Citation
Buckling and deformation of heated conical shells.

Material Information

Title:
Buckling and deformation of heated conical shells.
Creator:
Chang, Lu-Kang, 1938-
Publication Date:
Language:
English
Physical Description:
viii, 151 leaves ill. : ; 28 cm.

Subjects

Subjects / Keywords:
Boundary conditions ( jstor )
Buckling ( jstor )
Conical shells ( jstor )
Coordinate systems ( jstor )
Critical temperature ( jstor )
Cylindrical shells ( jstor )
Eggshells ( jstor )
Stress functions ( jstor )
Structural deflection ( jstor )
Temperature gradients ( jstor )
Buckling (Mechanics) ( lcsh )
Deformations (Mechanics) ( lcsh )
Elastic plates and shells ( lcsh )
Thermal stresses ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis--University of Florida.
Bibliography:
Bibliography: leaves 148-150.
General Note:
Manuscript copy.
General Note:
Vita.
Statement of Responsibility:
Lu-Kang Chang.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
021901676 ( ALEPH )
ACZ5048 ( NOTIS )
13645121 ( OCLC )

Downloads

This item has the following downloads:


Full Text














BUCKLING AND DEFORMATION OF HEATED

CONICAL SHELLS










By

LU-KANG CHANG


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY











UNIVERSITY OF FLORIDA
June, 1967
















ACKNOWLEDGMENTS


The author wishes to express his sincere appreciation to

Dr. S. Y. Lu, Chairman of the Supervisory Committee, for suggesting

this subject and providing invaluable guidance throughout the entire

period of this research. It was by his constant encouragement that

this work was made possible. He would also like to thank Dr. W. A.

Nash, Chairman of the Department of Engineering Science and Mechanics,

for his valuable suggestions and financial support throughout the

author's graduate work.

Gratitude is also expressed to Dr. I. K. Ebcioglu, Professor

of Engineering Science and Mechanics, and Dr. R. G. Blake, Associate

Professor of Mathematics, for serving as members of the writer's

supervisory committee.

Final thanks go to the National Science Foundation for

sponsoring this research.















TABLE OF CONTENTS


ACKNOWLEDGMENTS . .

LIST OF FIGURES . .

NOMENCLATURE . .

ABSTRACT .. . .


CHAPTER
I. INTRODUCTION .

II. BASIC RELATIONS AND FUNDAMENTAL EQUATIONS


1. Geometry of Shells


2. Basic Equations .
3. Transformation of Coordinates .

III. METHOD OF APPROACH .

1. Boundary Conditions .
2. Thermal Buckling .
3. Postbuckling Behavior .

IV. SOLUTION AND NUMERICAL RESULTS .

1. Critical Temperature .
2. Minimum Temperature .
3. Deformation .

V. CONCLUSIONS .

APPENDIX

A. EQUATIONS FOR CASE I .

B. EQUATIONS FOR CASE II .

C. COMPUTER PROGRAM FOR NONLINEAR ANALYSIS


Corresponding Symbols Used in Computer Program .

REFERENCES . .

BIOGRAPHICAL SKETCH . .


Page
ii

iv

vi

viii


1

8

8
14
21

23

24
26
28

31

31
49
57

66



72

102

118

118

148

151





* .
. *













LIST OF FIGURES


Figure Page
1. The cross section of a shell segment .. 11

2. Geometry of conical shell .... .25

3. Critical temperature versus radius-thickness ratio
at H/R = 2 . ... ...... 40

4. Critical temperature versus radius-thickness ratio
at 0 = 100 .. .. 41

5. Critical temperature versus semivertex angle
at H/R = 2 . .. 42

6. Variation of critical temperature with meridional
temperature index (0 = 100, R/h = 300, H/R = 2). 43

7. Critical temperature due to circumferentially non-
uniform eating (0 = 100, H/R = 2) ... 50

8. Temperature variation T1 as a function of deflection
coefficient ratio (ai/ao) at 5 = 100, R/h = 450 and
H/R = 2 . 58

9. Temperature variation T1 as a function of deflection
coefficient ratio (a/aI) at B = 100, R/h = 900 and
H/R = 2 . 59

10. Minimum temperature versus radius-thickness ratio
at H/R = 2 .. 60

11. Variation of minimum temperature with meridional
temperature index (0 = 100, R/ = 300, H/R = 2) 61

12. Deflection versus temperature (5 = 100, R/h = 450,
H/R = 2) . 63

13. Deflection versus temperature for axisymmetric case
(6 = 10, R/h = 450, H/R = 2). 64

14. Deflection versus temperature (U = 10,
H/R = 2) 65










LIST OF FIGURES (Continued)
Figure Page
15. Comparison of critical temperature with minimum
temperature (0 = 10, R/R = 2) 68

16. Photograph showing buckling of a heated conical shell 70













NOMENCLATURE


E = Young's modulus

F = dimensionless strain function

H = night of conical sell

R = mean radius defined in Fig. 2

T = temperature gradient in the middle surface

Tl, T2 = uniform temperature rise

a a. = coefficients of tne deflection functions defined
in Eqs. (IV-3) and (IV-15), respectively
/ I
b b. = coefficients of the deflection functions defined
i' in Eqs. (IV-30) and (IV-37), respectively

a, a. = coefficients of the deflection functions defined
in Eqs. (IV-47) and (IV-50), respectively

e e, = meridional and circumferential strains in the
middle surface

e r = shear strain in the middle surface

g, k = temperature distribution factor defined in
Eqs. (IV-9) and (IV-29), respectively

h = wall-tnickness of conical shell

I = length of conical shell

mi, mi = numbers defined in Eqs. (IV-53)

n = number defined in Eq. (IV-16)

r, p = surface coordinates

u, v, w = dimensionless meridional circumferential and
inward normal displacements

x, r = length index and meridional distance defined
in Eq. (11-36) and Fig. 2

x = value of x at the large end
o










y = thermal expansion coefficient

B = semivertex angle

V1' Y2 = numbers defined in Eqs. (IV-26) and (IV-41),
respectively

e e = meridional and circumferential strains

erl = shear strain

S= number defined in Eq. (IV-61)

8 = transformed coordinate defined in Eqs. (11-31)

Kr, k = meridional and circumferential changes of curvature
in the middle surface

Kr = twist of the middle surface

A = (l-v)/2

9, 7 = number of half waves in meridional and circumfer-
ential direction, respectively

v = Poisson's ratio

T, T2 = temperature coefficients defined in Eqs. (IV-9)
and (IV-29)

V2,V4 = operator defined in Eq. (11-38)


Superscripts


= prebuckling state

= additional qualities during buckling


Subscripts

cr = critical values

min = minimum values

max = maximum values

I, II = condition in Cases I and II

= partial differentiation with respect to the variables
following the comma
vii










Abstract of Dissertation Presented to the Graduate Council
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy


BUCKLING AND DEFORMATION OF HEATED CONICAL SHELLS

By

Lu-Kang Chang

June, 1967


Chairman: Dr. S. Y. Lu
Major Department: Engineering Science and Mechanics


The instability of truncated conical shells due to thermal

loadings was studied. The basic governing equations were derived by

use of the large deflection theory, and Galerkin's method was em-

ployed to integrate the equilibrium equation.

Two cases were considered in this investigation. In one

case the temperature varies along the generator and the conical shell

is restricted completely at both ends, while in the other case the

temperature changes in two principal directions and the cone is con-

strained along the perimeter but is free of resultant longitudinal

force at boundaries. The edges are simply supported.

The relation of the critical temperature to the geometric

parameters were evaluated. Three parameters were used, namely:

the radius-thickness ratio, the radius-height ratio, and the cone's

vertex angle. The radius-thickness ratio has the most significant

effect on the value of critical temperature. A higher buckling tem-

perature was found by nonlinear analysis when compared to that

obtained by linear analysis.


viii
















CHAPTER I


INTRODUCTION


Thin-walled shells have many applications as principal elements

of structures. One of the main advantages is weight-saving. Among the

various types of shells, the conical and cylindrical shells are most

frequently used in structures such as space vehicles and reactors.

The main advantages of their applications are to reduce the drag and

they are easily manufactured. Similar to a slender bar, a shell will

deform when a load is applied. An important phase in the design of

thin-walled shells is a study of their instability; that is, to deter-

mine the limit of the applied loadings, mechanical and thermal, before

the shells become unstable. If an axial load is applied to a column

and if it is gradually increased, a condition is reached in which the

equilibrium state becomes unstable and a small lateral disturbance will

produce a deflection which does not disappear when the lateral force is

removed. Von Karman and Tsien [1] noted that some structures, espe-

cially the shell-like structures, may experience a state of weak stabil-

ity such that small blows or other disturbances cause them to snap into

badly deformed shapes.

Since the early twentieth century, the buckling problem of

cylindrical shells, based on the assumption of infinitesimal deforma-

tions has been studied by many authors. Among them, Donnell [2]

published his well-known Donnell's eighth-order linear equation of











shells. In the derivation of this equation the assumptions are made

that the wall thickness is small compared to the radius of the cylin-

der, that the distortion to transverse shear is neglected, and that

the deformation consists of a large number of waves in the circumfer-

ential direction. Three equations of equilibrium in the normal, merid-

ional and circumferential directions are combined, and are represented

by one equation through the mathematical technique. Unfortunately, the

results predicted by the linear classical theory do not agree with the

experimental evidence. In order to explain these discrepancies, von

Karman and Tsien [3] made a very important advance in the understanding

of the problem of buckling of cylinders subjected to axial compression

by assuming a diamond-shaped deflection pattern. They stated that the

buckling phenomenon of curved shells could be in general only by means

of tne large deflection theory. They applied this nonlinear theory

and tne concept of "snap-through" phenomenon to study the postbuckling

behavior of the cylindrical shell under axial compression. The work

of von Karman and Tsien has been extended and refined by several

authors [4,5,6].

In 1950, Donnell and Wan [7] introduced the concept of imper-

fection in the analysis of von Karman and Tsien. Their work was ex-

tended by Loo [8], who, based on the finite-deformation theory together

with a consideration of initial imperfection, studied the buckling of

cylindrical shells due to torsion. A continuation of work done by Loo

was later investigated by Nash [9]. Cylindrical shells subjected to

hydrostatic loads have been studied by Kempner and Crouzet-Pascal [10]

and Donnell [ll].











The problem of pressurized cylindrical shells under axial com-

pression or bending has been studied by Lu and Nash [12] on the basis

of nonlinear finite deflection theory. The results of these finite-

deflection studies are in good agreement with the experimental evidence.

However, recent papers [13,14] report that when more terms are used in

the deflection function the minimum buckling load becomes smaller, and

there is no way to predict how many terms should be taken for the

approximation.

The problem of stability of conical shells subjected to mechan-

ical loadings has been studied by several authors in recent years. The

axisymmetrical buckling of circular cones under axial compression was

examined by Seide [15]. The buckling loads corresponding to hydro-

static pressure were investigated by Hoff and Singer [16] and Seide

[17]. Mushitari and Sachenkov [18] suggested a transformation of coor-

dinates to study the buckling of simply supported cones subjected to

axial compression and normal pressure, and the buckling of internally

pressurized cones under axial compression was later investigated by

Seide [19]. In all of the above-mentioned references, the prebuckling

stresses are assumed unchanged during buckling, and the additional

middle surface forces depend on normal deflection only.

The large deflection theory is likely to reveal a "snap-through"

type of behavior for conical shells. Schnell [20] used the energy

method to solve the nonlinear buckling problem under axial compression

and internal pressure. The results gave a better agreement with the

experiment than those obtained from the linear theory. The study of

nonlinear axisymmetric buckling of the conical shell was also examined











by Newman and Reiss [21] and Famili [22] by the use of finite-difference

approximation. The upper and lower buckling loads have been precisely

discussed in [22], and Famili's results are seen to be between the

results of Niordson [23] and Bijlaard [24], in which Niordson's work is

considered as upper bound and Bijlaard's work is considered as lower

bound.

The buckling problem of cylindrical shells subject to a uniform

temperature gradient has been studied by Hoff [25] for simply supported

ends and Zuk [26] for clamped boundary conditions. In these works, the

cylinder is restrained circumferentially at both ends but is free from

constraint in the axial direction. The longitudinal stress is assumed

to be zero, and the hoop stress varies in the axial direction and

rapidly decreases as the distance from the edge increases. Hoff approx-

imated the hoop stress by an infinite cosine series and solved the

problem by the use of Donnell's equation of thin shell, while Zuk pre-

sented the hoop stress by a cosine function and solved the governing

shell equation by Galerkin's method. This problem was later analyzed

by Sunakawa [27] for various conditions of constraint. He used the

axisymmetrical condition in the state prior to buckling, and the prob-

lem of finding the hoop stress is therefore much simplified.

Similar to [25], the buckling of thin-walled, cylindrical shells

under circumferential temperature gradients was examined by Abir and

Nardo [283. The above analysis is performed with the aid of Donnell's

equations. The variation of the thermal stress with the circumferen-

tial coordinate is represented by a Fourier series and the stresses are

assumed constant through the thickness and in the axial direction.











Hoff, Chao and Madsen [29] have also investigated the buckling of a

cylindrical shell heated along an axial strip by means of Donnell's

linear equation of cylindrical shells. It is assumed in [29] that the

cylindrical shell is very long in the axial direction and thus the

axial stress caused by heating has constant values over a substantial

length of the heated strip as well as across its entire width; and out-

side the heated strip the thermal stress is assumed to be zero. The

problem was solved for the heated as well as the unheated regions.

The radial displacements, the slopes, the bending moments, and the

transverse shears are taken to be the same at the boundary for two

different regions. In a later report [30], the same thermal buckling

problem was solved by using the actual temperature data obtained from

experiments. This is in contrast with the exact solution of [29] in

which use was made of an idealized representation for the temperature

variation in the circumferential direction. The results were found

to be in close agreement with those of the experiments,provided the

heat strip was not very narrow.

The problem of thermal buckling of conical shelil heated along

a generator was recently studied by Bendavid and Singer [31]. The

solution of this problem is obtained by a Rayleigh-titz approach in

conjunction with displacement functions modified by a shape factor.

In this analysis, a hyperbolic axial thermal stress distribution is

assumed, the shell is simply supported and is taken long enough so

that the edge effect of the thermal stress may be neglected. The

radius of the shell is also assumed large compared to the thickness.

The hoop stress induced by the thermal load may also be disregarded.










The axial stress is taken in correspondence with the assumed temperature

distribution, and the circumferential displacement is chosen to be zero

at the edges during heating.

The purpose of the present investigation is to study the buck-

ling and postbuckling behavior of conical shells under presumed temper-

ature distributions. It is well known that finite-deflection analysis

on shells of other geometries has been closer to experimental results

than classical small-deflection analysis, and it is also noted that

during buckling the normal deflection of the shell is no longer infinites-

imal. In the present study, therefore, the terms due to large deforma-

tion are included in the basic equations.

Two cases are considered in this study. In one case the tem-

perature varies along the generator and the conical shell is restricted

completely at both ends, while in the other case temperature changes in

two principal directions and the cone is constrained along the circum-

ference but is free of resultant longitudinal force at boundaries. The

conical shell to be treated is assumed simply supported and free from

other loadings. The shell is considered to be elastic and isotropic.

Its material properties are taken to be independent of temperature, and

no dynamic effects are considered. The principle of stationary energy

is used to find the governing equations of equilibrium subject to

thermal loading. Hence, the buckling and minimum temperatures are

found from these equations. I

The deflection function is first assumed to satisfy the simply

supported boundary condition, the stress function is then found from

the compatibility equation, which is carried out by the use of the











nonlinear deflection theory. The solution of this problem is obtained

by applying the Galerkin method to the equilibrium equation.

Numerical examples of finding the critical temperatures for

different geometrical parameters of the conical shells are given in

Chapter IV. The deflection-temperature relations after buckling are

plotted in Figs. 12-14. The computation was carried out on the IBM

709 Computer and tne general programs were written in Fortran IV

language.

The detailed expressions of the symbols used in Chapter IV are

explicitly given in Appendices A, B and C. In Appendix C, the expres-

sions are presented in Fortran language. Since the capacity of the

IBM 709 Computer was too small for the program shown in Appendix C, the

program was therefore divided into three parts during the numerical

calculations.

In order to check the magnitude of the buckling temperature,

a test was performed by applying heat uniformly over the surface of

the conical shell.















CHAPTER II


BASIC RELATIONS AND FUNDAMENTAL EQUATIONS


1. Geometry of Shells

A surface is a locus of points, whose coordinates can be

described as a function of two independent parameters xl and x2.

In shell theory a special type of curvilinear coordinate system is

usually employed. For any point on the surface, the coordinates are

of the type X1 = X1(x 1x2), X2 = X2(xl,x2) and X3 = X3(x1,x2), in

which (Xl X2, X3) are rectangular coordinates and the parameters xl

and x2 are surface coordinates.

The position vector of any point on the surface can be ex-

pressed as:


= X, X.e X, (11-1)


The distance ds between points with the surface coordinates

(xl, x2) and (l1+dx1, x2 + dx2) is determined by


ds doJ- = W,) Z9d ,(XXz) C, (WXe) (11-2)


where A, B and C2 are the fundamental magnitudes of the first
o o o
order. They are













zal


-0
1o,= 2aX


al


dXLI
acP


d3t
d X


For orthogonal surface coordinates


of and a -
1 2


vanishes, and the magnitudes


are A and C respectively.
0


The unit normal vector of the surface is


/ C


The fundamental magnitudes of second order are defined as:


1 t= :;'


M/= ax,.Xz"


/-PC


-p /
Ae C0


aX.


aX,


z
d X,


dZXL
a .



aXt


dXz



91dti


d36 9X3
Ox, d AI


(11-3)


(11-4)


d j
- --


















-A.c,
N -O~x fC


2
a'x.
axf
SX,


aX1
aX,
9 7Z,


dj~z
aX1
.)X2


.1 Xt
aaiz
aiit


a~cJ
a i


aX,


(11-5)


It is shown in differential geometry that the lines of prin-

cipal radii of curvature coincide with the coordinate lines if, and

only if the coordinates are orthogonal and thus Mo = 0. In this

case, the principal curvatures are


/




These equations affix signs

R1 and 2. If the lines of

the theorem of Rodrigues is


-- ^
an / o
Let z denote the


Let +z denote the


Positive z


is measured in


/Va
SCc


(11-6)


to the principal radii of curvature

principal curvature are coordinate lines,

expressed as follows:


an9 d
9><2~ c;R 0'^


(11-7)


normal distance from the middle surface.

the sense of positive normal n of the


middle surface as shown in Fig. 1. To any set of values of (xl,x2,z)

there corresponds a point in the shell. The position vector of a point

on the middle surface is LO and the position vector of the corresponding












z from the middle surface is ? -
z from the middle surface is R .


we have


(11-8)


-v


Fig. 1. The cross section of a shell segment.



Hence by differentiation,


-.0




;CII)-


(11-9)


Substituting Eq. (11-7) into Eq. (11-9), the following relations


are obtained,


d-i
PX1I


tl4
.4~c


From Fig. 1


point at distance














z


O)6


dl
3Ix,


(11-10)


z a+i


4--



By referring to a surface parallel to the middle surface at a distance

z, we have


-.~ -


CRXz
+ + },^
* xe as~


(II-11)


2 1c
= ,4/ Z) */ r


where


A=,4 ( .l, ),


d= Co'l -


The strain-displacement relations are approximated as

follows [32]:


// / dA
611= AjCi a


: / )2
Z 2 ?


z )
d ^Xz


ar I (acz ,)


/CA


(IT-12)


*J/dw\
d~kr )_
L ,,I C C at /

















C cC? ~ d~ d44 r~
A ax C Co 91 \.


xdxl)


(11-13)


where u, v and w are the displacements of a point in the middle

surface in xl, x2 and z directions, respectively. W is taken

inward normal to the middle surface as positive.

Eqs. (11-13) are obtained under the assumption that the t

verse shears vanish. In small deflection theories all quadratic

in the strain-displacement relations are neglected.

Letting el, e2 and el2 denote the values of e1, e2 and

on the middle surface, respectively, we find [32]:







S~o .Co j( ) (i x/
e~ 1. (- ; -, C I



/ C >/ / ,o ( 0,4o



_x// Z


rans-

terms


e12


(11-14)












The changes of curvatures H' K2 and K12 on the middle sur-

face have the following forms,







? W-- -f /__
w 2--' ( /v^ ) d-






(11-15)

2. Basic Equations

A truncated conical shell as shown in Fig. 2, on page 25

is considered. The distance r is measured along the generator from

the vertex to a point on the middle surface, and B is the semi-

vertex angle. Thus, the surface coordinates are taken as: xI = r,

x2 = c. A point on the surface can be represented parametrically as:


X, = r.g/c t.oscO



X2 = ~~= (11-16)



S s


Substituting Eqs. (11-16) into Eqs. (11-3), (11-5) and (11-6),


we have









,to = i, c,,= r.,,


,= o IZ= r ,I (II-17)




Referring to the above equations, the strain-displacement relations
for a conical shell on the middle surface are obtained from Eqs. (11-14),


er= -er r)





r-9
eo-- 7. "-



and a comma, followed by subscripts indicates differentiation with
respect to subscripted variables.
From Eqs. (11-15), the changes of curvature are found


^r= T rr

r-1
"-v =f~ W7 (11-19)


M2 = -9 ) 0,.^^ ^Y









The conical shell is assumed to be perfectly elastic and the
material properties are independent of the change of temperature; the
stress-strain relations are given by the following:



= -- / -/ 7-


T = l I (er) / T (II-20)

E



where E, 0, v, and T represent Young's modulus, thermal expansion
coefficient, Poisson's ratio and the temperature difference, respec-
tively.
The equation of equilibrium can be obtained by applying the
principle of stationary energy. The strain energy of the shell is
written as:


L/= Um + rZ + 7r (11-21)

where U and Ub are the membrane and bending strain energy, respec-
tively, while UT represents the part of the strain energy that results
from heating. The expressions of the strain energy are given as



S= F ff(ze e, *-,2A)e eg o r


= z ffx ,,Z# X (,-vi e,. O..^L^,r,
Ulm V-09.)
D z a 19,










Ur,- _1/fe, Te,, 0-) hT6) /7 c XJrA9I


(11-22)


where h is wall thickness and


6h/z
7=L or~


h/i

41zd~


- /3
/Z7 (/-Jz)


(11-24)


If there is no external force, and equilibrium exists, the
principle of stationary energy requires that the strain energy U

satisfies the Euler's equations of the calculus variation. Symbol-

ically, this can be expressed as


tr = o


The functional U has the following form


U = f/(r, -U r U. -.7 9Pr. -'< ^


h-e ur er '' rr M ru artio, orr )(1 ))II-25)

The Euler equation for U1 is



Sdr ( ( )A O Srr


+ )4^ (_ _____
SY6( ( o-U'79 Cy V'z^^


(11-26)


(11-23)






18


the Euler equation for v is


4 2^ ^ / )_ ___ ___
9rr a go drr
(11-27)

rc 9r a ) )=o


and the Euler equation for W is



or ) d 4 4 t

4 )- = o (11-28)
od4rOP l -wrjf


The Euler equations for u and v find the two equilibrium

equations in the middle surface, which correspond to the equilibrium
state in meridional and circumferential directions, respectively.

In order to reduce the number of unknowns, the Airy stress function
7 is defined to satisfy the equations of equilibrium in the u and v
directions


O\ r F, r r+ (rAid F) FqPco

(11-29)
y = ~rr


^r^-t^M~fi ), C^J- r






19



By substituting Eqs. (11-18) into Eqs. (11-20), the stress-

displacement relations are obtained,












2 /-V "














(11-30)

We introduce the following dimensionless notations,






After substituting Eqs. (11-29) into Eqs. (II-30) and eliminating
the displacement variables U and 7, the compatibility equation is found

as the following:











V*4' = (dc j)lrr-J r )re> 'A^



S(Cw;e) ; e) -r


~ 7jr [L (Tr + ~ ,r) + J

(11-32)


where


S-z 2-i


v( = ) + L f 1
7 L7 +) a-T O "


By substituting Eqs. (11-18), (11-19), (11-20), (11-29), (II-30)
and (11-31) into Eq. (11-22) and using relation (11-28), the equation of
equilibrium in normal direction is found to be of the following form:

3
i' "- y = A A"-')Frr ,_,.,


+ ( Q r (~ _2 F I" _/ Q), r
x /J'789


(11-34)


where


Mr
M, = ,_/,~B


D/
=Z-LL


(11-35)


(IT-33)










3. Transformation of Coordinates

For convenience, the following transformation is introduced


x =i- 7


(11-36)


By substituting Eqs. (11-36) into Eq. (11-32), the dimension-

less compatibility in the newly defined coordinates is



C Z = e& -C^,)e-(u x-W.* X-Ws (-.ex


- (W< ) -f (i (U,- a?6tr


(11-37)


where


71= V7 77
2


vz=e (a


The dimensionless equation of equilibrium after the transforma-

tion becomes







+ (~eQo x6 )(x-,x -;Cx x)-2 e -Fe)(1o-(6)]
(11-39)


(11-38)


*o= ~^o/a,- )


+96z







22



It is noted in Eq. (II-34) that the thermal moment due to the

temperature gradient across the wall-thickness is disregarded because

the temperature is assumed uniform throughout the thickness. Eqs. (11-37)

and (II-39) are the basic equations for the buckling of conical shells

due to the temperature changes.















CHAPTER III


METHOD OF APPROACH


Since the governing equations of the buckling problem have been

formulated, our next task is to seek the solutions of the established

differential equations together with the boundary conditions. To deter-

mine the critical temperature at which the conical shell becomes un-

stable, the deflection is infinitesimal and the linearized relations

in Eqs. (11-37) and (11-39) are used. For the buckling of shells, the

two coupled nonlinear equations (11-37) and (II-39) will be solved

simultaneously. It is virtually impossible to obtain an exact solu-

tion, and only approximate numerical methods will be sought. One of

the powerful methods is the method of Galerkin [33,34], which is not

only closely related to the variational method but also parallels

Ritz's method.

The Galerkin method is briefly explained below. A differen-

tial equation can be expressed in the form


L (P) = 0 (111-1)


if L(P) exists in a two-dimensional domain, an approximate solution

of P is assumed in a series form, i.e.,


/0 (X, ) = ."- a4' -(,y) (111-2)
'=











where P is the approximate
n
functions which satisfy the

are constant coefficients.

(III-l), we find that L(P )

imize M, Galerkin applied a


solution of P, the f.'s are appropriate

given boundary conditions, and the a 's

By substituting Eq. (111-2) into Eq.

= M, where, in general, M / 0. To min-

set of orthogonal conditions,


II (4w) A -x4,)dl~o1XK


(111-3)


i = 1, 2, 3, ... n

where 0 represents the two-dimensional domain and the coefficients

ai can be determined by solving the n algebraic equations in Eq.

(111-3) simultaneously.


I. Boundary Conditions

The cone, as shown in Pig. 2, page 25, is considered simply

supported and has zero circumferential strain at the edges. The con-

ditions for normal deflection at the two ends are expressed as:


W = 0


S= O and X = X.


w;x (i/-a)7A. =-i O at


X = 0 and X = X.


(1 1-14)


(111I-5)


When the edges of the shell are completely restrained in circum-

ferential direction, the following two conditions are obtained:

At x = 0


F.x -('>' ,e r = 0 (11-6)















X3


0
k
Q)


*--- R

I


Fig. 2. Geometry of conical shell.










and at x = x
o

ExX -(>& bjf e exo r = o (III-7)



The end conditions along the direction of the generator will

be discussed in the individual cases to be considered.


2. Thermal Buckling

When Eqs. (11-37) and (11-39) are solved simultaneously, the

coupled relations are nonlinear. Now we consider only the linear terms

in Eqs. (11-37) and (11-39) as well as in the conditions of constraint.

This problem will be approached by two steps: the deflection

and the stress function in the prebuckling state are found first;

thereafter, the deflection functions and the stress function during

buckling are considered. The compatibility equation and equation of

equilibrium in the prebuckling state are written, respectively, in the

following forms:

2
*=- ( tcoft) e 3 5,x kx) o VTf (Ir -a)



and


2pv)'7 (A-^ )e3 ^xx ^ ) L.x


The operators V2 and 4 are defined in Eq. (11-38), and the super-

script (') is used for functions in the prebuckling state. The deflec-

tion function w',which is assumed in a series form, satisfies the










simply supported boundary conditions given in Eqs. (III-4) and

(III-5). The solution of the stress function F', which is the sum-

mation of the general solution of the homogeneous equation, and a

particular integral, satisfy Eq. (III-8). The arbitrary constants of

the general solution of F' are determined in accordance with the con-

ditions of constraint. By applying the Galerkin method to Eq. (III-9),

the coefficients of the assumed deflection function w are then found.

When Eq. (III-8) is substituted into Eq. (II-37), and after

eliminating the nonlinear terms, the compatibility equation becomes


v "= -co ) e (t x) (InI-10)



where

Zt" = -T = additional displacement during buckling


and


F = F- /r = additional stress function during buckling.


When relation (III-9) is used in Eq. (11-39), and the terms contain-

ing the products of the additional stresses during buckling found

from F" with the derivative of w, are neglected, the equilibrium

equation is



















S-4X
x ?v c 2x -^ )(-A (e- -f6s ) W x a- 6,' V

(III-ll)


In a similar manner to the determination of prebuckling stress

function F', F" is then found corresponding to the assumed deflection

function w" and the conditions of constraint. After applying the

Galerkin method to Eq. (III-ll), a set of linear algebraic equations

is obtained. The critical temperature can be determined by minimizing

the results obtained from these algebraic equations with respect to

the wave numbers along generator and circumference.


3. Postbuckling Behavior

The basic equations used for postbuckling problems are

Eqs. (11-37) and (11-39). After subtracting Eqs. (111-8) and (III-9)

from Eqs. (II-37) and (11-39), respectively, it is found that



e "= e )(,;; ^. ) 0~, (-
Ole3F X(-.






x (zt; 6 ) (-


(111-12)














r y,[ ade -, jJ ,,-^
D 17 kr = e L x



X e X 49 A' s-




(III-13)


where




(III-14)

so" = v- -" '


The above equations have the same expression as defined in the previous

section; however, the relation between F" and w' is different from

the linear case.

The deflection function w", which is assumed in a series form,

satisfies the boundary conditions. In a similar manner to the deter-

mination of the stress function in the linear case, the stress function

during buckling F" is found to satisfy the compatibility equation and

the conditions of constraint. Since Eq. (III-12) is nonlinear, F'

should be a nonlinear function of the coefficients of the deflection

function w".

By substituting the deflection function w and its correspond-

ing stress function F into Eq. (III-13), and integrating it by the

Galerkin method, a set of nonlinear algebraic equations is obtained.







30



The temperature can be determined by solving the algebraic equations,

and the minimum temperature is determined by minimizing the temper-

ature T with respect to the number of waves in axial and circumfer-

ential directions.















CHAPTER IV


SOLUTION AND NUMERICAL RESULTS


1. Critical Temperature

Two different temperature gradients and their corresponding

conditions of constraint are considered in the solution of critical

temperature.


Case I

In this case, the conical shell is subjected to a meridional

temperature gradient and restricted completely at both ends. Thus, in

addition to the boundary conditions expressed in Eqs. (111-4) (111-7),

another boundary condition in meridional direction is

iXo Lxo
f erc = -u.^ dy = 0 (IV-l)
o o


By substituting Eqs. (11-20) and (11-29) into Eq. (IV-1), the dimen-

sionless condition of constraint expressed in terms of stress function

F is obtained as:



+-Y.A- x 4- ie 771Ir] = (IV-2)



Since the temperature field considered in this case varies

only in the meridional direction, the prebuckling deflection and

stress function are therefore taken to be axisymmetric, i.e., they









are independent of e The functions with subscript I are correspond-

ent to Case I considered here.

The deflection function in the prebuckling state is assumed to

satisfy the simply supported boundary condition, and in accordance with

the assumption of Mushitari (181, the prebuckling deflection is chosen

in the form:



X TX (IV-3)



in which A -- (IV-4)

In this study, i is taken as an odd integer, M = 5 and

v = 0.3. The coefficients a' (i = 1, 3, 5) are in terms of the

temperature gradient and will be determined later. According to

Eq. (III-8), the prebuckling stress function can be written in the

following form:



j; = l e j j A


(IV-5)

In the above equation, FI and F are the particular solutions of
1 2
F They are due to deflection wl and the temperature gradient T,
I
respectively, i.e.,



Ve ,=(,. 0 ., J )4 (IV-6)










and

V = 17 7 (IV-7)



Substituting Eq. (IV-3) into Eq. (IV-6) and integrating it, we find

e,,',l) 2 (H7X
7. \'rX
a i 7 E

cos -- ) (IV-8)



where c. and d. (i = 1, 3, 5) are found as functions of x and are

given explicitly in Appendix A.

The temperature gradient is chosen as an exponential function

of x,


7 = T; + e (IV-9)


where T1, 1 and g are constants. If g vanishes, Eq. (IV-9) implies

that the distribution of temperature is uniform over the surface of

the conical shell. Integrating Eq. (IV-7), the function F is

obtained as:



F, =-LC [ t,) (Z-^ ]^3e (dv-o>)


Substituting Eqs. (IV-8), (IV-10) and (IV-5) into Eqs.

(III-6), (III-7) and (IV-2), we obtain three algebraic equations.

By solving these three equations, and the arbitrary constant A'
0











in Eq. (IV-5) is considered zero, the constants A' (i = 1, 2, 3)

are found as:





= a. ( c, .dT;, a5 / a- u




i = 1, 2, 3 (IV-11)

By substituting Eqs. (IV-3) and (IV-5) into Eq. (III-9),

it is found that



-D V 4;-e a.



^( ^xx-4 ) = 4
(IV-12)

Applying Galerkin's integration to Eq. (IV-12), and if only three

terms of the prebuckling deflection are taken in Eq. (IV-3), the

following three algebraic equations are obtained:


tnr^."t Xo
f" r)^ An ]d7A( -- 0

o 0


i = 1, 3, 5 (IV-13)

Solving the above three equations simultaneously, the coefficients

a. (i = 1, 3, 5) are obtained, which vary linearly with OT1 and

S1. They can be expressed as:














a. ai (xo. o (f --,,7 ,4,,



,2 As, 7" / /?



i = 1, 3, 5 (IV-14)

The six unknowns Ai (i = 1, 2, 3) and a. (i = 1, 3, 5) can be deter-

mined by solving Eqs. (IV-ll) and (IV-14). They are found to be
r
functions of xo, TI, r, --, and 0. Therefore, F is determined in

accordance with the temperature distribution T. The expression A' and
i

a' are given in Appendix A.

An additional deflection function during buckling which satis-

fies the simply supported boundary condition is assumed as:


,I" A 3X #,JF Y (IV-15)




where p and 1 are the numbers of half waves in meridional and cir-

cumferential directions, respectively. By substituting Eq. (IV-15)

into Eq. (III-10) and letting


7 (IV-16)
S2_4(-'3


we obtain













lP = ( .1A R )[e A
X ( hk




(IV-17)


The additional stress function during buckling is the summation of two

solutions: one is the homogeneous portion of Eq. (III-10), and the

other is a particular solution which satisfies Eq. (IV-17). This

stress function can be expressed as:

iX ( x .

1=(A'.e -,, -/ ?, e



(IV-18)


where ci and d" (i = 1, 3) are found as functions of 71, p and

x The constants A, A and A" are determined in terms of ai
o 12 3
(i = 1, 3) from the following conditions of constraint::


=,X-, )C/% ) ,,X A/Se = 0

at x = 0 and x = x (IV-19)
o
and



o
I) -x E
/ (i.) 1











Since it has been noted that the homogeneous solution of the

stress function F has been already considered in the prebuckling

state, we can say that the homogeneous solution of function F" can
2
be neglected without significant error [18].

When substituting Eqs. (IV-3), (IV-5), (IV-15) and (IV-8) into

Eq. (III-ll), it is found that






S" "J0



-* e C r ), '


+e =-L; -.


(IV-21)

By applying the Galerkin method to the above equation, a set of alge-

braic equations is then established:




e c .- ) Q csnZdXe 6 = o
o o
0 0


i = 1, 3 (IV-22)

After integration, Eq. (IV-22) can be briefly expressed in the

following forms:














C i' (Ca3 7'ajcO77



Se 0


(IV-23)


(Cj1+oi jjl ~'7; f,/2)a(C$(Cs3 C d3-7

WJ De T1 q) aoe-l


(IV-24)


Eqs. (IV-23) and (IV-24) are two linear homogeneous,

algebraic equations and have a nontrivial solution only if the deter-

minant of the coefficients of a' and a# vanisnes. This requirement can

be expressed as








-EC,](3 V-,Idlg 4 oeT,7[e o- (W31 ofjI ro/7&r


=0


where


'7 -Z


(IV-25)


(IV-26)


Eq. (IV-25) is a second-order algebraic equation of T1

and yl. For given values of yl and g, two solutions of TI are











determined from Eq. (IV-25), and T1 is found as a function of the

number of half waves p and 1. After minimizing the solution of T,

we find two values of the critical temperature. One of them is dis-

regarded because it is physically impossible.

It has been observed that the buckling hoop stress is local-

ized near the fixed edges; in other words, the hoop stress is high

near the supports and it is low in the middle of the shell unless the

shell is very short and thick [25]. This means that high average

thermal hoop stress exists only when the shell is very stable, and

the shell that buckles easily does not develop the hoop stress. For

the buckling problem, it is found that the thermal hoop stress con-

verges rapidly when a series in Eqs. (IV-3) and (IV-15) are used.

It is also noted that the meridional compression has a much higher

effect on the buckling temperature than the hoop stress does. There-

fore, the value of the buckling temperature will not change signif-

icantly if more terms in Eqs. (IV-3) and (IV-15) are taken. Because

the buckling is mainly caused by axial thermal compression, the con-

ical shell is expected to buckle in multiple wave patterns with nearly

the same wave length in both principal directions. The numerical cal-

culations are thus made by taking W/n = (H tan 0)/nR in Eq. (IV-25),

where H and R represent the height and mean radius of the conical

shell as shown in Fig. 2, page 25.

The results of the problem were obtained from the IBM 709 Com-

puter, and are illustrated in Figs. 3 6. The relations presented in

Figs. 3 5 show the effects of a conical shell's geometrical variables













4





3





2






*oP=10

= 300

0 1 11
0 200 400 600 800 1000

R/h

Fig. 3. Critical temperature versus radius-thickness
ratio at H/R = 2.
































H/R = I


I I


600


Fig. 4. Critical temperature versus
ratio at = 10.


radius-thickness


V


2


0O
0


I I


200


I I


400


I I


, I


800


R/h


1000


"I I


I















4


























p I I I
o ICf 200 300


Fig. 5. Critical temperature versus semivertex angle
at H/R = 2.
at H/R = 2.













1.6


1.2



0

0.8





0.4





0
(


T = O.1 T,









-T. = # ,








T =T, + e9'


0.2


0.4


0.6


Fig. 6. Variation of critical temperature
temperature index (B = 100, R/h =


with meridional
300, H/R = 2).


0.8


1.0


D










on the critical value of uniform temperature rise (i.e., T1 = 0).

In Fig. 6, the variation of the critical temperature with the tem-

perature index g of Eq. (IV-9) is depicted at a different 71 /T ratio.


Case II

In this case the conical shell is subjected to meridional and

circumferential gradients and restricted circumferentially at both ends.

Thus, in addition to the boundary condition expressed from Eqs. (III-4)

to (III- 7 ), other boundary conditions are



f Oac/ 9 =o at X =0 and X = o (IV-27)
0


or in another expression,



j ( x F, )W0O = 0 at X=0 and X=X (IV-28)
o


The above conditions are applied to a shell which is unstrained in

compression but is restrained in bending. If the temperature gradient

has the form





(j = positive integer, 0 < 9 < 2n)

the conical shell is hotter at one side than the other. As the index

j increases, the heated portion becomes narrower and the buckling

behavior is closer to the case under compression [35]. In the present

study the temperature distribution is taken as:












-;I
Tn T -tz e= T (IV-29)


with k = 1/2 sin B.

The subscript II is used to indicate the functions associated

with Case II. Both T2 and 72 are taken as constants.

The normal deflection in the prebuckling state satisfies the

simply supported boundary condition and is assumed in the form:


= .o (IV-30)
i-'/


In this analysis, it is assumed that the prebuckling deflection w' is

axisymmetric and with i = 1, 3, 5, takes the form,

W----3 ., ; ) (IV-31)




In a similar manner to the determination of stress function

F in Case I, the stress function FI prior to buckling can be

found in the following form:


*== 3 p < +S- (IV-32)


where F is the homogeneous solution of F and is found as:
5 (-)



A 2- 49 2) V- 6 j x ? 8';ee 2 x (IV-33)
/~~.'=8,(x-O4 )i8X40 8 e










B (i = 1, 2, 3, 4) can be determined by the conditions of constraints

given in Eqs. (11-6), (III-7) and (IV-28). They are found to be func-
r
tions of xo, T2, 72 T and b' with i = 1, 3, 5. The functions

F3 and F1 in Eq. (IV-32) are the particular solutions of the stress func-
3 4
tion FI which correspond to the deflection function w' and the tem-

perature gradient T, respectively. They can be expressed in the follow-

ing forms:







+ A cos ) (IV-34)

and


'= K-/' rrz) (IV-35)


The b 's (i = 1, 3, 5) are found by substituting Eqs. (IV-32),

(IV-33), (IV-34) and (IV-35) into Eq. (III-9) and integrating it by

the Galerkin method. The coefficients B' (j = 1, 2, 3, 4), gi, hi
r
and b' (i = 1, 3, 5) are functions of x T2 and which
and b and i, which
are expressed explicitly in Appendix B.

It is noted in the above analysis, that the prebuckling hoop

stress is independent of the temperature gradient provided the temper-

ature function is chosen as in Eq. (IV-29), since


(IV-36)


/F<, X 4 "X = 0










During buckling, the additional deflection is assumed in the

form:


AP JA/Trx


(IV-37)
It has been mentioned in the previous case and reference [18]

that the homogeneous solution of the stress function during buckling

can be neglected without significant error. Therefore, only the par-

ticular solution of Eq. (III-10) is considered as the additional stress

function during buckling.

By substituting Eq. (IV-37) intb Eq. (III-10) and assuming that

the stress function has the form


,- (A.) X AP ,,




r k:'^s -^- ) cOn' s- e
(IV-38)

and g" and h" are found by tne use of the Galerkin method.
1 1
Substituting Eq. (IV-38) into Eq. (III-10), we have


Sr(/.A)X >- r'0f




xr C-05 JP J-^ S// 'k- X'< A IX


x rrX 7 0
x M cos$Bes ikJ= 0


(IV-39)










In order to determine the coefficients g' and h (i = 1, 3),

the following approach is employed; Eq. (IV-39) is integrated by the.

use of the Galerkin method in the circumferential direction, which

provides the following relations:



4 $Q e Cos nwo( = O (IV-40)
o


After integration, the coordinate parameter 8 vanishes in the

above equation, and it becomes a homogeneous equation in terms of x

only. The coefficients g" and h' (i = 1, 3) are obtained from Eq.

(IV-40) by comparing the corresponding terms of x. They are found to
r1
be functions of L, 1, xo, k, cot 0, and are given in Appendix B.

Substituting Eqs. (IV-37) and (IV-38) into Eq. (III-11), two

algebraic equations are obtained by applying the Galerkin method to

Eq. (III-11). For this case, w = wi, F = F F = F and
I II
w = w + wi in Eq. (III-11). If the following notation is intro-

duced

2 = Trz/T (IV-41)


the two algebraic equations can be briefly expressed as:


(,, c ~Zo / )0 /, (Z3 z )e ,,3 = 0 (IV-42)




S-A 0/ Z', )461 -A ('33 433 T'^. ? 0 (IV-43)










For a nontrivial solution, the determinant of Eqs. (IV-42) and

(IV-43) is zero. After solving the determinant, the term 72 of

the temperature gradient can be written as:



O(TZL = O t i(l. Za ^, (IV-44)


In a similar manner to the determination of critical temperature

in Case I, the critical temperature in this case is found by

minimizing the wave numbers i and 1 of Eq. (IV-44). The crit-

ical temperature at different magnitudes of y2 is shown in Fig. 7.

The details of expression used in this case are given in Appendix B.







2. Minimum Temperature

After buckling the normal deflection becomes finite; thus the

second-degree terms of the derivatives of normal deflection should be

included in the geometric (strain-displacement) relations. These rela-

tionshhips are expressed in Eqs. (11-18), and the nonlinear equations

(11-37) and (11-39) will be used for the solution. Since the thermal

stresses in the shell depend on the boundary restraint, unlike the

















12 -s^R / h =150


O
x
6 8
3R/h=300


R/ h =450
4

R /h = 900


I I" I !lI
0 0.2 0.4 0.6 0.8 1.0

T, =;T2/-2
Fig. 7. Critical temperature due to circumferentially non-
uniform heating (B = 100, H/ = 2).











case under external loading, the average membrane stresses will be dif-

ferent before and after deformation. The nonlinear effect on the value

of the temperature gradient to maintain equilibrium after buckling, is

here investigated. In the present nonlinear analysis, the temperature

change and boundary conditions are the same as considered in Case I

in the linear analysis of the buckling problem, in which the conical

shell is subjected to meridional temperature gradient and restricted

completely at both ends. In order to compare the value of buckling tem-

perature with the minimum temperature in equilibrium state after buck-

ling, the deflection functions used in the nonlinear analysis are

basically the same as those assumed in the linear case, but only two

terms are used in the prebuckling state as an approximation.

Another boundary condition in addition to Eqs. (III-6) and

(III-7) is,



J e/X = o (IV-45)
0 0


The above condition implies that the average length of the cone is

unchanged during heating. Eq. (IV-45) can be expressed in terms of

the stress function F and the normal deflection w,

/ffSlft if

fe- //1-6,^ vS x -7 J-^.^ree
o o

X Y C/( =e
(IV-46)










It can be observed from the above condition that for the same temper-

ature rise, the average stress is less than that considered in the

linear case, because the additional nonlinear term in Eq. (IV-47) is

always negative.

The normal deformation prior to buckling is chosen as:




AP a, 4, at 37r iv-^'1


In a similar manner to the determination of the prebuckling

stress function in the linear analysis, the stress function prior to

buckling is

j, A A, zx Aft 2eX
yC x^/^ At If 4^^< ^ ^ (IV-48)



The boundary condition and the temperature distribution in this non-

linear analysis are the same as in Case I; therefore, by setting the

terms to correspond to the third term of the deflection function,

w equals zero, the following relations are obtained:


A, A A,
r = A g /6 = l ,A =
(IV-49)

AZ = 3t Z ,, =A


The additional deformation during buckling is assumed the same

as in Eq. (15), i.e.,


r = ae 4x / ,'_ r X ) co. 34 (IV-50)









The additional stress function during buckling has the form:


A= = A x ; A ,, -F
p q, 4?/ x 4 et e- e F


(IV-51)


The particular solution of F" has been found as










Xa5 -/ ,,,
+ K d IA -r,,/ )x X ^'i -^<6'sAx) XK A1()X







2 AX)








) (K 2 Co (~r.Z ct'I )K, (Az 6r- O tX#Xsl S 4gr sixV,








x zs Ar e t3 -r ;I cKs 6 r A >X ^ 7 fts MX) X














#Kr ,eJz zm3X 9 .4 .4 Ii2f;x] f aI6e2AXJk'o







x ,, a, a.,
xK/ coS a.t,x /.izj. ) Kao Kh a e4 v r.s, /r4
















4 ,,, C,, e"K ,





i 'u48 CoS 2M9fJ CoSo C1 '.KM9 MC2/9 Y f3o5/)o ')


(IV-52)


in which


' M, -= i
r ;C a~


i is an odd integer



By substituting Eqs. (IV-51) and (IV-52) into Eq. (III-12) and com-

paring the corresponding coefficients, Kj (j = 1, 2, ... 49) are


A? 7r
='- 7C<


(IV-53)










obtained as functions of x ,

Fortran language in Appendix C.

By applying the relation

(IV-46), the boundary conditions


U, -. 8 and 1 They are given in
h 1*


(IV-14) to Eqs. (III-6), (III-7) and

during buckling are


CF.xx ( a ",, ) = 0


at x = 0 and x = x


By substituting Eqs. (IV-50), (IV-51) and (IV-52) into Eqs. (IV-54)

and (IV-55), we obtained three algebraic equations: AI, 'A and A3 which

are then obtained by solving these three equations in the following

forms:


A A" A, 2


A, = A + A. Q a 2 )





,4 = a, / %,o a, a, 1 ,, -,,'

(IV-56)

Substituting the expressions in Eq. (IV-47) (IV-52) into

the equation of equilibrium (III-13) and assuming the error is 9q,


and


* I
2 fln V,9-,F~ ~FJ-~yijd


(IV-54)


= 0


(Iv-55)










two equations are obtained by applying the Galerkin method:


f4f cos _4:ot O
0

The above two equations can be expressed in the following forms

after integration:


tyh


As 4 a, a3 4 Cas R/=,, O


A "2 A .
i a,


+ a,-",


(IV-57)


(IV-58)


(IV-59)


T,)S.z- -( rS6 A",3s7
r/, ( S6 0,dL
W-1


At "2, A A 3. 3
- O., a,; 58 4 as3 S d3 'o


= 0


(IV-60)


In an attempt to solve Eqs. (IV-59) and (IV-60) simultan-

eously, it is necessary to define


A P;
s a,
o=--
a3


(IV-61)


6L, a z w7 )Sj rS aj CI (7r ) 54










By substituting Eq. (IV-61) into Eqs. (IV-59) and (IV-60),

and solving for the constant TI, we find



S= V/ V, (IV-62)

r

where vl, v2 and v3 are functions of u, 0, 8, v1 and C. If the

geometry of the conical shell E, B and the temperature ratio yl is

given, the value of OT1 can be plotted versus C for fixed values

of p and 1. Examples are given in Figs. 8 and 9. The critical temper-

atures are then found from the minimum value of these curves. The

temperatures should be equivalent to the values found from the relation

bT~.1/ = 0. The numerical results for this case are illustrated in

Figs. 10 and 11.


3. Deformation

The relations between the temperature rise and the deformation

after buckling can be obtained by solving Eqs. (IV-59) and (IV-60)

simultaneously, in which al and a3 are expressed in terms of T

and y1'

Numerical examples are given for symmetrical (n = 0) as well

as unsymmetrical cases. If only the first term of the deflection

function w" is taken, i.e., a3 is equal to zero in Eq. (IV-50), then

Eq. (IV-59) can be written as:


a, W101TIP;( &r, ) RJ 4R9,] =0 (IV-63)
























F-zs















( a,/ ') x 0
Fig. 8. Temperature variation T1 as a function of deflection
coefficient ratio (a/a1) at 8 = 100, R/h = 450 and
H/R = 2.




























(/=19, tl=29)

- (u= I 7.= 26 )


(1=13, t?=20)


1.5 2 2.5 3


(a;/a;') x10
Fig. 9. Temperature variation T1 as a
coefficient ratio (a"/a1) at
H/R = 2.


function of deflection
8 = 100, R/h = 900 and


b














4





1 3



S\20

(I







I I 101 1



0 200 400 600 800 1000

R/h
Fig. 10. Minimum temperature versus radius-thickness
ratio at H/R = 2.
















1.6






1.2


X



i 0.8



0.4

0.4


ST = O. IT.


















T =T. +T, e9X


I I


0.2


I I


0.4


I I


0.6


I I


, I


Q8


1.0


Fig. 11. Variation of minimum temperature with meridional
temperature index (6 = 100, R/h = 300, H/R = 2).


,,,, lI I II i iII


I










The above equation can be solved for the magnitude of the deformation

a in terms of T1 and yl. From uniform temperature distribution,


is equal to zero. Figs. 12 and 13 give the value of Ti versus (w")max

for different combinations of wave numbers, while AT = T (T)r

versus (w") curves are plotted in Fig. 14.
max
Since tne numerical calculation is very cumbersome, the high-

speed electronic computer is therefore employed. The solution pro-

grams were written in Fortran IV language, and the numerical work was

carried out on tne IBM 709 Computer at the University of Florida

Computing Center.





63





8


8- N


0 0 2 4



V4





2





0 0 I 2 3 4 5

T. ,x 103
Fig. 12. Deflection versus temperature (B = 100, R/h = 450,
H/R = 2).
















0.7
75//o









C 0.5




0.2 5



A
I 1.5 2.0 2.5 3.0

yT., x 103
Fig. 13. Deflection versus temperature for axisymmetric case
(0 = 10, R/h = 450, H/R = 2).




















rj 6 "
0 / 0





L//



2 -





I I I I I
0
0 I 2 3 4 5
o[T,-(T.)cy] x 10

Fig. 14. Deflection versus temperature (8 = 100
HA = 2).















CHAPTER V


CONCLUSIONS


Numerical examples have been given in the previous chapter for

different cases. It has been found in Figs. 3, 4, 5 and 10 that the

radius-thickness ratio has the most effect on critical temperature,

while the change of ratio H/R and the semivertex angle of the cone B

vary the temperature only slightly. It can be observed from Figs. 3

and 7 that for the same geometrical parameters, the critical temper-

ature in Case II is almost five times higher than in Case I. This

implies that when the shell is longitudinally restrained, the axial

stress plays a more important role than the hoop stress during buck-

ling. Since the thermal stresses depend on the condition of constraint

and temperature distribution, the thermal buckling problems have to be

treated individually for each case. The two cases (Cases I and II) con-

sidered in this study are those under which the shell is the most

likely to buckle.

Figs. 12 to 14 give the deformation-temperature relations.

These figures indicate that the deformation is proportional to the

temperature, the ratio R/h, and is inversely proportional to the

numbers of waves in two principal directions. It can be seen from the

condition of constraint Eq..(IV-44), that for the same temperature,

the thermal stresses decrease with the increase of normal deformation.










However, in the axisymmetric case, the deformation after buckling is

very sensitive to the increase of temperature, and it is also noted

in Fig. 13 that point A should be the critical temperature for this

case.

The buckling of shells subjected to external loadings has been

studied by many authors in the past. They found that, in general, the

buckling loads obtained by the use of the classical theory were larger

than those found by means of the finite-deflection theory. It is

interesting to note that in the present investigation a higher buck-

ling temperature was found by nonlinear analysis than that obtained by

linear analysis. This phenomenon can be explained by the condition of

constraint Eq. (IV-1). When the large deflection theory is considered,
2
the nonlinear term (w ) appears in the condition of constraint as

expressed in Eq. (IV-44), since (w ,)2 is always positive; therefore,

it can be seen from Eq. (IV-44) that during buckling a certain amount

of thermal stress is released by the consideration of this term. Conse-

quently, in the use of the large deflection theory, a higher critical

temperature is obtained in the buckling of shells. Thus, for the post-

buckling case, the shell will remain stable at critical temperature

and becomes unstable when the temperature reaches minimum temperature.

A comparison of critical temperature with minimum temperature at

8 = 10 and H/R = 2 is given in Fig. 15.

In order to compare the experimental with the theoretical

results, a test is performed in this study. The truncated cones under

the test were fabricated from a flat brass sheet with a thickness of

0.005 inch, and the coefficient of thermal expansion is 10.4 x 10-5/F.



















d(T,)cr



o'(T. )mi-


I I


I I


200


I I


400


I I


600


I I


80o


1000


R/h
Fig. 15. Comparison of critical temperature with minimum
temperature (0 = 100, H/R = 2).


4





3


70






69



R
The dimension of the conical shells used in the test are: = 500,

= 2 and 8 = 15 as shown in Fig. 2. The brass conical shells
.R
were mounted so that they were prevented from lengthening by two rigid

plates, which were held in place by four 1/2-inch screw rods. At the

two ends of the conical shell, two rings were made and mounted on the

plates. The cone was then fixed on the rings by screws. Heat was

provided by infra-red lamps, which were placed inside the shell and

were designed for uniform temperature distribution over the surface

of the shell. Thermal papers and thermal couples were both used to

measure the temperature.

Three cones were made and tested; the buckling temperatures

were found to be 1200F, 130F and 135F, which are higher than the

theoretical value (98 F). This is primarily because the buckling was

determined visually.

It is therefore reasonable to believe that the buckling occurs

before it can be observed; in other words, the actual buckling temper-

ature should be lower than that found experimentally. As temperature

increases after buckling, the deformation increases, too. Fig. 16(A)

shows the conical shell beginning to buckle, while Fig. 16(B) shows

the buckling pattern of the cone as the temperature continues to

increase after buckling.





















(A)


















(B)


Fig. 16. Photograph showing buckling of a heated conical shell





























APPENDIX A


EQUATIONS FOR CASE I









/ '. 1
- -i = yt,., .- I -A ,




tZ I 2 -I
j a 7"z)..


ly A (m ? A- 2)


. = --- 14 2 ( /-3~ ) A )


- (A-2A> )M ](yf 7.


A'7z""+-


,Z 2 'A1t
/6 4 r A ; )


,4= -i3 ) (2 )-Z
A ,- ( z Z U-t O' J f ", .)( 2+,9 )


Ai = ( 2-zJ -3y -,(', 2 ,


A3 = 2 \- /2A / ,


$5 = A /A' + 2( 4/A


Ab = (,+ )A ;L, + 2 (. x)n, c. m.^^/


,1 = 4A3 -/ 2A, 8A


,=Z ( 2
g = (//A ) C, 2 (, *c A) 7,o, m, c,


419 = (, + ) C, m,/ o ,


Cl


-1,4y
('1, ,9)


, m IL


47 = (/ 4 A) / + C,/"











to = (/+.A) Z /


A,, = (I ,/) '3 + m, Cs


Az = ( e)Z ;



4,3 = (/, ) C3






AM = (' A) od1


- m' o,-
) / '


- 2 (/ A ) M ',


C5 Ms d,


SCI
mj C4-


4,, 2A o
^4/9 = e


- /I


0q2o = e


(3A -/ )X.


,z4 = (m'f4


- $j ^ .s4 ) C- -A > q9, {(r-y r / rt


2 f i ,2 41 y/
-- M ,-) / (--m;7





(P W^M.3 /- (n3 Ar )[ (f- ) l )


S2 A)3A C3 1/d


2CA-) X
/B = e -/


-/


/ 6 = C(/,A )C ,,/ > M- oI/ f "C


4/r = ( /, A ) e; "c-P Sz









,23 = -D~' 49 (C, ,3 )L / 2, Ch,' /, ns)J -'- ['/A


C m, M 3 )


tf 0 = o.5 D ~',9 (4,o -A )/fm,' 'm ) VA'; f<,' / mf -


(m. --'',)[t'/ (s' m )Jj


*4zs = -4,i ( m ,s4 3. ( J ( -)[ -)

,4 2z = 4 / (A A) ((AJ





,4s = A/.s 's ( ,o ,4 ,, (' )f t '


(1/ -411) (-AZ [ r4 az)f

t ( ) --








A (o f /7- w' -f ')-m-
=(< 9-' 45)(" "4 74











--I
A3, = A 'A,4/ (46 4,7){L?4(Az 4&;A.W.) ] [ V -





743Z = 0.5 1~/ A9s (f,4 /9s ) (n,4 ws )jv)/'\ rtw's i )J f


r~/ -m)[4 (/ ,/ },





I -

"o ,5 15" (,IA /,1 7




gl33 = 8 /-; (,4, y ,, ) ,-?," (\- / ) )J
435 = -0 /5, 2' 5 s) ul





.43. = o.s/.'A,g (4A, -4,) (., ,-s-)


(P,,CX .- ) (,-,/ ) -w


= a-4 ( -/- /; ) -














z -- i / ; ra 7 ~-?



,s M= A A-'s (RA. ~,3)/. f,, I .

4o =" o.s -;'A,j (,,,-,,,)J -- / A; +[rc,' nj); I






de/ = 4,A ("i A ~ 2 A5 ) '-,J- i ~-)C- "
/' 1 i 5 -



/^2 = -;Af 8 (/- A )mS f AFnrWs / L 7 ) ; /* f Jm


A43 = D/i4, (4,7 -A/q,&)) fl i ) (YA) W MeI)


Av4e = -.D'D/s (Cs -q7') (/AZ ,; -/)


S; = 9fD[T//D ^A /w, J2


/-/,-<


,'= mr'/D/'- [D 2 i cIre
A16 = APC s[( //} //J}., ] e 7


(/o'A "t. X


,49g= (~ ( p 12 ~ )


-2


le7 = /M D[(// 4, /)J .. <-









/ = ( ) (A 4 m ) (7 4; 9<( )-A48] Ag,.4


C2 = C,-4(' )(/,, e )


-I X
C5 = C, ,'- eA )


C = -e- C (/ ,


/o = -C= e


-/ Xe


. = [(/-J3 ) /(e *O '-- (e x )], -/
I ) 74 0- e 151;Z


$~ =[b '6 -/C) I


ds- 2C6( --) ,


C,, = 6C e


C,, = (c, aCx.) e


C,3 = C -6 e A


C, = [,C (, -, /e ,C,3


[(,),/T,3 /AJZ] A L[,Ao


C, = [ Ar, 4, >]


C ,1 r = ('e 3' A/ 0) ( A' A


~-(f^-7y C,


C,e = (C6 Eo (C/,) 4 5] .


Cg = C6 (3-')


'/,- A )7o


CL, I r [Xo r x= f, 2.
d,,= {, + rE^ < />- .l[ ,-e y J(- )-' j ^


C/s = ,r //r,,/- )l/l











-r (/ /,/ ]7 6 c1


( /, .7)^ ]j 5 1,


-I
D,= (Cd, C,s)Cz-Cr),


3 = (d CXCz -
hV= ($,,-4d9)(d2-C7)


D5 = (d3 dC/,)(C-Co) ,


Ds = Dz D, 0r .,


, D = (C,-C)(d2 -C,)


, Dy = (dC, C,6 ) (dz Co)


D4 = (d, C:,2)( CO )


, = (- 0o D C4-)


.ZDo = -Dz ,


.D= Ds 0Do2D,


-D,6 (C,;7 /)Cz -


-,g=
),gV = (D,7 -D,6)(Vz l's )


-Dg/ = D- ,3,8 /9/6


Do= S ,(C7, D,9 03/8 ), -/ = D.8 -D Dzo


BZ-f D .e Dzo D. = (Ceo e9X C'-z-r
T)22Zj'/RZ>,fDazO .V23 = (dC ~ /920-'


Dt~ =(C~p- C/9 ) CZ ~d/-I


S(D-)(D- -/D
.V)a' =- (Z224-3?23)(Vz- l'5)


Ds= D8V 1),


2,7 = (C/7 -C,)C


A, D8 = (D6-D3)(D -Ds)


Dr:= (0,-D0 )(DOZ -Ds)


DZ = D, ( Ds + D- Dr C, ) 1,3 = v.,o D,/ ,











A?6 = -D Z -D DR3 ,


Vae= Z) D,.0P2 7 D?9 = V2 -VS ?g-7,


Ape, 74 +A ,g~/r~~prILrl






_1Z
iE3 = R/9 v'K4 9As- 98)f(4'A~)'-A (~A~'t:C /rj



,~= V-A/ 6A-17)('i 2,/A) -zJ /





2 '2 7-/
El= -34n;/e(A#/)e ~ /JCt/ -Im,]


A7 7 Z5 ,ey /(, f


v ( 3 3 -3/


el,o.'A.)x 14l.- ,A)


,'X, 7


,F8 E 011-' 1- -Z- D9 7 3 4F Z12 4 F7 12 ,


.7? 0= V7 V- DO ,2


DZ 7 = DI / ( C'O '/- z --1 -AC( -D15


r ~2 ~~ I-2
SnLI'L]f m"Aj Y,4/


1s-EfE


-=, 0= '67 P// -/ F-3 -- h:;z hD 13 iL ?e6 D/s 4 3h76 D11










, = 4 A) J / 3)j f-/m


4- /VS /7) I ,w- "m -) )J K




e-;/ 7-/ ) / ( / ) /)

(rn, t t3) j ; tj /7 Z /A -/) (-


E,3 = AD 7 /D Z r/


Ee/ = -. 5//S I'D -/(! -R 7)t J t), l) /A ) 27 -i-


D r 224 27
,-",-"\ /)"Wj- y
,/ ,9: r -7






, = -'a D fe/ A )X

S7 = i2 /C ) / ') fe Ax 7.

7D-,, ,,l ::A. ) (/A-',.' A) -
J7 c ,


-3 .s -
A) i4. eW3 \)A


(/%.AIxj{,,'1) 257J


8E = / ',9J2 F,9 = A23 9f' 2'/ E 2 F ?s #Z2 s L /2' Pe)











F,0 = F,,/ rF~z,


LEzz = 423- /4Zl,


fz/= Ez F4 ,q2 +s D2/4 -fg6 Dsz2 fP/2 'E,'3 E7)


fZ3 = 14 7 A//28 +-y-D2/ f, zD /o ^ ^d y


VT

Ft6 = -F2s3 (/8g $9: col g)


EZ s = Ezo


F, .? -F2;; e-i,6 (f, -, ,,,
_ioow,40


7i'
h'i 1d 2,


E30 = f28 ( ?A7weZ) j ca


3/= (,2 7 F3o) C2:9 -F )


~t~j A = ,5Fj3/$ FLz 7


A/8 [9,)r-a -Ai n d
42 (,, ,f )J





= rS -,, rA ,2< /j-'
= 0. 5 '(44 -R) i-/) ) ,4-t s ', ) j


s = A -I r,4 A/s ) ,4z9 f/XA 5 ,^,M'.j [,i { ^-,, J/











E, 7= D-'C -"' // -e ,$ '-


..+8 = .t .v <- / / < + -, / ,-
-E'3 = 7 ~L C /W D '>




[. :, -') "- x ( ,1 '7, rxJ


,- ,, 1, +z ^ c ) r s J


Evo = 39 CAjo E, = Ps,/At /^ +.. .Z D L9 +Da7 /'6 +7)


v e= Aj33 ~ AJ', 43= Ajs 4 / E-8 "2,4 ,- fD27 34 7)



4E o= ,y AE .J, E, '3 E, 7~3 #c 8g,-/.s / g)


-4 -" = 3A 7 3 AJ r97 = 15 P C 7 -C/ -'-2 Ddo S '2?d)


4;8 = d'/ f4' A, E49 = A7# jyW ^J7 8 4fisr >yZ7f /E 9)


0.= k=37./ 8 9' "A Z06 7s9? A fSJ) gD/Z Ay'95,7 'A


3
j, = -4" :;j Ec 449 s )


-9= c4^ f ,I I t


r/= -EL'y

.3 = (C,/ -E; ) (M=9 Erg)
















Esj= ( 47 J o ) (fe 9 Ej-) ,~


SEg6= -E, (- / E,9 -cA )


Es8 = (Ea-E4 )(Eg -s )-
S .0 65


S 6Ed = E6 4 S/ f 6,/ 7'o -z7


,= ,

c= ( 77-T) RJo


a3 A= sFr,( ),


, 7,= 6o (
aS =Ego 0("ZF


A c (* 2 i4 2 1-/f P, 2 4697J


1A = ( T 9 2 / j/CZ (=d6/ ,?o -p 0(g-D2 r 4o 2 7I


./r= ,,. //-


2 2 '-


2 't, '

Ci = < 4 P A -V A ) (;f A -A yfJ E f n -oA ,J )


W5,/ = V," y,,f a4A /7 ^ f' y/ // ^ -y1^











4S2 =A m, -v A -r,-4,A 412t* A -I i '- Z)


S= A\,,3- Wj A /,r 3j ,'3 gmj *m4Jr,' 4',v/ A


4=f (A> CC,'-~,- ,',


As6 = (^c ,'e d/> 2t < A ,)/ C, -d ,4 ,


Ajr = (/r A c,'- w,' d/


As8 = (, a1 )- c,/,' )M'j/3'-r

6o =, (i A '(?- (/'2A ),/CJ- 3', /= / 7' 'e ) jC;



a = > (A^)C2- -(,/'2 )4'-4- c; C = (,A)Cj -/m; dA5


A6 = A(< \ )ad 4i y (/,2A ,s-)ayz5,, /s = on )<^' -,^c,






AT 8= (a t A) C, -0 2(rA)MA C,o -Mt t, C ,4, /a (/- W),-;A,






7,a = #A) eC z 2( A),3 y -o-rC, 493 = (0'A) Cs -MjW 3


/ JA / J X o


Sr -= / &


,.s e


S/











2 2 l
Q,= o.25A?4 {7;t/1t)A-i) (2m,/,','t, )(A-/) (2mrJ






2 = a. 254 t -) f- Z-1 A "] ~J A ]





7' ( / 2 -,)
"" "3-1+ (2rt, -(', ) J J













Q4= c.25R7f(2'Y -t)A- -,)J +m/ [-) ,(d-,7)/ J


QS = O.Z5/t (A-,) i/, (/ f l-A


O~~~~~~~- -f c r '~yA2 /l,


Q6 = -M~ ,'/8 ,A / 9 (,/ ,


39 = o. s 'm, /,9 ('A 2+ /)-


2AX. -2 2AXo 2
Q9= 0./25(X- ,A e o.,/z5A -A mX (/A 'mt, )








0. 2q
Q 0.2= .Z [- orne ,"7x 2e ,a) ~- m wAg


t = o.25/,8 A-)- (A -, ')b /)'- m," J









Q,2 = o.z5 <,"'c- -, + m, -


Qf = /r/ s),d-)-f((' -mJ )1 -1/ ) ( mi) /


Q/; = o.5, ,)[ ) '(-/ a ,,) -, ,,-,3)[va(-) 4

1(nm- m z,) -




SA -/ "" r "" > 2j7
Mjn 3) (ZM/ -nz/ )L (3/) -+ (Zm, -,n )


P, ,/ a -A


Q,(, = --. ,,/' ;: ; -.5,,8> { *, ,', 5/-:







S 2= ,, ,'?, L- _*" -


Q2/ = A4s9 I[A 4 e"-, ] ~ (' s 7JtA a '/7












Qz3 = o.zS7 3 -/)- A-/// (24 '-&-~// --/) /(,2 )


0>S= '.9ss f -'M W nj,":7 /s -r '/f




Qz6 = o. 5 g )70 (q )r


QZ7= 0.25 ~r, 2 A,3-,IA /- 2 3 -/)2,4 -'+ -/// f t ,"



{[ ^j3A-/ 2 ;, ,Z^-t ,_z-} .

,4 Z (3,AI




Ops = c, -<,_/ ,xoe -, ,, -1',, T-+*,


-( 2 f y, -'i 2


[^ 3\- o ( 2,M,- ); JX/ y htt


030= c.54 7 m, mI m,)[(3A-/, /-,'7t r ; 0 -/'











(nt,'-" c .r /)[(3A-/ (,,..,t'-,,.zr ttj (-,,, ( .y>, i ) f 3A

Aj ,,j 2 -I ,, / 2 I ,-l
(t w3 +ti /, -/ -,n, ) -) -/, -/7t3 -,)J j


Qq2 oA t 17 z '/ ,V


J ,- ,t) -,/7/j -,,), J 3\- -/- ,-,-,Cm- ,Jj



S ,- i




L (,51,,,3" -/)t,, ( 4 At' ) -/r, -9,) J ( s /3


S-/2 z /
.. 1 ,- 2 I .. r 27
= ?j 7 3 (/ J_ <,. -,3 -,, )i 3,-0 (,s -, *, ) j J


a.33 = o/w- i + -, ,. .. --M,








'/ 2 7 -' / 2 /~r / J -/

i9 53- A- -/",.[ ), ,',.J -, ,














Q36 = 5 ( r,.'m")[,A#(,,, ", 7 ^;i J /f- 'i ,< ,,
o_.2 A


037 = "7. (JA-/)/ f/f A / r-c',/ _f) ) -[a f ,-f ,)


2 ," / 2 / I 2 -,- ?

[,(3 -,i) -- C ,-,, .)J -3A -,)3,- ,,, .-/3-/./) J J( -25)

Qje = 0. 5 f [j-/ -C nj )





3 -) //C, ) J 9,, -- (.-3)




a39 = aSA7Y (JA\-l)/j3/J-/ ( j9- .I j#-, f;"


^ *-I r 2. v 2 21~
;,,) 1JA- S ) 7- 3 P-, P ,)I -LfiA-t)/ (>r,-!, *'-M,) ]JJ



(^ = o.25s,4 9(-';m, ft' ) [( -)() f -)f f 7Mr, tS r'//) (mi 3? -r,)X


/ 2 I -t / ," ,", ., -/
L /\A- ) "z r,;C -.,/ +. C- -.. /, .t^r L X-') r- e 7


~I -/ rl ,~ ~ ,I
ncj )fJ c 0-5 /r~/ mJ )









(M', (w. m,- -mt )C3\-) 2- J


3Qy = oa/r, (2 zr -, IJ-%A J 3 ZLh JI




22


4 6- 2 )- -
c., ( A ,s)L3' /f-, A rz, -{,,,,' (7A- J




Gs = -o.5,74/- 3zQ-tA&) ///I tr- ^ /-/ M f14 t.-() J



-3 /- 4 f- -i <, -e 4/'- /xA /JJ














) 1 )
,7' .. ~' 'j,'M ) (;2 ,. ,. t,') f










,, ,, 21 -I / ,-> 2 *- ." "' 7 '

j, ,--,) J m,,, ) 7 -y
(NJar-, ) /42 ( j -M. ) ) ))j ]











4- "- /< ) 2
Q --l // C A ) -.( -, ) ()( #J 3


j5A44 bWJ _^ (2"i $ -7








053 = 0.25$74 /- Z [3 -) -' t J -,'- 2/, 'fi).J. + Z' -', )


S= -0 .25;/ /
Qj= -O.5M /'8(i- A1419- J4


o,,=-0~A/~;(~(\ 'c;~1/


, = A5 r- -f m 2 ,z



X7= 0.25i47'(3A-/) -9 I) (2, -,.,) J t.-'J









O.-s = o.Z5/yS {(2, +rj'M,f3.4-')-,; <.,. ,r/ -,,)J -i).

-?N '< z ,) Z /




Go-= -2A,,' 7L s +, J,7 t-' /"J~




s^-= -Ao)j lrsf-{c2A)-7'(^,- #e)(
0s/ 5 t.Z ,4,,s ( 11 ) [- ;t ) ,- (4),

o- t 'A/s, fz;c; j)2 ," -



{ ( /.43"t9) J (


Q ,3 = o.z5.",s/l+^ { / ) J,)[/3" --//,,<,) yf C^j+f f- +<, ,,<- /"].. ..


/ n s ) -J


Qg42= --2S47s[ (2y. #,') {A /) (,'tr*'j -J)


4,e ) V 7-/ j
LfA + f ) (,,3 ,<,. "


qdS = 2/I7 Mfc f Af ) A t) # ,, -I


Qa4d = 'A rd _;( 2A +/) A c.; J




Full Text
BUCKLING AND DEFORMATION OF HEATED
CONICAL SHELLS
By
LU-KANG CHANG
A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
June, 1967

ACKNOWLEDGMENTS
The author wishes to express his sincere appreciation to
Dr. S. Y. Lu, Chairman of the Supervisory Committee, for suggesting
this subject and providing invaluable guidance throughout the entire
period of this research. It was by his constant encouragement that
this work was made possible. He would also like to thank Dr. W. A.
Nash, Chairman of the Department of Engineering Science and Mechanics,
for his valuable suggestions and financial support throughout the
author's graduate work.
Gratitude is also expressed to Dr. I. K. Ebcioglu, Professor
of Engineering Science and Mechanics, and Dr. R. G. Blake, Associate
Professor of Mathematics, for serving as members of the writer's
supervisory committee.
Final thanks go to the National Science Foundation for
sponsoring this research.

