Citation
Pressure measurement and flowfield characterization of a two- dimensional, ideally expanded, constant area, air/air ejector

Material Information

Title:
Pressure measurement and flowfield characterization of a two- dimensional, ideally expanded, constant area, air/air ejector
Creator:
Benjamin, Michael Anthony, 1962-
Publication Date:
Language:
English
Physical Description:
xxi, 195 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Diameters ( jstor )
Inlets ( jstor )
Mach number ( jstor )
Nozzles ( jstor )
Shear layers ( jstor )
Skewed distribution ( jstor )
Supersonics ( jstor )
Transducers ( jstor )
Turbulence ( jstor )
Velocity ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1994.
Bibliography:
Includes bibliographical references (leaves 188-194).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
Michael Anthony Benjamin.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
002044807 ( ALEPH )
AKN2723 ( NOTIS )
33373632 ( OCLC )

Downloads

This item has the following downloads:


Full Text









PRESSURE MEASUREMENT AND FLOWFIELD CHARACTERIZATION
OF A TWO-DIMENSIONAL, IDEALLY EXPANDED, CONSTANT AREA,
AIR/AIR EJECTOR















By

MICHAEL ANTHONY BENJAMIN


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1994
































Copyright C 1994

by

Michael Anthony Benjamin

































To my parents, to Felicity, and to Tristan ...













ACKNOWLEDGEMENTS


I would like to express my appreciation to Professor Vernon Roan for supervising

this interesting and difficult project. Our many discussions have kept the research

focused on the primary objectives, while he has allowed me free choice of the path to

arrive at those goals. He has been my mentor for more than seven years (four years for

this degree), and I consider him a friend.

I have had many fruitful conversations with Professor Calvin Oliver, and I am

much obliged for his help in solving an elusive electrical noise problem. Professor Wei

Shyy always managed to echo the nagging questions that one would like to avoid, but as

such has served my conscience well and inspired me to new heights, for which I thank

him.

The suggestions of Professors Jill Petersen and Jim Klausner on various aspects

of the experimental program are greatly appreciated. I am thankful for the expert

machining skills of Charles Simmons and Tommy Skipper and for the management of

Carl Cox of the Engineering Machine Shop, who went to great lengths to satisfy the

accurate construction of the test rig. I would like to thank the department's

Instrumentation and Innovation Laboratory manager, Robert Harker, for help in the design

and construction of the custom electronic circuits and for his good patience in that

endeavor. Additional thanks go to the department's technicians, Steve Sowa, Howard







Purdy, and Jeff Studstill, for their assistance with fabricating parts and help in the

laboratory.

Among my fellow graduate students, I am especially grateful for the help of Max

Dufflocq in the design of the test rig and the aligning of the optical system and to

Douglas Hyland for his loyal service in assembling the rig and rebuilding a large portion

of the air-supply facility. The contoured centerbodies and walls could not have been

fabricated without the expert CNC machine programming and operation by Britt Cobb and

the access to the Machine Tool Research Center granted by Professor Jiri Tlusty. Much

appreciated assistance with design drawings and facility construction was provided by

undergraduates Brian Holloway, Greg Bass, Chris Covington, Mitch Stokes, Stephanie

Webb, Reed Strickland, Brad Chung, and Mike Cowles.

The experimental facility was made available through research grant NAG3-1187

from the Propulsion Systems Branch of the NASA Lewis Research Center, which is

gratefully acknowledged. Additional financial support, for which I thank Professor Bill

Tiederman, has been provided by the Mechanical Engineering Department.

Lastly, and notably, I would like to thank my wife, Felicity, for her understanding

and patience during my often recondite deeds.














TABLE OF CONTENTS

paNe

ACKNOWLEDGEMENTS ........................................ iv

LIST OF TABLES ...................................... ........ ix

LIST OF FIGURES .................................... ........ x

NOMENCLATURE ............................................ xvi

ABSTRACT ................................................. xx

CHAPTERS

1 INTRODUCTION .................................... 1

1.1 B background .................................... 1
1.2 Ejectors ....................................... 4
1.3 O objective ...................................... 6

2 LITERATURE SURVEY ............................... 9

2.1 Turbulence Theory and Consequences ................. 10
2.1.1 Kolmogorov Theory ....................... 10
2.1.2 Inertial Spectrum Functions .................. 12
2.2 Turbulent-Pressure Investigations in Boundary-Layer Flows .. 16
2.2.1 Incompressible, Zero Pressure-Gradient Flows ..... 16
2.2.2 Compressible, Zero Pressure-Gradient Flow ...... 21
2.2.3 Incompressible, Adverse and Favorable Pressure-
Gradient Flows ......................... 22
2.3 Finite Transducer Size Effects ...................... 24
2.4 Shear-Layer Characteristics ........................ 24
2.5 Jet Acoustics .................................. 29








page

3 EXPERIMENTAL INVESTIGATION-HARDWARE, PROCEDURES
AND MIXING-SECTION INLET CONDITIONS ............ 36

3.1 General Description .............................. 36
3.2 Design M ethodology ............................. 37
3.3 Experimental Apparatus ........................... 38
3.3.1 Gas Storage and Delivery System ............. 39
3.3.2 Primary and Secondary Lines ................ 40
3.3.3 Plenums ............................... 41
3.3.3.1 Primary plenum .................. 41
3.3.3.2 Secondary plenums and flow passages ... 43
3.3.4 Primary Nozzle .......................... 44
3.3.5 M ixing Section .......................... 46
3.3.6 Traversing Impact-Pressure Probe ............. 48
3.3.7 Transition Diffuser and Exhaust ............... 49
3.4 Instrum entation ................................. 50
3.4.1 Impact Pressure .......................... 52
3.4.2 Sidewall Mean Static Pressure ................ 52
3.4.3 Sidewall Time-Accurate Pressure Measurements .. 53
3.4.4 Visualization .......................... .. 55
3.5 Data Collection ................................. 56
3.6 Signal Analysis ................................. 60
3.6.1 Autospectrum ........................... 60
3.6.2 Cross-spectrum .......................... 62
3.6.3 Correlation Functions ...................... 62
3.6.4 Transfer and Coherence Functions ............. 63
3.6.5 W windows .............................. 64
3.7 Boundary-Layer Conditions at the Mixing-Section Inlet ..... 65

4 EXPERIMENTAL RESULTS-mean MEASUREMENTS ........ 83

4.1 Experimental Objectives .......................... 83
4.2 Test Conditions ................................ 83
4.3 Optical Visualizations ............................ 84
4.3.1 W aves in the Flow ........................ 85
4.3.2 Growth Rates ........................... 85
4.3.3 Visible Structures ......................... 86
4.3.4 Laminar-to-Turbulent Transition .............. 88
4.4 Static W all-Pressure ............................. 88










4.5 Impact-Pressure Measurements ...................... 90
4.5.1 Normalized Profiles ....................... 90
4.5.2 Similarity Profiles ........................ 92
4.5.3 Growth-Rates ........................... 94
4.5.4 Entrainment .............................. 97
4.6 Contour Plots and Visualizations ..................... 98
4.6.1 Contour Plots ........................... 99
4.6.2 Color Visualizations ....................... 101

5 EXPERIMENTAL RESULTS-TIME-ACCURATE
MEASUREMENTS ................................. 122

5.1 Experimental Objective ........................... 122
5.2 Second, Third, and Fourth Moments of Pressure ......... 124
5.2.1 Mixing-Section Inlet Measurements ........... 124
5.2.2 Centerline Measurements .................. 127
5.2.3 Measurements at y/2b=-1.64 ...... ........ 129
5.2.4 Whole-Field Measurements ................. 129
5.3 Autospectra .................................. 131
5.3.1 Mixing-Section Inlet Measurements ........... 132
5.3.2 Centerline Measurements .................. 133
5.3.3 Measurements at y/2b=-1.64 ................ 135
5.4 Two-Point Spectral Measurements ................ 136
5.5 Narrowband Measurements ....................... 138

6 CONCLUSIONS AND RECOMMENDATIONS ............ 172

6.1 Conclusions from Significant Results ................ 172
6.2 Suggestions for Further Work ..................... 175

APPENDICES ........... ..... ................... ............ 177

A BOUNDARY-LAYER MODELS ........................ 177

B FLOW PARAMETERS FOR TABLES 4.1 AND 4.2 AND
SUPERSONIC PITOT PROBE DATA REDUCTION ........ 181

C PRESSURE TRANSDUCER PARAMETERS .............. 186

REFEREN CES ........................................... .. 188

BIOGRAPHICAL SKETCH ..................................... 195













LIST OF TABLES


Table page

3.1 Boundary-layer thicknesses of primary and secondary supplies ......... 67

4.1 Experimental flow conditions ............................... 102

4.2 Calculated nondimensional and flow parameters .................. 103

5.1 Calculation of the probability W that the wall pressure p exceeds
the threshold p, at x/2b=0 ................................. 140

5.2 Calculation of the probability W that the wall pressure p exceeds
the threshold pa at (x/2b, y/2b)=(6.89, 0) ...................... 141













LIST OF FIGURES


Figure page

1.1 Definitions of ejector regions and lengths ......................... 7

1.2 Comparison of similar geometry air-primary/air-secondary ejector
impact-pressure contours (kPa) from data of Roan et al. (1992, 1993).
P,=P2=34.5 kPa, Mi=2.20 in both cases.
(a) axisymmetric configuration, M2=0.64;
(b) two-dimensional planar configuration, M2=0.41 ................ 8

2.1 The three-dimensional velocity energy spectrum (after Hinze, 1975) ..... 34

2.2 Vortex-ring model of coherent structure and burst (after Kobashi and
Ichijo, 1986) .......................................... 34

2.3 Flow regimes in the ejector .................................. 34

3.1 Drawing of flow passages, flow-conditioning devices, and typical mixing-
section configuration ...................................... 68

3.2 Gas storage and delivery system .............................. 69

3.3 Flow conditioning sections, settling chambers and nozzles. Flow is
from right to left ........................................ 70

3.4 Nozzle-block dimensions ................................... 71

3.5 Mixing section and impact-pressure probe/pressure transducer/stepper-motor
assembly. Mixing-section extension is not shown ................. 72

3.6 Wall static-pressure plate used for manometer and strain-gauge transducer
measurements ......... ........... .. .................... 73

3.7 Brass transducer-sleeves and plugs used for time-accurate wall-pressure
m easurem ents .......................................... 74






Figure page

3.8 Plates used for time-accurate wall-pressure measurements. Only one
plate was actually installed for a test run ........................ 75

3.9 Top rail of mixing section showing fitted plugs ....... ........... 76

3.10 Plugs for top and bottom rails of the mixing section ................ 77

3.11 Exhaust system ............................. ............. 78

3.12 Schematic of instrumentation and computer interface ............... 79

3.13 Custom-built power supply for Kulite transducer .................. 80

3.14 Custom-built buffer amplifier, gain=l ................... ...... 80

3.15 Schlieren setup ..................... ................... 81

3.16 Optical window installation ................. ................ 82

4.1 Schlieren visualization. Knife edge at 00 (horizontal).
(a) low contrast;
(b) high contrast ................ ...................... 104

4.2 Schlieren visualization. Knife edge at 300 (from horizontal).
(a) low contrast;
(b) high contrast ....................................... 104

4.3 Schlieren visualization. Knife edge at 600 (from horizontal).
(a) low contrast;
(b) high contrast ....................................... 105

4.4 Schlieren visualization. Knife edge at 90 (from horizontal).
(a) low contrast;
(b) high contrast ....................................... 105

4.5 Shadowgraph visualization ................................. 106

4.6 Typical manometer reading. Three reference pressures (one for each
mercury reservoir) are indicated by tubes 1, 11, and 21 from the left.
From left to right, the rest of the tubes indicate increasing pressure in
the downstream direction. .................... .............. 107






Figure page

4.7 Mean static-pressure measurements on the wall. 95% confidence
intervals are shown.
(a) Comparison of the three types of static-pressure measurements
made on the left wall of the mixing section;
(b) Difference between the strain-guage and manometer static-pressure
readings on the wall ............................. .... 108

4.8 Comparison of manometer static-pressure measurements on the left and
right walls of the mixing section ............................. 109

4.9 Impact-pressure traverses.
(a) 0xx/2bs7.91;
(b) 12.6sx/2bs20.2 ............ .................... .... 110

4.10 Unrepeatable impact-pressure traverses.
(a) x/2b=15.8;
(b) x/2b=20.6 ........................................ 111

4.11 Normalized centerline values of velocity, density, and dynamic pressure .112

4.12 Normalized impact-pressure plotted against normalized shear-layer ..... 112

4.13 Shear-layer edges determined from impact-pressure measurements ..... 113

4.14 Measured shear-layer thicknesses, growth rates, and virtual origins ..... 113

4.15 Comparison of normalized growth-rates for ejector shear-layers (current
experiment, and Benjamin et al. (1993)) and free-shear layers ........ 114

4.16 Contour plots generated from impact-pressure measurements.
(a) P,/Po2;
(b) PPo2 ;
(c) P/P2;
(d) U/U2;
(e) M;
(f) Q/Qi2;
(g) P/P .............. .......................... .. ........... 115

4.17 Detailed dynamic-pressure contour plot generated from impact-pressure
m easurem ents ......................................... 117







Figure page

4.18 Color plots of mean flow parameters. From top to bottom are impact
pressure Pi,, stagnation pressure Po, density p, velocity U, Mach
number M, and dynamic pressure Q. The maximum contour levels are
white and the lowest are black ............................. 121

5.1 Normalized turbulent wall-pressure at the mixing-section inlet, x/2b=-0 142

5.2 Skewness at the mixing-section inlet, x/2b=0 .................... 142

5.3 Kurtosis at the mixing-section inlet, x/2b=0 .................... 143

5.4 Probability density function of wall-pressure at the 144
mixing-section inlet, x/2b=0 ........................ ..... 143

5.5 Turbulent wall-pressure along the wall centerline, y/2b=0 ........... 144

5.6 Skewness along the wall centerline, y/2b=0 ..................... 144

5.7 Kurtosis along the wall centerline, y/2b=0 ...................... 145

5.8 Turbulent wall-pressure along the wall at y/2b=-1.64 .............. 145

5.9 Skewness along the wall at y/2b=-1.64 ........................ 146

5.10 Kurtosis along the wall at y/2b=-1.64 ......................... 146

5.11 Comparison of turbulent wall-pressure along the wall at
y/2b=0 and y/2b=-1.64 ..................... ............. 147

5.12 Comparison of skewness along the wall at y/2b=0 and y/2b=-1.64 ..... 147

5.13 Comparison of kurtosis along the wall at y/2b=0 and y/2b=-1.64 ...... 148

5.14 Color plots of turbulent wall-pressure.
(a) ps;
(b) p. P, ;
(c) dB p (re: 20 tPa) ...................... ............ 150

5.15 Color plots of higher-higher order wall pressure statistics.
(a) Skewness;
(b) Kurtosis ....................... ............. ..... 152






Figure page

5.16 Probability density function of wall-pressure at the location of maximum
skewness and kurtosis, (x/2b, y/2b)=(0, 6.89) ................... 153

5.17 Wall-pressure spectra and repeatability at the mixing-section inlet, x/2b-0.
(a) y/2b=-1.08;
(b) y/2b=0;
(c) y/2b=1.08 ....................................... 154

5.18 Wall-pressure spectral decay slopes at the mixing-section inlet, x/2b=0.
(a) In the secondary flow at y/2b=-0.81;
(b) In the shear-layer at y/2b=-0.54;
(c) In the primary flow at y/2b=0.27;
(d) In the secondary flow at y/2b=0.54 ..................... 155

5.19 Development of the wall-pressure spectra along the centerline, y/2b=0 156

5.20 Development of the wall-pressure spectra along the line y/2b=-1.64 .... 159

5.21 Two-point, transverse pressure-spectra at x/2b=0. Measurement locations are
in the upper and lower secondary streams at y/2b=-1.36 and y/2b=1.09 161

5.22 Two-point, transverse pressure-spectra at x/2b=0. Measurement locations are
in the primary flow at y/2b=0 and y/2b--0.27 ................... 162

5.23 Two-point, longitudinal pressure-spectra at y/2b=0. Measurement locations
are just before the end of the primary core at x/2b=8.83 and x/2b=9.15.
Measurement bandwidth is 20 kHz ........................... 163

5.24 Two-point, transverse pressure-spectra just downstream of the end of the
primary core at x/2b=10.34. Measurement locations are either side of the
centerline at y/2b=-0.27 and y/2b=0.27 ....................... 164

5.25 Two-point, transverse pressure-spectra just downstream of the end of the
primary core at x/2b=10.34. Measurement locations are on the lower
side of the mixing section at y/2b=-1.08 and x/2b=-0.27 ........... 165

5.26 Two-point, transverse pressure-spectra at the streamwise location where
the shear layers interact with the wall, x/2b=17.23. Measurement
locations are on the lower side of the mixing section at y/2b=-0.54 and
x/2b=-0.27 .................................. .......... 166









5.27 Two-point, transverse pressure-spectra at the streamwise location where
the shear layers interact with the wall, x/2b=17.23. Measurement
locations are on the lower side of the mixing section at y/2b=-1.87 and
x/2b=-0.81 ................................ ........... 167

5.28 Two-point, transverse pressure-spectra at the streamwise location where
the shear layers interact with the wall, x/2b=17.23. Measurement
locations are on the lower side of the mixing section at y/2b=-1.87 and
x/2b=-0.27 .............................. .............. 168

5.29 Two-point, transverse pressure-spectra at the streamwise location where
the shear layers interact with the wall, x/2b=17.23. Measurement
locations are either side of the centerline at y/2b=-1.87 and x/2b=1.08 169

5.30 Color plots of narrowband measurements.
(a) 312.5 Hz;
(b) 3.625 kHz;
(c) 49.625 kHz where sharp or broad peak is present;
(d) 49.625 kHz where only sharp peak is present ............... 171


Figure


Ra.e











NOMENCLATURE


Symbol Description
Ai Mixing-section inlet area of interest
b Primary nozzle exit half-height
c Sound speed
d Pressure transducer sensor diameter
E(k, t) Velocity spectrum function, see Fig. 2.1
Em Mass entrainment ratio, r i2/?1

Ey Volumetric entrainment ratio, V12/l2

f Frequency
f(M) Convective Mach number function, see Eq. (2.35)

h Primary nozzle throat half-height

H. transfer function of pressure, see Eq. (5.6)

k Wavenumber (customarily based on convective velocity of wave with
frequency f, k=w/uc(f) ).

K Kurtosis of pressure, see Eq. (5.3)
Li Length of region i

max Maximum value at streamwise location
min Minimum value at streamwise location
i Mass flowrate
M Mach number
M Convective Mach number, see Eqs. (2.32) and (2.33)

M Relative Mach number, see Eq. (B.21)

MW Molecular weight








p Static pressure
P Mean static pressure
P Impact pressure
Po Mean stagnation pressure

Q Mean streamwise dynamic pressure, 'pU2

r Secondary to primary velocity ratio, U2/U1
R Gas constant
RP Pressure correlation, see Eq. (5.4)
Re Reynolds number
Re Reynolds number per unit length, see Eqs. (B.26) and (B.27)
Re8 Reynolds number based on visual shear-layer thickness at streamwise
distance x Re =(p, AUS i)/l

Re Reynolds number based on streamwise distance x Rex =(PiU1x )/J1

s Secondary to primary density ratio, p2/ P

S Skewness of pressure, see Eq. (5.2)
S Pressure autocorrelation, see Eq. (5.7)

S Pressure spectral density, see Eq. (5.5)

t Elapsed time from start of measurement
T Static temperature, or time-accurate measurement duration
To Stagnation temperature
u Velocity
u Fluctuating streamwise velocity component
uT Friction velocity, uX=J/j
U Mean velocity component
Uc Convective velocity, see Eqs. (2.30) and (2.31)

v Fluctuating transverse velocity component

V Volumetric flow rate


xvii








W(p x Streamwise direction
x Position vector
xo Shear-layer streamwise virtual origin
xg Streamwise distance to visible shear-layer growth

y Transverse direction


Greek Symbols
y Constant-pressure specific heat ratio
y Coherence of pressure, see Eq. (5.8)
8 Boundary-layer thickness or characteristic shear-layer length scale defined
in section 5.3
s8 Visual shear-layer thickness

8' Shear-layer growth rate

8/ Vorticity thickness growth-rate, see Eq. (4.7)

8* Boundary-layer displacement thickness
e Time-average energy dissipation per unit mass and time
1
7 Kolmogorov length scale 1=(v3/e)4, or normalized shear-layer thickness,
see Eq. (4.2)
0 Initial boundary-layer momentum thickness

/ Molecular dynamic viscosity
v Kinematic viscosity
rr Normalized impact-pressure, see Eq. (4.3)
I Coles' pressure-gradient parameter

p Mean static density

Po Mean stagnation density
S- Shear stress
I Spectral density of pressure, see Eq. (5.10)


xviii







- Angular frequency, o =2irf


Subscripts
0 Incompressible value at same r and s.
1 High-speed (primary) stream condition
2 Low-speed (secondary) stream condition
ave Based on average of streams 1 and 2
cl Centerline value, y=0
i Stream i condition, or mixing-section inlet condition
,i Mixing-section inlet condition
i,j Stream j condition at inlet plane
pit Impact-probe value
rms Root-mean-square value
th Threshold value
w Value at the wall
oo Boundary-layer freestream condition



Superscripts
* Complex conjugate
+ Non-dimensionalized value using inner variables
' Fluctuating quantity


Other Symbols
< > Ensemble average













Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

PRESSURE MEASUREMENT AND FLOWFIELD CHARACTERIZATION
OF A TWO-DIMENSIONAL, IDEALLY EXPANDED, CONSTANT AREA,
AIR/AIR EJECTOR

By

Michael Anthony Benjamin

December 1994




Chairman: Vernon P. Roan
Major Department: Mechanical Engineering

A detailed experimental investigation of a two-dimensional, Mach 1.8 air-primary,

Mach 0.3 air-secondary ejector at high Reynolds number has been performed, from which

a nonintrusive method for whole-field visualization using turbulent wall-pressure has been

developed.

The experiments were conducted using mean and time-accurate wall pressure

measurements, impact-pressure measurements using a traversing probe, and Schlieren and

shadowgraph visualization techniques. The time-accurate pressure measurements were

recorded using a sealed Kulite miniature pressure transducer with a 0.7 mm diameter

sensing diaphragm. For all except the optical methods, measurements were taken from







the initial flow interface to about 13 hydraulic tube-diameters downstream in the constant-

area mixing section.

From the mean measurements, values of stagnation pressure, density, velocity,

static pressure, Mach number, and dynamic pressure were developed and are presented.

Using the time-accurate pressure measurements, a color contour plot of the rms

pressure was developed that definitively shows the regions of the flow in agreement with

the other measurements. Additionally, probability density functions, skewness, and

kurtosis were calculated. Peak values of skewness (S) and kurtosis (K) on the centerline

at about 2.5 hydraulic diameters are S=1.85 and K=1 1.5. The inlet rms pressure values,

normalized by freestream dynamic pressure for the primary (-0.001), were found to be

in fair agreement with previous experimental values; however, those in the secondary

were much higher (-0.2), apparently due to the acoustic radiation from the primary.

Fourier analysis of the time-accurate pressure measurements show that the

autospectra contain k', k'7, and k"' pressure spectrum functions as predicted by

prevailing theory for the overlap layer, turbulence-turbulence interaction, and turbulence-

mean-shear interaction, respectively. It is believed that this is the first experiment in

which the k"' spectral slope has been observed, perhaps as a result of the high Reynolds

number.

Two-point longitudinal and transverse measurements are presented that show the

development of multiple large eddies in the flow.













CHAPTER 1
INTRODUCTION

1.1 Background
To meet the challenge of increasing the performance of modem gas turbines,
designers require knowledge of the smallest details and behavior of the flow. These

effects cannot be modelled using computational methods without some knowledge of what

they are and where they originate. Where they originate is dependent upon several factors

including turbulence behavior, turbulence/shock interaction, the physical shape/design of

the enclosure, and the mean dynamics of the flowfield. The range of details from mean

to Kolmogorov flow scales, as well as wall roughness and slip at the wall, cannot be

closely modelled even with some of our best computational techniques, such as Direct

Numerical Simulation (DNS). Turbulence alone can be modelled using DNS, but DNS

is limited by machine speed and memory so that current DNS flows have, at best, a

Reynolds number of the order of 1,000 and a spatial resolution that can resolve details

up to about 1000 wall units, far short of what is required for complete modelling of a

complex flow.

Experimental noise analysis techniques using piezo-electric pressure transducers

(e.g., Willmarth 1958b, Kistler and Chen 1963) or microphones (Schewe 1983) have been

used for about 40 years to measure turbulent wall-pressure, sparked by the need to

investigate and control the effect of pressure on aircraft fuselages. Throughout the 1950s

and 1960s, most fundamental experimental research focused on turbulent wall-pressure

measurements under a thick flat-plate boundary-layer (e.g., Willmarth 1956). This led to

the familiar result of the turbulent energy cascade from large eddies (integral scale) to







2
small eddies (dissipation scale) via the inertial subrange, which was in accord with

Kolmogorov's first and second hypotheses. Following the end of the Apollo and

supersonic transport (SST) programs of the 1960s, experimental research in this area has

focused on fundamental understanding of the small scale disturbances in the flow near

the wall.

An area of current interest that can be used to further understand some of the

fundamental details associated with internal mixing flows is to study the ejector shear-

layer, which comprises a supersonic primary jet and a subsonic secondary flow.

Presently, the model of a developing ejector-flowfield is typically divided into three

regions preceded by uniform primary and secondary flows, and followed by a region of

fully mixed flow (see Fig. 1.1). Modelling the ejector using a computational process,

which will not be addressed in this work, involves a marching scheme that starts at the

point of initial contact (start of region 1).

Region 1 begins with this initial contact and ends where the potential core of the

primary ends. Region 2 also begins with the initial contact and ends where the secondary

shear layer reaches the wall. Region 3 starts at the end of region 1 or 2 (whichever is

longer) and continues until the streams are fully mixed.

Recent experimental work at the University of Florida (Petersen et al. 1992, Roan

et al. 1992, 1993, Dufflocq et al. 1992, 1993, Benjamin et al. 1993) has focused on

traversing an impact probe across both axisymmetric and two-dimensional planar flows

at several axial positions, which has enabled some understanding of the flow inasmuch

as pumping performance was measured and compared to theory, growth rates were

estimated, and the lengths of regions 1, 2 and 3 were measured or inferred when possible.

This experimental work has led to the development of a semi-empirical model for

predicting the lengths of regions 1 and 2 (Benjamin and Roan 1993). In the axisymmetric

case, the experiments identified large coherent structures in the primary core that probably








3
result from vortex/shock-wave interaction, whereas such structures are not apparent in the

two-dimensional planar case. Figure 1.2 shows a comparison of an axisymmetric and a

two-dimensional planar case at similar flow conditions. The result of the vortex/shock

interactions is seen in region 1 of the axisymmetric case.

Most experimental research of high speed internal flows has relied mainly on

techniques such as laser doppler velocimetry or insertion of some type of pressure probe

into the flow. The current research was undertaken using a different approach to provide

additional detailed measurements necessary to better understand and enhance the ability

to measure and predict the behavior of ejector flowfields. The research was also designed

to provide more insight into the structure of this type of internal flow and, hence, enable

designers to better optimize their designs.

This research investigates compressible shear-flow regions that are sandwiched

between two essentially inviscid streams of supersonic and subsonic fluid, all of which

are surrounded by boundary layers. Far downstream where the shear layers have reached

the walls, the flowfield comprises only shearing fluid in the freestream, which is again

surrounded by boundary layers. There is no reason to expect that, in terms of the

turbulent-pressure field, the inviscid flow regions behave any differently from previously

reported subsonic and supersonic turbulent boundary-layer flows, although jet-noise

contamination may be present. The behavior of the shearing regions is undetermined and

results from this research will characterize them. On the small scales in discrete ranges

of the universal equilibrium range, local isotropy should generally still apply because

compressibility simply acts as a source of dissipation in addition to the viscous stresses

(Hinze 1975, p. 312). Also, if there is significant acoustic radiation emitted or absorbed,

a change in the energy transfer rate will occur that will cause a change in the spectral

slope. Hence, a knowledge of the physics or behavior of the following is required to lay

the foundations for ejector flow:









(1) the fundamental premises of turbulent flow,

(2) the turbulent boundary-layer in subsonic and supersonic flows under the
influence of zero-, adverse-, and favorable-pressure gradients,

(3) mean freestream-pressure and velocity fields,

(4) ejector shear-layer growth rates, and

(5) acoustic phenomena of jets.
The effect of pressure transducer size on resolution of all the pressure scales in

the flow is a concern that has been studied to a fair degree and is also outlined.

1.2 Ejectors

Ejector systems have been investigated for many years due to the interest in their

fluid-pumping ability. These devices are of particular interest to the aircraft industry,

where they have been studied and employed for their enhancement of thrust augmentation,

lift augmentation and engine-noise reduction (Braden et al. 1982). Other possible

applications of ejectors include jet pump compression, extraction of secondary fluids,

ventilation and air conditioning, innovative thermal cycles, and high energy chemical

lasers (Power 1994).

The pumping ability of ejectors is primarily the result of momentum transfer from

the high-velocity primary fluid to the slower secondary fluid. Ultimately, the overall

performance of these devices is influenced by a number of physical processes that

individually and/or collectively govern the development of the associated flowfields.

Among the processes of interest are (a) details of mixing of primary and secondary

streams, (b) viscous dissipation due to mixing, compression waves, and solid boundaries,

and (c) the effects of geometry. Maximizing ejector efficiency translates into enhancing

the mechanisms that result in efficient mass and momentum transfer and inhibiting those

that have a detrimental effect.








5
An ideal ejector is one yielding ideal primary-to-mixed out momentum transfer as

determined from a control volume analysis. In a real ejector, the closest to ideal that can

be obtained is a configuration where the shroud of the ejector is long enough to allow for

near completion of the mixing process and yet short enough to minimize wall friction

losses. (Additionally, there are area ratio trade-offs.) These are conflicting ideals that

have been well substantiated by ejector studies. Therefore, ejector design compels trade-

offs where the goal is to find the optimum balance between these opposing factors for

given requirements and input parameters.

Traditionally, theoretical ejectors studies have been aimed at comparing predicted

overall performance-usually in terms of thrust augmentation, overall pressure ratio, or

entrainment ratio-with results obtained experimentally (Braden et al. 1982, Petersen et

al. 1992). In many cases, performance is predicted using one-dimensional conservation

equations to find flow properties at the "fully mixed" exit plane of the ejector. Such

models show the general trends that are expected under ideal flow conditions (uniform

flow and no losses). However, they generally predict performance superior to those of

real ejectors, and, hence, their value as design tools is limited.

Similarly, semi-empirical models have been used to predict real ejector flowfields
in which undesired dissipation effects are unavoidable. Here, factors such as wall

frictional losses, nonuniform inlet and exit flow, imperfect mixing of the two streams, and

primary nozzle efficiencies, for example, are taken into account using best estimates. The

approach in this case has usually been to adjust parameters within the model ("calibrate")

so that predicted flowfields match the experimental results. These models are only valid

for the range of calibrated ejector geometries and flow parameters, and, therefore, their
potential as design tools is also limited.

Progress in ejector technology largely depends on being able to predict ejector
flows accurately. This ability can only be achieved through a better understanding of the






6

physical processes that govern these flowfields, as well as the ability to measure the

details of these flowfields effectively. The experimental investigation outlined below is
aimed at providing additional detailed data necessary to further understand these

mechanisms and thus improve current ejector models.

1.3 Objective

The flowfield of a two-dimensional, single-nozzle (method of characteristics

profile) ejector was investigated to improve the design optimization process for ejectors.

A series of detailed time-accurate wall-pressure measurements were undertaken using

miniature pressure transducers having 0.7 mm diameter diaphragms and installed in

interchangeable wall-plates. The arrangement allowed plenty of flexibility for a pair of

transducers to be positioned at almost any wall location and with a wide range of spacing

either longitudinally or laterally. One- and two-point measurements were recorded,

enabling calculation of the rms pressure, skewness, kurtosis, autospectra and cross-spectra.

From these measurements, a nonintrusive technique was sought to identify the different

regions of the flow.

Schlieren and shadowgraph visualization were employed for mean fluid-structure

information and to look for evidence of large structures. Also, the mean flowfield was

determined using an impact-pressure probe.

The wall locations of disturbances and their statistics were investigated to see if

their effects, when compared to a similar uncontained flow, indicate the nature of the

fluid mechanisms present in the ejector.

Also, the ends of regions 1 and 2 were located by measuring turbulent wall

pressures and are compared to those obtained from the mean measurements. Finally, two-

dimensional graphics were developed from the mean and turbulent experimental data.


















x=x x=L,+x x=L2 +xgr
XIdY- I I I
x=OI I I
Sx=01 I I



Secondary > 2b -I- --
2b I-t


Primary ------- -!- 2h
I ---
Sawdy L%-n

Secondary I "I -


Region I
-- Region 2
Region 3


Figure 1.1 Definition of ejector regions and lengths.































x. (n-)


x. On)


Comparison of similar geometry air-primary/air-secondary ejector impact-
pressure contours (kPa) from data of Roan et al. (1992, 1993).
P,=P2=34.5 kPa, Mi=2.20 in both cases.
(a) axisymmetric configuration, M2=0.64;
(b) two-dimensional planar configuration, M2=0.41.


Figure 1.2











CHAPTER 2
LITERATURE SURVEY

In considering the turbulent flow in ejectors, it is helpful to have a general

background of the behavior of individual, or related, aspects of the flow. Obviously, it

is desirable to first understand the regions of the mean flowfield. The second area of

understanding is of the acoustic behavior of jets. There have been many acoustic studies

of free jets and some on ejectors, but these have been studies that measure the pressure

radiated from the flow. Radiated pressure is difficult to interpret physically because the

intensity of acoustic radiation not only originates from turbulent eddy vorticity but, at

least, is influenced by observation vector, local Mach number, and turbulent velocity.

The third area of understanding is that of turbulent wall-pressure measurements under

boundary layers in zero, adverse, and favorable pressure gradient flows. There are several

excellent incompressible studies in this area that have been made over the last 35 years

that have characterized these flows fairly comprehensively. There have been very few

studies in compressible (especially supersonic) boundary layer flow, and those studies are

limited in scope due to the inherent difficulty of the measurements. Excellent

comprehensive reviews of turbulent wall-pressures in incompressible flows have been

compiled by Willmarth (1975) and Eckelmann (1990).

The background on turbulence, and especially the first and second Kolmogorov

hypotheses (Kolmogorov 1941a, b, hereinafter referred to as K41), provide the motivation

for the experimental methods and results presented in the present research.









2.1 Turbulence Theory and Consequences

The foundation for a statistical description of turbulent fluid mechanics is first

presented, followed by a discussion of its application to spectrum functions.

2.1.1 Kolmogorov Theory
The two K41 hypotheses are derived using the definitions of local homogeneity

and local isotropy. Turbulence is called homogeneous when the spatial derivatives of

mean turbulence quantities are zero, e.g.,



aui(x) i1 U;2(X)
ui(x -0
&. 2 d. (2.1)


The turbulence is isotropic when it is homogeneous and invariant with respect to

rotations and reflections of the original spatial coordinate axes. At sufficiently high

Reynolds numbers, the turbulence can be considered locally isotropic with good

approximation in sufficiently small domains not lying near the boundary of the flow or

its other singularities. There is no rigorous proof for this definition, but the experimental

evidence of approximate isotropy and homogeneity is well established experimentally for

flow downstream from a regular array of rods in a wind tunnel (Taylor 1935).

The first hypothesis can be summarized as follows: For the locally isotropic

turbulence there exists a range of high wavenumbers where the turbulence is statistically

in equilibrium and uniquely determined by the average dissipation by turbulence, s, and

the cinematic viscosity, v. The state of equilibrium is universal. This equilibrium range

is termed universal because the turbulence in this range is independent of external

conditions. Also, any change in the effective length scale and/or time scale of this

turbulence can only be a result of the effect of the parameters e and v.









To put this hypothesis into mathematics (Sreenivasan 1991), the hypothesis can
be restated such that the multivariate probability distributions of the velocity difference
in a direction i, Aui=ui(x) -ui(+f)r, are functions only of r=rIF, e, and v. Specifically,
the nth-order structure functions have the form


Iu, n=(Er)O'f,(ri/ ) (2.2)


Here, 7 =(v3/e)114 is the Kolmogorov length scale and the functions f, are universal; Tr is
on the order of magnitude of the energy dissipation scales.
The second K41 hypothesis states that, at very high Reynolds numbers, there is
a range of scales 7 become independent of viscosity; that is, f,(oo) =K, where K. are universal constants
independent of the flow



Aui n =Kn (r),O (2.3)


The K41 hypotheses arise fundamentally from dimensional arguments, and their
validity rests on experimental support (Sreenivasan 1991).
The idea of intermittency was first pointed out by Landau in 1944 (Landau and
Lifshitz 1987) and arises due to spatial variations ofe over physical volumes larger than
the inertial subrange, i.e., the energy cascade process in the inertial subrange undergoes
fluctuations caused by larger than inertial-subrange scales. Therefore, intermittency
causes nonuniversality of the constants, K,, because the large scales are flow-specific.
Recent experimental measurements of high-order velocity structure functions (Anselmet
et al. 1984) indicate that the scaling function exponent, n, shows strong deviation (i.e.,
non-Gaussian statistics) from the K41 theory for structure functions higher than second-









order. There is currently much discussion and controversy about the fundamental cause
for intermittency, and the reader is referred to Sreenivasan (1991) and Anselmet et al.
(1984) for more detailed discussion.

2.1.2 Inertial Spectrum Functions
Using Kolmogorov's second hypothesis, it can be shown from dimensional analysis
(e.g., George et al. 1984) that the velocity spectrum function in the inertial subrange is
given by


2 5 (2.4)
E(k)=ae3k 3



where E(k) is defined by



E(k)= f fF () do4Q)
(2.5)


where the integral is over spherical shells a of radius k. The cross-spectral densities of
the velocity moments are



F1j(-) 1 fff-el-.rB (f)a 3F_
F (2)3 (2.6)


with the velocity moments defined as


(2.7)


B j(r)= ui(F ) ui(f-+r)








13

Tennekes and Lumley (1987) recommend that experimental data indicate a=1.5,

approximately. Figure 2.1 shows the form of the velocity spectrum function over all

wavenumbers.

George et al. (1984) derived models for turbulent pressure fluctuations by directly

Fourier transforming the integral solution to the incompressible Poisson equation for a

constant-mean-shear-flow (the integral solution is presented in the next section). They

found that the spectrum function



E,(k)= ffF, (i) dao) (2.8)


is composed of three parts as follows:



E (k) =rk) +r,(k) +t(k) (2.9)


where sr, and ir. represent the second- and third-moment turbulence-mean-shear

interaction spectrum functions respectively, and rT, represents the turbulence-turbulence

interaction spectrum function. The inertial subrange for each of these spectrum functions

must be determined by only the parameters k, e, and the mean-shear velocity-gradient K

By dimensional analysis, they arrive at



1 2 11
-2s2( 2)=aK2 3 k 3
P (2.10)










1-1',(k) =a, Kk -3
P 2(2.11)




1
-n-(k)=a ke 3
P2 (2.12)


where ac., a, and a, are constants. These constants are found by assuming that the

turbulence is isotropic, although the turbulence-mean-shear interaction is not. The values

of constants calculated by George et al. (1984) for the one-dimensional spectrum (which

can be measured) are



Pf=0.307a (2.13)


=3-0 (2.14)



P =0.283a2 (2.15)


From their calculations George et al. (1984) suggest that the shear contribution is

impossible to isolate from spectral data, even in flows with moderate-to-high shear rates

relative to the turbulence shear-rate u/l, and conclude that this is the reason that such a

range has not been previously observed. They also note that there is no direct dissipation
of pressure fluctuations.

Bradshaw (1967b) argues by dimensional reasoning, or by direct substitution into

the Poisson equation, that the one-dimensional spectral density is proportional to k' in the

overlap region of the turbulent boundary layer. Panton and Linebarger (1974) calculated









wall pressure spectra using the Law of the Wall and Coles' wake function, which also
revealed an overlap region ofk'. Following Panton and Linebarger (1974), P denotes the
spectrum in outer variables and T the spectrum in inner variables. 11 is Coles' pressure

gradient parameter. Then


P(k1i; n) = +(ki)/yT2 6, P(klv/u) = (k1)u, /T 2 v, Re = u, /v (2.16)


There is an intermediate wavenumber where these expressions are equal: P=P/Re.

Additionally, if there is a range of wavenumbers where the expressions are equal, then

the equality may be differentiated for this range such that


(k,6)2 P'(k,6; n) = (kv/u~2 P'(kiv/u,) = const. (2.17)


For this expression to be true, P must be independent of n in the overlap region, and the

spectra have the form


P(k,6)2 = A(kb6)', P'(klv/u) = A(kv/u)-' (2.18)


This gives a straight line slope of -1 on a log-log scale. Panton and Linebarger (1974)

conclude, along with Bradshaw (1967b), that the overlap region is beyond the reach (too

high frequency) of most measurements.

Recent measurements by Farabee and Casarella (1991) show that in the very low

wavenumber region, the spectrum follows a k' behavior, as suggested by Bradshaw

(1967a).









2.2 Turbulent-Pressure Investigations in Boundary-Layer Flows

The flows in ejectors have regions of zero, adverse and favorable pressure-

gradients that will affect the wall-pressure measurements. Hence, presentation of

pertinent literature for such pressure-gradient flows, as well as the effects of rough and

smooth walls, is covered in the following three subsections.

2.2.1 Incompressible. Zero Pressure-Gradient Flows

The incompressible Navier-Stokes equation may be given by



aui &,uUj 1-p -2
+ +v-U.
at aJ pri afr, (2.19)


and taking the divergence of Eq. (2.19) gives the relationship between the pressure and

velocity fields (Lilley and Hodgson, 1960):



pq
a&'i (2.20)

where


q-
&iAj (2.21)



The right-hand side of Eq. (2.21) can be manipulated (Thomas and Bull, 1983) to give


aui ,j' 2 / / ,/\
q=2 +-- uiu; -uiu
8x x. x,8x .
j J


(2.22)







17

These equations show that the pressure field is related to the velocity field through the

turbulence-mean-shear and turbulence-turbulence shear stress interactions.

The solution for the fluctuating pressure on the wall pw using the integral solution

for the Poisson equation in the half-plane, and neglecting surface integrals (Lilley and

Hodgson, 1960) can be written



_p,) q dV-)
20/x x/ s (2.23)


This indicates that sources over a region of flow (theoretically, a semi-infinite region) will

contribute to the wall pressure fluctuations and that the contributions from various source

regions will fall off rapidly with their distance from the point under consideration

(Thomas and Bull, 1983).

Kraichnan (1956a, b) was the first to report theoretical estimates for the mean-

square wall-pressure and spectra. He overcame the difficulty of having to treat the

turbulent boundary layer as anisotropic by assuming that the turbulent flow is

homogeneous in planes parallel to the wall. The source terms for the turbulence-mean-

shear interactions were estimated based on a rough approximation (-50% accuracy) to the

mean shear and Kraichnan's (1956a) results for the Fourier-transformed velocity and

pressure fields for homogeneous anisotropic turbulence. The prediction of the ratio of

root-mean-square (rms) wall-pressure fluctuations to mean wall shear stress was of order

six, much more accurate than would be expected. He also found that for the

homogeneous and anisotropic cases, the rms turbulent pressure for the turbulence-mean-

shear interactions was 8.25 times larger than that of the turbulence-turbulence interactions.

Incompressible measurements by Willmarth and Wooldridge (1962) under a thick

boundary layer showed that the rms wall pressure was 2.19 times the wall shear stress.







18

Static pressure fluctuations over a flat boundary in the atmospheric boundary layer by

Elliott (1972) were found to produce turbulent pressure values of about 2.6 times the

mean stress at heights up to 6 m. Hinze (1975) recommends that a reasonable average

from all incompressible experimental data available is pW.3r,. Willmarth (1975)

concluded that the ratio of turbulent wall-pressure to freestream dynamic pressure has a

value of 0.0035 for incompressible flow.

Corcos (1964) made some calculations based on pressure and velocity experiments

and found that the inner part of the Law of the Wall region (y+100) seemed to be

substantially free of pressure sources (except perhaps at very high frequencies), and within

that region (a) the pressure can be given in terms of its boundary value, and (b) the local

velocity field is dependent upon but unable to affect appreciably the turbulent pressures.

Using the method of space-time correlation, Willmarth (1958a) discovered that the

random pressure fluctuations under a flat-plate boundary layer were convected with a

speed of approximately 0.8U,. More detailed experiments (Willmarth and Wooldridge

1962, Bull 1963) showed that the convection velocity varies with streamwise spatial

separation of the measuring stations and that for small spatial separation the convection

velocity is low, 0.56U, but increases to 0.83U, for very large spatial separation. The

increase in convection velocity with streamwise separation of measuring points was

attributed to the more rapid decay of the smaller pressure producing eddies. Wills (1970)

measured the wave-number/phase velocity spectrum of the wall-pressure, which showed

the above relation for different wavenumbers (eddy sizes). Willmarth and Wooldridge

(1962) also concluded that a pressure-producing eddy of large or small wavelength X
decays and vanishes after travelling a distance of approximately 6k.

The effect of wall roughness was investigated by Blake (1970), who found that

there was no effect on the ratio of rms wall pressure to wall shear stress. However, the







19

magnitude of the rough-wall rms pressure increased by at least a factor of two over the
smooth wall value.

From an analysis of several experimental investigations, Thomas and Bull (1983)

proposed that the dominant contribution to the rms pressure fluctuations comes from the

source term associated with the turbulence-mean-shear in agreement with Kraichnan and

hence, for two-dimensional flow, Eq. (2.23) becomes



S p r P U av dV' )
2> ay ax -S (2.24)


Schewe (1983) found that the skewness of the turbulent pressure has a value of

-0.2 and a kurtosis of 4.9, compared to values of 0 and 3, respectively, for a Gaussian

distribution. Analysis of the time records showed that the difference from the Gaussian
was caused by wavetrains or pulses that convect at 0.53U., and can therefore be attributed

to pressure structures in the buffer layer at 12sy':21 based on the measured velocity

profile. The measurements also confirmed that there were more negative pulses than

positive ones as indicated by the negative skewness. The characteristic wavelength of the

wavetrains based on their frequency of occurrence and their convective velocity was

.=hXujv=145. Hence, a transducer would have to be smaller than X'=145 to begin to
resolve the wavetrains. Additionally, Schewe calculated from the probability density

function of events ph>3|p~. that they contribute 40% to the rms pressure, although the

events only occur for 1% of the time. Karangelen et al. (1993) found that the same

threshold was exceeded for 5% of the time and contributed 49% to the rms pressure.

Hence it can be seen that the pressure pulses can vary significantly between different

flows. The measured time between burst events for channel flow (Tiederman 1990) was
found to be 90 scaled on inner variables and was independent of Reynolds number. For







20

boundary layer flow the time between events is closer to 300 (Blackwelder and

Haritonidis 1983). Using these values as lower and upper bounds, Karangelen et al.

(1993) conclude that the average time between bursts corresponds to the pressure events

range of 2sp,/jpI\<3, which suggests a direct correspondence between bursts and large

amplitude wall pressure events.

Dinkelacker and Langeheineken (1983) studied the relation between intermittent

high positive wall-pressure fluctuations and velocity fluctuations in a 50 mm diameter

pipe with ReD=9600. The results were conditioned over several thousand events and

clearly show that the high wall-pressure events are related to a steep increase in

measured between y*=5 and y=52. Preceding this event is a comparatively long period

in which is below average and followed by a comparatively long period in which

is above average. From the duration of the periods the streamwise length of the

pattern was calculated to be twice the pipe diameter (Ax'O1000). Similarly, the

measurements showed that the flow moves away from the wall and then towards the wall

either side of the turbulent-pressure peak, but occurs over 1/6 the period of the event

and to a height of at least y=100. The disturbance in the azimuthal direction was found

to have a span of order Aq'=50. It was concluded that these events were "bursts," which

were defined by other investigators to be instantaneous high levels of turbulence at about

y= 15.
Kobashi and Ichijo (1986) measured wall pressure fluctuations in relation to the

coherent motions of the turbulent boundary layer. The low frequencies were found to be

related to the large scale motions of the outer layer and prevail through and outside the

boundary layer, while the high frequencies were found to be related to the bursts in the

wall region. They concluded that the large scale motions are composed of periodic and

nonperiodic components that are initiated by the instability of the mean flow and rotate

in the direction of the mean flow shear (cf. Fig. 2.2). The bursts are vortical in nature







21

and rotate against the mean flow shear. The origin of the bursts is from the interaction

of the periodic large scale motions with the wall. The burst is bound by two pairs of

counter-rotating vortices that are inclined forward, and the ejection and sweep that

characterize these burst phenomena can be explained as the flows induced by the paired

vortices. Kobashi and Ichijo (1986) also hypothesized that the paired vortices are formed

from streamwise vortex pairs that appear in the large-scale periodic motions.

The coupling between high-amplitude, positive wall-pressure peaks and flow

structure in the near wall region was studied by Johansson et al. (1987). They

characterized wall-pressure fluctuations in a two-dimensional boundary layer by making

simultaneous measurements of high-amplitude, positive turbulent wall-pressure peaks with

u' and v'. The results indicated that the amplitude of the pressure peak is linearly related

to the amplitude of the turbulent velocity peak, which in turn indicates that the generation

of high-amplitude pressure peaks is predominantly governed by the turbulence-mean-shear

interaction. Also, these pressure peaks were found to be caused, or the cause of shear-

layer structures ("bursts") in the buffer region (5
pressure peaks were found to be primarily associated with sweep-type motions-flow

parallel to the wall.

2.2.2 Compressible. Zero Pressure-Gradient Flow

Measurements on the wall under a turbulent Mach 0.6 boundary layer by Serafini

(1963) show that the convection velocity varies for different streamwise transducer

spacing in exactly the same way as for the incompressible boundary layer. Lilley (1963)

showed that the wall pressure fluctuations are the result of fluctuations in both the

vorticity and sound modes. Kistler and Chen (1963) found that the rms pressure on a

solid surface for flows in the Mach number range 1.33-5.00 was proportional to the local

skin friction. The value of p"/r, increases fairly linearly from the incompressible value







22

of-3 to -5 for M:2. They also found that the convection speed falls from 0.8 at M=1.33

to 0.6 at M=5. The effect of Reynolds number was found to be pnlQ-Res.4. The

integral scale of the wall-pressure fluctuations changed from 0.166 at M=1.33 to 0.00066

at M-4.54. Additionally, they found that the peak value of the correlation coefficient

drops to one half for a spatial separation of the measuring points of about two tenths of

the boundary layer thickness. Laufer (1964) measured the radiated pressure intensity from

a supersonic boundary layer and found it to be two orders of magnitude less than that

measured on the wall.


2.2.3 Incompressible. Adverse and Favorable Pressure-Gradient Flows

Adverse pressure-gradient flows differ from zero and favorable pressure-gradient

flows in that they are not self-preserving, and, hence, the value of every parameter is a

function of local position. Burton (1973) compared strong adverse and favorable

pressure-gradient flows with smooth and rough walls to a zero pressure-gradient flow.

For a favorable gradient, it was found that rms wall pressure intensity varied in

proportion to mean wall shear-stress with the same value as the zero pressure-gradient

case. The favorable gradient decreased longitudinal spatial decay rates and increased

convection velocities, whereas roughness had the opposite effect.

The adverse gradient slowed convection velocities and increased spatial decay

rates. Pressure statistics were found to depend on local mean flow parameters and

upstream flow conditions, but not on wall roughness. The velocity profiles were

logarithmic over a small region close to the wall, but were generally wake-like, so that

outer variable scaling was appropriate.

Insight into the suitable scaling of boundary layers can be seen from treatment of

the integrated momentum equation for two-dimensional turbulent flow (Burton, 1973):











8* P- _2u)dy- __ dy'dy+
r dx dx- U I dy 0 X 2 (2.25)


For rough walls the terms on the right-hand side of Eq. (2.25) must be retained,

whereas for smooth walls the terms on the right-hand side of Eq. (2.25) are at least three

orders of magnitude less than those on the left-hand side and can therefore be written as




dx dx(2.26)



For a favorable pressure gradient flow, the two terms on the left-hand side of Eq.

(2.26) are of equal magnitude, and their ratio is a valid measure of the magnitude of the

pressure gradient. However, for adverse gradient flow, the wall shear stress is small

compared to the pressure gradient term and the right-hand side of Eq. (2.26). Hence,

scaling with inner wall variables is not appropriate for the adverse pressure gradient case.

Burton also concludes that broadband spatial coherence of the wall-pressure

fluctuations is only moderately affected by imposition of a favorable pressure gradient,

when scaled on outer variables. Coherence is markedly improved in the adverse gradient

flows, which are dominated by disturbances that are large compared to the displacement

thickness and therefore decay more slowly. In only adverse gradient flows, broadband

convection velocities were found to be higher between oblique separations than between

longitudinally separated points. This was also the case for narrowband convection

velocities. Phase velocities were only moderately affected by favorable gradients, but the

effect on phase velocities for adverse gradient flow was strong and complex, but always

lowered the phase velocities considerably, the lowest values being about 0.25U,.









2.3 Finite Transducer Size Effects
The problem of inadequate spatial resolution of a pressure transducer was

recognized by Willmarth (1956). The finite size of a transducer-sensing element limits

its space resolution of a convecting pressure field associated with a turbulent flow.

Consequently, a lack of resolution in space causes an apparent inability to resolve in time.
Corrections were first attempted by Corcos et al. (1959), followed by an improved method
by Corcos (1963). This method was based on new experimental measurements of the

longitudinal and lateral space correlations and predicted that the attenuation at high

frequencies was much greater than predicted from the previous method.

Willmarth and Roos (1965) used several different-sized pressure transducers and

extrapolated the results to obtain the vanishingly small value of rms pressure. The result

was p"z.,=2.66, which would account for Willmarth and Wooldridge's (1962) results to

be increased by approximately 13%. They also concluded that Corcos's (1963) correction

can be used at low frequencies but not at high frequencies.

Schewe (1983) experimentally showed that the dimensionless transducer diameter

d+=du/v=19 is sufficient to resolve the essential structures of the turbulent pressure

fluctuations. If this criterion is assumed to hold for adverse gradient flow, then the

condition d'=19 is easier to obtain in adverse gradient flow due to the reduction in -,.

2.4 Shear-Layer Characteristics
The equations of motion for the two-dimensional, incompressible, turbulent
mixing layer have been solved by Gortler (in White, 1974). The boundary layer equations

are solved with the following antisymmetric boundary conditions.

U(-o)=U U(+o)=U2 U(O)= +U)
(2.27)









The solution is


U= -(U +U2) 1 + erfr4y)
2 U2+U xl (2.28)


where a-13.5.

No analytical solution has yet been found for the compressible mixing layer.
However, functional forms of the mixing layer growth-rate have been suggested by using
order of magnitude estimates. Using this method, Brown and Roshko (1974) suggested




M U (2.29)


Bogdanoff (1984) suggested that the convective velocity of the largest structures
in a mixing layer could be estimated by equating the stagnation pressures from both sides
of the mixing layer with respect to the velocity of the large structures.



{ i-A1 U( -Uc }1 Y- Y2 ( U2)2 -1
2 cI f 2 c2 (2.30)


For the case when Yi=Y2, the above equation can be solved explicitly for U,



2U C1 +1U2
C1 +C2 (2.31)


and the convective Mach numbers, MK, and Mc2, defined as









= u, =U-,
S 1 cC C2 (2.32)


are equal and can be written as


U -U2
M YI=Y2
cl +c2 (2.33)


It can be seen that the relative Mach number (defined in Eq. B.21) M,=2M, when the
average speed of sound is used to calculate Mr.
Papamoschou (1986) proposed that the compressible shear-layer growth rate is
functionally related to the incompressible growth-rate at the same density and velocity
ratios such that



8' fn.(r, s, M
S'0 fn.(r, s, Mc=0) (2.34)


This isolates the effect of compressibility so that the above ratio is a universal function
for free shear-layers. The ratio is given by Benjamin (1990) using a curve fit to the
experimental data as


S/ -3M2:
= f(Mc) = 0.2+0.8e -3
0 (2.35)


Dimotakis (1986) proposed that there are three main phases to shear-layer
entrainment, which are referred to as (1) induction, (2) diastrophy, and (3) infusion.







27

Induction is when fluid in the vicinity of the vorticity-bearing fluid is set in motion by

the Biot-Savart-induced velocity field, which is a kinematic, not diffusive, process.

Irrotational fluid sufficiently close to the vortical fluid will in fact participate in the large-

scale structure motions long before it has acquired vorticity of its own. These motions

appear at the low wavenumber part of the turbulent spectrum, and although irrotational,

can be considered part of the turbulent flow.

The second stage is diastrophy, where the irrotational fluid is strained until its
spatial scale is small enough to put it within reach of the (viscous) diffusive processes.

Viscosity then takes over and causes cascading to the Kolmogorov scale.

The third stage can be associated with other possible diffusive processes, such as

molecular mixing or heat conduction, and may or may not precede diastrophy, depending

on the relative magnitude of the corresponding molecular diffusivity to that of the

cinematic viscosity. In the case of gas-phase entrainment, it would be difficult to

distinguish between infusion and diastrophy because the corresponding diffusion

coefficients are of the same order.

Dimotakis (1986) also derived the incompressible shear-layer growth rate and

accounted for unequal entrainment from either side of the shear layer



S/ 1-r 1/ 1-p ]
0 +ri J 1+2.9(1 +r)/(1-r) (2.36)



where E is a constant.

Nixon et al. (1991) calculated the transverse mass flux around a vortex core using

transonic flow theory and proposed that the normalized growth rate for relative Mach

numbers less than 1.4 is










8'(r, s,M) M ( 1- M'
r,s, M=0) (1 M) (2.37)



where M~.AU/c. Nixon et al. also found that a considerable amount of the incoming flow

energy, which would normally be converted into rotational energy of the eddies within
the mixing layer, is expended compressing the gas.
Papamoschou (1989) attempted to disrupt the structures that he observed in

Schlieren photographs by using various splitter plate trailing-edge devices (vortex
generators, trip wires, and saw-tooth extensions). He found that these devices had little
effect on turbulent structures or shear-layer growth rate.

Goebel and Dutton (1990) made detailed velocity measurements of fully
developed, compressible shear-layers (0.40r M, K1.97) using laser doppler velocimetry
(LDV). They observed that the length for full development generally increased in the

order of mean streamwise velocity, streamwise turbulence intensity, transverse turbulence

intensity, and kinematic Reynolds stress. Fully developed, streamwise mean-velocity
profiles were well approximated by an error function profile, even for the more
compressible cases. Transverse turbulence and normalized kinematic Reynolds stresses

both decreased like the normalized growth rates with increasing Mr. Mixing lengths and

other turbulence quantities with a transverse fluctuation component also decreased with

increasing MK. This suggests that the primary effect of compressibility on the turbulence
field in a shear layer is the suppression of transverse velocity fluctuations. Streamwise
turbulence intensities remained fairly constant with M, which means that the anisotropy
of the turbulence increased significantly with M. They also found that the flowfields
were reasonably two-dimensional based on velocity profiles measured at two parallel
planes in the spanwise direction.









2.5 Jet Acoustics

There has been a great deal of research in the area of acoustics due to the major

increase in commercial air travel over the last few decades. The three areas relevant to

the current research are

(a) acoustics generated by turbulent flow,

(b) acoustics generated at nozzle lips, and

(c) acoustics generated from imperfectly expanded nozzle flow.
A subset of all these categories is the interaction of any one source with a solid wall.

The clearest way to understand acoustics generated by turbulent flow is to consider

the basic equation first derived by Lighthill (1952). This equation is the basis for

virtually all work on noise and can be derived from the mass and momentum conservation

equations:



ap apui Q
at xi (2.38)

and

apui apuu +p.
at 9x x. 5 (2.39)



where Qm is the rate of mass introduction per unit volume and Fi is the external force per

unit volume. The nonhomogeneous wave equation for propagation of sound in a uniform

medium at rest due to sources of matter, external forces or applied fluctuating stresses



a'p 2a2p am aF, a2Ti
S-co +
t2 ax,2 at axi axF, (2.40)

where







30

7=Up,,-c2 (2.41)



is the Lighthill equation, co is the sound speed in the medium, and 6b is the Kronecker
delta. The stress tensor for a Stokesian gas is given in terms of the velocity field by



au, au 2+2a "uk
P 'P" i ax-i 3 xk 1 (2.42)


Effects such as convection of sound by the turbulent flow, or the variations in the speed

of sound within it, are taken into account by incorporation as equivalent stresses (Lighthill
1953).
Each term on the right-hand side of Eq. (2.40) gives the effect of a different

acoustic source mechanism. The first, OQJ/t, gives the effect of mass introduction.
Examples include pulse jets, tip jet rotors, and the random mass fluctuations that can
occur across the exit plane of a jet exhaust (Pao and Lowson 1969). The second term,

aF/axi, gives the effect of external fluctuating forces that can act on the fluid. Examples
include compressors, propellers, helicopter rotors, and the fluctuating forces that exist on
a nozzle lip or on any body in a turbulent flow-stream. The third term, aTi/Oxidxj,
incorporates several different effects. Ti is called the "acoustic stress tensor." At low
Mach number, the most significant fluctuation of the acoustic stress tensor in a free jet
will be caused by the turbulent velocity fluctuations, which affect the puuj product. The
effect of viscous stresses and thermodynamic fluctuations are contained in the remaining
terms of T,.
Curie (1955) investigated the influence of solid boundaries using the above theory
and showed that the fundamental frequency of dipoles near the wall is one half of that









generated by quadrupoles. This is because the quadrupole strength per unit volume, puiuj,
being essentially proportional to (velocity)2, will have double the frequency of the
fluctuating velocity. On the other hand, the fluctuating force exerted on the fluid at the
solid boundaries will have the same frequency as the velocity fluctuations. The frequency

relation can be shown if one considers a flow in which the velocity in the x-direction is
given to a first approximation as


ui()=Ai()cos(nt+(i (2.43)


(where i is also a function of x), then the quadrupole strength per unit volume is


T.= pu ,ui pAiA cos(nt + C\)cos(nt + C)

=pA A, cos(2nt + i+ < )+cos(Ci- Cy)} (2.44)


Also, at sufficiently low Mach numbers the contribution to the sound field from the
dipoles should be greater than from the quadrupoles. Exactly how small the Mach
number must be before this occurs will depend upon the flow in question.
As the velocity in a free jet is increased, the maximum angle of farfield noise
emission starts to move from normal to the jet boundary to a downstream-pointing angle
(Lighthill 1954). For jet velocities considerably greater than the surrounding speed of
sound, the directional maximum becomes the Mach angle of the local convective Mach
number. Lighthill also noted from far-field measurements, that low frequencies are
emitted in a more downstream direction than high frequencies, and the high frequency
sound is associated with the mixing region just downstream of the nozzle where the
quadrupole strength is due to lateral transport of mean momentum across the shear layer.
The low frequencies originate from the fully turbulent region downstream (cf. Fig. 2.3).






32

In supersonic jets with a shock-cell structure, Powell (1953a, b) observed that
regular stream disturbances were assumed to give rise to stationary sources of sound on
traversing the shock-waves and several of these sources would interact with each other

and produce discrete frequencies. A powerful frequency was observed to travel upstream
and interact with the flow at the orifice, giving rise to an amplification process. The
frequency of this amplified screech for the two-dimensional case is roughly



1 c (2.4



where R is the jet pressure ratio and R, is the critical value. The value of d is the smaller

of the nozzle dimensions. Glass (1968) found that under certain circumstances, this

acoustic feedback can result in wide variations in the growth rate and decay of the mixing

layer. Ribner (1969) found that the ratio of acoustic energy flux to turbulence energy flux

for turbulence passing through a shock of finite strength varies almost linearly with shock

density ratio. The values range from 0.0036% at M=1.01 to 6.2% at infinite Mach

number. The value at M=2 is 1.39%. Tam and Tanna (1982) studied the characteristics

of converging-diverging supersonic nozzles at off design points and found the shock

associated noise to be proportional to (Mf -M)2 where Mj is the jet Mach number and

Md is the design Mach number.
Tam (1972) found that the noise of a nearly ideally expanded supersonic jet

emanates from two rather localized regions of the jet which are located at distances quite

far downstream of the nozzle exit. He suggests that large-scale instabilities of the jet flow

are responsible for transferring the kinetic energy of the jet into noise radiation. Tam

proposes that rapid growth of these waves causes the oscillations of the jet to penetrate







33

the mixing layer at two locations and to interact strongly with the ambient fluid there,

hence giving rise to intense noise radiation.

Using shadowgraph visualization, Lowson and Ollerhead (1968) found the sound

sources in small supersonic jets in the following order of dominance: (i) spherical

radiation from the nozzle, (ii) radiation from shock-turbulence interaction in the flow, and

(iii) Mach wave radiation. Chan and Westley (1973) also observed spherical waves from

the nozzle of a supersonic helium jet. The jet transitioned to turbulence within 1 diameter

and radiated weak shocks from this location with a frequency of 85 kHz, and directed

primarily along a cone 600 from the jet axis.














