Citation
A spectroscopic investigation of matrix isolated radical cations of para-dichlorobenzene, para-dimethoxybenzene, and naphthalene

Material Information

Title:
A spectroscopic investigation of matrix isolated radical cations of para-dichlorobenzene, para-dimethoxybenzene, and naphthalene
Creator:
Personette, William K., 1958-
Publication Date:
Language:
English
Physical Description:
xiii, 147 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Absorption spectra ( jstor )
Cations ( jstor )
Electronics ( jstor )
Electrons ( jstor )
Ionization ( jstor )
Ions ( jstor )
Molecules ( jstor )
Photolysis ( jstor )
Raman scattering ( jstor )
Spectral bands ( jstor )
Cations ( lcsh )
Chemistry thesis Ph. D ( lcsh )
Dissertations, Academic -- Chemistry -- UF ( lcsh )
Matrix isolation spectroscopy ( lcsh )
Genre:
bibliography ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1993.
Bibliography:
Includes bibliographical references (leaves 141-146).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by William K. Personette.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001950905 ( ALEPH )
31200891 ( OCLC )
AKC7447 ( NOTIS )

Downloads

This item has the following downloads:


Full Text







A SPECTROSCOPIC INVESTIGATION OF
MATRIX ISOLATED RADICAL CATIONS
OF PARA-DICHLOROBENZENE,
PARA-DIMETHOXYBENZENE, AND NAPHTHALENE









By

WILLIAM K. PERSONETTE


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENT FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY




UNIVERSITY OF FLORIDA


1993























To my mother and brothers

and in memory of my father











ACKNOWLEDGEMENTS


The author wishes to express gratitude to Professor Martin T. Vala

for his willingness, patience and support to allow me to develop as an
independent researcher and for providing a thoughtful, reflective
atmosphere in which to work.
I am indebted to Dr. Jan Szczepanski for his experimental expertise
and kind words of encouragement through many difficult experiments.
Dr. Bryce Williamson is to be thanked, also, for his perspective and timely
advice.
FTICR/MS experiments were performed by Dr. Chris Barshick in
Professor John Eyler's laboratory and I thank them both. Theoretical

calculations of electronic states of para-dichlorobenzene cation were
performed by Professor Michael Zerner and vibrational calculations for

para-dichlorobenzene and para-dimethoxybenzene were performed by
Marshall Cory of Professor Zerner's group. I am indebted to both of them.
Previous members of the Vala group, Drs. Bob Pellow, T. M.
Chandrasekhar and Dennis Roser, and Marc Eyring made research
rewarding through fruitful discussion and shared experience.
Past and present members of Professor Colgate's group, Kyle Reed
and Drs. Evan House, Charles Simon and Ken McGill also contributed to
my outlook concerning research.









The support of all members of the Chemistry Department including
machinists, electronics technicians, glass blowers and secretaries as well
as all other professors, postdoctoral researchers and graduate students
whom I have failed to mention by name is appreciated. Also, all those
outside of the Chemistry Department with whom I have worked should be
thanked.
Professor Larry Eng-Wilmot is thanked for my present employment
at Rollins College as is Brie McDougall for typing this dissertation.
Finally, the positive influence my mother, father and brothers have
had on my decision to pursue a career in chemistry should not be forgotten
or underemphasized.












TABLE OF CONTENTS




page

ACKNOWLEDGEMENTS...............................................................iii

LIST OF TABLES .......................................................................vi

LIST OF FIGURES...................................................................... viii

ABSTRACT .................................................................................. xii

INTRODUCTION.........................................................................1

EXPERIMENTAL.........................................................................22

THEORY ................................................................................... 39

RESULTS AND DISCUSSION

Para-Dichlorobenzene ........................................................ 50

Para-Dimethoxybenzene.........................................................90

Naphthalene.......................................................................110

CONCLUSIONS AND FUTURE WORK...........................................137

REFERENCES .......... .................................................................141

BIOGRAPHICAL SKETCH ........................................................147











v








LIST OF TABLES


ITable P

1 Ionization Mechanisms in the Negative Glow
Region of an Abnormal Glow Discharge.................... 7
2 Colors of Glow Regions in a DC Gas Discharge..................... 9

3 Low-lying Metastable Energy Levels of Rare
Gas Atom s.......................................................... 10

4 Visible/UV Absorption Bands of PDCB Cation
in Ar Matrix at 12 K................................................54

5 Comparison of the PDCB Cation Optical Absorption
Transitions with the Photoelectron Bands .................55

6 Resonance Raman Bands of the PDCB Cation in
Ar Matrix at 12 K................................................ 65

7 Fluorescence Bands of PDCB Cation in Ar
M atrix at 12 K ...................... ......... ......................66

8 Calculated and Observed Spectra of PDCB
Cation (Energies in eV) ............................................

9 Calculated and Observed Vibrational
Frequencies (cm-1) for Neutral PDCB.........................73

10 Calculated and Observed Vibrational
Frequencies (cm-1) for PDCB Cation...........................74

11 Calculated and Observed Vibrational
Frequency Shifts Upon Ionization of PDCB ...............76

12 Calculated Intrinsic Stretching Frequencies
and Force Constants for Neutral PDCB......................78

13 Calculated Intrinsic Stretching Frequencies
and Force Constants for PDCB Cation........................78

14 Calculated and Observed IR Vibrational
Frequencies (cm-') for PDMOB Cation...................... 102








15 Calculated Intrinsic Stretching Frequencies
and Force Constants for Neutral PDMOB......................104

16 Calculated Intrinsic Stretching Frequencies
and Force Constants for PDMOB Cation.......................104

17 Theoretical and Experimental IR Bands
for Naphthalene Cation.............................................124








LIST OF FIGURES


Figure P

1 Representative Molecules of Interest.........................................

2 Astrophysical Processes of Interstellar Molecules
and Grains.................... ....................... ................. 6

3 Voltage/Current Characteristics of Gas Discharges ................ 12

4 General Experimental Set-up for Matrix-Isolation .................... 16

5 Matrix Preparation and Subsequent Treatments....................... 19

6 Cryostat with Vacuum Shroud and Furnace
Assembly Attached............ ................ ......................... 24

7 Schematic of Pulse-Valve Power Supply and
Driver Circuit ............................................................ 28

8 Pulsed-Glow Discharge Assembly........................................ 30

(A) Schematic of Pulsed-Glow Discharge/
Matrix Isolation Apparatus

(B) SIMION Calculated Trajectories of
p-Dimethoxybenzene Cations

9 General View of Experimental Set-Up for Matrix
Isolation Using Electron Bombardment Ionization............ 33

10 General View of Experimental Set-Up for FTICR Using
Glow Discharge Ionization.......................................... 37

11 General Types of Electronic Configurations Associated
with '2M Molecular Cations ........................................... 42

12 Fixed Nucleus Potential Well Calculation (solid line)
and its Harmonic Approximation (dashed line) ................ 46

13 Effect of Basis Set and Level of Theory on Potential
W ell Calculations...................................................... 48


viii








14 UV-Visible Spectrum of Neutral PDCB in Ar Matrix
at 12 K, Showing Band System at 280 nm and Visible
Spectrum of PDCB Radical Cation in Ar Matrix at
12 K, Showing Three Band Systems Marked
6, C and ...................................................... ...................... 52

15 FTIR Spectra of Neutral PDCB (top) and Neutral Plus
Cation PDCB (bottom) in Ar Matrix at 12 K..................... 57

16 Correlation of 520 nm Visible Absorption Band
Absorbance of PDCB Cation with Four
IR Band Absorbances... .............................................. 60

17 Fluorescence and Raman Bands of PDCB Cation
in Ar Matrix at 12 K Excited by 514.4 nm
Ar Ion Laser Radiation (blackened dots indicate
sharp Resonance-Raman bands while broad
bands are due to fluorescence)........................................ 62

18 Fluorescence of PDCB Cation in Ar Matrix at 12 K Excited
by 488.0 nm Ar Ion Laser Radiation, Showing
Emission from Two Sites (A and B)................................. 64

19 Schematic of HOMO (Highest Occupied Molecular Orbital)
of PDCB Cation.................................... ................. 72

20 Raman-Active (ag) Normal Modes Observed for
PDCB Cation (clockwise from upper left:
modes 2, 3, 4 and 6, same orientation as in
Fig. 19, bonds are removed for clarity)............................ 81

21 Infrared-Active Normal Modes Observed for PDCB
Cation (clockwise from upper left: modes 11, 13, 21
and 28, same orientation as Fig. 19 except mode 28
which is viewed along the C-C1 axis, bonds are
excluded for clarity).............................................. 83

22 FTICR Mass Spectrum of Pulsed-Glow
Discharged PDCB Seeded in Ar.................................... 85

23 Visible/UV Spectra of PDMOB Neutral (k < 300 nm) and
Radical Cation (300 nm < X < 470 nm) in an
Ar M atrix at 12 K......................... ............................. 92








24 Infrared Spectra of Discharged PDMOB/CC14/Ar
Mixture (top) Showing Neutral and
Radical Cation (black circles) Bands
and Only Neutral PDMOB Molecules (bottom)
in an Ar Matrix at 12 K. Bands with Black
Inverted Triangles are Unassigned................................ 95

25 Correlation Diagram between 460 nm Visible Band and
Four IR Peaks (Varying Absorbances
Produced by Different Photolysis Times)........................... 97

26 Visible/UV Spectra of

(A) Unphotolyzed PDMOB Radical Cation
Formed from Discharged PDMOB/CC1VAr
Mixture;

(B) Spectrum A after 25 Minutes Photolysis;

(C) Discharged CCl4/Ar Mixture before
Photolysis;

(D) Spectrum C after 25 Minutes
Photolysis. All in Ar at 12 K.................................100

27 FTICR Mass Spectrum of Pulsed-Glow Discharged
PDMOB Seeded in Ar ................................................107

28 Visible/UV Spectra of Neutral and Cationic
Naphthalene in Ar at 12 K in the
290-700 nm Spectral Region.......................................... 113

29 Infrared Spectra of Neutral (bottom) and
Neutral Plus Cationic Naphthalene
(top) in Ar at 12 K. New Peaks Due to
Cation are Marked with Solid Circles............................ 115

30 Correlation of 675 nm Visible Band Absorbance
of Naphthalene Cation with 1218 cm-1
IR Band Absorption. The Empty Square
Indicates Datum from an Experiment
with CCl4 Absent..................................................... 118








31 Visible/UV Spectrum of Neutral (N) and Cationic (N+)
Naphthalene in Ar at 12 K Prior to Photolysis (top);
Spectrum after Photolysis for Five Minutes with
Medium-Pressure Hg Lamp (bottom).
Note that the Intensity of the Band System in
the 300-500 nm Range Has Been Compressed
Two-fold for Visual Clarity ...........................................120

32 Infrared Spectra of Neutral and Cationic Naphthalene
in Ar, 12 K, Prior to Photolysis (top) and After
Photolysis (bottom); Same Sample as in Figure 31
([CC1]/[Ar] = 3/1000) ................................................... 122
33 Resonance Raman Spectrum of Cationic
Naphthalene in Ar (0.1 % CCl4) at 12 K
(50 mW, 614.4 nm, Rhodamine 590 excitation).................127

34 FTICR Mass Spectrum of Pulsed-Glow Discharged
Naphthalene Seeded in Ar..........................................130








Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the Requirements for
the Degree of Doctor of Philosophy


A SPECTROSCOPIC INVESTIGATION OF MATRIX ISOLATED
RADICAL CATIONS OF PARA-DICHLOROBENZENE,
PARA-DIMETHOXYBENZENE, AND NAPHTHALENE

By

William K. Personette
December 1993

Chairman: Martin T. Vala
Major Department: Chemistry
Matrix isolation spectroscopy provides a means by which relatively
unstable chemical species may be investigated. Radical cations derived
from aromatic, organic molecules represent an important class of such
species. Specifically, those derived from the title molecules, para-
dichlorobenzene (PDCB), para-dimethoxybenzene (PDMOB), and
naphthalene (N), were studied spectroscopically using the matrix isolation
technique.
Radical cations of the title molecules were generated by either pulsed-
glow discharge or electron bombardment and then trapped in argon at 12 K.
Correlation of known cationic visible absorption bands with infrared (IR)
bands observed for the same sample/matrix allowed assignment of IR
bands to each of the three radical cations studied. Ab initio Hartree-Fock
Self Consistent Field (HF/SCF) level calculations of harmonic vibrational
frequencies for neutral and cationic PDCB, PDMOB, and N provided
further evidence for assignments and were used to characterize vibrational
frequency shifts, and intensity and bonding changes evoked upon









ionization. IR-active vibrations for PDCB+ are assigned at 843, 986, 1110
and 1429 cm-1, while those attributed to PDMOB+ occur at 1309 (1304), 1342,
1388 and 1427cm-1. IR bands at 1016, 1023, 1218/1215, 1401, 1519 and
1525 cm-1 are assigned to N+.
Resonance-Raman (RR) spectra of PDCB+ and N+ and the
fluorescence/RR spectrum of PDCB+ were recorded. The fluorescence
spectrum matched well with previously reported gas phase emission of
PDCB+ while the RR spectra obtained compared favorably with previous RR
studies of these radical cations in alkylhalide glasses at 77 K. Raman-
active vibrations for PDCB+ are reported at 330, 1113, 1189 and 1598 cm-1
while those ofN+ occur at 510, 765 and 1400 cm-1.
The role of CCl4 (and its degradation products) as gas phase
ionization enhancer and matrix charge compensator was further clarified
through photolysis experiments. Correlation analysis allowed assignment
of a broad, featureless visible absorption centered at -420 nm to CC13 Cl
based on previous assignment of 927 and 1019 cm-1 IR absorbances to this
species.
Finally, preliminary Fourier Transform Ion Cyclotron Resonance

Mass Spectrometry (FTICR/MS) experiments of gas phase pulsed-glow
discharge generated plasmas indicated fragmentation of parent molecules
and these spectra were related to matrix composition determined
spectroscopically. The necessity for independent, complementary
experimental and/or theoretical methods is thus emphasized.


xiii










INTRODUCTION


The spectroscopy of molecular ions has been the subject of extensive
investigation'14 since the early realization of the important role such ions
play in physics, chemistry and biology. Many of these ions are obviously
quite stable when present as constituents of solids and in the solution phase
but are quite unstable and reactive when in the gas phase. Many such
species are also short-lived and transient in nature and thus difficult to
study by conventional means. One such class of molecular ions is the
radical cations derived from aromatic, organic molecules such as
substituted benzenes and fused benzene rings known as polycyclic aromatic
hydrocarbons (PAHs). Representative molecules are depicted in Figure 1.
The significance of this particular group lies in the fact that many form
ions from their neutral parent molecules upon exposure to specific clay
minerals present in soils.15-22 Hence, the ability to identify and characterize
spectroscopically this group of ions is of consequence to monitoring the fate
of this industrially important series of molecules in the environment.
Moreover, since these ions may play a role in the chemistry of their disposal
by combustion or other destructive means spectroscopic determinations will
assist in understanding the reaction mechanisms in which these
intermediates may be involved. Interestingly and in contrast to their
environmental role, it has been suggested that the neutral PAHs are an



























Figure 1


Representative Molecules of Interest






ci---g-Cl


@-OH


-FCH


D-CH3


H3CO-- OCH3


CH CH3


CH3 CH3


C1-- N-NH2


9


CH3

s


CHJ S 'CH3




NH2 21YaNH2


@-OCH3


& C2H5


--NH2

@- N(CH3)2


ClI--OCH3

(CHCH2)n


H3COO-@ -OCH3


N(CH3)2 -N(CH3)2


9-~cl


O O O


LOjj


mg@


&NHNH-g









important and significant component of the interstellar medium based on
unidentified infrared (UIR) spectral emission features observed by
astronomers23 at 885, 1149, 1282, 1613 and 3030 cm-1. Considering the harsh
interstellar environment, i.e., a very strong ultraviolet radiative flux,
others24 have suggested the PAH hypothesis may better match observations
if these molecules exist as ionized species rather than neutrals (Figure 2).
For this reason, the spectroscopy of radical cations derived from PAHs is of
astronomical as well as terrestrial importance. A brief review of previous
studies of molecular ion spectroscopy follows, emphasizing the techniques
by which ions are produced and investigated.
There are a wide variety of means by which atomic and molecular
ions are produced. Historically, flames25' 26 and electrical discharges27 were
the predominant environments of gaseous ion production. Further
refinements for analytical purposes consisted of essentially extracting and
optimizing one of the many ionization processes operating in these complex
systems (Table 1). Specifically, electron impact,28 and Penning,29 field,
thermal and chemical ionization are the most commonly employed
processes today.30 Photoionization is also a prominent method of ion
production.31 The method of ionization used is a function of ion production
efficiency, tolerance of molecular ion fragmentation, and amenability to the
techniques used to detect and characterize the ions produced. For example,
electron impact is well suited to mass spectrometry (MS) since it is
relatively efficient, vacuum requirements of the mass spectrometer are not
exceeded, and fragmentation can be accounted for. Recently, glow
discharges have been coupled to mass spectrometers32-35 employing


























Figure 2


Astrophysical Processes of Interstellar Molecules and Grains
















NIR


FIR


UV


.dam
off








Table 1


Ionization Mechanisms in the Negative Glow Region
of an Abnormal Glow Discharge
(adapted from Ref. 32)


I. Primary Ionization Mechanisms

A. Electron Impact:

M + e- -- M+ + 2e-

B. Penning Ionization:

M + Am* -* M+ + AO + e-


(MO = neutral molecule)



(Am* = discharged gas A in a
metastable state)


II. Secondary Ionization Mechanisms

A. 1. Nonsymmetric Charge Transfer:

A+ + M M+ + AO

2. Symmetric (Resonance) Charge Transfer:

B+fast + BOslow -- B+slow + Bfast

3. Dissociative Charge Transfer:

A+ + MX M+ + X + Ao

B. Associative Ionization:

Am* + M -* (AM)+ + e-

C. Photoionization:


M + hv --)M+ + e-









differential pumping to overcome pressure overloads. Another method of
avoiding pressure difficulties and generating metastable and/or ionic
species by glow discharge is to pulse the discharge gas into the mass
spectrometer.36 This method consists of applying a voltage, typically a few
kilovolts, to an electrode suspended in close proximity to another electrode
held at ground potential both of which are under high vacuum. Upon
introduction of a gas pulse, typically a rare gas, in the region between the
electrodes an electrical discharge is initiated which extinguishes itself once
the pressure has dropped below the breakdown potential of the gas used.
This glow discharge is a low-temperature plasma existing in a moderate
pressure (0.1 to 10 torr) of inert gas exhibiting currents intermediate
between those of Townsend and arc discharge, typically in the millampere
range. The characteristics of gas discharges37 are shown schematically in
Figure 3 in which Vb, Vn and Vd indicate breakdown, normal and

discharge potentials, respectively. Low energy electrons of a few eV and
densities of ~1012/cm3 cause excitation of rare gas atoms to metastable states
while a much smaller number of more energetic electrons (5-50 eV) are
also produced. The glow discharge is probably the most commonly
recognized form of gaseous discharge because of its ease of production and
commercial utility as use in "neon" lights. The characteristic colors38 are
given in Table 2. Atoms and molecules either doped into the gas or
introduced separately into the discharge region are excited and/or ionized
by collisions with ions, metastable gas atoms, electrons, or photons (Table
1). The ionization potential and energies of low-lying metastable states of
the rare gas discharged39 (Table 3) dictate the ability of this ionization









Table 2


Colors of Glow Regions in a DC Gas Discharge


Negative Glow

pale blue
blue

yellowish white

green

dark blue

orange


Positive Column

pink

red

pale yellow with pink center

red to violet

dark red

brick red


Gas

H2

N2

02

He

Ar

Ne









Table 3


Low-lying Metastable Energy Levels of Rare Gas Atoms
and Ionization Potentials of Molecules of Interest


Metastable Energy, eV

19.8, 20.7

16.6, 16.7

11.5, 11.7

9.9, 10.5

8.3, 9.4


Molecule

para-dichlorobenzene

para-dimethoxybenzene

naphthalene


Ionization Potential, eV

24.58

21.56

15.76

14.00

12.13


Ionization Potential, eV

8.98

7.9

8.2


Gas

He

Ne

Ar

Kr

Xe





































0



cI~
~a)









Za)
bO

Cu"

0







12




I -4
0






1-1

^-4
t

S 0
Ib
'-4





-~ S










I g

I j
I 0
I: i-I














--f-
















0
'I I
I


(A OA
(A) aS~p









method to produce the ions of interest, i.e., the ionization potential of the
atom or molecule must be overcome via the ionization process energies
available in the discharge.
Gas phase ion spectroscopy and mass spectrometry have provided a
wealth of information concerning molecular ion structure and reactivity.
The coupling of these methods through excitation wavelength specific
photoionization and fragmentation techniques followed by classical ion
detection has made it possible to infer optical absorption spectra at
sensitivity levels typically associated with laser induced fluorescence (LIF)
and standard mass spectrometry. In addition, cooling via supersonic
expansion has assisted in the interpretation of gas phase ion spectra by
decreasing line widths and under favorable conditions eliminating
vibrationally and rotationally "hot" bands. These advances are impressive
and will continue to contribute to gas phase ion spectroscopy. However,
because of their level of sophistication they are as technically demanding as
they are informative. An alternative which is technically less arduous yet
provides significant and substantial spectroscopic and chemical
information concerning molecular ions is the matrix isolation technique.40
The data obtained via this technique are often the starting point for high
resolution gas phase experiments.
The encapsulation of chemical species within some medium is not a
particularly new idea.41-44 Numerous examples exist naturally, one of
which is the trapping of the 83 anion within the aluminosilicate structure

of the mineral lapis lazula. A blue color is imparted to the mineral as a
result of optical absorption by the anion. The dissolution of molecules in









solvents followed by freezing and y-ray irradiation to form solid glasses

containing ions for low temperature studies is well established.45 Fast-flow
techniques46 have allowed monitoring of transient species, also, as have
other time resolution procedures. The purpose of the matrix isolation
technique as formally introduced by Whittle, Dows and Pimentel47 in 1954 is
to embed species of chemical interest in a medium exhibiting minimal
interaction with its "guest" as well as transparency in the spectral regions
used to probe the species under study. Once-transient species now isolated
in the matrix could then be investigated at a more leisurely pace since the
processes accounting for their instability have been greatly arrested if not
stopped completely. This ideal is never completely realized but is most
closely approached by isolation in solid rare gases. Since these materials
are produced at low temperatures, high vacuum and cryogenic techniques
are employed to create substrates onto which the mixture of excess matrix
gas and species of interest are deposited. The general experimental
arrangement is shown in Figure 4. The low temperatures required have
the additional benefit of simplifying spectra through line narrowing and
elimination of "hot" bands. The method of deposition varies depending on
the species studied and the spectroscopic technique employed.
Stable, volatile materials may simply be premixed with the matrix
gas and deposited either in a continuous or pulsed mode.48 Pulsing appears
to minimize multiple site formation in the matrix as well as aggregation of
the species to be isolated. It allows for more rapid depositions and, as a
result, less contamination by impurities. Matrices are usually clearer (less
scattering), also.49 Detection of these species by standard spectroscopic


























Figure 4


General Experimental Set-up for Matrix Isolation

















Cryostat under high vacuum



Sample introduction









techniques is not particularly difficult. The production and trapping of
highly involatile, transient chemical species offers an example of the other
extreme of sample preparation. High temperature furnaces and laser
ablation are used to produce gaseous atoms, molecules and ions of metals
and refractory materials while high energy processes, such as those
discussed for gaseous ion production, provide an avenue to unstable
molecular fragments and ions. This is shown in the upper portion of
Figure 5. Continuous flow deposition is best suited to those methods that
provide a continuous flow of sample while pulsing is appropriate when the
sample itself is generated in pulses as is the case with ablation via pulsed
high-powered lasers. Pulsing offers the added advantage of avoiding
pressure build-up in the vacuum chamber when differential pumping is
not available or when locally and temporally high gas pressures are
required. Unambiguous detection and characterization of these ephemeral
species is more difficult than that of stable species for which the
experimental and theoretical bases are much more extensive. The methods
discussed so far are primarily associated with formation of species just
prior to deposition. The pre-matrix mixture has been studied
spectroscopically and by mass spectrometry in an attempt to provide
evidence for and correlation with the observed and proposed entities found
in the matrix. This entails a detailed understanding of the processes
occurring on and near the substrate surface during deposition. Some
insight into these processes is gained by treatment of the matrix after it has
been formed. The focus now is manipulation of chemical species in the
matrix after deposition.



























Figure 5


Matrix Preparation and Subsequent Treatments














High temperature species


Matrix gas \


Matrix gas with volatile species


High energy process,
e.g., electrical discharge


Photolysis


Additional energy input


Annealing


Diffusion leading to aggregates


Matrix Isolated
Sample


New matrix: species









Once a matrix is formed it can be subjected to a variety of
perturbations to induce changes that can be monitored spectroscopically.
The most frequently employed methods are annealing of the matrix and
exposure to external radiation sources, i.e., photolysis. This serves the
purpose of generating new species in the matrix and providing insight into
the initial matrix composition and the thermodynamics, photochemistry
and physics associated with the transformation(s) within the matrix.
These processes are depicted in the lower portion of Figure 5. Annealing is
the controlled input of thermal energy into a matrix for the purpose of
eliminating multiple sites, and for inducing the formation of aggregates
and disintegration of highly reactive intermediates. These are low
activation energy processes which are put into action by the softening of the
matrix upon warming and subsequent diffusion and reaction of entrapped
atoms, molecules, and/or ions.
Photolysis is the controlled input of electromagnetic radiation for the
purpose of generating, identifying, and distinguishing species present in
the matrix. High energy photolysis, e.g., using y-ray or ultraviolet

radiation, is capable of ionizing molecules with high ionization potentials
in the matrix. Lower energy light, e.g., visible or near infrared, is better
suited to photodetachment of electrons captured only weakly by electron
traps intentionally added to the matrix to enhance the formation of positive
ions of interest. In both instances, monitoring and correlating the growth
and diminishment of spectroscopic bands tentatively assigned to matrix
species as a function of photolysis energy and duration make significant









contributions to conclusive assignment of bands to a specific chemical
species.
The purpose of the research presented in this dissertation was to
employ the matrix isolation technique to experimentally obtain the
vibrational absorption spectra of radical cations derived from para-
dichlorobenzene (PDCB), para-dimethoxybenzene (PDMOB), and
naphthalene (N). To this end, a pulsed-glow discharge/matrix isolation
technique was developed and employed as the primary method of ion
generation (electron bombardment was also used) and trapping. During
the course of this investigation, Thoma, Wurfel, Schlachta, Lask and
Bondybey50 reported on a very similar methodology, which is noted and
acknowledged. A description of experimental details, theoretical
considerations and results and discussion for each molecule studied
follows.










EXPERIMENTAL


The matrix isolation technique requires a vacuum system, cryostat
and gas/sample inlet port. The general setup is shown in Figure 4. The
cryostat with vacuum shroud and furnace assembly attached is shown in
Figure 6. For the purposes of the research presented here the gate valves

and furnace assembly were removed and replaced with a pulsed-discharge
or electron bombardment assembly for ion generation (to be described later),
a window transparent to the spectral region under investigation or a port
for evacuation depending on the method of ion production used or other
experimental constraints.
The system was evacuated by a two inch air-cooled oil diffusion pump

(Alcatel PDR 250, rated at 200 L/sec) back-pumped by a mechanical
roughing pump (Alcatel 2020, rated at 450 L/min) and separated from the
sample matrix by a liquid nitrogen cooled cold trap. All surface-to-surface
interfaces were sealed with O-rings. The pressure was monitored with an
ion gauge (Model 4336P, Kurt J. Lesker Co.) interfaced with a Granville-
Phillips 270 Gauge Controller. The system was pumped to the 4 7 x 10'
torr range (without a full cold trap) then to 1 4 x 106 torr (with a full cold
trap) before any depositions were performed. The pressure measured
decreased to 4 7 x 10-7 torr once the cryostat had reached matrix deposition
temperature (-12 K). Typically the system was pumped on overnight,
followed by a matrix experiment the next day. When a pulse valve was
























Figure 6


Cryostat with Vacuum Shroud and Furnace Assembly Attached












ELECTRICAL --

He GAS
He GAS


THERMOCOUPLE
and
HEATING WIRES


EXPANDER
Ist STAGE
2nd STAGE-



COPPER COLD TIP

TARGET WINDOW-

RADIATION SHIELD


JOINT


ASSEMBLY








employed it was either left on during the pumping cycle or the gas manifold
line was evacuated via a bypass valve (cf. Figure 4). The bypass valve also
allowed introduction of dry nitrogen gas into the vacuum system to expedite
cryostat warm-up and subsequent disassembly and reassembly.
The cryostat employed consisted of a two stage closed-cycle Air
Products Displex (Model DE 202) helium refrigerator. The first stage was
attached to a copper radiation shield held at 40 60K while a copper cold
finger was attached to the second stage. A copper window container was
then screwed into the cold finger (a polished aluminum block was used for
Raman studies). All metal-metal and metal-window interfaces were joined
using indium gaskets. The window temperature was measured using a
gold-chromel (0.07% Fe) thermocouple compressed between indium at the
cold finger-copper window container interface. An Air Products APD-B
temperature controller was used for temperature read-out and was
calibrated against liquid nitrogen. Temperatures were maintained at 12 K.
Argon (Research purity, 99.9995% pure, Matheson Gas Products)
matrices were deposited either in a pulsed or continuous mode depending
on the method of ion production. In either case CCl4 (if added) was
premixed in a gas manifold or bulb by conventional manometric techniques
to a ratio of 100/1 to 500/1 (Ar/CC14). When the pulsed mode was employed
the sample was premixed from a side arm down stream from the matrix
gas just prior to the pulse valve. For PDCB and N samples, room
temperature provided a sufficient sample vapor pressure for deposition. In
the case of PDMOB the side arm was heated to ~600C. When a continuous
flow mode was employed as in the case of electron bombardment of N, the









sample was inlet and mixed with the matrix gas just inside the vacuum
chamber just prior to deposition.
Pulsed-glow discharge deposition was the primary method employed
for producing and trapping ions under investigation. The pulse valve
(General Valve, Series 9) was powered and driven by the home-made circuit
shown schematically in Figure 7. It consists of a power supply (D-4, 5, 6)
which supplies +28 volts (V) DC to the 2N3055 transistor (C-2) and +5 V DC
to a pulse generator (A-C, 4-6), a TIL 112 optoisolater (B3), and a delay
circuit (C, 2-3) used to couple to another system, e.g., a pulsed Nd-YAG
laser. The 100 KA variable resistor (C5) determines the +5 V output
duration while the 2 MQ variable resistor (B5) determines the 0 V (ground)
output duration. Together they determine the duty-cycle of the pulse
generator. A 5 msec, +5 V pulse at 1 Hz frequency was used. This pulse
triggered the optoisolator to drive the pulse valve solenoid (labeled SOL, B1)
and open the pulse valve. At that time the gas/sample mixture entered the
vacuum system through a 0.8 mm stainless steel (SS) tube held at ground
potential and initiated formation of a plasma between the tube and a thin
copper wire attached to a hemispherically-shaped copper grid held at +3
KV potential (see Figure 8A). The primary plasma was generated in the -2
mm gap between the SS tube and the Cu wire. A weaker, secondary
plasma was generated within the cylindrical lense held at +150-200 V. As
mentioned, the pulse rate was set to 1 Hz but formation of the discharge
increased the frequency to ~2 Hz. As deposition proceeded, typically two
hours, the needle valve had to be opened further and/or the backing
pressure in the manifold increased to allow reliable plasma formation.



































a)








a)

0




a)
U'

0
e- .)

CU


C.)
CI2

























III


3>

























Figure 8


Pulsed-Glow Discharge Assembly
(A) Schematic of Pulsed-Glow Discharge/Matrix Isolation Apparatus
(B) SIMION Calculated Trajectories of p-Dimethoxybenzene Cations





(A)


to pulsed
valve


IRV ^

+ 3 kV


grid


"":.. ;. ." "
cylindrical
lens


1

10K
window


lens


window


(B)


CD


tr
grid


1 1 1 [ 1 1. 1 1 11 1 1 1









Deposition rates were =50 torr/hr with a manifold pressure in the 500 760
torr range. The system pressure pulsed over a 3 6 x 10-6 torr range during
deposition.
The trajectories of PDMOB cations were simulated by the SIMION
program and are shown in Figure 8B. The initial position for each
trajectory was chosen to lie on a line spanning the hemispherical grid
space and the direction of flight was varied from 0 (directly at the window)
to 3600 by 300 intervals. The shape of the grid and the high positive potential
on it resulted in the ions taking only one pathway. The trajectories shown
are for a sample window with zero or a small positive potential. The overall
behavior of ions in this discharge arrangement is very much like that of
hollow-cathode electrodes in discharge lamps. However, since the cations
are deposited in a matrix the potential of the matrix becomes increasingly
positive to a point at which necessary deposition of anions occurs to insure
charge neutrality.
The method of pulsed-glow discharge was used to generate PDCB,
PDMOB, and N cations for matrix isolation and was also coupled to a
Fourier Transform Ion Cyclotron Resonance (FTICR) Mass Spectrometer
for preliminary investigation of possible fragmentation accompanying
ionization (to be discussed later). Another ionization method employed for
matrix isolation investigation of N cation and other cations not discussed
here was electron bombardment.

The ionization of N was accomplished by use of the specially-
constructed electron bombardment source shown in Figure 9. The
tungsten filament (0.1 mm diameter) was heated by a current of














0
0

N

~0


II
o0
0

0


0




cI

0

0

W

0
v-i













'-I



























4m
+


w -
o I


0 <


g
m

m
iii
gv,
b

~









1.20 1.45 A (at 6 8 V) and electrons were emitted. The anode potential
(UA) was held at +20 to +50V, while the cathode potential (UB) was
maintained at -50 to 200 V. A copper ring situated above and adjacent to the
matrix window was held at +50 V (Uo) and collected electrons. A
background current of 2 pA was registered which increased to 20 30 pA
during deposition.. Ionization occurred as the result of the vapor-phase
mixture of argon, CCl4, and naphthalene passing through the electron
beam just prior to deposition.
Investigation of UV-vis and IR absorption of matrix isolated cations
was accomplished by ionization of the sample (as discussed) followed by
deposition onto a BaF2 window. Barium fluoride was used since it is
transparent over the 210 nm to 14 gm range and is thus usable in both the
UV-vis and IR regions. For either ionization method the system was
configured in such a way as to establish two unobstructed light paths
perpendicular to each other intersecting at the matrix window (cf. Fig. 9).
The infrared spectra were run on a Nicolet 7199 Fourier transform
infrared spectrometer (typically with 300 scans, 1 cm-1 resolution) while the
UV-vis scans were done on a Cary-17 spectrophotometer (0.2 0.6 nm
resolution over the 240 700 nm range). To allow for sequential scans in the
UV-vis and IR by a simple 900 rotation the sample cryostat was positioned
in a specially-constructed housing as part of the sample compartment of
the Cary-17. The IR beam from the FTIR spectrometer passed
perpendicular to the UV-vis beam, through a set of KBr windows in the
cryostat's outer shroud, reflected off a set of steering mirrors and impinged









onto the detector (TGS or MCT). The whole setup was purged with dry N2 by
use of connecting tubes between the FTIR and UV-vis spectrometers.
Fluorescence and resonance Raman spectra were collected on a
SPEX 1700 3/4 m double monochrometer using a cooled RCA C3034 photon
multiplier tube with standard photon counting electronics. Data collection,
reduction and storage were done on an HP 3000 computer with a 7475
digital plotter. Samples were prepared by pulsed-discharge deposition onto
an angled, polished aluminum block. The fluorescence resonance Raman
spectra of PDCB cation were measured using Argon ion laser excitation
(Spectra Physics, Model 2020), while the N cation resonance Raman
spectrum was measured using a dye laser (Spectra Physics, Model 375B)
pumped by the aforementioned Argon ion laser. The dye employed was
Rhodamine 590.
Photolysis experiments involving N cations were performed using an
unfiltered, unfocused medium-pressure Hg lamp while the same lamp
with a cutoff filter (BG23 VEB JENA, with transmission between 350 and
550 nm) was used for experiments involving PDMOB cations, and a filter
with cutoff X <420 nm was used for PDCB cations.
FTICR/MS experiments were performed by Dr. Chris Barshick in the
laboratory of Professor John Eyler at the University of Florida with the
assistance of the author. Preliminary FTICR/MS experiments were
performed by attaching the pulsed-discharge assembly described previously
to the system shown in Figure 10. The continuous glow discharge source
just to the right of the turbo pump was replaced with the pulsed-discharge
source. The pulse valve and ion analyzer cell were controlled by a Nicolet

















0


N












rI3

0M
-a

I;






xr
C4
o0


I-








37






(DI
0







o a


o0-
4- 3 0













o
r.


C)


0
a:1











0 OD







L4


0L
n E _0

Oo2









FTMS-1000 electronics console. To avoid electronic interference a +1.5 KV
potential was applied to the hemispherical grid (greater voltages resulted in
shutdown of the instrument) and +200 V to the cylindrical lens of the
pulsed-discharge source. A series of four electrostatic lenses was employed
to guide the cations from the discharge region toward the ion analyzer cell.
The voltages were adjusted to prevent secondary discharges between each
other and to optimize signal. Proceeding from the discharge region toward
the analyzer cell the lenses were set at -762 V, -511 V, -773 V and -792 V.
Sensitivity was enhanced by selective ejection of ions with m/z less than 40.
Typically, 50 scans were collected and processed.
Further experimental details specific to each molecule studied are
presented within the Results and Discussion chapter.









