Citation
A time-dependent molecular orbital approach to ion-solid surface collisions

Material Information

Title:
A time-dependent molecular orbital approach to ion-solid surface collisions
Creator:
Feng, Eric Quinn, 1951-
Publication Date:
Language:
English
Physical Description:
viii, 150 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Atomic interactions ( jstor )
Atoms ( jstor )
Charge transfer ( jstor )
Electronics ( jstor )
Electrons ( jstor )
Energy ( jstor )
Ions ( jstor )
Mathematical procedures ( jstor )
Orbitals ( jstor )
Trajectories ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 144-149).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Eric Quinn Feng.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001689210 ( ALEPH )
AJA1246 ( NOTIS )
25138709 ( OCLC )

Downloads

This item has the following downloads:


Full Text









A TIME-DEPENDENT MOLECULAR ORBITAL AP-
PROACH TO ION-SOLID SURFACE COLLISIONS











By

ERIC QUINN FENG


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1991
















To Susan and Michael and to My Mother's Memory














ACKNOWLEDGMENTS


I am greatly indebted to Professor David A. Micha for his guidance during my

research and Ph.D. thesis work. His clear understanding of physical problems, his

enthusiasm in facing challenges and his spirit of devotion to the work always influenced

me. His financial support enabled me to complete this work.

I thank the Quantum Theory Project and the Department of Physics of the University

of Florida for providing me excellent facilities in the course of this work. I also thank

all QTP members who have constantly helped me in the past few years. I thank my

colleagues and friends, Keith Runge and Robert Asher who have offered me many

valuable suggestions.

I also thank my friend Bob Meier for his help on the English language.

Finally, my special appreciation goes to my wife, Susan; her constant encouragement

and support helped me finish this work.

















TABLE OF CONTENTS


ACKNOWLEDGMENTS ............................. iii
ABSTRACT..................................... vii
CHAPTER 1 .................................... 1
INTRODUCTION ................................ 1
1.1 Collisional Charge Transfer at Surfaces ................ 1
1.2 A Survey of Theoretical Methods ... ................ 4
1.2.1 Binary Collision Theory of Charge Transfer ........... 5
1.2.2 Many-Electron Treatments .................... 6
1.3 Existing Problems ............................ 8
1.3.1 Electronic States and Electronic Couplings ........... 8
1.3.2 Treatments of Extended Systems ......... ...... 11
1.3.3 Effect of Nuclear Motion .................... 12
1.3.4 Atomic Orbital Polarization ................... 13
1.4 Outline of the Chapters ........................ 14
CHAPTER 2 .................................... 19
THE TIME-DEPENDENT HARTREE-FOCK (TDHF) APPROACH 19
2.1 The Atom-Surface System ...................... 20
2.2 TDHF Equations of Density Matrix ................. 21
2.3 TDMOs as Linear Combinations of Travelling Atomic Orbitals 25
CHAPTER 3 ........ ................ ........... 28
AVERAGE ELECTRONIC POPULATIONS, ELECTRIC MULTIPOLES
AND ORBITAL POLARIZATION ................... 28
3.1 Coordinate Frames .......................... 31
3.2 Electric Multipoles ........................... 33
3.3 Alignment and Orientation Parameters ............... 35
3.4 Multipoles and Alignment and Orientation Parameters in a
Subsystem ............................... 38











CHAPTER 4 ................................... 41
LINEARIZATION OF TDHF EQUATIONS ................ 41
4.1 The Linearization Procedure .................... 42
4.2 The Case without Electron-Electron Interaction .......... 48
CHAPTER 5 ................................. 51
PARTITION OF EXTENDED SYSTEMS ................. 51
5.1 The Partition Procedure ........................ 52
5.2 The Approximation in the Secondary Region ........... 55
CHAPTER 6 .. ................................ 58
ELECTRONIC BASIS FUNCTIONS AND MATRIX ELEMENTS 58
6.1 Generalized Wannier Functions ................... 60
6.1.1 Definition of Generalized Wannier Functions (GWFs) .... 60
6.1.2 Generalized Wannier Functions as Linear Combinations of
Gaussians .............................. 63
6.1.3 Determination of Generalized Wannier Functions ....... 65
6.2 Generalized Wannier Functions for a Jellium Surface ....... 67
6.2.1 Results .......................... ... 72
6.3 Atomic Basis Functions ........................ 86
6.4 Overlap Matrix Elements ....................... 87
6.5 Hamiltonian and its Matrix Elements ................ 88
6.5.1 Pseudopotential for the Atomic Core .............. 88
6.5.2 A Corretction Term to the Hamiltonian ............ 90
6.5.3 Hamiltonian Matrix Elements ................. 92
CHAPTER 7 ................................... 94
INTEGRATION OF LINEARIZED TDHF EQUATIONS ........ 94
7.1 The Algorithm for Numerical Integration of TDHF Equations 94
7.2 Computation Program ......................... 95
7.3 Stability and Convergence of the Numerical Integration ..... 97
7.3.1 Tolerances ............................. 97
7.3.2 Initial and Final Distances .................... 98












CHAPTER 8 ...................
APPLICATIONS ......... .......


.............. 100
...... ......... 100


8.1 Na-W(110) Model System ...........
8.1.1 Hamiltonian and Basis Functions .
8.1.2 Electronic Couplings ...........
8.2 Atom-Surface Interaction Potentials and the
8.2.1 Atom-Surface Interaction Potentials ..
8.2.2 Trajectory .................
8.3 Charge Transfer ................
8.4 Results ......................
8.4.1 Evolution of Electronic Populations .
8.4.2 Electronic Populations after Collisions .
CHAPTER 9 .......................
DISCUSSION AND CONCLUSIONS .......
APPENDIX A ......................
CALCULATION OF COEFFICIENT MATRIX B
APPENDIX B ......................


CALCULATION OF TOTAL ENERGY OF
APPENDIX C ..................


ABAB
....


............ 101
............ 101
............ 102
Trajectory ...... 103
............ 103
............ 105
.......... 108
............111
........... 111
. ........... 113
............125
............ 125
. 138
............ 138
. 138
............140
ND .......... 140
............ 142


CALCULATION OF ELECTRONIC PROPERTIES OF A FINITE
SLAB ............................ ........
BIBLIOGRAPHY ..............................
BIOGRAPHICAL SKETCH ........................

















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy



A TIME-DEPENDENT MOLECULAR ORBITAL
APPROACH TO ION-SOLID SURFACE COLLISIONS




By

Eric Quinn Feng

May 1991

Chairman: David A. Micha
Major Department: Physics


A time-dependent molecular orbital method has been developed to study

charge transfer in collisions of ions with metal surfaces at energies between I au

and 170 au. A set of localized basis functions, consisting of generalized Wannier

functions for the surface and s- and p- atomic functions for the ion, is used to

separate the system into primary and secondary regions. An effective Hamiltonian

and time-dependent equations for the electron density matrix are obtained in the

primary region, where most charge transfer occurs. The equations for the electron

density matrix are solved with a linearization scheme. The method is suitable to











study atomic orbital polarization for collisions of ions and surfaces. A model

calculation for Na'+W(110) collisions with a prescribed trajectory is presented.

The interaction potentials between the W(110) surface and Na 3s and 3p orbitals

are calculated from a Na pseudopotential and a step potential for W(110). Results

show that the yield of neutralized atoms oscillates with the collision energy as

the result of the near-resonance charge transfer mechanism. The time-dependence

of the density matrix provides insight on the dynamics of electron transfer along

the atomic trajectory.
















CHAPTER 1
INTRODUCTION


1.1 Collisional Charge Transfer at Surfaces


Surfaces and various physical processes occurring near surfaces are receiving

increased attention in present scientific research, due mainly to rapidly growing

applications in modem analytical techniques. Researchers in fields of surface sci-

ence, chemical physics, solid state physics, atomic physics, electrical engineering,

and even medical science are carrying on extensive, and sometimes overlapping,

studies and analyses involving surfaces. One of the most important ways to un-

derstand the nature of surfaces is to study various electronic processes occurring

in collisions of ions with them. For example, one can learn from scattering about

the topology and electronic structures of surfaces, amount of impurities and ad-

sorbates present, surface electron and lattice relaxations, and interactions between

surfaces and atoms and molecules. Particular attention has been paid to nona-

diabatic processes accompanying charge transfer between scattered particles and

surfaces at low collision energies ranging from a few electron volts to a few

thousand electron volts, which often involve strong coupling and energy transfer

between electronic, translational, vibrational, and rotational degrees of freedom

of projectiles and surfaces.









2

Charge transfer in ion-surface collisions may lead to neutralization or ioniza-

tion and can be expressed as


S+ A+ -- E+ A (1.1)


and

E + A + A'F (1.2)

respectively, where E is a surface such as W(110) or Ni(ll11), and A is an alkali

atom such as Li, Na or K. Similar processes occur in beam-foil experiments in

which charge exchange takes place when ions or atoms pass through thin foils,

instead of being reflected from surfaces.

The two main mechanisms through which charges are exchanged are the near-

resonance process and the Auger process [Hagstrum, 78]. In a near-resonance

neutralization, an electron in the conduction band of the solid tunnels to an

unoccupied level of the ion which lies near or below the Fermi level of the

solid. In a near-resonance ionization, an electron from a filled excited state of a

neutral atom transits to an empty level in the conduction band or above the Fermi

level of the solid. The two energy levels involved in these processes are close,

which characterizes the near-resonance processes. The Auger process involves

two or more electrons. In two-electron Auger neutralization, one electron jumps

from the metal conduction band to the ion ground state below the band and, to

conserve energy, the second electron is excited from another level in the band and

may leave the surface and be detected by an Auger spectroscopy. For systems









3
where an ion affinity level is in resonance with the conduction band of the metal,

such as in Na++W(110), a near-resonance process is more likely; for systems

where an ion ground state is below the conduction band, such as H++Ni(l11), the

Auger process is usually the dominant charge transfer mechanism. Complicated

combinations of the two processes are also possible in certain circumstances.


The rise of interest in these problems has promoted an extensive effort to

develop ultra-high vacuum (UHV) and modern spectroscopy techniques to observe

and detect various physical properties in much greater detail in the last two decades

than before [Hagstrum, 77; Hagstrum, 78]. In these spectroscopy experiments,

one measures the intensity of scattering products (atoms, photons or Auger

electrons) and their energy and angular momentum distributions which usually

depend on the energy and angle of incident beams, the surface properties and,

sometimes, on temperature and external fields. The ion scattering spectroscopy

(ISS) [Smith, 71; Hulpke, 75; Taglauer and Hailand, 76; Overbosch et al., 80]

measures the scattered ion intensity as a function of incident energy and reflected

angle, and can be used to determine the topology of surfaces. Oscillation in the

intensity of neutralization of ions in the low energy range has been observed for

a number of ion-surface combinations, and is ascribed to near-resonance charge

transfer [Erickson and Smith, 75; Rusch and Erickson, 77]. In ion neutralization

spectroscopy (INS) experiments, one can gain knowledge of the band structure

by measuring the kinetic energy of Auger electrons [Hagstrum, 75]. Time of

flight (TOF) experiments detect survival probabilities of states of scattered atoms










4

and their energy distributions [Kasi et al., 88]. So far, most experiments have

been done on noble and transition metals, simply because their surfaces are

relatively easy to clean and to prepare. However, due to the strong interest

in electronics, studies on semiconductor and other material surfaces have been

carried out [Richard and Eschenbacher, 84].

In atomic collision studies, people have developed new instruments which

have a time resolution of picoseconds to monitor the time evolutions of inter-

mediate atomic states. It has been possible to measure the angular distribution

of scattering product orbitals [Hale et al., 84; Hertel et al, 85; Andersen, 87;

Campbell and Hertel, 87]. These new techniques provide valuable information

about the collision dynamics, and it is expected that they will be soon used in

studies of ion-surface collisions.


1.2 A Survey of Theoretical Methods


Advances in spectroscopy techniques in the last two decades have allowed ex-

tensive experimental studies of ion-surface collisions. However, the development

of the theory lags behind that of experiment in this field, and there are far and

away more experimental data than can be understood. This is because the systems

we are dealing with are very challenging ones in the sense that they lack transla-

tion symmetry. Moreover, they involve dynamical many-electron processes with

a strong and time-dependent coupling between the electronic degrees of freedom

and nuclear motions. The traditional methods which deal with systems of periodic









5
lattices or of a few electrons are either not suitable or have to be modified. It

seems, however, that theoretical studies are accelerating and are on the verge of

reproducing some of the experimental data.

1.2.1 Binary Collision Theory of Charge Transfer

In this theory [Rusch and Erickson, 77; Kasi et al., 89] the scattering of an ion

from a surface is described by a single binary collision or a sequence of elastic

collisions between the ion and surface atoms. In this theory, the scattering angle

0 satisfies the relationship

El [cosO + (' sin20)1/2]2 (1.3)
Eo0 (1 +p)2/ (3)

where mi and m2 are the masses of the incidental ion and surface atom, --=m2/ml,

and Eo and Ei are the kinetic energies of the ion before and after the scattering.

The yield of the scattered ions for a given scattering angle, Y(Eo, 0), is

Y(Eo, 0) oc a(Eo, 0) P(Eo, 0) (1.4)

where a(Eo, 0) is the elastic differential cross section and P(Eo, 0) is the probability

for an ion to remain ionized after the scattering. In classical calculations a is a

monotonically decreasing function of the incident energy and P is given by

P oc exp(-a/v.) (1.5)

where a is a constant and v1 is the ion velocity perpendicular to the surface.

This theory, in which the yield is a smooth function of the incident ion energy,

fits the energy dependence of 4He+ scattered from Cu and certain other systems.









6
However, it cannot explain the oscillatory charge transfer behavior observed in

other systems which is believed to be associated with nonadiabatic charge transfer

mechanisms.


1.2.2 Many-Electron Treatments

A variety of theoretical methods [Tully, 77; Brako and Newns, 81; Holloway

and Gadzuk, 85; Hood et al., 85; Lee and George, 85] have been proposed to ac-

count for the many-body processes accompanying charge exchange in ion-surface

collisions. The most widely used one is the approach based on the Anderson-

Newns Hamiltonian [Anderson, 61] to describe the ion-surface scattering [Blandin

et al., 76; Norskov and Lundqvist, 79; Brako and Newns, 81; Lang, 83]. In this

approach, neglecting spin and using second quantization notations, the Hamilton-

ian of the system is written as


H = EaC +Ca Ci kC+k + [VakC gCk + VakC+Ca] (1.6)
k k

where C+a, Ca are the creation and destruction operators corresponding to atomic

state Oa, Cj!, Ck are the creation and destruction operators corresponding to solid

state ?k, ca and ek are the energies of ba and kk respectively, and Vak = (alVIk),

where V is the perturbation due to coupling of the atom to the metal. The last

two terms describe the electron hopping between 1ia and bk. It should be noted

that the energy of the atomic level is time dependent through the ion's trajectory

RA(t), that is, fa(t) = Haa [RA(t)]. A set of equations of motion of electronic









7
degrees of freedom can be obtained from the Heisenberg equations (with h = 1)

i = -[H, Ca] = ca(t)Ca + Vak(t)Ck (1.7)
k


i = --[H, Ck] = Ck Ck + Vak(t)Ca (1.8)

Eliminating Ck, it yields a differential-integral equation for Ca which can be

solved by numerical procedures. The number of electrons on the atom after the

scattering is given by

na(oo) = ('a IC+(oo)Ca(oo)Ila) (1.9)



Most studies using the time-dependent Anderson-Newns Hamiltonian have

neglected the intra-atomic Coulomb repulsion to simplify the calculations. For

most alkali-metal collisions, which produce few negative ions, this approximation

seems to be justified. But for scatterings like H-W(110), there is a significant

fraction of H- products after scattering, and the intra-atomic Coulomb repulsion

plays an important role. Instead of using the above Hamiltonian one should use

H =1 EC aCa. + 1 fCkoCo
or ko (1.10)
+ E [VakCoCko + VaC+Ca.] + U(t)naTa.n
ko
where a is a spin index, naT = CaCa, nal = C1CaJ, and U(t) is the effective

intra-atomic Coulomb repulsion which depends on the distance between the ion

and the surface. Using the Hartree-Fock approximation, one obtains a set of









8
differential-integral equations [Yoshimori et al., 84; Sulston et al., 88] which can

be solved numerically. However, the qualitative behavior of the results are found

to be not much different. There have been several attempts to go beyond the

Hartree-Fock approximation [Sebastian, 83; 85; Kasai and Okiji, 87], by which

some preliminary results were obtained.


1.3 Existing Problems


Several problems inherent in the theoretical treatment of ion-surface scattering

will be addressed here. We view them as some key points in furthering the

theoretical study of ion-surface collisions.

1.3.1 Electronic States and Electronic Couplings

Ion-surface systems are many electron systems which lack translation symme-

try. This brings both difficulty and challenge to theoretical studies of the problem.

One way to deal with surfaces is to assume that the electronic wave functions

in surfaces are the same as those of an infinite periodic system and to treat the

colliding ion as a moving defect and the atomic states as localized states. In

this way, one can relatively easily calculate surface properties and the scattering

yield [Brako and Newns, 81; Lang, 83; Shindo and Kawai, 86]. However, this

approximation is not very accurate, and usually can only be used as a starting

point. At surfaces, as the results of broken symmetry and the strong perturbation

from the colliding ion, the electronic bands are distorted and the electron behavior

is different from that of bulks. One of the important features of the metal and









9
semiconductor electronic structure is the existence of the localized states. While

s- and p-electrons are generally described by continuous states, d-electrons are

more localized. At surfaces, localized states can also be created by impurities,

adsorbates or chemisorbed layers. The presence of localized states greatly affects

the local electronic environment; for example, an absorbed layer of alkali on metal

surfaces lowers the work function [Gomer, 75; Medvedev et al., 70].

Correctly calculating or estimating the electronic couplings between the ion

and surface is obviously important in theoretical calculation. But current theoreti-

cal methods do not provide a simple and yet accurate way to estimate the electron

hopping matrix elements. People have to rely on semi-empirical calculation. For

example, in the time-dependent Anderson-Newns Hamiltonian, Vk measures the

coupling between the atomic states and surface states and is related to the lifetime

broadening of an atomic state, A(t). Assuming that k and t dependence of Va

are separated,

Vak [RA( ] = Vku(t) (1.11)

where Vk depends only on k and u(t) only on t, one has

A(t) = A(c)lu()2 (1.12)

where A(e) is defined by

A(e) = jVkl2b( k) (1.13)
k
which can be approximately evaluated by methods developed in chemisorption

theory. But a common practice is to use parameterization of A(t). For instance,









10
one can use a simple exponential form which is independent of energy


A(t) = Aoexp(--ZA) (1.14)


and determine parameters Ao and 7 from experimental data [Brako and Newns,

81; Lang, 83; Hood et al., 85] or from density functional calculation [Lang and

Norskov, 83].

Because of the electronic coupling from the surface electrons, the atomic

energy ea is distance dependent. Again, a simple function form is often used

(with the electron charge e=l au),


ea(za) = Ca(oo) (1.15)
4ZA

where ZA is the distance between the ion core and the surface. This is based on

the approximation that the change of ea is due to a classical image charge.

Although the parameterization approach is widely used, it ignores the fact

that the electronic coupling is strongly dependent on the rearrangement of charges

during collisions, and its validity at short distances is questionable. Ideally, the

treatment of the ion-surface systems should contain a self-consistent electronic

structure calculation which accounts for localized states. A self-consistent lo-

calized orbital method has been developed to deal with transition metal surfaces

and chemisorption on metal surfaces [Smith and Gay, 75; Smith et al., 80]. The

density functional method [Hohenberg and Kohn, 64] has also been applied to

ion-surface interactions [Lang and Williams, 76].









11
1.3.2 The Treatment of Extended Systems


From the theoretical point of view, it is easier to deal with either a system

of a few particles, for example, small molecules, or a system with a periodic

structure, such as single crystals. Ion-surface systems, on the other hand, are

many-body systems which lack translation symmetry. To combine a full self-

consistent calculation of electronic interaction with a dynamic description of ion-

surface collisions is a difficult, if not impractical, task.

In developing a better and more physical description of ion-surface systems

a very important fact should be noticed, namely that during the collisions, ions

interact mainly with local regions of the surface, while the remainder of the

solid is relatively unperturbed. This fact provides a hint that it is possible

to properly handle electronic motions by concentrating on these local regions.

Olson and Garrison [Olson and Garrison, 85] have used a cluster in place of a

surface; this enables them to employ the molecular orbital method developed in

molecular scattering. Another method to deal with surfaces is the embedding

technique [Grimley and Mola, 74; Kirtman and de Melo, 81; Feibelman, 85]

used in chemisorption studies, which uses a higher level treatment of electronic

interactions within a molecular complex (a small region of the surface plus

adsorbates) and a simple description outside of the complex. de Melo et al. [de

Melo et al., 87] have developed a self-consistent method using a density matrix

and applied it to the Anderson-Newns Hamiltonian for a one dimensional system.

McDowell [McDowell, 85] uses an embedding technique to obtain generalized










12
Langevin type equations for the spin orbitals in a primary zone which couples

with the secondary zone through driving terms. These treatments show that,

by concentrating on a small number of orbitals, it is possible to achieve self-

consistency. Another common feature in these treatments is the use of localized

spin orbitals, which allows one to naturally deal with localized phenomena [Feng

et al., 91].

1.3.3 Effect of Nuclear Motion

While the electronic motions are treated quantum mechanically, it is reason-

able to assume that the nuclear motion evolves according to the classical mechan-

ics for the collision energy in the hyperthermal range. In this classical-quantal

approach the nuclear motion, RA(t), can be treated at several levels. In the simple

classical treatment, the nuclear trajectory is fully determined by a classical ion-

surface potential. In an improved semiclassical treatment, the nuclear potential is

coupled with the electronic motion. The classical trajectory is valid only in the

high energy range [Tully, 76] as demonstrated in gas-phase collisions. The reason

is that at lower energies, trajectories are sensitive to the detail of chemical inter-

actions among the atoms and depend on the electronic states. It has been found

that in H-p collisions, the classical trajectory would give rise to a significant error

when the collisional energy is lower than 100 ev [Runge et al., 90].

Looking from another angle, the nuclear motion can be treated either by

the so-called trajectory approximation or by a multichannel procedure. In the

trajectory treatment, the nuclear trajectory is uniquely defined by a single fixed









13
potential, which can either be a pure classical one or an effective potential which

contains the coupling with the electronic degrees of motion. One example is the

straight line trajectory resulted from a hard wall potential. Runge et al. [Runge

et al., 90] determine the ion trajectory by an effective force which is dependent

on the gradient of the electronic density matrix. It has instead been suggested

using a trajectory approximation, constructing multidimensional potential energy

hypersurfaces describing various atomic configurations and allowing trajectories

to hop back and forth between hypersurfaces [Tully, 77; Holloway and Gadzuk,

85; Newns, 85].

A useful procedure in dealing with molecule collisions is the eikonal method

developed by Micha [Micha, 83]. In this method the nuclear variables are coupled

with the electronic ones and both must be found self-consistently. An application

of the eikonal method to ion-surface collision is by Olson and Garrison [Olson

and Garrison, 85] who model the surface by a small cluster.

1.3.4 Atomic Orbital Polarization

In atomic scattering, the scattered atoms can be in different electronic states

and their distribution of electronic angular momentum can be anisotropic. This

causes orbital alignment and orientation [Hippler, 85]. Experimentally, this

requires a partial or full determination of the atomic states after the collision in

contrast to the conventional study which measures the differential cross section.

Orbital polarization has been the subject of much theoretical work [Fano and

Macek, 73; Andersen and Nielsen, 87; Nielsen and Andersen, 87], in which the









14
density matrix [Blum, 81] is extensively used. Although the use of the density

matrix in scattering theory is not new, the study of orbital polarization provides

a much more severe test of a theory than does the study of cross section, this

is because not only the diagonal elements, but also the off-diagonal elements

of the density matrix are required to determine the alignment and orientation

parameters. Of course, the study of orbital polarization will lead to a deeper

insight into the interaction and mechanisms involved in the collisions. Until

now, no detailed work on orbital polarization in ion-surface collision had been

reported either experimentally or theoretically. It is just a matter of time before

the experimental techniques and theory are developed in this field.

1.4 Outline of the Chapters

This dissertation presents a theoretical study of charge transfer in ion-surface

collisions based on the time-dependent molecular orbital approach. A partition-

ing technique is used to divide a ion-surface system into a primary region which

contains a few centers on the surface and the scattering ion, and a secondary

region containing the remainder of the surface. The charge transfer is calculated

by solving the time-dependent Hartree-Fock (TDHF) equation for the electron

density matrix in the primary region which couples with the secondary region

electronically. This approach permits determination of the atomic states during

and after the scattering and calculation of the alignment and orientation parame-

ters. In the following chapters atomic units are used; therefore, electron charge

e=l, electron mass me=l and F=1.









15
In Chapter 2, we present the basic framework of our approach to the ion-

surface collisions. TDHF equations are used to describe the time evolution of the

molecular orbitals. The formalism is constructed in terms of an electronic density

matrix because it can simplify computation and is convenient in the calculation of

alignment and orientation parameters. In the later part of the chapter, the TDHF

equation is rewritten in the basis of the travelling atomic orbitals (TOA).

In Chapter 3, we define the parameters for average electronic population,

electronic multipoles and polarization of atomic orbitals by introducing tensor

operators and irreducible operators. The orientation and alignment parameters

can be calculated from the density matrix. The orbital polarization parameters for

a subsystem are also expressed by the density matrix.

In Chapter 4, we present a local time linearization procedure for solving

TDHF equations. The method is based on the assumption that, in a very short

time interval, the solution of the TDHF equation is a linear perturbation caused

by the motion of the atomic core, added to correct the evolution of the system

first calculated as if the nuclei were fixed. Using this procedure, the linearized

equations for the perturbations, which contain a time-dependent driving term

due to the nuclear motions, are constructed and solved in conjunction with the

equations for fixed nuclear positions. The procedure is presented for a general

case. In the later part of the Chapter, we apply this procedure to a simple case in

which the electron-electron interaction is neglected and obtain analytical solutions

for the linearized TDHF equations.









16

In Chapter 5, a partitioning procedure for ion-surface collisions is presented.

The system is divided into a primary region which contains the ion and a few

centers on the surface and a secondary region which is the remainder of the

surface. The density matrix is approximated in the secondary region by an

unperturbed one, which is justified when the collisional energy of the ion is

not very low. The effective equations in the primary region are coupled with

the secondary region through a driving term. To fit the asymptotic behavior of

the system after the partitioning, a correction term is added to the partitioned

Hamiltonian. Combining the linearization procedure described in Chapter 4, we

obtain the effective equations in the primary region and their formal solutions.

Again, we further illustrate this partition method by applying it to a special case

when the electron interaction is neglected.


In Chapter 6, we construct a set of localized basis functions to be used in the

time-dependent molecular orbital calculation. For the surface part, we introduce a

set of generalized Wannier functions (GWFs) which are orthonormal and localized

at centers of the surface. A variational procedure is employed to generate these

functions. As an example, we calculate the generalized Wannier functions for

a three dimensional jellium solid. The basis functions associated with the ion

core are assumed to be atomic orbitals and are obtained from a pseudopotential

for the ion core. Our basis functions are time-dependent and in the form of

linear combinations of Gaussians. The overlap matrix and Hamiltonian matrix

are constructed in this basis set.









17

In Chapter 7, we discuss the computational aspects. At first, we present our

algorithm for numerical integration of the time-dependent Hartree-Fock equations

as well as the flowchart of the computational program. Then the stability and

the convergence of the numerical integration are discussed at length. Effects of

some computational parameters are investigated, including step size, initial and

final positions of the ion, and tolerances, among others.

In Chapter 8, we present an application of this approach and its results to

the neutralization in a normal collision between a Sodium ion and a Tungsten

(110) surface. An atom-surface interaction potential is constructed to determine a

prescribed trajectory. By using methods described in previous chapters, we obtain

the time evolution of the density matrix from which the electronic population and

orbital polarization parameters are calculated. We also study the effects of the

collision energy on the final yield of the neutral atoms and their polarization after

the collision, and compare the results with experimental data. We also briefly

discuss the application of the approach to other systems, and to collisions at other

scattering angles.

In Chapter 9, we discuss the features of our time-dependent molecular method

and its applications to charge transfer in atom-surface collisions in hyperthermal

energy range. Analysis and conclusions are related to the physical features and

comparison with other theoretical methods in the field. We also discuss the

approximations used in the present study. Finally, we offer suggestions for future

research.










18

In Appendix A, we calculate matrix Bx which is the expansion coefficient

matrix of the Wannier functions for free electrons in terms of Gaussians.

In Appendix B, we calculate the total band energy of a jellium slab using the

generalized Wannier functions.

In Appendix C, we show how the Fermi energy is calculated for a finite

jellium slab.
















CHAPTER 2
THE TIME-DEPENDENT HARTREE-FOCK (TDHF) APPROACH



The time-dependent Hartree-Fock approach is suitable for studying the many-

body collision dynamics of our problem. Using a one-electron effective field it

can describe the evolution of collisional systems and calculate dynamic parameters

to compare with experimental data. One of the advantages of the TDHF method

is that the self-consistency between the effective field and the orbital coefficients

or density matrix is achieved automatically by solving time-dependent differen-

tial equations without having to perform the self-consistent iteration procedure

required in the time-independent case. TDHF has been extensively applied to

collision problems in nuclear physics [Ring and Schuck, 80; Negele, 82; Davies

et al., 82], and recently applications in atomic molecular collisions have been

reported [Kulander et al., 82; Devi and Garcia, 83; Gazdy and Micha, 86; 87].

Micha and Gazdy [Micha and Gazdy, 87] have proposed a variational procedure

which improves the accuracy of transition amplitude calculations using TDHF

trial functions. Yoshimori et al. [Yoshimori et al., 84] have discussed using the

TDHF method in charge transfer in ion-surface collisions.

In this Chapter, we apply the TDHF method to charge transfer in ion-surface

collisions. In Sect. 2.1, by introducing time-dependent molecular orbitals,









20

we derive the TDHF equations for the electron density matrix. The reason

we use the density matrix [McWeeny, 60; Cohen and Frishberg, 76] is that

it simplifies calculation for a large system. Another advantage is that many

interested properties of collisions can be defined and readily calculated from it.

One of the key problems in applying the TDHF approach to ion-surface studies

is choosing the basis set. With the great number of electrons in the systems,

choosing a complete basis set would make any practical calculation out of the

question. One has to truncate the complete basis set in a proper way so that the

introduced error is minimal. However, we will leave this problem to Chapter 5.

In this Chapter, we first describe the ion-surface system. In Sect. 2.2 we derive

the basic formalism without specifying the particular form of the basis set except

for the condition that each basis function is associated with a certain center of

the system. In Sect. 2.3 the TDHF equation is rewritten in the basis of travelling

atomic orbitals (TAO).

2.1 The Atom-Surface System


Let's consider a system of a scattering ion and a semi-infinite solid. We will

assume the solid has a conduction band of continuous one-electron states and

some localized states (This is in contrast to some approaches which are limited

to continuous states only). For the colliding atom we assume it has a core and

several valence levels. Because the deeper levels of the solid and the core states

of the ion are tightly bound and usually do not participate in charge transfer in

the energy range we are interested in, they are not considered. For the same









21
reason, highly excited atomic states and those solid states highly above the Fermi

level are not considered either. We also assume that the atomic levels are in the

range of or close to the conduction band and that the near-resonance tunnelling

of electrons is the dominant charge transfer process. The thermal motion of the

nuclei in the solid can be neglected at the collision energies of interest, so that

the only moving nucleus is that of the scattering ion. For simplicity, we assume

that the collision energy is high enough that the trajectory approximation can be

used. In this approximation, the motion of the ion nucleus can be described by

a known function RA(t) determined by an effective interaction potential between

the ion core and the surface. In Chapter 9 we will discuss the validity of this

approximation and the possible improvements which are necessary at low collision

energies.


2.2 TDHF Equations of Density Matrix


Let T (t) be the electronic wavefunction which satisfies the time-dependent

Shrodinger equation


i T(t) = H(t) W(t) (2.1)


where H(t) is the total Hamiltonian of the system. Using the time-dependent

Hartree-Fock approximation, the TDHF wavefucntions have the form of


I(t) = N"l1/2det[Oi(xj, t)]


(2.2)









22
where Net is the number of electrons and Oi(x, t) is the ith spin orbital for electron

variables z = (r', ). We write bi(x, t) as


=i(x, t)(= (r, t)7i(() (2.3)

where
is the corresponding spin function. The electron density operator A is given by


E= Z )(01 (2.4)
iEocc
where the summation is over the occupied orbitals, which is assumed to satisfy

the TDHF equation [Dirac, 30]

AnJp = p'rr rFr (2.5)

where P is the Fock operator which can be written as [Pople and Beveridge, 70]

P(z1, t) = HI(F, t) + Gr(x, t) (2.6)

where
1
ftI(i, t) = vi +VA(l, t) + VM(i, t) (2.7)

is the core Hamiltonian operator with VA the potential from the atomic core and

VM the potential from atomic cores in the solid; and


1(2.8)
G6(xI, t) = fdx20L7(x2,t) r-[1 P i2]M(x2,t) (2.8)

is the electron Coulomb potential operator, where P12 is the permutation operator

exchanging electrons only between spin-orbitals of spin 7. Introducing a set of









23
time-dependent basis functions {((r, t)}, p=1, 2, .. N, the molecular orbital

is written as a linear combination of the basis functions so that

7(F,,t) = (t)(rf,t) i= 1, 2, (2.9)

where cU (t) is a time-dependent coefficient. The density matrix P is defined as

P = I)p (lI (2.10)

where I|) and (I[ are row and column matrices of C1 orbitals, respectively. The

matrix element of P is [Pople and Beveridge, 70; Szabo and Ostlund, 82]

,(t)= ( C(t)cfv(t) (2.11)
iEocc
The Fock matrix F7 is defined as

F" = (\FI| ) (2.12)

Inserting equation (2.6) into the above definition we have

F' = H + G' P, P') (2.13)

where

H= K +VA+ VM (2.14)

is the core Hamiltonian matrix, G7 the Hartree-Fock electron-electron interaction

matrix, VA the atomic potential matrix and VM the surface potential matrix. The

matrix elements of F' are

F,(t) = H,,(t) + P ~ (t)(pl a) + P (t)(pvIXa} (2.15)
Ao









24
where 7' is the spin opposite to 7 and


with


(pVII\A) = (uV\jA) (p\IjAv)




(yIvAa)= d d'r2( t)(rt)=) 1 (Fi, t)o(rl, t)
r12


(2.16)


(2.17)


To derive the TDHF equation for the density matrix, let's define a matrix


a


Substitute (2.10) into (2.5), the left hand side is
.0 .a

-t FP
a= ie g)hi P'( + ai + iil
and the right hand side is


(2.18)


(2.19)


(2.20)


P-p -/ p- = PF)P | ( Io)P | (vI


Multiply this equation by (5| from the left and by I|) from the right, we have


inlP'S + iSP'S + iSP'tIf = FTPfS SPTrF


(2.21)


where S = (J) is the overlap matrix. Multiply both sides of the above equation

by S-1 we obtain the time-dependent Hartree-Fock equation for the density matrix


i P = S-1FP'p P-F'rS-' iS-lP'7 ipt'rtS-1


(2.22)


The last two terms on the right hand side of Eq. (2.22) arise from the time-

dependence of the basis functions.









25
2.3 TDMOs as Linear Combinations of Travelling Atomic Orbitals

When the molecular orbitals are expanded in a basis set of atomic functions,

it sometimes introduces artificial couplings at large distance which originates in

the dependence of the atomic orbitals on the position of the moving nuclei [Bates

and McCarroll, 1958]. To avoid this one can choose the atomic basis functions

in the form of travelling atomic orbitals (TAO). We choose (4 to be a travelling

atomic orbital (TAO) associated with the mth center at R(t),

(F, t) = x, [F- m(t)] Tm(f, t) (2.23)

where r is the position vector with respect to the origin of the reference frame,

X, is the atomic orbital centered at Rm(t) and the translation factor Tm(r, t) is
defined by

T(r, t) = exp im, (M i Iv2 dt' (2.24)
tin
where me is the electron mass and -m = dAm/dt is the local velocity of the mth

center in a space-fixed system. Thus,

a
"v = H i&') + n Vn vl) (2.25)

and

(2.26)

Using (2.22) we find

S= -ime S' + (xITT. n V.)l,) (2.27)










where

(2.28)
= d rX(rT.'(r')Tn(r-) [( a. Vn)x(rv ]

Noticing that Vx,) = -VnIXv), the kinetic energy matrix in this basis is

((IKI| v) = -((4 V 2

-= m,2 s + i(plT* T Vn)Ix.) + (x.IKIx.) (2.29)
= illv + KIj
where Eq. (2.26) has been used and

k = (xIx,) = d3r T, (F, t)T,( t) x(r, t)Kx,(r, t) (2.30)

Substituting Eq. (2.30) into Eq. (2.22) it becomes

iP7 = S-1f'rp P'FtS-1 (2.31)

with a modified Fock-like matrix

F7 = I + G (2.32)

where

= + VA + VM (2.33)



Equation (2.31) is our basic equation. It appears in a simpler form in the
TAO basis, but the price paid is that the matrix F7 is no longer Hermitian.

This equation can be solved numerically if the nuclear trajectory is known,
which may or may not include the effect of the coupling between the electron










27

and nuclear degrees of freedom. In the eikonal treatment, this equation should

be solved with the equations of motion for nuclei simultaneously. Runge et al.

[Runge et al., 90] have applied this method to charge transfer in the collision

between a hydrogen atom and a proton.

So far, we have put no restrictions on the choice of basis functions except

that the functions are localized at certain centers of the system. In Chapter 6 we

will discuss in detail the choice of basis functions, which is a key part to our

approach for handling extended systems.
















CHAPTER 3
AVERAGE ELECTRONIC POPULATIONS, ELECTRIC
MULTIPOLES AND ORBITAL POLARIZATION


One of the parameters which characterizes scattering phenomena is the cross

section, which has the dimension of area and, roughly speaking, measures the size

of electron clouds. The total cross section and the differential cross section for

state to state transitions can be measured in experiments and provide fundamental

information about excitation mechanisms. Thus extensive efforts have been made

to develop theories and methods to calculate the cross section. On the other hand,

during collisions with targets, absorption of energy will excite atoms to various

states which can be anisotropic. Electron clouds not only change their sizes but

also change their shapes and rotations, which is termed orbital polarization. The

shape change and rotation of the electron cloud are characterized by alignment and

orientation. Recent advances in experimental techniques have made it possible

to completely determine the states of scattered atoms. For example, in the Ht-H

experiment [Hippler et al., 86], H experiences a 2s to 2p excitation and the

distribution of electrons on m=l and m=-l states varies with the collision energy.

The orbital polarization reflects some of the specific and subtle aspects of the

collision processes which can not be fully unveiled in the cross section study.

Obviously, knowledge of orbital polarization properties can offer a deeper insight









29
into the collision mechanism and a more detailed understanding of the dynamics

of collisions. Such a study will also provide a sensitive test to the scattering

theories and models.


The density matrix method has been proved to be a powerful tool in inves-

tigations of orbital polarization in scatterings [Fano and Macek, 73; Andersen,

87; Hippler et al., 86]. Using the language of the density matrix, the diagonal

elements are related to the cross section, and the off-diagonal elements contain

the information about the shape and rotation of the electron cloud. Usually, the

density matrix is constructed to calculate the orbital polarization parameters for

the electron cloud associated with the scattered atom. In this way one assumes

that the electron cloud contains only the electrons in the orbitals of the scattered

atoms and that the contribution from the target electrons is excluded. Such an

approach is suitable for most experimental situations where the scattered atoms

are detected far away from the target but before or in the course of decaying

from their excited states. However, at short or medium distances, the atomic

orbitals are mixed with the surface orbitals and the electron cloud associated with

the atom contains also the contribution from the surface electrons. The above

approach does not seem satisfactory from our theoretical point of view, since we

are interested in following the time evolution of the electron cloud which requires

to describe the orbital polarization of the atom at all distances. The definitions of

the orbital polarization parameters should be consistent with that for an isolated

atom as the distance between the atom and the surface becomes infinitely large.









30
In this Chapter, we use the electronic density matrix to define parameters

characterizing the orbital polarization. Unlike other studies [Fano and Macek, 73;

Nielsen and Andersen, 87], we start with the electronic density matrix of the full

system, i.e., the atom plus the surface, and then define the orbital parameters for

a subsystem which either is the scattered atom alone or is a molecular complex

containing the atom and a part of the surface. Because the mixing between the

atomic orbitals and the surface orbitals are taken into account, the electron cloud

associated with the scattered atom contains also the contribution from the surface

electrons. This permits us to examine the evolution of the electron cloud and

gives a dynamic picture of the orbital polarization at all the distances during

the collision. As the distance between the atom and the surface becomes very

large, the contribution from the surface electrons becomes insignificant and our

polarization parameters for the atom orbitals are asymptotically equal to those

defined in other approaches.


In Section 3.1, we describe two coordinate systems: the collision frame and

the natural frame. The collision frame seems suitable to describe the scattering; the

natural frame is more convenient to picture orbital polarization. In Section 3.2,

using coordinate tensor operators, we define electric multipoles which provide

a picture of the spacial distribution of the electron cloud. In Section 3.3, the

alignment and orientation parameters are defined by use of the irreducible tensor

operators and expressed them in terms of the density matrix. In Section 3.4,

the polarization parameters are defined for a subsystem which contains either the









31
scattered atom alone or the atom plus a small part of the surface. This is useful for

comparison with experimental data from spectroscopies. The connection between

the orbital polarization parameters for a subsystem and that for an isolated atom

is discussed.

3.1 Coordinate Frames

Since symmetry plays an essential role in the study of scatterings and orbital

polarization, it is the first thing one should look at when choosing a coordinate

frame. Let's consider the symmetry of the p-orbitals. The three eigenfunctions

of the angular momentum operator for J=1, Ip+i), Ipo) and Ip-l) correspond to

the magnetic quantum number m=1, 0 and -1 respectively. We can also use three

real p-orbital functions Ipx), IPy) and Ip,) which are symmetric along x-, y- and

z-axes respectively. The orbital jpz) = Ipo) has a negative reflection symmetry

with respect to the X-Y plan and others have positive reflection symmetry.

The collision plane is determined by the incoming velocity vector -in and

outgoing velocity vector bout of the projectile. For an atom-surface collision, the

collision plane is perpendicular to the solid surface. The collision frame (Xc,

Yc, Z7) is defined such that the Xc-Zc plane coincides with the collision plane

with the Z. axis perpendicular to the surface and that the Xc axis parallel to the

surface, and the Xc-Ye plane coincides with the solid surface with the Yc axis

perpendicular to the collision plane, see Fig. 1. Because many collision systems

have certain type of symmetry about the Zc axis or with respect to the collision

plane, this frame is convenient for collision problems [Andersen, 86].




























Zc, XN






,,ut


Figure 1.1. The coordinate frames used for the description of orbital
polarization of the electron cloud. The collision frame (Xe, Yc, Zc) and
the natural frame (Xn, Yn, Zn) are shown. The incoming velocity vector
U'i and the outgoing velocity vector o ut are in the collision plane which
is perpendicular to the solid surface and coincides with the Xc-Z7 plane of
the collision frame and the Xn-Yn plane of the natural frame.


Xc, YN


CZ N









33
In the natural frame (Xn, Yn, Zn), as shown in Fig. 1.1, the Xn-Yn plane

is in the collision plane with the Xn axis perpendicular to the solid surface, the

Yn-Zn plane coincides with the solid surface with the Zn axis perpendicular to the

collision plane. This frame seems to be "natural" to the analysis of the angular

momentum transfer and orbital polarization, since the expectation value of the

z-component of angular momentum is related to the orientation and alignment

[Andersen, 86].


3.2 Electric Multipoles


One way to describe the shape of the electron cloud is to consider its electric

multipoles. For this purpose we introduce a set of tensor operators in the Cartesian

coordinates,
J(0) = 1

1) = ri
(3.1)
I()= 28-. 3rirj



where i, j=x, y, z, and the super indices in the parentheses indicate the ranks of

the tensor operators. The electric multipoles are defined as


P(k) = (I(k)) (3.2)


where I() represents the tensor operator defined in Equation (3.1), and the symbol

< > indicates the ensemble average which can be expressed in terms of the density









34
operator A and the electronic density matrix PT in a basis set {~}

TrI(k)p EE lP (Mk)
(I )= Tr(i) ~~' (3.3)
Tr(A) EEC P ,^ S;

where the trace is over both orbital indices p, v and spin index 7, and Spy is the

overlap matrix element in this basis. The denominator


Tr(/) = PS, = = n (3.4)
-7 J' 7
is the total electronic population, and

n = P ,S (3.5)
;tV
is the average electronic population for spin 7.

The electric multipoles contain the information about the spacial distribution

of the electron cloud. For k=0, p(O) = 1. For k > 0,

P() =Tr(/ri) 1 P,(ri). (3.6)
ST-r(~) =n

is the component of the dipole moment P (since the electron mass is 1 au) and

p(2) = Tr [A(r2i 3rr)] 1 (3.7)
1i Tr[A3] P2,(r2 3riri) (3.7)

is the component of the quadrupole tensor of the electron cloud.

The electric multipoles can be defined either in the collision frame or in the
natural frame. It is also useful to define them in a body-fixed "atomic frame"

centered at the scattered atom, in which the axes are along the major axes of the

electron cloud and the quadrupole matrix appears diagonal.









35
3.3 Alignment and Orientation Parameters


Another way to analyze the orbital polarization is to examine the anisotropy

of the distribution of the orbital angular momentum of the electron cloud. For the

orbitals of certain total angular momentum J, if the distributions of the orbitals for

all IJM) states are the same the cloud is isotropic; if the orbital distributions on

these states are different, the cloud is said to be oriented; if the orbital distribution

for IJM) and IJ M) are equal but differ for different magnetic number M the

cloud is said to be aligned. To precisely describe these polarization properties,

we define the orientation and alignment parameters through rotational moments

[Fano and Macek, 73; Blum, 81].

Introduce a set of spherical irreducible tensor operators


j() = 1


j(1)- z


(2) j= J 2 (3.8)
2

J1 = :FJ+(2Jz + 1)

j(2) (3J_ 2 J2)



where J is the angular momentum operator and Jz is its z-component, J+ and J_

are the raising and lowing operators. The irreducible tensor operator Jqk) satisfies









the following relations [Zare, 88]

[Jz, qk)] = qjk) (3.9)


[J, J)] = [k(k + 1) q(q + 1)]J 1 (3.10)


J [= J (3.11)


We define the orientation vector O01) and the alignment tensor A) as

qOfj) 1 Re(Jq) (3.12)
X J(J + 1)


Aq)(J) = Re(J+2)) (3.13)
/J(J + 1)
where < > indicates the ensemble average for a given J. Using the density operator
and density matrix, the average of the irreducible operator can be written as

j ,) Tr(3J')k) 1
(Jq) Tr(- ) -n E E ) (J (3.14)

The vector Oql)(J) describes a preferred direction of angular momentum. The
tensor A )(J) describes the preferred spatial distribution of angular momentum
corresponding to each IMI. O0l)(J) is also called the orientation parameter. In the
natural frame, it is the measure of the average component of angular momentum
perpendicular to the collision plane, JL.









37
The meaning of these parameters is more transparent and the calculation is

easier in the natural frame. But some collision problems are more conveniently

dealt with in the collision frame. One can first construct the electron density matrix

in the collision frame and then calculate orientation and alignment parameters in

the natural frame after a frame rotation.

The density matrix contains all the information on the electron states and can

be used to define other parameter to describe the orbital polarization. For example,

we can define the alignment angle a(J) which measures the angle between the

major axis of the J component of the electron cloud and the Xn axis. Choosing

the basis set such that p = JM, we define, for J=1 [Nielsen and Andersen, 87]

a(1) = [r + arg(P11,i)] (3.15)

and for J=2

a(2) = [7r + arg(P22,2o + P20,22)] (3.16)

where M = -M. We can also define, for J>2, the octupolar angle shift r7(J).

For instance, for J=2


7(2) = arg(P22,2) a(2) (3.17)



The parameters Lj, a(J) and q(J) have practical meanings and can be

compared with experimental date to test the theoretical model and methods used

in obtaining the density matrix [Panev et. al., 87; Andersen et. al., 86].









38
3.4 Multipoles and Alignment and Orientation Parameters in a Subsystem


The parameters defined above describe the orbital polarization of the whole

system. Sometimes we are more interested in the orbital polarization of a

subsystem. For example, in atom-surface collision experiments, spectroscopies

detect scattered atoms at the distances where the influence of the surface is

negligible and only the polarization of the atomic orbitals is of interest. Even

in the theoretical description of the collision states at short distance, only a small

part of the surface should be taken into account, since the atom usually interacts

mainly with a small region of the surface. Let's divide a system into a primary

region and a secondary region which are labeled by p and s respectively. In the

case of atom-surface collisions, the primary region can be chosen to contain the

scattered atom and a small part of the surface and the interaction between the

atomic states and those in the secondary region is assumed to be small. In the

natural frame the ensemble average of Jq for the whole system can be written as


(+ (Trj(k)) + )




pEa vEp pE E Ep vE s
(3.18)
The last term comes from the secondary region and is not of interest. The second

and third terms contains the mixing between the primary region and the secondary

region.