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ii
LIST OF FIGURES iv
NOMENCLATURE vi
ABSTRACT viii
CHAPTER
I. INTRODUCTION 1
II. BASIC RELATIONS AND FUNDAMENTAL EQUATIONS 8
1. Geometry of Shells 8
2. Basic Equations 14
3. Transformation of Coordinates 21
III. METHOD OF APPROACH 23
1. Boundary Conditions 24
2. Thermal Buckling 26
3. Postbuckling Behavior 28
IV. SOLUTION AND NUMERICAL RESULTS 31
1. Critical Temperature 31
2. Minimum Temperature 49
3. Deformation 57
V. CONCLUSIONS 66
APPENDIX
A. EQUATIONS FOR CASE I 72
B. EQUATIONS FOR CASE II 102
C. COMPUTER PROGRAM FOR NONLINEAR ANALYSIS 118
Corresponding Symbols Used in Computer Program .... 118
REFERENCES 148
BIOGRAPHICAL SKETCH 151
i ii

#
LIST OF FIGURES
Figure Page
1. The cross section of a shell segment 11
2. Geometry of conical shell 25
3. Critical temperature versus radius-thickness ratio
at H/R = 2 40
4. Critical temperature versus radius-thickness ratio
at 3 = 10° 41
5. Critical temperature versus semivertex angle
at HA = 2 42
6. Variation of critical temperature with meridional
temperature index (3 = 10°, RA = 300, HA =2) 43
7. Critical temperature due to circumferentially non-
uniform neating (3 = 10°, H/R =2) 50
8. Temperature variation T^ as a function of deflection
coefficient ratio (a*/a*) at 3 = 10°, RA = 450 and
HA = 2 : 58
9. Temperature variation as a function of deflection
coefficient ratio (a''/a") at 3 = 10°, RA = 900 and
HA = 2 ! 59
10. Minimum temperature versus radius-thickness ratio
at HA = 2 60
11. Variation of minimum temperature with meridional
temperature index (3 = 10°, RA = 300, HA = 2) 61
12. Deflection versus temperature (3 = 10°, RA = 450,
HA = 2) 63
13. Deflection versus temperature for axisyrametric case
(3 = 10°, R/n = 450, HA = 2)' 64
14. Deflection versus temperature (" = 10 ,
HA = 2) j-
iv

LIST OF FIGURES (Continued)
Figure Page
15. Comparison of critical temperature with minimum
temperature (0 = 10°, H/R = 2) 68
16. Photograph showing buckling of a heated conical shell . . 70
>
v

&)>
NOMENCLATURE
E
= Young's modulus
F
= dimensionless strain function
H
= neignt of conical snell
R
= mean radius defined in Fig. 2
T
= temperature gradient in the middle surface
Tl’ T2
= uniform temperature rise
/ u
a., a.
i i
= coefficients of tne deflection functions defined
in Eqs. (IV-3) and (IV-15), respectively
b' b*
i’ 1.
= coefficients of the deflection functions defined
in Eqs. (IV-30) and (IV-37), respectively
^ ~ H
V 3i
= coefficients of the deflection functions defined
in Eqs. (IV-47) and (IV-50), respectively
er’ %
= meridional and circumferential strains in the
middle surface
e
isp
= shear strain in the middle surface
g. k
= temperature distribution factor defined in
Eqs. (IV-9) and (IV-29), respectively
h
= wal1-tnickness of conical shell
t
= length of conical shell
/ »
m.. m.
i’ 1
= numbers defined in Eqs. (IV-53)
n
= number defined in Eq. (IV-16)
r, cp
= surface coordinates
U, V, w
= dimensionless meridional circumferential and
inward normal displacements
x, r
= lengtn index and meridional distance defined
in Eq. (11-36) and Fig. 2
X
o
= value of x at the large end
vi

a
= thermal expansion coefficient
P
= semivertex angle
CM
>
r-H
>
= numbers defined in Eqs. (IV-26) and (IV-41),
respectively
€r' %
= meridional and circumferential strains
enp
= shear strain
C
= number defined in Eq. (IV-61)
0
= transformed coordinate defined in Eqs. (11-31)
H * V
r t
= meridional and circumferential changes of curvature
in the middle surface
H
r = twist of the middle surface
\
= (l-v)/2
4, *n
= number of half waves in meridional and circumfer¬
ential direction, respectively
\>
= Poisson’s ratio
V T2
= temperature coefficients defined in Eqs. (IV-9)
and (IV-29)
v2,v4
= operator defined in Eq. (11-38)
Superscripts
/
= prebuckling state
//
= additional qualities during buckling
cr
Subscripts
= critical values
min
= minimum values
max
= maximum values
I» II
= condition in Cases I and II
9
= partial differentiation with respect to the variables
following the comma
vii

Abstract of Dissertation Presented to the Graduate Council
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
BUCKLING AND DEFORMATION OF HEATED CONICAL SHELLS
By
Lu-Kang Chang
«
June, 1967
Chairman: Dr. S. Y. Lu
Major Department: Engineering Science and Mechanics
The instability of truncated conical shells due to thermal
loadings was studied. The basic governing equations were derived by
use of the large deflection theory, and Galerkin's method was em¬
ployed to integrate the equilibrium equation.
Two cases were considered in this investigation. In one
case the temperature varies along the generator and the conical shell
is restricted completely at both ends, while in the other case the
temperature changes in two principal directions and the cone is con¬
strained along the perimeter but is free of resultant longitudinal
force at boundaries. The edges are simply supported.
The relation of the critical temperature to the geometric
parameters were evaluated. Three parameters were used, namely:
the radius-thickness ratio, the radius-height ratio, and the cone's
vertex angle. The radius-thickness ratio has the most significant
effect on the value of critical temperature. A higher buckling tem¬
perature was found by nonlinear analysis when compared to that
obtained by linear analysis.
viii

CHAPTER I
INTRODUCTION
Thin-walled shells have many applications as principal elements
of structures. One of the main advantages is weight-saving. Among the
various types of shells, the conical and cylindrical shells are most
frequently used in structures such as space vehicles and reactors.
The main advantages of their applications are to reduce the drag and
they are easily manufactured. Similar to a slender bar, a shell will
deform when a load is applied. An important phase in the design of
thin-walled shells is a study of their instability; that is, to deter¬
mine the limit of the applied loadings, mechanical and thermal, before
the shells become unstable. If an axial load is applied to a column
and if it is gradually increased, a condition is reached in which the
equilibrium state becomes unstable and a small lateral disturbance will
produce a deflection which does not disappear when the lateral force is
removed. Von Karman and Tsien [l] noted that some structures, espe¬
cially the shell-like structures, may experience a state of weak stabil¬
ity such that small blows or other disturbances cause them to snap into
badly deformed shapes.
Since the early twentieth century, the buckling problem of
cylindrical shells, based on the assumption of infinitesimal deforma¬
tions has been studied by many authors. Among them, Donnell [2]
published his well-known Donnell's eighth-order linear equation of
1

2
shells. In the derivation of this equation the assumptions are made
that the wall thickness is small compared to the radius of the cylin¬
der, that the distortion to transverse shear is neglected, and that
the deformation consists of a large number of waves in the circumfer¬
ential direction. Three equations of equilibrium in the normal, merid¬
ional and circumferential directions aije combined, and are represented
by one equation through the mathematical technique. Unfortunately, the
results predicted by the linear classical theory do not agree with the
experimental evidence. In order to explain these discrepancies, von
Karman and Tsien [3] made a very important advance in the understanding
of the problem of buckling of cylinders subjected to axial compression
by assuming a diamond-shaped deflection pattern. They stated that the
buckling phenomenon of curved shells could be in general only by means
of tne large deflection theory. They applied this nonlinear theory
and tne concept of "snap-through" phenomenon to study the postbuckling
behavior of the cylindrical shell under axial compression. The work
of von Karman and Tsien has been extended and refined by several
authors [4,5,6].
In 1950, Donnell and Wan [7] introduced the concept of imper¬
fection in the analysis of von Karman and Tsien. Their work was ex¬
tended by Loo [8], who, based on the finite-deformation theory together
with a consideration of initial imperfection, studied the buckling of
cylindrical shells due to torsion. A continuation of work done by Loo
was later investigated by Nash [9]. Cylindrical shells subjected to
hydrostatic loads have been studied by Kempner and Crouzet-Pascal [10]
and Donne 11 [11].

3
The problem of pressurized cylindrical shells under axial com¬
pression or bending has been studied by Lu and Nash [12] on the basis
of nonlinear finite deflection theory. The results of these finite-
deflection studies are in good agreement with the experimental evidence.
However, recent papers [13,14] report that when more terms are used in
the deflection function the minimum buckling load becomes smaller, and
there is no way to predict how many terms should be taken for the
approxima tion.
The problem of stability of conical shells subjected to mechan¬
ical loadings has been studied by several authors in recent years. The
axisymmetrical buckling of circular cones under axial compression was
examined by Seide [15]. The buckling loads corresponding to hydro¬
static pressure were investigated by Hoff and Singer [16] and Seide
[17]. Mushitari and Sachenkov [18] suggested a transformation of coor¬
dinates to study the buckling of simply supported cones subjected to
axial compression and normal pressure, and the buckling of internally
pressurized cones under axial compression was later investigated by
Seide [19]. In all of the above-mentioned references, the prebuckling
stresses are assumed unchanged during buckling, and the additional
middle surface forces depend on normal deflection only.
The large deflection theory is likely to reveal a "snap-through"
type of behavior for conical shells. Schnell [20] used the energy
method to solve the nonlinear buckling problem under axial compression
and internal pressure. The results gave a better agreement with the
experiment than those obtained from the linear theory. The study of
nonlinear axisymmetric buckling of the conical shell was also examined

4
by Newman and Reiss [21 ] and Famili [22] by the use of finite-difference
approximation. The upper and lower buckling loads have been precisely
discussed in [22], and Famili's results are seen to be between the
results of Niordson [23] and Bijlaard [24], in which Niordson's work is
considered as upper bound and Bijlaard's work is considered as lower
bound.
The buckling problem of cylindrical shells subject to a uniform
temperature gradient has been studied by Hoff [25] for simply supported
ends and Zuk [26] for clamped boundary conditions. In these works, the
cylinder is restrained circumferentially at both ends but is free from
constraint in the axial direction. The longitudinal stress is assumed
to be zero, and the hoop stress varies in the axial direction and
rapidly decreases as the distance from the edge increases. Hoff approx¬
imated the hoop stress by an infinite cosine series and solved the
problem by the use of Donnell's equation of thin shell, while Zuk pre¬
sented the hoop stress by a cosine function and solved the governing
shell equation by Galerkin's method. This problem was later analyzed
by Sunakawa [27] for various conditions of constraint. He used the
axisymmetrical condition in the state prior to buckling, and the prob¬
lem of finding the hoop stress is therefore much simplified.
Similar to [25], the buckling of thin-walled, cylindrical shells
under circumferential temperature gradients was examined by Abir and
Nardo [28]. The above analysis is performed with the aid of Donnell's
equations. The variation of the thermal stress with the circumferen¬
tial coordinate is represented by a Fourier series and the stresses are
assumed constant through the thickness and in the axial direction.

5
Hoff, Chao and Madsen [29] have also investigated the buckling of a
cylindrical shell heated along an axial strip by means of Donnell's
linear equation of cylindrical shells. It is assumed in [29] that the
cylindrical shell is very long in the axial direction and thus the
axial stress caused by heating has constant values over a substantial
length of the heated strip as well as across its entire width; and out¬
side the heated strip the thermal stress is assumed to be zero. The
problem was solved for the heated as well as the unheated regions.
The radial displacements, the slopes, the bending moments, and the
transverse shears are taken to be the same at the boundary for two
different regions. In a later report [30], the same thermal buckling
problem was solved by using the actual temperature data obtained from
experiments. This is in contrast with the exact solution of [29] in
which use was made of an idealized representation for the temperature
variation in the circumferential direction. The results were found
to be in close agreement with those of the experiments^provided the
heat strip was not very narrow.
The problem of thermal buckling of conical shells heated along
a generator was recently studied by Bendavid and Singer [31 ]. The
solution of this problem is obtained by a Rayleigh-Bitz approach in
conjunction with displacement functions modified by a shape factor.
In this analysis, a hyperbolic axial thermal stress distribution is
assumed, the shell is simply supported and is taken long enough so
that the edge effect of the thermal stress may be neglected. The
radius of the shell is also assumed large compared to the thickness.
The hoop stress induced by the thermal load may also be disregarded.

6
The axial stress is taken in correspondence with the assumed temperature
distribution, and the circumferential displacement is chosen to be zero
at the edges during heating.
The purpose of the present investigation is to study the buck¬
ling and postbuckling behavior of conical shells under presumed temper¬
ature distributions. It is well known that finite-deflection analysis
on shells of other geometries has been closer to experimental results
than classical small-deflection analysis, and it is also noted that
during buckling the normal deflection of the shell is no longer infinites¬
imal. In the present study, therefore, the terms due to large deforma¬
tion are included in the basic equations.
Two cases are considered in this study. In one case the tem¬
perature varies along the generator and the conical shell is restricted
completely at both ends, while in the other case temperature changes in
two principal directions and the cone is constrained along the circum¬
ference but is free of resultant longitudinal force at boundaries. The
conical shell to be treated is assumed simply supported and free from
other loadings. The shell is considered to be elastic and isotropic.
Its material properties are taken to be independent of temperature, and
no dynamic effects are considered. The principle of stationary energy
is used to find the governing equations of equilibrium subject to
thermal loading. Hence, the buckling and minimum temperatures are
found from these equations. ,
The deflection function is first assumed to satisfy the simply
supported boundary condition, the stress function is then found from
the compatibility equation, which is carried out by the use of the

7
nonlinear deflection theory. The solution of this problem is obtained
by applying the Galerkin method to the equilibrium equation.
Numerical examples of finding the critical temperatures for
different geometrical parameters of the conical shells are given in
Chapter IV. The deflection-temperature relations after buckling are
plotted in Figs. 12-14. The computation was carried out on the IBM
709 Computer and tne general programs were written in Fortran IV
language.
The detailed expressions of the symbols used in Chapter IV are
explicitly given in Appendices A, B and C. In Appendix C, the expres¬
sions are presented in Fortran language. Since the capacity of the
IBM 709 Computer was too small for the program shown in Appendix C, the
program was therefore divided into three parts during the numerical
ca lculations.
In order to check the magnitude of the buckling temperature,
a test was performed by applying heat uniformly over the surface of
the conical shell.

CHAPTER II
BASIC RELATIONS AND FUNDAMENTAL EQUATIONS
1. Geometry of Shells
A surface is a locus of points, whose coordinates can be
described as a function of two independent parameters x^ and x^.
In shell theory a special type of curvilinear coordinate system is
f
usually employed. For any point on the surface, the coordinates are
of the type X1 = X^x^x^, X2 = X2^xl,x2^ and X3 = XjCXj.Xg), in
which (Xj, X2> ) are rectangular coordinates and the parameters x^
and x2 are surface coordinates.
The position vector of any point on the surface can be ex¬
pressed as:
j=x. T+X./+X.Z (n-°
The distance ds between points with the surface coordinates
(Xj, x2> and (x^+dx^, x2 + dx2) is determined by
¿2 ¿
o/s¿= olí- fio (*<*-•') + ¿3o(fix,c/xz) + C0(¿X¿) (II-2)
2 2 2
where A , B and C are the fundamental magnitudes of the first
00 o
order. They are
8

9
Z_ d¿ dJ
”0 ~ ax, ' gX /
2_ aJ_
a x, ' CIX— 3 )
*_ a/ al
a*z ¿>x¿
For orthogonal surface coordinates Bq vanishes, and the magnitudes
of 4^- and are A and C , respectively,
ax dx2 o o’
The unit normal vector of the surface is
-* _ / / c)'/
^ - /f.c, ( a x,
x
¿X2
)
(II-4)
The fundamental magnitudes of second order are defined as:
_ *4 _
X X
JXz
dXf-
a¿Xj
axf-
/
ax? ~ /i.co
c? X /
JX'
aXz
ax,
aXi
ax,
aX>
3X¿
,aX¿
axi
?Xi
axt
azX>
a'Xi
axXj
ax.axi
sx,ax¿
ax,ax.i
yJ /
71 AoCo
aX,
ax,
ax ¿
ax,
aXj
ax,
aX,
9X¿
aXz
ax2
aXj
aXz

10
-iL. h = —
N° ~ 9X\ /joCo
¿X, fx.2 9%
9*1 ?X¿
9X.1 9^Ci 9 y^-i
9X1 9Xi aX> dXz 9X3
dX.¿ d¿Z ¿X ¿
(II-5)
It is shown in differential geometry that the lines of prin¬
cipal radii of curvature coincide with the coordinate lines if, and
only if the coordinates are orthogonal and thus = 0. In this
case, the principal curvatures are
1 - Lo / = _ (II-6)
(R, #0 J (Rz c}
These equations affix signs to the principal radii of curvature
# ^ andi}?^* If the lines of principal curvature are coordinate lines,
the theorem of Rodrigues is expressed as follows:
an _ j_ an - /
ax~ (R, ax, J axz (ft2 9X2
(1i-7)
Let ±z denote the normal distance from the middle surface.
Positive z is measured in the sense of positive normal n of the
middle surface as shown in Fig. 1. To any set of values of (x^x^z)
there corresponds a point in the shell. The position vector of a point
on the middle surface is and the position vector of the corresponding

11
point at distance z from the middle surface is (R . From Fig.
we have
til - 1 +
Fig. 1. The cross section of a shell segment.
Hence by differentiation,
Substituting Eq. (II-7) into Eq. (II-9), the following relations
1
(II—8)
(II-9)
are obtained,

12
dft _
9*-, ~
9 fi-
9X1 -
dJ
9*Z
(11-10)
By referring to a surface parallel to the middle surface at a distance
z, we have
ds‘ = d X. t
dR ^ 9# \¿
9X¿ + 9 ¿ '
- a*( where
(II-11)
a = d-c.o*]h. 1=1
(11-12)
The strain-displacement relations are approximated as
follows [32]:
-//
/ 9
f /
fl dX,
L flo
9W \
~~A
1 d
f—i
c ¿X*
L Co(
â– *tr / 9/1
- 2
/ , 9d
¿1 -hr > i*r / dur * _ / / 9-ur ^
¿ dX, } C ( d¿ ) 2Cf ( 9 Xi )

13
é
/Z
A
— í —
dX, L C Co
(Cir+2
9W
dXz
A- a r •
C ¿Xzi/Mo
x (A-U + ¿
dw
9 X,
f / 9t*r \ / ¿'ur x
/Jo Co ' 9 X, / ( ¿i X¿ )
(11-13)
where ü, v and w are the displacements of a point in the middle
surface in x^, x^ and z directions, respectively, w is taken
inward normal to the middle surface as positive.
Eqs. (11-13) are obtained under the assumption that the trans¬
verse shears vanish. In small deflection theories all quadratic terms
in the strain-displacement relations are neglected.
Letting e^, e^ and e12 denote the values of e2 and
on the middle surface, respectively, we find [32]:
. / /
/¿*U\ V
/ 9/f )
x*r
/ 9>x*r \‘
W “
/Jo (
¿X, ) /J,C
o 1 9XZ*
fa
* 2/Jo* (
9 X,/
' f.
9 V~ 1 , -¿2
/
1 ^ + ' ,
9Xz' /Jo Co
i * 9 X, >
2C?
d*Z )
Io -
• ' f
/ /
9-cx \
~C¿
/ jX/o
)
C/Z ~
/Jo *
9X,Jt Co '
9Xz' /Jo Co
' 9 X ¿
) -
XT
“N
C\
0
s*
/ f 9 ** )/
/Jo Cq
1 9 X/ J ' /
14 O [ C? ^ <
? X-¿ >
(11-14)

14
The changes of curvatures h^, h^ and on the middle sur¬
face have the following forms,
y _ _ [ -L ÍA™L ) / / ! /_^L )
JL' ~ Ao d*-' L /)0 ( jx, ^ t d*2 '
y --L- (-jt " /¡/Co( p*/ ' Co J*'Lc0[
w _ ¿ r / / dA0\r dúr \ / 7
^/2_ /JoC0L/i0 ( ¿xjldxi y So[ o?x//< «?*/ ¿x.jxzJ
(11-15)
2. Basic Equations
A truncated conical shell as shown in Fig. 2, on page 25
is considered. The distance r is measured along the generator from
the vertex to a point on the middle surface, and 0 is the semi¬
vertex angle. Thus, the surface coordinates are taken as: X1 = r>
*2 = cp. A point on the surface can be represented parametrically as:
X, = r C.»scp
X¿ = Y -*&**■& ¿Lu*' cp
Xj=
Substituting Eqs. (11-16) into Eqs. (II-3), (II-5) and (II-6),
we have

15
A = J ; C0= r^/S
(R,= 00 * (R¿=
(11-17)
Referring to the above equations, the strain-displacement relations
for a conical shell on the middle surface are obtained from Eqs. (11-14),
er- -u,r + -¿r- (-urr)
- - -/ _ / r -/ _ - ^
e?= —- (11-18)
- -/_ _
£rcp - v,r- ~y + () urr
and a comma, followed by subscripts indicates differentiation with
respect to subscripted variables.
From Eqs. (11-15), the changes of curvature are found
yir= w, rr
, _ ^ “8? _
Hep -y^r + (
Hr(p — - ¿ (

* ‘t*r> y )
(TI—l9)

16
The conical shell is assumed to be perfectly elastic and the
material properties are independent of the change of temperature; the
stress-strain relations are given by the following:
(e&r) T
v~7 (11-20)
where E, O', v, and T represent Young's modulus, thermal expansion
coefficient, Poisson's ratio and the temperature difference, respec-
t ive ly.
The equation of equilibrium can be obtained by applying the
principle of stationary energy. The strain energy of the shell is
written as:
V- Um + Vb +Vr (11-21)
where and are the membrane and bending strain energy, respec¬
tively, while represents the part of the strain energy that results
from heating. The expressions of the strain energy are given as
LL - fffá* e* *“>e’e‘P
A

17
+ e (11-22)
where h is wall thickness and
^ h/¿
f- J oiTcíS, Mr=jotT2¿2, 5 =
~A/¿ -i/z
eA'
z¿
(11-23)
If there is no external force, and equilibrium exists, the
principle of stationary energy requires that the strain energy U
satisfies the Euler's equations of the calculus variation. Symbol¬
ically, this can be expressed as
fl/= o
The functional U has the following form
(11-24)
U=¡¡SCr, -oc>Tj 'Vlr > ~w,r >
-u.rJ> trTf,'úr,rr‘t4'rf' ~V.r The Euler equation for U is
d / \ (9 / JjE ) , t9 / o>¿ )
¿>■¿7 C?T Í 2>-U,r ) d

C?r¿( 2ÜjrrJ
-h ---- - 92 / °>£- 0
jrdcp '
(11-26)

18
the Euler equation for v is
¿ ¿ £ '
) á
/ Si
d-tr 2Y dxr, r ¡
1 dcp
i )/
i.
9 (
¿I \
' 9rdcp l dü;r(pJ '
ó) Vjípcf
Euler equation for w
is
si ¿ / si \
¿ /
Ji )
QmT ¿Y dbr, y
dcp <•
5nZ(f 1
d3
9Tl
-f
1 (*£ .)+ _áí =
l/>7 1 -(-.TV- ' ' IrOL \ '
»W,r

(11-27)
(11-28)
The Euler equations for u and v find the two equilibrium
equations in the middle surface, which correspond to the equilibrium
state in meridional and circumferential directions, respectively.
In order to reduce the number of unknowns, the Airy stress function
"F is defined to satisfy the equations of equilibrium in the u and v
directions
a^r- ~y F,r + (
0^

cr'rcf~-[(rM+<-/5 ) ‘f.cpisY
(11-29)

19
By substituting Eqs. (11-18) into Eqs . (11-20), the stress-
displacement relations are obtained,
0> = i*. r + y c*0*#
_/_ i . -/ __ -j 7 ot £ -j-
+ (rui«*/8) Vj y + ~2 (y*¿4*+/$ ) J ~ ¿J
cr-cf = ~jz[wr~y^+ (r4+~/8) if# +¿[(Jmj3) W
j- / / o( C7 _r_
+ P L^ir + ¿ (~ur, r) J~~ / - u '
(11-30)
We introduce the following dimensionless notations,
£ = c/>4a~/3 , p = p/f/l*; -ur- = (11-31)
After substituting Eqs. (11-29) into Eqs. (11-30) and eliminating
the displacement variables u and v, the compatibility equation is found
as the following:

20
7^-- ( ~pj¡~ )'uZrr ji (-HZrr-^eQ ) ^p(W&»)
rU ¿ p yJ yU
â– + pz(-t*r.79) yr *Zo) ~ y~(tfr^rr)
~ JfPyi [ (T r + p T>rr)+ 7~> ss]
(11-32)
whe re
= r?L-
*+i
9T¿
dr 7* J<9¿
]
(TT-33)
By substituting Eqs. (11-18), (11-19), (11-20), (11-29), (11-30)
and (11-31) into Eq. (11-22) and using relation (11-28), the equation of
equilibrium in normal direction is found to be of the following form:
2>*V = vl"r
+ Hry (~Y~ + p¿ 'Wee) r> ( P^'&\ r (11-34)
x (p^e), r ¿ Y?(~r Ft r + ~7~l
where
¿ h/¿
nr= / olTZc/Z ,
” -h/2
D =
/
/2(/-lS¿)
(11-35)

21
3. Transformation of Coordinates
For convenience, the following transformation is introduced
* = ¿° 3 -f, 1 )
(11-36)
By substituting Eqs. (11-36) into Eq. (11-32), the dimension¬
less compatibility in the newly defined coordinates is
= 6
-«* f
¿ \ ¿
- VTx ) + e) + (t (11-37)
— w: x (-t+r, x x - vJ~, x
where
■¥= v¿v¿
z _
~¿x
= e (
+
9X2 9QÍ
(11-38)
The dimensionless equation of equilibrium after the transforma¬
tion becomes
v¥tc)(j*fx*-kfoa)
+ (F.oq + FJx)('uJ;xx-li/;x)-2(/:7x6
(11-39)

22
It is noted in Eq. (11-34) that the thermal moment due to the
temperature gradient across the wall-thickness is disregarded because
the temperature is assumed uniform throughout the thickness. Eqs. (11-37)
and (11-39) are the basic equations for the buckling of conical shells
due to the temperature changes.

CHAPTER III
METHOD OF APPROACH
Since the governing equatiors of the buckling problem have been
formulated, our next task is to seek the solutions of the established
differential equations together with the boundary conditions. To deter¬
mine the critical temperature at which the conical shell becomes un¬
stable, the deflection is infinitesimal and the linearized relations
in Eqs. (11-37) and (11-39) are used. For the buckling of shells, the
two coupled nonlinear equations (11-37) and (11-39) will be solved
simultaneously. It is virtually impossible to obtain an exact solu¬
tion, an4 only approximate numerical methods will be sought. One of
the powerful methods is the method of Galerkin [33,34], which is not
only closely related to the variational method but also parallels
Ritz's method.
The Galerkin method is briefly explained below. A differen¬
tial equation can be expressed in the form
¿(P) = O (III-l)
if L(P) exists in a two-dimensional domain, an approximate solution
of P is assumed in a series form, i.e.,
H
Pn (*.%)= II a^-fo (in-2)
23

24
where is the approximate solution of P, the f^'s are appropriate
functions which satisfy the given boundary conditions, and the a^’s
are constant coefficients. By substituting Eq. (III-2) into Eq.
(III-l), we find that L(P^) = M, where, in general, M / 0. To min¬
imize M, Galerkin applied a set of orthogonal conditions,
&
i. — 1, 2, 3, ... n
where $ represents the two-dimensional domain and the coefficients
a^ can be determined by solving the n algebraic equations in Eq.
(III-3) simultaneously.
1. Boundary Conditions
The cone, as shown in Fig. 2, page 25, is considered simply
supported and has zero circumferential strain at the edges. The con¬
ditions for normal deflection at the two ends are expressed as:
tW = O at X=0 and x - Xa (III-4)
w¡xx - 'us;x — o at % - o and X~ Xo (HI-5)
When the edges of the shell are completely restrained in circum¬
ferential direction, the following two conditions are obtained:
At x = 0
y*
f-.xx. ^ <9 6+ Tí1*7' ~ °
(III-6)

25
Fig. 2. Geometry of conical shell.

26
and at x = x
o
FjXx ~ (/â– '-F) F;x
(III-7)
The end conditions along the direction of the generator will
be discussed in the individual cases to be considered.
2. Thermal Buckling
When Eqs. (11-37) and (11-39) are solved simultaneously, the
coupled relations are nonlinear. Now we consider only the linear terms
in Eqs. (11-37) and (11-39) as well as in the conditions of constraint.
This problem will be approached by two steps: the deflection
and the stress function in the prebuckling state are found first;
thereafter, the deflection functions and the stress function during
buckling are considered. The compatibility equation and equation of
equilibrium in the prebuckling state are written, respectively, in the
following forms:
(III-8)
and
-3*
J
(III-9)
2 4
The operators V and V are defined in Eq. (11-38), and the super¬
script () is used for functions in the prebuckling state. The deflec¬
tion function w7, which is assumed in a series form, satisfies the

27
simply supported boundary conditions given in Eqs. (III-4) and
(III-5). The solution of the stress function F', which is the sum¬
mation of the general solution of the homogeneous equation, and a
particular integral, satisfy Eq. (III-8). The arbitrary constants of
the general solution of F/ are determined in accordance with the con¬
ditions of constraint. By applying the Galerkin method to Eq. (III-9),
the coefficients of the assumed deflection function w/ are then found.
When Eq. (III-8) is substituted into Eq. (11-37), and after
eliminating the nonlinear terms, the compatibility equation becomes
"= ~ ) (III-10)
where
" >
W — = additional displacement during buckling
and
•> ,
F — F — p = additional stress function during buckling.
When relation (III-9) is used in Eq. (11-39), and the terms contain¬
ing the products of the additional stresses during buckling found
from F^ with the derivative of w, are neglected, the equilibrium
e quation is

28
u '*â–  r Yi / v ** >â– > v
(ñxx -*=.*)
+â–  *x -^x ) S'(fix /'/^ )
, , 7 -**
x(ts;jix-jv;x ')~2(F¿g-/ie)(ixix9-w>&s)J((
(in-11)
In a similar manner to the determination of prebuckling stress
function F ’, F,y is then found corresponding to the assumed deflection
function \j" and the conditions of constraint. After applying the
Galerkin method to Eq. (III-ll), a set of linear algebraic equations
is obtained. The critical temperature can be determined by minimizing
the results obtained from these algebraic equations with respect to
the wave numbers along generator and circumference.
3. Postbuckling Behavior
The basic equations used for postbuck ling problems are
Eqs. (11-37) and (11-39). After subtracting Eqs. (III-8) and (III-9)
from Eqs. (11-37) and (11-39), respectively, it is found that
e'SV "= -h ur, * ) + {Kf>xe) -
x (t^f, o ) â– /- (-ute )
(III-12)

29
dv4w"= e ^X[(■£&>£/})e (f,**. ~F, x )-f~^^pcx-^jx)
x ('i*rJ* + KSJ0g) - 2 C^xe-SjelW**'7**)
+ (F, x + F, eeU^x* - ><* )]
(III-13)
where
9»
F
9
F-F
â– ur
W - W '
(III-14)
The above equations have the same expression as defined in the previous
section; however, the relation between F” and w" is different from
the linear case.
The deflection function w", which is assumed in a series form,
satisfies the boundary conditions. In a similar manner to the deter¬
mination of the stress function in the linear case, the stress function
during buckling f" is found to satisfy the compatibility equation and
the conditions of constraint. Since Eq. (III-12) is nonlinear, F"
should be a nonlinear function of the coefficients of the deflection
function w".
By substituting the deflection function w and its correspond¬
ing stress function F into Eq. (III-13), and integrating it by the
Galerkin method, a set of nonlinear algebraic equations is obtained.

30
The temperature can be determined by solving the algebraic equations,
and the minimum temperature is determined by minimizing the temper¬
ature T with respect to the number of waves in axial and circumfer¬
ential directions.

CHAPTER IV
SOLUTION AND NUMERICAL RESULTS
1. Critical Temperature
Two different temperature gradients and their corresponding
conditions of constraint are considered in the solution of critical
temperature.
Case I
In this case, the conical shell is subjected to a meridional
temperature gradient and restricted completely at both ends. Thus, in
addition to the boundary conditions expressed in Eqs. (III-4) - (III-7),
another boundary condition in meridional direction is
X0
~u,x c/x = O (iv-1)
By substituting Eqs. (11-20) and (11-29) into Eq. (IV-1), the dimen¬
sionless condition of constraint expressed in terms of stress function
F is obtained as;
¡= ° (iv-2)
o
Since the temperature field considered in this case varies
only in the meridional direction, the prebuckling deflection and
stress function are therefore taken to be axisymmetric, i.e., they
31

32
are independent of 9 . The functions with subscript I are correspond¬
ent to Case I considered here.
The deflection function in the prebuckling state is assumed to
satisfy the simply supported boundary condition, and in accordance with
the assumption of Mushitari [18], the prebuckling deflection is chosen
in the form:
, • . xttX
~urx = (IV-3)
in which X — ——— (IV-4)
In this study, i is taken as an odd integer, M = 5 and
v = 0.3. The coefficients a! (i = 1, 3, 5) are in terms of the
temperature gradient and will be determined later. According to
Eq. (III-8), the prebuckling stress function can be written in the
following form:
i ' 2 X.
/ /?, x + e
+ /?s x e
¿X-
/ /=.’+-/=2
In the above equation, f| and
Fj. They are due to deflection w^.
respectively, i.e.,
(IV-5)
are the particular solutions of
and the temperature gradient T,
V V/ = (-£- ) e 3*(^x X - w!X )
(IV-6)

33
and
V* ((XT'*
(IV-7)
Substituting Eq. (IV-3) into Eq. (IV-6) and integrating it, we find
i ~ i
Xo
o¿¿ Cos
¿ n X
(IV-8)
where c. and d. (i = 1, 3, 5) are found as functions of x and are
i l ’ ’ o
given explicitly in Appendix A.
The temperature gradient is chosen as an exponential function
of x,
Tx = T, + T,e8X (IV-9)
where T^, and g are constants. If g vanishes, Eq. (IV-9) implies
that the distribution of temperature is uniform over the surface of
the conical shell. Integrating Eq. (IV-7), the function is
obtained as:
J_ n <*+#>*â– 
J e
(IV-10)
Substituting Eqs. (IV-8), (IV-10) and (IV-5) into Eqs.
(III-6), (III— 7) and (IV-2), we obtain three algebraic equations.
By solving these three equations, and the arbitrary constant A^

i
34
in Eq. (IV-5) is considered zero, the constants (i = 1, 2, 3)
are found as:
=A' (
rl
(2,
r,
C4
i = 1, 2, 3 (IV-11)
By substituting Eqs. (IV-3) and (IV-5) into Eq. (III-9),
it is found that
ur <— xX ' • l V*. 7 , r, /. .
Z>vY JZ e a¿ _(7-coip )e
jXX j X ) — A 0‘
(IV-12)
Applying Galerkin's integration to Eq. (IV-12), and if only three
terms of the prebuckling deflection are taken in Eq. (IV-3), the
following three algebraic equations are obtained:
Xo
J J[a q, e-ig ]XXJ6 = o
o o
i = 1, 3, 5 (IV-13)
Solving the above three equations simultaneously, the coefficients
a^ (i = 1, 3, 5) are obtained, which vary linearly with QT^ and
They can be expressed as:

35
o. i — a¿ ( x o > ,z° *3 ■ A 3 .
i = 1, 3, 5 (IV-14)
The six unknowns (i = 1, 2, 3) and a^ (i = 1, 3, 5) can be deter¬
mined by solving Eqs. (IV-11) and (IV-14). They are found to be
r j
functions of x , QT,, err -r—, and 0. Therefore, F* is determined in
o 1 1 n I
accordance with the temperature distribution T. The expression AÍ and
a^ are given in Appendix A.
An additional deflection function during buckling which satis¬
fies the simply supported boundary condition is assumed as:
where p, and Tj are the numbers of half waves in meridional and cir¬
cumferential directions, respectively. By substituting Eq. (IV-15)
into Eq. (III-10) and letting
71
(IV-16)
we obtain

36
r » , y, \ / <9 5
pz - ~ (9Z¿ ~ <9*
V »
V -x
)[<
A X
x (a.,^u*t^£ / a3 J^%-f-) Cx>S7?qJ
(IV-17)
The additional stress function during buckling is the summation of two
solutions: one is the homogeneous portion of Eq. (Ill—10), and the
other is a particular solution which satisfies Eq. (IV-17). This
stress function can be expressed as:
fT = (&-”*+ *e ¿'e a-*’x> *
+(¿cy)e'X’*ZZ a"(c^?***&g)e**o
l — •* *
(IV-18)
where c". and d^ (i = 1, 3) are found as functions of II, p. and
x . The constants A*, A* and k" are determined in terms of a*
o 1 2 3 i
(i = 1, 3) from the following conditions of constraint::
Fr , x*. — ¿> ¿2 , x Fz.ee = O
at x = 0 and x = x
(IV-19)
and
J~ 1+^ ) Fx , x — //j. ,ee ]& — O
(IV-20)

37
Since it has been noted that the homogeneous solution of the
stress function F has been already considered in the prebuckling
state, we can say that the homogeneous solution of function F^ can
be neglected without significant error [18].
When substituting Eqs. (IV-3), (IV-5), (IV-15) and (IV-8) into
Eq. (III-ll), it is found that
DV^~urx =(-j¡~Co¿fí)& ,xx ,x ) G
*( f=x,xx'f=x>x )[(ufx+t -ze ,xe -Fx,a )[(*£+\XQ-^x he]
+e (f=x,69 +/¿,x )[(j (IV-21)
By applying the Galerkin method to the above equation, a set of alge¬
braic equations is then established:
2TTA±*t./3
q XyUX ¿.osxQc/xc/q — O
X- o
i = 1, 3 (IV-22)
After integration, Eq. (IV-22) can be briefly expressed in the
following forms:

38
C // f d// o< 7~, Tu o(T/ ) C¿t + CC/ 3 o//3 <*Tt
+ //jvr,) clj = o
(IV-23)
and
/S
C Cj / + C¿3! & Ti + f3 / & Ti ) CL ¡ -f- (C¿3 c/j3^T
+ ¿33 <3 3 — O
(IV-24)
Eqs. (IV-23) and (IV-24) are two linear homogeneous,
algebraic equations and have a nontrivial solution only if the deter¬
minant of tne coefficients of a'^ and a* vanisnes. This requirement can
be expressed as
[_C,i + (c¿n / f, ^OlT,][Cj3 -/-(cSj3 ^¿33 T ) °< T, ]
[C/3 J-Cc¿,3 + -f,3]r,)cxT][c3i+(o¿'3/ + -f3/}r',)o¿t]
- O
where
* = ¿r
(IV-25)
(IV-26)
Eq. (IV-25) is a second-order algebraic equation of
and . For given values of and 6» two solutions of
are

39
determined from Eq. (IV-25), and is found as a function of the
number of half waves p, and T). After minimizing the solution of T^#
we find two values of the critical temperature. One of them is dis¬
regarded because it is physically impossible.
It has been observed that the buckling hoop stress is local¬
ized near the fixed edges; in other words, the hoop stress is high
near the supports and it is low in the middle of the shell unless the
shell is very short and thick [25]. This means that high average
thermal hoop stress exists only when the shell is very stable, and
the shell that buckles easily does not develop the hoop stress. For
the buckling problem, it is found that the thermal hoop stress con¬
verges rapidly when a series in Eqs. (IV-3) and (IV-15) are used.
It is also noted that the meridional compression has a much higher
effect on the buckling temperature than the hoop stress does. There¬
fore, the value of the buckling temperature will not change signif¬
icantly if more terms in Eqs. (IV-3) and (IV-15) are taken. Because
the buckling is mainly caused by axial thermal compression, the con¬
ical shell is expected to buckle in multiple wave patterns with nearly
the same wave length in both principal directions. The numerical cal¬
culations are thus made by taking p/n = (H tan (3)/ttR in Eq. (IV-25),
where H and R represent the height and mean radius of the conical
shell as shown in Fig. 2, page 25.
The results of the problem were obtained from the IBM 709 Com¬
puter, and are illustrated in Figs. 3-6. The relations presented in
Figs. 3-5 show the effects of a conical shell's geometrical variables

40
R/h
l*
Fig. 3
Critical temperature versus radius-thickness
ratio at H/R = 2.

41
Fig. 4. Critical temperature versus radius-thickness
ratio at 3 = 10°.

42
P
Fig. 5. Critical temperature
at H/R = 2.
versus semivertex angle

tf(T.)crx| O
43
ÍO
Fig. 6. Variation of critical temperature with meridional
temperature index (3 = 10°, R/h = 300, H/fc. = 2).

44
on the critical value of uniform temperature rise (i.e., = 0).
In Fig. 6, the variation of the critical temperature with the tem¬
perature index g of Eq. (IV-9) is depicted at a different t^/T^ ratio.
Case II
In this case the conical shell is subjected to meridional and
circumferential gradients and restricted circumferentially at both ends.
Thus, in addition to the boundary condition expressed from Eqs. (III-4)
to (III- 7 ), other boundary conditions are
2 TTAi~.fi
f cr^.c/9 — O at X —O and X = Xl0
(IV-27)
or in another expression,
( F, x + F, ee')^6 = ° at X = O and X - X0 (iv-28)
The above conditions are applied to a shell which is unstrained in
compression but is restrained in bending. If the temperature gradient
has the form
(j = positive integer, 0 < 9 < 2tt)
the conical shell is hotter at one side than the other. As the index
j increases, the heated portion becomes narrower and the buckling
behavior is closer to the case under compression [35]. In the present
study the temperature distribution is taken as:

45
Tn= t2 ex^
(IV-29)
with k = 1/2 sin P.
The subscript II is used to indicate the functions associated
with Case II. Both and are taken as constants.
The normal deflection in the prebuckling state satisfies the
simply supported boundary condition and is assumed in the form:
' r— / ' / J \ ¿7rX
-UTjj: = ( b <, + ¿lo ) - (IV-30)
In this analysis, it is assumed that the prebuckling deflection w^ is
axisymmetric and with i = 1, 3, 5, takes the form,
= exx(t> > â– *** 3 ^ v- b5
) (IV-31)
In a similar manner to the determination of stress function
F' in Case I, the stress function F^ prior to buckling can be
found in the following form:
(IV-32)
where F^ is the homogeneous solution of F^ and is found as:
f=s=3,(x-oz) + 3z?c +s3e~ ~+ a+xe
>2*. -»
2*.
(IV-33)

46
B í (i = 1, 2, 3, 4) can be determined by the conditions of constraints
given in Eqs. (III-6), (III-7) and (IV-28). They are found to be func-
tions of xq, T2, t21 — , P and bi with i = 1, 3, 5. The functions
and in Eq. (IV-32) are the particular solutions of the stress func
tion which correspond to the deflection function and the tem
perature gradient T, respectively. They can be expressed in the follow¬
ing forms:
Fj 6
<-//A
ZZ ¿c (
¿n X.
X o
+
J
SlL oos
¿rrx
Xo
)
(IV-34)
and
6 X (K ~ 1) )
(IV-35)
The b^’s (i = 1, 3, 5) are found by substituting Eqs. (IV-32),
(IV-33), (IV-34) and (IV-35) into Eq. (III-9) and integrating it by
the Galerkin method. The coefficients b'. (j = 1, 2, 3, 4), g', h!
1 rl 11
and b.' (i = 1, 3, 5) are functions of x , T~, T , —- and 8, which
L O Z ¿ \\
are expressed explicitly in Appendix B.
It is noted in the above analysis, that the prebuckling hoop
stress is independent of the temperature gradient provided the temper¬
ature function is chosen as in Eq. (IV-29), since
FM.
x x
- f¥:x =
o
(IV-36)

47
During buckling, the additional deflection is assumed in the
form:
(IV-37)
It has been mentioned in the previous case and reference [18]
that the homogeneous solution of the stress function during buckling
can be neglected without significant error. Therefore, only the par¬
ticular solution of Eq. (III-10) is considered as the additional stress
function during buckling.
By substituting Eq. (IV-37) intb Eq. (III-10) and assuming that
the stress function has the form
(/+\)X
i/^rrX
(IV-38)
and g" and ru are found by tne use of the Galerkin method.
J.
Substituting Eq. (IV-38) into Eq. (III-10), we have
(IV-39)

In order to determine the coefficients gt and h* (i = 1, 3),
the following approach is employed; Eq. (IV-39) is integrated by the
use of the Galerkin method in the circumferential direction, which
provides the following relations:
¿TTJ/nfi
A Q3 /£ 9 C~oS 71 & o¿6> — O
(IV-40)
After integration, the coordinate parameter 9 vanishes in the
above equation, and it becomes a homogeneous equation in terms of x
only. The coefficients g^ and h! (i = 1, 3) are obtained from Eq.
(IV-40) by comparing the corresponding terms of x. They are found to
rl
be functions of p, T), xq, k, -r- cot 0, and are given in Appendix B.
Substituting Eqs. (IV-37) and (IV-38) into Eq. (III-ll), two
algebraic equations are obtained by applying the Galerkin method to
Eq. (III-ll). For this case, w* = w*j, F/ = F^, = Fjj and
w = wj + Wjj in Eq. (III-ll). If the following notation is intro¬
duced
J¿-T¿/T (IV-41)
the two algebraic equations can be briefly expressed as:
Cl,, + ,,0/T¿ ) b/ + (1/3 +■ )¿>3 = O (IV-42)
1 /J • y **
(tji-t ¿3/o' 7C¿ v- (¿33 / A¿3 °(—
0 (IV-43)

49
For a nontrivial solution, the determinant of Eqs. (IV-42) and
(IV-43) is zero. After solving the determinant, the term of
the temperature gradient can be written as:
otTz = oiTz ( x.ju, 7, A K )
In a similar manner to the determination of critical temperature
in Case I, the critical temperature in this case is found by
minimizing the wave numbers y, and T| of Eq. (IV-44). The crit¬
ical temperature at different magnitudes of yis shown in Fig. 7.
The details of expressiore used in this case are given in Appendix B.
2. Minimum Temperature
After buckling the normal deflection becomes finite; thus the
second-degree terms of the derivatives of normal deflection should be
included in the geometric (strain-displacement) relations. These rela-
tionsh'nips are expressed in Eqs. (11-18), and the nonlinear equations
(11-37) and (11-39) will be used for the solution. Since the thermal
stresses in the shell depend on the boundary restraint, unlike the

OI X J,OL)>0
50
Fig. 7. Critical temperature due to circumferentially
uniform heating (S = 10°, H/& = 2).
1.0
non-

51
case under external loading, the average membrane stresses will be dif¬
ferent before and after deformation. The nonlinear effect on the value
of the temperature gradient to maintain equilibrium after buckling, is
here investigated. In the present nonlinear analysis, the temperature
change and boundary conditions are the same as considered in Case I
in the linear analysis of the buckling problem, in which the conical
shell is subjected to meridional temperature gradient and restricted
completely at both ends. In order to compare the value of buckling tem¬
perature with the minimum temperature in equilibrium state after buck¬
ling, the deflection functions used in the nonlinear analysis are
basically tne same as those assumed in the linear case, but only two
terms are used in the prebuckling 3tate as an approximation.
Another boundary condition in addition to Eqs. (III-6) and
(III-7) is,
¿rrS>"¿ Xo
(IV-45)
o
O
o
The above condition implies that the average length of the cone is
unchanged during heating. Eq. (IV-45) can be expressed in terms of
the stress function F and the normal deflection w,
2 TTS m/) x
o
i
0
0
(IV-46)

52
It can be observed from the above condition that for the same temper¬
ature rise, the average stress is less than that considered in the
linear case, because the additional nonlinear term in Eq. (IV-47) is
always negative.
The normal deformation prior to buckling is chosen as:
*/â–  =
\X , A t
e (a,
7rX
A >
J7TX \
Xo /
(IV-47)
In a similar manner to the determination of the prebuckling
stress function in the linear analysis, the stress function prior to
buckling is
ZX '
+ ¿3 X € + fs
^6
)
(IV-48)
The boundary condition and the temperature distribution in this non¬
linear analysis are the same as in Case I; therefore, by setting the
terms to correspond to the third term of the deflection function,
Wj equals zero, the following relations are obtained:
. / > ; A > *
F s ~ , A ,=â–  A i
(IV-49)
A. . A. t
A 2 — 2 > A 3 — A J
The additional deformation during buckling is assumed the same
as in Eq. (15), i.e.,
exx(
A»
a.
'• . Z/7TX
-4*n — +■
X o
'* , â–  3j/rrX
A
Q
(IV-50)

53
The additional stress function during buckling has the form:
A »» A »» px. A ft 2
F " = A, x + /12. & + A3 x£ ■/• Fs
(IV-51)
The particular solution of f' has been found as
A
/ /» '• * • - , t '/ ' ' fi 'A
F - 6 ( a, K.ooSfn, x •/ a, K¿ s- a3K3co5M3x
a , y*" zK^-r ** *
a frt3x)costrd / o, fTi °<^) €> ¡J£se<¿fa,-MO*
+ Kó-<£ó*-(?X/-/7t / )X CoS X.+K.8 X
y- X9 cos (?x¡- +I *ÜC. 3 CoS ¿ ^¿+<*('/?r3-»t,)?(//(,s^SOxj'■*')/
»» •
4-K./6-)X s-Je/7CoSf/rf3-/*3')X- +](/0-¿+*{xt3-xf3 )X
7 ¿
+K/9 CoS Cr7f3+/X3)X t-K20 -diirt c»tj +/*,)* J )
f5 [K.2 I ^ J^.2¿ ¿nt/X. ¿/C¿3 /Tt/XffóifCaS (fftSTTfj') X
* f > * , f *
+ J<¿5 Í7rts -m,) X +X2é CoS ('fffj+#(■')X J/C27-<¿+*í»t3+?*,') X

54
J , > 7 A" ¿
± J(¿8 coSZ/rtjX. + J\¿q 2/rfj X J -ha i £ ¿/^so
+K3/ CoS 2#t, X 1 JX32 2M, x * -K-3 3C^>s^-tJCiVCoSf/tg
-’-’ . , JJ \ A *> _ 2*- ^
x cos ¿sx,x / J<3s cos¿s?e¿*x?/?r, x. ) + cl, &3 e
x C.oSf?fr3 -vt,)x / Jís7<ü* (f#3 -7ft, )X '/7f3 )X
-+K39 Cm,/srr3 )X s-K+oCoSCTffj-tfiyxcoS2n6 C]<Â¥/^c(2*3 -M,)X
x d^2no / J<+¿ cos Cmt3 -f/rt, ')x CoS 2*6 -¿£«3 -t- ■h 1<¥S CoS ¿ M3 coS2/l9 + K¥g - (IV-52)
in which
5*7 =
tTT
%o
Mt, =
¿ATT
(IV-53)
i is an odd integer
By substituting Eqs. (IV-51) and (IV-52) into Eq. (III-12) and com¬
paring the corresponding coefficients, K^ (j = 1, 2, ... 49) are

55
obtained as functions of x , P, u, -r^- > 0 and T . They are given in
oh 1
Fortran language in Appendix C.
By applying the relation (IV-14) to Eqs. (III-6), (III-7) and
(IV-46), the boundary conditions during buckling are
( F.x* - ) ~ P (^'6 0 * x. ) — 0
at x = 0 and x = x
(IV-54)
and
J J e *{[('t-P)¿ix *■ ]~ 2
O 0
= 0
(IV-55)
By substituting Eqs. (IV-50), (IV-51) and (IV-52) into Eqs. (IV-54)
A /j A if A jf
and (IV-55), we obtained three algebraic equations: A^, A^ and A^ which
are then obtained by solving these three equations in the following
forms:
A, ft a,* + $2 a3 + is cif //yC^r*°‘r>)
f*// /i /\ ** A j w O £. _ rr _ .
A 2 = $s + $6 a / & J + fr & 3 + $8 (~Zl * T> )
a>*2
7/
Q'J A" l A'» A t, ,•> A° 7. . sy / n . . \
A3 — ffga, ai ^^//a3 *~0/2
(IV-56)
Substituting the expressions in Eq. (IV-47) - (IV-52) into
the equation of equilibrium (III—13) and assuming the error is
K1

56
two equations are obtained by applying the Galerkin method:
CoS/1& — O
(IV-57)
¿rrS/nfl
¿ Qjj. £
X coS
0
(IV-58)
The above two equations can be expressed in the following forms
after integration:
a "R• + cl3 R.¿ + a7(^0(Ti )Rj ^ ) R*
+ «:(£« T,)K'+ &3( t a/ft,
A "¿ A ” S) / A "7"£ ¿3 / r> O
■f a, ¿L 3 R 8 -L &, a 3 r\9 -t- R/o — ^
(IV-59)
(IV-60)
In an attempt to solve Eqs. (IV-59) and (IV-60) simultan¬
eously, it is necessary to define
A *>
a,
A *t
<2j
(IV-61)

57
By substituting Eq. (IV-61) into Eqs. (IV-59) and (IV-60),
and solving for the constant T^, we find
(IV-62)
where v^, v2 and v3 are functions of u, l1, 8, y^ and £. If the
geometry of the conical shell —, P and the temperature ratio y^ is
given, the value of c»T^ can be plotted versus Q for fixed values
of p. and T). Examples are given in Figs. 8 and 9. The critical temper¬
atures are then found from the minimum value of these curves. The
temperatures should be equivalent to the values found from the relation
ST^/dC = 0. The numerical results for this case are illustrated in
Figs. 10 and 11.
3. Deformation
The relations between the temperature rise and the deformation
after buckling can be obtained by solving Eqs. (IV-59) and (IV-60)
simultaneously, in which a^ and a^ are expressed in terms of T^
and y^.
Numerical examples are given for symmetrical (n = 0) as well
as unsymmetrical cases. If only the first term of the deflection
function w is taken, i.e., a3 is equal to zero in Eq. (IV-50), then
Eq. (IV-59) can be written as:
(IV-63)

58
Fig. 8. Temperature variation as a function of deflection
coefficient ratio (a^/a") at 0 = 10°, R/h = 450 and
H/R = 2.

59
Fig. 9. Temperature variation T^ as a function of deflection
coefficient ratio (a'/a") at B = 10°, R/h = 900 and
H/R = 2.

60
200 4 00 600 800
R/h
Fig. 10. Minimum temperature versus radius-thickness
ratio at H/R =» 2.
1000

Cl) >0
61
9
Fig. 11. Variation of minimum temperature with meridional
temperature index (Í3 = 10°, R/h = 300, H/R = 2).

62
The above equation can be solved for the magnitude of the deformation
a" in terms of and y^. From uniform temperature distribution,
is equal to zero. Figs. 12 and 13 give the value of T. versus (w')
i max
for different combinations of wave numbers, while AT = T, - (T,)
1 1 cr
versus (w ^max curves are plotted in Fig. 14.
Since tne numerical calculation is very cumbersome, the high¬
speed electronic computer is therefore employed. The solution pro¬
grams were written in Fortran IV language, and the numerical work was
carried out on tne IBM 709 Computer at tne University of Florida
Computing Center.

63
H/R = 2).

(W )ma*
64
Fig. 13. Deflection versus temperature for axisymmetric case

65
8
cu 6
O
X
X
d
E
2
0
*[T. (T.)cV] x I O3
Fig. 14. Deflection versus temperature (6 = 10°,
H/fe = 2).

CHAPTER V
CONCLUSIONS
Numerical examples have been given in the previous chapter for
different cases. It has been found in Figs. 3, 4, 5 and 10 that the
radius-thickness ratio has the most effect on critical temperature,
while the change of ratio H/R and the semivertex angle of the cone 8
vary the temperature only slightly. It can be observed from Figs. 3
and 7 that for the same geometrical parameters, the critical temper¬
ature in Case II is almost five times higher than in Case I. This
implies that when the shell is longitudinally restrained, the axial
stress plays a more important role than the hoop stress during buck¬
ling. Since the thermal stresses depend on the condition of constraint
and temperature distribution, the thermal buckling problems have to be
treated individually for each case. The two cases (Cases I and II) con¬
sidered in this study are those under which the shell is the most
likely to buckle.
Figs . 12 to 14 give the deformation-temperature relations.
These figures indicate that the deformation is proportional to the
temperature, the ratio RA, and is inversely proportional to the
numbers of waves in two principal directions. It can be seen from the
condition of constraint Eq.. (IV-44), that for the same temperature,
the thermal stresses decrease with the increase of normal deformation.
66

67
However, in the axisymmetric case, the deformation after buckling is
very sensitive to the increase of temperature, and it is also noted
in Fig. 13 that point A should be the critical temperature for this
!
case.
The buckling of shells subjected to external loadings has been
studied by many authors in the past. They found that, in general, the
buckling loads obtained by the use of the classical theory were larger
than those found by means of the finite-deflection theory. It is
interesting to note that in the present investigation a higher buck¬
ling temperature was found by nonlinear analysis than that obtained by
linear analysis. This phenomenon can be explained by the condition of
constraint Eq. (IV-1). When the large deflection theory is considered,
2
the nonlinear term (w ) appears in the condition of constraint as
>x
2
expressed in Eq. (IV-44), since (w ) is always positive; therefore,
it can be seen from Eq. (IV-44) that during buckling a certain amount
of thermal stress is released by the consideration of this term. Conse¬
quently, in the use of the large deflection theory, a higher critical
temperature is obtained in the buckling of shells. Thus, for the post-
buckling case, the shell will remain stable at critical temperature
and becomes unstable when the temperature reaches minimum temperature.
A comparison of critical temperature with minimum temperature at
3 = 10 and H/R =2 is given in Fig. 15.
In order to compare the experimental with the theoretical
results, a test is performed in this study. The truncated cones under
the test were fabricated from a flat brass sheet with a thickness of
0.005 inch, and the coefficient of thermal expansion is 10.4 x 10 ^/°F.

68
R/h
Fig. 15. Comparison of critical temperature with minimum
temperature (0 = 10°, H/R = 2).

69
The dimension of the conical shells used in the test are: — = 500,
= 2 and (3 = 15° as shown in Fig. 2. The brass conical shells
were mounted so that they were prevented from lengthening by two rigid
plates, which were held in place by four 1/2-inch screw rods. At the
two ends of the conical shell, two rings were made and mounted on the
plates. The cone was then fixed on the rings by screws. Heat was
provided by infra-red lamps, which were placed inside the shell and
were designed for uniform temperature distribution over the surface
of tne shell. Thermal papers and thermal couples were both used to
measure the temperature.
Three cones were made and tested; the buckling temperatures
were found to be 120°F, 130°F and 135°F, which are higher than the
theoretical value (98°F). This is primarily because the buckling was
determined visually.
It is therefore reasonable to believe that the buckling occurs
before it can be observed; in other words, the actual buckling temper¬
ature should be lower than that found experimentally. As temperature
increases after buckling, the deformation increases, too. Fig. 16(A)
shows the conical shell beginning to buckle, while Fig. 16(B) shows
tne buckling pattern of the cone as the temperature continues to
increase after buckling.
}

70
(A)
Fig. 16. Photograph showing buckling of a heated conical shell

APPENDIX A
EQUATIONS FOR CASE I

ZL
:ry - c \ * o = ¿y
- /7o ( X + o Z - ’O (Y^O =8tf
'D ’ U¿ + "/° ( X t / ) — ¿ tf-
- '? '14 (y / /) 2 + *y (XT') - 9p
f * * r < ' ' Z
?VA + eY/r -aY = *{/
XS> +;YZ'-£Yft = • ft + y z / -?Y9 =
f_ (gxz) (r£rr-gne- S + rz-z ) - 7V
(8+Z) (78 + in-i£ t m - ?) = ' tf
z- *
( *sfi y '
y - 7, / Z Z '
+ 7?V) ir-fi (,\-Y + Z**) xfi + -irCX*-')1 rU¿ =
( V Y ha ?/
/- V 7 / 2 7,
+ -y) [?yfit*lU(7XZ-X) A - ?V(2Y-X + J**)] = *0
i
('-Y‘j+Tut(txe-/j*+?w = ?y ' - / + I'M = "sfi

73
A /o —
2 ✓ / * » * 2 / J
- ( / + Á ) &( j ■/■ 2 f / A- A ) m 3 C 3 — 27Z 3 3
A,, =
(/ X X ) ol3 + filj C3
A,z -
: C/xx/cJ - 2 C'X x ) m'3 ¿4' - m3 c'3
A ,3 =
- ( / x X ) C 3 — m 3 cA3
â– A,* -
- (/ x A ) o¿5 X 2 ( / + X ) frtj- C¿ — ?rLs o¿J-
A/s -
/ ’ ' '
- (/+ X ) oís + ”*sCs
A/6 —
- (/* X ) 2 Cs - 2 C / **â–  A ) fits <^s - xrts c s
A/7 -
t j / < 2(X->) X«
r (/ X X ) is — Xfis 0¿s t /f / 0 — Q — /
II
?! y c 2 X — / ) oC o
: e - / , A20 = e - /
A 2/ =
= Cmi* - Aj fit3 x- As ) (/- 'I ) Asg {[V (X-/)2 A (in,
-x fit'3 )¿J / — [*/(\-')2-/-(fit,-fiiJ3)zJ J
A2Z -
- -0-5 A/0 /w/-A) fit^ + A# fit/J j (fit',x fit3 )[//(/+A / A
( fit'X/ft 3 )2] - (fit 3 - fit, ) [*/ (X - / )2 -A (fitj - fit,) JJ

74
A ¿3 = Xd'¿/9 (¿- /?/3 ) {C vx¿y {va * +
• > 2 7 -'l
C m, - m. 3 )
¿ ¿^ — O- 5 D X)/9 (/f /o ~ A" )[( 771, Y srtj ) £vX ¿ V CM, ¿ **3 ) J
-/
- (”*-3 ~ <«•/ ) [*+X 2 / (ttl's
-¿25= ¿sá ( rrí* - /!3 r*’3¿ + ) {£4 (\-/)J '- ()[v(X-i)
-/ V^i
> J "/
¿ ¿6 = ,3 [* ( '- A) »*3 Y ¿ ¥ rrzf ] ¿ */ía-' /Y
-/
¿27 — ¿/9 Z) (¿t'3 —/t/2 )[ Cy\) — X (vX / Vttíj ~)J
¿28— ¿/9D 'r*3 (/)/0 - />,, ) (¿X2-X- '/rtt')
-/
¿2 9 — ( 77tg - /)3 Ttt's Z ¿sX (/- X ) ¿ /8 {[Y CX. -/ ) *> ^V^;/7
-/
- Í4u-'; / ^/«/ -
/7-y
y^jo — 0.5 ¿/g [y ( /-X ) /n5 Y- /Jy #Cj]{(rx-, / rx.s)£( a - / X /
, â– > / 1
{ah./ y y
] - (rrt-j - »*■ / )[¥(X -//■/• { Tfl 3 - **■ ', )

75
A 3 / — X D d/3 (A/6 — A/7 ) fC VX ¿ 4 (m', / /n.’s ) ] — £ Y A 2 7-
C ttc, ~ tti 5 ) 2
yf
/) 3¿ — o-5 D 7 >4/9 ( A/A - A/s )fí7*-, + 77t‘s ) [// A *+■ Xttl,/ /rig SJ
-/
- (/TCj. - ttc', ) [ V X* X ( 771s- - 7ft, )
A33 — >4/3 C7~ X) (.trig** — /}3 771/ 7 /f s ) {[t/ -/ ) *+ ('/rt3 7/7ts)J
-/
— L*(X -/ ) * ( TTtj - TTCs )
, ¿
AjY - - 0-5 A, a L 7/ (/-X) 77Lg Y AÂ¥ 77tj J/Cms + 77i3 )[*/(\-') X
( 771s X 7713 ) ] + (m3 - 77t'g â– )[// (A - / ) X (77(3 ~ Trig ) J J
A35 — A D 'A /9 (A
1/6 - A/7 ) {¿4\Z X ÍTTlg 7 77t3)] -[VÁ 7- Í77ts-/7tj)]]
A = 0.5 D~'A ,9 C A >4 ~ A,5 ) f (77Í3 X 771 g ) [*A * 4 X77fj XMgX ]
-/
— (7*CS — 7*^-3
*)[<¥ (A-')2-/- C77L3 - 7*.'s)¿J J
A37 — ('-A) A/S ( 771 /- A j TTtj 6 A s- ) {/V CX - ' )¿'3
- [*/rx x Cttl’s -
.. 7 ,
7*3 )

76
A 3 8 'â– 
¿33 ~
4//o ~
¿4Z -
4 vi —
=
4vS ~
Avé =
4v7 —
A 98 —
j y J ¿ y J * *7" £
- - o.54rg [v (f-X)”*■ j X 4v /*■ j J/(*ts X rtts X L¥(x X X
, z
(/M-s X /n 3 X
’ J ~! t • r Z j J 2
J — Crrtj ~ /** X ¿ // f X-/ ) X 7/ftj -/n-s X j
- X D 'd / 9 (4/2 ~4/3 )(Cv\2-/-CfH.s X/rtj )*J - 7* Á*X fas-/»,)] J
- o. S D 4X 3 f ,4 / o — 4 // )((ms X/rt'3 ) [v X* + (7H-S + m3 9 J —
( mj - ) 7*X * + Í?*3 - "i-s ) ^
- 4/ 3 C //If - /13 7/1 f X 4g ) Í7XXX Xj — A (X ~/X X 4/rtf J J
•9 , r ¿ ,, -7
’■ -4/8 ('- X )/n5 7- /?? zKs ][ v X*-'X X X/rts¿J
D-'/>,9
(4/7 - 4/ 6 ) [(
fvX) '—X (vX¿ + V/rtsX ]
— D~ *4 /9 C 4 / s -4/*¿ X (X X ¿ 9 9‘ rrt¿ )
-/
/K, f£>[('/ X f -/-TTt'/jJ £.
- / C/+*/-f)X
/ /â–  e
7
W {/>[<'/* * f >*■/■/*■'/j] 7JX‘j
mX fo[n/ x "[/* * !"X ’"V
-2
- (2 + 33 X 2*) (#S 2) ,
- 2
/X 4 9 = -CzxJ)

(fT+O - ft'i/J 9P - 6'p ‘ [S'tf (*+') - °'t/J 92 = 8'p
IP [f
"i/ C (T + ') -
Y + ~ *'¿/(r< + ')] ***J <■ f** + ¿<) (,xY* +') — *'P
e'p[ apcts-n T,J= 9'P f 9p [('//-O U + '] = ff'p
°x ff
JP [lj.x*-or.xri„3-']['v-l-<^',TJ. + 'j = r?
’X(Y-O
¿>9P = ' 9Cx*2+ *P)~-2/p
°x c \-o
a 8p - - "p ‘ a =o/0
X (rr~£) 9p = 6P ' (n-O’P? =9P ' (ft*/) 9p- =LP
[*(/(”■")-9*]=9D ' (,x$-o;? =sp
,1P[(ox2-.TC2eX + ,)('T-/)2 + (,-ox3)('lC-/)] - ^P
(/- 3)(ft2-g)'p = rp
‘ t;p =
v
¿t/ ( <* •* o -
?(?'*] Y + [8t/ft -(«+06PJ 'UíJ _Q¿W ¥-?X) (o^Yd+/) — tp
LL

78
d ¿o — C / ^ ) (x ^ sx-s ) Ítxs /¿iSj /)/ 7 — /J rf/6y7 -/■ A £is /J/*f
— (/■*■ is )■$/ s J J C*/
-/
Z?/ = Cd/9 - C,s)(C2-C7) ' , (¿a-C8)(C2 -c?) /
D3 — ( d9 ~ ds )(C¿ ~ C7 ) > D// — (d'*S - d/6 ) ((?2 ~ d/O)
-/
d>s — (da d,‘XC2-C,o') j D¿— (dv - C'2 )(dz - C/o )
_ / _ /
Dr- (D,-2>*)(0¿-Vs) * Da = (D6-D3)(V2-DsO
-/
Ds = Dz - V,D7 j D/0 = -D2D8-Dj j J>,/ = (-C'jiP/o¿djZ>a*C¥')
D/z — D n (c?2 Da ~f~ d3 V7 ~ G/9 ) > D/3 — D/ o D// j D,i¿ — D 9 tyoQ z
D/s — DgD// j D/6
(d/ 7 - d/8 )(C¿ - d7),
D,7 — Cd/7 d/8)fC'2 -C/o')
-/
D/8 — (D/7 -D/é ) (D2 - Vs ) j J)/g — — D¿ D,8 — D / 6
D20 — D// (d/ 7 G2 D/3 Cj V/8 )t D¿/ — D/a s- £), o D20
DzZ — D/ 8 *- V8 &20 j D2 3 — (d20 ~ d/9 )(■ C¿ - dy )
D 2^ — (d go
C/9 ) ( C2 ~ d/O )
-/
-/
X>25 — (- V 23~)(V 2 - V5 )

79
2zé = - Dz & 25 - D 23 , I>27- 2,/ (¿20 + dzJ>26 7- ¿3 ¿>251
2 28 — 2 2é 7 2,o 22 7 , 229— 22S + 2# 2>27j 2j0= Z)y 7- Dg 2,2
£, - /?, 8 7- £j #¿,¿7 /?5 ){&/<'* ' Oj '-fa-o 1/77A - 0¿/ Vttí, */ ]
J Z -7
£¿ = -/J,8[yO-A)»c?/ /Víá-')¿7 VrtfJ
£3 = j/9 D'* ¿/?9 - /?g) ¿}v\ ) '-A (*A¿7 *»¿f.) ~'J
£¿= 2~'/?/S C7?6-£7) (£A¿/¥z*,¿)
- /
2 '2 7-/
£i=-Z>-'m.;i:ea + 'iK’* OO^'hmfj'1
\7 — - 2v '(u>. ) [r/*\7m-fj f-»t, C/*A )[& +
7 s?t, J
-/ ' -/r -/ ~2 7 t'7 A J-*o
/ ] y 77t, o* A ) [tío f/7 AJ -C' J &
' -3 '3 , ~3 r (,*A>X-o7r . 2 ,
?#■, C' 7 X ) 3 Sft, C'+Á) ¿77 & J¿7 ,7 A) y- M'
£8 — £5 7?, £ 7- ¿ £¿ Ds o -7 3 £ é 2/2 ■/■ ¿r7 ¿7,2 , £3 — £, 7-£g
£, o — £7 2// / £3 £ £^t y- £$■ V /3 7- £ £6 2,5 7 3 £e 2
//

80
A,g (/- X ) CTTt1?- /7j/rtf -7 /?s J C\-/Cttc, A )¿J
— [.VÍÁ-'J S' Í&C/ - 3 ) 2J
- / >
E/2
= -¿7-5 /f/s[^ (/-A) m* E/7¿/ vt?]f frrt / /- /n-3 ) [*/ (\- / )2V-
(m, EM3) ] + f»tj/ (plJ-W,)
' / 2 7
E ,3 — \D /I /9 ([y A ■/• / /?0 A ] - /vA ^ /A*y -/**V/y _J j
E/4 — o- 5 A'/9 D VE¿ ~Ef 7) ((7rt, -/-/ns)[4\ ^v/>6 »*tftj) 2J
-/
(m3
)[v\*¥■ 'Ms-»*-* A J J
, / r f\~OAo 7 r 2 ,2 7
E,s — p 'nt 31 & + ' J¿Va - 7 3 +-SK-J J
_ /
E,¿ — -srt-J D / e 7- fJL( A *■ o J /rt.j J
-/
E / 7 — - 2 D'1 C'S \*[('+^ f+nfj f-s#j C/tX) [e0'*' V
'? T-/ '
A-TTt
V 7-/ ' _//■ -/ _ / y v- (//Á ) ¿_7íoC’/■/■A ) A -) y <
- -*â–  <
e
' -3 ' -3 -j r f'+\>x07/' ¿ -¿
?*t3(/s\) E*fs (r* \) ¿*+e J/_c,sA) ¿ ?x3
£,8 = A 2 / J E/9 = /?¿3 ¿/¡¿j/-/-¿>2/Es -¿-¿£=¿£>22 £)¿0

81
£20 — £// +£'2., £¿/-£s /£,/3 /££,6 £>/s ££>// (3£s6 /£7)
£■22 = /?23 ¿//¿¿ j £¿3— £>¿7 ¿/ha +£/sE>2' +2 £/6
£¿4— £s -Dr^ ¿¿?£/éD/6 /-D/2(3£é ¿ £/7) t £¿s = £7 * X* ^
•“ / 7* *
£¿é = ~£¿s (£/S /£9 X* Co^¿^) , £¿7 — -£25 (£g - ¿r/W/^W
£¿3
£20
_ / ~y ^ ^
£¿e- - £ 30 — - £28 ( £ ¿V - 7/ /?44 /?V2 ) ¿ c'° ^
_ -/
£ 3 / — C £ 2 7 £30) C £¿9 - £¿6. ) > £32 — £28 £3/ / £2 7
£3// = a.S £/8 [/('-/)/*, -/ A^/X-f]fí?rt,-77Zs-)[v(\ -/) '7H,-/ns)]
, , r 2
— í?rts / 7?t, )[/f^ ~ ¿ ) £ írrt-s ££?■
â– :/]"]
£js - Xv/^g-Zlg) A/sffrX Z+ [¥\ + ~/rc,)J J
£jé = O. £ D~\
'(/Jé -/?7) {(m',¿Ms )[*Á *+(*> ¿Ms)] -(*r*s)[*k *+ >]'J

82
CÁ -OX,
'+/][í\-,0 0']
-/
£ai= msD~'[e
X e> (/ 7 ^ { / 7 Á )
£40 — £/?JO , £4/ — £j/7£j¿ +¿¡jZ>¿3 7-¿£¿3¿9 f££¿ +^7)
£*2 = £j3 7£s4 , £43 — Ájs ¥ £j¿ 7 £;j--£>¿8 -7-££,¿-Dj. ? 7- 3¿ 7 Í3£¿ 7£7)
£4.4= £33 + £j¥ J £45 - £js *■ £jé ¿ £j 73/3 7 £^38 £5 7 3// fe£jg +£&)
£ +6= A37 / £¡38 / £47 = £j9 £37^2/ ^££ja£¿2 7 3¿o ír3^Jgi7£¡g)
£*■8— £47+3*2 j £4.3 = £43 ¿34.4 -7-£37338 3-3£jS P¿9 + 3?2 7/'s£ig *-£39)
£so— £373/1/ 3 ££j8 £76 -tYJ£38 ¿£3?)3/2 ~ £48£4-7 £
£37— ~£¿s ££40 7-£4/ y»Co^£) j £3-2 — ~£^¿8 (£92 -7 £4} 7*
, -/ _ rr* y?^
^•3 = (£j/ -£s¿ ) (£¿9 - £¿¿) > £s¥ — £44 + £43 a>z ^