Independent of condition
of formation


Wavenumber. k


Inertial
subrange
Re' >>> 1


The three-dimensional velocity energy spectrum (after Hinze, 1975).


-burst paired vorticies
burstweep ejection

sweep = 8=== 7- ejection

QZt O


Vortex-ring model of coherent structure and burst (after Kobashi and
Ichijo, 1986)


Dependent on
condition of
formation


E(k,t)


Figure 2.1


Figure 2.2






















r- Supersonic mixing
I layer. M>1



Secondary > r b Subsonic, turbulent
No- region. M<1
Primary -- Supersonic or

Secondary -----


Flow regimes in the ejector.


Figure 2.3












CHAPTER 3
EXPERIMENTAL INVESTIGATION-HARDWARE, PROCEDURES
AND MIXING-SECTION INLET CONDITIONS


3.1 General Description
An ejector facility was constructed in which two-dimensional, compressible shear

layers can be established at various Mach numbers, Reynolds numbers, density ratios and

velocity ratios. The flow apparatus is a three-stream, blowdown, supersonic primary,

subsonic secondary wind-tunnel with the capability of supplying different gases to the

primary and secondary. In this experimental investigation high pressure air, supplied by

the Gas Dynamics Laboratory compressed-air facility, was used for both primary and

secondary supply. After being brought to the desired (or design) Mach numbers, the three

streams are brought into contact downstream of two identical splitter plates, and mixed

in a rectangular, constant-area mixing (test) section. The downstream end of the

apparatus is connected to a transition diffuser, which transitions and diffuses the flow

from a 50.8 mm by 25.4 mm rectangular cross-section to a 4 in. circular cross-section

which houses a butterfly control valve. The flow is then dumped into a large muffler and

exhausted to the atmosphere. Time-averaged Schlieren and shadowgraph photography

were used to visualize the structure of the supersonic primary jet, the extent of the shear-

layers, and the extent of the laminar-to-turbulent transition regions. Impact pressure

profiles obtained using a traversing mechanism, were taken at twenty-five streamwise

positions with nominal separations of 20 mm. Additional sidewall static pressures were

obtained using a 30-tube manometer bank. Photographs were taken of the bank and

analyzed. Sidewall, one- and two-point, time-accurate pressure records were obtained









using miniature pressure transducers. All of the measurements are accompanied by a

record of upstream stagnation pressures, stagnation temperatures and, except for the

Schlieren and shadowgraph visualizations, sidewall static pressures. The different

measurements were all controlled using a PC-AT computer, which allowed precise

execution of the required functions during the short duration of the runs. The operation

of the blow-down facility was intermittent, with each run lasting from 3 to 6 seconds.

The ejector hardware, pressure measurement and visualization techniques, as well as

boundary-layer calculations are described in detail below.

3.2 Design Methodology

The two-dimensional ejector rig used in this study was a pre-existing facility built

by the author and his coworkers (Benjamin et al. 1993) in 1992 for dissimilar gas, ejector

experiments. The rig allows for variation in mixing section height from 38.1 mm to

51.4 mm with a fixed-height primary nozzle of 12.7 mm. In this study, the maximum

height of 51.4 mm was chosen so that the maximum number of wall measurements could

be made in that direction (see Fig. 3.1).

The minimum allowable dimension of the nozzle exit height was selected based

on: (a) the resolution provided by the traversing pitot-pressure probe, and (b) the number

of traverses necessary to map the various regions of the shear layer. Firstly, it was

estimated that the resolution of the pitot-pressure probe was no less than 0.2 mm, and that

at least ten measurements should fall across the layer (in fact, many more readings were

obtained across the shear layer). The above meant that the layer must grow to a thickness

of about 2 mm before the thickness can be measured with the probe.

Secondly, it was decided that a minimum of three equally-spaced streamwise

traverses were necessary to identify the primary core region of the shear layer (region 1).

For initial estimates it was assumed that along the length of this core (1) the shear layer







38

grows linearly and by equal amounts into the inviscid regions of the primary and

secondary, and (2) the layer grows with the same rate in both directions (relative to the

mixing-section centerline). This meant that the smallest mixing section that could be used

would result in a layer that would be about 6 mm thick at the end of the core (3 mm each

side of the centerline). That in turn meant that the nozzle exit height had to be at least

6 mm. A factor of two was introduced to account for any margin of uncertainty; hence

a primary exit height of 12.7 mm was chosen.

The exit height of the secondary streams was selected based on similar arguments.

Additionally, it was desired that, at least in some test cases, unmixed secondary flow exist

beyond the point where the primary core ends. Using these criteria, it was decided that

secondary flows having exit heights at least equal to the primary jet height would be

adequate. Hence a variable exit height of 12.70 mm to 19.05 mm was chosen for each

half of the secondary stream.

In selecting the depth of the mixing section (see Fig. 3.1) it was desired to

minimize flowrates as well as provide a flowfield that was approximately two-dimensional

(i.e., sidewall boundary-layers are thin compared to the width), and be adequately sized

for Schlieren visualization. The latter required that the mixing section was deep to

resolve small density-gradients. Since these are opposing factors, an acceptable mixing-

section width that reasonably met the criteria was determined to be 25.4 mm. Complete

details of the rig conception and design can be found in the report by Roan et al. (1993).

3.3 Experimental Apparatus

In the mixing section, the supersonic primary center jet is sandwiched between two

symmetrical, subsonic secondary streams and all three discharge into a constant-area duct

(see Fig. 3.1). Primary and secondary streams mix along the shear layers which begin

to develop at the nozzle exit planes where the streams first come into contact. The mean









development of the flowfield is mapped by traversing a pitot-pressure impact probe across

the mixing duct at a number of axial locations.

The primary and secondary flows were supplied by a high-pressure gas storage and

delivery system. Control of the rig, as well as data-acquisition of the mean conditions,

was accomplished using the laboratory PC-AT computer. This control process enabled

short run times and identically-repeatable instrument reading capability. The test

apparatus as well as the interface hardware and instrumentation are described in more

detail in the following sections.

Fine adjustments of primary and secondary supply pressures, as well as the mixing

section back-pressure had to be made for each test case to achieve the desired flow

conditions. To achieve repeatable pressure conditions between test runs, the run event

sequence and timing was carefully planned and implemented to ensure stability and

validity of the measurements while minimizing run time. The details of the set-up, run-

control, and data-acquisition procedures are also discussed later in this chapter.

3.3.1 Gas Storage and Delivery System

Pressurized air was used for supply of the primary and secondary flows. The

filtered and dried air was delivered from a bank of storage tanks, and supplied to the

primary and secondary plenums through pressure-regulating valves as desired. A

schematic of the gas storage and delivery system is shown in Fig. 3.2.

Compressed air was supplied by a Worthington two-stage positive-displacement

340 cfm (150 HP) compressor which delivers a maximum working pressure of 300 psia.

The compressed air is passed through several oil and water traps and a desiccant air-drier

to remove any moisture. The air is then stored in a bank of cylindrical tanks manifolded

together, with a total volume of approximately 420 ft'. In order to maintain an almost

constant supply pressure level, the compressor was operated throughout test runs. In









addition, the pressure-regulating valves were set when the supply pressure reached a

predetermined value; this value is determined after the compressor's second stage is

disengaged at its maximum delivery pressure. Monitoring of the supply pressure is

performed using a transducer connected to the supply line.

Air was delivered to the apparatus through a 2 in. schedule-80 steel pipe sized to

keep the pipe Mach number below 0.4 for the flow rates of interest. A gate valve placed

between the tanks and the test rig was used to isolate the supply and the test rig.

Automatic on/off control of the air flow was accomplished using a solenoid valve

(Omega, model SV207) placed downstream of the gate valve. The solenoid valve could

be controlled either manually with a switch, or electronically using a digital output

channel from the computer. The air could then be delivered to the primary and/or

secondary supply lines. On the secondary branch, control of the secondary flowrate was

effected utilizing 3/4 in. and 1/4 in. needle valves connected in parallel. On the primary

branch, a 3/4 in. needle valve and a 3/4 in. globe valve connected in parallel controlled

the flow rate of primary air. On each branch, the large and the small valves were used

for gross and fine flow-rate adjustment as required.

3.3.2 Primary and Secondary Lines

The gas flows required for the primary and secondary were delivered to the

respective plenums from the primary and secondary branches described in the previous

section. The primary line was constructed from 3/4 in. schedule-80 steel pipe and

attached to the primary plenum by a flexible metal hose with an inside diameter of

19.05 mm. This attachment method isolated the ejector from any mechanical vibration

due to the flow through the supply piping.

The secondary flow was supplied to the secondary plenums through four steel

reinforced PVC hoses. These hoses were connected to a manifold consisting of four









sections of 1 in. pipe welded at 900 from each other around the capped end of the 2 in.

secondary supply line. A schematic of the air supply hardware described above is shown

in Fig. 3.2.

3.3.3 Plenums

The primary and secondary plenums consist of flow-conditioning sections followed

by settling chambers (Figs. 3.1 and 3.3). The walls of these sections were machined from

aluminum stock and formed continuous flow passages of rectangular cross sections. The

primary plenum was in the center, sandwiched between two identical secondary plenums.

Two large rectangular plates 12.7 mm thick served as side walls for the primary and

secondary plenums. The remaining walls were machined from 25.4 mm thick aluminum

plate which were (a) the internal walls separating the primary and secondary plenum

cavities, (b) the rear wall for all plenums, and (c) the outer walls of the secondary

plenums. Two stainless steel dowel pins inserted through each wall in (a) and (c) and

into location holes drilled in the two side walls, accurately position each part of the

plenum assembly. All plenum walls are bolted together.

3.3.3.1 Primary plenum

The primary plenum consists of a flow conditioning section and a settling

chamber. It has a rectangular cross-section 59.7 mm high by 25.4 mm wide. These

dimensions approximately constrain the plenum flow velocity between 3 m/s and 27 m/s

for a wide range of operating conditions, as suggested by Pope and Goin (1978).

The flexible metal hose which delivers the primary gas to the plenum fastens onto

a thick-walled aluminum nipple with a 25.4 mm inside diameter. This inlet nipple is

welded at right angles to one of the plenum side walls. The gas then passes through two

different-sized perforated plates machined from aluminum, a section of aluminum







42

honeycomb, and two different-sized stainless steel wire meshes (cf. Figs. 3.1 and 3.3).

These flow-management devices help ensure uniform flow and low turbulence intensity.

The perforated plates are 3.9 mm thick and spaced 12.7 mm apart (16.6 mm from

center to center). The plates fit into slots machined in all four walls of the plenum

passage. The first plate is 27.4 mm from the inlet nipple centerline, and has a 12x5 array

of 4.42 mm diameter holes; the center-to-center spacing of the holes is 4.98 mm and

5.08 mm along the long and short dimensions of the plenum's cross section, respectively.

The second plate has a 14x6 array of 3.68 mm diameter holes; the spacing in this array

is 4.27 mm and 4.23 mm along the long and short dimensions, respectively.

The honeycomb section is located 34.9 mm downstream from the second plate.

This section is 82.6 mm long, and has a 3.18 mm hexagonal cell size, and fits in a recess

machined in all four walls of the plenum (cf. Figs. 3.1 and 3.3).

The first of the two mesh screens is approximately 25.4 mm downstream of the

honeycomb, and has a mesh of 30x30 wires/in, and a wire diameter of 0.165 mm

resulting in a 35.2% obstruction and a wire-spacing to wire-diameter ratio of 5.13. The

second mesh is 12.7 mm downstream from the first one, and has a mesh of 40x40

wires/in, and a 0.165 mm wire diameter, resulting in a 45.2% obstruction and a wire-

spacing to wire-diameter ratio of 3.85. The screens are soldered to brass frames which

fit in slots machined in the plenum walls. Both the screens and frames are shown in Figs.

3.1 and 3.3.

The modular design of the flow managements devices enabled easy inspection,

cleaning or replacement of any component.

The primary gas enters the settling chamber, which extends 44.8 mm downstream

of the second screen. A 1.59 mm diameter T-type thermocouple is located between the

first and second screens to measure total primary temperature, and a 0.79 mm diameter

pressure tap located on one side wall 25.4 mm downstream from the second screen is







43

used to measure primary-plenum stagnation pressure.' The outside of the wall is tapped

for mounting a pressure transducer.

3.3.3.2 Secondary plenums and flow passages

Each secondary plenum consists of a flow conditioning section and a settling

chamber similar to those of the primary plenum. Their rectangular flow areas are

71.9 mm high and 25.4 mm wide, which results in a local velocity of 26 m/s for the flow

conditions used in this investigation (see Chapter 4 for flow conditions).

The secondary gas is delivered to each plenum through two flexible hoses clamped

to inlet nipples that are welded at 90 on opposite sides of the plenums. The nipples are

made of aluminum and have inside diameters of 25.4 mm. In each plenum, the gas

passes through flow management devices nearly identical to those used in the primary (cf.

Figs. 3.1 and 3.3). Two different perforated plates machined from aluminum, a section

of aluminum honeycomb, and two different stainless steel wire meshes ensure uniform

flow and low turbulence intensity of the secondary stream.

The perforated plates are 3.94 mm thick and are 12.7 mm apart (16.7 mm from

center to center). The plates fit in slots machined in all four walls of the plenum passage.

The first plate is 27.38 mm from the inlet nipples centerline, and has a 14x5 array of

4.45 mm diameter holes; the center-to-center spacing of the holes is 5.18 mm and

5.13 mm along the long and short dimensions of the plenum's cross-section, respectively.

The second plate has a 17x6 array of 3.66 mm diameter holes; the spacing in this array

is 4.24 mm and 4.23 mm along the long and short dimensions, respectively.





SAlthough this method actually measures the static pressure and static temperature, the
plenum velocity is approximately 29 m/s resulting in deviations of 0.5% from the true
stagnation pressure, 0.15% from the true stagnation temperature, and 0.2% below the
true Mach number.







44

The honeycomb section and screens are the same as those described above for the

primary plenum except for the overall height, and are located at the same streamwise

positions.

The secondary gas enters the settling chamber which is 97.5 mm long. A pressure

tap located 25.4 mm downstream of the second screen allowed for measurement of total

pressure in each secondary settling chamber. This consisted of a 0.79 mm diameter hole

drilled through the side wall of each secondary plenum, and tapped on the outside for

mounting pressure transducers.

Following the settling chamber is a converging channel of rectangular cross-

section which accelerates the flow into the mixing section (cf. Figs. 3.1 and 3.3). It has

a constant depth of 25.4 mm and the height varies monotonically from 71.9 mm to

18.9 mm. The passage is formed by the plenums side walls, an "inner" contoured wall,

and an "outer" contoured wall. The "inner" contoured wall corresponds to the outer

surface of the nozzle block. The machining of the "outer" wall provided an accuracy of

approximately 0.05 mm. Both contoured walls have a shape defined by fifth-order

polynomials with zero-valued first and second derivatives at the beginning and end of the

contraction. The length-to-height ratio of the contraction is 2. Each secondary stream

discharged into the mixing section at the end of the contraction.


3.3.4 Primary Nozzle

The primary gas exits the settling chamber and discharges into the mixing section

through a two-dimensional supersonic nozzle. The nozzle was machined from aluminum

to provide the required flow Mach number of 1.8 for gases with a constant-pressure

specific heat ratio of 1.4.

The nozzle consists of two identical blocks bolted to the internal walls of the

plenum and clamped between the side walls (Figs. 3.4). The blocks are mounted on









opposite sides of the plenum centerline, and provide the desired change in flow area.

Two stainless steel dowel pins inserted through each block and into location holes drilled

in the plenum side walls position the blocks accurately. Each block has two contoured

surfaces; the "inner" surface corresponds to the contoured walls of the primary nozzle,

while the "outer" surface serves as the wall for the secondary passages. One of the

plenum's side plates is split into two sections to facilitate easy exchange of different

nozzle blocks.

The initial portion of the nozzle blocks is straight and serves as an extension to

the walls of the constant-area settling chamber. After this section the blocks provide a

contraction region where the flow begins to accelerate. The shape of this region is

defined by a fifth-order polynomial with zero-valued first and second derivatives at the

beginning and end of the contraction. The contraction region has a length-to-height ratio

of 2.5 and ends at the nozzle throat. This profile design provides uniform flow and

ensures that flow separation does not occur (Papamoschou 1986).

Following the contraction is the diverging region of the nozzle, the shape of which

was obtained using the two-dimensional method of characteristics technique, and

neglecting boundary layer corrections. The intersection between the converging and

diverging regions provide a sharp edge at the nozzle throat.

The nozzle blocks have a trailing-edge thickness of approximately 0.5 mm. Once

installed, the nozzle extends 177.8 mm beyond the second screen at the entrance to the

settling chamber. The contoured walls of the nozzle blocks were machined to within

0.05 mm. The installed throat height, 2h,, is 8.790.03 mm compared to the design

height of 8.84 mm, and the installed nozzle exit height, 2b, is 12.650.03 mm compared

to the design height of 12.70 mm. The installed dimensions result in a calculated value

of M,=1.80 based on 1-D isentropic gas-dynamics area relations. The length of the

diverging section of the nozzle is 16.2 mm.









3.3.5 Mixing Section

The primary and secondary streams come into contact at the exit plane of the

plenums (cf. Figs. 3.1 and 3.3). At this point the streams begin to mix in a constant-area

section of rectangular cross-section (Figs. 3.1 and 3.5). The section is 25.4 mm wide and

51.4 mm high. It is formed by two side-walls, a top wall and a bottom wall which bolt

together providing the desired flow passage. The section is bolted at one end to the

plenum, and it extends 500 mm beyond the exit plane of the plenums. For pitot traverse

and wall static-pressure measurements, both side-walls were machined from aluminum.

For turbulent wall-pressure measurements, the measurement side-wall was machined from

brass. The top and bottom walls were machined from brass.

The side wall used for mean, static wall-pressure measurements has 29 holes

drilled through, all of which are 1.59 mm diameter. Twenty-seven of these holes are

spaced in the streamwise direction every 10 mm along the centerline of the wall, with the

first one positioned so that it lies at the exit plane of the plenums on the primary

centerline. This hole is used to measure the primary-exit static pressure. The other two

holes also lie at the exit plane of the plenums and are located 13.2 mm on either side of

the primary centerline, in the secondary flow. These holes are used to measure the

secondary streams' exit static pressure. A short section of stainless steel surgical tubing,

inserted and glued in a counterbore provided with each hole, is used to connect pressure

transducers via 1.59 mm internal diameter flexible plastic tubing. The plate with wall

static pressure taps is shown in Fig. 3.6.

For the time-accurate wall-pressure measurements, an aluminum frame holding

interchangeable brass plates was designed with the same dimensions as the side wall used

for mean, static wall-pressure measurements. Two types of interchangeable brass plates

were constructed: solid "blank" plates, and plates with hole patterns for static-pressure

transducers. The plates can be placed at various locations along the frame. The holes









in the plates with transducer hole-patterns are reamed to 2.64 mm diameter. Brass plugs,

or sleeves that hold pressure transducers of 2.615 mm diameter, fit in the holes and are

shown in Fig 3.7. An O-ring seals the plugs 0.89 mm from the flow surface, while the

sleeve does not have a seal due to constraints of size. This was expected not to be

significant because there is a metal to metal seal where the sleeve head is fastened to the

back of the plate. Acoustic disturbances caused by the gap between the sleeve and the

hole, such as a Helmholtz resonator, have a calculated frequency on the order of 150 kHz

that is well above what is measured here. A typical installation is shown cutaway in Fig.

3.1, while Fig. 3.8 shows the dimensions of the assembled frame and plates used in this

research. The transducer-hole spacing is either 4.09 mm or 8.17 mm in the streamwise

direction, and 3.44 mm in transverse direction.

The top and bottom walls each have 14 ports machined along their centers to

provide access for the stem of the traversing impact probe. The streamwise spacing

between ports is 20 mm and the first port is 25.4 mm downstream from the mixing

section inlet. Custom-made threaded brass plugs, each fitted with an O-ring, provide a

leak-tight seal for the ports. The nonalignment of the plug ends was minimized by

material removal using in turn, 220, 320, 400 and 600 grain size abrasive paper with the

plugs fitted in their respective ports. Final buffing of the surfaces was accomplished

using a mixture of jeweler's rouge and tallow that produced better than a 0.2 lm surface-

roughness finish. The resulting nonalignment of the plug ends can thus be confidently

stated as being less than 0.015 mm from the surface of the wall. Two additional plugs

were used in connection with the traversing probe. These plugs have a 2.29 mm diameter

hole drilled through their center in which the stem of the probe slides. Figure 3.9 shows

the top wall and Fig. 3.10 shows the brass plugs.









3.3.6 Traversing Impact-Pressure Probe

The traversing total-pressure impact probe constructed for this experimental study

is shown in Fig. 3.5. As a result of the variable probe-interference effect noticed during

previous tests (Roan et. al, 1992), a traversing probe arrangement that results in a nearly

constant obstruction of the flow was constructed. This was accomplished by attaching

an extension to the probe stem (i.e., a dummy stem beyond the sting). The stem and the

extension slide through the holes drilled in the plugs that are used with the probe.

To simplify the procedure necessary to change the probe position, a probe was

designed that allows for removal of the sting. This was accomplished with a special

coupling machined from stainless steel. The sting of the probe was soldered to the male

part of the coupling. The male part was screwed into the female part to which the stem

and the dummy stem were soldered. A Teflon bushing sealed the clearance between the

parts.

A probe sting was constructed from hard tempered stainless steel, hypodermic

tubing having outside and inside diameters of 0.90 mm and 0.58 mm respectively. The

sting is 25.4 mm long, and the nose of the sting has a screwdriver wedge-like shape with

a rectangular opening of approximately 0.89 mm by 0.13 mm. To obtain this geometry,

a piece of 0.127 mm thick shim stock was inserted approximately 4 mm into the end of

the tube, and then clamped together. Care was taken to insure that the tube collapsed

evenly about a plane passing through the axis of the tube. The flattened end was then

shaped to a wedge using a sharpening stone, and then polished to a mirror surface with

600 grain size abrasive paper and 348 rouge.

The stem of the probe and its extension are each roughly 100 mm long, and were

made from hard tempered stainless steel tubing having outside and inside diameters of

3.05 mm and 2.39 mm, respectively. The open end of the stem was connected directly

to the pressure transducer with a compression fitting.









The probe is traversed across the mixing section by means of a computer-

controlled, stepper-motor-driven, leadscrew. The leadscrew assembly is mounted on top

of the upper brass wall of the mixing section. The assembly slides in a rail built into the

brass wall, and can be locked at any desired streamwise position. The probe/leadscrew

assembly is shown in Fig. 3.5. The leadscrew has a pitch of 10.16 mm. The stepper

motor provides 200 steps per revolution, while the motor driver allows for half-step

motion. This arrangement translates into a linear resolution of 0.0254 mm for the traverse

of the probe. The time required for the 46.99 mm traverse was 2.00 seconds. The

pressure transducer used in conjunction with the probe (see section 3.4 for

instrumentation) was mounted on a bracket bolted to the traversing nut of the leadscrew

assembly.

3.3.7 Transition Diffuser and Exhaust

Immediately downstream of the mixing section is a 760 mm long transition-

diffuser with a rectangular cross-section inlet of 50.8 mm by 25.4 mm and a circular

cross-section outlet diameter of 102.3 mm. The design has a 4.820 average included

divergence angle, and an area ratio of 6.4 (see Fig. 3.11).

The diffuser is constructed from two identical sections welded together, each made

from 4.76 mm thick 304 stainless steel sheets bent to the desired shape using about 20

longitudinal bends. Flanges were then welded to each end suitable for mating upstream

to the mixing section and downstream to the 4 in. butterfly valve (Keystone 992).

The flow is exhausted to the atmosphere by way of 4 in. diameter PVC schedule

40 pipe, 10 in. diameter schedule 40 steel pipe, and through a Maxim BR31 silencer to

the atmosphere. These components are shown schematically in Fig. 3.11.









3.4 Instrumentation

A schematic of the instrumentation and computer interface is shown in Fig. 3.12.

Pressure and temperature data were measured using various pressure transducers and T-

type thermocouples. These devices were connected to two 16-channel multiplexers

(Acces AIM-16(P)) using shielded twisted-pair wire for the pressure transducers and steel

braid shielding for the thermocouple wires. The multiplexers were connected to a

moderate-speed analog and digital (A/D) computer board (Acces AD12-8), with 12-bit

data resolution, mounted in a 12 MHz AT-type personal computer (PC). Using Quick

Basic version 4.5 software, the maximum A/D throughput was approximately 9,000 single

channel samples/second.

Digital output from the A/D was used to control two electronic relays (Crydom

S440) supplying 110VAC to the flow solenoid shutoff valve (OMEGA SV207), and a

solenoid valve used for venting the air tank to the atmosphere (OMEGA SV207).

Three models of pressure transducers were used at the following locations

(definitions of designations in parentheses):

P01 (Primary stagnation pressure): OMEGA ENGINEERING PX621,

101.3-2170 kPa, 15VDC input 20mA maximum, 1-5VDC output. The

input power was supplied from a Power-One HCBB 75W set at 15.0VDC

with a 1.5A capacity.


PS1, PS2, P1-P9 (Mixing section, inlet stream, static pressures, and wall

static-pressures at variable locations from 10 mm to 436 mm in 10 mm

steps). PS1 (primary static pressure) and PS2 (secondary static pressure):

Micro Switch 140PC, 0-207 kPa differential, 10VDC input at 20mA

maximum, 1-8VDC output. The input power was supplied by an Acopian

V59D6A with a capacity of 1A, set at 10.0VDC.







51

POPR (Traverse impact-pressure): Validyne DB15, 0-414 kPa differential,

connected to a Validyne CD12 carrier demodulator with 0-10VDC output.


P02 (Secondary plenums' average stagnation pressure): Validyne DB15, 0-

103 kPa differential, connected to a Validyne CD15 carrier demodulator

with 0-10VDC output.


DP2 (Average differential pressure between the secondary plenums'

stagnation and static ports): Validyne DB15, 0-12.4 kPa differential,

connected to a Validyne CD15 carrier demodulator with 0-10VDC output.


PSPR (Static pressure on wall centerline at position of impact-pressure

probe tip): Validyne DB15, 0-103 kPa differential, connected to a Validyne

CD 15 carrier demodulator with 0-10VDC output.


PS2bk (Redundant reading of mixing section, secondary inlet, static

pressure): Validyne DB15, 0-69.0 kPa differential, connected to a Validyne

CD 15 carrier demodulator with 0-10VDC output.


PAIR (Supply air pressure): OMEGA ENGINEERING PX241, 101.3-2170

kPa, 15VDC input 20mA maximum, 1-5VDC output. The input power

was supplied from a Power-One HCBB 75W set at 15.0VDC with a 1.5A

capacity.


The specifications of all transducers used, including their calibration curves, accuracies,

and locations are given in Appendix C, Tables C.1 and C.2.







52

Two T-type (copper-constantan) thermocouples, with designations T/C 1 and T/C

2, were installed in the plenums to measure the stagnation temperatures of the primary

and secondary flows, respectively.

3.4.1 Impact Pressure

A 5VDC, 1.0 amp stepper motor (New England Affiliated Technologies 23D-

6102) drove the impact-pressure probe traverse mechanism and developed a maximum

dynamic torque of 0.13 N-m at speeds of less than 380 pulses-per-second (pps). It was

powered by a 0-40VDC, 0-5A variable power supply (Hewlett-Packard 6266B) set at

12.9VDC and 1.OA. During tests the stepper motor was run as fast as practicable

(953 pps = 24.2 mm/s) to minimize unsteady and nonstationary effects in the mixing

section and also to maintain constant inlet-flow conditions during the blowdown.

The probe was traversed across the mixing section using a 2.00 second

trapezoidal-motion velocity profile. This was accomplished using a single-axis stepper-

motor driver card (Industrial Computer Source 6402) and controlled by a single-axis

stepper-motor control board (Industrial Computer Source 5000) mounted in the PC. The

stepper-motor driver and controller cards were isolated from the PC by using an external

5VDC, 6.0A power supply (Power-One HCBB 75W); separate grounding for power and

data was also used.

3.4.2 Sidewall Mean Static Pressure

The sidewall static pressures were measured using a Meriam Instrument Co.

manometer bank (Model 33M1335) which has 30 mercury-filled tubes. Connections to

the sidewall were made using 1/32 in. inside diameter plastic tubing having lengths of

approximately 3 m. The manometer bank has fluorescent backlights that allowed

reasonably fast photographic exposure times (-1/250th second). Before each test run, the







53
lights were switched on for at least 30 minutes prior to running a test, so that thermal

equilibrium was achieved.

3.4.3 Sidewall Time-Accurate Pressure Measurements

Two Kulite Semiconductor (Model XCW-062-25SG) sealed gage miniature
pressure transducers were used for time-accurate pressure measurements. The sealed-gage

transducer was chosen to eliminate the possibility of external pressure influences. The

body of the transducer has a maximum diameter of 1.62 mm and is 31.75 mm in length.

The two transducers were individually mounted in transducer sleeves (described in

Section 3.3.5) using Dow Coming 3145 RTV adhesive/sealant as recommended by Kulite

engineers. When cured, the RTV has a tensile strength of 7 MPa. Using the RTV to fill

the 0.075 mm gap between the transducer outside diameter and the plug wall, it was

possible to mount the transducers within 0.025 mm of the plug ends.

The 0.7 mm pressure sensitive area is composed of a fully active, four-arm

wheatstone bridge diffused into a silicon diaphragm. The diaphragm is located

approximately 0.25 mm behind a metal screen which has 10 holes of 0.152 mm diameter

drilled through it on a 0.89 mm diameter circle. The effective diameter of the transducer

is thus 0.152 mm. The transducers have a range of 170 kPa from the atmospheric sealed-

pressure, and manufacturer's specifications of maximum combined linearity and hysteresis

of 0.5% full scale best fit straight line (FS BFSL), maximum thermal sensitivity shift

of 2% FS/100F, and a flat frequency response to at least 50 kHz. The natural

frequency of the transducers is greater than 250 kHz. They have a compensated

temperature range of 300 K to 355 K, input impedances of 2542 Q and 3431 0, output

impedances of 1322 Q and 1953 0, and at 15.00 VDC excitation have sensitivities of

1.201 iV/Pa and 1.215 gV/Pa, respectively. The transducers were calibrated by the

manufacturer to standards traceable to the National Bureau of Standards.







54

Matched, custom-built power supplies (see Fig. 3.13 for circuit) were used to

excite the transducers at 18.16 VDC nominal, which is within the 20 VDC maximum

excitation level specified by the manufacturer. Using the linearity of the transducers, this

level of excitation raised the transducer sensitivities to 1.450 piV/Pa and 1.467 pV/Pa.

Output from each pressure transducer was split into two, one being indirectly fed

to an Access multiplexer (described above) for static readings, and the other used for

dynamic readings. A custom-built buffer was designed for the split as noise from the

multiplexer was found to seriously contaminate the dynamic side. The buffer is shown

schematically in Fig. 3.14, in which the operational amplifier (Harris HA-5177) has an

ultra-low offset voltage of 20 uV and a low noise-level of 9.0 nV/VHz.

The dynamic split from the pressure transducer was fed to a pre-amplifier

(Stanford Research Systems Model SR 520) and was AC coupled using the pre-amplifier's

0.03 Hz capacitor, resulting in a high-pass filter with -10 dB/decade attenuation. The

pre-amplifier gain was calibrated by the manufacturer to standards traceable to the

National Bureau of Standards (1%, DC to 10 kHz, and 3%, 10 kHz to 1 MHz), and the

quoted input-noise associated with the preamplifier is 4 nV/vHz for gains of 100 or

greater, 10 nV/VHz for a gain of 50, and 11 nV//Hz for a gain of 20. The gain of the

pre-amplifier was varied between twenty and five hundred depending on the flow

conditions. In the AC-coupled mode, the pre-amplifier has a low-pass filter capability of

-20 or -40 dB/decade attenuation, and high- and band-pass capability of -20 dB/decade

attenuation. The filter cutoff frequencies range from 0.03 Hz to 1 MHz in steps of 3 and

10.

The output from the pre-amplifier was AC-coupled (0.8 Hz half-power cutoff

frequency) to a two-channel, 12-bit resolution, Tektronix Fourier Analyzer (Model 2642)

for time and frequency domain analysis. The analyzer has the capability of measuring

up to 1600 spectral lines at a bandwidth up to 200 kHz. The bandwidth was usually set







55

to 100 kHz as it was felt that the transducers would not be reliable at greater frequencies.

The noise floor for the analyzer is at most 4 pVJ..Hz when set at 14 mV full scale

input, and has a full scale input range from 14 mV to 10 V. The analyzer samples at

a rate of 2.56 times the bandwidth to satisfy the Nyquist sampling criterion, and to

compensate for the anti-aliasing filter attenuation.

The analyzer was connected to, and controlled from, the PC-AT computer via a

115.2k bits/second RS-232 connection. Using the local 2 Mbytes memory, the analyzer

was used as a simultaneous sample and hold, remote, high-speed data collection device.

The data in memory could then be subsequently stored and analyzed at the user's

convenience. This method was used for all data collected in this research and assures

continuous data records.

3.4.4 Visualization

Flow visualization was employed to detect the mean structure of the flow and to

estimate the location of laminar-to-turbulent transition. This was accomplished with

continuous light source Schlieren and shadowgraph optical systems. A schematic of the

system is shown in Fig. 3.15. All the components were mounted independently on heavy

steel stands at the same height as the mixing section. All of the components could be

adjusted for correct alignment and focussing except for the mixing section.

The continuous light source is 150-watt short arc xenon lamp (Osram XBO150)

mounted in a fan-cooled lamp housing (Oriel Model C-60-30) with a built-in 32 mm

diameter, condenser. The light source is powered by a Universal Lamp Power Supply and

Ignitor (Oriel Model C-20). The lamp is focused onto a horizontal knife edge at the

focus of the first 400 mm diameter, F8.25 parabolic mirror (J. Unertl Optical Co.). The

parallel light then passes through the mixing section to the other parabolic mirror, and is

focused onto another knife edge that produces a Schlieren image on a finely-ground,







56

glass plate. Photographs of the flow were obtained with the knife edge angled at 0, 30,

600, and 90 counter-clockwise from the horizontal streamwise direction. Also, the knife

edge was removed to obtain a shadowgraph photograph.

The mixing section glass windows are schematically shown mounted in the mixing

section in Fig. 3.16. They are made of precision, optical quality, BK7-P crown glass, and

were manufactured by Schott Glass Technologies to conform to MIL-0-13830A. The

overall dimensions measure 305 mm long by 50.8 mm wide by 12.7 mm thick. The

optical specifications are surface flatness within 6 waves over the total length, parallelism

within 16 arc-seconds, and scratch/dig of 80/50. Mounting in the aluminum frames was

accomplished using a pourable, two-part urethane rubber (Devcon, Flexane 80 Liquid

15800) which cures at room temperature. Curing shrinkage is very small at 0.0018 m/m,

and when cured, it has a tensile strength of 14.5 MPa.


3.5 Data Collection

Data collection was made using the laboratory PC-AT computer and electronic

instrumentation described in section 3.4, and was controlled by three computer programs

written in Quick Basic.


A. The first module (set of programs), called ATFRONT, is used to set up a test run

for the first time and functions as follows:

Al. The conditions for the test are obtained from a predefined test matrix or

typed in manually.

A2. The probe's axial position is recorded.

A3. The wall port corresponding to the impact probe's axial location is

recorded.








57

A3. A set of warnings and checks regarding the test rig were displayed to the

screen for the operator to verify.

A4. The above data was stored in a file called ATFRONT.MAB for use by

other modules.



B. The second module is called ATZERO and measures and records the transducer

zero offsets for subsequent use:

B 1. The test rig is opened to atmosphere and 75 readings from each transducer

are recorded.

B2. The means and standard deviations are calculated and displayed for the

operator to verify.

B3. The means are written to a file called ATZERO.CAL. If the file already

exists, it is renamed ATZERO.OLD before being written.



C. The third module is called ATMAIN and controls the actual test run. The

program has the option of controlling a test run for an impact-pressure traverse or

a wall-pressure. The major details for an impact-pressure traverse are as follows:

C 1. The pitot pressure probe is set up for a trapezoidal velocity-profile traverse

as follows:

1. Initiate traverse using near-maximum motor torque at an

instantaneous (t=0.00 seconds) speed of 400 pulses/second (pps).

2. Accelerate from the top of the mixing section at t=0.00 seconds to

953 pps at t=0.10 seconds.

3. Slew at constant speed of 953 pps until t=1.90 seconds.

4. Decelerate from 953 pps at t=1.90 seconds to 400 pps at

t=2.00 seconds.









5. Instantaneous stop at t=2.00 seconds.

C2. Solenoid valves are opened using the keyboard. Monitoring of the supply
stagnation pressure allows precise repeatability of the start flow-conditions.

User-defined, inlet stagnation and static pressure ranges are automatically

monitored for correct flow conditions. The test will not run if the flow

conditions are outside these ranges. Adjustment of the primary or

secondary valves, or downstream butterfly valve allowed precise control

of the flow conditions.

C3. After 1.00 seconds, ten samples of each pressure and temperature are read

at a sampling rate of 1864 samples/second, and a check for overpressure

is made.

C4. The probe traverse is made with the motor-controller card counter being

discretely sampled as fast as possible. The probe pressure is read

immediately following the a step change in counter reading. In testing this

procedure, it was found that three to eight pressure readings were obtained

for each counter reading.

C5. Ten samples of each system pressure and temperature are read at a

sampling rate of 1864 samples/second.

C6. The gas-supply solenoids are closed.

C7. The probe is returned to its initial position using maximum motor-torque.

C8. The means and standard deviations of the mixing-section conditions are

calculated before and after the run, and are written to the output file along

with the probe data.

C9. The operator then has the option of displaying the profile on the screen or

terminating the test.








For a wall-pressure measurement, the control procedure is as follows:

Cla. The Fourier analyzer is set up to remotely capture the desired number of

data points using the desired bandwidth.

C2a. Solenoid valves are opened using the keyboard. Monitoring of the supply

stagnation pressure allows precise repeatability of the start flow-conditions.

User-defined, inlet stagnation and static pressure ranges are automatically

monitored for correct flow conditions. The test will not run if the flow

conditions are outside these ranges. Adjustment of the primary or

secondary valves, or downstream butterfly valve allowed precise control

of the flow conditions.

C3a. After 1.00 seconds, ten samples of each pressure and temperature are read

at a sampling rate of 1864 samples/second, and a check for overpressure

is made.

C4a. The Fourier analyzer is started. For a 100 kHz bandwidth, this step took

less than 2 seconds.

C5a. Ten samples of each system pressure and temperature are recorded at a

sampling rate of 1864 samples/second.

C6a. The gas-supply solenoids are closed.

C7a. The means and standard deviations of the mixing-section conditions are

calculated before and after the run, and are written to the output file along

with the probe data.

C8a. The raw data is downloaded from the Fourier analyzer to the PC-AT and

stored in a file for post-processing.









3.6 Signal Analysis

This section generically describes the complex, discrete, Fourier transform routines

used by the Tektronix Fourier Analyzer (Model 2642). The computations for the fast

Fourier transform (FFT) algorithm are performed in 16-bit, fixed-point arithmetic, and

uses a block floating basis to scale the data. The data obtained from the discrete Fourier

transform (DFT) of a frame (usually 3200 points in this research) is then converted from

fixed to floating point. Before summation of multiple frames for averaging, the DFT is

converted to 32-bit IEEE floating-point format (8-bit exponent, 23-bit plus sign mantissa

plus the implied hidden bit).

The FFT routine computes the DFT pair:

N-1
Inverse: z(i)= Z(k)Wk ,i=0,...,N-1
k=0 (3.1)
N-1
Forward: Z(k)= z(i)W' ,k=0,...,N-1
i=0 (3.2)




where W=exp(-j27/N),

z(i) is a complex time history, and

Z(k) is a complex frequency function of the same number (N) of data

values.

3.6.1 Autospectrum

The single-sided autospectrum is computed from the convolution of the complex

DFT, X(k):



T ) (3.3)









where Pr=NT=the length of a data block, in seconds,

k=-0,1,2,...,(N/2)-1 and

T= the sampling interval.

The factor T2/PT arises because it is omitted from the DFT computation for simplicity in

scaling. The spectrum is single-sided because the textbook FFT is symmetric about zero

and therefore has "negative" power frequencies. To avoid the negative frequencies, only

(N/2)-1 points of X(k) and X'(k) are used. This doubles the power for the positive

frequencies and results in zero power for negative ones.

In all of the data collected in this research, multiple frames were obtained to

reduce the statistical uncertainty of the measurements. Additive averaging was employed

in the following manner:


S (k)= ( (k) M (3.4)



where S,,(k) is the most recent autospectrum, and

M--total number of frames.

The final result after M averages is

M-1
S '/(k)=_1 ES (k)
Mw -0 (3.5)


The normalized standard deviation (or standard error) of the averaged rms

measurement is given by

2- (36)
2(/M (3.6)









Most of the results that will be presented are averages of 10 frames which have a

standard error of 16%. However, some of the data was compared to 40-frames averages

which have a standard error of 8%, and it was found that 10 frames gave repeatable

results in terms of both frequency amplitude and rms. These results will be discussed in

Chapter 5.

3.6.2 Cross-spectrum

The cross-spectrum is computed in a similar manner to the autospectrum except

that the cross-spectrum is complex. The cross-spectrum of a size N frame is

T2
SX(k) =-X *(k)Y(k)
P (3.7)



and the average cross-spectrum of M frames is calculated by


S (k) =S / ( -)(k) '
-w y(w- M (3.8)



where S,(k) is the most recent cross-spectrum. The final result of the M averages is

thus:
M-1
S '(k) = S (k)
M <=o (3.9)



3.6.3 Correlation Functions

The auto- and cross-correlation are covariance functions and are computed using

inverse Fourier transforms (IFTs). For accurate covariance results, the acquired data is

time-averaged, zero-padded to avoid wraparound error, and has no window applied to the






63

spectrum calculation. The spectrum is modified by changing the sign of the odd-indexed
data values, k=-,3,5,...,(N/2)-1, followed by an IFT to obtain the covariance:

Cross -correlation: sy(i) =IFT[S(k)] (3.10)
Auto -correlation: s (i) =IFT[S (k)] (3.11)


where the subscript "c" distinguishes these functions from the final corrected functions.
For both functions, the lag index, i, runs from

i= -N,..., -1,0,1,...N-1 (3.12)
The auto-correlation function is symmetric, and hence there are only N distinct values for
this function.
Both correlations are then adjusted to account for the linear taper that is induced
by the fact that the spectra are divided by N instead of N minus the lag number. The
statistical result is to provide an unbiased estimate of the correlation function:

s Y(0 = -' i=--'N"-,...'0' N_"-
Si=-,1 (3.13)



3.6.4 Transfer and Coherence Functions
The averaged transfer function is computed from

H' (k)=S k) k=0,1,...,N-1
x S/(k) 2(3.14)


and the averaged coherence function is computed from

S '* (k) S (k) ,
y (k)- yk ,,..., -1
S '(k) S '(k) 2 (3.15)







64

The transfer function compares the gain of the "response" channel to the

"reference" channel, that here would be calculated from two pressure transducers' outputs.

It also contains phase information. Two different results can be obtained by switching

the response and reference channels, and the results can be compared to identify which

direction certain frequencies are travelling.

The coherence function is similar to the transfer function except that it is not

affected by switching the reference and response channels, and contains no phase

information. It is useful for identifying the relative power of frequencies present at two

locations.

3.6.5 Windows

For all measurements except for the correlation measurements, a window is

applied to the data in the frequency domain. The benefit of using a window is to reduce

the effects of discontinuities in the analyzed signal introduced by the FFT process. The

function of the window is to reduce the values of the ends ofa N point frame to zero, and

avoid wraparound error. No windowing is used for the correlation measurements because

the window is applied in the frequency domain, and would therefore distort the time

record, producing an incorrect analysis.

The Hanning window is applied to the data when a window is used, and is

implemented for each FFT operation in a calculation:



Z'(k)= Z(k) -Z(k-1) (3.16)
2 4


where Z'(k) is the windowed FFT.









It is obvious that, compared to using no window, windowing affects the rms power

and amplitudes of the spectral lines. This can be overcome by applying an amplitude

scaling factor of 2 (reciprocal of the first weighting term), or an rms scaling factor of

2.667 to the windowed data. In this research, the rms scaling factor is always used so

that the total power values are correct. As amplitude correction is not employed, the

effect on spectral amplitude on a pure sine wave for example, would be an amplitude

reduction of 1.22 compared to the true value.

A further effect of the Hanning window is to reduce the effective duration of the

record being transformed to half of that represented by the samples themselves. This

reduction can be overcome by overlapping the frames by 50%, and is used here.

3.7 Boundary-Layer Conditions at the Mixing-Section Inlet

The boundary layer thicknesses at the mixing-section inlet were calculated to

quantify the mean inlet-conditions and to validate the impact-pressure measurement. The

thicknesses were calculated using the compressible Thwaites method (Thwaites, 1949) for

momentum thickness of Rott and Crabtree (1952), that is valid for the compressible

boundary under arbitrary pressure gradient with no imminent separation. The necessary

assumptions are : (a) adiabatic wall, (b) the Prandtl number of the gas is unity, and (c)

the viscosity jI is a linear function of temperature.

These calculations were performed for the trailing edge thicknesses of the primary

and secondary on either side of the nozzle block. The momentum thicknesses were

assumed to be zero at the start of the convergence sections leading into the mixing

section, and the calculations are shown in Table 3.1. The details of the method are given

in Appendix B.







66

The initial thicknesses on the side walls were not calculated, but are approximately

the same as the ones calculated presented in Table 3.1 due to the similarity in the

freestream, axial Mach number profiles.

Using the calculated value for 6' to get the effective primary flow height 2(b-6),

the predicted primary Mach number can be estimated using this value in the one-

dimensional, isentropic, gas-dynamics relation for area ratio. Also, it can be calculated

that the measured value should be increased by about 0.2% to account for the static

temperature and pressure measurements being made on the side wall of the primary

plenum. This results in a corrected, measured primary Mach number of 1.79. This

agrees with the primary Mach number calculated from the measured nozzle-throat and

exit heights, and accounting for the displacement thicknesses in Table 3.1, to within the

tolerances of the height measurements.
















Table 3.1 Boundary-layer thicknesses of primary and secondary supplies.

(* 0 8*
Location 0 (mm) 8* (mm) 8 (mm) H=
8 8 0

Primary Throat 0.0085 0.027 0.051 0.54 0.17 3.2
Primary Trailing Edge 0.0085 0.045 0.073 0.62 0.12 5.3
Secondary Trailing
Edge-Inner Wall 0.037 0.099 0.20 0.50 0.19 2.7
Secondary Outer Wall 0.039 0.103 0.21 0.50 0.19 2.7










68








I-



0
U
C)

o





'5i
C.










o










0
U






0
o












0







4-
0

o1












I-
CE
G=i
0n







F1


)
:


---- ---- -
































Sa,


C







4)0 I



CE
o
|tt e1









It


4)

N v
--c>


S L 0


C
a
c



0
3


]^

0







C,
u

N




















































Flow conditioning sections, settling chambers and nozzles. Flow is
from right to left.


Figure 3.3




























t
2b-12.65 mm
I





--16.15 mm


Nozzle-block dimensions.


Figure 3.4



















































Mixing section and impact-pressure probe/pressure transducer/stepper-
motor assembly. Mixing-section extension is not shown.


Figure 3.5





















































Wall static-pressure plate used for manometer and strain-gauge
transducer measurements.


Figure 3.6



















TRANSDUCER SLEEVE


01.78


4.57


0-RING -

PLUG





1.40 -


Figure 3.7


0.89




1.12




Dimensions in millimeters.


Brass transducer-sleeves and plugs used for time-accurate wall-pressure
measurements.


3.05



3.05 J


1.47
















E





E cs
43
S] I---


1oE
EE c













1 E 0 E
E I E


SE
10

Jo I
EoE
10 0 E)
00






0 7> j|



IE
E














o
E ----a I

-e;


C4
F 4)CUI-
oI~ E C.





La j



















































Top rail of mixing section showing fitted plugs.


Figure 3.9






























































Figure 3.10


Plugs for top and bottom rails of the mixing section.


.* ..o *.
:_.


























4'
Butterfly
Valvs

From
Test
Section .- 11 .


2.0" X 1.0" rectangular to 4" DIA Transition Diffuser



Discharge to
Atmosphere


4" PVC


4" PVC


10" Pipe


40 DIA x 110" long Maxim BR31
HI-Veloclty Discharge Silencer
Glass Wool Filled


Figure 3.11 Exhaust system.























































Figure 3.12 Schematic of instrumentation and computer interface.




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E6HA42G4P_EWI171 INGEST_TIME 2011-10-24T17:58:30Z PACKAGE AA00003616_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

35(6685( 0($685(0(17 $1' )/2:),(/' &+$5$&7(5,=$7,21 2) $ 7:2',0(16,21$/ ,'($//< (;3$1'(' &2167$17 $5($ $,5$,5 (-(&725 %\ 0,&+$(/ $17+21< %(1-$0,1 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

&RS\ULJKW k E\ 0LFKDHO $QWKRQ\ %HQMDPLQ

PAGE 3

7R P\ SDUHQWV WR )HOLFLW\ DQG WR 7ULVWDQ

PAGE 4

$&.12:/('*(0(176 ZRXOG OLNH WR H[SUHVV P\ DSSUHFLDWLRQ WR 3URIHVVRU 9HUQRQ 5RDQ IRU VXSHUYLVLQJ WKLV LQWHUHVWLQJ DQG GLIILFXOW SURMHFW 2XU PDQ\ GLVFXVVLRQV KDYH NHSW WKH UHVHDUFK IRFXVVHG RQ WKH SULPDU\ REMHFWLYHV ZKLOH KH KDV DOORZHG PH IUHH FKRLFH RI WKH SDWK WR DUULYH DW WKRVH JRDOV +H KDV EHHQ P\ PHQWRU IRU PRUH WKDQ VHYHQ \HDUV IRXU \HDUV IRU WKLV GHJUHHf DQG FRQVLGHU KLP D IULHQG KDYH KDG PDQ\ IUXLWIXO FRQYHUVDWLRQV ZLWK 3URIHVVRU &DOYLQ 2OLYHU DQG DP PXFK REOLJHG IRU KLV KHOS LQ VROYLQJ DQ HOXVLYH HOHFWULFDO QRLVH SUREOHP 3URIHVVRU :HL 6K\\ DOZD\V PDQDJHG WR HFKR WKH QDJJLQJ TXHVWLRQV WKDW RQH ZRXOG OLNH WR DYRLG EXW DV VXFK KDV VHUYHG P\ FRQVFLHQFH ZHOO DQG LQVSLUHG PH WR QHZ KHLJKWV IRU ZKLFK WKDQN KLP 7KH VXJJHVWLRQV RI 3URIHVVRUV -LOO 3HWHUVHQ DQG -LP .ODXVQHU RQ YDULRXV DVSHFWV RI WKH H[SHULPHQWDO SURJUDP DUH JUHDWO\ DSSUHFLDWHG DP WKDQNIXO IRU WKH H[SHUW PDFKLQLQJ VNLOOV RI &KDUOHV 6LPPRQV DQG 7RPP\ 6NLSSHU DQG IRU WKH PDQDJHPHQW RI &DUO &R[ RI WKH (QJLQHHULQJ 0DFKLQH 6KRS ZKR ZHQW WR JUHDW OHQJWKV WR VDWLVI\ WKH DFFXUDWH FRQVWUXFWLRQ RI WKH WHVW ULJ ZRXOG OLNH WR WKDQN WKH GHSDUWPHQWnV ,QVWUXPHQWDWLRQ DQG ,QQRYDWLRQ /DERUDWRU\ PDQDJHU 5REHUW +DUNHU IRU KHOS LQ WKH GHVLJQ DQG FRQVWUXFWLRQ RI WKH FXVWRP HOHFWURQLF FLUFXLWV DQG IRU KLV JRRG SDWLHQFH LQ WKDW HQGHDYRU $GGLWLRQDO WKDQNV JR WR WKH GHSDUWPHQWnV WHFKQLFLDQV 6WHYH 6RZD +RZDUG ,9

PAGE 5

3XUG\ DQG -HII 6WXGVWLOO IRU WKHLU DVVLVWDQFH ZLWK IDEULFDWLQJ SDUWV DQG KHOS LQ WKH ODERUDWRU\ $PRQJ P\ IHOORZ JUDGXDWH VWXGHQWV DP HVSHFLDOO\ JUDWHIXO IRU WKH KHOS RI 0D[ 'XIIORFT LQ WKH GHVLJQ RI WKH WHVW ULJ DQG WKH DOLJQLQJ RI WKH RSWLFDO V\VWHP DQG WR 'RXJODV +\ODQG IRU KLV OR\DO VHUYLFH LQ DVVHPEOLQJ WKH ULJ DQG UHEXLOGLQJ D ODUJH SRUWLRQ RI WKH DLUVXSSO\ IDFLOLW\ 7KH FRQWRXUHG FHQWHUERGLHV DQG ZDOOV FRXOG QRW KDYH EHHQ IDEULFDWHG ZLWKRXW WKH H[SHUW &1& PDFKLQH SURJUDPPLQJ DQG RSHUDWLRQ E\ %ULWW &REE DQG WKH DFFHVV WR WKH 0DFKLQH 7RRO 5HVHDUFK &HQWHU JUDQWHG E\ 3URIHVVRU -LUL 7OXVW\ 0XFK DSSUHFLDWHG DVVLVWDQFH ZLWK GHVLJQ GUDZLQJV DQG IDFLOLW\ FRQVWUXFWLRQ ZDV SURYLGHG E\ XQGHUJUDGXDWHV %ULDQ +ROORZD\ *UHJ %DVV &KULV &RYLQJWRQ 0LWFK 6WRNHV 6WHSKDQLH :HEE 5HHG 6WULFNODQG %UDG &KXQJ DQG 0LNH &RZOHV 7KH H[SHULPHQWDO IDFLOLW\ ZDV PDGH DYDLODEOH WKURXJK UHVHDUFK JUDQW 1$* IURP WKH 3URSXOVLRQ 6\VWHPV %UDQFK RI WKH 1$6$ /HZLV 5HVHDUFK &HQWHU ZKLFK LV JUDWHIXOO\ DFNQRZOHGJHG $GGLWLRQDO ILQDQFLDO VXSSRUW IRU ZKLFK WKDQN 3URIHVVRU %LOO 7LHGHUPDQ KDV EHHQ SURYLGHG E\ WKH 0HFKDQLFDO (QJLQHHULQJ 'HSDUWPHQW /DVWO\ DQG QRWDEO\ ZRXOG OLNH WR WKDQN P\ ZLIH )HOLFLW\ IRU KHU XQGHUVWDQGLQJ DQG SDWLHQFH GXULQJ P\ RIWHQ UHFRQGLWH GHHGV Y

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*(0(176 LY /,67 2) 7$%/(6 L[ /,67 2) ),*85(6 [ 120(1&/$785( [YL $%675$&7 [[ &+$37(56 ,1752'8&7,21 %DFNJURXQG (MHFWRUV 2EMHFWLYH /,7(5$785( 6859(< 7XUEXOHQFH 7KHRU\ DQG &RQVHTXHQFHV .ROPRJRURY 7KHRU\ ,QHUWLDO 6SHFWUXP )XQFWLRQV 7XUEXOHQW3UHVVXUH ,QYHVWLJDWLRQV LQ %RXQGDU\/D\HU )ORZV ,QFRPSUHVVLEOH =HUR 3UHVVXUH*UDGLHQW )ORZV &RPSUHVVLEOH =HUR 3UHVVXUH*UDGLHQW )ORZ ,QFRPSUHVVLEOH $GYHUVH DQG )DYRUDEOH 3UHVVXUH *UDGLHQW )ORZV )LQLWH 7UDQVGXFHU 6L]H (IIHFWV 6KHDU/D\HU &KDUDFWHULVWLFV -HW $FRXVWLFV YL

PAGE 7

SDJH (;3(5,0(17$/ ,19(67,*$7,21f§+$5':$5( 352&('85(6 $1' 0,;,1*6(&7,21 ,1/(7 &21',7,216 *HQHUDO 'HVFULSWLRQ 'HVLJQ 0HWKRGRORJ\ ([SHULPHQWDO $SSDUDWXV *DV 6WRUDJH DQG 'HOLYHU\ 6\VWHP 3ULPDU\ DQG 6HFRQGDU\ /LQHV 3OHQXPV 3ULPDU\ SOHQXP 6HFRQGDU\ SOHQXPV DQG IORZ SDVVDJHV 3ULPDU\ 1R]]OH 0L[LQJ 6HFWLRQ 7UDYHUVLQJ ,PSDFW3UHVVXUH 3UREH 7UDQVLWLRQ 'LIIXVHU DQG ([KDXVW ,QVWUXPHQWDWLRQ ,PSDFW 3UHVVXUH 6LGHZDOO 0HDQ 6WDWLF 3UHVVXUH 6LGHZDOO 7LPH$FFXUDWH 3UHVVXUH 0HDVXUHPHQWV 9LVXDOL]DWLRQ 'DWD &ROOHFWLRQ 6LJQDO $QDO\VLV $XWRVSHFWUXP &URVVVSHFWUXP &RUUHODWLRQ )XQFWLRQV 7UDQVIHU DQG &RKHUHQFH )XQFWLRQV :LQGRZV %RXQGDU\/D\HU &RQGLWLRQV DW WKH 0L[LQJ6HFWLRQ ,QOHW (;3(5,0(17$/ 5(68/76PHDQ 0($685(0(176 ([SHULPHQWDO 2EMHFWLYHV 7HVW &RQGLWLRQV 2SWLFDO 9LVXDOL]DWLRQV :DYHV LQ WKH )ORZ *URZWK 5DWHV 9LVLEOH 6WUXFWXUHV /DPLQDUWR7XUEXOHQW 7UDQVLWLRQ 6WDWLF :DOO3UHVVXUH YLL

PAGE 8

SDJH ,PSDFW3UHVVXUH 0HDVXUHPHQWV 1RUPDOL]HG 3URILOHV 6LPLODULW\ 3URILOHV *URZWK5DWHV (QWUDLQPHQW &RQWRXU 3ORWV DQG 9LVXDOL]DWLRQV &RQWRXU 3ORWV &RORU 9LVXDOL]DWLRQV (;3(5,0(17$/ 5(68/76f§7,0($&&85$7( 0($685(0(176 ([SHULPHQWDO 2EMHFWLYH 6HFRQG 7KLUG DQG )RXUWK 0RPHQWV RI 3UHVVXUH 0L[LQJ6HFWLRQ ,QOHW 0HDVXUHPHQWV &HQWHUOLQH 0HDVXUHPHQWV 0HDVXUHPHQWV DW \E :KROH)LHOG 0HDVXUHPHQWV $XWRVSHFWUD 0L[LQJ6HFWLRQ ,QOHW 0HDVXUHPHQWV &HQWHUOLQH 0HDVXUHPHQWV 0HDVXUHPHQWV DW \E 7ZR3RLQW 6SHFWUDO 0HDVXUHPHQWV 1DUURZEDQG 0HDVXUHPHQWV &21&/86,216 $1' 5(&200(1'$7,216 &RQFOXVLRQV IURP 6LJQLILFDQW 5HVXOWV 6XJJHVWLRQV IRU )XUWKHU :RUN $33(1',&(6 $ %281'$5
PAGE 9

/,67 2) 7$%/(6 7DEOH SDJH %RXQGDU\OD\HU WKLFNQHVVHV RI SULPDU\ DQG VHFRQGDU\ VXSSOLHV ([SHULPHQWDO IORZ FRQGLWLRQV &DOFXODWHG QRQGLPHQVLRQDO DQG IORZ SDUDPHWHUV &DOFXODWLRQ RI WKH SUREDELOLW\ : WKDW WKH ZDOO SUHVVXUH S H[FHHGV WKH WKUHVKROG S DW [E &DOFXODWLRQ RI WKH SUREDELOLW\ : WKDW WKH ZDOO SUHVVXUH S H[FHHGV WKH WKUHVKROG SIW DW [E \Ef f ,;

PAGE 10

/,67 2) ),*85(6 )LJXUH SDJH 'HILQLWLRQV RI HMHFWRU UHJLRQV DQG OHQJWKV &RPSDULVRQ RI VLPLODU JHRPHWU\ DLUSULPDU\DLUVHFRQGDU\ HMHFWRU LPSDFWSUHVVXUH FRQWRXUV N3Df IURP GDWD RI 5RDQ HW DO f 33 N3D 0M LQ ERWK FDVHV Df D[LV\PPHWULF FRQILJXUDWLRQ 0 Ef WZRGLPHQVLRQDO SODQDU FRQILJXUDWLRQ 0 7KH WKUHHGLPHQVLRQDO YHORFLW\ HQHUJ\ VSHFWUXP DIWHU +LQ]H f 9RUWH[ULQJ PRGHO RI FRKHUHQW VWUXFWXUH DQG EXUVW DIWHU .REDVKL DQG ,FKLMR f )ORZ UHJLPHV LQ WKH HMHFWRU 'UDZLQJ RI IORZ SDVVDJHV IORZFRQGLWLRQLQJ GHYLFHV DQG W\SLFDO PL[LQJ VHFWLRQ FRQILJXUDWLRQ *DV VWRUDJH DQG GHOLYHU\ V\VWHP )ORZ FRQGLWLRQLQJ VHFWLRQV VHWWOLQJ FKDPEHUV DQG QR]]OHV )ORZ LV IURP ULJKW WR OHIW 1R]]OHEORFN GLPHQVLRQV 0L[LQJ VHFWLRQ DQG LPSDFWSUHVVXUH SUREHSUHVVXUH WUDQVGXFHUVWHSSHUPRWRU DVVHPEO\ 0L[LQJVHFWLRQ H[WHQVLRQ LV QRW VKRZQ :DOO VWDWLFSUHVVXUH SODWH XVHG IRU PDQRPHWHU DQG VWUDLQJDXJH WUDQVGXFHU PHDVXUHPHQWV %UDVV WUDQVGXFHUVOHHYHV DQG SOXJV XVHG IRU WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV [

PAGE 11

)LJXUH SDJH 3ODWHV XVHG IRU WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV 2QO\ RQH SODWH ZDV DFWXDOO\ LQVWDOOHG IRU D WHVW UXQ 7RS UDLO RI PL[LQJ VHFWLRQ VKRZLQJ ILWWHG SOXJV 3OXJV IRU WRS DQG ERWWRP UDLOV RI WKH PL[LQJ VHFWLRQ ([KDXVW V\VWHP 6FKHPDWLF RI LQVWUXPHQWDWLRQ DQG FRPSXWHU LQWHUIDFH &XVWRPEXLOW SRZHU VXSSO\ IRU .XOLWH WUDQVGXFHU &XVWRPEXLOW EXIIHU DPSOLILHU JDLQ O 6FKOLHUHQ VHWXS 2SWLFDO ZLQGRZ LQVWDOODWLRQ 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r IURP KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r IURP KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r IURP KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW 6KDGRZJUDSK YLVXDOL]DWLRQ 7\SLFDO PDQRPHWHU UHDGLQJ 7KUHH UHIHUHQFH SUHVVXUHV RQH IRU HDFK PHUFXU\ UHVHUYRLUf DUH LQGLFDWHG E\ WXEHV DQG IURP WKH OHIW )URP OHIW WR ULJKW WKH UHVW RI WKH WXEHV LQGLFDWH LQFUHDVLQJ SUHVVXUH LQ WKH GRZQVWUHDP GLUHFWLRQ [L

PAGE 12

SDJH )LJXUH 0HDQ VWDWLFSUHVVXUH PHDVXUHPHQWV RQ WKH ZDOO b FRQILGHQFH LQWHUYDOV DUH VKRZQ Df &RPSDULVRQ RI WKH WKUHH W\SHV RI VWDWLFSUHVVXUH PHDVXUHPHQWV PDGH RQ WKH OHIW ZDOO RI WKH PL[LQJ VHFWLRQ Ef 'LIIHUHQFH EHWZHHQ WKH VWUDLQJXDJH DQG PDQRPHWHU VWDWLFSUHVVXUH UHDGLQJV RQ WKH ZDOO &RPSDULVRQ RI PDQRPHWHU VWDWLFSUHVVXUH PHDVXUHPHQWV RQ WKH OHIW DQG ULJKW ZDOOV RI WKH PL[LQJ VHFWLRQ ,PSDFWSUHVVXUH WUDYHUVHV Df V[EV Ef [EA 8QUHSHDWDEOH LPSDFWSUHVVXUH WUDYHUVHV Df [E Ef [E ,OO 1RUPDOL]HG FHQWHUOLQH YDOXHV RI YHORFLW\ GHQVLW\ DQG G\QDPLF SUHVVXUH 1RUPDOL]HG LPSDFWSUHVVXUH SORWWHG DJDLQVW QRUPDOL]HG VKHDUOD\HU 6KHDUOD\HU HGJHV GHWHUPLQHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV 0HDVXUHG VKHDUOD\HU WKLFNQHVVHV JURZWK UDWHV DQG YLUWXDO RULJLQV &RPSDULVRQ RI QRUPDOL]HG JURZWKUDWHV IRU HMHFWRU VKHDUOD\HUV FXUUHQW H[SHULPHQW DQG %HQMDPLQ HW DO ff DQG IUHHVKHDU OD\HUV &RQWRXU SORWV JHQHUDWHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV Df 3SL3f L Ef 33f Ff SS Gf 88 Hf0 If 44X Jf 33X 'HWDLOHG G\QDPLFSUHVVXUH FRQWRXU SORW JHQHUDWHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV [LL