39
Because we are interested in the orbital polarization of the scattered atom we

define a set of irreducible operators

L(1)O) 1


L(1) = L
0 L

L2 1L2 (3.19)
2 f
L( = FL(2Lz 1)
r(2)- 1 2 2
S(3L2 L2)


where L is the orbital angular momentum of the scattered atom, L its z-

component, and L. and L- the raising and lowing operators. The average of

L) is
(L)) TrA (PLk)) -
(k)- TrA()) -= AE E E P (L()) (3.20)
pEA vEp
where trace is over the subspace of atomic states, and

nA = TrA(/) = E E PSJ (3.21)
7 pEA vEP
is the average electron population on the atom. The contribution to the electron

cloud associated with the secondary region is not included since the mixing
between the second region orbitals and the atomic states is small. In this way we

can define the orientation and alignment parameters for the scattered atom as

OI)(L)A = 1 Re(L1)) (3.22)
V/L(L + 1)









40


A (L)A =- i Re(L ) (3.23)
/L(L +1) (
The alignment angle and octupolar angle shift can also be defined in the similar

way. At small distance, the surface electrons contribute to the atomic orbital

polarization. At large distance, mixing between the atomic orbitals and the surface

orbitals becomes small and the summation of v vanishes unless for v E A, the

polarization parameters are equal to those defined for an isolated atom.
















CHAPTER 4
LINEARIZATION OF TDHF EQUATIONS



The TDHF equation developed in Chapter 2 can be solved straightforwardly

only for simple systems requiring small basis sets. If the system is complicated,

the TDHF equations can instead be solved by some linearization procedures.

However, one has to be very careful when developing a linearization method for

cases where the density matrix oscillates rapidly with time, such as in collisions

accompanied by a charge transfer through a near-resonance process, since the

solutions of the linearized TDHF may converge slowly or not converge at all.

In this chapter, we describe a local time linearization procedure for solving

the TDHF equations for the near-resonance charge transfer process. It tackles

the rapid variation of the density matrix by defining a time-dependent reference

density matrix PY(t). In section 4.1, we develop the local time linearization

procedure for a general case and obtain a linearized equation for P7 (t), which is

a solution for P(t) when the ion position is fixed in space, and a linearized equation

for matrix QT(t), which is the first order change of the density matrix due to the

time-dependent perturbation caused by the nuclear motion. The formal solutions

for PoT(t) and QY(t) are obtained with use of an exponential transformation. In

section 4.2, we apply this procedure to a system in which the electron-electron









42
Coulomb interaction is ignored. For this special case, the coefficient matrices

in the equations of P1(t) and QT(t) are time independent and the analytical

solutions can be obtained.

4.1 The Linearization Procedure


In a collision which involves charge transfer through a near-resonance process,

electrons jump back and forth among several close energy levels and this leads to

a rapid oscillation of the density matrix. In the contrast, the change of the density

matrix under the time-dependent perturbation caused by the motion of the nuclei

is relatively slow. We separate the two time scales in what follows.

For a small time interval to 5 t < tl, we define a matrix P07(t) to satisfy

the equation


iP&(t) = So'gP0of'() PO'F(t)FytSo1 (4.1)

and the initial condition P'(to) = P'(to), with FP = F"(to) and So = S(to).

Hence Pt(t) can be interpreted as a solution of the TDHF equation when the ion

nuclei are fixed at RA(to). The evolution POT(t) oscillates with time reflecting

the charge transfer among the energy levels with frequencies proportional to the

inverses of the energy differences of energy levels. On the other hand, if the time

interval is small, the change of the density matrix due to the nuclear motion is

small. To get a linearized equation for the this change, we define


QT(t) = PT(t)-Po'(t)


(4.2)












AS-1(t) = S-(i) So1 (4.3)

and

AF (t) = f(t) F (4.4)

From (2.32) we have

AF(t) = Ai + AeGf(t) + AnG(t) (4.5)

The matrices AeG and AnG are related to the electron-electron interaction and
are given by

AGfeG(t) = C Q7(t)(VjIIIA)io + Q'A(t)( -iIA)to (4.6)

and

A.G1,(t) = _P.(t)A(pvl JA), + P,'(t)A(pvl A)t (4.7)
IA
where (pVI|cA)t and (yjllcA)t are the Coulomb and Coulomb symmetrized
2-electron integrals respectively when the scattering atomic core is at RA(t).
Inserting Eqs. (4.1)--(4.5) into Eq. (2.31), we obtain to first order in Q7(t),

iQ'(t) = Sol' Q'(t) Q'(t)FgtSo1

+So1AHi(t)Po(t) pO'(t)Af(t)tSo1

+Po'(t)FatAS-1(t) AS-z(t)qFPo(t) (4.8)

+So1AeGr(t)PO'(t) po'(t)AeG7(t)tSo1

+ So AnG'(t)POr(t) PO'(t)AnG'(t)tSo1









44
To introduce a shorthand notation, we use a double index notation to replace

the single index notation in the following. Let upper case Roman letters refer

to double indices, then, K = (pv) and L = (cA). With this notation, matrices

P07, Q7, AeGY and A,G7 become column matrices P07, Q7, Aeg and And.

Defining two square double index matrices X(t) and y(t) such that


XKL(t) = Xv,s(t) = (pvjjIA)t (4.9)



YKL(t) = Yp,,,(t) = (pvlKA) (4.10)

we can rewrite Eqs. (4.6) and (4.7) as


G(t) = E[XKLQ'(t) + YoKLQ'(t)] (4.11)
L



9(t) = [AXKLPL'(t) + AYKLP''(t)] (4.12)
L
or in the matrix form,


AeG7= XoQ + YoQ' (4.13)



Angr = AX P-p0 + Ay p07' (4.14)

where Xo = X(to), Yo = Y(to) and


AX = X(t) -- Xo


(4.15)













Ay = y(t) yo


Taking advantage of using the double index notation, the linearized TDHF

equations (4.1) and (4.8) can be written in a neat form


ijorf =A-"op' + .-A'p0o' -_ po'-A-rt por'A7't



iQ- =A-4 "Q+A"''Qf'' QA Q'A7'7t + V7


and


(4.17)



(4.18)


where A" and A"' are square matrices in double index notation or four index

matrices in single index notation,


AKL= A",, = SoI s.,6A, + XOC9,APS)
C9


(4.19)


KAL ItvKAX = SoC-YCOrCAP'.
C17
and the column matrix D-r is a driving term with elements

S= [So1(Af+ AG)PoY Pof(AHt+ AnGt)So1

+AS-'1j~p'o PO'ftAS-1],

If we collect Po7 and Po0' into a column matrix PO, Q7 and Q7''

matrix Q, V7 and P7' into a column matrix V and let


(4.20)




(4.21)


into a column


( A"' Y 77'
A = Ay' A^-'- 4


(4.16)


(4.22)










then Eqs. (4.17) and (4.18) become


ilp = Apo poAt (4.23)

and

iQ = AQ QAt + E (4.24)

These are the linearized TDHF equations for the density matrix in to < t < ti. It

should be noted that the matrix A is generally time-dependent.

To solve the above equations, we let


U(t, to)=T[exp -i A(t')dt' (4.25)



U(t, to)=T[exp i A(t') dt' I (4.26)

where T [exp{ ... }] denotes a time-ordered exponential expansion. We consider

transformations

Po(t) = U(t, to)lP(t)U(t, to)t (4.27)

and

Q(t) = U(t, to)Qv(t)U(t, to)t (4.28)

Replacing Eq. (4.27) into the left hand side of Eq. (4.23) and Eq. (4.28) into

the left hand side of Eq. (4.24) we have


iP0(t) = APO PoAt + iU(t, to)P,(t)U(t, to)t


(4.29)










and

iQ(t) = AQ QAt + iU(t, to)Qp(t)U(t, o)t (4.30)

Comparing them with the right hand side of Eqs. (4.23) and (4.24), we obtain


iP(t) = 0 (4.31)

and

iQr(t) = iU(t, to)-DV(t) [U(t, to)t ]- (4.32)

Their solutions are


P(t) = Po(to) = P(to) (4.33)

and
t
Qp(t) = Qp(to) -i fu(t', to)'D (t')[U(t', to)t]-dt' (4.34)
to
Using Eqs. (4.27) and (4.29) and noticing that Q(to) = 0, we obtain the formal
solutions for Po(t) and Q(t)

Po(t) = U(t,to)-1o(t0) [l(t, ti)t] (4.35)

and
t
Q(t) = -iU(t, to) U(t', to)_ (t') [U(t', to) t dtU(t, to)
i to (4.36)
= -i f u(t, t')D(t')U(t,t') dt'
to









48
4.2 The Case without Electron-Electron Interaction


In this section, we will show the use of our linearization procedure by

applying it to a special case where the electron-electron is ignored. In this case

G = 0 and F = Hf. Since the different spins are then uncorrelated, we return to

the notation involving K, A, p and v, and drop the spin index 7 to write Eqs.

(4.23) and (4.24) as


iPo(t) = WP(t)- p(t)Wt


(4.37)


iQ(t) = WQ(t) Q(t)Wt + D'(t)


(4.38)


w = S-fIo



Ho = fH(t0)


(4.39)



(4.40)


Unlike in the

independent.


D'(t) = S1AH(t)P0(t) P t (t)S
(4.41)
+Po(t)IAS-1(t) AS-1(t)HoPo(t)
general situation, the coefficient matrices W and Wt are time-


To solve this equation let us consider transformations


P(t) = exp[-iW(t to)]Po(t)ezp[iWt(t to)]


where


(4.42)










and

Q(t) = exp[-iW(t to)]QD(t)exp[iWt( to)] (4.43)

Inserting them into Eqs. (4.37) and (4.38) respectively, we get equations for PD

and QD

iPO(t) = 0 (4.44)

and

iQD(t) = exp[iW(t to)]D(t)exp[-iWt(t to)] (4.45)

The latter has a solution of
t
QD(t) = i exp[iW(t' to)]D'(t')ep[-iW(t' to)]dt' (4.46)
to
since QD(to) = 0. From the above equations we can write the formal solutions

for PO and Q

P(t) = exp[-iW(t to)]Po(to)expiWt(t to)] (4.47)

and

Q(t) = -i exp -i(t t') D' (t')exp[iW ( t')]dt' (4.48)
to


We assume that the matrix W can be diagonalized by a linear transformation,

that is, there exists a matrix L such that,

W = LwL-1 (4.49)











where w is a diagonal matrix. Then


Q t(t) = -i j Lk [ (L-)kAkApl(t to )(L-) L (4.50)

where


to


The formalism developed in this section can be directly applied to systems

with a few electrons. We have used it to calculated charge transfer in H+H'

collisions [Runge et al., 90]. However, it must be modified when applied to

extended systems. In Chapter 6 we describe a partitioning procedure which

simplifies the treatment of the scattering of atoms by surfaces.
















CHAPTER 5
PARTITION OF EXTENDED SYSTEMS



For an ion-surface system which involve a great number of electrons, the

TDHF equations obtained in Ch. 2 usually require a huge basis set. Some

technique for truncating the system as well as the basis set must be developed

to solve the equations.

Partitioning techniques have been used to treat various kinds of extended

systems [Lowdin, 70; Ying 77; Williams et al, 82; Kirtman and de Melo 81;

de Melo et al., 87; McDowell, 82, 85]. The main idea is to divide the system

into two regions and to employ some relatively accurate treatments to deal with

electronic interactions in a primary region, which is of main interest, while using

certain approximations in a secondary region. The difference among a variety of

methods is in the treatments of the secondary region and of the interaction between

the two regions. For some systems the interaction between the two regions is

small and the secondary region can be treated as a small perturbation. For other

systems the secondary regions are often approximated by some simpler systems,

for example, in studying Kondo effect [Kondo, 69; Heeger, 69; Anderson, 61], an

approximation is to treat the conduction electrons surrounding isolated magnetic

ions as a free electron sea.









52
For ion-surface systems, it has been found that, during collisions, electron

rearrangement occurs mainly within local regions of surfaces [Grimley et al., 83;

McDowell, 85]. Based on this observation we design a partitioning technique to

truncate the ion-surface system into two parts and treat electronic interactions and

electronic state evolution in these parts differently. This partitioning technique is

suitable to deal with time-dependent processes in extended systems with a strong

local coupling. It requires a set of localized basis functions, but does not depends

on the concrete form of the functions. All the formal derivations in this chapter

are done with localized basis functions which can be of any form.

In Section 5.1 we describe our partitioning method and derive the effective

linearized TDHF equation for the density matrix in the primary region, which

includes a driving term containing the coupling with the secondary region. In

Section 5.2, we introduce an approximation to the secondary region and the

couplings between the two regions, which enables us to solve the effective TDHF

equations in the primary region. We apply this method to a simple case, where

the electron-electron interaction is ignored, and obtain analytical solutions for the

density matrix in the primary region.

5.1 Partition Procedure

We divide an ion-surface system into two regions: (i) the primary region that

consists of the scattering ion and a small impact area of the surface, where the

perturbation by the ion is strongly felt during the collision; (ii) the secondary

region which consists of the remainder of the surface, where the influence of the









53
ion is assumed to be felt indirectly through the coupling between the electrons in

the two parts of the surface. Considering a set of localized basis functions for

the solid and the ion, and letting p be the index of the primary region and s the

index of the secondary region, the matrix PO is written as

Po0. P pO) (5.1)
Psp s
and other matrices are partitioned in a similar way. In the case where the electron-

electron interaction is ignored, Eqs. (4.37) and (4.38) are then split into eight equa-

tions for Pop(t), Pos(t), POp(t), Ps (t), Qpp(t), Qps(t), Qp(t) and Q.(t)

iP (t) = W P (t) Po(t)W
(5.2)
+WpP(t) Po (t)w

iP (t) = WppPo(t) Pp(t)Wt
(5.3)
+WpP(t) PO(t)W8

iP (t) = WP p()- Pp(t)W
(5.4)
+WP p(t) PO)(t)Wsp

iP(t) = W P(t- P (t)W p
(5.5)
+W PO (t) P (t)W

iQpp(t)=WppQpp(t) Qpp(t)Wp
(5.6)
+WpQsp(t) Qps(t)Wtp + D' (t)

iQpS(t)=WppQps(t) Qpp(t)Wp,
(5.7)
+WpQss(t) Qps(t)Wt + D',(t)










iQsp(t)=WspQpp(t) Qsp(t)Wpp
(5.8)
+WsQsp(t) Qss(t)Wtp + D'p(t)

iQs(t)=WspQps(t) Qsp(t)Wp,
(5.9)
+W ssQss(t) Qss(t)W, + D (t)
where Dp(t), Dps(t), D p(t) and D,(t) are the submatrices of D'(t) defined in
Eq. (4.21). For example, the matrix Dpp(t) is given by

D',(t) = (So)ppAHfpp(t)Pp(t) Pp(t)AfIp(t)(Sol)p

+(Sol) ppAHps(t)Pp( t)-Ps,()A -p()(Sol)
+(Sol)p AItp(t)P p(t) Pgp(t)Ap' (t)(Sp1)p

+(So l)p AHIs(t)P p(t) P,(t)AHL(t) (So1)
(5.10)
+Pp(t)ii (AS-l)pp(t) (AS-) pp(t)topp p (t)

+Ppp(t)HI (AS-1)s(t) (AS-1)ps(t)IospPPp(t)

+Pps(t) p(AS-1)pp(t) (AS-l)pp(t)opsPsp(t
+P0s(t)HltIt(AS-l )p(t) (AS-')ps t)o P (t)


The primary region where charge transfer, energy transfer and other collision
phenomena take place is our main interest. But, solving the effective equations in
the primary region, Eqs. (5.2) and (5.6), is not any easier than solving the original
linearized TDHF equations, since they contain the density matrix elements in
the secondary region and have to be solved simultaneously with the equations
for density matrix elements involved the secondary region. Obviously, some









55
approximation has to be made in the secondary region to make this partition

procedure practical.

5.2 The Approximation in the Secondary Region

When considering the secondary region, we notice that during the collision,

the charge exchange is mainly restricted to the primary region. To understand it,

let us consider the interaction and the evolution of the electronic states in the two

parts of the surfaces, i.e., a small impact area on the surface which is close to the

scattering ion during the collision and the remainder of the surface. During the

collision, the impact area experiences a strong and time-dependent perturbation

from the ion and the evolution of the electronic states in the area is significantly

altered from that of the unperturbed surface. As the result, charge in the impact

area may move to or from the ion. In the remainder of the surface, the direct

interaction with the ion is much weaker, the electrons in this area feel the effect

of the ion indirectly through their coupling with electrons in the impact area.

Because the time scale of charge rearrangement in the solid, 7-ear, is much longer

than the duration of the collision at the surface, reol, at the collision energies of

present interest, the electrons in the remainder of the surface do not have time to

adjust to the charge rearrangement in the impact area, and the electronic states

follow approximately the evolution pattern of an unperturbed system. Thus, it is

reasonable to assume that the secondary region is basically unperturbed by the

ion during the collision. In this approximation, the submatrices of Q associated

with the secondary region, Qps(t), Qsp(t) and Qss(t), are found to be negligible








56
compared to Qpp, and the submatrices Pgp(t), P0p(t) and P((t) can be replaced
by those of the uncoupled system, Pps(t), Psp(t) and Ps,(t). Other submatrices
are treated in the similar way.

For an unperturbed surface, the coefficient of the molecular orbital has the
form of

4i,(t) = Ei,(tin)exp[-ie(t ti,)] (5.11)

where ei is the energy of the ith orbital. From Eq. (2.11)

Pij(t) = 1 c41(t)A(t) = I c> (tin)ci4(tin)
i=occ i=occ (5.12)
= Pi,(ti,)


As the result of these approximations, we need to solve only the effective
equations in the primary region

iPgp(t) = WppPpp(t) POp(t)W p (5.13)

and

pp(t)=WppQpp(t) Qpp(t)W p + pp(t) (5.14)

The equation for Qpp(t) is coupled with the secondary region through terms
within Dpp(t) which is
Dpp(t) = (S-)ppA pp(t)Pp(t) POp(t)A t pp(t)(So1)pp

+ Pp(t) tpp(AS-1)p(t) (AS-1)pp(t)ftopppp)(t) (5.15)

+Pps( tin)0sp(AS-1) P(t) (AS-1)p(t)iops tin )













Given the matrix elements S-' and Ho, the driving term Ib'p(t) can be

calculated and the density matrix in the primary region can be obtained either

analytically or numerically by using Eqs. (4.50) and (4.51).

It should be pointed out that the validity of our approximation in the secondary

region depends on two factors, the ratio of Tcol/Tre. and the size of the primary

region. For metal surfaces and colliding atoms with their kinetic energy above

leV, Tcol/Trer is small and our partitioning procedure should apply. As for the

size of the primary region, the larger the primary region, the more accurate the

result. But increasing its size will significantly enlarge the basis set in the primary

region and increase the computing time. In Ch. 9 we will discuss the effect of

the primary region size in more detail.
















CHAPTER 6
ELECTRONIC BASIS FUNCTIONS AND MATRIX ELEMENTS



The use of the localized basis functions in the present study appears nec-

essary for our partition procedure introduced in Chapter 4, however, the real

reason underlying it is the local nature of the phenomena associated with sur-

faces. For example, localized surface states, surface adsorptions, chemisorption

and atom-surface collisions have their effects basically confined to small regions.

Experimental results have also provided evidence that charge densities and local

densities of states, while remarkably different from those of bulks on the top lay-

ers of surfaces, quickly recover to the bulk values on deeper layers. For example,

the electron energy distribution results obtained from the ion neutralization spec-

troscopy, which probes only the top layer of atoms, show a qualitative difference

from those of the bulk [Hagstrum and Becker, 73], but the results from the ul-

traviolet photoemission spectroscopy, which probes about four atom layers, are

essentially dominated by the bulk density of states [Eastman and Grobman, 72].

Localized basis functions have been used in calculating electronic structure

of bulk materials; the examples are Wannier functions and atomic-like basis

functions used in the tight-binding method. The local nature of the surface

phenomena suggests that some of the electronic behaviors of surfaces could









59
be more advantageously and conveniently described in terms of localized basis

functions which return to the form of the bulk functions on deeper layers.

Recently, some works have reported using atomic orbitals to calculate surface

electronic properties. Smith and his colleagues use a set of atomic-like basis

functions to calculate surface band structure for transition metals [Smith and

Gay, 75; Smith et al., 80; Alinghaus, et al., 80]. Their basis functions are

constructed by fitting them to the solutions found by solving the Kohn-Sham

equations [Kohn and Sham, 65]. Kohn and Onffory introduce the concept of

the generalized Wannier functions which can be used in the theoretical study

and calculation of electronic structures for extended systems lacking translational

symmetry [Kohn and Onffroy, 73]. These functions are localized on the lattice

sites and, as they result form a unitary transformation of the eigenfunctions of

the system, are orthonormal and complete. Gay and Smith [Gay and Smith, 74]

proposed a variation method for determining the generalized Wannier functions

without having to first calculate the eigenfunctions of systems.

This chapter is devoted to constructing localized functions as our basis

function set for atom-surface systems, which consists of a set of localized functions

for the surface and a set of atomic functions for the atom, and to calculating the

relevant matrix elements in this basis. Although the localized basis functions used

by Smith and his colleagues are successful in giving good results for transition

metals, their calculation and application are complicated. As a test of our time-

dependent molecular orbital method and the partition procedure, we feel that a set









60
of simple localized functions would be adequate and hence choose the generalized

Wannier functions as a part of our basis set.

In Section 6.1, the definition of the generalized Wannier functions is intro-

duced and a variation procedure for determination of these functions is described.

In Section 6.2, we apply the variation procedure to a jellium surface to obtain the

generalized Wannier functions. For convenience in the calculation of the matrix

elements, the generalized Wannier functions are written as linear combinations of

Gaussians. In Section 6.3, the atomic functions for the atom are constructed by

using a pseudopotential for the Sodium atom core. In Section 6.4, we calculate

the matrix elements of the overlap and Hamiltonian. Some of the details of the

calculation are given in Appendices A and B.

6.1 Generalized Wannier Functions

6.1.1 Definition of Generalized Wannier Functions (GWFs)

We first consider an infinite periodic system with a Hamiltonian H0. Its

eigenfunction (r) is a Bloch function labeled by the wave vector kI and band

index i and satisfies the Schrodinger equation


!ftoo(r) = Ceq(-) (6.1)

where ie is the eigenvalue associated with i and k. The functions 0(rf) are

then collected in a row matrix


V = (00 ,0,..- ) (6.2)









61
and the above Schrodinger equation has a matrix form


joi = iPEi (6.3)


where E is a diagonal matrix with diagonal elements .

For each energy band of a periodic lattice, Wannier functions are defined by

[Wannier, 37]


w9(-) = ( ) e-iR'o (6.4)
kEBZ

where N is the number of the lattice points, Ri is the lattice vector labeled

by a vector index in, the summation is over the Brillouin zone. The Wannier

function w%(rF is localized about the lattice point RA. In matrix form, the above

transformation can be written as


w? = Uot (6.5)


where

wi= (wi w, ,. ) (6.6)

and
1 -
U = expilk. -) (6.7)

Since matrix UO is unitary, the Wannier functions are orthonormal and are an

alternative set of basis functions in electronic structure calculation [See, for

example, Slater and Koster, 54].









62
For a semi-infinite solid with its surface parallel to the x-y plane, its Hamil-

tonian H and eigenfunction ~i(F), which is characterized by the band index i

and the wave vector k, satisfy the Schrodinger equation


Hiq(rfj = e.i.ik(r) (6.8)

where eE is the eigenvalue. Collecting the functions qig(f in a row matrix


Ti = (i, ) (6.9)

the above Schrodinger equation can be written in matrix form


Ii = ,iEi (6.10)

where Ei is a diagonal matrix with diagonal elements cg. In the following, we

drop the band index i with an understanding that all the functions and matrices

involved are referred to a particular band.

As a results of breaking translation symmetry in the direction perpendicular

to the surface, the eigenfunctions &(r-) are no longer of Bloch-type and the

functions defined in Eq. (6.4) are no longer meaningful. Kohn and Onffroy point

out that it is possible to construct a set of orthonormal functions for systems with

defects, called generalized Wannier functions [Kohn and Onffroy, 73]. Following

their idea, we define the generalized Wannier functions of an electronic band as

a unitary transformation of the eigenfunctions of the system, that is,


(6.11)











where

w = (wit, ., -) (6.12)

is the row matrix of generalized Wannier functions and U is a unitary matrix to

be determined. Obviously, w is orthonormal, i.e.,


(wlw) = I (6.13)



It has been proved that Generalized Wannier functions are localized about

the lattice sites R/ and are exponentially decaying away from their center [Kohn

and Onffroy, 73]. The well-behaved localization property of the generalized

Wannier functions combined with their orthonormality make them particular useful

to investigate the electronic structures or localized phenomena for non-periodic

systems.

6.1.2 Generalized Wannier Functions as Linear Combinations of Gaussians

For the purpose of practical applications we write the generalized Wannier

functions as linear combinations of Gaussian functions centered at different sites.

For a certain energy band only Gaussian functions with proper symmetry should

be used to construct the generalized Wannier function. Thus,


W.h() = i Bni a g ar( ari, r) (6.14)

where BnA is a coefficient, a=(nlm) is a compound index, and


9gt(t A, A f ) = brYim(0, p)rIe-p,(-Ai,)'


(6.15)










64
is the a type Gaussian primitive function centered at Rw,, where Y.m(0, p) is the

spherical harmonic functions and be a normalization factor. Letting


(6.16)


(here we have dropped index a in g since a is the same for all the Gaussians for

a given band), Eq. (6.14) can be written in a matrix form


w=Bg


(6.17)


where


(B)jj = Bjr


(6.18)


Substituting Eq. (6.17) into the normalization relation Eq. (6.13) yields


BtGB = I


where


G = (glg)


is the overlap matrix of Gaussians, we find that a possible choice for B is


B= G-


where the matrix G- satisfies


GG = I
G-2GG- = I


(6.19)


(6.20)


(6.21)


(6.22)


g = (gSaii, ga2ii, )









65
6.1.3 Determination of Generalized Wannier Functions

The generalized Wannier functions can be constructed from the eigenfunctions

~(r-) according to their definition (6.11). However, one of the important features

of the generalized Wannier functions is that they can be directly determined from

the system Hamiltonian without having to know the original eigenfunctions [Kohn

and Onffroy, 73; Gay and Smith, 74], which allows freedom to construct them

as desired. In this study we use a variational procedure [Gay and Smith, 74] to

find the generalized Wannier functions w.

Since

E = (lfftPA ) (6.23)

the total energy of a band

EB = Tr(E)= Tr(({lIH|I))
( \ (6.24)
= Tr((wlHfw)) = E[w]

is a functional of the w's, and we have used in the second line the orthonormality

Eq. (6.13). The variational principle proposed by Kohn and Onffory [Kohn and

Onffroy, 73] says that the total energy of a band attains its minimum if a correct

set of w's is used. Thus the generalized Wannier functions can be determined by

minimizing EF[w], that is,


min {E[w]} = (6.25)
{w)


while being subject to the constraint Eq. (6.13).









66
Once w is known we can insert Eq. (6.11) into the eigenequation of the

system to have


fHwU = wUE (6.26)

or, using Eq. (6.13),


(wlfllw)U = UE (6.27)

This equation can be used to find the matrix U as well as the eigenfunction E(rF).

By writing the generalized Wannier functions as linear combinations of

Gaussians, the functional EB[w] becomes a function of /3,'s, 1(/3 2, .),

and the problem of searching for a set of w becomes one of finding a set of

optimized #,a's, i.e.,


min [(/3,1, /2, )]-, g/2, (6.28)



One may recall that the above procedure for writing the generalized Wannier

functions as linear combinations of Gaussians is similar to those used in molecular

orbital calculation. However the difference is that the Gaussian function or the

exponent /#, depend on the site position R-4. For a surface, due to the periodicity

in x and y directions, all the generalized Wannier functions on the same layer are

the same and the exponent /3, changes only with layers. From now on we will

denote /3, by /m,, where mz is the z component of the vector index ri, to indicate

that it is the exponent for the mth layer.









67
Before proceeding to find Im, 's we notice an asymptotic behavior of the

generalized Wannier functions; they approach the Wannier functions of a periodic

system in an exponential manner, as proved by Kohn and Onffory [Kohn and

Onffroy, 73]. This indicates that only a small number of the generalized Wannier

functions need to be determined for near-periodic lattices which loose translation

symmetry only in local areas or in certain directions, such as imperfect crystals and

surfaces. For a perfect bulk, the Wannier functions w (r)'s on all the sites R- are

the same and have the same exponent parameter po. For a semi-infinite lattice

with its surface at me=l, the generalized Wannier function w,j(r) approaches

w,(r-'s and /3,n approaches 30 when /R is deep inside the surface. There

exists a cutoff M such that when mz > M it is found approximately that


'm. = /30 (6.29)

The variation procedure (6.28) now becomes


min [(/3i, A32, *)] = min [(/1, 32 3M)] 31, P2,- ,PM (6.30)
01,02,-- 01,92,--,8m

Thus only M variational parameters, 31, #2, *, 3M, must be determined.

The choice of the number M depends on the system and the accuracy requirement

of calculations.

6.2 Generalized Wannier Functions for a Jellium Surface

The method developed in the previous section can be applied to construct

generalized Wannier functions for any system for which the effective one electron









68
Hamiltonian is known, although the calculation of the three dimensional matrix
L
G- is a little time-consuming [Gay and smith, 74]. In this section we apply

the method to a simple model, a jellium slab with a step potential. A jellium

is a system with the atom core lattice replaced by an uniform positive charge

background and, as a result, it completely ignores the effect of the atomic lattice.

Because of its simplicity in the electronic structure calculation, jellium is often

used in condensed matter physics as a testing model for theory or methods. We

also assume that there is only one band and use Is type Gaussians to construct

generalized Wannier functions. We fit the band parameters such as Fermi level,

and the energy of the bottom of the band to those of W(110).

For a finite jellium slab with a thickness D in z-direction and a step potential
{0 z>0)
V() = -Vo -D < z < 0 (6.31)
0 z < -D
the Hamiltonian is

H(F) = V' + V(r)
2 (6.32)
= HZ(z) + Hy(y) + HZ(z)
where HZ(x) and HY(y) equal to the kinetic energies in x and y directions and

1 a2
HZ(z) = + VZ(z) (6.33)

with

VZ(z) = V() (6.34)

Labeling x, y and z components by superscripts x, y and z, the eigenfunction b&(r),

which is assumed to satisfy cyclic boundary conditions in x- and y-directions, and










eigenvalue Er have the forms of

O(-) = q4(z)x (y)qS,(z) (6.35)

and

EE = Ek, + Ek, + Ek, (6.36)

respectively. In Appendix C we describe the evaluation of the Fermi energy.

We now consider an artificial cubic mesh in the slab, which contains

N,=NxNy~N sites with a distance d between sites, where Nx, Ny and Nz are the

numbers of sites in x-, y- and z-directions, respectively. The generalized Wannier

functions for the slab are associated with sites and are written as

wg(r) = w,(x)wn,(y)w,(z) (6.37)

Recalling Eq. (6.11), the matrix U can then be written as a product of x, y and

z component matrices

U = Ux'YUZ (6.38)

with Ux, Uy and Uz lead to the transformations

k() = UX ( t), (x) (6.39)
k,


w,(y) = yt) q o(y) (6.40)



,(z) = UZtk, (z) (6.41)
k,









70
respectively. For this system, therefore, a three dimensional calculation is sim-

plified to a one dimensional one.

For this system, the x- and y-components of the eigenfunctions are

1
,= exp(ikzxz)
1 (6.42)
k,Y = 1 -exp(ikxz)
4 (Ny 1)d
the generalized Wannier functions in the x- and y-directions are just the Wannier

function for periodic lattice

1 sin 1-
W =,() = (6.43)
(Nn 1) d sin [r(s-n,d)
1 sin -*' dd)

W (y) s (6.44)
S(Nz 1) sin r(Y-nyd)
L (N-1)d
and the component transformation matrices Ux and UY are

1
=Un N ,= -exp(ik.nxd) (6.45)



Uk, = 1N lexp(ikynyd) (6.46)



In the z direction, the generalized Wannier function for nzth layer, wn (z), is

written as linear combination of Gaussians


,. (z) = B~.B,,,mg (,, z) (6.47)
m,









71
where the normalized one dimensional Gaussian function in the z direction

g,(3m,,,z) is centered at Zm. on mzth layer with an exponent /3m, and
Bz = (GZ)-7 with Gz = (gzlgZ) the overlap matrix of Gaussians in the z di-

rection. As discussed in the previous section, only the exponent parameters

on the first M layers are assumed to be different; that is, I1 = 3N,, 32 =

#N,-1, *,/M-1 = #N/-M+2, but /M = /3M-i = = fN.-M+I.

In the x and y directions, the Wannier functions on the mzth layer are written

as linear combinations of one dimensional Gaussians with an exponent 3m,. For

example, the Wannier function in the x direction is


wn',(x) = > Bmm,(m,) 1,(fm,, x) (6.48)
m,

where the superscript mz for the function is used to indicate the layer the function

is on. The coefficient matrix element Bnzm,(am,) is obtained by the least square

principle [Shavitt, 63] by fitting Eq. (6.48) with Eq. (6.43). The details of the

calculation are given in Appendix A.

From Eq. (6.24) the total energy is

EB = (wlHlwM)

-= Z E Z ji (P(fm( )[HIgi( (6-m( )) 649)

= n(?, #2, -* *, ; )

with the details of the calculation given in Appendix B. Minimizing 1 respect to

the #'s gives a set of optimized O's.









72
To determine the matrix Uz, we substitute Eq. (6.41) into the eigenequation

of k,(z)

HEZ((z) = Ek, 0(z) (6.50)

to have


SUk.m.HzW (Z) = Ek, Uk.m.,<(z) (6.51)
m, m,
Multiplying it by w((z)* and integrating over z give the equation for transfor-

mation matrix Uz


SUk,,m (wu,. IHZw ) = Ek,Uk,,, (6.52)



6.2.1 Results

We have calculated the generalized Wannier functions for a finite jellium

slab modeling W(110), with the depth of the potential well Vo=0.846 au. The

distance between sites, d, is not equal to the lattice constant of W, and is chosen

to be d=2.61 au so that the average number of electrons in the volume associated

with a site is one. The optimum exponents of the Gaussians, fm,, which are

determined by minimizing the total energy Eq. (6.49), are listed in Table 6.1. It

has been found that the optimum exponent decreases for the first couple of layers

but changes very little after the third layer. This shows that the effect of the

surface on the generalized Wannier functions is basically limited to the several

top layers. Gay and Smith also find that the exponents are different from that









73
Table 6.1 The optimum Gaussian exponents for the first three layers.



Layer First Second Third
Pm,, 0.53 0.52 0.30


of the bulk only on the top two or three layers even though they use different

potentials [Gay and Smith, 75].

The generalized Wannier functions for the first four layers are plotted in Figs.

6.1, 6.2, 6.3 and 6.4, assuming #m,=0.30 for mz > 3. These figures show that

the generalized Wannier functions are well localized about their centers with long

decaying tails. For the first two layers, the effect of the surface is significant, the

generalized Wannier functions are asymmetric and their tails oscillate little. On

moving to the deeper layers, the generalized Wannier functions are more and more

characteristic of an infinite bulk. For the fourth layer the tail of the generalized

Wannier function towards the center of the slab is very similar to that of the bulk

Wannier function. Although the surface is a severe perturbation, our results show

that the generalized Wannier functions rapidly become the bulk Wannier functions

when moving away from the surface, which is in agreement with the theoretical

prediction for the generalized Wannier functions [Kohn and Onffroy, 73].

To exam the validity of using generalized Wannier functions as basis functions,

we compare the eigenvalues and wavefunctions calculated from these functions

with the exact ones. Table 6.2 lists both exact and calculated eigenvalues, Figs.

6.5, 6.6 and 6.7 depict both exact and calculated wavefunctions for Ek, =-0.8444,









74

-0.6906 and -0.3990 for states jz=1, 10, 17 respectively. The agreements are good

for all the energies, and especially for lower energies. Since the point-by-point

comparison of wavefuntions is probably the most stringent test of the accuracy,

the good agreement in our calculation will assure the accuracy in the calculation

of observables such as charge density.

In the x and y directions, the Wannier functions w ,(x) and wl,(y) on the

mzth layer are approximated by linear combinations of Gaussians with the mzth

layer exponent fm,. The accuracy of the approximation depends on the number

of Gaussians used. It is found that for the larger fm,, (close to the surface in

our case) more Gaussians are needed to achieve the same accuracy. Figs. 6.8,

6.9 and 6.10 show the exact and calculated Wannier functions for the first three

layers when 21 Gaussians are used.

The calculation and application of generalized Wannier functions for a jellium

slab reveal some nice features of these functions. Firstly, they are well localized

about their centers with their tails characterizing the translation symmetry of the

systems. The functions rapidly recover to the bulk Wannier functions away

from defects or surfaces, thus only a few generalized Wannier functions need

to be determined. Secondly, the generalized Wannier functions can reproduce the

wavefunctions and eigenvalues to a satisfactory accuracy. These attractive features

make generalized Wannier function suitable for electronic structure calculations

for surfaces or other systems with a broken translation symmetry, and makes

them useful in studies of local phenomena.














0.75




0.50




0.25




0.00




-0.25
-12.0


-9.0 -6.0 -3.0 0.0


3.0


z(D)




Figure 6.1 Generalized Wannier function wz (z) on the first layer of a jellium slab
with a square well potential and a potential depth Vo=0.846. The surfaces of the slab
are located at z=0 and z=-21d, where d=2.61 au is the distance between layers.


0D





0C~













0.75


0.50



0.25



0.00


-0.25 -- I, I I
-12.0 -9.0 -6.0 -3.0 0.0

z(D)




Figure 6.2 Generalized Wannier function wa. (z) on the
second layer of a jellium slab with a square well potential.


d)
Td
*i-^

F4



o3


3.0














0.75 '




0.50




0.25




0.00




-0.25 I I I
-12.0 -9.0 -6.0 -3.0 0.0 3.0

z(D)




Figure 6.3 Generalized Wannier function w ,(z) on the
third layer of a jellium slab with a square well potential.


0)
r0
0a



0














0.75


0.50




0.25




0.00




-0.25 AI
-12.0 -9.0 -6.0 -3.0 0.0

z(D)




Figure 6.4 Generalized Wannier function w' (z) on the
fourth layer of a jellium slab with a square well potential.


T0
4-4


3.0











Thble 6.2 Exact eigenvalues and approximate eigenvalues calculated by using generalized
Wannier functions for a slab with a square well potential given by Eq. (6.31).


Exact eigenvalue Approximate
eigenvalue
-0.8444 -0.8444
-0.8398 -0.8397
-0.8320 -0.8320
-0.8211 -0.8209
-0.8071 -0.8068
-0.7900 -0.7895
-0.7698 -0.7690
-0.7465 -0.7453
-0.7201 -0.7185
-0.6906 -0.6883
-0.6580 -0.6549
-0.6224 -0.6181
-0.5837 -0.5778
-0.5420 -0.5340
-0.4973 -0.4864
-0.4496 -0.4349
-0.3990 -0.3792
-0.3454 -0.3185
-0.2890 -0.2517
-0.2299 -0.1769
-0.1682 -0.1299












0.20




0.10




0.00




-0.10




-0.20 ., I I I I ,
-25.0 -20.0 -15.0 -10.0 -5.0 0.0 5.0

z(D)





Figure 6.5 Exact and approximate wavefunctions associated with the
exact eigenvalue -0.8444 au for an one-dimensional square well.


O

C3














0.20 .




0.10




0.00




-0.10




-0.20 I
-25.0 -20.0 -15.0 -10.0 -5.0 0.0

z(D)




Figure 6.6 Exact and approximate wavefunctions associated with the
exact eigenvalue -0.6906 au for an one-dimensional square well.


0
' -4
U



2,


5.0














0.20 .

i


0.10 -




0.00 -




-0.10 -



1 I
-0.20
-25.0 -20.0 -15.0 -10.0 -5.0 0.0

z (D)




Figure 6.7 Exact and approximate wavefunctions associated with the
exact eigenvalue -0.3990 au for an one-dimensional square well.


CI
6O
U


5.0














0.75




0.50




0.25




0.00




-0.25
-9.0
-9.0


-6.0 -3.0 0.0 3.0 6.0


9.0


x(D)




Figure 6.8 Exact and approximate Wannier functions for a slab in the directions parallel
to the surface. The latter is a linear combination of Gaussians with an exponent /?=0.53.


0

3
+.a














0.75




0.50




1 0.25-




0.00




-0.25 II I I I
-9.0 -6.0 -3.0 0.0 3.0 6.0 9.0

x (D)




Figure 6.9 Exact and approximate Wannier functions for a slab in the directions parallel
to the surface. The latter is a linear combination of Gaussians with an exponent #=0.52.












0.75


0.50



0.25



0.00


-0.25 L-
-9.0


-6.0 -3.0 0.0 3.0 6.0


9.0


x(D)



Figure 6.10 Exact and approximate Wannier functions for a slab in the directions parallel
to the surface. The latter is a linear combination of Gaussians with an exponent 6=0.30.


d)
'u


P4
E


i








86
6.3 Atomic Basis Functions

Since in low energy atom-surface collisions only the valence electrons of
atoms are actively involved in charge exchange, it is a good approximation to
ignore the inner-shell electrons and use a pseudopotential for the atomic core.
In this section we construct the atomic basis functions for 3s and 3p orbitals of
Sodium and a pseudopotential for its atomic core.

We choose Slater-type orbitals (STO) 0a (r; C, RA) as basis functions, where
a=3s, 3px, 3py, and 3pz, C is the exponent of the orbitals, and RA is the position
of the atomic core. For the convenience of calculation, we use STO-KG functions

fa (r; C, RA) which are linear combinations of K Gaussians and satisfy

S(T C, RA) = Ca (; 1,RA) (6.53)

and are in the form of
K
3, (F; 1, A) = E d3s,k 9 (; s k, RA) (6.54)
k=l

K
*3pj (r 1, RA) = L d3p,k g2.p (f; a, RA) (6.55)
k=1
where j=x, y and z, and gl, (r ak, RA) and g2pj (r k, RA) are is and 2p type
Gaussian primitive functions respectively,

g1 (;ak ,RA = ( exp -ak -RA2) (6.56)


92p(,; ak, A) = (128 ) rep(-ak- RaI2) (6.57)
(rt; a, RA 73 ) all









87
We use K=3 and C=1.27. The data for ak, d3s,k and d3p,k [Hehre et al., 70] are

listed in Table 6.3.


Table 6.3 Coefficients and exponents for Gaussians in STO-3G functions.


k ak d3s,k d3p,t_
1 5.27266(-2) 9.00398(-1) 4.62001(-1)
2 1.34715(-1) 2.25595(-1) 5.95167(-1)
3 4.82854(-1) -2.19620(-1) 1.05876(-2)


6.4 Overlap Matrix Elements


Our localized basis set consists of generalized Wannier functions localized

at the sites of the slab and atomic functions centered at the atomic core of the

colliding ion as described in the previous sections, that is


{f } = {{U }, {1a}1


(6.58)


Since both {qS} and {4.} are orthonormal sets, the diagonal elements of

the overlap matrix S are 1 and all the off-diagonal elements are null except

Sai (A) = ( 0j) = Sa (RA) which are functions of the atomic core position
RA. Using Eqs. (6.23), (6.53) and (6.54)


(6.59)


K
Sai (RA) = E da,k Bif aG(ak, m, RA)
k=1 rnh










where

Ga (ak Pm, RA) = (9a (ak, RA) 9(m,)) (6.60)

is the overlap matrix of Gaussians and is also a functions of RA-

6.5 Hamiltonian and Its Matrix Elements

In this section we construct the one electron Hamiltonian for the system of a

Na atom and a jellium slab and calculate its matrix elements in the basis described

in the previous sections. The one-electron Hamiltonian of the system is

-i =-Iv 2 i + VA (r,RA) + VM( (6.61)

where VA (r, RA) is the atomic potential and VM(i) is the potential of the slab

which we choose to as the one given by Eq. (6.31). However, due to the use of

the localized basis functions and the partition method, the effective Hamiltonian

in the primary region should be reconstructed, which includes the construction

of the pseudopotential for the atomic core and adding a correction term to get

correct electronic couplings.

6.5.1 Pseudopotential for the atomic core

In the present study, since we are not intending a full ab initio calculation,

a pseudopotential for the atomic core is used for VA(, RA to eliminate the

inner-shell electrons from the calculation [Kahn et al., 76]. The pseudopotential

usually has a form of

VA (f, RA) = V' (r, A) 9 (6.62)
1=0











where

S= |lm)(lm| (6.63)
m=-I
is the projection operator on Ilm) and the functions V1 can be chosen in one

of many possible forms [Szasz, 85] and usually contain some parameters whose

values are chosen to give agreement with either the results of ab initio calculation

or with that of experiments. In this study we choose the form suggested by

Schwartz and Switalski [Schwartz and Switalski, 72],

,Z N, exp(-KIi RA2)
VI RA = e + A RA (6.64)
r- RAI RA

where Z is the atomic number, Ne the number of electrons of the core, and Al and

Ka are the pseudopotential parameters. The first term is the Coulomb potential

of a charge of Z-Ne and the second term is a correction due to the electrons in

the inner shells.

Using the pseudopotential the eigenequation for an isolated Na atom is


[-V + VAF, A a F, RA = Ea RA) (6.65)


We determine the parameter A, and al by fitting the eigenvalues ca with the

experimental values 3s,=-0.18884 au and e3p=-0.11156 au [Callaway, 69]. An-

other constrain imposed when choosing the parameters is that the pseudopotentials

should become Coulombic at the distance where the core dies off, for example,

at 3r7, where 3ri is the radius of orbital 1. However, the variation of parameter

At is not too critical [Schwartz and Switalski, 72] and can be chosen in a cer-










90
tain range. The parameters for our pseudopotential are listed in Table 6.4. The

pseudopotentials for 3s and 3p orbitals are plotted in Fig. 6.11.

Table 6.4. Pseudopotential parameters for 3s and 3p orbitals of Na atom.


AI Kl
3s 1.0 2.415
3p 3.0 0.515


6.5.2 A Correction Term to the Hamiltonian

The partition procedure described in Ch. 5 can be used to describe the

evolution of the electronic states and the collisional charge transfer at short

distances because of the local nature of the problem. But it complicates the

description of the interaction between the surface and the atom when the atom is

far away from the surface and the electrons relax, due to the use of the localized

basis functions and the partition of the surface. Ignoring this relaxation would

introduce an error. Although the error is small and does not effect the dynamics

of electronic states to a great extent at small distance, the error accumulated at

large distances could cause problems. This error induced by the partition could

be significant in the case of collisional neutralization of ions.

To represent the relaxation of the electrons in the localized basis functions

we add to the full Hamiltonian a correction term


loc = (F Ea)lXA)(X\al (6.66)
riEp












6.0 '


1v3 -
3 '
el"V
4.0- V3 -

6d

S2.0-
0
O


0 0.0
GO ...............



-2.0
0.0 1.0 2.0 3.0 4.0 5.0
Z (au)


Figure 6.11 Pseudopotentials for 3s and 3p orbitals of the Na atom.









92
where the summation is over the primary region p and e,- = (xM HM Ix) with

HM = --V2 + VM the Hamiltonian of the slab. This term is constructed such

that the asymptotic values of the electronic Hamiltonian are correct With this

correction term, the effective Hamiltonian in the primary region is

H' = H + Vioc (6.67)

which will be used in the TDHF calculation in place of H .