83
£55 — ^ £#7 ^ A ) , £S6— £sV (£ 9-8 / £#9 £*■ c"^A)
£s7= £s° £sV , £S8 = (£¿-¿-£S2)Í¿29 ~ AjS )
£s9 - (£s 7 - £j e ) (£¿9 - £fs) ,
£¿o= (£j/ - £5-9) (£s~8 ~£s3 )
£*t— £s8 £80 *■ £^9 j £¿2 — £¿6 £¿7 7-£s-/£¿¿> / £2 7
j ytl r y
A 1 — (~£i £ Tt )L D"* + ~j~ {£¿/J>¿/ ¿£¿¿2>/3 /• £¿o £28 J
/?z — (yr¡i <*'£)[ Ajo ■+ co¿fí(£¿r £22 t£¿2£/s + £¿o£>2vj
A3 = (-^l^T, ) / D; 2 + /í00A (£ó7 Ajo V- £¿2-0// -^£¿0 £2 7J
< // ❖ ^ ^ 2 ** // 1. ¿ ¿ *'2
Y¿ = jk¿ +n //- X t _sit - (r*£+n)-¿O+Á¿927 7- 2O- JÁ )m¿
c¿ = i */ //
/" '■ r » ", 2 . „ _r " , "2 2 / "2-, -/
Yi. - ?n¿L J ’'2 "2 * *2 ? "2 2 is , . *s ''2 2\
Aj-0= A -6/X, 7-/7t,-*\ -7/2tf,Á /VX - £ J-2A2) fe-X)+2i (£/r7,rn)
As/— //X /? - T/tv/a ~/£X J/77, 't-£/77'/a£/77/A -/-Y777, £ 27t,Af x/

84
As¿ — x - -vA3S-s¿Ms A +VA -V#fj ~/t ■+ 2n*Af¿-X )+nÍA^j 2/1)
Z " Z
AS3 — t/X Srtj - A/zt/x - /¿\ 2/Xj 2 Vm.j /• ^ ^ A^jzt - V^O * A
/Jft — A ('+X’)C,-(/ + 2A)/rt,o¿/ -srt, c, Ass — O/A XC, - /7í',o¿/
• > ' ' J 2 / ’ / * > >
Aj-¿ = X('2\)A, +(/ +2\)/rt/C, -/*,£*, J /¡S7= (t+\)c*t -2/rt, c,
Ay8 — A (/ 2 X )Cj - C/^z’X )/7fj c/j -zzTj Cj f yfs9 — (/* X ) Cj —/rtj <¿3
z j > j '¿ / •» / ' > '
A¿o — X 02 A )Aí + (/22X )/rtj C¿ -/Xj A3 /)é/= (/* A )¿*3 + /rfj C¿
A¿z — A ('¿A)Cs -C/22\ )/*f
A¿4 = XO'A )0¿s +■ (/+2X )/7ts Cs -/rt¿ o¿5 9 /X¿5 - (/+Á )c/s 2/7ts Cg-
2 /•' " " "2 / '' / "
A¿6 — (i + X ) A, * 2(/* A ) zrt/ C/ — /?i/ o(, t A¿7 — (/ + A ) A/ 2771, C/
// // //
¿ " / ¿ 'f '/ // .
A¿S = O 2 X ) C, - 2ft + X )7*t,A, -/*, C, J A¿9- (/■r\)C,-/7t/<¿,
2/ 2* 2,
2 22
" // / v
_ 2 / " " " "2 /" . " •> "
A70 — (//-X) Aj /- 2 O*X )/rtj Cj -/rtj Ajr /17/ = (/ 2 X )As -277/3 C¿
2 >J >> / >' " J/ „ >■> J '
At¿ — ('+A ) ¿J - z 02 X)S7?3 Aj ~/2tj Cj, A73 — 02 A ) Cj -2*3 A3
A r¥ = / 2- £
s jX —/ J X- o
„ C2\+#>X* t
A 75 — (? - f

85
2 i-l
O, = o.ZSAjg- j2/x,[(3X-i)*+ /nt] — (24t,+/7t,)](3X-i) +-(B4i,+-m,x]
+ (Bm
z-/«/)[(3/ ) + ( 2m, ~/rt,) rj
Q 2= 0-2 5 A 7 4 (2X-0 f-[(3 X-/// (Brn. / -4t’,f] ~+ [(JA-/ ]+ /241, '*-/*,)] ']
Q3 — 0.25/)74 (3\ - / ) f-¿[(3Á-//+ Vlf] 3-[(3o ] (241,'+41,)*]
2 7-/
■/ í <3\ - / ; ¿ / (¿4L?- rri,]j 'J
Qa = O- 2SAt4 {(2flt,?+?n‘l)[r3Xri // (2/n,‘+4l,)J -+(2m,-4i‘,)[(jX -if¿(¿/7t,-/xS]J
Q5 = 0.25VL, *(á~') /J/8 L l ¿]
2 „¿ ,-/
-/
Oé — -vi, Z/sí^O-X ) y V/7Z/ 2] , (?7= AtgrHfA'1 (v\z*-j//n.,)
-/
Qa- - o. 25 41, 0,9 (X *+ /n?)
2XX, . -2 . . „2A*-o, a2 t "¿^-1
O9 = o./2£-(2x0-x~¿) e -+o./25\ ~/xee (¿/\ +/m, )
— A,g (0-/25 X ¿- o.,2541*){>.¿+/n., )
-2
_ r >* p /y»_/ * * ¿ ''2 ~ 2 1
Q/0= 0.2se (k +#t, ) + m,Ag (A +»tr) J
Q//= 0.25/1,8 (( X-'] - (X -t)[(X-i]+4t, ¿] ]

86
Q,z - - O. ¿5 m,“'[(X-n¿4 /*",*]
-/
Q/ó - 4,8 [(X-t 1*4 (m3-41, ’)2J — L*J(X-i)24 (0?j +m’/)2] ']
Qt4 — o. 5 4'/ 8 [-(m3 4/n, )[4(X ~0 +(4tj ’+/n,)J-Í41, -4/3 )[* Cá - O ¿ 4-
, > z
(m3 - m,)
Q/5 = O^S/Í74 [2/rtj [/■JX-z/s-rt’/J — + 013 ) [(3X~/ )*4 f¿4t, /
/ 2-¡-I , >j * r ¿ >' 2 7~0
m3 J J + Í2/71,-0ij +C¿,zn/-0ij ) J J
0/6 — -0-54,8 [c/rL> +0*3 ')[*4(Á¿/ (01, Vrnj ')£J + (/rr3'-4},')[vCX~0
• • >, 2 i '
4 (013 - 0t, )
Q / 7 — O. 2 S 4, 8 [( X - /) ‘~[(X ~/)¿4 rn/j ']
0,8= - o. 250li'/) /8 L< X-' )¿’ + 221 J£]
0/9— 0.5 4,9 ( O.SÁ'- X [2 X * 4 ¿jn,
o2 7_/
Q20 = —41, 4,3 ¿*-4/71, ¿’J
-/
O21 — 4,9 [ívx ¿4 (0lj -/Ti, 4] v\24 C443 4/7lY)
Z 7 -/

87
f j> >> r i ,j ¿ i ~/ ,, ,j r- j 21~!I
Q¿¿ = -o-S/J/9 [(fXj +srt,)iqy 7/71/) J + Crrt, +(/rt,-/7tj) J J
Q¿5 — o. 25 #7*(3 i -o[-[(3\-/) / (~4¿?3X -/) 2+(2/*> 7/7J3 2)]~‘J
Q¿t= 0-54/9 ((/rt3+/TI,)[i/\2-t-(rrrij+/7i,)¿J 7- (/7fj -/7!/ ")[wX
0¿s~ 0-254/9 [Á~'-X(x¿3/r?3 O ']
O26 O. 25 /), g r?Z3 (7rt/+Á¿) ¡
Q27- 0.25 A rV 23Á-/ ) /" 2 /ftf.’] + [/3\-/f-/- í 2/Tt', / Mjfj
-/
C¿ /7t,"- 2ft'3)2J ~'j
Q2S- O. 2S/Í7V /Í2./K, 7 Trtj )[c3\-/ ) 23-{2/71, 3 VI3 )?J 3 í2th, - /rtj) X
r 2 *' > 2 1 â– */ /
¡(3 X - / ) / ( 27H.I-/7tj ) J J
Q 29 — 0.5{¿/\¿/- CTrti - 7t¿'/’)¿J '¡ 2XX0& - x - f/rfj
2'
27 r..
/> >* ¿ 7 ~ / ? r 7 >* 2 1 ~/f
(77ÍJ - 7*t/) J /),9 J ~ 5/_//) { {773j 3/7(/) J { 2Á¿°&
2 X * ‘
[ V X Z- C/Ttj 3-/71") ¿J[¥Á *4- 3/7tJ 3/7Í'/) y W
O30— 0.25/¡7¥ {'(m,+7rtj 9 /n’¡)[(3Á-/')¿V (77t‘,3 77tj 3-771,) ¿J 3-

88
(nt',-nt3 -b m,’) {jn-í- /K3 b/rt, j J -(sri/b/nj "rt,
Z * ' 9 >>27—/ > >' " T 2 9 " *'21 -//
-/ ) + (/A,+*13 -h/TL, ) J - {Vt, -/7Zs -m, )j(3\-0
0 3 / - o. ¿ S £ 7 V (3X -/) ¡C rjX -/J> “/ (Pt'¿ /X-3’ 3/n7) ¿J -02-b (vt'-Mj
>/ P ~1 — J r~ ¿ b S / J / ¿ y — / r~ ^ £~J —/y
y -¿(3Á-0 -/rt<) J - ¿f3,\-0 +C/rt, -/??3 +srLj)
_ /
Qj¿~ O.Z5A/V (rt3b/rt¿'-/7i'/)¡J3\-/)2+Í7TfJb/rt3-srt.'/) J -h C
■*' r ¿ * j / 2 ^ , J js \ ] 1 »‘
-f-Xt, J ¿fJX-/) -J- -7*3 -h/TC, ) J - (?7tj b b/rí, )¿Í3\-')
, j/ j, ¿i-/ . ' " r . .2. , ' "
-f. + +/TL, J J ~ (Pbij -/rtj -srt, )[f3\-‘) ÍWj ~/rt3 -/*■/)
Q 33 — O. 35A7*b fj X - / )[c 33 X~ / 7~ (Tft-J b/Kj / bK; ) Jf b O'jX - <) b f/J ~/#j
" p 7 •" / r £ 9 " J/ ^ 7 ' r ^ j s ' ',y
-«J7 ' U3X-Ü b-f/rtj bbXj -/#/) J -¿fJA-O b/*,)
¿ / •/ *, ¿ J r- £ . ' "
Qjl/ = /}7¿b (3X -/)f¿73X -J f-/-Ssrfjb/r73 -/re,) ¿J 33^ -/#j bb*7fj
¿
â–  2 j -J
r £ ' v s/ ¿7 7 f /~ £ . ' s' ■fy^7 L
-A i 73X-/) -A fTrtj +-/#/ ) J - LfJX-'J ^ 'S*/ JJ J
O35 = -o.¿S^7U [¿?*-j-/x7-/Xj)[s3Á-/)2b37*'3'-srf/"-/XjJ *J - y-M/ x
[(j\-/) b(/7fj 7TX/'jrtj)¿] b- f7X./b/??3-/#■/)7(3X-/} ¿(pfz'b/rtj-/X-/) J —
27 -/

89
. / ti ^ / . 2 , t t jj 2 7 "" i
) + {/rts ¿sn/-/rz3 J y J
Qjé = 0.5 [m, tnt¿ )[uá ¿+ (rrt "+rrtj)¿J +-y\ d/9[¡vÁ 9 (xt,
Mj J
2 i-/ . >J >> r 2 " " 2 7 ~^f * 2Á^a
J / o-5 (rt/-/rZ3 ) [í/X -n,9 J f-XoO +~
¥\/}/9¿4\¿+ ft*j-ptefj2j y
O37 — (s3^-7)[¿(3\-!)2-/- ('pt,-f 2rtj'-ZK,')¿J~- [rJA-n W*,)]
r 2. > " *, 2 7 — / r ¿l * > * " ¿ -i -y
/ l_(3\ — / ) + I'm., ■/ Tttj •/- 7H.,) J — (_ (jX — /J ■/• 5/7t/ ~/2t- j -/n./) J J(O.ZS)
2. y
" 27"4
si í " " " r ¿ -* >/■/ ¿ i - / , ' '' ".
Qj8 = -0-¿S/l79 j(pít-ri, -77tj- /ffj) J - C/rt, 7-i /7tf/)X
r Z yy yy " p 7 -/ ^ yy v /" Z y yy ''¿I
L (3\-'X -t-ÍZK/ t/Xj J 7- X tft, - /H, 2-/^3 )(_<’3\ -/) +('rt/-7rf
r ¿ • y y " ¿ -i ~ ^ ' yy "7
— i Crzi/T'/n, ~/rt} ) J (rrcy+zn,-/rij)/
/f £ / ^
OiX-/j -7 STfij-t-m'/s /TtjfJ ~+ ¿/JA-O 7- OftíxsXj +
m.
y/ ¿ t - / r 2 y * /y ¿ 7 ~ ^ r ¿ ' " " ¿ 7 \
/ 3 J - ¿7JA -o / fas-*j -#y) J -¿SiA'O ¿ f/Xj -*J +i*, ) J J
Qy/O — 0-2S/47i¿ [(*<3 7-?n/ t 2*3 ) [< 3 X~7 X fíz*3/ 7* y -7- (27Í3 2 ptZy-yiffs^X
/ 2 * ✓✓ , 2/ -/ " yy y r , ¿ y ¿1
LOA-f) +-0*3 J ?tt, ~/*j) J -t-CMi -y*r< â– sMi)L<'A-')7-(:/7r3-2X,3/?rj)J
2 7-/

90
" // • r 2 « * * 2 7 —/ /
- (Mj -m, - 7Tts )¿7JA'0 7 (Ms -2*, ~rtj) J /
Q«/ — 0.25 ¿7V f?*73 [<3\ -/f+ rtf J - 5 22*j 7rtj)fj\ ~/)7 52rtft2*’f *J
« * r 2 2 7-//
7(2Ms -2*j)L<'-?X-'7 7-f 2t*3 -2*3) J J
Qy¿ — 0-25 A7 7 C 2 rt
Q y 3 — 0-25 (2 \-1) /}/*/ (~ ¿2 3 A -
2 2
O 7-02rtj -2*3 )
y +¿t*Á -jf7/22*3 V/
Qv7 = - ¿7.5-/?, 3 f/2*j ^rtffs/A -/)¿7-/2*j ^rt/ )Ja /rtf-2*f)¿¥ OÁ ->) 2 (rtj -2*, j
Qv5- -O.S/i/g fC7#j7rt,')[v\27-(rt3 ¿-rtf/] 7 frt3 -2Tl'')[<3-i ¿7(2*j -rtf ¿j
Q4¿ =0.5'/rtf+rt./3¿y *7/2*frtOy f-Xo e¿ 7 4-X/?, ?[*X ¿7 /rtj +2*,')*]~f
" •' r ¿ ~ *' ¿7 ~ If 2^Xo j, '/ 2fl?
-0-5 /rt, - 2*3 )¿¥\ 7/2*, ~22fj_) J j-Xo e -7¥Á/}/9¿y\ +(2*,-7*3) J J
_ f ¿ 2 -1 r 2 > "
QfJ- 0.25 />/ (3Á-/) f ¿73X-/) +(rt,7rt,72*j) J 2 [c3X ~0 7 72*, 72*3 -
2*<
2-t-/ r , 2 ' •, " 2 r , 2 ' " " 2-T1/
, ) J - ¿fJX -/J 7 7m, -2*3 -2*,) J -¿CjX-t)2 (rtf, - 2*3 -2*, ) J J
Í " ' r Z ' 2 7 ~! " " ' 2 2
Qv3 = 0. 25/) 7 <7 f Ortj 7T*,7rt,)¿2j\-/) 7 /t*3 72*/72*,) J -7- Z/*3 7 rt7 -2*, J¿73Á-0 7-

91
;/ / ¿ i ”/ A» 7/ ' r 2 *y sS j ¿ ~7 f
(7*j J + (77fj-7n, 7/*>)[(SA-/) 4(7*3-777, 7-/#,) J "
2 •' " , 2 7"/
, •* " „ r 2 ""'27
(7*3 - 77t, - 77f, ) ¿(3Á- /) 7 (7773 -777, -7*, ) J J
f g j- £ *'2 7 ^
Q*3= 0-25 /t/g (x-t) 771j [ (/-A ) / 777j J
,, _ i
Q50 — — 0.25/1,7 A 7*3 (a 7-77(3 )
¿A*
Qs/= °-5e (o-SX.Á-- a.-eSA^ O ■/■ C7./3S á'¿- A Xoe ‘**X'(4/¿7V7*/)‘/
V- <3. /2 5/4/9 (A*- 77f J¿ ) C A ¿> 77T J¿ _)
/ > 2*2"/ ** * f ¿ 2 ~i
Oj-¿ — 0.¿5/)74 { 2 77t,[fJA-/9 9/K, J - (277f3 / 777, ) X — I ) 7 (/?77fj 7/77,3 J
2 7-/
( ¿TTfj
>, , r ¿ >> j 2 7 ~7 /
3-7H, )¿7JA -/) + (¿7773 -771, ) J J
Os 3- 0-25/179 (-2 f7777',[(j\-//+(277fj (77f,')2J 7¿7JA-<¿
-/â– 
" ' 2 7 -//
(/77(3 - 777,) J J
Qs4—~0.¿57rtj ^'8 (.(7-k ) / 77( 3 J J Qs-J 0.25/?,9 77tj (A¿7-/77 3 )
-7
", -7
_ r •> jAXo ,,, _ / „ , >> -2 7
Osé = 0.25i?*3 Xo é (A ¿7 7773 ) 7 /7fj A >4,9 (A / 777j J J
Q.
S 7
- 0.25/174 (3\-/) (-[73 7J¿+ (¿,7773 -/7c', fJ / ¿73 A -/)7(¿777j 7777') fJ

92
f j> , r 2 " ' 2 7—/ ' f
Osa - o. 25¿74 [( 2/rtj /- (¿>*s 2 Mr) J + ÍSxTj -2*,) ¿'¿A -o
V Í 2 X* j
- xrt, fJ ]
Os 3 — 2/J7Sm/( 2 A +?) [( ¿A +?)Zs- Vs*' ¿J '
Qóo- -ffl, A75 [(2A +$)*+ //*/ ¿J
Q(,¡= O. ZS/lrS (2A +pf{( * A+f) V/*> - /*/) ¿J'~ ¿(2 A +f) *+f*eJ+2*0j *J ~J]
0¿ 2 — - O. 25//7s ({/rtj 2\ f-/-{?*j -T^r/J + (2*t-2*j )[<¿A+p
+ (zrr3
*• •> 2 7 -11
3-XH,) J J
Qé3 — 0.25/?7*2 [(#¿+¿/*j)[(J\-/f+M3/Z/*í'f] [r*A-n*+
( 2 2X3 - r*j )
Q¿/~ - 0.25 d7s[/*■'/)l/ 2 A *-p¿+/r*j 22*'//j 3 crfj-rx-s ) *
r * 2 " "2 7_//
Lf2* +#) + (#3 - ”t'A j J
“2 _/ r 2 "2 7 -/
0¿5 = 2/)7 - . " r 2 "¿n-/
Qéé = - /?7/ 2*3 ¿(2Á +f) 2- V 2*3 J

93
~ * r ' r 2 '¿7-/ " ' r 2 * ,¿7-/
@67 = 0.2 f 2ms[fiX-/) /s*s J - <'¿2ft/+Ms) ¿2JÁ-/J +
" / r 2 '' ' 2 7-/7
¿ (?/H, - Ms-)¿(3Á-/) + feM/-TXjy) J J
Q¿8 ~ 0.25/!74 {3)~o{~ ¿(3Á-/)¿t r^M- MS J V ~'+¿ 2 7—/
Qé9 — 0.2£¿74 (3Á-/)f-2 ['3*->)Z+Ms ] 2-¿fjX-/) 7- f¿7K/ 77*sr} J
[(3)-/)¿ 7 2 2MMs )*J J
O70 - 0.25/?7V 2M,"j-Ms ) [23 A-O + 2 2My /Ms)¿J 2-(¿My - 77 2- í27*/ - Ms)
T'J
_ sí > " s, r 2 > j/ ss 2 r~) J "
Qy/ — 0.2 5-/)7ii (77rTs77#3 -MyJ¿( JA-/ J J-ÍMs+Mj 'MsJJ -t-AMs-M*
" r 2 ' " 's ¿ 7-/ ' " " r . „ ^ ,
, )¿2JÁ-/) 72Ms-Mj 2M,JJ -ÍMs'MjT-M/) [(¿A-'J 2-
¿7-/ ' '' ''
/ /s y' 2 y—/ ' *y 's f 2 * >s " 2 7 7
í7fls 7M¿ 7 7X/ ) J - ÍMS '**3 "My)[('£) -O A/'Ms ~2*'J J J
fr ' ** Jy 2 y ”* 2 r 2 s
Q72— o. 2£/?yt/i Í3A -ojí7 JA -') +7Ms 7 M3 777t,) J +-¿(3A7 í-Ms "
Ms -M/f] ~['3A-/) 7 ÍMS +M¿-M, *J 2J~ fsiA-O +Í2*s ~/2Íj
í 2 • " " 2-r -/ r 2 y ' ” "27 '
Q7i = 0.2 SAr*) j¿(3\-/> T-ÍMs-J-Mj -M/) J —¿2JA-/J 3- CMS -Mj -*-)*/) J +

94
_ 2 / a •• 2 -w — / r 2 ■> 2 j ?
L(3*-n-H?rts-+'rf3 +2*/) J - ¿23A-/J >/> QrV- — ~0>. 2S~/774 f(7*s - 2*/ -r*J'2*3) J ~~
> ,J » f 2 • >; •, 2 7-/ * " ** Í . ¿
Cr*S '2ft, )if3\-n +Í2*S '2*3 72*/) J 2-i/#s ~2*' +2** 3¿ r3*
• tj „ 2 1~/ j sj •' r 2 / " ''¿I-*]
-/-CTrtS-TK, 22*j) J - ÍTTts 2-2*/ -2*J )¿23Á-/) +(r2*S 22X/'22fj)J J
Q7S —0.2Sflr# f(r/rj+jrfj -)[7i\ - ,f+ 2 2*j 7 2*3'- x/j ¿J 7- 22*3-2*3
[( 3\-/)7 27*3 - 7*3 / 7*,") ¿J - C7*3 7/T2j 7/72,')^/3 A -/J 3 3- 2*3 2~
" 2 7 - / " " *'2 ¿ J '' '' 2 7 - / ?
M, ) J - 22*3 -2*3 - 7*')¿2iA-/J //.27fj -77f3 -AK/J J J
Q7¿ - 0.2 S Í3 X-7 )lr¿7J.\-/// r27tj 2.2*3 + 2X/\)2J ' 3l[2i\~'J +{3*3 '
7*3
33 */ 2 — / 2 J J2 ** 2 7 ~ ^ f x ^ J
— 77L/ ) J 7- ¿7JA-/J 7 277fj'2*j -77t,J J -h ¿23Á-0 3 C7*3 ~
7 3 3/
?*3 7- 7*., )
77
Q77= 0.25/?74('3\-of¿73A-/f2 27*j7 7t 7*3- 7k',')¿] [23\ -/J3-(27fs-7*í-73tO ¿J -[(3\-0¿7 C2*s '2*3 +2*,jJ~J
Q7g — £7. 2S/J7V f2222j"'222 "'2*S) [/ 3 X-7 3 27 22*3 '2*/ '-72*3-) ¿J
-/

95
/ u •' f f , * ~l~ J s l> il X
(vt} +#i,-Ms)> + 7m3 +m, -Ms)J + (M¿ -M/ +MS)£<36-0 +
„ „ , ¿-.-i " jj , r 2 » js j 2j-/7
(Mj -M, /Ms) J - CMj ~M/ -y9fs)¿m-') + ÍMj -2*/ -Ms) J J
O73 = 0.23¿r3 (2 Ms [rsX-i) 2 Ms?J ~ (¿Ms +Ms)['3\-0 *V +■
Ms
>2 7-/ , r 2 *> J *7“*t
f)J -7- 7 2Mj -Ms)L<'3Á-O -ms)J J
2 » '2 7-/
r r 2 ' 2 - / ¿ ¿ ' * 7
Oso — 0.23¿7¥ {- 2[(2A-/) /Ms J 7- ¿ r 2 " ' 2 , -/?
L7JX-0 iL-trSMj -Ms) J J
Í 2 Jj J 2 -y f ^ J 2 j —/y
Qgl= o. 2S/7r* 7JÁ-0¡-¿fSX -/) / C2Mj -Ms) J+£7JÁ-O +Í2m3 ?Mj).
0s2 ~ 25A7V ((2m3 +MS )[/))-if-6 (' r i 2 „ y 2 -//
L'3 A-/) 6 727*3 -Ms) J J
X, - Aso On -h ¿S/Q ,2 y X2 = XS2 0,3 7¿S3 Xj - ¿so O/S ¿ ¿s/ 0/6 J X? - ¿S/ 0 /7 -f- ¿S3 0 '8
Xs -(¿66 -¿68)0/3 + (¿67-A69 ) O 20
X6 — (A70 — ¿) 0 2 I 6 (¿7 / — A73 ) O 2 2

96
*7 = (¿U~¿é8) $23 / (¿67-¿6S) Q¿4
¿8— (A/o - ¿72 ) Q ¿5 -h (¿ 7/ —/} 73) Q ¿6
X9 - ¿y8 [(X-*z) Qs-s -x m, Qéo_J} X/0- A+shy^Qé/ +/*3 Oé¿]
X//- ¿yg[(X-n1) Qn x-xn, Qó*] J> y,¿ =/h&[fÁ-n)Qáf ¿/¿¡Git]
X/ 3 ¿y 9 [(X — X~ ttí / ) Qs~9 xc/ f 2 X - * ) Xp o
X,tf -Xm9[(\¿-X -m/) Q4/ X-xXj(2A -O Qtt]
x,s- ¿¥ X/¿, — X*/■ 4 [( X ~ X— XXj ) Q ¿5" X- XXj ( 2 X —/ ) Cp 6 6 J
¿, = (x-xZ)[-¿i Os x X+3¿3) Q7 x- 2¿3 Os x- a, y ce/y (¿s-# Q,
X¿jr6 <2j)X a3 (¿S8 Q,S-X/}60$27 ) X- Oj-J (¿¿2 Qí7
X- /]¿¿/ ¿P¿9 )] X- XXf/ Os ¿ (2¿j +3¿3 ) Og X- 2¿3 Q/o X~
/ y co/y (¿¿2 (?68 ■/-/?¿y O/o )

97
¿T2 ~ (X-rt * ) [-/}/ Q/3 b(2/í ¿ *-3/tJ ) Q¿/ 7 2 A3 Q¿ 9 2 Q, -jrCsO¿/4 (Ar* QjO
b Aré Oj/3 9- Q3 % ¿o%A CAj-¿' Oj¿ bA¿o%> 33 ) 2 as % c*o¿A (A¿¿Q7/
2 A¿* Q 7¿ )] / 2*3 [~A/ 4V ¿ ) Ql¿ / ¿¿3 $3 6 b
y- <2/ y (A¿2 OrJ 2 AéV Qr*)]
%3 = IX-ft )[~At 0/3 2 (2.A¿ * 3 A3) Q¿ / / 2 A3 O 2 9-24/% co//S (Ar¥ Ojo
2 ArbQjl) 2 aJ %Ccj% (Aj-8 Q/S 2 /?éo0>7é ) 2aj-j£¿e¿fi (A¿Z $7/
* (AS¥ 0*7 +Ar6 0*8 ) b a.j -¿^¿A (Are Oj9 /Ajo O*o) -2-
®S % ^ ( A é 2 Q 7 7 2 A6 ¥ <0 78 ) J
¿¥ — (X-ft2) [- A, 0/3 27 2/^2 *32)3 )0so 2 3Aj Qs-/b ¿1, % ¿^^(/?r¥ 0/2.
* A r¿ Qsj ) 2 a3 %7o%% (Ars Qv/ 2 A ¿oO ¥2 O b <2¿- %(A¿zO79
2 A<* o80 )] 2 77f3 [~A, Or* 2 72/72 +3/7%) Qrs-+ 2Aj 0/6

98
> r.
2 a, /$ (Qr7 2 /} réQsS ) + a 3 -£¿*4/4 ( /?xs $23 2
/ié°Q63 J> 2 Q&/2/f¿2 G&2 )]
■¿5 — ( ^ ~^ni )[a, Qj- 2 (2/t¿ +¿3 ) ¿?7 2 2//j Qs / ct, ¿ co4fl ( /)js Q/ 2
J y , _
/}C 7 Oj ) 2 <2j £ ¿*4^ (4x3 Q/X 2 /^r/ (?2 7 ) 2 Os £ ¿*>4£ 44/¿ 3 O6 7
■¿/?6JT Q¿9 )] -t S**{ 2Á-! ) [/t, 0¿ / (2*2 ■'■¿3)0# 2 2/7j Q/° 4~
cl, j¿ c*4 (¿sx Q2 2 /7j-7 Qy ) / aj ^ c»A£ (Q¿3 + rfé/Q¿8)
2 &S /_ c*o4 £ (/J¿ 3 Q¿8 2 /?¿S O70 ) J
z¿ = (X2-X- /Ttf) i¿, Qs3 2 C 2/12 +-¿3 )Qz/-b 2/)3 029 +a, i^/g (¿xxQio
9 /¡S- 7 Oj / J ■/ 03 A ¿*4fí (4?s9 $32 +/7¿/¿p3J ) 2 ds ¿¿ <¿*4/8 C/4é 3 Q7/
2- AéSrQyZ)] 2 2ffj'J62X-/)[/), 0,2 / (2¿2+¿3) (¿22 82/?3Ql¿
7 r,
2 a, a, ¿*4,8 (/7rs Q37 2/2x7 Ojs ) 2 aj £ ¿*4/4(/7ss Q/v 7/?¿/ / CLs- £ ¿*4/3 (/7/3 Q 73 2//6sQ7u )]
¿7 — (á-^ -7^1, )[/4, Q/3 2 (28¿ 2/?3) Q¿/ 2¿?2?3 Q2? /- a,/_ c*4/5 (//¿s@j¡>92?s7Qj/~)

99
+ 0-3 /. (/ir$ O 7S ) y- czj- f¿ fi (/?¿3 Ors-^X^s Q7¿)]
-/■ 771, (2k-/)[Ai Qy- j •yr J y
-y /?s7 Qv8) / a3 yyc,o//4 (Ar9 Os9 7-/76/O go)7-as yycoxfl(A¿3Q77
+ /Í6SQ78)]
¿8— Cá -a [a’Qm9 + (2/?¿ t-/7¡ ) Qso 7- 2/fj Qr/ y- a, y¿ C//rs0s2
/ Af7Qr2 )/a3 yjyv>¿/3 (/fs$ Qgi7A¿/Oy¿ ) -bas j¿C*¿AMi3Q79
■/• A¿sQgo)Jy- 27fj C2A ~/)[A/ Qs7 T-f//?? 7-/7j)Os-s 7- 2A3 Qs~¿>
/ a•/ yy CAj-r Os 7 -/■ /?s 7 Qss) 7-2.3 yyy (/?j-g Qg$ 7-/?¿/Q¿s)
-f- as (#63 O 8' A 29 ¿sQ 82 )J
c„ = DX, -(jx c*¿¿¿) Xs ,
y,1
’fn—~Xl (X 9 + X/3 ) ,
r,1
Cj,= DX3-(-p<»**SJXr,
C/3 = DX 2 - (-p cot*#) Xé
-f,3 — yy*. (X/o X/!/ )
<¿3/ - ~ Ti1 (¿3+ ¿7 )

-fj/ — ~ (y// -f- X/s ) , C33 — DXv — (^ f f3
Yi^ Yi*
of33 — - ~Jfz ( Z ¡¿ + ¿ g ) s -f3g — - ( X/¿ / X/6 )
¿3 — C,/Cj3 — C/i C3 /
Z/Q — C3 3 (of,, + X/ fn ) / C/z (ol33 / X/ fj3 ) ' C,jf 0/3 / +■ X/ fig )
C 3 / ( of/3 â– /- Xif3 /)
¿// — (of// + X/ fn ) (X'j3f ¿/2 ~ ¿/C — V ¿3 B / / i
o-5
Ol 77 - 0.5 2n[- ¿yo ¿(Z/2) J

APPENDIX B
EQUATIONS FOR CASE II

* * J *
^A/ ^ C j rL 4, 4, J o¿ ¿ CÁ ) ^c ~S~ 4, -Ás *
v >
Pod ~ +( '+ ^)A¿ , Afii ~ X fleté ~Pf*fl^y fy¿— /X¿flod~X floté
<Â¥ + 1 ,2. J
.¿ . ¿ -2 '
fl/¿ = rt¿ -vflx/2\ni¿ ¿4\ -ypr¿j - 4\rx¿(\z-rf¿ )/V#¿íjX -')
= /j J . 5
P, - - o. 2S Pz -X.O (/ - e 3 —firzmy'c'- P¿ — o-5 tt V fe /■ 2 P, -o.s f¿ , p3 - o.¿sx('X ¿X >X°>Jefa ^flp)
_/ r, j „ r n. ‘
Pq— o.2Sxa ^
t~VL
e r
j (flotJ t faj )
Ps- o.25X,'xcs>¿/s[e *- 'J ( Acts *-Afl* A
Pp=- -0.25 (flui+fl/ti+VPjlj P7 = -O.Z5 (flo<¿ J-fláS +PP«)
j /
> /
Ps — -o.2S X co¿/3 (¿tus ¿P/ss )
PQ- o-S X(
¡‘(i'-ci+zx.)e~x*JPj ¿x<*>ip¿/ + e k> JP«'J
\
P,o-o.5x'j([/-(t + 2Xo) £ **°Jp 102

103
/?/= o.sxó ]pj- + ¿-C'°t/*L"’e JKocs
fí¿ - (£ ¿*¿/6 ) R¿, + 2 P9 + 2Pé
P,3=(%c°*/é) ^3 / 2P,o 9-2Pr
— (~j¿ ~) +■ 2p’,, /• 2 f*g +3fs
0 > ~ 5 /)/ 8 C X.~ t) * — — /f/g 7*t, [_4 2) 2- V 2K' J
O3 - (*-' {£v¿¿-i)¿+ (#s-?*')¿J ~- £#(á-o +» Úr4 ~ 'O.S'/},a ((7*1, r/r¿a ¡¡WX-t )+(*’,+*&)] + )[v(*'0*+(#t‘,-»tj) 7 7
r * ir 2 ''¿-f ¿ ' ' ¿ , — / 7
Cts~ /f,s r x-t)/ Lr'X-'> + í2*s-*,-> J - /v^u -o +- íMg -/*>) J j
Cj¿ — -o-S/)/g((rt, * rríj)¡4Ck-i ) +■ ) J + 22*2/-MsJ-/'rK/ -rtjr) y-y
í ' ’ r ¿ ' ' ¿ ?-/ ' ' f, 2 ' ’ 27 -//
Cj7 - — O-S/l/g ](/*, +2*3 )[^(Á -O +¿*t, +2*6 ) J ■(-(?*J ~2*r)[^X->) t-fTfj -Mr) J j
2 '¿ 7 - /
. ' f ¿ '2 7
0o 2?/g tfj ¡M ÍÁ-/) A yTKj J
^9
— (x- ' )/f/8 (Lm(\-/)¿+ (Ms -MgXj -¿VfX-O )¿J 'j
6,0 o.sfi/t{( TKs +Mi )[
104
/ , / r ¿ /> 21 ~' í 2 ' s 2 I
Crn s/)/g j(#' J-r*s-)¡90.-n +Cm, y Ms-) J + {xtr-/K,)[v'A-i) +f?xs-M,)J j
$<2
0.5/1,6 fc/Xi +'2Xs)jj(x -/)/ Q/3 /},g *â–  4M.S-]
-/
'-/, (X -,)X,r 2 '~2 Í ,9 . -//■ 2X-/)X.-J ~l
Q,/ - 2M, [t+e ]- ¿(X-!) >«-1 ¿2+ <9 J + M,(X-0
r , -¿jAa-oxo 2 -j ' -3r Já-oxoj]
X 1*0 (\-t ) J£ -?H,(X-l) X JJ
y (A-t)X*
J ,2 1-'
(f,s--#,[/*-e J [(x /â–  m.'/J
_ ’ r (/yX)Xe 7 r 2 '2 7 “'
(r/é — m, 1' * e JicJ
/- '-/ r C,+ \)X-ol 2 '-2/ , —// CA-,JX07 ' _/
(?,7= Jrx, (_/x e m, fC'^-X ) x*t, ¿'+ e J+»c,{,+\)
f _/ -2 7 „(\+OXo ' -3 > -3r <2yX)Xoi]
L*» < '+k> -(A+I) J € -S*,7A 1-0 +2*t, (t+ Á) ¿"-e JJ
Cr/3- 0.25/f/9Á ' , (J/9 = -A/9 27C, C^XZy//nf) '
Q2o—/fl/9fCv\Z'f7*<3-2*<,)J - ¿V \ J j
Cr2l— -0-25 /l,9 [¿fitt+piCj )[yX 1yS/n',y2ftjj ZJ y- (#r'-S*j)[v' ^'rX-TX-iJ ¿J J
&2¿ -X /J/sf¿¥XZy (7*-s-SX',fj~l-/jv\ 2+Crts

105
~ -O Srf,3 [ífitjX-/*',)[V\ xfjxJ ¿7-7/X, ~*sSj
- '-Ir C\-!)Xor ¿ J-¿ í r fÁ-/)Xa-J ' -/
(r¿4= 2*3 L'+ e J-2íx-i> frtjO-JOL'+e Jt-XjU-o
r —/ -¿y ( A~<)X o / —3 C\ — /XXb?
*LxoC\-t) -i'A-ij J e -¿xju-ij e j
2 2 7 - 1
„ „ x-nx* , r , *'¿7
Cf 2£ — — ¡7/ /- S J 77tj [ (3- A ) 7-fi(j J
Gí6= ?rtj [/ * e.
Gz7- 3/rtj '¿'+ e (X*' )X°J-2(/-t\)7rti ¿ífftJe 'J+«*
-/
r . . -/ -21 ctt-\)Xo ' -3 o/-X)Xal
x/x* (//A) -(h-a ) Je -M3(/3-A>e J
Cfz8 — -O. £-/}/<} ft'P«i'**(í){vA **-27*/ +S*iJ *] 7-(7*j ]~J
(x¿9 —’/!/<) TTíj (¥A -t-V/rff)
(730 -[l*\¿7 (/Kj-rfl, ’yj -¿¥\2+ c3*s /7X3) J 'j
6731 — " ‘ , . (ji-i)Xn 7 7 f — ir tX—!)Xo7 > — t
CrJZ-2Ms[i^e J - 2(A-!)77fs /7*s (i-A)/it e J+MrfA-t)
f -/ -2y (X-!)Xo ' , (X-
X i Xo C A-i) -(A - I) J Q -fitsCx-'T &
* )XoJ

106
CrJ3 = -Ms C/+ [()'
G-jy-
vtsL'+e
O+X )JCo
][("*
2 '2 7
) 'MSJ
G**- 3/*s['-*e i//'X)XeJ_ ¿(/+\)2ns fth? (/ *■ \ )[/ /- £ °*Á >X°] ^MsC^A)
r -t \ 7Xo ?
L*oC/-f\) - 2(/+¿> J* j
Gjé — -o-S'
í J ' r ¿ / ' ¿ -i —S ' * r ¿ / ¿ 7 /
(CM, + /*j-)[_¥ A * CM/ J + CMs-Ml )¿^A f-cMs ~M>) J J
Gj7~ -O.Srf,9(cMÍ+mh[v-\ ¿+-CM¡*Msfj IcMs-Mj)¿9/\ CMs 'Ms A J J
Gjg— - A/3 Ms Cm A *+ VMS )
Gj9 — dCGiPji + G2 P¿-/ ) ~ /ixCt^ ^CG/gP^/ / 6,9 P/f' ) ~ (& m P9
+ G/S P/2 C G/6 P¿ M 6/7 Pj )
X
G//o~ DCGsftfi + G^Pfj )- jí p(Q¿0 P/ss-^Gufyi) ~£Cgtf(G>y P'°
V G/S P/3 / (r/6 P7 fG/yPy )
&+/-D (CrsR/s ¡Géfys) ~ £ ('í>¿tp (G¿¿f(/9syG¿jP/)s ) - -^c*¿/S(G/+P,/
-/â–  G/s P/>* y G/6 Pg -t-G'7 Ps y

107
Gry¿ - (fr/V ft/tC7'SP,*/ + (r,6 Pg -t- )r 1 Z s y
Gm3 - DCG-Jpf/ +G7Pri )- ~P (&2oft/gi + (r2S^/SI ) ~ XCc*fi faivfg
7-Cr¿sP,z -Hj-¿6P¿ +G'¿7Pj')
G+4 — D(<7i Pf3 + +-<72sP,3 +G¿éPy +(r87Py)
/ ^ ^ j / 7
G«s-— z> ((ír$Prs’+G/e>Pfs) - %t-c**7(Gs*P¿s+G3/P/ís')-'¿¿•¿/C&i.vP/'
-h CrJsP,y ¿ (?y6~ Gl^P/ + &2sP2 ~°-2S'7¿G¿é
' 71 j. / r
Gy7— D(&j-Pf/■7-<¿r"P(ri)- ~/P Co¿/^CG22 ^p/^'GjíPpt) ~ (&32 P9
/• G-33 P 2 -t-Gjy Pé + $3 S’ Pj )
Gys~ DÍGs Pf3 +¿r'2P -/- G33 P/J T4 (7-3*/ P7 7- (j-3sP¿ 3
7 2 z '7
Gm9 - £>('Cr/Pr3 / (?/3 Pf3 ) ~ (G/8P/S5'■/■(738P/SS} ~ %Co¿(^jiP,/

108
P33 P/9 b PJ9 Pg + Pjs Ps )
Gso — ft ft (p3Z P/ + pjj p¿ - O- 2 S P¿ pjy )
Gsi-ítft M/py7 ~ CfvS p39 )CPyoPy3 ~~pyypJ9 )-'(' X (G4°Gm 7 - Pug Pj9)][_Cpy¿ Pu 7 - pj9 Pj-o ) CPyO Pv3 -
— (Py¿Pu3 - py-6 Pj 9 )(pyo pV7 - puS Pj9)
â– J
Gs¿- (Puo Py7- py8 p3 9 ) [py¿py7- p39 Pso) - Ps/ CP^/Pu7-P^yPjs)
Ps3 — p M7 (PsO -Pugpsz ~Pu9 P-T' )
PS4- ftc¿ft ,JX°+ '][p&ÍPoO'-fyO+PsZÍPoiS +P/S3)-t'Pj-/(fl QsS - 0.2 S {"fe ~ ft Co*/*LPs’* (P* / +■ ) +Ps¿ (P/3 +P/?3) tp3-/ (Pots rP/fs)J- ? ¿ftyj
¿Xo7 _/ 4 (//-XJXo '
Ps6-= p, +0.S-xl[-(‘+2X°>e J&S+ bO.SXo -J^Cot/tQy-e J(Ps3& -/ r,
o/-Á)xa
-b ps¿ Poiá -b pJ-/P° r,
PS7~ h ¿¿ft (Ps3fy'+Ps3 #03 -t-Ps/fys ) + yft
b' Gs3 £í°í'Fz , ¿ J — ps¿ £lcJp2, ¿S - pf ft1^ ^

109
fi/ Csé faíC(X¿ f B¿ — Gjry J Gj& > '3í/ — (ts4~s~*-oí'F¿
r‘
r.
J„t= A*-6x¿á¿ +HU-V\3+/¿¿iÁ-V#¿t J^i = -j/rfík + ¥k3#t'l-/2\/rfl+4*:ffMc
J¿¿ - 0.5(n+4) [ot+á) + ¿/n¿-¿\ j/(\ -/)]' J¿¿= o.s(n-Áy¿-xn-Áj¿2(\-#¿)-ycx-oj
Jf¿- 2\rX¿C*t¿) O-X ) J j/¿- ¿X r«c (X'Á X Á - < )
Js¿ - V*til-(t+X)í *fo*X)¿J(/++nxA]
2 ~2
Jy i —
V 2 " z **í J " "2 z ¿
•(/+X) tO+X)#¿ -M¿
y 2 i 2 y 2 , 2 y 2 , V
- VS-rf-zt )C'+X) -¿?#t'{¿-/r) O'+X) frf-rt) - )
’ >/ f 3 -v 2. 2 '' 2 2 7
J*¿ — y-#¿(_ürX>-xr¿rHX)-3f'*-Á ) y 2*2 +2(//-\ y -X J
¿7-/
fl=í(mUx -X ¿) (Xu¿ -Jr¿)-M*f"*x>(]já-Jr¿)J[(zK¿ -Jr;UÍJs<--J?o]
X ¿ -[x-O-2A )(Jju‘-J{¿ ) - 6*v +X-X )(jy: 'Sf¿)][(X«¿-Jf¿) X-CJA^-jpJ
2 7"/
—
/, 3

no
QS3 — 0./25(X-i') [2*0 -C\-n~] +■ o./¿5(A->) ¿-(A->)Xo e 2rÁ'OXo
* L+(\-n¿i-w»h¿] -/J/9[¿ n - " r 2 "2 7~' 2(X-oXo » r 2 "21
(j(8is—ft*, x.,¡Mcy-n + t/#., J e ^cx-n/n.,/t,3[i/(x-/) J
-/
r 2 * '' 2 J ~tf 2C\~OX» ^
Qgs= o-slvíÁ-/) s-ctxj-Mt,) J ¡¿(A-nXoe. - j_r(x-0-
" >* 2 7 r 2 * * ¿ i y r 2 " ''2 7 /
(M3 -pe,) + (#3 -/X,) J J — O.Sl¥/\->) /-C/*3 +*■>( J
X }2{a-/JXo¿?
¿/X-OXo
° r 2 TÍ 2 " 2 7 ~V
- /f,g [9(X-/) - (/#3 * )Ji¥a -O + (y*i <-/«> X / j
Qgé~ O.S(/X
* " r ¿ >/ '/ 21~* f 2/Á-OX.o r 2
/x>e- /-ycx-i)/},?L*/(x-n
+ (/ft,
jt •/ 2 -/? " ,y í 2 * " 27~~lf
,+jrt3) ] J + O.S’CjKt-Bts )/-(/*,-7*3) J j >
2tX-‘Vto
XoG.
¡~ 2 // o 2 y —/ 7
A ¿S(X-/)/?/9 LVf*-'> -/*J> J j
s\ " " r 2 * '/ 2-,-tí 2(X~OXo r ¿
QgJ- 0-5( XC,f *3 +(/«,/-s#3 jxoe / y(X-)/t,9li/(i-i)
■(sX?/x/¿)2J '] - a.S-(#?- >*J )¿¿/(X-02-f-(/«, -rtlfj '[¿ce.
2(X-/)X o
-/ )d,9 [‘/(A-n2+ (/ft-rx¿)2] J
0.88- o./2SU-n '[¿x0-(k-n']+c-'¿S(A->x -x„eí(

Ill
2 ."¿1-2
^89 3úo L«< > “ O + */?*i J € ; )/#j rf/8[yc\-//* t//*3 2J
/ "/ 7 - '
q3o- o.s[ezX~nX- tj£f2x-i) -e2X-i)[<2i-n J
>/r (2\-i)X0-ir ¿ , 'v /
Q9,~ ?#,[*- e + J
-/
_ , (2\~! )Xo 7 fr 2 " '' 2 y “/ /" 2 '/ <•' ¿ 7 —/ /
Q?z-Le -/J¡(c¿.\-o+(» — ¿>-ó~LJ ~ e
(2\-t )X.
* 0 r ¿ 'y '' 2 7
f +-<#¿ J +-(?#/ ~2*S )
[(2\-D2+(*â– ,"- mj/J (
O?1/-
- 5L' ~ * 2X~'5 X°jf(M/***&2Á^^")2^ +<*eJ-*c')
í 2 ^ '' 2 7'//
X + J /
= o-sLeZÁ ‘iX-/Jf(¿\-i)~'-í2á-/)[(2\-n¿¿J
/o ^ (¿y-oXo7 * /- , ¿ 7 7~/
¿íW = C'-e J?*j ¿(2X-o + V*j J
*96
— 2(2xrÁ) -¿¿nJjA) '
-/2 = (2x- A (.2* - 3 Á ) ~'-S 27t¿ £ fCS Á 9 ~ t

112
jg3 = - o.5¿ — xj j = o. f[c/r+-4) - Xj
J' jj
* * . »*
Zgii - -$¿?*¿ - z (t+X)#¿ ¿¿ y- 9t- (s*\)Á *- Ai /#*
** «, . ** « ,y
Z¿1- K¿C/+A)\ + 2/x¿ - M*
¿ = / , v?
Zpi— $¿l**Á)~ ¿¿ *
> >
c
J > y
x^' - ^V^,' y
c — /y 3 > S
L,— Q // ('j*/ ) y- Q/2 (J'0 2¿ — Q/3 (J"o(3 / J/33 -J¿j) -y Q/u- (Jlts yJjj-Jji)
¿3— Q'3 (J^i-rj#/- J#/) y- Q/é y-Jf'-Jf')
Zy - 0/7 (J ¿s - 2 (I*/ 0/9 y- loi/ Q ¿o) , L (, — 2 (1«3 0¿t Q¿¿ )
2*7 — 2 (XodQzi +Ioo Q¿ ¿2 = )/>/ %Co^C^/3/0/ y-#/tQj) + ¿>3 ('A/uQ/syfaQzy')

113
+ hr (fi/S3Qó7■/- A/95'Q¿9') 3 20/ ( Qj - Qg,3)— 7d^C3Qr7-2Qg)] 4 7H, J[k>< Í 2 l-fytQ* )+¿>3 X*04^
X (0/33 Q23 30^3 Q28 ) x bs X (fi/S5Q¿S 3X/gsQ7°')T'2&/(Qé
— Qffv) — 2 S ¿Q6 3 2 &jQ 8 43 Qg *-2Q/0)J
L/0~ (Sj -S¥ )[b, % (fy/Qso T'fy/Q3/)7-b3 X (fys Qz¿ +/&3 O33)
-7- ¿3 Q 7 f 7-/?/ísQ7¿ ) 320/4 4 203 Q¿! 3$4 43Q¿ / 3 ¿Q)J 4/7fj £b / X (fí/S*Q3 7
■7- Rfi/Qss ) 7- é>3 -jrCaí/Z {0/23$323X^3 Q 33-) 4 bs X
X (fysQ?3 bfysQ/4) 3 2/$,'((?, 4 04 C3 O22 3 2Q3 6 ) J
L// — (43 -Xg.)[b/ X*^^^(fi/S'Qw 4fy/Qts) 4¿3 X°°^(fyjQ/ss/fe3Q7¿)
4 65 X (fí/S5Q77 4fys Q7¿ ) / ¿J0, 4Q¿g — Qg¿/) - 2/5¿ Q, 3 3203 @2/
4&
114
X (#03 03? / b ¿codfí (A/3S<477y/^/s^78 )
L,2= (fs-J^íb'í^¿(A/íiQsi bfy,QS3)i-^x ^Cfi/tjQy/
b fífií Q-9-2. ) b b?s í. Ca^/£ <$7$ Q#s)
- 2&z Qí/j / 3 S3 Q5o / Sy C3 Qjo/-2Qs/)J b 3 ‘L&>/ ~/C ^
X (bt/S/Qsr b/<^/$sg) b b3 ¿ (fyj Oy3 bS¿3 Q¿3 ) *¿s Ji00^
* (fyffy/ ^ ¿tóQrV-Qtri ~SS¿Qsyb¿Sj QsS bS9b3Qs'S
b 2 Qs-6 )J
L/3— 0.3
ex2- x-*,*){((S2 -//; Q90 b ¿[¿>>t 4* ^ )
b ¿3 ¿ Cjtfí (z^j Q/S tx^i Q¿7~) + bs (x/SsQ¿7 STjsQób)
- 2S, f Qj- - Qff3 ) y- Sz'Oj- - Z&jQr + 3yb$r b2$9 ))]b O-SC2Á~0K
X f — -£/ ) Q f / *- ¿. [bi b C-Z/r' 4¿ f ¿3' 4y) b bj /_ oobfi
x (í/33 4¿3 bl¿3 Q¿g) + ¿>s X (^35Q68 ¿¿¿sQto ) -23/ (Qé' Q#y)

115
~f~ 3 z @6 ~ ?&$ Qs * 3y (Q8 ~ 2Q,o)
i]
L,y — O.sCx - X'X/‘2l /V/g- ¿f) Q 7 63 A C°^^ (Z¿3®J¿ Ojs) f (Z¿s-Q7/07¿)
- 2s‘,cQ,3 - (Pss) + q>¿ 0,3 - 23l<3¿,73«('Qzt +Qj-3)J/
■h o-s C¿\-/)/*, (r S2~ )Qg3 -/-¿l6, (Z/3/03 7-71#, Ojg)
+ 63 Xo*(¿¿3 Ojs yi (-£¿rQ73 tj¿sQ7v)
- 2éi (Q,i¿-Qg¿ ) 70¿ O/i/ - 23jQ¿ 2 73y CQ2/ y-2 OzS)]J
L,s - O. (*z-*t)Qje 1~¿[6''xCa¿/S fo'0*2
7 ¿>s (Z/33 Ozs yz¿3 Q7¿) y- ¿>s x&fy (ZssQr/ O 72 )
- ¿6¡(Q/3-QgyJ 7 6¡Q,3 -23¡02, 7 3y (Qz/7 2G>¿9 )]f
A o. s X-3 f¿Á~O[f Zz - 3,) Qgy 7 2¿b/ % c»£/¿{¿¿,01,7 yZ/g/Qys)
-7 ¿3 xco¿/2(Z¿SOa9 -bZ/33 Q*o) 7 6s Z ***£(^S-0,7 7Z4s Q78)
- 2 6, (¿}¥¥- Q g7~) -/■ 3z O y./ - 233 OyS~ — 2ÓyCQyS / 2Qy6)j
5*

116
L /6 ~ 0-5 (~3 ){(S2- ■£,) /■ 2 [é, ('l/g/Qs2 ZvZ^/Os3^
+ ¿>3 % cot(£¿3 Qv/ +-£¿3s x (^¿s@79 @8°)
' K
— 2&/ (Qm9~ @88) ~* ^«2 4^9 — 2£j Qs° *~£v (@2/f2@ 2d)
j]
+ o.Sm 'j(2><-i)1’(Jx-ft>Q$6 +2[éi (£/3/Qs7 +£¿/Qss)
Jp p ^ ^ p #
y. ¿J {¿¿¿Qj/i+T/SJ Qós) / Ss Aca^ft (£/*S $8 ; ®82 )
- 26, ( Qsy — @89) +-£2 - 2 £3 QsS 9- £ in = DLi -(^■ícot¿[)¿5 t
t¿/3)L6
r2
L3i-DL3-(-£ootz0)L7 ,
13d —DLy -(j~2 ¿of- Zfi)Lg
ft
¿,/=-(¿.9 +L,3 ) ^-¿ ,
r,‘
Á/3 — ~~ (¿/o-hL/9- ) fa *■
r/
Á31--(L,,+L,s-) i,1 -»
3~ ~(¿-/2 + L/6 )
rl
Z-/7 — Á¿nÁ?33 Á/3&3/j
L/8= x.,,133 -¿'3 £3/
L/9 — -*■//¿33 + ¿33&/' —¿/3 Á$/ —¿3/&'3
o. 5 j
@ Z¿ = 0.5 Ln[-¿,8 i (¿-¿/8-y¿/7¿,9 ) J

APPENDIX C
COMPUTER PROGRAM FOR NONLINEAR ANALYSIS

CORRESPONDING SYMBOLS USED IN
COMPUTER PROGRAM
V = U,
\
= A,
4 = x,
71
-h
e
= BETA,
yl = RATIO,
c
= PHI
g = SG,
* /
ai
= A1H,
= A2H,
A'
A1
= A1P
= A2P,
a /
A3
= A3P,
K.(t=l,2,...
,49) =
â–  AI(I:
qx = 053
q2
= D54
q3 = 055,
q4
= D56
q5 = D63
q6
= D64
q7 = 065,
q8
= D66
q9 = D58
q10
= D59
qn = 060
q12
= D61
R^(¿=1 y 2| • •
.,10)
= RI( 1=1,2, .
. .,10)
S^(i=1»2, • •
.,10)
= SI(I=1,2,.
..,10)
VL = U6
V2
= U7,
V3 = U8
0J1 = AT01,
AT 02
x = C
o
...,49)
118

noon
119
MINIMUM TEMPERATURE IS OBTAINED BY APPLYING GALERKIN METHOD
TO THE GOVERNING DIFFERENTIAL EQUATIONS.
THE CONICAL SHELL IS SUBJECTED TO MERIDIONAL TEMPERATURE
GRADIENTS AND RESTRICTED COMPLETELY AT BOTH ENDS.
U=0.3
A=0.35
EB=l./(12.*(i.-U*U))
1 READ (5,10) BETA,D, X,Q,RAT 10,SG,C,PHI
10 FORMAT(8F10.5)
EA=3.1416/C
GA=3.*3.1416/C
G=Q/SIN(BETA)
E=TAN(BETA)
F=X*3.1416/C
FA=3.*F
FP=3.*F
F0=-l./(2.+SG)**2
BTl=-(2.+3.*SG+SG»SG)/(SG+2.)**2
BT2=-1./(SG+2•)
P10=6.*A*A-12.*A+4.
P20=4.«A**3-12.*A*A+8.»A
P30= A* »4-4.»A**3+4.*A*A
AA=EA*EA+1.-A*A
AB=EA*«4+2.*(1.-3.*A*A)*EA*EA+(A*A-1.)**2
AC=(AB*(EA*EA+A-A*A)-4.*(A-2.*A»A)*EA*EA*AA)/(AB*AB
l+16.«EA*EA*A*A*AA*AA)
AD=EA*({l.-2.*A)*AB+4.*A*{EA*EA+A-A*A)*AA)/(AB*A8+
116.*EA*EA*A*A*AA*AA)
AAP=GA*GA+1.-A»A
ABP=GA**4+2.*(1.-3.*A*A)*GA*GA+(A*A-1.)**2
ACP=(ABP*(GA*GA+A-A*A) — 4.» CA-2.*A*A)*GA*GA*AAP)/(ABP*ABP
1+16.»GA»GA*A*A*AAP*AAP)
ADP=GA*((l.-2.*A)*A8P+4.*A*(GA*GA+A-A*A)*AAP)/{ABP*ABP+
1 16.*GA*GA*A*A*AAP*AAP)
AB1=(l.+A)**2*AD+2.*(l.+A)*EA*AC-EA*EA*AD
AB2=(1.+A)*AD+EA*AC
A83=(1.+A)**2*AC-2.*(1.+A)*EA*AD-EA*EA*AC
A84=(1.+A)*AC-EA*AD
AB1P=(l.+A)**2*ADP+2.*( 1. +A ) «GA*ACP-GA*GA*ADP
AB2P=(l.+A)*ADP+GA*ACP
AB3P=(l.+A)*»2*ACP-2.*(1.+A)*GA*ADP-GA*GA*ACP
AB4P=(1.+A)*ACP-GA*ADP
TAUl=(2.-2.*U+3.*SG-U*SG+SG*SG)/(2.+SG)**2
TAU2=I2.-2.*U+SG-3.*U*SG-U*SG*SG)/(2.+SG)**2/(l.+SG)
ET1=EA/(EB*{(1.+A+SG)**2+EA**2))*(1.+EXPÍ(l.+A+SG)*C))
ET2=GA/{EB*((1 . + A + SG)**2+GA**2))*(l.+EXPl{l.+A+SG)*C))
AC1=(l.+EXPIA*C))/(A*A+EA*EA)*(EA*((l.+U)*AB4-U*
1AB3)+A*(U*AB1-(1.+U)*AB 2))
AC2=(1.+U)*(l.-EXP(-C))/ACl
AC3=2.*(l.-U)*(EXP(C)-l.)/ACl
AC4= ( ( l.-3.*U)*( EXPI 0-1. ) + 2.*( l.-U)*( 1.+C*EXP(C)-EXPIC) ) ) / AC 1

120
AC5=(l.-EXP(C))/AC1
AC6=l./{AB1~(l.+U)*AB2>
AC7=-(l.+U)*AC6
AC8=2.*(l.-U)*AC6
AC9=(3.-U)*AC6
AC10=-AC7*EXP(-(1. +A ) *C )
AC11=-AC8*EXP((1.-A)*C)
AC12=(-AC9-AC8*C)*EXP{(1.-A)*C)
AC13 = AC6*EXP((1--A)* C)
Wl={1. + EXP(A*C))/(A*A+GA*GA)*(GA*((1.+U>*AB4P-U*
lAB3P)+A*(U*ABlP-(l.+U)*AB2P))/ACl
W2=(AB1P-Íl.+U)*AB2P)*AC6
W3 = W2
AC5 P=(1. + (l./(1. + SG)-TAU2)*(l.-EXPl(l.+SG)*C))/(1.-EXP(C))
1*RAT10)*AC5
AC6P=(1.+(1.-TAU1)«RATIO)*AC6
AC13P=(1.+(1.-TAU1)*EXP(SG*C)*RATI0)*AC13
ADl=(AC5P+AC6P)/(AC2-AC7)
AD2=(AC3-AC8)/(AC2-AC7)
AD3=(AC4-AC9)/(AC2-AC7)
AD4=(AC5P-AC13P)/(AC2-AC10)
AD5=(AC3-AC11)/{AC2-AC1C)
AD6=(AC4-AC12)/(AC2-AC10)
AD7=(ADl-AD4)/(AD2-AD5)
AD8=(AD6-AD3)/(AC2-AD5)
AD9=AD1-AD2*AD7
AD10=-(AD2*AD8+AD3)
AD1L=-1./(AC2*AD10+AC3*AD8+AC4)
AD12=(AC2*AU9+AC3*AD7-AC5P)*AD11
AD13=AD10*AD11
AD14=AD9+AD10*AD12
ADI5 = AD8*AO 11
ADD6=AD7+AD8»AD12
AD16=(Wl-W2)/(AC2-AC7)
AD17=(H1-W3)/(AC 2-AC 10)
AD18=(AD17-AD16)/{AD2-AD5)
AD19=-(AD2*AD18+AD16)
AD20={W1+AC2»AD19+AC3*AD18)*AD11
AD21=AD19+AG10*AD20
AD22=AD18+AD8*AD20
AE1=(EA**4-P10*EA*EA + P30)*( (EXP(2.*(A-1 . )»C)-1. ) /4./(A-1.)
1-lA-l.)*(EXP((2.*A-2.)*C)-1.)/<4.*(A-l.>**2+4.*EA*EA))
AE2=(4.*(l.-A)*EA«»4+P20*EA*EA)*(l.-EXPl(2.*A-2.)*C))
l/(4.*(A-l.)*»2+4.*EA*EA)
AE3=(AB4-AB3)/EB*{{EXP(2.*A*C)-1.)/4./A-(EXP{2.*A*C)-1.)
1/(4.*A*A+4.*EA*EA)*A)
AE4=(AB2-AB1)/EB*EA*(1.-EXP(2.*A»C))/(4.*A*A+4.*EA*EA)
AE1P=(GA**4-P10*GA*GA + P30)*(A-1.)*(— EXP(2.*(A-1.)*C) +1•)*(1./
1(4.*(A-1.)**2+(EA+GA)**2)-1./(4.*(A-1.)**2+(EA-GA)**2))
AE2 P=(4.»(1.-A)* GA** 4 + P 20*GA*GA)*(— EXP{2•*lA—1.)«C)+l.J/2.*((EA + GA
1)/(4.*(A-l.)**2+(EA + GA)**2)-(GA-EA ) /{4•*(A-1•)**2 + (GA-EA)**2))

loo
ro
h-
►“*
t—
h—
ro
b-
h-*
ÃœJ
ÍO
b—
*—*
>“*
>
to
to
>
>
1>
>
>
>
>
>
>
>
->
>
>
*
>
+
>
>
>
>
*
>
w
>
*—
>
*
>
w
>
4«
*
>
»—•
to¬
to»
to
to¬
1
*
>
>
to¬
to¬
b-
to
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
*
+
►—
m
m
m
m
O
m
+
m
•
m
*
m
W
m
m
m
•
rn
m
(Ti
rn
b-*
m
m
rn
m
rn
•
m
OJ
UJ
OJ
ro
r\j
ro
ro
ro
ro
ro
ro
ro
ro
ro
>—
►—»
ro
â–º-
•
►—
r-
r—
r-
>
t—
—■
►—
»—■
ro
►—
1
>—*
ro
•-*
â–º-
»—
►—
sO
03
•
m
-Vi
o
ai
>
to
uo
o
O
vC
Oc
-vi
-0
cr
OI
♦
OJ
N
f—
o
'O
00
+
•
•vi
cr
ai
w
loo
(D
loo
+
ro
—
h-*
—-
m
ro
—*
i—•
o
II
ii
>
s
X
II
n
il
4-
T
T)
II
n
â– O
11
II
II
“O
li
li
ii
n
II
li
li
II
ii
CD
—
^v
II
ii
II
T>
W
TI
>
ii
II
•to
T
1>
X
>
ii
n
ii
to¬
>
4*
X
1
l
m
O
II
II
t»
II
1
to
>
II
1
>
>
>
>
>
>
>
>
>
â– p
—*
1
1
O
II
II
1
•
—
•
II
1
II
4-
•
>
rn
m
>
ro
m
i»
>
>—
•
>
m
1
*“•
m
m
1
«-»
m
m
m
m
m
m
m
m
*
o
**â– *
ro
CD
>
m
>
4i
I>
*
—>
►—
—*
O
*
m
m
ai
•
4-
*—
•
>
"n
—
to¬
4>
to¬
m
u^
—-
to
ro
ro
to
vü
>—
*—
i—1
oo
►—
*
—-
>
•
>
•v.
>
£»
>
CD
>
03
CD
â– t-
•
>
•
—»
~o
+
*
>
s
s
rn
*
ra
>
ra
ro
o
to
m
o
-vj
>
m
♦
OI
loo
>->
loo
►—
â– d
T3
ro
i
4»
v.
m
CD
03
*—
ro
4i
1»
•
w
y>
w
♦
I»
*
*
to
to¬
*
•
4-
m
m
ra
*
ro
4»
to
-vi
TI
m
IM
+
X
m
»—
o
*
TJ
~o
+
4-
+
•f
-—
CD
h-*
m
m
CD
ro
V.
1
>
1
*
*
4i
1
*
>
m
ra
*
w
►—
CP
CP
*
ro
-o
>
T>
l
ro
ro
o
00
oo
*
to
+
+
to
>
x>
>
■—
>
•
CP
CD
4t
T)
TI
>
4-
to¬
CD
4t
—*
r-
-to
o
ro
H-1
ÃœJ
4>
•
*
4»
—
1
4*
1
>
to
+
*
*
+
o
O
>
>
m
m
m
m
v.
*
*
—
1
1
J'
CP
es
J>
»—*
->
•
•
1
i—-
4*
4«
w
m
1
to¬
to¬
m
*
n
ra
o
o
â– v.
m
m
►—
h-*
to
ro
*
i
m
>
I>
•
K-
m
Ul
w
•
•
1
•
1
w
T¡
<—
+
ro
*
m
X
ra
m
ro
ÃœJ
o
*
n
*
m to
►—
►—
to
ro
TI
ID
>
*
>
m
X
CE
CD
*
w-
>
—
1
♦
X
4»
>
*
>—1
â– f
ro
b->
O
4-
X
TI
CD
►—
*>
UJ
o
Ni
o
m
m
o
*
+
to
ro
+
+
ro
+
X
X
t—
loo
>
\
1
>
0~m
►—
.
4>
O
to¬
•
•
4i
w
H-*
X
—-
to
TI
l
T>
m
s
*
1
N
*
ro
"O
-o
>
>
»—*
4*
H-
X
TI
T
*
m
O m
~
>
O
>
♦
ro
*
rn
*
4-
m
4*
•
—■>
1
a
w
1
m
*
CD
m
ro
•
+
m
O
•
O
•
«■*
w
—
CD
>
CD
*
1
*
1
m
4-
m
Ul
j>
m
X
b**
w
to
m
X
>
X»
CD
*
ro
-H
*
*
*
>
i—■
ro
W
>
>
S
S
+
4i
w
4i
CD r-
o
b*
i>
>
+
m
X
X
•
4i
>
1
to
m
m
>
-i
*
*
*—■
*
j>
to
m
Ol
N
*
♦
>
1
m
m
—-
—•
*
>
>
•
>
•
*
m
*
to¬
O'
X
w
*
4-
t—
—
ro
♦
ro
m
f-
ro
to
*
ro
m
m
i—•
★
*
*
O
*
4*
H-
CP
03
CD
1
4t
*
4i
w
♦
W
4«
>
m
rn
*
ro
b**
•
*
♦
*
ro
*
*
m
m
*
>—
r-
OI
to
to¬
ÃœJ
I>
ro
H-
•
*
*
>
m
ro
—.
*
*
4«
4t
4-
>
-to
to
>
s
•
—
ro
i»
o
m
>
ro
•H
t>
o
cr
*
O
rn
4"
W
•
w
CD
■—■
1
X
—-
1
4>
ÍO
4»
4-
O
+
+
o
b*
4-
—■»
w
*
to
I
- -
*
1
-i
m
►—*
I-1
m
*
>
OI
O
1
—
4»
>
m
m
X
w
m
4-
ro
4-
ro
X
>
T3
to¬
a
*
>—*
>
4i
O
•
m
w
—
i>
ro
ro
*
»-*
j>
o
U)
â– f
1>
o
—*
•
O
*
X
>
«■—
X
X
4-
X
4-
ru
w
Ul
rn
cr
4-
•
4-
i>
O
w
*
X
l
m
*
u>
73
sO
o
ro
+
ro
4t
>
O
w
T)
-—
to
X
ro
UJ
^>»
o
4i
O
ai
+
>
w
»—
4-
w
+
to
â– o
m
fNJ
yo
>
•—
>->
i—
ro
•
*
V.
4-
«—<»
4-
(-*
—
*
•
O
•
O
m
4«
4t
«—
*
loo
w
4*
•
>-*
4-
t—
*
X
o
j>
V.
—1
n
o
+
•
*
ÃœJ
*—
r-*
4-
►—
•
ro
*
♦
ro
*
4i
>
m
ro
*
to
•
4(
O
w
•
H-*
»
to
ro
TJ
v_*
—i
to
*-■»
>
4-
ro
*
>
'V.
>
•
»—*
•
1
•
ro
>
•
en
O
4«
4-
>
—-
o
*
O
•—•
4i
w-
•
—.
+
•
l-H
m
O
m
UJ
•
>
m
4-
W
t
w
m
*
w
4
4>
>
>
O
4»
l
>
»—
to¬
w
1
♦
w
.—
*
ISO
O
ro
*
ro
é
*
m
cr
>
>—
*
W
X
>
■—■
O
>
4i
*
m
>
*
»—
1
Ul
rn
•—■
m
ro
*
s
—■
CD
to
•
*
03
O
oí
*
>
t—
*
•
♦
v.
—■
TI
*
W
4«
*
O
X
W
ro
•
1—
+
O'
>
4-
ro
—
—
to
*
o
N
>
m
o
to
»—»
ro
*—
o
+
n
ro
1>
X
*
w
N
•
ro
*
m
4*
—*
to
i
r>
to
N
m
m
*
o
•
*
4-
>
ro
—-
»—•
'W
w
4»
*
•—»
w
•
to
—>»
i>
m
>
1
m
—.
*
m
—-
i—
cr
to
ro
O
>
1
•
l
•
4-
*
w
ro
ro
*
*
O
>
*
>
4*
i—
to
+
O
—
s
o
*
o
ro
«
O
í>
4*
K-
*
i—1
w
H-•
•
1
•
>
i—•
•
4-
m
♦
b^
•
w
r-
—
>
*
to
»—
+
v.
4»
•
>
•
V*
•
K-
*
+
m
*
1
m
ro
+
b-
>
m
•
—.
*
•
+
>
m
>
o
OI
loo
UJ
O
•
w
*
—
ro
•w
•
—*
•—
X
m
O'
+
>
é
w
>
w
*
*
â–º-
m
ro
o
ro
+
t
>
>
w
4t
o
*
•
*
l
>
O
X
>
X
*
to¬
w
w
4*
*
ro
X
•
M
OI
r-
ro
OJ
*
4-
w
♦
♦
4»
«—
m
1
>
.—
1
-0
to
rn
*
4t
m
*
4
ro
ro
w
CD
ro
+
•
>
t-*
4(
♦
ro
—•
►—
»—
X
>—•
1
ro
b-
—
o
-o
4»
4
>
ro
+
—
•
*
+
loo
*
m
•
•
ro
4*
•
•
X
•
m
•
•
ro
t—
*
ro
ÃœJ
V.
1
4-
m
*
——
>
•
>
cr
+
1
+
O
•—
s
m
—
w
>
*
w>
•
ai
to
+
4-
m
m
to
—»
*-•
m
«
m
*
m
1
O
o
>
>
—-
ro
4»
•—
4»
*
+
o
m
m
>
>
>
*
•
to
i—*
i>
X
»—
>
>
4
•
•
4-
•
O
>
«
«—
u>
►—
>
>
4-
m
m
s
-o
m
o
o
XI
•
"s.
4
O
*
N»
O
•
*
w
.—.
1
ro
>
•
ro
4>
*
»—
m
to
to
—*
*
r~
*
ro
«—
O
>
>
í»
>
4»
1
-to
i—*
4*
1
*
m
4»
•
>
>
w>
+
to
>
O
>
o
—*
>
>
W
*
1
>
>
b**
•
•
*â– *
r-*
to¬
>
ÃœJ
-—-
4*
-—■
CD
•
o
*
o
+
t—
>
4*
>
>
•v.
4»
1
•
*
w
m
•
rn
w
*
h-
to
*
1—
&
»—
i>
•
4-
h-
+
X.
*—
>
K-
w
4(
i>
•
cr
w
0mm
•
w
to
ro
O
»—1
m
•f
♦—
•
4*
•
4
>
O
1
*
*
n
w
V.
*
ro
+
>
•
W
•
•
•—•
—
1
o
O
to
•S.
-—.
to
o
>
*
—
*
*
•
m
*
i—•
•—•
4-
>
—■
D
to
+
m
>
*
*
—
CD
*
>
>
O
•
•
h—
w>
+
x>
•
>
*—•
o
o
m
J>
>
*
•f
—-
•
*
►—
i—
4-
*
m
m
-J
ro
W
ro
X
*
*
>
o
W
*
4t
•
>-*
to
to
i—•
*
o
w
X
CD
>
4-
>
*
fo
w
•
*
+
-o
j>
N*
*
I»
+
—»
w
•
ro
ro
***>
*
to
CD
*
o
*—•
m
-—■
m
4>
♦
+
•
w
-—
â– f
to
j»
t—
—«*
X
>
•
>
4»
•
w
o
t—
X
4-
4-
ro
*
>
CD
*
ro
•
*—*
h-
CD
o
1
>
*
O
+
—*
•
J>
>
1
>
1
ro
>
W
1
•
m
•—•
41
4«
>
i
o *
w ro