PAGE 13

SDJH )LJXUH &RORU SORWV RI PHDQ IORZ SDUDPHWHUV )URP WRS WR ERWWRP DUH LPSDFW SUHVVXUH 3SLW VWDJQDWLRQ SUHVVXUH 3 GHQVLW\ S YHORFLW\ 8 0DFK QXPEHU 0 DQG G\QDPLF SUHVVXUH 4 7KH PD[LPXP FRQWRXU OHYHOV DUH ZKLWH DQG WKH ORZHVW DUH EODFN 1RUPDOL]HG WXUEXOHQW ZDOOSUHVVXUH DW WKH PL[LQJVHFWLRQ LQOHW [E 6NHZQHVV DW WKH PL[LQJVHFWLRQ LQOHW [E .XUWRVLV DW WKH PL[LQJVHFWLRQ LQOHW [E 3UREDELOLW\ GHQVLW\ IXQFWLRQ RI ZDOOSUHVVXUH DW WKH PL[LQJVHFWLRQ LQOHW [E 7XUEXOHQW ZDOOSUHVVXUH DORQJ WKH ZDOO FHQWHUOLQH \E 6NHZQHVV DORQJ WKH ZDOO FHQWHUOLQH \E .XUWRVLV DORQJ WKH ZDOO FHQWHUOLQH \E 7XUEXOHQW ZDOOSUHVVXUH DORQJ WKH ZDOO DW \E 6NHZQHVV DORQJ WKH ZDOO DW \E .XUWRVLV DORQJ WKH ZDOO DW \E &RPSDULVRQ RI WXUEXOHQW ZDOOSUHVVXUH DORQJ WKH ZDOO DW \E DQG \E &RPSDULVRQ RI VNHZQHVV DORQJ WKH ZDOO DW \E DQG \E &RPSDULVRQ RI NXUWRVLV DORQJ WKH ZDOO DW \E DQG \E &RORU SORWV RI WXUEXOHQW ZDOOSUHVVXUH Df 3UPV L f 3QQ3Z Ff G% SPV UH S3Df &RORU SORWV RI KLJKHUKLJKHU RUGHU ZDOO SUHVVXUH VWDWLVWLFV Df 6NHZQHVV Ef .XUWRVLV [LLL

PAGE 14

)LJXUH SDJH 3UREDELOLW\ GHQVLW\ IXQFWLRQ RI ZDOOSUHVVXUH DW WKH ORFDWLRQ RI PD[LPXP VNHZQHVV DQG NXUWRVLV [E \Ef f :DOOSUHVVXUH VSHFWUD DQG UHSHDWDELOLW\ DW WKH PL[LQJVHFWLRQ LQOHW [E Df \E Ef \E Ff \E :DOOSUHVVXUH VSHFWUDO GHFD\ VORSHV DW WKH PL[LQJVHFWLRQ LQOHW [E Df ,Q WKH VHFRQGDU\ IORZ DW \E f§ Ef ,Q WKH VKHDUOD\HU DW \E Ff ,Q WKH SULPDU\ IORZ DW \E Gf ,Q WKH VHFRQGDU\ IORZ DW \E 'HYHORSPHQW RI WKH ZDOOSUHVVXUH VSHFWUD DORQJ WKH FHQWHUOLQH \E 'HYHORSPHQW RI WKH ZDOOSUHVVXUH VSHFWUD DORQJ WKH OLQH \E 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW [E 0HDVXUHPHQW ORFDWLRQV DUH LQ WKH XSSHU DQG ORZHU VHFRQGDU\ VWUHDPV DW \E DQG \E 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW [E 0HDVXUHPHQW ORFDWLRQV DUH LQ WKH SULPDU\ IORZ DW \E DQG \E 7ZRSRLQW ORQJLWXGLQDO SUHVVXUHVSHFWUD DW \E 0HDVXUHPHQW ORFDWLRQV DUH MXVW EHIRUH WKH HQG RI WKH SULPDU\ FRUH DW [E DQG [E 0HDVXUHPHQW EDQGZLGWK LV N+] 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD MXVW GRZQVWUHDP RI WKH HQG RI WKH SULPDU\ FRUH DW [E 0HDVXUHPHQW ORFDWLRQV DUH HLWKHU VLGH RI WKH FHQWHUOLQH DW \E DQG \E 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD MXVW GRZQVWUHDP RI WKH HQG RI WKH SULPDU\ FRUH DW [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E [LY

PAGE 15

SDJH )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E f§ DQG [E 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH HLWKHU VLGH RI WKH FHQWHUOLQH DW \E f§ DQG [E &RORU SORWV RI QDUURZEDQG PHDVXUHPHQWV Df +] Ef N+] Ff N+] ZKHUH VKDUS RU EURDG SHDN LV SUHVHQW Gf N+] ZKHUH RQO\ VKDUS SHDN LV SUHVHQW [Y

PAGE 16

120(1&/$785( 6\PERO E F G (N Wf ( 9 PD[ PLQ P 0 0 & 0 U 0: 'HVFULSWLRQ 0L[LQJVHFWLRQ LQOHW DUHD RI LQWHUHVW 3ULPDU\ QR]]OH H[LW KDOIKHLJKW 6RXQG VSHHG 3UHVVXUH WUDQVGXFHU VHQVRU GLDPHWHU 9HORFLW\ VSHFWUXP IXQFWLRQ VHH )LJ 0DVV HQWUDLQPHQW UDWLR PP 9ROXPHWULF HQWUDLQPHQW UDWLR )UHTXHQF\ &RQYHFWLYH 0DFK QXPEHU IXQFWLRQ VHH (T f 3ULPDU\ QR]]OH WKURDW KDOIKHLJKW WUDQVIHU IXQFWLRQ RI SUHVVXUH VHH (T f :DYHQXPEHU FXVWRPDULO\ EDVHG RQ FRQYHFWLYH YHORFLW\ RI ZDYH ZLWK IUHTXHQF\ I N ZXFIf f .XUWRVLV RI SUHVVXUH VHH (T f /HQJWK RI UHJLRQ L 0D[LPXP YDOXH DW VWUHDPZLVH ORFDWLRQ 0LQLPXP YDOXH DW VWUHDPZLVH ORFDWLRQ 0DVV IORZUDWH 0DFK QXPEHU &RQYHFWLYH 0DFK QXPEHU VHH (TV f DQG f 5HODWLYH 0DFK QXPEHU VHH (T %f 0ROHFXODU ZHLJKW [YL

PAGE 17

S 6WDWLF SUHVVXUH 3 0HDQ VWDWLF SUHVVXUH 3SLW ,PSDFW SUHVVXUH 3 0HDQ VWDJQDWLRQ SUHVVXUH 4 f§ 0HDQ VWUHDPZLVH G\QDPLF SUHVVXUH LS8 U 6HFRQGDU\ WR SULPDU\ YHORFLW\ UDWLR 8,8[ 5 f§ *DV FRQVWDQW 5 3UHVVXUH FRUUHODWLRQ VHH (T f 5H 5H\QROGV QXPEHU 5Hn 5H\QROGV QXPEHU SHU XQLW OHQJWK VHH (TV %f DQG %f 5HJ f§ 5H\QROGV QXPEHU EDVHG RQ YLVXDO VKHDUOD\HU WKLFNQHVV DW VWUHDPZLVH GLVWDQFHr 5H[ OS $8fOL JUf R \ DYH YWVMn aDYH 5H[ 5H\QROGV QXPEHU EDVHG RQ VWUHDPZLVH GLVWDQFH r 5H[ ASO8O[ASO V 6HFRQGDU\ WR SULPDU\ GHQVLW\ UDWLR SS[ 6 6NHZQHVV RI SUHVVXUH VHH (T f 6S 3UHVVXUH DXWRFRUUHODWLRQ VHH (T f 6 3UHVVXUH VSHFWUDO GHQVLW\ VHH (T f W (ODSVHG WLPH IURP VWDUW RI PHDVXUHPHQW 7 6WDWLF WHPSHUDWXUH RU WLPHDFFXUDWH PHDVXUHPHQW GXUDWLRQ 7T 6WDJQDWLRQ WHPSHUDWXUH X 9HORFLW\ X n )OXFWXDWLQJ VWUHDPZLVH YHORFLW\ FRPSRQHQW XW )ULFWLRQ YHORFLW\ XW -WZS 8 0HDQ YHORFLW\ FRPSRQHQW 8F &RQYHFWLYH YHORFLW\ VHH (TV f DQG f Yn )OXFWXDWLQJ WUDQVYHUVH YHORFLW\ FRPSRQHQW 9 9ROXPHWULF IORZ UDWH ;9,,

PAGE 18

ZSSKf 3UREDELOLW\ WKDW S SWK [ 6WUHDPZLVH GLUHFWLRQ [ 3RVLWLRQ YHFWRU [R 6KHDUOD\HU VWUHDPZLVH YLUWXDO RULJLQ [ JU 6WUHDPZLVH GLVWDQFH WR YLVLEOH VKHDUOD\HU JURZWK \ 7UDQVYHUVH GLUHFWLRQ *UHHN 6\PEROV < &RQVWDQWSUHVVXUH VSHFLILF KHDW UDWLR &RKHUHQFH RI SUHVVXUH VHH (T f %RXQGDU\OD\HU WKLFNQHVV RU FKDUDFWHULVWLF VKHDUOD\HU OHQJWK VFDOH GHILQHG LQ VHFWLRQ 9,6 9LVXDO VKHDUOD\HU WKLFNQHVV Vn 6KHDUOD\HU JURZWK UDWH n f 9RUWLFLW\ WKLFNQHVV JURZWKUDWH VHH (T f n %RXQGDU\OD\HU GLVSODFHPHQW WKLFNQHVV e 7LPHDYHUDJH HQHUJ\ GLVVLSDWLRQ SHU XQLW PDVV DQG WLPH 9 .ROPRJRURY OHQJWK VFDOH UI Yef RU QRUPDOL]HG VKHDUOD\HU WKLFNQHVV VHH (T f H ,QLWLDO ERXQGDU\OD\HU PRPHQWXP WKLFNQHVV S 0ROHFXODU G\QDPLF YLVFRVLW\ Y .LQHPDWLF YLVFRVLW\ 9 1RUPDOL]HG LPSDFWSUHVVXUH VHH (T f Q &ROHVn SUHVVXUHJUDGLHQW SDUDPHWHU S 0HDQ VWDWLF GHQVLW\ 3R 0HDQ VWDJQDWLRQ GHQVLW\ U 6KHDU VWUHVV 6SHFWUDO GHQVLW\ RI SUHVVXUH VHH (T f ;9OOO

PAGE 19

$QJXODU IUHTXHQF\ R QI 6XEVFULSWV ,QFRPSUHVVLEOH YDOXH DW VDPH U DQG V +LJKVSHHG SULPDU\f VWUHDP FRQGLWLRQ /RZVSHHG VHFRQGDU\f VWUHDP FRQGLWLRQ DYH %DVHG RQ DYHUDJH RI VWUHDPV DQG FO &HQWHUOLQH YDOXH \ L 6WUHDP L FRQGLWLRQ RU PL[LQJVHFWLRQ LQOHW FRQGLWLRQ 0L[LQJVHFWLRQ LQOHW FRQGLWLRQ 8M SLW 6WUHDP M FRQGLWLRQ DW LQOHW SODQH ,PSDFWSUREH YDOXH UPV 5RRWPHDQVTXDUH YDOXH WK 7KUHVKROG YDOXH Z 9DOXH DW WKH ZDOO f§ %RXQGDU\OD\HU IUHHVWUHDP FRQGLWLRQ 6XSHUVFULSWV r &RPSOH[ FRQMXJDWH 1RQGLPHQVLRQDOL]HG YDOXH XVLQJ LQQHU YDULDEOHV )OXFWXDWLQJ TXDQWLW\ 2WKHU 6\PEROV (QVHPEOH DYHUDJH [L[

PAGE 20

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 35(6685( 0($685(0(17 $1' )/2:),(/' &+$5$&7(5,=$7,21 2) $ 7:2',0(16,21$/ ,'($//< (;3$1'(' &2167$17 $5($ $,5$,5 (-(&725 %\ 0LFKDHO $QWKRQ\ %HQMDPLQ 'HFHPEHU &KDLUPDQ 9HUQRQ 3 5RDQ 0DMRU 'HSDUWPHQW 0HFKDQLFDO (QJLQHHULQJ $ GHWDLOHG H[SHULPHQWDO LQYHVWLJDWLRQ RI D WZRGLPHQVLRQDO 0DFK DLUSULPDU\ 0DFK DLUVHFRQGDU\ HMHFWRU DW KLJK 5H\QROGV QXPEHU KDV EHHQ SHUIRUPHG IURP ZKLFK D QRQLQWUXVLYH PHWKRG IRU ZKROHILHOG YLVXDOL]DWLRQ XVLQJ WXUEXOHQW ZDOOSUHVVXUH KDV EHHQ GHYHORSHG 7KH H[SHULPHQWV ZHUH FRQGXFWHG XVLQJ PHDQ DQG WLPHDFFXUDWH ZDOO SUHVVXUH PHDVXUHPHQWV LPSDFWSUHVVXUH PHDVXUHPHQWV XVLQJ D WUDYHUVLQJ SUREH DQG 6FKOLHUHQ DQG VKDGRZJUDSK YLVXDOL]DWLRQ WHFKQLTXHV 7KH WLPHDFFXUDWH SUHVVXUH PHDVXUHPHQWV ZHUH UHFRUGHG XVLQJ D VHDOHG .XOLWH PLQLDWXUH SUHVVXUH WUDQVGXFHU ZLWK D PP GLDPHWHU VHQVLQJ GLDSKUDJP )RU DOO H[FHSW WKH RSWLFDO PHWKRGV PHDVXUHPHQWV ZHUH WDNHQ IURP [[

PAGE 21

WKH LQLWLDO IORZ LQWHUIDFH WR DERXW K\GUDXOLF WXEHGLDPHWHUV GRZQVWUHDP LQ WKH FRQVWDQW DUHD PL[LQJ VHFWLRQ )URP WKH PHDQ PHDVXUHPHQWV YDOXHV RI VWDJQDWLRQ SUHVVXUH GHQVLW\ YHORFLW\ VWDWLF SUHVVXUH 0DFK QXPEHU DQG G\QDPLF SUHVVXUH ZHUH GHYHORSHG DQG DUH SUHVHQWHG 8VLQJ WKH WLPHDFFXUDWH SUHVVXUH PHDVXUHPHQWV D FRORU FRQWRXU SORW RI WKH UPV SUHVVXUH ZDV GHYHORSHG WKDW GHILQLWLYHO\ VKRZV WKH UHJLRQV RI WKH IORZ LQ DJUHHPHQW ZLWK WKH RWKHU PHDVXUHPHQWV $GGLWLRQDOO\ SUREDELOLW\ GHQVLW\ IXQFWLRQV VNHZQHVV DQG NXUWRVLV ZHUH FDOFXODWHG 3HDN YDOXHV RI VNHZQHVV 6f DQG NXUWRVLV .f RQ WKH FHQWHUOLQH DW DERXW K\GUDXOLF GLDPHWHUV DUH 6 DQG 7KH LQOHW UPV SUHVVXUH YDOXHV QRUPDOL]HG E\ IUHHVWUHDP G\QDPLF SUHVVXUH IRU WKH SULPDU\ f ZHUH IRXQG WR EH LQ IDLU DJUHHPHQW ZLWK SUHYLRXV H[SHULPHQWDO YDOXHV KRZHYHU WKRVH LQ WKH VHFRQGDU\ ZHUH PXFK KLJKHU f DSSDUHQWO\ GXH WR WKH DFRXVWLF UDGLDWLRQ IURP WKH SULPDU\ )RXULHU DQDO\VLV RI WKH WLPHDFFXUDWH SUHVVXUH PHDVXUHPHQWV VKRZ WKDW WKH DXWRVSHFWUD FRQWDLQ Nn Nn DQG Nn,, SUHVVXUH VSHFWUXP IXQFWLRQV DV SUHGLFWHG E\ SUHYDLOLQJ WKHRU\ IRU WKH RYHUODS OD\HU WXUEXOHQFHWXUEXOHQFH LQWHUDFWLRQ DQG WXUEXOHQFH PHDQVKHDU LQWHUDFWLRQ UHVSHFWLYHO\ ,W LV EHOLHYHG WKDW WKLV LV WKH ILUVW H[SHULPHQW LQ ZKLFK WKH NnX VSHFWUDO VORSH KDV EHHQ REVHUYHG SHUKDSV DV D UHVXOW RI WKH KLJK 5H\QROGV QXPEHU 7ZRSRLQW ORQJLWXGLQDO DQG WUDQVYHUVH PHDVXUHPHQWV DUH SUHVHQWHG WKDW VKRZ WKH GHYHORSPHQW RI PXOWLSOH ODUJH HGGLHV LQ WKH IORZ [[L

PAGE 22

&+$37(5 ,1752'8&7,21 %DFNJURXQG 7R PHHW WKH FKDOOHQJH RI LQFUHDVLQJ WKH SHUIRUPDQFH RI PRGHUQ JDV WXUELQHV GHVLJQHUV UHTXLUH NQRZOHGJH RI WKH VPDOOHVW GHWDLOV DQG EHKDYLRU RI WKH IORZ 7KHVH HIIHFWV FDQQRW EH PRGHOOHG XVLQJ FRPSXWDWLRQDO PHWKRGV ZLWKRXW VRPH NQRZOHGJH RI ZKDW WKH\ DUH DQG ZKHUH WKH\ RULJLQDWH :KHUH WKH\ RULJLQDWH LV GHSHQGHQW XSRQ VHYHUDO IDFWRUV LQFOXGLQJ WXUEXOHQFH EHKDYLRU WXUEXOHQFHVKRFN LQWHUDFWLRQ WKH SK\VLFDO VKDSHGHVLJQ RI WKH HQFORVXUH DQG WKH PHDQ G\QDPLFV RI WKH IORZILHOG 7KH UDQJH RI GHWDLOV IURP PHDQ WR .ROPRJRURY IORZ VFDOHV DV ZHOO DV ZDOO URXJKQHVV DQG VOLS DW WKH ZDOO FDQQRW EH FORVHO\ PRGHOOHG HYHQ ZLWK VRPH RI RXU EHVW FRPSXWDWLRQDO WHFKQLTXHV VXFK DV 'LUHFW 1XPHULFDO 6LPXODWLRQ '16f 7XUEXOHQFH DORQH FDQ EH PRGHOOHG XVLQJ '16 EXW '16 LV OLPLWHG E\ PDFKLQH VSHHG DQG PHPRU\ VR WKDW FXUUHQW '16 IORZV KDYH DW EHVW D 5H\QROGV QXPEHU RI WKH RUGHU RI DQG D VSDWLDO UHVROXWLRQ WKDW FDQ UHVROYH GHWDLOV XS WR DERXW ZDOO XQLWV IDU VKRUW RI ZKDW LV UHTXLUHG IRU FRPSOHWH PRGHOOLQJ RI D FRPSOH[ IORZ ([SHULPHQWDO QRLVH DQDO\VLV WHFKQLTXHV XVLQJ SLH]RHOHFWULF SUHVVXUH WUDQVGXFHUV H J :LOOPDUWK E .LVWOHU DQG &KHQ f RU PLFURSKRQHV 6FKHZH f KDYH EHHQ XVHG IRU DERXW \HDUV WR PHDVXUH WXUEXOHQW ZDOOSUHVVXUH VSDUNHG E\ WKH QHHG WR LQYHVWLJDWH DQG FRQWURO WKH HIIHFW RI SUHVVXUH RQ DLUFUDIW IXVHODJHV 7KURXJKRXW WKH V DQG V PRVW IXQGDPHQWDO H[SHULPHQWDO UHVHDUFK IRFXVVHG RQ WXUEXOHQW ZDOOSUHVVXUH PHDVXUHPHQWV XQGHU D WKLFN IODWSODWH ERXQGDU\OD\HU H J :LOOPDUWK f 7KLV OHG WR WKH IDPLOLDU UHVXOW RI WKH WXUEXOHQW HQHUJ\ FDVFDGH IURP ODUJH HGGLHV LQWHJUDO VFDOHf WR

PAGE 23

VPDOO HGGLHV GLVVLSDWLRQ VFDOHf YLD WKH LQHUWLDO VXEUDQJH ZKLFK ZDV LQ DFFRUG ZLWK .ROPRJRURYnV ILUVW DQG VHFRQG K\SRWKHVHV )ROORZLQJ WKH HQG RI WKH $SROOR DQG VXSHUVRQLF WUDQVSRUW 667f SURJUDPV RI WKH V H[SHULPHQWDO UHVHDUFK LQ WKLV DUHD KDV IRFXVVHG RQ IXQGDPHQWDO XQGHUVWDQGLQJ RI WKH VPDOO VFDOH GLVWXUEDQFHV LQ WKH IORZ QHDU WKH ZDOO $Q DUHD RI FXUUHQW LQWHUHVW WKDW FDQ EH XVHG WR IXUWKHU XQGHUVWDQG VRPH RI WKH IXQGDPHQWDO GHWDLOV DVVRFLDWHG ZLWK LQWHUQDO PL[LQJ IORZV LV WR VWXG\ WKH HMHFWRU VKHDU OD\HU ZKLFK FRPSULVHV D VXSHUVRQLF SULPDU\ MHW DQG D VXEVRQLF VHFRQGDU\ IORZ 3UHVHQWO\ WKH PRGHO RI D GHYHORSLQJ HMHFWRUIORZILHOG LV W\SLFDOO\ GLYLGHG LQWR WKUHH UHJLRQV SUHFHGHG E\ XQLIRUP SULPDU\ DQG VHFRQGDU\ IORZV DQG IROORZHG E\ D UHJLRQ RI IXOO\ PL[HG IORZ VHH )LJ f 0RGHOOLQJ WKH HMHFWRU XVLQJ D FRPSXWDWLRQDO SURFHVV ZKLFK ZLOO QRW EH DGGUHVVHG LQ WKLV ZRUN LQYROYHV D PDUFKLQJ VFKHPH WKDW VWDUWV DW WKH SRLQW RI LQLWLDO FRQWDFW VWDUW RI UHJLRQ f 5HJLRQ EHJLQV ZLWK WKLV LQLWLDO FRQWDFW DQG HQGV ZKHUH WKH SRWHQWLDO FRUH RI WKH SULPDU\ HQGV 5HJLRQ DOVR EHJLQV ZLWK WKH LQLWLDO FRQWDFW DQG HQGV ZKHUH WKH VHFRQGDU\ VKHDU OD\HU UHDFKHV WKH ZDOO 5HJLRQ VWDUWV DW WKH HQG RI UHJLRQ RU ZKLFKHYHU LV ORQJHUf DQG FRQWLQXHV XQWLO WKH VWUHDPV DUH IXOO\ PL[HG 5HFHQW H[SHULPHQWDO ZRUN DW WKH 8QLYHUVLW\ RI )ORULGD 3HWHUVHQ HW DO 5RDQ HW DO 'XIIORFT HW DO %HQMDPLQ HW DO f KDV IRFXVHG RQ WUDYHUVLQJ DQ LPSDFW SUREH DFURVV ERWK D[LV\PPHWULF DQG WZRGLPHQVLRQDO SODQDU IORZV DW VHYHUDO D[LDO SRVLWLRQV ZKLFK KDV HQDEOHG VRPH XQGHUVWDQGLQJ RI WKH IORZ LQDVPXFK DV SXPSLQJ SHUIRUPDQFH ZDV PHDVXUHG DQG FRPSDUHG WR WKHRU\ JURZWK UDWHV ZHUH HVWLPDWHG DQG WKH OHQJWKV RI UHJLRQV DQG ZHUH PHDVXUHG RU LQIHUUHG ZKHQ SRVVLEOH 7KLV H[SHULPHQWDO ZRUN KDV OHG WR WKH GHYHORSPHQW RI D VHPLHPSLULFDO PRGHO IRU SUHGLFWLQJ WKH OHQJWKV RI UHJLRQV DQG %HQMDPLQ DQG 5RDQ f ,Q WKH D[LV\PPHWULF FDVH WKH H[SHULPHQWV LGHQWLILHG ODUJH FRKHUHQW VWUXFWXUHV LQ WKH SULPDU\ FRUH WKDW SUREDEO\

PAGE 24

UHVXOW IURP YRUWH[VKRFNZDYH LQWHUDFWLRQ ZKHUHDV VXFK VWUXFWXUHV DUH QRW DSSDUHQW LQ WKH WZRGLPHQVLRQDO SODQDU FDVH )LJXUH VKRZV D FRPSDULVRQ RI DQ D[LV\PPHWULF DQG D WZRGLPHQVLRQDO SODQDU FDVH DW VLPLODU IORZ FRQGLWLRQV 7KH UHVXOW RI WKH YRUWH[VKRFN LQWHUDFWLRQV LV VHHQ LQ UHJLRQ RI WKH D[LV\PPHWULF FDVH 0RVW H[SHULPHQWDO UHVHDUFK RI KLJK VSHHG LQWHUQDO IORZV KDV UHOLHG PDLQO\ RQ WHFKQLTXHV VXFK DV ODVHU GRSSOHU YHORFLPHWU\ RU LQVHUWLRQ RI VRPH W\SH RI SUHVVXUH SUREH LQWR WKH IORZ 7KH FXUUHQW UHVHDUFK ZDV XQGHUWDNHQ XVLQJ D GLIIHUHQW DSSURDFK WR SURYLGH DGGLWLRQDO GHWDLOHG PHDVXUHPHQWV QHFHVVDU\ WR EHWWHU XQGHUVWDQG DQG HQKDQFH WKH DELOLW\ WR PHDVXUH DQG SUHGLFW WKH EHKDYLRU RI HMHFWRU IORZILHOGV 7KH UHVHDUFK ZDV DOVR GHVLJQHG WR SURYLGH PRUH LQVLJKW LQWR WKH VWUXFWXUH RI WKLV W\SH RI LQWHUQDO IORZ DQG KHQFH HQDEOH GHVLJQHUV WR EHWWHU RSWLPL]H WKHLU GHVLJQV 7KLV UHVHDUFK LQYHVWLJDWHV FRPSUHVVLEOH VKHDUIORZ UHJLRQV WKDW DUH VDQGZLFKHG EHWZHHQ WZR HVVHQWLDOO\ LQYLVFLG VWUHDPV RI VXSHUVRQLF DQG VXEVRQLF IOXLG DOO RI ZKLFK DUH VXUURXQGHG E\ ERXQGDU\ OD\HUV )DU GRZQVWUHDP ZKHUH WKH VKHDU OD\HUV KDYH UHDFKHG WKH ZDOOV WKH IORZILHOG FRPSULVHV RQO\ VKHDULQJ IOXLG LQ WKH IUHHVWUHDP ZKLFK LV DJDLQ VXUURXQGHG E\ ERXQGDU\ OD\HUV 7KHUH LV QR UHDVRQ WR H[SHFW WKDW LQ WHUPV RI WKH WXUEXOHQWSUHVVXUH ILHOG WKH LQYLVFLG IORZ UHJLRQV EHKDYH DQ\ GLIIHUHQWO\ IURP SUHYLRXVO\ UHSRUWHG VXEVRQLF DQG VXSHUVRQLF WXUEXOHQW ERXQGDU\OD\HU IORZV DOWKRXJK MHWQRLVH FRQWDPLQDWLRQ PD\ EH SUHVHQW 7KH EHKDYLRU RI WKH VKHDULQJ UHJLRQV LV XQGHWHUPLQHG DQG UHVXOWV IURP WKLV UHVHDUFK ZLOO FKDUDFWHUL]H WKHP 2Q WKH VPDOO VFDOHV LQ GLVFUHWH UDQJHV RI WKH XQLYHUVDO HTXLOLEULXP UDQJH ORFDO LVRWURS\ VKRXOG JHQHUDOO\ VWLOO DSSO\ EHFDXVH FRPSUHVVLELOLW\ VLPSO\ DFWV DV D VRXUFH RI GLVVLSDWLRQ LQ DGGLWLRQ WR WKH YLVFRXV VWUHVVHV +LQ]H S f $OVR LI WKHUH LV VLJQLILFDQW DFRXVWLF UDGLDWLRQ HPLWWHG RU DEVRUEHG D FKDQJH LQ WKH HQHUJ\ WUDQVIHU UDWH ZLOO RFFXU WKDW ZLOO FDXVH D FKDQJH LQ WKH VSHFWUDO VORSH +HQFH D NQRZOHGJH RI WKH SK\VLFV RU EHKDYLRU RI WKH IROORZLQJ LV UHTXLUHG WR OD\ WKH IRXQGDWLRQV IRU HMHFWRU IORZ

PAGE 25

f WKH IXQGDPHQWDO SUHPLVHV RI WXUEXOHQW IORZ f WKH WXUEXOHQW ERXQGDU\OD\HU LQ VXEVRQLF DQG VXSHUVRQLF IORZV XQGHU WKH LQIOXHQFH RI ]HUR DGYHUVH DQG IDYRUDEOHSUHVVXUH JUDGLHQWV f PHDQ IUHHVWUHDPSUHVVXUH DQG YHORFLW\ ILHOGV f HMHFWRU VKHDUOD\HU JURZWK UDWHV DQG f DFRXVWLF SKHQRPHQD RI MHWV 7KH HIIHFW RI SUHVVXUH WUDQVGXFHU VL]H RQ UHVROXWLRQ RI DOO WKH SUHVVXUH VFDOHV LQ WKH IORZ LV D FRQFHUQ WKDW KDV EHHQ VWXGLHG WR D IDLU GHJUHH DQG LV DOVR RXWOLQHG (MHFWRUV (MHFWRU V\VWHPV KDYH EHHQ LQYHVWLJDWHG IRU PDQ\ \HDUV GXH WR WKH LQWHUHVW LQ WKHLU IOXLGSXPSLQJ DELOLW\ 7KHVH GHYLFHV DUH RI SDUWLFXODU LQWHUHVW WR WKH DLUFUDIW LQGXVWU\ ZKHUH WKH\ KDYH EHHQ VWXGLHG DQG HPSOR\HG IRU WKHLU HQKDQFHPHQW RI WKUXVW DXJPHQWDWLRQ OLIW DXJPHQWDWLRQ DQG HQJLQHQRLVH UHGXFWLRQ %UDGHQ HW DO f 2WKHU SRVVLEOH DSSOLFDWLRQV RI HMHFWRUV LQFOXGH MHW SXPS FRPSUHVVLRQ H[WUDFWLRQ RI VHFRQGDU\ IOXLGV YHQWLODWLRQ DQG DLU FRQGLWLRQLQJ LQQRYDWLYH WKHUPDO F\FOHV DQG KLJK HQHUJ\ FKHPLFDO ODVHUV 3RZHU f 7KH SXPSLQJ DELOLW\ RI HMHFWRUV LV SULPDULO\ WKH UHVXOW RI PRPHQWXP WUDQVIHU IURP WKH KLJKYHORFLW\ SULPDU\ IOXLG WR WKH VORZHU VHFRQGDU\ IOXLG 8OWLPDWHO\ WKH RYHUDOO SHUIRUPDQFH RI WKHVH GHYLFHV LV LQIOXHQFHG E\ D QXPEHU RI SK\VLFDO SURFHVVHV WKDW LQGLYLGXDOO\ DQGRU FROOHFWLYHO\ JRYHUQ WKH GHYHORSPHQW RI WKH DVVRFLDWHG IORZILHOGV $PRQJ WKH SURFHVVHV RI LQWHUHVW DUH Df GHWDLOV RI PL[LQJ RI SULPDU\ DQG VHFRQGDU\ VWUHDPV Ef YLVFRXV GLVVLSDWLRQ GXH WR PL[LQJ FRPSUHVVLRQ ZDYHV DQG VROLG ERXQGDULHV DQG Ff WKH HIIHFWV RI JHRPHWU\ 0D[LPL]LQJ HMHFWRU HIILFLHQF\ WUDQVODWHV LQWR HQKDQFLQJ WKH PHFKDQLVPV WKDW UHVXOW LQ HIILFLHQW PDVV DQG PRPHQWXP WUDQVIHU DQG LQKLELWLQJ WKRVH WKDW KDYH D GHWULPHQWDO HIIHFW

PAGE 26

$Q LGHDO HMHFWRU LV RQH \LHOGLQJ LGHDO SULPDU\WRPL[HG RXW PRPHQWXP WUDQVIHU DV GHWHUPLQHG IURP D FRQWURO YROXPH DQDO\VLV ,Q D UHDO HMHFWRU WKH FORVHVW WR LGHDO WKDW FDQ EH REWDLQHG LV D FRQILJXUDWLRQ ZKHUH WKH VKURXG RI WKH HMHFWRU LV ORQJ HQRXJK WR DOORZ IRU QHDU FRPSOHWLRQ RI WKH PL[LQJ SURFHVV DQG \HW VKRUW HQRXJK WR PLQLPL]H ZDOO IULFWLRQ ORVVHV $GGLWLRQDOO\ WKHUH DUH DUHD UDWLR WUDGHRIIVf 7KHVH DUH FRQIOLFWLQJ LGHDOV WKDW KDYH EHHQ ZHOO VXEVWDQWLDWHG E\ HMHFWRU VWXGLHV 7KHUHIRUH HMHFWRU GHVLJQ FRPSHOV WUDGHn RIIV ZKHUH WKH JRDO LV WR ILQG WKH RSWLPXP EDODQFH EHWZHHQ WKHVH RSSRVLQJ IDFWRUV IRU JLYHQ UHTXLUHPHQWV DQG LQSXW SDUDPHWHUV 7UDGLWLRQDOO\ WKHRUHWLFDO HMHFWRUV VWXGLHV KDYH EHHQ DLPHG DW FRPSDULQJ SUHGLFWHG RYHUDOO SHUIRUPDQFHf§XVXDOO\ LQ WHUPV RI WKUXVW DXJPHQWDWLRQ RYHUDOO SUHVVXUH UDWLR RU HQWUDLQPHQW UDWLRf§ZLWK UHVXOWV REWDLQHG H[SHULPHQWDOO\ %UDGHQ HW DO 3HWHUVHQ HW DO f ,Q PDQ\ FDVHV SHUIRUPDQFH LV SUHGLFWHG XVLQJ RQHGLPHQVLRQDO FRQVHUYDWLRQ HTXDWLRQV WR ILQG IORZ SURSHUWLHV DW WKH IXOO\ PL[HG H[LW SODQH RI WKH HMHFWRU 6XFK PRGHOV VKRZ WKH JHQHUDO WUHQGV WKDW DUH H[SHFWHG XQGHU LGHDO IORZ FRQGLWLRQV XQLIRUP IORZ DQG QR ORVVHVf +RZHYHU WKH\ JHQHUDOO\ SUHGLFW SHUIRUPDQFH VXSHULRU WR WKRVH RI UHDO HMHFWRUV DQG KHQFH WKHLU YDOXH DV GHVLJQ WRROV LV OLPLWHG 6LPLODUO\ VHPLHPSLULFDO PRGHOV KDYH EHHQ XVHG WR SUHGLFW UHDO HMHFWRU IORZILHOGV LQ ZKLFK XQGHVLUHG GLVVLSDWLRQ HIIHFWV DUH XQDYRLGDEOH +HUH IDFWRUV VXFK DV ZDOO IULFWLRQDO ORVVHV QRQXQLIRUP LQOHW DQG H[LW IORZ LPSHUIHFW PL[LQJ RI WKH WZR VWUHDPV DQG SULPDU\ QR]]OH HIILFLHQFLHV IRU H[DPSOH DUH WDNHQ LQWR DFFRXQW XVLQJ EHVW HVWLPDWHV 7KH DSSURDFK LQ WKLV FDVH KDV XVXDOO\ EHHQ WR DGMXVW SDUDPHWHUV ZLWKLQ WKH PRGHO FDOLEUDWHf VR WKDW SUHGLFWHG IORZILHOGV PDWFK WKH H[SHULPHQWDO UHVXOWV 7KHVH PRGHOV DUH RQO\ YDOLG IRU WKH UDQJH RI FDOLEUDWHG HMHFWRU JHRPHWULHV DQG IORZ SDUDPHWHUV DQG WKHUHIRUH WKHLU SRWHQWLDO DV GHVLJQ WRROV LV DOVR OLPLWHG 3URJUHVV LQ HMHFWRU WHFKQRORJ\ ODUJHO\ GHSHQGV RQ EHLQJ DEOH WR SUHGLFW HMHFWRU IORZV DFFXUDWHO\ 7KLV DELOLW\ FDQ RQO\ EH DFKLHYHG WKURXJK D EHWWHU XQGHUVWDQGLQJ RI WKH

PAGE 27

SK\VLFDO SURFHVVHV WKDW JRYHUQ WKHVH IORZILHOGV DV ZHOO DV WKH DELOLW\ WR PHDVXUH WKH GHWDLOV RI WKHVH IORZILHOGV HIIHFWLYHO\ 7KH H[SHULPHQWDO LQYHVWLJDWLRQ RXWOLQHG EHORZ LV DLPHG DW SURYLGLQJ DGGLWLRQDO GHWDLOHG GDWD QHFHVVDU\ WR IXUWKHU XQGHUVWDQG WKHVH PHFKDQLVPV DQG WKXV LPSURYH FXUUHQW HMHFWRU PRGHOV 2EMHFWLYH 7KH IORZILHOG RI D WZRGLPHQVLRQDO VLQJOHQR]]OH PHWKRG RI FKDUDFWHULVWLFV SURILOHf HMHFWRU ZDV LQYHVWLJDWHG WR LPSURYH WKH GHVLJQ RSWLPL]DWLRQ SURFHVV IRU HMHFWRUV $ VHULHV RI GHWDLOHG WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV ZHUH XQGHUWDNHQ XVLQJ PLQLDWXUH SUHVVXUH WUDQVGXFHUV KDYLQJ PP GLDPHWHU GLDSKUDJPV DQG LQVWDOOHG LQ LQWHUFKDQJHDEOH ZDOOSODWHV 7KH DUUDQJHPHQW DOORZHG SOHQW\ RI IOH[LELOLW\ IRU D SDLU RI WUDQVGXFHUV WR EH SRVLWLRQHG DW DOPRVW DQ\ ZDOO ORFDWLRQ DQG ZLWK D ZLGH UDQJH RI VSDFLQJ HLWKHU ORQJLWXGLQDOO\ RU ODWHUDOO\ 2QH DQG WZRSRLQW PHDVXUHPHQWV ZHUH UHFRUGHG HQDEOLQJ FDOFXODWLRQ RI WKH UPV SUHVVXUH VNHZQHVV NXUWRVLV DXWRVSHFWUD DQG FURVVVSHFWUD )URP WKHVH PHDVXUHPHQWV D QRQLQWUXVLYH WHFKQLTXH ZDV VRXJKW WR LGHQWLI\ WKH GLIIHUHQW UHJLRQV RI WKH IORZ 6FKOLHUHQ DQG VKDGRZJUDSK YLVXDOL]DWLRQ ZHUH HPSOR\HG IRU PHDQ IOXLGVWUXFWXUH LQIRUPDWLRQ DQG WR ORRN IRU HYLGHQFH RI ODUJH VWUXFWXUHV $OVR WKH PHDQ IORZILHOG ZDV GHWHUPLQHG XVLQJ DQ LPSDFWSUHVVXUH SUREH 7KH ZDOO ORFDWLRQV RI GLVWXUEDQFHV DQG WKHLU VWDWLVWLFV ZHUH LQYHVWLJDWHG WR VHH LI WKHLU HIIHFWV ZKHQ FRPSDUHG WR D VLPLODU XQFRQWDLQHG IORZ LQGLFDWH WKH QDWXUH RI WKH IOXLG PHFKDQLVPV SUHVHQW LQ WKH HMHFWRU $OVR WKH HQGV RI UHJLRQV DQG ZHUH ORFDWHG E\ PHDVXULQJ WXUEXOHQW ZDOO SUHVVXUHV DQG DUH FRPSDUHG WR WKRVH REWDLQHG IURP WKH PHDQ PHDVXUHPHQWV )LQDOO\ WZR GLPHQVLRQDO JUDSKLFV ZHUH GHYHORSHG IURP WKH PHDQ DQG WXUEXOHQW H[SHULPHQWDO GDWD

PAGE 28

)LJXUH 'HILQLWLRQ RI HMHFWRU UHJLRQV DQG OHQJWKV

PAGE 29

Df Ef [ PPf )LJXUH &RPSDULVRQ RI VLPLODU JHRPHWU\ DLUSULPDU\DLUVHFRQGDU\ HMHFWRU LPSDFW SUHVVXUH FRQWRXUV N3Df IURP GDWD RI 5RDQ HW DO f 3 3 N3D 0 LQ ERWK FDVHV Df D[LV\PPHWULF FRQILJXUDWLRQ 0 Ef WZRGLPHQVLRQDO SODQDU FRQILJXUDWLRQ 0

PAGE 30

&+$37(5 /,7(5$785( 6859(< ,Q FRQVLGHULQJ WKH WXUEXOHQW IORZ LQ HMHFWRUV LW LV KHOSIXO WR KDYH D JHQHUDO EDFNJURXQG RI WKH EHKDYLRU RI LQGLYLGXDO RU UHODWHG DVSHFWV RI WKH IORZ 2EYLRXVO\ LW LV GHVLUDEOH WR ILUVW XQGHUVWDQG WKH UHJLRQV RI WKH PHDQ IORZIOHOG 7KH VHFRQG DUHD RI XQGHUVWDQGLQJ LV RI WKH DFRXVWLF EHKDYLRU RI MHWV 7KHUH KDYH EHHQ PDQ\ DFRXVWLF VWXGLHV RI IUHH MHWV DQG VRPH RQ HMHFWRUV EXW WKHVH KDYH EHHQ VWXGLHV WKDW PHDVXUH WKH SUHVVXUH UDGLDWHG IURP WKH IORZ 5DGLDWHG SUHVVXUH LV GLIILFXOW WR LQWHUSUHW SK\VLFDOO\ EHFDXVH WKH LQWHQVLW\ RI DFRXVWLF UDGLDWLRQ QRW RQO\ RULJLQDWHV IURP WXUEXOHQW HGG\ YRUWLFLW\ EXW DW OHDVW LV LQIOXHQFHG E\ REVHUYDWLRQ YHFWRU ORFDO 0DFK QXPEHU DQG WXUEXOHQW YHORFLW\ 7KH WKLUG DUHD RI XQGHUVWDQGLQJ LV WKDW RI WXUEXOHQW ZDOOSUHVVXUH PHDVXUHPHQWV XQGHU ERXQGDU\ OD\HUV LQ ]HUR DGYHUVH DQG IDYRUDEOH SUHVVXUH JUDGLHQW IORZV 7KHUH DUH VHYHUDO H[FHOOHQW LQFRPSUHVVLEOH VWXGLHV LQ WKLV DUHD WKDW KDYH EHHQ PDGH RYHU WKH ODVW \HDUV WKDW KDYH FKDUDFWHUL]HG WKHVH IORZV IDLUO\ FRPSUHKHQVLYHO\ 7KHUH KDYH EHHQ YHU\ IHZ VWXGLHV LQ FRPSUHVVLEOH HVSHFLDOO\ VXSHUVRQLFf ERXQGDU\ OD\HU IORZ DQG WKRVH VWXGLHV DUH OLPLWHG LQ VFRSH GXH WR WKH LQKHUHQW GLIILFXOW\ RI WKH PHDVXUHPHQWV ([FHOOHQW FRPSUHKHQVLYH UHYLHZV RI WXUEXOHQW ZDOOSUHVVXUHV LQ LQFRPSUHVVLEOH IORZV KDYH EHHQ FRPSLOHG E\ :LOOPDUWK f DQG (FNHOPDQQ f 7KH EDFNJURXQG RQ WXUEXOHQFH DQG HVSHFLDOO\ WKH ILUVW DQG VHFRQG .ROPRJRURY K\SRWKHVHV .ROPRJRURY D E KHUHLQDIWHU UHIHUUHG WR DV .f SURYLGH WKH PRWLYDWLRQ IRU WKH H[SHULPHQWDO PHWKRGV DQG UHVXOWV SUHVHQWHG LQ WKH SUHVHQW UHVHDUFK

PAGE 31

7XUEXOHQFH 7KHRU\ DQG &RQVHTXHQFHV 7KH IRXQGDWLRQ IRU D VWDWLVWLFDO GHVFULSWLRQ RI WXUEXOHQW IOXLG PHFKDQLFV LV ILUVW SUHVHQWHG IROORZHG E\ D GLVFXVVLRQ RI LWV DSSOLFDWLRQ WR VSHFWUXP IXQFWLRQV .ROPRJRURY 7KHRU\ 7KH WZR K\SRWKHVHV DUH GHULYHG XVLQJ WKH GHILQLWLRQV RI ORFDO KRPRJHQHLW\ DQG ORFDO LVRWURS\ 7XUEXOHQFH LV FDOOHG KRPRJHQHRXV ZKHQ WKH VSDWLDO GHULYDWLYHV RI PHDQ WXUEXOHQFH TXDQWLWLHV DUH ]HUR HJ XW^[f GXI[f G[ M GXc[f Dr f 7KH WXUEXOHQFH LV LVRWURSLF ZKHQ LW LV KRPRJHQHRXV DQG LQYDULDQW ZLWK UHVSHFW WR URWDWLRQV DQG UHIOHFWLRQV RI WKH RULJLQDO VSDWLDO FRRUGLQDWH D[HV $W VXIILFLHQWO\ KLJK 5H\QROGV QXPEHUV WKH WXUEXOHQFH FDQ EH FRQVLGHUHG ORFDOO\ LVRWURSLF ZLWK JRRG DSSUR[LPDWLRQ LQ VXIILFLHQWO\ VPDOO GRPDLQV QRW O\LQJ QHDU WKH ERXQGDU\ RI WKH IORZ RU LWV RWKHU VLQJXODULWLHV 7KHUH LV QR ULJRURXV SURRI IRU WKLV GHILQLWLRQ EXW WKH H[SHULPHQWDO HYLGHQFH RI DSSUR[LPDWH LVRWURS\ DQG KRPRJHQHLW\ LV ZHOO HVWDEOLVKHG H[SHULPHQWDOO\ IRU IORZ GRZQVWUHDP IURP D UHJXODU DUUD\ RI URGV LQ D ZLQG WXQQHO 7D\ORU f 7KH ILUVW K\SRWKHVLV FDQ EH VXPPDUL]HG DV IROORZV )RU WKH ORFDOO\ LVRWURSLF WXUEXOHQFH WKHUH H[LVWV D UDQJH RI KLJK ZDYHQXPEHUV ZKHUH WKH WXUEXOHQFH LV VWDWLVWLFDOO\ LQ HTXLOLEULXP DQG XQLTXHO\ GHWHUPLQHG E\ WKH DYHUDJH GLVVLSDWLRQ E\ WXUEXOHQFH H DQG WKH NLQHPDWLF YLVFRVLW\ Y 7KH VWDWH RI HTXLOLEULXP LV XQLYHUVDO 7KLV HTXLOLEULXP UDQJH LV WHUPHG XQLYHUVDO EHFDXVH WKH WXUEXOHQFH LQ WKLV UDQJH LV LQGHSHQGHQW RI H[WHUQDO FRQGLWLRQV $OVR DQ\ FKDQJH LQ WKH HIIHFWLYH OHQJWK VFDOH DQGRU WLPH VFDOH RI WKLV WXUEXOHQFH FDQ RQO\ EH D UHVXOW RI WKH HIIHFW RI WKH SDUDPHWHUV H DQG Y

PAGE 32

7R SXW WKLV K\SRWKHVLV LQWR PDWKHPDWLFV 6UHHQLYDVDQ f WKH K\SRWKHVLV FDQ EH UHVWDWHG VXFK WKDW WKH PXOWLYDULDWH SUREDELOLW\ GLVWULEXWLRQV RI WKH YHORFLW\ GLIIHUHQFH LQ D GLUHFWLRQ L $XAXA[f X[Uf DUH IXQFWLRQV RQO\ RI U ?U? H DQG Y 6SHFLILFDOO\ WKH mWKRUGHU VWUXFWXUH IXQFWLRQV KDYH WKH IRUP _$X_ f +HUH S YHf LV WKH .ROPRJRURY OHQJWK VFDOH DQG WKH IXQFWLRQV DUH XQLYHUVDO U_ LV RQ WKH RUGHU RI PDJQLWXGH RI WKH HQHUJ\ GLVVLSDWLRQ VFDOHV 7KH VHFRQG K\SRWKHVLV VWDWHV WKDW DW YHU\ KLJK 5H\QROGV QXPEHUV WKHUH LV D UDQJH RI VFDOHV UcU/H FDOOHG WKH LQHUWLDO VXEUDQJH LQ ZKLFK WKH VWUXFWXUH IXQFWLRQV EHFRPH LQGHSHQGHQW RI YLVFRVLW\ WKDW LV frrf a.Q ZKHUH .Q DUH XQLYHUVDO FRQVWDQWV LQGHSHQGHQW RI WKH IORZ f _$XcU .AVUI 7KH K\SRWKHVHV DULVH IXQGDPHQWDOO\ IURP GLPHQVLRQDO DUJXPHQWV DQG WKHLU YDOLGLW\ UHVWV RQ H[SHULPHQWDO VXSSRUW 6UHHQLYDVDQ f 7KH LGHD RI LQWHUPLWWHQF\ ZDV ILUVW SRLQWHG RXW E\ /DQGDX LQ /DQGDX DQG /LIVKLW] f DQG DULVHV GXH WR VSDWLDO YDULDWLRQV RI H RYHU SK\VLFDO YROXPHV ODUJHU WKDQ WKH LQHUWLDO VXEUDQJH LH WKH HQHUJ\ FDVFDGH SURFHVV LQ WKH LQHUWLDO VXEUDQJH XQGHUJRHV IOXFWXDWLRQV FDXVHG E\ ODUJHU WKDQ LQHUWLDOVXEUDQJH VFDOHV 7KHUHIRUH LQWHUPLWWHQF\ FDXVHV QRQXQLYHUVDOLW\ RI WKH FRQVWDQWV .Q EHFDXVH WKH ODUJH VFDOHV DUH IORZVSHFLILF 5HFHQW H[SHULPHQWDO PHDVXUHPHQWV RI KLJKRUGHU YHORFLW\ VWUXFWXUH IXQFWLRQV $QVHOPHW HW DO f LQGLFDWH WKDW WKH VFDOLQJ IXQFWLRQ H[SRQHQW m VKRZV VWURQJ GHYLDWLRQ LH QRQ*DXVVLDQ VWDWLVWLFVf IURP WKH WKHRU\ IRU VWUXFWXUH IXQFWLRQV KLJKHU WKDQ VHFRQG

PAGE 33

RUGHU 7KHUH LV FXUUHQWO\ PXFK GLVFXVVLRQ DQG FRQWURYHUV\ DERXW WKH IXQGDPHQWDO FDXVH IRU LQWHUPLWWHQF\ DQG WKH UHDGHU LV UHIHUUHG WR 6UHHQLYDVDQ f DQG $QVHOPHW HW DO f IRU PRUH GHWDLOHG GLVFXVVLRQ ,QHUWLDO 6SHFWUXP )XQFWLRQV 8VLQJ .ROPRJRURYfV VHFRQG K\SRWKHVLV LW FDQ EH VKRZQ IURP GLPHQVLRQDO DQDO\VLV HJ *HRUJH HW DO f WKDW WKH YHORFLW\ VSHFWUXP IXQFWLRQ LQ WKH LQHUWLDO VXEUDQJH LV JLYHQ E\ ZKHUH ($f LV GHILQHG E\ f ZKHUH WKH LQWHJUDO LV RYHU VSKHULFDO VKHOOV D RI UDGLXV N 7KH FURVVVSHFWUDO GHQVLWLHV RI WKH YHORFLW\ PRPHQWV DUH f ZLWK WKH YHORFLW\ PRPHQWV GHILQHG DV f

PAGE 34

7HQQHNHV DQG /XPOH\ f UHFRPPHQG WKDW H[SHULPHQWDO GDWD LQGLFDWH D DSSUR[LPDWHO\ )LJXUH VKRZV WKH IRUP RI WKH YHORFLW\ VSHFWUXP IXQFWLRQ RYHU DOO ZDYHQXPEHUV *HRUJH HW DO f GHULYHG PRGHOV IRU WXUEXOHQW SUHVVXUH IOXFWXDWLRQV E\ GLUHFWO\ )RXULHU WUDQVIRUPLQJ WKH LQWHJUDO VROXWLRQ WR WKH LQFRPSUHVVLEOH 3RLVVRQ HTXDWLRQ IRU D FRQVWDQWPHDQVKHDUIORZ WKH LQWHJUDO VROXWLRQ LV SUHVHQWHG LQ WKH QH[W VHFWLRQf 7KH\ IRXQG WKDW WKH VSHFWUXP IXQFWLRQ ef^)MefGrOIf f LV FRPSRVHG RI WKUHH SDUWV DV IROORZV (3Nf UVNf7VNf7WNf ZKHUH DQG UHSUHVHQW WKH VHFRQG DQG WKLUGPRPHQW WXUEXOHQFHPHDQVKHDU LQWHUDFWLRQ VSHFWUXP IXQFWLRQV UHVSHFWLYHO\ DQG UW UHSUHVHQWV WKH WXUEXOHQFHWXUEXOHQFH LQWHUDFWLRQ VSHFWUXP IXQFWLRQ 7KH LQHUWLDO VXEUDQJH IRU HDFK RI WKHVH VSHFWUXP IXQFWLRQV PXVW EH GHWHUPLQHG E\ RQO\ WKH SDUDPHWHUV N H DQG WKH PHDQVKHDU YHORFLW\JUDGLHQW %\ GLPHQVLRQDO DQDO\VLV WKH\ DUULYH DW a7UVNf D.H,F 3 f

PAGE 35

?AVNf D.HNn 3 f Y Nf D HnN 3. n 3 f ZKHUH FA D DQG DS DUH FRQVWDQWV 7KHVH FRQVWDQWV DUH IRXQG E\ DVVXPLQJ WKDW WKH WXUEXOHQFH LV LVRWURSLF DOWKRXJK WKH WXUEXOHQFHPHDQVKHDU LQWHUDFWLRQ LV QRW 7KH YDOXHV RI FRQVWDQWV FDOFXODWHG E\ *HRUJH HW DO f IRU WKH RQHGLPHQVLRQDO VSHFWUXP ZKLFK FDQ EH PHDVXUHGf DUH 22r f f 3 tF f )URP WKHLU FDOFXODWLRQV *HRUJH HW DO f VXJJHVW WKDW WKH VKHDU FRQWULEXWLRQ LV LPSRVVLEOH WR LVRODWH IURP VSHFWUDO GDWD HYHQ LQ IORZV ZLWK PRGHUDWHWRKLJK VKHDU UDWHV UHODWLYH WR WKH WXUEXOHQFH VKHDUUDWH P DQG FRQFOXGH WKDW WKLV LV WKH UHDVRQ WKDW VXFK D UDQJH KDV QRW EHHQ SUHYLRXVO\ REVHUYHG 7KH\ DOVR QRWH WKDW WKHUH LV QR GLUHFW GLVVLSDWLRQ RI SUHVVXUH IOXFWXDWLRQV %UDGVKDZ Ef DUJXHV E\ GLPHQVLRQDO UHDVRQLQJ RU E\ GLUHFW VXEVWLWXWLRQ LQWR WKH 3RLVVRQ HTXDWLRQ WKDW WKH RQHGLPHQVLRQDO VSHFWUDO GHQVLW\ LV SURSRUWLRQDO WR Nf LQ WKH RYHUODS UHJLRQ RI WKH WXUEXOHQW ERXQGDU\ OD\HU 3DQWRQ DQG /LQHEDUJHU f FDOFXODWHG

PAGE 36

ZDOO SUHVVXUH VSHFWUD XVLQJ WKH /DZ RI WKH :DOO DQG &ROHVn ZDNH IXQFWLRQ ZKLFK DOVR UHYHDOHG DQ RYHUODS UHJLRQ RI Nn )ROORZLQJ 3DQWRQ DQG /LQHEDUJHU f 3 GHQRWHV WKH VSHFWUXP LQ RXWHU YDULDEOHV DQG 7 WKH VSHFWUXP LQ LQQHU YDULDEOHV Q LV &ROHVf SUHVVXUH JUDGLHQW SDUDPHWHU 7KHQ 30 Qf .N2[r "NYX7f W!NfX7 [Z Y 5H XWY f 7KHUH LV DQ LQWHUPHGLDWH ZDYHQXPEHU ZKHUH WKHVH H[SUHVVLRQV DUH HTXDO 3 L95H $GGLWLRQDOO\ LI WKHUH LV D UDQJH RI ZDYHQXPEHUV ZKHUH WKH H[SUHVVLRQV DUH HTXDO WKHQ WKH HTXDOLW\ PD\ EH GLIIHUHQWLDWHG IRU WKLV UDQJH VXFK WKDW Nf 3nNM Qf NYXM 3n&NMYXFRQVW f )RU WKLV H[SUHVVLRQ WR EH WUXH 3 PXVW EH LQGHSHQGHQW RI Q LQ WKH RYHUODS UHJLRQ DQG WKH VSHFWUD KDYH WKH IRUP 30f $&0ff LfNY $&0Xf 7KLV JLYHV D VWUDLJKW OLQH VORSH RI RQ D ORJORJ VFDOH 3DQWRQ DQG /LQHEDUJHU f FRQFOXGH DORQJ ZLWK %UDGVKDZ Ef WKDW WKH RYHUODS UHJLRQ LV EH\RQG WKH UHDFK WRR KLJK IUHTXHQF\f RI PRVW PHDVXUHPHQWV 5HFHQW PHDVXUHPHQWV E\ )DUDEHH DQG &DVDUHOOD f VKRZ WKDW LQ WKH YHU\ ORZ ZDYHQXPEHU UHJLRQ WKH VSHFWUXP IROORZV D $ EHKDYLRU DV VXJJHVWHG E\ %UDGVKDZ Df

PAGE 37

7XUEXOHQW3UHVVXUH ,QYHVWLJDWLRQV LQ %RXQGDUY/DYHU )ORZV 7KH IORZV LQ HMHFWRUV KDYH UHJLRQV RI ]HUR DGYHUVH DQG IDYRUDEOH SUHVVXUH JUDGLHQWV WKDW ZLOO DIIHFW WKH ZDOOSUHVVXUH PHDVXUHPHQWV +HQFH SUHVHQWDWLRQ RI SHUWLQHQW OLWHUDWXUH IRU VXFK SUHVVXUHJUDGLHQW IORZV DV ZHOO DV WKH HIIHFWV RI URXJK DQG VPRRWK ZDOOV LV FRYHUHG LQ WKH IROORZLQJ WKUHH VXEVHFWLRQV ,QFRPSUHVVLEOH =HUR 3UHVVXUH*UDGLHQW )ORZV 7KH LQFRPSUHVVLEOH 1DYLHU6WRNHV HTXDWLRQ PD\ EH JLYHQ E\ GXc GXXf GS GW G[ S FN G[-G[O n f DQG WDNLQJ WKH GLYHUJHQFH RI (T f JLYHV WKH UHODWLRQVKLS EHWZHHQ WKH SUHVVXUH DQG YHORFLW\ ILHOGV /LOOH\ DQG +RGJVRQ f f ZKHUH f 7KH ULJKWKDQG VLGH RI (T f FDQ EH PDQLSXODWHG 7KRPDV DQG %XOO f WR JLYH T f§f§f§ G[ G[L G[G[ G8L G8M f

PAGE 38

7KHVH HTXDWLRQV VKRZ WKDW WKH SUHVVXUH ILHOG LV UHODWHG WR WKH YHORFLW\ ILHOG WKURXJK WKH WXUEXOHQFHPHDQVKHDU DQG WXUEXOHQFHWXUEXOHQFH VKHDU VWUHVV LQWHUDFWLRQV 7KH VROXWLRQ IRU WKH IOXFWXDWLQJ SUHVVXUH RQ WKH ZDOO SL XVLQJ WKH LQWHJUDO VROXWLRQ IRU WKH 3RLVVRQ HTXDWLRQ LQ WKH KDOISODQH DQG QHJOHFWLQJ VXUIDFH LQWHJUDOV /LOOH\ DQG +RGJVRQ f FDQ EH ZULWWHQ f 7KLV LQGLFDWHV WKDW VRXUFHV RYHU D UHJLRQ RI IORZ WKHRUHWLFDOO\ D VHPLLQILQLWH UHJLRQf ZLOO FRQWULEXWH WR WKH ZDOO SUHVVXUH IOXFWXDWLRQV DQG WKDW WKH FRQWULEXWLRQV IURP YDULRXV VRXUFH UHJLRQV ZLOO IDOO RII UDSLGO\ ZLWK WKHLU GLVWDQFH IURP WKH SRLQW XQGHU FRQVLGHUDWLRQ 7KRPDV DQG %XOO f .UDLFKQDQ D Ef ZDV WKH ILUVW WR UHSRUW WKHRUHWLFDO HVWLPDWHV IRU WKH PHDQ VTXDUH ZDOOSUHVVXUH DQG VSHFWUD +H RYHUFDPH WKH GLIILFXOW\ RI KDYLQJ WR WUHDW WKH WXUEXOHQW ERXQGDU\ OD\HU DV DQLVRWURSLF E\ DVVXPLQJ WKDW WKH WXUEXOHQW IORZ LV KRPRJHQHRXV LQ SODQHV SDUDOOHO WR WKH ZDOO 7KH VRXUFH WHUPV IRU WKH WXUEXOHQFHPHDQ VKHDU LQWHUDFWLRQV ZHUH HVWLPDWHG EDVHG RQ D URXJK DSSUR[LPDWLRQ b DFFXUDF\f WR WKH PHDQ VKHDU DQG .UDLFKQDQnV Df UHVXOWV IRU WKH )RXULHUWUDQVIRUPHG YHORFLW\ DQG SUHVVXUH ILHOGV IRU KRPRJHQHRXV DQLVRWURSLF WXUEXOHQFH 7KH SUHGLFWLRQ RI WKH UDWLR RI URRWPHDQVTXDUH UPVf ZDOOSUHVVXUH IOXFWXDWLRQV WR PHDQ ZDOO VKHDU VWUHVV ZDV RI RUGHU VL[ PXFK PRUH DFFXUDWH WKDQ ZRXOG EH H[SHFWHG +H DOVR IRXQG WKDW IRU WKH KRPRJHQHRXV DQG DQLVRWURSLF FDVHV WKH UPV WXUEXOHQW SUHVVXUH IRU WKH WXUEXOHQFHPHDQ VKHDU LQWHUDFWLRQV ZDV WLPHV ODUJHU WKDQ WKDW RI WKH WXUEXOHQFHWXUEXOHQFH LQWHUDFWLRQV ,QFRPSUHVVLEOH PHDVXUHPHQWV E\ :LOOPDUWK DQG :RROGULGJH f XQGHU D WKLFN ERXQGDU\ OD\HU VKRZHG WKDW WKH UPV ZDOO SUHVVXUH ZDV WLPHV WKH ZDOO VKHDU VWUHVV

