Citation
Energy transfer in molecular collisions

Material Information

Title:
Energy transfer in molecular collisions
Creator:
Vilallonga, Eduardo F ( Eduardo Fermin ), 1953-
Publication Date:
Language:
English
Physical Description:
viii, 152 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Approximation ( jstor )
Arithmetic mean ( jstor )
Atomic interactions ( jstor )
Atoms ( jstor )
Coordinate systems ( jstor )
Energy transfer ( jstor )
Kinetics ( jstor )
Lead ( jstor )
Molecular rotation ( jstor )
Molecules ( jstor )
Charge transfer ( lcsh )
Collisions (Nuclear physics) ( lcsh )
Molecular dynamics ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1981.
Bibliography:
Includes bibliographical references (leaves 147-151).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Eduardo F. Vilallonga.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000295507 ( ALEPH )
ABS1853 ( NOTIS )
07906738 ( OCLC )

Downloads

This item has the following downloads:


Full Text













ENERGY TRANSFER IN MOLECULAR COLLISIONS


BY

EDUARDO F. VILALLONGA





























A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1981

































m

00 O

C,






a








~To my parents.
c_ 3





















0
0




S





0
d
U

I

To my parents.
ES



ct
r/3
k^
d-
VI


ffl
0p
Q


.a
T3
C
I


















ACKNOWLEDGEMENTS


I wish to express my deepest appreciation and gratitude to my

advisor, Professor David A. Micha, for his dedication, support and

encouragement. I thank him for suggesting the study of the problems

addressed in this dissertation, for many invaluable discussions, and

for providing me many opportunities to broaden my experience as a

scientist.

I am indebted to Professor Thomas L. Bailey for introducing me

to the fascinating subject of atomic and molecular collisions. I

wish to express to him my deepest appreciation and gratitude for his

support during my first two graduate years and for his constant

interest and encouragement.

I would like to thank all the faculty members of the Quantum

Theory project and of the Department of Physics, all of whom have con-

tributed to my development as a student and as a scientist. In

particular, I thank Professors Per-Olov L8wdin and Charles F. Hooper,

Jr., for providing me the opportunities to attend the International

Summer School in Uppsala, Sweden,and the NATO Advanced Study Institute

in Cortona, Italy, respectively.

I am deeply indebted to three very special persons, my parents

and Kristin V. Bjorn. Much of the work presented here might not have

been possible without their unwavering encouragement, patience and

understanding.


iii

















TABLE OF CONTENTS


Page

ACKNOWLEDGEMENTS. . ... iii

ABSTRACT. . .vi

INTRODUCTION. . .. 1

CHAPTER

I THE CORRELATION FUNCTION APPROACH 6
1. The System Hamiltonian. 7
2. The Differential Cross Section. .... 8
3. Time-Evolution of the Correlation Function and
Moments of the Energy Transfer. 12
4. Cumulant and Moment Expansions. ... 15
5. Short-Time Expansions .. 17

II THE MANY-BODY CORRELATION FUNCTION APPROACH 20
1. Outline of the Many-Body Approach 22
2. Vibrational and Rotational Correlations 26
3. Cumulant Expansion of the Vibrational Cor-
relation. . ... 28
4. Evaluation of the Displacement-Displacement
Correlation Function. ... 34
5. Effects of Molecular Anharmonicity in Hyper-
thermal Collisions. .. 42
6. Short-Time Approximation to the Rotational
Correlation . 43

III MULTICENTER POTENTIAL ENERGY SURFACES .. 48
1. Single-Center vs. Multicenter Expansion 48
2. Atom-Pair Potentials for Ion/Linear Molecule
Interactions .52
3. Multicenter Potential for the System Li /CO 57
4. Multicenter Potential for the System Li /CO2. 73












TABLE OF CONTENTS (Continued)


Page

IV ROTATIONAL AND VIBRATIONAL ENERGY TRANSFER IN
HYPERTHERMAL COLLISIONS OF Li+ WITH N2, CO
AND CO 91
1. The Atom-Pair Correlation Function of a
Diatomic Molecule. ... .91
2. Rotational and Vibrational Energy Transfer
in Hyperthermal Collisions of Li+ with N2
and CO . 94
3. Evaluation of the Atom-Pair Correlation
Function of a Linear Triatomic Molecule. .. 102
4. Rotational and Vibrational Energy Transfer
in Hyperthermal Collisions of Li+ with CO 105
5. Effects of Molecular Anharmonicity in N2, CO
and CO2 . 113

V A SEMICLASSICAL CORRELATION FUNCTION APPROACH TO
MOLECULAR COLLISIONS ... .119
1. The Semiclassical Approximation. ... 121
2. The Differential Probability of Energy
Transfer ... .125
3. Expansion of the Intermolecular Potential in
Vibrational Displacements. ... .130
4. The Evolution Operator in the Interaction
Representation 131
5. Vibrational and Rotational Correlation 136
6. The Vibrational Correlation. ... 138
7. The Rotational Correlation ... .140
8. Discussion ... 145

BIBLIOGRAPHY . ... .. 147

BIOGRAPHICAL SKETCH. . .. 152
















Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy



ENERGY TRANSFER IN MOLECULAR COLLISIONS

By

Eduardo F. Vilallonga

June, 1981

Chairman: David A. Micha
Major Department: Physics

Vibrational and rotational energy transfer in hyperthermal molecu-

lar collisions are investigated by means of time-correlation function

methods. Within this approach, the collisional differential cross

section is expressed as the Fourier transform of the time-correlation

function of the transition operator, which evolves in time in accord-

ance with the internal motions of the noninteracting molecules. The

correlation function includes from the outset the experimental averages

over initial distributions, so that only quantities directly related

to experimental measurements need be calculated. The present approach

allows the systematic introduction of approximations to the transition

operator, which are based on models of the intermolecular forces and

of the collision dynamics; the resulting correlation functions are

readily evaluated for most polyatomics without need of internal-state

or partial-wave expansions.
















In particular, a many-body description of the dynamics, together

with a multicenter representation of intermolecular forces, shows that,

at hyperthermal energies, large-angle atom-polyatomic scattering is

related to the correlation of the positions of pairs of atoms that

constitute the target. The atom-pair correlation functions are

evaluated by means of cumulant expansions and of Green-function

techniques. The multicenter representation of the intermolecular

potential is investigated, and multicenter surfaces are developed

for the interaction of Li with CO and with CO2. Combining these

developments, we calculate differential cross sections for the

vibrational and rotational excitation of N2, CO and CO2 in collisions

with hyperthermal Li+ ions. Comparing these results with those

obtained in experiments, we gain understanding of the features of

the potential surface and of the dynamics that govern energy transfer

processes.

We also develop a new semiclassical description of molecule-

molecule collisions. Whenever the relative motion of the polyatomics

may be described classically, we find that the differential probability

of energy transfer is given by the Fourier transform of the time-

correlation function of quantal transition amplitudes; the correlation

function evolves in time in accordance with the Hamiltonians of the

noninteracting polyatomics and describes the response of the molecules

to the collision. The correlation function is evaluated for large
















polyatomics by means of a procedure which includes the intermolecular

potential to infinite order. We thus obtain simple analytical expres-

sions for the differential probability of energy transfer in terms

of action integrals; these integrals correspond to the actions that

the intermolecular forces exert on the atoms of the polyatomics.


viii



















INTRODUCTION


During the past few years, there has been an explosive develop-

ment of theoretical approaches to energy transfer processes in

molecular collisions, generally in the thermal collision energy regime.

These approaches range from fully quantal (Lester, 1976), in which the

wave-function of the system is expanded in a more or less complete set

of internal vibrationall and rotational) states of the colliding

molecules, to completely classical (Porter and Raff, 1976), in which

all the degrees of freedom of the system are described by Hamilton's

equations of motion. Halfway between these two extremes lie the various

semiclassical and time-dependent methods (McCann and Flannery, 1975,

Miller, 1975, Child, 1976, Billing, 1978) that treat the relative

motion of the collision partners classically while describing the in-

ternal motions by a wave-function expanded in internal states. Ex-

tensive reviews on these various approaches can be found in the book

edited by Miller, 1976, in the monograph by Gianturco, 1979, and in

the articles by Clark et al., 1977, by Dickinson, 1979 and by Micha,

1981a.

Concurrently with these theoretical developments, the progress of

crossed molecular beams techniques (Toennies, 1976, Faubel and Toennies,

1977) has made available a wealth of new experimental information in

atom-molecule collisions at hyperthermal energies (1 to 10 eV). The

1







2

systems which have been studied in detail include, among others,

Li ions in collision with N2 and CO (Bottner et al., 1976, Eastes

et al., 1979a), CO2 and N20 (Eastes et al., 1977), CH4 (Eastes et al.,

1979b) and SF6 (Ellenbroek et al., 1979). Techniques based on time-of-

flight or velocity analysis of the scattered ions have produced de-

tailed velocity distributions of the products as functions of col-

lision energy and scattering angle. These distributions show rich

and varied structure due to the collisional excitation of the vibra-

tional and rotational states of the target.

In spite of the recent theoretical advances outlined above, these

new measurements present a challenge to theoretical interpretation.

The fully classical approaches, which can give accurate values of

average energy transfers, cannot describe the quantum-mechanical na-

ture of the target, which is clearly shown by the experiments. Further-

more, for systems of more than about three or four atoms, several dyna-

mical approximations must be introduced in order to decrease the num-

ber of Hamilton's equations which must be integrated numerically-

(Schatz, 1980). The quantal and semiclassical methods can, in principle,

provide very detailed state-to-state transition probabilities. How-

ever, they become computationally impractical for energies above .1 eV

because the number of internal states that are energetically accessible

is unmanageably large. This necessitates the introduction of rather

drastic computational approximations whose dynamical consequences are

not yet fully understood. These approximations include the orbital-

sudden or coupled states (McGuire and Kouri, 1974, Pack, 1974), the

energy-sudden (Khare, 1977 and 1978), the infinite-order-sudden

(Secrest, 1975, Goldflam et al., 1977) and the effective potential methods










(Rabitz, 1976). Furthermore, the ultimate test of accuracy of a

theoretical model lies in a successful comparison with experimental

results, which usually correspond to averages over initial distributions

of internal states. The theoretician is forced to question the effi-

ciency of state-expansion approaches when he is faced with the prospect

of averaging over coarse experimental distributions the detailed re-

sults so laboriously obtained.

A complete description of molecular collision processes also re-

quires knowledge of the potential energy surface of the colliding part-

ners. Except for a limited number of small systems, accurate quantum-

chemical calculations of potential energy surfaces are beyond the reach

of present-day computational resources. This does not present a serious

difficulty for the description of thermal collisions, because they are

mediated mostly by the long and intermediate range forces. These

forces can be accurately determined by combining the results of per-

turbation expansions (Hirschfelder et al., 1967, Chap. 13) with ex-

perimental measurements of the molecular properties (electrostatic multi-

pole moments, polarizabilities, etc.) of the separate colliding partners.

However, as the collision energy increases above a few tenths of an

electron-volt, the projectiles probe the inner regions of the potential

surface. At short distances, the usual perturbation expansions diverge,

and accurate models for the forces have not yet been found.

We thus find that the description of hyperthermal collisions in-

volving polyatomics presents a double challenge to the theoretician,

due to the lack of knowledge of the intermolecular forces involved,

and due to theinapplicability of the existent dynamical models. The










purpose of this dissertation is to develop and apply new theoretical

approaches to the study of vibrational and rotational energy trans-

fer in molecular collisions. We will consider in particular the

range of collision energies above 1 eV but below the threshold for

electronic excitation or dissociation of the colliding partners.

In view of the previous discussion, these approaches must satisfy the

following requirements:

1) The internal motions of the colliding molecules must be

described quantum mechanically.

2) Expansions in internal states must be avoided; instead, we

will focus our attention on the many-body nature of the system.

3) The new models should be interpretable in terms of molecular

forces and dynamical processes so that we can gain understanding of the

physical mechanisms involved.

4) The models should allow us to include averages over initial

distributions of internal states without greatly increasing compu-

tational costs, in order to permit comparison with experimental measure-

ments.

During the course of our investigations, we have found that the

first two requirements lead us to express the collisional differential

cross section in terms of the time-correlation function of the transition

operator, as is shown in Chap. I; this function includes from the out-

set the averages over initial states, so that only quantities directly

related to experimental measurements need be calculated. The present

approach allows us to systematically introduce approximations to the

transition operator, which are based on different models of the inter-

molecular forces and of the collision dynamics. In particular, a many







5



body description of the dynamics, together with a multicenter

representation of the forces, shows that the large-angle scattering

of hyperthermal projectiles is related to the correlation of the

positions of pairs of atoms of the isolated target (Micha, 1979a). In

Chap. II, we study these atom-pair correlation functions and extend

them to include the effects of anharmonicity in the vibrational motion

of the polyatomic. In Chap. III, we investigate the multicenter re-

presentation of intermolecular forces and develop multicenter potential

surfaces for the systems Li /CO and Li /CO2. Next, combining the de-

velopments of the previous two chapters, we calculate differential cross

sections for the vibrational and rotational excitation of N2, CO and CO2

in collisions with hyperthermal Li ions. By comparing these results

with the experimental measurements (Bottner et al., 1976, Eastes et al.,

1977), we gain understanding of the relative importance of the features

of the potential surface and of the dynamics that govern energy transfer

processes. Finally, in Chap. V, we develop a new semiclassical de-

scription of molecular collisions. Whenever the relative motion of

the molecule may be described classically, we find that the differential

cross section is related to the time-correlation of quantal transition

amplitudes that evolve in accordance with the internal Hamiltonians of

the isolated molecules. This correlation function completely describes

the response of the molecules to the collision; furthermore, it is

readily evaluated for a wide range of polyatomics, without need of in-

ternal-state expansions.




















CHAPTER I
THE CORRELATION FUNCTION APPROACH


We consider collisions between two arbitrarily large molecules,

A and B, each having closed electronic shells. In order to single out

the mechanisms responsible for rotational and vibrational energy trans-

fer, we consider the range of collision energies below the thresholds

for electronic excitation and dissociation of the molecules. We

are thus interested in process of the type

A(a) + B(B) + A(a') + B(3').


Initially A and B are in the internal states (rotational and/or

vibrational) denoted by the sets of quantum numbers a and B, re-

spectively. During the collision an amount of energy is transferred

between them into internal motions, promoting A and B to their final

internal states, which we indicate by a' and B'.

For the system Hamiltonian specified in Sec. 1, doubly-differential

cross sections may be related to the time-correlation function of the

collisional transition operator, as is shown in Sec. 2. In the fol-

lowing section, we examine the evolution of the correlation function and

relate its time-derivatives at time equal zero to the moments of the

energy transfer. In Sec. 4, we introduce the method of cumulant ex-

pansions which provides a powerful tool for evaluating the correlation

functions. Finally, in Sec. 5, we show that internal motions that are


1











slower than relative ones lead to a Gaussian distribution of energy

transfer.

Although we focus our attention on molecular scattering, we should

emphasize that the analysis presented in this chapter applies, quite

generally, to collisions between any two many-body systems whose

interactions can be described by a single potential energy surface.

These include, for example, scattering of molecules from surfaces of

solids.


1. The System Hamiltonian

In the coordinate system fixed to the center of mass of the

pair (A,B), indicating operators with carats, the Hamiltonian of the

collision is

H = K + HM + V. (1.1.1)


Here, K is the operator for the kinetic energy of relative motion

given by
2 2
K 2M 2 (1.1.2)
2M -2
@R

where I is the position of the center of mass of the projectile A

with respect to that of target B, M = MAMB/ A+ MB) is the reduced

mass of the system with MA and M the masses of the respective molecules.

The Hamiltonian that describes the internal motions of the separated

molecules, HM, is the sum of the internal Hamiltonians of each iso-
A
lated molecule (HA and H B respectively). The operator V represents
+-M
the intermolecular potential which generally depends on R and on r =
-A -B +X
{r r 1, where r denotes the positions of the atoms of molecule X =

A or B with respect to the center of mass of X.










The motion of the noninteracting molecules is described by

(K + HM) kv >= [2k2/(2M) + E ] >,


MiM -3/2 ik-R --Mi



-*M -A -B
< r 1v> = ,


< r Iv>,


(1.1.3a)


(1.1.3b)


(1.1.3c)


in which ik is the relative momentum, v represents the collection of

vibrational and rotational quantum numbers of both molecules,

E = E + EB, E. and E are the energies of the internal states

Ia> and 1[> of A and B, respectively.


2. The Differential Cross Section

The scattering rate or transition probability per unit time be-

tween the free states defined in eqs. (1.1.3)is given by(Newton, 1966,

chap. 8)

R(k'v' + 1) = (2/) < '' T(+) (E) I >, 12. 1


where final and initial quantities are indicated by primed and unprImed

22
symbols, respectively, and E = 2 k /(2M) + E is the total energy of the

"(+
system. The transition operator for the collision, (+), satisfies the

Lippman-Schwinger equation for outgoing-wave boundary conditions


^(+) ^ ^(+) (+)
T (E) = V + VG (E)T(E),
o
^(+)
where G is the propagator for the free motion given by
o
a(+) -1
Go (E) = (E + in K HM) .


(1.2.2)


(1.2.3)


Experimental measurements usually correspond to thermal averages over
(X)
initial distributions of internal states with w(M (T ) with
ct X


\ ... .











temperature TX for each collision partner X = A or B. Furthermore,

experiments usually do not select the final internal states of the

molecules. In these cases, we must consider the total rate for scat-

tering between initial and final moment,


R ot( k) = (27r/%) w (T ,T) I<''~'I )(E)Ik>2 6(E E ) (1.2.4)
tot tV Ad B

where the delta function insures conservation of the total energy

of the system.

Typical rotational excitation energies of most molecules (except

those that contain several hydrogen atoms) are of the order of a few

thousands of an electron volt. At hyperthermal collision energies, the

sum over final states in eq. (1.2.4) contains a very large number of

terms, even for small values of energy transfers. This also occurs in

atom surface-scattering due to the low values of phonon excitation

energies. However, the sum over final states may be formally elimi-

nated by the following procedure (Micha, 1981a).

Introducing the integral representation of the delta function,
00dt
6(E E') = 2B exp[-i(E E')t/Y], (1.2.5)


into the matrix elements of the transition operator of eq. (1.2.4) and

using eq. (1.1.3a) yields


= fdtexp(-iEt/) -- 2 rrt
x exp(-ifHt/) M kv> 6
(1.2.6)









where the energy transfer is given by = 2 [k2 (k') 2]/(2M).

The matrix element of eq. (1.2.6) implies an integration over the
M
relative coordinate R and over the internal coordinates r Before

proceeding further it will prove convenient to explicitly factor

these two integration by defining the operator


T-* = , (1.2.7)
k'k

which acts only on the internal coordinates of the molecules. Sub-

stituting eq. (1.2.7) into eq. (1.2.6) and the latter into eq. (1.2.4),

the sum over final states may be eliminated by means of the com-

pleteness relation of the internal states Iv'>. One thus arrives

at the following expression for the total scattering rate,

+ 4 m dt ^ t ^dt
Rtot(k',k)=(27/%) 4 2- exp(-ict/M) <>,
-oo k'k k'k
(1.2.8)

where the double brackets indicate the quantum mechanical and

thermal averages over initial states,

<<* .>>= w(TA) wB) (TB). (1.2.9)
a,B
The time dependence of the transition operator is given by the

Hamiltonian of the noninteracting molecules (indicated explicitly by

the subscript M), as shown below


T (t)M= exp(iHMt/M) Tk, exp(-iMt/). (1.2.10)










The doubly differential (energy-angle) cross section for

scattering into a unit solid-angle Q accompanied by a transfer of

energy E may be calculated from the ratio of the transition rate to

the incident flux (Micha, 1979a), to give

do (22/ i)4 2 0 dt
dE-= (27T/4 M2(k'/k) f 2 exp(-iEt/)<>


(1.2.11)

where the final momentum is related to the energy transfer by
2 2 '
k'=(k2-2Me/2 )4. The cross section is thus expressed as the

Fourier transform of the time-correlation function of the transition

operator, with the time dependence determined by the internal motions

of the isolated molecules. Approximationsto the cross section in

terms of correlation functions have been previously used to describe

scattering of cold neutrons from solids (Marshall and Lovesey, 1971)

and from liquids (March and Tosi, 1976), and atoms from polyatomics

(Micha, 1979a and 1981a) and from solid surfaces (Micha, 1981b,c).

The present expression is more general than these models and is

therefore applicable to a much wider range of many-body systems.

The direct evaluation of the time-correlation function of eq.

(1.2.11) is as difficult as finding the solution to the many-body

problem which is implicitly contained in the transition operators.

At first sight, it seems that the sums over final states have been

removed at the expense of introducing an added time dependence (due

to the complicated internal molecular motions) into the already

intricate transition operators. However, the correlation function

approach allows the development of dynamical approximations to the










transition operator in a systematic way, as is shown in the following

chapters. These approximations, based on the relevant features of

the intermolecular potential surface and on the different types of

molecular motions, will allow us to understand the physical mechanisms

that govern energy transfer processes. The correlation function

approach has the additional advantage of describing the collision

in terms of time dependent Heisenberg operators which may be easily

interpreted in terms of the classical dynamical variables of the

colliding molecules.


3. Time-Evolution of the Correlation Function and
Moments of the Energy Transfer

Other quantities usually measured by experiments are the moments

of the energy transfer. These measurements are related to quantities

that can be calculated theoretically, in the following way. For

given values of the initial and final moment, the nth order moment-

average of the energy transfer with respect to the cross section is

defined by

=[f ded2/(dQdF)]-1 J de En d2a/(dde) (1.3.1)
-CO -CO

For the sake of brevity, we introduce the following notation for

the correlation function,

S(t) = <>, (1.3.2)
k'k k'k k'k M
and for its Fourier transform,
r^ 7dt
S ()= exp(it/$) C (t), (1.3.3a)
kCk -(t k'k

C. (t) = f de exp(ict/%) C, (E), (1.3.3b)
k'k










and we drop the subscripts k and k' while keeping in mind that the

following derivations correspond to fixed values of the initial and

final moment. Differentiating eq. (1.3.3b) with respect to time

shows that the moments of the energy transfer are related to the time

derivatives of the correlation function by


n (-i1)n 3n C(t) (1.3.4)
C(0) atn t=-0
and to the transition operator by

n t ^ n ^ ^t ^ -1
= <<(0)([H ,) T(0)J>><< (0)T(0)>> (1.3.5)



through differentiation of eq. (1.2.10). This last equation pro-

vides the bridge between calculated values and experimental measure-

ments.

However, the moments of the energy transfer, by themselves,

do not provide information about the cross section in the most

practical way. This can be seen by expanding the correlation

function in a Taylor series in time, about t=0, and equating the

time-derivatives to the moments of the energy transfer by eq. (1.3.4).

One thus obtains an expansion for the cross section in moments of the

energy transfer, but each term of this series diverges because it

contains the Fourier transform of tn. The origin of this divergence

is further clarified by expressing the time dependence of the cor-

relation function, as follows (1).

Differentiating eq. (1.2.10) with respect to time, yields

Heisenberg's equation of motion for the transition operator,

T (t)M i [H MT(t) M] (1.3.6)
M- M M
Dt i

1) The following derivation is based on class notes of Prof.
D. A. Micha.










We now define the Liouville superoperator for the internal motions,

L ,by its action on any arbitrary operator A which acts on the in-

ternal coordinates of the molecules; this is given by

LM = [H A], (1.3.7a)


and, more generally,

L n A= ([HM,)nA]. (1.3.7b)
M M

The time evolution of the transition operator may now be rewritten

as

DT (t)M i L T(t)M (1.3.8)
M= MM

which has the formal solution

T(t)M = exp(iLMt/A) T (0). (1.3.9)


Replacing eq. (1.3.9) into eq (1.3.2) yields the following ex-

pression for the correlation function,

C(t)= C(O)<><>. (1.3.10)
c~t) C(O~

The last two factors in the above equation are formally equivalent

to the average of the operator exp(iLMt/%) over the "scattering"

states defined by Iv>S=T(0) v>. Denoting this average by the sub-

script S, we write

C(t) = C(0)<>S. (1.3.11)


A comparison of eqs. (1.3.4) and (1.3.8) shows that


= <>S;


(1.3.12)










therefore, expanding the cross section in moments of the energy trans-

fer is equivalent to an expansion of the exponential

exp(iLt/i) in powers of the exponent. We are not surprised that

this expansion diverges when it is applied for all values of time.

In order to take full advantage of the theoretical and experi-

mental information provided by the moments of the energy transfer,

we must introduce the cumulant expansion methods which have been

widely used in statistical mechanics (Kubo, 1962, Munster, 1969).

These techniques will also provide us with powerful tools for

evaluating the correlation functions that we will encounter in the

following chapters.

4. Cumulant and Moment Expansions

For any operator A and complex number x, the average of

exp(xA) is defined in terms of the moment averages of A, <>, by


<>= x x<>/n!. (1.4.1)
n=0

Truncating the above series to a finite number of terms might give a

very poor (even divergent) approximation to <> for some

values of x. We look for an alternate expansion which will hope-

fully give a better approximation when truncated. In particular, we

write

<>= exp xn< n=l
where the <> are certain averages of the operator A called

cumulant averages (Kubo, 1962), which are implicitly defined in terms

of the moments by eqs. (1.4.1) and (1.4.2).







16

An explicit relation between a cumulant of a given order and the

moments and cumulants of lower orders may be obtained by the following

procedure (Munster, 1969). Differentiating eqs. (1.4.1) and (1.4.2)

once with respect to x and equating their right hand sides yields

00 00
Sxnl<>/(n-l)!= xn-l An->><
>/[(n-j)!(j-1)!],
n=l n,j=l (1.4.3)


where the equality follows by changing the dummy index of

summation n to n-n+ j. Comparing powers of x in the last equation

and solving for <>C gives the desired relation,
n-1
n ^n n-1 ^n-j ?j
<< >>= <
>- < >><>C. (1.4.4)
j=l

For example, the first four cumulants are

<
> = <>, (1.4.5a)

2 2 2
<
>-<> (1.4.5b)

3 ^3 ^ ^2 3
<
>-3<><>+ 2<> (1.4.5c)

^4 ^4 ^3 ^ 2 2 2 4
<
> = <>-4<><>+ 3<>(3<> -<>)- 6<>.

(1.4.5d)
In particular, letting x = it/j and A =L M, we can express

the correlation function of eq. (1.3.11) in terms of the cumulant

averages ofLM, as follows:

C(t) = C(0) exp (it/M)n< CS/n!. (1.4.6)
n=l
In analogy with eq. (1.3.12) we define the cumulant averages of the

energy transfer by CS which are related to the moment

averages as shown below


n-i
n < n> n n-> > (1.4.7)
< C =l -1
j=1










Finally, substituting eq. (1.4.6) into eq. (1.2.11), we obtain
2 m m
d = (2/) M2(k'/k)C(O) f t exp[-iet/(+ (i t/l n> /n!].
n=l
(1.4.8)
For given values of the initial and final moment, this last

equation provides a convenient parametrization of the cross section

in terms of the averages of the energy transfer. As the cumulant

averages correspond to differences between numbers of the same

order of magnitude, the cumulant series will converge very rapidly.

Furthermore, the above expression allows us to obtain well-behaved

approximations to the cross section by truncating the series at any

term of even order which is negative. The significance of these

approximations is considered in the following section.


5. Short-Time Expansions

We now apply the techniques introduced above to systems in which

the transfer of energy occurs in a time interval much smaller than

the typical periods of the internal molecular motions.

For example, even at collision energies below the threshold for

vibrational excitation, the rotational motion of most molecules is

much slower than the relative motion of the colliding partners (Micha,

1979b). This is also the case in atom-surface scattering at hyper-

thermal energies because the vibrational periods of phonons are much

longer than collision times (Micha, 1981c). In these cases, the cor-

relation between the two transition operators that determine the cross

section is significant only during a short period of time. We are










then justified in retaining only the lowest powers of t in the

cumulant expansion of the correlation function and writing


C(t) Z C(0) exp[it/1 t2/(2%~2)]. (1.5.1)


The applicability of the short-time approximation to a specific

system can be judged by calculating or measuring the cumulants which

have been omitted in the above equation. Alternatively, we can

systematically develop improved approximations by including the

higher order cumulants.

Substituting the correlation function of eq. (1.5.1) into

eq. (1.2.11) and evaluating the Fourier transform (Churchill et al.,

1974), we obtain the following expression for the cross section,
2
da 2 1- 2 2
d2d I(Q)(27C)-2 exp[-(e-<>) 2/(2< >C)], (1.5.2a)


I(0) = (2/M) 4 M2 (k'/k) C(O). (1.5.2b)


This result shows that collisions in which the transfer of energy

is much faster than the internal motions are characterized by a

normalized Gaussian distribution in the energy transfer. This holds

true for all scattering angles, regardless of the nature of the

collision partners. The distribution is centered about the average

energy transferred in the collision, , and broadened by an amount
2 2 2
C= (< >- <6> ) 2 The nature of the colliding species deter-

mines the values and the dependence on scattering angle of the in-

tensity I(Q) and of the location and width of the distribution.

These conclusions are supported by several experimental measurements

of atom-molecule (Bottner et al., 1976, Eastes et al., 1977 and

1979a,b) and atom-surface (Micha, 1981c) collisions.











We should emphasize the differences between the short-time and

the various sudden approaches which have been widely used to describe

molecular scattering. The latter are based on different approximations

to the dynamics by which the energy is transferred. In contrast,

throughout the present derivation, we have made no approximations

to the dynamics of the collision. The intensity, location and width

of the distribution of eqs. (1.5.2) depend on the exact transition

operator. In particular, the coordinate-sudden approach (also called

fixed-nuclei and adiabatic, see Chase, 1956) assumes that the in-

ternal degrees of freedom are frozen during the duration of the

collision. In the short-time approximations these degrees of free-

dom evolve in time, albeit slowly, as can be seen in eq. (1.5.1).

On the other hand, the energy-sudden (Khare, 1977 and 1978) and

infinite-order-sudden (Secrest, 1975, Goldflam et al., 1977) methods

fix the internal energy of the molecules throughout the collision;

in the short-time approximation, the internal energy can and does

change during the collision, as prescribed by the exact transition

operator.

















CHAPTER II
THE MANY-BODY CORRELATION FUNCTION APPROACH

In this chapter we develop and study the time-correlation

functions that are appropriate to describe hyperthermal collisions

in which a light projectile is deflected into large scattering

angles. In order to maintain the formalism at the clearest level

possible, we take the projectile A to be a structureless atom (neutral

or ionized), while the target B remains a general N-atom polyatomic.

Furthermore, we focus our attention on scattering processes in which

the amount of energy transferred is considerably smaller than the

relative collision energy.

The standard parameterizationof atom-molecule potential energy

surfaces is based on an expansion in a basis-set of functions of

angles centered at the center of mass of the target (see Staemler, 1975,

Parker et al., 1976 and Thomas et al., 1978 for examples). However,

when the collision energy is much larger than the typical well-depths

of the potential, large-angle scattering is due to the deflection of

the projectile from the steeply repulsive inner region of the surface

(McDowell and Coleman, 1970, Chap. 1), which is of a multicenter

nature. In these cases, the potential is better represented by ex-

panding about the atomic centers of the target, as follows (Micha,

1979a):

V(R,r ) =Iv (R,r ). (2.1)
a










Here, R is the position of A with respect to the center of mass

of the target and r ={ r a = 1 to N} is the collection of the
a,
coordinate vectors of the atoms that constitute the polyatomic,

referred to the center of mass of B. The two-body potential v
a
represents the interaction between the (A,a) atom pair and depends

on the electronic distribution of A and that of the valence state of

atom a in the molecule. In general, at short distances, the pair

potentials are steeply repulsive due to the overlapping of the

electronic clouds, while in the long-range region they fall off as

inverse powers of the relative distance between A and a. We post-

pone a detailed study of the pair potentials to a later chapter and

concentrate here on the collision problem.

The many-body representation of the potential shown above

suggests that atom-molecule scattering processes should be inter-

preted in terms of the dynamics of a many-body system; this approach

has resulted in the recent development (Micha, 1979a) of a quantal

many-body theory of atom-molecule collisions. Such a description,

briefly reviewed in Sec. 1, leads to a simple model for vibrational

and rotational energy transfer processes, in which the cross section

is expressed in terms of atom-pair correlation functions of the

isolated target molecule. These correlation functions can be readily

evaluated for polyatomics whose vibrational motions arise from har-

monic forces (Micha, 1979b). This model has been successful in de-

scribing the large-angle scattering of Li+ from N2 and CO (Micha

et al., 1979) and from CO2 (Vilallonga et al., 1979). However,

recent quantal calculations for the system He/CO2 indicate that










molecular anharmonicity may considerably influence vibrational energy

transfers at thermal collision energies (Clary, 1980). Therefore,

we extend the atom-pair correlation functions to encompass anhar-

monic force-fields, so that we can ascertain the effects of molecular

anharmonicity in hyperthermal collisions. In order to focus our

attention on the vibrational dynamics of the target, in Sec. 2 we

decouple the vibrational and the rotational correlations from each

other. By means of the cumulant expansion methods introduced in

Chap. I, we express the vibrational correlation in terms of the dis-

placement-displacement correlation functions, as shown in Sec. 3.

These simpler functions are readily obtained from the corresponding

double-time Green functions (Zubarev, 1960), which in turn may be

evaluated from their hierarchy of equations of motion. In Sec. 4,

this set of coupled differential equations, which is of infinite

size, is decoupled by a linear procedure that contains anharmonic

forces to infinite order. From this development, we conclude that

anharmonic intramolecular forces cause a shift in the energy transfer

spectrum and in the cross sections for vibrational excitation, as dis-

cussed in Sec. 5. Finally, in Sec. 6, we complete the evaluation

of the atom-pair correlation function, by means of a short-time

approximation to the rotational motions.


1. Outline of the Many-Body Approach

The many-body transition operator presented in eq. (1.2.2) can

be expressed in terms of the two-body potentials va of eq. (2.1), by

means of the formalism of multicenter scattering (Rodberg and Thaler,

1967, chap. 12). This leads to the final-channel decomposition










( (a)
T = ) (2.l.a)
a

^(a) A (b)
T(a) = + G T(b) (2.1.1b)
a a o
b#a
= v + v G T (2.1.1c)
a a a o a
A(a)
where (a) describes the process in which the last interaction is

mediated by va, while in T the only interaction is through v In
a a a
particular, iterating eq. (2.1.1) gives the multiple-collision ex-

A(a)
pension 2.1.2 that describes the operator T(a) in terms of successive

collisions between the projectile and each atom of the target.

Two assumptions (Micha, 1979a), that are appropriate to ex-

perimental conditions of high relative energies and large scattering

A(a)
angles, greatly simplify the evaluation of (a). When the wave-

length for relative motion is much shorter than the distance be-

tween scattering centers, one may assume that only single collisions

between the projectile and each atom of the target are significant, so

that T T In order to calculate T the N + 1 body problem must
a a
still be solved because the propagator G involves the motions of all

the atoms of the target. However, substantial simplifications occur

whenever the energy transfer is impulsive; this constitutes the

second assumption.

In an impulsive collision between the projectile A and target

atom a, a large force acts on a for a very short period of time. The

position of a does not change but its kinetic energy in the initial

state of B jumps to the new value that corresponds to the final

state the molecule. Energy and momentum are transferred to the target

through the interaction between the pair (A,a), while the remaining

N-l atoms only provide the restoring forces on a that determine its






24

momentum distribution within the polyatomic. When the collision

energy E is much larger than the energy transferred e, the part of

T that acts on the internal coordinates ofB is given by (Micha, 1979a)
a

= T (k',)exp(iK r ), (2.1.3a)
a a a

T ( ',k) = < |t (E ) > (2.1.3b)
a a a a a

Here, T is the transition amplitude for the collision of the atom
a
pair (A,a) evaluated at their relative kinetic energy E = m E/(M + m )
a a a
and relative momentum MK = ikm /(M + m ), and t is the two-body
a a a a
transition operator for the potential v ; whenever e< a a
independent of the internal state of the polyatomic. As a result of

the collision, atom a at position r absorbs an amount of momentum
a


Under these assumptions, the cross section of eq. (1.2.11)

factors into quantities that depend on two different types of motion,

as follows:
2
dS= (27/T) M2(k'/k) I Tb (t',k)T (k',)S(ba)(,E), (2.1.4a)
a,b

S (ba) ,) = exp(-ict/j)< r (2.1.4b)
The first factor, T (V',k), involves only the relative motion of the
a
(ba)
pair (A,a). The second factor, S (K,E), is the Fourier transform

of the atom-pair time-correlation function (Van Hove, 1954) and de-

pends only on the internal dynamics of the isolated target.

The correlation function for a pair of different atoms (a/b) con-

tains phases that depend on the initial values of the internal dynamical

variables of the target. Experimental measurements usually correspond










to initial averages over random phases so that the terms of eq. (2.1.4b)

that have afb average to zero. In these cases, the cross section is

given by
do 2 a (aa) +
d = a (k ,), (2.1.5a)
d~dE ak
a

S(,k) = (2/1)4 M (k'/k) IT (k',ik) 2 (2.1.5b)
a a

where a is an effective two-body cross section for the (A,a)-pair

collision. Hence, the contribution of atom a to the overall cross

section may be interpreted as the product of the probability that a

will deflect the projectile from k to k', given by a multiplied by

the probability that the molecule will absorb energy and momentum

through this atom, given by S(aa). The self-correlation function S(aa)

(K<,) completely describes the response of the target atom a to the

transfer of momentum %K and energy e in the impulsive collision,

regardless of the nature of the projectile atom.

The two-body cross-sections oa are, in principle, off-energy-

shell quantities that must be obtained from the T These can be
a
evaluated using any of several well-known techniques which need not

be repeated here (see, for example, Brumer and Shapiro, 1975, Beard,

1979 and Kuruoglu and Micha, 1980). However, for the experimental

conditions of quasielastic scattering,I t lt'| so the a can be

obtained from standard two-body elastic cross sections.

Due to the factorization of internal from relation motion just

described, from here on we need to consider only the internal dynamics

of the target molecule. In order to focus our attention on the

vibrational dynamics, it will prove convenient to decouple rotational

and vibrational motions, as follows.











2. Vibrational and Rotational Correlations

Working in the center of mass of the isolated polyatomic, for

each atom a of B we introduce its equilibrium position d and its
a
displacement from equilibrium u so that r = d + u The con-
a a a a
editions of zero total linear and angular moment lead to the con-

straints (Wilson et al., 1955, Chap. 11)


m = a (2.2.1a)
a


m u xd = (2.2.1b)
aa a
a

which introduces N tr=5 or 6 relationships among the vibrational dis-

placements for linear and nonlinear molecules, respectively. This

leaves NV = 3N-Ntr free vibrational coordinates in the body-fixed (BF)

reference frame. The atom-pair correlation function (APCF) can now

be written as


(aa) + + + +^
F (K,t) = <>VR
a a a R a M VR
(2.2.2)
For most polyatomics (except those that contain several hydrogen

atoms), rotational motions are much slower than vibrational ones, in-

dicating that the vibrational and the rotational correlations should

be studied separately from one another (Micha, 1979b). This can be

done by writing the internal Hamiltonian as H = H + HR and re-
M V R
quiring that the vibrational (H ) and rotational (H ) Hamiltonians
V R
satisfy [H ,H ] = 0. This means that [H ,u ] a 0 because the u
depend on the orientation of the molecule with respect to the
depend on the orientation of the molecule with respect to the










spaced-fixed (SF) coordinate system. These commutation relations

cause the APCF to factor as follows,


(aa) ^(aa) .
(K,t) = exp[-iT-d (0)] F (K,t)exp[i-1a (t)R]>> (2.2.3a)
a V a R R

(aa) +t + +t +i +
F (K,t) = <>V. (2.2.3b)
a a M V

^(aa)
The vibrational correlation of (aa) can now be calculated in the
V
BF frame, in which case it depends on the set of Euler angles

r ={a, B, y} that determine the orientation of this frame with re-

spect to the SF one. These angles vary in time in accordance with

the rotational Hamiltonian of the polyatomic. However, when this

motion is much slower than the vibrational one, we need only con-

sider the vibrational correlation for fixed orientation of the

molecule. Hence, within the vibrational APCF of eq. (2.2.3b) we may

approximate r(t) = F(0), so that u (t) u (t) Evaluating the
R a Mi a V
time derivatives of eq. (2.2.3b), one can easily show that this is

equivalent to neglecting the rotational energy transferred through

the torques that act on the vibrational displacements; this is

justified whenever u l< a a
citations well below the dissociation thresholds.

The effects of anharmonic intramolecular forces are now entirely

contained in the vibrational APCF of eq. (2.2.3b). For harmonic force-

fields, this function may be readily evaluated by obtaining the

u (t) from second quantization methods (Micha, 1979b). In contrast,
a V
anharmonic forces introduce two main difficulties into the evaluation

of the APCF. Firstly, the time-evolution of anharmonic motions











usually cannot be solved in a closed form. However, the evolution
4-
of the operators u is of central importance, because they determine.
a
how energy is absorbed by and distributed within the polyatomic.

Therefore, we must develop approximations to the vibrational dynamics

that contain the features of the evolution of the u which are most
a
important to the collisions of interest; this is the subject of

Sec. 4. The second difficulty resides in the calculation of quantal

and statistical averages of the complicated exponential operators;

however, these averages may be systematically approximated in the

following way.


3. Cumulant Expansion of the Vibrational Correlation

In order to abbreviate the notation, let xt be the component of
-t4-+
u (t) in the direction of the momentum transfer K, so that

K *u (t) =KX and omit the subscript V from the vibrational time
a t
dependence and from the average over initial states. The evaluation

of <> is complicated by the fact that, in general,



exp(-iKx ) exp(iKk t)exp[-iK(x0-xt)], (2.3.1)


because [ ,H ] # 0. We introduce the superoperator 0 which, when

acting on a product of powers of x0 and xt, orders all the powers of

x0 to the left of all the powers of xt, i. e. Oxtx0 = x0xt. The

APCF may now be written as


F (aa) t) = <>, (2.3.2)










where the average of the ordered exponential operator is defined in

terms of the moment-averages of the ordered exponent, as follows:


<> = (-iK)n<<(x )n>>/n!. (2.3.3)
n=0
From studies of the scattering of cold neutrons from crystals

(Marshall and Lovesey, 1971), it is well known that the terms of

eq. (2.3.3) which contain the product x0t, with A + m 1 = n,

describe the simultaneous n-tuple excitation of the vibrational

states of the target. In these cases, only single excitations are

usually observed so the APCF is approximated by the second moment.

However, in atom-polyatomic collisions, multiple excitations are

readily observed in the experiments mentioned in the Introduction.

Hence, it will prove more convenient to express the APCF in terms of

the cumulant averages of the exponent, << (x0-x )n>>, as follows

(aa) exn <<(^ ^ /nn>>c.
F( (K,t) = exp (-iK)n<(x0 ) > /n!. (2.3.4)
V n= t C
n=l

Comparing the coefficients of powers of (-iK) in eqs. (2.3.3,4),

as done in Chap. I, Sec. 4, shows that the cumulants are related to

the moment averages by
n-1

<(0-t )n>C = <> <<(x0-xt n- (x t)>> C
j=1
(2.3.5)
Due to the invariance of the trace of a product of operators with re-

spect to a cyclic permutation of their order, <>=<>, so the
O tf
first few cumulants are










<>C = 0, (2.3.6a)

2 r2
<<(x0-xt) C = 2(<< >>-<>) (2.3.6b)

3 n -2
C = xt>>-<)' (2.3.6c)

4 4 2 2
<<(x0 >>C = <<(xxt) >>-<<(x-t)>> (2.3.6d)

Equations (2.3.4,5) express the APCF in terms of the simpler dis-

placement-displacement correlation functions (DDCF) of the type
9Lm
<> with Z and m integers.

By means of a theorem due to Bloch (Messiah, 1961, Chap. 12),

one can readily show that, for harmonic motions, all the cumulants of

order higher than two are identically zero. Therefore, these cumu-

lants are explicitly proportional to the strength of the anharmonic

forces. However, in the usual experimental distributions of initial

states, only the lowest vibrational states are significantly popu-

lated. In these cases, the displacements are small and vibrational

motions are approximately harmonic, so that we may write

(aa) 2
F() (,t) Z exp{-<<[i.a (0)] >>+<<[Z-. (0)][ (t)]>>}. (2.3.7)
V a a a

If necessary for highly excited targets, this approximation may be

systematically improved by including the higher order cumulants in-

dicated in eq. (2.3.4). We note that the above equation still con-

tains anharmonic forces to infinite order, within the time dependence

of the u and within the average over initial states. Furthermore,
a
eq. (2.3.7) includes multiple excitations, as can be seen from the

power-series expansion of the exponential function.










We must now stress a very important point of the present de-

velopment. The cumulant series of the APCF corresponds to an ex-

pansion of the operator Oexp[-iK(x0-xt)] in terms of its exponent;

this is not equivalent to expanding the vibrational time-evolution

operator exp(iLVt/l) in powers of time. Therefore, eq. (2.3.7)

does not correspond to a short-time approximation to the vibrational

motions. In this case, a short-time approximation would not be valid

because vibrational periods are comparable to collision times; this

is further confirmed by the rich vibrational structure observed in

the experiments, which cannot- be described by the Gaussian distri-

butions characteristic of slow internal motions.

Before proceeding to the evaluation of the DDCF, the vibrational

Hamiltonian must be specified. The potential is usually given in

terms of the internal coordinates of the molecule s., i=l to N

(Wilson et al., 1955, Chap. 8), which are related to the cartesian

displacements (Ua) E=x,y,z,by the linear transformation


(u) = a~(r)s.. (2.3.8)


Here, the coefficients Ca i depend on the orientation of the BF frame

with respect to the SF one. Using eq. (2.3.8), the kinetic energy

of vibration can be expressed in terms of the internal coordinates, as

follows:


K 1 i Ds m. s. (2.3.9a)
V 2 -i j J
i,j

m = mac a.c a.. (2.3.9b)
ij a a a
a S










We take the vibrational potential V (s) to be a general function of

the s. which satisfies the conventions V (0) = 0 and (3V /s) =

Wilson et al., 1955, Chap. 2). In order to single out the effects

of anharmonicity, we separate VV into a harmonic part Vh and an an-

harmonic one Vanh, by writing


VV = Vh + Vanh, (2.3.10a)


V = s.k..s./2, (2.3.10b)
h J a3
i,j

k 2 V (2.3.10c)
ij 9s.Ds |s= .
1 J
Using eq. (2.3.8) we could express <<[-. U (0)][K U (t)]>>
a a
in terms of the correlation functions of the internal coordinates and

then proceed to evaluate the latter. However, in order to facilitate

a comparison of the results of this study with those of harmonic vi-

brations, it will prove convenient to work with the set of coordinates

that diagonalize the harmonic part of the Hamiltonian. These co-

ordinates, denoted by Qj, j=l to NV are defined by the orthogonal

transformation (Marion 1971, Chap. 13)


s = ajQ, (2.3.11)


where the coefficients a.. satisfy the set of linear equations
1j

S(ki- r )ai = 0, (2.3.12)
i ] j

with the normalization condition

ai j mi a = i, (2.3.13)
i,R










and with the frequencies w. given by the roots of the characteristic

equation


det{ki. w2 i }= 0. (2.3.14)
iit

Substituting eq. (2.3.11) into eqs. (2.3.9,10) yields for the

vibrational Hamiltonian


V= Hh + Vanh(Q), (2.3.15a)
o2 h 2a
S= (P + )/2, (2.3.15b)
i

where P. = -i3/QQ. is the canonical momentum conjugate to the co-
1 1
ordinate Q.. Combining the transformations defined in eqs. (2.3.8,11)

we write


S= .(r)Qi, (2.3.16a)
a ai i


( ai) = CaZ ()a i (2.3.16b)


hence, the APCF of eq. (2.3.7) becomes


F(aa)(,t) = exp{ (K- C .)(. C ai)[->+
V aj at j
i,j

+ <>]}. (2.3.17)


The evaluation of the displacement-displacement correlation

functions < is the subject of the next section. We

emphasize, however, that the methods presented below are applicable

to the evaluation of correlation functions of any vibrational displace-

ments that are related to the u by a linear transformation. The
a










present choice of the Q. is based only on the desire to compare the

results obtained from anharmonic force-fields with those of harmonic

ones. From a practical point of view, the coordinates that diagonalize

the harmonic part of the Hamiltonian are useful when anharmonic

couplings between Qi and Q. with i j j are small, and when breakup

channels need not be considered. If the intercoordinate couplings

are large, or if one is interested in dissociative processes, a de-

scription in terms of the correlation of the internal coordinates s.

is more appropriate. Furthermore, the following procedure may be

readily extended to the evaluation of correlation functions of the
^-^m
type <> with Z,m>l.


4. Evaluation of the Displacement-Displacement Correlation Function

Heisenberg's equation of motion for the displacement Q.,

AA
J- Qi(t) = [H V Qi(t)], (2.4.1)
Dt

leads to a second order inhomogeneous differential equation that

describes the time evolution of the displacement-displacement cor-

relation function (DDCF) <> (in this section we continue

to omit the subscript V from the vibrational time-dependence and from

the average over initial states). In order to solve this equation, one

would need to specify two boundary conditions (for example, the value

of the correlation function and of its time derivative at t=t'), which

require knowledge of averages of operators over the initial states.

For anharmonic Hamiltonians, the calculation of these averages re-

quires considerable computational effort; hence, we will obtain the

DDCF from the corresponding double-time Green functions, which al-

ready incorporate boundary conditions.









For any operators A and B, the double-time retarded (+) and

advanced (-) Green functions are defined by (Zubarev, 1960)


< ) = iO[+(t-t')]<<[A(t),B(t')]>>, (2.4.2)


where 0 is the Heavyside unit step-function. Differentiating

eq. (2.4.2) with respect to time using eq. (2.2.1),and evaluating

the necessary conmutators, yields the equation of motion for the

displacement-displacement Green function (DDGF). This is

2 2 2 W (W)
(2/9t2 + mi)<> <> =

= -4 6ij 6(t-t'), (2.4.3)



where f. =-V /anhQ. is the anharmonic force that acts on the co-

ordinate Qi. Following the same procedure, one can write an equation

of motion for the Green function <> which in turn

involves Green functions of higher derivatives of the anharmonic

potential. One thus develops an infinite hierarchy of coupled dif-

ferential equations which cannot be solved unless it is closed by a

decoupling approximation.

In studies of anharmonic vibrations of crystals, several de-

coupling schemes have been proposed (for examples, see Kascheev and

Krivoglaz, 1961, Thompson, 1963, Maradudin and Ambegaokar, 1964,

Pathak, 1965). These are based on polynomial-type anharmonicities,

so that the third term on the left of eq. (2.3.3) is a sum of higher

order DDGF of the type < then develops the hierarchy of equations of motion for these functions,
then develops the hierarchy of equations of motion for these functions,










which in turn involve DDGF of even higher order. At some level, the

hi-erarchy is decoupled by either neglecting the high-order DDGF, or

approximating them by products of time-independent averages multiplied

by DDGF of lower order. For molecular vibrations, these procedures

have the following disadvantages: 1) many anharmonic potentials of in-

terest (eg. Morse-type) cannot. be expressed as a finite-degree poly-

nomial in the displacements, 2) even for polynomial anharmonicities,

the factorization of the high-order Green functions is not uniquely

defined, so that different factorization prescriptions lead to dif-

ferent results, 3) on the other hand, the neglect of higher-order DDGF

introduces dynamical approximations that are not well understood.

However, we can develop an alternative decoupling procedure that does

not suffer from these drawbacks, as follows.

As discussed in the previous section, in the usual experimental

distributions, the vibrational displacements are small. In these

cases, we may approximate their dynamical correlation with an effective

harmonic one, by means of the linearization


<> (. b i> ( (2.4.4)

hence, all the dynamical effects of the anharmonic forces are contained

in the decoupling parameters b. Further on we will fix the bi9 to

reproduce the dynamical features of the exact DDCF during the brief

collision times characteristic of impulsive energy transfer. On the

other hand, when the population of excited initial states is large,

eq. (2.4.4) may be generalized to










<> (2) <>() +
1 J ii j A


+ (3) <>(t) +
tm im


+ b)<< (t) (t)Q (t);Q.(t')>>(+. '
i mn Z m n 3
mn
(2.4.5)

which corresponds to approximating the anharmonic correlation by means

of effective harmonic, cubic, quartic, and so on, correlations. The

(n)
decoupling parameters b) may then be fixed to reproduce the
im...
exact values of the dynamical properties of the DDCF that are most

relevant to the collisions of interest.

In order to maintain the formalism at the clearest level pos-

sible, from here on we consider the case of zero anharmonic couplings

between Qi and Q. for i#j, so that b..=5..b.. We discuss the effects
i J 1iJ ij3 1
of nonzero intercoordinate couplings, at the end of this section.

Introducing the Fourier transform of the DDGF, defined by
(t);Q d i(t-t')(_
<> = J dw e G (w), (2.4.6)
1 ij

iij
the linearized equation of motion is readily solved for G. (w),

giving

(+) 2 -2
G. () = S6../[2r (a2 w.)], (2.4.7)
S13 1

where i.=(w. b.) is the effective vibrational frequency of the
1 1 1
coordinate Q.. For a Boltzmann distribution of initial states, the
1Fourier transform Ji( of Fourier transform J..(G) of Q.(t')Q.(t), defined by
1J J 1









00
Qt) -im(t-t')
<> = de J..( ), (2.4.8)


(+)
may be obtained from G. (w) by means of the relation (Zubarev, 1960)
ij


J..(_) = i e lim [G (W+ i)-G (a -i )]. (2.4.9)
1J 2sinha(a) n-G ij



Here, a(w) = Wm/(2kB T), kB is Boltzmann's constant and TV the

temperature of the distribution. Substituting eq. (2.4.7) into

(2.4.9) and using the expression


lim (y in)-1 =-Py1 if 6 (y), (2.4.10)



where P denotes the principal value, we find that the spectral

function J.. (w) is given by

-U. a.
j .(w) = b6..[e 6(w-.) + e 1 6(+ti )]/(4i.sinha.), (2.4.11)
i3 1] 1 i 1 1

in which a. = M ./(2k T). Finally, evaluating the Fourier transform
i 1 BV
indicated in eq. (2.4.8), we arrive at the following expression for

the DDCF,


<>=iij [exp(-a.-iw.t)+exp(a.+iTi.t)]/(4i.sinha.). (2.4.12)
J 1 1J 1 1 1 1 1 1


The decoupling coefficients may now be fixed to reproduce the

dynamical properties of the exact DDCF that are most relevant to the

collisions of interest. In the present case, impulsive energy trans-

fer occurs during a brief period of time centered about t=0. Hence,

we choose the b., or equivalently the i., to yield the exact values












of the first few time-derivatives of the DDCF at the instant of

collision. Differentiating eq. (2.4.8) with respect to time. shows

that the b. thus chosen will conserve the first few frequency-moments

of the spectral function. From eq. (2.4.1) we see that the exact

derivatives are given by

an =Q( it>n ^ n^
"< =(i/>) <>. (2.4.13)
,tn t=0


Evaluation of the necessary commutators yields an expression for the

first derivative that, at t=0, is independent of the dynamics of the

anharmonic forces; this is


S<< Q(0)Qi(t)>> = i6 ../2, (2.4.14)
t=0 1


which coincides with the expression obtained by differentiating the

approximate DDCF of eq. (2.4.12). However, the second derivative is

exactly given by

2 2 A2
2 <> = 6 (<>.Q.Q>>, (2.4.15)
2 3 t=0 13 3 1 1 1
dt

which depends explicitly on the anharmonic forces. On the other hand,

a second differentiation of eq. (2.4.12) yields

2 ^ ^
2 < at2 3 t=0 1j 21 1
d t










Hence, equating the right hand sides of eqs. (2.4.15,16) defines

the effective frequencies w. by the relation
1

= ^ 2 ^ ^
Jw.cotha. 2( i<>- <>). (2.4.17)



Substituting into eq. (2.4.12) the w. thus obtained, we find that
1
the approximate DDCF contains the dynamical effects of the anharmonic

forces to infinite order. Furthermore, for harmonic motions,
^2
<>=(m./4)cotha. and f.=0,so the present development includes
1 1 1 1
harmonic vibrations as a specific case.

Replacing eq. (2.4.12) into eq. (2.3.13) and rearranging terms,

we obtain the following expression for the APCF.

(aa) 2 -OCi -il.t
FV (,t) =[exp{-6' ai)2 [cosh a. + (e +
i



a. + i1.t
+ e )/2]/(2 .sinha.)}. (2.4.18)
i 1

Using the generating function of the modified Bessel functions of

the first kind (I ) (Abramowitz and Stegun, 1972),
n



exp[x(y + l/y)/2] = y I (x), (2.4.19)
n=-on

we finally arrive at


(aa) (aa) + +
F (Kaa t) = p (K;F)exp (-in. Vt), (2.4.20a)
n n
n












(aa) + -
p (K;F) =n I (X .)exp(-n.a. X cosh a.), (2.4.20b)
n. aii i ai 1
n i



X ai = '[K .(r)] /(2w .sinha.), (2.4.20c)



in which we have introduced the abbreviations n={n.} and
1

V= (Wi.}. Comparing these last equations with the ones corresponding

to harmonic vibrations (eq. (4.16) in Micha, 1979b), we find that the

APCF for harmonic and anharmonic motions coincide in form; however,

for anharmonic molecules, the normal frequencies m. must be replaced
1
by the effective ones w. obtained from eq. (2.4.17).
1
Nonzero intercoordinate anharmonic couplings cause mixing of

the normal coordinates Qi'. which is reflected in the off diagonal

parameters biz of eq. (2.4.4). In this case, the linearized equations

of motion for the DDGF lead to the following matrix equation for

their Fourier transforms.



(w2 1 2 + b) G( (w) = 1 l/(27), (2.4.21)
rb 'V ^ 'I lb

(+) (+)
where G (w) = {G. (w)}, b={b..} and OV ={ 6 .ij.}. Solving for
% r\ ij ru ij i
G (w), shows that the effective frequencies are given by the roots of
2 2
the determinant of (w 1-0 +b). Hence, choosing the b.. to reproduce
'. "'V r" 1J
the exact second derivative of the DDCF at t=0 leads to a matrix

equation for b analogous to eq. (2.4.17). Based on the present de-

velopment, the effects of molecular anharmonicity in hyperthermal col-

lisions may be interpreted in the following way.












5. Effects of Molecular Anharmonicity in Hyperthermal Collisions

In analogy to eq. (2.1.4b), the Fourier transform of the

vibrational APCF,

(aa) (;) dt (aa)
Sr) =exp (-iet/() F-(K,t) = (2.5.la)
V 2 exr V
-00


(aa)
= p (K;r) 6(n. w + e), (2.5.1b)
Sn
n

corresponds to the probability that the molecule will absorb vi-

brational energy and momentum in a collision involving atom a, for

the fixed orientation of the principal axes of the polyatomic in-

dicated by r. This has the form of 6-function peaks, located at the

vibrational energy transfer e =-n V where n. is the change in

quantum number (initial minus final) of the ith effective normal mode;

+ (aa) -
the probability for the transition n is given by p (K;.r)- .In
n
practice, these peaks are broadened into Gaussian functions by the

rotational correlation, as is shown in the following section. In

light of this analysis, the effects of molecular anharmonicity in

hyperthermal atom-polyatomic collisions may be summarized as follows.

1) Anharmonic forces cause a shift in the spectrum of the vi-

brational energy transfer, from the set of harmonic frequencies m.
1
to the effective ones W..

2) Equation (2.4.17) shows that this shift is related to

the work done by the anharmonic forces on the vibrational displacements.

3) The change in the vibrational frequencies is accompanied by

a corresponding change in the probabilities for vibrational excitation,

as indicated in eqs. (2.4.20b,c).










4) In contrast to the harmonic case, the effective frequencies

depend on the temperature of the distribution of initial states.

This is due to the fact that the anharmonic forces affect all the

states that are present in the distribution.

The magnitudes of the effects depend on the specific nature and

strength of the intramolecular forces of the target and require the

evaluation of the averages indicated in eq. (2.4.17). These may be

calculated by standard numerical procedures, or by finite-temperature

perturbation theory, when the temperature of the initial distribution

is sufficiently low. The application of this development to specific

targets will be presented in Chap. IV. We now proceed to consider

the rotational correlation, in order to complete the evaluation of

the APCF.


6. Short-Time Approximation to the Rotational Correlation

The rotational correlation of heavy molecules has been previously

evaluated by means of a Taylor-series expansion of the logarithm of the

APCF (Micha, 1979b). In this section, we present an alternative ap-

proach to the evaluation of rotational correlation, which is based

on the cumulant expansion techniques developed in Chap. I. Although

the two approaches are completely equivalent, we feel that the

present one allows a more unified understanding of the role of

correlation functions in the description of many-body collisions.

Substition of eqs. (2.4.20) into eq. (2.2.3) gives the following

expression for the complete self-correlation function









(aa) + (
F(aa) (,t) = F (,t) exp(-in w t)V (2.6.1a)
+ n
n

(aa) (aa) ^ ex (t
F (K,t) = <

>
a K- aR R
n II

(2.6.1b)

where the time dependence of F(aa) is due only to the rotational
n
motion of the molecule. Following the procedure described in Chap. I,
A
Sec. 3, we find that the time evolution of exp(-iK*-d ) is given by
a

exp[i.da (t)R] = exp(itLR/7) exp[i 'a(0)]. (2.6.2)


Here, LR is the Liouville superoperator for rotational motions,

which is defined by its action on an arbitrary operator A, as follows


L R = ([R,)nA]. (2.6.3)


Equation (2.6.1b) can now be rewritten as


(aa) (t) (aa) (aa)) +^
F (t) = P a(K) {<

n n n


x exp[-i-- a(0)]>>R (paa) ; (0))>>R, (2.6.4a)
n



p (). <

>R. (2.6.4b)
n n


Whenever the rotational motion of the molecule is much slower than

its vibrational one, we perform a short-time approximation to the

rotational correlation of each vibrational transition. As discussed

in Chap. I, Secs.4,5, this corresponds to expanding the second fac-

tor of eq. (2.6.4) in terms of the cumulant rotational averages of LR

and retaining only the first two cumulants, so that










(aa) (aa) 2 2 2
Fa (K,t) P (K) exp [it<> /R t <>C/(2 )]. (2.6.5)
n n


The lowest-order cumulants are determined from eq. (1.3.5) to be


(aa) ^ +, 1 (aa)
<> = <

> /P (K),
R CR a R a R
n n

(2.6.6a)


2 (aa) ^ )[H R ((aa)
<> (K) -
R CR 'a RR R
n n


<>2R* (2.6.6b)



Replacing eq. (2.6.5) into eqs. (2.6.1) we obtain the following

expression for the APCF,


(aa) -(aa) 2 2/2
F (K,t) = > P (K)exp[i(<>C-n w V )t/-< + n
nI
(2.6.7)

Finally, evaluating its Fourier transform, as indicated in

eq. (2.1.4b), we arrive at



(aa) 1 (aa) >>
S (a ,) Y- P( (K) exp {-[(< 4v' n
n

E)/(2<> (2.6.8)
R CR R CR



Examining this last equation we find that, for a given value of the

momentum transfer K, each atom of the target contributes a group of











normalized Gaussian peaks to the differential cross section. Each

peak corresponds to the vibrational excitation indicated by the set

of changes in quantum numbers n, and is centered at the vibrational

energy transferred in.IV plus the average rotational energy trans-

ferred to this vibrational transition <> ; furthermore, each
R CR
2
peak is rotationally broadened by an amount 2<> Equations
R CR"
(2.6.6) show that the rotational energy transfer and the width con-

tributed by each atom are functions of the momentum transfer (hence

of collision energy and scattering angle) and depend on the vi-

brational transition indicated by n. The probability that a collision
4-
involving atom a will excite the vibrational transition n is given
(aa)
by P which is also a function of the momentum transfer.
n
However, if atom a is at the center of mass of the molecule,

so that d =0, then instead of eqs. (2.6.7) and (2.6.8), we have
a

F(aa) 4 (aa) 4
F (K,t) = P (K) exp(-in-wvt), (2.6.9a)
4 n
n
(aa) (aa) 4
S (aaK,) = Pa (K) 6(E+ tn v), (2.6.9b)
+ n
n
which shows that such an atom does not absor-brotational energy

but does contributeto the vibrational excitation.

As discussed in Sec. 1, the correlation functions given by eqs.

(2.6.8,10) together with eqs. (2.4.20b,c) and (2.6.6) completely de-

scribe the response of the target to an impulsive collision, regard-

less of the nature of the projectile. The nature of the projectile

atom determines the two-body cross sections of eq. (2.1.5), in

accordance with the atom-pair potentials. Therefore, before







47


proceeding to the applications of the many-body theory, we must con-

struct the multicenter representation of the intermolecular potential

for the collision systems of interest; this is the subject of the

following chapter.

















CHAPTER III
MULTICENTER POTENTIAL ENERGY SURFACES


In this chapter we investigate the multicenter representation

of the intermolecular potential energy surface (PES) for nonreactive

atom-molecule systems. Our aim is to develop a parametrization of the

PES which is appropriate for the study of hyperthermal molecular

collisions. In the first section, we weigh the relative advantages

of the single-center and multicenter representations. In the second

section, we develop a parametrization for ion/linear molecule sur-

faces in terms of atom-pair potentials that are based on the known

general properties of intermolecular forces. Next, we evaluate the

atom-pair potentials that reproduce the quantum chemical PES of the

system Li /CO. In the final section, we study the system Li /CO2,

for which no quantum chemical information is yet available. Using

a simple model of short-range forces plus experimental information

on the molecular properties of CO2, we construct a model PES for this

system. Both surfaces developed here will be used in subsequent

atom-molecule scattering calculations.


1. Single-Center vs. Multicenter Expansion

The standard procedure used to describe the interaction between

an atom A and a molecule B consists of assuming the Born-Oppenheimer

separation of nuclear and electronic motions (Tully, 1976) and then

calculating the lowest PES for a set of conformations, by means of

more or less accurate quantum-chemical methods; for examples see

48











Staemmler,1975, Parker et al., 1976 and Thomas et al., 1978.

Working in the body-fixed (BF) coordinate system determined by the

principal axes of B, one thus obtains a table of the intermolecular

potential V for several values of the relative position of A, denoted

by R, and of the positions of the constituent atoms of B, which we
+B +
indicate with r = {r ,aB}.. In order to facilitate scattering
a
calculations, one must usually construct a functional representation

for the surface. The most common of these is the single-center ex-

pansion, in which the dependence on the orientation of R is described

in terms of a set of basis functions of angles, centered at the center

of mass of the molecule, as follows:

.B -B
V(R,r ) = (R,r )Y(n,). (3.1.1)
n
4->
Here, n,E are the polar and azimuthal angles of R in the B1 system,

respectively, and the Y are the elements of the basis set. The radial
n
coefficients V are fitted to reproduce the values of the PES at the

tabulated configurations.

For atom-molecule scattering in the thermal collision energy

regime, such a single-center expansion has several advantages. Since

low energy scattering is mediated by long-range forces (McDowell and

Coleman, 1970) and these forces vary slowly with the orientation of
4->
R, usually only the first few terms of eq. (3.1.1) need be included

in scattering calculations. On the other hand, the PES can be re-

presented to any arbitrary degree of accuracy by increasing the size

of the angular basis set. Furthermore, if the radial dependence of

the coefficients V is judiciously chosen, these can be related to

molecular properties (electrostatic moments, polarizabilities, etc.)










of the isolated collision partners (Hirschfelder et al., 1967),

this can be used to check the accuracy of the fitting procedure,

or to supplement the quantum-chemical information when only a few

points of the surface are available.

However, as the collision energy increases above a few hundredths

of an electron volt, the single-center expansion, although accurate

in principle, presents rather serious disadvantages. At hyperthermal

energies and for small impact parameters, the projectile probes the

inner region of the PES which is of a multicenter nature, so the

single-center representation loses physical meaning. Furthermore,

as the short-range intermolecular forces depend strongly on the

orientation of R, a very large number of terms are necessary for

eq. (3.1.1) to converge. These drawbacks will be further clarified

by the example presented in the next section.

Alternatively, the multicenter nature of the intermolecular

forces can be better represented by expanding the potential about each

atom of the target, as follows:

S+B +* -
V(R,r ) = v (R,r ), (3.1.2)
a
where the sum runs over the N atoms the polyatomic. Here, v
a
corresponds to the interaction between the (A,a) atom-pair which de-

pends on the electronic distribution of A and on that of atom a in

the valence state of the target. Hence, v is a function of the
a
orientation of R with respect to r and of the magnitude of R-r .
a a
In general, for small A-a separation, the atom-pair potentials are

steeply repulsive due to the overlapping of the electronic clouds










of A and a; in the long-range region, the va fall off as inverse

powers of the A-a distance due to the interactions of the charge

distributions of A and a. For example, the PES corresponding to an

atomic ion with charge qA and a molecule could be modeled, most simply,

by the sum of the pair potentials


va(R,r ) = A exp(-B aR-lr) + Aq a (3.1.3)

in which the fractional atomic charges qa reproduce the experimental

values of the N-lowest electrostatic multiple moments of B. The co-

efficients A and B (both positive) can be obtained by fitting to a

previously calculated PES or from combination rules (Gaydaenko and

Nikulin, 1970).

More, generally, eq. (3.1.2) is the leading term obtained by

expanding the potential in contributions from two atom, three atom,

and so on, atom-clusters as indicated below (Micha, 1979a)

SRB ) Q(2) (,+~ 2 (3) -+ -
V ) = va (R,r) + v (Rr ar ) + (3.1.4)
a a Recent attempts have been made at understanding the properties of

large polyatomic systems in terms of contributions of the constituent

atomic centers (Bader, 1980). We hope that, in the future, such studies

would allow the determination of the atom-cluster potentials from

first principles. However, for our present purposes, we will con-

sider the atom-pair potentials to be functions of r and r with para-
a
meters that will be adjusted to reproduce a previously calculated PES

and/or the known molecular properties of the separated collision

partners. As we shall see in the following section, by judiciously

choosing the form of the v the contributions of the higher-order
cluster potentials can be made negligible small.
cluster potentials can be made negligibly small.











2. Atom-Pair Potentials for Ion/Linear Molecule Interactions

As with any other fitting procedure, the functional form of the

Va greatly influences the accuracy of the representation and the num-

ber of parameters required. In order to allow for a physically mean-

ingful interpretation of the pair potentials and to reduce the number

of parameters to a minimum, the v should be chosen in accordance with
a
the known general properties of intermolecular forces (Hirschfelder

et al., 1967, Margenau and Kestner, 1971). For the interaction be-

tween two closed-shell molecules, these properties may be summarized

as follows.

When the relative distance R is much greater than the lengths

over which the electronic clouds of each species are appreciable, the

intermolecular potential can be written as a sum of the following three

contributions:

1) the electrostatic interaction between the permanent multi-

pole moments of the charge distributions of each molecule,

2) the induction contribution, due to the interaction between

the permanent moments of one species and those induced in the other

one, and

3) the dispersion or Van-der-Waals forces, which may be in-

terpreted as arising from the interactions between the induced

moments of each species. However, when at least one of the molecules

has a net permanent charge, the magnitudesof the dispersion terms are

much smaller than the electrostatic and induction ones, so that

dispersion forces may be neglected.











In order to maintain the notation at the clearest level possible,

from here on we take B to be a linear polyatomic at its equilibrium

configuration (r = d ). Hence, the long-range potential for an atom-

ic ion A and B is given by the following single center expression,

SB qq q (cosB2)/R2 3
V(R,r ) qA /R + q (cosn)R + qAQBP2(cosn)/R

q9[aB/2 + ABP2(cosn)]/R4 + .. (3.2.1)

in which we have explicitly indicated the first three leading terms

of the electrostatic forces, the leading induction contribution (of
-4
order R ), and we have neglected the dispersion forces that are of

order R6 and smaller. Here, P (x) = (3x2 1)/2 is the second order

Legendre polynomial, qA is the charge of the ion, while the molecular

properties of B are the net charge qB, the electrostatic dipole

PB and quadrupole Q moments, and the isotropic a = (a + 2a )/3
SB B zz xx

and anisotropic A = (a a )/3 polarizabilities; a and a
B zz xx zz xx
are the components of the static dipole-polarizability tensor parallel

and perpendicular to the molecular axis, respectively. Equation (3.2.1)

follows from a perturbation-theoretical approach, in which the electro-

static interaction between the charge distributions of each species

is expressed in terms of a multiple expansion (Margenau and Kestner,

1971, Chap. 2). Such an expansion is valid only when the distance

between the centers of charge of each distribution is much larger

than the range of the individual densities (Jackson, 1975, Chap. 4).

Therefore, eq. (3.2.1) loses physical meaning whenever R r ; this
is reflected in the unphysical divergence for small R.
is reflected in the unphysical divergence for small R.











When the relative distance decreases, the overlap of the

electronic clouds of each species causes the intermolecular forces

to become steeply repulsive, Hence, the small R behavior of the

potential depends very strongly on the details of the electronic dis-

tributions. However, when the molecular orbitals of each species

are described in terms of Slater-type orbitals centered on each

nucleus, the overlap will be an approximately exponential function

of the A-a internuclear distance. Slater-type bases are most commonly

used in quantum-chemical calculations for atoms and for linear mole-

cules (Pople and Beveridge, 1970); in these cases, the short-range

behaviour of the potential is of the form

+ +B I
V(R,r ) A aexp(-B R-r ). (3.2.2)
R r
a

Here A and B are positive coefficients that are independent of the
a a

magnitude of R, but they may be functions of the orientation of R with
+
respect to r.
a

We thus find that the single-center representation of eq. (3.2.1)

must be smoothly transformed into a multicenter one, as the relative

distance decreases. The transformation must avoid the unphysical

divergences of the multiple expansion and must accurately reproduce

the intermediate region of the surface which includes the potential

wells. One might attempt to carry out this transformation by

multiplying the right-hand side of eq. (3.2.1) by a switching

function that tends to one for large R, and to zero whenever R r
a
Unfortunately, the second requirement would force the switching

function to have an extremely complicated dependence on the orientation










of R. However, this difficulty may be readily avoided by extending

the multicenter representation to large R, as follows.

Assuming that the molecular properties of B can be expressed in

terms of the individual contributions of each atom, we expand the

long-range region of the potential about the atomic centers and write

+ +B +
V(R,r ) = v (R,r ), (3.2.3a)
a a
a

+ (SR) + + f (LR) r (.
(R,r) = a (R ) + (R,r (R,r ), (3.2.3b)
aa a a a a

(LR) + 3
vaLR) (R,r ) = C 0a/R + C (cosn )/R + C P (cosn )/R +
a a 10a a 21a a(Ca) a 32aP2 a a


+ [C40a + C42aP2(cosna)]/Ra, (3.2.3c)

-4 -> ->
where R = R-r is the position of the ion with respect to target
a a
atom a and na= arcos[R *r /(R r )] is the angle between and r .
a a a aa a a
The terms of v LR) represent the interaction of the charge of A with
a
the first three electrostatic moments and polarization of the

electronic distribution about center a, respectively. In

(SR)
eq. (3.2.3b), v corresponds to the short-range repulsive forces
a
and fa is a switching function that eliminates the singularity of

v at R = r The detailed form of f is not crucial, pro-
a a a
vided it satisfies the following requirements: 1) f and its
a
gradient with respect to R must be continuous, 2) f a 0
a.- +
R-r
and 3) f 1 One such function is, for example, a
R-t

f (R,r ) = O(R c )exp[-Y (R c ) ], (3.2.4)
a a a a a a ar


where 6 is the Heavyside unit step-function. Here, c is a radius
a










about atom a within which the long-range pair potential is zero, while

Y determines how fast v LR) is turned off as the A-a distance de-
a a
creases. We may complete the representation by taking the repulsive

potentials to be

(SR) + +
v (R,r ) = A exp(-B R ), (3.2.5)
a a a aa

with A and B positive and independent of R. If necessary for a
a a
specific system, the v(SR) may be rendered more flexible by letting
a
(SR)
A and B depend on n or by expanding v is a basis-set of
a a a a
functions of the orientation of R .
a
Expressing IR-r in a Taylor series in r about R, we find

that eqs. (3.2.3) and (3.2.1) coincide as R + m, whenever the co-

efficients C satisfy
nZa

A B = C10a (3.2.6a)
a

qA;B = l (C10ara C 2laa/ra), (3.2.6b)


QB = (ClOarl + 2C21ara C2a) (3.2.6c)
qB = + /r (3.2.6d)
AB 10a + 21a ra a
a

qQ = (C r + 2C r + C ), (3.2.6c)

2


qa 2= C4a. (3.2.6e)
a

If the Cn a are fit to a previously calculated PES, these equations

provide us with an independent check of the fit, as the Cna should

yield the correct values of the molecular properties of B. On the

other hand, if a quantum-chemical PES is not available, eqs. (3.2.6)

together with experimental values of the molecular properties may be

used to partly determine the atom-pair potentials.











In the multicenter representation defined by eqs. (3.2.3-5),

the set of parameters that must be adjusted to reproduce the tabulated

PES is {p.} = {A ,B ,c ,C ,C ,C ,C C for a=l to N .
i a a a a 10a 21a 32a 40a' 42a
Although at first sight this set seems rather large, the above analysis

shows that this is the smallest possible set that is required by the

physical nature of ion/linear molecule forces. Furthermore, the pi

generally depend on the internal configuration of the polyatomic, and

hence on r. However, for a specific molecule, some of the long-range

parameters CnZa may be negligibly small. In particular, the electro-

static interaction between the charge of A and a permanent multiple

moment of B may be represented, at large R, as the sum of the forces

between the charge of A and the lower-order multipoles of the target

atoms, as shown in eqs. (3.2.6a-c); this usually involves cancellations

between the terms contributed by each center. As the A-a distance

decreases, the atomic contributions become large, due to the 1/R

dependence, and may not cancel to yield a correct description of the

intermediate region; this indicates that such atomic multipoles

should be made vanishingly small. We will encounter examples of this

phenomenon in the following sections.


3. Multicenter Potential for the System Li /CO

We now develop the multicenter representation of the intermolecular

potential for the Li /CO system. This is one of the few many-electron

systems for which a detailed PES has been calculated quantum chemi-

cally, at the configuration-interaction level of accuracy

(Thomas et al., 1978). This surface has been tabulated for a wide










range ofvalues of I, at the equilibrium configuration of CO

(Ira-rb1=1.224 X); this will allow us to judge the applicability

of the multicenter expansion for small and large R. Unfortunately,

only a few points have been calculated for nonequilibrium con-

figurations of the molecule; therefore, throughout this section,

we fix the target atoms at their equilibrium positionsand take the

-B
potential parameters to be independent of r

Due to the nonlinear dependence of the potential on several

of the parameters, the usual least-squares optimization (Doren and

McCracken, 1972, Chap. 7) would lead to a system of sixteen coupled

transcendental equations in the p. whose solution represents the best

values of the parameters. However, such a system can only be solved

by iterative methods (Ostrowski, 1966, Sec. 25) whose convergence

is impracticably slow due to the large dimensionality of the problem.

In order to avoid this inconvenience, we optimize the linear (C a)

and nonlinear (B ca, ya) parameters in two separate steps, as

follows.

In the first step, the Cna are obtained by a linear least-

squares fit to the long-range region of the PES. In order to test

the correctness of the functional representation chosen for the

v (LR), we do not a priori constrain the C to reproduce the known
a n~a
molecular properties of CO. Hence, we allow the Ca to vary freely

in order to minimize the root-mean-squared relative error of the

representation; for large R, this error is given by

-2 +- +B B -* +B 2
e = {[VT(Rr ) VRr )]/[N VT(,r )]} (3.3.1)
->F










Here, the sum runs over the N points of the surface for which
4-
R (LR)
R >3.7 X, V is the tabulated value and VF = vR). The
a
optimum values of the Cna are those that satisfy the system of

linear equations


2
3e / C = 0, (3.3.2)
na

2 2 2
together with the conditions @ e /DC >0.
nla
Solving eqs (3.3.1) for all the Cnla indicated in eq. (3.2.3c)

gave C0a, C21, and C32 of the order of 6 e2 n, n=0,1,2,

respectively, with opposite signs for each atom. These values, although

of unphysically large magnitudes, lead the v(LR) to cancel each other
a
in order to reproduce the tabluated PES. Examining the resulting fit,

we concluded that, for the Li /CO system, the long-range potential

could be reproduced with fewer parameters than those indicated in

eq. (3.2.3c). Repeating the fitting procedure while omitting each

time one pair of the C10a C21a, and C32a, we found that the C21a

were redundant. The optimum values of the parameters are shown in

table 3.1. These reproduce the long range region of the PES with an

r. m. s. error e = 0.85% over the 25 points available (four equally-

spaced values of R from 3.7 1 to 5.3 1 and one at R = 7.9 X, each

for the five orientations n= 0, 45, 90, 135 and 180 deg). Throughout

the remainder of the optimization procedure, the Cna were kept fixed.
nta
In the second step, using the full multicenter potential of

eqs. (3.2.3-5), for a given set of values of the nonlinear parameters

Ba, ca, and y a, we least-squares fitted the Aa to the short-range

region of the tabluated surface for which VT > 0. This fit was










repeated for several sets of B c and y each time obtaining

a new A Finally, we chose the B c y and the corresponding A
a a a a a
that yielded the smallest r. m. s. error in the short and intermediate

ranges; these values are also shown in the table below.


Table 3.1.


Ion/atom potential parameters for Li /CO


Li /C


d ()
a
A (eV)
a
B(A -1)

c (A)
a
ya -1)

C 0a(eVA)

C21a(eV 2)

C32a(eVA 3)

C 40(eVA 4)

C 42(eV 4)
42a


0.6447z

1086.33

4.25

1.38

1.38

-0.189892

0

-5.70326

-11.4071

-1.07765


-0.4835i

1191.92

4.63

1.48

2.27

0.193190

0

-0.951450

-2.54812

-4.90754


Substituting the CnZa into eqs. (3.2.6) yields the molecular

properties of CO that correspond to the present representation;

these are in good agreement with the experimental ones (Thomas et al.,

1978), as is seen in table 3.2. This comparison further confirms the

validity of the multicenter expansion for large R.


Li+ /










Table 3.2 Molecular properties of CO2






Present Fit Exact


qB(e) 2.3 x 104 0

B (eX) -0.0150 -0.0236

QB(eA2) -0.4646 -0.4666
o 3
aB (A) 1.939 1.947

AB( 3) 0.415 0.325




Figures 3.1 and 3.2 show the full multicenter potential (eqs.

(3.2.3-5) together with the parameters of table 3.1) and the quantum-

chemical values. We find that the multicenter representation re-

produces the tabulated values with an r. m. s. error e = 4.4% over

the 55 points available. The largest errors occur near the zeroes

of the potential where its absolute value is less than 0.03eV. We

also find a small discrepancy (15%) near the bottom of the potential

wells at the two orientations n=0 and 180 deg. This discrepancy is

most probably due to the simple angular dependence isotropicc) that

(SR)
we have chosen for the v( The errors could be greatly reduced
a
(SR)
by expanding v in a basis of functions of n However, we
a a
feel that the increase in computational effort resulting from a

larger set of parameters is not justified for the description of

hyperthermal collisions.


































Figure 3.1 Comparison of the multicenter representation (curves)
of the Li+/CO potential with the quantum chemical values
(points).










10-



8-



6-


W 4



2-



0-



-0.4-


I
I
I


1
I

I
I
I

SI

rI I

I


Li+/CO


-ml'--


-0

=45

=90


R(A)


N X




^


































Figure 3.2 Comparison of the multicenter representation (curves)
of the Li+/CO potential with the quantum chemical values
(points).









Li+/CO


10-
j-


8-


6-


=18 0


? = 1350







R (A)
4 5


3


I



1
I
I
I


ci,


4-


2-










Excepting the two regions just mentioned, the multicenter re-

presentation gives a very accurate description of the Li /CO sur-

face over the four-decade range of magnitudes of the potential, with

a minimum of adjustable parameters. The single-center expansion de-

veloped by Thomas et al., which is of comparable accuracy, required

fifty parameters, in contrast to the sixteen used in the present one.

Furthermore, the multicenter representation allows us to understand

the physical origin of the parameters, even in the short-range regions.

On the other hand, the ion/atom potentials just obtained may be

utilized to gain insight into the physical structure of the CO mole-

cule. Recognizing the dangers of extrapolating excessively from in-

direct results, we propose the following interpretation to the

differences between the Li /C and Li /O potentials.

A comparison of the short-range regions of the v shown in
a
fig. 3.3, suggests that the electronic density about carbon extends

farther from its nucleus than does that of oxygen. This observation

is consistent with the signs of the C10a which indicate a slight ex-

cess of electrons on the C-center and a corresponding deficit on the

O-one. This causes the Li /0 interaction to be repulsive at large R,
ag
while the Li /C potential is attractive for large distances, as is

seen if figs. 3.4 and 3.5, respectively. Comparing the magnitudes

of the C32a, we conclude that the charge distribution about C is more

anisotropic than the one about 0, and that both distributions are

prolate spheroidal. Finally, the C40 indicate that the electrons

around C are more polarizable than those about 0; however, the

anisotropy of the polarizability of 0 is quite large, so that, at
































Figure 3.3 Short-range region of the ion/atom potentials of Li /CO.
















--- Li /C


8-




6




4-




2-


' I I


1.00


1.25


Ra (A)


Li /O--


1.50
1.50






















C)


I 1 1 1

- 0 0d


(A)D A


0

II

P--













L0n -
0
Cr


0

II
F`


I I I
-- O -DA
o 5 o;

(A)D^


0


-J


0
0
0)
II
\


d


I
C\J
0


I i










an=90 deg. the Li /O potential is repulsive at all distances. We

expect that these conclusions would be confirmed by the configuration-

interaction charge density of the isolated CO molecule; unfortunately,

the wave-function of CO is not available to us at the present time.


4. Multicenter Potential for the System Li+/C02

Due to the large computational effort required by the number of

electrons in CO2, a quantum chemical PES for the Li+/C02 system has

not been calculated. Until such a surface becomes available, we

propose a multicenter potential which is based on the electron-gas

model of short-range forces (Gordon and Kim,1972) and on the long-

range interaction between the charge of Li and the known electro-

static multipoles and polarization of CO2.

Briefly, the uniform-electron-gas model of the interaction be-

tween two closed-shell atoms and/or molecules A and B is based on

the following assumptions. Firstly, the potential is written as the

sum of four terms that represent the kinetic energy of the electrons,

the electrostatic interactions between the charge distributions of A

and B, the electron exchange and correlation effects, respectively.

Each term is separately calculated as an integral over all space of

the corresponding energy density, which is a functional of the

electronic density of the system. The electrostatic energy-density

functional may be readily obtained by considering the Coulombic inter-

actions between the charge distribtuions. However, the kinetic,

exchange and correlation density functionals are taken to be those of a

uniform gas of electrons (Slater, 1968, Carr et al., 1961,










Carr and Maradudin, 1964). Furthermore, the electronic density of

the A-B system is approximated by the sum of the densities of the

isolated partners, regardless of their separation. Hence, if the

density of each species is known, the calculation of the PES is

reduced to the numerical evaluation of the integrals of the energy-

density functionals.

This model has been found to provide a reasonably accurate de-

scription of the short-range repulsive forces in atom-atom (Kim and

Gordon, 1974a, b) atom-molecule (Green et al., 1975, Parker et al.,

1976, Davies et al., 1979) and molecule-molecule (Parker et al., 1975)

systems, at a small fraction of the computational cost of even the

most approximate quantum-chemical methods. Unfortunately, the

model does not correctly describe the long-range forces, for the

following reasons. Due to the additive nature of the approximate

total density, the correlation effects depend on the overlap between

the individual densities. Hence, for large R, the correlation con-

tribution decreases exponentially and does not reproduce the
-2n
Van-der-Waals potential which is of order Rn, n 3. This de-

ficiency may be remedied by smoothly switching from the electron-

gas correlation potential to the dispersion one, as R increases

(Parker et al., 1976). In the Li /CO system, we expect that

the dispersion forces are much smaller than the induction ones, due

to the net charge of the ion. However, by assuming that the

electronic densities of each species remain unchanged for all dis-

tances, the model excludes the rearrangement of the charge distribution

of CO2 caused by the charge of Li and hence the induction forces.









Nevertheless, we may obtain a realistic model of the Li +/C02 PES

by combining the short-range results of the electron-gas method with

the long-range multicenter expansion studied in the previous section,

as shown below.

Electron-gas calculations were performed for the collinear

(n= 0 deg) and perpendicular (n = 90 deg) configurations of Li +/C02,

using the program developed by Green and Gordon, 1974. These calcu-

lations incorporated the correction due to Rae, 1973, that avoids

overcounting of the electrons in the density functionals. The

electronic density of CO2 was approximated by that of the self-

consistent-field (SCF) molecular wave-function calculated by McClean

and Yoshimine, 1967, p. 192. The equilibrium C-0 bond distance was

fixed at the value that corresponds to the SCF wave-function

(1.1348 X) instead of the experimental one (1.161 X, in Eastes et al.,

1977), because the experimental bond-length represents a slightly

stretched CO2 molecule in the SCF approximation. The Li ion was also

described by an SFC wave-function (Clementi, 1965, table 03-01).

The numerical integration of the energy density functionals was

carried out by means of three-dimensional Gaussian quadratures, the

number of quadrature points was gradually increased until the cal-

culated potential converged to 1%, at all the values of 1. Due to

the approximate nature of the model, we felt that the increase in

computational cost required for a greater accuracy was not justified.

Hence, the number of points ranged from (56, 80, 1), at n=0deg, to

(24, 40, 24),at n=90 deg, for the (X, y, @) spheroidal coordinates,

respectively.










Table 3.3 Electron-gas Li /C02 potential.


R V(R,0 deg) R V(R,90 deg)
(Bohr) (Hartree) (Bohr) (Hartree)


3.7444 0.81826 1.60 0.87678

3.8444 0.63961 1.80 0.62150

3.9444 0.52927 2.00 0.44061

4.0444 0.40132 2.20 0.31309

4.1444 0.32335 2.40 0.22474

4.2444 0.25550 2.60 0.16382

4.3444 0.20132 2.80 0.12175

4.4444 0.15878 3.00 0.09251

4.5444 0.12499 3.20 0.07347

4.6444 0.09931 3.40 0.05994

4.7444 0.07718 3.60 0.04937

4.8444 0.01634 3.80 0.04059

4.00 0.03335



The results of the above calculations are shown in table 3.3

(the odd-looking scale chosen for R at n= 0 is due to the face that

the coordinate most appropriate to short-range interactions is the

separation between the ion and the nearest atom of CO2). These re-

sults correspond to the so called Hartree-Fock model potential, which

is the sum of the kinetic, electrostatic and exchange contributions.










The electron-gas correlation is not presented here, due to the in-

accuracies of the model previously discussed. However, the correlation

effects were calculated to be of the order of 1% of the "Hartree-Fock"

potential, and hence comparable to the numerical errors of the quad-

ratures. In order to facilitate future scattering calculations, the

short-range potential was fitted to a multicenter expansion,as follows.

A plot of the logarithm of the potential versus the distance

between Li and the nearest molecular atom yielded an approximately

straight line, for the collinear configuration. This indicated that

the Li /O potentials, v1 and v3, could be represented by the single

exponential of eq. (3.2.5). However, an analogous plot for the per-

pendicular configuration showed a steep straight line for small R,

that smoothly changed to a shallower slope for larger distances. This

graph suggested that two exponential terms were required for the Li /C

potential. The parameters of the ion/atom potentials were adjusted

to reproduced the tabulated electron-gas surface, by a procedure

analogous to the second step described in Sec. 3.3. Briefly, for

fixed values of the exponential coefficients B1 = B3, B2 and B ,

the preexponential factors A =A3, A2 and A2, were simultaneously

least-squares fitted to all the points of the tabulated surface.

This fitting was repeated for several sets of values of

B1 = B3, B2 and B finally selecting the exponential coefficients

and corresponding preexponential ones that yielded the lowest r. m. s.

relative error. These are shown in table 3.4 (below), and they re-

produced the surface with an r. m. s. error e = 0.43% over the 25









tabulated points; the largest error (3.6%) occurred at

R = (4.8444 a ro= 0 deg). These short range ion/atom potentials may

now be combined with the known long-range forces of the Li+/CO2 system,

as follows.

Without further knowledge of the properties of the exact charge

distribution of CO2, there is some ambiguity in the determination of
(LR) (LR)
the va because only lim v may be determined from experimental
aR a
R- coa
measurements of CO2. In particular, the Li -charge/CO2-quadrupole

interaction, may be represented in several different ways that are in

accordance with eq. (3.2.6c). For example, Eastes et al., 1977,

assumed fractional charges qa located on the atomic centers of the

molecule. The values q = q3 = -0.331 e and q2 = +0.662 e reproduce

the experimental quadrupole moment QB = -0.90 eL 2, at large dis-

tances. However, for small R, these charges yield values for the

perpendicular Li /C02 interaction that are much larger than those

calculated above, because the Coulomb potentials q q /R do not

cancel in the appropriate way. Similarly, one may set the qa equal

to zero, and consider fractional atomic dipoles pa (note that =
a P2
due to the symmetry of oxygen); however, such a model is also in dis-

agreement with the above short-range results. Therefore, we presently

assume that q = 0 and P = 0, for all a, and take nonzero atomic
a a
quadrupoles Qa, such that Qa = QB We must emphasize that this choice
a
is not unique; a combination of small atomic charges, dipoles and

quadrupoles may not be excluded as a possibility. On the other hand,

the electronic clouds about each of the atomic centers are polarized

by the net charge of the ion; hence, we represent the isotropic and










and anisotropic polarizabilities of CO2 by the sum of the atomic

polarizabilities a and A respectively. Furthermore, since the num-
a a
ber of electrons in C and in 0 are comparable, we let Qa = Q/3,

a = a /3 and A = A /3, with aB = 2.602 3 and AB = 0.6931 A3

(Buckingham and Orr, 1967). Finally, the resulting v(LR) are switched
a
off at small A-a distances as in eqs. (3.2.3b,4) using the switching

parameters c and ya of C and of 0 determined in the previous section.
a a
The parameters for the long range ion/atom potentials of Li /CO2 are

also included in the table below.


Table 3.4 Ion/atom potential parameters for Li /CO2.





Li+/C Li+/O


A (eV) 650.697 1340.16
a
A2(eV) 17.5648
-1
B ( -) 4.346 4.856
a
B2( -1 1.455
2
c (A) 1.38 1.48
a
-1
c ( -1) 1.38 2.27
a
C0a(eVA) 0 0

C21a(eV2) 0 0

C32a(eVA3) -4.32 -4.32
o4
C 40a(eVA ) -6.246 -6.246

C 42a(eVA4) -3.327 -3.327
42a










The complete model potential (eqs. (3.2.3-5) together with

table 3.4) is presented in figs. 3.6,7. Examination of the short-

range region shows the large anisotropy of the repulsive forces,

which is due to the many-body nature of the target. In this region,

the accuracy of the model is determined only by that of the electron-

gas approximation because the v(LR) are switched off. By design,
a
the present model reproduces the exact long-range forces, as deter-

mined by the properties of CO2. A judgement of the validity of this

surface in the intermediate regions must be postponed until a quantum-

chemical PES becomes available. The latter region includes the

potential wells and is thus sensitive to the atomic quardupoles and

polarizabilities, which are not uniquely defined by QB, aB and AB.

However, we expect this model to provide at least a qualitative de-

scription of the eact PES for intermediate R; in particular, the dis-

appearance of the wellatg= 0 deg as n-*90 deg, seen in fig. 3.7,

clearly reflects the change in sign of the Li+ charge/CO2-polarization

interactions. Finally, in figs. 3.8-10 we present the ion/atom

potentials. Examination of their short-range behaviour (fig. 3.8)

indicates that the charge distribution about the C-center extends

farther away from its nucleus than do those of the 0-centers. Con-

sequently, the larger extent of the Li /C repulsion causes the wells

of v2 to be much shallower than thoseof v1 and v3, as is seen in

figs. 3.9,10.

Having determined multicenter potentials for Li /CO and Li+/CO2,

we may now proceed to study energy transferprocesses in these systems

by means of the many-body theory developed in Chap. II.

































Figure 3.6 Short-range region of the Li/C model potential.
Figure 3.6 Short-range region of the Li /CO model potential.
2








Li /C02


---o=00


R (A)


=45


I0-



8-



6-



4-



2-



0-


1.5


77=90.




































-l

*d
4-J


O
4-
0






0
1r








+
a











CI-

0












0
1-






4-)
ct
0


a)



b0





















C\j
0
C.)


0
CD
It1


0
o

II
F`


(A-)
(As) A


0

II
F'


































Figure 3.8


Short-range region of the ion/atom potentials of the
Li+/CO2 model surface.









10-
0 Li +/C02



8-


-Li /C
S6-



4-

Li /O 0

2-



0-A^-------- ^
1.00 1.25 1.50
Ra(A)












































































I-q U







o
0

Ca)












01
4-1 CM
CO 0



(U

4-JC







C)
m





88


LO











O O
0







00
*I-II1









0 Co
SII












0 0^

na~)00










































r-4





0
C1




0

+
*-






0
-41


e















10


I0
t0 ca
H *H




,-4 c0





I


cO +
Srj






r4
4-4
J 0
*r-1 *H

'0 l-













a)(
F









LO


o<
0
nr


C\J
0
C)


0

.-
.
_I


0
0

II


C\J


I I l
-0 7

(A9) DA


0

II
0
,-
)
















CHAPTER IV
ROTATIONAL AND VIBRATIONAL ENERGY TRANSFER IN HYPERTHERMAL
COLLISIONS OF Li+ WITH N2, CO AND CO2



The many-body theory of atom-molecule collisions that was presented

in Chapter II is applied here to the study of rotational and vibrational

energy transfer in the scattering of Li+ ions from N2, CO and CO2. In

Section 1 we evaluate the quantities that are required for the calcula-

tion of the atom-pair correlation function (APCF) of a diatomic target.

In Section 2 we present the theoretical results for the systems Li /N2

and Li /CO, and compare them with the experimental measurements of

Bottner et al., 1976. In the following section, we briefly outline the

steps of the evaluation of the APCF of a linear triatomic molecule.

Theoretical probabilities of vibrational excitation and average energy

transfers for the system Li /CO2 are presented in Section 4. Comparing

these results with those of experiments (Eastes et al., 1977) and analyzing

the theoretical model, we gain insight into the dynamical processes and

intermolecular forces that dominate atom-molecule scattering in the hyper-

thermal energy regime. Finally, in Section 5 we calculate the effects of

molecular anharmonicity on the vibrational energy transferredto the tar-

gets N2, CO and CO2.

1. The Atom-Pair Correlation Function of a Diatomic Molecule


The evaluation of the APCF of equation (2.6.8) requires knowledge
4->
of the equilibrium positions of the atoms (d ) and of the matrix elements

(C ai) of the transformation between Cartesian vibrational displacements
ai










(ua) and normal coordinates (Qi). For a diatomic molecule, equation

(2.2.1a) shows that there is only one vibrational degree of freedom, and

that d1 = -m2dl2d/mB and d2 = mldl2 d/mB; here m is the mass of the target

atom a, mB is the mass of the diatomic, dl2 is the equilibrium bond-length,

and d is a unit vector in the direction of the molecular axis, from atom 1

to atom 2. From the normal-mode analysis outlined in equations (2.3.8-15)
'-2+ 4 12
we obtain C11 = -[m2/(mlm) ] d and C21 [m/1(m2mB)] d, and for the har-

monic vibrational frequency, w1 = [kllmB/(m m2)] where kll is the quad-
11 12 11
ratic force-constant.

The rotational energy transfers and widths require the commutators

([i ,) exp (-iK *d )], for n = 1 and 2. These are readily evaluated for

a linear polyatomic in the coordinate representation, where the rotational

Hamiltonian is given by (Edmonds, 1974)

2 2
H 2[ ( -cos2 ) I (4.1.1)
R 21 [(cosB) ((cos)B) 2

4->
Here, a and B are the azimuthal and polar angles of d in the space fixed

(SF) reference frame, respectively, and I = m d2 is the moment of in-
B a a
a
ertia of the polyatomic. Taking the z-axis of the SF frame along the

direction of K, so that K-d = Kda cosB, and performing the necessary
a
differentiations, yields


[HR, exp(-iK d)] = (a /2IB) exp(-iKd cosB)x


x{K2d2 (1 cosi2)- 2iKd [cosB (1 cos2 B)3/9(cos 2). (4.1.2)
a a

Whenever Kda >> 1, only the highest power of Kda need be retained in the

above commutator; in these cases, one has that


([,)n exp (-i a




Full Text
xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EUCPHMAX3_UEBUK5 INGEST_TIME 2011-08-29T15:58:48Z PACKAGE AA00003461_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES



PAGE 1

(1(5*< 75$16)(5 ,1 02/(&8/$5 &2//,6,216 %< ('8$5'2 ) 9,/$//21*$ $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

%RXQG E\ '2%%6 %526 /,%5$5< %,1',1* &2 ,1& 6W $XJXVWLQH )ORULGD

PAGE 3

$&.12:/('*(0(176 ZLVK WR H[SUHVV P\ GHHSHVW DSSUHFLDWLRQ DQG JUDWLWXGH WR P\ DGYLVRU 3URIHVVRU 'DYLG $ 0LFKD IRU KLV GHGLFDWLRQ VXSSRUW DQG HQFRXUDJHPHQW WKDQN KLP IRU VXJJHVWLQJ WKH VWXG\ RI WKH SUREOHPV DGGUHVVHG LQ WKLV GLVVHUWDWLRQ IRU PDQ\ LQYDOXDEOH GLVFXVVLRQV DQG IRU SURYLGLQJ PH PDQ\ RSSRUWXQLWLHV WR EURDGHQ P\ H[SHULHQFH DV D VFLHQWLVW DP LQGHEWHG WR 3URIHVVRU 7KRPDV / %DLOH\ IRU LQWURGXFLQJ PH WR WKH IDVFLQDWLQJ VXEMHFW RI DWRPLF DQG PROHFXODU FROOLVLRQV ZLVK WR H[SUHVV WR KLP P\ GHHSHVW DSSUHFLDWLRQ DQG JUDWLWXGH IRU KLV VXSSRUW GXULQJ P\ ILUVW WZR JUDGXDWH \HDUV DQG IRU KLV FRQVWDQW LQWHUHVW DQG HQFRXUDJHPHQW ZRXOG OLNH WR WKDQN DOO WKH IDFXOW\ PHPEHUV RI WKH 4XDQWXP 7KHRU\ SURMHFW DQG RI WKH 'HSDUWPHQW RI 3K\VLFV DOO RI ZKRP KDYH FRQn WULEXWHG WR P\ GHYHORSPHQW DV D VWXGHQW DQG DV D VFLHQWLVW ,Q SDUWLFXODU WKDQN 3URIHVVRUV 3HU2ORY /RZGLQ DQG &KDUOHV ) +RRSHU -U IRU SURYLGLQJ PH WKH RSSRUWXQLWLHV WR DWWHQG WKH ,QWHUQDWLRQDO 6XPPHU 6FKRRO LQ 8SSVDOD 6ZHGHQDQG WKH 1$72 $GYDQFHG 6WXG\ ,QVWLWXWH LQ &RUWRQD ,WDO\ UHVSHFWLYHO\ DP GHHSO\ LQGHEWHG WR WKUHH YHU\ VSHFLDO SHUVRQV P\ SDUHQWV DQG .ULVWLQ 9 %MRUQ 0XFK RI WKH ZRUN SUHVHQWHG KHUH PLJKW QRW KDYH EHHQ SRVVLEOH ZLWKRXW WKHLU XQZDYHULQJ HQFRXUDJHPHQW SDWLHQFH DQG XQGHUVWDQGLQJ LLL

PAGE 4

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 LLL $%675$&7 YL ,1752'8&7,21 &+$37(5 7+( &255(/$7,21 )81&7,21 $3352$&+ 7KH 6\VWHP +DPLOWRQLDQ 7KH 'LIIHUHQWLDO &URVV 6HFWLRQ 7LPH(YROXWLRQ RI WKH &RUUHODWLRQ )XQFWLRQ DQG 0RPHQWV RI WKH (QHUJ\ 7UDQVIHU &XPXODQW DQG 0RPHQW ([SDQVLRQV 6KRUW7LPH ([SDQVLRQV ,, 7+( 0$1<%2'< &255(/$7,21 )81&7,21 $3352$&+ 2XWOLQH RI WKH 0DQ\%RG\ $SSURDFK 9LEUDWLRQDO DQG 5RWDWLRQDO &RUUHODWLRQV &XPXODQW ([SDQVLRQ RI WKH 9LEUDWLRQDO &RUn UHODWLRQ (YDOXDWLRQ RI WKH 'LVSODFHPHQW'LVSODFHPHQW &RUUHODWLRQ )XQFWLRQ (IIHFWV RI 0ROHFXODU $QKDUPRQLFLW\ LQ +\SHU WKHUPDO &ROOLVLRQV 6KRUW7LPH $SSUR[LPDWLRQ WR WKH 5RWDWLRQDO &RUUHODWLRQ ,,, 08/7,&(17(5 327(17,$/ (1(5*< 685)$&(6 6LQJOH&HQWHU YV 0XOWLFHQWHU ([SDQVLRQ $WRP3DLU 3RWHQWLDOV IRU ,RQ/LQHDU 0ROHFXOH ,QWHUDFWLRQV 0XOWLFHQWHU 3RWHQWLDO IRU WKH 6\VWHP /L& 0XOWLFHQWHU 3RWHQWLDO IRU WKH 6\VWHP /L &2A LY

PAGE 5

7$%/( 2) &217(176 &RQWLQXHGf 3DJH ,9 527$7,21$/ $1' 9,%5$7,21$/ (1(5*< 75$16)(5 ,1 +<3(57+(50$/ &2//,6,216 2) /L :,7+ 1 &2 $1' & 7KH $WRP3DLU &RUUHODWLRQ )XQFWLRQ RI D 'LDWRPLF 0ROHFXOH 5RWDWLRQDO DQG 9LEUDWLRQDO (QHUJ\ 7UDQVIHU LQ +\SHUWKHUPDO &ROOLVLRQV RI /L ZLWK 1f DQG &2 (YDOXDWLRQ RI WKH $WRP3DLU &RUUHODWLRQ )XQFWLRQ RI D /LQHDU 7ULDWRPLF 0ROHFXOH 5RWDWLRQDO DQG 9LEUDWLRQDO (QHUJ\ 7UDQVIHU LQ +\SHUWKHUPDO &ROOLVLRQV RI /L ZLWK & (IIHFWV RI 0ROHFXODU $QKDUPRQLFLW\ LQ 1 &2 DQG & 9 $ 6(0,&/$66,&$/ &255(/$7,21 )81&7,21 $3352$&+ 72 02/(&8/$5 &2//,6,216 7KH 6HPLFODVVLFDO $SSUR[LPDWLRQ 7KH 'LIIHUHQWLDO 3UREDELOLW\ RI (QHUJ\ 7UDQVIHU ([SDQVLRQ RI WKH ,QWHUPROHFXODU 3RWHQWLDO LQ 9LEUDWLRQDO 'LVSODFHPHQWV 7KH (YROXWLRQ 2SHUDWRU LQ WKH ,QWHUDFWLRQ 5HSUHVHQWDWLRQ 9LEUDWLRQDO DQG 5RWDWLRQDO &RUUHODWLRQ 7KH 9LEUDWLRQDO &RUUHODWLRQ 7KH 5RWDWLRQDO &RUUHODWLRQ 'LVFXVVLRQ %,%/,2*5$3+< n %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ (1(5*< 75$16)(5 ,1 02/(&8/$5 &2//,6,216 %\ (GXDUGR ) 9LODOORQJD -XQH &KDLUPDQ 'DYLG $ 0LFKD 0DMRU 'HSDUWPHQW 3K\VLFV 9LEUDWLRQDO DQG URWDWLRQDO HQHUJ\ WUDQVIHU LQ K\SHUWKHUPDO PROHFXn ODU FROOLVLRQV DUH LQYHVWLJDWHG E\ PHDQV RI WLPHFRUUHODWLRQ IXQFWLRQ PHWKRGV :LWKLQ WKLV DSSURDFK WKH FROOLVLRQDO GLIIHUHQWLDO FURVV VHFWLRQ LV H[SUHVVHG DV WKH )RXULHU WUDQVIRUP RI WKH WLPHFRUUHODWLRQ IXQFWLRQ RI WKH WUDQVLWLRQ RSHUDWRU ZKLFK HYROYHV LQ WLPH LQ DFFRUGn DQFH ZLWK WKH LQWHUQDO PRWLRQV RI WKH QRQLQWHUDFWLQJ PROHFXOHV 7KH FRUUHODWLRQ IXQFWLRQ LQFOXGHV IURP WKH RXWVHW WKH H[SHULPHQWDO DYHUDJHV RYHU LQLWLDO GLVWULEXWLRQV VR WKDW RQO\ TXDQWLWLHV GLUHFWO\ UHODWHG WR H[SHULPHQWDO PHDVXUHPHQWV QHHG EH FDOFXODWHG 7KH SUHVHQW DSSURDFK DOORZV WKH V\VWHPDWLF LQWURGXFWLRQ RI DSSUR[LPDWLRQV WR WKH WUDQVLWLRQ RSHUDWRU ZKLFK DUH EDVHG RQ PRGHOV RI WKH LQWHUPROHFXODU IRUFHV DQG RI WKH FROOLVLRQ G\QDPLFV WKH UHVXOWLQJ FRUUHODWLRQ IXQFWLRQV DUH UHDGLO\ HYDOXDWHG IRU PRVW SRO\DWRPLFV ZLWKRXW QHHG RI LQWHUQDOVWDWH RU SDUWLDOZDYH H[SDQVLRQV YL

PAGE 7

,Q SDUWLFXODU D PDQ\ERG\ GHVFULSWLRQ RI WKH G\QDPLFV WRJHWKHU ZLWK D PXOWLFHQWHU UHSUHVHQWDWLRQ RI LQWHUPROHFXODU IRUFHV VKRZV WKDW DW K\SHUWKHUPDO HQHUJLHV ODUJHDQJOH DWRPSRO\DWRPLF VFDWWHULQJ LV UHODWHG WR WKH FRUUHODWLRQ RI WKH SRVLWLRQV RI SDLUV RI DWRPV WKDW FRQVWLWXWH WKH WDUJHW 7KH DWRPSDLU FRUUHODWLRQ IXQFWLRQV DUH HYDOXDWHG E\ PHDQV RI FXPXODQW H[SDQVLRQV DQG RI *UHHQIXQFWLRQ WHFKQLTXHV 7KH PXOWLFHQWHU UHSUHVHQWDWLRQ RI WKH LQWHUPROHFXODU SRWHQWLDO LV LQYHVWLJDWHG DQG PXOWLFHQWHU VXUIDFHV DUH GHYHORSHG IRU WKH LQWHUDFWLRQ RI /L ZLWK &2 DQG ZLWK &2 &RPELQLQJ WKHVH GHYHORSPHQWV ZH FDOFXODWH GLIIHUHQWLDO FURVV VHFWLRQV IRU WKH YLEUDWLRQDO DQG URWDWLRQDO H[FLWDWLRQ RI 1e &2 DQG &2 LQ FROOLVLRQV ZLWK K\SHUWKHUPDO /L LRQV &RPSDULQJ WKHVH UHVXOWV ZLWK WKRVH REWDLQHG LQ H[SHULPHQWV ZH JDLQ XQGHUVWDQGLQJ RI WKH IHDWXUHV RI WKH SRWHQWLDO VXUIDFH DQG RI WKH G\QDPLFV WKDW JRYHUQ HQHUJ\ WUDQVIHU SURFHVVHV :H DOVR GHYHORS D QHZ VHPLFODVVLFDO GHVFULSWLRQ RI PROHFXOH PROHFXOH FROOLVLRQV :KHQHYHU WKH UHODWLYH PRWLRQ RI WKH SRO\DWRPLFV PD\ EH GHVFULEHG FODVVLFDOO\ ZH ILQG WKDW WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU LV JLYHQ E\ WKH )RXULHU WUDQVIRUP RI WKH WLPH FRUUHODWLRQ IXQFWLRQ RI TXDQWDO WUDQVLWLRQ DPSOLWXGHV WKH FRUUHODWLRQ IXQFWLRQ HYROYHV LQ WLPH LQ DFFRUGDQFH ZLWK WKH +DPLOWRQLDQV RI WKH QRQLQWHUDFWLQJ SRO\DWRPLFV DQG GHVFULEHV WKH UHVSRQVH RI WKH PROHFXOHV WR WKH FROOLVLRQ 7KH FRUUHODWLRQ IXQFWLRQ LV HYDOXDWHG IRU ODUJH YLL

PAGE 8

SRO\DWRPLFV E\ PHDQV RI D SURFHGXUH ZKLFK LQFOXGHV WKH LQWHUPROHFXODU SRWHQWLDO WR LQILQLWH RUGHU :H WKXV REWDLQ VLPSOH DQDO\WLFDO H[SUHVn VLRQV IRU WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU LQ WHUPV RI DFWLRQ LQWHJUDOV WKHVH LQWHJUDOV FRUUHVSRQG WR WKH DFWLRQV WKDW WKH LQWHUPROHFXODU IRUFHV H[HUW RQ WKH DWRPV RI WKH SRO\DWRPLFV YLLL

PAGE 9

,1752'8&7,21 'XULQJ WKH SDVW IHZ \HDUV WKHUH KDV EHHQ DQ H[SORVLYH GHYHORSn PHQW RI WKHRUHWLFDO DSSURDFKHV WR HQHUJ\ WUDQVIHU SURFHVVHV LQ PROHFXODU FROOLVLRQV JHQHUDOO\ LQ WKH WKHUPDO FROOLVLRQ HQHUJ\ UHJLPH 7KHVH DSSURDFKHV UDQJH IURP IXOO\ TXDQWDO /HVWHU f LQ ZKLFK WKH ZDYHIXQFWLRQ RI WKH V\VWHP LV H[SDQGHG LQ D PRUH RU OHVV FRPSOHWH VHW RI LQWHUQDO YLEUDWLRQDO DQG URWDWLRQDOf VWDWHV RI WKH FROOLGLQJ PROHFXOHV WR FRPSOHWHO\ FODVVLFDO 3RUWHU DQG 5DII f LQ ZKLFK DOO WKH GHJUHHV RI IUHHGRP RI WKH V\VWHP DUH GHVFULEHG E\ +DPLOWRQnV HTXDWLRQV RI PRWLRQ +DOIZD\ EHWZHHQ WKHVH WZR H[WUHPHV OLH WKH YDULRXV VHPLFODVVLFDO DQG WLPHGHSHQGHQW PHWKRGV 0F&DQQ DQG )ODQQHU\ 0LOOHU &KLOG %LOOLQJ f WKDW WUHDW WKH UHODWLYH PRWLRQ RI WKH FROOLVLRQ SDUWQHUV FODVVLFDOO\ ZKLOH GHVFULELQJ WKH LQn WHUQDO PRWLRQV E\ D ZDYHIXQFWLRQ H[SDQGHG LQ LQWHUQDO VWDWHV ([n WHQVLYH UHYLHZV RQ WKHVH YDULRXV DSSURDFKHV FDQ EH IRXQG LQ WKH ERRN HGLWHG E\ 0LOOHU LQ WKH PRQRJUDSK E\ *LDQWXUFR DQG LQ WKH DUWLFOHV E\ &ODUN HW DO E\ 'LFNLQVRQ DQG E\ 0LFKD D &RQFXUUHQWO\ ZLWK WKHVH WKHRUHWLFDO GHYHORSPHQWV WKH SURJUHVV RI FURVVHG PROHFXODU EHDPV WHFKQLTXHV 7RHQQLHV )DXEHO DQG 7RHQQLHV f KDV PDGH DYDLODEOH D ZHDOWK RI QHZ H[SHULPHQWDO LQIRUPDWLRQ LQ DWRPPROHFXOH FROOLVLRQV DW K\SHUWKHUPDO HQHUJLHV WR H9f 7KH

PAGE 10

V\VWHPV ZKLFK KDYH EHHQ VWXGLHG LQ GHWDLO LQFOXGH DPRQJ RWKHUV /L LRQV LQ FROOLVLRQ ZLWK DQG &2 %RWWQHU HW DO (DVWHV HW DO Df &2 DQG 1A2 (DVWHV HW DO f &+A (DVWHV HW DO Ef DQG 6)A (OOHQEURHN HW DO f 7HFKQLTXHV EDVHG RQ WLPHRIa IOLJKW RU YHORFLW\ DQDO\VLV RI WKH VFDWWHUHG LRQV KDYH SURGXFHG GHn WDLOHG YHORFLW\ GLVWULEXWLRQV RI WKH SURGXFWV DV IXQFWLRQV RI FROn OLVLRQ HQHUJ\ DQG VFDWWHULQJ DQJOH 7KHVH GLVWULEXWLRQV VKRZ ULFK DQG YDULHG VWUXFWXUH GXH WR WKH FROOLVLRQDO H[FLWDWLRQ RI WKH YLEUDn WLRQDO DQG URWDWLRQDO VWDWHV RI WKH WDUJHW ,Q VSLWH RI WKH UHFHQW WKHRUHWLFDO DGYDQFHV RXWOLQHG DERYH WKHVH QHZ PHDVXUHPHQWV SUHVHQW D FKDOOHQJH WR WKHRUHWLFDO LQWHUSUHWDWLRQ 7KH IXOO\ FODVVLFDO DSSURDFKHV ZKLFK FDQ JLYH DFFXUDWH YDOXHV RI DYHUDJH HQHUJ\ WUDQVIHUV FDQQRW GHVFULEH WKH TXDQWXPPHFKDQLFDO QDn WXUH RI WKH WDUJHW ZKLFK LV FOHDUO\ VKRZQ E\ WKH H[SHULPHQWV )XUWKHUn PRUH IRU V\VWHPV RI PRUH WKDQ DERXW WKUHH RU IRXU DWRPV VHYHUDO G\QDn PLFDO DSSUR[LPDWLRQV PXVW EH LQWURGXFHG LQ RUGHU WR GHFUHDVH WKH QXPn EHU RI +DPLOWRQnV HTXDWLRQV ZKLFK PXVW EH LQWHJUDWHG QXPHULFDOO\n 6FKDW] f 7KH TXDQWDO DQG VHPLFODVVLFDO PHWKRGV FDQ LQ SULQFLSOH SURYLGH YHU\ GHWDLOHG VWDWHWRVWDWH WUDQVLWLRQ SUREDELOLWLHV +RZn HYHU WKH\ EHFRPH FRPSXWDWLRQDOO\ LPSUDFWLFDO IRU HQHUJLHV DERYH H9 EHFDXVH WKH QXPEHU RI LQWHUQDO VWDWHV WKDW DUH HQHUJHWLFDOO\ DFFHVVLEOH LV XQPDQDJHDEO\ ODUJH 7KLV QHFHVVLWDWHV WKH LQWURGXFWLRQ RI UDWKHU GUDVWLF FRPSXWDWLRQDO DSSUR[LPDWLRQV ZKRVH G\QDPLFDO FRQVHTXHQFHV DUH QRW \HW IXOO\ XQGHUVWRRG 7KHVH DSSUR[LPDWLRQV LQFOXGH WKH RUELWDO VXGGHQ RU FRXSOHG VWDWHV 0F*XLUH DQG .RXUL 3DFN f WKH HQHUJ\VXGGHQ .KDUH DQG f WKH LQILQLWHRUGHUVXGGHQ 6HFUHVW *ROGIODP HW DO f DQG WKH HIIHFWLYH SRWHQWLDO PHWKRGV

PAGE 11

5DELW] f )XUWKHUPRUH WKH XOWLPDWH WHVW RI DFFXUDF\ RI D WKHRUHWLFDO PRGHO OLHV LQ D VXFFHVVIXO FRPSDULVRQ ZLWK H[SHULPHQWDO UHVXOWV ZKLFK XVXDOO\ FRUUHVSRQG WR DYHUDJHV RYHU LQLWLDO GLVWULEXWLRQV RI LQWHUQDO VWDWHV 7KH WKHRUHWLFLDQ LV IRUFHG WR TXHVWLRQ WKH HIILn FLHQF\ RI VWDWHH[SDQVLRQ DSSURDFKHV ZKHQ KH LV IDFHG ZLWK WKH SURVSHFW RI DYHUDJLQJ RYHU FRDUVH H[SHULPHQWDO GLVWULEXWLRQV WKH GHWDLOHG UHn VXOWV VR ODERULRXVO\ REWDLQHG $ FRPSOHWH GHVFULSWLRQ RI PROHFXODU FROOLVLRQ SURFHVVHV DOVR UHn TXLUHV NQRZOHGJH RI WKH SRWHQWLDO HQHUJ\ VXUIDFH RI WKH FROOLGLQJ SDUWn QHUV ([FHSW IRU D OLPLWHG QXPEHU RI VPDOO V\VWHPV DFFXUDWH TXDQWXP FKHPLFDO FDOFXODWLRQV RI SRWHQWLDO HQHUJ\ VXUIDFHV DUH EH\RQG WKH UHDFK RI SUHVHQWGD\ FRPSXWDWLRQDO UHVRXUFHV 7KLV GRHV QRW SUHVHQW D VHULRXV GLIILFXOW\ IRU WKH GHVFULSWLRQ RI WKHUPDO FROOLVLRQV EHFDXVH WKH\ DUH PHGLDWHG PRVWO\ E\ WKH ORQJ DQG LQWHUPHGLDWH UDQJH IRUFHV 7KHVH IRUFHV FDQ EH DFFXUDWHO\ GHWHUPLQHG E\ FRPELQLQJ WKH UHVXOWV RI SHUn WXUEDWLRQ H[SDQVLRQV +LUVFKIHOGHU HW DO &KDS f ZLWK H[n SHULPHQWDO PHDVXUHPHQWV RI WKH PROHFXODU SURSHUWLHV HOHFWURVWDWLF PXOWL SROH PRPHQWV SRODUL]DELOLWLHV HWFf RI WKH VHSDUDWH FROOLGLQJ SDUWQHUV +RZHYHU DV WKH FROOLVLRQ HQHUJ\ LQFUHDVHV DERYH D IHZ WHQWKV RI DQ HOHFWURQYROW WKH SURMHFWLOHV SUREH WKH LQQHU UHJLRQV RI WKH SRWHQWLDO VXUIDFH $W VKRUW GLVWDQFHV WKH XVXDO SHUWXUEDWLRQ H[SDQVLRQV GLYHUJH DQG DFFXUDWH PRGHOV IRU WKH IRUFHV KDYH QRW \HW EHHQ IRXQG :H WKXV ILQG WKDW WKH GHVFULSWLRQ RI K\SHUWKHUPDO FROOLVLRQV LQn YROYLQJ SRO\DWRPLFV SUHVHQWV D GRXEOH FKDOOHQJH WR WKH WKHRUHWLFLDQ GXH WR WKH ODFN RI NQRZOHGJH RI WKH LQWHUPROHFXODU IRUFHV LQYROYHG DQG GXH WR WKHLQDSSOLFDELOLnW\ RI WKH H[LVWHQW G\QDPLFDO PRGHOV 7KH

PAGE 12

SXUSRVH RI WKLV GLVVHUWDWLRQ LV WR GHYHORS DQG DSSO\ QHZ WKHRUHWLFDO DSSURDFKHV WR WKH VWXG\ RI YLEUDWLRQDO DQG URWDWLRQDO HQHUJ\ WUDQVn IHU LQ PROHFXODU FROOLVLRQV :H ZLOO FRQVLGHU LQ SDUWLFXODU WKH UDQJH RI FROOLVLRQ HQHUJLHV DERYH H9 EXW EHORZ WKH WKUHVKROG IRU HOHFWURQLF H[FLWDWLRQ RU GLVVRFLDWLRQ RI WKH FROOLGLQJ SDUWQHUV ,Q YLHZ RI WKH SUHYLRXV GLVFXVVLRQ WKHVH DSSURDFKHV PXVW VDWLVI\ WKH IROORZLQJ UHTXLUHPHQWV f 7KH LQWHUQDO PRWLRQV RI WKH FROOLGLQJ PROHFXOHV PXVW EH GHVFULEHG TXDQWXP PHFKDQLFDOO\ f ([SDQVLRQV LQ LQWHUQDO VWDWHV PXVW EH DYRLGHG LQVWHDG ZH ZLOO IRFXV RXU DWWHQWLRQ RQ WKH PDQ\ERG\ QDWXUH RI WKH V\VWHP f 7KH QHZ PRGHOV VKRXOG EH LQWHUSUHWDEOH LQ WHUPV RI PROHFXODU IRUFHV DQG G\QDPLFDO SURFHVVHV VR WKDW ZH FDQ JDLQ XQGHUVWDQGLQJ RI WKH SK\VLFDO PHFKDQLVPV LQYROYHG f 7KH PRGHOV VKRXOG DOORZ XV WR LQFOXGH DYHUDJHV RYHU LQLWLDO GLVWULEXWLRQV RI LQWHUQDO VWDWHV ZLWKRXW JUHDWO\ LQFUHDVLQJ FRPSXn WDWLRQDO FRVWV LQ RUGHU WR SHUPLW FRPSDULVRQ ZLWK H[SHULPHQWDO PHDVXUHn PHQWV 'XULQJ WKH FRXUVH RI RXU LQYHVWLJDWLRQV ZH KDYH IRXQG WKDW WKH ILUVW WZR UHTXLUHPHQWV OHDG XV WR H[SUHVV WKH FROOLVLRQDO GLIIHUHQWLDO FURVV VHFWLRQ LQ WHUPV RI WKH WLPHFRUUHODWLRQ IXQFWLRQ RI WKH WUDQVLWLRQ RSHUDWRU DV LV VKRZQ LQ &KDS WKLV IXQFWLRQ LQFOXGHV IURP WKH RXWn VHW WKH DYHUDJHV RYHU LQLWLDO VWDWHV VR WKDW RQO\ TXDQWLWLHV GLUHFWO\ UHODWHG WR H[SHULPHQWDO PHDVXUHPHQWV QHHG EH FDOFXODWHG 7KH SUHVHQW DSSURDFK DOORZV XV WR V\VWHPDWLFDOO\ LQWURGXFH DSSUR[LPDWLRQV WR WKH WUDQVLWLRQ RSHUDWRU ZKLFK DUH EDVHG RQ GLIIHUHQW PRGHOV RI WKH LQWHU PROHFXODU IRUFHV DQG RI WKH FROOLVLRQ G\QDPLFV ,Q SDUWLFXODU D PDQ\

PAGE 13

ERG\ GHVFULSWLRQ RI WKH G\QDPLFV WRJHWKHU ZLWK D PXOWLFHQWHU UHSUHVHQWDWLRQ RI WKH IRUFHV VKRZV WKDW WKH ODUJHDQJOH VFDWWHULQJ RI K\SHUWKHUPDO SURMHFWLOHV LV UHODWHG WR WKH FRUUHODWLRQ RI WKH SRVLWLRQV RI SDLUV RI DWRPV RI WKH LVRODWHG WDUJHW 0LFKD Df ,Q &KDS ,, ZH VWXG\ WKHVH DWRPSDLU FRUUHODWLRQ IXQFWLRQV DQG H[WHQG WKHP WR LQFOXGH WKH HIIHFWV RI DQKDUPRQLFLW\ LQ WKH YLEUDWLRQDO PRWLRQ RI WKH SRO\DWRPLF ,Q &KDS ,OO ZH LQYHVWLJDWH WKH PXOWLFHQWHU UHn SUHVHQWDWLRQ RI LQWHUPROHFXODU IRUFHV DQG GHYHORS PXOWLFHQWHU SRWHQWLDO VXUIDFHV IRU WKH V\VWHPV /L&2 DQG /A&2A 1H[W FRPELQLQJ WKH GHn YHORSPHQWV RI WKH SUHYLRXV WZR FKDSWHUV ZH FDOFXODWH GLIIHUHQWLDO FURVV VHFWLRQV IRU WKH YLEUDWLRQDO DQG URWDWLRQDO H[FLWDWLRQ RI A &2 DQG &2A LQ FROOLVLRQV ZLWK K\SHUWKHUPDO /L LRQV %\ FRPSDULQJ WKHVH UHVXOWV ZLWK WKH H[SHULPHQWDO PHDVXUHPHQWV %RWWQHU HW DO (DVWHV HW DO f ZH JDLQ XQGHUVWDQGLQJ RI WKH UHODWLYH LPSRUWDQFH RI WKH IHDWXUHV RI WKH SRWHQWLDO VXUIDFH DQG RI WKH G\QDPLFV WKDW JRYHUQ HQHUJ\ WUDQVIHU SURFHVVHV )LQDOO\ LQ &KDS 9 ZH GHYHORS D QHZ VHPLFODVVLFDO GHn VFULSWLRQ RI PROHFXODU FROOLVLRQV :KHQHYHU WKH UHODWLYH PRWLRQ RI WKH PROHFXOH PD\ EH GHVFULEHG FODVVLFDOO\ ZH ILQG WKDW WKH GLIIHUHQWLDO FURVV VHFWLRQ LV UHODWHG WR WKH WLPHFRUUHODWLRQ RI TXDQWDO WUDQVLWLRQ DPSOLWXGHV WKDW HYROYH LQ DFFRUGDQFH ZLWK WKH LQWHUQDO +DPLOWRQLDQV RI WKH LVRODWHG PROHFXOHV 7KLV FRUUHODWLRQ IXQFWLRQ FRPSOHWHO\ GHVFULEHV WKH UHVSRQVH RI WKH PROHFXOHV WR WKH FROOLVLRQ IXUWKHUPRUH LW LV UHDGLO\ HYDOXDWHG IRU D ZLGH UDQJH RI SRO\DWRPLFV ZLWKRXW QHHG RI LQn WHUQDOVWDWH H[SDQVLRQV

PAGE 14

&+$37(5 7+( &255(/$7,21 )81&7,21 $3352$&+ :H FRQVLGHU FROOLVLRQV EHWZHHQ WZR DUELWUDULO\ ODUJH PROHFXOHV $ DQG % HDFK KDYLQJ FORVHG HOHFWURQLF VKHOOV ,Q RUGHU WR VLQJOH RXW WKH PHFKDQLVPV UHVSRQVLEOH IRU URWDWLRQDO DQG YLEUDWLRQDO HQHUJ\ WUDQVn IHU ZH FRQVLGHU WKH UDQJH RI FROOLVLRQ HQHUJLHV EHORZ WKH WKUHVKROGV IRU HOHFWURQLF H[FLWDWLRQ DQG GLVVRFLDWLRQ RI WKH PROHFXOHV :H DUH WKXV LQWHUHVWHG LQ SURFHVV RI WKH W\SH $Df %f $Dff %%nf ,QLWLDOO\ $ DQG % DUH LQ WKH LQWHUQDO VWDWHV URWDWLRQDO DQGRU YLEUDWLRQDOf GHQRWHG E\ WKH VHWV RI TXDQWXP QXPEHUV D DQG UHn VSHFWLYHO\ 'XULQJ WKH FROOLVLRQ DQ DPRXQW RI HQHUJ\ e LV WUDQVIHUUHG EHWZHHQ WKHP LQWR LQWHUQDO PRWLRQV SURPRWLQJ $ DQG % WR WKHLU ILQDO LQWHUQDO VWDWHV ZKLFK ZH LQGLFDWH E\ Dn DQG %n )RU WKH V\VWHP +DPLOWRQLDQ VSHFLILHG LQ 6HF GRXEO\GLIIHUHQWLDO FURVV VHFWLRQV PD\ EH UHODWHG WR WKH WLPHFRUUHODWLRQ IXQFWLRQ RI WKH FROOLVLRQDO WUDQVLWLRQ RSHUDWRU DV LV VKRZQ LQ 6HF ,Q WKH IROn ORZLQJ VHFWLRQ ZH H[DPLQH WKH HYROXWLRQ RI WKH FRUUHODWLRQ IXQFWLRQ DQG UHODWH LWV WLPHGHULYDWLYHV DW WLPH HTXDO ]HUR WR WKH PRPHQWV RI WKH HQHUJ\ WUDQVIHU ,Q 6HF ZH LQWURGXFH WKH PHWKRG RI FXPXODQW H[n SDQVLRQV ZKLFK SURYLGHV D SRZHUIXO WRRO IRU HYDOXDWLQJ WKH FRUUHODWLRQ IXQFWLRQV )LQDOO\ LQ 6HF ZH VKRZ WKDW LQWHUQDO PRWLRQV WKDW DUH

PAGE 15

VORZHU WKDQ UHODWLYH RQHV OHDG WR D *DXVVLDQ GLVWULEXWLRQ RI HQHUJ\ WUDQVIHU $OWKRXJK ZH IRFXV RXU DWWHQWLRQ RQ PROHFXODU VFDWWHULQJ ZH VKRXOG HPSKDVL]H WKDW WKH DQDO\VLV SUHVHQWHG LQ WKLV FKDSWHU DSSOLHV TXLWH JHQHUDOO\ WR FROOLVLRQV EHWZHHQ DQ\ WZR PDQ\ERG\ V\VWHPV ZKRVH LQWHUDFWLRQV FDQ EH GHVFULEHG E\ D VLQJOH SRWHQWLDO HQHUJ\ VXUIDFH 7KHVH LQFOXGH IRU H[DPSOH VFDWWHULQJ RI PROHFXOHV IURP VXUIDFHV RI VROLGV 7KH 6\VWHP +DPLOWRQLDQ ,Q WKH FRRUGLQDWH V\VWHP IL[HG WR WKH FHQWHU RI PDVV RI WKH SDLU $%f LQGLFDWLQJ RSHUDWRUV ZLWK FDUDWV WKH +DPLOWRQLDQ RI WKH FROOLVLRQ LV + A 9n f +HUH LV WKH RSHUDWRU IRU WKH NLQHWLF HQHUJ\ RI UHODWLYH PRWLRQ JLYHQ E\ f ZKHUH LV WKH SRVLWLRQ RI WKH FHQWHU RI PDVV RI WKH SURMHFWLOH $ ZLWK UHVSHFW WR WKDW RI WDUJHW % 0 0 0 0 0 f LV WKH UHGXFHG $ % $ PDVV RI WKH V\VWHP ZLWK 0 DQG 0 WKH PDVVHV RI WKH UHVSHFWLYH PROHFXOHV 7KH +DPLOWRQLDQ WKDW GHVFULEHV WKH LQWHUQDO PRWLRQV RI WKH VHSDUDWHG PROHFXOHV +A LV WKH VXP RI WKH LQWHUQDO +DPLOWRQLDQV RI HDFK LVR r V ODWHG PROHFXOH + DQG + UHVSHFWLYHO\f 7KH RSHUDWRU 9 UHSUHVHQWV $ % Y !0 WKH LQWHUPROHFXODU SRWHQWLDO ZKLFK JHQHUDOO\ GHSHQGV RQ 5 DQG RQ U U? U%f ZKHUH UA GHQRWHV WKH SRVLWLRQV RI WKH DWRPV RI PROHFXOH ; $ RU % ZLWK UHVSHFW WR WKH FHQWHU RI PDVV RI ;

PAGE 16

7KH PRWLRQ RI WKH QRQLQWHUDFWLQJ PROHFXOHV LV GHVFULEHG E\ +0f_NY! >WIN0f ( @_NY! Df ‘ !‘ L f§ 5U NY! Pf n LNr5 !0L H U _Y! Ef ‘0 L $ L !% L U Y U _D! U Ff LQ ZKLFK N LV WKH UHODWLYH PRPHQWXP Y UHSUHVHQWV WKH FROOHFWLRQ RI YLEUDWLRQDO DQG URWDWLRQDO TXDQWXP QXPEHUV RI ERWK PROHFXOHV (Y (J (D DQG (A DUH WKH HQHUJLHV RI WKH LQWHUQDO VWDWHV D! DQG c%! RI $ DQG % UHVSHFWLYHO\ 7KH 'LIIHUHQWLDO &URVV 6HFWLRQ 7KH VFDWWHULQJ UDWH RU WUDQVLWLRQ SUREDELOLW\ SHU XQLW WLPH EHn WZHHQ WKH IUHH VWDWHV GHILQHG LQ HTV fLV JLYHQ E\1HZWRQ FKDS f 52WnYn m NYf WW.f OWIY n _7f (f _NY!c f ZKHUH ILQDO DQG LQLWLDO TXDQWLWLHV DUH LQGLFDWHG E\ SULPHG DQG XQSULPHG V\PEROV UHVSHFWLYHO\ DQG ( f N 0f (A LV WKH WRWDO HQHUJ\ RI WKH f V\VWHP 7KH WUDQVLWLRQ RSHUDWRU IRU WKH FROOLVLRQ 7 VDWLVILHV WKH /LSSPDQ6FKZLQJHU HTXDWLRQ IRU RXWJRLQJZDYH ERXQGDU\ FRQGLWLRQV 7A(f 9 9*AA (f7fA (f f n!f ZKHUH LV WKH SURSDJDWRU IRU WKH IUHH PRWLRQ JLYHQ E\ R *f(f ( LQ +Pf f R 0 ([SHULPHQWDO PHDVXUHPHQWV XVXDOO\ FRUUHVSRQG WR WKHUPDO DYHUDJHV RYHU [f LQLWLDO GLVWULEXWLRQV RI LQWHUQDO VWDWHV ZLWK Z 7 f ZLWK D ;

PAGE 17

WHPSHUDWXUH 7 IRU HDFK FROOLVLRQ SDUWQHU ; $ RU % )XUWKHUPRUH $ H[SHULPHQWV XVXDOO\ GR QRW VHOHFW WKH ILQDO LQWHUQDO VWDWHV RI WKH PROHFXOHV ,Q WKHVH FDVHV ZH PXVW FRQVLGHU WKH WRWDO UDWH IRU VFDWn WHULQJ EHWZHHQ LQLWLDO DQG ILQDO PRPHQWD 5 Benef WW.f O Z 7 7 f NfY n [f (f NY! ( Hnf f WRW YY9 $ % ZKHUH WKH GHOWD IXQFWLRQ LQVXUHV FRQVHUYDWLRQ RI WKH WRWDO HQHUJ\ RI WKH V\VWHP 7\SLFDO URWDWLRQDO H[FLWDWLRQ HQHUJLHV RI PRVW PROHFXOHV H[FHSW WKRVH WKDW FRQWDLQ VHYHUDO K\GURJHQ DWRPVf DUH RI WKH RUGHU RI D IHZ WKRXVDQGV RI DQ HOHFWURQ YROW $W K\SHUWKHUPDO FROOLVLRQ HQHUJLHV WKH VXP RYHU ILQDO VWDWHV LQ HT f FRQWDLQV D YHU\ ODUJH QXPEHU RI WHUPV HYHQ IRU VPDOO YDOXHV RI HQHUJ\ WUDQVIHUV 7KLV DOVR RFFXUV LQ DWRP VXUIDFHVFDWWHULQJ GXH WR WKH ORZ YDOXHV RI SKRQRQ H[FLWDWLRQ HQHUJLHV +RZHYHU WKH VXP RYHU ILQDO VWDWHV PD\ EH IRUPDOO\ HOLPLn QDWHG E\ WKH IROORZLQJ SURFHGXUH 0LFKD Df ,QWURGXFLQJ WKH LQWHJUDO UHSUHVHQWDWLRQ RI WKH GHOWD IXQFWLRQ &2 G WB ( (nf H[S>L( (f+-IO@ f f§ LQWR WKH PDWUL[ HOHPHQWV RI WKH WUDQVLWLRQ RSHUDWRU RI HT f DQG XVLQJ HT Df \LHOGV NfY f 7 (f NY! f GW H[SLHWf NfY n @ H[S L+ W.f 7 9 (f [ rr WW[ H[SL+ WWIf_NY! 0 } f

PAGE 18

ZKHUH WKH HQHUH\ WUDQVIHU LV JLYHQ E\ H >N Nnf @0f 7KH PDWUL[ HOHPHQW RI HT f LPSOLHV DQ LQWHJUDWLRQ RYHU WKH HU r0 UHODWLYH FRRUGLQDWH 5 DQG RYHU WKH LQWHUQDO FRRUGLQDWHV U %HIRUH SURFHHGLQJ IXUWKHU LW ZLOO SURYH FRQYHQLHQW WR H[SOLFLWO\ IDFWRU WKHVH WZR LQWHJUDWLRQV E\ GHILQLQJ WKH RSHUDWRU 7NnN A_WfHfA!} f ZKLFK DFWV RQO\ RQ WKH LQWHUQDO FRRUGLQDWHV RI WKH PROHFXOHV 6XEn VWLWXWLQJ HT f LQWR HT f DQG WKH ODWWHU LQWR HT f WKH VXP RYHU ILQDO VWDWHV PD\ EH HOLPLQDWHG E\ PHDQV RI WKH FRPn SOHWHQHVV UHODWLRQ RI WKH LQWHUQDO VWDWHV >Yn! 2QH WKXV DUULYHV DW WKH IROORZLQJ H[SUHVVLRQ IRU WKH WRWDO VFDWWHULQJ UDWH rR 5WRWAAf 7! A gK H[SLHW+f 7! AWf0!!} NnN NnN f ZKHUH WKH GRXEOH EUDFNHWV LQGLFDWH WKH TXDQWXP PHFKDQLFDO DQG WKHUPDO DYHUDJHV RYHU LQLWLDO VWDWHV mf f f} 7 Z$f 7fZA 7 fD_ f f f DJ! f D $ S D 7KH WLPH GHSHQGHQFH RI WKH WUDQVLWLRQ RSHUDWRU LV JLYHQ E\ WKH +DPLOWRQLDQ RI WKH QRQLQWHUDFWLQJ PROHFXOHV LQGLFDWHG H[SOLFLWO\ E\ WKH VXEVFULSW 0f DV VKRZQ EHORZ 7 H[3L9!Lf H[3L+0WOWfn NnN NnN f

PAGE 19

7KH GRXEO\ GLIIHUHQWLDO HQHUJ\DQJOHf FURVV VHFWLRQ IRU VFDWWHULQJ LQWR D XQLW VROLGDQJOH  DFFRPSDQLHG E\ D WUDQVIHU RI HQHUJ\ H PD\ EH FDOFXODWHG IURP WKH UDWLR RI WKH WUDQVLWLRQ UDWH WR WKH LQFLGHQW IOX[ 0LFKD Df WR JLYH GR GGH WW;f 0NnNf f§f§ H[Sf§LFWOLfm7 f7 Wf } 3W 0 f ZKHUH WKH ILQDO PRPHQWXP LV UHODWHG WR WKH HQHUJ\ WUDQVIHU E\ K Nn N 0H9 f 7KH FURVV VHFWLRQ LV WKXV H[SUHVVHG DV WKH )RXULHU WUDQVIRUP RI WKH WLPHFRUUHODWLRQ IXQFWLRQ RI WKH WUDQVLWLRQ RSHUDWRU ZLWK WKH WLPH GHSHQGHQFH GHWHUPLQHG E\ WKH LQWHUQDO PRWLRQV RI WKH LVRODWHG PROHFXOHV $SSUR[LPDWLRQVWR WKH FURVV VHFWLRQ LQ WHUPV RI FRUUHODWLRQ IXQFWLRQV KDYH EHHQ SUHYLRXVO\ XVHG WR GHVFULEH VFDWWHULQJ RI FROG QHXWURQV IURP VROLGV 0DUVKDOO DQG /RYHVH\ f DQG IURP OLTXLGV 0DUFK DQG 7RVL f DQG DWRPV IURP SRO\DWRPLFV 0LFKD D DQG Df DQG IURP VROLG VXUIDFHV 0LFKD EFf 7KH SUHVHQW H[SUHVVLRQ LV PRUH JHQHUDO WKDQ WKHVH PRGHOV DQG LV WKHUHIRUH DSSOLFDEOH WR D PXFK ZLGHU UDQJH RI PDQ\ERG\ V\VWHPV 7KH GLUHFW HYDOXDWLRQ RI WKH WLPHFRUUHODWLRQ IXQFWLRQ RI HT f LV DV GLIILFXOW DV ILQGLQJ WKH VROXWLRQ WR WKH PDQ\ERG\ SUREOHP ZKLFK LV LPSOLFLWO\ FRQWDLQHG LQ WKH WUDQVLWLRQ RSHUDWRUV $W ILUVW VLJKW LW VHHPV WKDW WKH VXPV RYHU ILQDO VWDWHV KDYH EHHQ UHPRYHG DW WKH H[SHQVH RI LQWURGXFLQJ DQ DGGHG WLPH GHSHQGHQFH GXH WR WKH FRPSOLFDWHG LQWHUQDO PROHFXODU PRWLRQVf LQWR WKH DOUHDG\ LQWULFDWH WUDQVLWLRQ RSHUDWRUV +RZHYHU WKH FRUUHODWLRQ IXQFWLRQ DSSURDFK DOORZV WKH GHYHORSPHQW RI G\QDPLFDO DSSUR[LPDWLRQV WR WKH

PAGE 20

WUDQVLWLRQ RSHUDWRU LQ D V\VWHPDWLF ZD\ DV LV VKRZQ LQ WKH IROORZLQJ FKDSWHUV 7KHVH DSSUR[LPDWLRQV EDVHG RQ WKH UHOHYDQW IHDWXUHV RI WKH LQWHUPROHFXODU SRWHQWLDO VXUIDFH DQG RQ WKH GLIIHUHQW W\SHV RI PROHFXODU PRWLRQV ZLOO DOORZ XV WR XQGHUVWDQG WKH SK\VLFDO PHFKDQLVPV WKDW JRYHUQ HQHUJ\ WUDQVIHU SURFHVVHV 7KH FRUUHODWLRQ IXQFWLRQ DSSURDFK KDV WKH DGGLWLRQDO DGYDQWDJH RI GHVFULELQJ WKH FROOLVLRQ LQ WHUPV RI WLPH GHSHQGHQW +HLVHQEHUJ RSHUDWRUV ZKLFK PD\ EH HDVLO\ LQWHUSUHWHG LQ WHUPV RI WKH FODVVLFDO G\QDPLFDO YDULDEOHV RI WKH FROOLGLQJ PROHFXOHV 7LPH(YROXWLRQ RI WKH &RUUHODWLRQ )XQFWLRQ DQG 0RPHQWV RI WKH (QHUJ\ 7UDQVIHU 2WKHU TXDQWLWLHV XVXDOO\ PHDVXUHG E\ H[SHULPHQWV DUH WKH PRPHQWV RI WKH HQHUJ\ WUDQVIHU 7KHVH PHDVXUHPHQWV DUH UHODWHG WR TXDQWLWLHV WKDW FDQ EH FDOFXODWHG WKHRUHWLFDOO\ LQ WKH IROORZLQJ ZD\ )RU JLYHQ YDOXHV RI WKH LQLWLDO DQG ILQDO PRPHQWD WKH QWK RUGHU PRPHQW DYHUDJH RI WKH HQHUJ\ WUDQVIHU ZLWK UHVSHFW WR WKH FURVV VHFWLRQ LV GHILQHG E\ HQ! > GHGDGILGHf@B GH H GDG4GHf f f§&2 f§22 )RU WKH VDNH RI EUHYLW\ ZH LQWURGXFH WKH IROORZLQJ QRWDWLRQ IRU WKH FRUUHODWLRQ IXQFWLRQ F Wf m7 f7 Wf !! N N N N NnN DQG IRU LWV )RXULHU WUDQVIRUP n; GW B!f \AH[S&LHW;f &AWf 3W FR 3W f Df & Wf GV H[SLHW!f & Hf Nn N rr N N Ef

PAGE 21

DQG ZH GURS WKH VXEVFULSWV N DQG Nn ZKLOH NHHSLQJ LQ PLQG WKDW WKH IROORZLQJ GHULYDWLRQV FRUUHVSRQG WR IL[HG YDOXHV RI WKH LQLWLDO DQG ILQDO PRPHQWD 'LIIHUHQWLDWLQJ HT Ef ZLWK UHVSHFW WR WLPH VKRZV WKDW WKH PRPHQWV RI WKH HQHUJ\ WUDQVIHU DUH UHODWHG WR WKH WLPH GHULYDWLYHV RI WKH FRUUHODWLRQ IXQFWLRQ E\ FQAB LWWfQ Q &Wf f &f WQ W DQG WR WKH WUDQVLWLRQ RSHUDWRU E\ HQ! m7f>+P fQ 7f@}m7Wf7f}B f WKURXJK GLIIHUHQWLDWLRQ RI HT f 7KLV ODVW HTXDWLRQ SURn YLGHV WKH EULGJH EHWZHHQ FDOFXODWHG YDOXHV DQG H[SHULPHQWDO PHDVXUHn PHQWV +RZHYHU WKH PRPHQWV RI WKH HQHUJ\ WUDQVIHU E\ WKHPVHOYHV GR QRW SURYLGH LQIRUPDWLRQ DERXW WKH FURVV VHFWLRQ LQ WKH PRVW SUDFWLFDO ZD\ 7KLV FDQ EH VHHQ E\ H[SDQGLQJ WKH FRUUHODWLRQ IXQFWLRQ LQ D 7D\ORU VHULHV LQ WLPH DERXW W DQG HTXDWLQJ WKH WLPHGHULYDWLYHV WR WKH PRPHQWV RI WKH HQHUJ\ WUDQVIHU E\ HT f 2QH WKXV REWDLQV DQ H[SDQVLRQ IRU WKH FURVV VHFWLRQ LQ PRPHQWV RI WKH HQHUJ\ WUDQVIHU EXW HDFK WHUP RI WKLV VHULHV GLYHUJHV EHFDXVH LW FRQWDLQV WKH )RXULHU WUDQVIRUP RI WQ 7KH RULJLQ RI WKLV GLYHUJHQFH LV IXUWKHU FODULILHG E\ H[SUHVVLQJ WKH WLPH GHSHQGHQFH RI WKH FRUn UHODWLRQ IXQFWLRQ DV IROORZV f 'LIIHUHQWLDWLQJ HT f ZLWK UHVSHFW WR WLPH \LHOGV +HLVHQEHUJnV HTXDWLRQ RI PRWLRQ IRU WKH WUDQVLWLRQ RSHUDWRU 7 Wf L >+ 7WfO f f§ 0 g 0 0 f 7KH IROORZLQJ GHULYDWLRQ LV EDVHG RQ FODVV QRWHV RI 3URI $ 0LFKD

PAGE 22

:H QRZ GHILQH WKH /LRXYLOOH VXSHURSHUDWRU IRU WKH LQWHUQDO PRWLRQV eMeE\ LWV DFWLRQ RQ DQ\ DUELWUDU\ RSHUDWRU $ ZKLFK DFWV RQ WKH LQn WHUQDO FRRUGLQDWHV RI WKH PROHFXOHV WKLV LV JLYHQ E\ /P $ 0 }$@ Df DQG PRUH JHQHUDOO\ Lc$ KPf9_ Ef 7KH WLPH HYROXWLRQ RI WKH WUDQVLWLRQ RSHUDWRU PD\ QRZ EH UHZULWWHQ DV 7 Wf W (07W9 f ZKLFK KDV WKH IRUPDO VROXWLRQ 7Wf H[SL/ WWIf 7 f f 0 0 5HSODFLQJ HT f LQWR HT f \LHOGV WKH IROORZLQJ H[n SUHVVLRQ IRU WKH FRUUHODWLRQ IXQFWLRQ &Wf &fm7fH[SL=AWO' 7 f}m7f7f}B f 7KH ODVW WZR IDFWRUV LQ WKH DERYH HTXDWLRQ DUH IRUPDOO\ HTXLYDOHQW WR WKH DYHUDJH RI WKH RSHUDWRU H[SLIAW+f RYHU WKH VFDWWHULQJ VWDWHV GHILQHG E\ _Y!J 7f_Y! 'HQRWLQJ WKLV DYHUDJH E\ WKH VXEn VFULSW 6 ZH ZULWH &Wf & f H[S L,AW9}J f $ FRPSDULVRQ RI HTV f DQG f VKRZV WKDW Q Q H mO}T 0 6 f

PAGE 23

WKHUHIRUH H[SDQGLQJ WKH FURVV VHFWLRQ LQ PRPHQWV RI WKH HQHUJ\ WUDQVn IHU LV HTXLYDOHQW WR DQ H[SDQVLRQ RI WKH H[SRQHQWLDO H[SL=AW0f LQ SRZHUV RI WKH H[SRQHQW :H DUH QRW VXUSULVHG WKDW WKLV H[SDQVLRQ GLYHUJHV ZKHQ LW LV DSSOLHG IRU DOO YDOXHV RI WLPH ,Q RUGHU WR WDNH IXOO DGYDQWDJH RI WKH WKHRUHWLFDO DQG H[SHULn PHQWDO LQIRUPDWLRQ SURYLGHG E\ WKH PRPHQWV RI WKH HQHUJ\ WUDQVIHU ZH PXVW LQWURGXFH WKH FXPXODQW H[SDQVLRQ PHWKRGV ZKLFK KDYH EHHQ ZLGHO\ XVHG LQ VWDWLVWLFDO PHFKDQLFV .XER 0XQVWHU f 7KHVH WHFKQLTXHV ZLOO DOVR SURYLGH XV ZLWK SRZHUIXO WRROV IRU HYDOXDWLQJ WKH FRUUHODWLRQ IXQFWLRQV WKDW ZH ZLOO HQFRXQWHU LQ WKH IROORZLQJ FKDSWHUV &XPXODQW DQG 0RPHQW ([SDQVLRQV )RU DQ\ RSHUDWRU $ DQG FRPSOH[ QXPEHU [ WKH DYHUDJH RI r a ;, H[S[$f LV GHILQHG LQ WHUPV RI WKH PRPHQW DYHUDJHV RI $ $ !! E\ H[S[$f!! e [Q$Q!!Q f Q 7UXQFDWLQJ WKH DERYH VHULHV WR D ILQLWH QXPEHU RI WHUPV PLJKW JLYH D YHU\ SRRU HYHQ GLYHUJHQWf DSSUR[LPDWLRQ WR H[S[$f!! IRU VRPH YDOXHV RI [ :H ORRN IRU DQ DOWHUQDWH H[SDQVLRQ ZKLFK ZLOO KRSHn IXOO\ JLYH D EHWWHU DSSUR[LPDWLRQ ZKHQ WUXQFDWHG ,Q SDUWLFXODU ZH ZULWH &2 H[S[$f!! H[S e [ $ !! Q f Q O r \L A ZKHUH WKH $ !! DUH FHUWDLQ DYHUDJHV RI WKH RSHUDWRU $ FDOOHG /L FXPXODQW DYHUDJHV .XER f ZKLFK DUH LPSOLFLWO\ GHILQHG LQ WHUPV RI WKH PRPHQWV E\ HTV f DQG f

PAGE 24

$Q H[SOLFLW UHODWLRQ EHWZHHQ D FXPXODQW RI D JLYHQ RUGHU DQG WKH PRPHQWV DQG FXPXODQWV RI ORZHU RUGHUV PD\ EH REWDLQHG E\ WKH IROORZLQJ SURFHGXUH 0XQVWHU f 'LIIHUHQWLDWLQJ HTV f DQG f RQFH ZLWK UHVSHFW WR [ DQG HTXDWLQJ WKHLU ULJKW KDQG VLGHV \LHOGV O [Q m$Q}QOf O [Q /m$Q @}mO}F>Q-f-Of@ Q fO f ZKHUH WKH HTXDOLW\ IROORZV E\ FKDQJLQJ WKH GXPP\ LQGH[ RI VXPPDWLRQ Q WR QrQ M &RPSDULQJ SRZHUV RI [ LQ WKH ODVW HTXDWLRQ UL DQG VROYLQJ IRU $ !! JLYHV WKH GHVLUHG UHODWLRQ QO "Q LQ Y UQOL m$ }F m$ } A MQOL LQM L $ -}m$ !! f )RU H[DPSOH WKH ILUVW IRXU FXPXODQWV DUH $!! $!! 9Br Df Ef Ff !$!! Gf ,Q SDUWLFXODU OHWWLQJ [ LWWI DQG $ / ZH FDQ H[SUHVV WKH FRUUHODWLRQ IXQFWLRQ RI HT f LQ WHUPV RI WKH FXPXODQW $ !!F $ !!$!! A m$ }F $ !!m$![$ !! .! $ $ 9 9 O nO m$ }F $ !!$ !!$!! $ !!$!! $ !!f DYHUDJHV RI/ DV IROORZV 0 &Wf &f H[S O LWWIfQ,A!!FVQ Q O f ,Q DQDORJ\ ZLWK HT f ZH GHILQH WKH FXPXODQW DYHUDJHV RI WKH HQHUJ\ WUDQVIHU E\ H7!A } ZKLFK DUH UHODWHG WR WKH PRPHQW DYHUDJHV DV VKRZQ EHORZ Q Q H H Yar Q L H -!H9 f

PAGE 25

)LQDOO\ VXEVWLWXWLQJ HT f LQWR HT f ZH REWDLQ &2 &2 A 77;f0NnNf&f H[S>LHW; A LW.fQHQ!FQ@ f )RU JLYHQ YDOXHV RI WKH LQLWLDO DQG ILQDO PRPHQWD WKLV ODVW HTXDWLRQ SURYLGHV D FRQYHQLHQW SDUDPHWUL]DWLRQ RI WKH FURVV VHFWLRQ LQ WHUPV RI WKH DYHUDJHV RI WKH HQHUJ\ WUDQVIHU $V WKH FXPXODQW DYHUDJHV FRUUHVSRQG WR GLIIHUHQFHV EHWZHHQ QXPEHUV RI WKH VDPH RUGHU RI PDJQLWXGH WKH FXPXODQW VHULHV ZLOO FRQYHUJH YHU\ UDSLGO\ )XUWKHUPRUH WKH DERYH H[SUHVVLRQ DOORZV XV WR REWDLQ ZHOOEHKDYHG DSSUR[LPDWLRQV WR WKH FURVV VHFWLRQ E\ WUXQFDWLQJ WKH VHULHV DW DQ\ WHUP RI HYHQ RUGHU ZKLFK LV QHJDWLYH 7KH VLJQLILFDQFH RI WKHVH DSSUR[LPDWLRQV LV FRQVLGHUHG LQ WKH IROORZLQJ VHFWLRQ 6KRUW7LPH ([SDQVLRQV :H QRZ DSSO\ WKH WHFKQLTXHV LQWURGXFHG DERYH WR V\VWHPV LQ ZKLFK WKH WUDQVIHU RI HQHUJ\ RFFXUV LQ D WLPH LQWHUYDO PXFK VPDOOHU WKDQ WKH W\SLFDO SHULRGV RI WKH LQWHUQDO PROHFXODU PRWLRQV )RU H[DPSOH HYHQ DW FROOLVLRQ HQHUJLHV EHORZ WKH WKUHVKROG IRU YLEUDWLRQDO H[FLWDWLRQ WKH URWDWLRQDO PRWLRQ RI PRVW PROHFXOHV LV PXFK VORZHU WKDQ WKH UHODWLYH PRWLRQ RI WKH FROOLGLQJ SDUWQHUV 0LFKD Ef 7KLV LV DOVR WKH FDVH LQ DWRPVXUIDFH VFDWWHULQJ DW K\SHU WKHUPDO HQHUJLHV EHFDXVH WKH YLEUDWLRQDO SHULRGV RI SKRQRQV DUH PXFK ORQJHU WKDQ FROOLVLRQ WLPHV 0LFKD Ff ,Q WKHVH FDVHV WKH FRUn UHODWLRQ EHWZHHQ WKH WZR WUDQVLWLRQ RSHUDWRUV WKDW GHWHUPLQH WKH FURVV VHFWLRQ LV VLJQLILFDQW RQO\ GXULQJ D VKRUW SHULRG RI WLPH :H DUH

PAGE 26

WKHQ MXVWLILHG LQ UHWDLQLQJ RQO\ WKH ORZHVW SRZHUV RI W LQ WKH FXPXODQW H[SDQVLRQ RI WKH FRUUHODWLRQ IXQFWLRQ DQG ZULWLQJ &Wf a &f H[S>LH!WWI e!FWWIf @ f 7KH DSSOLFDELOLW\ RI WKH VKRUWWLPH DSSUR[LPDWLRQ WR D VSHFLILF V\VWHP FDQ EH MXGJHG E\ FDOFXODWLQJ RU PHDVXULQJ WKH FXPXODQWV ZKLFK KDYH EHHQ RPLWWHG LQ WKH DERYH HTXDWLRQ $OWHUQDWLYHO\ ZH FDQ V\VWHPDWLFDOO\ GHYHORS LPSURYHG DSSUR[LPDWLRQV E\ LQFOXGLQJ WKH KLJKHU RUGHU FXPXODQWV 6XEVWLWXWLQJ WKH FRUUHODWLRQ IXQFWLRQ RI HT f LQWR HT f DQG HYDOXDWLQJ WKH )RXULHU WUDQVIRUP &KXUFKLOO HW DO f ZH REWDLQ WKH IROORZLQJ H[SUHVVLRQ IRU WKH FURVV VHFWLRQ GD E cA ,ILf WWH !Ff H[S>HH!fH!Ff @ Df ,Qf UWIf 0 NnNf &f r Ef 7KLV UHVXOW VKRZV WKDW FROOLVLRQV LQ ZKLFK WKH WUDQVIHU RI HQHUJ\ LV PXFK IDVWHU WKDQ WKH LQWHUQDO PRWLRQV DUH FKDUDFWHUL]HG E\ D QRUPDOL]HG *DXVVLDQ GLVWULEXWLRQ LQ WKH HQHUJ\ WUDQVIHU 7KLV KROGV WUXH IRU DOO VFDWWHULQJ DQJOHV UHJDUGOHVV RI WKH QDWXUH RI WKH FROOLVLRQ SDUWQHUV 7KH GLVWULEXWLRQ LV FHQWHUHG DERXW WKH DYHUDJH HQHUJ\ WUDQVIHUUHG LQ WKH FROOLVLRQ H! DQG EURDGHQHG E\ DQ DPRXQW A ] !T H e! f 7KH QDWXUH RI WKH FROOLGLQJ VSHFLHV GHWHUn PLQHV WKH YDOXHV DQG WKH GHSHQGHQFH RQ VFDWWHULQJ DQJOH RI WKH LQn WHQVLW\ ,ef DQG RI WKH ORFDWLRQ DQG ZLGWK RI WKH GLVWULEXWLRQ 7KHVH FRQFOXVLRQV DUH VXSSRUWHG E\ VHYHUDO H[SHULPHQWDO PHDVXUHPHQWV RI DWRPPROHFXOH %RWWQHU HW DO (DVWHV HW DO DQG DEf DQG DWRPVXUIDFH 0LFKD Ff FROOLVLRQV

PAGE 27

:H VKRXOG HPSKDVL]H WKH GLIIHUHQFHV EHWZHHQ WKH VKRUWWLPH DQG WKH YDULRXV VXGGHQ DSSURDFKHV ZKLFK KDYH EHHQ ZLGHO\ XVHG WR GHVFULEH PROHFXODU VFDWWHULQJ 7KH ODWWHU DUH EDVHG RQ GLIIHUHQW DSSUR[LPDWLRQV WR WKH G\QDPLFV E\ ZKLFK WKH HQHUJ\ LV WUDQVIHUUHG ,Q FRQWUDVW WKURXJKRXW WKH SUHVHQW GHULYDWLRQ ZH KDYH PDGH QR DSSUR[LPDWLRQV WR WKH G\QDPLFV RI WKH FROOLVLRQ 7KH LQWHQVLW\ ORFDWLRQ DQG ZLGWK RI WKH GLVWULEXWLRQ RI HTV f GHSHQG RQ WKH H[DFW WUDQVLWLRQ RSHUDWRU ,Q SDUWLFXODU WKH FRRUGLQDWHVXGGHQ DSSURDFK DOVR FDOOHG IL[HGQXFOHL DQG DGLDEDWLF VHH &KDVH f DVVXPHV WKDW WKH LQn WHUQDO GHJUHHV RI IUHHGRP DUH IUR]HQ GXULQJ WKH GXUDWLRQ RI WKH FROOLVLRQ ,Q WKH VKRUWWLPH DSSUR[LPDWLRQV WKHVH GHJUHHV RI IUHHn GRP HYROYH LQ WLPH DOEHLW VORZO\ DV FDQ EH VHHQ LQ HT f 2Q WKH RWKHU KDQG WKH HQHUJ\VXGGHQ .KDUH DQG f DQG LQILQLWHRUGHUVXGGHQ 6HFUHVW *ROGIODP HW DO f PHWKRGV IL[ WKH LQWHUQDO HQHUJ\ RI WKH PROHFXOHV WKURXJKRXW WKH FROOLVLRQ LQ WKH VKRUWWLPH DSSUR[LPDWLRQ WKH LQWHUQDO HQHUJ\ FDQ DQG GRHV FKDQJH GXULQJ WKH FROOLVLRQ DV SUHVFULEHG E\ WKH H[DFW WUDQVLWLRQ RSHUDWRU

PAGE 28

&+$37(5 ,, 7+( 0$1<%2'< &255(/$7,21 )81&7,21 $3352$&+ ,Q WKLV FKDSWHU ZH GHYHORS DQG VWXG\ WKH WLPHFRUUHODWLRQ IXQFWLRQV WKDW DUH DSSURSULDWH WR GHVFULEH K\SHUWKHUPDO FROOLVLRQV LQ ZKLFK D OLJKW SURMHFWLOH LV GHIOHFWHG LQWR ODUJH VFDWWHULQJ DQJOHV ,Q RUGHU WR PDLQWDLQ WKH IRUPDOLVP DW WKH FOHDUHVW OHYHO SRVVLEOH ZH WDNH WKH SURMHFWLOH $ WR EH D VWUXFWXUHOHVV DWRP QHXWUDO RU LRQL]HGf ZKLOH WKH WDUJHW % UHPDLQV D JHQHUDO 1DWRP SRO\DWRPLF )XUWKHUPRUH ZH IRFXV RXU DWWHQWLRQ RQ VFDWWHULQJ SURFHVVHV LQ ZKLFK WKH DPRXQW RI HQHUJ\ WUDQVIHUUHG LV FRQVLGHUDEO\ VPDOOHU WKDQ WKH UHODWLYH FROOLVLRQ HQHUJ\ 7KH VWDQGDUG SDUDPHWHUL]DWLRQ RI DWRPPROHFXOH SRWHQWLDO HQHUJ\ VXUIDFHV LV EDVHG RQ DQ H[SDQVLRQ LQ D EDVLVVHW RI IXQFWLRQV RI DQJOHV FHQWHUHG DW WKH FHQWHU RI PDVV RI WKH WDUJHW VHH 6WDHPOHU 3DUNHU HW DO DQG 7KRPDV HW DO IRU H[DPSOHVf +RZHYHU ZKHQ WKH FROOLVLRQ HQHUJ\ LV PXFK ODUJHU WKDQ WKH W\SLFDO ZHOOGHSWKV RI WKH SRWHQWLDO ODUJHDQJOH VFDWWHULQJ LV GXH WR WKH GHIOHFWLRQ RI WKH SURMHFWLOH IURP WKH VWHHSO\ UHSXOVLYH LQQHU UHJLRQ RI WKH VXUIDFH 0F'RZHOO DQG &ROHPDQ &KDS f ZKLFK LV RI D PXOWLFHQWHU QDWXUH ,Q WKHVH FDVHV WKH SRWHQWLDO LV EHWWHU UHSUHVHQWHG E\ H[n SDQGLQJ DERXW WKH DWRPLF FHQWHUV RI WKH WDUJHW DV IROORZV 0LFKD Df 95U%f Y 5U f f G D D

PAGE 29

+HUH 5 LV WKH SRVLWLRQ RI $ ZLWK UHVSHFW WR WKH FHQWHU RI PDVV !% RI WKH WDUJHW DQG U ^U D WR 1` LV WKH FROOHFWLRQ RI WKH D FRRUGLQDWH YHFWRUV RI WKH DWRPV WKDW FRQVWLWXWH WKH SRO\DWRPLF UHIHUUHG WR WKH FHQWHU RI PDVV RI % 7KH WZRERG\ SRWHQWLDO Y UHSUHVHQWV WKH LQWHUDFWLRQ EHWZHHQ WKH $Df DWRP SDLU DQG GHSHQGV RQ WKH HOHFWURQLF GLVWULEXWLRQ RI $ DQG WKDW RI WKH YDOHQFH VWDWH RI DWRP D LQ WKH PROHFXOH ,Q JHQHUDO DW VKRUW GLVWDQFHV WKH SDLU SRWHQWLDOV DUH VWHHSO\ UHSXOVLYH GXH WR WKH RYHUODSSLQJ RI WKH HOHFWURQLF FORXGV ZKLOH LQ WKH ORQJUDQJH UHJLRQ WKH\ IDOO RII DV LQYHUVH SRZHUV RI WKH UHODWLYH GLVWDQFH EHWZHHQ $ DQG D :H SRVWn SRQH D GHWDLOHG VWXG\ RI WKH SDLU SRWHQWLDOV WR D ODWHU FKDSWHU DQG FRQFHQWUDWH KHUH RQ WKH FROOLVLRQ SUREOHP 7KH PDQ\ERG\ UHSUHVHQWDWLRQ RI WKH SRWHQWLDO VKRZQ DERYH VXJJHVWV WKDW DWRPPROHFXOH VFDWWHULQJ SURFHVVHV VKRXOG EH LQWHUn SUHWHG LQ WHUPV RI WKH G\QDPLFV RI D PDQ\ERG\ V\VWHP WKLV DSSURDFK KDV UHVXOWHG LQ WKH UHFHQW GHYHORSPHQW 0LFKD Df RI D TXDQWDO PDQ\ERG\ WKHRU\ RI DWRPPROHFXOH FROOLVLRQV 6XFK D GHVFULSWLRQ EULHIO\ UHYLHZHG LQ 6HF OHDGV WR D VLPSOH PRGHO IRU YLEUDWLRQDO DQG URWDWLRQDO HQHUJ\ WUDQVIHU SURFHVVHV LQ ZKLFK WKH FURVV VHFWLRQ LV H[SUHVVHG LQ WHUPV RI DWRPSDLU FRUUHODWLRQ IXQFWLRQV RI WKH LVRODWHG WDUJHW PROHFXOH 7KHVH FRUUHODWLRQ IXQFWLRQV FDQ EH UHDGLO\ HYDOXDWHG IRU SRO\DWRPLFV ZKRVH YLEUDWLRQDO PRWLRQV DULVH IURP KDUn PRQLF IRUFHV 0LFKD Ef 7KLV PRGHO KDV EHHQ VXFFHVVIXO LQ GHn VFULELQJ WKH ODUJHDQJOH VFDWWHULQJ RI /L IURP DQG &2 0LFKD HW DO f DQG IURP &2A 9LODOORQJD HW DO f +RZHYHU UHFHQW TXDQWDO FDOFXODWLRQV IRU WKH V\VWHP +H&2A LQGLFDWH WKDW

PAGE 30

PROHFXODU DQKDUPRQLFLW\ PD\ FRQVLGHUDEO\ LQIOXHQFH YLEUDWLRQDO HQHUJ\ WUDQVIHUV DW WKHUPDO FROOLVLRQ HQHUJLHV &ODU\ f 7KHUHIRUH ZH H[WHQG WKH DWRPSDLU FRUUHODWLRQ IXQFWLRQV WR HQFRPSDVV DQKDU PRQLF IRUFHILHOGV VR WKDW ZH FDQ DVFHUWDLQ WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ LQ K\SHUWKHUPDO FROOLVLRQV ,Q RUGHU WR IRFXV RXU DWWHQWLRQ RQ WKH YLEUDWLRQDO G\QDPLFV RI WKH WDUJHW LQ 6HF ZH GHFRXSOH WKH YLEUDWLRQDO DQG WKH URWDWLRQDO FRUUHODWLRQV IURP HDFK RWKHU %\ PHDQV RI WKH FXPXODQW H[SDQVLRQ PHWKRGV LQWURGXFHG LQ &KDS ZH H[SUHVV WKH YLEUDWLRQDO FRUUHODWLRQ LQ WHUPV RI WKH GLVn SODFHPHQWGLVSODFHPHQW FRUUHODWLRQ IXQFWLRQV DV VKRZQ LQ 6HF 7KHVH VLPSOHU IXQFWLRQV DUH UHDGLO\ REWDLQHG IURP WKH FRUUHVSRQGLQJ GRXEOHWLPH *UHHQ IXQFWLRQV =XEDUHY f ZKLFK LQ WXUQ PD\ EH HYDOXDWHG IURP WKHLU KLHUDUFK\ RI HTXDWLRQV RI PRWLRQ ,Q 6HF WKLV VHW RI FRXSOHG GLIIHUHQWLDO HTXDWLRQV ZKLFK LV RI LQILQLWH VL]H LV GHFRXSOHG E\ D OLQHDU SURFHGXUH WKDW FRQWDLQV DQKDUPRQLF IRUFHV WR LQILQLWH RUGHU )URP WKLV GHYHORSPHQW ZH FRQFOXGH WKDW DQKDUPRQLF LQWUDPROHFXODU IRUFHV FDXVH D VKLIW LQ WKH HQHUJ\ WUDQVIHU VSHFWUXP DQG LQ WKH FURVV VHFWLRQV IRU YLEUDWLRQDO H[FLWDWLRQ DV GLVn FXVVHG LQ 6HF )LQDOO\ LQ 6HF ZH FRPSOHWH WKH HYDOXDWLRQ RI WKH DWRPSDLU FRUUHODWLRQ IXQFWLRQ E\ PHDQV RI D VKRUWWLPH DSSUR[LPDWLRQ WR WKH URWDWLRQDO PRWLRQV 2XWOLQH RI WKH 0DQ\%RG\ $SSURDFK 7KH PDQ\ERG\ WUDQVLWLRQ RSHUDWRU SUHVHQWHG LQ HT f FDQ EH H[SUHVVHG LQ WHUPV RI WKH WZRERG\ SRWHQWLDOV Y RI HT f E\ FO PHDQV RI WKH IRUPDOLVP RI PXOWLFHQWHU VFDWWHULQJ 5RGEHUJ DQG 7KDOHU FKDS f 7KLV OHDGV WR WKH ILQDOFKDQQHO GHFRPSRVLWLRQ

PAGE 31

7 7 Df Df 7ADf 7 7 < D D R  E"AD Ef 7 Y Y 7 D D D R D rDf Ff ZKHUH 7 GHVFULEHV WKH SURFHVV LQ ZKLFK WKH ODVW LQWHUDFWLRQ LV PHGLDWHG E\ YA ZKLOH LQ WKH RQO\ LQWHUDFWLRQ LV WKURXJK Y ,Q SDUWLFXODU LWHUDWLQJ HT f JLYHV WKH PXOWLSOHFROOLVLRQ H[ f SDQVLRQ WKDW GHVFULEHV WKH RSHUDWRU 7 LQ WHUPV RI VXFFHVVLYH FROOLVLRQV EHWZHHQ WKH SURMHFWLOH DQG HDFK DWRP RI WKH WDUJHW 7ZR DVVXPSWLRQV 0LFKD Df WKDW DUH DSSURSULDWH WR H[n SHULPHQWDO FRQGLWLRQV RI KLJK UHODWLYH HQHUJLHV DQG ODUJH VFDWWHULQJ D DQJOHV JUHDWO\ VLPSOLI\ WKH HYDOXDWLRQ RI 7 :KHQ WKH ZDYHn OHQJWK IRU UHODWLYH PRWLRQ LV PXFK VKRUWHU WKDQ WKH GLVWDQFH EHn WZHHQ VFDWWHULQJ FHQWHUV RQH PD\ DVVXPH WKDW RQO\ VLQJOH FROOLVLRQV EHWZHHQ WKH SURMHFWLOH DQG HDFK DWRP RI WKH WDUJHW DUH VLJQLILFDQW VR DDf D D WKDW 7 7 ,Q RUGHU WR FDOFXODWH 7 WKH 1 ERG\ SUREOHP PXVW VWLOO EH VROYHG EHFDXVH WKH SURSDJDWRU *A LQYROYHV WKH PRWLRQV RI DOO WKH DWRPV RI WKH WDUJHW +RZHYHU VXEVWDQWLDO VLPSOLILFDWLRQV RFFXU ZKHQHYHU WKH HQHUJ\ WUDQVIHU LV LPSXOVLYH WKLV FRQVWLWXWHV WKH VHFRQG DVVXPSWLRQ ,Q DQ LPSXOVLYH FROOLVLRQ EHWZHHQ WKH SURMHFWLOH $ DQG WDUJHW DWRP D D ODUJH IRUFH DFWV RQ D IRU D YHU\ VKRUW SHULRG RI WLPH 7KH SRVLWLRQ RI D GRHV QRW FKDQJH EXW LWV NLQHWLF HQHUJ\ LQ WKH LQLWLDO VWDWH RI % MXPSV WR WKH QHZ YDOXH WKDW FRUUHVSRQGV WR WKH ILQDO VWDWH WKH PROHFXOH (QHUJ\ DQG PRPHQWXP DUH WUDQVIHUUHG WR WKH WDUJHW WKURXJK WKH LQWHUDFWLRQ EHWZHHQ WKH SDLU $Df ZKLOH WKH UHPDLQLQJ 1O DWRPV RQO\ SURYLGH WKH UHVWRULQJ IRUFHV RQ D WKDW GHWHUPLQH LWV

PAGE 32

PRPHQWXP GLVWULEXWLRQ ZLWKLQ WKH SRO\DWRPLF :KHQ WKH FROOLVLRQ HQHUJ\ ( LV PXFK ODUJHU WKDQ WKH HQHUJ\ WUDQVIHUUHG H WKH SDUW RI 7 WKDW DFWV RQ WKH LQWHUQDO FRRUGLQDWHV RI% LV JLYHQ E\ 0LFKD Df 3 ,7 ?W! W NnNfH[S. U f Df 7DNnef .D WD(Df _AD! Ef +HUH W LV WKH WUDQVLWLRQ DPSOLWXGH IRU WKH FROOLVLRQ RI WKH DWRP SDLU $Df HYDOXDWHG DW WKHLU UHODWLYH NLQHWLF HQHUJ\ ( P (0 P f D D D DQG UHODWLYH PRPHQWXP N WINP 0 P f DQG W LV WKH WZRfERG\ D D D D WUDQVLWLRQ RSHUDWRU IRU WKH SRWHQWLDO Y ZKHQHYHU e( WKH [ DUH D D LQGHSHQGHQW RI WKH LQWHUQDO VWDWH RI WKH SRO\DWRPLF $V D UHVXOW RI WKH FROOLVLRQ DWRP D DW SRVLWLRQ U DEVRUEV DQ DPRXQW RI PRPHQWXP D 9N .LW 3f 8QGHU WKHVH DVVXPSWLRQV WKH FURVV VHFWLRQ RI HT f IDFWRUV LQWR TXDQWLWLHV WKDW GHSHQG RQ WZR GLIIHUHQW W\SHV RI PRWLRQ DV IROORZV fm9NnNf L NnNf7DN?Nf6EDfFf Df DE $ $ 6EDf.Hf H[SLHW92mH[S>LLFUEf@H[S>LLFUDWf0@} A f Ef 7KH ILUVW IDFWRU [ NnNf LQYROYHV RQO\ WKH UHODWLYH PRWLRQ RI WKH SDLU $Df 7KH VHFRQG IDFWRU 6AEDA .*f LV WKH )RXULHU WUDQVIRUP RI WKH DWRPSDLU WLPHFRUUHODWLRQ IXQFWLRQ 9DQ +RYH f DQG GHn SHQGV RQO\ RQ WKH LQWHUQDO G\QDPLFV RI WKH LVRODWHG WDUJHW 7KH FRUUHODWLRQ IXQFWLRQ IRU D SDLU RI GLIIHUHQW DWRPV DEf FRQn WDLQV SKDVHV WKDW GHSHQG RQ WKH LQLWLDO YDOXHV RI WKH LQWHUQDO G\QDPLFDO YDULDEOHV RI WKH WDUJHW ([SHULPHQWDO PHDVXUHPHQWV XVXDOO\ FRUUHVSRQG

PAGE 33

WR LQLWLDO DYHUDJHV RYHU UDQGRP SKDVHV VR WKDW WKH WHUPV RI HT Ef WKDW KDYH DAE DYHUDJH WR ]HUR ,Q WKHVH FDVHV WKH FURVV VHFWLRQ LV JLYHQ E\ G D G+GH D enef 6DDf .Vf Df D D NnNf WW;f 0 NfNf_[ N?Nf_ Ef D D ZKHUH LV DQ HIIHFWLYH WZRERG\ FURVV VHFWLRQ IRU WKH $DfSDLU FROOLVLRQ +HQFH WKH FRQWULEXWLRQ RI DWRP D WR WKH RYHUDOO FURVV VHFWLRQ PD\ EH LQWHUSUHWHG DV WKH SURGXFW RI WKH SUREDELOLW\ WKDW D ZLOO GHIOHFW WKH SURMHFWLOH IURP N WR Nf JLYHQ E\ FU PXOWLSOLHG E\ WKH SUREDELOLW\ WKDW WKH PROHFXOH ZLOO DEVRUE HQHUJ\ DQG PRPHQWXP & A WKURXJK WKLV DWRP JLYHQ E\ 6 7KH VHOIFRUUHODWLRQ IXQFWLRQ 6 NHf FRPSOHWHO\ GHVFULEHV WKH UHVSRQVH RI WKH WDUJHW DWRP D WR WKH WUDQVIHU RI PRPHQWXP 0N DQG HQHUJ\ H LQ WKH LPSXOVLYH FROOLVLRQ UHJDUGOHVV RI WKH QDWXUH RI WKH SURMHFWLOH DWRP 7KH WZRERG\ FURVVVHFWLRQV D DUH LQ SULQFLSOH RIIHQHUJ\ VKHOO TXDQWLWLHV WKDW PXVW EH REWDLQHG IURP WKH 7 7KHVH FDQ EH D HYDOXDWHG XVLQJ DQ\ RI VHYHUDO ZHOONQRZQ WHFKQLTXHV ZKLFK QHHG QRW EH UHSHDWHG KHUH VHH IRU H[DPSOH %UXPHU DQG 6KDSLUR %HDUG DQG .XUXRJOX DQG 0LFKD f +RZHYHU IRU WKH H[SHULPHQWDO FRQGLWLRQV RI TXDVLHODVWLF VFDWWHULQJ OFOnOFn VR WKH D FDQ EH L L L L D REWDLQHG IURP VWDQGDUG WZRERG\ HODVWLF FURVV VHFWLRQV 'XH WR WKH IDFWRUL]DWLRQ RI LQWHUQDO IURP UHODWLRQ PRWLRQ MXVW GHVFULEHG IURP KHUH RQ ZH QHHG WR FRQVLGHU RQO\ WKH LQWHUQDO G\QDPLFV RI WKH WDUJHW PROHFXOH ,Q RUGHU WR IRFXV RXU DWWHQWLRQ RQ WKH YLEUDWLRQDO G\QDPLFV LW ZLOO SURYH FRQYHQLHQW WR GHFRXSOH URWDWLRQDO DQG YLEUDWLRQDO PRWLRQV DV IROORZV

PAGE 34

9LEUDWLRQDO DQG 5RWDWLRQDO &RUUHODWLRQV :RUNLQJ LQ WKH FHQWHU RI PDVV RI WKH LVRODWHG SRO\DWRPLF IRU HDFK DWRP D RI % ZH LQWURGXFH LWV HTXLOLEULXP SRVLWLRQ G DQG LWV D GLVSODFHPHQW IURP HTXLOLEULXP X VR WKDW U G X 7KH FRQ D D D D GLWLRQV RI ]HUR WRWDO OLQHDU DQG DQJXODU PRPHQWD OHDG WR WKH FRQn VWUDLQWV :LOVRQ HW DO &KDS f L P U Df FO 7 P X [G /L 2 4 R D D D Ef ZKLFK LQWURGXFHV 1 RU UHODWLRQVKLSV DPRQJ WKH YLEUDWLRQDO GLVn SODFHPHQWV IRU OLQHDU DQG QRQOLQHDU PROHFXOHV UHVSHFWLYHO\ 7KLV OHDYHV 1A IUHH YLEUDWLRQDO FRRUGLQDWHV LQ WKH ERG\IL[HG %)f UHIHUHQFH IUDPH 7KH DWRPSDLU FRUUHODWLRQ IXQFWLRQ $3&)f FDQ QRZ EH ZULWWHQ DV Y A A A $ $ )ADDnLFWf H[S^LL f >G f X f@`H[S^Nf>G Wf X Wf @`} D D D D 0 9. f )RU PRVW SRO\DWRPLFV H[FHSW WKRVH WKDW FRQWDLQ VHYHUDO K\GURJHQ DWRPVf URWDWLRQDO PRWLRQV DUH PXFK VORZHU WKDQ YLEUDWLRQDO RQHV LQn GLFDWLQJ WKDW WKH YLEUDWLRQDO DQG WKH URWDWLRQDO FRUUHODWLRQV VKRXOG EH VWXGLHG VHSDUDWHO\ IURP RQH DQRWKHU 0LFKD Ef 7KLV FDQ EH GRQH E\ ZULWLQJ WKH LQWHUQDO +DPLOWRQLDQ DV + + + DQG UH 0 9 TXLULQJ WKDW WKH YLEUDWLRQDO + f DQG URWDWLRQDO + f +DPLOWRQLDQV 9 5 V A V $ A VDWLVI\ >+f+B @ 7KLV PHDQV WKDW >+W, X @ A EHFDXVH WKH X 9 5 9 D D GHSHQG RQ WKH RULHQWDWLRQ RI WKH PROHFXOH ZLWK UHVSHFW WR WKH

PAGE 35

VSDFHGIL[HG 6)f FRRUGLQDWH V\VWHP 7KHVH FRPPXWDWLRQ UHODWLRQV FDXVH WKH $3&) WR IDFWRU DV IROORZV )DDf.Wf H[S>L.G f@ )_DDn! .WfH[S>LLFf Wf @} Df 9 D . ) .Wf H[S>.f8 f @H[S>.rX Wf @} Ef D D 0 9 $ DDf 7KH YLEUDWLRQDO FRUUHODWLRQ RI )A FDQ QRZ EH FDOFXODWHG LQ WKH %) IUDPH LQ ZKLFK FDVH LW GHSHQGV RQ WKH VHW RI (XOHU DQJOHV U ^D \` WKDW GHWHUPLQH WKH RULHQWDWLRQ RI WKLV IUDPH ZLWK UHn VSHFW WR WKH 6) RQH 7KHVH DQJOHV YDU\ LQ WLPH LQ DFFRUGDQFH ZLWK WKH URWDWLRQDO +DPLOWRQLDQ RI WKH SRO\DWRPLF +RZHYHU ZKHQ WKLV PRWLRQ LV PXFK VORZHU WKDQ WKH YLEUDWLRQDO RQH ZH QHHG RQO\ FRQn VLGHU WKH YLEUDWLRQDO FRUUHODWLRQ IRU IL[HG RULHQWDWLRQ RI WKH PROHFXOH +HQFH ZLWKLQ WKH YLEUDWLRQDO $3&) RI HT Ef ZH PD\ U\ DSSUR[LPDWH 7WfB 3f VR WKDW X WfZ a X Wff (YDOXDWLQJ WKH 5 D 0 D 9 WLPH GHULYDWLYHV RI HT Ef RQH FDQ HDVLO\ VKRZ WKDW WKLV LV HTXLYDOHQW WR QHJOHFWLQJ WKH URWDWLRQDO HQHUJ\ WUDQVIHUUHG WKURXJK WKH WRUTXHV WKDW DFW RQ WKH YLEUDWLRQDO GLVSODFHPHQWV WKLV LV MXVWLILHG ZKHQHYHU _XA_LGA_ DV LV WKH FDVH IRU YLEUDWLRQDO H[n FLWDWLRQV ZHOO EHORZ WKH GLVVRFLDWLRQ WKUHVKROGV 7KH HIIHFWV RI DQKDUPRQLF LQWUDPROHFXODU IRUFHV DUH QRZ HQWLUHO\ FRQWDLQHG LQ WKH YLEUDWLRQDO $3&) RI HT Ef )RU KDUPRQLF IRUFH ILHOGV WKLV IXQFWLRQ PD\ EH UHDGLO\ HYDOXDWHG E\ REWDLQLQJ WKH X Wf7 IURP VHFRQG TXDQWL]DWLRQ PHWKRGV 0LFKD Ef ,Q FRQWUDVW D 9 DQKDUPRQLF IRUFHV LQWURGXFH WZR PDLQ GLIILFXOWLHV LQWR WKH HYDOXDWLRQ RI WKH $3&) )LUVWO\ WKH WLPHHYROXWLRQ RI DQKDUPRQLF PRWLRQV

PAGE 36

XVXDOO\ FDQQRW EH VROYHG LQ D FORVHG IRUP +RZHYHU WKH HYROXWLRQ RI WKH RSHUDWRUV X LV RI FHQWUDO LPSRUWDQFH EHFDXVH WKH\ GHWHUPLQH FO KRZ HQHUJ\ LV DEVRUEHG E\ DQG GLVWULEXWHG ZLWKLQ WKH SRO\DWRPLF 7KHUHIRUH ZH PXVW GHYHORS DSSUR[LPDWLRQV WR WKH YLEUDWLRQDO G\QDPLFV WKDW FRQWDLQ WKH IHDWXUHV RI WKH HYROXWLRQ RI WKH X ZKLFK DUH PRVW D LPSRUWDQW WR WKH FROOLVLRQV RI LQWHUHVW WKLV LV WKH VXEMHFW RI 6HF 7KH VHFRQG GLIILFXOW\ UHVLGHV LQ WKH FDOFXODWLRQ RI TXDQWDO DQG VWDWLVWLFDO DYHUDJHV RI WKH FRPSOLFDWHG H[SRQHQWLDO RSHUDWRUV KRZHYHU WKHVH DYHUDJHV PD\ EH V\VWHPDWLFDOO\ DSSUR[LPDWHG LQ WKH IROORZLQJ ZD\ &XPXODQW ([SDQVLRQ RI WKH 9LEUDWLRQDO &RUUHODWLRQ ,Q RUGHU WR DEEUHYLDWH WKH QRWDWLRQ OHW [A EH WKH FRPSRQHQW RI f!‘ X WfBU LQ WKH GLUHFWLRQ RI WKH PRPHQWXP WUDQVIHU N VR WKDW D 9 N X Wf LF [ DQG RPLW WKH VXEVFULSW 9 IURP WKH YLEUDWLRQDO WLPH FO GHSHQGHQFH DQG IURP WKH DYHUDJH RYHU LQLWLDO VWDWHV 7KH HYDOXDWLRQ RI H[S.;4fH[S.[Wf!! LV FRPSOLFDWHG E\ WKH IDFW WKDW LQ JHQHUDO H[SN ;Tf H[SL[ [AAH[S>N[4[Wf@ f EHFDXVH >X + @ :H LQWURGXFH WKH VXSHURSHUDWRU ZKLFK ZKHQ F/ 9 $ $ DFWLQJ RQ D SURGXFW RI SRZHUV RI [A DQG [A RUGHUV DOO WKH SRZHUV RI ;T WR WKH OHIW RI DOO WKH SRZHUV RI [A L H [A[A ;T;AB 7KH $3&) PD\ QRZ EH ZULWWHQ DV )ADDf.Wf H[S>L. ;T[Af @!! f

PAGE 37

ZKHUH WKH DYHUDJH RI WKH RUGHUHG H[SRQHQWLDO RSHUDWRU LV GHILQHG LQ WHUPV RI WKH PRPHQWDYHUDJHV RI WKH RUGHUHG H[SRQHQW DV IROORZV mH[S>L.[ [ f@} O L.fQ[ f§[ fQ}Q f X F Q X F )URP VWXGLHV RI WKH VFDWWHULQJ RI FROG QHXWURQV IURP FU\VWDOV 0DUVKDOO DQG /RYHVH\ f LW LV ZHOO NQRZQ WKDW WKH WHUPV RI HT f ZKLFK FRQWDLQ WKH SURGXFW [A[r1 ZLWK O P Q GHVFULEH WKH VLPXOWDQHRXV QWXSOH H[FLWDWLRQ RI WKH YLEUDWLRQDO VWDWHV RI WKH WDUJHW ,Q WKHVH FDVHV RQO\ VLQJOH H[FLWDWLRQV DUH XVXDOO\ REVHUYHG VR WKH $3&) LV DSSUR[LPDWHG E\ WKH VHFRQG PRPHQW +RZHYHU LQ DWRPSRO\DWRPLF FROOLVLRQV PXOWLSOH H[FLWDWLRQV DUH UHDGLO\ REVHUYHG LQ WKH H[SHULPHQWV PHQWLRQHG LQ WKH ,QWURGXFWLRQ +HQFH LW ZLOO SURYH PRUH FRQYHQLHQW WR H[SUHVV WKH $3&) LQ WHUPV RI WKH FXPXODQW DYHUDJHV RI WKH H[SRQHQW [A[Af !!A DV IROORZV 22 )ADD Wf H[S O L[fQ[[WfQ!!FQ f Q O &RPSDULQJ WKH FRHIILFLHQWV RI SRZHUV RI Nf LQ HTV f DV GRQH LQ &KDS 6HF VKRZV WKDW WKH FXPXODQWV DUH UHODWHG WR WKH PRPHQW DYHUDJHV E\ Q L[WfQ}F m2[[WfQ} O m[4[WfQ}m[[WfM}F M O f 'XH WR WKH LQYDULDQFH RI WKH WUDFH RI D SURGXFW RI RSHUDWRUV ZLWK UH a Q a Q VSHFW WR D F\FOLF SHUPXWDWLRQ RI WKHLU RUGHU ;4!! [W!! VR WKH ILUVW IHZ FXPXODQWV DUH

PAGE 38

Df Ef Ff Gf (TXDWLRQV f H[SUHVV WKH $3&) LQ WHUPV RI WKH VLPSOHU GLVn SODFHPHQWGLVSODFHPHQW FRUUHODWLRQ IXQFWLRQV ''&)f RI WKH W\SH Y caP ;4;W!! ZLWK L DQG P LQWHJHUV %\ PHDQV RI D WKHRUHP GXH WR %ORFK 0HVVLDK &KDS f RQH FDQ UHDGLO\ VKRZ WKDW IRU KDUPRQLF PRWLRQV DOO WKH FXPXODQWV RI RUGHU KLJKHU WKDQ WZR DUH LGHQWLFDOO\ ]HUR 7KHUHIRUH WKHVH FXPXn ODQWV DUH H[SOLFLWO\ SURSRUWLRQDO WR WKH VWUHQJWK RI WKH DQKDUPRQLF IRUFHV +RZHYHU LQ WKH XVXDO H[SHULPHQWDO GLVWULEXWLRQV RI LQLWLDO VWDWHV RQO\ WKH ORZHVW YLEUDWLRQDO VWDWHV DUH VLJQLILFDQWO\ SRSXn ODWHG ,Q WKHVH FDVHV WKH GLVSODFHPHQWV DUH VPDOO DQG YLEUDWLRQDO PRWLRQV DUH DSSUR[LPDWHO\ KDUPRQLF VR WKDW ZH PD\ ZULWH ,I QHFHVVDU\ IRU KLJKO\ H[FLWHG WDUJHWV WKLV DSSUR[LPDWLRQ PD\ EH V\VWHPDWLFDOO\ LPSURYHG E\ LQFOXGLQJ WKH KLJKHU RUGHU FXPXODQWV LQn GLFDWHG LQ HT f :H QRWH WKDW WKH DERYH HTXDWLRQ VWLOO FRQn WDLQV DQKDUPRQLF IRUFHV WR LQILQLWH RUGHU ZLWKLQ WKH WLPH GHSHQGHQFH RI WKH X DQG ZLWKLQ WKH DYHUDJH RYHU LQLWLDO VWDWHV )XUWKHUPRUH FO HT f LQFOXGHV PXOWLSOH H[FLWDWLRQV DV FDQ EH VHHQ IURP WKH SRZHUVHULHV H[SDQVLRQ RI WKH H[SRQHQWLDO IXQFWLRQ

PAGE 39

:H PXVW QRZ VWUHVV D YHU\ LPSRUWDQW SRLQW RI WKH SUHVHQW GHn YHORSPHQW 7KH FXPXODQW VHULHV RI WKH $3&) FRUUHVSRQGV WR DQ H[n SDQVLRQ RI WKH RSHUDWRU H[S>L[[ [ f@ LQ WHUPV RI LWV H[SRQHQW WKLV LV QRW HTXLYDOHQW WR H[SDQGLQJ WKH YLEUDWLRQDO WLPHHYROXWLRQ RSHUDWRU H[S&L/AW8f LQ SRZHUV RI WLPH 7KHUHIRUH HT f GRHV QRW FRUUHVSRQG WR D VKRUWWLPH DSSUR[LPDWLRQ WR WKH YLEUDWLRQDO PRWLRQV ,Q WKLV FDVH D VKRUWWLPH DSSUR[LPDWLRQ ZRXOG QRW EH YDOLG EHFDXVH YLEUDWLRQDO SHULRGV DUH FRPSDUDEOH WR FROOLVLRQ WLPHV WKLV LV IXUWKHU FRQILUPHG E\ WKH ULFK YLEUDWLRQDO VWUXFWXUH REVHUYHG LQ WKH H[SHULPHQWV ZKLFK FDQQRW EH GHVFULEHG E\ WKH *DXVVLDQ GLVWULn EXWLRQV FKDUDFWHULVWLF RI VORZ LQWHUQDO PRWLRQV %HIRUH SURFHHGLQJ WR WKH HYDOXDWLRQ RI WKH ''&) WKH YLEUDWLRQDO +DPLOWRQLDQ PXVW EH VSHFLILHG 7KH SRWHQWLDO LV XVXDOO\ JLYHQ LQ WHUPV RI WKH LQWHUQDO FRRUGLQDWHV RI WKH PROHFXOH V L O WR 1 L 9 :LOVRQ HW DO &KDS f ZKLFK DUH UHODWHG WR WKH FDUWHVLDQ GLVSODFHPHQWV X f e [\]E\ WKH OLQHDU WUDQVIRUPDWLRQ F X f O F UfV D e DWL L f +HUH WKH FRHIILFLHQWV FGHSHQG RQ WKH RULHQWDWLRQ RI WKH %) IUDPH ZLWK UHVSHFW WR WKH 6) RQH 8VLQJ HT f WKH NLQHWLF HQHUJ\ RI YLEUDWLRQ FDQ EH H[SUHVVHG LQ WHUPV RI WKH LQWHUQDO FRRUGLQDWHV DV IROORZV .Y LV B P V 6W War P LM O O D PH B F B D DWL DWM Df Ef

PAGE 40

:H WDNH WKH YLEUDWLRQDO SRWHQWLDO 9AVf WR EH D JHQHUDO IXQFWLRQ RI WKH ZKLFK VDWLVILHV WKH FRQYHQWLRQV 9Af DQG 69A6Vf _T A :LOVRQ HW DO &KDS f ,Q RUGHU WR VLQJOH RXW WKH HIIHFWV RI DQKDUPRQLFLW\ ZH VHSDUDWH LQWR D KDUPRQLF SDUW DQG DQ DQ KDUPRQLF RQH 9 E\ ZULWLQJ 99 ? 9DQKf Df 9 e VNV K X L L@ L N _LY ,7 G6G6 ! V Ef Ff 8VLQJ HT f ZH FRXOG H[SUHVV >f œ f @ >L f X Wf@} D D LQ WHUPV RI WKH FRUUHODWLRQ IXQFWLRQV RI WKH LQWHUQDO FRRUGLQDWHV DQG WKHQ SURFHHG WR HYDOXDWH WKH ODWWHU +RZHYHU LQ RUGHU WR IDFLOLWDWH D FRPSDULVRQ RI WKH UHVXOWV RI WKLV VWXG\ ZLWK WKRVH RI KDUPRQLF YLn EUDWLRQV LW ZLOO SURYH FRQYHQLHQW WR ZRUN ZLWK WKH VHW RI FRRUGLQDWHV WKDW GLDJRQDOL]H WKH KDUPRQLF SDUW RI WKH +DPLOWRQLDQ 7KHVH FRn RUGLQDWHV GHQRWHG E\ 4 M O WR 1A DUH GHILQHG E\ WKH RUWKRJRQDO WUDQVIRUPDWLRQ 0DULRQ &KDS f V ID 4 f L@ L ZKHUH WKH FRHIILFLHQWV D VDWLVI\ WKH VHW RI OLQHDU HTXDWLRQV O r! nf ZLWK WKH QRUPDOL]DWLRQ FRQGLWLRQ A DLM P8 DeM r f L e

PAGE 41

DQG ZLWK WKH IUHTXHQFLHV RM JLYHQ E\ WKH URRWV RI WKH FKDUDFWHULVWLF HTXDWLRQ GHWLNA Z M f 6XEVWLWXWLQJ HT f LQWR HTV f \LHOGV IRU WKH YLEUDWLRQDO +DPLOWRQLDQ + 9 9DQKAf Df ? O 3 4rf L Ef ZKHUH 3A f§ L9L4A LV WKH FDQRQLFDO PRPHQWXP FRQMXJDWH WR WKH FRn RUGLQDWH 4A &RPELQLQJ WKH WUDQVIRUPDWLRQV GHILQHG LQ HTV f ZH ZULWH 6D f DLUf9 DL9 FDmUfDmL Df Ef KHQFH WKH $3&) RI HT f EHFRPHV )DDfHWf H[S^ O N & fN & f>m4f4 f} 9 DDL M L LM 4Mf4LWf}@` f 7KH HYDOXDWLRQ RI WKH GLVSODFHPHQWGLVSODFHPHQW FRUUHODWLRQ IXQFWLRQV 4B f4AWf!! LV WKH VXEMHFW RI WKH QH[W VHFWLRQ :H HPSKDVL]H KRZHYHU WKDW WKH PHWKRGV SUHVHQWHG EHORZ DUH DSSOLFDEOH WR WKH HYDOXDWLRQ RI FRUUHODWLRQ IXQFWLRQV RI DQ\ YLEUDWLRQDO GLVSODFHn PHQWV WKDW DUH UHODWHG WR WKH X E\ D OLQHDU WUDQVIRUPDWLRQ 7KH D

PAGE 42

SUHVHQW FKRLFH RI WKH LV EDVHG RQO\ RQ WKH GHVLUH WR FRPSDUH WKH UHVXOWV REWDLQHG IURP DQKDUPRQLF IRUFHILHOGV ZLWK WKRVH RI KDUPRQLF RQHV )URP D SUDFWLFDO SRLQW RI YLHZ WKH FRRUGLQDWHV WKDW GLDJRQDOL]H WKH KDUPRQLF SDUW RI WKH +DPLOWRQLDQ DUH XVHIXO ZKHQ DQKDUPRQLF FRXSOLQJV EHWZHHQ DQG 4 ZLWK L I M DUH VPDOO DQG ZKHQ EUHDNXS FKDQQHOV QHHG QRW EH FRQVLGHUHG ,I WKH LQWHUFRRUGLQDWH FRXSOLQJV DUH ODUJH RU LI RQH LV LQWHUHVWHG LQ GLVVRFLDWLYH SURFHVVHV D GHn VFULSWLRQ LQ WHUPV RI WKH FRUUHODWLRQ RI WKH LQWHUQDO FRRUGLQDWHV VA LV PRUH DSSURSULDWH )XUWKHUPRUH WKH IROORZLQJ SURFHGXUH PD\ EH UHDGLO\ H[WHQGHG WR WKH HYDOXDWLRQ RI FRUUHODWLRQ IXQFWLRQV RI WKH W\SH ;T; !! ZLWK 6P!O (YDOXDWLRQ RI WKH 'LVSODFHPHQW'LVSODFHPHQW &RUUHODWLRQ )XQFWLRQ +HLVHQEHUJnV HTXDWLRQ RI PRWLRQ IRU WKH GLVSODFHPHQW 4A 4Wf L >+ 4 Wf @ f W 9, OHDGV WR D VHFRQG RUGHU LQKRPRJHQHRXV GLIIHUHQWLDO HTXDWLRQ WKDW GHVFULEHV WKH WLPH HYROXWLRQ RI WKH GLVSODFHPHQWGLVSODFHPHQW FRUn UHODWLRQ IXQFWLRQ ''&)f 4AWnf4AWf!! LQ WKLV VHFWLRQ ZH FRQWLQXH WR RPLW WKH VXEVFULSW 9 IURP WKH YLEUDWLRQDO WLPHGHSHQGHQFH DQG IURP WKH DYHUDJH RYHU LQLWLDO VWDWHVf ,Q RUGHU WR VROYH WKLV HTXDWLRQ RQH ZRXOG QHHG WR VSHFLI\ WZR ERXQGDU\ FRQGLWLRQV IRU H[DPSOH WKH YDOXH RI WKH FRUUHODWLRQ IXQFWLRQ DQG RI LWV WLPH GHULYDWLYH DW W Wnf ZKLFK UHTXLUH NQRZOHGJH RI DYHUDJHV RI RSHUDWRUV RYHU WKH LQLWLDO VWDWHV )RU DQKDUPRQLF +DPLOWRQLDQV WKH FDOFXODWLRQ RI WKHVH DYHUDJHV UHn TXLUHV FRQVLGHUDEOH FRPSXWDWLRQDO HIIRUW KHQFH ZH ZLOO REWDLQ WKH ''&) IURP WKH FRUUHVSRQGLQJ GRXEOHWLPH *UHHQ IXQFWLRQV ZKLFK DOn UHDG\ LQFRUSRUDWH ERXQGDU\ FRQGLWLRQV

PAGE 43

)RU DQ\ RSHUDWRUV $ DQG % WKH GRXEOHWLPH UHWDUGHG f DQG DGYDQFHG f *UHHQ IXQFWLRQV DUH GHILQHG E\ =XEDUHY f $Wf %Wnf} sf LH>sWf§Wnf@>ƒWfEWnf@!! f ZKHUH LV WKH +HDY\VLGH XQLW VWHSIXQFWLRQ 'LIIHUHQWLDWLQJ HT f ZLWK UHVSHFW WR WLPH XVLQJ HT f DQG HYDOXDWLQJ WKH QHFHVVDU\ FRQPXWDWRUV \LHOGV WKH HTXDWLRQ RI PRWLRQ IRU WKH GLVSODFHPHQWGLVSODFHPHQW *UHHQ IXQFWLRQ ''*)f 7KLV LV 6W Dffm4Wf4MWnf}sf mIWf4MWff}sf 8 6WWnf f ZKHUH I 9 4 LV WKH DQKDUPRQLF IRUFH WKDW DFWV RQ WKH FR O DQK L RUGLQDWH 4BA )ROORZLQJ WKH VDPH SURFHGXUH RQH FDQ ZULWH DQ HTXDWLRQ r a f RI PRWLRQ IRU WKH *UHHQ IXQFWLRQ IBAWf 4 Wnf !! ZKLFK LQ WXUQ LQYROYHV *UHHQ IXQFWLRQV RI KLJKHU GHULYDWLYHV RI WKH DQKDUPRQLF SRWHQWLDO 2QH WKXV GHYHORSV DQ LQILQLWH KLHUDUFK\ RI FRXSOHG GLIn IHUHQWLDO HTXDWLRQV ZKLFK FDQQRW EH VROYHG XQOHVV LW LV FORVHG E\ D GHFRXSOLQJ DSSUR[LPDWLRQ ,Q VWXGLHV RI DQKDUPRQLF YLEUDWLRQV RI FU\VWDOV VHYHUDO GHn FRXSOLQJ VFKHPHV KDYH EHHQ SURSRVHG IRU H[DPSOHV VHH .DVFKHHY DQG .ULYRJOD] 7KRPSVRQ 0DUDGXGLQ DQG $PEHJDRNDU 3DWKDN f 7KHVH DUH EDVHG RQ SRO\QRPLDOW\SH DQKDUPRQLFLWLHV VR WKDW WKH WKLUG WHUP RQ WKH OHIW RI HT f LV D VXP RI KLJKHU RUGHU ''*) RI WKH W\SH 4Wf4 Wf4 Wf 4 Wn f !!AaA 2QH L P M WKHQ GHYHORSV WKH KLHUDUFK\ RI HTXDWLRQV RI PRWLRQ IRU WKHVH IXQFWLRQV

PAGE 44

ZKLFK LQ WXUQ LQYROYH ''*) RI HYHQ KLJKHU RUGHU $W VRPH OHYHO WKH KLnHUDUFK\ LV GHFRXSOHG E\ HLWKHU QHJOHFWLQJ WKH KLJKRUGHU ''*) RU DSSUR[LPDWLQJ WKHP E\ SURGXFWV RI WLPHLQGHSHQGHQW DYHUDJHV PXOWLSOLHG E\ ''*) RI ORZHU RUGHU )RU PROHFXODU YLEUDWLRQV WKHVH SURFHGXUHV KDYH WKH IROORZLQJ GLVDGYDQWDJHV f PDQ\ DQKDUPRQLF SRWHQWLDOV RI LQn WHUHVW HJ 0RUVHW\SHf FDQQRW EH H[SUHVVHG DV D ILQLWHGHJUHH SRO\n QRPLDO LQ WKH GLVSODFHPHQWV f HYHQ IRU SRO\QRPLDO DQKDUPRQLFLWLHV WKH IDFWRUL]DWLRQ RI WKH KLJKRUGHU *UHHQ IXQFWLRQV LV QRW XQLTXHO\ GHILQHG VR WKDW GLIIHUHQW IDFWRUL]DWLRQ SUHVFULSWLRQV OHDG WR GLIn IHUHQW UHVXOWV f RQ WKH RWKHU KDQG WKH QHJOHFW RI KLJKHURUGHU ''*) LQWURGXFHV G\QDPLFDO DSSUR[LPDWLRQV WKDW DUH QRW ZHOO XQGHUVWRRG +RZHYHU ZH FDQ GHYHORS DQ DOWHUQDWLYH GHFRXSOLQJ SURFHGXUH WKDW GRHV QRW VXIIHU IURP WKHVH GUDZEDFNV DV IROORZV $V GLVFXVVHG LQ WKH SUHYLRXV VHFWLRQ LQ WKH XVXDO H[SHULPHQWDO GLVWULEXWLRQV WKH YLEUDWLRQDO GLVSODFHPHQWV DUH VPDOO ,Q WKHVH FDVHV ZH PD\ DSSUR[LPDWH WKHLU G\QDPLFDO FRUUHODWLRQ ZLWK DQ HIIHFWLYH KDUPRQLF RQH E\ PHDQV RI WKH OLQHDUL]DWLRQ mI Wf4Wff}sfA E m4Wf4Wf}sf f KHQFH DOO WKH G\QDPLFDO HIIHFWV RI WKH DQKDUPRQLF IRUFHV DUH FRQWDLQHG LQ WKH GHFRXSOLQJ SDUDPHWHUV E )XUWKHU RQ ZH ZLOO IL[ WKH E WR UHSURGXFH WKH G\QDPLFDO IHDWXUHV RI WKH H[DFW ''&) GXULQJ WKH EULHI FROOLVLRQ WLPHV FKDUDFWHULVWLF RI LPSXOVLYH HQHUJ\ WUDQVIHU 2Q WKH RWKHU KDQG ZKHQ WKH SRSXODWLRQ RI H[FLWHG LQLWLDO VWDWHV LV ODUJH HT f PD\ EH JHQHUDOL]HG WR

PAGE 45

mI Wf4Wnf}sf EIf m4fWf4Wff}sf L e L D Wf Wnf!!sf eP OeP P E/OWfPWfQWfc-Wf!!: n n f ePQ f ZKLFK FRUUHVSRQGV WR DSSUR[LPDWLQJ WKH DQKDUPRQLF FRUUHODWLRQ E\ PHDQV RI HIIHFWLYH KDUPRQLF FXELF TXDUWLF DQG VR RQ FRUUHODWLRQV 7KH GHFRXSOLQJ SDUDPHWHUV PD\ WKHQ EH IL[HG WR UHSURGXFH WKH H[DFW YDOXHV RI WKH G\QDPLFDO SURSHUWLHV RI WKH ''&) WKDW DUH PRVW UHOHYDQW WR WKH FROOLVLRQV RI LQWHUHVW ,Q RUGHU WR PDLQWDLQ WKH IRUPDOLVP DW WKH FOHDUHVW OHYHO SRVn VLEOH IURP KHUH RQ ZH FRQVLGHU WKH FDVH RI ]HUR DQKDUPRQLF FRXSOLQJV EHWZHHQ 4 DQG 4 IRU L"+ VR WKDW E E :H GLVFXVV WKH HIIHFWV L LM [M [ RI QRQ]HUR LQWHUFRRUGLQDWH FRXSOLQJV DW WKH HQG RI WKLV VHFWLRQ ,QWURGXFLQJ WKH )RXULHU WUDQVIRUP RI WKH ''*) GHILQHG E\ LPWWnf fsf PBsf m42M4&Wnf}A O P GP H Pf LM f f WKH OLQHDUL]HG HTXDWLRQ RI PRWLRQ LV UHDGLO\ VROYHG IRU *A Pf JLYLQJ *A`Pf WIF6A87U&P FRf@ f ZKHUH P E f LV WKH HIIHFWLYH YLEUDWLRQDO IUHTXHQF\ RI WKH FRRUGLQDWH 4A )RU D %ROW]PDQQ GLVWULEXWLRQ RI LQLWLDO VWDWHV WKH )RXULHU WUDQVIRUP -f Pf RI 4B W f4AWf!! GHILQHG E\

PAGE 46

4 Wr f4sWf } ^ GXH f§ LMW f§W n f -sMXf f sf PD\ EH REWDLQHG IURP Pf E\ PHDQV RI WKH UHODWLRQ =XEDUHY f -BFTf L H DZf OLP >*A+ LQf*A ` RX LQ f@ LM VLQKDPf T}4 LM LO f +HUH DZf 0XN 7 f N LV %ROW]PDQQnV FRQVWDQW DQG 777 WKH '9' 9 WHPSHUDWXUH RI WKH GLVWULEXWLRQ 6XEVWLWXWLQJ HT f LQWR f DQG XVLQJ WKH H[SUHVVLRQ OLP \ s LTf 3\ L7U\f f Q ZKHUH 3 GHQRWHV WKH SULQFLSDO YDOXH ZH ILQG WKDW WKH VSHFWUDO IXQFWLRQ -f Pf LV JLYHQ E\ D 6 -BFRf !f>H ZL2 H RKAf@ZAVLQKDAf f LQ ZKLFK D .R-N 7 f )LQDOO\ HYDOXDWLQJ WKH )RXULHU WUDQVIRUP ; % 9 LQGLFDWHG LQ HT f ZH DUULYH DW WKH IROORZLQJ H[SUHVVLRQ IRU WKH ''&) 4f4Wf!! >H[SDLZ WfH[SmLZ Wf @ P VLQK£f f M L LM L O LO O L 7KH GHFRXSOLQJ FRHIILFLHQWV PD\ QRZ EH IL[HG WR UHSURGXFH WKH G\QDPLFDO SURSHUWLHV RI WKH H[DFW ''&) WKDW DUH PRVW UHOHYDQW WR WKH FROOLVLRQV RI LQWHUHVW ,Q WKH SUHVHQW FDVH LPSXOVLYH HQHUJ\ WUDQVn IHU RFFXUV GXULQJ D EULHI SHULRG RI WLPH FHQWHUHG DERXW W +HQFH ZH FKRRVH WKH EA RU HTXLYDOHQWO\ WKH WR \LHOG WKH H[DFW YDOXHV

PAGE 47

RI WKH ILUVW IHZ WLPHGHULYDWLYHV RI WKH ''&) DW WKH LQVWDQW RI FROOLVLRQ 'LIIHUHQWLDWLQJ HT f ZLWK UHVSHFW WR WLPH VKRZV WKDW WKH EBA WKXV FKRVHQ ZLOO FRQVHUYH WKH ILUVW IHZ IUHTXHQF\PRPHQWV RI WKH VSHFWUDO IXQFWLRQ )URP HT f ZH VHH WKDW WKH H[DFW GHULYDWLYHV DUH JLYHQ E\ Q m4 f f 4 Wf !! 8+fQm4>+Y fQ4 @!! W W Q f (YDOXDWLRQ RI WKH QHFHVVDU\ FRPPXWDWRUV \LHOGV DQ H[SUHVVLRQ IRU WKH ILUVW GHULYDWLYH WKDW DW W LV LQGHSHQGHQW RI WKH G\QDPLFV RI WKH DQKDUPRQLF IRUFHV WKLV LV BB m4 f4 Wf!! L f DW W R ZKLFK FRLQFLGHV ZLWK WKH H[SUHVVLRQ REWDLQHG E\ GLIIHUHQWLDWLQJ WKH DSSUR[LPDWH ''&) RI HT f +RZHYHU WKH VHFRQG GHULYDWLYH LV H[DFWO\ JLYHQ E\ B m4 f4 Wf} DW W 4 I !!f 4 4 !!f LO L L 9 L f ZKLFK GHSHQGV H[SOLFLWO\ RQ WKH DQKDUPRQLF IRUFHV 2Q WKH RWKHU KDQG D VHFRQG GLIIHUHQWLDWLRQ RI HT f \LHOGV 4Mf4LWf} IW XL LM a7as FRWK D f [ W f

PAGE 48

+HQFH HTXDWLQJ WKH ULJKW KDQG VLGHV RI HTV f GHILQHV WKH HIIHFWLYH IUHTXHQFLHV M E\ WKH UHODWLRQ a r r .ZFRWKD Df 4 !! 4 I !!f L L f 6XEVWLWXWLQJ LQWR HT f WKH RN WKXV REWDLQHG ZH ILQG WKDW WKH DSSUR[LPDWH ''&) FRQWDLQV WKH G\QDPLFDO HIIHFWV RI WKH DQKDUPRQLF IRUFHV WR LQILQLWH RUGHU )XUWKHUPRUH IRU KDUPRQLF PRWLRQV r 4A!! 0R!AfFRWKDA DQG IBA VR WKH SUHVHQW GHYHORSPHQW LQFOXGHV KDUPRQLF YLEUDWLRQV DV D VSHFLILF FDVH 5HSODFLQJ HT f LQWR HT f DQG UHDUUDQJLQJ WHUPV ZH REWDLQ WKH IROORZLQJ H[SUHVVLRQ IRU WKH $3&) ? U[ f/ W ) >aMH[S^.f & f >FRVK D H Y D[ L D LZ W H f @ Df VLQKD f ` f L L 8VLQJ WKH JHQHUDWLQJ IXQFWLRQ RI WKH PRGLILHG %HVVHO IXQFWLRQV RI WKH ILUVW NLQG f $EUDPRZLW] DQG 6WHJXQ f Q H[S>[\ O\f@ e \Q,A [f f Q arr ZH ILQDOO\ DUULYH DW )ADDf*7Wf e SADDKLUfH[S LQ:\Wf Df ‘‘ Q Q

PAGE 49

DDf 3 N Q [ f H[S Q D ; FRVK Df !‘ Q DL L L DL L Q OL Ef ; >Nf & 7f @ P VLQKFW f DL DL OL Ff LQ ZKLFK ZH KDYH LQWURGXFHG WKH DEEUHYLDWLRQV Q ^Q ` DQG L 89 n‘D!L f &RPSDULQJ WKHVH ODVW HTXDWLRQV ZLWK WKH RQHV FRUUHVSRQGLQJ WR KDUPRQLF YLEUDWLRQV HT f LQ 0LFKD Ef ZH ILQG WKDW WKH $3&) IRU KDUPRQLF DQG DQKDUPRQLF PRWLRQV FRLQFLGH LQ IRUP KRZHYHU IRU DQKDUPRQLF PROHFXOHV WKH QRUPDO IUHTXHQFLHV XN PXVW EH UHSODFHG E\ WKH HIIHFWLYH RQHV FR REWDLQHG IURP HT f 1RQ]HUR LQWHUFRRUGLQDWH DQKDUPRQLF FRXSOLQJV FDXVH PL[LQJ RI WKH QRUPDO FRRUGLQDWHV 4K ZKLFK LV UHIOHFWHG LQ WKH RII GLDJRQDO SDUDPHWHUV E RI HT f ,Q WKLV FDVH WKH OLQHDUL]HG HTXDWLRQV RI PRWLRQ IRU WKH ''*) OHDG WR WKH IROORZLQJ PDWUL[ HTXDWLRQ IRU WKHLU )RXULHU WUDQVIRUPV Z IW Ef *sf Xf WWf A Y r?M 2} n;M f ZKHUH RMf ^* RMf` E ^E` DQG Q ^ DL` 6ROYLQJ IRU n8 r?M sf RMf VKRZV WKDW WKH HIIHFWLYH IUHTXHQFLHV DUH JLYHQ E\ WKH URRWV RI n; WKH GHWHUPLQDQW RI P OILfEf +HQFH FKRRVLQJ WKH E WR UHSURGXFH A X9 b LM WKH H[DFW VHFRQG GHULYDWLYH RI WKH ''&) DW W OHDGV WR D PDWUL[ HTXDWLRQ IRU E DQDORJRXV WR HT f %DVHG RQ WKH SUHVHQW GH YHORSPHQW WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ LQ K\SHUWKHUPDO FROn OLVLRQV PD\ EH LQWHUSUHWHG LQ WKH IROORZLQJ ZD\

PAGE 50

(IIHFWV RI 0ROHFXODU $QKDUPRQLFLW\ LQ +\SHUWKHUPDO &ROOLVLRQV ,Q DQDORJ\ WR HT Ef WKH )RXULHU WUDQVIRUP RI WKH YLEUDWLRQDO $3&) &2 6DDf N IAH[S LHWWIf )DDf[Wf Df f§  3BA A 7f &KLQ W}Y Hf Ef Q Q FRUUHVSRQGV WR WKH SUREDELOLW\ WKDW WKH PROHFXOH ZLOO DEVRUE YLn EUDWLRQDO HQHUJ\ DQG PRPHQWXP LQ D FROOLVLRQ LQYROYLQJ DWRP D IRU WKH IL[HG RULHQWDWLRQ RI WKH SULQFLSDO D[HV RI WKH SRO\DWRPLF LQn GLFDWHG E\ ) 7KLV KDV WKH IRUP RI IXQFWLRQ SHDNV ORFDWHG DW WKH YLEUDWLRQDO HQHUJ\ WUDQVIHU Q f 8\ ZKHUH Q LV WKH FKDQJH LQ TXDQWXP QXPEHU LQLWLDO PLQXV ILQDOf RI WKH LWK HIIHFWLYH QRUPDO PRGH WKH SUREDELOLW\ IRU WKH WUDQVLWLRQ Q LV JLYHQ E\ SADDAA 7f LQ Q SUDFWLFH WKHVH SHDNV DUH EURDGHQHG LQWR *DXVVLDQ IXQFWLRQV E\ WKH URWDWLRQDO FRUUHODWLRQ DV LV VKRZQ LQ WKH IROORZLQJ VHFWLRQ ,Q OLJKW RI WKLV DQDO\VLV WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ LQ K\SHUWKHUPDO DWRPSRO\DWRPLF FROOLVLRQV PD\ EH VXPPDUL]HG DV IROORZV f $QKDUPRQLF IRUFHV FDXVH D VKLIW LQ WKH VSHFWUXP RI WKH YLn EUDWLRQDO HQHUJ\ WUDQVIHU IURP WKH VHW RI KDUPRQLF IUHTXHQFLHV RN WR WKH HIIHFWLYH RQHV P L f (TXDWLRQ f VKRZV WKDW WKLV VKLIW LV UHODWHG WR WKH ZRUN GRQH E\ WKH DQKDUPRQLF IRUFHV RQ WKH YLEUDWLRQDO GLVSODFHPHQWV f 7KH FKDQJH LQ WKH YLEUDWLRQDO IUHTXHQFLHV LV DFFRPSDQLHG E\ D FRUUHVSRQGLQJ FKDQJH LQ WKH SUREDELOLWLHV IRU YLEUDWLRQDO H[FLWDWLRQ DV LQGLFDWHG LQ HTV EFf

PAGE 51

f ,Q FRQWUDVW WR WKH KDUPRQLF FDVH WKH HIIHFWLYH IUHTXHQFLHV GHSHQG RQ WKH WHPSHUDWXUH RI WKH GLVWULEXWLRQ RI LQLWLDO VWDWHV 7KLV LV GXH WR WKH IDFW WKDW WKH DQKDUPRQLF IRUFHV DIIHFW DOO WKH VWDWHV WKDW DUH SUHVHQW LQ WKH GLVWULEXWLRQ 7KH PDJQLWXGHV RI WKH HIIHFWV GHSHQG RQ WKH VSHFLILF QDWXUH DQG VWUHQJWK RI WKH LQWUDPROHFXODU IRUFHV RI WKH WDUJHW DQG UHTXLUH WKH HYDOXDWLRQ RI WKH DYHUDJHV LQGLFDWHG LQ HT f 7KHVH PD\ EH FDOFXODWHG E\ VWDQGDUG QXPHULFDO SURFHGXUHV RU E\ ILQLWHWHPSHUDWXUH SHUWXUEDWLRQ WKHRU\ ZKHQ WKH WHPSHUDWXUH RI WKH LQLWLDO GLVWULEXWLRQ LV VXIILFLHQWO\ ORZ 7KH DSSOLFDWLRQ RI WKLV GHYHORSPHQW WR VSHFLILF WDUJHWV ZLOO EH SUHVHQWHG LQ &KDS ,9 :H QRZ SURFHHG WR FRQVLGHU WKH URWDWLRQDO FRUUHODWLRQ LQ RUGHU WR FRPSOHWH WKH HYDOXDWLRQ RI WKH $3&) 6KRUW7LPH $SSUR[LPDWLRQ WR WKH 5RWDWLRQDO &RUUHODWLRQ 7KH URWDWLRQDO FRUUHODWLRQ RI KHDY\ PROHFXOHV KDV EHHQ SUHYLRXVO\ HYDOXDWHG E\ PHDQV RI D 7D\ORUVHULHV H[SDQVLRQ RI WKH ORJDULWKP RI WKH $3&) 0LFKD Ef ,Q WKLV VHFWLRQ ZH SUHVHQW DQ DOWHUQDWLYH DSn SURDFK WR WKH HYDOXDWLRQ RI URWDWLRQDO FRUUHODWLRQ ZKLFK LV EDVHG RQ WKH FXPXODQW H[SDQVLRQ WHFKQLTXHV GHYHORSHG LQ &KDS $OWKRXJK WKH WZR DSSURDFKHV DUH FRPSOHWHO\ HTXLYDOHQW ZH IHHO WKDW WKH SUHVHQW RQH DOORZV D PRUH XQLILHG XQGHUVWDQGLQJ RI WKH UROH RI FRUUHODWLRQ IXQFWLRQV LQ WKH GHVFULSWLRQ RI PDQ\ERG\ FROOLVLRQV 6XEVWLWLRQ RI HTV f LQWR HT f JLYHV WKH IROORZLQJ H[SUHVVLRQ IRU WKH FRPSOHWH VHOIFRUUHODWLRQ IXQFWLRQ

PAGE 52

DDf I BODDf ) .Wf )BA 8Wf H[S LQ f X Wf Q Q DDf Df SDDf NWf SADDn! LUff H[S>. f@ H[S>.G Wf @ !! n FO 5 Q LL Ef DDf ZKHUH WKH WLPH GHSHQGHQFH RI ) LV GXH RQO\ WR WKH URWDWLRQDO Q PRWLRQ RI WKH PROHFXOH )ROORZLQJ WKH SURFHGXUH GHVFULEHG LQ &KDS 6HF ZH ILQG WKDW WKH WLPH HYROXWLRQ RI H[SLLr f LV JLYHQ E\ H[S>L.G Wf @ H[SLW/ f H[S>LeG f@ . D f +HUH/ LV WKH /LRXYLOOH VXSHURSHUDWRU IRU URWDWLRQDO PRWLRQV ZKLFK LV GHILQHG E\ LWV DFWLRQ RQ DQ DUELWUDU\ RSHUDWRU $ DV IROORZV e 5 $ >+5fQ$@ f (TXDWLRQ Ef FDQ QRZ EH UHZULWWHQ DV )DDf @eWf SADDf .f ^SADDn! LUffH[S>OefFO f@H[SLW/BWIf [ Q Q Q ; H[S>f§L.L f@!! SADDf U ff} ` Df D N N Q 3ADf.f! mSDDf.If}5 Ef Q Q :KHQHYHU WKH URWDWLRQDO PRWLRQ RI WKH PROHFXOH LV PXFK VORZHU WKDQ LWV YLEUDWLRQDO RQH ZH SHUIRUP D VKRUWWLPH DSSUR[LPDWLRQ WR WKH URWDWLRQDO FRUUHODWLRQ RI HDFK YLEUDWLRQDO WUDQVLWLRQ $V GLVFXVVHG LQ &KDS 6HFV WKLV FRUUHVSRQGV WR H[SDQGLQJ WKH VHFRQG IDFn WRU RI HT f LQ WHUPV RI WKH FXPXODQW URWDWLRQDO DYHUDJHV RI  DQG UHWDLQLQJ RQO\ WKH ILUVW WZR FXPXODQWV VR WKDW

PAGE 53

)ADD9Wf 3BIDDf Nf H[S >LWm/5}&5+ Wm/5}&5Af@ f Q Q 7KH ORZHVWRUGHU FXPXODQWV DUH GHWHUPLQHG IURP HT f WR EH m/ !! 5 &5 DDf 3 n N7f H[S N f G f>+ H[SLLFrG f@!! 3BODG f D 5 D Q Q DDf Df /5!!&5 mSADDf.UfH[SL.GDf>+5 >+5 H[SL.GDf@@}53ADDf.f Q Q m,U}FU Ef 5HSODFLQJ HT f LQWR HTV f ZH REWDLQ WKH IROORZLQJ H[SUHVVLRQ IRU WKH $3&) SLDDf.fH[S>Lm/5}&5!LQ f P YfW.m/5}&5W.f@ Q Q f )LQDOO\ HYDOXDWLQJ LWV )RXULHU WUDQVIRUP DV LQGLFDWHG LQ HT Ef ZH DUULYH DW )DDfWf VDDfKR W7 SADDf.f H[S ^>e U !!AU !LQ Q 5 &5 fPY fm5}F9Qm/5}&5f f ([DPLQLQJ WKLV ODVW HTXDWLRQ ZH ILQG WKDW IRU D JLYHQ YDOXH RI WKH f§\ PRPHQWXP WUDQVIHU N HDFK DWRP RI WKH WDUJHW FRQWULEXWHV D JURXS RI

PAGE 54

QRUPDOL]HG *DXVVLDQ SHDNV WR WKH GLIIHUHQWLDO FURVV VHFWLRQ (DFK SHDN FRUUHVSRQGV WR WKH YLEUDWLRQDO H[FLWDWLRQ LQGLFDWHG E\ WKH VHW RI FKDQJHV LQ TXDQWXP QXPEHUV Q DQG LV FHQWHUHG DW WKH YLEUDWLRQDO HQHUJ\ WUDQVIHUUHG EQZA SOXV WKH DYHUDJH URWDWLRQDO HQHUJ\ WUDQVn IHUUHG WR WKLV YLEUDWLRQDO WUDQVLWLRQ e!! IXUWKHUPRUH HDFK 5 &5 N SHDN LV URWDWLRQDOO\ EURDGHQHG E\ DQ DPRXQW m/ } r (TXDWLRQV 5 &5 f VKRZ WKDW WKH URWDWLRQDO HQHUJ\ WUDQVIHU DQG WKH ZLGWK FRQn WULEXWHG E\ HDFK DWRP DUH IXQFWLRQV RI WKH PRPHQWXP WUDQVIHU KHQFH RI FROOLVLRQ HQHUJ\ DQG VFDWWHULQJ DQJOHf DQG GHSHQG RQ WKH YLn EUDWLRQDO WUDQVLWLRQ LQGLFDWHG E\ Q 7KH SUREDELOLW\ WKDW D FROOLVLRQ LQYROYLQJ DWRP D ZLOO H[FLWH WKH YLEUDWLRQDO WUDQVLWLRQ Q LV JLYHQ DDf E\ 3BA ZKLFK LV DOVR D IXQFWLRQ RI WKH PRPHQWXP WUDQVIHU Q +RZHYHU LI DWRP D LV DW WKH FHQWHU RI PDVV RI WKH PROHFXOH VR WKDW G WKHQ LQVWHDG RI HTV f DQG f ZH KDYH DDf "Wf MSMDDf.f H[SLQXf Wf Df ,W Q DDKKR O SMDDf RR H .QL2\f Ef Q Q ZKLFK VKRZV WKDW VXFK DQ DWRP GRHV QRW DEVRUEURWDWLRQDO HQHUJ\ EXW GRHV FRQWULEXWH WR WKH YLEUDWLRQDO H[FLWDWLRQ $V GLVFXVVHG LQ 6HF WKH FRUUHODWLRQ IXQFWLRQV JLYHQ E\ HTV f WRJHWKHU ZLWK HTV EFf DQG f FRPSOHWHO\ GHn VFULEH WKH UHVSRQVH RI WKH WDUJHW WR DQ LPSXOVLYH FROOLVLRQ UHJDUGn OHVV RI WKH QDWXUH RI WKH SURMHFWLOH 7KH QDWXUH RI WKH SURMHFWLOH DWRP GHWHUPLQHV WKH WZRERG\ FURVV VHFWLRQV RI HT f LQ DFFRUGDQFH ZLWK WKH DWRPSDLU SRWHQWLDOV 7KHUHIRUH EHIRUH

PAGE 55

SURFHHGLQJ WR WKH DSSOLFDWLRQV RI WKH PDQ\ERG\ WKHRU\ ZH PXVW FRQn VWUXFW WKH PXOWLFHQWHU UHSUHVHQWDWLRQ RI WKH LQWHUPROHFXODU SRWHQWLDO IRU WKH FROOLVLRQ V\VWHPV RI LQWHUHVW WKLV LV WKH VXEMHFW RI WKH IROORZLQJ FKDSWHU

PAGE 56

&+$37(5 ,,, 08/7,&(17(5 327(17,$/ (1(5*< 685)$&(6 ,Q WKLV FKDSWHU ZH LQYHVWLJDWH WKH PXOWLFHQWHU UHSUHVHQWDWLRQ RI WKH LQWHUPROHFXODU SRWHQWLDO HQHUJ\ VXUIDFH 3(6f IRU QRQUHDFWLYH DWRPPROHFXOH V\VWHPV 2XU DLP LV WR GHYHORS D SDUDPHWUL]DWLRQ RI WKH 3(6 ZKLFK LV DSSURSULDWH IRU WKH VWXG\ RI K\SHUWKHUPDO PROHFXODU FROOLVLRQV ,Q WKH ILUVW VHFWLRQ ZH ZHLJK WKH UHODWLYH DGYDQWDJHV RI WKH VLQJOHFHQWHU DQG PXOWLFHQWHU UHSUHVHQWDWLRQV ,Q WKH VHFRQG VHFWLRQ ZH GHYHORS D SDUDPHWUL]DWLRQ IRU LRQOLQHDU PROHFXOH VXUn IDFHV LQ WHUPV RI DWRPSDLU SRWHQWLDOV WKDW DUH EDVHG RQ WKH NQRZQ JHQHUDO SURSHUWLHV RI LQWHUPROHFXODU IRUFHV 1H[W ZH HYDOXDWH WKH DWRPSDLU SRWHQWLDOV WKDW UHSURGXFH WKH TXDQWXP FKHPLFDO 3(6 RI WKH V\VWHP /L&2 ,Q WKH ILQDO VHFWLRQ ZH VWXG\ WKH V\VWHP /LA&&A IRU ZKLFK QR TXDQWXP FKHPLFDO LQIRUPDWLRQ LV \HW DYDLODEOH 8VLQJ D VLPSOH PRGHO RI VKRUWUDQJH IRUFHV SOXV H[SHULPHQWDO LQIRUPDWLRQ RQ WKH PROHFXODU SURSHUWLHV RI &2A ZH FRQVWUXFW D PRGHO 3(6 IRU WKLV V\VWHP %RWK VXUIDFHV GHYHORSHG KHUH ZLOO EH XVHG LQ VXEVHTXHQW DWRPPROHFXOH VFDWWHULQJ FDOFXODWLRQV 6LQJOH&HQWHU YV 0XOWLFHQWHU ([SDQVLRQ 7KH VWDQGDUG SURFHGXUH XVHG WR GHVFULEH WKH LQWHUDFWLRQ EHWZHHQ DQ DWRP $ DQG D PROHFXOH % FRQVLVWV RI DVVXPLQJ WKH %RUQ2SSHQKHLPHU VHSDUDWLRQ RI QXFOHDU DQG HOHFWURQLF PRWLRQV 7XOO\ f DQG WKHQ FDOFXODWLQJ WKH ORZHVW 3(6 IRU D VHW RI FRQIRUPDWLRQV E\ PHDQV RI PRUH RU OHVV DFFXUDWH TXDQWXPFKHPLFDO PHWKRGV IRU H[DPSOHV VHH

PAGE 57

6WDHPPOHU 3DUNHU HW DO DQG 7KRPDV HW DO :RUNLQJ LQ WKH ERG\IL[HG %)f FRRUGLQDWH V\VWHP GHWHUPLQHG E\ WKH SULQFLSDO D[HV RI % RQH WKXV REWDLQV D WDEOH RI WKH LQWHUPROHFXODU SRWHQWLDO 9 IRU VHYHUDO YDOXHV RI WKH UHODWLYH SRVLWLRQ RI $ GHQRWHG E\ DQG RI WKH SRVLWLRQV RI WKH FRQVWLWXHQW DWRPV RI % ZKLFK ZH LQGLFDWH ZLWK U U Df%` ,Q RUGHU WR IDFLOLWDWH VFDWWHULQJ FDOFXODWLRQV RQH PXVW XVXDOO\ FRQVWUXFW D IXQFWLRQDO UHSUHVHQWDWLRQ IRU WKH VXUIDFH 7KH PRVW FRPPRQ RI WKHVH LV WKH VLQJOHFHQWHU H[n SDQVLRQ LQ ZKLFK WKH GHSHQGHQFH RQ WKH RULHQWDWLRQ RI LV GHVFULEHG LQ WHUPV RI D VHW RI EDVLV IXQFWLRQV RI DQJOHV FHQWHUHG DW WKH FHQWHU RI PDVV RI WKH PROHFXOH DV IROORZV 95U % f @!9Q5"%f
PAGE 58

RI WKH LVRODWHG FROOLVLRQ SDUWQHUV +LUVFKIHOGHU HW DO f WKLV FDQ EH XVHG WR FKHFN WKH DFFXUDF\ RI WKH ILWWLQJ SURFHGXUH RU WR VXSSOHPHQW WKH TXDQWXPFKHPLFDO LQIRUPDWLRQ ZKHQ RQO\ D IHZ SRLQWV RI WKH VXUIDFH DUH DYDLODEOH +RZHYHU DV WKH FROOLVLRQ HQHUJ\ LQFUHDVHV DERYH D IHZ KXQGUHGWKV RI DQ HOHFWURQ YROW WKH VLQJOHFHQWHU H[SDQVLRQ DOWKRXJK DFFXUDWH LQ SULQFLSOH SUHVHQWV UDWKHU VHULRXV GLVDGYDQWDJHV $W K\SHUWKHUPDO HQHUJLHV DQG IRU VPDOO LPSDFW SDUDPHWHUV WKH SURMHFWLOH SUREHV WKH LQQHU UHJLRQ RI WKH 3(6 ZKLFK LV RI D PXOWLFHQWHU QDWXUH VR WKH VLQJOHFHQWHU UHSUHVHQWDWLRQ ORVHV SK\VLFDO PHDQLQJ )XUWKHUPRUH DV WKH VKRUWUDQJH LQWHUPROHFXODU IRUFHV GHSHQG VWURQJO\ RQ WKH RULHQWDWLRQ RI 5 D YHU\ ODUJH QXPEHU RI WHUPV DUH QHFHVVDU\ IRU HT f WR FRQYHUJH 7KHVH GUDZEDFNV ZLOO EH IXUWKHU FODULILHG E\ WKH H[DPSOH SUHVHQWHG LQ WKH QH[W VHFWLRQ $OWHUQDWLYHO\ WKH PXOWLFHQWHU QDWXUH RI WKH LQWHUPROHFXODU IRUFHV FDQ EH EHWWHU UHSUHVHQWHG E\ H[SDQGLQJ WKH SRWHQWLDO DERXW HDFK DWRP RI WKH WDUJHW DV IROORZV 95U f O Y 5U f f D D D ZKHUH WKH VXP UXQV RYHU WKH 1 DWRPV WKH SRO\DWRPLF +HUH Y D FRUUHVSRQGV WR WKH LQWHUDFWLRQ EHWZHHQ WKH $Df DWRPSDLU ZKLFK GHn SHQGV RQ WKH HOHFWURQLF GLVWULEXWLRQ RI $ DQG RQ WKDW RI DWRP D LQ WKH YDOHQFH VWDWH RI WKH WDUJHW +HQFH Y LV D IXQFWLRQ RI WKH D RULHQWDWLRQ RI 5 ZLWK UHVSHFW WR U DQG RI WKH PDJQLWXGH RI 5U D D ,Q JHQHUDO IRU VPDOO $D VHSDUDWLRQ WKH DWRPSDLU SRWHQWLDOV DUH VWHHSO\ UHSXOVLYH GXH WR WKH RYHUODSSLQJ RI WKH HOHFWURQLF FORXGV

PAGE 59

RI $ DQG D LQ WKH ORQJUDQJH UHJLRQ WKH Y IDOO RII DV LQYHUVH F/ SRZHUV RI WKH $D GLVWDQFH GXH WR WKH LQWHUDFWLRQV RI WKH FKDUJH GLVWULEXWLRQV RI $ DQG D )RU H[DPSOH WKH 3(6 FRUUHVSRQGLQJ WR DQ DWRPLF LRQ ZLWK FKDUJH DQG D PROHFXOH FRXOG EH PRGHOHG PRVW VLPSO\ E\ WKH VXP RI WKH SDLU SRWHQWLDOV f LQ ZKLFK WKH IUDFWLRQDO DWRPLF FKDUJHV T UHSURGXFH WKH H[SHULPHQWDO 4 YDOXHV RI WKH 1ORZHVW HOHFWURVWDWLF PXOWLSROH PRPHQWV RI % 7KH FRn HIILFLHQWV $ DQG % ERWK SRVLWLYHf FDQ EH REWDLQHG E\ ILWWLQJ WR D FO FO SUHYLRXVO\ FDOFXODWHG 3(6 RU IURP FRPELQDWLRQ UXOHV *D\GDHQNR DQG 1LNXOLQ f 0RUH JHQHUDOO\ HT f LV WKH OHDGLQJ WHUP REWDLQHG E\ H[SDQGLQJ WKH SRWHQWLDO LQ FRQWULEXWLRQV IURP WZR DWRP WKUHH DWRP DQG VR RQ DWRPFOXVWHUV DV LQGLFDWHG EHORZ 0LFKD Df f 5HFHQW DWWHPSWV KDYH EHHQ PDGH DW XQGHUVWDQGLQJ WKH SURSHUWLHV RI ODUJH SRO\DWRPLF V\VWHPV LQ WHUPV RI FRQWULEXWLRQV RI WKH FRQVWLWXHQW DWRPLF FHQWHUV %DGHU f :H KRSH WKDW LQ WKH IXWXUH VXFK VWXGLHV ZRXOG DOORZ WKH GHWHUPLQDWLRQ RI WKH DWRPFOXVWHU SRWHQWLDOV IURP ILUVW SULQFLSOHV +RZHYHU IRU RXU SUHVHQW SXUSRVHV ZH ZLOO FRQn VLGHU WKH DWRPSDLU SRWHQWLDOV WR EH IXQFWLRQV RI A DQG U ZLWK SDUD FO PHWHUV WKDW ZLOO EH DGMXVWHG WR UHSURGXFH D SUHYLRXVO\ FDOFXODWHG 3(6 DQGRU WKH NQRZQ PROHFXODU SURSHUWLHV RI WKH VHSDUDWHG FROOLVLRQ SDUWQHUV $V ZH VKDOO VHH LQ WKH IROORZLQJ VHFWLRQ E\ MXGLFLRXVO\ FKRRVLQJ WKH IRUP RI WKH Y WKH FRQWULEXWLRQV RI WKH KLJKHURUGHU FO FOXVWHU SRWHQWLDOV FDQ EH PDGH QHJOLJLEO\ VPDOO

PAGE 60

$WRP3DLU 3RWHQWLDOV IRU ,RQ/LQHDU 0ROHFXOH ,QWHUDFWLRQV $V ZLWK DQ\ RWKHU ILWWLQJ SURFHGXUH WKH IXQFWLRQDO IRUP RI WKH Y JUHDWO\ LQIOXHQFHV WKH DFFXUDF\ RI WKH UHSUHVHQWDWLRQ DQG WKH QXP D EHU RI SDUDPHWHUV UHTXLUHG ,Q RUGHU WR DOORZ IRU D SK\VLFDOO\ PHDQn LQJIXO LQWHUSUHWDWLRQ RI WKH SDLU SRWHQWLDOV DQG WR UHGXFH WKH QXPEHU RI SDUDPHWHUV WR D PLQLPXP WKH Y VKRXOG EH FKRVHQ LQ DFFRUGDQFH ZLWK D WKH NQRZQ JHQHUDO SURSHUWLHV RI LQWHUPROHFXODU IRUFHV +LUVFKIHOGHU HW DO 0DUJHQDX DQG .HVWQHU f )RU WKH LQWHUDFWLRQ EHn WZHHQ WZR FORVHGVKHOO PROHFXOHV WKHVH SURSHUWLHV PD\ EH VXPPDUL]HG DV IROORZV :KHQ WKH UHODWLYH GLVWDQFH 5 LV PXFK JUHDWHU WKDQ WKH OHQJWKV RYHU ZKLFK WKH HOHFWURQLF FORXGV RI HDFK VSHFLHV DUH DSSUHFLDEOH WKH LQWHUPROHFXODU SRWHQWLDO FDQ EH ZULWWHQ DV D VXP RI WKH IROORZLQJ WKUHH FRQWULEXWLRQV f WKH HOHFWURVWDWLF LQWHUDFWLRQ EHWZHHQ WKH SHUPDQHQW PXOWLn SROH PRPHQWV RI WKH FKDUJH GLVWULEXWLRQV RI HDFK PROHFXOH f WKH LQGXFWLRQ FRQWULEXWLRQ GXH WR WKH LQWHUDFWLRQ EHWZHHQ WKH SHUPDQHQW PRPHQWV RI RQH VSHFLHV DQG WKRVH LQGXFHG LQ WKH RWKHU RQH DQG f WKH GLVSHUVLRQ RU 9DQGHU:DDOV IRUFHV ZKLFK PD\ EH LQn WHUSUHWHG DV DULVLQJ IURP WKH LQWHUDFWLRQV EHWZHHQ WKH LQGXFHG PRPHQWV RI HDFK VSHFLHV +RZHYHU ZKHQ DW OHDVW RQH RI WKH PROHFXOHV KDV D QHW SHUPDQHQW FKDUJH WKH PDJQLWXGHV RI WKH GLVSHUVLRQ WHUPV DUH PXFK VPDOOHU WKDQ WKH HOHFWURVWDWLF DQG LQGXFWLRQ RQHV VR WKDW GLVSHUVLRQ IRUFHV PD\ EH QHJOHFWHG

PAGE 61

,Q RUGHU WR PDLQWDLQ WKH QRWDWLRQ DW WKH FOHDUHVW OHYHO SRVVLEOH IURP KHUH RQ ZH WDNH % WR EH D OLQHDU SRO\DWRPLF DW LWV HTXLOLEULXP \ J B\ J FRQILJXUDWLRQ U G f +HQFH WKH ORQJUDQJH SRWHQWLDO IRU DQ DWRPn LF LRQ $ DQG % LV JLYHQ E\ WKH IROORZLQJ VLQJOH FHQWHU H[SUHVVLRQ 95U%f A TA5 T$K%FRVQf5 T$4%3FRVQf5 $%3AFRVU_AU f f f } f LQ ZKLFK ZH KDYH H[SOLFLWO\ LQGLFDWHG WKH ILUVW WKUHH OHDGLQJ WHUPV RI WKH HOHFWURVWDWLF IRUFHV WKH OHDGLQJ LQGXFWLRQ FRQWULEXWLRQ RI B RUGHU 5 f DQG ZH KDYH QHJOHFWHG WKH GLVSHUVLRQ IRUFHV WKDW DUH RI f RUGHU 5 DQG VPDOOHU +HUH 3[f [ Of LV WKH VHFRQG RUGHU /HJHQGUH SRO\QRPLDO T LV WKH FKDUJH RI WKH LRQ ZKLOH WKH PROHFXODU SURSHUWLHV RI % DUH WKH QHW FKDUJH T WKH HOHFWURVWDWLF GLSROH \B DQG TXDGUXSROH 4B PRPHQWV DQG WKH LVRWURSLF FF D D f % % % ]] [[ DQG DQLVRWURSLF $f D D f SRODUL]DELOLWLHV D DQG D % ]] [[ ]] [[ DUH WKH FRPSRQHQWV RI WKH VWDWLF GLSROHSRODUL]DELOLW\ WHQVRU SDUDOOHO DQG SHUSHQGLFXODU WR WKH PROHFXODU D[LV UHVSHFWLYHO\ (TXDWLRQ f IROORZV IURP D SHUWXUEDWLRQWKHRUHWLFDO DSSURDFK LQ ZKLFK WKH HOHFWURn VWDWLF LQWHUDFWLRQ EHWZHHQ WKH FKDUJH GLVWULEXWLRQV RI HDFK VSHFLHV LV H[SUHVVHG LQ WHUPV RI D PXOWLSROH H[SDQVLRQ 0DUJHQDX DQG .HVWQHU &KDS f 6XFK DQ H[SDQVLRQ LV YDOLG RQO\ ZKHQ WKH GLVWDQFH EHWZHHQ WKH FHQWHUV RI FKDUJH RI HDFK GLVWULEXWLRQ LV PXFK ODUJHU WKDQ WKH UDQJH RI WKH LQGLYLGXDO GHQVLWLHV -DFNVRQ &KDS f 7KHUHIRUH HT f ORVHV SK\VLFDO PHDQLQJ ZKHQHYHU 5 U WKLV LV UHIOHFWHG LQ WKH XQSK\VLFDO GLYHUJHQFH IRU VPDOO 5

PAGE 62

:KHQ WKH UHODWLYH GLVWDQFH GHFUHDVHV WKH RYHUODS RI WKH HOHFWURQLF FORXGV RI HDFK VSHFLHV FDXVHV WKH LQWHUPROHFXODU IRUFHV WR EHFRPH VWHHSO\ UHSXOVLYH +HQFH WKH VPDOO 5 EHKDYLRU RI WKH SRWHQWLDO GHSHQGV YHU\ VWURQJO\ RQ WKH GHWDLOV RI WKH HOHFWURQLF GLVn WULEXWLRQV +RZHYHU ZKHQ WKH PROHFXODU RUELWDOV RI HDFK VSHFLHV DUH GHVFULEHG LQ WHUPV RI 6ODWHUW\SH RUELWDOV FHQWHUHG RQ HDFK QXFOHXV WKH RYHUODS ZLOO EH DQ DSSUR[LPDWHO\ H[SRQHQWLDO IXQFWLRQ RI WKH $D LQWHUQXFOHDU GLVWDQFH 6ODWHUW\SH EDVHV DUH PRVW FRPPRQO\ XVHG LQ TXDQWXPFKHPLFDO FDOFXODWLRQV IRU DWRPV DQG IRU OLQHDU PROHn FXOHV 3RSOH DQG %HYHULGJH f LQ WKHVH FDVHV WKH VKRUWUDQJH EHKDYLRXU RI WKH SRWHQWLDO LV RI WKH IRUP 95%f A $ H[S% _5" ,f f r‘ D D 5 rf U D +HUH $ DQG % DUH SRVLWLYH FRHIILFLHQWV WKDW DUH LQGHSHQGHQW RI WKH D D PDJQLWXGH RI 5 EXW WKH\ PD\ EH IXQFWLRQV RI WKH RULHQWDWLRQ RI 5 ZLWK !f UHVSHFW WR U D :H WKXV ILQG WKDW WKH VLQJOHFHQWHU UHSUHVHQWDWLRQ RI HT f PXVW EH VPRRWKO\ WUDQVIRUPHG LQWR D PXOWLFHQWHU RQH DV WKH UHODWLYH GLVWDQFH GHFUHDVHV 7KH WUDQVIRUPDWLRQ PXVW DYRLG WKH XQSK\VLFDO GLYHUJHQFHV RI WKH PXOWLSROH H[SDQVLRQ DQG PXVW DFFXUDWHO\ UHSURGXFH WKH LQWHUPHGLDWH UHJLRQ RI WKH VXUIDFH ZKLFK LQFOXGHV WKH SRWHQWLDO ZHOOV 2QH PLJKW DWWHPSW WR FDUU\ RXW WKLV WUDQVIRUPDWLRQ E\ PXOWLSO\LQJ WKH ULJKWKDQG VLGH RI HT f E\ D VZLWFKLQJ IXQFWLRQ WKDW WHQGV WR RQH IRU ODUJH 5 DQG WR ]HUR ZKHQHYHU 5 U D 8QIRUWXQDWHO\ WKH VHFRQG UHTXLUHPHQW ZRXOG IRUFH WKH VZLWFKLQJ IXQFWLRQ WR KDYH DQ H[WUHPHO\ FRPSOLFDWHG GHSHQGHQFH RQ WKH RULHQWDWLRQ

PAGE 63

r‘ RI 5 +RZHYHU WKLV GLIILFXOW\ PD\ EH UHDGLO\ DYRLGHG E\ H[WHQGLQJ WKH PXOWLFHQWHU UHSUHVHQWDWLRQ WR ODUJH 5 DV IROORZV $VVXPLQJ WKDW WKH PROHFXODU SURSHUWLHV RI % FDQ EH H[SUHVVHG LQ WHUPV RI WKH LQGLYLGXDO FRQWULEXWLRQV RI HDFK DWRP ZH H[SDQG WKH ORQJUDQJH UHJLRQ RI WKH SRWHQWLDO DERXW WKH DWRPLF FHQWHUV DQG ZULWH Y6%f L Y 6 f D Df YDAD` 9D65fAD` 9ADADA 5AD! Ef 9D/5fAf"Df &D5D &DFR6QDf5D &D3 FRV95D >& & 3 FRVS f@5 D D D D Ff r ZKHUH 5 5U LV WKH SRVLWLRQ RI WKH LRQ ZLWK UHVSHFW WR WDUJHW DWRP D DQG T DUFRV>5 U 5 U f@ LV WKH DQJOH EHWZHHQ 5 DQG U G OUf 7KH WHUPV RI YA UHSUHVHQW WKH LQWHUDFWLRQ RI WKH FKDUJH RI $ ZLWK WKH ILUVW WKUHH HOHFWURVWDWLF PRPHQWV DQG SRODUL]DWLRQ RI WKH HOHFWURQLF GLVWULEXWLRQ DERXW FHQWHU D UHVSHFWLYHO\ ,Q VUf HT Ef Y FRUUHVSRQGV WR WKH VKRUWUDQJH UHSXOVLYH IRUFHV DQG I LV D VZLWFKLQJ IXQFWLRQ WKDW HOLPLQDWHV WKH VLQJXODULW\ RI Y/5f DW 5 U 7KH GHWDLOHG IRUP RI I LV QRW FUXFLDO SUR D D D YLGHG LW VDWLVILHV WKH IROORZLQJ UHTXLUHPHQWV f I DQG LWV f§\ JUDGLHQW ZLWK UHVSHFW WR 5 PXVW EH FRQWLQXRXV f I A 5!U DQG f I A 2QH VXFK IXQFWLRQ LV IRU H[DPSOH D 5rrr I 5U f 5 F fH[S>\ 5 F f @ D D D D D D D f ZKHUH LV WKH +HDY\VLGH XQLW VWHSIXQFWLRQ +HUH F LV D UDGLXV D

PAGE 64

DERXW DWRP D ZLWKLQ ZKLFK WKH ORQJUDQJH SDLU SRWHQWLDO LV ]HUR ZKLOH OUf < GHWHUPLQHV KRZ IDVW LV WXUQHG RII DV WKH $D GLVWDQFH GH D D FUHDVHV :H PD\ FRPSOHWH WKH UHSUHVHQWDWLRQ E\ WDNLQJ WKH UHSXOVLYH SRWHQWLDOV WR EH Y65f U f D H[S% 5 f D D D D D f ZLWK $ DQG % SRVLWLYH DQG LQGHSHQGHQW RI 5 ,I QHFHVVDU\ IRU D VSHFLILF V\VWHP WKH Y 65f PD\ EH UHQGHUHG PRUH IOH[LEOH E\ OHWWLQJ 65f $ DQG % GHSHQG RQ Q RU E\ H[SDQGLQJ YA LV D EDVLVVHW RI IXQFWLRQV RI WKH RULHQWDWLRQ RI D ([SUHVVLQJ _AUB LQ D 7D\ORU VHULHV LQ U DERXW ZH ILQG WKDW HTV f DQG f FRLQFLGH DV 5 r rR ZKHQHYHU WKH FRn HIILFLHQWV & VDWLVI\ QOD T$T%  &Df D Df 9E A &DUD &DUDUDff D Ef TD4% W &LQ U & U &B f / D D D D D D Ff 9E O &Df Gf TD$% F / Hf ,I WKH &QD DUH ILW WR D SUHYLRXVO\ FDOFXODWHG 3(6 WKHVH HTXDWLRQV SURYLGH XV ZLWK DQ LQGHSHQGHQW FKHFN RI WKH ILW DV WKH & A VKRXOG \LHOG WKH FRUUHFW YDOXHV RI WKH PROHFXODU SURSHUWLHV RI % 2Q WKH RWKHU KDQG LI D TXDQWXPFKHPLFDO 3(6 LV QRW DYDLODEOH HTV f WRJHWKHU ZLWK H[SHULPHQWDO YDOXHV RI WKH PROHFXODU SURSHUWLHV PD\ EH XVHG WR SDUWO\ GHWHUPLQH WKH DWRPSDLU SRWHQWLDOV

PAGE 65

,Q WKH PXOWLFHQWHU UHSUHVHQWDWLRQ GHILQHG E\ HTV f WKH VHW RI SDUDPHWHUV WKDW PXVW EH DGMXVWHG WR UHSURGXFH WKH WDEXODWHG 3(6 LV ^3L` A$D!9&Df9&D&D&Df&Df&D IRU D W 1` r $OWKRXJK DW ILUVW VLJKW WKLV VHW VHHPV UDWKHU ODUJH WKH DERYH DQDO\VLV VKRZV WKDW WKLV LV WKH VPDOOHVW SRVVLEOH VHW WKDW LV UHTXLUHG E\ WKH SK\VLFDO QDWXUH RI LRQOLQHDU PROHFXOH IRUFHV )XUWKHUPRUH WKH SBA JHQHUDOO\ GHSHQG RQ WKH LQWHUQDO FRQILJXUDWLRQ RI WKH SRO\DWRPLF DQG \ 3 KHQFH RQ U +RZHYHU IRU D VSHFLILF PROHFXOH VRPH RI WKH ORQJUDQJH SDUDPHWHUV PD\ EH QHJOLJLEO\ VPDOO ,Q SDUWLFXODU WKH HOHFWURn VWDWLF LQWHUDFWLRQ EHWZHHQ WKH FKDUJH RI $ DQG D SHUPDQHQW PXOWLSROH PRPHQW RI % PD\ EH UHSUHVHQWHG DW ODUJH 5 DV WKH VXP RI WKH IRUFHV EHWZHHQ WKH FKDUJH RI $ DQG WKH ORZHURUGHU PXOWLSROHV RI WKH WDUJHW DWRPV DV VKRZQ LQ HTV DFf WKLV XVXDOO\ LQYROYHV FDQFHOODWLRQV EHWZHHQ WKH WHUPV FRQWULEXWHG E\ HDFK FHQWHU $V WKH $D GLVWDQFH GHFUHDVHV WKH DWRPLF FRQWULEXWLRQV EHFRPH ODUJH GXH WR WKH 5Q GHSHQGHQFH DQG PD\ QRW FDQFHO WR \LHOG D FRUUHFW GHVFULSWLRQ RI WKH LQWHUPHGLDWH UHJLRQ WKLV LQGLFDWHV WKDW VXFK DWRPLF PXOWLSROHV VKRXOG EH PDGH YDQLVKLQJO\ VPDOO :H ZLOO HQFRXQWHU H[DPSOHV RI WKLV SKHQRPHQRQ LQ WKH IROORZLQJ VHFWLRQV 0XOWLFHQWHU 3RWHQWLDO IRU WKH 6\VWHP /L&2 :H QRZ GHYHORS WKH PXOWLFHQWHU UHSUHVHQWDWLRQ RI WKH LQWHUPROHFXODU SRWHQWLDO IRU WKH /L&2 V\VWHP 7KLV LV RQH RI WKH IHZ PDQ\HOHFWURQ V\VWHPV IRU ZKLFK D GHWDLOHG 3(6 KDV EHHQ FDOFXODWHG TXDQWXP FKHPLn FDOO\ DW WKH FRQILJXUDWLRQLQWHUDFWLRQ OHYHO RI DFFXUDF\ 7KRPDV HW DO f 7KLV VXUIDFH KDV EHHQ WDEXODWHG IRU D ZLGH

PAGE 66

UDQJH RIYDOXHV RI 5 DW WKH HTXLOLEULXP FRQILJXUDWLRQ RI &2 _U U_ ƒf WKLV ZLOO DOORZ XV WR MXGJH WKH DSSOLFDELOLW\ RI WKH PXOWLFHQWHU H[SDQVLRQ IRU VPDOO DQG ODUJH 5 8QIRUWXQDWHO\ RQO\ D IHZ SRLQWV KDYH EHHQ FDOFXODWHG IRU QRQHTXLOLEULXP FRQn ILJXUDWLRQV RI WKH PROHFXOH WKHUHIRUH WKURXJKRXW WKLV VHFWLRQ ZH IL[ WKH WDUJHW DWRPV DW WKHLU HTXLOLEULXP SRVLWLRQV DQG WDNH WKH \3 SRWHQWLDO SDUDPHWHUV WR EH LQGHSHQGHQW RI U 'XH WR WKH QRQOLQHDU GHSHQGHQFH RI WKH SRWHQWLDO RQ VHYHUDO RI WKH SDUDPHWHUV WKH XVXDO OHDVWVTXDUHV RSWLPL]DWLRQ 'RUHQ DQG 0F&UDFNHQ &KDS f ZRXOG OHDG WR D V\VWHP RI VL[WHHQ FRXSOHG WUDQVFHQGHQWDO HTXDWLRQV LQ WKH SA ZKRVH VROXWLRQ UHSUHVHQWV WKH EHVW YDOXHV RI WKH SDUDPHWHUV +RZHYHU VXFK D V\VWHP FDQ RQO\ EH VROYHG E\ LWHUDWLYH PHWKRGV 2VWURZVNL 6HF f ZKRVH FRQYHUJHQFH LV LPSUDFWLFDEO\ VORZ GXH WR WKH ODUJH GLPHQVLRQDOLW\ RI WKH SUREOHP ,Q RUGHU WR DYRLG WKLV LQFRQYHQLHQFH ZH RSWLPL]H WKH OLQHDU & f f Q=D DQG QRQOLQHDU % F \ f SDUDPHWHUV LQ WZR VHSDUDWH VWHSV DV IROORZV ,Q WKH ILUVW VWHS WKH & DUH REWDLQHG E\ D OLQHDU OHDVW Q;LF/ VTXDUHV ILW WR WKH ORQJUDQJH UHJLRQ RI WKH 3(6 ,Q RUGHU WR WHVW WKH FRUUHFWQHVV RI WKH IXQFWLRQDO UHSUHVHQWDWLRQ FKRVHQ IRU WKH OUf YY ZH GR QRW D SULRUL FRQVWUDLQ WKH & WR UHSURGXFH WKH NQRZQ D QtD PROHFXODU SURSHUWLHV RI &2 +HQFH ZH DOORZ WKH & WR YDU\ IUHHO\ LQ RUGHU WR PLQLPL]H WKH URRWPHDQVTXDUHG UHODWLYH HUURU RI WKH UHSUHVHQWDWLRQ IRU ODUJH 5 WKLV HUURU LV JLYHQ E\ 6 W ^>975U%f 9)6U%f@>1 9O%f@` 5 f

PAGE 67

+HUH WKH VXP UXQV RYHU WKH 1 SRLQWV RI WKH VXUIDFH IRU ZKLFK 5 ; 9P LV WKH WDEXODWHG YDOXH DQG 9 7KH 7 ) X D D RSWLPXP YDOXHV RI WKH & 4 DUH WKRVH WKDW VDWLVI\ WKH V\VWHP RI QAD OLQHDU HTXDWLRQV H & QD f WRJHWKHU ZLWK WKH FRQGLWLRQV H & QOD 6ROYLQJ HTV f IRU DOO WKH & LQGLFDWHG LQ HT Ff QLD JDYH & &f DQG &ff RI WKH RUGHU RI s H ƒ Q O O8D D D UHVSHFWLYHO\ ZLWK RSSRVLWH VLJQV IRU HDFK DWRP 7KHVH YDOXHV DOWKRXJK &OUf RI XQSK\VLFDOO\ ODUJH PDJQLWXGHV OHDG WKH YY WR FDQFHO HDFK RWKHU D LQ RUGHU WR UHSURGXFH WKH WDEOXDWHG 3(6 ([DPLQLQJ WKH UHVXOWLQJ ILW ZH FRQFOXGHG WKDW IRU WKH /L& V\VWHP WKH ORQJUDQJH SRWHQWLDO FRXOG EH UHSURGXFHG ZLWK IHZHU SDUDPHWHUV WKDQ WKRVH LQGLFDWHG LQ HT Ff 5HSHDWLQJ WKH ILWWLQJ SURFHGXUH ZKLOH RPLWWLQJ HDFK WLPH RQH SDLU RI WKH &f DQG ZH IRXQG WKDW WKH &f Df D D D ZHUH UHGXQGDQW 7KH RSWLPXP YDOXHV RI WKH SDUDPHWHUV DUH VKRZQ LQ WDEOH 7KHVH UHSURGXFH WKH ORQJ UDQJH UHJLRQ RI WKH 3(6 ZLWK DQ U P V HUURU H b RYHU WKH SRLQWV DYDLODEOH IRXU HTXDOO\ VSDFHG YDOXHV RI 5 IURP $ WR ƒ DQG RQH DW 5 ƒ HDFK IRU WKH ILYH RULHQWDWLRQV T DQG GHJf 7KURXJKRXW WKH UHPDLQGHU RI WKH RSWLPL]DWLRQ SURFHGXUH WKH A ZHUH NHSW IL[HG ,Q WKH VHFRQG VWHS XVLQJ WKH IXOO PXOWLFHQWHU SRWHQWLDO RI HTV f IRU D JLYHQ VHW RI YDOXHV RI WKH QRQOLQHDU SDUDPHWHUV % F DQG Y ZH OHDVWVTXDUHV ILWWHG WKH $ WR WKH VKRUWUDQJH D D D D UHJLRQ RI WKH WDEOXDWHG VXUIDFH IRU ZKLFK 9 7KLV ILW ZDV

PAGE 68

UHSHDWHG IRU VHYHUDO VHWV RI % F DQG Y HDFK WLPH REWDLQLQJ D D D t D QHZ $ )LQDOO\ ZH FKRVH WKH % F Y DQG WKH FRUUHVSRQGLQJ $ D D D D D WKDW \LHOGHG WKH VPDOOHVW U P V HUURU LQ WKH VKRUW DQG LQWHUPHGLDWH UDQJHV WKHVH YDOXHV DUH DOVR VKRZQ LQ WKH WDEOH EHORZ 7DEOH ,RQDWRP SRWHQWLDO SDUDPHWHUV IRU /L& /L& /L D Df D ] ] $ H9f D % $ Bf D FD;f UDD E &DH9;f &DH9;! &DH9rf &DHY;f FDHY;f 6XEVWLWXWLQJ WKH & LQWR HTV f \LHOGV WKH PROHFXODU Q nF/ SURSHUWLHV RI &2 WKDW FRUUHVSRQG WR WKH SUHVHQW UHSUHVHQWDWLRQ WKHVH DUH LQ JRRG DJUHHPHQW ZLWK WKH H[SHULPHQWDO RQHV 7KRPDV HW DO f DV LV VHHQ LQ WDEOH 7KLV FRPSDULVRQ IXUWKHU FRQILUPV WKH YDOLGLW\ RI WKH PXOWLFHQWHU H[SDQVLRQ IRU ODUJH 5

PAGE 69

7DEOH 0ROHFXODU SURSHUWLHV RI &2 3UHVHQW )LW ([DFW 9Hf [ 0%H;f 4%H$ f 9rf Yr )LJXUHV DQG VKRZ WKH IXOO PXOWLFHQWHU SRWHQWLDO HTV f WRJHWKHU ZLWK WKH SDUDPHWHUV RI WDEOH f DQG WKH TXDQWXP FKHPLFDO YDOXHV :H ILQG WKDW WKH PXOWLFHQWHU UHSUHVHQWDWLRQ UHn SURGXFHV WKH WDEXODWHG YDOXHV ZLWK DQ U P V HUURU H b RYHU WKH SRLQWV DYDLODEOH 7KH ODUJHVW HUURUV RFFXU QHDU WKH ]HURHV RI WKH SRWHQWLDO ZKHUH LWV DEVROXWH YDOXH LV OHVV WKDQ H9 :H DOVR ILQG D VPDOO GLVFUHSDQF\ bf QHDU WKH ERWWRP RI WKH SRWHQWLDO ZHOOV DW WKH WZR RULHQWDWLRQV T DQG GHJ 7KLV GLVFUHSDQF\ LV PRVW SUREDEO\ GXH WR WKH VLPSOH DQJXODU GHSHQGHQFH LVRWURSLFf WKDW ZH KDYH FKRVHQ IRU WKH YY 7KH HUURUV FRXOG EH JUHDWO\ UHGXFHG 65f E\ H[SDQGLQJ Y LQ D EDVLV RI IXQFWLRQV RI Q +RZHYHU ZH D D IHHO WKDW WKH LQFUHDVH LQ FRPSXWDWLRQDO HIIRUW UHVXOWLQJ IURP D ODUJHU VHW RI SDUDPHWHUV LV QRW MXVWLILHG IRU WKH GHVFULSWLRQ RI K\SHUWKHUPDO FROOLVLRQV

PAGE 70

)LJXUH &RPSDULVRQ RI WKH PXOWLFHQWHU UHSUHVHQWDWLRQ FXUYHVf RI WKH /L& SRWHQWLDO ZLWK WKH TXDQWXP FKHPLFDO YDOXHV SRLQWVf

PAGE 71

$f $

PAGE 72

)LJXUH &RPSDULVRQ RI WKH PXOWLFHQWHU UHSUHVHQWDWLRQ FXUYHVf RI WKH /L& SRWHQWLDO ZLWK WKH TXDQWXP FKHPLFDO YDOXHV SRLQWVf

PAGE 74

([FHSWLQJ WKH WZR UHJLRQV MXVW PHQWLRQHG WKH PXOWLFHQWHU UHn SUHVHQWDWLRQ JLYHV D YHU\ DFFXUDWH GHVFULSWLRQ RI WKH /L&2 VXUn IDFH RYHU WKH IRXUGHFDGH UDQJH RI PDJQLWXGHV RI WKH SRWHQWLDO ZLWK D PLQLPXP RI DGMXVWDEOH SDUDPHWHUV 7KH VLQJOHFHQWHU H[SDQVLRQ GHn YHORSHG E\ 7KRPDV HW DO ZKLFK LV RI FRPSDUDEOH DFFXUDF\ UHTXLUHG ILIW\ SDUDPHWHUV LQ FRQWUDVW WR WKH VL[WHHQ XVHG LQ WKH SUHVHQW RQH )XUWKHUPRUH WKH PXOWLFHQWHU UHSUHVHQWDWLRQ DOORZV XV WR XQGHUVWDQG WKH SK\VLFDO RULJLQ RI WKH SDUDPHWHUV HYHQ LQ WKH VKRUWUDQJH UHJLRQV 2Q WKH RWKHU KDQG WKH LRQDWRP SRWHQWLDOV MXVW REWDLQHG PD\ EH XWLOL]HG WR JDLQ LQVLJKW LQWR WKH SK\VLFDO VWUXFWXUH RI WKH &2 PROHn FXOH 5HFRJQL]LQJ WKH GDQJHUV RI H[WUDSRODWLQJ H[FHVVLYHO\ IURP LQn GLUHFW UHVXOWV ZH SURSRVH WKH IROORZLQJ LQWHUSUHWDWLRQ WR WKH GLIIHUHQFHV EHWZHHQ WKH /L & DQG /L SRWHQWLDOV $ FRPSDULVRQ RI WKH VKRUWUDQJH UHJLRQV RI WKH Y VKRZQ LQ D ILJ VXJJHVWV WKDW WKH HOHFWURQLF GHQVLW\ DERXW FDUERQ H[WHQGV IDUWKHU IURP LWV QXFOHXV WKDQ GRHV WKDW RI R[\JHQ 7KLV REVHUYDWLRQ LV FRQVLVWHQW ZLWK WKH VLJQV RI WKH & B ZKLFK LQGLFDWH D VOLJKW H[ 86 FHVV RI HOHFWURQV RQ WKH &FHQWHU DQG D FRUUHVSRQGLQJ GHILFLW RQ WKH 2RQH 7KLV FDXVHV WKH /L LQWHUDFWLRQ WR EH UHSXOVLYH DW ODUJH 5 F/ ZKLOH WKH /L& SRWHQWLDO LV DWWUDFWLYH IRU ODUJH GLVWDQFHV DV LV VHHQ LI ILJV DQG UHVSHFWLYHO\ &RPSDULQJ WKH PDJQLWXGHV RI WKH ZH FRQFAXFAH WKDW WKH FKDUJH GLVWULEXWLRQ DERXW & LV PRUH DQLVRWURSLF WKDQ WKH RQH DERXW DQG WKDW ERWK GLVWULEXWLRQV DUH SURODWH VSKHURLGDO )LQDOO\ WKH & LQGLFDWH WKDW WKH HOHFWURQV -D DURXQG & DUH PRUH SRODUL]DEOH WKDQ WKRVH DERXW KRZHYHU WKH DQLVRWURS\ RI WKH SRODUL]DELOLW\ RI LV TXLWH ODUJH VR WKDW DW

PAGE 75

)LJXUH 6KRUWUDQJH UHJLRQ RI WKH LRQDWRP SRWHQWLDOV RI /L &2

PAGE 77

,QWHUPHGLDWH DQG ORQJUDQJH UHJLRQV RI WKH /L& SRWHQWLDO RI /L& )LJXUH

PAGE 78

H9f

PAGE 79

)LJXUH ,QWHUPHGLDWH DQG ORQJUDQJH UHJLRQV RI WKH /L SRWHQWLDO RI /Lara&

PAGE 80

=/ /c

PAGE 81

Q GHJ WKH /L 2 SRWHQWLDO LV UHSXOVLYH DW DOO GLVWDQFHV :H FO H[SHFW WKDW WKHVH FRQFOXVLRQV ZRXOG EH FRQILUPHG E\ WKH FRQILJXUDWLRQ LQWHUDFWLRQ FKDUJH GHQVLW\ RI WKH LVRODWHG &2 PROHFXOH XQIRUWXQDWHO\ WKH ZDYHIXQFWLRQ RI &2 LV QRW DYDLODEOH WR XV DW WKH SUHVHQW WLPH 0XOWLFHQWHU 3RWHQWLDO IRU WKH 6\VWHP /L &2A 'XH WR WKH ODUJH FRPSXWDWLRQDO HIIRUW UHTXLUHG E\ WKH QXPEHU RI HOHFWURQV LQ &2A D TXDQWXP FKHPLFDO 3(6 IRU WKH /L& V\VWHP KDV QRW EHHQ FDOFXODWHG 8QWLO VXFK D VXUIDFH EHFRPHV DYDLODEOH ZH SURSRVH D PXOWLFHQWHU SRWHQWLDO ZKLFK LV EDVHG RQ WKH HOHFWURQJDV PRGHO RI VKRUWUDQJH IRUFHV *RUGRQ DQG .LPf DQG RQ WKH ORQJ UDQJH LQWHUDFWLRQ EHWZHHQ WKH FKDUJH RI /L DQG WKH NQRZQ HOHFWURn VWDWLF PXOWLSROHV DQG SRODUL]DWLRQ RI &&A %ULHIO\ WKH XQLIRUPHOHFWURQJDV PRGHO RI WKH LQWHUDFWLRQ EHn WZHHQ WZR FORVHGVKHOO DWRPV DQGRU PROHFXOHV $ DQG % LV EDVHG RQ WKH IROORZLQJ DVVXPSWLRQV )LUVWO\ WKH SRWHQWLDO LV ZULWWHQ DV WKH VXP RI IRXU WHUPV WKDW UHSUHVHQW WKH NLQHWLF HQHUJ\ RI WKH HOHFWURQV WKH HOHFWURVWDWLF LQWHUDFWLRQV EHWZHHQ WKH FKDUJH GLVWULEXWLRQV RI $ DQG % WKH HOHFWURQ H[FKDQJH DQG FRUUHODWLRQ HIIHFWV UHVSHFWLYHO\ (DFK WHUP LV VHSDUDWHO\ FDOFXODWHG DV DQ LQWHJUDO RYHU DOO VSDFH RI WKH FRUUHVSRQGLQJ HQHUJ\ GHQVLW\ ZKLFK LV D IXQFWLRQDO RI WKH HOHFWURQLF GHQVLW\ RI WKH V\VWHP 7KH HOHFWURVWDWLF HQHUJ\GHQVLW\ IXQFWLRQDO PD\ EH UHDGLO\ REWDLQHG E\ FRQVLGHULQJ WKH &RXORPELF LQWHUn DFWLRQV EHWZHHQ WKH FKDUJH GLVWULEWXLRQV +RZHYHU WKH NLQHWLF H[FKDQJH DQG FRUUHODWLRQ GHQVLW\ IXQFWLRQDOV DUH WDNHQ WR EH WKRVH RI D XQLIRUP JDV RI HOHFWURQV 6ODWHU &DUU HW DO

PAGE 82

&DUU DQG 0DUDGXGLQ f )XUWKHUPRUH WKH HOHFWURQLF GHQVLW\ RI WKH $% V\VWHP LV DSSUR[LPDWHG E\ WKH VXP RI WKH GHQVLWLHV RI WKH LVRODWHG SDUWQHUV UHJDUGOHVV RI WKHLU VHSDUDWLRQ +HQFH LI WKH GHQVLW\ RI HDFK VSHFLHV LV NQRZQ WKH FDOFXODWLRQ RI WKH 3(6 LV UHGXFHG WR WKH QXPHULFDO HYDOXDWLRQ RI WKH LQWHJUDOV RI WKH HQHUJ\ GHQVLW\ IXQFWLRQDOV 7KLV PRGHO KDV EHHQ IRXQG WR SURYLGH D UHDVRQDEO\ DFFXUDWH GHn VFULSWLRQ RI WKH VKRUWUDQJH UHSXOVLYH IRUFHV LQ DWRPDWRP .LP DQG *RUGRQ D Ef DWRPPROHFXOH *UHHQ HW DO 3DUNHU HW DO 'DYLHV HW DO f DQG PROHFXOHPROHFXOH 3DUNHU HW DO f V\VWHPV DW D VPDOO IUDFWLRQ RI WKH FRPSXWDWLRQDO FRVW RI HYHQ WKH PRVW DSSUR[LPDWH TXDQWXPFKHPLFDO PHWKRGV 8QIRUWXQDWHO\ WKH PRGHO GRHV QRW FRUUHFWO\ GHVFULEH WKH ORQJUDQJH IRUFHV IRU WKH IROORZLQJ UHDVRQV 'XH WR WKH DGGLWLYH QDWXUH RI WKH DSSUR[LPDWH WRWDO GHQVLW\ WKH FRUUHODWLRQ HIIHFWV GHSHQG RQ WKH RYHUODS EHWZHHQ WKH LQGLYLGXDO GHQVLWLHV +HQFH IRU ODUJH 5 WKH FRUUHODWLRQ FRQn WULEXWLRQ GHFUHDVHV H[SRQHQWLDOO\ DQG GRHV QRW UHSURGXFH WKH Q 9DQGHU:DDOV SRWHQWLDO ZKLFK LV RI RUGHU 5 Q! 7KLV GHn ILFLHQF\ PD\ EH UHPHGLHG E\ VPRRWKO\ VZLWFKLQJ IURP WKH HOHFWURQ JDV FRUUHODWLRQ SRWHQWLDO WR WKH GLVSHUVLRQ RQH DV 5 LQFUHDVHV 3DUNHU HW DO f ,Q WKH /L&2 V\VWHP ZH H[SHFW WKDW WKH GLVSHUVLRQ IRUFHV DUH PXFK VPDOOHU WKDQ WKH LQGXFWLRQ RQHV GXH WR WKH QHW FKDUJH RI WKH LRQ +RZHYHU E\ DVVXPLQJ WKDW WKH HOHFWURQLF GHQVLWLHV RI HDFK VSHFLHV UHPDLQ XQFKDQJHG IRU DOO GLVn WDQFHV WKH PRGHO H[FOXGHV WKH UHDUUDQJHPHQW RI WKH FKDUJH GLVWULEXWLRQ RI &2A FDXVHG E\ WKH FKDUJH RI /L DQG KHQFH WKH LQGXFWLRQ IRUFHV

PAGE 83

1HYHUWKHOHVV ZH PD\ REWDLQ D UHDOLVWLF PRGHO RI WKH /A&2A 3(6 E\ FRPELQLQJ WKH VKRUWUDQJH UHVXOWV RI WKH HOHFWURQJDV PHWKRG ZLWK WKH ORQJUDQJH PXOWLFHQWHU H[SDQVLRQ VWXGLHG LQ WKH SUHYLRXV VHFWLRQ DV VKRZQ EHORZ (OHFWURQJDV FDOFXODWLRQV ZHUH SHUIRUPHG IRU WKH FROOLQHDU Q GHJf DQG SHUSHQGLFXODU S GHJf FRQILJXUDWLRQV RI /L& XVLQJ WKH SURJUDP GHYHORSHG E\ *UHHQ DQG *RUGRQ 7KHVH FDOFXn ODWLRQV LQFRUSRUDWHG WKH FRUUHFWLRQ GXH WR 5DH WKDW DYRLGV RYHUFRXQWLQJ RI WKH HOHFWURQV LQ WKH GHQVLW\ IXQFWLRQDOV 7KH HOHFWURQLF GHQVLW\ RI &2A ZDV DSSUR[LPDWHG E\ WKDW RI WKH VHOI FRQVLVWHQWILHOG 6&)f PROHFXODU ZDYHIXQFWLRQ FDOFXODWHG E\ 0F&OHDQ DQG
PAGE 84

7DEOH (OHFWURQJDV /L&2 SRWHQWLDO 5 95 GHJf 5 95 GHJf %RKUf +DUWUHHf %RKUf +DUWUHHf 7KH UHVXOWV RI WKH DERYH FDOFXODWLRQV DUH VKRZQ LQ WDEOH WKH RGGORRNLQJ VFDOH FKRVHQ IRU 5 DW Q LV GXH WR WKH IDFH WKDW WKH FRRUGLQDWH PRVW DSSURSULDWH WR VKRUWUDQJH LQWHUDFWLRQV LV WKH VHSDUDWLRQ EHWZHHQ WKH LRQ DQG WKH QHDUHVW DWRP RI &2Af 7KHVH UHn VXOWV FRUUHVSRQG WR WKH VR FDOOHG +DUWUHH)RFN PRGHO SRWHQWLDO ZKLFK LV WKH VXP RI WKH NLQHWLF HOHFWURVWDWLF DQG H[FKDQJH FRQWULEXWLRQV

PAGE 85

7KH HOHFWURQJDV FRUUHODWLRQ LV QRW SUHVHQWHG KHUH GXH WR WKH LQn DFFXUDFLHV RI WKH PRGHO SUHYLRXVO\ GLVFXVVHG +RZHYHU WKH FRUUHODWLRQ HIIHFWV ZHUH FDOFXODWHG WR EH RI WKH RUGHU RI b RI WKH +DUWUHH)RFN SRWHQWLDO DQG KHQFH FRPSDUDEOH WR WKH QXPHULFDO HUURUV RI WKH TXDGn UDWXUHV ,Q RUGHU WR IDFLOLWDWH IXWXUH VFDWWHULQJ FDOFXODWLRQV WKH VKRUWUDQJH SRWHQWLDO ZDV ILWWHG WR D PXOWLFHQWHU H[SDQVLRQDV IROORZV $ SORW RI WKH ORJDULWKP RI WKH SRWHQWLDO YHUVXV WKH GLVWDQFH EHWZHHQ /L DQG WKH QHDUHVW PROHFXODU DWRP \LHOGHG DQ DSSUR[LPDWHO\ VWUDLJKW OLQH IRU WKH FROOLQHDU FRQILJXUDWLRQ 7KLV LQGLFDWHG WKDW WKH /L SRWHQWLDOV YA DQG YA FRXOG EH UHSUHVHQWHG E\ WKH VLQJOH H[SRQHQWLDO RI HT f +RZHYHU DQ DQDORJRXV SORW IRU WKH SHUn SHQGLFXODU FRQILJXUDWLRQ VKRZHG D VWHHS VWUDLJKW OLQH IRU VPDOO 5 WKDW VPRRWKO\ FKDQJHG WR D VKDOORZHU VORSH IRU ODUJHU GLVWDQFHV 7KLV JUDSK VXJJHVWHG WKDW WZR H[SRQHQWLDO WHUPV ZHUH UHTXLUHG IRU WKH /L& SRWHQWLDO 7KH SDUDPHWHUV RI WKH LRQDWRP SRWHQWLDOV ZHUH DGMXVWHG WR UHSURGXFHG WKH WDEXODWHG HOHFWURQJDV VXUIDFH E\ D SURFHGXUH DQDORJRXV WR WKH VHFRQG VWHS GHVFULEHG LQ 6HF %ULHIO\ IRU IL[HG YDOXHV RI WKH H[SRQHQWLDO FRHIILFLHQWV %A %A DQG %A WKH SUHH[SRQHQWLDO IDFWRUV $A $A $A DQG $A ZHUH VLPXOWDQHRXVO\ OHDVWVTXDUHV ILWWHG WR DOO WKH SRLQWV RI WKH WDEXODWHG VXUIDFH 7KLV ILWWLQJ ZDV UHSHDWHG IRU VHYHUDO VHWV RI YDOXHV RI I %A %A %A DQG %A ILQDOO\ VHOHFWLQJ WKH H[SRQHQWLDO FRHIILFLHQWV DQG FRUUHVSRQGLQJ SUHH[SRQHQWLDO RQHV WKDW \LHOGHG WKH ORZHVW U P V UHODWLYH HUURU 7KHVH DUH VKRZQ LQ WDEOH EHORZf DQG WKH\ UHn SURGXFHG WKH VXUIDFH ZLWK DQ U P V HUURU H b RYHU WKH

PAGE 86

WDEXODWHG SRLQWV WKH ODUJHVW HUURU bf RFFXUUHG DW 5 D AQ GHJf 7KHVH VKRUW UDQJH LRQDWRP SRWHQWLDOV PD\ QRZ EH FRPELQHG ZLWK WKH NQRZQ ORQJUDQJH IRUFHV RI WKH /L& V\VWHP DV IROORZV :LWKRXW IXUWKHU NQRZOHGJH RI WKH SURSHUWLHV RI WKH H[DFW FKDUJH GLVWULEXWLRQ RI &&A WKHUH LV VRPH DPELJXLW\ LQ WKH GHWHUPLQDWLRQ RI WKH ? EHFDXVH RQO\ OLP e PD\ EH GHWHUPLQHG IURP H[SHULPHQWDO 5! D PHDVXUHPHQWV RI &2A ,Q SDUWLFXODU WKH /L FKDUJH&2ATXDGUXSROH LQWHUDFWLRQ PD\ EH UHSUHVHQWHG LQ VHYHUDO GLIIHUHQW ZD\V WKDW DUH LQ DFFRUGDQFH ZLWK HT Ff )RU H[DPSOH (DVWHV HW DO DVVXPHG IUDFWLRQDO FKDUJHV T ORFDWHG RQ WKH DWRPLF FHQWHUV RI WKH FL PROHFXOH 7KH YDOXHV TA TA H DQG TA H UHSURGXFH WKH H[SHULPHQWDO TXDGUXSROH PRPHQW Hƒ DW ODUJH GLVn WDQFHV +RZHYHU IRU VPDOO 5 WKHVH FKDUJHV \LHOG YDOXHV IRU WKH SHUSHQGLFXODU /L&A LQWHUDFWLRQ WKDW DUH PXFK ODUJHU WKDQ WKRVH FDOFXODWHG DERYH EHFDXVH WKH &RXORPE SRWHQWLDOV T T 5 GR QRW D D D FDQFHO LQ WKH DSSURSULDWH ZD\ 6LPLODUO\ RQH PD\ VHW WKH T HTXDO D WR ]HUR DQG FRQVLGHU IUDFWLRQDO DWRPLF GLSROHV \ QRWH WKDW \ D ] GXH WR WKH V\PPHWU\ RI R[\JHQf KRZHYHU VXFK D PRGHO LV DOVR LQ GLVn DJUHHPHQW ZLWK WKH DERYH VKRUWUDQJH UHVXOWV 7KHUHIRUH ZH SUHVHQWO\ DVVXPH WKDW T DQG \ IRU DOO D DQG WDNH QRQ]HUR DWRPLF D D TXDGUXSROHV 4A VXFK WKDW e 4 4 :H PXVW HPSKDVL]H WKDW WKLV FKRLFH D D LV QRW XQLTXH D FRPELQDWLRQ RI VPDOO DWRPLF FKDUJHV GLSROHV DQG TXDGUXSROHV PD\ QRW EH H[FOXGHG DV D SRVVLELOLW\ 2Q WKH RWKHU KDQG WKH HOHFWURQLF FORXGV DERXW HDFK RI WKH DWRPLF FHQWHUV DUH SRODUL]HG E\ WKH QHW FKDUJH RI WKH LRQ KHQFH ZH UHSUHVHQW WKH LVRWURSLF DQG

PAGE 87

DQG DQLVRWURSLF SRODUL]DELOLWLHV RI &2A E\ WKH VXP RI WKH DWRPLF SRODUL]DELOLWLHV D DQG $ UHVSHFWLYHO\ )XUWKHUPRUH VLQFH WKH QXP EHU RI HOHFWURQV LQ & DQG LQ DUH FRPSDUDEOH ZH OHW 4 4 D % D D DQG $ $ ZLWK D ; DQG $B ; ' % % 75f %XFNLQJKDP DQG 2UU f )LQDOO\ WKH UHVXOWLQJ Y f DUH VZLWFKHG RII DW VPDOO $D GLVWDQFHV DV LQ HTV Ef XVLQJ WKH VZLWFKLQJ SDUDPHWHUV F DQG \ RI & DQG RI GHWHUPLQHG LQ WKH SUHYLRXV VHFWLRQ 7KH SDUDPHWHUV IRU WKH ORQJ UDQJH LRQDWRP SRWHQWLDOV RI /L &2A DUH DOVR LQFOXGHG LQ WKH WDEOH EHORZ 7DEOH ,RQDWRP SRWHQWLDO SDUDPHWHUV IRU /L &2A $ H9f D $A&H9f % $ Bf D %A&; Bf F ;f D D ; f D & & & & & D D D D D HY;f HY;f HY;f HY;f H9ƒf /L& /L

PAGE 88

7KH FRPSOHWH PRGHO SRWHQWLDO HTV f WRJHWKHU ZLWK WDEOH f LV SUHVHQWHG LQ ILJV ([DPLQDWLRQ RI WKH VKRUW UDQJH UHJLRQ VKRZV WKH ODUJH DQLVRWURS\ RI WKH UHSXOVLYH IRUFHV ZKLFK LV GXH WR WKH PDQ\ERG\ QDWXUH RI WKH WDUJHW ,Q WKLV UHJLRQ WKH DFFXUDF\ RI WKH PRGHO LV GHWHUPLQHG RQO\ E\ WKDW RI WKH HOHFWURQ /5f JDV DSSUR[LPDWLRQ EHFDXVH WKH DUH VZLWFKHG RII %\ GHVLJQ WKH SUHVHQW PRGHO UHSURGXFHV WKH H[DFW ORQJUDQJH IRUFHV DV GHWHUn PLQHG E\ WKH SURSHUWLHV RI &2A $ MXGJHPHQW RI WKH YDOLGLW\ RI WKLV VXUIDFH LQ WKH LQWHUPHGLDWH UHJLRQV PXVW EH SRVWSRQHG XQWLO D TXDQWXP FKHPLFDO 3(6 EHFRPHV DYDLODEOH 7KH ODWWHU UHJLRQ LQFOXGHV WKH SRWHQWLDO ZHOOV DQG LV WKXV VHQVLWLYH WR WKH DWRPLF TXDUGXSROHV DQG SRODUL]DELOLWLHV ZKLFK DUH QRW XQLTXHO\ GHILQHG E\ 4 FU DQG $' +RZHYHU ZH H[SHFW WKLV PRGHO WR SURYLGH DW OHDVW D TXDOLWDWLYH GHn VFULSWLRQ RI WKH HDFW 3(6 IRU LQWHUPHGLDWH 5 LQ SDUWLFXODU WKH GLVn DSSHDUDQFH RI WKH ZHOO DW T GHJ DV T! GHJ VHHQ LQ ILJ FOHDUO\ UHIOHFWV WKH FKDQJH LQ VLJQ RI WKH /L FKDUJH&2ASRODUL]DWLRQ LQWHUDFWLRQV )LQDOO\ LQ ILJV ZH SUHVHQW WKH LRQDWRP SRWHQWLDOV ([DPLQDWLRQ RI WKHLU VKRUWUDQJH EHKDYLRXU ILJ f LQGLFDWHV WKDW WKH FKDUJH GLVWULEXWLRQ DERXW WKH &FHQWHU H[WHQGV IDUWKHU DZD\ IURP LWV QXFOHXV WKDQ GR WKRVH RI WKH FHQWHUV &RQn VHTXHQWO\ WKH ODUJHU H[WHQW RI WKH /L& UHSXOVLRQ FDXVHV WKH ZHOOV RI YA WR EH PXFK VKDOORZHU WKDQ WKRVH RI YA DQG YA DV LV VHHQ LQ ILJV +DYLQJ GHWHUPLQHG PXOWLFHQWHU SRWHQWLDOV IRU /L& DQG /A&2A ZH PD\ QRZ SURFHHG WR VWXG\ HQHUJ\ WUDQVIHU SURFHVVHV LQ WKHVH V\VWHPV E\ PHDQV RI WKH PDQ\ERG\ WKHRU\ GHYHORSHG LQ &KDS ,,

PAGE 89

)LJXUH 6KRUWUDQJH UHJLRQ RI WKH /L &2 PRGHO SRWHQWLDO

PAGE 90

5$f 9 H9f /L 9&2

PAGE 91

,QWHUPHGLDWH DQG ORQJUDQJH UHJLRQV RI WKH /L &2 )LJXUH PRGHO SRWHQWLDO

PAGE 92

/ c 9 & 2

PAGE 93

6KRUWUDQJH UHJLRQ RI WKH LRQDWRP SRWHQWLDOV RI WKH /LA&2A PRGHO VXUIDFH )LJXUH

PAGE 94

.? 5Tƒf

PAGE 95

,QWHUPHGLDWH DQG ORQJUDQJH UHJLRQV RI WKH /L & SRWHQWLDO RI WKH /LA&2A PRGHO VXUIDFH )LJXUH

PAGE 96

H9f RR

PAGE 97

)LJXUH ,QWHUPHGLDWH DQG ORQJUDQJH UHJLRQV RI WKH /L SRWHQWLDO RI WKH /L& PRGHO VXUIDFH

PAGE 99

&+$37(5 ,9 527$7,21$/ $1' 9,%5$7,21$/ (1(5*< 75$16)(5 ,1 +<3(57+(50$/ &2//,6,216 2) /L :,7+ 1 &2 $1' & 7KH PDQ\ERG\ WKHRU\ RI DWRPPROHFXOH FROOLVLRQV WKDW ZDV SUHVHQWHG LQ &KDSWHU ,, LV DSSOLHG KHUH WR WKH VWXG\ RI URWDWLRQDO DQG YLEUDWLRQDO HQHUJ\ WUDQVIHU LQ WKH VFDWWHULQJ RI /L LRQV IURP 1A &2 DQG & ,Q 6HFWLRQ ZH HYDOXDWH WKH TXDQWLWLHV WKDW DUH UHTXLUHG IRU WKH FDOFXODn WLRQ RI WKH DWRPSDLU FRUUHODWLRQ IXQFWLRQ $3&)f RI D GLDWRPLF WDUJHW ,Q 6HFWLRQ ZH SUHVHQW WKH WKHRUHWLFDO UHVXOWV IRU WKH V\VWHPV /L1 DQG /L&2 DQG FRPSDUH WKHP ZLWK WKH H[SHULPHQWDO PHDVXUHPHQWV RI %RWWQHU HW DO ,Q WKH IROORZLQJ VHFWLRQ ZH EULHIO\ RXWOLQH WKH VWHSV RI WKH HYDOXDWLRQ RI WKH $3&) RI D OLQHDU WULDWRPLF PROHFXOH 7KHRUHWLFDO SUREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ DQG DYHUDJH HQHUJ\ WUDQVIHUV IRU WKH V\VWHP /L& DUH SUHVHQWHG LQ 6HFWLRQ &RPSDULQJ WKHVH UHVXOWV ZLWK WKRVH RI H[SHULPHQWV (DVWHV HW DO f DQG DQDO\]LQJ WKH WKHRUHWLFDO PRGHO ZH JDLQ LQVLJKW LQWR WKH G\QDPLFDO SURFHVVHV DQG LQWHUPROHFXODU IRUFHV WKDW GRPLQDWH DWRPPROHFXOH VFDWWHULQJ LQ WKH K\SHU WKHUPDO HQHUJ\ UHJLPH )LQDOO\ LQ 6HFWLRQ ZH FDOFXODWH WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ RQ WKH YLEUDWLRQDO HQHUJ\ WUDQVIHUUHG WR WKH WDUn JHWV 1! &2 DQG &! 7KH $WRP3DLU &RUUHODWLRQ )XQFWLRQ RI D 'LDWRPLF 0ROHFXOH 7KH HYDOXDWLRQ RI WKH $3&) RI HTXDWLRQ f UHTXLUHV NQRZOHGJH RI WKH HTXLOLEULXP SRVLWLRQV RI WKH DWRPV G f DQG RI WKH PDWUL[ HOHPHQWV \ & f RI WKH WUDQVIRUPDWLRQ EHWZHHQ &DUWHVLDQ YLEUDWLRQDO GLVSODFHPHQWV

PAGE 100

X f DQG QRUPDO FRRUGLQDWHV 4f )RU D GLDWRPLF PROHFXOH HTXDWLRQ D Df VKRZV WKDW WKHUH LV RQO\ RQH YLEUDWLRQDO GHJUHH RI IUHHGRP DQG WKDW G P G GP DQG G P G GP KHUH P LV WKH PDVV RI WKH WDUJHW O ] D ] O L] % D DWRP D P LV WKH PDVV RI WKH GLDWRPLF G f LV WKH HTXLOLEULXP ERQGOHQJWK % ,= DQG G LV D XQLW YHFWRU LQ WKH GLUHFWLRQ RI WKH PROHFXODU D[LV IURP DWRP WR DWRP )URP WKH QRUPDOPRGH DQDO\VLV RXWOLQHG LQ HTXDWLRQV f ZH REWDLQ >PALPAP PRQLF YLEUDWLRQDO IUHTXHQF\ P >NPULP P f@ ZKHUH N LV WKH TXDG L LL G UDWLF IRUFHfFRQVWDQW 7KH URWDWLRQDO HQHUJ\ WUDQVIHUV DQG ZLGWKV UHTXLUH WKH FRPPXWDWRUV a Q >+ f H[S . f G f@ IRU Q DQG 7KHVH DUH UHDGLO\ HYDOXDWHG IRU 5 D D OLQHDU SRO\DWRPLF LQ WKH FRRUGLQDWH UHSUHVHQWDWLRQ ZKHUH WKH URWDWLRQDO +DPLOWRQLDQ LV JLYHQ E\ (GPRQGV f ILf @ fG DQG & Nr >PAPQLJf @ G DQG IRU WKH KDU + WK >f§ UU &26 f 5 FRVf FRVff n n D f +HUH D DQG DUH WKH D]LPXWKDO DQG SRODU DQJOHV RI G LQ WKH VSDFH IL[HG Y 6)f UHIHUHQFH IUDPH UHVSHFWLYHO\ DQG  PAGA LV WKH PRPHQW RI LQ D HUWLD RI WKH SRO\DWRPLF 7DNLQJ WKH ]D[LV RI WKH 6) IUDPH DORQJ WKH GLUHFWLRQ RI N VR WKDW .G .G FRV DQG SHUIRUPLQJ WKH QHFHVVDU\ D GLIIHUHQWLDWLRQV \LHOGV >+A H[SL f GAf@ ,Jf H[SL.GDFRVEf[ [^.AGA FRVf L.G >FRV FRVfFRV f f D D :KHQHYHU OLHG _!! RQO\ WKH KLJKHVW SRZHU RI NG QHHG EH UHWDLQHG LQ WKH D D DERYH FRPPXWDWRU LQ WKHVH FDVHV RQH KDV WKDW >+ fQ H[S LL f G f@ W..nG VLQ, f@Q H[SL.G FRVf D D % D f

PAGE 101

7KH HYDOXDWLRQ RI WKH $3&) LV FRPSOHWHG E\ FDOFXODWLQJ WKH TXDQWXP VWDWLVWLFDO DYHUDJHV RYHU LQLWLDO URWDWLRQDO VWDWHV WKDW DUH LQGLFDWHG LQ HTV Ef WKURXJK f +RZHYHU WKH H[SHULPHQWV DUH QRW \HW DEOH WR UHVROYH WKH URWDWLRQDO OHYHOV RI KHDY\ SRO\DWRPLFV VR WKDW WKLV DYHUDJH PD\ EH DSSUR[LPDWHG E\ D FODVVLFDO RQH 6LQFH WKH TXDQWLWLHV WR EH DYHUDJHG GHSHQG RQO\ RQ FRV6 WKH FODVVLFDO VWDWLVWLFDO DYHUDJH UHGXFHV WR D VLPSOH LQWHJUDO RYHU +HQFH WKH $3&) RI D GLDWRPLF LV JLYHQ E\ DDf 6nffLFHf O 3 nDDf Nf H[S^>Ln !! QWIZ Hf Y9 Q m f 5 &5 N N $ !! f ` m / } 5 &55 &5 Df 3 ADDAf GFRVJf S nDD.Jf Q DDf Ef / !! +.G, f >38D.f@ GFRV%f 5 &5 G Q T DDf ; 3QADDA VLQ Ff e9!FU 9 ,SfDDff.+f GFRVJf SA N%f VLQ J e5!! &5 Gf DLDf A f B M [ f H[S QD ; FRVKD f Q Q DO DO Hf ; f & FRV J X VLQKDf DO DO If DL \ NE9 Jf

PAGE 102

5RWDWLRQDO DQG 9LEUDWLRQDO (QHUJ\ 7UDQVIHU LQ +\SHUWKHUPDO &ROOLVLRQV RI /L ZLWK 1 DQG &2 7KH GRXEO\ GLIIHUHQWLDO FURVV VHFWLRQ JLYHQ LQ HT f UHTXLUHV WKH WZRERG\ HIIHFWLYH FURVV VHFWLRQV D )RU WKH H[SHULPHQWDO FRQGLWLRQV RI TXDVLHODVWLF VFDWWHULQJ H( VR WKDW N_ a Nn_f DQG VFDWWHULQJ DQJOHV JUHDWHU WKDQ UDLQERZ DQJOHV WKH D PD\ EH DSSUR[LPDWHG E\ WKH FODVVLFDO HODVWLF GLIIHUHQWLDO FURVV VHFWLRQ IRU WKH $ Df DWRPSDLU FROOLVLRQ HYDOXDWHG DW WKHLU UHODWLYH HQHUJ\ DQG PRPHQWXP WUDQVIHU )XUWKHUPRUH VLQFH WKH ODUJHDQJOH VFDWWHULQJ RI OLJKW DQG IDVW SURn MHFWLOHV LV PHGLDWHG E\ WKH VKRUWUDQJH UHSXOVLYH IRUFHV WKH D PD\ EH 65f HYDOXDWHG IRU WKH VKRUWUDQJH SDLU SRWHQWLDOV Y :H ZLOO UHWXUQ WR WKH HIIHFWV RI WKH ORQJUDQJH IRUFHV ODWHU LQ WKLV VHFWLRQ :H KDYH FDOFXODWHG GRXEO\ GLIIHUHQWLDO FURVV VHFWLRQV IRU WKH VFDWWHULQJ RI /L IURP DQG &2 DW WKH FHQWHU RI PDVV &0f FROOLVLRQ HQHUJLHV ( H9 DQG H9 DQG VFDWWHULQJ DQJOHV GHJ GHJ DQG GHJ WKDW ZHUH VWXGLHG E\ WKH FURVVHGPROHFXODUEHDPV H[SHULPHQWV RI %RWWQHU HW DO 7KH $3&) RI WKH WDUJHW ZDV HYDOXDWHG IRU WKH XVXDO PRGHO RI KDUPRQLF YLEUDWLRQ ZLWK WKH SDUDPHWHUV VKRZQ LQ WDEOH +HU]EHUJ f WKH HIIHFWV RI PROHFXODU DQKDU PRQLFLW\ DUH WUHDWHG LQ 6HF )RU WKH /L &2 V\VWHP WKH D ZHUH 65f FDOFXODWHG IRU WKH Y GHYHORSHG LQ 6HF IRU WKH /L 1 SRWHQWLDOV ZH XVHG WKH VKRUWUDQJH SDUDPHWHUV $ H9 DQG % $ A WKDW ZHUH REWDLQHG IURP D PXOWLFHQWHU ILW WR WKH /L + SRWHQWLDO VXUIDFH RI 6WDHPPOHU 8QIRUWXQDWHO\ VLQFH WKH H[SHULPHQWV ZHUH FDUULHG RXW VRPH \HDUV EHIRUH WKH GHYHORSPHQW RI WKH WKHRU\ WKH PHDVXUHPHQWV KDYH EHHQ SUHVHQWHG LQ D IRUP WKDW GRHV QRW DOORZ D GLUHFW FRPSDULVRQ ZLWK WKH WKHRUHWLFDO

PAGE 103

7DEOH 3DUDPHWHUV IRU WKH DWRPSDLU FRUUHODWLRQ IXQFWLRQV RI &2 DQG RI &2 1 PO DPXf P DPXf G ;f H9f 79 .f

PAGE 104

FDOFXODWLRQV )LUVWO\ %RWWQHU HW DO H[SUHVV WKH FURVV VHFWLRQ LQ WHUPV RI WKH ILQDO URWDWLRQDO TXDQWXP QXPEHU M RI WKH GLDWRPLF DQG QRW DV IXQFWLRQV RI WKH URWDWLRQDO HQHUJ\ WUDQVIHU H )RU D JLYHQ YLEUDWLRQDO WUDQVLWLRQ Q WKH H[SHULPHQWDO FURVV VHFWLRQ PD\ EH UHn H[SUHVVHG LQ WHUPV RI e E\ PHDQV RI WKH UHODWLRQ >e Q ( Hf@ GLLGH H[S ‘ WG $ ( } Z LAU f ZKHUH $H $ M B M f f KRZHYHU WKH VHFRQG IDFWRU RQ WKH W ULJKW RI HT f FDXVHV DQ DUWLILFLDO HQKDQFHPHQW RI G DGILGHff 5 H[S IRU VPDOO H )XUWKHUPRUH LQ UHGXFLQJ WKH FURVV VHFWLRQV IURP WKH ODERUDWRU\ UHIHUHQFH IUDPH WR WKH &0 IUDPH %RWWQHU HW DO DVVXPHG D *DXVVLDQ GLVWULEXWLRQ RI MA LQ FRQWUDVW WR WKH *DXVVLDQ GLVWULEXWLRQ RI H ZLWK DQ H[SRQHQW TXDUWLF LQ MAf WKDW LV FKDUDFWHULVWLF RI VORZ URWDWLRQDO PRWLRQ LQ DFFRUGDQFH ZLWK RXU WKHRU\ 7KHUHIRUH HYHQ LI WKH WKHRUHWLFDO FURVV VHFWLRQ LV UHH[SUHVVHG LQ WHUPV RI D ILQDO URWDWLRQDO TXDQWXP QXPEHU DVVXPLQJ MBA f WKH H[SHULPHQWDO GLVWULEXn WLRQV DUH PXFK ZLGHU WKDQ WKRVH H[SHFWHG IURP WKH LQWHUQDO G\QDPLFV RI WKH GLDWRPLF ,Q WKLV FDVH LW LV PRUH PHDQLQJIXO WR FRPSDUH WKH H[SHULPHQWDO DQG WKHRUHWLFDO YDOXHV RI WKH DYHUDJH URWDWLRQDO HQHUJ\ WUDQVIHUHG H !BA IRU WKH YLEUDWLRQDO WUDQVLWLRQ Q DQG WKH DYHUDJH ( Q WRWDO HQHUJ\ WUDQVIHU H! YLEUDWLRQDO SOXV URWDWLRQDOf ZKLFK VKRXOG EH LQGHSHQGHQW RI WKH IXQFWLRQDO IRUP RI WKH ILQDO GLVWULEXWLRQV K 6LQFH WKH H[SHULPHQWV DUH TXDVLHODVWLF H(f N a >0( FRV*f@ ZKHUH 0 LV WKH UHGXFHG PDVV RI WKH V\VWHP KHQFH IURP HTV f DQG f ZH ILQG WKDW H'!! DQG H! DUH DSSUR[LPDWHO\ JLYHQ E\ ( Q

PAGE 105

DD 3LDDf.f m/$}@>O RD SLDDf.f@ Df Q D D H! >O RD O 3ADDf.f m5!! f fYf+O DD 3-DD?f@a` Ef D e D ,Q WDEOH ZH SUHVHQW WKH FDOFXODWHG DQG PHDVXUHG YDOXHV RI WKH DYHUDJH URWDWLRQDO HQHUJ\ WUDQVIHU H !B IRU QR YLEUDWLRQDO H[FLWDWLRQ DQG 5 X RI H! IRU WKH /LrA DQG /L&2 V\VWHPV WKH H[SHULPHQWDO YDOXH RI Hf! ZDV REWDLQHG IURP WKH PRVW SUREDEOH L RI WKH URWDWLRQDO GLVWULEX WLRQ DVVXPLQJ WKDW MBA $ FRPSDULVRQ RI WKHVH UHVXOWV VKRZV WKDW WKH WKHRUHWLFDO PRGHO FRUUHFWO\ SUHGLFWV WKH WUHQGV RI WKH URWDWLRQDO DQG WRWDO HQHUJ\ WUDQVIHUV ZLWK LQFUHDVLQJ UHODWLYH HQHUJ\ DQG VFDWWHULQJ DQJOH DOWKRXJK WKH PRGHO RYHUHVWLPDWHV WKH URWDWLRQDO H[FLWDWLRQ RI WKH WDUJHW $W ILUVW VLJKW RQH PLJKW WKLQN WKDW WKH H[FHVV LQ H LV GXH WR WKH IDFW WKDW WKH ORQJUDQJH LRQDWRP IRUFHV ZHUH QRW LQFOXGHG LQ WKH FDOFXODWLRQ RI WKH D +RZHYHU HTV f VKRZ WKDW IRU TXDVLHODVWLF FROOLVLRQV WKH DYHUDJH HQHUJ\ WUDQVIHUV GHSHQG RQ WKH D RQO\ WKURXJK D /5f WKH UDWLR D D 7KH QHJOHFW RI WKH YY DIIHFWV WKH PDJQLWXGHV RI B/ = HDFK D EXW GRHV QRW FKDQJH D Df IRU VPDOO LPSDFW SDUDPHWHUV ,Q RUGHU /  WR WHVW WKLV K\SRWKHVLV eUM!UL DQGW!ZHUH UHHYDOXDWHG IRU /L& XVLQJ XQLIRUP VHPLFODVVLFDO LRQDWRP FURVV VHFWLRQV %HUU\ f ZLWK WKH VSKHULFDO FRPSRQHQWV RI WKH Y ZKLFK LQFOXGH ORQJUDQJH IRUFHV FI HTV E f $V H[SHFWHG WKH ORQJUDQJH SRWHQWLDO DIIHFWV WKH PDJQLWXGH RI WKH RYHUDOO FURVV VHFWLRQ EXW FKDQJHV WKH DYHUDJH HQHUJ\ WUDQVIHUV E\ OHVV WKDQ b 7KHVH UHVXOWV OHDG XV WR FRQFOXGH WKDW WKH RYHUHVWLPDWH RI URWDWLRQDO H[FLWDWLRQ LV GXH WR WKH G\QDPLFDO DVVXPSWLRQV RQ ZKLFK WKH PRGHO LV EDVHG

PAGE 106

7DEOH $YHUDJH URWDWLRQDO HQHUJ\ WUDQVIHU H !T IRU QR YLEUDWLRQDO H[FLWDWLRQ DQG DYHUDJH WRWDO HQHUJ\ WUDQVIHU H! 7KH WKHRUHWLFDO YDOXHV DUH FDOFXODWHG ZLWK WKH UHDO PRPHQW RI LQHUWLD RI WKH GLDWRPLF ( H9f GHJf /Lr&2 /1 &5! H9f H! H9f H5! H9f H! H9f H[S WK H[S WK H[S WK H[S WK r

PAGE 107

QDPHO\ VLQJOH LRQDWRP FROOLVLRQV DQG LPSXOVLYH HQHUJ\ WUDQVIHU ,Q SDUWLFXODU WKH ORQJUDQJH IRUFHV JLYH ULVH WR WRUTXHV RQ WKH PROHFXOH DW ODUJH GLVWDQFHV WKH WRUTXHV ORFN WKH PRWLRQ RI WKH WDUJHW DERXW WKH UHODWLYH SRVLWLRQ 5 KLQGHU LWV URWDWLRQ DQG WKXV KDPSHU URWDWLRQDO H[FLWDWLRQ 7KLV PHFKDQLVP LV LQKHUHQWO\ GXH WR PXOWLSOH LQWHUDFWLRQV EHWZHHQ $ DQG WKH WDUJHW DWRPV DQG LV DOVR RI D QRQLPSXOVLYH QDWXUH EHFDXVH WKH WRUTXHV DFW ORQJ EHIRUH DQG ORQJ DIWHU WKH LQVWDQW RI FORVHVW DSSURDFK +RZHYHU WKH ORFNLQ HIIHFW PD\ EH UHDGLO\ PRGHOHG ZLWKLQ WKH VLQJOHFROOLVLRQ LPSXOVLYH DSSUR[LPDWLRQ E\ UHSODFLQJ WKH PRPHQW RI LQHUWLD RI WKH PROHFXOH LQ HT f ZLWK DQ HIIHFWLYH RQH % HUU REWDLQHG DV IROORZV 7DEOH VKRZV WKDW RQ WKH DYHUDJH WKH FDOFXODWHG H !B DUH 8 ODUJHU WKDQ WKH H[SHULPHQWDO YDOXHV E\ D IDFWRU RI IRU /LA1A DQG IRU /L&2 7KHUHIRUH WKH FURVV VHFWLRQV ZHUH UHHYDOXDWHG ZLWK HUU % IRU 1 DQG IRU &2 7KLV VLQJOH DGMXVWPHQW NHSW WKH VDPH ] HUU % IRU DOO FROOLVLRQ HQHUJLHV DQG VFDWWHULQJ DQJOHV \LHOGV JRRG DJUHHPHQW EHWZHHQ WKH FDOFXODWHG DQG PHDVXUHG H !B :H PXVW HPSKDVL]H WKDW WKH UHSODFHPHQW A r A GRHV QRW DIIHFW WKH SUREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ EHFDXVH LW LV GRQH RQO\ LQ WKH URWDWLRQDO FRUUHODWLRQ )XUWKHUPRUH RQFH WKH H[FHVV RI URWDWLRQDO H[FLWDWLRQ LV FRUUHFWHG WKH DYHUDJH WRWDO HQHUJ\ WUDQVIHU SUHGLFWHG E\ WKH PRGHO DJUHHV ZLWK WKH H[SHULPHQWDO RQH DV LV VHHQ LQ WDEOH 7KLV LQGLFDWHV WKDW DW K\SHUWKHUPDO HQHUJLHV DQG ODUJH VFDWWHULQJ DQJOHV WKH YLEUDWLRQDO H[FLWDn WLRQ RI WKH GLDWRPLF LV ZHOO GHVFULEHG E\ WKH VLQJOHFROOLVLRQ LPSXOVLYH PRGHO ,Q WDEOH ZH SUHVHQW WKH UHODWLYH SUREDELOLWLHV RI YLEUDWLRQDO WUDQVLWLRQ GDQ (f G: (f IRU WKH /LrA DQG /L&2 V\VWHPV ([DPLQLQJ WKHVH TXDQWLWLHV ZH ILQG WKDW WKH YLEUDWLRQDO H[FLWDWLRQ RI

PAGE 108

7DEOH $ $YHUDJH URWDWLRQDO HQHUJ\ WUDQVIHU HMA!4 IrU QR YLEUDWLRQDO H[FLWDWLRQ DQG DYHUDJH WRWDO HQHUJ\ WUDQVIHU H! 7KHRUHWLFDO YDOXHV DUH FDOFXODWHG ZLWK WKH HIIHFWLYH PRPHQW RI LQHUWLD FF A IRU &2 DQG FF / IRU 1f HII % HII % ( H9f GHJf /L& /L1 H5!4H9f H!H9f H !4H9f H! H9f H[S WK H[S WK H[S WK H[S WK

PAGE 109

7DEOH 5HODWLYH SUREDELOLW\ RI YLEUDWLRQDO WUDQVLWLRQ GRQ ( fGD (6 f ( H9f GHJf /L& /L1 Q O Q Q Q O Q Q

PAGE 110

& ERWK WDUJHWV LQFUHDVHV ZLWK LQFUHDVLQJ VFDWWHULQJ DQJOH DQG HQHUJ\ KRZHYHU &2 LV PRUH UHDGLO\ H[FLWHG WKDQ LV $OWKRXJK H[SHULPHQWDO YDOXHV RI SUREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ DUH QRW DYDLODEOH DW WKH SUHVHQW WLPH WKH SUHGLFWLRQV RI WKH PRGHO IROORZ WKH WUHQGV REVHUYHG LQ WKH PHDVXUHGWLPHRIIOLJKW VSHFWUD ILJV DQG RI %RWWQHU HW DO f (YDOXDWLRQ RI WKH $WRP3DLU &RUUHODWLRQ )XQFWLRQ RI D /LQHDU 7ULDWRPLF 0ROHFXOH )RU D OLQHDU WULDWRPLF ZH PD\ ZULWH WKH HTXLOLEULXP SRVLWLRQV RI LWV DWRPV DV G G G ZKHUH G LV D XQLW YHFWRU LQ WKH GLUHFWLRQ RI WKH D D PROHFXODU D[LV IURP DWRP WR DWRP %\ PHDQV RI HT Df ZH REWDLQ H[SUHVVLRQV WKDW UHODWH WKH G WR WKH HTXLOLEULXPERQGOHQJWKV F/ GA DQG f ZLWK Af A Af WKHVH DUH GO BPG POGAP%f Df G AA a PGAP%f Ef G APOG QnGAP%f Ff ZKHUH G G f G DQG P LV WKH PDVV RI WKH PROHFXOH )XUWKHUPRUH % HTV f VKRZ WKDW D OLQHDU WULDWRPLF KDV IRXU IUHH YLEUDWLRQDO GLVn SODFHPHQWV DQG WKXV IRXU LQWHUQDO FRRUGLQDWHV VA 7ZR RI WKHVH VA DQG VA DUH FRQYHQWLRQDOO\ WDNHQ WR EH WKH FKDQJHV LQ ERQG OHQJWKV RI WKH DWRP SDLUV f DQG f UHVSHFWLYHO\ WKH RWKHU WZR DQG DUH WKHQ WKH FKDQJHV LQ WKH ERQG DQJOHV WKDW OLH RQ WZR PXWXDOO\ SHUSHQGLFXODU SODQHV 'XH WR WKH F\OLQGULFDO V\PPHWU\ RI WKH PROHFXOH DQG DUH

PAGE 111

GHJHQHUDWH VR ZH PD\ FKRRVH VA WR OLH RQ WKH SODQH WKDW FRQWDLQV N DQG G 6LQFH VA LV WKXV SHUSHQGLFXODU WR N DQG WKH $3&) GHSHQGV RQO\ RQ WF f U WKH $3&) LV LQGHSHQGHQW RI Vf f DQG WKLV FRRUGLQDWH QHHG QRW EH FO A FRQVLGHUHG IXUWKHU +RZHYHU DQ HOHPHQWDU\ JHRPHWULFDO DQDO\VLV VKRZV WKDW IRU VPDOO GLVSODFHPHQWV XA 6 >GX$ GXfs GXf;@GGf f ZKHUH X f LV WKH FRPSRQHQW RI X LQ WKH N Gf SODQH DQG SHUSHQGLFXODU 6/ / !‘ WR G WKLV GLUHFWLRQ LV JLYHQ E\ WKH XQLW YHFWRU GA NN FRV% GfVLQJ f LQ ZKLFK LV WKH DQJOH EHWZHHQ N DQG G 8VLQJ HTV f DQG f ZH ILQG WKDW WKH &DUWHVLDQ GLVSODFHPHQWV DUH UHODWHG WR WKH LQWHUQDO FRRUGLQDWHV E\ X ^PPGG,%f VGs > P PAOGOPJ Df a\ U \ Q WaPPGGGO%A6GO AUDLVL Ef M\ U f§U Xn ^ PPGG,%fVGA >PV P PfV@G`P% Ff KHUH ,' LV WKH PRPHQW RI LQHUWLD RI WKH WULDWRPLF :H WDNH WKH KDUPRQLF YLEUDWLRQDO SRWHQWLDO WR EH WKH XVXDO JHQHUDOL]HG TXDGUDWLF YDOHQFHIRUFHILHOG -RQHV &KDS f WKLV LV JLYHQ E\

PAGE 112

WVf NV NQ VVf OL L f &DUU\LQJ RXW WKH QRUPDOPRGH DQDO\VLV RI HTV f ZH REWDLQ WKH KDUPRQLF IUHTXHQFLHV RU E >EA P P P P NA -/ = = NL/Nf M \ P Q\Q f Df f P%,%NfnLPPGGf Ef E PA PfPNA PAP PfN PPNA Ff DQG WKH QRUPDO FRRUGLQDWHV 4 M WR WKDW FRUUHVSRQG WR WKH V\PPHWULF VWUHWFKLQJ EHQGLQJ DQG DVV\PPHWULF VWUHWFKLQJ PRGHV UHVSHFWLYHO\ )XUWKHUPRUH ZH ILQG WKDW WKH FRHIILFLHQWV DABf rI WKH WUDQVIRUPDWLRQ IURP QRUPDO WR LQWHUQDO GLVSODFHPHQWV VA DUH JLYHQ E\ ] D PP RM LLO/ fF IRU M DQG M LV D rP%,%APLPPGGnf A f DM PADfM B P%NOOA&M IrU M DQG f PPRPaG >P Pf PffRf P N M @ M % P%>PPN NAf PPN PNf -! Df Ef Ff Gf DUULYH DW WKH YHFWRUV & WKDW UHODWH WKH DL &RPELQLQJ HTV f ZH

PAGE 113

FDUWHVLDQ GLVSODFHPHQWV WR WKH QRUPDO RQHV WKH H[SUHVVLRQV IRU WKH & DUH UDWKHU ORQJ DQG QRW YHU\ LOOXPLQDWLQJ VR WKH\ DUH QRW UHSURGXFHG KHUH a Q 7KH FRPPXWDWRUV >+ f H[S N f G f@ UHTXLUHG IRU WKH URWDWLRQDO HQHUJ\ WUDQVIHUV DQG ZLGWKV KDYH DOUHDG\ EHHQ HYDOXDWHG LQ 6HF IRU DQ\ OLQHDU SRO\DWRPLF (TXDWLRQ f VKRZV WKDW LI DWRP D LV DW WKH FHQWHU RI PDVV RI WKH PROHFXOH WKHQ G  VR WKDW VXFK DQ DWRP GRHV D QRW DEVRUE URWDWLRQDO HQHUJ\ WKLV LV WKH FDVH IRU H[DPSOH RI WKH FDUERQ DWRP LQ &2A )LQDOO\ WKH HYDOXDWLRQ RI WKH $3&) PD\ EH FRPSOHWHG E\ DSSUR[LPDWLQJ WKH TXDQWDO DYHUDJH RYHU WKH GLVWULEXWLRQ RI LQLWLDO URWDWLRQDO VWDWHV E\ PHDQV RI WKH FODVVLFDO VWDWLVWLFDO DYHUDJH DV GLVn FXVVHG LQ 6HF 5RWDWLRQDO DQG 9LEUDWLRQDO (QHUJ\ 7UDQVIHU LQ +\SHUWKHUPDO &ROOLVLRQV RI /L ZLWK &2 :H KDYH FDOFXODWHG DYHUDJH HQHUJ\ WUDQVIHUV DQG SUREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ IRU WKH V\VWHP /LA&2A DW WKH &0 FROOLVLRQ HQHUJLHV DQG VFDWWHULQJ DQJOHV VWXGLHG LQ FURVVHGPROHFXODUEHDPV H[SHUn LPHQWV E\ (DVWHV HW DO ,Q WKHVH FDOFXODWLRQV WKH YLEUDWLRQDO PRWLRQ RI &&! ZDV DSSUR[LPDWHG E\ WKH KDUPRQLF PRGHO GHVFULEHG DERYH WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ LQ &2A DUH GLVFXVVHG LQ WKH IROORZLQJ VHFWLRQ 7KH YDOXHV RI WKH SDUDPHWHUV UHTXLUHG IRU WKH $3&) RI &&! WDNHQ IURP -RQHV &KDS f DQG WKH KDUPRQLF IUHTXHQFLHV REWDLQHG IURP HT f DUH VKRZQ LQ WDEOH 7KH WDUJHW YLEUDWLRQDO WHPSHUDWXUH ZDV WDNHQ WR EH 7A DV DVVXPHG LQ WKH H[SHULPHQWV 7KH LRQDWRP FURVV VHFWLRQV R ZHUH DSSUR[LPDWHG E\ WKH FODVVLFDO HODVWLF

PAGE 114

7DEOH 3DUDPHWHUV IRU WKH DWRPSDLU FRUUHODWLRQ IXQFWLRQ RI &" PO DPXf P DPXf G G A NOO PG\Q$f N PG\Q $UDG f N PG\Q$f .XA H9f !LZ H9f H9f

PAGE 115

7DEOH 3UREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ GDQ(fGD(f LQ /L&R YV FHQWHU RI PDVV FROOLVLRQ HQHUJ\ ( DQG VFDWWHULQJ DQJOH GHJf GDQ(fGD ( f r f r DQG f f Q DQG f f H[S WK H[S WK H[S WK ( H9 U GHJ ( H9 U GHJ ( H9 GHJ

PAGE 116

GLIIHUHQWLDO FURVV VHFWLRQV IRU WKH VKRUW UDQJH LRQDWRP SRWHQWLDOV GHYHORSHG IRU /A&2A LQ 6HF ,Q WDEOH ZH FRPSDUH WKH FDOFXODWHG DQG H[SHULPHQWDO YDOXHV RI WKH UHODWLYH SUREDELOLWLHV RI H[FLWDWLRQ RI WKH YLEUDWLRQDO PRGHV RI &2A GDQ ( fGD2 ( f 7KLV FRPSDULVRQ VKRZV JRRG DJUHHPHQW LQ WKH RUGHULQJ RI WKH SUREDELOLWHV DQG LQ WKHLU WUHQGV ZLWK VFDWWHULQJ HQHUJ\ DQG DQJOH 7KH PDJQLWXGHV RI WKH FDOFXODWHG SUREDELOLWLHV FRPH FORVHU WR WKH H[SHULPHQWDO YDOXHV DV WKH VFDWWHULQJ DQJOH LQFUHDVHV EH\RQJ WZLFH WKH UDLQERZ DQJOH IRU WKH FROOLVLRQ HQHUJLHV ( H9 H9 DQG H9 WKH H[SHULPHQWDOO\ PHDVXUHG UDLQERZ DQJOHV DUH DSSUR[LPDWHO\ DQG GHJ UHVSHFWLYHO\f 7KLV VXJJHVWV WKDW DW DQJOHV ZHOO EH\RQG A FROOLVLRQDO YLEUDWLRQDO H[FLWDWLRQ LV PHGLDWHG E\ VLQJOH LRQDWRP LPSXOVLYH FROOLVLRQV KRZHYHU IRU VPDOOHU VFDWWHULQJ DQJOHV ZKLFK FRUUHVSRQG WR GLVWDQW FROOLVLRQVf WKH SURMHFWLOHV GR QRW SUREH WKH UHSXOVLYH FRUHV RI WKH SRWHQWLDO WR WKH VDPH H[WHQW $V GHFUHDVHV WKH G\QDPLFDO HIIHFWV RI WKH ORQJUDQJH IRUFHV EHFRPH DSSUHFLDEOH VR WKH VLQJOHFROOLVLRQ LPSXOVLYH PRGHO GRHV QRW VXIILFH WR GHVFULEH YLEUDWLRQDO H[FLWDWLRQ 7KLV DQDO\VLV PD\ KHOS H[SODLQ VRPH SX]]OLQJ UHVXOWV RI H[n SHULPHQWV ZLWK WKH V\VWHPV /L&)A DQG /L 6)A (OOHQEURHN HW DO DQG f ZKHUH D UDGLFDO FKDQJH LQ WKH EHKDYLRXU RI WKH DYHUDJH HQHUJ\ WUDQVIHU RFFXUV DW VFDWWHULQJ DQJOHV FRUUHVSRQGLQJ WR DERXW A 7KHVH PHDVXUHPHQWV LQGLFDWH WKDW WKH PHFKDQLVP E\ ZKLFK HQHUJ\ LV WUDQVIHUHG DW VPDOO DQJOHV LV TXLWH GLIIHUHQW WKDQ WKH RQH WKDW SUHGRPLQDWHV DW ODUJH DQJOHV 7KHRUHWLFDO FDOFXODWLRQV IRU WKH V\VWHPV /L&)A DQG /L 6)A DUH QRZ EHLQJ SODQHG LQ RUGHU WR WHVW WKLV K\SRWKHVLV ,Q WDEOH ZH SUHVHQW WKH H[SHULPHQWDO DQG FDOFXODWHG DYHUDJH HQHUJ\ WUDQVIHUV IRU DQJOHV JUHDWHU WKDQ A :H ILQG WKDW WKH PRGHO SUHGLFWV

PAGE 117

7DEOH $YHUDJH HQHUJ\ WUDQVIHU H! IRU WKH /LA&2A V\VWHP ( H!H9f H9f GHJf H[S WKDf WKEf Df &DOFXODWHG ZLWK WKH DFWXDO PRPHQW RI LQHUWLD Ef &DOFXODWHG ZLWK WKH HIIHFWLYH PRPHQW RI LQHUWLD UU HI I %

PAGE 118

WKHLU FRUUHFW GHSHQGHQFH RQ DQJOH DQG HQHUJ\ DOWKRXJK WKHUH LV VRPH RYHUn HVWLPDWH RI WKH URWDWLRQDO H[FLWDWLRQ RI &2A DV LQ WKH FDVH RI /LrA DQG /L&2 )RU H[DPSOH DW ( H9 DQG GHJ WKH FDOFXODWHG DQG H[SHULPHQWDO YDOXHV RI H! DUH LQ JRRG DJUHHPHQW EXW WKH YLEUDWLRQDO FRQWULEXWLRQ WR H! LV WRR ORZ F I WKH ODVW OLQH RI WDEOH f DQG WKH URWDWLRQDO RQH WRR KLJK $V GLVFXVVHG LQ 6HF ZH H[SHFW WKH PRGHO WR SUHGLFW WRR PXFK URWDWLRQDO H[FLWDWLRQ EHFDXVH WKH ORFNLQ HIIHFW RI WKH ORQJUDQJH IRUFHV LV QRW LQFOXGHG ,Q RUGHU WR PRGHO WKLV HIIHFW WKH FDOFXODWLRQV ZHUH UHGRQH ZLWK DQ HIIHFWLYH PRPHQW RI LQHUWLD IRU &2A 7KH YDOXH A A ZDV FKRVHQ WR UHSURGXFH WKH H[SHULPHQWDO YDOXH RI H! DW ( H9 DQG GHJ ZKLFK LV WKH DQJOH IDUWKHVW IURP A 7KLV VLQJOH YDOXH RI AA ZKLFK LV LQGHSHQGHQW RI VFDWWHULQJ DQJOH DQG HQHUJ\ EURXJKW WKH FDOFXODWHG DYHUDJH HQHUJ\ WUDQVIHU LQWR EHWWHU DJUHHPHQW ZLWK WKH H[SHULPHQW IRU !! DV LV VKRZQ LQ WKH WKLUG FROXPQ RI WDEOH )LJXUH VKRZV WKH GHSHQGHQFH RQ VFDWWHULQJ DQJOH RI WKH UHODWLYH SUREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ RI &2A DW ( H9 7KH LQFUHDVH LQ H[FLWDWLRQ ZLWK LQFUHDVLQJ DQJOH DJUHHV ZLWK WKH H[SHULPHQWDO WUHQGV DQG ZH VHH LPSURYHG DJUHHPHQW LQ WKH PDJQLWXGHV RI WKH SUREDELOLWLHV DW DQJOHV ODUJHU WKDQ ([DPLQDWLRQ RI ILJ VKRZV WKDW DW VPDOOHU DQJHOV WKH VKRUWUDQJH IRUFHV DOVR FRQWULEXWH WR WKH YLEUDWLRQDO H[FLWDn WLRQ WKHUHIRUH D WKHRUHWLFDO PRGHO WKDW ZLOO GHVFULEH VPDOO DQG ODUJH DQJOH K\SHUWKHUPDO FROOLVLRQV PXVW LQFOXGH WKH G\QDPLFDO HIIHFWV RI VKRUW DQG ORQJUDQJH IRUFHV WKLV LV WKH VXEMHFW RI WKH IROORZLQJ FKDSWHU +RZHYHU EHIRUH SURFHHGLQJ WR D QHZ WKHRUHWLFDO GHYHORSPHQW ZH ZLOO FDOFXODWH WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ RQ WKH YLEUDWLRQDO H[FLWDWLRQ RI WKH WDUJHWV VWXGLHG DERYH

PAGE 119

)LJXUH &DOFXODWHG SUREDELOLWLHV RI YLEUDWLRQDO H[FLWDWLRQ YV FHQWHU RI PDVV VFDWWHULQJ DQJOH IXOO OLQHf ([SHULPHQWDO UHVXOWV "L f Q f DQG f $ IL f DQG f 4 'DVKHG FXUYHV FRUUHVSRQG WR DQJOHV LQ WKH YLFLQLW\ RI RU VPDOOHU WKDQ WZLFH WKH H[SHULPHQWDOO\ PHDVXUHG UDLQERZ DQJOH

PAGE 120

3UREDELOLW\ RI YLEUDWLRQDO H[FLWDWLRQ

PAGE 121

(IIHFWV RI 0ROHFXODU $QKDUPRQLFLW\ LQ 1A &2 DQG &2 $V GLVFXVVHG LQ 6HF LQ K\SHUWKHUPDO DWRPSRO\DWRPLF FROOLVLRQV WKH HIIHFWV RI PROHFXODU DQKDUPRQLFLW\ PD\ EH LQWHUSUHWHG LQ WHUPV RI D VKLIW LQ WKH YLEUDWLRQDO VSHFWUXP RI WKH WDUJHW IURP WKH KDUPRQLF IUHn TXHQFLHV Df WR WKH HIIHFWLYH RQHV XUQ )RU D GLDWRPLF DQG IRU D SRO\n DWRPLF LQ ZKLFK WKH DQKDUPRQLF FRXSOLQJV EHWZHHQ GLIIHUHQW QRUPDO FRRUGLQDWHV DUH ]HUR WKH DP DUH JLYHQ E\ WKH VLPSOH UHODWLRQ f +RZHYHU ZKHQ DQKDUPRQLF LQWHUFRRUGLQDWH FRXSOLQJV DUH QRQ]HUR HYDOXDWLRQ RI WKH c7 UHTXLUHV WKH IROORZLQJ SURFHGXUH )LUVWO\ WKH GLVSODFHPHQW GLVSODFHPHQW *UHHQ IXQFWLRQ LV REWDLQHG E\ VROYLQJ WKH PDWUL[ HTXDWLRQ f 1H[W RQH HYDOXDWHV WKH VHFRQG PRPHQW RI WKH H[DFW VSHFWUDO IXQFWLRQ WKLV UHTXLUHV NQRZOHGJH RI WKH YLEUDWLRQDO DYHUDJHV 4A4A!!AW DQG 4I!!A ZKLFK XVXDOO\ FDQ QRW EH REWDLQHG LQ D FORVHG IRUP )LQDOO\ WKH GHFRXSOLQJ FRHIILFLHQWV EAB DUH DGMXVWHG WR UHSURGXFH WKH VHFRQG PRPHQW RI WKH H[DFW VSHFWUDO IXQFWLRQ ZKLFK OHDGV WR D PDWUL[ HTXDWLRQ IRU WKH E DQDORJRXV WR HT f ,Q RUGHU WR DYRLG H[WHQn VLYH FDOFXODWLRQV WKDW ZRXOG WDNH XV IDU IURP WKH SXUSRVH RI WKLV GLVVHUWDn WLRQ ZH QRZ HVWLPDWH WKH HIIHFWV RI DQKDUPRQLFLW\ LQ &&A E\ FRQVLGHULQJ RQO\ WKH EHQGLQJ PRGH 4Af DQG QHJOHFWLQJ WKH DQKDUPRQLF FRXSOLQJV WR WKH VWUHWFKLQJ PRGHV :LWKLQ WKLV PRGHO ZH FDQ REWDLQ WKH HIIHFWLYH EHQGLQJ IUHTXHQF\ E\ PHDQV RI WKH WHFKQLTXHV XWLOL]HG IRU D GLDWRPLF DV VKRZQ EHORZ :H ZLOO UHWXUQ WR WKH HIIHFWV RI DQKDUPRQLF FRXSOLQJV EHWZHHQ WKH QRUPDO PRGHV DW WKH HQG RI WKLV VHFWLRQ 6LQFH WKH YLEUDWLRQDO SRWHQWLDO LV DQ DQDO\WLFDO IXQFWLRQ RI WKH LQWHUQDO FRRUGLQDWH V ZH WDNH LWV DQKDUPRQLF SDUW ?U WR EH RI WKH IRUP L DQK 9 Vf O NDfVe DQK L  U [ Df

PAGE 122

 9 Vr DQK Ef )RU D GLDWRPLF LV WKH FKDQJH LQ ERQG OHQJWK ZKLOH IRU &2A VA LV WKH FKDQJH LQ WKH YDOHQFH DQJOH +HQFH WKH YLEUDWLRQDO +DPLOWRQLDQ IRU WKH QRUPDO FRRUGLQDWH 4 LV L +Y 9 DQKM Df ?n IL fL mf Ef DQK O O! DeNLef4e OL L Ff KHUH DA >PA PfPAPAf@IRU D GLDWRPLF ZKLOH IRU WKH EHQGLQJ PRGH RI &2 D Df D GHILQHG LQ HT Ef 7KH VROXWLRQ RI HT f UHTXLUHV WKH DYHUDJHV m4A}Y >7U SYf@ 7U>SYf4A@ Df 4I!! >7U S f @ 7U>S f e $D-NA4O 9 r A! Nr!4r@ Ef 3Yf H[S + f Ff ZKHUH S f LV WKH GHQVLW\ RSHUDWRU IRU WKH GLVWULEXWLRQ RI LQLWLDO YLEUDn WLRQDO VWDWHV DQG N 7 f +RZHYHU IURP HTV f ZH KDYH WKDW 9 SYf Z PSYf4A Df

PAGE 123

OeB9f 2S f O ,rn NLef4 DL 9  Ef VR HT f PD\ EH ZULWWHQ LQ WHUPV RI WKH YLEUDWLRQDO SDUWLWLRQ IXQFWLRQ = f 7USA*f DV IROORZV .RM FRWKDB L L D f eQ = f [ D 9 f ,Q WKH H[SHULPHQWV GLVFXVVHG DERYH IRN 7 f !! VR WKDW RQO\ WKH ? ORZHVW YLEUDWLRQDO OHYHOV DUH VLJQLILFDQWO\ SRSXODWHG ,Q WKHVH VWDWHV WKH YLEUDWLRQDO GLVSODFHPHQWV DUH VPDOO VR WKDW OADQALLfA4 DQG 9pf PD\ EH HYDOXDWHG E\ ILQLWHWHPSHUDWXUH SHUWXUEDWLRQ WKHRU\ &RQVLGHULQJ 9 A DV D SHUWXUEDWLRQ RQ WKH KDUPRQLF GHQVLW\ RSHUDWRU H[S+Af ZH PDNH WKH DQVDW] S f H[S+Af8f 'LIIHUHQWLDWLQJ ERWK VLGHV RI WKLV UHODWLRQ ZLWK UHVSHFW WR DQG UHDUUDQJLQJ WHUPV ZH ILQG WKDW 8kf VDWLVILHV WKH ZHOONQRZQ HTXDWLRQ 0HVVLDK 9RO &KDS f a f 9f8f Df 9f H[S +AfADQK H[ST+Af Ef ZLWK WKH ERXQGDU\ FRQGLWLRQ 8f WKLV KDV WKH IRUPDO VROXWLRQ f Gn92nf8nf f ,WHUDWLQJ HT f ZH REWDLQ DQ H[SDQVLRQ RI 3\pf LQ WHUPV RI WKH DQKDUPRQLF SRWHQWLDO WKLV LV

PAGE 124

S Rf H[S /f > Gn9f Gn9nf G29f @ f Y K 6LQFH WKH WUDFH RI DQ RSHUDWRU LV LQGHSHQGHQW RI WKH FKRLFH RI EDVLV XVHG WR HYDOXDWH LW WKH WUDFHV RI WKH WHUPV RQ WKH ULJKW RI HT f PD\ EH UHDGLO\ FDOFXODWHG LQ WKH KDUPRQLF EDVLV E\ PHDQV RI WKH DOJHEUD RI FUHDWLRQ DQG DQQLKLODWLRQ RSHUDWRUV 0HVVLDK 9RO &KDS f ,Q Lf SDUWLFXODU IRU D FXELF SOXV TXDUWLF DQKDUPRQLFLW\ NB IRU 6/!f ZH WKXV ILQG WKDW WR OHDGLQJ RUGHU LQ DQG WKH SDUWLWLRQ IXQFWLRQ LV JLYHQ E\ =7f FRVHFKRL DA NIA RDf"f>O FRVKADf FRVHFKDG 9 LOO L L L FRWKF2DA@FRVHFK[ >DANAAfnB @$APA@ > VLQKADA HTFSDAf@ FRVHFKADA f ZKHUH k.DX 6XEVWLWXWLQJ HT f LQWR HT f DQG SHUn IRUPLQJ WKH LQGLFDWHG GLIIHUHQWLDWLRQV \LHOGV WKH IROORZLQJ H[SUHVVLRQ IRU WKH VKLIW LQ IUHTXHQF\ MBA MMAfXN DQG IRU WKH GHFRXSOLQJ SDUDPHWHU 9 Z FMMfZ E. a a DA > NA9P"f FRWKRX VHFKDA FRVHFKRV DAf >DL NIA:@ ^WDQK Ds > H[S DAf@ VHFK FRVHFKDAf ` f

PAGE 125

7DEOH &XELF N f TXDUWLF N f IRUFH FRQVWDQWV DQG UHVXOWLQJ IUHTXHQF\ VKLIWV GXH WR DQKDUPRQLF IRUFHV LQ 1 &2 DQG LQ WKH EHQGLQJ PRGH RI &f IRU YLEUDWLRQDO WHPSHUDWXUH 7Y Nf NIf FR 8f f f H9$f H9$f bf 1 &2 &r Df LQ H9UDG

PAGE 126

8VLQJ VSHFWURVFRSLF YDOXHV RI WKH FXELF DQG TXDUWLF IRUFH FRQVWDQWV RI 1A &2 +HU]EHUJ f DQG RI WKH EHQGLQJ PRGH RI &" 3DULVHDX HW DO f ZH REWDLQ WKH IUHTXHQF\ VKLIWV SUHVHQWHG LQ WDEOH IRU WKH YLEUDWLRQDO WHPSHUDWXUH 7A DVVXPHG LQ WKH H[SHULPHQWV 7KHVH UHVXOWV LQGLFDWH WKDW DW K\SHUWKHUPDO FROOLVLRQ HQHUJLHV PROHFXODU DQKDUPRQLFLW\ FRQWULEXWHV OHVV WKDQ b WR WKH YLEUDWLRQDO HQHUJ\ WUDQVIHUUHG WR WKHVH WDUJHWV 7KLV LV QRW XQH[SHFWHG VLQFH DW KLJK UHODWLYH HQHUJLHV WKH WDUJHW GRHV QRW KDYH WLPH WR UHDFW WR WKH FROOLVLRQ KHQFH WKH HIIHFWV RI DQKDUPRQLFLW\ RQ WKH WLPHHYROXWLRQ RI WKH GLVSODFHPHQWV DUH QRW KLJKO\ VLJQLILFDQW GXULQJ WKH EULHI WLPH LQ ZKLFK HQHUJ\ LV WUDQVIHUUHG )RU WKH VDPH UHDVRQ ZH H[SHFW WKDW LQWHUFRRUGLQDWH DQKDUPRQLF FRXSOLQJV LQ &2A ZLOO QRW SOD\ D ODUJH UROH LQ LWV YLEUDWLRQDO H[FLWDWLRQ E\ K\SHUWKHUPDO SURMHFWLOHV 7KH PDLQ HIIHFW RI WKHVH FRXSOLQJV LV WR FDXVH PL[LQJ RI WKH QRUPDO FRRUGLQDWHV 4 KRZHYHU GXULQJ WKH EULHI WUDQVIHUWLPHV WKH H[WHQW RI WKH PL[LQJ VKRXOG EH QHJOLJLEOH

PAGE 127

&+$37(5 9 $ 6(0,&/$66,&$/ &255(/$7,21 )81&7,21 $3352$&+ 72 02/(&8/$5 &2//,6,216 :H GHYHORS D QHZ FRUUHODWLRQ IXQFWLRQ DSSURDFK WR WKH GHVFULSWLRQ RI YLEUDWLRQDO DQG URWDWLRQDO HQHUJ\ WUDQVIHU LQ WKH FROOLVLRQ RI WZR SRO\DWRPLF PROHFXOHV $ DQG % ,Q RUGHU WR IRFXV RXU DWWHQWLRQ RQ YLEUDWLRQDO DQG URWDWLRQDO H[FLWDWLRQ ZH WDNH $ DQG % WR KDYH FORVHG HOHFWURQLF VKHOOV DQG ZH FRQVLGHU WKH UDQJH RI FROOLVLRQ HQHUJLHV DERYH H9 EXW EHORZ WKH WKUHVKROGV IRU HOHFWURQLF H[FLWDWLRQ DQGRU GLVVRFLDWLRQ RI WKH PROHFXOHV )RU ODUJH PROHFXOHV DQG DW KLJK UHODWLYH HQHUJLHV WKH ZDYHOHQJWK RI UHODWLYH PRWLRQ LV XVXDOO\ PXFK VPDOOHU WKDQ WKH OHQJWKV RYHU ZKLFK WKH LQWHUPROHFXODU SRWHQWLDO FKDQJHV DSSUHFLDEO\ LQ WKHVH FDVHV WKH UHODWLYH PRWLRQ EHWZHHQ $ DQG % PD\ EH GHVFULEHG E\ PHDQV RI FODVVLFDO PHFKDQLFV +RZHYHU WKH H[SHULPHQWV PHQWLRQHG LQ WKH ,QWURGXFWLRQ FOHDUO\ LQGLFDWH WKDW WKH LQWHUQDO G\QDPLFV RI WKH PROHFXOHV PXVW EH GHVFULEHG TXDQWXP PHFKDQLFDOO\ %\ FRPELQLQJ FODVVLFDO UHODWLYH WUDMHFWRULHV ZLWK D TXDQWDO WUHDWPHQW RI WKH LQWHUQDO GHJUHHV RI IUHHGRP DV UHYLHZHG LQ 6HF RQH DUULYHV DW WKH ZHOONQRZQ VHPLFODVVLFDO PRGHO RI WKH FROOLVLRQ DOVR FDOOHG WLPHGHSHQGHQW RU FODVVLFDO SDWK DSSUR[LPDWLRQ &KLOG 'LFNLQVRQ f 7KLV DSSURDFK KDV EHHQ UHFHQWO\ DSSOLHG WR WKH VWXG\ RI YLEUDWLRQDO H[FLWDWLRQ LQ DWRPPROHFXOH 0F&DQQ DQG )ODQQHU\ %LOOLQJ Df DQG PROHFXOHPROHFXOH

PAGE 128

VFDWWHULQJ %LOOLQJ E f 7KHVH VWXGLHV DUH EDVHG RQ H[SDQGLQJ WKH LQWHUQDOZDYH IXQFWLRQ LQ D EDVLV VHW RI VWDWHV RI WKH LVRODWHG PROHFXOHV ZLWK WLPHGHSHQGHQW FRHIILFLHQWV 7KH GLIIHUHQWLDO HTXDWLRQV WKDW GHVFULEH WKH WLPH HYROXWLRQ RI WKH FRHIILFLHQWV DUH WKHQ LQWHJUDWHG QXPHULFDOO\ WR REWDLQ WUDQVLWLRQ DPSOLWXGHV DQG SUREn DELOLWLHV $W WKH SUHVHQW WLPH WKH DSSOLFDWLRQV RI WKLV PHWKRG DUH UHVWULFWHG WR WKHUPDO FROOLVLRQ HQHUJLHV EHFDXVH LQ WKH K\SHUWKHUPDO UHJLPH WKH QXPEHU RI HQHUJHWLFDOO\ DFFHVVLEOH VWDWHV LV XQPDQDJHDEO\ ODUJH 7KH OLPLWDWLRQV RI WKH SUHYLRXV DSSURDFKHV DUH DYRLGHG ZLWK WKH XVH RI FRUUHODWLRQ IXQFWLRQ WHFKQLTXHV ZKLFK ZH LQWURGXFH LQ 6HF ,Q SDUWLFXODU ZH ILQG WKDW WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU '3(7f LV FORVHO\ UHODWHG WR WKH WLPHFRUUHODWLRQ IXQFWLRQ RI WKH VHPLFODVVLFDO HYROXWLRQ RSHUDWRU ,Q 6HF ZH HYDOXDWH WKLV RSHUDWRU E\ PHDQV RI D SURFHGXUH WKDW FRQWDLQV WKH LQWHUPROHFXODU SRWHQWLDO WR LQILQLWH RUGHU ,Q WKH IROORZLQJ WKUHH VHFWLRQV ZH FDOFXODWH WKH FRUUHODWLRQ IXQFWLRQ RI ODUJH SRO\DWRPLFV ZLWKRXW QHHG RI LQWHUQDOVWDWH H[SDQVLRQV ,Q 6HF ZH WKXV REWDLQ VLPSOH DQDO\WLFDO H[SUHVVLRQV IRU WKH '3(7 LQ WHUPV RI FHUWDLQ YLEUDWLRQDO DQG URWDWLRQDO DFWLRQ LQWHJUDOV 7KH DFWLRQV FRUUHVSRQG WR WKH IRUFHV WKDW WKH LQWHUPROHFXODU SRWHQWLDO H[HUWV RQ WKH PROHFXODU DWRPV WKURXJKRXW WKH FRXUVH RI WKH UHODWLYH PRWLRQ 6LQFH WKH DFWLRQ LQn WHJUDOV FRQWDLQ WKH IXOO SRWHQWLDO WKH SUHVHQW DSSURDFK LV DSSOLFDEOH WR K\SHUWKHUPDO PROHFXODU FROOLVLRQV RYHU D ZLGH UDQJH RI VFDWWHULQJ DQJOHV $ IXUWKHU DGYDQWDJH RI WKH SUHVHQW DSSURDFK OLHV LQ WKH IDFW

PAGE 129

WKDW WKH FRUUHODWLRQ IXQFWLRQ FRQWDLQV IURP WKH RXWVHW WKH DYHUDJHV RYHU LQLWLDO H[SHULPHQWDO GLVWULEXWLRQV KHQFH RQH QHHGV WR FDOFXODWH RQO\ TXDQWLWLHV WKDW DUH GLUHFWO\ UHODWHG WR H[SHULPHQWDO PHDVXUHPHQWV 7KH 6HPLFODVVLFDO $SSUR[LPDWLRQ ,Q WKH FROOLVLRQ RI WZR ODUJH PROHFXOHV ZLWK UHGXFHG PDVV 0 0A0A0A0Jf DQG DW K\SHUWKHUPDO UHODWLYH HQHUJ\ ( WKH ZDYHOHQJWK IRU UHODWLYH PRWLRQ ; WW 0(f LV XVXDOO\ PXFK VPDOOHU WKDQ WKH OHQJWKV RYHU ZKLFK WKH LQWHUPROHFXODU SRWHQWLDO FKDQJHV DSSUHFLDEO\ LQ WKHVH FDVHV WKH UHODWLYH PRWLRQ PD\ EH GHVFULEHG E\ D FODVVLFDO WUDMHFWRU\ 5Wf ,QGLFDWLQJ RSHUDWRUV ZLWK FDUDWV LQ WKH FRRUGLQDWH UHSUHVHQWDWLRQ WKH UHODWLYH NLQHWLF HQHUJ\ RSHUDWRU LV DSSUR[LPDWHO\ JLYHQ E\ WKH FODVVLFDO H[SUHVVLRQ 5n ._ 5 a 55nf .Wf Df .Wf "Wf0f Ef ) ZKHUH 3Wf LV WKH UHODWLYH PRPHQWXP ,GHDOO\ WKH FODVVLFDO G\QDPLFDO YDULDEOHV 5Wf DQG 3Wf PXVW EH REWDLQHG IURP WKH VROXWLRQ RI 1 +DPLOWRQnV HTXDWLRQV RI PRWLRQ IRU WKH 1ERG\ SUREOHP *ROGVWHLQ &KDS f ZKHUH 1 DQG LV WKH QXPEHU RI DWRPV RI WKH SRO\DWRPLF ; $ DQG % )RU PDQ\ H[SHULPHQWDO FRQGLWLRQV RI LQWHUHVW HJ TXDVLHODVWLF VFDWWHULQJ VPDOO GHWHFWLRQ DQJOHV HWFf RQH PD\ LQWURGXFH DSSUR[LPDWLRQV LQWR WKH G\QDPLFV RI UHODWLYH PRWLRQ WKDW FRQVLGHUDEO\ VLPSOLI\ WKH HYDOXDWLRQ RI 5Wf WKHVH DSSUR[LPDWLRQV DUH QRW HVVHQWLDO WR WKH SUHVHQW GHYHORSPHQW VR ZH SRVWSRQH WKHLU FRQVLGHUDWLRQ WR 6HF

PAGE 130

7KH FODVVLFDO WUDMHFWRU\ ZKHWKHU H[DFW RU DSSUR[LPDWHf GHn SHQGV SDUDPHWULFDOO\ RQ WKH VHW RI LQLWLDO FRQGLWLRQV 7KHVH DUH XVXDOO\ WDNHQ WR EH WKH LQLWLDO YDOXHV RI WKH LPSDFW SDUDPHWHU WKH UHODWLYH PRPHQWXP WKH D]LPXWKDO DQJOH RI 5rrf DQG WKH LQLWLDO YDOXHV RI WKH DFWLRQ DQG DQJOH YDULDEOHV RI WKH LQWHUQDO PRWLRQV RI $ DQG RI % 3RUWHU DQG 5DII f ,Q PRVW VFDWWHULQJ H[SHULPHQWV RQO\ D VXEVHW RI WKH ILQDO FRQGLWLRQV LV VSHFLILHG LQ SDUWLFXODU WKH WLPHRIIOLJKW H[SHULPHQWV PHQWLRQHG LQ WKH ,QWURGXFWLRQ RQO\ PHDVXUH WKH PDJQLWXGHV RI WKH ILQDO GHIOHFWLRQ DQJOH DQG RI WKH UHODWLYH YHORFLW\ ,Q WKHVH FDVHV LW PD\ RFFXU WKDW PRUH WKDQ RQH VHW RI YDOXHV RI LQLWLDO FRQGLWLRQV RULJLQDWH GLIIHUHQW WUDMHFWRULHV .ef 5 Wft WKDW OHDG WR WKH PHDVXUHG ILQDO FRQGLWLRQV WKLV LV WKH RULJLQ RI WKH ZHOONQRZQ UDLQERZ HIIHFW LQ HODVWLF VFDWn WHULQJ ,Q RUGHU WR VLPSOLI\ WKH QRWDWLRQ WKURXJKRXW PRVW RI WKH SUHVHQW WUHDWPHQW ZH RPLW WKH LQGH[ L ZH H[SOLFLWO\ FRQVLGHU GLIIHUHQW WUDMHFWRULHV WKDW OHDG WR WKH VDPH ILQDO FRQGLWLRQV RQO\ ZKHQ WKH\ DIIHFW WKH WKHRUHWLFDO GHYHORSPHQW :LWKLQ WKH VHPLFODVVLFDO PRGHO WKH +DPLOWRQLDQ RSHUDWRU WKDW JRYHUQV WKH LQWHUQDO G\QDPLFV RI WKH PROHFXOHV GXULQJ WKH FROOLVLRQ LV JLYHQ E\ +Wf .Wf + 0 9Wf Df 9Wf 95Wf0f Ef +HUH +Z LV WKH VXP RI WKH LQWHUQDO +DPLOWRQLDQV RI WKH QRQLQWHUDFWLQJ 0 r SRO\DWRPLFV DQG 95U f LV WKH LQWHUPROHFXODU SRWHQWLDO 7KH

PAGE 131

SRWHQWLDO GHSHQGV RQ WKH SRVLWLRQ RI $ UHODWLYH WR WKH FHQWHU RI PDVV &0f RI % DQG RQ ` ZKHUH GHQRWHV WKH VHW RI SRVLWLRQV RI WKH DWRPV RI PROHFXOH ; $ RU % ZLWK UHVSHFW WR WKH &0 RI ; 7KH WLPH GHSHQGHQFH RI 9Wf DULVHV IURP WKDW RI WKH FODVVLFDO UHODWLYH WUDMHFWRU\ IXUWKHUPRUH 9Wf LV DQ RSHUDWRU WKDW DFWV RQ WKH LQWHUQDO VWDWHV RI WKH SRO\DWRPLFV ,QLWLDOO\ $ DQG % DUH LVRODWHG IURP HDFK RWKHU DQG LQ WKH VWDWH c Y! ZKHUH Y GHQRWHV WKH FROOHFWLRQ RI WKHLU TXDQWXP QXPn EHUV URWDWLRQDO DQG YLEUDWLRQDOf ZH WKHQ KDYH WKDW +P _Y! (Y _Y! f LQ ZKLFK LV WKH VXP RI WKH LQWHUQDO HQHUJLHV RI $ DQG RI % 'XULQJ WKH FROOLVLRQ Y! HYROYHV LQWR_Y }W! LQ DFFRUGDQFH ZLWK WKH VHPLFODVVLFDO +DPLOWRQLDQ DV LQGLFDWHG EHORZ >LWIW +Wf@_YW! Df OLUD _YW! Y!f§ Ef Wa!f§ 7KHUHIRUH WKH SUREDELOLW\ WKDW $ DQG % ZLOO PDNH D WUDQVLWLRQ EHWZHHQ WKH LQLWLDO VWDWH DQG D ILQDO RQH_Yn! LV JLYHQ E\ : Y Y L  f§ LP Y Y M W e!r OLP_ 9 W YW! W ;} W !aRR L Df Ef

PAGE 132

%HIRUH SURFHHGLQJ WR WKH HYDOXDWLRQ RI + LW ZLOO SURYH FRQYHQLHQW WR VHSDUDWH WKH WLPH HYROXWLRQ RI _YW! LQWR D SDUW WKDW FRUUHVSRQGV WR WKH PRWLRQ RI WKH QRQLQWHUDFWLQJ SRO\DWRPLFV DQG DQRWKHU RQH WKDW H[SOLFLWO\ FRQWDLQV WKH LQWHUPROHFXODU IRUFHV 7KLV VHSDUDWLRQ LV UHDGLO\ DFKLHYHG LQ WKH LQWHUDFWLRQ UHSUHVHQWDWLRQ DV IROORZV 0HVVLDK 9RO &KDS f )LUVWO\ RQH ZULWHV IRU WKH +DPLOWRQLDQ +Wf + $.Wf 9Wf L + OLP +Wf 30f + W 0 $.Wf >3Wf "@0f f9 ZKHUH 3 LV WKH LQLWLDO UHODWLYH PRPHQWXP L LV ZULWWHQ DV _YW! H[SIL/&W2.O&WM2 _YWL! Df Ef Ff 1H[W WKH VWDWH _YW! f ZKHUH 8WWAf LV WKH WLPHHYROXWLRQ RSHUDWRU LQ WKH LQWHUDFWLRQ UHSUHVHQWDWLRQ 6XEVWLWXWLQJ HT f LQWR HTV f RQH ILQGV WKDW 8WWAf LV GHWHUPLQHG E\ >LOW +n WWAf@8WWAf Df 8WWf Ef +nWW$.Wf H[S>L +BAWWLf9@9WfH[S>L+AWWLfL@ Ff

PAGE 133

ZKHUH ZH KDYH XVHG WKH IDFW WKDW > $. + @ EHFDXVH $. FRQWDLQV RQO\ 0 FODVVLFDO G\QDPLFDO YDULDEOHV )LQDOO\ UHSODFLQJ HT f LQWR HT Ef DQG XVLQJ HT f RQH REWDLQV : Yn, m!rrf Y! f Yn Y a ef :KHQHYHU PRUH WKDQ RQH WUDMHFWRU\ 5 Wf OHDGV WR WKH VDPH VXEVHW RI ILQDO FRQGLWLRQV HT f PD\ EH H[WHQGHG DV IROORZV 7R HDFK WUDMHFWRU\ WKHUH FRUUHVSRQGV DQ HYROXWLRQ RSHUDWRU WWAf ZLWK DQ DVVRFLDWHG WUDQVLWLRQ DPSOLWXGH Yn_8Y RR RRf_Y! $V ZH VKDOO VHH EHORZ WKH WUDQVLWLRQ DPSOLWXGHV FRQWDLQ SKDVHV WKDW GHSHQG RQ WKH LQLWLDO FRQGLWLRQV ,Q PRVW FDVHV RI LQWHUHVW IRU GLIIHUHQW WUDMHFWRULHV WKH SKDVHV GLIIHU E\ D ODUJH DPRXQW VR WKDW RQH PD\ XVH WKH SULPLWLYH VHPLFODVVLFDO DSSUR[LPDWLRQ %HUU\ DQG 0RXQW f : Y f?O F8ef mm!f Y! f YnY b r‘ +HUH WKH FRHIILFLHQWV FA DUH UHODWHG WR WKH -DFRELDQ RI WKH WUDQVn IRUPDWLRQ IURP LQLWLDO WR ILQDO FODVVLFDO G\QDPLFDO YDULDEOHV :KHQn HYHU WKH SKDVH GLIIHUHQFHV DUH VPDOO WKH SULPLWLYH DSSUR[LPDWLRQ RI HT f PXVW EH UHSODFHG E\ D XQLIRUP RQH 7KH 'LIIHUHQWLDO 3UREDELOLW\ RI (QHUJ\ 7UDQVIHU 7KH DIRUHPHQWLRQHG WLPHRIIOLJKW H[SHULPHQWV GR QRW PHDVXUH GLUHFWO\ WKH VWDWHWRVWDWH WUDQVLWLRQ SUREDELOLWLHV : LQVWHDG Y L Y WKH H[SHULPHQWDOLVW REWDLQV GRXEO\ GLIIHUHQWLDO FURVV VHFWLRQV SHU XQLW VROLGDQJOH DQG SHU XQLW HQHUJ\f 7KHVH FRUUHVSRQG WR DYHUDJHV

PAGE 134

RYHU LQLWLDO GLVWULEXWLRQV RI LQWHUQDO VWDWHV RI $ DQG % LQ DFFRUGDQFH ZLWK WKH ZD\ LQ ZKLFK WKH PROHFXODU EHDPV DUH SUHSDUHG LQ WKHLU VRXUFHV )XUWKHUPRUH WKH LQVWUXPHQWV DUH XVXDOO\ QRW FDOLEUDWHG WR \LHOG DEVROXWH FURVV VHFWLRQV VR WKDW WKH PHDVXUHPHQWV DUH UHSRUWHG LQ WKH IRUP RI UHODWLYH SUREDELOLWLHV RI WUDQVLWLRQ DQGRU DYHUDJH HQHUJ\ WUDQVIHUV DV IXQFWLRQV RI VFDWWHULQJ DQJOH DQG HQHUJ\ ,Q WKHVH FDVHV WKH WKHRUHWLFDO TXDQWLW\ PRVW UHDGLO\ FRPSDUDEOH ZLWK H[SHULn PHQWDO UHVXOWV LV WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU DYHUDJHG RYHU WKH LQLWLDO GLVWULEXWLRQV 7KLV TXDQWLW\ LV UHODWHG WR WKH LQ WKH IROORZLQJ ZD\ )LUVWO\ FRQVLGHU WKH SUREDELOLW\ WKDW LI $ DQG % DUH LQ WKH LQLWLDO VWDWH _Y! DQ DPRXQW RI HQHUJ\ HTXDO WR RU VPDOOHU WKDQ H ZLOO EH WUDQVIHUUHG LQ WKH FROOLVLRQ OHDYLQJ $ DQG % LQ DQ\ ILQDO VWDWH _Yf! WKLV LV JLYHQ E\ 3 Hf : >H ( ( f@ 9 / 9 9 9 9 9 n f ZKHUH WKH VWHSIXQFWLRQ VHOHFWV RQO\ WKRVH WUDQVLWLRQV WKDW DUH HQHUJHWLFDOO\ DOORZHG 7DNLQJ WKH GHULYDWLYH RI HT f ZLWK UHVSHFW WR H \LHOGV WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVn IHU IURP WKH LQLWLDO VWDWH Y! WKDW LV VKRZQ EHORZ f )LQDOO\ DYHUDJLQJ G3AGH RYHU WKH LQLWLDO GLVWULEXWLRQ ZA ZH REn WDLQ WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU WR EH FRPSDUHG ZLWK H[SHULPHQWV QDPHO\

PAGE 135

G3 GH Z f 7KH ULJKW VLGH RI WKLV ODVW HTXDWLRQ PD\ QRZ EH H[SUHVVHG LQ WHUPV RI D WLPHFRUUHODWLRQ IXQFWLRQ E\ PHDQV RI WKH SURFHGXUH SUHVHQWHG LQ 6HF %ULHIO\ WKH LQWHJUDO UHSUHVHQWDWLRQ RI WKH IXQFWLRQ &2 >H (Y (Yf@ AH[S>LH ( ( fW+@ f f§ RR LV LQWURGXFHG LQWR RQH RI WKH PDWUL[ HOHPHQWV RI HT f VR WKDW ZLWK WKH DLG RI HT f ZH KDYH WKDW Yn 8 rr f§ f _Y!>H ( (Af@ &2 $ $ Y H[SLeW92 Y_H[SL+0W.f8FRFRfH[SL+0WKf_Y! f§ &2 f 6XEVWLWXWLQJ HT f LQWR DQG WKH ODWWHU LQWR HT f WKH VXP RYHU WKH ILQDO VWDWHV PD\ EH UHPRYHG IURP G3GHGXH WR WKH FRPSOHWHQHVV UHODWLRQ e _Yr!Yn_ :H WKXV ILQG WKDW Yn ) I H[3LHWAf Df f§ 22 )Wf m8a f8 Wf} Ef 0 0 Wf H[SL+ WE2rrFrfH[SL+ W0f Ff 0 U 0 0 ZKHUH WKH GRXEOH EUDFNHWV GHQRWH WKH TXDQWDO DQG VWDWLVWLFDO DYHUDJHV RYHU WKH LQLWLDO GLVWULEXWLRQV DV LQGLFDWHG EHORZ

PAGE 136

!! e : 9 _Y! 9 f :KHQHYHU PRUH WKDQ RQH WUDMHFWRU\ OHDGV WR WKH VDPH VXEVHW RI ILQDO FRQGLWLRQV IURP HT f ZH VHH WKDW WKH FRUUHODWLRQ IXQFWLRQ )Wf EHFRPHV f O9 ,Q 6HF ZH ILQG WKDW WHUPV RI WKH DERYH VXP ZLWK FRQWDLQ ODUJH SKDVHV WKDW GHSHQG RQ WKH LQLWLDO FRQGLWLRQV 6LQFH H[SHULPHQWDO PHDVXUHPHQWV FRUUHVSRQG WR LQLWLDO DYHUDJHV RYHU UDQGRP SKDVHV WKH WHUPV ZLWK OLOn DYHUDJH WR ]HUR VR HT f VLPSOLILHV WR f (TXDWLRQV f LQGLFDWH WKDW WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU LV JLYHQ E\ WKH )RXULHU WUDQVIRUP RI WKH WLPH FRUUHODWLRQ IXQFWLRQ RI WKH VHPLFODVVLFDO HYROXWLRQ RSHUDWRU IXUWKHUn PRUH WKH WLPH GHSHQGHQFH RI )Wf LV GHWHUPLQHG VROHO\ E\ WKH LQWHUQDO PRWLRQV RI WKH QRQLQWHUDFWLQJ PROHFXOHV 7KH DGYDQWDJH RI WKH SUHVHQW DSSURDFK OLHV LQ WKH IDFW WKDW WKH FRUUHODWLRQ IXQFWLRQ PD\ EH UHDGLO\ HYDOXDWHG IRU PRVW SRO\DWRPLFV ZLWKRXW QHHG IRU H[SDQVLRQV LQ LQWHUQDO VWDWHV DV LV VKRZQ LQ WKH IROORZLQJ VHFWLRQV :H PXVW HPSKDVL]H WKDW )Wf LQFOXGHV WZR W\SHV RI WLPH GHSHQGHQFH ZKRVH QDWXUHV DUH UDGLFDOO\ GLIIHUHQW )LUVWO\ 8AWf LPSOLFLWO\ FRQWDLQV WKH HYROXWLRQ RI WKH SRO\DWRPLFV GXULQJ WKH FROOLVLRQ DQG XQGHU WKH LQIOXHQFH RI WKH LQWHUPROHFXODU IRUFHV DV SUHVFULEHG E\ 8WWLf 7KH VHFRQG W\SH RI WLPH GHSHQGHQFH ZKLFK LV H[SOLFLWO\ LQGLFDWHG LQ

PAGE 137

HT Ff DULVHV IURP WKH IXQFWLRQ WKDW FRUUHVSRQGV WR WKH FRQVHUYDWLRQ RI WKH WRWDO HQHUJ\ RI WKH V\VWHP 7KLV GLIIHUHQFH PXVW EH FDUHIXOO\ FRQVLGHUHG ZKHQ RQH GHVLUHV WR LQWURGXFH DSSUR[LPDWLRQV WR WKH G\QDPLFV )RU H[DPSOH DW KLJK FROOLVLRQ HQHUJLHV RQH PD\ EH MXVWLILHG LQ DVVXPLQJ WKDW WKH LQWHUQDO GHJUHHV RI IUHHGRP DUH IUR]HQ GXULQJ EULHI FROOLVLRQ WLPHV DQG RQH PD\ DSSUR[LPDWH 8WWBAf $ DFFRUGLQJO\ ,Q FRQWUDVW LI WKH H[SOLFLW WLPH GHSHQGHQFH RI ,,Wf 0 ZHUH WR EH QHJOHFWHG WKH UHVXOWLQJ PRGHO ZRXOG H[FOXGH DOO RI WKH LQHODVWLF SURFHVVHV WKDW DUH DOORZHG E\ HQHUJ\ FRQVHUYDWLRQ F I HT Dff 7KH HYDOXDWLRQ RI )Wf UHTXLUHV WKH IROORZLQJ SURFHGXUH )LUVWO\ WKH +DPLOWRQLDQV RI WKH QRQLQWHUDFWLQJ PROHFXOHV DUH GHILQHG LQ RUGHU WR REWDLQ WKH +DPLOWRQLDQ WKDW JRYHUQV WKH FROOLVLRQDO HYROXWLRQ RI WKH V\VWHP LQ WKH LQWHUDFWLRQ UHSUHVHQWDWLRQ QH[W WKH GLIIHUHQWLDO HTXDWLRQ Df LV LQWHJUDWHG WR \LHOG 8WWAf WKHVH DUH WKH VXEMHFWV RI 6HF )URP 8D FRf WKH FRUUHODWLRQ IXQFWLRQ LV FRQn VWUXFWHG DV VKRZQ LQ 6HF 2QH WKHQ HYDOXDWHV WKH YLEUDWLRQDO DQG WKH URWDWLRQDO FRUUHODWLRQV E\ WKH PHWKRGV GHVFULEHG LQ 6HFV DQG UHVSHFWLYHO\ +RZHYHU EHIRUH LQLWLDWLQJ WKLV SURFHGXUH LW ZLOO SURYH FRQYHQLHQW WR H[SUHVV WKH LQWHUPROHFXODU SRWHQWLDO LQ D ZD\ WKDW KLJKOLJKWV WKH IRUFHV WKDW DUH UHVSRQVLEOH IRU URWDWLRQDO DQG IRU YLEUDWLRQDO H[FLWDWLRQ DV IROORZV

PAGE 138

([SDQVLRQ RI WKH ,QWHUPROHFXODU 3RWHQWLDO LQ 9LEUDWLRQDO 'LVSODFHPHQWV )RU HDFK DWRP [ RI WKH SRO\DWRPLF ; $ DQG % ZH LQWURGXFH DQ HTXLOLEULXP SRVLWLRQ G DQG D YLEUDWLRQDO GLVSODFHPHQW X UH ; ; !0 !0 IHUUHG WR WKH &0 RI LWV PROHFXOH +HQFH ZH KDYH WKDW U G X !0 !0 ZKHUH G DQG X GHQRWH WKH FROOHFWLRQ RI HTXLOLEULXP SRVLWLRQV DQG RI GLVSODFHPHQWV UHVSHFWLYHO\ 6LQFH ZH DUH LQWHUHVWHG LQ FROOLVLRQV WKDW GR QRW OHDG WR GLVVRFLDWLRQ RU WR UHDUUDQJHPHQW ZH PD\ H[SDQG 95U f LQ D 7D\ORU VHULHV LQ X DERXW G )XUWKHUPRUH IRU YLEUDWLRQDO H[FLWDWLRQV ZHOO EHORZ WKH GLVVRFLDWLRQ WKUHVKROGV _X ,,G LQ WKHVH FDVHV WHUPV [ [ RI RUGHU _X c_G fQ ZLWK Q!O PD\ EH QHJOHFWHG VR WKDW ; ; f§\ a\ UV f§\ f§\ 95U f r 9 5Uf ,I 5Uf H L [ [ O 1 9 5' 95G8f H I 5Uf a ; U [ ‘!P Pn U G Df Ef Ff +HUH 9 57f LV WKH SRWHQWLDO HYDOXDWHG DW WKH LQWHUQDO HTXLOLEULXP H FRQILJXUDWLRQV RI HDFK SRO\DWRPLF DQG LW GHSHQGV RQ WKHLU RULHQWDWLRQ LQ WKH VSDFH IL[HG 6)f UHIHUHQFH IUDPH :H LQGLFDWH WKLV RULHQWDWLRQ E\ U UA$? ZKHUH ) A UHSUHVHQWV WKH VHW RI (XOHU DQJOHV RI PROHFXOH ; $ RU % ([DPLQLQJ HTV f ZH VHH WKDW PHGLDWHV URWDWLRQDO WUDQVLWLRQV EXW QRW YLEUDWLRQDO H[FLWDWLRQ EHFDXVH LW LV LQGHSHQGHQW RI X +RZHYHU YLEUDWLRQDO HQHUJ\ WUDQVIHU LV GXH WR WKH LQWHUPROHFXODU IRUFHV I H[HUWHG RQ WKH DWRPV [

PAGE 139

:H UHPDUN WKDW HTV f DUH QRW HTXLYDOHQW WR H[SDQGLQJ WKH DQLVRWURSLF SDUW RI 95U f DERXW WKH VSKHULFDOO\ DYHUDJHG SRWHQWLDO DV KDV EHHQ SURSRVHG LQ RWKHU VHPLFODVVLFDO PRGHOV VHH 'LFNLQVRQ IRU H[DPSOHf +HUH DQG PD\ EH KLJKO\ DQLVRWURSLF GXH WR WKH PDQ\ERG\ QDWXUH RI WKH SRO\DWRPLFV $W K\SHUWKHUPDO FROOLVLRQ HQHUJLHV WKH DQLVRWURS\ RI WKH SRWHQWLDO PD\ QRW EH WUHDWHG DV D SHUWXUEDWLRQ EHFDXVH WKH LQQHU UHJLRQV RI 95U f DUH GHHSO\ SUREHG IRU VPDOO LPSDFW SDUDPHWHUV )XUWKHUPRUH WKH WUXQFDWLRQ RI WKH 7D\ORU VHULHV RI 9 WR ILUVW RUGHU LQ WKH X LV QRW HVVHQWLDO WR WKH [ SUHVHQW GHYHORSPHQW WKH SURFHGXUH GHVFULEHG EHORZ PD\ EH GLUHFWO\ H[WHQGHG WR D ILQLWH H[SDQVLRQ RI 9 WR DQ\ RUGHU LQ WKH 8 7KH (YROXWLRQ 2SHUDWRU LQ WKH ,QWHUDFWLRQ 5HSUHVHQWDWLRQ ,Q RUGHU WR REWDLQ WKH LQWHUDFWLRQ +DPLOWRQLDQ RI HTV Ff ZH PXVW ILUVW VSHFLI\ WKH +DPLOWRQLDQ +A WKDW JRYHUQV WKH LQWHUQDO G\QDPLFV RI WKH QRQLQWHUDFWLQJ SRO\DWRPLFV )RU PRVW PROHFXOHV H[n FHSW WKRVH WKDW FRQWDLQ VHYHUDO K\GURJHQ DWRPVf W\SLFDO URWDWLRQDO SHULRGV DUH PXFK ORQJHU WKDQ YLEUDWLRQDO RQHV 7KLV LQGLFDWHV WKDW URWDWLRQDO DQG YLEUDWLRQDO PRWLRQV VKRXOG EH VWXGLHG VHSDUDWHO\ IURP RQH DQRWKHU 7KHUHIRUH ZH WDNH WKH LQWHUQDO +DPLOWRQLDQ WR EH RI WKH IRUP + + + 0 9 5 +9 bf 2 $f + %f +Y +Y Df Ef Ff

PAGE 140

DQG ZH UHTXLUH WKDW WKH URWDWLRQDO + A f DQG WKH YLEUDWLRQDO 5 A ;f +A f +DPLOWRQLDQV RI HDFK SRO\DWRPLF VDWLVI\ WKH UHODWLRQ >+p +p f $ !0 $ $ 7KLV PHDQV WKDW >+ G @ DOWKRXJK >+ X @ A EHFDXVH WKH 9 $ GHSHQG RQ WKH RULHQWDWLRQ RI $ DQG RI % LQ WKH 6) IUDPH [ 6LQFH ZH DUH LQWHUHVWHG LQ WUDQVLWLRQV EHWZHHQ LQWHUQDO VWDWHV WKDW DUH ZHOO EHORZ WKH GLVVRFLDWLRQ WKUHVKROGV ZH XVH WKH VWDQGDUG PRGHO RI KDUPRQLF YLEUDWLRQDO PRWLRQV :LOVRQ &KDS f &DUU\LQJ RXW WKH QRUPDOPRGH DQDO\VLV RXWOLQHG LQ HTV f [f IRU HDFK PROHFXOH ; ZH REWDLQ WKH YLEUDWLRQDO IUHTXHQFHV DQG WKH YHFWRU FRHIILFLHQWV X f RI WKH WUDQVIRUPDWLRQ EHWZHHQ QRUPDO [M ;f 4 f DQG &DUWHVLDQ GLVSODFHPHQWV ,Q RUGHU WR DEEUHYLDWH WKH QRWDWLRQ ZH FROOHFW WKHVH TXDQWLWLHV DV IROORZV ^A ` &AA` [M [M [M Pf DQG ^4` ^4A 4A` VR WKDW ZH PD\ ZULWH 8 e 4 Y / [M M ; f +HUH WKH FI Uf FRQWDLQ DOO WKH GHSHQGHQFH RI WKH X RQ WKH RULHQWDWLRQ [M [ RI WKH SRO\DWRPLFV 7KH YLEUDWLRQDO GHJUHHV RI IUHHGRP DUH TXDQWL]HG E\ LQWURGXFLQJ $ r D FUHDWLRQ Df DQG DQQLKLODWLRQ Df RSHUDWRUV WKDW DUH GHILQHG E\ WKH UHODWLRQV 0HVVLDK 9RO &KDS f 4 >WWZf@nD DWf 9 3 L9KR f D DWf Df Ef

PAGE 141

ZKHUH 3 LV WKH FDQRQLFDO PRPHQWXP FRQMXJDWH WR 4B )URP WKH $ FRPPXWDWRU >43@ L. RQH ILQGV WKDW D f DQG IRU WKH YLEUDWLRQDO +DPLOWRQLDQ + 9 .P DODOf f Y M 8VLQJ HTV f +HLVHQEHUJnV HTXDWLRQ RI PRWLRQ IRU WKH D Wf DUH LQWHJUDWHG WR JLYH D Wf D H[S LRM Wf f 5HSODFLQJ HT Df LQWR HT f DQG WKH ODWWHU LQWR HTV f ZH REWDLQ WKH IROORZLQJ H[SUHVVLRQ IRU WKH LQWHUPROHFXODU SRWHQWLDO 95U0f 9 "f 9&tUfDDWf Df 95Uf >.Pf@n6 O  5Uf f & Uf Ef [ [ [M +HUH 9 LV WKH FRPSRQHQW RI WKH LQWHUPROHFXODU SRWHQWLDO WKDW DFWV RQ WKH QRUPDO PRGH M DQG IRUFHV LW WR XQGHUJR D YLEUDWLRQDO WUDQVLWLRQ 6XEVWLWXWLQJ HT f LQWR Ff DQG XVLQJ HT f ZH ILQG WKDW WKH LQWHUDFWLRQ +DPLOWRQLDQ LV JLYHQ E\ +n WWf $.Wf 9 5W9 / M fUWfWL9 f

PAGE 142

,Q HT f ZH KDYH H[SOLFLWO\ LQGLFDWHG WKH RULJLQ RI WKH WLPH GHSHQGHQFH RI WKH TXDQWLWLHV GXULQJ WKH FROOLVLRQ KHUH WKH VXEVFULSWV & 5 DQG 9 UHSUHVHQW FODVVLFDO UHODWLYH TXDQWDO URWDWLRQDO DQG YLn EUDWLRQDO PRWLRQV UHVSHFWLYHO\ +RZHYHU URWDWLRQDO PRWLRQV RI ODUJH SRO\DWRPLFV DUH PXFK VORZHU WKDQ YLEUDWLRQDO RQHV IXUWKHUPRUH DW K\SHUWKHUPDO UHODWLYH HQHUJLHV FROOLVLRQ WLPHV DUH PXFK VKRUWHU WKDQ W\SLFDO URWDWLRQDO SHULRGV ,Q WKHVH FDVHV WKH WLPH GHSHQGHQFH RI )WWBAf PD\ EH QHJOHFWHG LQ FRPSDULVRQ ZLWK WKRVH RI 5Wf DQG ƒ DA WWAf KHQFH +n WWf $.Wf 9 5Wf"f L H f ZKHUH U GHQRWHV WKH LQLWLDO RULHQWDWLRQV RI $ DQG RI % LQ WKH 6) IUDPH 7KLV PRGHO FRUUHVSRQGV WR DVVXPLQJ WKDW YLEUDWLRQDO WUDQVLWLRQV RFFXU DW IL[HG RULHQWDWLRQV RI WKH SRO\DWRPLFV ZLWK WKH URWDWLRQDO PRWLRQV IUR]HQ WKURXJKRXW WKH GXUDWLRQ RI WKH FROOLVLRQ $ VLPLODU DSSUR[LPDWLRQ PD\ QRW EH GRQH RQ WKH YLEUDWLRQDO GHJUHHV RI IUHHGRP EHFDXVH W\SLFDO YLEUDWLRQDO SHULRGV DUH XVXDOO\ VKRUWHU WKDQ FROOLVLRQ 9 WLPHV :H VKRXOG UHPDUN WKDW WKH UHSODFHPHQW ) WWAf U LV QRW HVVHQWLDO WR RXU GHYHORSPHQW EXW LW FRQVLGHUDEO\ VLPSOLILHV WKH HYDOXDWLRQ RI WKH HYROXWLRQ RSHUDWRU 8WWAf DV ZH VKDOO VHH EHORZ ,Q JHQHUDO WKH VROXWLRQ RI HTV DEf FDQ QRW EH REWDLQHG LQ D FORVHG IRUP LQVWHDG E\ PHDQV RI VWUDLJKWIRUZDUG EXW UDWKHU OHQJWK\ PDQLSXODWLRQV RQH REWDLQV WKH IROORZLQJ H[SDQVLRQ 0DJQXV f

PAGE 143

Wn 8WWAf H[S^L I GWn +Wn W f@L I GWn I GW>+n Wn WAf +n WWAf@ W? f W L W W L L +HUH WKH QWK WHUP RI WKH H[SRQHQW FRQWDLQV Q WLPHLQWHJUDOV RI QWXSOH FRPPXWDWRUV RI +n ZLWK LWVHOI HYDOXDWHG DW GLIIHUHQW WLPHV 6LQFH $ $ UW A $ $ $ >U + RQH KDV WKDW >>S Wf S W ff@S Wf@@ VR WKH H[SRQHQW LQ HT f FRQWDLQV D ODUJH QXPEHU RI WHUPV +RZHYHU XVLQJ HTV f IRU WKH DSSUR[LPDWH +DPLOWRQLDQ RI HT f ZH ILQG WKDW > +n WWM +n Wn WM@ L O 9 5Wf 7f9A IWnf 7fVLQPB WWnf f $ ,Q WKLV FDVH WKH QWXSOH FRPPXWDWRUV RI +n ZLWK LWVHOI DUH LGHQWLFDOO\ $ ]HUR ZKHQHYHU Q! 7KHUHIRUH IRU KHDY\ SRO\DWRPLFV 8rrrrf LV H[DFWO\ JLYHQ E\ $ A A $ $ $ A 8 f f§rrf H[SL>$A$ \ % $D $D@` Df H / M MM f &2 $N GW^>"Wf@ "`0WIf Ef f§ RR A &2 $ GW 9 Wf Uf. Ff f§ RR $ GW 95WfIfH[S>LZW f@ Gf f§FR A &2 % GW GWn 9 5Wf UfY 5Wnf Uf VLQ >P WWnf@ Hf 22 f§ &2 ZKHUH FRUUHVSRQGV WR WKH LQLWLDO YLEUDWLRQDO SKDVH RI PRGH M ,Q M HTV f $ DQG $ UHSUHVHQW WKH DFWLRQ WKDW WKH LQWHUPROHFXODU H M IRUFHV H[HUW RQ WKH URWDWLRQDO GHJUHHV RI IUHHGRP DQG RQ WKH QRUPDO PRGHV UHVSHFWLYHO\ WKURXJKRXW WKH FRXUVH RI WKH FROOLVLRQ :H UH $ PDUN WKDW WKH DERYH H[SUHVVLRQ RI 8FRBPf FRQWDLQV WKH SRWHQWLDO WR

PAGE 144

LQILQLWH RUGHU $W K\SHUWKHUPDO FROOLVLRQ HQHUJLHV D SHUWXUEDWLRQ $ H[SDQVLRQ RI 8 LQ SRZHUV RI 9 LV QRW DSSOLFDEOH EHFDXVH WKH KLJKO\ UHSXOVLYH FRUHV DUH GHHSO\ SUREHG IRU VPDOO LPSDFW SDUDPHWHUV %HIRUH SURFHHGLQJ WR WKH HYDOXDWLRQ RI WKH FRUUHODWLRQ IXQFWLRQ ZH VKRXOG FRPPHQW RQ WKH SULPLWLYH VHPLFODVVLFDO DSSUR[LPDWLRQ GLVn FXVVHG DW WKH HQG RI 6HF 8VLQJ HTV f RQH FDQ UHDGLO\ REWDLQ WKH VWDWHWRVWDWH WUDQVLWLRQ DPSOLWXGHV Yn _Âœrrrrf Y! ([DPLQDWLRQ RI HTV f VKRZV WKDW WKH DPSOLWXGHV KDYH WKH SKDVH $ WKDW FRUUHVSRQGV WR WKH QHW DFWLRQ DORQJ WKH FODVVLFDO = f WUDMHFWRU\ :KHQHYHU GLIIHUHQW WUDMHFWRULHV 5 \ Wf O OHDG WR WKH VDPH ILQDO FRQGLWLRQV PHDVXUHG LQ WKH H[SHULPHQWV WKH DSSOLFDELOLW\ RI WKH SULPLWLYH DSSUR[LPDWLRQ RI HT f PD\ ef EH MXGJHG E\ FDOFXODWLQJ WKH $ IRU HDFK DQG FRPSDULQJ WKHLU PDJQLWXGHV $OWHUQDWLYHO\ VLQFH Yn_Xrr ff_Y! PD\ EH FRQVLGHUHG WR EH D IXQFWLRQDO RI DQ DUELWUDU\ WUDMHFWRU\ 5Wf RQH FRXOG XVH HTV f DV D VWDUWLQJ SRLQW RI WKH GHYHORSPHQW RI XQLIRUP VHPLFODVVLFDO DSSUR[LPDWLRQVIRU H[DPSOHV VHH %HUU\ DQG 0RXQW DQG 3HFKXNDV 9LEUDWLRQDO DQG 5RWDWLRQDO &RUUHODWLRQ 6XEVWLWXWLQJ HTV f LQWR HT Ff DQG WKH ODWWHU LQWR HT Ef ZH REWDLQ WKH IROORZLQJ H[SUHVVLRQ IRU WKH FRUUHODWLRQ IXQFWLRQ )Wf H[S>L$ f@) WfH[S>L$ Wf @!! H 9 H N N Df

PAGE 145

) Wf mH[S>L %f $ f D f $WfDnf@ [ 9 M Ef ZKHUH ZH KDYH XVHG WKH IDFW WKDW >$U +:@ EHFDXVH $ GHSHQGV .0 RQO\ RQ FODVVLFDO G\QDPLFDO YDULDEOHV +HUH WKH RSHUDWRUV HYROYH LQ WLPH LQ DFFRUGDQFH ZLWK WKH +DPLOWRQLDQV RI WKH QRQLQWHUDFWLQJ PROHFXOHV DV WKH\ DUH SUHSDUHG LQ WKHLU UHVSHFWLYH VRXUFHV ,Q HT Ef ZH KDYH H[SOLFLWO\ LQGLFDWHG WKH QDWXUH RI WKH WLPH GHSHQGHQFH ZLWK WKH VXEVFULSWV 5 DQG 9 UHSUHVHQWLQJ WKH URWDWLRQDO DQG YLEUDWLRQDO PRWLRQV UHVSHFWLYHO\ 7KH YLEUDWLRQDO FRUUHODWLRQ )A Wf FDQ QRZ EH FDOFXODWHG LQ WKH ERG\ IL[HG %)f IUDPHV RI $ DQG RI % LQ ZKLFK FDVH LW GHSHQGV RQ WKH VHW RI (XOHU DQJOHV 7f WKDW GHVFULEH WKH RULHQWDWLRQV RI WKHVH IUDPHV ZLWK UHVSHFW WR WKH 6) RQH +RZHYHU FRQVLGHUDEOH VLPSOLn ILFDWLRQV RFFXU ZKHQ WKH URWDWLRQDO PRWLRQV RI $ DQG RI % DUH PXFK VORZHU WKDQ WKHLU UHVSHFWLYH YLEUDWLRQDO RQHV ,Q WKHVH FDVHV ZH QHHG RQO\ FRQVLGHU WKH YLEUDWLRQDO FRUUHODWLRQ IRU IL[HG RULHQWDWLRQV RI WKH PROHFXOHV LQ VSDFH +HQFH ZLWKLQ )A Wf WKH VORZ HYROXWLRQ RI %Wf DQG RI $Wf ZKLFK DUH GXH WR WKDW RI )Wf PD\ EH 5 5 5 QHJOHFWHG LQ FRPSDULVRQ ZLWK WKH HYROXWLRQ RI WKH UDSLGO\ RVFLOODWLQJ $ $ $ $ $ DWf :H FDQ WKHQ DSSUR[LPDWH % Wf ‘f %f DQG $Wf r $4f 9 5 5 VR WKDW WKH YLEUDWLRQDO FRUUHODWLRQ VLPSOLILHV DV IROORZV ; H[S >L eƒfDWf ƒn fDW Wf @ !! M9 M 9 9 [ f

PAGE 146

7KH 9LEUDWLRQDO &RUUHODWLRQ 6LQFH WKH QRUPDO PRGHV DUH LQGHSHQGHQW )AWf FDQ EH IDFWRUHG LQWR WKH SURGXFW RI FRUUHODWLRQ IXQFWLRQV RI HDFK PRGH VR WKDW )YWf 7)AMfWf M Df D ‘ \ ; < )\ Wf H }Y Ef ; L>$fDf ƒ7fD"f@ OFf < L>$fDWf $WfD"Wf@ ,Gf +HUH ZH KDYH LQWURGXFHG WKH RSHUDWRUV ; DQG < LQ RUGHU WR DEEUHYLDWH WKH QRWDWLRQ )RU HDFK PRGH WKH YLEUDWLRQDO FRUUHODWLRQ LV HYDOXDWHG E\ PHDQV RI WKH IROORZLQJ SURFHGXUH 0LFKD Ef )URP HTV f RQH UHDGLO\ ILQGV WKDW >;<@ LV D FRPSOH[ IXQFWLRQ RI WLPH WKDW FRQWDLQV QHLWKHU D QRU D +HQFH RQH FDQ XVH WKH UHODWLRQ Hr H< H[S; < >;<@f f ZKLFK LV YDOLG ZKHQHYHU >;< FRPPXWHV ZLWK ; DQG ZLWK < 1H[W RQH DSSOLHV WKH %ORFK WKHRUP 0HVVLDK 9RO &KDS f H=!!\ H[S=!!A f 9 $ A I IRU = D OLQHDU FRPELQDWLRQ RI D DQG D WR REWDLQ H;H<}Y H[Sm; ;<}Y! f

PAGE 147

)LQDOO\ WKH DYHUDJHV RI ; DQG ;< DUH HYDOXDWHG IRU WKH H[SHULPHQWDO %ROW]PDQQ GLVWULEXWLRQ E\ PHDQV RI HOHPHQWDU\ WHFKQLTXHV 0HVVLDK LELGf :H WKXV ILQG WKDW )77Mf Wf H[SIf$ f^FRWKD >H[SFW LPWf \ $ n M M M M M H[S ^DLPWf@VLQKDf` f f ;f ;f ZKHUH D 9Z NU7 f NQ LV %ROW]PDQQnV FRQVWDQW DQG % 9 % ;f 7 Y n LV WKH YLEUDWLRQDO WHPSHUDWXUH RI WKH GLVWULEXWLRQ RI PROHFXOH ; $ % (TXDWLRQ f PD\ EH FDVW LQWR D PRUH FRQYHQLHQW IRUP ZLWK WKH DLG RI WKH JHQHUDWRU RI PRGLILHG %HVVHO IXQFWLRQV, f RI WKH ILUVW NLQG $EUDPRZLW] DQG 6WHJXQ &KDS f H[S>[\ O\f@ ? \ ,Q[f f Q RR ZLWK \ H[SFW LP Wf 6XEVWLWXWLRQ RI HT f LQWR f DQG RI WKH ODWWHU LQWR HT Df \LHOGV WKH IROORZLQJ H[SUHVVLRQ IRU WKH YLEUDWLRQDO FRUUHODWLRQ I Wf W SAUfH[SWrZYWf r Q Q 3 Uf --O ;fH[SQD Q M ; $nf$fVLQKDf ;FRVKDf Df Ef Ff ZKHUH ZH KDYH LQWURGXFHG WKH DEEUHYLDWLRQV Q ^Q` DQG P ^Z` 9 M +HUH ZH H[SOLFLWO\ LQGLFDWH WKDW S LV D IXQFWLRQ RI WKH LQLWLDO Q RULHQWDWLRQV RI WKH SRO\DWRPLFV VLQFH $ GHSHQGV RQ 7 F I HT Gf

PAGE 148

,Q DQDORJ\ ZLWK HT Df WKH )RXULHU WUDQVIRUP RI ) Wf LV WKH GLIIHUHQWLDO SUREDELOLW\ RI YLEUDWLRQDO HQHUJ\ WUDQVIHU IRU IL[HG RULHQWDWLRQV RI $ DQG RI % G3YUfGH e SAUfH WIQfXAf f Q Q 7KLV FRQVLVWV RI D JURXS RI IXQFWLRQ SHDNV ORFDWHG DW WKH YLEUDWLRQDO \ \ HQHUJ\ WUDQVIHUUHG 9LQLRA 7KHUHIRUH Q FRUUHVSRQGV WR WKH FKDQJH LQ TXDQWXP QXPEHU LQLWLDO PLQXV ILQDOf RI QRUPDO PRGH M IXUWKHUPRUH WKH SUREDELOLW\ WKDW WKH FROOLVLRQ ZLOO FDXVH WKH YL \ EUDWLRQDO WUDQVLWLRQ Q LV JLYHQ E\ S Uf ,Q SUDFWLFH WKHVH SHDNV Q DUH EURDGHQHG E\ WKH URWDWLRQDO FRUUHODWLRQ DV ZH SURFHHG WR VKRZ 7KH 5RWDWLRQDO &RUUHODWLRQ 7KH URWDWLRQDO FRUUHODWLRQ RI KHDY\ SRO\DWRPLFV PD\ EH REWDLQHG E\ PHDQV RI WKH VKRUWWLPH H[SDQVLRQ WHFKQLTXH SUHVHQWHG LQ &KDS ,Q SDUWLFXODU VXEVWLWXWLQJ HT Df LQWR Df DQG IROORZLQJ WKH SURFHGXUH GHVFULEHG LQ 6HF ZH ILQG WKDW )Wf e H[SLQPYWfH[S>L$Hf @SBAUf [ r‘ Q Q [ H[SLe W.fH[S>L$ f@} f . ZKHUH e LV WKH /LRXYLOOH VXSHURSHUDWRU IRU URWDWLRQ 7KLV LV GHn ILQHG E\ LWV DFWLRQ RQ DQ\ RSHUDWRU < DV IROORZV Q Y r Q A 5 < >+5f` <@ f KHUH + LV WKH VXP RI WKH URWDWLRQDO +DPLOWRQLDQV RI WKH SRO\ 5 DWRPLFV

PAGE 149

:KHQHYHU WKH URWDWLRQDO PRWLRQV RI $ DQG RI % DUH PXFK VORZHU WKDQ WKHLU UHVSHFWLYH YLEUDWLRQDO RQHV ZH SHUIRUP D VKRUWWLPH DSSUR[LPDWLRQ WR WKH URWDWLRQDO FRUUHODWLRQ RI HDFK YLEUDWLRQDO WUDQVLWLRQ $V GLVFXVVHG LQ 6HF WKLV FRUUHVSRQGV WR H[n SDQGLQJ WKH VHFRQG H[SRQHQWLDO RQ WKH ULJKW VLGH RI HT f LQ WHUPV RI WKH FXPXODQW URWDWLRQDO DYHUDJHV fe`! DQG UHWDLQLQJ RQO\ 5 WKH ILUVW WZR FXPXODQWV VR WKDW )Wf a e SBAUf!!5H[S>L/5!WI QXfY!W e5!WWIf @ f r‘ Q Q )URP HTV DEf DQGf ZH ILQG WKDW WKHVH FXPXODQWV DUH / mH[SL$ fS "f >+ H[SL$ f@} mS "f} Df . Q Q /5! H[3L?f3A7ff>+5 !>KU H[SL$Hf@@}5mSA'}5 /U! Q Q Ef ZKHUH $ LV HYDOXDWHG DW W 7KH FRPPXWDWRUV LQGLFDWHG LQ H HTV f DUH REWDLQHG DV IROORZV ,Q RUGHU WR VLPSOLI\ WKH QRWDWLRQ ZH ILUVW FRQVLGHU WKH FRP PXWDWRU >+5 \ H[SL$ f@ IRU RQH RI WKH SRO\DWRPLFV ; $ RU % DQG ZH RPLW WKH LQGH[ ; 7KLV GRHV QRW FDXVH DQ\ ORVV LQ JHQHUDOLW\ EHn FDXVH D FRPPXWDWRU LV WUDQVLWLYH ZLWK UHVSHFW WR WKH DGGLWLRQ RI RSHUDWRUV )XUWKHUPRUH ZH WDNH WKH SRO\DWRPLFV WR EH V\PPHWULF WRSV ZKLFK LQFOXGHV OLQHDU DQG VSKHULFDO PROHFXOHV DV SDUWLFXODU FDVHVf DOWKRXJK WKH PHWKRG SUHVHQWHG EHORZ FDQ EH GLUHFWO\ H[WHQGHG WR

PAGE 150

QRQV\PHWULF PROHFXOHV +HQFH LQ WKH FRRUGLQDWH UHSUHVHQWDWLRQ WKH URWDWLRQDO +DPLOWRQLDQ RI HLWKHU SRO\DWRPLF PD\ EH ZULWWHQ DV (GPRQGV &KDS f f5 ‘ 99 OO 9 H K n Df / H[SsLDfs LFRW%Df Ef / LD ] Ff L\ Gf ( ., Hf ( !L,O Lf,L,f! If ZKHUH A DQG DUH WKH PRPHQWV RI LQHUWLD DERXW WKH SULQFLSDO D[HV RI WKH PROHFXOH ZLWK LQGLFDWLQJ WKH D[LV RI V\PPHWU\ ,Q HTV f FW DQG \ DUH WKH (XOHU DQJOHV WKDW GHVFULEH WKH RULHQWDWLRQ RI WKH PROHFXOH ZLWK UHVSHFW WR WKH 6) UHIHUHQFH IUDPH D DQG LQGLFDWH WKH D]LPXWKDO DQG SRODU DQJOHV UHVSHFWLYHO\ RI WKH D[LV RI V\PPHWU\ ZKLOH \ FRUUHVSRQGV WR D URWDWLRQ DERXW WKLV D[LV $ Y %HIRUH SURFHHGLQJ WR WKH HYDOXDWLRQ RI >+ H[SLL$Af@ LW ZLOO SURYH FRQYHQLHQW WR FRQVLGHU WKH VLPSOHU FRPPXWDWRU >$ >+A$ @@ %\ PHDQV RI WKH RSHUDWRU LGHQWLWLHV >$%&@ $>%&@ >$&@% Df >$%&@ >$%@& %>$&@ Ef

PAGE 151

ZH ILQG WKDW 2 U[ U? >$ >+B $ @ @ (>$ f FRVHF $ Df @ H 5 H H H ( $ \f H f :H QRZ LQYRNH WKH JHQHUDO H[SUHVVLRQ 0HVVLDK &KDS f &2 >+ H[S L$ f@ H[S $ f ? LQ>$ fQ>+ $ @ @ Qf N H N H Q f ZKLFK FDQ EH REWDLQHG E\ H[SDQGLQJ WKH OHIWPRVW H[SRQHQWLDO LQ D SRZHU VHULHV RI LWV H[SRQHQW IROORZHG E\ FRPPXWLQJ + WKURXJK HDFK WHUP (TXDWLRQV Ff DQG f VKRZ WKDW LQ WKH FRn RUGLQDWH UHSUHVHQWDWLRQ $ DQG >$ >+B $ @@ DUH IXQFWLRQV RI H H 5 H D DQG \ EXW WKH\ DUH QRW GLIIHUHQWLDO RSHUDWRUV VR WKDW $A FRPPXWHV ZLWK >$ >+ $ @@ 7KHUHIRUH WHUPV RQ WKH ULJKW VLGH H 5 H RI HT f ZKLFK KDYH Q!O DUH LGHQWLFDOO\ ]HUR DQG >+A H[SL$Af@ LV H[DFWO\ JLYHQ E\ >+5 H[SLƒHf@ H[SLƒHf^L>+5 ƒH@>$H>+5 $J@@` f )XUWKHUPRUH HT Ff LQGLFDWHV WKDW $ LV RI WKH RUGHU Ne H ZKHUH N LV WKH PRPHQWXP WUDQVIHUUHG LQ WKH FROOLVLRQ DQG e LV WKH UDQJH RI WKH LQWHUPROHFXODU SRWHQWLDO WKXV >+ nV WALH $$$ RUGHU RI Ne ZKLOH >$ >+ $ @@ LV RI RUGHU Nef ,Q K\SHU H 5H WKHUPDO FROOLVLRQV RI ODUJH PROHFXOHV Ne!! VR ZH PD\ UHWDLQ RQO\ WKH KLJKHVW SRZHUV RI Ne DQG ZULWH >+5 H[SLƒHf@ H[SL$Jf>$J>+5 $J@@ f

PAGE 152

%\ UHSHDWHG DSSOLFDWLRQV RI HT f ZH DOVR ILQG WKDW WR OHDGLQJ RUGHU LQ Ne +f H[S $ f@ a H[S L$ f>$ >+ $ @@f H H H 5 H Q f *HQHUDOL]LQJ HTV f WR WKH WRWDO URWDWLRQDO +DPLOWRQLDQ + +A +A DQG UHSODFLQJ WKH JHQHUDOL]HG H[ 5 5 5 SUHVVLRQV LQWR HTV f ZH REWDLQ WKH TXDQWLWLHV UHTXLUHG IRU WKH FRUUHODWLRQ IXQFWLRQ RI V\PPHWULF WRS SRO\DWRPLFV WKHVH DUH SAIf}5 Df Q Q /U! mSAIf*If}53A Ef Q Q 5! 3A"f>*If@}53A 5! Ff Q Q *Uf O (;f>$ %;ff FRVHF;n! $ FW;ff@ X H H ; $% (;f$ D;ff Gf ] H ([DPLQLQJ HTV f ZH ILQG WKDW WKH HYDOXDWLRQ RI WKH DYHUDJHV RYHU LQLWLDO URWDWLRQDO GLVWULEXWLRQV LV TXLWH VWUDLJKWIRUZDUG IRU WKH IROORZLQJ UHDVRQ 6LQFH DOO WKH RSHUDWRUV RQ WKH ULJKW VLGHV RI WKHVH HTXDWLRQV DUH IXQFWLRQV RQO\ RI 7 DQG QRW RI ) LQ WKH FRRUGLQDWH UHSUHVHQWDWLRQ WKHLU PDWUL[ HOHPHQWV UHGXFH WR VLPSOH LQn WHJUDOV RYHU WKH VL[ (XOHU DQJOHV WKH LQWHJUDOV FDQ EH UHDGLO\ REn WDLQHG E\ QXPHULFDO TXDGUDWXUH

PAGE 153

'LVFXVVLRQ 6XEVWLWXWLQJ HT f LQWR Df DQG HYDOXDWLQJ WKH )RXULHU WUDQVIRUP RI )Wf \LHOGV WKH IROORZLQJ H[SUHVVLRQ IRU WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU W7f O 3BA H[S^>/5! Hf Q Q /A!Kf@`/A!Kf f 7KLV FRQVLVWV RI D JURXS RI QRUPDOL]HG *DXVVLDQ SHDNV FHQWHUHG DW WKH HQHUJ\ WUDQVIHUUHG YLEUDWLRQDO !LQDf\ SOXV DYHUDJH URWDWLRQDO e !f WR WKH YLEUDWLRQDO WUDQVLWLRQ LQGLFDWHG E\ Q HDFK SHDN LV 5 URWDWLRQDOO\ EURDGHQHG E\ DQ DPRXQW /! (TV EFf VKRZ WKDW WKH DYHUDJH URWDWLRQDO HQHUJ\ WUDQVIHUV DQG ZLGWKV GHSHQG RQ Q IXUWKHUPRUH /! DQG / DUH UHODWHG WR WKH LQWHJUDO RI WKH LQWHU 5 5 PROHFXODU SRWHQWLDO $Af DORQJ WKH FODVVLFDO WUDMHFWRU\ ZLWK WKH SRWHQWLDO HYDOXDWHG DW WKH LQWHUQDO HTXLOLEULXP FRQILJXUDWLRQV RI WKH SRO\DWRPLFV ([DPLQLQJ HT f ZH FRQFOXGH WKDW WKH SUREDELOLW\ WKDW WKH FROOLVLRQ ZLOO FDXVH WKH YLEUDWLRQDO WUDQVLWLRQ Q DYHUDJHG RYHU LQLWLDO GLVWULEXWLRQVf LV JLYHQ E\ 3AB DV GHILQHG Q LQ HTV Df DQG EFf 7KH ODWWHU HTXDWLRQV VKRZ WKDW WKH SUREDELOLW\ RI YLEUDWLRQDO WUDQVLWLRQ LV D IXQFWLRQ RI WKH LQWHJUDOV $ GHILQHG LQ HT Gf 7KHVH LQWHJUDOV FRUUHVSRQG WR WKH DFWLRQ WKDW WKH LQWHUPROHFXODU IRUFHV H[HUW RQ WKH QRUPDO PRGHV WKURXJKRXW WKH FRXUVH RI WKH FROOLVLRQ

PAGE 154

1H[W ZH EULHIO\ FRQVLGHU DQ DGGLWLRQDO DGYDQWDJH RI RXU GHYHORSPHQW $V GLVFXVVHG LQ 6HF LQ SULQFLSOH WKH FODVVLFDO UHODWLYH WUDMHFWRU\ 5Wf PXVW EH REWDLQHG IURP WKH VROXWLRQ RI +DPLOWRQfV HTXDWLRQV RI PRWLRQ IRU WKH IXOO PDQ\ERG\ SUREOHP +RZHYHU WKH GLIIHUHQWLDO SUREDELOLW\ RI HQHUJ\ WUDQVIHU JLYHQ LQ HT f LV D IXQFWLRQDO RI 5Wf VR WKDW RQH FDQ HDVLO\ LQWURn GXFH DSSUR[LPDWH PRGHOV RI WKH UHODWLYH G\QDPLFV %\ FRPSDULQJ WKH YDOXHV RI G3GH REWDLQHG IURP WKHVH PRGHOV ZLWK WKRVH WKDW FRUUHVSRQG WR WKH H[DFW WUDMHFWRU\ RQH FDQ JDLQ LQVLJKW LQWR WKH PHFKDQLVPV WKDW JRYHUQ HQHUJ\ WUDQVIHU SURFHVVHV LQ PROHFXODU FROOLVLRQV

PAGE 155

%,%/,2*5$3+< $EUDPRZLW] 0 DQG $ 6WHJXQ f +DQGERRN RI 0DWKHPDWLFDO )XQFWLRQV 'RYHU 1HZ
PAGE 156

GHPHQWL ( f 7DEOHV RI $WRPD :DYH)XQFWLRQV ,%0 13 'DYLHV 6 / ( %RJJV DQG 6 & 0HKRWUD f &KHP 3K\V 'LFNLQVRQ $ 6 f &RP 3K\V &RPPXQ 'RUQ : 6 DQG ' 0F&UDFNHQ f 1XPHULFDO 0HWKRGV ZLWK )2575$1 ,9 &DVH 6WXGLHV :LOH\ 1HZ
PAGE 157

.KDUH 9 f &KHP 3K\V B .KDUH 9 f &KHP 3K\V B .LP < 6 DQG 5 *RUGRQ Df &KHP 3K\V M .LP < 6 DQG 5 *RUGRQ Ef &KHP 3K\V B .XER 5 f 3K\V 6RF -DSDQB .XUXRJOX = & DQG $ 0LFKD f &KHP 3K\V B /HVWHU : $ -U f LQ '\QDPLFV RI 0ROHFXODU &ROOLVLRQV 3DUW $ : + 0LOOHU (G 3OHQXP 1HZ
PAGE 158

0LFKD $ Ef 6FDWWHULQJ RI LRQV E\ 3RO\DWRPLFV DQG 6ROLG 6XUn IDFHV 0XOWLFHQWHU 6KRUW5DQJH ,QWHUDFWLRQV WR DSSHDU LQ 3RWHQWLDO (QHUJ\ 6XUIDFHV DQG '\QDPLFV &DOFXODWLRQV 7UXKODU (G 3OHQXP 1HZ
PAGE 159

6WDHPPOHU 9 f &KHP 3K\V @B 7KRPDV / : 3 .UDHPHU DQG $ ) 'LHUFNVHQ f &KHP 3K\V 7KRPSVRQ % 9 f 3K\V 5HY 7RHQQLHV 3 A f $QQ 5HY 3K\V &KHP BB 7XOO\ & f LQ '\QDPLFV RI 0ROHFXODU &ROOLVLRQV 3DUW % : + 0LOOHU (G 3OHQXP 1HZ
PAGE 160

%,2*5$3+,&$/ 6.(7&+ (GXDUGR )HUPLQ 9LODOORQJD ZDV ERUQ RQ 2FWREHU LQ %XHQRV $LUHV $UJHQWLQD +H UHFHLYHG KLV VHFRQGDU\ HGXFDWLRQ DW WKH &ROHJLR 1DFLRQDO GH %XHQRV $LUHV ,Q 'HFHPEHU KH FDPH WR WKH 8QLWHG 6WDWHV WR DWWHQG WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH ZKHUH KH REWDLQHG WKH %DFKHORU RI 6FLHQFH GHJUHH VXPPD FXP ODXGH LQ SK\VLFV LQ -XQH )URP 6HSWHPEHU XQWLO WKH SUHVHQW KH KDV EHHQ D JUDGXDWH VWXGHQW LQ WKH 'HSDUWPHQW RI 3K\VLFV DQG LQ WKH 4XDQWXP 7KHRU\ 3URMHFW RI WKH 8QLYHUVLW\ RI )ORULGD ,Q 6HSWHPEHU KH DWWHQGHG WKH ,QWHUQDWLRQDO 6XPPHU ,QVWLWXWH LQ 4XDQWXP &KHPLVWU\ DQG 6ROLG 6WDWH 3K\VLFV KHOG DW WKH 8QLYHUVLW\ RI 8SSVDOD 6ZHGHQ ,Q 6HSWHPEHU KH SDUWLFLSDWHG LQ D UHVHDUFK FROODERUDWLRQ WULS WR WKH 0D[ 3ODQFN ,QVWLWX IU 6WURPXQJVIRUVFKXQJ *RWWLQJHQ )HG 5HS *HUPDQ\ ,Q 6HSWHPEHU KH DWWHQGHG WKH 1$72 $GYDQFHG 6WXG\ ,QVWLWXWH RQ $WRPLF DQG 0ROHFXODU &ROOLVLRQ 7KHRU\ KHOG DW &RUWRQD ,WDO\

PAGE 161

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG $ 0WFKL &KDLUPDQ 3URIHVVRU RI &KHPLVWU\ DQG 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KRPDV / %DLOH\ 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &KDUOHVn 3URIHVVRU RI 3K\VFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -DMQHV : 'XIW\ 3URIHVVRU RI 3K\VLL FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FOHI n. LW] -M$ (DUOH ( ,SGVFKO 3URIHVVRU RI &KHPLVWU\

PAGE 162

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI 3K\VLFV LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -XQH 'HDQ IRU *UDGXDWH 6WXGLHV DQG 5HVHDUFK

PAGE 163

81,9(56,7< 2) )/25,'$

PAGE 164

81,9(56,7< 2) )/25,'$