122
AE32=AE26*AE31+AE27
A1H=AE32
A2H=AE31
A1P=AD14+D/E*(AD21*AE31+AD13*AE32)
A2P=ADD6 + D/E*{AE31*AD22+ AE32*AD 15)
A3P=AD12+D/E*(AD20*AE31+AD11*AE32)
B1=-F*F
B2=2.*F»A-F
B3=-FA*FA
B4=FA*(2.*A-1.)
B5=-EA*EA
86=2•*A*EA-EA
B7=-GA*GA
B8=GA*(2.*A-1.)
B9=-G*G
B10=-A1H*B5*B9-A1H*B1*A
B11=-A1H*B6*B9-A1H*B1*EA
B12=-B7*B9*A2H-A2H*B1*A
B13=-A2H*B8*B9-A2H*B1*GA
B14=-AIH*B5*F-A1H*B2*A
B15=-A1H*B6«F-A1H*B2*EA
B16=-A2H*B7*F-A2H*B2*A
B17=-A2H*B8*F-A2H*B2*GA
B18=-AIH»B5*B9-A1H*B3*A
B19=-A1H*B6*B9-A1H*B3*EA
B20=-A2H*B7*B9-A2H*B3»A
B21=-A2H*B8*B9-A2H*B3*GA
B22=-A1H*B5*FA-A1H*B4*A
B23=-A1H*B6*FA-A1H*84*EA
B24=-A2H*B7*FA-A2H*B4*A
B25=-A2H*B8*FA-A2H*B4*GA
B26=-A1H*A1H*B5*A
B27=-A1H«A1H«B6*A-A1H*A1H*B5*EA
B28=-A1H*A2H»B7*A-A1H*A2F!*B5*A
B29=-A1H*A2H*B8*A-A1H*A2H»B5*GA
B30=-A1H**2*B6*EA
B31=-A1H*A2H*(B7*EA+86*A)
B32=-A1H*A2H*(B8*EA+B6*GA)
B33=-A2H*«2*B7*A
B34=-A2H**2*(B8*A+B7*GA)
B35=-A2H«*2*B8*GA
B36=-B1*B9
B37=-B2*B9-B1*F
B38=-B3*B9-B1*B9
B39=-B4*B9-B1*FA
B40=-B2*F
B41=-B3*F-B2*B9
B42=-B4*F-B2*FA
B43=-B3*B9
B44=-B4*B9
B45=-B3*FA

123
B46=-B4*FA
B47=G*G*(A*A-2.*A+1. )
B48=G*G*(A*A-2.*A+1.)
B49=G*G*(2.*A*F-2.*F)
B50=G*G*(2.*A*A-4.*A+2.)
B51=G*G*(2.*A*FA-2.*FA)
B52=G*G*(2.*F*A-2.*F)
B53=2.*G*G*F*FA
B54=G*G*(2.*A*FA-2.*FA)
B55=0.5*(B10+B15)
B56=.5*(B11-B14)
B57=.5*(-B10+B15)
B58=.5*(B11+B14)
B59=.5*(812+B17)
B60=.5*(B13-B16)
B6l=.5*(-B12+B17)
B62=.5*(B13+B16)
B63=.5*{B18+B23)
B64=.5*(B19-B22)
B65=.5*(-B18+B23)
B66=.5*(B19+B22)
B67=.5*(B20-B25)
B68=.5*(B21-B24)
B69=.5*(-B20+B25)
B70=.5*(B21+B24)
B71=.5*(B26+B30+B33+B35)
B72=.5*(-B26+B30)
B73=.5*B27
B74=.5 *{B28+B32)
B75=.5*{-B29+B31)
B76=.5*(-B28+B32)
B77=.5*(B29+B31)
B78=.5*(-B33+B35)
B79=.5 *B 34
B80=.25*(B36+B40+B47+F*F)
B81=.25*(-B36+B40-B47+F*F)
B82=.25*(B37+B49)
B83=.25*(B36+B40-B47-F*F)
B84=.25*{-B36+B40+B47-F*F)
B85=.25*{B37-B49)
B86=.25*(B38+B42+B50+B53)
B87=.25*(-B39+B4L-B51+B52)
B88=.25*(-838+B42-B50+B53)
B89=.25*(B39+B41+B51+B52)
B90=.25*(B38+B42-B50-B53)
B91=.25*(-B39+B41+B51-B52)
B92=.25*(-B38+B42+B50-B53)
B93=.25*(B39+B41-B51-B52)
B94=.25*(B43+B46+B48+FA*FA)
B95=.25*(-B43+B46-B48+FA*FA)
B96=.25*(B44+B45+B54)

o o
o
non
o
O
n o
o
O
n
CD
OJ
oo
OO
oo
oJ
00
oo
oo
u>
00
NJ
NO
NO
o
>0
oo
•0
O'
Ul -P
OJ
nj
H-
o
sC
oc
-0
II
II
n
ii
II
II
II
II
ii
II
II
II
II
II
*—
1
#â– *
i
.—
1
#—■
►—
1
»—*
>-•
1
K-*
1
oo
Tl
oo
T
O'
O'
O'
o
o
O'
O'
00
Tl
•
>
•
>
-p
•
*
â– S'
•
•
-P
•
•
>
*
+
<0
1
•
*
*
•
*
4c
•
4c
41
1
Tl
Tl
*
Tl
CD
*
Tl
X>
4c
CD
>
Tl
*
«—
*
«—■
>
*
*
>
4t
X»
>
4C
«—
*
*
41
*
*
*
*
4*
*
4c
♦
Tl
>K
â– n
*
Tl
ro
-P
Tl
*
•P-
CD
4c
CD
*
+
-P
x» -P
*
+
*
1
J>
-P
â– >
M
Tl
l
*
*
OO
4c
+
+
>
Tl
OO
•
OO
NO
*
m
*—
—
+
*
+
•
OO
>
•
*
*
oo CD
OO
41
+
—
*
*
*
ro
*
ISO
>
OO
*
CD OO
oo
•
(D
•
*
NO
*
*
+
+
*
w
*
â– K
•
oo
CD -P-
â– P>
-n
4<
Tl
oo
■»
+
•
•
*
*
*
+
CD
â– P
★
*
*
*
NJ
*
i-*
J>
•
*
«*»
—*
UJ
OO
O'
41
â– K
ro
*n
*n
+
•
4c
+
>
U>
4>
OJ
CD
â– n
1
ro
>
X»
x»
Tl
•
4c
+
■—-
-—
*
4c
m
*
*
•n
NO
*
*
*
w
OJ
OO
o
*
*
4c
o
i
OO
1
cr
•
*
>
*
Tl
*
a
*
o
o n
o
CD
o
n
CD O
noon
n
N)
NO
NO
NO
NO
NO
NO
i—
►—
1—
â–º-
i—■
►—
O'
U1
-P
OO
NJ
O
vO
CD
->i
O'
U1
-p>
II
II
II
II
II
ii
II
ii
tl
It
II
ii
ii
.—.
1
1
I—
t—■
1
1
—*
1
i
CD 00
CD
O'
O'
O'
00
>—
00
00
oo
>
•
>
â– P'
•
•
•
Tl
•
Tl
•
Tl
•
+
*
1
•
4>
4c
41
>
*
>
4»
>
4c
m
I>
m
4t
m
I>
X»
+
1>
1
>
+
I»
>
♦
>
I»
>
4c
*
CD
*
CD
4c
m
4c
w
—
4i
IK
4i
X»
>
>
-—
*
cr>
4
m
4>
-P
Tl
'—'
Tl
w
Tl
■—
~n
*
3>
4<
x>
-P
1
>
41
I>
*
>
e
i>
1
-P
41
OO
+
4c
1
*
+
4c
1
m
*
NO
CD N)
CD NO
m
NO
m
>
oo
•
>
+
>
+
>
+
>
w
+
41
■—
CD
CD
—
CD
-—■
*
OO
>
*
4c
41
4c
*
4C
*
*
NO
4c
4*
o
4i
CD
4>
CD
4>
OJ
•
4>
OO
-—■
oo
—■
oo
w
oo
+
4c
OO
+
â– K
+
4c
+
4c
+
4T
m
+
.p
41
-P-
â– K
-p
4<
-P-
•
J>
*-*
•
NO
•
NO
•
NO
•
*
4c
O'
4i
â– K
4c
4c
41
•
.—.
CD
OO
4c
-n
-n
Tl
Tl
X»
>
>
>
>
t>
1
4C
+
1
+
1
m
>
CD
CD
m
m
>
>
>
x>
>
•—
-—-
«—-
*
*
*
4c
*
*
41
*
4c
4c
OJ
OO
oo
00
OO
+
+
+
+
•p
-N
•
•
•
•
4>
4>
4c
4>
—^
.—.
*n
*n
Tl
Tl
>
â– >
>
>
+
l
+
1
CD
CD
m
m
>
>
>
X»
4^
w-
—
■—-
4c
4-
»
4c
CD
O
CD
CD
4*
4c
4>
4c
CD
i
CD
i
CD
I
CD
1
i
CD
l
00
l
00
1
oo
•
•
•
é
*
4c
♦
4c
>
>
>
>
4c
4c
4»
4c
CD
CD
CD
CD
â– K
4<
4c
4c
CD
CD
CD
CD
4c
4c
4i
4t
—
.—
.—
:d
-n
*n
Tl
>
>
>
>
+
1
+
1
n
CD
m
m
>
>
•>
>
o
O
CD
O
CD
CD
o
CD
O CD
CD
CD
O
CP
CP
CP
»—
»—
1—
00
-0
O'
U1 P'
OJ
ro
•—
r-
>—
I-*
00
NO
»-*
O
II
II
II
II
II
11
II
ii
II
o
o
o
ii
11
II
II
1
—
1
1
—»
i
—*
-^1
o
Ol
1
—•
1
OC'
4—»
oo
-P-
Tl
Tl
II
II
II
CD
a?
Tl
•
Tl
•
Tl
•
>
•
*
Tl
1
-n
Tl
•
Tl
•
i
4i
+
♦
i
â– K
4c
*
-n
â– >
-n
â– K
>
4c
+
*
CD
>
IT,
>
m
—*
*n
—«4
+
â– K
>
i
Í»
CD
X»
>
*
X>
*
X»
1—
x.
r—
CD
—%
41
ro
m
4c
>
#
•
+
•
*
N
Tl
•
>
w
*
Tl
*
Tl
*
+
CD
+
CD
•
X»
*
Tl
*
Tl
*
+
4c
1
41
>
4c
X»
W
iK
>
*
-f
4c
1
ro
rn
ro
m
ro
w
CD
w
*
>
i
4c
O NO
CD
>
+
X»
4*
4t
W
*
4i
1
>-*
NO
>
+
>
CD
w
CD
w
CD
Tl
4c
Tl
ro
h-
•
+
w
CD
w
*
*
â– K
4<
>K
>
4*
4i
•
w
O
4c
*
4c
CD
4c
CD
4c
CD
*
ro
♦
w
*
*
CD
4c
oo
OJ
4W
4i
oo
CD oo
OJ
4c
+
4c
+
4*
oo
+
+
4*
+
4c
•P
*
*
♦
-P'
4>
*
â– p
ro
•
ro
•
NO
-N
•
*
•
NO
•
4c
JH
•
*
NO
4c
*
—
â– K
Tl
4—»
Tl
Tl
Tl
4t
Tl
Tl
+
i
X>
4C
+
i
m
m
*
OJ
CD
CD
>
>
4c
+
>
>
4—'
OO
♦
4»
•
4c
*
CD
*
â– P"
*
4c
*
4c
OJ
•
•n
OO
OJ
CD
+
*
*
+
+
1
-p'
Tl
CD
-P
>
CO
•
>
*
•
•
•
iK
4i
CD
*
4c
4<
—4
CD
1
—*
<—
>
Tl
♦
-N
Tl
-n
*
i
CD
•
+
l
CD
m
1
IK
CD
CD
4c
>
-P-
>
>
CD
•w
•
w
W
4c
41
4c
•
4c
4>
—*
CD
Tl
+
CD
CD
Tl
IK
>
>
4>
+
CD
4t
V
CD
CD
m
1
4i
1
1
>
00
CD
oc
00
•
•
4«
•
•
+
4i
+
CD
4*
â– K
P'
I»
>
4i
>
1>
•
4i
W
Tl
4>
4c
4c
CD
4c
o
CD
4i
CD
♦
4c
Tl
4c
CD
CD
+
Tl
CD
*
cK
m
1
X»
m
-n
Tl
w
>
+
1
w
CD
CD
â– K
4c
>
>
OO
CD
oo
00
CP
00
CP
CP
CP
CP
r-
t—
K-
>—
r~
<0
sO
vC
O
O
o
o
O
>0
CO
~0
-P
OO
NO
1—‘
o
II
II
II
II
II
II
II
II
•
•
•
1
CD
1
m
1
NO
ro
NO
Tl
>
CD
>
m
U1
Ul
Ol
4i
4c
X»
4c
>
4c
â– K
iK
Tl
^*4
4c
4c
ro
*
ro
4c
co
1
CP
•
NO
•
NO
-t-
CP
-P
*
#
4>
â– i'
0-'
>
r>
+
OJ
+
1
1
CP
+
oo
*—•
-N
CP
â– P'
t
•
U1
•p'
O'
w
1
O'
1
CP
T
CD
on
CP
P'
-P>
-p
oo
■—
oo
l
I TI
ti t>
t> *
* T!
-n >
> —
KJ
â– P-

125
C41=-8.*A*(FA-F)**3+4.*(FA-F)**3+16.*(FA-F)*G*G-32.*A*G*G*(FA-F)
C42=((F+FA)**2+4.*G*G)**2
C43=-8.*A*(F+FA)**3+4.*{F+FA)**3+16.*(F+FA)*G*G-32.*A*G*G*(F+FA)
C44=16.*A**4-32.*A**3+16.*A**2
C45=16.*FA**3
C46=-64.*A*FA**3+32.*FA**3
C47 =16.*G**4
C48=(4.*FA**2+4.*G*G)**2
C49=—64» *A*FA**3+32.*FA**3+32.*FA*G*G-64.*A*G*G*FA
A1=D/E*(-B2*C1+C2*B1)/(C1**2+C2**2)
A2=D/E*(-C1*B1-B2*C2)/(Cl**2+C2**2)
A3=D/E*(-B4*C3+B3*C4)/(C3**2+C4**2)
A4=D/E*(-C3*B3-B4*C4)/(C3**2+C4**2)
A5=(B55*C5-B56*C6)/(C5**2+C6**2)
A6={B56*C5+B55*C6)/(C5*»2+C6**2)
A7=(C7*B57-B58*C8)/(C7**2+C8**2)
A8=(C7*B58+B57*C8)/(C7**2+C8**2)
A9=(B59*C9-B60*C10)/(C9**2+C10**2)
A10=(C9*B60+B59*C10)/(C9**2+C10**2)
A11=(B61*C11-B62*C12)/(Cl1**2+C12**2)
A12=(B62*C11+B61*C12)/(C11**2+C12**2)
A13=(C13*B63-B64*C14)/(C13**2+C14**2)
A14=(C13*B64+C14*B63)/(C13**2+C14**2)
A15=(B65*C15-C16*B66)/(C15**2+C16**2)
A16={C15*B66+B65*C16)/(C15**2+C16**2)
A17=(C17*B67-C18*B68)/(C17**2+C18**2)
A18=(C17*B68+B67*C18)/(C17**2 + C18**2 )
A19=(C19*B69-C20 *B7 0)/(C19**2+C20**2)
A20=(C19*B70+B69*C20)/(C19**2+C20**2)
A2l=B71/C21
A22=(372*C22-C23*B73)/(C22**2+C23**2)
A23=(C22*B73+C23*B72)/(C22**2+C23**2)
A24=(C24*B74-C25*B75)/(C24**2+C25**2)
A25=(C24*B75+C25*B74)/{C24**2+C25**2)
A26=(C26*B76-C27*B77)/(C26**2+C27**2)
A27=(C26*B77+C27*B76)/(C26**2+C27**2)
A28=(C28*B78-C29*B79)/(C28**2+C29**2)
A29=(C28*B79+C29*B78)/(C28»*2+C29**2)
A30=B80/C30
A31=(C31*B81-C32*B82)/(C31**2+C32**2)
A32=(C31*B82+C32*B81)/(C31**2+C32**2)
A33=883/C33
A34=IC34*B84-C35*B85)/(C34**2+C35**2)
A35=(C34*B85+C35*B84)/(C34**2+C35**2)
A36=(C36*B86-C37*B87)/(C36**2+C37**2)
A37=(C36*B87+C37*886)/(C36**2+C37**2)
A38=(C38*B88-C39*689)/(C38**2+C39**2)
A39={C38*B89+C39*B88)/(C38**2+C39**2)
A40=(C40*B90-C41*B91)/(C40**2+C4 1**2)
A41=(C40*B91+C41*B90)/(C40**2+C41**2)
A42=(B92*C42-C43*B93)/(C42**2+C43**2)

126
A43 =(C42*B93+C43*892)/(C42**2+C43**2)
A44=B94/C44
A45=(C45*B95-B96*C46)/(C45**2+C46**2)
A46=(C45+B96+C46*B95)/(C45**2+C46**2)
A47=B97/C47
A48=(C48*B98-C49*B99)/(C48**2+C49**2)
A49=(C48*B99+C49*B98)/(C48**2+C49**2)
C50=(4.*A*A-(1.+U)*2.*A)*A21+ 4.*A*A*A22+8.*A23*A*EA-4.*A22*EA**
12-(l. + U)*(2.*A23*EA+2.*A22*A)+4.*A*A*A24+4.*A25*(GA-EA)-A24*
2(GA-EA)**2-(l.+U)*(A25*(GA-EA)+2.*A24*A)+4.*A*A*A26 + 4.*A27*(GA
3+EA)-A26*(GA+EA)**2-(1.+U)*(A27*(GA+EA)+2.*A26*A)+4.*A*A*A28
4+8.*A29*GA-4.*A28*GA*GA-(1.+U)*(2.*A29*GA+2.*A28*A)
C5i=A30*(4.*A*A-(l.-U)*2.*A)+4.*A*A*A31+8.*A32*F*A-4.*A31*F*F-
1(1.+U)*(2.*A32*F+2.*A31*A)
C52=4.*A*A*A36+2.*A37*(FA-F) **2-A36*(FA-F)**2-(l.+U)*((FA-F)
l*A37+2.*A36*A)+4.*A*A*A38+2.*A39*(FA+F)**2-A38*(FA+F)**2-(l.+U)
2*(A39*(FA+F)+2.*A38*A)
C53=A44*(4.*A*A-(1.+U)*2.*A)+4.*A*A*A45+8.*A46*FA*A-4.*A45*FA
1*FA-(1.+U)*(2.*A46*FA+2.*A45*A)
C54=0.
C55=C50*EXP(2.*(A-l.)*C)
C56=C51*EXP(2.*(A-l.) *C )
C57=C52*EXP(2.*(A-l.)*C)
C58=C53*EXP(2.*(A-l.)*C)
C59=EXP(SG*C)*C54
C60 = A21 *((l.+U)*2.*A-4.*U*A*A)
C61=(l.+U)*(2.*A23*A-2.*A22*EA)-U*(4.*A23*A*A-8.*A22*A*EA-4.
1 *A23*EA*EA)
C62=Il.+U)*(2.*A23*EA+2.*A22*A)-U*(4.*A22*A*A+8.*A23*A*EA-4.
1*A22*EA*EA)
C63=(l.+U)*(2.*A25*A-A24*(GA-EA))-U*(4.*A25*A*A-4.*A24*A*(GA-EA)
1-A25*(GA-EA) **2)
C64=(1.+U)*(A25*(GA-EA)+2.*A24*A)-U*(4.*A24*A*A+4.*A25*A*(GA
1-EA)-A24*(GA-EA)**2)
C65=(l.+U)*(2.*A27»A-A26*(GA+EA))-U*(4.*A27*A*A-4.*A26*A*(GA+
1EA)-A27*(EA+GA)**2)
C66=(1.+U)*(A27*(EA+GA)+2.*A26*A)-U*(4.*A26*A*A + 4.*A27*A*(EA+GA)
1-A26*(EA+GA)**2)
C67=(1.+U)*(2.*A29*A-2.*A28*GA)-U*(4.*A29*A*A-8.*A28*A*GA-4.*A29
1*GA*GA)
C68=(l.+U)*(2.*A29»GA+2.«A28*A)-U*(4.*A28*A*A+8.*A29*A*GA-4.
1*A28*GA*GA)
C70=A30*((l.+U)*2.*A-4.*U*A*A)
C71=(l.+U)*(2.*A32*A-2.*A31*F>-U*(4.*A32*A*A-8.*A31*A*F-4.*A32*F*
IF)
C72=(l.+U)*(2.*A32*F+2.*A31*A)-U*(4.*A31*A*A+8.*A32*A*F-4.*A31*
1 F*F )
C73=(1•+U)*(2•*A37*A-A36*(FA-F))-U*{4.*A37*A*A-4.*A36*A*(FA-F)-
1A37*(FA-F)**2 )
C74=(1.+U)*(A37*(FA-F)+2.*A36*A)-U*(4.*A36*A*A+4.*A37*A*(FA-F)
1-A36 *(FA-F)* *2)

#
sO
*$â– 
—8
<
x
x
*
+
♦
•
<
<
vT
x
x
1
«8—-
«8*
<
*
*
X
U.
c
*
*
*
*
<
<
00
x
*
*
ro
ro
in
43
<
<
'4-
'4'
*
*
<
<
•
•
«
*
>fr
•4-
•
•
1
+
CO
OO
<
<
1
+
*
*
<
<
<
*
4>
*
*
<
<
O'
oo
*
*
ro
ro
vO
IA
<
<
4-
«4-
♦
*
<
<
•
•
4<
4*
4-
•4-
•
•
—
—
sf
*
*
*«r
■—•
3
3
*
4>
i
1
3
3
■—«
■—8
1
1
—
<
x
*
—«
<
<
+
CO
3
LL
*
<
ro
#
*
n
x
<
<
in
>4-
88*
*
*
>4-
<
eg
eg
*
•
*
#
*
—«
CO
oj
*
*
a
—x
*
*
*
8
ro
+
•
•
INI
•
•
<
—»
'4-
OJ
+
•
r-4
<
<
H
1
1
x
1
1
<
r-4
1
LU
UJ
1
c
<
+
<
<
LL
\
<
1
+
<
4
*
<
*
*
4<
4-*
*
<
<
♦
•
O'
x
•
â– o
<3
o
•
o
o
•
OJ
CO
—
Ol
-4-
*
rg
w
—•
eg
w
<
*
*
<
<
—X
w
N
w
♦
*
O'
—*
—8
*
•
«•«*
*
—*
★
•
eg
ro
eg
3
•
•
8-8
H
•
eg
•
—
•
eg
OJ
.—
C\J
*
*
•f
oi
Ol
«I
1
*
<
r—i
C
*—4
*
4*
X
«-r
*
—
*
•
—
■—
U.
<
1
*
LU
1
UJ
1
<
+
X
★
1
*
—*•
*
—*
—4
*
*
*
*
1X1
<
1
<
+
<
3
<
N
X
<
—«
LL
■—
LL
■—■
—'
<
•
*
LU
<
*
<
*
V o
8
N
X
+
3
+
—»
3
3 LL
f\j
•
8
3
•
o
•
8
s
OJ
8
—
+
<
+
<
*
+
+
*
r\j
04
•
—
eg
«—
eg
OJ
8
N
>4-
â– N.
•
LL
•
LL
•
—
•
in
-—■
s
X
—*
s
<8M*
•4-
v.
<
8—4
*—1
—4
—
't
8—4
<
H
Q_
*g
s
<
*
<
41
<
S
3
<
3
*
*—
*
<
■—■
LL
■—
<
X
<
o
<
3
3
<
3
1
3
1
II
O'
II
CO
ii
II
*
ii
♦
LU Q
1
o
1
a
1
a
1
3
II
II
II
in
ro
o
rO
X
co
<
O'
t
11
ii
II
n
II
u
II
ii
II
II
p4
OJ
ro
x
<
r-
<
x
x
X
X
<
r—4
OJ
ro
•4" in
43
n-
03
O'
*—l
8—J
o
1
3
1
3
3
o
1
3
a
a
a
3
Q
a
a
a
3
3
3
3
r—I r—4 H
X
OJ
X
—
rsj
X
OJ
^â– 8
<
<
<
<
<
3
8—
oo
+
*
*
3
1
—
3
<
OJ
X
1
—
4<
O
4i
•—
8
4i
3
X
4>
4i
*
r—Í
«a
<
1
80
—■
•—«
X
•
<
*•—
3
X
—
3
*—
•
r—4
—
X
*
1
4i
*
+
3
r—4
<
OJ
*
<
>-*
<
4-*
8
X
~—
t
+
*
<
3
*
+
r-*
OJ
Q
X
<
<
*
4*
4>
•
—
LL
X
•
X
41
3
X
<
OJ
1
<
-O
X
8
*
<
OJ
X
X
*
<
+
sO
1
OJ
—»
X
<
41
<
♦
LL
8—
3
—*
8
+
4>
+
-—
8
+
3
X
H
<
X
—
<
X
^8
80
*—
8
1
o
f—4
o
8
X
•
1
3
X
OJ
<
*—
<
1
•—l
+
*—4
OJ
<
*
X
X
*
X
+
—
1
X
-f
41
4i
—8
in
X
<
4
4
41
<
<
w
8^
4>
8
o
vO
♦
X
OJ
«■■4
—*
—■
3
*
X
<
—
OJ
•—<
3
3
*
—
1
<
<
1
8
8
LL
X
—
Q
+
+
<
X
OJ
LU
*
w
OJ
—8
+
1
X
*
in
8
X
4
4i
1
8
4>
—8
1
LL
<
8
O
3
4>
OJ
*
<
OJ
OJ
X
OJ
—•
X
OJ
r-
4*
OJ
X
<—■
O
1
4i
•
4>
g
—.
X
3
4i
4i
OJ
<
8
*
OJ
4>
•
X
<
+
>0
—
4*
4i
X
i—8
X
X
r-4
8
o
-—-
in
—-
3
3
X
4i
1
•
—
OJ
<
X
w
8—1
*
OJ
4-4
co
+
1
•—4
<
<
r-4
4>
<
3
1
*
+
OJ
â–  18
3
8—1
8J-
8
a
3
1
X
*
*
<
—*
OJ
4i
3
4i
3
3
•—8
â– f
4>
*—•
rrw*
OJ
4
X
X
<
4<
4>
*
in
4i
*
—-
<
OJ
V.
<
<
OJ
•
«88
Q
*
<
Ol
r-
O'
m
4<
3
4>
•
3
4i
—
X
X
\
—<8
X
r-
u
X
80
8
+
4*
r-4
•f
X
c
+
8
*—
<
+
3
+
O 3
OJ
—
X
«—4
<
r-4
+
<
8—4
*
X
<
+
8j-
+
+
***
OJ
+
4
OJ
*
X
<
a
w
LL
+
3
—
r-4
X
m
•
4*
—%
-—-
<
—
♦
OJ
41
4i
♦
X
*
8—
3
r—4
3
r-4
*
•
•
•
1
4-
<
X
4*
—
<1
<1
w
8-8
3
4>
3
*
1
-—
4-4
—•
r-4
*—
<
<
3
8
*
8
3
♦
X
4
♦
>t
4i
OJ
<
X
I
—
1
1
4<
3
1
8—1
—8
4"
•—
8
f—8
t—l
X
CO
*
+
<
3
—•
8
*
—-
—
UJ
<
1
—8
1
X
3
X
3
8
<
♦
1
3
3
OJ
-»
*
4<
I
3
<
8
LL
w
<
O
+
o
+
OJ
X
8
—■
■—-
«—-
4
•—
<
1
4»
88
1
4*
*
+
m
+
OJ
OJ
X
X
X
X
f—l
<
<
o
<
4
1
<
<
4
o
r-4
— 3
4i
—
X
X
X
8
1
4>
3
—
X
OJ
LL
3
OJ
r-
3
3
4i
CM
—»
4>
X
X
X
OJ
<
8
s
—
—
♦
*
•_
3
#
♦
*-4
*
8
OJ
1
r
X
*
OJ
•
X
X
8
<
X
4<
m
X
o
8
4*
»—
«X
4i
8
*
*
<
4
1
41
r-4
•
4
OJ
•
X
4
4-4
X
X
3
OJ
—'
X
1
<
4i
^â– 4
~
<—*
41
OJ
8
<
OJ
—
—4
*
OJ
3
3
o
â– f
X
—8
X
4-
<
X
w
3
z>
<
-—■
H
3
«4^.
+
X
*
1
X
X
—
8-8
888
4—4
m
8
1
4
*
s
X
4i
+
★
41
X
—■
4*
<
OJ
<
<
—8
4"
<
1
1
1
3
OJ
—4
<
X
8
8
o*
—-
8
•
OJ
4
4.
<
o
*
4i
4l
<
8-8
4i
8
8
8
4i
3
1
X
—
OJ
OJ
8
3
ro
4l
OJ
4»
♦
<1
LL
8
<
OJ
OJ
OJ
o
+
3
—
—
'4"
+
—
1
4*
X
4<
X
<
—-
—»
8—4
—-
X
X
X 80
—8
OJ
Z)
w
8
â– V
<
*
<
S
•
4i
•
X
<
<
OJ
LU
<
4>
41
LL
1
*
4-
in
vO
3
O'
Ol
-f
4i
ro
<
3
<
a
<
8
r-4
8
X
*
+
<
3
in
in
—-
<
in
OJ
OJ
OJ
w
a
3
•
8
1
3
1
3
l
3
*•*
OJ
w
o
c
<
—
4i
N,
+
8
8
*g
*
8
3
3
a
1
♦
1
r-4
OJ
3
II
II
II
ii
II
II
II
II
II
II
*
<
X
•
<
II
II
•
8
II
II
II
ii
II
CO
It
II
II
II
'f
in
43
n-
CO
O'
O
r—4
OJ
ro
OJ
a
r-4
r-4
X
8Í-
in
r—H
OJ
n0
r—
30
O'
O
s0
rH
Ol
O'
8Í-
r-4
8—4
r-^
r-4
w-i
OJ
eg
OJ
OJ
4*
1
<
■—
—■
O-J
OJ
—
8-8
OJ
O)
Ol
OJ
m
3
m
ro
ro
ro
3
3
3
3
3
3
3
a
3
a
*
—■»
+
X
3
â–¡
*
+
3
3
a
o
a
+
a
3
3
3
-4
OJ
ro
in
■—4
04
r-4

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
o
a
o
c
CD
CD
CD
CD
CD
CD
CD CD CD
D
CD
CD CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
CD
D
CD
»—
♦—1
»—*
H-
>—*
►—
»—
►—
vO
05
->i
O'
un ^
U5
ho
*—
CP
O'
CP
CP
CP
CP
CP
CP
U1
on
on
on
on
U!
on
on
on
on
P
P
P
P
P
P
P
P
P
P
OJ
OO
OJ
OO
OO
oo
-o
O'
OH
p
OJ
ro
o
II
II
H
II
H
ii
II
H
n
-0
O'
U1
p
OJ
ho
►—
o
<£>
00
-o
CP
U1
p
00
ro
►—
o
03
CJ
-o
CP
on
P
OJ
ho
»—
O
03
CD
CP
on
ii
ii
II
ii
ii
II
n
n
n
1
ho
i
r\j
i
l
—»
i
—•
II
II
II
II
II
n
II
II
II
II
ii
ii
II
ii
ii
ii
n
ii
II
II
II
II
n
II
II
II
II
II
II
n
II
II
n
p
i
p
i
p
1
p
i
p
p
•
ho
•
-P
Tl
.p
Tl
CD
CD
CD
CD
CD
CD
CD
CD
O
CD
CD
CD CD
CD
CD
1
o
—«.
•
P
•
p
•
p
•
P
•
•
*
•
*
•
•
>
•
*
o
a
o
o
CD
CD
CD
o
CD
O
CD
CD
CD
a
CD
OJ
OJ
OJ
ho
0*>
ro
N)
H
on
U1
on
on
on
OJ
OJ
*■»
oo
>—•
*
•
*
•
*
•
*
•
*
*
>
*
>
♦
*
*
m
Tl
OJ
OJ
ho
ho
ho
U1
VJ1
p
P
P
P
P
P
p
P
co
OJ
03
05
-o
r—
03
03
U1
CD
CP
—J
on
OJ
oo
•
>
*
>
*
>
♦
>
*
>
>
-p
>
ho
>
*n
*
Tl
+
o
vO
CO
►—
o
03
CD
-0 P
OJ
ho
O
*
*
*
*
*
»
x>
0
1
1
1
1
1
1
i
•
+
»—
>
h-
3>
>
oo
i>
CP
VJ1
*
OJ
«t
i—*
e*
ro
*
CD
1
i
1
1
i
1
i
1
i
1
*
*
*
*
*
CD
CD
CD
CD
CD
CD
CD
CD
n
CD
CD
CD
CD
CD
o
1
CD
P
â–º-*
PJ
»-*
o
03
#
-o
*
*
—»*
*
*—
*
+
+
*
*
C3
o
o
o
o
o
o
CD
CD
CD
CD
CD
CD
o
CD
P
OJ
OJ
OJ
ro
OJ
OJ
OJ
on
U1
on
on
on
OJ
OJ
c
*
CO
*
*
*
>
*
T>
>
—•
*
CD
OJ
CD
OI
Ol
U1
VJ1
oi
Ul
Ui
on
on
\J\
P
P
P
p
P
CP
OJ
O
OJ
cc
OJ
OJ
oo
P
o
oo
ro
p
pj
+
*
>
*
>
*
>
r>
*
>
#
*
•
•
p—
u
*
*
-J
O'
U1
p
OJ
CP
U1
p
V»
CP
CP
CP
CP
CP
1
1
1
1
1
1
1
1
ro
m
*
t*
*
>
*
*
<***
*
*—
•
+
•
CD
>
*
*
*
*
*
*
+
*
*
*
*
1
1
1
1
1
CD
CD
o
CD
o
n
CD
CD
•
X
*
«-*
*
—*
—
*n
*-*
Tl
â– n
>
•f
>
+
>
■*—
+
#
c
a
CO
C3
O
CD
o
CD
CD
CD
CD
CD
CD
o
CD
OJ
U1
or.
PO
on
on
OJ
OJ
*
-C
-n
—*
Tl
—•
Tl
Tl
+
Tl
i
1
W
>
W’
>
+
*
â– P
ho
►—
►—
P
p
P
P
P
OJ
OJ
P
p
P
03
p
o
O
hJ
P PO
o
>
T1
+
*n
1
1
m
+
m
m
♦
«—■
»
W-
-p
*
•
vO
vo
vO
VÜ
vO
on
U1
on
on
on
03
O)
03
CD
•>1
*
*
*
*
*
*
♦
*
1
1
l
>
C3
+
CD
CD
>
m
>
>
Tl
*
Tl
*
•
ro
*
1
i
1
1
1
*
*
*
*
O
CD
o
o
o
CD
CD
CD
hJ
ro
m
1
E*
o
1»
I»
t»
>
Tl
i
Tl
*
Tl
a
o
o
o
CD
N*
\
\
CD
CD
CD
CD
CD
P
roj
l\3
on
hJ
NJ
ho
hJ
•
•
>
m
w
>
*—•
i
W
1
i
1
>
>
1
Tl
*
O'
CP
CP
U1
on O
CD
CD
CD
CD on
on
OJ
OJ
ÃœJ
on
o
o
0t5
o
O
O
O
*
*
—*
>
1
1
1
>
1
>
>
>
1
>
>
*
ro
h—
o
>o
ac
P
P
P
P
P
o
03
sO
03
c
o
i
>
1
>
>
-j
J>
VJ1
O'
OJ
1>
*
ho
*
05
*
*
*
*
*
CP
CP
CP
CP
CP
w
W
w
•w
*
W.
>
1
>
03
►—
*
oo
#
*
*
-P
Tl
*
*
+
o
o
CO
Cl
CD
V.
CD
H-
>
H
*
O
«■*
*
—
Tl
*
*
â– n
0J
•P
ho
ho
ho
PJ
ho
CD
CD
CD
CD
CD
OJ
*
ho
—
*
Tl
•—*
Tl
Tl
I»
Tl
Tl
*
+
•
►—*
►—
p—*
p—•
1—*
U1
VJ1
ai
VJ1
Kjy
*
P
★
Tl
+
Tl
i
i
W
t>
i
Tl
J'
*
w>
w
w
—'
W
ro
PJ
ro
ro
ro
*
Tl
i
Tl
m
+
m
m
*
*
>
+
•
Tl
>>
\
s
\
*n
+
â– n
o
1
>
m
>
>
ho
*
ho
>
*
*
o
o
o
CD
CD
>
T1
CT3
+
>
CD
3>
w
w
i
ro
*
P—*
Tl
CD
hO
ho
ro
ro
ro
i
>
>
o
I»
*
w
*
*
j>
+
Tl
*
1»
*
o
o
o
o
o
m
1
>
*
w
*
*
*
*
-p
>
Tl
*
CD
>
m
*
w
*
*
N>
*
ho
ho
*
ÃœJ
CD
1
>
*
*
hJ
*
1
ho
i
+
Tl
*
*
-P
*
PJ
*
i
PJ
>
>
>
>
Tl
CD
•
*
*
1
PJ
>
+
OO
>
O'
U1
>
1
*
hO
*
>
+
»-»
1»
*
-J
*
*
-P
Tl
1
ho
»—*
>
o
03
—
♦
—*
•
*
I>
+
PJ
♦—
*
*
Tl
Tl
Tl
*
CD
h“*
>
*
H->
+
Tl
i
i
Tl
*
p
»-*
*
Tl
-n
m
+
m
m
>
CD
*
co
Tl
1
1
>
m
>
>
*
>d
—
*
+
Tl
CD
CD
W*
>
w
w
CD
>
Tl
o
+
>
>
w
*
>
*n
>
CD
W
w
CD
i
>
w
>
*
m
l
>
> m
— >
ro
oo

m
m
m
m
m
m
m
m
m
m
IT,
m
m
m
m
m
m
m
m
m
m
m
m
m
rr.
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
rr
m
m
m
cr
m
m
m
O'
o
O'
O'
O'
O'
O'
O'
O'
dl
on
CD
cn
on
on
on
on
on
oi
on
X»
X*
X*
X-
X»
X'
X-
X-
OO
oo
00
00
ÃœJ
oo
oo
OO
00
oo
ro
ro
ro
ro
rvj
ro
NO
No
ro
NO
>-*
OD
-s(
O'
on
-i'¬
w
ro
c
o
vO
ro
-0
O'
cn
-p*
oo
ro
r—
o
o
CD
-0 O'
on
X»
oo
ro
»—
o
vO
CD
-si
O'
on X'
oo
ro
i—
o
yO
ro
^i
O
Ul X
OJ
ro
t—
o
«O
II
II
II
tl
ll
II
ii
II
II
II
il
II
it
II
ii
II
ii
II
T)
Ii
II
II
II
o
ii
n
li
li
n
II
ii
II
II
ii
li
li
li
ii
It
II
ii
ii
ii
il
II
n
II
li
ii
II
n
—
•-»
ft—
ro
ro
ro
ro
—*
ro
ro
ro
•—■
»■»
»-*
CXI
1
II
X-
1
X-
1
00
i
>
CD
l
>
X*
i
X-
1
00
l
>
CD
1
X»
1
X'
1
oo
1
>
X
1
X
1
X
I
H-*
1
ISJ
•
•
•
•
>
•
•
•
ro
1
ro
l
•
CXI
>
•
X»
•
X*
•
CD
00
»
CD
X»
•
X'
•
X-
•
oo
oo
•
oo
•
X»
•
X-
•
CD
ho
•
X
•
X
•
X
•
ro
%
x
*
*
*
X
*
*
*
«
ro
•
ro
ro
*
•
jr
*
•
*
•
*
•
oo
■»
•
X»
*
•
*
•
X
•
o
X
•
X
•
X
•
X
•
»—
X
•
X
•
X
•
+
•
X
O (T) O O
O
cm
Cl
cm
*
•
x
•
•
i>
*
-0
>
*
>
X
>
*
*
I»
*
*
>
*
>
X
>
X
X
>
X
>
X
>
X
>
X
*
>
X
>
X
to
X
1>
*
Tl
*
*
*
*
*
*
x
*
i»
*
to
*
+
->
>
*
X'
>
X»
to*
00
I»
X*
t»
OJ
i»
OO
I»
oo
to*
.—■
ro
>
ro
>
ro
I»
ro
I»
-~s
X
to*
*—
to
►—
to
w
>
to
**■»
«—
—•
—»
*—-
«—
—
o
j>
o
>
cn
vO
X'
oo
X-
M
X'
O'
OO
X*
O'
X'
X»
oo
-J
oo
ro
00
X*
vO
ro
-si
ro
on
ro
OO
ro
>
X
CD
»-*
cr
t—-
*
*
X
►—
l
>
1
â– n
i
ro
c
T5
o
*
o
cm
*
03
x~
*
ro
*
o
*
or
•
X
on
•
*
CD
*
O'
X
*—
»
X
oo
X
O'
X
X-
X
ro
•
ro
t»
X
-4
X
cn
>
>
to
•
ro
X
ro
to
ro
•
•
*
â– o
»■»
*
■—
J>
•
•
to»
*
>
*
I»
*
*
>
*
*
>
*
t*
X
>
X
X
to-
X
>
X
I»
X
>
X
*
o
n-
to»
X
to
X
ho
X
x
1
•
ro
•
l
•
x
i
—
*
c
*
*
3>
*
*
to*
*
I»
*
1»
*
1»
to*
*
1»
X
1»
X
>
to*
X
>
X
to*
X
to»
X
to*
>
X
vO
X
to-
X
to
1
00
CD
ro
*
x
*
*n
*
>
ro
C
*—
•
*
Tl
*
Í»
*
*
Tl
*
*
Tl
*
*
—-
*
X
Tl
X
X
cm
X
X
—s
X
m
X
★
•s
X
X
X
>
1
1
•
to
—»
to
•—
â– >
oo
•
•
C
X
•
ro
&
Tl
*
*n
-—■
Tl
1
Tl
>
>
Tl
to*
Tl
Tl
—-
1
Tl
>
to*
cm
cm
*—
cm
—s
»»
m
>
Tl
_
T
.—
Tl
ftris
*—*
ISJ
NO
♦
*
•m
*
l
x
X
*
X
•
>
+
l
1
J>
>
>
â– n
>
Tl
X*
1
1
1
>
1
>
Tl
>
Tl
X»
1
1
1
>
>
cm
>
cm
1
>
I
>
Tl
to-
Tl
to
Tl
*
•
•
>
to
to
>
ro
>
*
to
to
X
•—
>
-P>
1
1
+
3>
1
>
•
X»
ro
X-
1
ro
X
to*
1
I»
•
X-
ro
X-
i
X
>
i
to»
X
1
ho
X
>
l
to
X
to
Tl
*
*
W
X
x
X
•
oo
Tl
s-ft
—
>
*
ro
•
Jr
ro
Tl
+
T|
1
*
•
•
•
X*
•
Tl
X
Tl
1
X
•
•
•
X»
m
X
m
1
»
X
•
cm
X
cm
1
m
X
1
-n
to
*
ro
Tl
O
*
X
1
*
*
■—
m
*
•
*
•
•
—
Tl
«—
-n
>
*
m
*
•
*
«—
-n
»»
Tl
>
X
X
X
•
to*
m
to-
m
X
•
*
>
cm
>
cm
to
m
>
to
X
>
1
—
1
>
1
ro
>
*
>
m
+
>
*
*
1
1
oo
>
>
>
*
>
1
w
1
w
oo
>
>
>
X
*—
>
*_
to*
>
X
>
>
j>
to
hJ
*
to
•—
1
ft—*
*
ro
*
u>
to
o
1
D>
CO
-P'
>
>
I>
1
>
1
U!
oo
X'
to*
w
>
1
>
1
»—•
oo
.—-
ro
to
1
1
w
ro
t»
T
i
w
1
♦
to
X
-0
•n
ro
Tl
to
•
*
oo
1
to
>
1
cm
03
-r
—
X»
>
X'
to*
*
O'
on
X*
00
>
OO
>
X
ro
oo
ro
I»
l
»•
1
no
ro
>
T
>
1
to
1
CD X
vO
I»
•
to
â– S'
*
>
to
1
o
>
w
*
sD
ro
X»
O
X»
â– n
*
*
O'
CD
oo
O'
oo
Tl
X
X
yO
ro
to*
ro
I»
X
OO
i—
i»
i—
to
*-â– 
to¬
03
X
x
*
1
c
Tl
*
n
to
*
O
Tl
*
*
oo
*
i—•
*
m
Tl
*
#
vO
*
-si
X
Tl
cm
X
cr
ro
X*
ro
m
X
v£)
ro
-0
i-»
cn
ft—
o
X
J»
*n
to
Tl
x
*
>
â– o
o
m
*
*
1>
*n
—
*
-»*
*
Tl
*
1>
Tl
.—.
*
-—
X
Tl
X
>
cm
X
-0
X
cn
t»
m
X
o
X
CD
X
O'
to
X
-—-
x
*—
>
to
oo
«
Tl
>
m
-n
*
>
Tl
—»
Tl
»■»
1
Tl
0
>
Tl
»-»
Tl
<—
1
Tl
X
>
—s
X
—.
X
X
to»
-—,
X
X
os
X
X
sO
*
>
*
x
oo
Ul
cm
*
*
>
o
Tl
*
I»
Tl
>
*n
ro
+
*
*
J»
n
»•
Tl
ro
X
X
X
cm
—
cm
—
X
X
Tl
—.
Tl
«S
Tl
00
«—
1»
x
>
c
Cn
X
j>
cn
m
*
*
J>
*
+
>
1
to*
•
ro
ro
*
X
>
1
»
•
ro
ro
cm
>
cm
to-
cm
no
X
to-
Tl
I»
Tl
to
Tl
Sftft
X
x
oo
X
s—
x
to
x
t»
i»
m
70
1
ro
Tl
X
Tl
1
*
•
l
ro
Tl
X
Tl
1
X
•
i
>
X
>
1
i»
1
ro
X
>
1
to
X
to
*
ro
00
x
C
*
to
OO
cm
•
1
>
>
ro
+
—
Tl
«-»
Tl
>
*
ro
+
w
â– n
Tl
>
X
ro
X
m
X
m
l
ro
X
cm
X
cm
1
m
X
NO
•
x
to
X
ro
oo
CD
>
cn
>
♦
-1
•
ro
*
w.
*
»—
OJ
>
•
ro
*
*
—-
oo
>
•
ro
I»
m
1»
m
•
no
>
cm
>
cm
to
m
•
x
to
x
to
•
X'
w
i
>
o
*—*
*
•
*
*
*
m
o
oo
*
•
*
*
*
X
ro
oo
X
•
w
to
_
>
X
•
s_
>
—
to
s~,
to
*
CD
X
oo
X
*
■—■
to¬
x
*
CJ
O
>
*
ro
*
ro
X
*
on
to*
*
ro
*
ro
X
X
i—•
I»
X
X
. -
X
_
>
X
X
—
*
X
w
ro
«—
O
cm
ri
>
m
*
X»
>
1
ro
1
ro
Tl
*
X'
>
1
ro
1
ro
Tl
X
r\j
>
X
X
X
X
ro
J>
X
*
X
X
X
X
«—
»»
T)
o
>
m
sO
X»
>
+
to»
+
Tl
O'
X»
>
X
t*
X
Tl
yO
ro
ro
X
ro
X
OJ
ro
NO
X
ro
X
ro
X
X
â– o
»-
>
*
oo
X»
>
X»
>
*
on
t»
OJ
>
X
OB
l
ro
l
ro
X
ro
1
ro
l
ro
1
ro
cn
*
*
â– n
♦
oo
X'
r-
X»
Tl
*
«O
oo
-si
oo
o
X
>
X
>
X
m
X
>
X
>
X
to
X
>
cm
>
*
>
Tl
*
ro
*
o
>
Tl
*
CD
X
O'
to-
cm
ro
>
no
>
to*
m
ro
>
►—
i>
r-
to¬
»—,
>
>
>
*•»
*
*
>
»“>
*
«—
X
>
-si
ro
cn
ISO
>
o
i—
CD
cr
c¬
*
-—-
X
►—
â– n
T!
Tl
»-»
Tl
-â– S
X
cr
X
X
X
yO
X
-si
X
en
to
*
X
to*
Tl
>
Tl
>
Tl
>
-n
X
«—
X
X
—
X
ft.
X
ro
>
+
>
1
>
X
>
1
>
o
—
cm
—
Tl
Tl
—
-n
ri-S
X
ro
Tl
+
n
1
*n
X
Tl
1
I>
cm
>
cm
>
Tl
>
Tl
to
-n
X
—
Tl
*-»
Tl
—
Tl
s^
Tl
+
i>
i
>
X
>
1
to
X
to
»—
«—
»—
m
X
m
i
cm
X
cm
1
m
X
m
>
m
>
cm
>
o
to
m
>
—■
to
to»
—
s*
—
to
hO
vo

m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
â–º-*
*—
»—
»—
*—
1—»
*-*
h-
f—
â–º-*
h-*
»—•
>—
h-*
>o
sO
s0
sO
«o
vC
vO
vO
sO
â–º-*
H
K-
►—
»—*
»—*
►—
o
o o o
o
o o o
o
o
vO
00
~j
c^
Ul
-F'
OJ
ro
h-»
00
-«4
O'
ui
OJ
ro
o
42
CD
-o
o
U1
-P' OJ
ro
>—*
O
ii
ii
ii
II
ii
II
II
il
ii
II
II
II
ii
ii
II
ii
H
n
II
ii
ii
II
n
II
n
n
II
II
>
ro
ro
ro
ro
M
ro
ro
ro
«—•
—*
73
ro
ro
M
ro
M
ro
ro
ro
ro
ro
IO
ro
ro
ro
ro
OJ
>
>
I»
OJ
n»
*
*
#
*
*
*
c
O
-4
4c
*
*
«
*
*
*
*
#
*
*
#
#
#
*
>
i>
i>
>
>
>
>
>
*
*
H-*
t»
•
t>
i»
1»
>
>
>
i>
t»
>
>
t»
i>
*
*
★
*
*—
O
*
*
*
*
*
-P'
*
#
*
♦
*
*
*
*
♦
1
>
>
>
>
>
>
>
>
*
>
>
O
Ul
t>
t»
ÍO
>
>
>
>
t>
>
>
>
i>
OJ
OJ
OJ
ro
ro
ro
ro
ro
•
•
â– t-
*
*
4>
#
â– O
-O'
-p-
UJ
OJ
üj
OJ
OJ
OJ
•
H-
rv
o
00
vD
O'
-0
4*
4-
CO
oo
vü
o
>
O'
i>
Lu
o
1—*
00
42
o-
-0
>
on
+
i
â– f
i
+
1
«f
1>
i»
•
+
1
+
+
1
+
i
+
l
+
1
+
1
+
i
CT;
ro
r\j
ro
ro
>
w
—
+
N)
fo
ro
N)
NJ
>
>
>
>
>
>
>
>
lo
ro
*
•
•
•
•
en
rvj
en
+
i
C/i
•
•
•
•
•
-p'
-p'
OJ
u>
OJ
OJ
•
•
en
*
*
*
*
>
O'
>
t>
>
O
*
*
*
4c
*
OJ
N)
>—
o
*o
CD
-4
O'
*
*
+
TI
â– >
en
O
+
*
i
n
o
w
>
t>
>
>
>
*
*
*
#
4c
*
*
*
1>
>
ro
*
OJ
i>
>
m
m
*
*
*
4>
â– f'
W
■í'
-S'
OJ
OJ
•
>
)—
*
*
>
o
>
m
m
X
v£l
00
*
O'
Ul
X
X
X
TI
X
TI
X
X
U1
-f'
*
OJ
*
>
3>
—-
J>
w
>
>
o
*
*
>
4t
*
I»
I»
>
>
1»
i»
£»
I»
x>
«
>
ro
X
ro
ro
*
+
He
w.
TI
TI
TI
x
+
4“
1
i
+
+
1
1
X
TI
—■*
00
>
m
>
*
*
>
>
~4
t*
>
X
X
X
X
TI
X
TI
X
1
i
ro
>
ro
i>
i>
i
i
-í'
-0
w
on
i—*
H-
1
1
1
1
•
•
X
X
•
•
-p-
â– p'
-p>
-P*
*
*
*
*
•
•
•
•
I>
>
t»
>
*
*
*
*
OJ
OJ
>
£*
£»
-O'
VJI
OD
vD
>
•P'
-ps
-P-
*
*
*
*
M
ÃœJ
o
en
en
en
O
*
»
4c
*
*
★
*
*
O
o

en
en
o
o
O
*
*
*
*
en
o
en
en
m
m
X
m
m
m
m
m
m
m
m
m
m
m
X
m
m
m
m
m
m
m
m
vO
e»
oo
oo
oo
Cü
CD
oc
oo
00
co
0D
-0
-0
-0
-4
-o
-0
-4
-si
-4
O'
o
«¿j
Oo
-0
«0
O'
Ul
OJ
IO
C-*
o
oo
-0
O'
Ul
.p'
OJ
ro
>—*
o
'C
II
ii
n
"O
II
II
II
ii
ii
ii
ii
II
II
ii
II
ii
n
H
II
ii
II
II
ii
ro
IO
rvj
II
ro
ro
ro
ro
ro
ro
IO
rj
IO
ro
Nj
ro
ro
ro
ro
ro
*
*
#
•
*
*
He
*
♦
*
*
*
■ü
*
*
*
*
*
4c
4c
•
•
•
s»
I>
t>
Hi
>
>
•>
>
>
>
>
>
>
s»
>
>
>
>
>
>
4*
+
+
*
Hi
*
I»
*
*
#
*
*
Hi
H—
vO
*
4t
*
4i
>
t>
>
>
>
*
>
>
>
J>
>
>
>
D>
H-
>
*
>
â– H
t>
>
>
w
ro
ro
ro
>
ro
K“*
►—1
►—
*—
Hi
K-
J>
►—
>
co
Ul
O'
4c
4»
♦
ui
ro
OJ
IO
>£
o
-0
OD
Ul
O'
l»
t»
ro
+
O
+
l
+
i
j>
>
1
+
l
b—
+
1
i
4*
1
4*
i
4-
i
1
—*
>
«—
i*
UJ
►—*
>
IO
ro
—»
>
>
>
•—*
>
«—
>
X
>
X
-o
X
Ul
+
i
+
ro
•
•
X
>—
T)
X
»—*
TI
X
•*-
1
'O
+
4c
1
Hi
>
>
X
He
He
>
vO
>
-o
>
Ul
>
0J
+
en
♦
m
—*
m
-p-
ejj
Hi
★
m
m
+
Hi
i
*
+
*
i
*
en
He
>
>
X
>
X
Hí
4c
>
—•
t>
i>
O
en
m
*-*
m
>
***%
TI
+
w
1
X
X
ro
en
*
*
>
X
i»
TI
>
X
>
X
w
X
*
i
*
m
*
m
>
>
1
>
>
>
>
>
w
>
W
1>
4c
+
>
en
>
>
i»
>
1
1
>
i
ro
ro
Hi
+
*
i
♦
+
4c
1
>
O 1—
>
00
w
e>
•w
>
1>
m
OJ
rj
>
en > en
>
m
>
m
I»
o
1
1
1
i
OJ
*
>
ro
í>
h-
i»
>—
i»
1—
3>
ro
i
i
>
i»
>
>
Hi
*
en
o
CD
w
e>
w»
W
l
1
t»
j>
-o
co
Ul
O'
en
en
*
i
i
i
1
i
1
i
1
>
^0
H-
4»
*
*
4»
4»
HI
en
>
>
i»
J>
>
J>
>
>
»—
Ht
o
en
en
o en
en
en
â–º-*
N)
»—•
h—
>—
r-4
ro
en
4»
*
*
*
*
vO
o
-0
CO
Ul
CJ'
OJ
4>
*
*
*
en
o
en
en en
*
*
Hi
♦
Hi
★
*
en
en
en
4c
en
en en o en
en en
en
*
*
en
*
*
»
H<
Hi
41
*
V
en
en
en
en
en en
en
en
en
LO
O

131
E119=(ACP*(1.+A)-ADP*GA)*A2H
E120=(ADP*(l.+A)+ ACP *GA)*A2H
DB=EXP(2.*(A-1.) *0-1.
DC=EXP(2.*A*C)-1.
DF=EXP(2.*(2.*A-1.)*C)-1.
0G=1. + EX P( (3.*A-1.)*C)
DD=DG
DE = DG
Gl=D6/4./(A-l.)
G2=-DB/4./F
G3={A-l.)*DB*(1./{FA-F)**2-1./(FA+F)**2)
G4=-DB/2.*(1./(F+FA)-1./(FA-F))
G5=.5*(-DB)*(l./(FA+F)+l./(FA-F))
G6=-DB/4./FA
G7=DC/4./A
G8=-DC/4./F
G9=A*DC*{1./(FA-F)**2-1./(FA+F)**2)
G10=.5*DC*(-l./lF+FA)+1./(FA-F))
G11=DD*(l./2./EA**2-l./2./(2.*F-EA)**2)*(3.*A-l.)*<-l.)
G12=DD*(l./2./(2.*F-EA)+1./2./EA)
G13=(3.*A-1.) *(-DD)*(l./2./EA**2-l./2./(2.*F+EA)**2)
G14=DD*(l./2./(2.*F+EA)-l./2./EA)
G15=-DD*(3.*A-1. )*(l./2./GA**2-l./2./(2.*F-GA)**2)
G16=DD*(1•/2./(2.*F—GA)+1•/2•/GA)
G17=DD*(3.*A-1.)*(l./2./GA**2-l./2./(2.*F+GA)**2)
G18=0D*(l./2./(2.*F+GA)-l./2./GA)
G19=-DD*(3.*A-1.)* G20=-0D*(l./2./(F+FA-EA)-l./2./(FA-F-EA))
G21=D0*(3.*A-l.)*(l./2./(F-FA-EA)**2-l./2./(F+FA+EA)**2)
G22=DD*( l./2./(F + FA+EA)-l./2./(FA-F + EA))
G23=-DD*(3.*A-l.)*(1./2./(F-FA+GA)**2-1./2./(F+FA-GA)**2)
G24=0D*(l./2./(F*FA-GA)-l./2./(FA-F-GA))
G25=-DD*(3.*A-1.)*(1./2./(F-FA-GA)**2-1./2./(F+FA+GA)**2)
G26=DD*{1./2./(F + FA + GA)-l./2./< FA-F + GA))
G27=.5*(-DC)*(l./(F+FA)+l./(FA-F))
G28=-DC/4./FA
G29=-DD*(3.*A-1.)*(1./2./(FA-F+EA)**2-1./2./{FA+F-EA)**2)
G30=0D*(l./2./(FA + F-EA)*l./2./(FA-F + EA) )
G31=-DD*(3.*A-1.}*(1./2./ÍFA-F-EA)**2-l./2./(FA+F+EA)**2)
G32=DD*ll./2./(FA+F+EA)+l./2./(FA-F-EA))
G33=-DD*(3.*A-1.)*(1./2./(FA-F+GA)**2-1./2./(FA+F-GA)**2)
G34=DD*(l./2./(FA+F-GA)+l./2./(FA-F+GA))
G35=(3•*A-1.)*DD*{-1.)♦(1./2./(FA-F-GA)**2-1./2./{FA+F+GA)**2)
G36=DD*{l./2./(FA+F+EA)+1./2./(FA-F-EA))
G37=-DD*(3.*A-1.)*(l./2./EA**2-l./(2.*FA-EA)**2)
G38=DD*{l./2./(2.*FA-EA)+l./2./EA)
G39=-DD*13.*A-1.)*(1./2./FA**2-1./(2.*FA+EA)**2)
G40=DD*(l./2./(2.*FA+EA)-l./2./EA)
G41={3.* A-1.)*DD*(1•/2•/GA* *2—1•/(2•*F A-GA)* *2)
G42=0D*(l./2./(2.*FA-GA)+l./2./GA)
G43=-DD*(3.*A-1.)*{1./2./GA**2-1./(2.*FA+GA)**2)

132
G44=DD*(1./2./(2.*FA+GA1-1./2./GA)
G45=.25*DE*(1./EA-l./(2.*F + EA)+1./(2.*F-EA))
G45P=(3.*A-1.)/4.*DE*(1./(2.*F+EA)**2-1./(2.*F-EA)**2 )
G46=0E/4.*(l./(FA-F+EA)-l./(FA~F-EA)-l./(F+FA+EA)+l./(F+FA-EA)}
G47=(3.*A-i.)/4.*(-DE)*(1./(F+FA-EA)**2-1./(F+FA+EA)**2-1./lFA-F
1-EA)**2+l./(FA-F+EA)**2)
G48=DF/4.*(-l./2./EA+i./2./F~l./2./(F-EA))
G49=(2.*A-1.)/2.*DF*(l./4./(F-EA)**2-l./4./F**2+l./4./(2.*A-l.)**2
l-l./4./EA**2)
G50=-DF/4•*{l./2./EA + l./2./F-l./2./(F+EA) )
G51=(2.*A-1.}/2.*DF»{l./4./F**2-1./4./IF+EA)**2-1./4./{2.*A-l.)**2
1+1./4./£A**2)
G52=-DF/4.*(l./(2.*F-EA-GA)-1./(GA-EA) -1./(2.«F-GA+EA)
1+1./(EA+GA))
G53=(2 . * A-1.)/2.*DF*(1./(GA-EA)»*2+1./(2. + F-EA-GA)**2-1./(EA+GA)
1**2-1./(2.*F+EA-GA)*»2)
G54=-DF/4.*(l./(2.*F-EA+GA)+l./{GA+EA)-l./(2.*F+GA+EA)+l./{EA-GA))
G55=(2.*A-1.)/2.*DF*(1./(GA+EA)»*2-1./(2.+F-EA+GA)**2-1./{EA
1-GA)**2+l./(2.*F+EA+GA)**2)
G56=-DF/4.*(1./CFA-F)+l./{FA+F-2.*EA)-l./(F+FA)-l./(FA-F-2.*EA))
G57=(2.*A-1.)/2.»DF*(l./(F+FA-2.*EA)**2-l./(F+FA)*»2-l./(FA-F-
12.*EA)**2+1./(FA-F)**2)
G58=-DF/4.*( l./{FA-F + 2.*EA)-1./(FA-F )-1./(FA+F + 2 . *EA ) + 1./(FA+F))
G59=(2.*A-1.)/2.*DF*(1./(F+FA)**2-1./(F+FA+2.*EA)**2~1./(FA-F)**2+
11./(FA-F+2.*EA)**2)
G60=-DF/4.*(l./(FA+F-EA-GA)+1./(FA-F-GA+EA)-1./(FA+F-GA+EA)
1-1./(FA-F-EA-GA))
G61=(2.*A-1.)/2.*DF*(1./(FA+F-EA-GA)**2+1./(FA-F -GA+EA)**2
1-1./ÍF+FA+EA-GA)**2-1./(FA-F-EA-GA)**2)
G62=-DF/4.*(l./(FA+F-EA+GA)+l./(FA-F+GA+EA)-1./(FA+F+GA+EA)
1-1./(FA-F-EA+GA))
G63=(2•*A-l.}/2.*DF*(1./(FA+F-EA+GA)**2+1./(FA-F+GA+EA)**2
1-1./(FA+F+GA+EA)**2-l./(FA-F-EA+GA)**2)
G64=(3.*A-1.)/4.*DE*(l./(2.*F+EA)**2+l./(2.*F-EA)**2-2./F**2)
G65=DE/4.*(1./(2.*F+EA)+1./(2.*F-EA))
G66=(3.*A~1.)/4.*( —DE)*(1./(FA—F-EA)* *2—1./(FA + F + EA)**2+1./
1(FA-F+EA)**2-1./(F+FA-EA)**2)
G67=DE/4.*(l./(F+FA+EA)+l./(FA+F-EA)-1./(FA-F+EA)-1./(FA-F-EA))
G68=(2.*A-1.)/2.*DF*(l./4./EA**2+l./4./(2.*A-l.)**2-l./4./(
lF-EA)**2-l./4./F**2)
G69=-DF/4.*(1./2./F+1./2./1F-EA)+1./2./EA)
G70=(2.*A-1.)/2.*DF*(l./4./EA**2+l./4./(2.*A-l.)**2-l./4.
l/(F+EA)**2-l./4./F**2)
G7i=-DF/4.*(1./2./(F+EA)+l./2./F-l./2./EA)
G72=(2.*A-1.)/2.*DF*(l./(EA+GA)**2-l./(2.*F-GA+EA)**2+l./(GA-
1EA)**2-1./(2.*F-EA-GA)**2)
G73=-DF/4.*(1./(2.*F+EA-GA)+i./(EA+GA)+1./C2.*F-EA-GA)+!./(GA-EA))
G74=(2.*A-l.)/2.*DF*(1./(EA-GA)**2-1./(2.*F+GA+EA)**2+l./(GA
l+EA)**2-l./(2.*F-EA+GA)**2)
G75=-DF/4.*(l./(2.*F+EA+GA)+l./(EA-GA)+l./(2.*F-EA+GA)-1./(GA+EA))
G76=(2•* A-1.)/2.*DF*(1./(FA-F-2.*EA)**2-l./(FA+F)**2 + l./(FA-F)**2

133
1-1./(FA + F—2.*EA)* *2)
G77=-DF/4.*( l./( FA+F)-l./(FA-F-2.*EA)+1./(FA+F-2.*EA)-1./(FA-F))
G78 =(2.*A-1.)/2.*DF*(1./(FA-F)**2-l./(FA+F+2.*EA)**2+1./(FA-F
1+2.*EA)**2-1./(FA+F)**2)
G79=-DF/4.*(l./(FA+F+2.*EA)-l./(FA-F)+1./(FA+F)-1./(FA-F+2.*EA))
G80=(2.*A-l.)/2.*DF*(1./(FA-F-GA-EA)**2-1./{FA+F-GA+EA)**2
1+1./(FA-F-GA+EA)**2-1./(FA+F-EA-GA)**2)
G81=-DF/4.*(l./(FA+F+EA-GA)-l./(FA-F-GA-EA)+1./(FA+F-GA-EA)
1-1./(FA-F-GA+EA))
G82=(2.*A-1.)/2.*DF*{1./(FA-F+GA-EA)**2-1./(FA+F+GA+EA)**2
1+1./(FA-F+GA+EA)**2-1./(FA+F-EA+GA)**2)
G83=-DF/4.*(l./(FA+F+EA+GA)-l./(FA-F+GA-EA)+1./(FA+F-GA-EA)
1-1./(FA-F+GA+EA))
G84=DE/4.*(l./GA-l./(2.*F+GA)+l./(2.*F-GA))
G85=(2.*A-1.)/2.*DE*(1./(2.*F+GA)**2-1./(2.*F-GA)**2)
G86=DE/4.*(l./(FA-F+GA)-l./(FA-F-GA)-l./(F+FA+GA)+l./(F+FA-GA))
G87=-DE*(3.*A-1.)/4.*(1./(F+FA-GA)**2-1./(F+FA+GA)**2-1./
1 (FA-F-GA)**2 + 1./(FA-F + GA)**2)
G88=-DF/4.*(l./(2.*F-EA-GA)+1./(GA-EA)-1./(2.*F-EA+GA)+1./(EA+GA))
G89={2.*A-1.)/2.*DF*(1./(GA-EA)**2+1./(2.«F-EA-GA )**2-1./(EA
1+GA)**2-1./(2.*F+GA-EA)**2)
G90=-DF/4.*(1./(2.*F-GA+EA)+l./(GA+EA)-l./(2.*F+EA+GA)+l./(GA-EA))
G91=(2.*A-1.)/2.*DF*(l./(GA+EA)**2+l./(2.*F+EA-GA)**2-l./(GA-
1EA)**2-1./(2.*F+GA+EA)**2)
G92=DF/4.*(-l./2./GA+l./2./F-l./2./(F-GA))
G93=(2•*A-1.)/2.*DF*(l./4./(F-GA)**2-l./4./F**2+l./4./(2.*A-l.)
l**2-l./4./GA**2)
G94=-DF/4.*(l./2./GA+l./2./F-l./2./(F-EA))
G95=(2.*A-i.)/2.*DF*(1./4./F**2~1./4./(F+GA)**2-1./4./(2.*A-1.)**2
l+l./4./GA**2)
G96=-DF/4.*(l./(FA-EA+F-GA)+l./(FA-F-EA+GA)-1./(FA+F-EA+GA)
1-1./(FA-F-GA-EA))
G97=(2.* A-1.)/2.*DF»(1./(FA + F-EA-GA)**2 + 1./(FA-F-EA + GA)**2
1-1./(F+GA+FA-EA)**2 -1./(FA-F-EA-GA)**2)
G98=-DF/4.*(l./(FA+F+EA-GAJ+l./(FA-F+EA+GA)-1./(FA+F+EA+GA)-1.
1 /(FA-F-GA + EA))
G99=(2.*A-1.)/2.*DF*(1./(FA+F+EA-GA)**2+1./(FA-F+EA+GA)*«2-1./
KF+FA+EA+GA)**2-1./(FA-F+EA-GA)**2)
G100=-DF/4.*(1./(FA-F)+l./(FA+F-2.*GA)-1./(F+FA)+1./(F-FA+2.*GA))
G10i = (2.*A-l.)/2.*DF*(1./IF + FA—2.*GA)**2-1./(F + FA)**2-1./(F A-F
1-2.*GA)**2+1./(FA-F)**2)
G103=(2.*A-1.)/2.*DF*(1./(F+FA)**2-1./(F+FA+2.*GA)**2-1./(FA
1-F)**2+1./(FA-F+2.*GA)**2)
G102=-DF/4.*(1./(FA-F+2.*GA)-l./(FA-F)-1./(FA+F+2.*GA)+1./(FA+F))
G104=(3.*A-1.)/4.*DE*(1./(2.*F+GA)**2+1./(2.*F-GA)**2-2./F**2)
G105=DE/4.*(i./(2.*F+GA)+1./(2.*F-GA))
G106=(3.*A-1.)/4.*(-DE)*(1./(FA-F-GA)**2-1./(FA+F+GA)**2-1./(F+
IFA-GA)**2+1./(F-FA-GA)**2)
Gl07=DE/4.*(l./(F+FA+GA)+l./(FA+F-GA)-l./(FA-F+GA)-l./{FA-F-GA))
G108=(2.*A-1.)/2.*DF*(1./(EA+GA)**2-1./(2.*F-EA+GA)**2+1./(GA-EA)
l**2-l./(2.*F-EA-GA)**2)

134
G109=-DF/4.*(1./(2.*F-EA+GA) +1 ./(EA + GA) +1./(2.*F-EA-GA) +1./{EA-
1GA) )
G11Q=(2.*A-1.) / 2 • *DF*(1./(EA-GA)**2-l./(2.*F+ EA+GA)**2+1./(EA+
1GA)**2-1./{2.*F-GA+EA)**2)
G111=-DF/4.*(1./(2.*F+EA+GA)+1./(GA-EA)+1./(2.*F-GA+EA)-1./(EA+
IGA) )
G112=(2.*A-1.)/2.*DF*(1./4./GA**2 +1./4./{2.*A-1.)**2-1./4./(F-GA)
l**2-l./4./F**2)
GU3=-DF/4.*{ 1./2./F + 1./2./Í F-GAJ + 1./2./GA)
G114=(2.*A-1.)/2.*DF*(l./4./GA**2+i./4./(2.*A-1.)**2-l./4./(F+GA
1 )**2-l./4./F**2)
Glt5=-DF/4.* G116=(2.*A-l.)/2.*DF*(1./(FA-F-EA-GA)**2-l./(FA+F-EA+GA)**2
1+1./(FA-F-EA+GA)**2-1./(FA+F-EA-GA)**2)
G117=-DF/4.*(1./(FA+F + GA-EA) — 1•/(FA-F-EA—GA) +1•/{FA + F-EA-GA)
1-1./(FA-F-EA+GA))
G118=(2.*A-1.)/2.*DF*(1./(FA-F+EA-GA)**2-1./(FA+F+EA+GA)**2
1+1./(FA-F+EA+GA)**2-1./(FA+F-GA+EA)**2)
G119 = -DF/4.*(1./( FA + F + EA+GA )-l./(FA-F + EA-GA) + l./(FA+F + EA-GA)
1-1./(FA-F+EA+GA))
G120=(2.*A-1.)/2.*DF*{1./(FA-F-2.*GA)**2-1./(FA+F)**2+1./
1(FA-F)**2-1./{FA+F-2.*GA)**2)
G121=-DF/4.*(1./(FA+F)-l./(FA—F-2.*GA) +1•/{FA + F-2•*GA) — 1•/(FA-F))
G122=(2.*A-1.)/2.*DF*(1./(FA-F)**2-1./(FA+F+2.*GA)**2+1./{FA-F
1+2.*GA)**2-1•/(F A+F)** 2)
G123=-DF/4.*(1./(FA+F+2.*GA)-l./(FA-F)+1./(FA+F)-1./(FA-F+2.*GA))
G124=DF/4./(2.*A-1.)
G125=-DF/2.*(l./2./EA+l./2./(2.*F-2.*EA)-l./2./(2.*F+2.*EA))
G126=(2.*A-1.)*DF*(l./4./EA**2-l./2./(2.*F+2.*EA)**2-l./2./
1(2.*F-2.*EA)**2)
G127=-DF/2.*(1./(GA-EA)+l./2./(2.*F-GA+EA)-l./2./(2.*F+GA-EA))
G128=(2.*A-l.)*DF*(l./(GA-EA)**2-l./2./(2.*F+GA-EA)**2-i./2./
1(2.*F-GA+EA)**2)
G129=-DF/2.*(1./(EA+GA)+l./2./(2.*F-EA-GA)-1./2./(2.*F+EA+GA))
G130=(2.*A-1.)*DF*(l./(EA+GA)**2-l./2./(2.*F+EA+GA)**2-1./
12./(2.*F-EA-GA)**2)
G131=-DF/2.*(l./2./GA+l./2./(2.*F-2.*GA)-l./2./{2.*F+2.*GA))
G132=(2.*A-1.)*DF*(l./4./GA**2-l./2./(2.*F+2.*GA)**2-l./
12./(2.*F-2.*GA)**2)
G133=3./16./F*{-DF)
G134=-DF/8./(2.*A-l.)
G135=-DF/4.*(l./{FA-F)-(FA-3.*F)/{4.*(2.*A-1.)**2+(FA-3.*F)**2))
G136=(2.*A-1.)/2.*DF*(1./(FA-F)**2-1./(4.*(2.*A-1.)**2+(FA-3.*F)
1**2))
Gl37=-DF/4.*(l./2./(FA+F)-l./(FA-F)-l./(3.*F+FA))
G138 =(2.*A-1.)/2.*DF*{1./(FA+F)**2-1./(3.*F +FA)**2-1./(FA
1-F)* *2 )
G139=-DF/2.*(l./2./FA+l./2./(2.*F-2.*FA)-l./2./(2.*F+2.*FA))
G140=(2.*A-1.)*(l./4./FA**2-l./2./(2.*F + 2.*FA)**2-l./2./(2.*F
1-2.*FA ) **2 )
G141=(EXP(2.*(A-1.)*C)— 1.)/4./(A — 1. )