PAGE 39

6WDWLF SUHVVXUH IOXFWXDWLRQV RYHU D IODW ERXQGDU\ LQ WKH DWPRVSKHULF ERXQGDU\ OD\HU E\ (OOLRWW f ZHUH IRXQG WR SURGXFH WXUEXOHQW SUHVVXUH YDOXHV RI DERXW WLPHV WKH PHDQ VWUHVV DW KHLJKWV XS WR P +LQ]H f UHFRPPHQGV WKDW D UHDVRQDEOH DYHUDJH IURP DOO LQFRPSUHVVLEOH H[SHULPHQWDO GDWD DYDLODEOH LV SZAUZ :LOOPDUWK f FRQFOXGHG WKDW WKH UDWLR RI WXUEXOHQW ZDOOSUHVVXUH WR IUHHVWUHDP G\QDPLF SUHVVXUH KDV D YDOXH RI IRU LQFRPSUHVVLEOH IORZ &RUHRV f PDGH VRPH FDOFXODWLRQV EDVHG RQ SUHVVXUH DQG YHORFLW\ H[SHULPHQWV DQG IRXQG WKDW WKH LQQHU SDUW RI WKH /DZ RI WKH :DOO UHJLRQ \Af VHHPHG WR EH VXEVWDQWLDOO\ IUHH RI SUHVVXUH VRXUFHV H[FHSW SHUKDSV DW YHU\ KLJK IUHTXHQFLHVf DQG ZLWKLQ WKDW UHJLRQ Df WKH SUHVVXUH FDQ EH JLYHQ LQ WHUPV RI LWV ERXQGDU\ YDOXH DQG Ef WKH ORFDO YHORFLW\ ILHOG LV GHSHQGHQW XSRQ EXW XQDEOH WR DIIHFW DSSUHFLDEO\ WKH WXUEXOHQW SUHVVXUHV 8VLQJ WKH PHWKRG RI VSDFHWLPH FRUUHODWLRQ :LOOPDUWK Df GLVFRYHUHG WKDW WKH UDQGRP SUHVVXUH IOXFWXDWLRQV XQGHU D IODWSODWH ERXQGDU\ OD\HU ZHUH FRQYHFWHG ZLWK D VSHHG RI DSSUR[LPDWHO\  0RUH GHWDLOHG H[SHULPHQWV :LOOPDUWK DQG :RROGULGJH %XOO f VKRZHG WKDW WKH FRQYHFWLRQ YHORFLW\ YDULHV ZLWK VWUHDPZLVH VSDWLDO VHSDUDWLRQ RI WKH PHDVXULQJ VWDWLRQV DQG WKDW IRU VPDOO VSDWLDO VHSDUDWLRQ WKH FRQYHFWLRQ YHORFLW\ LV ORZ A EXW LQFUHDVHV WR 8P IRU YHU\ ODUJH VSDWLDO VHSDUDWLRQ 7KH LQFUHDVH LQ FRQYHFWLRQ YHORFLW\ ZLWK VWUHDPZLVH VHSDUDWLRQ RI PHDVXULQJ SRLQWV ZDV DWWULEXWHG WR WKH PRUH UDSLG GHFD\ RI WKH VPDOOHU SUHVVXUH SURGXFLQJ HGGLHV :LOOV f PHDVXUHG WKH ZDYHQXPEHUSKDVH YHORFLW\ VSHFWUXP RI WKH ZDOOSUHVVXUH ZKLFK VKRZHG WKH DERYH UHODWLRQ IRU GLIIHUHQW ZDYHQXPEHUV HGG\ VL]HVf :LOOPDUWK DQG :RROGULGJH f DOVR FRQFOXGHG WKDW D SUHVVXUHSURGXFLQJ HGG\ RI ODUJH RU VPDOO ZDYHOHQJWK ; GHFD\V DQG YDQLVKHV DIWHU WUDYHOOLQJ D GLVWDQFH RI DSSUR[LPDWHO\ ; 7KH HIIHFW RI ZDOO URXJKQHVV ZDV LQYHVWLJDWHG E\ %ODNH f ZKR IRXQG WKDW WKHUH ZDV QR HIIHFW RQ WKH UDWLR RI UPV ZDOO SUHVVXUH WR ZDOO VKHDU VWUHVV +RZHYHU WKH

PAGE 40

PDJQLWXGH RI WKH URXJKZDOO UPV SUHVVXUH LQFUHDVHG E\ DW OHDVW D IDFWRU RI WZR RYHU WKH VPRRWK ZDOO YDOXH )URP DQ DQDO\VLV RI VHYHUDO H[SHULPHQWDO LQYHVWLJDWLRQV 7KRPDV DQG %XOO f SURSRVHG WKDW WKH GRPLQDQW FRQWULEXWLRQ WR WKH UPV SUHVVXUH IOXFWXDWLRQV FRPHV IURP WKH VRXUFH WHUP DVVRFLDWHG ZLWK WKH WXUEXOHQFHPHDQVKHDU LQ DJUHHPHQW ZLWK .UDLFKQDQ DQG KHQFH IRU WZRGLPHQVLRQDO IORZ (T f EHFRPHV f 6FKHZH f IRXQG WKDW WKH VNHZQHVV RI WKH WXUEXOHQW SUHVVXUH KDV D YDOXH RI DQG D NXUWRVLV RI FRPSDUHG WR YDOXHV RI DQG UHVSHFWLYHO\ IRU D *DXVVLDQ GLVWULEXWLRQ $QDO\VLV RI WKH WLPH UHFRUGV VKRZHG WKDW WKH GLIIHUHQFH IURP WKH *DXVVLDQ ZDV FDXVHG E\ ZDYHWUDLQV RU SXOVHV WKDW FRQYHFW DW 8f DQG FDQ WKHUHIRUH EH DWWULEXWHG WR SUHVVXUH VWUXFWXUHV LQ WKH EXIIHU OD\HU DW ?\? EDVHG RQ WKH PHDVXUHG YHORFLW\ SURILOH 7KH PHDVXUHPHQWV DOVR FRQILUPHG WKDW WKHUH ZHUH PRUH QHJDWLYH SXOVHV WKDQ SRVLWLYH RQHV DV LQGLFDWHG E\ WKH QHJDWLYH VNHZQHVV 7KH FKDUDFWHULVWLF ZDYHOHQJWK RI WKH ZDYHWUDLQV EDVHG RQ WKHLU IUHTXHQF\ RI RFFXUUHQFH DQG WKHLU FRQYHFWLYH YHORFLW\ ZDV ; ;XY +HQFH D WUDQVGXFHU ZRXOG KDYH WR EH VPDOOHU WKDQ ; WR EHJLQ WR UHVROYH WKH ZDYHWUDLQV $GGLWLRQDOO\ 6FKHZH FDOFXODWHG IURP WKH SUREDELOLW\ GHQVLW\ IXQFWLRQ RI HYHQWV SWK!_SQQV_ WKDW WKH\ FRQWULEXWH b WR WKH UPV SUHVVXUH DOWKRXJK WKH HYHQWV RQO\ RFFXU IRU b RI WKH WLPH .DUDQJHOHQ HW DO f IRXQG WKDW WKH VDPH WKUHVKROG ZDV H[FHHGHG IRU b RI WKH WLPH DQG FRQWULEXWHG b WR WKH UPV SUHVVXUH +HQFH LW FDQ EH VHHQ WKDW WKH SUHVVXUH SXOVHV FDQ YDU\ VLJQLILFDQWO\ EHWZHHQ GLIIHUHQW IORZV 7KH PHDVXUHG WLPH EHWZHHQ EXUVW HYHQWV IRU FKDQQHO IORZ 7LHGHUPDQ f ZDV IRXQG WR EH VFDOHG RQ LQQHU YDULDEOHV DQG ZDV LQGHSHQGHQW RI 5H\QROGV QXPEHU )RU

PAGE 41

ERXQGDU\ OD\HU IORZ WKH WLPH EHWZHHQ HYHQWV LV FORVHU WR %ODFNZHOGHU DQG +DULWRQLGLV f 8VLQJ WKHVH YDOXHV DV ORZHU DQG XSSHU ERXQGV .DUDQJHOHQ HW DO f FRQFOXGH WKDW WKH DYHUDJH WLPH EHWZHHQ EXUVWV FRUUHVSRQGV WR WKH SUHVVXUH HYHQWV UDQJH RI VSX_SP-A ZKLFK VXJJHVWV D GLUHFW FRUUHVSRQGHQFH EHWZHHQ EXUVWV DQG ODUJH DPSOLWXGH ZDOO SUHVVXUH HYHQWV 'LQNHODFNHU DQG /DQJHKHLQHNHQ f VWXGLHG WKH UHODWLRQ EHWZHHQ LQWHUPLWWHQW KLJK SRVLWLYH ZDOOSUHVVXUH IOXFWXDWLRQV DQG YHORFLW\ IOXFWXDWLRQV LQ D PP GLDPHWHU SLSH ZLWK 5H' 7KH UHVXOWV ZHUH FRQGLWLRQHG RYHU VHYHUDO WKRXVDQG HYHQWV DQG FOHDUO\ VKRZ WKDW WKH KLJK ZDOOSUHVVXUH HYHQWV DUH UHODWHG WR D VWHHS LQFUHDVH LQ Xf! PHDVXUHG EHWZHHQ \ DQG \ 3UHFHGLQJ WKLV HYHQW LV D FRPSDUDWLYHO\ ORQJ SHULRG LQ ZKLFK Xf! LV EHORZ DYHUDJH DQG IROORZHG E\ D FRPSDUDWLYHO\ ORQJ SHULRG LQ ZKLFK Xf! LV DERYH DYHUDJH )URP WKH GXUDWLRQ RI WKH SHULRGV WKH VWUHDPZLVH OHQJWK RI WKH SDWWHUQ ZDV FDOFXODWHG WR EH WZLFH WKH SLSH GLDPHWHU $[ f 6LPLODUO\ WKH Yf! PHDVXUHPHQWV VKRZHG WKDW WKH IORZ PRYHV DZD\ IURP WKH ZDOO DQG WKHQ WRZDUGV WKH ZDOO HLWKHU VLGH RI WKH WXUEXOHQWSUHVVXUH SHDN EXW RFFXUV RYHU WKH SHULRG RI WKH Xn! HYHQW DQG WR D KHLJKW RI DW OHDVW \ 7KH GLVWXUEDQFH LQ WKH D]LPXWKDO GLUHFWLRQ ZDV IRXQG WR KDYH D VSDQ RI RUGHU $U_ ,W ZDV FRQFOXGHG WKDW WKHVH HYHQWV ZHUH EXUVWVf ZKLFK ZHUH GHILQHG E\ RWKHU LQYHVWLJDWRUV WR EH LQVWDQWDQHRXV KLJK OHYHOV RI WXUEXOHQFH DW DERXW \ .REDVKL DQG ,FKLMR f PHDVXUHG ZDOO SUHVVXUH IOXFWXDWLRQV LQ UHODWLRQ WR WKH FRKHUHQW PRWLRQV RI WKH WXUEXOHQW ERXQGDU\ OD\HU 7KH ORZ IUHTXHQFLHV ZHUH IRXQG WR EH UHODWHG WR WKH ODUJH VFDOH PRWLRQV RI WKH RXWHU OD\HU DQG SUHYDLO WKURXJK DQG RXWVLGH WKH ERXQGDU\ OD\HU ZKLOH WKH KLJK IUHTXHQFLHV ZHUH IRXQG WR EH UHODWHG WR WKH EXUVWV LQ WKH ZDOO UHJLRQ 7KH\ FRQFOXGHG WKDW WKH ODUJH VFDOH PRWLRQV DUH FRPSRVHG RI SHULRGLF DQG QRQSHULRGLF FRPSRQHQWV WKDW DUH LQLWLDWHG E\ WKH LQVWDELOLW\ RI WKH PHDQ IORZ DQG URWDWH LQ WKH GLUHFWLRQ RI WKH PHDQ IORZ VKHDU FI )LJ f 7KH EXUVWV DUH YRUWLFDO LQ QDWXUH

PAGE 42

DQG URWDWH DJDLQVW WKH PHDQ IORZ VKHDU 7KH RULJLQ RI WKH EXUVWV LV IURP WKH LQWHUDFWLRQ RI WKH SHULRGLF ODUJH VFDOH PRWLRQV ZLWK WKH ZDOO 7KH EXUVW LV ERXQG E\ WZR SDLUV RI FRXQWHUURWDWLQJ YRUWLFHV WKDW DUH LQFOLQHG IRUZDUG DQG WKH HMHFWLRQ DQG VZHHS WKDW FKDUDFWHUL]H WKHVH EXUVW SKHQRPHQD FDQ EH H[SODLQHG DV WKH IORZV LQGXFHG E\ WKH SDLUHG YRUWLFHV .REDVKL DQG ,FKLMR f DOVR K\SRWKHVL]HG WKDW WKH SDLUHG YRUWLFHV DUH IRUPHG IURP VWUHDPZLVH YRUWH[ SDLUV WKDW DSSHDU LQ WKH ODUJHVFDOH SHULRGLF PRWLRQV 7KH FRXSOLQJ EHWZHHQ KLJKDPSOLWXGH SRVLWLYH ZDOOSUHVVXUH SHDNV DQG IORZ VWUXFWXUH LQ WKH QHDU ZDOO UHJLRQ ZDV VWXGLHG E\ -RKDQVVRQ HW DO f 7KH\ FKDUDFWHUL]HG ZDOOSUHVVXUH IOXFWXDWLRQV LQ D WZRGLPHQVLRQDO ERXQGDU\ OD\HU E\ PDNLQJ VLPXOWDQHRXV PHDVXUHPHQWV RI KLJKDPSOLWXGH SRVLWLYH WXUEXOHQW ZDOOSUHVVXUH SHDNV ZLWK Xn DQG Yn 7KH UHVXOWV LQGLFDWHG WKDW WKH DPSOLWXGH RI WKH SUHVVXUH SHDN LV OLQHDUO\ UHODWHG WR WKH DPSOLWXGH RI WKH WXUEXOHQW YHORFLW\ SHDN ZKLFK LQ WXUQ LQGLFDWHV WKDW WKH JHQHUDWLRQ RI KLJKDPSOLWXGH SUHVVXUH SHDNV LV SUHGRPLQDQWO\ JRYHUQHG E\ WKH WXUEXOHQFHPHDQVKHDU LQWHUDFWLRQ $OVR WKHVH SUHVVXUH SHDNV ZHUH IRXQG WR EH FDXVHG RU WKH FDXVH RI VKHDU OD\HU VWUXFWXUHV EXUVWVf LQ WKH EXIIHU UHJLRQ \f /DUJH QHJDWLYH WXUEXOHQW ZDOO SUHVVXUH SHDNV ZHUH IRXQG WR EH SULPDULO\ DVVRFLDWHG ZLWK VZHHSW\SH PRWLRQVf§IORZ SDUDOOHO WR WKH ZDOO &RPSUHVVLEOH =HUR 3UHVVXUH*UDGLHQW )ORZ 0HDVXUHPHQWV RQ WKH ZDOO XQGHU D WXUEXOHQW 0DFK ERXQGDU\ OD\HU E\ 6HUDILQL f VKRZ WKDW WKH FRQYHFWLRQ YHORFLW\ YDULHV IRU GLIIHUHQW VWUHDPZLVH WUDQVGXFHU VSDFLQJ LQ H[DFWO\ WKH VDPH ZD\ DV IRU WKH LQFRPSUHVVLEOH ERXQGDU\ OD\HU /LOOH\ f VKRZHG WKDW WKH ZDOO SUHVVXUH IOXFWXDWLRQV DUH WKH UHVXOW RI IOXFWXDWLRQV LQ ERWK WKH YRUWLFLW\ DQG VRXQG PRGHV .LVWOHU DQG &KHQ f IRXQG WKDW WKH UPV SUHVVXUH RQ D VROLG VXUIDFH IRU IORZV LQ WKH 0DFK QXPEHU UDQJH ZDV SURSRUWLRQDO WR WKH ORFDO VNLQ IULFWLRQ 7KH YDOXH RI SQQWr LQFUHDVHV IDLUO\ OLQHDUO\ IURP WKH LQFRPSUHVVLEOH YDOXH

PAGE 43

RI a WR a IRU 0] 7KH\ DOVR IRXQG WKDW WKH FRQYHFWLRQ VSHHG IDOOV IURP DW 0 WR DW 0 7KH HIIHFW RI 5H\QROGV QXPEHU ZDV IRXQG WR EH SA4f§5HA 7KH LQWHJUDO VFDOH RI WKH ZDOOSUHVVXUH IOXFWXDWLRQV FKDQJHG IURP DW 0 WR DW 0 $GGLWLRQDOO\ WKH\ IRXQG WKDW WKH SHDN YDOXH RI WKH FRUUHODWLRQ FRHIILFLHQW GURSV WR RQH KDOI IRU D VSDWLDO VHSDUDWLRQ RI WKH PHDVXULQJ SRLQWV RI DERXW WZR WHQWKV RI WKH ERXQGDU\ OD\HU WKLFNQHVV /DXIHU f PHDVXUHG WKH UDGLDWHG SUHVVXUH LQWHQVLW\ IURP D VXSHUVRQLF ERXQGDU\ OD\HU DQG IRXQG LW WR EH WZR RUGHUV RI PDJQLWXGH OHVV WKDQ WKDW PHDVXUHG RQ WKH ZDOO ,QFRPSUHVVLEOH $GYHUVH DQG )DYRUDEOH 3UHVVXUH*UDGLHQW )ORZV $GYHUVH SUHVVXUHJUDGLHQW IORZV GLIIHU IURP ]HUR DQG IDYRUDEOH SUHVVXUHJUDGLHQW IORZV LQ WKDW WKH\ DUH QRW VHOISUHVHUYLQJ DQG KHQFH WKH YDOXH RI HYHU\ SDUDPHWHU LV D IXQFWLRQ RI ORFDO SRVLWLRQ %XUWRQ f FRPSDUHG VWURQJ DGYHUVH DQG IDYRUDEOH SUHVVXUHJUDGLHQW IORZV ZLWK VPRRWK DQG URXJK ZDOOV WR D ]HUR SUHVVXUHJUDGLHQW IORZ )RU D IDYRUDEOH JUDGLHQW LW ZDV IRXQG WKDW UPV ZDOO SUHVVXUH LQWHQVLW\ YDULHG LQ SURSRUWLRQ WR PHDQ ZDOO VKHDUVWUHVV ZLWK WKH VDPH YDOXH DV WKH ]HUR SUHVVXUHJUDGLHQW FDVH 7KH IDYRUDEOH JUDGLHQW GHFUHDVHG ORQJLWXGLQDO VSDWLDO GHFD\ UDWHV DQG LQFUHDVHG FRQYHFWLRQ YHORFLWLHV ZKHUHDV URXJKQHVV KDG WKH RSSRVLWH HIIHFW 7KH DGYHUVH JUDGLHQW VORZHG FRQYHFWLRQ YHORFLWLHV DQG LQFUHDVHG VSDWLDO GHFD\ UDWHV 3UHVVXUH VWDWLVWLFV ZHUH IRXQG WR GHSHQG RQ ORFDO PHDQ IORZ SDUDPHWHUV DQG XSVWUHDP IORZ FRQGLWLRQV EXW QRW RQ ZDOO URXJKQHVV 7KH YHORFLW\ SURILOHV ZHUH ORJDULWKPLF RYHU D VPDOO UHJLRQ FORVH WR WKH ZDOO EXW ZHUH JHQHUDOO\ ZDNHOLNH VR WKDW RXWHU YDULDEOH VFDOLQJ ZDV DSSURSULDWH ,QVLJKW LQWR WKH VXLWDEOH VFDOLQJ RI ERXQGDU\ OD\HUV FDQ EH VHHQ IURP WUHDWPHQW RI WKH LQWHJUDWHG PRPHQWXP HTXDWLRQ IRU WZRGLPHQVLRQDO WXUEXOHQW IORZ %XUWRQ f

PAGE 44

W WASf§8f >f§XG\IIf§c Z \ A VLUn n -U A UOU GXnYn GY G[ G\n G\ nG\ GXnYn G[ G\ f )RU URXJK ZDOOV WKH WHUPV RQ WKH ULJKWKDQG VLGH RI (T f PXVW EH UHWDLQHG ZKHUHDV IRU VPRRWK ZDOOV WKH WHUPV RQ WKH ULJKWKDQG VLGH RI (T f DUH DW OHDVW WKUHH RUGHUV RI PDJQLWXGH OHVV WKDQ WKRVH RQ WKH OHIWKDQG VLGH DQG FDQ WKHUHIRUH EH ZULWWHQ DV U G[ f )RU D IDYRUDEOH SUHVVXUH JUDGLHQW IORZ WKH WZR WHUPV RQ WKH OHIWKDQG VLGH RI (T f DUH RI HTXDO PDJQLWXGH DQG WKHLU UDWLR LV D YDOLG PHDVXUH RI WKH PDJQLWXGH RI WKH SUHVVXUH JUDGLHQW )ORZHYHU IRU DGYHUVH JUDGLHQW IORZ WKH ZDOO VKHDU VWUHVV LV VPDOO FRPSDUHG WR WKH SUHVVXUH JUDGLHQW WHUP DQG WKH ULJKWKDQG VLGH RI (T f +HQFH VFDOLQJ ZLWK LQQHU ZDOO YDULDEOHV LV QRW DSSURSULDWH IRU WKH DGYHUVH SUHVVXUH JUDGLHQW FDVH %XUWRQ DOVR FRQFOXGHV WKDW EURDGEDQG VSDWLDO FRKHUHQFH RI WKH ZDOOSUHVVXUH IOXFWXDWLRQV LV RQO\ PRGHUDWHO\ DIIHFWHG E\ LPSRVLWLRQ RI D IDYRUDEOH SUHVVXUH JUDGLHQW ZKHQ VFDOHG RQ RXWHU YDULDEOHV &RKHUHQFH LV PDUNHGO\ LPSURYHG LQ WKH DGYHUVH JUDGLHQW IORZV ZKLFK DUH GRPLQDWHG E\ GLVWXUEDQFHV WKDW DUH ODUJH FRPSDUHG WR WKH GLVSODFHPHQW WKLFNQHVV DQG WKHUHIRUH GHFD\ PRUH VORZO\ ,Q RQO\ DGYHUVH JUDGLHQW IORZV EURDGEDQG FRQYHFWLRQ YHORFLWLHV ZHUH IRXQG WR EH KLJKHU EHWZHHQ REOLTXH VHSDUDWLRQV WKDQ EHWZHHQ ORQJLWXGLQDOO\ VHSDUDWHG SRLQWV 7KLV ZDV DOVR WKH FDVH IRU QDUURZEDQG FRQYHFWLRQ YHORFLWLHV 3KDVH YHORFLWLHV ZHUH RQO\ PRGHUDWHO\ DIIHFWHG E\ IDYRUDEOH JUDGLHQWV EXW WKH HIIHFW RQ SKDVH YHORFLWLHV IRU DGYHUVH JUDGLHQW IORZ ZDV VWURQJ DQG FRPSOH[ EXW DOZD\V ORZHUHG WKH SKDVH YHORFLWLHV FRQVLGHUDEO\ WKH ORZHVW YDOXHV EHLQJ DERXW 8r

PAGE 45

)LQLWH 7UDQVGXFHU 6L]H (IIHFWV 7KH SUREOHP RI LQDGHTXDWH VSDWLDO UHVROXWLRQ RI D SUHVVXUH WUDQVGXFHU ZDV UHFRJQL]HG E\ :LOOPDUWK f 7KH ILQLWH VL]H RI D WUDQVGXFHUVHQVLQJ HOHPHQW OLPLWV LWV VSDFH UHVROXWLRQ RI D FRQYHFWLQJ SUHVVXUH ILHOG DVVRFLDWHG ZLWK D WXUEXOHQW IORZ &RQVHTXHQWO\ D ODFN RI UHVROXWLRQ LQ VSDFH FDXVHV DQ DSSDUHQW LQDELOLW\ WR UHVROYH LQ WLPH &RUUHFWLRQV ZHUH ILUVW DWWHPSWHG E\ &RUHRV HW DO f IROORZHG E\ DQ LPSURYHG PHWKRG E\ &RUHRV f 7KLV PHWKRG ZDV EDVHG RQ QHZ H[SHULPHQWDO PHDVXUHPHQWV RI WKH ORQJLWXGLQDO DQG ODWHUDO VSDFH FRUUHODWLRQV DQG SUHGLFWHG WKDW WKH DWWHQXDWLRQ DW KLJK IUHTXHQFLHV ZDV PXFK JUHDWHU WKDQ SUHGLFWHG IURP WKH SUHYLRXV PHWKRG :LOOPDUWK DQG 5RRV f XVHG VHYHUDO GLIIHUHQWVL]HG SUHVVXUH WUDQVGXFHUV DQG H[WUDSRODWHG WKH UHVXOWV WR REWDLQ WKH YDQLVKLQJO\ VPDOO YDOXH RI UPV SUHVVXUH 7KH UHVXOW ZDV SQQV[Z ZKLFK ZRXOG DFFRXQW IRU :LOOPDUWK DQG :RROGULGJHnV f UHVXOWV WR EH LQFUHDVHG E\ DSSUR[LPDWHO\ b 7KH\ DOVR FRQFOXGHG WKDW &RUFRVnV f FRUUHFWLRQ FDQ EH XVHG DW ORZ IUHTXHQFLHV EXW QRW DW KLJK IUHTXHQFLHV 6FKHZH f H[SHULPHQWDOO\ VKRZHG WKDW WKH GLPHQVLRQOHVV WUDQVGXFHU GLDPHWHU G GXY LV VXIILFLHQW WR UHVROYH WKH HVVHQWLDO VWUXFWXUHV RI WKH WXUEXOHQW SUHVVXUH IOXFWXDWLRQV ,I WKLV FULWHULRQ LV DVVXPHG WR KROG IRU DGYHUVH JUDGLHQW IORZ WKHQ WKH FRQGLWLRQ G LV HDVLHU WR REWDLQ LQ DGYHUVH JUDGLHQW IORZ GXH WR WKH UHGXFWLRQ LQ [r 6KHDU/D\HU &KDUDFWHULVWLFV 7KH HTXDWLRQV RI PRWLRQ IRU WKH WZRGLPHQVLRQDO LQFRPSUHVVLEOH WXUEXOHQW PL[LQJ OD\HU KDYH EHHQ VROYHG E\ *RUWOHU LQ :KLWH f 7KH ERXQGDU\ OD\HU HTXDWLRQV DUH VROYHG ZLWK WKH IROORZLQJ DQWLV\PPHWULF ERXQGDU\ FRQGLWLRQV 8rf 8 8RRf 8 f

PAGE 46

7KH VROXWLRQ LV 8L8L HUI f ZKHUH Rm 1R DQDO\WLFDO VROXWLRQ KDV \HW EHHQ IRXQG IRU WKH FRPSUHVVLEOH PL[LQJ OD\HU +RZHYHU IXQFWLRQDO IRUPV RI WKH PL[LQJ OD\HU JURZWKUDWH KDYH EHHQ VXJJHVWHG E\ XVLQJ RUGHU RI PDJQLWXGH HVWLPDWHV 8VLQJ WKLV PHWKRG %URZQ DQG 5RVKNR f VXJJHVWHG 0 $Wn 8 f %RJGDQRII f VXJJHVWHG WKDW WKH FRQYHFWLYH YHORFLW\ RI WKH ODUJHVW VWUXFWXUHV LQ D PL[LQJ OD\HU FRXOG EH HVWLPDWHG E\ HTXDWLQJ WKH VWDJQDWLRQ SUHVVXUHV IURP ERWK VLGHV RI WKH PL[LQJ OD\HU ZLWK UHVSHFW WR WKH YHORFLW\ RI WKH ODUJH VWUXFWXUHV
PAGE 47

8W8 F & f DUH HTXDO DQG FDQ EH ZULWWHQ DV 0 & f ,W FDQ EH VHHQ WKDW WKH UHODWLYH 0DFK QXPEHU GHILQHG LQ (T %f 0U 0F ZKHQ WKH DYHUDJH VSHHG RI VRXQG LV XVHG WR FDOFXODWH 0 3DSDPRVFKRX f SURSRVHG WKDW WKH FRPSUHVVLEOH VKHDUOD\HU JURZWK UDWH LV IXQFWLRQDOO\ UHODWHG WR WKH LQFRPSUHVVLEOH JURZWKUDWH DW WKH VDPH GHQVLW\ DQG YHORFLW\ UDWLRV VXFK WKDW J B ILLIU V 0&nR f 7KLV LVRODWHV WKH HIIHFW RI FRPSUHVVLELOLW\ VR WKDW WKH DERYH UDWLR LV D XQLYHUVDO IXQFWLRQ IRU IUHH VKHDUOD\HUV 7KH UDWLR LV JLYHQ E\ %HQMDPLQ f XVLQJ D FXUYH ILW WR WKH H[SHULPHQWDO GDWD DV f 'LPRWDNLV f SURSRVHG WKDW WKHUH DUH WKUHH PDLQ SKDVHV WR VKHDUOD\HU HQWUDLQPHQW ZKLFK DUH UHIHUUHG WR DV f LQGXFWLRQ f GLDVWURSK\ DQG f LQIXVLRQ

PAGE 48

,QGXFWLRQ LV ZKHQ IOXLG LQ WKH YLFLQLW\ RI WKH YRUWLFLW\EHDULQJ IOXLG LV VHW LQ PRWLRQ E\ WKH %LRW6DYDUWLQGXFHG YHORFLW\ ILHOG ZKLFK LV D NLQHPDWLF QRW GLIIXVLYH SURFHVV ,UURWDWLRQDO IOXLG VXIILFLHQWO\ FORVH WR WKH YRUWLFDO IOXLG ZLOO LQ IDFW SDUWLFLSDWH LQ WKH ODUJH VFDOH VWUXFWXUH PRWLRQV ORQJ EHIRUH LW KDV DFTXLUHG YRUWLFLW\ RI LWV RZQ 7KHVH PRWLRQV DSSHDU DW WKH ORZ ZDYHQXPEHU SDUW RI WKH WXUEXOHQW VSHFWUXP DQG DOWKRXJK LUURWDWLRQDO FDQ EH FRQVLGHUHG SDUW RI WKH WXUEXOHQW IORZ 7KH VHFRQG VWDJH LV GLDVWURSK\ ZKHUH WKH LUURWDWLRQDO IOXLG LV VWUDLQHG XQWLO LWV VSDWLDO VFDOH LV VPDOO HQRXJK WR SXW LW ZLWKLQ UHDFK RI WKH YLVFRXVf GLIIXVLYH SURFHVVHV 9LVFRVLW\ WKHQ WDNHV RYHU DQG FDXVHV FDVFDGLQJ WR WKH .ROPRJRURY VFDOH 7KH WKLUG VWDJH FDQ EH DVVRFLDWHG ZLWK RWKHU SRVVLEOH GLIIXVLYH SURFHVVHV VXFK DV PROHFXODU PL[LQJ RU KHDW FRQGXFWLRQ DQG PD\ RU PD\ QRW SUHFHGH GLDVWURSK\ GHSHQGLQJ RQ WKH UHODWLYH PDJQLWXGH RI WKH FRUUHVSRQGLQJ PROHFXODU GLIIXVLYLW\ WR WKDW RI WKH NLQHPDWLF YLVFRVLW\ ,Q WKH FDVH RI JDVSKDVH HQWUDLQPHQW LW ZRXOG EH GLIILFXOW WR GLVWLQJXLVK EHWZHHQ LQIXVLRQ DQG GLDVWURSK\ EHFDXVH WKH FRUUHVSRQGLQJ GLIIXVLRQ FRHIILFLHQWV DUH RI WKH VDPH RUGHU 'LPRWDNLV f DOVR GHULYHG WKH LQFRPSUHVVLEOH VKHDUOD\HU JURZWK UDWH DQG DFFRXQWHG IRU XQHTXDO HQWUDLQPHQW IURP HLWKHU VLGH RI WKH VKHDU OD\HU 6nQ H U 9V YL \V UfOUf f ZKHUH H LV D FRQVWDQW 1L[RQ HW DO f FDOFXODWHG WKH WUDQVYHUVH PDVV IOX[ DURXQG D YRUWH[ FRUH XVLQJ WUDQVRQLF IORZ WKHRU\ DQG SURSRVHG WKDW WKH QRUPDOL]HG JURZWK UDWH IRU UHODWLYH 0DFK QXPEHUV OHVV WKDQ LV

PAGE 49

b }‘ 0f f ZKHUH 0A$8F 1L[RQ HW DO DOVR IRXQG WKDW D FRQVLGHUDEOH DPRXQW RI WKH LQFRPLQJ IORZ HQHUJ\ ZKLFK ZRXOG QRUPDOO\ EH FRQYHUWHG LQWR URWDWLRQDO HQHUJ\ RI WKH HGGLHV ZLWKLQ WKH PL[LQJ OD\HU LV H[SHQGHG FRPSUHVVLQJ WKH JDV 3DSDPRVFKRX f DWWHPSWHG WR GLVUXSW WKH VWUXFWXUHV WKDW KH REVHUYHG LQ 6FKOLHUHQ SKRWRJUDSKV E\ XVLQJ YDULRXV VSOLWWHU SODWH WUDLOLQJHGJH GHYLFHV YRUWH[ JHQHUDWRUV WULS ZLUHV DQG VDZWRRWK H[WHQVLRQVf +H IRXQG WKDW WKHVH GHYLFHV KDG OLWWOH HIIHFW RQ WXUEXOHQW VWUXFWXUHV RU VKHDUOD\HU JURZWK UDWH *RHEHO DQG 'XWWRQ f PDGH GHWDLOHG YHORFLW\ PHDVXUHPHQWV RI IXOO\ GHYHORSHG FRPSUHVVLEOH VKHDUOD\HUV V 0U VLf XVLQJ ODVHU GRSSOHU YHORFLPHWU\ /'9f 7KH\ REVHUYHG WKDW WKH OHQJWK IRU IXOO GHYHORSPHQW JHQHUDOO\ LQFUHDVHG LQ WKH RUGHU RI PHDQ VWUHDPZLVH YHORFLW\ VWUHDPZLVH WXUEXOHQFH LQWHQVLW\ WUDQVYHUVH WXUEXOHQFH LQWHQVLW\ DQG NLQHPDWLF 5H\QROGV VWUHVV )XOO\ GHYHORSHG VWUHDPZLVH PHDQYHORFLW\ SURILOHV ZHUH ZHOO DSSUR[LPDWHG E\ DQ HUURU IXQFWLRQ SURILOH HYHQ IRU WKH PRUH FRPSUHVVLEOH FDVHV 7UDQVYHUVH WXUEXOHQFH DQG QRUPDOL]HG NLQHPDWLF 5H\QROGV VWUHVVHV ERWK GHFUHDVHG OLNH WKH QRUPDOL]HG JURZWK UDWHV ZLWK LQFUHDVLQJ 0U 0L[LQJ OHQJWKV DQG RWKHU WXUEXOHQFH TXDQWLWLHV ZLWK D WUDQVYHUVH IOXFWXDWLRQ FRPSRQHQW DOVR GHFUHDVHG ZLWK LQFUHDVLQJ 0U 7KLV VXJJHVWV WKDW WKH SULPDU\ HIIHFW RI FRPSUHVVLELOLW\ RQ WKH WXUEXOHQFH ILHOG LQ D VKHDU OD\HU LV WKH VXSSUHVVLRQ RI WUDQVYHUVH YHORFLW\ IOXFWXDWLRQV 6WUHDPZLVH WXUEXOHQFH LQWHQVLWLHV UHPDLQHG IDLUO\ FRQVWDQW ZLWK 0Q ZKLFK PHDQV WKDW WKH DQLVRWURS\ RI WKH WXUEXOHQFH LQFUHDVHG VLJQLILFDQWO\ ZLWK 0U 7KH\ DOVR IRXQG WKDW WKH IORZILHOGV ZHUH UHDVRQDEO\ WZRGLPHQVLRQDO EDVHG RQ YHORFLW\ SURILOHV PHDVXUHG DW WZR SDUDOOHO SODQHV LQ WKH VSDQZLVH GLUHFWLRQ

PAGE 50

-HW $FRXVWLFV 7KHUH KDV EHHQ D JUHDW GHDO RI UHVHDUFK LQ WKH DUHD RI DFRXVWLFV GXH WR WKH PDMRU LQFUHDVH LQ FRPPHUFLDO DLU WUDYHO RYHU WKH ODVW IHZ GHFDGHV 7KH WKUHH DUHDV UHOHYDQW WR WKH FXUUHQW UHVHDUFK DUH Df DFRXVWLFV JHQHUDWHG E\ WXUEXOHQW IORZ Ef DFRXVWLFV JHQHUDWHG DW QR]]OH OLSV DQG Ff DFRXVWLFV JHQHUDWHG IURP LPSHUIHFWO\ H[SDQGHG QR]]OH IORZ $ VXEVHW RI DOO WKHVH FDWHJRULHV LV WKH LQWHUDFWLRQ RI DQ\ RQH VRXUFH ZLWK D VROLG ZDOO 7KH FOHDUHVW ZD\ WR XQGHUVWDQG DFRXVWLFV JHQHUDWHG E\ WXUEXOHQW IORZ LV WR FRQVLGHU WKH EDVLF HTXDWLRQ ILUVW GHULYHG E\ /LJKWKLOO f 7KLV HTXDWLRQ LV WKH EDVLV IRU YLUWXDOO\ DOO ZRUN RQ QRLVH DQG FDQ EH GHULYHG IURP WKH PDVV DQG PRPHQWXP FRQVHUYDWLRQ HTXDWLRQV DQG DS D3fcBJ GW G[L P GSXW GS8-8M GScc GW G;M G[ n f f ZKHUH 4P LV WKH UDWH RI PDVV LQWURGXFWLRQ SHU XQLW YROXPH DQG )c LV WKH H[WHUQDO IRUFH SHU XQLW YROXPH 7KH QRQKRPRJHQHRXV ZDYH HTXDWLRQ IRU SURSDJDWLRQ RI VRXQG LQ D XQLIRUP PHGLXP DW UHVW GXH WR VRXUFHV RI PDWWHU H[WHUQDO IRUFHV RU DSSOLHG IOXFWXDWLQJ VWUHVVHV BFSB -4P G) W 7M GW r G[I GW G[c G[3M ZKHUH f

PAGE 51

7cM a38LOM 3M a&4 3 \ f LV WKH /LJKWKLOO HTXDWLRQ F LV WKH VRXQG VSHHG LQ WKH PHGLXP DQG A LV WKH .URQHFNHU GHOWD 7KH VWUHVV WHQVRU IRU D 6WRNHVLDQ JDV LV JLYHQ LQ WHUPV RI WKH YHORFLW\ ILHOG E\ f (IIHFWV VXFK DV FRQYHFWLRQ RI VRXQG E\ WKH WXUEXOHQW IORZ RU WKH YDULDWLRQV LQ WKH VSHHG RI VRXQG ZLWKLQ LW DUH WDNHQ LQWR DFFRXQW E\ LQFRUSRUDWLRQ DV HTXLYDOHQW VWUHVVHV /LJKWKLOO f (DFK WHUP RQ WKH ULJKWKDQG VLGH RI (T f JLYHV WKH HIIHFW RI D GLIIHUHQW DFRXVWLF VRXUFH PHFKDQLVP 7KH ILUVW G4-GW JLYHV WKH HIIHFW RI PDVV LQWURGXFWLRQ ([DPSOHV LQFOXGH SXOVH MHWV WLS MHW URWRUV DQG WKH UDQGRP PDVV IOXFWXDWLRQV WKDW FDQ RFFXU DFURVV WKH H[LW SODQH RI D MHW H[KDXVW 3DR DQG /RZVRQ f 7KH VHFRQG WHUP 6)G;M JLYHV WKH HIIHFW RI H[WHUQDO IOXFWXDWLQJ IRUFHV WKDW FDQ DFW RQ WKH IOXLG ([DPSOHV LQFOXGH FRPSUHVVRUV SURSHOOHUV KHOLFRSWHU URWRUV DQG WKH IOXFWXDWLQJ IRUFHV WKDW H[LVW RQ D QR]]OH OLS RU RQ DQ\ ERG\ LQ D WXUEXOHQW IORZVWUHDP 7KH WKLUG WHUP G7AG[A;M LQFRUSRUDWHV VHYHUDO GLIIHUHQW HIIHFWV 7\ LV FDOOHG WKH DFRXVWLF VWUHVV WHQVRU $W ORZ 0DFK QXPEHU WKH PRVW VLJQLILFDQW IOXFWXDWLRQ RI WKH DFRXVWLF VWUHVV WHQVRU LQ D IUHH MHW ZLOO EH FDXVHG E\ WKH WXUEXOHQW YHORFLW\ IOXFWXDWLRQV ZKLFK DIIHFW WKH SXc8M SURGXFW 7KH HIIHFW RI YLVFRXV VWUHVVHV DQG WKHUPRG\QDPLF IOXFWXDWLRQV DUH FRQWDLQHG LQ WKH UHPDLQLQJ WHUPV RI 7\ &XULH f LQYHVWLJDWHG WKH LQIOXHQFH RI VROLG ERXQGDULHV XVLQJ WKH DERYH WKHRU\ DQG VKRZHG WKDW WKH IXQGDPHQWDO IUHTXHQF\ RI GLSROHV QHDU WKH ZDOO LV RQH KDOI RI WKDW

PAGE 52

JHQHUDWHG E\ TXDGUXSOHV 7KLV LV EHFDXVH WKH TXDGUXSROH VWUHQJWK SHU XQLW YROXPH SXc8M EHLQJ HVVHQWLDOO\ SURSRUWLRQDO WR YHORFLW\f ZLOO KDYH GRXEOH WKH IUHTXHQF\ RI WKH IOXFWXDWLQJ YHORFLW\ 2Q WKH RWKHU KDQG WKH IOXFWXDWLQJ IRUFH H[HUWHG RQ WKH IOXLG DW WKH VROLG ERXQGDULHV ZLOO KDYH WKH VDPH IUHTXHQF\ DV WKH YHORFLW\ IOXFWXDWLRQV 7KH IUHTXHQF\ UHODWLRQ FDQ EH VKRZQ LI RQH FRQVLGHUV D IORZ LQ ZKLFK WKH YHORFLW\ LQ WKH [UGLUHFWLRQ LV JLYHQ WR D ILUVW DSSUR[LPDWLRQ DV Xc MFfa$ LMFfFRV!QWf f ZKHUH A LV DOVR D IXQFWLRQ RI [f WKHQ WKH TXDGUXSROH VWUHQJWK SHU XQLW YROXPH LV S XM8M S$$M&2V^QW4FRV QW &\f ?S$c$`^FRtAQW&\&\f FRV& &\f` f $OVR DW VXIILFLHQWO\ ORZ 0DFK QXPEHUV WKH FRQWULEXWLRQ WR WKH VRXQG ILHOG IURP WKH GLSROHV VKRXOG EH JUHDWHU WKDQ IURP WKH TXDGUXSROHV ([DFWO\ KRZ VPDOO WKH 0DFK QXPEHU PXVW EH EHIRUH WKLV RFFXUV ZLOO GHSHQG XSRQ WKH IORZ LQ TXHVWLRQ $V WKH YHORFLW\ LQ D IUHH MHW LV LQFUHDVHG WKH PD[LPXP DQJOH RI IDUILHOG QRLVH HPLVVLRQ VWDUWV WR PRYH IURP QRUPDO WR WKH MHW ERXQGDU\ WR D GRZQVWUHDPSRLQWLQJ DQJOH /LJKWKLOO f )RU MHW YHORFLWLHV FRQVLGHUDEO\ JUHDWHU WKDQ WKH VXUURXQGLQJ VSHHG RI VRXQG WKH GLUHFWLRQDO PD[LPXP EHFRPHV WKH 0DFK DQJOH RI WKH ORFDO FRQYHFWLYH 0DFK QXPEHU /LJKWKLOO DOVR QRWHG IURP IDUILHOG PHDVXUHPHQWV WKDW ORZ IUHTXHQFLHV DUH HPLWWHG LQ D PRUH GRZQVWUHDP GLUHFWLRQ WKDQ KLJK IUHTXHQFLHV DQG WKH KLJK IUHTXHQF\ VRXQG LV DVVRFLDWHG ZLWK WKH PL[LQJ UHJLRQ MXVW GRZQVWUHDP RI WKH QR]]OH ZKHUH WKH TXDGUXSROH VWUHQJWK LV GXH WR ODWHUDO WUDQVSRUW RI PHDQ PRPHQWXP DFURVV WKH VKHDU OD\HU 7KH ORZ IUHTXHQFLHV RULJLQDWH IURP WKH IXOO\ WXUEXOHQW UHJLRQ GRZQVWUHDP FI )LJ f

PAGE 53

,Q VXSHUVRQLF MHWV ZLWK D VKRFNFHOO VWUXFWXUH 3RZHOO D Ef REVHUYHG WKDW UHJXODU VWUHDP GLVWXUEDQFHV ZHUH DVVXPHG WR JLYH ULVH WR VWDWLRQDU\ VRXUFHV RI VRXQG RQ WUDYHUVLQJ WKH VKRFNZDYHV DQG VHYHUDO RI WKHVH VRXUFHV ZRXOG LQWHUDFW ZLWK HDFK RWKHU DQG SURGXFH GLVFUHWH IUHTXHQFLHV $ SRZHUIXO IUHTXHQF\ ZDV REVHUYHG WR WUDYHO XSVWUHDP DQG LQWHUDFW ZLWK WKH IORZ DW WKH RULILFH JLYLQJ ULVH WR DQ DPSOLILFDWLRQ SURFHVV 7KH IUHTXHQF\ RI WKLV DPSOLILHG VFUHHFK IRU WKH WZRGLPHQVLRQDO FDVH LV URXJKO\ ZKHUH 5 LV WKH MHW SUHVVXUH UDWLR DQG 5F LV WKH FULWLFDO YDOXH 7KH YDOXH RI G LV WKH VPDOOHU RI WKH QR]]OH GLPHQVLRQV *ODVV f IRXQG WKDW XQGHU FHUWDLQ FLUFXPVWDQFHV WKLV DFRXVWLF IHHGEDFN FDQ UHVXOW LQ ZLGH YDULDWLRQV LQ WKH JURZWK UDWH DQG GHFD\ RI WKH PL[LQJ OD\HU 5LEQHU f IRXQG WKDW WKH UDWLR RI DFRXVWLF HQHUJ\ IOX[ WR WXUEXOHQFH HQHUJ\ IOX[ IRU WXUEXOHQFH SDVVLQJ WKURXJK D VKRFN RI ILQLWH VWUHQJWK YDULHV DOPRVW OLQHDUO\ ZLWK VKRFN GHQVLW\ UDWLR 7KH YDOXHV UDQJH IURP b DW 0 WR b DW LQILQLWH 0DFK QXPEHU 7KH YDOXH DW 0 LV b 7DP DQG 7DQQD f VWXGLHG WKH FKDUDFWHULVWLFV RI FRQYHUJLQJGLYHUJLQJ VXSHUVRQLF QR]]OHV DW RII GHVLJQ SRLQWV DQG IRXQG WKH VKRFN ? 0M 0G ? ZKHUH 0M LV WKH MHW 0DFK QXPEHU DQG 0G LV WKH GHVLJQ 0DFK QXPEHU 7DP f IRXQG WKDW WKH QRLVH RI D QHDUO\ LGHDOO\ H[SDQGHG VXSHUVRQLF MHW HPDQDWHV IURP WZR UDWKHU ORFDOL]HG UHJLRQV RI WKH MHW ZKLFK DUH ORFDWHG DW GLVWDQFHV TXLWH IDU GRZQVWUHDP RI WKH QR]]OH H[LW +H VXJJHVWV WKDW ODUJHVFDOH LQVWDELOLWLHV RI WKH MHW IORZ DUH UHVSRQVLEOH IRU WUDQVIHUULQJ WKH NLQHWLF HQHUJ\ RI WKH MHW LQWR QRLVH UDGLDWLRQ 7DP SURSRVHV WKDW UDSLG JURZWK RI WKHVH ZDYHV FDXVHV WKH RVFLOODWLRQV RI WKH MHW WR SHQHWUDWH

PAGE 54

WKH PL[LQJ OD\HU DW WZR ORFDWLRQV DQG WR LQWHUDFW VWURQJO\ ZLWK WKH DPELHQW IOXLG WKHUH KHQFH JLYLQJ ULVH WR LQWHQVH QRLVH UDGLDWLRQ 8VLQJ VKDGRZJUDSK YLVXDOL]DWLRQ /RZVRQ DQG 2OOHUKHDG f IRXQG WKH VRXQG VRXUFHV LQ VPDOO VXSHUVRQLF MHWV LQ WKH IROORZLQJ RUGHU RI GRPLQDQFH Lf VSKHULFDO UDGLDWLRQ IURP WKH QR]]OH LLf UDGLDWLRQ IURP VKRFNWXUEXOHQFH LQWHUDFWLRQ LQ WKH IORZ DQG LLLf 0DFK ZDYH UDGLDWLRQ &KDQ DQG :HVWOH\ f DOVR REVHUYHG VSKHULFDO ZDYHV IURP WKH QR]]OH RI D VXSHUVRQLF KHOLXP MHW 7KH MHW WUDQVLWLRQHG WR WXUEXOHQFH ZLWKLQ GLDPHWHU DQG UDGLDWHG ZHDN VKRFNV IURP WKLV ORFDWLRQ ZLWK D IUHTXHQF\ RI N+] DQG GLUHFWHG SULPDULO\ DORQJ D FRQH r IURP WKH MHW D[LV

PAGE 55

)LJXUH )LJXUH 5H" }! 7KH WKUHHGLPHQVLRQDO YHORFLW\ HQHUJ\ VSHFWUXP DIWHU +LQ]H f 9RUWH[ULQJ PRGHO RI FRKHUHQW VWUXFWXUH DQG EXUVW DIWHU .REDVKL DQG ,FKLMR f

PAGE 56

U 6XSHUVRQLF PL[LQJ OD\HU 0! f§ 3ULPDU\FRUH OHQJWK f§ 6XSHUVRQLF OHQJWK )LJXUH )ORZ UHJLPHV LQ WKH HMHFWRU

PAGE 57

&+$37(5 (;3(5,0(17$/ ,19(67,*$7,21f§+$5':$5( 352&('85(6 $1' 0,;,1*6(&7,21 ,1/(7 &21',7,216 *HQHUDO 'HVFULSWLRQ $Q HMHFWRU IDFLOLW\ ZDV FRQVWUXFWHG LQ ZKLFK WZRGLPHQVLRQDO FRPSUHVVLEOH VKHDU OD\HUV FDQ EH HVWDEOLVKHG DW YDULRXV 0DFK QXPEHUV 5H\QROGV QXPEHUV GHQVLW\ UDWLRV DQG YHORFLW\ UDWLRV 7KH IORZ DSSDUDWXV LV D WKUHHVWUHDP EORZGRZQ VXSHUVRQLF SULPDU\ VXEVRQLF VHFRQGDU\ ZLQGWXQQHO ZLWK WKH FDSDELOLW\ RI VXSSO\LQJ GLIIHUHQW JDVHV WR WKH SULPDU\ DQG VHFRQGDU\ ,Q WKLV H[SHULPHQWDO LQYHVWLJDWLRQ KLJK SUHVVXUH DLU VXSSOLHG E\ WKH *DV '\QDPLFV /DERUDWRU\ FRPSUHVVHGDLU IDFLOLW\ ZDV XVHG IRU ERWK SULPDU\ DQG VHFRQGDU\ VXSSO\ $IWHU EHLQJ EURXJKW WR WKH GHVLUHG RU GHVLJQf 0DFK QXPEHUV WKH WKUHH VWUHDPV DUH EURXJKW LQWR FRQWDFW GRZQVWUHDP RI WZR LGHQWLFDO VSOLWWHU SODWHV DQG PL[HG LQ D UHFWDQJXODU FRQVWDQWDUHD PL[LQJ WHVWf VHFWLRQ 7KH GRZQVWUHDP HQG RI WKH DSSDUDWXV LV FRQQHFWHG WR D WUDQVLWLRQ GLIIXVHU ZKLFK WUDQVLWLRQV DQG GLIIXVHV WKH IORZ IURP D PP E\ PP UHFWDQJXODU FURVVVHFWLRQ WR D LQ FLUFXODU FURVVVHFWLRQ ZKLFK KRXVHV D EXWWHUIO\ FRQWURO YDOYH 7KH IORZ LV WKHQ GXPSHG LQWR D ODUJH PXIIOHU DQG H[KDXVWHG WR WKH DWPRVSKHUH 7LPHDYHUDJHG 6FKOLHUHQ DQG VKDGRZJUDSK SKRWRJUDSK\ ZHUH XVHG WR YLVXDOL]H WKH VWUXFWXUH RI WKH VXSHUVRQLF SULPDU\ MHW WKH H[WHQW RI WKH VKHDU OD\HUV DQG WKH H[WHQW RI WKH ODPLQDUWRWXUEXOHQW WUDQVLWLRQ UHJLRQV ,PSDFW SUHVVXUH SURILOHV REWDLQHG XVLQJ D WUDYHUVLQJ PHFKDQLVP ZHUH WDNHQ DW WZHQW\ILYH VWUHDPZLVH SRVLWLRQV ZLWK QRPLQDO VHSDUDWLRQV RI PP $GGLWLRQDO VLGHZDOO VWDWLF SUHVVXUHV ZHUH REWDLQHG XVLQJ D WXEH PDQRPHWHU EDQN 3KRWRJUDSKV ZHUH WDNHQ RI WKH EDQN DQG DQDO\]HG 6LGHZDOO RQH DQG WZRSRLQW WLPHDFFXUDWH SUHVVXUH UHFRUGV ZHUH REWDLQHG

PAGE 58

XVLQJ PLQLDWXUH SUHVVXUH WUDQVGXFHUV $OO RI WKH PHDVXUHPHQWV DUH DFFRPSDQLHG E\ D UHFRUG RI XSVWUHDP VWDJQDWLRQ SUHVVXUHV VWDJQDWLRQ WHPSHUDWXUHV DQG H[FHSW IRU WKH 6FKOLHUHQ DQG VKDGRZJUDSK YLVXDOL]DWLRQV VLGHZDOO VWDWLF SUHVVXUHV 7KH GLIIHUHQW PHDVXUHPHQWV ZHUH DOO FRQWUROOHG XVLQJ D 3&$7 FRPSXWHU ZKLFK DOORZHG SUHFLVH H[HFXWLRQ RI WKH UHTXLUHG IXQFWLRQV GXULQJ WKH VKRUW GXUDWLRQ RI WKH UXQV 7KH RSHUDWLRQ RI WKH EORZGRZQ IDFLOLW\ ZDV LQWHUPLWWHQW ZLWK HDFK UXQ ODVWLQJ IURP WR VHFRQGV 7KH HMHFWRU KDUGZDUH SUHVVXUH PHDVXUHPHQW DQG YLVXDOL]DWLRQ WHFKQLTXHV DV ZHOO DV ERXQGDU\OD\HU FDOFXODWLRQV DUH GHVFULEHG LQ GHWDLO EHORZ 'HVLJQ 0HWKRGRORJ\ 7KH WZRGLPHQVLRQDO HMHFWRU ULJ XVHG LQ WKLV VWXG\ ZDV D SUHH[LVWLQJ IDFLOLW\ EXLOW E\ WKH DXWKRU DQG KLV FRZRUNHUV %HQMDPLQ HW DO f LQ IRU GLVVLPLODU JDV HMHFWRU H[SHULPHQWV 7KH ULJ DOORZV IRU YDULDWLRQ LQ PL[LQJ VHFWLRQ KHLJKW IURP PP WR PP ZLWK D IL[HGKHLJKW SULPDU\ QR]]OH RI PP ,Q WKLV VWXG\ WKH PD[LPXP KHLJKW RI PP ZDV FKRVHQ VR WKDW WKH PD[LPXP QXPEHU RI ZDOO PHDVXUHPHQWV FRXOG EH PDGH LQ WKDW GLUHFWLRQ VHH )LJ f 7KH PLQLPXP DOORZDEOH GLPHQVLRQ RI WKH QR]]OH H[LW KHLJKW ZDV VHOHFWHG EDVHG RQ Df WKH UHVROXWLRQ SURYLGHG E\ WKH WUDYHUVLQJ SLWRWSUHVVXUH SUREH DQG Ef WKH QXPEHU RI WUDYHUVHV QHFHVVDU\ WR PDS WKH YDULRXV UHJLRQV RI WKH VKHDU OD\HU )LUVWO\ LW ZDV HVWLPDWHG WKDW WKH UHVROXWLRQ RI WKH SLWRWSUHVVXUH SUREH ZDV QR OHVV WKDQ PP DQG WKDW DW OHDVW WHQ PHDVXUHPHQWV VKRXOG IDOO DFURVV WKH OD\HU LQ IDFW PDQ\ PRUH UHDGLQJV ZHUH REWDLQHG DFURVV WKH VKHDU OD\HUf 7KH DERYH PHDQW WKDW WKH OD\HU PXVW JURZ WR D WKLFNQHVV RI DERXW PP EHIRUH WKH WKLFNQHVV FDQ EH PHDVXUHG ZLWK WKH SUREH 6HFRQGO\ LW ZDV GHFLGHG WKDW D PLQLPXP RI WKUHH HTXDOO\VSDFHG VWUHDPZLVH WUDYHUVHV ZHUH QHFHVVDU\ WR LGHQWLI\ WKH SULPDU\ FRUH UHJLRQ RI WKH VKHDU OD\HU UHJLRQ f )RU LQLWLDO HVWLPDWHV LW ZDV DVVXPHG WKDW DORQJ WKH OHQJWK RI WKLV FRUH f WKH VKHDU OD\HU

PAGE 59

JURZV OLQHDUO\ DQG E\ HTXDO DPRXQWV LQWR WKH LQYLVFLG UHJLRQV RI WKH SULPDU\ DQG VHFRQGDU\ DQG f WKH OD\HU JURZV ZLWK WKH VDPH UDWH LQ ERWK GLUHFWLRQV UHODWLYH WR WKH PL[LQJVHFWLRQ FHQWHUOLQHf 7KLV PHDQW WKDW WKH VPDOOHVW PL[LQJ VHFWLRQ WKDW FRXOG EH XVHG ZRXOG UHVXOW LQ D OD\HU WKDW ZRXOG EH DERXW PP WKLFN DW WKH HQG RI WKH FRUH PP HDFK VLGH RI WKH FHQWHUOLQHf 7KDW LQ WXUQ PHDQW WKDW WKH QR]]OH H[LW KHLJKW KDG WR EH DW OHDVW PP $ IDFWRU RI WZR ZDV LQWURGXFHG WR DFFRXQW IRU DQ\ PDUJLQ RI XQFHUWDLQW\ KHQFH D SULPDU\ H[LW KHLJKW RI PP ZDV FKRVHQ 7KH H[LW KHLJKW RI WKH VHFRQGDU\ VWUHDPV ZDV VHOHFWHG EDVHG RQ VLPLODU DUJXPHQWV $GGLWLRQDOO\ LW ZDV GHVLUHG WKDW DW OHDVW LQ VRPH WHVW FDVHV XQPL[HG VHFRQGDU\ IORZ H[LVW EH\RQG WKH SRLQW ZKHUH WKH SULPDU\ FRUH HQGV 8VLQJ WKHVH FULWHULD LW ZDV GHFLGHG WKDW VHFRQGDU\ IORZV KDYLQJ H[LW KHLJKWV DW OHDVW HTXDO WR WKH SULPDU\ MHW KHLJKW ZRXOG EH DGHTXDWH +HQFH D YDULDEOH H[LW KHLJKW RI PP WR PP ZDV FKRVHQ IRU HDFK KDOI RI WKH VHFRQGDU\ VWUHDP ,Q VHOHFWLQJ WKH GHSWK RI WKH PL[LQJ VHFWLRQ VHH )LJ f LW ZDV GHVLUHG WR PLQLPL]H IORZUDWHV DV ZHOO DV SURYLGH D IORZILHOG WKDW ZDV DSSUR[LPDWHO\ WZRGLPHQVLRQDO LH VLGHZDOO ERXQGDU\OD\HUV DUH WKLQ FRPSDUHG WR WKH ZLGWKf DQG EH DGHTXDWHO\ VL]HG IRU 6FKOLHUHQ YLVXDOL]DWLRQ 7KH ODWWHU UHTXLUHG WKDW WKH PL[LQJ VHFWLRQ ZDV GHHS WR UHVROYH VPDOO GHQVLW\JUDGLHQWV 6LQFH WKHVH DUH RSSRVLQJ IDFWRUV DQ DFFHSWDEOH PL[LQJ VHFWLRQ ZLGWK WKDW UHDVRQDEO\ PHW WKH FULWHULD ZDV GHWHUPLQHG WR EH PP &RPSOHWH GHWDLOV RI WKH ULJ FRQFHSWLRQ DQG GHVLJQ FDQ EH IRXQG LQ WKH UHSRUW E\ 5RDQ HW DO f ([SHULPHQWDO $SSDUDWXV ,Q WKH PL[LQJ VHFWLRQ WKH VXSHUVRQLF SULPDU\ FHQWHU MHW LV VDQGZLFKHG EHWZHHQ WZR V\PPHWULFDO VXEVRQLF VHFRQGDU\ VWUHDPV DQG DOO WKUHH GLVFKDUJH LQWR D FRQVWDQWDUHD GXFW VHH )LJ f 3ULPDU\ DQG VHFRQGDU\ VWUHDPV PL[ DORQJ WKH VKHDU OD\HUV ZKLFK EHJLQ WR GHYHORS DW WKH QR]]OH H[LW SODQHV ZKHUH WKH VWUHDPV ILUVW FRPH LQWR FRQWDFW 7KH PHDQ

PAGE 60

GHYHORSPHQW RI WKH IORZILHOG LV PDSSHG E\ WUDYHUVLQJ D SLWRWSUHVVXUH LPSDFW SUREH DFURVV WKH PL[LQJ GXFW DW D QXPEHU RI D[LDO ORFDWLRQV 7KH SULPDU\ DQG VHFRQGDU\ IORZV ZHUH VXSSOLHG E\ D KLJKSUHVVXUH JDV VWRUDJH DQG GHOLYHU\ V\VWHP &RQWURO RI WKH ULJ DV ZHOO DV GDWDDFTXLVLWLRQ RI WKH PHDQ FRQGLWLRQV ZDV DFFRPSOLVKHG XVLQJ WKH ODERUDWRU\ 3&$7 FRPSXWHU 7KLV FRQWURO SURFHVV HQDEOHG VKRUW UXQ WLPHV DQG LGHQWLFDOO\UHSHDWDEOH LQVWUXPHQW UHDGLQJ FDSDELOLW\ 7KH WHVW DSSDUDWXV DV ZHOO DV WKH LQWHUIDFH KDUGZDUH DQG LQVWUXPHQWDWLRQ DUH GHVFULEHG LQ PRUH GHWDLO LQ WKH IROORZLQJ VHFWLRQV )LQH DGMXVWPHQWV RI SULPDU\ DQG VHFRQGDU\ VXSSO\ SUHVVXUHV DV ZHOO DV WKH PL[LQJ VHFWLRQ EDFNSUHVVXUH KDG WR EH PDGH IRU HDFK WHVW FDVH WR DFKLHYH WKH GHVLUHG IORZ FRQGLWLRQV 7R DFKLHYH UHSHDWDEOH SUHVVXUH FRQGLWLRQV EHWZHHQ WHVW UXQV WKH UXQ HYHQW VHTXHQFH DQG WLPLQJ ZDV FDUHIXOO\ SODQQHG DQG LPSOHPHQWHG WR HQVXUH VWDELOLW\ DQG YDOLGLW\ RI WKH PHDVXUHPHQWV ZKLOH PLQLPL]LQJ UXQ WLPH 7KH GHWDLOV RI WKH VHWXS UXQ FRQWURO DQG GDWDDFTXLVLWLRQ SURFHGXUHV DUH DOVR GLVFXVVHG ODWHU LQ WKLV FKDSWHU *DV 6WRUDJH DQG 'HOLYHU\ 6\VWHP 3UHVVXUL]HG DLU ZDV XVHG IRU VXSSO\ RI WKH SULPDU\ DQG VHFRQGDU\ IORZV 7KH ILOWHUHG DQG GULHG DLU ZDV GHOLYHUHG IURP D EDQN RI VWRUDJH WDQNV DQG VXSSOLHG WR WKH SULPDU\ DQG VHFRQGDU\ SOHQXPV WKURXJK SUHVVXUHUHJXODWLQJ YDOYHV DV GHVLUHG $ VFKHPDWLF RI WKH JDV VWRUDJH DQG GHOLYHU\ V\VWHP LV VKRZQ LQ )LJ &RPSUHVVHG DLU ZDV VXSSOLHG E\ D :RUWKLQJWRQ WZRVWDJH SRVLWLYHGLVSODFHPHQW FIP +3f FRPSUHVVRU ZKLFK GHOLYHUV D PD[LPXP ZRUNLQJ SUHVVXUH RI SVLD 7KH FRPSUHVVHG DLU LV SDVVHG WKURXJK VHYHUDO RLO DQG ZDWHU WUDSV DQG D GHVLFFDQW DLUGULHU WR UHPRYH DQ\ PRLVWXUH 7KH DLU LV WKHQ VWRUHG LQ D EDQN RI F\OLQGULFDO WDQNV PDQLIROGHG WRJHWKHU ZLWK D WRWDO YROXPH RI DSSUR[LPDWHO\ IW ,Q RUGHU WR PDLQWDLQ DQ DOPRVW FRQVWDQW VXSSO\ SUHVVXUH OHYHO WKH FRPSUHVVRU ZDV RSHUDWHG WKURXJKRXW WHVW UXQV ,Q