6.5.3 Hamiltonian Matrix Elements

In the primary region the matrix elements of the Hamiltonian, Eq. (6.67), are

H'V = HO, + E (F eAi)SIASAv (6.68)
vifEp
or explicitly,

H'a, = H.a, + E (eF ,Sa)SacaSAa (6.69)
'IEp


H'j = H,, + (EF Ea)San (6.70)



Hi'i = Hai + E ei (6.71)



H',j, = Hiil, n n (6.72)

The matrix elements of H are calculated as follows

Ha, = (a -V2 + VA + VMIa')
2 (6.73)
= EaSaa, + (alVMla')




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ELLRS2DQ7_TQJ0A4 INGEST_TIME 2017-07-13T21:35:16Z PACKAGE AA00003719_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

$ 7,0('(3(1'(17 02/(&8/$5 25%,7$/ $3n 352$&+ 72 ,2162/,' 685)$&( &2//,6,216 %\ (5,& 48,11 )(1* $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7R 6XVDQ DQG 0LFKDHO DQG WR 0\ 0RWKHUfV 0HPRU\

PAGE 3

$&.12:/('*0(176 DP JUHDWO\ LQGHEWHG WR 3URIHVVRU 'DYLG $ 0LFKD IRU KLV JXLGDQFH GXULQJ P\ UHVHDUFK DQG 3K' WKHVLV ZRUN +LV FOHDU XQGHUVWDQGLQJ RI SK\VLFDO SUREOHPV KLV HQWKXVLDVP LQ IDFLQJ FKDOOHQJHV DQG KLV VSLULW RI GHYRWLRQ WR WKH ZRUN DOZD\V LQIOXHQFHG PH +LV ILQDQFLDO VXSSRUW HQDEOHG PH WR FRPSOHWH WKLV ZRUN WKDQN WKH 4XDQWXP 7KHRU\ 3URMHFW DQG WKH 'HSDUWPHQW RI 3K\VLFV RI WKH 8QLYHUVLW\ RI )ORULGD IRU SURYLGLQJ PH H[FHOOHQW IDFLOLWLHV LQ WKH FRXUVH RI WKLV ZRUN DOVR WKDQN DOO 473 PHPEHUV ZKR KDYH FRQVWDQWO\ KHOSHG PH LQ WKH SDVW IHZ \HDUV WKDQN P\ FROOHDJXHV DQG IULHQGV .HLWK 5XQJH DQG 5REHUW $VKHU ZKR KDYH RIIHUHG PH PDQ\ YDOXDEOH VXJJHVWLRQV DOVR WKDQN P\ IULHQG %RE 0HLHU IRU KLV KHOS RQ WKH (QJOLVK ODQJXDJH )LQDOO\ P\ VSHFLDO DSSUHFLDWLRQ JRHV WR P\ ZLIH 6XVDQ KHU FRQVWDQW HQFRXUDJHPHQW DQG VXSSRUW KHOSHG PH ILQLVK WKLV ZRUN LLL

PAGE 4

7$%/( 2) &217(176 $&.12:/('*0(176 LLL $%675$&7 YLL &+$37(5 ,1752'8&7,21 &ROOLVLRQDO &KDUJH 7UDQVIHU DW 6XUIDFHV $ 6XUYH\ RI 7KHRUHWLFDO 0HWKRGV %LQDU\ &ROOLVLRQ 7KHRU\ RI &KDUJH 7UDQVIHU 0DQ\(OHFWURQ 7UHDWPHQWV ([LVWLQJ 3UREOHPV (OHFWURQLF 6WDWHV DQG (OHFWURQLF &RXSOLQJV 7UHDWPHQWV RI ([WHQGHG 6\VWHPV (IIHFW RI 1XFOHDU 0RWLRQ $WRPLF 2UELWDO 3RODUL]DWLRQ 2XWOLQH RI WKH &KDSWHUV &+$37(5 7+( 7,0('(3(1'(17 +$575(()2&. 7'+)f $3352$&+ 7KH $WRP6XUIDFH 6\VWHP 7'+) (TXDWLRQV RI 'HQVLW\ 0DWUL[ 7'02V DV /LQHDU &RPELQDWLRQV RI 7UDYHOOLQJ $WRPLF 2UELWDOV &+$37(5 $9(5$*( (/(&7521,& 3238/$7,216 (/(&75,& 08/7,32/(6 $1' 25%,7$/ 32/$5,=$7,21 &RRUGLQDWH )UDPHV (OHFWULF 0XOWLSROHV $OLJQPHQW DQG 2ULHQWDWLRQ 3DUDPHWHUV 0XOWLSROHV DQG $OLJQPHQW DQG 2ULHQWDWLRQ 3DUDPHWHUV LQ D 6XEV\VWHP ,9

PAGE 5

&+$37(5 /,1($5,=$7,21 2) 7'+) (48$7,216 7KH /LQHDUL]DWLRQ 3URFHGXUH 7KH &DVH ZLWKRXW (OHFWURQ(OHFWURQ ,QWHUDFWLRQ &+$37(5 3$57,7,21 2) (;7(1'(' 6<67(06 7KH 3DUWLWLRQ 3URFHGXUH 7KH $SSUR[LPDWLRQ LQ WKH 6HFRQGDU\ 5HJLRQ &+$37(5 (/(&7521,& %$6,6 )81&7,216 $1' 0$75,; (/(0(176 *HQHUDOL]HG :DQQLHU )XQFWLRQV 'HILQLWLRQ RI *HQHUDOL]HG :DQQLHU )XQFWLRQV *:)Vf *HQHUDOL]HG :DQQLHU )XQFWLRQV DV /LQHDU &RPELQDWLRQV RI *DXVVLDQV 'HWHUPLQDWLRQ RI *HQHUDOL]HG :DQQLHU )XQFWLRQV *HQHUDOL]HG :DQQLHU )XQFWLRQV IRU D -HOOLXP 6XUIDFH 5HVXOWV $WRPLF %DVLV )XQFWLRQV 2YHUODS 0DWUL[ (OHPHQWV +DPLOWRQLDQ DQG LWV 0DWUL[ (OHPHQWV 3VHXGRSRWHQWLDO IRU WKH $WRPLF &RUH $ &RUUHWFWLRQ 7HUP WR WKH +DPLOWRQLDQ +DPLOWRQLDQ 0DWUL[ (OHPHQWV &+$37(5 ,17(*5$7,21 2) /,1($5,=(' 7'+) (48$7,216 7KH $OJRULWKP IRU 1XPHULFDO ,QWHJUDWLRQ RI 7'+) (TXDWLRQV &RPSXWDWLRQ 3URJUDP 6WDELOLW\ DQG &RQYHUJHQFH RI WKH 1XPHULFDO ,QWHJUDWLRQ 7ROHUDQFHV ,QLWLDO DQG )LQDO 'LVWDQFHV

PAGE 6

&+$37(5 $33/,&$7,216 1D:OO2f 0RGHO 6\VWHP +DPLOWRQLDQ DQG %DVLV )XQFWLRQV (OHFWURQLF &RXSOLQJV $WRP6XUIDFH ,QWHUDFWLRQ 3RWHQWLDOV DQG WKH 7UDMHFWRU\ $WRP6XUIDFH ,QWHUDFWLRQ 3RWHQWLDOV 7UDMHFWRU\ &KDUJH 7UDQVIHU 5HVXOWV ,OO (YROXWLRQ RI (OHFWURQLF 3RSXODWLRQV ,OO (OHFWURQLF 3RSXODWLRQV DIWHU &ROOLVLRQV &+$37(5 ',6&866,21 $1' &21&/86,216 $33(1',; $ &$/&8/$7,21 2) &2()),&,(17 0$75,; % $33(1',; % &$/&8/$7,21 2) 727$/ (1(5*< 2) $ %$1' $33(1',; & &$/&8/$7,21 2) (/(&7521,& 3523(57,(6 2) $ ),1,7( 6/$% %,%/,2*5$3+< %,2*5$3+,&$/ 6.(7&+ YL

PAGE 7

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 7,0('(3(1'(17 02/(&8/$5 25%,7$/ $3352$&+ 72 ,2162/,' 685)$&( &2//,6,216 %\ (ULF 4XLQQ )HQJ 0D\ &KDLUPDQ 'DYLG $ 0LFKD 0DMRU 'HSDUWPHQW 3K\VLFV $ WLPHGHSHQGHQW PROHFXODU RUELWDO PHWKRG KDV EHHQ GHYHORSHG WR VWXG\ FKDUJH WUDQVIHU LQ FROOLVLRQV RI LRQV ZLWK PHWDO VXUIDFHV DW HQHUJLHV EHWZHHQ DX DQG DX $ VHW RI ORFDOL]HG EDVLV IXQFWLRQV FRQVLVWLQJ RI JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU WKH VXUIDFH DQG V DQG S DWRPLF IXQFWLRQV IRU WKH LRQ LV XVHG WR VHSDUDWH WKH V\VWHP LQWR SULPDU\ DQG VHFRQGDU\ UHJLRQV $Q HIIHFWLYH +DPLOWRQLDQ DQG WLPHGHSHQGHQW HTXDWLRQV IRU WKH HOHFWURQ GHQVLW\ PDWUL[ DUH REWDLQHG LQ WKH SULPDU\ UHJLRQ ZKHUH PRVW FKDUJH WUDQVIHU RFFXUV 7KH HTXDWLRQV IRU WKH HOHFWURQ GHQVLW\ PDWUL[ DUH VROYHG ZLWK D OLQHDUL]DWLRQ VFKHPH 7KH PHWKRG LV VXLWDEOH WR YLL

PAGE 8

VWXG\ DWRPLF RUELWDO SRODUL]DWLRQ IRU FROOLVLRQV RI LRQV DQG VXUIDFHV $ PRGHO FDOFXODWLRQ IRU 1D:f FROOLVLRQV ZLWK D SUHVFULEHG WUDMHFWRU\ LV SUHVHQWHG 7KH LQWHUDFWLRQ SRWHQWLDOV EHWZHHQ WKH :f VXUIDFH DQG 1D V DQG S RUELWDOV DUH FDOFXODWHG IURP D 1D SVHXGRSRWHQWLDO DQG D VWHS SRWHQWLDO IRU :f 5HVXOWV VKRZ WKDW WKH \LHOG RI QHXWUDOL]HG DWRPV RVFLOODWHV ZLWK WKH FROOLVLRQ HQHUJ\ DV WKH UHVXOW RI WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU PHFKDQLVP 7KH WLPHGHSHQGHQFH RI WKH GHQVLW\ PDWUL[ SURYLGHV LQVLJKW RQ WKH G\QDPLFV RI HOHFWURQ WUDQVIHU DORQJ WKH DWRPLF WUDMHFWRU\

PAGE 9

&+$37(5 ,1752'8&7,21 &ROOLVLRQDO &KDUJH 7UDQVIHU DW 6XUIDFHV 6XUIDFHV DQG YDULRXV SK\VLFDO SURFHVVHV RFFXUULQJ QHDU VXUIDFHV DUH UHFHLYLQJ LQFUHDVHG DWWHQWLRQ LQ SUHVHQW VFLHQWLILF UHVHDUFK GXH PDLQO\ WR UDSLGO\ JURZLQJ DSSOLFDWLRQV LQ PRGHP DQDO\WLFDO WHFKQLTXHV 5HVHDUFKHUV LQ ILHOGV RI VXUIDFH VFLn HQFH FKHPLFDO SK\VLFV VROLG VWDWH SK\VLFV DWRPLF SK\VLFV HOHFWULFDO HQJLQHHULQJ DQG HYHQ PHGLFDO VFLHQFH DUH FDUU\LQJ RQ H[WHQVLYH DQG VRPHWLPHV RYHUODSSLQJ VWXGLHV DQG DQDO\VHV LQYROYLQJ VXUIDFHV 2QH RI WKH PRVW LPSRUWDQW ZD\V WR XQn GHUVWDQG WKH QDWXUH RI VXUIDFHV LV WR VWXG\ YDULRXV HOHFWURQLF SURFHVVHV RFFXUULQJ LQ FROOLVLRQV RI LRQV ZLWK WKHP )RU H[DPSOH RQH FDQ OHDUQ IURP VFDWWHULQJ DERXW WKH WRSRORJ\ DQG HOHFWURQLF VWUXFWXUHV RI VXUIDFHV DPRXQW RI LPSXULWLHV DQG DGn VRUEDWHV SUHVHQW VXUIDFH HOHFWURQ DQG ODWWLFH UHOD[DWLRQV DQG LQWHUDFWLRQV EHWZHHQ VXUIDFHV DQG DWRPV DQG PROHFXOHV 3DUWLFXODU DWWHQWLRQ KDV EHHQ SDLG WR QRQD GLDEDWLF SURFHVVHV DFFRPSDQ\LQJ FKDUJH WUDQVIHU EHWZHHQ VFDWWHUHG SDUWLFOHV DQG VXUIDFHV DW ORZ FROOLVLRQ HQHUJLHV UDQJLQJ IURP D IHZ HOHFWURQ YROWV WR D IHZ WKRXVDQG HOHFWURQ YROWV ZKLFK RIWHQ LQYROYH VWURQJ FRXSOLQJ DQG HQHUJ\ WUDQVIHU EHWZHHQ HOHFWURQLF WUDQVODWLRQDO YLEUDWLRQDO DQG URWDWLRQDO GHJUHHV RI IUHHGRP RI SURMHFWLOHV DQG VXUIDFHV

PAGE 10

&KDUJH WUDQVIHU LQ LRQVXUIDFH FROOLVLRQV PD\ OHDG WR QHXWUDOL]DWLRQ RU LRQL]Dn WLRQ DQG FDQ EH H[SUHVVHG DV ( $ r ( $ f DQG ( $ } (s $7 f UHVSHFWLYHO\ ZKHUH ( LV D VXUIDFH VXFK DV :f RU 1LOOOf DQG $ LV DQ DONDOL DWRP VXFK DV /L 1D RU 6LPLODU SURFHVVHV RFFXU LQ EHDPIRLO H[SHULPHQWV LQ ZKLFK FKDUJH H[FKDQJH WDNHV SODFH ZKHQ LRQV RU DWRPV SDVV WKURXJK WKLQ IRLOV LQVWHDG RI EHLQJ UHIOHFWHG IURP VXUIDFHV 7KH WZR PDLQ PHFKDQLVPV WKURXJK ZKLFK FKDUJHV DUH H[FKDQJHG DUH WKH QHDUn UHVRQDQFH SURFHVV DQG WKH $XJHU SURFHVV >+DJVWUXP @ ,Q D QHDUUHVRQDQFH QHXWUDOL]DWLRQ DQ HOHFWURQ LQ WKH FRQGXFWLRQ EDQG RI WKH VROLG WXQQHOV WR DQ XQRFFXSLHG OHYHO RI WKH LRQ ZKLFK OLHV QHDU RU EHORZ WKH )HUPL OHYHO RI WKH VROLG ,Q D QHDUUHVRQDQFH LRQL]DWLRQ DQ HOHFWURQ IURP D ILOOHG H[FLWHG VWDWH RI D QHXWUDO DWRP WUDQVLWV WR DQ HPSW\ OHYHO LQ WKH FRQGXFWLRQ EDQG RU DERYH WKH )HUPL OHYHO RI WKH VROLG 7KH WZR HQHUJ\ OHYHOV LQYROYHG LQ WKHVH SURFHVVHV DUH FORVH ZKLFK FKDUDFWHUL]HV WKH QHDUUHVRQDQFH SURFHVVHV 7KH $XJHU SURFHVV LQYROYHV WZR RU PRUH HOHFWURQV ,Q WZRHOHFWURQ $XJHU QHXWUDOL]DWLRQ RQH HOHFWURQ MXPSV IURP WKH PHWDO FRQGXFWLRQ EDQG WR WKH LRQ JURXQG VWDWH EHORZ WKH EDQG DQG WR FRQVHUYH HQHUJ\ WKH VHFRQG HOHFWURQ LV H[FLWHG IURP DQRWKHU OHYHO LQ WKH EDQG DQG PD\ OHDYH WKH VXUIDFH DQG EH GHWHFWHG E\ DQ $XJHU VSHFWURVFRS\ )RU V\VWHPV

PAGE 11

ZKHUH DQ LRQ DIILQLW\ OHYHO LV LQ UHVRQDQFH ZLWK WKH FRQGXFWLRQ EDQG RI WKH PHWDO VXFK DV LQ 1D:f D QHDUUHVRQDQFH SURFHVV LV PRUH OLNHO\ IRU V\VWHPV ZKHUH DQ LRQ JURXQG VWDWH LV EHORZ WKH FRQGXFWLRQ EDQG VXFK DV +1LOOOf WKH $XJHU SURFHVV LV XVXDOO\ WKH GRPLQDQW FKDUJH WUDQVIHU PHFKDQLVP &RPSOLFDWHG FRPELQDWLRQV RI WKH WZR SURFHVVHV DUH DOVR SRVVLEOH LQ FHUWDLQ FLUFXPVWDQFHV 7KH ULVH RI LQWHUHVW LQ WKHVH SUREOHPV KDV SURPRWHG DQ H[WHQVLYH HIIRUW WR GHYHORS XOWUDKLJK YDFXXP 8+9f DQG PRGHP VSHFWURVFRS\ WHFKQLTXHV WR REVHUYH DQG GHWHFW YDULRXV SK\VLFDO SURSHUWLHV LQ PXFK JUHDWHU GHWDLO LQ WKH ODVW WZR GHFDGHV WKDQ EHIRUH >+DJVWUXP +DJVWUXP @ ,Q WKHVH VSHFWURVFRS\ H[SHULPHQWV RQH PHDVXUHV WKH LQWHQVLW\ RI VFDWWHULQJ SURGXFWV DWRPV SKRWRQV RU $XJHU HOHFWURQVf DQG WKHLU HQHUJ\ DQG DQJXODU PRPHQWXP GLVWULEXWLRQV ZKLFK XVXDOO\ GHSHQG RQ WKH HQHUJ\ DQG DQJOH RI LQFLGHQW EHDPV WKH VXUIDFH SURSHUWLHV DQG VRPHWLPHV RQ WHPSHUDWXUH DQG H[WHUQDO ILHOGV 7KH LRQ VFDWWHULQJ VSHFWURVFRS\ ,66f >6PLWK +XOSNH 7DJODXHU DQG +DLODQG 2YHUERVFK HW DO @ PHDVXUHV WKH VFDWWHUHG LRQ LQWHQVLW\ DV D IXQFWLRQ RI LQFLGHQW HQHUJ\ DQG UHIOHFWHG DQJOH DQG FDQ EH XVHG WR GHWHUPLQH WKH WRSRORJ\ RI VXUIDFHV 2VFLOODWLRQ LQ WKH LQWHQVLW\ RI QHXWUDOL]DWLRQ RI LRQV LQ WKH ORZ HQHUJ\ UDQJH KDV EHHQ REVHUYHG IRU D QXPEHU RI LRQVXUIDFH FRPELQDWLRQV DQG LV DVFULEHG WR QHDUUHVRQDQFH FKDUJH WUDQVIHU >(ULFNVRQ DQG 6PLWK 5XVFK DQG (ULFNVRQ @ ,Q LRQ QHXWUDOL]DWLRQ VSHFWURVFRS\ ,16f H[SHULPHQWV RQH FDQ JDLQ NQRZOHGJH RI WKH EDQG VWUXFWXUH E\ PHDVXULQJ WKH NLQHWLF HQHUJ\ RI $XJHU HOHFWURQV >+DJVWUXP @ 7LPH RI IOLJKW 72)f H[SHULPHQWV GHWHFW VXUYLYDO SUREDELOLWLHV RI VWDWHV RI VFDWWHUHG DWRPV

PAGE 12

DQG WKHLU HQHUJ\ GLVWULEXWLRQV >.DVL HW DO @ 6R IDU PRVW H[SHULPHQWV KDYH EHHQ GRQH RQ QREOH DQG WUDQVLWLRQ PHWDOV VLPSO\ EHFDXVH WKHLU VXUIDFHV DUH UHODWLYHO\ HDV\ WR FOHDQ DQG WR SUHSDUH +RZHYHU GXH WR WKH VWURQJ LQWHUHVW LQ HOHFWURQLFV VWXGLHV RQ VHPLFRQGXFWRU DQG RWKHU PDWHULDO VXUIDFHV KDYH EHHQ FDUULHG RXW >5LFKDUG DQG (VFKHQEDFKHU @ ,Q DWRPLF FROOLVLRQ VWXGLHV SHRSOH KDYH GHYHORSHG QHZ LQVWUXPHQWV ZKLFK KDYH D WLPH UHVROXWLRQ RI SLFRVHFRQGV WR PRQLWRU WKH WLPH HYROXWLRQV RI LQWHUn PHGLDWH DWRPLF VWDWHV ,W KDV EHHQ SRVVLEOH WR PHDVXUH WKH DQJXODU GLVWULEXWLRQ RI VFDWWHULQJ SURGXFW RUELWDOV >+DOH HW DO +HUWHO HW DO $QGHUVHQ &DPSEHOO DQG +HUWHO @ 7KHVH QHZ WHFKQLTXHV SURYLGH YDOXDEOH LQIRUPDWLRQ DERXW WKH FROOLVLRQ G\QDPLFV DQG LW LV H[SHFWHG WKDW WKH\ ZLOO EH VRRQ XVHG LQ VWXGLHV RI LRQVXUIDFH FROOLVLRQV $ 6XUYH\ RI 7KHRUHWLFDO 0HWKRGV $GYDQFHV LQ VSHFWURVFRS\ WHFKQLTXHV LQ WKH ODVW WZR GHFDGHV KDYH DOORZHG H[n WHQVLYH H[SHULPHQWDO VWXGLHV RI LRQVXUIDFH FROOLVLRQV +RZHYHU WKH GHYHORSPHQW RI WKH WKHRU\ ODJV EHKLQG WKDW RI H[SHULPHQW LQ WKLV ILHOG DQG WKHUH DUH IDU DQG DZD\ PRUH H[SHULPHQWDO GDWD WKDQ FDQ EH XQGHUVWRRG 7KLV LV EHFDXVH WKH V\VWHPV ZH DUH GHDOLQJ ZLWK DUH YHU\ FKDOOHQJLQJ RQHV LQ WKH VHQVH WKDW WKH\ ODFN WUDQVODn WLRQ V\PPHWU\ 0RUHRYHU WKH\ LQYROYH G\QDPLFDO PDQ\HOHFWURQ SURFHVVHV ZLWK D VWURQJ DQG WLPHGHSHQGHQW FRXSOLQJ EHWZHHQ WKH HOHFWURQLF GHJUHHV RI IUHHGRP DQG QXFOHDU PRWLRQV 7KH WUDGLWLRQDO PHWKRGV ZKLFK GHDO ZLWK V\VWHPV RI SHULRGLF

PAGE 13

ODWWLFHV RU RI D IHZ HOHFWURQV DUH HLWKHU QRW VXLWDEOH RU KDYH WR EH PRGLILHG ,W VHHPV KRZHYHU WKDW WKHRUHWLFDO VWXGLHV DUH DFFHOHUDWLQJ DQG DUH RQ WKH YHUJH RI UHSURGXFLQJ VRPH RI WKH H[SHULPHQWDO GDWD %LQDU\ &ROOLVLRQ 7KHRU\ RI &KDUJH 7UDQVIHU ,Q WKLV WKHRU\ >5XVFK DQG (ULFNVRQ .DVL HW DO @ WKH VFDWWHULQJ RI DQ LRQ IURP D VXUIDFH LV GHVFULEHG E\ D VLQJOH ELQDU\ FROOLVLRQ RU D VHTXHQFH RI HODVWLF FROOLVLRQV EHWZHHQ WKH LRQ DQG VXUIDFH DWRPV ,Q WKLV WKHRU\ WKH VFDWWHULQJ DQJOH VDWLVILHV WKH UHODWLRQVKLS ([ FRV2 [ f§ f (R L [f ?U ZKHUH PL DQG P DUH WKH PDVVHV RI WKH LQFLGHQWDO LRQ DQG VXUIDFH DWRP [ PPL DQG (T DQG (c DUH WKH NLQHWLF HQHUJLHV RI WKH LRQ EHIRUH DQG DIWHU WKH VFDWWHULQJ 7KH \LHOG RI WKH VFDWWHUHG LRQV IRU D JLYHQ VFDWWHULQJ DQJOH <(T f LV <(RfF[W(2Lf3(Rf f ZKHUH D(R f LV WKH HODVWLF GLIIHUHQWLDO FURVV VHFWLRQ DQG 3(R f LV WKH SUREDELOLW\ IRU DQ LRQ WR UHPDLQ LRQL]HG DIWHU WKH VFDWWHULQJ ,Q FODVVLFDO FDOFXODWLRQV LV D PRQRWRQLFDOO\ GHFUHDVLQJ IXQFWLRQ RI WKH LQFLGHQW HQHUJ\ DQG 3 LV JLYHQ E\ 3 RF H[S^f§DYsf f ZKHUH D LV D FRQVWDQW DQG XMB LV WKH LRQ YHORFLW\ SHUSHQGLFXODU WR WKH VXUIDFH 7KLV WKHRU\ LQ ZKLFK WKH \LHOG LV D VPRRWK IXQFWLRQ RI WKH LQFLGHQW LRQ HQHUJ\ ILWV WKH HQHUJ\ GHSHQGHQFH RI +H VFDWWHUHG IURP &X DQG FHUWDLQ RWKHU V\VWHPV

PAGE 14

+RZHYHU LW FDQQRW H[SODLQ WKH RVFLOODWRU\ FKDUJH WUDQVIHU EHKDYLRU REVHUYHG LQ RWKHU V\VWHPV ZKLFK LV EHOLHYHG WR EH DVVRFLDWHG ZLWK QRQDGLDEDWLF FKDUJH WUDQVIHU PHFKDQLVPV 0DQ\(OHFWURQ 7UHDWPHQWV $ YDULHW\ RI WKHRUHWLFDO PHWKRGV >7XOO\ %UDNR DQG 1HZQV +ROORZD\ DQG *DG]XN +RRG HW DO /HH DQG *HRUJH @ KDYH EHHQ SURSRVHG WR DFn FRXQW IRU WKH PDQ\ERG\ SURFHVVHV DFFRPSDQ\LQJ FKDUJH H[FKDQJH LQ LRQVXUIDFH FROOLVLRQV 7KH PRVW ZLGHO\ XVHG RQH LV WKH DSSURDFK EDVHG RQ WKH $QGHUVRQ 1HZQV +DPLOWRQLDQ >$QGHUVRQ @ WMf GHVFULEH WKH LRQVXUIDFH VFDWWHULQJ >%ODQGLQ HW DO 1RUVNRY DQG /XQGTYLVW %UDNR DQG 1HZQV /DQJ @ ,Q WKLV DSSURDFK QHJOHFWLQJ VSLQ DQG XVLQJ VHFRQG TXDQWL]DWLRQ QRWDWLRQV WKH +DPLOWRQn LDQ RI WKH V\VWHP LV ZULWWHQ DV + Ff&&D e HN&&N < >\N&&W 9D?&W&D@ f N N ZKHUH & &D DUH WKH FUHDWLRQ DQG GHVWUXFWLRQ RSHUDWRUV FRUUHVSRQGLQJ WR DWRPLF VWDWH LSD &r &N DUH WKH FUHDWLRQ DQG GHVWUXFWLRQ RSHUDWRUV FRUUHVSRQGLQJ WR VROLG VWDWH bSN WD DQG Hr DUH WKH HQHUJLHV RI [SD DQG [SN UHVSHFWLYHO\ DQG 9DN D_9_IFf ZKHUH 9 LV WKH SHUWXUEDWLRQ GXH WR FRXSOLQJ RI WKH DWRP WR WKH PHWDO 7KH ODVW WZR WHUPV GHVFULEH WKH HOHFWURQ KRSSLQJ EHWZHHQ LSD DQG [SN ,W VKRXOG EH QRWHG WKDW WKH HQHUJ\ RI WKH DWRPLF OHYHO LV WLPH GHSHQGHQW WKURXJK WKH LRQfV WUDMHFWRU\ 5D^f WKDW LV HDWf +DD f $ VHW RI HTXDWLRQV RI PRWLRQ RI HOHFWURQLF

PAGE 15

GHJUHHV RI IUHHGRP FDQ EH REWDLQHG IURP WKH +HLVHQEHUJ HTXDWLRQV ZLWK K f f-MI Om DLf&D e f n: a>+n&N@ WN&N 9nfff&} ,! (OLPLQDWLQJ &N LW \LHOGV D GLIIHUHQWLDOLQWHJUDO HTXDWLRQ IRU &D ZKLFK FDQ EH VROYHG E\ QXPHULFDO SURFHGXUHV 7KH QXPEHU RI HOHFWURQV RQ WKH DWRP DIWHU WKH VFDWWHULQJ LV JLYHQ E\ QRRrf 9D_&nRRf&DRRf_9fDf f 0RVW VWXGLHV XVLQJ WKH WLPHGHSHQGHQW $QGHUVRQ1HZQV +DPLOWRQLDQ KDYH QHJOHFWHG WKH LQWUDDWRPLF &RXORPE UHSXOVLRQ WR VLPSOLI\ WKH FDOFXODWLRQV )RU PRVW DONDOLPHWDO FROOLVLRQV ZKLFK SURGXFH IHZ QHJDWLYH LRQV WKLV DSSUR[LPDWLRQ VHHPV WR EH MXVWLILHG %XW IRU VFDWWHULQJV OLNH +:OO2f WKHUH LV D VLJQLILFDQW IUDFWLRQ RI + SURGXFWV DIWHU VFDWWHULQJ DQG WKH LQWUDDWRPLF &RXORPE UHSXOVLRQ SOD\V DQ LPSRUWDQW UROH ,QVWHDG RI XVLQJ WKH DERYH +DPLOWRQLDQ RQH VKRXOG XVH + < WD&&D7 e WN&D&ND r B ND f ( >9LN&&W YNFDFDU@ 8WfQD@QDO N ZKHUH D LV D VSLQ LQGH[ QDM &A&DI QDM &A&D> DQG 8Wf LV WKH HIIHFWLYH LQWUDDWRPLF &RXORPE UHSXOVLRQ ZKLFK GHSHQGV RQ WKH GLVWDQFH EHWZHHQ WKH LRQ DQG WKH VXUIDFH 8VLQJ WKH +DUWUHH)RFN DSSUR[LPDWLRQ RQH REWDLQV D VHW RI

PAGE 16

GLIIHUHQWLDOLQWHJUDO HTXDWLRQV >6HEDVWLDQ .DVDL DQG 2NLML @ E\ ZKLFK VRPH SUHOLPLQDU\ UHVXOWV ZHUH REWDLQHG ([LVWLQJ 3UREOHPV 6HYHUDO SUREOHPV LQKHUHQW LQ WKH WKHRUHWLFDO WUHDWPHQW RI LRQVXUIDFH VFDWWHULQJ ZLOO EH DGGUHVVHG KHUH :H YLHZ WKHP DV VRPH NH\ SRLQWV LQ IXUWKHULQJ WKH WKHRUHWLFDO VWXG\ RI LRQVXUIDFH FROOLVLRQV (OHFWURQLF 6WDWHV DQG (OHFWURQLF &RXSOLQJV ,RQVXUIDFH V\VWHPV DUH PDQ\ HOHFWURQ V\VWHPV ZKLFK ODFN WUDQVODWLRQ V\PPHn WU\ 7KLV EULQJV ERWK GLIILFXOW\ DQG FKDOOHQJH WR WKHRUHWLFDO VWXGLHV RI WKH SUREOHP 2QH ZD\ WR GHDO ZLWK VXUIDFHV LV WR DVVXPH WKDW WKH HOHFWURQLF ZDYH IXQFWLRQV LQ VXUIDFHV DUH WKH VDPH DV WKRVH RI DQ LQILQLWH SHULRGLF V\VWHP DQG WR WUHDW WKH FROOLGLQJ LRQ DV D PRYLQJ GHIHFW DQG WKH DWRPLF VWDWHV DV ORFDOL]HG VWDWHV ,Q WKLV ZD\ RQH FDQ UHODWLYHO\ HDVLO\ FDOFXODWH VXUIDFH SURSHUWLHV DQG WKH VFDWWHULQJ \LHOG >%UDNR DQG 1HZQV /DQJ 6KLQGR DQG .DZDL @ +RZHYHU WKLV DSSUR[LPDWLRQ LV QRW YHU\ DFFXUDWH DQG XVXDOO\ FDQ RQO\ EH XVHG DV D VWDUWLQJ SRLQW $W VXUIDFHV DV WKH UHVXOWV RI EURNHQ V\PPHWU\ DQG WKH VWURQJ SHUWXUEDWLRQ IURP WKH FROOLGLQJ LRQ WKH HOHFWURQLF EDQGV DUH GLVWRUWHG DQG WKH HOHFWURQ EHKDYLRU LV GLIIHUHQW IURP WKDW RI EXONV 2QH RI WKH LPSRUWDQW IHDWXUHV RI WKH PHWDO DQG

PAGE 17

VHPLFRQGXFWRU HOHFWURQLF VWUXFWXUH LV WKH H[LVWHQFH RI WKH ORFDOL]HG VWDWHV :KLOH V DQG SHOHFWURQV DUH JHQHUDOO\ GHVFULEHG E\ FRQWLQXRXV VWDWHV GHOHFWURQV DUH PRUH ORFDOL]HG $W VXUIDFHV ORFDOL]HG VWDWHV FDQ DOVR EH FUHDWHG E\ LPSXULWLHV DGVRUEDWHV RU FKHPLVRUEHG OD\HUV 7KH SUHVHQFH RI ORFDOL]HG VWDWHV JUHDWO\ DIIHFWV WKH ORFDO HOHFWURQLF HQYLURQPHQW IRU H[DPSOH DQ DEVRUEHG OD\HU RI DONDOL RQ PHWDO VXUIDFHV ORZHUV WKH ZRUN IXQFWLRQ >*RPHU 0HGYHGHY HW DO @ &RUUHFWO\ FDOFXODWLQJ RU HVWLPDWLQJ WKH HOHFWURQLF FRXSOLQJV EHWZHHQ WKH LRQ DQG VXUIDFH LV REYLRXVO\ LPSRUWDQW LQ WKHRUHWLFDO FDOFXODWLRQ %XW FXUUHQW WKHRUHWLn FDO PHWKRGV GR QRW SURYLGH D VLPSOH DQG \HW DFFXUDWH ZD\ WR HVWLPDWH WKH HOHFWURQ KRSSLQJ PDWUL[ HOHPHQWV 3HRSOH KDYH WR UHO\ RQ VHPLHPSLULFDO FDOFXODWLRQ )RU H[DPSOH LQ WKH WLPHGHSHQGHQW $QGHUVRQ1HZQV +DPLOWRQLDQ 9DN PHDVXUHV WKH FRXSOLQJ EHWZHHQ WKH DWRPLF VWDWHV DQG VXUIDFH VWDWHV DQG LV UHODWHG WR WKH OLIHWLPH EURDGHQLQJ RI DQ DWRPLF VWDWH $Wf $VVXPLQJ WKDW N DQG W GHSHQGHQFH RI 9DN DUH VHSDUDWHG 9DN>5$Wf@ 9NXWf f ZKHUH 9r GHSHQGV RQO\ RQ N DQG ZWf RQO\ RQ W RQH KDV $ Wf $Hf_XIf_ f ZKHUH $Hf LV GHILQHG E\ $ef Ue_9W_LeeMf f N ZKLFK FDQ EH DSSUR[LPDWHO\ HYDOXDWHG E\ PHWKRGV GHYHORSHG LQ FKHPLVRUSWLRQ WKHRU\ %XW D FRPPRQ SUDFWLFH LV WR XVH SDUDPHWHUL]DWLRQ RI $Wf )RU LQVWDQFH

PAGE 18

RQH FDQ XVH D VLPSOH H[SRQHQWLDO IRUP ZKLFK LV LQGHSHQGHQW RI HQHUJ\ $Lf $RH[SA=$f f DQG GHWHUPLQH SDUDPHWHUV $R DQG IURP H[SHULPHQWDO GDWD >%UDNR DQG 1HZQV /DQJ +RRG HW DO @ RU IURP GHQVLW\ IXQFWLRQDO FDOFXODWLRQ >/DQJ DQG 1RUVNRY @ %HFDXVH RI WKH HOHFWURQLF FRXSOLQJ IURP WKH VXUIDFH HOHFWURQV WKH DWRPLF HQHUJ\ HD LV GLVWDQFH GHSHQGHQW $JDLQ D VLPSOH IXQFWLRQ IRUP LV RIWHQ XVHG ZLWK WKH HOHFWURQ FKDUJH H O DXf mrf mmf M/ f ZKHUH =$ LV WKH GLVWDQFH EHWZHHQ WKH LRQ FRUH DQG WKH VXUIDFH 7KLV LV EDVHG RQ WKH DSSUR[LPDWLRQ WKDW WKH FKDQJH RI HD LV GXH WR D FODVVLFDO LPDJH FKDUJH $OWKRXJK WKH SDUDPHWHUL]DWLRQ DSSURDFK LV ZLGHO\ XVHG LW LJQRUHV WKH IDFW WKDW WKH HOHFWURQLF FRXSOLQJ LV VWURQJO\ GHSHQGHQW RQ WKH UHDUUDQJHPHQW RI FKDUJHV GXULQJ FROOLVLRQV DQG LWV YDOLGLW\ DW VKRUW GLVWDQFHV LV TXHVWLRQDEOH ,GHDOO\ WKH WUHDWPHQW RI WKH LRQVXUIDFH V\VWHPV VKRXOG FRQWDLQ D VHOIFRQVLVWHQW HOHFWURQLF VWUXFWXUH FDOFXODWLRQ ZKLFK DFFRXQWV IRU ORFDOL]HG VWDWHV $ VHOIFRQVLVWHQW ORn FDOL]HG RUELWDO PHWKRG KDV EHHQ GHYHORSHG WR GHDO ZLWK WUDQVLWLRQ PHWDO VXUIDFHV DQG FKHPLVRUSWLRQ RQ PHWDO VXUIDFHV >6PLWK DQG *D\ 6PLWK HW DO @ 7KH GHQVLW\ IXQFWLRQDO PHWKRG >+RKHQEHUJ DQG .RKQ @ KDV DOVR EHHQ DSSOLHG WR LRQVXUIDFH LQWHUDFWLRQV >/DQJ DQG :LOOLDPV @

PAGE 19

7KH 7UHDWPHQW RI ([WHQGHG 6\VWHPV )URP WKH WKHRUHWLFDO SRLQW RI YLHZ LW LV HDVLHU WR GHDO ZLWK HLWKHU D V\VWHP RI D IHZ SDUWLFOHV IRU H[DPSOH VPDOO PROHFXOHV RU D V\VWHP ZLWK D SHULRGLF VWUXFWXUH VXFK DV VLQJOH FU\VWDOV ,RQVXUIDFH V\VWHPV RQ WKH RWKHU KDQG DUH PDQ\ERG\ V\VWHPV ZKLFK ODFN WUDQVODWLRQ V\PPHWU\ 7R FRPELQH D IXOO VHOI FRQVLVWHQW FDOFXODWLRQ RI HOHFWURQLF LQWHUDFWLRQ ZLWK D G\QDPLF GHVFULSWLRQ RI LRQ VXUIDFH FROOLVLRQV LV D GLIILFXOW LI QRW LPSUDFWLFDO WDVN ,Q GHYHORSLQJ D EHWWHU DQG PRUH SK\VLFDO GHVFULSWLRQ RI LRQVXUIDFH V\VWHPV D YHU\ LPSRUWDQW IDFW VKRXOG EH QRWLFHG QDPHO\ WKDW GXULQJ WKH FROOLVLRQV LRQV LQWHUDFW PDLQO\ ZLWK ORFDO UHJLRQV RI WKH VXUIDFH ZKLOH WKH UHPDLQGHU RI WKH VROLG LV UHODWLYHO\ XQSHUWXUEHG 7KLV IDFW SURYLGHV D KLQW WKDW LW LV SRVVLEOH WR SURSHUO\ KDQGOH HOHFWURQLF PRWLRQV E\ FRQFHQWUDWLQJ RQ WKHVH ORFDO UHJLRQV 2OVRQ DQG *DUULVRQ >2OVRQ DQG *DUULVRQ @ KDYH XVHG D FOXVWHU LQ SODFH RI D VXUIDFH WKLV HQDEOHV WKHP WR HPSOR\ WKH PROHFXODU RUELWDO PHWKRG GHYHORSHG LQ PROHFXODU VFDWWHULQJ $QRWKHU PHWKRG WR GHDO ZLWK VXUIDFHV LV WKH HPEHGGLQJ WHFKQLTXH >*ULPOH\ DQG 0ROD .LUWPDQ DQG GH 0HOR )HLEHOPDQ @ XVHG LQ FKHPLVRUSWLRQ VWXGLHV ZKLFK XVHV D KLJKHU OHYHO WUHDWPHQW RI HOHFWURQLF LQWHUDFWLRQV ZLWKLQ D PROHFXODU FRPSOH[ D VPDOO UHJLRQ RI WKH VXUIDFH SOXV DGVRUEDWHVf DQG D VLPSOH GHVFULSWLRQ RXWVLGH RI WKH FRPSOH[ GH 0HO HW DO >GH 0HOR HW DO @ KDYH GHYHORSHG D VHOIFRQVLVWHQW PHWKRG XVLQJ D GHQVLW\ PDWUL[ DQG DSSOLHG LW WR WKH $QGHUVRQ1HZQV +DPLOWRQLDQ IRU D RQH GLPHQVLRQDO V\VWHP 0F'RZHOO >0F'RZHOO @ XVHV DQ HPEHGGLQJ WHFKQLTXH WR REWDLQ JHQHUDOL]HG

PAGE 20

/DQJHYLQ W\SH HTXDWLRQV IRU WKH VSLQ RUELWDOV LQ D SULPDU\ ]RQH ZKLFK FRXSOHV ZLWK WKH VHFRQGDU\ ]RQH WKURXJK GULYLQJ WHUPV 7KHVH WUHDWPHQWV VKRZ WKDW E\ FRQFHQWUDWLQJ RQ D VPDOO QXPEHU RI RUELWDOV LW LV SRVVLEOH WR DFKLHYH VHOI FRQVLVWHQF\ $QRWKHU FRPPRQ IHDWXUH LQ WKHVH WUHDWPHQWV LV WKH XVH RI ORFDOL]HG VSLQ RUELWDOV ZKLFK DOORZV RQH WR QDWXUDOO\ GHDO ZLWK ORFDOL]HG SKHQRPHQD >)HQJ HW DO @ (IIHFW RI 1XFOHDU 0RWLRQ :KLOH WKH HOHFWURQLF PRWLRQV DUH WUHDWHG TXDQWXP PHFKDQLFDOO\ LW LV UHDVRQn DEOH WR DVVXPH WKDW WKH QXFOHDU PRWLRQ HYROYHV DFFRUGLQJ WR WKH FODVVLFDO PHFKDQn LFV IRU WKH FROOLVLRQ HQHUJ\ LQ WKH K\SHUWKHUPDO UDQJH ,Q WKLV FODVVLFDOTXDQWDO f§A DSSURDFK WKH QXFOHDU PRWLRQ 5D^f FDQ EH WUHDWHG DW VHYHUDO OHYHOV ,Q WKH VLPSOH FODVVLFDO WUHDWPHQW WKH QXFOHDU WUDMHFWRU\ LV IXOO\ GHWHUPLQHG E\ D FODVVLFDO LRQ VXUIDFH SRWHQWLDO ,Q DQ LPSURYHG VHPLFODVVLFDO WUHDWPHQW WKH QXFOHDU SRWHQWLDO LV FRXSOHG ZLWK WKH HOHFWURQLF PRWLRQ 7KH FODVVLFDO WUDMHFWRU\ LV YDOLG RQO\ LQ WKH KLJK HQHUJ\ UDQJH >7XOO\ @ DV GHPRQVWUDWHG LQ JDVSKDVH FROOLVLRQV 7KH UHDVRQ LV WKDW DW ORZHU HQHUJLHV WUDMHFWRULHV DUH VHQVLWLYH WR WKH GHWDLO RI FKHPLFDO LQWHUn DFWLRQV DPRQJ WKH DWRPV DQG GHSHQG RQ WKH HOHFWURQLF VWDWHV ,W KDV EHHQ IRXQG WKDW LQ +S FROOLVLRQV WKH FODVVLFDO WUDMHFWRU\ ZRXOG JLYH ULVH WR D VLJQLILFDQW HUURU ZKHQ WKH FROOLVLRQDO HQHUJ\ LV ORZHU WKDQ HY >5XQJH HW DO @ /RRNLQJ IURP DQRWKHU DQJOH WKH QXFOHDU PRWLRQ FDQ EH WUHDWHG HLWKHU E\ WKH VRFDOOHG WUDMHFWRU\ DSSUR[LPDWLRQ RU E\ D PXOWLFKDQQHO SURFHGXUH ,Q WKH WUDMHFWRU\ WUHDWPHQW WKH QXFOHDU WUDMHFWRU\ LV XQLTXHO\ GHILQHG E\ D VLQJOH IL[HG

PAGE 21

SRWHQWLDO ZKLFK FDQ HLWKHU EH D SXUH FODVVLFDO RQH RU DQ HIIHFWLYH SRWHQWLDO ZKLFK FRQWDLQV WKH FRXSOLQJ ZLWK WKH HOHFWURQLF GHJUHHV RI PRWLRQ 2QH H[DPSOH LV WKH VWUDLJKW OLQH WUDMHFWRU\ UHVXOWHG IURP D KDUG ZDOO SRWHQWLDO 5XQJH HW DO >5XQJH HW DO @ GHWHUPLQH WKH LRQ WUDMHFWRU\ E\ DQ HIIHFWLYH IRUFH ZKLFK LV GHSHQGHQW RQ WKH JUDGLHQW RI WKH HOHFWURQLF GHQVLW\ PDWUL[ ,W KDV LQVWHDG EHHQ VXJJHVWHG XVLQJ D WUDMHFWRU\ DSSUR[LPDWLRQ FRQVWUXFWLQJ PXOWLGLPHQVLRQDO SRWHQWLDO HQHUJ\ K\SHUVXUIDFHV GHVFULELQJ YDULRXV DWRPLF FRQILJXUDWLRQV DQG DOORZLQJ WUDMHFWRULHV WR KRS EDFN DQG IRUWK EHWZHHQ K\SHUVXUIDFHV >7XOO\ +ROORZD\ DQG *DG]XN 1HZQV @ $ XVHIXO SURFHGXUH LQ GHDOLQJ ZLWK PROHFXOH FROOLVLRQV LV WKH HLNRQDO PHWKRG GHYHORSHG E\ 0LFKD >0LFKD @ ,Q WKLV PHWKRG WKH QXFOHDU YDULDEOHV DUH FRXSOHG ZLWK WKH HOHFWURQLF RQHV DQG ERWK PXVW EH IRXQG VHOIFRQVLVWHQWO\ $Q DSSOLFDWLRQ RI WKH HLNRQDO PHWKRG WR LRQVXUIDFH FROOLVLRQ LV E\ 2OVRQ DQG *DUULVRQ >2OVRQ DQG *DUULVRQ @ ZKR PRGHO WKH VXUIDFH E\ D VPDOO FOXVWHU $WRPLF 2UELWDO 3RODUL]DWLRQ ,Q DWRPLF VFDWWHULQJ WKH VFDWWHUHG DWRPV FDQ EH LQ GLIIHUHQW HOHFWURQLF VWDWHV DQG WKHLU GLVWULEXWLRQ RI HOHFWURQLF DQJXODU PRPHQWXP FDQ EH DQLVRWURSLF 7KLV FDXVHV RUELWDO DOLJQPHQW DQG RULHQWDWLRQ >+LSSLHU @ ([SHULPHQWDOO\ WKLV UHTXLUHV D SDUWLDO RU IXOO GHWHUPLQDWLRQ RI WKH DWRPLF VWDWHV DIWHU WKH FROOLVLRQ LQ FRQWUDVW WR WKH FRQYHQWLRQDO VWXG\ ZKLFK PHDVXUHV WKH GLIIHUHQWLDO FURVV VHFWLRQ 2UELWDO SRODUL]DWLRQ KDV EHHQ WKH VXEMHFW RI PXFK WKHRUHWLFDO ZRUN >)DQR DQG 0DFHN $QGHUVHQ DQG 1LHOVHQ 1LHOVHQ DQG $QGHUVHQ @ LQ ZKLFK WKH