135
G142=(EXP(2.*A*C)-1.) / 4. / A
G143=EXP(2.*A*C)/2.*(C/2./A-l./4./A**2)+l./8./A**2-A*C*EXP(2.*A*C)
1 /4./F**2-l./8./F**2*(EXP(2.*A*C)-l.)
G144=(E X P( (2.*A+SG)*C)-1.)/2./(2.*A +SG)
G145=DG/4.*(2./EA+l./(2.*F-EA)-l./(2.*F+EA))
G146=(3.*A-1.)/4.*DG*(1. /(2.*F + EA)**2+1./(2.*F-EA)**2-2./EA**2)
G147=DG/4.*(2./GA +1./(2.*F-GA )-1./{2.*F + GA))
G148=DG/4.*(l./(2.*F+GA)**2+l./(2.*F-GA)**2-2./GA**2) *(3.*A-1.)
G149=-DF/4./F
G150=l2•*A-l•)/2.*DF*(l./(2.*F-2.*EA)**2-l./(2.*F+2.*EA)**2)
G151=-DF/4.*(l./2./(F+EA)+l./2./(F-EA))
G152=(2.»A-l.)/2.*DF*(1. /{2 . *F-GA + EA ) **2-1./(2.*F+GA-EA)**2)
Gl53=-DF/4.*(1./(2.*F+GA-EA)+1./(2.*F-GA+EA))
G154=<2.*A-1.)/2.*DF*(1./(2.«F-GA-EA)**2-1./(2.*F+GA+EA)**2)
G155=-DF/4.* G156=(2.*A-l.)/2.*DF*{1./ 4./lF-GA)**2-1./4./(F+GA)**2)
Gl57=-DF/4.*(1./2./1F+GA)+1./2./(F-GA))
G158=DF/8./(2.*A-l.)
G159=-DF/16./F
G160=(2.*A-1.)/2.*DF*(1./ ( 4.*(2.*A-1 .) **2+(FA-3.*F)**2)-1./
1 (FA+F)**2)
Gl61=-DF/4.*(1./(FA+F)-1./(4.*(2.*A-1.) **2+(FA-3.*F)**2)*
1 (FA-3.*F))
G162=(2.»A-l.)/2.*DF*Cl./(FA-F)**2-1./(FA+3.*F)**2)
G163=-DF/4.*(l./(FA+3.*F)-1./(FA-F))
G164=(2.*A-1.)/2.*DF*(l./(2.*FA-2.*F)**2-l./(2.*FA+2.*F)**2)
G165=—DF/4•*(1•/(2•* F + 2.*FA)-l•/2•/(FA-F) )
G166=(1.-EXP(2.*(A-1.)*C))/4./F
G167={l.-EXP(2•*A*C)J/4./F
G168=-C*EXP(2.*A*C)/4./F+A/4./F**3*(EXP(2.*A*C)-l.)
G169=(1.-EXP((2.*A+SG)*C))/4./F
G170=(3•*A—1.)/4•*(-DG)*(1./(2•* F-EA)**2—1•/(2.* F + EA)* *2)
G171=DG/4.*{1./(2.*F + EA)+l./(2.*F-EA))
G172=(3.*A-1.)/4. *DG*(-1•/(2•*F-GA)* *2+1./(2•*F + GA)**2)
G173=DG/4.*{l./2.*F+GA)+1-/(2.*F-GA))
G174=(2.*A-l.)*OF*(l./(F-FA)**2-l./(F+FA)**2)
G175=-DF/4.* l1./(FA-F+2.*EA)-1./(FA-F-2.*EA)-1•/(FA+F+2.*EA)
l+l./(FA+F-2.*EA))
G176=(2.»A-l.)/2.*DF*(1./(FA-F+2.*EA)**2+1./(FA-F-2.*EA)**2
1-1./(FA+F+2.*EA)**2-1./(FA+F-2.*EA)**2)
G177=-DF/4.*(1./(FA-F+GA-EA)-1./{FA-F-GA+EA)-1./{FA+F+GA-EA)
1+1./(FA+F-GA+EA))
G178=(2.*A-l.)/2.*DF*{1./(FA-F+GA-EA)**2+1./(FA-F-GA+EA)**2-1.
l/(FA+F+GA-EA)**2-1./(FA+F-GA+EA)**2)
G179=-DF/4.*(1./(FA-F+GA+EA)-l./{FA-F-GA-EA)-1./(FA+F+GA+EA)
1+1./(FA+F-GA-EA))
G180=(2.*A-1.)/2.*DF*(l./(FA-F+GA+EA)**2+1./(FA-F-GA-EA)**2
1-1./(FA + F+GA + EA)* *2-1./(FA + F-EA-GA)**2)
G181=-0F/4.*(1./(FA-F+2.*GA)-l./(FA-F-2.*GA)-!./(FA+F+2.*GA)
i+1./(FA+F-2.»GA))
G182=(2.*A-1.)/2.*DF*(l./(FA-F+2.*GA)**2+1./(FA-F-2.*GA)**2

136
1-1./(FA+F+2.*GA)**2-l./(FA+F-2.*GA)**2)
G183=-DF/4.*(l./(F+FA)-l./(F-FA)-l./(3.*F+FA)+(3.*F-FA)/(4.*
1(2.*A-1.)**2+(3.*F-FA)**2))
G184=(2.*A-1.)/2•*DF*(1./Í(3.*F-FA)**2 + 4.*(2.*A-1.)**2)-1./
1(3.*F+FA)**2-1./(F-FA)**2+1./(F+FA)**2)
G185=-DF/4.*(1./2./Í FA-F)-l./2./FA+l./2./F)
G186=(2.*A-1.)/2.*(l./4./(FA-F)**2+1./4./(2.*A-1.)**2-1./4./FA**2
l-l./4./F**2)
G187=-DF/4.*(l./2./FA+l./2./F-l./2./(FA+F))
G188=(2.*A-1.)/2.*DF*(1 ./4./FA**2+1./4./F**2-l./4./(2.*A-1.)**2
l-l./4./(FA+F)**2)
Gl89=-DF/4.*(l./(3.*FA-F)+l./(FA+F)-1./(3.*FA+F)-1./(FA-F))
G190=(2.*A-1.)/2.*DF*(1./(3.*FA~F)**2+1./(FA+F)**2-1./{3.*FA
1+F)**2-1./(FA-F)**2)
G191=(A-1.)*(EXP12.*(A-1.)*C)-l.)*(1./(FA-F)**2-1./(FA+F)**2)
G192 = A*(EX P(2.*A*C)-1•)*(1•/(FA-F)**2—1./(FA + F)* *2)
G193=-A*C*EXP(2.*A*C)/(FA + F)**2 + A*C*EXP(2.*A*C)/ lFA-F)**2-(1./
12•/(FA-F)* *2-1•/2./(FA + F)**2)*(EXP{2•* A*C)-1•)
G194={2.*A+SG)/2.*(EXP((2.*A+SG)*C)-l.)*(1./(FA-F)**2-1./(FA+F)
1**2)
G195=-DG/4.*(1./(FA+F+EA)+1./(FA-F-EA)-1./(FA-F+EA)+1./{FA+F-EA))
G196=(3•*A-1.)*(— DG)*(1./(FA-F + EA)**2+1./(FA-F-EA)**2-l./
1{FA+F+EA)**2-1•/{FA+F—EA)**2)/4•
G198=DG/4.*(3.*A-1.)*1l./(FA-F+EA)**2+1./(FA-F-GA)**2-1./
1(FA + F+GA)**2-1./(FA+F-GA)* * 2)
G197=DG/4.*{l./(FA-F+GA)-1./{FA-F-GA)-1./(FA+F+GA)+1./(FA+F-GA))
G199=-DF/2.*(1./(F+FAJ-1./Í FA-F))
G200=(2•*A-1•)/2.*DF*(1./(FA+F-2.*EA)**2-1./(FA+F+2.*EA)**2
1-1./(FA-F-2.*EA)**2+l./(FA-F+2.*EA)**2)
G20 l=-DF/4.*(l./(FA+F + 2.*EA) + l./(F + FA—2.*EA)-1./IFA-F + 2.*EA)
1-1./(FA-F-2.*EA))
G202=(2.*A-1.)/2.*DF*(1./{FA+F-GA+EA)**2-1./(FA+F+GA-EA)**2
1-1./(FA-F-GA+EA)**2+1./(FA-F+GA-EA)**2)
G203=-DF/4.*{i./J FA + F + GA-EA) + l./(FA + F-GA+EA)-l./(FA-F + GA-EA)
1-1./(FA-F-GA+EA))
G204=(2.*A-1.)/2.*DF*(1./(FA+F-GA-EA)**2-1./(FA+F+GA+EA)**2
1-1./(FA-F-GA-EA)**2+1./(FA-F+GA+EA)**2)
G205=-DF/4.*(1./(FA+F+GA+EA)+l./(F+FA-GA-EA)-1./(FA-F+GA+EA)
1-1./(FA-F-GA-EA))
G206=(2.*A-1.)/2.*DF*(1./(FA+F-2.*GA)**2-1./(FA+F+2.*GA)**2
1-1./(FA-F-2.*GA)**2+1./(FA-F+2.*GA)**2)
G207=-DF/4.*(1./(FA+F+2.*GA)+l./(F+FA-2.*GA)-1./(FA-F+2.*GA)
1-1./(FA-F-2.*GA))
G208=(2.*A-1.)/2.*DF*(1./(FA-F)**2-1./(FA+3.*F)**2-1./((FA-3.*F)
l**2 + 4.*(2•*A—1•)* *2)+1•/(F A + F)**2)
G209=-0F/4.*(l./(FA+3.*F)+1./(FA-F)-!./(FA+F)-(FA-3.*F)/
1((FA-3.*F)**2+4.*(2.*A-1.)**2))
G210=(2.*A-1.)/2.*DF*(1./4./F**2-l./4./FA**2~l./4./(2.*A-l.)**2
1+-1./4./Í FA-F ) **2 )
G21i=-DF/4.*(l./2./FA+l./2./F-l./2./(FA-F))
G2 12=(2.*A-1.)/2.*DF*(1./4./(2.*A-l.)**2-l./4./(FA+F)**2-l./4./

137
lF**2+l./4./FA**2)
G213=-DF/4.*(l./2./(F+FAJ-1./2./FA+1./2./F)
G214=(2.*A-i.)/2.*DF*(1./(FA-F)**2-1./(3.*FA+F)**2-1./
1(FA+F)**2+1./(3.*FA-F)**2)
G215=-DF/4.*(l./(3.*FA+F)-l./(FA-F)-l./{3.*FA-F)+1./(FA+F))
G216=(l.-EXP(2.*(A-l.)*C)1*{1./(F+FA)-1./(FA-F))/2.
G217=( l.-EXP(2.*A*C))/2.*(1./(F+FA)-1./{FA-F))
G218=C/2.*EXP(2.*A*C)*(1./(FA-F J-l./lFA + F)) + (EXP(2.*A*C)-1.)/2.
1*(1./(FA+F)**3-1./(FA-F)**3)
G219=(1.-EXP((2.*A + SG)*C) )/2.*(l./(F + FA)-1./{FA-F))
G220=(3.*A-1.)/4.*DG*(-1./(FA+F-EA)**2+1./(FA+F+EA)**2+1./
1 (FA-F-EA)**2-1./(FA-F + EA)**2)
G221=0G/4.*(1./(FA+F+EA)+1•/(F+FA—EA)—1•/(FA-F+EA)-l./(FA-F-EA))
G222=(3.*A-1.)/4.*0G*(-l./(FA+F-GA)**2+1./(FA+F+GA)**2+l./{FA-F
1-GA)**2-1./(FA-F+GA)**2)
G223=DG/4.*(1•/(FA+F+GA)+l./{F+FA-GA)-l./(FA-F+GA)-l./(FA-F-GA))
G224=-DG*{3•*A—1•)/4.*(1./{FA-EA+F)**2+1./(FA-EA-F)**2-1./
l(FA + F + EA)**2-l./t FA + EA-F)* * 2)
G225 = DE/4.*(-l./(2.*FA + EA) + l./(2.*FA—EA J+2./EA )
G226=-DE*(3.*A-1.)/4.*{1./{2.*FA+EA)**2-1./(2.*FA-EA)**2)
G227=-DF/4.*l1./(FA+F-2.*EA)-1./(FA-F)-1./{FA+F)+1./(FA-F+2.*EA))
G228=(2.*A-1.)/2.*DF*l1./{FA+F-2.*EA)**2+1./(FA-F)**2
1-1./(FA+F)**2-l./(FA-F+2.*EA)**2)
G229=-0F/4.*(1./(FA+F)-1./(FA—F-2.*EA)-1./(FA+F+2.*EA)+l./(FA-F))
G230=(2.*A-1.)/2.*DF*(1./(FA+F)**2+1./(FA-F-2.*EA)**2
1-1./(FA+F+2.*EA)**2-1./(FA-F)**2)
G231=-DF/4.*<1./(FA+F-EA-GAJ-1./(FA-F-EA+GA)-1./(FA+F+EA-GA)
l+l./(FA-F+EA+GA))
G232=(2.*A-1.)/2.*DF*<1./{FA+F-EA-GA)**2+1./(FA-F-EA+GA)**2
l-l./(FA+F+EA-GA)**2-1./(FA-F+EA+GA)**2)
G233=-DF/4.*(1•/(FA+F-E A + GA)-1•/(FA-F-EA-GA)-1./(FA+F + EA+GA)
l+l./(FA-F+EA-GA))
G234=(2.*A-1.)/2.*DF*(1./(FA+F-EA+GA)**2+1./(FA-F-EA-GA)**2-1./
1(FA+F+EA+GA)**2-1./(FA-F+EA-GA)**2)
G235=-DF/4.*(1•/2./(FA—EA)-l./2./FA+l./2./EA)
G236=(2.*A-1•)/2.*DF*{1./4./(2.*A-1.)**2+1./4./(FA-EA)**2
l-l./4./FA**2-l./4./EA**2)
G237=-DF/4.*(l./2./FA+l./2./EA-l./2./(FA+EA))
G238=(2.*A-1.)/2.*DF*(1./4./FA**2+1./4./EA**2-1./4./(2.*A-l.)**2
1—l./4./(FA+EA)**2)
G239=-DF/4.*(1./(2.*FA-EA-GA)-1./(GA-EA)-1./(2.*FA+EA-GA)
1+1./(EA+GA))
G240=(2.*A—1.)/2.*DF *(1 ./(2.*FA-EA-GA)**2+1./(GA-EA)**2
1-1./(2.*FA+EA-GA)**2-1./(EA+GA)**2)
G24l=-DF/4•*(1•/{2•* FA— EA + GA) +1•/í GA + EA) — 1•/(2•* FA + E A+GA)
1 + 1 ./(EA-GA))
G242=(2.*A-1.)/2.*(1./(2.*FA-EA+GA)**2+1./(GA+EA)**2-1./(2.*FA
1+EA+GA)**2-1•/(EA-GA)**2) *DF
G243=DE/4.*(1./{FA+F+ EA) +1./(FA + EA-F) +1./(FA + F-EA ) +1./(FA-F-EA))
0244=(3.*A-l.)/4.*(-2./EA**2+l./(2.*FA+EA)**2+l./(2.*FA-EA)**2)*DE
G245=DE/4.*(1./(2.*FA+EA) +1./(2.*FA-EA))

138
G246=(2.*A-1.)/2.*DF *(1./(FA-F+2.*EA)**2-1./(FA+F)**2
1+1./{FA-F)**2-1./(FA+F-2.*EA)**2)
G247=DF/4.*{l./(FA+FJ+l./(FA-F + 2 .*EA) + 1./(FA+F-2.*EA) + 1./{FA-F))
G248=(2.*A-1.)/2.*DF*(1./{FA-F)**2-1./(FA+F-2.*EA)**2
1 + 1./(FA-F-2.*EA)**2-1./(FA + F >**2)
G249=-DF/4.*<1./(FA+F+2.*EA)+1./(FA-F)+1./(FA+F)+1./(FA-F-2.*EA))
G250=(2.*A-i.)/2.*DF*(l./(FA-F+EA+GA)**2-l./(FA+F+EA-GA)**2
1+1./(FA-F-EA+GA)**2-1./(FA+F-EA-GA)**2)
G251=-DF/4.*(1./(FA+F+EA-GA)+1./(FA+EA-F +GA)+1./{FA+F-EA-GA)
1+1./(FA-F-EA+GA))
G252=(2.*A-1.)/2.*DF *(1./< FA-F + EA-GA)**2-1./(FA + F + EA+GA ) **2
1+1./(FA-F-EA-GA)**2-1./(FA+F-EA+GA)**2)
G253=-DF/4.*(1./(FA+F+EA+GA)+1./{FA-F+EA-GA)+1./(FA+F -EA +GA)
1+1./(FA-F-EA-GA))
G254=(2.*A-1.)/2.*DF*(l./4./EA**2-l./4./FA**2+l./4./(2.*A-l.)**2
l-l./4./(FA-EA)**2)
G255=-DF/4.*(l./2./FA+l./2./EA+l./2./(FA-EA) )
G256=(2.*A-1.)/2.»DF*(1./4./(2.*A-1.)**2-1./4./(FA+EA)**2
l+l./4./EA**2-l./4./FA**2)
G25 7=-DF/4.»(1./2./( FA + EA) + 1./2./FA-1./2./EA)
G258=(2•*A-1.)/2•*DF*(1•/(E A+GA)** 2-1•/(2•*FA+EA-GA)**2
1+1./(GA-EA)**2-l,/(2.*FA-EA-GA)**2)
G259=-DF/4.*(1./(2.*FA+EA-GA)+1./(EA+GAJ+1./(2.*FA-GA-EA)+1./lGA-
1EA) )
G260=(2.*A-1.)/2.*DF*(1./(GA-EA)**2-1./(2.*FA+GA+EA)*»2
1+1./(GA+EA)**2-i./(2.*FA-EA+GA)**2)
G261=-DF/4.*{l./(2.*FA + EA + GA)-l./(GA-EA) + l./(2.* FA-EA + GA)
1-1./(GA+EA))
G262=(3.* A-i.)/4.*(-l./(FA + F-GA)**2-l./{FA-F-GA)**2
l+i./(FA+F+GA)**2+l./(FA+GA-F)**2)*DG
G263 = DG/4.*(1-/(2.*FA-GA)+ 1./GA-1./Í 2.*FA + GA) + 1./GA)
G264=(3.*A-l.)/4.*{-l./(2.*FA-GA)**2+l./(2.*FA+GA)**2)*DG
G265=-DF/4.*(l./(FA+F-EA-GA)-1./(FA-F+EA-GA)-1./(FA+F-EA+GA)
1+1./(FA-F+EA+GA))
G266=(2.*A-1.)/2.*DF*(1./(FA+F-EA-GA)**2+1./(FA-F+EA-GA)**2
1-1./(FA+F+GA-EA)**2-1./(FA-F+GA+EA)**2)
G267=-DF/4.*(1./(FA+F-GA+EA)-1./(FA-F-EA-GA)-1./{GA+FA+F+EA)
1+1./(FA-F+GA-EA))
G268=(2.*A-1•)/2.*DF*( 1 ./(FA+ F + EA-GA )**2 +1./(FA-F-EA-GA)**2
1-1./(FA+F+EA+GA)**2-1./(FA-F+GA-EA)**2)
G269=-DF/4.*(l./(FA+F-2.*GA)-l./(FA-F)-l./(FA+F)+1./(FA-F+2.*GA))
G270=(2.*A-1.)/2.*DF*(1./(FA+F-2.*GA)**2+1./{FA-F)**2
1-1./(FA+F)**2-1./(FA-F+2.*GA)**2)
G271=-DF/4.*(1./(F+FA)—l./(FA-F-2.*GA)-1./(F+FA+2.*GA)
1+1./(FA-F))
G272=(2.*A-1.)/2.*DF*(1./(FA+F)**2+1./(FA-F-2.*GA)**2-1./{FA+F
1+2.*GA)**2-l./(FA-F)**2)
G273=-DF/4.*(1./(2.*FA-EA-GA)+1./(GA-EA)-1./(2.*FA+GA-EA)+1.
1/tGA+EA))
G279=(2.*A-1.)/2.*DF*(1./(2.*FA-EA-GA)**2+1./(GA-EA)**2
1-1./<2.*FA+GA-EA)**2-1./{GA+EA)**2)

139
G280=-DF/4.*(1./(2.*FA-GA+EA)+1./(EA+GA)-1./(2.*FA+GA+EA)
1 + 1./(GA-EA))
G281=(2.*A-1.)/2.*DF*(1./(2.*FA+EA-GA)**2+1./(EA+GA)**2
1-1./(2.*FA+EA+GA)**2-1./(GA-EA)**2)
G282=-DF/4.*(l./2./(FA-GA)-l./2./FA+l./2./GA)
G283=(2.*A-1.)/2.*DF*(1./4./(2.*A-1.)**2+1./4./(FA-GA)**2
l-l./4./GA**2-l./4./FA**2)
G284=-DF/4.»(1./2./FA+1./2./GA-1./2./(FA+GA) )
G285=(2.*A-1.)/2.*(-DF)*(1./4./FA**2+1./4./GA**2-1./4./(FA+GA)**2
l-l./4./(2.*A-l.)**2)
G285P=DG/4.*(1./(FA + F + GA) + 1./(FA-F+GA) + 1./(FA+F-GA) + 1./(FA-F-GA))
G286=(3.*A-1.)/4.*DG*(-2./GA**2+i./(2.*FA + GA)**2 +1./(2.*FA-GA)**2)
G2 87 = DG/4.*(1./(2.*FA+GA)+1./(2.*FA-GA))
G288=(2.*A-1.)/2.*DF*(1./(FA-F+GA+EA)**2-1./(F+FA-EA+GA)**2
1+1./(FA-F+EA-GA)**2-1./(F+FA-GA-EA)**2)
G289=-DF/4.*(1./(FA+F+GA-EA)+1./(FA-F+GA-EA)+1./{FA+F-EA-GA)
1+1./(FA-F-GA+EA))
G290=(2.*A-1.)/2.*DF*{1./(FA-F+GA-EA)**2-1./(FA+F+EA+GA)**2+
11./(FA-F-GA-EA)**2-l•/(FA+F+EA-GA)**2)
G291=-DF/4.*(1./(FA+F+EA+GA)+1./(FA-F+GA-EA)+1./{FA+F-GA+EA)
1+1./(FA-F-GA-EA))
G292=(2.*A-1.)/2.*DF*(1./(FA-F+2.*GA)**2-1./(FA+F)**2+1.
i/(FA-F)**2-l./(F+FA-2.*GA)**2)
G293=-DF/4.*(1./(F+FA)+1./(FA-F+2.*GA)+1./{FA+F-2.*GA)
l+l./CFA-F))
G294=(2.*A—1.)/2.*DF*(l./(FA-F)**2-1./(F+FA+2.*GA)**2
1+1./(FA-F-2.»GA)**2-1./(FA+F)**2)
G295=-DF/4.*(1./(FA+F + 2.*GA) + 1./(FA-F) +1./(FA+F ) +1./(FA-F-2.*GA))
G296=(2.*A-1.)/2.*DF*(1./(EA+GA)**2-1./(2.*FA+GA-EA)**2
1+1./(EA-GA)*»2-1./(2.*FA-GA-EA)**2)
G297=-DF/4.*(1./(2.*FA+GA-EA)+1./(GA+EA)+1./(2.*FA-EA-GA)
1-1./(EA-GA))
G298=(2.*A-1.)/2.*DF*(1./(EA-GA)**2-1./(2.*FA+EA+GA)»*2
1+1./(EA+GA)**2-1./(2.*FA-GA+EA)**2)
G299=-DF/4.*(1./(2.*FA + EA + GA) + 1./(G A-EA ) + 1 ./(2.«FA-GA + EA)-1./(
1GA+EA))
G300=(2.*A-1.)/2.*DF*(l./4./GA**2-l./4./FA**2+l./4./(2.*A-l.)
l**2-l./4./(FA-GA)**2)
G301=-DF/4.*(l./2./FA+l./2./GA+l./2./(FA-GA))
G302=(2.*A-1.)/2.*DF*(1./4./(2.*A-1.)**2-1./4./(FA+GA)**2+1./4.
l/GA**2-l./4./FA**2)
G303=-DF/4.*(1./2./IFA+GA)+l./2./FA-1./2./GA)
G304=-DF/2.*(1./(F+FA)—l./(F—FA))
G305=(2.*A-1.)/2.*DF*(1./(F+FA-2.*EA)**2-1./(F+FA+2.*EA)**2
1-1./(F-FA-2.*EA)**2+1./(F-FA+2.*EA)**2)
G306= -DF/4.*(l./(F+FA+2.*EA)+l./(F+FA-2.*EA)+1./(FA-F+2.*EA)
1+1./(FA-F-2.*EA))
G307=(2.*A-1.)/2.*DF*(l./(F+FA-GA+EA)**2-1./(F+FA+GA-EA)**2
1-1./(F-FA-GA+EA)**2+1./(F-FA+GA-EA)**2)
G308=-DF/4•*(1./(F+FA+GA-EA)+l./(FA+F-GA+EA)—1./(F-FA+GA-EA)
1+1./IF-FA-GA+EA))

140
G309=(2.*A-1.)/2•*DF *(1./(F+FA-EA-GA)**2-1./lFA+F+GA+EA)**2
1-1./(F-GA-FA-EA)**2+1./(F-FA+GA+EA)**2)
G310=-DF/4•*(l./(FA+F+GA+EA)+l./(FA+F-GA-EA)-l./(F-FA+EA+GA)
1-1./(F-FA-GA-EA))
G311={2.*A-1.)/2.*DF*(1./(FA+F-2-*GA)**2-1./(FA+F+2.*GA)**2
1-1./IF-FA-2.*GA)**2+1./(F-FA+2.*GA)**2)
G312=-0F/4.*(1./(FA+F+2.*GA)+1./(F+FA-2.*GA)-1./(F-FA+2.*GA)
1-1./(F-FA-2.*GA))
G313=-0F/2.*(l./(FA+F)+l./(FA-F))
G314=(2.*A-1.)/2.*DF*(1./(FA-F)**2-1./(FA+3.*F)**2+1./(
1(FA-3.*F)**2+4.*(2.*A-1.)**2)-1./(FA+F)**2)
G315=-DF/4.*(1./(FA+3.*F)+1./(FA-F)+1./(FA+F)+lFA-3.*F)/
i((FA-3.*F)**2+4.*(2.*A~1.)**2))
G316 = (2.*A-1•)/2.* DF*(1./4 ./F**2-l./4./FA**2 +1./4./(2.*A-1.)**2
l-l./4./(FA-F)**2)
G317=-DF/4.*(1./2./FA+1./2./F+1./2./IFA-F))
G3 18 = (2•*A-1.)/2.*DF*(1•/4•/(2.*A—1.)**2-l./ 4./(FA+F)**2
l+l./4./F**2-l./4./FA**2)
G319=-0F/4.*(1•/2./(FA+FJ+1./2./FA-1./2./F)
G320=(2.*A-1.)/2.*DF*{1./(FA-F)**2-l./{3.*FA+F)**2
1+1./(F+FA)**2-1./(3.*FA-F)**2)
G321=-DF/4.*(1./(3.*FA + FJ-l./CFA-F) + l./(3.*FA-F )-1./(FA + F))
G322=(1.-EXP12.»(A—1.)*C))/2.*<1./(F+FA)-1./(F-FA))
G323=(l.-EXP(2.*A*C) )/2.*(I./(F + FA)- 1./{F-FA))
G324=.5*C*EXP(2.*A*C)*(1./(F-FA)-1./(F+FA))+(EXP(2.*A*C)-l.)
1*2 - * A*(l./tF+FA)**3-1./(F-FA)**3)
G325= G326={3.*A-1.)/4.*DG*(1./CFA+F-EA)**2-1./(FA+F+EA)**2
l-i./(F-FA-EA)**2+l./(F-FA+EA)**2)
G327=-DG/4.*(1./(F+FA+EA)+1./(F+FA-EA)-l./(F-FA+EA)-1./(F-FA-EA))
G328=(3.*A-1.)/4.*DG*(l./(FA+F-GA)**2-1./(FA+F+GA)**2
1-1./(F-GA-FA)**2+1./(F-FA+GA)**2)
G329=-DG/4.*(1./(FA+F+GA)+1./(F+FA-GA)-1./{F-FA+GA)-1./{F-FA-GA))
G330=-DF/2.*(1./2./EA+1./2./(2.*FA-2.*EA)-1./4./{F+EA))
G331=(2.*A-1.)*DF*(l./4./EA**2-l./8./(FA+EA)**2-l./8./(FA-EA)**2)
G332=-DF/2.*(1./(GA-EA)+i./2./(2.*FA-GA+EA)-l./2./(2.*FA+GA-EA))
G333=(2.*A-1.)*DF*<1./(GA-EA)**2-1./2./(2.*FA-GA+EA)**2-1./2.
1/(2.*FA+GA-EA)**2)
G334=-DF/2.*(l./2./(EA + GA) + l./2./(2.*F A-EA-GA) — 1./2./C2.*FA + EA+
IGA) )
G335=(2.*A-1.)*DF*(1./(EA+GA)**2-1./2./(2.*FA+EA+GA)**2
l-l./2./(2.*FA-EA-GA)**2)
G336=-DF/2.*(1./2./GA+1./2./(2.*FA-2.*GA)-1./4./IFA+GA))
G337=(2.*A-1.)*DF*(1./4 ./GA**2-1./8./(FA+GA)**2-1 ./8./ G338=-DF/4.*{1./F-1./2./(F+FA)+1./2./ÍFA-F))
G339=(2.*A-1.)/2.*DF*(1./2./F**2-1./4./{FA+F)**2-1./4./(FA-F)**2)
G340=-OF/4.*(2./(FA-F)-l./(3.*FA-F)+1./{FA+F))
G34i=(2.*A-l.)/2.*DF*(2./(FA-F)**2-l./(3.*FA-F)**2-l./{FA+F)**2)
G342=-DF/4.*(l./(FA+F)-i./(3.*FA+F)+l./(FA-F))
G343=(2.»A—l.)/2.*DF*(1./(FA+F)**2-1./(3.*FA+F)**2-1./(FA-F)**2)
G344=-DF/4.*(l./FA-l./4./FA)

141
G345 =(2.*A-1.)/2.*DF*(1./2./FA**2-1./16./FA**2-1./4./(2.*A-1.)**2)
G346=EXP(2.*A*C)/2.*(C/2./A-1./4./A**2)+1./8./A**2-A*C*EXP{2.*A*C)
l/4./FA**2~l./8./FA**2*(EXP{2 . *A*C )-1.)
G347=DG/4.*(2./EA+l./{2.*FA-EA)-1./(2.*FA+EA))
G348=(3.*A-1.)/4.*DG*(1./{2.*FA+EA)**2+1./(2.*FA-EA>**2-2./EA**2)
G349=DG/4.*(2./GA+l./(2.*FA-GA)-1./(2.*FA+GA))
G350=(3.*A-1.)/4.*DG*(1./(2.*FA+GA)**2+1./{2.*FA-GA)**2-2./GA**2)
G351=-DF/4./FA
G352=(2.*A-1.)/2.*DF*(1./(2.*FA-2.*EA)**2-1./4./(FA+EA)**2)
G353=-DF/4.*(l./2./(FA+EA}+1./2./(FA-EA))
G354=(2.*A-1.)/2.*DF*(1./(2.*FA-GA+EA)**2-1./(2.*FA+GA-EA)**2)
G355=-DF/4.*(1./(2.*FA+GA-EA)+1./(2.*FA-GA+EA))
G356=(2.*A-1.)/2,*DF*(1./(2.«FA-GA-EA)**2-1./(2.*FA+GA+EA)**2)
G357=-DF/4.* í1./(2.*FA + EA + GA) + 1./(2.*FA-EA-GA) )
G358=(2.*A-1.)/2.*DF*{1./2./(FA-GA)**2-1./2./(FA+GA)**2)
G359=-DF/4.*(1./2./{FA+GA)+1./2./(FA-GA))
G360=(2.*A-1.)/2.*DF*(1./4./(FA-F)**2-1./4./íFA+F)**2)
G361=-DF/4.*(l./2./(FA+F)+l./2./(FA-F))
G362=(2.*A-1.)/2.*DF*(l./(FA+F)**2-1./(3.*FA-F)**2)
G363=-DF/4.*(1./(3.*FA-F)+1./(FA+F))
G364=(2.*A-1.)/2.*DF*(l./(FA-F)**2-1./(3.*FA+F)**2)
G365=-DF/4.*(1./(3.*FA+F)+1./(FA-F))
G366=-DF/16./FA
G367=(1.-EXP(2.*(A-1.)*C)J/4./FA
G368=(l.-EXP(2.*A*C)Í/4./FA
G369=-C*EXP(2.*A*C)/4./FA+A/8./FA**3*(EXP(2.*A*C)-1.)
G370=(l.-EXPl(2.*A+SG)*C))/4./FA
G371=(3.*A—1•)/4.*0G*(-l./(2.*FA-EA)**2+1./{2.*FA+EA)**2)
G372=DG/4.*(1./(2.*FA+EA)+1./(2.*FA-EA))
G373=(3.*A-1.)/4.*DG*(-l./(2.*FA-GA)**2+l./(2.*FA+GA)**2)
G374=DG/4.*<1./(2.*FA+GA)+1./(2.*FA-GA))
R1=EB*(E1*G1+E2*G2)-D/E*(E5*G7+E6*G8)
R2=EB*(E3*G3+E4*G4)-D/E*(E7*G9+E8*G10)
R3A=-D/E*(E9*G11+E10*G12+E11*G13+E12*G14+E13*G15+E14*G16+E15*G17
1 + E16*G18)-A1H*A*(E5*G45 + E6*G45P)-A 1H*EA*(E5*G64 + E6*G65)-A2H*A
2*(E5*G84+E6*G85)-A2H*GA*(E5*G104+E6*G105)-A1H*B1C0*(E68*G45
3+E69*G45P)-AlH*B101*(E68*G64+E69*G65)-A2H*B102*(E68*G84+E69*G85
4)-A2H*B103*(E68*G104+E69*G105)
R4A=-D/E*(E17*G19+E18*G20+E19*G21+E20*G22+E21*G23+E22*G24+E23*G25
1+E24*G26)-AlH*A*(E7*G46+E8*G47)-A1H*EA*(E7*G66+E8*G67)-A2H*A*{E7*
2G86+E8*G87)-A2H*GA*(E7*G106+E8*G107)-A1H*B100*(E7C*G46+E71*G47
3)-AlH*B101*(E70*G66+E71*G67)-A2H*B102*(E70*G86+E71*G87)-A2H*B103
4*(E70*G106+E71*G107)
R5A=-A1H*A*(E9*G48+E10*G49+E11*G50+E12*G51+E13*G52+E14*G53+E15
1*G54+E16*G55)-A1H*EA*(E9*G68+E10*G69+E11*G70+E12*G71+E13*G72
2+E14*G73+E15*G74+E16*G75)-A2H*A*(E9*G88+E10*G89+E11*G90+E12*
3G91+E13*G92+E14*G93+E15*G94+E16*G95)-A2H*GA*(E9*G108+E10*G109+E11
4*G110+E12*G111+E13*G112+E14*G113+E15*G114+E16*G115)-A1H*B100*(E72
5*G48+E73*G49+E74*G50+E75*G51+E76*G52+E77*G53+E78*G54+E79*G55)
6-AlH*B101*(E72*G68+E73*G69+E74*G70+E75*G71+E76*G72+E77*G73+E78*
7G74+E79*G75)-A2H*B102*(E72*G88+E73*G89+E74*G90+E75*G91+E76*G92

142
8+E77*G93+E78*G94+E79*G95)-A2H*B103*(E72*G108+E73*G109+E74*G110
9+E75*Glll+E76*G112+E77*G113+E78*G114+E79*Gll5)
R6A=-A1H*A*(E17*G56+E18*G57+E19*G58+E20*G59+E21*G60+E22*G61+E23
1*G62+E24*G63)-AlH*EA*(E17*G76+E18*G77+E19*G78+E20*G79+E21*G80
2+E22*G81+E23*G82+E24*G83)-A2H*A*(E17*G96+E18*G97+E19*G98+E20*G99
3+E21*G100+E22*G101+E23*G102+E24*G103)-A2H*GA* 4E19*GU8+E20*G119+E21*G120+E22*G121+E23*G122+E24*G123)-A1H*B100
5*( E80*G56 + E81*G5 7 + E82*G58 + E8 3*G59+E84*G60+E8 5*G6i + E86*G62 + E87*
6G63)-A1H*B101*(E80*G76+E81*G77+E82*G78+E83*G79+E84*G80+E85*G81
7+E86*G82+E87*G83)-A2H*B102*(E80*G96+E81*G97+E82*G98+E83*G99+E84
8*G100+E85*G101+E86*G102 + E87*G103)-A2H* B103*(E80*G116+E81*G117
9+E82*G118+E83*Gl19+E84*G120+E85*G121+E86*G122+E87*Gl23)
R5B=G*G*(E25*G124+E26*G125+E27*G126+E28*G127+E29*G128+E30*G129
1+E31*G130+E32*G131+E33*G132)-F*(E25*G149+E26*G150+E27*Gl51+E28*
2G152+E29*G153+E30*G154+E31*G155+E32*G156+E33*G157)-B104*(E87P
3*G124+E88*G125+E89*G126+E90*G127+E91*G128+E92*G129+E93*G130+E94
4*G131+E95*G132)-B105*(E87P*G149+E88*G150+E89*G151+E90*G152+E91*
3 G153+E92*G154+E93*G155+E94*G156+E95*G157)
R6B=G*G*(E25*G174+E26*G175+E27*G176+E28*G177+E29*G178+E30*G179
1+E31*G180+E32*G181+E33*G182)-FA*(E25*G199+E26*G200+E27*G201
2+E28*G202+E29*G203+E30*G204+E31*G205+E32*G206+E33*G207)-B106*
3(E87P*G174+E88*G175+E89*G176+E90*G177+E91*G178+E92*G179+E93*
4G180 + E94*G181+E9 5*G18 2)-B107*t E87P*G199+E88*G200+E89*G201+E90*
5G202+E91*G203+E92*G204+E93*G205+E94*G206+E95*G207)
R7A=G*G*(E34*G124+E35*G133+E36*G134)+G*G/2.*(
lE44*G124+E45*G133+E46*G134)+G*G*(-053*G141+2.*D63*G142+3.
2*D58*G142+2.*D58*G143)-F*(E34*G149+E35*G158+E36*G159)-F/2.*(E44
3*G149+E45*G158+E46*G159)-F*(-D53*G166+2.*D63*G167+3.*D58*G167
4+2.*D58*G168)-B104*(E96*G124+E97*G133+E98*G134)-.5*B104*(E99*
5G124+E100*G133+E101»G134)-B104*(D53*G141+2.*063*G142+D58*G142+
62.*058*G143)-B105*(E96*G149+E97*G158+E98*G159)-B105/2.*(E99*
7G149+E100*G158+E101*G159)-B105*(D53*G166+2.*D63*G167+D58*
8G167+D58*G168)
R8AP=G*G*(E37*G135+E38*G136+E39*G137+E40*G138)+G*G/2.*(E47*G135
1 + E48*G136 + E49*G137 + E50*G138)+G*G*(-D54*G141+ 2.*D64*G142 + 3 . *D59
2*G142+2.*059*Gi43)-F*(E37*G160+E38*G161+E39*G162+E40*G163)-F/2.
3*(E47*G160+E48*G161+E49*G162+E50*G163)-F*(-D54*G166+2.*D64*G167
4+3.*D59*G167+2.*D59*G168)+G*G*(E34*G174+E35*G183+E36*G184)+G*G/2.
5*(E44*G174+E45*G183+E46*G184)+G*G*(-D53*G191+2.*D63*G192+3.*D58
6*G192+2.*D58*G193)-FA*(E34*G199+E35*G208+E36*G209)-FA/2.*(E44
7*G199+E45*G208+E46*G209)-FA*(-D53*G216+2.*063*G217
8+3.*058*G217+2.*D58*G218)—B104*(E102*G135+E103*G136+E104*G137+E105
9*G138)-B104/2.*(E106*G135+E107*G136+E108*G137+E109*G138)
R8ADP=-B104*{054*G141+D64*G142+D59*G142+2.*D59*G143)-B105*(E102
1*G160+E103*G161+E104*G162+E105*G163)-B105/2.*(E106*G160+E107*
2G161+E108*G162+E109*G163)-B105*(054*G166+2.*D64*G167+059*G167+2.*
3D59*G168)-BlC6*{E96*G174+E97*G183+E98*G184)-B106/2.*(E99*G174
4+E100*G183+E101*G184)-B106*(D53*G191+2.*D63*G192+D58*G192+2.*D58*
5G193)-B107* ÍE96*G199 + E9 7*G208 + E98*G209)-B10 7/2.*(E99*G199 + E100
6*G208+E101*G209)-B107*(D53*G216+2.*063*G217+058*G217+2.*058*G218)
R9AP=G*G*(E41*G124+E42*G139+E43*G140)+G*G/2.*(E50P*G124+E51*G139

143
1+E52*G140)+G*G*(-D55*G141+2.*G142*065+3.*D60*G142+2.*D60*G143)
2-F*(E41*G149+E42*G164+E43*G165)-F/2.*(E50P*G149+E51*G164+E52*G165)
3-F*(-055*G166+2.*D65*G167+3.*D60*G167+2.*D60*G168)+G*G* 4+E38*G186+E39*G187+E40*G188)+G*G/2.*(E47*G185+E48*G186+E49*G187+
5E50*G188)+G*G*{-054*G191+2.*D64*G192+3.*059*G192+2.*D59*G193)
6-FA/2.*(E47*G210+E48*G211+E49*G212+E50*G213)-FA*{-D54*G216+2.*064
7*G217+3.*D59*G217+2.*059*G218)-B104*(E110*G124+E111*G139+E112*
8G140)-B104/2.*(E113*G124+E114*G139+E115*G140)-B104*(D55*G141+2. *
9065*G142+D60*G142+2.*D6C*G143)
R9ADP=-B105/2.*(E113*G149+E114*G164+E115*G165)-B105*{D55*G166+
12.*D65*G167+D60*G167+2.*060*G168)-B106*(E102*G185+E103*G186+
2E104*G187+E105*G188)-B106/2.*(E106*G185+E107*G186+E108*G187+E109
3*G188)-B106*(D54*G191+2.*D64*G192+D59*G192+2.*059*G193)-B107*
4(E102*G210+E103*G2ll+E104*G212+E105*G213)-B107/2.*(E106*G210
5+E107*G211+E108*G212+E109*G213)-B107*(D54*G216+2.*D64*G217+059
6*G217+2.*D59*G218)-FA*{E37*G210+E38*G211+E39*G212+É40*G213)
8-B105*(E110*G149+Elll*G164+E112*G165)
R10A=G*G*(E41*G174+E42*G189+E43*G190)+G*G/2.*(E50P*G174+E51*
1G189+E52*G190)+G*G*(-055*G191+2.*D65*G192+3.*D60*G192+2.*060*G193)
2-FA*(E41*G199 + E42*G214 + E43*G215 J-FA/2.*(E50P*G199+E51*G214+
3E52*G215)-FA*(-D55*G216+2.*065*G217+3.*D60*G217+2.*D60*G218)-B106
4*(E110*G174+E111*G189+E112*G190)-B106/2.*(E113*G174+E114*G189
5+E115*G190)-B106*(D55*G191+2.*D65*G192+D60*G192+2.*060*G193)-B107
6*(E110*G199+E1U*G214+E112*G215)-B107/2.*(E113*G199+E114*G214
7+E115*G215)-B107*(D55*G216+2.*D65*G217+D60*G217+2.*D60*G218)
R7B=(1.-A)*G*(E58*G124+E59*G133+E60*G134)-F*{E58*G149+E59*G158
1+E60*G159)
R8B=(l.-A)*G*(E61*G135+E62*G136+E63*G137+E64*G138)-F*(E61*G160+
1E62*G161+E63*G162+E64*G163)+(1.-A)*G*(E58*G174+E59*G183+E60*G184)
2-FA*(E58*G199+E59*G208+E60*G209)
R9B=(1.-A)*G*(E65*G124+E66*G139+E67*G140)-F*(E65*G149+E66*G164+
lE67*G165)+(l.-A)*G*{E61*G185+E62*G186+E63*G187+E64*Gl88)-FA*(
2E61*G210+E62*G211+E63*G212+E64*G213)
R3BP=RATI0*G*G*(-D57*G141+067*B142*2.+3.*062*G142+2.*D62*G143)
1+G*G*E53*G144+G*G*0/E*(E54*G145+E55*G146+E56*G147+E57*G148)
2+G*G*(-AlP*G141+2.*A2P*G142+3.*A3P*G142+2.*A3P*G143)-RATI0*F*{
3-057*G166+2.*067*G167+3.*D62*G167+2.*062*G168)-F*E53*G169
4-F* 0/E*(E54*G170+E55*G171+E56*G172+E57*G173)-F*(-A1P*G166+2.*
5A2P*G167+3.*A3P*G167+2.*A3P*G168)-RATI0*B104*(D57*G141+2.*D67*G142
6+062*Gl42+2.*D62*G143)-B104*E116*G144-B104*0/E*(E117*G145
7+E118*G146+E119*G147+E120*G148)-B104*(AlP*G141+2.*A2P*G142+A3P
8*G142+2.*A3P*G143)-B105*RATI0*lD57*G166+2.*067*G167+D62*G167+2.*
9067*G168)-B105*E116*G169
R10B=(l.-A)*G*(E65*G174+E66*G189+E67*G190)-FA*(E65*G199+E66
1*G214+E67*G215)
R3BDP=-B105*0/E*(E117*G170+E118*G171+E119*G172+E120*G173)-
1B105*(AlP*G166+2.*A2P*G167+A3P*G167+2.*A3P*G168)
R4BP=RATI0*G*G*{-D57*G191+2.*D67*G192+3.*062*Gi92+2.*062*G193)+
1G*G*E53*G194+G*G*(E54*G195+E55*G196+E56*G197+E57*G198)*0/E
2+G*G*(-AlP*G191+2.*A2P*G192+3.*A3P*G192+2.*A3P*G193)-FA*RATI0*(
3-D57*G216+2.*067*G217+3.*062*G217+2.*D62*G218)-FA*E53*G219-FA

144
4*0/E*(E54*G220+E55*G221+E56*G222+E57*G223)-FA*(-A1P*G216+2.*A2P
5*G217+3.*A3P*G217+2.*A3P*G218)-RATIÜ*B106*(D57*G191+2.*D67*G192
6+D62*G192+2.*062*G193)-8106*E116*G194-B106*D/E*tE117*G195
7+E118*G196+E119*G197+E120*G198)-B106*(A1P*G191+2.*A2P*G192+A3P
8*G192+2.*A3P*G193)-RATI0*B107*(057*G216+2.*D67*G217+D62*G217+2.
9*D62*G218)-3107*E116*G219
R4BOP=-B107*0/E*(E117*G220+E118*G221+E119*G222+E120*G223)-B1C7*1
1A1P*G216+2.*A2P*G217+A3P*G217+2.*A3P*G218)
R5C=G*G*{-D56*G141+2.*D66*G142+3.*D61*G142+2.*D61*G143)-F*(-056
l*G166+2.*066*G167+3.*D61*G167+2.*D61*Gi68)-B104*(D56*G141+2.*066
2*G142+D61*G142+2.*D61*G143)-BIO5*(D56*G166+2.*066*G167+061*
3G167+2.*061*G168)
R6C=G*G*(~D56*G191+2.*066*G192+3.*061*G192+2.*D61*G193)-FA*(-056
l*G216+2.*D66*G217+3.*061*G217+2.*D6i*G218)-B106*(D56*G191+2.*
2066*G192+D61*G192+2.*D61*G193)
3-B107*(056*G216+2.*066*G217+061*G217+2.*061*G218)
R8A=R8AP+R8ADP
R9A=R9AP+R9ACP
R3B=R3BP+R33CP
R4B=R4BP+R4BDP
R3=R3A+R3B
R4=R4A+R4B
R5=R5A+R5B+R5C
R6=R6A+R6B+R6C
R7 = R 7A+R 7B
R8=R8A+R8B
R9=R9A+R9B
R10=R10A+R10B
S1=EB*(E1*G3+E2*G5)-D/E*{E5*G9+E6*G29)
S2=EB*(E3*G1 +E4*G6)-D/E*(E7*G7+E8*G48)
S3A=-D/E*(E9*G29 + E10*G30+E11*G31+E12*G32+E13*G33 + E14*G34+E15 *
1G35+E16*G36)-AlH»A*(E5*G195+E6*G224)-AlH*EA*(E5*G196+E6*G243)
2-A2H*A*(E5*G197+E6*G262)-A2H* GA*(E5*G198+E6*G285P)-AlH*B100*lE68
3*G195+E69*G224)-A1H*B101*(E68*G196+E69*G243)-A2H* B102*(E68*G197
4+E69*G262)-A2H*B103*(E68*G198+E69*G285P)
S4A=-D/E*(E17*G37+E18*G38+E19*G39+E20*G40+E21*G41+E22*G42+E23
1*G4 3 + E24*G44)-AlH*A*(E7*G225 + E8*G226)-A 1H*EA*{E7*G244+E8*G245)
2-A2H*A*(E7*G263+E8*G264)-A2H*GA*(E7*G286+E8*G287)-A1H*BICO*(E70
3*G225+E71*G226)-A1H*B101*(E70*G244+E71*G245)-A2H*B102*(E70*G263
4+E71*G264)-A2H*B103*(E70*G286+E71*G287)
S5AP=-A1H*A*(E9*G227+E10*G228+E11*G229+E12*G230+E13*G231
1+E14*G232+E15*G233+E16*G234)-A1H*EA*(E9*G246+E10*G247+E11*G248
2 + E12 *G249 + E13*G2 50+E14*G25l+ E15*G252 + E16*G253)-A2H*A*(E9*G265
3+E10*G266+Ell*G267+E12*G268+E13*G269+E14*G270+E15*G271+E16*G272)
4-A2H*GA*(E9*G288+E10*G289+E11»G290+E12*G291+E13*G292+E14*G293
5+E15*G294+E16*G295)-AlH*B100*(E72*G227+E73*G228+E74*G229
6+E75*G2 30 + E76*G2 31 + E 77*G232 + E78*G233 + E79*G2 34) —A1H*B101*(E72*
7G246+E73*G247+E74*G248+E75*G249+E76*G250+E77*G251+E78*G252+E79*
8G253)-A2H*B102*{E72*G265+E73*G266+E74*G267+E75*G268+E76*G269+E77*
9G270+E78*G271+E79*G272)-A2H*B103*(E72*G288+E73*G289+E74*G290)
S5ADP=-A2H*B103*{E75*G2 9i + E 76*G292 + E77*G293 + E78*G294 + E79*G295)

145
S6AP=-A1H*A*(E17*G235+E18*G236+E19*G237+E20*G238+E21*G239+E22
1*G240+E23*G241+E24*G242)-AlH*EA*(E17*G254+E18*G255+E19*G256+E20
2*G257+E21*G258+E22*G259+E23*G260+E24*G261)-A2H*A*(E17*G273+E18
3*G279+E19*G280+E20*G281+E21*G282+E22*G283+E23*G284+E24*G285)
4-A2H*GA*(E17*G296+E18*G297+E19*G298+E20*G299+E21*G300+E22*G301+
5E23*G302+E24*G303)-A1H*B100*(E80*G235+E81*G236+E82*G237+E83*G238
6 +E84*G239+E85*G240+E86*G241+E87*G242)-A1H*B101*{E80*G254+E81
7*G255+E82*G256+E83*G257+E84*G258+E85*G259+E86*G260
8+E87*G261)-A2H*B102*(E80*G273+E81*G279+E82*G280+E83*G281+E84
9*G282+E85*G283+E86*G284+E87*G285)
S6ADP=-A2H*B103*(E80*G296+E81*G297+E82*G298+E83*G299+E84*G300+
1E85*G301+E86*G302+E87*G303)
S5B=G*G*(E25*G174+E26*G175+E27*G176+E28*G177+E29*G178+E30*G179
1+E31*G180+E32*G181+E33*G182)-F*(E25*G304+E26*G305+E27*G3C6+E28*
2G307+E29*G308+E30*G309+E31*G310+E32*G311 + E 33*G312)-B104*(E87P*G174
3+E88*G175+E89*G176+E90*G177+E91*G178+E92*G179+E93*G180+E94
4*G181+E95*G182)-B105*{E87P*G304+E88*G305+E89*G306+E90*G307+E91
5*G308+E92*G309+E93*G310+E94*G311+E95*G312)
S6B=G*G*(E25*G124+E26*G330+E27*G331+E28*G332+E29*G333+E30*G334
1+E31*G335+E32*G336+E33*G337)-FA*(E25*G351+E26*G352+E27
2*G353+E28*G354+E29*G355+E30*G356+E31*G357+E32*G358+E33*G359)
3-B106*{E87P*G124+E88*G330+E89*G331+E90*G332+E91*G333+E92*G334
4+E93*G335+E94*G336+E95*G337)-B107*(E87P*G351+E88*G352+E89*G353
5+E90*G354+E91*G355+E92*G356+E93*G357+E94*G358+E95*G359)
S7A=G*G*(E34*G174+E35*G183+E36*G184)+G*G/2.*(E44*G174+E45*G183+
1E46*G184)+G*G*(-D53*G191+2.*D63*G192+3.*D58*G192+2.*058*G193)
2-F*(E34*G313+E35*G314+E36*G315)-F/2.*{E44*G313+E45*G314+E46*G315)
3-F*(-D53*G322+2.*D63*G323+3.*D58*G323+2.*D58*G324)-B104*(E96*G174
4+E97*G183+E98*G184)-B104/2.*(E99*G174+E100*G183+E101*G184)—B104*
5 6+E97*G314+E98*G315)-B105/2.*(E99*G313+E100*G314+E101*G315)-B105
7*(053*G322+2.*D63*G323+D58*G323+2.*D58*G324)
S8AP=G*G*(E37*G185+E38*G186+E39*G187+E40*G188)+G*G/2.*(E47*G185+
1E48*G186+E49*G187+E50*G188)+G*G*(-D54*G191 + 2.*D64*G192 + 3.*059*
2G192+2.*D59*G193)-F*(E37*G316+E38*G317+E39*G318+E40*G319)-F
3*<-D54*G322+2.*D64*G323+3.*D59*G323+2.*D59*G324)+G*G*(E34*G124+
4E35*G338+E36*G339)+G*G*(E44*G124+E45*G338+E46*G339)+G*G*(-D53*G141
5+2.*063*G142+3.*D58*G142+2.*058*G143)-FA*(E34*G351+E35*G360+E36
6*G361)-FA/2.*(E44*G351+E45*G360+E46*G361)-FA*(-D53*G367+2.*D63
7*G368+3.*D58*G368+2.*058*G369)-B104*(E102*G185+E103*G186+E104
8*G187+E105*G188)-B104/2.*(E106*G185+E107*G186+E108*G187+E109*G188
9)-B104*{054*G191+2.*D64*G192+D59*G192+2.*D59*G193)
S8ADP=-B105*(E102*G316+E103*G317+E104*G318+E105*G319)-B105/2.*(
lE106*G316+E107*G317+E108*G318+E109*G319)-B105*(D54*G322+2.*
2D64*G323+D59*G323+2.*059*G324)-B 106*(E96*G124+E97*G338 + E98*G339>
3-B106/2.*(E99*G124+E100*G338+E101*G339)-B106*(053*G141+2.*063*
4G142+D58*G142+2.*D58*G143)-B107*(E96*G351+E97*G360+E98*G361)-
5B107/2.*(E99*G35i+E100*G360+E101*G361)-B107*(D53*G367+2.*063
6*G368+D58*G368+2.*D58*G369)-F/2.*(E47*G316+E48*G317+E49*G318+E50*
7G319)
S9AP=G*G*(E41*G174+E42*G189+E43*G190)+G*G/2.*(E50P*G174+E51*G189

146
1+E52*G190)+G*G*(-D55*G191+2.*D65*G192+3.*D60*G192+2.*D60*G193)-F*(
2E41*G313+E42*G320+E43*G321)-F/2.*(E50P*G313+E51*G320+E52*G321)-F*(
3-055*G322+2.*D65*G323+3.*D60*G323+2.*D60*G324)+G*G*(E37*G340
4+E38*G341+E39*G342+E40*G343)+G*G/2.*(E47*G340+E48*G34i+E49*G342+
5E50*G343)+G*G*(-D54*G141+2.*D64*G142+3.*D59*G143)-FA*(E37*G362
6+E38*G363+E39*G364+E40*G365)-FA/2.*(E47*G362+E48*G363+E49*G364
7+E50*G365)-FA*(-D54*G367+2.*D64*G368 + 3.*D59*G368+ 2.*D59*G369)
8-B104*(EU0*G174 + Ell1*G 189 + E112*G190)-B104/2.*(E113*G174+E114*G189
9+E115*G190)+G*G*2.*059*G143
S9ADP=-B104 *(D55*G191+2.*D65*G192+D60*G192+2.*060*G193)-B105*(
1E110«G313+EU1*G320+E112*G321)-B105/2.*(El13*G313+E114*G320+
2E115*G321)-8105*{D55*G322+2.*D65*G323+D60*G323+2.*060*G324)-B106
3*(E102*G340+E103*G341+E104*G342+E105*G343)-B106/2.*(E106*G340
4+E107*G341+E108*G342+E109*G343)-B106*(D54*G141+2.*D64*G142+2.*
5059*G143+D59*G142)-B107*(E102*G362+E103*G363+E104*G364+E105*G365)
6-B107/2.*(E106*G362+E107*G363+E108*G364+ E109*G365)-B107*(054
7 *G36 7+2.*D64*G368+059*G368 + 2.*059*G369)
S10A=G*G*(E4l*G124+E42*G344+E43*G345)+G*G/2.*(E50P*G124+E51*G344
1+E52*G345)+G*G*(-D55*G141+2.*D65*G142+3.*D60*G142+2.*D60*G143)
2-FA*(E41*G351+E42*G158+E43*G366)-FA/2.*(E50P*G351+E51*G158+
4E52*G366)-FA*(-D55*G367+2.*D65*G368+3.*D60*G368+2.*D60*G369)-
5B106*(E110*G124+Elll*G344+E112*G345)-B106/2.*(E113*G124+E114*G344
6+E115*G345)-B106*(D55*G141+2.*D65*G142+D60*G142+2.*D60*G143)-B107
7*(E110*G351+E111*G158+E112*G366)-B107/2.*(E113*G351+E114*G158+
8E115*G366)-B107*(D55*G367+2.*D65*G368+D60*G368+2.*060*G369)
S7B=(l.-A)*G*(E58*G174+E59*G183+E60*G184)-F*(E58*G313+E59*G314
1+E60*G315)
S8B=(l.-A)*G*(E61*G185+E62*G186+E63*G187+E64*G188)-F*(E61*G316
1+E62*G317+E63*G318+E64*G319)+(l.-A)*G*(E58*G124+E59*G338+E60*
2G339)-FA*(E58*G35i+E59*G360+E60*G361)
S9B=(l.-A)*G*(E65*G174+E66*G189+E67*G190)-F*(E65*G313+E66*G320
1+E67*G321)+(l.-A)*G*(E61*G340+E62*G341+E63*G342+E64*G343)-FA*(E61
2*G362+E62*G363+E63*G364+E64*G365)
S10B=(l.-A)*G*(E65*G124+E66*G344+E67*G345)-FA*(E65*G351+E66*G158+
1E67*G366)
S3BP=RATI0*G*G*(-D57*G191+2.*D67*G192+3.*D62*G192+2.*D62*G193)
1+G*G*E53*G194+G*G*(E54*G195+E55*G196+E56*G197+E57*G198)*D/E
2+G*G*(-A1P*G191+2.*A2P*G192+3.*A3P*G192+2.*A3P*G193)-RATI0*F *(
3-057 *G322 + 2.*067*G32 3 + 3.*062*G32 3 + 2.*D62*G324)-F*E53*G32 5
4-F*0/E*(E54*G326+E55*G327+E56*G328+E57*G329)-F*(-A1P*G322+2.*A2P
5*G323+3.*A3P*G323+2.*A3P*G324)-B104*RAT10*(D57*G191+2.*D67*G192
6+D62*G192+2.*D62*G193)-B104*E116*G194-B104*D/E*{E117*G195
7+E118*G196+E119*G197+E120*G198)-B104*(A1P*G191+2.*A2P*G192+A3P*
8G192+2.*A3P*G193)-B105*RAT 10*{057*G322+2.*D67*G323+062*G323+
92.*D62*G324}-B105*E116*G325
S3BDP=-B105*D/E*(El17*G326+E118*G327+E119*G328+E120*G329)-B105*
1(A1P*G322+2.*A2P*G323+A3P*G323+2.*A3P*G324)
S4BP=G*G*RATI0*(-057*G141+2.*D67*6142+3.*D62*G142+2.*D62*G143)
1+G*G*E53*G144+G*G*D/E*(E54*G347+E55*G348+E56*G349+E57*G350)
2+G*G*(-AlP*G141+2.*A2P*G142+3.*A3P*G142+2.*A3P*G346)-FA*RATI0*
3(-057*G367+2.*D67*G368+3.*D62*G368+2.*062*G369)-E53*G370*FA

147
4-FA*0/E*(E54*G371+E55*G372+E56*G373+E57*G374)-FA*(-AlP*G367+2.
5*A2P*G368+3.*A3P*G368+2.*A3P*G369)-RATI0*B106*(D57*G141+2.*D67*
6G142+062*G142+2.*D62*G346)-B106*E116*G144-B106*0/E*(E117*G347
7 + EU8*G348 + EU9*G349+E120*G350)-B106*(A1P*G141 + 2.*A2P*G142 + A3P
8*G142+2.*A3P*G346)-B107*RATIO*(057*G367+2.*067*G368+D62*G368
9+2.*062*G369)-El16*G370*B107
S4BDP=-B107*D/E*(E117*G371+E118*G372+E119*G373+E120*G374)-B107*(
1A1P*G367+2.*A2P*G368+A3P*G368+2.*A3P*G369)
S5C=G*G*(-C56*G191+2.*D66*G192+3.*061*G192+2.*D61*G193)-F*{-D56
l*G322+2.*D66*G323+3.*D61*G323+2.*D61*G324)-B104*(056*G191+2.*
2066*G192+061*G192+2.*061*G193)-B105*{D56*G322+2.*D66*G323+061
3*G323+2.*061*G324)
S6C=G*G*(-D56*G141+2.*D66*G142+3.*06l*G142+2.*061*G1431-FA*(
l-056*G367+2.*D66*G368+3.*D61*G368+2.*061*G369)-B106*(D56*G141
2+2.*066*G142+D61*G142+2.*061*G143)-B107*{056*G367+2.*066*G368+
3D61*G368+2.*061*G369)
S5A=S5AP+S5ACP
S6A=S6AP+S6ADP
S3B=S3BP+S3BDP
S4B=S4BP+S4BCP
S3=S3A+S3B
S4=S4A+S4B
S5=S5A+S5B+S5C
S6=S6A+S68+S6C
S7=S7A+S7B
S8=S8A+S8B
S9=S9A+S9B
S10=S10A+S10B
U1=PHI**3*R7+PHI**2*R8+PHI*R9+R10
U2=-(R1*PHI+R2)/Ul
U3=-(R3*PHI+R4)/U1
U4=-(R5*PHI+R6)/U1
U5=PHI**3*S7+PHI**2*S8+PHI*S9+S10
U6=S5*PHI+S6+U5*U4
U7=S3*PHI+S4+U5*U3
U8=S1*PHI+S2+U5*U2
U9=U7**2-4.*U6*U8
AT01 = (-U7 + U9 ** .5)/2./U6/C**2
AT02=(-U7-U9* *.5)/2./U6/D**2
WRITE(6,8) BETA,D,X,Q,RATIO,SG»C,PHI,U9,AT01»ATG2,U1»U2,U3»U4,
lU51U6,U7,U8,Rl,R2,R3,R4,R5fR6,R7,R8,R9,RIO,S1,S2,S3,S4,S5,S6,S7,
2S8,S9,S10,A1H,A2H,A1P,A2P, A3P
8 FORMAT (8E12.3)
GO TO 1
END

REFERENCES
[1] von Karman, T. and Tsien, H. S., "The Buckling of Spherical Shells
by External Pressure," Journ. of Aeron. Science, 1939, pp. 43-50.
[2] Donnell, L. H., "Stability of Thin-Valled Tubes under Torsion,"
NACA Report No. 479, 1933.
[3] von Karman, T. and Tsien, H. S., "The Buckling of Thin Cylindrical
Shells under Axial Compression," Journ.-of Aeron. Science, 1941,
pp. 303-312.
[4] Leggett, D. M. A. and Jones, R. P. N., "The Behavior of a Cylin¬
drical Shell under Axial Compression when the Buckling Load Has
Been Exceeded," RAE Report, No. SME 3204, 1942.
[5] Michielsen, H. F., "The Behavior of a Cylindrical Shell under
Axial Compression," Journ. of Aero-Science, 1948, pp. 738-744.
[6] Kempner, J., "Postbuckling Behavior of Axially Compressed Circu¬
lar Shells," Journ. of Aeron. Science, 1954, pp. 329-335.
[7] Donnell, L. H. and Wan, C. C., "Effect of Imperfections on Buck¬
ling of Thin Cylinders and Columns under Axial Compression,"
Trans. ASME 72, 1950, pp. 73-83.
[8] Loo, T., "Effect of Large Deformation and Imperfections on the
Elastic Buckling of Cylinders under Torsion and Axial Compres¬
sion," 2nd U.S. Nat. Congr. Appl. Mech., 1955, pp. 345-357.
[9] Nash, W. A., "Buckling of Initially Imperfect Cylindrical Shells
Subject to Torsion," Journ. of Appl. Mech., 1957, pp. 125-130.
[10] Kempner, J. and Crouzet-Pascal, J., "Postbuckling Behavior of
Circular Cylindrical Shells under Hydrostatic Pressure,"
Polytech. Inst., Brooklyn, PIBAL Report No. 343, 1956.
[11] Donnell, L. H., "Effect of Imperfections on Buckling of Thin
Cylinders under External Pressure," Journ. Appl. Mech., 1956,
pp. 569-575.
[12] Lu, Y. S. and Nash, W. A., "Elastic Instability of Pressurized
Cylindrical Shells under Compression or Bending," Proceedings
of the Fourtn U.S. Nat. Congr. of Appl. Mech., ASME, 1962,
pp. 697-704.
148

149
[13] Almroth, B. 0., "Postbuckling Behavior of Axially Compressed
Circular Cylinders," AIAA Journ., 1963, pp. 630-633.
[14] Sobey, A. J., "The Buckling of an Axially Loaded Circular Cylinder
with Initial Imperfections," Aeronautical Research Council
Report and Memoranda No. 3430, Her Majesty’s Stationery Office,
London, England, 1956.
[15] Seide, P., "Axisymmetrical Buckling of Conical Shells under Axial
Compression," Journ. of Appl. Mech., 1956, pp. 625-628.
[16] Hoff, N. J. and Singer, J., "Buckling of Conical Shells under
Hydrostatic Pressure," Symposium on the Theory of Thin Shells,
I.U.T.A.M. Delft, 1959, pp. 389-414.
[17] Seide, P., "On the Buckling of Truncated Conical Shells under
Uniform Hydrostatic Pressure," Symposium on the Theory of Thin
Shells, I.U.T.A.M. Delft, 1959, pp. 363-388.
[18] Mushitari, Kh. M. and Sachenkov, A. V., "Stability of Cylindrical
and Conical Shells of Circular Cross Section with Simultaneous
Action of Axial Compression and External Normal Pressure,"
NACA TM 1433, 1958.
[19] Seide, P., "On the Stability of Internally Pressurized Conical
Shells under Axial Compression," Proceedings of the Fourth
U.S. Nat. Congr. of Appl. Mech., 1962, pp. 761-774.
[20] Schnell, W., "Die Dvinwandig Kegelschale unter Axial-und Innendruck,"
Teil I, A. Flugwiss, Vol. 10, Heft 415, 1962, pp. 154-160;
Tie 1 II, Z. Flugwiss, Vol. 10, Heft 8, 1962, pp. 314-321.
[21] Newman, M. and Reiss, E., "Nonlinear Axisymmetric Deformation of
Conical Shells," Journ. Soc. Indust. Appl. Math., 1964, pp. 386-
402 .
[22] Famili, J., "Asymmetric Buckling of Finite Deformed Conical Shells,"
AIAA Journ., 1965, pp. 1456-1461.
[23] Niordson, F. I. N., "Buckling of Conical Shells Subjected to Uni¬
form External Lateral Pressure," Trans. Roy. Inst, of Technol.,
Stockholm 10, 1947, pp. 1-12.
[24] Bijlaard, P. P., "Buckling of Thin Conical Shells under Uniform
External Pressure," NASA TN, D-1510, 1962, pp. 441-450.
[25] Hoff, N. J., "Buckling of Thin Cylindrical Shells under Hoop
Stresses Varying in Axial Direction," Journ. of Appl. Mech.,
1957, pp. 405-412.

150
[26] Zuk, W., "Thermal Buckling of Clamped Cylindrical Shells," Journ.
of Aeron. Science, 1957, p. 359.
[27] Sunakawa, M., "Deformation and Buckling of Cylindrical Shells
Subjected to Heating," Aeron. Research Inst., University of
Tokyo, Japan, Report 370, 1962.
[28] Abir, D. and Nardo, S. V., "Thermal Buckling of Circular Cylin¬
drical Shells under Circumferential Temperature Gradients,"
Journ. of Aeron. Science, 1959, pp. 803-808.
[29] Hoff, N. J., Chao, C. C. and Madsen, W. A., "Buckling of a Thin-
walled Circular Cylindrical Shell Heated along An Axial Strip,"
Stanford University, SUDAER Report 142, 1962.
[30] Ross, B., Mayers, J. and Jaworski, A., "Buckling Tests on Thin
Circular Cylindrical Shells Heated along an Axial Strip,"
Stanford University, SUDAER Report 163, 1963.
[31] Bendavid, D. and Singer, J., "Thermal Buckling of Conical Shells
Heated along a Generator," Stanford University, SUDAER Report
258, 1966.
[32] Langhaar, H. L., Energy Method in Applied Mechanics, John Wiley
and Sons, Inc., New York, 1962.
[33] Kantorovich, L. V. and Krylov, V. I., Approximate Method of
Higher Analysis, Interscience Publications, Inc., New York,
1958.
[34] Mikhlin, S. G., Variation Methods in Mathematical Analysis,
The Macmillan Company, New York, 1964.
[35] Hill, D. W., "Buckling of Thin Circular Cylindrical Shells
Heated along an Axial Strip," Stanford University, SUDAER
Report 88, 1959.