PAGE 61

DGGLWLRQ WKH SUHVVXUHUHJXODWLQJ YDOYHV ZHUH VHW ZKHQ WKH VXSSO\ SUHVVXUH UHDFKHG D SUHGHWHUPLQHG YDOXH WKLV YDOXH LV GHWHUPLQHG DIWHU WKH FRPSUHVVRUnV VHFRQG VWDJH LV GLVHQJDJHG DW LWV PD[LPXP GHOLYHU\ SUHVVXUH 0RQLWRULQJ RI WKH VXSSO\ SUHVVXUH LV SHUIRUPHG XVLQJ D WUDQVGXFHU FRQQHFWHG WR WKH VXSSO\ OLQH $LU ZDV GHOLYHUHG WR WKH DSSDUDWXV WKURXJK D LQ VFKHGXOH VWHHO SLSH VL]HG WR NHHS WKH SLSH 0DFK QXPEHU EHORZ IRU WKH IORZ UDWHV RI LQWHUHVW $ JDWH YDOYH SODFHG EHWZHHQ WKH WDQNV DQG WKH WHVW ULJ ZDV XVHG WR LVRODWH WKH VXSSO\ DQG WKH WHVW ULJ $XWRPDWLF RQRII FRQWURO RI WKH DLU IORZ ZDV DFFRPSOLVKHG XVLQJ D VROHQRLG YDOYH 2PHJD PRGHO 69f SODFHG GRZQVWUHDP RI WKH JDWH YDOYH 7KH VROHQRLG YDOYH FRXOG EH FRQWUROOHG HLWKHU PDQXDOO\ ZLWK D VZLWFK RU HOHFWURQLFDOO\ XVLQJ D GLJLWDO RXWSXW FKDQQHO IURP WKH FRPSXWHU 7KH DLU FRXOG WKHQ EH GHOLYHUHG WR WKH SULPDU\ DQGRU VHFRQGDU\ VXSSO\ OLQHV 2Q WKH VHFRQGDU\ EUDQFK FRQWURO RI WKH VHFRQGDU\ IORZUDWH ZDV HIIHFWHG XWLOL]LQJ LQ DQG LQ QHHGOH YDOYHV FRQQHFWHG LQ SDUDOOHO 2Q WKH SULPDU\ EUDQFK D LQ QHHGOH YDOYH DQG D LQ JOREH YDOYH FRQQHFWHG LQ SDUDOOHO FRQWUROOHG WKH IORZ UDWH RI SULPDU\ DLU 2Q HDFK EUDQFK WKH ODUJH DQG WKH VPDOO YDOYHV ZHUH XVHG IRU JURVV DQG ILQH IORZUDWH DGMXVWPHQW DV UHTXLUHG 3ULPDU\ DQG 6HFRQGDU\ /LQHV 7KH JDV IORZV UHTXLUHG IRU WKH SULPDU\ DQG VHFRQGDU\ ZHUH GHOLYHUHG WR WKH UHVSHFWLYH SOHQXPV IURP WKH SULPDU\ DQG VHFRQGDU\ EUDQFKHV GHVFULEHG LQ WKH SUHYLRXV VHFWLRQ 7KH SULPDU\ OLQH ZDV FRQVWUXFWHG IURP LQ VFKHGXOH VWHHO SLSH DQG DWWDFKHG WR WKH SULPDU\ SOHQXP E\ D IOH[LEOH PHWDO KRVH ZLWK DQ LQVLGH GLDPHWHU RI PP 7KLV DWWDFKPHQW PHWKRG LVRODWHG WKH HMHFWRU IURP DQ\ PHFKDQLFDO YLEUDWLRQ GXH WR WKH IORZ WKURXJK WKH VXSSO\ SLSLQJ 7KH VHFRQGDU\ IORZ ZDV VXSSOLHG WR WKH VHFRQGDU\ SOHQXPV WKURXJK IRXU VWHHO UHLQIRUFHG 39& KRVHV 7KHVH KRVHV ZHUH FRQQHFWHG WR D PDQLIROG FRQVLVWLQJ RI IRXU

PAGE 62

VHFWLRQV RI LQ SLSH ZHOGHG DW r IURP HDFK RWKHU DURXQG WKH FDSSHG HQG RI WKH LQ VHFRQGDU\ VXSSO\ OLQH $ VFKHPDWLF RI WKH DLU VXSSO\ KDUGZDUH GHVFULEHG DERYH LV VKRZQ LQ )LJ 3OHQXPV 7KH SULPDU\ DQG VHFRQGDU\ SOHQXPV FRQVLVW RI IORZFRQGLWLRQLQJ VHFWLRQV IROORZHG E\ VHWWOLQJ FKDPEHUV )LJV DQG f 7KH ZDOOV RI WKHVH VHFWLRQV ZHUH PDFKLQHG IURP DOXPLQXP VWRFN DQG IRUPHG FRQWLQXRXV IORZ SDVVDJHV RI UHFWDQJXODU FURVV VHFWLRQV 7KH SULPDU\ SOHQXP ZDV LQ WKH FHQWHU VDQGZLFKHG EHWZHHQ WZR LGHQWLFDO VHFRQGDU\ SOHQXPV 7ZR ODUJH UHFWDQJXODU SODWHV PP WKLFN VHUYHG DV VLGH ZDOOV IRU WKH SULPDU\ DQG VHFRQGDU\ SOHQXPV 7KH UHPDLQLQJ ZDOOV ZHUH PDFKLQHG IURP PP WKLFN DOXPLQXP SODWH ZKLFK ZHUH Df WKH LQWHUQDO ZDOOV VHSDUDWLQJ WKH SULPDU\ DQG VHFRQGDU\ SOHQXP FDYLWLHV Ef WKH UHDU ZDOO IRU DOO SOHQXPV DQG Ff WKH RXWHU ZDOOV RI WKH VHFRQGDU\ SOHQXPV 7ZR VWDLQOHVV VWHHO GRZHO SLQV LQVHUWHG WKURXJK HDFK ZDOO LQ Df DQG Ff DQG LQWR ORFDWLRQ KROHV GULOOHG LQ WKH WZR VLGH ZDOOV DFFXUDWHO\ SRVLWLRQ HDFK SDUW RI WKH SOHQXP DVVHPEO\ $OO SOHQXP ZDOOV DUH EROWHG WRJHWKHU 3ULPDU\ SOHQXP 7KH SULPDU\ SOHQXP FRQVLVWV RI D IORZ FRQGLWLRQLQJ VHFWLRQ DQG D VHWWOLQJ FKDPEHU ,W KDV D UHFWDQJXODU FURVVVHFWLRQ PP KLJK E\ PP ZLGH 7KHVH GLPHQVLRQV DSSUR[LPDWHO\ FRQVWUDLQ WKH SOHQXP IORZ YHORFLW\ EHWZHHQ PV DQG PV IRU D ZLGH UDQJH RI RSHUDWLQJ FRQGLWLRQV DV VXJJHVWHG E\ 3RSH DQG *RLQ f 7KH IOH[LEOH PHWDO KRVH ZKLFK GHOLYHUV WKH SULPDU\ JDV WR WKH SOHQXP IDVWHQV RQWR D WKLFNZDOOHG DOXPLQXP QLSSOH ZLWK D PP LQVLGH GLDPHWHU 7KLV LQOHW QLSSOH LV ZHOGHG DW ULJKW DQJOHV WR RQH RI WKH SOHQXP VLGH ZDOOV 7KH JDV WKHQ SDVVHV WKURXJK WZR GLIIHUHQWVL]HG SHUIRUDWHG SODWHV PDFKLQHG IURP DOXPLQXP D VHFWLRQ RI DOXPLQXP

PAGE 63

KRQH\FRPE DQG WZR GLIIHUHQWVL]HG VWDLQOHVV VWHHO ZLUH PHVKHV FI )LJV DQG f 7KHVH IORZPDQDJHPHQW GHYLFHV KHOS HQVXUH XQLIRUP IORZ DQG ORZ WXUEXOHQFH LQWHQVLW\ 7KH SHUIRUDWHG SODWHV DUH PP WKLFN DQG VSDFHG PP DSDUW PP IURP FHQWHU WR FHQWHUf 7KH SODWHV ILW LQWR VORWV PDFKLQHG LQ DOO IRXU ZDOOV RI WKH SOHQXP SDVVDJH 7KH ILUVW SODWH LV PP IURP WKH LQOHW QLSSOH FHQWHUOLQH DQG KDV D [ DUUD\ RI PP GLDPHWHU KROHV WKH FHQWHUWRFHQWHU VSDFLQJ RI WKH KROHV LV PP DQG PP DORQJ WKH ORQJ DQG VKRUW GLPHQVLRQV RI WKH SOHQXPnV FURVV VHFWLRQ UHVSHFWLYHO\ 7KH VHFRQG SODWH KDV D [ DUUD\ RI PP GLDPHWHU KROHV WKH VSDFLQJ LQ WKLV DUUD\ LV PP DQG PP DORQJ WKH ORQJ DQG VKRUW GLPHQVLRQV UHVSHFWLYHO\ 7KH KRQH\FRPE VHFWLRQ LV ORFDWHG PP GRZQVWUHDP IURP WKH VHFRQG SODWH 7KLV VHFWLRQ LV PP ORQJ DQG KDV D PP KH[DJRQDO FHOO VL]H DQG ILWV LQ D UHFHVV PDFKLQHG LQ DOO IRXU ZDOOV RI WKH SOHQXP FI )LJV DQG f 7KH ILUVW RI WKH WZR PHVK VFUHHQV LV DSSUR[LPDWHO\ PP GRZQVWUHDP RI WKH KRQH\FRPE DQG KDV D PHVK RI [ ZLUHVLQ DQG D ZLUH GLDPHWHU RI PP UHVXOWLQJ LQ D b REVWUXFWLRQ DQG D ZLUHVSDFLQJ WR ZLUHGLDPHWHU UDWLR RI 7KH VHFRQG PHVK LV PP GRZQVWUHDP IURP WKH ILUVW RQH DQG KDV D PHVK RI [ ZLUHVLQ DQG D PP ZLUH GLDPHWHU UHVXOWLQJ LQ D b REVWUXFWLRQ DQG D ZLUHn VSDFLQJ WR ZLUHGLDPHWHU UDWLR RI 7KH VFUHHQV DUH VROGHUHG WR EUDVV IUDPHV ZKLFK ILW LQ VORWV PDFKLQHG LQ WKH SOHQXP ZDOOV %RWK WKH VFUHHQV DQG IUDPHV DUH VKRZQ LQ )LJV DQG 7KH PRGXODU GHVLJQ RI WKH IORZ PDQDJHPHQWV GHYLFHV HQDEOHG HDV\ LQVSHFWLRQ FOHDQLQJ RU UHSODFHPHQW RI DQ\ FRPSRQHQW 7KH SULPDU\ JDV HQWHUV WKH VHWWOLQJ FKDPEHU ZKLFK H[WHQGV PP GRZQVWUHDP RI WKH VHFRQG VFUHHQ $ PP GLDPHWHU 7W\SH WKHUPRFRXSOH LV ORFDWHG EHWZHHQ WKH ILUVW DQG VHFRQG VFUHHQV WR PHDVXUH WRWDO SULPDU\ WHPSHUDWXUH DQG D PP GLDPHWHU SUHVVXUH WDS ORFDWHG RQ RQH VLGH ZDOO PP GRZQVWUHDP IURP WKH VHFRQG VFUHHQ LV

PAGE 64

XVHG WR PHDVXUH SULPDU\SOHQXP VWDJQDWLRQ SUHVVXUH 7KH RXWVLGH RI WKH ZDOO LV WDSSHG IRU PRXQWLQJ D SUHVVXUH WUDQVGXFHU 6HFRQGDU\ SOHQXPV DQG IORZ SDVVDJHV (DFK VHFRQGDU\ SOHQXP FRQVLVWV RI D IORZ FRQGLWLRQLQJ VHFWLRQ DQG D VHWWOLQJ FKDPEHU VLPLODU WR WKRVH RI WKH SULPDU\ SOHQXP 7KHLU UHFWDQJXODU IORZ DUHDV DUH PP KLJK DQG PP ZLGH ZKLFK UHVXOWV LQ D ORFDO YHORFLW\ RI PV IRU WKH IORZ FRQGLWLRQV XVHG LQ WKLV LQYHVWLJDWLRQ VHH &KDSWHU IRU IORZ FRQGLWLRQVf 7KH VHFRQGDU\ JDV LV GHOLYHUHG WR HDFK SOHQXP WKURXJK WZR IOH[LEOH KRVHV FODPSHG WR LQOHW QLSSOHV WKDW DUH ZHOGHG DW r RQ RSSRVLWH VLGHV RI WKH SOHQXPV 7KH QLSSOHV DUH PDGH RI DOXPLQXP DQG KDYH LQVLGH GLDPHWHUV RI PP ,Q HDFK SOHQXP WKH JDV SDVVHV WKURXJK IORZ PDQDJHPHQW GHYLFHV QHDUO\ LGHQWLFDO WR WKRVH XVHG LQ WKH SULPDU\ FI )LJV DQG f 7ZR GLIIHUHQW SHUIRUDWHG SODWHV PDFKLQHG IURP DOXPLQXP D VHFWLRQ RI DOXPLQXP KRQH\FRPE DQG WZR GLIIHUHQW VWDLQOHVV VWHHO ZLUH PHVKHV HQVXUH XQLIRUP IORZ DQG ORZ WXUEXOHQFH LQWHQVLW\ RI WKH VHFRQGDU\ VWUHDP 7KH SHUIRUDWHG SODWHV DUH PP WKLFN DQG DUH PP DSDUW PP IURP FHQWHU WR FHQWHUf 7KH SODWHV ILW LQ VORWV PDFKLQHG LQ DOO IRXU ZDOOV RI WKH SOHQXP SDVVDJH 7KH ILUVW SODWH LV PP IURP WKH LQOHW QLSSOHV FHQWHUOLQH DQG KDV D [ DUUD\ RI PP GLDPHWHU KROHV WKH FHQWHUWRFHQWHU VSDFLQJ RI WKH KROHV LV PP DQG PP DORQJ WKH ORQJ DQG VKRUW GLPHQVLRQV RI WKH SOHQXPnV FURVVVHFWLRQ UHVSHFWLYHO\ 7KH VHFRQG SODWH KDV D [ DUUD\ RI PP GLDPHWHU KROHV WKH VSDFLQJ LQ WKLV DUUD\ LV PP DQG PP DORQJ WKH ORQJ DQG VKRUW GLPHQVLRQV UHVSHFWLYHO\ $OWKRXJK WKLV PHWKRG DFWXDOO\ PHDVXUHV WKH VWDWLF SUHVVXUH DQG VWDWLF WHPSHUDWXUH WKH SOHQXP YHORFLW\ LV DSSUR[LPDWHO\ PV UHVXOWLQJ LQ GHYLDWLRQV RI b IURP WKH WUXH VWDJQDWLRQ SUHVVXUH b IURP WKH WUXH VWDJQDWLRQ WHPSHUDWXUH DQG b EHORZ WKH WUXH 0DFK QXPEHU

PAGE 65

7KH KRQH\FRPE VHFWLRQ DQG VFUHHQV DUH WKH VDPH DV WKRVH GHVFULEHG DERYH IRU WKH SULPDU\ SOHQXP H[FHSW IRU WKH RYHUDOO KHLJKW DQG DUH ORFDWHG DW WKH VDPH VWUHDPZLVH SRVLWLRQV 7KH VHFRQGDU\ JDV HQWHUV WKH VHWWOLQJ FKDPEHU ZKLFK LV PP ORQJ $ SUHVVXUH WDS ORFDWHG PP GRZQVWUHDP RI WKH VHFRQG VFUHHQ DOORZHG IRU PHDVXUHPHQW RI WRWDO SUHVVXUH LQ HDFK VHFRQGDU\ VHWWOLQJ FKDPEHU 7KLV FRQVLVWHG RI D PP GLDPHWHU KROH GULOOHG WKURXJK WKH VLGH ZDOO RI HDFK VHFRQGDU\ SOHQXP DQG WDSSHG RQ WKH RXWVLGH IRU PRXQWLQJ SUHVVXUH WUDQVGXFHUV )ROORZLQJ WKH VHWWOLQJ FKDPEHU LV D FRQYHUJLQJ FKDQQHO RI UHFWDQJXODU FURVV VHFWLRQ ZKLFK DFFHOHUDWHV WKH IORZ LQWR WKH PL[LQJ VHFWLRQ FI )LJV DQG f ,W KDV D FRQVWDQW GHSWK RI PP DQG WKH KHLJKW YDULHV PRQRWRQLFDOO\ IURP PP WR PP 7KH SDVVDJH LV IRUPHG E\ WKH SOHQXPV VLGH ZDOOV DQ LQQHU FRQWRXUHG ZDOO DQG DQ RXWHU FRQWRXUHG ZDOO 7KH LQQHU FRQWRXUHG ZDOO FRUUHVSRQGV WR WKH RXWHU VXUIDFH RI WKH QR]]OH EORFN 7KH PDFKLQLQJ RI WKH RXWHU ZDOO SURYLGHG DQ DFFXUDF\ RI DSSUR[LPDWHO\ s PP %RWK FRQWRXUHG ZDOOV KDYH D VKDSH GHILQHG E\ ILIWKRUGHU SRO\QRPLDOV ZLWK ]HURYDOXHG ILUVW DQG VHFRQG GHULYDWLYHV DW WKH EHJLQQLQJ DQG HQG RI WKH FRQWUDFWLRQ 7KH OHQJWKWRKHLJKW UDWLR RI WKH FRQWUDFWLRQ LV (DFK VHFRQGDU\ VWUHDP GLVFKDUJHG LQWR WKH PL[LQJ VHFWLRQ DW WKH HQG RI WKH FRQWUDFWLRQ 3ULPDU\ 1R]]OH 7KH SULPDU\ JDV H[LWV WKH VHWWOLQJ FKDPEHU DQG GLVFKDUJHV LQWR WKH PL[LQJ VHFWLRQ WKURXJK D WZRGLPHQVLRQDO VXSHUVRQLF QR]]OH 7KH QR]]OH ZDV PDFKLQHG IURP DOXPLQXP WR SURYLGH WKH UHTXLUHG IORZ 0DFK QXPEHU RI IRU JDVHV ZLWK D FRQVWDQWSUHVVXUH VSHFLILF KHDW UDWLR RI 7KH QR]]OH FRQVLVWV RI WZR LGHQWLFDO EORFNV EROWHG WR WKH LQWHUQDO ZDOOV RI WKH SOHQXP DQG FODPSHG EHWZHHQ WKH VLGH ZDOOV )LJV f 7KH EORFNV DUH PRXQWHG RQ

PAGE 66

RSSRVLWH VLGHV RI WKH SOHQXP FHQWHUOLQH DQG SURYLGH WKH GHVLUHG FKDQJH LQ IORZ DUHD 7ZR VWDLQOHVV VWHHO GRZHO SLQV LQVHUWHG WKURXJK HDFK EORFN DQG LQWR ORFDWLRQ KROHV GULOOHG LQ WKH SOHQXP VLGH ZDOOV SRVLWLRQ WKH EORFNV DFFXUDWHO\ (DFK EORFN KDV WZR FRQWRXUHG VXUIDFHV WKH LQQHU VXUIDFH FRUUHVSRQGV WR WKH FRQWRXUHG ZDOOV RI WKH SULPDU\ QR]]OH ZKLOH WKH RXWHU VXUIDFH VHUYHV DV WKH ZDOO IRU WKH VHFRQGDU\ SDVVDJHV 2QH RI WKH SOHQXPnV VLGH SODWHV LV VSOLW LQWR WZR VHFWLRQV WR IDFLOLWDWH HDV\ H[FKDQJH RI GLIIHUHQW QR]]OH EORFNV 7KH LQLWLDO SRUWLRQ RI WKH QR]]OH EORFNV LV VWUDLJKW DQG VHUYHV DV DQ H[WHQVLRQ WR WKH ZDOOV RI WKH FRQVWDQWDUHD VHWWOLQJ FKDPEHU $IWHU WKLV VHFWLRQ WKH EORFNV SURYLGH D FRQWUDFWLRQ UHJLRQ ZKHUH WKH IORZ EHJLQV WR DFFHOHUDWH 7KH VKDSH RI WKLV UHJLRQ LV GHILQHG E\ D ILIWKRUGHU SRO\QRPLDO ZLWK ]HURYDOXHG ILUVW DQG VHFRQG GHULYDWLYHV DW WKH EHJLQQLQJ DQG HQG RI WKH FRQWUDFWLRQ 7KH FRQWUDFWLRQ UHJLRQ KDV D OHQJWKWRKHLJKW UDWLR RI DQG HQGV DW WKH QR]]OH WKURDW 7KLV SURILOH GHVLJQ SURYLGHV XQLIRUP IORZ DQG HQVXUHV WKDW IORZ VHSDUDWLRQ GRHV QRW RFFXU 3DSDPRVFKRX f )ROORZLQJ WKH FRQWUDFWLRQ LV WKH GLYHUJLQJ UHJLRQ RI WKH QR]]OH WKH VKDSH RI ZKLFK ZDV REWDLQHG XVLQJ WKH WZRGLPHQVLRQDO PHWKRG RI FKDUDFWHULVWLFV WHFKQLTXH DQG QHJOHFWLQJ ERXQGDU\ OD\HU FRUUHFWLRQV 7KH LQWHUVHFWLRQ EHWZHHQ WKH FRQYHUJLQJ DQG GLYHUJLQJ UHJLRQV SURYLGH D VKDUS HGJH DW WKH QR]]OH WKURDW 7KH QR]]OH EORFNV KDYH D WUDLOLQJHGJH WKLFNQHVV RI DSSUR[LPDWHO\ PP 2QFH LQVWDOOHG WKH QR]]OH H[WHQGV PP EH\RQG WKH VHFRQG VFUHHQ DW WKH HQWUDQFH WR WKH VHWWOLQJ FKDPEHU 7KH FRQWRXUHG ZDOOV RI WKH QR]]OH EORFNV ZHUH PDFKLQHG WR ZLWKLQ s PP 7KH LQVWDOOHG WKURDW KHLJKW Kf LV s PP FRPSDUHG WR WKH GHVLJQ KHLJKW RI PP DQG WKH LQVWDOOHG QR]]OH H[LW KHLJKW E LV s PP FRPSDUHG WR WKH GHVLJQ KHLJKW RI PP 7KH LQVWDOOHG GLPHQVLRQV UHVXOW LQ D FDOFXODWHG YDOXH RI 0M EDVHG RQ LVHQWURSLF JDVG\QDPLFV DUHD UHODWLRQV 7KH OHQJWK RI WKH GLYHUJLQJ VHFWLRQ RI WKH QR]]OH LV PP

PAGE 67

0L[LQJ 6HFWLRQ 7KH SULPDU\ DQG VHFRQGDU\ VWUHDPV FRPH LQWR FRQWDFW DW WKH H[LW SODQH RI WKH SOHQXPV FI )LJV DQG f $W WKLV SRLQW WKH VWUHDPV EHJLQ WR PL[ LQ D FRQVWDQWDUHD VHFWLRQ RI UHFWDQJXODU FURVVVHFWLRQ )LJV DQG f 7KH VHFWLRQ LV PP ZLGH DQG PP KLJK ,W LV IRUPHG E\ WZR VLGHZDOOV D WRS ZDOO DQG D ERWWRP ZDOO ZKLFK EROW WRJHWKHU SURYLGLQJ WKH GHVLUHG IORZ SDVVDJH 7KH VHFWLRQ LV EROWHG DW RQH HQG WR WKH SOHQXP DQG LW H[WHQGV PP EH\RQG WKH H[LW SODQH RI WKH SOHQXPV )RU SLWRW WUDYHUVH DQG ZDOO VWDWLFSUHVVXUH PHDVXUHPHQWV ERWK VLGHZDOOV ZHUH PDFKLQHG IURP DOXPLQXP )RU WXUEXOHQW ZDOOSUHVVXUH PHDVXUHPHQWV WKH PHDVXUHPHQW VLGHZDOO ZDV PDFKLQHG IURP EUDVV 7KH WRS DQG ERWWRP ZDOOV ZHUH PDFKLQHG IURP EUDVV 7KH VLGH ZDOO XVHG IRU PHDQ VWDWLF ZDOOSUHVVXUH PHDVXUHPHQWV KDV KROHV GULOOHG WKURXJK DOO RI ZKLFK DUH PP GLDPHWHU 7ZHQW\VHYHQ RI WKHVH KROHV DUH VSDFHG LQ WKH VWUHDPZLVH GLUHFWLRQ HYHU\ PP DORQJ WKH FHQWHUOLQH RI WKH ZDOO ZLWK WKH ILUVW RQH SRVLWLRQHG VR WKDW LW OLHV DW WKH H[LW SODQH RI WKH SOHQXPV RQ WKH SULPDU\ FHQWHUOLQH 7KLV KROH LV XVHG WR PHDVXUH WKH SULPDU\H[LW VWDWLF SUHVVXUH 7KH RWKHU WZR KROHV DOVR OLH DW WKH H[LW SODQH RI WKH SOHQXPV DQG DUH ORFDWHG PP RQ HLWKHU VLGH RI WKH SULPDU\ FHQWHUOLQH LQ WKH VHFRQGDU\ IORZ 7KHVH KROHV DUH XVHG WR PHDVXUH WKH VHFRQGDU\ VWUHDPVf H[LW VWDWLF SUHVVXUH $ VKRUW VHFWLRQ RI VWDLQOHVV VWHHO VXUJLFDO WXELQJ LQVHUWHG DQG JOXHG LQ D FRXQWHUERUH SURYLGHG ZLWK HDFK KROH LV XVHG WR FRQQHFW SUHVVXUH WUDQVGXFHUV YLD PP LQWHUQDO GLDPHWHU IOH[LEOH SODVWLF WXELQJ 7KH SODWH ZLWK ZDOO VWDWLF SUHVVXUH WDSV LV VKRZQ LQ )LJ )RU WKH WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV DQ DOXPLQXP IUDPH KROGLQJ LQWHUFKDQJHDEOH EUDVV SODWHV ZDV GHVLJQHG ZLWK WKH VDPH GLPHQVLRQV DV WKH VLGH ZDOO XVHG IRU PHDQ VWDWLF ZDOOSUHVVXUH PHDVXUHPHQWV 7ZR W\SHV RI LQWHUFKDQJHDEOH EUDVV SODWHV ZHUH FRQVWUXFWHG VROLG EODQN SODWHV DQG SODWHV ZLWK KROH SDWWHUQV IRU VWDWLFSUHVVXUH WUDQVGXFHUV 7KH SODWHV FDQ EH SODFHG DW YDULRXV ORFDWLRQV DORQJ WKH IUDPH 7KH KROHV

PAGE 68

LQ WKH SODWHV ZLWK WUDQVGXFHU KROHSDWWHUQV DUH UHDPHG WR PP GLDPHWHU %UDVV SOXJV RU VOHHYHV WKDW KROG SUHVVXUH WUDQVGXFHUV RI PP GLDPHWHU ILW LQ WKH KROHV DQG DUH VKRZQ LQ )LJ $Q 2ULQJ VHDOV WKH SOXJV PP IURP WKH IORZ VXUIDFH ZKLOH WKH VOHHYH GRHV QRW KDYH D VHDO GXH WR FRQVWUDLQWV RI VL]H 7KLV ZDV H[SHFWHG QRW WR EH VLJQLILFDQW EHFDXVH WKHUH LV D PHWDO WR PHWDO VHDO ZKHUH WKH VOHHYH KHDG LV IDVWHQHG WR WKH EDFN RI WKH SODWH $FRXVWLF GLVWXUEDQFHV FDXVHG E\ WKH JDS EHWZHHQ WKH VOHHYH DQG WKH KROH VXFK DV D +HOPKROW] UHVRQDWRU KDYH D FDOFXODWHG IUHTXHQF\ RQ WKH RUGHU RI N+] WKDW LV ZHOO DERYH ZKDW LV PHDVXUHG KHUH $ W\SLFDO LQVWDOODWLRQ LV VKRZQ FXWDZD\ LQ )LJ ZKLOH )LJ VKRZV WKH GLPHQVLRQV RI WKH DVVHPEOHG IUDPH DQG SODWHV XVHG LQ WKLV UHVHDUFK 7KH WUDQVGXFHUKROH VSDFLQJ LV HLWKHU PP RU PP LQ WKH VWUHDPZLVH GLUHFWLRQ DQG PP LQ WUDQVYHUVH GLUHFWLRQ 7KH WRS DQG ERWWRP ZDOOV HDFK KDYH SRUWV PDFKLQHG DORQJ WKHLU FHQWHUV WR SURYLGH DFFHVV IRU WKH VWHP RI WKH WUDYHUVLQJ LPSDFW SUREH 7KH VWUHDPZLVH VSDFLQJ EHWZHHQ SRUWV LV PP DQG WKH ILUVW SRUW LV PP GRZQVWUHDP IURP WKH PL[LQJ VHFWLRQ LQOHW &XVWRPPDGH WKUHDGHG EUDVV SOXJV HDFK ILWWHG ZLWK DQ 2ULQJ SURYLGH D OHDNWLJKW VHDO IRU WKH SRUWV 7KH QRQDOLJQPHQW RI WKH SOXJ HQGV ZDV PLQLPL]HG E\ PDWHULDO UHPRYDO XVLQJ LQ WXUQ DQG JUDLQ VL]H DEUDVLYH SDSHU ZLWK WKH SOXJV ILWWHG LQ WKHLU UHVSHFWLYH SRUWV )LQDO EXIILQJ RI WKH VXUIDFHV ZDV DFFRPSOLVKHG XVLQJ D PL[WXUH RI MHZHOHUfV URXJH DQG WDOORZ WKDW SURGXFHG EHWWHU WKDQ D SP VXUIDFH URXJKQHVV ILQLVK 7KH UHVXOWLQJ QRQDOLJQPHQW RI WKH SOXJ HQGV FDQ WKXV EH FRQILGHQWO\ VWDWHG DV EHLQJ OHVV WKDQ PP IURP WKH VXUIDFH RI WKH ZDOO 7ZR DGGLWLRQDO SOXJV ZHUH XVHG LQ FRQQHFWLRQ ZLWK WKH WUDYHUVLQJ SUREH 7KHVH SOXJV KDYH D PP GLDPHWHU KROH GULOOHG WKURXJK WKHLU FHQWHU LQ ZKLFK WKH VWHP RI WKH SUREH VOLGHV )LJXUH VKRZV WKH WRS ZDOO DQG )LJ VKRZV WKH EUDVV SOXJV

PAGE 69

7UDYHUVLQJ ,PSDFW3UHVVXUH 3UREH 7KH WUDYHUVLQJ WRWDOSUHVVXUH LPSDFW SUREH FRQVWUXFWHG IRU WKLV H[SHULPHQWDO VWXG\ LV VKRZQ LQ )LJ $V D UHVXOW RI WKH YDULDEOH SUREHLQWHUIHUHQFH HIIHFW QRWLFHG GXULQJ SUHYLRXV WHVWV 5RDQ HW DO f D WUDYHUVLQJ SUREH DUUDQJHPHQW WKDW UHVXOWV LQ D QHDUO\ FRQVWDQW REVWUXFWLRQ RI WKH IORZ ZDV FRQVWUXFWHG 7KLV ZDV DFFRPSOLVKHG E\ DWWDFKLQJ DQ H[WHQVLRQ WR WKH SUREH VWHP LH D GXPP\ VWHP EH\RQG WKH VWLQJf 7KH VWHP DQG WKH H[WHQVLRQ VOLGH WKURXJK WKH KROHV GULOOHG LQ WKH SOXJV WKDW DUH XVHG ZLWK WKH SUREH 7R VLPSOLI\ WKH SURFHGXUH QHFHVVDU\ WR FKDQJH WKH SUREH SRVLWLRQ D SUREH ZDV GHVLJQHG WKDW DOORZV IRU UHPRYDO RI WKH VWLQJ 7KLV ZDV DFFRPSOLVKHG ZLWK D VSHFLDO FRXSOLQJ PDFKLQHG IURP VWDLQOHVV VWHHO 7KH VWLQJ RI WKH SUREH ZDV VROGHUHG WR WKH PDOH SDUW RI WKH FRXSOLQJ 7KH PDOH SDUW ZDV VFUHZHG LQWR WKH IHPDOH SDUW WR ZKLFK WKH VWHP DQG WKH GXPP\ VWHP ZHUH VROGHUHG $ 7HIORQ EXVKLQJ VHDOHG WKH FOHDUDQFH EHWZHHQ WKH SDUWV $ SUREH VWLQJ ZDV FRQVWUXFWHG IURP KDUG WHPSHUHG VWDLQOHVV VWHHO K\SRGHUPLF WXELQJ KDYLQJ RXWVLGH DQG LQVLGH GLDPHWHUV RI PP DQG PP UHVSHFWLYHO\ 7KH VWLQJ LV PP ORQJ DQG WKH QRVH RI WKH VWLQJ KDV D VFUHZGULYHU ZHGJHOLNH VKDSH ZLWK D UHFWDQJXODU RSHQLQJ RI DSSUR[LPDWHO\ PP E\ PP 7R REWDLQ WKLV JHRPHWU\ D SLHFH RI PP WKLFN VKLP VWRFN ZDV LQVHUWHG DSSUR[LPDWHO\ PP LQWR WKH HQG RI WKH WXEH DQG WKHQ FODPSHG WRJHWKHU &DUH ZDV WDNHQ WR LQVXUH WKDW WKH WXEH FROODSVHG HYHQO\ DERXW D SODQH SDVVLQJ WKURXJK WKH D[LV RI WKH WXEH 7KH IODWWHQHG HQG ZDV WKHQ VKDSHG WR D ZHGJH XVLQJ D VKDUSHQLQJ VWRQH DQG WKHQ SROLVKHG WR D PLUURU VXUIDFH ZLWK JUDLQ VL]H DEUDVLYH SDSHU DQG URXJH 7KH VWHP RI WKH SUREH DQG LWV H[WHQVLRQ DUH HDFK URXJKO\ PP ORQJ DQG ZHUH PDGH IURP KDUG WHPSHUHG VWDLQOHVV VWHHO WXELQJ KDYLQJ RXWVLGH DQG LQVLGH GLDPHWHUV RI PP DQG PP UHVSHFWLYHO\ 7KH RSHQ HQG RI WKH VWHP ZDV FRQQHFWHG GLUHFWO\ WR WKH SUHVVXUH WUDQVGXFHU ZLWK D FRPSUHVVLRQ ILWWLQJ

PAGE 70

7KH SUREH LV WUDYHUVHG DFURVV WKH PL[LQJ VHFWLRQ E\ PHDQV RI D FRPSXWHU FRQWUROOHG VWHSSHUPRWRUGULYHQ OHDGVFUHZ 7KH OHDGVFUHZ DVVHPEO\ LV PRXQWHG RQ WRS RI WKH XSSHU EUDVV ZDOO RI WKH PL[LQJ VHFWLRQ 7KH DVVHPEO\ VOLGHV LQ D UDLO EXLOW LQWR WKH EUDVV ZDOO DQG FDQ EH ORFNHG DW DQ\ GHVLUHG VWUHDPZLVH SRVLWLRQ 7KH SUREHOHDGVFUHZ DVVHPEO\ LV VKRZQ LQ )LJ 7KH OHDGVFUHZ KDV D SLWFK RI PP 7KH VWHSSHU PRWRU SURYLGHV VWHSV SHU UHYROXWLRQ ZKLOH WKH PRWRU GULYHU DOORZV IRU KDOIVWHS PRWLRQ 7KLV DUUDQJHPHQW WUDQVODWHV LQWR D OLQHDU UHVROXWLRQ RI PP IRU WKH WUDYHUVH RI WKH SUREH 7KH WLPH UHTXLUHG IRU WKH PP WUDYHUVH ZDV VHFRQGV 7KH SUHVVXUH WUDQVGXFHU XVHG LQ FRQMXQFWLRQ ZLWK WKH SUREH VHH VHFWLRQ IRU LQVWUXPHQWDWLRQf ZDV PRXQWHG RQ D EUDFNHW EROWHG WR WKH WUDYHUVLQJ QXW RI WKH OHDGVFUHZ DVVHPEO\ 7UDQVLWLRQ 'LIIXVHU DQG ([KDXVW ,PPHGLDWHO\ GRZQVWUHDP RI WKH PL[LQJ VHFWLRQ LV D PP ORQJ WUDQVLWLRQ GLIIXVHU ZLWK D UHFWDQJXODU FURVVVHFWLRQ LQOHW RI PP E\ PP DQG D FLUFXODU FURVVVHFWLRQ RXWOHW GLDPHWHU RI PP 7KH GHVLJQ KDV D r DYHUDJH LQFOXGHG GLYHUJHQFH DQJOH DQG DQ DUHD UDWLR RI VHH )LJ f 7KH GLIIXVHU LV FRQVWUXFWHG IURP WZR LGHQWLFDO VHFWLRQV ZHOGHG WRJHWKHU HDFK PDGH IURP PP WKLFN VWDLQOHVV VWHHO VKHHWV EHQW WR WKH GHVLUHG VKDSH XVLQJ DERXW ORQJLWXGLQDO EHQGV )ODQJHV ZHUH WKHQ ZHOGHG WR HDFK HQG VXLWDEOH IRU PDWLQJ XSVWUHDP WR WKH PL[LQJ VHFWLRQ DQG GRZQVWUHDP WR WKH LQ EXWWHUIO\ YDOYH .H\VWRQH f 7KH IORZ LV H[KDXVWHG WR WKH DWPRVSKHUH E\ ZD\ RI LQ GLDPHWHU 39& VFKHGXOH SLSH LQ GLDPHWHU VFKHGXOH VWHHO SLSH DQG WKURXJK D 0D[LP %5 VLOHQFHU WR WKH DWPRVSKHUH 7KHVH FRPSRQHQWV DUH VKRZQ VFKHPDWLFDOO\ LQ )LJ

PAGE 71

,QVWUXPHQWDWLRQ $ VFKHPDWLF RI WKH LQVWUXPHQWDWLRQ DQG FRPSXWHU LQWHUIDFH LV VKRZQ LQ )LJ 3UHVVXUH DQG WHPSHUDWXUH GDWD ZHUH PHDVXUHG XVLQJ YDULRXV SUHVVXUH WUDQVGXFHUV DQG 7 W\SH WKHUPRFRXSOHV 7KHVH GHYLFHV ZHUH FRQQHFWHG WR WZR FKDQQHO PXOWLSOH[HUV $FFHV $,03ff XVLQJ VKLHOGHG WZLVWHGSDLU ZLUH IRU WKH SUHVVXUH WUDQVGXFHUV DQG VWHHO EUDLG VKLHOGLQJ IRU WKH WKHUPRFRXSOH ZLUHV 7KH PXOWLSOH[HUV ZHUH FRQQHFWHG WR D PRGHUDWHVSHHG DQDORJ DQG GLJLWDO $'f FRPSXWHU ERDUG $FFHV $' f ZLWK ELW GDWD UHVROXWLRQ PRXQWHG LQ D 0+] $7W\SH SHUVRQDO FRPSXWHU 3&f 8VLQJ 4XLFN %DVLF YHUVLRQ VRIWZDUH WKH PD[LPXP $' WKURXJKSXW ZDV DSSUR[LPDWHO\ VLQJOH FKDQQHO VDPSOHVVHFRQG 'LJLWDO RXWSXW IURP WKH $' ZDV XVHG WR FRQWURO WZR HOHFWURQLF UHOD\V &U\GRP 6f VXSSO\LQJ 9$& WR WKH IORZ VROHQRLG VKXWRII YDOYH 20(*$ 69f DQG D VROHQRLG YDOYH XVHG IRU YHQWLQJ WKH DLU WDQN WR WKH DWPRVSKHUH 20(*$ 69f 7KUHH PRGHOV RI SUHVVXUH WUDQVGXFHUV ZHUH XVHG DW WKH IROORZLQJ ORFDWLRQV GHILQLWLRQV RI GHVLJQDWLRQV LQ SDUHQWKHVHVf 3 3ULPDU\ VWDJQDWLRQ SUHVVXUHf 20(*$ (1*,1((5,1* 3; N3D 9'& LQSXW P$ PD[LPXP 9'& RXWSXW 7KH LQSXW SRZHU ZDV VXSSOLHG IURP D 3RZHU2QH +&%% : VHW DW 9'& ZLWK D $ FDSDFLW\ 36 36 33 0L[LQJ VHFWLRQ LQOHW VWUHDP VWDWLF SUHVVXUHV DQG ZDOO VWDWLFSUHVVXUHV DW YDULDEOH ORFDWLRQV IURP PP WR PP LQ PP VWHSVf 36 SULPDU\ VWDWLF SUHVVXUHf DQG 36 VHFRQGDU\ VWDWLF SUHVVXUHf 0LFUR 6ZLWFK 3& N3D GLIIHUHQWLDO 9'& LQSXW DW P$ PD[LPXP 9'& RXWSXW 7KH LQSXW SRZHU ZDV VXSSOLHG E\ DQ $FRSLDQ 9'$ ZLWK D FDSDFLW\ RI $ VHW DW 9'&

PAGE 72

3235 7UDYHUVH LPSDFWSUHVVXUHf 9DOLG\QH '% N3D GLIIHUHQWLDO FRQQHFWHG WR D 9DOLG\QH &' FDUULHU GHPRGXODWRU ZLWK 9'& RXWSXW 3 6HFRQGDU\ SOHQXPVn DYHUDJH VWDJQDWLRQ SUHVVXUHf 9DOLG\QH '% N3D GLIIHUHQWLDO FRQQHFWHG WR D 9DOLG\QH &' FDUULHU GHPRGXODWRU ZLWK 9'& RXWSXW '3 $YHUDJH GLIIHUHQWLDO SUHVVXUH EHWZHHQ WKH VHFRQGDU\ SOHQXPVn VWDJQDWLRQ DQG VWDWLF SRUWVf 9DOLG\QH '% N3D GLIIHUHQWLDO FRQQHFWHG WR D 9DOLG\QH &' FDUULHU GHPRGXODWRU ZLWK 9'& RXWSXW 3635 6WDWLF SUHVVXUH RQ ZDOO FHQWHUOLQH DW SRVLWLRQ RI LPSDFWSUHVVXUH SUREH WLSf 9DOLG\QH '% N3D GLIIHUHQWLDO FRQQHFWHG WR D 9DOLG\QH &' FDUULHU GHPRGXODWRU ZLWK 9'& RXWSXW 36EN 5HGXQGDQW UHDGLQJ RI PL[LQJ VHFWLRQ VHFRQGDU\ LQOHW VWDWLF SUHVVXUHf 9DOLG\QH '% N3D GLIIHUHQWLDO FRQQHFWHG WR D 9DOLG\QH &' FDUULHU GHPRGXODWRU ZLWK 9'& RXWSXW 3$,5 6XSSO\ DLU SUHVVXUHf 20(*$ (1*,1((5,1* 3; N3D 9'& LQSXW P$ PD[LPXP 9'& RXWSXW 7KH LQSXW SRZHU ZDV VXSSOLHG IURP D 3RZHU2QH +&%% : VHW DW 9'& ZLWK D $ FDSDFLW\ 7KH VSHFLILFDWLRQV RI DOO WUDQVGXFHUV XVHG LQFOXGLQJ WKHLU FDOLEUDWLRQ FXUYHV DFFXUDFLHV DQG ORFDWLRQV DUH JLYHQ LQ $SSHQGL[ & 7DEOHV &O DQG &

PAGE 73

7ZR 7W\SH FRSSHUFRQVWDQWDQf WKHUPRFRXSOHV ZLWK GHVLJQDWLRQV 7& DQG 7& ZHUH LQVWDOOHG LQ WKH SOHQXPV WR PHDVXUH WKH VWDJQDWLRQ WHPSHUDWXUHV RI WKH SULPDU\ DQG VHFRQGDU\ IORZV UHVSHFWLYHO\ ,PSDFW 3UHVVXUH $ 9'& DPS VWHSSHU PRWRU 1HZ (QJODQG $IILOLDWHG 7HFKQRORJLHV f GURYH WKH LPSDFWSUHVVXUH SUREH WUDYHUVH PHFKDQLVP DQG GHYHORSHG D PD[LPXP G\QDPLF WRUTXH RI 1P DW VSHHGV RI OHVV WKDQ SXOVHVSHUVHFRQG SSVf ,W ZDV SRZHUHG E\ D 9'& $ YDULDEOH SRZHU VXSSO\ +HZOHWW3DFNDUG %f VHW DW 9'& DQG $ 'XULQJ WHVWV WKH VWHSSHU PRWRU ZDV UXQ DV IDVW DV SUDFWLFDEOH SSV PPVf WR PLQLPL]H XQVWHDG\ DQG QRQVWDWLRQDU\ HIIHFWV LQ WKH PL[LQJ VHFWLRQ DQG DOVR WR PDLQWDLQ FRQVWDQW LQOHWIORZ FRQGLWLRQV GXULQJ WKH EORZGRZQ 7KH SUREH ZDV WUDYHUVHG DFURVV WKH PL[LQJ VHFWLRQ XVLQJ D VHFRQG WUDSH]RLGDOPRWLRQ YHORFLW\ SURILOH 7KLV ZDV DFFRPSOLVKHG XVLQJ D VLQJOHD[LV VWHSSHU PRWRU GULYHU FDUG ,QGXVWULDO &RPSXWHU 6RXUFH f DQG FRQWUROOHG E\ D VLQJOHD[LV VWHSSHUPRWRU FRQWURO ERDUG ,QGXVWULDO &RPSXWHU 6RXUFH f PRXQWHG LQ WKH 3& 7KH VWHSSHUPRWRU GULYHU DQG FRQWUROOHU FDUGV ZHUH LVRODWHG IURP WKH 3& E\ XVLQJ DQ H[WHUQDO 9'& $ SRZHU VXSSO\ 3RZHU2QH +&%% :f VHSDUDWH JURXQGLQJ IRU SRZHU DQG GDWD ZDV DOVR XVHG 6LGHZDOO 0HDQ 6WDWLF 3UHVVXUH 7KH VLGHZDOO VWDWLF SUHVVXUHV ZHUH PHDVXUHG XVLQJ D 0HULDP ,QVWUXPHQW &R PDQRPHWHU EDQN 0RGHO 0f ZKLFK KDV PHUFXU\ILOOHG WXEHV &RQQHFWLRQV WR WKH VLGHZDOO ZHUH PDGH XVLQJ LQ LQVLGH GLDPHWHU SODVWLF WXELQJ KDYLQJ OHQJWKV RI DSSUR[LPDWHO\ P 7KH PDQRPHWHU EDQN KDV IOXRUHVFHQW EDFNOLJKWV WKDW DOORZHG UHDVRQDEO\ IDVW SKRWRJUDSKLF H[SRVXUH WLPHV f§OWK VHFRQGf %HIRUH HDFK WHVW UXQ WKH

PAGE 74

OLJKWV ZHUH VZLWFKHG RQ IRU DW OHDVW PLQXWHV SULRU WR UXQQLQJ D WHVW VR WKDW WKHUPDO HTXLOLEULXP ZDV DFKLHYHG 6LGHZDOO 7LPH$FFXUDWH 3UHVVXUH 0HDVXUHPHQWV 7ZR .XOLWH 6HPLFRQGXFWRU 0RGHO ;&:6*f VHDOHG JDJH PLQLDWXUH SUHVVXUH WUDQVGXFHUV ZHUH XVHG IRU WLPHDFFXUDWH SUHVVXUH PHDVXUHPHQWV 7KH VHDOHGJDJH WUDQVGXFHU ZDV FKRVHQ WR HOLPLQDWH WKH SRVVLELOLW\ RI H[WHUQDO SUHVVXUH LQIOXHQFHV 7KH ERG\ RI WKH WUDQVGXFHU KDV D PD[LPXP GLDPHWHU RI PP DQG LV PP LQ OHQJWK 7KH WZR WUDQVGXFHUV ZHUH LQGLYLGXDOO\ PRXQWHG LQ WUDQVGXFHU VOHHYHV GHVFULEHG LQ 6HFWLRQ f XVLQJ 'RZ &RPLQJ 579 DGKHVLYHVHDODQW DV UHFRPPHQGHG E\ .XOLWH HQJLQHHUV :KHQ FXUHG WKH 579 KDV D WHQVLOH VWUHQJWK RI 03D 8VLQJ WKH 579 WR ILOO WKH PP JDS EHWZHHQ WKH WUDQVGXFHU RXWVLGH GLDPHWHU DQG WKH SOXJ ZDOO LW ZDV SRVVLEOH WR PRXQW WKH WUDQVGXFHUV ZLWKLQ s PP RI WKH SOXJ HQGV 7KH PP SUHVVXUH VHQVLWLYH DUHD LV FRPSRVHG RI D IXOO\ DFWLYH IRXUDUP ZKHDWVWRQH EULGJH GLIIXVHG LQWR D VLOLFRQ GLDSKUDJP 7KH GLDSKUDJP LV ORFDWHG DSSUR[LPDWHO\ PP EHKLQG D PHWDO VFUHHQ ZKLFK KDV KROHV RI PP GLDPHWHU GULOOHG WKURXJK LW RQ D PP GLDPHWHU FLUFOH 7KH HIIHFWLYH GLDPHWHU RI WKH WUDQVGXFHU LV WKXV PP 7KH WUDQVGXFHUV KDYH D UDQJH RI N3D IURP WKH DWPRVSKHULF VHDOHG SUHVVXUH DQG PDQXIDFWXUHUnV VSHFLILFDWLRQV RI PD[LPXP FRPELQHG OLQHDULW\ DQG K\VWHUHVLV RI sb IXOO VFDOH EHVW ILW VWUDLJKW OLQH )6 %)6/f PD[LPXP WKHUPDO VHQVLWLYLW\ VKLIW RI sb )6r) DQG D IODW IUHTXHQF\ UHVSRQVH WR DW OHDVW N+] 7KH QDWXUDO IUHTXHQF\ RI WKH WUDQVGXFHUV LV JUHDWHU WKDQ N+] 7KH\ KDYH D FRPSHQVDWHG WHPSHUDWXUH UDQJH RI WR LQSXW LPSHGDQFHV RI 4 DQG 4 RXWSXW LPSHGDQFHV RI 4 DQG 4 DQG DW 9'& H[FLWDWLRQ KDYH VHQVLWLYLWLHV RI S93D DQG S93D UHVSHFWLYHO\ 7KH WUDQVGXFHUV ZHUH FDOLEUDWHG E\ WKH PDQXIDFWXUHU WR VWDQGDUGV WUDFHDEOH WR WKH 1DWLRQDO %XUHDX RI 6WDQGDUGV

PAGE 75

0DWFKHG FXVWRPEXLOW SRZHU VXSSOLHV VHH )LJ IRU FLUFXLWf ZHUH XVHG WR H[FLWH WKH WUDQVGXFHUV DW 9'& QRPLQDO ZKLFK LV ZLWKLQ WKH 9'& PD[LPXP H[FLWDWLRQ OHYHO VSHFLILHG E\ WKH PDQXIDFWXUHU 8VLQJ WKH OLQHDULW\ RI WKH WUDQVGXFHUV WKLV OHYHO RI H[FLWDWLRQ UDLVHG WKH WUDQVGXFHU VHQVLWLYLWLHV WR S93D DQG S93D 2XWSXW IURP HDFK SUHVVXUH WUDQVGXFHU ZDV VSOLW LQWR WZR RQH EHLQJ LQGLUHFWO\ IHG WR DQ $FFHVV PXOWLSOH[HU GHVFULEHG DERYHf IRU VWDWLF UHDGLQJV DQG WKH RWKHU XVHG IRU G\QDPLF UHDGLQJV $ FXVWRPEXLOW EXIIHU ZDV GHVLJQHG IRU WKH VSOLW DV QRLVH IURP WKH PXOWLSOH[HU ZDV IRXQG WR VHULRXVO\ FRQWDPLQDWH WKH G\QDPLF VLGH 7KH EXIIHU LV VKRZQ VFKHPDWLFDOO\ LQ )LJ LQ ZKLFK WKH RSHUDWLRQDO DPSOLILHU +DUULV +$f KDV DQ XOWUDORZ RIIVHW YROWDJH RI S9 DQG D ORZ QRLVHOHYHO RI Q99+] 7KH G\QDPLF VSOLW IURP WKH SUHVVXUH WUDQVGXFHU ZDV IHG WR D SUHDPSOLILHU 6WDQIRUG 5HVHDUFK 6\VWHPV 0RGHO 65 f DQG ZDV $& FRXSOHG XVLQJ WKH SUHDPSOLILHUnV +] FDSDFLWRU UHVXOWLQJ LQ D KLJKSDVV ILOWHU ZLWK G%GHFDGH DWWHQXDWLRQ 7KH SUHDPSOLILHU JDLQ ZDV FDOLEUDWHG E\ WKH PDQXIDFWXUHU WR VWDQGDUGV WUDFHDEOH WR WKH 1DWLRQDO %XUHDX RI 6WDQGDUGV sb '& WR N+] DQG sb N+] WR 0+]f DQG WKH TXRWHG LQSXWQRLVH DVVRFLDWHG ZLWK WKH SUHDPSOLILHU LV Q9?+] IRU JDLQV RI RU JUHDWHU Q9Y+] IRU D JDLQ RI DQG Q9$+] IRU D JDLQ RI 7KH JDLQ RI WKH SUHDPSOLILHU ZDV YDULHG EHWZHHQ WZHQW\ DQG ILYH KXQGUHG GHSHQGLQJ RQ WKH IORZ FRQGLWLRQV ,Q WKH $&FRXSOHG PRGH WKH SUHDPSOLILHU KDV D ORZSDVV ILOWHU FDSDELOLW\ RI RU G%GHFDGH DWWHQXDWLRQ DQG KLJK DQG EDQGSDVV FDSDELOLW\ RI G%GHFDGH DWWHQXDWLRQ 7KH ILOWHU FXWRII IUHTXHQFLHV UDQJH IURP +] WR 0+] LQ VWHSV RI DQG 7KH RXWSXW IURP WKH SUHDPSOLILHU ZDV $&FRXSOHG +] KDOISRZHU FXWRII IUHTXHQF\f WR D WZRFKDQQHO ELW UHVROXWLRQ 7HNWURQL[ )RXULHU $QDO\]HU 0RGHO f IRU WLPH DQG IUHTXHQF\ GRPDLQ DQDO\VLV 7KH DQDO\]HU KDV WKH FDSDELOLW\ RI PHDVXULQJ XS WR VSHFWUDO OLQHV DW D EDQGZLGWK XS WR N+] 7KH EDQGZLGWK ZDV XVXDOO\ VHW

PAGE 76

WR N+] DV LW ZDV IHOW WKDW WKH WUDQVGXFHUV ZRXOG QRW EH UHOLDEOH DW JUHDWHU IUHTXHQFLHV 7KH QRLVH IORRU IRU WKH DQDO\]HU LV DW PRVW X9A-A%] ZKHQ VHW DW s P9 IXOO VFDOH LQSXW DQG KDV D IXOO VFDOH LQSXW UDQJH IURP s P9 WR s 9 7KH DQDO\]HU VDPSOHV DW D UDWH RI WLPHV WKH EDQGZLGWK WR VDWLVI\ WKH 1\TXLVW VDPSOLQJ FULWHULRQ DQG WR FRPSHQVDWH IRU WKH DQWLDOLDVLQJ ILOWHU DWWHQXDWLRQ 7KH DQDO\]HU ZDV FRQQHFWHG WR DQG FRQWUROOHG IURP WKH 3&$7 FRPSXWHU YLD D N ELWVVHFRQG 56 FRQQHFWLRQ 8VLQJ WKH ORFDO 0E\WHV PHPRU\ WKH DQDO\]HU ZDV XVHG DV D VLPXOWDQHRXV VDPSOH DQG KROG UHPRWH KLJKVSHHG GDWD FROOHFWLRQ GHYLFH 7KH GDWD LQ PHPRU\ FRXOG WKHQ EH VXEVHTXHQWO\ VWRUHG DQG DQDO\]HG DW WKH XVHUnV FRQYHQLHQFH 7KLV PHWKRG ZDV XVHG IRU DOO GDWD FROOHFWHG LQ WKLV UHVHDUFK DQG DVVXUHV FRQWLQXRXV GDWD UHFRUGV 9LVXDOL]DWLRQ )ORZ YLVXDOL]DWLRQ ZDV HPSOR\HG WR GHWHFW WKH PHDQ VWUXFWXUH RI WKH IORZ DQG WR HVWLPDWH WKH ORFDWLRQ RI ODPLQDUWRWXUEXOHQW WUDQVLWLRQ 7KLV ZDV DFFRPSOLVKHG ZLWK FRQWLQXRXV OLJKW VRXUFH 6FKOLHUHQ DQG VKDGRZJUDSK RSWLFDO V\VWHPV $ VFKHPDWLF RI WKH V\VWHP LV VKRZQ LQ )LJ $OO WKH FRPSRQHQWV ZHUH PRXQWHG LQGHSHQGHQWO\ RQ KHDY\ VWHHO VWDQGV DW WKH VDPH KHLJKW DV WKH PL[LQJ VHFWLRQ $OO RI WKH FRPSRQHQWV FRXOG EH DGMXVWHG IRU FRUUHFW DOLJQPHQW DQG IRFXVVLQJ H[FHSW IRU WKH PL[LQJ VHFWLRQ 7KH FRQWLQXRXV OLJKW VRXUFH LV ZDWW VKRUW DUF [HQRQ ODPS 2VUDP ;%2f PRXQWHG LQ D IDQFRROHG ODPS KRXVLQJ 2ULHO 0RGHO &f ZLWK D EXLOWLQ PP GLDPHWHU FRQGHQVHU 7KH OLJKW VRXUFH LV SRZHUHG E\ D 8QLYHUVDO /DPS 3RZHU 6XSSO\ DQG ,JQLWRU 2ULHO 0RGHO &f 7KH ODPS LV IRFXVVHG RQWR D KRUL]RQWDO NQLIH HGJH DW WKH IRFXV RI WKH ILUVW PP GLDPHWHU ) SDUDEROLF PLUURU 8QHUWO 2SWLFDO &Rf 7KH SDUDOOHO OLJKW WKHQ SDVVHV WKURXJK WKH PL[LQJ VHFWLRQ WR WKH RWKHU SDUDEROLF PLUURU DQG LV IRFXVVHG RQWR DQRWKHU NQLIH HGJH WKDW SURGXFHV D 6FKOLHUHQ LPDJH RQ D ILQHO\JURXQG

PAGE 77

JODVV SODWH 3KRWRJUDSKV RI WKH IORZ ZHUH REWDLQHG ZLWK WKH NQLIH HGJH DQJOHG DW r r r DQG r FRXQWHUFORFNZLVH IURP WKH KRUL]RQWDO VWUHDPZLVH GLUHFWLRQ $OVR WKH NQLIH HGJH ZDV UHPRYHG WR REWDLQ D VKDGRZJUDSK SKRWRJUDSK 7KH PL[LQJ VHFWLRQ JODVV ZLQGRZV DUH VFKHPDWLFDOO\ VKRZQ PRXQWHG LQ WKH PL[LQJ VHFWLRQ LQ )LJ 7KH\ DUH PDGH RI SUHFLVLRQ RSWLFDO TXDOLW\ %.3 FURZQ JODVV DQG ZHUH PDQXIDFWXUHG E\ 6FKRWW *ODVV 7HFKQRORJLHV WR FRQIRUP WR 0,/$ 7KH RYHUDOO GLPHQVLRQV PHDVXUH PP ORQJ E\ PP ZLGH E\ PP WKLFN 7KH RSWLFDO VSHFLILFDWLRQV DUH VXUIDFH IODWQHVV ZLWKLQ ZDYHV RYHU WKH WRWDO OHQJWK SDUDOOHOLVP ZLWKLQ DUFVHFRQGV DQG VFUDWFKGLJ RI 0RXQWLQJ LQ WKH DOXPLQXP IUDPHV ZDV DFFRPSOLVKHG XVLQJ D SRXUDEOH WZRSDUW XUHWKDQH UXEEHU 'HYFRQ )OH[DQH /LTXLG f ZKLFK FXUHV DW URRP WHPSHUDWXUH &XULQJ VKULQNDJH LV YHU\ VPDOO DW PP DQG ZKHQ FXUHG LW KDV D WHQVLOH VWUHQJWK RI 03D 'DWD &ROOHFWLRQ 'DWD FROOHFWLRQ ZDV PDGH XVLQJ WKH ODERUDWRU\ 3&$7 FRPSXWHU DQG HOHFWURQLF LQVWUXPHQWDWLRQ GHVFULEHG LQ VHFWLRQ DQG ZDV FRQWUROOHG E\ WKUHH FRPSXWHU SURJUDPV ZULWWHQ LQ 4XLFN %DVLF $ 7KH ILUVW PRGXOH VHW RI SURJUDPVf FDOOHG $7)5217 LV XVHG WR VHW XS D WHVW UXQ IRU WKH ILUVW WLPH DQG IXQFWLRQV DV IROORZV $O 7KH FRQGLWLRQV IRU WKH WHVW DUH REWDLQHG IURP D SUHGHILQHG WHVW PDWUL[ RU W\SHG LQ PDQXDOO\ $ 7KH SUREHnV D[LDO SRVLWLRQ LV UHFRUGHG $ 7KH ZDOO SRUW FRUUHVSRQGLQJ WR WKH LPSDFW SUREHnV D[LDO ORFDWLRQ LV UHFRUGHG

PAGE 78

$ $ VHW RI ZDUQLQJV DQG FKHFNV UHJDUGLQJ WKH WHVW ULJ ZHUH GLVSOD\HG WR WKH VFUHHQ IRU WKH RSHUDWRU WR YHULI\ $ 7KH DERYH GDWD ZDV VWRUHG LQ D ILOH FDOOHG $7)52170$% IRU XVH E\ RWKHU PRGXOHV % 7KH VHFRQG PRGXOH LV FDOOHG $7=(52 DQG PHDVXUHV DQG UHFRUGV WKH WUDQVGXFHU ]HUR RIIVHWV IRU VXEVHTXHQW XVH %O 7KH WHVW ULJ LV RSHQHG WR DWPRVSKHUH DQG UHDGLQJV IURP HDFK WUDQVGXFHU DUH UHFRUGHG % 7KH PHDQV DQG VWDQGDUG GHYLDWLRQV DUH FDOFXODWHG DQG GLVSOD\HG IRU WKH RSHUDWRU WR YHULI\ % 7KH PHDQV DUH ZULWWHQ WR D ILOH FDOOHG $7=(52&$/ ,I WKH ILOH DOUHDG\ H[LVWV LW LV UHQDPHG $7=(522/' EHIRUH EHLQJ ZULWWHQ & 7KH WKLUG PRGXOH LV FDOOHG $70$,1 DQG FRQWUROV WKH DFWXDO WHVW UXQ 7KH SURJUDP KDV WKH RSWLRQ RI FRQWUROOLQJ D WHVW UXQ IRU DQ LPSDFWSUHVVXUH WUDYHUVH RU D ZDOOSUHVVXUH 7KH PDMRU GHWDLOV IRU DQ LPSDFWSUHVVXUH WUDYHUVH DUH DV IROORZV & 7KH SLWRW SUHVVXUH SUREH LV VHW XS IRU D WUDSH]RLGDO YHORFLW\SURILOH WUDYHUVH DV IROORZV ,QLWLDWH WUDYHUVH XVLQJ QHDUPD[LPXP PRWRU WRUTXH DW DQ LQVWDQWDQHRXV W VHFRQGVf VSHHG RI SXOVHVVHFRQG SSVf $FFHOHUDWH IURP WKH WRS RI WKH PL[LQJ VHFWLRQ DW W VHFRQGV WR SSV DW W VHFRQGV 6OHZ DW FRQVWDQW VSHHG RI SSV XQWLO W VHFRQGV 'HFHOHUDWH IURP SSV DW W O VHFRQGV WR SSV DW W VHFRQGV

PAGE 79

,QVWDQWDQHRXV VWRS DW W VHFRQGV & 6ROHQRLG YDOYHV DUH RSHQHG XVLQJ WKH NH\ERDUG 0RQLWRULQJ RI WKH VXSSO\ VWDJQDWLRQ SUHVVXUH DOORZV SUHFLVH UHSHDWDELOLW\ RI WKH VWDUW IORZFRQGLWLRQV 8VHUGHILQHG LQOHW VWDJQDWLRQ DQG VWDWLF SUHVVXUH UDQJHV DUH DXWRPDWLFDOO\ PRQLWRUHG IRU FRUUHFW IORZ FRQGLWLRQV 7KH WHVW ZLOO QRW UXQ LI WKH IORZ FRQGLWLRQV DUH RXWVLGH WKHVH UDQJHV $GMXVWPHQW RI WKH SULPDU\ RU VHFRQGDU\ YDOYHV RU GRZQVWUHDP EXWWHUIO\ YDOYH DOORZHG SUHFLVH FRQWURO RI WKH IORZ FRQGLWLRQV & $IWHU VHFRQGV WHQ VDPSOHV RI HDFK SUHVVXUH DQG WHPSHUDWXUH DUH UHDG DW D VDPSOLQJ UDWH RI VDPSOHVVHFRQG DQG D FKHFN IRU RYHUSUHVVXUH LV PDGH & 7KH SUREH WUDYHUVH LV PDGH ZLWK WKH PRWRUFRQWUROOHU FDUG FRXQWHU EHLQJ GLVFUHWHO\ VDPSOHG DV IDVW DV SRVVLEOH 7KH SUREH SUHVVXUH LV UHDG LPPHGLDWHO\ IROORZLQJ WKH D VWHS FKDQJH LQ FRXQWHU UHDGLQJ ,Q WHVWLQJ WKLV SURFHGXUH LW ZDV IRXQG WKDW WKUHH WR HLJKW SUHVVXUH UHDGLQJV ZHUH REWDLQHG IRU HDFK FRXQWHU UHDGLQJ & 7HQ VDPSOHV RI HDFK V\VWHP SUHVVXUH DQG WHPSHUDWXUH DUH UHDG DW D VDPSOLQJ UDWH RI VDPSOHVVHFRQG & 7KH JDVVXSSO\ VROHQRLGV DUH FORVHG &O 7KH SUREH LV UHWXUQHG WR LWV LQLWLDO SRVLWLRQ XVLQJ PD[LPXP PRWRUWRUTXH & 7KH PHDQV DQG VWDQGDUG GHYLDWLRQV RI WKH PL[LQJVHFWLRQ FRQGLWLRQV DUH FDOFXODWHG EHIRUH DQG DIWHU WKH UXQ DQG DUH ZULWWHQ WR WKH RXWSXW ILOH DORQJ ZLWK WKH SUREH GDWD & 7KH RSHUDWRU WKHQ KDV WKH RSWLRQ RI GLVSOD\LQJ WKH SURILOH RQ WKH VFUHHQ RU WHUPLQDWLQJ WKH WHVW