THEORY


The interpretation of experimental results is aided through
computation of physical observables such as electronic and vibrational
absorption spectra. Increasingly sophisticated levels of theory have become
available through a variety of computer program packages, e.g.,
GAMESS.1' 52 The increase in sophistication (and accuracy of computed
results) is accompanied by an increase in computing time and power
required. An experimentalist must decide what level of theory is required
for their particular applicationss. To make this decision the limitations of
both experimental and computational results must be understood so that
judicious use of computing facilities is achieved. The following outlines
limitations associated with the calculation of electronic and vibrational
absorption spectra of the radical cations (2M+) studied.
Photoelectron (PE) spectroscopy of neutral molecules has been
employed to predict the electronic absorption (EA) spectra of 2M's derived
from the parent molecule. The theoretical link between PE spectra of
neutral molecules and the electronic structure of 2M* species lies in
Koopman's theorem53 54 which states that the energy of a molecular orbital
(MO) of a neutral molecule obtained from a Hartree-Fock (HF) procedure is
equal to the negative of the energy required to remove an electron from that
MO. By measuring the energy differences between PE bands observed the









energies of electronic transitions of 2M*s can be estimated. There are
limitations, however, in that only states that involve ejection of one electron
from one MO, i.e., no simultaneous ejection of an electron and promotion of
another electron to another MO, are observed in PE spectroscopy. The four
general types of electron configurations possible for 2Ms are given in
Figure 11. Of these, only G and A-types are the observable Koopmans
configurations while B and C-types are non-Koopmans configurations (not
observable in PE spectra). The G-type is the ground state configuration, the
A-type involves electron promotion from a doubly to singly (d-+s) occupied

MO while types B and C involve promotion to virtual (v) MOs. A major
limitation is that all of these states are potentially observable in EA
spectroscopy and, therefore, not all EA bands observed can be accounted for
by energy differences in PE bands observed.
The presence of EA bands in the visible region for radical cations has
usually been explained by the availability of an electron "hole" in the
highest occupied molecular orbital (HOMO) generated upon ionization of
the neutral parent. This allows for low energy transitions from doubly
occupied MOs to this singly occupied HOMO not available to the neutral
molecule. The lowest energy transition for the neutral molecule must be
from a doubly occupied MO to the lowest unoccupied molecular orbital
(LUMO). However, the HOMO -4 LUMO gap in the ion may red-shift and

also account for low energy EA bands. Finally, configuration interaction
(CI) may lead to strong interactions between various states of the same
symmetry and result in long wavelength absorption.


























Figure 11


General Types of Electronic Configurations Associated
with 2M Molecular Cations
(adapted from Ref. 14)



















d
E 0 9 0













G A B Ca Cb
(d-: s) (s-v) (d--v)









Hiickel Molecular Orbital (HMO) theory serves as an adequate
starting point in the computation of the electronic structure of planar,
conjugated hydrocarbons. Typically, the order of the lowest energy
transitions are predicted correctly and if they are of differing symmetries
CI will not affect this order but may influence their relative energies by
interaction with higher energy configurations. If a poor correspondence
between experiment and theory is realized higher levels of theory which
incorporate CI (simple HMO theory does not) may be employed.
The accuracy of computed vibrational frequencies and intensities is
limited by computer time and power available. The accuracy required for
comparison to experiment should be considered and a level of theory chosen
that adequately serves the purpose of the investigation. The vibrational
spectra of stable molecules, for which geometries and reasonable force
constants are known, may be computed by Wilson's method of F and G
matrices55 with subsequent refinement (of force constants) by minimizing
the differences between experimental and computed frequencies. However,
since there are usually more force constants than vibrational frequencies a
unique fit is not guaranteed and a variety of force constant combinations
may yield equally plausible results. Ab initio calculations may indicate
which set is the most physically reasonable and, importantly, may be the
only method by which to predict geometries and force constants of transient
species for which no molecular analogies are available. Once the
geometries and force constants of these species are computed Wilson's
method may be applied with greater confidence."6









The harmonic approximation states that the potential energy of a
molecule is a quadratic function of the nuclear displacements of the
constituent atoms during the course of a vibration. This is shown in Figure
12 (dashed line) for a diatomic molecule in which the nuclear displacement
is simply compression and elongation of the bond about the equilibrium
bond distance. The actual or anharmonic potential energy is also shown in
Figure 12 (solid line). At small displacements the harmonic approximation
holds but deviates at larger displacements. Since the quadratic force
constant is the second derivative or curvature of the potential well surface
with respect to mass-weighted cartesian displacements, evaluated at the
equilibrium nuclear configuration,57 use of the harmonic approximation
typically over-estimates force constants and subsequent frequencies.
Although anharmonicity can be accounted for,"accumulated experience
suggests that the accuracy of calculated vibrational frequencies is affected
more by the quality of the calculated potential than by the inclusion of
anharmonicity."56 In Figure 13, it is shown that as the size of the basis set
increases for each Self Consistent Field (SCF) calculation with the eventual
inclusion of electron correlation (dotted to dashed to solid line) departure
from the "experimental" curve decreases. Hence, even if the harmonic
approximation is employed over-estimation of computed frequencies will
decrease as sophistication of the calculation increases. Frequencies are
typically over-estimated by -10% and various scaling factors are used to
align experimental and computed frequencies.5" A constant scaling factor
was applied in this research but others have used mode-by-mode methods of
scaling.


























Figure 12

Fixed Nucleus Potential Well Calculation (solid line) and
its Harmonic Approximation (dashed line)













I I
r I
I I
I I
I: I


Bond Length


Hl

Q



























Figure 13

Effect of Basis Set and Level of Theory on Potential Well Calculations















*"




*s


...... = SCF, small basis set
----- = SCF, large basis set
-- = Large basis with
electron correlation


Bond Length >


II



SI
s)
H:






49


The emphasis of this chapter was to delineate the limitations of
computational methods employed during the course of this research.
Other, pertinent details concerning theoretical aspects of this research will
be presented in the context of the Results and Discussion chapter which
follows.










RESULTS AND DISCUSSION
Para-Dichlorobenzene


The material presented here consists of frontier studies done on the
vibrational spectra of para-dichlorobenzene,59 para-dimethoxybenzene,60
and naphthalene61 cations as appear in articles published during the
course of this research. This investigation has been extended to perylene62
and anthracene63 cations as part of an ongoing program to systematically
study the vibrational spectra of PAH cations.
The radical cation of PDCB was chosen for the initial investigation
since its electronic absorption64 (10 K, Ar matrices), gas phase electronic
emission,65 and resonance Raman66 (77 K, freon mixture matrix) spectra
have been reported previously, but its infrared spectrum has not been. The
electronic absorption, fluorescence, resonance Raman and infrared spectra
of the PDCB radical cation in an argon matrix at 12 K are reported here.
Also, the results of an intermediate neglect of differential overlap
parametized for spectroscopy (INDO/S) calculation of its electronic excited
states and an ab initio Hartree-Fock Self Consistent Field (SCF) level
calculation of the harmonic frequencies of neutral and cationic PDCB are
presented.
The ultraviolet (UV) absorption spectrum of neutral PDCB in argon
at 12 K appears in Figure 14 with the lowest energy transition occurring at
280 nm. Two band systems between 550 and 280 nm become apparent














00



cIq
.6


ww





o b
ca









E-4
ho~a


cq
Z




i i





o M





~~ 0l


a)












































0
co






I I I 1 I I I I I
- 0 o


0
O





0


0
In
nLO

o






o




E
0 C5
T I
H-
z
w
-J
_.1
0 m
(YI


33NVaaOSV


e

ago









after deposition of the pulsed-glow discharge plasma. Friedman, Kelsall
and Andrews6 (FKA) had previously observed bands which correspond
very closely with the prominent bands at 520 and 322 nm and had assigned
them to the PDCB cation. The 520 nm band system was assigned to the
&2Bj 4- 2B allowed transition.64 65 FKA assign all the vibronic bands in

the 520 440 nm region to one electronic transition and those in the 322 283
nm region to another transition. Based on the known photoelectron
spectrum of PDCB65 the 520 440 nm region is reassigned to contain two
electronic transitions. Table 4 lists the vibronic bands of the PDCB cation
along with their assignments while a comparison of optical absorption
bands and photoelectron bands is presented in Table 5. The energies of the
observed optical bands match very well with those predicted by subtraction
of the ionization energies of the ground and excited states of PDCB.
The infrared (IR) spectrum of neutral PDCB (in an Ar matrix at 12
K) is shown in Figure 15 (bottom), exhibiting prominent bands at 820, 1012,
1090 and 1480 cm-1. The IR spectrum of the same sample matrix showing
the 520 and 322 nm optical bands discussed earlier is presented in Figure 15
(top). Bands not observed for neutral PDCB appear at 843, 986, 1110 and 1429
cm-1. If the newly observed IR bands are due to the PDCB cation and the 520
nm optical band has been correctly attributed to the same species, then a
linear correlation should exist between the relative intensities of the optical
and IR bands. To establish this relationship a series of experiments were
performed with varying deposition times, pulsed-glow discharge pulse
rates and discharge configurations. The ratio of the 520 nm band









Table 4


Visible/UV Absorption Bands of PDCB Cation in Ar Matrix at 12 K


X/nm P/cm-1 AD/cm-1 Assignment


528.0
520.5
511.7
503.8
498.6


490.6
482.6
475.9
467.8
456.0
449.6


322.4
315.0
311.5
308.1
305.0
301.3
298.5
295.2
292.3
283.5


18 939
19 212
19543
19 849
20056


20383
20721
21013
21376
21930
22242


31017
31746
32102
32457
32787
33189
33501
33875
34602
35273


-273
0
331
637
844


0
338
630
993
1547
1859


0
729
1085
1440
1770
2172
2484
2858
3585
4256


Site
Origin:
V6
2v6



Origin:
V6
2V6
3v6
v12;
V2 + V6


B2B3u


D2B3g


Origin:
V5
V4
2v
V5 + V4
31V5
V4 + 2V5
4v5
5v5 or 2v4 + 2v,
6vs








Table 5

Comparison of the PDCB Cation Optical Absorption
Transitions with the Photoelectron Bands


Optical
transition in
State 1Ei / eVa 1Ei IE(2B2g) Ar matrix

X2B2g 8.98 0.0


A2Big 9.87 0.89 eV Not obs.;
(1393 nm, 7178 cm-') Forbidden


t2B3, 11.36 2.38 eV 2.38 eV
(520.9 nm, 19 195 cm-1) (520.5 nm, 19 212 cm-1)


C2BU 11.49 2.51 eV 2.53 eV
(494.0 nm, 20 243 cm-') (490.6 nm, 20 383 cm-1)


S12.8 3.82 eV 3.84 eV
(324.6 nm, 30 808 cm-1) (322.4 nm, 31 017 cm-1)


a From Ref. 65.
















cq


*-I














'O
0











CZ
0
ca




























E-4
II

a)


Ca




u



'I






a






57

0
0
0


U
,,) E
'IT uI

OD






0-- Z0
c I




L0 a.
(7
Eu O z O

S0

c0
0
O 7




e) C'j 1
I I









S0 0 0

33NVd OSV









absorbance to the 1429 cm-1 band absorbance was found to be consistently
-16. A correlation diagram for the four IR bands suspected of being due to
the PDCB cation is presented in Figure 16. For the eight different
experiments performed, an excellent correlation was found. To further test
the validity of this method, correlation of the 520 nm band absorbance to the
neutral PDCB IR band absorbances observed over this series of experiments
was checked and, as would be expected, was found to be poor. Another IR
band at 951 cm-1 (marked as an inverted triangle in Figure 15) was observed
upon pulsed-glow deposition but it did not correlate with the 520 nm PDCB
cation band and thus is unassigned at present.
Further confirmation of assignment of the four IR bands to the PDCB
cation was established through a photolysis experiment. A pulsed-glow
discharge matrix was irradiated using a medium pressure Hg lamp (with
a X<420 nm cutoff filter) for 20 minutes. This resulted in an approximately
twofold decrease of both the 520 nm band and the four IR band intensities,
while the 280 nm neutral PDCB band intensity remained essentially
constant. Therefore, the four IR bands initially suspected of being due to
the PDCB cation, can be conclusively assigned to this matrix species.
Shown in Figures 17 and 18 are the fluorescence and resonance
Raman spectra of PDCB cation. Both broad (fluorescence from the 92Bg

state) and sharp (resonance Raman lines) features are apparent in the
spectrum shown in Figure 17 (excited by 10 mW, 514.5 nm Ar ion laser
radiation). Previous Raman work by Kato, Muraki and Shida66 is compared
to the present results in Table 6. The broad bands from Figure 17 are
analyzed in Table 7 and it can be seen that the vibrational intervals










U




co
0




e0






0





o

Q
0




C4-
o
- U














CO
o
S










0
sed

F4-

a








0
U)
0
CL

'.3








$4
0

o
*^
&,

Iw
o
3l
*a


k

0
CM










ojE
o o
.L

(QU
oz
oco
E EEE E -
Su U 0
CO0 O qo co

S0 0 o


(D I Vd 0 V

,,oix(H I)33N vado0S 9V










0



C U
CU 1





'-I
4) 4
02 C.
CU 0

-G 9
42k

4)






SCU



r CU 02

'-4







CU d
00




CU U



CU 0


4) t,
U c.

El CU
4)
U ..
02E

4)





E.4












e
606


96L-


o
(1
\
U c)


861L


69 6LL 1t7t7L

68LL crl


AIISN31NI


I
E
u

Iz7


















as
0






00
E4










cl,



co
bi)
L40











C.)




cIE
a)i
1-
0O


















0

0






o











0 <



0
LO
0












co
0
00 0








0

m Cu o
II3N
r --, -- ",- O








Table 6


Resonance Raman Bands of the PDCB Cation in Ar Matrix at 12 K
(AP/cm-'1)

In freon mixture, 77 K, In argon matrix, 12K, pulsed-
y irradiation (P/cm') glow discharge (/cm1) Assignment

330 V6
666 660 2v6
990 990 3v6
1115 1113 V4
1195 1189 13
1447 1443 v4+ v6
1601 1598 V2
1932 1928 v2 + V6
2258 v2 + 2v6
2714 2711 V, + v4
3196 2V2


a 538.27 nm laser excitation; Ref. 66.
b 514.5 nm laser excitation; present work.










Table 7


Fluorescence Bands of PDCB Cation in Ar Matrix at 12 K


514 nm exc. 488.0 nm exc.

A Series B Series

A / cm' v/cm' A'v/bcml A i/'cm-' w/cm-' A ~dcm-1 A 7Ccm"' vicm-1 A /ecm-' Assign'

384 19062 0 1402 19089 0 1619 18873 0
716 18720 332 1704 18789 300 1947 18545 328 vs
1040 18396 332+324 2027 18465 300+324 2294 18198 328+347 2vs
1485 17951 1101 2508 17984 1105 2766 17726 1147 V4
1988 17448 1604 2989 17503 1586 3231 17260 1612 V2
2318 17124 1604+324 3304 17188 1586+318 3564 16928 1612+332 V2 + V6
2643 16793 1604+324 3632 16860 1586+318 V2 + 2v6
+331 +328
3094 16342 1604+1106 V2 + v6

a Displacement from laser excitation line at 514.5 nm (19 436 cm-').
b Displacement from 19 052 cm-' (0-0) band.
c Displacement from laser exc. line 488.0 nm (20 492 cm-1).
d Displacement from 19 089 cm-1 (0-0) line (A series origin).
e Displacement from 18 873 cm-1 (0-0) line (B series origin).
f Assignment for all three columns: 514.5 nm excitation, 488.0 nm excitation; series A
and B.









(compared to the Raman lines observed) match quite closely. Only broad
band emission is observed upon excitation by the 488 nm Ar ion laser line
(cf. Fig. 18 and Table 7). The spectrum in Figure 18 indicates the presence
of "extra" fluorescence bands (labeled as series B) as compared to those
apparent in Figure 17. The existence of two distinct sites in the matrix,
giving rise to the 520 (A series) and 528 (B series) nm optical absorbances,
can account for this observation. Simultaneous excitation of PDCB cations
in both sites by the 488 nm radiation could occur resulting in dual emission.
Also, FKA have assigned the 528 nm absorption as a "site" band. Excitation
by the 514.5 nm line of the B site is apparently less probable.
Theoretical calculations were performed on the excited electronic
states of PDCB cation as an aid to the confirmation of previously assigned
transitions and/or assignment of unknown transitions observed (cf. Fig.
14). The geometrical structures for neutral and cationic PDCB were
optimized using the INDO/1 method.67'8 Bond distances obtained for
neutral cationicc) PDCB were rc.H = 1.093 A (1.101A), rc.ci = 1.777 A (1.738
A), rc.c = 1.381 A (1.408 A) for the C-C bonds adjacent to the C-C1 bonds and
r'c.c = 1.395 A (1.357 A) for the central C-C bonds.
The INDO/S model69 70 was used to determine the electronic spectra
of both neutral and cationic PDCB. A IB2u (3 x 104) state at 37,500 cm-1, a
Ba, state at 39,100 cm-1, and a 1B3, (0.0177) state at 40,200 cm-1 (calculated
oscillator strength in parentheses) were computed for neutral PDCB. The
lowest energy band with ma, = 280 nm (=35, 760 cm-1) shown in Figure 14 is
in generally good agreement with the weakly allowed 'B2u state computed to

occur at 37,500 cm-1. For the PDCB cation, since the calculation (which









includes configuration interaction) refers to the 2B2g ground state, the

calculated values should be compared to the band maxima in Figure 14.
The calculated spectrum for the cation is shown in Table 8 and the order of
low-lying states is in accord with that suggested earlier.65
The first excited state of the cation is a 2Big state calculated at 0.68 eV;

it is observed in the ionization but not the absorption spectrum. The
2B, +- 2B2g allowed transition is calculated to be 0.5 eV higher in energy

than that observed (2.89 instead of 2.40 eV). The first of two possible
assignments for the higher-lying transitions is suggested in Table 8. The
assignment of A through 05 is in agreement with previous assignments65
and is also consistent with observed intensities (cf. Fig. 14). The observed
features at 2.72 and 3.97 eV are assigned to D (2B3g) and E (2B,),

corresponding to computed energies of 3.23 and 3.41 eV, respectively. The
second suggested assignment results from the observation both 2B3u at 2.89
eV and 2B2u at 3.14 eV are calculated to be 0.5 0.6 eV higher in energy than

observed. If this is a consistent trend then the E state might be assigned to
the third calculated 2B3u state at 4.26 eV while the broad, structureless
feature observed at 2.72 eV could be assigned to the second calculated 2B3u

state at 3.41 eV. Optical polarization data would aid in distinguishing
between these two possibilities.
To determine the effect of ionization on the vibrational force constants
of specific bonds in PDCB, an ab initio Hartree-Fock SCF level calculation
(6-31 G basis; for open shells, ROHF) was performed. Initially, the
geometries of the neutral parent and the radical cation were optimized
using the GAMESS program.51 52 The optimized geometries found are










Table 8


Calculated and Observed Spectra of PDCB Cation (Energies in eV)


Observed (cf. Table 5)
A/Ea Opt. (Ar
matrixb)


0.89


2.38 2.40
2.51 2.58
2.72
3.82 3.97


Calculated (INDO/S)
E (Koopmans) CI Assignment
neutral catione, d


0.20
2.65
2.45
2.55
3.35


0.68
2.89(0.156)
3.14
3.23
3.41(0.081)
3.52
4.26(0.054)
4.87(0.185)
4.88(0.000)
5.31(0.094)


2Big

2B3u
2B2U

2B3
2B
2A9
2B3U
2Au

2Blu
2A,


a The first IE of XiB is 8.98 eV. All others are relative to this; see Ref. 65.
b See Fig. 14. These are estimated vx.
c Relative to the first molecular orbital eigenvalue of 9.74 eV.
d The numbers in parentheses are calculated oscillator strengths from the
2Big ground state of the cation.
e The first IE is calculated at 9.00 eV. All others are relative to this.


YB
f2


E









(radical cation figures in parentheses) rc.H = 1.070 A (1.070 A), rc-c = 1.805
A (1.742 A), rc.c = 1.380 A (1.419 A) for the C-C bonds adjacent to the C-Cl
bonds, and r'c.c = 1.388 A (1.359 A) for the central C-C bonds. The values
are in good agreement with those found using the INDO/1 method. The
relative decrease of the rc.c, and r'c.c lengths and the increase of the rc.c
adjacent bonds is consistent with the removal of an electron from the
highest occupied molecular orbital (HOMO) of PDCB. This x molecular
orbital (cf. Fig. 19) is antibonding with respect to the C-Cl and central C-C
bonds and bonding with respect to the adjacent C-C bonds.
Harmonic vibrational frequencies for PDCB neutral and radical
cation species were calculated using the GAMESS program. Vibrational
frequencies calculated at the SCF level are typically overestimated by -10%
because of the harmonic approximation used and the neglect of electron
correlation effects.56-58'71 To account for this, a scaling factor of 0.9 has been
adopted to adjust the calculated frequencies. Previous experience has
shown that the match with experimental vibrational frequencies using
such a scaling factor is usually 50 cm-1.56"58, 71 Calculated, scaled, and
experimental frequencies for neutral PDCB72-75 and its radical cation are
given in Tables 9 and 10, respectively. Good agreement is found between the
scaled and experimental frequencies for both species. The observation that
the lower-frequency modes need not be scaled as severely as the higher-
frequency modes is in agreement with a SCF calculation (6-31 G* basis)
done by Rohlfing et al.75 The presence of polarization functions (d orbitals)
on carbon and chlorine in 6-31 G* generally decreases the calculated out-of-
plane mode frequencies (a., bg, b2g, and b.) relative to the values obtained



























Figure 19


Schematic of HOMO (Highest Occupied Molecular Orbital) of PDCB Cation
(adapted from Ref. 66)





72
z








Table 9


Calculated and Observed Vibrational Frequencies (cm-1)
for Neutral PDCB


Mode Sym. Cale. Scaled (0.9) Expt.a


3403
1777
1329
1186
804
344
1169
478
987
3385
1668
1208
1135
554
1168
826
333
3400
1533
1331
1228
223
3386
1783
1479
712
375
998
577
112


3063
1599
1196
1067
724
310
1052
430
888
3046
1501
1087
1021
499
1051
743
300
3060
1398
1198
1105
201
3047
1605
1331
641
337
898
519
101


3072
1574
1169
1096
747
328
951
405
815
3078
1477
1090
1015
550
934
687
298
3087
1394
1220
1107
226
3065
1577
1290
626
350
819
485
122


a Reference 72 75.









Table 10


Calculated and Observed Vibrational Frequencies (cm-1) for PDCB Cation


Mode Sym. Calc. Scaled (0.9) Expt.a


3417
1814
1354
1204
801
346
1190
419
947
3402
1596
1247
1178
575
1181
796
273
3415
1624
1423
1070
238
3402
1553
1336
622
385
997
558
89


3075
1633
1219
1084
721
311
1071
377
852
3062
1436
1122
1060
517
1063
716
246
3073
1462
1281
963
214
3062
1398
1239
560
346
897
502
80


1598
1189
1113

330




1429

1110







986






843


a Present work.









with the 6-31 G basis. This may be due to the ability of the polarization
functions to better accommodate charge build up in the n system during
out-of-plane motion. Interestingly, the calculated IR intensities indicate
that the two bl, modes (1429 and 1110 cm-1) of the ionic form should be the

most intense and indeed these are the most prominent experimental ionic
bands.
In attempting a mode-by-mode comparison between the neutral and
ionic species, problems arise. One expects a simple inverse relationship
between bond lengths and stretching force constants. However, normal
coordinate frequency shifts cannot be so simply described because coupling
of various internal coordinates varies as a function of the geometry changes
and the force constant changes which result from ionization. Nevertheless,
comparisons can be made by first coupling calculated neutral and ionic
vibrational frequencies by symmetry and then by energy, within each
symmetry block. Finally, after scaling, the energy shifts can be compared
to the experimental values.
Calculated and scaled neutral-to-ionic frequency shifts are compared
in Table 11. The direction of the frequency shift is correctly predicted for all
observed bands except for the b3, mode. This mode differs from the others

since it is the only out-of-plane mode observed. The shifts for the Raman-
active totally symmetric modes match better than the IR-active modes.
This may be due to the greater interaction with the host matrix of
transitions involving a dipole moment change with subsequent polarization
of the matrix.








Table 11


Calculated and Observed Vibrational Frequency Shifts
Upon Ionization of PDCB


Shift (ion -V neutral; cm-1)
Mode Sym.
Calc. Scaled (0.9) Expt.

2 ag +37 +33 +24
3 +25 +22 +20
4 +18 +16 +17
6 +2 +2 +2
11 bl, -72 -65 -48
13 +43 +39 +95
21 ba -158 -142 -121
28 b3 -1 -1 +24









In order to discuss the effect of ionization on specific bonds, it is
necessary to transform the normal coordinates to internal coordinates.
Boatz and Gordon76 have introduced such a vibrational decomposition
scheme in which symmetry-adapted normal coordinate frequencies are
transformed into intrinsic frequencies. These latter represent the sum of
the contributions of all normal modes of a vibration to a particular internal
coordinate. Calculated intrinsic frequencies may vary depending on the
specific internal coordinates used, but usually do not differ by more than
~10 cm-1, particularly for bond stretches. Only intrinsic stretching
frequencies and force constants are presented here. The quantities
calculated for PDCB, using the method of Boatz and Gordon, are given in
Tables 12 and 13, respectively. It may be seen that, upon ionization, the C-
Cl force constant rises from 2.509 to 3.237 mdyn/A, the central C-C force
constants also rise from 6.002 to 7.289 mdyn/A, while the adjacent C-C force
constants drop from 6.237 to 4.577 mdyn/A. From the optimized geometries,
described previously, it has already been noted that, upon ionization, an
increase in the C-C1 and central C-C and decrease in the adjacent C-C bond
strengths is expected. This expectation is fully borne out by the calculated
intrinsic frequencies and force constants described here.
A similar trend was also found by Ernstbrunner and coworkers46 in a
normal coordinate analysis of neutral and cationic para-
dimethoxybenzene. They found the ring C-O force constant increased 25%
(compared to 29% for C-Cl in PDCB), while the central C-C bond force
constant increased 6% (20% for PDCB), and the adjacent C-C bond force
constant decreased 10% (compared to 25% for PDCB).









Table 12


Calculated Intrinsic Stretching Frequencies
and Force Constants for Neutral PDCB


Frequency (cm-1) Force constant (mdyn/A)
Bond
Calc. Scaled (0.9) Calc. Scaled (0.9)

C-H 3388 3049 6.287 5.658
C-Cl 728 655 2.788 2.509
C-Ca 1373 1236 6.669 6.002
C-C -1400 1260 -6.930 6.237

a The central C-C bonds.









Table 13


Calculated Intrinsic Stretching Frequencies
and Force Constants for PDCB Cation


Frequency (cm-1) Force Constant (mdyn/A)
Bond
Calc. Scaled (0.9) Calc. Scaled (0.9)

C-H 3401 3061 6.335 5.701
C-C1 827 744 3.597 3.237
C-Ca 1514 1363 8.099 7.289
C-C -1198 1078 -5.086 4.577


a The central C-C bonds.









The aforementioned intrinsic frequency analysis makes clear why
certain bands blue shift and others red shift upon ionization. Consider
modes 2 and 11: examination of the eigenvectors for neutral PDCB indicate
they are associated primarily with central C-C and adjacent C-C bond
stretching motions, respectively. Since the force constant for the former
increases and for the latter decreases, the blue shift of 24 cm-1 for mode 2
and the red shift of-48 cm-1 for mode 11 is expected. The ratio of the
absolute magnitudes of the frequency shifts for modes 11 and 2 is two and
this tracks exactly the number of C-C bond stretches involved in each mode,
i.e., there are twice as many adjacent as there are central C-C bonds. This
is also consistent with the removal of an electron from the HOMO which is
bonding with respect to the adjacent C-C bonds but antibonding with respect
to the central C-C bonds (cf. Fig. 19). For further clarification the Raman-
active (ag) and IR-active normal modes (cf. Table 11) observed for PDCB
cation are sketched in Figures 20 and 21, respectively.
The FTICR mass spectrum of pulsed-glow discharged para-
dichlorobenzene seeded in Ar is shown in Figure 22. Prominent peaks are
observed at (relative intensities in parentheses) 186 (18), 146 (42), 111 (95), 75
(50) and 40 (100) amu. Isotopic 37C1 and 35C1 multiplets are associated with
the first three peaks and are assigned as the chlorine-containing species
ArC6H4Cl2+, C6H4C12+ and C6H4C1, respectively. The 75 amu peak
corresponds to C6H34 while that at 40 amu results from incomplete ejection
of Ar*. The preponderance of non-parent ion species (C6H4C1* and C6Hs*)
present in this mass spectrum provokes the question: Is the parent ion the
sole species present in the matrix under study? Spectroscopic evidence for



























Figure 20

Raman-Active (ag) Normal Modes Observed for PDCB Cation
(clockwise from upper left: modes 2, 3, 4 and 6,
same orientation as in Fig. 19, bonds are removed for clarity)







Mode 2


Mode 2
0


o9o?o0
O


Mode 4
0
Cr
0 Q0

0


Mode 3
0

S0

0


























Figure 21

Infrared-Active Normal Modes Observed for PDCB Cation
(clockwise from upper left: modes 11, 13, 21 and 28,
same orientation as Fig. 19 except mode 28 which is viewed
along the C-C1 axis, bonds are excluded for clarity)







Mode 11
0




0


Mode 13
0




0


Mode 21
0


-0 O-
6-0Q 0
0






















'*


Qe

-o




0


C4-
0

.1






cfl

0
H





00



SC
(0





-o
*^ _.
-----------------------------------------------------------= -
*^




-- = -

o.C


OS
1ISN31NI 3AIlV93a


001


0





0



0x



K
z3









PDCB neutral and/or ionic fragments in the matrices investigated is absent
but the possibility of fragmentation appears in the study of para-
dimethoxybenzene and naphthalene videe infra). Recombination of
fragments, e.g., C6H4C1+ + Cl (Cl) -4 C6H4C12+ (C6H4C12) may occur as the

matrix forms, regenerating parent, cationic (neutral) PDCB, and changing
the matrix composition (relative to the gas phase). Because of this
possibility, correlation of mass spectra with subsequent spectroscopic
investigation of matrix isolated species is problematic. Emphasis has been
placed, rather, on correlating different spectroscopic observations, e.g.,
UV-vis and IR spectra, made on the same matrix as well as incorporating
theoretical computations of chemical species under study.
Pulsed-glow discharge/matrix isolation has been employed to obtain
and stabilize quantities of PDCB parent ion sufficient to observe directly
several infrared and Raman-active fundamental vibrational modes.
Correlation analysis of known and well characterized visible bands with
suspected IR absorbances due to PDCB+ coupled with theoretical
computations have allowed assignments to be made with confidence. In
addition, changes in bonding and subsequent shifts in vibrational
frequencies as well as intensity patterns have been addressed. Preliminary
FTICR/MS experiments performed, however, suggest the complexity of the
gas phase plasma formed and invite inquires concerning the composition of
the matrix formed. All this leads to a few very important questions. (1) Is
this ion generation method gentle enough to produce parent ion solely? (2)
If not, how can degradation products be accounted for or can the sought-









after species be selectively investigated in the presence of other matrix
constituents? (3) How does the efficiency of this method compare to
methods previously reported and how might ion production be enhanced?
These questions are addressed now for PDCB and are considered further
during the discussions on para-dimethoxybenzene and naphthalene.
The first two questions are very much related and are answered first.
FKA64 recorded the visible absorption spectrum of PDCB* by two methods:
(1) Filtered high-pressure Hg arc photolysis of the pre-formed matrix
containing PDCB neutral and (2) microwave-powered discharge of flowing
Ar directed at the matrix window during deposition. In either case, the
spectra obtained were identical (except for absolute intensities) and
indistinguishable from those obtained by pulsed-glow discharge.
Comparison of the resonance Raman spectrum presented previously
(in Ar at 12 K) with that reported by Kato, Muraki and Shida6 (in freon
mixture at 77 K with y-irradiation) lends further support for production (or

at least selective probing) of PDCB parent ion only. As shown in Table 6,
the bands observed are very similar despite differences in ion production
method, matrix media and temperatures.
The gas phase emission spectrum reported by Maier and Marthaler65
(produced by controlled electron impact) compares favorably with the
matrix fluorescence spectrum obtained (cf. their Fig. 1 and our Fig. 17),
exhibiting vibronic structure involving 330 and 1600 cm-1 modes. The vapor
phase and matrix origins occur at 19,620 and 19,130 cm-1, respectively. A
red gas-to-matrix shift of -500 cm-1 is not unreasonable for solvation of the
ion. Based on these comparisons, it is concluded that PDCB parent ion is




Full Text

PAGE 2

$ 63(&7526&23,& ,19(67,*$7,21 2) 0$75,; ,62/$7(' 5$',&$/ &$7,216 2) 3$5$',&+/252%(1=(1( 3$5$',0(7+2;<%(1=(1( $1' 1$3+7+$/(1( %\ :,//,$0 3(5621(77( $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(17 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

7R P\ PRWKHU DQG EURWKHUV DQG LQ PHPRU\ RI P\ IDWKHU

PAGE 4

$&.12:/('*(0(176 7KH DXWKRU ZLVKHV WR H[SUHVV JUDWLWXGH WR 3URIHVVRU 0DUWLQ 7 9DOD IRU KLV ZLOOLQJQHVV SDWLHQFH DQG VXSSRUW WR DOORZ PH WR GHYHORS DV DQ LQGHSHQGHQW UHVHDUFKHU DQG IRU SURYLGLQJ D WKRXJKWIXO UHIOHFWLYH DWPRVSKHUH LQ ZKLFK WR ZRUN DP LQGHEWHG WR 'U -DQ 6]F]HSDQVNL IRU KLV H[SHULPHQWDO H[SHUWLVH DQG NLQG ZRUGV RI HQFRXUDJHPHQW WKURXJK PDQ\ GLIILFXOW H[SHULPHQWV 'U %U\FH :LOOLDPVRQ LV WR EH WKDQNHG DOVR IRU KLV SHUVSHFWLYH DQG WLPHO\ DGYLFH )7,&506 H[SHULPHQWV ZHUH SHUIRUPHG E\ 'U &KULV %DUVKLFN LQ 3URIHVVRU -RKQ (\OHUnV ODERUDWRU\ DQG WKDQN WKHP ERWK 7KHRUHWLFDO FDOFXODWLRQV RI HOHFWURQLF VWDWHV RI SDUDGLFKORUREHQ]HQH FDWLRQ ZHUH SHUIRUPHG E\ 3URIHVVRU 0LFKDHO =HPHU DQG YLEUDWLRQDO FDOFXODWLRQV IRU SDUDGLFKORUREHQ]HQH DQG SDUDGLPHWKR[\EHQ]HQH ZHUH SHUIRUPHG E\ 0DUVKDOO &RU\ RI 3URIHVVRU =HUQHUnV JURXS DP LQGHEWHG WR ERWK RI WKHP 3UHYLRXV PHPEHUV RI WKH 9DOD JURXS 'UV %RE 3HOORZ 7 0 &KDQGUDVHNKDU DQG 'HQQLV 5RVHU DQG 0DUF (\ULQJ PDGH UHVHDUFK UHZDUGLQJ WKURXJK IUXLWIXO GLVFXVVLRQ DQG VKDUHG H[SHULHQFH 3DVW DQG SUHVHQW PHPEHUV RI 3URIHVVRU &ROJDWHnV JURXS .\OH 5HHG DQG 'UV (YDQ +RXVH &KDUOHV 6LPRQ DQG .HQ 0F*LOO DOVR FRQWULEXWHG WR P\ RXWORRN FRQFHUQLQJ UHVHDUFK LQ

PAGE 5

7KH VXSSRUW RI DOO PHPEHUV RI WKH &KHPLVWU\ 'HSDUWPHQW LQFOXGLQJ PDFKLQLVWV HOHFWURQLFV WHFKQLFLDQV JODVV EORZHUV DQG VHFUHWDULHV DV ZHOO DV DOO RWKHU SURIHVVRUV SRVWGRFWRUDO UHVHDUFKHUV DQG JUDGXDWH VWXGHQWV ZKRP KDYH IDLOHG WR PHQWLRQ E\ QDPH LV DSSUHFLDWHG $OVR DOO WKRVH RXWVLGH RI WKH &KHPLVWU\ 'HSDUWPHQW ZLWK ZKRP KDYH ZRUNHG VKRXOG EH WKDQNHG 3URIHVVRU /DUU\ (QJ:LOPRW LV WKDQNHG IRU P\ SUHVHQW HPSOR\PHQW DW 5ROOLQV &ROOHJH DV LV %ULH 0F'RXJDOO IRU W\SLQJ WKLV GLVVHUWDWLRQ )LQDOO\ WKH SRVLWLYH LQIOXHQFH P\ PRWKHU IDWKHU DQG EURWKHUV KDYH KDG RQ P\ GHFLVLRQ WR SXUVXH D FDUHHU LQ FKHPLVWU\ VKRXOG QRW EH IRUJRWWHQ RU XQGHUHPSKDVL]HG ,9