BIOGRAPHICAL SKETCH
The author was born on February 1, 1938, in Tientsin, China.
He received his Bachelor of Science degree in Mechanical Engineering
in July, 1959, from the National Taiwan University, Taipei, Taiwan,
China. In October, 1959, he began two years of service in the Air
Force of the Republic of China. Upon release from the service, he
enrolled in the Graduate School of the University of Florida in Sep¬
tember, 1962, and received the degree of Master of Science with a
major in Engineering Science and Mechanics in April, 1964. Thereafter,
he continued his studies and research leading to the degree of Doctor
of Philosophy in the Department of Engineering Science and Mechanics.
He is a member of Phi Kappa Phi.
J
151

This dissertation was prepared under the direction of the
chairman of the candidate's supervisory committee and has been
approved by all members of that committee. It was submitted to the
Dean of the College of Engineering and to the Graduate Council, and
was approved as partial fulfillment of the requirements for the
degree of Doctor of Philosophy.
June, 1967
Dean, College of Engineering
Dean, Graduate School
Supervisory Committee:
Chairman

i
i
UNIVERSITY OF FLORIDA
3 1262 08553 9889
<




PAGE 1

%8&./,1* $1' '()250$7,21 2) +($7(' &21,&$/ 6+(//6 %\ /8.$1* &+$1* $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$ -XQH

PAGE 2

$&.12:/('*0(176 7KH DXWKRU ZLVKHV WR H[SUHVV KLV VLQFHUH DSSUHFLDWLRQ WR 'U 6 < /X &KDLUPDQ RI WKH 6XSHUYLVRU\ &RPPLWWHH IRU VXJJHVWLQJ WKLV VXEMHFW DQG SURYLGLQJ LQYDOXDEOH JXLGDQFH WKURXJKRXW WKH HQWLUH SHULRG RI WKLV UHVHDUFK ,W ZDV E\ KLV FRQVWDQW HQFRXUDJHPHQW WKDW WKLV ZRUN ZDV PDGH SRVVLEOH +H ZRXOG DOVR OLNH WR WKDQN 'U : $ 1DVK &KDLUPDQ RI WKH 'HSDUWPHQW RI (QJLQHHULQJ 6FLHQFH DQG 0HFKDQLFV IRU KLV YDOXDEOH VXJJHVWLRQV DQG ILQDQFLDO VXSSRUW WKURXJKRXW WKH DXWKRUnV JUDGXDWH ZRUN *UDWLWXGH LV DOVR H[SUHVVHG WR 'U (EFLRJOX 3URIHVVRU RI (QJLQHHULQJ 6FLHQFH DQG 0HFKDQLFV DQG 'U 5 %ODNH $VVRFLDWH 3URIHVVRU RI 0DWKHPDWLFV IRU VHUYLQJ DV PHPEHUV RI WKH ZULWHUnV VXSHUYLVRU\ FRPPLWWHH )LQDO WKDQNV JR WR WKH 1DWLRQDO 6FLHQFH )RXQGDWLRQ IRU VSRQVRULQJ WKLV UHVHDUFK

PAGE 3

7$%/( 2) &217(176 3DJH $&.12:/('*0(176 LL /,67 2) ),*85(6 LY 120(1&/$785( YL $%675$&7 YLLL &+$37(5 ,1752'8&7,21 ,, %$6,& 5(/$7,216 $1' )81'$0(17$/ (48$7,216 *HRPHWU\ RI 6KHOOV %DVLF (TXDWLRQV 7UDQVIRUPDWLRQ RI &RRUGLQDWHV ,,, 0(7+2' 2) $3352$&+ %RXQGDU\ &RQGLWLRQV 7KHUPDO %XFNOLQJ 3RVWEXFNOLQJ %HKDYLRU ,9 62/87,21 $1' 180(5,&$/ 5(68/76 &ULWLFDO 7HPSHUDWXUH 0LQLPXP 7HPSHUDWXUH 'HIRUPDWLRQ 9 &21&/86,216 $33(1',; $ (48$7,216 )25 &$6( % (48$7,216 )25 &$6( ,, & &20387(5 352*5$0 )25 121/,1($5 $1$/<6,6 &RUUHVSRQGLQJ 6\PEROV 8VHG LQ &RPSXWHU 3URJUDP 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ L LL

PAGE 4

/,67 2) ),*85(6 )LJXUH 3DJH 7KH FURVV VHFWLRQ RI D VKHOO VHJPHQW *HRPHWU\ RI FRQLFDO VKHOO &ULWLFDO WHPSHUDWXUH YHUVXV UDGLXVWKLFNQHVV UDWLR DW +5 &ULWLFDO WHPSHUDWXUH YHUVXV UDGLXVWKLFNQHVV UDWLR DW r &ULWLFDO WHPSHUDWXUH YHUVXV VHPLYHUWH[ DQJOH DW +$ 9DULDWLRQ RI FULWLFDO WHPSHUDWXUH ZLWK PHULGLRQDO WHPSHUDWXUH LQGH[ r 5$ +$ f &ULWLFDO WHPSHUDWXUH GXH WR FLUFXPIHUHQWLDOO\ QRQ XQLIRUP QHDWLQJ r +5 f 7HPSHUDWXUH YDULDWLRQ 7A DV D IXQFWLRQ RI GHIOHFWLRQ FRHIILFLHQW UDWLR DrDrf DW r 5$ DQG +$ 7HPSHUDWXUH YDULDWLRQ DV D IXQFWLRQ RI GHIOHFWLRQ FRHIILFLHQW UDWLR DnnDf DW r 5$ DQG +$ 0LQLPXP WHPSHUDWXUH YHUVXV UDGLXVWKLFNQHVV UDWLR DW +$ 9DULDWLRQ RI PLQLPXP WHPSHUDWXUH ZLWK PHULGLRQDO WHPSHUDWXUH LQGH[ r 5$ +$ f 'HIOHFWLRQ YHUVXV WHPSHUDWXUH r 5$ +$ f 'HIOHFWLRQ YHUVXV WHPSHUDWXUH IRU D[LV\UDPHWULF FDVH r 5Q +$ fn 'HIOHFWLRQ YHUVXV WHPSHUDWXUH +$ f M LY

PAGE 5

/,67 2) ),*85(6 &RQWLQXHGf )LJXUH 3DJH &RPSDULVRQ RI FULWLFDO WHPSHUDWXUH ZLWK PLQLPXP WHPSHUDWXUH 3 r +5 f 3KRWRJUDSK VKRZLQJ EXFNOLQJ RI D KHDWHG FRQLFDO VKHOO Y

PAGE 6

t! 120(1&/$785( (
PAGE 7

D WKHUPDO H[SDQVLRQ FRHIILFLHQW 3 VHPLYHUWH[ DQJOH YOf \ QXPEHUV GHILQHG LQ (TV ,9f DQG ,9f UHVSHFWLYHO\ fUn b PHULGLRQDO DQG FLUFXPIHUHQWLDO VWUDLQV HU! VKHDU VWUDLQ F QXPEHU GHILQHG LQ (T ,9f WUDQVIRUPHG FRRUGLQDWH GHILQHG LQ (TV f r 9 U 7 PHULGLRQDO DQG FLUFXPIHUHQWLDO FKDQJHV RI FXUYDWXUH LQ WKH PLGGOH VXUIDFH + US WZLVW RI WKH PLGGOH VXUIDFH ? OYf rQ QXPEHU RI KDOI ZDYHV LQ PHULGLRQDO DQG FLUFXPIHUn HQWLDO GLUHFWLRQ UHVSHFWLYHO\ ?! 3RLVVRQfV UDWLR 9 7 WHPSHUDWXUH FRHIILFLHQWV GHILQHG LQ (TV ,9f DQG ,9f YY RSHUDWRU GHILQHG LQ (T f 6XSHUVFULSWV SUHEXFNOLQJ VWDWH DGGLWLRQDO TXDOLWLHV GXULQJ EXFNOLQJ FU 6XEVFULSWV FULWLFDO YDOXHV PLQ PLQLPXP YDOXHV PD[ PD[LPXP YDOXHV ,} ,, FRQGLWLRQ LQ &DVHV DQG ,, SDUWLDO GLIIHUHQWLDWLRQ ZLWK UHVSHFW WR WKH YDULDEOHV IROORZLQJ WKH FRPPD YLL

PAGE 8

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ %8&./,1* $1' '()250$7,21 2) +($7(' &21,&$/ 6+(//6 %\ /X.DQJ &KDQJ -XQH &KDLUPDQ 'U 6 < /X 0DMRU 'HSDUWPHQW (QJLQHHULQJ 6FLHQFH DQG 0HFKDQLFV 7KH LQVWDELOLW\ RI WUXQFDWHG FRQLFDO VKHOOV GXH WR WKHUPDO ORDGLQJV ZDV VWXGLHG 7KH EDVLF JRYHUQLQJ HTXDWLRQV ZHUH GHULYHG E\ XVH RI WKH ODUJH GHIOHFWLRQ WKHRU\ DQG *DOHUNLQnV PHWKRG ZDV HPn SOR\HG WR LQWHJUDWH WKH HTXLOLEULXP HTXDWLRQ 7ZR FDVHV ZHUH FRQVLGHUHG LQ WKLV LQYHVWLJDWLRQ ,Q RQH FDVH WKH WHPSHUDWXUH YDULHV DORQJ WKH JHQHUDWRU DQG WKH FRQLFDO VKHOO LV UHVWULFWHG FRPSOHWHO\ DW ERWK HQGV ZKLOH LQ WKH RWKHU FDVH WKH WHPSHUDWXUH FKDQJHV LQ WZR SULQFLSDO GLUHFWLRQV DQG WKH FRQH LV FRQn VWUDLQHG DORQJ WKH SHULPHWHU EXW LV IUHH RI UHVXOWDQW ORQJLWXGLQDO IRUFH DW ERXQGDULHV 7KH HGJHV DUH VLPSO\ VXSSRUWHG 7KH UHODWLRQ RI WKH FULWLFDO WHPSHUDWXUH WR WKH JHRPHWULF SDUDPHWHUV ZHUH HYDOXDWHG 7KUHH SDUDPHWHUV ZHUH XVHG QDPHO\ WKH UDGLXVWKLFNQHVV UDWLR WKH UDGLXVKHLJKW UDWLR DQG WKH FRQHnV YHUWH[ DQJOH 7KH UDGLXVWKLFNQHVV UDWLR KDV WKH PRVW VLJQLILFDQW HIIHFW RQ WKH YDOXH RI FULWLFDO WHPSHUDWXUH $ KLJKHU EXFNOLQJ WHPn SHUDWXUH ZDV IRXQG E\ QRQOLQHDU DQDO\VLV ZKHQ FRPSDUHG WR WKDW REWDLQHG E\ OLQHDU DQDO\VLV YLLL

PAGE 9

&+$37(5 ,1752'8&7,21 7KLQZDOOHG VKHOOV KDYH PDQ\ DSSOLFDWLRQV DV SULQFLSDO HOHPHQWV RI VWUXFWXUHV 2QH RI WKH PDLQ DGYDQWDJHV LV ZHLJKWVDYLQJ $PRQJ WKH YDULRXV W\SHV RI VKHOOV WKH FRQLFDO DQG F\OLQGULFDO VKHOOV DUH PRVW IUHTXHQWO\ XVHG LQ VWUXFWXUHV VXFK DV VSDFH YHKLFOHV DQG UHDFWRUV 7KH PDLQ DGYDQWDJHV RI WKHLU DSSOLFDWLRQV DUH WR UHGXFH WKH GUDJ DQG WKH\ DUH HDVLO\ PDQXIDFWXUHG 6LPLODU WR D VOHQGHU EDU D VKHOO ZLOO GHIRUP ZKHQ D ORDG LV DSSOLHG $Q LPSRUWDQW SKDVH LQ WKH GHVLJQ RI WKLQZDOOHG VKHOOV LV D VWXG\ RI WKHLU LQVWDELOLW\ WKDW LV WR GHWHUn PLQH WKH OLPLW RI WKH DSSOLHG ORDGLQJV PHFKDQLFDO DQG WKHUPDO EHIRUH WKH VKHOOV EHFRPH XQVWDEOH ,I DQ D[LDO ORDG LV DSSOLHG WR D FROXPQ DQG LI LW LV JUDGXDOO\ LQFUHDVHG D FRQGLWLRQ LV UHDFKHG LQ ZKLFK WKH HTXLOLEULXP VWDWH EHFRPHV XQVWDEOH DQG D VPDOO ODWHUDO GLVWXUEDQFH ZLOO SURGXFH D GHIOHFWLRQ ZKLFK GRHV QRW GLVDSSHDU ZKHQ WKH ODWHUDO IRUFH LV UHPRYHG 9RQ .DUPDQ DQG 7VLHQ >O@ QRWHG WKDW VRPH VWUXFWXUHV HVSHn FLDOO\ WKH VKHOOOLNH VWUXFWXUHV PD\ H[SHULHQFH D VWDWH RI ZHDN VWDELOn LW\ VXFK WKDW VPDOO EORZV RU RWKHU GLVWXUEDQFHV FDXVH WKHP WR VQDS LQWR EDGO\ GHIRUPHG VKDSHV 6LQFH WKH HDUO\ WZHQWLHWK FHQWXU\ WKH EXFNOLQJ SUREOHP RI F\OLQGULFDO VKHOOV EDVHG RQ WKH DVVXPSWLRQ RI LQILQLWHVLPDO GHIRUPDn WLRQV KDV EHHQ VWXGLHG E\ PDQ\ DXWKRUV $PRQJ WKHP 'RQQHOO >@ SXEOLVKHG KLV ZHOONQRZQ 'RQQHOOnV HLJKWKRUGHU OLQHDU HTXDWLRQ RI

PAGE 10

VKHOOV ,Q WKH GHULYDWLRQ RI WKLV HTXDWLRQ WKH DVVXPSWLRQV DUH PDGH WKDW WKH ZDOO WKLFNQHVV LV VPDOO FRPSDUHG WR WKH UDGLXV RI WKH F\OLQn GHU WKDW WKH GLVWRUWLRQ WR WUDQVYHUVH VKHDU LV QHJOHFWHG DQG WKDW WKH GHIRUPDWLRQ FRQVLVWV RI D ODUJH QXPEHU RI ZDYHV LQ WKH FLUFXPIHUn HQWLDO GLUHFWLRQ 7KUHH HTXDWLRQV RI HTXLOLEULXP LQ WKH QRUPDO PHULGn LRQDO DQG FLUFXPIHUHQWLDO GLUHFWLRQV DLMH FRPELQHG DQG DUH UHSUHVHQWHG E\ RQH HTXDWLRQ WKURXJK WKH PDWKHPDWLFDO WHFKQLTXH 8QIRUWXQDWHO\ WKH UHVXOWV SUHGLFWHG E\ WKH OLQHDU FODVVLFDO WKHRU\ GR QRW DJUHH ZLWK WKH H[SHULPHQWDO HYLGHQFH ,Q RUGHU WR H[SODLQ WKHVH GLVFUHSDQFLHV YRQ .DUPDQ DQG 7VLHQ >@ PDGH D YHU\ LPSRUWDQW DGYDQFH LQ WKH XQGHUVWDQGLQJ RI WKH SUREOHP RI EXFNOLQJ RI F\OLQGHUV VXEMHFWHG WR D[LDO FRPSUHVVLRQ E\ DVVXPLQJ D GLDPRQGVKDSHG GHIOHFWLRQ SDWWHUQ 7KH\ VWDWHG WKDW WKH EXFNOLQJ SKHQRPHQRQ RI FXUYHG VKHOOV FRXOG EH LQ JHQHUDO RQO\ E\ PHDQV RI WQH ODUJH GHIOHFWLRQ WKHRU\ 7KH\ DSSOLHG WKLV QRQOLQHDU WKHRU\ DQG WQH FRQFHSW RI VQDSWKURXJK SKHQRPHQRQ WR VWXG\ WKH SRVWEXFNOLQJ EHKDYLRU RI WKH F\OLQGULFDO VKHOO XQGHU D[LDO FRPSUHVVLRQ 7KH ZRUN RI YRQ .DUPDQ DQG 7VLHQ KDV EHHQ H[WHQGHG DQG UHILQHG E\ VHYHUDO DXWKRUV >@ ,Q 'RQQHOO DQG :DQ >@ LQWURGXFHG WKH FRQFHSW RI LPSHUn IHFWLRQ LQ WKH DQDO\VLV RI YRQ .DUPDQ DQG 7VLHQ 7KHLU ZRUN ZDV H[n WHQGHG E\ /RR >@ ZKR EDVHG RQ WKH ILQLWHGHIRUPDWLRQ WKHRU\ WRJHWKHU ZLWK D FRQVLGHUDWLRQ RI LQLWLDO LPSHUIHFWLRQ VWXGLHG WKH EXFNOLQJ RI F\OLQGULFDO VKHOOV GXH WR WRUVLRQ $ FRQWLQXDWLRQ RI ZRUN GRQH E\ /RR ZDV ODWHU LQYHVWLJDWHG E\ 1DVK >@ &\OLQGULFDO VKHOOV VXEMHFWHG WR K\GURVWDWLF ORDGV KDYH EHHQ VWXGLHG E\ .HPSQHU DQG &URX]HW3DVFDO >@ DQG 'RQQH >@

PAGE 11

7KH SUREOHP RI SUHVVXUL]HG F\OLQGULFDO VKHOOV XQGHU D[LDO FRPn SUHVVLRQ RU EHQGLQJ KDV EHHQ VWXGLHG E\ /X DQG 1DVK >@ RQ WKH EDVLV RI QRQOLQHDU ILQLWH GHIOHFWLRQ WKHRU\ 7KH UHVXOWV RI WKHVH ILQLWH GHIOHFWLRQ VWXGLHV DUH LQ JRRG DJUHHPHQW ZLWK WKH H[SHULPHQWDO HYLGHQFH +RZHYHU UHFHQW SDSHUV >@ UHSRUW WKDW ZKHQ PRUH WHUPV DUH XVHG LQ WKH GHIOHFWLRQ IXQFWLRQ WKH PLQLPXP EXFNOLQJ ORDG EHFRPHV VPDOOHU DQG WKHUH LV QR ZD\ WR SUHGLFW KRZ PDQ\ WHUPV VKRXOG EH WDNHQ IRU WKH DSSUR[LPD WLRQ 7KH SUREOHP RI VWDELOLW\ RI FRQLFDO VKHOOV VXEMHFWHG WR PHFKDQn LFDO ORDGLQJV KDV EHHQ VWXGLHG E\ VHYHUDO DXWKRUV LQ UHFHQW \HDUV 7KH D[LV\PPHWULFDO EXFNOLQJ RI FLUFXODU FRQHV XQGHU D[LDO FRPSUHVVLRQ ZDV H[DPLQHG E\ 6HLGH >@ 7KH EXFNOLQJ ORDGV FRUUHVSRQGLQJ WR K\GURn VWDWLF SUHVVXUH ZHUH LQYHVWLJDWHG E\ +RII DQG 6LQJHU >@ DQG 6HLGH >@ 0XVKLWDUL DQG 6DFKHQNRY >@ VXJJHVWHG D WUDQVIRUPDWLRQ RI FRRUn GLQDWHV WR VWXG\ WKH EXFNOLQJ RI VLPSO\ VXSSRUWHG FRQHV VXEMHFWHG WR D[LDO FRPSUHVVLRQ DQG QRUPDO SUHVVXUH DQG WKH EXFNOLQJ RI LQWHUQDOO\ SUHVVXUL]HG FRQHV XQGHU D[LDO FRPSUHVVLRQ ZDV ODWHU LQYHVWLJDWHG E\ 6HLGH >@ ,Q DOO RI WKH DERYHPHQWLRQHG UHIHUHQFHV WKH SUHEXFNOLQJ VWUHVVHV DUH DVVXPHG XQFKDQJHG GXULQJ EXFNOLQJ DQG WKH DGGLWLRQDO PLGGOH VXUIDFH IRUFHV GHSHQG RQ QRUPDO GHIOHFWLRQ RQO\ 7KH ODUJH GHIOHFWLRQ WKHRU\ LV OLNHO\ WR UHYHDO D VQDSWKURXJK W\SH RI EHKDYLRU IRU FRQLFDO VKHOOV 6FKQHOO >@ XVHG WKH HQHUJ\ PHWKRG WR VROYH WKH QRQOLQHDU EXFNOLQJ SUREOHP XQGHU D[LDO FRPSUHVVLRQ DQG LQWHUQDO SUHVVXUH 7KH UHVXOWV JDYH D EHWWHU DJUHHPHQW ZLWK WKH H[SHULPHQW WKDQ WKRVH REWDLQHG IURP WKH OLQHDU WKHRU\ 7KH VWXG\ RI QRQOLQHDU D[LV\PPHWULF EXFNOLQJ RI WKH FRQLFDO VKHOO ZDV DOVR H[DPLQHG

PAGE 12

E\ 1HZPDQ DQG 5HLVV > @ DQG )DPLOL >@ E\ WKH XVH RI ILQLWHGLIIHUHQFH DSSUR[LPDWLRQ 7KH XSSHU DQG ORZHU EXFNOLQJ ORDGV KDYH EHHQ SUHFLVHO\ GLVFXVVHG LQ >@ DQG )DPLOLnV UHVXOWV DUH VHHQ WR EH EHWZHHQ WKH UHVXOWV RI 1LRUGVRQ >@ DQG %LMODDUG >@ LQ ZKLFK 1LRUGVRQnV ZRUN LV FRQVLGHUHG DV XSSHU ERXQG DQG %LMODDUGnV ZRUN LV FRQVLGHUHG DV ORZHU ERXQG 7KH EXFNOLQJ SUREOHP RI F\OLQGULFDO VKHOOV VXEMHFW WR D XQLIRUP WHPSHUDWXUH JUDGLHQW KDV EHHQ VWXGLHG E\ +RII >@ IRU VLPSO\ VXSSRUWHG HQGV DQG =XN >@ IRU FODPSHG ERXQGDU\ FRQGLWLRQV ,Q WKHVH ZRUNV WKH F\OLQGHU LV UHVWUDLQHG FLUFXPIHUHQWLDOO\ DW ERWK HQGV EXW LV IUHH IURP FRQVWUDLQW LQ WKH D[LDO GLUHFWLRQ 7KH ORQJLWXGLQDO VWUHVV LV DVVXPHG WR EH ]HUR DQG WKH KRRS VWUHVV YDULHV LQ WKH D[LDO GLUHFWLRQ DQG UDSLGO\ GHFUHDVHV DV WKH GLVWDQFH IURP WKH HGJH LQFUHDVHV +RII DSSUR[n LPDWHG WKH KRRS VWUHVV E\ DQ LQILQLWH FRVLQH VHULHV DQG VROYHG WKH SUREOHP E\ WKH XVH RI 'RQQHOOnV HTXDWLRQ RI WKLQ VKHOO ZKLOH =XN SUHn VHQWHG WKH KRRS VWUHVV E\ D FRVLQH IXQFWLRQ DQG VROYHG WKH JRYHUQLQJ VKHOO HTXDWLRQ E\ *DOHUNLQnV PHWKRG 7KLV SUREOHP ZDV ODWHU DQDO\]HG E\ 6XQDNDZD >@ IRU YDULRXV FRQGLWLRQV RI FRQVWUDLQW +H XVHG WKH D[LV\PPHWULFDO FRQGLWLRQ LQ WKH VWDWH SULRU WR EXFNOLQJ DQG WKH SUREn OHP RI ILQGLQJ WKH KRRS VWUHVV LV WKHUHIRUH PXFK VLPSOLILHG 6LPLODU WR >@ WKH EXFNOLQJ RI WKLQZDOOHG F\OLQGULFDO VKHOOV XQGHU FLUFXPIHUHQWLDO WHPSHUDWXUH JUDGLHQWV ZDV H[DPLQHG E\ $ELU DQG 1DUGR >@ 7KH DERYH DQDO\VLV LV SHUIRUPHG ZLWK WKH DLG RI 'RQQHOOnV HTXDWLRQV 7KH YDULDWLRQ RI WKH WKHUPDO VWUHVV ZLWK WKH FLUFXPIHUHQn WLDO FRRUGLQDWH LV UHSUHVHQWHG E\ D )RXULHU VHULHV DQG WKH VWUHVVHV DUH DVVXPHG FRQVWDQW WKURXJK WKH WKLFNQHVV DQG LQ WKH D[LDO GLUHFWLRQ

PAGE 13

+RII &KDR DQG 0DGVHQ >@ KDYH DOVR LQYHVWLJDWHG WKH EXFNOLQJ RI D F\OLQGULFDO VKHOO KHDWHG DORQJ DQ D[LDO VWULS E\ PHDQV RI 'RQQHOOnV OLQHDU HTXDWLRQ RI F\OLQGULFDO VKHOOV ,W LV DVVXPHG LQ >@ WKDW WKH F\OLQGULFDO VKHOO LV YHU\ ORQJ LQ WKH D[LDO GLUHFWLRQ DQG WKXV WKH D[LDO VWUHVV FDXVHG E\ KHDWLQJ KDV FRQVWDQW YDOXHV RYHU D VXEVWDQWLDO OHQJWK RI WKH KHDWHG VWULS DV ZHOO DV DFURVV LWV HQWLUH ZLGWK DQG RXWn VLGH WKH KHDWHG VWULS WKH WKHUPDO VWUHVV LV DVVXPHG WR EH ]HUR 7KH SUREOHP ZDV VROYHG IRU WKH KHDWHG DV ZHOO DV WKH XQKHDWHG UHJLRQV 7KH UDGLDO GLVSODFHPHQWV WKH VORSHV WKH EHQGLQJ PRPHQWV DQG WKH WUDQVYHUVH VKHDUV DUH WDNHQ WR EH WKH VDPH DW WKH ERXQGDU\ IRU WZR GLIIHUHQW UHJLRQV ,Q D ODWHU UHSRUW >@ WKH VDPH WKHUPDO EXFNOLQJ SUREOHP ZDV VROYHG E\ XVLQJ WKH DFWXDO WHPSHUDWXUH GDWD REWDLQHG IURP H[SHULPHQWV 7KLV LV LQ FRQWUDVW ZLWK WKH H[DFW VROXWLRQ RI >@ LQ ZKLFK XVH ZDV PDGH RI DQ LGHDOL]HG UHSUHVHQWDWLRQ IRU WKH WHPSHUDWXUH YDULDWLRQ LQ WKH FLUFXPIHUHQWLDO GLUHFWLRQ 7KH UHVXOWV ZHUH IRXQG WR EH LQ FORVH DJUHHPHQW ZLWK WKRVH RI WKH H[SHULPHQWVASURYLGHG WKH KHDW VWULS ZDV QRW YHU\ QDUURZ 7KH SUREOHP RI WKHUPDO EXFNOLQJ RI FRQLFDO VKHOOV KHDWHG DORQJ D JHQHUDWRU ZDV UHFHQWO\ VWXGLHG E\ %HQGDYLG DQG 6LQJHU > @ 7KH VROXWLRQ RI WKLV SUREOHP LV REWDLQHG E\ D 5D\OHLJKIWLW] DSSURDFK LQ FRQMXQFWLRQ ZLWK GLVSODFHPHQW IXQFWLRQV PRGLILHG E\ D VKDSH IDFWRU ,Q WKLV DQDO\VLV D K\SHUEROLF D[LDO WKHUPDO VWUHVV GLVWULEXWLRQ LV DVVXPHG WKH VKHOO LV VLPSO\ VXSSRUWHG DQG LV WDNHQ ORQJ HQRXJK VR WKDW WKH HGJH HIIHFW RI WKH WKHUPDO VWUHVV PD\ EH QHJOHFWHG 7KH UDGLXV RI WKH VKHOO LV DOVR DVVXPHG ODUJH FRPSDUHG WR WKH WKLFNQHVV 7KH KRRS VWUHVV LQGXFHG E\ WKH WKHUPDO ORDG PD\ DOVR EH GLVUHJDUGHG

PAGE 14

7KH D[LDO VWUHVV LV WDNHQ LQ FRUUHVSRQGHQFH ZLWK WKH DVVXPHG WHPSHUDWXUH GLVWULEXWLRQ DQG WKH FLUFXPIHUHQWLDO GLVSODFHPHQW LV FKRVHQ WR EH ]HUR DW WKH HGJHV GXULQJ KHDWLQJ 7KH SXUSRVH RI WKH SUHVHQW LQYHVWLJDWLRQ LV WR VWXG\ WKH EXFNn OLQJ DQG SRVWEXFNOLQJ EHKDYLRU RI FRQLFDO VKHOOV XQGHU SUHVXPHG WHPSHUn DWXUH GLVWULEXWLRQV ,W LV ZHOO NQRZQ WKDW ILQLWHGHIOHFWLRQ DQDO\VLV RQ VKHOOV RI RWKHU JHRPHWULHV KDV EHHQ FORVHU WR H[SHULPHQWDO UHVXOWV WKDQ FODVVLFDO VPDOOGHIOHFWLRQ DQDO\VLV DQG LW LV DOVR QRWHG WKDW GXULQJ EXFNOLQJ WKH QRUPDO GHIOHFWLRQ RI WKH VKHOO LV QR ORQJHU LQILQLWHVn LPDO ,Q WKH SUHVHQW VWXG\ WKHUHIRUH WKH WHUPV GXH WR ODUJH GHIRUPDn WLRQ DUH LQFOXGHG LQ WKH EDVLF HTXDWLRQV 7ZR FDVHV DUH FRQVLGHUHG LQ WKLV VWXG\ ,Q RQH FDVH WKH WHPn SHUDWXUH YDULHV DORQJ WKH JHQHUDWRU DQG WKH FRQLFDO VKHOO LV UHVWULFWHG FRPSOHWHO\ DW ERWK HQGV ZKLOH LQ WKH RWKHU FDVH WHPSHUDWXUH FKDQJHV LQ WZR SULQFLSDO GLUHFWLRQV DQG WKH FRQH LV FRQVWUDLQHG DORQJ WKH FLUFXPn IHUHQFH EXW LV IUHH RI UHVXOWDQW ORQJLWXGLQDO IRUFH DW ERXQGDULHV 7KH FRQLFDO VKHOO WR EH WUHDWHG LV DVVXPHG VLPSO\ VXSSRUWHG DQG IUHH IURP RWKHU ORDGLQJV 7KH VKHOO LV FRQVLGHUHG WR EH HODVWLF DQG LVRWURSLF ,WV PDWHULDO SURSHUWLHV DUH WDNHQ WR EH LQGHSHQGHQW RI WHPSHUDWXUH DQG QR G\QDPLF HIIHFWV DUH FRQVLGHUHG 7KH SULQFLSOH RI VWDWLRQDU\ HQHUJ\ LV XVHG WR ILQG WKH JRYHUQLQJ HTXDWLRQV RI HTXLOLEULXP VXEMHFW WR WKHUPDO ORDGLQJ +HQFH WKH EXFNOLQJ DQG PLQLPXP WHPSHUDWXUHV DUH IRXQG IURP WKHVH HTXDWLRQV 7KH GHIOHFWLRQ IXQFWLRQ LV ILUVW DVVXPHG WR VDWLVI\ WKH VLPSO\ VXSSRUWHG ERXQGDU\ FRQGLWLRQ WKH VWUHVV IXQFWLRQ LV WKHQ IRXQG IURP WKH FRPSDWLELOLW\ HTXDWLRQ ZKLFK LV FDUULHG RXW E\ WKH XVH RI WKH

PAGE 15

QRQOLQHDU GHIOHFWLRQ WKHRU\ 7KH VROXWLRQ RI WKLV SUREOHP LV REWDLQHG E\ DSSO\LQJ WKH *DOHUNLQ PHWKRG WR WKH HTXLOLEULXP HTXDWLRQ 1XPHULFDO H[DPSOHV RI ILQGLQJ WKH FULWLFDO WHPSHUDWXUHV IRU GLIIHUHQW JHRPHWULFDO SDUDPHWHUV RI WKH FRQLFDO VKHOOV DUH JLYHQ LQ &KDSWHU ,9 7KH GHIOHFWLRQWHPSHUDWXUH UHODWLRQV DIWHU EXFNOLQJ DUH SORWWHG LQ )LJV 7KH FRPSXWDWLRQ ZDV FDUULHG RXW RQ WKH ,%0 &RPSXWHU DQG WQH JHQHUDO SURJUDPV ZHUH ZULWWHQ LQ )RUWUDQ ,9 ODQJXDJH 7KH GHWDLOHG H[SUHVVLRQV RI WKH V\PEROV XVHG LQ &KDSWHU ,9 DUH H[SOLFLWO\ JLYHQ LQ $SSHQGLFHV $ % DQG & ,Q $SSHQGL[ & WKH H[SUHVn VLRQV DUH SUHVHQWHG LQ )RUWUDQ ODQJXDJH 6LQFH WKH FDSDFLW\ RI WKH ,%0 &RPSXWHU ZDV WRR VPDOO IRU WKH SURJUDP VKRZQ LQ $SSHQGL[ & WKH SURJUDP ZDV WKHUHIRUH GLYLGHG LQWR WKUHH SDUWV GXULQJ WKH QXPHULFDO FD OFXODWLRQV ,Q RUGHU WR FKHFN WKH PDJQLWXGH RI WKH EXFNOLQJ WHPSHUDWXUH D WHVW ZDV SHUIRUPHG E\ DSSO\LQJ KHDW XQLIRUPO\ RYHU WKH VXUIDFH RI WKH FRQLFDO VKHOO

PAGE 16

&+$37(5 ,, %$6,& 5(/$7,216 $1' )81'$0(17$/ (48$7,216 *HRPHWU\ RI 6KHOOV $ VXUIDFH LV D ORFXV RI SRLQWV ZKRVH FRRUGLQDWHV FDQ EH GHVFULEHG DV D IXQFWLRQ RI WZR LQGHSHQGHQW SDUDPHWHUV [A DQG [A ,Q VKHOO WKHRU\ D VSHFLDO W\SH RI FXUYLOLQHDU FRRUGLQDWH V\VWHP LV XVXDOO\ HPSOR\HG )RU DQ\ SRLQW RQ WKH VXUIDFH WKH FRRUGLQDWHV DUH RI WKH W\SH ; ;A[A[A ; ;A[O[A DQG ; ;A[A;Mf LQ ZKLFK ;M ;! f DUH UHFWDQJXODU FRRUGLQDWHV DQG WKH SDUDPHWHUV [A DQG [ DUH VXUIDFH FRRUGLQDWHV 7KH SRVLWLRQ YHFWRU RI DQ\ SRLQW RQ WKH VXUIDFH FDQ EH H[n SUHVVHG DV [ U LLL! 7KH GLVWDQFH GV EHWZHHQ SRLQWV ZLWK WKH VXUIDFH FRRUGLQDWHV ;M [! DQG [AG[A [ G[f LV GHWHUPLQHG E\   RV RLO GM $R RRW[F;f & ,,f ZKHUH $ % DQG & DUH WKH IXQGDPHQWDO PDJQLWXGHV RI WKH ILUVW R R R RUGHU 7KH\ DUH

PAGE 17

]B G Drr a D[ n ; B G-B V6 rr a D[ n D[ ,,f rB D DO & f§ D[ D[ )RU RUWKRJRQDO VXUIDFH FRRUGLQDWHV %T YDQLVKHV DQG WKH PDJQLWXGHV RI A DQG Ar DUH $ DQG & UHVSHFWLYHO\ D[ G[ R Rf 7KH XQLW QRUPDO YHFWRU RI WKH VXUIDFH LV B DIW r $ &} Y ; ; ; f f 7KH IXQGDPHQWDO PDJQLWXGHV RI VHFRQG RUGHU DUH GHILQHG DV B r B ; ; bn7! ; G;I ;M ;I ;a ,&R ;! ; ;] ; ;M "; ;! ; WG;L ;L ";L ;W =;‘ r;O ;;M ;;W ;; ;; \r r $R&R "; ; ; ; ; ; ; ; D; ; ;M ";]

PAGE 18

L/ M a ;? MR&R D F I; ; r "[ A&L A&L D \H ; ;L ; G; G; ; G; GA= ; = ,,f ,W LV VKRZQ LQ GLIIHUHQWLDO JHRPHWU\ WKDW WKH OLQHV RI SULQn FLSDO UDGLL RI FXUYDWXUH FRLQFLGH ZLWK WKH FRRUGLQDWH OLQHV LI DQG RQO\ LI WKH FRRUGLQDWHV DUH RUWKRJRQDO DQG WKXV ,Q WKLV FDVH WKH SULQFLSDO FXUYDWXUHV DUH /R B BA/ ,,f 5 5] & 7KHVH HTXDWLRQV DIIL[ VLJQV WR WKH SULQFLSDO UDGLL RI FXUYDWXUH DQGL5Ar ,I WKH OLQHV RI SULQFLSDO FXUYDWXUH DUH FRRUGLQDWH OLQHV WKH WKHRUHP RI 5RGULJXHV LV H[SUHVVHG DV IROORZV DQ B VDQ D[a 5 D[ 5 f /HW IF] GHQRWH WKH QRUPDO GLVWDQFH IURP WKH PLGGOH VXUIDFH 3RVLWLYH ] LV PHDVXUHG LQ WKH VHQVH RI SRVLWLYH QRUPDO Q RI WKH PLGGOH VXUIDFH DV VKRZQ LQ )LJ 7R DQ\ VHW RI YDOXHV RI [A[A]f WKHUH FRUUHVSRQGV D SRLQW LQ WKH VKHOO 7KH SRVLWLRQ YHFWRU RI D SRLQW RQ WKH PLGGOH VXUIDFH LV IW DQG WKH SRVLWLRQ YHFWRU RI WKH FRUUHVSRQGLQJ

PAGE 19

SRLQW DW GLVWDQFH ] IURP WKH PLGGOH VXUIDFH LV 5 )URP )LJ ZH KDYH WLO )LJ 7KH FURVV VHFWLRQ RI D VKHOO VHJPHQW +HQFH E\ GLIIHUHQWLDWLRQ 6XEVWLWXWLQJ (T ,,f LQWR (T ,,f WKH IROORZLQJ UHODWLRQV ,,f§f ,,f DUH REWDLQHG

PAGE 20

B rL a IL ; Gr= f %\ UHIHUULQJ WR D VXUIDFH SDUDOOHO WR WKH PLGGOH VXUIDFH DW D GLVWDQFH ] ZH KDYH = = I G ,,f ZKHUH n!ref f 7KH VWUDLQGLVSODFHPHQW UHODWLRQV DUH DSSUR[LPDWHG DV IROORZV >@ MU $&& r LW = r ‘!@Lf 5&$ rf !KU B Z Z ? B XU  G; ` & G n &I ;L f

PAGE 21

= $ f§ f§ G; / & &R &LU XU ;] $ r I f & ;]/0R [ -X  GZ ] I F3Aa ? I$G$B nO -R &R A ; F" [ f f ZKHUH X Y DQG Z DUH WKH GLVSODFHPHQWV RI D SRLQW LQ WKH PLGGOH VXUIDFH LQ [A [A DQG ] GLUHFWLRQV UHVSHFWLYHO\ Z LV WDNHQ LQZDUG QRUPDO WR WKH PLGGOH VXUIDFH DV SRVLWLYH (TV f DUH REWDLQHG XQGHU WKH DVVXPSWLRQ WKDW WKH WUDQVn YHUVH VKHDUV YDQLVK ,Q VPDOO GHIOHFWLRQ WKHRULHV DOO TXDGUDWLF WHUPV LQ WKH VWUDLQGLVSODFHPHQW UHODWLRQV DUH QHJOHFWHG /HWWLQJ HA HA DQG H GHQRWH WKH YDOXHV RI H DQG RQ WKH PLGGOH VXUIDFH UHVSHFWLYHO\ ZH ILQG >@ rW? Y f ]rU ![rU ?f : f -R G; f -& R =]r IL r -Rr ; n I La W &R A n I 2-6 ? ;]n -R &R r [ Gr= f ,R Fr ? a& M;R f &= a -R ;-W &R n -;]n -R &R n =  f ;7 f1 &? Vr I f 4Z f -R &T ; f & &R O ; ; n f

PAGE 22

7KH FKDQJHV RI FXUYDWXUHV NA DQG RQ WKH PLGGOH VXUn IDFH KDYH WKH IROORZLQJ IRUPV \ B B B= > / $r1/ f BA/ f n a $R "rn / IWR ; n9 ;r n \ -&Of-m/f / f@ -W a !&R Sr n &R -rn/F> Z B  U BG$R?BGUB ? RfA@RLUL AB -&R/L [-OG;L \ 6R> !; m"r 6!;;M f %DVLF (TXDWLRQV $ WUXQFDWHG FRQLFDO VKHOO DV VKRZQ LQ )LJ RQ SDJH LV FRQVLGHUHG 7KH GLVWDQFH U LV PHDVXUHG DORQJ WKH JHQHUDWRU IURP WKH YHUWH[ WR D SRLQW RQ WKH PLGGOH VXUIDFH DQG LV WKH VHPLn YHUWH[ DQJOH 7KXV WKH VXUIDFH FRRUGLQDWHV DUH WDNHQ DV [A U FS $ SRLQW RQ WKH VXUIDFH FDQ EH UHSUHVHQWHG SDUDPHWULFDOO\ DV ; U F}VFS ; f§ \ X/rA FS ;M 6XEVWLWXWLQJ (TV f LQWR (TV ,,f f DQG ,,f ZH KDYH

PAGE 23

ILR L n &H 5 r 5 f 5HIHUULQJ WR WKH DERYH HTXDWLRQV WKH VWUDLQGLVSODFHPHQW UHODWLRQV IRU D FRQLFDO VKHOO RQ WKH PLGGOH VXUIDFH DUH REWDLQHG IURP (TV f HU D U U XUMUf HA 9WS MNUAM6f QU@ f B B H
PAGE 24

7KH FRQLFDO VKHOO LV DVVXPHG WR EH SHUIHFWO\ HODVWLF DQG WKH PDWHULDO SURSHUWLHV DUH LQGHSHQGHQW RI WKH FKDQJH RI WHPSHUDWXUH WKH VWUHVVVWUDLQ UHODWLRQV DUH JLYHQ E\ WKH IROORZLQJ UU A ff‘n9f f§U Xe UnS AL&HFSKHUf B/c W YaS f HUS f ZKHUH ( 2n Y DQG 7 UHSUHVHQW >r D!H!HI $

PAGE 25

87 SQUOIHHU H"fK 0U 0U@ UXa6FU0" ZKHUH K LV ZDOO WKLFNQHVV DQG f A K I -m7Ff U -mUFf  nƒ] K] ,,f ,I WKHUH LV QR H[WHUQDO IRUFH DQG HTXLOLEULXP H[LVWV WKH SULQFLSOH RI VWDWLRQDU\ HQHUJ\ UHTXLUHV WKDW WKH VWUDLQ HQHUJ\ 8 VDWLVILHV WKH (XOHUnV HTXDWLRQV RI WKH FDOFXOXV YDULDWLRQ 6\PEROn LFDOO\ WKLV FDQ EH H[SUHVVHG DV IL R f 7KH IXQFWLRQDO 8 KDV WKH IROORZLQJ IRUP 9 cc6&U S X a/7M nXU 8!7M n9U a0\ XU7 9UUn0UUrrr"f a9U3n f 7KH (XOHU HTXDWLRQ IRU 8 LV =O G 0/ ?B G -= ?   f a8U n GW8WS f  UUK -? ‘ r] fa I! A rFS f n UU
PAGE 26

WKH (XOHU HTXDWLRQ IRU Y LV  e f £ GWU < G[U U c GFS L rr !L f L ? n UGFS O t9USn Df (XOHU HTXDWLRQ IRU Z LV  ? -L ? 4PW < GXU \ GFS f Q=I G f f r 7O /  IA$ f f US X[US n 3/ n -XUAFI n 7KH (XOHU HTXDWLRQV IRU X DQG Y ILQG WKH WZR HTXLOLEULXP HTXDWLRQV LQ WKH PLGGOH VXUIDFH ZKLFK FRUUHVSRQG WR WKH HTXLOLEULXP VWDWH LQ PHULGLRQDO DQG FLUFXPIHUHQWLDO GLUHFWLRQV UHVSHFWLYHO\ ,Q RUGHU WR UHGXFH WKH QXPEHU RI XQNQRZQV WKH $LU\ VWUHVV IXQFWLRQ ) LV GHILQHG WR VDWLVI\ WKH HTXDWLRQV RI HTXLOLEULXP LQ WKH X DQG Y GLUHFWLRQV 9 S ) U FSFIL AS f§ ) UU FUnUFIa> f

PAGE 27

%\ VXEVWLWXWLQJ (TV f LQWR (TV f WKH VWUHVV GLVSODFHPHQW UHODWLRQV DUH REWDLQHG 9 UXLA6 f 76LFI f +rI@` X ‘aU DFI LWr ^YUa\a A UA f LUA! >rMf M YA A Ua 3 / A U  A Uf aa S n 9 OK! >=U" f :H LQWURGXFH WKH IROORZLQJ GLPHQVLRQOHVV QRWDWLRQV T F!8}M S I IL I XUWL f $IWHU VXEVWLWXWLQJ (TV f LQWR (TV f DQG HOLPLQDWLQJ WKH GLVSODFHPHQW YDULDEOHV X DQG Y WKH FRPSDWLELOLW\ HTXDWLRQ LV IRXQG DV WKH IROORZLQJ

PAGE 28

A a\M>a fnX=UU \L +=UUAH4 f nfSIDVRf U8 S \\8 ‘ S]LZUVf MM r6UH rbRf a aS LAUAUUf a aAa\ >IW 7 U a\ 7!UUf a! VV@ f ZKH UH U"/ rL 7 GU r - ‘77f %\ VXEVWLWXWLQJ (TV f f f f f DQG f LQWR (T f DQG XVLQJ UHODWLRQ f WKH HTXDWLRQ RI HTXLOLEULXP LQ QRUPDO GLUHFWLRQ LV IRXQG WR EH RI WKH IROORZLQJ IRUP f9 \8IAWAUU nLn+UU\ arnUnU A U GLf [ \n:Hf U ) <"aU )U fUU ZKHUH  K U\-U f§ 27(F6 f K f

PAGE 29

7UDQVIRUPDWLRQ RI &RRUGLQDWHV )RU FRQYHQLHQFH WKH IROORZLQJ WUDQVIRUPDWLRQ LV LQWURGXFHG r $" n r! ‘ $ r \ f f %\ VXEVWLWXWLQJ (TV f LQWR (T f WKH GLPHQVLRQn OHVV FRPSDWLELOLW\ LQ WKH QHZO\ GHILQHG FRRUGLQDWHV LV >a IW LA[[:[f0JDLWRU[r  ?  97r f W[7 f 87;f a rA :[2 f A ; .7; ; 86 ; f@ 9rL7 f ZKHUH 9 Y] 9 Lr  H ;O n r‘ f f 7KH GLPHQVLRQOHVV HTXDWLRQ RI HTXLOLEULXP DIWHU WKH WUDQVIRUPDn WLRQ EHFRPHV WUgrU H rr>e!W\fH;6[;=[fI=[[[f-U[LNUf WLHG r)M[fXM[[:![ fIbH f

PAGE 30

,W LV QRWHG LQ (T f WKDW WKH WKHUPDO PRPHQW GXH WR WKH WHPSHUDWXUH JUDGLHQW DFURVV WKH ZDOOWKLFNQHVV LV GLVUHJDUGHG EHFDXVH WKH WHPSHUDWXUH LV DVVXPHG XQLIRUP WKURXJKRXW WKH WKLFNQHVV (TV f DQG f DUH WKH EDVLF HTXDWLRQV IRU WKH EXFNOLQJ RI FRQLFDO VKHOOV GXH WR WKH WHPSHUDWXUH FKDQJHV

PAGE 31

&+$37(5 ,,, 0(7+2' 2) $3352$&+ 6LQFH WKH JRYHUQLQJ HTXDWLRUV RI WKH EXFNOLQJ SUREOHP KDYH EHHQ IRUPXODWHG RXU QH[W WDVN LV WR VHHN WKH VROXWLRQV RI WKH HVWDEOLVKHG GLIIHUHQWLDO HTXDWLRQV WRJHWKHU ZLWK WKH ERXQGDU\ FRQGLWLRQV 7R GHWHUn PLQH WKH FULWLFDO WHPSHUDWXUH DW ZKLFK WKH FRQLFDO VKHOO EHFRPHV XQn VWDEOH WKH GHIOHFWLRQ LV LQILQLWHVLPDO DQG WKH OLQHDUL]HG UHODWLRQV LQ (TV f DQG f DUH XVHG )RU WKH EXFNOLQJ RI VKHOOV WKH WZR FRXSOHG QRQOLQHDU HTXDWLRQV f DQG f ZLOO EH VROYHG VLPXOWDQHRXVO\ ,W LV YLUWXDOO\ LPSRVVLEOH WR REWDLQ DQ H[DFW VROXn WLRQ DQ RQO\ DSSUR[LPDWH QXPHULFDO PHWKRGV ZLOO EH VRXJKW 2QH RI WKH SRZHUIXO PHWKRGV LV WKH PHWKRG RI *DOHUNLQ >@ ZKLFK LV QRW RQO\ FORVHO\ UHODWHG WR WKH YDULDWLRQDO PHWKRG EXW DOVR SDUDOOHOV 5LW]nV PHWKRG 7KH *DOHUNLQ PHWKRG LV EULHIO\ H[SODLQHG EHORZ $ GLIIHUHQn WLDO HTXDWLRQ FDQ EH H[SUHVVHG LQ WKH IRUP 3f 2 ,,,Of LI /3f H[LVWV LQ D WZRGLPHQVLRQDO GRPDLQ DQ DSSUR[LPDWH VROXWLRQ RI 3 LV DVVXPHG LQ D VHULHV IRUP LH + SQ rbf =7 LLLf

PAGE 32

ZKHUH LV WKH DSSUR[LPDWH VROXWLRQ RI 3 WKH IAnV DUH DSSURSULDWH IXQFWLRQV ZKLFK VDWLVI\ WKH JLYHQ ERXQGDU\ FRQGLWLRQV DQG WKH DAfV DUH FRQVWDQW FRHIILFLHQWV %\ VXEVWLWXWLQJ (T ,,,f LQWR (T ,,,Of ZH ILQG WKDW /3Q! 0 ZKHUH LQ JHQHUDO 0 7R PLQn LPL]H 0 *DOHUNLQ DSSOLHG D VHW RI RUWKRJRQDO FRQGLWLRQV t O f§ Q ZKHUH UHSUHVHQWV WKH WZRGLPHQVLRQDO GRPDLQ DQG WKH FRHIILFLHQWV DA FDQ EH GHWHUPLQHG E\ VROYLQJ WKH Q DOJHEUDLF HTXDWLRQV LQ (T ,,,f VLPXOWDQHRXVO\ %RXQGDU\ &RQGLWLRQV 7KH FRQH DV VKRZQ LQ )LJ SDJH LV FRQVLGHUHG VLPSO\ VXSSRUWHG DQG KDV ]HUR FLUFXPIHUHQWLDO VWUDLQ DW WKH HGJHV 7KH FRQn GLWLRQV IRU QRUPDO GHIOHFWLRQ DW WKH WZR HQGV DUH H[SUHVVHG DV W: 2 DW ; DQG ; ; R ,,,f nXV[ f§ R DW ;2 DQG ;a ;R +,f :KHQ WKH HGJHV RI WKH VKHOO DUH FRPSOHWHO\ UHVWUDLQHG LQ FLUFXPn IHUHQWLDO GLUHFWLRQ WKH IROORZLQJ WZR FRQGLWLRQV DUH REWDLQHG $W [ \r [[ 2rrr"}r 2 ,,,f

PAGE 33

)LJ *HRPHWU\ RI FRQLFDO VKHOO

PAGE 34

DQG DW [ [ R );; aWL-fI[ /!mH Eb] f =;r&r7 LQf 7KH HQG FRQGLWLRQV DORQJ WKH GLUHFWLRQ RI WKH JHQHUDWRU ZLOO EH GLVFXVVHG LQ WKH LQGLYLGXDO FDVHV WR EH FRQVLGHUHG 7KHUPDO %XFNOLQJ :KHQ (TV f DQG f DUH VROYHG VLPXOWDQHRXVO\ WKH FRXSOHG UHODWLRQV DUH QRQOLQHDU 1RZ ZH FRQVLGHU RQO\ WKH OLQHDU WHUPV LQ (TV f DQG f DV ZHOO DV LQ WKH FRQGLWLRQV RI FRQVWUDLQW 7KLV SUREOHP ZLOO EH DSSURDFKHG E\ WZR VWHSV WKH GHIOHFWLRQ DQG WKH VWUHVV IXQFWLRQ LQ WKH SUHEXFNOLQJ VWDWH DUH IRXQG ILUVW WKHUHDIWHU WKH GHIOHFWLRQ IXQFWLRQV DQG WKH VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ DUH FRQVLGHUHG 7KH FRPSDWLELOLW\ HTXDWLRQ DQG HTXDWLRQ RI HTXLOLEULXP LQ WKH SUHEXFNOLQJ VWDWH DUH ZULWWHQ UHVSHFWLYHO\ LQ WKH IROORZLQJ IRUPV ,,,f DQG r aGYAXW f fe [[ f ,,,f 7KH RSHUDWRUV 9 DQG 9 DUH GHILQHG LQ (T f DQG WKH VXSHUn VFULSW f LV XVHG IRU IXQFWLRQV LQ WKH SUHEXFNOLQJ VWDWH 7KH GHIOHFn WLRQ IXQFWLRQ Z ZKLFK LV DVVXPHG LQ D VHULHV IRUP VDWLVILHV WKH

PAGE 35

VLPSO\ VXSSRUWHG ERXQGDU\ FRQGLWLRQV JLYHQ LQ (TV ,,,f DQG ,,,f 7KH VROXWLRQ RI WKH VWUHVV IXQFWLRQ )n ZKLFK LV WKH VXPn PDWLRQ RI WKH JHQHUDO VROXWLRQ RI WKH KRPRJHQHRXV HTXDWLRQ DQG D SDUWLFXODU LQWHJUDO VDWLVI\ (T ,,,f 7KH DUELWUDU\ FRQVWDQWV RI WKH JHQHUDO VROXWLRQ RI ) DUH GHWHUPLQHG LQ DFFRUGDQFH ZLWK WKH FRQn GLWLRQV RI FRQVWUDLQW %\ DSSO\LQJ WKH *DOHUNLQ PHWKRG WR (T ,,,f WKH FRHIILFLHQWV RI WKH DVVXPHG GHIOHFWLRQ IXQFWLRQ Z DUH WKHQ IRXQG :KHQ (T ,,,f LV VXEVWLWXWHG LQWR (T f DQG DIWHU HOLPLQDWLQJ WKH QRQOLQHDU WHUPV WKH FRPSDWLELOLW\ HTXDWLRQ EHFRPHV 9g) f a f ,,,f ZKHUH : f§ DGGLWLRQDO GLVSODFHPHQW GXULQJ EXFNOLQJ DQG f! ) f§ ) f§ ) DGGLWLRQDO VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ :KHQ UHODWLRQ ,,,f LV XVHG LQ (T f DQG WKH WHUPV FRQWDLQn LQJ WKH SURGXFWV RI WKH DGGLWLRQDO VWUHVVHV GXULQJ EXFNOLQJ IRXQG IURP )A ZLWK WKH GHULYDWLYH RI Z DUH QHJOHFWHG WKH HTXLOLEULXP H TXDWLRQ LV

PAGE 36

X rr‘ U
PAGE 37

,,,f D }f YY 86 H ![> MM [fI [ ^rtr XWHHf ) ; f@ ZKHUH ) } )) XU : : n ,,,f 7KH DERYH HTXDWLRQV KDYH WKH VDPH H[SUHVVLRQ DV GHILQHG LQ WKH SUHYLRXV VHFWLRQ KRZHYHU WKH UHODWLRQ EHWZHHQ )f DQG Z LV GLIIHUHQW IURP WKH OLQHDU FDVH 7KH GHIOHFWLRQ IXQFWLRQ Z ZKLFK LV DVVXPHG LQ D VHULHV IRUP VDWLVILHV WKH ERXQGDU\ FRQGLWLRQV ,Q D VLPLODU PDQQHU WR WKH GHWHUn PLQDWLRQ RI WKH VWUHVV IXQFWLRQ LQ WKH OLQHDU FDVH WKH VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ I LV IRXQG WR VDWLVI\ WKH FRPSDWLELOLW\ HTXDWLRQ DQG WKH FRQGLWLRQV RI FRQVWUDLQW 6LQFH (T ,,,f LV QRQOLQHDU )Q VKRXOG EH D QRQOLQHDU IXQFWLRQ RI WKH FRHIILFLHQWV RI WKH GHIOHFWLRQ IXQFWLRQ Zr %\ VXEVWLWXWLQJ WKH GHIOHFWLRQ IXQFWLRQ Z DQG LWV FRUUHVSRQGn LQJ VWUHVV IXQFWLRQ ) LQWR (T ,,,f DQG LQWHJUDWLQJ LW E\ WKH *DOHUNLQ PHWKRG D VHW RI QRQOLQHDU DOJHEUDLF HTXDWLRQV LV REWDLQHG

PAGE 38

7KH WHPSHUDWXUH FDQ EH GHWHUPLQHG E\ VROYLQJ WKH DOJHEUDLF HTXDWLRQV DQG WKH PLQLPXP WHPSHUDWXUH LV GHWHUPLQHG E\ PLQLPL]LQJ WKH WHPSHUn DWXUH 7 ZLWK UHVSHFW WR WKH QXPEHU RI ZDYHV LQ D[LDO DQG FLUFXPIHUn HQWLDO GLUHFWLRQV

PAGE 39

&+$37(5 ,9 62/87,21 $1' 180(5,&$/ 5(68/76 &ULWLFDO 7HPSHUDWXUH 7ZR GLIIHUHQW WHPSHUDWXUH JUDGLHQWV DQG WKHLU FRUUHVSRQGLQJ FRQGLWLRQV RI FRQVWUDLQW DUH FRQVLGHUHG LQ WKH VROXWLRQ RI FULWLFDO WHPSHUDWXUH &DVH ,Q WKLV FDVH WKH FRQLFDO VKHOO LV VXEMHFWHG WR D PHULGLRQDO WHPSHUDWXUH JUDGLHQW DQG UHVWULFWHG FRPSOHWHO\ DW ERWK HQGV 7KXV LQ DGGLWLRQ WR WKH ERXQGDU\ FRQGLWLRQV H[SUHVVHG LQ (TV ,,,f ,,,f DQRWKHU ERXQGDU\ FRQGLWLRQ LQ PHULGLRQDO GLUHFWLRQ LV ; aX[ F[ 2 LYf %\ VXEVWLWXWLQJ (TV f DQG f LQWR (T ,9f WKH GLPHQn VLRQOHVV FRQGLWLRQ RI FRQVWUDLQW H[SUHVVHG LQ WHUPV RI VWUHVV IXQFWLRQ ) LV REWDLQHG DV MHa[>RKfI [  [[ D [ r LYf R 6LQFH WKH WHPSHUDWXUH ILHOG FRQVLGHUHG LQ WKLV FDVH YDULHV RQO\ LQ WKH PHULGLRQDO GLUHFWLRQ WKH SUHEXFNOLQJ GHIOHFWLRQ DQG VWUHVV IXQFWLRQ DUH WKHUHIRUH WDNHQ WR EH D[LV\PPHWULF LH WKH\

PAGE 40

DUH LQGHSHQGHQW RI 7KH IXQFWLRQV ZLWK VXEVFULSW DUH FRUUHVSRQGn HQW WR &DVH FRQVLGHUHG KHUH 7KH GHIOHFWLRQ IXQFWLRQ LQ WKH SUHEXFNOLQJ VWDWH LV DVVXPHG WR VDWLVI\ WKH VLPSO\ VXSSRUWHG ERXQGDU\ FRQGLWLRQ DQG LQ DFFRUGDQFH ZLWK WKH DVVXPSWLRQ RI 0XVKLWDUL >@ WKH SUHEXFNOLQJ GHIOHFWLRQ LV FKRVHQ LQ WKH IRUP f [WW; aXU[ t B DL ;} ,9f LQ ZKLFK ; f§ f§f§f§ ,9f ,Q WKLV VWXG\ L LV WDNHQ DV DQ RGG LQWHJHU 0 DQG Y 7KH FRHIILFLHQWV D L f DUH LQ WHUPV RI WKH WHPSHUDWXUH JUDGLHQW DQG ZLOO EH GHWHUPLQHG ODWHU $FFRUGLQJ WR (T ,,,f WKH SUHEXFNOLQJ VWUHVV IXQFWLRQ FDQ EH ZULWWHQ LQ WKH IROORZLQJ IRUP L n \ [  H "M [ H [ ,Q WKH DERYH HTXDWLRQ I_ DQG )M 7KH\ DUH GXH WR GHIOHFWLRQ ZA UHVSHFWLYHO\ LH ,9f DUH WKH SDUWLFXODU VROXWLRQV RI DQG WKH WHPSHUDWXUH JUDGLHQW 7 b‘ FRLILft r:[[ f ,9f

PAGE 41

DQG 9t7f ,9f 6XEVWLWXWLQJ (T ,9f LQWR (T ,9f DQG LQWHJUDWLQJ LW ZH ILQG + + O 77; ;R R &RV n Q; ,9f ZKHUH F DQG G L f DUH IRXQG DV IXQFWLRQV RI [ DQG DUH L O f f R JLYHQ H[SOLFLWO\ LQ $SSHQGL[ $ 7KH WHPSHUDWXUH JUDGLHQW LV FKRVHQ DV DQ H[SRQHQWLDO IXQFWLRQ RI [ U[ W 7H; F LYf ZKHUH 7A DQG J DUH FRQVWDQWV ,I J YDQLVKHV (T ,9f LPSOLHV WKDW WKH GLVWULEXWLRQ RI WHPSHUDWXUH LV XQLIRUP RYHU WKH VXUIDFH RI WKH FRQLFDO VKHOO ,QWHJUDWLQJ (T ,9f WKH IXQFWLRQ LV REWDLQHG DV -B Q r!r‘ H ,9f 6XEVWLWXWLQJ (TV ,9f ,9f DQG ,9f LQWR (TV ,,,f ,,,f§ f DQG ,9f ZH REWDLQ WKUHH DOJHEUDLF HTXDWLRQV %\ VROYLQJ WKHVH WKUHH HTXDWLRQV DQG WKH DUELWUDU\ FRQVWDQW $A

PAGE 42

L LQ (T ,9f LV FRQVLGHUHG ]HUR WKH FRQVWDQWV L f DUH IRXQG DV UO 7frnUn & DM &rrf$r DV cFrf L ,9f %\ VXEVWLWXWLQJ (TV ,9f DQG ,9f LQWR (T ,,,f LW LV IRXQG WKDW XU f§ [; f Ur Z < O 'YAL-= H D fH M;; U M ; f f§ $ ,9f $SSO\LQJ *DOHUNLQnV LQWHJUDWLRQ WR (T ,9f DQG LI RQO\ WKUHH WHUPV RI WKH SUHEXFNOLQJ GHIOHFWLRQ DUH WDNHQ LQ (T ,9f WKH IROORZLQJ WKUHH DOJHEUDLF HTXDWLRQV DUH REWDLQHG UU0aIL ;R ->D T H  @[H R R R L ,9f 6ROYLQJ WKH DERYH WKUHH HTXDWLRQV VLPXOWDQHRXVO\ WKH FRHIILFLHQWV DA L f DUH REWDLQHG ZKLFK YDU\ OLQHDUO\ ZLWK 47A DQG 7KH\ FDQ EH H[SUHVVHG DV

PAGE 43

n n 7fU rr f 4  f§ &O ; R ]r7M aO A An r ‘ $L 77A2 L ,9f 7KH VL[ XQNQRZQV L f DQG DA L f FDQ EH GHWHUn PLQHG E\ VROYLQJ (TV ,9f DQG ,9f 7KH\ DUH IRXQG WR EH U M IXQFWLRQV RI [ 27 HUU Uf§ DQG 3 7KHUHIRUH )r LV GHWHUPLQHG LQ R Q DFFRUGDQFH ZLWK WKH WHPSHUDWXUH GLVWULEXWLRQ 7 7KH H[SUHVVLRQ $ DQG DA DUH JLYHQ LQ $SSHQGL[ $ $Q DGGLWLRQDO GHIOHFWLRQ IXQFWLRQ GXULQJ EXFNOLQJ ZKLFK VDWLVn ILHV WKH VLPSO\ VXSSRUWHG ERXQGDU\ FRQGLWLRQ LV DVVXPHG DV ZKHUH S DQG 7M DUH WKH QXPEHUV RI KDOI ZDYHV LQ PHULGLRQDO DQG FLUn FXPIHUHQWLDO GLUHFWLRQV UHVSHFWLYHO\ %\ VXEVWLWXWLQJ (T ,9f LQWR (T ,,,f DQG OHWWLQJ ,9f ZH REWDLQ

PAGE 44

W } \ ? n‘,nr A a =L ; Y } Y ; f‘ $r AXU[ AUU; [DAA n FRV"t,9f 7KH DGGLWLRQDO VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ LV WKH VXPPDWLRQ RI WZR VROXWLRQV RQH LV WKH KRPRJHQHRXV SRUWLRQ RI (T ,,,f DQG WKH RWKHU LV D SDUWLFXODU VROXWLRQ ZKLFK VDWLVILHV (T ,9f 7KLV VWUHVV IXQFWLRQ FDQ EH H[SUHVVHG DV ) &WIHr H H r AL&R6nH O f§E ,9f ZKHUH F DQG G L f DUH IRXQG DV IXQFWLRQV RI ,, S DQG [ 7KH FRQVWDQWV $r N DQG N DUH GHWHUPLQHG LQ WHUPV RI Dr R L L f IURP WKH IROORZLQJ FRQGLWLRQV RI FRQVWUDLQW )U [[ f§ W)s [ HH f§ 2 DW [ DQG [ [ ,9f DQG BI If )[ ; f§ !-&; @t f§ 2 ,9f

PAGE 45

6LQFH LW KDV EHHQ QRWHG WKDW WKH KRPRJHQHRXV VROXWLRQ RI WKH VWUHVV IXQFWLRQ ) KDV EHHQ DOUHDG\ FRQVLGHUHG LQ WKH SUHEXFNOLQJ VWDWH ZH FDQ VD\ WKDW WKH KRPRJHQHRXV VROXWLRQ RI IXQFWLRQ )A FDQ EH QHJOHFWHG ZLWKRXW VLJQLILFDQW HUURU >@ :KHQ VXEVWLWXWLQJ (TV ,9f ,9f ,9f DQG ,9f LQWR (T ,,,OOf LW LV IRXQG WKDW YrXU[ KU &RrrfH [f H [? ;;I M[ f!re ef HH@ I ] f>FSU] :[f!rO f§ $ ,9f %\ DSSO\LQJ WKH *DOHUNLQ PHWKRG WR WKH DERYH HTXDWLRQ D VHW RI DOJHn EUDLF HTXDWLRQV LV WKHQ HVWDEOLVKHG W;\;A T FR*F;FT f§ 2 ; R L ,9f $IWHU LQWHJUDWLRQ (T ,9f FDQ EH EULHIO\ H[SUHVVHG LQ WKH IROORZLQJ IRUPV

PAGE 46

& W! r R a I H[n A f &/ && R r7W IRRI7 f FOnV R ,9f DQG I& &M F t 7W I t 7 ft & FM&r \n=Y f  f§ R ,9f (TV ,9f DQG ,9f DUH WZR OLQHDU KRPRJHQHRXV DOJHEUDLF HTXDWLRQV DQG KDYH D QRQWULYLDO VROXWLRQ RQO\ LI WKH GHWHUn PLQDQW RI WQH FRHIILFLHQWV RI DnA DQG Dr YDQLVQHV 7KLV UHTXLUHPHQW FDQ EH H[SUHVVHG DV OB&L GQ A2W7@ GMM KMMI fX7 >& -&F IO@7OfR@>&O R I`UnO -Rn7c@ 2 ZKHUH r \U ,9f ,9f (T ,9f LV D VHFRQGRUGHU DOJHEUDLF HTXDWLRQ RI DQG
PAGE 47

GHWHUPLQHG IURP (T ,9f DQG LV IRXQG DV D IXQFWLRQ RI WKH QXPEHU RI KDOI ZDYHV S DQG 7f $IWHU PLQLPL]LQJ WKH VROXWLRQ RI 7A ZH ILQG WZR YDOXHV RI WKH FULWLFDO WHPSHUDWXUH 2QH RI WKHP LV GLVn UHJDUGHG EHFDXVH LW LV SK\VLFDOO\ LPSRVVLEOH ,W KDV EHHQ REVHUYHG WKDW WKH EXFNOLQJ KRRS VWUHVV LV ORFDOn L]HG QHDU WKH IL[HG HGJHV LQ RWKHU ZRUGV WKH KRRS VWUHVV LV KLJK QHDU WKH VXSSRUWV DQG LW LV ORZ LQ WKH PLGGOH RI WKH VKHOO XQOHVV WKH VKHOO LV YHU\ VKRUW DQG WKLFN >@ 7KLV PHDQV WKDW KLJK DYHUDJH WKHUPDO KRRS VWUHVV H[LVWV RQO\ ZKHQ WKH VKHOO LV YHU\ VWDEOH DQG WKH VKHOO WKDW EXFNOHV HDVLO\ GRHV QRW GHYHORS WKH KRRS VWUHVV )RU WKH EXFNOLQJ SUREOHP LW LV IRXQG WKDW WKH WKHUPDO KRRS VWUHVV FRQn YHUJHV UDSLGO\ ZKHQ D VHULHV LQ (TV ,9f DQG ,9f DUH XVHG ,W LV DOVR QRWHG WKDW WKH PHULGLRQDO FRPSUHVVLRQ KDV D PXFK KLJKHU HIIHFW RQ WKH EXFNOLQJ WHPSHUDWXUH WKDQ WKH KRRS VWUHVV GRHV 7KHUHn IRUH WKH YDOXH RI WKH EXFNOLQJ WHPSHUDWXUH ZLOO QRW FKDQJH VLJQLIn LFDQWO\ LI PRUH WHUPV LQ (TV ,9f DQG ,9f DUH WDNHQ %HFDXVH WKH EXFNOLQJ LV PDLQO\ FDXVHG E\ D[LDO WKHUPDO FRPSUHVVLRQ WKH FRQn LFDO VKHOO LV H[SHFWHG WR EXFNOH LQ PXOWLSOH ZDYH SDWWHUQV ZLWK QHDUO\ WKH VDPH ZDYH OHQJWK LQ ERWK SULQFLSDO GLUHFWLRQV 7KH QXPHULFDO FDOn FXODWLRQV DUH WKXV PDGH E\ WDNLQJ SQ + WDQ 3fWW5 LQ (T ,9f ZKHUH + DQG 5 UHSUHVHQW WKH KHLJKW DQG PHDQ UDGLXV RI WKH FRQLFDO VKHOO DV VKRZQ LQ )LJ SDJH 7KH UHVXOWV RI WKH SUREOHP ZHUH REWDLQHG IURP WKH ,%0 &RPn SXWHU DQG DUH LOOXVWUDWHG LQ )LJV 7KH UHODWLRQV SUHVHQWHG LQ )LJV VKRZ WKH HIIHFWV RI D FRQLFDO VKHOOnV JHRPHWULFDO YDULDEOHV

PAGE 48

5K Or )LJ &ULWLFDO WHPSHUDWXUH YHUVXV UDGLXVWKLFNQHVV UDWLR DW +5

PAGE 49

)LJ &ULWLFDO WHPSHUDWXUH YHUVXV UDGLXVWKLFNQHVV UDWLR DW r

PAGE 50

3 )LJ &ULWLFDO WHPSHUDWXUH DW +5 YHUVXV VHPLYHUWH[ DQJOH

PAGE 51

Rm7fFU[_ 2 )LJ 9DULDWLRQ RI FULWLFDO WHPSHUDWXUH ZLWK PHULGLRQDO WHPSHUDWXUH LQGH[ r 5K +5 f

PAGE 52

RQ WKH FULWLFDO YDOXH RI XQLIRUP WHPSHUDWXUH ULVH LH f ,Q )LJ WKH YDULDWLRQ RI WKH FULWLFDO WHPSHUDWXUH ZLWK WKH WHPn SHUDWXUH LQGH[ J RI (T ,9f LV GHSLFWHG DW D GLIIHUHQW WA7A UDWLR &DVH ,, ,Q WKLV FDVH WKH FRQLFDO VKHOO LV VXEMHFWHG WR PHULGLRQDO DQG FLUFXPIHUHQWLDO JUDGLHQWV DQG UHVWULFWHG FLUFXPIHUHQWLDOO\ DW ERWK HQGV 7KXV LQ DGGLWLRQ WR WKH ERXQGDU\ FRQGLWLRQ H[SUHVVHG IURP (TV ,,,f WR ,,, f RWKHU ERXQGDU\ FRQGLWLRQV DUH FUUF 2 DW ; 2 DQG ; ; ,9f RU LQ DQRWKHU H[SUHVVLRQ )` [ ) HHnfA 2 DW ; 2 DQG ; ; LYf 7KH DERYH FRQGLWLRQV DUH DSSOLHG WR D VKHOO ZKLFK LV XQVWUDLQHG LQ FRPSUHVVLRQ EXW LV UHVWUDLQHG LQ EHQGLQJ ,I WKH WHPSHUDWXUH JUDGLHQW KDV WKH IRUP M SRVLWLYH LQWHJHU WWf WKH FRQLFDO VKHOO LV KRWWHU DW RQH VLGH WKDQ WKH RWKHU $V WKH LQGH[ M LQFUHDVHV WKH KHDWHG SRUWLRQ EHFRPHV QDUURZHU DQG WKH EXFNOLQJ EHKDYLRU LV FORVHU WR WKH FDVH XQGHU FRPSUHVVLRQ >@ ,Q WKH SUHVHQW VWXG\ WKH WHPSHUDWXUH GLVWULEXWLRQ LV WDNHQ DV

PAGE 53

7Q W ]U H ,9f ZLWK N VLQ 3 7KH VXEVFULSW ,, LV XVHG WR LQGLFDWH WKH IXQFWLRQV DVVRFLDWHG ZLWK &DVH ,, %RWK DQG DUH WDNHQ DV FRQVWDQWV 7KH QRUPDO GHIOHFWLRQ LQ WKH SUHEXFNOLQJ VWDWH VDWLVILHV WKH VLPSO\ VXSSRUWHG ERXQGDU\ FRQGLWLRQ DQG LV DVVXPHG LQ WKH IRUP :MO D /RO 7t fem‘ 7ƒ 2 ,9f ,Q WKLV DQDO\VLV LW LV DVVXPHG WKDW WKH SUHEXFNOLQJ GHIOHFWLRQ ZA LV D[LV\PPHWULF DQG ZLWK L WDNHV WKH IRUP H[[! ‘rrr AUD ! A 9 E f ,9f ,Q D VLPLODU PDQQHU WR WKH GHWHUPLQDWLRQ RI VWUHVV IXQFWLRQ )n LQ &DVH WKH VWUHVV IXQFWLRQ SULRU WR EXFNOLQJ FDQ EH IRXQG LQ WKH IROORZLQJ IRUP ,9f ZKHUH )A LV WKH KRPRJHQHRXV VROXWLRQ RI )A DQG LV IRXQG DV I V []f ]"F VHa n rH r ; } ; ,9f

PAGE 54

% L f FDQ EH GHWHUPLQHG E\ WKH FRQGLWLRQV RI FRQVWUDLQWV JLYHQ LQ (TV ,,,f ,,,f DQG ,9f 7KH\ DUH IRXQG WR EH IHn OD WLRQV RI [T 7 W} f§ } DQG EL ZLWK L 7KH IXQFWLRQV DQG LQ (T ,9f DUH WKH SDUWLFXODU VROXWLRQV RI WKH VWUHVV IXQF WLRQ ZKLFK FRUUHVSRQG WR WKH GHIOHFWLRQ IXQFWLRQ DQG WKH WHP SHUDWXUH JUDGLHQW 7 UHVSHFWLYHO\ 7KH\ FDQ EH H[SUHVVHG LQ WKH IROORZn LQJ IRUPV I IAf ; == KL LQ ; ; R 6O/ RRV U; ;R f ,9f DQG ; f +L f ,9f 7KH EAfV L f DUH IRXQG E\ VXEVWLWXWLQJ (TV ,9f ,9f ,9f DQG ,9f LQWR (T ,,,f DQG LQWHJUDWLQJ LW E\ WKH *DOHUNLQ PHWKRG 7KH FRHIILFLHQWV En M f Jn K UO DQG En L f DUH IXQFWLRQV RI [ 7a 7 f§ DQG ZKLFK L R = =
PAGE 55

'XULQJ EXFNOLQJ WKH DGGLWLRQDO GHIOHFWLRQ LV DVVXPHG LQ WKH IRUP ,9f ,W KDV EHHQ PHQWLRQHG LQ WKH SUHYLRXV FDVH DQG UHIHUHQFH >@ WKDW WKH KRPRJHQHRXV VROXWLRQ RI WKH VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ FDQ EH QHJOHFWHG ZLWKRXW VLJQLILFDQW HUURU 7KHUHIRUH RQO\ WKH SDUn WLFXODU VROXWLRQ RI (T ,,,f LV FRQVLGHUHG DV WKH DGGLWLRQDO VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ %\ VXEVWLWXWLQJ (T ,9f LQWE (T ,,,f DQG DVVXPLQJ WKDW WKH VWUHVV IXQFWLRQ KDV WKH IRUP ?f; LAUU; ,9f DQG J DQG Kr DUH IRXQG E\ WQH XVH RI WKH *DOHUNLQ PHWKRG 6XEVWLWXWLQJ (T ,9f LQWR (T ,,,f ZH KDYH ,9f

PAGE 56

,Q RUGHU WR GHWHUPLQH WKH FRHIILFLHQWV JW DQG Kr L f WKH IROORZLQJ DSSURDFK LV HPSOR\HG (T ,9f LV LQWHJUDWHG E\ WKH XVH RI WKH *DOHUNLQ PHWKRG LQ WKH FLUFXPIHUHQWLDO GLUHFWLRQ ZKLFK SURYLGHV WKH IROORZLQJ UHODWLRQV 77-QIO $ 4 D e &aR6 t F! f§ 2 ,9f $IWHU LQWHJUDWLRQ WKH FRRUGLQDWH SDUDPHWHU YDQLVKHV LQ WKH DERYH HTXDWLRQ DQG LW EHFRPHV D KRPRJHQHRXV HTXDWLRQ LQ WHUPV RI [ RQO\ 7KH FRHIILFLHQWV JA DQG KW L f DUH REWDLQHG IURP (T ,9f E\ FRPSDULQJ WKH FRUUHVSRQGLQJ WHUPV RI [ 7KH\ DUH IRXQG WR UO EH IXQFWLRQV RI S 7f [T N U FRW DQG DUH JLYHQ LQ $SSHQGL[ % 6XEVWLWXWLQJ (TV ,9f DQG ,9f LQWR (T ,,,OOf WZR DOJHEUDLF HTXDWLRQV DUH REWDLQHG E\ DSSO\LQJ WKH *DOHUNLQ PHWKRG WR (T ,,,OOf )RU WKLV FDVH Zr ZrM ) )A )MM DQG Z ZA :MM LQ (T ,,,OOf ,I WKH IROORZLQJ QRWDWLRQ LV LQWURn GXFHG -77 ,9f WKH WZR DOJHEUDLF HTXDWLRQV FDQ EH EULHIO\ H[SUHVVHG DV &O f E ‘ f! 2 ,9f r Rn & AfE V  r $ rf§ ,9f

PAGE 57

)RU D QRQWULYLDO VROXWLRQ WKH GHWHUPLQDQW RI (TV ,9f DQG ,9f LV ]HUR $IWHU VROYLQJ WKH GHWHUPLQDQW WKH WHUP RI WKH WHPSHUDWXUH JUDGLHQW FDQ EH ZULWWHQ DV RL7] RW 7] [MX $ f ,9nfr! ,Q D VLPLODU PDQQHU WR WKH GHWHUPLQDWLRQ RI FULWLFDO WHPSHUDWXUH LQ &DVH WKH FULWLFDO WHPSHUDWXUH LQ WKLV FDVH LV IRXQG E\ PLQLPL]LQJ WKH ZDYH QXPEHUV S DQG 7_ RI (T ,9f 7KH FULWn LFDO WHPSHUDWXUH DW GLIIHUHQW PDJQLWXGHV RI \LV VKRZQ LQ )LJ 7KH GHWDLOV RI H[SUHVVLRUH XVHG LQ WKLV FDVH DUH JLYHQ LQ $SSHQGL[ % 0LQLPXP 7HPSHUDWXUH $IWHU EXFNOLQJ WKH QRUPDO GHIOHFWLRQ EHFRPHV ILQLWH WKXV WKH VHFRQGGHJUHH WHUPV RI WKH GHULYDWLYHV RI QRUPDO GHIOHFWLRQ VKRXOG EH LQFOXGHG LQ WKH JHRPHWULF VWUDLQGLVSODFHPHQWf UHODWLRQV 7KHVH UHOD WLRQVKnQLSV DUH H[SUHVVHG LQ (TV f DQG WKH QRQOLQHDU HTXDWLRQV f DQG f ZLOO EH XVHG IRU WKH VROXWLRQ 6LQFH WKH WKHUPDO VWUHVVHV LQ WKH VKHOO GHSHQG RQ WKH ERXQGDU\ UHVWUDLQW XQOLNH WKH

PAGE 58

2, ; -2/f! K 77 )LJ &ULWLFDO WHPSHUDWXUH GXH WR FLUFXPIHUHQWLDOO\ QRQ XQLIRUP KHDWLQJ % r +N f

PAGE 59

FDVH XQGHU H[WHUQDO ORDGLQJ WKH DYHUDJH PHPEUDQH VWUHVVHV ZLOO EH GLIn IHUHQW EHIRUH DQG DIWHU GHIRUPDWLRQ 7KH QRQOLQHDU HIIHFW RQ WKH YDOXH RI WKH WHPSHUDWXUH JUDGLHQW WR PDLQWDLQ HTXLOLEULXP DIWHU EXFNOLQJ LV KHUH LQYHVWLJDWHG ,Q WKH SUHVHQW QRQOLQHDU DQDO\VLV WKH WHPSHUDWXUH FKDQJH DQG ERXQGDU\ FRQGLWLRQV DUH WKH VDPH DV FRQVLGHUHG LQ &DVH LQ WKH OLQHDU DQDO\VLV RI WKH EXFNOLQJ SUREOHP LQ ZKLFK WKH FRQLFDO VKHOO LV VXEMHFWHG WR PHULGLRQDO WHPSHUDWXUH JUDGLHQW DQG UHVWULFWHG FRPSOHWHO\ DW ERWK HQGV ,Q RUGHU WR FRPSDUH WKH YDOXH RI EXFNOLQJ WHPn SHUDWXUH ZLWK WKH PLQLPXP WHPSHUDWXUH LQ HTXLOLEULXP VWDWH DIWHU EXFNn OLQJ WKH GHIOHFWLRQ IXQFWLRQV XVHG LQ WKH QRQOLQHDU DQDO\VLV DUH EDVLFDOO\ WQH VDPH DV WKRVH DVVXPHG LQ WKH OLQHDU FDVH EXW RQO\ WZR WHUPV DUH XVHG LQ WKH SUHEXFNOLQJ WDWH DV DQ DSSUR[LPDWLRQ $QRWKHU ERXQGDU\ FRQGLWLRQ LQ DGGLWLRQ WR (TV ,,,f DQG ,,,f LV ;R ,9f R 2 R 7KH DERYH FRQGLWLRQ LPSOLHV WKDW WKH DYHUDJH OHQJWK RI WKH FRQH LV XQFKDQJHG GXULQJ KHDWLQJ (T ,9f FDQ EH H[SUHVVHG LQ WHUPV RI WKH VWUHVV IXQFWLRQ ) DQG WKH QRUPDO GHIOHFWLRQ Z 776 Pf [ R L ,9f

PAGE 60

,W FDQ EH REVHUYHG IURP WKH DERYH FRQGLWLRQ WKDW IRU WKH VDPH WHPSHUn DWXUH ULVH WKH DYHUDJH VWUHVV LV OHVV WKDQ WKDW FRQVLGHUHG LQ WKH OLQHDU FDVH EHFDXVH WKH DGGLWLRQDO QRQOLQHDU WHUP LQ (T ,9f LV DOZD\V QHJDWLYH 7KH QRUPDO GHIRUPDWLRQ SULRU WR EXFNOLQJ LV FKRVHQ DV r‘ D H D U; $ 77-& ? ;R ,9f ,Q D VLPLODU PDQQHU WR WKH GHWHUPLQDWLRQ RI WKH SUHEXFNOLQJ VWUHVV IXQFWLRQ LQ WKH OLQHDU DQDO\VLV WKH VWUHVV IXQFWLRQ SULRU WR EXFNOLQJ LV ,9f 7KH ERXQGDU\ FRQGLWLRQ DQG WKH WHPSHUDWXUH GLVWULEXWLRQ LQ WKLV QRQn OLQHDU DQDO\VLV DUH WKH VDPH DV LQ &DVH WKHUHIRUH E\ VHWWLQJ WKH WHUPV WR FRUUHVSRQG WR WKH WKLUG WHUP RI WKH GHIOHFWLRQ IXQFWLRQ :M HTXDOV ]HUR WKH IROORZLQJ UHODWLRQV DUH REWDLQHG $ r ) V a $ ‘ $ L ,9f D D W $ ] $ ] $ f§ $ 7KH DGGLWLRQDO GHIRUPDWLRQ GXULQJ EXFNOLQJ LV DVVXPHG WKH VDPH DV LQ (T f LH $ f D -WW; ; 2 nr f -7; ‘ V ‘‘ ;R f &R; 4 $ !! D ,9f

PAGE 61

7KH DGGLWLRQDO VWUHVV IXQFWLRQ GXULQJ EXFNOLQJ KDV WKH IRUP $ }} $ }} S[ $rr & ) f [ t $ [e ‘f )V ,9f 7KH SDUWLFXODU VROXWLRQ RI In KDV EHHQ IRXQG DV $ 9 nf r f W f r n n IL n$ ) & Dn .FR6IWW[ $ 2 r‘ D.&R60; D \r ?AaU rr r D S[[f FRV UH R &aLa}nff! c.V&R6ID 02r f; &R6^SW WIIf; ; ‘-&J&R6 "r nIIWsf; .Ra/Lm"UUIQnf; K. FD6I+ $;Jf; ; -œr IPP\[M r D cfrLUfH r/[ &R6U0aIUWf; }r } .IUW!f; W-&I7&R6&UI$UWVnfr @&J;rr$UWM$UU f; cL  .V FR6 &IUW.Vf[ -&R[8mUWM DD[f[ ^]RWU f I >. A -A &R6 $+; ‘‘ &M IUW;LI &D6IIIW6$;M-; r I r r $ -&V [rr UW$UW f ; &R6 $UWMIUW f; -&m$UW;n` ;

PAGE 62

! ?Y  - FR V UWV ; -?f errr UIM ; KD e -AVR &R6 "rr ; A 0Ir .r66It ‘-&nMD&R6; ffff 1 A " B ;; [ FRN[ -W FRVV"Hr""U [ f D H [ FR6;III rIWf; -&IR6n]UI A; f; .Mf &P0 f[ I@"RFDV7UWIYUR[FR+ILH .rAXrIUW 0f; [ GAA Be! &R A W0 nfr &R6 I.A rIDf WIWf[@ $Q  ; A KD H .WI&RV=IIWV [ $\ rrW["[ MU ; \ LQ ;, L9V FR6&;M 226 B.g XrF;IW ;&R6" f ,9f LQ ZKLFK r 7 ff LWUU r abO f rr a[= ,9f L LV DQ RGG LQWHJHU %\ VXEVWLWXWLQJ (TV ,9f DQG ,9f LQWR (T ,,,f DQG FRPn SDULQJ WKH FRUUHVSRQGLQJ FRHIILFLHQWV .B M f DUH

PAGE 63

REWDLQHG DV IXQFWLRQV RI [ 3 X UA } DQG 7 7KH\ DUH JLYHQ LQ RK )RUWUDQ ODQJXDJH LQ $SSHQGL[ & %\ DSSO\LQJ WKH UHODWLRQ ,9f WR (TV ,,,f ,,,f DQG ,9f WKH ERXQGDU\ FRQGLWLRQV GXULQJ EXFNOLQJ DUH )[r ) f a & In4H ) [ f f§ DW [ DQG [ [ ,9f DQG M H r -f L; r e! )r;; @ aa 2 R ,9f %\ VXEVWLWXWLQJ (TV ,9f ,9f DQG ,9f LQWR (TV ,9f $ Q $ II $ MI DQG ,9f ZH REWDLQHG WKUHH DOJHEUDLF HTXDWLRQV $A $A DQG $A ZKLFK DUH WKHQ REWDLQHG E\ VROYLQJ WKHVH WKUHH HTXDWLRQV LQ WKH IROORZLQJ IRUPV $ IW D9 D D I Dc 7n[rfUcf I} M ? rf $ M n UU B $ V R} I D D M a=O r 7! f $!r 4 nn $W $n} r 2 V? U ? ƒM f§ IIJF= IIRL AA4L r A? LrA7f ,9f 6XEVWLWXWLQJ WKH H[SUHVVLRQV LQ (T ,9f ,9f LQWR WKH HTXDWLRQ RI HTXLOLEULXP ,,,f DQG DVVXPLQJ WKH HUURU LV .