PAGE 80

)RU D ZDOOSUHVVXUH PHDVXUHPHQW WKH FRQWURO SURFHGXUH LV DV IROORZV &O D 7KH )RXULHU DQDO\]HU LV VHW XS WR UHPRWHO\ FDSWXUH WKH GHVLUHG QXPEHU RI GDWD SRLQWV XVLQJ WKH GHVLUHG EDQGZLGWK &D 6ROHQRLG YDOYHV DUH RSHQHG XVLQJ WKH NH\ERDUG 0RQLWRULQJ RI WKH VXSSO\ VWDJQDWLRQ SUHVVXUH DOORZV SUHFLVH UHSHDWDELOLW\ RI WKH VWDUW IORZFRQGLWLRQV 8VHUGHILQHG LQOHW VWDJQDWLRQ DQG VWDWLF SUHVVXUH UDQJHV DUH DXWRPDWLFDOO\ PRQLWRUHG IRU FRUUHFW IORZ FRQGLWLRQV 7KH WHVW ZLOO QRW UXQ LI WKH IORZ FRQGLWLRQV DUH RXWVLGH WKHVH UDQJHV $GMXVWPHQW RI WKH SULPDU\ RU VHFRQGDU\ YDOYHV RU GRZQVWUHDP EXWWHUIO\ YDOYH DOORZHG SUHFLVH FRQWURO RI WKH IORZ FRQGLWLRQV &D $IWHU VHFRQGV WHQ VDPSOHV RI HDFK SUHVVXUH DQG WHPSHUDWXUH DUH UHDG DW D VDPSOLQJ UDWH RI VDPSOHVVHFRQG DQG D FKHFN IRU RYHUSUHVVXUH LV PDGH &D 7KH )RXULHU DQDO\]HU LV VWDUWHG )RU D N+] EDQGZLGWK WKLV VWHS WRRN OHVV WKDQ VHFRQGV &D 7HQ VDPSOHV RI HDFK V\VWHP SUHVVXUH DQG WHPSHUDWXUH DUH UHFRUGHG DW D VDPSOLQJ UDWH RI VDPSOHVVHFRQG &D 7KH JDVVXSSO\ VROHQRLGV DUH FORVHG &D 7KH PHDQV DQG VWDQGDUG GHYLDWLRQV RI WKH PL[LQJVHFWLRQ FRQGLWLRQV DUH FDOFXODWHG EHIRUH DQG DIWHU WKH UXQ DQG DUH ZULWWHQ WR WKH RXWSXW ILOH DORQJ ZLWK WKH SUREH GDWD &D 7KH UDZ GDWD LV GRZQORDGHG IURP WKH )RXULHU DQDO\]HU WR WKH 3&$7 DQG VWRUHG LQ D ILOH IRU SRVWSURFHVVLQJ

PAGE 81

6LJQDO $QDO\VLV 7KLV VHFWLRQ JHQHULFDOO\ GHVFULEHV WKH FRPSOH[ GLVFUHWH )RXULHU WUDQVIRUP URXWLQHV XVHG E\ WKH 7HNWURQL[ )RXULHU $QDO\]HU 0RGHO f 7KH FRPSXWDWLRQV IRU WKH IDVW )RXULHU WUDQVIRUP ))7f DOJRULWKP DUH SHUIRUPHG LQ ELW IL[HGSRLQW DULWKPHWLF DQG XVHV D EORFN IORDWLQJ EDVLV WR VFDOH WKH GDWD 7KH GDWD REWDLQHG IURP WKH GLVFUHWH )RXULHU WUDQVIRUP ')7f RI D IUDPH XVXDOO\ SRLQWV LQ WKLV UHVHDUFKf LV WKHQ FRQYHUWHG IURP IL[HG WR IORDWLQJ SRLQW %HIRUH VXPPDWLRQ RI PXOWLSOH IUDPHV IRU DYHUDJLQJ WKH ')7 LV FRQYHUWHG WR ELW ,((( IORDWLQJSRLQW IRUPDW ELW H[SRQHQW ELW SOXV VLJQ PDQWLVVD SOXV WKH LPSOLHG KLGGHQ ELWf 7KH ))7 URXWLQH FRPSXWHV WKH ')7 SDLU 1 ,QYHUVH ]f e =NfZcN N R f 1 )RUZDUG =Nf n
PAGE 82

ZKHUH 37 17 WKH OHQJWK RI D GDWD EORFN LQ VHFRQGV N O1fO DQG 7 WKH VDPSOLQJ LQWHUYDO 7KH IDFWRU 73W DULVHV EHFDXVH LW LV RPLWWHG IURP WKH ')7 FRPSXWDWLRQ IRU VLPSOLFLW\ LQ VFDOLQJ 7KH VSHFWUXP LV VLQJOHVLGHG EHFDXVH WKH WH[WERRN ))7 LV V\PPHWULF DERXW ]HUR DQG WKHUHIRUH KDV QHJDWLYH SRZHU IUHTXHQFLHV 7R DYRLG WKH QHJDWLYH IUHTXHQFLHV RQO\ 1f SRLQWV RI ;Nf DQG ;rNf DUH XVHG 7KLV GRXEOHV WKH SRZHU IRU WKH SRVLWLYH IUHTXHQFLHV DQG UHVXOWV LQ ]HUR SRZHU IRU QHJDWLYH RQHV ,Q DOO RI WKH GDWD FROOHFWHG LQ WKLV UHVHDUFK PXOWLSOH IUDPHV ZHUH REWDLQHG WR UHGXFH WKH VWDWLVWLFDO XQFHUWDLQW\ RI WKH PHDVXUHPHQWV $GGLWLYH DYHUDJLQJ ZDV HPSOR\HG LQ WKH IROORZLQJ PDQQHU 6 Nf ;;: 9 0 f ZKHUH 6[[ZNf LV WKH PRVW UHFHQW DXWRVSHFWUXP DQG 0 WRWDO QXPEHU RI IUDPHV 7KH ILQDO UHVXOW DIWHU 0 DYHUDJHV LV 0 0 Z f 7KH QRUPDOL]HG VWDQGDUG GHYLDWLRQ RU VWDQGDUG HUURUf RI WKH DYHUDJHG UPV PHDVXUHPHQW LV JLYHQ E\ H sf§f§ ?c0 f

PAGE 83

0RVW RI WKH UHVXOWV WKDW ZLOO EH SUHVHQWHG DUH DYHUDJHV RI IUDPHV ZKLFK KDYH D VWDQGDUG HUURU RI b +RZHYHU VRPH RI WKH GDWD ZDV FRPSDUHG WR IUDPHV DYHUDJHV ZKLFK KDYH D VWDQGDUG HUURU RI b DQG LW ZDV IRXQG WKDW IUDPHV JDYH UHSHDWDEOH UHVXOWV LQ WHUPV RI ERWK IUHTXHQF\ DPSOLWXGH DQG UPV 7KHVH UHVXOWV ZLOO EH GLVFXVVHG LQ &KDSWHU &URVVVSHFWUXP 7KH FURVVVSHFWUXP LV FRPSXWHG LQ D VLPLODU PDQQHU WR WKH DXWRVSHFWUXP H[FHSW WKDW WKH FURVVVSHFWUXP LV FRPSOH[ 7KH FURVVVSHFWUXP RI D VL]H 1 IUDPH LV DQG WKH DYHUDJH FURVVVSHFWUXP RI 0 IUDPHV LV FDOFXODWHG E\ YIFf 0 f ZKHUH 6A2Ff LV WKH PRVW UHFHQW FURVVVSHFWUXP 7KH ILQDO UHVXOW RI WKH 0 DYHUDJHV LV WKXV f &RUUHODWLRQ )XQFWLRQV 7KH DXWR DQG FURVVFRUUHODWLRQ DUH FRYDULDQFH IXQFWLRQV DQG DUH FRPSXWHG XVLQJ LQYHUVH )RXULHU WUDQVIRUPV ,)7Vf )RU DFFXUDWH FRYDULDQFH UHVXOWV WKH DFTXLUHG GDWD LV WLPHDYHUDJHG ]HURSDGGHG WR DYRLG ZUDSDURXQG HUURU DQG KDV QR ZLQGRZ DSSOLHG WR WKH

PAGE 84

VSHFWUXP FDOFXODWLRQ 7KH VSHFWUXP LV PRGLILHG E\ FKDQJLQJ WKH VLJQ RI WKH RGGLQGH[HG GDWD YDOXHV N O1fO IROORZHG E\ DQ ,)7 WR REWDLQ WKH FRYDULDQFH f f &URVV FRUUHODWLRQ $XWR FRUUHODWLRQ A,)7A--Ff M ZKHUH WKH VXEVFULSW F GLVWLQJXLVKHV WKHVH IXQFWLRQV IURP WKH ILQDO FRUUHFWHG IXQFWLRQV )RU ERWK IXQFWLRQV WKH ODJ LQGH[ L UXQV IURP f 7KH DXWRFRUUHODWLRQ IXQFWLRQ LV V\PPHWULF DQG KHQFH WKHUH DUH RQO\ 1 GLVWLQFW YDOXHV IRU WKLV IXQFWLRQ %RWK FRUUHODWLRQV DUH WKHQ DGMXVWHG WR DFFRXQW IRU WKH OLQHDU WDSHU WKDW LV LQGXFHG E\ WKH IDFW WKDW WKH VSHFWUD DUH GLYLGHG E\ 1 LQVWHDG RI 1 PLQXV WKH ODJ QXPEHU 7KH VWDWLVWLFDO UHVXOW LV WR SURYLGH DQ XQELDVHG HVWLPDWH RI WKH FRUUHODWLRQ IXQFWLRQ 7UDQVIHU DQG &RKHUHQFH )XQFWLRQV 7KH DYHUDJHG WUDQVIHU IXQFWLRQ LV FRPSXWHG IURP DQG WKH DYHUDJHG FRKHUHQFH IXQFWLRQ LV FRPSXWHG IURP f

PAGE 85

7KH WUDQVIHU IXQFWLRQ FRPSDUHV WKH JDLQ RI WKH UHVSRQVH FKDQQHO WR WKH UHIHUHQFH FKDQQHO WKDW KHUH ZRXOG EH FDOFXODWHG IURP WZR SUHVVXUH WUDQVGXFHUVn RXWSXWV ,W DOVR FRQWDLQV SKDVH LQIRUPDWLRQ 7ZR GLIIHUHQW UHVXOWV FDQ EH REWDLQHG E\ VZLWFKLQJ WKH UHVSRQVH DQG UHIHUHQFH FKDQQHOV DQG WKH UHVXOWV FDQ EH FRPSDUHG WR LGHQWLI\ ZKLFK GLUHFWLRQ FHUWDLQ IUHTXHQFLHV DUH WUDYHOOLQJ 7KH FRKHUHQFH IXQFWLRQ LV VLPLODU WR WKH WUDQVIHU IXQFWLRQ H[FHSW WKDW LW LV QRW DIIHFWHG E\ VZLWFKLQJ WKH UHIHUHQFH DQG UHVSRQVH FKDQQHOV DQG FRQWDLQV QR SKDVH LQIRUPDWLRQ ,W LV XVHIXO IRU LGHQWLI\LQJ WKH UHODWLYH SRZHU RI IUHTXHQFLHV SUHVHQW DW WZR ORFDWLRQV :LQGRZV )RU DOO PHDVXUHPHQWV H[FHSW IRU WKH FRUUHODWLRQ PHDVXUHPHQWV D ZLQGRZ LV DSSOLHG WR WKH GDWD LQ WKH IUHTXHQF\ GRPDLQ 7KH EHQHILW RI XVLQJ D ZLQGRZ LV WR UHGXFH WKH HIIHFWV RI GLVFRQWLQXLWLHV LQ WKH DQDO\]HG VLJQDO LQWURGXFHG E\ WKH ))7 SURFHVV 7KH IXQFWLRQ RI WKH ZLQGRZ LV WR UHGXFH WKH YDOXHV RI WKH HQGV RI D 1 SRLQW IUDPH WR ]HUR DQG DYRLG ZUDSDURXQG HUURU 1R ZLQGRZLQJ LV XVHG IRU WKH FRUUHODWLRQ PHDVXUHPHQWV EHFDXVH WKH ZLQGRZ LV DSSOLHG LQ WKH IUHTXHQF\ GRPDLQ DQG ZRXOG WKHUHIRUH GLVWRUW WKH WLPH UHFRUG SURGXFLQJ DQ LQFRUUHFW DQDO\VLV 7KH +DQQLQJ ZLQGRZ LV DSSOLHG WR WKH GDWD ZKHQ D ZLQGRZ LV XVHG DQG LV LPSOHPHQWHG IRU HDFK ))7 RSHUDWLRQ LQ D FDOFXODWLRQ =nrf L=rfs=rOf f ZKHUH =fNf LV WKH ZLQGRZHG ))7

PAGE 86

,W LV REYLRXV WKDW FRPSDUHG WR XVLQJ QR ZLQGRZ ZLQGRZLQJ DIIHFWV WKH UPV SRZHU DQG DPSOLWXGHV RI WKH VSHFWUDO OLQHV 7KLV FDQ EH RYHUFRPH E\ DSSO\LQJ DQ DPSOLWXGH VFDOLQJ IDFWRU RI UHFLSURFDO RI WKH ILUVW ZHLJKWLQJ WHUPf RU DQ UPV VFDOLQJ IDFWRU RI WR WKH ZLQGRZHG GDWD ,Q WKLV UHVHDUFK WKH UPV VFDOLQJ IDFWRU LV DOZD\V XVHG VR WKDW WKH WRWDO SRZHU YDOXHV DUH FRUUHFW $V DPSOLWXGH FRUUHFWLRQ LV QRW HPSOR\HG WKH HIIHFW RQ VSHFWUDO DPSOLWXGH RQ D SXUH VLQH ZDYH IRU H[DPSOH ZRXOG EH DQ DPSOLWXGH UHGXFWLRQ RI FRPSDUHG WR WKH WUXH YDOXH $ IXUWKHU HIIHFW RI WKH +DQQLQJ ZLQGRZ LV WR UHGXFH WKH HIIHFWLYH GXUDWLRQ RI WKH UHFRUG EHLQJ WUDQVIRUPHG WR KDOI RI WKDW UHSUHVHQWHG E\ WKH VDPSOHV WKHPVHOYHV 7KLV UHGXFWLRQ FDQ EH RYHUFRPH E\ RYHUODSSLQJ WKH IUDPHV E\ b DQG LV XVHG KHUH %RXQGDU\/D\HU &RQGLWLRQV DW WKH 0L[LQJ6HFWLRQ ,QOHW 7KH ERXQGDU\ OD\HU WKLFNQHVVHV DW WKH PL[LQJVHFWLRQ LQOHW ZHUH FDOFXODWHG WR TXDQWLI\ WKH PHDQ LQOHWFRQGLWLRQV DQG WR YDOLGDWH WKH LPSDFWSUHVVXUH PHDVXUHPHQW 7KH WKLFNQHVVHV ZHUH FDOFXODWHG XVLQJ WKH FRPSUHVVLEOH 7KZDLWHV PHWKRG 7KZDLWHV f IRU PRPHQWXP WKLFNQHVV RI 5RWW DQG &UDEWUHH f WKDW LV YDOLG IRU WKH FRPSUHVVLEOH ERXQGDU\ XQGHU DUELWUDU\ SUHVVXUH JUDGLHQW ZLWK QR LPPLQHQW VHSDUDWLRQ 7KH QHFHVVDU\ DVVXPSWLRQV DUH Df DGLDEDWLF ZDOO Ef WKH 3UDQGWO QXPEHU RI WKH JDV LV XQLW\ DQG Ff WKH YLVFRVLW\ S LV D OLQHDU IXQFWLRQ RI WHPSHUDWXUH 7KHVH FDOFXODWLRQV ZHUH SHUIRUPHG IRU WKH WUDLOLQJ HGJH WKLFNQHVVHV RI WKH SULPDU\ DQG VHFRQGDU\ RQ HLWKHU VLGH RI WKH QR]]OH EORFN 7KH PRPHQWXP WKLFNQHVVHV ZHUH DVVXPHG WR EH ]HUR DW WKH VWDUW RI WKH FRQYHUJHQFH VHFWLRQV OHDGLQJ LQWR WKH PL[LQJ VHFWLRQ DQG WKH FDOFXODWLRQV DUH VKRZQ LQ 7DEOH 7KH GHWDLOV RI WKH PHWKRG DUH JLYHQ LQ $SSHQGL[ %

PAGE 87

7KH LQLWLDO WKLFNQHVVHV RQ WKH VLGH ZDOOV ZHUH QRW FDOFXODWHG EXW DUH DSSUR[LPDWHO\ WKH VDPH DV WKH RQHV FDOFXODWHG SUHVHQWHG LQ 7DEOH GXH WR WKH VLPLODULW\ LQ WKH IUHHVWUHDP D[LDO 0DFK QXPEHU SURILOHV 8VLQJ WKH FDOFXODWHG YDOXH IRU r WR JHW WKH HIIHFWLYH SULPDU\ IORZ KHLJKW Erf WKH SUHGLFWHG SULPDU\ 0DFK QXPEHU FDQ EH HVWLPDWHG XVLQJ WKLV YDOXH LQ WKH RQHn GLPHQVLRQDO LVHQWURSLF JDVG\QDPLFV UHODWLRQ IRU DUHD UDWLR $OVR LW FDQ EH FDOFXODWHG WKDW WKH PHDVXUHG YDOXH VKRXOG EH LQFUHDVHG E\ DERXW b WR DFFRXQW IRU WKH VWDWLF WHPSHUDWXUH DQG SUHVVXUH PHDVXUHPHQWV EHLQJ PDGH RQ WKH VLGH ZDOO RI WKH SULPDU\ SOHQXP 7KLV UHVXOWV LQ D FRUUHFWHG PHDVXUHG SULPDU\ 0DFK QXPEHU RI 7KLV DJUHHV ZLWK WKH SULPDU\ 0DFK QXPEHU FDOFXODWHG IURP WKH PHDVXUHG QR]]OHWKURDW DQG H[LW KHLJKWV DQG DFFRXQWLQJ IRU WKH GLVSODFHPHQW WKLFNQHVVHV LQ 7DEOH WR ZLWKLQ WKH WROHUDQFHV RI WKH KHLJKW PHDVXUHPHQWV

PAGE 88

7DEOH %RXQGDU\OD\HU WKLFNQHVVHV RI SULPDU\ DQG VHFRQGDU\ VXSSOLHV /RFDWLRQ PPf r PPf PPf 6f H V ,, 3ULPDU\ 7KURDW 3ULPDU\ 7UDLOLQJ (GJH 6HFRQGDU\ 7UDLOLQJ (GJHf§,QQHU :DOO 6HFRQGDU\ 2XWHU :DOO

PAGE 89

)LJXUH 'UDZLQJ RI IORZ SDVVDJHV IORZFRQGLWLRQLQJ GHYLFHV DQG W\SLFDO PL[LQJVHFWLRQ FRQILJXUDWLRQ R? RR

PAGE 90

2LO 'U\HUV )LJXUH *DV VWRUDJH DQG GHOLYHU\ V\VWHP 21 12

PAGE 91

)LJXUH )ORZ FRQGLWLRQLQJ VHFWLRQV VHWWOLQJ FKDPEHUV DQG QR]]OHV )ORZ LV IURP ULJKW WR OHIW

PAGE 92

PP )LJXUH 1R]]OHEORFN GLPHQVLRQV

PAGE 93

)LJXUH 0L[LQJ VHFWLRQ DQG LPSDFWSUHVVXUH SUREHSUHVVXUH WUDQVGXFHUVWHSSHU PRWRU DVVHPEO\ 0L[LQJVHFWLRQ H[WHQVLRQ LV QRW VKRZQ

PAGE 94

)LJXUH :DOO VWDWLFSUHVVXUH SODWH XVHG IRU PDQRPHWHU DQG VWUDLQJDXJH WUDQVGXFHU PHDVXUHPHQWV

PAGE 95

'LPHQVLRQV LQ PLOOLPHWHUV )LJXUH %UDVV WUDQVGXFHUVOHHYHV DQG SOXJV XVHG IRU WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV

PAGE 96

r R ] P P ‘ L ‘ W PP R#>T# Rk #a r#%_k kISZ r# rp rk rka rkaL O R7+Mi! PP f§ f§ f§ rB !eB -2OL G GLO -GIff§Gn/ 4f§ BGI" BGrB 3LPP PP PP f§ PP f§f§ PP f§ f§ PP PP f§ PP )LJXUH 3ODWHV XVHG IRU WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV 2QO\ RQH SODWH ZDV DFWXDOO\ LQVWDOOHG IRU D WHVW PQ M /L

PAGE 97

)LJXUH 7RS UDLO RI PL[LQJ VHFWLRQ VKRZLQJ ILWWHG SOXJV

PAGE 98

)LJXUH 3OXJV IRU WRS DQG ERWWRP UDLOV RI WKH PL[LQJ VHFWLRQ

PAGE 99

%XWWHUIO\ 9DOYH 39& )LJXUH ([KDXVW V\VWHP

PAGE 100

)LJXUH 6FKHPDWLF RI LQVWUXPHQWDWLRQ DQG FRPSXWHU LQWHUIDFH

PAGE 101

9 9 9 9 )LJXUH &XVWRPEXLOW SRZHU VXSSO\ IRU .XOLWH WUDQVGXFHU )LJXUH &XVWRPEXLOW EXIIHU DPSOLILHU JDLQ O

PAGE 102

&RQGHQVHU PPf )LJXUH 6FKOLHUHQ VHWXS

PAGE 103

WR

PAGE 104

&+$37(5 (;3(5,0(17$/ 5(68/76PHDQ 0($685(0(176 ([SHULPHQWDO 2EMHFWLYHV 7KH SULPDU\ REMHFWLYH RI WKH H[SHULPHQWDO LQYHVWLJDWLRQ ZDV WKH PHDVXUHPHQW RI WLPHDFFXUDWH ZDOOSUHVVXUHV RI WKH SRWHQWLDO DQG VKHDULQJ IORZV LQ D WZRGLPHQVLRQDO VLQJOHQR]]OH VXSHUVRQLF HMHFWRU GLVFKDUJLQJ LQWR D FRQVWDQWDUHD PL[LQJ WXEH 8VLQJ WKHVH PHDVXUHPHQWV D QRQLQWUXVLYH WHFKQLTXH IRU VKHDUOD\HU GHWHFWLRQ DQG PHDVXUHPHQW LV GHYHORSHG +RZHYHU LQ RUGHU WR YDOLGDWH WKH WLPHDFFXUDWH PHDVXUHPHQWV DQG WR JDLQ LQVLJKW LQWR WKH IORZILHOG PHDQ PHDVXUHPHQWV ZHUH WDNHQ 7R GHWHUPLQH WKH PHDQ IORZILHOG 6FKOLHUHQ IORZ YLVXDOL]DWLRQ ZDV HPSOR\HG DV ZHOO DV PHDVXULQJ FURVVVHFWLRQDO LPSDFWSUHVVXUH SURILOHV ZLWK D WUDYHUVLQJ SUREH DW D QXPEHU RI VWUHDPZLVH ORFDWLRQV RI WKH PL[LQJ WXEH 0HDQ VWDWLF ZDOOSUHVVXUHV ZHUH PHDVXUHG XVLQJ D PDQRPHWHU EDQN 7KHVH UHVXOWV DUH SUHVHQWHG LQ WKLV FKDSWHU 7HVW &RQGLWLRQV 7KH FRPSOH[LW\ DQG GLIILFXOW\ RI PHDVXULQJ DQG LQWHUSUHWLQJ WKH WXUEXOHQW ZDOO SUHVVXUH LQ D FRPSUHVVLEOH IORZ ZDV UHDVRQ HQRXJK WR FKRRVH D VLQJOH IORZ FRQGLWLRQ )URP SUHYLRXV H[SHULPHQWV UHSRUWHG LQ WKH OLWHUDWXUH LW LV NQRZQ WKDW WKH PHDQ IORZILHOG LV DIIHFWHG E\ DW OHDVW WKH IROORZLQJ SDUDPHWHUV Df SULPDU\ DQG VHFRQGDU\ PROHFXODU ZHLJKWV Ef SULPDU\ DQG VHFRQGDU\ VSHFLILF KHDWV UDWLRV Ff YHORFLW\ UDWLR U AM Ff GHQVLW\ UDWLR f§

PAGE 105

Gf FRQYHFWLYH 0DFK QXPEHU 0 Hf PDVV IORZ UDWLR ( f§ $ QRPLQDO SULPDU\ 0DFK QXPEHU RI 0M ZDV FKRVHQ ZKLFK LV QHDU WKH OLPLW IRU WKH DYDLODEOH VXSSO\ SUHVVXUH RI WKH IDFLOLW\ IRU DWPRVSKHULF EORZGRZQ 7KH VHFRQGDU\ 0DFK QXPEHU ZDV FKRVHQ WR EH 0 7KH SULPDU\ DQG VHFRQGDU\ VWDWLF SUHVVXUHV DW WKH QR]]OH H[LW ZHUH PDWFKHG DW N3D WR PLQLPL]H OHDNDJH IURP WKH WHVW ULJ WR WKH DWPRVSKHUH $QRWKHU DGYDQWDJH RI FKRRVLQJ WKH VWDWLF GLVFKDUJH SUHVVXUH WR EH MXVW DERYH DWPRVSKHULF FRPSDUHG WR VXEDWPRVSKHULF LV WKDW WKH UDQJH RI WXUEXOHQW VFDOHV SUHVHQW LQ WKH IORZ LV LQFUHDVHG GXH WR WKH LQFUHDVHG 5H\QROGV QXPEHU 0XOWLSOH H[SHULPHQWV ZKLFK DUH GHVFULEHG LQ WKH IROORZLQJ VHFWLRQV ZHUH FRQGXFWHG DW D VLQJOH IORZ FRQGLWLRQ DQG SDUDPHWHUV RI WKH IORZ DUH JLYHQ LQ 7DEOHV DQG &DOFXODWLRQ SURFHGXUHV IRU WKHVH YDOXHV DUH JLYHQ LQ $SSHQGL[ % 2SWLFDO 9LVXDOL]DWLRQV 6FKOLHUHQ SKRWRJUDSKV RI WKH PL[LQJ VHFWLRQ ZLWK WKH NQLIH HGJH DW r r r DQG r DUH VKRZQ LQ )LJV DQG UHVSHFWLYHO\ DQG VKDGRZJUDSKV DUH SUHVHQWHG LQ )LJ 7KH SKRWRJUDSKV VKRZ WKH IORZ IURP WKH WKURDW RI WKH SULPDU\ QR]]OH WR MXVW RYHU FP [E f DV LQGLFDWHG E\ WKH VFDOH LQ HDFK SKRWRJUDSK 7KH VFDOH ]HUR LV SRVLWLRQHG DW WKH QR]]OH H[LW $V WKH YLVXDOL]DWLRQV VKRZ WKH IORZ XSVWUHDP RI WKH QR]]OH H[LW WKH PL[LQJVHFWLRQ LQOHW VWDWLF SUHVVXUH FRXOG QRW EH PHDVXUHG 7KHUHIRUH WKH IORZ FRQGLWLRQV ZHUH VHW XVLQJ WKH VWUHDPVf VWDJQDWLRQ SUHVVXUH DQG WKH PL[LQJVHFWLRQ H[LW VWDWLF SUHVVXUH 7KHVH SUHVVXUHV ZHUH NQRZQ IURP SUHYLRXV UXQV ZKHUH LW ZDV SRVVLEOH WR PHDVXUH WKH PL[LQJ VHFWLRQ LQOHW SUHVVXUH 7KH VWDJQDWLRQ SUHVVXUHV ZHUH DOZD\V PDWFKHG WR WKH SUHYLRXVO\ UHFRUGHG RQHV EXW WKH PL[LQJVHFWLRQ H[LW SUHVVXUH ZDV DOZD\V DERXW b ORZHU 7KH ORZHU YDOXH FDQ EH DWWULEXWHG WR WKH GLIIHULQJ ZDOO IULFWLRQ RI WKH RSWLFDO ZLQGRZ SODWHV

PAGE 106

WKH JODVV PRXQWLQJFRPSRXQG SDUWLFXODUO\f DV FRPSDUHG WR WKH DOXPLQXP RU EUDVV SODWHV +RZHYHU LW LV EHOLHYHG WKDW WKLV PDGH OLWWOH GLIIHUHQFH WR WKH IORZILHOG :DYHV LQ WKH )ORZ &RPSUHVVLRQ DQG H[SDQVLRQ ZDYHV RULJLQDWLQJ IURP WKH WKURDW RI WKH QR]]OH DUH YLVLEOH LQ DOO WKH SKRWRJUDSKV ,GHDOO\ ILQLWHVWUHQJWK ZDYHV ZRXOG QRW EH JHQHUDWHG IURP WKH QR]]OH WKURDW EXW WKHUH LV QR ZD\ WR DYRLG ILQLWH ZDYHV VLQFH WKH IORZ LV QRW LGHDO 7KHVH ZDYHV LPSLQJH DQG UHIOHFW IURP WKH XSSHU DQG ORZHU VKHDUOD\HU DV WKH\ SURSDJDWH GRZQVWUHDP 7KH VKDGRZJUDSK )LJ f VKRZV WKDW WKHVH H[WHQG WR DSSUR[LPDWHO\ FP [Epf GRZQVWUHDP ZKHUHXSRQ HOOLSWLFDO VWUXFWXUHV DSSHDU DORQJ WKH FHQWHUOLQH RI WKH IORZ )LJ f 0HDVXUHPHQWV RI WKH VWDWLF ZDOOSUHVVXUH WKDW DUH SUHVHQWHG ODWHU LQ WKLV FKDSWHU VKRZ WKDW WKH ZDYHV FDXVH D PD[LPXP VWDWLFSUHVVXUH FKDQJH RI $33m LQ WKLV UHJLRQ DQG LW FDQ WKHUHIRUH EH FRQFOXGHG WKDW WKH\ DUH ZHDN *URZWK 5DWHV 7KH YLVXDO JURZWKUDWH IRU WKH VKHDU OD\HU FDQ EH GHWHUPLQHG IURP WKH 6FKOLHUHQ SKRWRJUDSKV ZLWK WKH NQLIH HGJH DW r 7KH SUHFLVLRQ RI WKLV PHWKRG LV VXEMHFW WR WKH VHQVLWLYLW\ RI WKH 6FKOLHUHQ V\VWHP DQG WKH ORFDO UHIUDFWLYHLQGH[ JUDGLHQW RI WKH VKHDU OD\HU 7KH UHIUDFWLYH LQGH[ LV D OLQHDU IXQFWLRQ RI WKH ORFDO IORZGHQVLW\ DQG LV DIIHFWHG E\ WKH ORFDO JDVFRPSRVLWLRQ DQG WKH PL[WXUHfV WKHUPRG\QDPLF VWDWH DQG KHQFH WKH 5H\QROGV QXPEHU ,Q WKLV FDVH LW LV IHOW WKDW WKH VWUHDP 5H\QROGV QXPEHUV DUH KLJK HQRXJK WR SHUPLW JRRG DFFXUDF\ LQ GHWHUPLQLQJ WKH YLVXDO JURZWKUDWH 7KH JURZWK UDWH ZDV REWDLQHG E\ ILWWLQJ VWUDLJKW OLQHV WR WKH PHDQ WDQJHQWV RI WKH XSSHU VKHDUOD\HU H[WHQGLQJ IURP ZKHUH JURZWK VWDUWV [AO2 PP ;JEmf WR ZKHUH WKH VHFRQGDU\ HGJH RI WKH VKHDU OD\HU GRHV QRW JURZ LQWR WKH VHFRQGDU\ DV IDVW [p PP [Epf $YHUDJLQJ SKRWRJUDSKV RI WKUHH GLIIHUHQW UXQV UHVXOWV LQ D YLVXDO JURZWKUDWH RI

PAGE 107

f§ [[f f ZLWK YHU\ OLWWOH VSUHDG bf EHWZHHQ WKH LQGLYLGXDO PHDVXUHPHQWV 7KH DFFXUDF\ RI WKH PHDVXUHPHQWV LV HVWLPDWHG WR EH sb 7KH IODWWHQLQJ RXW RI WKH VKHDUOD\HUVHFRQGDU\ ERXQGDU\ GRZQVWUHDP RI [} PP [E f LPSOLHV WKDW WKH VKHDUOD\HU VWDUWV WR XQGHUJR D VWUXFWXUDO FKDQJH DW WKLV SRLQW 7KLV VXJJHVWV WKDW WKH FKDQJH LQ ERXQGDU\ FRQGLWLRQV PDQLIHVWHG E\ WKH ODUJH HOOLSWLFDO FHOOV ORFDWHG RQ WKH FHQWHUOLQH DUH WKH FDXVH IRU WKH JURZWKUDWH UHGXFWLRQ 7KLV ZLOO EH FRQVLGHUHG IXUWKHU LQ WKH QH[W VHFWLRQ 9LVLEOH 6WUXFWXUHV 6HYHUDO VWUXFWXUHV FDQ EH VHHQ LQ WKH YLVXDOL]DWLRQV 7KH RQHV LQ WKH SULPDU\ FRUH KDYH DOUHDG\ EHHQ PHQWLRQHG DERYH 7KH\ DUH VWUXFWXUHV ORFDWHG EHWZHHQ DSSUR[LPDWHO\ PP [E f DQG PP [E}f DQG DSSHDU LQ )LJV WKH\ DUH HOOLSWLFDO LQ VKDSH ZLWK WKHLU PDMRU D[LV DORQJ WKH FHQWHUOLQH ,W LV SURSRVHG WKDW WKHVH VWUXFWXUHV DUH FHOOV HPDQDWLQJ IURP WKH YLVFRXV LQWHUDFWLRQ RI WKH ZDYH VWUXFWXUH LQ WKH SULPDU\ FRUH ZLWK WKH VKHDUOD\HU 7KHLU GLVWLQFW HOOLSWLFDO VKDSH VXJJHVWV WKDW WKH ERXQGDU\ PD\ ERXQG ODUJH HGGLHV LQ WKH VKHDUOD\HU ,Q )LJ LW FDQ EH VHHQ WKDW WKH ZDYHV DSSHDU WR SHQHWUDWH WKH VKHDU OD\HU VWDUWLQJ DW [a PP [E f +RZHYHU WKH ZDYH FDQQRW EH SHQHWUDWLQJ WKH VKHDU OD\HU DV WKH ZLGWK RI WKH SHQHWUDWLRQ LV WKLFNHU WKDQ WKH ZDYH DQG WKH SHQHWUDWLRQ H[WHQGV LQWR WKH VXEVRQLF UHJLRQ 7KLV PXVW EH WKH UHVXOW RI WKH ZDYHV LQGXFLQJ YRUWLFLW\ LQ WKH VKHDU OD\HU ,Q )LJV DQG D WKLFNHQHG ZDYH VWUXFWXUH FDQ EH VHHQ FHQWHUHG DW [} PP [E f ZKLFK H[WHQGV XS RXW RI WKH VKHDU OD\HU 7KLV VXJJHVWV WKDW VHFRQGDU\ IOXLG

PAGE 108

LV EHLQJ HQWUDLQHG DW D ORFDOO\ LQFUHDVHG UDWH VXFK DV KDV EHHQ REVHUYHG LQ XQGHUH[SDQGHG MHWV *XWPDUN HW DO f $OVR 7DP f LQ D 0DFK D[LV\PPHWULF MHW DQG *XWPDUN HW DO f LQ D 0DFK UHFWDQJXODU MHW ERWK REVHUYHG WKDW RQH RI WZR GLVWLQFW QRLVH VRXUFH ORFDWLRQV LV ORFDWHG DW [Em 7DP SURSRVHG WKDW WKH QRLVH VRXUFH LV WKH UHVXOW RI ODUJHVFDOH ORQJZDYH LQVWDELOLWLHV ZLWK VFDOH OHQJWK HTXDO WR WKH MHW GLDPHWHU ZKLFK PD\ OHDG WR UDSLG GHVWUXFWLRQ RI WKH MHW 7KLV LV LQ DJUHHPHQW ZLWK WKH SUHVHQW REVHUYDWLRQV DV ZLWKLQ PP [E}f WKH ZDYHV KDYH GLVDSSHDUHG IURP WKH FRUH IORZ 7KLV OHDGV WR D SRVVLEOH FRQFOXVLRQ WKDW WKH HQHUJ\ IURP WKH ILQLWHVWUHQJWK ZDYHV LV WUDQVIHUUHG WR WKH VKHDU OD\HU RU UDGLDWHG DV VRXQG DQG WKH SURFHVV LV WKH SUHFXUVRU WR WKH IRUPDWLRQ RI WKH HOOLSWLFDO VWUXFWXUHV GLVFXVVHG DERYH )URP )LJV Df DQG Df LW LV SRVVLEOH WR PHDVXUH WKH PHDQ VSDFLQJ RI WKH ZDY\ VWUXFWXUHV L EHIRUH WKH HQG RI WKH SULPDU\ FRUH 6LPLODU PHDVXUHPHQWV KDYH EHHQ PDGH LQ VLQJOH VXEVRQLF VKHDU OD\HUV E\ VHYHUDO LQYHVWLJDWRUV %URZQ DQG 5RVKNR f IRXQG WKDW WKH UDWLR I6UR ZDV DSSUR[LPDWHO\ RYHU D ZLGH UDQJH RI YHORFLW\ DQG GHQVLW\ UDWLRV 6SHQFHU DQG -RQHV f IRXQG WKH PRVW IUHTXHQW VSDFLQJ IRXQG WR EH DOPRVW HTXDO WR I E\ %URZQ DQG 5RVKNRf ZDV IPP ZKLOH .RRFKHVIDKDQL HW DO f IRXQG +EZ 3DSDPRVFKRX f IRXQG ZLWK DQ HVWLPDWHG DFFXUDF\ RI b WKDW IRU FRPSUHVVLEOH KHWHURJHQHRXV VKHDUOD\HUV ISLW YDULHG IURP LQ WKH KLJKO\ FRPSUHVVLEOH FDVH 0F f WR D KLJK RI IRU D FDVH ZLWK 0F +H VXJJHVWHG WKDW IRU WKH LQFRPSUHVVLEOH VKHDU OD\HU PSLO WUDQVODWLQJ LQWR I LW IRU %URZQ DQG 5RVKNRnV GDWD DQG ISLW IRU 6SHQFHU DQG -RQHVf GDWD 7KH PHDVXUHG YDOXH IURP WKH YLVXDOL]DWLRQV IRU WKH SUHVHQW FDVH LV ISLW} ZKLFK ZDV GHWHUPLQHG E\ DYHUDJLQJ VHYHUDO YDOXHV DW GLIIHUHQW VWUHDPZLVH ORFDWLRQV DQG IRU GLIIHUHQW WHVW UXQV 7KH DFFXUDF\ RI WKH DERYH YDOXH LV HVWLPDWHG WR EH sb

PAGE 109

'RZQVWUHDP RI [ PP [E}OOf WR DERXW [ PP [E f )LJ Ef VKRZV WKUHH OLJKW FLUFXODU VKDSHV RI VL]H RQ WKH RUGHU RI KDOI WKH PL[LQJVHFWLRQ KHLJKW 7KLV VXJJHVWV WKDW DQ LQFUHDVH LQ VFDOH RFFXUV LQ WKLV UHJLRQ /DPLQDUWR7XUEXOHQW 7UDQVLWLRQ 7KH IORZ DORQJ WKH WUDLOLQJ HGJHV RI WKH QR]]OH LV EHOLHYHG WR KDYH EHHQ ODPLQDU EDVHG RQ WKH FDOFXODWLRQ UHVXOWV SUHVHQWHG LQ 7DEOH 7KHVH UHVXOWV FDQ EH ZULWWHQ LQ WHUPV RI WKH WUDLOLQJ HGJH ERXQGDU\OD\HU PRPHQWXP WKLFNQHVVHV DQG DUH SUHVHQWHG LQ 7DEOH 7KH 5H\QROGV QXPEHU EDVHG RQ WUDLOLQJ HGJH PRPHQWXP WKLFNQHVV DQG IUHHVWUHDP FRQGLWLRQV LV 5H S8S $OVR SUHVHQWHG LV WKH 5H\QROGV QXPEHU EDVHG RQ VKHDUOD\HU WKLFNQHVV DW WKH VWDUW RI YLVXDO JURZWK 5HV >SDYH0-DQG WKH QXPEHU RI PRPHQWXP WKLFNQHVVHV WR YLVXDO JURZWK 7KH YDOXHV LQ 7DEOH IRU WKH SULPDU\ DUH LQ H[FHOOHQW DJUHHPHQW ZLWK %UDGVKDZnV f FULWHULRQ WKDW GLVWDQFH WR IXOO GHYHORSPHQW LQ D IIHHVKHDU OD\HU WDNHV D WRWDO GLVWDQFH RI 9[O298M IRU WKH UDQJH 5HJ 7KH YDOXH RI 5H LV DOVR LQ JRRG DJUHHPHQW ZLWK *RHEHO DQG 'XWWRQnV f FULWHULRQ WKDW WKH IXOO\ GHYHORSHG YDOXH IRU WKLV 5H\QROGV QXPEHU LV 6WDWLF :DOO3UHVVXUH 7KH VWDWLF ZDOOSUHVVXUH ZDV PHDVXUHG E\ WKUHH PHWKRGV ZLWK D FROXPQ PHUFXU\ILOOHG PDQRPHWHU ZLWK VWUDLQJDJH SUHVVXUH WUDQVGXFHUV DQG ZLWK D .XOLWH PLQLDWXUH SUHVVXUH WUDQVGXFHU DOO RI ZKLFK DUH GHVFULEHG LQ &KDSWHU 0HDVXUHPHQWV ZHUH PDGH RQ ERWK WKH OHIW DQG ULJKW ZDOOV ZLWK WKH PDQRPHWHU DQG RQ WKH OHIW ZDOO IRU WKH RWKHU WZR PHDVXUHPHQWV 7KH PDQRPHWHU PHDVXUHPHQWV ZHUH UHFRUGHG E\ WDNLQJ SKRWRJUDSKV RI WKH PDQRPHWHU EDQN $SSUR[LPDWHO\ ILIWHHQ SKRWRJUDSKV RU IRU HDFK WHVW UXQ KHQFH RU UXQVSODWHORFDWLRQf ZHUH DYHUDJHG IRU HDFK PHDVXUHPHQW DQG WKH b FRQILGHQFH LQWHUYDOV ZHUH FDOFXODWHG 7R PDNH

PAGE 110

PHDVXUHPHQWV FRYHULQJ WKH IXOO OHQJWK RI WKH PL[LQJVHFWLRQ LW ZDV QHFHVVDU\ WR SRVLWLRQ WKH PHDVXUHPHQW SODWH LQ WZR SRVLWLRQV DORQJ WKH ZDOO RQ HDFK VLGH RI WKH PL[LQJVHFWLRQ +HQFH IRXU VHWV RI PHDVXUHPHQWV ZHUH WDNHQ WR DUULYH DW D FRPSOHWH VHW RI PHDVXUHPHQWV 7KH WZR ORFDWLRQV RQ RQH VLGH RI WKH ZDOO SURGXFH DQ RYHUODSSLQJ PHDVXUHPHQW UHJLRQ EHWZHHQ [E DQG :KHQ WKH PHDVXUHPHQW SODWH LV SRVLWLRQHG XSVWUHDP LW HQGV DW [E ZKHQ SRVLWLRQHG GRZQVWUHDP LW VWDUWV DW [E )LJXUH VKRZV D W\SLFDO SKRWRJUDSK RI D PDQRPHWHU UHDGLQJ 7KH VWUDLQJDXJH WUDQVGXFHU PHDVXUHPHQWV ZHUH WDNHQ IURP VHWV RI WHQ UHDGLQJV PDGH GXULQJ WKH VHSDUDWH UXQV IRU LPSDFWSUHVVXUH WUDYHUVHV WKH WUDYHUVHV DUH GHVFULEHG LQ WKH QH[W VHFWLRQf DQG ZHUH ORFDWHG RQ WKH ZDOO DW \E RI WKH WUDYHUVH 7KH .XOLWH WUDQVGXFHU PHDVXUHPHQWV ZHUH DOVR WDNHQ GXULQJ GLIIHUHQW UXQV DQG DYHUDJHG IURP WHQ UHDGLQJV 7KH VKRUW EUDVV SODWH VHFWLRQV XVHG IRU WKH .XOLWH WUDQVGXFHU PHDVXUHPHQWV DUH GLIIHUHQW IURP WKH ORQJ DOXPLQXP SODWHV XVHG IRU WKH RWKHU WZR W\SHV RI PHDVXUHPHQWV EXW DOORZ PHDVXUHPHQWV DW GLIIHUHQW YDOXHV RI \E )LJXUH VKRZV D FRPSDULVRQ RI WKH WKUHH W\SHV RI PHDVXUHPHQWV PDGH RQ WKH OHIW ZDOO RI WKH PL[LQJ VHFWLRQ 7KHUH LV JRRG DJUHHPHQW EHWZHHQ WKH PDQRPHWHU DQG .XOLWH PHDVXUHPHQWV DW \E DQG \E EXW PRUH GLVFUHSDQF\ DW \E HVSHFLDOO\ XS WR [E 7KLV GLVWDQFH DSSUR[LPDWHO\ FRUUHVSRQGV WR WKH OHQJWK RI WKH VXSHUVRQLF UHJLRQ DORQJ WKH FHQWHUOLQH 7KH VPDOOHU DPSOLWXGH ZDYLQHVV RI WKH .XOLWH FHQWHUOLQH PHDVXUHPHQWV LQ WKLV UHJLRQ VXJJHVWV WKDW WKH DOXPLQXP ZDOO XVHG IRU WKH PDQRPHWHU DQG VWUDLQJDXJH PHDVXUHPHQWV LQWURGXFHG ZDYHV SUREDEO\ FDXVHG E\ D IORZ LQWHUDFWLRQ ZLWK WKH UHODWLYHO\ ODUJH PP GLDPHWHU SUHVVXUH WDSV ,Q FRPSDULVRQ WKH .XOLWH WUDQVGXFHU KDV PXOWLSOH KROHV RI PP GLDPHWHU DQG WKH JDS DURXQG WKH WUDQVGXFHU LV HYHQ VPDOOHU 7KH .XOLWH PHDVXUHPHQW YDOXHV DORQJ WKH FHQWHUOLQH DUH ORZHU WKDQ WKRVH DZD\ IURP WKH FHQWHUOLQH XS WR WKH HQG RI WKH VXSHUVRQLF UHJLRQ DQG FRUUHVSRQG WR WKH SULPDU\FRUH VWUXFWXUH REVHUYHG LQ WKH YLVXDOL]DWLRQV 7KH ZLGH

PAGE 111

YDULDWLRQV LQ WKH PHDVXUHPHQWV DW [E LQ )LJDf FRUUHVSRQG WR WKH LQLWLDO ORFDWLRQ RI WKH ODUJH HOOLSWLFDO FHOOV GLVFXVVHG LQ 6HFWLRQ 7KH PDQRPHWHU FXUYH LQ )LJ Df VKRZV ZKDW DSSHDUV WR EH D GLVWLQFW ZDYH SDWWHUQ IURP [E WR LI WKH SRLQWV DUH MRLQHG ZLWK VWUDLJKW OLQHV 7KLV UHJLRQ LV ORFDWHG ZKHUH WKH SUHVVXUH SODWH RYHUODSV ZKHQ SRVLWLRQHG LQ WKH XSVWUHDP DQG GRZQVWUHDP ORFDWLRQV ,W FDQ EH FRQFOXGHG WKHQ WKDW WKHVH ZDYHV DUH QRW UHDO SURGXFW RI WKH HMHFWRU IORZ EXW DUH D PDQLIHVWDWLRQ RI WKH ZDYH SURGXFWLRQ DQG SUHVVXUH ORVV DVVRFLDWHG ZLWK WKH WUDQVLWLRQ RI WKH IORZ IURP RQH SODWH WR WKH RWKHU 7KH GLIIHUHQFH EHWZHHQ WKH VWUDLQJDXJH DQG PDQRPHWHU UHDGLQJV DUH VKRZQ LQ )LJ Ef 7KH ZDYLQHVV VXJJHVWHG LQ WKH VXSHUVRQLF UHJLRQ LV SUREDEO\ FDXVHG LQ WKH VDPH PDQQHU DV H[SODLQHG DERYH IRU WKH PDQRPHWHU UHDGLQJ 7KHUH LV OLWWOH GLIIHUHQFH EHWZHHQ WKH UHDGLQJV H[FHSW WKDW WKH VWUHDPZLVH SUHVVXUHJUDGLHQW DSSHDUV WR VWDUW GURSSLQJ PRUH UDSLGO\ IRU WKH VWUDLQJDXJH PHDVXUHPHQWV DW [E} 7KLV VXJJHVWV WKDW WKH LPSDFW SUREH PD\ KDYH PRUH RI DQ HIIHFW RQ WKH SUHVVXUH ILHOG GRZQVWUHDP RI WKLV ORFDWLRQ EXW OLWWOH HIIHFW XSVWUHDP )LJXUH VKRZV D FRPSDULVRQ RI WKH SUHVVXUHV RQ WKH OHIW DQG ULJKW ZDOOV RI WKH PL[LQJ VHFWLRQ 7KH YHU\ FORVH DJUHHPHQW EHWZHHQ WKH PHDVXUHPHQWV RQ WKH WZR ZDOOV VXJJHVWV WKDW WKH VWDWLF SUHVVXUH ILHOG LV YHU\ QHDUO\ WZRGLPHQVLRQDO ,PSDFW3UHVVXUH 0HDVXUHPHQWV 1RUPDOL]HG 3URILOHV ,PSDFWSUHVVXUH SURILOHV ZHUH UHFRUGHG DW WZHQW\ILYH VWUHDPZLVH ORFDWLRQV LQ WZR UDQJHV ZKLFK FRUUHVSRQG WR WKH XSVWUHDP DQG GRZQVWUHDP SRVLWLRQV RI WKH PHDVXUHPHQW UDLOV 7KH UDQJHV DUH IURP [E WR DQG IURP WR LQ VWHSV RI [E 7KH GDWD ZDV UHFRUGHG LQ VWHSV RI $\E

PAGE 112

)LJXUH VKRZV VRPH RI WKH LPSDFW WUDYHUVHV )LJXUH Df VKRZV GDWD IRU WUDYHUVHV ZKHUH WKH SULPDU\ FRUH LV DOPRVW XQGLVWXUEHG H[FHSW IRU WKH ZHDN ZDYHV GHVFULEHG DERYH +HUH DJDLQ WKH ZDYH VWUHQJWK FDQ EH TXDQWLILHG E\ WKH ODUJHVW REVHUYHG $3SL3SLWPD[f LQ WKH FRUH :LWK QR VWDWLF SUHVVXUH FKDQJH WKLV FRUUHVSRQGV WR D D0m 7KH SURILOHV DUH YHU\ VPRRWK HYHU\ZKHUH HOVH ZKLFK GHPRQVWUDWHV WKDW WKH PHDQ IORZ TXDOLW\ LV KLJK :KHQ WKH WUDYHUVHV DUH UHSHDWHG IRU WKH SURILOHV LQ )LJ Df WKH UHVXOWV DUH LGHQWLFDO WR ZLWKLQ WKH DFFXUDF\ RI WKH PHDVXUHPHQW WHFKQLTXH 7KH SURILOHV DUH VOLJKWO\ VKLIWHG WR WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ ZKLFK LV DOVR QRWLFHDEOH LQ WKH 6FKOLHUHQ SKRWRJUDSKV E\ REVHUYLQJ WKDW WKH XSSHU DQG ORZHU VHFRQGDU\ SRWHQWLDOIORZV GLVDSSHDU DW GLIIHUHQW ORFDWLRQV $Q DQRPDO\ EHWZHHQ WKH XSSHU \E YHf DQG ORZHU \E YHf VKHDU OD\HUV LV VHHQ RQ WKH LQOHW SURILOH [E DW WKH SULPDU\FRUHVKHDUOD\HU ERXQGDULHV 7KH FDXVH RI WKLV LV DWWULEXWHG WR GLIIHUHQFHV LQ WKH WUDLOLQJHGJH ERXQGDU\OD\HU IORZ RI WKH QR]]OH 7KLV LV VXSSRUWHG E\ WKH GLVDSSHDUDQFH RI WKH DQRPDO\ EHIRUH WKH QH[W WUDYHUVH DW [E ZKHUH IURP WKH 6FKOLHUHQ SKRWRJUDSKV WUDQVLWLRQWRWXUEXOHQFH LV NQRZQ WR KDYH DOUHDG\ RFFXUUHG )LJXUH Ef VKRZV WUDYHUVHV GRZQVWUHDP RI WKH HQG RI WKH SULPDU\ SRWHQWLDO FRUH 7KHVH ORRN GLVWLQFWO\ EXPS\f FRPSDUHG WR WKRVH XSVWUHDP ZKLFK VXJJHVWV WKH SUHVHQFH RI ODUJH VORZ PRYLQJ IOXLG VWUXFWXUHV 7KH\ PXVW EH ODUJH DQG VORZ PRYLQJ EHFDXVH WKH UHVSRQVHWLPH IRU WKH PHDVXUHPHQWV LV QR EHWWHU WKDQ WKH +] UHDGLQJ IUHTXHQF\ RI WKH SUHVVXUH WUDQVGXFHU DQG WKH ODUJHVW EXPSV DSSHDU WR KDYH D FKDUDFWHULVWLF OHQJWK RI a PP DQG D FKDUDFWHULVWLF WLPH EDVHG RQ WKH SUREH VSHHG RI a V 7KLV FKDUDFWHULVWLF WLPH LV WRR ORQJ WR EH FKDUDFWHULVWLF RI WKH WUXH IORZ DQG WKHUHIRUH WKHVH PHDVXUHPHQWV DUH QRW WUXH PHDQ PHDVXUHPHQWV +RZHYHU WKH\ DUH UHSUHVHQWDWLYH RI WKH IORZ DQG XVHIXO LQIRUPDWLRQ FDQ EH REWDLQHG IURP WKHP 7R VHH KRZ UHSUHVHQWDWLYH WKHVH EXPS\ PHDVXUHPHQWV DUH PXOWLSOH WUDYHUVHV DW WKH VDPH ORFDWLRQ ZHUH WDNHQ DW [E DQG DQG DUH VKRZQ LQ )LJ 7KHVH

PAGE 113

ORFDWLRQV ZHUH FKRVHQ EHFDXVH WKH\ GLVSOD\HG WKH OHDVW UHSHDWDELOLW\ RI DOO WKH WUDYHUVHV PHDVXUHG )LJXUH Df VKRZV WKH OHDVW UHSHDWDEOH GDWD ORFDWLRQ DW [E WKDW LV DOVR WKH VWUHDP ORFDWLRQ ZKHUH WKH VKHDU OD\HUV VWDUW WR VLJQLILFDQWO\ LQWHUDFW ZLWK WKH ZDOO DV HYLGHQFHG E\ WKH WDLOV RI WKH WUDYHUVHV KDYLQJ YDOXHV RI 3SLW3SLLPD[fa DV FRPSDUHG WR WKH YDOXH DW WKH LQOHW WR WKH PL[LQJ VHFWLRQ RI 3SLW3SLWPD[fa ,W FDQ EH VHHQ WKDW WKHUH LV D VLJQLILFDQW GLIIHUHQFH EHWZHHQ WKH WZR WUDYHUVHV DQG VXJJHVWV WKDW WKH IORZ LQ WKLV ORFDWLRQ LV XQVWHDG\ DQG SUREDEO\ WKUHHGLPHQVLRQDO )LJXUH Ef VKRZV WKUHH WUDYHUVHV DW [E WKDW LV WKH VHFRQG OHDVWUHSHDWDEOH WUDYHUVH ORFDWLRQ $V ZLOO EH VKRZQ EHORZ WKLV FRUUHVSRQGV WR DSSUR[LPDWHO\ WKH HQG RI WKH VXSHUVRQLF UHJLRQ 7KH UHSHDWDELOLW\ IRU WKLV FDVH LV IDU EHWWHU WKDQ IRU [E ,Q ERWK RI WKHVH FDVHV WKH ORZHU VKHDUOD\HU VKRZV OHVV UHSHDWDELOLW\ WKDQ WKH XSSHU OD\HU VXJJHVWLQJ WKDW WKH LQWHUDFWLRQ ZLWK WKH ORZHU ZDOO SDUWLFLSDWHV VWURQJO\ LQ WKH GHYHORSPHQW RI WKH IORZ GRZQVWUHDP RI WKH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV VWDUW WR LQWHUDFW ZLWK WKH ZDOOV 7R DLG WKH UHDGHU LQ UHODWLQJ WKH WUDYHUVH UHVXOWV WR RWKHU FRPPRQ IORZ SDUDPHWHUV )LJ VKRZV WKH FHQWHUOLQH YDOXHV RI SUHVVXUH GHQVLW\ 0DFK QXPEHU YHORFLW\ DQG G\QDPLF SUHVVXUH FDOFXODWHG IURP WKH LPSDFWSUHVVXUH WUDYHUVHV XVLQJ WKH PHWKRG GHVFULEHG LQ $SSHQGL[ % 6LPLODULW\ 3URILOHV 6LPLODULW\ SURILOHV XVLQJ WKH LPSDFW SUHVVXUH DUH FRQVWUXFWHG IRU WKH WUDYHUVHV ZKHUH WKH SULPDU\ SRWHQWLDO FRUH VWLOO H[LVWV 7KH UHDVRQ IRU QRW FRQYHUWLQJ WKHP WR YHORFLW\ SURILOHV LV WKDW WKH DVVXPSWLRQ WKDW WKH VWDWLF SUHVVXUH DW WKH ZDOO LV WKH VDPH DV DW WKH FHQWHU RI WKH PL[LQJ WXEH LV QRW DOZD\V DFFXUDWH HVSHFLDOO\ LQ WKH SUHVHQFH RI ILQLWHVWUHQJWK ZDYHV 7KLV KDV DOUHDG\ EHHQ GHPRQVWUDWHG LQ 6HFWLRQ ,W LV DOVR QHFHVVDU\ WR FRXQWHU WKH DUJXPHQW WKDW VLPLODULW\ SURILOHV IRU YHORFLW\ FDQ EH FRPSDUHG WR VLPLODULW\ VROXWLRQV GHULYHG XVLQJ DQ ,OOLQJZRUWK6WHZDUWVRQ WUDQVIRUPDWLRQ 7KHVH

PAGE 114

PHWKRGV FDQQRW FRPSDUH WR D VROXWLRQ RI WKH 1DYLHU6WRNHV HTXDWLRQV FORVHG ZLWK D VWDWH RIWKHDUW WXUEXOHQFH PRGHO DQG FRPSXWHG RQ D IDVW GLJLWDO FRPSXWHU )URP WKH FRPSXWHU VLPXODWLRQV LW LV YHU\ HDV\ WR RXWSXW WKH LPSDFW SUHVVXUH SURILOHV DQG LW LV ZLWK WKLV LQ PLQG WKDW WKH LPSDFWSUHVVXUH VLPLODULW\ VROXWLRQV DUH SUHVHQWHG KHUH )LJXUH VKRZV D SORW RI WKH VLPLODULW\ SDUDPHWHUV Q DJDLQVW U_ WKDW DUH GHILQHG DV f \\mb 9 \b \b f S S UB U SLW SLWb 3SLW M b a3SLW b f ZKHUH DQG DQG DUH SORWWHG IRU WUDYHUVHV IURP [E WR 7KH UDZ GDWD SURILOHV KDYH EHHQ FHQWHUHG ZKHUH WKH YDOXH RI 3SLW3SLWPD[f 7KH HUURU IXQFWLRQ FXUYHV VKRZQ LQ WKH ILJXUH DUH JLYHQ E\ \[b \S3LWVbf SSLWVb -A^SSLWPD[f APLQf@SAPLQf f Uf HAIf 7KH ODVW WUDYHUVH LV DIWHU WKH SULPDU\ SRWHQWLDOFRUH KDV HQGHG DQG DOWKRXJK LW IROORZV WKH HUURU FXUYH LW LV QRW DV VPRRWK DV WKH XSVWUHDP SURILOHV

PAGE 115

,W LV LQWHUHVWLQJ WR QRWH WKDW WKH VSUHDG LQ WKH VLPLODULW\ SURILOHV IRU WKH XSSHU VKHDUOD\HU LV DERXW WZLFH WKDW RI WKH ORZHU RQH $OVR IRU ERWK OD\HUV WKH SURILOHV DUH JHQHUDOO\ RQ WKH SRVLWLYH VLGH RI WKH HUURU IXQFWLRQ 7KLV LV FRQWUDU\ WR LQWXLWLRQ DV RQH ZRXOG H[SHFW WKH SURILOHV RQ HLWKHU VLGH RI WKH FHQWHUOLQH WR EH PLUURU LPDJHV RI HDFK RWKHU 7KLV FDQ EH H[SODLQHG LQ WHUPV RI WKH YRUWLFLW\ WKLFNQHVV JURZWKUDWH GHILQHG DV $ 8[ HX G\ PD[ f ,W FDQ EH LQIHUUHG IURP WKH LPSDFWSUHVVXUH SURILOHV WKDW WKH YRUWLFLW\ WKLFNQHVV JURZWKUDWH RI WKH ORZHU VKHDUOD\HU DW [E DQG LV OHVV WKDQ WKDW IRU WKH WUDYHUVHV IXUWKHU GRZQVWUHDP ,Q WKH XSSHU OD\HU DW [E WKHUH LV D GLVWLQFW GLVWXUEDQFH WKDW SURSDJDWHV ZHOO LQWR WKH XSSHU VHFRQGDU\IORZ ,Q WKH VDPH UHJLRQ LQ WKH ORZHU OD\HU WKHUH DUH DOVR GLIIHUHQFHV LQ WKH YRUWLFLW\ WKLFNQHVV FRPSDUHG WR WKH HUURU IXQFWLRQ DQG WKH GRZQVWUHDP SURILOHV +HQFH LW FDQ EH FRQFOXGHG WKDW YRUWLFLW\ JHQHUDWHG IURP WKH WUDLOLQJ HGJH RI WKH QR]]OH UHVXOWV LQ QRQVLPLODULW\ RI WKH YHORFLW\ SURILOHV DW OHDVW XS WR [Ea 7KLV GLVWDQFH LV MXVW RYHU IRXU WLPHV ORQJHU WKDQ [A DQG DJUHHV ZLWK WKH /'9 PHDVXUHPHQWV RI *RHEHO DQG 'XWWRQ f ZKR IRXQG HTXLYDOHQW YDOXHV RI WKLV UDWLR RI IRU 0 DQG IRU 0F *URZWK5DWHV 7KH HGJHV RI WKH VKHDU OD\HUV ZKLFK DUH GHILQHG DW WKH SRVLWLRQV \Ar DQG \ DUH VKRZQ LQ )LJ $W [E LW FDQ EH VHHQ WKDW WKH XSSHU VKHDU OD\HU IRUPV RQ WKH SULPDU\ VLGH RI WKH QR]]OH WUDLOLQJHGJH FRQWUDU\ WR H[SHFWDWLRQ 7KLV FDQ EH H[SODLQHG E\ WKH REVHUYDWLRQ LQ WKH 6FKOLHUHQ SKRWRJUDSKV WKDW VKRZ DQ H[SDQVLRQ ZDYH H[WHQGLQJ IURP LQVLGH WKH QR]]OH WR GRZQVWUHDP RI WKH QR]]OH OLS $Q REOLTXH VKRFN IRUPV DW WKH OLS DQG FURVVHV WKH H[SDQVLRQ ZDYH 6WUHDPOLQH IORZ FORVH WR WKH ZDOO SDVVLQJ WKH XSSHU