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*(0(176 LLL /,67 2) 7$%/(6 YL /,67 2) ),*85(6 YLLL $%675$&7 [LL ,1752'8&7,21 (;3(5,0(17$/ 7+(25< 5(68/76 $1' ',6&866,21 3DUD'LFKORUREHQ]HQH 3DUD'LPHWKR[\EHQ]HQH 1DSKWKDOHQH &21&/86,216 $1' )8785( :25. 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ Y

PAGE 7

/,67 2) 7$%/(6 7DKN 3DJH ,RQL]DWLRQ 0HFKDQLVPV LQ WKH 1HJDWLYH *ORZ 5HJLRQ RI DQ $EQRUPDO *ORZ 'LVFKDUJH &RORUV RI *ORZ 5HJLRQV LQ D '& *DV 'LVFKDUJH /RZO\LQJ 0HWDVWDEOH (QHUJ\ /HYHOV RI 5DUH *DV $WRPV 9LVLEOH89 $EVRUSWLRQ %DQGV RI 3'&% &DWLRQ LQ $U 0DWUL[ DW &RPSDULVRQ RI WKH 3'&% &DWLRQ 2SWLFDO $EVRUSWLRQ 7UDQVLWLRQV ZLWK WKH 3KRWRHOHFWURQ %DQGV 5HVRQDQFH 5DPDQ %DQGV RI WKH 3'&% &DWLRQ LQ $U 0DWUL[ DW )OXRUHVFHQFH %DQGV RI 3'&% &DWLRQ LQ $U 0DWUL[ DW &DOFXODWHG DQG 2EVHUYHG 6SHFWUD RI 3'&% &DWLRQ (QHUJLHV LQ H9f &DOFXODWHG DQG 2EVHUYHG 9LEUDWLRQDO )UHTXHQFLHV FPf IRU 1HXWUDO 3'&% &DOFXODWHG DQG 2EVHUYHG 9LEUDWLRQDO )UHTXHQFLHV FPf IRU 3'&% &DWLRQ &DOFXODWHG DQG 2EVHUYHG 9LEUDWLRQDO )UHTXHQF\ 6KLIWV 8SRQ ,RQL]DWLRQ RI 3'&% &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 1HXWUDO 3'&% &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 3'&% &DWLRQ &DOFXODWHG DQG 2EVHUYHG ,5 9LEUDWLRQDO )UHTXHQFLHV FPf IRU 3'02% &DWLRQ YL

PAGE 8

&DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 1HXWUDO 3'02% &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 3'02% &DWLRQ 7KHRUHWLFDO DQG ([SHULPHQWDO ,5 %DQGV IRU 1DSKWKDOHQH &DWLRQ YLL

PAGE 9

/,67 2) ),*85(6 )LJXUH 3DJH 5HSUHVHQWDWLYH 0ROHFXOHV RI ,QWHUHVW $VWURSK\VLFDO 3URFHVVHV RI ,QWHUVWHOODU 0ROHFXOHV DQG *UDLQV 9ROWDJH&XUUHQW &KDUDFWHULVWLFV RI *DV 'LVFKDUJHV *HQHUDO ([SHULPHQWDO 6HWXS IRU 0DWUL[,VRODWLRQ 0DWUL[ 3UHSDUDWLRQ DQG 6XEVHTXHQW 7UHDWPHQWV &U\RVWDW ZLWK 9DFXXP 6KURXG DQG )XUQDFH $VVHPEO\ $WWDFKHG 6FKHPDWLF RI 3XOVH9DOYH 3RZHU 6XSSO\ DQG 'ULYHU &LUFXLW 3XOVHG*ORZ 'LVFKDUJH $VVHPEO\ $f 6FKHPDWLF RI 3XOVHG*ORZ 'LVFKDUJH 0DWUL[ ,VRODWLRQ $SSDUDWXV %f 6,0,21 &DOFXODWHG 7UDMHFWRULHV RI S'LPHWKR[\EHQ]HQH &DWLRQV *HQHUDO 9LHZ RI ([SHULPHQWDO 6HW8S IRU 0DWUL[ ,VRODWLRQ 8VLQJ (OHFWURQ %RPEDUGPHQW ,RQL]DWLRQ *HQHUDO 9LHZ RI ([SHULPHQWDO 6HW8S IRU )7,&5 8VLQJ *ORZ 'LVFKDUJH ,RQL]DWLRQ *HQHUDO 7\SHV RI (OHFWURQLF &RQILJXUDWLRQV $VVRFLDWHG ZLWK 0r 0ROHFXODU &DWLRQV )L[HG 1XFOHXV 3RWHQWLDO :HOO &DOFXODWLRQ VROLG OLQHf DQG LWV +DUPRQLF $SSUR[LPDWLRQ GDVKHG OLQHf (IIHFW RI %DVLV 6HW DQG /HYHO RI 7KHRU\ RQ 3RWHQWLDO :HOO &DOFXODWLRQV 9OOO

PAGE 10

899LVLEOH 6SHFWUXP RI 1HXWUDO 3'&% LQ $U 0DWUL[ DW 6KRZLQJ %DQG 6\VWHP DW QP DQG 9LVLEOH 6SHFWUXP RI 3'&% 5DGLFDO &DWLRQ LQ $U 0DWUL[ DW 6KRZLQJ 7KUHH %DQG 6\VWHPV 0DUNHG % & DQG ( )7,5 6SHFWUD RI 1HXWUDO 3'&% WRSf DQG 1HXWUDO 3OXV &DWLRQ 3'&% ERWWRPf LQ $U 0DWUL[ DW &RUUHODWLRQ RI QP 9LVLEOH $EVRUSWLRQ %DQG $EVRUEDQFH RI 3'&% &DWLRQ ZLWK )RXU ,5 %DQG $EVRUEDQFHV )OXRUHVFHQFH DQG 5DPDQ %DQGV RI 3'&% &DWLRQ LQ $U 0DWUL[ DW ([FLWHG E\ QP $U ,RQ /DVHU 5DGLDWLRQ EODFNHQHG GRWV LQGLFDWH VKDUS 5HVRQDQFH5DPDQ EDQGV ZKLOH EURDG EDQGV DUH GXH WR IOXRUHVFHQFHf )OXRUHVFHQFH RI 3'&% &DWLRQ LQ $U 0DWUL[ DW ([FLWHG E\ QP $U ,RQ /DVHU 5DGLDWLRQ 6KRZLQJ (PLVVLRQ IURP 7ZR 6LWHV $ DQG %f 6FKHPDWLF RI +202 +LJKHVW 2FFXSLHG 0ROHFXODU 2UELWDOf RI 3'&% &DWLRQ 5DPDQ$FWLYH DJf 1RUPDO 0RGHV 2EVHUYHG IRU 3'&% &DWLRQ FORFNZLVH IURP XSSHU OHIW PRGHV DQG VDPH RULHQWDWLRQ DV LQ )LJ ERQGV DUH UHPRYHG IRU FODULW\f ,QIUDUHG$FWLYH 1RUPDO 0RGHV 2EVHUYHG IRU 3'&% &DWLRQ FORFNZLVH IURP XSSHU OHIW PRGHV DQG VDPH RULHQWDWLRQ DV )LJ H[FHSW PRGH ZKLFK LV YLHZHG DORQJ WKH &&O D[LV ERQGV DUH H[FOXGHG IRU FODULW\f )7,&5 0DVV 6SHFWUXP RI 3XOVHG*ORZ 'LVFKDUJHG 3'&% 6HHGHG LQ $U 9LVLEOH89 6SHFWUD RI 3'02% 1HXWUDO ; QPf DQG 5DGLFDO &DWLRQ QP ; QPf LQ DQ $U 0DWUL[ DW ,;

PAGE 11

,QIUDUHG 6SHFWUD RI 'LVFKDUJHG 3'02%&&9$U 0L[WXUH WRSf 6KRZLQJ 1HXWUDO DQG 5DGLFDO &DWLRQ EODFN FLUFOHVf %DQGV DQG 2QO\ 1HXWUDO 3'02% 0ROHFXOHV ERWWRPf LQ DQ $U 0DWUL[ DW %DQGV ZLWK %ODFN ,QYHUWHG 7ULDQJOHV DUH 8QDVVLJQHG &RUUHODWLRQ 'LDJUDP EHWZHHQ QP 9LVLEOH %DQG DQG )RXU ,5 3HDNV 9DU\LQJ $EVRUEDQFHV 3URGXFHG E\ 'LIIHUHQW 3KRWRO\VLV 7LPHVf 9LVLEOH89 6SHFWUD RI $f 8QSKRWRO\]HG 3'02% 5DGLFDO &DWLRQ )RUPHG IURP 'LVFKDUJHG 3'02%&&O$U 0L[WXUH %f 6SHFWUXP $ DIWHU 0LQXWHV 3KRWRO\VLV &f 'LVFKDUJHG &&O$U 0L[WXUH EHIRUH 3KRWRO\VLV 'f6SHFWUXP & DIWHU 0LQXWHV 3KRWRO\VLV $OO LQ $U DW )7,&5 0DVV 6SHFWUXP RI 3XOVHG*ORZ 'LVFKDUJHG 3'02% 6HHGHG LQ $U 9LVLEOH89 6SHFWUD RI 1HXWUDO DQG &DWLRQLF 1DSKWKDOHQH LQ $U DW LQ WKH QP 6SHFWUDO 5HJLRQ ,QIUDUHG 6SHFWUD RI 1HXWUDO ERWWRPf DQG 1HXWUDO 3OXV &DWLRQLF 1DSKWKDOHQH WRSf LQ $U DW 1HZ 3HDNV 'XH WR &DWLRQ DUH 0DUNHG ZLWK 6ROLG &LUFOHV &RUUHODWLRQ RI QP 9LVLEOH %DQG $EVRUEDQFH RI 1DSKWKDOHQH &DWLRQ ZLWK FP ,5 %DQG $EVRUSWLRQ 7KH (PSW\ 6TXDUH ,QGLFDWHV 'DWXP IURP DQ ([SHULPHQW ZLWK && $EVHQW [

PAGE 12

9LVLEOH89 6SHFWUXP RI 1HXWUDO 1f DQG &DWLRQLF 1f 1DSKWKDOHQH LQ $U DW 3ULRU WR 3KRWRO\VLV WRSf 6SHFWUXP DIWHU 3KRWRO\VLV IRU )LYH 0LQXWHV ZLWK 0HGLXP3UHVVXUH +J /DPS ERWWRPf 1RWH WKDW WKH ,QWHQVLW\ RI WKH %DQG 6\VWHP LQ WKH QP 5DQJH +DV %HHQ &RPSUHVVHG 7ZRIROG IRU 9LVXDO &ODULW\ ,QIUDUHG 6SHFWUD RI 1HXWUDO DQG &DWLRQLF 1DSKWKDOHQH LQ $U 3ULRU WR 3KRWRO\VLV WRSf DQG $IWHU 3KRWRO\VLV ERWWRPf 6DPH 6DPSOH DV LQ )LJXUH >&&O@>$U@ f 5HVRQDQFH 5DPDQ 6SHFWUXP RI &DWLRQLF 1DSKWKDOHQH LQ $U b &&f DW P: QP 5KRGDPLQH H[FLWDWLRQf )7,&5 0DVV 6SHFWUXP RI 3XOVHG*ORZ 'LVFKDUJHG 1DSKWKDOHQH 6HHGHG LQ $U [L

PAGE 13

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ $ 63(&7526&23,& ,19(67,*$7,21 2) 0$75,; ,62/$7(' 5$',&$/ &$7,216 2) 3$5$',&+/252%(1=(1( 3$5$',0(7+2;<%(1=(1( $1' 1$3+7+$/(1( %\ :LOOLDP 3HUVRQHWWH 'HFHPEHU &KDLUPDQ 0DUWLQ 7 9DOD 0DMRU 'HSDUWPHQW &KHPLVWU\ 0DWUL[ LVRODWLRQ VSHFWURVFRS\ SURYLGHV D PHDQV E\ ZKLFK UHODWLYHO\ XQVWDEOH FKHPLFDO VSHFLHV PD\ EH LQYHVWLJDWHG 5DGLFDO FDWLRQV GHULYHG IURP DURPDWLF RUJDQLF PROHFXOHV UHSUHVHQW DQ LPSRUWDQW FODVV RI VXFK VSHFLHV 6SHFLILFDOO\ WKRVH GHULYHG IURP WKH WLWOH PROHFXOHV SDUD GLFKORUREHQ]HQH 3'&%f SDUDGLPHWKR[\EHQ]HQH 3'02%f DQG QDSKWKDOHQH 1f ZHUH VWXGLHG VSHFWURVFRSLFDOO\ XVLQJ WKH PDWUL[ LVRODWLRQ WHFKQLTXH 5DGLFDO FDWLRQV RI WKH WLWOH PROHFXOHV ZHUH JHQHUDWHG E\ HLWKHU SXOVHG JORZ GLVFKDUJH RU HOHFWURQ ERPEDUGPHQW DQG WKHQ WUDSSHG LQ DUJRQ DW &RUUHODWLRQ RI NQRZQ FDWLRQLF YLVLEOH DEVRUSWLRQ EDQGV ZLWK LQIUDUHG ,5f EDQGV REVHUYHG IRU WKH VDPH VDPSOHPDWUL[ DOORZHG DVVLJQPHQW RI ,5 EDQGV WR HDFK RI WKH WKUHH UDGLFDO FDWLRQV VWXGLHG $E LQLWLR +DUWUHH)RFN 6HOI &RQVLVWHQW )LHOG +)6&)f OHYHO FDOFXODWLRQV RI KDUPRQLF YLEUDWLRQDO IUHTXHQFLHV IRU QHXWUDO DQG FDWLRQLF 3'&% 3'02% DQG 1 SURYLGHG IXUWKHU HYLGHQFH IRU DVVLJQPHQWV DQG ZHUH XVHG WR FKDUDFWHUL]H YLEUDWLRQDO IUHTXHQF\ VKLIWV DQG LQWHQVLW\ DQG ERQGLQJ FKDQJHV HYRNHG XSRQ ;OO

PAGE 14

LRQL]DWLRQ ,5DFWLYH YLEUDWLRQV IRU 3'&% DUH DVVLJQHG DW DQG FP ZKLOH WKRVH DWWULEXWHG WR 3'02% RFFXU DW f DQG FP (5 EDQGV DW DQG FP DUH DVVLJQHG WR 1 5HVRQDQFH5DPDQ 55f VSHFWUD RI 3'&% DQG 1 DQG WKH IOXRUHVFHQFH55 VSHFWUXP RI 3'&% ZHUH UHFRUGHG 7KH IOXRUHVFHQFH VSHFWUXP PDWFKHG ZHOO ZLWK SUHYLRXVO\ UHSRUWHG JDV SKDVH HPLVVLRQ RI 3'&% ZKLOH WKH 55 VSHFWUD REWDLQHG FRPSDUHG IDYRUDEO\ ZLWK SUHYLRXV 55 VWXGLHV RI WKHVH UDGLFDO FDWLRQV LQ DON\OKDOLGH JODVVHV DW 5DPDQ DFWLYH YLEUDWLRQV IRU 3'&% DUH UHSRUWHG DW DQG FP ZKLOH WKRVH RI 1 RFFXU DW DQG FP 7KH UROH RI && DQG LWV GHJUDGDWLRQ SURGXFWVf DV JDV SKDVH LRQL]DWLRQ HQKDQFHU DQG PDWUL[ FKDUJH FRPSHQVDWRU ZDV IXUWKHU FODULILHG WKURXJK SKRWRO\VLV H[SHULPHQWV &RUUHODWLRQ DQDO\VLV DOORZHG DVVLJQPHQW RI D EURDG IHDWXUHOHVV YLVLEOH DEVRUSWLRQ FHQWHUHG DW QP WR && f &O EDVHG RQ SUHYLRXV DVVLJQPHQW RI DQG FP ,5 DEVRUEDQFHV WR WKLV VSHFLHV )LQDOO\ SUHOLPLQDU\ )RXULHU 7UDQVIRUP ,RQ &\FORWURQ 5HVRQDQFH 0DVV 6SHFWURPHWU\ )7,&506f H[SHULPHQWV RI JDV SKDVH SXOVHGJORZ GLVFKDUJH JHQHUDWHG SODVPDV LQGLFDWHG IUDJPHQWDWLRQ RI SDUHQW PROHFXOHV DQG WKHVH VSHFWUD ZHUH UHODWHG WR PDWUL[ FRPSRVLWLRQ GHWHUPLQHG VSHFWURVFRSLFDOO\ 7KH QHFHVVLW\ IRU LQGHSHQGHQW FRPSOHPHQWDU\ H[SHULPHQWDO DQGRU WKHRUHWLFDO PHWKRGV LV WKXV HPSKDVL]HG [P

PAGE 15

,1752'8&7,21 7KH VSHFWURVFRS\ RI PROHFXODU LRQV KDV EHHQ WKH VXEMHFW RI H[WHQVLYH LQYHVWLJDWLRQn VLQFH WKH HDUO\ UHDOL]DWLRQ RI WKH LPSRUWDQW UROH VXFK LRQV SOD\ LQ SK\VLFV FKHPLVWU\ DQG ELRORJ\ 0DQ\ RI WKHVH LRQV DUH REYLRXVO\ TXLWH VWDEOH ZKHQ SUHVHQW DV FRQVWLWXHQWV RI VROLGV DQG LQ WKH VROXWLRQ SKDVH EXW DUH TXLWH XQVWDEOH DQG UHDFWLYH ZKHQ LQ WKH JDV SKDVH 0DQ\ VXFK VSHFLHV DUH DOVR VKRUWOLYHG DQG WUDQVLHQW LQ QDWXUH DQG WKXV GLIILFXOW WR VWXG\ E\ FRQYHQWLRQDO PHDQV 2QH VXFK FODVV RI PROHFXODU LRQV LV WKH UDGLFDO FDWLRQV GHULYHG IURP DURPDWLF RUJDQLF PROHFXOHV VXFK DV VXEVWLWXWHG EHQ]HQHV DQG IXVHG EHQ]HQH ULQJV NQRZQ DV SRO\F\FOLF DURPDWLF K\GURFDUERQV 3$+Vf 5HSUHVHQWDWLYH PROHFXOHV DUH GHSLFWHG LQ )LJXUH 7KH VLJQLILFDQFH RI WKLV SDUWLFXODU JURXS OLHV LQ WKH IDFW WKDW PDQ\ IRUP LRQV IURP WKHLU QHXWUDO SDUHQW PROHFXOHV XSRQ H[SRVXUH WR VSHFLILF FOD\ PLQHUDOV SUHVHQW LQ VRLOVn +HQFH WKH DELOLW\ WR LGHQWLI\ DQG FKDUDFWHUL]H VSHFWURVFRSLFDOO\ WKLV JURXS RI LRQV LV RI FRQVHTXHQFH WR PRQLWRULQJ WKH IDWH RI WKLV LQGXVWULDOO\ LPSRUWDQW VHULHV RI PROHFXOHV LQ WKH HQYLURQPHQW 0RUHRYHU VLQFH WKHVH LRQV PD\ SOD\ D UROH LQ WKH FKHPLVWU\ RI WKHLU GLVSRVDO E\ FRPEXVWLRQ RU RWKHU GHVWUXFWLYH PHDQV VSHFWURVFRSLF GHWHUPLQDWLRQV ZLOO DVVLVW LQ XQGHUVWDQGLQJ WKH UHDFWLRQ PHFKDQLVPV LQ ZKLFK WKHVH LQWHUPHGLDWHV PD\ EH LQYROYHG ,QWHUHVWLQJO\ DQG LQ FRQWUDVW WR WKHLU HQYLURQPHQWDO UROH LW KDV EHHQ VXJJHVWHG WKDW WKH QHXWUDO 3$+V DUH DQ

PAGE 16

)LJXUH 5HSUHVHQWDWLYH 0ROHFXOHV RI ,QWHUHVW

PAGE 17

k FLf§GfF? 2 6n #Ff +&2f§2&+J B\&+ k2+ FKA ?K ; FK E FK p) FKAFK k+i! kFK &Of§#QK 1+kk1+ k 2&+ &Of§G\ RFK k0kak &+&+fQ kFK f +&2f§kk RFK kQK #&p 1&+fkf§k1&+f k1&+f pf§kf§k+k &A1+1+k

PAGE 18

LPSRUWDQW DQG VLJQLILFDQW FRPSRQHQW RI WKH LQWHUVWHOODU PHGLXP EDVHG RQ XQLGHQWLILHG LQIUDUHG 8,5f VSHFWUDO HPLVVLRQ IHDWXUHV REVHUYHG E\ DVWURQRPHUV DW DQG FP &RQVLGHULQJ WKH KDUVK LQWHUVWHOODU HQYLURQPHQW LH D YHU\ VWURQJ XOWUDYLROHW UDGLDWLYH IOX[ RWKHUV KDYH VXJJHVWHG WKH 3$+ K\SRWKHVLV PD\ EHWWHU PDWFK REVHUYDWLRQV LI WKHVH PROHFXOHV H[LVW DV LRQL]HG VSHFLHV UDWKHU WKDQ QHXWUDOV )LJXUH f )RU WKLV UHDVRQ WKH VSHFWURVFRS\ RI UDGLFDO FDWLRQV GHULYHG IURP 3$+V LV RI DVWURQRPLFDO DV ZHOO DV WHUUHVWULDO LPSRUWDQFH $ EULHI UHYLHZ RI SUHYLRXV VWXGLHV RI PROHFXODU LRQ VSHFWURVFRS\ IROORZV HPSKDVL]LQJ WKH WHFKQLTXHV E\ ZKLFK LRQV DUH SURGXFHG DQG LQYHVWLJDWHG 7KHUH DUH D ZLGH YDULHW\ RI PHDQV E\ ZKLFK DWRPLF DQG PROHFXODU LRQV DUH SURGXFHG +LVWRULFDOO\ IODPHV DQG HOHFWULFDO GLVFKDUJHV ZHUH WKH SUHGRPLQDQW HQYLURQPHQWV RI JDVHRXV LRQ SURGXFWLRQ )XUWKHU UHILQHPHQWV IRU DQDO\WLFDO SXUSRVHV FRQVLVWHG RI HVVHQWLDOO\ H[WUDFWLQJ DQG RSWLPL]LQJ RQH RI WKH PDQ\ LRQL]DWLRQ SURFHVVHV RSHUDWLQJ LQ WKHVH FRPSOH[ V\VWHPV 7DEOH f 6SHFLILFDOO\ HOHFWURQ LPSDFW DQG 3HQQLQJ ILHOG WKHUPDO DQG FKHPLFDO LRQL]DWLRQ DUH WKH PRVW FRPPRQO\ HPSOR\HG SURFHVVHV WRGD\ 3KRWRLRQL]DWLRQ LV DOVR D SURPLQHQW PHWKRG RI LRQ SURGXFWLRQ 7KH PHWKRG RI LRQL]DWLRQ XVHG LV D IXQFWLRQ RI LRQ SURGXFWLRQ HIILFLHQF\ WROHUDQFH RI PROHFXODU LRQ IUDJPHQWDWLRQ DQG DPHQDELOLW\ WR WKH WHFKQLTXHV XVHG WR GHWHFW DQG FKDUDFWHUL]H WKH LRQV SURGXFHG )RU H[DPSOH HOHFWURQ LPSDFW LV ZHOO VXLWHG WR PDVV VSHFWURPHWU\ 06f VLQFH LW LV UHODWLYHO\ HIILFLHQW YDFXXP UHTXLUHPHQWV RI WKH PDVV VSHFWURPHWHU DUH QRW H[FHHGHG DQG IUDJPHQWDWLRQ FDQ EH DFFRXQWHG IRU 5HFHQWO\ JORZ GLVFKDUJHV KDYH EHHQ FRXSOHG WR PDVV VSHFWURPHWHUVn HPSOR\LQJ

PAGE 19

)LJXUH $VWURSK\VLFDO 3URFHVVHV RI ,QWHUVWHOODU 0ROHFXOHV DQG *UDLQV

PAGE 21

7DEOH ,RQL]DWLRQ 0HFKDQLVPV LQ WKH 1HJDWLYH *ORZ 5HJLRQ RI DQ $EQRUPDO *ORZ 'LVFKDUJH DGDSWHG IURP 5HI f ,3ULPDU\ ,RQL]DWLRQ 0HFKDQLVPV $ (OHFWURQ ,PSDFW 0r Hr 0 Hf 0r QHXWUDO PROHFXOHf % 3HQQLQJ ,RQL]DWLRQ 0r $Pr r 0 $ H $Pr GLVFKDUJHG JDV $ LQ D PHWDVWDEOH VWDWHf ,, 6HFRQGDU\ ,RQL]DWLRQ 0HFKDQLVPV $ 1RQV\PPHWULF &KDUJH 7UDQVIHU $ 0r } 0 $ 6\PPHWULF 5HVRQDQFHf &KDUJH 7UDQVIHU %IDVW %rVORZ %VLRZ %rIDVW 'LVVRFLDWLYH &KDUJH 7UDQVIHU $ 0; } 0 ; $r % $VVRFLDWLYH ,RQL]DWLRQ $Pr 0 } $0f H & 3KRWRLRQL]DWLRQ 0 KY 0 H

PAGE 22

GLIIHUHQWLDO SXPSLQJ WR RYHUFRPH SUHVVXUH RYHUORDGV $QRWKHU PHWKRG RI DYRLGLQJ SUHVVXUH GLIILFXOWLHV DQG JHQHUDWLQJ PHWDVWDEOH DQGRU LRQLF VSHFLHV E\ JORZ GLVFKDUJH LV WR SXOVH WKH GLVFKDUJH JDV LQWR WKH PDVV VSHFWURPHWHU 7KLV PHWKRG FRQVLVWV RI DSSO\LQJ D YROWDJH W\SLFDOO\ D IHZ NLORYROWV WR DQ HOHFWURGH VXVSHQGHG LQ FORVH SUR[LPLW\ WR DQRWKHU HOHFWURGH KHOG DW JURXQG SRWHQWLDO ERWK RI ZKLFK DUH XQGHU KLJK YDFXXP 8SRQ LQWURGXFWLRQ RI D JDV SXOVH W\SLFDOO\ D UDUH JDV LQ WKH UHJLRQ EHWZHHQ WKH HOHFWURGHV DQ HOHFWULFDO GLVFKDUJH LV LQLWLDWHG ZKLFK H[WLQJXLVKHV LWVHOI RQFH WKH SUHVVXUH KDV GURSSHG EHORZ WKH EUHDNGRZQ SRWHQWLDO RI WKH JDV XVHG 7KLV JORZ GLVFKDUJH LV D ORZWHPSHUDWXUH SODVPD H[LVWLQJ LQ D PRGHUDWH SUHVVXUH WR WRUUf RI LQHUW JDV H[KLELWLQJ FXUUHQWV LQWHUPHGLDWH EHWZHHQ WKRVH RI 7RZQVHQG DQG DUF GLVFKDUJH W\SLFDOO\ LQ WKH PLOODPSHUH UDQJH 7KH FKDUDFWHULVWLFV RI JDV GLVFKDUJHV DUH VKRZQ VFKHPDWLFDOO\ LQ )LJXUH LQ ZKLFK 9E 9Q DQG 9G LQGLFDWH EUHDNGRZQ QRUPDO DQG GLVFKDUJH SRWHQWLDOV UHVSHFWLYHO\ /RZ HQHUJ\ HOHFWURQV RI D IHZ H9 DQG GHQVLWLHV RI aFP FDXVH H[FLWDWLRQ RI UDUH JDV DWRPV WR PHWDVWDEOH VWDWHV ZKLOH D PXFK VPDOOHU QXPEHU RI PRUH HQHUJHWLF HOHFWURQV H9f DUH DOVR SURGXFHG 7KH JORZ GLVFKDUJH LV SUREDEO\ WKH PRVW FRPPRQO\ UHFRJQL]HG IRUP RI JDVHRXV GLVFKDUJH EHFDXVH RI LWV HDVH RI SURGXFWLRQ DQG FRPPHUFLDO XWLOLW\ DV XVH LQ QHRQ OLJKWV 7KH FKDUDFWHULVWLF FRORUV DUH JLYHQ LQ 7DEOH $WRPV DQG PROHFXOHV HLWKHU GRSHG LQWR WKH JDV RU LQWURGXFHG VHSDUDWHO\ LQWR WKH GLVFKDUJH UHJLRQ DUH H[FLWHG DQGRU LRQL]HG E\ FROOLVLRQV ZLWK LRQV PHWDVWDEOH JDV DWRPV HOHFWURQV RU SKRWRQV 7DEOH f 7KH LRQL]DWLRQ SRWHQWLDO DQG HQHUJLHV RI ORZO\LQJ PHWDVWDEOH VWDWHV RI WKH UDUH JDV GLVFKDUJHG 7DEOH f GLFWDWH WKH DELOLW\ RI WKLV LRQL]DWLRQ

PAGE 23

7DEOH &RORUV RI *ORZ 5HJLRQV LQ D '& *DV 'LVFKDUJH *DV 1HJDWLYH *ORZ 3RVLWLYH &ROXPQ K SDOH EOXH SLQN Q EOXH UHG \HOORZLVK ZKLWH SDOH \HOORZ ZLWK SLQN FHQWHU +H JUHHQ UHG WR YLROHW $U GDUN EOXH GDUN UHG 1H RUDQJH EULFN UHG

PAGE 24

7DEOH /RZO\LQJ 0HWDVWDEOH (QHUJ\ /HYHOV RI 5DUH *DV $WRPV DQG ,RQL]DWLRQ 3RWHQWLDOV RI 0ROHFXOHV RI ,QWHUHVW *DV 0HWDVWDEOH (QHUJ\ H9 ,RQL]DWLRQ 3RWHQWLDO H9 +H 1H $U .U ;H 0ROHFXOH ,RQL]DWLRQ 3RWHQWLDO H9 SDUDGLFKORUREHQ]HQH SDUDGLPHWKR[\EHQ]HQH QDSKWKDOHQH

PAGE 25

)LJXUH 9ROWDJH&XUUHQW &KDUDFWHULVWLFV RI *DV 'LVFKDUJHV DGDSWHG IURP 5HI f

PAGE 26

&XUUHQW $f *

PAGE 27

PHWKRG WR SURGXFH WKH LRQV RI LQWHUHVW LH WKH LRQL]DWLRQ SRWHQWLDO RI WKH DWRP RU PROHFXOH PXVW EH RYHUFRPH YLD WKH LRQL]DWLRQ SURFHVV HQHUJLHV DYDLODEOH LQ WKH GLVFKDUJH *DV SKDVH LRQ VSHFWURVFRS\ DQG PDVV VSHFWURPHWU\ KDYH SURYLGHG D ZHDOWK RI LQIRUPDWLRQ FRQFHUQLQJ PROHFXODU LRQ VWUXFWXUH DQG UHDFWLYLW\ 7KH FRXSOLQJ RI WKHVH PHWKRGV WKURXJK H[FLWDWLRQ ZDYHOHQJWK VSHFLILF SKRWRLRQL]DWLRQ DQG IUDJPHQWDWLRQ WHFKQLTXHV IROORZHG E\ FODVVLFDO LRQ GHWHFWLRQ KDV PDGH LW SRVVLEOH WR LQIHU RSWLFDO DEVRUSWLRQ VSHFWUD DW VHQVLWLYLW\ OHYHOV W\SLFDOO\ DVVRFLDWHG ZLWK ODVHU LQGXFHG IOXRUHVFHQFH /,)f DQG VWDQGDUG PDVV VSHFWURPHWU\ ,Q DGGLWLRQ FRROLQJ YLD VXSHUVRQLF H[SDQVLRQ KDV DVVLVWHG LQ WKH LQWHUSUHWDWLRQ RI JDV SKDVH LRQ VSHFWUD E\ GHFUHDVLQJ OLQH ZLGWKV DQG XQGHU IDYRUDEOH FRQGLWLRQV HOLPLQDWLQJ YLEUDWLRQDOO\ DQG URWDWLRQDOO\ KRWf EDQGV 7KHVH DGYDQFHV DUH LPSUHVVLYH DQG ZLOO FRQWLQXH WR FRQWULEXWH WR JDV SKDVH LRQ VSHFWURVFRS\ +RZHYHU EHFDXVH RI WKHLU OHYHO RI VRSKLVWLFDWLRQ WKH\ DUH DV WHFKQLFDOO\ GHPDQGLQJ DV WKH\ DUH LQIRUPDWLYH $Q DOWHUQDWLYH ZKLFK LV WHFKQLFDOO\ OHVV DUGXRXV \HW SURYLGHV VLJQLILFDQW DQG VXEVWDQWLDO VSHFWURVFRSLF DQG FKHPLFDO LQIRUPDWLRQ FRQFHUQLQJ PROHFXODU LRQV LV WKH PDWUL[ LVRODWLRQ WHFKQLTXH 7KH GDWD REWDLQHG YLD WKLV WHFKQLTXH DUH RIWHQ WKH VWDUWLQJ SRLQW IRU KLJK UHVROXWLRQ JDV SKDVH H[SHULPHQWV 7KH HQFDSVXODWLRQ RI FKHPLFDO VSHFLHV ZLWKLQ VRPH PHGLXP LV QRW D SDUWLFXODUO\ QHZ LGHDn 1XPHURXV H[DPSOHV H[LVW QDWXUDOO\ RQH RI ZKLFK LV WKH WUDSSLQJ RI WKH 6f DQLRQ ZLWKLQ WKH DOXPLQRVLOLFDWH VWUXFWXUH RI WKH PLQHUDO ODSLV OD]XOD $ EOXH FRORU LV LPSDUWHG WR WKH PLQHUDO DV D UHVXOW RI RSWLFDO DEVRUSWLRQ E\ WKH DQLRQ 7KH GLVVROXWLRQ RI PROHFXOHV LQ

PAGE 28

VROYHQWV IROORZHG E\ IUHH]LQJ DQG \UD\ LUUDGLDWLRQ WR IRUP VROLG JODVVHV FRQWDLQLQJ LRQV IRU ORZ WHPSHUDWXUH VWXGLHV LV ZHOO HVWDEOLVKHG )DVWIORZ WHFKQLTXHV KDYH DOORZHG PRQLWRULQJ RI WUDQVLHQW VSHFLHV DOVR DV KDYH RWKHU WLPH UHVROXWLRQ SURFHGXUHV 7KH SXUSRVH RI WKH PDWUL[ LVRODWLRQ WHFKQLTXH DV IRUPDOO\ LQWURGXFHG E\ :KLWWOH 'RZV DQG 3LPHQWHO LQ LV WR HPEHG VSHFLHV RI FKHPLFDO LQWHUHVW LQ D PHGLXP H[KLELWLQJ PLQLPDO LQWHUDFWLRQ ZLWK LWV JXHVW DV ZHOO DV WUDQVSDUHQF\ LQ WKH VSHFWUDO UHJLRQV XVHG WR SUREH WKH VSHFLHV XQGHU VWXG\ 2QFHWUDQVLHQW VSHFLHV QRZ LVRODWHG LQ WKH PDWUL[ FRXOG WKHQ EH LQYHVWLJDWHG DW D PRUH OHLVXUHO\ SDFH VLQFH WKH SURFHVVHV DFFRXQWLQJ IRU WKHLU LQVWDELOLW\ KDYH EHHQ JUHDWO\ DUUHVWHG LI QRW VWRSSHG FRPSOHWHO\ 7KLV LGHDO LV QHYHU FRPSOHWHO\ UHDOL]HG EXW LV PRVW FORVHO\ DSSURDFKHG E\ LVRODWLRQ LQ VROLG UDUH JDVHV 6LQFH WKHVH PDWHULDOV DUH SURGXFHG DW ORZ WHPSHUDWXUHV KLJK YDFXXP DQG FU\RJHQLF WHFKQLTXHV DUH HPSOR\HG WR FUHDWH VXEVWUDWHV RQWR ZKLFK WKH PL[WXUH RI H[FHVV PDWUL[ JDV DQG VSHFLHV RI LQWHUHVW DUH GHSRVLWHG 7KH JHQHUDO H[SHULPHQWDO DUUDQJHPHQW LV VKRZQ LQ )LJXUH 7KH ORZ WHPSHUDWXUHV UHTXLUHG KDYH WKH DGGLWLRQDO EHQHILW RI VLPSOLI\LQJ VSHFWUD WKURXJK OLQH QDUURZLQJ DQG HOLPLQDWLRQ RI KRW EDQGV 7KH PHWKRG RI GHSRVLWLRQ YDULHV GHSHQGLQJ RQ WKH VSHFLHV VWXGLHG DQG WKH VSHFWURVFRSLF WHFKQLTXH HPSOR\HG 6WDEOH YRODWLOH PDWHULDOV PD\ VLPSO\ EH SUHPL[HG ZLWK WKH PDWUL[ JDV DQG GHSRVLWHG HLWKHU LQ D FRQWLQXRXV RU SXOVHG PRGH 3XOVLQJ DSSHDUV WR PLQLPL]H PXOWLSOH VLWH IRUPDWLRQ LQ WKH PDWUL[ DV ZHOO DV DJJUHJDWLRQ RI WKH VSHFLHV WR EH LVRODWHG ,W DOORZV IRU PRUH UDSLG GHSRVLWLRQV DQG DV D UHVXOW OHVV FRQWDPLQDWLRQ E\ LPSXULWLHV 0DWULFHV DUH XVXDOO\ FOHDUHU OHVV VFDWWHULQJf DOVR 'HWHFWLRQ RI WKHVH VSHFLHV E\ VWDQGDUG VSHFWURVFRSLF