PAGE 22

GHQVLW\ PDWUL[ >%OXP @ LV H[WHQVLYHO\ XVHG $OWKRXJK WKH XVH RI WKH GHQVLW\ PDWUL[ LQ VFDWWHULQJ WKHRU\ LV QRW QHZ WKH VWXG\ RI RUELWDO SRODUL]DWLRQ SURYLGHV D PXFK PRUH VHYHUH WHVW RI D WKHRU\ WKDQ GRHV WKH VWXG\ RI FURVV VHFWLRQ WKLV LV EHFDXVH QRW RQO\ WKH GLDJRQDO HOHPHQWV EXW DOVR WKH RIIGLDJRQDO HOHPHQWV RI WKH GHQVLW\ PDWUL[ DUH UHTXLUHG WR GHWHUPLQH WKH DOLJQPHQW DQG RULHQWDWLRQ SDUDPHWHUV 2I FRXUVH WKH VWXG\ RI RUELWDO SRODUL]DWLRQ ZLOO OHDG WR D GHHSHU LQVLJKW LQWR WKH LQWHUDFWLRQ DQG PHFKDQLVPV LQYROYHG LQ WKH FROOLVLRQV 8QWLO QRZ QR GHWDLOHG ZRUN RQ RUELWDO SRODUL]DWLRQ LQ LRQVXUIDFH FROOLVLRQ KDG EHHQ UHSRUWHG HLWKHU H[SHULPHQWDOO\ RU WKHRUHWLFDOO\ ,W LV MXVW D PDWWHU RI WLPH EHIRUH WKH H[SHULPHQWDO WHFKQLTXHV DQG WKHRU\ DUH GHYHORSHG LQ WKLV ILHOG 2XWOLQH RI WKH &KDSWHUV 7KLV GLVVHUWDWLRQ SUHVHQWV D WKHRUHWLFDO VWXG\ RI FKDUJH WUDQVIHU LQ LRQVXUIDFH FROOLVLRQV EDVHG RQ WKH WLPHGHSHQGHQW PROHFXODU RUELWDO DSSURDFK $ SDUWLWLRQn LQJ WHFKQLTXH LV XVHG WR GLYLGH D LRQVXUIDFH V\VWHP LQWR D SULPDU\ UHJLRQ ZKLFK FRQWDLQV D IHZ FHQWHUV RQ WKH VXUIDFH DQG WKH VFDWWHULQJ LRQ DQG D VHFRQGDU\ UHJLRQ FRQWDLQLQJ WKH UHPDLQGHU RI WKH VXUIDFH 7KH FKDUJH WUDQVIHU LV FDOFXODWHG E\ VROYLQJ WKH WLPHGHSHQGHQW +DUWUHH)RFN 7'+)f HTXDWLRQ IRU WKH HOHFWURQ GHQVLW\ PDWUL[ LQ WKH SULPDU\ UHJLRQ ZKLFK FRXSOHV ZLWK WKH VHFRQGDU\ UHJLRQ HOHFWURQLFDOO\ 7KLV DSSURDFK SHUPLWV GHWHUPLQDWLRQ RI WKH DWRPLF VWDWHV GXULQJ DQG DIWHU WKH VFDWWHULQJ DQG FDOFXODWLRQ RI WKH DOLJQPHQW DQG RULHQWDWLRQ SDUDPHn WHUV ,Q WKH IROORZLQJ FKDSWHUV DWRPLF XQLWV DUH XVHG WKHUHIRUH HOHFWURQ FKDUJH H O HOHFWURQ PDVV PH DQG + O

PAGE 23

,Q &KDSWHU ZH SUHVHQW WKH EDVLF IUDPHZRUN RI RXU DSSURDFK WR WKH LRQ VXUIDFH FROOLVLRQV 7'+) HTXDWLRQV DUH XVHG WR GHVFULEH WKH WLPH HYROXWLRQ RI WKH PROHFXODU RUELWDOV 7KH IRUPDOLVP LV FRQVWUXFWHG LQ WHUPV RI DQ HOHFWURQLF GHQVLW\ PDWUL[ EHFDXVH LW FDQ VLPSOLI\ FRPSXWDWLRQ DQG LV FRQYHQLHQW LQ WKH FDOFXODWLRQ RI DOLJQPHQW DQG RULHQWDWLRQ SDUDPHWHUV ,Q WKH ODWHU SDUW RI WKH FKDSWHU WKH 7'+) HTXDWLRQ LV UHZULWWHQ LQ WKH EDVLV RI WKH WUDYHOOLQJ DWRPLF RUELWDOV 72$f ,Q &KDSWHU ZH GHILQH WKH SDUDPHWHUV IRU DYHUDJH HOHFWURQLF SRSXODWLRQ HOHFWURQLF PXOWLSROHV DQG SRODUL]DWLRQ RI DWRPLF RUELWDOV E\ LQWURGXFLQJ WHQVRU RSHUDWRUV DQG LUUHGXFLEOH RSHUDWRUV 7KH RULHQWDWLRQ DQG DOLJQPHQW SDUDPHWHUV FDQ EH FDOFXODWHG IURP WKH GHQVLW\ PDWUL[ 7KH RUELWDO SRODUL]DWLRQ SDUDPHWHUV IRU D VXEV\VWHP DUH DOVR H[SUHVVHG E\ WKH GHQVLW\ PDWUL[ ,Q &KDSWHU ZH SUHVHQW D ORFDO WLPH OLQHDUL]DWLRQ SURFHGXUH IRU VROYLQJ 7'+) HTXDWLRQV 7KH PHWKRG LV EDVHG RQ WKH DVVXPSWLRQ WKDW LQ D YHU\ VKRUW WLPH LQWHUYDO WKH VROXWLRQ RI WKH 7'+) HTXDWLRQ LV D OLQHDU SHUWXUEDWLRQ FDXVHG E\ WKH PRWLRQ RI WKH DWRPLF FRUH DGGHG WR FRUUHFW WKH HYROXWLRQ RI WKH V\VWHP ILUVW FDOFXODWHG DV LI WKH QXFOHL ZHUH IL[HG 8VLQJ WKLV SURFHGXUH WKH OLQHDUL]HG HTXDWLRQV IRU WKH SHUWXUEDWLRQV ZKLFK FRQWDLQ D WLPHGHSHQGHQW GULYLQJ WHUP GXH WR WKH QXFOHDU PRWLRQV DUH FRQVWUXFWHG DQG VROYHG LQ FRQMXQFWLRQ ZLWK WKH HTXDWLRQV IRU IL[HG QXFOHDU SRVLWLRQV 7KH SURFHGXUH LV SUHVHQWHG IRU D JHQHUDO FDVH ,Q WKH ODWHU SDUW RI WKH &KDSWHU ZH DSSO\ WKLV SURFHGXUH WR D VLPSOH FDVH LQ ZKLFK WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ LV QHJOHFWHG DQG REWDLQ DQDO\WLFDO VROXWLRQV IRU WKH OLQHDUL]HG 7'+) HTXDWLRQV

PAGE 24

,Q &KDSWHU D SDUWLWLRQLQJ SURFHGXUH IRU LRQVXUIDFH FROOLVLRQV LV SUHVHQWHG 7KH V\VWHP LV GLYLGHG LQWR D SULPDU\ UHJLRQ ZKLFK FRQWDLQV WKH LRQ DQG D IHZ FHQWHUV RQ WKH VXUIDFH DQG D VHFRQGDU\ UHJLRQ ZKLFK LV WKH UHPDLQGHU RI WKH VXUIDFH 7KH GHQVLW\ PDWUL[ LV DSSUR[LPDWHG LQ WKH VHFRQGDU\ UHJLRQ E\ DQ XQSHUWXUEHG RQH ZKLFK LV MXVWLILHG ZKHQ WKH FROOLVLRQDO HQHUJ\ RI WKH LRQ LV QRW YHU\ ORZ 7KH HIIHFWLYH HTXDWLRQV LQ WKH SULPDU\ UHJLRQ DUH FRXSOHG ZLWK WKH VHFRQGDU\ UHJLRQ WKURXJK D GULYLQJ WHUP 7R ILW WKH DV\PSWRWLF EHKDYLRU RI WKH V\VWHP DIWHU WKH SDUWLWLRQLQJ D FRUUHFWLRQ WHUP LV DGGHG WR WKH SDUWLWLRQHG +DPLOWRQLDQ &RPELQLQJ WKH OLQHDUL]DWLRQ SURFHGXUH GHVFULEHG LQ &KDSWHU ZH REWDLQ WKH HIIHFWLYH HTXDWLRQV LQ WKH SULPDU\ UHJLRQ DQG WKHLU IRUPDO VROXWLRQV $JDLQ ZH IXUWKHU LOOXVWUDWH WKLV SDUWLWLRQ PHWKRG E\ DSSO\LQJ LW WR D VSHFLDO FDVH ZKHQ WKH HOHFWURQ LQWHUDFWLRQ LV QHJOHFWHG ,Q &KDSWHU ZH FRQVWUXFW D VHW RI ORFDOL]HG EDVLV IXQFWLRQV WR EH XVHG LQ WKH WLPHGHSHQGHQW PROHFXODU RUELWDO FDOFXODWLRQ )RU WKH VXUIDFH SDUW ZH LQWURGXFH D VHW RI JHQHUDOL]HG :DQQLHU IXQFWLRQV *:)Vf ZKLFK DUH RUWKRQRUPDO DQG ORFDOL]HG DW FHQWHUV RI WKH VXUIDFH $ YDULDWLRQDO SURFHGXUH LV HPSOR\HG WR JHQHUDWH WKHVH IXQFWLRQV $V DQ H[DPSOH ZH FDOFXODWH WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU D WKUHH GLPHQVLRQDO MHOOLXP VROLG 7KH EDVLV IXQFWLRQV DVVRFLDWHG ZLWK WKH LRQ FRUH DUH DVVXPHG WR EH DWRPLF RUELWDOV DQG DUH REWDLQHG IURP D SVHXGRSRWHQWLDO IRU WKH LRQ FRUH 2XU EDVLV IXQFWLRQV DUH WLPHGHSHQGHQW DQG LQ WKH IRUP RI OLQHDU FRPELQDWLRQV RI *DXVVLDQV 7KH RYHUODS PDWUL[ DQG +DPLOWRQLDQ PDWUL[ DUH FRQVWUXFWHG LQ WKLV EDVLV VHW

PAGE 25

,Q &KDSWHU ZH GLVFXVV WKH FRPSXWDWLRQDO DVSHFWV $W ILUVW ZH SUHVHQW RXU DOJRULWKP IRU QXPHULFDO LQWHJUDWLRQ RI WKH WLPHGHSHQGHQW +DUWUHH)RFN HTXDWLRQV DV ZHOO DV WKH IORZFKDUW RI WKH FRPSXWDWLRQDO SURJUDP 7KHQ WKH VWDELOLW\ DQG WKH FRQYHUJHQFH RI WKH QXPHULFDO LQWHJUDWLRQ DUH GLVFXVVHG DW OHQJWK (IIHFWV RI VRPH FRPSXWDWLRQDO SDUDPHWHUV DUH LQYHVWLJDWHG LQFOXGLQJ VWHS VL]H LQLWLDO DQG ILQDO SRVLWLRQV RI WKH LRQ DQG WROHUDQFHV DPRQJ RWKHUV ,Q &KDSWHU ZH SUHVHQW DQ DSSOLFDWLRQ RI WKLV DSSURDFK DQG LWV UHVXOWV WR WKH QHXWUDOL]DWLRQ LQ D QRUPDO FROOLVLRQ EHWZHHQ D 6RGLXP LRQ DQG D 7XQJVWHQ f VXUIDFH $Q DWRPVXUIDFH LQWHUDFWLRQ SRWHQWLDO LV FRQVWUXFWHG WR GHWHUPLQH D SUHVFULEHG WUDMHFWRU\ %\ XVLQJ PHWKRGV GHVFULEHG LQ SUHYLRXV FKDSWHUV ZH REWDLQ WKH WLPH HYROXWLRQ RI WKH GHQVLW\ PDWUL[ IURP ZKLFK WKH HOHFWURQLF SRSXODWLRQ DQG RUELWDO SRODUL]DWLRQ SDUDPHWHUV DUH FDOFXODWHG :H DOVR VWXG\ WKH HIIHFWV RI WKH FROOLVLRQ HQHUJ\ RQ WKH ILQDO \LHOG RI WKH QHXWUDO DWRPV DQG WKHLU SRODUL]DWLRQ DIWHU WKH FROOLVLRQ DQG FRPSDUH WKH UHVXOWV ZLWK H[SHULPHQWDO GDWD :H DOVR EULHIO\ GLVFXVV WKH DSSOLFDWLRQ RI WKH DSSURDFK WR RWKHU V\VWHPV DQG WR FROOLVLRQV DW RWKHU VFDWWHULQJ DQJOHV ,Q &KDSWHU ZH GLVFXVV WKH IHDWXUHV RI RXU WLPHGHSHQGHQW PROHFXODU PHWKRG DQG LWV DSSOLFDWLRQV WR FKDUJH WUDQVIHU LQ DWRPVXUIDFH FROOLVLRQV LQ K\SHUWKHUPDO HQHUJ\ UDQJH $QDO\VLV DQG FRQFOXVLRQV DUH UHODWHG WR WKH SK\VLFDO IHDWXUHV DQG FRPSDULVRQ ZLWK RWKHU WKHRUHWLFDO PHWKRGV LQ WKH ILHOG :H DOVR GLVFXVV WKH DSSUR[LPDWLRQV XVHG LQ WKH SUHVHQW VWXG\ )LQDOO\ ZH RIIHU VXJJHVWLRQV IRU IXWXUH UHVHDUFK

PAGE 26

,Q $SSHQGL[ $ ZH FDOFXODWH PDWUL[ %[ ZKLFK LV WKH H[SDQVLRQ FRHIILFLHQW PDWUL[ RI WKH :DQQLHU IXQFWLRQV IRU IUHH HOHFWURQV LQ WHUPV RI *DXVVLDQV ,Q $SSHQGL[ % ZH FDOFXODWH WKH WRWDO EDQG HQHUJ\ RI D MHOOLXP VODE XVLQJ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV ,Q $SSHQGL[ & ZH VKRZ KRZ WKH )HUPL HQHUJ\ LV FDOFXODWHG IRU D ILQLWH MHOOLXP VODE

PAGE 27

&+$37(5 7+( 7,0('(3(1'(17 +$575(()2&. 7'+)f $3352$&+ 7KH WLPHGHSHQGHQW +DUWUHH)RFN DSSURDFK LV VXLWDEOH IRU VWXG\LQJ WKH PDQ\ ERG\ FROOLVLRQ G\QDPLFV RI RXU SUREOHP 8VLQJ D RQHHOHFWURQ HIIHFWLYH ILHOG LW FDQ GHVFULEH WKH HYROXWLRQ RI FROOLVLRQDO V\VWHPV DQG FDOFXODWH G\QDPLF SDUDPHWHUV WR FRPSDUH ZLWK H[SHULPHQWDO GDWD 2QH RI WKH DGYDQWDJHV RI WKH 7'+) PHWKRG LV WKDW WKH VHOIFRQVLVWHQF\ EHWZHHQ WKH HIIHFWLYH ILHOG DQG WKH RUELWDO FRHIILFLHQWV RU GHQVLW\ PDWUL[ LV DFKLHYHG DXWRPDWLFDOO\ E\ VROYLQJ WLPHGHSHQGHQW GLIIHUHQn WLDO HTXDWLRQV ZLWKRXW KDYLQJ WR SHUIRUP WKH VHOIFRQVLVWHQW LWHUDWLRQ SURFHGXUH UHTXLUHG LQ WKH WLPHLQGHSHQGHQW FDVH 7'+) KDV EHHQ H[WHQVLYHO\ DSSOLHG WR FROOLVLRQ SUREOHPV LQ QXFOHDU SK\VLFV >5LQJ DQG 6FKXFN 1HJHOH 'DYLHV HW DO @ DQG UHFHQWO\ DSSOLFDWLRQV LQ DWRPLF PROHFXODU FROOLVLRQV KDYH EHHQ UHSRUWHG >.XODQGHU HW DO 'HYL DQG *DUFLD *D]G\ DQG 0LFKD @ 0LFKD DQG *D]G\ >0LFKD DQG *D]G\ @ KDYH SURSRVHG D YDULDWLRQDO SURFHGXUH ZKLFK LPSURYHV WKH DFFXUDF\ RI WUDQVLWLRQ DPSOLWXGH FDOFXODWLRQV XVLQJ 7'+) WULDO IXQFWLRQV
PAGE 28

ZH GHULYH WKH 7'+) HTXDWLRQV IRU WKH HOHFWURQ GHQVLW\ PDWUL[ 7KH UHDVRQ ZH XVH WKH GHQVLW\ PDWUL[ >0F:HHQ\ &RKHQ DQG )ULVKEHUJ @ LV WKDW LW VLPSOLILHV FDOFXODWLRQ IRU D ODUJH V\VWHP $QRWKHU DGYDQWDJH LV WKDW PDQ\ LQWHUHVWHG SURSHUWLHV RI FROOLVLRQV FDQ EH GHILQHG DQG UHDGLO\ FDOFXODWHG IURP LW 2QH RI WKH NH\ SUREOHPV LQ DSSO\LQJ WKH 7'+) DSSURDFK WR LRQVXUIDFH VWXGLHV LV FKRRVLQJ WKH EDVLV VHW :LWK WKH JUHDW QXPEHU RI HOHFWURQV LQ WKH V\VWHPV FKRRVLQJ D FRPSOHWH EDVLV VHW ZRXOG PDNH DQ\ SUDFWLFDO FDOFXODWLRQ RXW RI WKH TXHVWLRQ 2QH KDV WR WUXQFDWH WKH FRPSOHWH EDVLV VHW LQ D SURSHU ZD\ VR WKDW WKH LQWURGXFHG HUURU LV PLQLPDO +RZHYHU ZH ZLOO OHDYH WKLV SUREOHP WR &KDSWHU ,Q WKLV &KDSWHU ZH ILUVW GHVFULEH WKH LRQVXUIDFH V\VWHP ,Q 6HFW ZH GHULYH WKH EDVLF IRUPDOLVP ZLWKRXW VSHFLI\LQJ WKH SDUWLFXODU IRUP RI WKH EDVLV VHW H[FHSW IRU WKH FRQGLWLRQ WKDW HDFK EDVLV IXQFWLRQ LV DVVRFLDWHG ZLWK D FHUWDLQ FHQWHU RI WKH V\VWHP ,Q 6HFW WKH 7'+) HTXDWLRQ LV UHZULWWHQ LQ WKH EDVLV RI WUDYHOOLQJ DWRPLF RUELWDOV 7$2f 7KH $WRP6XUIDFH 6\VWHP /HWfV FRQVLGHU D V\VWHP RI D VFDWWHULQJ LRQ DQG D VHPLLQILQLWH VROLG :H ZLOO DVVXPH WKH VROLG KDV D FRQGXFWLRQ EDQG RI FRQWLQXRXV RQHHOHFWURQ VWDWHV DQG VRPH ORFDOL]HG VWDWHV 7KLV LV LQ FRQWUDVW WR VRPH DSSURDFKHV ZKLFK DUH OLPLWHG WR FRQWLQXRXV VWDWHV RQO\f )RU WKH FROOLGLQJ DWRP ZH DVVXPH LW KDV D FRUH DQG VHYHUDO YDOHQFH OHYHOV %HFDXVH WKH GHHSHU OHYHOV RI WKH VROLG DQG WKH FRUH VWDWHV RI WKH LRQ DUH WLJKWO\ ERXQG DQG XVXDOO\ GR QRW SDUWLFLSDWH LQ FKDUJH WUDQVIHU LQ WKH HQHUJ\ UDQJH ZH DUH LQWHUHVWHG LQ WKH\ DUH QRW FRQVLGHUHG )RU WKH VDPH

PAGE 29

UHDVRQ KLJKO\ H[FLWHG DWRPLF VWDWHV DQG WKRVH VROLG VWDWHV KLJKO\ DERYH WKH )HUPL OHYHO DUH QRW FRQVLGHUHG HLWKHU :H DOVR DVVXPH WKDW WKH DWRPLF OHYHOV DUH LQ WKH UDQJH RI RU FORVH WR WKH FRQGXFWLRQ EDQG DQG WKDW WKH QHDUUHVRQDQFH WXQQHOOLQJ RI HOHFWURQV LV WKH GRPLQDQW FKDUJH WUDQVIHU SURFHVV 7KH WKHUPDO PRWLRQ RI WKH QXFOHL LQ WKH VROLG FDQ EH QHJOHFWHG DW WKH FROOLVLRQ HQHUJLHV RI LQWHUHVW VR WKDW WKH RQO\ PRYLQJ QXFOHXV LV WKDW RI WKH VFDWWHULQJ LRQ )RU VLPSOLFLW\ ZH DVVXPH WKDW WKH FROOLVLRQ HQHUJ\ LV KLJK HQRXJK WKDW WKH WUDMHFWRU\ DSSUR[LPDWLRQ FDQ EH XVHG ,Q WKLV DSSUR[LPDWLRQ WKH PRWLRQ RI WKH LRQ QXFOHXV FDQ EH GHVFULEHG E\ D NQRZQ IXQFWLRQ GHWHUPLQHG E\ DQ HIIHFWLYH LQWHUDFWLRQ SRWHQWLDO EHWZHHQ WKH LRQ FRUH DQG WKH VXUIDFH ,Q &KDSWHU ZH ZLOO GLVFXVV WKH YDOLGLW\ RI WKLV DSSUR[LPDWLRQ DQG WKH SRVVLEOH LPSURYHPHQWV ZKLFK DUH QHFHVVDU\ DW ORZ FROOLVLRQ HQHUJLHV 7'+) (TXDWLRQV RI 'HQVLW\ 0DWUL[ /HW ntIf EH WKH HOHFWURQLF ZDYHIXQFWLRQ ZKLFK VDWLVILHV WKH WLPHGHSHQGHQW 6KURGLQJHU HTXDWLRQ ficP PP FG ZKHUH +Wf LV WKH WRWDO +DPLOWRQLDQ RI WKH V\VWHP 8VLQJ WKH WLPHGHSHQGHQW +DUWUHH)RFN DSSUR[LPDWLRQ WKH 7'+) ZDYHIXFQWLRQV KDYH WKH IRUP RI A 1HcGHW>LSc[MWf? f

PAGE 30

ZKHUH 1Hc LV WKH QXPEHU RI HOHFWURQV DQG LSL[ Wf LV WKH ]WK VSLQ RUELWDO IRU HOHFWURQ YDULDEOHV [ I ef :H ZULWH LSc[Wf DV WSL[ Wf LfL&f f ZKHUH W!@UWf LV WKH LWK WLPHGHSHQGHQW PROHFXODU RUELWDOV IRU VSLQ DQG f LV WKH FRUUHVSRQGLQJ VSLQ IXQFWLRQ 7KH HOHFWURQ GHQVLW\ RSHUDWRU S LV JLYHQ E\ S ( :!:L }! LeRFF ZKHUH WKH VXPPDWLRQ LV RYHU WKH RFFXSLHG RUELWDOV ZKLFK LV DVVXPHG WR VDWLVI\ WKH 7'+) HTXDWLRQ >'LUDF @ LA-X3 A3 f§ 3) f DW ZKHUH ) LV WKH )RFN RSHUDWRU ZKLFK FDQ EH ZULWWHQ DV >3RSOH DQG %HYHULGJH @ )[OWf +IXWf *[XWf f ZKHUH +"XWf a ? 9" 9N Wf 90ULWf f LV WKH FRUH +DPLOWRQLDQ RSHUDWRU ZLWK 9t WKH SRWHQWLDO IURP WKH DWRPLF FRUH DQG 9P WKH SRWHQWLDO IURP DWRPLF FRUHV LQ WKH VROLG DQG *[L Wf < I )@?USL^[Wf f LV WKH HOHFWURQ &RXORPE SRWHQWLDO RSHUDWRU ZKHUH 9M LV WKH SHUPXWDWLRQ RSHUDWRU H[FKDQJLQJ HOHFWURQV RQO\ EHWZHHQ VSLQRUELWDOV RI VSLQ ,QWURGXFLQJ D VHW RI

PAGE 31

WLPHGHSHQGHQW EDVLV IXQFWLRQV ^AI f` IL 1J WKH PROHFXODU RUELWDO LV ZULWWHQ DV D OLQHDU FRPELQDWLRQ RI WKH EDVLV IXQFWLRQV VR WKDW Wf rf L f§ f ZKHUH FAWf LV D WLPHGHSHQGHQW FRHIILFLHQW 7KH GHQVLW\ PDWUL[ 3 LV GHILQHG DV I ,23eO f ZKHUH _ef DQG e_ DUH URZ DQG FROXPQ PDWULFHV RI RUELWDOV UHVSHFWLYHO\ 7KH PDWUL[ HOHPHQW RI 3 LV >3RSOH DQG %HYHULGJH 6]DER DQG 2VWOXQG @ 3ƒrf e FUWfFOWf DLOf Ln6RFF 7KH )RFN PDWUL[ )7 LV GHILQHG DV ) ^?)? f ,QVHUWLQJ HTXDWLRQ f LQWR WKH DERYH GHILQLWLRQ ZH KDYH ZKHUH ) + *33nf f K N YD YP f LV WKH FRUH +DPLOWRQLDQ PDWUL[ *7 WKH +DUWUHH)RFN HOHFWURQHOHFWURQ LQWHUDFWLRQ PDWUL[ 9$ WKH DWRPLF SRWHQWLDO PDWUL[ DQG 9P WKH VXUIDFH SRWHQWLDO PDWUL[ 7KH PDWUL[ HOHPHQWV RI )7 DUH f \ ?7 f

PAGE 32

ZKHUH n LV WKH VSLQ RSSRVLWH WR DQG ML?;Wf f§ ILFW?;Yf f ZLWK QY?;Ff >GULGU&QULWf&UWff§tUL rft} f Q 7R GHULYH WKH 7'+) HTXDWLRQ IRU WKH GHQVLW\ PDWUL[ OHWfV GHILQH D PDWUL[ Q I! 6XEVWLWXWH f LQWR f WKH OHIW KDQG VLGH LV ‘f^V DQG WKH ULJKW KDQG VLGH LV f f IIn a ,3A f 0XOWLSO\ WKLV HTXDWLRQ E\ e_ IURP WKH OHIW DQG E\ _ef IURP WKH ULJKW ZH KDYH LQ36 636 63 )36 63) f ZKHUH 6 e_ef LV WKH RYHUODS PDWUL[ 0XOWLSO\ ERWK VLGHV RI WKH DERYH HTXDWLRQ E\ 6 ZH REWDLQ WKH WLPHGHSHQGHQW +DUWUHH)RFN HTXDWLRQ IRU WKH GHQVLW\ PDWUL[ 3 6A3 3)6 L6A3 3A6 f 7KH ODVW WZR WHUPV RQ WKH ULJKW KDQG VLGH RI (T f DULVH IURP WKH WLPH GHSHQGHQFH RI WKH EDVLV IXQFWLRQV

PAGE 33

7'02V DV /LQHDU &RPELQDWLRQV RI 7UDYHOOLQJ $WRPLF 2UELWDOV :KHQ WKH PROHFXODU RUELWDOV DUH H[SDQGHG LQ D EDVLV VHW RI DWRPLF IXQFWLRQV LW VRPHWLPHV LQWURGXFHV DUWLILFLDO FRXSOLQJV DW ODUJH GLVWDQFH ZKLFK RULJLQDWHV LQ WKH GHSHQGHQFH RI WKH DWRPLF RUELWDOV RQ WKH SRVLWLRQ RI WKH PRYLQJ QXFOHL >%DWHV DQG 0F&DUUROO @ 7R DYRLG WKLV RQH FDQ FKRRVH WKH DWRPLF EDVLV IXQFWLRQV LQ WKH IRUP RI WUDYHOOLQJ DWRPLF RUELWDOV 7$2f :H FKRRVH WR EH D WUDYHOOLQJ DWRPLF RUELWDO 7$2f DVVRFLDWHG ZLWK WKH QWK FHQWHU DW 5PWf =QUWf ;Q U5P^Wf 7PUWf f ZKHUH U LV WKH SRVLWLRQ YHFWRU ZLWK UHVSHFW WR WKH RULJLQ RI WKH UHIHUHQFH IUDPH ;X LV WKH DWRPLF RUELWDO FHQWHUHG DW 5PWf DQG WKH WUDQVODWLRQ IDFWRU 7PUWf LV GHILQHG E\ f ZKHUH PH LV WKH HOHFWURQ PDVV DQG YP G5PGW LV WKH ORFDO YHORFLW\ RI WKH QWK FHQWHU LQ D VSDFHIL[HG V\VWHP 7KXV GB GW OfrmYQ_f f DQG f 8VLQJ f ZH ILQG f

PAGE 34

ZKHUH f Yff_[ff LU[O77fIf >Yf f YQf[UO@ 1RWLFLQJ WKDW 9_[Lf 9f_[Wf WKH NLQHWLF HQHUJ\ PDWUL[ LQ WKLV EDVLV LV f L! L[?UP7fYf ‘ YQf_[! [f0[f! =f f§ A >/9 ZKHUH (T f KDV EHHQ XVHG DQG ^[Y?N?[Yf G? 7r U Wf7QU Wf [fU Wf.;X^U Wf f 6XEVWLWXWLQJ (T f LQWR (T f LW EHFRPHV L3 6B)3 3)W6B f ZLWK D PRGLILHG )RFNOLNH PDWUL[ ) + f ZKHUH + 9 D 9MLL f (TXDWLRQ f LV RXU EDVLF HTXDWLRQ ,W DSSHDUV LQ D VLPSOHU IRUP LQ WKH 7$2 EDVLV EXW WKH SULFH SDLG LV WKDW WKH PDWUL[ ) LV QR ORQJHU +HUPLWLDQ 7KLV HTXDWLRQ FDQ EH VROYHG QXPHULFDOO\ LI WKH QXFOHDU WUDMHFWRU\ LV NQRZQ ZKLFK PD\ RU PD\ QRW LQFOXGH WKH HIIHFW RI WKH FRXSOLQJ EHWZHHQ WKH HOHFWURQ

PAGE 35

DQG QXFOHDU GHJUHHV RI IUHHGRP ,Q WKH HLNRQDO WUHDWPHQW WKLV HTXDWLRQ VKRXOG EH VROYHG ZLWK WKH HTXDWLRQV RI PRWLRQ IRU QXFOHL VLPXOWDQHRXVO\ 5XQJH HW DO >5XQJH HW DO @ KDYH DSSOLHG WKLV PHWKRG WR FKDUJH WUDQVIHU LQ WKH FROOLVLRQ EHWZHHQ D K\GURJHQ DWRP DQG D SURWRQ 6R IDU ZH KDYH SXW QR UHVWULFWLRQV RQ WKH FKRLFH RI EDVLV IXQFWLRQV H[FHSW WKDW WKH IXQFWLRQV DUH ORFDOL]HG DW FHUWDLQ FHQWHUV RI WKH V\VWHP ,Q &KDSWHU ZH ZLOO GLVFXVV LQ GHWDLO WKH FKRLFH RI EDVLV IXQFWLRQV ZKLFK LV D NH\ SDUW WR RXU DSSURDFK IRU KDQGOLQJ H[WHQGHG V\VWHPV

PAGE 36

&+$37(5 $9(5$*( (/(&7521,& 3238/$7,216 (/(&75,& 08/7,32/(6 $1' 25%,7$/ 32/$5,=$7,21 2QH RI WKH SDUDPHWHUV ZKLFK FKDUDFWHUL]HV VFDWWHULQJ SKHQRPHQD LV WKH FURVV VHFWLRQ ZKLFK KDV WKH GLPHQVLRQ RI DUHD DQG URXJKO\ VSHDNLQJ PHDVXUHV WKH VL]H RI HOHFWURQ FORXGV 7KH WRWDO FURVV VHFWLRQ DQG WKH GLIIHUHQWLDO FURVV VHFWLRQ IRU VWDWH WR VWDWH WUDQVLWLRQV FDQ EH PHDVXUHG LQ H[SHULPHQWV DQG SURYLGH IXQGDPHQWDO LQIRUPDWLRQ DERXW H[FLWDWLRQ PHFKDQLVPV 7KXV H[WHQVLYH HIIRUWV KDYH EHHQ PDGH WR GHYHORS WKHRULHV DQG PHWKRGV WR FDOFXODWH WKH FURVV VHFWLRQ 2Q WKH RWKHU KDQG GXULQJ FROOLVLRQV ZLWK WDUJHWV DEVRUSWLRQ RI HQHUJ\ ZLOO H[FLWH DWRPV WR YDULRXV VWDWHV ZKLFK FDQ EH DQLVRWURSLF (OHFWURQ FORXGV QRW RQO\ FKDQJH WKHLU VL]HV EXW DOVR FKDQJH WKHLU VKDSHV DQG URWDWLRQV ZKLFK LV WHUPHG RUELWDO SRODUL]DWLRQ 7KH VKDSH FKDQJH DQG URWDWLRQ RI WKH HOHFWURQ FORXG DUH FKDUDFWHUL]HG E\ DOLJQPHQW DQG RULHQWDWLRQ 5HFHQW DGYDQFHV LQ H[SHULPHQWDO WHFKQLTXHV KDYH PDGH LW SRVVLEOH WR FRPSOHWHO\ GHWHUPLQH WKH VWDWHV RI VFDWWHUHG DWRPV )RU H[DPSOH LQ WKH ++ H[SHULPHQW >+LSSLHU HW DO @ + H[SHULHQFHV D V WR S H[FLWDWLRQ DQG WKH GLVWULEXWLRQ RI HOHFWURQV RQ P DQG P VWDWHV YDULHV ZLWK WKH FROOLVLRQ HQHUJ\ 7KH RUELWDO SRODUL]DWLRQ UHIOHFWV VRPH RI WKH VSHFLILF DQG VXEWOH DVSHFWV RI WKH FROOLVLRQ SURFHVVHV ZKLFK FDQ QRW EH IXOO\ XQYHLOHG LQ WKH FURVV VHFWLRQ VWXG\ 2EYLRXVO\ NQRZOHGJH RI RUELWDO SRODUL]DWLRQ SURSHUWLHV FDQ RIIHU D GHHSHU LQVLJKW

PAGE 37

LQWR WKH FROOLVLRQ PHFKDQLVP DQG D PRUH GHWDLOHG XQGHUVWDQGLQJ RI WKH G\QDPLFV RI FROOLVLRQV 6XFK D VWXG\ ZLOO DOVR SURYLGH D VHQVLWLYH WHVW WR WKH VFDWWHULQJ WKHRULHV DQG PRGHOV 7KH GHQVLW\ PDWUL[ PHWKRG KDV EHHQ SURYHG WR EH D SRZHUIXO WRRO LQ LQYHVn WLJDWLRQV RI RUELWDO SRODUL]DWLRQ LQ VFDWWHULQJV >)DQR DQG 0DFHN $QGHUVHQ +LSSLHU HW DO @ 8VLQJ WKH ODQJXDJH RI WKH GHQVLW\ PDWUL[ WKH GLDJRQDO HOHPHQWV DUH UHODWHG WR WKH FURVV VHFWLRQ DQG WKH RIIGLDJRQDO HOHPHQWV FRQWDLQ WKH LQIRUPDWLRQ DERXW WKH VKDSH DQG URWDWLRQ RI WKH HOHFWURQ FORXG 8VXDOO\ WKH GHQVLW\ PDWUL[ LV FRQVWUXFWHG WR FDOFXODWH WKH RUELWDO SRODUL]DWLRQ SDUDPHWHUV IRU WKH HOHFWURQ FORXG DVVRFLDWHG ZLWK WKH VFDWWHUHG DWRP ,Q WKLV ZD\ RQH DVVXPHV WKDW WKH HOHFWURQ FORXG FRQWDLQV RQO\ WKH HOHFWURQV LQ WKH RUELWDOV RI WKH VFDWWHUHG DWRPV DQG WKDW WKH FRQWULEXWLRQ IURP WKH WDUJHW HOHFWURQV LV H[FOXGHG 6XFK DQ DSSURDFK LV VXLWDEOH IRU PRVW H[SHULPHQWDO VLWXDWLRQV ZKHUH WKH VFDWWHUHG DWRPV DUH GHWHFWHG IDU DZD\ IURP WKH WDUJHW EXW EHIRUH RU LQ WKH FRXUVH RI GHFD\LQJ IURP WKHLU H[FLWHG VWDWHV +RZHYHU DW VKRUW RU PHGLXP GLVWDQFHV WKH DWRPLF RUELWDOV DUH PL[HG ZLWK WKH VXUIDFH RUELWDOV DQG WKH HOHFWURQ FORXG DVVRFLDWHG ZLWK WKH DWRP FRQWDLQV DOVR WKH FRQWULEXWLRQ IURP WKH VXUIDFH HOHFWURQV 7KH DERYH DSSURDFK GRHV QRW VHHP VDWLVIDFWRU\ IURP RXU WKHRUHWLFDO SRLQW RI YLHZ VLQFH ZH DUH LQWHUHVWHG LQ IROORZLQJ WKH WLPH HYROXWLRQ RI WKH HOHFWURQ FORXG ZKLFK UHTXLUHV WR GHVFULEH WKH RUELWDO SRODUL]DWLRQ RI WKH DWRP DW DOO GLVWDQFHV 7KH GHILQLWLRQV RI WKH RUELWDO SRODUL]DWLRQ SDUDPHWHUV VKRXOG EH FRQVLVWHQW ZLWK WKDW IRU DQ LVRODWHG DWRP DV WKH GLVWDQFH EHWZHHQ WKH DWRP DQG WKH VXUIDFH EHFRPHV LQILQLWHO\ ODUJH

PAGE 38

,Q WKLV &KDSWHU ZH XVH WKH HOHFWURQLF GHQVLW\ PDWUL[ WR GHILQH SDUDPHWHUV FKDUDFWHUL]LQJ WKH RUELWDO SRODUL]DWLRQ 8QOLNH RWKHU VWXGLHV >)DQR DQG 0DFHN 1LHOVHQ DQG $QGHUVHQ @ ZH VWDUW ZLWK WKH HOHFWURQLF GHQVLW\ PDWUL[ RI WKH IXOO V\VWHP LH WKH DWRP SOXV WKH VXUIDFH DQG WKHQ GHILQH WKH RUELWDO SDUDPHWHUV IRU D VXEV\VWHP ZKLFK HLWKHU LV WKH VFDWWHUHG DWRP DORQH RU LV D PROHFXODU FRPSOH[ FRQWDLQLQJ WKH DWRP DQG D SDUW RI WKH VXUIDFH %HFDXVH WKH PL[LQJ EHWZHHQ WKH DWRPLF RUELWDOV DQG WKH VXUIDFH RUELWDOV DUH WDNHQ LQWR DFFRXQW WKH HOHFWURQ FORXG DVVRFLDWHG ZLWK WKH VFDWWHUHG DWRP FRQWDLQV DOVR WKH FRQWULEXWLRQ IURP WKH VXUIDFH HOHFWURQV 7KLV SHUPLWV XV WR H[DPLQH WKH HYROXWLRQ RI WKH HOHFWURQ FORXG DQG JLYHV D G\QDPLF SLFWXUH RI WKH RUELWDO SRODUL]DWLRQ DW DOO WKH GLVWDQFHV GXULQJ WKH FROOLVLRQ $V WKH GLVWDQFH EHWZHHQ WKH DWRP DQG WKH VXUIDFH EHFRPHV YHU\ ODUJH WKH FRQWULEXWLRQ IURP WKH VXUIDFH HOHFWURQV EHFRPHV LQVLJQLILFDQW DQG RXU SRODUL]DWLRQ SDUDPHWHUV IRU WKH DWRP RUELWDOV DUH DV\PSWRWLFDOO\ HTXDO WR WKRVH GHILQHG LQ RWKHU DSSURDFKHV ,Q 6HFWLRQ ZH GHVFULEH WZR FRRUGLQDWH V\VWHPV WKH FROOLVLRQ IUDPH DQG WKH QDWXUDO IUDPH 7KH FROOLVLRQ IUDPH VHHPV VXLWDEOH WR GHVFULEH WKH VFDWWHULQJ WKH QDWXUDO IUDPH LV PRUH FRQYHQLHQW WR SLFWXUH RUELWDO SRODUL]DWLRQ ,Q 6HFWLRQ XVLQJ FRRUGLQDWH WHQVRU RSHUDWRUV ZH GHILQH HOHFWULF PXOWLSROHV ZKLFK SURYLGH D SLFWXUH RI WKH VSDFLDO GLVWULEXWLRQ RI WKH HOHFWURQ FORXG ,Q 6HFWLRQ WKH DOLJQPHQW DQG RULHQWDWLRQ SDUDPHWHUV DUH GHILQHG E\ XVH RI WKH LUUHGXFLEOH WHQVRU RSHUDWRUV DQG H[SUHVVHG WKHP LQ WHUPV RI WKH GHQVLW\ PDWUL[ ,Q 6HFWLRQ WKH SRODUL]DWLRQ SDUDPHWHUV DUH GHILQHG IRU D VXEV\VWHP ZKLFK FRQWDLQV HLWKHU WKH

PAGE 39

VFDWWHUHG DWRP DORQH RU WKH DWRP SOXV D VPDOO SDUW RI WKH VXUIDFH 7KLV LV XVHIXO IRU FRPSDULVRQ ZLWK H[SHULPHQWDO GDWD IURP VSHFWURVFRSLHV 7KH FRQQHFWLRQ EHWZHHQ WKH RUELWDO SRODUL]DWLRQ SDUDPHWHUV IRU D VXEV\VWHP DQG WKDW IRU DQ LVRODWHG DWRP LV GLVFXVVHG &RRUGLQDWH )UDPHV 6LQFH V\PPHWU\ SOD\V DQ HVVHQWLDO UROH LQ WKH VWXG\ RI VFDWWHULQJV DQG RUELWDO SRODUL]DWLRQ LW LV WKH ILUVW WKLQJ RQH VKRXOG ORRN DW ZKHQ FKRRVLQJ D FRRUGLQDWH IUDPH /HWfV FRQVLGHU WKH V\PPHWU\ RI WKH SRUELWDOV 7KH WKUHH HLJHQIXQFWLRQV RI WKH DQJXODU PRPHQWXP RSHUDWRU IRU _SLf _SRf DQG _SBLf FRUUHVSRQG WR WKH PDJQHWLF TXDQWXP QXPEHU P DQG UHVSHFWLYHO\ :H FDQ DOVR XVH WKUHH UHDO SRUELWDO IXQFWLRQV _S[f _S\f DQG _S]f ZKLFK DUH V\PPHWULF DORQJ [ \ DQG ]D[HV UHVSHFWLYHO\ 7KH RUELWDO _S]f _SRf KDV D QHJDWLYH UHIOHFWLRQ V\PPHWU\ ZLWK UHVSHFW WR WKH ;< SODQ DQG RWKHUV KDYH SRVLWLYH UHIOHFWLRQ V\PPHWU\ 7KH FROOLVLRQ SODQH LV GHWHUPLQHG E\ WKH LQFRPLQJ YHORFLW\ YHFWRU YLQ DQG RXWJRLQJ YHORFLW\ YHFWRU YRXW RI WKH SURMHFWLOH )RU DQ DWRPVXUIDFH FROOLVLRQ WKH FROOLVLRQ SODQH LV SHUSHQGLFXODU WR WKH VROLG VXUIDFH 7KH FROOLVLRQ IUDPH ;F $QGHUVHQ @

PAGE 40

)LJXUH 7KH FRRUGLQDWH IUDPHV XVHG IRU WKH GHVFULSWLRQ RI RUELWDO SRODUL]DWLRQ RI WKH HOHFWURQ FORXG 7KH FROOLVLRQ IUDPH ;F
PAGE 41

,Q WKH QDWXUDO IUDPH ;Q $QGHUVHQ @ (OHFWULF 0XOWLSROHV 2QH ZD\ WR GHVFULEH WKH VKDSH RI WKH HOHFWURQ FORXG LV WR FRQVLGHU LWV HOHFWULF PXOWLSROHV )RU WKLV SXUSRVH ZH LQWURGXFH D VHW RI WHQVRU RSHUDWRUV LQ WKH &DUWHVLDQ FRRUGLQDWHV r! ` U f O?I ULM UcUM ZKHUH L M [ \ ] DQG WKH VXSHU LQGLFHV LQ WKH SDUHQWKHVHV LQGLFDWH WKH UDQNV RI WKH WHQVRU RSHUDWRUV 7KH HOHFWULF PXOWLSROHV DUH GHILQHG DV SNf MNff f ZKHUH ,Nf UHSUHVHQWV WKH WHQVRU RSHUDWRU GHILQHG LQ (TXDWLRQ f DQG WKH V\PERO LQGLFDWHV WKH HQVHPEOH DYHUDJH ZKLFK FDQ EH H[SUHVVHG LQ WHUPV RI WKH GHQVLW\

PAGE 42

RSHUDWRU S DQG WKH HOHFWURQLF GHQVLW\ PDWUL[ 3 LQ D EDVLV VHW ^e0` Orf? B$O / 8A f 7ULSf W ZKHUH WKH WUDFH LV RYHU ERWK RUELWDO LQGLFHV S Y DQG VSLQ LQGH[ DQG 6AM LV WKH RYHUODS PDWUL[ HOHPHQW LQ WKLV EDVLV 7KH GHQRPLQDWRU 7UWIf ( ( ( 7 OLY LV WKH WRWDO HOHFWURQLF SRSXODWLRQ DQG Q f Q ( SLVrr f +9 LV WKH DYHUDJH HOHFWURQLF SRSXODWLRQ IRU VSLQ 7KH HOHFWULF PXOWLSROHV FRQWDLQ WKH LQIRUPDWLRQ DERXW WKH VSDFLDO GLVWULEXWLRQ RI WKH HOHFWURQ FORXG )RU N Srf )RU N SOf 7USUMf B f 7USf Q ((S}nL f QX LV WKH FRPSRQHQW RI WKH GLSROH PRPHQW 3 VLQFH WKH HOHFWURQ PDVV LV DXf DQG f A H H rrLf 8+ ML LV WKH FRPSRQHQW RI WKH TXDGUXSROH WHQVRU RI WKH HOHFWURQ FORXG 7KH HOHFWULF PXOWLSROHV FDQ EH GHILQHG HLWKHU LQ WKH FROOLVLRQ IUDPH RU LQ WKH QDWXUDO IUDPH ,W LV DOVR XVHIXO WR GHILQH WKHP LQ D ERG\IL[HG fDWRPLF IUDPHf FHQWHUHG DW WKH VFDWWHUHG DWRP LQ ZKLFK WKH D[HV DUH DORQJ WKH PDMRU D[HV RI WKH HOHFWURQ FORXG DQG WKH TXDGUXSROH PDWUL[ DSSHDUV GLDJRQDO

PAGE 43

$OLJQPHQW DQG 2ULHQWDWLRQ 3DUDPHWHUV $QRWKHU ZD\ WR DQDO\]H WKH RUELWDO SRODUL]DWLRQ LV WR H[DPLQH WKH DQLVRWURS\ RI WKH GLVWULEXWLRQ RI WKH RUELWDO DQJXODU PRPHQWXP RI WKH HOHFWURQ FORXG )RU WKH RUELWDOV RI FHUWDLQ WRWDO DQJXODU PRPHQWXP LI WKH GLVWULEXWLRQV RI WKH RUELWDOV IRU DOO -0f VWDWHV DUH WKH VDPH WKH FORXG LV LVRWURSLF LI WKH RUELWDO GLVWULEXWLRQV RQ WKHVH VWDWHV DUH GLIIHUHQW WKH FORXG LV VDLG WR EH RULHQWHG LI WKH RUELWDO GLVWULEXWLRQ IRU -0f DQG f§ 0f DUH HTXDO EXW GLIIHU IRU GLIIHUHQW PDJQHWLF QXPEHU 0 WKH FORXG LV VDLG WR EH DOLJQHG 7R SUHFLVHO\ GHVFULEH WKHVH SRODUL]DWLRQ SURSHUWLHV ZH GHILQH WKH RULHQWDWLRQ DQG DOLJQPHQW SDUDPHWHUV WKURXJK URWDWLRQDO PRPHQWV >)DQR DQG 0DFHN %OXP @ ,QWURGXFH D VHW RI VSKHULFDO LUUHGXFLEOH WHQVRU RSHUDWRUV f L M  s f f D Mf ZKHUH LV WKH DQJXODU PRPHQWXP RSHUDWRU DQG -] LV LWV ]FRPSRQHQW DQG B DUH WKH UDLVLQJ DQG ORZLQJ RSHUDWRUV 7KH LUUHGXFLEOH WHQVRU RSHUDWRU VDWLVILHV

PAGE 44

WKH IROORZLQJ UHODWLRQV >=DUH @ 7 7 rf rM^r! f : LOK Lf@A f f :H GHILQH WKH RULHQWDWLRQ YHFWRU 2TA DQG WKH DOLJQPHQW WHQVRU $I DV f ?Mf \-f WIH-"ff f $?-f bIL 5Hff f \-f ZKHUH LQGLFDWHV WKH HQVHPEOH DYHUDJH IRU D JLYHQ 8VLQJ WKH GHQVLW\ RSHUDWRU DQG GHQVLW\ PDWUL[ WKH DYHUDJH RI WKH LUUHGXFLEOH RSHUDWRU FDQ EH ZULWWHQ DV B Q f YQ 7KH YHFWRU AT?Mf GHVFULEHV D SUHIHUUHG GLUHFWLRQ RI DQJXODU PRPHQWXP 7KH f WHQVRU $? -f GHVFULEHV WKH SUHIHUUHG VSDWLDO GLVWULEXWLRQ RI DQJXODU PRPHQWXP FRUUHVSRQGLQJ WR HDFK ?0? 2T?Mf LV DOVR FDOOHG WKH RULHQWDWLRQ SDUDPHWHU ,Q WKH QDWXUDO IUDPH LW LV WKH PHDVXUH RI WKH DYHUDJH FRPSRQHQW RI DQJXODU PRPHQWXP SHUSHQGLFXODU WR WKH FROOLVLRQ SODQH -s