PAGE 116

OLS LV WXUQHG WRZDUGV WKH REOLTXH VKRFN HPDQDWLQJ IURP WKH OLS )ROORZLQJ WKLV WKH VWUHDPOLQH LV WXUQHG IXUWKHU LQ WKH VDPH GLUHFWLRQ ZKHQ LW FURVVHV DQ REOLTXH VKRFN IRUPHG E\ WKH UHIOHFWLRQ RI WKH H[SDQVLRQ ZDYH IURP WKH IUHH ERXQGDU\ 7KLV UHVXOWV LQ WKH REVHUYHG VKHDUOD\HU SRVLWLRQ $OVR IURP )LJ LW FDQ EH LQIHUUHG WKDW b PRUH DLU IORZV WKURXJK WKH XSSHU VHFRQGDU\VWUHDP LQOHW WKDQ WKH ORZHU RQH )LJXUH DOVR VKRZV WKDW WKH VKHDU OD\HU GRHV QRW JURZ XQWLO DIWHU WKH VHFRQG WUDYHUVH DW [E ZKLFK LV WZLFH DV ORQJ DV WKDW GHWHUPLQHG IURP WKH YLVXDO REVHUYDWLRQV ,W FDQ EH VHHQ WKDW WKH SULPDU\VKHDUOD\HU ERXQGDULHV QDUURZ XQWLO [E} ZKLFK LQGLFDWHV WKH HQG RI WKH SULPDU\ SRWHQWLDOFRUH 7KH VHFRQGDU\VKHDU OD\HU ERXQGDULHV LQGLFDWH WKDW WKH VKHDUOD\HU UHDFKHV WKH WRS DQG ERWWRP ZDOOV DURXQG [E )LJXUH VKRZV WKH WKLFNQHVV RI WKH VKHDU OD\HU DV D IXQFWLRQ RI VWUHDPZLVH SRVLWLRQ $ OLQHDU OHDVW VTXDUHV ILW RI WKH SULPDU\ SRWHQWLDOFRUH GDWD H[FOXGLQJ WKH GDWD DW [E UHVXOWV LQ VKHDUOD\HU JURZWKUDWHV RI f f ZKHUH \b \b t [[ f SLW R ,W FDQ EH VHHQ WKDW WKHUH LV H[FHOOHQW DJUHHPHQW EHWZHHQ WKH XSSHU DQG ORZHU JURZWK UDWHV DQG WKDW WKH LPSHUIHFWLRQ RI WKH QR]]OH IORZ KDV QR PHDVXUDEOH HIIHFW XSRQ WKH XSSHU

PAGE 117

VKHDUOD\HU JURZWK UDWH 7KH DYHUDJH JURZWKUDWH RI WKH VKHDU OD\HUV FDQ WKXV EH TXRWHG DV f n SX 7KHVH UDWHV FDQ EH FRPSDUHG WR WKH H[SHULPHQWDO DQG WKHRUHWLFDO ZRUN RI 3DSDPRVFKRX f DQG 'LPRWDNLV f UHVSHFWLYHO\ 7KH YDOXH IRU WKH JURZWK UDWH IRU WKH LQFRPSUHVVLEOH IUHH VKHDUOD\HU LV JLYHQ E\ (T %f DQG XVLQJ WKH YDOXH RI H VXJJHVWHG E\ 3DSDPRVFKRX JLYHV WKH YDOXH nS8 $ FXUYH ILW WR 3DSDPRVFKRXnV H[SHULPHQWDO LPSDFWSUHVVXUH GDWD %HQMDPLQ f JLYHV WKH UDWLR RI WKH FRPSUHVVLEOH VKHDUOD\HU JURZWKUDWH FRPSDUHG WR WKH HTXLYDOHQW LQFRPSUHVVLEOH VKHDUOD\HU JURZWKUDWH ZLWK WKH VDPH YHORFLW\ DQG GHQVLW\ UDWLRV DQG VSHFLILF KHDW UDWLRV DV f )LJXUH VKRZV D SORW RI WKLV QRUPDOL]HG JURZWKUDWH FXUYH WKH SUHVHQW GDWD SRLQW DQG D FRPSLODWLRQ RI RWKHU UHVHDUFKHUVf GDWD )RU WKH FXUUHQW FDVH I^0F FRPSDUHG WR WKH SUHVHQW H[SHULPHQWDO YDOXH RI )LJXUH VKRZV WKDW WKH H[SHULPHQWDO GDWD JHQHUDOO\ OLHV RQ RU EHORZ )URP IXUWKHU DQDO\VLV RI WKH H[SHULPHQWV RI %HQMDPLQ HW DO f LW LV REVHUYHG WKDW WKH GDWD OLHV RQ WKH FXUYH ZKHQ DQG EHORZ WKH FXUYH ZKHQ RU ZKHQ WKH SULPDU\ SRWHQWLDOFRUH H[WHQGV EH\RQG WKH HQG RI WKH PL[LQJ VHFWLRQ +HQFH LW FDQ EH FRQFOXGHG ZLWK JRRG FHUWDLQW\ WKDW FRPSUHVVLEOH VKHDUOD\HUV LQ WZRGLPHQVLRQDO FRQVWDQWDUHD HMHFWRUV KDYH WKH VDPH JURZWK UDWHV DV VLPLODUO\FRQGLWLRQHG IUHH VKHDUOD\HUV IRU [[AF/M DQG /M/

PAGE 118

(QWUDLQPHQW )URP WKHVH REVHUYDWLRQV RQ JURZWK UDWH LW EHFRPHV DSSDUHQW WKDW WKH HQWUDLQPHQW EHKDYLRU RI WKH VHPLFRQWDLQHG DQG HMHFWRU VKHDUOD\HUV FDQ EH DIIHFWHG E\ FRQWDLQPHQW DQG WKDW WKH HIIHFW FDQ EH D UHGXFWLRQ LQ JURZWKUDWH 'LPRWDNLV f SURSRVHG WKDW WKH HQWUDLQPHQW UDWLR LV D IXQFWLRQ RI WKH YHORFLW\ DQG GHQVLW\ UDWLRV IRU WKH LQFRPSUHVVLEOH VKHDUOD\HU VSHFLILFDOO\ V f f )RU LQFUHDVLQJ YHORFLW\ UDWLR DQG FRQVWDQW GHQVLW\ UDWLR WKH ORFDO HQWUDLQPHQW UDWLRV LQFUHDVH +RZHYHU IRU LQFUHDVLQJ GHQVLW\ UDWLR WKH ORFDO PDVVHQWUDLQPHQW UDWLR LQFUHDVHV ZKLOH WKH ORFDO YROXPHWULFHQWUDLQPHQW GHFUHDVHV )RU WKH HMHFWRU VKHDUOD\HU ZKHUH DQG GRZQVWUHDP RI /A[A WKH ERXQGDU\ FRQGLWLRQ IRU WKH ORZVSHHG VLGH RI WKH VKHDUOD\HU EHFRPHV WKH IUHHVWUHDP FRQGLWLRQ DW WKH HGJH RI WKH ZDOO ERXQGDU\OD\HU 7KLV ERXQGDU\ FRQGLWLRQ LV DOVR D IXQFWLRQ RI VWUHDPZLVH SRVLWLRQ +HQFH WKH HIIHFWLYH VHFRQGDU\GHQVLW\ DQG YHORFLW\ ERWK LQFUHDVH DQG UHVXOWV LQ ORFDOO\ LQFUHDVLQJ YDOXHV RI WKH YHORFLW\ DQG GHQVLW\ UDWLRV )RU WKH FXUUHQW H[SHULPHQWDO FDVH ZKHUH /!/c DQG LQ WKH UHJLRQ GRZQVWUHDP RI /M;JS WKH ERXQGDU\ FRQGLWLRQ IRU ZKDW ZDV WKH KLJKVSHHG VLGH RI WKH VKHDUOD\HU GLVDSSHDUV $W WKH FHQWHUOLQH WKHUH LV QR IUHHVWUHDP IOXLG WR EH LQGXFWHG LQWR WKH VKHDU OD\HU VR WKDW WKH KLJK DQG ORZVSHHG ERXQGDU\ FRQGLWLRQV QRZ EHFRPH HTXDO WR WKH

PAGE 119

XSSHU DQG ORZHU VHFRQGDU\ SRWHQWLDO IORZ FRQGLWLRQV UHVSHFWLYHO\ ,Q DQ LGHDO IORZ WKHVH FRQGLWLRQV ZRXOG EH LGHQWLFDO DQG UHVXOW LQ XQLW\ YDOXHV RI ERWK WKH PDVV DQG YROXPHWULF ORFDOHQWUDLQPHQW UDWLRV +RZHYHU )LJ Ef VKRZV WKDW WKH SURILOH DW [E LV QRW V\PPHWULF DQG EHFRPHV OHVV V\PPHWULF E\ [E 7KLV OHDGV WR WKH FRQFOXVLRQ WKDW WKH ORFDO HQWUDLQPHQW SURFHVV LV DV\PPHWULF DQG LW LV WKLV DV\PPHWU\ FRPELQHG ZLWK WKH UHTXLUHPHQW WKDW WKH RYHUDOO HQWUDLQPHQW UDWLRV PXVW EH VDWLVILHG WKDW SURYLGH WKH FRQGLWLRQV WR JHQHUDWH WKH ODUJH YRUWLFLW\ QHFHVVDU\ WR SURGXFH WKH XQUHSHDWDEOH WUDYHUVHV DW [E DQG VKRZQ LQ )LJ Df 7KH FRPSUHVVLEOH IUHH VKHDUOD\HU HQWUDLQPHQW UDWLRV FDQ EH SUHGLFWHG E\ PXOWLSO\LQJ (TV DQG E\ WKH QRUPDOL]HG JURZWK UDWH 'LPRWDNLV f 7KLV OHDGV WR SUHGLFWHG YDOXHV IRU WKH VKHDUOD\HU HQWUDLQPHQW LQ UHJLRQ RI (A2 DQG (P 7KH RYHUDOO HQWUDLQPHQW UDWLRV JLYHQ LQ 7DEOH DUH A DQG (P DQG DUH DERXW b JUHDWHU WKDQ WKH FDOFXODWHG YDOXHV )LJXUH FOHDUO\ VKRZV D GLVWLQFW LQFUHDVH LQ WKH DQJOH RI WKH VHFRQGDU\ SRWHQWLDO IORZVKHDUOD\HU ERXQGDULHV DW [E} LQ DJUHHPHQW ZLWK WKH DERYH VFHQDULR &RQWRXU 3ORWV DQG 9LVXDOL]DWLRQV &RQWRXU SORWV DQG FRORU YLVXDOL]DWLRQV RI WKH IORZILHOGV ZHUH JHQHUDWHG IURP WKH LPSDFWSUHVVXUH WUDYHUVH GDWD 7ZR GLIIHUHQW VRIWZDUH SDFNDJHV ZHUH XVHG f )OR*5$) LV D 3&EDVHG JUDSKLFV VRIWZDUH SDFNDJH GHYHORSHG LQ WKH PHFKDQLFDO HQJLQHHULQJ GHSDUWPHQW DW WKH 8QLYHUVLW\ RI )ORULGD )RU FRQWRXU SORWV WKH FRGH ILQGV D FRQWRXU OHYHO E\ VHDUFKLQJ LQZDUG IURP WKH ERXQGDULHV XVLQJ D OLQHDU LQWHUSRODWLRQ VFKHPH 2QFH D FRQWRXU YDOXH LV ORFDWHG LW LV IROORZHG XQWLO QR DGMDFHQW FHOO FRQWDLQV WKH GHVLUHG YDOXH

PAGE 120

f )$67 1$6$ $PHV 5HVHDUFK &HQWHU f LV D FRPSUHKHQVLYH ZRUNVWDWLRQEDVHG IORZ DQDO\VLV VRIWZDUH WRRONLW WKDW ZDV UXQ RQ D VLQJOHSURFHVVRU 6LOLFRQ *UDSKLFV ,ULV &ULPVRQ FRPSXWHU 7KH FRORU YLVXDOL]DWLRQ FDSDELOLW\ RI )$67 LV XVHG WR SURYLGH HQKDQFHG LQVLJKW LQWR WKH FXUUHQW H[SHULPHQWDO UHVXOWV 7R YDOLGDWH WKDW WKH YLVXDOL]DWLRQV JHQHUDWHG E\ WKH WZR VRIWZDUH SDFNDJHV ZHUH DFFXUDWH FRQWRXU SORWV JHQHUDWHG ZLWK )$67 DQG )OR*5$) ZHUH FRPSDUHG DQG IRXQG WR EH LGHQWLFDO &RQWRXU 3ORWV &RQWRXU SORWV RI WKH H[SHULPHQWDO IORZILHOG GHYHORSHG IURP WKH LPSDFWSUHVVXUH WUDYHUVHV DUH VKRZQ LQ )LJ $OO WKHVH SORWV H[FHSW IRU WKH VWDWLF ZDOOSUHVVXUH DUH FDOFXODWHG IURP GDWD SRLQWV RQ D JULG RI SRLQWV LQ WKH \GLUHFWLRQ E\ SRLQWV LQ WKH [GLUHFWLRQ 7KH SK\VLFDO GLPHQVLRQV DUH PP E\ PP 7KH VWDWLF ZDOO SUHVVXUH FRQWRXUV DUH FDOFXODWHG IURP GDWD SRLQWV RQ D JULG RI SRLQWV LQ WKH \ GLUHFWLRQ E\ SRLQWV LQ WKH [GLUHFWLRQ DQG WKH SK\VLFDO GLPHQVLRQV DUH PP E\ PP 7ZR UHJLRQV FDQ HDVLO\ EH REVHUYHG LQ DOO WKH SORWV H[FHSW IRU WKH VWDWLF ZDOO SUHVVXUH f WKH SULPDU\ SRWHQWLDOFRUH H[WHQGLQJ WR [E} DQG f VHFRQGDU\ SRWHQWLDOIORZ H[WHQGLQJ WR [Em RQ WKH ORZHU VLGH 2Q WKH XSSHU VLGH XQPL[HG IORZ PD\ EH WUDYHOLQJ DORQJ WKH ZDOO DOO WKH ZD\ WR [E} HYHQ WKRXJK FRPSUHVVLRQ LV WDNLQJ SODFH

PAGE 121

7KH VWDWLF ZDOOSUHVVXUH FRQWRXU SORW VKRZV WKDW WKH VWDWLF SUHVVXUH LV QHDUO\ FRQVWDQW HYHU\ZKHUH LQ [] SODQHV H[FHSW LQ WKH UHJLRQ [E ZLWKLQ WKH SULPDU\ SRWHQWLDOFRUH DQG LQ WKH VKHDUOD\HUV IRU [EO ,QFUHDVHG GHWDLO RI WKH G\QDPLF SUHVVXUH LV VKRZQ LQ )LJ 7R JHW WKH LQFUHDVHG GHWDLO WKH FRQWRXUV IRU WKHVH SORWV ZHUH FDOFXODWHG XVLQJ ILYH WLPHV WKH GHQVLW\ RI GDWD LQ WKH \GLUHFWLRQ FRPSDUHG WR WKH SORWV LQ )LJ )LJXUH Df FOHDUO\ VKRZV WKH SDWK RI WKH PRPHQWXP GHILFLW PDQLIHVWLQJ IURP WKH ERXQGDU\ OD\HUV DW WKH WUDLOLQJ HGJHV RI WKH QR]]OH 7KH ORZHU PRPHQWXPGHILFLW WUDYHOV QHDUO\ KRUL]RQWDOO\ ZKLOH WKH XSSHU RQH PRYHV XS DW DQ DQJOH 7KH UHDVRQ IRU WKH XSSHU PRPHQWXPGHILFLWnV SDWK LV WKRXJKW WR EH LQ FRQQHFWLRQ ZLWK WKH LPSHUIHFW QR]]OH IORZ GLVFXVVHG LQ 6HFWLRQ %RWK PRPHQWXPGHILFLWV DUH FRQYHFWHG WR WKH HQG RI WKH SULPDU\ SRWHQWLDOFRUH DQG WKHQ GLIIXVH LQWR WKH VXUURXQGLQJ IORZ $W [E DQG [Ep GLVWLQFW V\PPHWULF EXOJHV FDQ EH VHHQ RQ WKH VHFRQGDU\ VLGH RI WKH VKHDUOD\HUV $OVR DW [Em V\PPHWULF EXOJHV FDQ EH VHHQ RQ WKH SULPDU\ VLGH RI WKH VKHDUOD\HUV 7KHVH DUH EHOLHYHG WR EH LQGLFDWLYH RI KLJK ORFDO HQWUDLQPHQW LQ DJUHHPHQW ZLWK WKH ODUJH HOOLSWLFDO VWUXFWXUHV VHHQ LQ WKH 6FKOLHUHQ YLVXDOL]DWLRQV 2Q WKH FHQWHUOLQH DW [E} D VWHHS QHJDWLYHJUDGLHQW RI G\QDPLF SUHVVXUH LV REVHUYHG LQ WKH [GLUHFWLRQ WKH UHVXOW RI VXGGHQ HQWUDLQPHQW DURXQG WKH HQG RI WKH SULPDU\ SRWHQWLDOFRUH ,Q )LJ Ef D ODUJH YRUWLFDO VWUXFWXUH LV YLVLEOH FHQWHUHG DW [Em RQ WKH FHQWHUOLQH 7KHVH REVHUYDWLRQV VXJJHVW WKDW WKHUH DUH YHU\ KLJK ORFDO VKHDU VWUHVVHV WKDW DUH QHFHVVDU\ WR VDWLVI\ WKH HQWUDLQPHQW UDWLR FULWHULD GLVFXVVHG LQ WKH SUHYLRXV VHFWLRQ 2XWVLGH RI WKLV YRUWLFDO VWUXFWXUH OLQHV RI FRQVWDQW G\QDPLF SUHVVXUH DUH VWUDLQHG VR WKDW ILQJHUV DSSHDU LQ WKH ILHOG %HWZHHQ WKH ILQJHUV VPDOO YRUWLFHV GHYHORS WKDW DSSHDU DV WKH VKHDUOD\HU UHDFKHV WKH ZDOO 7KH PRVW XSVWUHDP YRUWLFHV DUH ORFDWHG DW [E \Ef f DQG DW WKH VDPH [ ORFDWLRQ DGMDFHQW WR WKH XSSHU DQG ORZHU

PAGE 122

ZDOOV 7KLV LV WKH UHVXOW RI VHFRQGDU\ SRWHQWLDOIOXLG EHLQJ LQGXFWHG LQWR WKH VKHDULQJ IOXLG DQG UHPDLQLQJ ODUJHO\ LUURWDWLRQDO )LJXUH Ff VKRZV WKDW DW \E} DQRWKHU OLQH RI HGGLHV H[WHQGV IURP WKH XSSHU DQG ORZHU ZDOOV LQGLFDWLQJ IXUWKHU HQWUDLQPHQW RI VHFRQGDU\ IOXLG 7KLV VXJJHVWV WKDW VHFRQGDU\ IOXLG KDV VOLSSHG DORQJ WKH ZDOOV IRU DERXW QRQGLPHQVLRQDO XQLWV :KLOH WKLV IOXLG LV VOLSSLQJ WKH IOXLG LQ WKH VKHDU OD\HU XQGHUJRHV GLDVWURSK\ LUURWDWLRQDO IOXLG LV FRUUXSWHG ZLWK YRUWLFLW\ WKURXJK WKH DFWLRQ RI YLVFRVLW\ DV LW FDVFDGHV WR WKH .ROPRJRURY VFDOHf ZKLFK FDXVHV LWV VWUDLQ ILHOG WR UHOD[ :KHQ WKH VWUDLQ LQ WKH VKHDU OD\HU LV VXLWDEO\ UHOD[HG WKH VKHDU OD\HU FDQ HQWUDLQ WKH IOXLG VOLSSLQJ GRZQ WKH ZDOO DV LV VHHQ DW [E} $V WKH ILQJHUV RU HGGLHV GR QRW DSSHDU IXUWKHU GRZQVWUHDP RI WKLV ORFDWLRQ LW FDQ EH FRQFOXGHG WKDW WKH IOXLG PDLQO\ XQGHUJRHV GLDVWURSK\ IRU [E! &RORU 9LVXDOL]DWLRQV )LJXUH VKRZV FRORU YLVXDOL]DWLRQV RI WKH LPSDFWSUHVVXUH WUDYHUVHV 7KHVH SORWV DUH FDOFXODWHG IURP GDWD SRLQWV RQ D JULG RI SRLQWV LQ WKH \GLUHFWLRQ E\ SRLQWV LQ WKH [GLUHFWLRQ 7KH SK\VLFDO JULG VL]H LV WKH VDPH DV LQ )LJ DQG WKH FRQWRXU OHYHOV FDQ WKXV EH UHDG IURP WKDW ILJXUH ,W FDQ EH VHHQ WKDW WKH OHQJWK DQG VKDSH RI WKH SULPDU\ FRUH LV FOHDUO\ LGHQWLILDEOH DQG VLPLODU IRU DOO RI WKH SORWV )RU [E WKH YHORFLW\ ILHOG GLIIXVHV PRVW UDSLGO\ IROORZHG E\ 0DFK QXPEHU DQG GHQVLW\ 7KH VWDJQDWLRQ DQG G\QDPLF SUHVVXUH ILHOGV GLIIXVH VORZHVW LQ WKLV UHJLRQ ,Q WKH UHJLRQ [E WKH HIIHFW RI WKH XQUHSHDWDEOH WUDYHUVHV VKRZ XS DV WKH ]LJ]DJJLQJ RI WKH FRQWRXU OHYHOV +HQFH WKH FRQWRXUV LQ WKLV UHJLRQ DUH UHSUHVHQWDWLYH RI WKH IORZ EXW DUH QRW WUXH PHDQ FRQWRXUV )XUWKHU GRZQVWUHDP RI WKLV [Eef WKH IORZILHOG SDUDPHWHUV GLIIXVH IDLUO\ VWHDGLO\ $OVR WKH GHQVLW\ ILHOG GLIIHUV IURP WKH RWKHU ILHOGV LQ WKLV UHJLRQ DV WKH GHQVLW\ LQFUHDVHV LQVWHDG RI GHFUHDVHV

PAGE 123

7DEOH ([SHULPHQWDO IORZ FRQGLWLRQV 3DUDPHWHU 3ULPDU\ 6HFRQGDU\ *DV $LU $LU 0 $ cPPf s s \c S N3Df sbf sbf 3c N3Df sbf sbf 7R$9 sbf sbf 3.f PcNJVf 9c P Vf 8c PVf 3RAJPf 3 NJPf 4c N3Df F PVf 0Fc cLc ML1 VP f 5HnPPnf

PAGE 124

7DEOH &DOFXODWHG QRQGLPHQVLRQDO DQG IORZ SDUDPHWHUV 3DUDPHWHU 9DOXH ( 9 U V 8F PVf XDYH PVf $& PVf A PVf 0 0 U 9DYH NWVOPf 5Hn PPnf 5HM[ ff 5HnZIDP Bf 6nR 9 SLW n YWV 7DEOH /DPLQDUWR7XUEXOHQW7UDQVLWLRQ 3DUDPHWHUV 5H 5HU ; [U 5HH H H 5HV [V [O

PAGE 125

Df Ef )LJXUH 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW

PAGE 126

)LJXUH 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r IURP KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW )LJXUH 6FKOLHUHQ YLVXDOL]DWLRQ .QLIH HGJH DW r IURP KRUL]RQWDOf Df ORZ FRQWUDVW Ef KLJK FRQWUDVW R

PAGE 127

)LJXUH 6KDGRZJUDSK YLVXDOL]DWLRQ R 2Y

PAGE 128

)LJXUH 7\SLFDO PDQRPHWHU UHDGLQJ 7KUHH UHIHUHQFH SUHVVXUHV RQH IRU HDFK PHUFXU\ UHVHUYRLUf DUH LQGLFDWHG E\ WXEHV DQG IURP WKH OHIW )URP OHIW WR ULJKW WKH UHVW RI WKH WXEHV LQGLFDWH LQFUHDVLQJ SUHVVXUH LQ WKH GRZQVWUHDP GLUHFWLRQ

PAGE 129

Df [E )LJXUH 0HDQ VWDWLFSUHVVXUH PHDVXUHPHQWV RQ WKH ZDOO b FRQILGHQFH LQWHUYDOV DUH VKRZQ Df &RPSDULVRQ RI WKH WKUHH W\SHV RI VWDWLFSUHVVXUH PHDVXUHPHQWV PDGH RQ WKH OHIW ZDOO RI WKH PL[LQJ VHFWLRQ Ef 'LIIHUHQFH EHWZHHQ WKH VWUDLQ JXDJH DQG PDQRPHWHU VWDWLFSUHVVXUH UHDGLQJV RQ WKH ZDOO

PAGE 130

)LJXUH &RPSDULVRQ RI PDQRPHWHU VWDWLFSUHVVXUH PHDVXUHPHQWV RQ WKH OHIW DQG ULJKW ZDOOV RI WKH PL[LQJ VHFWLRQ

PAGE 131

Df ; ( )LJXUH ,PSDFWSUHVVXUH WUDYHUVHV Df DRFEIFV Ef A[EA

PAGE 132

,OO )LJXUH 8QUHSHDWDEOH LPSDFWSUHVVXUH WUDYHUVHV Df [E Ef [E

PAGE 133

D D QR ‘ )LJXUH 1RUPDOL]HG FHQWHUOLQH YDOXHV RI YHORFLW\ GHQVLW\ DQG G\QDPLF SUHVVXUH )LJXUH 1RUPDOL]HG LPSDFWSUHVVXUH SORWWHG DJDLQVW QRUPDOL]HG VKHDUOD\HU WKLFNQHVV (UURU IXQFWLRQ VKRZQ E\ VROLG OLQH

PAGE 134

\b\bYE \E 6KHDUOD\HU HGJHV GHWHUPLQHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV )LJXUH 0HDVXUHG VKHDUOD\HU WKLFNQHVVHV JURZWK UDWHV DQG YLUWXDO RULJLQV

PAGE 135

)LJXUH &RPSDULVRQ RI QRUPDOL]HG JURZWKUDWH IRU HMHFWRU VKHDUOD\HUV FXUUHQW H[SHULPHQW DQG %HQMDPLQ HW DO ff DQG IUHHVKHDU OD\HUV

PAGE 136

)LJXUH &RQWRXU SORWV JHQHUDWHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV Df 3SL3A Ef 33 Ff SS Gf 88 Hf 0

PAGE 137

)LJXUH FRQWLQXHG If 44L Jf 33A

PAGE 138

[E )LJXUH 'HWDLOHG G\QDPLFSUHVVXUH FRQWRXU SORW JHQHUDWHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV

PAGE 139

f§ f§ L L L L L L L [E )LJXUH aFRQWLQXHG

PAGE 140

\E [E )LJXUH f§FRQWLQXHG

PAGE 141

)LJXUH &RORU SORWV RI PHDQ IORZ SDUDPHWHUV )URP WRS WR ERWWRP DUH LPSDFW SUHVVXUH 3SLW VWDJQDWLRQ SUHVVXUH 3 GHQVLW\ S YHORFLW\ 8 0DFK QXPEHU 0 DQG G\QDPLF SUHVVXUH 4 7KH PD[LPXP FRQWRXU OHYHOV DUH ZKLWH DQG WKH ORZHVW DUH EODFN

PAGE 142

[E

PAGE 143

&+$37(5 (;3(5,0(17$/ 5(68/76f§7,0($&&85$7( 0($685(0(176 ([SHULPHQWDO 2EMHFWLYHV 7KH FKLHI REMHFWLYH RI WKH H[SHULPHQWDO LQYHVWLJDWLRQ ZDV WKH PHDVXUHPHQW RI WLPHDFFXUDWH ZDOOSUHVVXUH RI WKH SRWHQWLDO DQG VKHDULQJ IORZV LQ D WZRGLPHQVLRQDO VLQJOHQR]]OH VXSHUVRQLF HMHFWRU GLVFKDUJLQJ LQWR D FRQVWDQWDUHD PL[LQJ WXEH 8VLQJ WKHVH PHDVXUHPHQWV D QRQLQWUXVLYH WHFKQLTXH IRU VKHDUOD\HU GHWHFWLRQ ZDV GHYHORSHG $Q H[SHULPHQWDO WHVWPDWUL[ RI RQH DQG WZRSRLQW WLPHKLVWRU\ ZDOOSUHVVXUH PHDVXUHPHQWV ZHUH SHUIRUPHG DOORZLQJ FDOFXODWLRQ RI WKH IROORZLQJ WLPH DQG IUHTXHQF\ GRPDLQ UHVXOWV URRWPHDQVTXDUH SUHVVXUH VHFRQG PRPHQWf SA 7 f VNHZQHVV RI ]HURWKGHULYDWLYH RI SUHVVXUH WKLUG PRPHQWf 6 f NXUWRVLV RI ]HURWKGHULYDWLYH RI SUHVVXUH IRXUWK PRPHQWf f

PAGE 144

SUHVVXUH FRUUHODWLRQ 5SS 5B SS [ \ ? Z Zs [[ \\n W7 >E E IL/ - Q c? [[ \\ ?E Ef r UPV ^ E f f SUHVVXUH VSHFWUDOGHQVLW\ 6 SS SS ? [ \ f§ f§r! >E E MUr LU fn I A eB =B 7 Ef Ef GU f WUDQVIHU IXQFWLRQ RI SUHVVXUH +cM \n Q rn \n f§ f§ Rf r?f MF \ A f§ f§ FR E E LM f ZKHUH n[ \ f§ f§ Y E 6SS^Xf f LV WKH DXWRFRUUHODWLRQ DW [f \f DQG [f§[ \ \ IRU LM [ [[n \ \\n IRU LM

PAGE 145

FRKHUHQFH RI SUHVVXUH SS [n \n Ef E FR 6n SS [ \ f§ f§ ?E E ? SS [n \ f§ f§ Z E E ? [ \ A f§ f§ f E E [[n \\ E f E f f 7KH GLVFUHWH FDOFXODWLRQ SURFHGXUH IRU WKH DERYH HTXDWLRQV ZDV RXWOLQHG LQ &KDSWHU 6HFRQG 7KLUG DQG )RXUWK 0RPHQWV RI 3UHVVXUH 0L[LQJ6HFWLRQ ,QOHW 0HDVXUHPHQWV ([WUD FDUH ZDV WDNHQ WR HQVXUH WKDW WKH LQOHW IORZ PHDVXUHPHQWV ZHUH DV FRQVLVWHQW DQG DFFXUDWH DV SRVVLEOH )RU HDFK RI WKH WZHOYH SUHVVXUHWUDQVGXFHU SRVLWLRQV DW OHDVW WZR VHSDUDWH PHDVXUHPHQWV RI IUDPH SRLQW ZLQGRZV SRLQWVPHDVXUHPHQWf ZHUH PDGH $OO RI WKHVH FDVHV ZHUH PHDVXUHG XVLQJ D N+] EDQGZLGWK ZLWK D UHVXOWLQJ GDWD FROOHFWLRQ WLPH RI VHFRQGV 7KH UPV SUHVVXUHV EHWZHHQ VHSDUDWH UXQV RI WKH VDPH FDVH GLIIHUHG E\ OHVV WKDQ b IRU DOO SRVLWLRQV )RU FRQILGHQFH LQWHUYDO FDOFXODWLRQV WKH GDWD ZDV VSOLW LQWR ZLQGRZV RI SRLQWV 7KH FKRLFH RI WHQ ZLQGRZV ZDV DUULYHG DW DUELWUDULO\ E\ FRPSDULQJ VHYHUDO FDVHV ZLWK GLIIHUHQW ZLQGRZ VL]HV DQG REVHUYLQJ WKDW WKH\ \LHOGHG DOPRVW LGHQWLFDO UHVXOWV 7KH b FRQILGHQFH LQWHUYDO ZDV IRXQG WR EH OHVV WKDQ sb LQ DOO FDVHV )LJXUH VKRZV SPV QRUPDOL]HG E\ ORFDO YDOXHV RI 3Z DQG 4 DV ZHOO DV SORWWHG LQ GHFLEHOV 7KH b FRQILGHQFH LQWHUYDOV DUH SORWWHG IRU SA3Z ,W FDQ EH VHHQ WKDW WKHUH LV OLWWOH GLIIHUHQFH LQ WKH VKDSHV RI WKH WKUHH FXUYHV H[FHSW IRU SA4 DW OVU\Ee 7KLV PD\ EH FDXVHG E\ WKH PHDVXUHPHQW RI WKH LPSDFW SUHVVXUH DW D

PAGE 146

GLIIHUHQW WLPH IURP SPV RU FRXOG DOVR EH DQ LQWHUIHUHQFH HIIHFW RI WKH LPSDFW SUHVVXUH SUREH 9DOXHV RI SA4 KDYH EHHQ TXRWHG LQ WKH OLWHUDWXUH E\ VHYHUDO UHVHDUFKHUV DQG WKHUH LV PXFK GLVFUHSDQF\ EHWZHHQ WKH FLWHG YDOXHV 0XOO DQG $OJUDQWL f IRXQG WKDW 3UP4 KDV D YDOXH RI DW 0 DQG OLQHDUO\ GHFUHDVHV WR D YDOXH RI DERXW IRU 0! 0HDVXUHPHQWV E\ 6FKHZH f LQ LQFRPSUHVVLEOH IORZ UHFRUGHG YDOXHV RI SA4 XVLQJ GLIIHUHQW GLDPHWHU WUDQVGXFHUV 8VLQJ WUDQVGXFHUV ZLWK QRQGLPHQVLRQDO GLDPHWHUV RI VG GX\YV PPVGAO PPf 6FKHZH IRXQG WKDW SA4 KDG D YDOXH RI IRU G DQG GHFUHDVHG DOPRVW OLQHDUO\ WR KDOI WKLV YDOXH IRU G .DUDQJHOHQ HW DO f FRQILUPHG WKHVH YDOXHV IRU G GXYV %XUWRQ f PDGH LQFRPSUHVVLEOH IORZ PHDVXUHPHQWV DQG IRXQG YDOXHV RI Sf-4 IRU VPRRWK SODWH IDYRUDEOH JUDGLHQW IORZ RI DQG URXJK SODWH IDYRUDEOH JUDGLHQW IORZ RI %XUWRQ DOVR PHDVXUHG DGYHUVH SUHVVXUHJUDGLHQW IORZV ZLWK D YDOXH RI SA40O226 IRU D VPRRWK SODWH DQG 3QQV4VV220 IRU D URXJK SODWH (FNHOPDQQ f UHSRUWV WKDW WKH GHSHQGHQFH RI WKH UDWLR 3QA4 RQ G LV QRW XQLTXH 7KH UHDVRQ IRU WKLV LV WKDW WKHUH LV D GLIIHUHQFH LQ 5H\QROGV QXPEHU WKDW QHFHVVDULO\ RFFXUV ZKHQ WZR VHQVRUV RI GLIIHUHQW GLDPHWHU KDYH HTXDO YDOXHV RI G .LVWOHU DQG &KHQ f PHDVXUHG 3QA4 XQGHU D VXSHUVRQLF ERXQGDU\ OD\HU IRU 0DFK QXPEHUV LQ WKH UDQJH KRZHYHU WKHVH PHDVXUHPHQWV ZHUH PDGH DW YHU\ ORZ 5H\QROGV QXPEHU 3UHVVXUH PHDVXUHPHQW YDOXHV IRU WKH FXUUHQW UHVHDUFK KDYH WKH IROORZLQJ UDQJHV V3QQV4V V3>PV3ZV DQG VG%BSXAO 7KH YDOXHV RI S LQ WKH VHFRQGDU\ DUH PXFK KLJKHU WKDQ DQ\ RWKHU UHSRUWHG YDOXHV GXH WR WKH DFRXVWLF FRQWULEXWLRQ IURP WKH VXSHUVRQLF SULPDU\ 7KH VNHZQHVV RI WKH LQOHW PHDVXUHPHQWV DUH SORWWHG LQ )LJ ,W FDQ EH VHHQ WKDW IRU \E! WKH VNHZQHVV UDSLGO\ EHFRPHV QHJDWLYH LQ FRQWUDVW WR WKDW IRU \E ZKLFK LV DOPRVW FRQVWDQW ZLWK D VPDOO SHDN WRZDUGV WKH FHQWHU RI WKH VHFRQGDU\ IORZ ZLWK

PAGE 147

D YDOXH RI 7KH UHDVRQ IRU WKLV UDSLG FKDQJH LV EHOLHYHG WR EH FDXVHG E\ WKH LPSHUIHFW IORZ IURP WKH SRVLWLYH WUDLOLQJHGJH RI WKH QR]]OH ZKLFK ZDV GLVFXVVHG LQ &KDSWHU 7KH VNHZQHVV LQ WKH SULPDU\ IORZ KDV D YDOXH FORVH WR ]HUR ,W FDQ EH VHHQ WKDW WKHUH LV D GLVWLQFW GHPDUFDWLRQ EHWZHHQ WKH SULPDU\ DQG VHFRQGDU\ IORZ 7KH LQOHW NXUWRVLV LV VKRZQ LQ )LJ 2Q WKH SRVLWLYH VLGH RI WKH PL[LQJ VHFWLRQ WKH NXUWRVLV ULVHV UDSLGO\ IRU \E! IURP D YDOXH RI WR $JDLQ WKLV LV D UHVXOW RI WKH LPSHUIHFW QR]]OH IORZ ,W FDQ EH VXPPDUL]HG WKDW WKH JHQHUDO WUHQG RI WKH NXUWRVLV LV WKDW LW LV QHDUO\ FRQVWDQW ZLWK D YDOXH RI DQG GHFUHDVHV WR DW WKH RXWHU HGJH RI WKH VHFRQGDU\ IORZ )XUWKHU LQVLJKW FDQ EH JDLQHG IURP WKH SUREDELOLW\ GHQVLW\ IXQFWLRQV SGIVf RI WKH SUHVVXUH PHDVXUHPHQWV DQG DUH VKRZQ LQ )LJ ,W FDQ EH VHHQ WKDW WKH SGIV DOO OLH FORVH WR WKH *DXVVLDQ GLVWULEXWLRQ KRZHYHU WKH SGIV IRU \Et OLH IXUWKHVW IURP WKH *DXVVLDQ FXUYH DQG WKH RWKHU GDWD SRLQWV 7KLV DJDLQ DWWHVWV WR WKH GLIIHUHQW IORZ FKDUDFWHULVWLFV SUHVHQW LQ WKLV UHJLRQ 7KH SGIV FDQ EH PRUH FORVHO\ LQVSHFWHG E\ FDOFXODWLQJ WKH SUREDELOLW\ : WKDW WKH ZDOO SUHVVXUH DPSOLWXGH S H[FHHGV D WKUHVKROG YDOXH Sr 7KHVH FDOFXODWLRQV DUH VXPPDUL]HG LQ 7DEOH DQG FRPSDUHG WR WKH UHVXOWV RI 6FKHZH f 7DEOH VKRZV WKDW :SSWKf DQG :ASA IRU \E GLIIHU VLJQLILFDQWO\ IURP WKH YDOXHV RI :SSWKf DQG :ASA DW WKH RWKHU YDOXHV RI \E +RZHYHU WKH YDOXHV RI :GSASA LQ WKH WKUHH FXUUHQW FDVHV DUH DOPRVW HTXDO 7KH PDMRU GLIIHUHQFHV IRU \E RFFXU IRU SWKSUPV DQG SWKSUPV! SMSQQ! WKH HIIHFW EHLQJ WKDW WKHUH DUH PRUH QHJDWLYH SUHVVXUH HYHQWV WKDQ SRVLWLYH RQHV DW \E DQG PRUH SRVLWLYH SUHVVXUH HYHQWV WKDQ QHJDWLYH RQHV DW \E f§ DQG \E ,Q FRPSDULVRQ WR 6FKHZHnV PHDVXUHPHQWV LW FDQ EH VHHQ WKDW WKHUH LV JRRG DJUHHPHQW XS WR WKH WKUHVKROG SWKSUPV s DQG YDOXHV OHVV WKDQ 6FKHZHnV IRU SWKSQQV! DQG SWE3QQV $OVR WKHUH LV DQ LQFUHDVHG QXPEHU RI SUHVVXUH HYHQWV IRU WKH FXUUHQW IORZ

PAGE 148

FRPSDUHG WR 6FKHZHnV LQ WKH UHJLRQ f§SSUPDf§ +RZHYHU DOO FDVHV LQ WKH UHJLRQ OS_3LPV KDYH SUREDELOLW\ OHVV WKDQ WKH *DXVVLDQ YDOXH $OVR WKHUH DUH IHZHU HYHQWV LQ WKLV IORZ IRU _S_SQQVD WKDQ IRU 6FKHZHnV IORZ 7KH VPDOOHU QXPEHU RI HYHQWV DW _SWK_SQQV FRPSDUHG WR 6FKHZHnV GDWD VXJJHVW WKDW WKH FXUUHQW PHDVXUHPHQWV GR QRW GHWHFW WKH VPDOOHVW VFDOHV RI WKH IORZ $OVR WKH YDOXHV IRU :_SWK_SQQVDf DUH FORVH WR WKH *DXVVLDQ YDOXHV DQG LV ZKDW 6FKHZH IRXQG ZLWK LQFUHDVLQJ WUDQVGXFHU VL]H +RZHYHU WKH REVHUYDWLRQ RI WKH LQFUHDVHG QXPEHU RI SRVLWLYH DQG QHJDWLYH SUHVVXUH HYHQWV IRU _SWK_SUPVO LQGLFDWHV WKDW WKH VWDWLVWLFV LQ WKLV H[SHULPHQW DUH WUXO\ GLIIHUHQW IURP WKH LQFRPSUHVVLEOH FDVH 7KHVH HYHQWV KDYH D VFDOH RQ WKH RUGHU RI WKH LQWHJUDO OHQJWK RI WKH LQQHU ZDOOOD\HU DQG KHQFH FRUUHVSRQG WR LQFUHDVHG LQQHU RXWHU OD\HU LQWHUDFWLRQ UHODWLYH WR LQFRPSUHVVLEOH ERXQGDU\OD\HU IORZ 6LPXOWDQHRXV PHDVXUHPHQW RI ZDOO SUHVVXUH DQG YHORFLW\ HYHQWV LQ WKLV W\SH RI IORZ LV UHTXLUHG WR FRQILUP WKLV VFHQDULR &HQWHUOLQH 0HDVXUHPHQWV 'XH WR WKH YHU\ ODUJH DPRXQW RI GDWD DQG FRPSXWDWLRQ WLPH UHTXLUHG WR VWRUH DQG DQDO\]H WKH LQOHW PHDVXUHPHQW GDWD WKH UHVW RI WKH PHDVXUHPHQWV DQG UHVXOWV SUHVHQWHG EHORZ DUH EDVHG RQ IUDPHV RI SRLQWV PHDVXUHPHQWVSRVLWLRQf ZKLFK LV RQHTXDUWHU WKH QXPEHU WDNHQ IRU WKH LQOHW PHDVXUHPHQWV 7KLV QXPEHU ZDV IRXQG WR JLYH DGHTXDWH DFFXUDF\ ZLWK DQ DYHUDJH b FRQILGHQFH OHYHO IRU SA RI sb $ SORW RI 3QQ3Z LV VKRZQ LQ )LJ ,W FDQ EH VHHQ WKDW WKHUH LV D VXGGHQ LQFUHDVH LQ SA MXVW GRZQVWUHDP RI WKH LQOHW 7KLV LV FDXVHG E\ DFRXVWLF UDGLDWLRQ IURP WKH ZDNH UHVXOWLQJ IURP WKH ERXQGDU\OD\HUV RQ WKH QR]]OH ZDOOV DQG IURP UDGLDWLRQ HPDQDWLQJ IURP WKH LQLWLDO GHYHORSPHQW RI WKH VKHDUOD\HUV )URP WKH LQOHW GRZQVWUHDP WR [E} WKHUH DUH D VHULHV RI SHDNV DQG WURXJKV ZKLFK XS WR [E} IURP WKH PHDQ PHDVXUHPHQWV ZHUH LGHQWLILHG DV FRUUHVSRQGLQJ WR ZDYHV LQ WKH IORZ )RU [E

PAGE 149

WKH PL[LQJ IORZ GRZQVWUHDP RI WKH SULPDU\ FRUH LV VWLOO VXSHUVRQLF EXW WKH DPSOLWXGHV RI WKH SHDNV DQG WURXJKV GR QRW GLPLQLVK DV ZRXOG EH H[SHFWHG IRU SXUH ZDYHV LQ D GHFHOHUDWLQJ IORZ 7KLV VXJJHVWV WKDW ODUJHVFDOH PL[LQJ RFFXUV LQ WKLV UHJLRQ 'RZQVWUHDP RI [E WKH SA FRQWLQXHV WR LQFUHDVH XQWLO LW SHDNV DW [E ZKHUH WKH IORZ KDV D 0DFK QXPEHU RI VHH )LJ f DQG WKHQ VWDUWV WR GHFUHDVH PRUH UDSLGO\ WKDQ LW DSSURDFKHG WKH SHDN )LJXUH VKRZV WKH FHQWHUOLQH VNHZQHVV 7KH LPPHGLDWH LPSUHVVLRQ LV WKDW WKH FRQILGHQFH LQWHUYDOV DUH PXFK JUHDWHU IRU [E /DUJH FRQILGHQFH LQWHUYDOV DUH REVHUYHG DW [Em DQG 7KH ODVW WZR DUH NQRZQ WR EH WKH ORFDWLRQV RI WKH HQG RI WKH SULPDU\ FRUH DQG WKH EHJLQQLQJ RI WKH LQWHUDFWLRQ RI WKH VKHDUOD\HU ZLWK WKH ZDOO UHVSHFWLYHO\ 7KH REVHUYDWLRQ DW [E DJDLQ VXSSRUWV WKH SUHPLVH WKDW ODUJHVFDOH PL[LQJ LV SUHVHQW LQ WKLV UHJLRQ 7KH UHDVRQ IRU WKH REVHUYDWLRQV DW [E DQG DUH VXVSHFWHG WR EH DVVRFLDWHG ZLWK QRLVH VRXUFHV RI WKH SULPDU\ 7DP f VKRZV IDUILHOG PHDVXUHPHQW UHVXOWV RI SA IRU DQ D[LV\PPHWULF 0DFK MHW WKDW KDV DSSDUHQW QRLVH VRXUFHV DW [' DQG ['m +H DOVR QRWHV WKDW WKH IUHTXHQF\ RI WKH QRLVH VRXUFHV GHFUHDVHV VLJQLILFDQWO\ IURP a N+] DV [' LQFUHDVHV 7KH YDOXH RI WKH VNHZQHVV LV a IRU [E DQG WKHQ GHFUHDVHV ZLWK LQFUHDVLQJ UDSLGLW\ WR D YDOXH RI f§ DW [E )LJXUH VKRZV WKH FHQWHUOLQH NXUWRVLV /DUJH YDOXHV RI FRQILGHQFH LQWHUYDOV DUH REVHUYHG DW WKH LQOHW [E} DQG WKH VDPH ORFDWLRQV DW ZKLFK VXFK REVHUYDWLRQV ZHUH PDGH IRU WKH VNHZQHVV )URP WKH REVHUYDWLRQ WKDW ERWK WKH VNHZQHVV DQG NXUWRVLV H[KLELW ZLGH FRQILGHQFH LQWHUYDOV DW WKHVH ORFDWLRQV FRPSDUHG WR RWKHU PHDVXUHPHQW ORFDWLRQV LW FDQ EH FRQFOXGHG WKDW WKH PHDVXUHPHQWV DUH HLWKHU EHLQJ GLUHFWO\ LQIOXHQFHG E\ WKH RXWHU UHJLRQ RU WKDW XQVWHDG\ DFRXVWLF VRXUFHV FDXVH WKLV HIIHFW $V LW ZLOO EH VHHQ EHORZ WKH VSHFWUDO GHQVLW\ LV YHU\ UHSHDWDEOH DW DOO IUHTXHQFLHV DQG WKLV PRVW SUREDEO\ UXOHV RXW XQVWHDG\ DFRXVWLF VRXUFHV ,I LW LV DVVXPHG WKDW WKH HIIHFWLYH WUDQVGXFHU GLDPHWHU LV ODUJHU WKDQ WKH WKLFNQHVV RI WKH LQQHU OD\HU G!f WKHQ WKH ZLGH FRQILGHQFH LQWHUYDOV

PAGE 150

IRU WKH VNHZQHVV DQG NXUWRVLV PXVW RULJLQDWH IURP WKH RXWHU OD\HU \Of DQG WKHUHIRUH IURP WKH PDLQ IORZ 2QFH DJDLQ WKLV VXJJHVWV WKH SUHVHQFH RI YLJRURXV ODUJH VFDOH PL[LQJ DW RU QHDU WKHVH ORFDWLRQV 0HDVXUHPHQWV DW YE )LJXUH VKRZV SA3r SORWWHG DJDLQVW [E IRU \E 7KHUH LV D VPDOO ORFDO SHDN DW [E} ZKLFK FRUUHVSRQGV WR WKH VKHDUOD\HU WUDQVLWLRQ WR WXUEXOHQFH 7KH SHDN YDOXH LV DQG OLNH WKH FHQWHUOLQH SHDNYDOXH SRVLWLRQ LV ORFDWHG DW [Em ZKLFK LV WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH FHQWHUOLQH 0DFK QXPEHU EHFRPHV VXEVRQLF VHH )LJ f 7KH VNHZQHVV DQG NXUWRVLV DUH VKRZQ LQ )LJV DQG UHVSHFWLYHO\ &RPSDULVRQV RI SP3Z 6 DQG ZLWK WKH FHQWHUOLQH YDOXHV DUH VKRZQ LQ )LJV DQG UHVSHFWLYHO\ 7KH WXUEXOHQW SUHVVXUHV KDYH D VLPLODU RYHUDOO WUHQG EXW GLIIHU LQ WKDW WKH FHQWHUOLQH KDV VPDOO SHDNV DQG WURXJKV XS WR [E 7KH VNHZQHVVHV DOVR VKRZ D VLPLODU RYHUDOO WUHQG H[FHSW WKDW WKH FHQWHUOLQH YDOXHV KDYH SHDNV DQG WURXJKV DOO WKH ZD\ WR WKH HQG RI WKH PL[LQJ VHFWLRQ )RU [EAO WKH VNHZQHVV DW \E LV DOZD\V QHJDWLYH ZKLOH WKH FHQWHUOLQH VNHZQHVV KDV ERWK SRVLWLYH DQG QHJDWLYH YDOXHV 7KH FRPSDULVRQ RI NXUWRVLV VKRZV D VLPLODU RYHUDOO WUHQG 7KHVH UHVXOWV VKRZ WKDW WKH VWUHDPZLVH ORFDWLRQV RI VKHDUOD\HU WUDQVLWLRQ WR WXUEXOHQFH DQG WKH HQG RI WKH VXSHUVRQLF FRUH RQ WKH FHQWHUOLQH FDQ EH FRQILUPHG E\ PHDVXUHPHQWV SDUDOOHO WR WKH FHQWHUOLQH WKDW FURVV WKH VHFRQGDU\ VWUHDP :KROH)LHOG 0HDVXUHPHQWV 0HDVXUHPHQWV ZHUH WDNHQ RYHU WKH HQWLUH ZDOO RI WKH PL[LQJ VHFWLRQ 7KH PHDVXUHPHQWV ZHUH FROOHFWHG DW ORFDWLRQV RQ D JULG RI HYHQO\VSDFHG SRLQWV LQ WKH \GLUHFWLRQ A\EAOf E\ HYHQO\VSDFHG SRLQWV LQ WKH [GLUHFWLRQ A[EAf )LJXUH VKRZV D FRORU SORW RI SA SA3A DQG SA LQ DFRXVWLF GHFLEHOV ZKLFK DUH GHILQHG DV

PAGE 151

G%D ORJf§ 3rI f ZKHUH SUHI J3D 7KH SORW RI SA VKRZV WKH SULPDU\ SRWHQWLDOFRUH LQ GDUN EOXH WKDW H[WHQGV WR [Em LQ DJUHHPHQW ZLWK WKH LPSDFWSUHVVXUH PHDVXUHPHQWV )URP [E MXVW RXWVLGH WKH SULPDU\ FRUH KLJK YDOXHV RI SA DUH VHHQ WR EHJLQ 7KLV UHJLRQ VKRZQ LQ JUHHQ JURZV WR WKH FHQWHUOLQH DQG WKH RXWHU ZDOO E\ [E} ,W LV NQRZQ IURP WKH PHDQ PHDVXUHPHQWV WKDW WKLV LV WKH ORFDWLRQ ZKHUH WKH VKHDU OD\HU UHDFKHV WKH ZDOO ,W FDQ DOVR EH VHHQ WKDW WKH KLJKHVW SA JUDGLHQWV DUH ORFDWHG QHDU WR WKHVH ORFDWLRQV ZKHUH LW KDV DOUHDG\ EHHQ REVHUYHG WKDW WKH VNHZQHVV DQG NXUWRVLV DORQJ WKH FHQWHUOLQH KDYH ODUJH FRQILGHQFH LQWHUYDOV DV ZHOO DV EHLQJ QRLVHVRXUFH ORFDWLRQV 7KH SORW RI 3QQ3} LQ )LJ Ef VKRZV VLPLODU LQIRUPDWLRQ WR WKDW RI SA LQ )LJ Df +HQFH HLWKHU RI WKHVH SORWV FDQ EH XVHG WR LGHQWLI\ WKH ORFDWLRQV RI WKH HMHFWRU UHJLRQV 7KH SORW RI SA LQ G%D HPSKDVL]HV WKH UHJLRQ XS WR [Em )LJXUH VKRZV FRORU SORWV RI WKH VNHZQHVV DQG NXUWRVLV 7KHVH VKRZ FOHDU SHDN YDOXHV RQ WKH FHQWHUOLQH DW [Em RI 6 DQG 7KHVH YDOXHV LQGLFDWH WKDW WKHUH LV D KLJK SUREDELOLW\ RI ODUJHYDOXHG SUHVVXUH HYHQWV DQG WKDW WKH IUHTXHQF\ RI ODUJHn YDOXHG QHJDWLYH HYHQWV LV OHVV WKDQ WKDW RI SRVLWLYH RQHV )LJXUH VKRZV WKH SGI IRU WKH SHDN YDOXH DQG LW LV FOHDU WKDW WKHUH DUH PDQ\ SRVLWLYH HYHQWV IDU IURP S3QA2 7KH UDQJH RI YDOXHV LV "VLSKSPV 7DEOH VKRZV WKH EUHDNGRZQ RI WKH SGI )URP WKH LQFUHDVHG QXPEHU RI HYHQWV IRU _S_O FRPSDUHG WR WKH QXPEHU LQ WKH VDPH UHJLRQ DW WKH LQOHW VHH 7DEOH f LW LV FRQFOXGHG WKDW WKH QRLVHVRXUFH HIIHFW LV DSSDUHQW GXH WR D UHODWLYH LQFUHDVH LQ LQQHURXWHU OD\HU HQHUJ\WUDQVIHU 7KH HIIHFW LQ WKH LQQHU OD\HU LV D UHODWLYH LQFUHDVH LQ ODUJH SRVLWLYH SUHVVXUH HYHQWV ,W LV LQWHUHVWLQJ \HW XQH[SHFWHG WR QRWH WKH QXPHULFDO DJUHHPHQW EHWZHHQ WKH UHVXOWV IRU :_S_!f DQG :_S_!f RI WKH FXUUHQW GDWD ZLWK 6FKHZHnV HVSHFLDOO\ VLQFH WKH VNHZQHVV LV RI RSSRVLWH VLJQ LQ WKLV FDVH 7KLV DJDLQ

PAGE 152

VHH VHFWLRQ f SRLQWV WR WKH GLIIHUHQW EHKDYLRU RI WKH ZDOO SUHVVXUH LQ LQFRPSUHVVLEOH DQG FRPSUHVVLEOH IORZ $XWRVSHFWUD $XWRVSHFWUD ZHUH FDOFXODWHG IURP WKH VDPH GDWD DV SUHVHQWHG LQ 6HFWLRQ ZLWK WKH LQOHW DXWRVSHFWUD FDOFXODWHG IURP IUDPHV RI SRLQWV DQG WKH UHVW IURP IUDPHV RI SRLQWV $OO DXWRVSHFWUD SORWV DUH RI VSHFWUDO GHQVLW\ W! DJDLQVW GLPHQVLRQOHVV ZDYHQXPEHU RU IUHTXHQF\ +]f DQG rf f§‘6 f 13 33; f 3UPV f ZKHUH %: EDQGZLGWK +]f DQG 13 QXPEHU RI SRLQWVIUDPH $ EDQGZLGWK RI N+] ZDV XVHG IRU DOO RQHSRLQW PHDVXUHPHQWV 7KH GLPHQVLRQOHVV ZDYHQXPEHU LV SORWWHG DV N Z8 ZKHUH WKH VKHDUOD\HU FKDUDFWHULVWLF OHQJWK VFDOH LV GHILQHG DV IROORZV Df LI WKH PHDVXUHPHQW LV LQ WKH VHFRQGDU\ IORZ WKH QHDUHVW VKHDUOD\HU WKLFNQHVV LV XVHG Ef LI WKH PHDVXUHPHQW LV LQ WKH VKHDU OD\HU WKHQ WKDW VKHDUOD\HU WKLFNQHVV LV XVHG Ff LI WKH PHDVXUHPHQW LV LQ WKH SULPDU\ WKHQ WKH DYHUDJH WKLFNQHVV RI WKH WZR VKHDUOD\HUV LV XVHG DQG Gf IRU IORZ GRZQVWUHDP RI ZKHUH WKH VKHDUOD\HU UHDFKHV WKH RXWHU ZDOO WKH PL[LQJVHFWLRQ KHLJKW LV XVHG

PAGE 153

0L[LQJ6HFWLRQ ,QOHW 0HDVXUHPHQWV $XWRVSHFWUD RI VHSDUDWH UXQV RQ HLWKHU VLGH RI WKH SULPDU\ DQG ZLWKLQ WKH SULPDU\ DUH SORWWHG LQ )LJ ,W FDQ EH VHHQ WKDW IRU HDFK SDLU RI DXWRVSHFWUD WKHUH LV H[FHOOHQW DJUHHPHQW )LJXUH VKRZV UHVXOWV IURP MXVW RXWVLGH RI WKH VKHDUOD\HUV DQG LQ WKH ORZHU VKHDUOD\HU DW WKH LQOHW 7KH D[HV KDYH EHHQ VFDOHG VR WKDW WKH VORSHV DUH DW WKH WUXH DQJOH 0HDVXUHPHQWV IRU )LJV Df DQG Gf DUH ORFDWHG LQ WKH VHFRQGDU\ IORZ )LJ Ef LV LQ WKH ORZHU VKHDUOD\HU DQG )LJ Ff LV LQ WKH SULPDU\ IORZ ,Q DOO RI WKH SORWV WKH VKDUS SHDNV LQGLFDWH WKH SUHVHQFH RI DFRXVWLF HPLVVLRQV ZKLFK ZLOO EH FRQVLGHUHG EHORZ $OO RI WKH SORWV VKRZ D VPDOO Naf UDQJH DW ORZ ZDYHQXPEHU 7KHUH LV D VHFRQG Nn UDQJH LQ WKH PHDVXUHPHQW LQ WKH VKHDU OD\HU )LJ Eff EHWZHHQ WKH Nn DQG NnXL UDQJHV 7KH VHFRQG Nn UDQJH LV ORFDWHG DW D ZDYHQXPEHU RI MXVW RYHU RUGHU RI PDJQLWXGH KLJKHU WKDQ WKH ILUVW Nn UDQJH ,I LW LV DVVXPHG WKDW WKH WZR UDQJHV RULJLQDWH IURP WKH VDPH HGG\ WUDYHOOLQJ EHWZHHQ WKH SULPDU\ DQG VHFRQGDU\ RYHUODS OD\HUV LQ WKH ERXQGDU\ OD\HU WKHQ WKH ZDYHQXPEHU RI WKHVH UDQJHV VKRXOG EH DSSUR[LPDWHO\ HTXDO ZKHQ QRUPDOL]HG E\ WKH ERXQGDU\OD\HUVn IUHHVWUHDP YHORFLWLHV DQG WKLFNQHVVHV +HQFH WKH UDQJHV VKRXOG GLIIHU E\ WKH UDWLR RI WKHLU ERXQGDU\OD\HU WKLFNQHVVHV GLYLGHG E\ U 8VLQJ YDOXHV IRU IURP 7DEOH DQG WKH YDOXH RI U IURP 7DEOH LW LV IRXQG WKDW f§ ff§f§ ZKLFK LV FORVH WR WKH REVHUYHG GLIIHUHQFH LQ WR8 EHWZHHQ WKH WZR UDQJHV U ^ 7KHUHIRUH LW FDQ EH FRQFOXGHG WKDW WKH PHDVXUHG VSHFWUXP FRQWDLQV LQIRUPDWLRQ IURP HGGLHV WUDYHOOLQJ WKURXJK SULPDU\ DQG VHFRQGDU\ UHJLRQV RI IORZ ,W DOVR VXJJHVWV WKDW WKH FRQFOXVLRQ E\ 7KRPDV DQG %XOO f WKDW WKH FRQWULEXWLRQV IURP YDULRXV VRXUFH UHJLRQV ZLOO IDOO RII UDSLGO\ ZLWK WKHLU GLVWDQFH IURP WKH SRLQW XQGHU FRQVLGHUDWLRQ PD\ QRW DOZD\V EH DSSOLFDEOH ,QGHHG GHSHQGLQJ RQ WKH LQYHVWLJDWRUfV UHTXLUHPHQWV WKH TXHVWLRQV WKDW QHHGV WR EH DGGUHVVHG EHIRUH GHVLJQLQJ D WXUEXOHQWSUHVVXUH H[SHULPHQW LV ZKDW IHDWXUH GR \RX ZDQW WR PHDVXUH DQG IURP ZKLFK UHJLRQ RI WKH IORZ"

PAGE 154

$W DOO WKH LQOHW ORFDWLRQV LW LV DSSDUHQW WKDW WKH VLJQLILFDQW DFRXVWLF HPPLVLRQV WHQG WR EH ORFDWHG EHWZHHQ WXUEXOHQW UDQJHV D GLVWLQFW H[DPSOH EHLQJ EHWZHHQ WKH N DQG N9L UHJLRQV LQ WKH VKHDU OD\HU )LJ Eff $OVR WKH PHDVXUHPHQW RI WKH Nn WXUEXOHQFHPHDQVKHDUf UDQJH DW KLJKHU ZDYHQXPEHU WKDQ WKH N WXUEXOHQFHWXUEXOHQFHf UDQJH LV DQ XQH[SHFWHG UHVXOW LQ YLHZ RI WKH FDOFXODWLRQV RI *HRUJH HW DO f +RZHYHU WKHLU FDOFXODWLRQV ZHUH EDVHG RQ XQERXQGHG VKHDUIORZ DQG LW LV WKLV GLIIHUHQFH WKDW PD\ EH WKH FDXVH RI WKLV REVHUYDWLRQ ,I WKH IUHHVWUHDP VKHDUIORZ LV DVVXPHG WR EHKDYH DV *HRUJH HW DO SUHGLFW WKDW WKH WXUEXOHQFHWXUEXOHQFH LQWHUDFWLRQV GRPLQDWH HYHU\ZKHUH H[FHSW QHDU WKH HGG\SURGXFLQJ UHJLRQ WKHQ LW FDQ EH K\SRWKHVL]HG WKDW WKH PHDVXUHPHQW WHFKQLTXH UHFRUGV WKH WXUEXOHQFHWXUEXOHQFH DQG WXUEXOHQFHPHDQVKHDU LQWHUDFWLRQV IURP WKH IUHHVWUHDP DQG ERXQGDU\OD\HU UHVSHFWLYHO\ 7KH WXUEXOHQFHPHDQ VKHDU LQWHUDFWLRQ JHQHUDWHG LQ WKH ERXQGDU\ OD\HU GRPLQDWHV WKH KLJK ZDYHQXPEHU UHJLPH EHFDXVH RI LWV FORVHU SUR[LPLW\ WR WKH SUHVVXUH WUDQVGXFHU WKDQ WKH WXUEXOHQWWXUEXOHQW LQWHUDFWLRQ 7KLV LV VXSSRUWHG E\ .UDLFKQDQnV Ef SUHGLFWLRQ IRU WXUEXOHQW ZDOO SUHVVXUH XQGHU D ERXQGDU\ OD\HU LQ FKDQQHO IORZ WKDW WKH WXUEXOHQFHPHDQVKHDU FRQWULEXWLRQ WR SA LV WLPHV WKDW RI WKH WXUEXOHQFHWXUEXOHQFH FRQWULEXWLRQ &HQWHUOLQH 0HDVXUHPHQWV 7KLUW\VL[ FHQWHUOLQH DXWRVSHFWUD DUH VKRZQ LQ )LJ WKDW UDQJH LQ ORFDWLRQ IURP [E WR [E 6ORSHV IRU WKH Nn NfP DQG N UDQJHV DUH VKRZQ LQ WKH WRS OHIW FKDUW RI HDFK SDJH $JDLQ WKH D[HV KDYH EHHQ VFDOHG VR WKDW WKH VORSHV DUH DW WKH WUXH DQJOH 7KHUH DUH ILYH PDMRU FKDUDFWHULVWLFV RI WKH VSHFWUD WKDW DUH REVHUYHG 7KH ILUVW LV WKH VWURQJ SUHVHQFH RI D ODUJH DFRXVWLF SHDN DW FMG8a IURP [E WR [Ea ,WV VSHFWUDO ORFDWLRQ LV LQLWLDOO\ EHWZHHQ WKH N DQG NLP UDQJHV %\ [Ea WKH NQL UDQJH KDV GLVDSSHDUHG DQG WKH GLPLQLVKLQJ DFRXVWLF GLVWXUEDQFH OLHV RQ D N UDQJH ,W WDNHV RQ