PAGE 29

)LJXUH *HQHUDO ([SHULPHQWDO 6HWXS IRU 0DWUL[ ,VRODWLRQ

PAGE 31

WHFKQLTXHV LV QRW SDUWLFXODUO\ GLIILFXOW 7KH SURGXFWLRQ DQG WUDSSLQJ RI KLJKO\ LQYRODWLOH WUDQVLHQW FKHPLFDO VSHFLHV RIIHUV DQ H[DPSOH RI WKH RWKHU H[WUHPH RI VDPSOH SUHSDUDWLRQ +LJK WHPSHUDWXUH IXUQDFHV DQG ODVHU DEODWLRQ DUH XVHG WR SURGXFH JDVHRXV DWRPV PROHFXOHV DQG LRQV RI PHWDOV DQG UHIUDFWRU\ PDWHULDOV ZKLOH KLJK HQHUJ\ SURFHVVHV VXFK DV WKRVH GLVFXVVHG IRU JDVHRXV LRQ SURGXFWLRQ SURYLGH DQ DYHQXH WR XQVWDEOH PROHFXODU IUDJPHQWV DQG LRQV 7KLV LV VKRZQ LQ WKH XSSHU SRUWLRQ RI )LJXUH &RQWLQXRXV IORZ GHSRVLWLRQ LV EHVW VXLWHG WR WKRVH PHWKRGV WKDW SURYLGH D FRQWLQXRXV IORZ RI VDPSOH ZKLOH SXOVLQJ LV DSSURSULDWH ZKHQ WKH VDPSOH LWVHOI LV JHQHUDWHG LQ SXOVHV DV LV WKH FDVH ZLWK DEODWLRQ YLD SXOVHG KLJKSRZHUHG ODVHUV 3XOVLQJ RIIHUV WKH DGGHG DGYDQWDJH RI DYRLGLQJ SUHVVXUH EXLOGXS LQ WKH YDFXXP FKDPEHU ZKHQ GLIIHUHQWLDO SXPSLQJ LV QRW DYDLODEOH RU ZKHQ ORFDOO\ DQG WHPSRUDOO\ KLJK JDV SUHVVXUHV DUH UHTXLUHG 8QDPELJXRXV GHWHFWLRQ DQG FKDUDFWHUL]DWLRQ RI WKHVH HSKHPHUDO VSHFLHV LV PRUH GLIILFXOW WKDQ WKDW RI VWDEOH VSHFLHV IRU ZKLFK WKH H[SHULPHQWDO DQG WKHRUHWLFDO EDVHV DUH PXFK PRUH H[WHQVLYH 7KH PHWKRGV GLVFXVVHG VR IDU DUH SULPDULO\ DVVRFLDWHG ZLWK IRUPDWLRQ RI VSHFLHV MXVW SULRU WR GHSRVLWLRQ 7KH SUHPDWUL[ PL[WXUH KDV EHHQ VWXGLHG VSHFWURVFRSLFDOO\ DQG E\ PDVV VSHFWURPHWU\ LQ DQ DWWHPSW WR SURYLGH HYLGHQFH IRU DQG FRUUHODWLRQ ZLWK WKH REVHUYHG DQG SURSRVHG HQWLWLHV IRXQG LQ WKH PDWUL[ 7KLV HQWDLOV D GHWDLOHG XQGHUVWDQGLQJ RI WKH SURFHVVHV RFFXUULQJ RQ DQG QHDU WKH VXEVWUDWH VXUIDFH GXULQJ GHSRVLWLRQ 6RPH LQVLJKW LQWR WKHVH SURFHVVHV LV JDLQHG E\ WUHDWPHQW RI WKH PDWUL[ DIWHU LW KDV EHHQ IRUPHG 7KH IRFXV QRZ LV PDQLSXODWLRQ RI FKHPLFDO VSHFLHV LQ WKH PDWUL[ DIWHU GHSRVLWLRQ

PAGE 32

)LJXUH 0DWUL[ 3UHSDUDWLRQ DQG 6XEVHTXHQW 7UHDWPHQWV

PAGE 33

+LJK WHPSHUDWXUH VSHFLHV 0DWUL[ JDV ZLWK YRODWLOH VSHFLHV 0DWUL[ ,VRODWHG 6DPSOH 1HZ PDWUL[ VSHFLHV 'LIIXVLRQ OHDGLQJ WR DJJUHJDWHV

PAGE 34

2QFH D PDWUL[ LV IRUPHG LW FDQ EH VXEMHFWHG WR D YDULHW\ RI SHUWXUEDWLRQV WR LQGXFH FKDQJHV WKDW FDQ EH PRQLWRUHG VSHFWURVFRSLFDOO\ 7KH PRVW IUHTXHQWO\ HPSOR\HG PHWKRGV DUH DQQHDOLQJ RI WKH PDWUL[ DQG H[SRVXUH WR H[WHUQDO UDGLDWLRQ VRXUFHV LH SKRWRO\VLV 7KLV VHUYHV WKH SXUSRVH RI JHQHUDWLQJ QHZ VSHFLHV LQ WKH PDWUL[ DQG SURYLGLQJ LQVLJKW LQWR WKH LQLWLDO PDWUL[ FRPSRVLWLRQ DQG WKH WKHUPRG\QDPLFV SKRWRFKHPLVWU\ DQG SK\VLFV DVVRFLDWHG ZLWK WKH WUDQVIRUPDWLRQVf ZLWKLQ WKH PDWUL[ 7KHVH SURFHVVHV DUH GHSLFWHG LQ WKH ORZHU SRUWLRQ RI )LJXUH $QQHDOLQJ LV WKH FRQWUROOHG LQSXW RI WKHUPDO HQHUJ\ LQWR D PDWUL[ IRU WKH SXUSRVH RI HOLPLQDWLQJ PXOWLSOH VLWHV DQG IRU LQGXFLQJ WKH IRUPDWLRQ RI DJJUHJDWHV DQG GLVLQWHJUDWLRQ RI KLJKO\ UHDFWLYH LQWHUPHGLDWHV 7KHVH DUH ORZ DFWLYDWLRQ HQHUJ\ SURFHVVHV ZKLFK DUH SXW LQWR DFWLRQ E\ WKH VRIWHQLQJ RI WKH PDWUL[ XSRQ ZDUPLQJ DQG VXEVHTXHQW GLIIXVLRQ DQG UHDFWLRQ RI HQWUDSSHG DWRPV PROHFXOHV DQGRU LRQV 3KRWRO\VLV LV WKH FRQWUROOHG LQSXW RI HOHFWURPDJQHWLF UDGLDWLRQ IRU WKH SXUSRVH RI JHQHUDWLQJ LGHQWLI\LQJ DQG GLVWLQJXLVKLQJ VSHFLHV SUHVHQW LQ WKH PDWUL[ +LJK HQHUJ\ SKRWRO\VLV HJ XVLQJ \UD\ RU XOWUDYLROHW UDGLDWLRQ LV FDSDEOH RI LRQL]LQJ PROHFXOHV ZLWK KLJK LRQL]DWLRQ SRWHQWLDOV LQ WKH PDWUL[ /RZHU HQHUJ\ OLJKW HJ YLVLEOH RU QHDU LQIUDUHG LV EHWWHU VXLWHG WR SKRWRGHWDFKPHQW RI HOHFWURQV FDSWXUHG RQO\ ZHDNO\ E\ HOHFWURQ WUDSV LQWHQWLRQDOO\ DGGHG WR WKH PDWUL[ WR HQKDQFH WKH IRUPDWLRQ RI SRVLWLYH LRQV RI LQWHUHVW ,Q ERWK LQVWDQFHV PRQLWRULQJ DQG FRUUHODWLQJ WKH JURZWK DQG GLPLQLVKPHQW RI VSHFWURVFRSLF EDQGV WHQWDWLYHO\ DVVLJQHG WR PDWUL[ VSHFLHV DV D IXQFWLRQ RI SKRWRO\VLV HQHUJ\ DQG GXUDWLRQ PDNH VLJQLILFDQW

PAGE 35

FRQWULEXWLRQV WR FRQFOXVLYH DVVLJQPHQW RI EDQGV WR D VSHFLILF FKHPLFDO VSHFLHV 7KH SXUSRVH RI WKH UHVHDUFK SUHVHQWHG LQ WKLV GLVVHUWDWLRQ ZDV WR HPSOR\ WKH PDWUL[ LVRODWLRQ WHFKQLTXH WR H[SHULPHQWDOO\ REWDLQ WKH YLEUDWLRQDO DEVRUSWLRQ VSHFWUD RI UDGLFDO FDWLRQV GHULYHG IURP SDUD GLFKORUREHQ]HQH 3'&%f SDUDGLPHWKR[\EHQ]HQH 3'02%f DQG QDSKWKDOHQH 1f 7R WKLV HQG D SXOVHGJORZ GLVFKDUJHPDWUL[ LVRODWLRQ WHFKQLTXH ZDV GHYHORSHG DQG HPSOR\HG DV WKH SULPDU\ PHWKRG RI LRQ JHQHUDWLRQ HOHFWURQ ERPEDUGPHQW ZDV DOVR XVHGf DQG WUDSSLQJ 'XULQJ WKH FRXUVH RI WKLV LQYHVWLJDWLRQ 7KRPD :XUIHO 6FKODFKWD /DVN DQG %RQG\EH\ UHSRUWHG RQ D YHU\ VLPLODU PHWKRGRORJ\ ZKLFK LV QRWHG DQG DFNQRZOHGJHG $ GHVFULSWLRQ RI H[SHULPHQWDO GHWDLOV WKHRUHWLFDO FRQVLGHUDWLRQV DQG UHVXOWV DQG GLVFXVVLRQ IRU HDFK PROHFXOH VWXGLHG IROORZV

PAGE 36

(;3(5,0(17$/ 7KH PDWUL[ LVRODWLRQ WHFKQLTXH UHTXLUHV D YDFXXP V\VWHP FU\RVWDW DQG JDVVDPSOH LQOHW SRUW 7KH JHQHUDO VHWXS LV VKRZQ LQ )LJXUH 7KH FU\RVWDW ZLWK YDFXXP VKURXG DQG IXUQDFH DVVHPEO\ DWWDFKHG LV VKRZQ LQ )LJXUH )RU WKH SXUSRVHV RI WKH UHVHDUFK SUHVHQWHG KHUH WKH JDWH YDOYHV DQG IXUQDFH DVVHPEO\ ZHUH UHPRYHG DQG UHSODFHG ZLWK D SXOVHGGLVFKDUJH RU HOHFWURQ ERPEDUGPHQW DVVHPEO\ IRU LRQ JHQHUDWLRQ WR EH GHVFULEHG ODWHUf D ZLQGRZ WUDQVSDUHQW WR WKH VSHFWUDO UHJLRQ XQGHU LQYHVWLJDWLRQ RU D SRUW IRU HYDFXDWLRQ GHSHQGLQJ RQ WKH PHWKRG RI LRQ SURGXFWLRQ XVHG RU RWKHU H[SHULPHQWDO FRQVWUDLQWV 7KH V\VWHP ZDV HYDFXDWHG E\ D WZR LQFK DLUFRROHG RLO GLIIXVLRQ SXPS $OFDWHO 3'5 UDWHG DW /VHFf EDFNSXPSHG E\ D PHFKDQLFDO URXJKLQJ SXPS $OFDWHO UDWHG DW /PLQf DQG VHSDUDWHG IURP WKH VDPSOH PDWUL[ E\ D OLTXLG QLWURJHQ FRROHG FROG WUDS $OO VXUIDFHWRVXUIDFH LQWHUIDFHV ZHUH VHDOHG ZLWK 2ULQJV 7KH SUHVVXUH ZDV PRQLWRUHG ZLWK DQ LRQ JDXJH 0RGHO 3 .XUW /HVNHU &Rf LQWHUIDFHG ZLWK D *UDQYLOOH 3KLOOLSV *DXJH &RQWUROOHU 7KH V\VWHP ZDV SXPSHG WR WKH [ WRUU UDQJH ZLWKRXW D IXOO FROG WUDSf WKHQ WR [ WRUU ZLWK D IXOO FROG WUDSf EHIRUH DQ\ GHSRVLWLRQV ZHUH SHUIRUPHG 7KH SUHVVXUH PHDVXUHG GHFUHDVHG WR [ n WRUU RQFH WKH FU\RVWDW KDG UHDFKHG PDWUL[ GHSRVLWLRQ WHPSHUDWXUH f§ .f 7\SLFDOO\ WKH V\VWHP ZDV SXPSHG RQ RYHUQLJKW IROORZHG E\ D PDWUL[ H[SHULPHQW WKH QH[W GD\ :KHQ D SXOVH YDOYH ZDV

PAGE 37

)LJXUH &U\RVWDW ZLWK 9DFXXP 6KURXG DQG )XUQDFH $VVHPEO\ $WWDFKHG

PAGE 39

HPSOR\HG LW ZDV HLWKHU OHIW RQ GXULQJ WKH SXPSLQJ F\FOH RU WKH JDV PDQLIROG OLQH ZDV HYDFXDWHG YLD D E\SDVV YDOYH FI )LJXUH f 7KH E\SDVV YDOYH DOVR DOORZHG LQWURGXFWLRQ RI GU\ QLWURJHQ JDV LQWR WKH YDFXXP V\VWHP WR H[SHGLWH FU\RVWDW ZDUPXS DQG VXEVHTXHQW GLVDVVHPEO\ DQG UHDVVHPEO\ 7KH FU\RVWDW HPSOR\HG FRQVLVWHG RI D WZR VWDJH FORVHGF\FOH $LU 3URGXFWV 'LVSOH[ 0RGHO '( f KHOLXP UHIULJHUDWRU 7KH ILUVW VWDJH ZDV DWWDFKHG WR D FRSSHU UDGLDWLRQ VKLHOG KHOG DW ZKLOH D FRSSHU FROG ILQJHU ZDV DWWDFKHG WR WKH VHFRQG VWDJH $ FRSSHU ZLQGRZ FRQWDLQHU ZDV WKHQ VFUHZHG LQWR WKH FROG ILQJHU D SROLVKHG DOXPLQXP EORFN ZDV XVHG IRU 5DPDQ VWXGLHVf $OO PHWDOPHWDO DQG PHWDOZLQGRZ LQWHUIDFHV ZHUH MRLQHG XVLQJ LQGLXP JDVNHWV 7KH ZLQGRZ WHPSHUDWXUH ZDV PHDVXUHG XVLQJ D JROGFKURPHO b )Hf WKHUPRFRXSOH FRPSUHVVHG EHWZHHQ LQGLXP DW WKH FROG ILQJHUFRSSHU ZLQGRZ FRQWDLQHU LQWHUIDFH $Q $LU 3URGXFWV $3'% WHPSHUDWXUH FRQWUROOHU ZDV XVHG IRU WHPSHUDWXUH UHDGRXW DQG ZDV FDOLEUDWHG DJDLQVW OLTXLG QLWURJHQ 7HPSHUDWXUHV ZHUH PDLQWDLQHG DW $UJRQ 5HVHDUFK SXULW\ b SXUH 0DWKHVRQ *DV 3URGXFWVf PDWULFHV ZHUH GHSRVLWHG HLWKHU LQ D SXOVHG RU FRQWLQXRXV PRGH GHSHQGLQJ RQ WKH PHWKRG RI LRQ SURGXFWLRQ ,Q HLWKHU FDVH && LI DGGHGf ZDV SUHPL[HG LQ D JDV PDQLIROG RU EXOE E\ FRQYHQWLRQDO PDQRPHWULF WHFKQLTXHV WR D UDWLR RI WR $U&&Of :KHQ WKH SXOVHG PRGH ZDV HPSOR\HG WKH VDPSOH ZDV SUHPL[HG IURP D VLGH DUP GRZQ VWUHDP IURP WKH PDWUL[ JDV MXVW SULRU WR WKH SXOVH YDOYH )RU 3'&% DQG 1 VDPSOHV URRP WHPSHUDWXUH SURYLGHG D VXIILFLHQW VDPSOH YDSRU SUHVVXUH IRU GHSRVLWLRQ ,Q WKH FDVH RI 3'02% WKH VLGH DUP ZDV KHDWHG WR ar& :KHQ D FRQWLQXRXV IORZ PRGH ZDV HPSOR\HG DV LQ WKH FDVH RI HOHFWURQ ERPEDUGPHQW RI 1 WKH

PAGE 40

VDPSOH ZDV LQOHW DQG PL[HG ZLWK WKH PDWUL[ JDV MXVW LQVLGH WKH YDFXXP FKDPEHU MXVW SULRU WR GHSRVLWLRQ 3XOVHGJORZ GLVFKDUJH GHSRVLWLRQ ZDV WKH SULPDU\ PHWKRG HPSOR\HG IRU SURGXFLQJ DQG WUDSSLQJ LRQV XQGHU LQYHVWLJDWLRQ 7KH SXOVH YDOYH *HQHUDO 9DOYH 6HULHV f ZDV SRZHUHG DQG GULYHQ E\ WKH KRPHPDGH FLUFXLW VKRZQ VFKHPDWLFDOO\ LQ )LJXUH ,W FRQVLVWV RI D SRZHU VXSSO\ f ZKLFK VXSSOLHV YROWV 9f '& WR WKH 1 WUDQVLVWRU &f DQG 9 '& WR D SXOVH JHQHUDWRU $& f D 7(/ RSWRLVRODWHU %f DQG D GHOD\ FLUFXLW & f XVHG WR FRXSOH WR DQRWKHU V\VWHP HJ D SXOVHG 1G<$* ODVHU 7KH .* YDULDEOH UHVLVWRU &f GHWHUPLQHV WKH 9 RXWSXW GXUDWLRQ ZKLOH WKH 0* YDULDEOH UHVLVWRU %f GHWHUPLQHV WKH 9 JURXQGf RXWSXW GXUDWLRQ 7RJHWKHU WKH\ GHWHUPLQH WKH GXW\F\FOH RI WKH SXOVH JHQHUDWRU $ PVHF 9 SXOVH DW +] IUHTXHQF\ ZDV XVHG 7KLV SXOVH WULJJHUHG WKH RSWRLVRODWRU WR GULYH WKH SXOVH YDOYH VROHQRLG ODEHOHG 62/ %Of DQG RSHQ WKH SXOVH YDOYH $W WKDW WLPH WKH JDVVDPSOH PL[WXUH HQWHUHG WKH YDFXXP V\VWHP WKURXJK D PP VWDLQOHVV VWHHO 66f WXEH KHOG DW JURXQG SRWHQWLDO DQG LQLWLDWHG IRUPDWLRQ RI D SODVPD EHWZHHQ WKH WXEH DQG D WKLQ FRSSHU ZLUH DWWDFKHG WR D KHPLVSKHULFDOO\VKDSHG FRSSHU JULG KHOG DW .9 SRWHQWLDO VHH )LJXUH $f 7KH SULPDU\ SODVPD ZDV JHQHUDWHG LQ WKH a PP JDS EHWZHHQ WKH 66 WXEH DQG WKH &X ZLUH $ ZHDNHU VHFRQGDU\ SODVPD ZDV JHQHUDWHG ZLWKLQ WKH F\OLQGULFDO OHQVH KHOG DW 9 $V PHQWLRQHG WKH SXOVH UDWH ZDV VHW WR +] EXW IRUPDWLRQ RI WKH GLVFKDUJH LQFUHDVHG WKH IUHTXHQF\ WR a +] $V GHSRVLWLRQ SURFHHGHG W\SLFDOO\ WZR KRXUV WKH QHHGOH YDOYH KDG WR EH RSHQHG IXUWKHU DQGRU WKH EDFNLQJ SUHVVXUH LQ WKH PDQLIROG LQFUHDVHG WR DOORZ UHOLDEOH SODVPD IRUPDWLRQ

PAGE 41

)LJXUH 6FKHPDWLF RI 3XOVH9DOYH 3RZHU 6XSSO\ DQG 'ULYHU &LUFXLW

PAGE 43

)LJXUH 3XOVHG*ORZ 'LVFKDUJH $VVHPEO\ $f 6FKHPDWLF RI 3XOVHG*ORZ 'LVFKDUJH0DWUL[ ,VRODWLRQ $SSDUDWXV %f 6,0,21 &DOFXODWHG 7UDMHFWRULHV RI S'LPHWKR[\EHQ]HQH &DWLRQV

PAGE 44

$f WR SXOVHG YDOYH N9F\OLQGULFDO OHQV J ZLQGRZ

PAGE 45

'HSRVLWLRQ UDWHV ZHUH WRUUKU ZLWK D PDQLIROG SUHVVXUH LQ WKH WRUU UDQJH 7KH V\VWHP SUHVVXUH SXOVHG RYHU D [ WRUU UDQJH GXULQJ GHSRVLWLRQ 7KH WUDMHFWRULHV RI 3'02% FDWLRQV ZHUH VLPXODWHG E\ WKH 6,0,21 SURJUDP DQG DUH VKRZQ LQ )LJXUH % 7KH LQLWLDO SRVLWLRQ IRU HDFK WUDMHFWRU\ ZDV FKRVHQ WR OLH RQ D OLQH VSDQQLQJ WKH KHPLVSKHULFDO JULG VSDFH DQG WKH GLUHFWLRQ RI IOLJKW ZDV YDULHG IURP r GLUHFWO\ DW WKH ZLQGRZf WR r E\ r LQWHUYDOV 7KH VKDSH RI WKH JULG DQG WKH KLJK SRVLWLYH SRWHQWLDO RQ LW UHVXOWHG LQ WKH LRQV WDNLQJ RQO\ RQH SDWKZD\ 7KH WUDMHFWRULHV VKRZQ DUH IRU D VDPSOH ZLQGRZ ZLWK ]HUR RU D VPDOO SRVLWLYH SRWHQWLDO 7KH RYHUDOO EHKDYLRU RI LRQV LQ WKLV GLVFKDUJH DUUDQJHPHQW LV YHU\ PXFK OLNH WKDW RI KROORZFDWKRGH HOHFWURGHV LQ GLVFKDUJH ODPSV +RZHYHU VLQFH WKH FDWLRQV DUH GHSRVLWHG LQ D PDWUL[ WKH SRWHQWLDO RI WKH PDWUL[ EHFRPHV LQFUHDVLQJO\ SRVLWLYH WR D SRLQW DW ZKLFK QHFHVVDU\ GHSRVLWLRQ RI DQLRQV RFFXUV WR LQVXUH FKDUJH QHXWUDOLW\ 7KH PHWKRG RI SXOVHGJORZ GLVFKDUJH ZDV XVHG WR JHQHUDWH 3'&% 3'02% DQG 1 FDWLRQV IRU PDWUL[ LVRODWLRQ DQG ZDV DOVR FRXSOHG WR D )RXULHU 7UDQVIRUP ,RQ &\FORWURQ 5HVRQDQFH )7,&5f 0DVV 6SHFWURPHWHU IRU SUHOLPLQDU\ LQYHVWLJDWLRQ RI SRVVLEOH IUDJPHQWDWLRQ DFFRPSDQ\LQJ LRQL]DWLRQ WR EH GLVFXVVHG ODWHUf $QRWKHU LRQL]DWLRQ PHWKRG HPSOR\HG IRU PDWUL[ LVRODWLRQ LQYHVWLJDWLRQ RI 1 FDWLRQ DQG RWKHU FDWLRQV QRW GLVFXVVHG KHUH ZDV HOHFWURQ ERPEDUGPHQW 7KH LRQL]DWLRQ RI 1 ZDV DFFRPSOLVKHG E\ XVH RI WKH VSHFLDOO\ FRQVWUXFWHG HOHFWURQ ERPEDUGPHQW VRXUFH VKRZQ LQ )LJXUH 7KH WXQJVWHQ ILODPHQW PP GLDPHWHUf ZDV KHDWHG E\ D FXUUHQW RI

PAGE 46

)LJXUH *HQHUDO 9LHZ RI ([SHULPHQWDO 6HW8S IRU 0DWUL[ ,VRODWLRQ 8VLQJ (OHFWURQ %RPEDUGPHQW ,RQL]DWLRQ

PAGE 47

%T) LU EHDP &09W22( 7$17$/80 6+,(/' $+2'(f FHUDPLF Y?V?EOe V %($06 %

PAGE 48

$ DW 9f DQG HOHFWURQV ZHUH HPLWWHG 7KH DQRGH SRWHQWLDO 8Df ZDV KHOG DW WR 9 ZKLOH WKH FDWKRGH SRWHQWLDO 8Ef ZDV PDLQWDLQHG DW WR 9 $ FRSSHU ULQJ VLWXDWHG DERYH DQG DGMDFHQW WR WKH PDWUL[ ZLQGRZ ZDV KHOG DW 9 8Rf DQG FROOHFWHG HOHFWURQV $ EDFNJURXQG FXUUHQW RI S$ ZDV UHJLVWHUHG ZKLFK LQFUHDVHG WR S$ GXULQJ GHSRVLWLRQ ,RQL]DWLRQ RFFXUUHG DV WKH UHVXOW RI WKH YDSRUSKDVH PL[WXUH RI DUJRQ && DQG QDSKWKDOHQH SDVVLQJ WKURXJK WKH HOHFWURQ EHDP MXVW SULRU WR GHSRVLWLRQ ,QYHVWLJDWLRQ RI 89YLV DQG ,5 DEVRUSWLRQ RI PDWUL[ LVRODWHG FDWLRQV ZDV DFFRPSOLVKHG E\ LRQL]DWLRQ RI WKH VDPSOH DV GLVFXVVHGf IROORZHG E\ GHSRVLWLRQ RQWR D %D) ZLQGRZ %DULXP IOXRULGH ZDV XVHG VLQFH LW LV WUDQVSDUHQW RYHU WKH QP WR SP UDQJH DQG LV WKXV XVDEOH LQ ERWK WKH 89YLV DQG ,5 UHJLRQV )RU HLWKHU LRQL]DWLRQ PHWKRG WKH V\VWHP ZDV FRQILJXUHG LQ VXFK D ZD\ DV WR HVWDEOLVK WZR XQREVWUXFWHG OLJKW SDWKV SHUSHQGLFXODU WR HDFK RWKHU LQWHUVHFWLQJ DW WKH PDWUL[ ZLQGRZ FI )LJ f 7KH LQIUDUHG VSHFWUD ZHUH QP RQ D 1LFROHW )RXULHU WUDQVIRUP LQIUDUHG VSHFWURPHWHU W\SLFDOO\ ZLWK VFDQV FPn UHVROXWLRQf ZKLOH WKH 89YLV VFDQV ZHUH GRQH RQ D &DU\ VSHFWURSKRWRPHWHU QP UHVROXWLRQ RYHU WKH QP UDQJHf 7R DOORZ IRU VHTXHQWLDO VFDQV LQ WKH 89YLV DQG ,5 E\ D VLPSOH r URWDWLRQ WKH VDPSOH FU\RVWDW ZDV SRVLWLRQHG LQ D VSHFLDOO\FRQVWUXFWHG KRXVLQJ DV SDUW RI WKH VDPSOH FRPSDUWPHQW RI WKH &DU\ 7KH ,5 EHDP IURP WKH )7,5 VSHFWURPHWHU SDVVHG SHUSHQGLFXODU WR WKH 89YLV EHDP WKURXJK D VHW RI .%U ZLQGRZV LQ WKH FU\RVWDWnV RXWHU VKURXG UHIOHFWHG RII D VHW RI VWHHULQJ PLUURUV DQG LPSLQJHG

PAGE 49

RQWR WKH GHWHFWRU 7*6 RU 0&7f 7KH ZKROH VHWXS ZDV SXUJHG ZLWK GU\ 1 E\ XVH RI FRQQHFWLQJ WXEHV EHWZHHQ WKH )7,5 DQG 89YLV VSHFWURPHWHUV )OXRUHVFHQFH DQG UHVRQDQFH 5DPDQ VSHFWUD ZHUH FROOHFWHG RQ D 63(; P GRXEOH PRQRFKURPHWHU XVLQJ D FRROHG 5&$ & SKRWRQ PXOWLSOLHU WXEH ZLWK VWDQGDUG SKRWRQ FRXQWLQJ HOHFWURQLFV 'DWD FROOHFWLRQ UHGXFWLRQ DQG VWRUDJH ZHUH GRQH RQ DQ +3 FRPSXWHU ZLWK D GLJLWDO SORWWHU 6DPSOHV ZHUH SUHSDUHG E\ SXOVHGGLVFKDUJH GHSRVLWLRQ RQWR DQ DQJOHG SROLVKHG DOXPLQXP EORFN 7KH IOXRUHVFHQFH UHVRQDQFH 5DPDQ VSHFWUD RI 3'&% FDWLRQ ZHUH PHDVXUHG XVLQJ $UJRQ LRQ ODVHU H[FLWDWLRQ 6SHFWUD 3K\VLFV 0RGHO f ZKLOH WKH 1 FDWLRQ UHVRQDQFH 5DPDQ VSHFWUXP ZDV PHDVXUHG XVLQJ D G\H ODVHU 6SHFWUD 3K\VLFV 0RGHO %f SXPSHG E\ WKH DIRUHPHQWLRQHG $UJRQ LRQ ODVHU 7KH G\H HPSOR\HG ZDV 5KRGDPLQH 3KRWRO\VLV H[SHULPHQWV LQYROYLQJ 1 FDWLRQV ZHUH SHUIRUPHG XVLQJ DQ XQILOWHUHG XQIRFXVHG PHGLXPSUHVVXUH +J ODPS ZKLOH WKH VDPH ODPS ZLWK D FXWRII ILOWHU %* 9(% -(1$ ZLWK WUDQVPLVVLRQ EHWZHHQ DQG QPf ZDV XVHG IRU H[SHULPHQWV LQYROYLQJ 3'02% FDWLRQV DQG D ILOWHU ZLWK FXWRII ? QP ZDV XVHG IRU 3'&% FDWLRQV )7,&506 H[SHULPHQWV ZHUH SHUIRUPHG E\ 'U &KULV %DUVKLFN LQ WKH ODERUDWRU\ RI 3URIHVVRU -RKQ (\OHU DW WKH 8QLYHUVLW\ RI )ORULGD ZLWK WKH DVVLVWDQFH RI WKH DXWKRU 3UHOLPLQDU\ )7,&506 H[SHULPHQWV ZHUH SHUIRUPHG E\ DWWDFKLQJ WKH SXOVHGGLVFKDUJH DVVHPEO\ GHVFULEHG SUHYLRXVO\ WR WKH V\VWHP VKRZQ LQ )LJXUH 7KH FRQWLQXRXV JORZ GLVFKDUJH VRXUFH MXVW WR WKH ULJKW RI WKH WXUER SXPS ZDV UHSODFHG ZLWK WKH SXOVHGGLVFKDUJH VRXUFH 7KH SXOVH YDOYH DQG LRQ DQDO\]HU FHOO ZHUH FRQWUROOHG E\ D 1LFROHW

PAGE 50

)LJXUH *HQHUDO 9LHZ RI ([SHULPHQWDO 6HW8S IRU )7,&5 8VLQJ *ORZ 'LVFKDUJH ,RQL]DWLRQ

PAGE 51

IWSp" KLJK YROWDJH WXUER SXPS SXPS SXPS / / 6

PAGE 52

)706 HOHFWURQLFV FRQVROH 7R DYRLG HOHFWURQLF LQWHUIHUHQFHV D .9 SRWHQWLDO ZDV DSSOLHG WR WKH KHPLVSKHULFDO JULG JUHDWHU YROWDJHV UHVXOWHG LQ VKXWGRZQ RI WKH LQVWUXPHQWf DQG 9 WR WKH F\OLQGULFDO OHQV RI WKH SXOVHGGLVFKDUJH VRXUFH $ VHULHV RI IRXU HOHFWURVWDWLF OHQVHV ZDV HPSOR\HG WR JXLGH WKH FDWLRQV IURP WKH GLVFKDUJH UHJLRQ WRZDUG WKH LRQ DQDO\]HU FHOO 7KH YROWDJHV ZHUH DGMXVWHG WR SUHYHQW VHFRQGDU\ GLVFKDUJHV EHWZHHQ HDFK RWKHU DQG WR RSWLPL]H VLJQDO 3URFHHGLQJ IURP WKH GLVFKDUJH UHJLRQ WRZDUG WKH DQDO\]HU FHOO WKH OHQVHV ZHUH VHW DW 9 9 9 DQG 9 6HQVLWLYLW\ ZDV HQKDQFHG E\ VHOHFWLYH HMHFWLRQ RI LRQV ZLWK P] OHVV WKDQ 7\SLFDOO\ VFDQV ZHUH FROOHFWHG DQG SURFHVVHG )XUWKHU H[SHULPHQWDO GHWDLOV VSHFLILF WR HDFK PROHFXOH VWXGLHG DUH SUHVHQWHG ZLWKLQ WKH 5HVXOWV DQG 'LVFXVVLRQ FKDSWHU

PAGE 53

7+(25< 7KH LQWHUSUHWDWLRQ RI H[SHULPHQWDO UHVXOWV LV DLGHG WKURXJK FRPSXWDWLRQ RI SK\VLFDO REVHUYDEOHV VXFK DV HOHFWURQLF DQG YLEUDWLRQDO DEVRUSWLRQ VSHFWUD ,QFUHDVLQJO\ VRSKLVWLFDWHG OHYHOV RI WKHRU\ KDYH EHFRPH DYDLODEOH WKURXJK D YDULHW\ RI FRPSXWHU SURJUDP SDFNDJHV HJ *$0(66 7KH LQFUHDVH LQ VRSKLVWLFDWLRQ DQG DFFXUDF\ RI FRPSXWHG UHVXOWVf LV DFFRPSDQ\HG E\ DQ LQFUHDVH LQ FRPSXWLQJ WLPH DQG SRZHU UHTXLUHG $Q H[SHULPHQWDOLVW PXVW GHFLGH ZKDW OHYHO RI WKHRU\ LV UHTXLUHG IRU WKHLU SDUWLFXODU DSSOLFDWLRQVf 7R PDNH WKLV GHFLVLRQ WKH OLPLWDWLRQV RI ERWK H[SHULPHQWDO DQG FRPSXWDWLRQDO UHVXOWV PXVW EH XQGHUVWRRG VR WKDW MXGLFLRXV XVH RI FRPSXWLQJ IDFLOLWLHV LV DFKLHYHG 7KH IROORZLQJ RXWOLQHV OLPLWDWLRQV DVVRFLDWHG ZLWK WKH FDOFXODWLRQ RI HOHFWURQLF DQG YLEUDWLRQDO DEVRUSWLRQ VSHFWUD RI WKH UDGLFDO FDWLRQV 0f VWXGLHG 3KRWRHOHFWURQ 3(f VSHFWURVFRS\ RI QHXWUDO PROHFXOHV KDV EHHQ HPSOR\HG WR SUHGLFW WKH HOHFWURQLF DEVRUSWLRQ ($f VSHFWUD RI 0V GHULYHG IURP WKH SDUHQW PROHFXOH 7KH WKHRUHWLFDO OLQN EHWZHHQ 3( VSHFWUD RI QHXWUDO PROHFXOHV DQG WKH HOHFWURQLF VWUXFWXUH RI 0 VSHFLHV OLHV LQ .RRSPDQnV WKHRUHP ZKLFK VWDWHV WKDW WKH HQHUJ\ RI D PROHFXODU RUELWDO 02f RI D QHXWUDO PROHFXOH REWDLQHG IURP D +DUWUHH)RFN +)f SURFHGXUH LV HTXDO WR WKH QHJDWLYH RI WKH HQHUJ\ UHTXLUHG WR UHPRYH DQ HOHFWURQ IURP WKDW 02 %\ PHDVXULQJ WKH HQHUJ\ GLIIHUHQFHV EHWZHHQ 3( EDQGV REVHUYHG WKH

PAGE 54

HQHUJLHV RI HOHFWURQLF WUDQVLWLRQV RI 0V FDQ EH HVWLPDWHG 7KHUH DUH OLPLWDWLRQV KRZHYHU LQ WKDW RQO\ VWDWHV WKDW LQYROYH HMHFWLRQ RI RQH HOHFWURQ IURP RQH 02 LH QR VLPXOWDQHRXV HMHFWLRQ RI DQ HOHFWURQ DQG SURPRWLRQ RI DQRWKHU HOHFWURQ WR DQRWKHU 02 DUH REVHUYHG LQ 3( VSHFWURVFRS\ 7KH IRXU JHQHUDO W\SHV RI HOHFWURQ FRQILJXUDWLRQV SRVVLEOH IRU 0V DUH JLYHQ LQ )LJXUH 2I WKHVH RQO\ DQG $W\SHV DUH WKH REVHUYDEOH .RRSPDQV FRQILJXUDWLRQV ZKLOH % DQG &W\SHV DUH QRQ.RRSPDQV FRQILJXUDWLRQV QRW REVHUYDEOH LQ 3( VSHFWUDf 7KH *W\SH LV WKH JURXQG VWDWH FRQILJXUDWLRQ WKH $W\SH LQYROYHV HOHFWURQ SURPRWLRQ IURP D GRXEO\ WR VLQJO\ GrVf RFFXSLHG 02 ZKLOH W\SHV % DQG & LQYROYH SURPRWLRQ WR YLUWXDO Yf 02V $ PDMRU OLPLWDWLRQ LV WKDW DOO RI WKHVH VWDWHV DUH SRWHQWLDOO\ REVHUYDEOH LQ ($ VSHFWURVFRS\ DQG WKHUHIRUH QRW DOO ($ EDQGV REVHUYHG FDQ EH DFFRXQWHG IRU E\ HQHUJ\ GLIIHUHQFHV LQ 3( EDQGV REVHUYHG 7KH SUHVHQFH RI ($ EDQGV LQ WKH YLVLEOH UHJLRQ IRU UDGLFDO FDWLRQV KDV XVXDOO\ EHHQ H[SODLQHG E\ WKH DYDLODELOLW\ RI DQ HOHFWURQ KROH LQ WKH KLJKHVW RFFXSLHG PROHFXODU RUELWDO +202f JHQHUDWHG XSRQ LRQL]DWLRQ RI WKH QHXWUDO SDUHQW 7KLV DOORZV IRU ORZ HQHUJ\ WUDQVLWLRQV IURP GRXEO\ RFFXSLHG 02V WR WKLV VLQJO\ RFFXSLHG +202 QRW DYDLODEOH WR WKH QHXWUDO PROHFXOH 7KH ORZHVW HQHUJ\ WUDQVLWLRQ IRU WKH QHXWUDO PROHFXOH PXVW EH IURP D GRXEO\ RFFXSLHG 02 WR WKH ORZHVW XQRFFXSLHG PROHFXODU RUELWDO /802f +RZHYHU WKH +202 r /802 JDS LQ WKH LRQ PD\ UHGVKLIW DQG DOVR DFFRXQW IRU ORZ HQHUJ\ ($ EDQGV )LQDOO\ FRQILJXUDWLRQ LQWHUDFWLRQ &Of PD\ OHDG WR VWURQJ LQWHUDFWLRQV EHWZHHQ YDULRXV VWDWHV RI WKH VDPH V\PPHWU\ DQG UHVXOW LQ ORQJ ZDYHOHQJWK DEVRUSWLRQ

