Citation
Seismic stratigraphy of the western Florida carbonate platform and history of Eocene strata

Material Information

Title:
Seismic stratigraphy of the western Florida carbonate platform and history of Eocene strata
Creator:
Jee, Jonathan Lucas, 1955-
Publication Date:
Language:
English
Physical Description:
xii, 215 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Carbonates ( jstor )
Escarpments ( jstor )
Geological facies ( jstor )
Geology ( jstor )
Gulfs ( jstor )
Petroleum ( jstor )
Sea level ( jstor )
Sediments ( jstor )
Stratigraphy ( jstor )
Taxa ( jstor )
Gulf of Mexico ( local )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1993.
Bibliography:
Includes bibliographical references (leaves 195-213).
General Note:
Typescript.
General Note:
Four folded ill. in pocket.
General Note:
Vita.
Statement of Responsibility:
by Jonathan Lucas Jee.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
030003337 ( ALEPH )
AJX3182 ( NOTIS )
29809572 ( OCLC )

Downloads

This item has the following downloads:


Full Text










SEISMIC STRATIGRAPHY OF THE
WESTERN FLORIDA CARBONATE PLATFORM
AND HISTORY OF EOCENE STRATA





















By

JONATHAN LUCAS JEE


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1993
































Copyright 1993

by

Jonathan Lucas Jee












ACKNOWLEDGMENTS

I am indebted to Dr. Anthony F. Randazzo, committee

chairman, for his guidance and encouragement. I also thank

the other committee members, Dr. Douglas L. Smith, Dr. Paul F.

Ciesielski, Dr. David Hodell, and Dr. Thomas Crisman.

I am grateful to Mr. Hank Hamilton, Mr. Earl Hale, and

Mr. Jerry A. Watson of GECO Geophysical Company, Inc., Mr.

Carl B. Hutchins and Ms. Lori Price of Digicon Geophysical

Corporation, and Mr. Marc A. Lawrence and Ms. Carol Ellis of

Fairfield Industries for proprietary reflection seismic data

used in this study. Thanks go to Dr. John P. Riola, Ms. Jean

Anderson and Mr. Thomas M. Torrey of Texaco USA for assistance

in obtaining seismic data and for supplying data from

exploratory wells. I thank Dr. Tillman Cooley, Mr. Lee

Entsminger, Ms. Leigh Anne Salathe, and Mr. Everett Kastler of

Mobil Exploration and Producing U.S., Inc., for release of

cores and additional well information. Thanks also go to Mr.

Phil Ware of Coastal Petroleum for sharing well data with me.

Many others in various capacities have given support,

cooperation, assistance and advice, all greatly appreciated.

Dr. James A. Miller and Mr. Mahlon Ball of the United States

Geological Survey (USGS) supplied copies of USGS well and

seismic data. Craig Byar of Petroleum Information also


iii







provided information on offshore wells. Ms. Joan Ragland of

the Florida Geological Survey (FGS), Oil and Gas Section,

helped in the search for core information. Dr. Brad Macurda

of The Energists gave guidance in the initial phase of this

project, facilitating the search for seismic data. Dr. Albert

C. Hine and Dr. Larry J. Doyle of the Department of Marine

Science, University of South Florida, St. Petersburg, Mr.

George O. Winston, consulting geologist, and Dr. Richard T.

Buffler of the University of Texas Institute for Geophysics

shared helpful ideas on the project. Mr. Stephen M. Greenlee

of Exxon Production Research Company assisted with the

correlation of sequence boundaries and Mr. Stuart Grossman of

Exxon Exploration Company provided biostratigraphic data. Mr.

Frank Rupert of the FGS assisted with interpretation of data

on benthonic foraminifers.

Financial support, in the form of grants-in-aid of

research, was contributed by Sigma Xi, the Scientific Research

Society (1989), and the Geological Society of America (1990

and 1991). I have also been supported as a research assistant

working on various projects funded by grants from the USGS.

Additionally, I received (Fall 1990) a fellowship associated

with this dissertation research from the Space Assistantship

Enhancement Program of the Florida Space Grant

Consortium/National Aeronautics and Space Administration.

Special recognition is due Susan, my wife, for her love,

support, and inspiration.













TABLE OF CONTENTS
page

ACKNOWLEDGMENTS.... .................................. ... iii

LIST OF FIGURES.......... ...... ............... ......... vii

ABSTRACT................. ... ...... .......... ......... x

INTRODUCTION........................................... 1

Purpose and Scope........................ .. ......... 1
Stratigraphic Concepts.............................. 2
Seismic Stratigraphy ............................. 4
Sequence Stratigraphy.............................. 4
Genetic Stratigraphic Sequences................... 8
Allostratigraphy.................................. 11
Discussion......................................... 11
Geologic Setting....................................... 14
Stratigraphy.................. ........ .. ......... 14
Major Geologic Features.......................... 15
Pre-Late Cretaceous Geologic History.............. 23
Late Cretaceous-Cenozoic Geologic History.......... 27
Exposition of Problems Investigated.................. 50

METHODS AND MATERIALS.... ........................... 57

Data Base.............................................. 57
Reflection Seismic Data........ ........................ 57
Well Data.................. ................... 59
Seismic Stratigraphic Interpretation Procedure...... 64
Chronostratigraphic Interpretation Procedure...... 69
Well-Log Correlation Procedure.................... 73

RESULTS AND DISCUSSIONN.............................. 75

Chronostratigraphic Framework..................... 75
Time-equivalence of Lithostratigraphic Units...... 81
MCSB....................................... ....... 82
Upper Cretaceous................................. 83
Paleocene-Eocene..................... ..... ....... 85
Oligocene-Lower Middle Miocene.................. 88
Upper Middle Miocene-Holocene..................... 88
Seismic Stratigraphic Framework..................... 89
MCSB..... ...... ......... ............ ..... .... 89
Upper Cretaceous.................................. 131








Paleocene-Eocene................. ................... 142
Oligocene-Lower Middle Miocene................... 150
Upper Middle Miocene-Holocene..................... 153

SYNTHESIS AND INTERPRETATION.......................... 156

CONCLUSIONS.................. .. ....................... 166

APPENDIX A REFLECTION SEISMIC ACQUISITION PARAMETERS
AND PROCESSING SEQUENCES............................ 170

APPENDIX B BIOCHRONOSTRATIGRAPHIC AND
MAGNETOBIOCHRONOSTRATIGRAPHIC INTERPRETATIONS....... 180

REFERENCES ............................................ 195

BIOGRAPHICAL SKETCH................................... 214













LIST OF FIGURES
Figure page

1. Map of the study area............................. 3

2. Distribution of carbonate lithofacies in a
sequence framework.... ........................... 9

3. Middle Jurassic through Holocene stratigraphy in
the vicinity of this study....................... 17

4. Major geologic features of the Florida Carbonate
Platform.......................................... 18

5. Diagram of major Middle to Upper Cretaceous
sequence boundaries and maximum-flooding surfaces
from Wu and others (1990a)....................... 31

6. Contrast between (a) an idealized drowned carbonate
platform and (b) a subaerially exposed carbonate
platform......................................... 34

7. Synthesis of chronostratigraphy, biostratigraphy,
sequence stratigraphy, and eustatic curves
(modified from Haq and others, 1988) correlated
with the Upper Cretaceous formations and genetic
packages, central and eastern Coastal Plain of
Alabama.......................................... 36

8. Chart of lithostratigraphic units (Group,
Formation, Member) of the Gulf Coastal Plain,
Alabama, in the center, with the sequence
stratigraphic interpretations of Baum and Vail
(1988), Donovan and others (1988)on the right and
those of Mancini and Tew (1990a and b, 1991a and
b) on the left................................... 41

9. Map of previous seismic/sequence stratigraphic
studies of Upper Cretaceous and Cenozoic strata
in the vicinity of this study..................... 43

10. Chart comparing previous seismic/sequence
stratigraphic interpretations of Upper Cretaceous-
Cenozoic strata in this study area................ 45

11. Map of reflection seismic profiles and wells..... 61

vii








12. Seismic facies of carbonate depositional
environments.................................... 68

13. Geomagnetic polarity timescale for the Late
Cretaceous and Cenozoic with correlation to
planktonic foraminiferal zonations and and the
last appearance data of key planktonic
foraminifers.................................... 71

14. Well-log cross-section A-A' (caption)............ 76
(Figure in pocket)

15. Well-log cross-section B-B' (caption)............ 77
(Figure in pocket)

16. Well-log cross-section C-C' (caption)............ 78
(Figure in pocket)

17. Well-log cross-section D-D' (caption)............ 79
(Figure in pocket)

18. Part of seismic section F15,
a. uninterpreted................... ............ 91
b. interpreted .................. .................. 93

19. Part of seismic section F3,
a. uninterpreted............................... 95
b. interpreted.................................. 97

20. Northern part of seismic section G12,
a. uninterpreted............................... 99
b. interpreted.................................. 101

21. Southern part of seismic section G12,
a. uninterpreted............................... 103
b. interpreted.................................. 105

22. Part of seismic section G11,
a. uninterpreted............................... 107
b. interpreted.................................. 109

23. Part of seismic section Gl,
a. uninterpreted............................... 111
b. interpreted.................................. 113

24. Part of seismic section G3,
a. uninterpreted............................... 115
b. interpreted................... ............... 117

25. Part of seismic section G6,
a. uninterpreted............................... 119
b. interpreted.................................. 121


viii







26. Parts of seismic sections G17 and G18,
a. uninterpreted............................... 123
b. interpreted................................. 125

27. "Thickness" map of the entire Upper Cretaceous
through Cenozoic section contoured in 2-way
traveltime... ...... ........................ .. ... .. 126

28. Map of the configuration of the mid-Cretaceou
sequence boundary (MCSB) surface contoured in
2-way traveltime.................................. 128

29. "Thickness" map of the seismic subunit
contoured in 2-way traveltime.................... 133

30. "Thickness" map of the seismic subunit
contoured in 2-way traveltime.................... 138

31. Map of the configuration of the top of the
Cretaceous contoured in 2-way traveltime......... 141

32. "Thickness" map of the Paleocene-Eocene seismic
unit contoured in 2-way traveltime............... 145

33. Map of the configuration of the top of the Eocene
contoured in 2-way traveltime.................... 146

34. "Thickness" map of the Oligocene-lower Middle
Miocene seismic unit contoured in 2-way
traveltime........................................ 151

35. Map of the configuration of the top of the lower
Middle Miocene contoured in 2-way traveltime..... 154














Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SEISMIC STRATIGRAPHY OF THE
WESTERN FLORIDA CARBONATE PLATFORM
AND HISTORY OF EOCENE STRATA

By

Jonathan Lucas Jee

May 1993

Chairman: Anthony F. Randazzo
Major Department: Department of Geology

The stratigraphy of the western Florida Carbonate

Platform above the mid-Cretaceous Sequence Boundary (MCSB) is

defined using 9,600 km of multifold reflection seismic data

tied to 29 wells. Concordant reflections at the MCSB deny

subaerial exposure of the platform. A drowning unconformity

related to an oceanic anoxic event is a more likely cause of

the MCSB. Preexistent structures influenced the MCSB surface

which in turn affected subsequent deposition.

Biostratigraphic data tied to magnetobiochrono-

stratigraphic interpretations provide a time-stratigraphic

framework of four main units: Upper Cretaceous, Paleocene-

Eocene, Oligocene-lower Middle Miocene, and upper Middle

Miocene-Holocene. The Upper Cretaceous has two subunits Ku

(Cenomanian-Santonian) and K2 (Campanian-Maastrichtian). Ku

has continuous, parallel reflections and thickens in lows on

x







the MCSB. In the Apalachicola Basin, YK2 has uniform

thickness, discontinuous, subparallel, even-to-wavy

reflections, and is intensely faulted. Sonic velocity of K2

shows a southeastward change from siliciclastics to more

carbonate rock. Hummocky-to-contorted seismic facies and

thickening of KY2 on an MCSB high suggest a deep-water

carbonate buildup.

The Paleocene is thin and Danian strata absent from the

Destin Dome to Apalachee Bay. The Eocene margin marked by a

north-south belt of west-prograding clinoforms at 850W

developed from a homoclinal ramp to a flat-topped shelf.

Landward this margin, a seismic "marbled zone" suggests

dolomitic facies. In the Apalachicola Basin, Ypresian-

Lutetian (?) sequences form a wedge that thickens to the west.

Basinward of the margin Lutetian-Priabonian sequences with

lenticular shape and wavy, subparallel to hummocky seismic

facies are stacked to form broad, en echelon mounds. Near the

Florida Escarpment, an Eocene, elongate mound with disrupted

seismic facies restricted progradation of post-Eocene

clinoforms.

Post-Eocene strata are of continuous, parallel seismic

facies and drape the Eocene surface, thickening in the lows.

In the Tampa Embayment, Oligocene-Lower Middle Miocene strata

form sets of progradational clinoforms that steepen to the

southwest as they impinge upon the escarpment. Truncation of

clinoforms has been reported beneath a mid-Miocene








unconformity, but apparent truncation of clinoforms can also

be observed at the tops of other, older sequences.


xii













INTRODUCTION

Purpose and Scope

The goal of this investigation is to understand better

the geologic history of the western Florida Carbonate Platform

by refining the tectonic and stratigraphic framework of the

Upper Cretaceous through Quaternary sedimentary section in the

northeastern Gulf of Mexico.

The following are specific objectives of this study:

1. The use of seismic stratigraphic analysis of

multichannel seismic reflection profiles integrated with

available geological and geophysical data from wells to

a. Identify depositional sequences and delineate their

external geometry and areal extent,

b. Characterize seismic faces within depositional

sequences,

c. Relate depositional sequences to cycles of relative

sea level change, and

d. Compare the local and global patterns of sea-level

fluctuation.

2. The evaluation of conceptual models, especially those

predicting the responses of carbonate systems to fluctuations

of relative sea level, and those pertaining to carbonate-to-

siliciclastic facies transitions.







2

3. Interpretation of the depositional and diagenetic

history of Eocene carbonate deposits with particular attention

to the role of early post-depositional fluctuations of

relative sea level.

The area of investigation (Figure 1) extends offshore of

the present coastline from just east of Mobile Bay to

Charlotte Harbor, across the easternmost portion of the

Mississippi-Alabama Shelf to the De Soto Canyon, and over the

West Florida Shelf and Terrace to the Florida Escarpment

(Martin and Bouma, 1978).

Stratigraphic Concepts

This study involves the recognition and interpretation of

unconformity-bounded stratal units, known as "depositional

sequences." The term, depositional sequence, was coined as

part of "seismic stratigraphy" as expounded in a series of

papers by Vail and others (1977). Although the idea of

unconformity-bounded sequences developed over many years

(Sloss, 1988), Walker (1990) recognizes four "new

stratigraphies" that subdivide rocks into genetic packages on

this basis. These are seismic stratigraphy (Vail and others,

1977), sequence stratigraphy (Vail, 1987; Van Wagoner and

others, 1987, 1988), genetic stratigraphic sequences

(Galloway, 1989), and allostratigraphy (North American

Commission on Stratigraphic Nomenclature [NACSN], 1983). A

complete review would be redundant with voluminous literature,

but a brief synopsis is appropriate.










88 86" 84* 820 800
Mobile,



J SHELFn BiSS
on FJackonloill lorida

--30






280











,Bouma, 1978, Figure 2).
1 26 0

\;a; Howell /,

-- el *, -. --- .-


PLAIN_


Figure i. Map of the study area (modified from Martin and
Bouma, 1978, Figure 2).









Seismic Stratigraphy

The key tenet of seismic stratigraphy is that primary

seismic reflections parallel stratal surfaces and

unconformities and follow chronostratigraphic correlations

(Vail and others, 1977). The basic unit for seismic

stratigraphic analysis, the depositional sequence, is defined

as "a stratigraphic unit composed of a relatively conformable

succession of genetically related strata and bounded at its

top and base by unconformities or their correlative

conformities" (Vail and others, 1977, p. 53). A "conformity"

is a bedding surface along which there is no significant

hiatus. "Sequence boundaries" are determined objectively by

the discordance of strata (onlap, downlap, toplap, and

truncation) manifested in seismic sections as reflection

terminations. By measuring "coastal onlap" (the progressive

landward onlap of coastal deposits in a given stratigraphic

unit), seismic stratigraphy was used to interpret sea-level

histories along continental margins and has been hailed as a

breakthrough for regional and global chronostratigraphic

correlations (Vail and others, 1977; Haq and others, 1987,

1988).

Sequence Stratigraphy

The concepts of sequence stratigraphy (Vail, 1987; Van

Wagoner and others, 1987, 1988), the study of rock

relationships within a chronostratigraphic framework of

repetitive sequences, evolved from seismic stratigraphy.







5

Application of sequence stratigraphy has spread beyond the

realm of seismic data, and detailed geologic data from wells

and measured sections can afford resolution of cycles higher

than the third order (Vail and others, 1977). Sequence

stratigraphy can provide information on lithofacies and facies

changes, relief and topography of unconformities,

paleobathymetry, chronostratigraphic correlation, and

depositional and burial history (Boggs, 1987).

A tenet of sequence stratigraphy is that, among four

major variables affecting stratal patterns and lithofacies

distributions (tectonic subsidence, eustacy, sediment supply,

and climate), relative change of sea level (the combination of

eustacy and tectonic subsidence) is "the key to understanding

stratigraphy," (Vail, 1987, p. 3). Vail (1987) fundamentally

revised the concept of a depositional sequence from that of

seismic stratigraphy (Vail and others, 1977). Whereas in

seismic stratigraphy one or more depositional sequences could

be deposited during one cycle (or paracycle) of relative rise

and fall of sea level, in sequence stratigraphy "A [single]

sequence is interpreted to be deposited during a [single]

cycle of eustatic change of sea level starting and ending in

the vicinity of inflection points on the falling limbs of the

sea level curve" (Vail, 1987, p. 3). To accommodate this

revision, the reflection termination criteria for the

recognition of sequence boundaries were restricted to onlap

above and truncation below, and the redefined "sequence"







6

subdivided into "systems tracts." Downlapping reflection

terminations were associated with systems-tract boundaries (at

the top of a "basin-floor fan," at the top of a "slope fan,"

or at the "maximum-flooding surface" within a "condensed

section").

Systems tracts are interpreted to be deposited during

specific time intervals within a eustatic cycle. A systems

tract is a linkage of contemporaneous "depositional systems"

(Brown and Fisher, 1977). A depositonal system is a three-

dimensional assemblage of lithofacies (Fisher and McGowan,

1967). Certain depositional environments and lithofacies are

associated with different systems tracts. Systems tracts are

defined by their position within the sequence, and by the

stacking patterns of "parasequence sets" and "parasequences"

bounded by "marine-flooding surfaces" (surfaces across which

there is evidence of an abrupt increase in water depth) (Vail,

1987; Van Wagoner and others, 1987, 1988).

The fluctuation of relative sea level, along with

depositional setting and climate, affect basin water chemistry

(salinity, nutrients, temperature, oxygen content) and

carbonate productivity (Sarg, 1988). Assuming that

depositional geometry, facies distribution and early

diagenesis of shallow-marine carbonate rocks are controlled

primarily by relative changes in sea level, sequence

stratigraphy has been proposed as a tool for characterizing







7

and delineating shallow-marine carbonate depositional

sequences (Sarg, 1988).

Both seismic stratigraphy and sequence stratigraphy have

significantly altered the language of stratigraphy, not only

by adding to the vocabulary, but also by redefining some terms

to restrict or even change their traditional meanings. In

sequence stratigraphic usage, an unconformity is "a surface

separating younger from older strata, along which there is

evidence of subaerial erosional truncation or subaerial

exposure, with a significant hiatus indicated" (Van Wagoner

and others, 1987, 1988). This is more restrictive than an

earlier definition (Vail and others, 1977) that encompassed

both subaerial and submarine surfaces. This restricted

definition of an unconformity is necessary, because otherwise

the presence of a maximum-flooding surface (a submarine

unconformity, in the strict sense) in the middle of a sequence

would violate the definition of a sequence as a "relatively

conformable succession of genetically related strata" (Vail

and others, 1977, p. 53).

Vail and Todd (1981) recognized two types of sequences

distinguished by the type of sequence boundary at the base of

the sequence. As applied to carbonate depositional regimes

(Sarg, 1988), a type 1 sequence boundary is marked by

subaerial exposure and erosion of the platform, concurrent

submarine erosion on the foreslope, onlap of overlying strata,

and a downward shift of coastal onlap. A type 2 sequence







8

boundary is characterized in carbonate systems by subaerial

exposure of inner-platform peritidal areas and platform

shoals, a downward shift in coastal onlap that may occur to a

position at the preceding platform/bank margin, and onlap of

overlying peritidal strata in platform lows and at the margin

(Sarg, 1988).

Four systems tracts are recognized in sequence

stratigraphy (Van Wagoner and others, 1987, 1988; Sarg, 1988):

lowstand, shelf margin, transgressive, and highstand. A type

1 sequence boundary is overlain by a lowstand systems tract,

whereas the shelf margin systems tract overlies a type 2

sequence boundary. The transgressive systems tract lies above

the transgressivee surface" that occurs at the top of either

the lowstand or shelf margin systems tract. The top of the

transgressive systems tract is a "condensed section," and the

upper boundary is the "downlap surface" (maximum-flooding

surface, MFS) above which lies the highstand systems tract

which completes the sequence. Figure 2 shows the distribution

of carbonate lithofacies in a sequence framework (Sarg, 1988).