PAGE 155

LWV PD[LPXP VSHFWUDO HQHUJ\ GHQVLW\ YDOXH DW [Em ZKLFK VXJJHVWV WKDW LW DULVHV IURP WKH QR]]OH OLS DUHD 7KLV ZLOO EH GLVFXVVHG IXUWKHU LQ 6HFWLRQ 7KH VHFRQG IHDWXUH LV D GLVWXUEDQFH WKDW RFFXUV DW RR8a DW WKH VWDUW RI WKH NL UDQJH DQG FDQ EH ILUVW VHHQ FOHDUO\ DW [E %HWZHHQ [E DQG [E WKHUH LV DQ RUGHU RI PDJQLWXGH LQFUHDVH LQ LWV VSHFWUDO HQHUJ\ GHQVLW\ ZKLFK UHPDLQV FRQVWDQW XQWLO WKH VXUURXQGLQJ VSHFWUDO HQHUJ\ GHQVLW\ UHDFKHV WKH VDPH OHYHO DW [Ea 7KH SK\VLFDO ORFDWLRQ RI WKLV SHDN VXJJHVWV WKDW LW LV DVVRFLDWHG ZLWK WKH VKHDU OD\HU WUDQVLWLRQ WRWXUEXOHQFH 7KH WKLUG IHDWXUH LV WKH DSSHDUDQFH RI D VKDUS VORSH DW [E DQG FR8 7KH VORSH VWHHSHQV DQG VKULQNV LQ ZDYHQXPEHU UDQJH XQWLO [E DIWHU ZKLFK LW LV EURNHQ XS E\ D EURDG VSHFWUDO SHDN DW [E )RU [Et WKHUH DUH ODUJH GLVWXUEDQFHV LQ WKH VSHFWUDO HQHUJ\ GHQVLW\ RI ZDYHQXPEHUV DW YDOXHV RI WKLV SHDN DQG ORZHU $W [E LW FDQ EH VHHQ WKDW WZR SHDNV DSSHDU DQG SHUVLVW WKURXJK [E 7KLV LV WKH ORFDWLRQ RI WKH SHDN SRVLWLYH VNHZQHVV SHDN SRVLWLYH NXUWRVLV WKH VWDUW RI WKH UHJLRQ RI LQFUHDVHG HQWUDLQPHQW RQ WKH SULPDU\ VLGH RI WKH VKHDUOD\HUV DQG WKH ORFDWLRQ RI D PDMRU QRLVH VRXUFH 7KH WZR SHDNV UHDSSHDU DW [E WKH HQG RI WKH SULPDU\ FRUH DQG UHPDLQ GLVWLQFWLYH XQWLO [E WKH FHQWHU RI WKH ODUJH YRUWH[ HJ VHH )LJ Eff ,W LV VXUPLVHG WKDW WKH WZR SHDNV DULVH GXH WR WKH LQWHUDFWLRQ RI WKH XSSHU DQG ORZHU VKHDUOD\HUV 7KH IRXUWK REVHUYDWLRQ LV WKDW WKH ORZHVW ZDYHQXPEHUV VKRZ JHQHUDOO\ LQFUHDVLQJ RU GHFUHDVLQJ WUHQGV DW GLIIHUHQW FHQWHUOLQH ORFDWLRQV 7KH PRVW FRQVLVWHQW WUHQG LV VHHQ DW ;t ZKHUH WKH ORZ ZDYHQXPEHUV JHQHUDOO\ NHHS LQFUHDVLQJ 7KLV LV WKH UHJLRQ GRZQVWUHDP RI ZKHUH WKH VHFRQGDU\ VLGH RI WKH VKHDU OD\HUV UHDFK WKH ZDOO 7KH ILIWK REVHUYDWLRQ LV WKDW RI WKH WUHQG LQ WKH VSHFWUDO GHFD\ RI WKH SUHVVXUH $V KDV EHHQ DOUHDG\ PHQWLRQHG E\ [Ea WKH LQLWLDOO\ SUHVHQW VPDOO N UDQJH KDV GLVDSSHDUHG OHDYLQJ MXVW D N UDQJH $W [E WKH ORFDWLRQ RI WKH FHQWHU RI D QRLVH

PAGE 156

VRXUFH D VPDOO Nn UDQJH UHDSSHDUV DQG UHPDLQV VPDOO XQWLO [E DIWHU ZKLFK LW EHFRPHV PRUH REYLRXV DQG LV YHU\ FOHDU DW [E $W [E WKH N UDQJH VWDUWV WR VKULQN DQG D N UDQJH VWDUWV WR GHYHORS LQ LWV SODFH $W [E WKH N UDQJH DOPRVW GRPLQDWHV WKH ZKROH ZDYHQXPEHU UDQJH 7KHVH PDMRU FKDQJHV LQ WKH VSHFWUDO EHKDYLRU DUH SUREDEO\ WKH UHVXOW RI WKH VZLWFK IURP DGYHUVH WR IDYRUDEOH SA JUDGLHQW DW [ FI )LJ f 7KH PHDQSUHVVXUH JUDGLHQW LV DGYHUVH IRU [E! FI )LJ f 0HDVXUHPHQWV DW YE )LJXUH VKRZV WKH DXWRVSHFWUD FDOFXODWHG IURP WKHVH PHDVXUHPHQWV 7KH DXWRVSHFWUD VKRZQ LQ WKH VHFRQGDU\ IORZ LQ WKH UDQJH VV[EAO VKRZ VLPLODU JHQHUDO IHDWXUHV ,Q WKH UHJLRQ FR8 DQ DSSUR[LPDWHO\ N UDQJH LV REVHUYHG ,W LV KLJKO\ GLVWXUEHG E\ DFRXVWLF SHDNV UDGLDWLQJ IURP WKH SULPDU\ MHW 7KH DFRXVWLF UDGLDWLRQ ZLOO EH GLVFXVVHG LQ PRUH GHWDLO LQ 6HFWLRQ $W [E DQG FR8 D ODUJH DFRXVWLF SHDN LV REVHUYHG WKDW VLWV DWRS D VSHFWUDO SHDN $W D!8! WKH VSHFWUXP GHFUHDVHV DW MXVW KLJKHU WKDQ D NQ VORSH %HWZHHQ [E WKH VSHFWUD FKDQJH JUDGXDOO\ EXW VLJQLILFDQWO\ 7KH DFRXVWLF GLVWXUEDQFHV GLVDSSHDU DQG WKUHH VSHFWUDO SHDNV DUH REVHUYHG DW FR8a WR8a DQG DL8a $OVR WKH VSHFWUDO VORSHV FKDQJH WR Nn DW ORZ ZDYHQXPEHU N LQ WKH PLGGOH UDQJH DQG UHPDLQV DW MXVW RYHU NLP LQ WKH KLJK UDQJH 0XOWLSOH VSHFWUDO SHDNV KDYH EHHQ REVHUYHG LQ WKH VSHFWUXP RI RFHDQLF WXUEXOHQFH 0RQLQ DQG
PAGE 157

K\SRWKHVLV IRU WKH LQHUWLDO VXEUDQJH UHVXOWLQJ LQ D GHFUHDVH LQ WKH VSHFWUDO VORSH GHFD\ IURP Nn WR N 7KH Nn UDQJH SHUVLVWV XQWLO [E DQG WKHQ JUDGXDOO\ LQFUHDVHV WR D Nn UDQJH E\ [E ,Q &KDSWHU WKH UHJLRQ [E ZKHUH WKH Nn LV REVHUYHG ZDV IRXQG WR EH XQVWDEOH DQG LW ZDV K\SRWKHVL]HG WKDW DQ RYHUDOO HQWUDLQPHQW UDWLR DGMXVWPHQW WDNHV SODFH LQ WKLV UHJLRQ WKURXJK LQFUHDVHG YRUWLFLW\ 6LQFH YRUWH[ VWUHWFKLQJ LV WKH RQO\ NQRZQ VSHFWUDO HQHUJ\WUDQVIHU PHFKDQLVP 7HQQHNHV DQG /XPOH\ f YRUWH[ VWUHWFKLQJ LQ WKLV UHJLRQ PXVW EH LQFUHDVHG 7KLV LPSOLHV WKDW WKH VSHFWUDO HQHUJ\ IOX[ 7 DQG WKH GLVVLSDWLRQ UDWH H LQFUHDVH 7 e LQ WKH LQHUWLDO VXEUDQJHf )XUWKHU WKLV LPSOLHV WKDW GLDVWURSK\ LV LQFUHDVHG DQG OHDGV WR WKH FRQFOXVLRQ WKDW ODUJH HGG\ VWUHQJWK DOVR LQFUHDVHV LQ WKLV UHJLRQ 7ZR3RLQW 6SHFWUDO 0HDVXUHPHQWV 7KH PRWLYDWLRQ IRU WKH WZRSRLQW PHDVXUHPHQWV ZDV WR LGHQWLI\ VHSDUDWH DUHDV RI WKH IORZ ZKHUH LQSKDVH RU DQWLSKDVH IUHTXHQFLHV H[LVW 7KLV DOORZHG GHWHUPLQDWLRQ RI ZKHWKHU WKH IUHTXHQF\ RULJLQDWHG IURP DFRXVWLF UDGLDWLRQ RU IURP D WXUEXOHQFH LQWHUDFWLRQ DQG IURP ZKDW SK\VLFDO IHDWXUH RI WKH IORZ $OO RI WKH WZRSRLQW VSHFWUDO PHDVXUHPHQWV ZHUH FDOFXODWHG IURP IUDPHV RI SRLQWV N+] EDQGZLGWK XQOHVV QRWHGf PHDVXUHG DW HDFK WUDQVGXFHU ORFDWLRQ 7KH GDWD LV SUHVHQWHG E\ SKDVH GLIIHUHQFH FURVVVSHFWUDO GHQVLW\ WUDQVIHU IXQFWLRQ DQG FRKHUHQFH ZKLFK ZHUH REWDLQHG XVLQJ (TXDWLRQV f f DQG f )LJXUH VKRZV WKH UHVXOWV IURP D PHDVXUHPHQW RQ WKH LQOHW SODQH LQ WKH VHFRQGDU\ IORZ RQ HLWKHU VLGH RI WKH SULPDU\ 3HDNV DQG DUH LQ SKDVH ZKLOH SHDNV DUH RXW RI SKDVH 7KH RXW RI SKDVH SHDNV DUH W\SLFDO RI WKH KHOLFDO .HOYLQ+HOPKROW]f PRGH LQVWDELOLW\ PHDVXUHG RQ RSSRVLWH VLGHV RI D VXSHUVRQLF MHW *XWPDUN HW DO f )LJXUH VKRZV D PHDVXUHPHQW RQ WKH LQOHW SODQH LQ WKH SULPDU\ 7KH ODUJHVW

PAGE 158

SHDN LV DW +] FRPSDUHG WR WKH KLJKHVW SHDN LQ WKH VHFRQGDU\ DW +] FI )LJ f $OO RI WKH SHDNV DUH LQ SKDVH H[FHSW IRU WKH SHDN DW N+] WKH KLJKHVW SRZHUHG MHWQRLVH IUHTXHQF\ REVHUYHG LQ )LJ 7KH UHVXOWV LQ )LJ ZHUH FDOFXODWHG IURP D N+] EDQGZLGWK PHDVXUHPHQW DORQJ WKH FHQWHUOLQH MXVW EHIRUH WKH HQG RI WKH SULPDU\ SRWHQWLDO FRUH ,W FDQ EH REVHUYHG WKDW SHDNV UDQJLQJ IURP +] WR +] DUH FORVH WR EHLQJ LQ SKDVH 7KH SHDN DW +] LV WKH PRVW LQSKDVH SHDN ZLWK I! O ZKLFK FRUUHVSRQGV WR WKH +] SHDN ZLWK r VHHQ DW WKH SULPDU\ LQOHW FI )LJ f 7KLV UHVXOW VLJQLILHV WKDW WKH FKDUDFWHULVWLF IUHTXHQF\ RI WKH SULPDU\ FRUH LV +] )LJXUHV DQG VKRZ WUDQVYHUVH PHDVXUHPHQWV DFURVV DQG EHORZ WKH FHQWHUOLQH UHVSHFWLYHO\ DW WKH VWUHDPZLVH ORFDWLRQ RI WKH HQG RI WKH SULPDU\ SRWHQWLDO FRUH $W WKH FHQWHUOLQH )LJ VKRZV WKDW WKH GRPLQDQW SHDN LV +] M! r ZLWK D ILUVW KDUPRQLF DW N+] M! r 7KLV LV WKH FKDUDFWHULVWLF IUHTXHQF\ RI WKH IORZ PL[LQJ DURXQG WKH HQG RI WKH SULPDU\ FRUH DQG WKH UHDVRQ IRU WKH JHQHUDWLRQ RI WKH ODUJH HGG\ FHQWHUHG DW [Ea FI )LJ f )LJXUH VKRZV PDQ\ RI WKH SHDNV REVHUYHG LQ WKH SULPDU\ DQG VHFRQGDU\ +RZHYHU WKH FRKHUHQFH VSHFWUXP VKRZV WKDW WKH +] r SHDN LV WKH PRVW FRKHUHQW 7KH ILUVW DQG VHFRQG KDUPRQLFV DSSHDU DV SHDNV DQG 3HDNV DQG DULVH IURP WKH DFRXVWLF MHW QRLVH 7KH FKDUDFWHULVWLF IUHTXHQF\ N+] LV VHHQ WR EH RXW RI SKDVH DFURVV WKH FHQWHUOLQH DQG LQ SKDVH EHORZ LW LQ NHHSLQJ ZLWK WKH KHOLFDO PRGH LQVWDELOLW\ PHQWLRQHG DERYH )LJXUHV VKRZ WUDQVYHUVH VSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ MXVW GRZQVWUHDP RI ZKHUH WKH VKHDU OD\HU UHDFKHV WKH ZDOO )LJXUHV VKRZ WKDW WKH SHDNV DUH DOPRVW LQ SKDVH IRU PHDVXUHPHQWV XS WR KDOI WKH PL[LQJVHFWLRQ KHLJKW $OVR WKH GRPLQDQW ORZ IUHTXHQFLHV PRYH +] IRU WKH KDOI PL[LQJVHFWLRQ PHDVXUHPHQW FI )LJ f )LJXUH VKRZV WKDW WKH PHDVXUHPHQW RYHU HLWKHU VLGH RI WKH FHQWHUOLQH LQGLFDWHV WKDW WKH ORZ IUHTXHQFLHV PRYH HYHQ ORZHU DQG WKH FRKHUHQFH LQFUHDVHV DV WKH\

PAGE 159

JR ORZHU $JDLQ WKH SHDNV RYHU N+] DUH RXW RI SKDVH DQG FDQ WKXV EH DWWULEXWHG WR MHW QRLVH DQG KHQFH GR QRW SOD\ D SDUW LQ ODUJH VFDOH PL[LQJ 7KH ORZ IUHTXHQFLHV REVHUYHG DW WKLV VWUHDPZLVH ORFDWLRQ LQGLFDWH WKDW WKH LQWHJUDO OHQJWK VFDOH RI WKH WXUEXOHQFH LV LQFUHDVLQJ WRZDUG WKH FKDUDFWHULVWLF GLPHQVLRQV RI WKH PL[LQJWXEH 1DUURZEDQG 0HDVXUHPHQWV )URP WKH DXWRVSHFWUD DQG FURVVVSHFWUD LW FDQ EH REVHUYHG WKDW WKHUH DUH WKUHH GLVWLQFW IUHTXHQFLHV WKDW DSSHDU DW PDQ\ ORFDWLRQV LQ WKH IORZ )LJXUH VKRZV FRORU FRQWRXU SORWV RI DXWRVSHFWUDO OLQH YDOXHV WDNHQ IURP WKH PHDVXUHPHQWV SUHVHQWHG LQ 6HFWLRQ 7KH IRXU SORWV DUH DV IROORZV Df 7KH +] OLQH LV UHSUHVHQWDWLYH RI WKH GRPLQDQW ORZ IUHTXHQFLHV FKDUDFWHULVWLF RI WKH LQWHJUDO ORQJLWXGLQDO VFDOH RI WKH IORZ :LWKLQ WKH SULPDU\ SRWHQWLDO FRUH XS WR [Ea WKHUH LV YHU\ OLWWOH ODUJHVFDOH LQIOXHQFH 2XWVLGH RI WKLV UHJLRQ WKH SUHVVXUH OHYHO LV DOPRVW XQLIRUPO\ KLJK H[FHSW IRU WZR ORFDWLRQV DW [Ea RQ HLWKHU VLGH RI WKH FHQWHUOLQH ZKHUH WKHUH DUH VLJQLILFDQW ORFDO PQLPXPV 7KH V\PPHWU\ RI WKHVH PQLPXPV VXJJHVW D VWDQGLQJZDYH SDWWHUQ Ef 7KH N+] OLQH LV WKH GRPLQDQW OLQH RI WKH VFUHHFK QRLVH FRUUHVSRQGLQJ WR WXUEXOHQFH FRQYHFWHG WKURXJK VKRFN ZDYHV 8VLQJ (T f WKH SUHGLFWHG VFUHHFK IUHTXHQF\ LV IF N+] ZKLFK LV FORVH WR WKH REVHUYHG YDOXH $OWHUQDWLYHO\ XVLQJ WKH REVHUYHG IUHTXHQF\ YDOXH WKH 0DFK QXPEHU SUHGLFWHG IURP (T f LV ,Q OLJKW RI WKH IDFW WKDW (T f ZDV GHULYHG IRU GLVFKDUJH LQWR D TXLHVFHQW IOXLG WKH FXUUHQW REVHUYDWLRQ LV UHDVRQDEOH 7KH REVHUYHG IUHTXHQF\ LV SORWWHG IURP ORFDWLRQV ZKHUH LW FDQ EH FOHDUO\ LGHQWLILHG 7KH FRUH UHJLRQ LV FOHDUO\ VHHQ DV KDYLQJ D YHU\ ORZ YDOXH XQWLO [Ea ZKHUH D WUDQVYHUVH VWDQGLQJ ZDYH SDWWHUQ LV ORFDWHG $VVXPLQJ V\PPHWU\ WKHUH DUH SHDNV DQG WURXJKV DFURVV WKH PL[LQJVHFWLRQ ZKLFK

PAGE 160

FRUUHVSRQGV WR D ZDYHOHQJWK RI E WKH KHLJKW RI WKH SULPDU\ QR]]OHH[LW DQG WKH FKDUDFWHULVWLF OHQJWK IRU WKH VFUHHFK IUHTXHQF\ FDOFXODWLRQ Ff 7KH SORW LQ Ff VKRZV WKH N+] OLQH ZKHUH DQ DFRXVWLF RU EURDGEDQG SHDN ZDV SUHVHQW 7KLV IUHTXHQF\ LV WKDW RI WKH DFRXVWLF QRLVH UDGLDWHG IURP WKH UHJLRQ VWDUWLQJ DW WKH WUDLOLQJHGJH ERXQGDU\OD\HUV RI WKH QR]]OH WR WKH VKHDUOD\HU WUDQVLWLRQWR WXUEXOHQFH 6SKHULFDO ZDYHV RI WKLV W\SH RI UDGLDWLRQ KDYH EHHQ REVHUYHG E\ /RZVRQ DQG 2OOHUKHDG f 7KH KLJKHVW YDOXH DSSHDUV FORVH WR WKH ZDOO VWDUWLQJ DW [Ea ZKLFK LV RQ D OLQH DW WKH 0DFK DQJOH RI WKH SULPDU\ IORZ 7KH SHDN LV WKHQ VPHDUHG DORQJ WKH ZDOO DV WKH UDGLDWLRQ FDQ EH FRQYHFWHG DW D UDQJH RI 0DFK QXPEHUV IURP 0M GRZQ GHSHQGLQJ RQ WKH ORFDWLRQ LQ WKH IUHHVWUHDP RU ERXQGDU\OD\HU )URP WKLV UHVXOW LW LV QRZ SRVVLEOH WR H[SODLQ WKH SHDN DW KDOI WKLV IUHTXHQF\ WKDW LV REVHUYHG LQ PDQ\ RI WKH DXWRVSHFWUD FI )LJ f &XULH f VKRZHG WKDW D UHVXOWDQW GLSROH ILHOG DW WKH VROLG ERXQGDULHV LV WKH OLPLW RI /LJKWKLOOnV TXDGUXSROH GLVWULEXWLRQ DQG WKH GLSROH ILHOG ZLOO RVFLOODWH DW KDOI WKH IUHTXHQF\ RI WKH TXDGUXSROH ILHOG DV VKRZQ LQ &KDSWHU Gf 7KLV SORW VKRZV WKH UHJLRQ IURP SORW Ff ZKHUH RQO\ DQ DFRXVWLF SHDN ZDV SUHVHQW [EVf ,W VKRXOG EH QRWHG WKDW FRQVLGHUDWLRQ RI WUDQVYHUVH GXFW PRGHV ZHUH DOVR LQYHVWLJDWHG IRU WKH PL[LQJ VHFWLRQ 7KH ORZHVW IUHTXHQF\ PRGH LV SUHGLFWHG WR EH WKH ILUVW PRGH LQ WKH \GLUHFWLRQ ZLWK D IUHTXHQF\ RI a N+] $OWKRXJK WKLV LV FORVH WR WKH REVHUYHG N+] IUHTXHQF\ LW ZDV UHMHFWHG DV EHLQJ WKH UHDVRQ IRU WKH REVHUYDWLRQ EHFDXVH WKH N+] IUHTXHQF\ ZDV REVHUYHG WR EH LQ DQWLSKDVH RQ HLWKHU VLGH RI WKH MHW FI )LJ f LQ DFFRUGDQFH ZLWK WKH VFUHHFK WRQHV SUHGLFWHG E\ 3RZHOO Df

PAGE 161

7DEOH &DOFXODWLRQ RI WKH SUREDELOLW\ : WKDW WKH ZDOO SUHVVXUH S H[FHHGV WKH WKUHVKROG SWK DW [E

PAGE 162

7DEOH &DOFXODWLRQ RI WKH SUREDELOLW\ : WKDW WKH ZDOO SUHVVXUH S H[FHHGV WKH WKUHVKROG SA DW [E \Ef f L

PAGE 163

3K } e E t f 2 e ( R \E )LJXUH 1RUPDOL]HG WXUEXOHQW ZDOOSUHVVXUH DW WKH PL[LQJVHFWLRQ LQOHW [E \E )LJXUH 6NHZQHVV DW WKH PL[LQJVHFWLRQ LQOHW [E

PAGE 164

:SS )LJXUH .XUWRVLV DW WKH PL[LQJVHFWLRQ LQOHW [E SS UPV )LJXUH 3UREDELOLW\ GHQVLW\ IXQFWLRQ RI ZDOOSUHVVXUH DW WKH PL[LQJVHFWLRQ LQOHW [E

PAGE 165

)LJXUH 7XUEXOHQW ZDOOSUHVVXUH DORQJ WKH ZDOO FHQWHUOLQH \E )LJXUH 6NHZQHVV DORQJ WKH ZDOO FHQWHUOLQH \E

PAGE 166

)LJXUH .XUWRVLV DORQJ WKH ZDOO FHQWHUOLQH \E )LJXUH 7XUEXOHQW ZDOOSUHVVXUH DORQJ WKH ZDOO DW \E

PAGE 167

$ I Lnn f r} nm‘ ? f Y \ !? n H[S GDWD b FRQILGHQFH LQWHUYDO f f [E )LJXUH 6NHZQHVV DORQJ WKH ZDOO DW \E )LJXUH .XUWRVLV DORQJ WKH ZDOO DW \E

PAGE 168

[E )LJXUH &RPSDULVRQ RI WXUEXOHQW ZDOOSUHVVXUH DORQJ WKH ZDOO DW \E DQG \E [E )LJXUH &RPSDULVRQ RI VNHZQHVV DORQJ WKH ZDOO DW \E DQG \E

PAGE 169

)LJXUH &RPSDULVRQ RI NXUWRVLV DORQJ WKH ZDOO DW \E DQG \E

PAGE 170

)LJXUH &RORU SORWV RI WXUEXOHQW ZDOOSUHVVXUH Df 3QQV Ef 3QQV3Z Ff G% SPV UH S3Df

PAGE 171

S PLV 3D ,G%X r f [E B/ L L L ‘ L L LOO

PAGE 172

)LJXUH &RORU SORWV RI KLJKHUKLJKHU RUGHU ZDOO SUHVVXUH VWDWLVWLFV Df 6NHZQHVV Ef .XUWRVLV

PAGE 174

GGf0 33Q )LJXUH 3UREDELOLW\ GHQVLW\ IXQFWLRQ RI ZDOOSUHVVXUH DW WKH ORFDWLRQ RI PD[LPXP VNHZQHVV DQG NXUWRVLV [E \Ef f

PAGE 175

I +]f I +]f )LJXUH :DOOSUHVVXUH VSHFWUD DQG UHSHDWDELOLW\ DW WKH PL[LQJVHFWLRQ LQOHW [E Df \E Ef \E Ff \E

PAGE 176

f f Ef / L L QPO , &'•8 Dft8 H Um U f LPLOO L L L PXO L O PLO L L PLQL LG8 &'•8 )LJXUH :DOOSUHVVXUH VSHFWUDO GHFD\ VORSHV DW WKH PL[LQJVHFWLRQ LQOHW [E Df ,Q WKH VHFRQGDU\ IORZ DW \E Ef ,Q WKH VKHDUOD\HU DW \E Ff ,Q WKH SULPDU\ IORZ DW \E DQG Gf ,Q WKH VHFRQGDU\ IORZ DW \E

PAGE 177

FX8 FX8 FG8 FG8 )LJXUH 'HYHORSPHQW RI WKH ZDOOSUHVVXUH VSHFWUD DORQJ WKH FHQWHUOLQH \E

PAGE 178

)LJXUH aFRQWLQXHG

PAGE 179

L8 D!8 GX 8 )LJXUH f§FRQWLQXHG

PAGE 180

k k k FR8 8 FG8 FR8 )LJXUH 'HYHORSPHQW RI WKH ZDOOSUHVVXUH VSHFWUD DORQJ WKH OLQH \E

PAGE 181

k k )LJXUH f§FRQWLQXHG

PAGE 182

+ If GHJUHHV )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW [E 0HDVXUHPHQW ORFDWLRQV DUH LQ WKH XSSHU DQG ORZHU VHFRQGDU\ VWUHDPV DW \E DQG \E

PAGE 183

+ If W! GHJUHHV )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW [E 0HDVXUHPHQW ORFDWLRQV DUH LQ WKH SULPDU\ IORZ DW \E DQG \E

PAGE 184

+L 2 2 H DS r' F Rn FI I+]f I+]f )LJXUH 7ZRSRLQW ORQJLWXGLQDO SUHVVXUHVSHFWUD DW \E 0HDVXUHPHQW ORFDWLRQV DUH MXVW EHIRUH WKH HQG RI WKH SULPDU\ FRUH DW [E DQG [E 0HDVXUHPHQW EDQGZLGWK LV N+]

PAGE 185

+ If I +]f I +]f )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD MXVW GRZQVWUHDP RI WKH HQG RI WKH SULPDU\ FRUH DW [E 0HDVXUHPHQW ORFDWLRQV DUH HLWKHU VLGH RI WKH FHQWHUOLQH DW \E DQG \E

PAGE 186

+ W +]f I+]f I+]f W +]f )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD MXVW GRZQVWUHDP RI WKH HQG RI WKH SULPDU\ FRUH DW [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E

PAGE 187

+ If W +]f W +]f W +]f )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E

PAGE 188

+L If I +]f I +]f )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E

PAGE 189

+ If I +]f I +]f )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH RQ WKH ORZHU VLGH RI WKH PL[LQJ VHFWLRQ DW \E DQG [E

PAGE 190

+ If W +]f I +]f )LJXUH 7ZRSRLQW WUDQVYHUVH SUHVVXUHVSHFWUD DW WKH VWUHDPZLVH ORFDWLRQ ZKHUH WKH VKHDU OD\HUV LQWHUDFW ZLWK WKH ZDOO [E 0HDVXUHPHQW ORFDWLRQV DUH HLWKHU VLGH RI WKH FHQWHUOLQH DW \E DQG [E

PAGE 191

)LJXUH &RORU SORWV RI QDUURZEDQG PHDVXUHPHQWV Df +] Ef N+] Ff N+] ZKHUH VKDUS RU EURDG SHDN LV SUHVHQW Gf N+] ZKHUH RQO\ VKDUS SHDN LV SUHVHQW

PAGE 192

/ R ?K

PAGE 193

&+$37(5 &21&/86,216 $1' 5(&200(1'$7,216 $ GHWDLOHG H[SHULPHQWDO LQYHVWLJDWLRQ RI D WZRGLPHQVLRQDO 0DFK DLUSULPDU\ 0DFK DLUVHFRQGDU\ HMHFWRU KDV EHHQ VXFFHVVIXOO\ FDUULHG RXW 7KH LQYHVWLJDWLRQ VKRZHG WKDW LW ZDV IHDVLEOH WR PHDVXUH DQG LQWHUSUHW WKH ZDOO SUHVVXUH LQ ILQH GHWDLO DQG XWLOL]H WKH IDVW QRQLQWUXVLYH WHFKQLTXH IRU LGHQWLI\LQJ DQG ORFDWLQJ WKH YDULRXV UHJLRQV RI WKH HMHFWRU IORZ $GGLWLRQDOO\ LW ZDV VKRZQ WKDW PHDQ LPSDFWSUHVVXUH DQG 6FKOLHUHQ RSWLFDO PHDVXUHPHQWV FRXOG EH XWLOL]HG WR FRQILUP VKHDU OD\HU JURZWKUDWH DQG HQWUDLQPHQW GHWDLOV RI WKH IORZ ,W ZDV DOVR IRXQG DV D UHVXOW RI WKH PHDVXUHPHQWV WKDW WKHRUHWLFDO SUHVVXUH VSHFWUXP IXQFWLRQV WKDW KDYH QRW EHHQ SUHYLRXVO\ FRQILUPHG GR LQGHHG H[LVW 7XUEXOHQW SUHVVXUH VWDWLVWLFV RQH DQG WZRSRLQW SUHVVXUH PHDVXUHPHQWV WKH PHDQ IORZILHOG VKHDUOD\HU ODPLQDUWRWXUEXOHQW WUDQVLWLRQ DQG VKDGRZJUDSK YLVXDOL]DWLRQ ZHUH DOVR HPSOR\HG WR HVWDEOLVK PRUH GHILQLWLRQ RI WKH IORZILHOG &RQFOXVLRQV IURP 6LJQLILFDQW 5HVXOWV Df $ ZKROHILHOG SORW RI SA FOHDUO\ VKRZV WKH SULPDU\ SRWHQWLDO FRUH $GGLWLRQDOO\ WKH HGJHV RI WKH VKHDUOD\HU FDQ EH REVHUYHG LQ UHJLRQ 7KH VWUXFWXUH RI WKH ILHOG LV TXDOLWDWLYHO\ FRPSDUDEOH WR WKH PHDQ LPSDFWSUHVVXUH IORZILHOG DQG WKH OHQJWKV RI UHJLRQV DQG DUH REVHUYHG WR EH WKH VDPH DV PHDVXUHG IURP WKH LPSDFWSUHVVXUH GDWD $ORQJ ZLWK WKH FRQFOXVLRQV GUDZQ LQ If Jf DQG Kf LW FDQ EH FODLPHG WKDW WLPHDFFXUDWH ZDOOSUHVVXUH PHDVXUHPHQWV SURYLGH D IDVW QRQLQWUXVLYH WHFKQLTXH IRU FKDUDFWHUL]LQJ WKH YDULRXV UHJLRQV RI HMHFWRU IORZ DQG LGHQWLI\LQJ VLJQLILFDQW IORZ HYHQWV

PAGE 194

Ef 7KH LPSDFWSUHVVXUH DQG YLVXDO VKHDUOD\HU JURZWK UDWHV LQ UHJLRQ RI WKH FRQWDLQHG HMHFWRU IORZ DUH WKH VDPH DV SUHGLFWHG IURP SUHYLRXV PHDVXUHPHQWV LQ FRPSUHVVLEOH IUHH VKHDUOD\HUV DV ORQJ DV WKH SULPDU\ SRWHQWLDOFRUH HQGV EHIRUH RU ZKHQ WKH VKHDU OD\HU UHDFKHV WKH ZDOO $OVR DQ HUURU IXQFWLRQ SURYLGHV D JRRG DSSUR[LPDWLRQ WR WKH LPSDFWSUHVVXUH SURILOH LQ WKH VKHDUOD\HUV Ff 7KH GLVWDQFH WR WUDQVLWLRQ ZDV HVWLPDWHG IURP WKH 6FKOLHUHQ YLVXDOL]DWLRQV WR RFFXU DW 5H[ ;O2 DQG LWHAO[O2 ZKLFK LV LQ DJUHHPHQW ZLWK SUHYLRXV PHDVXUHPHQWV RI FRPSUHVVLEOH IUHH VKHDUOD\HUV Gf 7KH GHYHORSPHQW OHQJWK WR VHOIVLPLODULW\ IRU WKH LPSDFW SUHVVXUH ZDV IRXQG WR EH [E DOVR LQ DJUHHPHQW ZLWK PHDVXUHPHQWV RI FRPSUHVVLEOH IUHH VKHDUOD\HUV Hf $W WKH LQOHW SODQH WKH SULPDU\ IORZ KDV VNHZQHVV RI DQG NXUWRVLV RI 7KH VHFRQGDU\ KDV D VNHZQHVV RI DQG D NXUWRVLV RI 7KH SRVLWLYH VNHZQHVV YDOXHV LQGLFDWH WKH RFFXUUHQFH RI PRUH SRVLWLYH SUHVVXUHSHDNV WKDQ QHJDWLYH SUHVVXUH SHDNV ZKLFK LV RSSRVLWH WR WKDW RI WKH UHSRUWHG OLWHUDWXUH IRU LQFRPSUHVVLEOH IORZ If ,Q UHJLRQ DW [E£ WKH VKHDUOD\HU HGJHV GHWHUPLQHG IURP LPSDFWSUHVVXUH PHDVXUHPHQWV VKRZ WKDW WKH VKHDUOD\HUVn ORZ VSHHG ERXQGDULHV IODWWHQ RXW DQG WKH KLJKVSHHG ERXQGDULHV LQFUHDVH LQ VORSH +RZHYHU WKH VKHDUOD\HU JURZWKUDWHV UHPDLQ DSSUR[LPDWHO\ FRQVWDQW 7KLV LV FRQMHFWXUHG WR UHVXOW IURP LQFUHDVHG ORFDO HQWUDLQPHQW DW WKH ORZVSHHG ERXQGDU\ DQG E\ YLVFRXV HIIHFWV DW WKH KLJKVSHHG ERXQGDU\ 7KLV SKHQRPHQRQ LV DOVR REVHUYHG LQ WKH FRORU FRQWRXU SORW RI WXUEXOHQW ZDOOSUHVVXUH DV D GLVWLQFW ORFDO LQFUHDVH LQ SA HPDQDWLQJ IURP WKH FHQWHU RI WKH VKHDU OD\HUV DW [Ee 7KLV VFHQDULR DOVR H[SODLQV WKH KLJK VNHZQHVV DQG NXUWRVLV REVHUYHG ORFDOO\ DURXQG WKH FHQWHUOLQH RI WKH PL[LQJ VHFWLRQ Jf 'RZQVWUHDP RI UHJLRQ EXW EHIRUH WKH HQG RI UHJLRQ ODUJH HGGLHV DUH REVHUYHG RQ WKH PL[LQJVHFWLRQ FHQWHUOLQH LQ WKH LPSDFWSUHVVXUH IORZILHOG WKDW DUH GLIIHUHQW IURP

PAGE 195

WKRVH REVHUYHG LQ IUHH VKHDUOD\HUV $OVR REVHUYHG LQ WKLV UHJLRQ LV D VXGGHQ LQFUHDVH LQ WKH DQJOH RI WKH ORZVSHHG ERXQGDU\ RI WKH VKHDUOD\HU DV ZHOO DV VLJQLILFDQW SHDNV DQG WURXJKV LQ WKH WXUEXOHQW SUHVVXUH DORQJ WKH FHQWHUOLQH ,W LV FRQMHFWXUHG WKDW WKHVH REVHUYDWLRQV DUH D UHVXOW RI WKH QHFHVVDU\ IORZ UHTXLUHPHQW WR VDWLVI\ WKH RYHUDOO PDVV DQG YROXPHWULF HQWUDLQPHQW UDWLRV ZKLFK LQ WKLV FDVH DUH QRW HTXDO WR WKH ORFDO VKHDU OD\HU HQWUDLQPHQW UDWLRV LQ UHJLRQ 8VLQJ WKH GHWDLO RI WKH LPSDFWSUHVVXUH GHULYHG UHVXOWV IRU UHIHUHQFH LW LV REYLRXV WKDW WKH FRORU FRQWRXU SORW RI SA DOVR GLVSOD\V WKLV VDPH IORZ SKHQRPHQRQ Kf 7UDQVYHUVH WZRSRLQW VSHFWUDO PHDVXUHPHQWV VKRZ D SUROLIHUDWLRQ RI LQSKDVH IUHTXHQF\ SHDNV DW WKH HQG RI UHJLRQ DQG ZKHUH WKH VKHDUOD\HU UHDFKHV WKH ZDOO 7KHVH SHDNV FRUUHVSRQG WR HGGLHV DQG WKH ODUJHVFDOH PL[LQJ SURFHVV REVHUYHG DERYH LQ FRQFOXVLRQ If DV ZHOO DV WR WKH UHJLRQ DORQJ WKH ZDOO DW [E£ VKRZQ E\ WKH LPSDFWSUHVVXUH PHDVXUHPHQWV DQG SA FRORU FRQWRXU SORW Lf 7KH VNHZQHVV DQG NXUWRVLV RI WKH SUHVVXUH H[KLELW ODUJH FRQILGHQFHLQWHUYDO SHDNV DW \E ORFDWLRQV ZKHUH VLJQLILFDQW IORZ HYHQWV RFFXU LH DW [E DQG 7KH ILUVW WZR ORFDWLRQV ERXQG WKH VXGGHQ HQWUDLQPHQW DUHD LQ UHJLRQ QH[W LV WKH HQG RI WKH SULPDU\ SRWHQWLDOFRUH DQG WKH ODVW LV WKH VWDUW RI VKHDUOD\HU LQWHUDFWLRQ ZLWK WKH ZDOO 7KH ODUJH FRQILGHQFH LQWHUYDOV UDQJH IURP OA6£ DQG . DQG DOO RI WKHVH ORFDWLRQV H[KLELW ORFDOPD[LPXPV RI SA ZLWK IDLUO\ QDUURZ FRQILGHQFH LQWHUYDOV Mf )RU DGGLWLRQDO LQVLJKW LQWR WKH SK\VLFV RI WKH DERYHPHQWLRQHG IORZ SKHQRPHQD LW ZDV IRXQG WKDW SUHVVXUH DXWRVSHFWUD FRXOG EH UHOLDEO\ FDOFXODWHG 5HVXOWV VKRZ WKDW WKH DXWRVSHFWUD FKDQJH VLJQLILFDQWO\ LQ WKH YDULRXV UHJLRQV RI WKH IORZ DQG FOHDUO\ VKRZ VSHFWUDO VORSHV RI Nn NL DQG NaOOV LQ GLIIHUHQW UHJLRQV UHSUHVHQWLQJ WKH ERXQGDU\

PAGE 196

OD\HU RYHUODS UHJLRQ WKH WXUEXOHQFHWXUEXOHQFH LQWHUDFWLRQ DQG WKH WXUEXOHQFHPHDQ VKHDU LQWHUDFWLRQ UHVSHFWLYHO\ Nf ,W LV EHOLHYHG WKDW WKLV LV WKH ILUVW H[SHULPHQW LQ ZKLFK WKH Nn, VSHFWUDO VORSH KDV EHHQ REVHUYHG SHUKDSV DV D UHVXOW RI WKH KLJK 5H\QROGV QXPEHU Of 7KH DXWRVSHFWUDO PHDVXUHPHQWV VKRZ WKDW WKH HMHFWRU FRQILJXUDWLRQ SURYLGHV D IORZ ZKLFK FRQWDLQV DOO WKH FXUUHQWO\ NQRZQ WKHRUHWLFDO SUHVVXUHVSHFWUDO UDQJHV 6XJJHVWLRQV IRU )XUWKHU :RUN 7KHUH DUH DW OHDVW WZR DUHDV RI VWXG\ WKDW IDOO RXW RI WKLV UHVHDUFK WKDW ZRXOG EHQHILW IURP IXUWKHU LQYHVWLJDWLRQ 7KHVH DUHDV DUH WKH VWUXFWXUH RI WKH PHDQ IORZILHOG DQG WKH VWUXFWXUH RI WKH WXUEXOHQW SUHVVXUH ILHOG 7R PRUH FRPSOHWHO\ FKDUDFWHUL]H WKH PHDQ IORZILHOG LW LV VXJJHVWHG WKDW LPSDFW SUHVVXUH WUDYHUVHV EH PDGH LQ WKH ]GLUHFWLRQ LQ VHYHUDO \]SODQHV 7KUHHGLPHQVLRQDO YLVXDOL]DWLRQ ZRXOG WKHQ UHYHDO WKH PHDQ VWUXFWXUH 7R YDOLGDWH WKH XVH RI WKH LPSDFW SUHVVXUH SUREH VHOHFWLYH XVH RI D QRQLQWUXVLYH GLDJQRVWLF WHFKQLTXH VXFK DV /'9 RU D SODQDU LPDJLQJ WHFKQLTXH LV UHFRPPHQGHG )ROORZLQJ WKHVH VWHSV LW LV UHFRPPHQGHG WKDW FRPSXWDWLRQDO IOXLG G\QDPLF &)'f FDOFXODWLRQ DQG FDOLEUDWLRQ IRU WKH HMHFWRU FRXOG EH HPEDUNHG XSRQ ZLWK D KLJK FHUWDLQW\ RI VXFFHVV ,W LV RI QRWH WR SRLQW RXW WKDW VKRXOG WKH WKH LPSDFWSUHVVXUH PHDVXUHPHQW WHFKQLTXH EH ZHOO YDOLGDWHG IRU WKLV PL[LQJ IORZ WKDW LW LV D YHU\ FULWLFDO PHDVXUHPHQW IRU &)' YDOLGDWLRQ DQG FDOLEUDWLRQ HVSHFLDOO\ IRU KHWHURJHQHRXV DQGRU QRQLVRHQHUJHWLF PL[LQJOD\HUV 7KLV LV EHFDXVH WKH LPSDFWSUHVVXUH LV D IXQFWLRQ RI VWDWLF SUHVVXUH WHPSHUDWXUH PROHFXODU ZHLJKW DQG FRQVWDQWSUHVVXUH VSHFLILF KHDWV 7KH HMHFWRU FRQILJXUDWLRQ SURYLGHV D IORZ ZKLFK FRQWDLQV DOO WKH FXUUHQWO\ NQRZQ WKHRUHWLFDO SUHVVXUHVSHFWUDO UDQJHV 7KLV LV QRYHO DQG LW LV VXJJHVWHG WKDW GHWDLOHG H[SHULPHQWDO UHVHDUFK LQWR WKH WXUEXOHQW VWUXFWXUH RI WKH ORFDO IORZILHOG WKDW JHQHUDWHV

PAGE 197

WKHVH UDQJHV EH LQVWLJDWHG ,W LV DOVR UHFRPPHQGHG WKDW FRQGLWLRQDO DYHUDJLQJ RI WKH WXUEXOHQW ZDOOSUHVVXUH DQGRU YHORFLW\ LQ WKH QHDUZDOO UHJLRQ EH LQYHVWLJDWHG WR VWXG\ WKH GHWDLOV RI WXUEXOHQW EXUVWLQJ LQ FRPSUHVVLEOH VKHDUIORZ 2WKHU SRVVLEOH FRQVLGHUDWLRQV IRU H[SHULPHQWDO YHULILFDWLRQ DQG H[SDQVLRQ DUH YDULDWLRQV RI LQGHSHQGHQW H[SHULPHQWDO SDUDPHWHUV LQFOXGLQJ SULPDU\ 0DFK QXPEHU VHFRQGDU\ 0DFK QXPEHU FRQYHFWLYH 0DFK QXPEHU HQWUDLQPHQW UDWLRV PL[LQJVHFWLRQ LQOHW DUHDUDWLR GLVVLPLODU JDVHV DQG QRQLVRHQHUJHWLF IORZV 9DULDWLRQ RI WKH SK\VLFDO FRQILJXUDWLRQ WR DQ D[LV\PPHWULF DQGRU YDULDEOHDUHD PL[LQJ VHFWLRQ LV DOVR UHFRPPHQGHG

PAGE 198

$33(1',; $ %281'$5
PAGE 199

$f $f ZKHUH IRU D JLYHQ [ WKH SUHVVXUH LV FRQVWDQW DFURVV WKH OD\HU 7KH YHORFLW\ GLVWULEXWLRQ RXWVLGH WKH ERXQGDU\ OD\HU PXVW DOVR EH WUDQVIRUPHG E\ SXWWLQJ  UU ? P ?7M P $f 7KH VDPH UHODWLRQVKLS KROGV LQVLGH WKH ERXQGDU\ OD\HU EHWZHHQ WKH YDOXHV RI Xc DQG X 7 f§ X[ ]f 7f $ f fcIWr ]L@ )URP (TV $ $ DQG $ LW IROORZV WKDW G8 : G[ 7M \ 77 G8 G[ $ f 7KH FRPSUHVVLEOH PRPHQWXP WKLFNQHVV LV JLYHQ E\ X f S X 8f S8 G] $f DQG LQ WKH WUDQVIRUPHG FDVH WKLV EHFRPHV

PAGE 200

RR ? $f )URP (TV $ $ DQG $ WKHVH WZR PRPHQWXP WKLFNQHVVHV DUH UHODWHG DV IROORZV 7L
PAGE 201

7KH GLVSODFHPHQW DQG ERXQGDU\ OD\HU WKLFNQHVVHV DUH FDOFXODWHG IURP WKH IROORZLQJ HTXDWLRQV UHVSHFWLYHO\ DV JLYHQ E\ :KLWH Sf IRU DQ LQVXODWHG SODWH DQG XQLW\ 3UDQGWO QXPEHU D r L A O-OQODf D $ f r[ VL -OD f§PODff§ ,Q A D D?>D ?@ DYD Y D\DM $ f ZKHUH $ f

PAGE 202

$33(1',; % )/2: 3$5$0(7(56 )25 7$%/(6 $1' $1' 683(5621,& 3,727 352%( '$7$ 5('8&7,21 7KH 0DFK QXPEHU LV GHILQHG IURP WKH LGHDO RQHGLPHQVLRQDO LVHQWURSLF FRPSUHVVLEOH IORZ DQDO\VLV 0 / E" S f UR ?3f
PAGE 203

ZKHUH 0: LV WKH PROHFXODU ZHLJKW DQG LV WKH XQLYHUVDO JDV FRQVWDQW ZKHUH WKH XQLYHUVDO JDV FRQVWDQW LV GHILQHG DV 5X r.NJPROH %f 7KH VWDWLF WHPSHUDWXUH LV JLYHQ E\ 7 A0 %f 7KH VRXQG VSHHG DQG DYHUDJH VRXQGVSHHG IRU DQ LGHDO JDV DUH UHVSHFWLYHO\ F V>:7 %f &O& %f 7KH VWDJQDWLRQ DQG VWDWLF GHQVLWLHV DUH IRXQG IURP WKH LGHDO JDV HTXDWLRQ 3R $ 57 %f 3B 57 n 7KH DYHUDJH GHQVLW\ LV GHILQHG DV 3 DYH 3L3 %,2f %f 7KH VWUHDP G\QDPLF SUHVVXUH LV GHILQHG DV

PAGE 204

SXO 7KH YROXPHWULF IORZUDWH LV FDOFXODWHG IURP \ 8/ DQG WKH YROXPHWULF HQWUDLQPHQW UDWLR LV GHILQHG DV HD Y .n 7KH YHORFLW\ LV IRXQG IURP WKH 0DFK QXPEHU DQG VRXQG VSHHG 8 0F 7KH DYHUDJH YHORFLW\ LV GHILQHG 88 8 f§f§ DLr 7KH FRQYHFWLYH YHORFLW\ LV GHILQHG DV 8F8 OU\ %f % f %f %f %f %f 7KH SULPDU\ DQG VHFRQGDU\ FRQYHFWLYH 0DFK QXPEHUV DUH IRXQG IURP WKHLU UHVSHFWLYH GHILQLWLRQV 8 8B %f 0F & 0 XFaX %f $ VLQJOH FRQYHFWLYH 0DFK QXPEHU IRU WKH IORZ LV VRPHWLPHV XVHG DQG LV GHILQHG DV F B %f

PAGE 205

:KHQ
PAGE 206

5H 3 8 B f ccYH D 9D %f DQG WKH MHW 5H\QROGV QXPEHU LV GHILQHG DV 3LWL f IH $ %f 7KH WKHRUHWLFDO LQFRPSUHVVLEOH WZRGLPHQVLRQDO PL[LQJOD\HU JURZWK UDWH 'LPRWDNLV f LV n U 1 YAf§ aLV UfO Uf %f ZKHUH H LV D FRQVWDQW )RU FDOFXODWLRQV RI VWDJQDWLRQ SUHVVXUH IURP SUREH SUHVVXUH ZKHQ WKH ORFDO IORZ LV VXSHUVRQLF WKH 5D\OHLJK VXSHUVRQLF SLWRW IRUPXOD LV XVHG SW V SUREH 3 $f\n O < < O < %f 3 ZKHUH f§f§ 3 V SUREH
PAGE 207

$33(1',; & 35(6685( 75$16'8&(5 3$5$0(7(56 7DEOH &O 0LFUR 6ZLWFK SUHVVXUH WUDQVGXFHUV PRGHO QXPEHU 3&' 6(5,$/ 1R 5$1*( $N3Df &$/,%5$7,21 &859( $N3Df /,1($5,7< 5(3($7$%,/,7< b)62f 86( r9 ss r9 ss 3 r9 ss 3 r9 ss 3 r9 ss 3 r9 ss 3 r9 ss 3 r9 ss 3L r9 ss 3 r9 ss 3 r9 ss 3

PAGE 208

7DEOH & 2WKHU SUHVVXUH WUDQVGXFHUV XWLOL]HG 35(6685( 75$16' 5$1*( &$/,%5$7,21 &859( $&&85$&< b%)6/f 86( 2PHJD 3; N3D 3mPEr9 s 3RL 9DOLG\QH '3 s $N3D 3PEr9 s 3R 9DOLG\QH '3 s $N3D 3DPEr9 s '3 9DOLG\QH '3 s $N3D 3OPEr9 s 3 U SUREH 9DOLG\QH '3 s $N3D 3}PEr9 s S $ VSURO!H 9DOLG\QH '3 s $N3D 3DPEr9 s 3VEN

PAGE 209

5()(5(1&(6 $QVHOPHW ) *DJQH < +RSIPJHU ( DQG $QWRQLD 5 $ +LJK2UGHU 9HORFLW\ 6WUXFWXUH )XQFWLRQV LQ 7XUEXOHQW 6KHDU )ORZV )OXLG 0HFK 9RO SS %HQMDPLQ 0 $ $ 0HWKRGRORJ\ IRU WKH 'HVLJQ RI D 7ZR'LPHQVLRQDO &RQVWDQW 3UHVVXUH &RPEXVWRU 8WLOL]LQJ 5HDFWLQJ 6KHDU/D\HUV 0DVWHUnV 7KHVLV 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD %HQMDPLQ 0 $ 'XIIORFT 0 DQG 5RDQ 9 3 ,QLWLDO 'HYHORSPHQW RI WKH 7ZR'LPHQVLRQDO (MHFWRU 6KHDU /D\HU ([SHULPHQWDO 5HVXOWV $/$$ $,$$6$($60($6(( WK -RLQW 3URSXOVLRQ &RQIHUHQFH 0RQWHUH\ &$ %HQMDPLQ 0 $ DQG 5RDQ 9 3 0RGHOLQJ RI WKH ,QLWLDO 5HJLRQV RI WKH $[LV\PPHWULF &RQVWDQW$UHD 6KHDU/D\HU LQ )RUXP RQ 7XUEXOHQW )ORZV HG 0 0RUULV DQG % ) &DUUROO $60( )('9RO SS 1HZ
PAGE 210

%UDGVKDZ 3 7KH (IIHFW RI 0HDQ &RPSUHVVLRQ RU 'LODWDWLRQ RQ WKH 7XUEXOHQFH 6WUXFWXUH RI 6XSHUVRQLF %RXQGDU\ /D\HUV )OXLG 0HFK 9RO SDUW SS %UDGVKDZ 3 )HUULVV + DQG -RKQVRQ 5 ) 7XUEXOHQFH LQ WKH 1RLVH 3URGXFLQJ 5HJLRQ RI D &LUFXODU -HW $*$5' 5HS 1R 3DULV )UDQFH %URZQ / DQG 5RVKNR $ 2Q 'HQVLW\ (IIHFWV DQG /DUJH 6WUXFWXUH LQ 7XUEXOHQW 0L[LQJ /D\HUV )OXLG 0HFK 9RO 3DUW SS %XOO 0 3URSHUWLHV RI WKH )OXFWXDWLQJ :DOO3UHVVXUH )LHOG RI D 7XUEXOHQW %RXQGDU\ /D\HU $*$5' 5HS 1R 3DULV )UDQFH %XUWRQ 7 ( :DOO 3UHVVXUH )OXFWXDWLRQV DW 6PRRWK DQG 5RXJK 6XUIDFHV XQGHU 7XUEXOHQW %RXQGDU\ /D\HUV ZLWK )DYRUDEOH DQG $GYHUVH 3UHVVXUH *UDGLHQWV 0DVVDFKXVHWWV ,QVWLWXWH RI 7HFKQRORJ\ &DPEULGJH 0DVVDFKXVHWWV $FRXVWLFV DQG 9LEUDWLRQ /DERUDWRU\ 5HSRUW 1R 1DYDO 6KLS 5HVHDUFK DQG 'HYHORSPHQW &WU &RQWUDFW 1$ &KDQ < < DQG :HVWOH\ 5 'LUHFWLRQDO $FRXVWLF 5DGLDWLRQ *HQHUDWHG E\ 6SDWLDO -HW ,QVWDELOLW\ &$6, 7UDQVDFWLRQV 9RO SS &KLQ]HL 1 0DVX\D 7 .RPXUR $ 0XUDNDPL $ DQG .XGRX 6SUHDGLQJ RI 7ZR6WUHDP 6XSHUVRQLF 7XUEXOHQW 0L[LQJ /D\HUV 3K\ )OXLGV f SS &RUHRV 0 5HVROXWLRQ RI 3UHVVXUH LQ 7XUEXOHQFH $FRXVW 6RF $P 9RO 1R SS &RUHRV 0 7KH 6WUXFWXUH RI WKH 7XUEXOHQW 3UHVVXUH )LHOG LQ %RXQGDU\ /D\HU )ORZV )OXLG 0HFK 9RO SS &RUHRV 0 &XWKEHUW : DQG 9RQ :LQNOH : $ 2Q WKH 0HDVXUHPHQW RI 7XUEXOHQW 3UHVVXUH )OXFWXDWLRQV ZLWK D 7UDQVGXFHU RI )LQLWH 6L]H 8QLYHUVLW\ RI &DOLIRUQLD ,QVWLWXWH RI (QJLQHHULQJ 5HVHDUFK 5HSW 6HU 1R %HUNHOH\ &DOLIRUQLD &XULH 1 7KH ,QIOXHQFH RI 6ROLG %RXQGDULHV XSRQ $HURG\QDPLF 6RXQG 3URF 5 6RF /RQ 9RO SS 'LPRWDNLV 3( 7ZR'LPHQVLRQDO 6KHDU/D\HU (QWUDLQPHQW $,$$ 9RO 1R SS 'LPRWDNLV 3( 7XUEXOHQW )UHH 6KHDU /D\HU 0L[LQJ $,$$ WK $HUR 6FL 0WJ 5HQR 1HYDGD 'LQNHODFNHU $ DQG /DQJHKHLQHNHQ 7 + 5HODWLRQV %HWZHHQ :DOO 3UHVVXUH )OXFWXDWLRQV DQG 9HORFLW\ )OXFWXDWLRQV LQ 7XUEXOHQW )ORZ LQ 6WUXFWXUH RI &RPSOH[ 7XUEXOHQW 6KHDU )ORZ ,87$0 6\PSRVLXP 0DUVHLOOH HG 5 'XPDV DQG / )XODFKLHU 6SULQJHU %HUOLQ

PAGE 211

'XIIORFT 0 %HQMDPLQ 0 $ DQG 5RDQ 9 3 &RPSDULVRQ RI WKH ,QLWLDO 'HYHORSPHQW RI 6KHDU /D\HUV LQ 7ZR'LPHQVLRQDO DQG $[LV\PPHWULF &RQILJXUDWLRQV $,$$ $,$$6$($60($6(( WK -RLQW 3URSXOVLRQ &RQIHUHQFH DQG ([KLELW 0RQWHUH\ &DOLIRUQLD 'XIIORFT 0 %HQMDPLQ 0 $ 5RDQ 9 3 DQG /HDU : ( ,QLWLDO 'HYHORSPHQW RI WKH $[LV\PPHWULF (MHFWRU 6KHDU /D\HU $,$$ $,$$6$($60($6(( WK -RLQW 3URSXOVLRQ &RQIHUHQFH DQG ([KLELW 1DVKYLOOH 7HQQHVVHH (FNHOPDQQ +HOPXW $ 5HYLHZ RI .QRZOHGJH RQ 3UHVVXUH )OXFWXDWLRQV LQ 1HDU:DOO 7XUEXOHQFH =RUDQ =DULF 0HPRULDO &RQIHUHQFH HG 6 .OLQH DQG 1 + $IJDQ +HPLVSKHUH 3XEOLVKLQJ &RUSRUDWLRQ 1HZ
PAGE 212

-RKDQVVRQ $ 9 +HU DQG +DULWRQLGLV + 2Q WKH *HQHUDWLRQ RI +LJK $PSOLWXGH :DOO3UHVVXUH 3HDNV LQ 7XUEXOHQW %RXQGDU\ /D\HUV DQG 6SRWV )OXLG 0HFK 9RO SS .DUDQJHOHQ & & :LOF]\QVNL 9 DQG &DVDUHOOD 0 /DUJH $PSOLWXGH :DOO 3UHVVXUH (YHQWV %HQHDWK D 7XUEXOHQW %RXQGDU\ /D\HU )OXLG (QJ 9RO SS .LVWOHU $ / DQG &KHQ : 6 7KH )OXFWXDWLQJ 3UHVVXUH )LHOG LQ D 6XSHUVRQLF 7XUEXOHQW %RXQGDU\ /D\HU )OXLG 0HFK 9RO 3DUW SS .REDVKL < DQG ,FKLMR 0 :DOO 3UHVVXUH 6WUXFWXUH DQG ,WV 5HODWLRQ WR 7XUEXOHQW 6WUXFWXUH RI WKH %RXQGDU\ /D\HU ([S LQ )OXLGV 9RO SS .ROPRJRURY $ 1 D 7KH /RFDO 6WUXFWXUH RI 7XUEXOHQFH LQ ,QFRPSUHVVLEOH 9LVFRXV )OXLG IRU 9HU\ /DUJH 5H\QROGV 1XPEHUV 7UDQVODWHG IURP 5XVVLDQ 'RNO $NDG 1DXN 6665 f f LQ 3URF 5 6RF /RQG $ 9RO SS .ROPRJRURY $ 1 E 'LVVLSDWLRQ RI (QHUJ\ LQ WKH /RFDOO\ ,VRWURSLF 7XUEXOHQFH 7UDQVODWHG IURP 5XVVLDQ 'RNO $NDG 1DXN 6665 f f LQ 3URF 5 6RF /RQG $ 9RO SS .RRFKHIDKDQL & &DWKHUDVRR 3 ( *KDULE 0 DQG /DQJ % 'HFHPEHU 7ZR3RLQW /'9 0HDVXUHPHQWV LQ D 3ODQH 0L[LQJ /D\HU $,$$ 9RO 1R SS .UDLFKQDQ 5 + D 3UHVVXUH )LHOG ZLWKLQ +RPRJHQHRXV $QLVRWURSLF 7XUEXOHQFH $FRXVW 6RF $P 9RO 1R SS .UDLFKQDQ 5 + E 3UHVVXUH )OXFWXDWLRQV LQ 7XUEXOHQW )ORZ RYHU D )ODW 3ODWH $FRXVW 6RF $P 9RO 1R SS /DQGDX / DQG /LIVKLW] ( 0 )OXLG 0HFKDQLFV QG (GLWLRQ 3HUJDPRQ 3UHVV 2[IRUG (QJODQG /DXIHU 6RPH 6WDWLVWLFDO 3URSHUWLHV RI WKH 3UHVVXUH )LHOG 5DGLDWHG E\ D 7XUEXOHQW %RXQGDU\ /D\HU 3K\V )OXLGV 9RO 1R SS /LJKWKLOO 0 2Q 6RXQG *HQHUDWHG $HURG\QDPLFDOO\ *HQHUDO WKHRU\ 3URF 5 6RF 6HULHV $ 9RO SS /LJKWKLOO 0 2Q 6RXQG *HQHUDWHG $HURG\QDPLFDOO\ ,, 7XUEXOHQFH DV D VRXUFH RI VRXQG 3URF 5 6RF 6HULHV $ 9RO SS /LOOH\ 0 :DOO 3UHVVXUH )OXFWXDWLRQV XQGHU 7XUEXOHQW %RXQGDU\ /D\HUV DW 6XEVRQLF DQG 6XSHUVRQLF 6SHHGV $*$5' 5HS 1R 3DULV )UDQFH /LOOH\ 0 DQG +RGJVRQ 7 + 2Q 6XUIDFH 3UHVVXUH )OXFWXDWLRQV LQ 7XUEXOHQW %RXQGDU\ /D\HUV $*$5' 5HS

PAGE 213

/RZVRQ 0 9 DQG 2OOHUKHDG % 9LVXDOL]DWLRQ RI 1RLVH IURP 6XSHUVRQLF -HWV $FRXVW 6RF $P 9RO 1R SS 0RQLQ $ 6 DQG
PAGE 214

5LEQHU + 6 $FRXVWLF (QHUJ\ )OX[ IURP 6KRFN7XUEXOHQFH ,QWHUDFWLRQ )OXLG 0HFK 9RO 3DUW SS 5LFKDUGV ( 2Q WKH 1RLVH IURP 6XSHUVRQLF -HWV 5 $HUR 6RF 9RO SS 5RDQ 9 3 'XIIORFT 0 DQG %HQMDPLQ 0 $ (MHFWRU &RGH &DOLEUDWLRQ ,QYHVWLJDWLRQ 3KDVH ,, 7ZR'LPHQVLRQDO 7HVWV 1$6$ /HZLV &RQWUDFW 1R 1$* 8QLYHUVLW\ RI )ORULGD 'HSW 0HFK (QJ *DV '\QDPLFV /DERUDWRU\ *DLQHVYLOOH )/ 5RDQ 9 3 /HDU : ( 'XIIORFT 0 DQG %HQMDPLQ 0 $ (MHFWRU &RGH &DOLEUDWLRQ ,QYHVWLJDWLRQ 3KDVH $[LVYPPHWULF 7HVWV 1$6$ /HZLV &RQWUDFW 1R 1$* 8QLYHUVLW\ RI )ORULGD 'HSW 0HFK (QJ *DV '\QDPLFV /DERUDWRU\ *DLQHVYLOOH )/ 5RWW 1 DQG &UDEWUHH / ) 6LPSOLILHG /DPLQDU %RXQGDU\/D\HU &DOFXODWLRQV IRU %RGLHV RI 5HYROXWLRQ DQG IRU
PAGE 215

7KZDLWHV % $SSUR[LPDWH &DOFXODWLRQ RI WKH /DPLQDU %RXQGDU\ /D\HU $HUR 4XDUW 9RO SS 7LHGHUPDQ : (XOHULDQ 'HWHFWLRQ RI 7XUEXOHQW %XUVWV LQ 1HDU:DOO 7XUEXOHQFH =RUDQ =DULF 0HPRULDO &RQIHUHQFH HG 6 .OLQH DQG 1 + $IJDQ +HPLVSKHUH 3XEOLVKLQJ &RUSRUDWLRQ 1HZ
PAGE 216

%,2*5$3+,&$/ 6.(7&+ 0LFKDHO %HQMDPLQ ZDV ERP LQ LQ /RQGRQ (QJODQG DQG HPLJUDWHG WR WKH 8QLWHG 6WDWHV LQ +H UHFHLYHG KLV %60( LQ DQG 0( LQ PHFKDQLFDO HQJLQHHULQJ LQ IURP WKH 8QLYHUVLW\ RI )ORULGD +H ZLOO ZRUN IRU 3DUNHU +DQQLILQ LQ WKH *DV 7XUELQH )XHO 6\VWHPV 'LYLVLRQ LQ &OHYHODQG 2KLR IRU VHYHUDO \HDUV EHIRUH HLWKHU UHWXUQLQJ WR DFDGHPLD RU IROORZLQJ D PDQDJHPHQW WUDFN

PAGE 217

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ A 9HUQRQ 3 5RDQ -U &KDLU L 3URIHVVRU RI 0HFKDQLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 2= A &DOYLQ & 2OLYHU 3URIHVVRU (PHULWXV RI 0HFKDQLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0HFKDQLFDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG : 0LNRODLWLV $VVRFLDWH 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ U :HL 6K\\ A 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFHV

PAGE 218

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU e :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ .DUHQ $ +ROEURRN 'HDQ *UDGXDWH 6FKRRO

PAGE 219

!B i P 81,9(56,7< 2)