PAGE 55

)LJXUH *HQHUDO 7\SHV RI (OHFWURQLF &RQILJXUDWLRQV $VVRFLDWHG ZLWK 0 0ROHFXODU &DWLRQV DGDSWHG IURP 5HI f

PAGE 57

+FNHO 0ROHFXODU 2UELWDO +02f WKHRU\ VHUYHV DV DQ DGHTXDWH VWDUWLQJ SRLQW LQ WKH FRPSXWDWLRQ RI WKH HOHFWURQLF VWUXFWXUH RI SODQDU FRQMXJDWHG K\GURFDUERQV 7\SLFDOO\ WKH RUGHU RI WKH ORZHVW HQHUJ\ WUDQVLWLRQV DUH SUHGLFWHG FRUUHFWO\ DQG LI WKH\ DUH RI GLIIHULQJ V\PPHWULHV &O ZLOO QRW DIIHFW WKLV RUGHU EXW PD\ LQIOXHQFH WKHLU UHODWLYH HQHUJLHV E\ LQWHUDFWLRQ ZLWK KLJKHU HQHUJ\ FRQILJXUDWLRQV ,I D SRRU FRUUHVSRQGHQFH EHWZHHQ H[SHULPHQW DQG WKHRU\ LV UHDOL]HG KLJKHU OHYHOV RI WKHRU\ ZKLFK LQFRUSRUDWH &O VLPSOH +02 WKHRU\ GRHV QRWf PD\ EH HPSOR\HG 7KH DFFXUDF\ RI FRPSXWHG YLEUDWLRQDO IUHTXHQFLHV DQG LQWHQVLWLHV LV OLPLWHG E\ FRPSXWHU WLPH DQG SRZHU DYDLODEOH 7KH DFFXUDF\ UHTXLUHG IRU FRPSDULVRQ WR H[SHULPHQW VKRXOG EH FRQVLGHUHG DQG D OHYHO RI WKHRU\ FKRVHQ WKDW DGHTXDWHO\ VHUYHV WKH SXUSRVH RI WKH LQYHVWLJDWLRQ 7KH YLEUDWLRQDO VSHFWUD RI VWDEOH PROHFXOHV IRU ZKLFK JHRPHWULHV DQG UHDVRQDEOH IRUFH FRQVWDQWV DUH NQRZQ PD\ EH FRPSXWHG E\ :LOVRQnV PHWKRG RI ) DQG PDWULFHV ZLWK VXEVHTXHQW UHILQHPHQW RI IRUFH FRQVWDQWVf E\ PLQLPL]LQJ WKH GLIIHUHQFHV EHWZHHQ H[SHULPHQWDO DQG FRPSXWHG IUHTXHQFLHV +RZHYHU VLQFH WKHUH DUH XVXDOO\ PRUH IRUFH FRQVWDQWV WKDQ YLEUDWLRQDO IUHTXHQFLHV D XQLTXH ILW LV QRW JXDUDQWHHG DQG D YDULHW\ RI IRUFH FRQVWDQW FRPELQDWLRQV PD\ \LHOG HTXDOO\ SODXVLEOH UHVXOWV $E LQLWLR FDOFXODWLRQV PD\ LQGLFDWH ZKLFK VHW LV WKH PRVW SK\VLFDOO\ UHDVRQDEOH DQG LPSRUWDQWO\ PD\ EH WKH RQO\ PHWKRG E\ ZKLFK WR SUHGLFW JHRPHWULHV DQG IRUFH FRQVWDQWV RI WUDQVLHQW VSHFLHV IRU ZKLFK QR PROHFXODU DQDORJLHV DUH DYDLODEOH 2QFH WKH JHRPHWULHV DQG IRUFH FRQVWDQWV RI WKHVH VSHFLHV DUH FRPSXWHG :LOVRQnV PHWKRG PD\ EH DSSOLHG ZLWK JUHDWHU FRQILGHQFH

PAGE 58

7KH KDUPRQLF DSSUR[LPDWLRQ VWDWHV WKDW WKH SRWHQWLDO HQHUJ\ RI D PROHFXOH LV D TXDGUDWLF IXQFWLRQ RI WKH QXFOHDU GLVSODFHPHQWV RI WKH FRQVWLWXHQW DWRPV GXULQJ WKH FRXUVH RI D YLEUDWLRQ 7KLV LV VKRZQ LQ )LJXUH GDVKHG OLQHf IRU D GLDWRPLF PROHFXOH LQ ZKLFK WKH QXFOHDU GLVSODFHPHQW LV VLPSO\ FRPSUHVVLRQ DQG HORQJDWLRQ RI WKH ERQG DERXW WKH HTXLOLEULXP ERQG GLVWDQFH 7KH DFWXDO RU DQKDUPRQLF SRWHQWLDO HQHUJ\ LV DOVR VKRZQ LQ )LJXUH VROLG OLQHf $W VPDOO GLVSODFHPHQWV WKH KDUPRQLF DSSUR[LPDWLRQ KROGV EXW GHYLDWHV DW ODUJHU GLVSODFHPHQWV 6LQFH WKH TXDGUDWLF IRUFH FRQVWDQW LV WKH VHFRQG GHULYDWLYH RU FXUYDWXUH RI WKH SRWHQWLDO ZHOO VXUIDFH ZLWK UHVSHFW WR PDVVZHLJKWHG FDUWHVLDQ GLVSODFHPHQWV HYDOXDWHG DW WKH HTXLOLEULXP QXFOHDU FRQILJXUDWLRQ XVH RI WKH KDUPRQLF DSSUR[LPDWLRQ W\SLFDOO\ RYHUHVWLPDWHV IRUFH FRQVWDQWV DQG VXEVHTXHQW IUHTXHQFLHV $OWKRXJK DQKDUPRQLFLW\ FDQ EH DFFRXQWHG IRUDFFXPXODWHG H[SHULHQFH VXJJHVWV WKDW WKH DFFXUDF\ RI FDOFXODWHG YLEUDWLRQDO IUHTXHQFLHV LV DIIHFWHG PRUH E\ WKH TXDOLW\ RI WKH FDOFXODWHG SRWHQWLDO WKDQ E\ WKH LQFOXVLRQ RI DQKDUPRQLFLW\ ,Q )LJXUH LW LV VKRZQ WKDW DV WKH VL]H RI WKH EDVLV VHW LQFUHDVHV IRU HDFK 6HOI &RQVLVWHQW )LHOG 6&)f FDOFXODWLRQ ZLWK WKH HYHQWXDO LQFOXVLRQ RI HOHFWURQ FRUUHODWLRQ GRWWHG WR GDVKHG WR VROLG OLQHf GHSDUWXUH IURP WKH H[SHULPHQWDO FXUYH GHFUHDVHV +HQFH HYHQ LI WKH KDUPRQLF DSSUR[LPDWLRQ LV HPSOR\HG RYHUHVWLPDWLRQ RI FRPSXWHG IUHTXHQFLHV ZLOO GHFUHDVH DV VRSKLVWLFDWLRQ RI WKH FDOFXODWLRQ LQFUHDVHV )UHTXHQFLHV DUH W\SLFDOO\ RYHUHVWLPDWHG E\ ab DQG YDULRXV VFDOLQJ IDFWRUV DUH XVHG WR DOLJQ H[SHULPHQWDO DQG FRPSXWHG IUHTXHQFLHV $ FRQVWDQW VFDOLQJ IDFWRU ZDV DSSOLHG LQ WKLV UHVHDUFK EXW RWKHUV KDYH XVHG PRGHE\PRGH PHWKRGV RI VFDOLQJ

PAGE 59

)L[HG 1XFOHXV 3RWHQWLDO :HOO &DOFXODWLRQ VROLG OLQHf DQG LWV +DUPRQLF $SSUR[LPDWLRQ GDVKHG OLQHf

PAGE 60

%RQG /HQJWK f§!

PAGE 61

)LJXUH (IIHFW RI %DVLV 6HW DQG /HYHO RI 7KHRU\ RQ 3RWHQWLDO :HOO &DOFXODWLRQV

PAGE 62

(QHUJ\ %RQG /HQJWK !

PAGE 63

7KH HPSKDVLV RI WKLV FKDSWHU ZDV WR GHOLQHDWH WKH OLPLWDWLRQV RI FRPSXWDWLRQDO PHWKRGV HPSOR\HG GXULQJ WKH FRXUVH RI WKLV UHVHDUFK 2WKHU SHUWLQHQW GHWDLOV FRQFHUQLQJ WKHRUHWLFDO DVSHFWV RI WKLV UHVHDUFK ZLOO EH SUHVHQWHG LQ WKH FRQWH[W RI WKH 5HVXOWV DQG 'LVFXVVLRQ FKDSWHU ZKLFK IROORZV

PAGE 64

5(68/76 $1' ',6&866,21 3DUD'LFKORUREHQ]HQH 7KH PDWHULDO SUHVHQWHG KHUH FRQVLVWV RI IURQWLHU VWXGLHV GRQH RQ WKH YLEUDWLRQDO VSHFWUD RI SDUDGLFKORUREHQ]HQH SDUDGLPHWKR[\EHQ]HQH DQG QDSKWKDOHQH FDWLRQV DV DSSHDU LQ DUWLFOHV SXEOLVKHG GXULQJ WKH FRXUVH RI WKLV UHVHDUFK 7KLV LQYHVWLJDWLRQ KDV EHHQ H[WHQGHG WR SHU\OHQH DQG DQWKUDFHQH FDWLRQV DV SDUW RI DQ RQJRLQJ SURJUDP WR V\VWHPDWLFDOO\ VWXG\ WKH YLEUDWLRQDO VSHFWUD RI 3$+ FDWLRQV 7KH UDGLFDO FDWLRQ RI 3'&% ZDV FKRVHQ IRU WKH LQLWLDO LQYHVWLJDWLRQ VLQFH LWV HOHFWURQLF DEVRUSWLRQ $U PDWULFHVf JDV SKDVH HOHFWURQLF HPLVVLRQ DQG UHVRQDQFH 5DPDQ IUHRQ PL[WXUH PDWUL[f VSHFWUD KDYH EHHQ UHSRUWHG SUHYLRXVO\ EXW LWV LQIUDUHG VSHFWUXP KDV QRW EHHQ 7KH HOHFWURQLF DEVRUSWLRQ IOXRUHVFHQFH UHVRQDQFH 5DPDQ DQG LQIUDUHG VSHFWUD RI WKH 3'&% UDGLFDO FDWLRQ LQ DQ DUJRQ PDWUL[ DW DUH UHSRUWHG KHUH $OVR WKH UHVXOWV RI DQ LQWHUPHGLDWH QHJOHFW RI GLIIHUHQWLDO RYHUODS SDUDPHWL]HG IRU VSHFWURVFRS\ ,1'26f FDOFXODWLRQ RI LWV HOHFWURQLF H[FLWHG VWDWHV DQG DQ DE LQLWLR +DUWUHH)RFN 6HOI &RQVLVWHQW )LHOG 6&)f OHYHO FDOFXODWLRQ RI WKH KDUPRQLF IUHTXHQFLHV RI QHXWUDO DQG FDWLRQLF 3'&% DUH SUHVHQWHG 7KH XOWUDYLROHW 89f DEVRUSWLRQ VSHFWUXP RI QHXWUDO 3'&% LQ DUJRQ DW DSSHDUV LQ )LJXUH ZLWK WKH ORZHVW HQHUJ\ WUDQVLWLRQ RFFXUULQJ DW QP 7ZR EDQG V\VWHPV EHWZHHQ DQG QP EHFRPH DSSDUHQW

PAGE 65

)LJXUH 899LVLEOH 6SHFWUXP RI 1HXWUDO 3'&% LQ $W 0DWUL[ DW 6KRZLQJ %DQG 6\VWHP DW QP DQG 9LVLEOH 6SHFWUXP RI 3'&% 5DGLFDO &DWLRQ LQ $U 0DWUL[ DW 6KRZLQJ 7KUHH %DQG 6\VWHPV 0DUNHG 6 & DQG ‹

PAGE 66

$%625%$1&( %%A QP X f§_ % :$9(/(1*7+QP

PAGE 67

DIWHU GHSRVLWLRQ RI WKH SXOVHGJORZ GLVFKDUJH SODVPD )ULHGPDQ .HOVDOO DQG $QGUHZV ).$f KDG SUHYLRXVO\ REVHUYHG EDQGV ZKLFK FRUUHVSRQG YHU\ FORVHO\ ZLWK WKH SURPLQHQW EDQGV DW DQG QP DQG KDG DVVLJQHG WKHP WR WKH 3'&% FDWLRQ 7KH QP EDQG V\VWHP ZDV DVVLJQHG WR WKH %A mf§ ;%A DOORZHG WUDQVLWLRQ ).$ DVVLJQ DOO WKH YLEURQLF EDQGV LQ WKH QP UHJLRQ WR RQH HOHFWURQLF WUDQVLWLRQ DQG WKRVH LQ WKH QP UHJLRQ WR DQRWKHU WUDQVLWLRQ %DVHG RQ WKH NQRZQ SKRWRHOHFWURQ VSHFWUXP RI 3'&% WKH QP UHJLRQ LV UHDVVLJQHG WR FRQWDLQ WZR HOHFWURQLF WUDQVLWLRQV 7DEOH OLVWV WKH YLEURQLF KDQGV RI WKH 3'&% FDWLRQ DORQJ ZLWK WKHLU DVVLJQPHQWV ZKLOH D FRPSDULVRQ RI RSWLFDO DEVRUSWLRQ EDQGV DQG SKRWRHOHFWURQ EDQGV LV SUHVHQWHG LQ 7DEOH 7KH HQHUJLHV RI WKH REVHUYHG RSWLFDO EDQGV PDWFK YHU\ ZHOO ZLWK WKRVH SUHGLFWHG E\ VXEWUDFWLRQ RI WKH LRQL]DWLRQ HQHUJLHV RI WKH JURXQG DQG H[FLWHG VWDWHV RI 3'&% 7KH LQIUDUHG ,5f VSHFWUXP RI QHXWUDO 3'&% LQ DQ $U PDWUL[ DW .f LV VKRZQ LQ )LJXUH ERWWRPf H[KLELWLQJ SURPLQHQW EDQGV DW DQG FP 7KH ,5 VSHFWUXP RI WKH VDPH VDPSOH PDWUL[ VKRZLQJ WKH DQG QP RSWLFDO EDQGV GLVFXVVHG HDUOLHU LV SUHVHQWHG LQ )LJXUH WRSf %DQGV QRW REVHUYHG IRU QHXWUDO 3'&% DSSHDU DW DQG FP ,I WKH QHZO\ REVHUYHG ,5 EDQGV DUH GXH WR WKH 3'&% FDWLRQ DQG WKH QP RSWLFDO EDQG KDV EHHQ FRUUHFWO\ DWWULEXWHG WR WKH VDPH VSHFLHV WKHQ D OLQHDU FRUUHODWLRQ VKRXOG H[LVW EHWZHHQ WKH UHODWLYH LQWHQVLWLHV RI WKH RSWLFDO DQG ,5 EDQGV 7R HVWDEOLVK WKLV UHODWLRQVKLS D VHULHV RI H[SHULPHQWV ZHUH SHUIRUPHG ZLWK YDU\LQJ GHSRVLWLRQ WLPHV SXOVHGJORZ GLVFKDUJH SXOVH UDWHV DQG GLVFKDUJH FRQILJXUDWLRQV 7KH UDWLR RI WKH QP EDQG

PAGE 68

7DEOH 9LVLEOH89 $EVRUSWLRQ %DQGV RI 3'&% &DWLRQ LQ $U 0DWUL[ DW QP :FPn $YFPn $VVLJQPHQW f§ 6LWH 2ULJLQ %%X 9 Y 2ULJLQ 9 Y Y Y 2ULJLQ ‹ 9 \ Y Y Y Y Y Y RU Y Y Y

PAGE 69

7DEOH &RPSDULVRQ RI WKH 3'&% &DWLRQ 2SWLFDO $EVRUSWLRQ 7UDQVLWLRQV ZLWK WKH 3KRWRHOHFWURQ %DQGV 6WDWH ,(H9 ,(^ f§ =(%Jf 2SWLFDO WUDQVLWLRQ LQ $U PDWUL[ ;%J $%OJ H9 QP FPf 1RW REV )RUELGGHQ EEX H9 QP FPf H9 QP FPf &%8 H9 QP FPf H9 QP FPf ( H9 QP FPf H9 QP FPf )URP 5HI

PAGE 70

)LJXUH )7,5 6SHFWUD RI 1HXWUDO 3'&% WRSf DQG 1HXWUDO 3OXV &DWLRQ 3'&% ERWWRPf LQ $U 0DWUL[ DW .

PAGE 71

/8 8 ] &' i WR &' R &O O9 FP

PAGE 72

DEVRUEDQFH WR WKH FQU EDQG DEVRUEDQFH ZDV IRXQG WR EH FRQVLVWHQWO\ $ FRUUHODWLRQ GLDJUDP IRU WKH IRXU ,5 EDQGV VXVSHFWHG RI EHLQJ GXH WR WKH 3'&% FDWLRQ LV SUHVHQWHG LQ )LJXUH )RU WKH HLJKW GLIIHUHQW H[SHULPHQWV SHUIRUPHG DQ H[FHOOHQW FRUUHODWLRQ ZDV IRXQG 7R IXUWKHU WHVW WKH YDOLGLW\ RI WKLV PHWKRG FRUUHODWLRQ RI WKH QP EDQG DEVRUEDQFH WR WKH QHXWUDO 3'&% ,5 EDQG DEVRUEDQFHV REVHUYHG RYHU WKLV VHULHV RI H[SHULPHQWV ZDV FKHFNHG DQG DV ZRXOG EH H[SHFWHG ZDV IRXQG WR EH SRRU $QRWKHU ,5 EDQG DW FP PDUNHG DV DQ LQYHUWHG WULDQJOH LQ )LJXUH f ZDV REVHUYHG XSRQ SXOVHGJORZ GHSRVLWLRQ EXW LW GLG QRW FRUUHODWH ZLWK WKH QP 3'&% FDWLRQ EDQG DQG WKXV LV XQDVVLJQHG DW SUHVHQW )XUWKHU FRQILUPDWLRQ RI DVVLJQPHQW RI WKH IRXU ,5 EDQGV WR WKH 3'&% FDWLRQ ZDV HVWDEOLVKHG WKURXJK D SKRWRO\VLV H[SHULPHQW $ SXOVHGJORZ GLVFKDUJH PDWUL[ ZDV LUUDGLDWHG XVLQJ D PHGLXP SUHVVXUH +J ODPS ZLWK D ? QP FXWRII ILOWHUf IRU PLQXWHV 7KLV UHVXOWHG LQ DQ DSSUR[LPDWHO\ WZRIROG GHFUHDVH RI ERWK WKH QP EDQG DQG WKH IRXU ,5 EDQG LQWHQVLWLHV ZKLOH WKH QP QHXWUDO 3'&% EDQG LQWHQVLW\ UHPDLQHG HVVHQWLDOO\ FRQVWDQW 7KHUHIRUH WKH IRXU ,5 EDQGV LQLWLDOO\ VXVSHFWHG RI EHLQJ GXH WR WKH 3'&% FDWLRQ FDQ EH FRQFOXVLYHO\ DVVLJQHG WR WKLV PDWUL[ VSHFLHV 6KRZQ LQ )LJXUHV DQG DUH WKH IOXRUHVFHQFH DQG UHVRQDQFH 5DPDQ VSHFWUD RI 3'&% FDWLRQ %RWK EURDG IOXRUHVFHQFH IURP WKH %%X VWDWHf DQG VKDUS UHVRQDQFH 5DPDQ OLQHVf IHDWXUHV DUH DSSDUHQW LQ WKH VSHFWUXP VKRZQ LQ )LJXUH H[FLWHG E\ P: QP $U LRQ ODVHU UDGLDWLRQf 3UHYLRXV 5DPDQ ZRUN E\ .DWR 0XUDNL DQG 6KLGD LV FRPSDUHG WR WKH SUHVHQW UHVXOWV LQ 7DEOH 7KH EURDG EDQGV IURP )LJXUH DUH DQDO\]HG LQ 7DEOH DQG LW FDQ EH VHHQ WKDW WKH YLEUDWLRQDO LQWHUYDOV

PAGE 73

)LJXUH &RUUHODWLRQ RI QP 9LVLEOH $EVRUSWLRQ %DQG $EVRUEDQFH RI 3'&% &DWLRQ ZLWK )RXU ,5 %DQG $EVRUEDQFHV

PAGE 74

$% 625%$ 1&(,5f r $%625%$1&(QPf

PAGE 75

)LJXUH )OXRUHVFHQFH DQG 5DPDQ %DQGV RI 3'&% &DWLRQ LQ $U 0DWUL[ DW ([FLWHG E\ QP $U ,RQ /DVHU 5DGLDWLRQ EODFNHQHG GRWV LQGLFDWH VKDUS 5HVRQDQFH5DPDQ EDQGV ZKLOH EURDG EDQGV DUH GXH WR IOXRUHVFHQFHf

PAGE 76

R ,17(16,7<

PAGE 77

)LJXUH )OXRUHVFHQFH RI 3'&% &DWLRQ LQ $U 0DWUL[ DW ([FLWHG E\ QP $U ,RQ /DVHU 5DGLDWLRQ 6KRZLQJ (PLVVLRQ IURP 7ZR 6LWHV $ DQG %f

PAGE 78

,17(16,7<

PAGE 79

7DEOH 5HVRQDQFH 5DPDQ %DQGV RI WKH 3'&% &DWLRQ LQ $U 0DWUL[ DW $YFPf ,Q IUHRQ PL[WXUH ,Q DUJRQ PDWUL[ SXOVHG B B $VVLJQPHQW \ LUUDGLDWLRQ 3FPf JORZ GLVFKDUJHE $:FP f 3 QQQ ERR Y S 3 3 Y Y 3 3 3 \ \ Y \ \ D QP ODVHU H[FLWDWLRQ 5HI E QP ODVHU H[FLWDWLRQ SUHVHQW ZRUN

PAGE 80

7DEOH )OXRUHVFHQFH %DQGV RI 3'&% &DWLRQ LQ $U 0DWUL[ DW QP H[F QP H[F $ YpFP YFPn $ YKFPn $ 6HULHV % 6HULHV $ YnFP YFPf $ YAFPn $ Y$FP YFPn $ YnFP $VVLJQ 9 Y Y Y 9 Y Y Y Y Y D 'LVSODFHPHQW IURP ODVHU H[FLWDWLRQ OLQH DW QP FPf E 'LVSODFHPHQW IURP FP f EDQG F 'LVSODFHPHQW IURP ODVHU H[F OLQH QP FPf G 'LVSODFHPHQW IURP FP f OLQH $ VHULHV RULJLQf H 'LVSODFHPHQW IURP FP f OLQH % VHULHV RULJLQf I $VVLJQPHQW IRU DOO WKUHH FROXPQV QP H[FLWDWLRQ QP H[FLWDWLRQ VHULHV $ DQG %

PAGE 81

FRPSDUHG WR WKH 5DPDQ OLQHV REVHUYHGf PDWFK TXLWH FORVHO\ 2QO\ EURDG EDQG HPLVVLRQ LV REVHUYHG XSRQ H[FLWDWLRQ E\ WKH QP $U LRQ ODVHU OLQH FI )LJ DQG 7DEOH f 7KH VSHFWUXP LQ )LJXUH LQGLFDWHV WKH SUHVHQFH RI H[WUD IOXRUHVFHQFH EDQGV ODEHOHG DV VHULHV %f DV FRPSDUHG WR WKRVH DSSDUHQW LQ )LJXUH 7KH H[LVWHQFH RI WZR GLVWLQFW VLWHV LQ WKH PDWUL[ JLYLQJ ULVH WR WKH $ VHULHVf DQG % VHULHVf QP RSWLFDO DEVRUEDQFHV FDQ DFFRXQW IRU WKLV REVHUYDWLRQ 6LPXOWDQHRXV H[FLWDWLRQ RI 3'&% FDWLRQV LQ ERWK VLWHV E\ WKH QP UDGLDWLRQ FRXOG RFFXU UHVXOWLQJ LQ GXDO HPLVVLRQ $OVR ).$ KDYH DVVLJQHG WKH QP DEVRUSWLRQ DV D VLWH EDQG ([FLWDWLRQ E\ WKH QP OLQH RI WKH % VLWH LV DSSDUHQWO\ OHVV SUREDEOH 7KHRUHWLFDO FDOFXODWLRQV ZHUH SHUIRUPHG RQ WKH H[FLWHG HOHFWURQLF VWDWHV RI 3'&% FDWLRQ DV DQ DLG WR WKH FRQILUPDWLRQ RI SUHYLRXVO\ DVVLJQHG WUDQVLWLRQV DQGRU DVVLJQPHQW RI XQNQRZQ WUDQVLWLRQV REVHUYHG FI )LJ f 7KH JHRPHWULFDO VWUXFWXUHV IRU QHXWUDO DQG FDWLRQLF 3'&% ZHUH RSWLPL]HG XVLQJ WKH ,1'2 PHWKRG %RQG GLVWDQFHV REWDLQHG IRU QHXWUDO FDWLRQLFf 3'&% ZHUH UF+ ƒ ƒf UFFO ƒ ƒf UFBF $ ƒf IRU WKH && ERQGV DGMDFHQW WR WKH &&O ERQGV DQG UnFF ƒ ƒf IRU WKH FHQWUDO && ERQGV 7KH ,1'26 PRGHO ZDV XVHG WR GHWHUPLQH WKH HOHFWURQLF VSHFWUD RI ERWK QHXWUDO DQG FDWLRQLF 3'&% $ %X [ Af VWDWH DW FP D %X VWDWH DW FP DQG D %X f VWDWH DW FP FDOFXODWHG RVFLOODWRU VWUHQJWK LQ SDUHQWKHVHVf ZHUH FRPSXWHG IRU QHXWUDO 3'&% 7KH ORZHVW HQHUJ\ EDQG ZLWK ?PD[ QP FPf VKRZQ LQ )LJXUH LV LQ JHQHUDOO\ JRRG DJUHHPHQW ZLWK WKH ZHDNO\ DOORZHG %X VWDWH FRPSXWHG WR RFFXU DW FP )RU WKH 3'&% FDWLRQ VLQFH WKH FDOFXODWLRQ ZKLFK

PAGE 82

LQFOXGHV FRQILJXUDWLRQ LQWHUDFWLRQf UHIHUV WR WKH %J JURXQG VWDWH WKH FDOFXODWHG YDOXHV VKRXOG EH FRPSDUHG WR WKH EDQG PD[LPD LQ )LJXUH 7KH FDOFXODWHG VSHFWUXP IRU WKH FDWLRQ LV VKRZQ LQ 7DEOH DQG WKH RUGHU RI ORZO\LQJ VWDWHV LV LQ DFFRUG ZLWK WKDW VXJJHVWHG HDUOLHU 7KH ILUVW H[FLWHG VWDWH RI WKH FDWLRQ LV D %OJ VWDWH FDOFXODWHG DW H9 LW LV REVHUYHG LQ WKH LRQL]DWLRQ EXW QRW WKH DEVRUSWLRQ VSHFWUXP 7KH A f§ %J DOORZHG WUDQVLWLRQ LV FDOFXODWHG WR EH H9 KLJKHU LQ HQHUJ\ WKDQ WKDW REVHUYHG LQVWHDG RI H9f 7KH ILUVW RI WZR SRVVLEOH DVVLJQPHQWV IRU WKH KLJKHUO\LQJ WUDQVLWLRQV LV VXJJHVWHG LQ 7DEOH 7KH DVVLJQPHQW RI ƒ WKURXJK LV LQ DJUHHPHQW ZLWK SUHYLRXV DVVLJQPHQWV DQG LV DOVR FRQVLVWHQW ZLWK REVHUYHG LQWHQVLWLHV FI )LJ f 7KH REVHUYHG IHDWXUHV DW DQG H9 DUH DVVLJQHG WR *%Af DQG ( *%Af FRUUHVSRQGLQJ WR FRPSXWHG HQHUJLHV RI DQG H9 UHVSHFWLYHO\ 7KH VHFRQG VXJJHVWHG DVVLJQPHQW UHVXOWV IURP WKH REVHUYDWLRQ ERWK %X DW H9 DQG %X DW H9 DUH FDOFXODWHG WR EH H9 KLJKHU LQ HQHUJ\ WKDQ REVHUYHG ,I WKLV LV D FRQVLVWHQW WUHQG WKHQ WKH ( VWDWH PLJKW EH DVVLJQHG WR WKH WKLUG FDOFXODWHG %X VWDWH DW H9 ZKLOH WKH EURDG VWUXFWXUHOHVV IHDWXUH REVHUYHG DW H9 FRXOG EH DVVLJQHG WR WKH VHFRQG FDOFXODWHG %X VWDWH DW H9 2SWLFDO SRODUL]DWLRQ GDWD ZRXOG DLG LQ GLVWLQJXLVKLQJ EHWZHHQ WKHVH WZR SRVVLELOLWLHV 7R GHWHUPLQH WKH HIIHFW RI LRQL]DWLRQ RQ WKH YLEUDWLRQDO IRUFH FRQVWDQWV RI VSHFLILF ERQGV LQ 3'&% DQ DE LQLWLR +DUWUHH)RFN 6&) OHYHO FDOFXODWLRQ EDVLV IRU RSHQ VKHOOV 52+)f ZDV SHUIRUPHG ,QLWLDOO\ WKH JHRPHWULHV RI WKH QHXWUDO SDUHQW DQG WKH UDGLFDO FDWLRQ ZHUH RSWLPL]HG XVLQJ WKH *$0(66 SURJUDP 7KH RSWLPL]HG JHRPHWULHV IRXQG DUH

PAGE 83

7DEOH &DOFXODWHG DQG 2EVHUYHG 6SHFWUD RI 3'&% &DWLRQ (QHUJLHV LQ H9f 2EVHUYHG FI 7DEOH f &DOFXODWHG ,1'26f $,(D 2SW $U H .RRSPDQVf &O $VVLJQPHQW PDWUL[Ef QHXWUDO FDWLRQHG ;%r $f%r %OJ f %X &% %8 '%r %J ‹ f %8 $J f %JX f $8 f %OX f $8 D 7KH ILUVW ,( RI LV H9 $OO RWKHUV DUH UHODWLYH WR WKLV VHH 5HI E 6HH )LJ 7KHVH DUH HVWLPDWHG YPD[ F 5HODWLYH WR WKH ILUVW PROHFXODU RUELWDO HLJHQYDOXH RI H9 G 7KH QXPEHUV LQ SDUHQWKHVHV DUH FDOFXODWHG RVFLOODWRU VWUHQJWKV IURP WKH %OJ JURXQG VWDWH RI WKH FDWLRQ H 7KH ILUVW ,( LV FDOFXODWHG DW H9 $OO RWKHUV DUH UHODWLYH WR WKLV

PAGE 84

UDGLFDO FDWLRQ ILJXUHV LQ SDUHQWKHVHVf UF+ ƒ ƒf UFFO ƒ ƒf UFBF ƒ ƒf IRU WKH && ERQGV DGMDFHQW WR WKH &&O ERQGV DQG UnFF ƒ ƒf IRU WKH FHQWUDO && ERQGV 7KH YDOXHV DUH LQ JRRG DJUHHPHQW ZLWK WKRVH IRXQG XVLQJ WKH ,1'2 PHWKRG 7KH UHODWLYH GHFUHDVH RI WKH UFFO DQG UnFBF OHQJWKV DQG WKH LQFUHDVH RI WKH UFBF DGMDFHQW ERQGV LV FRQVLVWHQW ZLWK WKH UHPRYDO RI DQ HOHFWURQ IURP WKH KLJKHVW RFFXSLHG PROHFXODU RUELWDO +202f RI 3'&% 7KLV Q PROHFXODU RUELWDO FI )LJ f LV DQWLERQGLQJ ZLWK UHVSHFW WR WKH &&O DQG FHQWUDO && ERQGV DQG ERQGLQJ ZLWK UHVSHFW WR WKH DGMDFHQW && ERQGV +DUPRQLF YLEUDWLRQDO IUHTXHQFLHV IRU 3'&% QHXWUDO DQG UDGLFDO FDWLRQ VSHFLHV ZHUH FDOFXODWHG XVLQJ WKH *$0(66 SURJUDP 9LEUDWLRQDO IUHTXHQFLHV FDOFXODWHG DW WKH 6&) OHYHO DUH W\SLFDOO\ RYHUHVWLPDWHG E\ b EHFDXVH RI WKH KDUPRQLF DSSUR[LPDWLRQ XVHG DQG WKH QHJOHFW RI HOHFWURQ FRUUHODWLRQ HIIHFWVn 7R DFFRXQW IRU WKLV D VFDOLQJ IDFWRU RI KDV EHHQ DGRSWHG WR DGMXVW WKH FDOFXODWHG IUHTXHQFLHV 3UHYLRXV H[SHULHQFH KDV VKRZQ WKDW WKH PDWFK ZLWK H[SHULPHQWDO YLEUDWLRQDO IUHTXHQFLHV XVLQJ VXFK D VFDOLQJ IDFWRU LV XVXDOO\ s FPnn &DOFXODWHG VFDOHG DQG H[SHULPHQWDO IUHTXHQFLHV IRU QHXWUDO 3'&%n DQG LWV UDGLFDO FDWLRQ DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ *RRG DJUHHPHQW LV IRXQG EHWZHHQ WKH VFDOHG DQG H[SHULPHQWDO IUHTXHQFLHV IRU ERWK VSHFLHV 7KH REVHUYDWLRQ WKDW WKH ORZHUIUHTXHQF\ PRGHV QHHG QRW EH VFDOHG DV VHYHUHO\ DV WKH KLJKHU IUHTXHQF\ PRGHV LV LQ DJUHHPHQW ZLWK D 6&) FDOFXODWLRQ *r EDVLVf GRQH E\ 5RKOILQJ HW DO 7KH SUHVHQFH RI SRODUL]DWLRQ IXQFWLRQV G RUELWDOVf RQ FDUERQ DQG FKORULQH LQ *r JHQHUDOO\ GHFUHDVHV WKH FDOFXODWHG RXWRI SODQH PRGH IUHTXHQFLHV D EMJ EJ DQG EAf UHODWLYH WR WKH YDOXHV REWDLQHG

PAGE 85

)LJXUH 6FKHPDWLF RI +202 +LJKHVW 2FFXSLHG 0ROHFXODU 2UELWDOf RI 3'&% &DWLRQ DGDSWHG IURP 5HI f

PAGE 87

7DEOH &DOFXODWHG DQG 2EVHUYHG 9LEUDWLRQDO )UHTXHQFLHV FPf IRU 1HXWUDO 3'&% 0RGH 6\P &DOF 6FDOHG f ([SWD DJ DX EMJ ELX EJ Et EJ Et D 5HIHUHQFH

PAGE 88

7DEOH &DOFXODWHG DQG 2EVHUYHG 9LEUDWLRQDO )UHTXHQFLHV FPf IRU 3'&% &DWLRQ 0RGH 6\P &DOF 6FDOHG f ([SWD DJ DX ELJ ELX EJ EAX EAJ EVX D 3UHVHQW ZRUN

PAGE 89

ZLWK WKH EDVLV 7KLV PD\ EH GXH WR WKH DELOLW\ RI WKH SRODUL]DWLRQ IXQFWLRQV WR EHWWHU DFFRPPRGDWH FKDUJH EXLOG XS LQ WKH Q V\VWHP GXULQJ RXWRISODQH PRWLRQ ,QWHUHVWLQJO\ WKH FDOFXODWHG ,5 LQWHQVLWLHV LQGLFDWH WKDW WKH WZR EOX PRGHV DQG FPf RI WKH LRQLF IRUP VKRXOG EH WKH PRVW LQWHQVH DQG LQGHHG WKHVH DUH WKH PRVW SURPLQHQW H[SHULPHQWDO LRQLF EDQGV ,Q DWWHPSWLQJ D PRGHE\PRGH FRPSDULVRQ EHWZHHQ WKH QHXWUDO DQG LRQLF VSHFLHV SUREOHPV DULVH 2QH H[SHFWV D VLPSOH LQYHUVH UHODWLRQVKLS EHWZHHQ ERQG OHQJWKV DQG VWUHWFKLQJ IRUFH FRQVWDQWV +RZHYHU QRUPDO FRRUGLQDWH IUHTXHQF\ VKLIWV FDQQRW EH VR VLPSO\ GHVFULEHG EHFDXVH FRXSOLQJ RI YDULRXV LQWHUQDO FRRUGLQDWHV YDULHV DV D IXQFWLRQ RI WKH JHRPHWU\ FKDQJHV DQG WKH IRUFH FRQVWDQW FKDQJHV ZKLFK UHVXOW IURP LRQL]DWLRQ 1HYHUWKHOHVV FRPSDULVRQV FDQ EH PDGH E\ ILUVW FRXSOLQJ FDOFXODWHG QHXWUDO DQG LRQLF YLEUDWLRQDO IUHTXHQFLHV E\ V\PPHWU\ DQG WKHQ E\ HQHUJ\ ZLWKLQ HDFK V\PPHWU\ EORFN )LQDOO\ DIWHU VFDOLQJ WKH HQHUJ\ VKLIWV FDQ EH FRPSDUHG WR WKH H[SHULPHQWDO YDOXHV &DOFXODWHG DQG VFDOHG QHXWUDOWRLRQLF IUHTXHQF\ VKLIWV DUH FRPSDUHG LQ 7DEOH 7KH GLUHFWLRQ RI WKH IUHTXHQF\ VKLIW LV FRUUHFWO\ SUHGLFWHG IRU DOO REVHUYHG EDQGV H[FHSW IRU WKH EX PRGH 7KLV PRGH GLIIHUV IURP WKH RWKHUV VLQFH LW LV WKH RQO\ RXWRISODQH PRGH REVHUYHG 7KH VKLIWV IRU WKH 5DPDQ DFWLYH WRWDOO\ V\PPHWULF PRGHV PDWFK EHWWHU WKDQ WKH ,5DFWLYH PRGHV 7KLV PD\ EH GXH WR WKH JUHDWHU LQWHUDFWLRQ ZLWK WKH KRVW PDWUL[ RI WUDQVLWLRQV LQYROYLQJ D GLSROH PRPHQW FKDQJH ZLWK VXEVHTXHQW SRODUL]DWLRQ RI WKH PDWUL[

PAGE 90

7DEOH &DOFXODWHG DQG 2EVHUYHG 9LEUDWLRQDO )UHTXHQF\ 6KLIWV 8SRQ ,RQL]DWLRQ RI 3'&% 0RGH 6\P 6KLIW 9LRQ WfQJ\WID@ &,8 8 &DOF6FDOHG f([SW DJ I!X !X

PAGE 91

,Q RUGHU WR GLVFXVV WKH HIIHFW RI LRQL]DWLRQ RQ VSHFLILF ERQGV LW LV QHFHVVDU\ WR WUDQVIRUP WKH QRUPDO FRRUGLQDWHV WR LQWHUQDO FRRUGLQDWHV %RDW] DQG *RUGRQ KDYH LQWURGXFHG VXFK D YLEUDWLRQDO GHFRPSRVLWLRQ VFKHPH LQ ZKLFK V\PPHWU\DGDSWHG QRUPDO FRRUGLQDWH IUHTXHQFLHV DUH WUDQVIRUPHG LQWR LQWULQVLF IUHTXHQFLHV 7KHVH ODWWHU UHSUHVHQW WKH VXP RI WKH FRQWULEXWLRQV RI DOO QRUPDO PRGHV RI D YLEUDWLRQ WR D SDUWLFXODU LQWHUQDO FRRUGLQDWH &DOFXODWHG LQWULQVLF IUHTXHQFLHV PD\ YDU\ GHSHQGLQJ RQ WKH VSHFLILF LQWHUQDO FRRUGLQDWHV XVHG EXW XVXDOO\ GR QRW GLIIHU E\ PRUH WKDQ a FP SDUWLFXODUO\ IRU ERQG VWUHWFKHV 2QO\ LQWULQVLF VWUHWFKLQJ IUHTXHQFLHV DQG IRUFH FRQVWDQWV DUH SUHVHQWHG KHUH 7KH TXDQWLWLHV FDOFXODWHG IRU 3'&% XVLQJ WKH PHWKRG RI %RDW] DQG *RUGRQ DUH JLYHQ LQ 7DEOHV DQG UHVSHFWLYHO\ ,W PD\ EH VHHQ WKDW XSRQ LRQL]DWLRQ WKH & & IRUFH FRQVWDQW ULVHV IURP WR PG\Qƒ WKH FHQWUDO && IRUFH FRQVWDQWV DOVR ULVH IURP WR PG\Qƒ ZKLOH WKH DGMDFHQW && IRUFH FRQVWDQWV GURS IURP WR PG\Qƒ )URP WKH RSWLPL]HG JHRPHWULHV GHVFULEHG SUHYLRXVO\ LW KDV DOUHDG\ EHHQ QRWHG WKDW XSRQ LRQL]DWLRQ DQ LQFUHDVH LQ WKH &&O DQG FHQWUDO && DQG GHFUHDVH LQ WKH DGMDFHQW && ERQG VWUHQJWKV LV H[SHFWHG 7KLV H[SHFWDWLRQ LV IXOO\ ERUQH RXW E\ WKH FDOFXODWHG LQWULQVLF IUHTXHQFLHV DQG IRUFH FRQVWDQWV GHVFULEHG KHUH $ VLPLODU WUHQG ZDV DOVR IRXQG E\ (PVWEUXQQHU DQG FRZRUNHUV LQ D QRUPDO FRRUGLQDWH DQDO\VLV RI QHXWUDO DQG FDWLRQLF SDUD GLPHWKR[\EHQ]HQH 7KH\ IRXQG WKH ULQJ & IRUFH FRQVWDQW LQFUHDVHG b FRPSDUHG WR b IRU &&O LQ 3'&%f ZKLOH WKH FHQWUDO && ERQG IRUFH FRQVWDQW LQFUHDVHG b b IRU 3'&%f DQG WKH DGMDFHQW && ERQG IRUFH FRQVWDQW GHFUHDVHG b FRPSDUHG WR b IRU 3'&%f

PAGE 92

7DEOH &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 1HXWUDO 3'&% %RQG )UHTXHQF\ FPf &DOF 6FDOHG f )RUFH FRQVWDQW PG\Qƒf &DOF 6FDOHG f &f§+ &f§&O &f§&D &f§& D 7KH FHQWUDO & f§& ERQGV 7DEOH &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 3'&% &DWLRQ )UHTXHQF\ FPf )RUFH &RQVWDQW PG\Qƒf %RQG &DOF 6FDOHG f &DOF 6FDOHG f &f§+ &f§&O &f§&D &f§& D 7KH FHQWUDO &f§& ERQGV

PAGE 93

7KH DIRUHPHQWLRQHG LQWULQVLF IUHTXHQF\ DQDO\VLV PDNHV FOHDU ZK\ FHUWDLQ EDQGV EOXH VKLIW DQG RWKHUV UHG VKLIW XSRQ LRQL]DWLRQ &RQVLGHU PRGHV DQG H[DPLQDWLRQ RI WKH HLJHQYHFWRUV IRU QHXWUDO 3'&% LQGLFDWH WKH\ DUH DVVRFLDWHG SULPDULO\ ZLWK FHQWUDO && DQG DGMDFHQW && ERQG VWUHWFKLQJ PRWLRQV UHVSHFWLYHO\ 6LQFH WKH IRUFH FRQVWDQW IRU WKH IRUPHU LQFUHDVHV DQG IRU WKH ODWWHU GHFUHDVHV WKH EOXH VKLIW RI FP IRU PRGH DQG WKH UHG VKLIW RI FP IRU PRGH LV H[SHFWHG 7KH UDWLR RI WKH DEVROXWH PDJQLWXGHV RI WKH IUHTXHQF\ VKLIWV IRU PRGHV DQG LV WZR DQG WKLV WUDFNV H[DFWO\ WKH QXPEHU RI && ERQG VWUHWFKHV LQYROYHG LQ HDFK PRGH LH WKHUH DUH WZLFH DV PDQ\ DGMDFHQW DV WKHUH DUH FHQWUDO && ERQGV 7KLV LV DOVR FRQVLVWHQW ZLWK WKH UHPRYDO RI DQ HOHFWURQ IURP WKH +202 ZKLFK LV ERQGLQJ ZLWK UHVSHFW WR WKH DGMDFHQW && ERQGV EXW DQWLERQGLQJ ZLWK UHVSHFW WR WKH FHQWUDO && ERQGV FI )LJ f )RU IXUWKHU FODULILFDWLRQ WKH 5DPDQ DFWLYH DJf DQG ,5DFWLYH QRUPDO PRGHV FI 7DEOH f REVHUYHG IRU 3'&% FDWLRQ DUH VNHWFKHG LQ )LJXUHV DQG UHVSHFWLYHO\ 7KH )7,&5 PDVV VSHFWUXP RI SXOVHGJORZ GLVFKDUJHG SDUD GLFKORUREHQ]HQH VHHGHG LQ $U LV VKRZQ LQ )LJXUH 3URPLQHQW SHDNV DUH REVHUYHG DW UHODWLYH LQWHQVLWLHV LQ SDUHQWKHVHVf f f f f DQG f DPX ,VRWRSLF & DQG & PXOWLSOHWV DUH DVVRFLDWHG ZLWK WKH ILUVW WKUHH SHDNV DQG DUH DVVLJQHG DV WKH FKORULQHFRQWDLQLQJ VSHFLHV $U&+&O &+&9 DQG &+& UHVSHFWLYHO\ 7KH DPX SHDN FRUUHVSRQGV WR &A+A ZKLOH WKDW DW DPX UHVXOWV IURP LQFRPSOHWH HMHFWLRQ RI $U 7KH SUHSRQGHUDQFH RI QRQSDUHQW LRQ VSHFLHV &+& DQG &H+f SUHVHQW LQ WKLV PDVV VSHFWUXP SURYRNHV WKH TXHVWLRQ ,V WKH SDUHQW LRQ WKH VROH VSHFLHV SUHVHQW LQ WKH PDWUL[ XQGHU VWXG\" 6SHFWURVFRSLF HYLGHQFH IRU

PAGE 94

)LJXUH 5DPDQ$FWLYH DJf 1RUPDO 0RGHV 2EVHUYHG IRU 3'&% &DWLRQ FORFNZLVH IURP XSSHU OHIW PRGHV DQG VDPH RULHQWDWLRQ DV LQ )LJ ERQGV DUH UHPRYHG IRU FODULW\f

PAGE 95

0RGH L 0RGH 2 2 r Er 3RrR? R R r ArRA 2 2 0RGH R 2 R 2 D 2 D R R F

PAGE 96

)LJXUH ,QIUDUHG$FWLYH 1RUPDO 0RGHV 2EVHUYHG IRU 3'&% &DWLRQ FORFNZLVH IURP XSSHU OHIW PRGHV DQG VDPH RULHQWDWLRQ DV )LJ H[FHSW PRGH ZKLFK LV YLHZHG DORQJ WKH &&O D[LV ERQGV DUH H[FOXGHG IRU FODULW\f

PAGE 98

)LJXUH )7,&5 0DVV 6SHFWUXP RI 3XOVHG*ORZ 'LVFKDUJHG 3'&% 6HHGHG LQ $U

PAGE 99

5(/$7,9( ,17(16,7<

PAGE 100

3'&% QHXWUDO DQGRU LRQLF IUDJPHQWV LQ WKH PDWULFHV LQYHVWLJDWHG LV DEVHQW EXW WKH SRVVLELOLW\ RI IUDJPHQWDWLRQ DSSHDUV LQ WKH VWXG\ RI SDUD GLPHWKR[\EHQ]HQH DQG QDSKWKDOHQH YLGH LQIUDf 5HFRPELQDWLRQ RI IUDJPHQWV HJ &+& &O &' } &+&O &+&Of PD\ RFFXU DV WKH PDWUL[ IRUPV UHJHQHUDWLQJ SDUHQW FDWLRQLF QHXWUDOf 3'&% DQG FKDQJLQJ WKH PDWUL[ FRPSRVLWLRQ UHODWLYH WR WKH JDV SKDVHf %HFDXVH RI WKLV SRVVLELOLW\ FRUUHODWLRQ RI PDVV VSHFWUD ZLWK VXEVHTXHQW VSHFWURVFRSLF LQYHVWLJDWLRQ RI PDWUL[ LVRODWHG VSHFLHV LV SUREOHPDWLF (PSKDVLV KDV EHHQ SODFHG UDWKHU RQ FRUUHODWLQJ GLIIHUHQW VSHFWURVFRSLF REVHUYDWLRQV HJ 89YLV DQG ,5 VSHFWUD PDGH RQ WKH VDPH PDWUL[ DV ZHOO DV LQFRUSRUDWLQJ WKHRUHWLFDO FRPSXWDWLRQV RI FKHPLFDO VSHFLHV XQGHU VWXG\ 3XOVHGJORZ GLVFKDUJHPDWUL[ LVRODWLRQ KDV EHHQ HPSOR\HG WR REWDLQ DQG VWDELOL]H TXDQWLWLHV RI 3'&% SDUHQW LRQ VXIILFLHQW WR REVHUYH GLUHFWO\ VHYHUDO LQIUDUHG DQG 5DPDQDFWLYH IXQGDPHQWDO YLEUDWLRQDO PRGHV &RUUHODWLRQ DQDO\VLV RI NQRZQ DQG ZHOO FKDUDFWHUL]HG YLVLEOH EDQGV ZLWK VXVSHFWHG ,5 DEVRUEDQFHV GXH WR 3'&% FRXSOHG ZLWK WKHRUHWLFDO FRPSXWDWLRQV KDYH DOORZHG DVVLJQPHQWV WR EH PDGH ZLWK FRQILGHQFH ,Q DGGLWLRQ FKDQJHV LQ ERQGLQJ DQG VXEVHTXHQW VKLIWV LQ YLEUDWLRQDO IUHTXHQFLHV DV ZHOO DV LQWHQVLW\ SDWWHUQV KDYH EHHQ DGGUHVVHG 3UHOLPLQDU\ )7,&506 H[SHULPHQWV SHUIRUPHG KRZHYHU VXJJHVW WKH FRPSOH[LW\ RI WKH JDV SKDVH SODVPD IRUPHG DQG LQYLWH LQTXLUHV FRQFHUQLQJ WKH FRPSRVLWLRQ RI WKH PDWUL[ IRUPHG $OO WKLV OHDGV WR D IHZ YHU\ LPSRUWDQW TXHVWLRQV f ,V WKLV LRQ JHQHUDWLRQ PHWKRG JHQWOH HQRXJK WR SURGXFH SDUHQW LRQ VROHO\" f ,I QRW KRZ FDQ GHJUDGDWLRQ SURGXFWV EH DFFRXQWHG IRU RU FDQ WKH VRXJKW

PAGE 101

DIWHU VSHFLHV EH VHOHFWLYHO\ LQYHVWLJDWHG LQ WKH SUHVHQFH RI RWKHU PDWUL[ FRQVWLWXHQWV" f +RZ GRHV WKH HIILFLHQF\ RI WKLV PHWKRG FRPSDUH WR PHWKRGV SUHYLRXVO\ UHSRUWHG DQG KRZ PLJKW LRQ SURGXFWLRQ EH HQKDQFHG" 7KHVH TXHVWLRQV DUH DGGUHVVHG QRZ IRU 3'&% DQG DUH FRQVLGHUHG IXUWKHU GXULQJ WKH GLVFXVVLRQV RQ SDUDGLPHWKR[\EHQ]HQH DQG QDSKWKDOHQH 7KH ILUVW WZR TXHVWLRQV DUH YHU\ PXFK UHODWHG DQG DUH DQVZHUHG ILUVW ).$ UHFRUGHG WKH YLVLEOH DEVRUSWLRQ VSHFWUXP RI 3'&% E\ WZR PHWKRGV f )LOWHUHG KLJKSUHVVXUH +J DUF SKRWRO\VLV RI WKH SUHIRUPHG PDWUL[ FRQWDLQLQJ 3'&% QHXWUDO DQG f PLFURZDYHSRZHUHG GLVFKDUJH RI IORZLQJ $U GLUHFWHG DW WKH PDWUL[ ZLQGRZ GXULQJ GHSRVLWLRQ ,Q HLWKHU FDVH WKH VSHFWUD REWDLQHG ZHUH LGHQWLFDO H[FHSW IRU DEVROXWH LQWHQVLWLHVf DQG LQGLVWLQJXLVKDEOH IURP WKRVH REWDLQHG E\ SXOVHGJORZ GLVFKDUJH &RPSDULVRQ RI WKH UHVRQDQFH 5DPDQ VSHFWUXP SUHVHQWHG SUHYLRXVO\ LQ $U DW .f ZLWK WKDW UHSRUWHG E\ .DWR 0XUDNL DQG 6KLGD LQ IUHRQ PL[WXUH DW ZLWK \LUUDGLDWLRQf OHQGV IXUWKHU VXSSRUW IRU SURGXFWLRQ RU DW OHDVW VHOHFWLYH SURELQJf RI 3'&% SDUHQW LRQ RQO\ $V VKRZQ LQ 7DEOH WKH EDQGV REVHUYHG DUH YHU\ VLPLODU GHVSLWH GLIIHUHQFHV LQ LRQ SURGXFWLRQ PHWKRG PDWUL[ PHGLD DQG WHPSHUDWXUHV 7KH JDV SKDVH HPLVVLRQ VSHFWUXP UHSRUWHG E\ 0DLHU DQG 0DUWKDOHU SURGXFHG E\ FRQWUROOHG HOHFWURQ LPSDFWf FRPSDUHV IDYRUDEO\ ZLWK WKH PDWUL[ IOXRUHVFHQFH VSHFWUXP REWDLQHG FI WKHLU )LJ DQG RXU )LJ f H[KLELWLQJ YLEURQLF VWUXFWXUH LQYROYLQJ DQG FP PRGHV 7KH YDSRU SKDVH DQG PDWUL[ RULJLQV RFFXU DW DQG FP UHVSHFWLYHO\ $ UHG JDVWRPDWUL[ VKLIW RI FP LV QRW XQUHDVRQDEOH IRU VROYDWLRQ RI WKH LRQ %DVHG RQ WKHVH FRPSDULVRQV LW LV FRQFOXGHG WKDW 3'&% SDUHQW LRQ LV

PAGE 102

WKH SUHGRPLQDQW FDWLRQLF PDWUL[ VSHFLHV SURGXFHG E\ SXOVHGJORZ GLVFKDUJHGHSRVLWLRQ ,Q DGGLWLRQ SUHOLPLQDU\ )7,&506 JDV SKDVH UHVXOWV DSSDUHQWO\ GR QRW DFFXUDWHO\ UHIOHFW WKH ILQDO PDWUL[ FRPSRVLWLRQ GXH WR VXUIDFH UHDFWLRQV GXULQJ GHSRVLWLRQ DQGRU GLIIHUHQFHV LQ H[SHULPHQWDO FRQILJXUDWLRQV )LQDOO\ ZKHWKHU HYLGHQFH LQGLFDWHV H[FOXVLYH SURGXFWLRQ RI WKH VRXJKWDIWHU VSHFLHV RU QRW VHSDUDWH PHDQV H[SHULPHQWDO DQGRU WKHRUHWLFDOf PXVW EH HPSOR\HG WR VXEVWDQWLDWH DVVLJQPHQW RI QHZO\ REVHUYHG VSHFWUDO IHDWXUHV WR WKH FKHPLFDO VSHFLHV XQGHU LQYHVWLJDWLRQ 7KH ILUVW SDUW RI WKH ODVW TXHVWLRQ FRQFHUQV LRQ SURGXFWLRQ HIILFLHQF\ 7KLV LV EHVW DQVZHUHG E\ FRPSDULVRQ RI UHODWLYH DEVRUEDQFHV RI RSWLFDO EDQGV $ PD[LPXP UHODWLYH LQWHQVLW\ RI WKH QP 3'&% EDQG WR WKH QP QHXWUDO 3'&% EDQG ZDV UHSRUWHG WR EH a E\ ).$ 7KH EHVW UHVXOWV REWDLQHG SUHVHQWO\ VKRZ D WKUHHIROG LQFUHDVH LQ WKLV UDWLR ).$ UHSRUW D QP PD[LPXP DEVRUEDQFH RI ZKLOH $ V IURP RXU ZRUN $Q HVWLPDWH RI WKH DFWXDO QXPEHU RI LRQV WUDSSHG FDQ EH PDGH E\ DVVXPLQJ DQ H[WLQFWLRQ FRHIILFLHQW RI [ e FP PRO IRU WKH HOHFWURQLFDOO\ DOORZHG QP WUDQVLWLRQ DQG D PDWUL[ WKLFNQHVV RI ALP 7KLV \LHOGV D FDWLRQ QXPEHU GHQVLW\ RI [ FDWLRQVFP ZKLFK IRU D FURVVVHFWLRQDO DUHD RI FP WKH ZLQGRZ GLDPHWHU LV LQf JLYHV [ UDGLFDO FDWLRQV WUDSSHG LQ WKH PDWUL[ 7KH SXOVH YDOXH RSHUDWHV DW +] ZLWK GLVFKDUJHf VR RYHU D W\SLFDO K GHSRVLWLRQ [ SXOVHV RFFXU SURGXFLQJ [ 3'&% LRQV SHU SXOVH &RPSDULVRQ RI WKHRUHWLFDOO\ FDOFXODWHG RVFLOODWRU VWUHQJWKV ZLWK REVHUYHG DEVRUEDQFHV IRU QHXWUDO DQG FDWLRQLF ,5 EDQGV SURYLGHV DQ

PAGE 103

HVWLPDWH RI WKH UHODWLYH FRQFHQWUDWLRQV RI QHXWUDO DQG FDWLRQLF 3'&% SUHVHQW LQ WKH PDWUL[ $V DQ LQLWLDO FKHFN RI UHOLDELOLW\ WKH FDOFXODWHG LQWHQVLW\ DQG REVHUYHG DEVRUEDQFH UDWLRV IRU WKH SURPLQHQW DQG FQU QHXWUDO EDQGV ZHUH FRPSDUHG 7KH UDWLR ZDV FDOFXODWHG WR EH HTXDO WR DQG REVHUYHG WR EH HTXDO WR $$LRR; )RU WKH SURPLQHQW DQG FP FDWLRQ EDQGV WKH FDOFXODWHG UDWLR *,f LV FRPSDUHG WR GHWHUPLQHG H[SHULPHQWDOO\ 7KH JUHDWHU GLVSDULW\ IRU WKH FDWLRQ LV QRW XQH[SHFWHG VLQFH WKH REVHUYHG DEVRUEDQFHV IRU WKH LRQ DUH DQ RUGHU RI PDJQLWXGH OHVV WKDQ WKRVH RI QHXWUDO 3'&% $Q HVWLPDWH RI WKH UHODWLYH FRQFHQWUDWLRQV RI QHXWUDO WR LRQLF 3'&% PD\ EH REWDLQHG IURP WKH WKHRUHWLFDO QHXWUDOWRLRQ LQWHQVLW\ UDWLR ,f IRU D SDLU RI ,5 EDQGV DQG WKH H[SHULPHQWDO QHXWUDOWRLRQ DEVRUEDQFH UDWLR $f IRU WKH VDPH WZR EDQGV 7KH UDWLR $,f JLYHV WKH UHODWLYH QHXWUDOWRLRQ FRQFHQWUDWLRQ LH WKHUH DUH $,f PRUH QHXWUDO 3'&% PROHFXOHV WKDQ 3'&% FDWLRQV 7R FRQYHUW WR D SHUFHQWDJH ZH XVH [ $Of[ b ZKHUH [ LV WKH SHUFHQWDJH RI FDWLRQV SUHVHQW LQ WKH PDWUL[ &RPSDULQJ WKH SURPLQHQW QHXWUDO DQG FDWLRQLF EDQGV PHQWLRQHG SUHYLRXVO\ D b QHW FRQYHUVLRQ LV HVWLPDWHG $VVXPLQJ WKDW H[SHULPHQWDO HUURU LV VPDOO FRPSDUHG ZLWK WKHRUHWLFDO DFFXUDF\ DQG WKDW FDOFXODWHG LQWHQVLWLHV DUH FRUUHFW ZLWKLQ D IDFWRU RI DQ XSSHU OLPLW RI b FRQYHUVLRQ LV HVWLPDWHG 7KH b FRQYHUVLRQ LV W\SLFDO YLGH LQIUDf IRU LRQ SURGXFWLRQ WUDSSLQJ ZKLFK LV DGHTXDWH IRU UHYHDOLQJ ,5 VSHFWUDO IHDWXUHV DWWULEXWHG WR PROHFXODU LRQV RI LQWHUHVW +RZHYHU WKH SUHVHQFH RI QHXWUDO ,5 EDQGV PDNHV REVHUYDWLRQ RI QHZ LRQ EDQGV PRUH GLIILFXOW HVSHFLDOO\ LI ,5 IUHTXHQF\ VKLIWV XSRQ LRQL]DWLRQf DUH VPDOO )RUWXQDWHO\ LQ VRPH LQVWDQFHV LQWHQVLW\

PAGE 104

FKDQJHV WR EH GLVFXVVHG ODWHUf XSRQ LRQL]DWLRQ UHVXOW LQ WKH DSSHDUDQFH RI LQWHQVH LRQ EDQGV LQ WKH PLGVW RI UHODWLYHO\ ZHDN QHXWUDO EDQGV LQ VSLWH RI WKH JUHDWHU UHODWLYH FRQFHQWUDWLRQ RI QHXWUDO SUHFXUVRU WR SDUHQW LRQ (YHQ VR HQKDQFHPHQW RI LRQ SURGXFWLRQWUDSSLQJ HIILFLHQF\ LV GHVLUHG DQG FDQ EH DFKLHYHG E\ DGGLWLRQ RI HOHFWURQ WUDSV HJ && ,W VKRXOG EH QRWHG WKDW 3'&% UDGLFDO FDWLRQ ZDV LQYHVWLJDWHG H[FOXVLYHO\ ZLWKRXW WKH DGGLWLRQ RI && 7KLV ZDV QRW WKH FDVH IRU SDUDGLPHWKR[\EHQ]HQH DQG QDSKWKDOHQH 5HVXOWV DQG GLVFXVVLRQ IRU WKHVH PROHFXOHV IROORZV 3DUD'LPHWKR[YEHQ]HQH 7KH SDUDGLPHWKR[\EHQ]HQH UDGLFDO FDWLRQ ZDV FKRVHQ IRU LQYHVWLJDWLRQ VLQFH -RKQVWRQ HW DO KDG YHU\ UHFHQWO\ SUHVHQWHG HYLGHQFH IRU WKH SUHVHQFH RI WKLV VSHFLHV LQ RQf &XH[FKDQJHG PRQWPRULOOLQLWH EDVHG RQ WKH REVHUYDWLRQ RI VHYHUDO ,5 EDQGV ZKLFK FRUUHODWHG ZLWK YLVLEOH DEVRUSWLRQ EDQGV DVVRFLDWHG ZLWK WKH LRQ ,Q DGGLWLRQ WKLV PROHFXOH VHUYHV DV D VOLJKWO\ PRUH FRPSOH[ V\VWHP UHODWLYH WR 3'&%f RQ ZKLFK WR WHVW DQG GHYHORS WKH PHWKRG RI SXOVHGJORZ GLVFKDUJHPDWUL[ LVRODWLRQ IRU WKH SXUSRVH RI REWDLQLQJ YLEUDWLRQDO VSHFWUD RI UDGLFDO FDWLRQV GHULYHG IURP DURPDWLF RUJDQLF PROHFXOHV 7KH 89 VSHFWUXP RI QHXWUDO 3'02% LQ $U DW IRUPHG E\ SXOVHG GHSRVLWLRQ ZLWKRXW HOHFWULFDO GLVFKDUJH LV VKRZQ LQ )LJXUH 7KLV ILJXUH DOVR VKRZV WKH YLVLEOH VSHFWUXP RI 3'02% FDWLRQ IRUPHG E\ SXOVHGJORZ GLVFKDUJH ZLWKRXW WKH HOHFWURQ WUDS && DGGHG )RU QHXWUDO 3'02% D

PAGE 105

)LJXUH 9LVLEOH89 6SHFWUD RI 3'02% 1HXWUDO ? QPf DQG 5DGLFDO &DWLRQ ? QPf LQ DQ $U 0DWUL[ DW .

PAGE 106

$%625%$1&(

PAGE 107

EDQG V\VWHP EHJLQV DW DSSUR[LPDWHO\ QP ZKLOH IRU WKH FDWLRQ D EDQG V\VWHP H[KLELWLQJ YLEURQLF VWUXFWXUH FRYHUV WKH WR QP UDQJH 7KH ,5 VSHFWUXP RI QHXWUDO 3'02% LV SUHVHQWHG LQ )LJXUH ERWWRPf ZKLOH WKDW RI SXOVHGJORZ GLVFKDUJH QHXWUDO SOXV && LV VKRZQ DW WKH WRS RI WKH VDPH ILJXUH 0DQ\ QHZ ,5 EDQGV RFFXU DV D UHVXOW RI WKH HOHFWULFDO GLVFKDUJH VRPH RI ZKLFK DUH DVFULEHG WR WKH 3'02% FDWLRQ ZKLOH RWKHUV DUH DWWULEXWHG WR YDULRXV VSHFLHV GHULYHG IURP &&n 7KH DGGLWLRQ RI && WR DUJRQ abf HQKDQFHV WKH IRUPDWLRQ RI 3'02% FDWLRQV EXW UHVXOWV LQ WKH IRUPDWLRQ RI VHYHUDO VSHFLHV HPDQDWLQJ IURP WKH && VHHG ZKLFK PXVW EH DFFRXQWHG IRU WKH\ DUH LQGLFDWHG LQ WKH ILJXUHf 7R GHWHUPLQH ZKLFK RI WKH UHPDLQLQJ EDQGV DUH GXH WR WKH 3'02% FDWLRQ D FRUUHODWLRQ ZDV VRXJKW EHWZHHQ WKHVH ,5 EDQGV DQG WKH QP RSWLFDO DEVRUSWLRQ EDQG $V PHQWLRQHG SUHYLRXVO\ IRU WKH 3'&% FDWLRQ D SORW RI WKH ,5 DEVRUEDQFH IRU HDFK YLEUDWLRQDO EDQG DV D IXQFWLRQ RI WKH YLVLEOH EDQG LQWHQVLW\ VKRXOG \LHOG D VWUDLJKW OLQH ZKLFK SDVVHV WKURXJK WKH RULJLQ LI ERWK ,5 DQG YLVLEOH EDQGV DUH GXH WR WKH VDPH FKHPLFDO VSHFLHV $ SRVLWLYH FRUUHODWLRQ ZDV GHWHUPLQHG WR H[LVW IRU WKH DQG FP IUHTXHQFLHV ZKLFK DUH PDUNHG E\ EODFNHQHG FLUFOHV LQ )LJXUH WRSf 2YHUODS RI WKH FP VKRXOGHU ZLWK WKH FP EDQG SUHFOXGHG FRUUHODWLRQ DQDO\VLV RI WKLV EDQG $ JUDSK RI WKH SRVLWLYH FRUUHODWLRQ RI WKH IRXU EDQGV PHQWLRQHG WR WKH QP EDQG LV VKRZQ LQ )LJXUH 7KH SUHVHQFH RI QHZ ,5 EDQGV GRHV QRW SURYH LQ DQG RI LWVHOI WKDW WKHVH EDQGV DUH DVVLJQDEOH WR WKH FDWLRQLF VSHFLHV XQGHU VWXG\ )RU H[DPSOH VL[ RWKHU EDQGV DW DQG FP PDUNHG E\ EODFN LQYHUWHG

PAGE 108

)LJXUH ,QIUDUHG 6SHFWUD RI 'LVFKDUJHG 3'02%&&O$U 0L[WXUH WRSf 6KRZLQJ 1HXWUDO DQG 5DGLFDO &DWLRQ EODFN FLUFOHVf %DQGV DQG 2QO\ 1HXWUDO 3'02% 0ROHFXOHV ERWWRPf LQ DQ $U 0DWUL[ DW %DQGV ZLWK %ODFN ,QYHUWHG 7ULDQJOHV DUH 8QDVVLJQHG

PAGE 109

EB, , O , O e FP

PAGE 110

)LJXUH &RUUHODWLRQ 'LDJUDP EHWZHHQ QP 9LVLEOH %DQG DQG )RXU ,5 3HDNV 9DU\LQJ $EVRUEDQFHV 3URGXFHG E\ 'LIIHUHQW 3KRWRO\VLV 7LPHVf

PAGE 111

$%625%$1&(L5f[ $O 6 $%625%$1&( QPf

PAGE 112

WULDQJOHV LQ )LJXUH f GR QRW FRUUHODWH ZLWK WKH QP EDQG DQG UHPDLQ XQDVVLJQHG DW WKLV SRLQW 6SHFWUD REWDLQHG EHIRUH DQG DIWHU SKRWRO\VLV DUH VKRZQ LQ )LJXUH ,QFOXGHG DUH WKH 3'02% UDGLFDO FDWLRQ SOXV GLVFKDUJHG && LQ $U EHIRUH $f DQG DIWHU %f SKRWRO\VLV DQG GLVFKDUJHG && LQ $U EHIRUH &f DQG DIWHU 'f SKRWRO\VLV 7KH QP 3'02% FDWLRQ EDQG DQG D EURDG IHDWXUHOHVV EDQG FHQWHUHG QP DUH DSSDUHQW LQ VSHFWUXP $ $IWHU PLQXWHV SKRWRO\VLV VSHFWUXP $ KDV GHJUDGHG WR VSHFWUXP % LQ ZKLFK WKH EURDG EDQG KDV EHHQ JUHDWO\ UHGXFHG LQ LQWHQVLW\ ZKLOH WKH QP EDQG LQWHQVLW\ UHPDLQHG HVVHQWLDOO\ FRQVWDQW $ EURDG DV\PPHWULF EDQG ZLWK PD[LPD DW DQG QP LV DSSDUHQW LQ VSHFWUXP & ZKLOH DIWHU PLQXWHV SKRWRO\VLV VSHFWUXP LV SURGXFHG 3KRWRO\VLV KDV UHGXFHG WKH QP VXEVWDQWLDOO\ ZKLOH WKH QP EDQG KDV GHFUHDVHG VRPHZKDW EXW WKLV LV XQFHUWDLQ VLQFH WKH EDQGV RYHUODS VHYHUHO\ 7KH LQIUDUHG VSHFWUD WDNHQ RQ WKH VDPH VDPSOHPDWUL[ VKRZHG D FRPSOHWH GLVDSSHDUDQFH RI WKH FQU EDQG DIWHU PLQXWHV SKRWRO\VLV 7KLV WUDFNHG WKH EHKDYLRU RI EDQGV LQ WKH YLVLEOH UHJLRQ GLVFXVVHG SUHYLRXVO\ $W WKH VDPH WLPH WKH FQU EDQG UHPDLQHG XQFKDQJHG DQG QHXWUDO && SHDNV LQFUHDVHG LQ LQWHQVLW\ 3'02% FDWLRQ ,5 DQG YLVLEOH EDQGV GHFUHDVHG EXW ZHUH QRW FRPSOHWHO\ GLPLQLVKHG HYHQ DIWHU SKRWRO\VLV IRU XS WR VL[ f KRXUV 7KH FQU SHDN LV DVVLJQHG WR WKH && LRQn ZKLOH WKH FQU KDG SUHYLRXVO\ EHHQ DVVLJQHG WR WKH && LRQ DQG KDG UHFHQWO\ EHHQ UHDVVLJQHG WR WKH && f &O VSHFLHV 3KRWRO\WLF EHKDYLRU VXJJHVWV WKDW WKH QP RSWLFDO EDQG FRXOG EH DVVLJQHG WR && LQ DFFRUG ZLWK WKDW UHSRUWHG E\ $QGUHZV HW DO +RZHYHU EDVHG RQ RXU UHVXOWV ^YLGH LQIUDf LW LV DVVLJQHG WR && f &O ,Q HLWKHU FDVH LW LV

PAGE 113

)LJXUH 9LVLEOH89 6SHFWUD RI $f 8QSKRWRO\]HG 3'02% 5DGLFDO &DWLRQ )RUPHG IURP 'LVFKDUJHG 3'02%&&O$U 0L[WXUH %f 6SHFWUXP $ DIWHU 0LQXWHV 3KRWRO\VLV &f 'LVFKDUJHG &&O$U 0L[WUXH EHIRUH 3KRWRO\VLV 'f 6SHFWUXP & DIWHU 0LQXWHV 3KRWRO\VLV $OO LQ $U DW .