PAGE 45

7KH PHDQLQJ RI WKHVH SDUDPHWHUV LV PRUH WUDQVSDUHQW DQG WKH FDOFXODWLRQ LV HDVLHU LQ WKH QDWXUDO IUDPH %XW VRPH FROOLVLRQ SUREOHPV DUH PRUH FRQYHQLHQWO\ GHDOW ZLWK LQ WKH FROOLVLRQ IUDPH 2QH FDQ ILUVW FRQVWUXFW WKH HOHFWURQ GHQVLW\ PDWUL[ LQ WKH FROOLVLRQ IUDPH DQG WKHQ FDOFXODWH RULHQWDWLRQ DQG DOLJQPHQW SDUDPHWHUV LQ WKH QDWXUDO IUDPH DIWHU D IUDPH URWDWLRQ 7KH GHQVLW\ PDWUL[ FRQWDLQV DOO WKH LQIRUPDWLRQ RQ WKH HOHFWURQ VWDWHV DQG FDQ EH XVHG WR GHILQH RWKHU SDUDPHWHU WR GHVFULEH WKH RUELWDO SRODUL]DWLRQ )RU H[DPSOH ZH FDQ GHILQH WKH DOLJQPHQW DQJOH D f ZKLFK PHDVXUHV WKH DQJOH EHWZHHQ WKH PDMRU D[LV RI WKH FRPSRQHQW RI WKH HOHFWURQ FORXG DQG WKH ;Q D[LV &KRRVLQJ WKH EDVLV VHW VXFK WKDW ?L -0 ZH GHILQH IRU >1LHOVHQ DQG $QGHUVHQ @ fOf L>U mff!fM@f@ f DQG IRU rf ?>Q DU3 Af@ f ZKHUH 0 f§0 :H FDQ DOVR GHILQH IRU WKH RFWXSRODU DQJOH VKLIW UM-f )RU LQVWDQFH IRU f DUƒ3f a Rf f 7KH SDUDPHWHUV /s D-f DQG WM-f KDYH SUDFWLFDO PHDQLQJV DQG FDQ EH FRPSDUHG ZLWK H[SHULPHQWDO GDWH WR WHVW WKH WKHRUHWLFDO PRGHO DQG PHWKRGV XVHG LQ REWDLQLQJ WKH GHQVLW\ PDWUL[ >3DQHY HW DO $QGHUVHQ HW DO @

PAGE 46

0XOWLSROHV DQG $OLJQPHQW DQG 2ULHQWDWLRQ 3DUDPHWHUV LQ D 6XEV\VWHP 7KH SDUDPHWHUV GHILQHG DERYH GHVFULEH WKH RUELWDO SRODUL]DWLRQ RI WKH ZKROH V\VWHP 6RPHWLPHV ZH DUH PRUH LQWHUHVWHG LQ WKH RUELWDO SRODUL]DWLRQ RI D VXEV\VWHP )RU H[DPSOH LQ DWRPVXUIDFH FROOLVLRQ H[SHULPHQWV VSHFWURVFRSLHV GHWHFW VFDWWHUHG DWRPV DW WKH GLVWDQFHV ZKHUH WKH LQIOXHQFH RI WKH VXUIDFH LV QHJOLJLEOH DQG RQO\ WKH SRODUL]DWLRQ RI WKH DWRPLF RUELWDOV LV RI LQWHUHVW (YHQ LQ WKH WKHRUHWLFDO GHVFULSWLRQ RI WKH FROOLVLRQ VWDWHV DW VKRUW GLVWDQFH RQO\ D VPDOO SDUW RI WKH VXUIDFH VKRXOG EH WDNHQ LQWR DFFRXQW VLQFH WKH DWRP XVXDOO\ LQWHUDFWV PDLQO\ ZLWK D VPDOO UHJLRQ RI WKH VXUIDFH /HWfV GLYLGH D V\VWHP LQWR D SULPDU\ UHJLRQ DQG D VHFRQGDU\ UHJLRQ ZKLFK DUH ODEHOHG E\ S DQG V UHVSHFWLYHO\ ,Q WKH FDVH RI DWRPVXUIDFH FROOLVLRQV WKH SULPDU\ UHJLRQ FDQ EH FKRVHQ WR FRQWDLQ WKH VFDWWHUHG DWRP DQG D VPDOO SDUW RI WKH VXUIDFH DQG WKH LQWHUDFWLRQ EHWZHHQ WKH DWRPLF VWDWHV DQG WKRVH LQ WKH VHFRQGDU\ UHJLRQ LV DVVXPHG WR EH VPDOO ,Q WKH QDWXUDO IUDPH WKH HQVHPEOH DYHUDJH RI MMcNA IRU WKH ZKROH V\VWHP FDQ EH ZULWWHQ DV f 7KH ODVW WHUP FRPHV IURP WKH VHFRQGDU\ UHJLRQ DQG LV QRW RI LQWHUHVW 7KH VHFRQG DQG WKLUG WHUPV FRQWDLQV WKH PL[LQJ EHWZHHQ WKH SULPDU\ UHJLRQ DQG WKH VHFRQGDU\ UHJLRQ

PAGE 47

%HFDXVH ZH DUH LQWHUHVWHG LQ WKH RUELWDO SRODUL]DWLRQ RI WKH VFDWWHUHG DWRP ZH GHILQH D VHW RI LUUHGXFLEOH RSHUDWRUV f L fL O>f / L O s f f AL f ZKHUH / LV WKH RUELWDO DQJXODU PRPHQWXP RI WKH VFDWWHUHG DWRP /] LWV ] FRPSRQHQW DQG / DQG /B WKH UDLVLQJ DQG ORZLQJ RSHUDWRUV 7KH DYHUDJH RI LV YU OLH$YWS ZKHUH WUDFH LV RYHU WKH VXEVSDFH RI DWRPLF VWDWHV DQG f 7U$Sf ((( F n,f Se$ 9t3 LV WKH DYHUDJH HOHFWURQ SRSXODWLRQ RQ WKH DWRP 7KH FRQWULEXWLRQ WR WKH HOHFWURQ FORXG DVVRFLDWHG ZLWK WKH VHFRQGDU\ UHJLRQ LV QRW LQFOXGHG VLQFH WKH PL[LQJ EHWZHHQ WKH VHFRQG UHJLRQ RUELWDOV DQG WKH DWRPLF VWDWHV LV VPDOO ,Q WKLV ZD\ ZH FDQ GHILQH WKH RULHQWDWLRQ DQG DOLJQPHQW SDUDPHWHUV IRU WKH VFDWWHUHG DWRP DV \// f 5H/>ff f

PAGE 48

$nf/fr PA5H^/"ff f 7KH DOLJQPHQW DQJOH DQG RFWXSRODU DQJOH VKLIW FDQ DOVR EH GHILQHG LQ WKH VLPLODU ZD\ $W VPDOO GLVWDQFH WKH VXUIDFH HOHFWURQV FRQWULEXWH WR WKH DWRPLF RUELWDO SRODUL]DWLRQ $W ODUJH GLVWDQFH PL[LQJ EHWZHHQ WKH DWRPLF RUELWDOV DQG WKH VXUIDFH RUELWDOV EHFRPHV VPDOO DQG WKH VXPPDWLRQ RI Y YDQLVKHV XQOHVV IRU Y f $ WKH SRODUL]DWLRQ SDUDPHWHUV DUH HTXDO WR WKRVH GHILQHG IRU DQ LVRODWHG DWRP

PAGE 49

&+$37(5 /,1($5,=$7,21 2) 7'+) (48$7,216 7KH 7'+) HTXDWLRQ GHYHORSHG LQ &KDSWHU FDQ EH VROYHG VWUDLJKWIRUZDUGO\ RQO\ IRU VLPSOH V\VWHPV UHTXLULQJ VPDOO EDVLV VHWV ,I WKH V\VWHP LV FRPSOLFDWHG WKH 7'+) HTXDWLRQV FDQ LQVWHDG EH VROYHG E\ VRPH OLQHDUL]DWLRQ SURFHGXUHV +RZHYHU RQH KDV WR EH YHU\ FDUHIXO ZKHQ GHYHORSLQJ D OLQHDUL]DWLRQ PHWKRG IRU FDVHV ZKHUH WKH GHQVLW\ PDWUL[ RVFLOODWHV UDSLGO\ ZLWK WLPH VXFK DV LQ FROOLVLRQV DFFRPSDQLHG E\ D FKDUJH WUDQVIHU WKURXJK D QHDUUHVRQDQFH SURFHVV VLQFH WKH VROXWLRQV RI WKH OLQHDUL]HG 7'+) PD\ FRQYHUJH VORZO\ RU QRW FRQYHUJH DW DOO ,Q WKLV FKDSWHU ZH GHVFULEH D ORFDO WLPH OLQHDUL]DWLRQ SURFHGXUH IRU VROYLQJ WKH 7'+) HTXDWLRQV IRU WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU SURFHVV ,W WDFNOHV WKH UDSLG YDULDWLRQ RI WKH GHQVLW\ PDWUL[ E\ GHILQLQJ D WLPHGHSHQGHQW UHIHUHQFH GHQVLW\ PDWUL[ 3Af ,Q VHFWLRQ ZH GHYHORS WKH ORFDO WLPH OLQHDUL]DWLRQ SURFHGXUH IRU D JHQHUDO FDVH DQG REWDLQ D OLQHDUL]HG HTXDWLRQ IRU 3A Lf ZKLFK LV D VROXWLRQ IRU 3Uf ZKHQ WKH LRQ SRVLWLRQ LV IL[HG LQ VSDFH DQG D OLQHDUL]HG HTXDWLRQ IRU PDWUL[ 4Wf ZKLFK LV WKH ILUVW RUGHU FKDQJH RI WKH GHQVLW\ PDWUL[ GXH WR WKH WLPHGHSHQGHQW SHUWXUEDWLRQ FDXVHG E\ WKH QXFOHDU PRWLRQ 7KH IRUPDO VROXWLRQV IRU 3AUf DQG Wf DUH REWDLQHG ZLWK XVH RI DQ H[SRQHQWLDO WUDQVIRUPDWLRQ ,Q VHFWLRQ ZH DSSO\ WKLV SURFHGXUH WR D V\VWHP LQ ZKLFK WKH HOHFWURQHOHFWURQ

PAGE 50

&RXORPE LQWHUDFWLRQ LV LJQRUHG )RU WKLV VSHFLDO FDVH WKH FRHIILFLHQW PDWULFHV LQ WKH HTXDWLRQV RI 3rAIf DQG 47f DUH WLPH LQGHSHQGHQW DQG WKH DQDO\WLFDO VROXWLRQV FDQ EH REWDLQHG 7KH /LQHDUL]DWLRQ 3URFHGXUH ,Q D FROOLVLRQ ZKLFK LQYROYHV FKDUJH WUDQVIHU WKURXJK D QHDUUHVRQDQFH SURFHVV HOHFWURQV MXPS EDFN DQG IRUWK DPRQJ VHYHUDO FORVH HQHUJ\ OHYHOV DQG WKLV OHDGV WR D UDSLG RVFLOODWLRQ RI WKH GHQVLW\ PDWUL[ ,Q WKH FRQWUDVW WKH FKDQJH RI WKH GHQVLW\ PDWUL[ XQGHU WKH WLPHGHSHQGHQW SHUWXUEDWLRQ FDXVHG E\ WKH PRWLRQ RI WKH QXFOHL LV UHODWLYHO\ VORZ :H VHSDUDWH WKH WZR WLPH VFDOHV LQ ZKDW IROORZV )RU D VPDOO WLPH LQWHUYDO LR W? ZH GHILQH D PDWUL[ 3r7Uf WR VDWLVI\ WKH HTXDWLRQ Lf3rIf 6)c3rf 3A:)RAR f DQG WKH LQLWLDO FRQGLWLRQ 3rLf 3If ZLWK )If DQG 6 6Lf +HQFH 3r7 f FDQ EH LQWHUSUHWHG DV D VROXWLRQ RI WKH 7'+) HTXDWLRQ ZKHQ WKH LRQ QXFOHL DUH IL[HG DW 7KH HYROXWLRQ 3r7Uf RVFLOODWHV ZLWK WLPH UHIOHFWLQJ WKH FKDUJH WUDQVIHU DPRQJ WKH HQHUJ\ OHYHOV ZLWK IUHTXHQFLHV SURSRUWLRQDO WR WKH LQYHUVHV RI WKH HQHUJ\ GLIIHUHQFHV RI HQHUJ\ OHYHOV 2Q WKH RWKHU KDQG LI WKH WLPH LQWHUYDO LV VPDOO WKH FKDQJH RI WKH GHQVLW\ PDWUL[ GXH WR WKH QXFOHDU PRWLRQ LV VPDOO 7R JHW D OLQHDUL]HG HTXDWLRQ IRU WKH WKLV FKDQJH ZH GHILQH 4Lf 3Lf3rIf f

PAGE 51

$6f 6f6 f DQG $)f )f ) f )URP f ZH KDYH $)Wf $+ $H*f $Q*f f 7KH PDWULFHV $H* DQG $Q* DUH UHODWHG WR WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ DQG DUH JLYHQ E\ $H"-fLf A *ND:2+0fr f N? DQG $Q*-82 3+? $+0fW SOD f$+N$f f N? ZKHUH A]_F$fL DQG IX??Q?fW DUH WKH &RXORPE DQG &RXORPE V\PPHWUL]HG HOHFWURQ LQWHJUDOV UHVSHFWLYHO\ ZKHQ WKH VFDWWHULQJ DWRPLF FRUH LV DW 5D^f ,QVHUWLQJ (TV ff§f LQWR (T f ZH REWDLQ WR ILUVW RUGHU LQ 4Uf !47 6Ln3M4f: 4nI2)Mf6Lr 6• $+Wf3rLf 3r$+WfI6R 3rf)fRW$6Bf $6Lf)3rLf f 6$H*f3r: 3rf$H*fW6 6T $Q*f3rWf 3rWf$Q*fW6

PAGE 52

7R LQWURGXFH D VKRUWKDQG QRWDWLRQ ZH XVH D GRXEOH LQGH[ QRWDWLRQ WR UHSODFH WKH VLQJOH LQGH[ QRWDWLRQ LQ WKH IROORZLQJ /HW XSSHU FDVH 5RPDQ OHWWHUV UHIHU WR GRXEOH LQGLFHV WKHQ LLf DQG / F$f :LWK WKLV QRWDWLRQ PDWULFHV 3r 4 $H* DQG $f* EHFRPH FROXPQ PDWULFHV 3r 4 $W4 DQG $Q4 'HILQLQJ WZR VTXDUH GRXEOH LQGH[ PDWULFHV ;Wf DQG \Wf VXFK WKDW ;NOrf D +0f f \./rf Wf PN[f f ZH FDQ UHZULWH (TV f DQG f DV DVt e!RrHf \R./4P f / $Q OWf e! ;NLn3O: :.L3SP f / RU LQ WKH PDWUL[ IRUP $H4 ;R4\ \D4n f DQe D[ Sr D\ YR\ f ZKHUH ; ;Wf \Lf DQG $; ;Wf ; f

PAGE 53

t\ \Wf\ L! 7DNLQJ DGYDQWDJH RI XVLQJ WKH GRXEOH LQGH[ QRWDWLRQ WKH OLQHDUL]HG 7'+) HTXDWLRQV f DQG f FDQ EH ZULWWHQ LQ D QHDW IRUP Sr f§AQS2U B_B f§ 9A$A f§ 3Ar f DQG Lt 4nJn 407W J8nW 3 f ZKHUH $ DQG DUH VTXDUH PDWULFHV LQ GRXEOH LQGH[ QRWDWLRQ RU IRXU LQGH[ PDWULFHV LQ VLQJOH LQGH[ QRWDWLRQ ./ ,, ( 6: O0 ;RFm$&f f &r &Y DQG WKH FROXPQ PDWUL[ 3 LV D GULYLQJ WHUP ZLWK HOHPHQWV 3 >6D+ $fJfSr 3rA$+I $Q*Wf6R f f $6f)3r 3A)M$6@A ,I ZH FROOHFW 3r DQG 3r LQWR D FROXPQ PDWUL[ 9R 4 DQG 4 LQWR D FROXPQ PDWUL[ 4 3 DQG 3f LQWR D FROXPQ PDWUL[ 3 DQG OHW $ I $A $n 9An rnn f

PAGE 54

WKHQ (TV f DQG f EHFRPH L9r $9r 9R$ DQG L4 $4 4$I 9 7KHVH DUH WKH OLQHDUL]HG 7'+) HTXDWLRQV IRU WKH GHQVLW\ PDWUL[ LQ IR VKRXOG EH QRWHG WKDW WKH PDWUL[ $ LV JHQHUDOO\ WLPHGHSHQGHQW 7R VROYH WKH DERYH HTXDWLRQV ZH OHW 8W Wf 7>H[S 8W WfA 7>H[S L ZKHUH 7 >H[S^ I f f f`@ GHQRWHV D WLPHRUGHUHG H[SRQHQWLDO H[SDQVLRQ WUDQVIRUPDWLRQV DQG 4Wf 5HSODFLQJ (T f LQWR WKH OHIW KDQG VLGH RI (T f DQG (T WKH OHIW KDQG VLGH RI (T f ZH KDYH L9?Wf $9r 9T$@ L8W Wf9AWf8W IfI f f WWL ,W f f :H FRQVLGHU f f f LQWR f

PAGE 55

DQG L4Wf $4 4$I L8W Wf4YWf8W LfI f &RPSDULQJ WKHP ZLWK WKH ULJKW KDQG VLGH RI (TV f DQG f ZH REWDLQ DQG L4YWf L8^W W4faO9^Wf 8W LfI@ 7KHLU VROXWLRQV DUH 94YWf 98WRf 9?Wf f f f DQG W 4YWf 4YWRfL Mf WR 8VLQJ (TV f DQG f DQG QRWLFLQJ WKDW 4Wf ZH REWDLQ WKH IRUPDO VROXWLRQV IRU 9RWf DQG 4Wf LL f DQG W 4Wf L8WWRf XW?LRfB3Inf >XWn WR W L 8^WWnf9^Wnf8^W WnAGWn f WR

PAGE 56

7KH &DVH ZLWKRXW (OHFWURQ(OHFWURQ ,QWHUDFWLRQ ,Q WKLV VHFWLRQ ZH ZLOO VKRZ WKH XVH RI RXU OLQHDUL]DWLRQ SURFHGXUH E\ DSSO\LQJ LW WR D VSHFLDO FDVH ZKHUH WKH HOHFWURQHOHFWURQ LV LJQRUHG ,Q WKLV FDVH DQG ) + 6LQFH WKH GLIIHUHQW VSLQV DUH WKHQ XQFRUUHODWHG ZH UHWXUQ WR WKH QRWDWLRQ LQYROYLQJ N $ S DQG Y DQG GURS WKH VSLQ LQGH[ WR ZULWH (TV f DQG f DV r3rLf :3rIf 3rIf:I f DQG r4f :4If 4If:I 'nWf f ZKHUH : 6-A+R f +R +IRf f 'nf 6T $+If3rIf 3rIf$+WIf6 f 3rIf+M$6Lf $6BIf+3rIf 8QOLNH LQ WKH JHQHUDO VLWXDWLRQ WKH FRHIILFLHQW PDWULFHV : DQG DUH WLPH LQGHSHQGHQW 7R VROYH WKLV HTXDWLRQ OHW XV FRQVLGHU WUDQVIRUPDWLRQV 3rIf H[S>f§L:W f§ IRf@3'F[S>r:A f§ Wf f

PAGE 57

DQG 4 H[S>f§ :L f@4'LfH[S>I:?W If@ f ,QVHUWLQJ WKHP LQWR (TV f DQG f UHVSHFWLYHO\ ZH JHW HTXDWLRQV IRU 3Gr DQG 4G !3rGf f DQG r4G H[S>L:I f§ IRf@'IfH[S f§ L:?W f§ fM f 7KH ODWWHU KDV D VROXWLRQ RI W 4'f L H[S>:In Rf@'fH[S>:Wn f@An f WR VLQFH 4GRf )URP WKH DERYH HTXDWLRQV ZH FDQ ZULWH WKH IRUPDO VROXWLRQV IRU 3r DQG 4 3rLf H[S>Ln:I f@3rIRfH[S>:WI f@ f DQG 4rf m -H[S>LZWWA'nWn\[S rnf@tn f WR :H DVVXPH WKDW WKH PDWUL[ : FDQ EH GLDJRQDOL]HG E\ D OLQHDU WUDQVIRUPDWLRQ WKDW LV WKHUH H[LVWV D PDWUL[ / VXFK WKDW : /Z/ f

PAGE 58

ZKHUH Z LV D GLDJRQDO PDWUL[ 7KHQ 4Yƒrf a ar /SN NO (/nfW$UW$Mf/f- ;S ZKHUH W UN?SL^WW4f H[S>LZNZcfWWnf@'?SWnfGWn WR f f 7KH IRUPDOLVP GHYHORSHG LQ WKLV VHFWLRQ FDQ EH GLUHFWO\ DSSOLHG WR V\VWHPV ZLWK D IHZ HOHFWURQV :H KDYH XVHG LW WR FDOFXODWHG FKDUJH WUDQVIHU LQ ++ FROOLVLRQV >5XQJH HW DO @ +RZHYHU LW PXVW EH PRGLILHG ZKHQ DSSOLHG WR H[WHQGHG V\VWHPV ,Q &KDSWHU ZH GHVFULEH D SDUWLWLRQLQJ SURFHGXUH ZKLFK VLPSOLILHV WKH WUHDWPHQW RI WKH VFDWWHULQJ RI DWRPV E\ VXUIDFHV

PAGE 59

&+$37(5 3$57,7,21 2) (;7(1'(' 6<67(06 )RU DQ LRQVXUIDFH V\VWHP ZKLFK LQYROYH D JUHDW QXPEHU RI HOHFWURQV WKH 7'+) HTXDWLRQV REWDLQHG LQ &K XVXDOO\ UHTXLUH D KXJH EDVLV VHW 6RPH WHFKQLTXH IRU WUXQFDWLQJ WKH V\VWHP DV ZHOO DV WKH EDVLV VHW PXVW EH GHYHORSHG WR VROYH WKH HTXDWLRQV 3DUWLWLRQLQJ WHFKQLTXHV KDYH EHHQ XVHG WR WUHDW YDULRXV NLQGV RI H[WHQGHG V\VWHPV >/RZGLQ .RQGR +HHJHU $QGHUVRQ @ DQ DSSUR[LPDWLRQ LV WR WUHDW WKH FRQGXFWLRQ HOHFWURQV VXUURXQGLQJ LVRODWHG PDJQHWLF LRQV DV D IUHH HOHFWURQ VHD

PAGE 60

)RU LRQVXUIDFH V\VWHPV LW KDV EHHQ IRXQG WKDW GXULQJ FROOLVLRQV HOHFWURQ UHDUUDQJHPHQW RFFXUV PDLQO\ ZLWKLQ ORFDO UHJLRQV RI VXUIDFHV >*ULPOH\ HW DO 0F'RZHOO @ %DVHG RQ WKLV REVHUYDWLRQ ZH GHVLJQ D SDUWLWLRQLQJ WHFKQLTXH WR WUXQFDWH WKH LRQVXUIDFH V\VWHP LQWR WZR SDUWV DQG WUHDW HOHFWURQLF LQWHUDFWLRQV DQG HOHFWURQLF VWDWH HYROXWLRQ LQ WKHVH SDUWV GLIIHUHQG\ 7KLV SDUWLWLRQLQJ WHFKQLTXH LV VXLWDEOH WR GHDO ZLWK WLPHGHSHQGHQW SURFHVVHV LQ H[WHQGHG V\VWHPV ZLWK D VWURQJ ORFDO FRXSOLQJ ,W UHTXLUHV D VHW RI ORFDOL]HG EDVLV IXQFWLRQV EXW GRHV QRW GHSHQGV RQ WKH FRQFUHWH IRUP RI WKH IXQFWLRQV $OO WKH IRUPDO GHULYDWLRQV LQ WKLV FKDSWHU DUH GRQH ZLWK ORFDOL]HG EDVLV IXQFWLRQV ZKLFK FDQ EH RI DQ\ IRUP ,Q 6HFWLRQ ZH GHVFULEH RXU SDUWLWLRQLQJ PHWKRG DQG GHULYH WKH HIIHFWLYH OLQHDUL]HG 7'+) HTXDWLRQ IRU WKH GHQVLW\ PDWUL[ LQ WKH SULPDU\ UHJLRQ ZKLFK LQFOXGHV D GULYLQJ WHUP FRQWDLQLQJ WKH FRXSOLQJ ZLWK WKH VHFRQGDU\ UHJLRQ ,Q 6HFWLRQ ZH LQWURGXFH DQ DSSUR[LPDWLRQ WR WKH VHFRQGDU\ UHJLRQ DQG WKH FRXSOLQJV EHWZHHQ WKH WZR UHJLRQV ZKLFK HQDEOHV XV WR VROYH WKH HIIHFWLYH 7'+) HTXDWLRQV LQ WKH SULPDU\ UHJLRQ :H DSSO\ WKLV PHWKRG WR D VLPSOH FDVH ZKHUH WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ LV LJQRUHG DQG REWDLQ DQDO\WLFDO VROXWLRQV IRU WKH GHQVLW\ PDWUL[ LQ WKH SULPDU\ UHJLRQ 3DUWLWLRQ 3URFHGXUH :H GLYLGH DQ LRQVXUIDFH V\VWHP LQWR WZR UHJLRQV Lf WKH SULPDU\ UHJLRQ WKDW FRQVLVWV RI WKH VFDWWHULQJ LRQ DQG D VPDOO LPSDFW DUHD RI WKH VXUIDFH ZKHUH WKH SHUWXUEDWLRQ E\ WKH LRQ LV VWURQJO\ IHOW GXULQJ WKH FROOLVLRQ LLf WKH VHFRQGDU\ UHJLRQ ZKLFK FRQVLVWV RI WKH UHPDLQGHU RI WKH VXUIDFH ZKHUH WKH LQIOXHQFH RI WKH

PAGE 61

LRQ LV DVVXPHG WR EH IHOW LQGLUHFWO\ WKURXJK WKH FRXSOLQJ EHWZHHQ WKH HOHFWURQV LQ WKH WZR SDUWV RI WKH VXUIDFH &RQVLGHULQJ D VHW RI ORFDOL]HG EDVLV IXQFWLRQV IRU WKH VROLG DQG WKH LRQ DQG OHWWLQJ S EH WKH LQGH[ RI WKH SULPDU\ UHJLRQ DQG V WKH LQGH[ RI WKH VHFRQGDU\ UHJLRQ WKH PDWUL[ 3r LV ZULWWHQ DV S2 S2 3r SS 3) VS [U VV f DQG RWKHU PDWULFHV DUH SDUWLWLRQHG LQ D VLPLODU ZD\ ,Q WKH FDVH ZKHUH WKH HOHFWURQ HOHFWURQ LQWHUDFWLRQ LV LJQRUHG (TV f DQG f DUH WKHQ VSOLW LQWR HLJKW HTXD WLRQV IRU 3MSLf 3M}: 3MSf ""ff 4SS! 4S}f! 4VS: DQG 4VVf 3rSSf :3S3SSLf 3rSSLfZ-S :S3mSLf 3SO_:MS f c3rSf :SS3MLf 3MSLf:} :S3LLf 3Sf:M 3MS0 :VS3MSIf 3fSLf:rS :f3}SLf 3LLf:_S SfIf ZSSMcf SSLfZM ZfSVLf 3/LfZ4SS 9334SS 4SSIfZSS :S46SLf 4SDLfZ_S 'SSIf r43r ZSS4SrLff§ 4SS2Z-V :f4fLf 4SLf:MV 'S6Lf f f f f f

PAGE 62

4VSZVS43Sf f§ 4VSfZ-S f :VV4VSf 46f:-S 'nSf 4VV ZV34SV 4V32Z-V f :VV4VVf 4VVf:_V 'nVf ZKHUH 'SSIf 'S6If 'ASLf DQG 'J6If DUH WKH VXEPDWULFHV RI Uf GHILQHG LQ (T f )RU H[DPSOH WKH PDWUL[ 'SSIf LV JLYHQ E\ 'fSS: 6LnfSS$+SSLf3SSLf 3rSSf$+WSf6OfSS VfSSA+Scf3}Scf3Scf$+MScf6fSS 6fS$+Sf3MScf 3MS0$+A;6f 6-!f $+ff3rSf 3rSf$+rcf6fVS f 3"SLf+SS$6fSSf $6nfSSf+SS3rSSf 3SSf+S$6fScf $6fSJf+RVS3SSf 3-VnfK/S$6fSSf $6fSSf+fS3SLf 3rSfK/$6fScf $6fSVf+RVV3VSf 7KH SULPDU\ UHJLRQ ZKHUH FKDUJH WUDQVIHU HQHUJ\ WUDQVIHU DQG RWKHU FROOLVLRQ SKHQRPHQD WDNH SODFH LV RXU PDLQ LQWHUHVW %XW VROYLQJ WKH HIIHFWLYH HTXDWLRQV LQ WKH SULPDU\ UHJLRQ (TV f DQG f LV QRW DQ\ HDVLHU WKDQ VROYLQJ WKH RULJLQDO OLQHDUL]HG 7'+) HTXDWLRQV VLQFH WKH\ FRQWDLQ WKH GHQVLW\ PDWUL[ HOHPHQWV LQ WKH VHFRQGDU\ UHJLRQ DQG KDYH WR EH VROYHG VLPXOWDQHRXVO\ ZLWK WKH HTXDWLRQV IRU GHQVLW\ PDWUL[ HOHPHQWV LQYROYHG WKH VHFRQGDU\ UHJLRQ 2EYLRXVO\ VRPH

PAGE 63

DSSUR[LPDWLRQ KDV WR EH PDGH LQ WKH VHFRQGDU\ UHJLRQ WR PDNH WKLV SDUWLWLRQ SURFHGXUH SUDFWLFDO 7KH $SSUR[LPDWLRQ LQ WKH 6HFRQGDU\ 5HJLRQ :KHQ FRQVLGHULQJ WKH VHFRQGDU\ UHJLRQ ZH QRWLFH WKDW GXULQJ WKH FROOLVLRQ WKH FKDUJH H[FKDQJH LV PDLQO\ UHVWULFWHG WR WKH SULPDU\ UHJLRQ 7R XQGHUVWDQG LW OHW XV FRQVLGHU WKH LQWHUDFWLRQ DQG WKH HYROXWLRQ RI WKH HOHFWURQLF VWDWHV LQ WKH WZR SDUWV RI WKH VXUIDFHV LH D VPDOO LPSDFW DUHD RQ WKH VXUIDFH ZKLFK LV FORVH WR WKH VFDWWHULQJ LRQ GXULQJ WKH FROOLVLRQ DQG WKH UHPDLQGHU RI WKH VXUIDFH 'XULQJ WKH FROOLVLRQ WKH LPSDFW DUHD H[SHULHQFHV D VWURQJ DQG WLPHGHSHQGHQW SHUWXUEDWLRQ IURP WKH LRQ DQG WKH HYROXWLRQ RI WKH HOHFWURQLF VWDWHV LQ WKH DUHD LV VLJQLILFDQWO\ DOWHUHG IURP WKDW RI WKH XQSHUWXUEHG VXUIDFH $V WKH UHVXOW FKDUJH LQ WKH LPSDFW DUHD PD\ PRYH WR RU IURP WKH LRQ ,Q WKH UHPDLQGHU RI WKH VXUIDFH WKH GLUHFW LQWHUDFWLRQ ZLWK WKH LRQ LV PXFK ZHDNHU WKH HOHFWURQV LQ WKLV DUHD IHHO WKH HIIHFW RI WKH LRQ LQGLUHFWO\ WKURXJK WKHLU FRXSOLQJ ZLWK HOHFWURQV LQ WKH LPSDFW DUHD %HFDXVH WKH WLPH VFDOH RI FKDUJH UHDUUDQJHPHQW LQ WKH VROLG UUHDU7 LV PXFK ORQJHU WKDQ WKH GXUDWLRQ RI WKH FROOLVLRQ DW WKH VXUIDFH 7FRL DW WKH FROOLVLRQ HQHUJLHV RI SUHVHQW LQWHUHVW WKH HOHFWURQV LQ WKH UHPDLQGHU RI WKH VXUIDFH GR QRW KDYH WLPH WR DGMXVW WR WKH FKDUJH UHDUUDQJHPHQW LQ WKH LPSDFW DUHD DQG WKH HOHFWURQLF VWDWHV IROORZ DSSUR[LPDWHO\ WKH HYROXWLRQ SDWWHUQ RI DQ XQSHUWXUEHG V\VWHP 7KXV LW LV UHDVRQDEOH WR DVVXPH WKDW WKH VHFRQGDU\ UHJLRQ LV EDVLFDOO\ XQSHUWXUEHG E\ WKH LRQ GXULQJ WKH FROOLVLRQ ,Q WKLV DSSUR[LPDWLRQ WKH VXEPDWULFHV RI 4 DVVRFLDWHG ZLWK WKH VHFRQGDU\ UHJLRQ 4SVf 4VSf DQG 4VVLf DUH IRXQG WR EH QHJOLJLEOH

PAGE 64

FRPSDUHG WR 4SS DQG WKH VXEPDWULFHV 3SVIf 3M"SIf DQG 3VV FDQ EH UHSODFHG E\ WKRVH RI WKH XQFRXSOHG V\VWHP 3SVIf 3VSf DQG 3VVf 2WKHU VXEPDWULFHV DUH WUHDWHG LQ WKH VLPLODU ZD\ )RU DQ XQSHUWXUEHG VXUIDFH WKH FRHIILFLHQW RI WKH PROHFXODU RUELWDO KDV WKH IRUP RI FWALQfH[S> LeL ILQf@ ZKHUH VW LV WKH HQHUJ\ RI WKH WK RUELWDO )URP (T f 3QY^Wf f @ n\ @ &_InQfFnLI_nQf L RFF L RFF 3ILL^8Qf $V WKH UHVXOW RI WKHVH DSSUR[LPDWLRQV ZH QHHG WR VROYH RQO\ WKH HIIHFWLYH HTXDWLRQV LQ WKH SULPDU\ UHJLRQ SrSSIf :SS3SSIf 3fLf:WS f DQG ‘4SSm :SS4SSOf 4SSLf:nS 'SSLf f 7KH HTXDWLRQ IRU 4SSIf LV FRXSOHG ZLWK WKH VHFRQGDU\ UHJLRQ WKURXJK WHUPV ZLWKLQ 'SSIf ZKLFK LV 'nSS: 6RASS$+SS03MS: 3SSfA+ASf6S fSS 3SSf+SS$6ffSSLf $6fSSLf+RSS3SSLf f 3rSLMff+WS$6fSSLf $6fSSf+S3}SILff f f

PAGE 65

*LYHQ WKH PDWUL[ HOHPHQWV 6A DQG +R WKH GULYLQJ WHUP 'SSIf FDQ EH FDOFXODWHG DQG WKH GHQVLW\ PDWUL[ LQ WKH SULPDU\ UHJLRQ FDQ EH REWDLQHG HLWKHU DQDO\WLFDOO\ RU QXPHULFDOO\ E\ XVLQJ (TV f DQG f ,W VKRXOG EH SRLQWHG RXW WKDW WKH YDOLGLW\ RI RXU DSSUR[LPDWLRQ LQ WKH VHFRQGDU\ UHJLRQ GHSHQGV RQ WZR IDFWRUV WKH UDWLR RI UFRL7UHDU7 DQG WKH VL]H RI WKH SULPDU\ UHJLRQ )RU PHWDO VXUIDFHV DQG FROOLGLQJ DWRPV ZLWK WKHLU NLQHWLF HQHUJ\ DERYH OH9 UFRLUUHDUU LV VPDOO DQG RXU SDUWLWLRQLQJ SURFHGXUH VKRXOG DSSO\ $V IRU WKH VL]H RI WKH SULPDU\ UHJLRQ WKH ODUJHU WKH SULPDU\ UHJLRQ WKH PRUH DFFXUDWH WKH UHVXOW %XW LQFUHDVLQJ LWV VL]H ZLOO VLJQLILFDQWO\ HQODUJH WKH EDVLV VHW LQ WKH SULPDU\ UHJLRQ DQG LQFUHDVH WKH FRPSXWLQJ WLPH ,Q &K ZH ZLOO GLVFXVV WKH HIIHFW RI WKH SULPDU\ UHJLRQ VL]H LQ PRUH GHWDLO

PAGE 66

&+$37(5 (/(&7521,& %$6,6 )81&7,216 $1' 0$75,; (/(0(176 7KH XVH RI WKH ORFDOL]HG EDVLV IXQFWLRQV LQ WKH SUHVHQW VWXG\ DSSHDUV QHFn HVVDU\ IRU RXU SDUWLWLRQ SURFHGXUH LQWURGXFHG LQ &KDSWHU KRZHYHU WKH UHDO UHDVRQ XQGHUO\LQJ LW LV WKH ORFDO QDWXUH RI WKH SKHQRPHQD DVVRFLDWHG ZLWK VXUn IDFHV )RU H[DPSOH ORFDOL]HG VXUIDFH VWDWHV VXUIDFH DGVRUSWLRQV FKHPLVRUSWLRQ DQG DWRPVXUIDFH FROOLVLRQV KDYH WKHLU HIIHFWV EDVLFDOO\ FRQILQHG WR VPDOO UHJLRQV ([SHULPHQWDO UHVXOWV KDYH DOVR SURYLGHG HYLGHQFH WKDW FKDUJH GHQVLWLHV DQG ORFDO GHQVLWLHV RI VWDWHV ZKLOH UHPDUNDEO\ GLIIHUHQW IURP WKRVH RI EXONV RQ WKH WRS OD\n HUV RI VXUIDFHV TXLFNO\ UHFRYHU WR WKH EXON YDOXHV RQ GHHSHU OD\HUV )RU H[DPSOH WKH HOHFWURQ HQHUJ\ GLVWULEXWLRQ UHVXOWV REWDLQHG IURP WKH LRQ QHXWUDOL]DWLRQ VSHFn WURVFRS\ ZKLFK SUREHV RQO\ WKH WRS OD\HU RI DWRPV VKRZ D TXDOLWDWLYH GLIIHUHQFH IURP WKRVH RI WKH EXON >+DJVWUXP DQG %HFNHU @ EXW WKH UHVXOWV IURP WKH XO WUDYLROHW SKRWRHPLVVLRQ VSHFWURVFRS\ ZKLFK SUREHV DERXW IRXU DWRP OD\HUV DUH HVVHQWLDOO\ GRPLQDWHG E\ WKH EXON GHQVLW\ RI VWDWHV >(DVWPDQ DQG *UREPDQ @ /RFDOL]HG EDVLV IXQFWLRQV KDYH EHHQ XVHG LQ FDOFXODWLQJ HOHFWURQLF VWUXFWXUH RI EXON PDWHULDOV WKH H[DPSOHV DUH :DQQLHU IXQFWLRQV DQG DWRPLFOLNH EDVLV IXQFWLRQV XVHG LQ WKH WLJKWELQGLQJ PHWKRG 7KH ORFDO QDWXUH RI WKH VXUIDFH SKHQRPHQD VXJJHVWV WKDW VRPH RI WKH HOHFWURQLF EHKDYLRUV RI VXUIDFHV FRXOG

PAGE 67

EH PRUH DGYDQWDJHRXVO\ DQG FRQYHQLHQWO\ GHVFULEHG LQ WHUPV RI ORFDOL]HG EDVLV IXQFWLRQV ZKLFK UHWXUQ WR WKH IRUP RI WKH EXON IXQFWLRQV RQ GHHSHU OD\HUV 5HFHQWO\ VRPH ZRUNV KDYH UHSRUWHG XVLQJ DWRPLF RUELWDOV WR FDOFXODWH VXUIDFH HOHFWURQLF SURSHUWLHV 6PLWK DQG KLV FROOHDJXHV XVH D VHW RI DWRPLFOLNH EDVLV IXQFWLRQV WR FDOFXODWH VXUIDFH EDQG VWUXFWXUH IRU WUDQVLWLRQ PHWDOV >6PLWK DQG *D\ 6PLWK HW DO $OLQJKDXV HW DO @ 7KHLU EDVLV IXQFWLRQV DUH FRQVWUXFWHG E\ ILWWLQJ WKHP WR WKH VROXWLRQV IRXQG E\ VROYLQJ WKH .RKQ6KDP HTXDWLRQV >.RKQ DQG 6KDP @ .RKQ DQG 2QIIRU\ LQWURGXFH WKH FRQFHSW RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV ZKLFK FDQ EH XVHG LQ WKH WKHRUHWLFDO VWXG\ DQG FDOFXODWLRQ RI HOHFWURQLF VWUXFWXUHV IRU H[WHQGHG V\VWHPV ODFNLQJ WUDQVODWLRQDO V\PPHWU\ >.RKQ DQG 2QIIUR\ @ 7KHVH IXQFWLRQV DUH ORFDOL]HG RQ WKH ODWWLFH VLWHV DQG DV WKH\ UHVXOW IRUP D XQLWDU\ WUDQVIRUPDWLRQ RI WKH HLJHQIXQFWLRQV RI WKH V\VWHP DUH RUWKRQRUPDO DQG FRPSOHWH *D\ DQG 6PLWK >*D\ DQG 6PLWK @ SURSRVHG D YDULDWLRQ PHWKRG IRU GHWHUPLQLQJ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV ZLWKRXW KDYLQJ WR ILUVW FDOFXODWH WKH HLJHQIXQFWLRQV RI V\VWHPV 7KLV FKDSWHU LV GHYRWHG WR FRQVWUXFWLQJ ORFDOL]HG IXQFWLRQV DV RXU EDVLV IXQFWLRQ VHW IRU DWRPVXUIDFH V\VWHPV ZKLFK FRQVLVWV RI D VHW RI ORFDOL]HG IXQFWLRQV IRU WKH VXUIDFH DQG D VHW RI DWRPLF IXQFWLRQV IRU WKH DWRP DQG WR FDOFXODWLQJ WKH UHOHYDQW PDWUL[ HOHPHQWV LQ WKLV EDVLV $OWKRXJK WKH ORFDOL]HG EDVLV IXQFWLRQV XVHG E\ 6PLWK DQG KLV FROOHDJXHV DUH VXFFHVVIXO LQ JLYLQJ JRRG UHVXOWV IRU WUDQVLWLRQ PHWDOV WKHLU FDOFXODWLRQ DQG DSSOLFDWLRQ DUH FRPSOLFDWHG $V D WHVW RI RXU WLPH GHSHQGHQW PROHFXODU RUELWDO PHWKRG DQG WKH SDUWLWLRQ SURFHGXUH ZH IHHO WKDW D VHW

PAGE 68

RI VLPSOH ORFDOL]HG IXQFWLRQV ZRXOG EH DGHTXDWH DQG KHQFH FKRRVH WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DV D SDUW RI RXU EDVLV VHW ,Q 6HFWLRQ WKH GHILQLWLRQ RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV LV LQWURn GXFHG DQG D YDULDWLRQ SURFHGXUH IRU GHWHUPLQDWLRQ RI WKHVH IXQFWLRQV LV GHVFULEHG ,Q 6HFWLRQ ZH DSSO\ WKH YDULDWLRQ SURFHGXUH WR D MHOOLXP VXUIDFH WR REWDLQ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV )RU FRQYHQLHQFH LQ WKH FDOFXODWLRQ RI WKH PDWUL[ HOHPHQWV WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DUH ZULWWHQ DV OLQHDU FRPELQDWLRQV RI *DXVVLDQV ,Q 6HFWLRQ WKH DWRPLF IXQFWLRQV IRU WKH DWRP DUH FRQVWUXFWHG E\ XVLQJ D SVHXGRSRWHQWLDO IRU WKH 6RGLXP DWRP FRUH ,Q 6HFWLRQ ZH FDOFXODWH WKH PDWUL[ HOHPHQWV RI WKH RYHUODS DQG +DPLOWRQLDQ 6RPH RI WKH GHWDLOV RI WKH FDOFXODWLRQ DUH JLYHQ LQ $SSHQGLFHV $ DQG % *HQHUDOL]HG :DQQLHU )XQFWLRQV 'HILQLWLRQ RI *HQHUDOL]HG :DQQLHU )XQFWLRQV *:)Vf :H ILUVW FRQVLGHU DQ LQILQLWH SHULRGLF V\VWHP ZLWK D +DPLOWRQLDQ +r ,WV HLJHQIXQFWLRQ A/Uf LV D %ORFK IXQFWLRQ ODEHOHG E\ WKH ZDYH YHFWRU N DQG EDQG LQGH[ L DQG VDWLVILHV WKH 6FKURGLQJHU HTXDWLRQ 9f(Uf nccWIIL f ZKHUH LV WKH HLJHQYDOXH DVVRFLDWHG ZLWK L DQG N 7KH IXQFWLRQV DUH WKHQ FROOHFWHG LQ D URZ PDWUL[ f" rrfrr‘f ‘ ff f

PAGE 69

DQG WKH DERYH 6FKURGLQJHU HTXDWLRQ KDV D PDWUL[ IRUP +rArL f ZKHUH (r LV D GLDJRQDO PDWUL[ ZLWK GLDJRQDO HOHPHQWV Hra r LN )RU HDFK HQHUJ\ EDQG RI D SHULRGLF ODWWLFH :DQQLHU IXQFWLRQV DUH GHILQHG E\ >:DQQLHU @ mWR e NH%= ZKHUH 1 LV WKH QXPEHU RI WKH ODWWLFH SRLQWV 5 LV WKH ODWWLFH YHFWRU ODEHOHG E\ D YHFWRU LQGH[ Q WKH VXPPDWLRQ LV RYHU WKH %ULOORXLQ ]RQH 7KH :DQQLHU IXQFWLRQ LV ORFDOL]HG DERXW WKH ODWWLFH SRLQW 5 ,Q PDWUL[ IRUP WKH DERYH WUDQVIRUPDWLRQ FDQ EH ZULWWHQ DV Z" r" 8RW ZKHUH DQG Zr ZLQ ZLQ f f f 6LQFH PDWUL[ 8r LV XQLWDU\ WKH :DQQLHU IXQFWLRQV DUH RUWKRQRUPDO DQG DUH DQ DOWHUQDWLYH VHW RI EDVLV IXQFWLRQV LQ HOHFWURQLF VWUXFWXUH FDOFXODWLRQ >6HH IRU H[DPSOH 6ODWHU DQG .RVWHU @

PAGE 70

)RU D VHPLLQILQLWH VROLG ZLWK LWV VXUIDFH SDUDOOHO WR WKH [\ SODQH LWV +DPLOn WRQLDQ + DQG HLJHQIXQFWLRQ ZKLFK LV FKDUDFWHUL]HG E\ WKH EDQG LQGH[ L DQG WKH ZDYH YHFWRU N VDWLVI\ WKH 6FKURGLQJHU HTXDWLRQ +W[: f ZKHUH He LV WKH HLJHQYDOXH &ROOHFWLQJ WKH IXQFWLRQV mAUf LQ D URZ PDWUL[ WKH DERYH 6FKURGLQJHU HTXDWLRQ FDQ EH ZULWWHQ LQ PDWUL[ IRUP +c ( f ZKHUH ( LV D GLDJRQDO PDWUL[ ZLWK GLDJRQDO HOHPHQWV ,Q WKH IROORZLQJ ZH GURS WKH EDQG LQGH[ ZLWK DQ XQGHUVWDQGLQJ WKDW DOO WKH IXQFWLRQV DQG PDWULFHV LQYROYHG DUH UHIHUUHG WR D SDUWLFXODU EDQG $V D UHVXOWV RI EUHDNLQJ WUDQVODWLRQ V\PPHWU\ LQ WKH GLUHFWLRQ SHUSHQGLFXODU WR WKH VXUIDFH WKH HLJHQIXQFWLRQV DUH QR ORQJHU RI %ORFKW\SH DQG WKH IXQFWLRQV GHILQHG LQ (T f DUH QR ORQJHU PHDQLQJIXO .RKQ DQG 2QIIUR\ SRLQW RXW WKDW LW LV SRVVLEOH WR FRQVWUXFW D VHW RI RUWKRQRUPDO IXQFWLRQV IRU V\VWHPV ZLWK GHIHFWV FDOOHG JHQHUDOL]HG :DQQLHU IXQFWLRQV >.RKQ DQG 2QIIUR\ @ )ROORZLQJ WKHLU LGHD ZH GHILQH WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV RI DQ HOHFWURQLF EDQG DV D XQLWDU\ WUDQVIRUPDWLRQ RI WKH HLJHQIXQFWLRQV RI WKH V\VWHP WKDW LV Z 8 f