Genetic Stratigraphic Sequences

The genetic stratigraphic sequence (GSS) theory

(Galloway, 1989) was modeled on marine basins filled by

episodes of progradation of terrigenous plastic sediments

punctuated by marine transgressions. While there is no

expressed applicability to carbonate depositional regimes, the

















SEQUENCE SRAMTI6RAPHY DEPOSIflONAL MODEL
$OWNW SUM= SYSIR=S UACTS AND LDIDFAO5


I
IWYAW


3 TICTCAW
~~~1
.ATm
4" OtIffTLAt.


S52


SI CONDENSED SECTION




SUBAERIAL HIATUS L


SIST) /

DISTANCE-1

B) IN GWLUDC WME


SURFACES
(SB) SEQUENCE BOUNDARIES
ISB 1 TYPE-1
(SB 2) TYPE-2
IDLSI DOWNLAP SURFACES
(ms) mam loading surfa
ITS) TRANSGRESSIVE SURFACE
(Fr floodng surfIa above murnum
NgNnm .


SYSTEMS TRACTS
HST HIGHSTAND SYSTEMS TRACT
TST TRANSGRESSIVE SYSTEMS TRACT
LST LOWSTAND SYSTEMS TRACT
LSF LOWSTAND FAN
LSW LOWSTAND WEDGE
SMW SHELF MARGIN WEDGE SYSTEMS TRACT


UTHOFAIES
SSUPRATIDAL
PLATFORM
SPLATFORM-MARGIN
GRAINSUPPORTSTONE/REEFS
[ MEGABRECCIAS/SAND
]FORESLOPE
n TOE-OF-SLOPE/BASIN


Figure 2. Distribution of carbonate lithofacies in a
sequence framework (Sarg, 1988).







10

concept has important implications for sequence stratigraphy

that warrant its discussion.

The GSS idea is based on the conceptual framework of

Frazier (1974) for the recognition and description of

boundary-defined genetic units deposited during successive

regional "depositional episodes." A GSS consists of

genetically related "depositional systems" (Fisher and

McGowen, 1967) and their component "facies sequences"

(Frazier, 1974) and is the stratigraphic record of a

depositional episode. Depositional episodes are punctuated by

regional flooding events, and the GSS is bounded by hiatal

surfaces (submarine unconformities or condensed sedimentary

veneers) that record maximum marine flooding of the basin

margin. Some elements of the GSS concept have analogs in

sequence stratigraphy. The flooding surfaces and condensed

sections that bound genetic stratigraphic sequences are

equivalent to the "downlap" or "maximum-flooding" surfaces

(MFS) and condensed sections at the tops of transgressive

systems tracts. Although both a GSS and a systems tract are

said to consist of depositional systems (Fisher and McGowen,

1967), the GSS is said to be analogous to a parasequences set

(Galloway, 1989, p. 137), rather than a systems tract, and a

facies sequence is considered analogous to a parasequence

(Galloway, 1989, p. 128).

Key differences, however, distinguish the GSS paradigm

from sequence stratigraphy. First, the eustacy is not







11

regarded as the dominant stratigraphic variable, but only a

part of an ongoing interplay with sediment supply and basin

subsidence. Second, the boundaries (maximum-flooding

surfaces) of the GSS are 1800 out of phase with the boundaries

(subaerial unconformities) of sequences (sensu Vail, 1987).

Allostratiqraphy

"An allostratigraphic unit is a mappable stratiform body

of sedimentary rock that is defined and identified on the

basis of its bounding discontinuities" (NACSN, 1983, p. 865).

From this definition, it might seem that allostratigraphy

qualifies as an alternative to seismic stratigraphy, sequence

stratigraphy, and the concept of genetic stratigraphic

sequences; Walker (1990, p. 780) is of this opinion. In the

North American Stratigraphic Code (NASCN, 1983) remarks in the

Preamble (p. 849), the stated purpose (p. 865), and the

examples given (p. 866-867) all indicate that the category be

limited, as specified, to alluvial, lacustrine, and glacial

deposits, and probably to those of the late Cenozoic.

Discussion

Walker (1990) discusses problems with the application of

both sequence stratigraphy and genetic sequence stratigraphy.

He emphasizes the extent to which depositional patterns can

and will change across both subaerial unconformities and

maximum-flooding surfaces and rejects both Vail (1987) and

Galloway (1989) in favor of an approach that uses

allostratigraphic units. I agree with Walker (1990) that both








12

sequence boundaries and maximum-flooding surfaces (Vail, 1987;

Van Wagoner, 1987, 1988) are surfaces of comparable

stratigraphic significance. Furthermore, I share the doubt

expressed by Schlager (1992, p. 28) as to whether one can

unequivocally differentiate between subaerial and submarine

surfaces of erosion or nondeposition, especially in carbonate

rocks. I prefer, as Schlager (1992) recommends, to return to

the approach of seismic stratigraphy (Vail and others, 1977)

in which both surfaces were considered to be depositional

sequence boundaries, without regard to whether they are

subaerial or submarine. Vail and others (1977, p. 64) state,

Two or more sequences may be deposited during a
cycle or paracycle. After a rapid rise of sea
level, a surface of non-deposition [sic] may be
developed before the progradational deposits of the
stillstand are laid down. The surface should be
marked by downlap of the overlying progradational
deposits. Frazier (1974) recognized such surfaces
in defining depositional episodes during the
Pleistocene of the Gulf of Mexico. Each sequence
of transgressive sandstones is overlain by a
sequence of upward coarsening, progradational
strata.

The example described here (Frazier, 1974) is the very work

upon which Galloway (1989) bases the concept of genetic

stratigraphic sequences. Per Galloway (1989), the surface

"marked by downlap" is the boundary of a GSS, but to Vail

(1987) and Van Wagoner and others (1987, 1988) it would be the

"surface of maximum flooding" in the midst of the sequence.

In a seismic stratigraphic scheme (Vail and others, 1977),

however, this surface is simply another depositional sequence

boundary.







13

Another issue is the sequence stratigraphic depositional

model for carbonate rocks (Figure 2); this model is virtually

identical to that for a siliciclastic regime (Vail, 1987), but

for the substitution of carbonate lithofacies. Considering

the complex array of carbonate platform facies models (Read,

1985), this is simplistic. Handford and Loucks (1991, in

press) recognize that the depositional and diagenetic

responses of carbonate sediments to relative changes of sea

level and several other factors can result in significant

variations in systems tract geometries and unusual and perhaps

unique stratal patterns.

Jacquin and others (1991) present an example of the

successful application of sequence stratigraphic concepts

(systems tracts and depositional sequences) to carbonate rocks

in outcrops at the scale of seismic lines. Commonly, however,

the identification of systems tracts is beyond the limits of

seismic resolution (Schlager, 1992, p. 28). Nevertheless, it

is generally possible to recognize unconformities as sequence

boundaries and sediment packages with internally coherent

bedding patterns as sequences.

The critical observations of Miall (1986, 1991, 1992)

include many well-made points about the problems with sequence

stratigraphy. It is my intention to apply all techniques of

stratigraphic analyses (including that of seismic sequences)

objectively to evaluate data obtained from detailed local

research.









Geologic Setting

The Florida Carbonate Platform projects southeastward

from adjacent parts of the Atlantic and Gulf Coastal Province

of North America and forms the northeastern margin of the Gulf

of Mexico. Along this margin, the platform consists of the

emergent Florida Peninsula, a broad area of shallow shelf, and

a gently inclined upper slope (terrace) fronted by the steep

Florida Escarpment (Figure 1).

Stratigraphy

A thick section of sedimentary rock, ranging from

Jurassic to Holocene, underlies the region. Figure 3 is a

chart of the Middle Jurassic through Holocene stratigraphy in

the vicinity of this study. The chart is largely derived from

that of Salvador (1991, Plate 5) with the minor modification

of certain lithostratigraphic boundaries and the addition of

Gulf Coast Provincial chronostratigraphic units according to

the schemes of 1) Huddlestun and others (1988), and 2) Wu and

others (1990a).

The establishment of Florida's stratigraphic nomenclature

is reviewed by Gohn (1988) and more specifically in sections

of Salvador (1991). The former offers some alternative

interpretations regarding the age and correlation of certain

units shown in Figure 3 (e.g., Atkinson, Cedar Keys, Oldsmar,

and Suwannee Formations). Important contributions to Florida

stratigraphy include Applin and Applin (1944, 1965, 1967),

Applin and Jordan (1945), Chen (1965), Winston (1971a, b,







15

1976a, 1977, 1978), Meyerhoff and Hatten (1974), and Miller

(1986).

Major Geologic Features

The major geologic features of the region are shown in

Figure 4. Review of the literature reveals numerous

discrepancies in the names, locations, shapes and orientations

of the major geologic features of Florida (e.g., Chen, 1965;

Martin, 1978; Klitgord and others, 1984; Shaub, 1984; Locker

and Sahagian, 1984; Pindell, 1985; Buffler and Sawyer, 1985;

Ball and others, 1988; Salvador, 1991). Figure 4 attempts to

reconcile these various interpretations and is based, as much

as possible, on observations of the seismic data used in this

study. Features discussed here are the Peninsular Arch, Ocala

"uplift," Middle Ground Arch, Sarasota Arch, Destin Anticline,

South Florida Basin, Tampa Basin, Apalachicola Basin and

Embayment, Suwannee Channel, Gulf Trough, DeSoto Canyon, and

Florida Escarpment.

The Florida Platform is effectively divided into eastern

and western parts by the southeast-plunging Peninsular Arch.

Although it has been called a "basement" structure (Shaub,

1984), the Peninsular Arch actually overlies, and is distinct

from, more than one "basement" feature (Klitgord and others,

1984, p. 7756). The Peninsular Arch was "continuously

positive from Jurassic until Late Cretaceous time and was

intermittently positive during Cenozoic time" (Miller, 1986,

p. B11).











U,


>I 4J
V

w 9)
4)00


r-I
0'I
CQ





.6-4 >
9 0 r.~
U 13




*H -l co
totr




~4.) U
U)J







-I -4 H )

.~0

.0 0)
04 r.6-
(ISU
k-rq~









4-)

V4) W~
COV ))









40 W




P tV k
P-r Eiu
OH















OO4 4J
04









4) H- -r


'$4 0 4U)C
Z %4 0 5-I
4)H4
EU -( V
Uct2rU
*e- l
w~u~4




U) '44-64 -



U) HU









Z O I C


-I
NUEVOLEONIAN z WASHITAN-
5; FREDRICKSBURGIAN


-I
NUEVOLEONIAN z WISHITAN-
F Ff i:DRICKSBURGIAI
Z


SAUSTINIAN


m0
-< >
SAUSTINIAN 0 m
z m m


I a -1 a ---- AI I T


C 1 N O


01: C


ERATHEM


T E R T I A R Y 0
JURASSIC C R E T A CE N E O U S G E E-QUATERNARY SYSTEM
MIDDL U P PALEOCEN EOCENE OLIGOCENE MI OCENE ES
U P PERP E 0 C P E R LIOCENEPLSERIES
MIDDLE U P P E R L O W E R PPER LOWER UPPER LOWER MIDDLE UPPE LOWER UPPER LOWER MIDDLE UPPER LOCENEPLEISTOCENE SERIES



.- 3> >->_z-zzr z- z-r ,--z> zZ
5; Z 5; a




-4 CI A mim


~~ m


ZULOAGAN
C"


I;


N AHULUHA0 COMANGEN


l U L Ir IH


VICKS- CHICA-
BURGIAN SAWHAYAN


CHICASAWHAYAN
TE, CHICASAWHAYAN
Z


Cr -


-r


ziL
I :' Selma Midway Wilcox Claiborne V- kbu
9 I I II A0


(f C /I o1=0 -:c, 00 WC.r0
r::::CL =3 25.c -


I II

0 Wilcox CClaiboneZJacnn>
CD00 _
-W' W 00
KC0z0 r o
-- C U) C=r
ts -nCDCD < I >2in
I~ oF?' -~

C: 10 D -V 0E = CD
3 iF)
I + Hwtor.-
a;=r W cc 030
CL-E O p 0n









00CD0
9 I a,0Pesaoa n
~ aCD 03 CD=3










~~CC
U) -0 U)







0 0 8

C 0Z
CI) !!5: o rn v
5 1; CLI
W U) Va U'll e' ~
r 0 -n::;:.::::,:.a g



C~~; Caibrne Jak'n ~ U) Hawthornm luf--
...: .. :. CD g > > -
CD r- M (g v
C --a =)0 Q0 W-
U):OII)ma mCn f
:. C~ o ~ o~zor'
o ~ n arCD
CL. -
O p, ~ >


Fort Pierce


0 .,j1cc,"0


S BasaltL


II

CD
U) CD


CD
-0 C


0 c
U) 1CD
0003 0C
a. cCm
. 00-0


---- Hawthorn ---



.. 00
; "...: ".''::':. ":: -

9t ED:."" : '


M E S O


ZULOAGAN


Sn 0

mg


I .I


i -------------- = 1 I I I I I I --T-----T





Ir





I :!_-


i 4---


I


II


::;::;


SERIES
















































Figure 4.


Major geologic features of the Florida
Carbonate Platform: AB = Apalachicola Basin,
AE = Apalachicola Embayment, BFZ = Bahamas Fracture
Zone, CFZ = Cuba Fracture Zone, DD = Destin Dome,
GT = Gulf Trough, MGA = Middle Ground Arch, OH =
Ocala High, PA = Peninsular Arch, SA = Sarasota
Arch, SC = Suwannee Channel, SFB = South Florida
Basin, TE = Tampa Embayment, KU = position of Upper
Cretaceous facies boundary, EU = position of Upper
Eocene facies boundary.






19

The area of outcropping Eocene rocks in west-central

Florida has been called Ocala "uplift," but this feature does

not affect rocks older than the middle Eocene and, therefore,

is not truly an uplift (Winston, 1976b). In the literature,

the Ocala "uplift" and Peninsular Arch are sometimes confused

(Salvador, 1991, Figure 2.)

The northern boundary of the Florida Carbonate Platform

is, essentially, a facies transition to terrigenous clastic

sediments derived from the Appalachian Mountains. The

carbonate-siliciclastic facies relationship existed since the

late Mesozoic (Salvador, 1987; Late Jurassic, Ball and others,

1983; Early Cretaceous, Corso and others, 1989). The facies

change in Upper Cretaceous through Upper Eocene strata

migrated progressively to the northwest (Chen, 1965; Miller,

1986). In Upper Cretaceous, Paleocene, and Lower Eocene

rocks, the location of the facies transition is associated

with the Suwannee Channel (Chen, 1965), also known as the

Suwannee Strait (Dall and Harris, 1892; Pinet and Popenoe,

1985; Popenoe, 1985; Miller, 1986). In Middle Eocene and

Upper Eocene strata, the facies change is located in the

vicinity of the Gulf Trough (Popenoe and others, 1987).

McKinney (1984) proposes a "carbonate suppression"

sedimentologic model (Walker and others, 1983) as an

alternative to structural control of the Paleogene facies

transitions.







20

Based on a carbonate-to-siliciclastic facies change

interpreted from seismic refraction profiles, Antoine and

Harding (1965) extend the Suwannee Strait southward, beneath

the continental shelf under Apalachee Bay. A change in the

character of reflection seismic data led Antoine and Jones

(1967) to locate the facies change along the Florida

Escarpment at 270 30' N and to project the Suwannee Strait

toward that point. Chen (1965), however, projects the

Suwannee Channel more toward the west, linking the channel

with the Apalachicola embayment and extending it across the

Apalachicola Basin toward the west side of the DeSoto Canyon.

Mitchum (1978) presents the DeSoto Canyon, "an area of

nondeposition and some sediment erosion since the Late

Cretaceous," as the westward extension of the Suwannee Strait

visible on seismic sections.

The Florida Escarpment, stretching from the DeSoto Canyon

to the Straits of Florida, is the western boundary of the

Florida Platform. The escarpment formed by aggradation of an

Early Cretaceous rimmed carbonate platform (Bryant and others,

1969; Corso and Buffler, 1985; Corso and others, 1989), but,

south of 270 N, the escarpment has been modified by erosion

(Freeman-Lynde, 1983; Corso and others, 1988; Paull and

others, 1990; Twichell and others, 1986, 1990, 1991).

East of the Florida Escarpment, a number of basins and

arches (Middle Ground Arch, Sarasota Arch, Destin Anticline,

Tampa Basin, Apalachicola Basin and Embayment) are recognized.







21
Most of these features are "basement"-related but have

expression in younger Mesozoic strata and influence that

persist into Cenozoic strata (Ball and others, 1988).

At the northwestern end of the study area are the

Apalachicola Basin (Northeast Gulf Basin of Locker and

Sahagian, 1984) and its onshore extension, the Apalachicola

Embayment. A large northwest-trending anticline in the

Apalachicola Basin, the Destin Anticline or Destin Dome is

related to a salt swell uplifted during the Late Cretaceous

and early Cenozoic (Ball and others, 1982).

Southeast of the Apalachicola Basin, the Middle Ground

Arch (Winston, 1969) is a broad, southwest-plunging nose that

can be traced onshore into the west flank of the Peninsular

Arch (Ball and others, 1988). Some studies (Locker and

Sahagian, 1984; Lord, 1987; Dobson, 1990) recognize a distinct

high on the basement surface, to the southwest of the Middle

Ground Arch and refer to it as the "Southern Platform." It is

unclear whether in younger strata this feature is

distinguishable from the Middle Ground Arch. The name is

ambiguous as to its location and its nature; it is easily

mistaken for a south-Florida feature, and is erroneously

suggestive of a carbonate platform.

South of the Middle Ground Arch, the Tampa Basin

(Klitgord and others, 1984) is also called the Tampa Embayment

(Shaub, 1984; Dobson, 1990), the St. Petersburg Basin (Locker

and Sahagian, 1984), and the Florida Elbow Basin (Pindell,







22

1985). Ball and others (1988) did not observe convincing

evidence in seismic sections of the Tampa Embayment's

existence, but Dobson (1990) and Lord (1987) do recognize this

feature on coverage farther downdip.

The Sarasota Arch, also called the Pinellas County Arch

(Shaub, 1984, Lord, 1987) or Tampa Arch (Pindell, 1985),

separates the Tampa Embayment to the north from the South

Florida Basin to the south. The Sarasota Arch rivals the

Peninsular Arch in relief (Ball and others, 1988, Ball, 1991).

Ball and others (1988) could not clearly observe the Sarasota

Arch on seismic sections, but well data suggest a major down-

to-the-north fault between the Mobil OCS-G3341 and Shell OCS-

G3912 wells (Figure 11, Wells 17 and 18) that may be related

to the northwest flank of this granitic high (Ball, 1991).

South Florida Basin, also known as the Sunniland Basin

(Locker and Sahagian, 1984) is considered to be a basement-

controlled structure (Sawyer and others, 1991) and contains

more than 8,000 m of uppermost Jurassic through Quaternary

strata (Ewing, 1991). Galloway and others (1991) regard the

basin as an area of rapid Cenozoic subsidence and sediment

accumulation. They state (Galloway and others, 1991, p. 313)

that the entire Florida Platform was exposed at the end of the

Cretaceous (Figure 3), but others (Chen, 1965; Winston, 1971a,

b) report that sedimentation in the South Florida Basin was

continuous from the Cretaceous into the Tertiary. Shaub

(1984) discusses the internal framework of this basin.









Pre-Late Cretaceous Geologic History

To set the stage for the evolution of the Florida

Carbonate Platform one must look back to the rifting of Pangea

and the beginnings of the Atlantic Ocean and the Gulf of

Mexico in the Late Triassic. Many alternative interpretations

exist for the origin of the Gulf of Mexico/Caribbean region

(e.g., Anderson and Schmidt, 1983; Van Siclen, 1984; Klitgord

and others, 1984; Pindell, 1985; Buffler and Sawyer, 1985;

Salvador, 1987; Sheridan and others, 1988; Buffler, 1989;

Reitz, 1991b). Among the models there is general agreement

that the crust beneath the Florida Platform is continental,

although many (Klitgord and others, 1984; Pindell, 1985;

Buffler and Sawyer, 1985; Sheridan and others, 1988; Buffler,

1989; Reitz, 1991a) consider this continental crust to be

attenuated. Some investigators (Klitgord and others, 1984;

Van Siclen, 1984; Pindell, 1985; Buffler and Sawyer, 1985;

Sheridan and others, 1988; Buffler, 1989; Dobson, 1990)

believe that a major crustal boundary occurs along a line

trending northwest-southeast across the West Florida Shelf

(Bahamas Fracture Zone, BFZ, of Klitgord and others, 1984; Jay

Fault of Pindell, 1985). To the northeast of this line, the

crust is continental, and to the southwest, the crust is

attenuated (thick, transitional of Buffler, 1989). Ball and

others (1988) and Ball (1989, 1991), however, report that

Paleozoic sedimentary or metasedimentary rock underlies the

entire platform north of 260 N, and though deep faults do







24

exist at some locations identified by others (e.g., Klitgord

and others, 1984; Pindell, 1985) as hinges or fracture zones,

these are not boundaries between isolated blocks of

continental crust.

The specific character of the BFZ (or analogous

northwest-southeast faults) is ambiguous. Among those who

consider it a right-lateral wrench-fault zone, Van Siclen

(1984) interprets it in relation to the Paleozoic Ouachita

orogeny, but Miller (1982) regards it as a result of north-

south compression that was active throughout the Jurassic.

Others (Klitgord and others, 1984; Pindell, 1985) speculate

that motion was left-lateral and related to Mesozoic sea-floor

spreading. Dobson (1990) does not cite evidence of strike-

slip movement on the BFZ but notes truncation of structural

features. Reitz (1991a) describes the BFZ as "an apparently

undisturbed northwest-southeast linear zone" that separates

northeast-trending rift basins to the northeast from

northwest-trending rifts to the southwest. Wu and others

(1990b, p. 337) observe "no major fault."

In Florida geology, the term, "basement," has been

variously defined as rocks beneath the "pre-Cretaceous

postrift unconformity" (Klitgord and others, 1984), "the top

of the Paleozoic section" (Ball and others, 1988), and "rocks

below, or older than, the Middle Jurassic Louann Salt"

(Dobson, 1990; Dobson and Buffler, 1991). The main types of

"basement" rocks of Florida are Jurassic igneous rocks in







25

South Florida, Paleozoic igneous rocks in central Florida, and

Paleozoic sedimentary rocks in northern and panhandle Florida

(Klitgord and others, 1984). Salient features interpreted

from seismic profiles and well control within the "basement"

of the northeastern Gulf of Mexico are discussed by Ball and

others (1988), Dobson (1990), and Dobson and Buffler (1991).

Progressive eastward marine invasion occurred during the

Jurassic, as the Gulf of Mexico opened (Salvador, 1987).

Along the northern flank of the Gulf of Mexico Basin,

deposition of evaporites (Louann Salt) in the late Middle

Jurassic (Callovian) was followed in the Late Jurassic

(Oxfordian-Kimmeridgian) by mixed siliciclastic and carbonate

deposition (Norphlet-Smackover, Haynesville), and in the

latest Jurassic (Tithonian) to earliest Cretaceous by

deposition of a thick wedge of coarse, fluvial-deltaic

sediments (Cotton Valley). Miller (1982) and Mitchell-Tapping

(1982) address the structure and stratigraphy of Jurassic

rocks, onshore Florida. Ball and others (1988), Dobson (1990),

Dobson and Buffler (1990a, b), and Reitz (1991a) investigate

the seismic stratigraphy and geologic history of Jurassic

rocks of the northeastern Gulf of Mexico. Structure of the

"basement" surface controlled the distribution, thickness, and

paleogeography of Jurassic units (Miller, 1982; Dobson, 1990;

Reitz, 1991a).

Carbonate/evaporite sediments of the Florida Platform

were deposited in the South Florida Basin in latest Jurassic







26

(Tithonian) time, while the northern part of the platform

remained emergent until the Early Cretaceous (Klitgord and

others, 1984; Salvador, 1987; Sheridan and others, 1988).

Seismic correlations (Dobson, 1990) suggest the presence of an

appreciable thickness of Smackover Limestone (Oxfordian) in

the Tampa Embayment with seismic faces interpreted as

shallow-marine, carbonate ramp with localized buildups. The

overlying Haynesville sequence (Kimmeridgian) onlaps even more

of the western Florida Platform, but Haynesville carbonate

deposits are limited to the western Apalachicola Basin

(Dobson, 1990; Dobson and Buffler, 1990a, b).

Carbonate/evaporite deposition occurred in the Tampa Embayment

and over the Sarasota Arch during the Tithonian (Salvador,

1987, Figure 10). In the Apalachicola Basin, the Knowles

Limestone, at the base of the Lower Cretaceous and the top of

the Cotton Valley Group, marks the transition from a carbonate

ramp to a rimmed carbonate platform (Corso, 1987; Corso and

others, 1989). Progradation of the Knowles Limestone

carbonate ramp extended to the southeast, toward the Tampa

embayment (Dobson, 1990).

During the Early Cretaceous, the western Florida

carbonate Platform developed a high-relief, rimmed margin

along the present Florida Escarpment (Bryant and others, 1969;

Corso and Buffler, 1985; Corso and others, 1989). A

discontinuous series of contemporaneous platforms nearly

encircled the deep Gulf of Mexico; Locker and Buffler (1983),







27

Winker and Buffler (1988), and McFarlan and Menes (1991)

provide comparisons of these Lower Cretaceous carbonate shelf

margins.

Late Cretaceous-Cenozoic Geologic History

In the U.S. Gulf Coastal Plain, the term "Upper

Cretaceous" is loosely applied to the mid-Cenomanian through

Maastrichtian section that has been called the provincial

"Gulfian Series." The boundary of the Gulfian with the

underlying Comanchean Series is a profound physical

stratigraphic break but does not correspond exactly to the

internationally accepted Lower Cretaceous-Upper Cretaceous

boundary (McFarlan and Menes, 1991; Sohl and others, 1991).

Throughout much of the Gulf Coast, the Upper Cretaceous

section is "strongly overprinted" by cyclic sea-level

fluctuations (Salvador, 1991, p. 421). These oscillations

should be reflected in the Florida Platform, as well, but as

yet they have not been reported (Salvador, 1991, p. 428).

After the Comanchean Epoch, there occurred a basin-wide change

in sedimentation (Winker and Buffler, 1988), and deep-water

carbonate sediment was deposited over the Florida Platform

(Bryant and others, 1969; Worzel and others, 1973, Mitchum,

1978; Freeman-Lynde, 1983). In the Florida panhandle, Gulfian

strata dominantly consist of calcareous clay; in peninsular

Florida, these rocks are chiefly chalk and fine-grained

limestone. The Upper Cretaceous through Cenozoic deposits

drilled along the Florida Escarpment are foraminiferal-







28

coccolith carbonate muds (oozes), suggesting that the west

margin of the post-Comanchean Florida Platform was a distally

steepened ramp (Read, 1985) dominated by pelagic to open-

marine shelf carbonate sedimentation (Winker and Buffler,

1988). The Gulfian Series occurs only in the subsurface in

the study area (Applin and Applin, 1967; Miller, 1986).

Paleogene strata in peninsular Florida are shallow marine

carbonate rocks intercalatedd with evaporites in the older

units); to the north and west, these grade into deposits of

clay and fine sand. Siliciclastic deposits are more prevalent

in Neogene strata. During the Miocene the Florida Carbonate

Platform received an influx of terrigenous sediments from the

north. Special conditions of marine chemistry, particularly

in middle Miocene time, resulted in the widespread deposition

of phosphatic sediments (Riggs, 1984; Scott, 1988; Compton and

others, 1990). Post-Miocene strata consist of shallow,

marginal-to-open marine beds overlain by sandy marine terrace

deposits that are in turn capped by a thin layer of fluvial

sand and/or residuum.

Beneath the Gulf of Mexico, Buffler and others (1980)

observe a major, regional unconformity and seismic

stratigraphic sequence boundary that corresponds to the

Comanchean-Gulfian boundary. Although its stratigraphic

expression varies, this prominent, high-amplitude reflection

is present on seismic profiles from the deep Gulf and along

its southern and eastern margins (Faust, 1986). Buffler and







29

others (1980) term the reflection the Mid-Cretaceous

Unconformity (MCU) and relate the event to a relative fall of

sea level that occurred in the Cenomanian (97 Ma, per Vail and

others, 1977). Addy and Buffler (1984) correlate the MCU with

the top of the Washita Group (Lower Cretaceous) on the West

Florida Shelf. Another idea on the origin of the MCU

(Schlager and Camber, 1986; Schlager, 1989, 1991) is that

growth of the carbonate platform was terminated through rapid

submergence (Schlager, 1981) that produced a "drowning

unconformity" associated with a rise or highstand of sea

level, not a lowstand.

Faust (1990) interprets the following geologic history to

explain the MCU. Sea level dropped below the shelf edge

during the Cenomanian, resulting in subaerial exposure,

meteoric leaching, and erosion of the Lower Cretaceous Florida

Carbonate Platform. Turbidity currents and debris flows cut

canyons in the Florida Escarpment. During the Late

Cretaceous, sea level rose well above the previous platform

margin. As platform carbonates tried to keep pace with rising

sea level, prograding clinoforms downlapped onto the MCU, but

the platform soon drowned and was buried by deep-water

carbonates. Faust (1990) comments that in the center of the

deep Gulf the MCU (or more precisely its correlative

conformity) might be better termed the Mid-Cretaceous Sequence

Boundary (MCSB); he also notes that the revised date of the

unconformity is 94 Ma (Haq and others, 1987).







30

Wu and others (1990a; Figure 5) endorse correlation of

the top of the Lower Cretaceous (Washita Group) with the

Middle Cenomanian (94 Ma) sea-level fall (Addy and Buffler,

1984), but declare that, basinward of the platform margin, the

MCU of Buffler and others (1980) correlates instead with the

91.5 Ma (Turonian) sea-level rise (Haq and others, 1987). On

the shelf, the 91.5 Ma maximum-flooding surface is reportedly

recognized as a downlap surface over the Middle Cenomanian

carbonate platform (Wu and others, 1990a). Thus, in the deep

basin, Wu and others (1990a) would replace MCU with MCFS

(Middle Cretaceous Flooding Surface). Feng and Buffler

(1991), however, point out that, in the northeastern corner of

the deep Gulf, the thickness of sequences in the stacked

condensed section between the MCSB and 30 Ma is beyond seismic

resolution. Although the mid-Cenomanian unconformity is

considered to be present over the entire Florida Platform

(Salvador, 1991, Figure 19), Salvador (1991, p. 422) notes

that, if it is due to a major lowering of sea level, the

unconformity is probably represented within the platform

interior by a disconformity or a very low angle unconformity

difficult to identify in a nearly horizontal section composed

of alternating limestones and evaporites, both above and below

the stratigraphic break. Indeed, confusion surrounds

precisely which reflector(s) various investigators identify as

the MCU. Wu and others (1990b) indicate that the 94-Ma MCSB

























BASINWARD


WELL 4


WELL 2


- major sequence boundary and -maximum flooding surface
in Ma of Haq oet al.( 1987) observed on seismic profile
- major sequence boundary and- -maximum flooding surface

in Ma of Haq et al. (1987)not observed on seismic profile
...." downlaps observed on seismic profile


Figure 5.


Diagram of major Middle to Upper Cretaceous
sequence boundaries and maximum-flooding surfaces
from Wu and others (1990a); MCFS is Mid-Cretaceous
Flooding Surface, TLC is Top of Lower Cretaceous.


WELL 5


WELL I


i1.5 IMCFS)
93
93.5
94 ITLCO


LANDWARD







32

(top of the Lower Cretaceous, TLC) and the 91.5-Ma MCFS are

recognizable as two separate surfaces on the western Florida

Carbonate Platform (Figure 5). Schlager (1989) regards age

estimates of the MCU as inconclusive, leaving the way open for

Wu and others (1990a) to interpret the "drowning unconformity"

(Schlager, 1989; Schlager and Camber, 1986) to be the MCFS

(91.5 Ma) rather than the MCSB/TLC (94Ma). The top of the

Washita Group (i.e., the MCU/MCSB/TLC) in the Exxon OCS-G2486-

3 well (Figure 11, Well 7) is picked 120 m deeper by Faust

(1990) than by Addy and Buffler (1984), yet both

interpretations identify a similar zone of transitional

deepening just below the respective picks for the MCU. Faust

(1990) does not recognize the MCSB and MCFS as two distinct

surfaces, but concludes that in the Florida Escarpment region

the MCU corresponds to a maximum-flooding surface. Faust

(1990, Figures 18 and 22), shows that over most of the

Apalachicola Basin, except over the Destin Dome, the

reflectors above and below the MCSB are concordant.

Truncation of underlying reflectors and onlap of overlying

reflectors is characteristic of the MCU over much of the area

to the south and east, across the Middle Ground Arch and in

the Tampa Embayment. Downlapping does occur in a zone of

sediment bypass along the platform margin and downlaps of

clinoforms prograding toward the basin center dominate the

outer Florida Platform (Faust, 1990). Corso and others (1989)

and Mitchum (1978) characterize the top of the Lower







33

Cretaceous (i.e., MCU/MCSB) by downlap of overlying

reflectors. This characterization adds to the confusion

between the MCSB and MCFS. The question of MCSB vs. MCFS

seems to reflect the issues of the relative importance of, and

distinctness of, subaerial-erosional unconformities and

maximum-flooding surfaces.

The idealized drowned carbonate platform (Erlich and

others, 1990; Figure 6a), is characterized by any or all of

the following features: conformable seismic sequence

boundaries, good internal reflectors, horizontal to sub-

horizontal basinal marine onlap becomingg parallel to the

carbonate sequence boundary in basinal positions), and late-

growth reefs at some shelf margin locations. Chemical

sedimentation (usually glauconite or phosphate) is common

within the drowning sequence. Subaerially exposed platforms

(Figure 6b) may show any or all of the following:

unconformable sequence boundaries, erosional/karst surfaces

(may have hummocky or discontinuous nature and cause

attenuation of seismic data and/or shallow multiples), shelf-

to-basin reflector continuity, and divergent basinal onlap

patterns (possibly due to lowstand submarine fans).

King and Skotnicki (1990) examine the Upper Cretaceous

facies stratigraphy and biostratigraphy of the inner Coastal

Plain of Alabama. They then integrate the local stratigraphy

and the global synthesis of sea-level changes during the Late

Cretaceous (Haq and others, 1987, 1988; Figure 7).














(a)
Later Progradation





I Continuous Datai Cae


Conformabie Sequence Boundary


DROWNING EVENT


(b)


Uncontormab( e Sequence Boundary

....:-: : -Karsted/Eroded Sur-ace -
-Shett-to-flasin Reflector Continuity r .*. -- """.:": _
--..-- -D ".-




Lowstand Fan (?)4


SUBAERIAL UNCONFORMITY



Figure 6. Contrast between (a) an idealized drowned carbonate
platform and (b) a subaerially exposed carbonate
platform (Erlich and others 1990).










P 44 o to o(

0 0 0 U 0

."l4.) 0II r.
,C p0C P #

- 0 o 0 **(0 4

4- o -rl 4-i4 1 0 CO

+ 9 Cn I M U O. jc
to -H > o P4-4

S4 .A 0 -4 -4

-, )0 r 0 -, 1 0 P 04

4) 0 4 d 4H
00 4 W o r.



M -V W- o
C oM. IA I () v .m-4
4& 0 0
04 -- v g M 0 pC





4ON 4o a) o II .4J
4 -) V ., g



10j 0 0 I 4 r -4
0.C 0 0 o0


S H m Ord
S: *- I
(0 w 0 0

40>, ,-) to w to u
to C 4 r-4 CO u0



*> 'd gt CO
t) O^ l *o I a 1) co
-0$ o X 4 ro >) 00

04 C ) 0 0 9- 4-4



M E00-4 00
*M -H 0 t U 0 (O 0 0
0 0 0 ) C D4 4B 0
4 ) 4 -1 (1 r.I ) 4 -H
)0 0 HII H0 V0

rM O-E t 3l t o0
M -P ) c r-4 4
0 4J re r30 0 r-lg or M t 0




) ) Hu 4 E-io w 0 go







.r.
w)






















'4I I I 1
l I I
>I

c4 I I I


I 4I ai
all I I_
II 1_itII1


dl
I -







37

King and Skotnicki (1990) correlate the Eutaw Formation

to the Late Santonian-Early Campanian (85-83 Ma) sequence of

Haq and others (1987, 1988). The lower sequence boundary, at

the top of the Tuscaloosa Formation, is a high-relief surface

that corresponds to a type 1 sequence boundary, and the upper

sequence boundary, at the top of the Eutaw Formation is a low-

relief surface that equates to a type 2 sequence boundary. A

low-relief stratigraphic break within the Eutaw represents

the83.75 Ma maximum flooding surface (Haq and others, 1987,

1988).

The Mooreville Chalk and Blufftown Formation are coeval

(Lower Campanian) units of the basal Selma Group in central

and eastern Alabama, respectively. King and Skotnicki (1990)

correlate the top of the Mooreville-Blufftown interval to the

type 1 sequence boundary at 80 Ma (Haq and others, 1987,

1988).

The next overlying time-equivalent units of the Selma

Group in central and eastern Alabama are, respectively, the

Demopolis Chalk and Cusseta Sand. This interval spans the

Upper Campanian and contains three genetic packages that King

and Skotnicki (1990) correlate to the three Upper Campanian

sequences of Haq and others (1987, 1988). The tops of all

three packages (including the contact with the overlying

Ripley Formation) are low-relief breaks that relate to type 2

sequence boundaries.







38

The Ripley Formation of the Selma Group spans the

Maastrichtian and encompasses two genetic packages that

correspond to two sequences (Haq and others, 1988; King and

Skotnicki, 1990). The packages are separated by a low-relief,

intraformational break that relates to the 71 Ma type 1

sequence boundary of Haq and others (1988). A high-relief

break at the top of the Ripley Formation corresponds to the

major type 1 sequence boundary at 68 Ma (Haq and others, 1987,

1988).

The Prairie Bluff Chalk and Providence Sand are the

latest Maastrictian (68-67 Ma) equivalents at the top of the

Selma Group, in central and eastern Alabama, respectively.

The stratigraphic break at the top of the Prairie Bluff-

Providence interval is a low-relief surface in the area

studied by King and Skotniki (1990), but has greater relief

along strike where Baum and Vail (1988) describe it as a type

1 sequence boundary.

Sequence stratigraphic interpretations of outcrops in

Alabama (Figure 8) place the Cretaceous-Tertiary (K-T)

boundary at the maximum-flooding surface within the Pine

Barren Member of the Clayton Formation (Donovan and others,

1988) and divide the Paleogene section into depositional

sequences (Baum and Vail, 1988). These sequence stratigraphic

interpretations, however, are not undisputed. Notable

examples of controversy are interpretation of the Eocene-

Oligocene boundary as either a surface of maximum flooding







39

(condensed section) (Baum and Vail, 1988), or a sequence

boundary (Dockery, 1990) and explanation of the Gosport Sand

as either an incised-valley-fill deposit on a type 1 sequence

boundary (Baum and Vail, 1988), or a transgressive, marine

deposit (Dockery, 1990).

Mancini and Tew (1990b, 1991a, b) apply sequence

stratigraphic concepts to essentially the same stratigraphic

section as Donovan and others (1988) and Baum and Vail (1988),

but arrive at quite different interpretations (Figure 8).

Discrepancies include placement of the K-T (Hazel, 1990;

Mancini and Tew, 1990a, and Olsson and Liu, 1990) and

Oligocene-Miocene boundaries. Baum and Vail (1988) identify

only 19 depositional sequences, whereas Mancini and Tew

(1990b, 1991a, b) recognize 22 (Figure 8). Baum and Vail

(1988) regard the contact of the Gosport Sand with the

overlying Moodys Branch Formation as a surface of maximum

flooding (condensed section), whereas Mancini and Tew (1990b,

1991a, b) consider it a type 1 unconformity. Also, Mancini

and Tew (1990b, 1991a, b) place the base of the TO 1.2 cycle

at the top of the Glendon Limestone and consider this contact

a type 2 sequence boundary. Baum and Vail (1988), however,

identify it as a condensed section and consider the base of

the Glendon Limestone as the type 2 sequence boundary of the

TO 1.2 cycle. The recognition and "correct" interpretation of

the key stratigraphic surfaces (i.e., sequence boundaries and

maximum-flooding surfaces), a feat required to apply sequence




























Figure 8. Chart of lithostratigraphic units (Group,
Formation, Member) of the Gulf Coastal Plain,
Alabama (center) with the sequence stratigraphic
interpretations of Baum and Vail (1988), Donovan
and others (1988) (right), and Mancini and Tew
(1990a and b, 1991a and b)(left).










Mancini and Tew Baum and Vail (1988).
(1990a and b. 1991a and b) Donovan and others (1988)

Relative Change Formaton Relative Change "
Series Stage in Formation/ I Stage Series
c o 0 Coastal Onlap Member Coastal Onla Stage S u

a C_ Payne&s Aquitan. Miocene
0 Hammock C-

S e c- To c
S- Chickaeawhay


N Bucatunna o
0 Byram 0
C *_ C.- 0
1 Glendon
o \C----- Marianna -- ^
Mint Spring ------
\Red \Forest Hill
Td C---- Bluff\Bumonose-- Td
riabo Cocoa o Td
N N. Twistwood I
s C- Creek c-- ,.
a Moodys Branch "Z
C -
o ---- Gosoort 5

SCockfield
Ia a t ; C- Gordon Creek
a -----

0 -- Dobys Bluff -0 0
w c w
as Tc Tc

M\C ____ C0-------
N
Winona

--- __Meridian C -
Ypre- Hatchetigbee C pre
sian ,, k--- Ypre-
n- sin
--- -- Bashi \
S----- Bells Ee
a- \\ Landing o o i
Tb = -2 0 = T.
Ta Ca | Tb
C Graggs c----
S -Landig


SCe- Grampian Hills c
C" one nGravel Creek
Sc----- Coat Bluff c-----

o 0 Oak Hill o
a ,. c----- Matthews
\ \Landing

T a C----- Porters Creek Ta


c C----- McBryde c
Q 'Turritella o
CQ I -- rock' >*
Pine Barren 0

Upper Maas- \ C, Maps- Upper
Creta- trich- C- Prairie Bluff t---- rich- Creta-
ceous tan tian in ceous



Sequence Boundaries Type 1 --. Type 2 -
Condensed Section C-







42

stratigraphy successfully, seems even more subjective in

outcrops and well data than in the sequence analysis of

seismic data.

The pioneering seismic stratigraphic investigation of

Mitchum (1978) interprets 2500 nautical miles (4630 km) of

single-channel data (Figure 9) and focuses on the post-Early

Cretaceous geologic development of the western Florida

Platform. The seismic profiles are correlated to data from

15-ft (4.6-m) cores taken at 60-ft (18-m) intervals in each of

seven 1000-ft boreholes scattered along the West Florida

Slope, north of 260 30' N. Using seismic stratigraphic

procedures for sequence analysis (Vail and others, 1977),

Mitchum (1978) defines ten depositional sequences (Figure 10)

above the "K" sequence boundary that he identifies as the top

of the Lower Cretaceous. Mitchum (1978) does not explicitly

correlate his seismic stratigraphic interpretation to the

global sea-level curve of Vail and other (1977), but includes

a chronostratigraphic chart (Mitchum, 1978, Figure 2) with a

geochronometric scale.

The seismic stratigraphic framework of Addy and Buffler

(1984) for the shallow shelf in the Destin Dome area (Figure

9) identifies five seismic units, designated A through E

(Figure 10), above the MCU (correlated to the top of the Lower

Cretaceous and sequence boundary "K" of Mitchum, 1978). Age

determinations are made partly by ties to wells (Exxon OCS-

G2486-3 and Sun OCS-G2490) and partly by correlation to

















































Mitchum (1978)
Addy and Buffler (1984), Faust (1990)
Doyle and Holmes (1985)
Mullins and others (1987, 1988a and b)
Ball and others (1988)
Evans (1989)
Wu and others (1990a and b)


Figure 9. Map showing general locations of previous
seismic/sequence stratigraphic studies of
Upper Cretaceous and Cenozoic strata in
the vicinity of this study.


******o***o*******








p (D
0) 4.)
040~

~44


4-
o (o




4-H

$4J

r~.









-H


>11

*H4-)

4-)
to U)




Ol



tn-H





4-)


tn0




0)
5.4
















0



0-


z m
I'o

S2a
Sze


Co
0







co

A 0c
0 cm

z



w G
u

Z Z




-0 <
0















LL






LU
5 0
uj'
gl



1^


omm 4
on 10


I I II I


U)








46

seismic line 126 (Mitchum, 1978, Figures 3 and 4, p. 199) and

then to the sea-level curve of Vail and others (1980). The

sequence boundary ages shown in Addy and Buffler (1984, Table

1), therefore, differ somewhat from those of Mitchum (1978).

Doyle and Holmes (1985) investigate the shallow

structure, stratigraphy, and carbonate sedimentary processes

of the West Florida Upper Continental Slope (Figure 9) with a

high-resolution, shallow-penetration seismic survey. Doyle

and Holmes (1985) map the "top seismic unit," which, by

correlation to Mitchum (1978), they interpret to consist of

Pleistocene-Holocene sediments. South of 270 30' N, the base

of this upper seismic unit is interpreted to be an erosional

unconformity. Doyle and Holmes (1985) report that the unit

underlying this unconformity could be Pliocene, but that based

on a veneer of phosphorite, they consider it to be Miocene.

Despite a karst-like morphology over much of its extent, Doyle

and Holmes (1985) entertain submarine, as well as subaerial,

erosion as possible causes of this feature. This is another

example of the practical problems that arise in recognizing

sequence boundaries. The mechanism of the submarine erosion

postulated by Doyle and Holmes (1985) does not directly

involve the fluctuation of relative sea level, but action of

the Tertiary Loop Current.

A considerable amount of interpretation (Gardulski and

Mullins, 1985; Mullins and others, 1987, 1988a and b) has been

based on analysis of a set of approximately 1,500 km of high-







47

resolution, intermediate-penetration (500-750 m subsurface),

single-channel analog, reflection seismic data from a

relatively small (5,000 km2) area (Figure 9), ostensibly

representative of the entire western Florida Platform. The

seismic profiles are correlated to two of the coreholes (CH32-

45 and CH33-48) drilled by Exxon (Mitchum, 1978) and

additionally to piston cores and dredged samples. The

sequential post-Early Cretaceous stratigraphic evolution of

the carbonate ramp slope of central west Florida (Figure 10)

was determined by defining six "primary seismic depositional

sequences" (Mullins and others, 1988b). These sequences are

not as defined by Vail (1987) and Van Wagoner and others

(1987, 1988), for they do not correspond to individual cycles

of sea-level fluctuation. Neither are they "depositional

sequences" as defined by Vail and others (1977), for they can

include unconformable surfaces with significant lacunae (e.g.,

"sequences" IV and I, Mullins and others, 1988b; Figure 10).

Mullins and others (1988b) regard sea-level fluctuation as but

one of a suite of processes affecting sedimentation and

attribute a major change in deposition from progading

clinoforms ("sequence" II) to a pelagic slope-front-fill

system ("sequence" I) and the associated seismic-stratigraphic

break, about 12-15 Ma, to a paleooceanographic event, namely,

intensification of the Loop Current in the Miocene (Gardulski

and Mullins, 1985; Mullins and others, 1987). Mullins and

others (1988b) also recognize an unconformity within







48

"sequence" I, at about 10.2 Ma, which they interpret as a

surface of subaerial exposure and karst development and relate

to the unconformity identified by Doyle and Holmes (1985).

This correlation is problematic, because the minimum age of

the unconformity of Doyle and Holmes (1985) would be

approximately 1.6 Ma, if the underlying unit were Pliocene, or

about 5.5 Ma, if that unit were Miocene.

Gardulski and others (1991) interpret the Upper

Cretaceous to Pleistocene evolution of the deep-water

carbonate platform of west Florida (Figure 10) from detailed

analysis of samples from all seven of the Exxon coreholes

(Mitchum, 1978). Gardulski and others (1991) recognize

Pliocene sediments in CH30-43, CH31-44, CH35-46, and CH34-47

where Mitchum (1978) had reported their absence. This prompts

reconsideration of the age interpretations of Doyle and Holmes

(1985), for Pliocene strata must then be included either in

the Pleistocene-Holocene "top seismic unit" or in the

underlying "Miocene" unit. The "four major depositional

systems" of Gardulski and others (1991) do not correlate well

with the six "depositional sequences" of Mullins and others

(1988b) (Figure 10) and interpretations thereof differ, as

well. Gardulski and others (1991) interpret the Campanian-to-

Maastrichtian regime as progradational with a change by the

Maastrichtian to pelagic aggradation. This includes with

"sequence" V the lower part of "sequence" IV and necessitates

that yet another significant stratigraphic break occur within







49

the "reflection-free" interval of "sequence" IV (Mullins and

others, 1988b). Also, "sequences" II and III are not

distinguishable able in the corehole samples (Gardulski and

others, 1991).

In related work, Mullins and others (1988a) characterize

the modern carbonate ramp slope of west central Florida and

Gardulski and others (1986, 1990) ascribe carbonate mineral

cycles identified in piston cores of Pleistocene ramp slope

sediments to climatic changes. Analysis of Ocean Drilling

Project (ODP) Hole 625B, on the east flank of DeSoto Canyon

(Roof and others, 1991), shows a record of cyclic sedimen-

tation controlled primarily by sea-level fluctuations from the

present to 2.8 Ma and periodic fluctuations related perhaps

to Loop Current variations from 2.8 to 5.4 Ma.

Palynostratigraphy of the Cenozoic portion of Exxon

Corehole 32-45 (Wrenn and Satchell, 1988) permits subdivision

of seismic "sequences" I through IV (Mullins and others,

1988b) and evinces the erosional unconformity separating early

Miocene marls from those of the late Miocene. The abundance

of terrestrial palynomorphs and shelfal dinocysts in Neogene

samples, however, does not support the contention of Mullins

and others (1988b) that the intensified Loop Current acted as

an oceanographic barrier to off-shelf sediment transport.

The seismic investigation of Ball and others (1988)

comments only briefly on the Cenozoic section and concentrates

on older structure and stratigraphy. An impressive sequence







50

of basinward prograding reflections with vertical relief of as

much as 0.5 seconds two-way travel time (2-way TT) are

observed to make up a major portion of the middle to lower

Cenozoic section on the south flank of the Middle Ground Arch.

Prograding reflections are also noted in the Cenozoic section

in the Tampa Embayment, in the area studied by Mullins and

others (1987, 1988b).

High-resolution seismic reflection and associated data

reveal the Neogene and Quaternary stratigraphy of inner-shelf

and coastal areas of Florida (Locker and Doyle, 1987; Locker

and others, 1990; Evans, 1989; Evans and Hine, 1991). In the

Charlotte Harbor area, Evans (1989) recognizes six

depositional sequences lying between regional unconformities.

The sequences of oblique clinoforms prograde to the south-

southeast. The lower regional unconformity is correlated to

the 10.5 Ma sea-level fall.

Exposition of Problems to be Investigated

Despite the contributions of the aforementioned

investigations, many questions about the evolution of the

western Florida Carbonate Platform from a rimmed carbonate

shelf (Read, 1985) in the Early Cretaceous to a drowned,

distally steepened ramp (Read, 1985) in the Holocene remain

unanswered. In the summary of the recently published Decade

of North American Geology (DNAG) volume on the Gulf of Mexico

Basin, Salvador (1991, p. 548) includes the following







51
statement about the additional information and new studies

needed:

Considerable information about Cretaceous and
Cenozoic regional stratigraphic hiatuses or
unconformities may be obtained from detailed
lithostratigraphic and biostratigraphic studies
(and perhaps seismic-stratigraphic interpretation)
of the Florida and Yucatan carbonate platforms.
Their Cretaceous to Holocene stratigraphic section,
composed predominantly of shallow-water carbonates
and evaporites, and deposited under extremely
stable tectonic conditions, should reflect
admirably important eustatic changes in sea-level
[sic] and the corresponding stratigraphic hiatuses
and sedimentary cycles.

The thick and really extensive interval of Eocene shallow-

marine carbonate strata constitutes a significant portion of

the Florida Carbonate Platform. Onshore, these rocks, which

commonly have high primary and secondary porosity, form the

major part of the Floridan aquifer system (Miller, 1986), an

important ground-water supply. As an extant carbonate coastal

aquifer, these strata offer opportunities to investigate a

variety of on-going diagenetic processes, including

dissolution, cementation and dolomitization (Jee and others,

1991), but better understanding of their sedimentology and

stratigraphy is essential as a frame of reference for

interpretations of their subsequent diagenesis.

The depositional setting and shelf-margin profile of the

Eocene western Florida Carbonate Platform have yet to be fully

defined and, among the paleoenvironments interpreted thus far,

reefal and oolitic facies of a "shoal-water complex" (Read,

1985) are conspicuously lacking (Randazzo, 1987).







52

Winston (1978, 1989) reports the existence of the

"Rebecca Shoals Barrier Reef Complex" in strata of Late

Cretaceous through Paleocene age, onshore and offshore

Florida. The literature is not clear whether this "dolomite

reef" (Winston, 1989) is truly an ecologic reef (Dunham,

1970). If so, how did conditions change in the Eocene to

cause its demise? Considering the paradox of drowned

carbonate platforms (Schlager, 1981), one may wonder if change

in sea level played a role. After its end, did the "reef"

express an influence on subsequent sedimentation?

No Paleocene sediment was recovered in any of the Exxon

coreholes along the west Florida slope, but CH32-45 is

reported to have bottomed in Eocene calcareous nannofossil

ooze (Mitchum, 1978; Mullins and others, 1988b; Wrenn and

Satchell, 1988; Gardulski and others, 1991). Obviously, one

must look landward of this chalk, which is interpreted as an

open-ocean, marginal plateau deposit, to observe the

morphology and facies transitions of the Eocene shelf/basin

margin.

The global nature of the regional transgression recorded

by the regional lithostratigraphy of Paleocene and Eocene

rocks of Florida (Chen, 1965; Miller, 1986) is recognized, but

some controversy exists concerning its cause. Although Vail

and others (1977) interpret Eocene patterns of coastal onlap

to reflect worldwide rise in relative sea level, a sea-level

curve based on volume changes of the mid-ocean ridge system








53

(Pitman, 1978) indicates sea level fell persistently from Late

Cretaceous to Middle Miocene time. Pitman (1978, p. 1389)

points out that, "The shoreline tends to stabilize at that

point on a margin where the rate of rise (or fall) of sea

level is equal to the difference between the rate of

subsidence of the platform and the rate of sediment infill.

Under these conditions, if sea level is made to rise more

rapidly or fall more slowly a transgression will occur." On

this basis, Pitman (1978) attributes the marine transgression

in the Eocene to reduction in the rate of sea-level fall, at

that time.

McGowran (1990) presents the early Paleogene as a time of

episodic transition of global climate from Mesozoic

"greenhouse" to Cenozoic "icehouse." This transition affected

both oceanic circulation and sea level. McGowran asserts a

parallel between tripartite patterns evident in various

paleobiological and geochemical data drawn from marine and

terrestrial realms and plate tectonic events of the Paleocene

and Eocene epochs, but is unable to relate these clearly to

either eustatic or climatic changes. At the scale of his

investigation, McGowran sees no cyclic or rhythmic character

in the patterns.

Cyclic deposition and erosion have been observed in the

Eocene carbonate section of Florida (Randazzo and Saroop,

1976; Randazzo and others, 1977; Randazzo and Hickey, 1978)

but, as yet, these have not been completely explained and







54

related to global patterns of relative sea-level fluctuation.

Changes in the rate of sea-floor spreading cause sea level to

fluctuate at rates of less than 10 Mm/yr (Pitman; 1978). This

is too slow to explain many of the prominent features in the

stratigraphy of carbonate platforms (Kendall and Schlager,

1981, p. 185). The glacioeustatic mechanism is commonly

invoked to account for cycles of relative sea-level change

with frequencies higher than the third order of Vail and

others (1977). Although estimates of temperature change in

North America indicate alternating episodes of relative warmth

and coolness during the Eocene, it is believed that Antarctic

glaciation did not commence until the Late Eocene. "In fact,

global temperatures may never again have risen to the levels

that they attained in Eocene time" (Stanley, 1986, p. 541).

What, then, is the nature of the cycles that occur in the

Florida's Eocene carbonate section?

The depositional and diagenetic responses of carbonate

systems to relative sea-level rise and fall are modeled based

on the principles of seismic/sequence stratigraphy, by Kendall

and Schlager (1981), Sarg (1988), and Schlager (1992). Facies

models, in the sense of Walker (1990), are generalizations

that combine the features of many local examples to produce a

norm by which the significance of a new example can be

assessed. Through attempts to apply a model to a specific

case the existing model can be improved or a new one

constructed. The "new stratigraphies," Walker (1990) notes,







55

are largely conceptual with few actual geological examples.

It is of interest, therefore, to test the applicability of

such models to the carbonate system of the western Florida

Platform.

To varying degrees, the diagenetic features of Florida's

Eocene carbonate rocks have been characterized and

hydrogeochemical factors that influence diagenetic processes

have been analyzed (Randazzo, 1980; Randazzo and Cook, 1987;

Randazzo and Bloom, 1985; Randazzo and Zachos, 1984; Randazzo

and Hickey, 1978; Randazzo and others, 1983, 1977). The

diagenesis of these rocks has not, however, been interpreted

holisticallyy," within the context of the 33 to 55 million

years of geologic history since their deposition. Changes in

relative sea level influence the position of the coastal and

inland fresh water-salt water mixing zones and other factors

important to dolomitization, cementation and dissolution. The

Eocene carbonate rocks of Florida doubtlessly reflect such

changes, but the sequence, timing and duration of diagenetic

episodes is still speculative. For instance, although

evidence (Randazzo and Bloom, 1985) suggests that certain

diagenetic processes (i. e., dolomitization) have been active

within the last 30,000 years, the diagenetic role of early

post-depositional fluctuations in relative sea level is not

well understood.

Proponents of sequence stratigraphy believe that the rate

and direction of relative sea level changes have been







56

constrained within fairly narrow limits for most of the

Mesozoic and Cenozoic ocean margins and tied to an integrated

chronostratigraphic framework (Haq and others, 1988). The

general stratigraphy of the northeastern Gulf of Mexico has

been correlated (Greenlee, 1987; Greenlee and Moore, 1988; Wu

and others, 1990) to the major sequence boundaries associated

with eustatic sea-level changes (Haq and others, 1987, 1988).

The attempt is made here to extend and refine this correlation

in the Upper Cretaceous-Cenozoic section throughout the

western Florida Carbonate Platform.

Better understanding of the controls on spatial and

temporal variations in mixed carbonate and siliciclastic

deposition in settings like the previously mentioned facies

transition between peninsular and panhandle Florida has come

from viewing mixed sequences as part of a continuum between

the carbonate and siliciclastic end members (Doyle and

Roberts, 1988; Budd and Harris, 1990). An attempt is made

here to resolve differences in the interpreted extension of

the Suwannee Strait, or Channel, beneath the West Florida

Shelf (Antoine and Harding, 1965, Antoine and Jones, 1967;

Mitchum, 1978; Chen, 1965; Miller, 1986).













MATERIALS AND METHODS

Data Base

Much of the data used in this study were obtained from

petroleum industry sources. The American petroleum industry

still uses U.S. measurements rather than metric. Virtually

all data (well logs, seismic acquisition and processing

specifications, etc.) are not in metric units. Where

feasible, metric equivalents are provided, but wholesale

conversion of every measurement was not undertaken.

Reflection Seismic Data

Approximately 9,600 kilometers (6,000 miles) of multifold

reflection seismic data were used in this investigation. The

data were contributed by GECO Geophysical Company, Inc.,

Digicon Geophysical Corporation, and Fairfield Industries.

Since the commercial data are proprietary, lines were

renumbered for reference within this text, and only

generalized locations are shown (Figure 11). General

information on the recording parameters and processing

sequences can be found in Appendix A.

GECO Geophysical Company released (through Texaco Inc.)

approximately 3657 kilometers (2,273 miles) of selected

seismic data from the 1986-1987 GECO Eastern Gulf of Mexico

Regional Well-Tie program. The GECO lines supply regional







58

coverage from the eastern Apalachicola Basin to the northern

South Florida Basin. The GECO data are 96-fold common-depth-

point (CDP) coverage. The record sections obtained display

wave-equation-migrated data at a vertical scale of 2.5 inches

equals 1 second (2-way TT) and a compressed horizontal scale

of 1 inch equals 2.5 miles (1:158,275). This presentation

enhances the continuity of reflections and makes the data more

easy to interpret (Macurda, 1988).

Digicon Geophysical Corporation released selected seismic

data from the 1984/85 Destin Dome Spec Survey (80-fold CDP),

the 1986 Florida Middleground Spec Survey (80-fold CDP), and

the 1987/88 Florida Middleground Infill Spec Survey (90-fold

CDP). The Digicon data set amounts to approximately 3,459

kilometers (2,150 miles) of data. The record sections

obtained display migrated data at a vertical scale of 2.5

inches equals 1 second (2-way TT) and a horizontal scale of 1

inch equals 3,514 feet or 0.67 miles (1:42,171). The Digicon

lines provide a rectangular grid of coverage across the Middle

Ground Arch and Tampa Embayment.

Fairfield Industries released more than 2475 kilometers

(1538 miles) of selected 72-fold CDP seismic data from the

1984-85 Offshore Florida program. The record sections

obtained display migrated data at a vertical scale of 2.5

inches equals 1 second (2-way TT) and a horizontal scale of 1

inch equals 3,514 feet or 0.67 miles (1:42,171). Much of

these data were reprocessed with full-dip move-out migration







59

in 1988. The Fairfield lines furnish a rectangular grid of

coverage across the Apalachicola Basin. Fairfield lines

illustrated in Figures 19 and 20 have been displayed at a

compressed horizontal scale comparable to that of the GECO

lines.

Well Data

The seismic data are correlated with information from 29

offshore wells (Figure 11). Various geophysical logs,

biostratigraphic data, and some lithologic data were obtained

for these wells (Table 1). Synthetic seismograms and/or

velocity surveys were obtained for eight wells (Table 1).

West of 860 W, Wells 1 through 10 (Figure 11) are all

located on or near the grid of seismic profiles. Of the 13

key wells located in federal waters, on the outer continental

shelf (OCS), east of 860 W, 11 are tied by the layout of

selected lines (Wells 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,

and 23; Figure 11). Wells 25 and 29, located in the state

waters of Florida (Table 1) can be projected toward seismic

lines G10 and G15 (Figure 11).

Data on certain wells from published sources (Addy and

Buffler, 1984; Lord, 1987; Greenlee, 1987; Greenlee and Moore,

1988; Wu and others, 1990a) are integrated into this study.

Wells 24, 26, and 29 are interpreted in stratigraphic cross-

sections by Miller (1986, Plates 15, 22, and 24,

respectively). In the case of near-shore wells, published

interpretations of nearby wells were also consulted (Applin













x r.
-4 > M0
0 0 4J
m 1 t
0 o 0

9 X-

Vn >4 W
- ) 9 0


. -o *-
0 H3

U 00 X 4-4
SW -rq 0





OH
1 (1) t









,-4 .H -H
M l C




O 4



O= s 0
5140 0

*H ul0






-H *H 0



44 >1 4H *
.4 4 )
S*P4 *> (10)

-u 4V 4)




44 ,- *H

(0 (a 4





-iH
4:1 s--
MUo1
.H ~f
P4 <








61














G16





















0 6,,
cy 0








200

to


II II








0 0 t
H H> 0
S 0 H -
H -o -Zc C
H E
0 CH 0 0 U C UC.





U H r H o H M H 1 H 1H HHr HUC /


lcc a. o S o0
O ccc HHOcO O CH a (n QQOU


u 0o o 0 0 m00 0m H 0 H 0(













S 0 o o OOOO o o o H 0 0
0 o o % w m W> m m -
4 aM r- O 0 ON D O O O O CO O r- O0





M, 0 0 N 0 0 0 M 0 0 00 0 010 H0 M 0oa 0


oO WON o mo oD -D %0












O o oNMOO'.D = oN O H C
So r-0 w 0 r- N N Ln o o 0 IN H
0rrHH N H, c r"4 rl o fo r-i H oH Ho





>I (1) 4) 4) W ) (1 (L l) ) (1) (1) I I
E-i R R 0 0 0 R H 9i L 0 r- 0 m M
S NOOOOOOOO O OHO O O O O OH
w in a Q a 0 Q a a a Q.4 4.) 4.
O (a > .4 .)P 4- 4-)

(A 4n to w W to w w oa O o 0 O o 0O-H 0 $4, M .o 4.





V CO CO CO N (*- %D N 0CON M %D0 %O r- m qr r-H N 01
m 0 w N o m r-' H LA M N -; v H- 0
Sv v n LA M m 0L oi
H N OCOw w N N N O N N N N w Nl Cl) m


o 00000000000 0 c00 0 0 0 0


E-4 0 0 U 0 0
m 0 0 0- 0 r-4 r-l r-Ol 0
> -4 0 0 U UH 0 0 > 0 Z (v -H o -ri rq r-l U

0 U M_ w_ P_ p_ M_ M cccc En z _c 0


n^c Cenm-oiS I I3 I I -E















U S

H CO


SQ Q 0 M






4 0 H 0 A 0
Im I a Ji NLH QIQ


o e ^o N PO m n 4




co r- H N In U n









H0 N'O 0 '-0 0 0 0O
0n r0 il n 0 U 00 r% (

r-I I r- I r-l ci -I H r-I







%C0



1 1 0 0 0





So I




o0 r0 0 O 0 P 0 i N--00&
pO A O O p 0 9 r. >4 >4 a
ti o p p (O p t t > >


O )4




> I 4 4 O O Q
0 U U) U) M N


0 0 0 0 )4 0

0 r-H



r-o H )N 0 0 4O r- 0 0


N N N NCM NNNNNN


0
0 0 0
04


VO 0 ON
til 6'001



0000' 0
0 H 0 r.
4OH 0mH o )
.--4 #0 PC 0 m > 1M
O*N M4 0 >1 4O 0H

0- I o1 C>i *H
-COq -4 0 000 1 .0
O1 lOO r..O V ) 0 >

-) 10 0 0 010 U 0 O C
Sr Z 1 0 C 0 0-H
0 0 0'00'(0 M0 0 0 W-4 >1-4-
-4 -H C C C -H M () -4 t r-l *J 4- V (10
S4J-J 4-H H H 4 -J C V-H 0 43-0 a) m
V O OU 0 W 4) U O C. Or-l -
01 0 r-qr-lr-4 E 040 00) - C C 0 0 H-H 0 0 > 0) (0 -H
M I HHIQQQ IrU CO U) > C


OMU004ZZU 0
rlU)HHHQZHHOUUnC.-lH
MHHQQQ0aUCOCQ







64

and Applin, 1965, 1967; Winston, 1971a and b, 1976a, and

1977).

Samples from cored intervals interpreted to be Eocene

were obtained from Wells 17 and 21 (Figure 11 and Table 1).

The former well has two cored intervals interpreted to be in

Eocene strata, Core #1 (2,994 to 3,020 ft) and Core #2 (4,581

to 4,583 feet). The latter well has three cored intervals

interpreted to be in Eocene strata, Core #1 (1,659 to 1,692

feet), Core #2 (3,472 to 3,478 feet), and Core #3 (4,102 to

4,112 feet). Detailed analysis and interpretation of the

cores was not within the scope of this study.

Seismic Stratigraphic Interpretation Procedure

Seismic stratigraphic interpretation (Vail and others,

1977) has three principal steps:

1--(seismic) sequence analysis,
2--(seismic) faces analysis,
3--sea-level analysis.

Sequence analysis begins with recognition of the regional

setting and pertinent age relationships and entails definition

of depositional sequences and delineation of their extent by

mapping their external geometry. Facies analysis involves

identification and characterization of the lithofacies within

sequences based on seismic data, geophysical log character

and/or geologic data. Sea-level analysis includes

construction of a chronostratigraphic correlation chart and

geochronologic chart that shows regional cycles of relative

sea-level change (Vail and others, 1977).









Vail (1987) expands the seismic stratigraphic

interpretation procedure to seven steps:

1--seismic sequence analysis,
2--well-log sequence analysis,
3--synthetic, well-to-seismic ties,
4--seismic facies analysis,
5--interpretation of depositional environment and
lithofacies,
6--forward seismic modeling,
7--final interpretation.

Vail and Wornardt (1990) again revise the procedure for

well log-seismic sequence stratigraphic analysis. An eleven-

step process is now recommended:

1--Interpret lithology from log character (confirm with
cores and cuttings when possible),
2--Interpret depositional environments from
micropaleontology/ paleoecology and then from well log
character,
3--Interpret the condensed sections from faunal and
floral abundance and diversity to recognize:
Major condensed sections associated with
maximum flooding surfaces
Secondary condensed sections not associated
with maximum flooding surfaces
Base of lowstand prograding wedges
Base of lowstand slope fans
Minor condensed sections between attached
lobes of slope fans
4--Age date with high resolution biostratigraphy and
correlate with global sequence cycle chart,
5--Locate discontinuities on dipmeter log
6--Interpret sequence and systems tract boundaries from
log character,
7--Tie to seismic sections that have sequences and
systems tracts interpreted,
8--Interpret sequence boundaries, maximum flooding
surfaces and systems tracts on seismic data and tie the
seismic interpretation to the well logs,
9--Identify parasequences and marker beds,
10--Construct well log-seismic sequence stratigraphic
cross-sections,
11--Prepare a chronostratigraphic chart from key cross-
sections to summarize stratigraphic framework.







66

This investigation integrates all available information

from seismic and wells, but does not adhere strictly to the

procedure of Wornardt and Vail (1990), because there are few

wells in the study area, and geologic, biostratigraphic and

paleoecological data are even more scarce. As discussed by

Schlager (1992, p. 28), the restricted definitions of

"unconformity" and "sequence boundary" (Vail, 1987 and Van

Wagoner and others, 1988) are not acceptable, and the limits

of seismic resolution preclude the recognition of systems

tracts. Therefore, the criteria used for sequence boundary

recognition are those of Vail and others (1977).

As the first step, the boundaries of depositional

sequences were identified by reflection terminations and

traced throughout the grid of seismic sections. Then,

lithostratigraphic and biostratigraphic data from wells were

used to interpret the seismic data. The interpretations from

well data were tied to seismic sections either by synthetic

seismograms or using sonic logs.

The well-to-seismic ties for Wells 11, 12, 16, 17, 18,

and 21 (Figure 11, Table 1) were made using synthetic

seismograms. The conversions from depth (ft) to two-way

travel time (2-way TT, sec) for the well-to-seismic ties for

Wells 2, 4, 5, 8, 9, 10, and 11 (Figure 11, Table 1) are based

on sonic log interval transit time (At, gsec/ft). Sonic logs

were blocked and the average interval transit time (At,

Asec/ft) used to calculate the two-way travel time (2-way TT,







67
sec) for each blocked interval by dividing the interval

thickness (ft) by the average sonic velocity (ft/sec) of the

interval. The stacking velocity near the well was used to

calculate the 2-way TT to the top of the sonic log. The

cumulative 2-way TT below the seismic datum (sea level) was

calculated by summing the 2-way TT of each interval. The

cumulative 2-way TT of depths at which the change in At was

relatively great were correlated to reflections on the seismic

sections. A suite of well-log cross-sections (Figures 14

through 17) were constructed showing chronostratigraphic,

seismic-stratigraphic, and lithostratigraphic correlations.

Seismic facies analysis was approached as previously

described. The analysis incorporates the characterization of

seismic facies of carbonate rocks by Fontaine and others

(1987; Figure 12) and the models of Handford and Loucks (in

press).

A suite of "thickness" and "structure" maps of key units

were made, contoured in 2-way TT. Conversion to depth was not

attempted, because of sparse control on sonic velocity. In

general, a increase in sonic velocity occurs toward the

southeast with the change from siliciclastic to more carbonate

rock. The gradational nature of this change in sonic

velocity, however, means that locally the change is

negligible. Maps contoured in 2-way TT should be more easily

tied by future investigators than maps converted to depth on

the basis of speculative sonic velocity.




































0= .- Ia



0- O


.C c



C -2 ~. 2 :.o
tiM i .
silla'ilS____
C6
C6 v
v-- i I soj
CA">E oaS ug
cilitl
s w s asTo

CiL r
l'55-S Ei-i--3Cu


4.)







0


.H
0
*"-
-1



04
a)



co
0



) -4





4-J4

E)
oU
o-




4w














- tP
H 0




('4
0 -H








Chronostratigraphic Interpretation Procedure

Most sequence stratigraphic analyses (e.g., Baum and

Vail, 1988; Greenlee, 1988; Greenlee and Moore, 1988; King and

Skotnicki, 1990; Wu and others, 1990a; Dobson, 1990) employ

the Mesozoic-Cenozoic Cycle Chart (Haq and others, 1987, 1988)

as the standard for temporal correlations. Miall (1991, 1992)

suggests the need to revise this practice. Another reason for

change is a more accurate geomagnetic polarity time scale

(GPTS) for the Late Cretaceous and Cenozoic (Cande and Kent,

1992). The correlation of series and stage boundaries to

magnetopolarity chronozones by Haq and others (1987, 1988) is

different from that of other schemes (Kent and Gradstein,

1985; Breggren and others, 1985a, b, c; Aubry and others,

1988), particularly the GPTS of Cande and Kent (1992). Also,

the correlation by Haq and others (1987, 1988) of

biochronostratigraphic units, specifically the planktonic

foraminiferal (N/P) biochronozones, with magnetic polarity

stratigraphy is different from that of other schemes (Berggren

and others, 1985a, b, c; Aubry and others, 1988). As the GPTS

of Cande and Kent (1992) does not provide a magneto-

biochronostratigraphic correlation, the interpretations of

Berggren and others (1985a, b, c) as revised by Aubry and

others (1988) are used to tie the planktonic foraminiferal

zonations to this GPTS (Figure 13). One point of controversy,

the position of the Paleocene-Eocene boundary (Aubry and

others, 1988; Swisher and Knox, 1991, and Cande and Kent,





























Figure 13.


Geomagnetic polarity timescale for the Late
Cretaceous and Cenozoic (from Cande and Kent,
1992; black is normal polarity, white is
reversed) with correlation to planktonic
foraminiferal zonations and the last appearance
data (LAD) of key planktonic foraminifers (from
Kent and Gradstein, 1985; Berggren and others,
1985a, b, and Aubry and others, 1988). Six-letter
abbreviations for foraminifers are explained in
Appendix B.











CHRONO- 3 > LAD OF KEY

TIME STRATIGRAPHIC z PLANKTONIC ZONES TIME
UNITS FORAMINIFERS


PL IS TOCENE
2 -
PL10- L PIACENZIAN 2A--
CENE E ZANCLEAN 3
MESSINIAN 3A .
34 "
S L TORTONIAN 4A'

J 5-A--.
SERRAVALIAN
c: --M -- ...
LJ LANGHIAN 5..
o50--
BURIGALIAN SE:::
E 6 --.
6A--
AQUITANIAN 6B..-
6C..-

L CHATTIAN a
o 9-..


E E RUPELIAN 12.-
Q


-0 Mo






- 10






-20






-30






-40






-50






-60






-70






-80o


BARTONIAN 18 I
19.. -


LUTETIAN


21t.--


23 ...-
E YPRESIAN


25"
L SELANOIAN 26-.


- 27...
E DANIAN 2S8
29--


MAASTRICHTIAN


33 ..


CAMPANIAN


SANTONIAN


< GLR FPR




< GLR KUG
< GLB CAG


( GLR OOP
< CHL CUB
(< PHG MCR
(< HNK ALA,TBR
< GAK SMV
MZV SPN
ORN BKM
ACR BLO

(MZV ARA


< ACR PCM

(MZV SBB

< MZV VLC
< PRT PMI
( MZV AGA
< MZV PBU








< GTI ELE








-N23-
-N22-
-N21-
N19
N18
N17
N16


-N1 1-
N8
=N7=
N6
N5

N4

P22/N3

P21

P19ig
P18

-P16-
-i-
P15
P14
-P13-
P12

P11l

P10
P9
P8
-P7-
P6
-P5-
P4
P3
-P2-

P1


N13

4N10


- i a


L PRIABONIAN


-0 Mo






- 10o






-20






-30






-40






-50






-60






-70






-80







72

1992) is beyond the scope of this investigation, but is

addressed by Berggren and others (1992).

Chronostratigraphic control comes from reports of the

depths of the first down-hole occurrences (i.e., last observed

occurrences, LOO) of various planktonic and benthonic

foraminifers in wells (Appendix B). This study preferentially

uses the nomenclature of Bolli, Saunders, and Perch-Nielsen

(1985); Appendix B includes an informal synonymy of the taxa

listed in the reports.

The last appearance data (LAD) of certain of the

planktonic foraminifers are correlated to the magnetic

polarity stratigraphy (Kent and Gradstein, 1985; Berggren and

others, 1985a, b; Ciesielski, personal communication).The LOO

of these taxa in the wells studied can be considered equal to

or older than the LAD tie points shown in Figure 13.

The LOO of other taxa listed can be considered equal to

or older than their LAD relative to the planktonic

foraminiferal zonations as shown in Bolli, Saunders, and

Perch-Nielsen (1985). One discrepancy between the planktonic

foraminiferal zonation of Berggren and others (1985b) and that

used in Bolli, Saunders, and Perch-Nielsen (1985) is that the

top of the Truncorotaloides rohri zone, P14 is the LAD of the

nominate taxon in the latter scheme, but the first appearance

datum (FAD) of Porticulasphaera semiinvoluta (referred to here

as Globigerinatheka semiinvoluta) in the former.







73

The chronostratigraphic significance of still other taxa

listed in Appendix B is based on the previously published

interpretations of Applin and Applin (1944), Applin and Jordan

(1945), or Miller (1986).

Well-log Correlation Procedure

Outcrops of coastal plain strata are sparse, and much of

our knowledge of Florida stratigraphy is based on data from

wells. When subsurface investigations began, in the early

1940's, there was no code of stratigraphic nomenclature and no

distinction between biostratigraphic and lithostratigraphic

units. In most cases, "diagnostic foraminifera" were the

criteria for recognizing subsurface formations in Florida

(Applin and Applin, 1944; Applin and Jordan, 1945). In a

their study of the Comanche Series (Lower Cretaceous), Applin

and Applin (1965, p. 31) explain that, "provisional boundaries

of the stratigraphic units are arbitrarily determined on the

basis of lithologic and electric log characteristics that are

traceable from well to well, and which occur at, or slightly

above, the highest level of the diagnostic fossils." Although

Winston (1971a, b, 1976a, 1978) offers lithologic criteria

from sample and geophysical logs from "type" wells to

establish correlation of both newly proposed and "classic"

stratigraphic units, microfaunal assemblages remain the key to

the stratigraphic correlation in Florida. Miller (1986)

employs time-rock units correlated chiefly by means of







74

planktonic and benthonic foraminifers. A similar approach is

used in this study.

The suite of well-log cross-sections, A-A' through D-D'

(Figures 14 through 17), are constructed on datum levels

relative to mean sea level. In each case, the line of section

is more or less perpendicular to the present coastline. The

LOO of a "diagnostic" taxon is shown by the six-letter

abbreviation for that taxon alongside the well log. The

abbreviations are listed in Appendix B in general order of

first down-hole occurrence (i.e., increasing age) of taxa.

In the case of correlations based on magnetobiochrono-

stratigraphic and/or biochronostratigraphic interpretations,

the boundaries are chosen to coincide with lithologic changes

(from sample and/or geophysical logs) that are traceable from

well to well, and that occur at, or slightly above, the LOO

the diagnostic taxa. On the cross-sections, these boundaries

are shown by thick lines. Tentative correlations based only

on lithologic characteristics (from sample and/or geophysical

logs) that are traceable from well to well are shown on the

cross-sections by thin lines.