PAGE 114

,17(16,7<

PAGE 115

DSSDUHQW WKDW VSHFLHV RWKHU WKDQ 3'02% FDWLRQ DQG && DUH SUHIHUHQWLDOO\ QHXWUDOL]HG DQGRU GHFRPSRVHG XSRQ SKRWRO\VLV 7KH UROH RI && DV DQ HOHFWURQ WUDS DQG LRQL]DWLRQ HQKDQFHU ZLOO EH GLVFXVVHG ODWHU 6LPLODU WR WKH YLEUDWLRQDO DQDO\VLV GRQH RQ WKH 3'&% V\VWHP DE LQLWLR +DUWUHH)RFN 6&) OHYHO FDOFXODWLRQ EDVLV IRU RSHQ VKHOOV 52+)f ZDV SHUIRUPHG WR FDOFXODWH WKH KDUPRQLF YLEUDWLRQDO IUHTXHQFLHV RI QHXWUDO 3'02% DQG LWV FDWLRQ *HRPHWULHV IRU ERWK QHXWUDO DQG FDWLRQLF 3'02% ZHUH RSWLPL]HG DQG QRUPDO PRGHV GHFRPSRVHG WR DVVHVV WKH HIIHFW RI LRQL]DWLRQ XSRQ VSHFLILF ERQGV &+ ERQGV DUH QRW LQFOXGHGf ZLWKLQ WKH PROHFXOH $OO RI WKLV ZDV DFFRPSOLVKHG WKURXJK WKH *$0(66 SURJUDP ,QWHUDWRPLF GLVWDQFHV IRU && DQG & ERQG W\SHV ZHUH FRPSXWHG WR EH FDWLRQ YDOXHV LQ SDUHQWKHVHVf UFBF ƒ ƒf IRU WKH && ERQG DGMDFHQW WR WKH &ULQJ ERQG UF ƒ ƒf IRU WKH & ERQG LQYROYLQJ R R WKH PHWK\O FDUERQV UnF $ $f IRU WKH & ERQGV LQYROYLQJ WKH ULQJ FDUERQ DQG UnFBF ƒ ƒf IRU WKH FHQWUDO && ERQGV 7KH UHODWLYH GHFUHDVH RI WKH UfF DQG UnFF ERQG OHQJWKV DQG LQFUHDVH RI WKH UFF ERQG OHQJWKV XSRQ LRQL]DWLRQ IROORZV WKDW RI DQDORJRXV ERQG OHQJWK FKDQJHV GLVFXVVHG IRU 3'&% 7DEOH SUHVHQWV D FRPSDULVRQ EHWZHHQ WKH FDOFXODWHG VFDOHGf KDUPRQLF IUHTXHQFLHV DQG WKRVH GHWHUPLQHG H[SHULPHQWDOO\ IRU 3'02% FDWLRQ LQ DQ $U PDWUL[ DW DQG LQ D &XH[FKDQJHG PRQWPRULOOLQLWH FOD\ 7KH FRPSXWHG VFDOHG FP EDQG LV UHDVRQDEO\ DVVLJQHG WR WKH FP PDWUL[ FOD\f EDQG ZKLOH WKH FP VFDOHGf IUHTXHQF\ LV DVVLJQDEOH WR DQ\ RI WKH UHPDLQLQJ PDWUL[ EDQGV REVHUYHG %DVHG RQ LQWHQVLWLHV DVVLJQPHQW WR WKH FP PDWUL[ EDQG LV WKH PRVW UHDVRQDEOH

PAGE 116

7DEOH &DOFXODWHG DQG 2EVHUYHG ,5 9LEUDWLRQDO )UHTXHQFLHV FPf IRU 3'02% &DWLRQ ,QIUDUHG )UHTXHQF\ FPf &DOFXODWHG 6FDOHG f 2EVHUYHG $U 0DWUL[E &OD\ fG f§ f f§ f f§ f§ f f§ f f§ f f f f§ f§ f f§ f f§ f§ f f§ f§ f f§ f§ D 2QO\ WKH PRVW LQWHQVH ,5 EDQGV DUH UHSRUWHG E $U PDWUL[ DW m 5HI G ,QWHQVLWLHV DUH UHODWLYH WR WKLV EDQG

PAGE 117

2EVHUYDWLRQ RI WKH UHODWLYHO\ LQWHQVH EDQG FRPSXWHG DW FP ZDV REVFXUHG E\ PDQ\ LQWHQVH QHXWUDO 3'02% EDQGV SUHVHQW LQ WKH PDWUL[ ZRUN EXW -RKQVWRQH HW DO UHSRUWHG D FP SHDN ZKLFK PD\ EH DVVLJQHG WR WKLV FDOFXODWHG EDQG 2QH H[SODQDWLRQ LV WKDW WKHUH DUH PRUH 3'02% FDWLRQV UHODWLYH WR QHXWUDOVf SUHVHQW LQ WKH FOD\ GXH WR FDWLRQ H[FKDQJH FDSDFLW\ DOORZLQJ IRU WKLV EDQG WR EH PRUH UHDGLO\ GLVFHUQHG IURP WKH QHXWUDO VSHFLHV (VWLPDWLRQ RI WKH UHODWLYH TXDQWLWLHV RI FDWLRQLF DQG QHXWUDO 3'02% LQ WKH $U PDWUL[ ZLOO EH GLVFXVVHG ODWHU ,QWULQVLF VWUHWFKLQJ IUHTXHQFLHV DQG IRUFH FRQVWDQWV IRU QHXWUDO 3'02% DQG LWV UDGLFDO FDWLRQ DUH SUHVHQWHG LQ 7DEOH DQG UHVSHFWLYHO\ 7KHVH FRPSXWHG YDOXHV UHIOHFW WKH ERQG OHQJWK FKDQJHV XSRQ LRQL]DWLRQ GLVFXVVHG SUHYLRXVO\ UFF LQFUHDVHG DQG LWV DVVRFLDWHG VFDOHGf IRUFH FRQVWDQW GHFUHDVHG E\ b r PG\QHƒf UFB LQFUHDVHG DQG LWV IRUFH FRQVWDQW GHFUHDVHG E\ b } PG\QHƒf ZKLOH UnFB DQG UnFBF GHFUHDVHG DQG WKHLU IRUFH FRQVWDQWV LQFUHDVHG E\ b } PG\QHƒf DQG b } PG\QHƒf UHVSHFWLYHO\ 7KHVH UHVXOWV DUH FRPSDUDEOH WR WKRVH UHSRUWHG E\ (PVWEUXQQHU HW DO GLVFXVVHG SUHYLRXVO\ LQ ZKLFK WKH DGMDFHQW && IRUFH FRQVWDQW GHFUHDVHG b WKH FHQWUDO && IRUFH FRQVWDQW LQFUHDVHG E\ b DQG WKH ULQJ & IRUFH FRQVWDQW LQFUHDVHG E\ b $OWKRXJK WKHUH DUH GLVFUHSDQFLHV EHWZHHQ WKH PDJQLWXGHV RI FKDQJH WKH GLUHFWLRQ LQFUHDVH RU GHFUHDVHf LV SUHGLFWHG FRQVLVWHQWO\ 'HWDLOHG DQDO\VLV UHODWLQJ KRZ QRUPDO PRGH IUHTXHQFLHV FKDQJH DV ZDV GRQH ZLWK 3'&% ZDV QRW SHUIRUPHG IRU 3'02%

PAGE 118

7DEOH &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 1HXWUDO 3'02% %RQG )UHTXHQF\ FPf )RUFH &RQVWDQW PG\QHƒf &DOF 6FDOHG f &DOF 6FDOHG f &f§F PHWK\O &ULQJf§ & &D D 7KH FHQWUDO & f§& ERQGV 7DEOH &DOFXODWHG ,QWULQVLF 6WUHWFKLQJ )UHTXHQFLHV DQG )RUFH &RQVWDQWV IRU 3'02% &DWLRQ %RQG )UHTXHQF\ FPf )RUFH &RQVWDQW PG\QHƒf &DOF 6FDOHG f &DOF 6FDOHG &f§& 2 PHWK\O 2 &ULQJ 2 & &D 7KH FHQWUDO &f§& ERQGV

PAGE 119

7KH )7,&5 PDVV VSHFWUXP RI SXOVHGJORZ GLVFKDUJHG 3'02% VHHGHG LQ $U LV VKRZQ LQ )LJXUH 3URPLQHQW SHDNV ZLWK UHODWLYH LQWHQVLWLHV LQ SDUHQWKHVHV DUH REVHUYHG DW P] HTXDO WR f f f f f f DQG f DPX 7KH DQG DPX SHDNV DUH DVVLJQHG DV SURWRQDWHG QHXWUDO 3'02% &+2+f SDUHQW 3'02% LRQ &+2f SDUHQW PLQXV D PHWK\O &+f JURXS &+f DQG SDUHQW PLQXV PHWK\O DQG FDUERQ PRQR[LGH IUDJPHQWV &+f UHVSHFWLYHO\ 7KH DQG DPX SHDNV DUH XQDVVLJQHG ZKLOH WKH DPX SHDN LV GXH WR $U 7KLV JDV SKDVH HQVHPEOH RI LRQLF DQG QHXWUDO IUDJPHQWV RI WKH SDUHQW 3'02% LQGLFDWHV WKH FRPSOH[LW\ RI WKH SXOVHGJORZ GLVFKDUJH SODVPD DQG WKH QHFHVVLW\ IRU LQGHSHQGHQW PHWKRGV HJ FRUUHODWLRQ DQDO\VLV DQG WKHRUHWLFDO FRPSXWDWLRQV LQ RUGHU WR DVVLJQ FRUUHFWO\ ,5 DEVRUEDQFHV IRU FKHPLFDO VSHFLHV XQGHU LQYHVWLJDWLRQ $OVR WKH XQDVVLJQHG ,5 PDWUL[ EDQGV FRXOG EH GXH WR VXFK IUDJPHQWHG QHXWUDO DQGRU LRQLF VSHFLHV 7KH SXOVHGJORZ GLVFKDUJHPDWUL[ LVRODWLRQ PHWKRG SURYLGHG WKH PHDQV E\ ZKLFK ,5 EDQGV ZHUH GHWHFWHG DQG DWWULEXWHG WR SDUD GLPHWKR[\EHQ]HQH UDGLFDO FDWLRQ 7KHVH EDQGV RFFXU DW VKRXOGHUf DQG FQU DQG ZHUH DVVLJQHG E\ PRQLWRULQJ DQG FRUUHODWLQJ WKH QP RSWLFDO EDQG SUHYLRXVO\ DVVLJQHG WR WKH FDWLRQ ZLWK WKH ,5 EDQGV YLD SKRWRO\WLF GHJUDGDWLRQ $V HPSKDVL]HG LQ WKH GLVFXVVLRQ RI 3'&% FDWLRQ LQGHSHQGHQW FKHFNV DUH UHTXLUHG WR DFFXUDWHO\ DVVLJQ QHZO\ REVHUYHG ,5 EDQGV WR WKH VRXJKWDIWHU VSHFLHV RI LQWHUHVW ,Q DGGLWLRQ WKHRUHWLFDO FDOFXODWLRQV ZHUH SHUIRUPHG WR FKDUDFWHUL]H PROHFXODU ERQGLQJ FKDQJHV HYRNHG XSRQ LRQL]DWLRQ

PAGE 120

)LJXUH )7,&5 0DVV 6SHFWUXP RI 3XOVHG*ORZ 'LVFKDUJHG 3'02% 6HHGHG LQ $U

PAGE 121

5(/$7,9( ,17(16,7<

PAGE 122

7KH DGGLWLRQ RI && WR WKH 3'02%DUJRQ JDVHRXV SODVPD HQKDQFHG VLJQLILFDQWO\ WKH TXDQWLW\ RI UDGLFDO FDWLRQV WUDSSHG $V PHQWLRQHG SUHYLRXVO\ && ZDV QRW XVHG LQ WKH VWXG\ RI 3'&% /LNHZLVH 3'02% ZDV DOVR WUDSSHG ZLWKRXW WKH DGGLWLRQ RI && 7KHUHIRUH RWKHU VRXUFHV RI FKDUJH FRPSHQVDWLRQ PXVW EH RSHUDWLYH LH IUHHf HOHFWURQV RU DQLRQV GHULYHG IURP LPSXULWLHV RU IUDJPHQWVf DUH WUDSSHG FRQFXUUHQWO\ ,QLWLDOO\ LW ZDV DVVXPHG WKDW && VHUYHV VLPSO\ DV DQ HOHFWURQ VFDYHQJHU EXW WKH SUHVHQFH RI VHYHUDO SRVLWLYH FDUERQ WHWUDFKORULGH SURGXFW LRQV LQ WKH PDWUL[ SURPSWV FRQVLGHUDWLRQ RI DOWHUQDWLYH DQGRU DGGLWLRQDO UROHV IRU LRQ IRUPDWLRQ WUDSSLQJ HQKDQFHPHQW 7KLV LV GLVFXVVHG LQ JUHDWHU GHWDLO LQ WKH VHFWLRQV WR IROORZf LQYROYLQJ QDSKWKDOHQH )RU QRZ LW VHHPV FOHDU WKDW RQH RU PRUH RI WKH IROORZLQJ JDV SKDVH PHFKDQLVPV DUH LQYROYHG SKRWRLRQL]DWLRQ E\ WKH $U SODVPD $U UHVRQDQFH OLQHV DW DQG H9 OLH DERYH WKH H9 LRQL]DWLRQ SRWHQWLDO RI 3'02%f HOHFWURQ LPSDFW FKDUJH WUDQVIHU DQGRU 3HQQLQJ LRQL]DWLRQ RI 3'02% E\ H[FLWHG PHWDVWDEOH $U DWRPV PHWDVWDEOH HQHUJLHV OLH DW DQG H9 FI 7DEOH f ,W ZDV DOVR REVHUYHG WKDW DV WKH >3'02%@>$U@ UDWLR GHFUHDVHG WKH >3'02%@>3'02%@ UDWLR LQFUHDVHG LH PRUH LRQV ZHUH WUDSSHG UHODWLYH WR WKH QXPEHU RI WUDSSHG QHXWUDOV DV WKH VDPSOHPDWUL[ JDV PL[WXUH EHFDPH PRUH GLOXWH ,Q DGGLWLRQ WR WKHVH JDV SKDVH SURFHVVHV PDWUL[SKDVH SKRWRLRQL]DWLRQ VKRXOG EH FRQVLGHUHG VLQFH WKH UDWLR RI LQWHQVLWLHV RI WKH FDWLRQ DQG QHXWUDO 3'02% EDQGV YLVLEOH DQG ,5f LQFUHDVHV VOLJKWO\ ZLWK GHSRVLWLRQ WLPH 7KLV HIIHFW LV SUREDEO\ GXH WR $U UHVRQDQFH LUUDGLDWLRQ RI WKH SUHIRUPHG PDWUL[ GXULQJ DGGLWLRQDO PDWUL[ IRUPDWLRQ

PAGE 123

$Q HVWLPDWH RI WKH UDWLR RI 3'02% UDGLFDO FDWLRQV WR QHXWUDO 3'02% ZDV PDGH EDVHG RQ DE LQLWLR 6&)OHYHO WKHRUHWLFDO LQWHQVLWLHV RI QHXWUDO DQG FDWLRQLF ,5 EDQGV REVHUYHG H[SHULPHQWDOO\ 7KH FDOFXODWHG ,5 LQWHQVLW\ ,f IRU WKH FP VFDOHG E\ f QHXWUDO EDQG LV NPPRO ZKLOH WKDW IRU WKH FDWLRQ FP VFDOHGf EDQG LV NPPRO OHDGLQJ WR f 7KH H[SHULPHQWDO DEVRUEDQFH $f IRU WKH FRUUHVSRQGLQJ FP QHXWUDO EDQG ZDV ZKLOH WKDW IRU WKH FQU FDWLRQ EDQG ZDV UHVXOWLQJ LQ WKH UDWLR $$f 7KH FRPSRVLWH UDWLR $XR$Rf ,,f JLYHV WKH QHXWUDO WR FDWLRQ UDWLR LH WKHUH DUH QHXWUDO 3'02% PROHFXOHV IRU HYHU\ 3'02% FDWLRQ 7KLV HTXDWHV WR b QHXWUDOWRLRQ FRQYHUVLRQWUDSSLQJ LQ WKH PDWUL[ &RPSDULVRQ RI WKH PDWUL[ ,5 UHVXOWV ZLWK WKRVH REWDLQHG E\ -RKQVWRQ DQG FRZRUNHUV IRU 3'02% FDWLRQ LQ &XH[FKDQJHG PRQWPRULOOLQLWH SURYHV LQWHUHVWLQJ DQG LQIRUPDWLYH ,QIUDUHG EDQGV DW DQG FQU ZHUH DWWULEXWHG WR 3'02% FDWLRQ E\ -RKQVWRQ HW DO DQG IRXU RI WKHVH FRUUHVSRQG ZHOO ZLWK WKH DQG FP DUJRQ PDWUL[ EDQGV FI 7DEOH f 7KH FQU PDWUL[ DQG WKH DQG FP FOD\ EDQGV KRZHYHU GR QRW FRUUHVSRQG 6LPLODU WR WKH PDWUL[ UHVXOWV JURZWK RI WKH ,5 EDQGV LQ WKH FOD\ RFFXUV VLPXOWDQHRXVO\ ZLWK D SDOH EOXH WR GDUN JUHHQ FRORU FKDQJH DQG WKH JURZWK RI LQWHQVH YLVLEOH EDQGV DW DQG QP XQGHU DQK\GURXV FRQGLWLRQV 8SRQ H[SRVXUH WR ZDWHU YDSRU WKH YLVLEOH EDQGV DQG DOO WKH ,5 EDQGV H[FHSW WKH DQG FPn RQHVf GLVDSSHDU RQ WKH RUGHU RI PLQXWHV ZKLOH WKH DQG FPn EDQGV UHTXLUHG KRXUV WR GHFD\ 7KH GLVDSSHDUDQFH RI 3'02% UDGLFDO FDWLRQ LV WKH UHVXOW RI UHYHUVLEOH RQHHOHFWURQ WUDQVIHU EHWZHHQ K\GUDWHG

PAGE 124

&X LRQ DQG WKH DEVRUEHG DURPDWLF ZKLOH WKH UDWH GLIIHUHQFH REVHUYHG ZDV LQWHUSUHWHG DV D GLIIHUHQFH LQ VXUIDFH VLWHV RQWR ZKLFK 3'02% FDWLRQV DUH DEVRUEHG 7KH RYHUDOO VWULNLQJ IHDWXUH LV WKH YHU\ FORVH FRUUHVSRQGHQFH RI 3'02% ,5 EDQGV REVHUYHG LQ WKH LQHUW $U PDWUL[ DW ZLWK WKRVH REVHUYHG LQ WKH URRP WHPSHUDWXUH &XH[FKDQJHG PRQWPRULOOLQLWH FOD\ 7KLV LQGLFDWHV WKDW RQH RI WKH FOD\ VLWHV LV PLQLPDOO\ SHUWXUELQJ DQG WKLV LV FRQVLVWHQW ZLWK WKH FRQFOXVLRQ RI -RKQVWRQ HW DO WKDW 3'02% UDGLFDO FDWLRQ LV WKH SUHGRPLQDQW VXUIDFH VSHFLHV SURGXFHG IURP FKHPLVRUEHG 3'02% QHXWUDO RQ WKH &XH[FKDQJHG PRQWPRULOOLQLWH FOD\ 1DSKWKDOHQH 1DSKWKDOHQH LV WKH PRVW VLPSOH RI DOO 3$+ PROHFXOHV DQG KHQFH LV WKH ORJLFDO ILUVW FKRLFH WR EHJLQ D VWXG\ RI WKH UDGLFDO FDWLRQV RI 3$+V 7KH H[SHULHQFH DQG GDWD DFFXPXODWHG GXULQJ VSHFWURVFRSLF LQYHVWLJDWLRQ RI S GLFKORUREHQ]HQH DQG SGLPHWKR[\EHQ]HQH UDGLFDO FDWLRQV OD\V WKH IRXQGDWLRQ IRU WKH PHWKRGRORJ\ HPSOR\HG WR UHVHDUFK WKH YLEUDWLRQDO VSHFWUXP RI FDWLRQLF QDSKWKDOHQH DQG RWKHU LQFUHDVLQJO\ FRPSOH[ 3$+ LRQV ,W VKRXOG EH QRWHG WKDW HOHFWURQ ERPEDUGPHQW QRW SXOVHGJORZ GLVFKDUJH ZDV WKH SULPDU\ PHWKRG XVHG LQ WKH VWXG\ RI QDSKWKDOHQH FDWLRQ VLQFH LW SURYHG FDSDEOH RI SURGXFLQJ ODUJHU FRQFHQWUDWLRQV RI WUDSSHG LRQV 7KH YLVLEOH VSHFWUXP RI WKH QDSKWKDOHQH FDWLRQ LV ZHOONQRZQ LW KDV EHHQ VWXGLHG E\ $QGUHZV HW DO LQ $U PDWULFHV 6KLGD DQG FR ZRUNHUV LQ VHFEXW\O FKORULGH DQG )UHRQ PDWULFHV DQG E\ 6DODPD DQG $OODPDQGROD LQ $U DQG 1H PDWULFHV $ VHULHV RI YLEURQLF EDQGV

PAGE 125

,OO EHJLQQLQJ DW QP LQ $Uf FKDUDFWHUL]HV WKH VSHFWUXP ZKLFK LV VKRZQ LQ )LJXUH ,W FRUUHVSRQGV YHU\ ZHOO WR WKRVH REWDLQHG E\ WKH DERYH DXWKRUV $QGUHZV DQG FRZRUNHUVn LGHQWLILHG DQG FKDUDFWHUL]HG WKH QDSKWKDOHQH FDWLRQ WUDQVLWLRQV WKURXJK FRPSDULVRQ WR SKRWRHOHFWURQ 3(f VSHFWUD 9LEUDWLRQDO ILQH VWUXFWXUH LV REVHUYHG IRU WKH ILUVW 3( WUDQVLWLRQ RQO\ ZLWK D SURJUHVVLRQ LQ WKH WRWDOO\ V\PPHWULF FDUERQFDUERQ VWUHWFKLQJ PRGH RI FP $V PHQWLRQHG LQ WKH GLVFXVVLRQ RI 3'02% UDGLFDO FDWLRQ DGGLWLRQ RI && WR WKH $U PDWUL[ JDV JUHDWO\ HQKDQFHV IRUPDWLRQ RI WKH LRQVf XQGHU VWXG\ ,Q WKH FDVH RI 1 WKH LQWHQVLW\ RI WKH 1 YLVLEOH EDQGV LV LQFUHDVHG E\ D IDFWRU RI WR $ PD[LPXP DEVRUEDQFH RI ?PD[ QPf ZDV REWDLQHG DIWHU VL[ KRXUV RI GHSRVLWLRQ 1RWH WKDW JDV SKDVH HOHFWURQ ERPEDUGPHQW SULRU WR GHSRVLWLRQ ZDV HPSOR\HG LQ WKLV VWXG\ QRW SKRWRLRQL]DWLRQ RI D SUHIRUPHG PDWUL[ DV LQ SUHYLRXV VWXGLHV RI 1 7KH UROH RI && DQG VSHFLHV GHULYHG IURP LWf DV HQKDQFHUV RI LRQ IRUPDWLRQ DQG DV D VRXUFH RI FRXQWHU LRQV LQ WKH PDWUL[ LV GLVFXVVHG ODWHU 7KH ,5 VSHFWUXP RI WKH PDWUL[VDPSOH H[KLELWLQJ WKH QP YLVLEOH EDQG LV VKRZQ LQ )LJXUH WRSf LW FRQVLVWV RI EDQGV GXH WR QHXWUDO DQG FDWLRQLF QDSKWKDOHQH DV ZHOO DV VSHFLHV GHULYHG IURP && $W WKH ERWWRP RI )LJXUH LV VKRZQ WKH ,5 VSHFWUXP RI QHXWUDO 1 LQ $U IRU ZKLFK WKH QP EDQG LV DEVHQW 1HZ ,5 EDQGV DSSHDU DW DQG FP LQ WKH PDWUL[ VKRZLQJ WKH QP YLVLEOH EDQG 7KH DQG FP KDG SUHYLRXVO\ EHHQ DVVLJQHG WR &&f &&f DQG &&f UHVSHFWLYHO\ ZKLOH PRUH UHFHQW VWXGLHV DVVLJQ WKH FQU EDQG DQG UHDVVLJQ WKH FP EDQG WR WKH XQXVXDO

PAGE 126

)LJXUH 9LVLEOH89 6SHFWUD RI 1HXWUDO DQG &DWLRQLF 1DSKWKDOHQH LQ $U DW LQ WKH UXQ 6SHFWUDO 5HJLRQ

PAGE 127

$%625%$1&( UZY 1 O , , O O O :$9(/(1*7+ WQPO

PAGE 128

)LJXUH ,QIUDUHG 6SHFWUD RI 1HXWUDO ERWWRPf DQG 1HXWUDO 3OXV &DWLRQLF 1DSKWKDOHQH WRSf LQ $U DW 1HZ 3HDNV 'XH WR &DWLRQ DUH 0DUNHG ZLWK 6ROLG &LUFOHV

PAGE 129

:DYHQXPEHUV FPAf $EVRUEDQFH 1

PAGE 130

FRPSOH[ &&r& 7KH DQG FP EDQGV VXVSHFWHG WR EHORQJ WR 1 YLGH LQIUDf RYHUODS ZLWK QHXWUDO 1 DQG &&r& EDQGV FI )LJ f 7KH PRVW LQWHQVH EDQGV UHPDLQLQJ RFFXU DW DQG FP 7KLV GRXEOHW EDQG ZDV VXEMHFWHG WR FRUUHODWLRQ DQDO\VLV WKH UHVXOWV RI ZKLFK DUH SUHVHQWHG LQ )LJXUH 7KH GDWD UHSUHVHQW WHQ GLIIHUHQW H[SHULPHQWV LQ ZKLFK WKH QP EDQG DEVRUEDQFH YDULHG DV D IXQFWLRQ RI OHQJWK RI GHSRVLWLRQ LQWHQVLW\ DQG HQHUJ\ RI HOHFWURQ EHDP DQG FRQFHQWUDWLRQV RI && DQG 1f IURP WR &RUUHODWLRQ EHWZHHQ WKH YLVLEOH EDQG DQG WKH FP GRXEOHW LV H[FHOOHQW ZLWK D OLQHDU UHJUHVVLRQ FRUUHODWLRQ FRHIILFLHQW RI DQG D VORSH RI s 7KLV LQGLFDWHV VWURQJO\ WKDW WKH FP GRXEOHW LV GXH WR 1r 7KH ZHDNQHVV RI WKH UHPDLQLQJ VL[ EDQGV DQG FPf GLVDOORZHG VLPLODU DQDO\VLV EXW LW ZDV DSSDUHQW WKDW DOO RI WKHVH EDQGV H[FHSW WKH FP RQH WUDFNHG WKH FQU EDQG LQWHQVLW\ LQ D SDUDOOHO PDQQHU 7KHUHIRUH WKHVH EDQGV DUH DWWULEXWDEOH WR 1 9DULRXV EDQG LQWHQVLWLHV ZHUH DIIHFWHG PDUNHGO\ E\ SKRWRO\VLV RI PDWULFHVVDPSOHV E\ D PHGLXPSUHVVXUH +J ODPS 7KH 89YLV DQG ,5 VSHFWUD REWDLQHG EHIRUH SKRWRO\VLV DUH VKRZQ DW WKH WRS RI )LJXUHV DQG UHVSHFWLYHO\ 7KH FRUUHVSRQGLQJ VSHFWUD REWDLQHG DIWHU ILYH PLQXWHV SKRWRO\VLV DUH SUHVHQWHG DW WKH ERWWRP RI )LJXUHV DQG $V GLVFXVVHG ZLWK 3'02% FI )LJ f SKRWRO\VLV UHVXOWV LQ DOPRVW FRPSOHWH GLVDSSHDUDQFH RI WKH EURDG XQVWUXFWXUHG YLVLEOH EDQG DW QP 7KH FP ,5 EDQG ZLWK D VKRXOGHU DW FPf DOVR GLVDSSHDUV DOPRVW FRPSOHWHO\ XSRQ SKRWRO\VLV 5HFDOO WKH QP YLVLEOH DQG FQU ,5

PAGE 131

)LJXUH &RUUHODWLRQ RI QP 9LVLEOH %DQG $EVRUEDQFH RI 1DSKWKDOHQH &DWLRQ ZLWK FP ,5 %DQG $EVRUSWLRQ 7KH (PSW\ 6TXDUH ,QGLFDWHV 'DWXP IURP DQ ([SHULPHQW ZLWK && $EVHQW

PAGE 132

$%625%$1&( ,5 FL $%625%$1&( 9,6 QPf ;

PAGE 133

)LJXUH 9LVLEOH89 6SHFWUXP RI 1HXWUDO 1f DQG &DWLRQLF 1f 1DSKWKDOHQH LQ $U DW 3ULRU WR 3KRWRO\VLV WRSf 6SHFWUXP DIWHU 3KRWRO\VLV IRU )LYH 0LQXWHV ZLWK 0HGLXP3UHVVXUH +J /DPS ERWWRPf 1RWH WKDW WKH ,QWHQVLW\ RI WKH %DQG 6\VWHP LQ WKH QP 5DQJH +DV %HHQ &RPSUHVVHG 7ZRIROG IRU 9LVXDO &ODULW\

PAGE 134

$ 625%$1&( QP&&,&, f§

PAGE 135

)LJXUH ,QIUDUHG 6SHFWUD RI 1HXWUDO DQG &DWLRQLF 1DSKWKDOHQH LQ $U 3ULRU WR 3KRWRO\VLV WRSf DQG $IWHU 3KRWRO\VLV ERWWRPf 6DPH 6DPSOH DV LQ )LJXUH >&&O@>$U@ f

PAGE 136

:DYHQXPEHUV FPaA f $EVRUEDQFH R Kr UR =, 11LQ $U .

PAGE 137

EDQGV KDG EHHQ DVVLJQHG WR && EXW UHDVVLJQHG WR WKH &&r& VSHFLHV UHFHQWO\ HYLGHQFH IRU WKH ODWWHU DVVLJQPHQW LV SUHVHQWHG EHORZf 2WKHU FKDQJHV ZHUH DQ LQFUHDVH RI b IRU WKH FP &&f EDQG DQG D GHFUHDVH RI b DQG b IRU WKH FP &&f DQG DOO QHXWUDO 1 EDQGV UHVSHFWLYHO\ &RQFXUUHQW ZLWK WKHVH REVHUYDWLRQV WKH 1 FP DQG QP DEVRUSWLRQV LQFUHDVHG E\ b 3DX]DW 7DOEL 0LOOHU 'HIUHHV DQG (OOLQJHU FDOFXODWHG WKH YLEUDWLRQDO IUHTXHQFLHV DQG ,5 LQWHQVLWLHV RI 1 DQG 1 XVLQJ +DUWUHH)RFN 6&) OHYHO WKHRU\ ZLWK DQG *r EDVLV VHWV 5HVXOWV RI WKLV FDOFXODWLRQ DUH JLYHQ LQ 7DEOH LQFOXGLQJ ERWK VFDOHG DQG XQVHDOHG YDOXHV DQG H[FOXGLQJ YLEUDWLRQV ZLWK ]HUR ,5 LQWHQVLWLHV ([SHULPHQWDO GDWD DUH FRPSDUHG WR FRPSXWHG YDOXHV LQ WKH WDEOH DOVR 7KH IROORZLQJ REVHUYDWLRQV DUH PDGH XSRQ FRPSDULVRQ f 7KH PRVW LQWHQVH EDQGVf REVHUYHG H[SHULPHQWDOO\ DW FP PDWFKHV UHDVRQDEO\ ZHOO ZLWK WKH f FP WKH ILUVW YDOXH LV WKH XQVHDOHG UHVXOW DQG WKH YDOXH LQ SDUHQWKHVHV LV IURP WKH VFDOHG *r FDOFXODWLRQ FI 5HI IRU VFDOLQJ IDFWRUVf EDQG FRPSXWHG WR EH WKH PRVW LQWHQVH 2EVHUYDWLRQ RI WKH FP GRXEOHW UDLVHV WKH TXHVWLRQ $UH WKHVH WZR IXQGDPHQWDO PRGHV HDFK DVVLJQDEOH WR GLVWLQFW FRPSXWHG YLEUDWLRQV RU LV WKHUH DQ DOWHUQDWLYH H[SODQDWLRQ" 7KH H[SHULPHQWDO FP LQWHQVLW\ UDWLR LV ZKLOH WKH FRPSXWHG FP FPf UDWLR LV f %DVHG RQ WKHVH LQWHQVLW\ UDWLRV DVVLJQPHQW RI WKH FP H[SHULPHQWDO EDQG WR WKH f FP FRPSXWHG IXQGDPHQWDO YLEUDWLRQ LV QRW DFFHSWDEOH $Q DOWHUQDWLYH H[SODQDWLRQ LV WKDW WKH FP UHVROYHG VKRXOGHU DULVHV IURP )HUPL UHVRQDQFH ZLWK D FRPELQDWLRQ RI VHYHUDO ORZHU HQHUJ\ PRGHV 7KH

PAGE 138

7DEOH 7KHRUHWLFDO DQG ([SHULPHQWDO ,5 %DQGV IRU 1DSKWKDOHQH &DWLRQ 6\PPHWU\ DQG 'HVFULSWLRQ 52+)* 52+)*r ([SHULPHQW YI FPn HN PPRO YAFPn HNPPRO YnHPn I L5(/ EX U&+f EOX U&+f EOX U&+f EX .&+f EA5,&2 SL&+f D&&&f f f EOX5&&f S&+f D&&&f f f EOXS&+f f f EX5&&f S&+f EOX5&&f S&+f D&&&f E85&&f S&+f EX5&&f S&+f f f EOX5&&f S&+f D&&&f f f EMX m&+f E85&&f S&+f D&&&f f f EMX f&+f EX D&&&f EX UL&&&f EX UL&&&f D 7KHRUHWLFDO V\PPHWULHV EDQG GHVFULSWLRQV IUHTXHQFLHV DQG LQWHQVLWLHV IURP 5HI E 3UHVHQW ZRUN H 8QVHDOHG YDOXHG 5HI G 6FDOHG YDOXHV FI 5HI IRU VFDOLQJ IDFWRUV H ,QWHQVLWLHV LQ SDUHQWKHVHV UHODWLYH WR FPn EDQG *f DQG FP EDQG *rf I ,QWHQVLWLHV UHODWLYH WR FRPELQHG DQG FP EDQGV

PAGE 139

FP GRXEOHW LV DVVLJQHG WR WKH EA V\PPHWU\ &+ LQSODQH EHQGLQJ YLEUDWLRQ RI 1 FDOFXODWHG DW f FPf RQ WKLV EDVLV f 7KH f f DQG f FP EDQGV DUH FRPSXWHG WR EH WKH QH[W WKUHH PRVW LQWHQVH DQG WKHVH FRUUHVSRQG WR WKH REVHUYHG EDQGV DW DQG FP UHVSHFWLYHO\ f 7KH WKHRUHWLFDO DQG H[SHULPHQWDO UHODWLYH LQWHQVLW\ SDWWHUQV PDWFK ZHOO WDNLQJ DV XQLW\ WKH FP FRPSXWHG DQG FP H[SHULPHQWDO EDQGVff f 2EVHUYDWLRQ RI WKH VRPHZKDW LQWHQVH f FP DQG f FRPSXWHG YLEUDWLRQV ZDV REVFXUHG E\ && RU && EDQGV DQG SUHFOXGHG E\ %D) ZLQGRZ DEVRUSWLRQ UHVSHFWLYHO\ 7KH SDUWLDO UHVRQDQFH 5DPDQ VSHFWUXP P: QP 5KRGDPLQH H[FLWDWLRQf RI 1 LQ $U b && f DW IRUPHG E\ SXOVHGJORZ GLVFKDUJH LV VKRZQ LQ )LJXUH 6KDUS UHVRQDQFH 5DPDQ OLQHV FRUUHVSRQGLQJ WR IXQGDPHQWDO PRGHV RFFXU DW DQG FQU ZKLOH WKH FP VHFRQG RYHUWRQH a FPf DQG FRPELQDWLRQ EDQGV DW f FP DQG f FP DUH DOVR SUHVHQW 6KHQJ DQG +XJ KDYH UHSRUWHG IXQGDPHQWDO PRGHV DW DQG FQU IRU 1 LQ DON\O KDOLGH JODVV DW DQG .DZDVKLPD HW DO UHFRUGHG WKH FQU WKLUG RYHUWRQH DQG WKH FQU IXQGDPHQWDO RI 1 LQ DON\OKDOLGH JODVV DW DOVR 7KH DQG FP PRGHV UHODWH WR WKH DQG FQU PRGHV RI QHXWUDO 1 ZKLFK KDYH EHHQ DVVLJQHG DV WRWDOO\ V\PPHWULF VNHOHWDO GLVWRUWLRQ DQG WRWDOO\ V\PPHWULF && VWUHWFKLQJ UHVSHFWLYHO\ &DOFXODWLRQV E\ 'HIUHHV (OOLQJHU DQG FRZRUNHUV XVLQJ D *r EDVLV VHW DQG LQWHUQDO FRRUGLQDWH VSHFLILF VFDOLQJ SUHGLFW DJ PRGHV DW DQG FP IRU 1 ZKLFK VXSSRUW SUHYLRXV DVVLJQPHQWV

PAGE 140

)LJXUH 5HVRQDQFH 5DPDQ 6SHFWUXP RI &DWLRQLF 1DSKWKDOHQH LQ $U b &&f DW P: QP 5KRGDPLQH H[FLWDWLRQf

PAGE 141

$,611, ,=O R P IWf R V r P &' P MM FQ ? J V R R 1 R R R ,8 $ R R A K 1$U

PAGE 142

7KH )7,&5 PDVV VSHFWUXP RI SXOVHGJORZ GLVFKDUJHG QDSKWKDOHQH VHHGHG LQ $U DSSHDUV LQ )LJXUH 3URPLQHQW SHDNV UHODWLYH LQWHQVLWLHV LQ SDUHQWKHVHVf RFFXU DW P] HTXDO WR f f f DQG f DPX 7KHVH DUH DVVLJQHG WR SURWRQDWHG QHXWUDO QDSKWKDOHQH &+f SDUHQW LRQ &+f SDUHQW LRQ PLQXV + DWRP &+f DQG SDUHQW LRQ PLQXV DFHW\OHQH &+ &+ &+Jf $QRWKHU OHVV LQWHQVH \HW LQWHUHVWLQJ SHDN DW f DPX LV DVVLJQHG WR PRQRFDWLRQLF EHQ]HQH &+f %RKPH DQG FRZRUNHUV VWXGLHG GLVVRFLDWLRQ EHKDYLRU RI SRWHQWLDOf QDSKWKDOHQH SDUHQW LRQ IRUPHG LQGLUHFWO\ IURP UHDFWLRQ RI EHQ]HQH FDWLRQ DQG GLDFHW\OHQH &+f XVLQJ )7,&506 DQG FRPSDUHG WKHVH UHVXOWV ZLWK WKH )7,&5 PDVV VSHFWUXP REWDLQHG IURP GLUHFW HOHFWURQ LRQL]DWLRQ RI QDSKWKDOHQH 7KH VSHFWUD REWDLQHG ZHUH LGHQWLFDO VXJJHVWLQJ QDSKWKDOHQH SDUHQW LRQ LV IRUPHG IURP UHDFWLRQ RI EHQ]HQH FDWLRQ DQG GLDFHW\OHQH 7KH PDVV VSHFWUXP UHSRUWHG KHUH IRU WKH SXOVHGJORZ GLVFKDUJH V\VWHP LV VLPLODU WR ERWK EXW VKRZV D JUHDWHU UHODWLYH WR SDUHQW LRQf DEXQGDQFH RI &+ ,Q DGGLWLRQ VHOHFWHGLRQ IORZ WXEH 6,)7f H[SHULPHQWV VKRZ &+ GRHV QRW UHDFW ZLWK DFHW\OHQH EXW UHDFWV ZLWK GLDFHW\OHQH WR IRUP &+ DW QHDUO\ WKH FROOLVLRQ UDWH 7KHVH UHVXOWV LQGLFDWH f HOHFWURQ ERPEDUGPHQW DQG SXOVHGJORZ GLVFKDUJH ERWK RI ZKLFK KDYH EHHQ XVHG WR JHQHUDWH LGHQWLFDO 89YLV DEVRUSWLRQ VSHFWUD RI QDSKWKDOHQH FDWLRQ LQ $Uf DSSHDU WR JHQHUDWH VLPLODU IUDJPHQWDWLRQ SDWWHUQV DQG f WKHUH LV HYLGHQFH IRU JURZWK RI QDSKWKDOHQH SDUHQW LRQ IURP IUDJPHQWV JHQHUDWHG DV E\SURGXFWV RI LRQL]DWLRQ LQ WKH JDV SKDVH MXVW SULRU WR GHSRVLWLRQf WKLV PD\ DFFRXQW IRU WKH DSSDUHQW VSHFWUDO SUHGRPLQDQFH RI QDSKWKDOHQH SDUHQW LRQ LQ $U PDWULFHV VWXGLHG

PAGE 143

)LJXUH )7,&5 0DVV 6SHFWUXP RI 3XOVHG*ORZ 'LVFKDUJHG 1DSKWKDOHQH 6HHGHG LQ $U

PAGE 144

F !