PAGE 64

WZR HTXDWLRQV DUH REWDLQHG E\ DSSO\LQJ WKH *DOHUNLQ PHWKRG -UVQIW $ 4\ 7I ; &R6IW 2 ,9f 776WQIW D4X  FRUUV[t ,9f 7KH DERYH WZR HTXDWLRQV FDQ EH H[SUHVVHG LQ WKH IROORZLQJ IRUPV DIWHU LQWHJUDWLRQ &/ 5n $ FOfn ILnWr f I A aQf IOr DWR Wf.V DDNr7frW W =nILU D  Dr D $ W & A U! 2 IW D U 4 IW IW IW 4M IWR f§ A ,9f ,9f ,Q DQ DWWHPSW WR VROYH (TV ,9f DQG ,9f VLPXOWDQn HRXVO\ LW LV QHFHVVDU\ WR GHILQH $ }3 D ,9f

PAGE 65

%\ VXEVWLWXWLQJ (T ,9f LQWR (TV ,9f DQG ,9f DQG VROYLQJ IRU WKH FRQVWDQW 7A ZH ILQG ,9f ZKHUH YA Y DQG Y DUH IXQFWLRQV RI X O 3 \A DQG e ,I WKH JHRPHWU\ RI WKH FRQLFDO VKHOO f§ 3 DQG WKH WHPSHUDWXUH UDWLR \A LV JLYHQ WKH YDOXH RI F}7A FDQ EH SORWWHG YHUVXV 4 IRU IL[HG YDOXHV RI S DQG 7f ([DPSOHV DUH JLYHQ LQ )LJV DQG 7KH FULWLFDO WHPSHUn DWXUHV DUH WKHQ IRXQG IURP WKH PLQLPXP YDOXH RI WKHVH FXUYHV 7KH WHPSHUDWXUHV VKRXOG EH HTXLYDOHQW WR WKH YDOXHV IRXQG IURP WKH UHODWLRQ 7KH QXPHULFDO UHVXOWV IRU WKLV FDVH DUH LOOXVWUDWHG LQ )LJV DQG 'HIRUPDWLRQ 7KH UHODWLRQV EHWZHHQ WKH WHPSHUDWXUH ULVH DQG WKH GHIRUPDWLRQ DIWHU EXFNOLQJ FDQ EH REWDLQHG E\ VROYLQJ (TV ,9f DQG ,9f VLPXOWDQHRXVO\ LQ ZKLFK DA DQG DA DUH H[SUHVVHG LQ WHUPV RI 7A DQG \A 1XPHULFDO H[DPSOHV DUH JLYHQ IRU V\PPHWULFDO Q f DV ZHOO DV XQV\PPHWULFDO FDVHV ,I RQO\ WKH ILUVW WHUP RI WKH GHIOHFWLRQ IXQFWLRQ Z LV WDNHQ LH D LV HTXDO WR ]HUR LQ (T ,9f WKHQ (T ,9f FDQ EH ZULWWHQ DV ,9f

PAGE 66

)LJ 7HPSHUDWXUH YDULDWLRQ DV D IXQFWLRQ RI GHIOHFWLRQ FRHIILFLHQW UDWLR DADf DW r 5Q DQG +5

PAGE 67

)LJ 7HPSHUDWXUH YDULDWLRQ 7A DV D IXQFWLRQ RI GHIOHFWLRQ FRHIILFLHQW UDWLR DnDf DW 3 r 5K DQG +5

PAGE 68

5K )LJ 0LQLPXP WHPSHUDWXUH YHUVXV UDGLXVWKLFNQHVV UDWLR DW +5 }

PAGE 69

&Of )LJ 9DULDWLRQ RI PLQLPXP WHPSHUDWXUH ZLWK PHULGLRQDO WHPSHUDWXUH LQGH[  r 5K +5 f

PAGE 70

7KH DERYH HTXDWLRQ FDQ EH VROYHG IRU WKH PDJQLWXGH RI WKH GHIRUPDWLRQ D LQ WHUPV RI DQG \A )URP XQLIRUP WHPSHUDWXUH GLVWULEXWLRQ LV HTXDO WR ]HUR )LJV DQG JLYH WKH YDOXH RI 7 YHUVXV Zf W PD[ IRU GLIIHUHQW FRPELQDWLRQV RI ZDYH QXPEHUV ZKLOH $7 7 7 f FU YHUVXV Z fPD[ FXUYHV DUH SORWWHG LQ )LJ 6LQFH WQH QXPHULFDO FDOFXODWLRQ LV YHU\ FXPEHUVRPH WKH KLJKn VSHHG HOHFWURQLF FRPSXWHU LV WKHUHIRUH HPSOR\HG 7KH VROXWLRQ SURn JUDPV ZHUH ZULWWHQ LQ )RUWUDQ ,9 ODQJXDJH DQG WKH QXPHULFDO ZRUN ZDV FDUULHG RXW RQ WQH ,%0 &RPSXWHU DW WQH 8QLYHUVLW\ RI )ORULGD &RPSXWLQJ &HQWHU

PAGE 71

+5 f

PAGE 72

: fLQD[ )LJ 'HIOHFWLRQ YHUVXV WHPSHUDWXUH IRU D[LV\PPHWULF FDVH r 5Q +5 f

PAGE 73

FX 2 ; ; G ( 7L 7fF9@ [ 2 )LJ 'HIOHFWLRQ YHUVXV WHPSHUDWXUH r +IW f

PAGE 74

&+$37(5 9 &21&/86,216 1XPHULFDO H[DPSOHV KDYH EHHQ JLYHQ LQ WKH SUHYLRXV FKDSWHU IRU GLIIHUHQW FDVHV ,W KDV EHHQ IRXQG LQ )LJV DQG WKDW WKH UDGLXVWKLFNQHVV UDWLR KDV WKH PRVW HIIHFW RQ FULWLFDO WHPSHUDWXUH ZKLOH WKH FKDQJH RI UDWLR +5 DQG WKH VHPLYHUWH[ DQJOH RI WKH FRQH YDU\ WKH WHPSHUDWXUH RQO\ VOLJKWO\ ,W FDQ EH REVHUYHG IURP )LJV DQG WKDW IRU WKH VDPH JHRPHWULFDO SDUDPHWHUV WKH FULWLFDO WHPSHUn DWXUH LQ &DVH ,, LV DOPRVW ILYH WLPHV KLJKHU WKDQ LQ &DVH 7KLV LPSOLHV WKDW ZKHQ WKH VKHOO LV ORQJLWXGLQDOO\ UHVWUDLQHG WKH D[LDO VWUHVV SOD\V D PRUH LPSRUWDQW UROH WKDQ WKH KRRS VWUHVV GXULQJ EXFNn OLQJ 6LQFH WKH WKHUPDO VWUHVVHV GHSHQG RQ WKH FRQGLWLRQ RI FRQVWUDLQW DQG WHPSHUDWXUH GLVWULEXWLRQ WKH WKHUPDO EXFNOLQJ SUREOHPV KDYH WR EH WUHDWHG LQGLYLGXDOO\ IRU HDFK FDVH 7KH WZR FDVHV &DVHV DQG ,,f FRQn VLGHUHG LQ WKLV VWXG\ DUH WKRVH XQGHU ZKLFK WKH VKHOO LV WKH PRVW OLNHO\ WR EXFNOH )LJV WR JLYH WKH GHIRUPDWLRQWHPSHUDWXUH UHODWLRQV 7KHVH ILJXUHV LQGLFDWH WKDW WKH GHIRUPDWLRQ LV SURSRUWLRQDO WR WKH WHPSHUDWXUH WKH UDWLR 5$ DQG LV LQYHUVHO\ SURSRUWLRQDO WR WKH QXPEHUV RI ZDYHV LQ WZR SULQFLSDO GLUHFWLRQV ,W FDQ EH VHHQ IURP WKH FRQGLWLRQ RI FRQVWUDLQW (T ,9f WKDW IRU WKH VDPH WHPSHUDWXUH WKH WKHUPDO VWUHVVHV GHFUHDVH ZLWK WKH LQFUHDVH RI QRUPDO GHIRUPDWLRQ

PAGE 75

+RZHYHU LQ WKH D[LV\PPHWULF FDVH WKH GHIRUPDWLRQ DIWHU EXFNOLQJ LV YHU\ VHQVLWLYH WR WKH LQFUHDVH RI WHPSHUDWXUH DQG LW LV DOVR QRWHG LQ )LJ WKDW SRLQW $ VKRXOG EH WKH FULWLFDO WHPSHUDWXUH IRU WKLV FDVH 7KH EXFNOLQJ RI VKHOOV VXEMHFWHG WR H[WHUQDO ORDGLQJV KDV EHHQ VWXGLHG E\ PDQ\ DXWKRUV LQ WKH SDVW 7KH\ IRXQG WKDW LQ JHQHUDO WKH EXFNOLQJ ORDGV REWDLQHG E\ WKH XVH RI WKH FODVVLFDO WKHRU\ ZHUH ODUJHU WKDQ WKRVH IRXQG E\ PHDQV RI WKH ILQLWHGHIOHFWLRQ WKHRU\ ,W LV LQWHUHVWLQJ WR QRWH WKDW LQ WKH SUHVHQW LQYHVWLJDWLRQ D KLJKHU EXFNn OLQJ WHPSHUDWXUH ZDV IRXQG E\ QRQOLQHDU DQDO\VLV WKDQ WKDW REWDLQHG E\ OLQHDU DQDO\VLV 7KLV SKHQRPHQRQ FDQ EH H[SODLQHG E\ WKH FRQGLWLRQ RI FRQVWUDLQW (T ,9f :KHQ WKH ODUJH GHIOHFWLRQ WKHRU\ LV FRQVLGHUHG WKH QRQOLQHDU WHUP Z f DSSHDUV LQ WKH FRQGLWLRQ RI FRQVWUDLQW DV ![ H[SUHVVHG LQ (T ,9f VLQFH Z f LV DOZD\V SRVLWLYH WKHUHIRUH LW FDQ EH VHHQ IURP (T ,9f WKDW GXULQJ EXFNOLQJ D FHUWDLQ DPRXQW RI WKHUPDO VWUHVV LV UHOHDVHG E\ WKH FRQVLGHUDWLRQ RI WKLV WHUP &RQVHn TXHQWO\ LQ WKH XVH RI WKH ODUJH GHIOHFWLRQ WKHRU\ D KLJKHU FULWLFDO WHPSHUDWXUH LV REWDLQHG LQ WKH EXFNOLQJ RI VKHOOV 7KXV IRU WKH SRVW EXFNOLQJ FDVH WKH VKHOO ZLOO UHPDLQ VWDEOH DW FULWLFDO WHPSHUDWXUH DQG EHFRPHV XQVWDEOH ZKHQ WKH WHPSHUDWXUH UHDFKHV PLQLPXP WHPSHUDWXUH $ FRPSDULVRQ RI FULWLFDO WHPSHUDWXUH ZLWK PLQLPXP WHPSHUDWXUH DW DQG +5 LV JLYHQ LQ )LJ ,Q RUGHU WR FRPSDUH WKH H[SHULPHQWDO ZLWK WKH WKHRUHWLFDO UHVXOWV D WHVW LV SHUIRUPHG LQ WKLV VWXG\ 7KH WUXQFDWHG FRQHV XQGHU WKH WHVW ZHUH IDEULFDWHG IURP D IODW EUDVV VKHHW ZLWK D WKLFNQHVV RI LQFK DQG WKH FRHIILFLHQW RI WKHUPDO H[SDQVLRQ LV [ Ar)

PAGE 76

5K )LJ &RPSDULVRQ RI FULWLFDO WHPSHUDWXUH ZLWK PLQLPXP WHPSHUDWXUH r +5 f

PAGE 77

7KH GLPHQVLRQ RI WKH FRQLFDO VKHOOV XVHG LQ WKH WHVW DUH f§ DQG r DV VKRZQ LQ )LJ 7KH EUDVV FRQLFDO VKHOOV ZHUH PRXQWHG VR WKDW WKH\ ZHUH SUHYHQWHG IURP OHQJWKHQLQJ E\ WZR ULJLG SODWHV ZKLFK ZHUH KHOG LQ SODFH E\ IRXU LQFK VFUHZ URGV $W WKH WZR HQGV RI WKH FRQLFDO VKHOO WZR ULQJV ZHUH PDGH DQG PRXQWHG RQ WKH SODWHV 7KH FRQH ZDV WKHQ IL[HG RQ WKH ULQJV E\ VFUHZV +HDW ZDV SURYLGHG E\ LQIUDUHG ODPSV ZKLFK ZHUH SODFHG LQVLGH WKH VKHOO DQG ZHUH GHVLJQHG IRU XQLIRUP WHPSHUDWXUH GLVWULEXWLRQ RYHU WKH VXUIDFH RI WQH VKHOO 7KHUPDO SDSHUV DQG WKHUPDO FRXSOHV ZHUH ERWK XVHG WR PHDVXUH WKH WHPSHUDWXUH 7KUHH FRQHV ZHUH PDGH DQG WHVWHG WKH EXFNOLQJ WHPSHUDWXUHV ZHUH IRXQG WR EH r) r) DQG r) ZKLFK DUH KLJKHU WKDQ WKH WKHRUHWLFDO YDOXH r)f 7KLV LV SULPDULO\ EHFDXVH WKH EXFNOLQJ ZDV GHWHUPLQHG YLVXDOO\ ,W LV WKHUHIRUH UHDVRQDEOH WR EHOLHYH WKDW WKH EXFNOLQJ RFFXUV EHIRUH LW FDQ EH REVHUYHG LQ RWKHU ZRUGV WKH DFWXDO EXFNOLQJ WHPSHUn DWXUH VKRXOG EH ORZHU WKDQ WKDW IRXQG H[SHULPHQWDOO\ $V WHPSHUDWXUH LQFUHDVHV DIWHU EXFNOLQJ WKH GHIRUPDWLRQ LQFUHDVHV WRR )LJ $f VKRZV WKH FRQLFDO VKHOO EHJLQQLQJ WR EXFNOH ZKLOH )LJ %f VKRZV WQH EXFNOLQJ SDWWHUQ RI WKH FRQH DV WKH WHPSHUDWXUH FRQWLQXHV WR LQFUHDVH DIWHU EXFNOLQJ `

PAGE 78

)WJ 3KRWRJUDSK VKRZLQJ EXFNOLQJ RI D KHDWHG FRQLFDO VKHOO

PAGE 79

$33(1',; $ (48$7,216 )25 &$6( ,

PAGE 80

=/ Wr \ S Y r R W J n0 ; nf = r < 2 II n' f 8 n Jr ? n f LW nr n9< n X\rf= nr r r nf ,I I r U U n n = "9$ H VILA8< <=
PAGE 81

? f= R‘r‘ $ f Y" V e ! a YL  D G K 9WM & ‘[;f F $ f Pn  M r 9W F L D Fc f§ P F V r $ f R $ QWM L n6 9 f YWV 2WM fr‘ $ f R r YLV &6 rr $ f &J = &?f ILWnV a WULV & V $ f &M QWV RV I f§ ; H ; ; R ? W f; H $ R H f§ &YLV  0 6 f & ; f ^>r ;f ; &Y] 0 ff§ >r?nf ILWPnf\c f§ R 9L]L f 0Vr L\ OfM &YW 9Wn f>Y n; YWnr0 f@ Ur f9[ fUUWM YLf --

PAGE 82

$  ;'an  I f ^F 9;< IQnr I9$ r f & IQ IIW f $ \ f§ 2 IO I R a $ f > WN f &A; A AUW! A :M ; fr a 7UWn f >\; &PnV a r& n f  IW UUr Urf -Vf ^^< &[fn f>Y F[Wf I f  >r Ia $f !rW  g UU]I @  !$n -6 f§ $ f IO f§ f > &\?f f§ ; \; 9W7&M af- f§ L' nWNnV f! f ?; n[nWn; 7.J f rOnV V; ; >9I ;f; UAXn MNc WULV [Un, ` f§ RV f J >\ ; f Q < -M @^UU[ PVfe D ‘ n n }n }W m@ WQ M rQ f >\^ $ WI ^ IO rFn f

PAGE 83

 f§ ; G  f§  f I& 9;  ‘ 7UW QfJ f @ f§ e < ; & r 7ULJ f \I f  f§ R n  UWn6 f^FUUW PfV fer ; r‘ ;PU 0J 8 UU&M WNn f > g $r ; A f  f§  ; f 0Jr f§ ` W ; "V f M &? W f  &IWM UUWVff§ >r&? f r & r IW V f   D / 9 ;; LJ "g UUM -3/6 ; f >r ?nf ; "UWV ; IW f @ K WnV -f\ $ n f W a 7WJ f M  f§ $ n$ f f ^9;r r &7OJ Wf-IY; 7 WV 77&M f@ M 'an & g $ f I & W $ WJ f >Y$ r $ &Wnrf@ f§ UrV f§ Ur f >A ;n  r a rVf@  f§ n$fV 7UWMr $IM UUWM ‘ f >rI$ &WOnV n r f

PAGE 84

$ r r r c9L f§ g a `r !g f§ $ r f§ M \  \ I r r \ e IJ >Y n; f f ‘ r r rFV f /r; n f r 0V ‘ P f n M a A f f U ‘! A f§ &UUWM a rrr f / g ; f IIWM VrWV ; B ; n f&Y?II.V ;UWM fr>r$=IrrOVnU!Wf@ aR 6 n IR f§ fIPV ‘; VUWV f >r ;r rV P f f§ PM r‘ V f r;  "r LV f A & 7OI f§ r J f >. f6 ; ;M f§ Af§ ; af UV@ f W U r r W f‘ >r n ; fQ ; PV @> g ; 9UUWV @ 'an f > X;f nf§; g;r 9WrV f n@ f§ 'an & V r ; 9 ;  ; f WM f Ie!>n; I77WnMe F[rI-; ‘ F : >G>nr `r‘n@@ eHHnrL I-;fM PV KLW M Yf§: >r r ; n-9  g rf ; f r & f

PAGE 85

&L H L!H@ £ e f§ n r A f  -@ &  f§ &L n A fn H ;Rf M & f§ &'fH;r f & f§ >8f Hb r f Rf ]H[rH[nf@F & &arH;Rf & >If$U, B & &&EAf &GA&23f &J & &8f &R & & H &r &&V"[fH;f;P &r &Hr;L;H &6 > U>Fn"! $@>nHA;R-H[\n@ & > U nrf@F & &n FVrfU[\F & f§ &nAH nf e Pef ^""W ef" B `@ A >Xf§ I f  M@ F G6 &H Xf W@ B &&W >fg $V@

PAGE 86

& R f§ f f ; A V[V f W[V 9 f f§ 9 ‘ $ eO6 -rI f§ ‘r‘ LV f 6 & &WLLm &Vf&L&Unf 'D &V+&] &Uf n f§ & & f& a & f f§ &nr6 & f & a &2f f§ &D &nf& &R f M 'f§ &Y & f& &R f B B 'U '!r;-!e9Vf 'D ''Vf''Vf 'V '] 9'U 'YH' !f a& 3R & =!HA&Wf '] f§ 'Q & 9 & 9" f§ & f f§ f R M f§ '' 'V f§ 'V ' & & f& &"f f§ & &nf& a&`f -' f§ ' f=! 9V f f -fJ f§ f§ '] f§ ;!R f§ &  9 & 9 fW '] f§ V 9 R ']= f§ r 9 t M f§ & a & f‘ & &\ f Y A f§ G  & f & &R f [! f§ 9X 9 f9 9! f

PAGE 87

'] '] &r ,} 6  e! f§ Y f§ 6 6 !MR =f\ 'J e &U[ "IV fI>Y&? RM erƒ 2 9 / @ U e fJ>\ &n; f}F e\ & anf <]UWIM e 'nr "f f ƒ &r$r r}If ane an"6 & e f ƒ =.f nA->D}rF n ? f§ Y nXrf PIM I}W Rrr!>H -IFW\f \ V"W U a ƒ!rR \ W & f >WR $M&n$M - n nM U r$!;RU "rL &n ; f VUW &n ?f ‘WH -n $f rF (J f§ e  e e  M e f§  e R f§ e ( ( \ tf Y ee V \ eH

PAGE 88

(f§ $J ; f & MUWI "V ^er?&Pn f( LUUW IUW fe e $f P" (" "Q@ I[W AQM f >r ? W f H WUW 0f @ >\W;Wf WMUWnf n  ( f§ ?G \ $ UW WIWM f f§ Y$ LSFM VI` BM ( f§ R $n 9 ( nf UW Pf >L ? AY!  WIWMf P QFnf>\?= ISWMYW f U I?arR U n (V f§ =faIIW ( n -$ n M 7WM ( f§ +LM /H -/ $ nf M UWM ( f§ 'n &n ?r>n?IM &ƒf >Hrnƒn! 9 n-IW7$f n" 7 r VQ U n $ B U ; ƒ f /AR& $ f I ? f RY $ H n n U U?!rRn n "rWM&?f (I n ?f B H -OBFV$f e I A ( " e!(V "" A ef

PAGE 89

e f§ e en ee e ee6 -f eee e!V e e ref e c] W" e f§ e- KD eV9n e e ef§ eV 'UA ee' e e ef W e f§ eI eR e! aeV eJ ee FRrf e f§ enV e ;-\r -r eV e rr B a\ A A eH rr A ] e Dr FHWILnf e f§ ( AY 7 r e-Y] f  F A B e f§ &A f ^e e f e e e e e e V >fn D Ae Yrf !m a fr f>r ; f nSWOVOf§ ]UWV eUW nf>rr2r IPV W]Qnf eMV e Gn-V !f UI I&r? rre0Vfr-ner£ UWVUW-nM eM R e Ga? n- -f^P n0VrP6UWVf@ ;UrVf>N r AnAV8n-

PAGE 90

e 0V'an>HX 2;RV@>$Q YWMr@ eM6 0V' n>HLNr2;R ->QrQ VPHMV M7nFL £f]>n r !r $WI0V !>H Inrƒ f;D nr e? f 0V A e$ f >B ;R $ f f§ &$ e F $ WF R f§ PV $ f \ QV n a I nAf[}U nM ‘ 2r ; f /n e -/ $ f rVM e f§ A Wn4MR e f§ cM=!V ee e! -eJ ef e f§ e er e f§ fMV ƒM \ (! eer e ref e eM e < erV eMV e e AeMe  IHeMJ retf e f§ $ n e e" e $ eM' $eeM63 R IHAMJ Aecf ef§ e e f§ er e eeMVe eLJef eVR f§ 3M\3M \ eeM e eVV eMf a e 7 ef§ aeV ^e e \rFrAef M e a re e e Mr ef B .r D er e eV f e ef eVg f§ e ‘‘ e D!] e

PAGE 91

eVV f§ A] FR A f eV f§ eV8 e n e f eV eVR eM\ eV f§ eMeVf eM f eV eV eM R f e eIVf eR eM eMUfeV aeV f eLI f§ eV e e tMUJ e f§ e e eee R e Wf U $ L f§ aeL e 7Wf/ "!n Ma RROIO ^e-! e eRf $] f§ \aL ref> eMR ‘ FRGIOeW 3 WeAV \ eRe!M $ A/[7 f cB ae A en e! 9 e86 ee e! L e e  A r ;    < r r‘ [W\QfIn?r` -? f P F LIU[r ??fQ -ƒ$rfUU  M>\L\\ r£r r U = U   + O$f-O ]$Q $$ fe -MW \\[$ fn] r9 W r ] ] $M ;; WWIƒ gƒgIIOn U ‘rƒ} ƒfUW f Vnf§ e; r‘ gZD\eƒ -V" \\\]n\A\\\; \9\Q e MV[

PAGE 92

f§ ; r$r7MY$A$V=0V $ 9ƒ a
PAGE 93

 2f§ $Z ^L>;f QWn@ f§ QJQf+NLf QQUf@ "VQ ]W f> f P aWf UM 4 RKX ; I> ; I6Q O PfIM a > ;MI[ 8P2Pf@ n@ 4 f  ?f c> ƒI 0"@ >? 2 f9 r nrfr@  ? Qna QWrn4D f§ R INn"Kff>n? P8PIM PQnf>;r@@ 4 f§ R-IWW ;f `t>2 f§ 0 IOVt2; f ‘ 9= 4" $J0I;anY[]WMQf T 2 P f ;  QIf ‘;r f$;R " e;R£af H ? ;HH ? WPL f f§ $J ?  -rLf I[A]Q f U $ R S Y! B S YS f§  4D /H &? }W f W$ IƒAUWf 2Q f§ H > $nf ;nf I ;fr P-

PAGE 94

4] R Pfn>ƒQ rr@ 4 IO I ?a f UUP ff§ &AI; f ULM QfaA ‘n‘L a QM QIMP P f>r[ R = P Pf % >QM >]-;I\Pff§ WHP$af AP LaI r U  !n a P; P ULM f-$ nrQf f§ >&Q PL nf>A&;f P :M A UU rnPnf>Y^;a ff n P P f 4 f§ R > ; nf n>$fPM nR A D [Pf§ ^26ƒn ; > ; P ! B 4 f§VQ &Y; rP 2 f§ >>gƒ  ULM VQff@ g? &Q ]Q
PAGE 95

I M! !! U X !M !! r U S -a, : R6I;M VUWfLT\ SL%VQf nUW-LMf 4 f§ R r Q>>?f OnOMIM ac>^; f ^Q n7UWM f@afA cIOOMWQf>\?WU=MWfIML ff>Yƒ Va >ƒanƒrWU" 2 n@  2 $ J 0 U"Iƒf c 4 $ U9 -$f Ia >?Lf= !rf@ >I $"-UW  IM >ƒ 9L IWf@ anM 4 2 69 I0 6UWM f>?f  O f"I UW f ; U rn L ‘r ^-$f rWWMf f§ ? &W7,M Wrfffn9$;R $ &7IM rr "r U ? M! !f  a^I AW f fJ ? ^ ^WrA6 7f ^R $rf > g ƒa ^+M f ->gƒ r Irnnf r@ 2MR f§ R f ^QQ Qfcf>r‘r f \

PAGE 96

QWnQW E Pff >D?a IIOrn ; EQ f§ QE} EUD ] r n !!f§ !n r\ U raK ,f E EI7/ f IU.OVQ fOa?LfEOPOOUWOf\ 4 RV9^ $ f >>;-!E SW8.EWnnfa$ E YWnILWM I3 a f§ Ua  E M \ f§ U e r af§\ f -ƒ ^VUWEQM U]f ?nf VUW" E77/f B 4Ma AA IUWMEUWLnYLnf -M?f L[UIMEUWMVU]nf E & ‘rn U  r M = M M M f EUW / "$a n f ‘ VU=M r EW f "WM E WW6M EU f?nf M MM M n U n WaE IILI MUWM 7/n` 3IWM 0MW fc?a :M EU] rf F" f§ f9  ; fM& I?fa E EI&M E Wf MI E ` $ f E I! M S U an U W V n n\ .f n 8; EI7WM EIM ;f U-ƒWf 7EM77IM E7f  f r  \ U n nnEa! 4ME A\ ? f I! $ M IE UU-EU" rFf -$ EUIM rM EnI ‘ U e n Y r aa I a V n A ^ f n77IMUrM \f U-;n nr -2 f§ R A >WrUWMnfA$ -n77Wn-VUI7MnM a nIVEW EMf ; >M? f EIWIMnrFnnU]-M@ E ; E -7=M Wfa-ƒ! EIInEWV&ff§ a

PAGE 97

rf r I M !M aa UWWM }W PD f n02 !UM 4M IWWn IWnf >Xƒ &IW IWMfr‘? >cY ƒ IWIIW IW !f r U S = aAI r $IWR rWQnf /rW; -! B IIWF!H g?!J? LrrM \ f§ 9 / -$,&Nf & Qn IW -af§ >U-$ f +W6 +IWf@ U ‘r U A r ‘nfn OBV? A ‘ ADXY ‘ S+f f§ B $ ffIW IW IWf MDf r VL L n U  !‘  M n nn 2 R6 M &IWIW IWf&-ƒn IWQ IWMf &IW IWIL U = M f S A \ Y  r Y nn@ /?nfI&.IWM"OOf  IW IW IWM f&bUIWUUIM-U r ‘! n f W n \\ f§ OB$Of LIWIWn aIW` f "IW\=IWIWMf U A &-$2 &IWLMKQnn IWMIa $ 2KMIWnV P n A U n r \ U f I U n ? f /-?nf^UUIrMUWnf rrr Vrf 4JR f§ fA >QIWLnW IW 9 =IWMf> $ &IWM IWn IW nWf IWM nr` f; ] = U  n\ n\ /2;,f &IWM &IW aIW fr` IW V0`fOI$^IWMIWnrf

PAGE 98

f n U m r n f§ 0V P UWL n!>?nLf 0V W 777Mf 4m f§ $LI I "Q >? IU UWI UWM UWIIM;Wfm r U r IIV78UUWM WrMf 4\ f§ $Ia >? f§, f V [UWM WUUIV f $ 2 P 4 g f§ ? a ; I a IW $ 2 MrM PIM f \ Wrƒ IIM UUWM 9 2I9 V` IUWM fn0\ IMA PIPIfg £ R P r M 4g R`J FPWMPnf>;P PnIUW PLnf>`LU" nPnf A 4g R6nPIPrPIPRrnI[H ?I >m;  Prf@aI fn U  a rn  a ,I A;R IO" P r fLr? P UUWMI I[H gƒ`P; rW;fB I  U 4\ V ƒf I >FM;f U[PPf B?nVrP WN W U  n B U r n r 79 f I-; n; PU P rf UM;2r PI MN f L r U n a ?I g6 0M f 0M r 6UHf UI r 0 ->;A

PAGE 99

W  \ f A r U r M  a I :M rnQ rf>$!f r ar! rrf aa fn ‘! fr fr U n a r r r f $r aUU r f I n A U e rn 4r2 W\J ;f rWM >$ 7M 462 f§ f§fA r $ r f M$[ 2V rVH }6[$an DH6$arf $a $ ;H nrr rf ‘ 6 & D r r - f & $r r Mrf n n L  rn \ 2M f§ r=f I r>IM?` r ;f8?L frMrn rrM !! U  !! n Ur f-$ r r f 2V -A WM;277Ln -a >-?IM nIfM &?Lf r Wrnn;n2Vf§ A $ f M 2MMf§ 7UIM $I f B U !! M$;R B r fn 2V L"r ;R D Q f ƒ $ 77IM f 4 6 f  U n Mn U nan 2 $f  $rrf 0 IfrM rf -

PAGE 100

I M` U n Mf§ n I 2VD 2 6 > rM r,f/n$nf rV 0\f I0M rf6$ 2 & r M 2V -6r\ $ > $ "f=6 9V;n n 4R a. W >$ fr$ I; 4X 2 =6I6 =$ SIU rr`f rn -na $ f Ir;rM ranM  f§ cV^r $rf>U $ 7ILnI@ ;;M f$S r -! ] r @ nrn$ 4 6 I 0MnrMnf>VM$ IL;S=;fMrM r f >I6ƒ! r r f nUnL 4  a -V>-;Mrf> $ r-2 $ $;MI.V f ; U  /6$ f M X U   `WI r $ref OB$"f r r U r 4 r ƒ If rM -

PAGE 101

a 6L U n U n n I 4U Ser I VQV>I-$f VrV n$UWVrrV$ -$n$ "r U nn r an$ g Q rVfI-$f g n;}HB)f 4 a R6c" IDORI W ƒW Ir ^MNnMKVf nn-$ 2 n^0 UIVfIM I U U VV 4f§ eV ^-$ f >n-$ a -$n$ g ^!+ g0V$ -$fg UW -f2 "g IH a 7IIV $>-$ 2 F rVfg^0V VfOAOn2 g ^ 0V r nV $ 7nB V nV U VV VV 4\ f§ @g 0V 0M -$ n^0V6;M r.Vrrr I V VV n U ? f>-$f g^ W;W0M ;^+VAM g+Vf $n$ r  V VV f 6 66 66 \f§ 6 V\ V U V f 66 I ^7IWV nr r -;Vf V a60Vf-$ R g^0V rr$ IU ‘ n VV VV U A 4f§ e"g -$2/ -$ $ V60V gIV V0f ra-$V$ gV Sr "rn@ a>n$$ g rV rnf =-a-?an$ g^rU arM  V !V fn U  V n f a 4 R $"g^L$f g I0V$Vr rV$ f§$$ g ^WrV 7-IM grf -

PAGE 102

B ,ff \ f§ U r nL 3 /"rr‘rr/nrrnf ^rr‘ IMVrr4U9 f§ "‘ IrV ;r Ur-fI"VUrWn nf aa } r! U f f W\ aA r II+V WVUWM MUW f>?af I;V ; ;WI.V rrr n ƒ n MM M V !fn U n nnOa" 0V r ‘ 0M f f§ UIV r rIV rn 4U6 f§ 6IOU I ILIMUM;M f >L? I 0M ‘P[fM M AU ‘rf! >?f W ;M 0M ;f 0M InUWnV r n! f n A } mY r 0 f 0; ; -Q$a! ‘n;WM ;M ;4 6g ?fI>I;f8III 0 !! r B f§ B A A A rr a A A ;M/V-ƒ2 n;L rr .K ƒa \&A; ; A  ?f>? II[-; 0M-=n! ;M[nM >F;`&;Vr rA >FL?&0V a6r0nM 4J f§ F! V4I ;f ] rr! AAHn

PAGE 103

X fn I I $} M f§ \ U" n}e‘f/^-?nf nUr;VUWVf 0rVf-2E f f  nr rM r I } MV M MO U[V IW IMIWVr ;VfU-r I;M r rVf M 26;g I ILWV >I?Lf rV@ a rV rVf>? r9 &rM ‘ I;V U  nr  a If=[M rV f>f‘rr2 n!;VrQVfn r  ‘! U  r 2VR f§ 6;0 ^a I6$Q 06QMIVf U  n 6-ƒI r WVf  -M \ U A r M aW 4JO R 6-U9 I? c$2 \‘M0 R [AA UWM IWVf>IƒE ILM IIWVM &A 0V f r U L a WI?f IWVf ; a 62 2Q E -V4 M ; !V E$nM ; VR 26 E V ; $V a $ 6 n ;V a$ a$ f6 $ f 2 ; f§ $ f§ f 4 c ;, a $ f 2

PAGE 104

r 8f f 4 f§  a f 4  f 4 ; >;rrf 4V6 ; 7 4R-? ;R J>ƒWf4 f@ ; \J>;nQf 4Q 4r@ -! \ KV>I$WrM4VV ;;J4WW@ \ 9 >; f§ ; a "W 4Va A & ; f ;S  R ;g m >;;aW[f 4 MMI$ f @ ;6 YWr aƒ V[nIf r" $2 :; f§ > ; f§ ;f§ IM f 4  7;M ; a f &S  £Wf> 2V ;f 4  2V G a-3 \ 4 V 2Mf W6 4U`R4f a e6A L 4 @ S f@ 7W 2 M ; f 2V  42 a [f 7 &RA\ AU9 V "r a &R "BU `R3 t \ AR\  "\ 2R f

PAGE 105

7 a ?UW rf> 4  f 4 2 D MU2 IfAr 4MR U I FR6 &UIMJ 4M R2 f DV 4 r 2 fVr > 9 WL ccf 2D 2 ;I WMr 4 M 2Mf R &RWIMV 4Mg R4f \ ]V A= W 2U9 4 Urf@ ;Qf>` rMf  2 ] &RIO WVag 2MR cVE4MLf D&WMa6 "6 WR2U f DU W] 2 ; "Vg r nWM r f =M UH 2M R rf &/J MW &R2 W 2 g‘ f \ f§ ;If > A r f4VR WM 2Vn L \ F 4VM f GM M7 Rr "M 4Y fR 2Y A \ &D2IOW Wr R f@ r >" n2Vg f 2VV 2U

PAGE 106

! \ D IOV\ 4M LU 2V f ‘ D VV Sg Lr4 -! a 6 b 4 tV AV 2t f @  a nnUW f > IL 4V f WM f 4 IM 4V ‘b R fVV 2 \ B fV 2M f M  A! fV 6n AU 4 f A r!  2 fV4 f@ [I^?f >" 4L r IffV r 4nr ; e r IW WU6 4 "4g f M A &rIL `4f =J FrR - 2  2 f ] UWIf >f f4 f D VV4VR ,V 2M K rI "V M 4 f FM e  I 4 $U4f@ U[MnI"rn OLOI2rr IMIf4 "4V U FO A r UV 2 LV 2 f D M  r UIVV 2MY UWV4LVf $V I `J64m f@  f§ I f>I I f 4 ,M [ r UIIV2MRV4af

PAGE 107

; fU 2 e f \ DM  " 4f@ ‘ \Of>O 4AW A f 2 A6 /"M 4 e &RV6f4 \ "V 4Yf R ` `U 4 "nMfgRnf DV 4 r 9 f6 4 f@  ƒ =LVQV f >IL4YJ \ f 4MR 6, 2UD b &U64V \ cM4U f ;6 4rW $*!g fDV M A$A 2 n ‘ ;V3JRf-\ 7IM &"$af>"4Vg &;""Mf4UV \ f 4U! [ IGMU 2V ‘"M 4VVf M "M A 4Vf 9 DV IL 2 fV4 f&X '; M[ f ;I R a L Vf U IXf§ Kr r r ; f & '; SFDLr"f ; I RI aa A7]   f I a ] ;R ‘ ;9 f F';n\[&rI"-;f a A  f

PAGE 108

IM f§ a A \ I ;V f & f§ ';\ f§ AA  U VR  = f -

PAGE 109

$33(1',; % (48$7,216 )25 &$6( ,,

PAGE 110

3R f§ !r?f  r‘ "[ n } r r } n n;f W f§ ;5RL0‘5RLM $cf§ IW$R;5RG 5 r ? L+ ;rrn L?P£r f9M; nf f§ n M r 3 I] ;R Hr &Q[/%\nH .rf 3 f§ R UarW I 3 IH S f§ R]V[ 3rrWV>[ f&r!@5r3ILLf SAa RAV[;nIFA3>H ‘ -3R f 3Va ;•FRL $ >H& Y 3Fe  3f 3£ &RL IW $R f r I 3J t6 aI &R WXV 3c f 34 R6n [ fO aO! Hnn[[MS ` 3 f[O^&W r ;f e rrH& $rP-rmr

PAGE 111

\UY = n YR"=f Hn A UFI6 G rG "r" bf a LI n$V V\ &[U!@t7 r ne HRL

PAGE 112

U  n \  n a &UQ VJ MrK!rVfO; \ &P! 6.Vf \ IrWU;f; \U";V!r2M Ur f§RVc; UQUf>U? I7;M ILV IM \ Ln f>Y£f \ a@ `J rM>r\?Q r‘ \r@ n ƒQ;R\ na U rfrf aI r >WH @ £R !mL OLn\ H -\S[M[R U \ L$DR[R M n LU UWa2-&R@O [ ,rr [ f ?Wf -e \ PDR \\ H -M \ $Lf;R UV"[>\H ->[Q Pn@ B f U \;f;H \ U I f§ - Ur r t B r‘nff"rW \ nLU WU?f;RM n eƒ-; n B &U!W >B\ H -La\Nn P cnA; f Lnr H \rWIU?f I B U?\M;R n U U\;f;L@ ;D \\?f aD f t ;?\f \UW \?f \H -&Ua R6a "V n I aI W Y?=\9Q"f n 4R a ; IeP; U3M 0f \ ?I;IM \IIW M &Ua IO IVrL\"rLf>"? \UQ\VUWMM\ UnrMf>Y; InUr;V-t ; IcU0?\ ;V0nIMaM\$ \&0V

PAGE 113

&Uc R6? rV r‘rn IM V&Mr VMY£ I[ [W\MM !U nf;R n n U &$-; n [] r /n H -[Q;M P 2£f /nH -[;M8R U a $f;R &?-;r ; c;R $ f§ f§ I ; W M e f§ ;M ; Lf A B B X';R U  aa U >rH @ r Wrfrrr U WN";}  n e f§ * UULM > H ->Bmr?f V[WVA 0M rW H;rff;r-]IQWMnI\$f> H r-fr‘ r U MWr?f;R n Fr?f;DO [[R $f F?f -H UWnA!H &I V`"n[F rrf>\$ rV. ;L f H^;M IUr[ ;M r A [ acW ; g ; ‘rf;Mnf R r$VO?  MWM UWr@ an>Y; r [UVMnL W IJI;VILWMf>g?IQV;Mf-;;Vf>? I[r6!@ nB DM;R } n \ ?Q;F UA H0V>H -?LfrV >rV V?fn H ;U f a ;LJ;R \ ?a!!;R [ L;R Df?f -H 0V&[Lf H -

PAGE 114

&UILOV 2n HAƒ-O;\  rn‘! !rr! *M\ 2ƒ f;} @>r n f n06&UVa 0V>nH $ f; R$![X B ?!; R$f f H ‘*MJf§ n 0I Y?r g0V f n n *Mf§ '&*ULIWIL U"S f cr  "W \IUJ"f Y *V 3 3M f ; *MR e!A *A3 f *I\M6f*]I\Mf a3rr 9 *V 3 er 3U ra* 3\ f *UL UV5MV "5MVf A HRLO *U 5SV*LV ILMV f tt ‘ *V 3 3J W*n SV \

PAGE 115

*U\ I UY IWW&UnV3r r U 3J &U3V f *P a =!*"U *3UL f aS *R3JL UVAVLf a D &RrIL IDL\3J \&UV3] +MD3r t3nf f§ '7 3I 7J3If 73 A73I fa S &r3 Ug32 -V3 *3U t3\f A A *mVf§ [! &U3UV*3LUVf ;AI\*MW3SV *V3VVffn&ID\3I A"U "\ i} f 3MU f "\a 3 tV3 a r n n U *f§ 'tM3I\U3ULf a&RAAI\nWn*fM3SLf a 3tV3 f 3 7*M\3 MMI 3V f *\J '33I UnW3MD f &WUMH3I66*M366f &RI tM3 IUVr 3 Y9\ 3 r tV3\ f \ n *YV 3I*U3UL "3U f a 3*V3VI *MV3VV3 ab&r33UML3

PAGE 116

W M 3r A Mr 3J &U-6 3V f VR f§ ;te` M] IW r MMM 3 R VLI Mr f *VO f§ >rnr a r r fLr f§ rrMf a &Ar arVM f ; r!r UXJ Mf@>r= r *M MR f &rR r rrnf f§ \r r V frR r rV Mf f" Va rRr r f >rrrVRf V &rrr"MVf V f§ 9 V2 aPV r 6n f >WRL>H&N nf;r @>V3RLrI\frI3L 3nfWU3VnrI\Vf@ V6 V IH a ; &rrW>M 3RW ‘ f AV L3-f WV IH6 U3I6f@n \ rM ;2! :R?f;} n V 3 PV[On>n;R!H -VrrRV[R JFRWS2H -VMIHr U Rr$=H r V 3R K Va3r6 A U 6a I] r"7UnOK WRLIL VI\n*V3 -*VI\V f*UVVrU 3 V M f§ V] 6 V!OA IH

PAGE 117

-HL $ $r Pag?rƒYAFnW - gNWIO a?UI L - Qf >RKƒf Q? M? f@W - R&Qf>Qƒf&[rf\2UWf-I ?Ur $ f Y! O?r[$fƒ f -r a g[W> RrNf L  $ f M FL!?IUWI Y ; f I \Q-ƒ@ a -\ L f§ 9 }] rmW M ]  fG; f WW;af0 0  f =}IFn U f r 2; f 2UIQ f f f f I = nn -Z \>UfL![UUZ?fInrƒ f \ r &; f ; &[Uf I /P8[ $ f ;X-Uf n; ; f -Mc-\ f@>-A -Uf I-V-\f@  ;  $ -\ f rY ; $ $! a-If@>F;m-"f a-\Ff

PAGE 118

QR 46 f§ &?f >r $ &$2 I$!f;R H Uƒn2;R Q U Wan £R;R } U 0UYf§IWr [0F\Q W H RLfUrInOY\fr U 9 nn a WI ?nf;R 4JV RVOYDf f c$Q;RH  U  r rn a U nn a r Qf -L9ALf r [f f§ R6c\^?!f rf \ cƒf;R" F;2;R 2 7 a9 IJ >;f $M r f-/gUr an` A rf ‘! 4Ja 26!r r m U  n I ;Lf;R U V\L$]M`"L\F$Q Y r Y "‘} \ r aaA ;f @ 26"+WM 2 r"mf Mr ?2;R ;R6 U R \ f§ $ 8 f /9rnf M 6? U r n W ?a2;R U  4a ;&-!/g$nfrV !M[H 7 \?nfW9[nf ‘UV;"[6fn@ r7n>FH $-; } $ 9H $ f" :$Q FP U[f@ R6$Q $W ff@!n 6I$Q [!;WH]

PAGE 119

,OO  4 >" \9L fM LIr LWI 9 TR RV>H;aQ; -^IA!f I?Lf>?Q KA0<-M U ?Lf;LU 4 H ->; WMFW B ?O f;H IU nn \ U  nV n 4I >H BI^L?R![Mmn‘FM 4 f§ f at ?W fb r fn U  r nn g &R>F?Q V r‘r >?Q‘n "rMI I 2"r U r nn ; L?Lf .VrW2 26f§ RV>H][ fL; -^? nn£Lf>?Q &;2;r r U  4"D &n H -.M / r;R 9r r f§ [Uƒf Q-M$f  LnJ I ƒ n 6] [ $ r ƒ f an6;r $ I&6 $ f a

PAGE 120

MJ RQ f§ [M M BA R 6 >IU ;M -n MM =JLL ]W;frWW f‘ &n n?!£ r Irn m fr m \ = $L2rf; [ 2;LIW f§ -r} L f§ SL f§  L r ; f f§ ;W  ! & M L $R?! f§ \ 6 /f§ 4 Mr f \ ""  f§ 4 -R -6 -£-f 4Q &7DO ;M-IL f f§ 4n -ALU-f W -H2 /WIL f§ 4 ;W a - f W 46 &MD -I -Uf V ,r ‘ ,G 4 Rf / f§ r 4W neXr4 f \f§OD[4 =R4  f M Jf§ ; 4 6 =X 4 f  == f MrW`$ILW4 LGMf ! nf

PAGE 121

Y EMU 2 E IIL64"f 4M 4 ff§2VE2 L &4U 4 -@ E rn>‘E E4f ; c 2 f EV ; 2 EV2Rf2 f§ 4VE Bf f§ E M2V E EM4E 2R f@ /f§ r f>E ;DfA rf ;A 2 IH2MMf E EV V4 64f r &" n2V62 E 2  a 4 f@ E IM -@E ; nr@ E 5ILL4V6 fr EM ; -f E EV ; ; 64 EI\V46f E r"4Vfa 4E E@2 E • 2E c!f@ /f§  f>EL ;AAIL n4Y E2f E E ; I\M4[6fEI4f E ; E\6 f E IO a 2IIf  M # EL 4Ecf f-E@E M@&F2LE2Y6fEM

PAGE 122

; I 5 2" *f r ; IDV f ‘ tL[ f§SJ f t 4Y 4"V W6J / 8D-A/EnL AV$L2V I\4VnfWcrrr &IS4Yn 5IOL f $ A? ; &DAA A -ILJ2JRf K"M &4J a 4ttf 6 4f 4 \ 4VRL4VLf@ ‘ AMa! ; $O4VI\4Vf  aIW n ILIL" 2\A 4 f r6 / [ IHV4 ILIF4Vf #f 4V=tM4VV ^4VV 4Vf/ f§ 2 ?OaA f MA f§eLf 4R >E b " ra=I4r f $r W =DL r 2V 4II f 4V 4 6Y&4U 4V f@M rn6 ;anfrn ; ^3 f 4"  >E; =6n 6n4Yf r![  4 4J f  ; -4 ,4 f a 4 n 4Yf

PAGE 123

aIa 4 a "t 4V r \ 4 a 4R f ` / f§ 2V&[ ;,f 6] If 2 W>K FRUIGI4MR\-A 4f E E ;&rAA =pV 2MVf AEM nff$ =V4 !f fF4\ 3VVf T! O4Irn4 W4 f ‘K RV &?fr IU I f4 > ;AR IW 84 E= 2MJf E  4Mg EOAV4MVf I6V ; U4 W=V 2 Ef a 6L 4L4JV f Ee 4L M4 " 4 f@/V R VI6[0MLI f4J n[FRW&r$n4r] IDVf E EV 2]V = 4f V =JM4" I=fJ[ 4 f H44J E c464 E >4]  f@I R V ; I ƒRIn 6 f 4 E >E\ b AE 7=\62E6f  ;AAL ]> 4f E V ;A;=4 E\r6 4f 4gg 4Jaf J 4\ ]6M 2\6 f§ 4 2YfM

PAGE 124

/ a ID$ V;M f MA$Wf ID""6 ID IDW >&RI\ID(I t6A ID E ID RW ` ID=AJJ 4g ID=4\ f t6 / &RW IW W\664IJ rf‘bet #rnf %c4A2DHf ec 6M4MR LID4fM‘E 609"$!3W6IO4VH ID >KL ,I4V W="W4 6%f E KM ID &Rr$=6 4\L ID= 4 f ID 6V $ FDr$ =%6 p f f§ 4VID a "Vf e 4VID 6 4VV ID e\ ID4V6IDe*V f-AM ,Q 9/L cIfDWIOf  'ID a\L8!Wf/ /'/AL&RWA/\ '/\ ID7] FRW fJ ,, $Qf§ f§/J ID ID! f aE? Uf ƒ f§ a WR ID f A r 7ID $M/IID/Vf ID M e  ID W fIDa /f§ $Q  n$M$VM ‘IDJ f§,Q  ID f§  ID ƒ f§ $V$ M = /c\ >a/ ID IDr 9 ID IDf -

PAGE 125

$33(1',; & &20387(5 352*5$0 )25 121/,1($5 $1$/<6,6

PAGE 126

&255(6321',1* 6<0%2/6 86(' ,1 &20387(5 352*5$0 9 8 ? $ [ f ? m [ & R U ; 'f H %(7$ 9M 5$7,2 & 3+, J 6* r DL $+ $+ ƒn $3 $A $3 $ $ $3 .L O f $,, f T T T T T T T T T TQ T L 5LL O f 5, f 6AL O f 6 f 9/ 8 9 8 9 8 $7 $7

PAGE 127

R R R X 0,1,080 7(03(5$785( ,6 2%7$,1(' %< $33/<,1* *$/(5.,1 0(7+2' 72 7+( *29(51,1* ',))(5(17,$/ (48$7,216 7+( &21,&$/ 6+(// ,6 68%-(&7(' 72 0(5,',21$/ 7(03(5$785( *5$',(176 $1' 5(675,&7(' &203/(7(/< $7 %27+ (1'6 8 $ (% OrL8r8ff 5($' f %(7$';45$7 6*&3+, )250$7)f ($ & *$ r& 46,1%(7$f ( 7$1%(7$f ) ;r& )$ r) )3 r) ) O6*frr %7O r6*6*}6*f6*frr %7 6*ff 3 r$r$r$ 3 m$rrr$r$r$ 3 $r }}$rrr$r$ $$ ($r($$r$ $% ($rmrr$r$fr($r($$r$frr $& $%r($r($$$r$fr$r$}$fr($r($r$$f$%r$% m($r($r$r$r$$r$$f $' ($rOr$fr$%r$r^($r($$$r$fr$$f$%r$ r($r($r$r$r$$r$$f $$3 *$r*$$}$ $%3 *$rrrr$r$fr*$r*$$r$frr $&3 $%3r*$r*$$$r$f f§ } &$r$r$fr*$r*$r$$3f$%3r$%3 }*$}*$r$r$r$$3r$$3f $'3 *$rOr$fr$%3r$r*$r*$$$r$fr$$3f^$%3r$%3 r*$r*$r$r$r$$3r$$3f $% O$frrr$'rO$fr($r$&($r($r$' $% $fr$'($r$& $ $frrr$&r$fr($r$'($r($r$& $ $fr$&($r$' $%3 O$frrr$'3rO$f}*$r$&3*$r*$r$'3 $%3 O$fr$'3*$r$&3 $%3 O$fr}r$&3r$fr*$r$'3*$r*$r$&3 $%3 $fr$&3*$r$'3 7$8O r8r6*8r6*6*r6*f6*frr 7$8 r86*r8r6*8r6*r6*f6*frrO6*f (7 ($(%rO$6*frr($rrffr(;3O$6*fr&ff (7 *$(%r $ 6*frr*$rrffrO(;3^O$6*fr&ff $& O(;3$r&ff$r$($r($fr($rO8fr$%8r O$%f$r8r$%O8fr$% ff $& 8frO(;3&ff$&O $& rO8fr(;3&fOf$&O $& Or8fr (;3 f r O8fr& &r(;3&f(;3&f f f$&O

PAGE 128

$& O(;3&ff$& $& O^$%aO8fr$%! $& O8fr$& $& rO8fr$& $& 8fr$& $& $&r(;3 $ f r& f $& $&r(;3$fr&f $& $&$&r&fr(;3$fr&f $& $&r(;3$fr &f :O ^ (;3$r&ff$r$*$r*$fr*$r8!r$%38r O$%3f$r8r$%O3O8fr$%3ff$&O : $%3f§^O8fr$%3fr$& : : $& 3 O6*-7$8frO(;3OO6*fr&ff(;3&ff Or5$7,2fr$& $&3 7$8fm5$7,2fr$& $&3 7$8fr(;36*r&fr5$7,fr$& $'O $&3$&3f$&$&f $' $&$&f$&$&f $' $&$&f$&$&f $' $&3$&3f$&$&f $' $&$&f$&$&&f $' $&$&f$&$&f $' $'O$'f$'$'f $' $'$'f$&$'f $' $'$'r$' $' $'r$'$'f $'/ $&r$'$&r$'$&f $' $&r$'$&r$'$&3fr$' $' $'r$' $' $'$'r$' $', $'r$2 $' $'$'}$' $' :O:f$&$&f $' +:f$& $& f $' $'$'f^$'$'f $' $'r$'$'f $' ,:$&r$'$&r$'fr$' $' $'$*r$' $' $'$'r$' $( ($rr3r( $r($ 3fr (;3r$ f}&f f $f $ fr(;3r$fr&ffr$O!rrr($r($ff $( rO$fr($m}3r($r($frO(;3Or$fr&ff r$Ofr}r($r($f $( $%$%f(%r^(;3r$r&ff$(;3r$r&ff r$r$r($r($fr$f $( $%$%f(%r($r(;3r$r&ffr$r$r($r($f $(3 *$rr3r*$r*$ 3fr$frf§ (;3r$fr&f ffr r$frr($*$frrfm$frr($*$frrff $( 3 }$fr *$rr 3 r*$r*$frf§ (;3frO$f§fm&fO-r($ *$ -r$Ofrr($ *$frrf*$($ f fr$ffrr *$($frrff

PAGE 129

$(3 $3$%3f(%r$r(;3r$r&fffrOr$r$($*$fr rf r$r$($*$frrff $(3 $3$%3f(%r(;3^r$r&ffr($*$fr$r$ ($*$frrf*$($fr$r$*$($frrff $( ($(%r(;3$Ofr&ff$frr($r($f $( ($(%r(;3$Ofr&ff^$frr($r($f $( (%r$Ofrr$Ofrr($r($fr($$f r(;3$Ofr&f f$Ofrr($r($f($$Ofr&$f O$Ofrrfr(;3$Ofr&f($$frr($rr ^$OfrrrO(;3O$fr&ff^O$frr($r($ff $( $(r$r$(r$'r$(r$'$(r$' $( $($( $( $(r$'$($($(r$'r$(r$'r$(r$' $( ($rr3r($r($3fr$Ofr(;3r$fr&ffr r$Ofrr($*$frrfr$frr($*$frrff $( r$fr($rr3r($rrfr(;3r$fr&f ff r($*$fr$f§ffr r ($*$fr rf *$($fr$f§frr*$($f rrff $(3 *$rr3r*$rr 3fr(;3fr$f§ffr& f f r f f r $ ff$Of^r$Ofrrr*$r*$ff $(3 r$fr*$rr3r*$rrfrO(;3r$fr&ffr$Of Orrr*$r*$f $( $$%f(%r$r(;3r$r&ffrr$r$($*$frrf r$r$^($*$frrff $( $%$%f(%r(;3r$r&ffr($*$fr$r$($*$frr f*$($fr$r$*$($frrff $(3 $%3$%3f(%r(;3r$r&ffrO$$r$r$r*$ r*$ff $(3 $%3$%3f(%r*$rO(;3r$r&ffr$r$r*$r*$f $( *$(%r(;3$f§fr&ff$frr*$r*$f $( *$(%r(;3$fr&ff$frr*$r*$f $( (%r$Ofrr$frr*$r*$fr*$$fr(;3$fr&f f$Ofrr*$r*$f*$$Ofr&$Off§O$Lfrrfr(;3^ $fr&f*$$Ofrr*$rr$Ofrrr^O(;3O$fr&ffO$f rr*$rrff $( $(3$(3 $( $(3$(3$'r$(r$(r$'r$(r$'$(r$' $( $($( $( $($($(r$'r$(r$'r$(r$'$(r$' $( $(3$(3 $( $(3$(3$(r$r$(r$'r$(r$'$(r$' $( $(r$'r$(r$'r$(r$'$(r$' $( $('r(rrr$( $( ^$( 'r'(rrr$( -$( $(3 $(r'(%7r(7r5$7,r'(f$( $( $(3 $( $('r'(rrr$( $( $(&r'(rrr$(f$( $(3 $(r'(%7r(7r5$7,2r(f$( $( $(3 $( $($(f$($(f

PAGE 130

$( $(r$($( $+ $( $+ $( $3 $''(r$'r$($'r$(f $3 $'' '(m^$(r$' $(r$' f $3 $''(r$'r$($'r$(f % )r) % r)}$) % )$r)$ % )$rr$f % ($r($ fr$r($($ % *$r*$ % *$rr$ f % *r* % $+r%r%$+r%r$ % $+r%r%$+r%r($ % %r%r$+$+r%r$ % $+r%%r%$+r%r*$ % $,+r%r)$+r%r$ % $+r%m)$+r%r($ % $+r%r)$+r%r$ % $+r%r)$+r%r*$ % $,+}%r%$+r%}$ % $+r%r%$+r%r($ % $+r%r%$+r%}$ % $+r%r%$+r%r*$ % $+r%r)$$+r%r$ % $+r%r)$$+rr($ % $+r%r)$$+r%r$ % $+r%r)$$+r%r*$ % $+r$+r%r$ % $+m$+}%r$$+r$+r%r($ % $+r$+}%r$$,+r$+r%r$ % $+r$+r%r$$+r$+r%r*$ % $+rrr%r($ % $+r$+r%r($r$f % $+r$+r%r($%r*$f % $+rmr%r$ % $+rrr%r$%}*$f % $+rrr%}*$ % %r% % %r%%r) % %r%%r% % %r%%r)$ % %r) % %r)}% % %r)%r)$ % %r% % %r% % %r)$

PAGE 131

% %r)$ % *r*r$r$r$ f % *r*r$r$r$f % *r*rr$r)r)f % *r*rr$r$r$f % *r*rr$r)$r)$f % *r*rr)r$r)f % r*r*r)r)$ % *r*rr$r)$r)$f % r%%f % r%%f % r%%f % r%%f % r%f % r%%f %O r%%f % r%%f % r^%%f % r%%f % r%%f % r%%f % r%%f % r%%f % r%%f % r%%f % r%%%%f % r%%f % r% % r^%%f % r^%%f % r%%f % r%%f % r%%f % r% % r%%%)r)f % r%%%)r)f % r%%f % r%%%)r)f % r%%%)r)f % r^%%f % r%%%%f % r%%/%%f % r%%%%f % r%%%%f % r%%%%f % r%%%%f % r%%%%f % r%%%%f % r%%%)$r)$f % r%%%)$r)$f % r%%%f

PAGE 132

R 2 R 2 R R R 2 &' R R R 2 &' R &' R &' R &' R &' &' R &' &' &' &' &' R &' R &' R R &' &' &' &' R &( &' &' &' &' &' &' &' &' &' ;n 2222R2228f 2UY ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 ,9 Lf§ Wf§f Wf§ If§ Uf§ f§ ,f§! rf§ 2M 9 2n 9 3 2,9 }f§ Lf§ f§ ,f§ Na f§L N N e! ef Y& R R RR }O 2n 8O [! 2UY + R V& FF 9 2n 9, ;n 2,9 Lf§L R Y2 f§L 2n 9, 3 ,9 !f§r R ,, ,, ,, ,, ,, ,, ,, ,, ,, 2 R R 2 2 2 R R ? 9 ,, ,, ,, ,, ,, f ,, ,, LL ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, f§ mf§ 9 2n 9 S 2,9 ,f§, R ,, ,, ,, f§ f§ rf§r f§ }} N, Nr f§‘ Wf§ f§‘ f§ f§ ff§‘ RR 7O U 7O ,, ,, ,, ,, ,, ,, ,, ,, f f f ff§ 7O 22 7 R ;n 2n 2n R 2n 2n 2n &' RR &' 2n 2n 2n RR f§n f§ RR f§ RR 7O f 7O f 7O f f r 7O 7O &' UU UY UR UY 7O f f f r ‘Wn f f ;n f f ;} f ;n f f f ‘Q ‘ rQ f ‘Q f 7O f rQ f r r r r r 7O 7O r 7O &' P 9 9 9 r f r r f r r f r r r f r r r r r r m r &' ;} P P f§ 7O f§ r r ;} LN r ;} r ‘N r ‘N } 7O W! 7O r 7O &' r 7O r &' P M! P r P [! ;} ;} L L! &' ;} r r ;} f§ ;} }f§ 2 f§ r ,9 7O f§ r LN f§ 7O r rf§ r r r r ,! r r ,} r r &' r &' } P r P r r f§‘ f§ ‘f§ r} f f r ,9 7O f UY r UR r &2 r r A r r r r r r Z ff§‘ f§ f r r ff§‘ ;} f§ ! f§ f§ r 7 r 7O ‘r &' R f ;} r f UY f ,9 3 &' ;n r 7O r ‘Q r 7O 0 3 Q r ; &' r &' Z &' P r 7O f§ ‘Q f§ rQ aQ f§ 7O r ‘Q r r r r Z r ;} r ‘;n 2M r ;n [} ;n r r -! ;! ‘! r 7! r 6n r [! r r [! m r L ,9 UQ UY P ,9 f§ &' r ;} U! 2UY 7O r 3 r X! r ; r 2A r r r O r &' ,9 &' ! r f§ r r &' &' 7O 2f 2UY r P P r UY &' ,9 &' IY P ,9 P ,9 ! &' Z &' Z &' 7O r 7O .f N f !f§ Er &' ; ;n f§f r f 2! 2f ! ! Z 2 f§ r r r r r r r f f§ f f 9 f;n 2n f r P 2&' 2r ‘I f§ ‘f§ r mf§ &' f§f &' &' ff§ &' r r r &' r &' r &' r ,9 r Z Z 2n r r r UR r ,9 2r r r r r r r r r r r &' r f§! 2f§ 8f§ r 2& &' &' 2X! f &' f r ,9 r r ,9 r r &' r &' r &' r &' 2ff§‘ 2r r r r 2A 9, &' ;n r r Z r r f RM f r f§‘ 2f§‘ 2Z 2f§‘ r r f3 r r ‘I ;n 3 RR &' ;n ;! fQ r Q 2r r 2r r r r r S UY f ,9 f ,9 f RR ‘f§ f f r r r ‘I &' [ 3 P f P 3 r r W r f ,9 f r r f r 7O r r r r 0 f ,r f f -! rr f ,9 f ,9 f ,9 f ,9 r r f§ r 7O rQ ;} Z ‘r} f§f 8RM 2n r r r r 2n r r r r r‘} mfr 7O 7 7O !N ;} LN 0 rQ rQ f r f§‘ r f f§f f§} f§ 7O Q ;} LN r 7O 8! r 2&' R 2} 7O Q 7L 7O ‘I P P r 27O Q UR W! W! ! ! W! &' &' ! r [! ‘Q f r r ! f§ 23 ‘f§ f§ r r P P &' &' P P f§ r r f r r fQ UY [! ! ;} r r &' A ‘;n ‘N r r r f§ r‘f§ ff§‘ r r r f fQ X! X! R r r r r r r 22&' r r r r r r r r r r 7O &' R 2222223 6n &2 f r 2n [r ;n ;n ;n ;n r r R Q P r R r R FG ;n rQ 7O 7O 7O &' &' r ;n LN ! ! ! &' Z f Wf§ rQ Z f§ r r f r &' &' P P r r &' A &' ! W! &' &' 7O r ! r Z f§‘ f§ r r &' ‘N &' r r r r &' &' P r 2 &' &' &' N &' r r r ‘N &' Z f f r &' &' &' &' f } r &' r A ;n ;} fN &' RR RR ! f r ‘f§‘ 7O f f f !N r r &' r r r r r &' &' }f§ r &' ! ! r r 7O r r r r r &' &' 7O &' &' &' &' &' r r P ‘N r r r f§ f§ ,} P &' &' &' &' 7O 7O Z r r r r ‘N f§ mf§ rf§ mf§ &' &' r r &' 7O 7O 7O ;} &' ! ! !f§‘ f§ &' P P ! ! ,9 ‘3

PAGE 133

& r$r)$)frrr)$)frrr)$)fr*r*r$r*r*r)$)f & ))$frrr*r*frr & r$r))$frrr^))$frrr))$fr*r*r$r*r*r))$f & r$rrr$rrr$rr & r)$rr & r$r)$rrr)$rr & r*rr & r)$rrr*r*frr & f§} r$r)$rrr)$rrr)$r*r*r$r*r*r)$ $ '(r%r&&r%f&rr&rrf $ '(r&r%%r&f&Orr&rrf $ '(r%r&%r&f&rr&rrf $ '(r&r%%r&f&rr&rrf $ %r&%r&f&rr&rrf $ ^%r&%r&f&r}&rrf $ &r%%r&f&rr&rrf $ &r%%r&f&rr&rrf $ %r&%r&f&rr&rrf $ &r%%r&f&rr&rrf $ %r&%r&f&Orr&rrf $ %r&%r&f&rr&rrf $ &r%%r&f&rr&rrf $ &r% &r%f &rr &rrf $ %r&&r%f&rr&rrf $ &r%%r&f&rr&rrf $ &r%&r%f&rr&rrf $ &r%%r&f&rr&rrf $ &r%& r% f&rr &rrf $ &r%%r&f&rr&rrf $O %& $ r&&r%f&rr&rrf $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ &r%&r%f^&rr&rrf $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ %& $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ & $ O&r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf $ &r%&rf&rr&rrf $ &r%&rf&rr&rrf $ ^&r%&r%f&rr&rrf $ &r%&r%f&rr& rrf $ &r%&r%f&rr&rrf $ %r&&r%f&rr&rrf

PAGE 134

$ &r% & r f&rr&rrf $ %& $ &r%%r&f&rr&rrf $ &r%&r%f&rr&rrf $ %& $ &r%&r%f&rr&rrf $ &r%&r%f&rr&rrf & r$r$8frr$fr$ r$r$r$r$r$r($r$r($rr O 8f rr$r($r$r$fr$r$r$r$r*$($f$r *$($f rrO8fr$r*$($fr$r$fr$r$r$r$r^*$ ($f$r*$($frr8fr$r*$($fr$r$fr$r$r$ r$r*$r$r*$r*$8frr$r*$r$r$f &L $rr$r$8frr$fr$r$r$ r$r)r$r$r)r) O8frr$r)r$r$f & r$r$r$r$r)$)f rr$r)$)frrO8fr)$)f r$r$r$fr$r$r$r$r)$)frr$r)$)frrO8f r$r)$)fr$r$f & $rr$r$8frr$fr$r$r$ r$r)$r$r$r)$ r)$8frr$r)$r$r$f & & &r(;3r$Ofr&f & &r(;3r$Of r& f & &r(;3r$Ofr&f & &r(;3r$Ofr&f & (;36*r&fr& & $ rO8frr$r8r$r$f & O8frr$r$r$r($f8rr$r$r$r$r$r($ r$r($r($f & ,O8frr$r($r$r$f8rr$r$r$r$r$r($ r$r($r($f & O8frr$r$$r*$($ff8rr$r$r$r$r$r*$($f $0*$($frrf & O8fr$r*$($fr$r$f8rr$r$r$r$r$r*$ ($f$r*$($frrf & O8frr$}$$r*$($ff8rr$r$r$r$r$r*$ ($f$r($*$frrf & f8fr$r($ *$fr$r$f8rr$r$r$ r$r$r($*$f $r($*$frrf & 8frr$r$r$r*$f8rr$r$r$r$r$r*$r$ r*$r*$f & O8frr$}*$m$r$f8rr$r$r$r$r$r*$ r$r*$r*$f & $rO8frr$r8r$r$f & O8frr$r$r$r)!8rr$r$r$r$r$r)r$r)r ,)f & O8fr r$r)r$r$f8rr$r$r$r$r$r)r$r )r) f & 8frr$r$$r)$)ff8r^r$r$r$r$r$r)$)f $r)$)frr f & 8fr$r)$)fr$r$f8rr$r$r$r$r$r)$)f $ r)$)fr rf

PAGE 135

V2 n‘ X OO r f Y7 OO OO fUS 0 r r 8/ // W r r r r [ r r P UR LQ JR J n}f r r f f m r / J f f &2 RR r r W r r r r 2n RR r r P P Y2 Q J J A r f f r VI f f f f§f J VW r r f§f Z UR A r L ‘f§m // r &2 // r 32 r Q 8 LQ n6f f§r r r J HJ HJ A f r m IW &2 UJ r f S[ IW IW r P f f UJ W f f§} J UJ f S + OO L If§ /8 8// r r r r r Sf§ r IW f 2n // f ‘R 2 R f R R f QM &2 f§ UJ J J r HJ Z f§f UJ f§ r f§; Z 1 ZL A r 2n f§r f§ r f f§r r f§} f§b IW f HJ &2 HJ f f + W HJ f f§ f HJ UJ f§ 2r F r UJ UJ F r Uf§ & rf§ IW r // }: IW r f f§ // F r 8/8 IW // r r f§r r f§r Uf§J r r r r ,' ? // f§} // Ua // ‘f§‘ f§n f r /8 IW r 9 2 f 1 // f§ // I?M f f f 2 f f V UJ f IW f§ UJ UJ f f§ UJ mf§ UJ UJ f 1 !V J! f // f // 9 f S} f LQ mf§r mf§‘ V ; f§A V Zr ‘J ; JJ + Uf§J J UJ + 4B F V IW r ‘9 ‘f§U r ‘f§ r ‘f§‘ // ; R U U ,, 2n ,, &2 ,, ,, r LL r /8 4 R D D ,, ,, ,, LQ P R U2 ; FR 2n ,, R ,, Q ,, Q ,, LW ,, ,, S UJ P [ [ U [ // [ VW Sf§ UJ P !6 LQ D U 2n S rf§ fPPW R r R D D D 4 D 4 D D Uf§, Uf§ + ; UJ ; UJ ; UJ RR r r f§} UJ ; f§f F R r f}} f r ; r r [ r LaJ fD n/O f§‘ ff§m ; f f§ f L f§n r r r LJ UJ r f ; W r r HJ 4 D r r r f f§ // ; ; r r‘r ; UJ UJ V2 f r UJ ; r V2 UJ r‘r r r /8 f§ Z f r f§ f ; UJ ; m! rJ JR rf f R If§ R f f f§ D UJ f§ }f§J Ff§ UJ ; ; r ; fI f§f I P f f r Z S[ f JR Y2 r UJ m‘ f§‘ ; f§ HJ rJ r f f // f§ 4 ; UJ /8 r f§ UJ UJ ; LQ f f r f r // f 2 ‘J r UJ r UJ UJ ; UJ f§ UJ ; UJ ; f§‘ 2 r f r f§ ; J r HJ f r UJ r f ; JR P r U ; ; U S f f§ LQ f§ ; r f ff§! UJ UJ UJ S RR mf§ Sf§ r IW UJ ‘ UJ J f W D ; r r UJ f§L r rf§f UJ f LQ f§ UJ 9} UJ r f§ D UJ ; 2n RQ r r f r f§ ; ? ; ; JR f r Sf§ ; F f ;3 D R UJ ; Z SA Sf§ IW U J UJ f HJ 4 f§ // UJ SA ; P f r f§b f§+ f§ A UJ r r IW + X Sf§ U r f f f / ; f§n r f§ ‘Q Z f§ f§r S f§f S LJ f r f ; f J UJ // L r + f§; f UJ WJ ; &2 JR r f§} f r f§ f§ 8f§; UJ Ua ; f r R UJ } r A f // Z R R UJ 8 f f§ Jf§‘ ‘f§ ff§ f f§ r UJ P UJ UJ D &O &/ ; UJ R f f 2 ff§ UJ r f§ ; ; ; f D HJ & // UJ ; UJ r ,' UJ f V Z Z r B S r f UJ ; r UJ f ; ; f ; FQ ; R f r }‘n UJ r f r IW f r Ff§ f f UJ f f U ; ; UJ ‘f§ // r Sf a ‘f§r r UJ f f‘ &0 f§} f§ UJ D ; f§ // // W Z ]! f§‘ + ,3A ; ; f§ f§ Z Sf§ P r r // r IW r ; r UJ f§; 4 HJ UJ // f f ‘Jr f§ f f UJ f r R r r f§ f f f // Jf§ UJ UJ f f§J r UJ r r L & // W HJ UJ UJ 2 f§ f§} Jb JI f§ r ; r ; f§ f§U Wf§J f§ ; ; [ 2 UJ =f f§U f 6 r F fJJ f r f ; UJ /8 m // LQ 2 2n UJ I FQ D r‘ f + f IJ r LQ LQ f§ LQ UJ UJ UJ f§ D f f O UJ R F F r f f f ’ Sf§ UJ ,, ,, ,, LL ,, ,, ,, ,, ,, ,, r ; f LL OL f f OL ,, ,, OL ,, ,W LL ,, ,, JI LQ !2 Q &2 2n 2 Ff§ UJ SH! UJ D Uf§ S 17 LQ Sf§ UJ Q ; r 2n 2 JR S UJ P J + rf§ UA U JL UM I0 UJ UJ r ‘f§ f§‘ UJ UJ ;A f§r UJ UJ UJ UJ FQ P UR P P D D r f§f IW ; ’ IW D D D U+ UJ P LQ S UJ U+

PAGE 136

P P P P P P P P P P P P P P P P P P R D R F &' &' &' &' &' &' &' &' &' &' 2 &' &' &' &' &' &' &' &' &' &' &' &' &' &' &' &' }f§ Af§ }f§r + rr !f§r f§ K f§ Y2 !L 2n 8O A 2KR rf§ 2n 2n 2n 2n 2n 2n 2n 2n 8 RQ RQ RQ RQ 8 RQ RQ 8 RQ 3 3 3 3 3 3 3 3 3 3 2222RR !L 2n 8 S 2KR !r R ,, ,, + ,, Q LL ,, + Q 2n 8 S 2KR R Y2 R 2n 8 S 2KR f§f R Y2 & !2n RQ 3 2KR }f§ 2 &' 2n XL LL LL ,, LL LL ,, Q Q Q KR L KR L O f§f L ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, LL LL ,, LL LL LL Q LL ,, ,, ,, ,, Q ,, ,, ,, ,, ,, ,, Q ,, ,, ,, 3 L S L S S L S 3 f KR f UR 3 7O 3n 7O R &' &' &' &' &' &' &' &' &' &' &' &' &' &' R f 3 f S f S f 3 f f r f r f f f R D R R &' &' &' R &' &' R &' &' D R 222KR 2KR 1+ RQ 8O RQ RQ 9222!f§f r f r f r f r f r r r A r r P 7O 22KR KR KR 8 ?S 3 3 S 3 3 S S FR K 2Y2 2Y2 8 RR 2n f§922f r r r r ! 3n KR 7O r 7O R !R F[! f§ 2 Y2 &' 3 KR R r r r r r f f f§ K L} ;} RR L! 2n 9r 8! ,f§r ,} KR r &' L L r r r r &' &' &' &' &' &' &' &' R &' &' &' &' &' &' &' S r 1f }r R }e! r r rf§ r rf§ r r r r & R R R R &' R R &' &' &' &' &' R &' 3 222QR 222RQ 8 RQ RQ RQ 22F r 2r }f§r r r r ;} [! rf§ ‘rf§ r &' 2&' 8 2O 8 9RL 8O 8L RQ RQ ?-? 3 3 3 S 3 2n 22 2D 2!3 R 2KR S 1r r r ! r r r f f 3f§ X r r 2n 8 S 2R 2n 8 S 9} 2n 2n 2n 2n 2n L KR P r Wr r r r rfr r f§ A f f r &' r r r r r r r r r r &' &' &' &' &' &' &' &' f ; r mr r f§ fr rQ 7O 7O ! ‘rf§ F D &' &' &' &' R &' &' &' &' &' &' &' &' 28 RQ 18 RQ 22r & 7 7O f§r 7O 7O 7O :f r 3n KR f§ }f§r r f§ 3 S 3 3 3 23 3 3 R S R 2 KR 3 1R 7O rQ P P P A r Z Sm r f Y2 Q2 Y2 Y2 Y2 8O 8 8 RQ RQ 3 Y2 Y2 &' f! r r r r r r r r 2 &' &' P ! 7O A 7O r f KR r L r A r r A R R R &' &' &' &' &' KR KR P R ,} ,} W! 7O L 7O r 7O D R R &' &' 1r ? ? ? &' &' D &' &' S QR O?RQ KR 1KR Kf f P : rf§f L : L ! Q r 2n 2n 2n 8 DL R &' &' &' &' RQ 8 22RQ R R RR R 2 2 2 r r ! ! ! r KR Kf§ R !R RF S 3 3 3 3 }f§ 2 Y2 V2 V& F R L ! M ,} 92n 2! r KR r 2r r r r r 2n 2n 2n 2n 2n : Z Z : fZ r : ! V2 }f§ r RR r r 3 7O r r R ’ Q &' &' 9 ? &' + r 2 r f§ f§r 7O r r 7O 2S KR KR KR I?KR &' &' &' &' &' 2.n r KR f§ r 7O 7O 7O ,} 7O 7O r f f§r r Sf§r Sf§f f§r 98 DL 98 r 3 r 7O 7O L L r ;r L 7O 3n rr Z! Z Z Z Z KR 0 KR KR KR r 7O L 7O P P P r r f 7O !! ? V ? rQ ‘Q R P ! KR r KR r r R R R &' &' 7O 2 &' L} Z Z L KR r 3f§r 7O &' KR KR KR KR KR L ! R ,} r Z r r [! Q r ,} r R R R R R P r Z r r r r S 7O r &' P r Z r r 1! r KR Kr 2&' A r KR r KR L 7O r r 3n r f§ 1f r 1! ! 7O &' f r r 1! 22 2n 8 r K2 r K} ;} r !M r r 3a 7O KR }f§r R Y2 f§r A f§r f r ,! 1Af§ r r 7O 7O 7O r &' Kfr r +r 7O L L 7O r S r 7O 7O P P P &' r RM Q rf§ P ! r r f§ r 7O &' &' :r Z Z &' 7O R ! Z r 7O &' : : &' L Z r P Z ! P f§ UR RR

PAGE 137

2n &1 f§} f§ m f§m /8 R FG /8 /8 /8 &' FG /8 /8 f§ // f§} X f§} // // f§ ; // // // FG &' U X // // 8 &0 ; ‘rf§n /8 // fPr} // f§ D f§f R &0 IW f§r r r f§ r f§ r 8/ // ,/ // ; r r LQ U r 2n r r 2 r f§ X f§ // f§ // // + ; f§ r Uf§W 0 FR Uf§W 2 &0 P &0 U r Z r r r U+ }‘} U+ I &0 /8 &0 &0 R & r DR r // 2 r &0 r // r ,' r /8 r &' &2 U &2 2n r // f§&2 r // f§ r r &' &0 &0 &0 &0 r &0 &0 O FR r &2 FR LQ r r W f§ &/ r r &0 r &0 r &0 &0 P r &0 r &0 &0 2n X f // 2n 8D D f§ r r r r r r &0 r r r r &0 r // &0 &0 r 8 &0 &0 r 8R &' R &0 &' f§ r r‘ r Ur r r r f§‘ r r Ur r r &0 r &0 r F LQ r r &0 r &0 r D D r W f§‘ r FR &' r ‘f§‘ W ‘f§‘ f r f§‘ f r &2 &0 A r r r r FR r A ,L r f r rf§ R O r W /8 &' &' &0 f /8 8&0 f &2 f§ r f§ r &0 &2 f§ r f§} r &0 f A ,' Q &2 &0 f &0 /8 FG &' &0 8/8 &0 r // // }} &0 r // f§ // f§ &0 r &' &2 r + &2 &0 r W L &0 f r // // &0 r // A // &0 F 8r f§} &2 r // // W // r &0 D R W 2 &0 &0 f r &0 &0 f r m r r 8&' LQ U+ f§ &2 f§n // f§‘ // m‘} // r r ‘r FG &' r r &0 // r // r r &0 // // r 8 R m r r &' LQ FR r m 2n r f§r r f§ r !f§} r r nf§ r m‘} r /Ln // : // r // Z // 0 // r // 8D r FR f§ r R r FR r 2 r /8 LQ } &' IW // r r f§ // m r // r A fr // m r r /8 R &/ r // m // m R LQ U+ U &0 2n r /8 &0 &0 2 r &' OLn r U} r 2n r r // // r U+ r &2 + A // 2 r D r // U+ r 2n IW UO + FR r U &0 &0 2n r IW // FR 2 &2 DF 2 r r // 2 &0 2n f§ D L r f 2n &' &0 &0 O &0 DR &0 r FR FR LQ r e f§f RR 2 L &2 r f // &0 8 U r O &0 ‘f§n &0 &2 If§ f§‘ n f§} &2 LQ & f r &' &2 f &0 r mf§U f§L r &0 f§ mmr r r FR f§} F r &2 f§m r r /8 r &' &0 r /8 [ &' FG r r /8 8f r r IW // f§ // f§} r r r r 8 ,/ D f f r f r 8f§ r r r R // &0 r // /8 FG FG f f /8 /8 f f r // // n f f f r X // &0 f &0 r f§ // &2 W f§ r r // m r L &0 r W &0 f m &0 &0 VI f§! r &0 m f W r 8 // W // R R L R // // r // ,/ fg r r r // r r &0 &0 U+ nf§‘ // ‘f§‘ // f§r // /8 m D ,' &' // f§ // // r // // f§r 8/ // r ,/ m &0 Uf§W f FR m r ff§ r f§ r f§U r r /8 r Z f§ r &' r IW // r Z r f§ r r // r r // r r f§‘ r // r Uf§W f f§ Uf§W &0 r // r r r &0 &2 r } 2n r & r r W r m, r / r r r r m r r m r m r r r r Z I8 r f§ r f f &0 f ,1 r r + 2 r r r r r r r IW m r r r r r r r f r r ff§ &/ r W &0 &0 &0 f r r &0 &0 r r R r DR r m Uf§ r n2 r &2 r f LQ r f LQ r 2 A &0 r r &' D D D Uf§ &0 // W[ r r IW U+ 0 U+ FR r &0 P &0 LQ &0 U &0 2n FR &0 &2 &2 2 ‘ n2 FR UR f§ 2n R &' f§} 0 Z} Z + f‘+ F r ff§ m &0 m &0 & &0 &0 r &2 &2 &2 f§‘ &2 F r r r r r r r r r r r // r r r ‘} r r r r r r r r r r r r r r Qr r f r f r &' &' &' 2 &' &' &' &' r f r f r f r U+ f r f r r f r 2 f r f r f r V7 f r &2 f r f r f r r &0 &0 f &0 f r r r r r r r &0 f f f f &0 &2 f f ‘r f RR UR RR r f 0 f U f &2 &2 f ,I f f &2 f &0 &0 f f f f f &0 U+ L L L FR RR ‘FR U f RR W FR r LL f§! ff§ UPr fA 0 &0 &0 f§ 0 &0 &0 &0 Z Z LL ,, LL ,, LW ,, ,, ,, LL ,, LL ,, ,, ,, LL ,, + ,, ,, 0 ,, ,, LL ,, ,, ,, ,, ,, ,, ,, ,, D ,, ,, ,, ,, ,W ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, + 2n 2 m‘+ &0 FR LQ R I 2n R &0 FR A LQ U RF R } &0 &2 Yn LQ R RR 2n 2 R + ,1, &2 LQ R Ua &2 2n 2 f§ &0 UR LQ 0 K *2 U+ FP &0 &0 &0 &0 I0 &0 &0 &0 &0 &2 I &2 FR P &2 FR 32 2O &2 f f /M f LQ LQ LQ WQ LQ LQ LQ WQ LQ LQ LQ Q2 0 0 0 0 0 0 0 Q2 /8 /8 /8 /8 /8 8/8 8/8 /8 /8 8/8 /8 /8 888/8 /8 /8 8/8 ,8 ,8 8888888888888888/8 8‘;, /8 8/8 /8 X 88-

PAGE 138

P P P P P P P P P P P P P ,; P P P P P P P P P P P P P P !f§ r} rf§ }f§ 3f§ }f§ Af§ Of} 3r 3r 3ffr r Wf§r 3f§ 3r V V2 !F Y& Y2 Ye! L2 + +r + f§ }f§r 3f§ R R R R 2 R R R R R &' aM 2n 8O 2UR Kr m 2n 2, 2UR R n2 R 2n 2 3 2UR Sf§r R ,, LL LL ,, LL ,, ,, LO LL ,, ,, Q ,, + ,, LL + Q ,, ,, LL ,, ,, ,, Q Q ,, ,, UR UR UR UR 0 UR UR UR mf§ f§r UR UR 0 UR I2 UR UR UR UR 0 2UR UR UR UR 2! ,} 2;L r r ;L +L r [m r F 2 r r 3m r r r r r ; +L +L ;W r +L L! L! ! ! r r !f§m W} t f W! L} } L} ! ! e} L! W} M! ;L +L ;, ;L +L ;, ;, f§ 2 r r r In r r 3n [W +L A r r r r m ! ! ! ! r ! 2, W! } 0 ! ;! W! ! L! 3 222UR UR UR UR UR f f 3a ‘Wn r r ‘3n ‘R 2n ) 222222f + UY R *2 YeO 2n r 36RR 2 2n 3 L! 8R f§r 2n S 8O ;, L fI M! f L &' UR L?M UR UR Z f§ 1f I2 UR 1f 1! ! ! ! 0 UR ;, f f f f &' UYM &' L ;} f f f f f )n )! Sn )n 2222f f &' +L r ‘+ 2n W! r r r r r 21! 2 &' 2n r ;L 7O &' &' ‘I +L Q R : W! ! r r r [W r r r ;, t UR ;L 2! P mf} P r r r ‘3 ‘In : fn )n 22f f§ r r 7! 2 P P ; r R HQ ; ; ; 7, ; 7, ; ; 8O r +L ! -! Z ! R r r ;, A ,} ,} ! } L} e} ,} +H m UR ; UR UR r +L Z 7, 7, 7, ; fA‘ L ; 7O rf§r P r r ! a W} ; ; ; ; 7, ; 7, ; L UR Wr UR L! L L Z 2O Lf§r + f f ; ; f f W ‘)n )n Sn +L ;L r ;} f f f f ! W} +H r r r 22! t e! S} 8O &2 f)n WV f3n +L +L r r 0 22 f§ &' &' R JG r Z ;} +! +L ;, r r &' &' &' &' &' R &' r r +H &' &' &' &' P P ; P P P P P P P ,; P P P P ; ,; P P UU P P Y2 FR FR RR RR &' &' RR RR &' VL nM 2n R !ef &' a 2n 2O 3 2,2 &r R !R RR 2n 8O Sn 2UR K R ,, ,, Q aR ,, ,, ,, Q LL LL LL ,, ,, ,, ,, LL ,, ,, ,, LL LO ,, ,, UR ,2 UR ,, UR UR ,2 UR UR UR ,2 UR UR UR 1M UR UR UR UR UR }f§ r r f ;L A +L ;L ;L ;L ;, r A r ;, r r r ;L ;L f f f 6} ,! e} +L ! f! ! ! ! W} ! ! ! ;L +L ;L r ;L [W ;, m r +L +L +f§ ;L Y2 ;, ;W r ;, W! ! r ! ! ! e} }f§ r +L ! Z UR UR UR UR .r .r }f§ +L -! f§ RR 8O 2n ;L ;L r R UR 2,2 R R &' 8O 2n 26} UR 2 O L ! O O Ef§ L r L r L L f§r mf§ 7! 2+L UR UR f§} ! }f§fr mf§ ; ; ; 8O UR f f ; !f§ 7O ; }f§r 7O ; Y2 ;, r ! ; Sn +L ‘+ Y2 1O 8O 2&' ;, P f§r P S 2+L ;L P P +H L ;L ;, L ;L &' +L ! ; ; +L ;, rf§‘ V! L! &' rfr &' ,; f§r P rrrf rfrb 7O Z Z ; ; ,2 &' r r ; } 7O ; M! ; : ; r L r P r P ! ! Z ! Z ! ;, &' ! ! UR ,2 +L r r L +L ;L 2 f§ R Z ! P 2UR &' &' P P Oar ,} R 2+L UR } K } !f§ L! L! UR W! ! +L +L &' R &' Z 2n :L O ,} -! RR 8O 2n &' &' +L L L L L L -! L2 + r ;, r ;L ;} r &' ! L} ,! ! ! }f§ +L R &' &' &' &' &' &' !f§ UR }f§f Sf§ !f§ Kf U rf§ UR &' [L r +L +L r Y2 R &' 8O 2n 2! r ;, ;L &' &' &' &' &' ;, +L +L ;L ;L +L ;, +L &' &' &' ;, &' &' &' &' &' &' &' &' ;, r &' r ;L } + ‘+ ;L +L ;W &' &' &' &' &' &' &' &' &' &' /2 2

PAGE 139

( $&3r$f$'3r*$fr$+ ( $'3rO$f $&3 r*$fr$+ '% (;3r$f r '& (;3r$r&f ') (;3rr$fr&f (; 3 r$fr&f '' '* '( '* *O '%$Of '%) $f r'%r)$)`rrO)$)frrf '%r))$f)$)ff r'%frO)$)fO)$)ff '%)$ '&$ '&) $r'&0O)$)frr)$)frrf r'&rO))$ f O )$)ff ''rO($rrLr)($frrfrr$Ofr^Of ''rOr)($f($f r$fr''frO($rrOr)($frrf ''rOr)($fO($f ''rr$frO*$rrOr)*$frrf ''rfffr)f§*$fff*$f ''rr$frL*$rrOr)*$frrf ''rOr)*$fO*$f ''rr$ffO))$($fr}O))$($frrf ''rO))$($fO)$)($ff rr$Ofr))$($frrO))$($frrf ''r O))$($fO&)$)($ff ''rr$Ofr ))$ *$frr) )$*$frrf &'rO))$*$fO)$)*$ff ''rr$fr))$*$frr))$*$frrf ''r^))$*$fO^ )$) *$ff r'&fr))$f O^)$)ff '&)$ ''rr$fr)$)($frr^)$)($frrf ''rO)$)($fO)$)($f f *L ''rr$fr)$)($frr)$)($frrf ''rO)$)($fO)$)($ff ''rr$fr)$)*$frr)$)*$frrf ''rO)$)*$fO)$)*$ff fr$fr''r^fAO)$)*$frrO)$)*$frrf ''r^O)$)($fO)$)($ff ''rr$frO($rrOr)$($frrf ''r^Or)$($-($f ''rr$fr)$rrr)$($frrf ''rO})$($fO($f *O r$Ofr''rff*$r rf§ffr) $*$fr rf ''rOr)$*$  *$f ''rr$fr*$rr r)$ *$frrf

PAGE 140

* ''r r)$ *$ *$f r'(r($Or) ($fr)($ff *3 r$fr'(rr)($frrr)($frr f (rO)$)($fO)$a)($fO))$($fO))$($f` r$Lfr'(fr))$($frr))$($frrO)$) ($frrO)$)($frrf ')rO($L)aO)($ff r$fr')rO)($frrO)rrOr$Ofrr OO($rrf ')fr^O($O)O)($ff r$`r')}^O)rrO)($frrOr$Ofrr ($rrf ')rOr)($*$f*$($f m)*$ ($f ($*$ff r $fr')r*$($f}r )($*$ f rr($*$f rrr)($*$frrf ')rOr)($*$fO*$($fOr)*$($fO($*$ff fr$fr')r*$($f}r)($*$frr^($ *$frrOr)($*$f}rf ')rO)$)fO^)$)r($fO))$fO,)$)r($ff fr$f}')rO))$r($}rrO))$frrO)$) r($frr)$)frrf ')rO^)$) r($f)$) f)$) r($ f )$)ff fr$fr')r))$frra))$r($frra)$)frr )$)r($frrf ')rO)$)($*$ )$)*$ ($f)$)*$ ($f )$)($*$ff fr$Ofr')r^)$)($*$frr)$) *$($frr ))$($*$frr)$)($*$frrf ')rO)$)($*$fO)$)*$($f&)$)*$($f )$)($*$ff fr$O`r')r)$)($*$frr)$)*$($frr )$)*$($frrO)$)($*$frrf r$fr'(rr)($frr^r)($frr)rrf '(frr) ($f fr)($f f r$Ofr^ f§'(fr)$f§)($fr rf§)$ ) ($frr )$)($frrf§O))$($frrf '(frf) )$ ($f f)$ )($ff)$)($f f§ f)$)f§ ($ff r$fr')rO($rrOr$OfrrO O)($frrO)rrf ')r))($fr($f r$Ofr')r($rrr$frr O)($frrO)rrf ')rO)($fO)O($f r$fr')rO($*$frrOr)*$($frrO*$ ($fr r f§ffr)f§ ($f§*$frrf ')rr)($*$fO^($*$f&r)($*$f*$($ff r$Ofr')r($*$frrm)*$($frrO^*$ O($frrOr)($*$frrf ')rO^r)($*$fOO($*$fOr)($*$f*$($ff fr $fr')r)$)r($frrO)$)frr O)$)frr

PAGE 141

)$ )f§r($fr rf ')r O )$)fO)$)r($f)$)r($f)$)ff r$fr')r)$)frrO)$)r($frr)$) r($frr)$)frrf ')rO)$)r($fO)$)f)$)f)$)r($ff r$Ofr')r)$)*$($frr^)$)*$($frr )$)*$($frr)$)($*$frrf ')rO)$)($*$fO)$)*$($f)$)*$($f )$)*$($ff r$fr')r^)$)*$($frr)$)*$($frr )$)*$($frr)$)($*$frrf ')rO)$)($*$fO)$)*$($f)$)*$($f )$)*$($ff '(rO*$Or)*$fOr)*$ff r$fr ( rr) *$frrr)*$frrf '(rO)$)*$fO)$)*$fO))$*$fO))$*$ff '(rr$fr))$*$frr))$*$frr )$)*$frr O)$) *$frrf ')rOr)($*$f*$($fr)($*$f($*$ff ^r$fr')r*$($frrr)($*$frr($ *$frrr)*$($frrf ')rr)*$($fO*$($fOr)($*$fO*$($ff r$fr')rO*$($frrOr)($*$frrO*$ ($frrr)*$($frrf ')rO*$O)O)*$ff fr$fr')rO)*$frrO)rrOr$Of OrrO*$rrf ')rO*$O)O)($ff r$Lfr')r)rr)*$frrr$frr OO*$rrf ')rO)$($)*$fO)$)($*$f)$)($*$f )$)*$($ff r $fr')})$ )($*$frr )$)($ *$frr )*$)$($frr )$)($*$frrf ')rO)$)($*$-O)$)($*$f)$)($*$f )$)*$ ($ff r$fr')r)$)($*$frr)$)($*$frm .))$($*$frr)$)($*$frrf ')r)$)fO)$)r*$f))$f))$r*$ff *L r$Ofr')r,) )$f§r*$frr) )$frra) $) r*$frr)$)frrf r$fr')r))$frr))$r*$frr)$ )frr)$)r*$frrf ')r)$)r*$fO)$)f)$)r*$f)$)ff r$fr'(rr)*$frrr)*$frr)rrf '(rLr)*$fr)*$ff r$frf§'(fr)$)*$frr)$)*$frr) ,)$*$frrO))$*$frrf *O '(rO))$*$fO)$)*$fO)$)*$fO^)$)*$ff r$fr')r($*$frrr)($*$frr*$($f OrrOr)($*$frrf

PAGE 142

* ')rr)($*$f ($ *$f r)($*$f ^($ *$f f r$f f r')r($*$frrOr) ($*$frr($ *$frr^r)*$($frrf ')rr)($*$f*$($fr)*$($fa($ ,*$f f r$fr')r^*$rr ^r$frr)*$f OrrO)rrf *8 ')r^ )  )*$*$f r$fr')rO*$rrLr$frrO)*$ frrO)rrf *OW ')rO^)*$  )*$f r$Ofr')r)$)($*$frrO)$)($*$frr )$)($*$frr)$)($*$frrf ')r)$)*$($ff)$)($f§*$ff)$)($*$f )$)($*$ff r$fr')r)$)($*$frr)$)($*$frr )$)($*$frr)$)*$($frrf ')r )$ ) ($*$ fO)$) ($*$f O)$) ($*$f )$)($*$ff r$fr')r^ )$)r*$frr)$ )frr )$)frr)$)r*$frrf ')r)$)fO )$)r*$f ^)$ )r*$f)$)ff r$fr')r)$)frr)$)r*$frr)$) r*$frr)$)frrf ')r)$)r*$fO)$)f)$)f)$)r*$ff ')r$f ')rO($Or)r($fOr)r($ff r$fr')rO($rrOr)r($frrO r)r($frrf ')r*$($fOr)*$($fOr)*$($ff r$fr')r*$($frrr)*$($frr r)*$($frrf ')r($*$fOr)($*$fr)($*$ff r$fr')rO($*$frrOr)($*$frr r)($*$frrf ')rO*$Or)r*$fOr)r*$ff r$fr')r*$rr^r)r*$frr r)r*$frrf )r^')f ')r$Of ')rf^)$)f)$fr )f^rfr$ffr r)$fr)frrff r$fr')r)$)frrrr$frr)$r)f rrff ')rO)$)fO)$)fOr))$ff r$fr')r^)$)frrr))$frr)$ )fr r f ')rO)$Or)r)$fOr)r)$ff r$frO)$rrOr) r)$frrOr) r)$ f rr f (;3r$fr&f f§ f$Of

PAGE 143

* (;3r$r&ff $ (;3r$r&fr&$O$rrfO$rr$r&r(;3r$r&f )rrO)rrr(;3r$r&fOf ( ; 3 r$6*fr&ffr$ 6*f '*r($Or)($fOr)($ff r$fr'*r r) ($frrr)($frr($rrf '*r*$ r)*$ f^r) *$ff '*rOr)*$frrOr)*$frr*$rrf rr$f ')) r$fr')rOr)r($frrOr)r($frrf ')rO)($fO)($ff r$fr')r ^ r)*$ ($ f rrr)*$($frrf ')rr)*$($fr)*$($ff r$fr')rm)*$($frrr)*$($frrf ')rr)*$($fr)($*$ff r$fr')r^ )*$frr)*$frrf *O ')rO)*$f)*$ff ')r$Of ')) r$fr')r rr$ frr)$r)frrf )$)frrf ')r )$)fOrr$frr)$r)frrfr )$r)ff r$fr')r&O)$)frr)$r)frrf ')r)$r)f)$)ff r$fr')rOr)$r)frrOr)$r)frrf ')rr)r)$fO)$)ff (;3r$fr&ff) ^O(;3r$r&ff) &r(;3r$r&f)$)rrr(;3r$r&faf (;3r$6*fr&ff) fr$f§ffr'*fr r)($frrf§f r) ($frrf '*rOr)($f r)($ff r$fr'*rOr)*$frrOr)*$!rrf '*r^Or)*$fr)*$ff r$fr2)rO))$frrO))$frrf )rO)$)r($f)$)r($f)$)r($f )$)r($ff r$fr')r)$)r($frr)$)r($frr )$)r($frrO)$)r($frrf ')r)$)*$($f^)$)*$($f^)$)*$($f )$)*$($ff r$Ofr')r)$)*$($frr)$)*$($frr )$) *$($frr)$ )*$ ($frrf ')r)$)*$($fO^)$)*$($f)$)*$($f )$)*$($ff r$f§fr')rO)$)*$($frr)$)*$($frr )$ )*$ ($fr r)$ )($*$frrf )r)$)r*$fO)$)r*$f)$)r*$f )$)}*$ff r$fr')rO)$)r*$frr)$)r*$frr

PAGE 144

)$)r*$frrO)$)r*$frrf ')rO))$fO))$fOr))$fr))$fr r$frrr))$frrff r$fr')r^r))$frr rr$frrf r))$frra))$frrO ) )$frrf ')r )$)fO)$O)f r$frO)$)frrr$f§frr)$rr OaO)rrf ')rO)$O)O)$)ff r$fr')r )$rr)rrOr$frr OO)$)frrf ') r rOr)$)fO)$)fOr)$)fO)$)ff r$fr')rr)$a)frr)$)frr^r)$ )frr)$)frrf $ffr(;3r$fr&ffr)$)frr)$)frrf $r(;3r$r&ffr^O)$)frrO)$)frrf $r&r(;3r$r&f)$)frr$r&r(;3r$r&fO)$)frr )$)frr)$)frrfr(;3r$r&ff r$6*fr(;3r$6*fr&fOfr)$)frr)$)f rrf '*r)$ ) ($f O^)$)($f)$) ($f ^)$)($f f r$frf§ '*fr)$) ($frr)$)($frr )$)($frr^)$)($frrf '*rr$fr^)$)($frr)$)*$frr )$ )*$frr)$)*$fr r f '*rO)$)*$f^)$)*$f)$)*$f)$)*$ff )r))$- )$)ff r$fr')r)$)r($frr)$)r($frr )$)r($frrO)$)r($frrf O ')r)$) r($f O) )$f§r($f)$) r($f )$)r($ff r$fr')r^)$)*$($frr)$)*$($frr )$)*$ ($rr)$) *$($frrf ')r^L^)$ ) *$($ OO)$ )*$($f)$) *$($f )$)*$($ff r$fr')r^)$)f§*$f§($frr)$)*$($frr )$)*$($frr^)$)*$($frrf ')r)$)*$($fO))$*$($fOW)$)*$($f )$)*$($ff r$fr')r)$)r*$frr)$)r*$frr )$)r*$frr)$)r*$frrf ')r)$)r*$fO))$r*$f)$)r*$f )$)r*$ff r$fr')r)$)frr)$r)frr)$r)f Orrrfr$f§ffrrff)$)frrf )rO)$r)f)$)f)$)f)$r)f )$r)frrrr$frrff r$fr')r)rrO)$rrOr$Ofrr )$)frrf *L ')rO)$O)O)$)f f r$fr')rr$OfrrO)$)frrO

PAGE 145

O)rrO)$rrf ')r ) )$-)$ )f r$Lfr')r)$)frrr)$)frr )$)frr fr)$)fr rf ')rOr)$)fO)$)fO^r)$)f^)$)ff O(;3r$Ofr&fr^))$f)$)ff O(;3r$r&ffr))$f^)$)ff &r(;3r$r&fr)$) -OO)$ )ff (;3r$r&ff r)$)frr)$)frrf (;3r$6*fr&ffr^O))$fO^)$)ff r$fr'*rO)$)($f rr)$) ($frr )$)($frr)$)($frrf *rf)$)($ff))$f§($ff§Of)$)($ff§f)$)($ff r$fr'*rO)$)*$frr)$)*$frrO^)$) *$frram)$)*$frrf '*rf)$)*$fO^))$*$fO)$)*$fO)$)*$ff '*rr$fr^)$($)frr)$($)frr O)$ ) ($frrOW )$ ($)fr r f '(rOr)$($fOr)$($ -($f '(rr$fr^^r)$($frrr)$($frrf ')rO)$)r($f)$)f)$)f)$)r($ff r$fr')r )$ )r($frr )$)frr ^)$)frrO)$)r($frrf ')r)$)fO^)$f§)r($f)$)r($fO)$)ff r$fr')r)$)frr)$)r($frr )$)r($frr)$)frrf ')r)$)($*$fO)$)($*$f)$)($*$f OO)$)($*$ff r$fr')r^)$)($*$frr)$)($*$frr )$)($*$frr,)$)($*$frrf ')rf)$)( $ *$ff)$)($*$f)$) ($*$f OO)$)($*$ff fr$ffr')r)$ )($*$frr )$)($*$frr )$)($*$frr)$)($*$frrf ')rf)$f§($fO)$O($f r$fr')r^r$frr)$($frr OO)$rrO($rrf ')rO)$O($O)$($ff r$fr')r)$rr($rrOr$frr OO)$($frrf ')rr)$($*$f*$($fr)$($*$f ($*$ff fr$f§fffr') rr)$($*$frr*$($frr r)$($*$frr($*$frrf *O ')frf^fr )$f§ ($ *$f f*$ ($f f§ ffr )$ ( $*$f ($*$ff r$frr)$($*$frr*$($frrr)$ ($*$frr($*$frrf r') '(rO)$) ($f )$ ($)f )$ )($ f )$)($ff r$Ofr($rrOr)$($frrOr)$($frrfr'( '(rr)$($f r)$($ff

PAGE 146

* r$fr') r)$)r($frr)$)frr ^)$)frr)$)r($frrf ')r^O)$)-O)$) r($f )$)r($f ^)$)ff r$fr')r^)$)frr)$)r($frr )$)r($frr)$ ) !rrf ')r)$)r($f)$)f)$)f)$)r($ff r$Lfr')rO)$)($*$frrO)$)($*$frr )$)($*$frr)$)($*$frrf ')r)$)($*$f)$($) *$f^)$)($*$f )$)($*$ff r$fr') r)$) ($*$frr)$ ) ($*$ f rr )$)($*$frr)$)($*$frrf ')r)$)($*$f^)$)($*$f)$) ($ *$f )$)($*$ff r$fr')rO($rrO)$rrOr$Ofrr OO)$($frrf ')rO)$O($O)$($f f r$f}')rr$frr)$($frr OO($rrO)$rrf ')} )$ ($f )$($f fr$ffr')rf( $*$frr ffr)$($*$frr *$($frrO})$($*$frrf ')rr)$($*$f($*$-r)$*$($fO*$ ($f f r$fr')r*$($frrr)$*$($fr} *$($frrLr)$($*$frrf ')rOr)$ ($ *$fO*$($f Or )$($ *$f *$($ff r $LfrO)$ )*$frrO)$)*$frr )$)*$frr)$*$)frrfr'* '*rr)$*$f *$ r)$ *$f *$f r$OfrOr)$*$frrOr)$*$frrfr'* ')rO)$)($*$f)$)($*$f)$)($*$f )$)($*$ff r$fr')r)$)($*$frr)$)($*$frr )$)*$($frr)$)*$($frrf ')r)$)*$($f)$)($*$f^*$)$)($f )$)*$($ff r$ffr') r )$ ) ($*$frr )$)($*$frr )$)($*$frr^)$)*$($frrf ')rO)$)r*$fO)$)fO)$)f)$)r*$ff r$fr')r)$)r*$frr^)$)frr )$)frr)$)r*$frrf ')r))$fO)$f§)f§r*$ff§))$r*$f )$)ff r$fr')r)$)frr)$)r*$frr)$) r*$frrO)$)frrf ')rr)$($*$f*$($fr)$*$($f *$ ($f f fr$ffr')rr)$($*$frr*$($frr r)$*$($frr^*$($frrf

PAGE 147

* ')rr)$*$($f($*$fr)$*$($f *$($ff r$fr')r^r)$ ($*$frr($*$frr r)$($*$frr*$($frrf ')rO)$*$fO)$O*$f r$fr')rr$frr)$*$frr OO*$rrO)$rrf ')})$*$)$*$f f r$fr')fr)$rr*$rr)$*$frr LOr$Ofrrf *3 '*r)$ ) *$f )$)*$f )$)*$f )$)*$ff r$fr'*r*$rrLOr)$ *$frr r)$*$frrf '*rr)$*$fr)$*$ff r$fr')r)$)*$($frr))$($*$frr )$) ($*$fr}f§) )$*$($fr rf ')r)$)*$($f)$)*$($f^)$)($*$f )$)*$($ff r$fr')r^)$)*$($frr)$)($*$frr OO)$)*$($frrO)$)($*$frrf ')r )$ ) ($ *$f)$)*$($f ^)$ )*$($f O O)$)*$( $` ` r$fr')r^)$)r*$frr)$)frr ^)$)frr))$r*$frrf f§')0 ) )$ f )$) r*$ f ^ ) $)r*$ f OO&)$)ff r$fr')r^O)$)frr))$r*$frr )$)r*$frr)$)frrf ')r)$) r*$f )$)f )$) f )$)r*$ff r$fr')r($*$frrr)$*$($frr ^($*$frrr)$*$($frrf ')rr)$*$($f*$($fr)$($*$f ($*$ff r$fr')r($*$frrr)$($*$frr ($*$frrr)$*$($frrf ')rr)$ ($ *$f $($ f m)$*$ ($f *$($ff r$fr')rO*$rrO)$rrOr$Of OrrO)$*$frrf ')rO)$O*$O)$*$ff r$fr')rr$frr)$*$frr O*$rrO)$rrf ')rf)$*$fO)$*$f ')r) ) $f))$ff fr$fr')r ) )$r($frr) )$ r($frr ))$r($frr))$r($frrf ')rm))$r($fO))$r($f)$)r($f )$)r($ff r$fr')r))$*$($frr))$*$($frr ))$*$($frr))$*$($frrf ')r))$*$($fO)$)*$($ff§))$*$($f ))$*$($ff

PAGE 148

* r$ffr') r))$($*$frrO)$)*$($frr )*$)$($frr))$*$($frrf ')frO)$)*$($fO)$)*$($fO))$($*$f ))$*$($ff ^r$fr')r)$)r*$frr)$)r*$frr ,))$r*$frr))$r*$frrf ')r)$)r*$f))$r*$f))$r*$f ))$r*$ff )rO)$)fO)$)ff ^r$fr')r)$)frr)$r)frr )$r)frrrr$frrf)$)frrf ')r)$r)f)$)f)$)fO)$r)f L)$r)frrrr$afrrff r$ffr ')r )rrO)$rr r$frr OO)$)frrf ')r)$),)$)ff fr$fr')rffr$f§frrO )$)frr OO)rrO)$rrf )rf)$)-)$)f r$fr')r^)$)frrr)$)frr ))$frrr)$)frrf ')rr)$ )-O&)$)f Or)$) f)$ )ff (;3}$f§fr&ffr))$f))$ff O(;3r$r&f fr,) )$f ^))$ff r&r(;3r$r&fr))$f))$ff(;3^r$r&ff r r $rOW) )$frr))$frrf O(;3r$ 6*fr&fffr ) )$f^))$ff ^r$fr'*r&)$)($frr)$)($frr OL))$($frrO))$($frrf '*r))$($f))$($fO))$($f))$($ff r$fr'*rO)$)*$frr)$)*$frr )*$)$frr))$*$frrf '*r^)$)*$f))$*$f^))$*$f^))$*$ff ')r($r)$r($f^)($ff r$fr')rO($rrO)$($frrO)$($frrf ')r*$($fLr)$*$($fOr)$*$($ff r$fr')r*$($frrr)$*$($frr r)$*$($frrf ')rm($ *$f Or) $($*$f f§ &r)$ ($ ,*$f f r$fr')r($*$frrr)$($*$frr OOr)$($*$frrf ')r*$r)$r*$f,)$*$ff r$fr')r *$rr)$*$frr )$*$frrf ')r^)))$f)$)ff r$fr')r)rr)$)frr)$)frrf 2)r)$)fOr)$)f^)$)ff r$fr')r)$)frrr)$)frrW)$)frrf ')rO)$)fLr)$)fO)$)ff r$fr')r)$)frrr)$)frr)$)frrf ')rO)$O)$f

PAGE 149

* r$fr')r)$rr)$rrr$frrf (;3r$r&fr&$$rrf$rr$r&r(;3^r$r&f O)$rraO)$rrr(;3^r$r& ff '*r ( $O ^ r) $($ f r) $($ ff r$fr'*rr)$($frrr)$($!rr($rrf '*r*$Or)$*$fr)$*$ff r$fr'*rr)$*$frr^r)$*$frr*$rrf '))$ r$fr')rr)$r($frr)$($frrf ')rO)$($`)$($ff r$fr')rr)$*$($frrr)$*$($frrf ')rr)$*$($fr)$*$($ff r$fr')rr)$*$($frrr)$*$($frrf ')r r)$ ($ *$f r)$($*$f f r$fr')r^)$*$frr)$*$frrf ')r^)$*$f)$*$ff r$fr')r)$)frr)$)frrf ')rO)$)fO)$)ff r$fr')rO)$)frrr)$)frrf ')rr)$)f)$)ff r$ffr')rO)$)frr&r)$)frrf ')rr)$)f)$)ff '))$ (;3r$fr&f-)$ O(;3r$r&f)$ &r(;3r$r&f)$$)$rrr(;3r$r&ff (;3^r$6*fr&ff)$ r$fr*rOr)$($frrr)$($frrf '*rOr)$($fr)$($ff r$fr'*rOr)$*$frrOr)$*$frrf '*rr)$*$fr)$*$ff 5 (%r(r*(r*f'(r(r*(r*f 5 (r(r*(r*f'(r(r*(r*f 5$ '(r(r*(r*(r*(r*(r*(r*(r* (r*f$+r$r(r* (r*3f$ +r($r(r* (r*f$+r$ r(r*(r*f$+r*$r(r*(r*f$+r%&r(r* (r*3f$O+r%r(r*(r*f$+r%r(r*(r* f$+r%r(r*(r*f 5$ '(r(r*(r*(r*(r*(r*(r*(r* (r*f$O+r$r(r*(r*f$+r($r(r*(r*f$+r$r^(r *(r*f$+r*$r(r*(r*f$+r%r(&r*(r* f$O+r%r(r*(r*f$+r%r(r*(r*f$+r% r(r*(r*f 5$ $+r$r(r*(r*(r*(r*(r*(r*( r*(r*f$+r($r(r*(r*(r*(r*(r* (r*(r*(r*f$+r$r(r*(r*(r*(r *(r*(r*(r*(r*f$+r*$r(r*(r*( r*(r*(r*(r*(r*(r*f$+r%r( r*(r*(r*(r*(r*(r*(r*(r*f $O+r%r(r*(r*(r*(r*(r*(r*(r *(r*f$+r%r(r*(r*(r*(r*(r*

PAGE 150

(r*(r*(r*f$+r%r(r*(r*(r* (r*OOO(r*(r*(r*(r*OOf 5$ $+r$r(r*(r*(r*(r*(r*(r*( r*(r*f$O+r($r(r*(r*(r*(r*(r* (r*(r*(r*f$+r$r(r*(r*(r*(r* (r*(r*(r*(r*f$+r*$r(r*(r* (r*8(r*(r*(r*(r*(r*f$+r% r (r* (r* (r* ( r*(r*( r*L (r* (r *f$+r%r(r*(r*(r*(r*(r*(r* (r*(r*f$+r%r(r*(r*(r*(r*( r*(r*(r* (r*-$+r %r(r*(r* (r*(r*O(r*(r*(r*(r*Of 5% *r*r(r*(r*(r*(r*(r*(r* (r*(r*(r*f)r(r*(r*(r*O(r *(r*(r*(r*(r*(r*f%r(3 r*(r*(r*(r*(r*(r*(r*( r*(r*f%r(3r*(r*(r*(r*(r *(r*(r*(r*(r*f 5% *r*r(r*(r*(r*(r*(r*(r* (r*(r*(r*f)$r(r*(r*(r* (r*(r*(r*(r*(r*(r*f%r (3r*(r*(r*(r*(r*(r*(r (r*( r* f%rW (3r*(r*(r*(r *(r*(r*(r*(r*(r*f 5$ *r*r(r*(r*(r*f*r*r O(r*(r*(r*f*r*r'r*r'r* r'r*r'r*f)r(r*(r*(r*f)r( r*(r*(r*f)r'r*r'r*r'r* r'r*f%r(r*(r*(r*fr%}(r *(r*(r*f%r'r*rr*'r* rr*f%r(r*(r*(r*f%r(r *(r*(r*f%r'r*r'r*'r *'r*f 5$3 *r*r(r*(r*(r*(r*f*r*r(r* (r*(r*(r*f*r*r'r*r'r*r' r*rr*Lf)r(r*(r*(r*(r*f) r(r*(r*(r*(r*ff§)r'r*r'r* r'r*r'r*f*r*r(r*(r*(r*f*r* r(r*(r*(r*f*r*r'r*r'r*r' r*r'r*f)$r(r*(r*(r*f)$r( r*(r*(r*f)$r'r*rr* rr*r'r*ff§%r^(r*(r*(r*( r*f%r(r*(r*(r*(r*f 5$'3 %r^r*'r*'r*r'r*f%r( Or*(r*L(r*(r*f%r(r*(r *(r*(r*f%rr*r'r*r*r 'r*f%Or^(r*(r*(r*f%r(r* (r*(r*f%r'r*r'r*'r*r'r *f%r (r* ( r* (r*f% r(r* ( r*(r*f%r'r*rr*r*rr*f 5$3 *r*r(r*(r*(r*f*r*r(3r*(r*

PAGE 151

(r*f*r*r'r*r*rr'r*r'r*f )r(r*(r*(r*f)r(3r*(r*(r*f )rr*r'r*r'r*r'r*f*r*r (r* (r*(r*(r*f*r*r(r*(r*(r* (r*f*r*r^r*r'r*rr*r'r*f )$r(r*(r*(r*(r*f)$r^'r*r r*r'r*rr*f%r(r*(r*(r *f%r(r*(r*(r*f%r'r* r 'r*r*r'&r*f 5$'3 %r(r*(r*(r*f%r^'r* r'r*'r*rr*f%r(r*(r* (r*(r*f%r(r*(r*(r*( r*f%r'r*r'r*'r*rr*f%r (r*(r*OO(r*(r*f%r(r* (r*(r*(r*f%r'r*r'r* r*r'r*f)$r^(r*(r*(r*(r*f %r(r*(OOOr*(r*f 5$ *r*r(r*(r*(r*f*r*r(3r*(r *(r*f*r*rr*r'r*r'r*rr*f )$r(r* (r* (r* -)$r(3r*(r* (r*f)$r'r*rr*r'r*r'r*f% r(r*(r*(r*f%r(r*(r* (r*f%r'r*r'r*'r*rr*f% r(r*(8r*(r*f%r(r*(r* (r*f%r'r*r'r*r*r'r*f 5% $fr*r(r*(r*(r*f)r(r*(r* (r*f 5% $fr*r(r*(r*(r*(r*f)r(r* (r*(r*(r*f$fr*r(r*(r*(r*f )$r(r*(r*(r*f 5% ^$fr*r(r*(r*(r*f)r(r*(r* O(r*fO$fr*r^(r*(r*(r*(r*Of)$r (r*(r*(r*(r*f 5%3 5$7,r*r*r'r*r%rrr*r'r*f *r*r(r**r*r(r(r*(r*(r*(r*f *r*r$O3r*r$3r*r$3r*r$3r*f5$7,r)r^ r*rr*r'r*rr*f)r(r* )r '(r(r*(r*(r*(r*f)r$3r*r $3r*r$3r*r$3r*f5$7,r%r'r*r'r* 'r*Or'r*f%r(r*%r'(r(r* (r*(r*(r*f%r$O3r*r$3r*$3 r*r$3r*f%r5$7,rOr*r'r*'r*r r*f%r(r* 5% O$fr*r(r*(r*(r*f)$r(r*( r*(r*f 5%'3 %r(r(r*(r*(r*(r*f r$O3r*r$3r*$3r*r$3r*f 5%3 5$7,r*r*r^'r*r'r*rr*Lrr*f *r*r(r**r*r(r*(r*(r*(r*fr( *r*r$O3r*r$3r*r$3r*r$3r*f)$r5$7,r 'r*rr*rr*r'r*f)$r(r*)$

PAGE 152

r'(r(r*(r*(r*(r*f)$r$3r*r$3 r*r$3r*r$3r*f5$7,r%rr*r'r* r*r'r*fr(r*%r'(rW(r* (r*(r*(r*f%r$3r*r$3r*$3 r*r$3r*f5$7,r%r&r*r'r*'r* r'r*fr(r* 5%'3 %r'(r(r*(r*(r*(r*f%&r $3r*r$3r*$3r*r$3r*f 5& *r*r'r*rr*r'r*r'r*f)r' r*r'r*r'r*r'r*f%r'r* r r*'r*r'r*f%r'r*r'r*'r *r'r*f 5& *r*r'r*r'r*r'r*r'r*f)$r' Or*r'r*r'r*r'Lr*f%r'r*r 'r*'r*rr*f %r'r*rr*'r*rr*f 5$ 5$35$'3 5$ 5$35$&3 5% 5%35&3 5% 5%35%'3 5 5$5% 5 5$5% 5 5$5%5& 5 5$5%5& 5 5 $5 % 5 5$5% 5 5$5% 5 5$5% 6 (%r(r*(r*f'(r(r*(r*f 6 (%r(r* (r*f'(r(r*(r*f 6$ '(r(r*(r*(r*(r*(r*(r*(} *(r*f$O+r$r(r*(r*f$O+r($r(r*(r*f $+r$r(r*(r*f$+r *$r(r*(r*3f$O+r%r(• r*(r*!$+r%r(r*(r*f$+r %r(* (r*f$+r%r(r*(r*3` 6$ '(r(r*(r*(r*(r*(r*(r*( r*(r*f$O+r$r(r*(r*f$ +r($r^(r*(r*f $+r$r(r*(r*f$+r*$r(r*(r*f$+r%,&2r^( r*(r*f$+r%r(r*(r*f$+r%r(r* (r*f$+r%r(r*(r*f 6$3 $+r$r(r*(r*(r*(r*(r* (r*(r*(r*f$+r($r(r*(r*(r* (r*(r*(r*(r*(r*f$+r$r(r* (r*(OOr*(r*(r*(r*(r*(r*f $+r*$r(r*(r*(OO}*(r*(r*(r* (r*(r*f$O+r%r(r*(r*(r* (r*(r* ( r* (r* (r* f f§$+r%r(r *(r*(r*(r*(r*(r*(r*(r *f$+r%r^(r*(r*(r*(r*(r*(r *(r*(r*f$+r%r(r*(r*(r*f 6$'3 $+r%r^(r* L ( r* (r* (r* (r*f

PAGE 153

6$3 $+r$r(r*(r*(r*(r*(r*( r*(r*(r*f$O+r($r(r*(r*(r*( r*(r*(r*(r*(r*f$+r$r(r*( r*(r*(r*(r*(r*(r*(r*f $+r*$r(r*(r*(r*(r*(r*(r*+ (r*(r*f$+r%r(r*(r*(r*(r* (r*(r*(r*(r*f$+r%r^(r*( r*(r*(r*(r*(r*(r* (r*f$+r%r(r*(r*(r*(r*( r*(r*(r*(r*f 6$'3 $+r%r(r*(r*(r*(r*(r* (r*(r*(r*f 6% *r*r(r*(r*(r*(r*(r*(r* (r*(r*(r*f)r(r*(r*(r*&(r (r* (r* (r* (r* ( r*f%r(3r* (r*(r*(r*(r*(r*(r*( r*(r*f%r^(3r*(r*(r*(r*( r*(r*(r*(r*(r*f 6% *r*r(r*(r*(r*(r*(r*(r* (r*(r*(r*f)$r(r*(r*( r*(r*(r*(r*(r*(r*(r*f %r^(3r*(r*(r*(r*(r*(r* (r*(r*(r*f%r(3r*(r*(r* (r*(r*(r*(r*(r*(r*f 6$ *r*r(r*(r*(r*f*r*r(r*(r* (r*f*r*r'r*r'r*r'r*rr*f )r(r*(r*(r*f)r^(r*(r*(r*f )r'r*rr*r'r*r'r*f%r(r* (r*(r*f%r(r*(r*(r*f%r 'r*r'r*'r*r*r'f%r(r* (r*(r*f%r(r*(r*(r*f% rr*r'r*'r*r'r*f 6$3 *r*r(r*(r*(r*(r*f*r*r(r* (r*(r*(r*f*r*r'r* r'r* rr *r'r*f)r(r*(r*(r*(r*f) r'r*r'r*r'r*r'r*f*r*r(r* (r*(r*f*r*r(r*(r*(r*f*r*r&r* rr*r'r*r'r*f)$r(r*(r*( r*f)$r(r*(r*(r*f)$r'r*r' r*r'r*rr*f%r(r*(r*( r*(r*f%r(r*(r*(r*(r* f%r^r*r'r*'r*r'r*f 6$'3 %r(r*(r*(r*(r*f%r O(r*(r*(r*(r*f%r'r*r 'r*'r*rr*f% r(r*(r* (r*! %r(r*(r*(r*f%r'r*rr *'r*r'r*f%r(r*(r*(r*f %r(r*L(r*(r*f%r'r*r r*'r*r'r*f)r(r*(r*(r*(r *f 6$3 *r*r(r*(r*(r*f*r*r(3r*(r*

PAGE 154

(r*f*r*r'r*r'r*r'r*r'r*f)r (r*(r*(r*f)r(3r*(r*(r*f)r r*r'r*r'r*r'r*f*r*r(r* (r*(r*(r*f*r*r(r*(r*L(r* (r*f*r*r'r*r'r*r'r*f)$r(r* (r*(r*(r*f)$r(r*(r*(r* (*f)$r'r*r'r* r'r* r'r*f %r(8r* (OOr* (r*f%r(r*(r* (r*f*r*rrr* 6$'3 % r'r*r'r*'r*rr*f%r (r*(8r*(r*f%r(Or*(r* (r*fr^'r*r'r*'r*rr*f% r(r*(r*(r*(r*f%r(r* (r*(r*(r*f%r'r*r'r*r r*'r*f%r(r*(r*(r*(r*f %Or(* (r*(r* (r*f%r r* r'r*r* rr*f 6$ *r*r(Or*(r*(r*f*r*r(3*(r* (r*f*r*r'r*r'r*r'r*rr*f )$r(r*(r*(r*f)$r(3r*(r* (r*f)$r'r*r'r*r'r*r'r*f %r(r*(OOOr*(r*f%r(r*(r* (r*f%r'r*r'r*'r*r'r*f% r(r*(r*(r*f%r(r*(r* (r*f%r'r*r'r*'r*rr*f 6% O$fr*r(r*(r*(r*f)r(r*(r* (r*f 6% O$fr*r(r*(r*(r*(r*f)r(8* O(r*(r*(r*f$fr*r(r*(r*(r *f)$r(r*L(r*(r*f 6% O$fr*r(r*(r*(r*f)r(r*(r* (r*fO$fr*r(r*(r*(r*(r*f)$r( r*(r*(r*(r*f 6% O$fr*r(r*(r*(r*f)$r(r*(r* ( *f 6%3 5$7,r*r*r'r*r'r*r'r*r'r*f *r*r(r**r*r(r*(r*(r*(r*fr'( *r*r$3r*r$3r*r$3r*r$3r*f5$7,r) r r* rr* rr* r'r*f)r(r* )r(r(r*(r*(r*(r*f)r$3r*r$3 r*r$3r*r$3r*f%r5$7,2r'r*rr* 'r*r'r*f%r(r*%r'(r(r* (r*(r*(r*`%r$3r*r$3r*$3r *r$3r*f%r5$7 r^'r*r'r* 'r* r'r*`%r(* 6%'3 %r'(r(Or*(r*(r*(r*f%r $3r*r$3r*$3r*r$3r*f 6%3 *r*r5$7,rr*r'rr'r*r'r*f *r*r(r**r*r'(r(r*(r*(r*(r*f *r*r$O3r*r$3r*r$3r*r$3r*f)$r5$7,r r*rr*r'r*r'r*f(r*r)$

PAGE 155

)$r'(r(r*(r*(r*(r*f)$r$O3r* r$3r*r$3r*r$3r*f5$7,r%r'r*r'r *'r*rr*f%r(r*%r'(r(r* (8r* (8r*(r*f%r$3r* r$3r* $3 r*r$3r*f%r5$7,2r'r*r'r*'r* r'r*f(r*r% 6%'3 %r'(r(r*(r*(r*(r*f%r $3r*r$3r*$3r*r$3r*f 6& *r*r&r*r'r*r'r*r'r*f)r^' Or*r'r*r'r*r'r*f%r'r*r 'r*r*rr*f%r^'r*r'r*' r*r'r*f 6& *r*r'r*r'r*r'r*r'r*)$r O'r*r'r*r'r*rr*f%r'r* r'r*'r*rr*f%r^'r*r'r* 'r*r'r*f 6$ 6$36$&3 6$ 6$36$'3 6% 6%36%'3 6% 6%36%&3 6 6$6% 6 6$6% 6 6$6%6& 6 6$66& 6 6$6% 6 6$6% 6 6$6% 6 6$6% 8 3+,rrr53+,rrr53+,r55 8 5r3+,5f8O 8 5r3+,5f8 8 5r3+,5f8 8 3+,rrr63+,rrr63+,r66 8 6r3+,68r8 8 6}3+,68r8 8 6r3+,68r8 Of 8rr r8r8 $7 8 8 rr f8&rr $7 88r rf8'rr :5,7(f (7$}'r;}*}5$7,26*I&}3+,}8}$7}$7*}8O}8}8}8 O88885O5555I55555,26666666 666$+$+$3$3$3 )250$7 (f *2 72 (1'

PAGE 156

5()(5(1&(6 >@ YRQ .DUPDQ 7 DQG 7VLHQ + 6 7KH %XFNOLQJ RI 6SKHULFDO 6KHOOV E\ ([WHUQDO 3UHVVXUH -RXUQ RI $HURQ 6FLHQFH SS >@ 'RQQHOO / + 6WDELOLW\ RI 7KLQ9DOOHG 7XEHV XQGHU 7RUVLRQ 1$&$ 5HSRUW 1R >@ YRQ .DUPDQ 7 DQG 7VLHQ + 6 7KH %XFNOLQJ RI 7KLQ &\OLQGULFDO 6KHOOV XQGHU $[LDO &RPSUHVVLRQ -RXUQRI $HURQ 6FLHQFH SS >@ /HJJHWW 0 $ DQG -RQHV 5 3 1 7KH %HKDYLRU RI D &\OLQn GULFDO 6KHOO XQGHU $[LDO &RPSUHVVLRQ ZKHQ WKH %XFNOLQJ /RDG +DV %HHQ ([FHHGHG 5$( 5HSRUW 1R 60( >@ 0LFKLHOVHQ + ) 7KH %HKDYLRU RI D &\OLQGULFDO 6KHOO XQGHU $[LDO &RPSUHVVLRQ -RXUQ RI $HUR6FLHQFH SS >@ .HPSQHU 3RVWEXFNOLQJ %HKDYLRU RI $[LDOO\ &RPSUHVVHG &LUFXn ODU 6KHOOV -RXUQ RI $HURQ 6FLHQFH SS >@ 'RQQHOO / + DQG :DQ & & (IIHFW RI ,PSHUIHFWLRQV RQ %XFNn OLQJ RI 7KLQ &\OLQGHUV DQG &ROXPQV XQGHU $[LDO &RPSUHVVLRQ 7UDQV $60( SS >@ /RR 7 (IIHFW RI /DUJH 'HIRUPDWLRQ DQG ,PSHUIHFWLRQV RQ WKH (ODVWLF %XFNOLQJ RI &\OLQGHUV XQGHU 7RUVLRQ DQG $[LDO &RPSUHVn VLRQ QG 86 1DW &RQJU $SSO 0HFK SS >@ 1DVK : $ %XFNOLQJ RI ,QLWLDOO\ ,PSHUIHFW &\OLQGULFDO 6KHOOV 6XEMHFW WR 7RUVLRQ -RXUQ RI $SSO 0HFK SS >@ .HPSQHU DQG &URX]HW3DVFDO 3RVWEXFNOLQJ %HKDYLRU RI &LUFXODU &\OLQGULFDO 6KHOOV XQGHU +\GURVWDWLF 3UHVVXUH 3RO\WHFK ,QVW %URRNO\Q 3,%$/ 5HSRUW 1R >@ 'RQQHOO / + (IIHFW RI ,PSHUIHFWLRQV RQ %XFNOLQJ RI 7KLQ &\OLQGHUV XQGHU ([WHUQDO 3UHVVXUH -RXUQ $SSO 0HFK SS >@ /X < 6 DQG 1DVK : $ (ODVWLF ,QVWDELOLW\ RI 3UHVVXUL]HG &\OLQGULFDO 6KHOOV XQGHU &RPSUHVVLRQ RU %HQGLQJ 3URFHHGLQJV RI WKH )RXUWQ 86 1DW &RQJU RI $SSO 0HFK $60( SS

PAGE 157

>@ $OPURWK % 3RVWEXFNOLQJ %HKDYLRU RI $[LDOO\ &RPSUHVVHG &LUFXODU &\OLQGHUV $,$$ -RXUQ SS >@ 6REH\ $ 7KH %XFNOLQJ RI DQ $[LDOO\ /RDGHG &LUFXODU &\OLQGHU ZLWK ,QLWLDO ,PSHUIHFWLRQV $HURQDXWLFDO 5HVHDUFK &RXQFLO 5HSRUW DQG 0HPRUDQGD 1R +HU 0DMHVW\fV 6WDWLRQHU\ 2IILFH /RQGRQ (QJODQG >@ 6HLGH 3 $[LV\PPHWULFDO %XFNOLQJ RI &RQLFDO 6KHOOV XQGHU $[LDO &RPSUHVVLRQ -RXUQ RI $SSO 0HFK SS >@ +RII 1 DQG 6LQJHU %XFNOLQJ RI &RQLFDO 6KHOOV XQGHU +\GURVWDWLF 3UHVVXUH 6\PSRVLXP RQ WKH 7KHRU\ RI 7KLQ 6KHOOV ,87$0 'HOIW SS >@ 6HLGH 3 2Q WKH %XFNOLQJ RI 7UXQFDWHG &RQLFDO 6KHOOV XQGHU 8QLIRUP +\GURVWDWLF 3UHVVXUH 6\PSRVLXP RQ WKH 7KHRU\ RI 7KLQ 6KHOOV ,87$0 'HOIW SS >@ 0XVKLWDUL .K 0 DQG 6DFKHQNRY $ 9 6WDELOLW\ RI &\OLQGULFDO DQG &RQLFDO 6KHOOV RI &LUFXODU &URVV 6HFWLRQ ZLWK 6LPXOWDQHRXV $FWLRQ RI $[LDO &RPSUHVVLRQ DQG ([WHUQDO 1RUPDO 3UHVVXUH 1$&$ 70 >@ 6HLGH 3 2Q WKH 6WDELOLW\ RI ,QWHUQDOO\ 3UHVVXUL]HG &RQLFDO 6KHOOV XQGHU $[LDO &RPSUHVVLRQ 3URFHHGLQJV RI WKH )RXUWK 86 1DW &RQJU RI $SSO 0HFK SS >@ 6FKQHOO : 'LH 'YLQZDQGLJ .HJHOVFKDOH XQWHU $[LDOXQG ,QQHQGUXFN 7HLO $ )OXJZLVV 9RO +HIW SS 7LH ,, = )OXJZLVV 9RO +HIW SS >@ 1HZPDQ 0 DQG 5HLVV ( 1RQOLQHDU $[LV\PPHWULF 'HIRUPDWLRQ RI &RQLFDO 6KHOOV -RXUQ 6RF ,QGXVW $SSO 0DWK SS >@ )DPLOL $V\PPHWULF %XFNOLQJ RI )LQLWH 'HIRUPHG &RQLFDO 6KHOOV $,$$ -RXUQ SS >@ 1LRUGVRQ ) 1 %XFNOLQJ RI &RQLFDO 6KHOOV 6XEMHFWHG WR 8QLn IRUP ([WHUQDO /DWHUDO 3UHVVXUH 7UDQV 5R\ ,QVW RI 7HFKQRO 6WRFNKROP SS >@ %LMODDUG 3 3 %XFNOLQJ RI 7KLQ &RQLFDO 6KHOOV XQGHU 8QLIRUP ([WHUQDO 3UHVVXUH 1$6$ 71 SS >@ +RII 1 %XFNOLQJ RI 7KLQ &\OLQGULFDO 6KHOOV XQGHU +RRS 6WUHVVHV 9DU\LQJ LQ $[LDO 'LUHFWLRQ -RXUQ RI $SSO 0HFK SS

PAGE 158

>@ =XN : 7KHUPDO %XFNOLQJ RI &ODPSHG &\OLQGULFDO 6KHOOV -RXUQ RI $HURQ 6FLHQFH S >@ 6XQDNDZD 0 'HIRUPDWLRQ DQG %XFNOLQJ RI &\OLQGULFDO 6KHOOV 6XEMHFWHG WR +HDWLQJ $HURQ 5HVHDUFK ,QVW 8QLYHUVLW\ RI 7RN\R -DSDQ 5HSRUW >@ $ELU DQG 1DUGR 6 9 7KHUPDO %XFNOLQJ RI &LUFXODU &\OLQn GULFDO 6KHOOV XQGHU &LUFXPIHUHQWLDO 7HPSHUDWXUH *UDGLHQWV -RXUQ RI $HURQ 6FLHQFH SS >@ +RII 1 &KDR & & DQG 0DGVHQ : $ %XFNOLQJ RI D 7KLQ ZDOOHG &LUFXODU &\OLQGULFDO 6KHOO +HDWHG DORQJ $Q $[LDO 6WULS 6WDQIRUG 8QLYHUVLW\ 68'$(5 5HSRUW >@ 5RVV % 0D\HUV DQG -DZRUVNL $ %XFNOLQJ 7HVWV RQ 7KLQ &LUFXODU &\OLQGULFDO 6KHOOV +HDWHG DORQJ DQ $[LDO 6WULS 6WDQIRUG 8QLYHUVLW\ 68'$(5 5HSRUW >@ %HQGDYLG DQG 6LQJHU 7KHUPDO %XFNOLQJ RI &RQLFDO 6KHOOV +HDWHG DORQJ D *HQHUDWRU 6WDQIRUG 8QLYHUVLW\ 68'$(5 5HSRUW >@ /DQJKDDU + / (QHUJ\ 0HWKRG LQ $SSOLHG 0HFKDQLFV -RKQ :LOH\ DQG 6RQV ,QF 1HZ @ .DQWRURYLFK / 9 DQG .U\ORY 9 $SSUR[LPDWH 0HWKRG RI +LJKHU $QDO\VLV ,QWHUVFLHQFH 3XEOLFDWLRQV ,QF 1HZ @ 0LNKOLQ 6 9DULDWLRQ 0HWKRGV LQ 0DWKHPDWLFDO $QDO\VLV 7KH 0DFPLOODQ &RPSDQ\ 1HZ @ +LOO : %XFNOLQJ RI 7KLQ &LUFXODU &\OLQGULFDO 6KHOOV +HDWHG DORQJ DQ $[LDO 6WULS 6WDQIRUG 8QLYHUVLW\ 68'$(5 5HSRUW

PAGE 159

%,2*5$3+,&$/ 6.(7&+ 7KH DXWKRU ZDV ERUQ RQ )HEUXDU\ LQ 7LHQWVLQ &KLQD +H UHFHLYHG KLV %DFKHORU RI 6FLHQFH GHJUHH LQ 0HFKDQLFDO (QJLQHHULQJ LQ -XO\ IURP WKH 1DWLRQDO 7DLZDQ 8QLYHUVLW\ 7DLSHL 7DLZDQ &KLQD ,Q 2FWREHU KH EHJDQ WZR \HDUV RI VHUYLFH LQ WKH $LU )RUFH RI WKH 5HSXEOLF RI &KLQD 8SRQ UHOHDVH IURP WKH VHUYLFH KH HQUROOHG LQ WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 6HSn WHPEHU DQG UHFHLYHG WKH GHJUHH RI 0DVWHU RI 6FLHQFH ZLWK D PDMRU LQ (QJLQHHULQJ 6FLHQFH DQG 0HFKDQLFV LQ $SULO 7KHUHDIWHU KH FRQWLQXHG KLV VWXGLHV DQG UHVHDUFK OHDGLQJ WR WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ LQ WKH 'HSDUWPHQW RI (QJLQHHULQJ 6FLHQFH DQG 0HFKDQLFV +H LV D PHPEHU RI 3KL .DSSD 3KL

PAGE 160

7KLV GLVVHUWDWLRQ ZDV SUHSDUHG XQGHU WKH GLUHFWLRQ RI WKH FKDLUPDQ RI WKH FDQGLGDWHnV VXSHUYLVRU\ FRPPLWWHH DQG KDV EHHQ DSSURYHG E\ DOO PHPEHUV RI WKDW FRPPLWWHH ,W ZDV VXEPLWWHG WR WKH 'HDQ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DSSURYHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -XQH 'HDQ &ROOHJH RI (QJLQHHULQJ 'HDQ *UDGXDWH 6FKRRO 6XSHUYLVRU\ &RPPLWWHH &KDLUPDQ

PAGE 161

L L 81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E927A16OM_12NI0U INGEST_TIME 2017-07-13T15:08:43Z PACKAGE AA00003560_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES