDYHVf 3& bf FRVWD VSRURSK\WHf 3& bf KDELW VWLSH DQG VWHP OHDYHV LQWUDPDUJLQDO FHOOV EUDQFK OHDIf

PAGE 123

),* 3ORWV RI WKH )LUVW 7KUHH 3ULQFLSDO &RPSRQHQWV IRU 3KHQHWLF $QDO\VLV IRU 5 WR[DULRQ YDU WR[DULRQ DQG 5 EUDFKYSRGLXP YDU EUDFK\SRGLXP $ 3& YV 3& % 3& YV 3& 1XPEHUHG SRLQWV FRUUHVSRQG WR W\SH PDWHULDO OLVWHG LQ $SSHQGL[ $

PAGE 124

3& bf VSRURSK\WHf 3& bf VWLSH DQG VWHP OHDYHVf

PAGE 125

3+<72*(2*5$3+< 7KH GLVWULEXWLRQ RI 5LJRGLXP )LJ f FRQVLVWV RI IRXU HQGHPLF DXVWUDO 6RXWK $PHULFDQ VSHFLHV 5 EUDFKYSRGLXP 5 DGSUHVVXP 5 LPSOH[XP DQG 5 SVHXGRWKXLGLXP )LJV DQG UHVSHFWLYHO\f DQG D VLQJOH VSHFLHV GLVMXQFW EHWZHHQ 6RXWK $PHULFD DQG $IULFD 5 WR[DULRQ )LJ f 7KH GLVMXQFW 5 WR[DULRQ KDV D PXFK PRUH ZLGHVSUHDG QHRWURSLFDO UDQJH WKDQ WKH RWKHU IRXU VSHFLHV ZKLFK DUH JHQHUDOO\ UHVWULFWHG WR WKH $QGHDQ &RUGLOOHUD LQ VRXWKHUQ &KLOH DQG $UJHQWLQD 7KH UDQJH RI 5 WR[DULRQ LQFOXGHV +LVSDQLROD DQG WKH &HQWUDO $PHULFDQ &RUGLOOHUD DV ZHOO DV WKH $QGHDQ &RUGLOOHUD WKURXJK %ROLYLD (FXDGRU DQG 3HUX WR &KLOH 5LJRGLXP WR[DULRQ RFFXUV DOVR LQ WKH KLJKODQGV RI 9HQH]XHOD DQG &RORPELD DQG DORQJ WKH FRDVWDO UDQJHV 6HUUD GR 0DU DQG 6HUUD GR (VSLQKDJRf RI VRXWKHDVWHUQ %UD]LO EXW KDV EHHQ FROOHFWHG RQO\ LQ WKH KLJKODQGV QHDU 7XFXP£Q LQ $UJHQWLQD ,Q VRXWKHDVW $IULFD 5 WR[DULRQ LV UHVWULFWHG WR WKH HOHYDWHG UDQJHV IURP MXVW VRXWK RI WKH HTXDWRU WR WKH WLS RI $IULFD WKH VSHFLHV RFFXUV DOVR DW RQH ORFDOLW\ LQ QRUWKHUQ 0DGDJDVFDU 7KLV W\SH RI GLVMXQFW 6RXWK $PHULFDQVRXWKHDVWHUQ $IULFDQ GLVWULEXWLRQ SDWWHUQ KDV EHHQ QRWHG IRU VHYHUDO JHQHUD RI EU\RSK\WHV VHH *ULIILQ HW DO *UDGVWHLQ HW D f 7ZR EDVLF WKHRULHV GLVFXVVHG LQ GHWDLO LQ

PAGE 126

*UDGVWHLQ HW DO f KDYH EHHQ HVSRXVHG DV H[SODQDWLRQV IRU LQWHUFRQWLQHQWDO GLVMXQFWLRQV DPRQJ EU\RSK\WHV 6RPH EU\RORJLVWV HJ 6FKXVWHU f DGYRFDWH ORQJGLVWDQFH GLVSHUVDO ZKLOH RWKHUV HJ %XFN DQG *ULIILQ f HPSKDVL]H FRQWLQHQWDO GULIW DV WKH SULPDU\ IDFWRU 5LDRGLXP KDV D UDQJH VLPLODU WR WKDW RI 6TXDPLGLXP EUDVLOLHQVH GLVFXVVHG E\ $OOHQ DQG &URVE\ f 7KH DXWKRUV IROORZ 6FKXVWHUnV f DVVXPSWLRQ WKDW FRQGLWLRQV IRU ZLQG GLVSHUVDO DUH H[WUHPHO\ SODXVLEOH FRQVLGHULQJ WKH SUR[LPLW\ RI WKH FRQWLQHQWV DQG WKH ODWLWXGLQDO UDQJH RI VWURQJ ZHVWHUOLHV +RZHYHU LQ WKHLU RYHUYLHZ RI EU\RSK\WHV ZLWK 6RXWK $PHULFD$IULFDQ GLVWULEXWLRQ %XFN DQG *ULIILQ f FRQFOXGH WKDW ORQJGLVWDQFH GLVSHUVDO LV XQOLNHO\ DV WKH VROH DJHQW FRQVLGHULQJ WKH WD[RQRPLF GLVWULEXWLRQDO DQG HFRORJLFDO GLYHUVLW\ RI WKRVH GLVMXQFWV )XUWKHU VSRUH VXUYLYDO VWXGLHV E\ YDQ =DQWHQ t 3RHV f LQGLFDWH WKDW WURSLFDO EU\RSK\WH VSRUHV DUH OHVV OLNHO\ WKDQ WKRVH RI WHPSHUDWH VSHFLHV WR VXUYLYH WKH ULJRUV RI LQWHUFRQWLQHQWDO ORQJGLVWDQFH GLVSHUVDO GXH WR WKHLU JUHDWHU VHQVLWLYLW\ WR GHVLFFDWLRQ DQG GU\IUHH]LQJ ,Q DGGLWLRQ WKH VSRUHV RI PRVVHV IURP PHVLF KDELWDWV HJ 5LDRGLXPf WHQG WR KDYH OLWWOH UHVLVWDQFH WR H[WHQGHG SHULRGV RI GHVLFFDWLRQ DQG SOHXURFDUSRXV PRVVHV DUH OHVV GURXJKW UHVLVWDQW WKDQ DFURFDUSV 9DQ =DQWHQ f FRQFOXGHV WKDW VXFK WUDQVRFHDQLF WUDQVSRUW DFURVV WKH HTXDWRU YLD GU\ DLU VWUHDPV LQ JHQHUDO LV GLIILFXOW

PAGE 127

7KH IDFW WKDW WKH GLVWULEXWLRQ RI 5LJRGLXP LQ $IULFD LV UHVWULFWHG WR WKH VRXWKHDVWHUQ SRUWLRQ RI WKH FRQWLQHQW LQGLFDWHV WKDW WKH JHQXV PD\ QRW EH DEOH WR FURVV HYHQ PRGHUDWH VL]HG EDUULHUV 5LJRGLXP LV QRW IRXQG LQ PRQWDQH ZHVWHUQ $IULFD DOWKRXJK VXLWDEOH KLJK DOWLWXGH KDELWDWV H[LVW WKHUH HJ LQ &DPHURRQ *ULIILQ SHU FRPPf &RQWLQHQWDO GULIW DQG WKH HIIHFWV RI WKH 3OHLVWRFHQH JODFLDWLRQ PD\ WKXV EH WKH UHDVRQV IRU WKH H[WDQW GLVMXQFW UDQJH SRVVLEO\ UHSUHVHQWLQJ D UHOLFW GLVWULEXWLRQ IURP RQH RULJLQDOO\ ZLGHVSUHDG LQ *RQGZDQDODQG GXULQJ WKH 0HVR]RLF ,QFUHDVLQJ DULGLW\ PD\ KDYH FDXVHG WKH VXEVHTXHQW H[WLQFWLRQ IR WKH JHQXV LQ ZHVWHUQ $IULFD 7KH FHQWHU RI GLYHUVLW\ ZKHUH DOO ILYH VSHFLHV RFFXU LV LQ WKH $QGHDQ &RUGLOOHUD DORQJ WKH &KLOHDQ$UJHQWLQLDQ ERUGHU LQ FHQWUDO &KLOH $V GLVFXVVHG DERYH WKH PRVW DQFHVWUDO VSHFLHV 5 WR[DULRQ KDV D GLVMXQFW DQG D PRUH WURSLFDO GLVWULEXWLRQ WR FD r6f DQG WKH IRXU GHULYHG VSHFLHV HYLGHQWO\ DUH EHWWHU DGDSWHG IRU WHPSHUDWH ODWLWXGHV WR 6f 7KLV PD\ LQGLFDWH WKDW 5LJRGLXP UDGLDWHG DQG VXEVHTXHQWO\ VSHFLDWHGf IURP WKH QRUWKHUQ ODWLWXGHV VRXWKZDUGV WKURXJKRXW 6RXWK $PHULFD 6SHFXODWLRQ DERXW WKH RULJLQDO UDQJHV RI WKH RWKHU IRXU VSHFLHV LV QRW SRVVLEOH WKH\ DUH DOO EDVLFDOO\ V\PSDWULF DQG KDYH SUREDEO\ VSUHDG DORQJ WKH $QGHDQ &RUGLOOHUD WR WKH WLS RI 6RXWK $PHULFD E\ VKRUWGLVWDQFH GLVSHUVDO

PAGE 128

),* 'LVWULEXWLRQ RI WKH *HQXV 5LDRGLXP

PAGE 130

7$;2120,& 75($70(17 5LTRGLXP .XQ]H H[ 6FKZ£JU /LQQDHD >@ 7\SH 5 LPSOH[XP .XQ]H H[ 6FKZ£JU +YSQXP +HGZ VHFWLRQ 5LTRGLXP 6FKZ£JUf & 0 6YQ 3ODQWV SUHGRPLQDQWO\ PHGLXPVL]HG WR PRGHUDWHO\ UREXVW ZLU\ GHQGURLG IURQGRVH WR UDUHO\ VXEVLPSOH HUHFW SHQGHQW RU FUHHSLQJ LUUHJXODUO\ WR UHJXODUO\ SLQQDWHO\ EUDQFKHG VRPHWLPHV KLJKO\ EUDQFKHG DQG IRUPLQJ XQDWWDFKHG PDWV RFFDVLRQDOO\ URRWLQJ DW WLSV RI VWHPV DQG SULPDU\ EUDQFKHV JUHHQ \HOORZJUHHQ WR \HOORZLVK EURZQ RU EURZQLVK JUHHQ RQ WUHH WUXQNV DQG EUDQFKHV RU RFFDVLRQDOO\ RQ ORJV VRLO RU URFNV 5KL]RLGV UHGEURZQ VPRRWK ZLWK REOLTXH HQG ZDOOV RFFXUULQJ RQ VXEVWUDWH VLGHV RI VWRORQV DQG VWHPV VRPHWLPHV FOXVWHUHG DW WLSV RI VWHPV DQG SULPDU\ EUDQFKHV 6WRORQV UHGGLVK EURZQ WR EURZQ FUHHSLQJ DQG DGQDWH WR VXEVWUDWH RIWHQ ZLWK OHVVGHYHORSHG OHDYHV WKDQ WKH UHVW RI WKH SODQW LQ FURVVVHFWLRQ ZLWK DQ RXWHU ULQG RI f f URZV RI VPDOO LQFUDVVDWH FHOOV DQG DQ LQQHU FRUWH[ RI ODUJHU WKLQZDOOHG FHOOV VXUURXQGLQJ D FHQWUDO VWUDQG RI ff YHU\ VPDOO WKLQZDOOHG FHOOV 0DLQ D[HV LQ FURVVVHFWLRQ VLPLODU WR VWRORQ RIWHQ GLIIHUHQWLDWHG LQWR XQEUDQFKHG UHGGLVKEURZQ VWLSH DQG EUDQFKHG VWHP VXUIDFH

PAGE 131

IXUURZHG %UDQFKHV ZLGHVSUHDG WR FORVHO\ VSDFHG RQ VWHLQV FXUYHG RU VWUDLJKW VRPHWLPHV IODJHOODWH $[LOODU\ KDLUV DEXQGDQW LQ OHDI D[LOV DW VWHP DQG EUDQFK WLSV XUQ ORQJ FRQVLVWLQJ RI FHOOV SHU KDLU EDVDO FHOOV VTXDUH SLJPHQWHG ORZHU RQH VRPHWLPHV OLJKWO\ SLJPHQWHGf WHUPLQDO FHOO HORQJDWH URXQGHG DW DSH[ K\DOLQH 3DUDSKYOOLD QRQH 3VHXGRSDUDSKYOOLD QRQH /HDYHV WULPRUSKLF VWLSH VWHP DQG EUDQFKf RU VRPHWLPHV GLPRUSKLF FHOOV LQFUDVVDWH WKURXJKRXW SRURVH ZLWK HYHQ WR XVXDOO\ XQHYHQ ZDOOV DW EDVH DQG PLGODPLQDU UHJLRQV SURUXORVH URXQGHGTXDGUDWH EDVH DQG PDUJLQVf WR REORQJ UKRPELF RU UKRPERLGDO XSSHU DQG PLGODPLQDU UHJLRQVf ODUJHU WKLFNHUZDOOHG FHOOV FRPPRQO\ IRUPLQJ LQWUDPDUJLQDO EDQG RI FHOOV DODU UHJLRQV QRW GLIIHUHQWLDWHG 6WHP OHDYHV FRPPRQO\ FURZGHG RQ VWHPV EURDGO\ RYDWHFRUGDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG DFXPHQ VRPHWLPHV VXEXODWH XVXDOO\ ZLGH VSUHDGLQJ WR VTXDUURVH VSUHDGLQJ WR DSSUHVVHG LQ 5 DGSUHVVXPf ZLWK FODVSLQJ DQG FRQFDYH EDVHV VRPHWLPHV ORQJLWXGLQDOO\ XQGXODWH VRPHWLPHV DXULFXODWH VRPHWLPHV GHFXUUHQW WKHQ RFFDVLRQDOO\ VRPH FHOOV RI GHFXUUHQW SRUWLRQV ZLWK FHQWUDO SDSLOOD RQ WKH GRUVDO VLGHf PDUJLQV HUHFW WR SODQH WR PRUH FRPPRQO\ UHIOH[HG WR UHYROXWH VHUUXODWH WR GHQWDWH DERYH DQG VHUUXODWH GHQWDWH WR VRPHWLPHV FUHQXODWH DW EDVH FRVWD SUHVHQW DQG ZHOO GHYHORSHG RFFDVLRQDOO\ ZHDN WR DEVHQWf HQGLQJ LQ WKH EDVH RI DFXPHQ ZLWK DQ $W\SH FURVVVHFWLRQ VHH .DZDL f VWUDWRVH LQ WKH ORZHU KDOI UXJRVH RQ GRUVDO VXUIDFH

PAGE 132

6WLSH OHDYHV ZLWK VLPLODU VKDSH RULHQWDWLRQ DQG DUHRODWLRQ DV VWHP OHDYHV RIWHQ ZLGHVSUHDG RQ D[LV FRVWD DEVHQW RU UDUHO\ SUHVHQW DQG WKHQ YHU\ ZHDN RU GRXEOH %UDQFK OHDYHV EURDGO\ WR QDUURZO\ RYDWH DFXWH WR VOLJKWO\ DFXPLQDWH HUHFW WR VSUHDGLQJ PDUJLQV VHUUDWH RU VHUUXODWH WR EDVH FRVWD VLQJOH XVXDOO\ ZHOOGHYHORSHG VWURQJO\ EXOJLQJ DED[LDOO\ VWUDWRVH LQ WKH ORZHU KDOI HQGLQJ EHORZ OHDI DSH[ 'LJLFRPV DQWKHULGLDO DQG DUFKHJRQLDO SODQWV LGHQWLFDO DUFKHJRQLDO SODQWV PRUH FRPPRQO\ IRXQG 3HULJRQLD VPDOO DQG EXGOLNH ODWHUDO PRVWO\ DORQJ SULPDU\ EUDQFKHV EXW DOVR DORQJ VWHPV DQG VHFRQGDU\ EUDQFKHV 3HULJRQLDO OHDYHV RYDWH DFXWH WR VKRUWO\ DFXPLQDWH FRQFDYH PDUJLQV HQWLUH DW EDVH DQG VHUUXODWH DERYH FRVWD DEVHQW FHOOV REORQJ WR UKRPELF EHORZ DQG EHFRPLQJ VKRUWHU DERYH $QWKHULGLD FRPPRQO\ f SHU SHULJRQLXP VXEF\OLQGULF RUDQJH RU WLQJHG ZLWK RUDQJH SDUDSK\VHV FHOOV ORQJ VXUSDVVLQJ WKH DQWKHULGLD FRPSRVHG GLVWDOO\ RI K\DOLQH UHFWDQJXODU FHOOV DQG FRPPRQO\ ZLWK TXDGUDWH WKLQQHUZDOOHG SLJPHQWHG FHOOV DW EDVH 3HULFKDHWLD ODWHUDO PRVWO\ DORQJ VWHPV EXW DOVR DORQJ SULPDU\ EUDQFKHV 3HULFKDHWLDO OHDYHV VXEXODWH IURP D QDUURZO\ RERYDWH VKHDWKLQJ EDVH NHHOHG LQ WKH ORZHU KDOI FRQFDYH RIWHQ ZLWK ZKLWLVK RU RUDQJHWLQJHG EDVH ZLWK VSUHDGLQJ WR VTXDUURVH WLSV FRVWD DEVHQW WR YHU\ ZHDN PDUJLQV HQWLUH VLQXRXV WR GHQWLFXODWH QHDU EDVH DQG GHHSO\ VHUUDWH DERYH FHOOV REORQJ WR UKRPELF DW EDVH DQG EHFRPLQJ VKRUWHU DQG IOH[XRXV DERYH SRURVH DW EDVH ZLWK EDVDO FHOOV IUHTXHQWO\

PAGE 133

SDSLOORVH EHDULQJ RQH ODUJH FHQWUDO SDSLOOD RQ WKH GRUVDO VLGHf SURUXORVH $UFKHJRQLD QXPHURXV SHU SHULFKDHWLXP SDUDSK\VHV FHOOV ORQJ VXUSDVVLQJ WKH DUFKHJRQLD FRPSRVHG GLVWDOO\ RI K\DOLQH UHFWDQJXODU FHOOV DQG FRPPRQO\ ZLWK f TXDGUDWH WKLQQHUZDOOHG SLJPHQWHG FHOOV DW EDVH 6SRURSKYWHV LQIUHTXHQW 6HWD HORQJDWH UHGGLVK VPRRWK &DSVXOHV H[VHUWHG KRUL]RQWDO WR LQFOLQHG DV\PPHWULF F\OLQGULF" H[RWKHFLDO FHOOV LQFUDVVDWH WKURXJKRXW LUUHJXODUO\ KH[DJRQDOUKRPELF DW PRXWK UKRPELF DW PLGXUQ OLQHDU DW QHFN 6WRPDWD IHZ DW EDVH RI XUQ HOHYDWHG VXSHUILFLDO SKDQHURSRURXVf RIWHQ KHDYLO\ SLJPHQWHG VXUURXQGHG E\ ff VXEVLGLDU\ FHOOV $QQXOXV GHFLGXRXV FRQVLVWLQJ RI URZV RI UHFWDQJXODU LQFUDVVDWH FHOOV 2SHUFXOXP VKRUW WR ORQJURVWUDWH 3HULVWRPH GRXEOH ([RVWRPH WHHWK \HOORZRUDQJH LQIOH[HG ZKHQ ZHW DQG UHIOH[HG ZKHQ GU\ OLQHDUODQFHRODWH JUDGXDOO\ WDSHUHG FURVVVWULRODWH EHORZ DQG SDSLOORVH DERYH RQ WKH IURQW VXUIDFH ZLWK ]LJ]DJ PHGLDQ OLQH ERUGHUHG ZHDNO\ WUDEHFXODWH RQ IURQW VWURQJO\ WUDEHFXODWH DW EDFN (QGRVWRPH VHJPHQWV DULVLQJ IURP ZHOOGHYHORSHG EDVDO PHPEUDQH OLQHDUODQFHRODWH JUDGXDOO\ WDSHUHG NHHOHG SHUIRUDWH DV ORQJ DV RU VKRUWHU WKDQ WHHWK ILQHO\ SDSLOORVH FLOLD Of QRGRVH SDSLOORVH 6SRUHV VSKHULFDO SDSLOORVH &DOYSWUD FXFXOODWH VPRRWK QDNHG .H\ WR WKH 6SHFLHV RI 5LJRGLXP 7KH EDVHV RI 5LJRGLXP VWHP DQG VWLSH OHDYHV HQFLUFOH DQG WLJKWO\ FODVS WKH D[HV &DUH PXVW EH WDNHQ WR UHPRYH

PAGE 134

WKH HQWLUH OHDI IURP WKH VWHP LQFOXGLQJ WKH GHFXUUHQW EDVDO SRUWLRQV ZKHQ SUHVHQW )LJ &f 6HYHUDO OHDYHV VKRXOG EH H[DPLQHG LQ RUGHU WR DGHTXDWHO\ VDPSOH WKH UDQJH RI YDULDWLRQ ZLWKLQ D VSHFLPHQ 6WHP OHDYHV DUH GHILQHG DV WKRVH IURP WKH PLGGOH WR ORZHU KDOI RI WKH VWHP LH WKURXJK WKH EUDQFKHG SRUWLRQ RI WKH PDLQ D[LV )LJV ) )f 7KH LQWUDPDUJLQDO EDQG RI FHOOV )LJ f LV EHVW GLVFHUQHG XQGHU ORZ SRZHU 3ODQWV H[WUHPHO\ ZLU\ DQG SURIXVHO\ EUDQFKHG ZLWK VHFRQGDU\ DQG WHUWLDU\ EUDQFKHV DW ZLGH DQJOHV WR WKH VWHPV RIWHQ WHUUHVWULDO DQG W\SLFDOO\ IRUPLQJ ODUJH WDQJOHG VWLII XQDWWDFKHG PDWV WXPEOHZHHGVf FRVWD RI VWHP OHDYHV YHU\ ZHOOGHYHORSHG WR VWUDWRVH LQ ORZHU KDOIf 5 LPSOH[XP 3ODQWV VRPHZKDW VWLII WR OD[ ZLWKRXW EUDQFKLQJ SDWWHUQ DV GHVFULEHG DERYH DWWDFKHG WR VXEVWUDWH FRVWD RI VWHP OHDYHV WR VWUDWRVH RU DEVHQW 6WHP DQG VWLSH OHDYHV FORVHO\ DSSUHVVHG WR VWHP WLSV VOLJKWO\ VSUHDGLQJ ZKHQ ZHWf ZLWK SURPLQHQW HORQJDWH GHFXUUHQW DXULFXODWH SURMHFWLRQ DW EDVH FRQWDLQLQJ DW OHDVW D IHZ FHOOV ZLWK D VLQJOH FHQWUDO SDSLOOD LQWUDPDUJLQDO ERUGHU YHU\ ZHOO GLIIHUHQWLDWHG ZLWK URZV RI FHOOV ZLWK PXFK WKLFNHU ZDOOV DQG PXFK VKRUWHU DQG ZLGHU OXPHQV WKDQ WKRVH RI WKH PHGLDQ FHOOV 5 DGSUHVVXP

PAGE 135

6WHP DQG VWLSH OHDYHV VWURQJO\ VSUHDGLQJ WR VTXDUURVH ZHW RU GU\ DXULFXODWH EXW ZLWKRXW ZHOO GHYHORSHG HORQJDWH DXULFXODH DV DERYH LQWUDPDUJLQDO ERUGHU ZHDN WR VWURQJ DQG ZKHQ ZHOOGHYHORSHG XVXDOO\ RI FHOOV ZLWK ORQJHU DQG ZLGHU OXPHQV WKDQ WKRVH RI WKH PHGLDQ FHOOVf $FXPHQ RI VWHP OHDYHV YHU\ ORQJ DW OHDVW RQH KDOI RI WKH WRWDO OHQJWK RI WKH OHDI ,QWUDPDUJLQDO ERUGHU VWURQJ RI URZV RI ODUJHU FHOOV PHGLDQ FHOOV GLVWLQFWO\ SURUXORVH DQG RFFDVLRQDOO\ ZLWK HQG ZDOOV SURMHFWLQJ SURPLQHQWO\ DV ZHOOGHYHORSHG SDSLOODH SURUXODHf RQ WKH GRUVDO VXUIDFH SODQWV ZLWK ORQJ VWUDJJOLQJ VWHPV DQG ZLGHO\VSDFHG s UHJXODUO\ SLQQDWHO\ EUDQFKHG SULPDU\ EUDQFKHV E 5 EUDFKYSRGLXP YDU WDPDUL[ ,QWUDPDUJLQDO ERUGHU ZHDN WR VOLJKWO\ GHYHORSHG PHGLDQ FHOOV SURUXORVH QRW SURMHFWLQJ GRUVDOO\ DV SURPLQHQW SDSLOODHf KDELW YDULRXV EXW XVXDOO\ DUERUHVFHQW RU VWHPV OD[ DQG VXEVLPSOH WR LUUHJXODUO\ EUDQFKHG OD 5 WR[DULRQ YDU WR[DULRQ $FXPHQ RI VWHP OHDYHV VKRUWHU OHVV WKDQ RQH KDOI RI WKH WRWDO OHQJWK RI WKH OHDI

PAGE 136

,QWUDPDUJLQDO ERUGHU QRW ZHOO GLIIHUHQWLDWHG LQWUDPDUJLQDO FHOOV LQWHUJUDGLQJ ZLWK PHGLDQ FHOOVf OHDI FHOOV SURUXORVH PHGLDQ FHOO ZDOOV HYHQO\ WKLFNHQHG DFXPHQ RI VWHP OHDYHV JHQHUDOO\ JUHDWHU WKDQ RI WKH WRWDO OHDI OHQJWK 6HFRQGDU\ EUDQFK OHDYHV RYDWH OHVV WKDQ WLPHV DV ORQJ DV ZLGH OD 5 WR[DULRQ YDU WR[DULRQ %UDQFK OHDYHV ODQFHRODWH WR QDUURZO\ RYDWH DW OHDVW WLPHV DV ORQJ DV ZLGH -XDQ )HUQ£QGH] ,VODQGV HQGHPLFf OE 5 WR[DULRQ YDU UREXVWXP ,QWUDPDUJLQDO ERUGHU ZHOOGLIIHUHQWLDWHG ZLWK ff URZV RI FHOOV ZLWK PXFK WKLFNHU ZDOOV DQG ODUJHU OXPHQV WKDQ WKRVH RI WKH PHGLDQ FHOOV OHDI FHOOV SURUXORVH PHGLDQ FHOO ZDOOV XQHYHQO\ WKLFNHQHG DFXPHQ RI VWHP OHDYHV JHQHUDOO\ OHVV WKDQ RI WKH WRWDO OHDI OHQJWK +DELW DUERUHVFHQW ZLWK FOHDUO\ GLIIHUHQWLDWHG VWLSH VWHP DQG EUDQFK V\VWHP SULPDU\ EUDQFKHV FORVHO\ VSDFHG RQ VWHP FRVWD RI

PAGE 137

VWHP OHDYHV ZHOOGHYHORSHG" PHGLDQ OHDI FHOOV H[WUHPHO\ SURUXORVH ZLWK WKH HQG ZDOOV RFFDVLRQDOO\ SURMHFWLQJ DV ZHOO GHYHORSHG SDSLOODH SURUXODHf E 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP +DELW ZLWKRXW FOHDUO\ GLIIHUHQWLDWHG VWLSH DQG VWHP XVXDOO\ ZLWK YHU\ OLWWOH VHFRQGDU\ DQG HVVHQWLDOO\ QR WHUWLDU\ EUDQFKLQJ SULPDU\ EUDQFKHV ZLGHVSUHDG DQG UHPRWH VWHP OHDYHV RIWHQ HFRVWDWH RU ZLWK D VKRUW GRXEOH RU ZHDN FRVWD PHGLDQ OHDI FHOOV SURUXORVH ZLWKRXW GRUVDOO\ SURMHFWLQJ SDSLOODH 5 SVHXGRWKXLGLXP

PAGE 138

5LJRGLXP WR[DULRQ 6FKZ£JUf -DHT +\SQXP WR[DULRQ 6FKZ£JU 6SHF 0XV 6XSS f 5LJRGLXP WR[DULRQ 6FKZ£JUf -DHJ %HU 6 *DOO 1DWXUZ *HV $G f 7\SH +LVSDQLROD ,QVXOD 6W 'RPLQJR >'RPLQLFDQ 5HSXEOLF"@ QR GDWH $QRQ\PRXV VQ OHFWRW\SH KHUH GHVLJQDWHG >SUREDEOH KRORW\SH@ *f 7KH RULJLQDO FLWDWLRQ RI 6FKZ£JULFKHQ f KDV OLWWOH LGHQWLI\LQJ LQIRUPDWLRQ 2QO\ RQH VSHFLPHQ IURP +HGZLJnV 6FKZ£JULFKHQnVf KHUEDULXP DW LV IURP 6W 'RPLQJR ODEHOOHG DV +\SQXP WR[DULRQf DQG LV OLNHO\ RULJLQDO PDWHULDO LI QRW WKH KRORW\SH LWVHOI +RZHYHU D FRQVHUYDWLYH DSSURDFK LV IROORZHG KHUH DV HVSRXVHG E\ 2UWL] f DQG GLVFXVVHG LQ =RPOHIHU f LQ DYRLGLQJ WKH WHUP KRORW\SH LQ LQVWDQFHV RI XQFHUWDLQW\ OHFWRW\SH LV WKHUHIRUH XVHG LQ WKLV VLWXDWLRQ +\SQXP VROXWXP 7D\O /RQGRQ %RW 5LJRGLXP VROXWXP 7D\Of 3DU ,QG %UYRO 7\SHV (FXDGRU ,PEDEXUD 5LGJH RI 3LVDJXD QHDU 2WRYDOR IHHW > P@ 'U *UHYLOOHnV +HUEDULXP -DPHVRQ VQ OHFWRW\SH )+f 7UHHV RQ ULGJH RI 3LVDJXD -DPHVRQ VQ SUREDEOH LVROHFWRW\SH (f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f +\SQXP DUJHQWLQLFXP & 0 /LQQDHD 5LJRGLXP DUJHQWLQLFXP & 0OOf .LQGE (QXP %UYLQ ([RW 7\SH $UJHQWLQD 7XFXP£Q

PAGE 139

7XFDPHQVLV >7XFXP£Q@ SURSH -XQWDV /RUHQW] VQ OHFWRW\SH %0 SRVVLEOH LVROHFWRW\SH DV VQ ZLWK QR GDWH 1*HQHUDO@ 7RQGX] 3LWWLHU 1R V\QW\SHV 1< 3&f :LWK WKH RULJLQDO GHVFULSWLRQ 5HQDXOG DQG &DUGRW f FLWHG VHYHUDO VSHFLPHQV DVVRFLDWHG ZLWK 3LWWLHU SOXV FROOHFWLRQ QXPEHUV JLYLQJ WKH LPSUHVVLRQ WKDW 3LWWLHU KLPVHOI FROOHFWHG DOO RI WKHVH W\SHV ([DPLQDWLRQ RI WKH ODEHOV RQ WKH VSHFLPHQV FOHDUO\ UHYHDOV WKDW 3LWWLHU DVVLJQHG KLV RZQ QXPEHUV WR WKHVH XQQXPEHUHG FROOHFWLRQV RI 7RQGX] 3LWWLHUV DVVLVWDQW VHH 6D\UH f DQG %LROOH\ DV LQGLFDWHG DERYH +YSQXP NLOLPDQGVFKDULFXP %URWK %RW -DKUE 5LTRGLXP NLOLPDQGVFKDULFXP %URWKf 3DU ,QG %UYRO >@ 7\SHV 7DQ]DQLD .LOLPDQMDUR

PAGE 140

.LOLPDQVFKDUR :DOG EHL 0DUDQJX QWHUHU *UWHOZDOG DQ %£XPHQ P -XQ 9RONHQV OHFWRW\SH KHUH GHVLJQDWHG +%5 LVROHFWRW\SHV -( 6 SRVVLEOH LVROHFWRW\SH DV VQ 0f 5LDRGLXP OHSWRGHQGURQ & 0OO 1XRYR *LRUQ %RW ,WDO Q VHU 7\SHV %ROLYLD &RFKDERPED 3URSH &KRTXHFDPDWD -XQ *HUPDLQ 0OOHU 1R OHFWRW\SH KHUH GHVLJQDWHG 1< LVROHFWRW\SHV + %5 -( 0 6f 5LDRGLXP KDPLUDPHXP & 0OO +HGZLDLD 7\SHV %UD]LO 6DQWD &DWDULQD 6HUUD *HUDO DP :DVVHUIDOO GHV &DSLYDUH -DQ 8OH OHFWRW\SH KHUH GHVLJQDWHG 0 LVROHFWRW\SH +%5f 5LDRGLXP SHUWHQXH & 0OO +HGZLDLD 7\SHV %UD]LO 5LR 'H -DQHLUR 6HUUD GR ,WDWLDLD >,WDWLD\D@ DQ )HOVHQ GHU $JXOKDV 1HJUDV >3LFR GDV $JXOKDV 1HJUDV@ P 'HF 8OH OHFWRW\SH KHUH GHVLJQDWHG 0 LVROHFWRW\SHV )+ +%5f 5LDRGLXP DUDXFDULHWL & 0OO +HGZLDLD 7\SHV %UD]LO 6DQWD &DWDULQD 6HUUD *HUDO DXI GHP %RGHQ GHU $UDXFDULHQZDOGHQ $SU 8OH OHFWRW\SH +%5f DG ODSLGHV 0D\ 8OH V\QW\SH VSHFLPHQ QRW VHHQ SRVVLEOH V\QW\SH DV VQ )+f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f

PAGE 141

5LTRGLXP DUDXFDULHWL YDU FDWHQXODWXP & 0 +HGZLJLD 7\SHV %UD]LO 5LR *UDQGH GR 6XO ([ FRORQLD 3WR $QJHOR DG WUXQFRV SXWUHVFHQWHV WHUUDH LQFXPEHQWHV VLOYD SULPDYDH /LQGPDQ OHFWRW\SH +%5 LVROHFWRW\SHV DV % 6 VSHFLPHQVf 836 SUREDEOH LVROHFWRW\SH DV VQ 6f )RUURPHFFR >)RUURPHFR@ .XQHUW VQ SUREDEOH V\QW\SH .5$0f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f 5LTRGLXP QLYHXP 7KU 5HFXHLO 3XEO 6RF +DYUDLVH (WXG 'LY 8QQXPEHUHG SODWH )LJV 7\SH 0DGDJDVFDU 0W 7VDUDWDQDQD >RU 0W 0DGDJDVFDU@ P $SU 3HUULHU GH OD %£WKLH OHFWRW\SH KHUH GHVLJQDWHG 3& SUREDEOH LVROHFWRW\SHV DV VQ 6 VSHFLPHQVff $OWKRXJK 7KULRW f GLG QRW VSHFLI\ D FROOHFWLRQ QXPEHU IRU 3HUULHU GH OD %£WKLHnV FROOHFWLRQ WKH ODEHO GDWD RI 3HUULHU GH OD %£WKLH IURP 7KULRWnV KHUEDULXP DW 3&f PDWFKHV WKH GDWH DQG HOHYDWLRQ RI 7KULRWnV FLWDWLRQ $GGLWLRQDOO\ WKH VSHFLPHQ LV ODEHOOHG DV 5LTRGLXP QLYHXP 7KU VS QRY 5LTRGLXP QDQRIDVFLFXODWXP & 0OO H[ 7KU 5HY %UYRO Q VU >@ 7\SHV &KLOH &RQFHSFLQ ,VOD 4XLULJXQGD >*XLULTXLQD@ LQ WUXQFLV DUERUXPSXWULGLV 6HS 'XVQ OHFWRW\SH 3& LVROHFWRW\SHV %0 )+ )/$6 *% +%5 -( 0 0,&+ 1< 2 6 : SRVVLEOH LVROHFWRW\SH DV

PAGE 142

f $ 1< &KLOH 0DOOHFR 9LFWRULD 0DU &DPSR % Hr(r RULJLQDO PDWHULDO 3&f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f 5LDRGLXP SHQGXOXP +HU] t 7KU LQ +HU] HW DO %HLK %RW &HQWUDOEO 7\SHV &KLOH &KLOR :HVWSDWDJRQLHQ 3X\XKXDSL >3XHUWR 3X\XJXDSL@ :DOGKDJHQ DP 5DQG GHV 7DOVXPSIHV DQ $UD\DQVWDPPHQ )HE 6FKZDEH E OHFWRW\SH -( LVROHFWRW\SHV -( 3& 6FKZDEH EO V\QW\SHV -( VSHFLPHQVff OHFWRW\SLILFDWLRQ LQ =RPOHIHU f 5LDRGLXP SDOOLGXP 6HKQHP 3HVTXLVDV %RW 3ODWH ;,,' 7\SH %UD]LO 5LR *UDQGH 'H 6XO 6DR )UDQFLVFR GH 3DXOD 7DLPE DG DUERUXP P )HE 6HKQHP KRORW\SH 3$&$f ,QGH[ 0XVFRUXP 6XSSOHPHQWXP &URVE\ f OLVWV WKH ORFDWLRQ RI WKH KRORW\SH DV XQNQRZQ 7KH VLQJOH VSHFLPHQ DW 3$&$ LV FOHDUO\ LQGLFDWHG DV KRORW\SH RQ WKH ODEHO E\ WKH DXWKRU 1R GXSOLFDWHV LVRW\SHVf DUH NQRZQ WR EH GHSRVLWHG HOVHZKHUH 5RQDOGR :DVXP SHUV FRPPf 3ODQWV VPDOO WR ODUJH GHQGURLG RU RFFDVLRQDOO\ VXEVLPSOH HUHFW SHQGHQW RU VRPHWLPHV FUHHSLQJ LUUHJXODUO\ SLQQDWHO\ EUDQFKHG RQ WUHH WUXQNV DQG EUDQFKHV RU RFFDVLRQDOO\ RQ ORJV URFNV RU VRLO JUHHQ WR \HOORZ JUHHQ VRPHWLPHV URRWLQJ DW WLSV RI VWHPV DQG SULPDU\

PAGE 143

EUDQFKHV 6WLSHV ZHOOGHYHORSHG WR FP ORQJ 6WHPV WR f FP ORQJ XP LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ f SHU VWHP VSDFHG PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ JUDGXDOO\ EHFRPLQJ PXFK VKRUWHU DERYH VRPHWLPHV DWWHQXDWH DQG WKHQ RIWHQ URRWLQJ DW WLSVf 6HFRQGDU\ EUDQFKHV JHQHUDOO\ SHU SULPDU\ EUDQFK WR FP ORQJ 7HUWLDU\ EUDQFKHV SUHVHQW 6WHP OHDYHV RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG ORQJ DFXPHQ VXEXODWH [ PP JHQHUDOO\ PXFK ORQJHU WKDQ ZLGH ZLWK OHQJWKZLGWK UDWLR ff VSUHDGLQJ WR VTXDUURVH ZLWK FODVSLQJ DQG FRQFDYH EDVH UDUHO\ DXULFXODWH EDUHO\ GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ PP ORQJ b RI WRWDO OHDI OHQJWKf DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV HUHFW WR SODQH RU QDUURZO\ UHIOH[HG HQWLUH VLQXRXV FUHQXODWH WR VHUUDWH DW EDVH DQG VHUUDWH DERYH FRVWD VLQJOH ZHOOGHYHORSHG EXW UHODWLYHO\ VOHQGHU PP ORQJ f XP ZLGH DW EDVH VWUDWRVH LQ ORZHU KDOI DODU FHOOV TXDGUDWH WR REODWH [ XP PDUJLQDO FHOOV VHULDWH REORQJUKRPELF [ XP LQWUDPDUJLQDO FHOOV fVHULDWH REORQJ [ XP ZLWK WKLFNHU ZDOOV WKDQ WKH PLGODPLQDU FHOOV DQG IRUPLQJ D YHU\ ZHDN LQWUDPDUJLQDO EDQG PLGODPLQDU FHOOV REORQJ WR UKRPELF RU UKRPERLGDO [ XP ZLWK HYHQ ZDOOV ZHDNO\ SURUXORVH 6WLSH OHDYHV ZLWK VLPLODU VKDSH DQG RULHQWDWLRQ DV VWHP OHDYHV

PAGE 144

[ PP DFXPHQ PP ORQJ FRVWD DEVHQW RU UDUHO\ SUHVHQW DQG WKHQ YHU\ ZHDN 6HFRQGDU\ EUDQFK OHDYHV QDUURZO\ RYDWH DFXWH [ PP ZLWK OHQJWKZLGWK UDWLR ff HUHFW VSUHDGLQJ WR VSUHDGLQJ PDUJLQV VHUUDWH 3HULJRQLDO OHDYHV RYDWH DFXWH WR VKRUWO\ DFXPLQDWH [ PP $QWKHULGLD [ XP SDUDSK\VHV FHOOV ORQJ XP ORQJ 3HULFKDHWLDO OHDYHV VXEXODWH [ PP ORQJDFXPLQDWH ZLWK DFXPHQV PP ORQJ EDVDO FHOOV UKRPERLGDO [ XP ZHDNO\ SURUXORVH VRPHWLPHV SDSLOORVH ZLWK RQH ODUJH FHQWUDO SDSLOOD DSLFDO FHOOV UKRPELF VLQXRXV [ XP $UFKHDRQLD XP ORQJ ZLGH DW YHQWHU SDUDSK\VHV FHOOV ORQJ XP 6HWD WR FP ORQJ &DSVXOH XUQ [ PP XSSHU H[RWKHFLDO FHOOV [ XP PHGLDQ H[RWKHFLDO FHOOV [ FHOOV LQ QHFN [ 2SHUFXOXP PP ORQJ ORQJURVWUDWH ZLWK EHDN PP ORQJ ([RVWRPH WHHWK XP ORQJ XP ZLGH DW EDVH (QGRVWRPH VHJPHQWV XP ORQJ XP ZLGH DW EDVH EDVDO PHPEUDQH XP KLJK FLOLD ff XP ORQJ 6SRUHV XP LQ GLDPHWHU &DOYSWUD WR PP ORQJ OD 5LJRGLXP WR[DULRQ 6FKZDTUf -DHT YDU WR[DULRQ 3ODQWV VPDOO WR ODUJH GHQGURLG RU RFFDVLRQDOO\ VXEVLPSOH HUHFW SHQGHQW RU VRPHWLPHV FUHHSLQJ 6WLSHV WR FP ORQJ 6WHPV WR f FP ORQJ XP LQ

PAGE 145

GLDPHWHU 6WHP OHDYHV RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG ORQJ DFXPHQ VXEXODWH [ PP JHQHUDOO\ PXFK ORQJHU WKDQ ZLGH ZLWK OHQJWKZLGWK UDWLR ff DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ 6HFRQGDU\ EUDQFK OHDYHV QDUURZO\ RYDWH [ PP ZLWK OHQJWKZLGWK UDWLR ff 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG &(175$/ $1' 6287+ $0(5,&$ $5*(17,1$ 78&80$1 $UJHQWLQD VXEWURSLFD 7XFDPHQVLV >7XFXP£Q@ SURSH -XQWDV /RUHQW] VQ 6 :f %2/,9,$ $<23$<$ 'HSWR &RFKDEDPED 6DLODSDWD ZHW IRUHVW HSLSK\WH P 1RY *DUGHQDV 13LFR GDV $JXOKDV 1HJUDV@ P -XQ 'XVQ 6f 5,2 *5$1'( '2 68/ *UDPDGR DG OLJQXP VLFFXP LQ VLOYD P 'HF 6HKQHP )/$6 3$&$f (VWDJDR 6DR 6DOYDGRU 0RQWHQHJUR

PAGE 146

DG UXSHV LQ VLOYD P 'HF 6HKQHP )/$6 3$&$f -DTXLUDQD )D]HQGD %RD 9LVWD VREUH WURQFR LQWHULRU GD PDWD P $SU :DVXP HW DO )/$6f 6$17$ &$7$5,1$ &DPSR GRV 3DGUHV %RP 5HWLUR HSLILWR GD PDWD P 'HF 5HLW] ) )+ )/$6 -( 1< 8f &DPSR GRV 3DGUHV %RP 5HWLUR DG DUERUHP P -DQ 6HKQHP )/$6 3$&$f 6HUUD *HUDO DG VD[D LQ DUDXFDULHWR 0D\ 8OH & '8,6 )+ )/$6 *2(7 + -( / 1< 6 836 8:0 :f 6$2 /(232/'2 6£R 6DOYDGRU VXU XQH SLHUUH P 'HF 6HKQHP -(f 6ƒ 3$8/2 0XQLFLSLR GH 3LHGDGH 6HS 9LWDO )/$6 02f &+,/( $,6(1 3DWDJRQLD RFFLGHQWDOLV LQ YDOOH IOXPLQLV $\VHQ >$LVQ@ LQ WUXQFLV DUERUXP -XO 'XVQ $ %0 *% + 0,&+ 6f $5$8&2 5LGJH 6 RI &HUUR /DQDOKXH 6: RI /DJR /DQDOKXH )XQGR 7UDQTXLYRUD NP DORQJ URDG ZKLFK LQWHUVHFWV URDG 3 ZHVWHUQ IRRWKLOOV RI &RUGLOOHUD 1DKXHOEXWD fn6 rn: RQ VOHQGHU EUDQFKHV P )HE &URVEY 02f &$87,1 )XQGR (O 0DQ]DQR FD NP ( RI &XQHR ZKLFK LQ WXUQ LV FD NP 6( RI 7HPXFR IRUHVW PDLQO\ RI 1RWKRIDJXV REOLFUXD DQG 1 DOSLQD RQ ORJ LQ ZHW IRUHVW P -XQ /DQGUXP 02f &+,/2( :HVWSDWDJRQLHQ 3XHUWR 3X\XKXDSL QR GDWH +HU]RJ -(f &21&(3&,21 0DXO 1 RP &RURQHO VNRJ VNXJJLJD IXNWLJD VW£OOHQ >IRUHVW VKDG\ GDPS SODFHV@ -XO 6NRWWVEHUT t 6NRWWVEHUD *%f &248,0%2 &RQVWLWXFLQ 0RQWH )UD\ -RUJH DQ %DXUQHQ 6HS 5HLFKH +f 1RUGFKLOH )UD\ -RUJH >0RQWH )UD\ -RUJH@ 0D\

PAGE 147

+HU]RJ -(f -8$1 )(51$1'(= ,6/$1'6 ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ LQ MXJR VXSUD 9DUDGHUR LQ VLOYD 'LFNVRQLD P )HE 6NRWWVEHUD t 6NRWWVEHUD *% + 1< 6 836f ,VOD 0£V D 7LHUUD >,VOD 5ELQVRQ &UXVRH@ 9DOOH &RORQLDO 4XHEUDGD 6HFD VWXEEDU Y VWDPEDVHU P 'HF 6NRWWVEHUD t 6NRWWVEHUD *% + 6f ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ 4XHEUDGD GHO 0RQR VNRJ LQ VLOYD P )HE 6NRWWVEHUD t 6NRWWVEHUD %0 *% + 1< 6f //$148,+8( %HL &D\XWX /DJR 7RGRV 6DQWRV DXI )DOOKRO] :ROIIKDHO VQ -(f 0$//(&2 $ORQJ WUDLO IURP ZHVWHUQ HQWUDQFH RI 3DUTXH 1DFLRQDO &RQWXOPR NP E\ URDG ( RQ &RQWXOPR &RUGLOOHUD 1DKXHOEXWD rn6 rn: RQ WUHH EDVH P )HE &URVEY 02f )/$6 02f 262512 3DUTXH 1DFLRQDO 3X\HKXH FD NP ( RI 2VRUQR $JXDV &DOLHQWHV IRUHVW PDLQO\ RI 1RWKRIDDXV VSS DQG (XFU\SKLD FRUGLIROLD 0\UWDFHDH IRUHVW RQ IDOOHQ WUXQN P )HE /DQGUXP 02f 9$/',9,$ NP E\ URDG 1 RI 0HKXLQ 6 RI 4XHXOH n6 rn: VWUHDP YDOOH\ LQ ZHOO VKDGHG IRUHVW SHQGHQW IURP WUHH P -DQ &URVEY 02f $XI %DXPZXU]HOQ EHL 9DOGLYLD 'HF +HU]RJ )+ %0 + -( 0f &XQFR3DQJXLSXOOL DG DUERUHV $XJ +ROOHUPDYHU D 6 :f 9$/3$5$,62 /LPDFKH 4XHEUDGD /RUHWRf VXU XQH JUDQGH URFKH KXPLGH $SU /RRVHU *f &2/20%,$ %2<$&$ &DPLQR GH 6RDW£ DO $OWR GH 2Q]DJD HQ TXHEUDGD D OD L]TXLHUGD GHO FDPLQR ERVTXH FRQ TXHUFHWXP

PAGE 148

P 1RY +DPPHQ t -DUDPLOOR )/$6f &$8&$ $ERYH 7DFXH\ UR /SH] 1: VORSHV RI 1HYDGR GHO +XLOD &RUGLOOHUD &HQWUDO &LQFKRQD IRUHVW P 0D\ 6WHHUH )/$6f &8',1$0$5&$ %XVFKJUWHO EHU =LSDTXLUD EHL %RJRW£ P 7UROO -( 6f 1257( '( 6$17$1'(5 3DPSRORQD QR GDWH $ULVWH-RVHSK 1
PAGE 149

&RQVWDQ]D KXPLG VWHHS UDYLQH $UUR\R 'RPLQJRf DQG DGMDFHQW ILHOGV P $SU %XFN 1
PAGE 150

DQG XSSHU VORSHV HSLSK\WH RQ WUHH EDUN P 0D\ 6WHYHUPDUN &$10 ) )+ 0,&+f +$,7, $57,%21,7( 0RUQH GH /D 6HOOH >0RQWDJQH 7HUULEOH@ 2VPDQ WUHHVVWXPSV LQ KDUGZRRG IRUHVW P 0D\ +ROGULGJH )+ )/$6 0,&+ 10RQW GH &RPPLVVDLUHV@ KDUGZRRG DUHD LQ SLQHODQGV RQ EDUN $SU 0DFNDQHVV 0,&+ 1
PAGE 151

3(58 &21780$=$ 'HSWR &DMDPDUFD 3DVV GHV &HUR &XQDQWDQ VGOLFK YRQ &RQWXPD]£ %DXP XQG 6WUDXFK P 6HS +HDHZDOG t +HDHYDOG )/$6 18UXJXD\ 5LYHU@ )HE &DVWHOODQRV VQ )+f 9(1(=8(/$ 3URSH &RORQLDP 7RYDU )HQGOHU %0 )+ )/$6 + 1< 2 6f 0(5,'$ 'LVWULWR 5LYDV '£YLOD 3£UDPR /D 1HJUD DERYH WKH WRZQ RI %DLODGRUHV RQ WUXQN RI WUHH P 6HS *ULIILQ HW DO $/7$ &$10 '8.( ) )/$6 0,&+ 02 1$0 1< 8f 758-,//2 /D 4XHEUDGD &RUWLMR DORQJ /DUD7UXMLOOR ERXQGDU\ OLQH DERYH +XPRFDUR %DMR GHQVH ZRRGV EHORZ S£UDPR DQG ULGJH WRS P )HE 6WHYHUPDUN ) )+f =8/,$ 'LVWULWR 3HULM£ 6HUUDQD GH ORV 0RWLORQHV 6LHUUD GH 3HULM£ GHQVH PL[HG EURDGOHDYHG IRUHVW P -XQ -XO 7LOOHW HW DO )/$6f $)5,&$ 0$'$*$6&$5 0W 7VDUDWDQDQD >RU 0W 0DGDJDVFDU@ P 0DU 3HUULHU GH OD %£WKLH VQ +f 0$/$:, 08/$1-( 6RXWKHUQ 3URYLQFH 0XDQMH 0WV /LFKHQ\D 3ODWHDX rn6 rn( P 0DU 5ZDUGHQ 2 9%,f

PAGE 152

02=$0%,48( 0$1,&$ ( 62)$/$ *RURQJRVD 0W QHDU *RJR 3HDN VWUHDP EDQN URFN GHHS VKDGH LQ IRUHVW P -XO 6FKHORH %0 & 6f 5+2'(6,$ >=,0%$%:(@ ,1<$1*$ ,Q\DQJD 'LVWULFW : VORSH RI /LWWOH ,Q\DQJDQL % .94 PL[HG HYHUJUHHQ IRUHVW RQ WUHH P 2FW 7 0OOHU / 02f 6287+ $)5,&$ 75$169$$/ 0DULHSVNRS 3ODQWDWLRQ 1DWXUH 5HVHUYH NP 1 RI 3LOJULPnV 5HVW 6 ( JULG '%f YLFLQLW\ RI SRZHU SODQW MXVW EHORZ UDGDU VWDWLRQ WHUUHVWULDO LQ VKDGH RI URFNV P -DQ &URVE\ t &URVE\ '8.( / 02f 0DULHSVNRS FHQWUDO VXPPLW :LGGULQJWRQLD3RGRFDUSXV VWDQG RQ JURXQG DQG HSLSK\WLF P 'HF 9RUVWHU E /f 7$1=$1,$ $586+$ $UXVKD 1DWLRQDO 3DUN ( VORSHV RI 0HUX &UDWHU DORQJ WUDLOV EHWZHHQ .LWRWR DQG &DELQ DW 1MHNX FD NP (6( RI VXPPLW RI DVK FRQH LQ 0HUX &UDWHU r6 r ( QHDU VWUHDP RQ WUHH 'HF &URVE\ t &URVE\ $ 02f .,/,0$1-$52 .LOLPDQMDUR 0WV EHKLQG WKH 0DQGDUD%LVPDUN +XW KLJK DOWLWXGH PRVV\ IRUHVW RI +DTHQLD DE\VVLQLFD3RGRFDUSXV PLODQLLDQXV P 6HS 3RHV % 9%,f 0252*252 0RURJRUR 'LVWULFW 8OXJXUX 0WV 1( ULGJH RI %RQGZD SHDN KLJK DOWLWXGH PRVV\ IRUHVW RQ EDUN P 6HS 3FV % / 02 9%,f 7$1*$ :HVW 8VDPEDUD 0WV 6KDJD\X )RUHVW 5HVHUYH NP 6: RI WKH 6KDJHLQ SHDN RQ D VXPPLW PRVV\ FORXG IRUHVW

PAGE 153

OLJQLFRORXV P 0DU %RUKLGL $% ) 02 836 9%,f 5LJRGLXP WR[DULRQ YDU WR[DULRQ FRPPRQO\ LV DQ HSLSK\WH RQ WUHH WUXQNV DQG EUDQFKHVf DQG DOVR JURZV RQ D YDULHW\ RI RWKHU VXEVWUDWHV ORJV URFNV VWXPSV VRLOf *HQHUDOO\ WKH VSHFLHV RFFXUV LQ GDPS KLJK HOHYDWLRQ IRUHVWV UDLQ IRUHVWV FORXG IRUHVWV IRJ IRUHVWV HOILQ IRUHVWVf DV ZHOO DV LQ PRUH H[SRVHG KDELWDWV VXFK DV S£UDPRV UDYLQHV DQG GLVWXUEHG DUHDV $V GHILQHG KHUH 5 WR[DULRQ YDU WR[DULRQ LV WKH PRVW ZLGHVSUHDG WD[RQ LQ WKH JHQXV ZLWK D GLVMXQFW GLVWULEXWLRQ LQ &HQWUDO6RXWK $PHULFD DQG HDVWHUQ $IULFD )LJ f ,Q $IULFD 5 WR[DULRQ YDU WR[DULRQ RFFXUV DW WR P JHQHUDOO\ LQ PL[HG HYHUJUHHQ UDLQ IRUHVWV GRPLQDWHG E\ 3RGRFDURXV 2FRWHD &YDWKHD DQG (ULFDf RU LQ HOILQ IRUHVWV RU IRJ IRUHVWV GRPLQDWHG E\ SODQWV VXFK DV WUHH IHUQV &YDWKHDf ,Q &HQWUDO $PHULFD WKH YDULHW\ KDV EHHQ FROOHFWHG LQ KLJK DOWLWXGH IRUHVWV FD WR Pf FKDUDFWHUL]HG E\ VXFK WUHH VSHFLHV DV 0DJQROLD 'RPLQLFDQ 5HSXEOLFf RU 3LQXV 2XHUFXV 3RGRFDURXV $OQXV /LDXLGDPEDU DQG &OHWKUD 0H[LFRf ,Q QRUWKHUQ 6RXWK $PHULFD &RORPELD 9HQH]XHOD (FXDGRU 3HUX DQG %ROLYLDf D UDQJH RI UHODWLYHO\ KLJKHU HOHYDWLRQV RI WR LV UHSRUWHG &RORPELDQ IRUHVWV DUH GRPLQDWHG E\ 2XHUFXV :HLQPDQQLD &OHWKUD DQG &KLQFKRQD LQ 9HQH]XHOD 5 WR[DULRQ YDU WR[DULRQ KDV EHHQ FROOHFWHG LQ WKH SDUDPRV &ROOHFWLRQV IURP VRXWKHDVWHUQ %UD]LO ZKHUH $UDXFDULD FRPPRQO\ GRPLQDWHV WKH IRUHVWf FLWH

PAGE 154

UHODWLYHO\ ORZHU DOWLWXGHV WR Pf WKDQ LQ WKH QRUWKHUQ SDUWV RI 6RXWK $PHULFD DOWKRXJK D IHZ VSHFLPHQV ZHUH FROOHFWHG DW WR P )LQDOO\ DW WKH VRXWKHUQPRVW OLPLW RI WKH GLVWULEXWLRQ DORQJ WKH $QGHDQ &RUGLOOHUD LQ &KLOH )LJ f 5 WR[DULRQ YDU WR[DULRQ FRQVLVWHQWO\ RFFXUV DW ORZHU HOHYDWLRQV WR Pf WKDQ LQ WKH UHVW RI LWV UDQJH FRPPRQO\ LQ IRUHVWV GRPLQDWHG E\ 1RWKRIDJXV ZLWK (XFUYSKLD 0YUFHXTHQLD $H[WR[LFRQ /DXUHOLD DQG :HLQPDQQLDf ,Q DGGLWLRQ WKLV YDULHW\ LV IRXQG RQ ERWK LVODQGV ,VOD $OHMDQGUR 6HONLUN DQG ,VOD 5RELQVRQ &UXVRHf RI WKH -XDQ )HUQ£QGH] ,VODQGV 5LTRGLXP WR[DULRQ LV EDVDO LQ WKH SK\ORJHQ\ RI 5LTRGLXP VSHFLHV )LJV f DQG LV PHWDSK\OHWLF DV ZHOO VLQFH QR DXWDSRPRUSKLHV GHILQH LW 7KH SODQWV DUH W\SLFDOO\ DUERUHVFHQW ZLWK WKH DQFHVWUDO OHDI W\SH )LJV % $ DQG 'f LH ZLWK D ZHDN GHFXUUHQF\ VHH FKDSWHU RQ SK\ORJHQ\f 7KH VWHP OHDYHV DOVR WHQG WR EH ORQJHU WKDQ ZLGH )LJ 'f ZLWK ORQJ DFXPHQV )LJ (f 7KH LQWUDPDUJLQDO EDQG DOWKRXJK GLIIHUHQWLDWHG LV FRPSRVHG RI FHOOV ODUJHU DQG YHU\ VOLJKWO\ WKLFNHUZDOOHG WKDQ WKH PLGODPLQDU FHOOV )LJ f DQG LV DOPRVW LQGLVFHUQLEOH LQ VXUIDFH YLHZ )LJ .f ,Q DGGLWLRQ WKH PLGODPLQDU FHOOV DUH YHU\ ZHDNO\ SURUXORVH ZLWK HYHQ ZDOOV )LJ -f LQ PDUNHG FRPSDULVRQ WR WKH RWKHU VSHFLHV LQ WKH JHQXV 7KH HSLWKHW RI 5 WR[DULRQ LV WKH ROGHVW LQ WKH JHQXV RULJLQDOO\ GHVFULEHG VXE +\SQXP 6FKZ£JULFKHQ f DQG ODWHU WUDQVIHUUHG WR 5LTRGLXP -DHJHU f 6LQFH 5

PAGE 155

WR[DULRQ LV D ZLGHVSUHDG DQG YDULDEOH VSHFLHV VSDQQLQJ WZR FRQWLQHQWV SRSXODWLRQV FKDUDFWHUL]HG E\ FHUWDLQ VOLJKW YDULDWLRQV ZHUH RIWHQ DVVLJQHG LQGLYLGXDO VSHFLHV QDPHV $V QRWHG LQ WKH FKDSWHU RQ 7D[RQRPLF +LVWRU\ WKLV SURFHVV UHVXOWHG LQ PXFK FRQIXVLRQ FRQFHUQLQJ WKH GHOLPLWDWLRQ RI VSHFLHV ZLWKLQ WKH ZKROH JHQXV HVSHFLDOO\ WKH HSLWKHWV WKDW DUH UHGXFHG LQ V\QRQ\P\ XQGHU 5 WR[DULRQ YDU WR[DULRQ LQ WKLV UHYLVLRQ VHH 7DEOH f )RU H[DPSOH DOWKRXJK 5 WR[DULRQ ZDV RULJLQDOO\ GHVFULEHG IURP +LVSDQLROD WKH QDPH FRPPRQO\ EHFDPH DVVRFLDWHG LQ IORUDV ZLWK VSHFLPHQV IURP 6RXWK $PHULFD ZKLOH 5 TUDFLOH RULJLQDOO\ GHVFULEHG IURP &RVWD 5LFDf ZDV DVVRFLDWHG ZLWK &HQWUDO $PHULFD 6RPH FROOHFWLRQV LQ %UD]LO 5 QDQRIDVFLFXODWXP DQG WR D OHVVHU H[WHQW 5 DUDXFDULHWL DQG 5 KDPLUDPHXPf WHQG WR KDYH DFXPHQ OHQJWKV DW WKH VKRUWHU HQG RI WKH VSHFWUXP IRU 5 WR[DULRQ D IHDWXUH ZKLFK LV IRXQG WKURXJKRXW WKH UDQJH RI YDULDWLRQ RI WKH VSHFLHV 5LTRGLXP OHSWRGHQGURQ DVVRFLDWHG ZLWK %ROLYLD SUHVXPDEO\ LV FKDUDFWHUL]HG E\ DEXQGDQW FDSVXOHV 0OOHU Df D IHDWXUH DOVR IRXQG WR EH XQH[FHSWLRQDO ZLWKLQ WKH WRWDO YDULDWLRQ RI 5 WR[DULRQ 0XFK FRQIXVLRQ LQ WKH OLWHUDWXUH FRQFHUQV 5 VROXWXP RULJLQDOO\ GHVFULEHG IURP (FXDGRU E\ 7D\ORU f 0OOHU f QRWHG LWV VLPLODULW\ WR 5 LPSOH[XP DQG ODWHU f GLVWLQJXLVKHG 5 DUJHQWLQLFXP IURP 5 VROXWXP RQ WKH EDVLV RI FDSVXOH FKDUDFWHUV ZLWKRXW VSHFLI\LQJ WKHVH FKDUDFWHUV RU GHVFULELQJ HLWKHU FDSVXOH W\SH 0LWWHQ f FRQIXVHG

PAGE 156

PDWWHUV IXUWKHU E\ SODFLQJ 5 +\SQXPf VROXWXP LQ V\QRQ\P\ ZLWK 5 +YSQXPf WR[DULRQ DORQJ ZLWK 5 +YSQXPf LPSOH[XP DQG 5 +YSQXPf EUDFK\SRGLXP 3UREDEO\ GXH WR WKH JUHDW GLVWDQFH VHSDUDWLQJ $IULFD DQG 6RXWK $PHULFD LW DSSDUHQWO\ GLG QRW RFFXU WR EU\RORJLVWV WKDW FROOHFWLRQV IURP WKHVH WZR FRQWLQHQWV PD\ EH HTXLYDOHQW %URWKHUXV f GLVWLQJXLVKHG 5 NLOLPDQGVFKDULFXP IURP 7DQ]DQLDf IURP WKH 6RXWK $PHULFDQ 5LTRGLXP VSHFLHV E\ WKH GHOLFDWHn DSSHDUDQFH RI WKH $IULFDQ SODQWV ZKLFK KDG DWWHQXDWH EUDQFKHV IUHTXHQWO\ URRWLQJ DW WKH WLSV )LJ .f 7KLV IHDWXUH LV DFWXDOO\ QRW DW DOO XQFRPPRQ LQ WKH 6RXWK $PHULFDQ VSHFLPHQV RI 5 WR[DULRQ YDU WR[DULRQ ,Q IDFW WKH $IULFDQ FROOHFWLRQV H[KLELW D ZLGH UDQJH RI PRUSKRORJLFDO YDULDWLRQ LQ SODQW DQG OHDI VL]H )LJ /1f FRPSDUDEOH WR WKDW IRXQG LQ WKH 6RXWK $PHULFDQ VSHFLPHQV )LJ )+f 7KULRW f GHPDUFDWHG 5 QLYHXP 0DGDJDVFDUf IURP 5 NLOLPDQGVFKDULFXP FRQWLQHQWDO $IULFDf RQ WKH EDVLV RI WKH HQWLUH WR ZHDNO\ VLQXDWH PDUJLQV REORQJ PHGLDQ FHOOV DQG URXQG PDUJLQDO FHOOV RI WKH IRUPHU )LJ 'ff§DOO FKDUDFWHU VWDWHV IRXQG ZLWKLQ WKH YDULRXV VSHFLPHQV LQ HDVWHUQ $IULFD )LJ $-f DV ZHOO DV WKRVH IURP &HQWUDO DQG 6RXWK $PHULFD 6RPH VSHFLPHQV RI 5 WR[DULRQ YDU WR[DULRQ DUH OD[ SRRUO\ EUDQFKHG DQG VWHULOH )LJ $f DOWKRXJK WKH FROOHFWLRQV PD\ FRQWDLQ SURIXVH VWHPV 7KHVH OD[ DQG VWHULOH VSHFLPHQV IRXQG LQ WKH ORDQ PDWHULDO H[KLELW D FXULRXV GLVWULEXWLRQ )LJ f WKH\ DUH UHVWULFWHG WR

PAGE 157

ORFDWLRQV DW WKH VRXWKHUQPRVW SDUW RI WKH UDQJH RI 5 WR[DULRQ LQ &KLOH FD r6 WR r6f ZKHUH WKH VSHFLHV RFFXUV DW PXFK ORZHU DOWLWXGHV WKDQ IXUWKHU QRUWK LQ 6RXWK $PHULFD RU LQ $IULFD $ VSHFLHV 5 SHQGXOXPf ZDV GHVFULEHG IRU WKLV IRUP E\ +HU]RJ DQG 7KULRW LQ +HU]RJ f ,Q DGGLWLRQ WR WKH SRRUO\ GHYHORSHG VWHPV WKH VWHP OHDYHV DUH DOVR YHU\ UHGXFHG )LJ ,%f EXW KDYH WKH FKDUDFWHULVWLFV RI ODUJHU 5 WR[DULRQ YDU WR[DULRQ OHDYHV ,Q DGGLWLRQ VRPHWLPHV D VSHFLPHQ ZLWK D W\SLFDO UREXVW DUERUHVFHQW KDELW KDV VXFK OD[ VWHPV DWWDFKHG )LJ &(f WKHUHE\ HVWDEOLVKLQJ 5 SHQGXOXP DV D PLQRU YDULDQW RI 5 WR[DULRQ JURZLQJ DW WKH OLPLW RI WKH UDQJH RI WKH VSHFLHV OE 5LJRGLXP WR[DULRQ YDU UREXVWXP %URWK LQ 6NRWWVEf =RPOHIHU YDU QRY 5LJRGLXP UREXVWXP %URWK LQ 6NRWWVE 1DW +LVW -XDQ )HUQDQGH] f 7\SHV &KLOH -XDQ )HUQ£QGH] ,VODQGV 0£V D 7LHUUD >,VOD 5ELQVRQ &UXVRH@ 6DOVLSXHGHV VQ£UVNRJ £ VWHQLJ NDPLQ VLOYD ODSLGRVD MXJL P -DQ 6NRWWVEHUD t 6NRWWVEHUD OHFWRW\SH KHUH GHVLJQDWHG +%5 LVROHFWRW\SHV *% -( 6 LVROHFWRW\SH DV SS 6f 5LJRGLXP ORRVHUL 7KU 5HY &KLO +LVW 1DW 3ODWH ;9,, )LJV DI 7\SHV &KLOH -XDQ )HUQ£QGH] ,VODQGV ,VOD 0£V D 7LHUUD >,VOD 5ELQVRQ &UXVRH@ FKHPLQ DX 3RUWH]XHOR )HE /RRVHU SS OHFWRW\SH KHUH GHVLJQDWHG 3& LVROHFWRW\SHV *

PAGE 158

SUREDEOH LVROHFWRW\SH DV % % SRVVLEOH LVROHFWRW\SHV DV VQ )+ :f &+,/( -XDQ )HUQ£QGH] ,VODQGV $SU %HUWHUR VQ V\QW\SHV 3&f 3ODQWV PHGLXP WR ODUJH GHQGURLG HUHFW RU VRPHWLPHV SHQGHQW 6WLSHV WR FP ORQJ 6WHPV WR FP ORQJ XUQ LQ GLDPHWHU 6WHP OHDYHV RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG ORQJ DFXPHQ VXEXODWH [ PP ORQJHU WKDQ ZLGH ZLWK OHQJWKZLGWK UDWLR ff DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ 6HFRQGDU\ EUDQFK OHDYHV YHU\ QDUURZO\ RYDWH [ PP ZLWK OHQJWKZLGWK UDWLR ff 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG &+,/( -8$1 )(51$1'(= ,6/$1'6 ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ LQQHUPRVW DFFHVVLEOH SDUW RI 4XHEUDGD &DVDV PRLVW VKDGHG OHGJH RI FOLII EHVLGH VWUHDP 1RY +DWFKHU t (QJHO $ )+ 1,VOD 5RELQVRQ &UXVRH@ 4XHEUDGD )UDQFHV VORSH RI &RUGRQ &KLIODGRUHV RQ 'ULPYV -DQ .XQNHO 0 +f" ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ 4XHEUDGD GH ODV &DVDV LQ FDQ\RQ RQ PRLVW ZDOO -DQ 6NRWWVEHUD t 6NRWWVEHUD 0 + 6f ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ 6DQFKH]7ROWHQ IRUHVW RQ GHDG SURVWUDWH OXPD U0YUFHXJHQLDO WUXQN P )HE 6NRWWVEHUD t 6NRWWVEHUD 0 )+ *% + 6 836f ,VOD 0£V D 7LHUUD >,VOD 5RELQVRQ &UXVRH@ 4XHEUDGD 'DPDMXDQD LQ KXPLG IRUHVW P 0DU 6NRWWVEHUD t 6NRWWVEHUD 0

PAGE 159

6f ,VOD 0£V D 7LHUUD >,VOD 5RELQVRQ &UXVRH@ ULGJH EHWZHHQ 5DEDQDO DQG 4XHEUDGD 3LHGUD $JXMHUHDGD P 0DU 6RDUUH 0 + 6 836f 5LTRGLXP WR[DULRQ YDU UREXVWXP LV UHVWULFWHG WR ,VOD $OHMDQGUR 6HONLUN ,VOD 0£V $IXHUDf DQG ,VOD 5ELQVRQ &UXVRH ,VOD 0£V D 7LHUUDf RI WKH -XDQ )HUQ£QGH] ,VODQGV 7KH YDULHW\ RFFXUV LQ PRLVW IRUHVWV DQG DOVR PRUH H[SRVHG DUHDV VXFK DV URDG DQG VWUHDP EDQNVf DW UHODWLYHO\ ORZ HOHYDWLRQV WR Pf 7KLV YDULHW\ VKDUHV WKH FKDUDFWHUV GLVFXVVHG IRU 5 WR[DULRQ YDU WR[DULRQ DQG KDV WKH DXWDSRPRUSK\ RI QDUURZ EUDQFK OHDYHV OHQJWKZLGWK UDWLR DYHUDJLQJ FRPSDUHG WR FD IRU 5 WR[DULRQ YDU WR[DULRQf LQ DGGLWLRQ WR WKH UHVWULFWHG GLVWULEXWLRQ 7KH VWHP OHDYHV RI 5 WR[DULRQ YDU UREXVWXP WHQG WR EH ODUJH FD [ PPf ZLWKLQ WKH VL]H UDQJH RI WKH VSHFLHV DQG WKH XSSHU VWHP OHDYHV LQ SDUWLFXODU WHQG WR JUDGXDOO\ UDWKHU WKDQ DEUXSWO\f WDSHU WR D UHODWLYHO\ VKRUW DFXPHQ )LJ & DQG 'f $V QRWHG E\ 5RELQVRQ f VSHFLPHQV RI 5 WR[DULRQ YDU UREXVWXP 5 UREXVWXPf DUH QRW QHFHVVDULO\ ODUJH DOWKRXJK %URWKHUXV f RULJLQDOO\ GHVFULEHG WKH SODQWV DV UREXVW ZLWK WKH QDNHG H\H +RZHYHU PDQ\ KDELWV GR KDYH D VWRXW DSSHDUDQFH )LJ $f SUREDEO\ GXH WR WKH ODUJH VWHP OHDYHV DQG WKH VSUHDGLQJ QDUURZO\ ODQFHRODWH EUDQFK OHDYHV )LJ (f ZKLFK PD\ DGG WR WKH DSSHDUDQFH RI EXON WR WKH VWHPV DQG EUDQFKHV UHVSHFWLYHO\ 'XH WR WKH RIWHQ ODUJH VWHP

PAGE 160

OHDYHV ZLWK VRPHZKDW VKRUW DFXPHQV VSHFLPHQV 5 WR[DULRQ YDU UREXVWXP DV 5 UREXVWXPf KDYH RIWHQ EHHQ DQQRWDWHG DV 5 DUERUHVFHQV 5 EUDFKYSRGLXP LQ WKH SUHVHQW VWXG\f 7KH FRQIXVLRQ FRQFHUQLQJ WKHVH VSHFLHV LV GLVFXVVHG LQ GHWDLO XQGHU 5 EUDFKYSRGLXP EXW EDVLFDOO\ 5 WR[DULRQ YDU UREXVWXP ODFNV WKH DSRPRUSKLF FKDUDFWHU VWDWHV HJ VWURQJ ERUGHU SURUXORVH DQG SRURVH PLGODPLQDU FHOOVf WKDW GHILQH 5 EUDFKYSRGLXP 5LFURGLXP ORRVHUL LV WHQWDWLYHO\ SODFHG LQ V\QRQ\P\ KHUH D WUDQVIHU DGYRFDWHG E\ 5RELQVRQ f 7KH EUDQFK OHDYHV RI WKH W\SH VSHFLPHQV RI 5 ORRVHUL DUH WKH ZLGHVW IRXQG IRU WKLV YDULHW\ OHQJWKZLGWK UDWLR f DOWKRXJK VWLOO PXFK QDUURZHU WKDQ EUDQFK OHDYHV RI 5 WR[DULRQ YDU WR[DULRQ ,Q DGGLWLRQ WKH VWHP OHDYHV DUH UHODWLYHO\ VPDOO FD [ PPf EXW JUDGXDOO\ WDSHU WR UHODWLYHO\ VKRUW DFXPHQV 7KH SKHQHWLF DQDO\VLV LV LQFRQFOXVLYH DV IDU DV VXSSRUWLQJ WKH LQFOXVLRQ RI 5 ORRVHUL VHH )LJ $ DQG % f VLQFH RQO\ WKUHH VSHFLPHQV LQFOXGLQJ WKH OHFWRW\SH RI 5 ORRVHULf ZHUH HYHQWXDOO\ GHWHUPLQHG DV 5 WR[DULRQ YDU UREXVWXP +RZHYHU WKH VSHFLPHQ RI 5 ORRVHUL GRHV QRW DSSHDU WR EH SKHQHWLFDOO\ FORVH WR WKH RWKHU WZR VSHFLPHQV LQFOXGHG LQ WKH SKHQHWLF VWXG\

PAGE 161

),* 5LJRGLXP WR[DULRQ YDU WR[DULRQ *DPHWRSK\WLF )HDWXUHV $ +DELW % 3RUWLRQ RI VWHP VKRZLQJ SRVLWLRQ RI OHDYHV & 6WLSH OHDI 6WHP OHDI ( %UDQFK OHDI ) + 6WHP OHDYHV IURP YDULRXV 6RXWK $PHULFDQ VSHFLPHQV VKRZLQJ YDULDWLRQ LQ VL]H DQG PRUSKRORJ\ ) 5HODWLYHO\ ODUJH VWHP OHDI &KLOHf 6OHQGHU VWHP OHDI 3HUXf + 6WHP OHDI ZLWK UHODWLYHO\ VKRUW DFXPHQ %UD]LOf &URVV VHFWLRQ RI VWHP OHDI -. $UHRODWLRQ RI OHDI 0LGODPLQDU FHOOV 0DUJLQDO DQG LQWUDPDUJLQDO FHOOV $ ( ,. IURP 7RQGX] 3LWWLHU 1R %5 V\QW\SH 5 TUDFLOHf ) IURP 5HLFKH +f IURP %UYDQ 02f + IURP :DVXP HW DO )/$6f

PAGE 163

),* 5LJRGLXP WR[DULRQ YDU WR[DULRQ 6SRURSK\WLF DQG 5HODWHG *DPHWRSK\WLF )HDWXUHV $ 3HULFKDHWLDO OHDI %& $UHRODWLRQ RI SHULFKDHWLDO OHDI % %DVDO FHOOV & 8SSHU FHOOV 3RUWLRQ RI SULPDU\ EUDQFK ZLWK SHULJRQLD ( 3HULJRQLXP ) 3HULJRQLDO OHDYHV &DSVXOH $& IURP 7RQGX] U3LWWLHU 1R %5 V\QW\SH 5 JUDFLOHf ') IURP 9HQWXUD D )/$6f

PAGE 165

),* 5LJRGLXP WR[DULRQ YDU WR[DULRQ 9DULDWLRQ LQ $IULFDQ 6SHFLPHQV $$UHRODWLRQ RI VWHP OHDYHV IURP YDULRXV VSHFLPHQV $) 9DULDWLRQ LQ OHDI PDUJLQV *9DULDWLRQ LQ PLGODPLQDU FHOOV +DELW ZLWK DWWHQXDWH EUDQFKHV /0 6WHP OHDYHV IURP YDULRXV VSHFLPHQV VKRZLQJ YDULDWLRQ LQ VL]H DQG PRUSKRORJ\ $ 1 IURP 6FKHORH 6f % + / IURP 9RONHQV -( LVROHFWRW\SH 5 NLOLPDQGVFKDULFXLW & IURP 3FV % 02f 0 IURP 3HUULHU GH OD %£WKLH 3& OHFWRW\SH 5 QLYHXPf ( IURP 7 0OOHU 02f ) IURP 5YYDUGHQ 9%,f

PAGE 166

LPXSn2 6,

PAGE 167

),* 'LVWULEXWLRQ RI 5LTRGLXP WR[DULRQ

PAGE 168

'LVWULEXWLRQ RI 5 WR[DULRQ Rr

PAGE 169

)LJ 5LTRGLXP WR[DULRQ YDU WR[DULRQ /D[ 6SDUVHO\ %UDQFKHG 6SHFLPHQV $ +DELW % 6WHP OHDI & +DELW ZLWK ERWK DUERUHVFHQW DQG OD[ VSDUVHO\ EUDQFKHG VWHPV 6WHP OHDI IURP DUERUHVFHQW VWHP ( 6WHP OHDI IURP OD[ VWHP $% IURP 6FKZDEH E -( OHFWRW\SH 5 SHQGXOXPf &( IURP 6NRWWVEHUJ t 6NRWWVEHUD *%f

PAGE 171

),* 6RXWKHUQPRVW 5DQJH RI 5LJRGLXP WR[DULRQ YDU WR[DULRQ

PAGE 172

6RXWKHUQPRVW 5DQJH RI 5 WR[DULRQ r r

PAGE 173

),* 5LTRGLXP WR[DULRQ YDU UREXVWXP $ +DELW % 6WLSH OHDI &' 6WHP OHDYHV IURP YDULRXV VSHFLPHQV 3RUWLRQ RI VHFRQGDU\ EUDQFK )+ %UDQFK OHDYHV IURP YDULRXV VSHFLPHQV $UHRODWLRQ PDUJLQDO WR PLGODPLQDU FHOOVf RI VWHP OHDI $& ( ) IURP 6NRWWVEHUT t 6NRWWVEHUT 6 LVROHFWRW\SH 5 UREXVWXPf IURP 6NRWWVEHUT t 6NRWWVEHUT 0 +f + IURP 6NRWWVEHUT t 6NRWWVEHUT *%f

PAGE 174

PP 8 PP MXP

PAGE 175

5LJRGLXP EUDFKYSRGLXP && 0 3DU +YSQXP EUDFKYSRGLXP & 0 6YQ 5LJRGLXP EUDFKYSRGLXP & 0LLOOf 3DU ,QG %UYRO 7\SHV &KLOH 9DOSDUDLVR 9DOSDUDLVR QR GDWH %HUWHUR VQ OHFWRW\SH %0 SRVVLEOH LVROHFWRW\SH DV $QRQ\PRXV VQ /f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f +YSQXP DUERUHVFHQV & 0LLOO %RWA =HLW 5LJRGLXP DUERUHVFHQV & 0LLOOf %URWK 1DW 3IO f 7\SHV &KLOH 9DOGLYLD $G WUXQFRV DUERUXP SURSH FRORQLDP $ULTXH >DOVR VSHOOHG $UULTXH RQ VSHFLPHQ ODEHOV@ -XO /HFKOHU OHFWRW\SH KHUH GHVLJQDWHG %0 LVROHFWRW\SHV %0 VSHFLPHQVf %5 VSHFLPHQVf *% + / VSHFLPHQVf 0,&+ 1< VSHFLPHQVf 2 6 VSHFLPHQVf 836 : VSHFLPHQVff 3ODQWV PHGLXP WR ODUJH GHQGURLG RU YHU\ UDUHO\ VXEVLPSOHf HUHFW SHQGHQW RU VRPHWLPHV FUHHSLQJ LUUHJXODUO\ WR UHJXODUO\ SLQQDWHO\ EUDQFKHG RQ WUHH WUXQNV DQG EUDQFKHV RU VRPHWLPHV RQ ORJV URFNV RU VRLO JUHHQ \HOORZJUHHQ WR \HOORZLVK EURZQ VRPHWLPHV URRWLQJ DW WLSV RI VWHPV DQG SULPDU\ EUDQFKHV 6WLSHV ZHOO GHYHORSHG WR FP ORQJ 6WHPV WR FP ORQJ XP LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ SHU VWHP VSDFHG PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ JUDGXDOO\ EHFRPLQJ VKRUWHU DERYH VRPHWLPHV

PAGE 176

DWWHQXDWH DQG WKHQ RIWHQ URRWLQJ DW WLSVf 6HFRQGDU\ EUDQFKHV JHQHUDOO\ SHU SULPDU\ EUDQFK WR FP ORQJ 7HUWLDU\ EUDQFKHV SUHVHQW 6WHP OHDYHV EURDGO\ RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG DFXPHQ [ PP ZLWK OHQJWKZLGWK UDWLR f f VSUHDGLQJ WR VTXDUURVH ZLWK FODVSLQJ DQG FRQFDYH EDVH ORQJLWXGLQDOO\ XQGXODWH RFFDVLRQDOO\ DXULFXODWH VRPHZKDW GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ PP ORQJ b RI WRWDO OHDI OHQJWKf DFXPHQ PP ORQJ f fb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV HUHFW WR UHIOH[HG JHQHUDOO\ VHUUDWH WKURXJKRXW FRVWD VLQJOH PP ORQJ XP ZLGH DW EDVH VWUDWRVH LQ ORZHU KDOI DODU FHOOV TXDGUDWH WR REODWH [ XP PDUJLQDO FHOOV VHULDWH REORQJ UKRPELF [ XP LQWUDPDUJLQDO FHOOV f VHULDWH VKRUWREORQJ [ XP ZLWK WKLFNHU ZDOOV WKDQ WKH PLGODPLQDU FHOOV DQG IRUPLQJ D PRGHUDWHO\ VWURQJ LQWUDPDUJLQDO EDQG PLGODPLQDU FHOOV UKRPELF WR UKRPERLGDO [ XP SRURVH ZLWK ZDOOV VRPHZKDW XQHYHQ YHU\ SURUXORVH DQG RIWHQ ZLWK XSSHUf HQG ZDOOV SURMHFWLQJ SURPLQHQWO\ DV ZHOOGHYHORSHG SDSLOODH SURUXODHf RQ WKH GRUVDO VXUIDFH 6WLSH OHDYHV ZLWK VLPLODU VKDSH DQG RULHQWDWLRQ DV VWHP OHDYHV [ PP DFXPHQ PP ORQJ FRVWD DEVHQW RU UDUHO\ SUHVHQW DQG WKHQ YHU\ ZHDN 6HFRQGDU\ EUDQFK OHDYHV QDUURZO\ RYDWH DFXWH [ PP ZLWK OHQJWKZLGWK UDWLR ff HUHFWVSUHDGLQJ WR VSUHDGLQJ PDUJLQV

PAGE 177

VHUUDWH 3HULJRQLDO OHDYHV RYDWH DFXWH WR VKRUWO\ DFXPLQDWH [ PP $QWKHULGLD [ XUQ SDUDSK\VHV FHOOV ORQJ XP ORQJ 3HULFKDHWLDO OHDYHV VXEXODWH [ PP ORQJDFXPLQDWH ZLWK DFXPHQV PP ORQJ EDVDO FHOOV UKRPERLGDO [ XP SRURVH SURUXORVH IUHTXHQWO\ SDSLOORVH ZLWK RQH ODUJH FHQWUDO SDSLOOD DSLFDO FHOOV UKRPELF VLQXRXV [ XP $UFKHJRQLD XP ORQJ ZLGH DW YHQWHU SDUDSK\VHV FHOOV ORQJ XP 6HWD WR FP ORQJ &DSVXOH XUQ [ PP XSSHU H[RWKHFLDO FHOOV [ XP PHGLDQ H[RWKHFLDO FHOOV [ FHOOV LQ QHFN [ 2SHUFXOXP PP ORQJ ORQJURVWUDWH ZLWK EHDN PP ORQJ ([RVWRPH WHHWK XP ORQJ XP ZLGH DW EDVH (QGRVWRPH VHJPHQWV XP ORQJ XP ZLGH DW EDVH EDVDO PHPEUDQH XP KLJK FLOLD Of XP ORQJ 6SRUHV XP LQ GLDPHWHU &DOYSWUD WR PP ORQJ D 5LTRGLXP EUDFKYSRGLXP & 0f 3DU YDU EUDFK\SRGLXP 3ODQWV GHQGURLG RU UDUHO\ VXEVLPSOHf HUHFW SHQGHQW RU VRPHWLPHV FUHHSLQJ LUUHJXODUO\ SLQQDWHO\ EUDQFKHG 6WLSHV ZHOOGHYHORSHG WR FP ORQJ 6WHPV WR FP ORQJ XP LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ SHU VWHP VSDFHG PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ JUDGXDOO\ EHFRPLQJ PXFK VKRUWHU DERYH VRPHWLPHV DWWHQXDWH DQG WKHQ RIWHQ URRWLQJ

PAGE 178

DW WLSVf 6HFRQGDU\ EUDQFKHV JHQHUDOO\ SHU SULPDU\ EUDQFK WR FP ORQJ 6WHP OHDYHV EURDGO\ RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG VKRUW DFXPHQ [ PP FD DV ORQJ DV ZLGH ZLWK OHQJWKZLGWK UDWLR ff VRPHZKDW GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ PP ORQJ b RI WRWDO OHDI OHQJWKf DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV HUHFW WR UHIOH[HG FRVWD VLQJOH UHODWLYHO\ EURDG DQG ZHOO GHYHORSHG PP ORQJ XUQ ZLGH DW EDVH LQWUDPDUJLQDO FHOOV VKRUWREORQJ [ XP PLGODPLQDU FHOOV [ XP 6WLSH OHDYHV [ PP DFXPHQ PP ORQJ 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG $5*(17,1$ &+8%87 /DJR 0HQQGH] 1RY &DVWHOODQRV VQ )+f /DJR 0HQQGH] DW WKH HQG RI 6: DUP RI ODNH RQ OHYHO JURXQG RQ 6 VLGH RI D ULYHU 1RWKRIDDXV GRPEH\L IRUHVW -DQ .DOHOD %I +f /DJR 0HQQGH] RQ ULYHU XQLWLQJ /DJR 0HQQGH] DQG /DJR 5XWDODXITXQ WRS RI ULYHU EDQN 1RWKRIDJXV GRPEHYL IRUHVW ZLWK $XVWURFHGUXV DQG /RPDWLD -DQ .DOHOD %L +f 1(848(1 /DJR &RUUHQWRVR RQ URDG D IHZ KXQGUHG PHWHUV IURP KRWHO 1RWKRIDJXV GRPEHYL 0DYWHQXV IRUHVW 1RY .DOHOD %H +f ,VOD 9LFWRULD /DJR 1DKXHO +XDSLf P -DQ 6OHXPHU % 6f 5,2 1(*52 /DJR 1DKXHO +XDSL LQ YDOOH\ OHDGLQJ IURP 3XHUWR %OHVW WR /DJR )ULDV DW IRRW RI ( VORSH 1RWKRIDJXV GRPEHYL /DXUHOLD IRUHVW 1RY .DOHOD %D %I +f /DJR

PAGE 179

0DVFDUGL LQ GHHS GHSUHVVLRQ FD NP 6 RI +RWHO 7URQDGRU 1RWKRIDJXV GRPEHYL IRUHVW 'HF .DOHOD %D +f /DJR 0DVFDUGL (O 0DLWHQDO NP 1 RI SDUN ZDUGHQnV UHVLGHQFH 1RWKRIDJXV GRPEHYL$XVWURFHGUXV IRUHVW 'HF .DOHOD %F +f 6$17$ &58= 6RXWKHUQPRVW HQG RI /DJR $UJHQWLQD : VLGH RI /DJXQD )ULD r6 r: PDWXUH IRUHVW GRPLQDWHG E\ 1RWKRIDJXV SXPLOLR ZLWK 1 EHWXORLGHV DQG 1 DQW£UFWLFD LQ SODFHV 0DU &DQWLQR 0 02f 'HSWR /DJR $UJHQWLQR 6HQR 0D\R %DKLD 7RUR rn6 rn: ERVTXH PL[WR GH 1RWKRIDJXV EHWXORLGHV \ 1 SXPLOLR FRQ 'ULPYV ZLQWHUL 0DYWHQXV PDJHOODQLFD FRQ FDVFDGD IUWLO -DQ 0DWWHUL t 6FKLDYRQH +HUE 0DWWHULf &+,/( $,6(1 3DWDJRQLD RFFLGHQWDOLV LQ YDOOH IOXPLQLV $\VHQ >$LVQ@ LQ WUXQFLV SXWULGLV -DQ 'XVQ %0 )/$6 + -( 0,&+ 1< 6 :f :HVWSDWDJRQLHQ 3XQWD /HRSDUGR >/HRSDUGRV@ )HE +LFNHQ -(f &$87,1 7HUPDV GH 3DOJXLQ DORQJ ULR 3DOJXLQ rn6 rn: 1RWKRIDJXV IRUHVW PRLVW EDQN EH\RQG EDRV P -DQ &URVE\ )/$6 02f 'HSWR 9LOODUULFD 3XFQ LP 8UZDOG DXI GHV +DOELQVHO DXI %DXUQHQ )HE +RVVHXV -(f $QGHQ YRQ 9LOODUULFD DXI %DXPVWDPPHQ 1HTHU >'XVQ 1R@ /f &+,/2( ,VOD &KLOR &KHSX 6 VLGH RI ULR &KHSX rn6 r n: IRUHVW 1RWKRIDJXV QWLGD /DXUHOLD :HLQPDQQLD &KXVJXHD HWFf RQ WUHH EDVH P )HE &URVE\ 02f 7HSXKXHLFR >/DJR 7HSXKXHFR@ 0DU 2EHUGRUIHU

PAGE 180

E -(f &21&(3&,21 &KLOH DXVWUDOLV SURSH 7DOFDKXDQR RSSLGDP LQ WHUUD 6HS 'XVQ &+5 )/$6 *% + -( 1< 6f &RQFHSFLQ 'HF (OOLRWW + / 2f &248,0%2 &KDRSD &HUUR 7DOLQD\ NP DO 1 GH +XHQWHODXTXHQ ERVTXH GH 0LUW£FHDV HQ WURQFR GH 0\UFHXTHQLD FRUUHDOIROLD P -XO 0DKX 02f &85,&2 )XQGR (O 0DQ]DQR DW /D 0RQWDD FD NP ( RI &XULFR RQ WKH QRUWK VLGH RI WKH ULR 7HR IRUHVW PDLQO\ RI 1RWKRIDTXV REOLFPD RQ URFN LQ RSHQ IRUHVW $SU /DQGUXP 02f -8$1 )(51$1'(= ,6/$1'6 ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ 4XHEUDGD &DVDV >4XHEUDGD %DTXHGDQR@ LQQHUPRVW DFFHVVLEOH SDUW ZHW VKDGHG ERXOGHUV LQ VWUHDP EHG 1RY +DWFKHU t (QDHO '8.( 0,&+ 1&DQDO 6PLWK@ 'HF *XVLQGH *% 6 :f NP IURP 3XQWD $UHQDV JDOOHU\ IRUHVW DORQJ WKH EURRN EHWZHHQ 0RUUR &KLFR DQG /DJXQD %ODQFD VRPH P EURDG 1RWKRIDTXV DQW£UFWLFD VWDQG VWHSSH RQ ERWK VLGHV )HE .DOHOD %F +f 0$//(&2 $ORQJ WUDLO IURP ZHVWHUQ HQWUDQFH RI 3DUTXH 1DFLRQDO &RQWXOPR NP E\ URDG ( RI

PAGE 181

&RQWXOPR &RUGLOOHUD 1DKXHOEXWD rn6 rn: RQ URWWLQJ ORJ P )HE &URVEY 02f &KLOH DXVWUDOLV LQ PRQWH &RUGLOOHUD GH OD &RVWD VXSUD $QJRO RSSLGDP LQ WUXQFLV DUERUXP P 1RY 'XVQ %0 '8,6 )+ + -( 0,&+ 1< 2 6 836 :f 0$8/( (PSHGUDGR LQ WKH &RUGLOOHUD GH OD &RVWD FD NP 6( RI &RQVWLWXFLQ GHFLGXRXV IRUHVW PDLQO\ RI 1RWKRIDJXV REOLFXD 1 JODXFD DQG 1 DOHVVDQGUL RQ URFN LQ ZHW IRUHVW $XJ /DQGUXP 02f 18%/( 6DQ )DELDQ FD NP ( RI 6DQ &DUORV DERXW NP IURP 6DQ )DELDQ DORQJ WUDLO WR /DJR 9DOLHQWH RQ URFN ZLWK KXPXV 0DU /DQGUXP D 02f 5HFLQWR DG VD[D P $SU 5RLYDLQHQ +f 262512 $JXD &DOLHQWH PDUJLQ RI ULR &KDQOHXI QHDU IDOOV NP E\ URDG IURP 7HUPDV GH 3X\HKXH DORQJ URDG WR 5HIXJLR $QWLOODQFD rn6 rn: RQ URFNV P -DQ &URVEY 02f )XQGR &ROLPDKXLGD +HU]RJ VQ -(f 9$/',9,$ )RUHVW 1RWKRIDJXV :HLQPDQQLD 6D[HJRWKDHD 'ULPYV &KXVJXHD HWFf RQ : VORSH RI &RUGLOOHUD 3HODGD NP E\ URDG : RI (O 0LUDGRU RQ URDG EHWZHHQ /D 8QLRQ DQG 3XQWD +XHLFROOD rn6 rn: RQ WUHH WUXQN P )HE &URVEY 02f +DKQ VQ % %0 & &$10 '8.( ) )/$6 0,&+ 02 2;) 1< 6f 3DQJXLSXOOL DQ GHU 5LQGH YRQ :DOGEDXPHQ P -XQ +ROOHUPDYHU % 6 :f &XQFR3DQJXLSXOOL $XJ +ROOHUPDYHU RS 6f 5LR %ODQFR ]ZLVFKHQ GLFKWHQ &KXVJXHD%HVWDQGHQ YHUEUHLWHW 'HF .XQNHO % +f

PAGE 182

9$/3$5$,62 *XLOORWD DG UXSHV HW DUERUXP ORFLR XPEURVLV LQ V\OYD GH OD 3DOPD %HUWHUR %0f 5LJRGLXP EUDFKYSRGLXP YDU EUDFKYSRGLXP LV W\SLFDOO\ DQ HSLSK\WH RQ WUHH WUXQNV DQG EUDQFKHVf EXW DOVR RFFDVLRQDOO\ JURZV RQ ORJV VWXPSV URFNV DQG VRLO 7KH VSHFLHV LV ZLGHVSUHDG LQ GDPS VKDG\ IRUHVWV GRPLQDWHG E\ 1RWKRIDTXV ZLWK 3RGRFDUSXV 0YUFHXTHQLD :HLQPDQQLD 6D[HJRWKDHD 'ULPYV &KXVDXHD $XVWURFHGUXV 0DYWHQXV DQG /DXUHOLDf DQG VRPHWLPHV RFFXUV LQ GLVWXUEHG RSHQ DUHDV DV ZHOO DW DOWLWXGHV W\SLFDOO\ WR P ZLWK HOHYDWLRQV RI WR P QRW LQIUHTXHQWO\ FLWHG RQ WKH ODEHOV 7KH GLVWULEXWLRQ RI 5 EUDFKYSRGLXP DORQJ WKH $QGHDQ &RUGLOOHUD RI &KLOH$UJHQWLQD FD r6 WR r6 )LJ f DQG 5 SVHXGR WKXLGLXP GHILQH WKH VRXWKHUQPRVW UDQJH RI WKH JHQXV EXW WKH UDQJH RI 5 EUDFKYSRGLXP GRHV QRW H[WHQG DV IDU HDVWZDUG DV WKDW RI 5 SVHXGRWKXLGLXP LH QR FROOHFWLRQV IURP 7LHUUD GHO )XHJR $UJHQWLQDf /LNH 5 SVHXGRWKXLGLXP 5 EUDFKYSRGLXP DOVR RFFXUV LQ WKH -XDQ )HUQ£QGH] ,VODQGV RQO\ RQ ,VOD $OHMDQGUR 6HONLUN ,VOD 0£V $IXHUDf DQG QRW RQ ,VOD 5RELQVRQ &UXVRH ,VOD 0£V D 7LHUUDf 5LTRGLXP EUDFKYSRGLXP YDU EUDFKYSRGLXP UHWDLQV WKH DQFHVWUDO DUERUHVFHQW KDELW ZKLOH H[KLELWLQJ VRPH DSRPRUSKLF FKDUDFWHU VWDWHV RI D VWURQJ LQWUDPDUJLQDO EDQG RI FHOOV )LJ + DQG -f DQG D PRGHUDWHO\ GHFXUUHQW OHDI EDVH WR b RI WKH WRWDO OHDI OHQJWK )LJ %f 7KH FHOO ERUGHU KRZHYHU LV QDUURZ IRXU WR VHYHQ FHOOV ZLGHf

PAGE 183

DOWKRXJK WKH FHOOV WKHPVHOYHV KDYH PXFK WKLFNHU ZDOOV WKDQ WKRVH RI 5 WR[DULRQ 7KH VWHP OHDYHV DUH OLNHO\ WR EH FD DV ORQJ DV ZLGH )LJ 'f ZLWK VKRUW DFXPHQV )LJ (f 7KH FRVWD RI WKH VWHP OHDYHV RI WKLV YDULHW\ WHQG WR KDYH D YHU\ VWURQJ EURDG FRVWD WR FD XUQ ZLGH DW EDVHf DQG WKH SODQWV WHQG WR GHYHORS D UREXVW KDELW 7KH DXWDSRPRUSK\ RI WKH VSHFLHV LH RFFXUULQJ LQ 5 EUDFKYSRGLXP YDU WDPDUL[ DV ZHOOf LV WKH H[WUHPHO\ SURUXORVH FRQGLWLRQ RI WKH PLGODPLQDU FHOOV WKH HQGV RI ZKLFK RIWHQ SURMHFW DV ZHOOGHYHORSHG SDSLOODH SURUXODHf RQ WKH GRUVDO VXUIDFH )LJV ,2& DQG -f 7KLV FKDUDFWHU ZDV HYLGHQWO\ ILUVW QRWHG E\ 5RELQVRQ f ZKR GHVFULEHG WKHP DV NQREV RQ HQG ZDOOV SURMHFWLQJ DED[LDOO\ DV SDSLOODH $OWKRXJK QRW DOO VSHFLPHQV KDYH SURUXORVH PLGODPLQDU FHOOV DV LOOXVWUDWHG KHUH D IHZ VXFK SURMHFWLQJ FHOOV PD\ EH IRXQG RQ DQ\ JLYHQ VWHP OHDI ,Q DGGLWLRQ WKH ZDOOV RI WKH PLGODPLQDU FHOOV DUH SRURVH EXW QRW DV XQHYHQ DV LQ 5 LPROH[XUQ DQG 5 SVHXGRWKXLGLXPf $OWKRXJK 7KULRW f UHSRUWHG WKDW 5 EUDFKYSRGLXP DV 5 DUERUHVFHQVf IUHTXHQWO\ IUXLWV DQG RIWHQ KDV WZR VHWDH SHU SHULFKDHWLD H[DPLQDWLRQ RI QXPHURXV VSHFLPHQV RI 5 EUDFKYSRGLXP RYHU LWV HQWLUH UDQJH GRHV QRW UHYHDO DQ\ H[FHSWLRQDO DPRXQW RI VSRURSK\WH SURGXFWLRQ LQ FRPSDULVRQ WR RWKHU VSHFLHV RI 5LTRGLXP 7KH HSLWKHW RI 5 DUERUHVFHQV KDV EHHQ PRUH FRPPRQO\ XVHG ERWK ZLWK FROOHFWLRQV DQG LQ WKH OLWHUDWXUH WKDQ WKH QDPH 5 EUDFKYSRGLXP SRVVLEO\ EHFDXVH WKH VLWXDWLRQ

PAGE 184

FRQFHUQLQJ WKH W\SHVf RI 5 EUDFK\SRGLXP ZDV XQFOHDU VHH =RPOHIHU f LQ DGGLWLRQ WR WKH YDJXH GHVFULSWLRQ SURYLGHG E\ 0OOHU f WKH RULJLQDO DXWKRU 0OOHU f GLG LQGLFDWH WKDW 5 EUDFK\SRGLXP ZDV GHILQLWHO\ IDU UHPRYHG IURP 5 LPSOH[XP DQG 5 WR[DULRQ EXW GLG QRW VSHFLI\ WKH GLVWLQJXLVKLQJ FKDUDFWHUV 'HVSLWH WKHVH SUREOHPV KRZHYHU 5LDRGLXP EUDFK\SRGLXP LV WKH ROGHU QDPH ZLWK SULRULW\ 7KH VWHP OHDYHV RI WKH W\SH VSHFLPHQ RI 5 EUDFK\SRGLXP )LJ )f DUH PXFK VPDOOHU WKDQ PRVW UHSUHVHQWDWLYHV RI WKH VSHFLHV )LJ 'f ,Q FRQWUDVW WKH QRPHQ QXGXP 5 FDUQRVXOXP 'XVQ 'XVQ f UHSUHVHQWV WKH ODUJHVW DQG PRVW UREXVW SODQWV ZLWK WKH ODUJHVW VWHP OHDYHV )LJ *f LQ 5 EUDFK\SRGLXP $V QRWHG LQ WKH LQLWLDO GLVFXVVLRQ RI WKH GLVWULEXWLRQ 5 EUDFK\SRGLXP YDU EUDFK\SRGLXP RFFXUV RQ WKH -XDQ )HUQ£QGH] ,VODQGV ,VOD $OHMDQGUR 6HONLUNf DQG LV UHSUHVHQWHG KHUH LQ WKH ORDQ PDWHULDO E\ RQH VSHFLPHQ +DWFKHU t (QJHO f $OWKRXJK KH DQQRWDWHG WKLV VSHFLPHQ DV 5 DUERUHVFHQV LQ 5RELQVRQ f ODWHU LQFOXGHV WKLV VSHFLPHQ LQ KLV FRQFHSW RI 5 UREXVWXP LQ KLV PRVV IORUD RI WKH -XDQ )HUQ£QGH] ,VODQGV +HUH KH PDLQWDLQV WKDW 5 DUERUHVFHQV LV UHVWULFWHG WR PDLQODQG &KLOH 7KH VSHFLPHQ LQ TXHVWLRQ KRZHYHU ILWV HYHQ KLV FRQFHSW RI 5 DUERUHVFHQV 5 EUDFK\SRGLXPf WKH VWHP OHDYHV KDYH D PRGHUDWHO\ VWURQJ LQWUDPDUJLQDO ERUGHU DQG YHU\ SURUXORVH DQG SRURVH PLGODPLQDU FHOOV VRPH RI ZKLFK SURMHFW DV GRUVDO SDSLOODHf 7KH VWHP OHDYHV RI 5 UREXVWXPf 5 WR[DULRQ

PAGE 185

YDU UREXVWXP LQ WKLV UHYLVLRQf WKRXJK KDYH D ZHDN ERUGHU DQG ZHDNO\ SURUXORVH PLGODPLQDU FHOOV ZLWK HYHQ ZDOOV GR DJUHH ZLWK 5RELQVRQnV DQQRWDWLRQV RI %URWKHUXVn f DQG %DUWUDPnV f 5 DUERUHVFHQV 5 EUDFKYSRGLXPf VSHFLPHQV DV 5 UREXVWXP 5 WR[DULRQ YDU UREXVWXPf5 WR[DULRQ 5 WR[DULRQ YDU WR[DULRQf $V GLVFXVVHG LQ WKH FKDSWHU RQ SK\ORJHQHWLFV WKH FODGLVWLF DQDO\VHV LQGLFDWH WKDW 5 EUDFKYSRGLXP PD\ EH SDUDSK\OHWLF FRPSDUH )LJV DQG f +RZHYHU LQWHUPHGLDWHV LQ KDELW IRUP OLQN WKH WZR YDULHWLHV DV ZHOO DV WKH V\QDSRPRUSK\ RI WKH PLGODPLQDU FHOOV ZLWK SURUXODH VHH GLVFXVVLRQ LQ FKDSWHU RQ SK\ORJHQ\f 2FFDVLRQDOO\ ZKHQ VWHPV RI 5 EUDFKYSRGLXP YDU EUDFK\SRGLXP EHFRPH HORQJDWHG WKH DUERUHVFHQW IRUP LV OHVV GLVWLQFW DQG WKH EUDQFKLQJ SDWWHUQ DSSURDFKHV UHJXODUO\ SLQQDWH 7KHVH WHQGHQFLHV IRU WKH GHYHORSPHQW RI UHJXODUO\ SLQQDWH EUDQFKLQJ DQG ORVV RI ZHOOGHYHORSHG VWLSH DUH FDUULHG WR WKH H[WUHPH LQ 5 EUDFKYSRGLXP YDU WDPDUL[ GLVFXVVHG EHORZf ,Q VRPH VLWXDWLRQV 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP H[KLELWV WKH UHWHQWLRQ RI WKH VWHP OHDI DQFHVWUDO PRUSKRORJ\ D UHODWLYHO\ VKRUW GHFXUUHQF\f DV ZHOO DV WKH WHQGHQF\ IRU D ORQJ DFXPHQ JUHDWHU WKDQ RQH WKLUG RI WKH OHDI OHQJWKf :KHQ WKH VWHPV EHFRPH DWWHQXDWH DQG URRW DW WKH WLSV WKH OHDYHV LQ WKH HORQJDWHG DUHD PD\ KDYH D GLIIHUHQW VKDSH VKRUW GHFXUUHQF\ ORQJ DFXPHQV )LJ $f 7KLV WHQGHQF\ LV FRQVLVWHQW LQ 5 EUDFKYSRGLXP YDU WDPDUL[ GLVFXVVHG EHORZf LQ ZKLFK DOO WKH VWHP OHDYHV DUH ORQJ DFXPLQDWH 2XW

PAGE 186

RI WKH KXQGUHGV RI 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP VSHFLPHQV H[DPLQHG RQH WUDQVLWLRQDO DUERUHVFHQW VSHFLPHQ +ROOHUPDYHU SSf KDV QXPHURXV VWHP OHDYHV ZLWK ORQJ DFXPHQV )LJ %f 2WKHU PLQRU YDULDQWV LQ KDELWf DUH D IHZ YHU\ SRRU VSHFLPHQV ZLWK OD[ VSDUVHO\ EUDQFKHG SODQWV DV LQ 5 WR[DULRQ DQG 5 DGSUHVVXP ERWK DOVR DUERUHVFHQW VSHFLHVf JHQHUDOO\ VFDWWHUHG WKURXJKRXW WKH QRUWK FHQWUDO SDUW RI WKH UDQJH RI 5 EUDFK\SRGLXP &DXWLQ DQG 9DOGLYLD &KLOH &KXEXW DQG 5LR 1HJUR $UJHQWLQDf DQG DUH SUREDEO\ WKH UHVXOW RI ORFDOL]HG XQIDYRUDEOH HQYLURQPHQWDO FRQGLWLRQV E 5LDRGLXP EUDFKYSRGLXP YDU WDPDUL[ & 0OOf =RPOHIHU YDU QRY 5LDRGLXP WDPDUL[ & 0OO +HGZLDLD 7\SHVf &KLOH $LVQ +DOH %D\ FDQDOL RFFLG SDWDJRQLD >YR\DJH RI WKH@ 9LDJJLR &DURFFLROR -XO GH $PH]DJD VQ OHFWRW\SH 52f )XHJLD +DOH %D\ +E +RUWL 5RPDQL +E 0OOHU $QRQ\PRXV VQ SUREDEOH LVROHFWRW\SH %0f" +DOH %D\ :HVW &KDQQHO >YR\DJH RI WKH@ 9LDJJLR &DURFFLROR (UEDULR 5RPD FRP 3LURWWD -XO $QRQ\PRXV VQ SRVVLEOH LVROHFWRW\SH 6f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f 3ODQWV SHQGHQW RU FUHHSLQJ UHJXODUO\ SLQQDWHO\ EUDQFKHG 6WLSHV ZHOOGHYHORSHG WR FP ORQJ 6WHPV ORQJ DQG VWUDJJOLQJ WR FP ORQJ XP LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ SHU VWHP VSDFHG PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ

PAGE 187

JUDGXDOO\ EHFRPLQJ VKRUWHU DERYH 6HFRQGDU\ EUDQFKHV JHQHUDOO\ SHU SULPDU\ EUDQFK WR FP ORQJ 6WHP OHDYHV EURDGO\ RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG ORQJ DFXPHQ VXEXODWH [ PP ORQJHU WKDQ ZLGH ZLWK OHQJWKZLGWK UDWLR f f EDUHO\ GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ PP ORQJ b RI WRWDO OHDI OHQJWKf DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV HUHFW WR SODQH RU QDUURZO\ UHIOH[HG FRVWD VLQJOH ZHOOGHYHORSHG EXW UHODWLYHO\ VOHQGHU PP ORQJ XUQ ZLGH DW EDVH LQWUDPDUJLQDO FHOOV HORQJDWH [ XUQ PLGODPLQDU FHOOV [ XUQ 6WLSH OHDYHV [ PP DFXPHQ PP ORQJ 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG $5*(17,1$ 1(848(1 'HSWR /RV /DJRV ,VOD 9LFWRULD /DJR 1DKXHO +XDSLf P -DQ 6OHXPHU %f 5,2 1(*52 3XHUWR %OHVW 'HF 0HYHU )+f &+,/( $,6(1 3DWDJRQLD RFFLGHQWDOLV 3XHUWR &KDFDEXFR WUXQFLV GnDUERUHV +DOOH + 6 836f 3XHUWR $\VQ >$LVQ@ /DJXQD GH 6DQ 5DIDHO -DQ 3L]]DUR 1
PAGE 188

>3HWURKX@ EHU (QVHQDGD /DJR 7RGRV 6DQWRVf 0DU 6FKLOOHU -(f 9$/',9,$ )RUHVW DW )XQGR 6DQWD 5RVD NP E\ URDG 1 RI 3XHQWH &DOOHFDOOH rn6 rn: RQ URWWLQJ ORJ P )HE &URVE\ 02f" 'HSWR /D 8QLQ /D *XDOOHULD +XDOOH+XDSLf WHPSHUDWH UDLQ IRUHVW RQ WUXQNV P 'HF 6RDUUH )+ 6f &RUUDO 7KD[WHU )+ )/$6 0,&+ 1
PAGE 189

GHILQHG E\ WKH DXWDSRPRUSK\ RI WKH ORVV RI WKH DUERUHVFHQW KDELW DQG WKH GHYHORSPHQW RI HORQJDWHG VSUDZOLQJ VWHPV ZLWK s UHJXODU SLQQDWH EUDQFKLQJ )LJ $f ZKLFK LV XQLTXH DPRQJ 5LTRGLXP VSHFLHV &XULRXVO\ WKLV XQXVXDO EUDQFKLQJ SDWWHUQ ZDV QRW QRWHG E\ 0OOHU Ef WKH RULJLQDO DXWKRU EXW ZDV HPSKDVL]HG E\ ODWHU EU\RORJLVWV VXFK DV 7KULRW f DQG 5RELQVRQ f

PAGE 190

),* 5LJRGLXP EUDFK\SRGLXP YDU EUDFK\SRGLXP *DPHWRSK\WLF )HDWXUHV $ +DELW % 3RUWLRQ RI VWHP VKRZLQJ SRVLWLRQ RI OHDYHV & 6WLSH OHDI 6WHP OHDI ( %UDQFK OHDI )* 6WHP OHDYHV IURP WZR VSHFLPHQV VKRZLQJ YDULDWLRQ LQ VL]H + &URVV VHFWLRQ RI VWHP OHDI ,$UHRODWLRQ RI OHDI 0LGODPLQDU FHOOV QRWH SURMHFWLQJ HQG ZDOOVf 0DUJLQDO DQG LQWUDPDUJLQDO FHOOV $( IURP (OOLRWW +f ) IURP %HUWHUR VQ %0 OHFWRW\SH 5 EUDFK\SRGLXPf IURP 'XVQ 2f +IURP &URVE\ 02f

PAGE 191

e

PAGE 192

),* 5LJRGLXP EUDFKYSRGLXP YDU EUDFKYSRGLXP 6SRURSK\WLF DQG 5HODWHG *DPHWRSK\WLF )HDWXUHV $ 3HULFKDHWLDO OHDI %& $UHRODWLRQ RI SHULFKDHWLDO OHDI % %DVDO FHOOV & 8SSHU FHOOV 3ULPDU\ EUDQFK ZLWK SHULJRQLD ( 3HULJRQLXP ) 3HULJRQLDO OHDYHV &DSVXOH $& IURP &URVE\ 02f '* IURP /HFKOHU 0,&+ LVROHFWRW\SH 5 DUERUHVFHQVf

PAGE 194

),* 5LJRGLXP EUDFKYSRGLXP YDU EUDFKYSRGLXP 6WHP OHDYHV ZLWK /RQJ $FXPHQV $ /HDI IURP HORQJDWH VWHP URRWLQJ DW WKH WLSV RWKHU VWHP OHDYHV ZLWK VKRUW DFXPHQVf % 6WHP OHDI IURP XQXVXDO VSHFLPHQ RI WKLV VSHFLHV VHH WH[W IRU GLVFXVVLRQf $ IURP /HFKOHU : LVROHFWRW\SH 5 DUERUHVFHQVO % IURP +ROOHUPDYHU SS 6f

PAGE 196

),* 'LVWULEXWLRQ RI 5LJRGLXP EUDFKYSRGLXP YDU EUDFKYSRGLXP

PAGE 198

),* 5LTRGLXP EUDFKYRRGLXP YDU WDPDUL[ $ +DELW % 6WHP OHDI &' $UHRODWLRQ RI VWHP OHDI & 0DUJLQDO DQG LQWUDPDUJLQDO FHOOV 0LGODPLQDU FHOOV IURP &URVE\ 02f $OO

PAGE 199

ZUIRIU

PAGE 200

),* 'LVWULEXWLRQ RI 5LJRGLXP EUDFKYSRGLXP YDU WDPDUL[

PAGE 201

'LVWULEXWLRQ RI 5 EUDFK\SRGLXP YDU WDPDUL[ ,3

PAGE 202

5LJRGLXP DGSUHVVXP =RPOHIHU VS QRY 5LJRGLXP DGSUHVVXP =RPOHIHU 6YVW %RW f LQ SUHVVf )LJV 7\SHV $UJHQWLQD &KXEXW /DJR 0HQQGH] 'HF .KQHPDQQ KRORW\SH + LVRW\SHV $/7$ 8f 3ODQWV PHGLXP WR ODUJH GHQGURLG HUHFW RU PRUH FRPPRQO\ SHQGHQW LUUHJXODUO\ SLQQDWHO\ EUDQFKHG RQ WUHH WUXQNV DQG EUDQFKHV VRPHWLPHV RQ ORJV RU UDUHO\ RQ URFNV JUHHQ \HOORZJUHHQ WR \HOORZLVK EURZQ UDUHO\ URRWLQJ DW WLSV RI VWHPV DQG SULPDU\ EUDQFKHV 6WLSHV ZHOOGHYHORSHG WR FP ORQJ 6WHPV WR f FP ORQJ XP LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ SHU VWHP VSDFHG PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ JUDGXDOO\ EHFRPLQJ PXFK VKRUWHU DERYH RFFDVLRQDOO\ DWWHQXDWH 6HFRQGDU\ EUDQFKHV JHQHUDOO\ SHU SULPDU\ EUDQFK WR FP ORQJ 7HUWLDU\ EUDQFKHV SUHVHQW 6WHP OHDYHV RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOO GHYHORSHG DFXPHQ VXEXODWH [ PP FD ORQJHU WKDQ ZLGH ZLWK OHQJWKZLGWK UDWLR f f VWURQJO\ DSSUHVVHG ZLWK VSUHDGLQJHUHFW WLSV ZLWK FODVSLQJ DQG FRQFDYH EDVH DXULFXODWH VWURQJO\ GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ PP ORQJ b RI WRWDO OHDI OHQJWKf DQG ZLWK VRPH FHOOV RI GHFXUUHQF\ ZLWK D FHQWUDO SDSLOOD DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV VWURQJO\ UHYROXWH HQWLUH RU VLQXRXV DW EDVH DQG VHUUDWH

PAGE 203

DERYH FRVWD VLQJOH ZHOOGHYHORSHG PP ORQJ XUQ ZLGH DW EDVH VWUDWRVH LQ ORZHU KDOI DODU FHOOV TXDGUDWH WR REODWH [ XP PDUJLQDO FHOOV VHULDWH REORQJUKRPELF [ XP LQWUDPDUJLQDO FHOOV fVHULDWH VKRUWREORQJ [ XP ZLWK PXFK WKLFNHU ZDOOV WKDQ WKH PLGODPLQDU FHOOV DQG IRUPLQJ D YHU\ VWURQJ LQWUDPDUJLQDO EDQG PLGODPLQDU FHOOV UKRPELF WR UKRPERLGDO [ XP SRURVH ZLWK ZDOOV YHU\ XQHYHQ SURUXORVH 6WLSH OHDYHV ZLWK VLPLODU VKDSH DQG RULHQWDWLRQ DV VWHP OHDYHV [ PP DFXPHQ PP ORQJ FRVWD DEVHQW RU UDUHO\ VLQJOH DQG WKHQ YHU\ ZHDN 6HFRQGDU\ EUDQFK OHDYHV QDUURZO\ RYDWH DFXWH [ PP ZLWK OHQJWKZLGWK UDWLR ff DSSUHVVHG WR HUHFW RIWHQ GHFXUUHQW PDUJLQV VWURQJO\ UHYROXWH VHUUDWH 3HULDRQLDO OHDYHV RYDWH DFXWH WR VKRUWO\ DFXPLQDWH [ PP $QWKHULGLD [ XP SDUDSK\VHV FHOOV ORQJ XP ORQJ 3HULFKDHWLDO OHDYHV VXEXODWH [ PP ORQJDFXPLQDWH ZLWK DFXPHQV PP ORQJ EDVDO FHOOV UKRPERLGDO [ XP SRURVH SURUXORVH IUHTXHQWO\ SDSLOORVH ZLWK RQH ODUJH FHQWUDO SDSLOOD DSLFDO FHOOV UKRPELF VLQXRXV [ XP $UFKHJRQLD XP ORQJ ZLGH DW YHQWHU SDUDSK\VHV FHOOV ORQJ XP 6HWD WR FP ORQJ &DSVXOH XUQ [ PP XSSHU H[RWKHFLDO FHOOV [ XP PHGLDQ H[RWKHFLDO FHOOV [ FHOOV LQ

PAGE 204

QHFN [ 2SHUFXOXP PP ORQJ ORQJ URVWUDWH ZLWK EHDN PP ORQJ RQO\ LQWDFW RSHUFXOXP VHHQf ([RVWRPH WHHWK XUQ ORQJ XUQ ZLGH DW EDVH (QGRVWRPH VHJPHQWV XUQ ORQJ XUQ ZLGH DW EDVH EDVDO PHPEUDQH XUQ KLJK FLOLD XUQ ORQJ 6SRUHV XUQ LQ GLDPHWHU &DO\SWUD WR PP ORQJ 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG $5*(17,1$ &+8%87 6: DUP RI /DJR 0HQQGH] 6( VORSH 1RWKRIDJXV GRPEHYL IRUHVW -DQ .DOHOD %K +f /DJR 5LYDGDYLD 'HF .KQHPDQQ $/7$ 8f 1(848(1 /DJR &RUUHQWRVR VWHHS VORSH E\ EURRN UXQQLQJ WKURXJK LVWKPXV EHWZHHQ /DJR &RUUHQWRVR DQG /DJR (VSHMR 1RWKRIDJXV GRPEHYL IRUHVW 1RY .DOHOD %Q +f 3DUTXH 1DFLRQDO /DQLQ 3HQLQVXOD GH 3XFDU£ )HE 0DWWHUL %$f 5,2 1(*52 3DUTXH 1DFLRQDO $UJHQWLQR >3DUTXH 1DFLRQDO 1DKXHO +XDSL@ 1DKXHO +XDSL 3XHUWR 3DXHOR P -XQ 'RQDW -(f /DJR 0DVFDUGL VORSH DERYH ODNH FD NP 1 RI (O 0DLWHQDO 1RWKRIDJXV GRPEHYL IRUHVW ZLWK $XVWURFHGUXV 'HF .DOHOD %J +f 6$17$ &58= 6 HQG RI /DJR $UJHQWLQD : VLGH RI /DJXQD )ULD r6 r: PDWXUH IRUHVW GRPLQDWHG E\ 1RWKRIDJXV SXPLOLR ZLWK 1 EHWXORLGHV DQG 1 DQW£UFWLFD 0DU &DQWLQR 0OO 0 0 DOO 02f 'HSWR /DJR $UJHQWLQR %DKLD $PHJKLQR DO 1 GHO ULR UHIXJLRf ERVTXH PL[WR GH 1RWKRIDJXV EHWXORLGHV 1 SXPLOLR 'ULPYV ZLQWHUL 0DYWHQXV PDJHOODQLFD 0 GLVWLFKD \

PAGE 205

DEXQGDQFLD GH KHOFKRV rn6 rn: -DQ 0DWWHUL t 6FKLDYRQH +HUE 0DWWHULf &+,/( $,6(1 3DWDJRQLD RFFLGHQWDOLV ULR $\VHQ >$LVQ@ LQ WUXQFLV -DQ 'XVQ &+5 '8.( )+ )/$6 *% 1< 6f &$87,1 'HSWR 9LOODUULFD 3XFQ DXI GHP :HJ QDFK GHP 9XOFDQ 9LOODUULFD DXI %£XPHQ )HE +RVVHXV -(f 3DUTXH 1DFLRQDO &RQJXLOOLR DO 6 GH OD /DJXQD HQ HO URTXHULR IUHQWH ODV &DEDQDV P )HE 0DKX 02f 9ROF£Q /ODLPD DXI PRUVFKHQ %DXPVW£PPHQ P )HE 5XWKVDW] VQ +f 0$*$//$1(6 3XHUWR $UWXUR QR GDWH %HQRYH +f 3XHUWR $UWXUR VREUH £UERO SWULGR 0DU %HQRYH +f 0$//(&2 'HSWR $QJRO (VWHUR $JXDV &DOLHQWHV 3DUTXH 1DFLRQDO GH 1DKXHOEXWD IUHQWH D FDVD GH 3LQFKHLUD P $SU 0DKX )/$6f 0$//(&2$5$8&2 3DUTXH 1DFLRQDO 1DKXHOEXWD &RUGLOOHUD 1DKXHOEXWD NP : RI SDUN HQWUDQFH NP : RI $QJRO rn6 rn: 1RWKRIDFUXV IRUHVW RQ URFN P )HE &URVEY 02f 18%/( 5HFLQWR /DV )UDQFDV HO 3XUJDWRULR LQ VLOYD 1RWKRIDDXV GRPEHYL P $SU 5RLYDLQHQ )+ +f 9$/',9,$ &RUGLOOHUD 3HODGD >/D 3HODGD@ 0LVFKZDOG DXI %DXPULQGH P -DQ 5XWKVDW] VQ +f 9$/',9,$256212 )RUHVW UHVHUYH DW 3ODQWD +LGURHOFWULFD 3LOPDLTXQ NP : RI (QWUH /DJRV DORQJ ULR 3LOPDLTXQ QHDU WRS RI 6DOWR %UXMR rn6 rn: RQ WUHH VRPH VWHPV SHQGHQW P -DQ &URVE\ 02f

PAGE 206

5LTRGLXP DGSUHVVXP LV XVXDOO\ HSLSK\WLF RQ WUHH WUXQNV DQG EUDQFKHV DOVR VRPHWLPHV RFFXUULQJ RQ ORJV DQG URFNVf LQ IRUHVWV GRPLQDWHG E\ 1RWKRIDDXV VSHFLHV ZLWK 0YUFHXJHQLD $XVWURFHGUXV 'ULPYV DQG 0DYWHQXVf 7KH HOHYDWLRQ LV XVXDOO\ WR P DOWKRXJK ORZHU DOWLWXGHV Pf DUH RFFDVLRQDOO\ FLWHG RQ WKH VSHFLPHQ ODEHOV 7KH UDQJH DORQJ WKH $QGHDQ &RUGLOOHUD LQ &KLOH$UJHQWLQD H[WHQGV IURP FD r 6 WR r6 )LJ f 7KLUW\RQH FROOHFWLRQV VSHFLPHQVf RI 5 DGSUHVVXP KDYH EHHQ GHWHUPLQHG IURP WKH ORDQ PDWHULDO =RPOHIHU f ,W LV VRPHZKDW VXUSULVLQJ WKDW D GLVWLQFW LH QXPHURXV DXWDSRPRUSKLHVf DQG ZHOOFROOHFWHG VSHFLHV KDG EHHQ RYHUORRNHG E\ SUHYLRXV DXWKRUV FRQVLGHULQJ WKH DEXQGDQFH RI 5LTRGLXP VSHFLHV GHVFULSWLRQV DQG WKH QXPEHU RI HSLWKHWV UHGXFHG LQ V\QRQ\P\ LQ WKLV UHYLVLRQ VHH 7DEOH f 7KH PDMRULW\ RI WKH 5 DGSUHVVXP VSHFLPHQV KDG QRW EHHQ LGHQWLILHG WR VSHFLHV WKH UHPDLQGHU KDG EHHQ ODEHOOHG DV 5 WR[DULRQ 5 QDQRIDVHLFXODWXP 5 WR[DULRQ LQ WKH SUHVHQW VWXG\f RU 5 DUERUHVFHQV 5 EUDFKYSRGLXP LQ WKH SUHVHQW VWXG\f 5LTRGLXP DGSUHVVXP LV SKHQHWLFDOO\ FORVH WR 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP DQG 5 WR[DULRQ YDU WR[DULRQ DV VKRZQ JUDSKLFDOO\ LQ WKH UHVXOWV RI WKH 3& DQDO\VLV )LJ $ DQG %f $OO WKUHH VSHFLHV VKDUH WKH SOHVLRPRUSKLF FKDUDFWHU RI WKH DUERUHVFHQW KDELW ZLWK D ZHOOGHYHORSHG VWLSH )LJ $f ,Q DGGLWLRQ WKH QHZ VSHFLHV DQG 5 EUDFKYSRGLXP ERWK KDYH REYLRXV LQWUDPDUJLQDO ERUGHUV GHULYHG FKDUDFWHUf RQ

PAGE 207

WKH VWHP DQG VWLSH OHDYHV 5MTRGLXP DGSUHVVXP VWHP OHDYHV ZKLFK DUH ORQJHU WKDQ ZLGH )LJ 'f DUH VRPHZKDW VLPLODU LQ VKDSH WR WKRVH RI 5 WR[DULRQ 7KH DSSUHVVHG SRVLWLRQ )LJ %f RI WKH VWHP DQG VWLSH OHDYHV RI 5 DGSUHVVXP KRZHYHU LV YHU\ XQOLNH WKDW RI RWKHU 5MTRGLXP VSHFLHV ZKLFK DUH ZLGHVSUHDGLQJ WR VTXDUURVH $OVR HDVLO\ GLVFHUQLEOH ZLWK WKH GLVVHFWLQJ PLFURVFRSH DW ORZ SRZHU )LJ 2%f DUH WKH VWURQJO\ UHYROXWH OHDI PDUJLQV )LJ +f FRPSDUHG WR WKH SODQH WR ZHDNO\ UHIOH[HG FRQGLWLRQ RI WKH RWKHU VSHFLHV ,Q DGGLWLRQ WKH FHOOV RI WKH LQWUDPDUJLQDO EDQG )LJ f KDYH H[WUHPHO\ WKLFN ZDOOV DQG DUH PXFK VKRUWHU WKDQ WKH PLGODPLQDU FHOOV DQRWKHU DXWDSRPRUSK\ IRU WKH VSHFLHV VHH )LJ &f 7KH VWHP VWLSH DQG VRPHWLPHV EUDQFK OHDYHV RI WKH QHZ VSHFLHV KDYH WKH DGGLWLRQDO DXWDSRPRUSKLF IHDWXUH RI D ORQJ GHFXUUHQF\ RYHU b RI WKH WRWDO OHDI OHQJWK )LJV % & DQG 'f 6HYHUDO FHOOV RI WKH GHFXUUHQW SRUWLRQ FRQWDLQ D ODUJH ORZ FHQWUDO SDSLOOD )LJ *f RQ WKH GRUVDO VLGH $V QRWHG LQ WKH FKDSWHU RQ JHQHUDO PRUSKRORJ\ VLPLODU SDSLOODH DUH RFFDVLRQDOO\ WR IUHTXHQWO\ SUHVHQW DW WKH EDVH RI WKH RXWHU SHULFKDHWLDO OHDYHV LQ DOO 5MTRGLXP VSHFLHV EXW RFFXU FRQVLVWHQWO\ RQ DOO WKH DYDLODEOH FROOHFWLRQV RI 5 DGSUHVVXP ZLWK DUFKHJRQLDO SODQWV )LJ % DQG &f $V GLVFXVVHG LQ GHWDLO LQ WKH FODGLVWLF DQDO\VLV )LJV DQG f 5 DGSUHVVXP LV SK\ORJHQHWLFDOO\ LQWHUPHGLDWH ZLWKLQ WKH JHQXV DOWKRXJK WKH H[DFW UHODWLRQVKLS RI 5 DGSUHVVXP WR WKH RWKHU VSHFLHV LV XQFOHDU 7KH QHZ VSHFLHV

PAGE 208

PD\ EH SRVLWLRQHG EHWZHHQ 5 EUDFK\SRGLXP DQG WKH 5 LPSOH[XP5 SVHXGRWKXLGLXP FODGH VHH )LJ f LI 5 EUDFK\SRGLXP LV SDUDSK\OHWLF RU 5 DGSUHVVXP PD\ SRVVLEO\ EH OHVV GHULYHG WKDQ 5 EUDFK\SRGLXP LI WKH ODWWHU VSHFLHV LV PRQRSK\OHWLF )LJ $f 0LQRU YDULDQWV RI WKH QHZ VSHFLHV DUH IRXQG LQ WKH FROOHFWLRQV RI &URVE\ DQG 'XVQ ZKLFK JHQHUDOO\ H[KLELW WKH GLVWLQJXLVKLQJ FKDUDFWHUV RI 5 DGSUHVVXP EXW KDYH ZHDNO\ VSUHDGLQJ OHDYHV ,Q DGGLWLRQ DV QRWHG IRU 5 WR[DULRQ DQG 5 DGSUHVVXP ERWK DOVR DUERUHVFHQWf D IHZ FROOHFWLRQV RI 5 DGSUHVVXP IHDWXUH D OD[ VSDUVHO\ EUDQFKHG KDELW HJ +RVVHXV ?=RPOHIHU D-SUREDEO\ GXH WR OHVV WKDQ RSWLPDO HQYLURQPHQWDO FRQGLWLRQV

PAGE 209

),* 5LTRGLXP DGSUHVVXP *DPHWRSK\WLF )HDWXUHV $ +DELW % 3RUWLRQ RI VWHP & 6WLSH OHDI 6WHP OHDI ( %UDQFK OHDYHV ) &URVV VHFWLRQ RI VWHP WDNHQ DW ORFDWLRQ LQGLFDWHG E\ DUURZ LQ % LH WKURXJK GHFXUUHQW SRUWLRQ RI VWHP OHDIf *$UHRODWLRQ RI OHDI &HOOV RI EDVDO GHFXUUHQF\ + &URVV VHFWLRQ RI VWHP OHDI 0DUJLQDO DQG LQWUDPDUJLQDO FHOOV 0LGODPLQDU FHOOV $OO IURP .KQHPDQQ $/7$ LVRW\SHf

PAGE 210

QZEJ2 4B 2Aa••4 f•2332 22QA< U 7

PAGE 211

),* 5LJRGLXP DGSUHVVXP 6SRURSK\WLF DQG 5HODWHG *DPHWRSK\WLF )HDWXUHV $ 3HULFKDHWLDO OHDI % %DVDO DUHRODWLRQ RI SHULFKDHWLDO OHDI & &URVV VHFWLRQ RI SHULFKDHWLDO OHDI WDNHQ QHDU EDVH $UHRODWLRQ RI XSSHU SHULFKDHWLDO OHDI ( %UDQFK ZLWK SHULJRQLD ) 3HULJRQLXP 2XWHU SHULJRQLDO OHDI + ,QQHU SHULJRQLDO OHDI 2SHUFXODWH FDSVXOH URVWUXP EURNHQf 'HWDFKHG RSHUFXOXP 'HRSHUFXODWH FDSVXOH $' .KQHPDQQ $/7$ LVRW\SHf (+ 5XWKVDW] VQ 9ROF£Q /ODLPD +f DQG 0DWWHUL t 6FKLDYRQH +HUE 0DWWHULf 'XVQ 1
PAGE 212

WR]

PAGE 213

),* 'LVWULEXWLRQ RI 5LJRGLXP DGSUHVVXP

PAGE 214

'LVWULEXWLRQ RI 5 DGSUHVVXP 6287+(51 &+,/( $1' $5*(17,1$ L L NP

PAGE 215

5LTRGLXP LPSOH[XP .XQ]H H[ 6FKZ£JU 5LDRGLXP LPSOH[XP .XQ]H H[ 6FKZ£JU /LQQDHD 3ODWH >@ +YSQXP LPSOH[XP 6FKZ£HJUf & 0 /LQQDHD >@ +HWHURFODGLXP LPSOH[XP 6FKZ£JUf /RU %RW =HLW 7\SH &KLOH %LR%LR &KLOH DXVWUDOLV $QGHV GH $QWXFR LQ V\OYLV GHQVLV 'HF 3RHSSLFU VQ OHFWRW\SH %0f" &KLOH DXVWUDOLV $QGHV GH $QWXFR QR GDWH 3RHSSLD VQ RULJLQDO PDWHULDO )+f &KLOH 3RHSSLD VQ RULJLQDO PDWHULDO %0f &KLOH QR GDWH 3RHSSLD VQ RULJLQDO PDWHULDO %0f &KLOH QR GDWH 3RHSSLD VQ RULJLQDO PDWHULDO -(f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f 3ODQWV PHGLXP WR ODUJH H[WUHPHO\ ZLU\ RIWHQ IRUPLQJ ODUJH WDQJOHG DQG XQDWWDFKHG PDWV SURIXVHO\ LUUHJXODUO\ SLQQDWHO\ EUDQFKHG ZLWK SULPDU\ DQG VHFRQGDU\ EUDQFKHV DW ZLGH DQJOHV WR WKH VWHPV XVXDOO\ RQ VRLO RU RFFDVLRQDOO\ RQ WUHH WUXQNV RU EUDQFKHV GDUN JUHHQ WR EURZQLVK JUHHQ 6WLSHV QRW ZHOOGLIIHUHQWLDWHG WR FP ORQJ 6WHPV WR FP ORQJ XP LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ SHU VWHP VSDFHG PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ JUDGXDOO\ EHFRPLQJ PXFK VKRUWHU DERYH 6HFRQGDU\ EUDQFKHV JHQHUDOO\ SHU SULPDU\ EUDQFK WR FP ORQJ 7HUWLDU\ EUDQFKHV SUHVHQW SURIXVH 6WHP OHDYHV EURDGO\ RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D ZHOOGHYHORSHG DFXPHQ [

PAGE 216

PP FD DV ORQJ DV ZLGH ZLWK OHQJWKZLGWK UDWLR f f VWURQJO\ VTXDUURVH ZLWK FODVSLQJ DQG FRQFDYH EDVH ORQJLWXGLQDOO\ XQGXODWH RFFDVLRQDOO\ DXULFXODWH VRPHZKDW GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ PP ORQJ >f§ff§ b RI WRWDO OHDI OHQJWK@ DFXPHQ PP ORQJ f fb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV SODQH WR ZHDNO\ UHIOH[HG VHUUDWH WKURXJKRXW FRVWD VLQJOH UHODWLYHO\ ZHOOGHYHORSHG PP ORQJ XP ZLGH DW EDVH fVWUDWRVH LQ ORZHU KDOI DODU FHOOV TXDGUDWH WR REODWH [ XP PDUJLQDO FHOOV VHULDWH REORQJUKRPELF [ XP LQWUDPDUJLQDO FHOOV ffVHULDWH REORQJ WR HORQJDWH [ XP ZLWK WKLFNHU ZDOOV WKDQ WKH PLGODPLQDU FHOOV DQG IRUPLQJ D PRGHUDWHO\ VWURQJ LQWUDPDUJLQDO EDQG PLGODPLQDU FHOOV UKRPELF WR UKRPERLGDO [ XP SRURVH ZLWK ZDOOV XQHYHQ s SURUXORVH 6WLSH OHDYHV ZLWK VLPLODU VKDSH DQG RULHQWDWLRQ DV VWHP OHDYHV [ PP DFXPHQ PP ORQJ FRVWD DEVHQW 6HFRQGDU\ EUDQFK OHDYHV QDUURZO\ RYDWH DFXWH [ PP ZLWK OHQJWKZLGWK UDWLR ff VSUHDGLQJ WR VTXDUURVH PDUJLQV VHUUDWH 3HULJRQLDO OHDYHV RYDWH DFXWH WR VKRUWO\ DFXPLQDWH [ PP $QWKHULGLD [ XP SDUDSK\VHV FHOOV ORQJ XP ORQJ 3HULFKDHWLDO OHDYHV VXEXODWH [ PP ORQJDFXPLQDWH ZLWK DFXPHQV PP ORQJ EDVDO FHOOV UKRPERLGDO [ XP SRURVH SURUXORVH

PAGE 217

VRPHWLPHV SDSLOORVH ZLWK RQH ODUJH FHQWUDO SDSLOOD DSLFDO FHOOV UKRPELF VLQXRXV [ XUQ $UFKHDRQLD XUQ ORQJ ZLGH DW YHQWHU SDUDSK\VHV FHOOV ORQJ XUQ 6HWD WR FP ORQJ &DSVXOH XUQ [ PP XSSHU H[RWKHFLDO FHOOV [ XUQ PHGLDQ H[RWKHFLDO FHOOV [ FHOOV LQ QHFN [ 2SHUFXOXP PP ORQJ ORQJURVWUDWH ZLWK EHDN PP ORQJ ([RVWRPH WHHWK XUQ ORQJ XUQ ZLGH DW EDVH (QGRVWRPH VHJPHQWV XP ORQJ XP ZLGH DW EDVH EDVDO PHPEUDQH XP KLJK FLOLD XP ORQJ 6SRUHV XP LQ GLDPHWHU &DOYSWUD WR PP ORQJ 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG $5*(17,1$ 1(848(1 3DUTXH 1DFLRQDO /DQLQ 3XFDU£ ERVTXH GH 1RWKRIDDXV QHUYRVD \ 1 GRPEHYL HQ HO VXHOR 0D\ (VNXFKH +f /DJR &RUUHQWRVR RQ URDG WR KRWHO 1RWKRIDJXV GRPEHYL IRUHVW 1RY .DOHOD %F +f &+,/( $,6(1 3DWDJRQLD RFFLGHQWDOLV LQ YDOOH IOXPLQLV $\VHQ >$LVQ@ LQ WHUUD -DQ 'XVQ %0 &+5 '8,6 )+ + -( 0 0,&+ 1< 2 6 836 :f 3DWDJRQLD RFFLGHQWDOLV &DQDO 0RUDOHGDV >0RUDOHGD &DQDO@ 3XHUWR &KDFDEXFR DG WHUUDP -XO +DOOH + 6 836f &$87,1 'HSWR 9LOODUULFD 3XFQ DXI GHP :HJ QDFK GHP 9XONDQ 9LOODUULFD DXI (UGH )HE &?B +RVVHXV )+ -( 0f &+,/2( ,VOD &KLOR IRUHVW DW &KDGPR &HQWUDO MXVW 1 RI 3XHQWH 6DQ -XDQ DORQJ 5XWD NP E\ URDG 1 RI

PAGE 218

4XHOOQ rn6 rn: WHUUHVWULDO QRW DWWDFKHG WR VXEVWUDWH P )HE &URVEY $/7$ &$10 &+5 )/$6 + .5$0 0,&+ 02 1< 6 8f &KHSX 1RWKRIDTXV QLWLGD IRUHVW IUHHOLYLQJ RQ IRUHVW IORRU 2FW *RGOHY %0 &+5 )/$6 +f &21&(3&,21 7DOFDKXDQR -XO $VROXQG 6f //$148,+8(
PAGE 219

6f 3URSH FRORQLDP $ULTXH DG WHUUDLQ $XJ QR \HDU /HFKOHU D %0 %5 + / 1< 2 2;) 6 836 :f 5LTRGLXP LPSOH[XP JHQHUDOO\ RFFXUV RQ ZHOOVKDGHG GDPS WR VZDPS\ JURXQG LQ IRUHVWV GRPLQDWHG E\ VSHFLHV RI 1RWKRIDJXV DORQJ ZLWK $UDXFDULD /DXUHOLD :HLQPDQQLD &KXVFUXHD DQG (XFUYSKLDf DW DOWLWXGHV XVXDOO\ UHSRUWHG DW WR P DOWKRXJK KLJKHU HOHYDWLRQV WR Pf DUH VRPHWLPHV FLWHG RQ WKH ODEHOV 7KH UDQJH )LJ f FD r6 WR r 6 DORQJ WKH $QGHDQ &RUGLOOHUD LQ &KLOH$UJHQWLQDf LV WKH PRVW UHVWULFWHG RI WKH 5LTRGLXP VSHFLHV 5LTRGLXP LPSOH[XP LV RQH RI WKH PRVW FRPPRQ PRVVHV LQ WKH 9DOGLYLDQ UDLQIRUHVWV +HU]RJ f %HVLGHV 9DOGLYLD WKH VSHFLHV KDV EHHQ FROOHFWHG H[WHQVLYHO\ LQ WKH SURYLQFHV RI &DXWLQ DQG /ODQTXLKXH DV ZHOO DV RQ WKH LVODQG RI &KLOR 7KH JHQXV 5LTRGLXP ZDV ILUVW GHVFULEHG E\ 6FKZ£JULFKHQ f ZLWK VSHFLPHQV RI 5 LPSOH[XP DV WKH W\SHVf 7KH VLWXDWLRQ FRQFHUQLQJ WKH RULJLQDO PDWHULDO QRPHQFODWXUH DQG OHFWRW\SLILFDWLRQ RI 5 LPSOH[XP LV GLVFXVVHG LQ GHWDLO LQ =RPOHIHU f 'XH WR FRQIXVLRQ LQ WKH OLWHUDWXUH FRQFHUQLQJ WKH HSLWKHWV RI 5LTRGLXP KHUEDULXP VSHFLPHQV RI 5 LPSOH[XP DUH RIWHQ ODEHOOHG DV 5 WR[DULRQ WKH ROGHVW HSLWKHW LQ WKH JHQXV 7KH VSHFLHV KRZHYHU LV RQH RI WKH HDVLHVW LQ WKH JHQXV WR LGHQWLI\ GXH WR WKH XQXVXDO DQG GHULYHG KDELW W\SH )LJ $f 7KH H[WUHPHO\ ZLU\ VWHPV DQG EUDQFKHV RI DOO RUGHUVf DULVH DW ULJKW DQJOHV DQG VSUHDG LQ DOO GLUHFWLRQV +HU]RJ f HYHQWXDOO\ IRUPLQJ

PAGE 220

XQDWWDFKHG LUUHJXODUO\ VSKHULFDO PDVVHV 0LGGOHWRQ VQ &URVE\ f DOVR GHVFULEHG E\ FROOHFWRUV DV .XJHOQ JOREHV RU VSKHUHV 6OHXPHU f +DOENXJHOQ KHPLVSKHUHV 3RHSSLJ VQf VSRQJHOLNH PDVVHV 0LGGOHWRQ VQf WLQ\ WXPEOHZHHGV &DQWLQS -f DQG ODQD GH SREUH SRRU PDQnV ZRRO +HU]RJ 6FKZDEH &URVE\ f $OWKRXJK PRVW FRPPRQO\ WHUUHVWULDO DQG XQDWWDFKHG WR WKH VXEVWUDWH WKH VSHFLHV LV DOVR UDUHO\ UHSRUWHG JURZLQJ DV DQ HSLSK\WH RQ ORZ EUDQFKHV :LWK 5 SVHXGRWKXLGLXP 5 LPSOH[XP LV SK\ORJHQHWLFDOO\ DGYDQFHG ZLWKLQ 5LTRGLXP VKDULQJ WKH IRXU IROORZLQJ GHULYHG FKDUDFWHUV ZLWK LWV VLVWHU VSHFLHV )LJV f ORVV RI URRWLQJ DW WKH WLSV RI EUDQFKHV D UHYHUVDOf ORVV RI ZHOOGHYHORSHG VWLSH VSUHDGLQJ EUDQFKHV WKDW DULVH DW ULJKW DQJOHV WR WKH VWHPV GLVFXVVHG DERYHf DQG D ZHOOGHYHORSHG LQWUDPDUJLQDO EDQG 7KH VWHP OHDYHV RI ERWK VSHFLHV DOVR WHQG WR EH FD DV ORQJ DV ZLGH )LJ 'f ZLWK VKRUW DFXPHQV (f 7KH LQWUDPDUJLQDO EDQG )LJ ) DQG +f FRQVLVWV RI XS WR WHQ URZV RI FHOOV WKDW DUH XVXDOO\ ORQJHU WKDQ WKRVH RI WKH PLGODPLQDU UHJLRQ )LJ &f 7KH PLGODPLQDU FHOOV )LJ *f KDYH XQHYHQ ZDOOV DQG DUH SURUXORVH EXW QRW WR WKH VDPH H[WHQW DV 5 SVHXGRWKXLGLXP $V QRWHG E\ VHYHUDO DXWKRUV %URWKHUXV 5RELQVRQ f WKH VWHP OHDYHV RI 5 LPSOH[XP DUH VWURQJO\ VTXDUURVH ZHW RU GU\ )LJ %f ,Q DGGLWLRQ WKH FRVWDH RI 5 LPSOH[XP VWHP OHDYHV WHQG WR EH ZHOOGLIIHUHQWLDWHG

PAGE 221

WR VWUDWRVH LQ WKH ORZHU KDOI )LJ )f DV RSSRVHG WR WR VWUDWRVH RU DEVHQWf LQ RWKHU VSHFLHV RI 5LFURGLXP

PAGE 222

),* 5LTRGLXP LPSOH[XP *DPHWRSK\WLF )HDWXUHV $ +DELW % 3RUWLRQ RI VWHP VKRZLQJ SRVLWLRQ RI OHDYHV & 6WLSH ORZ VWHPf OHDI 6WHP OHDI ( %UDQFK OHDI ) &URVV VHFWLRQ RI OHDI *+ $UHRODWLRQ RI OHDI 0LGODPLQDU FHOOV + 0DUJLQDO DQG LQWUDPDUJLQDO FHOOV $ IURP 'XVQ f %+ IURP &ODXGH-RVHSK )+f

PAGE 223

FP n0 ?? PP

PAGE 224

),* 5LDRGLXP LPSOH[XP 6SRURSK\WLF DQG 5HODWHG *DPHWRSK\WLF )HDWXUHV $ 3HULFKDHWLDO OHDI %& $UHRODWLRQ RI SHULFKDHWLDO OHDI % %DVDO FHOOV & 8SSHU FHOOV 6HFRQGDU\ EUDQFK ZLWK SHULJRQLD ( 3HULJRQLXP ) 3HULJRQLDO OHDYHV 6WHP ZLWK VSRURSK\WHV + &DSVXOH $& + IURP &ODXGH-RVHRK )+f ') IURP &URVE\ 836f

PAGE 226

),* 'LVWULEXWLRQ RI 5LDRGLXP LPSOH[XP

PAGE 227

'LVWULEXWLRQ RI 5 LPSOH[XP

PAGE 228

5LJRGLXP SVHXGRWKXLGLXP 'XV 5LJRGLXP SVHXGRWKXLGLXP 'XV %RW 1RW 7\SHV &KLOH $LVQ 3DWDJRQLD RFFLGHQWDOH LQ YDOOH IOXPLQLV $\VHQ >$LVQ@ LQ WHUUD -DQ 'XVQ OHFWRW\SH 6 LVROHFWRW\SHV %0 &+5 )+ VSHFLPHQVf ),$6 -( 0 1< VSHFLPHQVf 6 VSHFLPHQVf 836 :f &KLOH 0DJDOODQHV )XHJLD 3RUW *DOODQW >3XHUWR *DOODQW@ LQ WHUUD 0DU 'XVQ RULJLQDO PDWHULDO 0 6 836f 7LHUUD GHO )XHJR )XHJLD DXVWUDOLV ULR $]RSDUGR LQ WHUUD 0DU 'XVQ RULJLQDO PDWHULDO &+5 + 6 VSHFLPHQVf 836 : VSHFLPHQVff )XHJLD DXVWUDOLV FHUUH GH WHUH ULR $]RSDUGR LQ WUXQFLV DUERUXP LQ KXPR )HE 'XVQ RULJLQDO PDWHULDO &+5 )+ + -( / 6 VSHFLPHQVf 836f OHFWRW\SLILFDWLRQ LQ =RPOHIHU f 5LJRGLXP KYORFRPLRLGHV &DUG t %URWK %LK 6YHQVN 9HW $N +DQGO f 3ODWH ,,, )LJV DF 7\SHV &KLOH 0DJDOODQHV )XHJLD $OPLUDQWD]JR >6HQR GHO $OPLUDQWD]JR@ +RSH %D\ LQ GXPHWULV )HE +DOOH t 6NRWWVEHUJ OHFWRW\SH KHUH GHVLJQDWHG 3& LVROHFWRW\SHV 6 836f 3DWDJRQLD DXVWUDOLV 6N\ULQJ >/DNH 6N\ULQJ@ 3XHUWR 3LQWR IRUWV £ IHXLOOHV SHUVLVWDQWHV $SU +DOOH t 6NRWWVEHUJ V\QW\SHV %0 -( 3& 6 836 : SRVVLEOH V\QW\SH DV VQ 6f )UHWXP PDJHOODQLFXP >6WUDLW RI

PAGE 229

0DJHOODQ@ ,VOD 'DZVRQ +DUULV %D\ )HE 6NRWWVEHUJ V\QW\SHV 3& 836f 5LDRGLXP KYORFRPLRLGHV YDU TUDFLOLXV &DUG t %URWK %LK 6\HQVN 9HW $N +DQGO f 7\SHV &KLOH &KLOR ,VODV *XDLWHFDV 0HOLQFD DG WUXQFRV $XJ +DOOH OHFWRW\SH KHUH GHVLJQDWHG 3& LVROHFWRW\SHV 6 836f &KLOH 0DJDOODQHV 3DWDJRQLD RFFLGHQWDOH 6P\WK &KDQQHO 2n&RQQRU &RYH HWDLW PLODQJL $FURFODGLXP DXULFXODWXP -XQ +DOOH V\QW\SH 836f 3ODQWV PHGLXP WR ODUJH OLWWOH EUDQFKHG RQFH WR WZLFH SLQQDWHf SHQGHQW RU FUHHSLQJ RQ WUHH WUXQNV DQG EUDQFKHV RU RFFDVLRQDOO\ RQ ORJV URFNV RU VRLO JUHHQ RU PRUH FRPPRQO\ \HOORZJUHHQ WR \HOORZLVK EURZQ 6WLSHV QRW ZHOO GLIIHUHQWLDWHG WR FP ORQJ 6WHPV WR FP ORQJ XUQ LQ GLDPHWHU 3ULPDU\ EUDQFKHV JHQHUDOO\ f SHU VWHP VSDFHG f PP DSDUW DORQJ WKH VWHP SUR[LPDO RQHV WR FP ORQJ QRW EHFRPLQJ QRWLFHDEO\ VKRUWHU DERYH UHFXUYHG 6HFRQGDU\ EUDQFKHV JHQHUDOO\ f SHU SULPDU\ EUDQFK WR FP ORQJ 7HUWLDU\ EUDQFKHV UDUHO\ SUHVHQW 6WHP OHDYHV EURDGO\ RYDWH DW EDVH DQG DEUXSWO\ QDUURZHG WR D VKRUW DFXPHQ [ PP FD VKRUWHU WKDQ ZLGH ZLWK OHQJWKZLGWK UDWLR ff VSUHDGLQJ WR VTXDUURVH ZLWK EURDG FODVSLQJ DQG FRQFDYH EDVH VWURQJO\ ORQJLWXGLQDOO\ XQGXODWH DXULFXODWH VRPHZKDW GHFXUUHQW ZLWK GHFXUUHQW SRUWLRQ

PAGE 230

PP ORQJ b RI WRWDO OHDI OHQJWKf DFXPHQ PP ORQJ ffb RI OHDI OHQJWK PHDVXUHG IURP SRLQW RI LQVHUWLRQ PDUJLQV UHIOH[HG VHUUDWH WKURXJKRXW FRVWD DEVHQW RU RFFDVLRQDOO\ SUHVHQW WKHQ YHU\ ZHDN RU GRXEOHf DODU FHOOV TXDGUDWH WR REODWH [ XUQ PDUJLQDO FHOOV VHULDWH REORQJUKRPELF [ XP LQWUDPDUJLQDO FHOOV ffVHULDWH REORQJ WR HORQJDWH [ XP ZLWK WKLFNHU ZDOOV WKDQ WKH PLGODPLQDU FHOOV DQG IRUPLQJ D VWURQJ LQWUDPDUJLQDO EDQG PLGODPLQDU FHOOV UKRPELF WR UKRPERLGDO [ XP SRURVH ZLWK ZDOOV YHU\ XQHYHQ YHU\ SURUXORVH 6WLSH OHDYHV ZLWK VLPLODU VKDSH DQG RULHQWDWLRQ DV VWHP OHDYHV [ PP DFXPHQ PP ORQJ FRVWD DEVHQW 6HFRQGDU\ EUDQFK OHDYHV EURDGO\ RYDWH WR RYDWH DFXWH [ PP ZLWK OHQJWKZLGWK UDWLR ff HUHFWVSUHDGLQJ WR VSUHDGLQJ PDUJLQV VHUUDWH FRVWD RIWHQ ZHDN 3HULTRQLDO OHDYHV EURDGO\ RYDWH DFXWH WR VKRUWO\ DFXPLQDWH [ PP $QWKHULGLD [ XP SDUDSK\VHV FHOOV ORQJ XP ORQJ 3HULFKDHWLDO OHDYHV VXEXODWH [ PP ORQJDFXPLQDWH ZLWK DFXPHQV PP ORQJ EDVDO FHOOV UKRPERLGDO [ XP SRURVH YHU\ SURUXORVH VRPHWLPHV SDSLOORVH ZLWK RQH ODUJH FHQWUDO SDSLOOD DSLFDO FHOOV UKRPELF VLQXRXV [ XP $UFKHJRQLD XP ORQJ ZLGH DW YHQWHU SDUDSK\VHV FHOOV ORQJ XP 6HWD WR FP ORQJ &DSVXOH XUQ [ PP

PAGE 231

XSSHU H[RWKHFLDO FHOOV [ XUQ PHGLDQ H[RWKHFLDO FHOOV [ FHOOV LQ QHFN [ 2SHUFXOXP QRW VHHQ ([RVWRPH WHHWK XUQ ORQJ XUQ ZLGH DW EDVH (QGRVWRPH VHJPHQWV XP ORQJ XP ZLGH DW EDVH EDVDO PHPEUDQH XP KLJK FLOLD XP ORQJ 6SRUHV XP LQ GLDPHWHU &DOYSWUD WR PP ORQJ 5HSUHVHQWDWLYH VSHFLPHQV H[DPLQHG $5*(17,1$ 1(848(1 /DJR (VSHMR NP WRZDUGV &RUUHQWRVR IURP WKH SDUN ZDUGHQnV UHVLGHQFH RQ WRS RI VPDOO KLOO 1RY .DOHOD %I +f /DJR (VSHMR 1 RI FDPSVLWH RQ VWHHS VORSH 1RY .DOHOD %D +f 5,2 1(*52 /DJR 0DVFDUGL RQ YHU\ JHQWOH VORSH DERYH ODNH FD NP 6 RI +RWHO 7URQDGRU 1RWKRIDDXV GRPEHYL$XVWURFHGUXV IRUHVW 'HF .DOHOD %H +f /DJR 1DKXHO +XDSL H[FXUVLRQ YRQ &DPSDPHQWR ,, 0D\ /LXQJQHU -( 6f 6$17$ &58= 6DQWD &UX] 3DWDJRQLHQf DQ 4XHOOHQ QR GDWH +LFNHQ VQ -(f 7,(55$ '(/ )8(*2 %DKLD %XHQ 6XFHVR HQ WXUEHUD GH 6SKDJQXP PDJHOODQLFXP VREUH OD FRVWD 6XU GHO ULR %RYH rn6 r: -DQ" 0DWWHUL t 6FKLDYRQH +HUE 0DWWHULf ,VOD GH ORV (VWDGRV % /LEHUW\ IRUHVW IORRU QHDU VHD FRDVW 1RY 0DWWHUL +HUE 0DWWHULf &+,/( $,6(1 3DWDJRQLD RFFLGHQWDOLV ULR $\VHQ >$LVQ@ LQ WUXQFLV DUERUXP -DQ 'XVQ *% 6f 3DWDJRQLHQ 3XQWD /DJXQDV 1 8OWLPD (VSHUDQ]D >&DQDO@ $SU *XVLQGH % %0 %5 & ) *% + .5$0 / 0 2 6 :f 3XHUWR $\VHQ >$LVQ@ )HE 9HUJDUD

PAGE 232

*f &$87,1 3DUTXH 1DFLRQDO 9LOODUULFD QRUWK VORSH RI 9ROF£Q 9LOODUULFD YHU\ QHDU XSSHU OLPLW RI IRUHVW DQG 5HIXJLR 9LOODUULFD NP E\ URDG 6 RI SDUN HQWUDQFH rn6 r n: RQ WUHH EDVH P -DQ &URVEY )/$6 02f 'HSWR 9LOODUULFD 3XFQ DXI GHP :HJ QDFK GHP 9XONDQ 9LOODUULFD DXI %DXUQHQ )HE &BcB +RVVHXV % -(f &+,/2( 3DWDJRQLD RFFLGHQWDOLV LQ LQVXOLV *XDLWHFDV 0HOLQFD LQ WHUUD $SU 'XVQ %0 6 :f 3HQLQVXOD 7UHV 0RQWHV 3XHUWR %DUURVR LQ PDUJLQH KPLGR VLOYDH VHPSHUYLUDQWLV $SU 5RLYDLQHQ +f -8$1 )(51$1'(= ,6/$1'6 ,VOD 0£V $IXHUD >,VOD $OHMDQGUR 6HONLUN@ EHORZ VXPPLW RI /RV ,QQRFHQWHV RSHQ JUDVV\ JODGH DPRQJ IHUQV P 'HF +DWFKHU t (QJHO '8.( )+ + 0,&+f //$148,+8( $ORQJ URDG WR &DOEXFR FD NP 6 RI 3XHUWR 0RQWW RQ VWXPS LQ VZDPS\ IRUHVW RI 3RGRFDURXV 6D[HTRWKDHD 'ULPYV DQG 1RWKRIDTXV P 'HF /DQGUXP 02f 9ROF£Q $QWLOODQFD 1RWKRIDTXV SXPLOLR :DOG DQ GHU %DXPJUHQ]H DP )XVV GHU %£XPH P )HE 5XWKVDW] VQ +f 0$*$//$1(6 )XHJLD RFFLGHQWDOLV ,QVXOD 'HVRODFLQ >,VOD 'HVRODFLQ@ 3XHUWR $QJXVWR >$QJRVWR@ $SU 'XVQ *% 6 836f 6HQR 8OWLPD (VSHUDQ]D rn6 rn: )XFKVLD PDJHOODQLFD FRPPXQLW\ 7VXGTLL t
PAGE 233

02f +XLWUDSXOOL$OHXFDSL DQ %RGHQ EHU 6W£PPHQ P 0DU +HU]RJ U=RPOHIHU EMB -(f 9$/',9,$ 9ROF£Q 4XHWUXSLOO£Q )RUHVWDO 7UDI£Q IRUHVW RQ 6: VORSH r 6 : WUHH EDVH P -DQ &URVEY 02f 9ROF£Q &KRVKXHQFR >6KRVKXHQFR@ 1RWKRIDJXV SXPLOLR :DOG DXI )HOVEORFNHQ XQG (UGERGHQ P )HE 5XWKVDW] VQ +f 5LJRGLXP SVHXGRWKXLGLXP LV PRVWO\ HSLSK\WLF RQ WUHH EDVHV DQG EUDQFKHV RU PXFK OHVV FRPPRQO\ RFFXUULQJ RQ ORJV URFNV RU VRLO 7KH KDELWDW YDULHV IURP GHQVH ZHW WR VZDPS\ IRUHVWV 1RWKRIDJXV $XVWURFHGUXV 6D[HJRWKDHD 'ULPYV DQG 3RGRFDUSXVf WR PRLVW RSHQ JUDVV\ RU PRVV\ DUHDV WKDW DUH VRPHWLPHV GLVWXUEHG 2I WKH IHZ DOWLWXGHV UHSRUWHG RQ WKH ODEHOV PRVW IDOO ZLWKLQ WKH UDQJH RI WR P ZLWK D IHZ UHSRUWHG DW FD VHD OHYHO WR Pf 7KH GLVWULEXWLRQ )LJ f RI 5 SVHXGRWKXLGLXP H[WHQGV IURP FD r6 DORQJ WKH $QGHDQ &RUGLOOHUD &KLOH$UJHQWLQDf WKURXJKRXW 3DWDJRQLD WR r6 DQG HDVW WR ,VOD GH ORV (VWDGRV $UJHQWLQD $ORQJ ZLWK 5 EUDFKYSRGLXP WKH VSHFLHV GHOLPLWV WKH VRXWKHUQPRVW GLVWULEXWLRQ RI WKH JHQXV 5LJRGLXP SVHXGRWKXLGLXP DOVR RFFXUV LQ WKH -XDQ )HUQ£QGH] ,VODQGV RQ ,VOD $OHMDQGUR 6HONLUN ,VOD 0£V $IXHUDf EXW QRW RQ ,VOD 5RELQVRQ &UXVRH ,VOD 0£V D 7LHUUDf $XWDSRPRUSKLHV RI WKH KDELW UHGXFHG EUDQFKLQJf DQG VWHP OHDYHV UHGXFHG FRVWDf GLVFXVVHG EHORZ GLVWLQJXLVK 5 SVHXGRWKXLGLXP $OWKRXJK 5 SVHXGRWKXLGLXP KDV D

PAGE 234

FKDUDFWHULVWLF KDELW )LJ $f VSHFLPHQV KDYH RFFDVLRQDOO\ EHHQ PLVLGHQWLILHG DV 5 LPSOH[XP HJ VRPH VSHFLPHQV RI 'XVQ )LJ %f GXH WR VWHPOLNH EUDQFKHV LQQRYDWLRQVf WKDW VRPHWLPHV DULVH IURP WKH VWHPV JLYLQJ WKH VSHFLPHQ D VRPHZKDW VXSHUILFLDO UHVHPEODQFH WR 5 LPSOH[XP LWV VLVWHU JURXS $V GLVFXVVHG XQGHU 5 LPSOH[XP WKH WZR VSHFLHV DUH WKH PRVW GHULYHG LQ 5LTRGLXP )LJV f DQG DUH GHILQHG E\ VHYHUDO V\QDSRPRUSKLHV LQFOXGLQJ ULJKWDQJOH EUDQFKLQJ DQG WKH ODFN RI D ZHOOGHYHORSHG VWLSH +RZHYHU XQOLNH WKH SURIXVLRQ RI EUDQFKLQJ LQ 5 LPSOH[XP WKH RUGHUV RI EUDQFKLQJ DUH YHU\ UHGXFHG LQ 5 SVHXGRWKXLGLXP )LJ $f 6HFRQGDU\ EUDQFKHV DUH IHZ JHQHUDOO\ WR SHU SULPDU\ EUDQFKf DQG WHUWLDU\ EUDQFKLQJ LV UDUH 7KH VWHP OHDYHV RI 5 SVHXGRWKXLGLXP )LJ &f QHDUO\ DOZD\V DXULFXODWH DUH YHU\ EURDG DW WKH EDVH DQG WHUPLQDWH ZLWK D VKRUW DFXPHQ FD RQH WKLUG RI WKH OHDI OHQJWKf $V GLVFXVVHG XQGHU JHQHUDO PRUSKRORJ\ WKH WHQGHQF\ IRU VWHP OHDYHV WR IRUP DXULFXODH LV IRXQG LQ DOO VSHFLHV RI 5LTRGLXP EXW LV PRVW SURQRXQFHG DQG FRQVLVWHQW LQ 5 SVHXGRWKXLGLXP $QRWKHU RXWVWDQGLQJ IHDWXUH RI WKH VWHP OHDYHV LV WKH SRRUO\ GHYHORSHG FRVWD LH ZHDN RU GRXEOHf $OWKRXJK UHSRUWHG DV VWULFWO\ HFRVWDWH 'XVQ f HYHQ VWHP OHDYHV ZKLFK DSSHDU HFRVWDWH LQ VXUIDFH YLHZ )LJ &f VKRZ D WUDFH RI WKH FRVWD LQ FURVV VHFWLRQ )LJ .f 3UREDEO\ GXH WR WKH ODFN RI VXSSRUW LH ODFN RI FRVWDf WKH VWHP OHDYHV DUH YHU\ VWURQJO\ ORQJLWXGLQDOO\ XQGXODWH ZLWK VWURQJO\ UHFXUYHG WLSV )LJ %f 7KH Y

PAGE 235

LQWUDPDUJLQDO EDQG LV YHU\ EURDG XS WR WHQ FHOOV DFURVV )LJ /f DQG WKH FHOOV WHQG WR EH JHQHUDOO\ PXFK ORQJHU DQG ZLGHU WKDQ WKRVH RI WKH PLGODPLQDU UHJLRQ )LJ &f 0LGODPLQDU FHOOV RI ERWK VWHP DQG SHULFKDHWLDO OHDYHV DUH H[WUHPHO\ SRURVH DQG SURUXORVH EXW HQG ZDOOV QRW SURMHFWLQJ DV GRUVDO SDSLOODHf %UDQFK OHDYHV WHQG WR EH EURDGHU XS WR PP ZLGHf WKDQ LQ WKH RWKHU VSHFLHV RI 5LTRGLXP DQG RIWHQ KDYH ZHDN FRVWDH DV ZHOO $V VXSSRUWHG E\ WKH 3& DQDO\VHV )LJ $ DQG %f WKH VSRURSK\WH RI 5 SVHXGR WKXLGLXP WHQGV WR EH ODUJHU WKDQ WKRVH LQ WKH RWKHU VSHFLHV HJ FDSVXOH XUQ XS WR [ PPf 7KH FRQFHSW RI 5 SVHXGRWKXLGLXP KHUH LQFOXGHV 5 KYORFRPLRLGHV &DUG t %URWK ERWK 5 KYORFRPLRLGHV YDU KYORFRPLRLGHV DQG 5 KYORFRPLRLGHV YDU JUDFLOLXVf &DUGRW DQG %URWKHUXV f GLVWLQJXLVKHG 5 KYORFRPLRLGHV IURP 5 SVHXGRWKXLGLXP RQ WKH EDVLV RI WKH QDUURZHU EUDQFK OHDYHV EUDQFK RUGHU QRW GHILQHGf RI WKH IRUPHU VSHFLHV %UDQFK OHDYHV KRZHYHU GR QRW GLIIHU ZKHQ WKH YDULDWLRQ RYHU WKH WRWDO UDQJH RI WKH FRPSRVLWH JURXS LV FRQVLGHUHG &RPSDULQJ WKH W\SH VSHFLPHQV RI WKH WZR VSHFLHV WKH SULPDU\ EUDQFK OHDYHV RI 5 SVHXGRWKXLGLXP )LJ )f DUH VRPHZKDW PRUH EURDGO\ RYDWH WKDQ WKRVH RI 5 KYORFRPLRLGHV )LJ *f EXW WKH VHFRQGDU\ EUDQFK OHDYHV DUH LGHQWLFDO LQ VKDSH )LJ + YV f ,Q DGGLWLRQ 5 KYORFRPLRLGHV YDU JUDFLOLXV ZDV VHSDUDWHG RQ WKH EDVLV RI YDJXH KDELW FKDUDFWHUV VPDOOHU SODQWV ZLWK OLWWOHEUDQFKHG VWHPV DQG QR VHFRQGDU\WHUWLDU\ EUDQFKHVf WKDW DUH W\SLFDO IRU WKH JURXS DV D ZKROH

PAGE 236

),* 5LJRGLXP SVHXGRWKXLGLXP *DPHWRSK\WLF )HDWXUHV $ +DELW % 3RUWLRQ RI VWHP VKRZLQJ SRVLWLRQ RI OHDYHV &( 6WHP OHDYHV VKRZLQJ YDULRXV UHGXFHG FRQGLWLRQV RI FRVWD )* 3ULPDU\ EUDQFK OHDYHV +, 6HFRQGDU\ EUDQFK OHDYHV &URVV VHFWLRQ RI OHDI &URVV VHFWLRQ WKURXJK FRVWDO DUHD RI OHDI LQ & /0 $UHRODWLRQ RI OHDI / 0DUJLQDO DQG LQWUDPDUJLQDO FHOOV 0 0LGODPLQDU FHOOV $& ( .0 IURP +DOOH t 6NRWWVEHUT 6 LVROHFWRW\SH 5 KYORFRPLRLGHVf IURP +DOOH 836 LVROHFWRW\SH 5 KYORFRPLRLGHV YDU JUDFLOLXVf ) + IURP 'XVQ 6 OHFWRW\SH 5 SVHXGRWKXLGLXPf

PAGE 238

),* 5LTRGLXP SVHXGRWKXLGLXP 6SRURSK\WLF DQG 5HODWHG *DPHWRSK\WLF )HDWXUHV $ 3HULFKDHWLDO OHDI %& $UHRODWLRQ RI SHULFKDHWLDO OHDI % %DVDO FHOOV & 8SSHU FHOOV 3ULPDU\ EUDQFK ZLWK SHULJRQLD ( 3HULJRQLXP ) 3HULJRQLDO OHDYHV 3RUWLRQ RI VWHP ZLWK VSRURSK\WH + &DSVXOH $& + IURP 'XVQ 6 OHFWRW\SH 5 SVHXGRWKXLGLXPf" ') IURP +DOOH 836 LVROHFWRW\SH 5 KYORFRPLRLGHV YDU JUDFLOLXVf

PAGE 240

'LVWULEXWLRQ RI 5LJRGLXP SVHXGRWKXLGLXP

PAGE 241

'LVWULEXWLRQ

PAGE 242

120,1$ $0%,*8$ $1' 18'$ (XUKYQFKLXP VWULDWHOOXP 6FKLPS LQ 0LWW /LQQ 6RF %RW QRP LQYDO LQ VYQRQ 5 WR[DULRQ ILGH 0LWW /LQQ 6RF %RW 5KYQFKRVWHTLXP VWULDWHOOXP 6FKLPS H[ 3DU ,QG %UYRO QRP QXG LQ VYQRQ HUU SUR (XUKYQFKLXP VWULDWHOOXP +HWHURFODGLXP OHFKOHUL 6FKLPS LQ /RU %RW =HLW QRP QXG LQ VYQRQ 5 DUERUHVFHQV FI /RU %RW =HLW HW SS 5 WR[DULRQ FI 0LWW /LQQ 6RF %RW +HWHURFODGLXP SUROL[XP 6FKLPS LQ /RU %RW =HLW QRP QXG LQ VYQRQ +HWHURFODGLXP OHFKOHUL +\SQXP DODLXHODH & 0 %RW QV f QRP QXG 5LTRGLXP DODLXHODH .LQGE (QXP %UYLQ ([RW QRP QXG 5LTRGLXP DODTXHODH 3DU ,QG %UYRO QRP QXG HUU SUR 5 DODLXHODH .LQGE (YLGHQWO\ WKH VSHFLPHQ 0OOHU f RULJLQDOO\ H[DPLQHG ZDV IURP &RVWD 5LFD DQG PD\ WKHQ SRVVLEO\ EH 5 WR[DULRQ WKH RQO\ VSHFLHV RI 5LTRGLXP RFFXUULQJ WKHUH

PAGE 243

+YSQXP DUDXFDULHWL & 0 +HGZLJLD %HLOf QRP QXG 7KH HSLWKHW ZDV ODWHU YDOLGDWHG LQ E\ 0OOHU f +YSQXP EUDFKYSHOPD & 0OO /LQQDHD QRP LQYDO HUU SUR + EUDFKYSRGLXP +YSQXP QHHL 0RKU LQ & 0OO 6YQ QRP QXG LQ VYQRQ 5 LPSOH[XP FI +DPSH ILGH & 0OO 6\Q 5LDRGLXP DFXPLQDWXP &DUG LQ 6NRWWVE 6YHQVN 9HW $N +DQGO f QRP QXG )URP -XDQ )HUQ£QGH] ,VODQGV ZKHUH WKUHH VSHFLHV RI 5LJRGLXP RFFXU 5MJRGLXP EUHYLUDPXORVXP %URWK LQ 5HQ t &DUG %XOO 6RF 5R\ %RW %HOJ f >@ QRP QXG U$QRQ\PRXV VQ FRP &DUGRW %UD]LO +%5@ 5 WR[DULRQ 5LJRGLXP FDUQRVXOXP 'XV 5HS 3ULQFHWRQ 8QLY ([S 3DWDJ QRP QXG >'XVQ %0 VSHFLPHQVf )/$6 + -( 0,&+ 1< 6 VSHFLPHQVf :f@ 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP 5LJRGLXP FRQFDWHQDWXP /LQGE LQ & 0OO /LQQDHD QRP QXG 7KH XQGHVLJQDWHG VSHFLPHQ 0OOHU f PHQWLRQHG ZDV IURP %UD]LO DQG WKXV PD\ SRVVLEO\ EH 5 WR[DULRQ WKH RQO\ VSHFLHV ZKLFK RFFXUV WKHUH

PAGE 244

5LTRGLXP HOHTDQWXOXP &DUG LQ 6NRWWVE %LK 6YHQVN 9HW $N +DQGO f QRP QXG >+DOOH + 6 836 &XQQLQJKDP %0@ 5 EUDFKYSRGLXP YDU WDPDUL[ 5LTRGLXP HOHTDQWXOXP YDU IHUQDQGH]LDQXP &DUG LQ 6NRWWVE %LK 6YHQVN 9HW $N +DQGO f QRP QXG LQ VYQRQ 5 WDPDUL[ ILGH &DUG t %URWK %LK 6YHQVN 9HW $N +DQGO f 5LTRGLXP NXQHUWL & 0OO LQ 3DU ,QG %UYRO QRP QXG 5 DUDXFDULHWL YDU FDWHQXODWXP ILGH & 0 +HGZLTLD +YSQXP NXQHUWL & 0f %URWK %LK 6YHQVN 9HW $N +DQGO $IG QRP QXG 5LTRGLXP OHFKOHUL 6FKLPS LQ & 0OO %RW =HLW QRP QXG >/HFKOHU W\SH 5 DUERUHVFHQVO 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP 5LTRGLXP ORQTRVWLSLWDWXP %URWK LQ & 0OO +HGZLTLD QRP QXG I/LQGPDQ W\SH 5 DUDXFDULHWL YDU FDWHQXODWXP 5 WR[DULRQ YDU WR[DULRQ 5LTRGLXP QDQRIDVFLFXODUH & 0OO H[ .LQGE (QXP %UYLQ ([RW QRP QXG RUWKRTU SUR 5LTRGLXP QDQR IDVFLFXODWXP 5LTRGLXP QDQRIDVFLFXODWXP & 0OO H[ 'XV 5HS 3ULQFHWRQ 8QLY ([S 3DWDJ QRP QXG 5LTRGLXP QDQRIDVFLFXODWXP & 0OO H[ 7KU 5HY &KLOHQD 3ODWH 9, )LJV DI QRP

PAGE 245

QXG VXE $UW 7KH HSLWKHW ZDV ODWHU YDOLGDWHG E\ 0OOHU LQ 7KULRW VHH =RPOHIHU f 5LDRGLXP SHQLFLOOLIHUXP & 0 +HGZLDLD 7<3( %5$=,/ 6$17$ &$7$5,1$ 6DR -RV LQ YLD FDYD SURSH 3UDLDFRPSULGD FXP +HOLFRGRQWLR DVVRFLDWXP -DQ 8OH VQ VSHFLPHQ QRW VHHQf $OWKRXJK 8OHnV H[VLFFDWDH ZHUH ZHOOGLVWULEXWHG 6D\UH f QRQH DPRQJ WKH QXPHURXV RI KLV FROOHFWLRQV RQ ORDQ IRU WKLV VWXG\ PDWFK WKH ORFDOLW\ DQG GDWH FLWHG E\ 0OOHU f %URWKHUXV ZKR HYHQ GLVWULEXWHG PDQ\ RI 8OHnV FROOHFWLRQV VWDWHG LQ KLV NH\V WR 5LDRGLXP f WKDW KH KDG QRW VHHQ DQ\ H[DPSOHV RI 5 SHQLFLOOLIHUXP 6XEVHJXHQW WR WKH SXEOLFDWLRQ RI %URWKHUXVn NH\V WKH VSHFLPHQVf PD\ KDYH EHHQ ORVW ZKHQ 0OOHUnV KHUEDULXP DW % ZDV PRVWO\ GHVWUR\HG 6D\UH f 5LDRGLXP SHQLFLOOLIHUXP PD\ EH V\QRQ\PRXV ZLWK 5 WR[DULRQ WKH RQO\ VSHFLHV ZKLFK RFFXUV LQ %UD]LO 5LDRGLXP SVHXGRWKXLGLXP 'XV 5HS 3ULQFHWRQ 8QLY ([S 3DWDD QRP QXG 7KH HSLWKHW ZDV ODWHU YDOLGDWHG E\ 'XVQ f 5LDRGLXP SWYFKRPQLRLGHV %URWK 1DW 3IO f QRP QXG U&XQQLQJKDP %0 VSHFLPHQVf +%5@ 5 SVHXGRWKXLGLXP 7KH IROORZLQJ QDPHV RFFXUULQJ RQ VSHFLPHQV KDYH QRW EHHQ PHQWLRQHG LQ WKH OLWHUDWXUH 5 ELSLQQDWXP &DUG 7KD[WHU

PAGE 246

7&DUGRW 1R DQG ERWK )+f 5 EUDFKYSRGLXP YDU WDPDUL[ 5 LQWHUPHGLXP &DUG 'XVQ VQ +%5f SVHXGRWKXLGLXP DQG 5 PROOLFXOXP %URWK +LQVFK VQ VG %UD]LO +%5f 5 WR[DULRQ

PAGE 247

/,7(5$785( &,7(' $EUDPRYD $ / t , $EUDPRY 2Q WKH VSDQ RI WKH JHQXV +HORGLXP 6XOOf :DUQVW +DWWRUL %RW /DE $OOHQ % 2Q GLVWLQJXLVKLQJ 3WHUREU\DFHDH DQG 0HWHRULDFHDH E\ PHDQV RI SVHXGRSDUDSK\OOLD %U\RORJLFDO 7LPHV t 0 5 &URVE\ 5HYLVLRQ RI WKH JHQXV 6FUXDPLGLXP 0XVFL 0HWHRULDFHDHf +DWWRUL %RW /DE $OPHLGD 0 7 t ) $ %XVE\ $ VLPSOH PHWKRG IRU HVWDEOLVKLQJ WD[RQRPLF FKDUDFWHUV IURP PHDVXUHPHQW GDWD 7D[RQ $QGHUVRQ / ( +R\HUnV VROXWLRQ DV D UDSLG SHUPDQHQW PRXQWLQJ PHGLXP IRU EU\RSK\WHV %U\RORJLVW $UJHQW & $ WD[RQRPLF VWXG\ RI $IULFDQ 3WHUREU\DFHDH DQG 0HWHRULDFHDH 3WHUREU\DFHDH %U\RO $U]HQL & % 7KH 3WHUREU\DFHDH RI WKH VRXWKHUQ 8QLWHG 6WDWHV &HQWUDO $PHULFD DQG WKH :HVW ,QGLHV $PHU 0LGL 1DWXUDOLVW %DUWUDP ( % 0RVVHV RI *XDWHPDOD )LHOGLDQD %RW 0RVVHV FROOHFWHG GXULQJ 'U DQG 0UV & 6NRWWVEHUJnV VHFRQG H[SHGLWLRQ WR WKH -XDQ )HUQDQGH] ,VODQGV 'HFHPEHU WR 0DUFK $UN %RW QV +W f 0RVVHV RI 7ULVWDQ GD &XQKD ,Q ( &KULVWRSKHUVHQ HGf 5HVXOWV RI WKH 1RUZHJLDQ 6FLHQWLILF ([SHGLWLRQ WR 7ULVWDQ GD &XQKD f 1RUVNH 9LGHQVNDSV$NDGHPL 2VOR %URWKHUXV 9 ) 0XVFL DIULFDQL ,, ,Q $ (QJOHU HGf %HLWU£JH ]XU )ORUD YRQ $IULND ;,9 %RW -DKUE 6\VW

PAGE 248

0XVFL /DXEPRRVHf ,Q $ (QJOHU t 3UDQWO HGVf 'LH QDWUOLFKHQ 3IODQ]HQIDPLOLHQ 9RO 3DUW (QJHOPDQQ /HLS]LJ 7KH 0XVFL RI WKH -XDQ )HUQDQGH] ,VODQGV 3S LQ & 6NRWWVEHUJ HGf 7KH 1DWXUDO +LVWRU\ RI -XDQ )HUQDQGH] DQG (DVWHU ,VODQG 9RO 3DUW $OPTXLVW t :LNVHOOV %RNWU\FNHULD$% 8SSVDOD 0XVFL /DXEPRRVHf ,Q $ (QJOHU t 3UDQWO HGVf 'LH QDWUOLFKHQ 3IODQ]HQIDPLOLHQ QG HG 9RO (QJHOPDQQ /HLS]LJ %XFN : 5 D $ JHQHULF UHYLVLRQ RI WKH (QWRGRQWDFHDH +DWWRUL %RW /DE E >@ $QLPDGYHUVLRQV RQ 3WHULDYQDQGUXP ZLWK VSHFLDO FRPPHQWDU\ RQ )RUVVWURHPLD DQG /HRWRRWHULRYQDQGUXP %U\RORJLVW 2Q SVHXGRSDUDSK\OOLD (YDQVLD 7UDGLWLRQDO PHWKRGV LQ WD[RQRP\ D SHUVRQDO DSSUREDWLRQ 7D[RQ 7D[RQRPLF DQG QRPHQFODWXUDO QRWHV RQ :HVW ,QGLDQ $PEO\VWHJLDFHDH DQG %UDFK\WKHFLDFHDH %HLK 1RYD +HGZLJLD t + &UXP $Q HYDOXDWLRQ RI IDPLOLDO OLPLWV DPRQJ WKH JHQHUD WUDGLWLRQDOO\ DOLJQHG ZLWK WKH 7KXLGLDFHDH DQG /HVNHDFHDH &RQWU 8QLY 0LFKLJDQ +HUE t *ULIILQ 7UDFKYSKYOOXP D PRVV JHQXV QHZ WR 6RXWK $PHULFD ZLWK QRWHV RQ $IULFDQ6RXWK $PHULFDQ EU\RJHRJUDSK\ 1DW +LVW t + 9LWW 6XJJHVWLRQV IRU D QHZ IDPLOLDO FODVVLILFDWLRQ RI SOHXURFDUSRXV PRVVHV 7D[RQ %XGG $ ) t % 0LVKOHU 6SHFLHV DQG HYROXWLRQ LQ FORQDO RUJDQLVPVf§VXPPDU\ DQG GLVFXVVLRQ 6\VW %RW &DUGRW t 9 ) %URWKHUXV %RWDQLVFKH (UJHEQLVVH GHU VFKZHGLVFKHQ ([SHGLWLRQ QDFK 3DWDJRQLHQ XQG GHP )HXHUODQGH ; /HV 0RXVVHV %LK .RQJO 6YHQVND 9HWHQVN$FDG +DQGO &KXUFKLOO 6 3 $ UHYLVLRQ RI (FKLQRGLXP -XU (FKLQRGLDFHDH +\QREU\DOHVf %U\RO

PAGE 249

&URVE\ 0 5 ,QGH[ PXVFRUXP VXSSOHPHQWXP 7D[RQ t 5 ( 0DJLOO $ GLFWLRQDU\ RI PRVVHV UG HG 0RQRJU 6\VW %RW 0LVVRXUL %RW *DUG 6W /RXLV &UXP + 0RVVHV RI WKH *UHDW /DNHV &RQWU 8QLY 0LFKLJDQ +HUE 7D[RQRPLF DQG QRPHQFODWXUDO QRWHV RQ PLGGOH $PHULFDQ PRVVHV %U\RORJLVW 1RWHV RQ WURSLFDO $PHULFDQ PRVVHV %U\RORJLVW $ SDUWLDO FODULILFDWLRQ RI WKH /HPERSK\OODFHDH +DWWRUL %RW /DE t / ( $QGHUVRQ 0RVVHV RI HDVWHUQ 1RUWK $PHULFD 9RO &ROXPELD 8QLYHUVLW\ 3UHVV 1HZ
PAGE 250

t : 5 %XFN 7D[RQRPLF DQG SK\ORJHQHWLF VWXGLHV RQ WKH %DUWUDPLDFHDH %U\RORJLVW 6 5 *UDGVWHLQ t & $JXLUUH 6WXGLHV RQ &RORPELDQ FU\SWRJDPV ;9,, 2Q D QHZ DQWLSRGDO HOHPHQW LQ WKH QHRWURSLFDO S£UDPRVf§'HQGURFUYSKHDH ODWLIROLD VS QRY 0XVFLf $FWD %RW 1HHUO *URXW $ 0RVV IORUD RI 1RUWK $PHULFD 9RO ,OO 3DUW 3XEOLVKHG E\ WKH DXWKRU 1HZIDQH 9HUPRQW +HU]RJ 7 &RQWULEXFLQ DO FRQRFLPLHQWR GH OD IORUD EULRILWD GHO VXU GH &KLOH D 3DUWH VLVWHP£WLFD $UFKLYRV (VF )DUP &RUGRED 1R 6HFFLQ &LHQWLILFDf 9HU]HLFKQLV GHU JHVDPPHOWHQ %U\RSK\WHQ ,Q 7 +HU]RJ + 6FKZDEH t ( 6FKZDEH HGVf =XU %U\RSK\WHQIORUD 6GFKLOHV %HLK %RW &HQWUDOEO =XU %U\RSK\WHQIORUD &KLOHV 5HY %U\RO /LFKQRO )DVH f +ROPJUHQ 3 1 + +ROPJUHQ t / & %DUQHWW ,QGH[ KHUEDULRUXP 5HJ 9HJ ,UHODQG 5 5 3OHXUR]LRSVLGDFHDH D QHZ IDPLO\ RI PRVVHV +DWWRUL %RW /DE 0RVV SVHXGRSDUDSK\OOLD %U\RORJLVW ,ZDWVXNL = %U\RORJLFDO PLVFHOODQLHV ;,,;,,, +DWWRUL %RW /DE -DHJHU $ *HQHUD HW VSHFLHV PXVFRUXP V\VWHPDWLFDH GLVSRVLWD VHX DGXPEUDWLR IORUDH PXVFRUXP WRWLXV RUELV WHUUDUXP %HU 7K£WLJN 6W *DOOLVFKHQ 1DWXUZLVV *HV .DZDL 7D[RQRPLF VWXGLHV RQ WKH PLGULE RI 0XVFL f 6LJQLILFDQFH RI WKH PLGULE LQ V\VWHPDWLF ERWDQ\ 6FL 5HS .DQD]DZD 8QLY %LRO /RQJWRQ 5 ( t 6 : *UHHQH ([SHULPHQWDO VWXGLHV RI JURZWK DQG UHSURGXFWLRQ LQ WKH PRVV 3OHXUR]LXP VFKUHEHUL %ULGf 0LWW %U\RO 0D\U ( 3ULQFLSOHV RI V\VWHPDWLF ]RRORJ\ 0F*UDZ +LOO ,QF 1HZ
PAGE 251

0LVKOHU % 7KH PRUSKRORJLFDO GHYHORSPHQWDO DQG SK\ORJHQHWLF EDVLV RI VSHFLHV FRQFHSWV LQ WKH EU\RSK\WHV %U\RORJLVW $ +HQQLJLDQ DSSURDFK WR EU\RSK\WH SK\ORJHQ\ %U\RO 0LWWHQ : 0XVFL DXVWURDPHULFDQL /LQQ 6RF %RW 0OOHU & >@ %HLWU£JH ]X HLQHU )ORUD GHU $HTXLQRFWLDO*HJHQGHQ /DXEPRRVH /LQQDHD +W f 6\QRSVLV PXVFRUXP IURQGRVRUXP RPQLXP KXFXVTXH FRJQLWRUXP 9RO 0XVFL YHJHWDWLRQLV SOHXURFDUSLFDH $OE )RHUVWQHU %HUOLQ %U\RSK\WDV HW FRUPRSK\WDV &RVWDULFHQVHV %U\DFHDH %RW QV f 3URGURPXV EU\RORJLDH $UJHQWLQLFDH ,, /LQQDHD +W f D 3URGURPXV EU\RORJLDH %ROLYLDQDH 1XRYR *LRUQ %RW ,WDO QV E 3URGURPXV EU\RORJLDH $UJHQWLQLFDH DWTXH UHJLRQXP YLFLQDUXP ,,, +HGZLJLD +W f 6\PERODH DG EU\RORJLDP %UDVLOLDH HW UHJLRQXP YLFLQDUXP &RQWLQXDWLRf +HZLJLD +WOf 1RJXFKL $ $ UHYLVLRQ RI WKH JHQXV &ODRSRGLXP +DWWRUL %RW /DE 2UWL] 6 2Q WKH FRUUHFW XVH RI WKH WHUP nKRORW\SHn 7D[RQ 3ODWQLFN 1 $Q HPSLULFDO FRPSDULVRQ RI PLFURFRPSXWHU SDUVLPRQ\ SURJUDPV &ODGLVWLFV 5HLPHUV + %HLWU£JH ]XU %U\RSK\WHQIORUD 6GDPHULNDV 'LH YRQ 3DWHU $ +ROOHUPD\HU LQ &KLOH JHVDPPHOWHQ /HEHU XQG /DXEPRRVH +HGZLJLD 5HQDXOG ) t &DUGRW >@ 0XVFL 'HX[LPH DUWLFOH ,Q 7 'XUDQG t + 3LWWLHU HGVf 3ULPLWLDH IORUDH &RVWDULFHQVLV %XOO 6RF 5R\ %RW %HOJLTXH

PAGE 252

5RELQVRQ + 7KH PRVVHV RI -XDQ )HUQDQGH] ,VODQGV 6PLWKVRQLDQ &RQWU %RW &RPPHQWV RQ WKH FODGLVWLF DSSURDFK WR WKH SK\ORJHQ\ RI WKH EU\RSK\WHV E\ 0LVKOHU DQG &KXUFKLOO %ULWWRQLD $ NH\ WR WKH FRPPRQ HUURUV RI FODGLVWLFV 7D[RQ 5RKOI ) 176<6SF 1XPHULFDO WD[RQRP\ DQG PXOWLYDULDWH DQDO\VLV V\VWHP 9HUVLRQ ([HWHU 3XEOLVKLQJ /WG 6HWDXNHW 1HZ @ 8HEHU HLQLJH 0RRVH /LQQDHD +W f 6HKQHP $ 0XVJRV VXOEUDVLOHLURV ,9 3HVTXLVDV %RW 6HNL 7 >@ $ PRVV IORUD RI 3URYLQLFLD GH $LVQ &KLOH 5HVXOWV RI WKH VHFRQG VFLHQWLILF H[SHGLWLRQ WR 3DWDJRQLD E\ +RNNDLGR DQG +LURVKLPD 8QLYHUVLWLHV

PAGE 253

6FL +LURVKLPD 8QLY 6HU % 'LY %RWDQ\f 6QHDWK 3 + $ t 5 5 6RNDO 1XPHULFDO WD[RQRP\ WKH SULQFLSOHV DQG SUDFWLFH RI QXPHULFDO FODVVLILFDWLRQ : + )UHHPDQ DQG &R 6DQ )UDQFLVFR 6WDUN / 5 $ WD[RQRPLF PRQRJUDSK RI )RUVVWURHPLD /LQGE %U\RSVLGD /HSWRGRQWDFHDHf +DWWRUL %RW /DE 6WXHVV\ 7 ) 3ODQW WD[RQRP\ &ROXPELD 8QLYHUVLW\ 3UHVV 1HZ @ 0RXVVHV FULWLTXHV 5HY %U\RO /LFKQRO QV )DVH f >@ &RQWULEXWLRQ £ OD IORUH EU\RORJLTXH GX &KLOL OLH DUWLFOH 5HY %U\RO /LFKQRO QV )DVH f 7RXZ $ $ WD[RQRPLF UHYLVLRQ RI WKH +\SQRGHQGUDFHDH 0XVFLf %OXPHD 1RWHV RQ WD[RQRPLF DQG IORULVWLF UHVHDUFK RQ H[RWLF PRVVHV +DWWRUL %RW /DE 8 6 2IILFH RI *HRJUDSK\ 2IILFLDO 6WDQGDUG 1DPHV *D]HWWHHU 1RV %ROLYLDf &RVWD 5LFDf (FXDGRUf %UD]LOf &KLOH QG HGf $UJHQWLQDf 8QLWHG 6WDWHV %RDUG RQ *HRJUDSKLF 1DPHV 'HSDUWPHQW RI WKH ,QWHULRU :DVKLQJWRQ & 9LWW + %U\RSVLGD 3S LQ 6 3 3DUNHU HGf 6\QRSVLV DQG FODVVLILFDWLRQ RI OLYLQJ RUJDQLVPV 9RO 0F*UDZ+LOO %RRN &R 1HZ
PAGE 254

&ODVVLILFDWLRQ RI WKH %U\RSVLGD 3S LQ 5 0 6FKXVWHU HGf 1HZ PDQXDO RI EU\RORJ\ 9RO +DWWRUL %RWDQLFDO /DERUDWRU\ 1LFKLQDQ -DSDQ :DOWKHU %U\RSK\WLQD /DXEPRRVH ,Q *HUORII t 3RHOW HGVf $ (QJOHUnV 6\OODEXV GHU 3IODQ]HQIDPLOLHQ $XIO 9f *HEUGHU %RUQWUDHJHU %HUOLQ :DWDQDEH 5 $ UHYLVLRQ RI WKH IDPLO\ 7KXLGLDFHDH LQ -DSDQ DQG DGMDFHQW DUHDV +DWWRUL %RW /DE t = ,ZDWVXNL 1HZ QDPH IRU +DRORFODGLXP & 0XHOOf & 0XHOO 0XVFLf -DS %RW :DWURXV / ( t 4 :KHHOHU 7KH RXWJURXS FRPSDULVRQ PHWKRG RI FKDUDFWHU DQDO\VLV 6\VW =RRO :LMN 5 YDQ GHU : 0DUJDGDQW t 3 $ )ORUVFKW] ,QGH[ 0XVFRUXP 9RO 36f 9RO 7 = DGGHQGDf 5HJ 9HJ :LOH\ ( 3K\ORJHQHWLFV -RKQ :LOH\ t 6RQV ,QF 1HZ
PAGE 255

,GHQWLILFDWLRQ RI W\SHV DQG RULJLQDO PDWHULDO IRU VRPH HSLWKHWV RI 5LDRGLXP .XQ]H H[ 6FKZ£JU %U\RO $ QHZ VSHFLHV RI 5LDRGLXP 0XVFL 5LJRGLDFHDHf IURP &KLOH DQG $UJHQWLQD 6YVW %RW f LQ SUHVVf t : 5 %XFN $ UHDVVHVVPHQW RI IRXU 5LDRGLXP W\SHV %U\RORJLVW

PAGE 256

$33(1',; $ 2786 &2//(&7,216f 86(' ,1 7+( 3+(1(7,& $1$/<6(6 7KH IROORZLQJ OLVWV WKH 278V FROOHFWLRQVf XVHG LQ WKH SKHQHWLF DQDO\VHV $OO 278V ZHUH LQFRUSRUDWHG LQ WKH ILUVW VWXG\ )LJ f" WKH VWDUUHG rf 278V ZHUH LQFOXGHG IRU WKH VHFRQG DQDO\VLV RI 5 EUDFKYSRGLXP YDU EUDFKYSRGLXP DQG 5 WR[DULRQ YDU WR[DULRQ FRPSOH[HV )LJ f 7KH ILUVW 278V OLVWHG DUH W\SH PDWHULDO &KLOH-) UHIHUV WR WKH -XDQ )HUQ£QGH] ,VODQGV 7\SH PDWHULDO r 8OH %UD]LO W\SH 5 DUDXFDULHWL +%5f r /LQGPDQ %UD]LO W\SH 5 DUDXFDULHWL YDU FDWHQXODWXP +%5 6 836f r /HFKOHU &KLOH W\SH 5 DUERUHVFHQV %0 %5 *% + / 0,&+ 1< 2 6 836 :f r /RUHQW] VQ $UJHQWLQD W\SH 5 DUJHQWLQLFXP %0 1
PAGE 257

3RHSSLJ VQ &KLOH W\SH 5 LPSOH[XP %0f r 9RONHQV 7DQ]DQLD W\SH 5 NLOLPDQGVFKDULFXP + %5 -( 0 6f r *HUPDLQ >0OOHU 1R %ROLYLD W\SH 5 OHSWRGHQGURQ +%5 -( 0 1< 6f /RRVHU SS &KLOH W\SH 5 ORRVHUL 3&f r 'XVQ &KLOH W\SH 5 QDQRIDVFLFXODWXP %0 )+ )/$6 *% +%5 -( 0 0,&+ 1< 2 3& 6 :f r 3HUULHU GH OD %£WKLH 0DGDJDVFDU W\SH 5 QLYHXP 3&f r 6HKQHP %UD]LO W\SH 5 SDOOLGXP 3$&$f r 6FKZDEH E &KLOH W\SH 5 SHQGXOXP -( 3&f r 8OH %UD]LO W\SH 5 SHUWHQXH )+ +%5 0f 'XVQ &KLOH W\SH 5 SVHXGRWKXLGLXP %0 &+5 )+ )/$6 -( 0 1< 6 836 :f 6NRWWVEHUD t 6NRWWVEHUD &KLOH W\SH 5 UREXVWXP *% +%5 -( 6f r -DPHVRQ VQ (FXDGRU W\SH 5 VROXWXP ( )+f $QRQ\PRXV VQ +DOH %D\ &KLOH W\SH 5 WDPDUL[ %0f r $QRQ\PRXV VQ +LVSDQLROD W\SH 5 WR[DULRQ *f &HQWUDO DQG 6RXWK $PHULFDQ 278V r +ROGULGDH +DLWL )+ )/$6 0,&+ 1
PAGE 258

r &URVE\ % 3DQDPD '8.( 02f r +DPPHQ HW D&RORPELD )/$6f r 7UROO &RORPELD -( 6f r )HQGOHU 9HQH]XHOD %0 )+ )/$6 + 1< 2 6f r /DHDDDUG t 6WHHUH $ (FXDGRU $/7$ )/$6 1
PAGE 259

r r r r r r r r r r .DOHOD %I $UJHQWLQD +f .DOHOD %aL $UJHQWLQD +f .KQHPDQQ $UJHQWLQD $/7$ 8f .KQHPDQQ $UJHQWLQD $/7$ + 8f /LXQJQHU $UJHQWLQD -( 6f 0DWWHUL t 6FKLDYRQH $UJHQWLQD +HUE 0DWWHULf 0DWWHUL t 6FKLDYRQH $UJHQWLQD +HUE 0DWWHULf 6OHXPHU $UJHQWLQD % 6f %DUUDQGHJXY &KLOH 02f %HQRYH &KLOH +f &ODXGH-RVHRK &KLOH )+f &URVEY &KLOH )/$6 02f &URVE\ &KLOH 02f &URVEY &KLOH 02f &URVEY &KLOH )/$6 / 0,&+ 02 1
PAGE 260

'XVQ &KLOH %0 6 :f r 'XVQ VQ ODF /ODQTXLKXH &KLOH 6f r (OOLRWW &KLOH + / f f &2 *RGOHY &KLOH %0 )/$6 +f *XLVLQGH &KLOH % %0 %5 & ) / 0 6 :f r +DKQ VQ &KLOH % %0 & &$10 '8.( 02 2;) 1< 6f f +DOOH &KLOH + 6 836f r +ROOHUPDYHU &KLOH % 6 Zf r +ROOHUPDYHU D &KLOH 6 :f r +RVVHXV &KLOH -(f r .XQNHO &KLOH % +f r /DQGUXP &KLOH 02f r /DQGUXP &KLOH 02f r /DQGUXP &KLOH 02f /HFKOHU D &KLOH %0 %5 + / 836 :f r 0DKX &KLOH 02f r 1HTHU &KLOH 6f e! f 2EHUGRUIHU D &KLOH -(f r 2EHUGRUIHU E &KLOH -(f r 5HLFKH &KLOH +f 5RLYDLQHQ &KLOH +f 5RLYDLQHQ &KLOH )+ +f r 6FKZDEH &KLOH -(f *% + .5$0 )/$6 0,&+ 2 2;) 6 r 6FKZDEH VQ &KLOH -(f

PAGE 261

r 6HNL &KLOH +f 7KD[WHU U&DUGRW 1R &KLOH )+ )/$6 7VXGDLL t
PAGE 262

$33(1',; % '(7(50,1$7,21 2) 0,1,080 180%(5 2) 0($685(0(176 3(5 &+$5$&7(5 %HORZ LV MXVWLILFDWLRQ IRU WKH FKRLFH RI ILYH PHDVXUHPHQWV IRU HDFK FKDUDFWHU SHU 278f DV VXIILFLHQW WR REWDLQ D PHDQ ZKLFK LV DQ DGHTXDWH HVWLPDWLRQ RI WKH DFWXDO PHDQ IRU WKDW FKDUDFWHU IRU DQ 278 6WHYHQ /LQGD SHUV FRPPfr 7KHVH HTXDWLRQV GHPRQVWUDWH D UHODWLRQVKLS EHWZHHQ VDPSOH VL]H Qf DQG WKH SHU FHQW FRQILGHQFH LQWHUYDO IRU WKH DFWXDO PHDQ Sf RI D JLYHQ 278 )RU \ WKH VDPSOH PHDQ RI D PHDVXUHPHQW IRU D SDUWLFXODU FKDUDFWHU IRU D JLYHQ 278 WKH YDULDQFH RI \ RU 9\f LV 9\f eLB r 1 Q Q 1 2 f f ZKHUH D LV WKH YDULDELOLW\ YDULDQFHf ZLWKLQ D VSHFLPHQ DQG 1 LV WKH DFWXDO WRWDO QXPEHU RI FKDUDFWHUV RQ DQ 278 HJ DOO WKH VWHP OHDYHV LQ D FROOHFWLRQf :KHQ 1 LV VXIILFLHQWO\ ODUJH DV LQ WKLV VWXG\ ZLWK PRVV H[VLFFDWDH 1Q 1 UHVXOWLQJ LQ Q 7KH SHU FHQW FRQILGHQFH LQWHUYDO IRU X WKH DFWXDO PHDQ RI D JLYHQ 278f LV

PAGE 263

0 < s W QOf Jr 2 1RWH WKDW WKH YDULDELOLW\ ZLWKLQ D VSHFLPHQ Re f LV LQYHUVHO\ SURSRUWLRQDO WR WKH VDPSOH VL]H Qf 7KH W VWDWLVWLF QO GHJUHHV RI IUHHGRP DW DOSKD OHYHO f LV DOVR GHSHQGHQW RQ WKH YDOXH RI Q DQG DOVR GHFUHDVHV DV Q LQFUHDVHV 6LPSOLI\LQJ WKH HJXDWLRQ IXUWKHU f§ W 0 9 s QOf D f $ SORW RI W QOf a YV Q )LJ $f VKRZV DQ DSSDUHQW OHYHOLQJ RI WKH FXUYH DURXQG Q YDOXHV RI IRXU RU ILYH PHDVXUHPHQWV $Q DGGLWLRQDO SORW )LJ %f RI WKH GLIIHUHQFH EHWZHHQ EHWZHHQ WZR FRQVHFXWLYH QXPEHUV WQBf -QO WQBLfA YVr Q VKRZV WKDW WKH HIIHFW DGGLQJ RQH DGGLWLRQDO PHDVXUHPHQW DJDLQ OHYHOV RII DURXQG IRXU PHDVXUHPHQWV

PAGE 264

),* 3ORWV RI WKH 5HODWLRQVKLS %HWZHHQ 1XPEHU RI 0HDVXUHPHQWV Qf SHU 278 DQG WKH W 6WDWLVWLF $ *UDSK VKRZLQJ UHODWLRQVKLS EHWZHHQ Q DQG WKH W VWDWLVWLF DV H[SUHVVHG LQ WKH HTXDWLRQ SUHVHQWHG LQ WKH WH[Wf IRU WKH SHU FHQW FRQILGHQFH LQWHUYDO IRU WKH DFWXDO PHDQ MXf % *UDSK VKRZLQJ WKH GLIIHUHQFH EHWZHHQ WZR FRQVHFXWLYH QXPEHUV

PAGE 265

&' rQ f B rQ f 9 Q 9U7 2 WR $ 26 rQf§ f 2 OR $ R!

PAGE 266

%,2*5$3+,&$/ 6.(7&+ :HQG\ % =RPOHIHU ZDV ERUQ LQ )LWFKEXUJ 0DVVDFKXVHWWV RQ 6HSWHPEHU 6KH DWWHQGHG SXEOLF VFKRROV LQ /HRPLQVWHU 0DVVDFKXVHWWV DQG JUDGXDWHG IURP /HRPLQVWHU +LJK 6FKRRO LQ ,Q VKH UHFHLYHG WKH %DFKHORU RI 6FLHQFH GHJUHH LQ ERWDQ\ IURP WKH 8QLYHUVLW\ RI 9HUPRQW )URP WR VKH ZDV HPSOR\HG DV D ERWDQLFDO LOOXVWUDWRU DQG KHUEDULXP DVVLVWDQW DW WKH 0DULH 6HOE\ %RWDQLFDO *DUGHQV LQ 6DUDVRWD )ORULGD )RU WKH QH[W WZR \HDUV :HQG\ VWXGLHG XQGHU :DOWHU 6 -XGG DW WKH 8QLYHUVLW\ RI )ORULGD LQ *DLQHVYLOOH UHFHLYLQJ WKH GHJUHH RI 0DVWHU RI 6FLHQFH LQ ERWDQ\ LQ 'HFHPEHU )RU WKH SDVW WHQ \HDUV VKH KDV KHOG WKH SRVLWLRQ RI 0HGLFDO ,OOXVWUDWRU IRU WKH 1DWXUDO 6FLHQFHV 'HSDUWPHQW DW WKH )ORULGD 0XVHXP RI 1DWXUDO +LVWRU\ 8QLYHUVLW\ RI )ORULGD +HU JUDGXDWH VWXGLHV WRZDUGV WKH 'RFWRU RI 3KLORVRSK\ GHJUHH LQ ERWDQ\ XQGHU WKH GLUHFWLRQ RI 'DQD *ULIILQ ,,, ZHUH EHJXQ LQ 6HSWHPEHU

PAGE 267

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR WKH DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHHI RI 'RAWTU Se 3KLORVRSK\ Pr K8 'LPD **ULIIM 3URIHVVRU RI ,,,O &KDLU FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR WKH DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ n : : :DOWHU 6 -XGG 7M $VVRFLDWH 3URIHVVRU RI %RWDQ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR WKH DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 2n -DPHV : .LPEUR 3URIHVVRU RI 3, &O L IW 3DWKRO FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR WKH DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ %UXFH 0DF)DGGHQ 3URIHVVRU RI =RRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR WKH DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RIf§3KLORVRSK\ -RQDWKDQ 5HLVNLQG $VVRFLDWH 3URIHVVRU RI =RRORJ\

PAGE 268

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ &ROOHJV n &Xƒ RI $JULFXALQ UH 'HDQ *UDGXDWH 6FKRRO

PAGE 269

81,9(56,7< 2) )/25,'$ ,,, LQ LQ PX PX m