PAGE 71

ZKHUH Z ZJ[ ZD f ‘ ff f LV WKH URZ PDWUL[ RI JHQHUDOL]HG :DQQLHU IXQFWLRQV DQG 8 LV D XQLWDU\ PDWUL[ WR EH GHWHUPLQHG 2EYLRXVO\ Z LV RUWKRQRUPDO LH Z_ Zf f ,W KDV EHHQ SURYHG WKDW *HQHUDOL]HG :DQQLHU IXQFWLRQV DUH ORFDOL]HG DERXW f§ WKH ODWWLFH VLWHV 5Uc DQG DUH H[SRQHQWLDOO\ GHFD\LQJ DZD\ IURP WKHLU FHQWHU >.RKQ DQG 2QIIUR\ @ 7KH ZHOOEHKDYHG ORFDOL]DWLRQ SURSHUW\ RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV FRPELQHG ZLWK WKHLU RUWKRQRUPDOLW\ PDNH WKHP SDUWLFXODU XVHIXO WR LQYHVWLJDWH WKH HOHFWURQLF VWUXFWXUHV RU ORFDOL]HG SKHQRPHQD IRU QRQSHULRGLF V\VWHPV *HQHUDOL]HG :DQQLHU )XQFWLRQV DV /LQHDU &RPELQDWLRQV RI *DXVVLDQV )RU WKH SXUSRVH RI SUDFWLFDO DSSOLFDWLRQV ZH ZULWH WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DV OLQHDU FRPELQDWLRQV RI *DXVVLDQ IXQFWLRQV FHQWHUHG DW GLIIHUHQW VLWHV )RU D FHUWDLQ HQHUJ\ EDQG RQO\ *DXVVLDQ IXQFWLRQV ZLWK SURSHU V\PPHWU\ VKRXOG EH XVHG WR FRQVWUXFW WKH JHQHUDOL]HG :DQQLHU IXQFWLRQ 7KXV f P ZKHUH %A LV D FRHIILFLHQW D QOPf LV D FRPSRXQG LQGH[ DQG DP^3DPUf ED
PAGE 72

LV WKH D W\SH *DXVVLDQ SULPLWLYH IXQFWLRQ FHQWHUHG DW 5A ZKHUH
PAGE 73

'HWHUPLQDWLRQ RI *HQHUDOL]HG :DQQLHU )XQFWLRQV 7KH JHQHUDOL]HG :DQQLHU IXQFWLRQV FDQ EH FRQVWUXFWHG IURP WKH HLJHQIXQFWLRQV c!A^If DFFRUGLQJ WR WKHLU GHILQLWLRQ f +RZHYHU RQH RI WKH LPSRUWDQW IHDWXUHV RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV LV WKDW WKH\ FDQ EH GLUHFWO\ GHWHUPLQHG IURP WKH V\VWHP +DPLOWRQLDQ ZLWKRXW KDYLQJ WR NQRZ WKH RULJLQDO HLJHQIXQFWLRQV >.RKQ DQG 2QIIUR\ *D\ DQG 6PLWK @ ZKLFK DOORZV IUHHGRP WR FRQVWUXFW WKHP DV GHVLUHG ,Q WKLV VWXG\ ZH XVH D YDULDWLRQDO SURFHGXUH >*D\ DQG 6PLWK @ WR ILQG WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV Z 6LQFH ( f WKH WRWDO HQHUJ\ RI D EDQG (E <(f f LV D IXQFWLRQDO RI WKH ZfV DQG ZH KDYH XVHG LQ WKH VHFRQG OLQH WKH RUWKRQRUPDOLW\ (T f 7KH YDULDWLRQDO SULQFLSOH SURSRVHG E\ .RKQ DQG 2QIIRU\ >.RKQ DQG 2QIIUR\ @ VD\V WKDW WKH WRWDO HQHUJ\ RI D EDQG DWWDLQV LWV PLQLPXP LI D FRUUHFW VHW RI ZfV LV XVHG 7KXV WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV FDQ EH GHWHUPLQHG E\ PLQLPL]LQJ eIO>Z@ WKDW LV PLQ ^eJ>Z@` e f ZKLOH EHLQJ VXEMHFW WR WKH FRQVWUDLQW (T f

PAGE 74

2QFH Z LV NQRZQ ZH FDQ LQVHUW (T f LQWR WKH HLJHQHTXDWLRQ RI WKH V\VWHP WR KDYH +Z8 Z8( f RU XVLQJ (T f Z_WI_Zf8 8( f 7KLV HTXDWLRQ FDQ EH XVHG WR ILQG WKH PDWUL[ 8 DV ZHOO DV WKH HLJHQIXQFWLRQ I!AUf %\ ZULWLQJ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DV OLQHDU FRPELQDWLRQV RI *DXVVLDQV WKH IXQFWLRQDO eIL>Z@ EHFRPHV D IXQFWLRQ RI AfV 6OLW IR f f ff DQG WKH SUREOHP RI VHDUFKLQJ IRU D VHW RI Z EHFRPHV RQH RI ILQGLQJ D VHW RI RSWLPL]HG AfV LH PLQ >L ffff@r‘ 3L f f f f 3LWIKI 2QH PD\ UHFDOO WKDW WKH DERYH SURFHGXUH IRU ZULWLQJ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DV OLQHDU FRPELQDWLRQV RI *DXVVLDQV LV VLPLODU WR WKRVH XVHG LQ PROHFXODU RUELWDO FDOFXODWLRQ +RZHYHU WKH GLIIHUHQFH LV WKDW WKH *DXVVLDQ IXQFWLRQ RU WKH H[SRQHQW GHSHQG RQ WKH VLWH SRVLWLRQ 5 )RU D VXUIDFH GXH WR WKH SHULRGLFLW\ LQ [ DQG \ GLUHFWLRQV DOO WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV RQ WKH VDPH OD\HU DUH WKH VDPH DQG WKH H[SRQHQW A FKDQJHV RQO\ ZLWK OD\HUV )URP QRZ RQ ZH ZLOO GHQRWH A E\ P] ZKHUH P] LV WKH ] FRPSRQHQW RI WKH YHFWRU LQGH[ P WR LQGLFDWH WKDW LW LV WKH H[SRQHQW IRU WKH P] WK OD\HU

PAGE 75

%HIRUH SURFHHGLQJ WR ILQG LP]fV ZH QRWLFH DQ DV\PSWRWLF EHKDYLRU RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV WKH\ DSSURDFK WKH :DQQLHU IXQFWLRQV RI D SHULRGLF V\VWHP LQ DQ H[SRQHQWLDO PDQQHU DV SURYHG E\ .RKQ DQG 2QIIRU\ >.RKQ DQG 2QIIUR\ @ 7KLV LQGLFDWHV WKDW RQO\ D VPDOO QXPEHU RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV QHHG WR EH GHWHUPLQHG IRU QHDUSHULRGLF ODWWLFHV ZKLFK ORRVH WUDQVODWLRQ V\PPHWU\ RQO\ LQ ORFDO DUHDV RU LQ FHUWDLQ GLUHFWLRQV VXFK DV LPSHUIHFW FU\VWDOV DQG VXUIDFHV )RU D SHUIHFW EXON WKH :DQQLHU IXQFWLRQV UffV RQ DOO WKH VLWHV DUH WKH VDPH DQG KDYH WKH VDPH H[SRQHQW SDUDPHWHU r )RU D VHPLLQILQLWH ODWWLFH ZLWK LWV VXUIDFH DW P] WKH JHQHUDOL]HG :DQQLHU IXQFWLRQ ZAUf DSSURDFKHV ZbUfnV DQG IPM DSSURDFKHV r ZKHQ LV GHHS LQVLGH WKH VXUIDFH 7KHUH H[LVWV D FXWRII 0 VXFK WKDW ZKHQ P]! 0 LW LV IRXQG DSSUR[LPDWHO\ WKDW 3P 3r f 7KH YDULDWLRQ SURFHGXUH f QRZ EHFRPHV QXQ >6OLrfff@ PLQ >LO"L" f f f3Pf? r 3L IRU f f3P f 3K3\nf 3L L3Lf 3P 7KXV RQO\ 0 YDULDWLRQDO SDUDPHWHUV 3L 3 f f f 3P! PXVW EH GHWHUPLQHG 7KH FKRLFH RI WKH QXPEHU 0 GHSHQGV RQ WKH V\VWHP DQG WKH DFFXUDF\ UHTXLUHPHQW RI FDOFXODWLRQV *HQHUDOL]HG :DQQLHU )XQFWLRQV IRU D -HOOLXP 6XUIDFH 7KH PHWKRG GHYHORSHG LQ WKH SUHYLRXV VHFWLRQ FDQ EH DSSOLHG WR FRQVWUXFW JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU DQ\ V\VWHP IRU ZKLFK WKH HIIHFWLYH RQH HOHFWURQ

PAGE 76

+DPLOWRQLDQ LV NQRZQ DOWKRXJK WKH FDOFXODWLRQ RI WKH WKUHH GLPHQVLRQDO PDWUL[ LV D OLWWOH WLPHFRQVXPLQJ >*D\ DQG VPLWK @ ,Q WKLV VHFWLRQ ZH DSSO\ WKH PHWKRG WR D VLPSOH PRGHO D MHOOLXP VODE ZLWK D VWHS SRWHQWLDO $ MHOOLXP LV D V\VWHP ZLWK WKH DWRP FRUH ODWWLFH UHSODFHG E\ DQ XQLIRUP SRVLWLYH FKDUJH EDFNJURXQG DQG DV D UHVXOW LW FRPSOHWHO\ LJQRUHV WKH HIIHFW RI WKH DWRPLF ODWWLFH %HFDXVH RI LWV VLPSOLFLW\ LQ WKH HOHFWURQLF VWUXFWXUH FDOFXODWLRQ MHOOLXP LV RIWHQ XVHG LQ FRQGHQVHG PDWWHU SK\VLFV DV D WHVWLQJ PRGHO IRU WKHRU\ RU PHWKRGV :H DOVR DVVXPH WKDW WKHUH LV RQO\ RQH EDQG DQG XVH ,V W\SH *DXVVLDQV WR FRQVWUXFW JHQHUDOL]HG :DQQLHU IXQFWLRQV :H ILW WKH EDQG SDUDPHWHUV VXFK DV )HUPL OHYHO DQG WKH HQHUJ\ RI WKH ERWWRP RI WKH EDQG WR WKRVH RI :f )RU D ILQLWH MHOOLXP VODE ZLWK D WKLFNQHVV LQ ]GLUHFWLRQ DQG D VWHS SRWHQWLDO = n f§' ] ] f§' 9Uf 9R f WKH +DPLOWRQLDQ LV +"f O9 9Uf f +[[f +\\f +r^]f ZKHUH +[[f DQG +\\f HTXDO WR WKH NLQHWLF HQHUJLHV LQ [ DQG \ GLUHFWLRQV DQG f ZLWK 9]]f 9^Uf f /DEHOLQJ [ \ DQG ] FRPSRQHQWV E\ VXSHUVFULSWV [ \ DQG ] WKH HLJHQIXQFWLRQ I!MUf ZKLFK LV DVVXPHG WR VDWLVI\ F\FOLF ERXQGDU\ FRQGLWLRQV LQ [ DQG \GLUHFWLRQV DQG

PAGE 77

HLJHQYDOXH KDYH WKH IRUPV RI rIf WO-S:NA\:N6rf f DQG (N (Kr (N\ (N f UHVSHFWLYHO\ ,Q $SSHQGL[ & ZH GHVFULEH WKH HYDOXDWLRQ RI WKH )HUPL HQHUJ\ :H QRZ FRQVLGHU DQ DUWLILFLDO FXELF PHVK LQ WKH VODE ZKLFK FRQWDLQV 1V 1[1\1] VLWHV ZLWK D GLVWDQFH G EHWZHHQ VLWHV ZKHUH 1[ 1\ DQG 1] DUH WKH QXPEHUV RI VLWHV LQ [ \ DQG ]GLUHFWLRQV UHVSHFWLYHO\ 7KH JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU WKH VODE DUH DVVRFLDWHG ZLWK VLWHV DQG DUH ZULWWHQ DV ZQUf Z[Q[^[fZ\Q\\fZ]QL^]f f 5HFDOOLQJ (T f WKH PDWUL[ 8 FDQ WKHQ EH ZULWWHQ DV D SURGXFW RI [ \ DQG ] FRPSRQHQW PDWULFHV X X[X\X] f ZLWK 8[ 8\ DQG 8] OHDG WR WKH WUDQVIRUPDWLRQV f \ f f

PAGE 78

UHVSHFWLYHO\ )RU WKLV V\VWHP WKHUHIRUH D WKUHH GLPHQVLRQDO FDOFXODWLRQ LV VLPn SOLILHG WR D RQH GLPHQVLRQDO RQH )RU WKLV V\VWHP WKH [ DQG \FRPSRQHQWV RI WKH HLJHQIXQFWLRQV DUH W!N[ ]H[SLN[[f Y: fG L!. H[SLN\[f f 91Y a WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV LQ WKH [ DQG \GLUHFWLRQV DUH MXVW WKH :DQQLHU IXQFWLRQ IRU SHULRGLF ODWWLFH .$\f 1[ f9G 1[ f§ Of\G VLL VLQ [[f§Q[Gf G VLQ 0UQ[Gf@ 1[OfG VLQ 7\QXGf G VLQ Y\Q\Gf 1[OfG DQG WKH FRPSRQHQW WUDQVIRUPDWLRQ PDWULFHV 8[ DQG ,) DUH --; B QLN] \1[ H[SLN[Q[Gf f f f 8O N QN\ \-1\ H[ SLN\Q\Gf f ,Q WKH ] GLUHFWLRQ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQ IRU Q]WK OD\HU ZA]]f LV ZULWWHQ DV OLQHDU FRPELQDWLRQ RI *DXVVLDQV :Q$=f -%frUQ[P$3UQ]]f f

PAGE 79

ZKHUH WKH QRUPDOL]HG RQH GLPHQVLRQDO *DXVVLDQ IXQFWLRQ LQ WKH ] GLUHFWLRQ P]3P]]f LV FHQWHUHG DW =P] RQ P]WK OD\HU ZLWK DQ H[SRQHQW SP] DQG %] *]f" ZLWK *] J]_J]f WKH RYHUODS PDWUL[ RI *DXVVLDQV LQ WKH ] GLn UHFWLRQ $V GLVFXVVHG LQ WKH SUHYLRXV VHFWLRQ RQO\ WKH H[SRQHQW SDUDPHWHUV RQ WKH ILUVW 0 OD\HUV DUH DVVXPHG WR EH GLIIHUHQW WKDW LV 3? 3WI] 3Q]Lf f f ‘!3Pf§? 3QP} EXW 3P 3PL f f f 3Q]PL ,Q WKH [ DQG \ GLUHFWLRQV WKH :DQQLHU IXQFWLRQV RQ WKH P]WK OD\HU DUH ZULWWHQ DV OLQHDU FRPELQDWLRQV RI RQH GLPHQVLRQDO *DXVVLDQV ZLWK DQ H[SRQHQW SPc )RU H[DPSOH WKH :DQQLHU IXQFWLRQ LQ WKH [ GLUHFWLRQ LV f ZKHUH WKH VXSHUVFULSW P] IRU WKH IXQFWLRQ LV XVHG WR LQGLFDWH WKH OD\HU WKH IXQFWLRQ LV RQ 7KH FRHIILFLHQW PDWUL[ HOHPHQW %r[7Q[3P]f LV REWDLQHG E\ WKH OHDVW VTXDUH SULQFLSOH >6KDYLWW @ E\ ILWWLQJ (T f ZLWK (T f 7KH GHWDLOV RI WKH FDOFXODWLRQ DUH JLYHQ LQ $SSHQGL[ $ )URP (T f WKH WRWDO HQHUJ\ LV (E AmV_+_X!Df Q f f f3Pf ZLWK WKH GHWDLOV RI WKH FDOFXODWLRQ JLYHQ LQ $SSHQGL[ % 0LQLPL]LQJ IW UHVSHFW WR WKH 3nV JLYHV D VHW RI RSWLPL]HG 3nV

PAGE 80

7R GHWHUPLQH WKH PDWUL[ 8] ZH VXEVWLWXWH (T f LQWR WKH HLJHQHTXDWLRQ +9: f WR KDYH f 0XOWLSO\LQJ LW E\ ZA]]fr DQG LQWHJUDWLQJ RYHU ] JLYH WKH HTXDWLRQ IRU WUDQVIRUn PDWLRQ PDWUL[ 8] f 5HVXOWV :H KDYH FDOFXODWHG WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU D ILQLWH MHOOLXP VODE PRGHOLQJ :f ZLWK WKH GHSWK RI WKH SRWHQWLDO ZHOO 9R DX 7KH GLVWDQFH EHWZHHQ VLWHV G LV QRW HTXDO WR WKH ODWWLFH FRQVWDQW RI : DQG LV FKRVHQ WR EH G DX VR WKDW WKH DYHUDJH QXPEHU RI HOHFWURQV LQ WKH YROXPH DVVRFLDWHG ZLWK D VLWH LV RQH 7KH RSWLPXP H[SRQHQWV RI WKH *DXVVLDQV "PM ZKLFK DUH GHWHUPLQHG E\ PLQLPL]LQJ WKH WRWDO HQHUJ\ (T f DUH OLVWHG LQ 7DEOH ,W KDV EHHQ IRXQG WKDW WKH RSWLPXP H[SRQHQW GHFUHDVHV IRU WKH ILUVW FRXSOH RI OD\HUV EXW FKDQJHV YHU\ OLWWOH DIWHU WKH WKLUG OD\HU 7KLV VKRZV WKDW WKH HIIHFW RI WKH VXUIDFH RQ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV LV EDVLFDOO\ OLPLWHG WR WKH VHYHUDO WRS OD\HUV *D\ DQG 6PLWK DOVR ILQG WKDW WKH H[SRQHQWV DUH GLIIHUHQW IURP WKDW

PAGE 81

7DEOH 7KH RSWLPXP *DXVVLDQ H[SRQHQWV IRU WKH ILUVW WKUHH OD\HUV /D\HU )LUVW 6HFRQG 7KLUG P] RI WKH EXON RQO\ RQ WKH WRS WZR RU WKUHH OD\HUV HYHQ WKRXJK WKH\ XVH GLIIHUHQW SRWHQWLDOV >*D\ DQG 6PLWK @ 7KH JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU WKH ILUVW IRXU OD\HUV DUH SORWWHG LQ )LJV DQG DVVXPLQJ "PL IRU P] 7KHVH ILJXUHV VKRZ WKDW WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DUH ZHOO ORFDOL]HG DERXW WKHLU FHQWHUV ZLWK ORQJ GHFD\LQJ WDLOV )RU WKH ILUVW WZR OD\HUV WKH HIIHFW RI WKH VXUIDFH LV VLJQLILFDQW WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DUH DV\PPHWULF DQG WKHLU WDLOV RVFLOODWH OLWGH 2Q PRYLQJ WR WKH GHHSHU OD\HUV WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV DUH PRUH DQG PRUH FKDUDFWHULVWLF RI DQ LQILQLWH EXON )RU WKH IRXUWK OD\HU WKH WDLO RI WKH JHQHUDOL]HG :DQQLHU IXQFWLRQ WRZDUGV WKH FHQWHU RI WKH VODE LV YHU\ VLPLODU WR WKDW RI WKH EXON :DQQLHU IXQFWLRQ $OWKRXJK WKH VXUIDFH LV D VHYHUH SHUWXUEDWLRQ RXU UHVXOWV VKRZ WKDW WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV UDSLGO\ EHFRPH WKH EXON :DQQLHU IXQFWLRQV ZKHQ PRYLQJ DZD\ IURP WKH VXUIDFH ZKLFK LV LQ DJUHHPHQW ZLWK WKH WKHRUHWLFDO SUHGLFWLRQ IRU WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV >.RKQ DQG 2QIIUR\ @ 7R H[DP WKH YDOLGLW\ RI XVLQJ JHQHUDOL]HG :DQQLHU IXQFWLRQV DV EDVLV IXQFWLRQV ZH FRPSDUH WKH HLJHQYDOXHV DQG ZDYHIXQFWLRQV FDOFXODWHG IURP WKHVH IXQFWLRQV ZLWK WKH H[DFW RQHV 7DEOH OLVWV ERWK H[DFW DQG FDOFXODWHG HLJHQYDOXHV )LJV DQG GHSLFW ERWK H[DFW DQG FDOFXODWHG ZDYHIXQFWLRQV IRU (?c]

PAGE 82

DQG IRU VWDWHV M] UHVSHFWLYHO\ 7KH DJUHHPHQWV DUH JRRG IRU DOO WKH HQHUJLHV DQG HVSHFLDOO\ IRU ORZHU HQHUJLHV 6LQFH WKH SRLQWE\SRLQW FRPSDULVRQ RI ZDYHIXQWLRQV LV SUREDEO\ WKH PRVW VWULQJHQW WHVW RI WKH DFFXUDF\ WKH JRRG DJUHHPHQW LQ RXU FDOFXODWLRQ ZLOO DVVXUH WKH DFFXUDF\ LQ WKH FDOFXODWLRQ RI REVHUYDEOHV VXFK DV FKDUJH GHQVLW\ ,Q WKH [ DQG \ GLUHFWLRQV WKH :DQQLHU IXQFWLRQV Zr[[f DQG :Q\\f RQ WKH P]WK OD\HU DUH DSSUR[LPDWHG E\ OLQHDU FRPELQDWLRQV RI *DXVVLDQV ZLWK WKH P]WK OD\HU H[SRQHQW PM 7KH DFFXUDF\ RI WKH DSSUR[LPDWLRQ GHSHQGV RQ WKH QXPEHU RI *DXVVLDQV XVHG ,W LV IRXQG WKDW IRU WKH ODUJHU PL FORVH WR WKH VXUIDFH LQ RXU FDVHf PRUH *DXVVLDQV DUH QHHGHG WR DFKLHYH WKH VDPH DFFXUDF\ )LJV DQG VKRZ WKH H[DFW DQG FDOFXODWHG :DQQLHU IXQFWLRQV IRU WKH ILUVW WKUHH OD\HUV ZKHQ *DXVVLDQV DUH XVHG 7KH FDOFXODWLRQ DQG DSSOLFDWLRQ RI JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU D MHOOLXP VODE UHYHDO VRPH QLFH IHDWXUHV RI WKHVH IXQFWLRQV )LUVWO\ WKH\ DUH ZHOO ORFDOL]HG DERXW WKHLU FHQWHUV ZLWK WKHLU WDLOV FKDUDFWHUL]LQJ WKH WUDQVODWLRQ V\PPHWU\ RI WKH V\VWHPV 7KH IXQFWLRQV UDSLGO\ UHFRYHU WR WKH EXON :DQQLHU IXQFWLRQV DZD\ IURP GHIHFWV RU VXUIDFHV WKXV RQO\ D IHZ JHQHUDOL]HG :DQQLHU IXQFWLRQV QHHG WR EH GHWHUPLQHG 6HFRQGO\ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV FDQ UHSURGXFH WKH ZDYHIXQFWLRQV DQG HLJHQYDOXHV WR D VDWLVIDFWRU\ DFFXUDF\ 7KHVH DWWUDFWLYH IHDWXUHV PDNH JHQHUDOL]HG :DQQLHU IXQFWLRQ VXLWDEOH IRU HOHFWURQLF VWUXFWXUH FDOFXODWLRQV IRU VXUIDFHV RU RWKHU V\VWHPV ZLWK D EURNHQ WUDQVODWLRQ V\PPHWU\ DQG PDNHV WKHP XVHIXO LQ VWXGLHV RI ORFDO SKHQRPHQD

PAGE 83

*:) DPSOLWXGH )LJXUH *HQHUDOL]HG :DQQLHU IXQFWLRQ Z]Q ]f RQ WKH ILUVW OD\HU RI D MHOOLXP VODE ZLWK D VTXDUH ZHOO SRWHQWLDO DQG D SRWHQWLDO GHSWK 9R 7KH VXUIDFHV RI WKH VODE DUH ORFDWHG DW ] DQG ] G ZKHUH G DX LV WKH GLVWDQFH EHWZHHQ OD\HUV

PAGE 84

*:) DPSOLWXGH ] 'f )LJXUH *HQHUDOL]HG :DQQLHU IXQFWLRQ Zf[^]f RQ WKH VHFRQG OD\HU RI D MHOOLXP VODE ZLWK D VTXDUH ZHOO SRWHQWLDO

PAGE 85

*:) DPSOLWXGH ] 'f )LJXUH *HQHUDOL]HG :DQQLHU IXQFWLRQ ZfW]f RQ WKH WKLUG OD\HU RI D MHOOLXP VODE ZLWK D VTXDUH ZHOO SRWHQWLDO

PAGE 86

*:) DPSOLWXGH ] 'f )LJXUH *HQHUDOL]HG :DQQLHU IXQFWLRQ Zf[ ]f RQ WKH IRXUWK OD\HU RI D MHOOLXP VODE ZLWK D VTXDUH ZHOO SRWHQWLDO

PAGE 87

7DEOH ([DFW HLJHQYDOXHV DQG DSSUR[LPDWH HLJHQYDOXHV FDOFXODWHG E\ XVLQJ JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU D VODE ZLWK D VTXDUH ZHOO SRWHQWLDO JLYHQ E\ (T f ([DFW HLJHQYDOXH $SSUR[LPDWH HLJHQYDOXH

PAGE 88

] 'f )LJXUH ([DFW DQG DSSUR[LPDWH ZDYHIXQFWLRQV DVVRFLDWHG ZLWK WKH H[DFW HLJHQYDOXH DX IRU DQ RQHGLPHQVLRQDO VTXDUH ZHOO

PAGE 89

] 'f )LJXUH ([DFW DQG DSSUR[LPDWH ZDYHIXQFWLRQV DVVRFLDWHG ZLWK WKH H[DFW HLJHQYDOXH DX IRU DQ RQHGLPHQVLRQDO VTXDUH ZHOO

PAGE 90

)LJXUH ([DFW DQG DSSUR[LPDWH ZDYHIXQFWLRQV DVVRFLDWHG ZLWK WKH H[DFW HLJHQYDOXH DX IRU DQ RQHGLPHQVLRQDO VTXDUH ZHOO

PAGE 91

:) DPSOLWXGH ['f )LJXUH ([DFW DQG DSSUR[LPDWH :DQQLHU IXQFWLRQV IRU D VODE LQ WKH GLUHFWLRQV SDUDOOHO WR WKH VXUIDFH 7KH ODWWHU LV D OLQHDU FRPELQDWLRQ RI *DXVVLDQV ZLWK DQ H[SRQHQW

PAGE 92

:) DPSOLWXGH )LJXUH ([DFW DQG DSSUR[LPDWH :DQQLHU IXQFWLRQV IRU D VODE LQ WKH GLUHFWLRQV SDUDOOHO WR WKH VXUIDFH 7KH ODWWHU LV D OLQHDU FRPELQDWLRQ RI *DXVVLDQV ZLWK DQ H[SRQHQW

PAGE 93

:) DPSOLWXGH )LJXUH ([DFW DQG DSSUR[LPDWH :DQQLHU IXQFWLRQV IRU D VODE LQ WKH GLUHFWLRQV SDUDOOHO WR WKH VXUIDFH 7KH ODWWHU LV D OLQHDU FRPELQDWLRQ RI *DXVVLDQV ZLWK DQ H[SRQHQW

PAGE 94

$WRPLF %DVLV )XQFWLRQV 6LQFH LQ ORZ HQHUJ\ DWRPVXUIDFH FROOLVLRQV RQO\ WKH YDOHQFH HOHFWURQV RI DWRPV DUH DFWLYHO\ LQYROYHG LQ FKDUJH H[FKDQJH LW LV D JRRG DSSUR[LPDWLRQ WR LJQRUH WKH LQQHUVKHOO HOHFWURQV DQG XVH D SVHXGRSRWHQWLDO IRU WKH DWRPLF FRUH ,Q WKLV VHFWLRQ ZH FRQVWUXFW WKH DWRPLF EDVLV IXQFWLRQV IRU V DQG S RUELWDOV RI 6RGLXP DQG D SVHXGRSRWHQWLDO IRU LWV DWRPLF FRUH :H FKRRVH 6ODWHUW\SH RUELWDOV 672f cfD 9 e 5Df DV EDVLV IXQFWLRQV ZKHUH D V S[ S\ DQG S] e LV WKH H[SRQHQW RI WKH RUELWDOV DQG 5D LV WKH SRVLWLRQ RI WKH DWRPLF FRUH )RU WKH FRQYHQLHQFH RI FDOFXODWLRQ ZH XVH 672.* IXQFWLRQV !D I e 5Df ZKLFK DUH OLQHDU FRPELQDWLRQV RI *DXVVLDQV DQG VDWLVI\ ID U e 5Df • ID U 5$f f DQG DUH LQ WKH IRUP RI W!V J 5Df IDVN ‘ JX J DN 5Df N O f ID3J 5Df A G3nN n : J 5Df f r L ZKHUH M [ \ DQG ] DQG JOV DN 5Df DQG JLSM 9 DN 5Df DUH ,V DQG S W\SH *DXVVLDQ SULPLWLYH IXQFWLRQV UHVSHFWLYHO\ f ? JLVUDN5$f H[SDN?U5D?f f SU!WAf UMH[SDN?U5D?f f

PAGE 95

:H XVH DQG e 7KH GDWD IRU Dr G6fr DQG GS WW >+HKUH HW DO @ DUH OLVWHG LQ 7DEOH 7DEOH &RHIILFLHQWV DQG H[SRQHQWV IRU *DXVVLDQV LQ 672* IXQFWLRQV N 2LN AVN A SN f Of f f Of f Of f f 2YHUODS 0DWUL[ (OHPHQWV 2XU ORFDOL]HG EDVLV VHW FRQVLVWV RI JHQHUDOL]HG :DQQLHU IXQFWLRQV ORFDOL]HG DW WKH VLWHV RI WKH VODE DQG DWRPLF IXQFWLRQV FHQWHUHG DW WKH DWRPLF FRUH RI WKH FROOLGLQJ LRQ DV GHVFULEHG LQ WKH SUHYLRXV VHFWLRQV WKDW LV ^^W!QK ^D`` f 6LQFH ERWK ^A` DQG ^I!D` DUH RUWKRQRUPDO VHWV WKH GLDJRQDO HOHPHQWV RI WKH RYHUODS PDWUL[ 6 DUH DQG DOO WKH RIIGLDJRQDO HOHPHQWV DUH QXOO H[FHSW f6nDAf W!D?!7cf f§ ZKLFK DUH IXQFWLRQV RI WKH DWRPLF FRUH SRVLWLRQ 5D 8VLQJ (TV f f DQG f 6DQLA5$AM A A A ADN%QP*JP FWNW 3P]L 5D L O P f

PAGE 96

ZKHUH *DP AP]" 5DA 5Df ,VDW$2f f LV WKH RYHUODS PDWUL[ RI *DXVVLDQV DQG LV DOVR D IXQFWLRQV RI 5$ +DPLOWRQLDQ DQG ,WV 0DWUL[ (OHPHQWV ,Q WKLV VHFWLRQ ZH FRQVWUXFW WKH RQH HOHFWURQ +DPLOWRQLDQ IRU WKH V\VWHP RI D 1D DWRP DQG D MHOOLXP VODE DQG FDOFXODWH LWV PDWUL[ HOHPHQWV LQ WKH EDVLV GHVFULEHG LQ WKH SUHYLRXV VHFWLRQV 7KH RQHHOHFWURQ +DPLOWRQLDQ RI WKH V\VWHP LV + a9 9$ U 5D90Uf f ZKHUH 9D"5DA LV WKH DWRPLF SRWHQWLDO DQG 9LUf LV WKH SRWHQWLDO RI WKH VODE ZKLFK ZH FKRRVH WR DV WKH RQH JLYHQ E\ (T f +RZHYHU GXH WR WKH XVH RI WKH ORFDOL]HG EDVLV IXQFWLRQV DQG WKH SDUWLWLRQ PHWKRG WKH HIIHFWLYH +DPLOWRQLDQ LQ WKH SULPDU\ UHJLRQ VKRXOG EH UHFRQVWUXFWHG ZKLFK LQFOXGHV WKH FRQVWUXFWLRQ RI WKH SVHXGRSRWHQWLDO IRU WKH DWRPLF FRUH DQG DGGLQJ D FRUUHFWLRQ WHUP WR JHW FRUUHFW HOHFWURQLF FRXSOLQJV 3VHXGRSRWHQWLDO IRU WKH DWRPLF FRUH ,Q WKH SUHVHQW VWXG\ VLQFH ZH DUH QRW LQWHQGLQJ D IXOO DE LQLWLR FDOFXODWLRQ D SVHXGRSRWHQWLDO IRU WKH DWRPLF FRUH LV XVHG IRU 9$ U 5DA WR HOLPLQDWH WKH LQQHUVKHOO HOHFWURQV IURP WKH FDOFXODWLRQ >.DKQ HW DO @ 7KH SVHXGRSRWHQWLDO XVXDOO\ KDV D IRUP RI 9D UDf e \ 5$f f

PAGE 97

ZKHUH ?OPfOP? f LV WKH SURMHFWLRQ RSHUDWRU RQ _OPf DQG WKH IXQFWLRQV 9 FDQ EH FKRVHQ LQ RQH RI PDQ\ SRVVLEOH IRUPV >6]DV] @ DQG XVXDOO\ FRQWDLQ VRPH SDUDPHWHUV ZKRVH YDOXHV DUH FKRVHQ WR JLYH DJUHHPHQW ZLWK HLWKHU WKH UHVXOWV RI DE LQLWLR FDOFXODWLRQ RU ZLWK WKDW RI H[SHULPHQWV ,Q WKLV VWXG\ ZH FKRRVH WKH IRUP VXJJHVWHG E\ 6FKZDUW] DQG 6ZLWDOVNL >6FKZDUW] DQG 6ZLWDOVNL @ f ZKHUH = LV WKH DWRPLF QXPEHU 1H WKH QXPEHU RI HOHFWURQV RI WKH FRUH DQG $ DQG Nc DUH WKH SVHXGRSRWHQWLDO SDUDPHWHUV 7KH ILUVW WHUP LV WKH &RXORPE SRWHQWLDO RI D FKDUJH RI =1H DQG WKH VHFRQG WHUP LV D FRUUHFWLRQ GXH WR WKH HOHFWURQV LQ WKH LQQHU VKHOOV 8VLQJ WKH SVHXGRSRWHQWLDO WKH HLJHQHTXDWLRQ IRU DQ LVRODWHG 1D DWRP LV f :H GHWHUPLQH WKH SDUDPHWHU $c DQG Nc E\ ILWWLQJ WKH HLJHQYDOXHV HD ZLWK WKH H[SHULPHQWDO YDOXHV H6 DX DQG HS f§ DX >&DOODZD\ @ $Qn RWKHU FRQVWUDLQ LPSRVHG ZKHQ FKRRVLQJ WKH SDUDPHWHUV LV WKDW WKH SVHXGRSRWHQWLDOV VKRXOG EHFRPH &RXORPELF DW WKH GLVWDQFH ZKHUH WKH FRUH GLHV RII IRU H[DPSOH DW Uc ZKHUH Uc LV WKH UDGLXV RI RUELWDO +RZHYHU WKH YDULDWLRQ RI SDUDPHWHU $> LV QRW WRR FULWLFDO >6FKZDUW] DQG 6ZLWDOVNL @ DQG FDQ EH FKRVHQ LQ D FHU

PAGE 98

WDLQ UDQJH 7KH SDUDPHWHUV IRU RXU SVHXGRSRWHQWLDO DUH OLVWHG LQ 7DEOH 7KH SVHXGRSRWHQWLDOV IRU V DQG S RUELWDOV DUH SORWWHG LQ )LJ 7DEOH 3VHXGRSRWHQWLDO SDUDPHWHUV IRU V DQG S RUELWDOV RI 1D DWRP $O .> V S $ &RUUHFWLRQ 7HUP WR WKH +DPLOWRQLDQ 7KH SDUWLWLRQ SURFHGXUH GHVFULEHG LQ &K FDQ EH XVHG WR GHVFULEH WKH HYROXWLRQ RI WKH HOHFWURQLF VWDWHV DQG WKH FROOLVLRQDO FKDUJH WUDQVIHU DW VKRUW GLVWDQFHV EHFDXVH RI WKH ORFDO QDWXUH RI WKH SUREOHP %XW LW FRPSOLFDWHV WKH GHVFULSWLRQ RI WKH LQWHUDFWLRQ EHWZHHQ WKH VXUIDFH DQG WKH DWRP ZKHQ WKH DWRP LV IDU DZD\ IURP WKH VXUIDFH DQG WKH HOHFWURQV UHOD[ GXH WR WKH XVH RI WKH ORFDOL]HG EDVLV IXQFWLRQV DQG WKH SDUWLWLRQ RI WKH VXUIDFH ,JQRULQJ WKLV UHOD[DWLRQ ZRXOG LQWURGXFH DQ HUURU $OWKRXJK WKH HUURU LV VPDOO DQG GRHV QRW HIIHFW WKH G\QDPLFV RI HOHFWURQLF VWDWHV WR D JUHDW H[WHQW DW VPDOO GLVWDQFH WKH HUURU DFFXPXODWHG DW ODUJH GLVWDQFHV FRXOG FDXVH SUREOHPV 7KLV HUURU LQGXFHG E\ WKH SDUWLWLRQ FRXOG EH VLJQLILFDQW LQ WKH FDVH RI FROOLVLRQDO QHXWUDOL]DWLRQ RI LRQV 7R UHSUHVHQW WKH UHOD[DWLRQ RI WKH HOHFWURQV LQ WKH ORFDOL]HG EDVLV IXQFWLRQV ZH DGG WR WKH IXOO +DPLOWRQLDQ D FRUUHFWLRQ WHUP 9ORF A APf?;Pf ;P Pe S f

PAGE 99

= DXf )LJXUH 3VHXGRSRWHQWLDOV IRU V DQG S RUELWDOV RI WKH 1D DWRP

PAGE 100

ZKHUH WKH VXPPDWLRQ LV RYHU WKH SULPDU\ UHJLRQ S DQG ;P?+?I?;Pf ZLWK +?L f§ _9 9P WKH +DPLOWRQLDQ RI WKH VODE 7KLV WHUP LV FRQVWUXFWHG VXFK WKDW WKH DV\PSWRWLF YDOXHV RI WKH HOHFWURQLF +DPLOWRQLDQ DUH FRUUHFW :LWK WKLV FRUUHFWLRQ WHUP WKH HIIHFWLYH +DPLOWRQLDQ LQ WKH SULPDU\ UHJLRQ LV + + 9ORF f ZKLFK ZLOO EH XVHG LQ WKH 7'+) FDOFXODWLRQ LQ SODFH RI + +DPLOWRQLDQ 0DWUL[ (OHPHQWV ,Q WKH SULPDU\ UHJLRQ WKH PDWUL[ HOHPHQWV RI WKH +DPLOWRQLDQ (T f DUH RU H[SOLFLWO\ +P A @ A) P*S +DDn f§ +DDn A @ A) f f +nDQ +D W) a AQf6DQ f + +Q &) W f IOLII b Q Qn f 7KH PDWUL[ HOHPHQWV RI + DUH FDOFXODWHG DV IROORZV +DDn D?s9 9$ 90?Dnf D6DDn D f f

PAGE 101

D} 0 LY Y$?f D?YX?f  f WD6DQ ^D?90?f +QQ! Q_ 9 90?Qnf Q_A_Qnf f +DV} ^Q?9$?Qf ZKHUH +P! Q?+0?nf GRHV QRW GHSHQG RQ 5$ 7KH PDWUL[ HOHPHQWV D_9$_Df D_9ML_mf DQG Q_9A_Qf GHSHQG RQ 5$ DQG DUH FDOFXODWHG E\ XVLQJ WKH EDVLV IXQFWLRQV DV OLQHDU FRPELQDWLRQV RI *DXVVLDQV 1HJOHFWLQJ DOO WKH WKUHH FHQWHU LQWHJUDOV ZH IXUWKHU KDYH m_9D.f ?9$?f f :KHQ LW DSSURDFKHV WKH VXUIDFH WKH LRQ FDXVHV FKDUJH UHDUUDQJHPHQW DQG IRUPV DQ LPDJH SRWHQWLDO LQ WKH VROLG ZKLFK LV LPSRUWDQW DW ORZ FROOLVLRQDO HQHUJLHV :KHQ WKH LPDJH SRWHQWLDO LV FRQVLGHUHG WKH FRUUHFWHG +DPLOWRQLDQ LV +n + 9UHDUU f ZKHUH 9UHDUU 9ORF 9LP f 9 Y LP f§ =$ D f

PAGE 102

&+$37(5 ,17(*5$7,21 2) /,1($5,=(' 7'+) (48$7,216 7KH OLQHDUL]DWLRQ SURFHGXUH LQWURGXFHG LQ &K KDV EHHQ LPSOHPHQWHG LQ D FRPSXWDWLRQ FRGH DQG KDV EHHQ XVHG LQ WKH LQWHJUDWLRQ RI 7'+) HTXDWLRQV IRU ERWK DWRPLF V\VWHPV >5XQJH HW DO @ DQG DWRPVXUIDFH V\VWHPV >)HQJ HW DO @ ,Q LWV DSSOLFDWLRQV ZH UHSHDWHGO\ WHVWHG DQG LPSURYHG WKLV SURFHGXUH DQG WKH FRPSXWLQJ SURJUDPV ,Q WKLV FKDSWHU ZH GLVFXVV VRPH RI WKH FRPSXWDWLRQDO DVSHFWV RI RXU DSSOLFDWLRQ RI WKLV SURFHGXUH ,Q 6HFW ZH LQWURGXFH DQ DSSUR[LPDWLRQ IRU WKH GULYLQJ WHUP DQG SUHVHQW WKH DOJRULWKP IRU LQWHJUDWLRQ RI WKH OLQHDUL]HG 7'+) HTXDWLRQV ,Q 6HFW WKH IORZFKDUW RI WKH FRPSXWDWLRQ SURJUDP IRU WKH LQWHJUDWLRQ LV SUHVHQWHG ,Q 6HFW ZH GLVFXVV WKH VWDELOLW\ DQG FRQYHUJHQFH RI WKH VROXWLRQV RI WKH HTXDWLRQV DQG WKH FKRLFH RI VHYHUDO FRPSXWDWLRQDO SDUDPHWHUV 7KH $OJRULWKP IRU 1XPHULFDO ,QWHJUDWLRQ RI 7'+) (TXDWLRQV 7KH OLQHDUL]DWLRQ SURFHGXUH VSOLWV WKH 7'+) HTXDWLRQ LQWR WZR OLQHDUL]HG WLPH GHSHQGHQW GLIIHUHQWLDO HTXDWLRQV LQ D VPDOO WLPH LQWHUYDO W W W? RQH IRU D WLPHGHSHQGHQW GHQVLW\ PDWUL[ UHIHUHQFH 3rWf DQG DQRWKHU IRU WKH FKDQJH RI WKH GHQVLW\ PDWUL[ GXH WR WKH PRWLRQ RI WKH QXFOHXV 4Uf

PAGE 103

2PLWWLQJ WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ WKH FRHIILFLHQW PDWUL[ : RI WKH HTXDWLRQ LV WLPHLQGHSHQGHQW DQG WKH HTXDWLRQ IRU 3rUf (T f KDV WKH IRUPDO VROXWLRQ RI WKH IRUP RI (T f 7KH HTXDWLRQ IRU 4Uf (T f KDV D IRUPDO VROXWLRQ RI (T f ZLWK D NHUQHO 7NASc ZKLFK LV D WLPH LQWHJUDO RI WKH GULYLQJ PDWUL[ 'nWf 6LQFH WKH WLPH LQWHUYDO LV FKRVHQ WR EH VPDOO ZH FDQ DSSUR[LPDWH WKH GULYLQJ WHUP E\ D IXQFWLRQ OLQHDU LQ WLPH WKDW LV 'nIf &rIf f ZKHUH WKH FRHIILFLHQW PDWUL[ & LV JLYHQ E\ & f WLWR 7KH WHUP 'nWf GRHV QRW DSSHDU LQ WKH DERYH HTXDWLRQV VLQFH WKH PDWUL[ 'nLf LV SURSRUWLRQDO WR WKH FKDQJHV LQ WKH WLPH LQWHUYDO $6 DQG $+ DQG 'nf LV DFWXDOO\ ]HUR DV FDQ EH VHHQ IURP (T f 6XEVWLWXWLQJ (T f LQWR (T f ZH KDYH $DS0Rf Lf§f§AH[S>LZN ZcfW WRf` ZN f§ Z f a^H[S>LZN ZcfW If@ ` ZN Zr f &RPSXWDWLRQ 3URJUDP $OO WKH FRPSXWDWLRQ SURJUDPV KDYH EHHQ WHVWHG DQG UXQ RQ 681 ZRUNn VWDWLRQ 681 DQG )36 ($ FRPSXWHUV 7KH IORZFKDUW RI WKH PDLQ SURJUDP RI LQWHJUDWLRQ IRU OLQHDUL]HG 7'+) HTXDWLRQV 7'/,1($5) LV JLYHQ LQ )LJ

PAGE 104

)LJ )ORZFKDUW RI SURJUDP 7'/,1($5) IRU LQWHJUDWLRQ RI WKH OLQHDUL]HG 7'+) HTXDWLRQV

PAGE 105

6WDELOLW\ DQG &RQYHUJHQFH RI WKH 1XPHULFDO ,QWHJUDWLRQ 7KH VROXWLRQV RI 7'+) HTXDWLRQV DUH REWDLQHG E\ LQWHJUDWLRQ RI WKH OLQHDUL]HG HTXDWLRQV LQ VWHSV 6LQFH SRVVLEOH HUURUV LQGXFHG E\ WKH OLQHDUL]DWLRQ DQG WKH DSSUR[LPDWLRQ WKDW WKH GULYLQJ WHUP LV SURSRUWLRQDO WR WLPH GHSHQG RQ WKH LQWHJUDWLRQ WLPH LQWHUYDO LQWHJUDWLRQ KDV WR EH SHUIRUPHG LQ PDQ\ VPDOO VWHSV 7KLV FRXOG FUHDWH D SUREOHP LQ WKDW WKH FRPSXWDWLRQDO HUURUV PD\ EH DFFXPXODWHG LQ WKH FRXUVH RI WKH LQWHJUDWLRQ DQG FDXVH WKH VROXWLRQ XQVWDEOH 7KH SURJUDPV ZH XVHG JLYH VWDEOH UHVXOWV DJDLQVW VPDOO FKDQJHV RI SK\VLFDO DQG FRPSXWDWLRQDO SDUDPHWHUV VXFK DV DWRPVXUIDFH LQWHUDFWLRQ SDUDPHWHUV FROOLVLRQ HQHUJ\ WLPH DQG LQLWLDO DQG ILQDO GLVWDQFHV :H KDYH LQWURGXFHG VHYHUDO FRPSXWDWLRQ SDUDPHWHUV WR WHVW DQG LPSURYH WKH VWDELOLW\ DQG FRQYHUJHQFH RI WKH FRPSXWDWLRQ 7ROHUDQFHV 7R DFKLHYH WKH PLQLPXP HUURU DQG EHWWHU HIILFLHQF\ WKH LQWHJUDWLRQ LV FRQn GXFWHG ZLWK D YDULDEOH WLPH LQWHUYDO $W W?WR ZKHUH WR LV WKH VWDUWLQJ WLPH DQG W? LV WKH HQGLQJ WLPH RI WKH LQWHUYDO $IWHU WKH LQWHJUDWLRQ RYHU RQH VWHS WKH TXRWLHQW ,,4SSrLf____3MSILf__ LV FKHFNHG DJDLQVW D GHVLJQDWHG KLJKHU WROHUDQFH U ,I LW LV IRXQG JUHDWHU WKDQ U WKH SURJUDP UHWXUQV WR WKH RULJLQDO VWDUWLQJ SRLQW WR WR UHSHDW WKH FDOFXODWLRQ ZLWK D VWHS VL]H UHGXFHG WR $W 6XFK SURFHGXUH LV UHSHDWHG DIWHU HDFK LQWHJUDWLRQ XQWLO WKH TXRWLHQW LV OHVV WKDQ U WKHQ WKH SURJUDP SURFHHGV WR SHUIRUP LQWHJUDWLRQ LQ WKH QH[W VWHS ZLWK WKH UHGXFHG VWHS VL]H 7R DFFHOHUDWH WKH FDOFXODWLRQ LQ WKH UHJLRQ ZKHUH WKH VROXWLRQV FKDQJH OLWWOH ZH LQWURGXFH DOVR

PAGE 106

D ORZHU WROHUDQFH VXFK WKDW LI __4SSLf____3S3Lf__ WKH VWHS VL]H LQ WKH QH[W VWHS ZLOO EH GRXEOHG %RWK DQG KDYH EHHQ FDUHIXOO\ FKHFNHG WR DVVXUH WKH FRQYHUJHQFH RI WKH VROXWLRQV :H XVH DQG LQ RXU FDOFXODWLRQV &KHFNLQJ FDOFXODWLRQV ZLWK VPDOOHU WROHUDQFHV DQG U KDYH DOVR EHHQ FRQGXFWHG IRU VHOHFWHG HQHUJLHV :KLOH WKH FRPSXWLQJ WLPH IRU WKH VPDOOHU WROHUDQFHV LV LQFUHDVHG VLJQLILFDQG\ WKH VROXWLRQV IRU WKH 7'+) HTXDWLRQV FKDQJH OLWWOH LQ WKH HQWLUH FROOLVLRQ )RU H[DPSOH 7KH FDOFXODWLRQV ZLWK U DQG UHTXLUHG DQG VWHSV IRU WKH FROOLVLRQDO HQHUJLHV RI DQG DX UHVSHFWLYHO\ WKH FDOFXODWLRQV ZLWK a DQG U a UHTXLUHG DQG VWHSV UHVSHFWLYHO\ ZKLOH WKH HOHFWURQLF SRSXODWLRQV FKDQJHV OHVV WKDQ DX IRU DOO WLPHV ,QLWLDO DQG )LQDO 'LVWDQFHV $OWKRXJK WKH DWRP DQG WKH VXUIDFH DUH UHJDUGHG DV XQFRXSOHG ZKHQ WKH GLVWDQFH EHWZHHQ WKHP LV JUHDWHU WKDQ WKH LQWHUDFWLRQ UDQJH WKH LQLWLDO DQG WKH ILQDO GLVWDQFHV XVHG LQ WKH FDOFXODWLRQ PXVW H[FHHG WKH GLVWDQFHV FKRVHQ E\ SK\VLFDO FRQVLGHUDWLRQV :H KDYH FKHFNHG WKH FRQYHUJHQFH RI WKH UHVXOWV ZKLOH FKDQJLQJ WKH LQLWLDO SRVLWLRQ =f DQG ILQDO SRVLWLRQ =I IRU VHOHFWHG FROOLVLRQDO HQHUJLHV DQG IRXQG WKDW WKH UHVXOWV EHFDPH VWDEOH ZKHQ =f !DX DQG =I DX )RU =cQ DQG =I LQ WKH UDQJH RI DX WKH HOHFWURQLF SRSXODWLRQV YDU\ OHVV WKDQ DX IRU

PAGE 107

FROOLVLRQV HQHUJLHV RI DQG DX :H XVH =LQ DX DQG = LQ RXU FDOFXODWLRQV

PAGE 108

&+$37(5 $33/,&$7,216 7KH WLPHGHSHQGHQW PROHFXODU PHWKRG GHYHORSHG LQ &KDSWHU KDV EHHQ DSn SOLHG WR LRQDWRPLF V\VWHPV WR VWXG\ FROOLVLRQDO FKDUJH WUDQVIHU DQG KDV SURYLGHG XVHIXO LQVLJKW >5XQJH HW DO @ ,Q WKLV &KDSWHU ZH IXUWKHU H[WHQG RXU 7'02 PHWKRG WR LRQVXUIDFH V\VWHPV >)HQJ HW DO @ ZLWK WKH KHOS RI WKH OLQHDUL]DWLRQ SURFHGXUH GHYHORSHG LQ &KDSWHU ,RQVXUIDFH V\VWHPV DUH PXFK PRUH FRPn SOLFDWHG WKDQ DWRPLF V\VWHPV DQG WKH GLUHFW DSSOLFDWLRQ RI WKH 7'02 PHWKRG WR WKHVH V\VWHPV ZLOO OHDG WR DQ LQILQLWH QXPEHU RI WLPHGHSHQGHQW GLIIHUHQWLDO HTXDWLRQV $Q DWWHPSW KDV EHHQ PDGH WR XVH D 7'02 PHWKRG LQ DWRPVXUIDFH VFDWWHULQJV E\ PRGHOLQJ WKH VXUIDFH ZLWK D FOXVWHU >2OVRQ DQG *DUULVRQ @ 7KH SDUWLWLRQ PHWKRG IRU H[WHQGHG V\VWHPV DQG WKH ORFDOL]HG EDVLV IXQFWLRQV ZH KDYH GHYHORSHG SURYLGH D FRQYHQLHQW ZD\ WR WUHDW H[WHQGHG V\VWHPV DQG UHTXLUHV XV WR VROYH RQO\ D IHZ HIIHFWLYH 7'+) HTXDWLRQV 7KH DSSOLFDWLRQ SUHVHQWHG LQ WKLV FKDSWHU LV D FRPELQDWLRQ RI WKH PHWKRGV GHYHORSHG LQ SUHYLRXV FKDSWHUV 2XU SXUSRVH LV WR WHVW WKH 7'02 PHWKRG DQG SDUWLWLRQ SURFHGXUH RQ DQ H[WHQGHG V\VWHP DQG WR GHYHORS D FRPSOHWH DQG SUDFWLFDO PHWKRG IRU LQYHVWLJDWLRQ RI G\QDPLFV LQ DWRPVXUIDFH FROOLVLRQV ,Q RUGHU WR VLPSOLI\ WKH SUREOHP LW LV QHFHVVDU\ WR XVH VRPH DSSUR[LPDWLRQV LQ WKH WUHDWPHQW

PAGE 109

RI WKH PRGHO WUDMHFWRU\ DQG HOHFWURQHOHFWURQ LQWHUDFWLRQ ZKLFK ZLOO EH HODERUDWHG LQ WKH WH[W ,Q 6HFW ZH GHVFULEH WKH PRGHO V\VWHP RI 1D:OO2f DQG FDOFXODWH WKH HOHFWURQLF FRXSOLQJV DQG DWRPVXUIDFH LQWHUDFWLRQ SRWHQWLDOV 6HFW LV GHYRWHG WR WKH WUDMHFWRU\ RI WKH FROOLGLQJ QXFOHXV $ VLPSOH SRWHQWLDO LV XVHG LQ WKH DSSOLFDWLRQ ZKLFK DOORZV DQ DQDO\WLF IRUP IRU WKH WUDMHFWRU\ '\QDPLF DVSHFWV RI WKH V\VWHP VXFK DV LQLWLDO FRQGLWLRQV DQG LQFLGHQW SDUDPHWHUV DUH DOVR GLVFXVVHG ,Q 6HFW ZH GHVFULEH WKH FKDUJH WUDQVIHU SURFHVV LQ WKH FROOLVLRQ ,Q 6HFW ZH SUHVHQW WKH UHVXOWV IRU WKH FKDUJH WUDQVIHU 7KH HYROXWLRQV RI WKH HOHFWURQLF SRSXODWLRQV RI DWRPLF VWDWHV DQG RI WKH VXUIDFH VLWH DUH REWDLQHG E\ SHUIRUPLQJ WKH OLQHDU LQWHJUDWLRQ RI WKH 7'+) HTXDWLRQV 7KH FKDUJH WUDQVIHU DV D IXQFWLRQ RI FROOLVLRQ HQHUJ\ LV FDOFXODWHG 7R IXUWKHU H[SORUH WKH FDXVH XQGHUO\LQJ LWV HQHUJ\ GHSHQGHQFH WKH HOHFWURQLF SRSXODWLRQV DUH H[DPLQHG DV IXQFWLRQV RI WKH LQYHUVH RI WKH LQLWLDO YHORFLW\ RI WKH FROOLGLQJ LRQ 1D:O f 0RGHO 6\VWHP +DPLOWRQLDQ DQG %DVLV )XQFWLRQV 7KH V\VWHP ZH FRQVLGHU FRQVLVWV RI D MHOOLXP VODE GHVFULEHG LQ &K DQG D 1D DWRP 7KH VODE LV ORFDWHG EHWZHHQ f§ ] A ZKHUH LV WKH WKLFNQHVV RI WKH VODE 7KH ORFDWLRQ RI WKH 1D DWRP LV ZKLFK LV D IXQFWLRQ RI WLPH 8VLQJ WKH SDUWLWLRQ PHWKRG GHYHORSHG LQ &K ZH GLYLGH WKH V\VWHP LQWR D SULPDU\ UHJLRQ DQG D VHFRQGDU\ UHJLRQ ZLWK WKH SULPDU\ UHJLRQ FRQVLVWLQJ RI WKH

PAGE 110

1D DWRP DQG RQO\ RQH VLWH RQ WKH VXUIDFH ZKLFK LV WKH RQH DW WKH fLPSDFW SRLQWf DW 5IL f DQG WKH VHFRQGDU\ UHJLRQ EHLQJ WKH UHPDLQGHU RI WKH VXUIDFH 7KH HIIHFWLYH RQH HOHFWURQ +DPLOWRQLDQ LQ WKH SULPDU\ UHJLRQ LV JLYHQ E\ (T f 7KH SRWHQWLDO RI WKH VODE 9P LV DVVXPHG WR EH D VWHS SRWHQWLDO JLYHQ E\ (T f ZLWK D SRWHQWLDO ZHOO GHSWK 9R DX $ SVHXGRSRWHQWLDO IRU WKH DWRPLF FRUH LV XVHG IRU WKH DWRPLF SRWHQWLDO 9 DV GHVFULEHG LQ &K WR HOLPLQDWH WKH LQQHUVKHOO HOHFWURQV 7R VLPSOLI\ WKH FDOFXODWLRQ WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ LV LJQRUHG 7KH VHW RI ORFDOL]HG EDVLV IXQFWLRQV LQFOXGHV WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU WKH VODE FRQVWUXFWHG LQ &K DQG DWRPLF IXQFWLRQV IRU V S[ S\ DQG S] RUELWDOV RI 1D ZKLFK DUH WKH 672* IXQFWLRQV GHVFULEHG LQ &K (OHFWURQLF &RXSOLQJV :H QHJOHFW WKH LPDJH SRWHQWLDO DQG WKH GLIIHUHQWLDO RYHUODS EHWZHHQ WKH DWRPLF EDVLV IXQFWLRQV DQG WKH EDVLV IXQFWLRQV LQ WKH VHFRQGDU\ UHJLRQ VR WKDW 6DU $6fDU +DU $+D PHV f ZKHUH V VWDQGV IRU WKH VHFRQGDU\ UHJLRQ 7KH PDWUL[ HOHPHQWV RI +DPLOWRQLDQ (T f DUH FDOFXODWHG LQ &K 7KH RIIGLDJRQDO +DPLOWRQLDQ PDWUL[ HOHPHQWV EHWZHHQ WKH DWRPLF RUELWDOV DQG EHWZHHQ WKH DWRPLF RUELWDOV DQG VXUIDFH VLWH DUH UHODWHG WR WKH HOHFWURQLF FRXSOLQJV ZKLFK GHWHUPLQH FKDUJH UHDUUDQJHPHQW GXULQJ WKH FROOLVLRQ ,Q )LJ WKH PDWUL[ HOHPHQWV +n DQG +n DUH SORWWHG DV IXQFWLRQV RI WKH GLVWDQFH EHWZHHQ WKH DWRPLF FRUH DQG WKH VXUIDFH

PAGE 111

ZLWK ERWK WKH DWRPLF FRUH DQG WKH VODE VLWH RI WKH SULPDU\ UHJLRQ RQ WKH ]D[LV 7KH FRXSOLQJV EHWZHHQ S[ RU S\ DQG DUH ]HUR E\ V\PPHWU\ DQG DUH QRW SORWWHG $W ODUJH GLVWDQFHV IURP WKH VXUIDFH WKH DWRP EHKDYHV MXVW OLNH DQ LVRODWHG RQH DQG WKH RIIGLDJRQDO HOHPHQWV EHWZHHQ WKH DWRPLF RUELWDOV RI GLIIHUHQW V\PPHWU\ DUH ]HUR $V WKH DWRP JHWV FORVH WR WKH VXUIDFH WKH LQIOXHQFH RI WKH VXUIDFH EHJLQV WR EH IHOW DQG WKH DPSOLWXGHV RI WKHVH HOHPHQWV EHJLQ WR LQFUHDVH 7KH ILJXUH VKRZV WKDW WKH UDQJH RI WKH HOHFWURQLF FRXSOLQJV LV DERXW DX 7KH FRXSOLQJV DUH ODUJH DV WKH GLVWDQFH GHFUHDVHV EHORZ DX FRQVHTXHQWO\ D VWURQJ RUELWDO PL[LQJ DQG FKDUJH WUDQVLWLRQ PD\ RFFXU $WRP6XUIDFH ,QWHUDFWLRQ 3RWHQWLDOV DQG 7UDMHFWRU\ $WRP6XUIDFH ,QWHUDFWLRQ 3RWHQWLDOV :H DVVXPH WKDW WKH DWRPVXUIDFH LQWHUDFWLRQ SRWHQWLDO FRQWDLQV FRQWULEXWLRQV IURP WZR SDUWV WKH LQWHUDFWLRQ EHWZHHQ WKH VXUIDFH DQG WKH EDUH FRUH RI WKH DWRP DQG WKH DYHUDJH HOHFWURQLF HQHUJ\ 'HSHQGLQJ RQ WKH FKDUJH VWDWHV WKH LQWHUDFWLRQ SRWHQWLDO KDV GLIIHUHQW IRUPV )RU WKH LRQ SOXV VXUIDFH WKH SRWHQWLDO LV 9]D tDf 9FF 5Df + R Rf f ZKHUH 9FFA5DA LV WKH LQWHUDFWLRQ SRWHQWLDO EHWZHHQ WKH LRQ FRUH DQG WKH VXUIDFH DQG LV FKRVHQ WR EH D %RP0D\HU W\SH SRWHQWLDO >+XOSNH DQG 0DQQ @ 9FF5Df 9? H[SD?$ 5_f f P6S ZLWK WKH %RP0D\HU SDUDPHWHUV 9 DX DQG D DX ZKHUH WKH VXPPDn WLRQ LV RYHU WKH SULPDU\ UHJLRQ 7KH WHUP +n 2M [WI_n_[Rf LV WKH GLDJRQDO

PAGE 112

&RXSOLQJ HQHUJ\ DXf )LJXUH &RXSOLQJ HQHUJLHV EHWZHHQ WKH DWRPLF RUELWDOV DQG WKH VXUIDFH VLWH 7KH VLWH DQG WKH DWRPLF FRUH DUH RQ WKH ]D[LV DQG LV RQ WKH ILUVW OD\HU DW 5

PAGE 113

PDWUL[ HOHPHQW RI WKH HIIHFWLYH +DPLOWRQLDQ FRUUHVSRQGLQJ WR WKH VXUIDFH VLWH LQ WKH SULPDU\ UHJLRQ :KHQ DQ HOHFWURQ LV WUDQVIHUUHG WR RQH RI WKH DWRPLF RUELWDOV WKH DWRPVXUIDFH LQWHUDFWLRQ SRWHQWLDO LV JLYHQ E\ 9($^Df 5Df 9FFUDf +?DDf f ZKHUH D LV V S[ S\ RU S] DQG +nDDf ^[D?+n?[Df )LJ SORWV WKH LQWHUDFWLRQ SRWHQWLDOV RI 9A$A5-9H$VfA5D9]$S]f 5Df DQG 9M@ $S[f 5Df DV IXQFWLRQV RI WKH GLVWDQFH EHWZHHQ WKH 1D Uf LV QRW VKRZQ LQ WKH DWRPLF FRUH DQG WKH :f VXUIDFH 3RWHQWLDO 9Y$SDf ILJXUH VLQFH LW LV HTXDO WR 9A $^S[f tf f $V RQH FDQ VHH IURP WKH ILJXUH WKH FRQn WULEXWLRQ WR WKH WRWDO SRWHQWLDO IURP WKH HOHFWURQLF HQHUJ\ ZKLFK FRQWDLQV WKH LQWHUn DFWLRQ EHWZHHQ HOHFWURQV DQG WKH VXUIDFH SRVLWLYH EDFNJURXQG DQG WKH DWRPLF FRUH LV QHJDWLYH EXW LWV DPSOLWXGH YDULHV ZLWK WKH VWDWHV ,Q FDVH RI Sr DQG S\ RUELWDOV WKH HOHFWURQLF HQHUJLHV DUH YHU\ VPDOO DQG 9]$S[f ‹Df DQG 9]$Scf UDf DUH FORVH WR WKH FRUHFRUH SRWHQWLDO 9FF5Df )RU RWKHU FDVHV WKH SRWHQn WLDO FKDQJH GXH WR WKH LQWHUDFWLRQ EHWZHHQ HOHFWURQV DQG WKH VODE SRWHQWLDO RU WKH DWRPLF SRWHQWLDO DUH VWURQJ DW VKRUW GLVWDQFH 7KH LRQVXUIDFH SRWHQWLDO 9\D ADf r ZKLFK LV EHORZ WKH DWRPVXUIDFH SRWHQWLDO DW ODUJH GLVWDQFHV FURVVHV 9]DVf5Df DQG 9W$3]f5DA DW DERXW ] DX DQG VWD\V KLJKHU DV WKH GLVWDQFH GHFUHDVHV 7UDMHFWRU\ 7KH WUDMHFWRU\ RI WKH SURMHFWLOH LQ WKH FROOLVLRQ SUREOHP KDV D VLJQLILFDQW HIIHFW RQ WKH G\QDPLFV RI WKH HOHFWURQLF VWDWHV ,Q &K ZH KDYH GLVFXVVHG

PAGE 114

)LJXUH ,RQVXUIDFH SRWHQWLDO IRU 9A$ >5DDWRPVXUIDFH SRWHQWLDOV IRU 9HMf A5D f 9V$Sf DQA A(Sf +

PAGE 115

DW OHQJWK WKLV VXEMHFWV DV ZHOO DV WKH PHULWV DQG WKH DSSOLFDWLRQV RI D YDULHW\ RI DSSURDFKHV )RU WKH UDQJH RI FROOLVLRQ HQHUJ\ RI WKH 1D DWRP ZH DUH LQWHUHVWHG LQ WKH WUDMHFWRU\ RI WKH QXFOHXV FDQ EH WUHDWHG DV D FODVVLFDO RQH ZKLFK FRXSOHV ZLWK WKH HOHFWURQLF GHJUHHV RI IUHHGRP RI PRWLRQ )RU H[DPSOH IURP WKH DWRPVXUIDFH SRWHQWLDOV GHVFULEHG DERYH RQH FDQ FRQVWUXFW DYHUDJH SRWHQWLDO HQHUJ\ FXUYHV FRUUHVSRQGLQJ WR YDULRXV FRQILJXUDWLRQV WR REWDLQ D QXFOHDU WUDMHFWRU\ ZKLFK GHSHQGV RQ WKH FKDUJH VWDWHV RI WKH DWRP 7KH HIIHFW RI WKH FRXSOLQJ EHWZHHQ WKH HOHFWURQLF PRWLRQ DQG WKH QXFOHDU PRWLRQ FDQ DOVR EH WDNHQ LQWR DFFRXQW E\ LQWURGXFLQJ DQ HIIHFWLYH SRWHQWLDO UHODWLQJ WR WKH FRXSOLQJ >5XQJH HW DO @ $OWKRXJK D WKRURXJK VWXG\ RI WKH WUDMHFWRU\ DQG LWV HIIHFWV RQ WKH FKDUJH WUDQVIHU LV D YDOXDEOH DQG LQWHUHVWLQJ WRSLF ZH QHJOHFW WKH FRXSOLQJ EHWZHHQ WKH QXFOHDU PRWLRQ DQG WKH HOHFWURQLF GHJUHHV RI IUHHGRP RI PRWLRQ WR FRQFHQWUDWH RQ WKH 7'+) PHWKRG ,QVWHDG ZH XVH D VLPSOH WUDMHFWRU\ IRU WKH FROOLGLQJ DWRP FRUH ZKLFK LV GHWHUPLQHG E\ DQ DWRPVXUIDFH FRUHFRUH LQWHUDFWLRQ SRWHQWLDO 7KLV LV MXVWLILHG IRU WKH K\SHUWKHUPDO FROOLVLRQ HQHUJLHV RI SUHVHQW LQWHUHVW )RU WKH VDPH UHDVRQ ZH QHJOHFW WKH LPDJH SRWHQWLDO LQ WKH PHWDO ,Q WKLV FDVH WKH WUDMHFWRU\ KDV D SUHVFULEHG IRUP DQG GRHV QRW GHSHQG RQ WKH HOHFWURQLF VWDWH RI WKH DWRP /HW W ZKHQ =? LV D PLQLPXP WKHQ WKH WUDMHFWRU\ LV f

PAGE 116

ZKHUH PD LV WKH PDVV RI WKH DWRP UQ LV WKH LQLWLDO WLPH DQG Y[ Y\ DQG Y] DUH WKH [ \ DQG ] FRPSRQHQWV RI WKH LQLWLDO YHORFLW\ RI WKH QXFOHXV UHVSHFWLYHO\ 7KH FORVHVW GLVWDQFH IURP WKH VXUIDFH WKH DWRP FDQ JHW WR LV GHFLGHG E\ Y] DQG LV JLYHQ E\ =r1WQ AOQ f ,Q )LJ ZH VKRZ WUDMHFWRULHV RI WKH 1D DWRP ZLWK WKH LQLWLDO NLQHWLF HQHUJLHV RI DQG DX DQG D QRUPDO LQFLGHQW DQJOH 7KH LQLWLDO GLVWDQFH DQG WKH ILQDO GLVWDQFH EHWZHHQ WKH DWRP DQG WKH VXUIDFH DUH FKRVHQ VXFK WKDW IXUWKHU LQFUHDVHV LQ HLWKHU ZLOO QRW DIIHFW FKDUJH WUDQVIHU ,W KDV EHHQ IRXQG WKDW LW LV HQRXJK WR XVH DX IRU ERWK LQLWLDO DQG ILQDO GLVWDQFHV IRU DOO HQHUJLHV :H FRQVLGHU RQO\ WKH LQFLGHQFH QRUPDO WR WKH VXUIDFH LQ WKLV VWXG\ &KDUJH 7UDQVIHU ,Q WKH FRXUVH RI WKH FROOLVLRQV WKH 1D LRQV DSSURDFK FROOLGH ZLWK WKH VXUIDFH DQG WKHQ UHFHGH DORQJ WKHLU FODVVLFDO WUDMHFWRU\ ,Q WKH PHDQWLPH HOHFWURQV LQWHUDFW DQG HYROYH TXDQWXP PHFKDQLFDOO\ %\ WKH WLPH WKH FROOLVLRQV DUH RYHU WKH FKDUJHV KDYH EHHQ FRQVLGHUDEO\ UHDUUDQJHG DQG VRPH RI WKHP WUDQVIHUUHG WR WKH LRQV )RU WKRVH QHXWUDOL]HG LRQV D YDULHW\ RI SRVVLEOH HOHFWURQLF VWDWHV PD\ EH SRSXODWHG ZKLFK OHDGV WR WKH DWRPLF RUELWDO RULHQWDWLRQ DQG DOLJQPHQW )RU WKH QRUPDO LQFLGHQFH E\ WKH LRQ WKHUH LV QR RUELWDO SRODUL]DWLRQ DORQJ [ RU \ D[HV VLQFH WKH RQO\ QRQ]HUR FRXSOLQJV LQ WKLV FDVH DUH WKRVH EHWZHHQ WKH VXUIDFH VWDWH DQG WKH V DQG S] RUELWDOV 7KH WZR EDVLF PHFKDQLVPV IRU FKDUJH WUDQVIHU LQ DWRPVXUIDFH FROOLVLRQV DUH WKH QHDUUHVRQDQFH SURFHVV DQG WKH $XJHU SURFHVV ,Q WKH PRGHO ZH DUH VWXG\LQJ VLQFH WKH HQHUJLHV RI WKH DWRPLF VWDWHV SDUWLFLSDWLQJ LQ WKH FKDUJH WUDQVIHU DUH LQ WKH

PAGE 117

W DXf )LJXUH 7UDMHFWRULHV IRU WKH 1D DWRP ZLWK WKH LQLWLDO NLQHWLF HQHUJLHV RI DQG DX DQG D QRUPDO LQFLGHQW DQJOH 7LPH W LV VHW WR ]HUR ZKHQ WKH DWRP LV DW WKH FORVHVW GLVWDQFH IURP WKH VXUIDFH

PAGE 118

UDQJH RI WKH HOHFWURQLF EDQG RI WKH VXUIDFH DW DOO GLVWDQFHV WKH FKDUJH WUDQVIHU LQ WKH V\VWHP LV H[SHFWHG WR EH GRPLQDWHG E\ WKH QHDUUHVRQDQFH SURFHVV 7KXV ZH DVVXPH WKDW WKH $XJHU SURFHVV LV QHJOLJLEOH DQG RQO\ WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU SURFHVV WDNHV SODFH LQ WKH FROOLVLRQ 7KH IDFW WKDW DOO WKH SRWHQWLDO HQHUJLHV DUH FORVH DW VPDOO GLVWDQFHV DV VKRZQ LQ )LJ MXVWLILHV RXU DVVXPSWLRQ WKDW WKH QHDUUHVRQDQFH SURFHVV LV WKH GRPLQDQW FKDUJH WUDQVIHU PHFKDQLVP 7KH GHQVLW\ PDWUL[ HOHPHQWV IRU DQ LVRODWHG VXUIDFH DW WHPSHUDWXUH 7 2. DUH f ZKHUH WKH PDWUL[ 8 LV GHILQHG LQ &K DQG ,FI LV WKH ZDYH YHFWRU FRUUHVSRQGLQJ WR WKH )HUPL HQHUJ\ ZKLFK LV HYDOXHG LQ $SSHQGL[ & 6LQFH WKH VXUIDFHV RI WKH MHOOLXP VODE FRQVLGHUHG KHUH DUH SDUDOOHO WR WKH [\ SODQ (TV f DQG f FDQ EH XVHG WR VLPSOLI\ WKH FDOFXODWLRQ $W WKH LQLWLDO WLPH WKH VXUIDFH DQG WKH DWRP DUH QRW FRXSOHG GXH WR D YHU\ ODUJH LQLWLDO GLVWDQFH EHWZHHQ WKHP :H DVVXPH ERWK WKH VXUIDFH DQG WKH LRQ DUH LQ WKHLU JURXQG VWDWHV LQLWLDOO\ WKLV OHDGV WR 3DDeWQf DQG 3DMLQf A WKH RQO\ QRQ]HUR GHQVLW\ PDWUL[ HOHPHQW LQ WKH SULPDU\ UHJLRQ LV 3r^8Qf 3W $SSO\LQJ WKH SDUWLWLRQ PHWKRG GHYHORSHG LQ &K DQG WKH OLQHDUL]DWLRQ SURFHGXUH GHYHORSHG LQ &K ZH FRPH XS ZLWK WKH HIIHFWLYH 7'+) HTXDWLRQ f LQ WKH SULPDU\ UHJLRQ ZLWK D OLQHDU FRHIILFLHQW PDWUL[ :SS 8VLQJ (T f :33 6fn+ffSS 6ffSS+RfSS 6RnA+Rf 6Rn9+R-SS f

PAGE 119

,OO ,Q WKH HIIHFWLYH 7'+) HTXDWLRQ WKH PDWULFHV 6 $6 + DQG $+ DUH WLPH GHSHQn GHQW WKURXJK WKH NQRZQ WUDMHFWRU\ 5D^f JLYHQ E\ (T f 7KH HTXDWLRQ FRQn WDLQV D GULYLQJ WHUP 'n JLYHQ E\ (T f LQ ZKLFK DOO WKH PDWUL[ PXOWLSOLFDWLRQV DUH SHUIRUPHG LQ WKH SULPDU\ UHJLRQ H[FHSW IRU 3rff+S DQG +S3SIff ZKLFK DUH WLPHLQGHSHQGHQW DQG KDYH WR EH FDOFXODWHG RQO\ RQFH 7KH (IIHFWLYH 7'+) HTXDWLRQ LV LQWHJUDWHG E\ XVH RI WKH OLQHDUL]DWLRQ SURFHn GXUH LQWURGXFHG LQ &K $Q QXPHULFDO DSSUR[LPDWLRQ ZH XVHG LQ WKLV DSSOLFDWLRQ LV WR UHSODFH WKH GULYLQJ PDWUL[ 'n E\ D IXQFWLRQ OLQHDU RI WLPH W LQ WKH WLPH LQn WHUYDO WR W W? LQ ZKLFK WKH OLQHDUL]HG 7'+) HTXDWLRQ LV LQWHJUDWHG 7KH HUURU FDXVHG E\ WKLV DSSUR[LPDWLRQ KDV EHHQ UHGXFHG E\ GHFUHDVLQJ WKH VWHS VL]H XQWLO D VWDEOH UHVXOW KDV EHHQ UHDFKHG 5HVXOWV :H KDYH DSSOLHG WKH WLPHGHSHQGHQW PROHFXODU RUELWDO PHWKRG WR WKH DERYH 1D:OO2f PRGHO ZLWK WKH LQLWLDO NLQHWLF HQHUJ\ RI WKH DWRP LQ WKH UDQJH RI DX WR DX 7KH FROOLVLRQDO FKDUJH WUDQVIHU LV FKDUDFWHUL]HG E\ WKH HOHFWURQLF SRSXODWLRQ DQG RUELWDO SRODUL]DWLRQ SDUDPHWHUV GHILQHG LQ &K )RU WKH QRUPDO LQFLGHQFH WKH DWRPLF RUELWDOV DUH SRODUL]HG RQO\ DORQJ WKH ]D[LV (YROXWLRQ RI (OHFWURQLF 3RSXODWLRQV 7KH HYROXWLRQ RI WKH HOHFWURQLF GHQVLW\ PDWUL[ LV REWDLQHG E\ LQWHJUDWLQJ WKH 7'+) HTXDWLRQ VWHS E\ VWHS 7KH HOHFWURQLF SRSXODWLRQV RI WKH DWRPLF RUELWDOV DQG VXUIDFH VLWH DUH FDOFXODWHG DFFRUGLQJ WR WKH GHILQLWLRQV JLYHQ LQ &K 6LQFH

PAGE 120

WKH HOHFWURQ VSLQ SRODUL]DWLRQ LV LJQRUHG WKH HOHFWURQLF SRSXODWLRQ RI DQ RUELWDO LV VLPSO\ WZLFH WKDW IRU RQH VSLQ RQ WKDW RUELWDOV ,Q )LJ Df DQG )LJ Ef ZH VKRZ HYROXWLRQV RI WKH HOHFWURQLF SRSXODWLRQV RI V DQG S] RUELWDOV mVf DQG mS]f UHVSHFWLYHO\ IRU D FROOLVLRQ HQHUJ\ RI DX 7KH HOHFWURQLF SRSXODWLRQ RI WKH VXUIDFH VLWH mf LV VKRZQ LQ )LJ Ff ,Q WKHVH ILJXUHV WKH WLPH LV FKRVHQ VXFK WKDW W LV QHJDWLYH ZKHQ WKH DWRP LV PRYLQJ WRZDUG WKH VXUIDFH DQG LV SRVLWLYH ZKHQ LW LV PRYLQJ DZD\ IURP WKH VXUIDFH DQG DW W WKH DWRP LV DW WKH FORVHVW GLVWDQFH IURP WKH VXUIDFH 7KH WUDMHFWRU\ LV SORWWHG LQ )LJ Gf DV D UHIHUHQFH RQ WKH GLVWDQFH EHWZHHQ WKH DWRPLF FRUH DQG WKH VXUIDFH ,QLWLDOO\ WKH DWRP LV LRQL]HG $W ODUJH GLVWDQFHV WKH LQWHUDFWLRQ EHWZHHQ WKH VXUIDFH DQG WKH DWRP LV VR ZHDN WKDW WKH\ EHKDYH DOPRVW OLNH LVRODWHG RQHV ZLWKRXW FKDUJH H[FKDQJH EHWZHHQ WKHP $W DURXQG ] DX mVf DQG mS]f EHJLQ WR ULVH LQGLFDWLQJ WKDW WKH DWRP HQWHUV WKH LQWHUDFWLRQ UHJLRQ $V WKH DWRP JHWV FORVHU WKH LQWHUDFWLRQV DUH VWURQJ DQG WKH HOHFWURQLF SRSXODWLRQV RI WKH DWRPLF RUELWDOV TXLFNO\ JURZ WR VLJQLILFDQW YDOXHV 6LQFH DOO WKH WKUHH RUELWDO HQHUJLHV DUH FORVH DW VPDOO GLVWDQFHV DQG HYHQ FURVV HDFK RWKHU DW VRPH SRLQWV HOHFWURQV KRS DPRQJ WKH WKUHH RUELWDOV UDSLGO\ UHVXOWLQJ LQ IDVW RVFLOODWLRQV LQ HOHFWURQLF SRSXODWLRQV $V WKH DWRP PRYHV DZD\ IURP WKH VXUIDFH WKH FKDUJH H[FKDQJH LV UHGXFHG DQG WKH HOHFWURQLF SRSXODWLRQV JUDGXDOO\ DSSURDFK VWHDG\ YDOXHV ,W LV QRWLFHG IURP WKH ILJXUHV WKDW WKH HYROXWLRQ SDWWHUQ LV QRW V\PPHWULF RQ WKH ZD\ LQ DQG RQ WKH ZD\ RXW HVSHFLDOO\ IRU V RUELWDO UHIOHFWLQJ LWV GHSHQGHQFH RI WKH FKDUJH UHGLVWULEXWLRQ ,W FDQ EH VHHQ IURP WKH ILJXUHV WKDW

PAGE 121

WKH RVFLOODWLRQ IUHTXHQFLHV RI WKH SRSXODWLRQV FKDQJH ZLWK WKH GLVWDQFH $ FDUHIXO FKHFN KDV VKRZQ WKDW WKH IUHTXHQFLHV DUH SURSRUWLRQDO WR WKH HQHUJ\ GLIIHUHQFHV DW WKDW GLVWDQFH EXW LQGHSHQGHQW RI WKH SRSXODWLRQV RI WKH VWDWHV 6LPLODU SDWWHUQV DUH VHHQ IRU WKH FROOLVLRQV DW HQHUJLHV RI DX DQG DX )LJ Gf VKRZV WKH WUDMHFWRU\ RI WKH DWRP DW LQLWLDO HQHUJ\ RI DX )LJV Df Ef DQG Ff SUHVHQW WKH UHVXOWV IRU Q^Vf mS]f DQG Qf DW WKLV HQHUJ\ UHVSHFWLYHO\ )LJV Df Ef Ff DQG Gf SORW LVf QS]f Qf DQG WKH WUDMHFWRU\ UHVSHFWLYHO\ IRU WKH FROOLVLRQ RI LQLWLDO HQHUJ\ DW O22DX (OHFWURQLF SRSXODWLRQV DIWHU FROOLVLRQV 7KH HOHFWURQLF SRSXODWLRQV DSSURDFK VWHDG\ ILQDO YDOXHV DV WKH DWRP PRYHV IDU DZD\ IURP WKH VXUIDFH 7KH ILQDO FKDUJH GLVWULEXWLRQ GHSHQGV RQ WKH FROOLVLRQ HQHUJ\ :H DUH LQWHUHVWHG LQ ZHWKHU WKHUH LV D SDWWHUQ IRU WKH YDULDWLRQ RI WKH HOHFWURQLF SRSXODWLRQV DIWHU WKH FROOLVLRQ DQG ZHWKHU VXFK D SDWWHUQ LI LW H[LVWV FDQ EH XQGHUVWRRG SK\VLFDOO\ DQG SURYLGH LQIRUPDWLRQ DERXW WKH LQWHUDFWLRQ DQG G\QDPLFV RI WKH LRQVXUIDFH FROOLVLRQ :H FDOFXODWH WKH HOHFWURQLF SRSXODWLRQV DIWHU WKH FROOLVLRQ IRU D FROOLVLRQ HQHUJ\ UDQJH EHWZHHQ DX DQG DX 7KH HOHFWURQLF SRSXODWLRQ RI WKH V RUELWDO DIWHU WKH FROOLVLRQ mVf LV VKRZQ LQ )LJ DV D IXQFWLRQ RI WKH FROOLVLRQ HQHUJ\ :H IRXQG WKDW 1D LRQV DUH QHXWUDOL]HG DW DOO HQHUJ\ UDQJH DQG WKDW WKH SRSXODWLRQ LV UHODWLYHO\ ORZHU DW WKH KLJKHU HQHUJLHV LQGLFDWLQJ WKDW WKH QHXWUDOL]DWLRQ SUREDELOLW\ LV VPDOOHU $Q HQHUJ\ WKUHVKROG IRU FKDUJH WUDQVIHU RI DX KDV EHHQ UHSRUWHG IRU WKH 1D: V\VWHP >+XUNPDQV HW DO @ EHORZ ZKLFK WKH FKDUJH

PAGE 122

Qf QS]f QVf W DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQV DQG WUDMHFWRU\ RI 1D DWRP ZLWK D FROOLVLRQ HQHUJ\ RI DX Df 7KH HOHFWURQLF SRSXODWLRQ RI V RUELWDO Ef WKH HOHFWURQLF SRSXODWLRQ RI S] RUELWDO Ff WKH HOHFWURQLF SRSXODWLRQ RI VXUIDFH VLWH Gf WUDMHFWRU\

PAGE 123

Qf QS]f QVf )LJXUH 7KH HOHFWURQLF SRSXODWLRQV DQG WUDMHFWRU\ RI 1D DWRP ZLWK D FROOLVLRQ HQHUJ\ RI DX Df 7KH HOHFWURQLF SRSXODWLRQ RI V RUELWDO Ef WKH HOHFWURQLF SRSXODWLRQ RI S] RUELWDO Ff WKH HOHFWURQLF SRSXODWLRQ RI VXUIDFH VLWH Gf WUDMHFWRU\

PAGE 124

=D DXf Qf QS]f QVf )LJXUH 7KH HOHFWURQLF SRSXODWLRQV DQG WUDMHFWRU\ RI 1D DWRP ZLWK D FROOLVLRQ HQHUJ\ RI DX Df 7KH HOHFWURQLF SRSXODWLRQ RI V RUELWDO Ef WKH HOHFWURQLF SRSXODWLRQ RI S] RUELWDO Ff WKH HOHFWURQLF SRSXODWLRQ RI VXUIDFH VLWH Gf WUDMHFWRU\

PAGE 125

WUDQVIHU LV FXW RII :H IRXQG QR WKUHVKROG LQ WKLV VWXG\ WKH UHDVRQ EHLQJ WKDW RXU HQHUJ\ UDQJH LV DERYH WKH H[SHFWHG WKUHVKROG 7KH HOHFWURQLF SRSXODWLRQ RVFLOODWHV EHWZHHQ ]HUR DQG LWV PD[LPD ZLWK D IUHTXHQF\ WKDW GHFUHDVHV ZLWK WKH HQHUJ\ 7KHUH LV DQ DEQRUPDO UHJLRQ DURXQG DQ HQHUJ\ RI DX ZKHUH WKH RVFLOODWLRQV DUH VORZHU WKDQ WKDW LQ WKH DGMDFHQW UHJLRQV ,Q )LJ WKH HOHFWURQLF SRSXODWLRQ RI WKH S] RUELWDO DIWHU WKH FROOLVLRQ mS]f LV VKRZQ DV D IXQFWLRQ RI WKH FROOLVLRQ HQHUJ\ $W VPDOO HQHUJLHV QS]f LV ]HUR LW EHJLQV WR LQFUHDVH VORZO\ DW ( DX LW JURZV IDVWHU ZLWK DQ RVFLOODWRU\ DPSOLWXGH DIWHU ( DX $ QRWLFHG GLIIHUHQFH LV WKDW WKH DPSOLWXGHV RI WKH RVFLOODWLRQ RI mS]f DUH VPDOO DOWKRXJK WKH IUHTXHQF\ LV DERXW WKH VDPH DV WKDW IRU mVf 8QOLNH QVf ZKRVH PD[LPD VWHDGLO\ GHFUHDVHV ZLWK WKH HQHUJ\ WKH DPSOLWXGH RI QS]f YDULHV VORZO\ ZLWK WKH HQHUJ\ ZLWK LWV SHDN DW DX DX DQG DX 7KH HOHFWURQLF SRSXODWLRQ RI WKH DWRP m$ ZKLFK LV WKH VXP RI mVf DQG QS]f LQ RXU FDVH LV VKRZQ LQ )LJ ,Q )LJV DQG WKH HOHFWURQLF SRSXODWLRQV RI V DQG S] RUELWDOV DUH SORWWHG DV IXQFWLRQV RI WKH LQYHUVH RI WKH LQLWLDO YHORFLW\ UHVSHFWLYHO\ $V RQH FDQ VHH IURP WKH ILJXUHV WKH RVFLOODWLRQV RI WKH HOHFWURQLF SRSXODWLRQV KDYH DOPRVW FRQVWDQW IUHTXHQFLHV LQ UHODWLYHO\ ZLGH UDQJHV RI WKH LQYHUVH RI WKH FROOLVLRQDO YHORFLW\ )RU WKH LQYHUVH RI WKH YHORFLW\ LQ WKH UDQJH EHWZHHQ DX DQG DX ZKLFK FRUUHVSRQGV WR HQHUJ\ EHWZHHQ DX DQG DX WKH SHULRG RI WKH HOHFWURQLF SRSXODWLRQV LV DERXW DX RI WKH LQYHUVH YHORFLW\ )RU WKH LQYHUVH YHORFLW\ LQ WKH UDQJH EHWZHHQ DX DQG DX ZKLFK FRUUHVSRQGV WR HQHUJ\ EHWZHHQ DX DQG

PAGE 126

DX WKH SHULRG RI WKH HOHFWURQLF SRSXODWLRQV LV DERXW DX RI WKH LQYHUVH YHORFLW\ )LQDOO\ LQ )LJ WKH HOHFWURQLF SRSXODWLRQV RI DWRPLF RUELWDOV LV SORWWHG DV D IXQFWLRQ RI WKH LQYHUVH RI WKH LQLWLDO YHORFLW\

PAGE 127

QVf QVf Df ( DXf ( DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQ RI V RUELWDO RI 1D DWRP YV WKH FROOLVLRQDO HQHUJ\ ( Df ( O DX Ef ( DX

PAGE 128

QS]f QS]f ( DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQ RI S] RUELWDO RI 1D DWRP YV WKH FROOLVLRQDO HQHUJ\ ( Df ( O DX Ef ( DX

PAGE 129

( DXf (DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQ RI 1D DWRP YV WKH FROOLVLRQDO HQHUJ\ ( Df ( O DX Ef ( DX

PAGE 130

QVf QVf Yn DXf Y DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQ RI V RUELWDO RI 1D DWRP YV WKH LQYHUVH RI WKH FROOLVLRQDO YHORFLW\ YB Df Yan f§ DX Ef YB f§ DX

PAGE 131

]GefX GefX Y DXf Y DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQ RI S] RUELWDO RI 1D DWRP YV WKH LQYHUVH RI WKH FROOLVLRQDO YHORFLW\ Y Df YB f§ DX Ef YB f§ DX

PAGE 132

Yn DXf )LJXUH 7KH HOHFWURQLF SRSXODWLRQ RI 1D DWRP YV LQYHUVH RI WKH FROOLVLRQDO YHORFLW\ Y Df Yf f§ DX Ef Yf f§ DX

PAGE 133

&+$37(5 ',6&866,21 $1' &21&/86,216 7KLV ZRUN SUHVHQWV D WKHRUHWLFDO DSSURDFK WR DWRPVXUIDFH FROOLVLRQV DW ORZ HQHUJLHV ,Q &K WKURXJK &K ZH KDYH GHYHORSHG D WLPHGHSHQGHQW PROHFn XODU RUELWDO 7'02f PHWKRG WR VWXG\ FKDUJH WUDQVIHU LQ LRQVXUIDFH FROOLVLRQV 7KH HOHFWURQLF GHQVLW\ PDWUL[ KDV EHHQ XVHG WR GHVFULEHG WKH HYROXWLRQ RI HOHFn WURQLF VWDWHV DQG GLVWULEXWLRQ RI FKDUJHV RQ WKH DWRPLF RUELWDOV GXULQJ DQG DIWHU FROOLVLRQV :H KDYH DOVR XVHG WKH GHQVLW\ PDWUL[ WR GHILQH WKH RUELWDO SRODUn L]DWLRQ SDUDPHWHUV ZKLFK FKDUDFWHUL]H DQLVRWURSLF GLVWULEXWLRQ RI HOHFWURQV RYHU RUELWDOV LQ RXU H[WHQGHG V\VWHPV 7R PDNH WKH 7'02 XVHIXO IRU DSSOLFDWLRQV ZH DOVR GHYHORSHG RWKHU WKHRUHWLFDO WRROV LQFOXGLQJ WKH ORFDO WLPH OLQHDUL]DWLRQ PHWKRG IRU LQWHJUDWLRQ RI 7'+) HTXDWLRQV WKH SDUWLWLRQ PHWKRG EDVHG RQ WKH ORFDOL]HG EDVLV IXQFWLRQV IRU WUHDWPHQW RI HOHFWURQLF VWDWHV LQ H[WHQGHG V\VWHPV DQG WKH H[SDQVLRQV LQ JHQHUDOL]HG :DQQLHU IXQFWLRQV LQ H[WHQGHG V\VWHPV ZKLFK ODFN WUDQVODWLRQDO V\PPHWU\ ,Q &K ZH KDYH DSSOLHG WKLH PHWKRG WR D PRGHO V\VWHP ,Q WKLV FKDSWHU ZH GLVFXVV WKHVH WKHRUHWLFDO PHWKRGV DQG WKHLU DSSOLFDWLRQV WR WKH VWXG\ RI WKH G\QDPLFV RI HOHFWURQLF SURFHVVHV LQ DWRPVXUIDFH FROOLVLRQV $QDO\VLV DQG FRQFOXVLRQV DUH UHODWHG WR WKH SK\VLFDO IHDWXUHV RI WKH SUREOHPV DQG WKH FRPSDULVRQ ZLWK RWKHU WKHRUHWLFDO PHWKRGV :H DOVR GLVFXVV WKH DSSOLFDWLRQ

PAGE 134

RI WKLV DSSURDFK WR FKDUJH WUDQVIHU LQ WKH FROOLVLRQ RI 1D ZLWK :f $W WKH HQG RI WKLV FKDSWHU VXJJHVWLRQV IRU IXUWKHU ZRUN DUH IXUQLVKHG 7R VWXG\ HOHFWURQLF SURFHVVHV LQ DWRPVXUIDFH FROOLVLRQV D SHUWLQHQW WKHRU\ VKRXOG EH DEOH WR GHVFULEH ERWK HOHFWURQLF VWDWHV DQG HOHFWURQLF LQWHUDFWLRQV 6RPH RI WKH FXUUHQW DSSURDFKHV LQ WKH ILHOG ZKLOH WU\LQJ WR GHVFULEH WKH HYROXWLRQ RI HOHFWURQLF VWDWHV DUH XQDEOH WR VLPXOWDQHRXVO\ WUHDW WKH HOHFWURQLF LQWHUDFWLRQV LQ D FRQVLVWHQW ZD\ DQG KDYH WR UHO\ RQ SDUWLFXODU PRGHOV RU XVH SDUDPHWHUL]HG HOHFWURQLF SRWHQWLDOV >IRU H[DPSOH %ODQGLQ HW DO @ $OWKRXJK VRPH RI WKHVH DSSURDFKHV FRPH XS ZLWK UHVXOWV FRPSDUDEOH ZLWK H[SHULPHQWV WKHLU YDOXH LQ SURYLGLQJ D GHHS LQVLJKW LQWR WKH FRPSOLFDWHG HOHFWURQLF SURFHVVHV VHHPV OLPLWHG 7KH PROHFXODU RUELWDO PHWKRG ZKLFK LV FDSDEOH RI WKLV WDVN KDV EHHQ XVHG WR VWXG\ VRPH WLPHLQGHSHQGHQW DWRPVXUIDFH SKHQRPHQD HJ FKHPLVRUSWLRQ DQG KDV DFKLHYHG FHUWDLQ VXFFHVV >*ULPOH\ DQG 3RVDQL @ )RU WLPHGHSHQGHQW SKHQRPHQD DOWKRXJK WKH LGHD RI WKH 7'02V KDV EHHQ XVHG LQ VRPH DSSURDFKHV >7XOO\ 0F'RZHOO @ WKHUH KDV QRW EHHQ PXFK DGYDQFHPHQW PDGH LQ REWDLQLQJ WKHVH RUELWDOV D IRUPDO WKHRU\ ZLWKLQ WKLV IUDPHZRUN KDV QRW EHHQ HVWDEOLVKHG DQG DSSOLHG WR FROOLVLRQDO SKHQRPHQD LQ H[WHQGHG V\VWHPV ,Q WKLV ZRUN ZH KDYH GHYHORSHG D 7'02 PHWKRG IRU DWRPVXUIDFH FROOLVLRQV 7KH 7'02V DUH FRQVWUXFWHG ZLWK DWRPLF IXQFWLRQV DQG ORFDOL]HG EDVLV IXQFWLRQV RI VXUIDFHV 7R HOLPLQDWH WKH DUWLILFLDO FRXSOLQJV DW ODUJH GLVWDQFHV LQWURGXFHG E\ WKH H[SDQVLRQ RI WKH PROHFXODU RUELWDOV ZLWK DWRPLF RUELWDOV FHQWHUHG RQ PRYLQJ QXFOHL WKH DWRPLF IXQFWLRQV DUH FKRVHQ WR EH LQ WKH IRUP RI WUDYHOOLQJ DWRPLF

PAGE 135

RUELWDOV 7$2f 7KH DWRPVXUIDFH DQG HOHFWURQLF FRXSOLQJV ZKLFK GHSHQGV RQ WKH HOHFWURQLF FRQILJXUDWLRQV DV ZHOO DV RQ WLPH WKURXJK WKH WUDMHFWRU\ RI WKH DWRP 8f DUH REWDLQHG IURP WKH 7'02V 6WDUWLQJ ZLWK WKH V\VWHP +DPLOWRQLDQ ZH KDYH GHULYHG WKH 7'+) HTXDWLRQ IRU WKH HOHFWURQLF GHQVLW\ PDWUL[ ZKLFK GHVFULEHV WKH HYROXWLRQ RI WKH 7'02V 7KHUH DUH VHYHUDO DGYDQWDJHV LQ IRUPXODWLQJ WKLQJV LQ WKLV ZD\ )LUVW E\ XVLQJ WKH GHQVLW\ PDWUL[ ZH FDQ FRUUHFWO\ GHVFULEH WKH HYROXWLRQ RI WKH RFFXSLHG RUELWDOV DOO WKH WLPH ZLWKRXW KDYLQJ WR LGHQWLI\ WKH RFFXSLHG RUELWDOV ZKLFK FKDQJH ZLWK WLPH LQ G\QDPLF V\VWHPV 6HFRQGO\ WKH GHQVLW\ PDWUL[ LV FRQYHQLHQW LQ GHVFULELQJ WKH FKDUJH GLVWULEXWLRQ DQG WKH RUELWDO SRODUL]DWLRQ RI VXEV\VWHPV 7KLUGO\ WKH VHOIFRQVLVWHQF\ EHWZHHQ WKH HIIHFWLYH ILHOG DQG WKH GHQVLW\ PDWUL[ LV DFKLHYHG DXWRPDWLFDOO\ LQ WKH 7'+) HTXDWLRQV DQG WKH VHOIFRQVLVWHQW LWHUDWLRQ SURFHGXUH XVHG LQ LWV WLPHLQGHSHQGHQW FRXQWHUSDUW LV WKXV DYRLGHG ,W VKRXOG EH QRWHG WKDW WKH EDVLF 7'02 IRUPDOLVP GHYHORSHG LQ &K LV FRPSOHWHO\ JHQHUDO DQG ZLOO QRW UHO\ RQ SDUWLFXODU EDVLV IXQFWLRQV 2QH RI WKH LQWHUHVWLQJ SKHQRPHQD LQ FROOLVLRQV LV WKH RUELWDO SRODUL]DWLRQ RI WKH FROOLGLQJ DWRPV ZKLFK RFFXUV ZKHQ WKH HOHFWURQV SRSXODWH WKH SRVVLEOH RUELWDOV ZLWK D GLIIHUHQW SUREDELOLW\ DQG WKH HOHFWURQLF FORXG KDV D GLVWRUWHG IRUP RU D SDUWLFXODU VSDFLDO RULHQWDWLRQ 6WXG\ RI WKH RUELWDO SRODUL]DWLRQ SURYLGHV D GHHSHU DQG FOHDUHU XQGHUVWDQGLQJ RI WKH HOHFWURQLF SURFHVVHV DFFRPSDQ\LQJ WKH FROOLVLRQV 7KH 7'02 DSSURDFK FDQ OHDG WR D FKDUDFWHUL]DWLRQ RI HOHFWURQ GLVWULEXWLRQ RQ LQGLYLGXDO VWDWHV GXULQJ WKH HQWLUH FROOLVLRQ ZKLFK LV DQ DGYDQWDJH RYHU RWKHU DSSURDFKHV ZKLFK FDOFXODWH WKH WRWDO FKDUJH RQ WKH VFDWWHUHG DWRPV RQO\

PAGE 136

DIWHU FROOLVLRQV :H KDYH GHILQHG WKH RUELWDO SRODUL]DWLRQ SDUDPHWHUV LQ H[WHQGHG V\VWHPV E\ WHQVRU RSHUDWRUV DQG H[SUHVVHG WKHP LQ WHUPV RI WKH GHQVLW\ PDWUL[ :H DOVR GHILQHG WKH SRODUL]DWLRQ SDUDPHWHUV IRU VXEV\VWHPV ZKLFK ZLOO EH XVHIXO IRU FRPSDULVRQ ZLWK H[SHULPHQWDO GDWD RI DWRPLF RUELWDO SRODUL]DWLRQ $V WKH GLVWDQFH EHWZHHQ WKH DWRP DQG WKH VXUIDFH DSSURDFKHV LQILQLW\ RXU GHILQLWLRQV RI WKH DWRPLF RUELWDO SDUDPHWHUV IRU WKH FROOLGLQJ DWRP EHFRPHV WKDW IRU DQ LVRODWHG DWRP +HUH ZH LQWHUUXSW WKH GLVFXVVLRQ RI SK\VLFV RI WKH FROOLVLRQ SUREOHP DQG RXU PHWKRG DQG WXUQ RXU DWWHQWLRQ WR WKH PDWKHPDWLFDO DVSHFWV RI VROYLQJ WKH 7'+) HTXDWLRQV 7KHVH GLIIHUHQWLDOLQWHJUDO HTXDWLRQV IRU ZKLFK WKH H[DFW VROXWLRQV DUH KDUG WR REWDLQ DUH RIWHQ VROYHG E\ OLQHDUL]DWLRQ SURFHGXUHV ZKLFK OLQHDUL]H WKH HTXDWLRQV E\ DVVXPLQJ WKDW WKH FKDQJHV RI WKHLU VROXWLRQV DUH VORZ LQ D VPDOO WLPH LQWHUYDO +RZHYHU VLQFH WKH GHQVLW\ PDWUL[ LV H[SHFWHG WR EH D IDVW RVFLOODWRU\ IXQFWLRQ LQ RXU FDVH ZH FDQ QRW XVH WKH FRQYHQWLRQDO SURFHGXUH WKDW XVHV D FRQVWDQW ]HURWK RUGHU VROXWLRQ :H QRWLFH WKDW WKH WLPH GHSHQGHQFH RI WKH GHQVLW\ PDWUL[ UHVXOWV IURP WZR FDXVHV WKH FKDQJH RI WKH HIIHFWLYH ILHOG GXH WR WKH QXFOHDU PRWLRQ DQG WKH FKDQJH GXH WR HOHFWURQLF WUDQVLWLRQ EHWZHHQ VWDWHV :KLOH WKH IRUPHU FKDQJHV VORZO\ IRU ORZ HQHUJ\ FROOLVLRQV WKH HOHFWURQV MXPS EHWZHHQ VWDWHV ZLWK D IUHTXHQF\ SURSRUWLRQDO WR WKH LQYHUVH RI WKH HQHUJ\ GLIIHUHQFH RI WKH VWDWHV WKDW FRXOG EH KLJK LQ FDVH RI WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU SURFHVV 7KH OLQHDUL]DWLRQ SURFHGXUH ZH SURSRVHG WUHDWV WKH FKDQJH RI WKH GHQVLW\ PDWUL[ LQ D VKRUW WLPH DV D VXP RI D WLPHGHSHQGHQW UHIHUHQFH GHQVLW\ PDWUL[ 3rIf ZKLFK VDWLVILHV D OLQHDUL]HG 7'+) HTXDWLRQ IRU WKH GHQVLW\ PDWUL[

PAGE 137

ZKHQ WKH QXFOHDU SRVLWLRQ LV IL[HG LQ VSDFH DQG D PDWUL[ 4If ZKLFK LV WKH ILUVW RUGHU FKDQJH RI WKH GHQVLW\ PDWUL[ DQG VDWLVILHV DQRWKHU OLQHDUL]HG 7'+) HTXDWLRQ ZKLFK LV FRXSOHG ZLWK WKDW IRU 3rWf :H KDYH REWDLQHG IRU D JHQHUDO FDVH WKH IRUPDO VROXWLRQV IRU 3rIf DQG 4Wf IURP DQ H[SRQHQWLDO WUDQVIRUPDWLRQ DQG WKH DQDO\WLFDO VROXWLRQV IRU D VSHFLDO FDVH ZKHUH WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ LV LJQRUHG &RPSXWDWLRQDO SURJUDPV KDYH EHHQ GHYHORSHG WR VROYH WKH 7'+) HTXDWLRQV LQ DWRPVXUIDFH FROOLVLRQV XVLQJ WKLV OLQHDUL]DWLRQ SURFHGXUH 7KH NH\ WR LPSOHPHQWLQJ WKLV SURFHGXUH LV WKDW 4Wf VKRXOG EH VPDOO FRPSDUHG ZLWK 3rIf :H HPSOR\ YDULDEOH VWHS VL]HV DQG FKHFN WKLV FULWHULRQ DIWHU HYHU\ LQWHJUDWLRQ 7KH VWDELOLW\ DQG FRQYHUJHQFH RI WKH VROXWLRQV KDYH DOVR EHHQ FKHFNHG 2QH RI WKH PDMRU SUREOHPV ZKHQ DSSO\LQJ WKH 7'02 DSSURDFK WR H[WHQGHG V\VWHPV LV WKH WUHDWPHQW RI WKH JUHDW QXPEHU RI HOHFWURQLF VWDWHV &ROOLVLRQDO FKDUJH WUDQVIHU LQ DWRPVXUIDFHV LQWHUDFWLRQV LV D SURFHVV ZKLFK LQYROYHV D IHZ HOHFWURQV DQG VWURQJ FRXSOLQJV LQ D VKRUW SHULRG RI WLPH :H KDYH GHYHORSHG D SDUWLWLRQ PHWKRG WR VSOLW WKH V\VWHP LQWR D SULPDU\ UHJLRQ DQG D VHFRQGDU\ UHJLRQ DQG FRQVWUXFWHG LQ WKH VPDOO SULPDU\ UHJLRQ WKH HIIHFWLYH 7'+) HTXDWLRQV ZKLFK DUH FRXSOHG ZLWK WKH VHFRQGDU\ UHJLRQ WKURXJK D WLPHGHSHQGHQW GULYLQJ WHUP ,Q WKH VHFRQGDU\ UHJLRQ WKH HOHFWURQV DUH HIIHFWHG E\ WKH FROOLGLQJ DWRP LQGLUHFWO\ WKURXJK WKHLU FRXSOLQJ ZLWK WKH HOHFWURQV LQ WKH SULPDU\ UHJLRQ DQG WKH VWDWHV RI WKH HOHFWURQV DUH DSSUR[LPDWHO\ XQFKDQJHG GXULQJ WKH FROOLVLRQ $SSDUHQWO\ WKH SULPDU\ UHJLRQ VKRXOG EH FKRVHQ WR KDYH D VL]H RI WKH RUGHU RI WKH LQWHUDFWLRQ UDQJH ZH ZLOO FRPH EDFN WR LW LQ WKH GLVFXVVLRQ RI WKH UHVXOWV 7KLV SDUWLWLRQ

PAGE 138

PHWKRG FDQ DOVR EH DSSOLHG WR RWKHU V\VWHPV ZKLFK FRQWDLQV VWURQJ DQG ORFDO LQWHUDFWLRQV 2XU SDUWLWLRQ PHWKRG UHTXLUHV D VHW RI ORFDOL]HG EDVLV IXQFWLRQV :H KDYH IXUWKHU H[WHQGHG WKH LGHD RI XVLQJ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV *:)Vf IRU H[WHQGHG V\VWHPV ZKLFK DUH RUWKRQRUPDO DQG ORFDOL]HG DURXQG WKH VLWHV LQ WKH V\VWHPV :H KDYH GHULYHG D IRUPDOLVP WR REWDLQ WKHVH IXQFWLRQV E\ D YDULDWLRQDO SULQFLSOH ZKLFK VKRZV WKDW *:)V FDQ EH FRQVWUXFWHG IURP WKH V\VWHP +DPLOWRQLDQ ZLWKRXW KDYLQJ WKH NQRZOHGJH RI WKH HLJHQIXQFWLRQV 7KHVH *:)V DUH ZULWWHQ LQ WKH IRUP RI OLQHDU FRPELQDWLRQV RI *DXVVLDQV IRU SUDFWLFDO UHDVRQV DQG FDQ EH XVHG LQ VWXGLHV RI ORFDO SKHQRPHQD LQ H[WHQGHG V\VWHPV ZKLFK ODFN WUDQVODWLRQ V\PPHWU\ :H DOVR DUJXH WKDW EHFDXVH WKH *:)V TXLFNO\ UHFRYHU WKH IRUP RI WKH :DQQLHU IXQFWLRQV RI D EXON ZKHQ WKH\ DUH DZD\ IURP WKH GHIHFWV RQO\ D VPDOO QXPEHU RI IXQFWLRQV QHHG WR EH GHWHUPLQHG IRU TXDVLSHULRGLF V\VWHPV ZKLFK ORVH WUDQVODWLRQDO V\PPHWU\ RQO\ LQ FHUWDLQ GLUHFWLRQV RU FRQWDLQV GHIHFWV LQ ORFDO DUHDV 7KH *:)V KDYH EHHQ FRQVWUXFWHG IRU D MHOOLXP VXUIDFH IRU ZKLFK WKH WKUHH GLPHQVLRQDO FDOFXODWLRQ LV UHGXFHG WR D RQH GLPHQVLRQDO FDOFXODWLRQ 7KH HLJHQYDOXHV DQG HLJHQIXQFWLRQV FDOFXODWHG XVLQJ *:)V DV EDVLV IXQFWLRQV DUH LQ JRRG DJUHHPHQW ZLWK WKH H[DFW RQHV 7R FRPSOHWH RXU EDVLV VHW ZH FRQVWUXFWHG WKH DWRPLF EDVLV IXQFWLRQV IRU WKH YDOHQFH RUELWDOV WKURXJK D SVHXGRSRWHQWLDO IRU WKH DWRPLF FRUH ,Q GRLQJ VR WKH LQQHU HOHFWURQV DUH HOLPLQDWHG VLQFH WKH\ GR QRW SOD\ DQ LPSRUWDQW UROH LQ FKDUJH WUDQVIHU :H KDYH DSSOLHG WKH 7'02 PHWKRG WR WKH FROOLVLRQDO FKDUJH WUDQVIHU LQ

PAGE 139

1D:O f 7KH VXUIDFH LV PRGHOHG E\ D MHOOLXP ZLWK LWV EDQG SDUDPHWHUV ILWWHG WR WKRVH RI WKH :f FRQGXFWLRQ EDQG ,Q WKH SUHVHQW DSSOLFDWLRQV RI WKLV PHWKRG VRPH VLPSOLILFDWLRQV DUH XVHG LQFOXGLQJ LJQRULQJ WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ XVLQJ D SUHVFULEHG WUDMHFWRU\ DQG XVLQJ D VLPSOH PRGHO IRU WKH VXUIDFH 'LVFXVVLRQ RI WKH UHVXOWV LQFOXGHV WKH HOHFWURQLF FRXSOLQJV DQG DWRPVXUIDFH LQWHUDFWLRQV HYROXWLRQ RI WKH HOHFWURQ SRSXODWLRQV DQG WKH HQHUJ\ GHSHQGHQFH RI WKH HOHFWURQ SRSXODWLRQV :H KDYH FDOFXODWHG WKH HOHFWURQLF FRXSOLQJV DQG WKH LQWHUDFWLRQ SRWHQWLDOV RI WKH V\VWHP 7KH FRXSOLQJV EHWZHHQ WKH DWRPLF RUELWDOV VKRZ DQ LQWHUDFWLRQ UDQJH RI DX $W WKH VKRUW GLVWDQFHV WKH FRXSOLQJV EHWZHHQ WKH VXUIDFH DQG DWRPLF RUELWDOV DUH DERXW WKH VDPH RUGHU DV WKDW FDOFXODWHG IURP WKH :.% DSSURDFK LQ SDUDEROLF FRRUGLQDWHV >*UR]GDQRY DQG -DQYH @ DQG WKDW IURP PXIILQWLQ SRWHQWLDOV >0XVFDW DQG 1HZQV @ WKHUH DUH QR RWKHU UHVXOWV WR FRPSDUH ZLWK IRU WKH FRXSOLQJ EHWZHHQ WKH V DQG S] RUELWDOV 7KH VWURQJ FRXSOLQJV DW VKRUW GLVWDQFHV LQGLFDWH WKDW WKH RUELWDOV DUH KHDYLO\ PL[HG DQG D VWURQJ HOHFWURQ H[FKDQJH LV SRVVLEOH $W ODUJHU GLVWDQFHV WKH GHFD\ RI WKH FRXSOLQJV LV IDVWHU WKDQ WKH UHVXOWV FDOFXODWHG E\ RWKHU PHWKRGV ZKLFK FRXOG EH DWWULEXWHG WR WKH IDFW WKDW RQO\ D VPDOO QXPEHU RI *DXVVLDQV DUH XVHG LQ RXU FDOFXODWLRQV ZKHQ ZULWLQJ WKH EDVLV IXQFWLRQV DV OLQHDU FRPELQDWLRQV RI *DXVVLDQV 7KH UHVXOWV IRU LQWHUDFWLRQ SRWHQWLDOV FRUUHVSRQGLQJ WR YDULRXV FRQILJXUDWLRQV DUH VKRZQ LQ )LJ +RZHYHU WKHUH LV WR RXU NQRZOHGJH QR H[SHULPHQWDO GDWD IRU 1D: WR FRPSDUH ZLWK $OO WKH SRWHQWLDOV H[FHSW IRU 1DS[f:f DQG 1DS\f:f

PAGE 140

KDYH PLQLPD DW FHUWDLQ GLVWDQFHV IURP WKH VXUIDFH 7KH SRVLWLRQV RI WKH PLQLPD IRU 1DVf:f DQG 1DS]f:f DUH DW DX ZKLOH WKDW IRU 1D:f LV DX 7KH LPSRUWDQW LQIRUPDWLRQ REWDLQHG IURP WKH FDOFXODWLRQ LV WKDW SRWHQWLDOV FRUUHVSRQGLQJ WR GLIIHUHQW FRQILJXUDWLRQV DUH ZLWKLQ DX DW VKRUW GLVWDQFHV ZKLFK PDNHV WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU SURFHVV WKH GRPLQDQW RQH 7KH HYROXWLRQ RI WKH HOHFWURQLF SRSXODWLRQV IRU DWRPLF RUELWDOV DQG VXUIDFH RUELWDO KDYH EHHQ FDOFXODWHG ZKLFK RIIHUV D XVHIXO LQVLJKW LQWR WKH G\QDPLF EHKDYLRU RI FKDUJH WUDQVIHU 8QIRUWXQDWHO\ VSHFWURVFRS\ WHFKQLTXHV KDYH QRW \HW EHHQ GHYHORSHG WR SURYLGH FRUUHVSRQGLQJ GDWD IRU FRPSDULVRQ &RPPRQ WR DOO WKH HQHUJLHV WKH FKDUJHV EHJLQ WR VORZO\ WUDQVIHU WR WKH DWRPLF RUELWDOV ZKHQ WKH DWRP DSSURDFKHV WR DX IURP WKH VXUIDFH DQG WKHQ UDSLGO\ LQFUHDVH DW DERXW DX ZKHUH WKH SRWHQWLDO FXUYHV FURVV $OO WKH HOHFWURQ SRSXODWLRQV FRQWDLQ IDVW RVFLOODWLRQV ZLWKLQ WKH GLVWDQFH UDQJH RI DX ZKLFK LV FKDUDFWHULVWLF RI WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU 5HFDOOLQJ WKDW WKH GHQVLW\ PDWUL[ LV WKH VXP RI D WLPHGHSHQGHQW EDFNJURXQG 3rLf DQG D VPDOO FKDQJH 4Wf WKH UDSLG RVFLOODWLRQV DUH GHFLGHG E\ WKH HYROXWLRQ RI 3rIf DQG VORZ FKDQJHV RI WKH DPSOLWXGHV DUH DWWULEXWHG WR WKH DFFXPXODWLRQ RI WKH FKDQJH RI WKH GHQVLW\ PDWUL[ 4f 7KH SDWWHUQ RI WKH HYROXWLRQ RI WKH SRSXODWLRQV YDULHV ZLWK WKH RUELWDO DQG HQHUJ\ 1RWLFLQJ WKDW WKHVH FXUYHV RQ WKH RXWZDUG SDWK KDYH GLIIHUHQW VKDSHV WKDQ WKRVH RQ WKH LQZDUG SDWK LW PHDQV WKDW WKH HYROXWLRQ RI WKH HOHFWURQ SRSXODWLRQV GHSHQGV RQ WKH DPRXQW RI FKDUJH RQ WKH RUELWDOV 7KH IUHTXHQF\ RI WKH RVFLOODWLRQV YDULHV ZLWK WKH GLVWDQFH DQG LV KLJKHU LQ WKH VKRUW GLVWDQFH UDQJH 2XU FKHFN LQGLFDWHV WKDW IRU D FROOLVLRQDO

PAGE 141

HQHUJ\ WKH IUHTXHQF\ LV URXJKO\ LQYHUVHO\ SURSRUWLRQDO WR WKH HQHUJ\ GLIIHUHQFHV EHWZHHQ WKH SRWHQWLDO HQHUJLHV RI DWRPLF VWDWH DQG WKH VXUIDFH VWDWH 7KLV VHHPV WR VXSSRUW WKH H[SODQDWLRQ WKDW WKH WUDQVLWLRQ UDWH EHWZHHQ WZR RUELWDOV GHSHQGV RQ WKH HQHUJ\ GLIIHUHQFH +RZHYHU WKH IUHTXHQF\ DOVR YDULHV ZLWK WKH FROOLVLRQDO HQHUJ\ DQG LV KLJKHU DW ORZHU HQHUJLHV SUREDEO\ EHFDXVH WKH FRXSOLQJ EHWZHHQ WKH HOHFWURQLF PRWLRQ DQG WKH QXFOHDU PRWLRQ VKRXOG EH WDNHQ LQWR DFFRXQW DW ORZHU HQHUJLHV 7KH WRWDO FKDUJH LQ WKH SULPDU\ UHJLRQ EHIRUH DQG DIWHU WKH FROOLVLRQ EXW KDV EHHQ IRXQG WR FKDQJH OHVV WKDQ b IRU ( O DX ZKLFK LV DQ LQGLFDWLRQ WKDW WKH FKDUJH WUDQVIHU RFFXUV LQGHHG PDLQO\ LQ WKH SULPDU\ UHJLRQ $ PRUH DFFXUDWH FDOFXODWLRQ VKRXOG KRZHYHU FRQVLGHU D ODUJHU SULPDU\ UHJLRQ HVSHFLDOO\ IRU KLJK HQHUJLHV :H KDYH VWXGLHG WKH HQHUJ\ GHSHQGHQFH RI WKH HOHFWURQ SRSXODWLRQV DQG IRXQG RVFLOODWLRQV LQ WKH ZKROH HQHUJ\ UDQJH EHWZHHQ DX DQG DX ZLWK D IUHTXHQF\ WKDW GHFUHDVHV VWHDGLO\ ZLWK LQFUHDVLQJ WKH FROOLVLRQ HQHUJ\ 6XFK DQ RVFLOODWRU\ VWUXFWXUH KDV EHHQ HQFRXQWHUHG LQ VRPH H[SHULPHQWV RQ LRQPHWDO VXUIDFH FROOLVLRQV >(ULFNVRQ DQG 6PLWK 7DJODXHU DQG +HLODQG 7RON HW DO @ 7KLV LV EHOLHYHG WR DULVH IURP WKH TXDQWXP SKDVH LQWHUIHUHQFH EHWZHHQ WKH VWDWHV ZKRVH HQHUJLHV DUH FORVH LQ WKH QHDUUHVRQDQFH FKDUJH WUDQVIHU SURFHVV DQG ZLOO EH H[SODLQHG KHUH E\ D VLPSOH PRGHO >7RON HW DO @ &RQVLGHU DQ DWRP VXUIDFH V\VWHP ZLWK WZR SRWHQWLDO FXUYHV FRUUHVSRQGLQJ WR WKH LRQVXUIDFH DQG DWRPVXUIDFH FRQILJXUDWLRQV ZKLFK DUH VSOLW E\ D VPDOO GLIIHUHQFH $(5f ZKHUH 5 LV WKH GLVWDQFH RI WKH DWRP WR WKH VXUIDFH :KHQ WKH DWRP HQWHUV WKH LQWHUDFWLRQ

PAGE 142

UHJLRQ WKH FRXSOLQJ EHWZHHQ WKH WZR VWDWHV EHFRPHV FRPSDUDEOH ZLWK $(5f DQG WKH FKDUJH WUDQVIHU RFFXUV $V WKH HOHFWURQV RQ WKHVH WZR VWDWHV HYROYH DORQJ WKHLU SRWHQWLDO FXUYHV D GLIIHUHQWLDO SKDVH LV GHYHORSHG EHWZHHQ WKH WZR VWDWHV XQWLO WKH DWRP OHDYHV WKH LQWHUDFWLRQ UDQJH $IWHU WKH FROOLVLRQ WKH SRSXODWLRQV RI WKH DWRPLF FRQILJXUDWLRQ DQG LRQ FRQILJXUDWLRQ DUH H[SUHVVHG DV QD mD FRV$I!f f ULL D FRV $ef f ZKHUH DD Dc DQG DUH VORZO\ YDU\LQJ IXQFWLRQV RI WKH LQFLGHQW LRQ HQHUJ\ 7KH SKDVH LV JLYHQ E\ XVLQJ L Of $^! $(WfGW G5 f ZKHUH Y5f LV WKH QRUPDO FRPSRQHQW RI WKH QXFOHDU YHORFLW\ 6LQFH WKH YHORFLW\ LV QHDUO\ FRQVWDQW LQ D ZLGH UDQJH WKH DERYH HTXDWLRQ LV DSSUR[LPDWHG E\ 5P $`!t> $(5fG5 f 9L 5R ZKHUH YW LV WKH LQLWLDO YHORFLW\ FRPSRQHQW SHUSHQGLFXODU WR WKH VXUIDFH DQG 5P DQG 5R DUH WKH LQWHUDFWLRQ UDQJH DQG WXUQLQJ SRLQW UHVSHFWLYHO\ 7KLV 0RGHO SUHGLFWV DQ RVFLOODWLRQ IUHTXHQF\ SURSRUWLRQDO WR WKH LQYHUVH RI WKH LQFLGHQW YHORFLW\ XW :H KDYH VWXGLHG WKH GHSHQGHQFH RI SRSXODWLRQV RQ Ya[ DQG IRXQG WKDW WKH RVFLOODWLRQ IUHTXHQF\ LV URXJKO\ FRQVWDQW LQ WKH UHJLRQ Xf DX DQG LQ WKH UHJLRQ W DX 7KH IDFW WKDW WKH IUHTXHQF\ FKDQJHV VORZO\ ZLWK Y LQGLFDWHV WKDW

PAGE 143

Y5f LV QRW FRQVWDQW 7R IXUWKHU FKHFN WKLV WKHRUHWLFDO H[SODQDWLRQ WKH FDOFXODWLRQ VKRXOG EH GRQH IRU WKH FROOLVLRQV ZLWK GLIIHUHQW LQFLGHQW DQJOHV WR H[DPLQH WKH DQJXODU GHSHQGHQFH RI WKH SHDN SRVLWLRQV ,Q LRQL]DWLRQ VSHFWURVFRS\ H[SHULPHQWV >2YHUERVFK HW DO @ WKH RVFLOODWLRQ RI WKH LRQ \LHOG LV QRW VHHQ $ SRVVLEOH UHDVRQ LV WKDW WKH H[SHULPHQW GLG QRW PHDVXUH HQRXJK SRLQWV ,W LV DOVR SRVVLEOH WKDW VLQFH WKH RVFLOODWLRQV RI WKH SRSXODWLRQV DUH YHU\ IDVW LQ WKH ORZ HQHUJ\ UDQJH WKH ILQDO \LHOG RI WKH LRQV LQ WKH H[SHULPHQW LV DFWXDOO\ DQ DYHUDJH RI WKH SURGXFW \LHOGV ZLWK GLIIHUHQW LQLWLDO YHORFLWLHV 7KH FKDUJH WUDQVIHU H[KLELWV D GLIIHUHQFH EHWZHHQ WKH V DQG S] RUELWDOV )RU V WKH FKDUJH WUDQVIHU RFFXUV LQ WKH ZKROH HQHUJ\ UDQJH EHWZHHQ DX DQG DX DQG LWV LQWHQVLW\ RVFLOODWHV EHWZHHQ DQG SHDNV ,Q FRQWUDVW WKH RVFLOODWLRQV IRU S] DUH VPDOOHU LQ WKH ORZ HQHUJ\ UDQJH DQG WKH DPSOLWXGH RI WKH SHDNV LV VORZO\ YDU\LQJ ZLWK WKUHH PD[LPD DW ( DX DX DQG DX 7KH WKUHVKROG IRU 1D: UHSRUWHG LQ H[SHULPHQW >+XUNPDQV HW DO @ LV DX 2XU FDOFXODWLRQ VKRZV WKDW WKH S] RUELWDO KDV D YHU\ KLJK WKUHVKROG DW DX +RZHYHU WKH HYROXWLRQ FDOFXODWLRQ IRU FROOLVLRQ HQHUJ\ RI DX VKRZV WKDW FKDUJHV DUH DFWXDOO\ WUDQVIHUUHG WR S] RUELWDOV ZKHQ WKH DWRP LV LQ WKH LQWHUDFWLRQ UDQJH 7KH\ MXPS EHWZHHQ S] DQG RWKHU RUELWDOV DQG WKHQ RQ WKH RXWZDUG SDWK WUDQVIHU WR WKH VXUIDFH DQG V RUELWDOV 7KH FDOFXODWLRQ VKRXOG EH H[WHQGHG WR ORZHU WKH HQHUJ\ UDQJH WR VHH ZHWKHU D WKUHVKROG IRU V RUELWDOV H[LVWV ,W ZLOO DOVR EH LQWHUHVWLQJ WR GR FDOFXODWLRQ IRU GLIIHUHQW LQFLGHQW DQJOHV WR VWXG\ WKH WLPHGHSHQGHQFH DQG WKH WKUHVKROGV RI WKH HOHFWURQLF SRSXODWLRQV IRU S[ DQG S\ RUELWDOV

PAGE 144

7KLV ZRUN KDV FRQVWUXFWHG WKH EDVLF IUDPHZRUN RI WKH 7'02 PHWKRG DQG LQWURGXFHG VRPH DFFHVVRU\ WRROV IRU DSSO\LQJ LW WR DWRPVXUIDFH FROOLVLRQV ,Q WKH GHYHORSPHQW RI WKLV PHWKRG ZH KDYH QRW WHPSWHG WR XVH HPSLULFDO GDWD WR ILW WKH RXU UHVXOWV ZLWK H[SHULPHQWDO RQHV :H EHOLHYH WKDW NHHSLQJ WKH WKHRU\ LQ LWV PRVW JHQHUDO IRUP LV SUREDEO\ WKH ELJJHVW LQWULQVLF DGYDQWDJH RI WKH 7'02 PHWKRG RYHU WKH DSSURDFKHV ZKLFK FDQ QRW WUHDW WKH HIIHFWLYH SRWHQWLDOV DQG WKH FKDUJH WUDQVIHU VHOIFRQVLVWHQWO\ DQG KDYH WR UHO\ RQ WKH HPSLULFDO UHVXOWV ,Q RXU DSSOLFDWLRQV ZH KDYH PDGH VRPH DSSUR[LPDWLRQV DQG VLPSOLILFDWLRQV ZKLFK FDQ HLWKHU EH UHPRYHG RU EH PDGH PRUH DFFXUDWH +RZHYHU LQVRIDU RXU PRGHO LV VLPSOH DQG WKH UHVXOWV DUH SUHOLPLQDU\ VRPH H[WHQVLRQ DQG DSSOLFDWLRQV RI WKLV PHWKRG DUH VXJJHVWHG KHUH Df 6L]H RI WKH SULPDU\ UHJLRQ ,Q SULQFLSOH WKH VL]H RI WKH SULPDU\ UHJLRQ VKRXOG EH RI WKH RUGHU RI WKH LQWHUDFWLRQ UDQJH EXW WKH H[SHULHQFHV RI RWKHU ZRUNV XVLQJ VLPLODU SDUWLWLRQ PHWKRGV KDYH VKRZQ WKDW D VPDOOHU SULPDU\ UHJLRQ FRXOG JLYH VDWLVIDFWRU\ UHVXOWV >0F'RZHOO GH 0DOR HW DO @ ,QYHVWLJDWLRQ RI WKH FRQYHUJHQF\ RI UHVXOWV ZLWK WKH SULPDU\ UHJLRQ VL]H FDQ GHWHUPLQH WKH RSWLPXP VL]H RI WKH SULPDU\ UHJLRQ Ef 2UELWDO SRODUL]DWLRQ :H KDYH IRUPXODWHG WKH PHWKRG WR VWXG\ WKH RUELWDO SRODUL]DWLRQ +RZHYHU WKH RUELWDO SRODUL]DWLRQ VKRZV LQ D OLPLWHG ZD\ LQ WKH DSSOLn FDWLRQ SUHVHQWHG LQ WKLV ZRUN ZKHQ WKH FROOLVLRQ LV OLPLWHG WR WKH QRUPDO LQFLGHQFH $SSOLFDWLRQ WR LQFLGHQFH ZLWK D ILQLWH DQJOH ZLOO SURYLGH PRUH LQIRUPDWLRQ DERXW WKH HOHFWURQLF LQWHUDFWLRQV LQ WKH FROOLVLRQV DQG ZLOO EH D QHZ WHVW RI WKH WKHRU\

PAGE 145

Ff 7UDMHFWRU\ $JDLQ GXH WR WKH OLPLW RI WLPH WKH DSSOLFDWLRQ RI WKH PHWKRG KDV EHHQ FRQILQHG WR XVH D VLPSOH SUHVFULEHG WUDMHFWRU\ $OWKRXJK WKH WUDMHFWRU\ VWXG\ LV UHODWLYHO\ LQGHSHQGHQW RI WKH 7'02 PHWKRG LWVHOI LW VKRXOG EH JLYHQ D JUHDW GHDO RI DWWHQWLRQ IRU LWV LPSRUWDQFH WR WKH SUREOHP 2XU VWXGLHV VKRXOG EH H[WHQGHG WR LQFOXGH WKH FRXSOLQJ EHWZHHQ WKH HOHFWURQLF PRWLRQ DQG WKH QXFOHDU PRWLRQ 6XFK D VWXG\ FRXOG XVH WKH HIIHFWLYH IRUFH FRQWDLQLQJ WKH FRXSOLQJV DORQJ WKH OLQHV ZH KDYH DSSOLHG WR DWRPLF FROOLVLRQV >5XQJH HW DO @ RU ZLWKLQ WKH HLNRQDO PHWKRG >0LFKD @ Gf (OHFWURQHOHFWURQ LQWHUDFWLRQ ,JQRULQJ WKH HOHFWURQHOHFWURQ LQWHUDFWLRQ LQ RXU DSSOLFDWLRQ LV QRW QHFHVVDU\ EXW LW VLPSOLILHV WKH FDOFXODWLRQV ,QFOXGLQJ WKLV LQWHUDFWLRQ ZLOO PDNH WKH 7'+) HTXDWLRQV PRUH GHPDQGLQJ RI FRPSXWLQJ WLPH $QRWKHU DVSHFW RI HOHFWURQHOHFWURQ LQWHUDFWLRQV LV WKH DSSHDUDQFH RI LPDJH SRWHQWLDOV LQ WKH PHWDO 7KHVH FDQ EH QHJOHFWHG DW WKH KLJKHU HQHUJLHV ZH FRQVLGHU EXW ZRXOG EH PRUH LPSRUWDQW LQ WKUHVKROG VWXGLHV Hf %DVLV IXQFWLRQV 7KH 7'02 PHWKRG KDV EHHQ FDVW LQ VXFK D ZD\ WKDW LW XVHV ORFDOL]HG EDVLV IXQFWLRQV EXW GRHV QRW GHSHQG RQ WKH SDUWLFXODU IRUP RI WKHP 7KLV DOORZV WKH IUHHGRP RI DSSO\LQJ WKLV PHWKRG WR PRUH SUDFWLFDO PRGHOV DQG XVLQJ RWKHU ORFDOL]HG EDVLV IXQFWLRQV $Q H[DPSOH LV WKH ORFDOL]HG EDVLV IXQFWLRQV GHYHORSHG E\ 6PLWK DQG KLV FRZRUNHUV LQ VWXGLHV RI VXUIDFH HOHFWURQLF VWUXFWXUH >6PLWK DQG *D\ 6PLWK HW DO @

PAGE 146

$33(1',; $ &$/&8/$7,21 2) &2()),&,(17 0$75,; %[ 7KH RQH GLPHQVLRQDO :DQQLHU IXQFWLRQ IRU D IUHH HOHFWURQ JDV LV >&DOODZD\ @ [ VLQ>MLQ@ Zf Df f§‘" f f§f§ f§ ?IG a Q[Gf $Of ZKHUH G LV WKH ODWWLFH FRQVWDQW :H FRQVLGHU D IXQFWLRQ Zbf-Qr[f ZKLFK LV D OLQHDU FRPELQDWLRQ RI /[O *DXVVLDQV 77O [ f§ [ ff / [ ZQfr1=[f Mf§+L /[ $f ZKHUH $f Q[3P[[f EP]H[S 3P[ Q[GfM LV D RQH GLPHQVLRQDO ,V SULPLWLYH *DXVVLDQ ZLWK D FRQVWDQW EP f§ :H XVH WKH OHDVW VTXDUH PHWKRG >6KDYLWW @ WR GHWHUPLQH WKH FRHIILFLHQW PDn WUL[ %r[PL3P]f ZKLFK PLQLPL]HV WKH GLIIHUHQFH EHWZHHQ Zr[[f DQG :Qr1][f 7KH GHYLDWLRQ EHWZHHQ Zr[[f DQG LFQrPf[f LV 77O [ f§ [ / [ n [ f§ 7O[a .} e / P[ Q[ L .[P[P[3P[[f [f§7O[ f§ /[ G[ $f 7KH FKRLFH RI WKH OLQHDU FRHIILFLHQWV %bLUQ[IPZKLFK OHDGV WR WKH PLQLPXP DFFRUGLQJ WR WKH OHDVW VTXDUH PHWKRG UHTXLUHV WKH YDQLVKLQJ RI WKH SDUWLDO

PAGE 147

GHULYDWLYHV G'G%r[7UL[ ZKLFK JLYHV 22 Pƒ3Pf[f : 77O[f§+[a?a /[ Q[;fa < %/Pn[6IFLn[3UQ][f Pn[ Q[f§/ L G[ $f 'HILQLQJ WKH RYHUODS PDWUL[ RI WKH *DXVVLDQV *Q[P[3UQ]f f§ Q[3UQ]f?P[3P]ff $f DQG D PDWUL[ &Q[P63UQ]f f§ ZQ[?P[3UQ]ff $f (T $f LV WKHQ ZULWWHQ DV D PDWUL[ HTXDWLRQ &[ %;*; $f IURP ZKLFK ZH REWDLQ WKH FRHIILFLHQW PDWUL[ %r &;*;f $f %HFDXVH RI WKH WUDQVODWLRQ V\PPHWU\ LQ WKH [ GLUHFWLRQ DQG RQO\ RQH URZ RI %[ PXVW EH IRXQG $ f

PAGE 148

$33(1',; % &$/&8/$7,21 2) 727$/ %$1' (1(5*< )RU D MHOOLXP VODE ZLWK D VWHS SRWHQWLDO ]! ] f§' WKH WRWDO HQHUJ\ RI D EDQG XVLQJ WKH JHQHUDOL]HG :DQQLHU IXQFWLRQV ZI 9Uf ^ 9R DUH ZULWWHQ DV RI OLQHDU FRPELQDWLRQV RI *DXVVLDQV If LV Q AZ?+?Zf Q n\ \ \ @ %A%MccIOLJOIAUQ[f?+?JIIOL7Q]ff P Pn ZKHUH %P f§ %Q[P] n %Q[7Q[3Pf n LV DQ HOHPHQW RI WKH FRHIILFLHQW PDWUL[ % DQG + LV WKH +DPLOWRQLDQ + 9 9Uf 7KH PDWUL[ HOHPHQW IRU WKH NLQHWLF HQHUJ\ LV >6KDYLWW @ ZKHUH IH ? a A9_Jf $rr $LMP Q B 3Q[P f QP AQ DQG %Of Uf ZKLFK %f %f %f %f %f

PAGE 149

LV WKH RYHUODS PDWUL[ RI WKH *DXVVLDQ IXQFWLRQV 1RWLFLQJ WKH SRWHQWLDO 9Uf LV FRQVWDQW LQ [ DQG \ GLUHFWLRQV WKH PDWUL[ HOHPHQWV IRU WKH SRWHQWLDO DUH ?9?Pf ^Q[P0f?P[Prff n 6Q\$Q-OLP\AP[ff Q?9?JPf %f *Q[P[^3PWf f *+\P\APr Q -8_cUPLf &DOFXODWLRQ VKRZV WKDW ^Q?9?JPf \>HUf HUIKf@ ZKHUH HUI-f LV WKH HUURU IXQFWLRQ >*DXDWVFKL @ DQG O f§ ?3Q P [ 3QQ] 3Pr1 3Q 3P ‘G %f %f K ?3Q 3P Q 3QQ] 3P7Q] K G %f 6XEVWLWXWLQJ (TV %f DQG % f LQWR (T %f WKH PDWUL[ HOHPHQW RI WKH +DPLOWRQLDQ EHFRPHV 0 ?A?Pf *P^SP SP5Of a \>HUf HUIO f@` % f B 8VLQJ %[ DQG %\ REWDLQHG LQ $SSHQGL[ $ DQG VXEVWLWXWLQJ %] *]f DQG (T %OOf LQWR (T %Of WKH WRWDO EDQG HQHUJ\ IO FDQ EH FDOFXODWHG

PAGE 150

$33(1',; & &$/&8/$7,21 2) (/(&7521,& 3523(57,(6 2) 7+( ),1,7( 6/$% :H FRQVLGHU D ILQLWH MHOOLXP VODE ZKLFK PRGHOV WKH :f VXUIDFH DQG KDV 1V 1[1\1] VLWHV ZKLFK IRUP D FXELF PHVK ZKHUH 1[ LV WKH QXPEHU RI VLWHV LQ WKH [GLUHFWLRQ 1\ LV WKH QXPEHU RI VLWHV LQ WKH \GLUHFWLRQ DQG 1] LV WKH QXPEHU RI VLWHV LQ WKH ]GLUHFWLRQ :H FKRRVH 1[ 1\ DQG 1] ,W VKRXOG EH SRLQWHG RXW WKDW WKH VLWHV DUH FKRVHQ IURP PDWKHPDWLFDO FRQVLGHUDWLRQV DQG DUH QRW WKH ODWWLFH SRLQWV LQ :f DQG WKDW WKH GLVWDQFH EHWZHHQ VLWHV G LV QRW HTXDO WR 7XQJVWHQfV ODWWLFH FRQVWDQW D ,Q 6HFW ZH FDOFXODWHG JHQHUDOL]HG :DQQLHU IXQFWLRQV IRU WKH VODE DVVXPLQJ LW VDWLVILHV WKH F\FOLF ERXQGDU\ FRQGLWLRQV LQ [ DQG \GLUHFWLRQV ,Q WKLV DSSHQGL[ ZH GHVFULEH KRZ WKH )HUPL HQHUJ\ RI WKH VODE ZDV FDOFXODWHG 7XQJVWHQ KDV DQ )&& VWUXFWXUH ZLWK D ODWWLFH FRQVWDQW D DX LQ HDFK XQLW FHOO WKHUH DUH WZR DWRPV ZLWK VL[ YDOHQFH HOHFWURQV HDFK ZKLFK JLYHV D GHQVLW\ RI YDOHQFH HOHFWURQV S DX :H FKRRVH G DX VR WKDW DYHUDJH QXPEHU RI HOHFWURQV SHU PHVK FHOO RU SG 7KH HQHUJ\ RI D OHYHO LV (M (N[ (N\ (N] &Of

PAGE 151

ZLWK (N[ (N\ NI ZKHUH QM[ M[ f§ 2} f n f &f ^1[ fG n\ 1\ a fG UM\ &f DQG (N] LV WKH H[DFW HLJHQYDOXH IRU N]-]f M] O IRU D RQHGLPHQVLRQDO VTXDUH ZHOO ZKLFK LV OLVWHG LQ 7DEOH 6WDUWLQJ ZLWK WKH ORZHVW OHYHO ZH ILOO HDFK OHYHO ZLWK WZR HOHFWURQV :KHQ DOO WKH 1 1[Of1\Of1]Of HOHFWURQV DUH ORFDWHG LQ OHYHOV WKH HQHUJ\ RI WKH KLJKHVW RFFXSLHG OHYHO LV WKH FDOFXODWHG )HUPL HQHUJ\ 8VLQJ WKH ERWWRP RI WKH EDQG HE a DX ZH IRXQG WKDW WKH FDOFXODWHG )HUPL HQHUJ\ LV HSA DX ZKLFK LV LQ DJUHHPHQW ZLWK WKH H[SHULPHQWDO YDOXH RI :f DX

PAGE 152

%,%/,2*5$3+< $ $ $EUDKDPVRQ 3K\V 5HY f ) $OLQJKDXV *D\ DQG 5 6PLWK 3K\V 5HY % f 1 $QGHUVHQ LQ )XQGDPHQWDO 3URFHVVHV RI $WRPLF '\QDPLFV HGLWHG E\ 6 %ULJJV + .OHLQSRSSHQ DQG + /XWV 3OHQXP 1HZ
PAGE 153

. 7 5 'DYLHV 5 6 'HYL 6 ( .RRQLQ DQG 0 5 6WUD\HU LQ 7UHDWLHV RI +HDY\,RQ 6FLHQFHf HGLWHG E\ E\ 6 $OODQ %URPOH\ 3OHQXP 1HZ
PAGE 154

+ +DJVWUXP DQG ( %HFNHU 3K\V 5HY % f 0 2 +DOH 9 +HUWHO DQG 6 5 /HRQH 3K\V 5HY /HWW f $ +HHJHU LQ 6ROLG 6WDWH 3K\VLFVf HGLWHG E\ ) 6HLW] 7XUPEXOO DQG + (KUHQUHLFK $FDGHPLF 1HZ
PAGE 155

.RQGR LQ 6ROLG 6WDWH 3K\VLFV HGLWHG E\ ) 6HLW] 7XUPEXOO DQG + (KUHQUHLFK $FDGHPLF 1HZ
PAGE 156

$ 3RSOH DQG / %HYHULGJH $SSUR[LPDWH 0ROHFXODU 2UELWDO 7KRHU\ 0F*UDZ+LOO 1HZ
PAGE 157

+ & 7XOO\ LQ 0RGHUQ 7KHRUHWLFDO &KHPLVWU\ '\QDPLFV RI 0ROHFXODU &ROOLn VLRQVf HGLWHG E\ : + 0LOOHU 3OHQXP 1HZ
PAGE 158

%,2*5$3+,&$/ 6.(7&+ (ULF 4XLQQ )HQJ ZDV ERP RQ $SULO LQ 6KDQJKDL &KLQD $OO RI KLV HDUO\ HGXFDWLRQ WRRN SODFH LQ %HLMLQJ &KLQD ,Q WKH 6SULQJ RI KH FRPSOHWHG KLV XQGHUJUDGXDWH HGXFDWLRQ LQ SK\VLFV DQG UHFHLYHG D GLSORPD IURP 3HNLQJ 8QLYHUVLW\ ,Q WKH )DOO RI KH ZHQW WR *UDGXDWH 6FKRRO DW WKH 8QLYHUVLW\ RI &KLQHVH 6FLHQFH DQG 7HFKQRORJ\ WR EHJLQ KLV JUDGXDWH HGXFDWLRQ ,Q WKH )DOO RI KH JUDGXDWHG IURP WKDW *UDGXDWH 6FKRRO ZLWK D 0DVWHU RI 6FLHQFH GHJUHH LQ SK\VLFV ,Q WKH 6SULQJ RI KH FDPH WR WKH 86$ DQG HQUROOHG LQ WKH 'HSDUWPHQW RI 3K\VLFV DW WKH 8QLYHUVLW\ RI )ORULGD IRU IXUWKHU VWXGLHV $IWHU FRPSOHWLRQ RI WKH TXDOLI\LQJ H[DPLQDWLRQ IRU WKH DGPLVVLRQ WR WKH 3K' SURJUDP KH MRLQHG WKH 4XDQWXP 7KHRU\ 3URMHFW LQ WKH )DOO RI DQG EHJDQ UHVHDUFK IRU KLV GRFWRUDO WKHVLV

PAGE 159

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG $ 0LFKD &KDLUPDQ 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ nr 6M 9 D !‘ 5RGQH\r" %DUWOHWW *UDGXDWH 5HVHDUFK 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 6DPXHO 2 &ROJDWH $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0RQNKRUVW 3URIHVVRU RI 3K\VLFV

PAGE 160

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KULVWRSKHU -D\ 6WDQWRQ $VVLVWDQW 3URIHVVRU RI 3K\VLFV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI 3K\VLFV LQ WKH &ROOHJH RI /LEHUDO $UWV t 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ *UDGXDWH 6FKRRO

PAGE 161

81,9(56,7< 2) )/25,'$