The positions of sequence boundaries interpreted from

seismic sections via sonic logs and/or synthetic seismograms

are also annotated on the well-log cross-sections. In the

specific case of the MCSB, the boundary is so labeled and

shown as a thick, wavy line.












RESULTS AND DISCUSSION

Chronostratigraphic Framework

Pertinent age relationships were interpreted as

previously described (Figure 13), and the LOO depths and

magnetobiochrono-stratigraphic or biochronostratigraphic

information on the taxa are listed in Appendix B and

illustrated in four well-log cross-sections (Figures 14, 15,

16, and 17). In some of the wells, the LOO depths of certain

taxa do not occur in an ideal stratigraphic sequence (Appendix

B, shaded blocks). Reworking, caving, and differences in

preservation can affect the observed sequence of microfossil

occurrences. Most instances in this study are of the sort

where the LOO of one taxon occurs beneath the LOO of other

taxa the LAD of which are supposed to be older. Such cases

could be attributed to caving. There are also a few cases

where the LOO of a taxon is among others whose LAD are

considered to be younger; this suggests reworking. Where

there are problems, the chronostratigraphic interpretation is

tentative.

Calibration of the occurrences of planktonic foraminifers

against Tkgnetostratigraphy (Miller and others, 1985, 1991)

indicates that some low-latitude taxa exhibit latitudinal



















Figure 14. (In pocket) Well-log cross-section A-A' showing
age interpretation based on the depths (from Exxon
Company reports) of the last observed occurrences
of key planktonic and several benthonic foramini-
fers in Wells 3, 7, 8, and 10 in the Destin Dome
Area. Well numbers refer to Figure 11 and Table
1. There is a change in datum of the two
southwesternmost (down-dip) wells, from -1,000
feet to -1,500 feet, subsea.

The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e., increasing age) of taxa.

The positions of sequence boundaries interpreted
from seismic sections are also annotated. In the
specific case of the MCSB, the boundary is shown
as a thick, wavy line.

MCSB = Mid-Cretaceous Sequence Boundary.
Ku = Top of Cenomanian-Santonian subunit.
K2 = Top of Campanian-Maastrichtian subunit.
TEU = Top of Upper Eocene,
TML = Top of Lower Middle Miocene.

Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.




















Figure 15.


(in pocket) Well-log cross-section B-B' showing
age interpretation based on the depths of the last
observed occurrences of key planktonic and some
benthonic foraminifers in Wells 11, 12, 13, and 26
on the Middle Ground Arch. Well numbers refer to
Figure 11 and Table 1. Datum is mean sea level.

The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e., increasing age) of taxa.

The positions of sequence boundaries interpreted
from seismic sections are also annotated. In the
specific case of the MCSB, the boundary is shown
as a thick, wavy line.

MCSB = Mid-Cretaceous Sequence Boundary.
Kl = Top of Cenomanian-Santonian subunit.
'Y2 = Top of Campanian-Maastrichtian subunit.
TEU = Top of Upper Eocene.
TL = Top of Lower Middle Miocene.

Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.


















Figure 16. (In pocket) Well-log cross-section C-C' showing
age interpretation based on the depths of the last
observed occurrences of key planktonic and some
benthonic foraminifers in Wells 14, 15, 16, 17,
and 28 on the southeast flank of the Tampa
Embayment. Well numbers refer to Figure 11 and
Table 1. Datum is mean sea level.

The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e., increasing age) of taxa.

The positions of sequence boundaries interpreted
from seismic sections are also annotated. In the
specific case of the MCSB, the boundary is shown
as a thick, wavy line.

MCSB = Mid-Cretaceous Sequence Boundary.
Kl = Top of Cenomanian-Santonian subunit.
S2 = Top of Campanian-Maastrichtian subunit.
Tp = Top of Paleocene.
TEU = Top of Upper Eocene.
TML = Top of Lower Middle Miocene.
K. KLb, and KLc denote key seismic reflections
within the Lower Cretaceous section shown to
strengthen correlations of overlying units.

Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.





















Figure 17.


(In pocket) Well-log cross-section D-D' showing
age interpretation based on the depths of the last
observed occurrences of key planktonic and some
benthonic foraminifers in Wells 21, 22, 23, and 29
on the north flank of the South Florida Basin.
Well numbers refer to Figure 11 and Table 1.
Datum is mean sea level.

The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e., increasing age) of taxa.

The interpretation of sequence boundaries on
seismic sections in this area is problematic.
Ka, KLb, and KLc denote key seismic reflections
within the Lower Cretaceous section shown to
strengthen correlations of the MCSB and overlying
units. The MCSB is shown as a thick, wavy line.

Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.







80

diachrony. More unexpectedly, however, 687Sr age equations

reveal that some planktonic foraminiferal datum levels,

specifically in the Oligocene, are diachronous along

longitudinal gradients (Hess and others, 1989). The

magnetobiochronostratigraphic correlation of the LOO of such

taxa (noted in Appendix B) are somewhat suspect.

The most detailed biostratigraphic data available are

from four Exxon wells (Wells 3, 7, 8, and 10) in the Destin

Dome Area (Figure 14). For wells to the southeast (Figures

15, 16, and 17), there is less information. It has been noted

(Applin and Jordan, 1945; Huddlestun, 1988) that the

microfauna of the subsurface formations of Florida are rather

distinct. Taxa noted in the near-shore wells (i.e., Well 26,

Well 28, and Well 29; Miller, 1986, 1988) are different from

those reported from wells farther offshore. This contributes

to some perplexing correlations (Figure 15, Figure 16, Figure

17). Some of the problem is due to the prevalence in the

shallow-marine facies of near-shore wells of benthonic rather

than planktonic taxa.

Notwithstanding these considerations, the data provide a

chronostratigraphic framework wherein it is possible to

identify the MCSB and group the overlying strata into four

main chronostratigraphic units, namely Upper Cretaceous,

Paleocene-Eocene, Oligocene-lower Middle Miocene, and upper

Middle Miocene-Holocene.









Time-equivalence of Lithostratigraphic units

Although the boundaries of many lithostratigraphic units

in the region are considered to be time-parallel (Baum and

Vail, 1988), with the data available in this study the ability

to specify lithologic characteristics is limited and

lithostratigraphic correlations cannot be made on the basis of

chronostratigraphic equivalence. Nevertheless, the following

information provided by Galloway and others (1991) on the

relationship of certain biostratigraphic markers to

lithostratigraphic units in the northern Gulf of Mexico is

worthy of note.

1. The top of the Midway Group (Paleocene) can be

reliably identified on the extinctions of Morozovella

(Globorotalia) velascoensis and Planorotalites (Globorotalia)

pseudomenardii.

2. The top of the subsurface Wilcox Group (Paleocene-

Eocene) in Louisiana and Texas can be identified most reliably

on the extinction of Morozovella acuta (Globorotalia

wilcoxensis).

3. In deep-water sections the top of the Claiborne Group

(Eocene) is marked by the extinction of Truncorotaloides

rohri.

4. The mid-dip portion of the upper Jackson Group

(Eocene) in Texas contains Marginulina cocoanensis. In down-

dip, deep-water sections the top of the Jackson Group is







82

picked on the extinction points of either Turborotalia

(Globorotalia) cerroazulensis or Hantkenina alabamensis.

5. The top of the Vicksburg Formation (Oligocene) in

deeper-water sections over the entire northern Gulf of Mexico

Basin can be picked at the extinction point of Globigerina

ampliapertura.

6. Where it ranges above the Vicksburg, the extinction

of Anomalina bilateralis can be used as a correlation point in

the Frio Formation of Texas and Louisiana.

7. Outcrops of the Chickasawhay Formation of southern

Mississippi and southwestern Alabama contain Nodosaria

blanpiedi, a marker for the Frio Formation (Oligocene) in the

subsurface of Texas and Louisiana.

8. The Anahuac Formation (Oligocene), found in the

subsurface of Texas, Louisiana, and southwestern Mississippi,

contains the Heterosteqina Zone and Marqinulina vaginata (M.

mexicana var. vaginata) in the underlying Marginulina Zone.

MCSB

As the lower stratigraphic boundary of this study, and in

light of the controversy discussed previously (Addy and

Buffler, 1984; Faust, 1990; Wu and others, 1990a; Feng and

Buffler, 1991), it is important to establish some basis

regarding the MCSB. In this study, the MCSB is identified as

the base of the Cenomanian shale that overlies the thick,

Lower Cretaceous section of interbedded carbonates and

evaporites. This contact is characterized on well logs by







83

relatively low gamma ray, high resistivity, and low sonic At

values, below, and an overlying interval of high gamma ray,

low resistivity, and very high At values (Figures 14, 15, 16,

and 17). Though in places reported as gray or black in color

(Wells 16, 17, 26, 28), this shale correlates to the "green

shale unit" reported by Applin and Applin (1965) and seems to

be present throughout the western Florida Carbonate Platform.

In Well 7 (Figure 14) the MCSB contact lies below the

corresponding pick of Addy and Buffler (1984) and above the

pick of Faust (1990). The MCSB pick recognized here (-3996

ft, subsea) lies within the Cenomanian section, whereas that

of Addy and Buffler (1984) lies near the top of section

considered here to be Turonian (-3707 ft, subsea), and Faust's

(1990) lies at the base of the Cenomanian (-4101 ft, subsea).

The abrupt change in sonic velocity at the contact picked in

this study makes it a more likely candidate to produce the

high-amplitude MCSB reflection than alternative picks

associated with gradational lithologic changes (Addy and

Buffler, 1984; Faust, 1990).

Upper Cretaceous

The Upper Cretaceous unit is equivalent to the provincial

Gulfian Series. Compared to the Upper Cretaceous stratigraphy

in the Coastal Plain of Alabama (King and Skotnicki, 1990;

Figure 8) where strata from lower Turonian to upper Santonian

are absent beneath a regional unconformity at the top of the

Tuscaloosa Formation (Figure 7), the section penetrated by







84

wells in the study area is more complete. In the Destin Dome

wells (Figure 14), it includes (in ascending order)

Cenomanian, Turonian, Coniacian, Santonian, Campanian and at

least some Maastrichtian strata. To the southeast, sparse

control variously affords recognition of Cenomanian, Turonian,

Santonian, Campanian and Maastrichtian strata in Wells 12, 13,

and 26 (Figure 15) and in Wells 14 and 15 (Figure 16). In the

southernmost wells (Figure 17) the Upper Cretaceous unit is

only tentatively subdivided by correlations based on log

character.

A mid-Paleocene age for the stratigraphic break at the

top of the Upper Cretaceous agrees with the interpretation of

Addy and Buffler (1984). The position of this contact in Well

7 (Figure 14) is also in agreement with the corresponding pick

by Addy and Buffler (1984). Curiously, Mitchum (1978) reports

the Paleocene is entirely absent in his study area, but

assigns an early Paleocene age to sequence boundary J (Figure

10).

The Cenomanian-Santonian strata correspond in age to the

Tuscaloosa-Eutaw lithostratigraphic units in the west and to

the Atkinson Formation and the lower Pine Key Formation in

peninsular Florida (Figure 3). This correlation agrees with

that shown for the Sun OCS-G2490 (Block 166) by Wu and others

(1990a, Foldout 2). The Campanian-Maastrichtian strata

correlate to at least part of the Selma Group in the west and







85

to the upper Pine Key and the Lawson Formation in peninsular

Florida (Figure 3).

Paleocene-Eocene

Lower Paleocene (Danian) strata, though reported in

outcrops in the Gulf Coastal Plain (Baum and Vail, 1988; King

and Skotnicki, 1990; Mancini and Tew, 1990a, b, 1991a, b;

Figures 7 and 8), are not identified in any wells in the study

area. Magnetobiochronostratigraphic interpretations indicate

that Paleocene strata in the Destin Dome wells (Figure 14) are

of the Selandian Stage. Selandian strata are also identified

in Wells 12 and 13, on the Middle Ground Arch (Figure 15), and

in Well 14 (Figure 16). The Selandian strata contain

Morozovella velascoensis and Morozovella pseudobulloides, taxa

characteristic of the "Tamesi fauna" (Applin and Applin, 1944;

Applin and Jordan, 1945). Information from Mobil on

nannoplankton biostratigraphy indicates Upper Paleocene strata

are also present in Well 16 (Figure 16).

The Paleocene section is thin in wells on the Destin Dome

(Figure 14) and Middle Ground Arch (Figure 15), ranging from

less than 50 to about 250 ft thick. Correlations suggest that

the Paleocene section increases to the east and south, to

about 500 ft thick in Well 26 (Figure 15), and from about 500

ft thick in Wells 14 and 16 to more than 1,200 ft thick in

Well 28 (Figure 16).

The Selandian (Thanetian in Figure 3) strata are age-

equivalent to the Midway Group, and possibly the lower Wilcox







86

Group, to the west (Gohn, 1988). On the Florida Peninsula,

the Cedar Keys Formation is traditionally regarded as

Paleocene. Gohn (1988) concludes the Cedar Keys is likely

Danian and early Selandian, but Salvador (1991, Plate 5)

indicates it is upper Thanetian to lower Ypresian (Lower

Eocene).

In Mississippi and Alabama, Lower, Middle, and Upper

Eocene strata are the Hatchetigbee Formation of the Wilcox

Group, the Claiborne Group, and the Jackson Group,

respectively (Figure 3). On the Florida Peninsula, the Lower,

Middle, and Upper Eocene strata are generally considered to

comprise, respectively, the Oldsmar, Avon Park, and Ocala

formations. Gohn (1988) states that it is possible that much

of the Oldsmar is late Paleocene, and that, based on

restriction of the biostratigraphic marker Helicostegina

gyralis to the middle Eocene, the upper part is probably

middle Eocene (Lutetian?). Salvador (1991, Plate 5) shows the

Oldsmar as upper Ypresian and lower Lutetian (Figure 3). The

Avon Park Formation is considered to be upper Lutetian and

lower Bartonian (Gohn, 1988; Salvador, 1991, Plate 5; Figure

3). Priabonian strata correlate to the Ocala Limestone

(Figure 3).

All four Eocene stages, (in ascending order) Ypresian,

Lutetian, Bartonian, and Priabonian, can be differentiated

from the biostratigraphic control in the Destin Dome wells

(Figure 14). The Eocene section is not as clearly defined in






87

wells to the southeast. Ypresian, Lutetian, and Bartonian

strata are variously identified in Well 12 (Figure 15) and in

Wells 14 and 16 (Figure 16), but data are sparse. In Core 1,

Well 21 (Figure 17), echinoid specimens were recovered and

identified as Neolaganum dalli, a taxon characteristic of the

Middle Eocene (Claibornian) Avon Park Formation (Toulmin,

1977).

For Wells 26, 28, and 29, published lithostratigraphic

(Winston, 1977) and/or chronostratigraphic (Miller, 1986,

1988) interpretations of these or nearby wells provide

information to subdivide the Eocene section. As already

noted, the units recognized in these wells are not readily

correlated to wells offshore (Figures 15, 16, and 17).

In each of Wells 3, 7, 8, and 10, the top of the Eocene

section is clearly marked. In Well 7, this contact occurs

some 188 feet (57.3 m) lower than the pick made by Addy and

Buffler (1984) for the corresponding contact of their units C

and D (Figure 10). Addy and Buffler (1984) relied on the

interpretation of Mitchum (1978) for the estimate of the age

of this boundary as middle Oligocene (Figure 10). The data of

this study, however, indicate that Lower Oligocene (Rupelian)

strata overlie the well-defined, top-of-Eocene boundary.

There are no biostratigraphic data available on the top-of

Eocene boundary in Wells 11 through 23 (Figures 15, 16, and

17).









Oligocene-Lower Middle Miocene

Chronostratigraphic subdivision of post-Eocene strata

(Figure 14) is problematic, because the LOO of Lower Oligocene

(Rupelian) and Upper Oligocene (Chattian) taxa are not all in

sequence (Appendix B). Similarly indistinct is the contact of

the Oligocene with overlying Miocene strata. This may be in

part due to the previously noted diachrony of certain

Oligocene taxa, but also reflects the fact that many of the

key Oligocene and Miocene indicators are benthonic taxa, the

temporal significance of which is recognized as suspect

(Galloway and others, 1991).

Magnetobiochronostratigraphic interpretations do permit

identification of the top of Langhian strata (lower Middle

Miocene) in Well 3 (Figure 14). This stratigraphic position

corresponds to a prominent reflection on the seismic sections

that has been previously identified elsewhere as a mid-Miocene

sequence boundary (Figure 10; Sequence Boundary D, 12 Ma,

Mitchum, 1978; contact of Seismic units B and C, 16 Ma, Addy

and Buffler, 1984; contact of Sequences I and II, 12-15 Ma,

Mullins and others, 1988b; TLM, 15.5 Ma Wu and others, 1990a).

Upper Middle Miocene-Holocene

This chronostratigraphic unit is defined rather by

default in that few wells are logged or sampled this high in

the section, consequently there is no biostratigraphic

control. The principal justification for recognizing this as

a distinct chronostratigraphic unit is its position overlying




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EGLR8808K_YUI9GP INGEST_TIME 2017-07-13T21:28:10Z PACKAGE AA00003662_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



SEISMIC STRATIGRAPHY OF THE
WESTERN FLORIDA CARBONATE PLATFORM
AND HISTORY OF EOCENE STRATA
By
JONATHAN LUCAS JEE
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1993

Copyright 1993
by
Jonathan Lucas Jee
I

ACKNOWLE DGMENTS
I am indebted to Dr. Anthony F. Randazzo, committee
chairman, for his guidance and encouragement. I also thank
the other committee members, Dr. Douglas L. Smith, Dr. Paul F.
Ciesielski, Dr. David Hodell, and Dr. Thomas Crisman.
I am grateful to Mr. Hank Hamilton, Mr. Earl Hale, and
Mr. Jerry A. Watson of GECO Geophysical Company, Inc., Mr.
Carl B. Hutchins and Ms. Lori Price of Digicon Geophysical
Corporation, and Mr. Marc A. Lawrence and Ms. Carol Ellis of
Fairfield Industries for proprietary reflection seismic data
used in this study. Thanks go to Dr. John P. Rióla, Ms. Jean
Anderson and Mr. Thomas M. Torrey of Texaco USA for assistance
in obtaining seismic data and for supplying data from
exploratory wells. I thank Dr. Tillman Cooley, Mr. Lee
Entsminger, Ms. Leigh Anne Salathe, and Mr. Everett Kastler of
Mobil Exploration and Producing U.S., Inc., for release of
cores and additional well information. Thanks also go to Mr.
Phil Ware of Coastal Petroleum for sharing well data with me.
Many others in various capacities have given support,
cooperation, assistance and advice, all greatly appreciated.
Dr. James A. Miller and Mr. Mahlon Ball of the United States
Geological Survey (USGS) supplied copies of USGS well and
seismic data. Craig Byar of Petroleum Information also
in

provided information on offshore wells. Ms. Joan Ragland of
the Florida Geological Survey (FGS), Oil and Gas Section,
helped in the search for core information. Dr. Brad Macurda
of The Energists gave guidance in the initial phase of this
project, facilitating the search for seismic data. Dr. Albert
C. Hine and Dr. Larry J. Doyle of the Department of Marine
Science, University of South Florida, St. Petersburg, Mr.
George 0. Winston, consulting geologist, and Dr. Richard T.
Buffler of the University of Texas Institute for Geophysics
shared helpful ideas on the project. Mr. Stephen M. Greenlee
of Exxon Production Research Company assisted with the
correlation of sequence boundaries and Mr. Stuart Grossman of
Exxon Exploration Company provided biostratigraphic data. Mr.
Frank Rupert of the FGS assisted with interpretation of data
on benthonic foraminifers.
Financial support, in the form of grants-in-aid of
research, was contributed by Sigma Xi, the Scientific Research
Society (1989), and the Geological Society of America (1990
and 1991) . I have also been supported as a research assistant
working on various projects funded by grants from the USGS.
Additionally, I received (Fall 1990) a fellowship associated
with this dissertation research from the Space Assistantship
Enhancement Program of the Florida Space Grant
Consortium/National Aeronautics and Space Administration.
Special recognition is due Susan, my wife, for her love,
support, and inspiration.
IV

TABLE OF CONTENTS
page
ACKNOWLEDGMENTS iii
LIST OF FIGURES vii
ABSTRACT x
INTRODUCTION 1
Purpose and Scope 1
Stratigraphic Concepts 2
Seismic Stratigraphy 4
Sequence Stratigraphy 4
Genetic Stratigraphic Sequences 8
Allostratigraphy 11
Discussion 11
Geologic Setting 14
Stratigraphy 14
Major Geologic Features 15
Pre-Late Cretaceous Geologic History 2 3
Late Cretaceous-Cenozoic Geologic History 27
Exposition of Problems Investigated 50
METHODS AND MATERIALS 57
Data Base 57
Reflection Seismic Data 57
Well Data 59
Seismic Stratigraphic Interpretation Procedure 64
Chronostratigraphic Interpretation Procedure 69
Well-Log Correlation Procedure 73
RESULTS AND DISCUSSIONN 7 5
Chronostratigraphic Framework 75
Time-equivalence of Lithostratigraphic Units 81
MCSB 82
Upper Cretaceous 8 3
Paleocene-Eocene 85
Oligocene-Lower Middle Miocene 88
Upper Middle Miocene-Holocene 88
Seismic Stratigraphic Framework 89
MCSB 89
Upper Cretaceous 131
v

Paleocene-Eocene 142
Oligocene-Lower Middle Miocene 150
Upper Middle Miocene-Holocene 153
SYNTHESIS AND INTERPRETATION 156
CONCLUSIONS 166
APPENDIX A REFLECTION SEISMIC AQUISITION PARAMETERS
AND PROCESSING SEQUENCES 170
APPENDIX B BIOCHRONOSTRATIGRAPHIC AND
MAGNETOBIOCHRONOSTRATIGRAPHIC INTERPRETATIONS 18 0
REFERENCES 195
BIOGRAPHICAL SKETCH 214
vi

LIST OF FIGURES
Figure page
1. Map of the study area 3
2. Distribution of carbonate lithofacies in a
sequence framework 9
3. Middle Jurassic through Holocene stratigraphy in
the vicinity of this study 17
4. Major geologic features of the Florida Carbonate
Platform 18
5. Diagram of major Middle to Upper Cretaceous
sequence boundaries and maximum-flooding surfaces
from Wu and others (1990a) 31
6. Contrast between (a) an idealized drowned carbonate
platform and (b) a subaerially exposed carbonate
platform 34
7. Synthesis of chronostratigraphy, biostratigraphy,
sequence stratigraphy, and eustatic curves
(modified from Haq and others, 1988) correlated
with the Upper Cretaceous formations and genetic
packages, central and eastern Coastal Plain of
Alabama 3 6
8. Chart of lithostratigraphic units (Group,
Formation, Member) of the Gulf Coastal Plain,
Alabama, in the center, with the sequence
stratigraphic interpretations of Baum and Vail
(1988), Donovan and others (1988)on the right and
those of Mancini and Tew (1990a and b, 1991a and
b) on the left 41
9. Map of previous seismic/sequence stratigraphic
studies of Upper Cretaceous and Cenozoic strata
in the vicinity of this study 4 3
10. Chart comparing previous seismic/sequence
stratigraphic interpretations of Upper Cretaceous-
Cenozoic strata in this study area 45
11. Map of reflection seismic profiles and wells 61
Vll

12. Seismic facies of carbonate depositional
environments 68
13. Geomagnetic polarity timescale for the Late
Cretaceous and Cenozoic with correlation to
planktonic foraminiferal zonations and and the
last appearance data of key planktonic
foraminifers 71
14. Well-log cross-section A-A' (caption) 76
(Figure in pocket)
15. Well-log cross-section B-B' (caption) 77
(Figure in pocket)
16. Well-log cross-section C-C (caption) 78
(Figure in pocket)
17. Well-log cross-section D-D' (caption) 79
(Figure in pocket)
18. Part of seismic section F15,
a. uninterpreted 91
b. interpreted 9 3
19. Part of seismic section F3,
a. uninterpreted 95
b. interpreted 97
20. Northern part of seismic section G12,
a. uninterpreted 99
b. interpreted 101
21. Southern part of seismic section G12,
a. uninterpreted 103
b. interpreted 105
22. Part of seismic section Gil,
a. uninterpreted 107
b. interpreted 109
23. Part of seismic section Gl,
a. uninterpreted Ill
b. interpreted 113
24. Part of seismic section G3,
a. uninterpreted 115
b. interpreted 117
25. Part of seismic section G6,
a. uninterpreted 119
b. interpreted 121
viii

26. Parts of seismic sections G17 and G18,
a. uninterpreted 12 3
b. interpreted 12 5
27. "Thickness" map of the entire Upper Cretaceous
through Cenozoic section contoured in 2-way
traveltime 126
28. Map of the configuration of the mid-Cretaceou
sequence boundary (MCSB) surface contoured in
2-way traveltime 128
29. "Thickness" map of the Ky1 seismic subunit
contoured in 2-way traveltime 13 3
30. "Thickness" map of the Ky2 seismic subunit
contoured in 2-way traveltime 138
31. Map of the configuration of the top of the
Cretaceous contoured in 2-way traveltime 141
32. "Thickness" map of the Paleocene-Eocene seismic
unit contoured in 2-way traveltime 145
33. Map of the configuration of the top of the Eocene
contoured in 2-way traveltime 14 6
34. "Thickness" map of the Oligocene-lower Middle
Miocene seismic unit contoured in 2-way
traveltime 151
35. Map of the configuration of the top of the lower
Middle Miocene contoured in 2-way traveltime 154
IX

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
SEISMIC STRATIGRAPHY OF THE
WESTERN FLORIDA CARBONATE PLATFORM
AND HISTORY OF EOCENE STRATA
By
Jonathan Lucas Jee
May 1993
Chairman: Anthony F. Randazzo
Major Department: Department of Geology
The stratigraphy of the western Florida Carbonate
Platform above the mid-Cretaceous Sequence Boundary (MCSB) is
defined using 9,600 km of multifold reflection seismic data
tied to 29 wells. Concordant reflections at the MCSB deny
subaerial exposure of the platform. A drowning unconformity
related to an oceanic anoxic event is a more likely cause of
the MCSB. Preexistent structures influenced the MCSB surface
which in turn affected subsequent deposition.
Biostratigraphic data tied to magnetobiochrono-
stratigraphic interpretations provide a time-stratigraphic
framework of four main units: Upper Cretaceous, Paleocene-
Eocene, Oligocene-lower Middle Miocene, and upper Middle
Miocene-Holocene. The Upper Cretaceous has two subunits Ku1
(Cenomanian-Santonian) and (Campanian-Maastrichtian). KU1
has continuous, parallel reflections and thickens in lows on
x

the MCSB.
In the Apalachicola Basin, has uniform
thickness, discontinuous, subparallel, even-to-wavy
reflections, and is intensely faulted. Sonic velocity of
shows a southeastward change from siliciclastics to more
carbonate rock. Hummocky-to-contorted seismic facies and
thickening of on an MCSB high suggest a deep-water
carbonate buildup.
The Paleocene is thin and Danian strata absent from the
Destin Dome to Apalachee Bay. The Eocene margin marked by a
north-south belt of west-prograding clinoforms at 85°W
developed from a homoclinal ramp to a flat-topped shelf.
Landward this margin, a seismic "marbled zone" suggests
dolomitic facies. In the Apalachicola Basin, Ypresian-
Lutetian (?) sequences form a wedge that thickens to the west.
Basinward of the margin Lutetian-Priabonian sequences with
lenticular shape and wavy, subparallel to hummocky seismic
facies are stacked to form broad, en echelon mounds. Near the
Florida Escarpment, an Eocene, elongate mound with disrupted
seismic facies restricted progradation of post-Eocene
clinoforms.
Post-Eocene strata are of continuous, parallel seismic
facies and drape the Eocene surface, thickening in the lows.
In the Tampa Embayment, Oligocene-Lower Middle Miocene strata
form sets of progradational clinoforms that steepen to the
southwest as they impinge upon the escarpment. Truncation of
clinoforms has been reported beneath a mid-Miocene
xi

unconformity, but apparent truncation of clinoforms can also
be observed at the tops of other, older sequences.
xii

INTRODUCTION
Purpose and Scope
The goal of this investigation is to understand better
the geologic history of the western Florida Carbonate Platform
by refining the tectonic and stratigraphic framework of the
Upper Cretaceous through Quaternary sedimentary section in the
northeastern Gulf of Mexico.
The following are specific objectives of this study:
1. The use of seismic stratigraphic analysis of
multichannel seismic reflection profiles integrated with
available geological and geophysical data from wells to
a. Identify depositional sequences and delineate their
external geometry and areal extent,
b. Characterize seismic facies within depositional
sequences,
c. Relate depositional sequences to cycles of relative
sea level change, and
d. Compare the local and global patterns of sea-level
fluctuation.
2. The evaluation of conceptual models, especially those
predicting the responses of carbonate systems to fluctuations
of relative sea level, and those pertaining to carbonate-to-
siliciclastic facies transitions.
1

2
3. Interpretation of the depositional and diagenetic
history of Eocene carbonate deposits with particular attention
to the role of early post-depositional fluctuations of
relative sea level.
The area of investigation (Figure 1) extends offshore of
the present coastline from just east of Mobile Bay to
Charlotte Harbor, across the easternmost portion of the
Mississippi-Alabama Shelf to the De Soto Canyon, and over the
West Florida Shelf and Terrace to the Florida Escarpment
(Martin and Bouma, 1978).
Stratigraphic Concepts
This study involves the recognition and interpretation of
unconformity-bounded stratal units, known as "depositional
sequences." The term, depositional sequence, was coined as
part of "seismic stratigraphy" as expounded in a series of
papers by Vail and others (1977). Although the idea of
unconformity-bounded sequences developed over many years
(Sloss, 1988), Walker (1990) recognizes four "new
stratigraphies" that subdivide rocks into genetic packages on
this basis. These are seismic stratigraphy (Vail and others,
1977), sequence stratigraphy (Vail, 1987; Van Wagoner and
others, 1987, 1988), genetic stratigraphic sequences
(Galloway, 1989), and allostratigraphy (North American
Commission on Stratigraphic Nomenclature [NACSN], 1983). A
complete review would be redundant with voluminous literature,
but a brief synopsis is appropriate.

3
Figure 1. Map of the study area (modified from Martin and
Bouma, 1978, Figure 2).

4
Seismic Stratigraphy
The key tenet of seismic stratigraphy is that primary
seismic reflections parallel stratal surfaces and
unconformities and follow chronostratigraphic correlations
(Vail and others, 1977). The basic unit for seismic
stratigraphic analysis, the depositional sequence, is defined
as "a stratigraphic unit composed of a relatively conformable
succession of genetically related strata and bounded at its
top and base by unconformities or their correlative
conformities" (Vail and others, 1977, p. 53). A "conformity"
is a bedding surface along which there is no significant
hiatus. "Sequence boundaries" are determined objectively by
the discordance of strata (onlap, downlap, toplap, and
truncation) manifested in seismic sections as reflection
terminations. By measuring "coastal onlap" (the progressive
landward onlap of coastal deposits in a given stratigraphic
unit), seismic stratigraphy was used to interpret sea-level
histories along continental margins and has been hailed as a
breakthrough for regional and global chronostratigraphic
correlations (Vail and others, 1977; Haq and others, 1987,
1988).
Sequence Stratigraphy
The concepts of sequence stratigraphy (Vail, 1987; Van
Wagoner and others, 1987, 1988), the study of rock
relationships within a chronostratigraphic framework of
repetitive sequences, evolved from seismic stratigraphy.

5
Application of sequence stratigraphy has spread beyond the
realm of seismic data, and detailed geologic data from wells
and measured sections can afford resolution of cycles higher
than the third order (Vail and others, 1977). Sequence
stratigraphy can provide information on lithofacies and facies
changes, relief and topography of unconformities,
paleobathymetry, chronostratigraphic correlation, and
depositional and burial history (Boggs, 1987).
A tenet of sequence stratigraphy is that, among four
major variables affecting stratal patterns and lithofacies
distributions (tectonic subsidence, eustacy, sediment supply,
and climate), relative change of sea level (the combination of
eustacy and tectonic subsidence) is "the key to understanding
stratigraphy," (Vail, 1987, p. 3). Vail (1987) fundamentally
revised the concept of a depositional sequence from that of
seismic stratigraphy (Vail and others, 1977) . Whereas in
seismic stratigraphy one or more depositional sequences could
be deposited during one cycle (or paracycle) of relative rise
and fall of sea level, in sequence stratigraphy "A [single]
sequence is interpreted to be deposited during a [single]
cycle of eustatic change of sea level starting and ending in
the vicinity of inflection points on the falling limbs of the
sea level curve" (Vail, 1987, p. 3). To accommodate this
revision, the reflection termination criteria for the
recognition of sequence boundaries were restricted to onlap
above and truncation below, and the redefined "sequence"

6
subdivided into "systems tracts." Downlapping reflection
terminations were associated with systems-tract boundaries (at
the top of a "basin-floor fan," at the top of a "slope fan,"
or at the "maximum-flooding surface" within a "condensed
section").
Systems tracts are interpreted to be deposited during
specific time intervals within a eustatic cycle. A systems
tract is a linkage of contemporaneous "depositional systems"
(Brown and Fisher, 1977). A depositonal system is a three-
dimensional assemblage of lithofacies (Fisher and McGowan,
1967). Certain depositional environments and lithofacies are
associated with different systems tracts. Systems tracts are
defined by their position within the sequence, and by the
stacking patterns of "parasequence sets" and "parasequences"
bounded by "marine-flooding surfaces" (surfaces across which
there is evidence of an abrupt increase in water depth) (Vail,
1987; Van Wagoner and others, 1987, 1988).
The fluctuation of relative sea level, along with
depositional setting and climate, affect basin water chemistry
(salinity, nutrients, temperature, oxygen content) and
carbonate productivity (Sarg, 1988). Assuming that
depositional geometry, facies distribution and early
diagenesis of shallow-marine carbonate rocks are controlled
primarily by relative changes in sea level, sequence
stratigraphy has been proposed as a tool for characterizing

7
and delineating shallow-marine carbonate depositional
sequences (Sarg, 1988).
Both seismic stratigraphy and sequence stratigraphy have
significantly altered the language of stratigraphy, not only
by adding to the vocabulary, but also by redefining some terms
to restrict or even change their traditional meanings. In
sequence stratigraphic usage, an unconformity is "a surface
separating younger from older strata, along which there is
evidence of subaerial erosional truncation or subaerial
exposure, with a significant hiatus indicated" (Van Wagoner
and others, 1987, 1988). This is more restrictive than an
earlier definition (Vail and others, 1977) that encompassed
both subaerial and submarine surfaces. This restricted
definition of an unconformity is necessary, because otherwise
the presence of a maximum-flooding surface (a submarine
unconformity, in the strict sense) in the middle of a sequence
would violate the definition of a sequence as a "relatively
conformable succession of genetically related strata" (Vail
and others, 1977, p. 53).
Vail and Todd (1981) recognized two types of sequences
distinguished by the type of sequence boundary at the base of
the sequence. As applied to carbonate depositional regimes
(Sarg, 1988), a type 1 sequence boundary is marked by
subaerial exposure and erosion of the platform, concurrent
submarine erosion on the foreslope, onlap of overlying strata,
and a downward shift of coastal onlap. A type 2 sequence

8
boundary is characterized in carbonate systems by subaerial
exposure of inner-platform peritidal areas and platform
shoals, a downward shift in coastal onlap that may occur to a
position at the preceding platform/bank margin, and onlap of
overlying peritidal strata in platform lows and at the margin
(Sarg, 1988) .
Four systems tracts are recognized in sequence
stratigraphy (Van Wagoner and others, 1987, 1988; Sarg, 1988):
lowstand, shelf margin, transgressive, and highstand. A type
1 sequence boundary is overlain by a lowstand systems tract,
whereas the shelf margin systems tract overlies a type 2
sequence boundary. The transgressive systems tract lies above
the "transgressive surface" that occurs at the top of either
the lowstand or shelf margin systems tract. The top of the
transgressive systems tract is a "condensed section," and the
upper boundary is the "downlap surface" (maximum-flooding
surface, MFS) above which lies the highstand systems tract
which completes the sequence. Figure 2 shows the distribution
of carbonate lithofacies in a sequence framework (Sarg, 1988).
Genetic Stratigraphic Sequences
The genetic stratigraphic sequence (GSS) theory
(Galloway, 1989) was modeled on marine basins filled by
episodes of progradation of terrigenous clastic sediments
punctuated by marine transgressions. While there is no
expressed applicability to carbonate depositional regimes, the

9
SEQUENCE STRATIGRAPHY DEPOSmONAL MODEL
SHOWMG SURFACES. SYSTEMS TRACTS AND UTHOFAQES
B) IN GEOLOGIC TIME
SURFACES
(SB) SEQUENCE BOUNDARIES
(SB 1) - TYPE-1
(SB 2) - TYPE-2
(DLS) DOWNLAP SURFACES
Imf») - maxjmum flooding surface
(TS) TRANSGRESSIVE SURFACE
(First flooding surface above maxmum
)
LEGBiD
SYSTEMS TRACTS
HST - HIGHSTAND SYSTEMS TRACT
TST - TRANSGRESSIVE SYSTEMS TRACT
1ST - LOWSTAND SYSTEMS TRACT
LSF - LOWSTAND FAN
LSW - LOWSTAND WEDGE
SMW - SHELF MARGIN WEDGE SYSTEMS TRACT
UTHOFAC1ES
g] SUPRAT1DAL
g] PLATFORM
[T] PLATFORM-MARGIN
GRAINSUPPORTSTONE/REEFS
gg MEGABRECCIAS/SAND
g] FORESLOPE
â–¡ TOE-OF-SLOPE/BASIN
Distribution of carbonate
sequence framework (Sarg,
lithofacies
1988) .
in a
Figure
2
GEOLOGIC TIME

10
concept has important implications for sequence stratigraphy
that warrant its discussion.
The GSS idea is based on the conceptual framework of
Frazier (1974) for the recognition and description of
boundary-defined genetic units deposited during successive
regional "depositional episodes." A GSS consists of
genetically related "depositional systems" (Fisher and
McGowen, 1967) and their component "facies sequences"
(Frazier, 1974) and is the stratigraphic record of a
depositional episode. Depositional episodes are punctuated by
regional flooding events, and the GSS is bounded by hiatal
surfaces (submarine unconformities or condensed sedimentary
veneers) that record maximum marine flooding of the basin
margin. Some elements of the GSS concept have analogs in
sequence stratigraphy. The flooding surfaces and condensed
sections that bound genetic stratigraphic sequences are
equivalent to the "downlap" or "maximum-flooding" surfaces
(MFS) and condensed sections at the tops of transgressive
systems tracts. Although both a GSS and a systems tract are
said to consist of depositional systems (Fisher and McGowen,
1967), the GSS is said to be analogous to a parasequences set
(Galloway, 1989, p. 137), rather than a systems tract, and a
facies sequence is considered analogous to a parasequence
(Galloway, 1989, p. 128).
Key differences, however, distinguish the GSS paradigm
from sequence stratigraphy. First, the eustacy is not

11
regarded as the dominant stratigraphic variable, but only a
part of an ongoing interplay with sediment supply and basin
subsidence. Second, the boundaries (maximum-flooding
surfaces) of the GSS are 180° out of phase with the boundaries
(subaerial unconformities) of sequences (sensu Vail, 1987) .
Allostratigraphv
"An allostratigraphic unit is a mappable stratiform body
of sedimentary rock that is defined and identified on the
basis of its bounding discontinuities" (NACSN, 1983, p. 865).
From this definition, it might seem that allostratigraphy
qualifies as an alternative to seismic stratigraphy, sequence
stratigraphy, and the concept of genetic stratigraphic
sequences; Walker (1990, p. 780) is of this opinion. In the
North American Stratigraphic Code (NASCN, 1983) remarks in the
Preamble (p. 849) , the stated purpose (p. 865), and the
examples given (p. 866-867) all indicate that the category be
limited, as specified, to alluvial, lacustrine, and glacial
deposits, and probably to those of the late Cenozoic.
Discussion
Walker (1990) discusses problems with the application of
both sequence stratigraphy and genetic sequence stratigraphy.
He emphasizes the extent to which depositional patterns can
and will change across both subaerial unconformities and
maximum-flooding surfaces and rejects both Vail (1987) and
Galloway (1989) in favor of an approach that uses
allostratigraphic units. I agree with Walker (1990) that both

12
sequence boundaries and maximum-flooding surfaces (Vail, 1987;
Van Wagoner, 1987, 1988) are surfaces of comparable
stratigraphic significance. Furthermore, I share the doubt
expressed by Schlager (1992, p. 28) as to whether one can
unequivocally differentiate between subaerial and submarine
surfaces of erosion or nondeposition, especially in carbonate
rocks. I prefer, as Schlager (1992) recommends, to return to
the approach of seismic stratigraphy (Vail and others, 1977)
in which both surfaces were considered to be depositional
sequence boundaries, without regard to whether they are
subaerial or submarine. Vail and others (1977, p. 64) state,
Two or more sequences may be deposited during a
cycle or paracycle. After a rapid rise of sea
level, a surface of non-deposition [sic] may be
developed before the progradational deposits of the
stillstand are laid down. The surface should be
marked by downlap of the overlying progradational
deposits. Frazier (1974) recognized such surfaces
in defining depositional episodes during the
Pleistocene of the Gulf of Mexico. Each sequence
of transgressive sandstones is overlain by a
sequence of upward coarsening, progradational
strata.
The example described here (Frazier, 1974) is the very work
upon which Galloway (1989) bases the concept of genetic
stratigraphic sequences. Per Galloway (1989), the surface
"marked by downlap" is the boundary of a GSS, but to Vail
(1987) and Van Wagoner and others (1987, 1988) it would be the
"surface of maximum flooding" in the midst of the sequence.
In a seismic stratigraphic scheme (Vail and others, 1977),
however, this surface is simply another depositional sequence
boundary.

13
Another issue is the sequence stratigraphic depositional
model for carbonate rocks (Figure 2); this model is virtually
identical to that for a siliciclastic regime (Vail, 1987), but
for the substitution of carbonate lithofacies. Considering
the complex array of carbonate platform facies models (Read,
1985), this is simplistic. Handford and Loucks (1991, in
press) recognize that the depositional and diagenetic
responses of carbonate sediments to relative changes of sea
level and several other factors can result in significant
variations in systems tract geometries and unusual and perhaps
unique stratal patterns.
Jacquin and others (1991) present an example of the
successful application of sequence stratigraphic concepts
(systems tracts and depositional sequences) to carbonate rocks
in outcrops at the scale of seismic lines. Commonly, however,
the identification of systems tracts is beyond the limits of
seismic resolution (Schlager, 1992, p. 28). Nevertheless, it
is generally possible to recognize unconformities as sequence
boundaries and sediment packages with internally coherent
bedding patterns as sequences.
The critical observations of Miall (1986, 1991, 1992)
include many well-made points about the problems with sequence
stratigraphy. It is my intention to apply all techniques of
stratigraphic analyses (including that of seismic sequences)
objectively to evaluate data obtained from detailed local
research.

14
Geologic Setting
The Florida Carbonate Platform projects southeastward
from adjacent parts of the Atlantic and Gulf Coastal Province
of North America and forms the northeastern margin of the Gulf
of Mexico. Along this margin, the platform consists of the
emergent Florida Peninsula, a broad area of shallow shelf, and
a gently inclined upper slope (terrace) fronted by the steep
Florida Escarpment (Figure 1).
Stratigraphy
A thick section of sedimentary rock, ranging from
Jurassic to Holocene, underlies the region. Figure 3 is a
chart of the Middle Jurassic through Holocene stratigraphy in
the vicinity of this study. The chart is largely derived from
that of Salvador (1991, Plate 5) with the minor modification
of certain lithostratigraphic boundaries and the addition of
Gulf Coast Provincial chronostratigraphic units according to
the schemes of 1) Huddlestun and others (1988), and 2) Wu and
others (1990a).
The establishment of Florida's stratigraphic nomenclature
is reviewed by Gohn (1988) and more specifically in sections
of Salvador (1991). The former offers some alternative
interpretations regarding the age and correlation of certain
units shown in Figure 3 (e.g., Atkinson, Cedar Keys, Oldsmar,
and Suwannee Formations). Important contributions to Florida
stratigraphy include Applin and Applin (1944, 1965, 1967),
Applin and Jordan (1945), Chen (1965), Winston (1971a, b,

15
1976a, 1977, 1978), Meyerhoff and Hatten (1974), and Miller
(1986) .
Manor Geologic Features
The major geologic features of the region are shown in
Figure 4. Review of the literature reveals numerous
discrepancies in the names, locations, shapes and orientations
of the major geologic features of Florida (e.g., Chen, 1965;
Martin, 1978; Klitgord and others, 1984; Shaub, 1984; Locker
and Sahagian, 1984; Pindell, 1985; Buffler and Sawyer, 1985;
Ball and others, 1988; Salvador, 1991). Figure 4 attempts to
reconcile these various interpretations and is based, as much
as possible, on observations of the seismic data used in this
study. Features discussed here are the Peninsular Arch, Ocala
"uplift," Middle Ground Arch, Sarasota Arch, Destin Anticline,
South Florida Basin, Tampa Basin, Apalachicola Basin and
Embayment, Suwannee Channel, Gulf Trough, DeSoto Canyon, and
Florida Escarpment.
The Florida Platform is effectively divided into eastern
and western parts by the southeast-plunging Peninsular Arch.
Although it has been called a "basement" structure (Shaub,
1984), the Peninsular Arch actually overlies, and is distinct
from, more than one "basement" feature (Klitgord and others,
1984, p. 7756). The Peninsular Arch was "continuously
positive from Jurassic until Late Cretaceous time and was
intermittently positive during Cenozoic time" (Miller, 1986,
p. Bll) .

Figure 3.
Middle Jurrassic through Holocene stratigraphy in the vicinity of this study
(modified from Salvador, 1991, Plate 5, with Gulf Coast provincial chrono-
stratigraphic units from (1) Huddlestun and others, 1988 and (2) Wu and others,
1990a). Stippled areas are lacunae.


18
Figure 4. Major geologic features of the Florida
Carbonate Platform: AB = Apalachicola Basin,
AE = Apalachicola Embayment, BFZ = Bahamas Fracture
Zone, CFZ = Cuba Fracture Zone, DD = Destin Dome,
GT = Gulf Trough, MGA = Middle Ground Arch, OH =
Ocala High, PA = Peninsular Arch, SA = Sarasota
Arch, SC = Suwannee Channel, SFB = South Florida
Basin, TE = Tampa Embayment, KU = position of Upper
Cretaceous facies boundary, EU = position of Upper
Eocene facies boundary.

19
The area of outcropping Eocene rocks in west-central
Florida has been called Ocala "uplift," but this feature does
not affect rocks older than the middle Eocene and, therefore,
is not truly an uplift (Winston, 1976b). In the literature,
the Ocala "uplift" and Peninsular Arch are sometimes confused
(Salvador, 1991, Figure 2.)
The northern boundary of the Florida Carbonate Platform
is, essentially, a facies transition to terrigenous clastic
sediments derived from the Appalachian Mountains. The
carbonate-siliciclastic facies relationship existed since the
late Mesozoic (Salvador, 1987; Late Jurassic, Ball and others,
1983; Early Cretaceous, Corso and others, 1989). The facies
change in Upper Cretaceous through Upper Eocene strata
migrated progressively to the northwest (Chen, 1965; Miller,
1986). In Upper Cretaceous, Paleocene, and Lower Eocene
rocks, the location of the facies transition is associated
with the Suwannee Channel (Chen, 1965), also known as the
Suwannee Strait (Dali and Harris, 1892; Pinet and Popenoe,
1985; Popenoe, 1985; Miller, 1986). In Middle Eocene and
Upper Eocene strata, the facies change is located in the
vicinity of the Gulf Trough (Popenoe and others, 1987) .
McKinney (1984) proposes a "carbonate suppression"
sedimentologic model (Walker and others, 1983) as an
alternative to structural control of the Paleogene facies
transitions.

20
Based on a carbonate-to-siliciclastic facies change
interpreted from seismic refraction profiles, Antoine and
Harding (1965) extend the Suwannee Strait southward, beneath
the continental shelf under Apalachee Bay. A change in the
character of reflection seismic data led Antoine and Jones
(1967) to locate the facies change along the Florida
Escarpment at 27° 30' N and to project the Suwannee Strait
toward that point. Chen (1965), however, projects the
Suwannee Channel more toward the west, linking the channel
with the Apalachicola embayment and extending it across the
Apalachicola Basin toward the west side of the DeSoto Canyon.
Mitchum (1978) presents the DeSoto Canyon, "an area of
nondeposition and some sediment erosion since the Late
Cretaceous," as the westward extension of the Suwannee Strait
visible on seismic sections.
The Florida Escarpment, stretching from the DeSoto Canyon
to the Straits of Florida, is the western boundary of the
Florida Platform. The escarpment formed by aggradation of an
Early Cretaceous rimmed carbonate platform (Bryant and others,
1969; Corso and Buffler, 1985; Corso and others, 1989), but,
south of 27° N, the escarpment has been modified by erosion
(Freeman-Lynde, 1983; Corso and others, 1988; Pauli and
others, 1990; Twichell and others, 1986, 1990, 1991).
East of the Florida Escarpment, a number of basins and
arches (Middle Ground Arch, Sarasota Arch, Destin Anticline,
Tampa Basin, Apalachicola Basin and Embayment) are recognized.

21
Most of these features are "basement"-related but have
expression in younger Mesozoic strata and influence that
persist into Cenozoic strata (Ball and others, 1988).
At the northwestern end of the study area are the
Apalachicola Basin (Northeast Gulf Basin of Locker and
Sahagian, 1984) and its onshore extension, the Apalachicola
Embayment. A large northwest-trending anticline in the
Apalachicola Basin, the Destin Anticline or Destin Dome is
related to a salt swell uplifted during the Late Cretaceous
and early Cenozoic (Ball and others, 1982).
Southeast of the Apalachicola Basin, the Middle Ground
Arch (Winston, 1969) is a broad, southwest-plunging nose that
can be traced onshore into the west flank of the Peninsular
Arch (Ball and others, 1988). Some studies (Locker and
Sahagian, 1984; Lord, 1987; Dobson, 1990) recognize a distinct
high on the basement surface, to the southwest of the Middle
Ground Arch and refer to it as the "Southern Platform." It is
unclear whether in younger strata this feature is
distinguishable from the Middle Ground Arch. The name is
ambiguous as to its location and its nature; it is easily
mistaken for a south-Florida feature, and is erroneously
suggestive of a carbonate platform.
South of the Middle Ground Arch, the Tampa Basin
(Klitgord and others, 1984) is also called the Tampa Embayment
(Shaub, 1984; Dobson, 1990), the St. Petersburg Basin (Locker
and Sahagian, 1984), and the Florida Elbow Basin (Pindell,

22
1985). Ball and others (1988) did not observe convincing
evidence in seismic sections of the Tampa Embayment's
existence, but Dobson (1990) and Lord (1987) do recognize this
feature on coverage farther downdip.
The Sarasota Arch, also called the Pinellas County Arch
(Shaub, 1984, Lord, 1987) or Tampa Arch (Pindell, 1985),
separates the Tampa Embayment to the north from the South
Florida Basin to the south. The Sarasota Arch rivals the
Peninsular Arch in relief (Ball and others, 1988, Ball, 1991).
Ball and others (1988) could not clearly observe the Sarasota
Arch on seismic sections, but well data suggest a major down-
to-the-north fault between the Mobil OCS-G3341 and Shell OCS-
G3912 wells (Figure 11, Wells 17 and 18) that may be related
to the northwest flank of this granitic high (Ball, 1991).
South Florida Basin, also known as the Sunniland Basin
(Locker and Sahagian, 1984) is considered to be a basement-
controlled structure (Sawyer and others, 1991) and contains
more than 8,000 m of uppermost Jurassic through Quaternary
strata (Ewing, 1991). Galloway and others (1991) regard the
basin as an area of rapid Cenozoic subsidence and sediment
accumulation. They state (Galloway and others, 1991, p. 313)
that the entire Florida Platform was exposed at the end of the
Cretaceous (Figure 3), but others (Chen, 1965; Winston, 1971a,
b) report that sedimentation in the South Florida Basin was
continuous from the Cretaceous into the Tertiary. Shaub
(1984) discusses the internal framework of this basin.

23
Pre-Late Cretaceous Geologic History
To set the stage for the evolution of the Florida
Carbonate Platform one must look back to the rifting of Pangea
and the beginnings of the Atlantic Ocean and the Gulf of
Mexico in the Late Triassic. Many alternative interpretations
exist for the origin of the Gulf of Mexico/Caribbean region
(e.g., Anderson and Schmidt, 1983; Van Siclen, 1984; Klitgord
and others, 1984; Pindell, 1985; Buffler and Sawyer, 1985;
Salvador, 1987; Sheridan and others, 1988; Buffler, 1989;
Reitz, 1991b). Among the models there is general agreement
that the crust beneath the Florida Platform is continental,
although many (Klitgord and others, 1984; Pindell, 1985;
Buffler and Sawyer, 1985; Sheridan and others, 1988; Buffler,
1989; Reitz, 1991a) consider this continental crust to be
attenuated. Some investigators (Klitgord and others, 1984;
Van Siclen, 1984; Pindell, 1985; Buffler and Sawyer, 1985;
Sheridan and others, 1988; Buffler, 1989; Dobson, 1990)
believe that a major crustal boundary occurs along a line
trending northwest-southeast across the West Florida Shelf
(Bahamas Fracture Zone, BFZ, of Klitgord and others, 1984; Jay
Fault of Pindell, 1985). To the northeast of this line, the
crust is continental, and to the southwest, the crust is
attenuated (thick, transitional of Buffler, 1989). Ball and
others (1988) and Ball (1989, 1991), however, report that
Paleozoic sedimentary or metasedimentary rock underlies the
entire platform north of 26° N, and though deep faults do

24
exist at some locations identified by others (e.g., Klitgord
and others, 1984; Pindell, 1985) as hinges or fracture zones,
these are not boundaries between isolated blocks of
continental crust.
The specific character of the BFZ (or analogous
northwest-southeast faults) is ambiguous. Among those who
consider it a right-lateral wrench-fault zone, Van Siclen
(1984) interprets it in relation to the Paleozoic Ouachita
orogeny, but Miller (1982) regards it as a result of north-
south compression that was active throughout the Jurassic.
Others (Klitgord and others, 1984; Pindell, 1985) speculate
that motion was left-lateral and related to Mesozoic sea-floor
spreading. Dobson (1990) does not cite evidence of strike-
slip movement on the BFZ but notes truncation of structural
features. Reitz (1991a) describes the BFZ as "an apparently
undisturbed northwest-southeast linear zone" that separates
northeast-trending rift basins to the northeast from
northwest-trending rifts to the southwest. Wu and others
(1990b, p. 337) observe "no major fault."
In Florida geology, the term, "basement," has been
variously defined as rocks beneath the "pre-Cretaceous
postrift unconformity" (Klitgord and others, 1984), "the top
of the Paleozoic section" (Ball and others, 1988), and "rocks
below, or older than, the Middle Jurassic Louann Salt"
(Dobson, 1990; Dobson and Buffler, 1991). The main types of
"basement" rocks of Florida are Jurassic igneous rocks in

25
South Florida, Paleozoic igneous rocks in central Florida, and
Paleozoic sedimentary rocks in northern and panhandle Florida
(Klitgord and others, 1984) . Salient features interpreted
from seismic profiles and well control within the "basement"
of the northeastern Gulf of Mexico are discussed by Ball and
others (1988), Dobson (1990), and Dobson and Buffler (1991).
Progressive eastward marine invasion occurred during the
Jurassic, as the Gulf of Mexico opened (Salvador, 1987) .
Along the northern flank of the Gulf of Mexico Basin,
deposition of evaporites (Louann Salt) in the late Middle
Jurassic (Callovian) was followed in the Late Jurassic
(Oxfordian-Kimmeridgian) by mixed siliciclastic and carbonate
deposition (Norphlet-Smackover, Haynesville), and in the
latest Jurassic (Tithonian) to earliest Cretaceous by
deposition of a thick wedge of coarse, fluvial-deltaic
sediments (Cotton Valley). Miller (1982) and Mitchell-Tapping
(1982) address the structure and stratigraphy of Jurassic
rocks, onshore Florida. Ball and others (1988), Dobson (1990),
Dobson and Buffler (1990a, b), and Reitz (1991a) investigate
the seismic stratigraphy and geologic history of Jurassic
rocks of the northeastern Gulf of Mexico. Structure of the
"basement" surface controlled the distribution, thickness, and
paleogeography of Jurassic units (Miller, 1982; Dobson, 1990;
Reitz, 1991a).
Carbonate/evaporite sediments of the Florida Platform
were deposited in the South Florida Basin in latest Jurassic

26
(Tithonian) time, while the northern part of the platform
remained emergent until the Early Cretaceous (Klitgord and
others, 1984; Salvador, 1987; Sheridan and others, 1988).
Seismic correlations (Dobson, 1990) suggest the presence of an
appreciable thickness of Smackover Limestone (Oxfordian) in
the Tampa Embayment with seismic facies interpreted as
shallow-marine, carbonate ramp with localized buildups. The
overlying Haynesville sequence (Kimmeridgian) onlaps even more
of the western Florida Platform, but Haynesville carbonate
deposits are limited to the western Apalachicola Basin
(Dobson, 1990; Dobson and Buffler, 1990a, b) .
Carbonate/evaporite deposition occurred in the Tampa Embayment
and over the Sarasota Arch during the Tithonian (Salvador,
1987, Figure 10). In the Apalachicola Basin, the Knowles
Limestone, at the base of the Lower Cretaceous and the top of
the Cotton Valley Group, marks the transition from a carbonate
ramp to a rimmed carbonate platform (Corso, 1987; Corso and
others, 1989). Progradation of the Knowles Limestone
carbonate ramp extended to the southeast, toward the Tampa
embayment (Dobson, 1990).
During the Early Cretaceous, the western Florida
carbonate Platform developed a high-relief, rimmed margin
along the present Florida Escarpment (Bryant and others, 1969;
Corso and Buffler, 1985; Corso and others, 1989). A
discontinuous series of contemporaneous platforms nearly
encircled the deep Gulf of Mexico; Locker and Buffler (1983),

27
Winker and Buffler (1988), and McFarlan and Menes (1991)
provide comparisons of these Lower Cretaceous carbonate shelf
margins.
Late Cretaceous-Cenozoic Geologic History
In the U.S. Gulf Coastal Plain, the term "Upper
Cretaceous" is loosely applied to the mid-Cenomanian through
Maastrichtian section that has been called the provincial
"Gulfian Series." The boundary of the Gulfian with the
underlying Comanchean Series is a profound physical
stratigraphic break but does not correspond exactly to the
internationally accepted Lower Cretaceous-Upper Cretaceous
boundary (McFarlan and Menes, 1991; Sohl and others, 1991).
Throughout much of the Gulf Coast, the Upper Cretaceous
section is "strongly overprinted" by cyclic sea-level
fluctuations (Salvador, 1991, p. 421). These oscillations
should be reflected in the Florida Platform, as well, but as
yet they have not been reported (Salvador, 1991, p. 428).
After the Comanchean Epoch, there occurred a basin-wide change
in sedimentation (Winker and Buffler, 1988), and deep-water
carbonate sediment was deposited over the Florida Platform
(Bryant and others, 1969; Worzel and others, 1973, Mitchum,
1978; Freeman-Lynde, 1983). In the Florida panhandle, Gulfian
strata dominantly consist of calcareous clay; in peninsular
Florida, these rocks are chiefly chalk and fine-grained
limestone. The Upper Cretaceous through Cenozoic deposits
drilled along the Florida Escarpment are foraminiferal-

28
coccolith carbonate muds (oozes), suggesting that the west
margin of the post-Comanchean Florida Platform was a distally
steepened ramp (Read, 1985) dominated by pelagic to open-
marine shelf carbonate sedimentation (Winker and Buffler,
1988) . The Gulfian Series occurs only in the subsurface in
the study area (Applin and Applin, 1967; Miller, 1986).
Paleogene strata in peninsular Florida are shallow marine
carbonate rocks (intercalated with evaporites in the older
units); to the north and west, these grade into deposits of
clay and fine sand. Siliciclastic deposits are more prevalent
in Neogene strata. During the Miocene the Florida Carbonate
Platform received an influx of terrigenous sediments from the
north. Special conditions of marine chemistry, particularly
in middle Miocene time, resulted in the widespread deposition
of phosphatic sediments (Riggs, 1984; Scott, 1988; Compton and
others, 1990). Post-Miocene strata consist of shallow,
marginal-to-open marine beds overlain by sandy marine terrace
deposits that are in turn capped by a thin layer of fluvial
sand and/or residuum.
Beneath the Gulf of Mexico, Buffler and others (1980)
observe a major, regional unconformity and seismic
stratigraphic sequence boundary that corresponds to the
Comanchean-Gulfian boundary. Although its stratigraphic
expression varies, this prominent, high-amplitude reflection
is present on seismic profiles from the deep Gulf and along
its southern and eastern margins (Faust, 1986). Buffler and

29
others (1980) term the reflection the Mid-Cretaceous
Unconformity (MCU) and relate the event to a relative fall of
sea level that occurred in the Cenomanian (97 Ma, per Vail and
others, 1977). Addy and Buffler (1984) correlate the MCU with
the top of the Washita Group (Lower Cretaceous) on the West
Florida Shelf. Another idea on the origin of the MCU
(Schlager and Camber, 1986; Schlager, 1989, 1991) is that
growth of the carbonate platform was terminated through rapid
submergence (Schlager, 1981) that produced a "drowning
unconformity" associated with a rise or highstand of sea
level, not a lowstand.
Faust (1990) interprets the following geologic history to
explain the MCU. Sea level dropped below the shelf edge
during the Cenomanian, resulting in subaerial exposure,
meteoric leaching, and erosion of the Lower Cretaceous Florida
Carbonate Platform. Turbidity currents and debris flows cut
canyons in the Florida Escarpment. During the Late
Cretaceous, sea level rose well above the previous platform
margin. As platform carbonates tried to keep pace with rising
sea level, prograding clinoforms downlapped onto the MCU, but
the platform soon drowned and was buried by deep-water
carbonates. Faust (1990) comments that in the center of the
deep Gulf the MCU (or more precisely its correlative
conformity) might be better termed the Mid-Cretaceous Sequence
Boundary (MCSB); he also notes that the revised date of the
unconformity is 94 Ma (Haq and others, 1987).

30
Wu and others (1990a; Figure 5) endorse correlation of
the top of the Lower Cretaceous (Washita Group) with the
Middle Cenomanian (94 Ma) sea-level fall (Addy and Buffler,
1984), but declare that, basinward of the platform margin, the
MCU of Buffler and others (1980) correlates instead with the
91.5 Ma (Turonian) sea-level rise (Haq and others, 1987). On
the shelf, the 91.5 Ma maximum-flooding surface is reportedly
recognized as a downlap surface over the Middle Cenomanian
carbonate platform (Wu and others, 1990a). Thus, in the deep
basin, Wu and others (1990a) would replace MCU with MCFS
(Middle Cretaceous Flooding Surface). Feng and Buffler
(1991), however, point out that, in the northeastern corner of
the deep Gulf, the thickness of sequences in the stacked
condensed section between the MCSB and 30 Ma is beyond seismic
resolution. Although the mid-Cenomanian unconformity is
considered to be present over the entire Florida Platform
(Salvador, 1991, Figure 19), Salvador (1991, p. 422) notes
that, if it is due to a major lowering of sea level, the
unconformity is probably represented within the platform
interior by a disconformity or a very low angle unconformity
difficult to identify in a nearly horizontal section composed
of alternating limestones and evaporites, both above and below
the stratigraphic break. Indeed, confusion surrounds
precisely which reflector(s) various investigators identify as
the MCU. Wu and others (1990b) indicate that the 94-Ma MCSB

31
BASINWARD
LANDWARD
WELL 5 WELL 4 WELL 2
Diagram of major Middle to Upper Cretaceous
sequence boundaries and maximum-flooding surfaces
from Wu and others (1990a) ; MCFS is Mid-Cretaceous
Flooding Surface, TLC is Top of Lower Cretaceous.
Figure 5.

32
(top of the Lower Cretaceous, TLC) and the 91.5-Ma MCFS are
recognizable as two separate surfaces on the western Florida
Carbonate Platform (Figure 5). Schlager (1989) regards age
estimates of the MCU as inconclusive, leaving the way open for
Wu and others (1990a) to interpret the "drowning unconformity"
(Schlager, 1989; Schlager and Camber, 1986) to be the MCFS
(91.5 Ma) rather than the MCSB/TLC (94Ma). The top of the
Washita Group (i.e., the MCU/MCSB/TLC) in the Exxon OCS-G2486-
3 well (Figure 11, Well 7) is picked 120 m deeper by Faust
(1990) than by Addy and Buffler (1984), yet both
interpretations identify a similar zone of transitional
deepening just below the respective picks for the MCU. Faust
(1990) does not recognize the MCSB and MCFS as two distinct
surfaces, but concludes that in the Florida Escarpment region
the MCU corresponds to a maximum-flooding surface. Faust
(1990, Figures 18
and 22),
shows
that
over
most of the
Apalachicola Basin
, except
over
the
Destin
Dome, the
reflectors above
and below
the
MCSB
are
concordant.
Truncation of underlying reflectors and onlap of overlying
reflectors is characteristic of the MCU over much of the area
to the south and east, across the Middle Ground Arch and in
the Tampa Embayment. Downlapping does occur in a zone of
sediment bypass along the platform margin and downlaps of
clinoforms prograding toward the basin center dominate the
outer Florida Platform (Faust, 1990). Corso and others (1989)
and Mitchum (1978) characterize the top of the Lower

33
Cretaceous (i.e., MCU/MCSB) by downlap of overlying
reflectors. This characterization adds to the confusion
between the MCSB and MCFS. The question of MCSB vs. MCFS
seems to reflect the issues of the relative importance of, and
distinctness of, subaerial-erosional unconformities and
maximum-flooding surfaces.
The idealized drowned carbonate platform (Erlich and
others, 1990; Figure 6a), is characterized by any or all of
the following features; conformable seismic sequence
boundaries, good internal reflectors, horizontal to sub¬
horizontal basinal marine onlap (becomming parallel to the
carbonate sequence boundary in basinal positions), and late-
growth reefs at some shelf margin locations. Chemical
sedimentation (usually glauconite or phosphate) is common
within the drowning sequence. Subaerially exposed platforms
(Figure 6b) may show any or all of the following:
unconformable sequence boundaries, erosional/karst surfaces
(may have hummocky or discontinuous nature and cause
attenuation of seismic data and/or shallow multiples), shelf-
to-basin reflector continuity, and divergent basinal onlap
patterns (possibly due to lowstand submarine fans).
King and Skotnicki (1990) examine the Upper Cretaceous
facies stratigraphy and biostratigraphy of the inner Coastal
Plain of Alabama. They then integrate the local stratigraphy
and the global synthesis of sea-level changes during the Late
Cretaceous (Haq and others, 1987, 1988; Figure 7).

34
Figure 6. Contrast between (a) an idealized drowned carbonate
platform and (b) a subaerially exposed carbonate
platform (Erlich and others 1990).

Figure 7. Synthesis of chronostratigraphy, biostratigraphy, sequence stratigraphy, and
eustatic curves (modified from Haq and others, 1988) correlated with the Upper
Cretaceous formations and genetic packages, central and eastern Coastal Plain of
Alabama (from King and Skotnicki, 1990). Systems tracts abbreviations:
TR=transgressive; HS=high-stand; LSW=low-stand wedge; F=times of known fans;
SMW=shelf-margin wedge. Coastal onlap symbols: dashed line=condensed section;
solid line=sequence boundary; hachured line=type 1 sequence boundary; thickness
of lines reflects relative magnitude (minor, medium, major). Parenthetic ages
are those cited in previous cycle charts. For biostratigraphic references see
Haq and others (1987, 1988).


37
King and Skotnicki (1990) correlate the Eutaw Formation
to the Late Santonian-Early Campanian (85-83 Ma) sequence of
Haq and others (1987, 1988). The lower sequence boundary, at
the top of the Tuscaloosa Formation, is a high-relief surface
that corresponds to a type 1 sequence boundary, and the upper
sequence boundary, at the top of the Eutaw Formation is a low-
relief surface that equates to a type 2 sequence boundary. A
low-relief stratigraphic break within the Eutaw represents
the83.75 Ma maximum flooding surface (Haq and others, 1987,
1988) .
The Mooreville Chalk and Blufftown Formation are coeval
(Lower Campanian) units of the basal Selma Group in central
and eastern Alabama, respectively. King and Skotnicki (1990)
correlate the top of the Mooreville-Blufftown interval to the
type 1 sequence boundary at 80 Ma (Haq and others, 1987,
1988) .
The next overlying time-equivalent units of the Selma
Group in central and eastern Alabama are, respectively, the
Demopolis Chalk and Cusseta Sand. This interval spans the
Upper Campanian and contains three genetic packages that King
and Skotnicki (1990) correlate to the three Upper Campanian
sequences of Haq and others (1987, 1988). The tops of all
three packages (including the contact with the overlying
Ripley Formation) are low-relief breaks that relate to type 2
sequence boundaries.

38
The Ripley Formation of the Selma Group spans the
Maastrichtian and encompasses two genetic packages that
correspond to two sequences (Haq and others, 1988; King and
Skotnicki, 1990). The packages are separated by a low-relief,
intraformational break that relates to the 71 Ma type 1
sequence boundary of Haq and others (1988). A high-relief
break at the top of the Ripley Formation corresponds to the
major type 1 sequence boundary at 68 Ma (Haq and others, 1987,
1988) .
The Prairie Bluff Chalk and Providence Sand are the
latest Maastrictian (68-67 Ma) equivalents at the top of the
Selma Group, in central and eastern Alabama, respectively.
The stratigraphic break at the top of the Prairie Bluff-
Providence interval is a low-relief surface in the area
studied by King and Skotniki (1990), but has greater relief
along strike where Baum and Vail (1988) describe it as a type
1 sequence boundary.
Sequence stratigraphic interpretations of outcrops in
Alabama (Figure 8) place the Cretaceous-Tertiary (K-T)
boundary at the maximum-flooding surface within the Pine
Barren Member of the Clayton Formation (Donovan and others,
1988) and divide the Paleogene section into depositional
sequences (Baum and Vail, 1988). These sequence stratigraphic
interpretations, however, are not undisputed. Noteable
examples of controversy are interpretation of the Eocene-
Oligocene boundary as either a surface of maximum flooding

39
(condensed section) (Baum and Vail, 1988), or a sequence
boundary (Dockery, 1990) and explanation of the Gosport Sand
as either an incised-valley-fill deposit on a type 1 sequence
boundary (Baum and Vail, 1988), or a transgressive, marine
deposit (Dockery, 1990).
Mancini and Tew (1990b, 1991a, b) apply sequence
stratigraphic concepts to essentially the same stratigraphic
section as Donovan and others (1988) and Baum and Vail (1988) ,
but arrive at quite different interpretations (Figure 8) .
Discrepancies include placement of the K-T (Hazel, 1990;
Mancini and Tew, 1990a, and Olsson and Liu, 1990) and
Oligocene-Miocene boundaries. Baum and Vail (1988) identify
only 19 depositional sequences, whereas Mancini and Tew
(1990b, 1991a, b) recognize 22 (Figure 8) . Baum and Vail
(1988) regard the contact of the Gosport Sand with the
overlying Moodys Branch Formation as a surface of maximum
flooding (condensed section), whereas Mancini and Tew (1990b,
1991a, b) consider it a type 1 unconformity. Also, Mancini
and Tew (1990b, 1991a, b) place the base of the TO 1.2 cycle
at the top of the Glendon Limestone and consider this contact
a type 2 sequence boundary. Baum and Vail (1988), however,
identify it as a condensed section and consider the base of
the Glendon Limestone as the type 2 sequence boundary of the
TO 1.2 cycle. The recognition and "correct" interpretation of
the key stratigraphic surfaces (i.e., sequence boundaries and
maximum-flooding surfaces), a feat required to apply sequence

Figure 8. Chart of lithostratigraphic units (Group,
Formation, Member) of the Gulf Coastal Plain,
Alabama (center) with the sequence stratigraphic
interpretations of Baum and Vail (1988), Donovan
and others (1988) (right), and Mancini and Tew
(1990a and b, 1991a and b)(left).

41
Manciní and Tew
(1990a and b, 1991a and b)
Baum and Vail (19BB),
Donovan and others (1988)
Stage
Senes
Aauitan.
Miocene
c
CD
©
•—
c
CO
©
c.
O
o
CO
o
c
a
©
a
c
a
c
o
n
®
CL
C
co
c
o
©
c
ca
©
CD
o
o
UJ
c
CO
©
D
-J
Ypre-
sian
c
(0
®
c
CO
c.
»-
©
c
©
o
o
©
ca
CL
c
CD
c
CO
O
Maas-
Upper
tried-
Creta-
tian
ceous
Priabon
o
UJ
Upper
Creta¬
ceous
Stage
IS
.c
O
Ypre-
sian
Maas-
trlch-
tlan
Te
Td
Tc
Tb
Ta
Relative Change
in
Coastal Onlao
5
5
Formation/
Member
Paynes
Hammock
Chick asawhay
Bucatunna
Byram
Glendon
Marianna
Mint Spring
Red \Forest Hill
BluffyBumpnose
Cocoa
N. Twistwood
Creek
Moodys Branch
Gosport
Cockfield
Gordon Creek
c
o
Dobys Bluff n ^
Meridian K £-
Hatchetigbee
Bashi
Bells
Landing 0
Greggs
Landing
Grampian Hills
Gravel Creek
Coal Bluff
Oak Hill
Matthews
Landing
Porters Creek
McBryde
Turritella
rock'
Pine Barren o
Prairie Bluff S
Relative Change
in
Coastal Onlap
Te
Td
Tc
Tb
. Ta
Sequence Boundaries
Condensed Section
T ype 1
C
Type 2

42
stratigraphy successfully, seems even more subjective in
outcrops and well data than in the sequence analysis of
seismic data.
The pioneering seismic stratigraphic investigation of
Mitchum (1978) interprets 2500 nautical miles (4630 km) of
single-channel data (Figure 9) and focuses on the post-Early
Cretaceous geologic development of the western Florida
Platform. The seismic profiles are correlated to data from
15-ft (4.6-m) cores taken at 60-ft (18-m) intervals in each of
seven 1000-ft boreholes scattered along the West Florida
Slope, north of 26° 30' N. Using seismic stratigraphic
procedures for sequence analysis (Vail and others, 1977),
Mitchum (1978) defines ten depositional sequences (Figure 10)
above the "K" sequence boundary that he identifies as the top
of the Lower Cretaceous. Mitchum (1978) does not explicitly
correlate his seismic stratigraphic interpretation to the
global sea-level curve of Vail and other (1977), but includes
a chronostratigraphic chart (Mitchum, 1978, Figure 2) with a
geochronometric scale.
The seismic stratigraphic framework of Addy and Buffler
(1984) for the shallow shelf in the Destin Dome area (Figure
9) identifies five seismic units, designated A through E
(Figure 10), above the MCU (correlated to the top of the Lower
Cretaceous and sequence boundary "K" of Mitchum, 1978). Age
determinations are made partly by ties to wells (Exxon OCS-
G2486-3 and Sun OCS-G2490) and partly by correlation to

Mitchum (1978)
Addy and Buffler (1984), Faust (1990)
Doyle and Holmes (1985)
Mullins and others (1987, 1988a and b)
Ball and others (1988)
Evans (1989)
Wu and others (1990a and b)
Map showing general locations of previous
seismic/sequence stratigraphic studies of
Upper Cretaceous and Cenozoic strata in
the vicinity of this study.
Figure 9.

Figure 10. Chart comparing previous seismic/sequence stratigraphic interpretations of Upper
Cretaceous through Cenozoic strata in this study area. Vertical bars indicate
lacunae.


46
seismic line 126 (Mitchum, 1978, Figures 3 and 4, p. 199) and
then to the sea-level curve of Vail and others (1980). The
sequence boundary ages shown in Addy and Buffler (1984, Table
1), therefore, differ somewhat from those of Mitchum (1978).
Doyle and Holmes (1985) investigate the shallow
structure, stratigraphy, and carbonate sedimentary processes
of the West Florida Upper Continental Slope (Figure 9) with a
high-resolution, shallow-penetration seismic survey. Doyle
and Holmes (1985) map the "top seismic unit," which, by
correlation to Mitchum (1978), they interpret to consist of
Pleistocene-Holocene sediments. South of 27° 30' N, the base
of this upper seismic unit is interpreted to be an erosional
unconformity. Doyle and Holmes (1985) report that the unit
underlying this unconformity could be Pliocene, but that based
on a veneer of phosphorite, they consider it to be Miocene.
Despite a karst-like morphology over much of its extent, Doyle
and Holmes (1985) entertain submarine, as well as subaerial,
erosion as possible causes of this feature. This is another
example of the practical problems that arise in recognizing
sequence boundaries. The mechanism of the submarine erosion
postulated by Doyle and Holmes (1985) does not directly
involve the fluctuation of relative sea level, but action of
the Tertiary Loop Current.
A considerable amount of interpretation (Gardulski and
Mullins, 1985; Mullins and others, 1987, 1988a and b) has been
based on analysis of a set of approximately 1,500 km of high-

47
resolution, intermediate-penetration (500-750 m subsurface),
single-channel analog, reflection seismic data from a
relatively small (5,000 km2) area (Figure 9), ostensibly
representative of the entire western Florida Platform. The
seismic profiles are correlated to two of the coreholes (CH32-
45 and CH33-48) drilled by Exxon (Mitchum, 1978) and
additionally to piston cores and dredged samples. The
sequential post-Early Cretaceous stratigraphic evolution of
the carbonate ramp slope of central west Florida (Figure 10)
was determined by defining six "primary seismic depositional
sequences" (Mullins and others, 1988b). These sequences are
not as defined by Vail (1987) and Van Wagoner and others
(1987, 1988), for they do not correspond to individual cycles
of sea-level fluctuation. Neither are they "depositional
sequences" as defined by Vail and others (1977), for they can
include unconformable surfaces with significant lacunae (e.g.,
"sequences" IV and I, Mullins and others, 1988b; Figure 10).
Mullins and others (1988b) regard sea-level fluctuation as but
one of a suite of processes affecting sedimentation and
attribute a major change in deposition from progading
clinoforms ("sequence" II) to a pelagic slope-front-fill
system ("sequence" I) and the associated seismic-stratigraphic
break, about 12-15 Ma, to a paleooceanographic event, namely,
intensification of the Loop Current in the Miocene (Gardulski
and Mullins, 1985; Mullins and others, 1987). Mullins and
others (1988b) also recognize an unconformity within

48
"sequence" I, at about 10.2 Ma, which they interpret as a
surface of subaerial exposure and karst development and relate
to the unconformity identified by Doyle and Holmes (1985).
This correlation is problematic, because the minimum age of
the unconformity of Doyle and Holmes (1985) would be
approximately 1.6 Ma, if the underlying unit were Pliocene, or
about 5.5 Ma, if that unit were Miocene.
Gardulski and others (1991) interpret the Upper
Cretaceous to Pleistocene evolution of the deep-water
carbonate platform of west Florida (Figure 10) from detailed
analysis of samples from all seven of the Exxon coreholes
(Mitchum, 1978). Gardulski and others (1991) recognize
Pliocene sediments in CH30-43, CH31-44, CH35-46, and CH34-47
where Mitchum (1978) had reported their absence. This prompts
reconsideration of the age interpretations of Doyle and Holmes
(1985), for Pliocene strata must then be included either in
the Pleistocene-Holocene "top seismic unit" or in the
underlying "Miocene" unit. The "four major depositional
systems" of Gardulski and others (1991) do not correlate well
with the six "depositional sequences" of Mullins and others
(1988b) (Figure 10) and interpretations thereof differ, as
well. Gardulski and others (1991) interpret the Campanian-to-
Maastrichtian regime as progradational with a change by the
Maastrichtian to pelagic aggradation. This includes with
"sequence" V the lower part of "sequence" IV and necessitates
that yet another significant stratigraphic break occur within

49
the "reflection-free" interval of "sequence" IV (Mullins and
others, 1988b)• Also, "sequences" II and III are not
distinguishable able in the corehole samples (Gardulski and
others, 1991).
In related work, Mullins and others (1988a) characterize
the modern carbonate ramp slope of west central Florida and
Gardulski and others (1986, 1990) ascribe carbonate mineral
cycles identified in piston cores of Pleistocene ramp slope
sediments to climatic changes. Analysis of Ocean Drilling
Project (ODP) Hole 625B, on the east flank of DeSoto Canyon
(Roof and others, 1991), shows a record of cyclic sedimen¬
tation controlled primarily by sea-level fluctuations from the
present to 2.8 Ma and aperiodic fluctuations related perhaps
to Loop Current variations from 2.8 to 5.4 Ma.
Palynostratigraphy of the Cenozoic portion of Exxon
Corehole 32-45 (Wrenn and Satchell, 1988) permits subdivision
of seismic "sequences" I through IV (Mullins and others,
1988b) and evinces the erosional unconformity separating early
Miocene marls from those of the late Miocene. The abundance
of terrestrial palynomorphs and shelfal dinocysts in Neogene
samples, however, does not support the contention of Mullins
and others (1988b) that the intensified Loop Current acted as
an oceanographic barrier to off-shelf sediment transport.
The seismic investigation of Ball and others (1988)
comments only briefly on the Cenozoic section and concentrates
on older structure and stratigraphy. An impressive sequence

50
of basinward prograding reflections with vertical relief of as
much as 0.5 seconds two-way travel time (2-way TT) are
observed to make up a major portion of the middle to lower
Cenozoic section on the south flank of the Middle Ground Arch.
Prograding reflections are also noted in the Cenozoic section
in the Tampa Embayment, in the area studied by Mullins and
others (1987, 1988b).
High-resolution seismic reflection and associated data
reveal the Neogene and Quaternary stratigraphy of inner-shelf
and coastal areas of Florida (Locker and Doyle, 1987; Locker
and others, 1990; Evans, 1989; Evans and Hine, 1991). In the
Charlotte Harbor area, Evans (1989) recognizes six
depositional sequences lying between regional unconformities.
The sequences of oblique clinoforms prograde to the south-
southeast. The lower regional unconformity is correlated to
the 10.5 Ma sea-level fall.
Exposition of Problems to be Investigated
Despite the contributions of the aforementioned
investigations, many questions about the evolution of the
western Florida Carbonate Platform from a rimmed carbonate
shelf (Read, 1985) in the Early Cretaceous to a drowned,
distally steepened ramp (Read, 1985) in the Holocene remain
unanswered. In the summary of the recently published Decade
of North American Geology (DNAG) volume on the Gulf of Mexico
Basin, Salvador (1991, p. 548) includes the following

51
statement about the additional information and new studies
needed:
Considerable information about Cretaceous and
Cenozoic regional stratigraphic hiatuses or
unconformities may be obtained from detailed
lithostratigraphic and biostratigraphic studies
(and perhaps seismic-stratigraphic interpretation)
of the Florida and Yucatan carbonate platforms.
Their Cretaceous to Holocene stratigraphic section,
composed predominantly of shallow-water carbonates
and evaporites, and deposited under extremely
stable tectonic conditions, should reflect
admirably important eustatic changes in sea-level
[sic] and the corresponding stratigraphic hiatuses
and sedimentary cycles.
The thick and areally extensive interval of Eocene shallow-
marine carbonate strata constitutes a significant portion of
the Florida Carbonate Platform. Onshore, these rocks, which
commonly have high primary and secondary porosity, form the
major part of the Floridan aquifer system (Miller, 1986), an
important ground-water supply. As an extant carbonate coastal
aquifer, these strata offer opportunities to investigate a
variety of on-going diagenetic processes, including
dissolution, cementation and dolomitization (Jee and others,
1991), but better understanding of their sedimentology and
stratigraphy is essential as a frame of reference for
interpretations of their subsequent diagenesis.
The depositional setting and shelf-margin profile of the
Eocene western Florida Carbonate Platform have yet to be fully
defined and, among the paleoenvironments interpreted thus far,
reefal and oolitic facies of a "shoal-water complex" (Read,
1985) are conspicuously lacking (Randazzo, 1987) .

52
Winston (1978, 1989) reports the existence of the
"Rebecca Shoals Barrier Reef Complex" in strata of Late
Cretaceous through Paleocene age, onshore and offshore
Florida. The literature is not clear whether this "dolomite
reef" (Winston, 1989) is truly an ecologic reef (Dunham,
1970) . If so, how did conditions change in the Eocene to
cause its demise? Considering the paradox of drowned
carbonate platforms (Schlager, 1981), one may wonder if change
in sea level played a role. After its end, did the "reef"
express an influence on subsequent sedimentation?
No Paleocene sediment was recovered in any of the Exxon
coreholes along the west Florida slope, but CH32-45 is
reported to have bottomed in Eocene calcareous nannofossil
ooze (Mitchum, 1978; Mullins and others, 1988b; Wrenn and
Satchell, 1988; Gardulski and others, 1991). Obviously, one
must look landward of this chalk, which is interpreted as an
open-ocean, marginal plateau deposit, to observe the
morphology and facies transitions of the Eocene shelf/basin
margin.
The global nature of the regional transgression recorded
by the regional lithostratigraphy of Paleocene and Eocene
rocks of Florida (Chen, 1965; Miller, 1986) is recognized, but
some controversy exists concerning its cause. Although Vail
and others (1977) interpret Eocene patterns of coastal onlap
to reflect worldwide rise in relative sea level, a sea-level
curve based on volume changes of the mid-ocean ridge system

53
(Pitman, 1978) indicates sea level fell persistently from Late
Cretaceous to Middle Miocene time. Pitman (1978, p. 1389)
points out that, "The shoreline tends to stabilize at that
point on a margin where the rate of rise (or fall) of sea
level is equal to the difference between the rate of
subsidence of the platform and the rate of sediment infill.
Under these conditions, if sea level is made to rise more
rapidly or fall more slowly a transgression will occur." On
this basis, Pitman (1978) attributes the marine transgression
in the Eocene to reduction in the rate of sea-level fall, at
that time.
McGowran (1990) presents the early Paleogene as a time of
episodic transition of global climate from Mesozoic
"greenhouse" to Cenozoic "icehouse." This transition affected
both oceanic circulation and sea level. McGowran asserts a
parallel between tripartite patterns evident in various
paleobiological and geochemical data drawn from marine and
terrestrial realms and plate tectonic events of the Paleocene
and Eocene epochs, but is unable to relate these clearly to
either eustatic or climatic changes. At the scale of his
investigation, McGowran sees no cyclic or rhythmic character
in the patterns.
Cyclic deposition and erosion have been observed in the
Eocene carbonate section of Florida (Randazzo and Saroop,
1976; Randazzo and others, 1977; Randazzo and Hickey, 1978)
but, as yet, these have not been completely explained and

54
related to global patterns of relative sea-level fluctuation.
Changes in the rate of sea-floor spreading cause sea level to
fluctuate at rates of less than 10 ¿im/yr (Pitman; 197 8) . This
is too slow to explain many of the prominent features in the
stratigraphy of carbonate platforms (Kendall and Schlager,
1981, p. 185). The glacioeustatic mechanism is commonly
invoked to account for cycles of relative sea-level change
with frequencies higher than the third order of Vail and
others (1977). Although estimates of temperature change in
North America indicate alternating episodes of relative warmth
and coolness during the Eocene, it is believed that Antarctic
glaciation did not commence until the Late Eocene. "In fact,
global temperatures may never again have risen to the levels
that they attained in Eocene time" (Stanley, 1986, p. 541).
What, then, is the nature of the cycles that occur in the
Florida's Eocene carbonate section?
The depositional and diagenetic responses of carbonate
systems to relative sea-level rise and fall are modeled based
on the principles of seismic/sequence stratigraphy, by Kendall
and Schlager (1981), Sarg (1988), and Schlager (1992). Facies
models, in the sense of Walker (1990), are generalizations
that combine the features of many local examples to produce a
norm by which the significance of a new example can be
assessed. Through attempts to apply a model to a specific
case the existing model can be improved or a new one
constructed. The "new stratigraphies," Walker (1990) notes,

55
are largely conceptual with few actual geological examples.
It is of interest, therefore, to test the applicability of
such models to the carbonate system of the western Florida
Platform.
To varying degrees, the diagenetic features of Florida's
Eocene carbonate rocks have been characterized and
hydrogeochemical factors that influence diagenetic processes
have been analyzed (Randazzo, 1980; Randazzo and Cook, 1987;
Randazzo and Bloom, 1985; Randazzo and Zachos, 1984; Randazzo
and Hickey, 1978; Randazzo and others, 1983, 1977). The
diagenesis of these rocks has not, however, been interpreted
"holistically," within the context of the 33 to 55 million
years of geologic history since their deposition. Changes in
relative sea level influence the position of the coastal and
inland fresh water-salt water mixing zones and other factors
important to dolomitization, cementation and dissolution. The
Eocene carbonate rocks of Florida doubtlessly reflect such
changes, but the sequence, timing and duration of diagenetic
episodes is still speculative. For instance, although
evidence (Randazzo and Bloom, 1985) suggests that certain
diagenetic processes (i. e., dolomitization) have been active
within the last 30,000 years, the diagenetic role of early
post-depositional fluctuations in relative sea level is not
well understood.
Proponents of sequence stratigraphy believe that the rate
and direction of relative sea level changes have been

56
constrained within fairly narrow limits for most of the
Mesozoic and Cenozoic ocean margins and tied to an integrated
chronostratigraphic framework (Haq and others, 1988). The
general stratigraphy of the northeastern Gulf of Mexico has
been correlated (Greenlee, 1987; Greenlee and Moore, 1988; Wu
and others, 1990) to the major sequence boundaries associated
with eustatic sea-level changes (Haq and others, 1987, 1988).
The attempt is made here to extend and refine this correlation
in the Upper Cretaceous-Cenozoic section throughout the
western Florida Carbonate Platform.
Better understanding of the controls on spatial and
temporal variations in mixed carbonate and siliciclastic
deposition in settings like the previously mentioned facies
transition between peninsular and panhandle Florida has come
from viewing mixed sequences as part of a continuum between
the carbonate and siliciclastic end members (Doyle and
Roberts, 1988; Budd and Harris, 1990). An attempt is made
here to resolve differences in the interpreted extension of
the Suwannee Strait, or Channel, beneath the West Florida
Shelf (Antoine and Harding, 1965, Antoine and Jones, 1967;
Mitchum, 1978; Chen, 1965; Miller, 1986).

MATERIALS AND METHODS
Data Base
Much of the data used in this study were obtained from
petroleum industry sources. The American petroleum industry
still uses U.S. measurements rather than metric. Virtually
all data (well logs, seismic aquisition and processing
specifications, etc.) are not in metric units. Where
feasible, metric equivalents are provided, but wholesale
conversion of every measurement was not undertaken.
Reflection Seismic Data
Approximately 9,600 kilometers (6,000 miles) of multifold
reflection seismic data were used in this investigation. The
data were contributed by GECO Geophysical Company, Inc.,
Digicon Geophysical Corporation, and Fairfield Industries.
Since the commercial data are proprietary, lines were
renumbered for reference within this text, and only
generalized locations are shown (Figure 11). General
information on the recording parameters and processing
sequences can be found in Appendix A.
GECO Geophysical Company released (through Texaco Inc.)
approximately 3657 kilometers (2,273 miles) of selected
seismic data from the 1986-1987 GECO Eastern Gulf of Mexico
Regional Well-Tie program. The GECO lines supply regional
57

58
coverage from the eastern Apalachicola Basin to the northern
South Florida Basin. The GECO data are 96-fold common-depth-
point (CDP) coverage. The record sections obtained display
wave-equation-migrated data at a vertical scale of 2.5 inches
equals 1 second (2-way TT) and a compressed horizontal scale
of 1 inch equals 2.5 miles (1:158,275). This presentation
enhances the continuity of reflections and makes the data more
easy to interpret (Macurda, 1988).
Digicon Geophysical Corporation released selected seismic
data from the 1984/85 Destin Dome Spec Survey (80-fold CDP),
the 1986 Florida Middleground Spec Survey (80-fold CDP), and
the 1987/88 Florida Middleground Infill Spec Survey (90-fold
CDP). The Digicon data set amounts to approximately 3,459
kilometers (2,150 miles) of data. The record sections
obtained display migrated data at a vertical scale of 2.5
inches equals 1 second (2-way TT) and a horizontal scale of 1
inch equals 3,514 feet or 0.67 miles (1:42,171). The Digicon
lines provide a rectangular grid of coverage across the Middle
Ground Arch and Tampa Embayment.
Fairfield Industries released more than 2475 kilometers
(1538 miles) of selected 72-fold CDP seismic data from the
1984-85 Offshore Florida program. The record sections
obtained display migrated data at a vertical scale of 2.5
inches equals 1 second (2-way TT) and a horizontal scale of 1
inch equals 3,514 feet or 0.67 miles (1:42,171). Much of
these data were reprocessed with full-dip move-out migration

59
in 1988. The Fairfield lines furnish a rectangular grid of
coverage across the Apalachicola Basin. Fairfield lines
illustrated in Figures 19 and 20 have been displayed at a
compressed horizontal scale comparable to that of the GECO
lines.
Well Data
The seismic data are correlated with information from 29
offshore wells (Figure 11). Various geophysical logs,
biostratigraphic data, and some lithologic data were obtained
for these wells (Table 1) . Synthetic seismograms and/or
velocity surveys were obtained for eight wells (Table 1).
West of 86° W, Wells 1 through 10 (Figure 11) are all
located on or near the grid of seismic profiles. Of the 13
key wells located in federal waters, on the outer continental
shelf (OCS) , east of 86° W, 11 are tied by the layout of
selected lines (Wells 11, 12, 13, 14, 15, 16, 17, 18, 20, 21,
and 23; Figure 11). Wells 25 and 29, located in the state
waters of Florida (Table 1) can be projected toward seismic
lines G10 and G15 (Figure 11).
Data on certain wells from published sources (Addy and
Buffler, 1984; Lord, 1987; Greenlee, 1987; Greenlee and Moore,
1988; Wu and others, 1990a) are integrated into this study.
Wells 24, 26, and 29 are interpreted in stratigraphic cross-
sections by Miller (1986, Plates 15, 22, and 24,
respectively). In the case of near-shore wells, published
interpretations of nearby wells were also consulted (Applin

Figure 11. Map of reflection seismic profiles and wells. GECO seismic lines are
indicated by the prefix "G;" Digicon seismic lines are indicated by the prefix
"D," and Fairfield lines are indicated by the prefix "F." Key exploratory
wells are numbered to correspond with the listing of additional information
in Table 1.

CTi

Table 1. Well Data (abbreviations explained below)
to
WELL
OPERATOR
LEASE
NO.
AREA/COUNTY
BLOCK/T-R-S
LOG TD
(Feet)
ELEVATION
(Feet)
WELL LOGS
1
Chevron
OCS-G1654
6
Main Pass
253
16,993
92
KB
IE
2
Gulf
OCS-G2468
1
Destin Dome
360
20,870
90
KB
DI, BCS
3
Exxon
OCS-G6428
1
Destin Dome
284
17,498
73
KB
DIS, SON, BIO
4
Amoco
OCS-G8338
1
Destin Dome
111
19,240
86
KB
IS, SON
5
Amoco
OCS-G2502
1
Destin Dome
31
18,242
96
KB
DIL, SON
6
Shell
OCS-G6417
1
Destin Dome
160
16,883
105
KB
DIS, SON
7
Exxon
OCS-G2486
3
Destin Dome
162
17,855
83
KB
IS, DIL, VS, BIO
8
Exxon
OCS-G2492
2
Destin Dome
118
7,497
83
KB
IS, SON, BIO
9
Chevron
OCS-G6438
1
Destin Dome
422
22,183
83
KB
DIS, SON
10
Exxon
OCS-G2472
1
Destin Dome
250
6,629
83
KB
IS, SON, SL, BIO
11
Tenneco
OCS-G8363
1
Florida
Middle
Ground
455
12,360
91
KB
DIS, SON, SS, VS
12
Texaco
OCS-G2516
1
Florida
Middle
Ground
252
15,640
81
KB
DI, SS, VS, BIO
13
Sohio
OCS-G64 56
1
Gainesville
707
15,944
99
KB
IS, VS, BIO
14
Shell
OCS-G2527
1
St. Peters¬
burg
7
18,401
81
KB
DI, BIO
15
Texaco
OCS-G2523
1
St. Peters¬
burg
100
17,367
84
KB
DI, SL, BIO
16
Mobil
OCS-G3344
1
Elbow
566
15,863
89
KB
DIL, FDC, CNL,
DIP, DIR, SS,
SL, BIO
17
Mobil
OCS-G3341
1
Elbow
915
18,138
88
KB
DIS, FDC, CNL,
BCS, SS, SL
18
Shell
OCS-G3912
1
Charlotte
Harbor
265
12,339
72
KB
DIS, SS
19
Odeco
OCS-G3909
1
Charlotte
Harbor
188
11,360
92
KB
DIS

20
Gulf
OCS-G3906
1
Charlotte
Harbor
144
11,374
86 KB
DIS
21
Mobil
OCS-G3903
1
Vernon
654
10,752
73 KB
DIS, FDC, CNL,
DIP, SS, SL
22
Shell
OCS-G4950
1
Charlotte
Harbor
622
10,550
107 KB
DI
23
Tenneco
OCS-G3917
1
Charlotte
Harbor
672
11,304
90 KB
DIS
24
Calco
FL 224A
1
Franklin
9S-5W-7
7,030
2 6 DF
E
25
Calco
FL 224A
2
Franklin
10,567
3 5 KB
IE
26
Coastal
Ragland
1
Levy
15S-13E-16
5,850
14 DF
E, BIO
27
Mobil
FL 224A
1-B
Levy
Offshore
4,735
2 5 KB
IE
28
Calco
FL 224B
3
Pinellas
Offshore
10,524
37 KB
IE
29
Calco
FL 224B
1
Lee
Offshore
13,975
39 DF
IE, BIO
T-R-S Township-Range-Section
LOG TD Total Depth from Log
KB Kelly Bushing
DF Derrick Floor
Type of geophysical log
E
IE
IS
DI
DIL
DIS
FDC
CNL
DIP
DIR
SON
BCS
SS
VS
SL
BIO
Electric Log
Induction Electric Log
Induction—Spherically Focused Log
Dual Induction Log
Dual Induction Laterolog
Dual Induction—Spherically Focused Log
Formation Compensated Density Log
Compensated Neutron Log
Dipmeter Log
Directional Survey
Sonic Log
Borehole Compensated Sonic Log
Synthetic Seismogram
Velocity Survey
Sample Log
Biostratigraphic Data
U>

64
and Applin, 1965, 1967; Winston, 1971a and b, 1976a, and
1977) .
Samples from cored intervals interpreted to be Eocene
were obtained from Wells 17 and 21 (Figure 11 and Table 1).
The former well has two cored intervals interpreted to be in
Eocene strata, Core #1 (2,994 to 3,020 ft) and Core #2 (4,581
to 4,583 feet). The latter well has three cored intervals
interpreted to be in Eocene strata, Core #1 (1,659 to 1,692
feet), Core #2 (3,472 to 3,478 feet), and Core #3 (4,102 to
4,112 feet). Detailed analysis and interpretation of the
cores was not within the scope of this study.
Seismic Stratigraphic Interpretation Procedure
Seismic stratigraphic interpretation (Vail and others,
1977) has three principal steps:
1—(seismic) sequence analysis,
2—(seismic) facies analysis,
3—sea-level analysis.
Sequence analysis begins with recognition of the regional
setting and pertinent age relationships and entails definition
of depositional sequences and delineation of their extent by
mapping their external geometry. Facies analysis involves
identification and characterization of the lithofacies within
sequences based on seismic data, geophysical log character
and/or geologic data. Sea-level analysis includes
construction of a chronostratigraphic correlation chart and
geochronologic chart that shows regional cycles of relative
sea-level change (Vail and others, 1977) .

65
Vail (1987) expands the seismic stratigraphic
interpretation procedure to seven steps:
1—seismic sequence analysis,
2—well-log sequence analysis,
3—synthetic, well-to-seismic ties,
4—seismic facies analysis,
5—interpretation of depositional environment and
lithofacies,
6—forward seismic modeling,
7—final interpretation.
Vail and Wornardt (1990) again revise the procedure for
well log-seismic sequence stratigraphic analysis. An eleven-
step process is now recommended:
1—Interpret lithology from log character (confirm with
cores and cuttings when possible),
2—-Interpret depositional environments from
micropaleontology/ paleoecology and then from well log
character,
3—Interpret the condensed sections from faunal and
floral abundance and diversity to recognize:
* Major condensed sections associated with
maximum flooding surfaces
* Secondary condensed sections not associated
with maximum flooding surfaces
* Base of lowstand prograding wedges
* Base of lowstand slope fans
* Minor condensed sections between attached
lobes of slope fans
4—Age date with high resolution biostratigraphy and
correlate with global sequence cycle chart,
5—Locate discontinuities on dipmeter log
6—Interpret sequence and systems tract boundaries from
log character,
7—Tie to seismic sections that have sequences and
systems tracts interpreted,
8—Interpret sequence boundaries, maximum flooding
surfaces and systems tracts on seismic data and tie the
seismic interpretation to the well logs,
9—Identify parasequences and marker beds,
10—Construct well log-seismic sequence stratigraphic
cross-sections,
11—Prepare a chronostratigraphic chart from key cross-
sections to summarize stratigraphic framework.

66
This investigation integrates all available information
from seismic and wells, but does not adhere strictly to the
procedure of Wornardt and Vail (1990), because there are few
wells in the study area, and geologic, biostratigraphic and
paleoecological data are even more scarce. As discussed by
Schlager (1992, p. 28), the restricted definitions of
"unconformity" and "sequence boundary" (Vail, 1987 and Van
Wagoner and others, 1988) are not acceptable, and the limits
of seismic resolution preclude the recognition of systems
tracts. Therefore, the criteria used for sequence boundary
recognition are those of Vail and others (1977).
As the first step, the boundaries of depositional
sequences were identified by reflection terminations and
traced throughout the grid of seismic sections. Then,
lithostratigraphic and biostratigraphic data from wells were
used to interpret the seismic data. The interpretations from
well data were tied to seismic sections either by synthetic
seismograms or using sonic logs.
The well-to-seismic ties for Wells 11, 12, 16, 17, 18,
and 21 (Figure 11, Table 1) were made using synthetic
seismograms. The conversions from depth (ft) to two-way
travel time (2-way TT, sec) for the well-to-seismic ties for
Wells 2, 4, 5, 8, 9, 10, and 11 (Figure 11, Table 1) are based
on sonic log interval transit time (At, ¿xsec/ft) . Sonic logs
were blocked and the average interval transit time (At,
Msec/ft) used to calculate the two-way travel time (2-way TT,

67
sec) for each blocked interval by dividing the interval
thickness (ft) by the average sonic velocity (ft/sec) of the
interval. The stacking velocity near the well was used to
calculate the 2-way TT to the top of the sonic log. The
cumulative 2-way TT below the seismic datum (sea level) was
calculated by summing the 2-way TT of each interval. The
cumulative 2-way TT of depths at which the change in At was
relatively great were correlated to reflections on the seismic
sections. A suite of well-log cross-sections (Figures 14
through 17) were constructed showing chronostratigraphic,
seismic-stratigraphic, and lithostratigraphic correlations.
Seismic facies analysis was approached as previously
described. The analysis incorporates the characterization of
seismic facies of carbonate rocks by Fontaine and others
(1987; Figure 12) and the models of Handford and Loucks (in
press).
A suite of "thickness" and "structure" maps of key units
were made, contoured in 2-way TT. Conversion to depth was not
attempted, because of sparse control on sonic velocity. In
general, a increase in sonic velocity occurs toward the
southeast with the change from siliciclastic to more carbonate
rock. The gradational nature of this change in sonic
velocity, however, means that locally the change is
negligible. Maps contoured in 2-way TT should be more easily
tied by future investigators than maps converted to depth on
the basis of speculative sonic velocity.

*%>
o
BASIN
(Pelagic deposits)
Terminations of reflections: Onlaps on the talus
Homogeneous limestones: Continuous reflec¬
tions at the top and base with high-amplitude,
reflector-free zone between these two reflections
Shale and carbonate layers: Continuous, paral¬
lel reflections with an apparently high frequency
Shaly layers: Apparently low frequency
Thrbidltes: High-amplitude, discontinuous
reflections, mound shaped
TALUS
Discontinuous,
oblique reflec¬
tions with high
amplitude
Slumping:
Reflections
with hum¬
mocky and
irregular
envelope
Channel:
Erosional
truncations,
chaotic reflec¬
tions
REEF
BARRIER
PLATFORM.
BORDER
SANDS
Mound-shaped
draping of
overlying
reflections
Pull-up and
pull-down
effects
Onlaps at the
edges
Diffraction
hyperbola
NTERNAL
(PLATFORM
Mound shaped
oblique reflec¬
tion with high
amplitude
Back Reef:
Discontinuous
reflections,
beginning of
bedding
INTER¬
TIDAL
ZONE
Parallel, continuous reflections
generally with an apparently low
frequency
Patch Reef: Mound-shaped
reflector-free zone
Draping of overlying reflections
Pull-up and pull-down effects
Onlaps at the edges
Diffraction hyperbola
SUPRA-
TIDAL
ZONE
DolomiUzatlon:
"Marbled
zones”
Figure 12
Seismic facies of carbonate depositional environments
(Fontaine and others, 1987).
a\
CD

69
Chronostratigraphic Interpretation Procedure
Most sequence stratigraphic analyses (e.g., Baum and
Vail, 1988; Greenlee, 1988; Greenlee and Moore, 1988; King and
Skotnicki, 1990; Wu and others, 1990a; Dobson, 1990) employ
the Mesozoic-Cenozoic Cycle Chart (Haq and others, 1987, 1988)
as the standard for temporal correlations. Miall (1991, 1992)
suggests the need to revise this practice. Another reason for
change is a more accurate geomagnetic polarity time scale
(GPTS) for the Late Cretaceous and Cenozoic (Cande and Kent,
1992). The correlation of series and stage boundaries to
magnetopolarity chronozones by Haq and others (1987, 1988) is
different from that of other schemes (Kent and Gradstein,
1985; Breggren and others, 1985a, b, c; Aubry and others,
1988), particularly the GPTS of Cande and Kent (1992). Also,
the correlation by Haq and others (1987, 1988) of
biochronostratigraphic units, specifically the planktonic
foraminiferal (N/P) biochronozones, with magnetic polarity
stratigraphy is different from that of other schemes (Berggren
and others, 1985a, b, c; Aubry and others, 1988) . As the GPTS
of Cande and Kent (1992) does not provide a magneto-
biochronostratigraphic correlation, the interpretations of
Berggren and others (1985a, b, c) as revised by Aubry and
others (1988) are used to tie the planktonic foraminiferal
zonations to this GPTS (Figure 13). One point of controversy,
the position of the Paleocene-Eocene boundary (Aubry and
others, 1988; Swisher and Knox, 1991, and Cande and Kent,

Figure 13. Geomagnetic polarity timescale for the Late
Cretaceous and Cenozoic (from Cande and Kent,
1992; black is normal polarity, white is
reversed) with correlation to planktonic
foraminiferal zonations and the last appearance
data (LAD) of key planktonic foraminifers (from
Kent and Gradstein, 1985; Berggren and others,
1985a, b, and Aubry and others, 1988). Six-letter
abbreviations for foraminifers are explained in
Appendix B.

7
CHRONO-
TIME STRATIGRAPHIC
UNITS
z i- t—
O WE
§¡ Is
u 12
LAD OF KEY
PLANKTONIC
FORAMINIFERS
ZONES
TIME
-0 Mo
- 10
-20
â– 30
-40
-50
-60
-70
-80
PL E/S EOCENE
PLIO¬
CENE
PIACENZIAN
kj
kl
k
ki
k
k
k>
k
kj
'T
k
kl
%
ki
O
$
Q
is
~i
O
kj
$
G
5
^)
k.
k
k>
£
kj
k
. 2A-
ZANCLEAN 3 â– 
LANGHIAN
MESSINIAN 3A-
38-
4 â– 
TORTONIAN 4A'
5 â– 
5A-
SERRAVAUAN
58-
se¬
so-
BUROIGALIAN
6A-
ACUITARIAN 68-
6C-
7 A-'
CHATTIAN 0 ••
9 »
lO-
ll ••
RUPELIAN 12"
13»
15-
16»
17»
BARTONIAN 10»
L PRIABONIAN
§■
-j
5
LUTETIAN
YPRESIAN __
24 •
25-
SELANOIAN 26-
27-
DANIAN
MAASTRICHTIAN
ki
k.
•si
32-
33 —
CAMPANIAN
SANTONIAN
< GLR FPR
< GLR KUG
< GLB CAG
< GLR OOP
< CHL CUB
< GLB APP
< PHG MCR
< HNK ALA.TBR
CCA
cTRR RHR
< MZV SPN
c ACR BLO
< MZV ARA
< ACR PCM
< MZV SBB
< MZV VLC
< PRT PMI
< MZV AGA
< MZV PBU
< GAN GAN
< GTI CCR
< GTI ELE
< DIC CCV
_ N23 —
_N22 —
-N21-
N 1 9
N 1 6
N1 7
N16
N 15—
N 1 2
_N 11 —
N8
N6
N5
N4
P22/N3
P21
P20
P19
P18
P 17
— P16—
P15
P 14
— P 13—
P12
P11
P10
P9
P8
P7 —
P6
P4
P3
— P2—
P1
14
N10
N9
-0 Mo
- I0
•20
-30
-40
- 50
-60
- 70
-00

72
1992) is beyond the scope of this investigation, but is
addressed by Berggren and others (1992).
Chronostratigraphic control comes from reports of the
depths of the first down-hole occurrences (i.e., last observed
occurrences, LOO) of various planktonic and benthonic
foraminifers in wells (Appendix B) . This study preferentially
uses the nomenclature of Bolli, Saunders, and Perch-Nielsen
(1985); Appendix B includes an informal synonymy of the taxa
listed in the reports.
The last appearance data (LAD) of certain of the
planktonic foraminifers are correlated to the magnetic
polarity stratigraphy (Kent and Gradstein, 1985; Berggren and
others, 1985a, b; Ciesielski, personal communication) .The LOO
of these taxa in the wells studied can be considered equal to
or older than the LAD tie points shown in Figure 13.
The LOO of other taxa listed can be considered equal to
or older than their LAD relative to the planktonic
foraminiferal zonations as shown in Bolli, Saunders, and
Perch-Nielsen (1985). One discrepancy between the planktonic
foraminiferal zonation of Berggren and others (1985b) and that
used in Bolli, Saunders, and Perch-Nielsen (1985) is that the
top of the Truncorotaloides rohri zone, P14 is the LAD of the
nominate taxon in the latter scheme, but the first appearance
datum (FAD) of Porticulasphaera semiinvoluta (referred to here
as Globiqerinatheka semiinvoluta) in the former.

73
The chronostratigraphic significance of still other taxa
listed in Appendix B is based on the previously published
interpretations of Applin and Applin (1944), Applin and Jordan
(1945), or Miller (1986).
Well-log Correlation Procedure
Outcrops of coastal plain strata are sparse, and much of
our knowledge of Florida stratigraphy is based on data from
wells. When subsurface investigations began, in the early
1940's, there was no code of stratigraphic nomenclature and no
distinction between biostratigraphic and lithostratigraphic
units. In most cases, "diagnostic foraminifera" were the
criteria for recognizing subsurface formations in Florida
(Applin and Applin, 1944? Applin and Jordan, 1945). In a
their study of the Comanche Series (Lower Cretaceous) , Applin
and Applin (1965, p. 31) explain that, "provisional boundaries
of the stratigraphic units are arbitrarily determined on the
basis of lithologic and electric log characteristics that are
traceable from well to well, and which occur at, or slightly
above, the highest level of the diagnostic fossils." Although
Winston (1971a, b, 1976a, 1978) offers lithologic criteria
from sample and geophysical logs from "type" wells to
establish correlation of both newly proposed and "classic"
stratigraphic units, microfaunal assemblages remain the key to
the stratigraphic correlation in Florida. Miller (1986)
employs time-rock units correlated chiefly by means of

planktonic and benthonic foraminifers. A similar approach is
used in this study.
The suite of well-log cross-sections, A-A' through D-D'
(Figures 14 through 17) , are constructed on datum levels
relative to mean sea level. In each case, the line of section
is more or less perpendicular to the present coastline. The
LOO of a "diagnostic" taxon is shown by the six-letter
abbreviation for that taxon alongside the well log. The
abbreviations are listed in Appendix B in general order of
first down-hole occurrence (i.e., increasing age) of taxa.
In the case of correlations based on magnetobiochrono-
stratigraphic and/or biochronostratigraphic interpretations,
the boundaries are chosen to coincide with lithologic changes
(from sample and/or geophysical logs) that are traceable from
well to well, and that occur at, or slightly above, the LOO
the diagnostic taxa. On the cross-sections, these boundaries
are shown by thick lines. Tentative correlations based only
on lithologic characteristics (from sample and/or geophysical
logs) that are traceable from well to well are shown on the
cross-sections by thin lines.
The positions of sequence boundaries interpreted from
seismic sections via sonic logs and/or synthetic seismograms
are also annotated on the well-log cross-sections. In the
specific case of the MCSB, the boundary is so labeled and
shown as a thick, wavy line.

RESULTS AND DISCUSSION
Chronostratigraphic Framework
Pertinent age relationships were interpreted as
previously described (Figure 13) , and the LOO depths and
magnetobiochrono-stratigraphic or biochronostratigraphic
information on the taxa are listed in Appendix B and
illustrated in four well-log cross-sections (Figures 14, 15,
16, and 17). In some of the wells, the LOO depths of certain
taxa do not occur in an ideal stratigraphic sequence (Appendix
B, shaded blocks). Reworking, caving, and differences in
preservation can affect the observed sequence of microfossil
occurrences. Most instances in this study are of the sort
where the LOO of one taxon occurs beneath the LOO of other
taxa the LAD of which are supposed to be older. Such cases
could be attributed to caving. There are also a few cases
where the LOO of a taxon is among others whose LAD are
considered to be younger; this suggests reworking. Where
there are problems, the chronostratigraphic interpretation is
tentative.
Calibration of the occurrences of planktonic foraminifers
against magnetostratigraphy (Miller and others, 1985, 1991)
indicates that some low-latitude taxa exhibit latitudinal
75

76
Figure 14. (In pocket) Well-log cross-section A-A' showing
age interpretation based on the depths (from Exxon
Company reports) of the last observed occurrences
of key planktonic and several benthonic foramini-
fers in Wells 3, 7, 8, and 10 in the Destin Dome
Area. Well numbers refer to Figure 11 and Table
1. There is a change in datum of the two
southwesternmost (down-dip) wells, from -1,000
feet to -1,500 feet, subsea.
The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e.. increasing age) of taxa.
The positions of sequence boundaries interpreted
from seismic sections are also annotated. In the
specific case of the MCSB, the boundary is shown
as a thick, wavy line.
MCSB = Mid-Cretaceous Sequence Boundary.
KU1 = Top of Cenomanian-Santonian subunit.
Kjj2 = Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene,
Tml = Top of Lower Middle Miocene.
Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.

77
Figure 15. (in pocket) Well-log cross-section B-B' showing
age interpretation based on the depths of the last
observed occurrences of key planktonic and some
benthonic foraminifers in Wells 11, 12, 13, and 26
on the Middle Ground Arch. Well numbers refer to
Figure 11 and Table 1. Datum is mean sea level.
The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e.. increasing age) of taxa.
The positions of sequence boundaries interpreted
from seismic sections are also annotated. In the
specific case of the MCSB, the boundary is shown
as a thick, wavy line.
MCSB = Mid-Cretaceous Sequence Boundary.
Ku1 = Top of Cenomanian-Santonian subunit.
Ky2 = Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.

78
Figure 16. (In pocket) Well-log cross-section C-C' showing
age interpretation based on the depths of the last
observed occurrences of key planktonic and some
benthonic foraminifers in Wells 14, 15, 16, 17,
and 28 on the southeast flank of the Tampa
Embayment. Well numbers refer to Figure 11 and
Table 1. Datum is mean sea level.
The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e.. increasing age) of taxa.
The positions of sequence boundaries interpreted
from seismic sections are also annotated. In the
specific case of the MCSB, the boundary is shown
as a thick, wavy line.
MCSB = Mid-Cretaceous Sequence Boundary.
K(J1 = Top of Cenomanian-Santonian subunit.
= Top of Campanian-Maastrichtian subunit.
Tp = Top of Paleocene.
Teu = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
KUa' KLb' and Klc denote key seismic reflections
within the Lower Cretaceous section shown to
strengthen correlations of overlying units.
Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.

79
Figure 17. (In pocket) Well-log cross-section D-D' showing
age interpretation based on the depths of the last
observed occurrences of key planktonic and some
benthonic foraminifers in Wells 21, 22, 23, and 29
on the north flank of the South Florida Basin.
Well numbers refer to Figure 11 and Table 1.
Datum is mean sea level.
The LOO of a "diagnostic" taxon is shown by the
six-letter abbreviation for that taxon alongside
the well log. Abbreviations are listed in
Appendix B in general order of first down-hole
occurrence (i.e.. increasing age) of taxa.
The interpretation of sequence boundaries on
seismic sections in this area is problematic.
KUa' KLb' an<^ klc denote key seismic reflections
within the Lower Cretaceous section shown to
strengthen correlations of the MCSB and overlying
units. The MCSB is shown as a thick, wavy line.
Correlations on magnetobiochronostratigraphic
and/or biochronostratigraphic interpretations
are shown by thick lines. Tentative correlations
based only on lithologic characteristics are shown
on the cross-sections by thin lines.

80
diachrony. More unexpectedly, however, 687Sr age equations
reveal that some planktonic foraminiferal datum levels,
specifically in the Oligocene, are diachronous along
longitudinal gradients (Hess and others, 1989). The
magnetobiochronostratigraphic correlation of the LOO of such
taxa (noted in Appendix B) are somewhat suspect.
The most detailed biostratigraphic data available are
from four Exxon wells (Wells 3, 7, 8, and 10) in the Destin
Dome Area (Figure 14). For wells to the southeast (Figures
15, 16, and 17), there is less information. It has been noted
(Applin and Jordan, 1945; Huddlestun, 1988) that the
microfauna of the subsurface formations of Florida are rather
distinct. Taxa noted in the near-shore wells (i.e., Well 26,
Well 28, and Well 29; Miller, 1986, 1988) are different from
those reported from wells farther offshore. This contributes
to some perplexing correlations (Figure 15, Figure 16, Figure
17) . Some of the problem is due to the prevalence in the
shallow-marine facies of near-shore wells of benthonic rather
than planktonic taxa.
Notwithstanding these considerations, the data provide a
chronostratigraphic framework wherein it is possible to
identify the MCSB and group the overlying strata into four
main chronostratigraphic units, namely Upper Cretaceous,
Paleocene-Eocene, Oligocene-lower Middle Miocene, and upper
Middle Miocene-Holocene.

81
Time-equivalence of Lithostratigraphic units
Although the boundaries of many lithostratigraphic units
in the region are considered to be time-parallel (Baum and
Vail, 1988) , with the data available in this study the ability
to specify lithologic characteristics is limited and
lithostratigraphic correlations cannot be made on the basis of
chronostratigraphic equivalence. Nevertheless, the following
information provided by Galloway and others (1991) on the
relationship of certain biostratigraphic markers to
lithostratigraphic units in the northern Gulf of Mexico is
worthy of note.
1. The top of the Midway Group (Paleocene) can be
reliably identified on the extinctions of Morozovella
(Globorotalia) velascoensis and Planorotalites (Globorotalia)
oseudomenardii.
2. The top of the subsurface Wilcox Group (Paleocene-
Eocene) in Louisiana and Texas can be identified most reliably
on the extinction of Morozovella acuta (Globorotalia
wilcoxensis).
3. In deep-water sections the top of the Claiborne Group
(Eocene) is marked by the extinction of Truncorotaloides
rohri.
4. The mid-dip portion of the upper Jackson Group
(Eocene) in Texas contains Marqinulina cocoanensis. In down-
dip, deep-water sections the top of the Jackson Group is

82
picked on the extinction points of either Turborotalia
(Globorotalia) cerroazulensis or Hantkenina alabamensis.
5. The top of the Vicksburg Formation (Oligocene) in
deeper-water sections over the entire northern Gulf of Mexico
Basin can be picked at the extinction point of Globigerina
ampliapertura.
6. Where it ranges above the Vicksburg, the extinction
of Anomalina bilateralis can be used as a correlation point in
the Frio Formation of Texas and Louisiana.
7. Outcrops of the Chickasawhay Formation of southern
Mississippi and southwestern Alabama contain Nodosaria
blanpiedi. a marker for the Frio Formation (Oligocene) in the
subsurface of Texas and Louisiana.
8. The Anahuac Formation (Oligocene), found in the
subsurface of Texas, Louisiana, and southwestern Mississippi,
contains the Heterostegina Zone and Marginulina vaginata (M.
mexicana var. vaginata) in the underlying Marginulina Zone.
MCSB
As the lower stratigraphic boundary of this study, and in
light of the controversy discussed previously (Addy and
Buffler, 1984; Faust, 1990; Wu and others, 1990a; Feng and
Buffler, 1991), it is important to establish some basis
regarding the MCSB. In this study, the MCSB is identified as
the base of the Cenomanian shale that overlies the thick,
Lower Cretaceous section of interbedded carbonates and
evaporites. This contact is characterized on well logs by

83
relatively low gamma ray, high resistivity, and low sonic At
values, below, and an overlying interval of high gamma ray,
low resistivity, and very high At values (Figures 14, 15, 16,
and 17). Though in places reported as gray or black in color
(Wells 16, 17, 26, 28), this shale correlates to the "green
shale unit" reported by Applin and Applin (1965) and seems to
be present throughout the western Florida Carbonate Platform.
In Well 7 (Figure 14) the MCSB contact lies below the
corresponding pick of Addy and Buffler (1984) and above the
pick of Faust (1990). The MCSB pick recognized here (-3996
ft, subsea) lies within the Cenomanian section, whereas that
of Addy and Buffler (1984) lies near the top of section
considered here to be Turonian (-3707 ft, subsea), and Faust's
(1990) lies at the base of the Cenomanian (-4101 ft, subsea).
The abrupt change in sonic velocity at the contact picked in
this study makes it a more likely candidate to produce the
high-amplitude MCSB reflection than alternative picks
associated with gradational lithologic changes (Addy and
Buffler, 1984; Faust, 1990).
Upper Cretaceous
The Upper Cretaceous unit is equivalent to the provincial
Gulfian Series. Compared to the Upper Cretaceous stratigraphy
in the Coastal Plain of Alabama (King and Skotnicki, 1990;
Figure 8) where strata from lower Turonian to upper Santonian
are absent beneath a regional unconformity at the top of the
Tuscaloosa Formation (Figure 7) , the section penetrated by

84
wells in the study area is more complete. In the Destin Dome
wells (Figure 14) , it includes (in ascending order)
Cenomanian, Turonian, Coniacian, Santonian, Campanian and at
least some Maastrichtian strata. To the southeast, sparse
control variously affords recognition of Cenomanian, Turonian,
Santonian, Campanian and Maastrichtian strata in Wells 12, 13,
and 26 (Figure 15) and in Wells 14 and 15 (Figure 16). In the
southernmost wells (Figure 17) the Upper Cretaceous unit is
only tentatively subdivided by correlations based on log
character.
A mid-Paleocene age for the stratigraphic break at the
top of the Upper Cretaceous agrees with the interpretation of
Addy and Buffler (1984) . The position of this contact in Well
7 (Figure 14) is also in agreement with the corresponding pick
by Addy and Buffler (1984) . Curiously, Mitchum (1978) reports
the Paleocene is entirely absent in his study area, but
assigns an early Paleocene age to sequence boundary J (Figure
10) .
The Cenomanian-Santonian strata correspond in age to the
Tuscaloosa-Eutaw lithostratigraphic units in the west and to
the Atkinson Formation and the lower Pine Key Formation in
peninsular Florida (Figure 3). This correlation agrees with
that shown for the Sun OCS-G2490 (Block 166) by Wu and others
(1990a, Foldout 2). The Campanian-Maastrichtian strata
correlate to at least part of the Selma Group in the west and

85
to the upper Pine Key and the Lawson Formation in peninsular
Florida (Figure 3).
Paleocene-Eocene
Lower Paleocene (Danian) strata, though reported in
outcrops in the Gulf Coastal Plain (Baum and Vail, 1988; King
and Skotnicki, 1990; Mancini and Tew, 1990a, b, 1991a, b;
Figures 7 and 8), are not identified in any wells in the study
area. Magnetobiochronostratigraphic interpretations indicate
that Paleocene strata in the Destin Dome wells (Figure 14) are
of the Selandian Stage. Selandian strata are also identified
in Wells 12 and 13, on the Middle Ground Arch (Figure 15) , and
in Well 14 (Figure 16). The Selandian strata contain
Morozovella velascoensis and Morozovella pseudobulloides. taxa
characteristic of the "Tamesi fauna" (Applin and Applin, 1944;
Applin and Jordan, 1945). Information from Mobil on
nannoplankton biostratigraphy indicates Upper Paleocene strata
are also present in Well 16 (Figure 16).
The Paleocene section is thin in wells on the Destin Dome
(Figure 14) and Middle Ground Arch (Figure 15), ranging from
less than 50 to about 250 ft thick. Correlations suggest that
the Paleocene section increases to the east and south, to
about 500 ft thick in Well 26 (Figure 15), and from about 500
ft thick in Wells 14 and 16 to more than 1,200 ft thick in
Well 28 (Figure 16).
The Selandian (Thanetian in Figure 3) strata are age-
equivalent to the Midway Group, and possibly the lower Wilcox

86
Group, to the west (Gohn, 1988). On the Florida Peninsula,
the Cedar Keys Formation is traditionally regarded as
Paleocene. Gohn (1988) concludes the Cedar Keys is likely
Danian and early Selandian, but Salvador (1991, Plate 5)
indicates it is upper Thanetian to lower Ypresian (Lower
Eocene).
In Mississippi and Alabama, Lower, Middle, and Upper
Eocene strata are the Hatchetigbee Formation of the Wilcox
Group, the Claiborne Group, and the Jackson Group,
respectively (Figure 3). On the Florida Peninsula, the Lower,
Middle, and Upper Eocene strata are generally considered to
comprise, respectively, the Oldsmar, Avon Park, and Ocala
formations. Gohn (1988) states that it is possible that much
of the Oldsmar is late Paleocene, and that, based on
restriction of the biostratigraphic marker Helicostegina
qyralis to the middle Eocene, the upper part is probably
middle Eocene (Lutetian?). Salvador (1991, Plate 5) shows the
Oldsmar as upper Ypresian and lower Lutetian (Figure 3). The
Avon Park Formation is considered to be upper Lutetian and
lower Bartonian (Gohn, 1988; Salvador, 1991, Plate 5; Figure
3). Priabonian strata correlate to the Ocala Limestone
(Figure 3).
All four Eocene stages, (in ascending order) Ypresian,
Lutetian, Bartonian, and Priabonian, can be differentiated
from the biostratigraphic control in the Destin Dome wells
(Figure 14). The Eocene section is not as clearly defined in

87
wells to the southeast. Ypresian, Lutetian, and Bartonian
strata are variously identified in Well 12 (Figure 15) and in
Wells 14 and 16 (Figure 16), but data are sparse. In Core 1,
Well 21 (Figure 17) , echinoid specimens were recovered and
identified as Neolaqanum dalli. a taxon characteristic of the
Middle Eocene (Claibornian) Avon Park Formation (Toulmin,
1977) .
For Wells 26, 28, and 29, published lithostratigraphic
(Winston, 1977) and/or chronostratigraphic (Miller, 1986,
1988) interpretations of these or nearby wells provide
information to subdivide the Eocene section. As already
noted, the units recognized in these wells are not readily
correlated to wells offshore (Figures 15, 16, and 17).
In each of Wells 3, 7, 8, and 10, the top of the Eocene
section is clearly marked. In Well 7, this contact occurs
some 188 feet (57.3 m) lower than the pick made by Addy and
Buffler (1984) for the corresponding contact of their units C
and D (Figure 10). Addy and Buffler (1984) relied on the
interpretation of Mitchum (1978) for the estimate of the age
of this boundary as middle Oligocene (Figure 10). The data of
this study, however, indicate that Lower Oligocene (Rupelian)
strata overlie the well-defined, top-of-Eocene boundary.
There are no biostratigraphic data available on the top-of
Eocene boundary in Wells 11 through 23 (Figures 15, 16, and
17) .

88
Oliqocene-Lower Middle Miocene
Chronostratigraphic subdivision of post-Eocene strata
(Figure 14) is problematic, because the LOO of Lower Oligocene
(Rupelian) and Upper Oligocene (Chattian) taxa are not all in
sequence (Appendix B). Similarly indistinct is the contact of
the Oligocene with overlying Miocene strata. This may be in
part due to the previously noted diachrony of certain
Oligocene taxa, but also reflects the fact that many of the
key Oligocene and Miocene indicators are benthonic taxa, the
temporal significance of which is recognized as suspect
(Galloway and others, 1991).
Magnetobiochronostratigraphic interpretations do permit
identification of the top of Langhian strata (lower Middle
Miocene) in Well 3 (Figure 14). This stratigraphic position
corresponds to a prominent reflection on the seismic sections
that has been previously identified elsewhere as a mid-Miocene
sequence boundary (Figure 10; Sequence Boundary D, 12 Ma,
Mitchum, 1978; contact of Seismic units B and C, 16 Ma, Addy
and Buffler, 1984; contact of Sequences I and II, 12-15 Ma,
Mullins and others, 1988b; TLM, 15.5 Ma Wu and others, 1990a).
Upper Middle Miocene-Holocene
TJiis chronostratigraphic unit is defined rather by
default in that few wells are logged or sampled this high in
â– 
the section, consequently there is no biostratigraphic
control. The principal justification for recognizing this as
a distinct chronostratigraphic unit is its position overlying

89
the abovementioned mid-Miocene seismic reflection (Mitchum,
1978; Addy and Buffler, 1984; Mullins and others, 1988b; and
Wu and others, 1990a).
Seismic Stratigraphic Framework
Via well-to-seismic ties, the foregoing chronostrati-
graphic framework permits reasonably accurate identification
of the depositional sequences delineated in the seismic
sections. Figures 18 through 26 are uninterpreted and
interpreted versions of selected portions of the seismic data
set. A map of the "thickness" of the entire Upper Cretaceous
through Cenozoic section contoured in 2-way TT (Figure 27)
shows thick sediments in the Apalachicola Basin and Tampa
Embayment and thinner deposits over the Destin Dome, Middle
Ground Arch, and Sarasota Arch. Discussion of the seismic
stratigraphic framework begins with the MCSB and proceeds in
ascending order. Where it is available, information from
wells on the lithologic character of seismic units is
included. Although the procedure of this study follows the
principles of seismic stratigraphy (Vail and others, 1977),
the discussion commonly references the sequence stratigraphic
interpretations of others (e.g., Baum and Vail, 1988; King and
Skotnicki, 1990), hence the use of such terms as, maximum¬
flooding surface, etc.
MCSB
The reflection identified here as the MCSB can be traced
on seismic lines over most of the study area and was mapped

Figure 18. Part of seismic section F15: (a) uninterpreted.
The locations of this line and the intersections
with lines F3 and G12 and Well 9 are shown in
Figure 11.

91
WELL 9

Figure 18, continued.
Part of seismic section F15: (b) interpreted.
The locations of this line and the intersections
with lines F3 and G12 and Well 9 are shown in
Figure 11. Depths of seismic boundaries in Well
9 are in feet, subsea.
MCSB = Mid-Cretaceous Sequence Boundary.
KU1 = Top of Cenomanian-Santonian subunit.
K^2 = Top of Campanian-Maastrichtian subunit.
T£U = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
(A) Downlapping reflection terminations on a
sequence boundary in the lower part of subunit KU1.
(B) Westward thickening of the upper part of
subunit K^2.
(C) Westward thickening of the lowermost
subunit of the Paleocene-Eocene unit.
(D) A young seismic stratigraphic subunit
with basal boundary marked by onlap to the
northwest and downlap to the southeast.

93
WELL 9

Figure 19. Part of seismic section F3: (a) uninterpreted.
The locations of this line and the intersections
with lines F15 and G12 and Wells 9 and 10 are
shown in Figure 11.

95

Figure 19, continued.
Part of seismic section F3: (b) interpreted.
The locations of this line and the intersections
with lines F15 and G12 and Wells 9 and 10 are
shown in Figure 11. The subsea depths of seismic
boundaries for Well 9 are shown in Figure 18b.
Depths for Well 10 are not shown, because the well
is projected into the section from farther up dip,
so reflection times do not match.
MCSB = Mid-Cretaceous Sequence Boundary.
KU1 = Top of Cenomanian-Santonian subunit.
Ky2 = Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
(A) Folding and faulting associated with salt
diapirs.
(B) The Destin Dome, a salt swell structure over
which Upper Cretaceous and younger strata pinch
out or thin.
(C) Major, down-to-the-southwest faults, part of
the basin-bounding fault system.
(D) Basinward thinning of the Paleocene-Eocene
unit.
(E) Wedge of prograding, Oligocene-Lower Miocene
that lap onto the north flank of the Destin Dome.
(F) Complex group of reflection terminations
suggesting a shelf margin in the Neogene section.
(G) The youngest seismic stratigraphic subunit
(younger than Figure 18b, D) onlapping the shelf
margin (F).

WELL 9 une F 15

Figure 20. Northern part of seismic section G12:
(a) uninterpreted. The locations of this line and
intersections with lines F3 and F15 are shown in
Figure 11.

LINE F 15
2.0
NORTH

Figure 20, continued.
Northern part of seismic section G12:
(b) interpreted. The locations of this line and
the intersections with lines F3 and F15 are shown
in Figure 11.
MCSB = Mid-Cretaceous Sequence Boundary.
Ktn
Ku2
Teu
tml
Top of Cenomanian-Santonian subunit.
Top of Campanian-Maastrichtian subunit.
Top of Upper Eocene.
Top of Lower Middle Miocene.
(A) The graben are part of the system of major
faults that bound the Apalachicola Basin.
(B and C) Broad mounds formed by stacked, Eocene
sequences with lenticular shape
and wavy, subparallel to hummocky seismic facies.

101
LINE F 15 L,NE F 3

Figure 21. Southern part of seismic section G12:
(a) uninterpreted. The locations of this line and
the intersection with line Gil are shown in Figure
11.

103
LINE G 1 1

Figure 21, continued.
Southern part of seismic section G12:
(b) interpreted. The locations of this line and
the intersection with line Gil are shown in Figure
11.
MCSB = Mid-Cretaceous Sequence Boundary.
= Top of Cenomanian-Santonian subunit.
K,j2 = Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
(A) Rare example of a downlapping reflection
termination (left of A) above the MCSB.
(B) Eocene sequences with lenticular shape and
wavy, subparallel to hummocky seismic facies are
stacked to form a broad mound.
(C) Chaotic reflections within the post-Cretaceous
sequences in a mounded zone near the Florida
Escarpment.
(D) Lower Miocene and younger strata fill in the
trough behind the mounded zone (C).
(E) Upper Miocene and younger reflections onlap
landward and downlap basinward.

LINE G 11
2-way TT LINE G 12 J NORTH
(sec)
o.oi

Figure 22. Part of seismic section Gil: (a) uninterpreted.
The locations of this line and the intersections
with line G12 and Well 11 are shown in Figure 11.

LINE G 12
107
Well 11
EAST
2.0

Figure 22, continued.
Part of seismic section Gil: (b) interpreted.
The locations of this line and the intersections
with line G12 and Well 11 are shown in Figure 11.
Depths of seismic boundaries in Well 11 are in
feet, subsea.
MCSB = Mid-Cretaceous Sequence Boundary.
KU1 = Top of Cenomanian-Santonian subunit.
= Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
(A) Concordant reflections above and below the
MCSB.
(B) Subunit with discontinuous, subparallel,
even-to-wavy seismic facies and uniform thickness.
Disruption due to faulting.
(C) Thick section of Eocene and Paleocene (?)
sequences stacked to form a broad mound.
(D) Upper Miocene and younger reflections onlap
eastward on the Middle Ground Arch. Thickness of
this interval increases westward, into the
Apalachicola Basin.

Well 11
■O’
109
EAST
2.0

Figure 23. Part of seismic section Gl: (a) uninterpreted.
The locations of this line and the intersection
with Well 11 are shown in Figure 11.

Ill
Well 11

Figure 23, continued.
Part of seismic section Gl: (b) interpreted.
The locations of this line and the intersection
with Well 11 are shown in Figure 11. Depths of
seismic boundaries in Well 11 are in feet, subsea.
MCSB = Mid-Cretaceous Sequence Boundary.
KU1 = Top of Cenomanian-Santonian subunit.
= Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene.
Tml = Top of Lower Middle Miocene.
(A) "Seismic reef" (Schlager, 1992, p. 29) in
Lower Cretaceous strata at the Florida Escarpment.
(B) Thickening of seismic unit K^2 on underlying
structural high (Figure 27). Seismic facies is
hummocky to contorted.
(C) Disrupted, contorted reflections within the
post-Cretaceous sequences in the mounded zone near
the Florida Escarpment.
(D) Oligocene-Lower Miocene sequences form sets of
low-angled, shingled clinoforms that stack
aggradationally as much as progradationally.
(E) The youngest seismic unit (probably
Pleistocene) near the edge of the Florida
Escarpment.
(F) Lower Miocene and younger strata fill in the
trough behind the mounded zone.
(G) The section of Upper Miocene and younger
strata is relatively thin in this part of the
Tampa Embayment compared to that of the
Apalachicola Basin (Figures 18 through 22).

2-way TT
(sec)
o.or-^
113
Well 11

Figure 24
Part of seismic section G3: (a) uninterpreted.
The locations of this line and Well 12 are shown
in Figure 11.

115
WELL 12

Figure 24, continued.
Part of seismic section G3: (b) interpreted.
The locations of this line and Well 12 are shown
in Figure 11. Depths of seismic boundaries in
Well 12 are in feet, subsea.
MCSB = Mid-Cretaceous Sequence Boundary.
= Top of Cenomanian-Santonian subunit.
Ky2 = Top of Campanian-Maastrichtian subunit.
Teu = Top of Upper Eocene.
Thl = Top of Lower Middle Miocene.
(A) Zone of marked thickening of the Paleocene-
Eocene unit and west-prograding clinoforms at the
Eocene shelf edge.
(B) Even, parallel seismic facies suggestive of
intertidal to supratidal zones (Fontaine and
others, 1987) .

a> o
117
WELL 12
ay TT
c)
LINE G 3
NORTHEAST

Figure 25. Part of seismic section G6: (a) uninterpreted.
The locations of this line and the intersections
with line G17 and Well 16 are shown in Figure 11.

119

Figure 25, continued.
Part of seismic section G6: (b) interpreted.
The locations of this line and the intersections
with line G17 and Well 16 are shown in Figure 11.
Depths of seismic boundaries in Well 16 (feet,
subsea).
MCSB = Mid-Cretaceous Sequence Boundary.
KU1 = Top of Cenomanian-Santonian subunit.
Kyj = Top of Campanian-Maastrichtian subunit.
Tp = Top of Paleocene.
Teu = Top of Upper Eocene (?) ,
Tml = Top of Lower Middle Miocene (?) .
(A through G) Successive sets of progradational
clinoforms that change from sigmoid, to tangential
oblique, to complex sigmoid-oblique and steepen as
they impinge on the Florida Escarpment.
(H) The youngest seismic unit (probably
Pleistocene) near the edge of the Florida
Escarpment.

121
2-way TT
(sec)
LINE G 6
LINE G 17
J
Well 16
-- EAST

Figure 26
Parts of seismic sections G17 and G18:
(a) uninterpreted. The locations of these lines
and the intersections with Wells 17, 18, and 21
are shown in Figure 11.

123
Well 17 Well 18 Well 21

Figure 26, continued.
Parts of seismic sections G17 and G18:
(b) interpreted. The locations of these lines and
the intersections with Wells 17, 18, and 21 are
shown in Figure 11. Depths of seismic boundaries
and other features in Wells 17, 18, and 21 (feet,
subsea).
MCSB = Mid-Cretaceous Sequence Boundary.
Ku1 = Top of Cenomanian-Santonian subunit.
K,j2 = Top of Campanian-Maastrichtian subunit.
Tp = Top of Paleocene.
KUa' KLt>' anci klc denote key seismic reflections
within the Lower Cretaceous section shown to
strengthen correlations of overlying units.
(A) Abrupt change in reflection continuity makes
interpretation difficult, but log correlations of
units associated with KLa, KLb, and Ku indicate
that the reflections from these units should occur
as noted at Wells 18 and 21.
(B and C) Log character suggests that the interval
B (-3063 to -5163 feet, subsea) in Well 18
correlates to the interval C (-2432 to -4572 feet,
subsea) in Well 21, but this is not substantiated
by the seismic data.
(D) In Core 1, Well 21, echinoid specimens were
recovered and identified as Neolaganum dalli. a
taxon characteristic of the Middle Eocene
(Claibornian) Avon Park Formation.

125
Well 17
Well
Well 21
2-way TT
(sec)
0.0
0.5
SOUTH
2.0

126
Figure 27. Map of the "thickness" of the entire Upper
Cretaceous through Cenozoic section contoured in
2-way traveltime. The heavy dashed line
delineates the location of the change in the
character of the seismic data.

127
(Figure 28) to establish the configuration of the surface on
which the overlying Upper Cretaceous-Cenozoic section was
deposited. For the most part, pre-existing basins and arches
transmit their influence to the MCSB surface.
In the Apalachicola Basin, the MCSB surface (Figure 28)
dips west and south. The regional trend is altered locally by
the Destin Dome (Figures 14; 19b, B) and salt diapirs at the
head of the De Soto Canyon (Figure 19b, A; 28, A). To the
east, under Apalachee Bay, the Middle Ground Arch (Figure 28,
B) is almost imperceptibly broad and flat, but structural
relief is evident on the well-log cross-section B-B' (Figure
15) . On seismic sections the location of Well 12 (Figure 24)
is about 0.4 sec (2-way TT) higher at the MCSB than that of
Well 11 (Figure 23) , but well-log correlations (Figure 15)
indicate that Well 12 is actually low to Well 11 at the MCSB.
This discrepancy could be attributed to a "pull up" due to a
change to more carbonate rocks, with higher sonic velocity, in
the section above the MCSB.
The Middle Ground Arch bifurcates down plunge and each
structural nose becomes rather prominent. One nose plunges
west, off the northwest flank of the Middle Ground Arch
(Figure 28, C) . This fold is apparent on the southern portion
of Line G12 (Figure 21) that trends nearly perpendicular to
its axial trace. Off the Middle Ground Arch's southeast flank
the other elongate structural high (Figure 28, D) plunges
southwest.

128
"Structure" map of the configuration of the mid-
Cretaceous sequence boundary (MCSB) surface
contoured in 2-way traveltime. The heavy dashed
line delineates the location of the change in the
character of the seismic data. Letters indicate
the location of features described in the text.
Figure 28.

129
Between the two plunging anticlines is a semicircular
depression that plunges to the west, toward the Florida
Escarpment (Figure 28, E). This feature corresponds to the
Tampa Embayment. In the northern part of the embayment, the
MCSB dips fairly gradually until it terminates at the
intersection of the Lower Cretaceous rimmed shelf margin with
the Florida Escarpment (Figures 21, 23, and 28). In the
southern part of the embayment, however, the slope of the MCSB
increases markedly within 25 miles (40.2 km) of the Florida
Escarpment (Figures 25 and 28).
The southwest-plunging anticline (Figure 28D) parallels
the trend of the Sarasota Arch on published maps (Klitgord and
others, 1984; Dobson, 1990; Dobson and Buffler, 1991; Figure
4) , but lies to the northwest of the fault inferred to
displace basement (Ball and others, 1988) between Wells 17 and
18 (Figure 26). Southeast of the trend of the inferred fault,
the character of the seismic data changes abruptly such that
reflection coherence is severely diminished (Figures 26 and
28). Recognition of the MCSB (or anything else) on seismic
sections in this portion of the study area is not possible.
Despite the lack of interpretable seismic data in the
vicinity of the Sarasota Arch, speculative correlation of the
MCSB and overlying strata is strengthened by well-log
correlation of three key picks (KLa, KLb, and Ku) in the upper
part of the Lower Cretaceous section (Figures 16 and 17).
Synthetic seismograms (Wells 16, 17, 18, and 21) allow one to

130
identify the reflections associated with these picks (Figure
26b) . Correlation to the previous interpretations of nearby,
onshore wells (Applin and Applin, 1965; Winston, 1971 a and b,
1976) indicate that KLb is close to the top of the Big Cypress
Group (Fredricksburgian) and KLc is close to the top of the
Ocean Reef Group (Trinitian).
The log character of the KLa, KLb, and KLc section is
remarkably similar over a large area on both sides of the line
that corresponds to both the change in seismic data character
and the inferred fault on the north flank of the Sarsasota
Arch (Figures 16 and 17). Section D-D' (Figure 17) shows the
MCSB dipping to the east with structural relief of more than
2600 ft (800 m), yet the log character of this section does
not change appreciably in the down-dip direction. This
indicates that depositional environment of the Lower
Cretaceous strata was similar throughout the area and that the
subsidence observed must have occurred sometime after the
middle Cretaceous. Indeed, thickening of the Upper Cretaceous
section in the down-dip wells (Figure 17) suggests that the
motion took place in the Late Cretaceous (Mitchum, 1978).
Reflection terminations associated with the MCSB are few;
over much of the study area the reflections above and below
the MCSB are concordant. Above the MCSB, onlap is restricted
to the flanks of the Destin Dome (Figure 19b, B), and downlap
occurs principally along the platform margin (Figures 18b,
21b, and 23b). Beneath the MCSB, only suggestions of

131
erosional truncation are observed, rarely, in the Tampa
Embayment. This agrees, generally, with Faust (1990, Figures
18 and 22) , but the swath of onlap and trucation in the
vicinity of Well 11 and the large area of onlap and truncation
in the southeastern part of the study area which are depicted
on Faust's (1990) maps could not be corroborated.
Upper Cretaceous
The major seismic unit identified by well ties as Upper
Cretaceous can be recognized in sections virtually throughout
the study area (Figure 18 through 26). Overall, the unit
thickens landward (especially to the northwest and southeast)
and thins basinward, toward the Florida Escarpment.
The Upper Cretaceous unit corresponds to the sequence
between the J and K sequence boundaries of Mitchum (197 8) , the
seismic unit E of Addy and Buffler (1984), and the section
between Ky and KL in the interpretations of Ball and others
(1988) (Figure 10) . There is not, however, good
correspondence between the Upper Cretaceous unit recognized
here and either the "primary depositional sequences" of
Mullins and others (1988b), or the "depositional systems" of
Gardulski and others (1991) (Figure 10). The former scheme
divides the Upper Cretaceous strata at the Middle-Upper
Turonian boundary (90 Ma, per Haq and others, 1987, 1988),
while the latter interpretation, divides the Upper Cretaceous
at the top of the Campanian. Both interpretations include

132
overlying Upper Cretaceous strata in a sequence that extends
to the top of the Lower Oligocene.
As previously stated, the Upper Cretaceous unit of this
study includes Cenomanian through Maastrichtian strata. In
turn, this main unit can, itself, be broken into two subunits,
designated KU1 and K^, in ascending order. Both subunits are
probably present throughout the study area (Figures 18 through
26) . Ku1 and K., are difficult to trace to the northwest in
the Apalachicola Basin, because of thinning and faulting
across the Destin Dome. Correlation is also tenuous where
data quality deteriorates, near shore and approaching the
Sarasota Arch (Figure 26b). In the area of this study where
the Paleocene section is thin, it is difficult to resolve on
seismic sections. It is possible that Paleocene strata may be
included at the top of subunit beneath the boundary marked
by downlap (Figures 18 through 24).
The KU1 subunit (Cenomanian-Santonian) is thin across the
northwestern nose on the MCSB surface, about 600 ft (183 m)
thick in Well 11 (Figures 15; 29, A), but thickens into both
the Tampa Embayment (Figure 29, B) and the Apalachicola Basin,
to more than 1,000 ft (304.8 m) in Well 3 (Figures 14; 29, C).
The subunit consists of at most about a half dozen
reflections in a continuous, parallel (even) to slightly
divergent seismic facies. In general, the reflections within
KU1 downlap toward the escarpment and either onlap or converge
internally, in the landward direction. Downlapping and

133
Figure 29. "Thickness" map of the seismic subunit
contoured in 2-way traveltime. The heavy dashed
line delineates the location of the change in the
character of the seismic data. Letters indicate
the location of features described in the text.

134
onlapping reflection terminations indicate the presence of
four depositional sequences within the KU1 subunit (Figures 18
through 21, and 23 and 25). Beneath the Mississippi-Alabama
Shelf, at the northwestern end of the study area (Figure 1),
the unit thickens northwestward and the toes of prograding
clinoforms downlap on a reflection estimated to be Turonian
(Figure 18b, A). This reflection may correspond to what Wu
and others (1990a) termed the MCFS (Figure 5).
Wu and others (1990a) correlate the regional unconformity
at the top of the Tuscaloosa Formation (Figure 3) with the 90
Ma sequence boundary (Haq and others, 1987), yet the type 1
sequence boundary observed by King and Skotnicki (1990)
(Figure 7) is overstepped by deposits interpreted to be 85 Ma.
This sequence boundary is not apparent on the seismic sections
of this study. This is in accordance with the interpretation
of Wu and others (1990a, p. 328) which is that, "Only the
basinward continuation of this sequence boundary occurs in our
study area and it is therefore relatively conformable on
seismic sections."
The sample log from Well 10 indicates that the KU1 unit
consists of about 360 ft of soft, brown shale with
intercalated beds of poorly consolidated, very-fine to fine¬
grained, quartz sand, overlain by some 270 ft of soft, silty,
fossiliferous, calcareous, brown shale. In this and other
wells on the Destin Dome, the sonic velocity of KU1 ranges from
about 7,000 to 9,000 ft/sec (2,134 to 2,743 m/sec). Down dip

135
in the Apalachicola Basin, an upward change to greater sonic
velocity (10,000 to 11,500 ft/sec; 3,048 to 3,505 m/sec) in
the KU1 intervals of Wells 3 and 9 may reflect an upward change
from siliciclastic to more carbonate rock types.
The section in Well 26 that corresponds to KU1 is shaly
to sandy, gray to brown, limestone and "chalk," interbedded
with black to green-gray shale. In Wells 15, 16, 17, and 28
(Figure 16) the KU1 interval is composed (in ascending order)
of dark-gray shale, gray, calcareous, quartz sandstone, and
white to light-gray, soft to firm, shaly to sandy, "chalky"
limestone with traces of dolomite, and chert. The
southeastward change of KU1 from siliciclastic to more
carbonate rock type is evidenced by an increase in sonic
velocity. In Well 11, the sonic velocity of KU1 averages more
than 11,000 ft/sec (3,353 m/sec), and in Wells 12, 16, and 17,
more than 14,000 ft/sec (4,267 m/sec). There is, however, no
corresponding change in the seismic facies of K(J1.
The top of seismic subunit K(J1 is a continuous, fairly
strong reflection that is concordant with underlying
reflections, but marked above by downlap. The age of this
boundary, interpreted from its position in the Destin Dome
Wells 3, 9, and 10 (Figure 14), is roughly equivalent to the
Santonian-Campanian boundary. The depths of the reflection
calculated by means of sonic logs relative to the
biostratigraphic data in Wells 5, 7, and 8 (Figure 14),
however, place this boundary within the Santonian interval.

136
According to sequence stratigraphy, the downlapped character
of the upper boundary of KU1 suggests it be correlated to a
maximum flooding surface rather than to a sequence boundary.
The Mesozoic-Cenozoic cycle chart (Haq and others, 1988) shows
a sequence boundary at 85 Ma and a downlap surface at 86 Ma,
both within the Upper Santonian.
King and Skotnicki (1990) correlate the top of the Eutaw
Formation to the type 2 sequence boundary at 83 Ma (Haq and
others, 1987, 1988), whereas Wu and others (1990a) correlate
the top of the Eutaw Formation to the 80-Ma, type 1 sequence
boundary (Haq and others, 1987). In the sections of Wells 3
and 7 identified as the Eutaw interval by correlation to the
well-log interpretation of Wu and others (1990a, Foldout 2),
Dicarinella concavata occurs below the top of K)J1 in Well 3 and
above this boundary in Well 7. The LAD of Dicarinella
concavata (Figure 13) is >86 Ma (Cande and Kent, 1992) . This
indicates that, whether the top of the Eutaw is interpreted as
a type 1 or type 2 sequence boundary, or as a downlap surface,
the estimates of its age by both Wu and others (1990a) and
King and Skotnicki (1990) are too young.
The overlying Ky2 subunit (Campanian-Maastrichtian) is
more varied in thickness and seismic facies than KU1. Over
much of the Apalachicola Basin, K^ has a discontinuous,
subparallel, even-to-wavy seismic facies (Figures 18 through
22). Over much of the northwestern part of the study area,
particularly in the Apalachicola Basin, the K^ subunit appears

137
intensely faulted. The faulting is probably related to salt
tectonics.
The thickness of Ky2 is fairly constant in the
Apalachicola Basin, but the unit does thin across the Destin
Dome (Figures 19b, B; 30, A ). In Well 10, K^, is only 280
ft (85 m) thick, including the Paleocene section. The sample
log of Well 10 reports green to brown, silty, calcareous shale
and minor soft, white "chalk" for this interval. The sonic
velocity of in Well 10 is 8,000 to 9,000 ft/sec (2,438 to
2,743 m/sec). For the down-dip Wells 3 and 9, the sonic
velocity is more than 10,000 ft/sec (3,048 m/sec).
Above the high on the MCSB (Figure 28, C), thickens
(Figure 30, B) and the seismic facies is hummocky to contorted
(Figure 23b, B) . More carbonate rock at this location,
compared to the Destin Dome vicinity, is inferred from the
sonic velocity of K^, 10,000 to 12,000 ft/sec (3048 to 3,658
m/sec) . To the east and south, the sonic velocity in Wells
12, 16 and 17 is more than 14,000 ft/sec (4,267 m/sec). The
on-structure accumulation suggests a constructional origin,
but the available lithologic data do not support the
explanation of this feature as a carbonate buildup. Sample
logs of Wells 15, 16 and 17 indicate the section consists
of soft to hard, white, "chalky" limestone, with traces of
gray dolomite, lignite, chert, and pyrite. Near the base of
in Wells 15 and 16 is an interval of green-gray shale. The
USGS Geological and Operational Summary of Well 12 (Gee and

138
Figure 30. "Thickness" map of the K,2 seismic subunit
contoured in 2-way traveltime. The heavy dashed
line delineates the location of the change in the
character of the seismic data. Letters indicate
the location of features described in the text.

139
others, 1976) reports the presence of "almost entirely
planktonic" foraminifera in the Upper Cretaceous and
interprets deposition of this section to have been on the
outer shelf to upper upper slope.
A regional unconformity between the Upper Cretaceous and
Paleogene strata has long been recognized in the Gulf Coastal
Plain province. It is difficult to address the controversy
regarding the position of the Cretaceous-Tertiary boundary
(Figure 8) alternatively at a type 1 sequence boundary (Hazel,
1990; Mancini and Tew, 1990a, and Olsson and Liu, 1990) or a
condensed section (Baum and Vail, 1988; Donovan and others,
1988). The upper boundary of is commonly marked by downlap
above underlying concordant reflections. By sequence
stratigraphic interpretation, this typifies a maximum flooding
surface. Yet, Greenlee and Moore (1988, p. 335) describe the
base of the Tertiary (66.4 Ma, Haq and others, 1987), offshore
Alabama, as an erosional surface upon which clinoforms of a
thick Paleocene wedge downlap. Wu and others (1990a, p. 329)
correlate the top of the Cretaceous (top of the Selma Group)
to the 68-Ma, type 1 sequence boundary (Haq and others, 1987)
and recognize a major flooding event at 66 Ma, but note that,
within the resolution of the available seismic data, the top
of Cretaceous is more easily recognized in most of the study
area as the 66-Ma downlap surface (Haq and others, 1987) . The
absence of Danian strata demonstrated by biostratigraphic
control indicates that the age of the K-T surface in the area

140
of this study is closer to 60.5 Ma, the basal boundary of the
Selandian Stage (Cande and Kent, 1992; Figure 13). This
estimate agrees with that of Addy and Buffler (1984) for the
corresponding contact of seismic units D and E (Figure 10).
A type 1 sequence boundary at 58.5 Ma (Haq and others, 1987),
within the Thanetian, is recognized by Wu and others (1990a).
Where the Paleocene section is included at the top of K^, the
age of the upper boundary of could be as young as 55 Ma,
the basal boundary of the Eocene (Cande and Kent, 1992; Figure
13) . In the southern part of the platform, evidence to
support exposure of the platform as a result of a lowering of
sea level at the end of the Cretaceous (Galloway and others,
1991, p. 313) is not observed in this study (Chen, 1965;
Winston, 1971a, b).
In Wells 26 and 28 (Figures 15 and 16, respectively) the
interval corresponding to K^ is predominantly white, "chalky"
limestone. Previous interpretations (Miller, 1986, 1988;
Winston, 1977) include within the Upper Cretaceous an
overlying section of cream to light-brown, dolomite, with
gypsum, that is identified as the Lawson Formation.
The top of Cretaceous (top of the K^ subunit) , the
surface upon which the overlying Paleocene-Eocene unit was
deposited (Figure 31), is similar to that of the MCSB (Figure
28), with accentuation of the northwestern bifurcation of the
Middle Ground Arch caused by the thickening of K.2.

141
Figure 31. "Structure" map of the top of the Cretaceous
(subunit K^) contoured in 2-way traveltime. The
heavy dashed line delineates the location of the
change in the character of the seismic data.

142
Paleocene-Eocene
There is not a clear correspondence between the seismic
stratigraphic framework here and the sequence stratigraphic
interpretations of Paleogene strata from outcrops in the Gulf
Coastal Plain (Baum and Vail, 1988; Mancini and Tew, 1990b,
1991a, b) . Although all four Eocene stages are identified
biostratigraphically in the Destin Dome wells, the stage
boundaries do not clearly correlate to seismic sequence
boundaries. This may be due to a lack of resolution in the
seismic sections.
The difficulty in resolving the Cretaceous-Paleocene
boundary on the seismic sections has already been discussed.
Southeast of the Tampa Embayment, the Paleocene section
thickens (Figure 16) and is better resolved on seismic
sections (Figures 25 and 26) .
The Paleocene-Eocene (Selandian-Ypresian) boundary is
identified in Wells 3, 7, 8, 10, 12, 14, and 16, but the type
1 sequence boundary predicted by both Baum and Vail (1988) and
Mancini and Tew (1990b, 1991a, b) is not evident on the
seismic sections. The boundaries of other Eocene stages,
variously interpreted as sequence boundaries or condensed
sections by Baum and Vail (1988) or Mancini and Tew (1990b,
1991a, b), are also obscure. Type 1 sequence boundaries at
49.5 Ma and 39.5 Ma (Haq and others, 1987) are recognized at
the tops of the Wilcox and Claiborne Groups, respectively, by

143
Wu and others (1990a), but do not coincide with the
chronostratigraphic framework of this study.
At Well 9 (Figure 19b) the interval between the top of
the Cretaceous (K^) and the top of the Upper Eocene (TE(J) is
divided into three subunits. By correlation to the
biostratigraphically controlled Well 3 (Figure 14) , the
lowermost subunit is Ypresian and lower Lutetian. This
subunit, which may correspond to parts of the Wilcox and
Claiborne Groups, is a wedge that thickens dramatically to the
west (Figure 18b, C) . The upper boundary of the next
overlying subunit is within the Bartonian section.
Characterized by both downlap and onlap, this boundary may
correlate to the type 1 sequence boundary at the Cockfield-
Gosport contact (Figure 8) .
The Eocene-Oligocene (Priabonian-Rupelian) boundary (TEU,
Figure 14) is readily distinguished on the seismic sections
(Figures 18 through 24) . In cores from the west Florida
margin, Gardulski and others (1991, Figure 3) discern the
Eocene-Oligocene contact, but no surface of depositional
significance is recognized (Figure 10). This boundary, which
correlates to the contact of the Jackson and Vicksburg Groups,
is interpreted by both Baum and Vail (1988) and Mancini and
Tew (1990b, 1991a, b) as a condensed section. Onlapping, as
well as downlapping reflection terminations are evident at
this boundary in the seismic sections of this study (Figures
18 through 24).

144
The "thickness" (contoured in 2-way TT) of the Paleocene-
Eocene seismic unit is shown in Figure 32. A prominent
feature on this map is the marked eastward thickening that
occurs along a 50-km-wide band that trends north-south at
about 85°W (Figure 32, A). The band passes northeast of Well
11 and follows the up-dip margin of the Tampa Embayment and
the northwest flank of the anticline on which Wells 16 and 17
are located. Along the same trend, the top of the Eocene (TE(J)
surface (Figure 33, A) ramps upward. This zone marks the
Eocene shelf edge.
The thickened Paleocene-Eocene section at the shelf
margin is due to a belt of complex clinoforms that prograde to
the west and northwest (Figure 24b, A) . The toes of the
oldest clinoforms downlap above a sequence boundary (just
below A in Figure 24b) that correlates to the lowermost
(Ypresian-lower Lutetian) subunit in Well 9. These clinoforms
are gently dipping and shingled. Higher in the section (above
A in Figure 24b), the younger clinoforms are progressively
more steeply dipping and are first sigmoid and then oblique.
Based on these stratal patterns, the Eocene shelf margin
appears to have developed over time from a ramp to an
attached, flat-topped shelf (Handford and Loucks, in press).
The Eocene shelf-margin trend intersects the present
coast of Florida at Cape San Bias (Figures 32, C; 33, C). In
this area, published maps of structure and thickness of the
early, middle, and late Eocene chronostratigraphic units show

145
Figure 32. "Thickness" map of the Paleocene-Eocene seismic
unit contoured in 2-way traveltime. The heavy
dashed line delineates the location of the change
in the character of the seismic data. Letters
indicate the location of features described in the
text.

146
Figure 33. Structure map of the top of the Eocene (TEU)
contoured in 2-way traveltime. The heavy
dashed line delineates the location of the change
in the character of the seismic data. Letters
indicate the location of features described in the
text.

147
similar trends of dip and thickening (Miller, 1986, Plates 4
through 9). Also, the transmissivity of the Upper Floridan
aquifer increases markedly just east of the projected shelf-
margin trend (Miller, 1990, Figure 56).
East of the shelf margin the Paleocene-Eocene unit is a
prism that thickens to a maximum (Figure 32, B) and then thins
as it laps onto the underlying Cretaceous surface.
Approaching the onshore Ocala High, the top of the Eocene is
at or near the sediment-water interface (Figure 33, B). The
top of the Eocene section is above the logged intervals of
wells on cross-sections B-B', C-C, and D-D' (Figures 15, 16,
and 17) . The T£u reflection is difficult to interpret of
seismic lines in this area (Figures 24, 25 and 26). The
possible pick of TEU at -1241 ft, subsea in Well 16 (Figures
16 and 25b) is problematic, for if the reflection is traced
southward (uppermost marked reflection on Lines G17 and G18,
Figure 26b) to Well 21 (Figure 17), it lies beneath Core 1 in
which were found specimens of the Middle-Eocene echinoid,
Neolaganum dalli.
Landward of the Eocene shelf margin (Figures 24b, B) one
anticipates the occurrence of intertidal and supratidal zones
where the dominant seismic facies is even, parallel
reflections (Fontaine and others, 1987; Figure 12).
Restricted marine circulation and intermittent subaerial
exposure can result in evaporite deposition, the development
of karst, and dolomitization in these depositional

148
environments. A marbled seismic facies (Fontaine and others,
1987; Figure 12) suggests the presence of dolomite in this
area, and this seems to be corroborated by the limited
evidence from wells.
The sample log of Well 15 (Figure 16) indicates that the
probable Paleocene and lower Eocene interval, from
approximately -4016 to -5416 ft (-1224 to -1650 m) , subsea,
the rock type is cherty limestone. From about -2916 to -4016
ft (-889 to -1224 m), subsea, beds of dolomite occur and the
limestone and chert decrease in abundance upward. Above -2916
ft (-889 m), subsea, to the top of the logged interval at
-1116 ft (-340 m), subsea, the samples are principally
dolomite and evaporite.
In Well 26 (Figure 15), the Cedar Keys Formation is brown
to tan, finely crystalline dolomite with abundant gypsum. The
Oldsmar Formation in Well 26 is interbedded light-brown, fine-
to-medium-crystalline dolomite and white, "chalky," fine-to-
coarse-grained limestone. The Avon Park Formation is gray to
brown, fine-to-medium crystalline dolomite and some cream-
colored, fine-to-coarse-grained limestone at the base, in Well
26. Traces of gypsum occur throughout the Avon Park interval
in this well.
Core samples from Wells 17 and 21 confirm the presence of
dolomite and evaporite in this section.
Basinward, to the west of the Eocene shelf margin, Eocene
(Lutetian-Bartonian) sequences with lenticular shape are

149
stacked to form broad mounds (Figures 20b, B and C; 21b, B;
22b, C; 32, D, E, F; 33, D, E, F). The mounds are en echelon
and have a northwest trend, oblique to the Eocene shelf
margin. Here, the Paleocene-Eocene unit is complex, being
comprised of many lenticular or wedge-shaped subunits that
tend to be of restricted areal extent (Figures 18 through 23).
The subunits are not named to avoid conjestion in the figures,
but the reflection terminations by which they are identified
are shown (arrowheads) and their boundaries are delineated
with bold lines. In general, the reflections within these
sequences downlap toward the escarpment and either onlap or
converge internally, in the landward direction. The mounded
sequences have a wavy, subparallel-to-hummocky seismic facies.
In the Tampa Embayment, near, and essentially parallel
to, the Florida Escarpment, there is a different sort of
"mounded" zone, about 20 km wide (Figure 32, G) . Here, the
Paleocene-Eocene unit thickens and has a disrupted, contorted
to chaotic seismic facies (Figures 21b, C and 23b, C). This
feature has been previously reported (Bryant and others, 1969,
Figure 2) and interpret as a "Cedar Keys" reef and associated
reef talus. Winston (1978) relates this feature to the
Rebecca Shoal Dolomite as evidence of a circumpeninsular
Paleocene barrier reef. This mounded zone is present on other
seismic profiles farther south in the Tampa Embayment (Lines
G3, G4, and G5 and D4, D5, D6, D7, and D8, Figure 11), but on
Line G6, it appears to have been truncated by erosion and

150
overlain by a younger sequence (Figure 24b, below H).
Considering the correlations of this study and the absence of
Paleocene sediment near the Florida Escarpment reported by
Mitchum (1978) and corroborated by Gardulski and others
(1991), the age of the feature is more probably Eocene than
Paleocene.
The sample log of Well 10, indicates that, in the area of
the Destin Dome (Figure 14), the rock type of the Paleocene
interval is interbedded green to brown, calcareous shale and
soft, white chalk. The Eocene interval in Well 10 is soft,
light-brown to white, silty limestone. Farther south in the
Apalachicola Basin, the entire Paleocene-Eocene unit thins
basinward by pinchout of lenticular subunits toward the
Florida Escarpment (Figures 19b, D; 32).
Oliaocene-Lower Middle Miocene
Both the base (top of the Upper Eocene, TEU) and the top
(the mid-Miocene unconformity, TML) of this seismic
stratigraphic unit are characterized by downlap and onlap
above, and concordance below. Throughout much of the study
area, the interval between can be divided into three subunits
(Figures 18 through 23) . In the Apalachicola Basin, all
three subunits have continuous, parallel (even-to-wavy)
seismic facies. These strata tend to smooth out Eocene
paleotopographic features (Mitchum, 1978) by thickening in the
lows (Figures 20b; 34, A, B, C, D). All three subunits tend
to thin toward the Florida Escarpment and across the Destin

151
"Thickness" map of the Oligocene-lower Middle
Miocene seismic unit contoured in 2-way
traveltime. The heavy dashed line delineates the
location of the change in the character of the
seismic data. Letters indicate the location of
features described in the text.
Figure 34.

152
Dome (Figures 19b, 34). Northeast of the Destín Dome (Figure
34, A), there is a fourth, older subunit of the Oligocene-
Lower Middle Miocene seismic stratigraphic unit, a wedge of
prograding, downlapping reflections (Figure 19b, E).
The Oligocene-lower Middle Miocene sequences thin across
the Middle Ground Arch (Figure 22b, 34). In the northern part
of the Tampa Embayment, Oligocene-lower Middle Miocene strata
form sets of low-angled, shingled clinoforms that stack as
much aggradationally as progradationally (Figures 22b; 23b, D;
24) . These strata onlap and pinchout against the landward
(northeast) flank of the Eocene mounded zone near the Florida
Escarpment (Figures 22b, D and 23b, F). The Eocene mounded
zone seems to have had paleobathymetric expression (Figure 33,
G) that acted to restrict the basinward progradation of the
overlying deposits.
Following the up-dip margin of the Tampa Embayment to the
southwest, toward the Florida Escarpment, the same sequences
of clinoforms steepen and progress through sigmoid to oblique
geometry (Figure 25b). The lack of a well drilled through the
stack of clinoform sets, or a strike-oriented seismic line to
tie Line G6 (Figure 25) makes the chronostratigraphic
identification of a specific sequence tenuous. Based on data
from Well 16, and alternative interpretations of the seismic
line G6 (Figure 25b), the clinoform sets labeled A, or B, or
perhaps even C could be Eocene.

153
Previous studies variously date the unconformity at the
top of the clinoform set labeled G (Figure 25b) as 12.5 Ma
(sequence boundary D, Figure 11, Mitchum, 1978) or 15.5 Ma
(Mullins and others, 1988b). Figure 35 shows the configura¬
tion of this widely-recognized mid-Miocene surface (THL) .
Truncation of clinoforms beneath this unconformity is
considered by some (Gardulski and Mullins, 1985; Mullins and
others, 1987, 1988b) as evidence of a strengthened ancestral
Loop Current related to the emergence of the Isthmus of
Panama. It is of interest, however, that "based on the many
paleogeographical reconstructions of the Caribbean region, a
complete link of southern Central America and South America
probably did not occur at least until the period 10-5 Ma ago
(Smith, 1985, p. 46). Furthermore, clinoforms of older
sequences (Figure 25b, D, C) also appear truncated.
Comparison of the top of the Eocene (TEU) surface (Figure
33) , the surface upon which Oligocene-lower Middle Miocene
strata were deposited, and the top of the middle Miocene (TML)
surface (Figure 35) indicated that the western Florida
Carbonate Platform did not develop into the gently dipping,
distally steepened ramp until the middle Miocene.
Upper Middle Miocene-Holocene
With the type of seismic data used in this study, strata
near the surface, especially in shallow water depths are
difficult to resolve. Though reflection terminations and
sequence boundaries can be recognized within the Upper Middle

154
Figure 35. Map of the configuration of the mid-Miocene
surface (T ) contoured in 2-way traveltime.
The heavy dashed line delineates the location of
the change in the character of the seismic data.

155
Miocene to Holocene seismic stratigraphic unit, the treatment
of these strata here is cursory. The youngest sequence in the
Apalachicola Basin is marked by downlap to the southeast and
onlap to the northwest (Figure 18b, D) . A complex of
reflection terminations (Figure 19b, F) suggests a shelf
margin in the Neogene section that is onlapped from the
southwest by the youngest sequence (Figure 19b, G). In the
Tampa Embayment, Upper Middle Miocene and younger reflections
onlap landward and downlap basinward (Figure 21, E) . The
Upper Middle Miocene-Holocene section thins across the Middle
Ground Arch (Figure 22b, D) . The section of Upper Miocene and
younger strata is relatively thin in this part of the Tampa
Embayment compared to that of the Apalachicola Basin (Figure
23b, G) . The youngest seismic unit near the edge of the
Florida Escarpment (Figure 25b, H) , which Ball and others
(1988) describe as "translucent," is probably Pleistocene.

SYNTHESIS AND INTERPRETATION
The sequence boundaries identified in this study of the
western Florida Carbonate Platform are defined objectively by
reflection terminations according to the principles of Vail
and others (1977). There are, however, no objective means to
distinguish subaerial from submarine surfaces (sequence
boundaries from maximum-flooding surfaces). Differentiation
of sequence boundary types (type 1 vs. type 2) and recognition
of systems tracts were also not possible. Therefore, the
sequence stratigraphic paradigm (Vail, 1987; Van Wagoner,
1987, 1988) cannot be applied in this case.
The sequence boundaries "represent changes in the pattern
of sediment input and dispersal in the basin" (Schlager, 1992,
p. 28). Although fluctuation of relative sea level is a
factor influencing sequence formation, regional tectonics and
sedimentologic processes also play a role. Regardless of the
mechanism of their formation, the unconformity bounded units
are convenient sedimentary packages with which to deal when
interpreting earth history.
Foraminiferal biostratigraphic data tied to published
magnetobiochronostratigraphic interpretations and the
geomagnetic polarity timescale of Cande and Kent (1992) offer
the most detailed and up-to-date chronostratigraphic framework
156

157
for the Upper Cretaceous and Cenozoic strata of this area.
The resolution of this framework, however, is commonly not
better than the level of the chronostratigraphic stage. The
thickness of units relative to seismic resolution and the
error inherent in making well-to-seismic ties thwart accurate
dating of each individual depositional seguence identified.
This is one reason why the stratigraphic framework is
discussed in terms of four main units that are each a grouping
of several depositional sequences.
Relating depositional sequences identified in this study
to "global" sea-level change by correlation to a cycle chart
(Haq and others, 1987, 1988) is not feasible, because the
chronostratigraphic precision is generally not sufficient to
make reliable correlations at the event spacing of the chart
(Miall, 1992). This approach, though common, is not well-
founded, for it subordinates the local stratigraphic data to
the "global" interpretation. An example of this practice is
revealed in Figure 5 which is taken from Wu and others
(1990a). The legend of this diagram distinguishes
stratigraphic surfaces interpreted by Haq and others (1987)
that are observed on the seismic profile from those that are
not observed, yet assumed to exist. In the case of the
Eocene-Oligocene (Priabonian-Rupelian) contact, for instance,
the cycle chart (Haq and others, 1988) shows a type 1 sequence
boundary, but the outcrop studies of Baum and Vail (1988) and
Mancini and Tew (1990b, 1991a, b) conclude that this boundary

158
is a condensed section. Without evidence from the specific
locality, the submarine or subaerial nature of a boundary is
speculative.
In this study, sea-level analysis was limited because of
the lack of detailed biostratigraphic data. As a result,
several of the problems to be investigated could not be
adequately addressed. Among these are the explanation of the
sedimentary cycles in, and diagenesis of Eocene carbonate
strata and relation of these features to global patterns of
relative sea-level fluctuation. It is possible that
additional data, not available in this study, might improve
the applicability of sequence stratigraphy on the western
Florida Carbonate Platform. More well control is an obvious
desire. Specifically, more detailed biostratigraphic data for
paleoenvironmental interpretation and information on the
abundance and diversity of the biota for recognition of
condensed sections are needed.
The results of this study elucidate the geologic history
of the western Florida Carbonate Platform. The first phase
involves the MCSB, a major control of subsequent depositional
patterns and the object of controversy. The idealized
contrast between drowned and subaerially exposed platforms
proposed by Erlich and others (1990; Figure 6) is not readily
apparent in the case of the MCSB, principally because, unlike
the examples, the high relief of the Lower Cretaceous margin
was not completely buried. Although Christie-Blick (1991)

159
asserts that evidence for platform exposure (including karst)
is not necessarily well developed at sequence boundaries, the
lack of a karst, or otherwise erosional surface points away
from prolonged subaerial exposure (Faust, 1990). Concordance
at the MCSB on the western Florida Carbonate Platform is
consistent with the disconformity anticipated by Salvador
(1991, p. 422), but the section above the MCSB is not
"alternating limestones and evaporites." As amended in this
study, the MCSB seismic reflection correlates to the contact
of the high-velocity, Lower Cretaceous carbonate-evaporite
section with an overlying shale of markedly low sonic
velocity. The available biostratigraphic information bracket
the shale as no older than Cenomanian and no younger than
Turonian. This correlation is most amenable to the
explanation of the MCSB as a drowning unconformity. The shale
is of widespread distribution on the western Florida Carbonate
Platform and is similar in description and age to organic-
carbon-rich pelagic sedimentary sequences, in other regions,
that are associated with an oceanic anoxic event (Schlanger
and Jenkyns, 1976; Arthur and Schlanger, 1979; Schlager,
1992). The previous age estimate of 94 Ma based on
correlation of the MCSB to a Cenomanian sea-level fall per Haq
and others (1987, 1988) is inappropriate, if the
interpretation as a drowning unconformity is embraced.
On a regional scale, Upper Cretaceous strata record a
major marine transgression that eventually linked the Gulf of

160
Mexico with the Western Interior Seaway (Sohl and others,
1991). Upper Cretaceous depositional sequences of the western
Florida Carbonate Platform are subdivided into a dominantly
siliciclastic Cenomanian to Santonian subunit, Ku1, and an
overlying Campanian-Maastrichtian subunit, K^, of deep-water
carbonate facies. KU1 has continuous, parallel seismic facies
and thickens in lows on the MCSB, the depositional surface.
Ky2 has varied thickness and seismic facies, with the most
noteable variation being a thick accumulation of hummocky-to-
contorted seismic facies on a structural high on the MCSB
surface. The location, shape, and seismic facies suggest that
this feature may be a deep-water carbonate buildup.
Lower Cretaceous units have similar log character from
north of the Sarasota Arch southward, into the South Florida
Basin indicating a relatively stable tectonic setting existed
in this area during the Early Cretaceous. Marked subsidence
is evident, however, from well-log correlations of the Upper
Cretaceous on the northwest flank of the South Florida Basin
(Figure 17) . This demonstrates that rejuvenated tectonic
activity of the Sarasota Arch/South Florida Basin occurred
during the Late Cretaceous. Interestingly, Mitchum (1978)
attributes the abrupt transition to deeper water conditions in
the Late Cretaceous to rapid subsidence of the shelf rather
than eustatic rise.
Thinning of strata across the Destin Dome indicating that
growth of this salt swell structure also occurred during the

161
Late Cretaceous and continued into the Cenozoic (Ball, 1982;
Ball and others, 1988). Wu and others (1990a, b) , however,
conclude that elsewhere in the northeastern Gulf of Mexico,
salt structures stabilized during an extended period of
starved sedimentation from 94 Ma (top of the Lower Cretaceous)
to 30 Ma (top of the middle Oligocene) . Halokinesis (salt
tectonics), so important in other parts of the Gulf of Mexico
Basin, is evident in the Apalachicola Basin. Although Dobson
(1990) recognizes the Louann Salt sequence in the Tampa
Embayment, does not seem to be a factor in the tectonic
history of strata above the MCSB in this part, or the rest of
the western Florida Carbonate Platform.
The Paleocene is thin and Danian strata are absent over
much of the area studied. This could be a result of platform
exposure due to the lowering of sea level at the end of the
Cretaceous (Galloway and others, 1991). Chen (1965, p. 10),
however, reasons that elevated current action through the
Suwannee Channel reduced the rate of accumulation of fine
sediments there. My findings indicate that these
stratigraphic relationships exist over a much broader area
beneath the West Florida Shelf than Chen (1965) inferred from
the onshore data. The Paleocene is thin, and Danian strata
missing from at least as far west as the Destin Dome area and
eastward to the vicinity of Wells 12 and 13. This includes
the area beneath Apalachee Bay, where Antoine and Harding
(1965) and Antoine and Jones (1967) proposed the offshore

162
extension of the Suwannee Strait. Thus, based on the criteria
of thin Paleocene and absent Danian, both the alternative
projections for the Suwannee Channel (i.e., southward, Antione
and Harding, 1965; Antoine and Jones, 1967, and westward,
Chen, 1965; Mitchum, 1978) are plausible.
This investigation does not directly address evaluation
of the "carbonate supression" model employed by McKinney
(1984), and the model stands as an alternate working
hypothesis to explain the observed carbonate-siliciclastic
transition. Other considerations, however, pose questions
about the true nature of the Suwannee Channel. These include
the distribution and orientation of the en echelon mounds
observed in the Eocene section down depositional dip from the
Eocene shelf margin, the orientation of the margin, itself.
It is also possible that the vicinity of the Sarasota Arch was
a shallow marine, or perhaps emergent feature during the
Eocene. The paleoceanographic significance of these
paleobathymetric features on the platform has noy been
considered in reconstructions of the paleocurrent pattern of
the Gulf of Mexico (McKinney, 1984; Pinet and Popenoe, 1985;
Gardulski and others, 1991). Instead, the western Florida
Carbonate Platform is depicted as a broad, featureless plateau
which paleocurrents skirted about at the Florida Escarpment.
The nature of the mounded features is uncertain; they
could consist of either allochthonous slope and platformal
debris, or siliciclastic sediment preferentially transported

163
into the deeper basin while the platform may have been
exposed. Also enigmatic is the elongate mounded zone with
chaotic seismic facies that is located parallel to the Florida
Escarpment. Now recognizable as an Eocene feature, the
location of the mounded zone so far basinward of the shelf
margin detracts from the explanation that it is a carbonate
buildup (Bryant and others, 1969; Winston, 1978). The
configuration of reflections within the mounded zone suggest
that faulting and slumping may have played a role in its
development. Whatever its origin, the mounded was an
important paleobathymetric influence on sedimentation.
The findings of this study clarify the evolutionary
process of the western Florida Carbonate Platform from Late-
Cretaceous rimmed carbonate shelf to Cenozoic distally
steepened ramp. The seismic profiles indicate that the
depositional setting and shelf-margin profile of the Eocene
carbonate platform developed over time from a homoclinal ramp
to an attached, flat-topped shelf (Figure 24b). This alters
previous ideas (Mullins and others, 1988b; Gardulski and
others, 1991) that from the Maastrichtian to the present the
western Florida Platform has been exclusively a ramp system.
Comparing the maps of the top of the Eocene (Figure 33) and
the mid-Miocene unconformity surface (Figure 35) indicates
that the present status of the western Florida Carbonate
Platform as a distally steepened ramp did not develop until

164
the paleobathymetric irregularities on top of the Eocene had
been smoothed out, closer to the mid-Miocene.
Landward of the Eocene shelf margin one anticipates the
occurrence of intertidal and supratidal zones where the
dominant seismic facies is even, parallel reflections
(Fontaine and others, 1987). In these paleoenvironments of
restricted marine circulation and intermittent subaerial
exposure, karst can develop and dolomitization can create a
marbled seismic facies (Fontaine and others, 1987). The
importance of syn- and early post-depositional diagenesis in
the development of the Florida Carbonate Platform can be
better investigated now that a stratigraphic framework is
available.
Post-Eocene strata, particularly the 01igocene-lower
Middle Miocene, drape and infill paleotopographic features on
the top of the Eocene surface (Mitchum, 1978). In the Tampa
Embayment, the Oligocene-Lower Middle Miocene strata form
successive sets of clinoforms that are gently dipping and
shingled in the north, but steepen and become oblique as they
impinge upon the Florida Escarpment to the south. Based on
the assumption that the latter area is representative of the
entire western Florida Carbonate Platform, prevailing concepts
of platform development have been based on detailed study
here. The results of this study, however, indicate that, from
the middle Cretaceous, and especially during the Eocene, the
platform was a system of diverse paleogeographic elements.

165
Intensification of the Loop Current related to emergence
of the Isthmus of Panama has been called upon to explain
truncation of clinoforms in this area by the mid-Miocene
unconformity (Gardulski and Mullins, 1985? Mullins and others,
1987, 1988b), but this "paleoceanographic event" probably
occurred 5-10 Ma after the mid-Miocene unconformity formed.
In this study, older clinoform sets (perhaps as old as Eocene)
are observed also to have an offlapping configuration.
Closure of the Central American seaway can hardly be invoked
to explain the apparent truncation of the older clinoform
sets. Offlapping configurations can be merely the result of
limited seismic resolution (Vail and others, 1977, p. 59;
Christie-Blick, 1991).

CONCLUSIONS
Seismic stratigraphic analysis successfully identifies,
delineates, and characterizes numerous depositional sequences
within the Upper Cretaceous and Cenozoic section of the
western Florida Carbonate Platform. Foraminiferal biostrati-
graphic data tied to published magnetobiochronostratigraphic
interpretations and the geomagnetic polarity timescale of
Cande and Kent (1992) offer the most detailed and up-to-date
chronostratigraphic framework for the sequences identified.
The sequence boundaries are identified objectively by
reflection terminations (Vail and others, 1977), but there are
no objective means to distinguish subaerial from submarine
surfaces, so the sequence stratigraphic paradigm (Vail, 1987;
Van Wagoner, 1987, 1988) is not applicable in this case
without more detailed biostratigraphic data by which to
recognize condensed sections. Nevertheless, this investi¬
gation provides a stratigraphic frame of reference for further
depositional and diagenetic studies that did not exist
previously.
The mid-Cretaceous Sequence Boundary (MCSB) surface
reflects older structures and controlled subsequent
depositional patterns. Correlation of the MCSB seismic
reflection is ammended to the contact of the Lower Cretaceous
166

167
carbonate-evaporite section with the overlying Cenomanian
shale. This correlation is most amenable to the explanation
of the MCSB as a drowning unconformity and especially to the
association of the MCSB with an oceanic anoxic event. The
sedimentary section above the MCSB can be divided into four
main units: Upper Cretaceous, Paleocene-Eocene, Oligocene-
lower Middle Miocene, and upper Middle Miocene-Holocene.
Two subunits, KU1 and K^, are recognized in the Upper
Cretaceous strata of this area. KU1, a dominantly
siliciclastic interval, has continuous, parallel seismic
facies and thickens in lows on the MCSB, the depositional
surface. has varied thickness and seismic facies, most
noteably a thick accumulation of hummocky-to-contorted seismic
facies on a structural high near the Tampa Embayment suggests
a carbonate buildup. The Late Cretaceous was a time of
renewed tectonic activity in the vicinity of the Sarasota
Arch/South Florida Basin, and of salt tectonics (Destin Dome)
in the Apalachicola Basin.
Based on the criteria of thin Paleocene strata and the
absence of Danian beds which Chen (1965) used to locate the
early Paleocene Suwannee Channel, this feature extends beneath
the West Florida Shelf, over a broad area from the Destin Dome
area, in the west, to Apalachee Bay, in the east.
The location of the Eocene shelf margin is identified on
seismic sections along an essentially north-south trend at
85°W. The depositional profile developed with time from a

168
homoclinal ramp to an attached, flat-topped shelf. To the
west, down depositional dip from the shelf edge, are broad, en
echelon mounds formed by stacked, lenticular Eocene subunits.
Near the Florida Escarpment, another kind of Eocene mounded
feature with a disrupted to chaotic seismic facies. The shelf
margin, en echelon mounds, and the mounded zone near the
Florida Escarpment exercised important influences on
sedimentation on the western Florida Carbonate Platform.
Landward of the shelf margin, the marbled seismic facies
is indicative of intertidal to supratidal zones where
dolomitization and evaporite deposition could have occurred.
The vicinity of the Sarasota Arch was possibly a shallow
marine, or perhaps emergent feature during the Eocene. The
paleobathymetric expression of this structurally high area, as
well as the Eocene mounds and shelf margin, could have had
significant effects on paleoceanographic currents and
sedimentation.
The Oligocene-Lower Middle Miocene strata drape and
infill underlying paleotopographic features. In the Tampa
Embayment this unit consists of successive sets of
progradational clinoforms that steepen as they impinge upon
the Florida Escarpment. One set of clinoforms is reported to
have been truncated by a mid-Miocene unconformity, but older
clinoform sets also have an offlapping configuration.
Much of the previous work has focused exclusively either
onshore or offshore. I have attempted to correlate the Upper

169
Cretaceous and Cenozoic units in the wells on the West Florida
Shelf with the "classical" stratigraphy recognized in wells
onshore. Although the correlations are tenuous at present,
they represent an important first step toward unifying our
understanding of the entire Florida Carbonate Platform and
more accurately portraying its history.

APPENDIX A
REFLECTION SEISMIC
AQUISITION PARAMETERS AND
PROCESSING SEQUENCES
The following commonly used terms are abbreviated:
Shot Point
SP
Common Depth Point
CDP
Normal Move-Out
NMO
Dip Move-Out
DMO
Time-Variant
TV
Water Bottom
WB
Seismic Lines G1 through G18 (GECO)
Acruisition Parameters
Date Shot: November
Source:
Total Volume:
Airgun Pressure:
Source Depth:
SP Interval:
Cable Length:
Number of Groups:
Group Interval:
Spread:
Sample Rate:
Recording Filter:
1986
Airgun Array
6,276 cu in
2,000 psi
24.60 ft
98.4 ft
11,758.8 ft
240
49.2 ft
924.96 - 12,683.76 ft
2 msec
Low-cut 5.3 Hz 18DB/OCT
High-cut 128 Hz 72 DB/OCT
Processing Sequence
Date Processed: June, 1986 - March 1987
Resample to 4 msec with Anti-aliasing Filter
Trace Edit
Spherical Divergence Correction
Trace Equalization
Velocity Filter: Reject 2,460 - 12,300 ft/sec
Adjacent Trace Summation with Differential NMO
CDP Gather
First Break Supression
Spiking Deconvolution:
Operator Length: 320 msec
Prediction Gap: 4 msec
Near Trace Design Gate
170

171
NMO Correction
Trace Equalization
CDP Stack: 96-Fold
Velocity Filter: Reject 0 - 4,920 ft/sec
Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 24 msec
Design Gate: 0.400 - 04.100 sec
Wave Equation Migration
TV Filter
AGC (Automatic Gain Control?)
Polarity Convention
Compressional pulse, negative number, trough (white on
section)
Seismic Lines DI, D5, D6, and D9-D18 fDigicon)
Aauisition Parameters
Date Shot:
Lines DI, D18: August 1986
Lines DIO, D12 through D16: September 1986
Lines D5, D6, D9, Dll, D17: October 1986
Ship: Acadian Commander
Source:
Volume:
Airgun Pressure:
Source Depth:
Shotpoint Interval:
Cable Length:
Number of Groups:
Group Interval:
Spread:
Sample Rate:
Recording Filter:
Airguns
3,444 cu in
1,950 psi
25-30 ft
82 ft
13,038 ft
160
82 ft
837 - 13,875 ft
2 msec
Low-cut 8 Hz
High-cut 160 Hz
Processing Sequence
Date Processed:
Lines DI, D6: January, 1987
Lines D5, D13, D18: February, 1987
Lines Dll, D15, D17: April, 1987
Lines D12, D16: May, 1987
Lines D9, DIO, D14: June 1987
Reformat
Minimum Phase Anti-aliasing Filter
Resample to 4 msec
Trace Edit
2 to 1 Compression with Differential NMO Correction

172
Gain Recovery
Signature Deconvolution
Spherical Divergence Correction
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 24 msec
Number of Filters: 2
Velocity Analysis
NMO Correction
Mute (by offset and time)
Offset Weighting
CDP Stack: 80-Fold
Datum Correction to Sea Level: +12 msec (D9 through
D18)
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 32 msec
Number of Filters: 2
Migration
Digital Band-pass Filter
8-50 Hz 0.0-1.0 sec
6-40 Hz 2.0-2.0 sec
6-32 Hz 4.0-7.0 sec
Trace Egualization
Polarity Convention
Compressional pulse, negative number, trough (white on
section)
Datum Correction to Sea Level: +12 msec (DI, D6)
Seismic Lines D2 and D3 (Digicon)
Aauisition Parameters
Date Shot: October 1986
Ship: Digicon Explorer
Source:
Volume:
Airgun Pressure:
Source Depth:
Shotpoint Interval:
Cable Length:
Number of Groups:
Group Interval:
Spread:
Sample Rate:
Recording Filter:
Airguns
3,440 cu in
1,950 psi
25-30 ft
82 ft
13,038 ft
160
82 ft
790 - 13,828 ft
2 msec
Low-cut 8 Hz
High-cut 160 Hz

173
Processing Sequence
Date Processed: February, 1987
Reformat
Minimum Phase Anti-aliasing Filter
Resample to 4 msec
Trace Edit
2 to 1 Compression with differential NMO Correction
Gain Recovery
Signature Deconvolution
Spherical Divergence Correction
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 24 msec
Number of Filters: 2
Velocity Analysis
NMO Correction
Mute (by offset and time)
Offset Weighting
CDP Stack: 80-Fold
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 32 msec
Number of Filters: 2
Migration
Digital Band-pass Filter
8-50 Hz 0.0-1.0 sec
6-40 Hz 2.0-2.0 sec
6-32 Hz 4.0-7.0 sec
Trace Equalization
Polarity Convention
Compressional pulse, negative number, trough (white on
section)
Datum Correction to Sea Level +12 msec (D2, D3)
Seismic Lines D4, D7, and D8 (Digicon)
Aquisition Parameters
Date Shot:
Line D4: December, 1987 and March,
Lines D7, D8: February, 1988
Ship: Digicon Explorer and Ross Seal
Source: Airguns
Volume: 3,800 cu in
Airgun Pressure: 1,900 psi
Source Depth: 25+5 ft
Shotpoint Interval: 82 ft
Cable Length: 14,678 ft
Number of Groups: 180
1988

174
Group Interval:
Spread:
Sample Rate:
Recording Filter:
Processing Sequence
82 ft
963 - 15,641 ft (Southwest)
764 - 15,442 ft (Northeast)
2 msec
Low-cut 8 Hz
High-cut 160 Hz
Date Processed: April, 1988
Reformat
Minimum Phase Anti-aliasing Filter
Resample to 4 msec
Trace Edit
2 to 1 Compression with differential NMO Correction
Gain Recovery
Signature Deconvolution
Spherical Divergence Correction
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 24 msec
Number of Filters: 2
Velocity Analysis
NMO Correction
Mute (by offset and time)
Offset Weighting
CDP Stack: 90-Fold
Datum Correction to Sea Level +12 msec
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 32 msec
Number of Filters: 2
Digital Band-pass Filter
8-70 Hz WB-WB+3.0 sec
6-60 Hz WB+4.0-7.0 sec
Wave Equation Migration
Digital Band-pass Filter
8-50 Hz WB-WB+1.0 sec
6-40 Hz WB+2.0 sec
6-32 Hz WB+4.0-7.0 sec
Trace Equalization
Polarity Convention
Compressional pulse, negative number, trough (white on
section)

175
Seismic Lines D19 through D23 (Diqicon)
Acruisition Parameters
Date shot: March 1985
Ship: Acadian Commander
Source:
Volume:
Airgun Pressure:
Source Depth:
Shotpoint Interval:
Cable Length:
Number of Groups:
Group Interval:
Spread:
Sample Rate:
Recording Filter:
Airguns
3,450 cu in
1,900 psi
25-30 ft
82 ft
13,038 ft
160
82 ft
831 - 13,869 ft
2 msec
Low-cut 8 Hz
High-cut 160 Hz
Processing Sequence
Date Processed: July, 1985
Reformat
Minimum Phase Anti-aliasing Filter
Resample to 4 msec
Trace Edit
2 to 1 Compression with differential NMO Correction
Gain Recovery
Signature Deconvolution
Spherical Divergence Correction
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 24 msec
Number of Filters: 2
Velocity Analysis
NMO Correction
Mute (by offset and time)
Offset Weighting
CDP Stack: 80-Fold
Time- and Space-Variant Predictive Deconvolution:
Operator Length: 320 msec
Prediction Gap: 32 msec
Number of Filters: 2
Migration
Digital Band-pass Filter
Trace Equalization
Polarity Convention
Compressional pulse, negative number, trough (white on
section)

176
Seismic Line FI (Fairfield Industries)
Aauisition Parameters
Date Shot: July 1984
Ship: M/V Phoenix
Source:
Volume:
Source Depth:
SP Interval:
Cable Length:
Number of Groups:
Group Interval:
Spread:
Sample Rate:
Recording Filter:
Dual Airgun Array (14 guns)
2,444 cu in
20.00 ft
82 ft
9,758.0 ft
120
82 ft
902.0 - 10,660 ft
2 msec
Low-cut 8/18 Hz
High-cut 128/72 Hz
Processing Sequence
The portion of this line southwest of line F17 was not
reprocessed. The following is the original processing
sequence.
Demultiplex
Resample to 4 msec
Trace Sum
Scale: Relative Amplitude Recovery using Spherical
Divergence plus Inelastic Attenuation
Correction
Predictive Deconvolution:
Operator Length: 240 msec
Prediction Gap: 16 msec
Two Gates
0.1% White Noise
Sort to CDP and Correction to Mean Sea Level
NMO Corrections
First Break Supression
CDP Stack: 60-Fold
Time Invariant, Zero-phase Filter 6/50
F-K Migration, Smoothed Stacking Velocities
TV Filter
TV Scaling
Reprocessing Sequence
Date Reprocessed: 1988
Demultiplex
Resample to 4 msec
Scale: Relative Amplitude Recovery using Spherical
Divergence plus Inelastic Attenuation
Correction
Designature: Inverse Filter for Far Field Pulse

177
Spiking Deconvolution:
Operator Length: 300 msec
Two Gates
0.1% White Noise
DMO: Partial Migration before Stack
Sort to CDP, Maximum Fold 60
Preliminary Multiple Velocity Determination
Multiple Attenuation
Final Velocity Analysis Every 0.75 mile
NMO Corrections
First Break Supression Mute
TV Scaling, 500 msec Gates
Statics, Correction to Mean Sea Level
CDP Stack: 60-Fold
Predictive Deconvolution:
Operator Length: 240 msec
Prediction Gap: 48 msec
Two Gates
0.1% White Noise
F-K Wave Equation Migration
Noise Reduction Filter
TV Filter
TV Scaling, 2,000 msec Gates
Polarity Convention
Compressional pulse, trough (white on section)
Seismic Lines F2 through F17 (Fairfield Industries)
Aquisition Parameters
1985
Date Shot: January
Ship: M/V Phoenix
Source:
Volume:
Source Depth:
SP Interval:
Cable Length:
Number of Groups:
Group Interval:
Spread:
Sample Rate:
Recording Filter:
Dual Airgun Array (14 guns)
3,264 cu in
20. 0 ft
82 ft
11,644.0 ft
72
164 ft
867.0 - 12,511 ft
2 msec
Low-cut 8/18 Hz
High-cut 128/72 Hz
Processing Sequence (Lines F2 through F5)
The portions of these lines south of seismic line F17
were not reprocessed. The following is the original
processing sequence.
Demultiplex

178
Resample to 4 msec
Scale: Relative Amplitude Recovery using Spherical
Divergence plus Inelastic Attenuation
Correction
Predictive Deconvolution:
Operator Length: 300 msec
Prediction Gap: 16 msec
Two Gates
0.1% White Noise
Sort to CDP and Correction to Mean Sea Level
NMO Corrections
First Break Supression
CDP Stack: 72-Fold
Predictive Deconvolution:
Operator Length: 400 msec
Prediction Gap: 16 msec
Two Gates
Time Invariant, Zero-phase Filter 6/55
F-K Migration, Smoothed Stacking Velocities
TV Filter
TV Scaling
Reprocessing Sequence
Date Reprocessed: January, 1988 - May 1988
Demultiplex
Resample to 4 msec
Scale: Relative Amplitude Recovery using Spherical
Divergence plus Inelastic Attenuation
Correction
Designature: Inverse Filter for Far Field Pulse
Spiking Deconvolution:
Operator Length: 300 msec
Two Gates
0.1% White Noise
DMO: Partial Migration before Stack
Sort to CDP, Maximun Fold 72
Preliminary Multiple Velocity Determination
Multiple Attenuation
Final Velocity Analysis Every 0.75 mile
NMO Corrections
First Break Supression
TV Scaling, 1,000 msec Gates
Statics, Correction to Mean Sea Level
CDP Stack: 72-Fold
Predictive Deconvolution:
Operator Length: 240 msec
Prediction Gap: 48 msec
Two Gates
0.1% White Noise
F-K Wave Equation Migration
Noise Reduction Filter

TV Filter
TV Scaling, 2,000 msec Gates
Polarity Convention
Compressional pulse, trough (white on section)

APPENDIX B
BIOCHRONOSTRATIGRAPHIC AND
MAGNETOBIOCHRONOSTRATIGRAPHIC INTERPRETATIONS
Table B-l is a list of foraminifers reported from wells
in the study area and the published biochronostratigraphic
and/or magnetobiochronostratigraphic interpretations
thereof. Taxa are listed in general order of first down¬
hole occurrence (i.e.. last observed occurrence, LOO). The
left column contains a six-letter abbreviation of the
taxonomic name; this abbreviation is used in the text
figures. The letter "p" or "b" in parentheses denotes
whether the species is planktonic or benthonic. The second
column contains the taxonomic name. In the case of
planktonic species, the name used in this study is that used
in Bolli, Saunders, and Perch-Nielsen (1985). The name in
parentheses is the synonym that appeared in the actual
biostratigraphic report. The well(s) in which the taxon was
noted are listed in the third column; the well number refers
to that used in Figure 11 and Table 1. The depth(s) in feet
subsea of the LOO of the taxon appear(s) next, in
parentheses. The LOO of taxa in the wells are illustrated
in the well-log cross-sections (Figures 14 through 17). The
"Remarks" column, on the right, includes information on the
correlation of the last appearance datum (LAD) of a taxon to
180

181
either the magnetic polarity stratigraphy or to zonations of
either planktonic or benthonic foraminifers (Figure 13).
Numbers in parentheses correspond to the following list of
references:
1) Berggren and others (1985a)
2) Berggren and others (1985b)
3) Ciesielski (personal communication)
4) Bolli, Saunders, and Perch-Nielsen (1985)
5) Petroleum Information—Gulf Coast Cenozoic
Stratigraphic Chart
6) Greenlee and Moore (1988, Figure 3)
7) Hess and others (1989)
8) Kent and Gradstein (1985)
9) Paleo Control, Inc. (1991)
10) Galloway and others (1991)
11) Rupert (personal communication)
12) Huddlestun and others (1988)
13) Miller (1986)
14) Applin and Jordan (1945)
15) Gohn (1988)
16) Applin and Applin (1965)
The information from Ciesielski comes from Ocean Drilling
Program (ODP) Site 700 and is partly presented by Nocchi and
others (1991) and Hailwood and Clement (1991).
Shaded blocks are taxa the LOO of which are out of the
expected stratigraphic sequence as explained in the
Chronostatigraphic Framework section of the Results and
Discussion.

Table B-l. Biochronostratigraphic and magnetobiochronostratigraphic interpretations.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
TERTIARY In MIOCENE
GLR FPR (p)
Globorotalia fohsi
3(-1777)
1) LAD Chron C5AD, lower
part of normal subchron
9) lower Middle Miocene
10) LAD Serravallian
peripheroronda
(Globorotalia barisanensis)
CIB OPM (b)
Cibicides opima
3(-1777)
5) LAD N8
10) LAD upper Langhian
PBU TRS (p)
Praeorbulina transitoria
3(-1867)
4) LAD middle N9
RBL CHM (b)
Robulus chambersi
3(-2077)
9) middle Lower Miocene
RBL MYR (b)
Robulus maveri
3(-2077)
5) LAD N7
MRG ASC (b)
Marainulina ascensionensis
3(-2137)
5) LAD at boundary N5/N6
10) LAD lower Burdigalian
GLR RHR (p)
Globorotalia rohri
3(-2137)
6) LAD upper N6
GLR ONA (p)
Globorotalia opima nana
3(-2257)
4) LAD lower P22(N3)
(Globorotalia nana)
HET sp. (b)
Heterosteqina species
3(-2317)
8(-877)
10(-927)
Well 3—zone only, but not
the nominate taxon;
5) LAD P22(N3)
6) LAD N4
9) upper Oligocene
10) LAD upper Chattian
LNT JEF (b)
Lenticulina ieffersonensis
3(-2317)
7(-917)
9) lower Lower Miocene
CAS CHP (p)
Cassiqerinella chipolensis
7(-917)
4) LAD upper N14
182

Table B-l—continued.
Abbreviation
(p/b)
GLR KUG (p) Globorotalia
AMP sp. (b?) Amphistegina
OLIGOCENE
Taxon
kuqleri
species
GLB CCP
NDS BLP
ANM BLT
GLB CAG
(P)
G. ciperoensis ciperoensis
(Globigerina ciperoensis)
(b) Nodosaria blanpiedi
(b) Anomalina bilateralis
(P)
G. ciperoensis anquíisuturalis
(Globigerina anquíisuturalis)
Well
(Depth)
3(-2407)
7(-1157)
29 (- 211)
Remarks
1) LAD Chron C6A, between
base 6A and top of 6AA
4) LAD defines top N4
5) LAD N4
9) lower Lower Miocene
10) LAD lower Aquitanian
13) Miocene
3
7
3
7
3
7
10
(-2767)
(-1037)
(-2587)
(-1037)
4)
5)
6)
9)
10)
5)
9)
10)
5)
9)
10)
(-3007)
(-1457)
(-1767)
1)
and
4)
9)
LAD middle P22(N3)
LAD top P22(N3)
LAD lower N4
upper Oligocene
upper Chattian
LAD P21
Oligocene
LAD upper Rupelian
LAD P2 0
lower Oligocene
Rupelian
LAD Chron C6B, between 6B
6C
LAD middle P22(N3)
upper Oligocene
183

Table B-l—continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
GLR
OOP
(P)
Globorotalia ooima opima
3(-3097)
2)
LAD Chron C9, upper
(Globorotalia opima)
7(-1697)
anomaly 9
4)
LAD top P21(N2)
5)
LAD P21
6)
LAD lower P22(N3)
7)
LAD diachronous
10)
LAD middle Chattian
MRG
VAG
(b)
Marqinulina vaqinata
8(-1587)
5)
LAD lower P22(N3)
9)
upper Oligocene
10)
LAD middle Chattian
CIB
MIS
(b)
Cibicides mississippiensis
3(-3217)
? Listed in a different zone
7(-1757)
in
each well
11)
lower Oligocene
GLB
APP
(P)
Globiqerina ampliapertura
3(-3157)
2)
LAD Chron C12, lower
7(-1997)
anomaly 12
4)
LAD top P20(N1)
5)
LAD P20
6)
LAD P20
7)
LAD diachronous
9)
lower Oligocene
10)
LAD Rupelian
GLR
ICB
(P)
Globorotalia increbescens
3(-3217)
4)
LAD upper P18/19
7(-1997)
6)
LAD P19
9)
lower Oligocene
CIB
PIP
(b)
Cibicides pippeni
12(-2039)
5)
LAD P18
9)
lower Oligocene
10)
LAD lowermost Rupelian
184

Table B-l—continued.
Abbreviation
(P/b)
Taxon
Well
(Depth)
Remarks
CHL CUB (p)
Chiloquembelina cubensis
3(-3397)
7(-2057)
2) LAD Chron CIO, middle
anomaly 10
4) not mentioned in Ch. 6?
7) LAD relatively
synchronous
MGS sp. (b?)
Mioqvosina species
29 (- 591)
13 and 14) Oligocene
ELP sp. (b?)
Elohidium species
29(- 661)
13 and 14) Oligocene
UPPER EOCENE
TBR
CCA
(P)
Turborotalia cerroazulensis
cocoaensis
(Globorotalia cocoaensis)
3(-3637)
7(-2177)
2) LAD Chron C13, mid-way
between anomalies 13 and 15
4) LAD defines top P17
6) LAD lower P17
9) Upper Eocene
10) LAD upper Priabonian
HNK
ALA
(P)
Hantkenina alabamensis
3(-3637)
2)
LAD Chron C13, mid-way
7(-2177)
between anomalies 13 and 15
8(-2327)
4)
LAD top P17
10(-2307)
5)
LAD P17
6)
LAD lower P17
9)
Upper Eocene
10)
LAD upper Priabonian
PHG
MCR
(P)
Pseudohastiqerina miera
3(-3637)
2)
LAD Chron C12, between
7(-2237)
anomalies 12 and 13
4)
LAD defines top P18(19)
5)
LAD P19
V)
LAD diachronous
10)
LAD Rupelian
185

Table B-l—continued.
Abbreviation
(p/b)
Taxon
MRG CCA (b)
Marginulina cocoaensis
GAK SMV (p)
Globiqerinatheka semiinvoluta
GYP sp.
TRR RHR
ACR SPI
(b?)
Gvpsina
species
MIDDLE EOCENE
(P)
Truncorotaloides
rohri
(P)
Acarinina spinuloinflata
4) p.130 (Globingerina...)
11) (Turborotalia...)
(Globorotalia spinuloinflata)
Well
(Depth)
Remarks
7(-2237)
3(-3697)
7(-2297)
29(-1061)
5) LAD P17
9) Upper Eocene
10) LAD upper Priabonian
2) Called Porticulasphaera
semiinvoluta; LAD Chron C15
anomaly 15
4) LAD middle P16
5) LAD P15
6) LAD P15
7) LAD essentially
synchronous
9) Upper Eocene
10) lower Priabonian
14) Upper Eocene
3(-3757)
7(-2477)
10(-2367)
2) LAD Chron C17, middle
anomaly 17
4) LAD defines top P14
5) LAD top P14
6) LAD defines top P14
10) LAD upper Bartonian
4) LAD top P14
t
186

Table B-l—continued.
Abbreviation
(p/b)
ORN BKM (p)
ACR BLO (p)
GAK MBR (p)
MZV SPN (p)
MZV LEH (p)
MZV ARA (p)
Orbulinoides
Taxon
beckmanni
Well
(Depth)
3(-3817)
Acarinina bullbrooki
Globorotalia bullbrooki
3(-3877)
7(-2477)
12(-4109)
Globiqerinatheka mexicana barri 7
(Globigerinatheka barri)
Morozovella spinulosa 3
(Globorotalia spinulosa)
Morozovella lehneri
(Globorotalia lehneri)
Morozovella araqonensis
(Globorotalia araqonensis)
3
3
7
(-2477)
(-3937)
(-3937)
(-4117)
(-2537)
Remarks
2) Called Globigerapsis
beckmanni; LAD Chron C18,
basal anomaly 18
4) LAD defines top P13
5) LAD P13
6) LAD P13
9) Middle Eocene
10) LAD Bartonian
2) LAD Chron C18, about 1/4-
way down between anomalies 18
and 19
4) LAD top P14
6) LAD boundary P12/P13
9) Middle Eocene
4) LAD top P15
5) LAD P15
9) Upper Eocene
10) LAD lower Priabonian
2) LAD Chron C17, base
anomaly 17
4) LAD top P14
6) LAD near boundary P14/P13
4) LAD top P14
2) LAD Chron C20, lower
anomaly 20
4) LAD top Pll
6) LAD near boundary P11/P12
9) lower Middle Eocene
10) LAD upper Lutetian
187

Table B-l—continued.
Abbreviation
Taxon
Well
Remarks
(p/b)
(Depth)
ACR
PCM
(P)
Acarinina pentacamerata
3(-4297)
3)
LOO Chron C22n
(Globorotalia pentacamerata)
7(-2597)
4)
5)
LAD up into P12
LAD P12
6)
9)
LAD upper P12
Middle Eocene
10)
LAD lower Bartonian
DTC
sp.
(b)
Dictvoconus species
14(-1419)
13)
Middle Eocene
26(- 536)
DTC
CKE
(b)
Dictvoconus cookei
15(-1936)
14)
Upper Middle Eocene
DTC
AMR
(b)
Dictvoconus americanus
15(-1936)
14)
Lower Middle Eocene
CSK
sp.
(b)
Coskinolina species
14(-1419)
14)
Middle Eocene
CSK
FLA
(b)
Coskinolina floridana
15(-1936)
14)
Upper Middle Eocene
LIT
FLA
(b)
Lituonella floridana
15(-1936)
14)
Upper Middle Eocene
ARC
COL
(b?)
Archaias columiensis
26(- 536)
14)
Lower Middle Eocene
29(- 861)
FAB
VGH
(b?)
Fabularia vauqhni
26(- 836)
13)
Middle Eocene
14)
Lower Middle Eocene
DSC
INR
(b?)
Discorbis inornatus
26(- 886)
13)
Middle Eocene
14)
Lower Middle Eocene
EPM
SMG
(b?)
Eoistomaria semimarqinata
26 (- 886)
14)
Lower Middle Eocene
EPN
GNT
(b?)
Eponides aunteri
26(- 916)
14)
Lower Middle Eocene
SPL
CRY
(b?)
Spirolina corvensis
26(- 886)
13)
Middle Eocene
14)
Upper Middle Eocene
AMP
LPZ
(b?)
Amphisteqina lopeztriqoni
26(- 886)
13)
Middle Eocene
14)
Lower Middle Eocene
GNT
FLA
(b?)
Gunteria floridana
26(-1086)
13)
Middle Eocene
14)
Lower Middle Eocene
POR
CUB
(b?)
Pseudorbitulina cubensis
26(-1166)
13)
Middle Eocene
188

Table B-l—continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
LOWER EOCENE
MZV FFR (p)
Morozovella formosa formosa
3(-4957)
7(-2717)
4) LAD in P8
5) LAD P7
6) LAD near boundary P7/P8
9) Lower Eocene
10) LAD Ypresian
(Globorotalia formosa)
MZV ACT (p)
Morozovella acuta
7(-2717)
8(-2867)
4) LAD lower P6
5) LAD P7
9) Lower Eocene
10) LAD Ypresian
(Globorotalia wilcoxensis)
ACR SSD (p)
Acarinina soldadoensis
12(-4469)
4) LAD at boundary P9/P10
9) uppermost Lower Eocene
10) LAD uppermost Ypresian
(Globiaerina soldadensis (sic))
MZV SBB (p)
Morozovella subbotinae
8(-3227)
10(-3027)
12(-4469)
14(-5289)
3) LOO Chron C23n to C23r
4) LAD upper P8
5) LAD P8
9) Lower Eocene
10) LAD Ypresian
(Globorotalia rex)
MZV AEQ (p)
Morozovella aeaua
7(-2897)
8(-3347)
4) LAD upper P6
9) Lower Eocene
4) p.112 G. crassata var. aeaua
(Globorotalia aeaua)
HSG GYR (b?)
Helicosteaina avralis
26(-1286)
13 and 14) Lower Eocene
15) middle Eocene (Lutetian?)
PPG CDK (b?)
Pseudophraamina
26(-1376)
13 and 14) Lower Eocene
(Proporocvclina)
cedarkevsensis
CSK ELG (b?)
Coskinolina elonaata
26(-1486)
14) Lower Eocene
MSC NAS (b?)
Miscellanea nassauensis
26 (-1546)
13 and 14) Lower Eocene
189

Table B-l--continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
PALEOCENE
MZV VLC (p)
Morozovella velascoensis
4) p.110 (Pulvinulina ...)
(Globorotalia velascoensis)
3 (‘
7(‘
10 (â– 
13 ('
â– 4987)
•2957)
3137)
3211)
2) LAD Chron C24, between
anomalies 24 and 25 (closer
to 25)
3) LOO Chron C24r, lower
4) LAD lower P6
5) LAD lower P6
6) LAD lower P6
9) upper Paleocene
10) LAD upper Thanetian
PRT PM I (p)
PIanorotalites pseudomenardii
(Globorotalia pseudomenardii)
3 (â– 
7(‘
8(-
10 ('
â– 4987)
•2957)
â– 3347)
â– 3177)
2) LAD Chron C25, anomaly 25
3) LOO Chron C25n
4) LAD defines top P4
5) LAD P4
6) LAD top P4
9) upper Paleocene
10) LAD Thanetian
PRT PPS (p)
Planorotalites pusilla pusilla
4) p.108 (G. pusilla pusilla)
(Globorotalia pusilla)
3 ('
7 (â– 
â– 5017)
•2957)
listed in a different zone in
each well?
4) LAD middle P4
6) LAD P4
9) upper Paleocene
MZV AGA (p)
Morozovella angulata
4) p.lll (Globigerina angulata)
(Globorotalia angulata)
8(-3527)
3) LOO Chron C25r
4) LAD middle P4
6) LAD P4
9) upper Paleocene
10) LAD Thanetian
MZV FGR (p)
Morozovella formosa gracilis
(Globorotalia gracilis)
14(-5499)
4) LAD at boundary P7/P8
GLB TLD (p)
Globigerina triloculinoides
14(-5499)
4) LAD middle of P4
190

Table B-l—continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
MZV PBU (p)
Morozovella pseudobulloides
8(-3527)
3 zone
only
12(-4559)
14(-5499)
2) Called Subbotina
4) d.110 (Globiqerina
pseudobulloides)
(Globorotalia pseudobulloides)
pseudobulloides; LAD Chron
26, upper C26r
3) LOO Chron C26r
4) LAD lower P3
5) LAD P3
6) LAD P3
9) Paleocene
10) LAD lower Thanetian
MZV UNC (p)
Morozovella uncinata
(Globorotalia uncinata)
3(-5017)
4) LAD middle P3
6) LAD P3
9) Paleocene
10) upper Danian
WL NAS (b?)
Valvulamina nassauensis
26(—1986)
13 and 14) Paleocene
BOR sp. (b?)
Borelis species
26(-2186)
29(-4461)
13 and 14) Paleocene
GDY sp. (b?)
Gaudryina species
15(-5536)
14) Paleocene
CRETACEOUS MAASTRICHT!AN
GTR sp. (p)
Globotruncana species
8(-3587)
10(-3267)
LAD top of Upper Cretaceous
ROS CTS (p)
Rosita contusa
4) p.67 (Pulvinulina area
var. contusa)
(Globotruncana contusa)
3(-5017)
7(-3017)
? Listed in a different zone
in each well
4) LAD at
Maastrichtian/Danian boundary
RMG FRT (p)
Racemiquembelina fructicosa
3(-5017)
7(-3017)
? Listed in a different zone
in each well
4) LAD at Maastrichtian/
Danian boundary
191

Table B-l—continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
GTI SRX (p)
Globotruncanita stuarti
14(-5939)
4) LAD at Maastrichtian/
Danian boundary
6) LAD 66.5 Ma, at
Maastrichtian/Danian boundary
(Globotruncana stuarti)
GAN GAN (p)
Gansserina qansseri
3(-5017)
2) LAD Chron C29, upper C29r
4) LAD near top
Maastrichtian
6) 67 Ma, at
Maastrichtian/Danian boundary
(Globotruncana qansseri)
GTR ARC (p)
Globotruncana area
12(-4619)
14(-5939)
26(-3086)
4) LAD near top
Maastrichtian
GTI STF (p)
Globotruncanita stuartiformis
14(-6089)
4) LAD near top
Maastrichtian
(Globotruncana stuartiformis)
GTR VRC (p)
Globotruncana ventricosa
3(-5257)
7(-3017)
13 (-3441)
4) LAD middle Maastrichtian
6) 71.5 Ma, Maastrichtian
ABP MYR (p)
Abathomphalus mavaroensis
3(-5317)
FAD in upper Maastrictian,
therefore this occurrence
considered due to caving.
4) LAD at
Maastrictian/Danian boundary
8) LAD Chron C29r, base
(Globotruncana mavaroensis)
GTR LAP (p)
Globotruncana lapparenti
3(-5437)
4) LAD lower-middle
Maastrichtian
ROS FOR (p)
Rosita fornicata
3(-5437)
4) LAD upper-middle
Maastrichtian
(Globotruncana fornicata)
POD sp. (b?)
Pseudorbitoides species
26(-2316)
14) Upper Cretaceous
ANM SLZ (b?)
Anomalina scholtzensis
26(-3086)
14) Tayloran
192

Table B-l—continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
PLN CDK (b?)
Planulina cedarkevsensis
26(-3886)
14) Tayloran
CIB HRP (b?)
Cibicides harperi
26(-3886)
14) Upper Cretaceous
SOP sp. (b?)
Sulcoperculina species
29 (-5686)
14) Upper Cretaceous
LOD sp. (b?)
Lepidorbitoides species
15(-5536)
14) Upper Cretaceous
CAMPANIAN
GTI CCR (p)
Globotruncanita calcarata
fGlobotruncana calcarata)
7(-3017)
3 zone
only
4) LAD at
Campanian/Maastrichtian
boundary
8) LAD Chron C33n, top
GTI ELE (p)
Globotruncanita elevata
fGlobotruncana elevata)
7(-3017)
12(-4799)
14(-6159)
4) LAD upper Campanian
8) LAD Chron C33n, middle
SANTONIAN
GTR CRN (p)
Globotruncana carinata
12(-5499)
12) nominate zone is upper
Santonian
MTR RNZ (p)
Marqinotruncana renzi
(Globotruncana renzi)
3(-5917)
7(-3137)
4) LAD in lowermost
Santonian
DIC CCV (p)
Dicarinella concavata
(Globotruncana concavata)
3(-5977)
7(-3137)
4) LAD upper Santonian
8) LAD Chron C34n, 0.05 down
MTR SIG (p)
Marqinotruncana siqali
(Globotruncana siqali)
7(-3197)
4) LAD lower Santonian
MTR SCH (p)
Marqinotruncana schneeqansi
(Globotruncana schneeqansi)
7(-3377)
4) LAD upper Santonian
8) LAD Chron C34n, 0.12 down
CONIACIAN
HED AMB (b)
Hedberqella amabilis
3(-6277)
Picked as Coniacian by EXXON,
in Clavihedberqella simplex
zone
193

Table B-l--continued.
Abbreviation
(p/b)
Taxon
Well
(Depth)
Remarks
DIC IMB (p)
Dicarinella imbricata
7(-3617)
4) LAD upper Coniacian
(Globotruncana imbricata)
TURONIAN
PGT STP (p)
Praeqlobotruncana stephani
3(-6337)
7(-3617)
4) LAD middle Turonian
8) LAD Chron C34n, 0.18 down
HGT HEL (p)
Helvetoqlobotruncana helvética
3(-6517)
7(-3797)
12(-5859)
13(-4601)
14(-7209)
4) LAD upper-middle Turonian
8) LAD Chron C34n, 0.17 down
(Globotruncana helvética)
CENOMANIAN
RTP DEK (p)
Rotalipora deeckei
3(-6757)
LAD at Cenomanian/Turonian
boundary
RTP CUS (p)
Rotalipora cushmani
3(-6850)
4) LAD at
Cenomanian/Turonian boundary
8) LAD Chron C34n, 0.23 down
RTP GRH (p)
Rotalipora qreenhornensis
3(-6850)
12(-5999)
4) LAD upper Cenomanian
RTP APP (p)
Rotalipora appenninica
12(-5999)
14(-7319)
4) LAD upper Cenomanian
8) LAD lower part of upper
Cenomanian
ALBIAN
CKD TEX (b)
Coskinolinoides texanus
12(-7019)
14(-8749)
16) Fredericksburgian
LIT SGD (b)
Lituola subqoodlandensis
12(-7019)
16) Fredericksburgian
194

REFERENCES
Addy, S. K. , and Buffler, R. T. , 1984, Seismic stratigraphy of
shelf and slope, northeastern Gulf of Mexico: American
Association of Petroleum Geologists Bulletin, v. 68, n.
11, p. 1782-1789.
Anderson, T. H., and Schmidt, V. A., 1983, The evolution of
Middle America and the Gulf of Mexico-Caribbean Sea
region during Mesozoic time: Geological Society of
America Bulletin, v. 94, p. 941-966.
Antoine, J. W., and Harding, J. L., 1965, Structure beneath
continental shelf, northeastern Gulf of Mexico: American
Association of Petroleum Geologists Bulletin, v. 49, n.
2, p. 157-171.
Antoine, J. W. , and Jones, B. R. , 1967, Geophysical studies of
the continental slope, scarp, and basin, eastern Gulf of
Mexico: Transactions—Gulf Coast Association of
Geological Societies, v. 17, p. 268-277.
Applin, E. R., and Jordan, L., 1945, Diagnostic Foraminifera
from subsurface formations in Florida: Journal of
Paleontology, v. 19, n. 2, p. 129-148.
Applin, P. L., and Applin, E. R., 1944, Regional subsurface
stratigraphy and structure, of Florida and southern
Georgia: American Association of Petroleum Geologists
Bulletin, v. 28, n. 12, p. 1673-1753.
Applin, P. L. , and Applin, E. R., 1965, The Comanche Series
and associated rocks in the subsurface in central and
south Florida: United States Geological Survey
Professional Paper 447, 84p.
Applin, P. L., and Applin, E. R., 1967, The Gulf Series in the
subsurface in northern Florida and southern Georgia:
United States Geological Survey Professional Paper 524-G,
35 p.
Arthur, M. A., and Schlanger, S. 0. , 1979, Cretaceous "Oceanic
Anoxic Events" as causal factors in development of reef-
reservoired giant oil fields: American Association of
Petroleum Geologists Bulletin, v. 63, n. 6, p. 870-885.
195

196
Aubry, M. -P. , Berggren, W. A., Kent, D. V., Flynn, J. J.,
Klitgord, K. D., Obradovich, J. D., and Prothero, D. R.,
1988, Paleogene geochronology: an integrated approach:
Paleoceanography, v. 3, n. 6, p. 707-742.
Ball, M. M. , 1989, Continental dynamics in the eastern Gulf of
Mexico (Florida and the western Florida Shelf)(abs.):
Geological Society of America Abstracts with Programs, v.
21, n. 6, p. A82.
Ball, M. M. , 1991, Seismic stratigraphy of the western Florida
Shelf (abs.): Geological Society of America Abstracts
with Programs, v. 23, n. 1, p. 6.
Ball, M. M. , Martin, R. G. , Foote, R. Q., and Applegate, A.
V. , 1988, Structure and stratigraphy of the western
Florida Shelf, Part I, Multichannel Reflection Seismic
Data: United States Geological Survey Open-File Report
88-439, 22p. and illustrations.
Ball, M. M., Martin, R. G., and Taylor, D., 1982, Destin Dome
and western Florida Shelf (abs.): American Association
of Petroleum Geologists Bulletin, V. 66, n. 5, p. 544-
545.
Ball, M. M. , Martin, R. G. , Taylor, D. , and Leinbach, J.,
1983, Seismic expression of carbonate to terrigenous
clastic sediment facies transitions of western Florida
Shelf (abs.): American Association of Petroleum
Geologists Bulletin, v. 67, n. 3, p. 417.
Baum, G. R., and Vail, P. R., 1988, Sequence stratigraphic
concepts applied to Paleogene outcrops, Gulf and Atlantic
Basins, inWilgus, C. K., Hastings, B. S., Kendall, C. G.
St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner,
J. C., eds., Sea-level changes: an integrated approach:
Society of Economic Paleontologists and Mineralogists
Special Publication 42, p. 309-327.
Berggren, W. A., Kent, D. V., and Flynn, J. J., 1985a,
Paleogene geochronology and chronostratigraphy, in
Snelling, N. J., ed., The chronology of the geological
record: Geological Society of London, Memoir 10, p. 141-
195.
Berggren, W. A., Kent, D. V., and Van Couvering, J. A., 1985b,
Neogene geochronology and chronostratigraphy, in
Snelling, N. J., ed., The chronology of the geological
record: Geological Society of London, Memoir 10, p. 211-
260.

197
Berggren, W. A., Kent, D. V. , Flynn, J. J., and Van Couvering,
J. A., 1985c, Cenozoic geochronology: Geological Society
of America Bulletin, v. 96, n. 11, p. 1407-1418.
Berggren, W. A., Kent, D. V., Obradovich, J. D., and Swisher,
C. C., 1992, Toward a revised Paleogene geochronology, in
Prothero, D. R. , and Berggren, W. A., eds., Eocene-
Oligocene climatic and biotic evolution: Princeton, New
Jersey, Princeton University Press, p. 29-45.
Boggs, S., Jr., 1987, Principles of sedimentology and strati¬
graphy: Columbus, Ohio, Merrill Publishing Company,
784p.
Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds.,
1985, Plankton stratigraphy, v. 1: Cambridge, England,
Cambridge University Press, 599p.
Brown, L. F., Jr., and Fisher, W. L., 1977, Seismic-
stratigraphic interpretation of depositional systems:
examples from Brazilian rift and pull-apart basins, in C.
E. Payton, ed., Seismic stratigraphy—applications to
hydrocarbon exploration: American Association of
Petroleum Geologists Memoir 26, p. 213-248.
Bryant, W. R., Meyerhoff, A, A., Brown, N. K., Jr., Furrer, M.
A., Pyle, T. E., and Antoine, J. W., 1969, Escarpments,
reef trends and diapiric structures, eastern Gulf of
Mexico: American Association of Petroleum Geologists
Bulletin, v. 53, n. 12, p. 2506-2542.
Budd, D. A., and Harris, P. A., 1990, Carbonate-siliciclastic
mixtures: Society of Economic Paleontologists and
Mineralogists, Reprint Series, 281p.
Buffler, R. T., 1989, Distribution of crust, distribution of
salt, and the early evolution of the Gulf of Mexico
Basin, in Gulf of Mexico salt tectonics, associated
processes and exploration potential: Program and
extended and illustrated abstracts, Gulf Coast Section,
Society of Economic Paleontologists and Mineralogists
Tenth Annual Research Conference, Houston, Texas, p. 25-
27.
Buffler, R. T., and Sawyer, D. S., 1985, Distribution of crust
and early history, Gulf of Mexico Basin: Transactions—
Gulf Coast Association of Geological Societies, v. 35, p.
333-344.
Buffler, R. T., Watkins, J. S., Shaub, F. J., and Worzel, J.
L., 1980, Structure and early geologic history of the
deep Gulf of Mexico, in Pilger, R. H., Jr., ed. , The

198
origin of the Gulf of Mexico and the central North
Atlantic: Proceedings of a symposium at Louisiana State
University, Baton Rouge, Louisiana, p. 3-16.
Cande, S. C. , and Kent, D. V. , 1992, A new geomagnetic
polarity time-scale for the Late Cretaceous and Cenozoic:
Journal of Geophysical Research, v. 97, n. BIO, p. 13917-
13951.
Chen, C. S., 1965, The regional lithostratigraphic analysis of
Paleocene and Eocene rocks of Florida: Florida
Geological Survey Geological Bulletin 45, 105p.
Christie-Blick, N. , 1991, Onlap, offlap, and the origin of
unconformity-bound depositional sequences: Marine
Geology, v. 97, p. 35-56.
Compton, J. S., Snyder, S. W. , and Hodell, D. A., 1990,
Phosphogenesis and weathering of shelf sediments from the
southeastern United States: Implications for Miocene
13C excursions and global cooling: Geology, v. 18, p.
1227-1230.
Corso, W. , 1987, Development of the Early Cretaceous northwest
Florida Carbonate Platform (Ph.D. dissertation): Austin,
Texas, University of Texas at Austin, 136 p.
Corso, W., Austin, J. A., Jr., and Buffler, R. T., 1989, The
Early Cretaceous platform off northwest Florida:
Controls on morphologic development of carbonate margins:
Marine Geology, v. 86, p. 1-14.
Corso, W., and Buffler, R. T. , 1985, Seismic stratigraphy of
Lower Cretaceous carbonate platforms and margins, eastern
Gulf of Mexico (abs.): American Association of Petroleum
Geologists Bulletin, v. 69, n. 2, p. 246.
Corso, W. , Buffler, R. T. , and Austin, J. A., Jr., 1988,
Erosion of the southern Florida Escarpment: in Bally, A.
W., ed., Atlas of seismic stratigraphy: American
Association of Petroleum Geologists Studies in Geology
27, V. 2, p. 149-157.
Dali, W. H., and Harris, G. D. , 1892, Correlation papers —
Neocene: United States Geological Survey Bulletin 84,
349p.
Dobson, L. M. , 1990, Seismic stratigraphy and geologic history
of Jurassic rocks, northeastern Gulf of Mexico (M. A.
thesis): The University of Texas at Austin, 165p.

199
Dobson, L. M. , and Buffler, R. T. , 1990a, Depositional setting
of the Jurassic Haynesville seismic sequence in the
Apalachicola Basin, northeastern Gulf of Mexico (abs.):
American Association of Petroleum Geologists Bulletin, v.
74, n. 5, p. 642.
Dobson, L. M. , and Buffler, R. T. , 1990b, Evolution of the
Apalachicola Basin (northeastern Gulf of Mexico) during
the Jurassic (abs.): American Association of Petroleum
Geologists Bulletin, v. 74, n. 5, p. 642.
Dobson, L. M. , and Buffler, R. T. , 1991, Basement rocks and
structure, northeast Gulf of Mexico: Transactions—Gulf
Coast Association of Geological Societies, v. 41, p. 191-
206.
Dockery, D. T., III, 1990, The Eocene-Oligocene boundary in
the northern Gulf—A sequence boundary, in Sequence
stratigraphy as an exploration tool—concepts and
practices in the Gulf Coast: Program and extended and
illustrated abstracts, Gulf Coast Section, Society of
Economic Paleontologists and Mineralogists Eleventh
Annual Research Conference, Houston, Texas, p. 141-150.
Donovan, A. D., Baum, G. R., Blechschmidt, G. L., Loutit, T.
S., Pflum, C. E., and Vail, P. R. , 1988, Sequence
stratigraphic setting of the Cretaceous-Tertiary boundary
in central Alabama, in Wilgus, C. K. , Hastings, B. S.,
Kendall, C. G. St. C., Posamentier, H. W., Ross, C. A.,
and Van Wagoner, J. C. , eds., Sea-level changes: an
integrated approach: Society of Economic Paleontologists
and Mineralogists Special Publication 42, p. 309-327.
Doyle, L. J., and Holmes, C. W. , 1985, Shallow structure,
stratigraphy, and carbonate sedimentary processes of West
Florida Upper Continental Slope: American Association of
Petroleum Geologists Bulletin, v. 69, n. 7, p. 1133-1144.
Doyle, L. J., and Roberts, H. H. , eds., 1988, Carbonate-
clastic transitions: Developments in Sedimentology 42,
Amsterdam, The Netherlands, Elsevier, 304p.
Dunham, R. J., 1970, Stratigraphic reefs versus ecologic
reefs: American Association of Petroleum Geologists
Bulletin, v. 54, n. 10, p. 1931-1932.
Erlich, R. N., Barrett, S. F., and Guo Bai Ju, 1990, Seismic
and geologic characteristics of drowning events on
carbonate platforms: American Association of Petroleum
Geologists Bulletin, v. 74, n. 10, p. 1523-1537.

200
Evans, M. W. , 1989, Late Miocene to Quaternary seismic and
lithologic sequence stratigraphy of the Charlotte Harbor
area: southwest Florida (Ph.D. dissertation): Tampa,
Florida, University of South Florida, 336p.
Evans, M. W. , and Hiñe, A. C. , 1991, Late Neogene sequence
stratigraphy of a carbonate-siliciclastic transition:
southwest Florida: Geological Society of America
Bulletin, V. 103, p. 679-699.
Ewing, T. E. , 1991, Structural framework, rn Salvador, A.,
ed. , The geology of North America, v. J, The Gulf of
Mexico Basin: Geological Society of America, Boulder,
Colorado, p. 31-52.
Faust, M. J., 1986, Seismic stratigraphy of Middle Cretaceous
Unconformity (MCU) in central Gulf of Mexico Basin
(abs.): American Association of Petroleum Geologists
Bulletin, v. 70, n. 5, p. 588.
Faust, M. J., 1990, Seismic stratigraphy of the mid-Cretaceous
unconformity (MCU) in the central Gulf of Mexico Basin:
Geophysics, v. 55, n. 7, p. 868-884.
Feng, J. , and Buffler, R. T., 1991, Preliminary age
determinations for new deep Gulf of Mexico Basin seismic
sequences: Transactions—Gulf Coast Association of
Geological Societies, v. 41, p. 283-289.
Fisher, W. L. , and McGowen, J. H. , 1967, Depositional systems
in the Wilcox Group of Texas and their relationship to
the occurrence of oil and gas: Transactions—Gulf Coast
Association of Geological Societies, v. 17, p. 105-125.
Fontaine, J. M. , Crussey, R. , Lacaze, J., Lanaud, R. , and
Yapaudjian, L. , 1987, Seismic interpretation of carbonate
depositional environments: American Association of
Petroleum Geologists Bulletin, v. 71, n. 3, p. 281-297.
Frazier, 1974, Depositional episodes: their relationship to
the Quaternary stratigraphic framework in the
northwestern portion of the Gulf Basin: Austin, Texas,
Bureau of Economic Geology, Geological Circular 74-1,
28p.
Freeman-Lynde, R. P., 1983, Cretaceous and Tertiary samples
dredged from the Florida Escarpment, eastern Gulf of
Mexico: Transactions—Gulf Coast Association of
Geological Societies, v. 33, p. 91-99.
Galloway, W. E., 1989, Genetic stratigraphic sequences in
basin analysis I: architecture and genesis of flooding-

201
surface bounded depositional units: American Association
of Petroleum Geologists Bulletin, v. 73, n. 2, p. 125-
142.
Galloway, W. E., Bebout, D. G., Fisher, W. L., Dunlap, J. B.,
Jr., Cabrera-Castro, R., Lugo-Rivera, J. E., and Scott,
T. M., 1991, Cenozoic, in Salvador, A., ed., The geology
of North America, v. J, The Gulf of Mexico Basin:
Geological Society of America, Boulder, Colorado, p. 245-
324.
Gardulski, A. F., and Mullins, H. T., 1985, Miocene
paleoceanographic event in the eastern Gulf of Mexico:
Implication for stratigraphic evolution and Gulf Stream
circulation (abs.): Geological Society of America,
Abstracts with Programs, v. 17, n. 7, p. 588.
Gardulski, A. F. , Gowen, M. H. , Milsark, A., Weiterman, S. D. ,
Wise, S. W., Jr., and Mullins, H. T., 1991, Evolution of
a deep-water carbonate platform: Upper Cretaceous to
Pleistocene sedimentary environments on the west Florida
margin: Marine Geology, v. 101, p. 163-179.
Gardulski, A. F. , Mullins, H. T. , Oldfield, B., Applegate, J.,
and Wise, S. W., Jr., 1986, Carbonate mineral cycles in
ramp slope sediment: eastern Gulf of Mexico:
Paleoceanography, v. 1, n. 4, p. 555-565.
Gardulski, A. F. , Mullins, H. T. , and Weiterman, S., 1990:
Carbonate mineral cycles generated by foraminiferal and
pteropod response to Pleistocene climate: west Florida
ramp slope: Sedimentology, v. 37, p. 727-743.
Gee, W. L. , Hill, D. S., Oakes, R. L., Pert, D. M., and Reed,
J. C, 1976, Geological and operational summary: Texaco
No. 1, OCS-G2516, Apalachicola South Area, Block N659-
E158: United States Geological Survey, Consevation
Division, p. 1-49.
Gohn, G. S., 1988, Late Mesozoic and early Cenozoic geology of
the Atlantic Coastal Plain: North Carolina to Florida,
in Sheridan, R. E., and Grow, J. A., eds., The geology
of North America, v. 1-2, The Atlantic continental
margin: U. S., Geological Society of America, Boulder,
Colorado, p. 107-130.
Greenlee, S. M. , 1988, Tertiary depositional sequences,
offshore New Jersey and Alabama, in Bally, A. W. , ed. ,
Atlas of seismic stratigraphy: American Association of
Petroleum Geologists Studies in Geology 27, v. 2, p. 67-
80.

202
Greenlee, S. M. , and Moore, T. C. , 1988, Recognition and
interpretation of depositional sequences and calculation
of sea-level changes from stratigraphic data—offshore
New Jersey and Alabama Tertiary, in Wilgus, C. K.,
Hastings, B. S., Kendall, C. G. St. C., Posamentier, H.
W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level
changes: an integrated approach: Society of Economic
Paleontologists and Mineralogists Special Publication 42,
p. 329-353.
Hailwood, E. A., and Clement, B. M. , 1991, Magnetostratigraphy
of Sites 699 and 700, East Georgia Basin, in Ciesielski,
P. F. , Kristoffersen, Y., Clement, B. , Moore, T. C. ,
eds., Proceedings of the Ocean Drilling Program,
Scientific Results, v. 114, p. 337-353.
Handford, C. R., and Loucks, R. G., 1991, Unique signature of
carbonate strata and the development of depositional
sequence and systems tract models for ramps, rimmed
shelves and detached platforms (abs.): American
Association of Petroleum Geologists Bulletin, v. 75, n.
3, p. 588-589.
Handford, C. R. , and Loucks, R. G. , in press, Carbonate
depositional sequences and systems tracts—responses of
carbonate platforms to relative sea-level changes:
American Association of Petroleum Geologists, Tulsa,
Oklahoma.
Haq, B. U., Hardenbol, J., and Vail, P. R., 1987, Chronology
of fluctuating sea levels since the Triassic: Science,
V. 235, 1156-1167.
Haq, B. U., Hardenbol, J., and Vail, P. R., 1988, Mesozoic and
Cenozoic chronostratigraphy and cycles of sea-level
change, in Wilgus, C. K., Hastings, B. S., Kendall, C. G.
St. C., Posamentier, H. W., Ross, C. A., and Van Wagoner,
J. C., eds., Sea-level changes: an integrated approach:
Society of Economic Paleontologists and Mineralogists
Special Publication 42, p. 71-108.
Hazel, J. E., 1990, Correlation of later Cretaceous (Senonian)
events (abs.): Geological Society of America, Abstracts
with Programs, v. 22, n. 7, p. A235.
Hess, J., Stott, L. D. , Bender, M. L. , Kennett, J. P. , and
Schilling, J. -G. , 1989, The Oligocene marine microfossil
record: age assessments using strontium isotopes:
Paleoceanography, v. 4, n. 6, p. 655-679.
Huddlestun, P. , Braunstein, J. , Biel, R. , 1988, Gulf Coast
region: Correlation of stratigraphic units of North

203
America (COSUNA), American Association of Petroleum
Geologists, Tulsa, Oklahoma.
Huddlestun, P. F., Hunter, M. E., and Carter, B. D., 1988, The
Suwannee Strait as a faunal province boundary (abs.):
Geological Societyof America Abstracts with Programs, v.
20, n. 4, p. 271.
Jacguin, T., Arnaud-Vanneau, A., Arnaud, H., Ravenne, C., and
Vail, P. R. , 1991, Systems tracts and depositional
sequences in a carbonate setting: a study of continuous
outcrops from platform to basin at the scale of seismic
lines: Marine and Petroleum Geology, v. 8, p. 122-139.
Jee, J. L., Randazzo, A. F., Wicks, C. M., and Herman, J. S.,
1991, Profile of a modern coastal mixing zone in Tertiary
carbonate rocks of the Floridan aquifer, Pasco County,
Florida: American Association of Petroleum Geologists
Bulletin, v. 75, n. 3, p. 602.
Kendall, C. G. St. C. and Schlager, W., 1981, Carbonates and
relative changes in sea level: Marine Geology, v. 44, p.
181-212.
Kent, D. V., and Gradstein, F. M. , 1985, A Cretaceous and
Jurassic geochronology: Geological Society of America
Bulletin, v. 96, n. 11, p. 1419-1427.
King, D. T. , Jr., and Skotnicki, M. C. , 1990, Upper Cretaceous
stratigraphy and relative sea-level changes, Gulf Coastal
Plain, Alabama, in Sequence stratigraphy as an
exploration tool—concepts and practices in the Gulf
Coast: Program and extended and illustrated abstracts,
Gulf Coast Section, Society of Economic Paleontologists
and Mineralogists Eleventh Annual Research Conference,
Houston, Texas, p. 199-212.
Klitgord, K. D. , Popenoe, P. , and Shouten, H., 1984, Florida:
A Jurassic transform plate boundary: Journal of
Geophysical Research, v. 89, p. 7753-7772.
Locker, S. D., and Buffler, R. T., 1983, Comparison of Lower
Cretaceous carbonate shelf margins, northern Campeche
Escarpment and northern Florida Escarpment, Gulf of
Mexico, in Bally, A. W., ed., Seismic expression of
structural styles: American Association of Petroleum
Geologists Studies in Geology 15, v. 2, p. 2.2.3-123 to
2.2.3-128.
Locker, S. D. , and Doyle, L. J. , 1987, Stratigraphy of the
northwestern Florida inner shelf from high resolution

204
seismic reflection data (abs.): Geological Society of
America, Abstracts with Programs, v. 19, n. 7, p. 748.
Locker, S. D., Doyle, L. J., Hiñe, A. C., and Blake, N. J.,
1990, Complex carbonate and clastic stratigraphy of the
inner shelf off west-central Florida (abs.): American
Association of Petroleum Geologists Bulletin, v. 74, n.
5, p. 707.
Locker, S. D., and Sahagian, D. L., 1984, Tectonic features
(map), in Buffler, R. T., Locker, S. D., Bryant, W. R.,
Hall, S. A., and Pilger, R. H. , Jr., eds. , Gulf of
Mexico, Atlas 6, Ocean Margin Drilling Program, Regional
Atlas Series, Marine Science International, Woods Hole,
Massachusetts, p. 26.
Lord, J. P., 1987, Seismic stratigraphic investigation of the
West Florida Basin: Transactions—Gulf Coast Association
of Geological Societies, v. 37, p. 123-138.
McFarlan, E. Jr., and Menes, L. S., 1991, Lower Cretaceous, in
Salvador, A., ed., The geology of North America, v. J,
The Gulf of Mexico Basin: Geological Society of America,
Boulder, Colorado, p. 245-324.
McGowran, B. , 1990, Fifty Million Years Ago: American
Scientist, v. 78, p. 30-39.
McKinney, M. L., 1984, Suwannee channel of the Paleogene
coastal plain: support for the "carbonate supression"
model of basin formation: Geology, v. 12, n. 6, p. 343-
345.
Macurda, D. B., Jr., 1988, Seismic stratigraphy of carbonate
platform sediments, in Bally, A. W. (ed.), Atlas of
seismic stratigraphy: American Association of Petroleum
Geologists Studies in Geology 27, v. 2, p. 159-161.
Mancini, E. A., and Tew, B. H. , 1990a, Cretaceous-Tertiary
boundary sections in the eastern Gulf Coastal Plain area
(abs.): Geological Society of America, Abstracts with
Programs, v. 22, n. 7, p. A235.
Mancini, E. A., and Tew, B. H. , 1990b, Relationships of
Paleogene stage boundaries and unconformity-bounded
depositional sequence contacts in Alabama and
Mississippi, in Sequence stratigraphy as an exploration
tool—concepts and practices in the Gulf Coast: Program
and extended and illustrated abstracts, Gulf Coast
Section, Society of Economic Paleontologists and
Mineralogists Eleventh Annual Research Conference,
Houston, Texas, p. 221-228.

205
Mancini, E. A., and Tew, B. H. , 1991a, Paleogene sequence
stratigraphy in Mississippi and Alabama (abs.):
Geological Society of America Abstracts with Programs, v.
23, n. 1, p. 62.
Mancini, E. A., and Tew, B. H. , 1991b, Paleogene stage and
planktonic foraminiferal zone boundaries and
unconformity-bounded depositional sequence contacts in
southwestern Alabama (abs.): American Association of
Petroleum Geologists Bulletin, v. 75, n. 3, p. 628.
Martin, R. G., 1978, Northern and eastern Gulf of Mexico
continental margin: stratigraphic and structural
framework, in Bouma, A. H., Moore, G. T. , and Coleman, J.
M. , eds., Framework, facies, and oil-trapping
characteristics of the upper continental margin:
American Association of Petroleum Geologists Studies in
Geology 7, p. 21-42.
Martin, R. G. , and Bouma, A. H. , 1978, Physiography of the
Gulf of Mexico, in Bouma, A. H. , Moore, G. T. , and
Coleman, J. M. , eds., Framework, facies, and oil-trapping
characteristics of the upper continental margin:
American Association of Petroleum Geologists Studies in
Geology 7, p. 3-19.
Meyerhoff, A. A., and Hatten, C. W., 1974, Bahamas salient of
North America: tectonic framework, stratigraphy, and
petroleum potential: American Association of Petroleum
Geologists Bulletin, v. 58, n. 6, part II of II, p. 1201-
1239.
Miall, A. D. , 1986, Eustatic sea level changes interpreted
from seismic stratigraphy: a critique of the methodology
with particular reference to the North Sea Jurassic
record: American Association of Petroleum Geologists
Bulletin, v. 70, n. 2, p. 131-137.
Miall, A. D., 1991, Stratigraphic sequences and their
chronostratigraphic correlation: Journal of Sedimentary
Petrologist, v. 61, n. 4, p. 497-505.
Miall, A. D. , 1992, Exxon global cycle chart: an event for
every occasion? Geology, v. 20, n. 9, p. 787-790.
Miller, J. A., 1982, Structural control of Jurassic
sedimentation in Alabama and Florida: American
Association of Petroleum Geologists Bulletin, v. 66, n.
9, p. 1289-1301.
Miller, J. A., 1986, Hydrogeologic framework of the Floridan
aquifer system in Florida and in parts of Georgia,

206
Alabama, and South Carolina—Regional Aquifer-System
Analysis: United States Geological Survey Professional
Paper 1403-B, 91p.
Miller, J. A., 1988, Geohydrologic data from the Floridan
aquifer system in Florida and parts of Georgia, South
Carolina, and Alabama: United States Geological Survey
Open-File Report 88-86, 678 p.
Miller, J. A., 1990, Ground water atlas of the United States,
Segment 6, Alabama, Florida, Georgia, and South Carolina:
United States Geological Survey, Hydrologic Investiga¬
tions Atlas, 730-G, 28p.
Miller, K. G. , Aubry, M. -P. , Khan, M. J., Melillo, A. J.,
Kent, D. V. , and Berggren, W. A., 1985, 01igocene-Miocene
biostratigraphy, magnetostratigraphy, and isotopic
stratigraphy of the western North Atlantic: Geology, v.
13, n. 4, p. 257-261.
Miller, K. G., Feigenson, M. D., Wright, J. D., and Clement,
B. M. , 1991, Miocene isotope reference section, Deep Sea
Drilling Project Site 608: an evaluation of isotope and
biostratigraphic resolution: Paleoceanography, v. 6, n.
1, p. 33-52.
Mitchell-Tapping, H. J., 1982, Exploration analysis of the
Jurassic Apalachicola Embayment of Florida:
Transactions—Gulf Coast Association of Geological
Societies, v. 32, p. 413-425.
Mitchum, R. M., Jr., 1978, Seismic stratigraphic investigation
of West Florida Slope, Gulf of Mexico, in Bouma, A. H.,
Moore, G. T. , and Coleman, J. M. , eds., Framework,
facies, and oil-trapping characteristics of the upper
continental margin: American Association of Petroleum
Geologists Studies in Geology 7, p. 193-223.
Mullins, H. T., Gardulski, A. F., Hinchey, E. J., and Hine, A.
C. , 1988a, The modern carbonate ramp slope of central
west Florida: Journal of Sedimentary Petrology, v. 58,
n. 2, p. 273-290.
Mullins, H. T., Gardulski, A. F., Hiñe, A. C., Melillo, A. J.,
Wise, S. W. , Jr., and Applegate, J., 1988b, Three-
dimensional sedimentary framework of the carbonate ramp
slope of central west Florida: a sequential seismic
stratigraphic perspective: Geological Society of America
Bulletin, v. 100, n. 4, p. 514-533.
Mullins, H. T. , Gardulski, A. F. , Wise, S. W. , Jr., and
Applegate, J., 1987, Middle Miocene oceanographic event

207
in the eastern Gulf of Mexico: Implications for seismic
stratigraphic succession and Loop Current/Gulf Stream
circulation: Geological Society of America Bulletin, v.
98, n. 6, p. 702-713.
Nocchi, M., Amici, E. , and Premoli Silva, I., 1991, in
Ciesielski, P. F. , Kristoffersen, Y., Clement, B., Moore,
T. C., eds., Proceedings of the Ocean Drilling Program,
Scientific Results, v. 114, p. 233-279.
North American Commission on Stratigraphic Nomenclature
(NACSN), 1983, North American stratigraphic code:
American Association of Petroleum Geologists Bulletin, v.
67, p. 841-875.
Olsson, R. K. , and Liu, C., 1990, Stratigraphic setting and
biostratigraphy of the Cretaceous-Tertiary boundary at
Millers Ferry, Alabama (abs.): Geological Society of
America, Abstracts with Programs, v. 22, n. 7, p. A277.
Paleo-Control, Inc., 1991, Biostratigraphic chart, Gulf of
Mexico: Houston, Texas.
Pauli, C. K. , Freeman-Lynde, R. , Bralower, T. J., Gardemal, J.
M. , Neumann, A. C. , D'Argenio, B. , and Marsella, E.,
1990, Geology of the strata exposed on the Florida
Escarpment: Marine Geology, v. 91, p. 177-194.
P. I. Exploration Systems, 1985, Gulf Coast Cenozoic
Stratigraphic Chart: Petroleum Information Corporation,
Houston, Texas.
Pindell, J. L. , 1985, Alleghenian reconstruction and
subsequent evolution of the Gulf of Mexico, Bahamas, and
Proto-Caribbean: Tectonics, v. 4, n. 1, p. 1-39.
Pinet, P. R., and Popenoe, P., 1985, A scenario of Mesozoic-
Cenozoic ocean circulation over the Blake Plateau and its
environs: Geological Society of America Bulletin, v. 96,
n. 5, p. 618—626.
Pitman, W. C. , III, 1978, Relationship between eustacy and
stratigraphic sequences of passive margins: Geological
Society of America Bulletin, v. 89, n. 9, p. 1389-1403.
Popenoe, P., 1985, Depositional and structural history of the
Southeast Georgia Embayment and Suwannee Straits from
seismic stratigraphic analysis (abs.): Geological
Society of America Abstracts with Programs, v. 17, n. 2,
p. 129.

208
Popenoe, P. , Henry, V. J., and Irdis, F. M. , 1987, Gulf
trough—the Atlantic connection: Geology, v. 15, n. 4,
p.327-332.
Randazzo, A. F. , 1980, Geohydrologic model of the Floridan
aquifer in the Southwest Florida Water Management
District: Florida Water Resources Research Center
Publication No. 46, 74p.
Randazzo, A. F. , 1987, Tertiary sedimentology and evolution of
the Florida Platform (abs.): Geological Society of
America, Abstracts with Programs, v. 19, n. 7, p. 812.
Randazzo, A. F. , and Bloom, J. I., 1985, Mineralogical changes
along the freshwater/saltwater interface of a modern
aquifer: Sedimentary Geology, v. 43, p. 219-239.
Randazzo, A. F., and Cook, D. J., 1987, Characterization of
dolomitic rocks from the coastal mixing zone of the
Floridan aquifer, Florida, U.S.A.: Sedimentary Geology,
v. 54, p. 169-192.
Randazzo, A. F., and Hickey, E. W., 1978, Dolomitization in
the Floridan aquifer: American Journal of Science, v.
278, p. 1177-1184.
Randazzo, A. F., and Saroop, H. C., 1976, Sedimentology and
paleoecology of Middle and Upper Eocene carbonate
shoreline sequences, Crystal River, Florida, U.S.A.:
Sedimentary Geology, v. 15, p. 259-291.
Randazzo, A. F. , Sarver, A. F. , and Metrin, D. B. , 1983,
Selected geochemical factors influencing diagenesis of
Eocene carbonate rocks, peninsular Florida, U. S. A.:
Sedimentary Geology, v. 36, p. 1-14.
Randazzo, A. F., Stone, G. C. , and Saroop, H. C., 1977,
Diagenesis of Middle and Upper Eocene carbonate shoreline
sequences, central Florida: American Association of
Petroleum Geologists Bulletin, v. 61, n. 4, p. 492-503.
Randazzo, A. F., and Zachos, L. G., 1984, Classification and
description of dolomitic fabrics of rocks from the
Floridan aquifer, U.S.A.: Sedimentary Geology, v. 37, p.
151-162.
Read, J. F. , 1985, Carbonate platform facies models: American
Association of Petroleum Geologists Bulletin, v. 69, n.
1, p. 1-21.
Reitz, B. K. , 1991a, Early Mesozoic structure and stratigraphy
of the northwestern Florida Shelf (abs.): Geological

209
Society of America Abstracts with Programs, v. 23, n. 1,
p. 121.
Reitz, B. K. , 1991b, Reinterpretation of the Origin of the
Gulf of Mexico based on data from the northwestern
Florida Shelf (abs.): Geological Society of America
Abstracts with Programs, v. 23, n. 1, p. 121.
Riggs, S. R. , 1984, Patterns of Miocene phosphate
sedimentation on the southeastern United States
continental margin: Proceedings of the 27th Internatonal
Geological Congress, v. 15, p. 201-222.
Roof, S. R., Mullins, H. T., Gartner, S., Huang, T. C., Joyce,
E., Prutzman, J., andTjalsma, L., 1991, Climatic forcing
of carbonate sedimentation during the last 5.4 million
years along the west Florida continental margin: Journal
of Sedimentary Petrology, v. 61, n. 7, p. 1070-1088.
Salvador, A., 1987, Late Triassic-Jurassic Paleogeography and
origin of Gulf of Mexico Basin: American Association of
Petroleum Geologists Bulletin, v. 71, n. 4, p. 419-451.
Salvador, A., ed., 1991, The geology of North America, v. J,
The Gulf of Mexico Basin: Geological Society of America,
Boulder, Colorado, 568 p.
Sarg, J. F. , 1988, Carbonate sequence stratigraphy, in Wilgus,
C. K., Hastings, B. S., Kendall, C. G. St. C.,
Posamentier, H. W. , Ross, C. A., and Van Wagoner, J. C.,
eds., Sea-level changes: an integrated approach: Society
of Economic Paleontologists and Mineralogists Special
Publication 42, p. 155-181.
Sawyer, D. S., Buffler, R. T., and Pilger, R. H., Jr., 1991,
The crust under the Gulf of Mexico Basin, in Salvador,
A., ed., The geology of North America, v. J, The Gulf of
Mexico Basin: Geological Society of America, Boulder,
Colorado, p. 53-72.
Schlager, W., 1981, The paradox of drowned reef and carbonate
platforms: Geological Society of America Bulletin, Part
I, v. 92, p. 197-211.
Schlager, W. , 1989, Drowning Unconformities on carbonate
platforms, in Crevello, P. D., Wilson, J. L. , Sarg, J.
F. , and Read, J. F. , eds., Controls on carbonate platform
and basin development: Society of Economic Paleon¬
tologists and Mineralogists Special Publication 44, p.
15-25.

210
Schlager, W., 1991, Depositional bias and environmental
change—important factors in sequence stratigraphy:
Sedimentary Geology, v. 70, p. 109-130.
Schlager, W. , 1992, Sedimentology and seguence stratigraphy of
reefs and carbonate platforms: American Association of
Petroleum Geologists, Continuing Education Course Note
Series 34, 71p.
Schlager, W. , and Camber, 1986, Submarine slope angles,
drowning unconformities, and self-erosion of limestone
escarpments: Geology, v. 14, n. 9, p. 762-765.
Schlanger, S. O., and Jenkyns, H. C. , 1976, Cretaceous oceanic
anoxic events: causes and conseguences: Geologie en
Mijnbouw, v. 55, n. 3-4, p. 179-184.
Scott, T. M., 1988, The 1ithostratigraphy of the Hawthorn
Group (Miocene) of Florida: Florida Geological Survey,
Bulletin 59, 148p.
Shaub, F. J., 1984, The internal framework of the southwestern
Florida Bank: Transactions—Gulf Coast Association of
Geological Societies, v. 34, p. 237-245.
Sheridan, R. E., Mullins, H. T., Austin, J. A., Jr., Ball, M.
M., and Ladd, J. W., 1988, Geology and geophysics of the
Bahamas, in Sheridan, R. E., and Grow, J. A., eds., The
geology of North America, v. 1-2, The Atlantic
continental margin, U. S.: Geological Society of
America, Boulder, Colorado, p. 329-364.
Sloss, L. L., 1988, Forty years of sequence stratigraphy:
Geological Society of America Bulletin, v. 100, n. 11, p.
1661-1665.
Smith, D. L., 1985, Caribbean plate relative motions, in,
Stelhi, F. G. and Webb, S. D., eds., The great American
biotic interchange: Plenum Press, New York, p. 17-48.
Sohl, N. F., Martinez, E. , Salmeron-Urena, P. , and Soto-
Jaramillo, F., 1991, Upper Cretaceous, in Salvador, A.,
ed., The geology of North America, v. J, The Gulf of
Mexico basin: Geological Society of America, Boulder,
Colorado, p. 205-244.
Stanley, S. M. , 1986, Earth and life through time: W. H.
Freeman and Company, New York, 690p.
Swisher, C. C. , and R. W. O'B. Knox, 1991, The age of the
Paleocene/Eocene boundary: 40Ar/3’Ar dating of the lower
part of NP10, North Sea Basin and Denmark (abs.):

211
International Geological Correlation Project 308,
Paleocene/Eocene Boundary, Brussels meeting, 2-6
December.
Toulmin, L. D., 1977, Stratigraphic distribution of Paleocene
and Eocene fossils in the eastern Gulf Coast region:
Geological Survey of Alabama Monograph 13, v. 1, 602p.
Twichell, D. C. , Parson, L. M. , and Pauli, C. K. , 1990,
Variations in the styles of erosion along the Florida
Escarpment, eastern Gulf of Mexico: Marine and Petroleum
Geology, v.7, p. 253-266.
Twichell, D. C., Parson, L. M., Valentine, P. C., and Pauli,
C. E. , 1986, Long-range side-scan sonar survey of eastern
Gulf of Mexico (abs.): American Association of Petroleum
Geologists Bulletin, V. 70, n. 5, p. 657.
Twichell, D. C. , Pauli, C. K. , and Parson, L. M. , 1991,
Terraces on the Florida Escarpment: implications for
erosional processes: Geology, v. 19, n. 9, p. 897-900.
Vail, P. R. , 1987, Part 1: Seismic stratigraphy
interpretation procedure, in Bally, A. W., ed., Atlas of
seismic stratigraphy: American Association of Petroleum
Geologists Studies in Geology 27, v. 1, p. 1-10.
Vail, P. R., and Hardenbol, J., 1979, Sea level changes during
the Tertiary: Oceanus, v. 22, p. 71-79.
Vail, P. R., Mitchum, R. M., Jr., Todd, R. G., Widmier, J. M.,
Thompson, S., Ill, Sangree, J. B. , Bubb, J. N., and
Hatelid, W. G. , 1977, Seismic stratigraphy and global
changes of sea level (Eleven Parts), in C. E. Payton
(ed.), Seismic stratigraphy—applications to hydrocarbon
exploration: American Association of Petroleum
Geologists Memoir 26, p. 49- 212.
Vail, P. R. , Shipley, T. H. , and Buffler, R. T. , 1980,
Unconformities of the North Atlantic: Philosophical
Transactions of the Royal Society of London, v. A294, p.
137-155.
Vail, P. R. , and Todd, G. R. , 1981, North Sea Jurassic
unconformities, chronostratigraphy and sea-level changes
from seismic stratigraphy: Petroleum Geology of the
Continental Shelf, Northwest Europe, Proceedings, p. 216-
235.
Vail, P. R. , and Wornardt, W. W. , 1990, Well log-seismic
sequence stratigraphy: an integrated tool for the 90's,
in Sequence stratigraphy as an exploration tool--concepts

212
and practices in the Gulf Coast: Program and extended
and illustrated abstracts, Gulf Coast Section, Society of
Economic Paleontologists and Mineralogists Eleventh
Annual Research Conference, Houston, Texas, p. 379-388.
Van Siclen, D. C. , 1984, Early opening of initially-closed
Gulf of Mexico and central North Atlantic Ocean:
Transactions—Gulf Coast Association of Geological
Societies, v. 34, p. 265-275.
Van Wagoner, J. C., Mitchum, R. M., Jr., Posamentier, H. W.,
and Vail, P. R. , 1987, Part 2: Key definitions of
sequence stratigraphy, in Bally, A. W., ed., Atlas of
seismic stratigraphy: American Association of Petroleum
Geologists Studies in Geology 27, v. 1, p. 11-14.
Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Jr.,
Vail, P. R., Sarg, J. F., Loutit, T. S., and Hardenbol,
J., 1988, An overview of the fundamentals of sequence
stratigraphy and key definitions, in Wilgus, C. K.,
Hastings, B. S., Kendall, C. G. St. C., Posamentier, H.
W., Ross, C. A., and Van Wagoner, J. C., eds., Sea-level
changes: an integrated approach: Society of Economic
Paleontologists and Mineralogists Special Publication 42,
p. 39-45.
Walker, K. R., Shanmugam, G., and Ruppel, S. C., 1983, A model
for carbonate to terrigenous clastic sequences:
Geological Society of America Bulletin, v. 94, n. 6, p.
700-712.
Walker, R. G., 1990, Facies modeling and sequence
stratigraphy: Journal of Sedimentary Petrology, v. 60,
n. 5, p. 777-786.
Wilson, J. L. , 1975, Carbonate facies in geologic history:
Springer-Verlag, New York, Heidelberg, Berlin, 471p.
Winker, C. D., and Buffler, R. T., 1988, Paleogeographic
Evolution of early deep-water Gulf of Mexico and margins,
Jurassic to Middle Cretaceous (Comanchean): American
Association of Petroleum Geologists Bulletin, v. 72, n.
3, p. 318-346.
Winston, G. O. , 1969, A deep glimpse of West Florida's
Platform: Oil and Gas Journal, v. 67, n. 48, p. 128-133.
Winston, G. O., 1971a, The Dollar Bay Formation of Lower
Cretaceous (Fredricksburg) age in south Florida, its
stratigraphy and oil possibilities: Florida Bureau of
Geology Special Publication 15, 99p.

213
Winston, G. 0., 1971b, Regional structure, stratigraphy, and
oil possibilities of the South Florida Basin:
Transactions—Gulf Coast Association of Geological
Societies, v. 21, p. 15-29.
Winston, G. 0., 1976a, Six proposed formations in the
undefined portion of the Lower Cretaceous section in
south Florida: Transactions—Gulf Coast Association of
Geological Societies, v. 26, p. 69-72.
Winston, G. 0., 1976b, Florida's Ocala Uplift is not an
uplift: American Association of Petroleum Geologists
Bulletin, v. 60, n. 6, p. 992-994.
Winston, G. 0. , 1977, Cotype wells for the five classic
formations in peninsular Florida: Transactions—Gulf
Coast Association of Geological Societies, v. 27, p. 421-
427.
Winston, G. 0., 1978, Rebecca Shoal Reef Complex (Upper
Cretaceous and Paleocene) in south Florida: American
Association of Petroleum Geologists Bulletin, v. 62, n.
1, p. 121-127.
Winston, G. 0., 1989, Rebecca Shoal Barrier Reef Complex of
Gulfian and Paleocene age—onshore and offshore Florida
(abs.): American Association of Petroleum Geologists
Bulletin, v. 73, n. 3, p. 426.
Worzel, J. L., Bryant, W., Beall, A. 0., Capo, R., Dickinson,
K., Foreman, H. P., Laury, R., McNeely, B. W., and Smith
L. A., 1973, Initial Reports of the Deep Sea Drilling
Project, Volume X, Washington (U.S. Government Printing
Office), 7 4 8p.
Wrenn, J. H., and Satchell, L. S., 1988, Cenozoic
Palynostratigraphy of Exxon core hole 32-45 from the west
Florida Carbonate Platform, Gulf of Mexico: integration
with a seismic stratigraphic model (abs.): Palynology,
v. 13, p. 289.
Wu, S. Y., Bally, A. W., and Cramez, C., 1990b, Allochthonous
salt, structure and stratigraphy of the north-eastern
Gulf of Mexico. Part II: Structure: Marine and
Petroleum Geology, v. 7, n. 4, p. 334-370.
Wu, S. Y., Vail, P. R., and Cramez, C., 1990a, Allochthonous
salt, structure and stratigraphy of the north-eastern
Gulf of Mexico. Part I: Stratigraphy: Marine and
Petroleum Geology, v. 7, n. 4, p. 318-333.

BIOGRAPHICAL SKETCH
Jonathan Lucas Jee was born in San Antonio, Texas,
February 27, 1955, the second child and only son of Donald
Breen and Bertha Eva Jee. His father's career as a
noncommissioned officer in the United States Air Force and his
mother being a British subject occasioned Jonathan to spend
much of his youth in Europe and North Africa.
He attended General H. H. Arnold High School, in
Wiesbaden, Germany, and was graduated in May 1973. He
received the Bachelor of Science degree in biology, from
Tulane University of Louisiana, in New Orleans, Louisiana on
May 15, 1977. The Master of Science degree in earth science,
from the University of New Orleans, New Orleans, Louisiana was
conferred on Jonathan on December 18, 1981.
Jonathan began his career as a geologist with Texaco,
USA in Tulsa, Oklahoma, in November, 1980. In 1984, he was
transferred to Denver, Colorado. Jonathan left Texaco in May
1985, and worked briefly for Dawson Geophysical Company and
CORE Laboratories, in Colorado. In October 1986, he moved to
Tampa, Florida, and began work as a hydrologist with the
Southwest Florida Water Management District. Jonathan then
joined the ground-water consulting firm of Geraghty and
Miller, in September 1987.
214

215
In August 1988, Jonathan married Susan W. E. Moorman, R.
N., of Gainesville, Florida and entered graduate shod at the
University of Florida. The couple gave birth to a daughter,
Laura Elizabeth Jee, on September 16, 1990. Jonathan has two
daughters by a previous marriage, Rebecca Ann Jee, born
September 2, 1980, and Greta Christine Jee, born October 5,
1982.
Permanent Address: 4614 N. W. 44th Place
Gainesville, FL 32606
<

FIGURE 14
A
DEPTH
(Subsea)
Meters Feet
(-1,500) -
(-500) -
(-2,000) -
(-3.000) -
(-1,000) -
(-4,000) -
(-1,500) _
(-5,000) -
(-6,000) -
(-2,0001 -
WELL 3
WELL 9
WELL 10
WELL 7
WELL 8
Datum
Gamma Ray ^ ^ .
Spontaneous Potential O - >
WELL 5
DEPTH
(Subsea)
_ , ^ - , Feet Meters
Gamma Ray 7} 5
o . „ V_ — i Dual Induction
Spontaneous Potential c ,
- V—9-(-i.ooo)
-(-1.000)
- (-4,000)
K|J2
- (-1,500)
’ (-5,000)
— MCSB
MCSB
- (-6,000)
- (-2,000)
(-7,000)-

FIGURE 15
WELL 11
WELL 12
WELL 13
WELL 26
DEPTH
(Subsea)
Meters Feet
Datum
Sea Level

FIGURE 16
WELL 17
WELL 16
WELL 14
WELL 15
WELL 28
DEPTH
(Subsea)
Meters Feet
A
A
A
-<>
Datum
Sea Level
Gamma Ray
Spontaneous Potential
Dual Induction
Laterolog
Gamma Ray
Induction
(-1,000) -
_ _ By Correlation to
j ?.noojj^ Coastal No. t Wriglit
'' :i 1
' (Lower Eocene)
(Miller, 1986)
Oldsmar (Lower Eocene)
” (Winston, 1977)
C
F (Paleocene)
C (Miller, 1988)
Cedar Keys (Paleocene)
-I i (Winston, 1977) (Miller, 1986)
(-4,000) t
— (Cretaceous)
(Miller, 1988)

Run 1 '
(-1,500) _ nu" 2
(-5,000) -
Tp-VA
— (Crolaceousl
[Jj? (Miller, 1988)
(-6.000) -
KU1”
(-2,000) -
MCSB
(-7,000) -
Horizontal

D
WELL 21
WELL 22
Spontaneous Potential
Gamma Ray
k
(-1,000) -
(-500) -
(-2,000) -
(-3,000) -
(-1,000) -
(-4.000) -
FIGURE 17
WELL 23
A
WELL 29
A
Gamma Ray
Spcr-=necus 3oi
Datum
, Sea Level
nil
Jr f-AMP sp.
k-t
â–  v j (Oligocene)
f ” pMGS sp. (Miller. 1986)
I “ ) ELF sp.
f| - i-AHC-CoJUpper Eocene>
I _ (Mliler 1986)
- GYP sp.
• (Miadle Eocsnei
1
] - LCSK sp.
. 'v Scale Change
- ._
( 20001
? _>
V -
â–  (Lower Eocene)
(Miller, 1986)
_ m-
? —!
u -
- (Paleocene)
Miller, 1986)

(-3.000) -
(-10.000) -
No Horizontal Scale

FOLDOW mi
HERE BE

(
FOLDOUT
HERE

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Anthony F. Randazzo, Chair *
Professor of Geology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
Douglas L.\£mith
Professor of Geology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
^ 4. .
Paul F. Ciesielski
Associate Professor of Geology
I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.
David Hodell
Associate Professor of Geology

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the deqree of Doctor of Philosophy.
Thomas Crisman
Professor of Environmental
Engineering Sciences
This dissertation was submitted to the Graduate Faculty
of the Department of Geology in the College of Liberal Arts
and Sciences and to the Graduate School and was accepted in
partial fulfillment of the requirements for the degree of
Doctor of Philosophy.
May 1993
Dean, Graduate School

UNIVERSITY OF FLORIDA





PAGE 2

6(,60,& 675$7,*5$3+< 2) 7+( :(67(51 )/25,'$ &$5%21$7( 3/$7)250 $1' +,6725< 2) (2&(1( 675$7$ %\ -21$7+$1 /8&$6 -(( $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

&RS\ULJKW E\ -RQDWKDQ /XFDV -HH ,

PAGE 4

$&.12:/( '*0(176 DP LQGHEWHG WR 'U $QWKRQ\ ) 5DQGD]]R FRPPLWWHH FKDLUPDQ IRU KLV JXLGDQFH DQG HQFRXUDJHPHQW DOVR WKDQN WKH RWKHU FRPPLWWHH PHPEHUV 'U 'RXJODV / 6PLWK 'U 3DXO ) &LHVLHOVNL 'U 'DYLG +RGHOO DQG 'U 7KRPDV &ULVPDQ DP JUDWHIXO WR 0U +DQN +DPLOWRQ 0U (DUO +DOH DQG 0U -HUU\ $ :DWVRQ RI *(&2 *HRSK\VLFDO &RPSDQ\ ,QF 0U &DUO % +XWFKLQV DQG 0V /RUL 3ULFH RI 'LJLFRQ *HRSK\VLFDO &RUSRUDWLRQ DQG 0U 0DUF $ /DZUHQFH DQG 0V &DURO (OOLV RI )DLUILHOG ,QGXVWULHV IRU SURSULHWDU\ UHIOHFWLRQ VHLVPLF GDWD XVHG LQ WKLV VWXG\ 7KDQNV JR WR 'U -RKQ 3 5LOD 0V -HDQ $QGHUVRQ DQG 0U 7KRPDV 0 7RUUH\ RI 7H[DFR 86$ IRU DVVLVWDQFH LQ REWDLQLQJ VHLVPLF GDWD DQG IRU VXSSO\LQJ GDWD IURP H[SORUDWRU\ ZHOOV WKDQN 'U 7LOOPDQ &RROH\ 0U /HH (QWVPLQJHU 0V /HLJK $QQH 6DODWKH DQG 0U (YHUHWW .DVWOHU RI 0RELO ([SORUDWLRQ DQG 3URGXFLQJ 86 ,QF IRU UHOHDVH RI FRUHV DQG DGGLWLRQDO ZHOO LQIRUPDWLRQ 7KDQNV DOVR JR WR 0U 3KLO :DUH RI &RDVWDO 3HWUROHXP IRU VKDULQJ ZHOO GDWD ZLWK PH 0DQ\ RWKHUV LQ YDULRXV FDSDFLWLHV KDYH JLYHQ VXSSRUW FRRSHUDWLRQ DVVLVWDQFH DQG DGYLFH DOO JUHDWO\ DSSUHFLDWHG 'U -DPHV $ 0LOOHU DQG 0U 0DKORQ %DOO RI WKH 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ 86*6f VXSSOLHG FRSLHV RI 86*6 ZHOO DQG VHLVPLF GDWD &UDLJ %\DU RI 3HWUROHXP ,QIRUPDWLRQ DOVR LQ

PAGE 5

SURYLGHG LQIRUPDWLRQ RQ RIIVKRUH ZHOOV 0V -RDQ 5DJODQG RI WKH )ORULGD *HRORJLFDO 6XUYH\ )*6f 2LO DQG *DV 6HFWLRQ KHOSHG LQ WKH VHDUFK IRU FRUH LQIRUPDWLRQ 'U %UDG 0DFXUGD RI 7KH (QHUJLVWV JDYH JXLGDQFH LQ WKH LQLWLDO SKDVH RI WKLV SURMHFW IDFLOLWDWLQJ WKH VHDUFK IRU VHLVPLF GDWD 'U $OEHUW & +LQH DQG 'U /DUU\ 'R\OH RI WKH 'HSDUWPHQW RI 0DULQH 6FLHQFH 8QLYHUVLW\ RI 6RXWK )ORULGD 6W 3HWHUVEXUJ 0U *HRUJH :LQVWRQ FRQVXOWLQJ JHRORJLVW DQG 'U 5LFKDUG 7 %XIIOHU RI WKH 8QLYHUVLW\ RI 7H[DV ,QVWLWXWH IRU *HRSK\VLFV VKDUHG KHOSIXO LGHDV RQ WKH SURMHFW 0U 6WHSKHQ 0 *UHHQOHH RI ([[RQ 3URGXFWLRQ 5HVHDUFK &RPSDQ\ DVVLVWHG ZLWK WKH FRUUHODWLRQ RI VHTXHQFH ERXQGDULHV DQG 0U 6WXDUW *URVVPDQ RI ([[RQ ([SORUDWLRQ &RPSDQ\ SURYLGHG ELRVWUDWLJUDSKLF GDWD 0U )UDQN 5XSHUW RI WKH )*6 DVVLVWHG ZLWK LQWHUSUHWDWLRQ RI GDWD RQ EHQWKRQLF IRUDPLQLIHUV )LQDQFLDO VXSSRUW LQ WKH IRUP RI JUDQWVLQDLG RI UHVHDUFK ZDV FRQWULEXWHG E\ 6LJPD ;L WKH 6FLHQWLILF 5HVHDUFK 6RFLHW\ f DQG WKH *HRORJLFDO 6RFLHW\ RI $PHULFD DQG f KDYH DOVR EHHQ VXSSRUWHG DV D UHVHDUFK DVVLVWDQW ZRUNLQJ RQ YDULRXV SURMHFWV IXQGHG E\ JUDQWV IURP WKH 86*6 $GGLWLRQDOO\ UHFHLYHG )DOO f D IHOORZVKLS DVVRFLDWHG ZLWK WKLV GLVVHUWDWLRQ UHVHDUFK IURP WKH 6SDFH $VVLVWDQWVKLS (QKDQFHPHQW 3URJUDP RI WKH )ORULGD 6SDFH *UDQW &RQVRUWLXP1DWLRQDO $HURQDXWLFV DQG 6SDFH $GPLQLVWUDWLRQ 6SHFLDO UHFRJQLWLRQ LV GXH 6XVDQ P\ ZLIH IRU KHU ORYH VXSSRUW DQG LQVSLUDWLRQ ,9

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL /,67 2) ),*85(6 YLL $%675$&7 [ ,1752'8&7,21 3XUSRVH DQG 6FRSH 6WUDWLJUDSKLF &RQFHSWV 6HLVPLF 6WUDWLJUDSK\ 6HTXHQFH 6WUDWLJUDSK\ *HQHWLF 6WUDWLJUDSKLF 6HTXHQFHV $OORVWUDWLJUDSK\ 'LVFXVVLRQ *HRORJLF 6HWWLQJ 6WUDWLJUDSK\ 0DMRU *HRORJLF )HDWXUHV 3UH/DWH &UHWDFHRXV *HRORJLF +LVWRU\ /DWH &UHWDFHRXV&HQR]RLF *HRORJLF +LVWRU\ ([SRVLWLRQ RI 3UREOHPV ,QYHVWLJDWHG 0(7+2'6 $1' 0$7(5,$/6 'DWD %DVH 5HIOHFWLRQ 6HLVPLF 'DWD :HOO 'DWD 6HLVPLF 6WUDWLJUDSKLF ,QWHUSUHWDWLRQ 3URFHGXUH &KURQRVWUDWLJUDSKLF ,QWHUSUHWDWLRQ 3URFHGXUH :HOO/RJ &RUUHODWLRQ 3URFHGXUH 5(68/76 $1' ',6&866,211 &KURQRVWUDWLJUDSKLF )UDPHZRUN 7LPHHTXLYDOHQFH RI /LWKRVWUDWLJUDSKLF 8QLWV 0&6% 8SSHU &UHWDFHRXV 3DOHRFHQH(RFHQH 2OLJRFHQH/RZHU 0LGGOH 0LRFHQH 8SSHU 0LGGOH 0LRFHQH+RORFHQH 6HLVPLF 6WUDWLJUDSKLF )UDPHZRUN 0&6% 8SSHU &UHWDFHRXV Y

PAGE 7

3DOHRFHQH(RFHQH 2OLJRFHQH/RZHU 0LGGOH 0LRFHQH 8SSHU 0LGGOH 0LRFHQH+RORFHQH 6<17+(6,6 $1' ,17(535(7$7,21 &21&/86,216 $33(1',; $ 5()/(&7,21 6(,60,& $48,6,7,21 3$5$0(7(56 $1' 352&(66,1* 6(48(1&(6 $33(1',; % %,2&+5212675$7,*5$3+,& $1' 0$*1(72%,2&+5212675$7,*5$3+,& ,17(535(7$7,216 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ YL

PAGE 8

/,67 2) ),*85(6 )LJXUH SDJH 0DS RI WKH VWXG\ DUHD 'LVWULEXWLRQ RI FDUERQDWH OLWKRIDFLHV LQ D VHTXHQFH IUDPHZRUN 0LGGOH -XUDVVLF WKURXJK +RORFHQH VWUDWLJUDSK\ LQ WKH YLFLQLW\ RI WKLV VWXG\ 0DMRU JHRORJLF IHDWXUHV RI WKH )ORULGD &DUERQDWH 3ODWIRUP 'LDJUDP RI PDMRU 0LGGOH WR 8SSHU &UHWDFHRXV VHTXHQFH ERXQGDULHV DQG PD[LPXPIORRGLQJ VXUIDFHV IURP :X DQG RWKHUV Df &RQWUDVW EHWZHHQ Df DQ LGHDOL]HG GURZQHG FDUERQDWH SODWIRUP DQG Ef D VXEDHULDOO\ H[SRVHG FDUERQDWH SODWIRUP 6\QWKHVLV RI FKURQRVWUDWLJUDSK\ ELRVWUDWLJUDSK\ VHTXHQFH VWUDWLJUDSK\ DQG HXVWDWLF FXUYHV PRGLILHG IURP +DT DQG RWKHUV f FRUUHODWHG ZLWK WKH 8SSHU &UHWDFHRXV IRUPDWLRQV DQG JHQHWLF SDFNDJHV FHQWUDO DQG HDVWHUQ &RDVWDO 3ODLQ RI $ODEDPD &KDUW RI OLWKRVWUDWLJUDSKLF XQLWV *URXS )RUPDWLRQ 0HPEHUf RI WKH *XOI &RDVWDO 3ODLQ $ODEDPD LQ WKH FHQWHU ZLWK WKH VHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI %DXP DQG 9DLO f 'RQRYDQ DQG RWKHUV fRQ WKH ULJKW DQG WKRVH RI 0DQFLQL DQG 7HZ D DQG E D DQG Ef RQ WKH OHIW 0DS RI SUHYLRXV VHLVPLFVHTXHQFH VWUDWLJUDSKLF VWXGLHV RI 8SSHU &UHWDFHRXV DQG &HQR]RLF VWUDWD LQ WKH YLFLQLW\ RI WKLV VWXG\ &KDUW FRPSDULQJ SUHYLRXV VHLVPLFVHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI 8SSHU &UHWDFHRXV &HQR]RLF VWUDWD LQ WKLV VWXG\ DUHD 0DS RI UHIOHFWLRQ VHLVPLF SURILOHV DQG ZHOOV 9OO

PAGE 9

6HLVPLF IDFLHV RI FDUERQDWH GHSRVLWLRQDO HQYLURQPHQWV *HRPDJQHWLF SRODULW\ WLPHVFDOH IRU WKH /DWH &UHWDFHRXV DQG &HQR]RLF ZLWK FRUUHODWLRQ WR SODQNWRQLF IRUDPLQLIHUDO ]RQDWLRQV DQG DQG WKH ODVW DSSHDUDQFH GDWD RI NH\ SODQNWRQLF IRUDPLQLIHUV :HOOORJ FURVVVHFWLRQ $$n FDSWLRQf )LJXUH LQ SRFNHWf :HOOORJ FURVVVHFWLRQ %%n FDSWLRQf )LJXUH LQ SRFNHWf :HOOORJ FURVVVHFWLRQ && FDSWLRQf )LJXUH LQ SRFNHWf :HOOORJ FURVVVHFWLRQ ''n FDSWLRQf )LJXUH LQ SRFNHWf 3DUW RI VHLVPLF VHFWLRQ ) D XQLQWHUSUHWHG E LQWHUSUHWHG 3DUW RI VHLVPLF VHFWLRQ ) D XQLQWHUSUHWHG E LQWHUSUHWHG 1RUWKHUQ SDUW RI VHLVPLF VHFWLRQ D XQLQWHUSUHWHG E LQWHUSUHWHG 6RXWKHUQ SDUW RI VHLVPLF VHFWLRQ D XQLQWHUSUHWHG E LQWHUSUHWHG 3DUW RI VHLVPLF VHFWLRQ *LO D XQLQWHUSUHWHG E LQWHUSUHWHG 3DUW RI VHLVPLF VHFWLRQ *O D XQLQWHUSUHWHG ,OO E LQWHUSUHWHG 3DUW RI VHLVPLF VHFWLRQ D XQLQWHUSUHWHG E LQWHUSUHWHG 3DUW RI VHLVPLF VHFWLRQ D XQLQWHUSUHWHG E LQWHUSUHWHG YLLL

PAGE 10

3DUWV RI VHLVPLF VHFWLRQV DQG D XQLQWHUSUHWHG E LQWHUSUHWHG 7KLFNQHVV PDS RI WKH HQWLUH 8SSHU &UHWDFHRXV WKURXJK &HQR]RLF VHFWLRQ FRQWRXUHG LQ ZD\ WUDYHOWLPH 0DS RI WKH FRQILJXUDWLRQ RI WKH PLG&UHWDFHRX VHTXHQFH ERXQGDU\ 0&6%f VXUIDFH FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KLFNQHVV PDS RI WKH .\ VHLVPLF VXEXQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KLFNQHVV PDS RI WKH .\ VHLVPLF VXEXQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 0DS RI WKH FRQILJXUDWLRQ RI WKH WRS RI WKH &UHWDFHRXV FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KLFNQHVV PDS RI WKH 3DOHRFHQH(RFHQH VHLVPLF XQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 0DS RI WKH FRQILJXUDWLRQ RI WKH WRS RI WKH (RFHQH FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KLFNQHVV PDS RI WKH 2OLJRFHQHORZHU 0LGGOH 0LRFHQH VHLVPLF XQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 0DS RI WKH FRQILJXUDWLRQ RI WKH WRS RI WKH ORZHU 0LGGOH 0LRFHQH FRQWRXUHG LQ ZD\ WUDYHOWLPH ,;

PAGE 11

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 6(,60,& 675$7,*5$3+< 2) 7+( :(67(51 )/25,'$ &$5%21$7( 3/$7)250 $1' +,6725< 2) (2&(1( 675$7$ %\ -RQDWKDQ /XFDV -HH 0D\ &KDLUPDQ $QWKRQ\ ) 5DQGD]]R 0DMRU 'HSDUWPHQW 'HSDUWPHQW RI *HRORJ\ 7KH VWUDWLJUDSK\ RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP DERYH WKH PLG&UHWDFHRXV 6HTXHQFH %RXQGDU\ 0&6%f LV GHILQHG XVLQJ NP RI PXOWLIROG UHIOHFWLRQ VHLVPLF GDWD WLHG WR ZHOOV &RQFRUGDQW UHIOHFWLRQV DW WKH 0&6% GHQ\ VXEDHULDO H[SRVXUH RI WKH SODWIRUP $ GURZQLQJ XQFRQIRUPLW\ UHODWHG WR DQ RFHDQLF DQR[LF HYHQW LV D PRUH OLNHO\ FDXVH RI WKH 0&6% 3UHH[LVWHQW VWUXFWXUHV LQIOXHQFHG WKH 0&6% VXUIDFH ZKLFK LQ WXUQ DIIHFWHG VXEVHTXHQW GHSRVLWLRQ %LRVWUDWLJUDSKLF GDWD WLHG WR PDJQHWRELRFKURQR VWUDWLJUDSKLF LQWHUSUHWDWLRQV SURYLGH D WLPHVWUDWLJUDSKLF IUDPHZRUN RI IRXU PDLQ XQLWV 8SSHU &UHWDFHRXV 3DOHRFHQH (RFHQH 2OLJRFHQHORZHU 0LGGOH 0LRFHQH DQG XSSHU 0LGGOH 0LRFHQH+RORFHQH 7KH 8SSHU &UHWDFHRXV KDV WZR VXEXQLWV .X &HQRPDQLDQ6DQWRQLDQf DQG &DPSDQLDQ0DDVWULFKWLDQf .8 KDV FRQWLQXRXV SDUDOOHO UHIOHFWLRQV DQG WKLFNHQV LQ ORZV RQ [

PAGE 12

WKH 0&6% ,Q WKH $SDODFKLFROD %DVLQ KDV XQLIRUP WKLFNQHVV GLVFRQWLQXRXV VXESDUDOOHO HYHQWRZDY\ UHIOHFWLRQV DQG LV LQWHQVHO\ IDXOWHG 6RQLF YHORFLW\ RI VKRZV D VRXWKHDVWZDUG FKDQJH IURP VLOLFLFODVWLFV WR PRUH FDUERQDWH URFN +XPPRFN\WRFRQWRUWHG VHLVPLF IDFLHV DQG WKLFNHQLQJ RI RQ DQ 0&6% KLJK VXJJHVW D GHHSZDWHU FDUERQDWH EXLOGXS 7KH 3DOHRFHQH LV WKLQ DQG 'DQLDQ VWUDWD DEVHQW IURP WKH 'HVWLQ 'RPH WR $SDODFKHH %D\ 7KH (RFHQH PDUJLQ PDUNHG E\ D QRUWKVRXWK EHOW RI ZHVWSURJUDGLQJ FOLQRIRUPV DW r: GHYHORSHG IURP D KRPRFOLQDO UDPS WR D IODWWRSSHG VKHOI /DQGZDUG WKLV PDUJLQ D VHLVPLF PDUEOHG ]RQH VXJJHVWV GRORPLWLF IDFLHV ,Q WKH $SDODFKLFROD %DVLQ
PAGE 13

XQFRQIRUPLW\ EXW DSSDUHQW WUXQFDWLRQ RI FOLQRIRUPV FDQ DOVR EH REVHUYHG DW WKH WRSV RI RWKHU ROGHU VHTXHQFHV [LL

PAGE 14

,1752'8&7,21 3XUSRVH DQG 6FRSH 7KH JRDO RI WKLV LQYHVWLJDWLRQ LV WR XQGHUVWDQG EHWWHU WKH JHRORJLF KLVWRU\ RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP E\ UHILQLQJ WKH WHFWRQLF DQG VWUDWLJUDSKLF IUDPHZRUN RI WKH 8SSHU &UHWDFHRXV WKURXJK 4XDWHUQDU\ VHGLPHQWDU\ VHFWLRQ LQ WKH QRUWKHDVWHUQ *XOI RI 0H[LFR 7KH IROORZLQJ DUH VSHFLILF REMHFWLYHV RI WKLV VWXG\ 7KH XVH RI VHLVPLF VWUDWLJUDSKLF DQDO\VLV RI PXOWLFKDQQHO VHLVPLF UHIOHFWLRQ SURILOHV LQWHJUDWHG ZLWK DYDLODEOH JHRORJLFDO DQG JHRSK\VLFDO GDWD IURP ZHOOV WR D ,GHQWLI\ GHSRVLWLRQDO VHTXHQFHV DQG GHOLQHDWH WKHLU H[WHUQDO JHRPHWU\ DQG DUHDO H[WHQW E &KDUDFWHUL]H VHLVPLF IDFLHV ZLWKLQ GHSRVLWLRQDO VHTXHQFHV F 5HODWH GHSRVLWLRQDO VHTXHQFHV WR F\FOHV RI UHODWLYH VHD OHYHO FKDQJH DQG G &RPSDUH WKH ORFDO DQG JOREDO SDWWHUQV RI VHDOHYHO IOXFWXDWLRQ 7KH HYDOXDWLRQ RI FRQFHSWXDO PRGHOV HVSHFLDOO\ WKRVH SUHGLFWLQJ WKH UHVSRQVHV RI FDUERQDWH V\VWHPV WR IOXFWXDWLRQV RI UHODWLYH VHD OHYHO DQG WKRVH SHUWDLQLQJ WR FDUERQDWHWR VLOLFLFODVWLF IDFLHV WUDQVLWLRQV

PAGE 15

,QWHUSUHWDWLRQ RI WKH GHSRVLWLRQDO DQG GLDJHQHWLF KLVWRU\ RI (RFHQH FDUERQDWH GHSRVLWV ZLWK SDUWLFXODU DWWHQWLRQ WR WKH UROH RI HDUO\ SRVWGHSRVLWLRQDO IOXFWXDWLRQV RI UHODWLYH VHD OHYHO 7KH DUHD RI LQYHVWLJDWLRQ )LJXUH f H[WHQGV RIIVKRUH RI WKH SUHVHQW FRDVWOLQH IURP MXVW HDVW RI 0RELOH %D\ WR &KDUORWWH +DUERU DFURVV WKH HDVWHUQPRVW SRUWLRQ RI WKH 0LVVLVVLSSL$ODEDPD 6KHOI WR WKH 'H 6RWR &DQ\RQ DQG RYHU WKH :HVW )ORULGD 6KHOI DQG 7HUUDFH WR WKH )ORULGD (VFDUSPHQW 0DUWLQ DQG %RXPD f 6WUDWLJUDSKLF &RQFHSWV 7KLV VWXG\ LQYROYHV WKH UHFRJQLWLRQ DQG LQWHUSUHWDWLRQ RI XQFRQIRUPLW\ERXQGHG VWUDWDO XQLWV NQRZQ DV GHSRVLWLRQDO VHTXHQFHV 7KH WHUP GHSRVLWLRQDO VHTXHQFH ZDV FRLQHG DV SDUW RI VHLVPLF VWUDWLJUDSK\ DV H[SRXQGHG LQ D VHULHV RI SDSHUV E\ 9DLO DQG RWKHUV f $OWKRXJK WKH LGHD RI XQFRQIRUPLW\ERXQGHG VHTXHQFHV GHYHORSHG RYHU PDQ\ \HDUV 6ORVV f :DONHU f UHFRJQL]HV IRXU QHZ VWUDWLJUDSKLHV WKDW VXEGLYLGH URFNV LQWR JHQHWLF SDFNDJHV RQ WKLV EDVLV 7KHVH DUH VHLVPLF VWUDWLJUDSK\ 9DLO DQG RWKHUV f VHTXHQFH VWUDWLJUDSK\ 9DLO 9DQ :DJRQHU DQG RWKHUV f JHQHWLF VWUDWLJUDSKLF VHTXHQFHV *DOORZD\ f DQG DOORVWUDWLJUDSK\ 1RUWK $PHULFDQ &RPPLVVLRQ RQ 6WUDWLJUDSKLF 1RPHQFODWXUH >1$&61@ f $ FRPSOHWH UHYLHZ ZRXOG EH UHGXQGDQW ZLWK YROXPLQRXV OLWHUDWXUH EXW D EULHI V\QRSVLV LV DSSURSULDWH

PAGE 16

n n n n f r r r )LJXUH 0DS RI WKH VWXG\ DUHD PRGLILHG IURP 0DUWLQ DQG %RXPD )LJXUH f

PAGE 17

6HLVPLF 6WUDWLJUDSK\ 7KH NH\ WHQHW RI VHLVPLF VWUDWLJUDSK\ LV WKDW SULPDU\ VHLVPLF UHIOHFWLRQV SDUDOOHO VWUDWDO VXUIDFHV DQG XQFRQIRUPLWLHV DQG IROORZ FKURQRVWUDWLJUDSKLF FRUUHODWLRQV 9DLO DQG RWKHUV f 7KH EDVLF XQLW IRU VHLVPLF VWUDWLJUDSKLF DQDO\VLV WKH GHSRVLWLRQDO VHTXHQFH LV GHILQHG DV D VWUDWLJUDSKLF XQLW FRPSRVHG RI D UHODWLYHO\ FRQIRUPDEOH VXFFHVVLRQ RI JHQHWLFDOO\ UHODWHG VWUDWD DQG ERXQGHG DW LWV WRS DQG EDVH E\ XQFRQIRUPLWLHV RU WKHLU FRUUHODWLYH FRQIRUPLWLHV 9DLO DQG RWKHUV S f $ FRQIRUPLW\ LV D EHGGLQJ VXUIDFH DORQJ ZKLFK WKHUH LV QR VLJQLILFDQW KLDWXV 6HTXHQFH ERXQGDULHV DUH GHWHUPLQHG REMHFWLYHO\ E\ WKH GLVFRUGDQFH RI VWUDWD RQODS GRZQODS WRSODS DQG WUXQFDWLRQf PDQLIHVWHG LQ VHLVPLF VHFWLRQV DV UHIOHFWLRQ WHUPLQDWLRQV %\ PHDVXULQJ FRDVWDO RQODS WKH SURJUHVVLYH ODQGZDUG RQODS RI FRDVWDO GHSRVLWV LQ D JLYHQ VWUDWLJUDSKLF XQLWf VHLVPLF VWUDWLJUDSK\ ZDV XVHG WR LQWHUSUHW VHDOHYHO KLVWRULHV DORQJ FRQWLQHQWDO PDUJLQV DQG KDV EHHQ KDLOHG DV D EUHDNWKURXJK IRU UHJLRQDO DQG JOREDO FKURQRVWUDWLJUDSKLF FRUUHODWLRQV 9DLO DQG RWKHUV +DT DQG RWKHUV f 6HTXHQFH 6WUDWLJUDSK\ 7KH FRQFHSWV RI VHTXHQFH VWUDWLJUDSK\ 9DLO 9DQ :DJRQHU DQG RWKHUV f WKH VWXG\ RI URFN UHODWLRQVKLSV ZLWKLQ D FKURQRVWUDWLJUDSKLF IUDPHZRUN RI UHSHWLWLYH VHTXHQFHV HYROYHG IURP VHLVPLF VWUDWLJUDSK\

PAGE 18

$SSOLFDWLRQ RI VHTXHQFH VWUDWLJUDSK\ KDV VSUHDG EH\RQG WKH UHDOP RI VHLVPLF GDWD DQG GHWDLOHG JHRORJLF GDWD IURP ZHOOV DQG PHDVXUHG VHFWLRQV FDQ DIIRUG UHVROXWLRQ RI F\FOHV KLJKHU WKDQ WKH WKLUG RUGHU 9DLO DQG RWKHUV f 6HTXHQFH VWUDWLJUDSK\ FDQ SURYLGH LQIRUPDWLRQ RQ OLWKRIDFLHV DQG IDFLHV FKDQJHV UHOLHI DQG WRSRJUDSK\ RI XQFRQIRUPLWLHV SDOHREDWK\PHWU\ FKURQRVWUDWLJUDSKLF FRUUHODWLRQ DQG GHSRVLWLRQDO DQG EXULDO KLVWRU\ %RJJV f $ WHQHW RI VHTXHQFH VWUDWLJUDSK\ LV WKDW DPRQJ IRXU PDMRU YDULDEOHV DIIHFWLQJ VWUDWDO SDWWHUQV DQG OLWKRIDFLHV GLVWULEXWLRQV WHFWRQLF VXEVLGHQFH HXVWDF\ VHGLPHQW VXSSO\ DQG FOLPDWHf UHODWLYH FKDQJH RI VHD OHYHO WKH FRPELQDWLRQ RI HXVWDF\ DQG WHFWRQLF VXEVLGHQFHf LV WKH NH\ WR XQGHUVWDQGLQJ VWUDWLJUDSK\ 9DLO S f 9DLO f IXQGDPHQWDOO\ UHYLVHG WKH FRQFHSW RI D GHSRVLWLRQDO VHTXHQFH IURP WKDW RI VHLVPLF VWUDWLJUDSK\ 9DLO DQG RWKHUV f :KHUHDV LQ VHLVPLF VWUDWLJUDSK\ RQH RU PRUH GHSRVLWLRQDO VHTXHQFHV FRXOG EH GHSRVLWHG GXULQJ RQH F\FOH RU SDUDF\FOHf RI UHODWLYH ULVH DQG IDOO RI VHD OHYHO LQ VHTXHQFH VWUDWLJUDSK\ $ >VLQJOH@ VHTXHQFH LV LQWHUSUHWHG WR EH GHSRVLWHG GXULQJ D >VLQJOH@ F\FOH RI HXVWDWLF FKDQJH RI VHD OHYHO VWDUWLQJ DQG HQGLQJ LQ WKH YLFLQLW\ RI LQIOHFWLRQ SRLQWV RQ WKH IDOOLQJ OLPEV RI WKH VHD OHYHO FXUYH 9DLO S f 7R DFFRPPRGDWH WKLV UHYLVLRQ WKH UHIOHFWLRQ WHUPLQDWLRQ FULWHULD IRU WKH UHFRJQLWLRQ RI VHTXHQFH ERXQGDULHV ZHUH UHVWULFWHG WR RQODS DERYH DQG WUXQFDWLRQ EHORZ DQG WKH UHGHILQHG VHTXHQFH

PAGE 19

VXEGLYLGHG LQWR V\VWHPV WUDFWV 'RZQODSSLQJ UHIOHFWLRQ WHUPLQDWLRQV ZHUH DVVRFLDWHG ZLWK V\VWHPVWUDFW ERXQGDULHV DW WKH WRS RI D EDVLQIORRU IDQ DW WKH WRS RI D VORSH IDQ RU DW WKH PD[LPXPIORRGLQJ VXUIDFH ZLWKLQ D FRQGHQVHG VHFWLRQf 6\VWHPV WUDFWV DUH LQWHUSUHWHG WR EH GHSRVLWHG GXULQJ VSHFLILF WLPH LQWHUYDOV ZLWKLQ D HXVWDWLF F\FOH $ V\VWHPV WUDFW LV D OLQNDJH RI FRQWHPSRUDQHRXV GHSRVLWLRQDO V\VWHPV %URZQ DQG )LVKHU f $ GHSRVLWRQDO V\VWHP LV D WKUHH GLPHQVLRQDO DVVHPEODJH RI OLWKRIDFLHV )LVKHU DQG 0F*RZDQ f &HUWDLQ GHSRVLWLRQDO HQYLURQPHQWV DQG OLWKRIDFLHV DUH DVVRFLDWHG ZLWK GLIIHUHQW V\VWHPV WUDFWV 6\VWHPV WUDFWV DUH GHILQHG E\ WKHLU SRVLWLRQ ZLWKLQ WKH VHTXHQFH DQG E\ WKH VWDFNLQJ SDWWHUQV RI SDUDVHTXHQFH VHWV DQG SDUDVHTXHQFHV ERXQGHG E\ PDULQHIORRGLQJ VXUIDFHV VXUIDFHV DFURVV ZKLFK WKHUH LV HYLGHQFH RI DQ DEUXSW LQFUHDVH LQ ZDWHU GHSWKf 9DLO 9DQ :DJRQHU DQG RWKHUV f 7KH IOXFWXDWLRQ RI UHODWLYH VHD OHYHO DORQJ ZLWK GHSRVLWLRQDO VHWWLQJ DQG FOLPDWH DIIHFW EDVLQ ZDWHU FKHPLVWU\ VDOLQLW\ QXWULHQWV WHPSHUDWXUH R[\JHQ FRQWHQWf DQG FDUERQDWH SURGXFWLYLW\ 6DUJ f $VVXPLQJ WKDW GHSRVLWLRQDO JHRPHWU\ IDFLHV GLVWULEXWLRQ DQG HDUO\ GLDJHQHVLV RI VKDOORZPDULQH FDUERQDWH URFNV DUH FRQWUROOHG SULPDULO\ E\ UHODWLYH FKDQJHV LQ VHD OHYHO VHTXHQFH VWUDWLJUDSK\ KDV EHHQ SURSRVHG DV D WRRO IRU FKDUDFWHUL]LQJ

PAGE 20

DQG GHOLQHDWLQJ VKDOORZPDULQH FDUERQDWH GHSRVLWLRQDO VHTXHQFHV 6DUJ f %RWK VHLVPLF VWUDWLJUDSK\ DQG VHTXHQFH VWUDWLJUDSK\ KDYH VLJQLILFDQWO\ DOWHUHG WKH ODQJXDJH RI VWUDWLJUDSK\ QRW RQO\ E\ DGGLQJ WR WKH YRFDEXODU\ EXW DOVR E\ UHGHILQLQJ VRPH WHUPV WR UHVWULFW RU HYHQ FKDQJH WKHLU WUDGLWLRQDO PHDQLQJV ,Q VHTXHQFH VWUDWLJUDSKLF XVDJH DQ XQFRQIRUPLW\ LV D VXUIDFH VHSDUDWLQJ \RXQJHU IURP ROGHU VWUDWD DORQJ ZKLFK WKHUH LV HYLGHQFH RI VXEDHULDO HURVLRQDO WUXQFDWLRQ RU VXEDHULDO H[SRVXUH ZLWK D VLJQLILFDQW KLDWXV LQGLFDWHG 9DQ :DJRQHU DQG RWKHUV f 7KLV LV PRUH UHVWULFWLYH WKDQ DQ HDUOLHU GHILQLWLRQ 9DLO DQG RWKHUV f WKDW HQFRPSDVVHG ERWK VXEDHULDO DQG VXEPDULQH VXUIDFHV 7KLV UHVWULFWHG GHILQLWLRQ RI DQ XQFRQIRUPLW\ LV QHFHVVDU\ EHFDXVH RWKHUZLVH WKH SUHVHQFH RI D PD[LPXPIORRGLQJ VXUIDFH D VXEPDULQH XQFRQIRUPLW\ LQ WKH VWULFW VHQVHf LQ WKH PLGGOH RI D VHTXHQFH ZRXOG YLRODWH WKH GHILQLWLRQ RI D VHTXHQFH DV D UHODWLYHO\ FRQIRUPDEOH VXFFHVVLRQ RI JHQHWLFDOO\ UHODWHG VWUDWD 9DLO DQG RWKHUV S f 9DLO DQG 7RGG f UHFRJQL]HG WZR W\SHV RI VHTXHQFHV GLVWLQJXLVKHG E\ WKH W\SH RI VHTXHQFH ERXQGDU\ DW WKH EDVH RI WKH VHTXHQFH $V DSSOLHG WR FDUERQDWH GHSRVLWLRQDO UHJLPHV 6DUJ f D W\SH VHTXHQFH ERXQGDU\ LV PDUNHG E\ VXEDHULDO H[SRVXUH DQG HURVLRQ RI WKH SODWIRUP FRQFXUUHQW VXEPDULQH HURVLRQ RQ WKH IRUHVORSH RQODS RI RYHUO\LQJ VWUDWD DQG D GRZQZDUG VKLIW RI FRDVWDO RQODS $ W\SH VHTXHQFH

PAGE 21

ERXQGDU\ LV FKDUDFWHUL]HG LQ FDUERQDWH V\VWHPV E\ VXEDHULDO H[SRVXUH RI LQQHUSODWIRUP SHULWLGDO DUHDV DQG SODWIRUP VKRDOV D GRZQZDUG VKLIW LQ FRDVWDO RQODS WKDW PD\ RFFXU WR D SRVLWLRQ DW WKH SUHFHGLQJ SODWIRUPEDQN PDUJLQ DQG RQODS RI RYHUO\LQJ SHULWLGDO VWUDWD LQ SODWIRUP ORZV DQG DW WKH PDUJLQ 6DUJ f )RXU V\VWHPV WUDFWV DUH UHFRJQL]HG LQ VHTXHQFH VWUDWLJUDSK\ 9DQ :DJRQHU DQG RWKHUV 6DUJ f ORZVWDQG VKHOI PDUJLQ WUDQVJUHVVLYH DQG KLJKVWDQG $ W\SH VHTXHQFH ERXQGDU\ LV RYHUODLQ E\ D ORZVWDQG V\VWHPV WUDFW ZKHUHDV WKH VKHOI PDUJLQ V\VWHPV WUDFW RYHUOLHV D W\SH VHTXHQFH ERXQGDU\ 7KH WUDQVJUHVVLYH V\VWHPV WUDFW OLHV DERYH WKH WUDQVJUHVVLYH VXUIDFH WKDW RFFXUV DW WKH WRS RI HLWKHU WKH ORZVWDQG RU VKHOI PDUJLQ V\VWHPV WUDFW 7KH WRS RI WKH WUDQVJUHVVLYH V\VWHPV WUDFW LV D FRQGHQVHG VHFWLRQ DQG WKH XSSHU ERXQGDU\ LV WKH GRZQODS VXUIDFH PD[LPXPIORRGLQJ VXUIDFH 0)6f DERYH ZKLFK OLHV WKH KLJKVWDQG V\VWHPV WUDFW ZKLFK FRPSOHWHV WKH VHTXHQFH )LJXUH VKRZV WKH GLVWULEXWLRQ RI FDUERQDWH OLWKRIDFLHV LQ D VHTXHQFH IUDPHZRUN 6DUJ f *HQHWLF 6WUDWLJUDSKLF 6HTXHQFHV 7KH JHQHWLF VWUDWLJUDSKLF VHTXHQFH *66f WKHRU\ *DOORZD\ f ZDV PRGHOHG RQ PDULQH EDVLQV ILOOHG E\ HSLVRGHV RI SURJUDGDWLRQ RI WHUULJHQRXV FODVWLF VHGLPHQWV SXQFWXDWHG E\ PDULQH WUDQVJUHVVLRQV :KLOH WKHUH LV QR H[SUHVVHG DSSOLFDELOLW\ WR FDUERQDWH GHSRVLWLRQDO UHJLPHV WKH

PAGE 22

6(48(1&( 675$7,*5$3+< '(326,7,21$/ 02'(/ 6+2:0* 685)$&(6 6<67(06 75$&76 $1' 87+2)$4(6 %f ,1 *(2/2*,& 7,0( 685)$&(6 6%f 6(48(1&( %281'$5,(6 6% f 7<3( 6% f 7<3( '/6f '2:1/$3 685)$&(6 ,PIrf PD[LPXP IORRGLQJ VXUIDFH 76f 75$16*5(66,9( 685)$&( )LUVW IORRGLQJ VXUIDFH DERYH PD[PXP Lf /(*%L' 6<67(06 75$&76 +67 +,*+67$1' 6<67(06 75$&7 767 75$16*5(66,9( 6<67(06 75$&7 67 /2:67$1' 6<67(06 75$&7 /6) /2:67$1' )$1 /6: /2:67$1' :('*( 60: 6+(/) 0$5*,1 :('*( 6<67(06 75$&7 87+2)$&,(6 J@ 6835$7'$/ J@ 3/$7)250 >7@ 3/$7)2500$5*,1 *5$,168332576721(\5(()6 J@ 0(*$%5(&&,$66$1' J@ )25(6/23( Â’ 72(2)6/23(%$6,1 'LVWULEXWLRQ RI FDUERQDWH VHTXHQFH IUDPHZRUN 6DUJ OLWKRIDFLHV f LQ D )LJXUH *(2/2*,& 7,0(

PAGE 23

FRQFHSW KDV LPSRUWDQW LPSOLFDWLRQV IRU VHTXHQFH VWUDWLJUDSK\ WKDW ZDUUDQW LWV GLVFXVVLRQ 7KH *66 LGHD LV EDVHG RQ WKH FRQFHSWXDO IUDPHZRUN RI )UD]LHU f IRU WKH UHFRJQLWLRQ DQG GHVFULSWLRQ RI ERXQGDU\GHILQHG JHQHWLF XQLWV GHSRVLWHG GXULQJ VXFFHVVLYH UHJLRQDO GHSRVLWLRQDO HSLVRGHV $ *66 FRQVLVWV RI JHQHWLFDOO\ UHODWHG GHSRVLWLRQDO V\VWHPV )LVKHU DQG 0F*RZHQ f DQG WKHLU FRPSRQHQW IDFLHV VHTXHQFHV )UD]LHU f DQG LV WKH VWUDWLJUDSKLF UHFRUG RI D GHSRVLWLRQDO HSLVRGH 'HSRVLWLRQDO HSLVRGHV DUH SXQFWXDWHG E\ UHJLRQDO IORRGLQJ HYHQWV DQG WKH *66 LV ERXQGHG E\ KLDWDO VXUIDFHV VXEPDULQH XQFRQIRUPLWLHV RU FRQGHQVHG VHGLPHQWDU\ YHQHHUVf WKDW UHFRUG PD[LPXP PDULQH IORRGLQJ RI WKH EDVLQ PDUJLQ 6RPH HOHPHQWV RI WKH *66 FRQFHSW KDYH DQDORJV LQ VHTXHQFH VWUDWLJUDSK\ 7KH IORRGLQJ VXUIDFHV DQG FRQGHQVHG VHFWLRQV WKDW ERXQG JHQHWLF VWUDWLJUDSKLF VHTXHQFHV DUH HTXLYDOHQW WR WKH GRZQODS RU PD[LPXPIORRGLQJ VXUIDFHV 0)6f DQG FRQGHQVHG VHFWLRQV DW WKH WRSV RI WUDQVJUHVVLYH V\VWHPV WUDFWV $OWKRXJK ERWK D *66 DQG D V\VWHPV WUDFW DUH VDLG WR FRQVLVW RI GHSRVLWLRQDO V\VWHPV )LVKHU DQG 0F*RZHQ f WKH *66 LV VDLG WR EH DQDORJRXV WR D SDUDVHTXHQFHV VHW *DOORZD\ S f UDWKHU WKDQ D V\VWHPV WUDFW DQG D IDFLHV VHTXHQFH LV FRQVLGHUHG DQDORJRXV WR D SDUDVHTXHQFH *DOORZD\ S f .H\ GLIIHUHQFHV KRZHYHU GLVWLQJXLVK WKH *66 SDUDGLJP IURP VHTXHQFH VWUDWLJUDSK\ )LUVW WKH HXVWDF\ LV QRW

PAGE 24

UHJDUGHG DV WKH GRPLQDQW VWUDWLJUDSKLF YDULDEOH EXW RQO\ D SDUW RI DQ RQJRLQJ LQWHUSOD\ ZLWK VHGLPHQW VXSSO\ DQG EDVLQ VXEVLGHQFH 6HFRQG WKH ERXQGDULHV PD[LPXPIORRGLQJ VXUIDFHVf RI WKH *66 DUH r RXW RI SKDVH ZLWK WKH ERXQGDULHV VXEDHULDO XQFRQIRUPLWLHVf RI VHTXHQFHV VHQVX 9DLO f $OORVWUDWLDUDSKY $Q DOORVWUDWLJUDSKLF XQLW LV D PDSSDEOH VWUDWLIRUP ERG\ RI VHGLPHQWDU\ URFN WKDW LV GHILQHG DQG LGHQWLILHG RQ WKH EDVLV RI LWV ERXQGLQJ GLVFRQWLQXLWLHV 1$&61 S f )URP WKLV GHILQLWLRQ LW PLJKW VHHP WKDW DOORVWUDWLJUDSK\ TXDOLILHV DV DQ DOWHUQDWLYH WR VHLVPLF VWUDWLJUDSK\ VHTXHQFH VWUDWLJUDSK\ DQG WKH FRQFHSW RI JHQHWLF VWUDWLJUDSKLF VHTXHQFHV :DONHU S f LV RI WKLV RSLQLRQ ,Q WKH 1RUWK $PHULFDQ 6WUDWLJUDSKLF &RGH 1$6&1 f UHPDUNV LQ WKH 3UHDPEOH S f WKH VWDWHG SXUSRVH S f DQG WKH H[DPSOHV JLYHQ S f DOO LQGLFDWH WKDW WKH FDWHJRU\ EH OLPLWHG DV VSHFLILHG WR DOOXYLDO ODFXVWULQH DQG JODFLDO GHSRVLWV DQG SUREDEO\ WR WKRVH RI WKH ODWH &HQR]RLF 'LVFXVVLRQ :DONHU f GLVFXVVHV SUREOHPV ZLWK WKH DSSOLFDWLRQ RI ERWK VHTXHQFH VWUDWLJUDSK\ DQG JHQHWLF VHTXHQFH VWUDWLJUDSK\ +H HPSKDVL]HV WKH H[WHQW WR ZKLFK GHSRVLWLRQDO SDWWHUQV FDQ DQG ZLOO FKDQJH DFURVV ERWK VXEDHULDO XQFRQIRUPLWLHV DQG PD[LPXPIORRGLQJ VXUIDFHV DQG UHMHFWV ERWK 9DLO f DQG *DOORZD\ f LQ IDYRU RI DQ DSSURDFK WKDW XVHV DOORVWUDWLJUDSKLF XQLWV DJUHH ZLWK :DONHU f WKDW ERWK

PAGE 25

VHTXHQFH ERXQGDULHV DQG PD[LPXPIORRGLQJ VXUIDFHV 9DLO 9DQ :DJRQHU f DUH VXUIDFHV RI FRPSDUDEOH VWUDWLJUDSKLF VLJQLILFDQFH )XUWKHUPRUH VKDUH WKH GRXEW H[SUHVVHG E\ 6FKODJHU S f DV WR ZKHWKHU RQH FDQ XQHTXLYRFDOO\ GLIIHUHQWLDWH EHWZHHQ VXEDHULDO DQG VXEPDULQH VXUIDFHV RI HURVLRQ RU QRQGHSRVLWLRQ HVSHFLDOO\ LQ FDUERQDWH URFNV SUHIHU DV 6FKODJHU f UHFRPPHQGV WR UHWXUQ WR WKH DSSURDFK RI VHLVPLF VWUDWLJUDSK\ 9DLO DQG RWKHUV f LQ ZKLFK ERWK VXUIDFHV ZHUH FRQVLGHUHG WR EH GHSRVLWLRQDO VHTXHQFH ERXQGDULHV ZLWKRXW UHJDUG WR ZKHWKHU WKH\ DUH VXEDHULDO RU VXEPDULQH 9DLO DQG RWKHUV S f VWDWH 7ZR RU PRUH VHTXHQFHV PD\ EH GHSRVLWHG GXULQJ D F\FOH RU SDUDF\FOH $IWHU D UDSLG ULVH RI VHD OHYHO D VXUIDFH RI QRQGHSRVLWLRQ >VLF@ PD\ EH GHYHORSHG EHIRUH WKH SURJUDGDWLRQDO GHSRVLWV RI WKH VWLOOVWDQG DUH ODLG GRZQ 7KH VXUIDFH VKRXOG EH PDUNHG E\ GRZQODS RI WKH RYHUO\LQJ SURJUDGDWLRQDO GHSRVLWV )UD]LHU f UHFRJQL]HG VXFK VXUIDFHV LQ GHILQLQJ GHSRVLWLRQDO HSLVRGHV GXULQJ WKH 3OHLVWRFHQH RI WKH *XOI RI 0H[LFR (DFK VHTXHQFH RI WUDQVJUHVVLYH VDQGVWRQHV LV RYHUODLQ E\ D VHTXHQFH RI XSZDUG FRDUVHQLQJ SURJUDGDWLRQDO VWUDWD 7KH H[DPSOH GHVFULEHG KHUH )UD]LHU f LV WKH YHU\ ZRUN XSRQ ZKLFK *DOORZD\ f EDVHV WKH FRQFHSW RI JHQHWLF VWUDWLJUDSKLF VHTXHQFHV 3HU *DOORZD\ f WKH VXUIDFH PDUNHG E\ GRZQODS LV WKH ERXQGDU\ RI D *66 EXW WR 9DLO f DQG 9DQ :DJRQHU DQG RWKHUV f LW ZRXOG EH WKH VXUIDFH RI PD[LPXP IORRGLQJ LQ WKH PLGVW RI WKH VHTXHQFH ,Q D VHLVPLF VWUDWLJUDSKLF VFKHPH 9DLO DQG RWKHUV f KRZHYHU WKLV VXUIDFH LV VLPSO\ DQRWKHU GHSRVLWLRQDO VHTXHQFH ERXQGDU\

PAGE 26

$QRWKHU LVVXH LV WKH VHTXHQFH VWUDWLJUDSKLF GHSRVLWLRQDO PRGHO IRU FDUERQDWH URFNV )LJXUH f WKLV PRGHO LV YLUWXDOO\ LGHQWLFDO WR WKDW IRU D VLOLFLFODVWLF UHJLPH 9DLO f EXW IRU WKH VXEVWLWXWLRQ RI FDUERQDWH OLWKRIDFLHV &RQVLGHULQJ WKH FRPSOH[ DUUD\ RI FDUERQDWH SODWIRUP IDFLHV PRGHOV 5HDG f WKLV LV VLPSOLVWLF +DQGIRUG DQG /RXFNV LQ SUHVVf UHFRJQL]H WKDW WKH GHSRVLWLRQDO DQG GLDJHQHWLF UHVSRQVHV RI FDUERQDWH VHGLPHQWV WR UHODWLYH FKDQJHV RI VHD OHYHO DQG VHYHUDO RWKHU IDFWRUV FDQ UHVXOW LQ VLJQLILFDQW YDULDWLRQV LQ V\VWHPV WUDFW JHRPHWULHV DQG XQXVXDO DQG SHUKDSV XQLTXH VWUDWDO SDWWHUQV -DFTXLQ DQG RWKHUV f SUHVHQW DQ H[DPSOH RI WKH VXFFHVVIXO DSSOLFDWLRQ RI VHTXHQFH VWUDWLJUDSKLF FRQFHSWV V\VWHPV WUDFWV DQG GHSRVLWLRQDO VHTXHQFHVf WR FDUERQDWH URFNV LQ RXWFURSV DW WKH VFDOH RI VHLVPLF OLQHV &RPPRQO\ KRZHYHU WKH LGHQWLILFDWLRQ RI V\VWHPV WUDFWV LV EH\RQG WKH OLPLWV RI VHLVPLF UHVROXWLRQ 6FKODJHU S f 1HYHUWKHOHVV LW LV JHQHUDOO\ SRVVLEOH WR UHFRJQL]H XQFRQIRUPLWLHV DV VHTXHQFH ERXQGDULHV DQG VHGLPHQW SDFNDJHV ZLWK LQWHUQDOO\ FRKHUHQW EHGGLQJ SDWWHUQV DV VHTXHQFHV 7KH FULWLFDO REVHUYDWLRQV RI 0LDOO f LQFOXGH PDQ\ ZHOOPDGH SRLQWV DERXW WKH SUREOHPV ZLWK VHTXHQFH VWUDWLJUDSK\ ,W LV P\ LQWHQWLRQ WR DSSO\ DOO WHFKQLTXHV RI VWUDWLJUDSKLF DQDO\VHV LQFOXGLQJ WKDW RI VHLVPLF VHTXHQFHVf REMHFWLYHO\ WR HYDOXDWH GDWD REWDLQHG IURP GHWDLOHG ORFDO UHVHDUFK

PAGE 27

*HRORJLF 6HWWLQJ 7KH )ORULGD &DUERQDWH 3ODWIRUP SURMHFWV VRXWKHDVWZDUG IURP DGMDFHQW SDUWV RI WKH $WODQWLF DQG *XOI &RDVWDO 3URYLQFH RI 1RUWK $PHULFD DQG IRUPV WKH QRUWKHDVWHUQ PDUJLQ RI WKH *XOI RI 0H[LFR $ORQJ WKLV PDUJLQ WKH SODWIRUP FRQVLVWV RI WKH HPHUJHQW )ORULGD 3HQLQVXOD D EURDG DUHD RI VKDOORZ VKHOI DQG D JHQWO\ LQFOLQHG XSSHU VORSH WHUUDFHf IURQWHG E\ WKH VWHHS )ORULGD (VFDUSPHQW )LJXUH f 6WUDWLJUDSK\ $ WKLFN VHFWLRQ RI VHGLPHQWDU\ URFN UDQJLQJ IURP -XUDVVLF WR +RORFHQH XQGHUOLHV WKH UHJLRQ )LJXUH LV D FKDUW RI WKH 0LGGOH -XUDVVLF WKURXJK +RORFHQH VWUDWLJUDSK\ LQ WKH YLFLQLW\ RI WKLV VWXG\ 7KH FKDUW LV ODUJHO\ GHULYHG IURP WKDW RI 6DOYDGRU 3ODWH f ZLWK WKH PLQRU PRGLILFDWLRQ RI FHUWDLQ OLWKRVWUDWLJUDSKLF ERXQGDULHV DQG WKH DGGLWLRQ RI *XOI &RDVW 3URYLQFLDO FKURQRVWUDWLJUDSKLF XQLWV DFFRUGLQJ WR WKH VFKHPHV RI f +XGGOHVWXQ DQG RWKHUV f DQG f :X DQG RWKHUV Df 7KH HVWDEOLVKPHQW RI )ORULGDnV VWUDWLJUDSKLF QRPHQFODWXUH LV UHYLHZHG E\ *RKQ f DQG PRUH VSHFLILFDOO\ LQ VHFWLRQV RI 6DOYDGRU f 7KH IRUPHU RIIHUV VRPH DOWHUQDWLYH LQWHUSUHWDWLRQV UHJDUGLQJ WKH DJH DQG FRUUHODWLRQ RI FHUWDLQ XQLWV VKRZQ LQ )LJXUH HJ $WNLQVRQ &HGDU .H\V 2OGVPDU DQG 6XZDQQHH )RUPDWLRQVf ,PSRUWDQW FRQWULEXWLRQV WR )ORULGD VWUDWLJUDSK\ LQFOXGH $SSOLQ DQG $SSOLQ f $SSOLQ DQG -RUGDQ f &KHQ f :LQVWRQ D E

PAGE 28

D f 0H\HUKRII DQG +DWWHQ f DQG 0LOOHU f 0DQRU *HRORJLF )HDWXUHV 7KH PDMRU JHRORJLF IHDWXUHV RI WKH UHJLRQ DUH VKRZQ LQ )LJXUH 5HYLHZ RI WKH OLWHUDWXUH UHYHDOV QXPHURXV GLVFUHSDQFLHV LQ WKH QDPHV ORFDWLRQV VKDSHV DQG RULHQWDWLRQV RI WKH PDMRU JHRORJLF IHDWXUHV RI )ORULGD HJ &KHQ 0DUWLQ .OLWJRUG DQG RWKHUV 6KDXE /RFNHU DQG 6DKDJLDQ 3LQGHOO %XIIOHU DQG 6DZ\HU %DOO DQG RWKHUV 6DOYDGRU f )LJXUH DWWHPSWV WR UHFRQFLOH WKHVH YDULRXV LQWHUSUHWDWLRQV DQG LV EDVHG DV PXFK DV SRVVLEOH RQ REVHUYDWLRQV RI WKH VHLVPLF GDWD XVHG LQ WKLV VWXG\ )HDWXUHV GLVFXVVHG KHUH DUH WKH 3HQLQVXODU $UFK 2FDOD XSOLIW 0LGGOH *URXQG $UFK 6DUDVRWD $UFK 'HVWLQ $QWLFOLQH 6RXWK )ORULGD %DVLQ 7DPSD %DVLQ $SDODFKLFROD %DVLQ DQG (PED\PHQW 6XZDQQHH &KDQQHO *XOI 7URXJK 'H6RWR &DQ\RQ DQG )ORULGD (VFDUSPHQW 7KH )ORULGD 3ODWIRUP LV HIIHFWLYHO\ GLYLGHG LQWR HDVWHUQ DQG ZHVWHUQ SDUWV E\ WKH VRXWKHDVWSOXQJLQJ 3HQLQVXODU $UFK $OWKRXJK LW KDV EHHQ FDOOHG D EDVHPHQW VWUXFWXUH 6KDXE f WKH 3HQLQVXODU $UFK DFWXDOO\ RYHUOLHV DQG LV GLVWLQFW IURP PRUH WKDQ RQH EDVHPHQW IHDWXUH .OLWJRUG DQG RWKHUV S f 7KH 3HQLQVXODU $UFK ZDV FRQWLQXRXVO\ SRVLWLYH IURP -XUDVVLF XQWLO /DWH &UHWDFHRXV WLPH DQG ZDV LQWHUPLWWHQWO\ SRVLWLYH GXULQJ &HQR]RLF WLPH 0LOOHU S %OOf

PAGE 29

)LJXUH 0LGGOH -XUUDVVLF WKURXJK +RORFHQH VWUDWLJUDSK\ LQ WKH YLFLQLW\ RI WKLV VWXG\ PRGLILHG IURP 6DOYDGRU 3ODWH ZLWK *XOI &RDVW SURYLQFLDO FKURQR VWUDWLJUDSKLF XQLWV IURP f +XGGOHVWXQ DQG RWKHUV DQG f :X DQG RWKHUV Df 6WLSSOHG DUHDV DUH ODFXQDH

PAGE 31

)LJXUH 0DMRU JHRORJLF IHDWXUHV RI WKH )ORULGD &DUERQDWH 3ODWIRUP $% $SDODFKLFROD %DVLQ $( $SDODFKLFROD (PED\PHQW %)= %DKDPDV )UDFWXUH =RQH &)= &XED )UDFWXUH =RQH '' 'HVWLQ 'RPH *7 *XOI 7URXJK 0*$ 0LGGOH *URXQG $UFK 2+ 2FDOD +LJK 3$ 3HQLQVXODU $UFK 6$ 6DUDVRWD $UFK 6& 6XZDQQHH &KDQQHO 6)% 6RXWK )ORULGD %DVLQ 7( 7DPSD (PED\PHQW .8 SRVLWLRQ RI 8SSHU &UHWDFHRXV IDFLHV ERXQGDU\ (8 SRVLWLRQ RI 8SSHU (RFHQH IDFLHV ERXQGDU\

PAGE 32

7KH DUHD RI RXWFURSSLQJ (RFHQH URFNV LQ ZHVWFHQWUDO )ORULGD KDV EHHQ FDOOHG 2FDOD XSOLIW EXW WKLV IHDWXUH GRHV QRW DIIHFW URFNV ROGHU WKDQ WKH PLGGOH (RFHQH DQG WKHUHIRUH LV QRW WUXO\ DQ XSOLIW :LQVWRQ Ef ,Q WKH OLWHUDWXUH WKH 2FDOD XSOLIW DQG 3HQLQVXODU $UFK DUH VRPHWLPHV FRQIXVHG 6DOYDGRU )LJXUH f 7KH QRUWKHUQ ERXQGDU\ RI WKH )ORULGD &DUERQDWH 3ODWIRUP LV HVVHQWLDOO\ D IDFLHV WUDQVLWLRQ WR WHUULJHQRXV FODVWLF VHGLPHQWV GHULYHG IURP WKH $SSDODFKLDQ 0RXQWDLQV 7KH FDUERQDWHVLOLFLFODVWLF IDFLHV UHODWLRQVKLS H[LVWHG VLQFH WKH ODWH 0HVR]RLF 6DOYDGRU /DWH -XUDVVLF %DOO DQG RWKHUV (DUO\ &UHWDFHRXV &RUVR DQG RWKHUV f 7KH IDFLHV FKDQJH LQ 8SSHU &UHWDFHRXV WKURXJK 8SSHU (RFHQH VWUDWD PLJUDWHG SURJUHVVLYHO\ WR WKH QRUWKZHVW &KHQ 0LOOHU f ,Q 8SSHU &UHWDFHRXV 3DOHRFHQH DQG /RZHU (RFHQH URFNV WKH ORFDWLRQ RI WKH IDFLHV WUDQVLWLRQ LV DVVRFLDWHG ZLWK WKH 6XZDQQHH &KDQQHO &KHQ f DOVR NQRZQ DV WKH 6XZDQQHH 6WUDLW 'DOL DQG +DUULV 3LQHW DQG 3RSHQRH 3RSHQRH 0LOOHU f ,Q 0LGGOH (RFHQH DQG 8SSHU (RFHQH VWUDWD WKH IDFLHV FKDQJH LV ORFDWHG LQ WKH YLFLQLW\ RI WKH *XOI 7URXJK 3RSHQRH DQG RWKHUV f 0F.LQQH\ f SURSRVHV D FDUERQDWH VXSSUHVVLRQ VHGLPHQWRORJLF PRGHO :DONHU DQG RWKHUV f DV DQ DOWHUQDWLYH WR VWUXFWXUDO FRQWURO RI WKH 3DOHRJHQH IDFLHV WUDQVLWLRQV

PAGE 33

%DVHG RQ D FDUERQDWHWRVLOLFLFODVWLF IDFLHV FKDQJH LQWHUSUHWHG IURP VHLVPLF UHIUDFWLRQ SURILOHV $QWRLQH DQG +DUGLQJ f H[WHQG WKH 6XZDQQHH 6WUDLW VRXWKZDUG EHQHDWK WKH FRQWLQHQWDO VKHOI XQGHU $SDODFKHH %D\ $ FKDQJH LQ WKH FKDUDFWHU RI UHIOHFWLRQ VHLVPLF GDWD OHG $QWRLQH DQG -RQHV f WR ORFDWH WKH IDFLHV FKDQJH DORQJ WKH )ORULGD (VFDUSPHQW DW r n 1 DQG WR SURMHFW WKH 6XZDQQHH 6WUDLW WRZDUG WKDW SRLQW &KHQ f KRZHYHU SURMHFWV WKH 6XZDQQHH &KDQQHO PRUH WRZDUG WKH ZHVW OLQNLQJ WKH FKDQQHO ZLWK WKH $SDODFKLFROD HPED\PHQW DQG H[WHQGLQJ LW DFURVV WKH $SDODFKLFROD %DVLQ WRZDUG WKH ZHVW VLGH RI WKH 'H6RWR &DQ\RQ 0LWFKXP f SUHVHQWV WKH 'H6RWR &DQ\RQ DQ DUHD RI QRQGHSRVLWLRQ DQG VRPH VHGLPHQW HURVLRQ VLQFH WKH /DWH &UHWDFHRXV DV WKH ZHVWZDUG H[WHQVLRQ RI WKH 6XZDQQHH 6WUDLW YLVLEOH RQ VHLVPLF VHFWLRQV 7KH )ORULGD (VFDUSPHQW VWUHWFKLQJ IURP WKH 'H6RWR &DQ\RQ WR WKH 6WUDLWV RI )ORULGD LV WKH ZHVWHUQ ERXQGDU\ RI WKH )ORULGD 3ODWIRUP 7KH HVFDUSPHQW IRUPHG E\ DJJUDGDWLRQ RI DQ (DUO\ &UHWDFHRXV ULPPHG FDUERQDWH SODWIRUP %U\DQW DQG RWKHUV &RUVR DQG %XIIOHU &RUVR DQG RWKHUV f EXW VRXWK RI r 1 WKH HVFDUSPHQW KDV EHHQ PRGLILHG E\ HURVLRQ )UHHPDQ/\QGH &RUVR DQG RWKHUV 3DXOL DQG RWKHUV 7ZLFKHOO DQG RWKHUV f (DVW RI WKH )ORULGD (VFDUSPHQW D QXPEHU RI EDVLQV DQG DUFKHV 0LGGOH *URXQG $UFK 6DUDVRWD $UFK 'HVWLQ $QWLFOLQH 7DPSD %DVLQ $SDODFKLFROD %DVLQ DQG (PED\PHQWf DUH UHFRJQL]HG

PAGE 34

0RVW RI WKHVH IHDWXUHV DUH EDVHPHQWUHODWHG EXW KDYH H[SUHVVLRQ LQ \RXQJHU 0HVR]RLF VWUDWD DQG LQIOXHQFH WKDW SHUVLVW LQWR &HQR]RLF VWUDWD %DOO DQG RWKHUV f $W WKH QRUWKZHVWHUQ HQG RI WKH VWXG\ DUHD DUH WKH $SDODFKLFROD %DVLQ 1RUWKHDVW *XOI %DVLQ RI /RFNHU DQG 6DKDJLDQ f DQG LWV RQVKRUH H[WHQVLRQ WKH $SDODFKLFROD (PED\PHQW $ ODUJH QRUWKZHVWWUHQGLQJ DQWLFOLQH LQ WKH $SDODFKLFROD %DVLQ WKH 'HVWLQ $QWLFOLQH RU 'HVWLQ 'RPH LV UHODWHG WR D VDOW VZHOO XSOLIWHG GXULQJ WKH /DWH &UHWDFHRXV DQG HDUO\ &HQR]RLF %DOO DQG RWKHUV f 6RXWKHDVW RI WKH $SDODFKLFROD %DVLQ WKH 0LGGOH *URXQG $UFK :LQVWRQ f LV D EURDG VRXWKZHVWSOXQJLQJ QRVH WKDW FDQ EH WUDFHG RQVKRUH LQWR WKH ZHVW IODQN RI WKH 3HQLQVXODU $UFK %DOO DQG RWKHUV f 6RPH VWXGLHV /RFNHU DQG 6DKDJLDQ /RUG 'REVRQ f UHFRJQL]H D GLVWLQFW KLJK RQ WKH EDVHPHQW VXUIDFH WR WKH VRXWKZHVW RI WKH 0LGGOH *URXQG $UFK DQG UHIHU WR LW DV WKH 6RXWKHUQ 3ODWIRUP ,W LV XQFOHDU ZKHWKHU LQ \RXQJHU VWUDWD WKLV IHDWXUH LV GLVWLQJXLVKDEOH IURP WKH 0LGGOH *URXQG $UFK 7KH QDPH LV DPELJXRXV DV WR LWV ORFDWLRQ DQG LWV QDWXUH LW LV HDVLO\ PLVWDNHQ IRU D VRXWK)ORULGD IHDWXUH DQG LV HUURQHRXVO\ VXJJHVWLYH RI D FDUERQDWH SODWIRUP 6RXWK RI WKH 0LGGOH *URXQG $UFK WKH 7DPSD %DVLQ .OLWJRUG DQG RWKHUV f LV DOVR FDOOHG WKH 7DPSD (PED\PHQW 6KDXE 'REVRQ f WKH 6W 3HWHUVEXUJ %DVLQ /RFNHU DQG 6DKDJLDQ f DQG WKH )ORULGD (OERZ %DVLQ 3LQGHOO

PAGE 35

f %DOO DQG RWKHUV f GLG QRW REVHUYH FRQYLQFLQJ HYLGHQFH LQ VHLVPLF VHFWLRQV RI WKH 7DPSD (PED\PHQWnV H[LVWHQFH EXW 'REVRQ f DQG /RUG f GR UHFRJQL]H WKLV IHDWXUH RQ FRYHUDJH IDUWKHU GRZQGLS 7KH 6DUDVRWD $UFK DOVR FDOOHG WKH 3LQHOODV &RXQW\ $UFK 6KDXE /RUG f RU 7DPSD $UFK 3LQGHOO f VHSDUDWHV WKH 7DPSD (PED\PHQW WR WKH QRUWK IURP WKH 6RXWK )ORULGD %DVLQ WR WKH VRXWK 7KH 6DUDVRWD $UFK ULYDOV WKH 3HQLQVXODU $UFK LQ UHOLHI %DOO DQG RWKHUV %DOO f %DOO DQG RWKHUV f FRXOG QRW FOHDUO\ REVHUYH WKH 6DUDVRWD $UFK RQ VHLVPLF VHFWLRQV EXW ZHOO GDWD VXJJHVW D PDMRU GRZQ WRWKHQRUWK IDXOW EHWZHHQ WKH 0RELO 2&6* DQG 6KHOO 2&6 ZHOOV )LJXUH :HOOV DQG f WKDW PD\ EH UHODWHG WR WKH QRUWKZHVW IODQN RI WKLV JUDQLWLF KLJK %DOO f 6RXWK )ORULGD %DVLQ DOVR NQRZQ DV WKH 6XQQLODQG %DVLQ /RFNHU DQG 6DKDJLDQ f LV FRQVLGHUHG WR EH D EDVHPHQW FRQWUROOHG VWUXFWXUH 6DZ\HU DQG RWKHUV f DQG FRQWDLQV PRUH WKDQ P RI XSSHUPRVW -XUDVVLF WKURXJK 4XDWHUQDU\ VWUDWD (ZLQJ f *DOORZD\ DQG RWKHUV f UHJDUG WKH EDVLQ DV DQ DUHD RI UDSLG &HQR]RLF VXEVLGHQFH DQG VHGLPHQW DFFXPXODWLRQ 7KH\ VWDWH *DOORZD\ DQG RWKHUV S f WKDW WKH HQWLUH )ORULGD 3ODWIRUP ZDV H[SRVHG DW WKH HQG RI WKH &UHWDFHRXV )LJXUH f EXW RWKHUV &KHQ :LQVWRQ D Ef UHSRUW WKDW VHGLPHQWDWLRQ LQ WKH 6RXWK )ORULGD %DVLQ ZDV FRQWLQXRXV IURP WKH &UHWDFHRXV LQWR WKH 7HUWLDU\ 6KDXE f GLVFXVVHV WKH LQWHUQDO IUDPHZRUN RI WKLV EDVLQ

PAGE 36

3UH/DWH &UHWDFHRXV *HRORJLF +LVWRU\ 7R VHW WKH VWDJH IRU WKH HYROXWLRQ RI WKH )ORULGD &DUERQDWH 3ODWIRUP RQH PXVW ORRN EDFN WR WKH ULIWLQJ RI 3DQJHD DQG WKH EHJLQQLQJV RI WKH $WODQWLF 2FHDQ DQG WKH *XOI RI 0H[LFR LQ WKH /DWH 7ULDVVLF 0DQ\ DOWHUQDWLYH LQWHUSUHWDWLRQV H[LVW IRU WKH RULJLQ RI WKH *XOI RI 0H[LFR&DULEEHDQ UHJLRQ HJ $QGHUVRQ DQG 6FKPLGW 9DQ 6LFOHQ .OLWJRUG DQG RWKHUV 3LQGHOO %XIIOHU DQG 6DZ\HU 6DOYDGRU 6KHULGDQ DQG RWKHUV %XIIOHU 5HLW] Ef $PRQJ WKH PRGHOV WKHUH LV JHQHUDO DJUHHPHQW WKDW WKH FUXVW EHQHDWK WKH )ORULGD 3ODWIRUP LV FRQWLQHQWDO DOWKRXJK PDQ\ .OLWJRUG DQG RWKHUV 3LQGHOO %XIIOHU DQG 6DZ\HU 6KHULGDQ DQG RWKHUV %XIIOHU 5HLW] Df FRQVLGHU WKLV FRQWLQHQWDO FUXVW WR EH DWWHQXDWHG 6RPH LQYHVWLJDWRUV .OLWJRUG DQG RWKHUV 9DQ 6LFOHQ 3LQGHOO %XIIOHU DQG 6DZ\HU 6KHULGDQ DQG RWKHUV %XIIOHU 'REVRQ f EHOLHYH WKDW D PDMRU FUXVWDO ERXQGDU\ RFFXUV DORQJ D OLQH WUHQGLQJ QRUWKZHVWVRXWKHDVW DFURVV WKH :HVW )ORULGD 6KHOI %DKDPDV )UDFWXUH =RQH %)= RI .OLWJRUG DQG RWKHUV -D\ )DXOW RI 3LQGHOO f 7R WKH QRUWKHDVW RI WKLV OLQH WKH FUXVW LV FRQWLQHQWDO DQG WR WKH VRXWKZHVW WKH FUXVW LV DWWHQXDWHG WKLFN WUDQVLWLRQDO RI %XIIOHU f %DOO DQG RWKHUV f DQG %DOO f KRZHYHU UHSRUW WKDW 3DOHR]RLF VHGLPHQWDU\ RU PHWDVHGLPHQWDU\ URFN XQGHUOLHV WKH HQWLUH SODWIRUP QRUWK RI r 1 DQG WKRXJK GHHS IDXOWV GR

PAGE 37

H[LVW DW VRPH ORFDWLRQV LGHQWLILHG E\ RWKHUV HJ .OLWJRUG DQG RWKHUV 3LQGHOO f DV KLQJHV RU IUDFWXUH ]RQHV WKHVH DUH QRW ERXQGDULHV EHWZHHQ LVRODWHG EORFNV RI FRQWLQHQWDO FUXVW 7KH VSHFLILF FKDUDFWHU RI WKH %)= RU DQDORJRXV QRUWKZHVWVRXWKHDVW IDXOWVf LV DPELJXRXV $PRQJ WKRVH ZKR FRQVLGHU LW D ULJKWODWHUDO ZUHQFKIDXOW ]RQH 9DQ 6LFOHQ f LQWHUSUHWV LW LQ UHODWLRQ WR WKH 3DOHR]RLF 2XDFKLWD RURJHQ\ EXW 0LOOHU f UHJDUGV LW DV D UHVXOW RI QRUWK VRXWK FRPSUHVVLRQ WKDW ZDV DFWLYH WKURXJKRXW WKH -XUDVVLF 2WKHUV .OLWJRUG DQG RWKHUV 3LQGHOO f VSHFXODWH WKDW PRWLRQ ZDV OHIWODWHUDO DQG UHODWHG WR 0HVR]RLF VHDIORRU VSUHDGLQJ 'REVRQ f GRHV QRW FLWH HYLGHQFH RI VWULNH VOLS PRYHPHQW RQ WKH %)= EXW QRWHV WUXQFDWLRQ RI VWUXFWXUDO IHDWXUHV 5HLW] Df GHVFULEHV WKH %)= DV DQ DSSDUHQWO\ XQGLVWXUEHG QRUWKZHVWVRXWKHDVW OLQHDU ]RQH WKDW VHSDUDWHV QRUWKHDVWWUHQGLQJ ULIW EDVLQV WR WKH QRUWKHDVW IURP QRUWKZHVWWUHQGLQJ ULIWV WR WKH VRXWKZHVW :X DQG RWKHUV E S f REVHUYH QR PDMRU IDXOW ,Q )ORULGD JHRORJ\ WKH WHUP EDVHPHQW KDV EHHQ YDULRXVO\ GHILQHG DV URFNV EHQHDWK WKH SUH&UHWDFHRXV SRVWULIW XQFRQIRUPLW\ .OLWJRUG DQG RWKHUV f WKH WRS RI WKH 3DOHR]RLF VHFWLRQ %DOO DQG RWKHUV f DQG URFNV EHORZ RU ROGHU WKDQ WKH 0LGGOH -XUDVVLF /RXDQQ 6DOW 'REVRQ 'REVRQ DQG %XIIOHU f 7KH PDLQ W\SHV RI EDVHPHQW URFNV RI )ORULGD DUH -XUDVVLF LJQHRXV URFNV LQ

PAGE 38

6RXWK )ORULGD 3DOHR]RLF LJQHRXV URFNV LQ FHQWUDO )ORULGD DQG 3DOHR]RLF VHGLPHQWDU\ URFNV LQ QRUWKHUQ DQG SDQKDQGOH )ORULGD .OLWJRUG DQG RWKHUV f 6DOLHQW IHDWXUHV LQWHUSUHWHG IURP VHLVPLF SURILOHV DQG ZHOO FRQWURO ZLWKLQ WKH EDVHPHQW RI WKH QRUWKHDVWHUQ *XOI RI 0H[LFR DUH GLVFXVVHG E\ %DOO DQG RWKHUV f 'REVRQ f DQG 'REVRQ DQG %XIIOHU f 3URJUHVVLYH HDVWZDUG PDULQH LQYDVLRQ RFFXUUHG GXULQJ WKH -XUDVVLF DV WKH *XOI RI 0H[LFR RSHQHG 6DOYDGRU f $ORQJ WKH QRUWKHUQ IODQN RI WKH *XOI RI 0H[LFR %DVLQ GHSRVLWLRQ RI HYDSRULWHV /RXDQQ 6DOWf LQ WKH ODWH 0LGGOH -XUDVVLF &DOORYLDQf ZDV IROORZHG LQ WKH /DWH -XUDVVLF 2[IRUGLDQ.LPPHULGJLDQf E\ PL[HG VLOLFLFODVWLF DQG FDUERQDWH GHSRVLWLRQ 1RUSKOHW6PDFNRYHU +D\QHVYLOOHf DQG LQ WKH ODWHVW -XUDVVLF 7LWKRQLDQf WR HDUOLHVW &UHWDFHRXV E\ GHSRVLWLRQ RI D WKLFN ZHGJH RI FRDUVH IOXYLDOGHOWDLF VHGLPHQWV &RWWRQ 9DOOH\f 0LOOHU f DQG 0LWFKHOO7DSSLQJ f DGGUHVV WKH VWUXFWXUH DQG VWUDWLJUDSK\ RI -XUDVVLF URFNV RQVKRUH )ORULGD %DOO DQG RWKHUV f 'REVRQ f 'REVRQ DQG %XIIOHU D Ef DQG 5HLW] Df LQYHVWLJDWH WKH VHLVPLF VWUDWLJUDSK\ DQG JHRORJLF KLVWRU\ RI -XUDVVLF URFNV RI WKH QRUWKHDVWHUQ *XOI RI 0H[LFR 6WUXFWXUH RI WKH EDVHPHQW VXUIDFH FRQWUROOHG WKH GLVWULEXWLRQ WKLFNQHVV DQG SDOHRJHRJUDSK\ RI -XUDVVLF XQLWV 0LOOHU 'REVRQ 5HLW] Df &DUERQDWHHYDSRULWH VHGLPHQWV RI WKH )ORULGD 3ODWIRUP ZHUH GHSRVLWHG LQ WKH 6RXWK )ORULGD %DVLQ LQ ODWHVW -XUDVVLF

PAGE 39

7LWKRQLDQf WLPH ZKLOH WKH QRUWKHUQ SDUW RI WKH SODWIRUP UHPDLQHG HPHUJHQW XQWLO WKH (DUO\ &UHWDFHRXV .OLWJRUG DQG RWKHUV 6DOYDGRU 6KHULGDQ DQG RWKHUV f 6HLVPLF FRUUHODWLRQV 'REVRQ f VXJJHVW WKH SUHVHQFH RI DQ DSSUHFLDEOH WKLFNQHVV RI 6PDFNRYHU /LPHVWRQH 2[IRUGLDQf LQ WKH 7DPSD (PED\PHQW ZLWK VHLVPLF IDFLHV LQWHUSUHWHG DV VKDOORZPDULQH FDUERQDWH UDPS ZLWK ORFDOL]HG EXLOGXSV 7KH RYHUO\LQJ +D\QHVYLOOH VHTXHQFH .LPPHULGJLDQf RQODSV HYHQ PRUH RI WKH ZHVWHUQ )ORULGD 3ODWIRUP EXW +D\QHVYLOOH FDUERQDWH GHSRVLWV DUH OLPLWHG WR WKH ZHVWHUQ $SDODFKLFROD %DVLQ 'REVRQ 'REVRQ DQG %XIIOHU D Ef &DUERQDWHHYDSRULWH GHSRVLWLRQ RFFXUUHG LQ WKH 7DPSD (PED\PHQW DQG RYHU WKH 6DUDVRWD $UFK GXULQJ WKH 7LWKRQLDQ 6DOYDGRU )LJXUH f ,Q WKH $SDODFKLFROD %DVLQ WKH .QRZOHV /LPHVWRQH DW WKH EDVH RI WKH /RZHU &UHWDFHRXV DQG WKH WRS RI WKH &RWWRQ 9DOOH\ *URXS PDUNV WKH WUDQVLWLRQ IURP D FDUERQDWH UDPS WR D ULPPHG FDUERQDWH SODWIRUP &RUVR &RUVR DQG RWKHUV f 3URJUDGDWLRQ RI WKH .QRZOHV /LPHVWRQH FDUERQDWH UDPS H[WHQGHG WR WKH VRXWKHDVW WRZDUG WKH 7DPSD HPED\PHQW 'REVRQ f 'XULQJ WKH (DUO\ &UHWDFHRXV WKH ZHVWHUQ )ORULGD FDUERQDWH 3ODWIRUP GHYHORSHG D KLJKUHOLHI ULPPHG PDUJLQ DORQJ WKH SUHVHQW )ORULGD (VFDUSPHQW %U\DQW DQG RWKHUV &RUVR DQG %XIIOHU &RUVR DQG RWKHUV f $ GLVFRQWLQXRXV VHULHV RI FRQWHPSRUDQHRXV SODWIRUPV QHDUO\ HQFLUFOHG WKH GHHS *XOI RI 0H[LFR /RFNHU DQG %XIIOHU f

PAGE 40

:LQNHU DQG %XIIOHU f DQG 0F)DUODQ DQG 0HQHV f SURYLGH FRPSDULVRQV RI WKHVH /RZHU &UHWDFHRXV FDUERQDWH VKHOI PDUJLQV /DWH &UHWDFHRXV&HQR]RLF *HRORJLF +LVWRU\ ,Q WKH 86 *XOI &RDVWDO 3ODLQ WKH WHUP 8SSHU &UHWDFHRXV LV ORRVHO\ DSSOLHG WR WKH PLG&HQRPDQLDQ WKURXJK 0DDVWULFKWLDQ VHFWLRQ WKDW KDV EHHQ FDOOHG WKH SURYLQFLDO *XOILDQ 6HULHV 7KH ERXQGDU\ RI WKH *XOILDQ ZLWK WKH XQGHUO\LQJ &RPDQFKHDQ 6HULHV LV D SURIRXQG SK\VLFDO VWUDWLJUDSKLF EUHDN EXW GRHV QRW FRUUHVSRQG H[DFWO\ WR WKH LQWHUQDWLRQDOO\ DFFHSWHG /RZHU &UHWDFHRXV8SSHU &UHWDFHRXV ERXQGDU\ 0F)DUODQ DQG 0HQHV 6RKO DQG RWKHUV f 7KURXJKRXW PXFK RI WKH *XOI &RDVW WKH 8SSHU &UHWDFHRXV VHFWLRQ LV VWURQJO\ RYHUSULQWHG E\ F\FOLF VHDOHYHO IOXFWXDWLRQV 6DOYDGRU S f 7KHVH RVFLOODWLRQV VKRXOG EH UHIOHFWHG LQ WKH )ORULGD 3ODWIRUP DV ZHOO EXW DV \HW WKH\ KDYH QRW EHHQ UHSRUWHG 6DOYDGRU S f $IWHU WKH &RPDQFKHDQ (SRFK WKHUH RFFXUUHG D EDVLQZLGH FKDQJH LQ VHGLPHQWDWLRQ :LQNHU DQG %XIIOHU f DQG GHHSZDWHU FDUERQDWH VHGLPHQW ZDV GHSRVLWHG RYHU WKH )ORULGD 3ODWIRUP %U\DQW DQG RWKHUV :RU]HO DQG RWKHUV 0LWFKXP )UHHPDQ/\QGH f ,Q WKH )ORULGD SDQKDQGOH *XOILDQ VWUDWD GRPLQDQWO\ FRQVLVW RI FDOFDUHRXV FOD\ LQ SHQLQVXODU )ORULGD WKHVH URFNV DUH FKLHIO\ FKDON DQG ILQHJUDLQHG OLPHVWRQH 7KH 8SSHU &UHWDFHRXV WKURXJK &HQR]RLF GHSRVLWV GULOOHG DORQJ WKH )ORULGD (VFDUSPHQW DUH IRUDPLQLIHUDO

PAGE 41

FRFFROLWK FDUERQDWH PXGV RR]HVf VXJJHVWLQJ WKDW WKH ZHVW PDUJLQ RI WKH SRVW&RPDQFKHDQ )ORULGD 3ODWIRUP ZDV D GLVWDOO\ VWHHSHQHG UDPS 5HDG f GRPLQDWHG E\ SHODJLF WR RSHQ PDULQH VKHOI FDUERQDWH VHGLPHQWDWLRQ :LQNHU DQG %XIIOHU f 7KH *XOILDQ 6HULHV RFFXUV RQO\ LQ WKH VXEVXUIDFH LQ WKH VWXG\ DUHD $SSOLQ DQG $SSOLQ 0LOOHU f 3DOHRJHQH VWUDWD LQ SHQLQVXODU )ORULGD DUH VKDOORZ PDULQH FDUERQDWH URFNV LQWHUFDODWHG ZLWK HYDSRULWHV LQ WKH ROGHU XQLWVf WR WKH QRUWK DQG ZHVW WKHVH JUDGH LQWR GHSRVLWV RI FOD\ DQG ILQH VDQG 6LOLFLFODVWLF GHSRVLWV DUH PRUH SUHYDOHQW LQ 1HRJHQH VWUDWD 'XULQJ WKH 0LRFHQH WKH )ORULGD &DUERQDWH 3ODWIRUP UHFHLYHG DQ LQIOX[ RI WHUULJHQRXV VHGLPHQWV IURP WKH QRUWK 6SHFLDO FRQGLWLRQV RI PDULQH FKHPLVWU\ SDUWLFXODUO\ LQ PLGGOH 0LRFHQH WLPH UHVXOWHG LQ WKH ZLGHVSUHDG GHSRVLWLRQ RI SKRVSKDWLF VHGLPHQWV 5LJJV 6FRWW &RPSWRQ DQG RWKHUV f 3RVW0LRFHQH VWUDWD FRQVLVW RI VKDOORZ PDUJLQDOWRRSHQ PDULQH EHGV RYHUODLQ E\ VDQG\ PDULQH WHUUDFH GHSRVLWV WKDW DUH LQ WXUQ FDSSHG E\ D WKLQ OD\HU RI IOXYLDO VDQG DQGRU UHVLGXXP %HQHDWK WKH *XOI RI 0H[LFR %XIIOHU DQG RWKHUV f REVHUYH D PDMRU UHJLRQDO XQFRQIRUPLW\ DQG VHLVPLF VWUDWLJUDSKLF VHTXHQFH ERXQGDU\ WKDW FRUUHVSRQGV WR WKH &RPDQFKHDQ*XOILDQ ERXQGDU\ $OWKRXJK LWV VWUDWLJUDSKLF H[SUHVVLRQ YDULHV WKLV SURPLQHQW KLJKDPSOLWXGH UHIOHFWLRQ LV SUHVHQW RQ VHLVPLF SURILOHV IURP WKH GHHS *XOI DQG DORQJ LWV VRXWKHUQ DQG HDVWHUQ PDUJLQV )DXVW f %XIIOHU DQG

PAGE 42

RWKHUV f WHUP WKH UHIOHFWLRQ WKH 0LG&UHWDFHRXV 8QFRQIRUPLW\ 0&8f DQG UHODWH WKH HYHQW WR D UHODWLYH IDOO RI VHD OHYHO WKDW RFFXUUHG LQ WKH &HQRPDQLDQ 0D SHU 9DLO DQG RWKHUV f $GG\ DQG %XIIOHU f FRUUHODWH WKH 0&8 ZLWK WKH WRS RI WKH :DVKLWD *URXS /RZHU &UHWDFHRXVf RQ WKH :HVW )ORULGD 6KHOI $QRWKHU LGHD RQ WKH RULJLQ RI WKH 0&8 6FKODJHU DQG &DPEHU 6FKODJHU f LV WKDW JURZWK RI WKH FDUERQDWH SODWIRUP ZDV WHUPLQDWHG WKURXJK UDSLG VXEPHUJHQFH 6FKODJHU f WKDW SURGXFHG D GURZQLQJ XQFRQIRUPLW\ DVVRFLDWHG ZLWK D ULVH RU KLJKVWDQG RI VHD OHYHO QRW D ORZVWDQG )DXVW f LQWHUSUHWV WKH IROORZLQJ JHRORJLF KLVWRU\ WR H[SODLQ WKH 0&8 6HD OHYHO GURSSHG EHORZ WKH VKHOI HGJH GXULQJ WKH &HQRPDQLDQ UHVXOWLQJ LQ VXEDHULDO H[SRVXUH PHWHRULF OHDFKLQJ DQG HURVLRQ RI WKH /RZHU &UHWDFHRXV )ORULGD &DUERQDWH 3ODWIRUP 7XUELGLW\ FXUUHQWV DQG GHEULV IORZV FXW FDQ\RQV LQ WKH )ORULGD (VFDUSPHQW 'XULQJ WKH /DWH &UHWDFHRXV VHD OHYHO URVH ZHOO DERYH WKH SUHYLRXV SODWIRUP PDUJLQ $V SODWIRUP FDUERQDWHV WULHG WR NHHS SDFH ZLWK ULVLQJ VHD OHYHO SURJUDGLQJ FOLQRIRUPV GRZQODSSHG RQWR WKH 0&8 EXW WKH SODWIRUP VRRQ GURZQHG DQG ZDV EXULHG E\ GHHSZDWHU FDUERQDWHV )DXVW f FRPPHQWV WKDW LQ WKH FHQWHU RI WKH GHHS *XOI WKH 0&8 RU PRUH SUHFLVHO\ LWV FRUUHODWLYH FRQIRUPLW\f PLJKW EH EHWWHU WHUPHG WKH 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ 0&6%f KH DOVR QRWHV WKDW WKH UHYLVHG GDWH RI WKH XQFRQIRUPLW\ LV 0D +DT DQG RWKHUV f

PAGE 43

:X DQG RWKHUV D )LJXUH f HQGRUVH FRUUHODWLRQ RI WKH WRS RI WKH /RZHU &UHWDFHRXV :DVKLWD *URXSf ZLWK WKH 0LGGOH &HQRPDQLDQ 0Df VHDOHYHO IDOO $GG\ DQG %XIIOHU f EXW GHFODUH WKDW EDVLQZDUG RI WKH SODWIRUP PDUJLQ WKH 0&8 RI %XIIOHU DQG RWKHUV f FRUUHODWHV LQVWHDG ZLWK WKH 0D 7XURQLDQf VHDOHYHO ULVH +DT DQG RWKHUV f 2Q WKH VKHOI WKH 0D PD[LPXPIORRGLQJ VXUIDFH LV UHSRUWHGO\ UHFRJQL]HG DV D GRZQODS VXUIDFH RYHU WKH 0LGGOH &HQRPDQLDQ FDUERQDWH SODWIRUP :X DQG RWKHUV Df 7KXV LQ WKH GHHS EDVLQ :X DQG RWKHUV Df ZRXOG UHSODFH 0&8 ZLWK 0&)6 0LGGOH &UHWDFHRXV )ORRGLQJ 6XUIDFHf )HQJ DQG %XIIOHU f KRZHYHU SRLQW RXW WKDW LQ WKH QRUWKHDVWHUQ FRUQHU RI WKH GHHS *XOI WKH WKLFNQHVV RI VHTXHQFHV LQ WKH VWDFNHG FRQGHQVHG VHFWLRQ EHWZHHQ WKH 0&6% DQG 0D LV EH\RQG VHLVPLF UHVROXWLRQ $OWKRXJK WKH PLG&HQRPDQLDQ XQFRQIRUPLW\ LV FRQVLGHUHG WR EH SUHVHQW RYHU WKH HQWLUH )ORULGD 3ODWIRUP 6DOYDGRU )LJXUH f 6DOYDGRU S f QRWHV WKDW LI LW LV GXH WR D PDMRU ORZHULQJ RI VHD OHYHO WKH XQFRQIRUPLW\ LV SUREDEO\ UHSUHVHQWHG ZLWKLQ WKH SODWIRUP LQWHULRU E\ D GLVFRQIRUPLW\ RU D YHU\ ORZ DQJOH XQFRQIRUPLW\ GLIILFXOW WR LGHQWLI\ LQ D QHDUO\ KRUL]RQWDO VHFWLRQ FRPSRVHG RI DOWHUQDWLQJ OLPHVWRQHV DQG HYDSRULWHV ERWK DERYH DQG EHORZ WKH VWUDWLJUDSKLF EUHDN ,QGHHG FRQIXVLRQ VXUURXQGV SUHFLVHO\ ZKLFK UHIOHFWRUVf YDULRXV LQYHVWLJDWRUV LGHQWLI\ DV WKH 0&8 :X DQG RWKHUV Ef LQGLFDWH WKDW WKH 0D 0&6%

PAGE 44

%$6,1:$5' /$1':$5' :(// :(// :(// )LJXUH 'LDJUDP RI PDMRU 0LGGOH WR 8SSHU &UHWDFHRXV VHTXHQFH ERXQGDULHV DQG PD[LPXPIORRGLQJ VXUIDFHV IURP :X DQG RWKHUV Df 0&)6 LV 0LG&UHWDFHRXV )ORRGLQJ 6XUIDFH 7/& LV 7RS RI /RZHU &UHWDFHRXV

PAGE 45

WRS RI WKH /RZHU &UHWDFHRXV 7/&f DQG WKH 0D 0&)6 DUH UHFRJQL]DEOH DV WZR VHSDUDWH VXUIDFHV RQ WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP )LJXUH f 6FKODJHU f UHJDUGV DJH HVWLPDWHV RI WKH 0&8 DV LQFRQFOXVLYH OHDYLQJ WKH ZD\ RSHQ IRU :X DQG RWKHUV Df WR LQWHUSUHW WKH GURZQLQJ XQFRQIRUPLW\ 6FKODJHU 6FKODJHU DQG &DPEHU f WR EH WKH 0&)6 0Df UDWKHU WKDQ WKH 0&6%7/& 0Df 7KH WRS RI WKH :DVKLWD *URXS LH WKH 0&80&6%7/&f LQ WKH ([[RQ 2&6* ZHOO )LJXUH :HOO f LV SLFNHG P GHHSHU E\ )DXVW f WKDQ E\ $GG\ DQG %XIIOHU f \HW ERWK LQWHUSUHWDWLRQV LGHQWLI\ D VLPLODU ]RQH RI WUDQVLWLRQDO GHHSHQLQJ MXVW EHORZ WKH UHVSHFWLYH SLFNV IRU WKH 0&8 )DXVW f GRHV QRW UHFRJQL]H WKH 0&6% DQG 0&)6 DV WZR GLVWLQFW VXUIDFHV EXW FRQFOXGHV WKDW LQ WKH )ORULGD (VFDUSPHQW UHJLRQ WKH 0&8 FRUUHVSRQGV WR D PD[LPXPIORRGLQJ VXUIDFH )DXVW )LJXUHV DQG f VKRZV WKDW RYHU PRVW RI WKH $SDODFKLFROD %DVLQ H[FHSW RYHU WKH 'HVWLQ 'RPH WKH UHIOHFWRUV DERYH DQG EHORZ WKH 0&6% DUH FRQFRUGDQW 7UXQFDWLRQ RI XQGHUO\LQJ UHIOHFWRUV DQG RQODS RI RYHUO\LQJ UHIOHFWRUV LV FKDUDFWHULVWLF RI WKH 0&8 RYHU PXFK RI WKH DUHD WR WKH VRXWK DQG HDVW DFURVV WKH 0LGGOH *URXQG $UFK DQG LQ WKH 7DPSD (PED\PHQW 'RZQODSSLQJ GRHV RFFXU LQ D ]RQH RI VHGLPHQW E\SDVV DORQJ WKH SODWIRUP PDUJLQ DQG GRZQODSV RI FOLQRIRUPV SURJUDGLQJ WRZDUG WKH EDVLQ FHQWHU GRPLQDWH WKH RXWHU )ORULGD 3ODWIRUP )DXVW f &RUVR DQG RWKHUV f DQG 0LWFKXP f FKDUDFWHUL]H WKH WRS RI WKH /RZHU

PAGE 46

&UHWDFHRXV LH 0&80&6%f E\ GRZQODS RI RYHUO\LQJ UHIOHFWRUV 7KLV FKDUDFWHUL]DWLRQ DGGV WR WKH FRQIXVLRQ EHWZHHQ WKH 0&6% DQG 0&)6 7KH TXHVWLRQ RI 0&6% YV 0&)6 VHHPV WR UHIOHFW WKH LVVXHV RI WKH UHODWLYH LPSRUWDQFH RI DQG GLVWLQFWQHVV RI VXEDHULDOHURVLRQDO XQFRQIRUPLWLHV DQG PD[LPXPIORRGLQJ VXUIDFHV 7KH LGHDOL]HG GURZQHG FDUERQDWH SODWIRUP (UOLFK DQG RWKHUV )LJXUH Df LV FKDUDFWHUL]HG E\ DQ\ RU DOO RI WKH IROORZLQJ IHDWXUHV FRQIRUPDEOH VHLVPLF VHTXHQFH ERXQGDULHV JRRG LQWHUQDO UHIOHFWRUV KRUL]RQWDO WR VXEn KRUL]RQWDO EDVLQDO PDULQH RQODS EHFRPPLQJ SDUDOOHO WR WKH FDUERQDWH VHTXHQFH ERXQGDU\ LQ EDVLQDO SRVLWLRQVf DQG ODWH JURZWK UHHIV DW VRPH VKHOI PDUJLQ ORFDWLRQV &KHPLFDO VHGLPHQWDWLRQ XVXDOO\ JODXFRQLWH RU SKRVSKDWHf LV FRPPRQ ZLWKLQ WKH GURZQLQJ VHTXHQFH 6XEDHULDOO\ H[SRVHG SODWIRUPV )LJXUH Ef PD\ VKRZ DQ\ RU DOO RI WKH IROORZLQJ XQFRQIRUPDEOH VHTXHQFH ERXQGDULHV HURVLRQDONDUVW VXUIDFHV PD\ KDYH KXPPRFN\ RU GLVFRQWLQXRXV QDWXUH DQG FDXVH DWWHQXDWLRQ RI VHLVPLF GDWD DQGRU VKDOORZ PXOWLSOHVf VKHOI WREDVLQ UHIOHFWRU FRQWLQXLW\ DQG GLYHUJHQW EDVLQDO RQODS SDWWHUQV SRVVLEO\ GXH WR ORZVWDQG VXEPDULQH IDQVf .LQJ DQG 6NRWQLFNL f H[DPLQH WKH 8SSHU &UHWDFHRXV IDFLHV VWUDWLJUDSK\ DQG ELRVWUDWLJUDSK\ RI WKH LQQHU &RDVWDO 3ODLQ RI $ODEDPD 7KH\ WKHQ LQWHJUDWH WKH ORFDO VWUDWLJUDSK\ DQG WKH JOREDO V\QWKHVLV RI VHDOHYHO FKDQJHV GXULQJ WKH /DWH &UHWDFHRXV +DT DQG RWKHUV )LJXUH f

PAGE 47

)LJXUH &RQWUDVW EHWZHHQ Df DQ LGHDOL]HG GURZQHG FDUERQDWH SODWIRUP DQG Ef D VXEDHULDOO\ H[SRVHG FDUERQDWH SODWIRUP (UOLFK DQG RWKHUV f

PAGE 48

)LJXUH 6\QWKHVLV RI FKURQRVWUDWLJUDSK\ ELRVWUDWLJUDSK\ VHTXHQFH VWUDWLJUDSK\ DQG HXVWDWLF FXUYHV PRGLILHG IURP +DT DQG RWKHUV f FRUUHODWHG ZLWK WKH 8SSHU &UHWDFHRXV IRUPDWLRQV DQG JHQHWLF SDFNDJHV FHQWUDO DQG HDVWHUQ &RDVWDO 3ODLQ RI $ODEDPD IURP .LQJ DQG 6NRWQLFNL f 6\VWHPV WUDFWV DEEUHYLDWLRQV 75 WUDQVJUHVVLYH +6 KLJKVWDQG /6: ORZVWDQG ZHGJH ) WLPHV RI NQRZQ IDQV 60: VKHOIPDUJLQ ZHGJH &RDVWDO RQODS V\PEROV GDVKHG OLQH FRQGHQVHG VHFWLRQ VROLG OLQH VHTXHQFH ERXQGDU\ KDFKXUHG OLQH W\SH VHTXHQFH ERXQGDU\ WKLFNQHVV RI OLQHV UHIOHFWV UHODWLYH PDJQLWXGH PLQRU PHGLXP PDMRUf 3DUHQWKHWLF DJHV DUH WKRVH FLWHG LQ SUHYLRXV F\FOH FKDUWV )RU ELRVWUDWLJUDSKLF UHIHUHQFHV VHH +DT DQG RWKHUV f

PAGE 50

.LQJ DQG 6NRWQLFNL f FRUUHODWH WKH (XWDZ )RUPDWLRQ WR WKH /DWH 6DQWRQLDQ(DUO\ &DPSDQLDQ 0Df VHTXHQFH RI +DT DQG RWKHUV f 7KH ORZHU VHTXHQFH ERXQGDU\ DW WKH WRS RI WKH 7XVFDORRVD )RUPDWLRQ LV D KLJKUHOLHI VXUIDFH WKDW FRUUHVSRQGV WR D W\SH VHTXHQFH ERXQGDU\ DQG WKH XSSHU VHTXHQFH ERXQGDU\ DW WKH WRS RI WKH (XWDZ )RUPDWLRQ LV D ORZ UHOLHI VXUIDFH WKDW HTXDWHV WR D W\SH VHTXHQFH ERXQGDU\ $ ORZUHOLHI VWUDWLJUDSKLF EUHDN ZLWKLQ WKH (XWDZ UHSUHVHQWV WKH 0D PD[LPXP IORRGLQJ VXUIDFH +DT DQG RWKHUV f 7KH 0RRUHYLOOH &KDON DQG %OXIIWRZQ )RUPDWLRQ DUH FRHYDO /RZHU &DPSDQLDQf XQLWV RI WKH EDVDO 6HOPD *URXS LQ FHQWUDO DQG HDVWHUQ $ODEDPD UHVSHFWLYHO\ .LQJ DQG 6NRWQLFNL f FRUUHODWH WKH WRS RI WKH 0RRUHYLOOH%OXIIWRZQ LQWHUYDO WR WKH W\SH VHTXHQFH ERXQGDU\ DW 0D +DT DQG RWKHUV f 7KH QH[W RYHUO\LQJ WLPHHTXLYDOHQW XQLWV RI WKH 6HOPD *URXS LQ FHQWUDO DQG HDVWHUQ $ODEDPD DUH UHVSHFWLYHO\ WKH 'HPRSROLV &KDON DQG &XVVHWD 6DQG 7KLV LQWHUYDO VSDQV WKH 8SSHU &DPSDQLDQ DQG FRQWDLQV WKUHH JHQHWLF SDFNDJHV WKDW .LQJ DQG 6NRWQLFNL f FRUUHODWH WR WKH WKUHH 8SSHU &DPSDQLDQ VHTXHQFHV RI +DT DQG RWKHUV f 7KH WRSV RI DOO WKUHH SDFNDJHV LQFOXGLQJ WKH FRQWDFW ZLWK WKH RYHUO\LQJ 5LSOH\ )RUPDWLRQf DUH ORZUHOLHI EUHDNV WKDW UHODWH WR W\SH VHTXHQFH ERXQGDULHV

PAGE 51

7KH 5LSOH\ )RUPDWLRQ RI WKH 6HOPD *URXS VSDQV WKH 0DDVWULFKWLDQ DQG HQFRPSDVVHV WZR JHQHWLF SDFNDJHV WKDW FRUUHVSRQG WR WZR VHTXHQFHV +DT DQG RWKHUV .LQJ DQG 6NRWQLFNL f 7KH SDFNDJHV DUH VHSDUDWHG E\ D ORZUHOLHI LQWUDIRUPDWLRQDO EUHDN WKDW UHODWHV WR WKH 0D W\SH VHTXHQFH ERXQGDU\ RI +DT DQG RWKHUV f $ KLJKUHOLHI EUHDN DW WKH WRS RI WKH 5LSOH\ )RUPDWLRQ FRUUHVSRQGV WR WKH PDMRU W\SH VHTXHQFH ERXQGDU\ DW 0D +DT DQG RWKHUV f 7KH 3UDLULH %OXII &KDON DQG 3URYLGHQFH 6DQG DUH WKH ODWHVW 0DDVWULFWLDQ 0Df HTXLYDOHQWV DW WKH WRS RI WKH 6HOPD *URXS LQ FHQWUDO DQG HDVWHUQ $ODEDPD UHVSHFWLYHO\ 7KH VWUDWLJUDSKLF EUHDN DW WKH WRS RI WKH 3UDLULH %OXII 3URYLGHQFH LQWHUYDO LV D ORZUHOLHI VXUIDFH LQ WKH DUHD VWXGLHG E\ .LQJ DQG 6NRWQLNL f EXW KDV JUHDWHU UHOLHI DORQJ VWULNH ZKHUH %DXP DQG 9DLO f GHVFULEH LW DV D W\SH VHTXHQFH ERXQGDU\ 6HTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI RXWFURSV LQ $ODEDPD )LJXUH f SODFH WKH &UHWDFHRXV7HUWLDU\ .7f ERXQGDU\ DW WKH PD[LPXPIORRGLQJ VXUIDFH ZLWKLQ WKH 3LQH %DUUHQ 0HPEHU RI WKH &OD\WRQ )RUPDWLRQ 'RQRYDQ DQG RWKHUV f DQG GLYLGH WKH 3DOHRJHQH VHFWLRQ LQWR GHSRVLWLRQDO VHTXHQFHV %DXP DQG 9DLO f 7KHVH VHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV KRZHYHU DUH QRW XQGLVSXWHG 1RWHDEOH H[DPSOHV RI FRQWURYHUV\ DUH LQWHUSUHWDWLRQ RI WKH (RFHQH 2OLJRFHQH ERXQGDU\ DV HLWKHU D VXUIDFH RI PD[LPXP IORRGLQJ

PAGE 52

FRQGHQVHG VHFWLRQf %DXP DQG 9DLO f RU D VHTXHQFH ERXQGDU\ 'RFNHU\ f DQG H[SODQDWLRQ RI WKH *RVSRUW 6DQG DV HLWKHU DQ LQFLVHGYDOOH\ILOO GHSRVLW RQ D W\SH VHTXHQFH ERXQGDU\ %DXP DQG 9DLO f RU D WUDQVJUHVVLYH PDULQH GHSRVLW 'RFNHU\ f 0DQFLQL DQG 7HZ E D Ef DSSO\ VHTXHQFH VWUDWLJUDSKLF FRQFHSWV WR HVVHQWLDOO\ WKH VDPH VWUDWLJUDSKLF VHFWLRQ DV 'RQRYDQ DQG RWKHUV f DQG %DXP DQG 9DLO f EXW DUULYH DW TXLWH GLIIHUHQW LQWHUSUHWDWLRQV )LJXUH f 'LVFUHSDQFLHV LQFOXGH SODFHPHQW RI WKH .7 +D]HO 0DQFLQL DQG 7HZ D DQG 2OVVRQ DQG /LX f DQG 2OLJRFHQH0LRFHQH ERXQGDULHV %DXP DQG 9DLO f LGHQWLI\ RQO\ GHSRVLWLRQDO VHTXHQFHV ZKHUHDV 0DQFLQL DQG 7HZ E D Ef UHFRJQL]H )LJXUH f %DXP DQG 9DLO f UHJDUG WKH FRQWDFW RI WKH *RVSRUW 6DQG ZLWK WKH RYHUO\LQJ 0RRG\V %UDQFK )RUPDWLRQ DV D VXUIDFH RI PD[LPXP IORRGLQJ FRQGHQVHG VHFWLRQf ZKHUHDV 0DQFLQL DQG 7HZ E D Ef FRQVLGHU LW D W\SH XQFRQIRUPLW\ $OVR 0DQFLQL DQG 7HZ E D Ef SODFH WKH EDVH RI WKH 72 F\FOH DW WKH WRS RI WKH *OHQGRQ /LPHVWRQH DQG FRQVLGHU WKLV FRQWDFW D W\SH VHTXHQFH ERXQGDU\ %DXP DQG 9DLO f KRZHYHU LGHQWLI\ LW DV D FRQGHQVHG VHFWLRQ DQG FRQVLGHU WKH EDVH RI WKH *OHQGRQ /LPHVWRQH DV WKH W\SH VHTXHQFH ERXQGDU\ RI WKH 72 F\FOH 7KH UHFRJQLWLRQ DQG FRUUHFW LQWHUSUHWDWLRQ RI WKH NH\ VWUDWLJUDSKLF VXUIDFHV LH VHTXHQFH ERXQGDULHV DQG PD[LPXPIORRGLQJ VXUIDFHVf D IHDW UHTXLUHG WR DSSO\ VHTXHQFH

PAGE 53

)LJXUH &KDUW RI OLWKRVWUDWLJUDSKLF XQLWV *URXS )RUPDWLRQ 0HPEHUf RI WKH *XOI &RDVWDO 3ODLQ $ODEDPD FHQWHUf ZLWK WKH VHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI %DXP DQG 9DLO f 'RQRYDQ DQG RWKHUV f ULJKWf DQG 0DQFLQL DQG 7HZ D DQG E D DQG EfOHIWf

PAGE 54

0DQFLQ DQG 7HZ D DQG E D DQG Ef %DXP DQG 9DLO %%f 'RQRYDQ DQG RWKHUV f 6WDJH 6HQHV $DXLWDQ 0LRFHQH F &' k f F &2 k F 2 R &2 R F &' k D  F % & R Q % &/ & FR F R k F FR k &' R R /8 F &2 k
PAGE 55

VWUDWLJUDSK\ VXFFHVVIXOO\ VHHPV HYHQ PRUH VXEMHFWLYH LQ RXWFURSV DQG ZHOO GDWD WKDQ LQ WKH VHTXHQFH DQDO\VLV RI VHLVPLF GDWD 7KH SLRQHHULQJ VHLVPLF VWUDWLJUDSKLF LQYHVWLJDWLRQ RI 0LWFKXP f LQWHUSUHWV QDXWLFDO PLOHV NPf RI VLQJOHFKDQQHO GDWD )LJXUH f DQG IRFXVHV RQ WKH SRVW(DUO\ &UHWDFHRXV JHRORJLF GHYHORSPHQW RI WKH ZHVWHUQ )ORULGD 3ODWIRUP 7KH VHLVPLF SURILOHV DUH FRUUHODWHG WR GDWD IURP IW Pf FRUHV WDNHQ DW IW Pf LQWHUYDOV LQ HDFK RI VHYHQ IW ERUHKROHV VFDWWHUHG DORQJ WKH :HVW )ORULGD 6ORSH QRUWK RI r n 1 8VLQJ VHLVPLF VWUDWLJUDSKLF SURFHGXUHV IRU VHTXHQFH DQDO\VLV 9DLO DQG RWKHUV f 0LWFKXP f GHILQHV WHQ GHSRVLWLRQDO VHTXHQFHV )LJXUH f DERYH WKH VHTXHQFH ERXQGDU\ WKDW KH LGHQWLILHV DV WKH WRS RI WKH /RZHU &UHWDFHRXV 0LWFKXP f GRHV QRW H[SOLFLWO\ FRUUHODWH KLV VHLVPLF VWUDWLJUDSKLF LQWHUSUHWDWLRQ WR WKH JOREDO VHDOHYHO FXUYH RI 9DLO DQG RWKHU f EXW LQFOXGHV D FKURQRVWUDWLJUDSKLF FKDUW 0LWFKXP )LJXUH f ZLWK D JHRFKURQRPHWULF VFDOH 7KH VHLVPLF VWUDWLJUDSKLF IUDPHZRUN RI $GG\ DQG %XIIOHU f IRU WKH VKDOORZ VKHOI LQ WKH 'HVWLQ 'RPH DUHD )LJXUH f LGHQWLILHV ILYH VHLVPLF XQLWV GHVLJQDWHG $ WKURXJK ( )LJXUH f DERYH WKH 0&8 FRUUHODWHG WR WKH WRS RI WKH /RZHU &UHWDFHRXV DQG VHTXHQFH ERXQGDU\ RI 0LWFKXP f $JH GHWHUPLQDWLRQV DUH PDGH SDUWO\ E\ WLHV WR ZHOOV ([[RQ 2&6 DQG 6XQ 2&6*f DQG SDUWO\ E\ FRUUHODWLRQ WR

PAGE 56

0LWFKXP f $GG\ DQG %XIIOHU f )DXVW f 'R\OH DQG +ROPHV f 0XOOLQV DQG RWKHUV D DQG Ef %DOO DQG RWKHUV f (YDQV f :X DQG RWKHUV D DQG Ef 0DS VKRZLQJ JHQHUDO ORFDWLRQV RI SUHYLRXV VHLVPLFVHTXHQFH VWUDWLJUDSKLF VWXGLHV RI 8SSHU &UHWDFHRXV DQG &HQR]RLF VWUDWD LQ WKH YLFLQLW\ RI WKLV VWXG\ )LJXUH

PAGE 57

)LJXUH &KDUW FRPSDULQJ SUHYLRXV VHLVPLFVHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI 8SSHU &UHWDFHRXV WKURXJK &HQR]RLF VWUDWD LQ WKLV VWXG\ DUHD 9HUWLFDO EDUV LQGLFDWH ODFXQDH

PAGE 59

VHLVPLF OLQH 0LWFKXP )LJXUHV DQG S f DQG WKHQ WR WKH VHDOHYHO FXUYH RI 9DLO DQG RWKHUV f 7KH VHTXHQFH ERXQGDU\ DJHV VKRZQ LQ $GG\ DQG %XIIOHU 7DEOH f WKHUHIRUH GLIIHU VRPHZKDW IURP WKRVH RI 0LWFKXP f 'R\OH DQG +ROPHV f LQYHVWLJDWH WKH VKDOORZ VWUXFWXUH VWUDWLJUDSK\ DQG FDUERQDWH VHGLPHQWDU\ SURFHVVHV RI WKH :HVW )ORULGD 8SSHU &RQWLQHQWDO 6ORSH )LJXUH f ZLWK D KLJKUHVROXWLRQ VKDOORZSHQHWUDWLRQ VHLVPLF VXUYH\ 'R\OH DQG +ROPHV f PDS WKH WRS VHLVPLF XQLW ZKLFK E\ FRUUHODWLRQ WR 0LWFKXP f WKH\ LQWHUSUHW WR FRQVLVW RI 3OHLVWRFHQH+RORFHQH VHGLPHQWV 6RXWK RI r n 1 WKH EDVH RI WKLV XSSHU VHLVPLF XQLW LV LQWHUSUHWHG WR EH DQ HURVLRQDO XQFRQIRUPLW\ 'R\OH DQG +ROPHV f UHSRUW WKDW WKH XQLW XQGHUO\LQJ WKLV XQFRQIRUPLW\ FRXOG EH 3OLRFHQH EXW WKDW EDVHG RQ D YHQHHU RI SKRVSKRULWH WKH\ FRQVLGHU LW WR EH 0LRFHQH 'HVSLWH D NDUVWOLNH PRUSKRORJ\ RYHU PXFK RI LWV H[WHQW 'R\OH DQG +ROPHV f HQWHUWDLQ VXEPDULQH DV ZHOO DV VXEDHULDO HURVLRQ DV SRVVLEOH FDXVHV RI WKLV IHDWXUH 7KLV LV DQRWKHU H[DPSOH RI WKH SUDFWLFDO SUREOHPV WKDW DULVH LQ UHFRJQL]LQJ VHTXHQFH ERXQGDULHV 7KH PHFKDQLVP RI WKH VXEPDULQH HURVLRQ SRVWXODWHG E\ 'R\OH DQG +ROPHV f GRHV QRW GLUHFWO\ LQYROYH WKH IOXFWXDWLRQ RI UHODWLYH VHD OHYHO EXW DFWLRQ RI WKH 7HUWLDU\ /RRS &XUUHQW $ FRQVLGHUDEOH DPRXQW RI LQWHUSUHWDWLRQ *DUGXOVNL DQG 0XOOLQV 0XOOLQV DQG RWKHUV D DQG Ef KDV EHHQ EDVHG RQ DQDO\VLV RI D VHW RI DSSUR[LPDWHO\ NP RI KLJK

PAGE 60

UHVROXWLRQ LQWHUPHGLDWHSHQHWUDWLRQ P VXEVXUIDFHf VLQJOHFKDQQHO DQDORJ UHIOHFWLRQ VHLVPLF GDWD IURP D UHODWLYHO\ VPDOO NPf DUHD )LJXUH f RVWHQVLEO\ UHSUHVHQWDWLYH RI WKH HQWLUH ZHVWHUQ )ORULGD 3ODWIRUP 7KH VHLVPLF SURILOHV DUH FRUUHODWHG WR WZR RI WKH FRUHKROHV &+ DQG &+f GULOOHG E\ ([[RQ 0LWFKXP f DQG DGGLWLRQDOO\ WR SLVWRQ FRUHV DQG GUHGJHG VDPSOHV 7KH VHTXHQWLDO SRVW(DUO\ &UHWDFHRXV VWUDWLJUDSKLF HYROXWLRQ RI WKH FDUERQDWH UDPS VORSH RI FHQWUDO ZHVW )ORULGD )LJXUH f ZDV GHWHUPLQHG E\ GHILQLQJ VL[ SULPDU\ VHLVPLF GHSRVLWLRQDO VHTXHQFHV 0XOOLQV DQG RWKHUV Ef 7KHVH VHTXHQFHV DUH QRW DV GHILQHG E\ 9DLO f DQG 9DQ :DJRQHU DQG RWKHUV f IRU WKH\ GR QRW FRUUHVSRQG WR LQGLYLGXDO F\FOHV RI VHDOHYHO IOXFWXDWLRQ 1HLWKHU DUH WKH\ GHSRVLWLRQDO VHTXHQFHV DV GHILQHG E\ 9DLO DQG RWKHUV f IRU WKH\ FDQ LQFOXGH XQFRQIRUPDEOH VXUIDFHV ZLWK VLJQLILFDQW ODFXQDH HJ VHTXHQFHV ,9 DQG 0XOOLQV DQG RWKHUV E )LJXUH f 0XOOLQV DQG RWKHUV Ef UHJDUG VHDOHYHO IOXFWXDWLRQ DV EXW RQH RI D VXLWH RI SURFHVVHV DIIHFWLQJ VHGLPHQWDWLRQ DQG DWWULEXWH D PDMRU FKDQJH LQ GHSRVLWLRQ IURP SURJDGLQJ FOLQRIRUPV VHTXHQFH ,,f WR D SHODJLF VORSHIURQWILOO V\VWHP VHTXHQFH ,f DQG WKH DVVRFLDWHG VHLVPLFVWUDWLJUDSKLF EUHDN DERXW 0D WR D SDOHRRFHDQRJUDSKLF HYHQW QDPHO\ LQWHQVLILFDWLRQ RI WKH /RRS &XUUHQW LQ WKH 0LRFHQH *DUGXOVNL DQG 0XOOLQV 0XOOLQV DQG RWKHUV f 0XOOLQV DQG RWKHUV Ef DOVR UHFRJQL]H DQ XQFRQIRUPLW\ ZLWKLQ

PAGE 61

VHTXHQFH DW DERXW 0D ZKLFK WKH\ LQWHUSUHW DV D VXUIDFH RI VXEDHULDO H[SRVXUH DQG NDUVW GHYHORSPHQW DQG UHODWH WR WKH XQFRQIRUPLW\ LGHQWLILHG E\ 'R\OH DQG +ROPHV f 7KLV FRUUHODWLRQ LV SUREOHPDWLF EHFDXVH WKH PLQLPXP DJH RI WKH XQFRQIRUPLW\ RI 'R\OH DQG +ROPHV f ZRXOG EH DSSUR[LPDWHO\ 0D LI WKH XQGHUO\LQJ XQLW ZHUH 3OLRFHQH RU DERXW 0D LI WKDW XQLW ZHUH 0LRFHQH *DUGXOVNL DQG RWKHUV f LQWHUSUHW WKH 8SSHU &UHWDFHRXV WR 3OHLVWRFHQH HYROXWLRQ RI WKH GHHSZDWHU FDUERQDWH SODWIRUP RI ZHVW )ORULGD )LJXUH f IURP GHWDLOHG DQDO\VLV RI VDPSOHV IURP DOO VHYHQ RI WKH ([[RQ FRUHKROHV 0LWFKXP f *DUGXOVNL DQG RWKHUV f UHFRJQL]H 3OLRFHQH VHGLPHQWV LQ &+ &+ &+ DQG &+ ZKHUH 0LWFKXP f KDG UHSRUWHG WKHLU DEVHQFH 7KLV SURPSWV UHFRQVLGHUDWLRQ RI WKH DJH LQWHUSUHWDWLRQV RI 'R\OH DQG +ROPHV f IRU 3OLRFHQH VWUDWD PXVW WKHQ EH LQFOXGHG HLWKHU LQ WKH 3OHLVWRFHQH+RORFHQH WRS VHLVPLF XQLW RU LQ WKH XQGHUO\LQJ 0LRFHQH XQLW 7KH IRXU PDMRU GHSRVLWLRQDO V\VWHPV RI *DUGXOVNL DQG RWKHUV f GR QRW FRUUHODWH ZHOO ZLWK WKH VL[ GHSRVLWLRQDO VHTXHQFHV RI 0XOOLQV DQG RWKHUV Ef )LJXUH f DQG LQWHUSUHWDWLRQV WKHUHRI GLIIHU DV ZHOO *DUGXOVNL DQG RWKHUV f LQWHUSUHW WKH &DPSDQLDQWR 0DDVWULFKWLDQ UHJLPH DV SURJUDGDWLRQDO ZLWK D FKDQJH E\ WKH 0DDVWULFKWLDQ WR SHODJLF DJJUDGDWLRQ 7KLV LQFOXGHV ZLWK VHTXHQFH 9 WKH ORZHU SDUW RI VHTXHQFH ,9 DQG QHFHVVLWDWHV WKDW \HW DQRWKHU VLJQLILFDQW VWUDWLJUDSKLF EUHDN RFFXU ZLWKLQ

PAGE 62

WKH UHIOHFWLRQIUHH LQWHUYDO RI VHTXHQFH ,9 0XOOLQV DQG RWKHUV Eff $OVR VHTXHQFHV ,, DQG ,,, DUH QRW GLVWLQJXLVKDEOH DEOH LQ WKH FRUHKROH VDPSOHV *DUGXOVNL DQG RWKHUV f ,Q UHODWHG ZRUN 0XOOLQV DQG RWKHUV Df FKDUDFWHUL]H WKH PRGHUQ FDUERQDWH UDPS VORSH RI ZHVW FHQWUDO )ORULGD DQG *DUGXOVNL DQG RWKHUV f DVFULEH FDUERQDWH PLQHUDO F\FOHV LGHQWLILHG LQ SLVWRQ FRUHV RI 3OHLVWRFHQH UDPS VORSH VHGLPHQWV WR FOLPDWLF FKDQJHV $QDO\VLV RI 2FHDQ 'ULOOLQJ 3URMHFW 2'3f +ROH % RQ WKH HDVW IODQN RI 'H6RWR &DQ\RQ 5RRI DQG RWKHUV f VKRZV D UHFRUG RI F\FOLF VHGLPHQn WDWLRQ FRQWUROOHG SULPDULO\ E\ VHDOHYHO IOXFWXDWLRQV IURP WKH SUHVHQW WR 0D DQG DSHULRGLF IOXFWXDWLRQV UHODWHG SHUKDSV WR /RRS &XUUHQW YDULDWLRQV IURP WR 0D 3DO\QRVWUDWLJUDSK\ RI WKH &HQR]RLF SRUWLRQ RI ([[RQ &RUHKROH :UHQQ DQG 6DWFKHOO f SHUPLWV VXEGLYLVLRQ RI VHLVPLF VHTXHQFHV WKURXJK ,9 0XOOLQV DQG RWKHUV Ef DQG HYLQFHV WKH HURVLRQDO XQFRQIRUPLW\ VHSDUDWLQJ HDUO\ 0LRFHQH PDUOV IURP WKRVH RI WKH ODWH 0LRFHQH 7KH DEXQGDQFH RI WHUUHVWULDO SDO\QRPRUSKV DQG VKHOIDO GLQRF\VWV LQ 1HRJHQH VDPSOHV KRZHYHU GRHV QRW VXSSRUW WKH FRQWHQWLRQ RI 0XOOLQV DQG RWKHUV Ef WKDW WKH LQWHQVLILHG /RRS &XUUHQW DFWHG DV DQ RFHDQRJUDSKLF EDUULHU WR RIIVKHOI VHGLPHQW WUDQVSRUW 7KH VHLVPLF LQYHVWLJDWLRQ RI %DOO DQG RWKHUV f FRPPHQWV RQO\ EULHIO\ RQ WKH &HQR]RLF VHFWLRQ DQG FRQFHQWUDWHV RQ ROGHU VWUXFWXUH DQG VWUDWLJUDSK\ $Q LPSUHVVLYH VHTXHQFH

PAGE 63

RI EDVLQZDUG SURJUDGLQJ UHIOHFWLRQV ZLWK YHUWLFDO UHOLHI RI DV PXFK DV VHFRQGV WZRZD\ WUDYHO WLPH ZD\ 77f DUH REVHUYHG WR PDNH XS D PDMRU SRUWLRQ RI WKH PLGGOH WR ORZHU &HQR]RLF VHFWLRQ RQ WKH VRXWK IODQN RI WKH 0LGGOH *URXQG $UFK 3URJUDGLQJ UHIOHFWLRQV DUH DOVR QRWHG LQ WKH &HQR]RLF VHFWLRQ LQ WKH 7DPSD (PED\PHQW LQ WKH DUHD VWXGLHG E\ 0XOOLQV DQG RWKHUV Ef +LJKUHVROXWLRQ VHLVPLF UHIOHFWLRQ DQG DVVRFLDWHG GDWD UHYHDO WKH 1HRJHQH DQG 4XDWHUQDU\ VWUDWLJUDSK\ RI LQQHUVKHOI DQG FRDVWDO DUHDV RI )ORULGD /RFNHU DQG 'R\OH /RFNHU DQG RWKHUV (YDQV (YDQV DQG +LQH f ,Q WKH &KDUORWWH +DUERU DUHD (YDQV f UHFRJQL]HV VL[ GHSRVLWLRQDO VHTXHQFHV O\LQJ EHWZHHQ UHJLRQDO XQFRQIRUPLWLHV 7KH VHTXHQFHV RI REOLTXH FOLQRIRUPV SURJUDGH WR WKH VRXWK VRXWKHDVW 7KH ORZHU UHJLRQDO XQFRQIRUPLW\ LV FRUUHODWHG WR WKH 0D VHDOHYHO IDOO ([SRVLWLRQ RI 3UREOHPV WR EH ,QYHVWLJDWHG 'HVSLWH WKH FRQWULEXWLRQV RI WKH DIRUHPHQWLRQHG LQYHVWLJDWLRQV PDQ\ TXHVWLRQV DERXW WKH HYROXWLRQ RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP IURP D ULPPHG FDUERQDWH VKHOI 5HDG f LQ WKH (DUO\ &UHWDFHRXV WR D GURZQHG GLVWDOO\ VWHHSHQHG UDPS 5HDG f LQ WKH +RORFHQH UHPDLQ XQDQVZHUHG ,Q WKH VXPPDU\ RI WKH UHFHQWO\ SXEOLVKHG 'HFDGH RI 1RUWK $PHULFDQ *HRORJ\ '1$*f YROXPH RQ WKH *XOI RI 0H[LFR %DVLQ 6DOYDGRU S f LQFOXGHV WKH IROORZLQJ

PAGE 64

VWDWHPHQW DERXW WKH DGGLWLRQDO LQIRUPDWLRQ DQG QHZ VWXGLHV QHHGHG &RQVLGHUDEOH LQIRUPDWLRQ DERXW &UHWDFHRXV DQG &HQR]RLF UHJLRQDO VWUDWLJUDSKLF KLDWXVHV RU XQFRQIRUPLWLHV PD\ EH REWDLQHG IURP GHWDLOHG OLWKRVWUDWLJUDSKLF DQG ELRVWUDWLJUDSKLF VWXGLHV DQG SHUKDSV VHLVPLFVWUDWLJUDSKLF LQWHUSUHWDWLRQf RI WKH )ORULGD DQG VLF@ DQG WKH FRUUHVSRQGLQJ VWUDWLJUDSKLF KLDWXVHV DQG VHGLPHQWDU\ F\FOHV 7KH WKLFN DQG DUHDOO\ H[WHQVLYH LQWHUYDO RI (RFHQH VKDOORZ PDULQH FDUERQDWH VWUDWD FRQVWLWXWHV D VLJQLILFDQW SRUWLRQ RI WKH )ORULGD &DUERQDWH 3ODWIRUP 2QVKRUH WKHVH URFNV ZKLFK FRPPRQO\ KDYH KLJK SULPDU\ DQG VHFRQGDU\ SRURVLW\ IRUP WKH PDMRU SDUW RI WKH )ORULGDQ DTXLIHU V\VWHP 0LOOHU f DQ LPSRUWDQW JURXQGZDWHU VXSSO\ $V DQ H[WDQW FDUERQDWH FRDVWDO DTXLIHU WKHVH VWUDWD RIIHU RSSRUWXQLWLHV WR LQYHVWLJDWH D YDULHW\ RI RQJRLQJ GLDJHQHWLF SURFHVVHV LQFOXGLQJ GLVVROXWLRQ FHPHQWDWLRQ DQG GRORPLWL]DWLRQ -HH DQG RWKHUV f EXW EHWWHU XQGHUVWDQGLQJ RI WKHLU VHGLPHQWRORJ\ DQG VWUDWLJUDSK\ LV HVVHQWLDO DV D IUDPH RI UHIHUHQFH IRU LQWHUSUHWDWLRQV RI WKHLU VXEVHTXHQW GLDJHQHVLV 7KH GHSRVLWLRQDO VHWWLQJ DQG VKHOIPDUJLQ SURILOH RI WKH (RFHQH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP KDYH \HW WR EH IXOO\ GHILQHG DQG DPRQJ WKH SDOHRHQYLURQPHQWV LQWHUSUHWHG WKXV IDU UHHIDO DQG RROLWLF IDFLHV RI D VKRDOZDWHU FRPSOH[ 5HDG f DUH FRQVSLFXRXVO\ ODFNLQJ 5DQGD]]R f

PAGE 65

:LQVWRQ f UHSRUWV WKH H[LVWHQFH RI WKH 5HEHFFD 6KRDOV %DUULHU 5HHI &RPSOH[ LQ VWUDWD RI /DWH &UHWDFHRXV WKURXJK 3DOHRFHQH DJH RQVKRUH DQG RIIVKRUH )ORULGD 7KH OLWHUDWXUH LV QRW FOHDU ZKHWKHU WKLV GRORPLWH UHHI :LQVWRQ f LV WUXO\ DQ HFRORJLF UHHI 'XQKDP f ,I VR KRZ GLG FRQGLWLRQV FKDQJH LQ WKH (RFHQH WR FDXVH LWV GHPLVH" &RQVLGHULQJ WKH SDUDGR[ RI GURZQHG FDUERQDWH SODWIRUPV 6FKODJHU f RQH PD\ ZRQGHU LI FKDQJH LQ VHD OHYHO SOD\HG D UROH $IWHU LWV HQG GLG WKH UHHI H[SUHVV DQ LQIOXHQFH RQ VXEVHTXHQW VHGLPHQWDWLRQ" 1R 3DOHRFHQH VHGLPHQW ZDV UHFRYHUHG LQ DQ\ RI WKH ([[RQ FRUHKROHV DORQJ WKH ZHVW )ORULGD VORSH EXW &+ LV UHSRUWHG WR KDYH ERWWRPHG LQ (RFHQH FDOFDUHRXV QDQQRIRVVLO RR]H 0LWFKXP 0XOOLQV DQG RWKHUV E :UHQQ DQG 6DWFKHOO *DUGXOVNL DQG RWKHUV f 2EYLRXVO\ RQH PXVW ORRN ODQGZDUG RI WKLV FKDON ZKLFK LV LQWHUSUHWHG DV DQ RSHQRFHDQ PDUJLQDO SODWHDX GHSRVLW WR REVHUYH WKH PRUSKRORJ\ DQG IDFLHV WUDQVLWLRQV RI WKH (RFHQH VKHOIEDVLQ PDUJLQ 7KH JOREDO QDWXUH RI WKH UHJLRQDO WUDQVJUHVVLRQ UHFRUGHG E\ WKH UHJLRQDO OLWKRVWUDWLJUDSK\ RI 3DOHRFHQH DQG (RFHQH URFNV RI )ORULGD &KHQ 0LOOHU f LV UHFRJQL]HG EXW VRPH FRQWURYHUV\ H[LVWV FRQFHUQLQJ LWV FDXVH $OWKRXJK 9DLO DQG RWKHUV f LQWHUSUHW (RFHQH SDWWHUQV RI FRDVWDO RQODS WR UHIOHFW ZRUOGZLGH ULVH LQ UHODWLYH VHD OHYHO D VHDOHYHO FXUYH EDVHG RQ YROXPH FKDQJHV RI WKH PLGRFHDQ ULGJH V\VWHP

PAGE 66

3LWPDQ f LQGLFDWHV VHD OHYHO IHOO SHUVLVWHQWO\ IURP /DWH &UHWDFHRXV WR 0LGGOH 0LRFHQH WLPH 3LWPDQ S f SRLQWV RXW WKDW 7KH VKRUHOLQH WHQGV WR VWDELOL]H DW WKDW SRLQW RQ D PDUJLQ ZKHUH WKH UDWH RI ULVH RU IDOOf RI VHD OHYHO LV HTXDO WR WKH GLIIHUHQFH EHWZHHQ WKH UDWH RI VXEVLGHQFH RI WKH SODWIRUP DQG WKH UDWH RI VHGLPHQW LQILOO 8QGHU WKHVH FRQGLWLRQV LI VHD OHYHO LV PDGH WR ULVH PRUH UDSLGO\ RU IDOO PRUH VORZO\ D WUDQVJUHVVLRQ ZLOO RFFXU 2Q WKLV EDVLV 3LWPDQ f DWWULEXWHV WKH PDULQH WUDQVJUHVVLRQ LQ WKH (RFHQH WR UHGXFWLRQ LQ WKH UDWH RI VHDOHYHO IDOO DW WKDW WLPH 0F*RZUDQ f SUHVHQWV WKH HDUO\ 3DOHRJHQH DV D WLPH RI HSLVRGLF WUDQVLWLRQ RI JOREDO FOLPDWH IURP 0HVR]RLF JUHHQKRXVH WR &HQR]RLF LFHKRXVH 7KLV WUDQVLWLRQ DIIHFWHG ERWK RFHDQLF FLUFXODWLRQ DQG VHD OHYHO 0F*RZUDQ DVVHUWV D SDUDOOHO EHWZHHQ WULSDUWLWH SDWWHUQV HYLGHQW LQ YDULRXV SDOHRELRORJLFDO DQG JHRFKHPLFDO GDWD GUDZQ IURP PDULQH DQG WHUUHVWULDO UHDOPV DQG SODWH WHFWRQLF HYHQWV RI WKH 3DOHRFHQH DQG (RFHQH HSRFKV EXW LV XQDEOH WR UHODWH WKHVH FOHDUO\ WR HLWKHU HXVWDWLF RU FOLPDWLF FKDQJHV $W WKH VFDOH RI KLV LQYHVWLJDWLRQ 0F*RZUDQ VHHV QR F\FOLF RU UK\WKPLF FKDUDFWHU LQ WKH SDWWHUQV &\FOLF GHSRVLWLRQ DQG HURVLRQ KDYH EHHQ REVHUYHG LQ WKH (RFHQH FDUERQDWH VHFWLRQ RI )ORULGD 5DQGD]]R DQG 6DURRS 5DQGD]]R DQG RWKHUV 5DQGD]]R DQG +LFNH\ f EXW DV \HW WKHVH KDYH QRW EHHQ FRPSOHWHO\ H[SODLQHG DQG

PAGE 67

UHODWHG WR JOREDO SDWWHUQV RI UHODWLYH VHDOHYHO IOXFWXDWLRQ &KDQJHV LQ WKH UDWH RI VHDIORRU VSUHDGLQJ FDXVH VHD OHYHO WR IOXFWXDWH DW UDWHV RI OHVV WKDQ LP\U 3LWPDQ f 7KLV LV WRR VORZ WR H[SODLQ PDQ\ RI WKH SURPLQHQW IHDWXUHV LQ WKH VWUDWLJUDSK\ RI FDUERQDWH SODWIRUPV .HQGDOO DQG 6FKODJHU S f 7KH JODFLRHXVWDWLF PHFKDQLVP LV FRPPRQO\ LQYRNHG WR DFFRXQW IRU F\FOHV RI UHODWLYH VHDOHYHO FKDQJH ZLWK IUHTXHQFLHV KLJKHU WKDQ WKH WKLUG RUGHU RI 9DLO DQG RWKHUV f $OWKRXJK HVWLPDWHV RI WHPSHUDWXUH FKDQJH LQ 1RUWK $PHULFD LQGLFDWH DOWHUQDWLQJ HSLVRGHV RI UHODWLYH ZDUPWK DQG FRROQHVV GXULQJ WKH (RFHQH LW LV EHOLHYHG WKDW $QWDUFWLF JODFLDWLRQ GLG QRW FRPPHQFH XQWLO WKH /DWH (RFHQH ,Q IDFW JOREDO WHPSHUDWXUHV PD\ QHYHU DJDLQ KDYH ULVHQ WR WKH OHYHOV WKDW WKH\ DWWDLQHG LQ (RFHQH WLPH 6WDQOH\ S f :KDW WKHQ LV WKH QDWXUH RI WKH F\FOHV WKDW RFFXU LQ WKH )ORULGDnV (RFHQH FDUERQDWH VHFWLRQ" 7KH GHSRVLWLRQDO DQG GLDJHQHWLF UHVSRQVHV RI FDUERQDWH V\VWHPV WR UHODWLYH VHDOHYHO ULVH DQG IDOO DUH PRGHOHG EDVHG RQ WKH SULQFLSOHV RI VHLVPLFVHTXHQFH VWUDWLJUDSK\ E\ .HQGDOO DQG 6FKODJHU f 6DUJ f DQG 6FKODJHU f )DFLHV PRGHOV LQ WKH VHQVH RI :DONHU f DUH JHQHUDOL]DWLRQV WKDW FRPELQH WKH IHDWXUHV RI PDQ\ ORFDO H[DPSOHV WR SURGXFH D QRUP E\ ZKLFK WKH VLJQLILFDQFH RI D QHZ H[DPSOH FDQ EH DVVHVVHG 7KURXJK DWWHPSWV WR DSSO\ D PRGHO WR D VSHFLILF FDVH WKH H[LVWLQJ PRGHO FDQ EH LPSURYHG RU D QHZ RQH FRQVWUXFWHG 7KH QHZ VWUDWLJUDSKLHV :DONHU f QRWHV

PAGE 68

DUH ODUJHO\ FRQFHSWXDO ZLWK IHZ DFWXDO JHRORJLFDO H[DPSOHV ,W LV RI LQWHUHVW WKHUHIRUH WR WHVW WKH DSSOLFDELOLW\ RI VXFK PRGHOV WR WKH FDUERQDWH V\VWHP RI WKH ZHVWHUQ )ORULGD 3ODWIRUP 7R YDU\LQJ GHJUHHV WKH GLDJHQHWLF IHDWXUHV RI )ORULGDnV (RFHQH FDUERQDWH URFNV KDYH EHHQ FKDUDFWHUL]HG DQG K\GURJHRFKHPLFDO IDFWRUV WKDW LQIOXHQFH GLDJHQHWLF SURFHVVHV KDYH EHHQ DQDO\]HG 5DQGD]]R 5DQGD]]R DQG &RRN 5DQGD]]R DQG %ORRP 5DQGD]]R DQG =DFKRV 5DQGD]]R DQG +LFNH\ 5DQGD]]R DQG RWKHUV f 7KH GLDJHQHVLV RI WKHVH URFNV KDV QRW KRZHYHU EHHQ LQWHUSUHWHG KROLVWLFDOO\ ZLWKLQ WKH FRQWH[W RI WKH WR PLOOLRQ \HDUV RI JHRORJLF KLVWRU\ VLQFH WKHLU GHSRVLWLRQ &KDQJHV LQ UHODWLYH VHD OHYHO LQIOXHQFH WKH SRVLWLRQ RI WKH FRDVWDO DQG LQODQG IUHVK ZDWHUVDOW ZDWHU PL[LQJ ]RQHV DQG RWKHU IDFWRUV LPSRUWDQW WR GRORPLWL]DWLRQ FHPHQWDWLRQ DQG GLVVROXWLRQ 7KH (RFHQH FDUERQDWH URFNV RI )ORULGD GRXEWOHVVO\ UHIOHFW VXFK FKDQJHV EXW WKH VHTXHQFH WLPLQJ DQG GXUDWLRQ RI GLDJHQHWLF HSLVRGHV LV VWLOO VSHFXODWLYH )RU LQVWDQFH DOWKRXJK HYLGHQFH 5DQGD]]R DQG %ORRP f VXJJHVWV WKDW FHUWDLQ GLDJHQHWLF SURFHVVHV L H GRORPLWL]DWLRQf KDYH EHHQ DFWLYH ZLWKLQ WKH ODVW \HDUV WKH GLDJHQHWLF UROH RI HDUO\ SRVWGHSRVLWLRQDO IOXFWXDWLRQV LQ UHODWLYH VHD OHYHO LV QRW ZHOO XQGHUVWRRG 3URSRQHQWV RI VHTXHQFH VWUDWLJUDSK\ EHOLHYH WKDW WKH UDWH DQG GLUHFWLRQ RI UHODWLYH VHD OHYHO FKDQJHV KDYH EHHQ

PAGE 69

FRQVWUDLQHG ZLWKLQ IDLUO\ QDUURZ OLPLWV IRU PRVW RI WKH 0HVR]RLF DQG &HQR]RLF RFHDQ PDUJLQV DQG WLHG WR DQ LQWHJUDWHG FKURQRVWUDWLJUDSKLF IUDPHZRUN +DT DQG RWKHUV f 7KH JHQHUDO VWUDWLJUDSK\ RI WKH QRUWKHDVWHUQ *XOI RI 0H[LFR KDV EHHQ FRUUHODWHG *UHHQOHH *UHHQOHH DQG 0RRUH :X DQG RWKHUV f WR WKH PDMRU VHTXHQFH ERXQGDULHV DVVRFLDWHG ZLWK HXVWDWLF VHDOHYHO FKDQJHV +DT DQG RWKHUV f 7KH DWWHPSW LV PDGH KHUH WR H[WHQG DQG UHILQH WKLV FRUUHODWLRQ LQ WKH 8SSHU &UHWDFHRXV&HQR]RLF VHFWLRQ WKURXJKRXW WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP %HWWHU XQGHUVWDQGLQJ RI WKH FRQWUROV RQ VSDWLDO DQG WHPSRUDO YDULDWLRQV LQ PL[HG FDUERQDWH DQG VLOLFLFODVWLF GHSRVLWLRQ LQ VHWWLQJV OLNH WKH SUHYLRXVO\ PHQWLRQHG IDFLHV WUDQVLWLRQ EHWZHHQ SHQLQVXODU DQG SDQKDQGOH )ORULGD KDV FRPH IURP YLHZLQJ PL[HG VHTXHQFHV DV SDUW RI D FRQWLQXXP EHWZHHQ WKH FDUERQDWH DQG VLOLFLFODVWLF HQG PHPEHUV 'R\OH DQG 5REHUWV %XGG DQG +DUULV f $Q DWWHPSW LV PDGH KHUH WR UHVROYH GLIIHUHQFHV LQ WKH LQWHUSUHWHG H[WHQVLRQ RI WKH 6XZDQQHH 6WUDLW RU &KDQQHO EHQHDWK WKH :HVW )ORULGD 6KHOI $QWRLQH DQG +DUGLQJ $QWRLQH DQG -RQHV 0LWFKXP &KHQ 0LOOHU f

PAGE 70

0$7(5,$/6 $1' 0(7+2'6 'DWD %DVH 0XFK RI WKH GDWD XVHG LQ WKLV VWXG\ ZHUH REWDLQHG IURP SHWUROHXP LQGXVWU\ VRXUFHV 7KH $PHULFDQ SHWUROHXP LQGXVWU\ VWLOO XVHV 86 PHDVXUHPHQWV UDWKHU WKDQ PHWULF 9LUWXDOO\ DOO GDWD ZHOO ORJV VHLVPLF DTXLVLWLRQ DQG SURFHVVLQJ VSHFLILFDWLRQV HWFf DUH QRW LQ PHWULF XQLWV :KHUH IHDVLEOH PHWULF HTXLYDOHQWV DUH SURYLGHG EXW ZKROHVDOH FRQYHUVLRQ RI HYHU\ PHDVXUHPHQW ZDV QRW XQGHUWDNHQ 5HIOHFWLRQ 6HLVPLF 'DWD $SSUR[LPDWHO\ NLORPHWHUV PLOHVf RI PXOWLIROG UHIOHFWLRQ VHLVPLF GDWD ZHUH XVHG LQ WKLV LQYHVWLJDWLRQ 7KH GDWD ZHUH FRQWULEXWHG E\ *(&2 *HRSK\VLFDO &RPSDQ\ ,QF 'LJLFRQ *HRSK\VLFDO &RUSRUDWLRQ DQG )DLUILHOG ,QGXVWULHV 6LQFH WKH FRPPHUFLDO GDWD DUH SURSULHWDU\ OLQHV ZHUH UHQXPEHUHG IRU UHIHUHQFH ZLWKLQ WKLV WH[W DQG RQO\ JHQHUDOL]HG ORFDWLRQV DUH VKRZQ )LJXUH f *HQHUDO LQIRUPDWLRQ RQ WKH UHFRUGLQJ SDUDPHWHUV DQG SURFHVVLQJ VHTXHQFHV FDQ EH IRXQG LQ $SSHQGL[ $ *(&2 *HRSK\VLFDO &RPSDQ\ UHOHDVHG WKURXJK 7H[DFR ,QFf DSSUR[LPDWHO\ NLORPHWHUV PLOHVf RI VHOHFWHG VHLVPLF GDWD IURP WKH *(&2 (DVWHUQ *XOI RI 0H[LFR 5HJLRQDO :HOO7LH SURJUDP 7KH *(&2 OLQHV VXSSO\ UHJLRQDO

PAGE 71

FRYHUDJH IURP WKH HDVWHUQ $SDODFKLFROD %DVLQ WR WKH QRUWKHUQ 6RXWK )ORULGD %DVLQ 7KH *(&2 GDWD DUH IROG FRPPRQGHSWK SRLQW &'3f FRYHUDJH 7KH UHFRUG VHFWLRQV REWDLQHG GLVSOD\ ZDYHHTXDWLRQPLJUDWHG GDWD DW D YHUWLFDO VFDOH RI LQFKHV HTXDOV VHFRQG ZD\ 77f DQG D FRPSUHVVHG KRUL]RQWDO VFDOH RI LQFK HTXDOV PLOHV f 7KLV SUHVHQWDWLRQ HQKDQFHV WKH FRQWLQXLW\ RI UHIOHFWLRQV DQG PDNHV WKH GDWD PRUH HDV\ WR LQWHUSUHW 0DFXUGD f 'LJLFRQ *HRSK\VLFDO &RUSRUDWLRQ UHOHDVHG VHOHFWHG VHLVPLF GDWD IURP WKH 'HVWLQ 'RPH 6SHF 6XUYH\ IROG &'3f WKH )ORULGD 0LGGOHJURXQG 6SHF 6XUYH\ IROG &'3f DQG WKH )ORULGD 0LGGOHJURXQG ,QILOO 6SHF 6XUYH\ IROG &'3f 7KH 'LJLFRQ GDWD VHW DPRXQWV WR DSSUR[LPDWHO\ NLORPHWHUV PLOHVf RI GDWD 7KH UHFRUG VHFWLRQV REWDLQHG GLVSOD\ PLJUDWHG GDWD DW D YHUWLFDO VFDOH RI LQFKHV HTXDOV VHFRQG ZD\ 77f DQG D KRUL]RQWDO VFDOH RI LQFK HTXDOV IHHW RU PLOHV f 7KH 'LJLFRQ OLQHV SURYLGH D UHFWDQJXODU JULG RI FRYHUDJH DFURVV WKH 0LGGOH *URXQG $UFK DQG 7DPSD (PED\PHQW )DLUILHOG ,QGXVWULHV UHOHDVHG PRUH WKDQ NLORPHWHUV PLOHVf RI VHOHFWHG IROG &'3 VHLVPLF GDWD IURP WKH 2IIVKRUH )ORULGD SURJUDP 7KH UHFRUG VHFWLRQV REWDLQHG GLVSOD\ PLJUDWHG GDWD DW D YHUWLFDO VFDOH RI LQFKHV HTXDOV VHFRQG ZD\ 77f DQG D KRUL]RQWDO VFDOH RI LQFK HTXDOV IHHW RU PLOHV f 0XFK RI WKHVH GDWD ZHUH UHSURFHVVHG ZLWK IXOOGLS PRYHRXW PLJUDWLRQ

PAGE 72

LQ 7KH )DLUILHOG OLQHV IXUQLVK D UHFWDQJXODU JULG RI FRYHUDJH DFURVV WKH $SDODFKLFROD %DVLQ )DLUILHOG OLQHV LOOXVWUDWHG LQ )LJXUHV DQG KDYH EHHQ GLVSOD\HG DW D FRPSUHVVHG KRUL]RQWDO VFDOH FRPSDUDEOH WR WKDW RI WKH *(&2 OLQHV :HOO 'DWD 7KH VHLVPLF GDWD DUH FRUUHODWHG ZLWK LQIRUPDWLRQ IURP RIIVKRUH ZHOOV )LJXUH f 9DULRXV JHRSK\VLFDO ORJV ELRVWUDWLJUDSKLF GDWD DQG VRPH OLWKRORJLF GDWD ZHUH REWDLQHG IRU WKHVH ZHOOV 7DEOH f 6\QWKHWLF VHLVPRJUDPV DQGRU YHORFLW\ VXUYH\V ZHUH REWDLQHG IRU HLJKW ZHOOV 7DEOH f :HVW RI r : :HOOV WKURXJK )LJXUH f DUH DOO ORFDWHG RQ RU QHDU WKH JULG RI VHLVPLF SURILOHV 2I WKH NH\ ZHOOV ORFDWHG LQ IHGHUDO ZDWHUV RQ WKH RXWHU FRQWLQHQWDO VKHOI 2&6f HDVW RI r : DUH WLHG E\ WKH OD\RXW RI VHOHFWHG OLQHV :HOOV DQG )LJXUH f :HOOV DQG ORFDWHG LQ WKH VWDWH ZDWHUV RI )ORULGD 7DEOH f FDQ EH SURMHFWHG WRZDUG VHLVPLF OLQHV DQG )LJXUH f 'DWD RQ FHUWDLQ ZHOOV IURP SXEOLVKHG VRXUFHV $GG\ DQG %XIIOHU /RUG *UHHQOHH *UHHQOHH DQG 0RRUH :X DQG RWKHUV Df DUH LQWHJUDWHG LQWR WKLV VWXG\ :HOOV DQG DUH LQWHUSUHWHG LQ VWUDWLJUDSKLF FURVV VHFWLRQV E\ 0LOOHU 3ODWHV DQG UHVSHFWLYHO\f ,Q WKH FDVH RI QHDUVKRUH ZHOOV SXEOLVKHG LQWHUSUHWDWLRQV RI QHDUE\ ZHOOV ZHUH DOVR FRQVXOWHG $SSOLQ

PAGE 73

)LJXUH 0DS RI UHIOHFWLRQ VHLVPLF SURILOHV DQG ZHOOV *(&2 VHLVPLF OLQHV DUH LQGLFDWHG E\ WKH SUHIL[ 'LJLFRQ VHLVPLF OLQHV DUH LQGLFDWHG E\ WKH SUHIL[ DQG )DLUILHOG OLQHV DUH LQGLFDWHG E\ WKH SUHIL[ ) .H\ H[SORUDWRU\ ZHOOV DUH QXPEHUHG WR FRUUHVSRQG ZLWK WKH OLVWLQJ RI DGGLWLRQDO LQIRUPDWLRQ LQ 7DEOH

PAGE 74

&7L +

PAGE 75

7DEOH :HOO 'DWD DEEUHYLDWLRQV H[SODLQHG EHORZf &7O : :(// 23(5$725 /($6( 12 $5($&2817< %/2&.756 /2* 7' )HHWf (/(9$7,21 )HHWf :(// /2*6 &KHYURQ 2&6* 0DLQ 3DVV .% ,( *XOI 2&6* 'HVWLQ 'RPH .% ', %&6 ([[RQ 2&6* 'HVWLQ 'RPH .% ',6 621 %,2 $PRFR 2&6* 'HVWLQ 'RPH .% ,6 621 $PRFR 2&6* 'HVWLQ 'RPH .% ',/ 621 6KHOO 2&6* 'HVWLQ 'RPH .% ',6 621 ([[RQ 2&6* 'HVWLQ 'RPH .% ,6 ',/ 96 %,2 ([[RQ 2&6* 'HVWLQ 'RPH .% ,6 621 %,2 &KHYURQ 2&6* 'HVWLQ 'RPH .% ',6 621 ([[RQ 2&6* 'HVWLQ 'RPH .% ,6 621 6/ %,2 7HQQHFR 2&6* )ORULGD 0LGGOH *URXQG .% ',6 621 66 96 7H[DFR 2&6* )ORULGD 0LGGOH *URXQG .% ', 66 96 %,2 6RKLR 2&6* *DLQHVYLOOH .% ,6 96 %,2 6KHOO 2&6* 6W 3HWHUVn EXUJ .% ', %,2 7H[DFR 2&6* 6W 3HWHUVn EXUJ .% ', 6/ %,2 0RELO 2&6* (OERZ .% ',/ )'& &1/ ',3 ',5 66 6/ %,2 0RELO 2&6* (OERZ .% ',6 )'& &1/ %&6 66 6/ 6KHOO 2&6* &KDUORWWH +DUERU .% ',6 66 2GHFR 2&6* &KDUORWWH +DUERU .% ',6

PAGE 76

*XOI 2&6* &KDUORWWH +DUERU .% ',6 0RELO 2&6* 9HUQRQ .% ',6 )'& &1/ ',3 66 6/ 6KHOO 2&6* &KDUORWWH +DUERU .% ', 7HQQHFR 2&6* &KDUORWWH +DUERU .% ',6 &DOFR )/ $ )UDQNOLQ 6: ') ( &DOFR )/ $ )UDQNOLQ .% ,( &RDVWDO 5DJODQG /HY\ 6( ') ( %,2 0RELO )/ $ % /HY\ 2IIVKRUH .% ,( &DOFR )/ % 3LQHOODV 2IIVKRUH .% ,( &DOFR )/ % /HH 2IIVKRUH ') ,( %,2 756 7RZQVKLS5DQJH6HFWLRQ /2* 7' 7RWDO 'HSWK IURP /RJ .% .HOO\ %XVKLQJ ') 'HUULFN )ORRU 7\SH RI JHRSK\VLFDO ORJ ( ,( ,6 ', ',/ ',6 )'& &1/ ',3 ',5 621 %&6 66 96 6/ %,2 (OHFWULF /RJ ,QGXFWLRQ (OHFWULF /RJ ,QGXFWLRQf§6SKHULFDOO\ )RFXVHG /RJ 'XDO ,QGXFWLRQ /RJ 'XDO ,QGXFWLRQ /DWHURORJ 'XDO ,QGXFWLRQf§6SKHULFDOO\ )RFXVHG /RJ )RUPDWLRQ &RPSHQVDWHG 'HQVLW\ /RJ &RPSHQVDWHG 1HXWURQ /RJ 'LSPHWHU /RJ 'LUHFWLRQDO 6XUYH\ 6RQLF /RJ %RUHKROH &RPSHQVDWHG 6RQLF /RJ 6\QWKHWLF 6HLVPRJUDP 9HORFLW\ 6XUYH\ 6DPSOH /RJ %LRVWUDWLJUDSKLF 'DWD R! &2

PAGE 77

DQG $SSOLQ :LQVWRQ D DQG E D DQG f 6DPSOHV IURP FRUHG LQWHUYDOV LQWHUSUHWHG WR EH (RFHQH ZHUH REWDLQHG IURP :HOOV DQG )LJXUH DQG 7DEOH f 7KH IRUPHU ZHOO KDV WZR FRUHG LQWHUYDOV LQWHUSUHWHG WR EH LQ (RFHQH VWUDWD &RUH WR IWf DQG &RUH WR IHHWf 7KH ODWWHU ZHOO KDV WKUHH FRUHG LQWHUYDOV LQWHUSUHWHG WR EH LQ (RFHQH VWUDWD &RUH WR IHHWf &RUH WR IHHWf DQG &RUH WR IHHWf 'HWDLOHG DQDO\VLV DQG LQWHUSUHWDWLRQ RI WKH FRUHV ZDV QRW ZLWKLQ WKH VFRSH RI WKLV VWXG\ 6HLVPLF 6WUDWLJUDSKLF ,QWHUSUHWDWLRQ 3URFHGXUH 6HLVPLF VWUDWLJUDSKLF LQWHUSUHWDWLRQ 9DLO DQG RWKHUV f KDV WKUHH SULQFLSDO VWHSV f§VHLVPLFf VHTXHQFH DQDO\VLV f§VHLVPLFf IDFLHV DQDO\VLV f§VHDOHYHO DQDO\VLV 6HTXHQFH DQDO\VLV EHJLQV ZLWK UHFRJQLWLRQ RI WKH UHJLRQDO VHWWLQJ DQG SHUWLQHQW DJH UHODWLRQVKLSV DQG HQWDLOV GHILQLWLRQ RI GHSRVLWLRQDO VHTXHQFHV DQG GHOLQHDWLRQ RI WKHLU H[WHQW E\ PDSSLQJ WKHLU H[WHUQDO JHRPHWU\ )DFLHV DQDO\VLV LQYROYHV LGHQWLILFDWLRQ DQG FKDUDFWHUL]DWLRQ RI WKH OLWKRIDFLHV ZLWKLQ VHTXHQFHV EDVHG RQ VHLVPLF GDWD JHRSK\VLFDO ORJ FKDUDFWHU DQGRU JHRORJLF GDWD 6HDOHYHO DQDO\VLV LQFOXGHV FRQVWUXFWLRQ RI D FKURQRVWUDWLJUDSKLF FRUUHODWLRQ FKDUW DQG JHRFKURQRORJLF FKDUW WKDW VKRZV UHJLRQDO F\FOHV RI UHODWLYH VHDOHYHO FKDQJH 9DLO DQG RWKHUV f

PAGE 78

9DLO f H[SDQGV WKH VHLVPLF VWUDWLJUDSKLF LQWHUSUHWDWLRQ SURFHGXUH WR VHYHQ VWHSV f§VHLVPLF VHTXHQFH DQDO\VLV f§ZHOOORJ VHTXHQFH DQDO\VLV f§V\QWKHWLF ZHOOWRVHLVPLF WLHV f§VHLVPLF IDFLHV DQDO\VLV f§LQWHUSUHWDWLRQ RI GHSRVLWLRQDO HQYLURQPHQW DQG OLWKRIDFLHV f§IRUZDUG VHLVPLF PRGHOLQJ f§ILQDO LQWHUSUHWDWLRQ 9DLO DQG :RUQDUGW f DJDLQ UHYLVH WKH SURFHGXUH IRU ZHOO ORJVHLVPLF VHTXHQFH VWUDWLJUDSKLF DQDO\VLV $Q HOHYHQ VWHS SURFHVV LV QRZ UHFRPPHQGHG f§,QWHUSUHW OLWKRORJ\ IURP ORJ FKDUDFWHU FRQILUP ZLWK FRUHV DQG FXWWLQJV ZKHQ SRVVLEOHf f§,QWHUSUHW GHSRVLWLRQDO HQYLURQPHQWV IURP PLFURSDOHRQWRORJ\ SDOHRHFRORJ\ DQG WKHQ IURP ZHOO ORJ FKDUDFWHU f§,QWHUSUHW WKH FRQGHQVHG VHFWLRQV IURP IDXQDO DQG IORUDO DEXQGDQFH DQG GLYHUVLW\ WR UHFRJQL]H r 0DMRU FRQGHQVHG VHFWLRQV DVVRFLDWHG ZLWK PD[LPXP IORRGLQJ VXUIDFHV r 6HFRQGDU\ FRQGHQVHG VHFWLRQV QRW DVVRFLDWHG ZLWK PD[LPXP IORRGLQJ VXUIDFHV r %DVH RI ORZVWDQG SURJUDGLQJ ZHGJHV r %DVH RI ORZVWDQG VORSH IDQV r 0LQRU FRQGHQVHG VHFWLRQV EHWZHHQ DWWDFKHG OREHV RI VORSH IDQV f§$JH GDWH ZLWK KLJK UHVROXWLRQ ELRVWUDWLJUDSK\ DQG FRUUHODWH ZLWK JOREDO VHTXHQFH F\FOH FKDUW f§/RFDWH GLVFRQWLQXLWLHV RQ GLSPHWHU ORJ f§,QWHUSUHW VHTXHQFH DQG V\VWHPV WUDFW ERXQGDULHV IURP ORJ FKDUDFWHU f§7LH WR VHLVPLF VHFWLRQV WKDW KDYH VHTXHQFHV DQG V\VWHPV WUDFWV LQWHUSUHWHG f§,QWHUSUHW VHTXHQFH ERXQGDULHV PD[LPXP IORRGLQJ VXUIDFHV DQG V\VWHPV WUDFWV RQ VHLVPLF GDWD DQG WLH WKH VHLVPLF LQWHUSUHWDWLRQ WR WKH ZHOO ORJV f§,GHQWLI\ SDUDVHTXHQFHV DQG PDUNHU EHGV f§&RQVWUXFW ZHOO ORJVHLVPLF VHTXHQFH VWUDWLJUDSKLF FURVVVHFWLRQV f§3UHSDUH D FKURQRVWUDWLJUDSKLF FKDUW IURP NH\ FURVV VHFWLRQV WR VXPPDUL]H VWUDWLJUDSKLF IUDPHZRUN

PAGE 79

7KLV LQYHVWLJDWLRQ LQWHJUDWHV DOO DYDLODEOH LQIRUPDWLRQ IURP VHLVPLF DQG ZHOOV EXW GRHV QRW DGKHUH VWULFWO\ WR WKH SURFHGXUH RI :RUQDUGW DQG 9DLO f EHFDXVH WKHUH DUH IHZ ZHOOV LQ WKH VWXG\ DUHD DQG JHRORJLF ELRVWUDWLJUDSKLF DQG SDOHRHFRORJLFDO GDWD DUH HYHQ PRUH VFDUFH $V GLVFXVVHG E\ 6FKODJHU S f WKH UHVWULFWHG GHILQLWLRQV RI XQFRQIRUPLW\ DQG VHTXHQFH ERXQGDU\ 9DLO DQG 9DQ :DJRQHU DQG RWKHUV f DUH QRW DFFHSWDEOH DQG WKH OLPLWV RI VHLVPLF UHVROXWLRQ SUHFOXGH WKH UHFRJQLWLRQ RI V\VWHPV WUDFWV 7KHUHIRUH WKH FULWHULD XVHG IRU VHTXHQFH ERXQGDU\ UHFRJQLWLRQ DUH WKRVH RI 9DLO DQG RWKHUV f $V WKH ILUVW VWHS WKH ERXQGDULHV RI GHSRVLWLRQDO VHTXHQFHV ZHUH LGHQWLILHG E\ UHIOHFWLRQ WHUPLQDWLRQV DQG WUDFHG WKURXJKRXW WKH JULG RI VHLVPLF VHFWLRQV 7KHQ OLWKRVWUDWLJUDSKLF DQG ELRVWUDWLJUDSKLF GDWD IURP ZHOOV ZHUH XVHG WR LQWHUSUHW WKH VHLVPLF GDWD 7KH LQWHUSUHWDWLRQV IURP ZHOO GDWD ZHUH WLHG WR VHLVPLF VHFWLRQV HLWKHU E\ V\QWKHWLF VHLVPRJUDPV RU XVLQJ VRQLF ORJV 7KH ZHOOWRVHLVPLF WLHV IRU :HOOV DQG )LJXUH 7DEOH f ZHUH PDGH XVLQJ V\QWKHWLF VHLVPRJUDPV 7KH FRQYHUVLRQV IURP GHSWK IWf WR WZRZD\ WUDYHO WLPH ZD\ 77 VHFf IRU WKH ZHOOWRVHLVPLF WLHV IRU :HOOV DQG )LJXUH 7DEOH f DUH EDVHG RQ VRQLF ORJ LQWHUYDO WUDQVLW WLPH $W [VHFIWf 6RQLF ORJV ZHUH EORFNHG DQG WKH DYHUDJH LQWHUYDO WUDQVLW WLPH $W 0VHFIWf XVHG WR FDOFXODWH WKH WZRZD\ WUDYHO WLPH ZD\ 77

PAGE 80

VHFf IRU HDFK EORFNHG LQWHUYDO E\ GLYLGLQJ WKH LQWHUYDO WKLFNQHVV IWf E\ WKH DYHUDJH VRQLF YHORFLW\ IWVHFf RI WKH LQWHUYDO 7KH VWDFNLQJ YHORFLW\ QHDU WKH ZHOO ZDV XVHG WR FDOFXODWH WKH ZD\ 77 WR WKH WRS RI WKH VRQLF ORJ 7KH FXPXODWLYH ZD\ 77 EHORZ WKH VHLVPLF GDWXP VHD OHYHOf ZDV FDOFXODWHG E\ VXPPLQJ WKH ZD\ 77 RI HDFK LQWHUYDO 7KH FXPXODWLYH ZD\ 77 RI GHSWKV DW ZKLFK WKH FKDQJH LQ $W ZDV UHODWLYHO\ JUHDW ZHUH FRUUHODWHG WR UHIOHFWLRQV RQ WKH VHLVPLF VHFWLRQV $ VXLWH RI ZHOOORJ FURVVVHFWLRQV )LJXUHV WKURXJK f ZHUH FRQVWUXFWHG VKRZLQJ FKURQRVWUDWLJUDSKLF VHLVPLFVWUDWLJUDSKLF DQG OLWKRVWUDWLJUDSKLF FRUUHODWLRQV 6HLVPLF IDFLHV DQDO\VLV ZDV DSSURDFKHG DV SUHYLRXVO\ GHVFULEHG 7KH DQDO\VLV LQFRUSRUDWHV WKH FKDUDFWHUL]DWLRQ RI VHLVPLF IDFLHV RI FDUERQDWH URFNV E\ )RQWDLQH DQG RWKHUV )LJXUH f DQG WKH PRGHOV RI +DQGIRUG DQG /RXFNV LQ SUHVVf $ VXLWH RI WKLFNQHVV DQG VWUXFWXUH PDSV RI NH\ XQLWV ZHUH PDGH FRQWRXUHG LQ ZD\ 77 &RQYHUVLRQ WR GHSWK ZDV QRW DWWHPSWHG EHFDXVH RI VSDUVH FRQWURO RQ VRQLF YHORFLW\ ,Q JHQHUDO D LQFUHDVH LQ VRQLF YHORFLW\ RFFXUV WRZDUG WKH VRXWKHDVW ZLWK WKH FKDQJH IURP VLOLFLFODVWLF WR PRUH FDUERQDWH URFN 7KH JUDGDWLRQDO QDWXUH RI WKLV FKDQJH LQ VRQLF YHORFLW\ KRZHYHU PHDQV WKDW ORFDOO\ WKH FKDQJH LV QHJOLJLEOH 0DSV FRQWRXUHG LQ ZD\ 77 VKRXOG EH PRUH HDVLO\ WLHG E\ IXWXUH LQYHVWLJDWRUV WKDQ PDSV FRQYHUWHG WR GHSWK RQ WKH EDVLV RI VSHFXODWLYH VRQLF YHORFLW\

PAGE 81

R %$6,1 3HODJLF GHSRVLWVf 7HUPLQDWLRQV RI UHIOHFWLRQV 2QODSV RQ WKH WDOXV +RPRJHQHRXV OLPHVWRQHV &RQWLQXRXV UHIOHFn WLRQV DW WKH WRS DQG EDVH ZLWK KLJKDPSOLWXGH UHIOHFWRUIUHH ]RQH EHWZHHQ WKHVH WZR UHIOHFWLRQV 6KDOH DQG FDUERQDWH OD\HUV &RQWLQXRXV SDUDOn OHO UHIOHFWLRQV ZLWK DQ DSSDUHQWO\ KLJK IUHTXHQF\ 6KDO\ OD\HUV $SSDUHQWO\ ORZ IUHTXHQF\ 7KUELGOWHV +LJKDPSOLWXGH GLVFRQWLQXRXV UHIOHFWLRQV PRXQG VKDSHG 7$/86 'LVFRQWLQXRXV REOLTXH UHIOHFn WLRQV ZLWK KLJK DPSOLWXGH 6OXPSLQJ 5HIOHFWLRQV ZLWK KXPn PRFN\ DQG LUUHJXODU HQYHORSH &KDQQHO (URVLRQDO WUXQFDWLRQV FKDRWLF UHIOHFn WLRQV 5(() %$55,(5 3/$7)250 %25'(5 6$1'6 0RXQGVKDSHG GUDSLQJ RI RYHUO\LQJ UHIOHFWLRQV 3XOOXS DQG SXOOGRZQ HIIHFWV 2QODSV DW WKH HGJHV 'LIIUDFWLRQ K\SHUEROD 17(51$/ 3/$7)250 0RXQG VKDSHG REOLTXH UHIOHFn WLRQ ZLWK KLJK DPSOLWXGH %DFN 5HHI 'LVFRQWLQXRXV UHIOHFWLRQV EHJLQQLQJ RI EHGGLQJ ,17(5n 7,'$/ =21( 3DUDOOHO FRQWLQXRXV UHIOHFWLRQV JHQHUDOO\ ZLWK DQ DSSDUHQWO\ ORZ IUHTXHQF\ 3DWFK 5HHI 0RXQGVKDSHG UHIOHFWRUIUHH ]RQH 'UDSLQJ RI RYHUO\LQJ UHIOHFWLRQV 3XOOXS DQG SXOOGRZQ HIIHFWV 2QODSV DW WKH HGJHV 'LIIUDFWLRQ K\SHUEROD 6835$ 7,'$/ =21( 'RORPL8]DWORQ 0DUEOHG ]RQHVf )LJXUH 6HLVPLF IDFLHV RI FDUERQDWH GHSRVLWLRQDO HQYLURQPHQWV )RQWDLQH DQG RWKHUV f HUW &'

PAGE 82

&KURQRVWUDWLJUDSKLF ,QWHUSUHWDWLRQ 3URFHGXUH 0RVW VHTXHQFH VWUDWLJUDSKLF DQDO\VHV HJ %DXP DQG 9DLO *UHHQOHH *UHHQOHH DQG 0RRUH .LQJ DQG 6NRWQLFNL :X DQG RWKHUV D 'REVRQ f HPSOR\ WKH 0HVR]RLF&HQR]RLF &\FOH &KDUW +DT DQG RWKHUV f DV WKH VWDQGDUG IRU WHPSRUDO FRUUHODWLRQV 0LDOO f VXJJHVWV WKH QHHG WR UHYLVH WKLV SUDFWLFH $QRWKHU UHDVRQ IRU FKDQJH LV D PRUH DFFXUDWH JHRPDJQHWLF SRODULW\ WLPH VFDOH *376f IRU WKH /DWH &UHWDFHRXV DQG &HQR]RLF &DQGH DQG .HQW f 7KH FRUUHODWLRQ RI VHULHV DQG VWDJH ERXQGDULHV WR PDJQHWRSRODULW\ FKURQR]RQHV E\ +DT DQG RWKHUV f LV GLIIHUHQW IURP WKDW RI RWKHU VFKHPHV .HQW DQG *UDGVWHLQ %UHJJUHQ DQG RWKHUV D E F $XEU\ DQG RWKHUV f SDUWLFXODUO\ WKH *376 RI &DQGH DQG .HQW f $OVR WKH FRUUHODWLRQ E\ +DT DQG RWKHUV f RI ELRFKURQRVWUDWLJUDSKLF XQLWV VSHFLILFDOO\ WKH SODQNWRQLF IRUDPLQLIHUDO 13f ELRFKURQR]RQHV ZLWK PDJQHWLF SRODULW\ VWUDWLJUDSK\ LV GLIIHUHQW IURP WKDW RI RWKHU VFKHPHV %HUJJUHQ DQG RWKHUV D E F $XEU\ DQG RWKHUV f $V WKH *376 RI &DQGH DQG .HQW f GRHV QRW SURYLGH D PDJQHWR ELRFKURQRVWUDWLJUDSKLF FRUUHODWLRQ WKH LQWHUSUHWDWLRQV RI %HUJJUHQ DQG RWKHUV D E Ff DV UHYLVHG E\ $XEU\ DQG RWKHUV f DUH XVHG WR WLH WKH SODQNWRQLF IRUDPLQLIHUDO ]RQDWLRQV WR WKLV *376 )LJXUH f 2QH SRLQW RI FRQWURYHUV\ WKH SRVLWLRQ RI WKH 3DOHRFHQH(RFHQH ERXQGDU\ $XEU\ DQG RWKHUV 6ZLVKHU DQG .QR[ DQG &DQGH DQG .HQW

PAGE 83

)LJXUH *HRPDJQHWLF SRODULW\ WLPHVFDOH IRU WKH /DWH &UHWDFHRXV DQG &HQR]RLF IURP &DQGH DQG .HQW EODFN LV QRUPDO SRODULW\ ZKLWH LV UHYHUVHGf ZLWK FRUUHODWLRQ WR SODQNWRQLF IRUDPLQLIHUDO ]RQDWLRQV DQG WKH ODVW DSSHDUDQFH GDWD /$'f RI NH\ SODQNWRQLF IRUDPLQLIHUV IURP .HQW DQG *UDGVWHLQ %HUJJUHQ DQG RWKHUV D E DQG $XEU\ DQG RWKHUV f 6L[OHWWHU DEEUHYLDWLRQV IRU IRUDPLQLIHUV DUH H[SODLQHG LQ $SSHQGL[ %

PAGE 84

&+5212 7,0( 675$7,*5$3+,& 81,76 ] ; r r /$' 2) .(< 3/$1.721,& )25$0,1,)(56 =21(6 7,0( 0R ‘ 3/ (6 (2&(1( 3/,2n &(1( 3,$&(1=,$1 NM NO N N N NL N N N! N NM n7 N NO b NL NM 2 NM 2 R NM NL N N N N NM N N $ f =$1&/($1 f 0(66,1,$1 A$r f f 725721,$1 $n f $ f VHUUDYDOLDQ /$1*+,$1 %852,*$/,$1 % 6& ( ff $ $48,7$1,$1 % & $ &+$77,$1 ff O2 OO 583(/,$1 fr %$5721,$1 / 35,$%21,$1 M /87(7,$1 <35(6,$1 cW 6(/$12,$1 '$1,$1 0$$675,&+7,$1 NO ,V fVL f§ &$03$1,$1 6$1721,$1 */5 )35 */5 .8* */% &$* */5 223 &+/ &8% */% $33 3+* 0&5 +1. $/$7%5 *$. 609 &&$ 755 5+5 0=9 631 251 %.0 F $&5 %/2 0=9 $5$ $&5 3&0 0=9 6%% 0=9 9/& 357 30, 0=9 $*$ 0=9 3%8 *$1 *$1 *7, &&5 *7, (/( ',& &&9 B 1 f§ B1 f§ 1 1 1 1 1 1 f§ 1 B1 f§ ,7 ]]] D! -/ 1 1 31 3 3 3 3 3 f§ 3f§ 3 3 f§ 3 f§ 3 3 3 3 3 3 f§ 3 3 3 f§ 3f§ 3 1 1 1 1 0R f

PAGE 85

f LV EH\RQG WKH VFRSH RI WKLV LQYHVWLJDWLRQ EXW LV DGGUHVVHG E\ %HUJJUHQ DQG RWKHUV f &KURQRVWUDWLJUDSKLF FRQWURO FRPHV IURP UHSRUWV RI WKH GHSWKV RI WKH ILUVW GRZQKROH RFFXUUHQFHV LH ODVW REVHUYHG RFFXUUHQFHV /22f RI YDULRXV SODQNWRQLF DQG EHQWKRQLF IRUDPLQLIHUV LQ ZHOOV $SSHQGL[ %f 7KLV VWXG\ SUHIHUHQWLDOO\ XVHV WKH QRPHQFODWXUH RI %ROOL 6DXQGHUV DQG 3HUFK1LHOVHQ f $SSHQGL[ % LQFOXGHV DQ LQIRUPDO V\QRQ\P\ RI WKH WD[D OLVWHG LQ WKH UHSRUWV 7KH ODVW DSSHDUDQFH GDWD /$'f RI FHUWDLQ RI WKH SODQNWRQLF IRUDPLQLIHUV DUH FRUUHODWHG WR WKH PDJQHWLF SRODULW\ VWUDWLJUDSK\ .HQW DQG *UDGVWHLQ %HUJJUHQ DQG RWKHUV D E &LHVLHOVNL SHUVRQDO FRPPXQLFDWLRQf 7KH /22 RI WKHVH WD[D LQ WKH ZHOOV VWXGLHG FDQ EH FRQVLGHUHG HTXDO WR RU ROGHU WKDQ WKH /$' WLH SRLQWV VKRZQ LQ )LJXUH 7KH /22 RI RWKHU WD[D OLVWHG FDQ EH FRQVLGHUHG HTXDO WR RU ROGHU WKDQ WKHLU /$' UHODWLYH WR WKH SODQNWRQLF IRUDPLQLIHUDO ]RQDWLRQV DV VKRZQ LQ %ROOL 6DXQGHUV DQG 3HUFK1LHOVHQ f 2QH GLVFUHSDQF\ EHWZHHQ WKH SODQNWRQLF IRUDPLQLIHUDO ]RQDWLRQ RI %HUJJUHQ DQG RWKHUV Ef DQG WKDW XVHG LQ %ROOL 6DXQGHUV DQG 3HUFK1LHOVHQ f LV WKDW WKH WRS RI WKH 7UXQFRURWDORLGHV URKUL ]RQH 3 LV WKH /$' RI WKH QRPLQDWH WD[RQ LQ WKH ODWWHU VFKHPH EXW WKH ILUVW DSSHDUDQFH GDWXP )$'f RI 3RUWLFXODVSKDHUD VHPLLQYROXWD UHIHUUHG WR KHUH DV *ORELTHULQDWKHND VHPLLQYROXWDf LQ WKH IRUPHU

PAGE 86

7KH FKURQRVWUDWLJUDSKLF VLJQLILFDQFH RI VWLOO RWKHU WD[D OLVWHG LQ $SSHQGL[ % LV EDVHG RQ WKH SUHYLRXVO\ SXEOLVKHG LQWHUSUHWDWLRQV RI $SSOLQ DQG $SSOLQ f $SSOLQ DQG -RUGDQ f RU 0LOOHU f :HOOORJ &RUUHODWLRQ 3URFHGXUH 2XWFURSV RI FRDVWDO SODLQ VWUDWD DUH VSDUVH DQG PXFK RI RXU NQRZOHGJH RI )ORULGD VWUDWLJUDSK\ LV EDVHG RQ GDWD IURP ZHOOV :KHQ VXEVXUIDFH LQYHVWLJDWLRQV EHJDQ LQ WKH HDUO\ nV WKHUH ZDV QR FRGH RI VWUDWLJUDSKLF QRPHQFODWXUH DQG QR GLVWLQFWLRQ EHWZHHQ ELRVWUDWLJUDSKLF DQG OLWKRVWUDWLJUDSKLF XQLWV ,Q PRVW FDVHV GLDJQRVWLF IRUDPLQLIHUD ZHUH WKH FULWHULD IRU UHFRJQL]LQJ VXEVXUIDFH IRUPDWLRQV LQ )ORULGD $SSOLQ DQG $SSOLQ $SSOLQ DQG -RUGDQ f ,Q D WKHLU VWXG\ RI WKH &RPDQFKH 6HULHV /RZHU &UHWDFHRXVf $SSOLQ DQG $SSOLQ S f H[SODLQ WKDW SURYLVLRQDO ERXQGDULHV RI WKH VWUDWLJUDSKLF XQLWV DUH DUELWUDULO\ GHWHUPLQHG RQ WKH EDVLV RI OLWKRORJLF DQG HOHFWULF ORJ FKDUDFWHULVWLFV WKDW DUH WUDFHDEOH IURP ZHOO WR ZHOO DQG ZKLFK RFFXU DW RU VOLJKWO\ DERYH WKH KLJKHVW OHYHO RI WKH GLDJQRVWLF IRVVLOV $OWKRXJK :LQVWRQ D E D f RIIHUV OLWKRORJLF FULWHULD IURP VDPSOH DQG JHRSK\VLFDO ORJV IURP W\SH ZHOOV WR HVWDEOLVK FRUUHODWLRQ RI ERWK QHZO\ SURSRVHG DQG FODVVLF VWUDWLJUDSKLF XQLWV PLFURIDXQDO DVVHPEODJHV UHPDLQ WKH NH\ WR WKH VWUDWLJUDSKLF FRUUHODWLRQ LQ )ORULGD 0LOOHU f HPSOR\V WLPHURFN XQLWV FRUUHODWHG FKLHIO\ E\ PHDQV RI

PAGE 87

SODQNWRQLF DQG EHQWKRQLF IRUDPLQLIHUV $ VLPLODU DSSURDFK LV XVHG LQ WKLV VWXG\ 7KH VXLWH RI ZHOOORJ FURVVVHFWLRQV $$n WKURXJK ''n )LJXUHV WKURXJK f DUH FRQVWUXFWHG RQ GDWXP OHYHOV UHODWLYH WR PHDQ VHD OHYHO ,Q HDFK FDVH WKH OLQH RI VHFWLRQ LV PRUH RU OHVV SHUSHQGLFXODU WR WKH SUHVHQW FRDVWOLQH 7KH /22 RI D GLDJQRVWLF WD[RQ LV VKRZQ E\ WKH VL[OHWWHU DEEUHYLDWLRQ IRU WKDW WD[RQ DORQJVLGH WKH ZHOO ORJ 7KH DEEUHYLDWLRQV DUH OLVWHG LQ $SSHQGL[ % LQ JHQHUDO RUGHU RI ILUVW GRZQKROH RFFXUUHQFH LH LQFUHDVLQJ DJHf RI WD[D ,Q WKH FDVH RI FRUUHODWLRQV EDVHG RQ PDJQHWRELRFKURQR VWUDWLJUDSKLF DQGRU ELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV WKH ERXQGDULHV DUH FKRVHQ WR FRLQFLGH ZLWK OLWKRORJLF FKDQJHV IURP VDPSOH DQGRU JHRSK\VLFDO ORJVf WKDW DUH WUDFHDEOH IURP ZHOO WR ZHOO DQG WKDW RFFXU DW RU VOLJKWO\ DERYH WKH /22 WKH GLDJQRVWLF WD[D 2Q WKH FURVVVHFWLRQV WKHVH ERXQGDULHV DUH VKRZQ E\ WKLFN OLQHV 7HQWDWLYH FRUUHODWLRQV EDVHG RQO\ RQ OLWKRORJLF FKDUDFWHULVWLFV IURP VDPSOH DQGRU JHRSK\VLFDO ORJVf WKDW DUH WUDFHDEOH IURP ZHOO WR ZHOO DUH VKRZQ RQ WKH FURVVVHFWLRQV E\ WKLQ OLQHV 7KH SRVLWLRQV RI VHTXHQFH ERXQGDULHV LQWHUSUHWHG IURP VHLVPLF VHFWLRQV YLD VRQLF ORJV DQGRU V\QWKHWLF VHLVPRJUDPV DUH DOVR DQQRWDWHG RQ WKH ZHOOORJ FURVVVHFWLRQV ,Q WKH VSHFLILF FDVH RI WKH 0&6% WKH ERXQGDU\ LV VR ODEHOHG DQG VKRZQ DV D WKLFN ZDY\ OLQH

PAGE 88

5(68/76 $1' ',6&866,21 &KURQRVWUDWLJUDSKLF )UDPHZRUN 3HUWLQHQW DJH UHODWLRQVKLSV ZHUH LQWHUSUHWHG DV SUHYLRXVO\ GHVFULEHG )LJXUH f DQG WKH /22 GHSWKV DQG PDJQHWRELRFKURQRVWUDWLJUDSKLF RU ELRFKURQRVWUDWLJUDSKLF LQIRUPDWLRQ RQ WKH WD[D DUH OLVWHG LQ $SSHQGL[ % DQG LOOXVWUDWHG LQ IRXU ZHOOORJ FURVVVHFWLRQV )LJXUHV DQG f ,Q VRPH RI WKH ZHOOV WKH /22 GHSWKV RI FHUWDLQ WD[D GR QRW RFFXU LQ DQ LGHDO VWUDWLJUDSKLF VHTXHQFH $SSHQGL[ % VKDGHG EORFNVf 5HZRUNLQJ FDYLQJ DQG GLIIHUHQFHV LQ SUHVHUYDWLRQ FDQ DIIHFW WKH REVHUYHG VHTXHQFH RI PLFURIRVVLO RFFXUUHQFHV 0RVW LQVWDQFHV LQ WKLV VWXG\ DUH RI WKH VRUW ZKHUH WKH /22 RI RQH WD[RQ RFFXUV EHQHDWK WKH /22 RI RWKHU WD[D WKH /$' RI ZKLFK DUH VXSSRVHG WR EH ROGHU 6XFK FDVHV FRXOG EH DWWULEXWHG WR FDYLQJ 7KHUH DUH DOVR D IHZ FDVHV ZKHUH WKH /22 RI D WD[RQ LV DPRQJ RWKHUV ZKRVH /$' DUH FRQVLGHUHG WR EH \RXQJHU WKLV VXJJHVWV UHZRUNLQJ :KHUH WKHUH DUH SUREOHPV WKH FKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQ LV WHQWDWLYH &DOLEUDWLRQ RI WKH RFFXUUHQFHV RI SODQNWRQLF IRUDPLQLIHUV DJDLQVW PDJQHWRVWUDWLJUDSK\ 0LOOHU DQG RWKHUV f LQGLFDWHV WKDW VRPH ORZODWLWXGH WD[D H[KLELW ODWLWXGLQDO

PAGE 89

)LJXUH ,Q SRFNHWf :HOOORJ FURVVVHFWLRQ $$n VKRZLQJ DJH LQWHUSUHWDWLRQ EDVHG RQ WKH GHSWKV IURP ([[RQ &RPSDQ\ UHSRUWVf RI WKH ODVW REVHUYHG RFFXUUHQFHV RI NH\ SODQNWRQLF DQG VHYHUDO EHQWKRQLF IRUDPLQL IHUV LQ :HOOV DQG LQ WKH 'HVWLQ 'RPH $UHD :HOO QXPEHUV UHIHU WR )LJXUH DQG 7DEOH 7KHUH LV D FKDQJH LQ GDWXP RI WKH WZR VRXWKZHVWHUQPRVW GRZQGLSf ZHOOV IURP IHHW WR IHHW VXEVHD 7KH /22 RI D GLDJQRVWLF WD[RQ LV VKRZQ E\ WKH VL[OHWWHU DEEUHYLDWLRQ IRU WKDW WD[RQ DORQJVLGH WKH ZHOO ORJ $EEUHYLDWLRQV DUH OLVWHG LQ $SSHQGL[ % LQ JHQHUDO RUGHU RI ILUVW GRZQKROH RFFXUUHQFH LH LQFUHDVLQJ DJHf RI WD[D 7KH SRVLWLRQV RI VHTXHQFH ERXQGDULHV LQWHUSUHWHG IURP VHLVPLF VHFWLRQV DUH DOVR DQQRWDWHG ,Q WKH VSHFLILF FDVH RI WKH 0&6% WKH ERXQGDU\ LV VKRZQ DV D WKLFN ZDY\ OLQH 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .8 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW .MM 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7eX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH &RUUHODWLRQV RQ PDJQHWRELRFKURQRVWUDWLJUDSKLF DQGRU ELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV DUH VKRZQ E\ WKLFN OLQHV 7HQWDWLYH FRUUHODWLRQV EDVHG RQO\ RQ OLWKRORJLF FKDUDFWHULVWLFV DUH VKRZQ RQ WKH FURVVVHFWLRQV E\ WKLQ OLQHV

PAGE 90

)LJXUH LQ SRFNHWf :HOOORJ FURVVVHFWLRQ %%n VKRZLQJ DJH LQWHUSUHWDWLRQ EDVHG RQ WKH GHSWKV RI WKH ODVW REVHUYHG RFFXUUHQFHV RI NH\ SODQNWRQLF DQG VRPH EHQWKRQLF IRUDPLQLIHUV LQ :HOOV DQG RQ WKH 0LGGOH *URXQG $UFK :HOO QXPEHUV UHIHU WR )LJXUH DQG 7DEOH 'DWXP LV PHDQ VHD OHYHO 7KH /22 RI D GLDJQRVWLF WD[RQ LV VKRZQ E\ WKH VL[OHWWHU DEEUHYLDWLRQ IRU WKDW WD[RQ DORQJVLGH WKH ZHOO ORJ $EEUHYLDWLRQV DUH OLVWHG LQ $SSHQGL[ % LQ JHQHUDO RUGHU RI ILUVW GRZQKROH RFFXUUHQFH LH LQFUHDVLQJ DJHf RI WD[D 7KH SRVLWLRQV RI VHTXHQFH ERXQGDULHV LQWHUSUHWHG IURP VHLVPLF VHFWLRQV DUH DOVR DQQRWDWHG ,Q WKH VSHFLILF FDVH RI WKH 0&6% WKH ERXQGDU\ LV VKRZQ DV D WKLFN ZDY\ OLQH 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .X 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW .\ 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7HX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH &RUUHODWLRQV RQ PDJQHWRELRFKURQRVWUDWLJUDSKLF DQGRU ELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV DUH VKRZQ E\ WKLFN OLQHV 7HQWDWLYH FRUUHODWLRQV EDVHG RQO\ RQ OLWKRORJLF FKDUDFWHULVWLFV DUH VKRZQ RQ WKH FURVVVHFWLRQV E\ WKLQ OLQHV

PAGE 91

)LJXUH ,Q SRFNHWf :HOOORJ FURVVVHFWLRQ &&n VKRZLQJ DJH LQWHUSUHWDWLRQ EDVHG RQ WKH GHSWKV RI WKH ODVW REVHUYHG RFFXUUHQFHV RI NH\ SODQNWRQLF DQG VRPH EHQWKRQLF IRUDPLQLIHUV LQ :HOOV DQG RQ WKH VRXWKHDVW IODQN RI WKH 7DPSD (PED\PHQW :HOO QXPEHUV UHIHU WR )LJXUH DQG 7DEOH 'DWXP LV PHDQ VHD OHYHO 7KH /22 RI D GLDJQRVWLF WD[RQ LV VKRZQ E\ WKH VL[OHWWHU DEEUHYLDWLRQ IRU WKDW WD[RQ DORQJVLGH WKH ZHOO ORJ $EEUHYLDWLRQV DUH OLVWHG LQ $SSHQGL[ % LQ JHQHUDO RUGHU RI ILUVW GRZQKROH RFFXUUHQFH LH LQFUHDVLQJ DJHf RI WD[D 7KH SRVLWLRQV RI VHTXHQFH ERXQGDULHV LQWHUSUHWHG IURP VHLVPLF VHFWLRQV DUH DOVR DQQRWDWHG ,Q WKH VSHFLILF FDVH RI WKH 0&6% WKH ERXQGDU\ LV VKRZQ DV D WKLFN ZDY\ OLQH 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7S 7RS RI 3DOHRFHQH 7HX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH .8Dn ./W!n DQG .OF GHQRWH NH\ VHLVPLF UHIOHFWLRQV ZLWKLQ WKH /RZHU &UHWDFHRXV VHFWLRQ VKRZQ WR VWUHQJWKHQ FRUUHODWLRQV RI RYHUO\LQJ XQLWV &RUUHODWLRQV RQ PDJQHWRELRFKURQRVWUDWLJUDSKLF DQGRU ELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV DUH VKRZQ E\ WKLFN OLQHV 7HQWDWLYH FRUUHODWLRQV EDVHG RQO\ RQ OLWKRORJLF FKDUDFWHULVWLFV DUH VKRZQ RQ WKH FURVVVHFWLRQV E\ WKLQ OLQHV

PAGE 92

)LJXUH ,Q SRFNHWf :HOOORJ FURVVVHFWLRQ ''n VKRZLQJ DJH LQWHUSUHWDWLRQ EDVHG RQ WKH GHSWKV RI WKH ODVW REVHUYHG RFFXUUHQFHV RI NH\ SODQNWRQLF DQG VRPH EHQWKRQLF IRUDPLQLIHUV LQ :HOOV DQG RQ WKH QRUWK IODQN RI WKH 6RXWK )ORULGD %DVLQ :HOO QXPEHUV UHIHU WR )LJXUH DQG 7DEOH 'DWXP LV PHDQ VHD OHYHO 7KH /22 RI D GLDJQRVWLF WD[RQ LV VKRZQ E\ WKH VL[OHWWHU DEEUHYLDWLRQ IRU WKDW WD[RQ DORQJVLGH WKH ZHOO ORJ $EEUHYLDWLRQV DUH OLVWHG LQ $SSHQGL[ % LQ JHQHUDO RUGHU RI ILUVW GRZQKROH RFFXUUHQFH LH LQFUHDVLQJ DJHf RI WD[D 7KH LQWHUSUHWDWLRQ RI VHTXHQFH ERXQGDULHV RQ VHLVPLF VHFWLRQV LQ WKLV DUHD LV SUREOHPDWLF .8Dn ./En DQA NOF GHQRWH NH\ VHLVPLF UHIOHFWLRQV ZLWKLQ WKH /RZHU &UHWDFHRXV VHFWLRQ VKRZQ WR VWUHQJWKHQ FRUUHODWLRQV RI WKH 0&6% DQG RYHUO\LQJ XQLWV 7KH 0&6% LV VKRZQ DV D WKLFN ZDY\ OLQH &RUUHODWLRQV RQ PDJQHWRELRFKURQRVWUDWLJUDSKLF DQGRU ELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV DUH VKRZQ E\ WKLFN OLQHV 7HQWDWLYH FRUUHODWLRQV EDVHG RQO\ RQ OLWKRORJLF FKDUDFWHULVWLFV DUH VKRZQ RQ WKH FURVVVHFWLRQV E\ WKLQ OLQHV

PAGE 93

GLDFKURQ\ 0RUH XQH[SHFWHGO\ KRZHYHU 6U DJH HTXDWLRQV UHYHDO WKDW VRPH SODQNWRQLF IRUDPLQLIHUDO GDWXP OHYHOV VSHFLILFDOO\ LQ WKH 2OLJRFHQH DUH GLDFKURQRXV DORQJ ORQJLWXGLQDO JUDGLHQWV +HVV DQG RWKHUV f 7KH PDJQHWRELRFKURQRVWUDWLJUDSKLF FRUUHODWLRQ RI WKH /22 RI VXFK WD[D QRWHG LQ $SSHQGL[ %f DUH VRPHZKDW VXVSHFW 7KH PRVW GHWDLOHG ELRVWUDWLJUDSKLF GDWD DYDLODEOH DUH IURP IRXU ([[RQ ZHOOV :HOOV DQG f LQ WKH 'HVWLQ 'RPH $UHD )LJXUH f )RU ZHOOV WR WKH VRXWKHDVW )LJXUHV DQG f WKHUH LV OHVV LQIRUPDWLRQ ,W KDV EHHQ QRWHG $SSOLQ DQG -RUGDQ +XGGOHVWXQ f WKDW WKH PLFURIDXQD RI WKH VXEVXUIDFH IRUPDWLRQV RI )ORULGD DUH UDWKHU GLVWLQFW 7D[D QRWHG LQ WKH QHDUVKRUH ZHOOV LH :HOO :HOO DQG :HOO 0LOOHU f DUH GLIIHUHQW IURP WKRVH UHSRUWHG IURP ZHOOV IDUWKHU RIIVKRUH 7KLV FRQWULEXWHV WR VRPH SHUSOH[LQJ FRUUHODWLRQV )LJXUH )LJXUH )LJXUH f 6RPH RI WKH SUREOHP LV GXH WR WKH SUHYDOHQFH LQ WKH VKDOORZPDULQH IDFLHV RI QHDUVKRUH ZHOOV RI EHQWKRQLF UDWKHU WKDQ SODQNWRQLF WD[D 1RWZLWKVWDQGLQJ WKHVH FRQVLGHUDWLRQV WKH GDWD SURYLGH D FKURQRVWUDWLJUDSKLF IUDPHZRUN ZKHUHLQ LW LV SRVVLEOH WR LGHQWLI\ WKH 0&6% DQG JURXS WKH RYHUO\LQJ VWUDWD LQWR IRXU PDLQ FKURQRVWUDWLJUDSKLF XQLWV QDPHO\ 8SSHU &UHWDFHRXV 3DOHRFHQH(RFHQH 2OLJRFHQHORZHU 0LGGOH 0LRFHQH DQG XSSHU 0LGGOH 0LRFHQH+RORFHQH

PAGE 94

7LPHHTXLYDOHQFH RI /LWKRVWUDWLJUDSKLF XQLWV $OWKRXJK WKH ERXQGDULHV RI PDQ\ OLWKRVWUDWLJUDSKLF XQLWV LQ WKH UHJLRQ DUH FRQVLGHUHG WR EH WLPHSDUDOOHO %DXP DQG 9DLO f ZLWK WKH GDWD DYDLODEOH LQ WKLV VWXG\ WKH DELOLW\ WR VSHFLI\ OLWKRORJLF FKDUDFWHULVWLFV LV OLPLWHG DQG OLWKRVWUDWLJUDSKLF FRUUHODWLRQV FDQQRW EH PDGH RQ WKH EDVLV RI FKURQRVWUDWLJUDSKLF HTXLYDOHQFH 1HYHUWKHOHVV WKH IROORZLQJ LQIRUPDWLRQ SURYLGHG E\ *DOORZD\ DQG RWKHUV f RQ WKH UHODWLRQVKLS RI FHUWDLQ ELRVWUDWLJUDSKLF PDUNHUV WR OLWKRVWUDWLJUDSKLF XQLWV LQ WKH QRUWKHUQ *XOI RI 0H[LFR LV ZRUWK\ RI QRWH 7KH WRS RI WKH 0LGZD\ *URXS 3DOHRFHQHf FDQ EH UHOLDEO\ LGHQWLILHG RQ WKH H[WLQFWLRQV RI 0RUR]RYHOOD *ORERURWDOLDf YHODVFRHQVLV DQG 3ODQRURWDOLWHV *ORERURWDOLDf RVHXGRPHQDUGLL 7KH WRS RI WKH VXEVXUIDFH :LOFR[ *URXS 3DOHRFHQH (RFHQHf LQ /RXLVLDQD DQG 7H[DV FDQ EH LGHQWLILHG PRVW UHOLDEO\ RQ WKH H[WLQFWLRQ RI 0RUR]RYHOOD DFXWD *ORERURWDOLD ZLOFR[HQVLVf ,Q GHHSZDWHU VHFWLRQV WKH WRS RI WKH &ODLERUQH *URXS (RFHQHf LV PDUNHG E\ WKH H[WLQFWLRQ RI 7UXQFRURWDORLGHV URKUL 7KH PLGGLS SRUWLRQ RI WKH XSSHU -DFNVRQ *URXS (RFHQHf LQ 7H[DV FRQWDLQV 0DUTLQXOLQD FRFRDQHQVLV ,Q GRZQ GLS GHHSZDWHU VHFWLRQV WKH WRS RI WKH -DFNVRQ *URXS LV

PAGE 95

SLFNHG RQ WKH H[WLQFWLRQ SRLQWV RI HLWKHU 7XUERURWDOLD *ORERURWDOLDf FHUURD]XOHQVLV RU +DQWNHQLQD DODEDPHQVLV 7KH WRS RI WKH 9LFNVEXUJ )RUPDWLRQ 2OLJRFHQHf LQ GHHSHUZDWHU VHFWLRQV RYHU WKH HQWLUH QRUWKHUQ *XOI RI 0H[LFR %DVLQ FDQ EH SLFNHG DW WKH H[WLQFWLRQ SRLQW RI *ORELJHULQD DPSOLDSHUWXUD :KHUH LW UDQJHV DERYH WKH 9LFNVEXUJ WKH H[WLQFWLRQ RI $QRPDOLQD ELODWHUDOLV FDQ EH XVHG DV D FRUUHODWLRQ SRLQW LQ WKH )ULR )RUPDWLRQ RI 7H[DV DQG /RXLVLDQD 2XWFURSV RI WKH &KLFNDVDZKD\ )RUPDWLRQ RI VRXWKHUQ 0LVVLVVLSSL DQG VRXWKZHVWHUQ $ODEDPD FRQWDLQ 1RGRVDULD EODQSLHGL D PDUNHU IRU WKH )ULR )RUPDWLRQ 2OLJRFHQHf LQ WKH VXEVXUIDFH RI 7H[DV DQG /RXLVLDQD 7KH $QDKXDF )RUPDWLRQ 2OLJRFHQHf IRXQG LQ WKH VXEVXUIDFH RI 7H[DV /RXLVLDQD DQG VRXWKZHVWHUQ 0LVVLVVLSSL FRQWDLQV WKH +HWHURVWHJLQD =RQH DQG 0DUJLQXOLQD YDJLQDWD 0 PH[LFDQD YDU YDJLQDWDf LQ WKH XQGHUO\LQJ 0DUJLQXOLQD =RQH 0&6% $V WKH ORZHU VWUDWLJUDSKLF ERXQGDU\ RI WKLV VWXG\ DQG LQ OLJKW RI WKH FRQWURYHUV\ GLVFXVVHG SUHYLRXVO\ $GG\ DQG %XIIOHU )DXVW :X DQG RWKHUV D )HQJ DQG %XIIOHU f LW LV LPSRUWDQW WR HVWDEOLVK VRPH EDVLV UHJDUGLQJ WKH 0&6% ,Q WKLV VWXG\ WKH 0&6% LV LGHQWLILHG DV WKH EDVH RI WKH &HQRPDQLDQ VKDOH WKDW RYHUOLHV WKH WKLFN /RZHU &UHWDFHRXV VHFWLRQ RI LQWHUEHGGHG FDUERQDWHV DQG HYDSRULWHV 7KLV FRQWDFW LV FKDUDFWHUL]HG RQ ZHOO ORJV E\

PAGE 96

UHODWLYHO\ ORZ JDPPD UD\ KLJK UHVLVWLYLW\ DQG ORZ VRQLF $W YDOXHV EHORZ DQG DQ RYHUO\LQJ LQWHUYDO RI KLJK JDPPD UD\ ORZ UHVLVWLYLW\ DQG YHU\ KLJK $W YDOXHV )LJXUHV DQG f 7KRXJK LQ SODFHV UHSRUWHG DV JUD\ RU EODFN LQ FRORU :HOOV f WKLV VKDOH FRUUHODWHV WR WKH JUHHQ VKDOH XQLW UHSRUWHG E\ $SSOLQ DQG $SSOLQ f DQG VHHPV WR EH SUHVHQW WKURXJKRXW WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP ,Q :HOO )LJXUH f WKH 0&6% FRQWDFW OLHV EHORZ WKH FRUUHVSRQGLQJ SLFN RI $GG\ DQG %XIIOHU f DQG DERYH WKH SLFN RI )DXVW f 7KH 0&6% SLFN UHFRJQL]HG KHUH IW VXEVHDf OLHV ZLWKLQ WKH &HQRPDQLDQ VHFWLRQ ZKHUHDV WKDW RI $GG\ DQG %XIIOHU f OLHV QHDU WKH WRS RI VHFWLRQ FRQVLGHUHG KHUH WR EH 7XURQLDQ IW VXEVHDf DQG )DXVWnV f OLHV DW WKH EDVH RI WKH &HQRPDQLDQ IW VXEVHDf 7KH DEUXSW FKDQJH LQ VRQLF YHORFLW\ DW WKH FRQWDFW SLFNHG LQ WKLV VWXG\ PDNHV LW D PRUH OLNHO\ FDQGLGDWH WR SURGXFH WKH KLJKDPSOLWXGH 0&6% UHIOHFWLRQ WKDQ DOWHUQDWLYH SLFNV DVVRFLDWHG ZLWK JUDGDWLRQDO OLWKRORJLF FKDQJHV $GG\ DQG %XIIOHU )DXVW f 8SSHU &UHWDFHRXV 7KH 8SSHU &UHWDFHRXV XQLW LV HTXLYDOHQW WR WKH SURYLQFLDO *XOILDQ 6HULHV &RPSDUHG WR WKH 8SSHU &UHWDFHRXV VWUDWLJUDSK\ LQ WKH &RDVWDO 3ODLQ RI $ODEDPD .LQJ DQG 6NRWQLFNL )LJXUH f ZKHUH VWUDWD IURP ORZHU 7XURQLDQ WR XSSHU 6DQWRQLDQ DUH DEVHQW EHQHDWK D UHJLRQDO XQFRQIRUPLW\ DW WKH WRS RI WKH 7XVFDORRVD )RUPDWLRQ )LJXUH f WKH VHFWLRQ SHQHWUDWHG E\

PAGE 97

ZHOOV LQ WKH VWXG\ DUHD LV PRUH FRPSOHWH ,Q WKH 'HVWLQ 'RPH ZHOOV )LJXUH f LW LQFOXGHV LQ DVFHQGLQJ RUGHUf &HQRPDQLDQ 7XURQLDQ &RQLDFLDQ 6DQWRQLDQ &DPSDQLDQ DQG DW OHDVW VRPH 0DDVWULFKWLDQ VWUDWD 7R WKH VRXWKHDVW VSDUVH FRQWURO YDULRXVO\ DIIRUGV UHFRJQLWLRQ RI &HQRPDQLDQ 7XURQLDQ 6DQWRQLDQ &DPSDQLDQ DQG 0DDVWULFKWLDQ VWUDWD LQ :HOOV DQG )LJXUH f DQG LQ :HOOV DQG )LJXUH f ,Q WKH VRXWKHUQPRVW ZHOOV )LJXUH f WKH 8SSHU &UHWDFHRXV XQLW LV RQO\ WHQWDWLYHO\ VXEGLYLGHG E\ FRUUHODWLRQV EDVHG RQ ORJ FKDUDFWHU $ PLG3DOHRFHQH DJH IRU WKH VWUDWLJUDSKLF EUHDN DW WKH WRS RI WKH 8SSHU &UHWDFHRXV DJUHHV ZLWK WKH LQWHUSUHWDWLRQ RI $GG\ DQG %XIIOHU f 7KH SRVLWLRQ RI WKLV FRQWDFW LQ :HOO )LJXUH f LV DOVR LQ DJUHHPHQW ZLWK WKH FRUUHVSRQGLQJ SLFN E\ $GG\ DQG %XIIOHU f &XULRXVO\ 0LWFKXP f UHSRUWV WKH 3DOHRFHQH LV HQWLUHO\ DEVHQW LQ KLV VWXG\ DUHD EXW DVVLJQV DQ HDUO\ 3DOHRFHQH DJH WR VHTXHQFH ERXQGDU\ )LJXUH f 7KH &HQRPDQLDQ6DQWRQLDQ VWUDWD FRUUHVSRQG LQ DJH WR WKH 7XVFDORRVD(XWDZ OLWKRVWUDWLJUDSKLF XQLWV LQ WKH ZHVW DQG WR WKH $WNLQVRQ )RUPDWLRQ DQG WKH ORZHU 3LQH .H\ )RUPDWLRQ LQ SHQLQVXODU )ORULGD )LJXUH f 7KLV FRUUHODWLRQ DJUHHV ZLWK WKDW VKRZQ IRU WKH 6XQ 2&6* %ORFN f E\ :X DQG RWKHUV D )ROGRXW f 7KH &DPSDQLDQ0DDVWULFKWLDQ VWUDWD FRUUHODWH WR DW OHDVW SDUW RI WKH 6HOPD *URXS LQ WKH ZHVW DQG

PAGE 98

WR WKH XSSHU 3LQH .H\ DQG WKH /DZVRQ )RUPDWLRQ LQ SHQLQVXODU )ORULGD )LJXUH f 3DOHRFHQH(RFHQH /RZHU 3DOHRFHQH 'DQLDQf VWUDWD WKRXJK UHSRUWHG LQ RXWFURSV LQ WKH *XOI &RDVWDO 3ODLQ %DXP DQG 9DLO .LQJ DQG 6NRWQLFNL 0DQFLQL DQG 7HZ D E D E )LJXUHV DQG f DUH QRW LGHQWLILHG LQ DQ\ ZHOOV LQ WKH VWXG\ DUHD 0DJQHWRELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV LQGLFDWH WKDW 3DOHRFHQH VWUDWD LQ WKH 'HVWLQ 'RPH ZHOOV )LJXUH f DUH RI WKH 6HODQGLDQ 6WDJH 6HODQGLDQ VWUDWD DUH DOVR LGHQWLILHG LQ :HOOV DQG RQ WKH 0LGGOH *URXQG $UFK )LJXUH f DQG LQ :HOO )LJXUH f 7KH 6HODQGLDQ VWUDWD FRQWDLQ 0RUR]RYHOOD YHODVFRHQVLV DQG 0RUR]RYHOOD SVHXGREXOORLGHV WD[D FKDUDFWHULVWLF RI WKH 7DPHVL IDXQD $SSOLQ DQG $SSOLQ $SSOLQ DQG -RUGDQ f ,QIRUPDWLRQ IURP 0RELO RQ QDQQRSODQNWRQ ELRVWUDWLJUDSK\ LQGLFDWHV 8SSHU 3DOHRFHQH VWUDWD DUH DOVR SUHVHQW LQ :HOO )LJXUH f 7KH 3DOHRFHQH VHFWLRQ LV WKLQ LQ ZHOOV RQ WKH 'HVWLQ 'RPH )LJXUH f DQG 0LGGOH *URXQG $UFK )LJXUH f UDQJLQJ IURP OHVV WKDQ WR DERXW IW WKLFN &RUUHODWLRQV VXJJHVW WKDW WKH 3DOHRFHQH VHFWLRQ LQFUHDVHV WR WKH HDVW DQG VRXWK WR DERXW IW WKLFN LQ :HOO )LJXUH f DQG IURP DERXW IW WKLFN LQ :HOOV DQG WR PRUH WKDQ IW WKLFN LQ :HOO )LJXUH f 7KH 6HODQGLDQ 7KDQHWLDQ LQ )LJXUH f VWUDWD DUH DJH HTXLYDOHQW WR WKH 0LGZD\ *URXS DQG SRVVLEO\ WKH ORZHU :LOFR[

PAGE 99

*URXS WR WKH ZHVW *RKQ f 2Q WKH )ORULGD 3HQLQVXOD WKH &HGDU .H\V )RUPDWLRQ LV WUDGLWLRQDOO\ UHJDUGHG DV 3DOHRFHQH *RKQ f FRQFOXGHV WKH &HGDU .H\V LV OLNHO\ 'DQLDQ DQG HDUO\ 6HODQGLDQ EXW 6DOYDGRU 3ODWH f LQGLFDWHV LW LV XSSHU 7KDQHWLDQ WR ORZHU
PAGE 100

ZHOOV WR WKH VRXWKHDVW
PAGE 101

2OLTRFHQH/RZHU 0LGGOH 0LRFHQH &KURQRVWUDWLJUDSKLF VXEGLYLVLRQ RI SRVW(RFHQH VWUDWD )LJXUH f LV SUREOHPDWLF EHFDXVH WKH /22 RI /RZHU 2OLJRFHQH 5XSHOLDQf DQG 8SSHU 2OLJRFHQH &KDWWLDQf WD[D DUH QRW DOO LQ VHTXHQFH $SSHQGL[ %f 6LPLODUO\ LQGLVWLQFW LV WKH FRQWDFW RI WKH 2OLJRFHQH ZLWK RYHUO\LQJ 0LRFHQH VWUDWD 7KLV PD\ EH LQ SDUW GXH WR WKH SUHYLRXVO\ QRWHG GLDFKURQ\ RI FHUWDLQ 2OLJRFHQH WD[D EXW DOVR UHIOHFWV WKH IDFW WKDW PDQ\ RI WKH NH\ 2OLJRFHQH DQG 0LRFHQH LQGLFDWRUV DUH EHQWKRQLF WD[D WKH WHPSRUDO VLJQLILFDQFH RI ZKLFK LV UHFRJQL]HG DV VXVSHFW *DOORZD\ DQG RWKHUV f 0DJQHWRELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV GR SHUPLW LGHQWLILFDWLRQ RI WKH WRS RI /DQJKLDQ VWUDWD ORZHU 0LGGOH 0LRFHQHf LQ :HOO )LJXUH f 7KLV VWUDWLJUDSKLF SRVLWLRQ FRUUHVSRQGV WR D SURPLQHQW UHIOHFWLRQ RQ WKH VHLVPLF VHFWLRQV WKDW KDV EHHQ SUHYLRXVO\ LGHQWLILHG HOVHZKHUH DV D PLG0LRFHQH VHTXHQFH ERXQGDU\ )LJXUH 6HTXHQFH %RXQGDU\ 0D 0LWFKXP FRQWDFW RI 6HLVPLF XQLWV % DQG & 0D $GG\ DQG %XIIOHU FRQWDFW RI 6HTXHQFHV DQG ,, 0D 0XOOLQV DQG RWKHUV E 7/0 0D :X DQG RWKHUV Df 8SSHU 0LGGOH 0LRFHQH+RORFHQH 7-LLV FKURQRVWUDWLJUDSKLF XQLW LV GHILQHG UDWKHU E\ GHIDXOW LQ WKDW IHZ ZHOOV DUH ORJJHG RU VDPSOHG WKLV KLJK LQ ‘ WKH VHFWLRQ FRQVHTXHQWO\ WKHUH LV QR ELRVWUDWLJUDSKLF FRQWURO 7KH SULQFLSDO MXVWLILFDWLRQ IRU UHFRJQL]LQJ WKLV DV D GLVWLQFW FKURQRVWUDWLJUDSKLF XQLW LV LWV SRVLWLRQ RYHUO\LQJ

PAGE 102

WKH DERYHPHQWLRQHG PLG0LRFHQH VHLVPLF UHIOHFWLRQ 0LWFKXP $GG\ DQG %XIIOHU 0XOOLQV DQG RWKHUV E DQG :X DQG RWKHUV Df 6HLVPLF 6WUDWLJUDSKLF )UDPHZRUN 9LD ZHOOWRVHLVPLF WLHV WKH IRUHJRLQJ FKURQRVWUDWL JUDSKLF IUDPHZRUN SHUPLWV UHDVRQDEO\ DFFXUDWH LGHQWLILFDWLRQ RI WKH GHSRVLWLRQDO VHTXHQFHV GHOLQHDWHG LQ WKH VHLVPLF VHFWLRQV )LJXUHV WKURXJK DUH XQLQWHUSUHWHG DQG LQWHUSUHWHG YHUVLRQV RI VHOHFWHG SRUWLRQV RI WKH VHLVPLF GDWD VHW $ PDS RI WKH WKLFNQHVV RI WKH HQWLUH 8SSHU &UHWDFHRXV WKURXJK &HQR]RLF VHFWLRQ FRQWRXUHG LQ ZD\ 77 )LJXUH f VKRZV WKLFN VHGLPHQWV LQ WKH $SDODFKLFROD %DVLQ DQG 7DPSD (PED\PHQW DQG WKLQQHU GHSRVLWV RYHU WKH 'HVWLQ 'RPH 0LGGOH *URXQG $UFK DQG 6DUDVRWD $UFK 'LVFXVVLRQ RI WKH VHLVPLF VWUDWLJUDSKLF IUDPHZRUN EHJLQV ZLWK WKH 0&6% DQG SURFHHGV LQ DVFHQGLQJ RUGHU :KHUH LW LV DYDLODEOH LQIRUPDWLRQ IURP ZHOOV RQ WKH OLWKRORJLF FKDUDFWHU RI VHLVPLF XQLWV LV LQFOXGHG $OWKRXJK WKH SURFHGXUH RI WKLV VWXG\ IROORZV WKH SULQFLSOHV RI VHLVPLF VWUDWLJUDSK\ 9DLO DQG RWKHUV f WKH GLVFXVVLRQ FRPPRQO\ UHIHUHQFHV WKH VHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI RWKHUV HJ %DXP DQG 9DLO .LQJ DQG 6NRWQLFNL f KHQFH WKH XVH RI VXFK WHUPV DV PD[LPXPn IORRGLQJ VXUIDFH HWF 0&6% 7KH UHIOHFWLRQ LGHQWLILHG KHUH DV WKH 0&6% FDQ EH WUDFHG RQ VHLVPLF OLQHV RYHU PRVW RI WKH VWXG\ DUHD DQG ZDV PDSSHG

PAGE 103

)LJXUH 3DUW RI VHLVPLF VHFWLRQ ) Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQHV ) DQG DQG :HOO DUH VKRZQ LQ )LJXUH

PAGE 104

:(//

PAGE 105

)LJXUH FRQWLQXHG 3DUW RI VHLVPLF VHFWLRQ ) Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQHV ) DQG DQG :HOO DUH VKRZQ LQ )LJXUH 'HSWKV RI VHLVPLF ERXQGDULHV LQ :HOO DUH LQ IHHW VXEVHD 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .8 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW .MM 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7e8 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH $f 'RZQODSSLQJ UHIOHFWLRQ WHUPLQDWLRQV RQ D VHTXHQFH ERXQGDU\ LQ WKH ORZHU SDUW RI VXEXQLW .8 %f :HVWZDUG WKLFNHQLQJ RI WKH XSSHU SDUW RI VXEXQLW .\ &f :HVWZDUG WKLFNHQLQJ RI WKH ORZHUPRVW VXEXQLW RI WKH 3DOHRFHQH(RFHQH XQLW 'f $ \RXQJ VHLVPLF VWUDWLJUDSKLF VXEXQLW ZLWK EDVDO ERXQGDU\ PDUNHG E\ RQODS WR WKH QRUWKZHVW DQG GRZQODS WR WKH VRXWKHDVW

PAGE 106

:(// /,1( ) /,1( 6287+($67 -

PAGE 107

)LJXUH 3DUW RI VHLVPLF VHFWLRQ ) Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQHV ) DQG DQG :HOOV DQG DUH VKRZQ LQ )LJXUH

PAGE 109

)LJXUH FRQWLQXHG 3DUW RI VHLVPLF VHFWLRQ ) Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQHV ) DQG DQG :HOOV DQG DUH VKRZQ LQ )LJXUH 7KH VXEVHD GHSWKV RI VHLVPLF ERXQGDULHV IRU :HOO DUH VKRZQ LQ )LJXUH E 'HSWKV IRU :HOO DUH QRW VKRZQ EHFDXVH WKH ZHOO LV SURMHFWHG LQWR WKH VHFWLRQ IURP IDUWKHU XS GLS VR UHIOHFWLRQ WLPHV GR QRW PDWFK 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .8 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW .\ 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7HX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH $f )ROGLQJ DQG IDXOWLQJ DVVRFLDWHG ZLWK VDOW GLDSLUV %f 7KH 'HVWLQ 'RPH D VDOW VZHOO VWUXFWXUH RYHU ZKLFK 8SSHU &UHWDFHRXV DQG \RXQJHU VWUDWD SLQFK RXW RU WKLQ &f 0DMRU GRZQWRWKHVRXWKZHVW IDXOWV SDUW RI WKH EDVLQERXQGLQJ IDXOW V\VWHP 'f %DVLQZDUG WKLQQLQJ RI WKH 3DOHRFHQH(RFHQH XQLW (f :HGJH RI SURJUDGLQJ 2OLJRFHQH/RZHU 0LRFHQH WKDW ODS RQWR WKH QRUWK IODQN RI WKH 'HVWLQ 'RPH )f &RPSOH[ JURXS RI UHIOHFWLRQ WHUPLQDWLRQV VXJJHVWLQJ D VKHOI PDUJLQ LQ WKH 1HRJHQH VHFWLRQ *f 7KH \RXQJHVW VHLVPLF VWUDWLJUDSKLF VXEXQLW \RXQJHU WKDQ )LJXUH E 'f RQODSSLQJ WKH VKHOI PDUJLQ )f

PAGE 110

:(// XQH )

PAGE 111

)LJXUH 1RUWKHUQ SDUW RI VHLVPLF VHFWLRQ Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG LQWHUVHFWLRQV ZLWK OLQHV ) DQG ) DUH VKRZQ LQ )LJXUH

PAGE 112

/,1( ) 1257+

PAGE 113

)LJXUH FRQWLQXHG 1RUWKHUQ SDUW RI VHLVPLF VHFWLRQ Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQHV ) DQG ) DUH VKRZQ LQ )LJXUH 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .XL .X 7HX WPO 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7RS RI 8SSHU (RFHQH 7RS RI /RZHU 0LGGOH 0LRFHQH $f 7KH JUDEHQ DUH SDUW RI WKH V\VWHP RI PDMRU IDXOWV WKDW ERXQG WKH $SDODFKLFROD %DVLQ % DQG &f %URDG PRXQGV IRUPHG E\ VWDFNHG (RFHQH VHTXHQFHV ZLWK OHQWLFXODU VKDSH DQG ZDY\ VXESDUDOOHO WR KXPPRFN\ VHLVPLF IDFLHV

PAGE 114

/,1( ) /1( )

PAGE 115

)LJXUH 6RXWKHUQ SDUW RI VHLVPLF VHFWLRQ Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQ ZLWK OLQH *LO DUH VKRZQ LQ )LJXUH

PAGE 116

ZD\ 77 VHFf RRL /,1( /,1( 1257+

PAGE 117

)LJXUH FRQWLQXHG 6RXWKHUQ SDUW RI VHLVPLF VHFWLRQ Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQ ZLWK OLQH *LO DUH VKRZQ LQ )LJXUH 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7HX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH $f 5DUH H[DPSOH RI D GRZQODSSLQJ UHIOHFWLRQ WHUPLQDWLRQ OHIW RI $f DERYH WKH 0&6% %f (RFHQH VHTXHQFHV ZLWK OHQWLFXODU VKDSH DQG ZDY\ VXESDUDOOHO WR KXPPRFN\ VHLVPLF IDFLHV DUH VWDFNHG WR IRUP D EURDG PRXQG &f &KDRWLF UHIOHFWLRQV ZLWKLQ WKH SRVW&UHWDFHRXV VHTXHQFHV LQ D PRXQGHG ]RQH QHDU WKH )ORULGD (VFDUSPHQW 'f /RZHU 0LRFHQH DQG \RXQJHU VWUDWD ILOO LQ WKH WURXJK EHKLQG WKH PRXQGHG ]RQH &f (f 8SSHU 0LRFHQH DQG \RXQJHU UHIOHFWLRQV RQODS ODQGZDUG DQG GRZQODS EDVLQZDUG

PAGE 118

ZD\ 77 VHFf /,1( /,1( 1257+

PAGE 119

)LJXUH 3DUW RI VHLVPLF VHFWLRQ *LO Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQH DQG :HOO DUH VKRZQ LQ )LJXUH

PAGE 120

/,1( :HOO ($67

PAGE 121

)LJXUH FRQWLQXHG 3DUW RI VHLVPLF VHFWLRQ *LO Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQH DQG :HOO DUH VKRZQ LQ )LJXUH 'HSWKV RI VHLVPLF ERXQGDULHV LQ :HOO DUH LQ IHHW VXEVHD 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .8 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7HX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH $f &RQFRUGDQW UHIOHFWLRQV DERYH DQG EHORZ WKH 0&6% %f 6XEXQLW ZLWK GLVFRQWLQXRXV VXESDUDOOHO HYHQWRZDY\ VHLVPLF IDFLHV DQG XQLIRUP WKLFNQHVV 'LVUXSWLRQ GXH WR IDXOWLQJ &f 7KLFN VHFWLRQ RI (RFHQH DQG 3DOHRFHQH "f VHTXHQFHV VWDFNHG WR IRUP D EURDG PRXQG 'f 8SSHU 0LRFHQH DQG \RXQJHU UHIOHFWLRQV RQODS HDVWZDUG RQ WKH 0LGGOH *URXQG $UFK 7KLFNQHVV RI WKLV LQWHUYDO LQFUHDVHV ZHVWZDUG LQWR WKH $SDODFKLFROD %DVLQ

PAGE 122

($67

PAGE 123

)LJXUH 3DUW RI VHLVPLF VHFWLRQ *O Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQ ZLWK :HOO DUH VKRZQ LQ )LJXUH

PAGE 124

,OO :HOO

PAGE 125

)LJXUH FRQWLQXHG 3DUW RI VHLVPLF VHFWLRQ *O Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQ ZLWK :HOO DUH VKRZQ LQ )LJXUH 'HSWKV RI VHLVPLF ERXQGDULHV LQ :HOO DUH LQ IHHW VXEVHD 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .8 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7HX 7RS RI 8SSHU (RFHQH 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH $f 6HLVPLF UHHI 6FKODJHU S f LQ /RZHU &UHWDFHRXV VWUDWD DW WKH )ORULGD (VFDUSPHQW %f 7KLFNHQLQJ RI VHLVPLF XQLW .A RQ XQGHUO\LQJ VWUXFWXUDO KLJK )LJXUH f 6HLVPLF IDFLHV LV KXPPRFN\ WR FRQWRUWHG &f 'LVUXSWHG FRQWRUWHG UHIOHFWLRQV ZLWKLQ WKH SRVW&UHWDFHRXV VHTXHQFHV LQ WKH PRXQGHG ]RQH QHDU WKH )ORULGD (VFDUSPHQW 'f 2OLJRFHQH/RZHU 0LRFHQH VHTXHQFHV IRUP VHWV RI ORZDQJOHG VKLQJOHG FOLQRIRUPV WKDW VWDFN DJJUDGDWLRQDOO\ DV PXFK DV SURJUDGDWLRQDOO\ (f 7KH \RXQJHVW VHLVPLF XQLW SUREDEO\ 3OHLVWRFHQHf QHDU WKH HGJH RI WKH )ORULGD (VFDUSPHQW )f /RZHU 0LRFHQH DQG \RXQJHU VWUDWD ILOO LQ WKH WURXJK EHKLQG WKH PRXQGHG ]RQH *f 7KH VHFWLRQ RI 8SSHU 0LRFHQH DQG \RXQJHU VWUDWD LV UHODWLYHO\ WKLQ LQ WKLV SDUW RI WKH 7DPSD (PED\PHQW FRPSDUHG WR WKDW RI WKH $SDODFKLFROD %DVLQ )LJXUHV WKURXJK f

PAGE 126

ZD\ 77 VHFf RRUf§ :HOO

PAGE 127

)LJXUH 3DUW RI VHLVPLF VHFWLRQ Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG :HOO DUH VKRZQ LQ )LJXUH

PAGE 128

R R :(//

PAGE 129

)LJXUH FRQWLQXHG 3DUW RI VHLVPLF VHFWLRQ Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG :HOO DUH VKRZQ LQ )LJXUH 'HSWKV RI VHLVPLF ERXQGDULHV LQ :HOO DUH LQ IHHW VXEVHD 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7HX 7RS RI 8SSHU (RFHQH 7KO 7RS RI /RZHU 0LGGOH 0LRFHQH $f =RQH RI PDUNHG WKLFNHQLQJ RI WKH 3DOHRFHQH (RFHQH XQLW DQG ZHVWSURJUDGLQJ FOLQRIRUPV DW WKH (RFHQH VKHOI HGJH %f (YHQ SDUDOOHO VHLVPLF IDFLHV VXJJHVWLYH RI LQWHUWLGDO WR VXSUDWLGDO ]RQHV )RQWDLQH DQG RWKHUV f

PAGE 130

ZD\ 77 VHFf :(// 1257+($67

PAGE 131

)LJXUH 3DUW RI VHLVPLF VHFWLRQ Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQH DQG :HOO DUH VKRZQ LQ )LJXUH

PAGE 133

)LJXUH FRQWLQXHG 3DUW RI VHLVPLF VHFWLRQ Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKLV OLQH DQG WKH LQWHUVHFWLRQV ZLWK OLQH DQG :HOO DUH VKRZQ LQ )LJXUH 'HSWKV RI VHLVPLF ERXQGDULHV LQ :HOO IHHW VXEVHDf 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .8 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW .\M 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7S 7RS RI 3DOHRFHQH 7eX 7RS RI 8SSHU (RFHQH "f 7PO 7RS RI /RZHU 0LGGOH 0LRFHQH "f $ WKURXJK *f 6XFFHVVLYH VHWV RI SURJUDGDWLRQDO FOLQRIRUPV WKDW FKDQJH IURP VLJPRLG WR WDQJHQWLDO REOLTXH WR FRPSOH[ VLJPRLGREOLTXH DQG VWHHSHQ DV WKH\ LPSLQJH RQ WKH )ORULGD (VFDUSPHQW +f 7KH \RXQJHVW VHLVPLF XQLW SUREDEO\ 3OHLVWRFHQHf QHDU WKH HGJH RI WKH )ORULGD (VFDUSPHQW

PAGE 134

ZD\ 77 VHFf /,1( /,1( :HOO c! ($67

PAGE 135

)LJXUH 3DUWV RI VHLVPLF VHFWLRQV DQG Df XQLQWHUSUHWHG 7KH ORFDWLRQV RI WKHVH OLQHV DQG WKH LQWHUVHFWLRQV ZLWK :HOOV DQG DUH VKRZQ LQ )LJXUH

PAGE 136

:HOO :HOO :HOO

PAGE 137

)LJXUH FRQWLQXHG 3DUWV RI VHLVPLF VHFWLRQV DQG Ef LQWHUSUHWHG 7KH ORFDWLRQV RI WKHVH OLQHV DQG WKH LQWHUVHFWLRQV ZLWK :HOOV DQG DUH VKRZQ LQ )LJXUH 'HSWKV RI VHLVPLF ERXQGDULHV DQG RWKHU IHDWXUHV LQ :HOOV DQG IHHW VXEVHDf 0&6% 0LG&UHWDFHRXV 6HTXHQFH %RXQGDU\ .X 7RS RI &HQRPDQLDQ6DQWRQLDQ VXEXQLW .M 7RS RI &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW 7S 7RS RI 3DOHRFHQH .8Dn ./W!n DQFL NOF GHQRWH NH\ VHLVPLF UHIOHFWLRQV ZLWKLQ WKH /RZHU &UHWDFHRXV VHFWLRQ VKRZQ WR VWUHQJWKHQ FRUUHODWLRQV RI RYHUO\LQJ XQLWV $f $EUXSW FKDQJH LQ UHIOHFWLRQ FRQWLQXLW\ PDNHV LQWHUSUHWDWLRQ GLIILFXOW EXW ORJ FRUUHODWLRQV RI XQLWV DVVRFLDWHG ZLWK ./D ./E DQG .X LQGLFDWH WKDW WKH UHIOHFWLRQV IURP WKHVH XQLWV VKRXOG RFFXU DV QRWHG DW :HOOV DQG % DQG &f /RJ FKDUDFWHU VXJJHVWV WKDW WKH LQWHUYDO % WR IHHW VXEVHDf LQ :HOO FRUUHODWHV WR WKH LQWHUYDO & WR IHHW VXEVHDf LQ :HOO EXW WKLV LV QRW VXEVWDQWLDWHG E\ WKH VHLVPLF GDWD 'f ,Q &RUH :HOO HFKLQRLG VSHFLPHQV ZHUH UHFRYHUHG DQG LGHQWLILHG DV 1HRODJDQXP GDOOL D WD[RQ FKDUDFWHULVWLF RI WKH 0LGGOH (RFHQH &ODLERUQLDQf $YRQ 3DUN )RUPDWLRQ

PAGE 139

)LJXUH 0DS RI WKH WKLFNQHVV RI WKH HQWLUH 8SSHU &UHWDFHRXV WKURXJK &HQR]RLF VHFWLRQ FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD

PAGE 140

)LJXUH f WR HVWDEOLVK WKH FRQILJXUDWLRQ RI WKH VXUIDFH RQ ZKLFK WKH RYHUO\LQJ 8SSHU &UHWDFHRXV&HQR]RLF VHFWLRQ ZDV GHSRVLWHG )RU WKH PRVW SDUW SUHH[LVWLQJ EDVLQV DQG DUFKHV WUDQVPLW WKHLU LQIOXHQFH WR WKH 0&6% VXUIDFH ,Q WKH $SDODFKLFROD %DVLQ WKH 0&6% VXUIDFH )LJXUH f GLSV ZHVW DQG VRXWK 7KH UHJLRQDO WUHQG LV DOWHUHG ORFDOO\ E\ WKH 'HVWLQ 'RPH )LJXUHV E %f DQG VDOW GLDSLUV DW WKH KHDG RI WKH 'H 6RWR &DQ\RQ )LJXUH E $ $f 7R WKH HDVW XQGHU $SDODFKHH %D\ WKH 0LGGOH *URXQG $UFK )LJXUH %f LV DOPRVW LPSHUFHSWLEO\ EURDG DQG IODW EXW VWUXFWXUDO UHOLHI LV HYLGHQW RQ WKH ZHOOORJ FURVVVHFWLRQ %%n )LJXUH f 2Q VHLVPLF VHFWLRQV WKH ORFDWLRQ RI :HOO )LJXUH f LV DERXW VHF ZD\ 77f KLJKHU DW WKH 0&6% WKDQ WKDW RI :HOO )LJXUH f EXW ZHOOORJ FRUUHODWLRQV )LJXUH f LQGLFDWH WKDW :HOO LV DFWXDOO\ ORZ WR :HOO DW WKH 0&6% 7KLV GLVFUHSDQF\ FRXOG EH DWWULEXWHG WR D SXOO XS GXH WR D FKDQJH WR PRUH FDUERQDWH URFNV ZLWK KLJKHU VRQLF YHORFLW\ LQ WKH VHFWLRQ DERYH WKH 0&6% 7KH 0LGGOH *URXQG $UFK ELIXUFDWHV GRZQ SOXQJH DQG HDFK VWUXFWXUDO QRVH EHFRPHV UDWKHU SURPLQHQW 2QH QRVH SOXQJHV ZHVW RII WKH QRUWKZHVW IODQN RI WKH 0LGGOH *URXQG $UFK )LJXUH &f 7KLV IROG LV DSSDUHQW RQ WKH VRXWKHUQ SRUWLRQ RI /LQH )LJXUH f WKDW WUHQGV QHDUO\ SHUSHQGLFXODU WR LWV D[LDO WUDFH 2II WKH 0LGGOH *URXQG $UFKnV VRXWKHDVW IODQN WKH RWKHU HORQJDWH VWUXFWXUDO KLJK )LJXUH 'f SOXQJHV VRXWKZHVW

PAGE 141

6WUXFWXUH PDS RI WKH FRQILJXUDWLRQ RI WKH PLG &UHWDFHRXV VHTXHQFH ERXQGDU\ 0&6%f VXUIDFH FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD /HWWHUV LQGLFDWH WKH ORFDWLRQ RI IHDWXUHV GHVFULEHG LQ WKH WH[W )LJXUH

PAGE 142

%HWZHHQ WKH WZR SOXQJLQJ DQWLFOLQHV LV D VHPLFLUFXODU GHSUHVVLRQ WKDW SOXQJHV WR WKH ZHVW WRZDUG WKH )ORULGD (VFDUSPHQW )LJXUH (f 7KLV IHDWXUH FRUUHVSRQGV WR WKH 7DPSD (PED\PHQW ,Q WKH QRUWKHUQ SDUW RI WKH HPED\PHQW WKH 0&6% GLSV IDLUO\ JUDGXDOO\ XQWLO LW WHUPLQDWHV DW WKH LQWHUVHFWLRQ RI WKH /RZHU &UHWDFHRXV ULPPHG VKHOI PDUJLQ ZLWK WKH )ORULGD (VFDUSPHQW )LJXUHV DQG f ,Q WKH VRXWKHUQ SDUW RI WKH HPED\PHQW KRZHYHU WKH VORSH RI WKH 0&6% LQFUHDVHV PDUNHGO\ ZLWKLQ PLOHV NPf RI WKH )ORULGD (VFDUSPHQW )LJXUHV DQG f 7KH VRXWKZHVWSOXQJLQJ DQWLFOLQH )LJXUH 'f SDUDOOHOV WKH WUHQG RI WKH 6DUDVRWD $UFK RQ SXEOLVKHG PDSV .OLWJRUG DQG RWKHUV 'REVRQ 'REVRQ DQG %XIIOHU )LJXUH f EXW OLHV WR WKH QRUWKZHVW RI WKH IDXOW LQIHUUHG WR GLVSODFH EDVHPHQW %DOO DQG RWKHUV f EHWZHHQ :HOOV DQG )LJXUH f 6RXWKHDVW RI WKH WUHQG RI WKH LQIHUUHG IDXOW WKH FKDUDFWHU RI WKH VHLVPLF GDWD FKDQJHV DEUXSWO\ VXFK WKDW UHIOHFWLRQ FRKHUHQFH LV VHYHUHO\ GLPLQLVKHG )LJXUHV DQG f 5HFRJQLWLRQ RI WKH 0&6% RU DQ\WKLQJ HOVHf RQ VHLVPLF VHFWLRQV LQ WKLV SRUWLRQ RI WKH VWXG\ DUHD LV QRW SRVVLEOH 'HVSLWH WKH ODFN RI LQWHUSUHWDEOH VHLVPLF GDWD LQ WKH YLFLQLW\ RI WKH 6DUDVRWD $UFK VSHFXODWLYH FRUUHODWLRQ RI WKH 0&6% DQG RYHUO\LQJ VWUDWD LV VWUHQJWKHQHG E\ ZHOOORJ FRUUHODWLRQ RI WKUHH NH\ SLFNV ./D ./E DQG .Xf LQ WKH XSSHU SDUW RI WKH /RZHU &UHWDFHRXV VHFWLRQ )LJXUHV DQG f 6\QWKHWLF VHLVPRJUDPV :HOOV DQG f DOORZ RQH WR

PAGE 143

LGHQWLI\ WKH UHIOHFWLRQV DVVRFLDWHG ZLWK WKHVH SLFNV )LJXUH Ef &RUUHODWLRQ WR WKH SUHYLRXV LQWHUSUHWDWLRQV RI QHDUE\ RQVKRUH ZHOOV $SSOLQ DQG $SSOLQ :LQVWRQ D DQG E f LQGLFDWH WKDW ./E LV FORVH WR WKH WRS RI WKH %LJ &\SUHVV *URXS )UHGULFNVEXUJLDQf DQG ./F LV FORVH WR WKH WRS RI WKH 2FHDQ 5HHI *URXS 7ULQLWLDQf 7KH ORJ FKDUDFWHU RI WKH ./D ./E DQG ./F VHFWLRQ LV UHPDUNDEO\ VLPLODU RYHU D ODUJH DUHD RQ ERWK VLGHV RI WKH OLQH WKDW FRUUHVSRQGV WR ERWK WKH FKDQJH LQ VHLVPLF GDWD FKDUDFWHU DQG WKH LQIHUUHG IDXOW RQ WKH QRUWK IODQN RI WKH 6DUVDVRWD $UFK )LJXUHV DQG f 6HFWLRQ ''n )LJXUH f VKRZV WKH 0&6% GLSSLQJ WR WKH HDVW ZLWK VWUXFWXUDO UHOLHI RI PRUH WKDQ IW Pf \HW WKH ORJ FKDUDFWHU RI WKLV VHFWLRQ GRHV QRW FKDQJH DSSUHFLDEO\ LQ WKH GRZQGLS GLUHFWLRQ 7KLV LQGLFDWHV WKDW GHSRVLWLRQDO HQYLURQPHQW RI WKH /RZHU &UHWDFHRXV VWUDWD ZDV VLPLODU WKURXJKRXW WKH DUHD DQG WKDW WKH VXEVLGHQFH REVHUYHG PXVW KDYH RFFXUUHG VRPHWLPH DIWHU WKH PLGGOH &UHWDFHRXV ,QGHHG WKLFNHQLQJ RI WKH 8SSHU &UHWDFHRXV VHFWLRQ LQ WKH GRZQGLS ZHOOV )LJXUH f VXJJHVWV WKDW WKH PRWLRQ WRRN SODFH LQ WKH /DWH &UHWDFHRXV 0LWFKXP f 5HIOHFWLRQ WHUPLQDWLRQV DVVRFLDWHG ZLWK WKH 0&6% DUH IHZ RYHU PXFK RI WKH VWXG\ DUHD WKH UHIOHFWLRQV DERYH DQG EHORZ WKH 0&6% DUH FRQFRUGDQW $ERYH WKH 0&6% RQODS LV UHVWULFWHG WR WKH IODQNV RI WKH 'HVWLQ 'RPH )LJXUH E %f DQG GRZQODS RFFXUV SULQFLSDOO\ DORQJ WKH SODWIRUP PDUJLQ )LJXUHV E E DQG Ef %HQHDWK WKH 0&6% RQO\ VXJJHVWLRQV RI

PAGE 144

HURVLRQDO WUXQFDWLRQ DUH REVHUYHG UDUHO\ LQ WKH 7DPSD (PED\PHQW 7KLV DJUHHV JHQHUDOO\ ZLWK )DXVW )LJXUHV DQG f EXW WKH VZDWK RI RQODS DQG WUXFDWLRQ LQ WKH YLFLQLW\ RI :HOO DQG WKH ODUJH DUHD RI RQODS DQG WUXQFDWLRQ LQ WKH VRXWKHDVWHUQ SDUW RI WKH VWXG\ DUHD ZKLFK DUH GHSLFWHG RQ )DXVWnV f PDSV FRXOG QRW EH FRUURERUDWHG 8SSHU &UHWDFHRXV 7KH PDMRU VHLVPLF XQLW LGHQWLILHG E\ ZHOO WLHV DV 8SSHU &UHWDFHRXV FDQ EH UHFRJQL]HG LQ VHFWLRQV YLUWXDOO\ WKURXJKRXW WKH VWXG\ DUHD )LJXUH WKURXJK f 2YHUDOO WKH XQLW WKLFNHQV ODQGZDUG HVSHFLDOO\ WR WKH QRUWKZHVW DQG VRXWKHDVWf DQG WKLQV EDVLQZDUG WRZDUG WKH )ORULGD (VFDUSPHQW 7KH 8SSHU &UHWDFHRXV XQLW FRUUHVSRQGV WR WKH VHTXHQFH EHWZHHQ WKH DQG VHTXHQFH ERXQGDULHV RI 0LWFKXP f WKH VHLVPLF XQLW ( RI $GG\ DQG %XIIOHU f DQG WKH VHFWLRQ EHWZHHQ .\ DQG ./ LQ WKH LQWHUSUHWDWLRQV RI %DOO DQG RWKHUV f )LJXUH f 7KHUH LV QRW KRZHYHU JRRG FRUUHVSRQGHQFH EHWZHHQ WKH 8SSHU &UHWDFHRXV XQLW UHFRJQL]HG KHUH DQG HLWKHU WKH SULPDU\ GHSRVLWLRQDO VHTXHQFHV RI 0XOOLQV DQG RWKHUV Ef RU WKH GHSRVLWLRQDO V\VWHPV RI *DUGXOVNL DQG RWKHUV f )LJXUH f 7KH IRUPHU VFKHPH GLYLGHV WKH 8SSHU &UHWDFHRXV VWUDWD DW WKH 0LGGOH8SSHU 7XURQLDQ ERXQGDU\ 0D SHU +DT DQG RWKHUV f ZKLOH WKH ODWWHU LQWHUSUHWDWLRQ GLYLGHV WKH 8SSHU &UHWDFHRXV DW WKH WRS RI WKH &DPSDQLDQ %RWK LQWHUSUHWDWLRQV LQFOXGH

PAGE 145

RYHUO\LQJ 8SSHU &UHWDFHRXV VWUDWD LQ D VHTXHQFH WKDW H[WHQGV WR WKH WRS RI WKH /RZHU 2OLJRFHQH $V SUHYLRXVO\ VWDWHG WKH 8SSHU &UHWDFHRXV XQLW RI WKLV VWXG\ LQFOXGHV &HQRPDQLDQ WKURXJK 0DDVWULFKWLDQ VWUDWD ,Q WXUQ WKLV PDLQ XQLW FDQ LWVHOI EH EURNHQ LQWR WZR VXEXQLWV GHVLJQDWHG .8 DQG .A LQ DVFHQGLQJ RUGHU %RWK VXEXQLWV DUH SUREDEO\ SUHVHQW WKURXJKRXW WKH VWXG\ DUHD )LJXUHV WKURXJK f .X DQG DUH GLIILFXOW WR WUDFH WR WKH QRUWKZHVW LQ WKH $SDODFKLFROD %DVLQ EHFDXVH RI WKLQQLQJ DQG IDXOWLQJ DFURVV WKH 'HVWLQ 'RPH &RUUHODWLRQ LV DOVR WHQXRXV ZKHUH GDWD TXDOLW\ GHWHULRUDWHV QHDU VKRUH DQG DSSURDFKLQJ WKH 6DUDVRWD $UFK )LJXUH Ef ,Q WKH DUHD RI WKLV VWXG\ ZKHUH WKH 3DOHRFHQH VHFWLRQ LV WKLQ LW LV GLIILFXOW WR UHVROYH RQ VHLVPLF VHFWLRQV ,W LV SRVVLEOH WKDW 3DOHRFHQH VWUDWD PD\ EH LQFOXGHG DW WKH WRS RI VXEXQLW EHQHDWK WKH ERXQGDU\ PDUNHG E\ GRZQODS )LJXUHV WKURXJK f 7KH .8 VXEXQLW &HQRPDQLDQ6DQWRQLDQf LV WKLQ DFURVV WKH QRUWKZHVWHUQ QRVH RQ WKH 0&6% VXUIDFH DERXW IW Pf WKLFN LQ :HOO )LJXUHV $f EXW WKLFNHQV LQWR ERWK WKH 7DPSD (PED\PHQW )LJXUH %f DQG WKH $SDODFKLFROD %DVLQ WR PRUH WKDQ IW Pf LQ :HOO )LJXUHV &f 7KH VXEXQLW FRQVLVWV RI DW PRVW DERXW D KDOI GR]HQ UHIOHFWLRQV LQ D FRQWLQXRXV SDUDOOHO HYHQf WR VOLJKWO\ GLYHUJHQW VHLVPLF IDFLHV ,Q JHQHUDO WKH UHIOHFWLRQV ZLWKLQ .8 GRZQODS WRZDUG WKH HVFDUSPHQW DQG HLWKHU RQODS RU FRQYHUJH LQWHUQDOO\ LQ WKH ODQGZDUG GLUHFWLRQ 'RZQODSSLQJ DQG

PAGE 146

)LJXUH 7KLFNQHVV PDS RI WKH VHLVPLF VXEXQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD /HWWHUV LQGLFDWH WKH ORFDWLRQ RI IHDWXUHV GHVFULEHG LQ WKH WH[W

PAGE 147

RQODSSLQJ UHIOHFWLRQ WHUPLQDWLRQV LQGLFDWH WKH SUHVHQFH RI IRXU GHSRVLWLRQDO VHTXHQFHV ZLWKLQ WKH .8 VXEXQLW )LJXUHV WKURXJK DQG DQG f %HQHDWK WKH 0LVVLVVLSSL$ODEDPD 6KHOI DW WKH QRUWKZHVWHUQ HQG RI WKH VWXG\ DUHD )LJXUH f WKH XQLW WKLFNHQV QRUWKZHVWZDUG DQG WKH WRHV RI SURJUDGLQJ FOLQRIRUPV GRZQODS RQ D UHIOHFWLRQ HVWLPDWHG WR EH 7XURQLDQ )LJXUH E $f 7KLV UHIOHFWLRQ PD\ FRUUHVSRQG WR ZKDW :X DQG RWKHUV Df WHUPHG WKH 0&)6 )LJXUH f :X DQG RWKHUV Df FRUUHODWH WKH UHJLRQDO XQFRQIRUPLW\ DW WKH WRS RI WKH 7XVFDORRVD )RUPDWLRQ )LJXUH f ZLWK WKH 0D VHTXHQFH ERXQGDU\ +DT DQG RWKHUV f \HW WKH W\SH VHTXHQFH ERXQGDU\ REVHUYHG E\ .LQJ DQG 6NRWQLFNL f )LJXUH f LV RYHUVWHSSHG E\ GHSRVLWV LQWHUSUHWHG WR EH 0D 7KLV VHTXHQFH ERXQGDU\ LV QRW DSSDUHQW RQ WKH VHLVPLF VHFWLRQV RI WKLV VWXG\ 7KLV LV LQ DFFRUGDQFH ZLWK WKH LQWHUSUHWDWLRQ RI :X DQG RWKHUV D S f ZKLFK LV WKDW 2QO\ WKH EDVLQZDUG FRQWLQXDWLRQ RI WKLV VHTXHQFH ERXQGDU\ RFFXUV LQ RXU VWXG\ DUHD DQG LW LV WKHUHIRUH UHODWLYHO\ FRQIRUPDEOH RQ VHLVPLF VHFWLRQV 7KH VDPSOH ORJ IURP :HOO LQGLFDWHV WKDW WKH .8 XQLW FRQVLVWV RI DERXW IW RI VRIW EURZQ VKDOH ZLWK LQWHUFDODWHG EHGV RI SRRUO\ FRQVROLGDWHG YHU\ILQH WR ILQHn JUDLQHG TXDUW] VDQG RYHUODLQ E\ VRPH IW RI VRIW VLOW\ IRVVLOLIHURXV FDOFDUHRXV EURZQ VKDOH ,Q WKLV DQG RWKHU ZHOOV RQ WKH 'HVWLQ 'RPH WKH VRQLF YHORFLW\ RI .8 UDQJHV IURP DERXW WR IWVHF WR PVHFf 'RZQ GLS

PAGE 148

LQ WKH $SDODFKLFROD %DVLQ DQ XSZDUG FKDQJH WR JUHDWHU VRQLF YHORFLW\ WR IWVHF WR PVHFf LQ WKH .8 LQWHUYDOV RI :HOOV DQG PD\ UHIOHFW DQ XSZDUG FKDQJH IURP VLOLFLFODVWLF WR PRUH FDUERQDWH URFN W\SHV 7KH VHFWLRQ LQ :HOO WKDW FRUUHVSRQGV WR .8 LV VKDO\ WR VDQG\ JUD\ WR EURZQ OLPHVWRQH DQG FKDON LQWHUEHGGHG ZLWK EODFN WR JUHHQJUD\ VKDOH ,Q :HOOV DQG )LJXUH f WKH .fLQWHUYDO LV FRPSRVHG LQ DVFHQGLQJ RUGHUf RI GDUNJUD\ VKDOH JUD\ FDOFDUHRXV TXDUW] VDQGVWRQH DQG ZKLWH WR OLJKWJUD\ VRIW WR ILUP VKDO\ WR VDQG\ FKDON\ OLPHVWRQH ZLWK WUDFHV RI GRORPLWH DQG FKHUW 7KH VRXWKHDVWZDUG FKDQJH RI .8 IURP VLOLFLFODVWLF WR PRUH FDUERQDWH URFN W\SH LV HYLGHQFHG E\ DQ LQFUHDVH LQ VRQLF YHORFLW\ ,Q :HOO WKH VRQLF YHORFLW\ RI .8 DYHUDJHV PRUH WKDQ IWVHF PVHFf DQG LQ :HOOV DQG PRUH WKDQ IWVHF PVHFf 7KHUH LV KRZHYHU QR FRUUHVSRQGLQJ FKDQJH LQ WKH VHLVPLF IDFLHV RI .7KH WRS RI VHLVPLF VXEXQLW .LV D FRQWLQXRXV IDLUO\ VWURQJ UHIOHFWLRQ WKDW LV FRQFRUGDQW ZLWK XQGHUO\LQJ UHIOHFWLRQV EXW PDUNHG DERYH E\ GRZQODS 7KH DJH RI WKLV ERXQGDU\ LQWHUSUHWHG IURP LWV SRVLWLRQ LQ WKH 'HVWLQ 'RPH :HOOV DQG )LJXUH f LV URXJKO\ HTXLYDOHQW WR WKH 6DQWRQLDQ&DPSDQLDQ ERXQGDU\ 7KH GHSWKV RI WKH UHIOHFWLRQ FDOFXODWHG E\ PHDQV RI VRQLF ORJV UHODWLYH WR WKH ELRVWUDWLJUDSKLF GDWD LQ :HOOV DQG )LJXUH f KRZHYHU SODFH WKLV ERXQGDU\ ZLWKLQ WKH 6DQWRQLDQ LQWHUYDO

PAGE 149

$FFRUGLQJ WR VHTXHQFH VWUDWLJUDSK\ WKH GRZQODSSHG FKDUDFWHU RI WKH XSSHU ERXQGDU\ RI .8 VXJJHVWV LW EH FRUUHODWHG WR D PD[LPXP IORRGLQJ VXUIDFH UDWKHU WKDQ WR D VHTXHQFH ERXQGDU\ 7KH 0HVR]RLF&HQR]RLF F\FOH FKDUW +DT DQG RWKHUV f VKRZV D VHTXHQFH ERXQGDU\ DW 0D DQG D GRZQODS VXUIDFH DW 0D ERWK ZLWKLQ WKH 8SSHU 6DQWRQLDQ .LQJ DQG 6NRWQLFNL f FRUUHODWH WKH WRS RI WKH (XWDZ )RUPDWLRQ WR WKH W\SH VHTXHQFH ERXQGDU\ DW 0D +DT DQG RWKHUV f ZKHUHDV :X DQG RWKHUV Df FRUUHODWH WKH WRS RI WKH (XWDZ )RUPDWLRQ WR WKH 0D W\SH VHTXHQFH ERXQGDU\ +DT DQG RWKHUV f ,Q WKH VHFWLRQV RI :HOOV DQG LGHQWLILHG DV WKH (XWDZ LQWHUYDO E\ FRUUHODWLRQ WR WKH ZHOOORJ LQWHUSUHWDWLRQ RI :X DQG RWKHUV D )ROGRXW f 'LFDULQHOOD FRQFDYDWD RFFXUV EHORZ WKH WRS RI .fLQ :HOO DQG DERYH WKLV ERXQGDU\ LQ :HOO 7KH /$' RI 'LFDULQHOOD FRQFDYDWD )LJXUH f LV 0D &DQGH DQG .HQW f 7KLV LQGLFDWHV WKDW ZKHWKHU WKH WRS RI WKH (XWDZ LV LQWHUSUHWHG DV D W\SH RU W\SH VHTXHQFH ERXQGDU\ RU DV D GRZQODS VXUIDFH WKH HVWLPDWHV RI LWV DJH E\ ERWK :X DQG RWKHUV Df DQG .LQJ DQG 6NRWQLFNL f DUH WRR \RXQJ 7KH RYHUO\LQJ .A VXEXQLW &DPSDQLDQ0DDVWULFKWLDQf LV PRUH YDULHG LQ WKLFNQHVV DQG VHLVPLF IDFLHV WKDQ .8 2YHU PXFK RI WKH $SDODFKLFROD %DVLQ .A KDV D GLVFRQWLQXRXV VXESDUDOOHO HYHQWRZDY\ VHLVPLF IDFLHV )LJXUHV WKURXJK f 2YHU PXFK RI WKH QRUWKZHVWHUQ SDUW RI WKH VWXG\ DUHD SDUWLFXODUO\ LQ WKH $SDODFKLFROD %DVLQ WKH .A VXEXQLW DSSHDUV

PAGE 150

LQWHQVHO\ IDXOWHG 7KH IDXOWLQJ LV SUREDEO\ UHODWHG WR VDOW WHFWRQLFV 7KH WKLFNQHVV RI .\ LV IDLUO\ FRQVWDQW LQ WKH $SDODFKLFROD %DVLQ EXW WKH XQLW GRHV WKLQ DFURVV WKH 'HVWLQ 'RPH )LJXUHV E % $ f ,Q :HOO .A LV RQO\ IW Pf WKLFN LQFOXGLQJ WKH 3DOHRFHQH VHFWLRQ 7KH VDPSOH ORJ RI :HOO UHSRUWV JUHHQ WR EURZQ VLOW\ FDOFDUHRXV VKDOH DQG PLQRU VRIW ZKLWH FKDON IRU WKLV LQWHUYDO 7KH VRQLF YHORFLW\ RI LQ :HOO LV WR IWVHF WR PVHFf )RU WKH GRZQGLS :HOOV DQG WKH VRQLF YHORFLW\ LV PRUH WKDQ IWVHF PVHFf $ERYH WKH KLJK RQ WKH 0&6% )LJXUH &f WKLFNHQV )LJXUH %f DQG WKH VHLVPLF IDFLHV LV KXPPRFN\ WR FRQWRUWHG )LJXUH E %f 0RUH FDUERQDWH URFN DW WKLV ORFDWLRQ FRPSDUHG WR WKH 'HVWLQ 'RPH YLFLQLW\ LV LQIHUUHG IURP WKH VRQLF YHORFLW\ RI .A WR IWVHF WR PVHFf 7R WKH HDVW DQG VRXWK WKH VRQLF YHORFLW\ LQ :HOOV DQG LV PRUH WKDQ IWVHF PVHFf 7KH RQVWUXFWXUH DFFXPXODWLRQ VXJJHVWV D FRQVWUXFWLRQDO RULJLQ EXW WKH DYDLODEOH OLWKRORJLF GDWD GR QRW VXSSRUW WKH H[SODQDWLRQ RI WKLV IHDWXUH DV D FDUERQDWH EXLOGXS 6DPSOH ORJV RI :HOOV DQG LQGLFDWH WKH VHFWLRQ FRQVLVWV RI VRIW WR KDUG ZKLWH FKDON\ OLPHVWRQH ZLWK WUDFHV RI JUD\ GRORPLWH OLJQLWH FKHUW DQG S\ULWH 1HDU WKH EDVH RI LQ :HOOV DQG LV DQ LQWHUYDO RI JUHHQJUD\ VKDOH 7KH 86*6 *HRORJLFDO DQG 2SHUDWLRQDO 6XPPDU\ RI :HOO *HH DQG

PAGE 151

)LJXUH 7KLFNQHVV PDS RI WKH VHLVPLF VXEXQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD /HWWHUV LQGLFDWH WKH ORFDWLRQ RI IHDWXUHV GHVFULEHG LQ WKH WH[W

PAGE 152

RWKHUV f UHSRUWV WKH SUHVHQFH RI DOPRVW HQWLUHO\ SODQNWRQLF IRUDPLQLIHUD LQ WKH 8SSHU &UHWDFHRXV DQG LQWHUSUHWV GHSRVLWLRQ RI WKLV VHFWLRQ WR KDYH EHHQ RQ WKH RXWHU VKHOI WR XSSHU XSSHU VORSH $ UHJLRQDO XQFRQIRUPLW\ EHWZHHQ WKH 8SSHU &UHWDFHRXV DQG 3DOHRJHQH VWUDWD KDV ORQJ EHHQ UHFRJQL]HG LQ WKH *XOI &RDVWDO 3ODLQ SURYLQFH ,W LV GLIILFXOW WR DGGUHVV WKH FRQWURYHUV\ UHJDUGLQJ WKH SRVLWLRQ RI WKH &UHWDFHRXV7HUWLDU\ ERXQGDU\ )LJXUH f DOWHUQDWLYHO\ DW D W\SH VHTXHQFH ERXQGDU\ +D]HO 0DQFLQL DQG 7HZ D DQG 2OVVRQ DQG /LX f RU D FRQGHQVHG VHFWLRQ %DXP DQG 9DLO 'RQRYDQ DQG RWKHUV f 7KH XSSHU ERXQGDU\ RI LV FRPPRQO\ PDUNHG E\ GRZQODS DERYH XQGHUO\LQJ FRQFRUGDQW UHIOHFWLRQV %\ VHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQ WKLV W\SLILHV D PD[LPXP IORRGLQJ VXUIDFH
PAGE 153

RI WKLV VWXG\ LV FORVHU WR 0D WKH EDVDO ERXQGDU\ RI WKH 6HODQGLDQ 6WDJH &DQGH DQG .HQW )LJXUH f 7KLV HVWLPDWH DJUHHV ZLWK WKDW RI $GG\ DQG %XIIOHU f IRU WKH FRUUHVSRQGLQJ FRQWDFW RI VHLVPLF XQLWV DQG ( )LJXUH f $ W\SH VHTXHQFH ERXQGDU\ DW 0D +DT DQG RWKHUV f ZLWKLQ WKH 7KDQHWLDQ LV UHFRJQL]HG E\ :X DQG RWKHUV Df :KHUH WKH 3DOHRFHQH VHFWLRQ LV LQFOXGHG DW WKH WRS RI .A WKH DJH RI WKH XSSHU ERXQGDU\ RI FRXOG EH DV \RXQJ DV 0D WKH EDVDO ERXQGDU\ RI WKH (RFHQH &DQGH DQG .HQW )LJXUH f ,Q WKH VRXWKHUQ SDUW RI WKH SODWIRUP HYLGHQFH WR VXSSRUW H[SRVXUH RI WKH SODWIRUP DV D UHVXOW RI D ORZHULQJ RI VHD OHYHO DW WKH HQG RI WKH &UHWDFHRXV *DOORZD\ DQG RWKHUV S f LV QRW REVHUYHG LQ WKLV VWXG\ &KHQ :LQVWRQ D Ef ,Q :HOOV DQG )LJXUHV DQG UHVSHFWLYHO\f WKH LQWHUYDO FRUUHVSRQGLQJ WR .A LV SUHGRPLQDQWO\ ZKLWH FKDON\ OLPHVWRQH 3UHYLRXV LQWHUSUHWDWLRQV 0LOOHU :LQVWRQ f LQFOXGH ZLWKLQ WKH 8SSHU &UHWDFHRXV DQ RYHUO\LQJ VHFWLRQ RI FUHDP WR OLJKWEURZQ GRORPLWH ZLWK J\SVXP WKDW LV LGHQWLILHG DV WKH /DZVRQ )RUPDWLRQ 7KH WRS RI &UHWDFHRXV WRS RI WKH .A VXEXQLWf WKH VXUIDFH XSRQ ZKLFK WKH RYHUO\LQJ 3DOHRFHQH(RFHQH XQLW ZDV GHSRVLWHG )LJXUH f LV VLPLODU WR WKDW RI WKH 0&6% )LJXUH f ZLWK DFFHQWXDWLRQ RI WKH QRUWKZHVWHUQ ELIXUFDWLRQ RI WKH 0LGGOH *URXQG $UFK FDXVHG E\ WKH WKLFNHQLQJ RI .

PAGE 154

)LJXUH 6WUXFWXUH PDS RI WKH WRS RI WKH &UHWDFHRXV VXEXQLW .Af FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD

PAGE 155

3DOHRFHQH(RFHQH 7KHUH LV QRW D FOHDU FRUUHVSRQGHQFH EHWZHHQ WKH VHLVPLF VWUDWLJUDSKLF IUDPHZRUN KHUH DQG WKH VHTXHQFH VWUDWLJUDSKLF LQWHUSUHWDWLRQV RI 3DOHRJHQH VWUDWD IURP RXWFURSV LQ WKH *XOI &RDVWDO 3ODLQ %DXP DQG 9DLO 0DQFLQL DQG 7HZ E D Ef $OWKRXJK DOO IRXU (RFHQH VWDJHV DUH LGHQWLILHG ELRVWUDWLJUDSKLFDOO\ LQ WKH 'HVWLQ 'RPH ZHOOV WKH VWDJH ERXQGDULHV GR QRW FOHDUO\ FRUUHODWH WR VHLVPLF VHTXHQFH ERXQGDULHV 7KLV PD\ EH GXH WR D ODFN RI UHVROXWLRQ LQ WKH VHLVPLF VHFWLRQV 7KH GLIILFXOW\ LQ UHVROYLQJ WKH &UHWDFHRXV3DOHRFHQH ERXQGDU\ RQ WKH VHLVPLF VHFWLRQV KDV DOUHDG\ EHHQ GLVFXVVHG 6RXWKHDVW RI WKH 7DPSD (PED\PHQW WKH 3DOHRFHQH VHFWLRQ WKLFNHQV )LJXUH f DQG LV EHWWHU UHVROYHG RQ VHLVPLF VHFWLRQV )LJXUHV DQG f 7KH 3DOHRFHQH(RFHQH 6HODQGLDQ
PAGE 156

:X DQG RWKHUV Df EXW GR QRW FRLQFLGH ZLWK WKH FKURQRVWUDWLJUDSKLF IUDPHZRUN RI WKLV VWXG\ $W :HOO )LJXUH Ef WKH LQWHUYDO EHWZHHQ WKH WRS RI WKH &UHWDFHRXV .Af DQG WKH WRS RI WKH 8SSHU (RFHQH 7(8f LV GLYLGHG LQWR WKUHH VXEXQLWV %\ FRUUHODWLRQ WR WKH ELRVWUDWLJUDSKLFDOO\ FRQWUROOHG :HOO )LJXUH f WKH ORZHUPRVW VXEXQLW LV
PAGE 157

7KH WKLFNQHVV FRQWRXUHG LQ ZD\ 77f RI WKH 3DOHRFHQH (RFHQH VHLVPLF XQLW LV VKRZQ LQ )LJXUH $ SURPLQHQW IHDWXUH RQ WKLV PDS LV WKH PDUNHG HDVWZDUG WKLFNHQLQJ WKDW RFFXUV DORQJ D NPZLGH EDQG WKDW WUHQGV QRUWKVRXWK DW DERXW r: )LJXUH $f 7KH EDQG SDVVHV QRUWKHDVW RI :HOO DQG IROORZV WKH XSGLS PDUJLQ RI WKH 7DPSD (PED\PHQW DQG WKH QRUWKZHVW IODQN RI WKH DQWLFOLQH RQ ZKLFK :HOOV DQG DUH ORFDWHG $ORQJ WKH VDPH WUHQG WKH WRS RI WKH (RFHQH 7(-f VXUIDFH )LJXUH $f UDPSV XSZDUG 7KLV ]RQH PDUNV WKH (RFHQH VKHOI HGJH 7KH WKLFNHQHG 3DOHRFHQH(RFHQH VHFWLRQ DW WKH VKHOI PDUJLQ LV GXH WR D EHOW RI FRPSOH[ FOLQRIRUPV WKDW SURJUDGH WR WKH ZHVW DQG QRUWKZHVW )LJXUH E $f 7KH WRHV RI WKH ROGHVW FOLQRIRUPV GRZQODS DERYH D VHTXHQFH ERXQGDU\ MXVW EHORZ $ LQ )LJXUH Ef WKDW FRUUHODWHV WR WKH ORZHUPRVW
PAGE 158

)LJXUH 7KLFNQHVV PDS RI WKH 3DOHRFHQH(RFHQH VHLVPLF XQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD /HWWHUV LQGLFDWH WKH ORFDWLRQ RI IHDWXUHV GHVFULEHG LQ WKH WH[W

PAGE 159

)LJXUH 6WUXFWXUH PDS RI WKH WRS RI WKH (RFHQH 7(8f FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD /HWWHUV LQGLFDWH WKH ORFDWLRQ RI IHDWXUHV GHVFULEHG LQ WKH WH[W

PAGE 160

VLPLODU WUHQGV RI GLS DQG WKLFNHQLQJ 0LOOHU 3ODWHV WKURXJK f $OVR WKH WUDQVPLVVLYLW\ RI WKH 8SSHU )ORULGDQ DTXLIHU LQFUHDVHV PDUNHGO\ MXVW HDVW RI WKH SURMHFWHG VKHOI PDUJLQ WUHQG 0LOOHU )LJXUH f (DVW RI WKH VKHOI PDUJLQ WKH 3DOHRFHQH(RFHQH XQLW LV D SULVP WKDW WKLFNHQV WR D PD[LPXP )LJXUH %f DQG WKHQ WKLQV DV LW ODSV RQWR WKH XQGHUO\LQJ &UHWDFHRXV VXUIDFH $SSURDFKLQJ WKH RQVKRUH 2FDOD +LJK WKH WRS RI WKH (RFHQH LV DW RU QHDU WKH VHGLPHQWZDWHU LQWHUIDFH )LJXUH %f 7KH WRS RI WKH (RFHQH VHFWLRQ LV DERYH WKH ORJJHG LQWHUYDOV RI ZHOOV RQ FURVVVHFWLRQV %%n && DQG ''n )LJXUHV DQG f 7KH 7eX UHIOHFWLRQ LV GLIILFXOW WR LQWHUSUHW RI VHLVPLF OLQHV LQ WKLV DUHD )LJXUHV DQG f 7KH SRVVLEOH SLFN RI 7(8 DW IW VXEVHD LQ :HOO )LJXUHV DQG Ef LV SUREOHPDWLF IRU LI WKH UHIOHFWLRQ LV WUDFHG VRXWKZDUG XSSHUPRVW PDUNHG UHIOHFWLRQ RQ /LQHV DQG )LJXUH Ef WR :HOO )LJXUH f LW OLHV EHQHDWK &RUH LQ ZKLFK ZHUH IRXQG VSHFLPHQV RI WKH 0LGGOH(RFHQH HFKLQRLG 1HRODJDQXP GDOOL /DQGZDUG RI WKH (RFHQH VKHOI PDUJLQ )LJXUHV E %f RQH DQWLFLSDWHV WKH RFFXUUHQFH RI LQWHUWLGDO DQG VXSUDWLGDO ]RQHV ZKHUH WKH GRPLQDQW VHLVPLF IDFLHV LV HYHQ SDUDOOHO UHIOHFWLRQV )RQWDLQH DQG RWKHUV )LJXUH f 5HVWULFWHG PDULQH FLUFXODWLRQ DQG LQWHUPLWWHQW VXEDHULDO H[SRVXUH FDQ UHVXOW LQ HYDSRULWH GHSRVLWLRQ WKH GHYHORSPHQW RI NDUVW DQG GRORPLWL]DWLRQ LQ WKHVH GHSRVLWLRQDO

PAGE 161

HQYLURQPHQWV $ PDUEOHG VHLVPLF IDFLHV )RQWDLQH DQG RWKHUV )LJXUH f VXJJHVWV WKH SUHVHQFH RI GRORPLWH LQ WKLV DUHD DQG WKLV VHHPV WR EH FRUURERUDWHG E\ WKH OLPLWHG HYLGHQFH IURP ZHOOV 7KH VDPSOH ORJ RI :HOO )LJXUH f LQGLFDWHV WKDW WKH SUREDEOH 3DOHRFHQH DQG ORZHU (RFHQH LQWHUYDO IURP DSSUR[LPDWHO\ WR IW WR Pf VXEVHD WKH URFN W\SH LV FKHUW\ OLPHVWRQH )URP DERXW WR IW WR Pf VXEVHD EHGV RI GRORPLWH RFFXU DQG WKH OLPHVWRQH DQG FKHUW GHFUHDVH LQ DEXQGDQFH XSZDUG $ERYH IW Pf VXEVHD WR WKH WRS RI WKH ORJJHG LQWHUYDO DW IW Pf VXEVHD WKH VDPSOHV DUH SULQFLSDOO\ GRORPLWH DQG HYDSRULWH ,Q :HOO )LJXUH f WKH &HGDU .H\V )RUPDWLRQ LV EURZQ WR WDQ ILQHO\ FU\VWDOOLQH GRORPLWH ZLWK DEXQGDQW J\SVXP 7KH 2OGVPDU )RUPDWLRQ LQ :HOO LV LQWHUEHGGHG OLJKWEURZQ ILQH WRPHGLXPFU\VWDOOLQH GRORPLWH DQG ZKLWH FKDON\ ILQHWR FRDUVHJUDLQHG OLPHVWRQH 7KH $YRQ 3DUN )RUPDWLRQ LV JUD\ WR EURZQ ILQHWRPHGLXP FU\VWDOOLQH GRORPLWH DQG VRPH FUHDP FRORUHG ILQHWRFRDUVHJUDLQHG OLPHVWRQH DW WKH EDVH LQ :HOO 7UDFHV RI J\SVXP RFFXU WKURXJKRXW WKH $YRQ 3DUN LQWHUYDO LQ WKLV ZHOO &RUH VDPSOHV IURP :HOOV DQG FRQILUP WKH SUHVHQFH RI GRORPLWH DQG HYDSRULWH LQ WKLV VHFWLRQ %DVLQZDUG WR WKH ZHVW RI WKH (RFHQH VKHOI PDUJLQ (RFHQH /XWHWLDQ%DUWRQLDQf VHTXHQFHV ZLWK OHQWLFXODU VKDSH DUH

PAGE 162

VWDFNHG WR IRUP EURDG PRXQGV )LJXUHV E % DQG & E % E & ( ) ( )f 7KH PRXQGV DUH HQ HFKHORQ DQG KDYH D QRUWKZHVW WUHQG REOLTXH WR WKH (RFHQH VKHOI PDUJLQ +HUH WKH 3DOHRFHQH(RFHQH XQLW LV FRPSOH[ EHLQJ FRPSULVHG RI PDQ\ OHQWLFXODU RU ZHGJHVKDSHG VXEXQLWV WKDW WHQG WR EH RI UHVWULFWHG DUHDO H[WHQW )LJXUHV WKURXJK f 7KH VXEXQLWV DUH QRW QDPHG WR DYRLG FRQMHVWLRQ LQ WKH ILJXUHV EXW WKH UHIOHFWLRQ WHUPLQDWLRQV E\ ZKLFK WKH\ DUH LGHQWLILHG DUH VKRZQ DUURZKHDGVf DQG WKHLU ERXQGDULHV DUH GHOLQHDWHG ZLWK EROG OLQHV ,Q JHQHUDO WKH UHIOHFWLRQV ZLWKLQ WKHVH VHTXHQFHV GRZQODS WRZDUG WKH HVFDUSPHQW DQG HLWKHU RQODS RU FRQYHUJH LQWHUQDOO\ LQ WKH ODQGZDUG GLUHFWLRQ 7KH PRXQGHG VHTXHQFHV KDYH D ZDY\ VXESDUDOOHOWRKXPPRFN\ VHLVPLF IDFLHV ,Q WKH 7DPSD (PED\PHQW QHDU DQG HVVHQWLDOO\ SDUDOOHO WR WKH )ORULGD (VFDUSPHQW WKHUH LV D GLIIHUHQW VRUW RI PRXQGHG ]RQH DERXW NP ZLGH )LJXUH *f +HUH WKH 3DOHRFHQH(RFHQH XQLW WKLFNHQV DQG KDV D GLVUXSWHG FRQWRUWHG WR FKDRWLF VHLVPLF IDFLHV )LJXUHV E & DQG E &f 7KLV IHDWXUH KDV EHHQ SUHYLRXVO\ UHSRUWHG %U\DQW DQG RWKHUV )LJXUH f DQG LQWHUSUHW DV D &HGDU .H\V UHHI DQG DVVRFLDWHG UHHI WDOXV :LQVWRQ f UHODWHV WKLV IHDWXUH WR WKH 5HEHFFD 6KRDO 'RORPLWH DV HYLGHQFH RI D FLUFXPSHQLQVXODU 3DOHRFHQH EDUULHU UHHI 7KLV PRXQGHG ]RQH LV SUHVHQW RQ RWKHU VHLVPLF SURILOHV IDUWKHU VRXWK LQ WKH 7DPSD (PED\PHQW /LQHV * DQG DQG ' ' DQG )LJXUH f EXW RQ /LQH LW DSSHDUV WR KDYH EHHQ WUXQFDWHG E\ HURVLRQ DQG

PAGE 163

RYHUODLQ E\ D \RXQJHU VHTXHQFH )LJXUH E EHORZ +f &RQVLGHULQJ WKH FRUUHODWLRQV RI WKLV VWXG\ DQG WKH DEVHQFH RI 3DOHRFHQH VHGLPHQW QHDU WKH )ORULGD (VFDUSPHQW UHSRUWHG E\ 0LWFKXP f DQG FRUURERUDWHG E\ *DUGXOVNL DQG RWKHUV f WKH DJH RI WKH IHDWXUH LV PRUH SUREDEO\ (RFHQH WKDQ 3DOHRFHQH 7KH VDPSOH ORJ RI :HOO LQGLFDWHV WKDW LQ WKH DUHD RI WKH 'HVWLQ 'RPH )LJXUH f WKH URFN W\SH RI WKH 3DOHRFHQH LQWHUYDO LV LQWHUEHGGHG JUHHQ WR EURZQ FDOFDUHRXV VKDOH DQG VRIW ZKLWH FKDON 7KH (RFHQH LQWHUYDO LQ :HOO LV VRIW OLJKWEURZQ WR ZKLWH VLOW\ OLPHVWRQH )DUWKHU VRXWK LQ WKH $SDODFKLFROD %DVLQ WKH HQWLUH 3DOHRFHQH(RFHQH XQLW WKLQV EDVLQZDUG E\ SLQFKRXW RI OHQWLFXODU VXEXQLWV WRZDUG WKH )ORULGD (VFDUSPHQW )LJXUHV E f 2OLDRFHQH/RZHU 0LGGOH 0LRFHQH %RWK WKH EDVH WRS RI WKH 8SSHU (RFHQH 7(8f DQG WKH WRS WKH PLG0LRFHQH XQFRQIRUPLW\ 70/f RI WKLV VHLVPLF VWUDWLJUDSKLF XQLW DUH FKDUDFWHUL]HG E\ GRZQODS DQG RQODS DERYH DQG FRQFRUGDQFH EHORZ 7KURXJKRXW PXFK RI WKH VWXG\ DUHD WKH LQWHUYDO EHWZHHQ FDQ EH GLYLGHG LQWR WKUHH VXEXQLWV )LJXUHV WKURXJK f ,Q WKH $SDODFKLFROD %DVLQ DOO WKUHH VXEXQLWV KDYH FRQWLQXRXV SDUDOOHO HYHQWRZDY\f VHLVPLF IDFLHV 7KHVH VWUDWD WHQG WR VPRRWK RXW (RFHQH SDOHRWRSRJUDSKLF IHDWXUHV 0LWFKXP f E\ WKLFNHQLQJ LQ WKH ORZV )LJXUHV E $ % & 'f $OO WKUHH VXEXQLWV WHQG WR WKLQ WRZDUG WKH )ORULGD (VFDUSPHQW DQG DFURVV WKH 'HVWLQ

PAGE 164

7KLFNQHVV PDS RI WKH 2OLJRFHQHORZHU 0LGGOH 0LRFHQH VHLVPLF XQLW FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD /HWWHUV LQGLFDWH WKH ORFDWLRQ RI IHDWXUHV GHVFULEHG LQ WKH WH[W )LJXUH

PAGE 165

'RPH )LJXUHV E f 1RUWKHDVW RI WKH 'HVWQ 'RPH )LJXUH $f WKHUH LV D IRXUWK ROGHU VXEXQLW RI WKH 2OLJRFHQH /RZHU 0LGGOH 0LRFHQH VHLVPLF VWUDWLJUDSKLF XQLW D ZHGJH RI SURJUDGLQJ GRZQODSSLQJ UHIOHFWLRQV )LJXUH E (f 7KH 2OLJRFHQHORZHU 0LGGOH 0LRFHQH VHTXHQFHV WKLQ DFURVV WKH 0LGGOH *URXQG $UFK )LJXUH E f ,Q WKH QRUWKHUQ SDUW RI WKH 7DPSD (PED\PHQW 2OLJRFHQHORZHU 0LGGOH 0LRFHQH VWUDWD IRUP VHWV RI ORZDQJOHG VKLQJOHG FOLQRIRUPV WKDW VWDFN DV PXFK DJJUDGDWLRQDOO\ DV SURJUDGDWLRQDOO\ )LJXUHV E E f 7KHVH VWUDWD RQODS DQG SLQFKRXW DJDLQVW WKH ODQGZDUG QRUWKHDVWf IODQN RI WKH (RFHQH PRXQGHG ]RQH QHDU WKH )ORULGD (VFDUSPHQW )LJXUHV E DQG E )f 7KH (RFHQH PRXQGHG ]RQH VHHPV WR KDYH KDG SDOHREDWK\PHWULF H[SUHVVLRQ )LJXUH *f WKDW DFWHG WR UHVWULFW WKH EDVLQZDUG SURJUDGDWLRQ RI WKH RYHUO\LQJ GHSRVLWV )ROORZLQJ WKH XSGLS PDUJLQ RI WKH 7DPSD (PED\PHQW WR WKH VRXWKZHVW WRZDUG WKH )ORULGD (VFDUSPHQW WKH VDPH VHTXHQFHV RI FOLQRIRUPV VWHHSHQ DQG SURJUHVV WKURXJK VLJPRLG WR REOLTXH JHRPHWU\ )LJXUH Ef 7KH ODFN RI D ZHOO GULOOHG WKURXJK WKH VWDFN RI FOLQRIRUP VHWV RU D VWULNHRULHQWHG VHLVPLF OLQH WR WLH /LQH )LJXUH f PDNHV WKH FKURQRVWUDWLJUDSKLF LGHQWLILFDWLRQ RI D VSHFLILF VHTXHQFH WHQXRXV %DVHG RQ GDWD IURP :HOO DQG DOWHUQDWLYH LQWHUSUHWDWLRQV RI WKH VHLVPLF OLQH )LJXUH Ef WKH FOLQRIRUP VHWV ODEHOHG $ RU % RU SHUKDSV HYHQ & FRXOG EH (RFHQH

PAGE 166

3UHYLRXV VWXGLHV YDULRXVO\ GDWH WKH XQFRQIRUPLW\ DW WKH WRS RI WKH FOLQRIRUP VHW ODEHOHG )LJXUH Ef DV 0D VHTXHQFH ERXQGDU\ )LJXUH 0LWFKXP f RU 0D 0XOOLQV DQG RWKHUV Ef )LJXUH VKRZV WKH FRQILJXUDn WLRQ RI WKLV ZLGHO\UHFRJQL]HG PLG0LRFHQH VXUIDFH 7+/f 7UXQFDWLRQ RI FOLQRIRUPV EHQHDWK WKLV XQFRQIRUPLW\ LV FRQVLGHUHG E\ VRPH *DUGXOVNL DQG 0XOOLQV 0XOOLQV DQG RWKHUV Ef DV HYLGHQFH RI D VWUHQJWKHQHG DQFHVWUDO /RRS &XUUHQW UHODWHG WR WKH HPHUJHQFH RI WKH ,VWKPXV RI 3DQDPD ,W LV RI LQWHUHVW KRZHYHU WKDW EDVHG RQ WKH PDQ\ SDOHRJHRJUDSKLFDO UHFRQVWUXFWLRQV RI WKH &DULEEHDQ UHJLRQ D FRPSOHWH OLQN RI VRXWKHUQ &HQWUDO $PHULFD DQG 6RXWK $PHULFD SUREDEO\ GLG QRW RFFXU DW OHDVW XQWLO WKH SHULRG 0D DJR 6PLWK S f )XUWKHUPRUH FOLQRIRUPV RI ROGHU VHTXHQFHV )LJXUH E &f DOVR DSSHDU WUXQFDWHG &RPSDULVRQ RI WKH WRS RI WKH (RFHQH 7(8f VXUIDFH )LJXUH f WKH VXUIDFH XSRQ ZKLFK 2OLJRFHQHORZHU 0LGGOH 0LRFHQH VWUDWD ZHUH GHSRVLWHG DQG WKH WRS RI WKH PLGGOH 0LRFHQH 70/f VXUIDFH )LJXUH f LQGLFDWHG WKDW WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP GLG QRW GHYHORS LQWR WKH JHQWO\ GLSSLQJ GLVWDOO\ VWHHSHQHG UDPS XQWLO WKH PLGGOH 0LRFHQH 8SSHU 0LGGOH 0LRFHQH+RORFHQH :LWK WKH W\SH RI VHLVPLF GDWD XVHG LQ WKLV VWXG\ VWUDWD QHDU WKH VXUIDFH HVSHFLDOO\ LQ VKDOORZ ZDWHU GHSWKV DUH GLIILFXOW WR UHVROYH 7KRXJK UHIOHFWLRQ WHUPLQDWLRQV DQG VHTXHQFH ERXQGDULHV FDQ EH UHFRJQL]HG ZLWKLQ WKH 8SSHU 0LGGOH

PAGE 167

)LJXUH 0DS RI WKH FRQILJXUDWLRQ RI WKH PLG0LRFHQH VXUIDFH 7 f FRQWRXUHG LQ ZD\ WUDYHOWLPH 7KH KHDY\ GDVKHG OLQH GHOLQHDWHV WKH ORFDWLRQ RI WKH FKDQJH LQ WKH FKDUDFWHU RI WKH VHLVPLF GDWD

PAGE 168

0LRFHQH WR +RORFHQH VHLVPLF VWUDWLJUDSKLF XQLW WKH WUHDWPHQW RI WKHVH VWUDWD KHUH LV FXUVRU\ 7KH \RXQJHVW VHTXHQFH LQ WKH $SDODFKLFROD %DVLQ LV PDUNHG E\ GRZQODS WR WKH VRXWKHDVW DQG RQODS WR WKH QRUWKZHVW )LJXUH E 'f $ FRPSOH[ RI UHIOHFWLRQ WHUPLQDWLRQV )LJXUH E )f VXJJHVWV D VKHOI PDUJLQ LQ WKH 1HRJHQH VHFWLRQ WKDW LV RQODSSHG IURP WKH VRXWKZHVW E\ WKH \RXQJHVW VHTXHQFH )LJXUH E *f ,Q WKH 7DPSD (PED\PHQW 8SSHU 0LGGOH 0LRFHQH DQG \RXQJHU UHIOHFWLRQV RQODS ODQGZDUG DQG GRZQODS EDVLQZDUG )LJXUH (f 7KH 8SSHU 0LGGOH 0LRFHQH+RORFHQH VHFWLRQ WKLQV DFURVV WKH 0LGGOH *URXQG $UFK )LJXUH E 'f 7KH VHFWLRQ RI 8SSHU 0LRFHQH DQG \RXQJHU VWUDWD LV UHODWLYHO\ WKLQ LQ WKLV SDUW RI WKH 7DPSD (PED\PHQW FRPSDUHG WR WKDW RI WKH $SDODFKLFROD %DVLQ )LJXUH E *f 7KH \RXQJHVW VHLVPLF XQLW QHDU WKH HGJH RI WKH )ORULGD (VFDUSPHQW )LJXUH E +f ZKLFK %DOO DQG RWKHUV f GHVFULEH DV WUDQVOXFHQW LV SUREDEO\ 3OHLVWRFHQH

PAGE 169

6<17+(6,6 $1' ,17(535(7$7,21 7KH VHTXHQFH ERXQGDULHV LGHQWLILHG LQ WKLV VWXG\ RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP DUH GHILQHG REMHFWLYHO\ E\ UHIOHFWLRQ WHUPLQDWLRQV DFFRUGLQJ WR WKH SULQFLSOHV RI 9DLO DQG RWKHUV f 7KHUH DUH KRZHYHU QR REMHFWLYH PHDQV WR GLVWLQJXLVK VXEDHULDO IURP VXEPDULQH VXUIDFHV VHTXHQFH ERXQGDULHV IURP PD[LPXPIORRGLQJ VXUIDFHVf 'LIIHUHQWLDWLRQ RI VHTXHQFH ERXQGDU\ W\SHV W\SH YV W\SH f DQG UHFRJQLWLRQ RI V\VWHPV WUDFWV ZHUH DOVR QRW SRVVLEOH 7KHUHIRUH WKH VHTXHQFH VWUDWLJUDSKLF SDUDGLJP 9DLO 9DQ :DJRQHU f FDQQRW EH DSSOLHG LQ WKLV FDVH 7KH VHTXHQFH ERXQGDULHV UHSUHVHQW FKDQJHV LQ WKH SDWWHUQ RI VHGLPHQW LQSXW DQG GLVSHUVDO LQ WKH EDVLQ 6FKODJHU S f $OWKRXJK IOXFWXDWLRQ RI UHODWLYH VHD OHYHO LV D IDFWRU LQIOXHQFLQJ VHTXHQFH IRUPDWLRQ UHJLRQDO WHFWRQLFV DQG VHGLPHQWRORJLF SURFHVVHV DOVR SOD\ D UROH 5HJDUGOHVV RI WKH PHFKDQLVP RI WKHLU IRUPDWLRQ WKH XQFRQIRUPLW\ ERXQGHG XQLWV DUH FRQYHQLHQW VHGLPHQWDU\ SDFNDJHV ZLWK ZKLFK WR GHDO ZKHQ LQWHUSUHWLQJ HDUWK KLVWRU\ )RUDPLQLIHUDO ELRVWUDWLJUDSKLF GDWD WLHG WR SXEOLVKHG PDJQHWRELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV DQG WKH JHRPDJQHWLF SRODULW\ WLPHVFDOH RI &DQGH DQG .HQW f RIIHU WKH PRVW GHWDLOHG DQG XSWRGDWH FKURQRVWUDWLJUDSKLF IUDPHZRUN

PAGE 170

IRU WKH 8SSHU &UHWDFHRXV DQG &HQR]RLF VWUDWD RI WKLV DUHD 7KH UHVROXWLRQ RI WKLV IUDPHZRUN KRZHYHU LV FRPPRQO\ QRW EHWWHU WKDQ WKH OHYHO RI WKH FKURQRVWUDWLJUDSKLF VWDJH 7KH WKLFNQHVV RI XQLWV UHODWLYH WR VHLVPLF UHVROXWLRQ DQG WKH HUURU LQKHUHQW LQ PDNLQJ ZHOOWRVHLVPLF WLHV WKZDUW DFFXUDWH GDWLQJ RI HDFK LQGLYLGXDO GHSRVLWLRQDO VHJXHQFH LGHQWLILHG 7KLV LV RQH UHDVRQ ZK\ WKH VWUDWLJUDSKLF IUDPHZRUN LV GLVFXVVHG LQ WHUPV RI IRXU PDLQ XQLWV WKDW DUH HDFK D JURXSLQJ RI VHYHUDO GHSRVLWLRQDO VHTXHQFHV 5HODWLQJ GHSRVLWLRQDO VHTXHQFHV LGHQWLILHG LQ WKLV VWXG\ WR JOREDO VHDOHYHO FKDQJH E\ FRUUHODWLRQ WR D F\FOH FKDUW +DT DQG RWKHUV f LV QRW IHDVLEOH EHFDXVH WKH FKURQRVWUDWLJUDSKLF SUHFLVLRQ LV JHQHUDOO\ QRW VXIILFLHQW WR PDNH UHOLDEOH FRUUHODWLRQV DW WKH HYHQW VSDFLQJ RI WKH FKDUW 0LDOO f 7KLV DSSURDFK WKRXJK FRPPRQ LV QRW ZHOO IRXQGHG IRU LW VXERUGLQDWHV WKH ORFDO VWUDWLJUDSKLF GDWD WR WKH JOREDO LQWHUSUHWDWLRQ $Q H[DPSOH RI WKLV SUDFWLFH LV UHYHDOHG LQ )LJXUH ZKLFK LV WDNHQ IURP :X DQG RWKHUV Df 7KH OHJHQG RI WKLV GLDJUDP GLVWLQJXLVKHV VWUDWLJUDSKLF VXUIDFHV LQWHUSUHWHG E\ +DT DQG RWKHUV f WKDW DUH REVHUYHG RQ WKH VHLVPLF SURILOH IURP WKRVH WKDW DUH QRW REVHUYHG \HW DVVXPHG WR H[LVW ,Q WKH FDVH RI WKH (RFHQH2OLJRFHQH 3ULDERQLDQ5XSHOLDQf FRQWDFW IRU LQVWDQFH WKH F\FOH FKDUW +DT DQG RWKHUV f VKRZV D W\SH VHTXHQFH ERXQGDU\ EXW WKH RXWFURS VWXGLHV RI %DXP DQG 9DLO f DQG 0DQFLQL DQG 7HZ E D Ef FRQFOXGH WKDW WKLV ERXQGDU\

PAGE 171

LV D FRQGHQVHG VHFWLRQ :LWKRXW HYLGHQFH IURP WKH VSHFLILF ORFDOLW\ WKH VXEPDULQH RU VXEDHULDO QDWXUH RI D ERXQGDU\ LV VSHFXODWLYH ,Q WKLV VWXG\ VHDOHYHO DQDO\VLV ZDV OLPLWHG EHFDXVH RI WKH ODFN RI GHWDLOHG ELRVWUDWLJUDSKLF GDWD $V D UHVXOW VHYHUDO RI WKH SUREOHPV WR EH LQYHVWLJDWHG FRXOG QRW EH DGHTXDWHO\ DGGUHVVHG $PRQJ WKHVH DUH WKH H[SODQDWLRQ RI WKH VHGLPHQWDU\ F\FOHV LQ DQG GLDJHQHVLV RI (RFHQH FDUERQDWH VWUDWD DQG UHODWLRQ RI WKHVH IHDWXUHV WR JOREDO SDWWHUQV RI UHODWLYH VHDOHYHO IOXFWXDWLRQ ,W LV SRVVLEOH WKDW DGGLWLRQDO GDWD QRW DYDLODEOH LQ WKLV VWXG\ PLJKW LPSURYH WKH DSSOLFDELOLW\ RI VHTXHQFH VWUDWLJUDSK\ RQ WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP 0RUH ZHOO FRQWURO LV DQ REYLRXV GHVLUH 6SHFLILFDOO\ PRUH GHWDLOHG ELRVWUDWLJUDSKLF GDWD IRU SDOHRHQYLURQPHQWDO LQWHUSUHWDWLRQ DQG LQIRUPDWLRQ RQ WKH DEXQGDQFH DQG GLYHUVLW\ RI WKH ELRWD IRU UHFRJQLWLRQ RI FRQGHQVHG VHFWLRQV DUH QHHGHG 7KH UHVXOWV RI WKLV VWXG\ HOXFLGDWH WKH JHRORJLF KLVWRU\ RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP 7KH ILUVW SKDVH LQYROYHV WKH 0&6% D PDMRU FRQWURO RI VXEVHTXHQW GHSRVLWLRQDO SDWWHUQV DQG WKH REMHFW RI FRQWURYHUV\ 7KH LGHDOL]HG FRQWUDVW EHWZHHQ GURZQHG DQG VXEDHULDOO\ H[SRVHG SODWIRUPV SURSRVHG E\ (UOLFK DQG RWKHUV )LJXUH f LV QRW UHDGLO\ DSSDUHQW LQ WKH FDVH RI WKH 0&6% SULQFLSDOO\ EHFDXVH XQOLNH WKH H[DPSOHV WKH KLJK UHOLHI RI WKH /RZHU &UHWDFHRXV PDUJLQ ZDV QRW FRPSOHWHO\ EXULHG $OWKRXJK &KULVWLH%OLFN f

PAGE 172

DVVHUWV WKDW HYLGHQFH IRU SODWIRUP H[SRVXUH LQFOXGLQJ NDUVWf LV QRW QHFHVVDULO\ ZHOO GHYHORSHG DW VHTXHQFH ERXQGDULHV WKH ODFN RI D NDUVW RU RWKHUZLVH HURVLRQDO VXUIDFH SRLQWV DZD\ IURP SURORQJHG VXEDHULDO H[SRVXUH )DXVW f &RQFRUGDQFH DW WKH 0&6% RQ WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP LV FRQVLVWHQW ZLWK WKH GLVFRQIRUPLW\ DQWLFLSDWHG E\ 6DOYDGRU S f EXW WKH VHFWLRQ DERYH WKH 0&6% LV QRW DOWHUQDWLQJ OLPHVWRQHV DQG HYDSRULWHV $V DPHQGHG LQ WKLV VWXG\ WKH 0&6% VHLVPLF UHIOHFWLRQ FRUUHODWHV WR WKH FRQWDFW RI WKH KLJKYHORFLW\ /RZHU &UHWDFHRXV FDUERQDWHHYDSRULWH VHFWLRQ ZLWK DQ RYHUO\LQJ VKDOH RI PDUNHGO\ ORZ VRQLF YHORFLW\ 7KH DYDLODEOH ELRVWUDWLJUDSKLF LQIRUPDWLRQ EUDFNHW WKH VKDOH DV QR ROGHU WKDQ &HQRPDQLDQ DQG QR \RXQJHU WKDQ 7XURQLDQ 7KLV FRUUHODWLRQ LV PRVW DPHQDEOH WR WKH H[SODQDWLRQ RI WKH 0&6% DV D GURZQLQJ XQFRQIRUPLW\ 7KH VKDOH LV RI ZLGHVSUHDG GLVWULEXWLRQ RQ WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP DQG LV VLPLODU LQ GHVFULSWLRQ DQG DJH WR RUJDQLF FDUERQULFK SHODJLF VHGLPHQWDU\ VHTXHQFHV LQ RWKHU UHJLRQV WKDW DUH DVVRFLDWHG ZLWK DQ RFHDQLF DQR[LF HYHQW 6FKODQJHU DQG -HQN\QV $UWKXU DQG 6FKODQJHU 6FKODJHU f 7KH SUHYLRXV DJH HVWLPDWH RI 0D EDVHG RQ FRUUHODWLRQ RI WKH 0&6% WR D &HQRPDQLDQ VHDOHYHO IDOO SHU +DT DQG RWKHUV f LV LQDSSURSULDWH LI WKH LQWHUSUHWDWLRQ DV D GURZQLQJ XQFRQIRUPLW\ LV HPEUDFHG 2Q D UHJLRQDO VFDOH 8SSHU &UHWDFHRXV VWUDWD UHFRUG D PDMRU PDULQH WUDQVJUHVVLRQ WKDW HYHQWXDOO\ OLQNHG WKH *XOI RI

PAGE 173

0H[LFR ZLWK WKH :HVWHUQ ,QWHULRU 6HDZD\ 6RKO DQG RWKHUV f 8SSHU &UHWDFHRXV GHSRVLWLRQDO VHTXHQFHV RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP DUH VXEGLYLGHG LQWR D GRPLQDQWO\ VLOLFLFODVWLF &HQRPDQLDQ WR 6DQWRQLDQ VXEXQLW .X DQG DQ RYHUO\LQJ &DPSDQLDQ0DDVWULFKWLDQ VXEXQLW .A RI GHHSZDWHU FDUERQDWH IDFLHV .8 KDV FRQWLQXRXV SDUDOOHO VHLVPLF IDFLHV DQG WKLFNHQV LQ ORZV RQ WKH 0&6% WKH GHSRVLWLRQDO VXUIDFH .\ KDV YDULHG WKLFNQHVV DQG VHLVPLF IDFLHV ZLWK WKH PRVW QRWHDEOH YDULDWLRQ EHLQJ D WKLFN DFFXPXODWLRQ RI KXPPRFN\WR FRQWRUWHG VHLVPLF IDFLHV RQ D VWUXFWXUDO KLJK RQ WKH 0&6% VXUIDFH 7KH ORFDWLRQ VKDSH DQG VHLVPLF IDFLHV VXJJHVW WKDW WKLV IHDWXUH PD\ EH D GHHSZDWHU FDUERQDWH EXLOGXS /RZHU &UHWDFHRXV XQLWV KDYH VLPLODU ORJ FKDUDFWHU IURP QRUWK RI WKH 6DUDVRWD $UFK VRXWKZDUG LQWR WKH 6RXWK )ORULGD %DVLQ LQGLFDWLQJ D UHODWLYHO\ VWDEOH WHFWRQLF VHWWLQJ H[LVWHG LQ WKLV DUHD GXULQJ WKH (DUO\ &UHWDFHRXV 0DUNHG VXEVLGHQFH LV HYLGHQW KRZHYHU IURP ZHOOORJ FRUUHODWLRQV RI WKH 8SSHU &UHWDFHRXV RQ WKH QRUWKZHVW IODQN RI WKH 6RXWK )ORULGD %DVLQ )LJXUH f 7KLV GHPRQVWUDWHV WKDW UHMXYHQDWHG WHFWRQLF DFWLYLW\ RI WKH 6DUDVRWD $UFK6RXWK )ORULGD %DVLQ RFFXUUHG GXULQJ WKH /DWH &UHWDFHRXV ,QWHUHVWLQJO\ 0LWFKXP f DWWULEXWHV WKH DEUXSW WUDQVLWLRQ WR GHHSHU ZDWHU FRQGLWLRQV LQ WKH /DWH &UHWDFHRXV WR UDSLG VXEVLGHQFH RI WKH VKHOI UDWKHU WKDQ HXVWDWLF ULVH 7KLQQLQJ RI VWUDWD DFURVV WKH 'HVWLQ 'RPH LQGLFDWLQJ WKDW JURZWK RI WKLV VDOW VZHOO VWUXFWXUH DOVR RFFXUUHG GXULQJ WKH

PAGE 174

/DWH &UHWDFHRXV DQG FRQWLQXHG LQWR WKH &HQR]RLF %DOO %DOO DQG RWKHUV f :X DQG RWKHUV D Ef KRZHYHU FRQFOXGH WKDW HOVHZKHUH LQ WKH QRUWKHDVWHUQ *XOI RI 0H[LFR VDOW VWUXFWXUHV VWDELOL]HG GXULQJ DQ H[WHQGHG SHULRG RI VWDUYHG VHGLPHQWDWLRQ IURP 0D WRS RI WKH /RZHU &UHWDFHRXVf WR 0D WRS RI WKH PLGGOH 2OLJRFHQHf +DORNLQHVLV VDOW WHFWRQLFVf VR LPSRUWDQW LQ RWKHU SDUWV RI WKH *XOI RI 0H[LFR %DVLQ LV HYLGHQW LQ WKH $SDODFKLFROD %DVLQ $OWKRXJK 'REVRQ f UHFRJQL]HV WKH /RXDQQ 6DOW VHTXHQFH LQ WKH 7DPSD (PED\PHQW GRHV QRW VHHP WR EH D IDFWRU LQ WKH WHFWRQLF KLVWRU\ RI VWUDWD DERYH WKH 0&6% LQ WKLV SDUW RU WKH UHVW RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP 7KH 3DOHRFHQH LV WKLQ DQG 'DQLDQ VWUDWD DUH DEVHQW RYHU PXFK RI WKH DUHD VWXGLHG 7KLV FRXOG EH D UHVXOW RI SODWIRUP H[SRVXUH GXH WR WKH ORZHULQJ RI VHD OHYHO DW WKH HQG RI WKH &UHWDFHRXV *DOORZD\ DQG RWKHUV f &KHQ S f KRZHYHU UHDVRQV WKDW HOHYDWHG FXUUHQW DFWLRQ WKURXJK WKH 6XZDQQHH &KDQQHO UHGXFHG WKH UDWH RI DFFXPXODWLRQ RI ILQH VHGLPHQWV WKHUH 0\ ILQGLQJV LQGLFDWH WKDW WKHVH VWUDWLJUDSKLF UHODWLRQVKLSV H[LVW RYHU D PXFK EURDGHU DUHD EHQHDWK WKH :HVW )ORULGD 6KHOI WKDQ &KHQ f LQIHUUHG IURP WKH RQVKRUH GDWD 7KH 3DOHRFHQH LV WKLQ DQG 'DQLDQ VWUDWD PLVVLQJ IURP DW OHDVW DV IDU ZHVW DV WKH 'HVWLQ 'RPH DUHD DQG HDVWZDUG WR WKH YLFLQLW\ RI :HOOV DQG 7KLV LQFOXGHV WKH DUHD EHQHDWK $SDODFKHH %D\ ZKHUH $QWRLQH DQG +DUGLQJ f DQG $QWRLQH DQG -RQHV f SURSRVHG WKH RIIVKRUH

PAGE 175

H[WHQVLRQ RI WKH 6XZDQQHH 6WUDLW 7KXV EDVHG RQ WKH FULWHULD RI WKLQ 3DOHRFHQH DQG DEVHQW 'DQLDQ ERWK WKH DOWHUQDWLYH SURMHFWLRQV IRU WKH 6XZDQQHH &KDQQHO LH VRXWKZDUG $QWLRQH DQG +DUGLQJ $QWRLQH DQG -RQHV DQG ZHVWZDUG &KHQ 0LWFKXP f DUH SODXVLEOH 7KLV LQYHVWLJDWLRQ GRHV QRW GLUHFWO\ DGGUHVV HYDOXDWLRQ RI WKH FDUERQDWH VXSUHVVLRQ PRGHO HPSOR\HG E\ 0F.LQQH\ f DQG WKH PRGHO VWDQGV DV DQ DOWHUQDWH ZRUNLQJ K\SRWKHVLV WR H[SODLQ WKH REVHUYHG FDUERQDWHVLOLFLFODVWLF WUDQVLWLRQ 2WKHU FRQVLGHUDWLRQV KRZHYHU SRVH TXHVWLRQV DERXW WKH WUXH QDWXUH RI WKH 6XZDQQHH &KDQQHO 7KHVH LQFOXGH WKH GLVWULEXWLRQ DQG RULHQWDWLRQ RI WKH HQ HFKHORQ PRXQGV REVHUYHG LQ WKH (RFHQH VHFWLRQ GRZQ GHSRVLWLRQDO GLS IURP WKH (RFHQH VKHOI PDUJLQ WKH RULHQWDWLRQ RI WKH PDUJLQ LWVHOI ,W LV DOVR SRVVLEOH WKDW WKH YLFLQLW\ RI WKH 6DUDVRWD $UFK ZDV D VKDOORZ PDULQH RU SHUKDSV HPHUJHQW IHDWXUH GXULQJ WKH (RFHQH 7KH SDOHRFHDQRJUDSKLF VLJQLILFDQFH RI WKHVH SDOHREDWK\PHWULF IHDWXUHV RQ WKH SODWIRUP KDV QR\ EHHQ FRQVLGHUHG LQ UHFRQVWUXFWLRQV RI WKH SDOHRFXUUHQW SDWWHUQ RI WKH *XOI RI 0H[LFR 0F.LQQH\ 3LQHW DQG 3RSHQRH *DUGXOVNL DQG RWKHUV f ,QVWHDG WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP LV GHSLFWHG DV D EURDG IHDWXUHOHVV SODWHDX ZKLFK SDOHRFXUUHQWV VNLUWHG DERXW DW WKH )ORULGD (VFDUSPHQW 7KH QDWXUH RI WKH PRXQGHG IHDWXUHV LV XQFHUWDLQ WKH\ FRXOG FRQVLVW RI HLWKHU DOORFKWKRQRXV VORSH DQG SODWIRUPDO GHEULV RU VLOLFLFODVWLF VHGLPHQW SUHIHUHQWLDOO\ WUDQVSRUWHG

PAGE 176

LQWR WKH GHHSHU EDVLQ ZKLOH WKH SODWIRUP PD\ KDYH EHHQ H[SRVHG $OVR HQLJPDWLF LV WKH HORQJDWH PRXQGHG ]RQH ZLWK FKDRWLF VHLVPLF IDFLHV WKDW LV ORFDWHG SDUDOOHO WR WKH )ORULGD (VFDUSPHQW 1RZ UHFRJQL]DEOH DV DQ (RFHQH IHDWXUH WKH ORFDWLRQ RI WKH PRXQGHG ]RQH VR IDU EDVLQZDUG RI WKH VKHOI PDUJLQ GHWUDFWV IURP WKH H[SODQDWLRQ WKDW LW LV D FDUERQDWH EXLOGXS %U\DQW DQG RWKHUV :LQVWRQ f 7KH FRQILJXUDWLRQ RI UHIOHFWLRQV ZLWKLQ WKH PRXQGHG ]RQH VXJJHVW WKDW IDXOWLQJ DQG VOXPSLQJ PD\ KDYH SOD\HG D UROH LQ LWV GHYHORSPHQW :KDWHYHU LWV RULJLQ WKH PRXQGHG ZDV DQ LPSRUWDQW SDOHREDWK\PHWULF LQIOXHQFH RQ VHGLPHQWDWLRQ 7KH ILQGLQJV RI WKLV VWXG\ FODULI\ WKH HYROXWLRQDU\ SURFHVV RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP IURP /DWH &UHWDFHRXV ULPPHG FDUERQDWH VKHOI WR &HQR]RLF GLVWDOO\ VWHHSHQHG UDPS 7KH VHLVPLF SURILOHV LQGLFDWH WKDW WKH GHSRVLWLRQDO VHWWLQJ DQG VKHOIPDUJLQ SURILOH RI WKH (RFHQH FDUERQDWH SODWIRUP GHYHORSHG RYHU WLPH IURP D KRPRFOLQDO UDPS WR DQ DWWDFKHG IODWWRSSHG VKHOI )LJXUH Ef 7KLV DOWHUV SUHYLRXV LGHDV 0XOOLQV DQG RWKHUV E *DUGXOVNL DQG RWKHUV f WKDW IURP WKH 0DDVWULFKWLDQ WR WKH SUHVHQW WKH ZHVWHUQ )ORULGD 3ODWIRUP KDV EHHQ H[FOXVLYHO\ D UDPS V\VWHP &RPSDULQJ WKH PDSV RI WKH WRS RI WKH (RFHQH )LJXUH f DQG WKH PLG0LRFHQH XQFRQIRUPLW\ VXUIDFH )LJXUH f LQGLFDWHV WKDW WKH SUHVHQW VWDWXV RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP DV D GLVWDOO\ VWHHSHQHG UDPS GLG QRW GHYHORS XQWLO

PAGE 177

WKH SDOHREDWK\PHWULF LUUHJXODULWLHV RQ WRS RI WKH (RFHQH KDG EHHQ VPRRWKHG RXW FORVHU WR WKH PLG0LRFHQH /DQGZDUG RI WKH (RFHQH VKHOI PDUJLQ RQH DQWLFLSDWHV WKH RFFXUUHQFH RI LQWHUWLGDO DQG VXSUDWLGDO ]RQHV ZKHUH WKH GRPLQDQW VHLVPLF IDFLHV LV HYHQ SDUDOOHO UHIOHFWLRQV )RQWDLQH DQG RWKHUV f ,Q WKHVH SDOHRHQYLURQPHQWV RI UHVWULFWHG PDULQH FLUFXODWLRQ DQG LQWHUPLWWHQW VXEDHULDO H[SRVXUH NDUVW FDQ GHYHORS DQG GRORPLWL]DWLRQ FDQ FUHDWH D PDUEOHG VHLVPLF IDFLHV )RQWDLQH DQG RWKHUV f 7KH LPSRUWDQFH RI V\Q DQG HDUO\ SRVWGHSRVLWLRQDO GLDJHQHVLV LQ WKH GHYHORSPHQW RI WKH )ORULGD &DUERQDWH 3ODWIRUP FDQ EH EHWWHU LQYHVWLJDWHG QRZ WKDW D VWUDWLJUDSKLF IUDPHZRUN LV DYDLODEOH 3RVW(RFHQH VWUDWD SDUWLFXODUO\ WKH LJRFHQHORZHU 0LGGOH 0LRFHQH GUDSH DQG LQILOO SDOHRWRSRJUDSKLF IHDWXUHV RQ WKH WRS RI WKH (RFHQH VXUIDFH 0LWFKXP f ,Q WKH 7DPSD (PED\PHQW WKH 2OLJRFHQH/RZHU 0LGGOH 0LRFHQH VWUDWD IRUP VXFFHVVLYH VHWV RI FOLQRIRUPV WKDW DUH JHQWO\ GLSSLQJ DQG VKLQJOHG LQ WKH QRUWK EXW VWHHSHQ DQG EHFRPH REOLTXH DV WKH\ LPSLQJH XSRQ WKH )ORULGD (VFDUSPHQW WR WKH VRXWK %DVHG RQ WKH DVVXPSWLRQ WKDW WKH ODWWHU DUHD LV UHSUHVHQWDWLYH RI WKH HQWLUH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP SUHYDLOLQJ FRQFHSWV RI SODWIRUP GHYHORSPHQW KDYH EHHQ EDVHG RQ GHWDLOHG VWXG\ KHUH 7KH UHVXOWV RI WKLV VWXG\ KRZHYHU LQGLFDWH WKDW IURP WKH PLGGOH &UHWDFHRXV DQG HVSHFLDOO\ GXULQJ WKH (RFHQH WKH SODWIRUP ZDV D V\VWHP RI GLYHUVH SDOHRJHRJUDSKLF HOHPHQWV

PAGE 178

,QWHQVLILFDWLRQ RI WKH /RRS &XUUHQW UHODWHG WR HPHUJHQFH RI WKH ,VWKPXV RI 3DQDPD KDV EHHQ FDOOHG XSRQ WR H[SODLQ WUXQFDWLRQ RI FOLQRIRUPV LQ WKLV DUHD E\ WKH PLG0LRFHQH XQFRQIRUPLW\ *DUGXOVNL DQG 0XOOLQV 0XOOLQV DQG RWKHUV Ef EXW WKLV SDOHRFHDQRJUDSKLF HYHQW SUREDEO\ RFFXUUHG 0D DIWHU WKH PLG0LRFHQH XQFRQIRUPLW\ IRUPHG ,Q WKLV VWXG\ ROGHU FOLQRIRUP VHWV SHUKDSV DV ROG DV (RFHQHf DUH REVHUYHG DOVR WR KDYH DQ RIIODSSLQJ FRQILJXUDWLRQ &ORVXUH RI WKH &HQWUDO $PHULFDQ VHDZD\ FDQ KDUGO\ EH LQYRNHG WR H[SODLQ WKH DSSDUHQW WUXQFDWLRQ RI WKH ROGHU FOLQRIRUP VHWV 2IIODSSLQJ FRQILJXUDWLRQV FDQ EH PHUHO\ WKH UHVXOW RI OLPLWHG VHLVPLF UHVROXWLRQ 9DLO DQG RWKHUV S &KULVWLH%OLFN f

PAGE 179

&21&/86,216 6HLVPLF VWUDWLJUDSKLF DQDO\VLV VXFFHVVIXOO\ LGHQWLILHV GHOLQHDWHV DQG FKDUDFWHUL]HV QXPHURXV GHSRVLWLRQDO VHTXHQFHV ZLWKLQ WKH 8SSHU &UHWDFHRXV DQG &HQR]RLF VHFWLRQ RI WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP )RUDPLQLIHUDO ELRVWUDWL JUDSKLF GDWD WLHG WR SXEOLVKHG PDJQHWRELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV DQG WKH JHRPDJQHWLF SRODULW\ WLPHVFDOH RI &DQGH DQG .HQW f RIIHU WKH PRVW GHWDLOHG DQG XSWRGDWH FKURQRVWUDWLJUDSKLF IUDPHZRUN IRU WKH VHTXHQFHV LGHQWLILHG 7KH VHTXHQFH ERXQGDULHV DUH LGHQWLILHG REMHFWLYHO\ E\ UHIOHFWLRQ WHUPLQDWLRQV 9DLO DQG RWKHUV f EXW WKHUH DUH QR REMHFWLYH PHDQV WR GLVWLQJXLVK VXEDHULDO IURP VXEPDULQH VXUIDFHV VR WKH VHTXHQFH VWUDWLJUDSKLF SDUDGLJP 9DLO 9DQ :DJRQHU f LV QRW DSSOLFDEOH LQ WKLV FDVH ZLWKRXW PRUH GHWDLOHG ELRVWUDWLJUDSKLF GDWD E\ ZKLFK WR UHFRJQL]H FRQGHQVHG VHFWLRQV 1HYHUWKHOHVV WKLV LQYHVWLn JDWLRQ SURYLGHV D VWUDWLJUDSKLF IUDPH RI UHIHUHQFH IRU IXUWKHU GHSRVLWLRQDO DQG GLDJHQHWLF VWXGLHV WKDW GLG QRW H[LVW SUHYLRXVO\ 7KH PLG&UHWDFHRXV 6HTXHQFH %RXQGDU\ 0&6%f VXUIDFH UHIOHFWV ROGHU VWUXFWXUHV DQG FRQWUROOHG VXEVHTXHQW GHSRVLWLRQDO SDWWHUQV &RUUHODWLRQ RI WKH 0&6% VHLVPLF UHIOHFWLRQ LV DPPHQGHG WR WKH FRQWDFW RI WKH /RZHU &UHWDFHRXV

PAGE 180

FDUERQDWHHYDSRULWH VHFWLRQ ZLWK WKH RYHUO\LQJ &HQRPDQLDQ VKDOH 7KLV FRUUHODWLRQ LV PRVW DPHQDEOH WR WKH H[SODQDWLRQ RI WKH 0&6% DV D GURZQLQJ XQFRQIRUPLW\ DQG HVSHFLDOO\ WR WKH DVVRFLDWLRQ RI WKH 0&6% ZLWK DQ RFHDQLF DQR[LF HYHQW 7KH VHGLPHQWDU\ VHFWLRQ DERYH WKH 0&6% FDQ EH GLYLGHG LQWR IRXU PDLQ XQLWV 8SSHU &UHWDFHRXV 3DOHRFHQH(RFHQH 2OLJRFHQH ORZHU 0LGGOH 0LRFHQH DQG XSSHU 0LGGOH 0LRFHQH+RORFHQH 7ZR VXEXQLWV .8 DQG .A DUH UHFRJQL]HG LQ WKH 8SSHU &UHWDFHRXV VWUDWD RI WKLV DUHD .8 D GRPLQDQWO\ VLOLFLFODVWLF LQWHUYDO KDV FRQWLQXRXV SDUDOOHO VHLVPLF IDFLHV DQG WKLFNHQV LQ ORZV RQ WKH 0&6% WKH GHSRVLWLRQDO VXUIDFH KDV YDULHG WKLFNQHVV DQG VHLVPLF IDFLHV PRVW QRWHDEO\ D WKLFN DFFXPXODWLRQ RI KXPPRFN\WRFRQWRUWHG VHLVPLF IDFLHV RQ D VWUXFWXUDO KLJK QHDU WKH 7DPSD (PED\PHQW VXJJHVWV D FDUERQDWH EXLOGXS 7KH /DWH &UHWDFHRXV ZDV D WLPH RI UHQHZHG WHFWRQLF DFWLYLW\ LQ WKH YLFLQLW\ RI WKH 6DUDVRWD $UFK6RXWK )ORULGD %DVLQ DQG RI VDOW WHFWRQLFV 'HVWLQ 'RPHf LQ WKH $SDODFKLFROD %DVLQ %DVHG RQ WKH FULWHULD RI WKLQ 3DOHRFHQH VWUDWD DQG WKH DEVHQFH RI 'DQLDQ EHGV ZKLFK &KHQ f XVHG WR ORFDWH WKH HDUO\ 3DOHRFHQH 6XZDQQHH &KDQQHO WKLV IHDWXUH H[WHQGV EHQHDWK WKH :HVW )ORULGD 6KHOI RYHU D EURDG DUHD IURP WKH 'HVWLQ 'RPH DUHD LQ WKH ZHVW WR $SDODFKHH %D\ LQ WKH HDVW 7KH ORFDWLRQ RI WKH (RFHQH VKHOI PDUJLQ LV LGHQWLILHG RQ VHLVPLF VHFWLRQV DORQJ DQ HVVHQWLDOO\ QRUWKVRXWK WUHQG DW r: 7KH GHSRVLWLRQDO SURILOH GHYHORSHG ZLWK WLPH IURP D

PAGE 181

KRPRFOLQDO UDPS WR DQ DWWDFKHG IODWWRSSHG VKHOI 7R WKH ZHVW GRZQ GHSRVLWLRQDO GLS IURP WKH VKHOI HGJH DUH EURDG HQ HFKHORQ PRXQGV IRUPHG E\ VWDFNHG OHQWLFXODU (RFHQH VXEXQLWV 1HDU WKH )ORULGD (VFDUSPHQW DQRWKHU NLQG RI (RFHQH PRXQGHG IHDWXUH ZLWK D GLVUXSWHG WR FKDRWLF VHLVPLF IDFLHV 7KH VKHOI PDUJLQ HQ HFKHORQ PRXQGV DQG WKH PRXQGHG ]RQH QHDU WKH )ORULGD (VFDUSPHQW H[HUFLVHG LPSRUWDQW LQIOXHQFHV RQ VHGLPHQWDWLRQ RQ WKH ZHVWHUQ )ORULGD &DUERQDWH 3ODWIRUP /DQGZDUG RI WKH VKHOI PDUJLQ WKH PDUEOHG VHLVPLF IDFLHV LV LQGLFDWLYH RI LQWHUWLGDO WR VXSUDWLGDO ]RQHV ZKHUH GRORPLWL]DWLRQ DQG HYDSRULWH GHSRVLWLRQ FRXOG KDYH RFFXUUHG 7KH YLFLQLW\ RI WKH 6DUDVRWD $UFK ZDV SRVVLEO\ D VKDOORZ PDULQH RU SHUKDSV HPHUJHQW IHDWXUH GXULQJ WKH (RFHQH 7KH SDOHREDWK\PHWULF H[SUHVVLRQ RI WKLV VWUXFWXUDOO\ KLJK DUHD DV ZHOO DV WKH (RFHQH PRXQGV DQG VKHOI PDUJLQ FRXOG KDYH KDG VLJQLILFDQW HIIHFWV RQ SDOHRFHDQRJUDSKLF FXUUHQWV DQG VHGLPHQWDWLRQ 7KH 2OLJRFHQH/RZHU 0LGGOH 0LRFHQH VWUDWD GUDSH DQG LQILOO XQGHUO\LQJ SDOHRWRSRJUDSKLF IHDWXUHV ,Q WKH 7DPSD (PED\PHQW WKLV XQLW FRQVLVWV RI VXFFHVVLYH VHWV RI SURJUDGDWLRQDO FOLQRIRUPV WKDW VWHHSHQ DV WKH\ LPSLQJH XSRQ WKH )ORULGD (VFDUSPHQW 2QH VHW RI FOLQRIRUPV LV UHSRUWHG WR KDYH EHHQ WUXQFDWHG E\ D PLG0LRFHQH XQFRQIRUPLW\ EXW ROGHU FOLQRIRUP VHWV DOVR KDYH DQ RIIODSSLQJ FRQILJXUDWLRQ 0XFK RI WKH SUHYLRXV ZRUN KDV IRFXVHG H[FOXVLYHO\ HLWKHU RQVKRUH RU RIIVKRUH KDYH DWWHPSWHG WR FRUUHODWH WKH 8SSHU

PAGE 182

&UHWDFHRXV DQG &HQR]RLF XQLWV LQ WKH ZHOOV RQ WKH :HVW )ORULGD 6KHOI ZLWK WKH FODVVLFDO VWUDWLJUDSK\ UHFRJQL]HG LQ ZHOOV RQVKRUH $OWKRXJK WKH FRUUHODWLRQV DUH WHQXRXV DW SUHVHQW WKH\ UHSUHVHQW DQ LPSRUWDQW ILUVW VWHS WRZDUG XQLI\LQJ RXU XQGHUVWDQGLQJ RI WKH HQWLUH )ORULGD &DUERQDWH 3ODWIRUP DQG PRUH DFFXUDWHO\ SRUWUD\LQJ LWV KLVWRU\

PAGE 183

$33(1',; $ 5()/(&7,21 6(,60,& $48,6,7,21 3$5$0(7(56 $1' 352&(66,1* 6(48(1&(6 7KH IROORZLQJ FRPPRQO\ XVHG WHUPV DUH DEEUHYLDWHG 6KRW 3RLQW 63 &RPPRQ 'HSWK 3RLQW &'3 1RUPDO 0RYH2XW 102 'LS 0RYH2XW '02 7LPH9DULDQW 79 :DWHU %RWWRP :% 6HLVPLF /LQHV WKURXJK *(&2f $FUXLVLWLRQ 3DUDPHWHUV 'DWH 6KRW 1RYHPEHU 6RXUFH 7RWDO 9ROXPH $LUJXQ 3UHVVXUH 6RXUFH 'HSWK 63 ,QWHUYDO &DEOH /HQJWK 1XPEHU RI *URXSV *URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU 3URFHVVLQJ 6HTXHQFH $LUJXQ $UUD\ FX LQ SVL IW IW IW IW IW PVHF /RZFXW +] '%2&7 +LJKFXW +] '%2&7 'DWH 3URFHVVHG -XQH 0DUFK 5HVDPSOH WR PVHF ZLWK $QWLDOLDVLQJ )LOWHU 7UDFH (GLW 6SKHULFDO 'LYHUJHQFH &RUUHFWLRQ 7UDFH (TXDOL]DWLRQ 9HORFLW\ )LOWHU 5HMHFW IWVHF $GMDFHQW 7UDFH 6XPPDWLRQ ZLWK 'LIIHUHQWLDO 102 &'3 *DWKHU )LUVW %UHDN 6XSUHVVLRQ 6SLNLQJ 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1HDU 7UDFH 'HVLJQ *DWH

PAGE 184

102 &RUUHFWLRQ 7UDFH (TXDOL]DWLRQ &'3 6WDFN )ROG 9HORFLW\ )LOWHU 5HMHFW IWVHF 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 'HVLJQ *DWH VHF :DYH (TXDWLRQ 0LJUDWLRQ 79 )LOWHU $*& $XWRPDWLF *DLQ &RQWURO"f 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH QHJDWLYH QXPEHU WURXJK ZKLWH RQ VHFWLRQf 6HLVPLF /LQHV ', ' DQG '' I'LJLFRQf $DXLVLWLRQ 3DUDPHWHUV 'DWH 6KRW /LQHV ', $XJXVW /LQHV ',2 WKURXJK 6HSWHPEHU /LQHV ' 'OO 2FWREHU 6KLS $FDGLDQ &RPPDQGHU 6RXUFH 9ROXPH $LUJXQ 3UHVVXUH 6RXUFH 'HSWK 6KRWSRLQW ,QWHUYDO &DEOH /HQJWK 1XPEHU RI *URXSV *URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU $LUJXQV FX LQ SVL IW IW IW IW IW PVHF /RZFXW +] +LJKFXW +] 3URFHVVLQJ 6HTXHQFH 'DWH 3URFHVVHG /LQHV ', -DQXDU\ /LQHV ' )HEUXDU\ /LQHV 'OO ' $SULO /LQHV ' 0D\ /LQHV ',2 -XQH 5HIRUPDW 0LQLPXP 3KDVH $QWLDOLDVLQJ )LOWHU 5HVDPSOH WR PVHF 7UDFH (GLW WR &RPSUHVVLRQ ZLWK 'LIIHUHQWLDO 102 &RUUHFWLRQ

PAGE 185

*DLQ 5HFRYHU\ 6LJQDWXUH 'HFRQYROXWLRQ 6SKHULFDO 'LYHUJHQFH &RUUHFWLRQ 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 9HORFLW\ $QDO\VLV 102 &RUUHFWLRQ 0XWH E\ RIIVHW DQG WLPHf 2IIVHW :HLJKWLQJ &'3 6WDFN )ROG 'DWXP &RUUHFWLRQ WR 6HD /HYHO PVHF WKURXJK 'f 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 0LJUDWLRQ 'LJLWDO %DQGSDVV )LOWHU +] VHF +] VHF +] VHF 7UDFH (JXDOL]DWLRQ 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH QHJDWLYH QXPEHU WURXJK ZKLWH RQ VHFWLRQf 'DWXP &RUUHFWLRQ WR 6HD /HYHO PVHF ', 'f 6HLVPLF /LQHV DQG 'LJLFRQf $DXLVLWLRQ 3DUDPHWHUV 'DWH 6KRW 2FWREHU 6KLS 'LJLFRQ ([SORUHU 6RXUFH 9ROXPH $LUJXQ 3UHVVXUH 6RXUFH 'HSWK 6KRWSRLQW ,QWHUYDO &DEOH /HQJWK 1XPEHU RI *URXSV *URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU $LUJXQV FX LQ SVL IW IW IW IW IW PVHF /RZFXW +] +LJKFXW +]

PAGE 186

3URFHVVLQJ 6HTXHQFH 'DWH 3URFHVVHG )HEUXDU\ 5HIRUPDW 0LQLPXP 3KDVH $QWLDOLDVLQJ )LOWHU 5HVDPSOH WR PVHF 7UDFH (GLW WR &RPSUHVVLRQ ZLWK GLIIHUHQWLDO 102 &RUUHFWLRQ *DLQ 5HFRYHU\ 6LJQDWXUH 'HFRQYROXWLRQ 6SKHULFDO 'LYHUJHQFH &RUUHFWLRQ 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 9HORFLW\ $QDO\VLV 102 &RUUHFWLRQ 0XWH E\ RIIVHW DQG WLPHf 2IIVHW :HLJKWLQJ &'3 6WDFN )ROG 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 0LJUDWLRQ 'LJLWDO %DQGSDVV )LOWHU +] VHF +] VHF +] VHF 7UDFH (TXDOL]DWLRQ 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH QHJDWLYH QXPEHU WURXJK ZKLWH RQ VHFWLRQf 'DWXP &RUUHFWLRQ WR 6HD /HYHO PVHF 'f 6HLVPLF /LQHV ' DQG 'LJLFRQf $TXLVLWLRQ 3DUDPHWHUV 'DWH 6KRW /LQH 'HFHPEHU DQG 0DUFK /LQHV ' )HEUXDU\ 6KLS 'LJLFRQ ([SORUHU DQG 5RVV 6HDO 6RXUFH $LUJXQV 9ROXPH FX LQ $LUJXQ 3UHVVXUH SVL 6RXUFH 'HSWK IW 6KRWSRLQW ,QWHUYDO IW &DEOH /HQJWK IW 1XPEHU RI *URXSV

PAGE 187

*URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU 3URFHVVLQJ 6HTXHQFH IW IW 6RXWKZHVWf IW 1RUWKHDVWf PVHF /RZFXW +] +LJKFXW +] 'DWH 3URFHVVHG $SULO 5HIRUPDW 0LQLPXP 3KDVH $QWLDOLDVLQJ )LOWHU 5HVDPSOH WR PVHF 7UDFH (GLW WR &RPSUHVVLRQ ZLWK GLIIHUHQWLDO 102 &RUUHFWLRQ *DLQ 5HFRYHU\ 6LJQDWXUH 'HFRQYROXWLRQ 6SKHULFDO 'LYHUJHQFH &RUUHFWLRQ 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 9HORFLW\ $QDO\VLV 102 &RUUHFWLRQ 0XWH E\ RIIVHW DQG WLPHf 2IIVHW :HLJKWLQJ &'3 6WDFN )ROG 'DWXP &RUUHFWLRQ WR 6HD /HYHO PVHF 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 'LJLWDO %DQGSDVV )LOWHU +] :%:% VHF +] :% VHF :DYH (TXDWLRQ 0LJUDWLRQ 'LJLWDO %DQGSDVV )LOWHU +] :%:% VHF +] :% VHF +] :% VHF 7UDFH (TXDOL]DWLRQ 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH QHJDWLYH QXPEHU WURXJK ZKLWH RQ VHFWLRQf

PAGE 188

6HLVPLF /LQHV WKURXJK 'LTLFRQf $FUXLVLWLRQ 3DUDPHWHUV 'DWH VKRW 0DUFK 6KLS $FDGLDQ &RPPDQGHU 6RXUFH 9ROXPH $LUJXQ 3UHVVXUH 6RXUFH 'HSWK 6KRWSRLQW ,QWHUYDO &DEOH /HQJWK 1XPEHU RI *URXSV *URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU $LUJXQV FX LQ SVL IW IW IW IW IW PVHF /RZFXW +] +LJKFXW +] 3URFHVVLQJ 6HTXHQFH 'DWH 3URFHVVHG -XO\ 5HIRUPDW 0LQLPXP 3KDVH $QWLDOLDVLQJ )LOWHU 5HVDPSOH WR PVHF 7UDFH (GLW WR &RPSUHVVLRQ ZLWK GLIIHUHQWLDO 102 &RUUHFWLRQ *DLQ 5HFRYHU\ 6LJQDWXUH 'HFRQYROXWLRQ 6SKHULFDO 'LYHUJHQFH &RUUHFWLRQ 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 9HORFLW\ $QDO\VLV 102 &RUUHFWLRQ 0XWH E\ RIIVHW DQG WLPHf 2IIVHW :HLJKWLQJ &'3 6WDFN )ROG 7LPH DQG 6SDFH9DULDQW 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 1XPEHU RI )LOWHUV 0LJUDWLRQ 'LJLWDO %DQGSDVV )LOWHU 7UDFH (TXDOL]DWLRQ 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH QHJDWLYH QXPEHU WURXJK ZKLWH RQ VHFWLRQf

PAGE 189

6HLVPLF /LQH ), )DLUILHOG ,QGXVWULHVf $DXLVLWLRQ 3DUDPHWHUV 'DWH 6KRW -XO\ 6KLS 09 3KRHQL[ 6RXUFH 9ROXPH 6RXUFH 'HSWK 63 ,QWHUYDO &DEOH /HQJWK 1XPEHU RI *URXSV *URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU 'XDO $LUJXQ $UUD\ JXQVf FX LQ IW IW IW IW IW PVHF /RZFXW +] +LJKFXW +] 3URFHVVLQJ 6HTXHQFH 7KH SRUWLRQ RI WKLV OLQH VRXWKZHVW RI OLQH ) ZDV QRW UHSURFHVVHG 7KH IROORZLQJ LV WKH RULJLQDO SURFHVVLQJ VHTXHQFH 'HPXOWLSOH[ 5HVDPSOH WR PVHF 7UDFH 6XP 6FDOH 5HODWLYH $PSOLWXGH 5HFRYHU\ XVLQJ 6SKHULFDO 'LYHUJHQFH SOXV ,QHODVWLF $WWHQXDWLRQ &RUUHFWLRQ 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 7ZR *DWHV b :KLWH 1RLVH 6RUW WR &'3 DQG &RUUHFWLRQ WR 0HDQ 6HD /HYHO 102 &RUUHFWLRQV )LUVW %UHDN 6XSUHVVLRQ &'3 6WDFN )ROG 7LPH ,QYDULDQW =HURSKDVH )LOWHU ). 0LJUDWLRQ 6PRRWKHG 6WDFNLQJ 9HORFLWLHV 79 )LOWHU 79 6FDOLQJ 5HSURFHVVLQJ 6HTXHQFH 'DWH 5HSURFHVVHG 'HPXOWLSOH[ 5HVDPSOH WR PVHF 6FDOH 5HODWLYH $PSOLWXGH 5HFRYHU\ XVLQJ 6SKHULFDO 'LYHUJHQFH SOXV ,QHODVWLF $WWHQXDWLRQ &RUUHFWLRQ 'HVLJQDWXUH ,QYHUVH )LOWHU IRU )DU )LHOG 3XOVH

PAGE 190

6SLNLQJ 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 7ZR *DWHV b :KLWH 1RLVH '02 3DUWLDO 0LJUDWLRQ EHIRUH 6WDFN 6RUW WR &'3 0D[LPXP )ROG 3UHOLPLQDU\ 0XOWLSOH 9HORFLW\ 'HWHUPLQDWLRQ 0XOWLSOH $WWHQXDWLRQ )LQDO 9HORFLW\ $QDO\VLV (YHU\ PLOH 102 &RUUHFWLRQV )LUVW %UHDN 6XSUHVVLRQ 0XWH 79 6FDOLQJ PVHF *DWHV 6WDWLFV &RUUHFWLRQ WR 0HDQ 6HD /HYHO &'3 6WDFN )ROG 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 7ZR *DWHV b :KLWH 1RLVH ). :DYH (TXDWLRQ 0LJUDWLRQ 1RLVH 5HGXFWLRQ )LOWHU 79 )LOWHU 79 6FDOLQJ PVHF *DWHV 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH WURXJK ZKLWH RQ VHFWLRQf 6HLVPLF /LQHV ) WKURXJK ) )DLUILHOG ,QGXVWULHVf $TXLVLWLRQ 3DUDPHWHUV 'DWH 6KRW -DQXDU\ 6KLS 09 3KRHQL[ 6RXUFH 9ROXPH 6RXUFH 'HSWK 63 ,QWHUYDO &DEOH /HQJWK 1XPEHU RI *URXSV *URXS ,QWHUYDO 6SUHDG 6DPSOH 5DWH 5HFRUGLQJ )LOWHU 'XDO $LUJXQ $UUD\ JXQVf FX LQ IW IW IW IW IW PVHF /RZFXW +] +LJKFXW +] 3URFHVVLQJ 6HTXHQFH /LQHV ) WKURXJK )f 7KH SRUWLRQV RI WKHVH OLQHV VRXWK RI VHLVPLF OLQH ) ZHUH QRW UHSURFHVVHG 7KH IROORZLQJ LV WKH RULJLQDO SURFHVVLQJ VHTXHQFH 'HPXOWLSOH[

PAGE 191

5HVDPSOH WR PVHF 6FDOH 5HODWLYH $PSOLWXGH 5HFRYHU\ XVLQJ 6SKHULFDO 'LYHUJHQFH SOXV ,QHODVWLF $WWHQXDWLRQ &RUUHFWLRQ 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 7ZR *DWHV b :KLWH 1RLVH 6RUW WR &'3 DQG &RUUHFWLRQ WR 0HDQ 6HD /HYHO 102 &RUUHFWLRQV )LUVW %UHDN 6XSUHVVLRQ &'3 6WDFN )ROG 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 7ZR *DWHV 7LPH ,QYDULDQW =HURSKDVH )LOWHU ). 0LJUDWLRQ 6PRRWKHG 6WDFNLQJ 9HORFLWLHV 79 )LOWHU 79 6FDOLQJ 5HSURFHVVLQJ 6HTXHQFH 'DWH 5HSURFHVVHG -DQXDU\ 0D\ 'HPXOWLSOH[ 5HVDPSOH WR PVHF 6FDOH 5HODWLYH $PSOLWXGH 5HFRYHU\ XVLQJ 6SKHULFDO 'LYHUJHQFH SOXV ,QHODVWLF $WWHQXDWLRQ &RUUHFWLRQ 'HVLJQDWXUH ,QYHUVH )LOWHU IRU )DU )LHOG 3XOVH 6SLNLQJ 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 7ZR *DWHV b :KLWH 1RLVH '02 3DUWLDO 0LJUDWLRQ EHIRUH 6WDFN 6RUW WR &'3 0D[LPXQ )ROG 3UHOLPLQDU\ 0XOWLSOH 9HORFLW\ 'HWHUPLQDWLRQ 0XOWLSOH $WWHQXDWLRQ )LQDO 9HORFLW\ $QDO\VLV (YHU\ PLOH 102 &RUUHFWLRQV )LUVW %UHDN 6XSUHVVLRQ 79 6FDOLQJ PVHF *DWHV 6WDWLFV &RUUHFWLRQ WR 0HDQ 6HD /HYHO &'3 6WDFN )ROG 3UHGLFWLYH 'HFRQYROXWLRQ 2SHUDWRU /HQJWK PVHF 3UHGLFWLRQ *DS PVHF 7ZR *DWHV b :KLWH 1RLVH ). :DYH (TXDWLRQ 0LJUDWLRQ 1RLVH 5HGXFWLRQ )LOWHU

PAGE 192

79 )LOWHU 79 6FDOLQJ PVHF *DWHV 3RODULW\ &RQYHQWLRQ &RPSUHVVLRQDO SXOVH WURXJK ZKLWH RQ VHFWLRQf

PAGE 193

$33(1',; % %,2&+5212675$7,*5$3+,& $1' 0$*1(72%,2&+5212675$7,*5$3+,& ,17(535(7$7,216 7DEOH %O LV D OLVW RI IRUDPLQLIHUV UHSRUWHG IURP ZHOOV LQ WKH VWXG\ DUHD DQG WKH SXEOLVKHG ELRFKURQRVWUDWLJUDSKLF DQGRU PDJQHWRELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV WKHUHRI 7D[D DUH OLVWHG LQ JHQHUDO RUGHU RI ILUVW GRZQn KROH RFFXUUHQFH LH ODVW REVHUYHG RFFXUUHQFH /22f 7KH OHIW FROXPQ FRQWDLQV D VL[OHWWHU DEEUHYLDWLRQ RI WKH WD[RQRPLF QDPH WKLV DEEUHYLDWLRQ LV XVHG LQ WKH WH[W ILJXUHV 7KH OHWWHU S RU E LQ SDUHQWKHVHV GHQRWHV ZKHWKHU WKH VSHFLHV LV SODQNWRQLF RU EHQWKRQLF 7KH VHFRQG FROXPQ FRQWDLQV WKH WD[RQRPLF QDPH ,Q WKH FDVH RI SODQNWRQLF VSHFLHV WKH QDPH XVHG LQ WKLV VWXG\ LV WKDW XVHG LQ %ROOL 6DXQGHUV DQG 3HUFK1LHOVHQ f 7KH QDPH LQ SDUHQWKHVHV LV WKH V\QRQ\P WKDW DSSHDUHG LQ WKH DFWXDO ELRVWUDWLJUDSKLF UHSRUW 7KH ZHOOVf LQ ZKLFK WKH WD[RQ ZDV QRWHG DUH OLVWHG LQ WKH WKLUG FROXPQ WKH ZHOO QXPEHU UHIHUV WR WKDW XVHG LQ )LJXUH DQG 7DEOH 7KH GHSWKVf LQ IHHW VXEVHD RI WKH /22 RI WKH WD[RQ DSSHDUVf QH[W LQ SDUHQWKHVHV 7KH /22 RI WD[D LQ WKH ZHOOV DUH LOOXVWUDWHG LQ WKH ZHOOORJ FURVVVHFWLRQV )LJXUHV WKURXJK f 7KH 5HPDUNV FROXPQ RQ WKH ULJKW LQFOXGHV LQIRUPDWLRQ RQ WKH FRUUHODWLRQ RI WKH ODVW DSSHDUDQFH GDWXP /$'f RI D WD[RQ WR

PAGE 194

HLWKHU WKH PDJQHWLF SRODULW\ VWUDWLJUDSK\ RU WR ]RQDWLRQV RI HLWKHU SODQNWRQLF RU EHQWKRQLF IRUDPLQLIHUV )LJXUH f 1XPEHUV LQ SDUHQWKHVHV FRUUHVSRQG WR WKH IROORZLQJ OLVW RI UHIHUHQFHV f %HUJJUHQ DQG RWKHUV Df f %HUJJUHQ DQG RWKHUV Ef f &LHVLHOVNL SHUVRQDO FRPPXQLFDWLRQf f %ROOL 6DXQGHUV DQG 3HUFK1LHOVHQ f f 3HWUROHXP ,QIRUPDWLRQf§*XOI &RDVW &HQR]RLF 6WUDWLJUDSKLF &KDUW f *UHHQOHH DQG 0RRUH )LJXUH f f +HVV DQG RWKHUV f f .HQW DQG *UDGVWHLQ f f 3DOHR &RQWURO ,QF f f *DOORZD\ DQG RWKHUV f f 5XSHUW SHUVRQDO FRPPXQLFDWLRQf f +XGGOHVWXQ DQG RWKHUV f f 0LOOHU f f $SSOLQ DQG -RUGDQ f f *RKQ f f $SSOLQ DQG $SSOLQ f 7KH LQIRUPDWLRQ IURP &LHVLHOVNL FRPHV IURP 2FHDQ 'ULOOLQJ 3URJUDP 2'3f 6LWH DQG LV SDUWO\ SUHVHQWHG E\ 1RFFKL DQG RWKHUV f DQG +DLOZRRG DQG &OHPHQW f 6KDGHG EORFNV DUH WD[D WKH /22 RI ZKLFK DUH RXW RI WKH H[SHFWHG VWUDWLJUDSKLF VHTXHQFH DV H[SODLQHG LQ WKH &KURQRVWDWLJUDSKLF )UDPHZRUN VHFWLRQ RI WKH 5HVXOWV DQG 'LVFXVVLRQ

PAGE 195

7DEOH %O %LRFKURQRVWUDWLJUDSKLF DQG PDJQHWRELRFKURQRVWUDWLJUDSKLF LQWHUSUHWDWLRQV $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV 7(57,$5< ,Q 0,2&(1( */5 )35 Sf *ORERURWDOLD IRKVL f f /$' &KURQ &$' ORZHU SDUW RI QRUPDO VXEFKURQ f ORZHU 0LGGOH 0LRFHQH f /$' 6HUUDYDOOLDQ SHULSKHURURQGD *ORERURWDOLD EDULVDQHQVLVf &,% 230 Ef &LELFLGHV RSLPD f f /$' 1 f /$' XSSHU /DQJKLDQ 3%8 756 Sf 3UDHRUEXOLQD WUDQVLWRULD f f /$' PLGGOH 1 5%/ &+0 Ef 5REXOXV FKDPEHUVL f f PLGGOH /RZHU 0LRFHQH 5%/ 0<5 Ef 5REXOXV PDYHUL f f /$' 1 05* $6& Ef 0DUDLQXOLQD DVFHQVLRQHQVLV f f /$' DW ERXQGDU\ 11 f /$' ORZHU %XUGLJDOLDQ */5 5+5 Sf *ORERURWDOLD URKUL f f /$' XSSHU 1 */5 21$ Sf *ORERURWDOLD RSLPD QDQD f f /$' ORZHU 31f *ORERURWDOLD QDQDf +(7 VS Ef +HWHURVWHTLQD VSHFLHV f f f :HOO f§]RQH RQO\ EXW QRW WKH QRPLQDWH WD[RQ f /$' 31f f /$' 1 f XSSHU 2OLJRFHQH f /$' XSSHU &KDWWLDQ /17 -() Ef /HQWLFXOLQD LHIIHUVRQHQVLV f f f ORZHU /RZHU 0LRFHQH &$6 &+3 Sf &DVVLTHULQHOOD FKLSROHQVLV f f /$' XSSHU 1

PAGE 196

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf */5 .8* Sf $03 VS E"f */% &&3 Sf 1'6 %/3 Ef $10 %/7 Ef */% &$* Sf 7D[RQ *ORERURWDOLD NXJOHUL $PSKLVWHJLQD VSHFLHV 2/,*2&(1( FLSHURHQVLV FLSHURHQVLV *ORELJHULQD FLSHURHQVLVf 1RGRVDULD EODQSLHGL $QRPDOLQD ELODWHUDOLV FLSHURHQVLV DQTXLVXWXUDOLV *ORELJHULQD DQTXLVXWXUDOLVf :HOO 'HSWKf f f f 5HPDUNV f /$' &KURQ &$ EHWZHHQ EDVH $ DQG WRS RI $$ f /$' GHILQHV WRS 1 f /$' 1 f ORZHU /RZHU 0LRFHQH f /$' ORZHU $TXLWDQLDQ f 0LRFHQH f f f f f f f f f f f f f f f f f f f DQG f f /$' PLGGOH 31f /$' WRS 31f /$' ORZHU 1 XSSHU 2OLJRFHQH XSSHU &KDWWLDQ /$' 3 2OLJRFHQH /$' XSSHU 5XSHOLDQ /$' 3 ORZHU 2OLJRFHQH 5XSHOLDQ /$' &KURQ &% EHWZHHQ % & /$' PLGGOH 31f XSSHU 2OLJRFHQH

PAGE 197

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV */5 223 3f *ORERURWDOLD RRLPD RSLPD f f /$' &KURQ & XSSHU *ORERURWDOLD RSLPDf f DQRPDO\ f /$' WRS 31f f /$' 3 f /$' ORZHU 31f f /$' GLDFKURQRXV f /$' PLGGOH &KDWWLDQ 05* 9$* Ef 0DUTLQXOLQD YDTLQDWD f f /$' ORZHU 31f f XSSHU 2OLJRFHQH f /$' PLGGOH &KDWWLDQ &,% 0,6 Ef &LELFLGHV PLVVLVVLSSLHQVLV f /LVWHG LQ D GLIIHUHQW ]RQH f LQ HDFK ZHOO f ORZHU 2OLJRFHQH */% $33 3f *ORELTHULQD DPSOLDSHUWXUD f f /$' &KURQ & ORZHU f DQRPDO\ f /$' WRS 31f f /$' 3 f /$' 3 f /$' GLDFKURQRXV f ORZHU 2OLJRFHQH f /$' 5XSHOLDQ */5 ,&% 3f *ORERURWDOLD LQFUHEHVFHQV f f /$' XSSHU 3 f f /$' 3 f ORZHU 2OLJRFHQH &,% 3,3 Ef &LELFLGHV SLSSHQL f f /$' 3 f ORZHU 2OLJRFHQH f /$' ORZHUPRVW 5XSHOLDQ

PAGE 198

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ 3Ef 7D[RQ :HOO 'HSWKf 5HPDUNV &+/ &8% Sf &KLORTXHPEHOLQD FXEHQVLV f f f /$' &KURQ &,2 PLGGOH DQRPDO\ f QRW PHQWLRQHG LQ &K f /$' UHODWLYHO\ V\QFKURQRXV 0*6 VS E"f 0LRTYRVLQD VSHFLHV f DQG f 2OLJRFHQH (/3 VS E"f (ORKLGLXP VSHFLHV f DQG f 2OLJRFHQH 833(5 (2&(1( 7%5 &&$ 3f 7XUERURWDOLD FHUURD]XOHQVLV FRFRDHQVLV *ORERURWDOLD FRFRDHQVLVf f f f /$' &KURQ & PLGZD\ EHWZHHQ DQRPDOLHV DQG f /$' GHILQHV WRS 3 f /$' ORZHU 3 f 8SSHU (RFHQH f /$' XSSHU 3ULDERQLDQ +1. $/$ 3f +DQWNHQLQD DODEDPHQVLV f f /$' &KURQ & PLGZD\ f EHWZHHQ DQRPDOLHV DQG f f /$' WRS 3 f f /$' 3 f /$' ORZHU 3 f 8SSHU (RFHQH f /$' XSSHU 3ULDERQLDQ 3+* 0&5 3f 3VHXGRKDVWLTHULQD PLHUD f f /$' &KURQ & EHWZHHQ f DQRPDOLHV DQG f /$' GHILQHV WRS 3f f /$' 3 9f /$' GLDFKURQRXV f /$' 5XSHOLDQ

PAGE 199

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ 05* &&$ Ef 0DUJLQXOLQD FRFRDHQVLV *$. 609 Sf *ORELTHULQDWKHND VHPLLQYROXWD *<3 VS 755 5+5 $&5 63, E"f *YSVLQD VSHFLHV 0,''/( (2&(1( 3f 7UXQFRURWDORLGHV URKUL 3f $FDULQLQD VSLQXORLQIODWD f S *ORELQJHULQDf f 7XUERURWDOLDf *ORERURWDOLD VSLQXORLQIODWDf :HOO 'HSWKf 5HPDUNV f f f f f /$' 3 f 8SSHU (RFHQH f /$' XSSHU 3ULDERQLDQ f &DOOHG 3RUWLFXODVSKDHUD VHPLLQYROXWD /$' &KURQ & DQRPDO\ f /$' PLGGOH 3 f /$' 3 f /$' 3 f /$' HVVHQWLDOO\ V\QFKURQRXV f 8SSHU (RFHQH f ORZHU 3ULDERQLDQ f 8SSHU (RFHQH f f f f /$' &KURQ & PLGGOH DQRPDO\ f /$' GHILQHV WRS 3 f /$' WRS 3 f /$' GHILQHV WRS 3 f /$' XSSHU %DUWRQLDQ f /$' WRS 3 W

PAGE 200

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 251 %.0 Sf $&5 %/2 Sf *$. 0%5 Sf 0=9 631 Sf 0=9 /(+ Sf 0=9 $5$ Sf 2UEXOLQRLGHV 7D[RQ EHFNPDQQL :HOO 'HSWKf f $FDULQLQD EXOOEURRNL *ORERURWDOLD EXOOEURRNL f f f *ORELTHULQDWKHND PH[LFDQD EDUUL *ORELJHULQDWKHND EDUULf 0RUR]RYHOOD VSLQXORVD *ORERURWDOLD VSLQXORVDf 0RUR]RYHOOD OHKQHUL *ORERURWDOLD OHKQHULf 0RUR]RYHOOD DUDTRQHQVLV *ORERURWDOLD DUDTRQHQVLVf f f f f f 5HPDUNV f &DOOHG *ORELJHUDSVLV EHFNPDQQL /$' &KURQ & EDVDO DQRPDO\ f /$' GHILQHV WRS 3 f /$' 3 f /$' 3 f 0LGGOH (RFHQH f /$' %DUWRQLDQ f /$' &KURQ & DERXW ZD\ GRZQ EHWZHHQ DQRPDOLHV DQG f /$' WRS 3 f /$' ERXQGDU\ 33 f 0LGGOH (RFHQH f /$' WRS 3 f /$' 3 f 8SSHU (RFHQH f /$' ORZHU 3ULDERQLDQ f /$' &KURQ & EDVH DQRPDO\ f /$' WRS 3 f /$' QHDU ERXQGDU\ 33 f /$' WRS 3 f /$' &KURQ & ORZHU DQRPDO\ f /$' WRS 3OO f /$' QHDU ERXQGDU\ 33 f ORZHU 0LGGOH (RFHQH f /$' XSSHU /XWHWLDQ

PAGE 201

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ 7D[RQ :HOO 5HPDUNV SEf 'HSWKf $&5 3&0 3f $FDULQLQD SHQWDFDPHUDWD f f /22 &KURQ &Q *ORERURWDOLD SHQWDFDPHUDWDf f f f /$' XS LQWR 3 /$' 3 f f /$' XSSHU 3 0LGGOH (RFHQH f /$' ORZHU %DUWRQLDQ '7& VS Ef 'LFWYRFRQXV VSHFLHV f f 0LGGOH (RFHQH f '7& &.( Ef 'LFWYRFRQXV FRRNHL f f 8SSHU 0LGGOH (RFHQH '7& $05 Ef 'LFWYRFRQXV DPHULFDQXV f f /RZHU 0LGGOH (RFHQH &6. VS Ef &RVNLQROLQD VSHFLHV f f 0LGGOH (RFHQH &6. )/$ Ef &RVNLQROLQD IORULGDQD f f 8SSHU 0LGGOH (RFHQH /,7 )/$ Ef /LWXRQHOOD IORULGDQD f f 8SSHU 0LGGOH (RFHQH $5& &2/ E"f $UFKDLDV FROXPLHQVLV f f /RZHU 0LGGOH (RFHQH f )$% 9*+ E"f )DEXODULD YDXTKQL f f 0LGGOH (RFHQH f /RZHU 0LGGOH (RFHQH '6& ,15 E"f 'LVFRUELV LQRUQDWXV f f 0LGGOH (RFHQH f /RZHU 0LGGOH (RFHQH (30 60* E"f (RLVWRPDULD VHPLPDUTLQDWD f f /RZHU 0LGGOH (RFHQH (31 *17 E"f (SRQLGHV DXQWHUL f f /RZHU 0LGGOH (RFHQH 63/ &5< E"f 6SLUROLQD FRUYHQVLV f f 0LGGOH (RFHQH f 8SSHU 0LGGOH (RFHQH $03 /3= E"f $PSKLVWHTLQD ORSH]WULTRQL f f 0LGGOH (RFHQH f /RZHU 0LGGOH (RFHQH *17 )/$ E"f *XQWHULD IORULGDQD f f 0LGGOH (RFHQH f /RZHU 0LGGOH (RFHQH 325 &8% E"f 3VHXGRUELWXOLQD FXEHQVLV f f 0LGGOH (RFHQH

PAGE 202

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV /2:(5 (2&(1( 0=9 ))5 Sf 0RUR]RYHOOD IRUPRVD IRUPRVD f f f /$' LQ 3 f /$' 3 f /$' QHDU ERXQGDU\ 33 f /RZHU (RFHQH f /$'
PAGE 203

7DEOH %OFRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV 3$/(2&(1( 0=9 9/& Sf 0RUR]RYHOOD YHODVFRHQVLV f S 3XOYLQXOLQD f *ORERURWDOLD YHODVFRHQVLVf f f ‘ n ‘f f f f f /$' &KURQ & EHWZHHQ DQRPDOLHV DQG FORVHU WR f f /22 &KURQ &U ORZHU f /$' ORZHU 3 f /$' ORZHU 3 f /$' ORZHU 3 f XSSHU 3DOHRFHQH f /$' XSSHU 7KDQHWLDQ 357 30 Sf 3ODQRURWDOLWHV SVHXGRPHQDUGLL *ORERURWDOLD SVHXGRPHQDUGLLf n f n ‘f ff ‘f ‘f f /$' &KURQ & DQRPDO\ f /22 &KURQ &Q f /$' GHILQHV WRS 3 f /$' 3 f /$' WRS 3 f XSSHU 3DOHRFHQH f /$' 7KDQHWLDQ 357 336 Sf 3ODQRURWDOLWHV SXVLOOD SXVLOOD f S SXVLOOD SXVLOODf *ORERURWDOLD SXVLOODf n n ‘f ff OLVWHG LQ D GLIIHUHQW ]RQH LQ HDFK ZHOO" f /$' PLGGOH 3 f /$' 3 f XSSHU 3DOHRFHQH 0=9 $*$ Sf 0RUR]RYHOOD DQJXODWD f SOOO *ORELJHULQD DQJXODWDf *ORERURWDOLD DQJXODWDf f f /22 &KURQ &U f /$' PLGGOH 3 f /$' 3 f XSSHU 3DOHRFHQH f /$' 7KDQHWLDQ 0=9 )*5 Sf 0RUR]RYHOOD IRUPRVD JUDFLOLV *ORERURWDOLD JUDFLOLVf f f /$' DW ERXQGDU\ 33 */% 7/' Sf *ORELJHULQD WULORFXOLQRLGHV f f /$' PLGGOH RI 3

PAGE 204

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV 0=9 3%8 Sf 0RUR]RYHOOD SVHXGREXOORLGHV f ]RQH RQO\ f f f &DOOHG 6XEERWLQD f G *ORELTHULQD SVHXGREXOORLGHVf *ORERURWDOLD SVHXGREXOORLGHVf SVHXGREXOORLGHV /$' &KURQ XSSHU &U f /22 &KURQ &U f /$' ORZHU 3 f /$' 3 f /$' 3 f 3DOHRFHQH f /$' ORZHU 7KDQHWLDQ 0=9 81& Sf 0RUR]RYHOOD XQFLQDWD *ORERURWDOLD XQFLQDWDf f f /$' PLGGOH 3 f /$' 3 f 3DOHRFHQH f XSSHU 'DQLDQ :/ 1$6 E"f 9DOYXODPLQD QDVVDXHQVLV f§f DQG f 3DOHRFHQH %25 VS E"f %RUHOLV VSHFLHV f f DQG f 3DOHRFHQH *'< VS E"f *DXGU\LQD VSHFLHV f f 3DOHRFHQH &5(7$&(286 0$$675,&+7$1 *75 VS Sf *ORERWUXQFDQD VSHFLHV f f /$' WRS RI 8SSHU &UHWDFHRXV 526 &76 Sf 5RVLWD FRQWXVD f S 3XOYLQXOLQD DUHD YDU FRQWXVDf *ORERWUXQFDQD FRQWXVDf f f /LVWHG LQ D GLIIHUHQW ]RQH LQ HDFK ZHOO f /$' DW 0DDVWULFKWLDQ'DQLDQ ERXQGDU\ 50* )57 Sf 5DFHPLTXHPEHOLQD IUXFWLFRVD f f /LVWHG LQ D GLIIHUHQW ]RQH LQ HDFK ZHOO f /$' DW 0DDVWULFKWLDQ 'DQLDQ ERXQGDU\

PAGE 205

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV *7, 65; Sf *ORERWUXQFDQLWD VWXDUWL f f /$' DW 0DDVWULFKWLDQ 'DQLDQ ERXQGDU\ f /$' 0D DW 0DDVWULFKWLDQ'DQLDQ ERXQGDU\ *ORERWUXQFDQD VWXDUWLf *$1 *$1 Sf *DQVVHULQD TDQVVHUL f f /$' &KURQ & XSSHU &U f /$' QHDU WRS 0DDVWULFKWLDQ f 0D DW 0DDVWULFKWLDQ'DQLDQ ERXQGDU\ *ORERWUXQFDQD TDQVVHULf *75 $5& Sf *ORERWUXQFDQD DUHD f f f f /$' QHDU WRS 0DDVWULFKWLDQ *7, 67) Sf *ORERWUXQFDQLWD VWXDUWLIRUPLV f f /$' QHDU WRS 0DDVWULFKWLDQ *ORERWUXQFDQD VWXDUWLIRUPLVf *75 95& Sf *ORERWUXQFDQD YHQWULFRVD f f f f /$' PLGGOH 0DDVWULFKWLDQ f 0D 0DDVWULFKWLDQ $%3 0<5 Sf $EDWKRPSKDOXV PDYDURHQVLV f )$' LQ XSSHU 0DDVWULFWLDQ WKHUHIRUH WKLV RFFXUUHQFH FRQVLGHUHG GXH WR FDYLQJ f /$' DW 0DDVWULFWLDQ'DQLDQ ERXQGDU\ f /$' &KURQ &U EDVH *ORERWUXQFDQD PDYDURHQVLVf *75 /$3 Sf *ORERWUXQFDQD ODSSDUHQWL f f /$' ORZHUPLGGOH 0DDVWULFKWLDQ 526 )25 Sf 5RVLWD IRUQLFDWD f f /$' XSSHUPLGGOH 0DDVWULFKWLDQ *ORERWUXQFDQD IRUQLFDWDf 32' VS E"f 3VHXGRUELWRLGHV VSHFLHV f f 8SSHU &UHWDFHRXV $10 6/= E"f $QRPDOLQD VFKROW]HQVLV f f 7D\ORUDQ

PAGE 206

7DEOH %Of§FRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV 3/1 &'. E"f 3ODQXOLQD FHGDUNHYVHQVLV f f 7D\ORUDQ &,% +53 E"f &LELFLGHV KDUSHUL f f 8SSHU &UHWDFHRXV 623 VS E"f 6XOFRSHUFXOLQD VSHFLHV f f 8SSHU &UHWDFHRXV /2' VS E"f /HSLGRUELWRLGHV VSHFLHV f f 8SSHU &UHWDFHRXV &$03$1,$1 *7, &&5 Sf *ORERWUXQFDQLWD FDOFDUDWD I*ORERWUXQFDQD FDOFDUDWDf f ]RQH RQO\ f /$' DW &DPSDQLDQ0DDVWULFKWLDQ ERXQGDU\ f /$' &KURQ &Q WRS *7, (/( Sf *ORERWUXQFDQLWD HOHYDWD I*ORERWUXQFDQD HOHYDWDf f f f f /$' XSSHU &DPSDQLDQ f /$' &KURQ &Q PLGGOH 6$1721,$1 *75 &51 Sf *ORERWUXQFDQD FDULQDWD f f QRPLQDWH ]RQH LV XSSHU 6DQWRQLDQ 075 51= Sf 0DUTLQRWUXQFDQD UHQ]L *ORERWUXQFDQD UHQ]Lf f f f /$' LQ ORZHUPRVW 6DQWRQLDQ ',& &&9 Sf 'LFDULQHOOD FRQFDYDWD *ORERWUXQFDQD FRQFDYDWDf f f f /$' XSSHU 6DQWRQLDQ f /$' &KURQ &Q GRZQ 075 6,* Sf 0DUTLQRWUXQFDQD VLTDOL *ORERWUXQFDQD VLTDOLf f f /$' ORZHU 6DQWRQLDQ 075 6&+ Sf 0DUTLQRWUXQFDQD VFKQHHTDQVL *ORERWUXQFDQD VFKQHHTDQVLf f f /$' XSSHU 6DQWRQLDQ f /$' &KURQ &Q GRZQ &21,$&,$1 +(' $0% Ef +HGEHUTHOOD DPDELOLV f 3LFNHG DV &RQLDFLDQ E\ (;;21 LQ &ODYLKHGEHUTHOOD VLPSOH[ ]RQH

PAGE 207

7DEOH %OFRQWLQXHG $EEUHYLDWLRQ SEf 7D[RQ :HOO 'HSWKf 5HPDUNV ',& ,0% Sf 'LFDULQHOOD LPEULFDWD f f /$' XSSHU &RQLDFLDQ *ORERWUXQFDQD LPEULFDWDf 78521,$1 3*7 673 Sf 3UDHTORERWUXQFDQD VWHSKDQL f f f /$' PLGGOH 7XURQLDQ f /$' &KURQ &Q GRZQ +*7 +(/ Sf +HOYHWRRORERWUXQFDQD KHOYWLFD f f f f f f /$' XSSHUPLGGOH 7XURQLDQ f /$' &KURQ &Q GRZQ *ORERWUXQFDQD KHOYWLFDf &(120$1,$1 573 '(. Sf 5RWDOLSRUD GHHFNHL f /$' DW &HQRPDQLDQ7XURQLDQ ERXQGDU\ 573 &86 Sf 5RWDOLSRUD FXVKPDQL f f /$' DW &HQRPDQLDQ7XURQLDQ ERXQGDU\ f /$' &KURQ &Q GRZQ 573 *5+ Sf 5RWDOLSRUD TUHHQKRUQHQVLV f f f /$' XSSHU &HQRPDQLDQ 573 $33 Sf 5RWDOLSRUD DSSHQQLQLFD f f f /$' XSSHU &HQRPDQLDQ f /$' ORZHU SDUW RI XSSHU &HQRPDQLDQ $/%,$1 &.' 7(; Ef &RVNLQROLQRLGHV WH[DQXV f f f )UHGHULFNVEXUJLDQ /,7 6*' Ef /LWXROD VXETRRGODQGHQVLV f f )UHGHULFNVEXUJLDQ

PAGE 208

5()(5(1&(6 $GG\ 6 DQG %XIIOHU 5 7 6HLVPLF VWUDWLJUDSK\ RI VKHOI DQG VORSH QRUWKHDVWHUQ *XOI RI 0H[LFR $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S $QGHUVRQ 7 + DQG 6FKPLGW 9 $ 7KH HYROXWLRQ RI 0LGGOH $PHULFD DQG WKH *XOI RI 0H[LFR&DULEEHDQ 6HD UHJLRQ GXULQJ 0HVR]RLF WLPH *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S $QWRLQH : DQG +DUGLQJ / 6WUXFWXUH EHQHDWK FRQWLQHQWDO VKHOI QRUWKHDVWHUQ *XOI RI 0H[LFR $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S $QWRLQH : DQG -RQHV % 5 *HRSK\VLFDO VWXGLHV RI WKH FRQWLQHQWDO VORSH VFDUS DQG EDVLQ HDVWHUQ *XOI RI 0H[LFR 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S $SSOLQ ( 5 DQG -RUGDQ / 'LDJQRVWLF )RUDPLQLIHUD IURP VXEVXUIDFH IRUPDWLRQV LQ )ORULGD -RXUQDO RI 3DOHRQWRORJ\ Y Q S $SSOLQ 3 / DQG $SSOLQ ( 5 5HJLRQDO VXEVXUIDFH VWUDWLJUDSK\ DQG VWUXFWXUH RI )ORULGD DQG VRXWKHUQ *HRUJLD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S $SSOLQ 3 / DQG $SSOLQ ( 5 7KH &RPDQFKH 6HULHV DQG DVVRFLDWHG URFNV LQ WKH VXEVXUIDFH LQ FHQWUDO DQG VRXWK )ORULGD 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ 3URIHVVLRQDO 3DSHU S $SSOLQ 3 / DQG $SSOLQ ( 5 7KH *XOI 6HULHV LQ WKH VXEVXUIDFH LQ QRUWKHUQ )ORULGD DQG VRXWKHUQ *HRUJLD 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ 3URIHVVLRQDO 3DSHU S $UWKXU 0 $ DQG 6FKODQJHU 6 &UHWDFHRXV 2FHDQLF $QR[LF (YHQWV DV FDXVDO IDFWRUV LQ GHYHORSPHQW RI UHHI UHVHUYRLUHG JLDQW RLO ILHOGV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S

PAGE 209

$XEU\ 0 3 %HUJJUHQ : $ .HQW 9 )O\QQ .OLWJRUG 2EUDGRYLFK DQG 3URWKHUR 5 3DOHRJHQH JHRFKURQRORJ\ DQ LQWHJUDWHG DSSURDFK 3DOHRFHDQRJUDSK\ Y Q S %DOO 0 0 &RQWLQHQWDO G\QDPLFV LQ WKH HDVWHUQ *XOI RI 0H[LFR )ORULGD DQG WKH ZHVWHUQ )ORULGD 6KHOIfDEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S $ %DOO 0 0 6HLVPLF VWUDWLJUDSK\ RI WKH ZHVWHUQ )ORULGD 6KHOI DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S %DOO 0 0 0DUWLQ 5 )RRWH 5 4 DQG $SSOHJDWH $ 9 6WUXFWXUH DQG VWUDWLJUDSK\ RI WKH ZHVWHUQ )ORULGD 6KHOI 3DUW 0XOWLFKDQQHO 5HIOHFWLRQ 6HLVPLF 'DWD 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ 2SHQ)LOH 5HSRUW S DQG LOOXVWUDWLRQV %DOO 0 0 0DUWLQ 5 DQG 7D\ORU 'HVWLQ 'RPH DQG ZHVWHUQ )ORULGD 6KHOI DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ 9 Q S %DOO 0 0 0DUWLQ 5 7D\ORU DQG /HLQEDFK 6HLVPLF H[SUHVVLRQ RI FDUERQDWH WR WHUULJHQRXV FODVWLF VHGLPHQW IDFLHV WUDQVLWLRQV RI ZHVWHUQ )ORULGD 6KHOI DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S %DXP 5 DQG 9DLO 3 5 6HTXHQFH VWUDWLJUDSKLF FRQFHSWV DSSOLHG WR 3DOHRJHQH RXWFURSV *XOI DQG $WODQWLF %DVLQV LQ:LOJXV & +DVWLQJV % 6 .HQGDOO & 6W & 3RVDPHQWLHU + : 5RVV & $ DQG 9DQ :DJRQHU & HGV 6HDOHYHO FKDQJHV DQ LQWHJUDWHG DSSURDFK 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S %HUJJUHQ : $ .HQW 9 DQG )O\QQ D 3DOHRJHQH JHRFKURQRORJ\ DQG FKURQRVWUDWLJUDSK\ LQ 6QHOOLQJ 1 HG 7KH FKURQRORJ\ RI WKH JHRORJLFDO UHFRUG *HRORJLFDO 6RFLHW\ RI /RQGRQ 0HPRLU S %HUJJUHQ : $ .HQW 9 DQG 9DQ &RXYHULQJ $ E 1HRJHQH JHRFKURQRORJ\ DQG FKURQRVWUDWLJUDSK\ LQ 6QHOOLQJ 1 HG 7KH FKURQRORJ\ RI WKH JHRORJLFDO UHFRUG *HRORJLFDO 6RFLHW\ RI /RQGRQ 0HPRLU S

PAGE 210

%HUJJUHQ : $ .HQW 9 )O\QQ DQG 9DQ &RXYHULQJ $ F &HQR]RLF JHRFKURQRORJ\ *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S %HUJJUHQ : $ .HQW 9 2EUDGRYLFK DQG 6ZLVKHU & & 7RZDUG D UHYLVHG 3DOHRJHQH JHRFKURQRORJ\ Q 3URWKHUR 5 DQG %HUJJUHQ : $ HGV (RFHQH 2OLJRFHQH FOLPDWLF DQG ELRWLF HYROXWLRQ 3ULQFHWRQ 1HZ -HUVH\ 3ULQFHWRQ 8QLYHUVLW\ 3UHVV S %RJJV 6 -U 3ULQFLSOHV RI VHGLPHQWRORJ\ DQG VWUDWLn JUDSK\ &ROXPEXV 2KLR 0HUULOO 3XEOLVKLQJ &RPSDQ\ S %ROOL + 0 6DXQGHUV % DQG 3HUFK1LHOVHQ HGV 3ODQNWRQ VWUDWLJUDSK\ Y &DPEULGJH (QJODQG &DPEULGJH 8QLYHUVLW\ 3UHVV S %URZQ / ) -U DQG )LVKHU : / 6HLVPLF VWUDWLJUDSKLF LQWHUSUHWDWLRQ RI GHSRVLWLRQDO V\VWHPV H[DPSOHV IURP %UD]LOLDQ ULIW DQG SXOODSDUW EDVLQV LQ & ( 3D\WRQ HG 6HLVPLF VWUDWLJUDSK\f§DSSOLFDWLRQV WR K\GURFDUERQ H[SORUDWLRQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 0HPRLU S %U\DQW : 5 0H\HUKRII $ $ %URZQ 1 -U )XUUHU 0 $ 3\OH 7 ( DQG $QWRLQH : (VFDUSPHQWV UHHI WUHQGV DQG GLDSLULF VWUXFWXUHV HDVWHUQ *XOI RI 0H[LFR $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S %XGG $ DQG +DUULV 3 $ &DUERQDWHVLOLFLFODVWLF PL[WXUHV 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 5HSULQW 6HULHV S %XIIOHU 5 7 'LVWULEXWLRQ RI FUXVW GLVWULEXWLRQ RI VDOW DQG WKH HDUO\ HYROXWLRQ RI WKH *XOI RI 0H[LFR %DVLQ LQ *XOI RI 0H[LFR VDOW WHFWRQLFV DVVRFLDWHG SURFHVVHV DQG H[SORUDWLRQ SRWHQWLDO 3URJUDP DQG H[WHQGHG DQG LOOXVWUDWHG DEVWUDFWV *XOI &RDVW 6HFWLRQ 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 7HQWK $QQXDO 5HVHDUFK &RQIHUHQFH +RXVWRQ 7H[DV S %XIIOHU 5 7 DQG 6DZ\HU 6 'LVWULEXWLRQ RI FUXVW DQG HDUO\ KLVWRU\ *XOI RI 0H[LFR %DVLQ 7UDQVDFWLRQVf§ *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S %XIIOHU 5 7 :DWNLQV 6 6KDXE ) DQG :RU]HO / 6WUXFWXUH DQG HDUO\ JHRORJLF KLVWRU\ RI WKH GHHS *XOI RI 0H[LFR LQ 3LOJHU 5 + -U HG 7KH

PAGE 211

RULJLQ RI WKH *XOI RI 0H[LFR DQG WKH FHQWUDO 1RUWK $WODQWLF 3URFHHGLQJV RI D V\PSRVLXP DW /RXLVLDQD 6WDWH 8QLYHUVLW\ %DWRQ 5RXJH /RXLVLDQD S &DQGH 6 & DQG .HQW 9 $ QHZ JHRPDJQHWLF SRODULW\ WLPHVFDOH IRU WKH /DWH &UHWDFHRXV DQG &HQR]RLF -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y Q %,2 S &KHQ & 6 7KH UHJLRQDO OLWKRVWUDWLJUDSKLF DQDO\VLV RI 3DOHRFHQH DQG (RFHQH URFNV RI )ORULGD )ORULGD *HRORJLFDO 6XUYH\ *HRORJLFDO %XOOHWLQ S &KULVWLH%OLFN 1 2QODS RIIODS DQG WKH RULJLQ RI XQFRQIRUPLW\ERXQG GHSRVLWLRQDO VHTXHQFHV 0DULQH *HRORJ\ Y S &RPSWRQ 6 6Q\GHU 6 : DQG +RGHOO $ 3KRVSKRJHQHVLV DQG ZHDWKHULQJ RI VKHOI VHGLPHQWV IURP WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV ,PSOLFDWLRQV IRU 0LRFHQH & H[FXUVLRQV DQG JOREDO FRROLQJ *HRORJ\ Y S &RUVR : 'HYHORSPHQW RI WKH (DUO\ &UHWDFHRXV QRUWKZHVW )ORULGD &DUERQDWH 3ODWIRUP 3K' GLVVHUWDWLRQf $XVWLQ 7H[DV 8QLYHUVLW\ RI 7H[DV DW $XVWLQ S &RUVR : $XVWLQ $ -U DQG %XIIOHU 5 7 7KH (DUO\ &UHWDFHRXV SODWIRUP RII QRUWKZHVW )ORULGD &RQWUROV RQ PRUSKRORJLF GHYHORSPHQW RI FDUERQDWH PDUJLQV 0DULQH *HRORJ\ Y S &RUVR : DQG %XIIOHU 5 7 6HLVPLF VWUDWLJUDSK\ RI /RZHU &UHWDFHRXV FDUERQDWH SODWIRUPV DQG PDUJLQV HDVWHUQ *XOI RI 0H[LFR DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S &RUVR : %XIIOHU 5 7 DQG $XVWLQ $ -U (URVLRQ RI WKH VRXWKHUQ )ORULGD (VFDUSPHQW LQ %DOO\ $ : HG $WODV RI VHLVPLF VWUDWLJUDSK\ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ 9 S 'DOL : + DQG +DUULV &RUUHODWLRQ SDSHUV f§ 1HRFHQH 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ %XOOHWLQ S 'REVRQ / 0 6HLVPLF VWUDWLJUDSK\ DQG JHRORJLF KLVWRU\ RI -XUDVVLF URFNV QRUWKHDVWHUQ *XOI RI 0H[LFR 0 $ WKHVLVf 7KH 8QLYHUVLW\ RI 7H[DV DW $XVWLQ S

PAGE 212

'REVRQ / 0 DQG %XIIOHU 5 7 D 'HSRVLWLRQDO VHWWLQJ RI WKH -XUDVVLF +D\QHVYLOOH VHLVPLF VHTXHQFH LQ WKH $SDODFKLFROD %DVLQ QRUWKHDVWHUQ *XOI RI 0H[LFR DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 'REVRQ / 0 DQG %XIIOHU 5 7 E (YROXWLRQ RI WKH $SDODFKLFROD %DVLQ QRUWKHDVWHUQ *XOI RI 0H[LFRf GXULQJ WKH -XUDVVLF DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 'REVRQ / 0 DQG %XIIOHU 5 7 %DVHPHQW URFNV DQG VWUXFWXUH QRUWKHDVW *XOI RI 0H[LFR 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 'RFNHU\ 7 ,,, 7KH (RFHQH2OLJRFHQH ERXQGDU\ LQ WKH QRUWKHUQ *XOIf§$ VHTXHQFH ERXQGDU\ LQ 6HTXHQFH VWUDWLJUDSK\ DV DQ H[SORUDWLRQ WRROf§FRQFHSWV DQG SUDFWLFHV LQ WKH *XOI &RDVW 3URJUDP DQG H[WHQGHG DQG LOOXVWUDWHG DEVWUDFWV *XOI &RDVW 6HFWLRQ 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV (OHYHQWK $QQXDO 5HVHDUFK &RQIHUHQFH +RXVWRQ 7H[DV S 'RQRYDQ $ %DXP 5 %OHFKVFKPLGW / /RXWLW 7 6 3IOXP & ( DQG 9DLO 3 5 6HTXHQFH VWUDWLJUDSKLF VHWWLQJ RI WKH &UHWDFHRXV7HUWLDU\ ERXQGDU\ LQ FHQWUDO $ODEDPD LQ :LOJXV & +DVWLQJV % 6 .HQGDOO & 6W & 3RVDPHQWLHU + : 5RVV & $ DQG 9DQ :DJRQHU & HGV 6HDOHYHO FKDQJHV DQ LQWHJUDWHG DSSURDFK 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S 'R\OH / DQG +ROPHV & : 6KDOORZ VWUXFWXUH VWUDWLJUDSK\ DQG FDUERQDWH VHGLPHQWDU\ SURFHVVHV RI :HVW )ORULGD 8SSHU &RQWLQHQWDO 6ORSH $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 'R\OH / DQG 5REHUWV + + HGV &DUERQDWH FODVWLF WUDQVLWLRQV 'HYHORSPHQWV LQ 6HGLPHQWRORJ\ $PVWHUGDP 7KH 1HWKHUODQGV (OVHYLHU S 'XQKDP 5 6WUDWLJUDSKLF UHHIV YHUVXV HFRORJLF UHHIV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S (UOLFK 5 1 %DUUHWW 6 ) DQG *XR %DL -X 6HLVPLF DQG JHRORJLF FKDUDFWHULVWLFV RI GURZQLQJ HYHQWV RQ FDUERQDWH SODWIRUPV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S

PAGE 213

(YDQV 0 : /DWH 0LRFHQH WR 4XDWHUQDU\ VHLVPLF DQG OLWKRORJLF VHTXHQFH VWUDWLJUDSK\ RI WKH &KDUORWWH +DUERU DUHD VRXWKZHVW )ORULGD 3K' GLVVHUWDWLRQf 7DPSD )ORULGD 8QLYHUVLW\ RI 6RXWK )ORULGD S (YDQV 0 : DQG +LH $ & /DWH 1HRJHQH VHTXHQFH VWUDWLJUDSK\ RI D FDUERQDWHVLOLFLFODVWLF WUDQVLWLRQ VRXWKZHVW )ORULGD *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ 9 S (ZLQJ 7 ( 6WUXFWXUDO IUDPHZRUN UQ 6DOYDGRU $ HG 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH *XOI RI 0H[LFR %DVLQ *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S )DXVW 0 6HLVPLF VWUDWLJUDSK\ RI 0LGGOH &UHWDFHRXV 8QFRQIRUPLW\ 0&8f LQ FHQWUDO *XOI RI 0H[LFR %DVLQ DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S )DXVW 0 6HLVPLF VWUDWLJUDSK\ RI WKH PLG&UHWDFHRXV XQFRQIRUPLW\ 0&8f LQ WKH FHQWUDO *XOI RI 0H[LFR %DVLQ *HRSK\VLFV Y Q S )HQJ DQG %XIIOHU 5 7 3UHOLPLQDU\ DJH GHWHUPLQDWLRQV IRU QHZ GHHS *XOI RI 0H[LFR %DVLQ VHLVPLF VHTXHQFHV 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S )LVKHU : / DQG 0F*RZHQ + 'HSRVLWLRQDO V\VWHPV LQ WKH :LOFR[ *URXS RI 7H[DV DQG WKHLU UHODWLRQVKLS WR WKH RFFXUUHQFH RI RLO DQG JDV 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S )RQWDLQH 0 &UXVVH\ 5 /DFD]H /DQDXG 5 DQG
PAGE 214

VXUIDFH ERXQGHG GHSRVLWLRQDO XQLWV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S *DOORZD\ : ( %HERXW )LVKHU : / 'XQODS % -U &DEUHUD&DVWUR 5 /XJR5LYHUD ( DQG 6FRWW 7 0 &HQR]RLF LQ 6DOYDGRU $ HG 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH *XOI RI 0H[LFR %DVLQ *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S *DUGXOVNL $ ) DQG 0XOOLQV + 7 0LRFHQH SDOHRFHDQRJUDSKLF HYHQW LQ WKH HDVWHUQ *XOI RI 0H[LFR ,PSOLFDWLRQ IRU VWUDWLJUDSKLF HYROXWLRQ DQG *XOI 6WUHDP FLUFXODWLRQ DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S *DUGXOVNL $ ) *RZHQ 0 + 0LOVDUN $ :HLWHUPDQ 6 :LVH 6 : -U DQG 0XOOLQV + 7 (YROXWLRQ RI D GHHSZDWHU FDUERQDWH SODWIRUP 8SSHU &UHWDFHRXV WR 3OHLVWRFHQH VHGLPHQWDU\ HQYLURQPHQWV RQ WKH ZHVW )ORULGD PDUJLQ 0DULQH *HRORJ\ Y S *DUGXOVNL $ ) 0XOOLQV + 7 2OGILHOG % $SSOHJDWH DQG :LVH 6 : -U &DUERQDWH PLQHUDO F\FOHV LQ UDPS VORSH VHGLPHQW HDVWHUQ *XOI RI 0H[LFR 3DOHRFHDQRJUDSK\ Y Q S *DUGXOVNL $ ) 0XOOLQV + 7 DQG :HLWHUPDQ 6 &DUERQDWH PLQHUDO F\FOHV JHQHUDWHG E\ IRUDPLQLIHUDO DQG SWHURSRG UHVSRQVH WR 3OHLVWRFHQH FOLPDWH ZHVW )ORULGD UDPS VORSH 6HGLPHQWRORJ\ Y S *HH : / +LOO 6 2DNHV 5 / 3HUW 0 DQG 5HHG & *HRORJLFDO DQG RSHUDWLRQDO VXPPDU\ 7H[DFR 1R 2&6* $SDODFKLFROD 6RXWK $UHD %ORFN 1 ( 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ &RQVHYDWLRQ 'LYLVLRQ S *RKQ 6 /DWH 0HVR]RLF DQG HDUO\ &HQR]RLF JHRORJ\ RI WKH $WODQWLF &RDVWDO 3ODLQ 1RUWK &DUROLQD WR )ORULGD LQ 6KHULGDQ 5 ( DQG *URZ $ HGV 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH $WODQWLF FRQWLQHQWDO PDUJLQ 8 6 *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S *UHHQOHH 6 0 7HUWLDU\ GHSRVLWLRQDO VHTXHQFHV RIIVKRUH 1HZ -HUVH\ DQG $ODEDPD LQ %DOO\ $ : HG $WODV RI VHLVPLF VWUDWLJUDSK\ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ Y S

PAGE 215

*UHHQOHH 6 0 DQG 0RRUH 7 & 5HFRJQLWLRQ DQG LQWHUSUHWDWLRQ RI GHSRVLWLRQDO VHTXHQFHV DQG FDOFXODWLRQ RI VHDOHYHO FKDQJHV IURP VWUDWLJUDSKLF GDWDf§RIIVKRUH 1HZ -HUVH\ DQG $ODEDPD 7HUWLDU\ LQ :LOJXV & +DVWLQJV % 6 .HQGDOO & 6W & 3RVDPHQWLHU + : 5RVV & $ DQG 9DQ :DJRQHU & HGV 6HDOHYHO FKDQJHV DQ LQWHJUDWHG DSSURDFK 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S +DLOZRRG ( $ DQG &OHPHQW % 0 0DJQHWRVWUDWLJUDSK\ RI 6LWHV DQG (DVW *HRUJLD %DVLQ LQ &LHVLHOVNL 3 ) .ULVWRIIHUVHQ < &OHPHQW % 0RRUH 7 & HGV 3URFHHGLQJV RI WKH 2FHDQ 'ULOOLQJ 3URJUDP 6FLHQWLILF 5HVXOWV Y S +DQGIRUG & 5 DQG /RXFNV 5 8QLTXH VLJQDWXUH RI FDUERQDWH VWUDWD DQG WKH GHYHORSPHQW RI GHSRVLWLRQDO VHTXHQFH DQG V\VWHPV WUDFW PRGHOV IRU UDPSV ULPPHG VKHOYHV DQG GHWDFKHG SODWIRUPV DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S +DQGIRUG & 5 DQG /RXFNV 5 LQ SUHVV &DUERQDWH GHSRVLWLRQDO VHTXHQFHV DQG V\VWHPV WUDFWVf§UHVSRQVHV RI FDUERQDWH SODWIRUPV WR UHODWLYH VHDOHYHO FKDQJHV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 7XOVD 2NODKRPD +DT % 8 +DUGHQERO DQG 9DLO 3 5 &KURQRORJ\ RI IOXFWXDWLQJ VHD OHYHOV VLQFH WKH 7ULDVVLF 6FLHQFH 9 +DT % 8 +DUGHQERO DQG 9DLO 3 5 0HVR]RLF DQG &HQR]RLF FKURQRVWUDWLJUDSK\ DQG F\FOHV RI VHDOHYHO FKDQJH LQ :LOJXV & +DVWLQJV % 6 .HQGDOO & 6W & 3RVDPHQWLHU + : 5RVV & $ DQG 9DQ :DJRQHU & HGV 6HDOHYHO FKDQJHV DQ LQWHJUDWHG DSSURDFK 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S +D]HO ( &RUUHODWLRQ RI ODWHU &UHWDFHRXV 6HQRQLDQf HYHQWV DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S $ +HVV 6WRWW / %HQGHU 0 / .HQQHWW 3 DQG 6FKLOOLQJ 7KH 2OLJRFHQH PDULQH PLFURIRVVLO UHFRUG DJH DVVHVVPHQWV XVLQJ VWURQWLXP LVRWRSHV 3DOHRFHDQRJUDSK\ Y Q S +XGGOHVWXQ 3 %UDXQVWHLQ %LHO 5 *XOI &RDVW UHJLRQ &RUUHODWLRQ RI VWUDWLJUDSKLF XQLWV RI 1RUWK

PAGE 216

$PHULFD &2681$f $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 7XOVD 2NODKRPD +XGGOHVWXQ 3 ) +XQWHU 0 ( DQG &DUWHU % 7KH 6XZDQQHH 6WUDLW DV D IDXQDO SURYLQFH ERXQGDU\ DEVf *HRORJLFDO 6RFLHW\RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S -DFJXLQ 7 $UQDXG9DQQHDX $ $UQDXG + 5DYHQQH & DQG 9DLO 3 5 6\VWHPV WUDFWV DQG GHSRVLWLRQDO VHTXHQFHV LQ D FDUERQDWH VHWWLQJ D VWXG\ RI FRQWLQXRXV RXWFURSV IURP SODWIRUP WR EDVLQ DW WKH VFDOH RI VHLVPLF OLQHV 0DULQH DQG 3HWUROHXP *HRORJ\ Y S -HH / 5DQGD]]R $ ) :LFNV & 0 DQG +HUPDQ 6 3URILOH RI D PRGHUQ FRDVWDO PL[LQJ ]RQH LQ 7HUWLDU\ FDUERQDWH URFNV RI WKH )ORULGDQ DTXLIHU 3DVFR &RXQW\ )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S .HQGDOO & 6W & DQG 6FKODJHU : &DUERQDWHV DQG UHODWLYH FKDQJHV LQ VHD OHYHO 0DULQH *HRORJ\ Y S .HQW 9 DQG *UDGVWHLQ ) 0 $ &UHWDFHRXV DQG -XUDVVLF JHRFKURQRORJ\ *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S .LQJ 7 -U DQG 6NRWQLFNL 0 & 8SSHU &UHWDFHRXV VWUDWLJUDSK\ DQG UHODWLYH VHDOHYHO FKDQJHV *XOI &RDVWDO 3ODLQ $ODEDPD LQ 6HTXHQFH VWUDWLJUDSK\ DV DQ H[SORUDWLRQ WRROf§FRQFHSWV DQG SUDFWLFHV LQ WKH *XOI &RDVW 3URJUDP DQG H[WHQGHG DQG LOOXVWUDWHG DEVWUDFWV *XOI &RDVW 6HFWLRQ 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV (OHYHQWK $QQXDO 5HVHDUFK &RQIHUHQFH +RXVWRQ 7H[DV S .OLWJRUG 3RSHQRH 3 DQG 6KRXWHQ + )ORULGD $ -XUDVVLF WUDQVIRUP SODWH ERXQGDU\ -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S /RFNHU 6 DQG %XIIOHU 5 7 &RPSDULVRQ RI /RZHU &UHWDFHRXV FDUERQDWH VKHOI PDUJLQV QRUWKHUQ &DPSHFKH (VFDUSPHQW DQG QRUWKHUQ )ORULGD (VFDUSPHQW *XOI RI 0H[LFR LQ %DOO\ $ : HG 6HLVPLF H[SUHVVLRQ RI VWUXFWXUDO VW\OHV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ Y S WR /RFNHU 6 DQG 'R\OH / 6WUDWLJUDSK\ RI WKH QRUWKZHVWHUQ )ORULGD LQQHU VKHOI IURP KLJK UHVROXWLRQ

PAGE 217

VHLVPLF UHIOHFWLRQ GDWD DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S /RFNHU 6 'R\OH / +LH $ & DQG %ODNH 1 &RPSOH[ FDUERQDWH DQG FODVWLF VWUDWLJUDSK\ RI WKH LQQHU VKHOI RII ZHVWFHQWUDO )ORULGD DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S /RFNHU 6 DQG 6DKDJLDQ / 7HFWRQLF IHDWXUHV PDSf LQ %XIIOHU 5 7 /RFNHU 6 %U\DQW : 5 +DOO 6 $ DQG 3LOJHU 5 + -U HGV *XOI RI 0H[LFR $WODV 2FHDQ 0DUJLQ 'ULOOLQJ 3URJUDP 5HJLRQDO $WODV 6HULHV 0DULQH 6FLHQFH ,QWHUQDWLRQDO :RRGV +ROH 0DVVDFKXVHWWV S /RUG 3 6HLVPLF VWUDWLJUDSKLF LQYHVWLJDWLRQ RI WKH :HVW )ORULGD %DVLQ 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 0F)DUODQ ( -U DQG 0HQHV / 6 /RZHU &UHWDFHRXV LQ 6DOYDGRU $ HG 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH *XOI RI 0H[LFR %DVLQ *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S 0F*RZUDQ % )LIW\ 0LOOLRQ
PAGE 218

0DQFLQL ( $ DQG 7HZ % + D 3DOHRJHQH VHTXHQFH VWUDWLJUDSK\ LQ 0LVVLVVLSSL DQG $ODEDPD DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S 0DQFLQL ( $ DQG 7HZ % + E 3DOHRJHQH VWDJH DQG SODQNWRQLF IRUDPLQLIHUDO ]RQH ERXQGDULHV DQG XQFRQIRUPLW\ERXQGHG GHSRVLWLRQDO VHTXHQFH FRQWDFWV LQ VRXWKZHVWHUQ $ODEDPD DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 0DUWLQ 5 1RUWKHUQ DQG HDVWHUQ *XOI RI 0H[LFR FRQWLQHQWDO PDUJLQ VWUDWLJUDSKLF DQG VWUXFWXUDO IUDPHZRUN LQ %RXPD $ + 0RRUH 7 DQG &ROHPDQ 0 HGV )UDPHZRUN IDFLHV DQG RLOWUDSSLQJ FKDUDFWHULVWLFV RI WKH XSSHU FRQWLQHQWDO PDUJLQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ S 0DUWLQ 5 DQG %RXPD $ + 3K\VLRJUDSK\ RI WKH *XOI RI 0H[LFR LQ %RXPD $ + 0RRUH 7 DQG &ROHPDQ 0 HGV )UDPHZRUN IDFLHV DQG RLOWUDSSLQJ FKDUDFWHULVWLFV RI WKH XSSHU FRQWLQHQWDO PDUJLQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ S 0H\HUKRII $ $ DQG +DWWHQ & : %DKDPDV VDOLHQW RI 1RUWK $PHULFD WHFWRQLF IUDPHZRUN VWUDWLJUDSK\ DQG SHWUROHXP SRWHQWLDO $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q SDUW ,, RI ,, S 0LDOO $ (XVWDWLF VHD OHYHO FKDQJHV LQWHUSUHWHG IURP VHLVPLF VWUDWLJUDSK\ D FULWLTXH RI WKH PHWKRGRORJ\ ZLWK SDUWLFXODU UHIHUHQFH WR WKH 1RUWK 6HD -XUDVVLF UHFRUG $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 0LDOO $ 6WUDWLJUDSKLF VHTXHQFHV DQG WKHLU FKURQRVWUDWLJUDSKLF FRUUHODWLRQ -RXUQDO RI 6HGLPHQWDU\ 3HWURORJLVW Y Q S 0LDOO $ ([[RQ JOREDO F\FOH FKDUW DQ HYHQW IRU HYHU\ RFFDVLRQ" *HRORJ\ Y Q S 0LOOHU $ 6WUXFWXUDO FRQWURO RI -XUDVVLF VHGLPHQWDWLRQ LQ $ODEDPD DQG )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 0LOOHU $ +\GURJHRORJLF IUDPHZRUN RI WKH )ORULGDQ DTXLIHU V\VWHP LQ )ORULGD DQG LQ SDUWV RI *HRUJLD

PAGE 219

$ODEDPD DQG 6RXWK &DUROLQDf§5HJLRQDO $TXLIHU6\VWHP $QDO\VLV 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ 3URIHVVLRQDO 3DSHU % S 0LOOHU $ *HRK\GURORJLF GDWD IURP WKH )ORULGDQ DTXLIHU V\VWHP LQ )ORULGD DQG SDUWV RI *HRUJLD 6RXWK &DUROLQD DQG $ODEDPD 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ 2SHQ)LOH 5HSRUW S 0LOOHU $ *URXQG ZDWHU DWODV RI WKH 8QLWHG 6WDWHV 6HJPHQW $ODEDPD )ORULGD *HRUJLD DQG 6RXWK &DUROLQD 8QLWHG 6WDWHV *HRORJLFDO 6XUYH\ +\GURORJLF ,QYHVWLJDn WLRQV $WODV S 0LOOHU $XEU\ 0 3 .KDQ 0 0HOLOOR $ .HQW 9 DQG %HUJJUHQ : $ LJRFHQH0LRFHQH ELRVWUDWLJUDSK\ PDJQHWRVWUDWLJUDSK\ DQG LVRWRSLF VWUDWLJUDSK\ RI WKH ZHVWHUQ 1RUWK $WODQWLF *HRORJ\ Y Q S 0LOOHU )HLJHQVRQ 0 :ULJKW DQG &OHPHQW % 0 0LRFHQH LVRWRSH UHIHUHQFH VHFWLRQ 'HHS 6HD 'ULOOLQJ 3URMHFW 6LWH DQ HYDOXDWLRQ RI LVRWRSH DQG ELRVWUDWLJUDSKLF UHVROXWLRQ 3DOHRFHDQRJUDSK\ Y Q S 0LWFKHOO7DSSLQJ + ([SORUDWLRQ DQDO\VLV RI WKH -XUDVVLF $SDODFKLFROD (PED\PHQW RI )ORULGD 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 0LWFKXP 5 0 -U 6HLVPLF VWUDWLJUDSKLF LQYHVWLJDWLRQ RI :HVW )ORULGD 6ORSH *XOI RI 0H[LFR LQ %RXPD $ + 0RRUH 7 DQG &ROHPDQ 0 HGV )UDPHZRUN IDFLHV DQG RLOWUDSSLQJ FKDUDFWHULVWLFV RI WKH XSSHU FRQWLQHQWDO PDUJLQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ S 0XOOLQV + 7 *DUGXOVNL $ ) +LQFKH\ ( DQG +LQH $ & D 7KH PRGHUQ FDUERQDWH UDPS VORSH RI FHQWUDO ZHVW )ORULGD -RXUQDO RI 6HGLPHQWDU\ 3HWURORJ\ Y Q S 0XOOLQV + 7 *DUGXOVNL $ ) +LH $ & 0HOLOOR $ :LVH 6 : -U DQG $SSOHJDWH E 7KUHH GLPHQVLRQDO VHGLPHQWDU\ IUDPHZRUN RI WKH FDUERQDWH UDPS VORSH RI FHQWUDO ZHVW )ORULGD D VHTXHQWLDO VHLVPLF VWUDWLJUDSKLF SHUVSHFWLYH *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S 0XOOLQV + 7 *DUGXOVNL $ ) :LVH 6 : -U DQG $SSOHJDWH 0LGGOH 0LRFHQH RFHDQRJUDSKLF HYHQW

PAGE 220

LQ WKH HDVWHUQ *XOI RI 0H[LFR ,PSOLFDWLRQV IRU VHLVPLF VWUDWLJUDSKLF VXFFHVVLRQ DQG /RRS &XUUHQW*XOI 6WUHDP FLUFXODWLRQ *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S 1RFFKL 0 $PLFL ( DQG 3UHPROL 6LOYD LQ &LHVLHOVNL 3 ) .ULVWRIIHUVHQ < &OHPHQW % 0RRUH 7 & HGV 3URFHHGLQJV RI WKH 2FHDQ 'ULOOLQJ 3URJUDP 6FLHQWLILF 5HVXOWV Y S 1RUWK $PHULFDQ &RPPLVVLRQ RQ 6WUDWLJUDSKLF 1RPHQFODWXUH 1$&61f 1RUWK $PHULFDQ VWUDWLJUDSKLF FRGH $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S 2OVVRQ 5 DQG /LX & 6WUDWLJUDSKLF VHWWLQJ DQG ELRVWUDWLJUDSK\ RI WKH &UHWDFHRXV7HUWLDU\ ERXQGDU\ DW 0LOOHUV )HUU\ $ODEDPD DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S $ 3DOHR&RQWURO ,QF %LRVWUDWLJUDSKLF FKDUW *XOI RI 0H[LFR +RXVWRQ 7H[DV 3DXOL & )UHHPDQ/\QGH 5 %UDORZHU 7 *DUGHPDO 0 1HXPDQQ $ & 'n$UJHQLR % DQG 0DUVHOOD ( *HRORJ\ RI WKH VWUDWD H[SRVHG RQ WKH )ORULGD (VFDUSPHQW 0DULQH *HRORJ\ Y S 3 ([SORUDWLRQ 6\VWHPV *XOI &RDVW &HQR]RLF 6WUDWLJUDSKLF &KDUW 3HWUROHXP ,QIRUPDWLRQ &RUSRUDWLRQ +RXVWRQ 7H[DV 3LQGHOO / $OOHJKHQLDQ UHFRQVWUXFWLRQ DQG VXEVHTXHQW HYROXWLRQ RI WKH *XOI RI 0H[LFR %DKDPDV DQG 3URWR&DULEEHDQ 7HFWRQLFV Y Q S 3LQHW 3 5 DQG 3RSHQRH 3 $ VFHQDULR RI 0HVR]RLF &HQR]RLF RFHDQ FLUFXODWLRQ RYHU WKH %ODNH 3ODWHDX DQG LWV HQYLURQV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S f§ 3LWPDQ : & ,,, 5HODWLRQVKLS EHWZHHQ HXVWDF\ DQG VWUDWLJUDSKLF VHTXHQFHV RI SDVVLYH PDUJLQV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S 3RSHQRH 3 'HSRVLWLRQDO DQG VWUXFWXUDO KLVWRU\ RI WKH 6RXWKHDVW *HRUJLD (PED\PHQW DQG 6XZDQQHH 6WUDLWV IURP VHLVPLF VWUDWLJUDSKLF DQDO\VLV DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S

PAGE 221

3RSHQRH 3 +HQU\ 9 DQG ,UGLV ) 0 *XOI WURXJKf§WKH $WODQWLF FRQQHFWLRQ *HRORJ\ Y Q S 5DQGD]]R $ ) *HRK\GURORJLF PRGHO RI WKH )ORULGDQ DTXLIHU LQ WKH 6RXWKZHVW )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW )ORULGD :DWHU 5HVRXUFHV 5HVHDUFK &HQWHU 3XEOLFDWLRQ 1R S 5DQGD]]R $ ) 7HUWLDU\ VHGLPHQWRORJ\ DQG HYROXWLRQ RI WKH )ORULGD 3ODWIRUP DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S 5DQGD]]R $ ) DQG %ORRP 0LQHUDORJLFDO FKDQJHV DORQJ WKH IUHVKZDWHUVDOWZDWHU LQWHUIDFH RI D PRGHUQ DTXLIHU 6HGLPHQWDU\ *HRORJ\ Y S 5DQGD]]R $ ) DQG &RRN &KDUDFWHUL]DWLRQ RI GRORPLWLF URFNV IURP WKH FRDVWDO PL[LQJ ]RQH RI WKH )ORULGDQ DTXLIHU )ORULGD 86$ 6HGLPHQWDU\ *HRORJ\ Y S 5DQGD]]R $ ) DQG +LFNH\ ( : 'RORPLWL]DWLRQ LQ WKH )ORULGDQ DTXLIHU $PHULFDQ -RXUQDO RI 6FLHQFH Y S 5DQGD]]R $ ) DQG 6DURRS + & 6HGLPHQWRORJ\ DQG SDOHRHFRORJ\ RI 0LGGOH DQG 8SSHU (RFHQH FDUERQDWH VKRUHOLQH VHTXHQFHV &U\VWDO 5LYHU )ORULGD 86$ 6HGLPHQWDU\ *HRORJ\ Y S 5DQGD]]R $ ) 6DUYHU $ ) DQG 0HWULQ % 6HOHFWHG JHRFKHPLFDO IDFWRUV LQIOXHQFLQJ GLDJHQHVLV RI (RFHQH FDUERQDWH URFNV SHQLQVXODU )ORULGD 8 6 $ 6HGLPHQWDU\ *HRORJ\ Y S 5DQGD]]R $ ) 6WRQH & DQG 6DURRS + & 'LDJHQHVLV RI 0LGGOH DQG 8SSHU (RFHQH FDUERQDWH VKRUHOLQH VHTXHQFHV FHQWUDO )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 5DQGD]]R $ ) DQG =DFKRV / &ODVVLILFDWLRQ DQG GHVFULSWLRQ RI GRORPLWLF IDEULFV RI URFNV IURP WKH )ORULGDQ DTXLIHU 86$ 6HGLPHQWDU\ *HRORJ\ Y S 5HDG ) &DUERQDWH SODWIRUP IDFLHV PRGHOV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 5HLW] % D (DUO\ 0HVR]RLF VWUXFWXUH DQG VWUDWLJUDSK\ RI WKH QRUWKZHVWHUQ )ORULGD 6KHOI DEVf *HRORJLFDO

PAGE 222

6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S 5HLW] % E 5HLQWHUSUHWDWLRQ RI WKH 2ULJLQ RI WKH *XOI RI 0H[LFR EDVHG RQ GDWD IURP WKH QRUWKZHVWHUQ )ORULGD 6KHOI DEVf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y Q S 5LJJV 6 5 3DWWHUQV RI 0LRFHQH SKRVSKDWH VHGLPHQWDWLRQ RQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV FRQWLQHQWDO PDUJLQ 3URFHHGLQJV RI WKH WK ,QWHUQDWRQDO *HRORJLFDO &RQJUHVV Y S 5RRI 6 5 0XOOLQV + 7 *DUWQHU 6 +XDQJ 7 & -R\FH ( 3UXW]PDQ DQG7MDOVPD / &OLPDWLF IRUFLQJ RI FDUERQDWH VHGLPHQWDWLRQ GXULQJ WKH ODVW PLOOLRQ \HDUV DORQJ WKH ZHVW )ORULGD FRQWLQHQWDO PDUJLQ -RXUQDO RI 6HGLPHQWDU\ 3HWURORJ\ Y Q S 6DOYDGRU $ /DWH 7ULDVVLF-XUDVVLF 3DOHRJHRJUDSK\ DQG RULJLQ RI *XOI RI 0H[LFR %DVLQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S 6DOYDGRU $ HG 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH *XOI RI 0H[LFR %DVLQ *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S 6DUJ ) &DUERQDWH VHTXHQFH VWUDWLJUDSK\ LQ :LOJXV & +DVWLQJV % 6 .HQGDOO & 6W & 3RVDPHQWLHU + : 5RVV & $ DQG 9DQ :DJRQHU & HGV 6HDOHYHO FKDQJHV DQ LQWHJUDWHG DSSURDFK 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S 6DZ\HU 6 %XIIOHU 5 7 DQG 3LOJHU 5 + -U 7KH FUXVW XQGHU WKH *XOI RI 0H[LFR %DVLQ LQ 6DOYDGRU $ HG 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH *XOI RI 0H[LFR %DVLQ *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S 6FKODJHU : 7KH SDUDGR[ RI GURZQHG UHHI DQG FDUERQDWH SODWIRUPV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ 3DUW Y S 6FKODJHU : 'URZQLQJ 8QFRQIRUPLWLHV RQ FDUERQDWH SODWIRUPV LQ &UHYHOOR 3 :LOVRQ / 6DUJ ) DQG 5HDG ) HGV &RQWUROV RQ FDUERQDWH SODWIRUP DQG EDVLQ GHYHORSPHQW 6RFLHW\ RI (FRQRPLF 3DOHRQn WRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S

PAGE 223

6FKODJHU : 'HSRVLWLRQDO ELDV DQG HQYLURQPHQWDO FKDQJHf§LPSRUWDQW IDFWRUV LQ VHTXHQFH VWUDWLJUDSK\ 6HGLPHQWDU\ *HRORJ\ Y S 6FKODJHU : 6HGLPHQWRORJ\ DQG VHTXHQFH VWUDWLJUDSK\ RI UHHIV DQG FDUERQDWH SODWIRUPV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV &RQWLQXLQJ (GXFDWLRQ &RXUVH 1RWH 6HULHV S 6FKODJHU : DQG &DPEHU 6XEPDULQH VORSH DQJOHV GURZQLQJ XQFRQIRUPLWLHV DQG VHOIHURVLRQ RI OLPHVWRQH HVFDUSPHQWV *HRORJ\ Y Q S 6FKODQJHU 6 2 DQG -HQN\QV + & &UHWDFHRXV RFHDQLF DQR[LF HYHQWV FDXVHV DQG FRQVHTXHQFHV *HRORJLH HQ 0LMQERXZ Y Q S 6FRWW 7 0 7KH LWKRVWUDWLJUDSK\ RI WKH +DZWKRUQ *URXS 0LRFHQHf RI )ORULGD )ORULGD *HRORJLFDO 6XUYH\ %XOOHWLQ S 6KDXE ) 7KH LQWHUQDO IUDPHZRUN RI WKH VRXWKZHVWHUQ )ORULGD %DQN 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 6KHULGDQ 5 ( 0XOOLQV + 7 $XVWLQ $ -U %DOO 0 0 DQG /DGG : *HRORJ\ DQG JHRSK\VLFV RI WKH %DKDPDV LQ 6KHULGDQ 5 ( DQG *URZ $ HGV 7KH JHRORJ\ RI 1RUWK $PHULFD Y 7KH $WODQWLF FRQWLQHQWDO PDUJLQ 8 6 *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RORUDGR S 6ORVV / / )RUW\ \HDUV RI VHTXHQFH VWUDWLJUDSK\ *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S 6PLWK / &DULEEHDQ SODWH UHODWLYH PRWLRQV LQ 6WHOKL ) DQG :HEE 6 HGV 7KH JUHDW $PHULFDQ ELRWLF LQWHUFKDQJH 3OHQXP 3UHVV 1HZ
PAGE 224

,QWHUQDWLRQDO *HRORJLFDO &RUUHODWLRQ 3URMHFW 3DOHRFHQH(RFHQH %RXQGDU\ %UXVVHOV PHHWLQJ 'HFHPEHU 7RXOPLQ / 6WUDWLJUDSKLF GLVWULEXWLRQ RI 3DOHRFHQH DQG (RFHQH IRVVLOV LQ WKH HDVWHUQ *XOI &RDVW UHJLRQ *HRORJLFDO 6XUYH\ RI $ODEDPD 0RQRJUDSK Y S 7ZLFKHOO & 3DUVRQ / 0 DQG 3DXOL & 9DULDWLRQV LQ WKH VW\OHV RI HURVLRQ DORQJ WKH )ORULGD (VFDUSPHQW HDVWHUQ *XOI RI 0H[LFR 0DULQH DQG 3HWUROHXP *HRORJ\ Y S 7ZLFKHOO & 3DUVRQ / 0 9DOHQWLQH 3 & DQG 3DXOL & ( /RQJUDQJH VLGHVFDQ VRQDU VXUYH\ RI HDVWHUQ *XOI RI 0H[LFR DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ 9 Q S 7ZLFKHOO & 3DXOL & DQG 3DUVRQ / 0 7HUUDFHV RQ WKH )ORULGD (VFDUSPHQW LPSOLFDWLRQV IRU HURVLRQDO SURFHVVHV *HRORJ\ Y Q S 9DLO 3 5 3DUW 6HLVPLF VWUDWLJUDSK\ LQWHUSUHWDWLRQ SURFHGXUH LQ %DOO\ $ : HG $WODV RI VHLVPLF VWUDWLJUDSK\ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ Y S 9DLO 3 5 DQG +DUGHQERO 6HD OHYHO FKDQJHV GXULQJ WKH 7HUWLDU\ 2FHDQXV Y S 9DLO 3 5 0LWFKXP 5 0 -U 7RGG 5 :LGPLHU 0 7KRPSVRQ 6 ,OO 6DQJUHH % %XEE 1 DQG +DWHOLG : 6HLVPLF VWUDWLJUDSK\ DQG JOREDO FKDQJHV RI VHD OHYHO (OHYHQ 3DUWVf LQ & ( 3D\WRQ HGf 6HLVPLF VWUDWLJUDSK\f§DSSOLFDWLRQV WR K\GURFDUERQ H[SORUDWLRQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 0HPRLU S 9DLO 3 5 6KLSOH\ 7 + DQG %XIIOHU 5 7 8QFRQIRUPLWLHV RI WKH 1RUWK $WODQWLF 3KLORVRSKLFDO 7UDQVDFWLRQV RI WKH 5R\DO 6RFLHW\ RI /RQGRQ Y $ S 9DLO 3 5 DQG 7RGG 5 1RUWK 6HD -XUDVVLF XQFRQIRUPLWLHV FKURQRVWUDWLJUDSK\ DQG VHDOHYHO FKDQJHV IURP VHLVPLF VWUDWLJUDSK\ 3HWUROHXP *HRORJ\ RI WKH &RQWLQHQWDO 6KHOI 1RUWKZHVW (XURSH 3URFHHGLQJV S 9DLO 3 5 DQG :RUQDUGW : : :HOO ORJVHLVPLF VHTXHQFH VWUDWLJUDSK\ DQ LQWHJUDWHG WRRO IRU WKH nV LQ 6HTXHQFH VWUDWLJUDSK\ DV DQ H[SORUDWLRQ WRROFRQFHSWV

PAGE 225

DQG SUDFWLFHV LQ WKH *XOI &RDVW 3URJUDP DQG H[WHQGHG DQG LOOXVWUDWHG DEVWUDFWV *XOI &RDVW 6HFWLRQ 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV (OHYHQWK $QQXDO 5HVHDUFK &RQIHUHQFH +RXVWRQ 7H[DV S 9DQ 6LFOHQ & (DUO\ RSHQLQJ RI LQLWLDOO\FORVHG *XOI RI 0H[LFR DQG FHQWUDO 1RUWK $WODQWLF 2FHDQ 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 9DQ :DJRQHU & 0LWFKXP 5 0 -U 3RVDPHQWLHU + : DQG 9DLO 3 5 3DUW .H\ GHILQLWLRQV RI VHTXHQFH VWUDWLJUDSK\ LQ %DOO\ $ : HG $WODV RI VHLVPLF VWUDWLJUDSK\ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 6WXGLHV LQ *HRORJ\ Y S 9DQ :DJRQHU & 3RVDPHQWLHU + : 0LWFKXP 5 0 -U 9DLO 3 5 6DUJ ) /RXWLW 7 6 DQG +DUGHQERO $Q RYHUYLHZ RI WKH IXQGDPHQWDOV RI VHTXHQFH VWUDWLJUDSK\ DQG NH\ GHILQLWLRQV LQ :LOJXV & +DVWLQJV % 6 .HQGDOO & 6W & 3RVDPHQWLHU + : 5RVV & $ DQG 9DQ :DJRQHU & HGV 6HDOHYHO FKDQJHV DQ LQWHJUDWHG DSSURDFK 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV 6SHFLDO 3XEOLFDWLRQ S :DONHU 5 6KDQPXJDP DQG 5XSSHO 6 & $ PRGHO IRU FDUERQDWH WR WHUULJHQRXV FODVWLF VHTXHQFHV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y Q S :DONHU 5 )DFLHV PRGHOLQJ DQG VHTXHQFH VWUDWLJUDSK\ -RXUQDO RI 6HGLPHQWDU\ 3HWURORJ\ Y Q S :LOVRQ / &DUERQDWH IDFLHV LQ JHRORJLF KLVWRU\ 6SULQJHU9HUODJ 1HZ
PAGE 226

:LQVWRQ E 5HJLRQDO VWUXFWXUH VWUDWLJUDSK\ DQG RLO SRVVLELOLWLHV RI WKH 6RXWK )ORULGD %DVLQ 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S :LQVWRQ D 6L[ SURSRVHG IRUPDWLRQV LQ WKH XQGHILQHG SRUWLRQ RI WKH /RZHU &UHWDFHRXV VHFWLRQ LQ VRXWK )ORULGD 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S :LQVWRQ E )ORULGDnV 2FDOD 8SOLIW LV QRW DQ XSOLIW $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S :LQVWRQ &RW\SH ZHOOV IRU WKH ILYH FODVVLF IRUPDWLRQV LQ SHQLQVXODU )ORULGD 7UDQVDFWLRQVf§*XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S :LQVWRQ 5HEHFFD 6KRDO 5HHI &RPSOH[ 8SSHU &UHWDFHRXV DQG 3DOHRFHQHf LQ VRXWK )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S :LQVWRQ 5HEHFFD 6KRDO %DUULHU 5HHI &RPSOH[ RI *XOILDQ DQG 3DOHRFHQH DJHf§RQVKRUH DQG RIIVKRUH )ORULGD DEVf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y Q S :RU]HO / %U\DQW : %HDOO $ &DSR 5 'LFNLQVRQ )RUHPDQ + 3 /DXU\ 5 0F1HHO\ % : DQG 6PLWK / $ ,QLWLDO 5HSRUWV RI WKH 'HHS 6HD 'ULOOLQJ 3URMHFW 9ROXPH ; :DVKLQJWRQ 86 *RYHUQPHQW 3ULQWLQJ 2IILFHf S :UHQQ + DQG 6DWFKHOO / 6 &HQR]RLF 3DO\QRVWUDWLJUDSK\ RI ([[RQ FRUH KROH IURP WKH ZHVW )ORULGD &DUERQDWH 3ODWIRUP *XOI RI 0H[LFR LQWHJUDWLRQ ZLWK D VHLVPLF VWUDWLJUDSKLF PRGHO DEVf 3DO\QRORJ\ Y S :X 6 < %DOO\ $ : DQG &UDPH] & E $OORFKWKRQRXV VDOW VWUXFWXUH DQG VWUDWLJUDSK\ RI WKH QRUWKHDVWHUQ *XOI RI 0H[LFR 3DUW ,, 6WUXFWXUH 0DULQH DQG 3HWUROHXP *HRORJ\ Y Q S :X 6 < 9DLO 3 5 DQG &UDPH] & D $OORFKWKRQRXV VDOW VWUXFWXUH DQG VWUDWLJUDSK\ RI WKH QRUWKHDVWHUQ *XOI RI 0H[LFR 3DUW 6WUDWLJUDSK\ 0DULQH DQG 3HWUROHXP *HRORJ\ Y Q S

PAGE 227

%,2*5$3+,&$/ 6.(7&+ -RQDWKDQ /XFDV -HH ZDV ERUQ LQ 6DQ $QWRQLR 7H[DV )HEUXDU\ WKH VHFRQG FKLOG DQG RQO\ VRQ RI 'RQDOG %UHHQ DQG %HUWKD (YD -HH +LV IDWKHUnV FDUHHU DV D QRQFRPPLVVLRQHG RIILFHU LQ WKH 8QLWHG 6WDWHV $LU )RUFH DQG KLV PRWKHU EHLQJ D %ULWLVK VXEMHFW RFFDVLRQHG -RQDWKDQ WR VSHQG PXFK RI KLV \RXWK LQ (XURSH DQG 1RUWK $IULFD +H DWWHQGHG *HQHUDO + + $UQROG +LJK 6FKRRO LQ :LHVEDGHQ *HUPDQ\ DQG ZDV JUDGXDWHG LQ 0D\ +H UHFHLYHG WKH %DFKHORU RI 6FLHQFH GHJUHH LQ ELRORJ\ IURP 7XODQH 8QLYHUVLW\ RI /RXLVLDQD LQ 1HZ 2UOHDQV /RXLVLDQD RQ 0D\ 7KH 0DVWHU RI 6FLHQFH GHJUHH LQ HDUWK VFLHQFH IURP WKH 8QLYHUVLW\ RI 1HZ 2UOHDQV 1HZ 2UOHDQV /RXLVLDQD ZDV FRQIHUUHG RQ -RQDWKDQ RQ 'HFHPEHU -RQDWKDQ EHJDQ KLV FDUHHU DV D JHRORJLVW ZLWK 7H[DFR 86$ LQ 7XOVD 2NODKRPD LQ 1RYHPEHU ,Q KH ZDV WUDQVIHUUHG WR 'HQYHU &RORUDGR -RQDWKDQ OHIW 7H[DFR LQ 0D\ DQG ZRUNHG EULHIO\ IRU 'DZVRQ *HRSK\VLFDO &RPSDQ\ DQG &25( /DERUDWRULHV LQ &RORUDGR ,Q 2FWREHU KH PRYHG WR 7DPSD )ORULGD DQG EHJDQ ZRUN DV D K\GURORJLVW ZLWK WKH 6RXWKZHVW )ORULGD :DWHU 0DQDJHPHQW 'LVWULFW -RQDWKDQ WKHQ MRLQHG WKH JURXQGZDWHU FRQVXOWLQJ ILUP RI *HUDJKW\ DQG 0LOOHU LQ 6HSWHPEHU

PAGE 228

,Q $XJXVW -RQDWKDQ PDUULHG 6XVDQ : ( 0RRUPDQ 5 1 RI *DLQHVYLOOH )ORULGD DQG HQWHUHG JUDGXDWH VKRG DW WKH 8QLYHUVLW\ RI )ORULGD 7KH FRXSOH JDYH ELUWK WR D GDXJKWHU /DXUD (OL]DEHWK -HH RQ 6HSWHPEHU -RQDWKDQ KDV WZR GDXJKWHUV E\ D SUHYLRXV PDUULDJH 5HEHFFD $QQ -HH ERUQ 6HSWHPEHU DQG *UHWD &KULVWLQH -HH ERUQ 2FWREHU 3HUPDQHQW $GGUHVV 1 : WK 3ODFH *DLQHVYLOOH )/

PAGE 229

),*85( $ '(37+ 6XEVHDf 0HWHUV )HHW f f f f f f f B f f :(// :(// :(// :(// :(// :(// $n '(37+ 6XEVHDf 'DWXP *DPPD 5D\ 6SRQWDQHRXV 3RWHQWLDO 7 B B )HHW 0HWHUV *DPPD 5D\ I7 ? L 'XDO LQGXFWLRQ /DRURr f 0&6% f f

PAGE 230

),*85( :(// :(// :(// :(// '(37+ 6XEVHDf 0HWHUV )HHW 'DWXP 6HD /HYHO

PAGE 231

),*85( :(// :(// :(// :(// '(37+ 6XEVHDf 0HWHUV )HHW $ fn :(// & 'DWXP 6HD /HYHO *DPPD 5D\ 6SRQWDQHRXV 3RWHQWLDO 'XDO ,QGXFWLRQ f f ‘ X 3 ‘ LOLLOL *DPPD 5R\ %\ &RUUHODWLRQ WR "QerI)A &RDVWDO 1R :ULJKW n 3 > Ff§ /RZHU (RFHQHf A 0LOOHU f 2OGVPDU /RZHU (RFHQHf f :LQVWRQ f IU F // 3DOHRFHQHf 0LOOHU f A &HGDU .H\V 3DOHRFHQHf :LQVWRQ f 0LOOHU f f f§ &UHWDFHRXVf ` t‘ 0LOOHU f

PAGE 232

5XQ f B XQ f 7S9$ f§ &UHWDFHRXVf >-M" 0LOOHU f f .8f f 0&6% Un f ,& f +RUL]RQWDO

PAGE 233

' :(// :(// 6SRQWDQHRXV 3RWHQWLDO *DPPD 5D\ N f f f f f f f ),*85( :(// $ :(// $ 'DWXP *DPPD 5D\ 6HD /HYHO 6FFNQHF/6 rR? 3/ 7 +$03 VS NW Y M &OOJRFHQHf I 30*6 VS 0LOOHU f a (/) VS IM $5& &2/8SSHU (&HQH! B 0LOOHU f *<3 VS 0LDGOH (RFHQHU , /FVN VS nY 6FDOH &KDQJH B f§L 9 ‘ /RZHU (RFHQHf 0LOOHU f f§ X 3DOHRFHQHf 0LOOHU f

PAGE 234

f f 1R +RUL]RQWDO 6FDOH

PAGE 235

, )2/'2: PL +(5( ,II

PAGE 237

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $QWKRQ\ ) 5DQGD]]R &KDLU n 3URIHVVRU RI *HRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'RXJODV /?ePLWK 3URIHVVRU RI *HRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ A 3DXO ) &LHVLHOVNL $VVRFLDWH 3URIHVVRU RI *HRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG +RGHOO $VVRFLDWH 3URIHVVRU RI *HRORJ\

PAGE 238

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHTUHH RI 'RFWRU RI 3KLORVRSK\ 7KRPDV &ULVPDQ 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI *HRORJ\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG LQ SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0D\ 'HDQ *UDGXDWH 6FKRRO

PAGE 239

81,9(56,7< 2) )/25,'$