PAGE 145

$OWKRXJK QRW LQYHVWLJDWHG E\ )7,&506 LW LV DSSDUHQW IURP PDWUL[ LVRODWLRQ UHVXOWV WKDW DGGLWLRQ RI && HQKDQFHV LRQ SURGXFWLRQ 7KH DSSHDUDQFH RI && f &O && DQG && FDUERQ WHWUDFKORULGH IUDJPHQWV DV ZHOO DV &O DQGRU &On E\ GHGXFWLRQf LQGLFDWHV WKH IROORZLQJ SURFHVVHV RFFXU GXULQJ HOHFWURQ ERPEDUGPHQW DQG SXOVHGJORZ GLVFKDUJHf 1 Hr } 1 Hr f && H } && &O Hn f && Hf r && &O Hf f 7KH UROH RI && DQGRU LWV GHFRPSRVLWLRQ SURGXFWVf LV QRW VLPSO\ WKDW RI HOHFWURQ VFDYHQJHU DQG VXEVHTXHQW PDWUL[ FKDUJH FRPSHQVDWRUf EXW UDWKHU LRQL]DWLRQ HQKDQFHU YLD WKH FKDUJH WUDQVIHU SURFHVV && 1 } && 1 f $QRWKHU KLJKO\ SUREDEOH LRQL]DWLRQ SURFHVV LQYROYHV 3HQQLQJ LRQL]DWLRQ LQ ZKLFK DUJRQ DWRPV WKH GRPLQDQW JDV LQ WKH $U&&O1 PL[WXUHf DUH H[FLWHG WR PHWDVWDEOH VWDWHV E\ HOHFWURQ LPSDFW DQG WKLV HQHUJ\ LV WUDQVIHUUHG WR DQG LRQL]HV QHXWUDO QDSKWKDOHQH YLD WKH UHDFWLRQV $U Hn } $Ur Hn f $Ur 1 } 1 $U H f $UJRQ LRQV JHQHUDWHG E\ HOHFWURQ LPSDFW PD\ DOVR EH LQYROYHG LQ FKDUJH WUDQVIHU SURFHVVHV $U Hn } $U Hf f $U 1 } 1 $U f

PAGE 146

7KHVH DUH HQHUJHWLFDOO\ IHDVLEOH VLQFH WKH LRQL]DWLRQ SRWHQWLDO RI QDSKWKDOHQH LV OHVV WKDQ WKDW RI DUJRQ DQG LWV PHWDVWDEOH HQHUJ\ OHYHOV 7KH SUHVHQFH RI VLJQLILFDQW QXPEHUV RI LRQV LQ WKH JDV SKDVH MXVW SULRU WR GHSRVLWLRQ LV LQGLFDWHG E\ WKH WR IROG LQFUHDVH LQ FXUUHQW PRQLWRUHG DW WKH ULQJ HOHFWURGH GXULQJ GHSRVLWLRQ 5HFDOO D FLUFXODU HOHFWURGH LV VXVSHQGHG DERYH DQG DGMDFHQW WR WKH PDWUL[ ZLQGRZ LW VHUYHV WR FROOHFW HOHFWURQV DQG DQLRQVf 7KH IDFW WKDW WKH PDWUL[ IRUPHG PXVW EH HOHFWULFDOO\ QHXWUDO VKRXOG EH HPSKDVL]HG DQG LW LV EHOLHYHG WKDW HOHFWURQ FDSWXUH E\ FKORULQH DWRPV IURP &&f WR IRUP FKORULGH DQLRQV LV WKH SUHGRPLQDQW PHDQV RI FKDUJH EDODQFH ZKHQ && LV DGGHG 7KH DELOLW\ WR WUDS 3'&% 3'02% DQG 1 UDGLFDO FDWLRQV LQ DUJRQ ZLWKRXW DGGLWLRQ RI && DOEHLW LQ ORZHU \LHOGV LQGLFDWHV RWKHU DQLRQV GHULYHG IURP LPSXULWLHV HJ K\GUR[LGH LRQV PD\ VHUYH WR EDODQFH FKDUJH 7KH UROH RI && LV FODULILHG EDVHG RQ REVHUYHG SKRWRO\VLV EHKDYLRU 7KH DQG FP && f &O EDQGV HVVHQWLDOO\ GLVDSSHDU XSRQ SKRWRO\VLV ZKLOH WKH FP && EDQG DQG QDSKWKDOHQH FDWLRQ EDQGV LQFUHDVH E\ DQG b UHVSHFWLYHO\ 7KH GHFUHDVH RI && f &O DQG LQFUHDVH RI && FRQFHQWUDWLRQV PD\ EH DWWULEXWHG WR WKH SKRWRO\WLF GHFRPSRVLWLRQ SURFHVV && f &O KY } && &O f ZKLOH WKH >1@ LQFUHDVH UHVXOWV IURP LQ VLWX WZRSKRWRQ SKRWRLRQL]DWLRQ RI QHXWUDO QDSKWKDOHQH YLD 1 K9MA1r f 1r KY 1 Hn f ZKHUH 1r UHSUHVHQW QDSKWKDOHQH LQ LWV VLQJOHW 7 6[f QVf RU

PAGE 147

WULSOHW 7 7[f Vf H[FLWHG VWDWHV 6ORZ HOHFWURQV SURGXFHG IURP UHDFWLRQ f DUH WKHQ FDSWXUHG E\ &O DWRPV DQGRU && RU RWKHU FDWLRQV SUHVHQWf YLD &O Hr } &Or f && Haar && f 5HDFWLRQ f DOVR FRQWULEXWHV WR >&&@ GHFUHDVH DQG >&&@ LQFUHDVH ZKLOH UHDFWLRQV f DQG f DFFRXQW IRU WKH REVHUYHG ab GHFUHDVH RI QHXWUDO QDSKWKDOHQH EDQGV XSRQ SKRWRO\VLV $V SRLQWHG RXW LQ WKH GLVFXVVLRQ RI 3'02% UHVXOWV WKH EURDG QP RSWLFDO EDQG FI )LJV DQG f DQG FP ,5 EDQG FI )LJV DQG f WUDFN HDFK RWKHU XSRQ SKRWRO\VLV LH WKH\ ERWK HVVHQWLDOO\ GLVDSSHDU DQG DUH WKH RQO\ 89YLV,5 EDQG SDLUV WR GR VR ,W LV FOHDU WKDW WKHVH EDQGV UHVXOW IURP WKH VDPH FKHPLFDO VSHFLHV 7KH QP RSWLFDO EDQG KDG SUHYLRXVO\ EHHQ DVVLJQHG WR && DQG PRUH UHFHQWO\ WR && f &O ZKLOH WKH f FP EDQG ZDV DVVLJQHG WR && f &O 7KH DVVLJQPHQW WR && LV UXOHG RXW VLQFH GLUHFW LRQL]DWLRQ RI && YLD && KY } && Hr f LV QRW IDYRUDEOH VLQFH && LV XQVWDEOH EDVHG RQ PDVV VSHFWURPHWULF VWXGLHV 0DVV VSHFWUD REWDLQHG XVLQJ WKH PDWUL[ LVRODWLRQ HOHFWURQ JXQ VKRZHG QR && IRUPDWLRQ HLWKHUf 3KRWRLRQL]DWLRQGLVVRFLDWLRQ RI && WR \LHOG && DQG &O WKH SUHFXUVRUV RI && f &Of YLD && KY H9f } && &O Hr f

PAGE 148

UHTXLUHV H9 ZKLOH VLPSOH SKRWRGLVVRFLDWLRQ WR \LHOG && DQG &O WKH SUHFXUVRUV RI && f &Of YLD && KY H9f } && &O f UHTXLUHV RQO\ H9 0DLHU DQG FRZRUNHUV SKRWRO\]HG && LQ DQ $U PDWUL[ XVLQJ QHDU 89 QP H9f UDGLDWLRQ DQG REVHUYHG f DQG FP EDQGV EXW QRW WKH FP && EDQG +HQFH PHGLXPSUHVVXUH +J ODPS SKRWRO\VLV LV QRW HQHUJHWLF HQRXJK WR \LHOG && EXW LV FDSDEOH RI SURGXFLQJ && ,Q DGGLWLRQ DE LQLWLR FDOFXODWLRQV *r EDVLVf RI && f &O (5 IUHTXHQFLHV DJUHH ZLWK WKH DQG FP EDQGV REVHUYHG 7R VXPPDUL]H WKH LQVWDELOLW\ RI && WKH IDYRUDEOH HQHUJHWLFV RI && IRUPDWLRQ YHUVXV &&f DQG UHFHQW DE LQLWLR UHVXOWV LQGLFDWH WKH FP EDQG VKRXOG EH DVVLJQHG WR && f &O VLQFH WKLV (5 EDQG DQG WKH QP RSWLFDO EDQG DUH GXH WR WKH VDPH VSHFLHV WKH QP DEVRUSWLRQ LV DVVLJQHG WR && f &O (VWLPDWHV RI FDWLRQ \LHOG IRU 3'&% DQG 3'02% ZHUH EDVHG RQ WKHRUHWLFDO DQG H[SHULPHQWDO ,5 EDQG LQWHQVLWLHV $ VLPLODU SURFHGXUH XVLQJ H[SHULPHQWDOO\ GHWHUPLQHG 89YLVLEOH DEVRUEDQFHV $f DQG PRODU DEVRUSWLRQ FRHIILFLHQWV ef ZDV DSSOLHG WR QDSKWKDOHQH .HOVDOO DQG $QGUHZV .$f GHWHUPLQHG e PD[ IRU WKH QP 1 EDQG WR EH 0 FP ZKLOH 6DODPD DQG $ODPDQGROD 6$f UHFHQWO\ UHSRUWHG ePD[ QPf 0 FP ERWK LQ $Uf 7KH FDWLRQWRQHXWUDO UDWLR &&rf LQ WKH PDWUL[ LV HYDOXDWHG YLD $ QPf (PD[ QPf & $r QPf erPD[ QPf &r=

PAGE 149

\LHOGLQJ &&rf >$ QPf$r QPf @ [ >erPD[ QUQf(PD[ QPf@ 7KH DEVRUEDQFH UDWLR LV EDVHG RQ D UHSUHVHQWDWLYH VSHFWUXP )LJ f ZKLOH XVLQJ WKH UHVXOWV RI 6$ WKH PRODU DEVRUSWLRQ FRHIILFLHQW UDWLR LV 7KLV OHDGV WR &&rf RU b XVLQJ .$nV UHVXOWV WKH UDWLR LV RU b 7KH IRUPHU UHVXOW LV SUREDEO\ WRR KLJK ZKLOH WKH ODWWHU DSSHDUV ORZ \HW PRUH UHDVRQDEOH )LQDOO\ HPSKDVLV KDV EHHQ SODFHG RQ UHODWLYH ,5 LQWHQVLWLHV UDWKHU WKDQ RQ DEVROXWH YDOXHV ,W LV LQVWUXFWLYH WR HVWLPDWH DEVROXWH ,5 EDQG LQWHQVLWLHV H[SHULPHQWDOO\ DV D FKHFN RI FRPSXWHG YDOXHV $VVXPLQJ WKH .$ PRODU DEVRUSWLRQ FRHIILFLHQW RI 0 FP IRU WKH QP EDQG DQG WKH UHVXOW WKDW LW LV WLPHV PRUH LQWHQVH WKDQ WKH FP (5 EDQG GHULYHG IURP WKH VORSH RI WKH OLQH LQ )LJ f (PD[ FPf 0 FP 7KH LQWHJUDWHG EDQG LQWHQVLW\ LV UHTXLUHG WR FRPSDUH WR WKHRUHWLFDO YDOXHV DQG LV GHWHUPLQHG DV ( Yf GY (PD[ FPf $Y NP PRO 7KLV YDOXH LV FRQVLGHUDEO\ VPDOOHU WKDQ WKH NP PRN YDOXH GHWHUPLQHG WKHRUHWLFDOO\ PRUH PXVW EH GRQH WR H[SHULPHQWDOO\ HVWDEOLVK WKH QP PRODU DEVRUSWLRQ FRHIILFLHQW VLQFH VXEVHTXHQW DEVROXWH ,5 LQWHQVLWLHV DUH EDVHG RQ LW $Q LPSRUWDQW WKHRUHWLFDO SUHGLFWLRQ H[SUHVVHG E\ 3DX]DW HW DO LV WKDW &+ VWUHWFKLQJ PRGH ,5 LQWHQVLWLHV VKRXOG GHFUHDVH E\ DQ RUGHU RI

PAGE 150

PDJQLWXGH ZKLOH ULQJ GHIRUPDWLRQ LQYROYLQJ && VWUHWFKLQJ DQG LQSODQH &+ EHQGLQJ YLEUDWLRQVf LQWHQVLWLHV VKRXOG LQFUHDVH E\ WZR RUGHUV RI PDJQLWXGH XSRQ LRQL]DWLRQ 6LPLODU LQWHQVLW\ FKDQJHV ZHUH DQWLFLSDWHG IRU 3'&% DQG 3'02% EDVHG RQ RXU FDOFXODWLRQV $OWKRXJK WKH &+ PRGH LQWHQVLW\ GHFUHDVH ZDV QRW REVHUYHG H[SHULPHQWDOO\ GXH WR QHXWUDO PROHFXOH VSHFWUDO FRQJHVWLRQ WKH ULQJ GHIRUPDWLRQ LQWHQVLW\ LQFUHDVH FHUWDLQO\ DLGHG LQ GHWHFWLQJ DQG DVVLJQLQJ ,5 EDQGV WR FDWLRQV SUHVHQW DW FRQFHQWUDWLRQV WLPHV ORZHU WKDQ WKHLU QHXWUDO SDUHQWV

PAGE 151

&21&/86,216 3XOVHGJORZ GLVFKDUJHPDWUL[ LVRODWLRQ DQG HOHFWURQ ERPEDUGPHQW PDWUL[ LVRODWLRQ KDYH EHHQ GHYHORSHG DV PHWKRGV WR JHQHUDWH DQG WUDS VXIILFLHQW TXDQWLWLHV RI PROHFXODU LRQV LQ RUGHU WR GLUHFWO\ REVHUYH IRU WKH ILUVW WLPH WKH LQIUDUHG VSHFWUD RI WKH UDGLFDO FDWLRQV RI SDUD GLFKORUREHQ]HQH SDUDGLPHWKR[\EHQ]HQH DQG QDSKWKDOHQH LQ DUJRQ PDWULFHV DW ,Q DGGLWLRQ IOXRUHVFHQFH DQG 5HVRQDQFH 5DPDQ VSHFWUD RI 3'&% DQG WKH SDUWLDO 55 VSHFWUXP RI 1 ZHUH UHFRUGHG LQ $U DW .f (OHFWURQLF WUDQVLWLRQ HQHUJLHV RI WKHVH LRQV OLH LQ WKH 89YLVLEOH UHJLRQ DQG WKLV KDV DOORZHG LQKHUHQWO\ VHQVLWLYH ODVHU LQGXFHG IOXRUHVFHQFH /,)f DQG 55 WHFKQLTXHV WR EH DSSOLHG WR VHOHFWLYHO\ SUREH VXFK LRQV HYHQ DW UHODWLYHO\ ORZ PDWUL[ FRQFHQWUDWLRQV DQG LQ WKH SUHVHQFH RI UHODWLYHO\ KLJK FRQFHQWUDWLRQV RI QHXWUDO SDUHQW PROHFXOHV 0RUHRYHU VLQFH WKH QHXWUDO SUHFXUVRUV DQG UDGLFDO FDWLRQV GHULYHG IURP WKHP DEVRUE LQ WKH 89 DQG WKH 89YLVLEOH UHJLRQV UHVSHFWLYHO\ DSSHDUDQFH RI YLVLEOH EDQGV DWWULEXWDEOH WR LRQV LV GLVWLQFW DQG REYLRXV LH QHXWUDOV GRQnW PDVN FDWLRQLF YLVLEOH EDQGV 7KLV IDFW FRXSOHG ZLWK WKH W\SLFDOO\ LQWHQVH QDWXUH RI VXFK HOHFWURQLF WUDQVLWLRQV KDV UHVXOWHG LQ H[WHQVLYH FRPSLODWLRQV RI 89YLVLEOH DEVRUSWLRQ VSHFWUD RI PROHFXODU LRQV ,Q FRQWUDVW ,5 DEVRUSWLRQ VSHFWUD IRU UDGLFDO FDWLRQV DV ODUJH DV WKRVH UHVHDUFKHG KHUH DUH VFDUFH 7KLV LV GXH LQ SDUW WR SUHYLRXV DVVXPSWLRQV WKDW ,5 WUDQVLWLRQ PRPHQWV IRU UDGLFDO FDWLRQV VKRXOG EH

PAGE 152

QRPLQDOO\ DQ RUGHU RI PDJQLWXGH RU VR OHVV WKDQ WKHLU HOHFWURQLF FRXQWHUSDUWV DQG WKDW IUHTXHQF\ VKLIWV XSRQ LRQL]DWLRQf VKRXOG EH VPDOO 7KHUHIRUH XQOLNH 89YLVLEOH VSHFWURVFRS\ REWDLQLQJ ,5 DEVRUSWLRQ VSHFWUD RI UHODWLYHO\ ODUJH PROHFXODU LRQV DW ORZ FRQFHQWUDWLRQV LQ WKH SUHVHQFH RI PDQ\ PRUH QHXWUDOV VKRXOG EH TXLWH GLIILFXOW 7R WKLV HQG H[SHULPHQWDO WHFKQLTXHV ZHUH GHYHORSHG WR HQKDQFH LRQ IRUPDWLRQWUDSSLQJ DQG WR GLVWLQJXLVK WUXH FDWLRQLF ,5 DEVRUEDQFHV IURP RWKHU PDWUL[ VSHFLHV $E LQLWLR WKHRUHWLFDO FDOFXODWLRQV FRPSOLPHQWHG WKHVH H[SHULPHQWDO PHWKRGV ,RQ IRUPDWLRQWUDSSLQJ ZDV HQKDQFHG E\ DGGLWLRQ RI && WR 3'02%$U DQG 1$U SODVPD PL[WXUHV 3HUFHQWDJH \LHOGV RI LRQV ZHUH ab ZLWKRXW && DGGLWLRQ DQG XS WR a b XSRQ DGGLWLRQ RI && W\SLFDOO\ WKH \LHOGV ZHUH b 3KRWRO\VLV H[SHULPHQWV DOVR DOORZHG DVVLJQPHQW RI D QP RSWLFDO DEVRUEDQFH WR WKH &&, f &O VSHFLHV ,5 DEVRUEDQFHV GXH WR 3'&% 3'02% DQG 1 ZHUH DVVLJQHG H[SHULPHQWDOO\ E\ FRUUHODWLRQ RI WKHLU NQRZQ DQG ZHOO FKDUDFWHUL]HG HOHFWURQLF EDQGV ZLWK ,5 EDQGV H[KLELWHG E\ WKH VDPH VDPSOHPDWUL[ 3ORWWLQJ VRXJKWDIWHU ,5 DEVRUEDQFHV DJDLQVW WKH NQRZQ RSWLFDO DEVRUEDQFHV DV D IXQFWLRQ RI YDU\LQJ H[SHULPHQWDO FRQGLWLRQV \LHOGHG VWUDLJKW OLQHV IRU WUXH FDWLRQLF EDQGVf ZKLFK SDVVHG WKURXJK WKH RULJLQ 3KRWRO\VLV H[SHULPHQWV IXUWKHU VXSSRUWHG DVVLJQPHQWV $E LQLWLR +DUWUHH)RFN 6&) OHYHO WKHRUHWLFDO FDOFXODWLRQV VKRZHG JRRG DJUHHPHQW DIWHU VFDOLQJf ZLWK H[SHULPHQWDO UHVXOWV IRU ERWK QHXWUDOV DQG UDGLFDO FDWLRQV ZLWK IUHTXHQFLHV XVXDOO\ ZLWKLQ FP RI WKH H[SHULPHQWDO YDOXHV )UHTXHQF\ VKLIWV XSRQ LRQL]DWLRQ ZHUH VPDOO

PAGE 153

FQUf DV DQWLFLSDWHG EXW VLQFH WKHVH YLEUDWLRQV DUH TXLWH GHORFDOL]HG FRPSDULVRQ RI QHXWUDO WR FDWLRQLF QRUPDO PRGHV LV QRW VWUDLJKWIRUZDUG +RZHYHU GHFRPSRVLWLRQ RI QRUPDO PRGHV WR LQWHUQDO FRRUGLQDWH VSHFLILF IRUFH FRQVWDQWV DQG IUHTXHQFLHV SUHGLFWHG FOHDUO\ ERQGLQJ FKDQJHV HYRNHG XSRQ UHPRYDO RI DQ HOHFWURQ IURP WKH VSHFLILF +202 ZKLFK LW KDG RFFXSLHG &RPSDULVRQ RI FDOFXODWHG DQG H[SHULPHQWDOO\ GHWHUPLQHG DEVROXWH ,5 LQWHQVLWLHV ZDV PRUH SUREOHPDWLF EXW UHODWLYH LQWHQVLWLHV FRUUHVSRQGHG IDLUO\ ZHOO ,QWHQVLW\ SDWWHUQ FKDQJHV SUHGLFWHG WKHRUHWLFDOO\ LH D GHFUHDVH RI &+ VWUHWFKLQJ DQG LQFUHDVH RI && ULQJ GHIRUPDWLRQ LQWHQVLWLHV ZDV QRW FRPSOHWHO\ ERUQHRXW H[SHULPHQWDOO\ EXW REVHUYDWLRQ RI FDWLRQLF EDQGV FRPSXWHG WR EH WKH PRVW LQWHQVH LV FRQVLVWHQW ZLWK WKHRUHWLFDO H[SHFWDWLRQV 7KLV LQWHQVLW\ LQFUHDVH ZDV DQ LPSRUWDQW IDFWRU WRZDUG REVHUYDWLRQ RI WKH FDWLRQLF ,5 EDQGV UHSRUWHG 3UHOLPLQDU\ )7,&506 UHVXOWV RI SXOVHGJORZ GLVFKDUJHG 3'&% 3'02% DQG 1 LQ DUJRQ VKRZHG IUDJPHQWDWLRQ RI SDUHQW PROHFXOHV 8QDVVLJQHG ,5 EDQGV REVHUYHG PD\ EH GXH WR VXFK IUDJPHQWV DQG WKLV PD\ EH DQ DUHD IRU IXWXUH ZRUN )RU QRZ LW LV HPSKDVL]HG WKDW LQGHSHQGHQW DQG FRPSOLPHQWDU\ PHWKRGV DUH UHTXLUHG WR FRUUHFWO\ DVVLJQ VSHFWUDO IHDWXUHV WR VRXJKWDIWHU VSHFLHV 7KH REMHFWLYH RI WKLV UHVHDUFK ZDV UHDOL]HG WKH VSHFWURVFRSLF GDWD EDVH VSHFLILFDOO\ YLEUDWLRQDO DVVLJQPHQWV ZDV H[WHQGHG IRU RUJDQLF DURPDWLF UDGLFDO FDWLRQV RI HQYLURQPHQWDO DQG DVWURSK\VLFDO LPSRUWDQFH 6SHFWUD REWDLQHG IRU WKHVH VSHFLHV LQ WKH UHODWLYHO\ QRQSHUWXUELQJ DUJRQ PHGLXP DW FRPSDUH ZHOO ZLWK WKRVH REWDLQHG LQ FOD\ DW URRP WHPSHUDWXUH 0RQLWRULQJ WKH IDWH RI FKHPLFDOV LQ WKH HQYLURQPHQW ZLOO

PAGE 154

EHQHILW IURP IXQGDPHQWDO UHVHDUFK VXFK DV WKLV ,QYHVWLJDWLRQ RI UROH RI LRQL]HG 3$+V DV 8,5 HPLWWHUV ZDV LQLWLDWHG 7KH LPSRUWDQW ILQGLQJ WKDW ,5 LQWHQVLW\ SDWWHUQV IRU LRQL]HG PROHFXOHV DUH TXLWH GLIIHUHQW IURP WKHLU QHXWUDO SDUHQWV ZLOO VHUYH WR EHWWHU PRGHO WKH FRPSRVLWLRQ RI DQG DVWURSK\VLFDO SURFHVVHV RFFXUULQJ LQ WKH LQWHUVWHOODU PHGLXP )XWXUH ZRUN VKRXOG EH GLUHFWHG WRZDUG IXUWKHU RSWLPL]DWLRQ RI LRQ \LHOGV UHILQHPHQW RI LRQL]DWLRQ WHFKQLTXHV DV WR DYRLG DQGRU DFFRXQW IRUf IUDJPHQWDWLRQ DQG FKDUDFWHUL]DWLRQ RI WKH SUHPDWUL[ JDVHRXV PL[WXUH 7KLV HIIRUW LV SUHVHQWO\ XQGHUZD\ WKURXJK WKH FRXSOLQJ RI PDVV VSHFWURPHWHUV DQG WKH PDWUL[ LVRODWLRQ WHFKQLTXH 7KH VHSDUDWLRQ RI QHXWUDOV IURP LRQV E\ XVH RI D TXDGUDSROH LRQ WXUQLQJ GHYLFH LV EHLQJ LQYHVWLJDWHG E\ WKH 9DOD JURXS 0DVV VHOHFWLRQ RI LRQV KDV PHW ZLWK VRPH VXFFHVV DV H[HPSOLILHG E\ WKH ZRUN RI 0DLHU DQG FRZRUNHUV EXW WKLV KDV EHHQ OLPLWHG WR VWXGLHV RI HOHFWURQLF QRW YLEUDWLRQDOf VWUXFWXUH 7KHVH HIIRUWV PXVW IXUWKHU DGGUHVV WKH UROH RI FRXQWHULRQV DV FKDUJH FRPSHQVDWRUV LQ PDWULFHV )LQDOO\ WKH LQWHUDFWLRQ RI H[SHULPHQW ZLWK WKHRUHWLFDO PHWKRGV VKRXOG FRQWLQXH HVSHFLDOO\ FRQFHUQLQJ DEVROXWH LQWHQVLW\ PHDVXUHPHQWV DQG FDOFXODWLRQV

PAGE 155

5()(5(1&(6 ( 7 .DLVHU DQG / .HYDQ HGV 5DGLFDO ,RQV -RKQ :LOH\ DQG 6RQV 1HZ
PAGE 156

7 3LQQDYDLD 3 / +DOO 6 6 &DG\ DQG 0 0 0RUWODQG 3K\V &KHPe f < 6RPD 0 6RPD DQG +DUDGD 3K\V &KHP ee f < 6RPD 0 6RPD DQG +DUDGD LELG e f < 6RPD DQG 0 ORPD &KHP 3K\V /HWWHUV e f & 7 -RKQVWRQ 7 7LSWRQ $ 6WRQH & (ULFNVRQ DQG 6 7UDXEH /DQJPXLU f 6 /HJHU DQG / 3XJHW $VWURQ $VWURSK\V / f / $OODPDQGROD $ 7LHOHQV DQG 5 %DUNHU $VWURSK\V /*f + ) &DOFROWH / )UDQNOLQ HG ,RQPROHFXOH UHDFWLRQV %XWWHUZRUWKV /RQGRQ f 3 *HUKDUGW 6 /IHU DQG + +RPDQQ &KHP 3K\V /HWW f 6PLWK DQG 1 $GDPV 3XUH $SSO &KHP ee f 7 0DVN DQG + 'XQQ HGV (OHFWURQ LPSDFW LRQL]DWLRQ 6SULQJHU9HUODJ 9LHQQD f : &REXUQ DQG ( .D\ $SSO 3K\V /HWW e f + + :LOODUG / / 0HUULWW -U $ 'HDQ DQG ) $ 6HWWOH -U ,QVWUXPHQWDO PHWKRGV RI DQDO\VLV WK (G 9DQ 1RVWUDQG 1HZ
PAGE 157

5 0DVRQ DQG 0LOWRQ ,QW 0DVV 6SHFWURP ,RQ 3URF e f 6HH IRU H[DPSOH & 6 )HLJHUOH DQG & 0LOOHU &KHP 3K\V 4 f / % /RHE )XQGDPHQWDO SURFHVVHV RI HOHFWULFDO GLVFKDUJH LQ JDVHV :LOH\ &KDSPDQ DQG +DOO /RQGRQ f ( 1DVVDU )XQGDPHQWDOV RI JDVHRXV LRQL]DWLRQ DQG SODVPD HOHFWURQLFV :LOH\,QWHUVFLHQFH 1HZ
PAGE 158

0 'XSXLV 6SDQJOHU DQG 0HQGRORVNL 15&& VRIWZDUH FDWDORJ 8QLYHUVLW\ RI &DOLIRUQLD %HUNHOH\ &$ 3URJUDP 4* f 0 : 6FKLPGW . %DOGULGJH $ %RDW] + -HQVHQ 6 .RVHNL 0 6 *RUGRQ $ 1JX\HQ 7 / :LQGXV DQG 6 7 (OEHUW 4&3( %XOO f 7 .RRSPDQV 3K\VLFD f & & 5RRWKDQ 5HY 0RG 3K\V f ( % :LOVRQ -U & 'HFLXV DQG 3 & &URVV 0ROHFXODU 9LEUDWLRQV WKH WKHRU\ RI LQIUDUHG DQG UDPDQ YLEUDWLRQDO VSHFWUD 'RYHU 1HZ
PAGE 159

$ 3RSOH / %HYHULGJH DQG 'RERVK &KHP 3K\V f $ %DFRQ DQG 0 & =HUQHU 7KHRUHW &KLP $FWD e f 5LGOH\ DQG 0 & =HUQHU LELG f 0 & =HUQHU + ORHZ 5 ) .LUFKQHU DQG 0XHOOHU:HVWHUKRII $P &KHP 6RF f 3 -SUJHQVHQ DQG 6LPRQV HGV *HRPHWULFDO GHULYDWLYHV RI HQHUJ\ VXUIDFHV DQG PROHFXODU SURSHUWLHV 5HLGHQ 'RUGHFKW f + 6 *UHHQ 6SHFWURFKLP $FWD 3DUW $ f $ 6WRMLOMNRYLF DQG + :KLIIHQ 6SHFWURFKLP $FWD f 5 6FKHUHU DQG & (YDQV LELG f ( $ 5RKOILQJ DQG & 0 5RKOILQJ 3K\V &KHP f $ %RDW] DQG 0 6 *RUGRQ 3K\V &KHP f / $QGUHZV 3K\V &KHP f / $QGUHZV 3K\V &KHP f ( ( 5RJHUV 6 $EUDPRZLW] 0 ( -DFR[ DQG ( 0LOOLJDQ &KHP 3K\V f 0( -DFR[ DQG ( 0LOOLJDQ LELG e f ) 7 3URFKDVND DQG / $QGUHZV LELG e f 0DLHU + 3 5HLVHQDXHU -X / 6FKDG DQG % $ +HVV -U $P &KHP 6RF f 0DLHU + 3 5HLVHQDXHU -X % $ +HVV -U DQG / 6FKDG 7HWUDKHGURQ /HWW f / $QGUHZV % .HOVDOO + 0LOOHU DQG % : .HHODQ &KHP 6RF )DUDGD\ 7UDQV ,, f / $QGUHZV DQG 7 $ %ODQNHQVKLS $P &KHP 6RF f % .HOVDOO DQG / $QGUHZV &KHP 3K\V e f

PAGE 160

/ $QGUHZV % .HOVDOO DQG 7 / %ODQNHQVKLS 3K\V &KHP f 7 6KLGD DQG 6 ,ZDWD $P &KHP 6RF f 7 6KLGD DQG : + +DPLOO &KHP 3K\V f ) 6DODPD DQG / $OODPDQGROD &KHP 3K\V f 3 $ &ODUN ) %URJOL DQG ( +HLOEURQQHU +HOY &KLP $FWD f ) 3DX]DW 7DOEL 0' 0LOOHU 'H)UHHV DQG < (OOLQJHU 3K\V &KHP f 6 6KHQJ DQG +X\ &KHP 3K\V /HWW f + .DZDVKLPD 7 .DWR DQG 7 6KLGD LELG f 0 6X]XNL 7
PAGE 161

%,2*5$3+,&$/ 6.(7&+ :LOOLDP 3HUVRQHWWH ZDV ERUQ RQ $XJXVW LQ $XJVEXUJ :HVW *HUPDQ\ +H ZDV UDLVHG DQG DWWHQGHG KLJK VFKRRO LQ )D\HWWHYLOOH 1RUWK &DUROLQD ZKHUH KH JUDGXDWHG LQ 8QGHUJUDGXDWH % 6F GHJUHHV ZHUH UHFHLYHG LQ IRUHVWU\ DQG VRLO VFLHQFH IURP 1RUWK &DUROLQD 6WDWH 8QLYHUVLW\ LQ DQG UHVSHFWLYHO\ $Q 06F GHJUHH LQ LQRUJDQLF FKHPLVWU\ ZDV UHFHLYHG LQ IURP 1&68 VOLJKWO\ OHVV WKDQ RQH \HDU DIWHU KDYLQJ PRYHG WR WKH 8QLYHUVLW\ RI )ORULGD LQ WR SXUVXH D 3K' LQ SK\VLFDOLQRUJDQLF FKHPLVWU\ +H LV FXUUHQWO\ HPSOR\HG DV D YLVLWLQJ LQVWUXFWRU RI FKHPLVWU\ DW 5ROOLQV &ROOHJH LQ :LQWHU 3DUN )ORULGD

PAGE 162

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0DUWLQ 7 9DOD &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ U ; :LOOLDP :HOWQHU -U 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DWDG 5LFKDUGVRQ $VVRFLDWH 3URIHVVRU RI &KHPLVWU\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DQLHO 7DOKDP $VVLVWDQW 3URIHVVRU RI &KHPLVWU\

PAGE 163

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI 6RLO DQG :DWHU 6FLHQFH 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI &KHPLVWU\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 164

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID ERKHG26LO_RC3OP2 INGEST_TIME 2017-07-13T21:25:37Z PACKAGE AA00003671_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES