Citation
Biochemical genetics of hydrogen metabolism in Escherichia coli

Material Information

Title:
Biochemical genetics of hydrogen metabolism in Escherichia coli purification and characterization of hydrogenase
Creator:
Patel, Pramathesh S., 1957-
Publication Date:
Language:
English
Physical Description:
vii, 130 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Electrons ( jstor )
Electrophoresis ( jstor )
Enzymes ( jstor )
Gels ( jstor )
Hydrogen ( jstor )
Molecular weight ( jstor )
Nitrates ( jstor )
Oxygen ( jstor )
Purification ( jstor )
Viologens ( jstor )
Escherichia coli ( lcsh )
Hydrogenase ( lcsh )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1985.
Bibliography:
Includes bibliographical references (leaves 118-129).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Pramathesh S. Patel.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
000555111 ( ALEPH )
ACX9988 ( NOTIS )
13571333 ( OCLC )

Downloads

This item has the following downloads:


Full Text














BIOCHEMICAL GENETICS OF HYDROGEN METABOLISM IN
ESCHERICHIA COLI: PURIFICATION AND CHARACTERIZATION OF
HYDROGENASE















By



Pramathesh S. Patel


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF
THE UNIVERSITY OF FLORIDA
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
THE DEGREE OF DOCTOR OF PHILOSOPHY




UNIVERSITY OF FLORIDA


1985





















ACKNOWLEDGEMENTS


The author wishes to acknowledge, with, gratitude,

the help and guidance of his major professor, Dr. K. T.

Shanmugam. The author would also like to thank the many

fellow students he had the opportunity to interact

with over the course of these studies.

The author would especially like to thank Dr. R.

P. Boyce, Dr. D. E. Duggan, Dr. P. J. Laipis and Dr. P.

H. Smith for their help, advice, support and

encouragement while serving on the authors advisory

committee.

Special thanks are due to Dr. S. G. Zam for his

constant help, advice and encouragement.

















TABLE OF CONTENTS


ACKNOWLEDGEMENTS.................................... ii

LIST OF ABBREVIATIONS............................... v

ABSTRACT ............................................ vi

INTRODUCTION ..........................................

LITERATURE REVIEW....................................7

Physiological Role of Hydrogenase...............8
Methods to Monitor Hydrogenase Activity........ 11
Properties of the Enzyme ...................... 13
Hydrogenase from Escherichia coli.............. 17

MATERIALS AND METHODS...............................22

Bacterial Strains and Culture Conditions.......22
Chemicals...................................... 22
Media ..........................................22
Enzyme Assays.................................. 24
Polyacrylamide Gel Electrophoresis.............26
Molecular Weight Determination................ 27
Iron and Acid Labile Sulfide Determination.....29
Protein Determination ......................... 30
Removal of Triton X-100........................30
Temperature Profile............................30
pH Profile..................................... 31
Effect of Oxygen on Purified Hydrogenase.......31
Regulation of Hydrogenase......................31

RESULTS ............................................. 34

Purification of Hydrogenase....................34
Molecular Weight Determination .................41
Iron and Sulfur Content ........................65
Temperature Profile............................65
pH Profile..................................... 76
Kinetic Characteristics........................76


iii
















Hydrogen Uptake in the Presence of
Different Artificial Electron Acceptors.....90
Inactivation of Hydrogenase by Oxygen..........90
Stability of Hydrogenase at Alkaline pH........92
Hydrogenase Activity in Solublized
Membranes of HUP Mutants of E. coli........99
Regulation of Hydrogenase Activity
in Whole cells............................. 102

DISCUSSION......................................... 111

REFERENCES ......................................... 113

BIOGRAPHICAL SKETCH............................... 130




















LIST OF ABBREVIATIONS


BV...................................... Benzyl viologen

DEAE ........................Diethylaminoethyl cellulose

EDTA....................Ethylenediaminetetraacetic acid

FHL...............................Formate hydrogenlyase

HUP..................................... Hydrogen uptake

MV.................................... Methyl viologen

PAGE.................Polyacrylamide gel electrophoresis

PEG..................................Polyethylene glycol

SDS..............................Sodium dodecyl sulfate

















v



















Abstract of Dissertation Presented to the Graduate School of The
University of Florida in Partial fulfillment of the Requirements
for the Degree of Doctor of Philosophy


Biochemical Genetics of Hydrogen Metabolism in
Escherichia coli: Purification and Characterization of
Hydrogenase

By

Pramathesh S. Patel

December 1985

Chairman: Dr. K. T. Shanmugam
Major Department: Microbiology and Cell Science



A procedure is described for the purification of

membrane-bound hydrogenase from Escherichia coli. This procedure

uses a non-ionic detergent, precipitating agents, and a series of

column chromatography steps to purify the protein to homogeneity.

The molecular weight of the protein is determined in the presence

and absence of detergent by gel filtration and polyacrylamide gel

electrophoresis, under non-denaturing conditions. These results

show that the enzyme exists predominantly as a monomer (59,000 d)

in the presence of Triton X-100 and as a dimer (124,000 d) in its

absence. The subunit molecular weight is 56,000. The enzyme has












4.4 molecules of iron and 4.7 molecules of acid-labile sulfur per

59,000 d protein. The optimum temperature for catalysis of the

exchange reaction is 35 0C and has a broad pH optimum between pH

values of 7.0 and 7.5. The enzyme has an apparent Km of 26.7 mM

for oxidized methyl viologen, 7.7 mM for oxidized benzyl viologen,

1.5 mM for reduced methyl viologen, 4.0 mM for reduced benzyl viologen

and 1.6 mM for hydrogen. The dimer is twice as active as the monomer.

The enzyme is inactivated by air with a half life of 650 minutes.

Comparison of the biochemical properties of the pure hydrogenase

with the hydrogenase produced by the HUP mutants suggests the pure

hydrogenase is involved in the hydrogen uptake reaction in E. coli.

Study of the regulation of hydrogenase activity in whole cells

indicates that the enzyme activity is inducible under anaerobic

conditions and maximal levels of hydrogenase activity can be detected

within 60 minutes after anaerobic shift. Hydrogenase activity

declined rapidly upon the addition of electron acceptors, viz.,

oxygen and nitrate. The rate of decline of hydrogenase activity due

to the addition of nitrate was bi-phasic with an initial half life

of 40 minutes and eighty minutes after addition of nitrate, the

hydrogenase activity declined with a half life of 10 minutes. This

rapid decline in activity was accompanied by the appearance of nitrite

in the medium. The half life of hydrogenase activity of the culture

exposed to oxygen is 8 minutes.















INTRODUCTION


Since the dawn of civilization, mankind has been in search of an

efficient source of energy. It has been shown throughout history

that there is a direct correlation between the energy consumption per

capital and the standard of living.

Today, the world's population is increasing at an alarming rate.

Most of the increase in the population is taking place in the

impoverished nations of the world. As this major part of the world's

population strives to improve their standard of living, there will be

an unprecedented demand on the energy resources of the world. This

increase in demand will have far-reaching consequences on the life of

every living being on this planet.

As we have already seen, the increased demand for energy in the

last couple of decades has sent the price of fossil fuels on a sharp

increase. As a result of this, the developing countries are caught

in a "no win" situation. To become industrialized, a nation has to

have an abundance of energy at its disposal, and to be able to import

the energy it needs for industrialization, it has to have the

economic resources. Also, the increased demand in energy, world

wide, has led to some of the major political crises around the globe.














Political and economic consequences of the increase in energy

demand are not the only concerns that we have to address. Due to the

increase in the energy demand, one of the questions that we have to

ask ourselves is the effect the increase in energy consumption will

have on the environment. Most of our energy demand today is met by

fossil fuel. It is apparent that the fossil fuel reserves will be

eventually depleted, and in any event, the natural environment cannot

readily assimilate the by-products of fossil fuel consumption at much

higher rates than it does without suffering unacceptable levels of

environmental decay. Thus, today more than ever before, we realize

the importance of a fuel source that is economical and efficient, has

no toxic end products, and can be recycled.

With this bleak outlook for the future in the field of energy, a

lot of money and effort have been spent in exploring alternative

sources of energy that are efficient and non-polluting. At present,

the two most promising areas seem to be solar energy and biomass

conversion. Both these fields have the advantage of being present in

nature in abundance.

One of the products that can be obtained from both biomass

conversion and solar energy is hydrogen. Hydrogen as an energy

source of the future has enormous potential. It has the advantage of

being a very clean fuel. Unlike the fossil fuels of today,

combustion of hydrogen does not yield any of the toxic waste

products, viz., SO2, CO, NOx etc. Water is the main product and the













water produced is easily recycled in nature. The biggest advantage

of using hydrogen as a fuel source of the future is the fact that it

can be produced on a large scale using biological systems. Hydrogen

is produced by most procaryotic microorganisms (5,119). We can

exploit these biological systems and utilize the enormous pool of

energy-rich compounds such as lignin, cellulose and cellobiose found

in nature. Hydrogen is also produced by cyanobacteria and

photosynthetic bacteria (115). During photosynthesis, light energy

is used to generate energy-rich compounds such as NADH, NADPH and

ATP. The ATP, NADH and NADPH can be used to reduce protons resulting

in the evolution of hydrogen. Thus, it is conceivable that some day

in the future hydrogen can be produced on a large scale by harnessing

solar energy.

However, if we are to exploit hydrogen as the energy of the

future we should have a detailed understanding of the role it plays

in nature. Biologically, hydrogen is produced by most procaryotic

organisms growing in the absence of inorganic electron acceptors such

as oxygen or nitrate (40,121). During fermentation, many bacteria

use protons as an electron sink, resulting in the evolution of

hydrogen. Hydrogen is also consumed by many bacteria as a source of

reducing power under appropriate conditions (5,119). During the

formation of methane, a widely used fuel, methanogens utilize

hydrogen as a source of reductant to reduce CO2. If we understand














the role of hydrogen gas in these reactions to a greater extent, we

will be able to exploit it for our own good.

At the center of the hydrogen metabolism in biological systems

lies the enzyme hydrogenase. It catalyzes the primary reaction in

hydrogen metabolism, the reversible activation of a hydrogen

molecule. Thus it is imperative that we understand the mechanism of

catalysis of this basic reaction and its regulation in nature.

The best way to approach the basic questions regarding the

mechanism of catalysis and its optimal conditions for catalysis is to

study the enzyme after it has been obtained in a pure state. The

purified enzyme can also be used to raise antibodies in a mammal.

The antibodies can then be used to elucidate the regulation of

hydrogenase synthesis, identify the structural gene for the enzyme

and also determine the location of hydrogenase in the membrane with

respect to other proteins.

Since E. coli possesses hydrogenase it seems logical to examine

the role it plays in the cells metabolism. E. coli offers the

following advantages: 1) It is a very well studied organism with

respect to metabolism; 2) Has established techniques to investigate

the biochemistry of the various metabolic reactions and for genetic

manipulation of the organism; 3) The ease with which a large number

of mutants can be isolated and characterized. A thorough

understanding of hydrogen metabolism in one organism may help us

better understand the hydrogen metabolism of other micro-organisms.














In Escherichia coli, hydrogenase is known to be a part of the

format hydrogenlyase enzyme complex which is responsible for the

evolution of hydrogen gas from format under anaerobic growth

conditions. Hydrogenase is also involved in the growth of E. coli

under conditions where hydrogen is the source of reductant, in the

presence of a suitable electron acceptor, viz., fumarate. It is not

known whether the same enzyme is involved in both the hydrogen

evolution and uptake reactions, or whether there are two separate

hydrogenases responsible for the two different reactions.

There are a number of reports in the literature concerning

hydrogen metabolism in E. coli. Most of the studies have been

directed toward characterization of the enzyme hydrogenase, and

toward determining the number of hydrogenase proteins in a cell

(details are presented in the Literature Review section). However,

the number of hydrogenases present in the cell has not yet been

established conclusively. Even the reports describing the physical

properties of the enzyme provide conflicting molecular weights for

the enzyme. Adams and Hall (4) reported a molecular weight of

113,000 for the hydrogenase they purified from E. coli. In 1978,

Bernhard and Gottschalk (12), reported a molecular weight of 191,000

for hydrogenase from E. coli. The molecular weight in the latter

report was determined by the sucrose density gradient centrifugation

and gel filtration of a partially purified preparation. On the

other hand, Graham et al. (37), in 1980, reported a molecular weight













of 56,000 for hydrogenase from E. coli. They determined the

molecular weight by an indirect method which involved electrophoresis

of solubilized membrane vesicles in native PAGE, staining for

hydrogenase activity followed by SDS-PAGE of the excised active band

from the gel. It should also be stated that both, Adams and Hall

(4), and Bernard and Gottschalk (12), used proteases to aid in the

solubilization of the enzyme from the membrane. It is possible that

the enzyme obtained after protease treatment may not reflect the

properties of the native enzyme.

This work describes a scheme for purification of the enzyme

hydrogenase to homogeneity without the use of proteolytic agents.

The enzyme is characterized with respect to its biochemical and

physical properties. The regulation of the enzyme in cultures

growing in the presence or absence of electron acceptors such as

oxygen and nitrate is also studied.














LITERATURE REVIEW


Production and consumption of hydrogen gas by microorganisms has

been known since the turn of the century (44). However, it was only

in the 1930's that the enzyme responsible for the evolution of

hydrogen gas during bacterial fermentation was identified and the

physiology of this process studied (24,41,98,113). During an

investigation of a pollution problem in the Great Ouse river,

Stephenson and Stickland (98) observed that the microorganisms

thriving upon the sugar beet waste dumped into the sluggish river

were responsible for the evolution of gases such as hydrogen, carbon

dioxide and methane. They also showed that washed cultures of

bacterial isolates from the river bed were able to reduce methylene

blue in the presence of hydrogen. This observation led them to

conclude that the microorganisms possesed an enzyme capable of

activating a molecule of hydrogen. This enzyme, which they termed

hydrogenase (EC 1.12), catalyses the reversible reaction as

represented by the equation



H2 + e carrier oxidisedd) 2 H+ + e carrier (reduced)













Since the initial discovery of hydrogenase, the enzyme has been

shown to be present in a diverse group of microorganisms, both

bacteria and algae (5,40,119). In vivo, hydrogenase is usually

coupled to other electron carriers or is a part of a multienzymne

complex, and thus, the enzyme generally catalyzes an "irreversible"

reaction, in vivo. However, in the presence of suitable electron

donors or acceptors all pure hydrogenase proteins examined so far,

catalyze reversible reactions.



Physiological Role of Hydrogenase


The physiological role of hydrogenase in the anaerobic

metabolism of microorganisms can be divided into two categories : 1)

evolution of hydrogen and 2) consumption of hydrogen.

In the fermentative bacteria, evolution of hydrogen via

hydrogenase can be seen as a means of oxidizing the electron carriers

reduced during fermentation. This oxidation is required to allow the

electron carriers to recycle so that a continuous supply of ATP can

be generated by substrate level phosphorylation. For example, in

Clostridium pasteurianum, each mole of glucose yields two moles of

pyruvate which is further degraded to acetyl-CoA, CO2 and hydrogen,

via pyruvate:ferredoxin oxidoreductase and hydrogenase (104,105,106).

Some of the excess NADH generated at the level of

glyceraldehyde-3-phosphate dehydrogenase is oxidised to produce













hydrogen by NADH:ferredoxin oxidoreductase and hydrogenase (5,27,59).

Thus, the redox balance is maintained in the cell without the need

for terminal electron acceptors other than protons. In E. coli

pyruvate is metabolized via the pyruvate-formatelyase enzyme complex

to format and acetyl Co-A (56). The format is further metabolized

to CO2 and H2 via the format hydrogenlyase complex of which

hydrogenase is an integral part (5,41,42,59).

Under conditions where hydrogen is the only source of reducing

power and energy, hydrogenase oxidizes hydrogen. The electrons

obtained are utilized to reduce inorganic or organic electron

acceptors (5,42,69,76,110). For example, the genus Desulfovibrio
-2
possesses the ability to use SO4-2 as a terminal electron acceptor.

Electrons obtained from the oxidation of hydrogen are utilized to

reduce SO 4-2 and yield S-2 (6,42). Paracoccus denitrificans has the

ability to utilize nitrate as the terminal electron acceptor for the

electrons obtained from the oxidation of hydrogen by hydrogenase

(96). In methanogens, hydrogen can serve as the sole electron donor

for the reduction of CO2 to methane (12,120). In E. coli, under

appropriate conditions, hydrogen can serve as an electron donor to

reduce electron acceptors, such as fumarate, nitrate, and oxygen

(5,36,69). In all of these reactions, hydrogenase is an essential

enzyme and is associated with the membrane and an electron transport

chain (69). Therefore, the oxidation of hydrogen not only serves as













a source of electrons but the association of hydrogenase with the

membrane helps generate a proton gradient across the membrane.

Hydrogenase also plays a dual role in photosynthetic bacteria.

During photosynthesis, the bacteria utilize hydrogen as a source of

reductant for CO2 fixation (5,115). This ability to utilize hydrogen

as a source of reductant is mediated by hydrogenase (53). In

addition, during dark fermentation, the purple non-sulphur bacteria

metabolize pyruvate via a pyruvate formatelyase and a format

hydrogenlyase system analogous to that found in E. coli (33).

Another group of microorganisms that possess hydrogenase is the

aerobic hydrogen oxidizing bacteria. These microorganisms are

characterized by their ability to grow autotrophically, using

hydrogen as the sole electron donor, CO2 as the carbon source and

oxygen as the terminal oxidant (35,39). Some of the microorganisms

belonging to this group have two different types of hydrogenases.

One of the hydrogenases is soluble in the cytoplasm and reduces NAD

directly with hydrogen (82). The other hydrogenase is membrane bound

and donates electrons to the respiratory chain which in turn reduces

oxygen and thus produces energy for autotrophic growth (34,91,93).

From the examples cited above, it can be seen that hydrogenase

plays an important role in the physiology and metabolism of a diverse

group of microorganisms.













Methods to Monitor Hydrogenase Activity


In 1930, the classical hydrogenase assay involved the reduction

of methylene blue in the presence of hydrogen (98). Today,

hydrogenase activity can be monitored by three different methods: 1)

hydrogen evolution, 2) hydrogen consumption and 3) the exchange

reaction (59).

In the hydrogen evolution reaction, the ability of hydrogenase

to reduce protons in the presence of suitable electron donors is

monitored. Electron donors such as reduced ferredoxin (12,73,77),

cytochrome c3 (77), and reduced viologen dyes (38,58,66,80,102) have

been employed. The rate of hydrogen evolution is monitored either

manometrically or by using a gas chromatograph or a hydrogen

electrode (58,59,80,112).

Conversely, in the hydrogen uptake reaction the ability of

hydrogenase to oxidize hydrogen to protons and electrons is

monitored. The oxidation of hydrogen requires the presence of

suitable electron acceptors. In the presence of such electron

acceptors, the rate of the reaction can be monitored either

spectrophotometrically, or by using a gas chromatograph or a hydrogen

electrode (5,59,100).

In the exchange reaction, hydrogenase activity can be measured

by monitoring the exchange between molecular hydrogen and heavy water

or between tritium gas and water (22,23,58,59,111).













Farkas et al. (24) were the first to demonstrate an exchange reaction

between hydrogen gas and heavy water catalysed by E. coli. The

reaction as represented by the equation



HD + H20 HDO + H2



is catalysed by hydrogenase. The rate of the forward reaction can be

measured by monitoring the appearance of the isotope in the aqueous

phase. In 1963 Gingras et al.(28) introduced a modification of the

exchange assay in which tritium gas was used in place of hydrogen and

heavy water was replaced by water. In this modified assay as

represented by the equation



HT + H20 HTO + H2



hydrogenase activity can be followed by monitoring the accumulation

of tritiated water in the aqueous phase.

If the hydrogen evolution or hydrogen consumption reaction is

used to determine hydrogenase activity, one has to bear in mind that

the rate of the reaction may not be a true reflection of hydrogenase

activity. Since hydrogenase is usually associated with other

electron transport proteins in the cell, it is possible that the

activity of hydrogenase in whole cells or intact membranes monitored

using artificial electron acceptors or donors may reflect the













activity of a multienzyme complex, of which hydrogenase is one of the

many components. Gitilitz and Krasna (29) did observe this

phenomenon. They found that the activity of hydrogenase from

Chromatium, measured by reduction of artificial electron carriers

decreased during purification as compared to the exchange activity,

indicating the presence of various cellular electron carriers in the

crude extract that enhanced oxidation/reduction of artificial

electron carriers. Also, since the reaction catalysed by hydrogenase

is an oxidation/reduction reaction, the redox potential (Eo') of the

substrate determines the rate of the reaction. The exchange

reaction, on the contrary, is a direct and simple assay for

hydrogenase and it is extremely sensitive. Considering these facts,

it appears that the exchange reaction is the method of choice to

assay for hydrogenase activity.



Properties of the Enzyme


Purification of any protein is immensely simplified if some of

the physical properties and special characteristics of the protein

are known. Usually, information on the protein from other systems

are used as indicators for "do's and don'tts. There are a number of

reports, in the literature, describing the purification of

hydrogenase from a diverse group of microorganisms

(3,4,12,16,19,29,31,38,51,70,90,92,94,107,116). Review of the














literature indicates that the enzyme hydrogenase is inactive in the

presence of oxygen. Thus, it is important to protect the enzyme from

oxygen during the purification procedure. Another factor to be taken

into consideration is the location of the enzyme. Hydrogenase in the

microbial world is found either in the periplasmic space, membrane

associated or as a soluble cytoplasmic enzyme. If the hydrogenase is

membrane associated, as in the case of E. coli (4,35), one has to

incorporate special procedures during the purification procedure.

Membrane proteins have been solubilized using various detergents

(32). Hydrogenase has been successfully solubilized from the

membrane using detergents, viz., Triton X-100 (8,35,63,71,95,97), and

sodium deoxycholate (4,29,71,83). Some researchers have used

proteolytic agents, such as trypsin or pancreatin to aid in the

solublization of hydrogenase from the membrane (2,4,94,117).

However, one has to realize that the use of proteases during the

purification procedure may yield a protein that is altered due to

proteolytic digestion.

The sensitivity of the enzyme to inactivation by oxygen has been

overcome by deoxygenating the buffers with pre-purified nitrogen or

argon, adding 1mM sodium dithionite to scavenge any contaminating

oxygen and carrying out all procedures in closed vessels under

positive pressure of nitrogen, argon or hydrogen

(18,43,45,55,75,109).













Most of the other techniques used are the standard techniques

used for protein purification, viz., ion exchange chromatography and

gel filtration (48,49). In addition to these established procedures

many researchers have taken advantage of the hydrophobic nature of

the membrane protein and included chromatography on matrices such as

Octyl- or Phenyl-Sepharose (46,49,94,108).


Physical Properties of Hydrogenases: Hydrogenase is one of the few

anaerobic proteins that has attracted considerable attention in the

recent past. One of the first hydrogenases to be purified to

homogeneity was from Clostridium pasteurianum (17) and is

a well characterized enzyme. Since the time the first hydrogenase

was purified, the enzyme has been obtained in pure state from a

number of other organisms (5).

All the hydrogenases studied so far can be grouped into three

major groups based on their molecular weight and number of subunits.

Most of the hydrogenases are made up of a single polypeptide with an

apparent molecular weight ranging from 50,000 to 66,000. The second

group of hydrogenases range in molecular weight from 89,000 to

101,000. Hydrogenases belonging to the latter group have two

subunits. The large subunit has a molecular weight of about 62,000

to 67,000 and the small subunit ranges from 26,000 to 34,000.

Hydrogenases studied from two organisms, namely Paracoccus

denitrificans and Alcaligenes eutrophus, belong to a third group with













a molecular weight of about 205,000 and consists of 4 subunits

(5,92). There are two large subunits and two small subunits. The

molecular weight of the large subunits are 63,000 and 67,000 and the

molecular weight of the small subunits range from 31,000 to 33,000

(5,92).

There is some variability with respect to the enzyme's

sensitivity to oxygen. All of the hydrogenases are inactive in the

presence of oxygen (5). However the inactivation is usually

reversible. In Clostridium pasteurianum, Desulfovibrio gigas and

Alcaligenes eutrophus H16, the enzyme is extremely sensitive to

oxygen and irreversibly inactivated (5).


Presence of Metal Ions in Hydrogenase: Hydrogenase is a non-heme iron

sulfur protein. The hydrogenases characterized so far have been

reported to have varying contents of iron and acid labile sulfur.

Most of the active centers contain 4 atoms of Fe and 4 atoms of acid

labile S (5).

A number of reports indicate the presence of at least two other

metal ions, nickel and copper. Nickel has been shown to be present

in the hydrogenases obtained from Rhodospirillum rubrum (3),

Chromatium vinosum (7), E. coli (10), Rhodopseudomonas capsulata

(20), Methanobacterium thermoautotrophicum (34), Desulfovibrio

vulgaris (Hildenborough) (39), Desulfovibrio desulfuricans (61),

Desulfovibrio gigas (101), and Vibrio succinogenes (103). Copper has














also been shown to be a part of the hydrogenase derived from

Desulfovibrio vulgaris (Hildenborough) (39).



Hydrogenase from Escherichia coli


Hydrogenase from E. coli and its hydrogen metabolism has

attracted considerable amount of attention. As indicated above, E.

coli is capable of metabolizing format to yield hydrogen gas and

also utilizing hydrogen as a source of reductant under certain growth

conditions (5,69,81). However, it is not yet known whether E. coli

has two hydrogenases, one for the format hydrogenlyase (FHL)

reaction and the other for the hydrogen uptake (HUP) reaction, or one

single hydrogenase protein that is involved in both the reactions.

There have been reports in the literature suggesting the presence of

multiple hydrogenases in E. coli. Ackrell et al. (1) reported the

presence of three hydrogenase species in E. coli. Yamamoto and

Ishimoto (118), demonstrated that extracts of E. coli cells grown in

different media, either favoring conditions for hydrogen evolution or

hydrogen uptake, when subjected to electrophoresis in polyacrylamide

gels exhibited bands possessing hydrogenase activity with different

electrophoretic properties. More recently, Ballantine and Boxer (10)

have reported the existence of two distinct hydrogenases in E. coli.

This contention is based on the detection of two immuno-precipitin

arcs possessing hydrogenase activity in extracts of cells grown under














anaerobic conditions. The cross-immuno-electrophoresis was performed

using Triton X-100 dispersed membranes as antigen. The antiserum

from rabbits immunised with E. coli membranes, was used as

antibodies. They also demonstrated three distinct bands of

hydrogenase activity upon subjecting Triton dispersed E. coli

membranes to electrophoresis in non-denaturing polyacrylamide gels.

Two of the bands were not detected when the extract was exposed to

alkaline pH (pH 10.0), suggesting that one of the hydrogenase was

inactivated at this pH. They also found that the hydrogenase

resistant to alkaline pH was not easily solubilized from the

membrane. Preliminary experiments in our laboratory also suggest the

presence of two distinct hydrogenases in E. coli.

Even though the number of hydrogenases in E. coli has not been

determined directly, numerous attempts have been made to characterize

the hydrogenase(s) from E. coli. In 1950, Joklik (50) made the first

attempt to characterize the hydrogenase from E. coli, followed by

Gest (26) in 1952. In 1957, Kondo et al. (57) published a procedure

for the solublization of hydrogenase using 4% deoxycholate. It was

not until 1979 that the first report describing the purification of

hydrogenase in E. coli to a high degree of purity was reported.

Bernhard and Gottschalk (12) published a report on the purification

of the enzyme using a modified method of Kondo et al. (57).

Employing trypsin and deoxycholate, they obtained a preparation of

the enzyme estimated to be 80% pure. The molecular weight as













determined by gel filtration and density gradient centrifugation was

reported to be 191,000. They also reported the enzyme to be

irreversibly inactivated in the presence of oxygen with a half life

of 36 hours.

In 1979, Adams and Hall (4) reported the purification of

hydrogenase from E. coli to homogeneity. Their procedure differed in

that they used aerobically grown cells obtained from a commercial

source and solubilized the enzyme with sodium deoxycholate and

pancreatin. The enzyme, a cytoplasmic membrane-bound protein, is

reported to have a molecular weight of 11 3,000 and consists of a

dimer of identical subunits. The enzyme, an iron sulphur protein,

has 12 Fe and 12 acid labile S atoms per molecule. They reported a

half life for hydrogenase of 12 hours under air at room temperature.

In 1980 Graham et al. (37) determined the molecular weight of

Hydrogenase from E. coli to be 53,000. The molecular weight was

determined by subjecting Triton X-100 solubilized E. coli membranes

to Native PAGE and staining the gel for hydrogenase activity. The

band possessing hydrogenase activity was then cut from the gel and

the protein was eluted and subjected to SDS-PAGE in cylindrical gels.

In 1981, however, Graham (35) reported a molecular weight of 63,000.

In the latter case the molecular weight was determined using

polyacrylamide gel electrophoresis in slab gels. He also reported

the enzyme to be a trans-membranous protein.














Genetic studies thus far have not yet identified the structural

gene(s) of hydrogenase in E. coli. Pascal and her co-workers (78)

reported the isolation of a hydrogenase activity-deficient mutant.

However, the mutant also lacked format dehydrogenase activity,

indicating that these mutants could be defective in the format

hydrogenlyase enzyme complex. The mutant strains described by Graham

and his co-workers (37) and Krasna (60) also fall into the same

category. Glick and his co-workers (30) reported the isolation of a

hydrogenase defective mutant, however, analysis of the mutant in our

laboratory has indicated that the mutant does possess hydrogenase

activity. In 1983, Bock and his co-workers (79) used Mudl(Ap,-lac)

insertion mutagenesis to obtain mutants defective in hydrogenase.

They were successful in isolating a mutant that lacked hydrogenase

activity. Using beta-galactosidase activity as a means of monitoring

regulation of synthesis, they showed that the gene affected by the

Mud insertion was synthesized only under anaerobic conditions and in

the absence of electron acceptors such as nitrate. In 1981, Tait and

his co-workers (99) described the isolation of strains of E. coli

that lacked hydrogenase activity. All of the mutants defective in

hydrogen metabolism are affected only in those genes that are

essential for hydrogenase activity. In 1983 Karube and his

co-workers (52) reported the isolation of a hydrogenase mutant from

E. coli. The mutant strain, which is unable to reduce methyl














viologen as tested by the filter-dye reduction method, was isolated

after mutagenesis with N-methyl N'-nitro-N-nitrosoguanidine.

Exploiting a positive selection method to isolate mutants of

E. coli defective in its hydrogen metabolism (65), our laboratory has

successfully isolated a large number of such mutants. Based on

phenotypic characteristics, the mutants have been grouped into two

distinct classes. One of these classes, which is defective in

hydrogen uptake, did produce an active format hydrogenlyase, has a

lesion near 65 minutes in the E. coli chromosome (genetic map (9)

and is 76% co-transducible with metC (65). The other class of

mutants which lack hydrogenase activity have lesions between srl and

cys operons (58 and 59 min, respectively) on the chromosome. Based

on fine structure analysis of this region, the latter class of

mutants have been further subdivided into two sub-groups. These two

sub-groups belong to two distinct operons. Genes from both of these

operons are essential to produce an active hydrogenase in the cell.

Segments of DNA from wild type E. coli containing both of these

operons have been cloned (88). Further genetic studies of the region

have shown that there are at least four distinct genes responsible

for the production of an active hydrogenase in the cell (personal

communication, Sankar, P. and Lee, J.H.).















nATERIL.LS AiD IET.IODS


Bacterial Strains and Culture Conditions


Bacterial strains used in this study are listed in Table 3-1.

Bacterial cultures for each experiment were grown as described for

each individual experiment, in the Results Section.



Chemicals


All the chemicals used were of analytical grade and were

obtained from Fisher Scientific Company, Pittsburgh, PA, or Sigma

Chemical Co., St. Louis, MO.



Media


The mineral base for the minimal medium used to cultivate E.coli

had the following composition: (grams/liter) Na2HPO 6.25; KH2PO,

0.75; NaCl, 2.00; (NH )2SO, 1.00; MgSO4.7H20, 0.20; FeSO .7H20 ,

0.010; NaMo0O.2H2O, 0.010; Na2Se03, 0.000263. The pH of the medium

was 7.5. The carbon source was glucose and was supplied at a

concentration as described for particular experiments.
















Bacterial strains used in this study.


Strain Genotype or Phenotype Source



K-10 Hfr PO2A relAl pit-10 L. Csonka

tonA22 T2r + spoT


JC10244 cysC43 alaS3 srl-300::Tn10 thrl L. Csonka
leu-6 thi-1 lacY1 galK2 ara-14
xyl-5 mtl-1 proA2 his-4 argE3
rpsL31 tsx-33 supE 4V


SE-8 thi-1 leu-6 suc-10 bioA2(?) galT27 Laboratory
rpsL129 chlC3 A- hup101::Tn10 Collection
(65)


SE-49 Same as JC 10244 but alaS+ Laboratory
recA56 and hup103 Collection
(65)

SD 7 gal-25, A topA10, pyrF287, B. Bachmann
fnr-1, rpsL195, gyrB226, iclR7 CGSG 6335
and trp72


* CGSC, Coli Genetic Stock Center.


Table 3-1.













Luria broth (LB) medium had the following composition:

(grams/liter) Bacto tryptone, 10.00; Bacto yeast extract, 5.00; NaC1,

10.00; The pH of the medium was 7.0. All solid media contained 15

grams of agar per liter of medium.



Enzyme Assays


Hydrogen Uptake: Hydrogen uptake activity was measured at room

temperature using a Spectronic 710 spectrophotometer. The reaction

was carried out in a 12 x 75 mm test tube. A 2.5 ml reaction mixture

contained 2.3 ml of 10 mrM phosphate buffer, pH 7.0, and the electron

acceptor at concentrations described for each experiment. The tubes

were capped with serum stoppers, evacuated and filled with hydrogen

several times. The reaction was started by adding hydrogenase, 0.2

ml, to attain a final protein concentration of 12.0 microgram/ml.

The contents were mixed and the reduction of the electron acceptor

was measured at the appropriate wavelength. The electron acceptors

used and their extinction coefficients were : methyl viologen, 12,000
-1 -1 -1 -1
M cm at 600 nm; benzyl viologen, 7,780 M cm at 550 nm;

neutral red, 7600 M-1 at 450 nm; methylene blue, 7000 M at 601 nm;

phenosafranin, 1150 M- at 400 nm; and potassium ferricyanide 13200

M- at 405 nm (The Merck Index, tenth edition, ed. M. Windholz, Merck

and Co., Rahway, N.J.).













Hydrogen Evolution: The assay to measure hydrogen evolution from

reduced viologen dyes was carried out in 9.0 ml serum vials, at 230C.

Eight hundred and seventy five microliters of 10 rimM phosphate buffer,

pH 7.0, containing either methyl viologen or Benzyl Viologen

concentrations described for each experiment was placed in serum

vials. The vials were capped with serum stoppers, evacuated, and

filled with nitrogen, six times. The reaction was started by adding

75 microliters of hydrogenase, to attain a final protein

concentration of 2.0 microgram/ml. To reduce the viologen dye, 50

microliters of sodium dithionite was added anaerobically, with a

syringe, to attain a final concentration of 50 mM. The final

reaction volume was 1.0 ml. The rate of hydrogen evolution was

monitored using a Varian Model 910 gas chromatograph.


Tritium Exchange : The reaction was carried out in a 12 x 75 mm test

tube. Ninety microlitres of 10 mM phosphate buffer, pH 7.0, was

placed in a tube (12 x 75 mm), and the tube was sealed with a serum

stopper. The 5.1 ml gas phase was replaced with helium by evacuating

the tube and filling it with helium. The procedure was repeated six

times. Hydrogenase was added to a final concentration of 0.25

microgram/ml, and 0.1 ml of sodium dithionite, pH 7.0, to attain a

final concentration of 1.0 mM. Eight hundred microliters of hydrogen

gas was added to each of the assay tubes with a syringe. Tritium gas

(11.2 mCi/mmol; New England Nuclear Corp. Boston, MA.) was added (25














microliters) to a final concentration of 0.55 micro-curie per assay

as a means to monitor the exchange reaction. After 1 hour of

incubation at 370C, the serum stopper was removed and the tritium gas

was vented in a fume hood for 10 min. To 100 microliters of the

assay mixture, 2.5 ml of a water-based scintillant was added.

Tritiated water present in the 100 microliter fraction was determined

with the aid of a scintillation counter. The assay used to monitor

hydrogenase activity during the purification procedure was the same,

except the sample assayed was 100 microliters in a final assay volume

of 200 microliters, tritium gas was added to a final concentration of

0.22 micro-curie per assay and no hydrogen gas was added.



Polyacrylamide Gel Electrophoresis


Polyacrylamide gel electrophoresis under non-denaturing

conditions was performed as described by Davis et al. (21). Sodium

dodecyl sulfate polyacrylamide gel electrophoresis was performed as

described by Laemmli (62). The gels were run as either tube gels, or

slab gels. The dimensions of the tube gels were 0.6 cm x 8.8 cm.

The volume of the separatory gel used was 2.2 ml. The dimensions of

the slab gels were 17 x 14.5 x 0.15 cm. The volume of the separatory

gel was 30 ml. Location of hydrogenase, after electrophoresis in

non-denaturing gels was determined by incubating the gel in 10 mM

phosphate buffer, pH 7.0, containing benzyl viologen at a final














concentration of 0.2% and under an atmosphere of hydrogen. The

reduced benzyl viologen, which is auto-oxidizable, was made to

further react with 2,3,5-triphenyl tetrazolium chloride to produce a

bright red permanent band of reduced formazan. The gels were stained

for protein with either the silver stain method described by

Morrissey (72), or with the aid of coomassie blue R-250 as described

by Wilson (114). The molecular weight standards used for the

determination of the molecular weight of hydrogenase using SDS-PAGE

were obtained from Sigma Chemical Co., St. Louis, MO, and consisted

of alpha-lactalbumin, 14,200; trypsin inhibitor, soybean, 20,100;

trypsinogen, PMSF treated, 24,000; carbonic anhydrase, bovine

erythrocytes, 29,000; glyceraldehyde-3-phosphate dehydrogenase,

rabbit muscle, 36,000; albumin, egg, 45,000; and albumin, bovine,

66,000.



Molecular Weight Determination


Gel Filtration: The Sephadex G-200 used for gel filtration was

swollen by incubating the beads in deionised water (15 g of beads

per liter of water) for 72 hours at room temperature. After 72 hours

a column of 1.8 x 48 cm was packed with the swollen Sephadex G-200.

The column was equilibrated with 10 mM phosphate buffer, pH 7.0,

(Triton X-100 concentration was 0.3%, if present). The column was

maintained at a flow rate of 11 ml/hr at 4C for 16 hours before use.













Blue Dextran (MW = 2,000,000) was used to determine the void volume

(Vo) of the column. The proteins used for generating a molecular

weight calibration curve for the Sephadex G-200 column were obtained

from Sigma Chemical Co. and consisted of cytochrome c, horse heart,

12,400; carbonic anhydrase, bovine erythrocytes, 29,000; albumin,

bovine serum, 66,000; alcohol dehydrogenase, yeast, 150,000 and

beta-amylase, sweet potato, 200,000. The proteins were dissolved in

the equilibration buffer at the following concentrations: albumin, 10

mg/ml; alcohol dehydrogenase, 5 mg/ml; beta-amylase, 4 mg/ml;

carbonic anhydrase, 3 mg/ml and cytochrome c, 2 mg/ml. The sample

volume in all cases was maintained at 1.5 ml. Fractions of 0.93 ml

were collected. The calibration curve for the column was generated

by plotting the log of the molecular weight of the standard proteins

against the ratio of their elution volumes and the void volume for

the column. Hydrogenase was loaded at a final concentration of 2.6

micrograms/ml and its elution profile was determined by assaying the

fractions collected, for tritium exchange activity. The molecular

weight of hydrogenase was determined from the calibration curve.


Native PAGE: To determine the molecular weight of hydrogenase, the

enzyme was subjected to electrophoresis in the presence of various

concentrations of acrylamide (47). Triton X-100, when present, was

incorporated at a final concentration of 0.3%. The electrophoresis

was performed in tube gels prepared as described above. After













polymerization, the tube gels were subjected to electrophoresis for 1

hour at 1 mA/gel. After the initial run, samples were loaded and run

at 1 mA/gel for the first hour and then the current was increased to

2 mA/gel. The sample volume was 100 microliters, in all cases. The

molecular weight standards used were obtained from Sigma Chemical Co.

and consisted of alpha-lactalbumin, bovine serum, 14,200; carbonic

anhydrase, bovine erythrocytes, 29,000; albumin, chicken egg, 45,000;

albumin, bovine serum, 66,000 (monomer); 132,000 dimerr); urease,

jack bean, 240,000 dimerr); 480,000 (tetramer). Hydrogenase bands

were detected by staining the gels for hydrogenase activity after

electrophoresis. The relative migration of the molecular weight

standard proteins was determined by staining the gels for protein

using the coomassie blue method as described by Wilson (114). A

Ferguson plot (25) was generated using the Rf values obtained for the

molecular weight standard proteins for each experiment. The

molecular weight of hydrogenase was obtained from the Ferguson plot

generated for each experiment.



Iron And Acid Labile Sulfide Determination


Total iron was determined by the ortho phenanthroline method as

described by Lovenberg et al. (68). Acid labile Sulfide was

determined by the method of King and Morris (54).













Protein Determination


Protein was determined using Coomassie Blue G-250 as described

by Bradford (15). Albumin, Bovine Serum was used as the standard.



Removal of Triton X-100


Triton X-100 was removed from a sample in two steps. Initially,

the Triton X-100 concentration was lowered by dialysing the protein

sample against a 100-fold excess of an appropriate buffer, at 4C,

for 4 hours. After dialysis the residual amount of Triton X-100 was

removed by incubating the sample with Bio-Beads SM-2 (20% w/v) on a

rocking platform at 4C for 2 hours. The sample was separated from

the Bio-Beads SM-2 by centrifugation at 5,000 rpm for 5 min.at 40C.



Temperature Profile


Tritium exchange assay was used to determine the temperature

profile for hydrogenase activity. The assay was performed as

described earlier, both, in the presence and absence of Triton X-100.

The only difference was the incubation temperature. The reaction

vials were incubated in water baths maintained at 15, 20, 25, 30, 35,

40, 45,and 50 degrees centigrade for one hour.














pH Profile


Tritium exchange assay was used to determine the pH profile for

hydrogenase activity. The assay was performed as described earlier.

However, 10 mM phosphate buffer was replaced by one of the following

buffers present at a final concentration of 100 mM: Tris, pH, 9.5,

9.0, 8.5, 8.0, and 7.5; piperazine-N,N'-bis[2-ethane-sulfonic acid]

(PIPES), pH, 8.0, 7.5, and 7.0; and phosphate, pH, 7.5, 7.0, 6.5, 6.0

and 5.5.



Effect of Oxygen on Purified Hydrogenase


To determine the effect of oxygen on purified hydrogenase, 1.0

ml of the enzyme (at a concentration of 2.6 microgram/ml, in 10 mM

phosphate buffer, pH 7.0) was placed in a 12 x 75 mm tube. The gas

phase in one of the tube was air whereas the gas phase of the control

tube was hydrogen. The tubes were rocked (20 oscillations/min.) on a

rocking table at room temperature. Samples were withdrawn at various

time intervals to determine hydrogenase activity by monitoring the

tritium exchange reaction as mentioned above.



Regulation of Hydrogenase


Induction of Hydrogenase: To study the induction of hydrogenase

activity in E. coli, strain K-10 was used. The culture used as the














inoculum for the experiment was grown aerobically in 10 ml of LB +

1.5% glucose at 370C. The culture was grown to an optical density of

0.170 at 420 nm. At this stage, the culture was used to inoculate 40

ml of LB + 1.5% glucose medium in a 70 ml serum bottle. The inoculum

size was 25% of the final culture volume. The culture bottle was

capped with a serum stopper and flushed with nitrogen. The gas phase

in the culture vessel was replaced with nitrogen and the bottle was

incubated at 370C. Every twenty minutes, samples were withdrawn to

monitor growth, by measuring the optical density at 420 nm in a

spectrophotometer (Bausch and Lomb, Spectronic 710), and the

hydrogenase activity by assaying for tritium exchange activity.


Effect of Oxygen on Hydrogenase Activity in Whole Cells: To study the

effect of oxygen on hydrogenase activity in whole cells, a culture of

E. coli fully induced for hydrogenase was used. E. coli K-10 was

grown overnight in LB +1.5% glucose at 37 C under an atmosphere of

nitrogen. These cells were used to inoculate 40 ml of LB + 1.5%

glucose in two 70 ml serum bottles. The serum bottles were capped

with rubber stoppers and the gas phase replaced with nitrogen. The

medium was warmed to 37 C and inoculated anaerobically with a syringe

with the overnight grown culture. The inoculum size was 1% of the

final culture volume. The culture was incubated at 37 C. After 130

minutes, one of the culture bottles was opened and 35 ml of the

culture was transferred aseptically to a 500 ml flask and incubated













at 370C under aerobic conditions shaking at 200 rpm. Samples were

withdrawn at various time intervals to monitor growth by measuring

the optical density at 420 nm and monitoring the hydrogenase activity

by assaying for the tritium exchange reaction.


Effect of Nitrate on Hydrogenase Activity in Whole Cells: To study

the effect of nitrate on hydrogenase activity in whole cells, E. coli

cells fully induced for hydrogenase activity were exposed to nitrate.

E. coli strain K-10 was grown overnight in LB + 1.5% glucose under an

atmosphere of nitrogen. This culture was used to inoculate 40 ml of

LB + 1.5% glucose in two 70 ml serum bottles. The contents of the

bottles were flushed with nitrogen and the gas phase was replaced

with nitrogen. The pre-warmed medium was inoculated anaerobically

with a syringe. The inoculum size was 1% of the final culture

volume. The cultures were incubated at 37 C. After 170 minutes,

sodium nitrate was added to one of the cultures anaerobically, with a

syringe, to a final concentration of 11.76 mM. Samples were

withdrawn periodically to monitor growth by measuring the optical

density at 420 nm, and hydrogenase activity by assaying for tritium

exchange activity. Accumulation of nitrite in the medium was also

determined as described by Van'T Reit et al. (110).














RESULTS


Purification of Hydrogenase


Hydrogenase was purified from a prototrophic strain of

Escherichia coli K-12 (strain K-10). The details of the purification

procedure and the properties of the enzyme are presented below and in

Table 4-1.


Growth of the Cells: Escherichia coli, strain K-10, was grown

anaerobically in one liter fleakers filled to the top with LB

containing 1.5% glucose and incubated overnight at 370C. These cells

were used to inoculate 15 liter carboys containing minimal medium

supplemented with glucose at a final concentration of 3% and casamino

acids at a final concentration of 0.1%. The inoculum consisted of

10% of the final culture volume. The carboys were filled to the top

(anaerobic growth) and incubated at room temperature for 8 hours.

During the later stage of incubation, visible gas production could be

observed. The cells were harvested using a De Lavall separator, at

room temperature.


Cell Lysis: One hundred and eighteen grams of wet cell paste was

suspended in 750 ml of 0.1 M phosphate buffer, pH 7.0, containing














0.01M K-EDTA. The cells were lysed, using lysozyme, egg white

(Sigma). A freshly prepared stock solution of Lysozyme was added to

the cell suspension to attain a final concentration of

100 microgram/ml. The suspension was incubated at 37 C, shaking at

200 rpm, for 1 hour. The resulting cell lysis increased the

viscosity of the suspension. The viscosity was reduced by adding

deoxyribonuclease-I, 100 microgram/ml, ribonuclease-A, 100

microgram/ml and MgC12.6H20 to a final concentration 10 rm. The

extract was incubated further for 1 hour in a 37 C shaker, mixing at

200 rpm. The extract was centrifuged at 12,000xg for 10 minutes at

4C, to remove cell debris. The supernatant containing membrane

vesicles which had 83,433 units of hydrogenase activity (micromoles

of H20 produced/mg protein. hour) was used for further purification

of the enzyme, as described below.


Isolation and Solubilization of Membranes: Since hydrogenase in E.

coli is associated with the membrane (4,35), the next step was to

separate the membrane vesicles from other soluble proteins. To

obtain the membrane vesicles, the extract was centrifuged at

100,000xg in a swinging bucket rotor for 1 hour, at 4C (all of the

procedures henceforth were performed at 4 C and all the buffers were

incorporated with sodium dithionite at a final concentration of 1mM,

unless indicated otherwise). The pellet containing the membrane

vesicles was resuspended in 1,100 ml of 0.1 M phosphate buffer, pH














7.0. Approximately 327 of the hydrogenase activity was recovered in

the membrane pellet. To solubilize hydrogenase from the membrane,

Triton X-100, a non-ionic detergent, was added to a final

concentration of 1.0% and the extract was incubated for 1 hour with

gentle rocking. The Triton X-100 solubilized membrane fraction was

centrifuged at 100,000xg for 1 hour to remove the non-solubilized

membrane vesicles. The supernatant, containing the solubilized

membrane proteins, including hydrogenase, was collected.

Approximately 55% of the hydrogenase activity present in the

membranes was solubilized.


Enrichment of Hydrogenase: To remove some of the lipo-protein

complexes that interfere with the purification of the enzyme,

polyethylene glycol (PEG) was used. Solid polyethylene glycol 6,000

(recently renamed as PEG 3,000, Sigma Chemical Co., St. Louis, MO)

was added to the solubilized membrane protein fraction, to a final

concentration of 35% and incubated for 1 hour with gentle mixing.

The extract was centrifuged at 12,000xg for 30 minutes. The pellet

which contained the hydrogenase activity was resuspended in 500 ml of

0.1 M phosphate buffer, pH,7.0. The hydrogenase apparent specific

activity increased to 6.34 units from 4.19 units. Further enrichment

of hydrogenase was achieved by ammonium sulfate fractionation. Solid

(NH )2SO4 was added to the resuspended pellet to reach a final

concentration of 25% saturation. The mixture was incubated for 1













hour with gentle mixing. The proteins that precipitated were removed

by centrifugation at 12,000xg for 1 hour. The supernatant which

contained the hydrogenase activity was collected. Solid (NH4)2SO4

was added to the supernatant to attain a final concentration of 60;'

and incubated for 1 hour. The precipitated proteins were obtained by

centrifugation, at 12,000xg for 1 hour. The pellet, which contained

hydrogenase activity was resuspended in 200 ml of 0.01 M Tricine

buffer, pH 8.0 containing NaCI at a final concentration of 130 mM and

Triton X-100 at a final concentration of 1.0%. The resuspended

pellet was dialyzed against 6 liters of the same buffer for 6 hours.

The dialysis procedure was repeated one more time. This ammonium

sulfate enrichment procedure resulted in a 4.5 fold purification of

the enzyme without loss of total activity.


DEAE-Cellulose Chromatography: The enzyme was further purified by

loading the dialyzed extract on a DEAE-cellulose column

(2.8 x 90 cm.), equilibrated with 0.01 M Tricine buffer, pH 3.0,

containing NaCl at a final concentration of 130 mM and Triton X-100

at a final concentration of 0.3% equilibrationn buffer) and the flow

ratemaintained at 45 ml/hr. The column was washed with 600 ml of the

equilibration buffer. Hydrogenase was eluted with a linear gradient

of 150mM 225 mM NaCIl in a volume of two liters. Five milliliter

fractions were collected and assayed for hydrogenase activity as

described in the Materials and Methods section. Only the fractions














containing high hydrogenase activity (> 35,000 cpm per assay) were

pooled together and dialyzed against 12 liters of 10 mM phosphate

buffer, pH 7.0, containing 100 mM (NH4)2SO to remove the bulk of

Triton X-100. The protein fraction was dialysed twice against 6

liters of buffer for 6 hours. After dialysis, the remaining traces

of Triton X-100 were removed by adding Bio-Beads SM-2 (Bio-Rad) to

the extract and incubating the mixture for 2 hours, with gentle

mixing. As a result of DEAE-cellulose chromatography, hydrogenase

apparent specific activity increased by a factor of eight, although

the recovery was less than 20%.


Octyl-Sepharose Chromatography : To remove most of the hydrophilic,

and some of the hydrophobic protein contaminants, an Octyl-Sepharose

column (2.8 x 40 cm.)was used. The column, fitted with a reverse

flow adaptor and maintained at a flow rate of 25 ml/hour was

equilibrated with 100 mM (NH4)2SO4 in 10 mM phosphate buffer, pH 7.0

equilibrationn buffer). The partially purified hydrogenase was

applied to the column and the column was washed with 150 ml of the

equilibration buffer. Hydrogenase was eluted with a 500 ml linear

gradient containing, initially, the equilibration buffer and finally,

sodium deoxycholate (0.50 % w/v) and Triton X-100 (0.05 % v/v) in 1

mM phosphate buffer. Two and one half milliliter fractions were

collected. The fractions were assayed for hydrogenase activity as

described in the Materials and Methods section. Hydrogenase eluted













as a single peak at 0.225% Sodium Deoxycholate and 0.0225% Triton

X-100. Fractions containing hydrogenase activity (> 45,000 cpm per

assay) were pooled together. Even though hydrogenase was enriched

only by a factor of 1.03 during this step, it was important to

include this step in the purification procedure, to separate the

hydrogenase from some of the other hydrophobic contaminants which

interfered with further purification. The pooled fractions were

dialyzed against 12 liters of 25 mM Histidine HC1, pH 5.5, containing

0.3% Triton X-100. The dialysis was performed in two steps against 6

liters of buffer for 6 hours each time.


Chromatofocussing: Further purification of the enzyme was achieved by

taking advantage of the fact that each protein has its own unique

iso-electric point. Chromatofocussing achieves separation of

proteins based on their isoelectric points. The dialyzed protein

solution containing hydrogenase was applied to a column (1.3 x 45 cm)

of Poly Buffer Exchanger (Pharmacia) equilibrated with 25 mM

Histidine HC1, pH 5.5 containing 0.3% Triton X-100 and maintained at

a flow rate of 20 ml/hour. Hydrogenase activity was eluted by

passing 1,200 ml of Polybuffer 74 adjusted to pH 4.0 with HC1 and

supplemented with 0.3% Triton X-100, through the column. Two ml

fractions were collected. The fractions were assayed for hydrogenase

activity as described in the Materials and Methods section.

Hydrogenase activity eluted as a sharp peak at pH 4.4. Fractions













containing hydrogenase activity, (>23,000 cpm per assay), were pooled

together and dialyzed against 6 liters of 50 mM NaCI in 10 mM

phosphate buffer, pH 7.0, containing 0.3% Triton X-100.

Chromatofocussing resulted in a 4 fold enrichment of hydrogenase

activity.


DEAE-Cellulose Chromatography: To purify the hydrogenase to

homogeneity, the dialyzed sample obtained after chromatofocussing was

applied to a DEAE-cellulose column (1.2 x 30 cm). The column was

equilibrated with 50 mM NaCl in 10 mM phosphate buffer, pH 7.0,

containing 0.3% Triton X-100 equilibrationn buffer) and maintained

at a flow rate of 15 ml/hour. The column was washed with 100 ml of

the equilibration buffer. Hydrogenase was eluted with a 500 ml

linear gradient of 50-125 mM NaCl in 10 mM phosphate buffer, pH 7.0,

containing 0.3% Triton X-100. Two ml fractions were collected and

assayed for hydrogenase activity. Hydrogenase eluted at

approximately 90 mM NaCl. Fractions containing hydrogenase activity

were analysed for purity, using 7.5% non-denaturing and 12% SDS-PAGE.

The gels were stained for protein using the silver stain method.

Fractions containing pure hydrogenase, based on SDS-PAGE, were pooled

together and concentrated by ultrafiltration using an Amicon PM-10

membrane ultrafilter. The concentrated sample was also checked for

purity by subjecting the sample to electrophoresis as mentioned

above. The hydrogenase sample subjected to electrophoresis under














non-denat'ring conditions was also stained for hydrogenase activity

as described in the Materials and Methods section. Results from

native PAGE (Figure 4-1) showed a single band, when stained for

protein using the silver stain method. The Rf of the protein band

was comparable to the Rf of a protein possessing hydrogenase

activity. Figure 4-2 presents the results obtained after the

purified enzyme was subjected to SDS-PAGE and the gel stained for

protein. A single protein band was detected with a molecular weight

of 56,000. The procedure described above yielded a protein which is

enriched for by a factor of 690 as compared to its presence in the

crude extract. The final yield is 1.43%.



Molecular Weight Determination


To determine the molecular weight of the native enzyme, two

different methods were used, namely, gel filtration and native

polyacrylamide gel electrophoresis. Also, since the enzyme was

solubilized using Triton X-100, and the detergent was present during

the purification procedure, the molecular weight was determined, both

in the presence and absence of Triton X-100.




















>,
0s-
> t PR
0
C)











*



-4-4
0








>,
0 *0

-1 0 w>







.-
co 0 *-








-4



005




-0 -4


-'
+
4- C Ca a
o c 0 -P NC

X S ( E 0 r-4 a) U'
X a, OW WW LnZ


o Li OC

o -'-







( Ln _r



co %o (f







Co 1O0 ON









\j-- -- b-
- a- tO -
o 7








Or .N- ko


Ltr
CO
C/







Co











0 O
0 Z. a
\Cl'-' 0.,















43






>00












04-) C CQ -








a |
O








C). CD
O, C)
CL (1 (\J --.r






occ
O *O


0I 0 o O


0
aoo L t o









SI E 4 0 .M I
OL O 0 .M O 0 .0






-- I3 -1 00 co O
0-E







0
4 *

O 0 0 0cc





0: CL 0 0





E 0 0 4-U >H 0 0(
~-I0 IL COW -0 L3
C) IZ riCl ^ Q I *I O
tO)r- CO >O0kO O *HO

OLQU). 00 U QC20 +



































Figure 4-1.


Polyacrylamide gel electrophoresis of purified
hydrogenase under non-denaturing conditions.
A, Gel stained for protein using the silver stain
method;
B, Gel stained for hydrogenase activity as described
in the Materials and Methods section.
Amount of protein added to each lane was
2.6 micrograms








45








A B



































Figure 4-2. SDS-Polyacrylamide gel electrophoresis of purified
hydrogenase.
Lane A, purified hydrogenase, (2.0 micrograms);
Lane B, Molecular Weight standard proteins.
Gel stained for protein using the coomassie blue
method.








47


A B







a




e






e



-














Gel Filtration in the Presence of 0.3% Triton X-100: To determine the

molecular weight of hydrogenase by gel filtration, a Sephadex G-200

column (2.6 cm x 48 cm) was used at 4C. The column was equilibrated

with 10 mM phosphate buffer, pH 7.0, containing 0.3% Triton X-100 and

maintained at a flow rate of 11 ml/hr. The void volume (Vo) of the

column was determined using blue dextran (MW=2,000,000). A

calibration curve for the column was generated with proteins of known

molecular weights as described in the Materials and Methods section.

Table 4-2 lists the void volume (Vo) of the column, the elution

volumes (Ve) of the molecular weight standard proteins and the ratio

of Ve/Vo for each of the proteins. To determine the molecular weight

of hydrogenase, 1.5 ml of pure hydrogenase (2.6 microgram/ml) in 10

mM phosphate buffer, pH 7.0 + 0.3% Triton X-100 was loaded on the

column. The elution of hydrogenase was monitored by assaying the

different fractions collected (0.93 ml) for tritium exchange

activity. The elution profile of hydrogenase from a representative

experiment is presented in Figure 4-3. Hydrogenase activity was

detected in two major peaks. The molecular weight of hydrogenase

from each peak was determined using the caliberation curve (Figure

4-4). Based on three independent determinations, 22% (+/- 6W) of the

activity loaded on the column was detected in peak I and 68% (+/- 9%)

of the activity eluted in peak II. Hydrogenase in peak I had a

molecular weight of 133,000 (+/- 6,000) and the hydrogenase in peak

II had a molecular weight of 62,500 (+/- 4,000).

























*H *O
) oe

oO -
0-
,-I
CL X










,0 c
-4


0



.-

-o
Q IUn

tO 0

3 )



















0
. S=
0 "3
0














,-- 10
4-)
(1)
0 *
TH





C 0)
r














'-4 -':

m a
C 0)
c co


0 0
r-^1>


C-

- 0 *





r1> -






(1)

0 :r















r-
0
0
S..
0.L


LC








LM






0
Ll


















0
L'D




0
0
L l
















a)
U)
U)
i-



















0)
L0













0
0
00
HOn










hO
**1 0


0
0
0











S-H












-0


O 0
0 0


0 0



CM











'-.'
00

CL
a



U Q)


4:* *
0 0

Oc)





0 0





4-)!-
LL 0











-4-I -
'- '-,



Co
OO




WO
+ 1
0
0

cu
>1: Q)
= 0









































0 C

I 0

0

(-J
Q. 0











DE
CQ.q








,-4 CO


0 C.
Sx-
0
CO






O 0
Q0)






S-
oJ Q
*C -





0)













51





Q








C















c c



c
























( 0 x wdo)

,1"TAtIZV aSEUaaO-IPAH


































Figure 4-4. Calibration curve for the Sephadex G-200 column
(2.6 cm x 48 cm) used to determine the molecular
weight of hydrogenase in the presence of Triton
X-100. 0 molecular weight standards;
,i hydrogenase.




























































Ve / Vo


20.0-


10. 0o


8.0

6.0




4.0


2..0 L


1.0


1.25


1.75


2.25


2.75













Gel Filtration in the Absence of Triton X-100: To determine the

molecular weight of the enzyme in the absence of Triton X-100, a

column of sephadex G-200 (2.6 cm. x 48 cm.)was used and the Ve/Vo

values for the molecular weight standard proteins were determined in

the same manner as for gel filtration in the presence of Triton X-100

(Table 4-2). The Ve/Vo did not change appreciably for these

proteins, in the absence of Triton X-100 except for albumin and

carbonic anhydrase which migrated little faster through the column.

The Ve/Vo for the enzyme (2.6 microgram/ml; 1.5 ml sample volume) was

determined after removing Triton X-100 as described in the Materials

and Methods section. The elution profile of hydrogenase was

monitored by assaying the different fractions for tritium exchange

activity (Figure 4-5). Hydrogenase activity was present in two major

peaks. Table 4-2 lists the elution volume (Ve) and the ratio of

Ve/Vo for the two hydrogenase peaks and the standard proteins used.

The molecular weight of hydrogenase in the two peaks was determined

using the caliberation curve (Figure 4-6). Based on three

independent determinations, 57% (+/- 9%0) of the activity loaded on

the column was accounted for in peak I and approximately 33% (+/- 7%)

of the activity was detected in peak II. Hydrogenase in peak I had

a molecular weight of 125,000 (+/- 10,000) and the hydrogenase in

peak II had a molecular weight of 58,000 (+/- 5,000). The minor peak

between peak I and peak II had a molecular weight of 77,000 and

accounted for O% of the total activity.






































0
I
X


0
C-.
0 ,-i




x 0
C)
o a)
Cto











0 -



- co
Co"





o--
r-)
taO
0





-1

4*-O
0.


0
*r-f




40






bO
-4











































Q z
C !


















-4)
-0


























(C-OI x ido)
AITA13.V aVseuaojpOAH



































Figure 4-6. Calibration curve for the Sephadex G-200 column
(2.6 cm x 48 cm) used to determine the molecular
weight of hydrogenase in the absence of
Triton X-100. Q(, standard proteins;
*, hydrogenase.





























Peak I


Peak II


1.75 2.25


Ve / Vo


20.0







10.0

8.0



6.0




4.0


2.0 L1


1.25


2.75














Native PAGE In The Presence of Triton X-100: Another independent

method used to determine the molecular weight of hydrogenase involved

electrophoresis of the enzyme in polyacrylamide gels of different

concentrations under non-denaturing conditions. A set of tube gels

containing different concentrations of acrylamide was prepared and

the samples were subjected to electrophoresis, as described in the

Materials and Methods section. The relative mobility of hydrogenase

was determined after staining the gels for hydrogenase activity

(Figure 4-7, Table 4-3). To determine the molecular weight of

hydrogenase, the relative mobilities of proteins with known molecular

weights were determined as described in the Materials and Methods

section. The Ferguson Plot generated based on the Rf values obtained

for the standard proteins is as illustrated in Figure 4-8. The

average molecular weight of hydrogenase, based on three independent

determinations was 58,000 (+/- 6,000).


Native PAGE in the Absence of Triton X-100: The molecular weight of

hydrogenase, using the electrophoresis method was also determined in

the absence of Triton X-100. The tube gels were prepared and the

samples were subjected to electrophoresis as described in the

Materials and Methods section. The only difference in this case was

that Triton X-100 was not incorporated in the gels and hydrogenase

was free of Triton X-100. The gels were stained for hydrogenase

activity after electrophoresis. Under these conditions, two distinct




























Figure 4-7.


Molecular weight determination of hydrogenase in
the presence of Triton X-100 using native PAGE.
Polyacrylamide tube gels with different
concentrations of acrylamide were loaded with
purified hydrogenase (2.6 microgram).
Electrophoresis was performed and the gels stained
for hydrogenase activity as described in the
Materials and Methods section. 1, 5.0% acrylamide;
2, 6.0 % acrylamide; 3, 7.0 % acrylamide;
4, 7.5 % acrylamide; 5, 8.0 % acrylamide and
6, 9.0 % acrylamide.









































12 3 4 5


Mom*

























b3






.-4
00




O ) o
7-4

c m





0 0.





00

0


Cl) 4-
.) -4

-4 i)


0 .)
O0




0 0.

C))
L C





0L




o. 0.
4.) CO 1
) r-







(13 0
Q 0 4.)





CL
caO
S0 -4


a) c -O
-4> 0


I.-
E )

m 00
.C 4.0 >
Q. O C) -:
r a)


0
0
0









b0
a)
c c
2CC

. .4
3 0



0
0

a)
L-0 2
0I--.
\-O E
0




3
-.o



5 a)
.0 >
0
<. .-


(\ -'-
mC L
- Ci


E


S-
,I)



.0 >
0
<* C3


t0
0
































Figure 4-8.


Standard curve (Ferguson plot) for the determination
of the molecular weight of hydrogenase using native
PAGE in the presence of 0.3 % Triton X-100.
Q hydrogenase; *, molecular weight standard
proteins.











64


















10.0

-t 8.0 -


x 6.0



S .0.



4.0



2.0






1.0 t I I I I
1.0 2.0 4.0 6.0 8.0 10.0


Slope













bands that stained for hydrogenase activity can be observed in the

gels (Figure 4-9). The relative migration of both these bands

possessing hydrogenase activity and the relative mobilities of the

standard proteins are listed in Table 4-4. Figure 4-10 illustrates

the Ferguson Plot generated using the Rf values obtained for the

molecular weight standard proteins. Based on three independent

determinations, hydrogenase with a higher Rf value (band I)

corresponds to a molecular weight of 53,000 (+/- 5,000) and the other

band (band II) corresponds to a molecular weight of 115,000 (+/-

10,000).



Iron and Sulfur content


The iron and acid labile sulfur content of the enzyme was

determined as described in the Materials and Methods section. The

two forms of the enzyme were separated by gel filtration. The enzyme

with a molecular weight of 125,000 had 8.87 (+/- 0.34) moles of iron

and 8.91 (+/- 0.56) moles of sulfur per mole of the enzyme. The

58,000 d enzyme had 4.4 (+/- 0.15) moles of iron and 4.74 (+/- 0.48)

moles of sulfur per mole of the enzyme.



Temperature Profile


The optimum temperature for catalysis of the exchange reaction

was determined, as described in the Materials and Methods section.






























Figure 4-9.


Molecular weight determination of hydrogenase in
the absence of Triton X-100.
Polyacrylamide tube gels with different
concentrations of acrylamide were loaded with
hydrogenase (2.6 micrograms). After
electrophoresis the gels were stained for
hydrogenase activity as described in the
Materials and Methods section. 1, 4.0 acrylamide;
2, 6.0 % acrylamide; 3, 7.5 % acrylamide;
4, 10% acrylamide; and lane 5, 12% acrylamide.








67

















i


1 2 3 4



























"-4-




0
r-l






0
CI
S-








C-







0
0c









C C
-O




0 ,







aO -




.-.
0-c-










~- (


'-4 D-
Q(U)


p


1D0
LC


,c.c
- 0


0
O

0 S-
.o


E
0
0
E




C
0
L
0

^ 0
E C
3 *r-l
.0 >
-O 0


0



r-
0








L.
0
CO
E
S-4



E 0

ef -4


O
0
0
-1









CO



0
" 7
0)

o c


*
0
0
0









0
1)
(-:







c

0
-. '0
S"O C
3: CO


0
0
C-D
r\J









c
E
-3
8
-Q

'-4m
0. 0
r- ..
<.,C1

































Figure 4-10.


Standard curve (Ferguson Plot) for the
determination of the molecular weight of
hydrogenase using native PAGE in the absence of
Triton X-100. hydrogenase; molecular
weight standard proteins.



























Band II


Band I


I I I I


2.0


4.0


6.0 8.0 10.0


Slope


10.0


8.0


6.0



4.0







2.0


1.0


1.0













Figure 4-11 shows the temperature profile for hydrogenase as

determined by the exchange reaction. The data represent the results

of four independent determinations. As can be deduced from the

graph, the optimal temperature for the exchange reaction was 350C.

Figure 4-12 presents an Arrhenius plot for the tritium exchange

reaction catalyzed by hydrogenase between 15 C and 35C. The slope

of the line obtained by plotting the log of the reaction rate versus

the inverse of the absolute temperature at which the reaction was

performed, gives the activation energy for the exchange reaction

catalyzed by hydrogenase. Hydrogenase shows two activation energies

for the exchange reaction, the activation energy is 3657 cal at a

temperature range of 35 C to 20 C and 3,517 cal at temperature below

200C. To determine whether the higher activation energy required at

temperatures below 200C was due to micelle formation by Triton X-100

at lower temperatures, the experiment was also performed in the

absence of Triton X-100. The results obtained in the absence of

Triton X-100 were similar to the results obtained in the presence of

Triton X-100, suggesting that the higher activation energy value

observed at temperatures below 20 C was not due to the presence of

Triton X-100.































U I I I I


I I I


I I I


(.noq uiauoad Jm/paonpoad OzH Jo saiotuo.3itu)


.\' A. i V asEu3o0ipAH


C C-.
O
C;
C 0






C-
0












-4


I I I


I I





































-0 0


NO
>L

0


m 0
00


,) L
C o







0 Q.
-E
V. S-







C)




0
Qo




4 .
QD



00
0.



0 *



cL3
(1-J







*C
ry-




























I


A 'o0















pH Profile


The optimum pH for the catalysis of the exchange reaction was

determined as described in the Materials and Methods section at

different pH and in the presence of three different buffers. The

buffers used and the pH at which the exchange reaction was carried

out were as described in the Materials and Methods section. Figure

4-13 illustrates the pH profile for the exchange activity. A broad

pH optimum between pH 7.0 7.5 was observed for hydrogenase using

the tritium exchange reaction.



Kinetic Characteristics


Since the purified hydrogenase can exist both as a monomer and

a dimer, depending on the presence or absence of detergent, it was

important to determine whether both the monomer and dimer have the

same kinetic properties. To achieve this, the two forms were

separated by gel filtration. The apparent Km and Vmax for the

exchange reaction were determined for both forms of hydrogenase. The

results presented in Table 4-5 show that the apparent Km for hydrogen

and the Vmax for the exchange reaction of the monomer and dimer forms

of the enzyme are comparable to the apparent Km and the Vmax of the

enzyme before the separation. The turn over number calculated based

on the molecular weight values obtained using Gel Filtration suggests




































C~f

LO
C) w
*o
C/ C




r-4 1)
SCL-4







C Q





C) (1*
CO Q


0 3
LC).0

-0
C.Lr c
C fl) n












0 0. 0

-0

O.U
wO '-' s-










C)
0 -






C-
0
to



r.-
60
^ c/









73







































U-






























0 0 0 0
0 0 0
CIA 00
( .inoq *uiaoaid 2w/paanpoId 0 HcJO salowo.oipm)
.,\:AT3)V aSeUaodZOpH














79







C'

hO
0






S0 0
v 0
o '-





0: "- > *- 0 .J










00 0
S- 0
. 0 0(-) cM DC





gI I CC



-0 > 0- C -Y 0. 0








cC 0
0 3 0 0
o C) 3 C







0 0 >

-0 S 4: Iz E
CM- CO




H 0 O.J











^O L OQ S Qm a- i














that the dimer form of the enzym? is composed of two monomers that

are equally active.


The apparent Km was also determined for different electron

carriers of hydrogenase viz: oxidized benzyl vLologen, oxidized

methyl viologen, reduced benzyl viologen, reduced methyl viologen and

hydrogen. The determinations for each of the substrates were done as

described in the Material and Methods section. The computer

generated Lineweaver Burk plots for each of the substrates is as

presented in Figures 14-14, 4-15, 4-16, and 4-17. The results

obtained are an average of three independent determinations and are

summarized in Table 4-6. The apparent Km for oxidized methyl

viologen in the hydrogen uptake reaction was 26.7 mM and the forward

reaction was catalyzed at a maximal velocity of 24.3 micromoles of

methyl viologen reduced/min mg protein. Monitoring the rate of

hydrogen evolution, the apparent Km for reduced methyl viologen was

determined to be 1.5 mM and the Vmax = 35.1 micromoles of hydrogen

produced/min. mg protein. The apparent Km for oxidized benzyl

viologen in hydrogen uptake reaction was 7.7 mM and the Vmax = 49.4

micromoles of benzyl viologen reduced/min mg protein. The apparent

Km for reduced benzyl viologen was 4.0 mM and the maximum velocity at

which the rate of hydrogen evolution reaction proceeds, using reduced

benzyl viologen as a source of electrons was 12.5 micromoles of

hydrogen produced/min. mg protein.










































>
7O 4-)

*M *H

.-4 C)

0

0 )O
loo

0O
- 0






CD
I2 C


a) 0
C -4-
SJ-)


4-)
0 <1)
C)
,-- 0

0
C

0


-.04
*H -4
0






0 ")









to
b 0
.- I
L ._
LL. z













82




























I















I I



OOCC
-4rf








































N>
H *r-

0
- C)


0
OT


0 0

CQ 0


>








i- O
C.
0



S00






.-4
CL
e- G

































C'












C'

CNE






N







































4-)
o -4




0
C) >




0* 0
LO


0
>C







0
" ro
LO






>C

00



4C
OJ



0 0



L.
*o ro
0.4










*
L.O
.r-l








L-H














36























(c






















co o oL



O C
r-i *







































>



0 0


C)

0
LO
s- 0
C3 "


>C
0
0
0C







-4 0
0
OC

S-

L 0
0

0C
0 )
00


















*-










































c
C











Ln 2
E


--





N--
















89


































to t b .0 *O
O 0 C)O
oI r


L I
c *-








to ..- >


0 0 0 0





*- O O
N N C) C)

o -\ 0

o > 0 >





0 .0 0 0 0





--* C C) C CO C)
o x a














Hydrogen Uptake in the Presence of Different Artificial Electron

Acceptors


The ability of hydrogenase to utilize a variety of artificial

electron acceptors was also determined. The experiment as described

in the Materials and Methods section involved the incubation of

hydrogenase with various electron acceptors in the presence of

hydrogen and determination of the rate of reduction of the acceptor,

spectrophotometrically. Table 4-7 lists the values obtained for the

rate of reduction of the various acceptors and their redox potentials

(Eo'). As shown in Table 4-7, hydrogenase can use all five compounds

as electron acceptors. The results indicate that the rate of

hydrogen uptake proceeds at a more rapid rate in the presence of

methylene blue and potassium ferricyanide, compounds with a positive

Eo'.



Inactivation of Hydrogenase by Oxygen


The inactivation of hydrogenase by oxygen was determined by

incubating the enzyme (1.7 microgram/ml) in the presence of air in a

12 x 75 mm tube on a rocking platform at room temperature. At

various time intervals aliquots were withdrawn to monitor tritium

exchange activity. The control sample of hydrogenase was maintained

under similar conditions, but the gas phase was hydrogen. Details of









































*

0










O>
4-1

-r-4




-0

























0
0
E








L
O

41



w
0O
C)


0
(U








4-)






ci)


0 0 O o













N! -n L-- (












O O CM -

I I I + +













0 0 -

0 0 ) -1
*-14 *- L I) E C
> > C 3O
Q--1 .) -q >



0) 0 (V 0 O)
Sc a i


4

UCD

~C)



bO



*r-1 i
-4-)
0
Wa


















O 0

b0: 0
b- ci)







CL
o 1)


*-1
> 4-'

0 "/

D -










GL a
TO *:S0

0. 0



-c ci


Ca )




C)M
f-4Y
.0ci
C> a













the experiment are as described in the Materials and Methods section.

Figure 4-13 gives the oxygen inactivation profile of the hydrogenase

exposed to air and the hydrogenase sample maintained under hydrogen.

The half-life of the hydrogenase in the presence of air was 650

minutes. The inactivation of the monomer and the dimer form of

hydrogenase due to oxygen was also determined. The two forms of

hydrogenase were obtained by Gel Filtration as described in the

Materials and Methods section. The experiment was performed as

described above. The inactivation profile for the first thirty

minutes is as illustrated in Figure 4-19. It is apparent that both

the monomer and dimer form of hydrogenase are equally stable in air.



Stability of Hydrogenase at Alkaline pH


Ballantine and Boxer (10) recently reported the presence of two

different hydrogenases in E. coli. They detected two distinct bands

of hydrogenase activity when Triton X-100 solubilized membranes were

subjected to PAGE at neutral pH. They observed that one of these

bands was labile at alkaline pH (pH 10.0), and lost the hydrogenase

activity. Thus the stability of the purified hydrogenase at alkaline

pH was checked. Hydrogenase was incubated at pH 10.0 for 15 minutes

and then the activity was determined by monitoring the exchange

reaction and the hydrogen uptake reaction at, pH 7.0 and pH 10.0.

For the exchange reaction, 75 microliters of 100 mM glycine, pH 10.0,














or 100 mM phosphate buffer, pH 7.0, was placed in a 12 x 75 mm tube.

The tubes were capped with serum stoppers and the gas phase replaced

with helium. Hydrogenase (25 microliters, 12.0 microgram/ml in 10 mM

phosphate buffer, pH 7.0) was added to the tube and incubated at room

temperature for 15 minutes. After 15 minutes, the pH of the assay

mixture was brought to neutrality or maintained at pH 10.0, by adding

100 microliters of 100 mM phosphate buffer, pH 6.5, or 100

microliters of 100 mM glycine buffer, pH 10.0. Tritium exchange

reaction was performed as described in the Materials and Methods

section. For the hydrogen uptake reaction, 500 microliters of either

100 mM glycine buffer, pH 10.0, or phosphate buffer, pH 7.0, was

placed in a 12 x 75 mm tube. The tubes were capped with serum

stoppers and the gas phase replaced with hydrogen. Hydrogenase (100

microliters, 12.0 microgram/ml in 10 mM phosphate buffer, pH 7.0) was

added and incubated at room temperature for 15 minutes. After 15

minutes, the pH of the assay mixture was brought to neutrality or

maintained at pH 10.0 by adding 1.9 ml of either phosphate buffer, pH

7.0, or 100 mM glycine buffer, pH 10.0. The rate of hydrogen uptake

reaction was determined by monitoring the reduction of benzyl

viologen as described in the Materials and Methods section. The

results presented in Table 4-8 show that the enzyme retained 62.5% of

its exchange activity and 76.5% of its hydrogen uptake activity after

incubation at pH 10.0 for 15 minutes. It is also evident that the




Full Text

PAGE 1

%,2&+(0,&$/ *(1(7,&6 2) +<'52*(1 0(7$%2/,60 ,1 (6&+(5,&+,$ &2/, 385,),&$7,21 $1' &+$5$&7(5,=$7,21 2) +<'52*(1$6( %\ 3UDPDWKHVK 6 3DWVO $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 7KH DXWKRU ZLVKHV WR DFNQRZOHGJH ZLWK JUDWLWXGH WKH KHOS DQG JXLGDQFH RI KLV PDMRU SURIHVVRU 'U 7 6KDQPXJDP 7KH DXWKRU ZRXOG DOVR OLNH WR WKDQN WKH PDQ\ IHOORZ VWXGHQWV KH KDG WKH RSSRUWXLQLW\ WR LQWHUDFW ZLWK RYHU WKH FRXUVH RI WKHVH VWXGLHV 7KH DXWKRU ZRXOG HVSHFLDOO\ OLNH WR WKDQN 'U 5 3 %R\FH 'U ( 'XJJDQ 'U 3 /DLSLV DQG 'U 3 + 6PLWK IRU WKHLU KHOS DGYLFH VXSSRUW DQG HQFRXUDJHPHQW nZKLOH VHUYLQJ RQ WKH DXWKRUV DGYLVRU\ FRPPLWWHH 6SHFLDO WKDQNV DUH GXH WR 'U 6 =DP IRU KLV FRQVWDQW KHOS DGYLFH DQG HQFRXUDJHPHQW

PAGE 3

7$%/( 2) &217(176 $&.12:/('*(0(176 LL /,67 2) $%%5(9,$7,216 Y $%675$&7 YL ,1752'8&7,21 /,7(5$785( 5(9,(: 3K\VLRORJLFDO 5ROH RI +\GURJHQDVH 0HWKRGV WR 0RQLWRU +\GURJHQDVH $FWLYLW\ 3URSHUWLHV RI WKH (Q]\PH +\GURJHQDVH IURP (VFKHULFKLD FROL 0$7(5,$/6 $1' 0(7+2'6 %DFWHULDO 6WUDLQV DQG &XOWXUH &RQGLWLRQV &KHPLFDOV 0HGLD (Q]\PH $VVD\V 3RO\DFU\ODPLGH *HO (OHFWURSKRUHVLV 0ROHFXODU :HLJKW 'HWHUPLQDWLRQ ,URQ DQG $FLG /DELOH 6XOILGH 'HWHUPLQDWLRQ 3URWHLQ 'HWHUPLQDWLRQ 5HPRYDO RI 7ULWRQ ; 7HPSHUDWXUH 3URILOH S+ 3URILOH (IIHFW RI 2[\JHQ RQ 3XULILHG +\GURJHQDVH 5HJXODWLRQ RI +\GURJHQDVH 5(68/76 3XULILFDWLRQ RI +\GURJHQDVH 0ROHFXODU :HLJKW 'HWHUPLQDWLRQ ,URQ DQG 6XOIXU &RQWHQW 7HPSHUDWXUH 3URILOH S+ 3URILOH .LQHWLF &KDUDFWHULVWLFV LLL

PAGE 4

+\GURJHQ 8SWDNH LQ WKH 3UHVHQFH RI 'LIIHUHQW $UWLILFLDO (OHFWURQ $FFHSWRUV ,QDFWLYDWLRQ RI +\GURJHQDVH E\ 2[\JHQ 6WDELOLW\ RI +\GURJHQDVH DW $ONDOLQH S+ +\GURJHQDVH $FWLYLW\ LQ 6ROXEOL]HG 0HPEUDQHV RI +83 0XWDQWV RI ( FROL 5HJXODWLRQ RI +\GURJHQDVH $FWLYLW\ LQ :KROH FHOOV ',6&866,21 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

/,67 2) $%%5(9,$7,216 %9 %HQ]\O YLRORJHQ '($( 'LHWK\ODPLQRHWK\O FHOOXORVH ('7$ (WK\OHQHGLDPLQHWHWUDDFHWLF DFLG )+/ )RUPDWH K\GURJHQO\DVH +83 +\GURJHQ XSWDNH 09 0HWK\O YLRORJHQ 3$*( 3RO\DFU\ODPLGH JHO HOHFWURSKRUHVLV 3(* 3RO\HWK\OHQH JO\FRO 6'6 6RGLXP GRGHF\O VXOIDWH Y

PAGE 6

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI 7KH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO IXOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ %LRFKHPLFDO *HQHWLFV RI +\GURJHQ 0HWDEROLVP LQ (VFKHULFKLD FROL 3XULILFDWLRQ DQG &KDUDFWHUL]DWLRQ RI +\GURJHQDVH %\ 3UDPDWKHVK 6 3DWHO 'HFHPEHU &KDLUPDQ 'U 7 6KDQPXJDP 0DMRU 'HSDUWPHQW 0LFURELRORJ\ DQG &HOO 6FLHQFH $ SURFHGXUH LV GHVFULEHG IRU WKH SXULILFDWLRQ RI PHPEUDQHERXQG K\GURJHQDVH IURP (VFKHULFKLD FROL 7KLV SURFHGXUH XVHV D QRQLRQLF GHWHUJHQW SUHFLSLWDWLQJ DJHQWV DQG D VHULHV RI FROXPQ FKURPDWRJUDSK\ VWHSV WR SXULI\ WKH SURWHLQ WR KRPRJHQHLW\ 7KH PROHFXODU ZHLJKW RI WKH SURWHLQ LV GHWHUPLQHG LQ WKH SUHVHQFH DQG DEVHQFH RI GHWHUJHQW E\ JHO ILOWUDWLRQ DQG SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV XQGHU QRQGHQDWXULQJ FRQGLWLRQV 7KHVH UHVXOWV VKRZ WKDW WKH HQ]\PH H[LVWV SUHGRPLQDQWO\ DV D PRQRPHU Gf LQ WKH SUHVHQFH RI 7ULWRQ ; DQG DV D GLPHU Gf LQ LWV DEVHQFH 7KH VXEXQLW PROHFXODU ZHLJKW LV 7KH HQ]\PH KDV YL

PAGE 7

PROHFXOHV RI LURQ DQG PROHFXOHV RI DFLGODELOH VXOIXU SHU G SURWHLQ 7KH RSWLPXP WHPSHUWXUH IRU FDWDO\VLV RI WKH H[FKDQJH UHDFWLRQ LV r& DQG KDV D EURDG S+ RSWLPXP EHWZHHQ S+ YDOXHV RI DQG 7KH HQ]\PH KDV DQ DSSDUHQW .P RI P0 IRU R[LGL]HG PHWK\O YLRORJHQ P0 IRU R[LGL]HG EHQ]\O YLRORJHQ P0 IRU UHGXFHG PHWK\O YLRORJHQ P0 IRU UHGXFHG EHQ]\O YLRORJHQ DQG P0 IRU K\GURJHQ 7KH GLPHU LV WZLFH DV DFWLYH DV WKH PRQRPHU 7KH HQ]\PH LV LQDFWLYDWHG E\ DLU ZLWK D KDOI OLIH RI PLQXWHV &RPSDULVRQ RI WKH ELRFKHPLFDO SURSHUWLHV RI WKH SXUH K\GURJHQDVH ZLWK WKH K\GURJHQDVH SURGXFHG E\ WKH +83 PXWDQWV VXJJHVWV WKH SXUH K\GURJHQDVH LV LQYROYHG LQ WKH K\GURJHQ XSWDNH UHDFWLRQ LQ (B FROL 6 WXG\ RI WKH UHJXODWLRQ RI K\GURJHQDVH DFWLYLW\ LQ ZKROH FHOOV LQGLFDWHV WKDW WKH HQ]\PH DFWLYLW\ LV LQGXFLEOH XQGHU DQDHURELF FRQGLWLRQV DQG PD[LPDO OHYHOV RI K\GURJHQDVH DFWLYLW\ FDQ EH GHWHFWHG ZLWKLQ PLQXWHV DIWHU DQDHURELF VKLIW +\GURJHQDVH DFWLYLW\ GHFOLQHG UDSLGO\ XSRQ WKH DGGLWLRQ RI HOHFWURQ DFFHSWRUV YL] R[\JHQ DQG QLWUDWH 7KH UDWH RI GHFOLQH RI K\GURJHQDVH DFWLYLW\ GXH WR WKH DGGLWLRQ RI QLWUDWH ZDV ELSKDVLF ZLWK DQ LQLWLDO KDOI OLIH RI PLQXWHV DQG HLJKW\ PLQXWHV DIWHU DGGLWLRQ RI QLWUDWH WKH K\GURJHQDVH DFWLYLW\ GHFOLQHG ZLWK D KDOI OLIH RI PLQXWHV 7KLV UDSLG GHFOLQH LQ DFWLYLW\ ZDV DFFRPSDQLHG E\ WKH DSSHDUDQFH RI QLWULWH LQ WKH PHGLXP 7KH KDOI OLIH RI K\GURJHQDVH DFWLYLW\ RI WKH FXOWXUH H[SRVHG WR R[\JHQ LV PLQXWHV YLL

PAGE 8

,1752'8&7,21 6LQFH WKH GDZQ RI FLYLOL]DWLRQ PDQNLQG KDV EHHQ LQ VHDUFK RI DQ HIILFLHQW VRXUFH RI HQHUJ\ ,W KDV EHHQ VKRZQ WKURXJKRXW KLVWRU\ WKDW WKHUH LV D GLUHFW FRUUHODWLRQ EHWZHHQ WKH HQHUJ\ FRQVXPSWLRQ SHU FDSLWD DQG WKH VWDQGDUG RI OLYLQJ 7RGD\ WKH ZRUOGnV SRSXODWLRQ LV LQFUHDVLQJ DW DQ DODUPLQJ UDWH 0RVW RI WKH LQFUHDVH LQ WKH SRSXODWLRQ LV WDNLQJ SODFH LQ WKH LPSRYHULVKHG QDWLRQV RI WKH ZRUOG $V WKLV PDMRU SDUW RI WKH ZRUOGnV SRSXODWLRQ VWULYHV WR LPSURYH WKHLU VWDQGDUG RI OLYLQJ WKHUH ZLOO EH DQ XQSUHFHGHQWHG GHPDQG RQ WKH HQHUJ\ UHVRXUFHV RI WKH ZRUOG 7KLV LQFUHDVH LQ GHPDQG ZLOO KDYH IDUUHDFKLQJ FRQVHTXHQFHV RQ WKH OLIH RI HYHU\ OLYLQJ EHLQJ RQ WKLV SODQHW $V ZH KDYH DOUHDG\ VHHQ WKH LQFUHDVHG GHPDQG IRU HQHUJ\ LQ WKH ODVW FRXSOH RI GHFDGHV KDV VHQW WKH SULFH RI IRVVLO IXHOV RQ D VKDUS LQFUHDVH $V D UHVXOW RI WKLV WKH GHYHORSLQJ FRXQWULHV DUH FDXJKW LQ D QR ZLQ VLWXDWLRQ 7R EHFRPH LQGXVWULDOL]HG D QDWLRQ KDV WR KDYH DQ DEXQGDQFH RI HQHUJ\ DW LWV GLVSRVDO DQG WR EH DEOH WR LPSRUW WKH HQHUJ\ LW QHHGV IRU LQGXVWULDOL]DWLRQ LW KDV WR KDYH WKH HFRQRPLF UHVRXUFHV $OVR WKH LQFUHDVHG GHPDQG LQ HQHUJ\ ZRUOG ZLGH KDV OHG WR VRPH RI WKH PDMRU SROLWLFDO FULVHV DURXQG WKH JOREH

PAGE 9

3ROLWLFDO DQG HFRQRPLF FRQVHTXHQFHV RI WKH LQFUHDVH LQ HQHUJ\ GHPDQG DUH QRW WKH RQO\ FRQFHUQV WKDW ZH KDYH WR DGGUHVV 'XH WR WKH LQFUHDVH LQ WKH HQHUJ\ GHPDQG RQH RI WKH TXHVWLRQV WKDW ZH KDYH WR DVN RXUVHOYHV LV WKH HIIHFW WKH LQFUHDVH LQ HQHUJ\ FRQVXPSWLRQ ZLOO KDYH RQ WKH HQYLURQPHQW 0RVW RI RXU HQHUJ\ GHPDQG WRGD\ LV PHW E\ IRVVLO IXHO ,W LV DSSDUHQW WKDW WKH IRVVLO IXHO UHVHUYHV ZLOO EH HYHQWXDOO\ GHSOHWHG DQG LQ DQ\ HYHQW WKH QDWXUDO HQYLURQPHQW FDQQRW UHDGLO\ DVVLPLODWH WKH E\SURGXFWV RI IRVVLO IXHO FRQVXPSWLRQ DW PXFK KLJKHU UDWHV WKDQ LW GRHV ZLWKRXW VXIIHULQJ XQDFFHSWDEOH OHYHOV RI HQYLURQPHQWDO GHFD\ 7KXV WRGD\ PRUH WKDQ HYHU EHIRUH ZH UHDOL]H WKH LPSRUWDQFH RI D IXHO VRXUFH WKDW LV HFRQRPLFDO DQG HIILFLHQW KDV QR WR[LF HQG SURGXFWV DQG FDQ EH UHF\FOHG :LWK WKLV EOHDN RXWORRN IRU WKH IXWXUH LQ WKH ILHOG RI HQHUJ\ D ORW RI PRQH\ DQG HIIRUW KDYH EHHQ VSHQW LQ H[SORULQJ DOWHUQDWLYH VRXUFHV RI HQHUJ\ WKDW DUH HIILFLHQW DQG QRQSROOXWLQJ $W SUHVHQW WKH WZR PRVW SURPLVLQJ DUHDV VHHP WR EH VRODU HQHUJ\ DQG ELRPDVV FRQYHUVLRQ %RWK WKHVH ILHOGV KDYH WKH DGYDQWDJH RI EHLQJ SUHVHQW LQ QDWXUH LQ DEXQGDQFH 2QH RI WKH SURGXFWV WKDW FDQ EH REWDLQHG IURP ERWK ELRPDVV FRQYHUVLRQ DQG VRODU HQHUJ\ LV K\GURJHQ +\GURJHQ DV DQ HQHUJ\ VRXUFH RI WKH IXWXUH KDV HQRUPRXV SRWHQWLDO ,W KDV WKH DGYDQWDJH RI EHLQJ D YHU\ FOHDQ IXHO 8QOLNH WKH IRVVLO IXHOV RI WRGD\ FRPEXVWLRQ RI K\GURJHQ GRHV QRW \LHOG DQ\ RI WKH WR[LF ZDVWH SURGXFWV YL] 6&A &2 12A HWF :DWHU LV WKH PDLQ SURGXFW DQG WKH

PAGE 10

ZDWHU SURGXFHG LV HDVLO\ UHF\FOHG LQ QDWXUH 7KH ELJJHVW DGYDQWDJH RI XVLQJ K\GURJHQ DV D IXHO VRXUFH RI WKH IXWXUH LV WKH IDFW WKDW LW FDQ EH SURGXFHG RQ D ODUJH VFDOH XVLQJ ELRORJLFDO V\VWHPV +\GURJHQ LV SURGXFHG E\ PRVW SURFDU\RWLF PLFURRUJDQLVPV f :H FDQ H[SORLW WKHVH ELRORJLFDO V\VWHPV DQG XWLOL]H WKH HQRUPRXV SRRO RI HQHUJ\ULFK FRPSRXQGV VXFK DV OLJQLQ FHOOXORVH DQG FHOORELRVH IRXQG LQ QDWXUH +\GURJHQ LV DOVR SURGXFHG E\ F\DQREDFWHULD DQG SKRWRV\QWKHWLF EDFWHULD f 'XULQJ SKRWRV\QWKHVLV OLJKW HQHUJ\ LV XVHG WR JHQHUDWH HQHUJ\ULFK FRPSRXQGV VXFK DV 1$'+ 1$'3+ DQG $73 7KH $73 1$'+ DQG 1$'3+ FDQ EH XVHG WR UHGXFH SURWRQV UHVXOWLQJ LQ WKH HYROXWLRQ RI K\GURJHQ 7KXV LW LV FRQFHLYDEOH WKDW VRPH GD\ LQ WKH IXWXUH K\GURJHQ FDQ EH SURGXFHG RQ D ODUJH VFDOH E\ KDUQHVVLQJ VRODU HQHUJ\ +RZHYHU LI ZH DUH WR H[SORLW K\GURJHQ DV WKH HQHUJ\ RI WKH IXWXUH ZH VKRXOG KDYH D GHWDLOHG XQGHUVWDQGLQJ RI WKH UROH LW SOD\V LQ QDWXUH %LRORJLFDOO\ K\GURJHQ LV SURGXFHG E\ PRVW SURFDU\RWLF RUJDQLVPV JURZLQJ LQ WKH DEVHQFH RI LQRUJDQLF HOHFWURQ DFFHSWRUV VXFK DV R[\JHQ RU QLWUDWH f 'XULQJ IHUPHQWDWLRQ PDQ\ EDFWHULD XVH SURWRQV DV DQ HOHFWURQ VLQN UHVXOWLQJ LQ WKH HYROXWLRQ RI K\GURJHQ +\GURJHQ LV DOVR FRQVXPHG E\ PDQ\ EDFWHULD DV D VRXUFH RI UHGXFLQJ SRZHU XQGHU DSSURSULDWH FRQGLWLRQV f 'XULQJ WKH IRUPDWLRQ RI PHWKDQH D ZLGHO\ XVHG IXHO PHWKDQRJHQV XWLOL]H K\GURJHQ DV D VRXUFH RI UHGXFWDQW WR UHGXFH &2A ,I ZH XQGHUVWDQG

PAGE 11

WKH UROH RI K\GURJHQ JDV LQ WKHVH UHDFWLRQV WR D JUHDWHU H[WHQW ZH ZLOO EH DEOH WR H[SORLW LW IRU RXU RZQ JRRG $W WKH FHQWHU RI WKH K\GURJHQ PHWDEROLVP LQ ELRORJLFDO V\VWHPV OLHV WKH HQ]\PH K\GURJHQDVH ,W FDWDO\]HV WKH SULPDU\ UHDFWLRQ LQ K\GURJHQ PHWDEROLVP WKH UHYHUVLEOH DFWLYDWLRQ RI D K\GURJHQ PROHFXOH 7KXV LW LV LPSHUDWLYH WKDW ZH XQGHUVWDQG WKH PHFKDQLVP RI FDWDO\VLV RI WKLV EDVLF UHDFWLRQ DQG LWV UHJXODWLRQ LQ QDWXUH 7KH EHVW ZD\ WR DSSURDFK WKH EDVLF TXHVWLRQV UHJDUGLQJ WKH PHFKDQLVP RI FDWDO\VLV DQG LWV RSWLPDO FRQGLWLRQV IRU FDWDO\VLV LV WR VWXG\ WKH HQ]\PH DIWHU LW KDV EHHQ REWDLQHG LQ D SXUH VWDWH 7KH SXULILHG HQ]\PH FDQ DOVR EH XVHG WR UDLVH DQWLERGLHV LQ D PDPPDO 7KH DQWLERGLHV FDQ WKHQ EH XVHG WR HOXFLGDWH WKH UHJXODWLRQ RI K\GURJHQDVH V\QWKHVLV LGHQWLI\ WKH VWUXFWXUDO JHQH IRU WKH HQ]\PH DQG DOVR GHWHUPLQH WKH ORFDWLRQ RI K\GURJHQDVH LQ WKH PHPEUDQH ZLWK UHVSHFW WR RWKHU SURWHLQV 6LQFH ( FROL SRVVHVVHV K\GURJHQDVH LW VHHPV ORJLFDO WR H[DPLQH WKH UROH LW SOD\V LQ WKH FHOOV PHWDEROLVP ( FROL RIIHUV WKH IROORZLQJ DGYDQWDJHV f ,W LV D YHU\ ZHOO VWXGLHG RUJDQLVP ZLWK UHVSHFW WR PHWDEROLVP f +DV HVWDEOLVKHG WHFKQLTXHV WR LQYHVWLJDWH WKH ELRFKHPLVWU\ RI WKH YDULRXV PHWDEROLF UHDFWLRQV DQG IRU JHQHWLF PDQLSXODWLRQ RI WKH RUJDQLVP f 7KH HDVH ZLWK ZKLFK D ODUJH QXPEHU RI PXWDQWV FDQ EH LVRODWHG DQG FKDUDFWHUL]HG $ WKRURXJK XQGHUVWDQGLQJ RI K\GURJHQ PHWDEROLVP LQ RQH RUJDQLVP PD\ KHOS XV EHWWHU XQGHUVWDQG WKH K\GURJHQ PHWDEROLVP RI RWKHU PLFURRUJDQLVPV

PAGE 12

,Q (VFKHULFKLD FROL K\GURJHQDVH LV NQRZQ WR EH D SDUW RI WKH IRUPDWH K\GURJHQO\DVH HQ]\PH FRPSOH[ ZKLFK LV UHVSRQVLEOH IRU WKH HYROXWLRQ RI K\GURJHQ JDV IURP IRUPDWH XQGHU DQDHURELF JURZWK FRQGLWLRQV +\GURJHQDVH LV DOVR LQYROYHG LQ WKH JURZWK RI ( FROL XQGHU FRQGLWLRQV ZKHUH K\GURJHQ LV WKH VRXUFH RI UHGXFWDQW LQ WKH SUHVHQFH RI D VXLWDEOH HOHFWURQ DFFHSWRU YL] IXPDUDWH ,W LV QRW NQRZQ ZKHWKHU WKH VDPH HQ]\PH LV LQYROYHG LQ ERWK WKH K\GURJHQ HYROXWLRQ DQG XSWDNH UHDFWLRQV RU ZKHWKHU WKHUH DUH WZR VHSDUDWH K\GURJHQDVHV UHVSRQVLEOH IRU WKH WZR GLIIHUHQW UHDFWLRQV 7KHUH DUH D QXPEHU RI UHSRUWV LQ WKH OLWHUDWXUH FRQFHUQLQJ K\GURJHQ PHWDEROLVP LQ ( FROL 0RVW RI WKH VWXGLHV KDYH EHHQ GLUHFWHG WRZDUG FKDUDFWHUL]DWLRQ RI WKH HQ]\PH K\GURJHQDVH DQG WRZDUG GHWHUPLQLQJ WKH QXPEHU RI K\GURJHQDVH SURWHLQV LQ D FHOO GHWDLOV DUH SUHVHQWHG LQ WKH /LWHUDWXUH 5HYLHZ VHFWLRQf +RZHYHU WKH QXPEHU RI K\GURJHQDVHV SUHVHQW LQ WKH FHOO KDV QRW \HW EHHQ HVWDEOLVKHG FRQFOXVLYHO\ (YHQ WKH UHSRUWV GHVFULELQJ WKH SK\VLFDO SURSHUWLHV RI WKH HQ]\PH SURYLGH FRQIOLFWLQJ PROHFXODU ZHLJKWV IRU WKH HQ]\PH $GDPV DQG +DOO f UHSRUWHG D PROHFXODU ZHLJKW RI IRU WKH K\GURJHQDVH WKH\ SXULILHG IURP ( FROL ,Q %HUQKDUG DQG *RWWVFKDON f UHSRUWHG D PROHFXODU ZHLJKW RI IRU K\GURJHQDVH IURP ( FROL 7KH PROHFXODU ZHLJKW LQ WKH ODWWHU UHSRUW ZDV GHWHUPLQHG E\ WKH VXFURVH GHQVLW\ JUDGLHQW FHQWULIXJDWLRQ DQG JHO ILOWUDWLRQ RI D SDUWLDOO\ SXULILHG SUHSDUDWLRQ 2Q WKH RWKHU KDQG *UDKDP HW DO f LQ UHSRUWHG D PROHFXODU ZHLJKW

PAGE 13

RI IRU K\GURJHQDVH IURP ( FROL 7KH\ GHWHUPLQHG WKH PROHFXODU ZHLJKW E\ DQ LQGLUHFW PHWKRG ZKLFK LQYROYHG HOHFWURSKRUHVLV RI VROXELOL]HG PHPEUDQH YHVLFOHV LQ QDWLYH 3$*( VWDLQLQJ IRU K\GURJHQDVH DFWLYLW\ IROORZHG E\ 6'63$*( RI WKH H[FLVHG DFWLYH EDQG IURP WKH JHO ,W VKRXOG DOVR EH VWDWHG WKDW ERWK $GDPV DQG +DOO f DQG %HUQDUG DQG *RWWVFKDON f XVHG SURWHDVHV WR DLG LQ WKH VROXELOL]DWLRQ RI WKH HQ]\PH IURP WKH PHPEUDQH ,W LV SRVVLEOH WKDW WKH HQ]\PH REWDLQHG DIWHU SURWHDVH WUHDWPHQW PD\ QRW UHIOHFW WKH SURSHUWLHV RI WKH QDWLYH HQ]\PH 7KLV ZRUN GHVFULEHV D VFKHPH IRU SXULILFDWLRQ RI WKH HQ]\PH K\GURJHQDVH WR KRPRJHQHLW\ ZLWKRXW WKH XVH RI SURWHRO\WLF DJHQWV 7KH HQ]\PH LV FKDUDFWHUL]HG ZLWK UHVSHFW WR LWV ELRFKHPLFDO DQG SK\VLFDO SURSHUWLHV 7KH UHJXODWLRQ RI WKH HQ]\PH LQ FXOWXUHV JURZLQJ LQ WKH SUHVHQFH RU DEVHQFH RI HOHFWURQ DFFHSWRUV VXFK DV R[\JHQ DQG QLWUDWH LV DOVR VWXGLHG

PAGE 14

/,7(5$785( 5(9,(: 3URGXFWLRQ DQG FRQVXPSWLRQ RI K\GURJHQ JDV E\ PLFURRUJDQLVPV KDV EHHQ NQRZQ VLQFH WKH WXUQ RI WKH FHQWXU\ f +RZHYHU LW ZDV RQO\ LQ WKH nV WKDW WKH HQ]\PH UHVSRQVLEOH IRU WKH HYROXWLRQ RI K\GURJHQ JDV GXULQJ EDFWHULDO IHUPHQWDWLRQ ZDV LGHQWLILHG DQG WKH SK\VLRORJ\ RI WKLV SURFHVV VWXGLHG f 'XULQJ DQ LQYHVWLJDWLRQ RI D SROOXWLRQ SUREOHP LQ WKH *UHDW 2XVH ULYHU 6WHSKHQVRQ DQG 6WLFNODQG f REVHUYHG WKDW WKH PLFURRUJDQLVPV WKULYLQJ XSRQ WKH VXJDU EHHW ZDVWH GXPSHG LQWR WKH VOXJJLVK ULYHU ZHUH UHVSRQVLEOH IRU WKH HYROXWLRQ RI JDVHV VXFK DV K\GURJHQ FDUERQ GLR[LGH DQG PHWKDQH 7KH\ DOVR VKRZHG WKDW ZDVKHG FXOWXUHV RI EDFWHULDO LVRODWHV IURP WKH ULYHU EHG ZHUH DEOH WR UHGXFH PHWK\OHQH EOXH LQ WKH SUHVHQFH RI K\GURJHQ 7KLV REVHUYDWLRQ OHG WKHP WR FRQFOXGH WKDW WKH PLFURRUJDQLVPV SRVVHVHG DQ HQ]\PH FDSDEOH RI DFWLYDWLQJ D PROHFXOH RI K\GURJHQ 7KLV HQ]\PH ZKLFK WKH\ WHUPHG K\GURJHQDVH (& f FDWDO\VHV WKH UHYHUVLEOH UHDFWLRQ DV UHSUHVHQWHG E\ WKH HTXDWLRQ Uc HFDUULHU R[LGLVHGf Y + HfFDUULHU UHGXFHGf

PAGE 15

6LQFH WKH LQLWLDO GLVFRYHU\ RI K\GURJHQDVH WKH HQ]\PH KDV EHHQ VKRZQ WR EH SUHVHQW LQ D GLYHUVH JURXS RI PLFURRUJDQLVPV ERWK EDFWHULD DQG DOJDH f ,Q YLYR K\GURJHQDVH LV XVXDOO\ FRXSOHG WR RWKHU HOHFWURQ FDUULHUV RU LV D SDUW RI D PXOWLHQ]\PH FRPSOH[ DQG WKXV WKH HQ]\PH JHQHUDOO\ FDWDO\]HV DQ LUUHYHUVLEOH UHDFWLRQ LQ YLYR +RZHYHU LQ WKH SUHVHQFH RI VXLWDEOH HOHFWURQ GRQRUV RU DFFHSWRUV DOO SXUH K\GURJHQDVH SURWHLQV H[DPLQHG VR IDU FDWDO\]H UHYHUVLEOH UHDFWLRQV 3K\VLRORJLFDO 5ROH RI +\GURJHQDVH 7KH SK\VLRORJLFDO UROH RI K\GURJHQDVH LQ WKH DQDHURELF PHWDEROLVP RI PLFURRUJDQLVPV FDQ EH GLYLGHG LQWR WZR FDWHJRULHV f HYROXWLRQ RI K\GURJHQ DQG f FRQVXPSWLRQ RI K\GURJHQ ,Q WKH IHUPHQWDWLYH EDFWHULD HYROXWLRQ RI K\GURJHQ YLD K\GURJHQDVH FDQ EH VHHQ DV D PHDQV RI R[LGL]LQJ WKH HOHFWURQ FDUULHUV UHGXFHG GXULQJ IHUPHQWDWLRQ 7KLV R[LGDWLRQ LV UHTXLUHG WR DOORZ WKH HOHFWURQ FDUULHUV WR UHF\FOH VR WKDW D FRQWLQXRXV VXSSO\ RI $73 FDQ EH JHQHUDWHG E\ VXEVWUDWH OHYHO SKRVSKRU\ODWLRQ )RU H[DPSOH LQ &ORVWULGLXP SDVWHXULDQXP HDFK PROH RI JOXFRVH \LHOGV WZR PROHV RI S\UXYDWH ZKLFK LV IXUWKHU GHJUDGHG WR DFHW\O&R$ &2A DQG K\GURJHQ YLD S\UXYDWHIHUUHGR[LQ R[LGRUHGXFWDVH DQG K\GURJHQDVH f 6RPH RI WKH H[FHVV 1$'+ JHQHUDWHG DW WKH OHYHO RI JO\FHUDOGHK\GHSKRVSKDWH GHK\GURJHQDVH LV R[LGLVHG WR SURGXFH

PAGE 16

K\GURJHQ E\ 1$'+IHUUHGR[LQ R[LGRUHGXFWDVH DQG K\GURJHQDVH f 7KXV WKH UHGR[ EDODQFH LV PDLQWDLQHG LQ WKH FHOO ZLWKRXW WKH QHHG IRU WHUPLQDO HOHFWURQ DFFHSWRUV RWKHU WKDQ SURWRQV ,Q B( FROL S\UXYDWH LV PHWDEROL]HG YLD WKH S\UXYDWHIRUPDWHO\DVH HQ]\PH FRPSOH[ WR IRUPDWH DQG DFHW\O &R$ f 7KH IRUPDWH LV IXUWKHU PHWDEROL]HG WR &2 DQG + YLD WKH IRUPDWH K\GURJHQO\DVH FRPSOH[ RI ZKLFK K\GURJHQDVH LV DQ LQWHJUDO SDUW f 8QGHU FRQGLWLRQV ZKHUH K\GURJHQ LV WKH RQO\ VRXUFH RI UHGXFLQJ SRZHU DQG HQHUJ\ K\GURJHQDVH R[LGL]HV K\GURJHQ 7KH HOHFWURQV REWDLQHG DUH XWLOL]HG WR UHGXFH LQRUJDQLF RU RUJDQLF HOHFWURQ DFFHSWRUV f )RU H[DPSOH WKH JHQXV 'HVXOIRYLEULR B SRVVHVVHV WKH DELOLW\ WR XVH 62A DV D WHUPLQDO HOHFWURQ DFFHSWRU (OHFWURQV REWDLQHG IURP WKH R[LGDWLRQ RI K\GURJHQ DUH XWLOL]HG WR UHGXFH 62\ DQG \LHOG 6n f+K 3DUDFRFFX GHQLWULILFDQV KDV WKH DELOLW\ WR XWLOL]H QLWUDWH DV WKH WHUPLQDO HOHFWURQ DFFHSWRU IRU WKH HOHFWURQV REWDLQHG IURP WKH R[LGDWLRQ RI K\GURJHQ E\ K\GURJHQDVH f ,Q PHWKDQRJHQV K\GURJHQ FDQ VHUYH DV WKH VROH HOHFWURQ GRQRU IRU WKH UHGXFWLRQ RI &2A WR PHWKDQH f ,Q ( FROL XQGHU DSSURSULDWH FRQGLWLRQV K\GURJHQ FDQ VHUYH DV DQ HOHFWURQ GRQRU WR UHGXFH HOHFWURQ DFFHSWRUV VXFK DV IXPDUDWH QLWUDWH DQG R[\JHQ f ,Q DOO RI WKHVH UHDFWLRQV K\GURJHQDVH LV DQ HVVHQWLDO HQ]\PH DQG LV DVVRFLDWHG ZLWK WKH PHPEUDQH DQG DQ HOHFWURQ WUDQVSRUW FKDLQ f 7KHUHIRUH WKH R[LGDWLRQ RI K\GURJHQ QRW RQO\ VHUYHV DV

PAGE 17

D VRXUFH RI HOHFWURQV EXW WKH DVVRFLDWLRQ RI K\GURJHQDVH ZLWK WKH PHPEUDQH KHOSV JHQHUDWH D SURWRQ JUDGLHQW DFURVV WKH PHPEUDQH +\GURJHQDVH DOVR SOD\V D GXDO UROH LQ SKRWRV\QWKHWLF EDFWHULD 'XULQJ SKRWRV\QWKHVLV WKH EDFWHULD XWLOL]H K\GURJHQ DV D VRXUFH RI UHGXFWDQW IRU &2A IL[DWLRQ f 7KLV DELOLW\ WR XWLOL]H K\GURJHQ DV D VRXUFH RI UHGXFWDQW LV PHGLDWHG E\ K\GURJHQDVH f ,Q DGGLWLRQ GXULQJ GDUN IHUPHQWDWLRQ WKH SXUSOH QRQVXOSKXU EDFWHULD PHWDEROL]H S\UXYDWH YLD D S\UXYDWH IRUPDWHO\DVH DQG D IRUPDWH K\GURJHQO\DVH V\VWHP DQDORJRXV WR WKDW IRXQG LQ (K FROL f $QRWKHU JURXS RI PLFURRUJDQLVPV WKDW SRVVHVV K\GURJHQDVH LV WKH DHURELF K\GURJHQ R[LGL]LQJ EDFWHULD 7KHVH PLFURRUJDQLVPV DUH FKDUDFWHUL]HG E\ WKHLU DELOLW\ WR JURZ DXWRWURSKLFDOO\ XVLQJ K\GURJHQ DV WKH VROH HOHFWURQ GRQRU &2A DV WKH FDUERQ VRXUFH DQG R[\JHQ DV WKH WHUPLQDO R[LGDQW f 6RPH RI WKH PLFURRUJDQLVPV EHORQJLQJ WR WKLV JURXS KDYH WZR GLIIHUHQW W\SHV RI K\GURJHQDVHV 2QH RI WKH K\GURJHQDVHV LV VROXEOH LQ WKH F\WRSODVP DQG UHGXFHV 1$' GLUHFWO\ ZLWK K\GURJHQ f 7KH RWKHU K\GURJHQDVH LV PHPEUDQH ERXQG DQG GRQDWHV HOHFWURQV WR WKH UHVSLUDWRU\ FKDLQ ZKLFK LQ WXUQ UHGXFHV R[\JHQ DQG WKXV SURGXFHV HQHUJ\ IRU DXWRWURSKLF JURZWK f )URP WKH H[DPSOHV FLWHG DERYH LW FDQ EH VHHQ WKDW K\GURJHQDVH SOD\V DQ LPSRUWDQW UROH LQ WKH SK\VLRORJ\ DQG PHWDEROLVP RI D GLYHUVH JURXS RI PLFURRUJDQLVPV

PAGE 18

0HWKRGV WR 0RQLWRU +\GURJHQDVH $FWLYLW\ ,Q WKH FODVVLFDO K\GURJHQDVH DVVD\ LQYROYHG WKH UHGXFWLRQ RI PHWK\OHQH EOXH LQ WKH SUHVHQFH RI K\GURJHQ f 7RGD\ K\GURJHQDVH DFWLYLW\ FDQ EH PRQLWRUHG E\ WKUHH GLIIHUHQW PHWKRGV f K\GURJHQ HYROXWLRQ f K\GURJHQ FRQVXPSWLRQ DQG f WKH H[FKDQJH UHDFWLRQ f ,Q WKH K\GURJHQ HYROXWLRQ UHDFWLRQ WKH DELOLW\ RI K\GURJHQDVH WR UHGXFH SURWRQV LQ WKH SUHVHQFH RI VXLWDEOH HOHFWURQ GRQRUV LV PRQLWRUHG (OHFWURQ GRQRUV VXFK DV UHGXFHG IHUUHGR[LQ f F\WRFKURPH F f DQG UHGXFHG YLRORJHQ G\HV f KDYH EHHQ HPSOR\HG 7KH UDWH RI K\GURJHQ HYROXWLRQ LV PRQLWRUHG HLWKHU PDQRPHWULFDOO\ RU E\ XVLQJ D JDV FKURPDWRJUDSK RU D K\GURJHQ HOHFWURGH f &RQYHUVHO\ LQ WKH K\GURJHQ XSWDNH UHDFWLRQ WKH DELOLW\ RI K\GURJHQDVH WR R[LGL]H K\GURJHQ WR SURWRQV DQG HOHFWURQV LV PRQLWRUHG 7KH R[LGDWLRQ RI K\GURJHQ UHTXLUHV WKH SUHVHQFH RI VXLWDEOH HOHFWURQ DFFHSWRUV ,Q WKH SUHVHQFH RI VXFK HOHFWURQ DFFHSWRUV WKH UDWH RI WKH UHDFWLRQ FDQ EH PRQLWRUHG HLWKHU VSHFWURSKRWRUQHWULFDOO\ RU E\ XVLQJ D JDV FKURPDWRJUDSK RU D K\GURJHQ HOHFWURGH f ,Q WKH H[FKDQJH UHDFWLRQ K\GURJHQDVH DFWLYLW\ FDQ EH PHDVXUHG E\ PRQLWRULQJ WKH H[FKDQJH EHWZHHQ PROHFXODU K\GURJHQ DQG KHDY\ ZDWHU RU EHWZHHQ WULWLXP JDV DQG ZDWHU f

PAGE 19

)DUNDV HW DO f ZHUH WKH ILUVW WR GHPRQVWUDWH DQ H[FKDQJH UHDFWLRQ EHWZHHQ K\GURJHQ JDV DQG KHDY\ ZDWHU FDWDO\VHG E\ B( FROL 7KH UHDFWLRQ DV UHSUHVHQWHG E\ WKH HTXDWLRQ +' + Y f§ +'2 + LV FDWDO\VHG E\ K\GURJHQDVH 7KH UDWH RI WKH IRUZDUG UHDFWLRQ FDQ EH PHDVXUHG E\ PRQLWRULQJ WKH DSSHDUDQFH RI WKH LVRWRSH LQ WKH DTXHRXV SKDVH ,Q *LQJUDV HW DOf LQWURGXFHG D PRGLILFDWLRQ RI WKH H[FKDQJH DVVD\ LQ ZKLFK WULWLXP JDV ZDV XVHG LQ SODFH RI K\GURJHQ DQG KHDY\ ZDWHU ZDV UHSODFHG E\ ZDWHU ,Q WKLV PRGLILHG DVVD\ DV UHSUHVHQWHG E\ WKH HTXDWLRQ +7 + +72 + K\GURJHQDVH DFWLYLW\ FDQ EH IROORZHG E\ PRQLWRULQJ WKH DFFXPXODWLRQ RI WULWLDWHG ZDWHU LQ WKH DTXHRXV SKDVH ,I WKH K\GURJHQ HYROXWLRQ RU K\GURJHQ FRQVXPSWLRQ UHDFWLRQ LV XVHG WR GHWHUPLQH K\GURJHQDVH DFWLYLW\ RQH KDV WR EHDU LQ PLQG WKDW WKH UDWH RI WKH UHDFWLRQ PD\ QRW EH D WUXH UHIOHFWLRQ RI K\GURJHQDVH DFWLYLW\ 6LQFH K\GURJHQDVH LV XVXDOO\ DVVRFLDWHG ZLWK RWKHU HOHFWURQ WUDQVSRUW SURWHLQV LQ WKH FHOO LW LV SRVVLEOH WKDW WKH DFWLYLW\ RI K\GURJHQDVH LQ ZKROH FHOOV RU LQWDFW PHPEUDQHV PRQLWRUHG XVLQJ DUWLILFLDO HOHFWURQ DFFHSWRUV RU GRQRUV PD\ UHIOHFW WKH

PAGE 20

DFWLYLW\ RI D PXOWLHQ]\PH FRPSOH[ RI ZKLFK K\GURJHQDVH LV RQH RI WKH PDQ\ FRPSRQHQWV *LWLOLW] DQG .UDVQD f GLG REVHUYH WKLV SKHQRPHQRQ 7KH\ IRXQG WKDW WKH DFWLYLW\ RI K\GURJHQDVH IURP &KURPDWLXP PHDVXUHG E\ UHGXFWLRQ RI DUWLILFLDO HOHFWURQ FDUULHUV GHFUHDVHG GXULQJ SXULILFDWLRQ DV FRPSDUHG WR WKH H[FKDQJH DFWLYLW\ LQGLFDWLQJ WKH SUHVHQFH RI YDULRXV FHOOXODU HOHFWURQ FDUULHUV LQ WKH FUXGH H[WUDFW WKDW HQKDQFHG R[LGDWLRQUHGXFWLRQ RI DUWLILFLDO HOHFWURQ FDUULHUV $OVR VLQFH WKH UHDFWLRQ FDWDO\VHG E\ K\GURJHQDVH LV DQ R[LGDWLRQUHGXFWLRQ UHDFWLRQ WKH UHGR[ SRWHQWLDO (Rf RI WKH VXEVWUDWH GHWHUPLQHV WKH UDWH RI WKH UHDFWLRQ 7KH H[FKDQJH UHDFWLRQ RQ WKH FRQWUDU\ LV D GLUHFW DQG VLPSOH DVVD\ IRU K\GURJHQDVH DQG LW LV H[WUHPHO\ VHQVLWLYH &RQVLGHULQJ WKHVH IDFWV LW DSSHDUV WKDW WKH H[FKDQJH UHDFWLRQ LV WKH PHWKRG RI FKRLFH WR DVVD\ IRU K\GURJHQDVH DFWLYLW\ 3URSHUWLHV RI WKH (Q]\PH 3XULILFDWLRQ RI DQ\ SURWHLQ LV LPPHQVHO\ VLPSOLILHG LI VRPH RI WKH SK\VLFDO SURSHUWLHV DQG VSHFLDO FKDUDFWHULVWLFV RI WKH SURWHLQ DUH NQRZQ 8VXDOO\ LQIRUPDWLRQ RQ WKH SURWHLQ IURP RWKHU V\VWHPV DUH XVHG DV LQGLFDWRUV IRU GRnV DQG GRQnWV 7KHUH DUH D QXPEHU RI UHSRUWV LQ WKH OLWHUDWXUH GHVFULELQJ WKH SXULILFDWLRQ RI K\GURJHQDVH IURP D GLYHUVH JURXS RI PLFURRUJDQLVPV f 5HYLHZ RI WKH

PAGE 21

OLWHUDWXUH LQGLFDWHV WKDW WKH HQ]\PH K\GURJHQDVH LV LQDFWLYH LQ WKH SUHVHQFH RI R[\JHQ 7KXV LW LV LPSRUWDQW WR SURWHFW WKH HQ]\PH IURP R[\JHQ GXULQJ WKH SXULILFDWLRQ SURFHGXUH $QRWKHU IDFWRU WR EH WDNHQ LQWR FRQVLGHUDWLRQ LV WKH ORFDWLRQ RI WKH HQ]\PH +\GURJHQDVH LQ WKH PLFURELDO ZRUOG LV IRXQG HLWKHU LQ WKH SHULSODVPLF VSDFH PHPEUDQH DVVRFLDWHG RU DV D VROXEOH F\WRSODVPLF HQ]\PH ,I WKH K\GURJHQDVH LV PHPEUDQH DVVRFLDWHG DV LQ WKH FDVH RI B( FROL f RQH KDV WR LQFRUSRUDWH VSHFLDO SURFHGXUHV GXULQJ WKH SXULILFDWLRQ SURFHGXUH 0HPEUDQH SURWHLQV KDYH EHHQ VROXELOL]HG XVLQJ YDULRXV GHWHUJHQWV f +\GURJHQDVH KDV EHHQ VXFFHVVIXOO\ VROXELOL]HG IURP WKH PHPEUDQH XVLQJ GHWHUJHQWV YL] 7ULWRQ ; f DQG VRGLXP GHR[\FKRODWH f 6RPH UHVHDUFKHUV KDYH XVHG SURWHRO\WLF DJHQWV VXFK DV WU\SVLQ RU SDQFUHDWLQ WR DLG LQ WKH VROXEOL]DWLRQ RI K\GURJHQDVH IURP WKH PHPEUDQH f +RZHYHU RQH KDV WR UHDOL]H WKDW WKH XVH RI SURWHDVHV GXULQJ WKH SXULILFDWLRQ SURFHGXUH PD\ \LHOG D SURWHLQ WKDW LV DOWHUHG GXH WR SURWHRO\WLF GLJHVWLRQ 7KH VHQVLWLYLW\ RI WKH HQ]\PH WR LQDFWLYDWLRQ E\ R[\JHQ KDV EHHQ RYHUFRPH E\ GHR[\JHQDWLQJ WKH EXIIHUV ZLWK SUHSXULILHG QLWURJHQ RU DUJRQ DGGLQJ P0 VRGLXP GLWKLRQLWH WR VFDYHQJH DQ\ FRQWDPLQDWLQJ R[\JHQ DQG FDUU\LQJ RXW DOO SURFHGXUHV LQ FORVHG YHVVHOV XQGHU SRVLWLYH SUHVVXUH RI QLWURJHQ DUJRQ RU K\GURJHQ f

PAGE 22

0RVW RI WKH RWKHU WHFKQLTXHV XVHG DUH WKH VWDQGDUG WHFKQLTXHV XVHG IRU SURWHLQ SXULILFDWLRQ YL] LRQ H[FKDQJH FKURPDWRJUDSK\ DQG JHO ILOWUDWLRQ f ,Q DGGLWLRQ WR WKHVH HVWDEOLVKHG SURFHGXUHV PDQ\ UHVHDUFKHUV KDYH WDNHQ DGYDQWDJH RI WKH K\GURSKRELF QDWXUH RI WKH PHPEUDQH SURWHLQ DQG LQFOXGHG FKURPDWRJUDSK\ RQ PDWULFHV VXFK DV 2FW\O RU 3KHQ\O6HSKDURVH f 3K\VLFDO 3URSHUWLHV RI +\GURJHQDVHV +\GURJHQDVH LV RQH RI WKH IHZ DQDHURELF SURWHLQV WKDW KDV DWWUDFWHG FRQVLGHUDEOH DWWHQWLRQ LQ WKH UHFHQW SDVW 2QH RI WKH ILUVW K\GURJHQDVHV WR EH SXULILHG WR KRPRJHQHLW\ ZDV IURP &ORVWULGLXP SDVWHXULDQXP f DQG LV D ZHOO FKDUDFWHUL]HG HQ]\PH 6LQFH WKH WLPH WKH ILUVW K\GURJHQDVH ZDV SXULILHG WKH HQ]\PH KDV EHHQ REWDLQHG LQ SXUH VWDWH IURP D QXPEHU RI RWKHU RUJDQLVPV f $OO WKH K\GURJHQDVHV VWXGLHG VR IDU FDQ EH JURXSHG LQWR WKUHH PDMRU JURXSV EDVHG RQ WKHLU PROHFXODU ZHLJKW DQG QXPEHU RI VXEXQLWV 0RVW RI WKH K\GURJHQDVHV DUH PDGH XS RI D VLQJOH SRO\SHSWLGH ZLWK DQ DSSDUHQW PROHFXODU ZHLJKW UDQJLQJ IURP WR 7KH VHFRQG JURXS RI K\GURJHQDVHV UDQJH LQ PROHFXODU ZHLJKW IURP WR +\GURJHQDVHV EHORQJLQJ WR WKH ODWWHU JURXS KDYH WZR VXEXQLWV 7KH ODUJH VXEXQLW KDV D PROHFXODU ZHLJKW RI DERXW WR DQG WKH VPDOO VXEXQLW UDQJHV IURP WR +\GURJHQDVHV VWXGLHG IURP WZR RUJDQLVPV QDPHO\ 3DUDFRFFXV GHQLWULILFDQV DQG $OFDOLJHQHV HXWURSKXV EHORQJ WR D WKLUG JURXS ZLWK

PAGE 23

D PROHFXODU ZHLJKW RI DERXW DQG FRQVLVWV RI VXEXQLWV f 7KHUH DUH WZR ODUJH VXEXQLWV DQG WZR VPDOO VXEXQLWV 7KH PROHFXODU ZHLJKW RI WKH ODUJH VXEXQLWV DUH DQG DQG WKH PROHFXODU ZHLJKW RI WKH VPDOO VXEXQLWV UDQJH IURP WR f 7KHUH LV VRPH YDULDELOLW\ ZLWK UHVSHFW WR WKH HQ]\PHnV VHQVLWLYLW\ WR R[\JHQ $OO RI WKH K\GURJHQDVHV DUH LQDFWLYH LQ WKH SUHVHQFH RI R[\JHQ f +RZHYHU WKH LQDFWLYDWLRQ LV XVXDOO\ UHYHUVLEOH ,Q &ORVWULGLXP SDVWHXULDQXP 'HVXOIRYLEULR JLJDV DQG $OFDOLJHQHV HXWURSKXV +, WKH HQ]\PH LV H[WUHPHO\ VHQVLWLYH WR R[\JHQ DQG LUUHYHUVLEO\ LQDFWLYDWHG f 3UHVHQFH RI 0HWDO ,RQV LQ +\GURJHQDVH +\GURJHQDVH LV D QRQKHPH LURQ VXOIXU SURWHLQ 7KH K\GURJHQDVHV FKDUDFWHUL]HG VR IDU KDYH EHHQ UHSRUWHG WR KDYH YDU\LQJ FRQWHQWV RI LURQ DQG DFLG ODELOH VXOIXU 0RVW RI WKH DFWLYH FHQWHUV FRQWDLQ DWRPV RI )H DQG DWRPV RI DFLG ODELOH 6 f $ QXPEHU RI UHSRUWV LQGLFDWH WKH SUHVHQFH RI DW OHDVW WZR RWKHU PHWDO LRQV QLFNHO DQG FRSSHU 1LFNHO KDV EHHQ VKRZQ WR EH SUHVHQW LQ WKH K\GURJHQDVHV REWDLQHG IURP 5KRGRVSLULOOXP UXEUXP f &KURPDWLXP YLQRVXP f ( FROL f 5KRGRSVHXGRPRQDV FDSVXODWD f 0HWKDQREDFWHULXP WKHUPRDXWRWURSKLFXP f 'HVXOIRYLEULR YXOJDULV +LOGHQERURXJKf f 'HVXOIRYLEULR GHVXOIXULFDQV f 'HVXOIRYLEULR JLJDV f DQG 9LEULR VXFFLQRJHQHV f &RSSHU KDV

PAGE 24

DOVR EHHQ VKRZQ WR EH D SDUW RI WKH K\GURJHQDVH GHULYHG IURP 'HVXOIRYLEULR YXOJDULV +LOGHQERURXJKf f +\GURJHQDVH IURP (VFKHULFKLD FROL +\GURJHQDVH IURP ( FROL DQG LWV K\GURJHQ PHWDEROLVP KDV DWWUDFWHG FRQVLGHUDEOH DPRXQW RI DWWHQWLRQ $V LQGLFDWHG DERYH ( FROL LV FDSDEOH RI PHWDEROL]LQJ IRUPDWH WR \LHOG K\GURJHQ JDV DQG DOVR XWLOL]LQJ K\GURJHQ DV D VRXUFH RI UHGXFWDQW XQGHU FHUWDLQ JURZWK FRQGLWLRQV f +RZHYHU LW LV QRW \HW NQRZQ ZKHWKHU ( FROL KDV WZR K\GURJHQDVHV RQH IRU WKH IRUPDWH K\GURJHQO\DVH )+/f UHDFWLRQ DQG WKH RWKHU IRU WKH K\GURJHQ XSWDNH +83f UHDFWLRQ RU RQH VLQJOH K\GURJHQDVH SURWHLQ WKDW LV LQYROYHG LQ ERWK WKH UHDFWLRQV 7KHUH KDYH EHHQ UHSRUWV LQ WKH OLWHUDWXUH VXJJHVWLQJ WKH SUHVHQFH RI PXOWLSOH K\GURJHQDVHV LQ (B FROL $FNUHOO HW DO f UHSRUWHG WKH SUHVHQFH RI WKUHH K\GURJHQDVH VSHFLHV LQ B( FROL
PAGE 25

DQDHURELF FRQGLWLRQV 7KH FURVVLPPXQRHOHFWURSKRUHVLV ZDV SHUIRUPHG XVLQJ 7ULWRQ ; GLVSHUVHG PHPEUDQHV DV DQWLJHQ 7KH DQWLVHUXP IURP UDEELWV LPPXQLVHG ZLWK ( FROL PHPEUDQHV ZDV XVHG DV DQWLERGLHV 7KH\ DOVR GHPRQVWUDWHG WKUHH GLVWLQFW EDQGV RI K\GURJHQDVH DFWLYLW\ XSRQ VXEMHFWLQJ 7ULWRQ GLVSHUVHG (K FROL PHPEUDQHV WR HOHFWURSKRUHVLV LQ QRQGHQDWXULQJ SRO\DFU\ODPLGH JHOV 7ZR RI WKH EDQGV ZHUH QRW GHWHFWHG ZKHQ WKH H[WUDFW ZDV H[SRVHG WR DONDOLQH S+ S+ f VXJJHVWLQJ WKDW RQH RI WKH K\GURJHQDVH ZDV LQDFWLYDWHG DW WKLV S+ 7KH\ DOVR IRXQG WKDW WKH K\GURJHQDVH UHVLVWDQW WR DONDOLQH S+ ZDV QRW HDVLO\ VROXELOL]HG IURP WKH PHPEUDQH 3UHOLPLQDU\ H[SHULPHQWV LQ RXU ODERUDWRU\ DOVR VXJJHVW WKH SUHVHQFH RI WZR GLVWLQFW nQ\GURJHQDVHV LQ (K FROL (YHQ WKRXJK WKH QXPEHU RI K\GURJHQDVHV LQ (K FROL KDV QRW EHHQ GHWHUPLQHG GLUHFWO\ QXPHURXV DWWHPSWV KDYH EHHQ PDGH WR FKDUDFWHUL]H WKH K\GURJHQDVHVf IURP (K FROL ,Q -RNOLN f PDGH WKH ILUVW DWWHPSW WR FKDUDFWHUL]H WKH K\GURJHQDVH IURP (K FROL IROORZHG E\ *HVW f LQ ,Q .RQGR HW DO f SXEOLVKHG D SURFHGXUH IRU WKH VROXEOL]DWLRQ RI K\GURJHQDVH XVLQJ } GHR[\FKRODWH ,W ZDV QRW XQWLO WKDW WKH ILUVW UHSRUW GHVFULELQJ WKH SXULILFDWLRQ RI K\GURJHQDVH LQ (K FROL WR D KLJK GHJUHH RI SXULW\ ZDV UHSRUWHG %HUQKDUG DQG *RWWVFKDON f SXEOLVKHG D UHSRUW RQ WKH SXULILFDWLRQ RI WKH HQ]\PH XVLQJ D PRGLILHG PHWKRG RI .RQGR HW DO f (PSOR\LQJ WU\SVLQ DQG GHR[\FKRODWH WKH\ REWDLQHG D SUHSDUDWLRQ RI WKH HQ]\PH HVWLPDWHG WR EH b SXUH 7KH PROHFXODU ZHLJKW DV

PAGE 26

GHWHUPLQHG E\ JHO ILOWUDWLRQ DQG GHQVLW\ JUDGLHQW FHQWULIXJDWLRQ ZDV UHSRUWHG WR EH 7KH\ DOVR UHSRUWHG WKH HQ]\PH WR EH LUUHYHUVLEO\ LQDFWLYDWHG LQ WKH SUHVHQFH RI R[\JHQ ZLWK D KDOI OLIH RI KRXUV ,Q $GDPV DQG +DOO f UHSRUWHG WKH SXULILFDWLRQ RI K\GURJHQDVH IURP (K FROL WR KRPRJHQHLW\ 7KHLU SURFHGXUH GLIIHUHG LQ WKDW WKH\ XVHG DHURELFDOO\ JURZQ FHOOV REWDLQHG IURP D FRPHUFLDO VRXUFH DQG VROXELOL]HG WKH HQ]\PH ZLWK VRGLXP GHR[\FKRODWH DQG SDQFUHDWLQ 7KH HQ]\PH D F\WRSODVPLF PHPEUDQHERXQG SURWHLQ LV UHSRUWHG WR KDYH D PROHFXODU ZHLJKW RI DQG FRQVLVWV RI D GLPHU RI LGHQWLFDO VXEXQLWV 7KH HQ]\PH DQ LURQ VXOSKXU SURWHLQ KDV )H DQG DFLG ODELOH 6 DWRPV SHU PROHFXOH 7KH\ UHSRUWHG D KDOI OLIH IRU K\GURJHQDVH RI KRXUV XQGHU DLU DW URRP WHPSHUDWXUH ,Q *UDKDP HW DO f GHWHUPLQHG WKH PROHFXODU ZHLJKW RI +\GURJHQDVH IURP (K FROL WR EH 7KH PROHFXODU ZHLJKW ZDV GHWHUPLQHG E\ VXEMHFWLQJ 7ULWRQ ; VROXELOL]HG (K FROL PHPEUDQHV WR 1DWLYH 3$*( DQG VWDLQLQJ WKH JHO IRU K\GURJHQDVH DFWLYLW\ 7KH EDQG SRVVHVVLQJ K\GURJHQDVH DFWLYLW\ ZDV WKHQ FXW IURP WKH JHO DQG WKH SURWHLQ ZDV HOXWHG DQG VXEMHFWHG WR 6'63$*( LQ F\OLQGULFDO JHOV ,Q KRZHYHU *UDKDP f UHSRUWHG D PROHFXODU ZHLJKW RI ,Q WKH ODWWHU FDVH WKH PROHFXODU ZHLJKW ZDV GHWHUPLQHG XVLQJ SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV LQ VODE JHOV +H DOVR UHSRUWHG WKH HQ]\PH WR EH D WUDQVPHPEUDQRXV SURWHLQ

PAGE 27

*HQHWLF VWXGLHV WKXV IDU KDYH QRW \HW LGHQWLILHG WKH VWUXFWXUDO JHQHVf RI K\GURJHQDVH LQ (B FROL 3DVFDO DQG KHU FRZRUNHUV f UHSRUWHG WKH LVRODWLRQ RI D K\GURJHQDVH DFWLYLW\GHILFLHQW PXWDQW +RZHYHU WKH PXWDQW DOVR ODFNHG IRUPDWH GHK\GURJHQDVH DFWLYLW\ LQGLFDWLQJ WKDW WKHVH PXWDQWV FRXOG EH GHIHFWLYH LQ WKH IRUPDWH K\GURJHQO\DVH HQ]\PH FRPSOH[ 7KH PXWDQW VWUDLQV GHVFULEHG E\ *UDKDP DQG KLV FRZRUNHUV f DQG .UDVQD f DOVR IDOO LQWR WKH VDPH FDWHJRU\ *OLFN DQG KLV FRZRUNHUV f UHSRUWHG WKH LVRODWLRQ RI D K\GURJHQDVH GHIHFWLYH PXWDQW KRZHYHU DQDO\VLV RI WKH PXWDQW LQ RXU ODERUDWRU\ KDV LQGLFDWHG WKDW WKH PXWDQW GRHV SRVVHVV K\GURJHQDVH DFWLYLW\ ,Q %RFN DQG KLV FRZRUNHUV f XVHG 0XG$SODFf LQVHUWLRQ PXWDJHQHVLV WR REWDLQ PXWDQWV GHIHFWLYH LQ K\GURJHQDVH 7KH\ ZHUH VXFFHVVIXO LQ LVRODWLQJ D PXWDQW WKDW ODFNHG K\GURJHQDVH DFWLYLW\ 8VLQJ EHWDJDODFWRVLGDVH DFWLYLW\ DV D PHDQV RI PRQLWRULQJ UHJXODWLRQ RI V\QWKHVLV WKH\ VKRZHG WKDW WKH JHQH DIIHFWHG E\ WKH 0XG LQVHUWLRQ ZDV V\QWKHVL]HG RQO\ XQGHU DQDHURELF FRQGLWLRQV DQG LQ WKH DEVHQFH RI HOHFWURQ DFFHSWRUV VXFK DV QLWUDWH ,Q 7DLW DQG KLV FRZRUNHUV f GHVFULEHG WKH LVRODWLRQ RI VWUDLQV RI ( FROL WKDW ODFNHG K\GURJHQDVH DFWLYLW\ $OO RI WKH PXWDQWV GHIHFWLYH LQ K\GURJHQ PHWDEROLVP DUH DIIHFWHG RQO\ LQ WKRVH JHQHV WKDW DUH HVVHQWLDO IRU K\GURJHQDVH DFWLYLW\ ,Q .DUXEH DQG KLV FRZRUNHUV f UHSRUWHG WKH LVRODWLRQ RI D K\GURJHQDVH PXWDQW IURP ( FROL 7KH PXWDQW VWUDLQ ZKLFK LV XQDEOH WR UHGXFH PHWK\O

PAGE 28

YLRORJHQ DV WHVWHG E\ WKH ILOWHUG\H UHGXFWLRQ PHWKRG ZDV LVRODWHG DIWHU PXWDJHQHVLV ZLWK 1PHWK\O 1nQLWUR0QLWURVRJXDQLGLQH ([SORLWLQJ D SRVLWLYH VHOHFWLRQ PHWKRG WR LVRODWH PXWDQWV RI ( FROL GHIHFWLYH LQ LWV K\GURJHQ PHWDEROLVP f RXU ODERUDWRU\ KDV VXFFHVVIXOO\ LVRODWHG D ODUJH QXPEHU RI VXFK PXWDQWV %DVHG RQ SKHQRW\SLF FKDUDFWHULVWLFV WKH PXWDQWV KDYH EHHQ JURXSHG LQWR WZR GLVWLQFW FODVVHV 2QH RI WKHVH FODVVHV ZKLFK LV GHIHFWLYH LQ K\GURJHQ XSWDNH GLG SURGXFH DQ DFWLYH IRUPDWH K\GURJHQO\DVH KDV D OHVLRQ QHDU PLQXWHV LQ WKH ( FROL FKURPRVRPH JHQHWLF PDS f DQG LV FRWUDQVGXFLEOH ZLWK PHW& f 7KH RWKHU FODVV RI PXWDQWV ZKLFK ODFN K\GURJHQDVH DFWLYLW\ KDYH OHVLRQV EHWZHHQ VUO DQG F\V RSHURQV DQG PLQ UHVSHFWLYHO\f RQ WKH FKURPRVRPH %DVHG RQ ILQH VWUXFWXUH DQDO\VLV RI WKLV UHJLRQ WKH ODWWHU FODVV RI PXWDQWV KDYH EHHQ IXUWKHU VXEGLYLGHG LQWR WZR VXEJURXSV 7KHVH WZR VXEJURXSV EHORQJ WR WZR GLVWLQFW RSHURQV *HQHV IURP ERWK RI WKHVH RSHURQV DUH HVVHQWLDO WR SURGXFH DQ DFWLYH K\GURJHQDVH LQ WKH FHOO 6HJPHQWV RI '0$ IURP ZLOG W\SH ( FROL FRQWDLQLQJ ERWK RI WKHVH RSHURQV KDYH EHHQ FORQHG f )XUWKHU JHQHWLF VWXGLHV RI WKH UHJLRQ KDYH VKRZQ WKDW WKHUH DUH DW OHDVW IRXU GLVWLQFW JHQHV UHVSRQVLEOH IRU WKH SURGXFWLRQ RI DQ DFWLYH K\GURJHQDVH LQ WKH FHOO SHUVRQDO FRPPXQLFDWLRQ 6DQNDU 3 DQG /HH -+f

PAGE 29

0$7(5,$/6 $c,' 0(7+2'6 %DFWHULDO 6WUDLQV DQG &XOWXUH &RQGLWLRQV %DFWHULDO VWUDLQV XVHG LQ WKLV VWXG\ DUH OLVWHG LQ 7DEOH %DFWHULDO FXOWXUHV IRU HDFK H[SHULPHQW ZHUH JURZQ DV GHVFULEHG IRU HDFK LQGLYLGXDO H[SHULPHQW LQ WKH 5HVXOWV 6HFWLRQ &KHPLFDOV $OO WKH FKHPLFDOV XVHG ZHUH RI DQDO\WLFDO JUDGH DQG ZHUH REWDLQHG IURP )LVKHU 6FLHQWLILF &RPSDQ\ 3LWWVEXUJK 3$ RU 6LJPD &KHPLFDO &R 6W /RXLV 02 0HGLD 7KH PLQHUDO EDVH IRU WKH PLQLPDO PHGLXP XVHG WR FXOWLYDWH (FROL KDG WKH IROORZLQJ FRPSRVLWLRQ JUDPVOLWHUf 1D+3 .+A32A 1D&O 1+f6 0J6+ )H6+ 1D0R+ 1DAH2A 7KH S+ RI WKH PHGLXP ZDV 7KH FDUERQ VRXUFH ZDV JOXFRVH DQG ZDV VXSSOLHG DW D FRQFHQWUDWLRQ DV GHVFULEHG IRU SDUWLFXODU H[SHULPHQWV

PAGE 30

7DEOH %DFWHULDO VWUDLQV XVHG LQ WKLV VWXG\ 6WUDLQ *HQRW\SH RU 3KHQRW\SH 6RXUFH +IU 3$ UHO$ SLW / &VRQND WRQ$ 7U VSR7 -& F\V& DOD6 VUO7Q WKU OHX WKL ODF< JDO. DUD [\O PWO SUR$ KLV DUJ( USV/ WV[ VXS( / &VRQND 6( WKL OHX VXF ELR$"f JDO7 USV/ FKO& $ KXS7Q /DERUDWRU\ &ROOHFWLRQ f 6( 6DPH DV -& EXW DOD6 UHF$ DQG KXS /DERUDWRU\ &ROOHFWLRQ f JDO $ WRS$,2 S\U) IQU USV/ J\U% LFO5 DQG WUS % %DFKPDQQ &*6* r &*6& &ROL *HQHWLF 6WRFN &HQWHU

PAGE 31

/XULD EURWK /%f PHGLXP KDG WKH IROORZLQJ FRPSRVLWLRQ JUDPVOLWHUf %DFWR WU\SWRQH %DFWR \HDVW H[WUDFW 1D&O 7KH S+ RI WKH PHGLXP ZDV $OO VROLG PHGLD FRQWDLQHG JUDPV RI DJDU SHU OLWHU RI PHGLXP (Q]\PH $VVD\V +\GURJHQ 8SWDNH +\GURJHQ XSWDNH DFWLYLW\ ZDV PHDVXUHG DW URRP WHPSHUDWXUH XVLQJ D 6SHFWURQLF VSHFWURSKRWRPHWHU 7KH UHDFWLRQ ZDV FDUULHG RXW LQ D [ PP WHVW WXEH $ PO UHDFWLRQ PL[WXUH FRQWDLQHG PO RI P0 SKRVSKDWH EXIIHU S+ DQG WKH HOHFWURQ DFFHSWRU DW FRQFHQWUDWLRQV GHVFULEHG IRU HDFK H[SHULPHQW 7KH WXEHV ZHUH FDSSHG ZLWK VHUXP VWRSSHUV HYDFXDWHG DQG ILOOHG ZLWK K\GURJHQ VHYHUDO WLPHV 7KH UHDFWLRQ ZDV VWDUWHG E\ DGGLQJ K\GURJHQDVH PO WR DWWDLQ D ILQDO SURWHLQ FRQFHQWUDWLRQ RI PLFURJUDPPO 7KH FRQWHQWV ZHUH PL[HG DQG WKH UHGXFWLRQ RI WKH HOHFWURQ DFFHSWRU ZDV PHDVXUHG DW WKH DSSURSULDWH ZDYHOHQJWK 7KH HOHFWURQ DFFHSWRUV XVHG DQG WKHLU H[WLQFWLRQ FRHIILFLHQWV ZHUH PHWK\O YLRORJHQ 0 FP DW QP EHQ]\O YLRORJHQ 0 FP DW QP QHXWUDO UHG 0 DW QP PHWK\OHQH EOXH 0 DW QP SKHQRVDIUDQLQ 0rr DW QP DQG SRWDVVLXP IHUULF\DQLGH 0r DW QP 7KH 0HUFN ,QGH[ WHQWK HGLWLRQ HG 0 :LQGKRO] 0HUFN DQG &R 5DKZD\ 1-f

PAGE 32

+\GURJHQ (YROXWLRQ 7KH DVVD\ WR PHDVXUH K\GURJHQ HYROXWLRQ IURP UHGXFHG YLRORJHQ G\HV ZDV FDUULHG RXW LQ PO VHUXP YLDOV DW r& (LJKW KXQGUHG DQG VHYHQW\ ILYH PLFUROLWHUV RI P0 SKRVSKDWH EXIIHU S+ FRQWDLQLQJ HLWKHU PHWK\O YLRORJHQ RU %HQ]\O 9LRORJHQ FRQFHQWUDWLRQV GHVFULEHG IRU HDFK H[SHULPHQW ZDV SODFHG LQ VHUXP YLDOV 7KH YLDOV ZHUH FDSSHG ZLWK VHUXP VWRSSHUV HYDFXDWHG DQG ILOOHG ZLWK QLWURJHQ VL[ WLPHV 7KH UHDFWLRQ ZDV VWDUWHG E\ DGGLQJ PLFUROLWHUV RI K\GURJHQDVH WR DWWDLQ D ILQDO SURWHLQ FRQFHQWUDWLRQ RI PLFURJUDPPO 7R UHGXFH WKH YLRORJHQ G\H PLFUROLWHUV RI VRGLXP GLWKLRQLWH ZDV DGGHG DQDHURELFDOO\ ZLWK D V\ULQJH WR DWWDLQ D ILQDO FRQFHQWUDWLRQ RI P0 7KH ILQDO UHDFWLRQ YROXPH ZDV PO 7KH UDWH RI K\GURJHQ HYROXWLRQ ZDV PRQLWRUHG XVLQJ D 9DULDQ 0RGHO JDV FKURPDWRJUDSK 7ULWLXP ([FKDQJH 7KH UHDFWLRQ ZDV FDUULHG RXW LQ D [ PP WHVW WXEH 1LQHW\ PLFUROLWUHV RI P0 SKRVSKDWH EXIIHU S+ ZDV SODFHG LQ D WXEH [ PPf DQG WKH WXEH ZDV VHDOHG ZLWK D VHUXP VWRSSHU 7KH PO JDV SKDVH ZDV UHSODFHG ZLWK KHOLXP E\ HYDFXDWLQJ WKH WXEH DQG ILOOLQJ LW ZLWK KHOLXP 7KH SURFHGXUH ZDV UHSHDWHG VL[ WLPHV +\GURJHQDVH ZDV DGGHG WR D ILQDO FRQFHQWUDWLRQ RI UQLFURJUDPPO DQG PO RI VRGLXP GLWKLRQLWH S+ WR DWWDLQ D ILQDO FRQFHQWUDWLRQ RI P0 (LJKW KXQGUHG PLFUROLWHUV RI K\GURJHQ JDV ZDV DGGHG WR HDFK RI WKH DVVD\ WXEHV ZLWK D V\ULQJH 7ULWLXP JDV P&LPPRO 1HZ (QJODQG 1XFOHDU &RUS %RVWRQ 0$f ZDV DGGHG

PAGE 33

PLFUROLWHUVf WR D ILQDO FRQFHQWUDWLRQ RI PLFURFXULH SHU DVVD\ DV D PHDQV WR PRQLWRU WKH H[FKDQJH UHDFWLRQ $IWHU KRXU RI LQFXEDWLRQ DW r& WKH VHUXP VWRSSHU ZDV UHPRYHG DQG WKH WULWLXP JDV ZDV YHQWHG LQ D IXPH KRRG IRU PLQ 7R PLFUROLWHUV RI WKH DVVD\ PL[WXUH PO RI D ZDWHUEDVHG VFLQWLOODQW ZDV DGGHG 7ULWLDWHG ZDWHU SUHVHQW LQ WKH PLFUROLWHU IUDFWLRQ ZDV GHWHUPLQHG ZLWK WKH DLG RI D VFLQWLOODWLRQ FRXQWHU 7KH DVVD\ XVHG WR PRQLWRU K\GURJHQDVH DFWLYLW\ GXULQJ WKH SXULILFDWLRQ SURFHGXUH ZDV WKH VDPH H[FHSW WKH VDPSOH DVVD\HG ZDV PLFUROLWHUV LQ D ILQDO DVVD\ YROXPH RI PLFUROLWHUV WULWLXP JDV ZDV DGGHG WR D ILQDO FRQFHQWUDWLRQ RI PLFURFXULH SHU DVVD\ DQG QR K\GURJHQ JDV ZDV DGGHG 3RO\DFU\ODPLGH *HO (OHFWURSKRUHVLV 3RO\DFU\ODPLGH JHO HOHFWURSKRUHVLV XQGHU QRQGHQDWXULQJ FRQGLWLRQV ZDV SHUIRUPHG DV GHVFULEHG E\ 'DYLV HW DO f 6RGLXP GRGHF\O VXOIDWH SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV ZDV SHUIRUPHG DV GHVFULEHG E\ /DHPPOL f 7KH JHOV ZHUH UXQ DV HLWKHU WXEH JHOV RU VODE JHOV 7KH GLPHQVLRQV RI WKH WXEH JHOV ZHUH FP [ FP 7KH YROXPH RI WKH VHSDUDWRU\ JHO XVHG ZDV PO 7KH GLPHQVLRQV RI WKH VODE JHOV ZHUH [ [ FP 7KH YROXPH RI WKH VHSDUDWRU\ JHO ZDV PO /RFDWLRQ RI K\GURJHQDVH DIWHU HOHFWURSKRUHVLV LQ QRQGHQDWXULQJ JHOV ZDV GHWHUPLQHG E\ LQFXEDWLQJ WKH JHO LQ P0 SKRVSKDWH EXIIHU S+ FRQWDLQLQJ EHQ]\O YLRORJHQ DW D ILQDO

PAGE 34

FRQFHQWUDWLRQ RI D DQG XQGHU DQ DWPRVSKHUH RI K\GURJHQ 7KH UHGXFHG EHQ]\O YLRORJHQ ZKLFK LV DXWRR[LGL]DEOH ZDV PDGH WR IXUWKHU UHDFW ZLWK WULSKHQ\O WHWUD]ROLXP FKORULGH WR SURGXFH D EULJKW UHG SHUPDQHQW EDQG RI UHGXFHG IRUPD]DQ 7KH JHOV YLHUH VWDLQHG IRU SURWHLQ ZLWK HLWKHU WKH VLOYHU VWDLQ PHWKRG GHVFULEHG E\ 0RUULVVH\ f RU ZLWK WKH DLG RI FRRPDVVLH EOXH 5 DV GHVFULEHG E\ :LOVRQ f 7KH PROHFXODU ZHLJKW VWDQGDUGV XVHG IRU WKH GHWHUPLQDWLRQ RI WKH PROHFXODU ZHLJKW RI K\GURJHQDVH XVLQJ 6'3$*( ZHUH REWDLQHG IURP 6LJPD &KHPLFDO &R 6W /RXLV 02 DQG FRQVLVWHG RI DOSKDODFWDOEXPLQ WU\SVLQ LQKLELWRU VR\EHDQ WU\SVLQRJHQ 306) WUHDWHG FDUERQLF DQK\GUDVH ERYLQH HU\WKURF\WHV JO\FHUDOGHK\GHSKRVSKDWH GHK\GURJHQDVH UDEELW PXVFOH DOEXPLQ HJJ DQG DOEXPLQ ERYLQH 0ROHFXODU :HLJKW 'HWHUPLQDWLRQ *HO )LOWUDWLRQ 7KH 6HSKDGH[ XVHG IRU JHO ILOWUDWLRQ ZDV VZROOHQ E\ LQFXEDWLQJ WKH EHDGV LQ GHLRQLVHG ZDWHU J RI EHDGV SHU OLWHU RI ZDWHUf IRU KRXUV DW URRP WHPSHUDWXUH $IWHU KRXUV D FROXPQ RI [ FP ZDV SDFNHG ZLWK WKH VZROOHQ 6HSKDGH[ 7KH FROXPQ ZDV HTXLOLEUDWHG ZLWK P0 SKRVSKDWH EXIIHU S+ 7ULWRQ ; FRQFHQWUDWLRQ ZDV b LI SUHVHQWf 7KH FROXPQ ZDV PDLQWDLQHG DW D IORZ UDWH RI POKU DW r& IRU KRXUV EHIRUH XVH

PAGE 35

%OXH 'H[WUDQ 0: f ZDV XVHG WR GHWHUPLQH WKH YRLG YROXPH 9Rf RI WKH FROXPQ 7KH SURWHLQV XVHG IRU JHQHUDWLQJ D PROHFXODU ZHLJKW FDOLEUDWLRQ FXUYH IRU WKH 6HSKDGH[ FROXPQ ZHUH REWDLQHG IURP 6LJPD &KHPLFDO &R DQG FRQVLVWHG RI F\WRFKURPH F KRUVH KHDUW FDUERQLF DQK\GUDVH ERYLQH HU\WKURF\WHV DOEXPLQ ERYLQH VHUXP DOFRKRO GHK\GURJHQDVH \HDVW DQG EHWDDP\ODVH VZHHW SRWDWR 7KH SURWHLQV ZHUH GLVVROYHG LQ WKH HTXLOLEUDWLRQ EXIIHU DW WKH IROORZLQJ FRQFHQWUDWLRQV DOEXPLQ PJPO DOFRKRO GHK\GURJHQDVH PJPO EHWDDP\ODVH PJPO FDUERQLF DQK\GUDVH UQJPO DQG F\WRFKURPH F PJPO 7KH VDPSOH YROXPH LQ DOO FDVHV ZDV PDLQWDLQHG DW PO )UDFWLRQV RI PO ZHUH FROOHFWHG 7KH FDOLEUDWLRQ FXUYH IRU WKH FROXPQ ZDV JHQHUDWHG E\ SORWWLQJ WKH ORJ RI WKH PROHFXODU ZHLJKW RI WKH VWDQGDUG SURWHLQV DJDLQVW WKH UDWLR RI WKHLU HOXWLRQ YROXPHV DQG WKH YRLG YROXPH IRU WKH FROXPQ +\GURJHQDVH ZDV ORDGHG DW D ILQDO FRQFHQWUDWLRQ RI PLFURJUDPVPO DQG LWV HOXWLRQ SURILOH ZDV GHWHUPLQHG E\ DVVD\LQJ WKH IUDFWLRQV FROOHFWHG IRU WULWLXP H[FKDQJH DFWLYLW\ 7KH PROHFXODU ZHLJKW RI K\GURJHQDVH ZDV GHWHUPLQHG IURP WKH FDOLEUDWLRQ FXUYH 1DWLYH 3$*( 7R GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH WKH HQ]\PH ZDV VXEMHFWHG WR HOHFWURSKRUHVLV LQ WKH SUHVHQFH RI YDULRXV FRQFHQWUDWLRQV RI DFU\ODPLGH f 7ULWRQ ; ZKHQ SUHVHQW ZDV LQFRUSRUDWHG DW D ILQDO FRQFHQWUDWLRQ RI V 7KH HOHFWURSKRUHVLV ZDV SHUIRUPHG LQ WXEH JHOV SUHSDUHG DV GHVFULEHG DERYH $IWHU

PAGE 36

SRO\PHUL]DWLRQ WKH WXEH JHOV ZHUH VXEMHFWHG WR HOHFWURSKRUHVLV IRU KRXU DW P$JHO $IWHU WKH LQLWLDO UXQ VDPSOHV ZHUH ORDGHG DQG UXQ DW P$JHO IRU WKH ILUVW KRXU DQG WKHQ WKH FXUUHQW ZDV LQFUHDVHG WR P$JHO 7KH VDPSOH YROXPH ZDV PLFUROLWHUV LQ DOO FDVHV 7KH PROHFXODU ZHLJKW VWDQGDUGV XVHG ZHUH REWDLQHG IURP 6LJPD &KHPLFDO &R DQG FRQVLVWHG RI DOSKDODFWDOEXPLQ ERYLQH VHUXP FDUERQLF DQK\GUDVH ERYLQH HU\WKURF\WHV DOEXPLQ FKLFNHQ HJJ DOEXPLQ ERYLQH VHUXP PRQRPHUf GLPHUf XUHDVH MDFN EHDQ GLPHUf WHWUDPHUf +\GURJHQDVH EDQGV ZHUH GHWHFWHG E\ VWDLQLQJ WKH JHOV IRU K\GURJHQDVH DFWLYLW\ DIWHU HOHFWURSKRUHVLV 7KH UHODWLYH PLJUDWLRQ RI WKH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV ZDV GHWHUPLQHG E\ VWDLQLQJ WKH JHOV IRU SURWHLQ XVLQJ WKH FRRPDVVLH EOXH PHWKRG DV GHVFULEHG E\ :LOVRQ f $ )HUJXVRQ SORW f ZDV JHQHUDWHG XVLQJ WKH 5I YDOXHV REWDLQHG IRU WKH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV IRU HDFK H[SHULPHQW 7KH PROHFXODU ZHLJKW RI K\GURJHQDVH ZDV REWDLQHG IURP WKH )HUJXVRQ SORW JHQHUDWHG IRU HDFK H[SHULPHQW ,URQ $QG $FLG /DELOH 6XOILGH 'HWHUPLQDWLRQ 7RWDO LURQ ZDV GHWHUPLQHG E\ WKH RUWKR SKHQDQWKUROLQH PHWKRG DV GHVFULEHG E\ /RYHQEHUJ HW DO f $FLG ODELOH 6XOILGH ZDV GHWHUPLQHG E\ WKH PHWKRG RI .LQJ DQG 0RUULV f

PAGE 37

3URWHLQ 'HWHUPLQDWLRQ 3URWHLQ ZDV GHWHUPLQHG XVLQJ &RRPDVVLH %OXH DV GHVFULEHG E\ %UDGIRUG f $OEXPLQ %RYLQH 6HUXP ZDV XVHG DV WKH VWDQGDUG 5HPRYDO RI 7ULWRQ ; 7ULWRQ ; ZDV UHPRYHG IURP D VDPSOH LQ WZR VWHSV ,QLWLDOO\ WKH 7ULWRQ ; FRQFHQWUDWLRQ ZDV ORZHUHG E\ GLDO\VLQJ WKH SURWHLQ VDPSOH DJDLQVW D IROG H[FHVV RI DQ DSSURSULDWH EXIIHU DW r& IRU KRXUV $IWHU GLDO\VLV WKH UHVLGXDO DPRXQW RI 7ULWRQ ; ZDV UHPRYHG E\ LQFXEDWLQJ WKH VDPSOH ZLWK %LR%HDGV 60 A ZYf RQ D URFNLQJ SODWIRUP DW r& IRU KRXUV 7KH VDPSOH ZDV VHSDUDWHG IURP WKH %LR%HDGV 60 E\ FHQWULIXJDWLRQ DW USP IRU PLQDW r& 7HPSHUDWXUH 3URILOH 7ULWLXP H[FKDQJH DVVD\ ZDV XVHG WR GHWHUPLQH WKH WHPSHUDWXUH SURILOH IRU K\GURJHQDVH DFWLYLW\ 7KH DVVD\ ZDV SHUIRUPHG DV GHVFULEHG HDUOLHU ERWK LQ WKH SUHVHQFH DQG DEVHQFH RI 7ULWRQ ; 7KH RQO\ GLIIHUHQFH ZDV WKH LQFXEDWLRQ WHPSHUDWXUH 7KH UHDFWLRQ YLDOV ZHUH LQFXEDWHG LQ ZDWHU EDWKV PDLQWDLQHG DW DQG GHJUHHV FHQWLJUDGH IRU RQH KRXU

PAGE 38

S+ 3URILOH 7ULWLXP H[FKDQJH DVVD\ ZDV XVHG WR GHWHUPLQH WKH S+ SURILOH IRU K\GURJHQDVH DFWLYLW\ 7KH DVVD\ ZDV SHUIRUPHG DV GHVFULEHG HDUOLHU +RZHYHU P0 SKRVSKDWH EXIIHU ZDV UHSODFHG E\ RQH RI WKH IROORZLQJ EXIIHUV SUHVHQW DW D ILQDO FRQFHQWUDWLRQ RI P0 7ULV S+ DQG SLSHUD]LQH11nELV>HWKDQHVXOIRQLF DFLG@ 3,3(6f S+ DQG DQG SKRVSKDWH S+ DQG (IIHFW RI 2[\JHQ RQ 3XULILHG +\GURJHQDVH 7R GHWHUPLQH WKH HIIHFW RI R[\JHQ RQ SXULILHG K\GURJHQDVH PO RI WKH HQ]\PH DW D FRQFHQWUDWLRQ RI PLFURJUDPPO LQ P0 SKRVSKDWH EXIIHU S+ f ZDV SODFHG LQ D [ PP WXEH 7KH JDV SKDVH LQ RQH RI WKH WXEH ZDV DLU ZKHUHDV WKH JDV SKDVH RI WKH FRQWURO WXEH ZDV K\GURJHQ 7KH WXEHV ZHUH URFNHG RVFLOODWLRQVPLQf RQ D URFNLQJ WDEOH DW URRP WHPSHUDWXUH 6DPSOHV ZHUH ZLWKGUDZQ DW YDULRXV WLPH LQWHUYDOV WR GHWHUPLQH K\GURJHQDVH DFWLYLW\ E\ PRQLWRULQJ WKH WULWLXP H[FKDQJH UHDFWLRQ DV PHQWLRQHG DERYH 5HJXODWLRQ RI +\GURJHQDVH ,QGXFWLRQ RI +\GURJHQDVH 7R VWXG\ WKH LQGXFWLRQ RI K\GURJHQDVH DFWLYLW\ LQ ( FROL VWUDLQ ZDV XVHG 7KH FXOWXUH XVHG DV WKH

PAGE 39

LQRFXOXP IRU WKH H[SHULPHQW ZDV JURZQ DHURELFDOO\ LQ PO RI /% b JOXFRVH DW r& 7KH FXOWXUH ZDV JURZQ WR DQ RSWLFDO GHQVLW\ RI DW QP $W WKLV VWDJH WKH FXOWXUH ZDV XVHG WR LQRFXODWH PO RI /% b JOXFRVH PHGLXP LQ D PO VHUXP ERWWOH 7KH LQRFXOXP VL]H ZDV b RI WKH ILQDO FXOWXUH YROXPH 7KH FXOWXUH ERWWOH ZDV FDSSHG ZLWK D VHUXP VWRSSHU DQG IOXVKHG ZLWK QLWURJHQ 7KH JDV SKDVH LQ WKH FXOWXUH YHVVHO ZDV UHSODFHG ZLWK QLWURJHQ DQG WKH ERWWOH ZDV LQFXEDWHG DW r& (YHU\ WZHQW\ PLQXWHV VDPSOHV ZHUH ZLWKGUDZQ WR PRQLWRU JURZWK E\ PHDVXULQJ WKH RSWLFDO GHQVLW\ DW QP LQ D VSHFWURSKRWRPHWHU %DXVFK DQG /RPE 6SHFWURQLF f DQG WKH K\GURJHQDVH DFWLYLW\ E\ DVVD\LQJ IRU WULWLXP H[FKDQJH DFWLYLW\ (IIHFW RI 2[\JHQ RQ +\GURJHQDVH $FWLYLW\ LQ :KROH &HOOV 7R VWXG\ WKH HIIHFW RI R[\JHQ RQ K\GURJHQDVH DFWLYLW\ LQ ZKROH FHOOV D FXOWXUH RI ( FROL IXOO\ LQGXFHG IRU K\GURJHQDVH ZDV XVHG ( FROL ZDV JURZQ RYHUQLJKW LQ /% b JOXFRVH DW r& XQGHU DQ DWPRVSKHUH RI QLWURJHQ 7KHVH FHOOV ZHUH XVHG WR LQRFXODWH PO RI /% b JOXFRVH LQ WZR PO VHUXP ERWWOHV 7KH VHUXP ERWWOHV ZHUH FDSSHG ZLWK UXEEHU VWRSSHUV DQG WKH JDV SKDVH UHSODFHG ZLWK QLWURJHQ 7KH PHGLXP ZDV ZDUPHG WR r& DQG LQRFXODWHG DQDHURELFDOO\ ZLWK D V\ULQJH ZLWK WKH RYHUQLJKW JURZQ FXOWXUH 7KH LQRFXOXP VL]H ZDV b RI WKH ILQDO FXOWXUH YROXPH 7KH FXOWXUH ZDV LQFXEDWHG DW r& $IWHU PLQXWHV RQH RI WKH FXOWXUH ERWWOHV ZDV RSHQHG DQG PO RI WKH FXOWXUH ZDV WUDQVIHUUHG DVHSWLFDOO\ WR D PO IODVN DQG LQFXEDWHG

PAGE 40

DW r& XQGHU DHURELF FRQGLWLRQV VKDNLQJ DW USWQ 6DPSOHV ZHUH ZLWKGUDZQ DW YDULRXV WLPH LQWHUYDOV WR PRQLWRU JURZWK E\ PHDVXULQJ WKH RSWLFDO GHQVLW\ DW QP DQG PRQLWRULQJ WKH K\GURJHQDVH DFWLYLW\ E\ DVVD\LQJ IRU WKH WULWLXP H[FKDQJH UHDFWLRQ (IIHFW RI 1LWUDWH RQ +\GURJHQDVH $FWLYLW\ LQ :KROH &HOOV 7R VWXG\ WKH HIIHFW RI QLWUDWH RQ K\GURJHQDVH DFWLYLW\ LQ ZKROH FHOOV ( FROL FHOOV IXOO\ LQGXFHG IRU K\GURJHQDVH DFWLYLW\ ZHUH H[SRVHG WR QLWUDWH ( FROL VWUDLQ ZDV JURZQ RYHUQLJKW LQ /% b JOXFRVH XQGHU DQ DWPRVSKHUH RI QLWURJHQ 7KLV FXOWXUH ZDV XVHG WR LQRFXODWH PO RI /% b JOXFRVH LQ WZR PO VHUXP ERWWOHV 7KH FRQWHQWV RI WKH ERWWOHV ZHUH IOXVKHG ZLWK QLWURJHQ DQG WKH JDV SKDVH ZDV UHSODFHG ZLWK QLWURJHQ 7KH SUHZDUPHG PHGLXP ZDV LQRFXODWHG DQDHURELFDOO\ ZLWK D V\ULQJH 7KH LQRFXOXP VL]H ZDV b RI WKH ILQDO FXOWXUH YROXPH 7KH FXOWXUHV ZHUH LQFXEDWHG DW r& $IWHU PLQXWHV VRGLXP QLWUDWH ZDV DGGHG WR RQH RI WKH FXOWXUHV DQDHURELFDOO\ ZLWK D V\ULQJH WR D ILQDO FRQFHQWUDWLRQ RI P0 6DPSOHV ZHUH ZLWKGUDZQ SHULRGLFDOO\ WR PRQLWRU JURZWK E\ PHDVXULQJ WKH RSWLFDO GHQVLW\ DW QP DQG K\GURJHQDVH DFWLYLW\ E\ DVVD\LQJ IRU WULWLXP H[FKDQJH DFWLYLW\ $FFXPXODWLRQ RI QLWULWH LQ WKH PHGLXP ZDV DOVR GHWHUPLQHG DV GHVFULEHG E\ 9DQn7 5HLW HW DO f

PAGE 41

5(68/76 3XULILFDWLRQ RI +\GURJHQDVH +\GURJHQDVH ZDV SXULILHG IURP D SURWRWURSKLF VWUDLQ RI (VFKHULFKLD FROL VWUDLQ .f 7KH GHWDLOV RI WKH SXULILFDWLRQ SURFHGXUH DQG WKH SURSHUWLHV RI WKH HQ]\PH DUH SUHVHQWHG EHORZ DQG LQ 7DEOH *URZWK RI WKH &HOOV (VFKHULFKLD FROL VWUDLQ ZDV JURZQ DQDHURELFDOO\ LQ RQH OLWHU IOHDNHUV ILOOHG WR WKH WRS ZLWK / FRQWDLQLQJ b JOXFRVH DQG LQFXEDWHG RYHUQLJKW DW r& 7KHVH FHOOV ZHUH XVHG WR LQRFXODWH OLWHU FDUER\V FRQWDLQLQJ PLQLPDO PHGLXP VXSSOHPHQWHG ZLWK JOXFRVH DW D ILQDO FRQFHQWUDWLRQ RI b DQG FDVDPLQR DFLGV DW D ILQDO FRQFHQWUDWLRQ RI b 7KH LQRFXOXP FRQVLVWHG RI b RI WKH ILQDO FXOWXUH YROXPH 7KH FDUER\V ZHUH ILOOHG WR WKH WRS DQDHURELF JURZWKf DQG LQFXEDWHG DW URRP WHPSHUDWXUH IRU KRXUV 'XULQJ WKH ODWHU VWDJH RI LQFXEDWLRQ YLVLEOH JDV SURGXFWLRQ FRXOG EH REVHUYHG 7KH FHOOV ZHUH KDUYHVWHG XVLQJ D 'H /DYDOO VHSDUDWRU DW URRP WHPSHUDWXUH &HOO /\VLV 2QH KXQGUHG DQG HLJKWHHQ JUDPV RI ZHW FHOO SDVWH ZDV VXVSHQGHG LQ PO RI 0 SKRVSKDWH EXIIHU S+ FRQWDLQLQJ

PAGE 42

0 .('7$ 7KH FHOOV ZHUH O\VHG XVLQJ O\VR]\PH HJJ ZKLWH 6LJPDf $ IUHVKO\ SUHSDUHG VWRFN VROXWLRQ RI /\VR]\PH ZDV DGGHG WR WKH FHOO VXVSHQVLRQ WR DWWDLQ D ILQDO FRQFHQWUDWLRQ RI PLFURJUDPPO 7KH VXVSHQVLRQ ZDV LQFXEDWHG DW r VKDNLQJ DW USP IRU KRXU 7KH UHVXOWLQJ FHOO O\VLV LQFUHDVHG WKH YLVFRVLW\ RI WKH VXVSHQVLRQ 7KH YLVFRVLW\ ZDV UHGXFHG E\ DGGLQJ GHR[\ULERQXFOHDVH, PLFURJUDPPO ULERQXFOHDVH$ PLFURJUDPPO DQG 0J&OA*+A2 WR D ILQDO FRQFHQWUDWLRQ UQ0 7KH H[WUDFW ZDV LQFXEDWHG IXUWKHU IRU KRXU LQ D r& VKDNHU PL[LQJ DW USP 7KH H[WUDFW ZDV FHQWULIXJHG DW [J IRU PLQXWHV DW r& WR UHPRYH FHOO GHEULV 7KH VXSHUQDWDQW FRQWDLQLQJ PHPEUDQH YHVLFOHV ZKLFK KDG XQLWV RI K\GURJHQDVH DFWLYLW\ PLFURPROHV RI SURGXFHGPJ SURWHLQ KRXUf ZDV XVHG IRU IXUWKHU SXULILFDWLRQ RI WKH HQ]\PH DV GHVFULEHG EHORZ ,VRODWLRQ DQG 6ROXELOL]DWLRQ RI 0HPEUDQHV 6LQFH K\GURJHQDVH LQ ( FROL LV DVVRFLDWHG ZLWK WKH PHPEUDQH f WKH QH[W VWHS ZDV WR VHSDUDWH WKH PHPEUDQH YHVLFOHV IURP RWKHU VROXEOH SURWHLQV 7R REWDLQ WKH PHPEUDQH YHVLFOHV WKH H[WUDFW ZDV FHQWULIXJHG DW [J LQ D VZLQJLQJ EXFNHW URWRU IRU KRXU DW r& DOO RI WKH SURFHGXUHV KHQFHIRUWK ZHUH SHUIRUPHG DW r& DQG DOO WKH EXIIHUV ZHUH LQFRUSRUDWHG ZLWK VRGLXP GLWKLRQLWH DW D ILQDO FRQFHQWUDWLRQ RI P0 XQOHVV LQGLFDWHG RWKHUZLVHf 7KH SHOOHW FRQWDLQLQJ WKH PHPEUDQH YHVLFOHV ZDV UHVXVSHQGHG LQ PO RI 0 SKRVSKDWH EXIIHU S+

PAGE 43

$SSUR[LPDWHO\ RI WKH K\GURJHQDVH DFWLYLW\ ZDV UHFRYHUHG LQ WKH PHPEUDQH SHOOHW 7R VROXELOL]H K\GURJHQDVH IURP WKH PHPEUDQH 7ULWRQ ; D QRQLRQLF GHWHUJHQW ZDV DGGHG WR D ILQDO FRQFHQWUDWLRQ RI DQG WKH H[WUDFW ZDV LQFXEDWHG IRU KRXU ZLWK JHQWOH URFNLQJ 7KH 7ULWRQ ; VROXELOL]HG PHPEUDQH IUDFWLRQ ZDV FHQWULIXJHG DW [J IRU KRXU WR UHPRYH WKH QRQVROXELOL]HG PHPEUDQH YHVLFOHV 7KH VXSHUQDWDQW FRQWDLQLQJ WKH VROXELOL]HG PHPEUDQH SURWHLQV LQFOXGLQJ K\GURJHQDVH ZDV FROOHFWHG $SSUR[LPDWHO\ RI WKH K\GURJHQDVH DFWLYLW\ SUHVHQW LQ WKH PHPEUDQHV ZDV VROXELOL]HG (QULFKPHQW RI +\GURJHQDVH 7R UHPRYH VRPH RI WKH OLSRSURWHLQ FRPSOH[HV WKDW LQWHUIHUH ZLWK WKH SXULILFDWLRQ RI WKH HQ]\PH SRO\HWK\OHQH JO\FRO 3(*f ZDV XVHG 6ROLG SRO\HWK\OHQH JO\FRO UHFHQWO\ UHQDPHG DV 3(* 6LJPD &KHPLFDO &R 6W /RXLV 0*f ZDV DGGHG WR WKH VROXELOL]HG PHPEUDQH SURWHLQ IUDFWLRQ WR D ILQDO FRQFHQWUDWLRQ RI DQG LQFXEDWHG IRU KRXU ZLWK JHQWOH PL[LQJ 7KH H[WUDFW ZDV FHQWULIXJHG DW [J IRU PLQXWHV 7KH SHOOHW ZKLFK FRQWDLQHG WKH K\GURJHQDVH DFWLYLW\ ZDV UHVXVSHQGHG LQ PO RI 0 SKRVSKDWH EXIIHU S+ 7KH K\GURJHQDVH DSSDUHQW VSHFLILF DFWLYLW\ LQFUHDVHG WR XQLWV IURP XQLWV )XUWKHU HQULFKPHQW RI K\GURJHQDVH ZDV DFKLHYHG E\ DPPRQLXP VXOIDWH IUDFWLRQDWLRQ 6ROLG 1+MA62MM ZDV DGGHG WR WKH UHVXVSHQGHG SHOOHW WR UHDFK D ILQDO FRQFHQWUDWLRQ RI VDWXUDWLRQ 7KH PL[WXUH ZDV LQFXEDWHG IRU

PAGE 44

KRXU ZLWK JHQWOH PL[LQJ 7KH SURWHLQV WKDW SUHFLSLWDWHG ZHUH UHPRYHG E\ FHQWULIXJDWLRQ DW [J IRU KRXU 7KH VXSHUQDWDQW ZKLFK FRQWDLQHG WKH K\GURJHQDVH DFWLYLW\ ZDV FROOHFWHG 6ROLG 1):A62A ZDV DGGHG WR WKH VXSHUQDWDQW WR DWWDLQ D ILQDO FRQFHQWUDWLRQ RI 6 DQG LQFXEDWHG IRU KRXU 7KH SUHFLSLWDWHG SURWHLQV ZHUH REWDLQHG E\ FHQWULIXJDWLRQ DW [J IRU KRXU 7KH SHOOHW ZKLFK FRQWDLQHG K\GURJHQDVH DFWLYLW\ ZDV UHVXVSHQGHG LQ PO RI 0 7ULFLQH EXIIHU S+ FRQWDLQLQJ 1D&O DW D ILQDO FRQFHQWUDWLRQ RI P0 DQG 7ULWRQ ; DW D ILQDO FRQFHQWUDWLRQ RI b 7KH UHVXVSHQGHG SHOOHW ZDV GLDO\]HG DJDLQVW OLWHUV RI WKH VDPH EXIIHU IRU KRXUV 7KH GLDO\VLV SURFHGXUH ZDV UHSHDWHG RQH PRUH WLPH 7KLV DPPRQLXP VXOIDWH HQULFKPHQW SURFHGXUH UHVXOWHG LQ D IROG SXULILFDWLRQ RI WKH HQ]\PH ZLWKRXW ORVV RI WRWDO DFWLYLW\ '($(&HOOXORVH &KURPDWRJUDSK\ 7KH HQ]\PH ZDV IXUWKHU SXULILHG E\ ORDGLQJ WKH GLDO\]HG H[WUDFW RQ D '($(FHOOXORVH FROXPQ [ FPf HTXLOLEUDWHG ZLWK 0 7ULFLQH EXIIHU S+ FRQWDLQLQJ 1D&O DW D ILQDO FRQFHQWUDWLRQ RI P0 DQG 7ULWRQ ; DW D ILQDO FRQFHQWUDWLRQ RI b HTXLOLEUDWLRQ EXIIHUf DQG WKH IORZ UDWHPDLQWDLQHG DW POKU 7KH FROXPQ ZDV ZDVKHG ZLWK PO RI WKH HTXLOLEUDWLRQ EXIIHU +\GURJHQDVH ZDV HOXWHG ZLWK D OLQHDU JUDGLHQW RI P0 P0 1D&O LQ D YROXPH RI WZR OLWHUV )LYH PLOOLOLWHU IUDFWLRQV ZHUH FROOHFWHG DQG DVVD\HG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 2QO\ WKH IUDFWLRQV

PAGE 45

FRQWDLQLQJ KLJK K\GURJHQDVH DFWLYLW\ FSP SHU DVVD\f ZHUH SRROHG WRJHWKHU DQG GLDO\]HG DJDLQVW OLWHUV RI P0 SKRVSKDWH EXIIHU S+ FRQWDLQLQJ P0 1+f6A WR UHPRYH WKH EXON RI 7ULWRQ ; 7KH SURWHLQ IUDFWLRQ ZDV GLDO\VHG WZLFH DJDLQVW OLWHUV RI EXIIHU IRU KRXUV $IWHU GLDO\VLV WKH UHPDLQLQJ WUDFHV RI 7ULWRQ ; ZHUH UHPRYHG E\ DGGLQJ %LR%HDGV 60 %LR5DGf WR WKH H[WUDFW DQG LQFXEDWLQJ WKH PL[WXUH IRU KRXUV ZLWK JHQWOH PL[LQJ $V D UHVXOW RI '($(FHOOXORVH FKURPDWRJUDSK\ K\GURJHQDVH DSSDUHQW VSHFLILF DFWLYLW\ LQFUHDVHG E\ D IDFWRU RI HLJKW DOWKRXJK WKH UHFRYHU\ ZDV OHVV WKDQ 2FW\O6HSKDURVH &KURPDWRJUDSK\ 7R UHPRYH PRVW RI WKH K\GURSKLOLF DQG VRPH RI WKH K\GURSKRELF SURWHLQ FRQWDPLQDQWV DQ 2FW\O6HSKDURVH FROXPQ [ FPfZDV XVHG 7KH FROXPQ ILWWHG ZLWK D UHYHUVH IORZ DGDSWRU DQG PDLQWDLQHG DW D IORZ UDWH RI POKRXU ZDV HTXLOLEUDWHG ZLWK P0 1+AA62A LQ P0 SKRVSKDWH EXIIHU S+ HTXLOLEUDWLRQ EXIIHUf 7KH SDUWLDOO\ SXULILHG K\GURJHQDVH ZDV DSSOLHG WR WKH FROXPQ DQG WKH FROXPQ ZDV ZDVKHG ZLWK PO RI WKH HTXLOLEUDWLRQ EXIIHU +\GURJHQDVH ZDV HOXWHG ZLWK D PO OLQHDU JUDGLHQW FRQWDLQLQJ LQLWLDOO\ WKH HTXLOLEUDWLRQ EXIIHU DQG ILQDOO\ VRGLXP GHR[\FnQRODWH b ZYf DQG 7ULWRQ ; YYf LQ P0 SKRVSKDWH EXIIHU 7ZR DQG RQH KDOI PLOOLOLWHU IUDFWLRQV ZHUH FROOHFWHG 7KH IUDFWLRQV ZHUH DVVD\HG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ +\GURJHQDVH HOXWHG

PAGE 46

DV D VLQJOH SHDN DW 6RGLXP 'HR[\FKRODWH DQG R 7ULWRQ ; )UDFWLRQV FRQWDLQLQJ K\GURJHQDVH DFWLYLW\ FSP SHU DVVD\f ZHUH SRROHG WRJHWKHU (YHQ WKRXJK K\GURJHQDVH ZDV HQULFKHG RQO\ E\ D IDFWRU RI GXULQJ WKLV VWHS LW ZDV LPSRUWDQW WR LQFOXGH WKLV VWHS LQ WKH SXULILFDWLRQ SURFHGXUH WR VHSDUDWH WKH K\GURJHQDVH IURP VRPH RI WKH RWKHU K\GURSKRELF FRQWDPLQDQWV ZKLFK LQWHUIHUHG ZLWK IXUWKHU SXULILFDWLRQ 7KH SRROHG IUDFWLRQV ZHUH GLDO\]HG DJDLQVW OLWHUV RI P0 +LVWLGLQH +& S+ FRQWDLQLQJ 7ULWRQ ; 7KH GLDO\VLV ZDV SHUIRUPHG LQ WZR VWHSV DJDLQVW OLWHUV RI EXIIHU IRU KRXUV HDFK WLPH &KURPDWRIRFXVVLQJ )XUWKHU SXULILFDWLRQ RI WKH HQ]\PH ZDV DFKLHYHG E\ WDNLQJ DGYDQWDJH RI WKH IDFW WKDW HDFK SURWHLQ KDV LWV RZQ XQLTXH LVRHOHFWULF SRLQW &KURPDWRIRFXVVLQJ DFKLHYHV VHSDUDWLRQ RI SURWHLQV EDVHG RQ WKHLU LVRHOHFWULF SRLQWV 7KH GLDO\]HG SURWHLQ VROXWLRQ FRQWDLQLQJ K\GURJHQDVH ZDV DSSOLHG WR D FROXPQ [ FPf RI 3RO\ %XIIHU ([FKDQJHU 3KDUPDFLDf HTXLOLEUDWHG ZLWK P0 +LVWLGLQH +& S+ FRQWDLQLQJ 7ULWRQ ; DQG PDLQWDLQHG DW D IORZ UDWH RI POKRXU +\GURJHQDVH DFWLYLW\ ZDV HOXWHG E\ SDVVLQJ PO RI 3RO\EXIIHU DGMXVWHG WR S+ ZLWK +& DQG VXSSOHPHQWHG ZLWK 7ULWRQ ; WKURXJK WKH FROXPQ 7ZR PO IUDFWLRQV ZHUH FROOHFWHG 7KH IUDFWLRQV ZHUH DVVD\HG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ +\GURJHQDVH DFWLYLW\ HOXWHG DV D VKDUS SHDN DW S+ )UDFWLRQV

PAGE 47

FRQWDLQLQJ K\GURJHQDVH DFWLYLW\ FSP SHU DVVD\f ZHUH SRROHG WRJHWKHU DQG GLDO\]HG DJDLQVW OLWHUV RI P0 1D&O LQ QLO SKRVSKDWH EXIIHU S+ FRQWDLQLQJ b 7ULWRQ ; &KURPDWRIRFXVVLQJ UHVXOWHG LQ D IROG HQULFKPHQW RI K\GURJHQDVH DFWLYLW\ '($(&HOOXORVH &KURPDWRJUDSK\ 7R SXULI\ WKH K\GURJHQDVH WR KRPRJHQHLW\ WKH GLDO\]HG VDPSOH REWDLQHG DIWHU FKURPDWRIRFXVVLQJ YDV DSSOLHG WR D '($(FHOOXORVH FROXPQ [ FPf 7KH FROXPQ ZDV HTXLOLEUDWHG ZLWK P0 1D&O LQ PL SKRVSKDWH EXIIHU S+ FRQWDLQLQJ b 7ULWRQ ; HTXLOLEUDWLRQ EXIIHUf DQG PDLQWDLQHG DW D IORZ UDWH RI POKRXU 7KH FROXPQ ZDV ZDVKHG ZLWK PO RI WKH HTXLOLEUDWLRQ EXIIHU +\GURJHQDVH ZDV HOXWHG ZLWK D PO OLQHDU JUDGLHQW RI P0 1D&O LQ P0 SKRVSKDWH EXIIHU S+ FRQWDLQLQJ r 7ULWRQ ; 7ZR PO IUDFWLRQV ZHUH FROOHFWHG DQG DVVD\HG IRU K\GURJHQDVH DFWLYLW\ +\GURJHQDVH HOXWHG DW DSSUR[LPDWHO\ P0 1D&O )UDFWLRQV FRQWDLQLQJ K\GURJHQDVH DFWLYLW\ ZHUH DQDO\VHG IRU SXULW\ XVLQJ b QRQGHQDWXULQJ DQG 6'63$*( 7KH JHOV ZHUH VWDLQHG IRU SURWHLQ XVLQJ WKH VLOYHU VWDLQ PHWKRG )UDFWLRQV FRQWDLQLQJ SXUH K\GURJHQDVH EDVHG RQ 6'63$*( ZHUH SRROHG WRJHWKHU DQG FRQFHQWUDWHG E\ XOWUDILOWUDWLRQ XVLQJ DQ $PLFRQ 30 PHPEUDQH XOWUDILOWHU 7KH FRQFHQWUDWHG VDPSOH ZDV DOVR FKHFNHG IRU SXULW\ E\ VXEMHFWLQJ WKH VDPSOH WR HOHFWURSKRUHVLV DV PHQWLRQHG DERYH 7KH K\GURJHQDVH VDPSOH VXEMHFWHG WR HOHFWURSKRUHVLV XQGHU

PAGE 48

QRQGHQDWULQJ FRQGLWLRQV ZDV DOVR VWDLQHG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 5HVXOWV IURP QDWLYH 3$*( )LJXUH f VKRZHG D VLQJOH EDQG ZKHQ VWDLQHG IRU SURWHLQ XVLQJ WKH VLOYHU VWDLQ PHWKRG 7KH 5I RI WKH SURWHLQ EDQG ZDV FRPSDUDEOH WR WKH 5I RI D SURWHLQ SRVVHVVLQJ K\GURJHQDVH DFWLYLW\ )LJXUH SUHVHQWV WKH UHVXOWV REWDLQHG DIWHU WKH SXULILHG HQ]\PH ZDV VXEMHFWHG WR 6'63$*( DQG WKH JHO VWDLQHG IRU SURWHLQ $ VLQJOH SURWHLQ EDQG ZDV GHWHFWHG ZLWK D PROHFXODU ZHLJKW RI 7KH SURFHGXUH GHVFULEHG DERYH \LHOGHG D SURWHLQ ZKLFK LV HQULFKHG IRU E\ D IDFWRU RI DV FRPSDUHG WR LWV SUHVHQFH LQ WKH FUXGH H[WUDFW 7KH ILQDO \LHOG LV b 0ROHFXODU :HLJKW 'HWHUPLQDWLRQ 7R GHWHUPLQH WKH PROHFXODU ZHLJKW RI WKH QDWLYH HQ]\PH WZR GLIIHUHQW PHWKRGV ZHUH XVHG QDPHO\ JHO ILOWUDWLRQ DQG QDWLYH SRO\DFU\ODPLGH JHO HOHFWURSKRUHVLV $OVR VLQFH WKH HQ]\PH ZDV VROXELOL]HG XVLQJ 7ULWRQ ; DQG WKH GHWHUJHQW ZDV SUHVHQW GXULQJ WKH SXULILFDWLRQ SURFHGXUH WKH PROHFXODU ZHLJKW ZDV GHWHUPLQHG ERWK LQ WKH SUHVHQFH DQG DEVHQFH RI 7ULWRQ ;

PAGE 49

7DEOH 3XULILFDWLRQ RI +\GURJHQDVH 9ROXPH POf 3URWHLQ PJPOf 7RWDO 3URWHLQ PJPOf ([WUDFW 0HPEUDQH 6ROXE 0HPEUDQH 3(* 3HOOHW R 1+Qf6 6XSHUQDWDQW 1+M fS6Q SHOOHW $SSDUHQW 7RWDO r 5HFRYHU\ 6SHFLILFr $FWLYLW\ f $FWLYLW\

PAGE 50

7DEOH &RQWLQXHG 9ROXPH POf 3URWHLQ PJPOf 7RWDO 3URWHLQ PJPOf '($( &HOOXORVH S+ 2FW\O 6HSKDURVH &/% &KURPDWRn IRFXVVLQJ '($( &HOOXORVH S+ r PLFURPROHV RI A+ SURGXFHG LQJ SURWHLQ KU 6ROXELOL]HG ZLWW77ULWRQ ; $SSDUHQW 7RWDOr 5HFRYHU\ 6SHFLILFr $FWLYLW\ bf $FWLYLW\

PAGE 51

)LJXUH 3RO\DFU\ODPLGH JHO HOHFWURSKRUHVLV RI SXULILHG K\GURJHQDVH XQGHU QRQGHQDWXULQJ FRQGLWLRQV $ *HO VWDLQHG IRU SURWHLQ XVLQJ WKH VLOYHU VWDLQ PHWKRG % *HO VWDLQHG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ $PRXQW RI SURWHLQ DGGHG WR HDFK ODQH ZDV PLFURJUDPV

PAGE 52

%

PAGE 53

)LJXUH 6'63RO\DFU\ODPLGH JHO HOHFWURSKRUHVLV RI SXULILHG K\GURJHQDVH /DQH $ SXULILHG K\GURJHQDVH PLFURJUDPVf /DQH % 0ROHFXODU :HLJKW VWDQGDUG SURWHLQV *HO VWDLQHG IRU SURWHLQ XVLQJ WKH FRRPDVVLH EOXH PHWKRG

PAGE 55

*HO )LOWUDWLRQ LQ WKH 3UHVHQFH RI b 7ULWRQ ; 7R GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH E\ JHO ILOWUDWLRQ D 6HSKDGH[ FROXPQ FP [ FPf ZDV XVHG DW r& 7KH FROXPQ ZDV HTXLOLEUDWHG ZLWK P0 SKRVSKDWH EXIIHU S+ FRQWDLQLQJ r 7ULWRQ ; DQG PDLQWDLQHG DW D IORZ UDWH RI POKU 7KH YRLG YROXPH 9Rf RI WKH FROXPQ ZDV GHWHUPLQHG XVLQJ EOXH GH[WUDQ 0: f $ FDOLEUDWLRQ FXUYH IRU WKH FROXPQ ZDV JHQHUDWHG ZLWK SURWHLQV RI NQRZQ PROHFXODU ZHLJKWV DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7DEOH OLVWV WKH YRLG YROXPH 9Rf RI WKH FROXPQ WKH HOXWLRQ YROXPHV 9Hf RI WKH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV DQG WKH UDWLR RI 9H9R IRU HDFK RI WKH SURWHLQV 7R GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH PO RI SXUH K\GURJHQDVH PLFURJUDPPOf LQ P0 SKRVSKDWH EXIIHU S+ b 7ULWRQ ; ZDV ORDGHG RQ WKH FROXPQ 7KH HOXWLRQ RI K\GURJHQDVH ZDV PRQLWRUHG E\ DVVD\LQJ WKH GLIIHUHQW IUDFWLRQV FROOHFWHG POf IRU WULWLXP H[FKDQJH DFWLYLW\ 7KH HOXWLRQ SURILOH RI K\GURJHQDVH IURP D UHSUHVHQWDWLYH H[SHULPHQW LV SUHVHQWHG LQ )LJXUH +\GURJHQDVH DFWLYLW\ ZDV GHWHFWHG LQ WZR PDMRU SHDNV 7KH PROHFXODU ZHLJKW RI K\GURJHQDVH IURP HDFK SHDN ZDV GHWHUPLQHG XVLQJ WKH FDOLEHUDWLRQ FXUYH )LJXUH f %DVHG RQ WKUHH LQGHSHQGHQW GHWHUPLQDWLRQV b bf RI WKH DFWLYLW\ ORDGHG RQ WKH FROXPQ ZDV GHWHFWHG LQ SHDN DQG f RI WKH DFWLYLW\ HOXWHG LQ SHDN ,, +\GURJHQDVH LQ SHDN KDG D PROHFXODU ZHLJKW RI f DQG WKH K\GURJHQDVH LQ SHDN ,, KDG D PROHFXODU ZHLJKW RI f

PAGE 56

7DEOH (OXWLRQ SDWWHUQ RI K\GURJHQDVH DQG WKH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV LQ 6HSKDGH[ FP [ FP FROXPQf LQ WKH SUHVHQFH DQG DEVHQFH RI 7ULWRQ ; f 7ULWRQ ; 7ULWRQ ; 3URWHLQ 0ROHFXODU :HLJKW (OXWLRQ 9ROXPH LQ PO 9H9R (OXWLRQ 9ROXPH LQ PO 9H9R %OXH 'H[WUDQ %HWDDP\ODVH $OFRKRO GHK\GURJHQDVH $OEXPLQ %RYLQH 6HUXP &DUERQLF DQK\GUDVH &\WRFKURPH F +\GURJHQDVH 7ULWRQf SHDN 7ULWRQf r V +\GURJHQDVH 7ULWRQf SHDN ,, 7ULWRQf V V r &DOFXODWHG YDOXH

PAGE 57

)LJXUH (OXWLRQ SURILOH RI K\GURJHQDVH LQ 6HSKDGH[ FP [ FP FROXPQf LQ WKH SUHVHQFH RI r 7ULWRQ ;

PAGE 58

+\ULURJHQDVH $FWLYLW\ $2 )UDFWLRQ 1XPEHU

PAGE 59

)LJXUH &DOLEUDWLRQ FXUYH IRU WKH 6HSKDGH[ FROXPQ FP [ FPf XVHG WR GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH LQ WKH SUHVHQFH RI 7ULWRQ ; Â’ PROHFXODU ZHLJKW VWDQGDUGV ,V K\GURJHQDVH

PAGE 61

R *HO )LOWUDWLRQ LQ WKH $EVHQFH RI 7ULWRQ ; 7R GHWHUPLQH WKH PROHFXODU ZHLJKW RI WKH HQ]\PH LQ WKH DEVHQFH RI 7ULWRQ ; D FROXPQ RI VHSKDGH[ FP [ FPfZDV XVHG DQG WKH 9H9R YDOXHV IRU WKH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV ZHUH GHWHUPLQHG LQ WKH VDPH PDQQHU DV IRU JHO ILOWUDWLRQ LQ WKH SUHVHQFH RI 7ULWRQ ; 7DEOH f 7KH 9H9R GLG QRW FKDQJH DSSUHFLDEO\ IRU WKHVH SURWHLQV LQ WKH DEVHQFH RI 7ULWRQ ; H[FHSW IRU DOEXPLQ DQG FDUERQLF DQK\GUDVH ZKLFK PLJUDWHG OLWWOH IDVWHU WKURXJK WKH FROXPQ 7KH 9H9R IRU WKH HQ]\PH PLFURJUDPPO PO VDPSOH YROXPHf ZDV GHWHUPLQHG DIWHU UHPRYLQJ 7ULWRQ ; DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH HOXWLRQ SURILOH RI K\GURJHQDVH ZDV PRQLWRUHG E\ DVVD\LQJ WKH GLIIHUHQW IUDFWLRQV IRU WULWLXP H[FKDQJH DFWLYLW\ )LJXUH f +\GURJHQDVH DFWLYLW\ ZDV SUHVHQW LQ WZR PDMRU SHDNV 7DEOH OLVWV WKH HOXWLRQ YROXPH 9Hf DQG WKH UDWLR RI 9H9R IRU WKH WZR K\GURJHQDVH SHDNV DQG WKH VWDQGDUG SURWHLQV XVHG 7KH PROHFXODU ZHLJKW RI K\GURJHQDVH LQ WKH WZR SHDNV ZDV GHWHUPLQHG XVLQJ WKH FDOLEHUDWLRQ FXUYH )LJXUH f %DVHG RQ WKUHH LQGHSHQGHQW GHWHUPLQDWLRQV b f RI WKH DFWLYLW\ ORDGHG RQ WKH FROXPQ ZDV DFFRXQWHG IRU LQ SHDN DQG DSSUR[LPDWHO\ bf RI WKH DFWLYLW\ ZDV GHWHFWHG LQ SHDN ,, +\GURJHQDVH LQ SHDN KDG D PROHFXODU ZHLJKW RI f DQG WKH K\GURJHQDVH LQ SHDN ,, KDG D PROHFXODU ZHLJKW RI f 7KH PLQRU SHDN EHWZHHQ SHDN DQG SHDN ,, KDG D PROHFXODU ZHLJKW RI DQG DFFRXQWHG IRU RI WKH WRWDO DFWLYLW\

PAGE 62

)LJXUH (OXWLRQ SURILOH RI K\GURJHQDVH LQ 6HSKDGH[ FP [ FP FROXPQf LQ WKH DEVHQFH RI 7ULWRQ ;

PAGE 63

)UDFWLRQ 1XPEHU +YGURJHQDVH $FWLYLW\ FSP [ Bf R f! RR WR

PAGE 64

)LJXUH &DOLEUDWLRQ FXUYH IRU WKH 6HSKDGH[ FROXPQ FP [ FPf XVHG WR GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH LQ WKH DEVHQFH RI 7ULWRQ ; R VWDQGDUG SURWHLQV e K\GURJHQDVH

PAGE 65

0ROHFXODU :HLJKW 9H 9R

PAGE 66

1DWLYH 3$*( ,Q 7KH 3UHVHQFH RI 7ULWRQ ; $QRWKHU LQGHSHQGHQW PHWKRG XVHG WR GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH LQYROYHG HOHFWURSKRUHVLV RI WKH HQ]\PH LQ SRO\DFU\ODPLGH JHOV RI GLIIHUHQW FRQFHQWUDWLRQV XQGHU QRQGHQDWXULQJ FRQGLWLRQV $ VHW RI WXEH JHOV FRQWDLQLQJ GLIIHUHQW FRQFHQWUDWLRQV RI DFU\ODPLGH ZDV SUHSDUHG DQG WKH VDPSOHV ZHUH VXEMHFWHG WR HOHFWURSKRUHVLV DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH UHODWLYH PRELOLW\ RI K\GURJHQDVH ZDV GHWHUPLQHG DIWHU VWDLQLQJ WKH JHOV IRU K\GURJHQDVH DFWLYLW\ )LJXUH 7DEOH f 7R GHWHUPLQH WKH PROHFXODU ZHLJKW RI K\GURJHQDVH WKH UHODWLYH PRELOLWLHV RI SURWHLQV ZLWK NQRZQ PROHFXODU ZHLJKWV ZHUH GHWHUPLQHG DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH )HUJXVRQ 3ORW JHQHUDWHG EDVHG RQ WKH 5I YDOXHV REWDLQHG IRU WKH VWDQGDUG SURWHLQV LV DV LOOXVWUDWHG LQ )LJXUH f§ 7KH DYHUDJH PROHFXODU ZHLJKW RI K\GURJHQDVH EDVHG RQ WKUHH LQGHSHQGHQW GHWHUPLQDWLRQV ZDV f 1DWLYH 3$*( LQ WKH $EVHQFH RI 7ULWRQ ; 7KH PROHFXODU ZHLJKW RI K\GURJHQDVH XVLQJ WKH HOHFWURSKRUHVLV PHWKRG ZDV DOVR GHWHUPLQHG LQ WKH DEVHQFH RI 7ULWRQ ; 7KH WXEH JHOV ZHUH SUHSDUHG DQG WKH VDPSOHV ZHUH VXEMHFWHG WR HOHFWURSKRUHVLV DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH RQO\ GLIIHUHQFH LQ WKLV FDVH ZDV WKDW 7ULWRQ ; ZDV QRW LQFRUSRUDWHG LQ WKH JHOV DQG K\GURJHQDVH ZDV IUHH RI 7ULWRQ ; 7KH JHOV ZHUH VWDLQHG IRU K\GURJHQDVH DFWLYLW\ DIWHU HOHFWURSKRUHVLV 8QGHU WKHVH FRQGLWLRQV WZR GLVWLQFW

PAGE 67

)LJXUH 0ROHFXODU ZHLJKW GHWHUPLQDWLRQ RI K\GURJHQDVH LQ WKH SUHVHQFH RI 7ULWRQ ; XVLQJ QDWLYH 3$*( 3RO\DFU\ODPLGH WXEH JHOV ZLWK GLIIHUHQW FRQFHQWUDWLRQV RI DFU\ODPLGH ZHUH ORDGHG ZLWK SXULILHG K\GURJHQDVH PLFURJUDPf (OHFWURSKRUHVLV ZDV SHUIRUPHG DQG WKH JHOV VWDLQHG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ b DFU\ODPLGH K DFU\ODPLGH b DFU\ODPLGH b DFU\ODPLGH b DFU\ODPLGH DQG b DFU\ODPLGH

PAGE 69

7DEOH 5HODWLYH HOHFWURSKRUHWLF PRELOLWLHV 5If RI K\GURJHQDVH DQG PROHFXODU ZHLJKW VWDQGDUG SURWHLQV LQ WKH SUHVHQFH RI 7ULWRQ ; LQ SRO\DFU\ODPLGH JHOV DW GLIIHUHQW DFU\ODPLGH FRQFHQWUDWLRQV 3URWHLQ $OSKD /DFWDOEXPLQ &DUERQLF $QK\GUDVH $OEXPLQ &KLFNHQ HJJ $OEXPLQ %RYLQH 6HUXP $OEXPLQ %RYLQH 6HUXP +\GURJHQDVH r &DOFXODWHG 0ROHFXODU :HLJKW 5I DW b GLIIHUHQW Q FRQH RI DFU\ODPLGH f 3 R WR 0RQRPHUf 'LPHUf V YDOXH

PAGE 70

)LJXUH 6WDQGDUG FXUYH )HUJXVRQ SORWf IRU WKH GHWHUPLQDWLRQ RI WKH PROHFXODU ZHLJKW RI K\GURJHQDVH XVLQJ QDWLYH 3$*( LQ WKH SUHVHQFH RI b 7ULWRQ ; 4 K\GURJHQDVH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV

PAGE 71

6ORSH 2nn WU

PAGE 72

EDQGV WKDW VWDLQHG IRU K\GURJHQDVH DFWLYLW\ FDQ EH REVHUYHG LQ WKH JHOV )LJXUH f 7KH UHODWLYH PLJUDWLRQ RI ERWK WKHVH EDQGV SRVVHVVLQJ K\GURJHQDVH DFWLYLW\ DQG WKH UHODWLYH PRELOLWLHV RI WKH VWDQGDUG SURWHLQV DUH OLVWHG LQ 7DEOH )LJXUH LOOXVWUDWHV WKH )HUJXVRQ 3ORW JHQHUDWHG XVLQJ WKH 5I YDOXHV REWDLQHG IRU WKH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV %DVHG RQ WKUHH LQGHSHQGHQW GHWHUPLQDWLRQV K\GURJHQDVH ZLWK D KLJKHU 5I YDOXH EDQG ,f FRUUHVSRQGV WR D PROHFXODU ZHLJKW RI f DQG WKH RWKH EDQG EDQG ,,f FRUUHVSRQGV WR D PROHFXODU ZHLJKW RI f ,URQ DQG 6XOIXU FRQWHQW 7KH LURQ DQG DFLG ODELOH VXOIXU FRQWHQW RI WKH HQ]\PH ZDV GHWHUPLQHG DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH WZR IRUPV RI WKH HQ]\PH ZHUH VHSDUDWHG E\ JHO ILOWUDWLRQ 7KH HQ]\P ZLWK D PROHFXODU ZHLJKW RI KDG f PROHV RI LURQ DQG f PROHV RI VXOIXU SHU PROH RI WKH HQ]\PH 7KH G HQ]\PH KDG f PROHV RI LURQ DQG f PROHV RI VXOIXU SHU PROH RI WKH HQ]\PH 7HPSHUDWXUH 3URILOH 7KH RSWLPXP WHPSHUDWXUH IRU FDWDO\VLV RI WKH H[FKDQJH UHDFWLRQ ZDV GHWHUPLQHG DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ

PAGE 73

)LJXUH 0ROHFXODU ZHLJKW GHWHUPLQDWLRQ RI K\GURJHQDVH LQ WKH DEVHQFH RI 7ULWRQ ; 3RO\DFU\ODPLGH WXEH JHOV ZLWK GLIIHUHQW FRQFHQWUDWLRQV RI DFU\ODPLGH ZHUH ORDGHG ZLWK K\GURJHQDVH PLFURJUDPVf $IWHU HOHFWURSKRUHVLV WKH JHOV ZHUH VWDLQHG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ b DFU\ODPLGH b DFU\ODPLGH b DFU\ODPLGH b DFU\ODPLGH DQG ODQH I DFU\ODPLGH

PAGE 75

7DEOH 5HODWLYH HOHFWURSKRUHWLF PRELOLWLHV 5If RI K\GURJHQDVH DQG PROHFXODU ZHLJKW VWDQGDUG SURWHLQV LQ WKH DEVHQFH RI 7ULWRQ ; LQ SRO\DFU\ODPLGH JHOV DW GLIIHUHQW DFU\ODPLGH FRQFHQWUDWLRQV 3URWHLQ 0ROHFXODU :HLJKW b 5I U Eb fW GLIIHUHQW FRQH b b RI DF r U\ODPLGH b $OSKD /DFWDOEXPLQ &DUERQLF DQK\GUDVH $OEXPLQ &KLFNHQ (JJ $OEXPLQ %RYLQH 6HUXP PRQRPHUf $OEXPLQ %RYLQH 6HUXP 'LPHUf +\GURJHQDVH %DQG V +\GURJHQDVH %DQG ,, V r &DOFXODWHG YDOXH

PAGE 76

)LJXUH 6WDQGDUG FXUYH )HUJXVRQ 3ORWf IRU WKH GHWHUPLQDWLRQ RI WKH PROHFXODU ZHLJKW RI K\GURJHQDVH XVLQJ QDWLYH 3$*( LQ WKH DEVHQFH RI 7ULWRQ ; A K\GURJHQDVH PROHFXODU ZHLJKW VWDQGDUG SURWHLQV

PAGE 77

6 ORSH 2

PAGE 78

)LJXUH VKRZV WKH WHPSHUDWXUH SURILOH IRU K\GURJHQDVH DV GHWHUPLQHG E\ WKH H[FKDQJH UHDFWLRQ 7KH GDWD UHSUHVHQW WKH UHVXOWV RI IRXU LQGHSHQGHQW GHWHUPLQDWLRQV $V FDQ EH GHGXFHG IURP WKH JUDSK WKH RSWLPDO WHPSHUDWXUH IRU WKH H[FKDQJH UHDFWLRQ ZDV r& )LJXUH SUHVHQWV DQ $UUKHQLXV SORW IRU WKH WULWLXP H[FKDQJH UHDFWLRQ FDWDO\]HG E\ K\GURJHQDVH EHWZHHQ r& DQG nr& 7KH VORSH RI WKH OLQH REWDLQHG E\ SORWWLQJ WKH ORJ RI WKH UHDFWLRQ UDWH YHUVXV WKH LQYHUVH RI WKH DEVROXWH WHPSHUDWXUH DW ZKLFK WKH UHDFWLRQ ZDV SHUIRUPHG JLYHV WKH DFWLYDWLRQ HQHUJ\ IRU WKH H[FKDQJH UHDFWLRQ FDWDO\]HG E\ K\GURJHQDVH +\GURJHQDVH VKRZV WZR DFWLYDWLRQ HQHUJLHV IRU WKH H[FKDQJH UHDFWLRQ WKH DFWLYDWLRQ HQHUJ\ LV FDO DW D WHPSHUDWXUH UDQJH RI r& WR r& DQG FDO DW WHPSHUDWXUH EHORZ r& 7R GHWHUPLQH ZKHWKHU WKH KLJKHU DFWLYDWLRQ HQHUJ\ UHTXLUHG DW WHPSHUDWXUHV EHORZ r& ZDV GXH WR PLFHOOH IRUPDWLRQ E\ 7ULWRQ ; DW ORZHU WHPSHUDWXUHV WKH H[SHULPHQW ZDV DOVR SHUIRUPHG LQ WKH DEVHQFH RI 7ULWRQ ; 7KH UHVXOWV REWDLQHG LQ WKH DEVHQFH RI 7ULWRQ ; ZHUH VLPLODU WR WKH UHVXOWV REWDLQHG LQ WKH SUHVHQFH RI 7ULWRQ ; VXJJHVWLQJ WKDW WKH KLJKHU DFWLYDWLRQ HQHUJ\ YDOXH REVHUYHG DW WHPSHUDWXUHV EHORZ r& ZDV QRW GXH WR WKH SUHVHQFH RI 7ULWRQ ;

PAGE 79

)LJXUH (IIHFW RI WHPSHUDWXUH RQ K\GURJHQDVH DFWLYLW\

PAGE 80

7HPSHUDWXUH +YGURHQDVH $FWLYLWY PLFURPROHV RI +A2 SURGXFHGPS SURWHLQ KRXUf 1R R R 2 &2 FO

PAGE 81

)LJXUH $UUKHQLXV SORW IRU WKH H[FKDQJH UHDFWLRQ FDWDO\]HG E\ K\GURJHQDVH EHWZHHQ WKH WHPSHUDWXUH UDQJH RI & WR r&

PAGE 82

/2

PAGE 83

S+ 3URILOH 7KH RSWLPXP S+ IRU WKH FDWDO\VLV RI WKH H[FKDQJH UHDFWLRQ ZDV GHWHUPLQHG DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ DW GLIIHUHQW S+ DQG LQ WKH SUHVHQFH RI WKUHH GLIIHUHQW EXIIHUV 7KH EXIIHUV XVHG DQG WKH S+ DW ZKLFK WKH H[FKDQJH UHDFWLRQ ZDV FDUULHG RXW ZHUH DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ )LJXUH LOOXVWUDWHV WKH S+ SURILOH IRU WKH H[FKDQJH DFWLYLW\ $ EURDG S+ RSWLPXP EHWZHHQ S+ ZDV REVHUYHG IRU K\GURJHQDVH XVLQJ WKH WULWLXP H[FKDQJH UHDFWLRQ .LQHWLF &KDUDFWHULVWLFV 6LQFH WKH SXULILHG K\GURJHQDVH FDQ H[LVW ERWK DV D PRQRPHU DQG D GLPHU GHSHQGLQJ RQ WKH SUHVHQFH RU DEVHQFH RI GHWHUJHQW LW ZDV LPSRUWDQW WR GHWHUPLQH ZKHWKHU ERWK WKH PRQRPHU DQG GLPHU KDYH WKH VDPH NLQHWLF SURSHUWLHV 7R DFKLHYH WKLV WKH WZR IRUPV ZHUH VHSDUDWHG E\ JHO ILOWUDWLRQ 7KH DSSDUHQW .P DQG 9PD[ IRU WKH H[FKDQJH UHDFWLRQ ZHUH GHWHUPLQHG IRU ERWK IRUPV RI K\GURJHQDVH 7KH UHVXOWV SUHVHQWHG LQ 7DEOH VKRZ WKDW WKH DSSDUHQW .P IRU K\GURJHQ DQG WKH 9PD[ IRU ]KH H[FKDQJH UHDFWLRQ RI WKH PRQRPHU DQG GLPHU IRUPV RI WKH HQ]\PH DUH FRPSDUDEOH WR WKH DSSDUHQW .P DQG WKH 9PD[ RI WKH HQ]\PH EHIRUH WKH VHSDUDWLRQ 7KH WXUQ RYHU QXPEHU FDOFXODWHG EDVHG RQ WKH PROHFXODU ZHLJKW YDOXHV REWDLQHG XVLQJ *HO )LOWUDWLRQ VXJJHVWV

PAGE 84

)LJXUH (IIHFW RI S+ RQ K\GURJHQDVH H[FKDQJH DFWLYLW\ f ff SKRVSKDWH EXIIHU r !rf 3,3(6 EXIIHU DQG ‘ ‘f 7ULV +& EXIIHU 6HH 0DWHULDOV DQG 0HWKRGV VHFWLRQ IRU GHWDLOV

PAGE 85

+LGURJHQDVH $FWLYLW\ PLFURPROUV RIA+" SURGXFHGPJ SURWHLQ KRXU f !f§ &2 UR R 2 R R

PAGE 86

7DEOH .LQHWLF 3URSHUWLHV RI WKH PRQRPHU DQG WKH GLPHU IRUPV RI K\GURJHQDVH +\GURJHQDVH .P 7ULWLXP ([FKDQJH 9PD[A 0ROHFXODU $FWLYLW\ %HIRUH )UDFWLRQDWLRQ 0RQRPHU 'LPHU PLFURPRODU RI GLVVROYHG K\GURJHQ LQ WKH DTXHRXV SKDVH FDOFXODWHG YDOXH EDVHG RQ VROXELOLW\ RI K\GURJHQ LQ VROXWLRQf PLFURPROHV RI AcL SURGXFHGPJ SURWHLQ KRXU X X'

PAGE 87

WKDW WKH GLPHU IRUP RI WKH HQ]\PH LV FRPSRVHG RI WZR PRQRPHUV WKDW DUH HTXDOO\ DFWLYH 7KH DSSDUHQW .P ZDV DOVR GHWHUPLQHG IRU GLIIHUHQW HOHFWURQ FDUULHUV RI K\GURJHQDVH YL] R[LGL]HG EHQ]\O YORORJHQ R[LGL]HG PHWK\O YLRORJHQ UHGXFHG EHQ]\O YLRORJHQ UHGXFHG PHWK\O YLRORJHQ DQG K\GURJHQ 7KH GHWHUPLQDWLRQV IRU HDFK RI WKH VXEVWUDWHV ZHUH GRQH DV GHVFULEHG LQ WKH 0DWHULDO DQG 0HWKRGV VHFWLRQ 7KH FRPSXWHU JHQHUDWHG /LQHZHDYHU %XUN SORWV IRU HDFK RI WKH VXEVWUDWHV LV DV SUHVHQWHG LQ )LJXUHV DQG 7KH UHVXOWV REWDLQHG DUH DQ DYHUDJH RI WKUHH LQGHSHQGHQW GHWHUPLQDWLRQV DQG DUH VXPPDUL]HG LQ 7DEOH 7KH DSSDUHQW .P IRU R[LGL]HG PHWK\O YLRORJHQ LQ WKH K\GURJHQ XSWDNH UHDFWLRQ ZDV P0 DQG WKH IRUZDUG UHDFWLRQ ZDV FDWDO\]HG DW D PD[LPDO YHORFLW\ RI PLFURPROHV RI PHWK\O YLRORJHQ UHGXFHGPLQ PJ SURWHLQ 0RQLWRULQJ WKH UDWH RI K\GURJHQ HYROXWLRQ WKH DSSDUHQW .P IRU UHGXFHG PHWK\O YLRORJHQ ZDV GHWHUPLQHG WR EH P0 DQG WKH 9PD[ PLFURPROHV RI K\GURJHQ SURGXFHGPLQ PJ SURWHLQ 7KH DSSDUHQW .P IRU R[LGL]HG EHQ]\O YLRORJHQ LQ K\GURJHQ XSWDNH UHDFWLRQ ZDV P0 DQG WKH 9PD[ PLFURPROHV RI EHQ]\O YLRORJHQ UHGXFHGWQLQ PJ SURWHLQ 7KH DSSDUHQW .P IRU UHGXFHG EHQ]\O YLRORJHQ ZDV P0 DQG WKH PD[LPXP YHORFLW\ DW ZKLFK WKH UDWH RI K\GURJHQ HYROXWLRQ UHDFWLRQ SURFHHGV XVLQJ UHGXFHG EHQ]\O YLRORJHQ DV D VRXUFH RI HOHFWURQV ZDV PLFURPROHV RI K\GURJHQ SURGXFHGPLQ PJ SURWHLQ

PAGE 88

LJXUH 'RXEOH UHFLSURFDO SORW /LQHZHDYHU%XUNf RI R[LGL]HG PHWK\O YLRORJHQ FRQFHQWUDWLRQ RQ K\GURJHQDVH DFWLYLW\

PAGE 89

I 09 P0

PAGE 90

)LJXUH 'RXEOH UHFLSURFDO SORW /LQHZHDYHU %XUNf RI R[LGL]HG EHQ]\O YLRORJHQ FRQFHQWUDWLRQ RQ K\GURJHQDVH DFWLYLW\

PAGE 91

60 I39@ P0

PAGE 92

)LJXUH 'RXEOH UHFLSURFDO SORW /LQHZHDYHU 'XUNf RI UHGXFHG PHWK\O YLRORJHQ FRQFHQWUDWLRQ RQ K\GURJHQDVH DFWLYLW\

PAGE 93

U 09 P0

PAGE 94

)LJXUH 'RXEOH UHFLSURFDO SORW /LQHZHDYHU %XUNf RI UHGXFHG EHQ]\O YLRORJHQ FRQFHQWUDWLRQ RQ K\GURJHQDVH DFWLYLW\

PAGE 95

+n+ P0

PAGE 96

FU FX 7DEOH .LQHWLF 3URSHUWLHV RI K\GURJHQDVH 6XEVWUDWH $SSDUHQW .P P0 9PD[ 0HWK\O 9LRORJHQ R[LGL]HGf n %HQ]\O 9LRORJHQ R[LGL]HGf 0HWK\O 9LRORJHQ UHGXFHGf %HQ]\O 9LRORJHQ UHGXFHGf PLFURPROHV RI G\H UHGXFHGPLQ PJ SURWHLQ PLFURPROHV RI K\GURJHQ HYROYHGPLQ PJ SURWHLQ

PAGE 97

+\GURJHQ 8SWDNH LQ WKH 3UHVHQFH RI 'LIIHUHQW $UWLILFLDO (OHFWURQ $FFHSWRUV 7KH DELOLW\ RI K\GURJHQDVH WR XWLOL]H D YDULHW\ RI DUWLILFLDO HOHFWURQ DFFHSWRUV ZDV DOVR GHWHUPLQHG 7KH H[SHULPHQW DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ LQYROYHG WKH LQFXEDWLRQ RI K\GURJHQDVH ZLWK YDULRXV HOHFWURQ DFFHSWRUV LQ WKH SUHVHQFH RI K\GURJHQ DQG GHWHUPLQDWLRQ RI WKH UDWH RI UHGXFWLRQ RI WKH DFFHSWRU VSHFWURSKRWRPHWULFDOO\ 7DEOH OLVWV WKH YDOXHV REWDLQHG IRU WKH UDWH RI UHGXFWLRQ RI WKH YDULRXV DFFHSWRUV DQG WKHLU UHGR[ SRWHQWLDOV (Rnf $V VKRZQ LQ 7DEOH K\GURJHQDVH FDQ XVH DOO ILYH FRPSRXQGV DV HOHFWURQ DFFHSWRUV 7KH UHVXOWV LQGLFDWH WKDW WKH UDWH RI K\GURJHQ XSWDNH SURFHHGV DW D PRUH UDSLG UDWH LQ WKH SUHVHQFH RI PHWK\OHQH EOXH DQG SRWDVVLXP IHUULF\DQLGH FRPSRXQGV ZLWK D SRVLWLYH (Rn ,QDFWLYDWLRQ RI +\GURJHQDVH E\ 2[\JHQ 7KH LQDFWLYDWLRQ RI K\GURJHQDVH E\ R[\JHQ ZDV GHWHUPLQHG E\ LQFXEDWLQJ WKH HQ]\PH PLFURJUDPPOf LQ WKH SUHVHQFH RI DLU LQ D [ PP WXEH RQ D URFNLQJ SODWIRUP DW URRP WHPSHUDWXUH $W YDULRXV WLPH LQWHUYDOV DOLTXRWV ZHUH ZLWKGUDZQ WR PRQLWRU WULWLXP H[FKDQJH DFWLYLW\ 7KH FRQWURO VDPSOH RI K\GURJHQDVH ZDV PDLQWDLQHG XQGHU VLPLODU FRQGLWLRQV EXW WKH JDV SKDVH ZDV K\GURJHQ 'HWDLOV RI

PAGE 98

7DEOH +\GURJHQ XSWDNH DFWLYLW\ RI K\GURJHQDVH LQ WKH SUHVHQFH RI HOHFWURQ DFFHSWRUV DW GLIIHUHQW UHGR[ SRWHQWLDOV } (OHFWURQ $FFHSWRU (A 6SHFLILF $FW UQ YROWVf 0HWK\O 9LRORJHQ %HQ]\O 9LRORJHQ 1HXWUDO UHG 0HWK\OHQH %OXH 3RWDVVLXP IHUULF\DQLGH r PLFURPROHV RI VXEVWUDWH UHGXFHGPLQ PJ SURWHLQ

PAGE 99

WKH H[SHULPHQW DUH DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ )LJXUH JLYHV WKH R[\JHQ LQDFWLYDWLRQ SURILOH RI WKH K\GURJHQDVH H[SRVHG WR DLU DQG WKH K\GURJHQDVH VDPSOH PDLQWDLQHG XQGHU K\GURJHQ 7KH KDOIOLIH RI WKH K\GURJHQDVH LQ WKH SUHVHQFH RI DLU ZDV PLQXWHV 7KH LQDFWLYDWLRQ RI WKH PRQRPHU DQG WKH GLPHU IRUP RI K\GURJHQDVH GXH WR R[\JHQ ZDV DOVR GHWHUPLQHG 7KH WZR IRUPV RI K\GURJHQDVH ZHUH REWDLQHG E\ *HO )LOWUDWLRQ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH H[SHULPHQW ZDV SHUIRUPHG DV GHVFULEHG DEYRYH 7KH LQDFWLYDWLRQ SURILOH IRU WKH ILUVW WKLUW\ PLQXWHV LV DV LOOXVWUDWHG LQ )LJXUH ,W LV DSSDUHQW WKDW ERWK WKH PRQRPHU DQG GLPHU IRUP RI K\GURJHQDVH DUH HTXDOO\ VWDEOH LQ DLU 6WDELOLW\ RI +\GURJHQDVH DW $ONDOLQH S+ DOODQWLQH DQG %R[HU f UHFHQWO\ UHSRUWHG WKH SUHVHQFH RI WZR GLIIHUHQW K\GURJHQDVHV LQ ( FROL 7KH\ GHWHFWHG WZR GLVWLQFW EDQGV RI K\GURJHQDVH DFWLYLW\ ZKHQ 7ULWRQ ; VROXELOL]HG PHPEUDQHV ZHUH VXEMHFWHG WR 3$*( DW QHXWUDO S+ 7KH\ REVHUYHG WKDW RQH RI WKHVH EDQGV ZDV ODELOH DW DONDOLQH S+ S+ f DQG ORVW WKH K\GURJHQDVH DFWLYLW\ 7KXV WKH VWDELOLW\ RI WKH SXULILHG K\GURJHQDVH DW DONDOLQH S+ ZDV FKHFNHG +\GURJHQDVH ZDV LQFXEDWHG DW S+ IRU PLQXWHV DQG WKHQ WKH DFWLYLW\ ZDV GHWHUPLQHG E\ PRQLWRULQJ WKH H[FKDQJH UHDFWLRQ DQG WKH K\GURJHQ XSWDNH UHDFWLRQ DW S+ DQG S+ )RU WKH H[FKDQJH UHDFWLRQ PLFUROLWHUV RI P0 JO\FLQH S+

PAGE 100

RU P0 SKRVSKDWH EXIIHU S+ ZDV SODFHG LQ D [ PP WXEH 7KH WXEHV ZHUH FDSSHG ZLWK VHUXP VWRSSHUV DQG WKH JDV SKDVH UHSODFHG ZLWK KHOLXP +\GURJHQDVH PLFUROLWHUV PLFURJUDPPO LQ P0 SKRVSKDWH EXIIHU S+ f ZDV DGGHG WR WKH WXEH DQG LQFXEDWHG DW URRP WHPSHUDWXUH IRU PLQXWHV $IWHU PLQXWHV WKH S+ RI WKH DVVD\ PL[WXUH ZDV EURXJKW WR QHXWUDOLW\ RU PDLQWDLQHG DW S+ E\ DGGLQJ PLFUROLWHUV RI P0 SKRVSKDWH EXIIHU S+ RU PLFUROLWHUV RI P0 JO\FLQH EXIIHU S+ 7ULWLXP H[FKDQJH UHDFWLRQ ZDV SHUIRUPHG DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ )RU WKH K\GURJHQ XSWDNH UHDFWLRQ PLFUROLWHUV RI HLWKHU P0 JO\FLQH EXIIHU S+ RU SKRVSKDWH EXIIHU S+ ZDV SODFHG LQ D [ PP WXEH 7KH WXEHV ZHUH FDSSHG ZLWK VHUXP VWRSSHUV DQG WKH JDV SKDVH UHSODFHG ZLWK K\GURJHQ +\GURJHQDVH PLFUROLWHUV PLFURJUDPPO LQ P0 SKRVSKDWH EXIIHU S+ f ZDV DGGHG DQG LQFXEDWHG DW URRP WHPSHUDWXUH IRU PLQXWHV $IWHU PLQXWHV WKH S+ RI WKH DVVD\ PL[WXUH ZDV EURXJKW WR QHXWUDOLW\ RU PDLQWDLQHG DW S+ E\ DGGLQJ PO RI HLWKHU SKRVSKDWH EXIIHU S+ RU P0 JO\FLQH EXIIHU S+ 7KH UDWH RI K\GURJHQ XSWDNH UHDFWLRQ ZDV GHWHUPLQHG E\ PRQLWRULQJ WKH UHGXFWLRQ RI EHQ]\O YLRORJHQ DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ 7KH UHVXOWV SUHVHQWHG LQ 7DEOH VKRZ WKDW WKH HQ]\PH UHWDLQHG RI LWV H[FKDQJH DFWLYLW\ DQG b RI LWV K\GURJHQ XSWDNH DFWLYLW\ DIWHU LQFXEDWLRQ DW S+ IRU PLQXWHV ,W LV DOVR HYLGHQW WKDW WKH

PAGE 101

)LJXUH 2[\JHQ LQDFWLYDWLRQ RI K\GURJHQDVH (O ,%f t tf K\GURJHQDVH H[SRVHG WR R[\JHQ FRQWURO

PAGE 102

A 2OH FQ 2 2 R FR R r +\GURJAQDVH $FWLYLW\ PLFURPROHV RI IA2 SURGXFHGPJ SURWHLQ KUf R R R /O R R

PAGE 103

)LJXUH 2[\JHQ LQDFWLYDWLRQ RI WKH PRQRPHU DQG GLPHU IRUPV RI K\GURJHQDVH $ PRQRPHU % GLPHU

PAGE 104

7LPH LQ PLQXWHV +\GURJHQDVH DFWLYLW\ PLFURPROHV RI +A2 SURGXFHGPJ KRXUf b RI FRQWURO &' 2 Y' & R R &' 2 9' R R R /

PAGE 105

7DEOH r 6WDELOLW\ RI K\GURJHQDVH DW DONDOLQH S+ 3UHLQFXEDWLRQ 3+ $VVD\ S+ +\GURJHQDVH $FWLYLW\r ([FKDQJH +83 Y2 &2 PLFURPROHV RI SURGXFHGKRXU PJ SURWHLQ PLFURPROHV RI %9 UHGXHHGPJ SURWHLQ PLQ

PAGE 106

HQ]\PH LV FDSDEOH RI FDWDO\]LQJ WKH H[FKDQJH UHDFWLRQ DQG WKH K\GURJHQ XSWDNH UHDFWLRQ DW S+ RI WKH S+ YDOXHf +\GURJHQDVH $FWLYLW\ LQ 6ROXELOL]HG 0HPEUDQHV RI +83n 0XWDQWV RI (VFKHULFKLD FROL 7R GHWHUPLQH WKH SRVVLELOLW\ RI WZR GLVWLQFW K\GURJHQDVHV EHLQJ SUHVHQW LQ ( FROL RQH LQYROYHG LQ WKH )+/ DFWLYLW\ DQG WKH RWKHU LQYROYHG LQ WKH +83 DFWLYLW\ PXWDQWV GHIHFWLYH LQ WKH +83 DFWLYLW\ ZHUH VWXGLHG )RU WKHVH H[SHULPHQWV ( FROL VWUDLQV ODFNLQJ +,-3 DFWLYLW\ EXW SRVVHVVLQJ QRUPDO OHYHOV RI )+/ DFWLYLW\ ZHUH REWDLQHG f /DPEGHQ DQG *HVW KDYH VXJJHVWHG WKDW WKH IQU JHQH SURGXFW PD\ EH LQYROYHG LQ WKH UHJXODWLRQ RI K\GURJHQDVH DFWLYLW\ DQG WKLV ZDV FRQILUPHG LQ RXU ODERUDWRU\ 7KXV DQ IQU PXWDQW VWUDLQ RI ( FROL ZDV DOVR VWXGLHG 7ULWRQ ; VROXELOL]HG PHPEUDQHV RI FROL VWUDLQV -& DQG VHOHFWHG +83 PXWDQWV ( 6( DQG DQ IQU PXWDQW 6' nZHUH SUHSDUHG DV GHVFULEHG HDUOLHU 6ROXELOL]HG PHPEUDQH VDPSOHV RI WKHVH VWUDLQV DQG SXUH K\GURJHQDVH SURWHLQ XQLWV RI K\GURJHQDVH DFWLYLW\ DV GHWHUPLQHG E\ WKH WULWLXP H[FKDQJH UHDFWLRQf ZHUH VXEMHFWHG WR HOHFWURSKRUHVLV LQ DFU\ODPLGH LQ WXEH JHOV XQGHU QRQGHQDWXULQJ FRQGLWLRQV 7KH WXEH JHOV DIWHU HOHFWURSKRUHVLV ZHUH VWDLQHG IRU K\GURJHQDVH DFWLYLW\ )LJXUH f ( FROL VWUDLQ -& ZLOG W\SH IRU K\GURJHQ PHWDEROLVP KDG WZR K\GURJHQDVH DFWLYLW\ EDQGV ZLWK 5I YDOXHV RI DQG 7KH

PAGE 107

)LJXUH +\GURJHQDVH DFWLYLW\ RI 7ULWRQ ;7 VROXELOL]HG PHPEUDQHV RI ( FROL +83 DQG +83 VWUDLQV DQG SXULILHG K\GURJHQDVH VXEMHFWHG WR QDWLYH3$*( LQ WXEH JHOV 7ULWRQ ; VROXELOL]HG PHPEUDQHV RI (B FROL VWUDLQV -& 6( 6( DQG 6' ZHUH VXEMHFWHG WR QDWLYH 3$*( DQG VWDLQHG IRU K\GURJHQDVH DFWLYLW\ DV GHVFULEHG LQ WKH WH[W $ -& % 6( & 6( 6' DQG ( K\GURJHQDVH

PAGE 109

SXULILHG K\GURJHQDVH PLJUDWHG ZLWK DQ 5I RI 2Q WKH RWKHU KDQG +83 VWUDLQV 6( 6( DQG 6' SURGXFHG RQO\ D YHU\ IDLQW EDQG RI K\GURJHQDVH DFWLYLW\ ZLWK DQ 5I YDOXH RI 5HJXODWLRQ RI +\GURJHQDVH $FWLYLW\ LQ :KROH &HOOV ,QGXFWLRQ RI +\GURJHQDVH $FWLYLW\ ( FROL FHOOV JURZQ XQGHU VWULFW DHURELF FRQGLWLRQV ODFN K\GURJHQDVH DFWLYLW\ +RZHYHU DV VRRQ DV WKH FXOWXUH LV GHSOHWHG RI R[\JHQ K\GURJHQDVH DFWLYLW\ LV LQGXFHG 7KLV LQGXFWLRQ RI K\GURJHQDVH DFWLYLW\ ZDV VWXGLHG E\ VKLIWLQJ DQ DFWLYHO\ JURZLQJ DHURELF FXOWXUH WR JURZWK XQGHU DQDHURELF FRQGLWLRQV 7KH H[SHULPHQW DV GHVFULEHG LQ WKH 0DWHULDOV DQG 0HWKRGV VHFWLRQ ZDV SHUIRUPHG E\ VKLIWLQJ DQ DHURELFDOO\ JURZLQJ FXOWXUH RI ( FROL VWUDLQ WR JURZWK XQGHU DQDHURELF FRQGLWLRQV E\ LQFXEDWLQJ WKH FXOWXUH XQGHU DQ DWPRVSKHUH RI QLWURJHQ 6DPSOHV ZHUH ZLWKGUDZQ DW WZHQW\ PLQXWHV LQWHUYDO WR PRQLWRU JURZWK DQG K\GURJHQDVH DFWLYLW\ $V VKRZQ LQ )LJXUH WKH FXOWXUH KDG D JHQHUDWLRQ WLPH RI PLQXWHV 7KH K\GURJHQDVH DFWLYLW\ PRQLWRUHG DV WULWLXP H[FKDQJH DFWLYLW\ ZDV LQGXFHG WR D PD[LPXP OHYHO ZLWKLQ WKH ILUVW KRXU DIWHU VKLIWLQJ WKH FXOWXUH WR DQDHURELF FRQGLWLRQV 7KLV PD[LPXP VSHFLILF DFWLYLW\ RI DSSUR[LPDWHO\ XQLWV WKHQ VWDELOL]HG WR D ORZHU YDOXH RI XQLWV 7KLV DFWLYLW\ LV PDLQWDLQHG WKURXJKRXW WKH UHVW RI WKH JURZWK SHULRG

PAGE 110

)LJXUH ,QGXFWLRQ RI K\GURJHQDVH DFWLYLW\ *URZWK RI WKH FXOWXUH IO 8f DFWLYLW\ f LQ ( FROL +\GURJHQDVH

PAGE 111

*URZWK QP 7LPH LQ PLQXWHV A+\GURSHQDVH $FWLYLW\ PLFURPROHV RI + SURGXFHG PH SURWHLQ KRXUf

PAGE 112

(IIHFW RI 2[\JHQ RQ +\GURJHQDVH $FWLYLW\ LQ :KROH &HOOV +\GURJHQDVH LV LQDFWLYDWHG E\ R[\JHQ DQG D FXOWXUH JURZLQJ DHURELFDOO\ ODFNV K\GURJHQDVH DFWLYLW\ 7KXV LW ZDV LQWHUHVWLQJ WR GHWHUPLQH WKH HIIHFW R[\JHQ ZRXOG KDYH RQ D JURZLQJ FXOWXUH RI ( FROL IXOO\ LQGXFHG IRU K\GURJHQDVH DFWLYLW\ DQG VWXG\ WKH NLQHWLFV RI WKH UHSUHVVLRQ RI K\GURJHQDVH DFWLYLW\ 7KH H[SHULPHQW ZDV SHUIRUPHG DV GHVFULEHG LQ 0DWHULDOV DQG 0HWKRGV VHFWLRQ )LJXUH SUHVHQWV WKH JURZWK SURILOH DQG WKH K\GURJHQDVH DFWLYLW\ RI WKH WZR FXOWXUHV $V FDQ EH VHHQ LQ WKH ILJXUH WKH K\GURJHQDVH DFWLYLW\ LQ WKH FXOWXUH H[SRVHG WR R[\JHQ GHFUHDVHG IURP D VSHFLILF DFWLYLW\ RI XQLWV WR XQLW LQ WKH ILUVW WZHQW\ PLQXWHV DQG WKHQ GHFOLQHG IXUWKHU WR D VSHFLILF DFWLYLW\ RI XQLWV LQ WKH QH[W WZHQW\ PLQXWHV ZKHUHDV WKH FXOWXUH NHSW XQGHU DQDHURELF FRQGLWLRQV PDLQWDLQHG LWV K\GURJHQDVH DFWLYLW\ DW D VWHDG\ VWDWH OHYHO RI XQLWV 7KH KDOI OLIH RI WKH K\GURJHQDVH DFWLYLW\ LQ WKH FHOOV H[SRVHG WR R[\JHQ ZDV PLQXWHV 5HJXODWLRQ RI +\GURJHQDVH $FWLYLW\ LQ WKH 3UHVHQFH RI 1LWUDWH $ FXOWXUH RI ( FROL ZKHQ JURZQ LQ WKH SUHVHQFH RI QLWUDWH GRHV QRW SURGXFH K\GURJHQDVH DFWLYLW\ RU HYROYH K\GURJHQ JDV 7R XQGHUVWDQG WKLV HIIHFW RI QLWUDWH RQ K\GURJHQDVH DFWLYLW\ QLWUDWH ZDV DGGHG WR D IXOO\ LQGXFHG FXOWXUH DQG WKH JURZWK SURILOH DQG K\GURJHQDVH DFWLYLW\ RI WKH FXOWXUH ZHUH VWXGLHG DV GHVFULEHG LQ WKH 0DWHULDOV

PAGE 113

)LJXUH (IIHFW RI 2[\JHQ RQ K\GURJHQDVH DFWLYLW\ LQ ( FROL *URZWK RI WKH FXOWXUH H[SRVHG WR DLU e` f *URZWK RI WKH FRQWURO FXOWXUH p r!f +\GURJHQDVH DFWLYLW\ RI FXOWXUH H[SRVHG WR DLU e Af +\GURJHQDVH DFWLYLW\ RI FRQWURO FXOWXUH & f

PAGE 114

*URZWK QUf R

PAGE 115

DQG 0HWKRGV VHFWLRQ )LJXUH f ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH ORVV RI K\GURJHQDVH DFWLYLW\ LQ WKH FXOWXUH WR ZKLFK QLWUDWH ZDV DGGHG ZDV ELSKDVLF +\GURJHQDVH DFWLYLW\ GHFOLQHG JUDGXDOO\ LPPHGLDWHO\ DIWHU WKH DGGLWLRQ RI QLWUDWHZLWK D KDOI OLIH RI DERXW PLQXWHV +RZHYHU DIWHU PLQXWHV WKH K\GURJHQDVH DFWLYLW\ RI WKH QLWUDWH FXOWXUH GURSSHG UDSLGO\ ZLWK D KDOI OLIH RI PLQXWHV ,W LV SRVVLEOH WKH LQLWLDO JUDGXDO GHFOLQH LQ K\GURJHQDVH DFWLYLW\ LV GXH WR WKH LQKLELWLRQ RI V\QWKHVLV RI DQ\ QHZ K\GURJHQDVH DIWHU WKH DGGLWLRQ RI QLWUDWH DQG WKH GLOXWLRQ RI WKH K\GURJHQDVH DOUHDG\ V\QWKHVL]HG GXH WR JURZWK 7KH PRUH UDSLG GHFOLQH LQ K\GURJHQDVH DFWLYLW\ PD\ EH D UHVXOW RI LQKLELWLRQ RI K\GURJHQDVH DFWLYLW\ E\ VRGLXP QLWULWH D SURGXFW RI QLWUDWH UHVSLUDWLRQ ZKLFK DFFXPXODWHG LQ WKH PHGLXP

PAGE 116

)LJXUH (IIHFW RI VRGLXP QLWUDWH RQ K\GURJHQDVH DFWLYLW\ LQ ZKROH FHOOV RI ( FROL 6RGLXP QLWUDWH P0f ZDV DGGHG DW PLQXWHV *URZWK RI WKH FRQWURO FXOWXUH 6 f *URZWK RI WKH FXOWXUH LQ WKH SUHVHQFH RI VRGLXP QLWUDWH $ rf +\GURJHQDVH DFWLYLW\ RI WKH FRQWURO FXOWXUH 2 +\GURJHQDVH DFWLYLW\ RI WKH FXOWXUH ZLWK VRGLXP QLWUDWH f§ n}f@ &RQFHQWUDWLRQ RI QLWULWH LQ WKH PHGLXP nr mf

PAGE 117

7LPH LQ PLQXWHV *URZWK 2Q QPf R 2 R R 2 R K! UR f f f f f f f f R R R UR 2$ R R UR 2K 2 R 2 R R 2 f ,O\GURFUHQDVH $FWLYLW\ R PLFURPROHV RI + SURGXFHGPD KRXUf PLFURPRODU [ a

PAGE 118

',6&866,21 (VFKHULFKLD FROL XQGHU IHUPHQWDWLYH FRQGLWLRQV HYROYHV K\GURJHQ IURP IRUPDWH YLD WKH IRUPDWH K\GURJHQO\DVH HQ]\PH FRPSOH[ DQG K\GURJHQDVH LV DQ LQWHJUDO SDUW RI WKLV FRPSOH[ f ( FROL DOVR KDV WKH DELOLW\ WR XWLOL]H K\GURJHQ DV D VRXUFH RI UHGXFLQJ SRZHU f $JDLQ WKH HQ]\PH K\GURJHQDVH FRXSOHG ZLWK RWKHU HOHFWURQ FDUULHUV DQG IXPDUDWH UHGXFWDVH LV LQYROYHG LQ WKH K\GURJHQ XSWDNH f +RZHYHU DV PHQWLRQHG LQ WKH /LWHUDWXUH 5HYLHZ VHFWLRQ LW LV QRW NQRZQ ZKHWKHU WKH VDPH K\GURJHQDVH LV LQYROYHG LQ ERWK WKHVH UHDFWLRQV RU ZKHWKHU WKHUH DUH WZR GLVWLQFW K\GURJHQDVHV RQH RI ZKLFK LV D SDUW RI WKH IRUPDWH K\GURJHQO\DVH FRPSOH[ DQG WKH RWKHU UHVSRQVLEOH IRU WKH XSWDNH RI K\GURJHQ 7KH SUHVHQFH RI WZR GLVWLQFW K\GURJHQDVHV LQ WKH VDPH FHOO KDV EHHQ GHPRQVWUDWHG LQ D QXPEHU RI PLFURRUJDQLVPV f %DOODQWLQH DQG %R[HU f KDYH UHFHQWO\ VXJJHVWHG WKH SUHVHQFH RI WZR K\GURJHQDVHV LQ (/ FROL DOVR EXW WKH HYLGHQFH SUHVHQWHG E\ WKHVH DXWKRUV LV LQGLUHFW DQG WKH TXHVWLRQ RI WKH QXPEHU RI K\GURJHQDVHV LV VWLOO RSHQ 7KH K\GURJHQDVH SXULILHG IURP (/ FROL DQG FKDUDFWHUL]HG DV GHVFULEHG LQ WKH 5HVXOWV VHFWLRQ H[LVWV SUHGRPLQDQWO\ DV D PRQRPHU LQ WKH SUHVHQFH RI 7ULWRQ ; 5HPRYDO RI WKH GHWHUJHQW VKLIWHG WKH UDWLR RI PRQRPHU WR GLPHU LQ IDYRU RI WKH GLPHU 7KLV REVHUYDWLRQ

PAGE 119

PD\ H[SODLQ WKH FRQIOLFWLQJ UHSRUWV ZLWK UHVSHFW WR WKH PROHFXODU ZHLJKW RI K\GURJHQDVH IURP ( FROL $GDPV DQG +DOO f UHSRUWHG D PROHFXODU ZHLJKW RI DV GHWHUPLQHG E\ JHO ILOWUDWLRQ %DVHG RQ 6'63DJH H[SHULPHQWV WKH\ FRQFOXGHG WKDW WKH HQ]\PH H[LVWV DV D GLPHU ZLWK VXEXQLWV RI WKH VDPH PROHFXODU ZHLJKW 7KHVH LQYHVWLJDWRUV GLG QRW DWWHPSW WR VHSDUDWH DQG DVVD\ WKH PRQRPHU IRU DFWLYLW\ *UDKDP f UHSRUWHG D PROHFXODU ZHLJKW RI IRU K\GURJHQDVH LPPXQRSUHFLSLWDWHG IURP 7ULWRQ ; VROXELOL]HG (B FROL PHPEUDQHV 7KH GHWHUJHQW XVHG E\ $GDPV DQG +DOO f WR VROXELOL]H WKH K\GURJHQDVH IURP WKH PHPEUDQH ZDV VRGLXP GHR[\FKRODWH ZYf DQG ZDV XVHG HDUO\ LQ WKH SXULILFDWLRQ SURFHGXUH 7KH GHWHUJHQW ZDV QRW LQFRUSRUDWHG LQ DQ\ RI WKH EXIIHUV XVHG GXULQJ WKH ODWHU VWDJHV RI SXULILFDWLRQ 7KH ODFN RI GHWHUJHQW LQ WKH EXIIHUV FRXOG KDYH UHVXOWHG LQ WKH FRPSOHWH UHPRYDO RI WKH GHWHUJHQW RU LWV FRQFHQWUDWLRQ UHGXFHG WR VXFK ORZ OHYHOV WKDW WKH HQ]\PH H[LVWHG RQO\ DV D GLPHU ZLWK D UHVXOWDQW PROHFXODU ZHLJKW RI ,Q OLJKW RI WKH UHVXOWV FLWHG LQ WKH SUHYLRXV VHFWLRQ LW LV HYLGHQW WKDW WKH K\GURJHQDVH IURP ( FROL H[LVWV DV D PRQRPHU LQ WKH SUHVHQFH RI D GHWHUJHQW DQG DV D GLPHU LQ LWV DEVHQFH 6LP DQG 6LP f UHSRUWHG VLPLODU SURSHUWLHV IRU D K\GURJHQDVH SXULILHG IURP 3B GHQLWULILFDQV 7KLV K\GURJHQDVH ZDV IRXQG WR H[LVW DV D GLPHU LQ WKH SUHVHQFH RI D GHWHUJHQW DQG DV D WHWUDPHU LQ WKH DEVHQFH RI D GHWHUJHQW 6LQFH WKH GHWHUJHQW PDLQO\ GLVUXSWV K\GURSKRELF IRUFHV DQG WKH SXULILHG K\GURJHQDVH IURP ( FROL DJJUHJDWHV WR IRUP RQO\ D GLPHU DQG QRW

PAGE 120

PXOWLPHUV LW LV OLNHO\ WKDW WKH HQ]\PH H[LVWV DV D GLPHU LQ WKH QDWLYH VWDWH LQ (B FROL ,I WKH HQ]\PH GRHV H[LVW DV D GLPHU UHVXOWV LQ 7DEOH VKRZ WKDW WKH GLPHU LV PDGH XS RI WZR VXEXQLWV WKDW KDYH WKH VDPH NLQHWLF SURSHUWLHV DV GHWHUPLQHG XVLQJ WKH H[FKDQJH UHDFWLRQ DQG KDYH WKH VDPH LURQ DQG DFLG ODELOH VXOIXU DWRPV SHU PROHFXOH RI VXEXQLWf +RZHYHU PRUH H[SHULPHQWV QHHG WR EH SHUIRUPHG WR GHPRQVWUDWH WKDW WKH WZR VXEXQLWV DUH LGHQWLFDO 7KH SXULILHG HQ]\PH LV FDSDEOH RI FDWDO\]LQJ ERWK WKH K\GURJHQ XSWDNH DV ZHOO DV WKH K\GURJHQ HYROXWLRQ UHDFWLRQ LQ WKH SUHVHQFH RI DSSURSULDWH HOHFWURQ GRQRUV RU DFFHSWRUV 7KH S+ RSWLPXP IRU WKH FDWDO\VLV RI WKH H[FKDQJH UHDFWLRQ OLHV LQ WKH SK\VLRORJLFDO UDQJH RI DQG DQG WKH WHPSHUDWXUH RSWLPXP LV r& ,W LV LQWHUHVWLQJ WR QRWH WKDW WKH DFWLYDWLRQ HQHUJ\ IRU WKH H[FKDQJH UHDFWLRQ FDWDO\]HG E\ K\GURJHQDVH LV FDORULHV EHWZHHQ WKH WHPSHUDWXUH UDQJH RI r & WR r& 7KH DFWLYDWLRQ HQHUJ\ LV LQFUHDVHG WR FDORULHV IRU WKH UHDFWLRQ DW WHPSHUDWXUHV EHORZ r& 7KH FRPSDUDWLYHO\ ORZ DFWLYDWLRQ HQHUJ\ REVHUYHG PD\ EH D FRQVHTXHQFH RI WKH UHDFWLRQ EHLQJ PRQLWRUHG LQ WKHVH VWXGLHV LV DQ H[FKDQJH UHDFWLRQ 7KH SXULILHG HQ]\PH LV UHODWLYHO\ VWDEOH LQ WKH SUHVHQFH RI DLU ,W KDV D KDOI OLIH RI DERXW PLQXWHV DW URRP WHPSHUDWXUH $GDPV DQG +DOO f UHSRUWHG D KDOI OLIH RI PLQXWHV LQ WKH SUHVHQFH RI DLU IRU WKH K\GURJHQDVH WKH\ SXULILHG 7KH SK\VLRORJLFDO UROH RI WKH SXULILHG K\GURJHQDVH KDV QRW EHHQ HVWDEOLVKHG FRQFOXVLYHO\ +RZHYHU NLQHWLF FKDUDFWHULVWLFV RI WKH

PAGE 121

SXULILHG SURWHLQ 7DEOH f LQGLFDWH WKDW WKH HQ]\PH LV SUREDEO\ LQYROYHG LQ WKH K\GURJHQ XSWDNH DFWLYLW\ DQG QRW LQ WKH K\GURJHQ HYROXWLRQ 7KLV DSSDUHQW UROH LV IXUWKHU FRQILUPHG E\ WKH UHVXOWV REWDLQHG ZLWK ( FROL PXWDQWV GHILFLHQW LQ WKH K\GURJHQ XSWDNH DFWLYLW\ 7ZR GLIIHUHQW W\SHV RI +83 PXWDQWV &ODVV PXWDQWV DV GHVFULEHG E\ /HH HW DOf DQG D UHJXODWRU\ PXWDQW IQUf GLG QRW SURGXFH DQ\ K\GURJHQDVH DFWLYLW\ WKDW FRUUHVSRQGHG WR WKH K\GURJHQDVH SXULILHG IURP WKH ZLOG W\SH DIWHU QDWLYH 3$*( $QRWKHU LQGLFDWLRQ WKDW WKH SXULILHG K\GURJHQDVH LV WKH HQ]\PH LQYROYHG LQ WKH K\GURJHQ XSWDNH UHDFWLRQ LQ ( FROL LV WKH VWDELOLW\ RI WKH HQ]\PH LQ WKH SUHVHQFH RI R[\JHQ 7KH +83 K\GURJHQDVHV IURP FKHPROLWKRWURSKV LV NQRZQ WR FRXSOH K\GURJHQ R[LGDWLRQ WKURXJK RWKHU HOHFWURQ FDUULHUV WR WKH UHGXFWLRQ RI HOHFWURQ DFFHSWRUV VXFK DV VXOIDWH QLWUDWH DQG HYHQ R[\JHQ 7KXV IURP DQ HYROXWLRQDU\ SRLQW RI YLHZ WKH +83 K\GURJHQDVH ZRXOG EH H[SHFWHG WR EH PRUH UHVLVWDQW WR LQDFWLYDWLRQ E\ R[\JHQ DV FRPSDUHG WR WKH K\GURJHQDVH LQYROYHG LQ WKH )+/ UHDFWLRQ 7KLV LV UHIOHFWHG LQ WKH VXUYH\ RI WKH OLWHUDWXUH f 7KH R[\JHQ VHQVLWLYLW\ RI K\GURJHQDVH DSSHDUV WR FRUUHODWH ZLWK WKH SK\VLRORJLFDO IXQFWLRQ WKH HQ]\PH SHUIRUPV UDWKHU WKDQ ZLWK WKH R[\JHQ VHQVLWLYLW\ RI WKH RUJDQLVP IURP ZKLFK WKH HQ]\PH LV GHULYHG 7KH K\GURJHQDVH LQYROYHG LQ WKH SURGXFWLRQ RI K\GURJHQ LV PRUH VHQVLWLYH WR LQDFWLYDWLRQ E\ R[\JHQ FRPSDUHG WR WKH K\GURJHQDVH LQYROYHG LQ WKH K\GURJHQ XSWDNH UHDFWLRQ

PAGE 122

,W LV LQWHUHVWLQJ WR QRWH WKDW WKH UDWH DW ZKLFK WKH HQ]\PH FDWDO\]HV WKH HYROXWLRQ RI K\GURJHQ IURP UHGXFHG EHQ]\O YLRORJHQ LV FRQVLGHUDEO\ ORZHU WKDQ WKH UDWH DW ZKLFK LW FDWDO\]HV WKH K\GURJHQ XSWDNH UHDFWLRQ LQ WKH SUHVHQFH RI R[LGL]HG EHQ]\O YLRORJHQ 7KLV REVHUYDWLRQ LV VLPLODU WR WKH UHVXOWV REWDLQHG E\ &KHQ HW DO f IRU WKH K\GURJHQ XSWDNH K\GURJHQDVH IURP &ORVWULGLXP SDVWHXULDQXP DQG E\ 9DQ GHU :HUI DQG
PAGE 123

,W LV LQWHUHVWLQJ WR QRWH WKDW WKRXJK WKH SXULILHG HQ]\PH LV UHODWLYHO\ VWDEOH LQ WKH SUHVHQFH RI DLU WKH K\GURJHQDVH DFWLYLW\ LQ ZKROH FHOOV GURSV IDU PRUH UDSLGO\ XSRQ H[SRVXUH WR DLU KDOI OLIH RI PLQXWHVf WKDQ ZKDW FDQ EH DFFRXQWHG IRU E\ R[\JHQ LQDFWLYDWLRQ DORQH ,W LV SRVVLEOH WKDW WKH FHOO GHJUDGHV WKH K\GURJHQDVH GXULQJ WKH UHDUUDQJHPHQW RI WKH PHPEUDQH XSRQ H[SRVXUH WR DLU 7KH HIIHFW RI VRGLXP QLWUDWH DQRWKHU FRPSRXQG WKDW FDQ EH XVHG DV D WHUPLQDO HOHFWURQ DFFHSWRU IRU DQDHURELF UHVSLUDWLRQ KRZHYHU LV QRW VR GUDVWLF &XOWXUHV JURZLQJ LQ WKH SUHVHQFH RI P0 VRGLXP QLWUDWH ODFN K\GURJHQDVH DFWLYLW\ +RZHYHU LI WKH VDPH FRQFHQWUDWLRQ RI VRGLXP QLWUDWH LV DGGHG WR DQ DFWLYHO\ JURZLQJ FXOWXUH PD[LPDOO\ LQGXFHG IRU K\GURJHQDVH WKH K\GURJHQDVH VSHFLILF DFWLYLW\ RI WKH FXOWXUH GHFOLQHG ZLWK D ELSKDVLF NLQHWLFV 7KH LQLWLDO JUDGXDO GHFOLQH FDQ EH HDVLO\ DWWULEXWHG WR ODFN RI DQ\ QHZ V\QWKHVLV RI K\GURJHQDVH DQG GLOXWLRQ RI WKH DOUHDG\ V\QWKHVL]HG K\GURJHQDVH GXH WR JURZWK 7KH PRUH UDSLG GHFOLQH ZLWK D KDOI OLIH RI PLQXWHV PD\ EH GXH WR LQKLELWLRQ RI K\GURJHQDVH DFWLYLW\ GXH WR WKH DFFXPXODWLRQ RI VRGLXP QLWULWH 7KLV KDOI OLIH RI PLQ LV VLPLODU WR WKH WAA OLIH RI PLQ LQ WKH SUHVHQFH RI R[\JHQ ,W VKRXOG EH VWDWHG KHUH WKDW WKH SXULILFDWLRQ SURFHGXUH SUHVHQWHG IRU WKH SXULILFDWLRQ RI D PHPEUDQH ERXQG K\GURJHQDVH IURP ( FROL GRHV QRW LQYROYH WKH XVH RI DQ\ SURWHDVHV $ QXPEHU RI UHVHDUFKHUV KDYH UHVRUWHG WR WKH XVH RI GHQDWXULQJ GHWHUJHQWV RU SURWHRO\WLF DJHQWV RU D FRPELQDWLRQ RI ERWK WR DFKLHYH VROXELOL]DWLRQ

PAGE 124

RI D PHPEUDQH ERXQG SURWHLQ +RZHYHU LW LV SRVVLEOH WKDW WKH XVH RI VXFK UHDJHQWV PD\ \LHOG D SURWHLQ ZKLFK GRHV QRW UHIOHFW WKH WUXH SURSHUWLHV RI WKH QDWLYH SURWHLQ ,Q FRQFOXVLRQ WKLV UHSRUW OLNH DQ\ RWKHU VFLHQWLILF UHSRUW VKRXOG DQVZHUV D IHZ TXHVWLRQV DQG LQ WKH SURFHVV DVNV QHZ TXHVWLRQV 7KH SXULILFDWLRQ RI K\GURJHQDVH VKRXOG IDFLOLWDWH WKH SURGXFWLRQ RI DQWLERGLHV GLUHFWHG DJDLQVW WKH HQ]\PH 7KH DQWLERGLHV FDQ EH XVHG WR HOXFLGDWH WKH MX[WDSRVLWLRQ RI WKH HQ]\PH LQ WKH PHPEUDQH DQG WR VWXG\ WKH UHJXODWLRQ RI V\QWKHVLV RI WKH SURWHLQ ([SHULPHQWV SHUIRUPHG ZLWK WKH DQWLERGLHV VKRXOG KHOS XV GHWHUPLQH WKH QXPEHU RI K\GURJHQDVHV LQ WKH FHOO DQG WKHLU SK\VLRORJLFDO IXQFWLRQ :LWK WKH SXUH SURWHLQ H[SHULPHQWV FDQ DOVR EH SHUIRUPHG WR WHVW WKH IHDVLELOLW\ RI WKH HQ]\PH DV D FDWDO\VW LQ FHOO IUHH V\VWHPV WR SURGXFH K\GURJHQ DV D IXHO VRXUFH f

PAGE 125

5()(5(1&(6 f $FNUHOO %$& 51 $VDWR DQG +) 0RZHU 0XOWLSOH )RUPV RI %DFWHULDO +\GURJHQDVHV %DFWHULRO f $GDPV 0:: DQG '2 +DOO ,VRODWLRQ RI WKH 0HPEUDQH %RXQG +\GURJHQDVH IURP 5KRGRVSLULOLXP UXEUXP %LRFKHP %LRSK\V 5HV &RUDP f $GDPV 0:: DQG '2 +DOO 3URSHUWLHV RI WKH 0HPEUDQH %RXQG +\GURJHQDVH RI WKH 3KRWRV\QWKHWLF %DFWHULXP 5KRGRVSLULOOXP UXEUXP $UFK RI %LRFKHP %LRSK\V f $GDPV 0:: DQG '2 +DOO 3XULILFDWLRQ RI WKH 0HPEUDQH %RXQG +\GURJHQDVH RI (VFKHULFKLD FROL %LRFKHP f $GDPV 0:: /( 0RUWHQVRQ DQG -6 &KHQ +\GURJHQDVH %LRFKLP HW %LRSK\V $FWD f $NHWDJDZD .RED\DVKL DQG 0 ,VKLPRWR &KDUDFn WHUL]DWLRQ RI 3HULSODVPLF +\GURJHQDVH IURP 'HVXOIRYLEULR YXOJDULV 0L\D]DNL %LRFKHP f $OEUDFKW 63.$OEUHFKW(OOPHU '-0 6FKPHGGLQJ DQG (& 6ODWHU 2Q WKH $FWLYH 6LWH RI +\GURJHQDVH IURP &KURPDWLXP YLQRVXP %LRFKLP HW %LRSK\V $FWD f $US '5KL]RELXP MDSRQLFXP +\GURJHQDVH 3XULn ILFDWLRQ WR +RPRJHQHLW\ IURP 6R\EHDQ 1RGXOHV DQG 0ROHFXODU &KDUDFWHUL]DWLRQ $UFK RI %LRFKHP %LRSK\V f %DFKPDQQ %/LQNDJH 0DS RI (VFKHULFKLD FROL (GLWLRQ 0LFURELRO 5HY f%DOFK :( *( )R[ /0DJUXP &5 :RHVH DQG 56 :ROIH 0HWKDQRJHQV 5HHYDOXDWLRQ RI D 8QLTXH %LRORJLFDO *URXS 0LFURELDO 5HY %DOODQWLQH 63 DQG '+ %R[HU 1LFNHO &RQWDLQLQJ +\GURJHQDVH ,VRHQ]\PHV IURP $QDHURELFDOO\ *URZQ (VFKHULFKLD FROL %DFWHULRO f

PAGE 126

f %HOO *5 -3 /HH DQG +* 3HFN -U 5HDFWLYLW\ RI 'HVXOIRYLEULR JLJDV +\GURJHQDVH WRZDUG $UWLILFLDO DQG 1DWXUDO (OHFWURQ 'RQRUV RU $FFHSWRUV %LRFKLPLH f %HUHQVRQ -$ DQG -5 %HQHPDQQ ,PPRELOL]DWLRQ RI +\GURJHQDVH DQG )HUUHGR[LQ RQ *ODVV %HDGV )(%6 /HWW f %HUQKDUG 7+ DQG *RWWVFKDON 7KH +\GURJHQDVH RI (VFKHULFKLD FROL 3XULILFDWLRQ 6RPH 3URSHUWLHV DQG WKH )XQFWLRQ RI WKH (Q]\PH ,Q +\GURJHQDVHV 7KHLU &DWDO\WLF $FWLYLW\ 6WUXFWXUH DQG )XQFWLRQ HG 6FKOHJHO +* DQG 6FKQHLGHU ( *ROW]H .* *RWWLQJHQ f %UDGIRUG 00 $ 5DSLG DQG 6HQVLWLYH 0HWKRG IRU WKH 4XDQWLWDWLRQ RI 0LFURJUDP 4XDQWLWLHV RI 3URWHLQ 8WLOL]LQJ WKH 3ULQFLSOH RI 3URWHLQ'\H %LQGLQJ $QDO %LRFKHP f &KHQ -6 DQG '. %ODQFKDUG ,VRODWLRQ DQG 3URSHUWLHV RI D 8QLGLUHFWLRQDO +a[LGL]LQJ +\GURJHQDVH IURP WKH 6WULFWO\ $QDHURELF 1)L[LQJ %DFWHULXP &ORVWULGLXP SDVWHXULDQXP : %LRFKHP %LRSK\V 5HV &RPP f &KHQ -6 DQG /( 0RUWHQVRQ 3XULILFDWLRQ DQG 3URSHUWLHV RI +\GURJHQDVH IURP &ORVWULGLXP SDVWHXULDQXP : %LRFKLP HW %LRSK\V $FWD f &ROEHDX $ &KDEHUW DQG 30 9LJQDLV +\GURJHQDVH $FWLYLW\ LQ 5KRGRSVHXGRPRQDV FDSVXODWD 6WDELOLW\ DQG 6WDELOL]Dn WLRQ RI WKH 6WDELOL]HG (Q]\PH ,Q +\GURJHQDVHV 7KHLU &DWDO\WLF $FWLYLW\ 6WUXFWXUH DQG )XQFWLRQ HG 6FKOHJHO +* DQG 6FKQHLGHU ( *ROW]H .* *RWWLQJHQ f§ f &ROEHDX $ &KDEHUW DQG 30 9LJQDLV 3XULILn FDWLRQ 0ROHFXODU 3URSHUWLHV DQG /RFDOL]DWLRQ LQ WKH 0HPEUDQH RI WKH +\GURJHQDVH RI 5KRGRSVHXGRPRQDV FDSVXODWD %LRFKLP HW %LRSK\V $FWD f &ROEHDX $ DQG 30 9LJQDLV 7KH 0HPEUDQH%RXQG +\GURJHQDVH RI 5KRGRSVHXGRPRQDV FDSVXODWD ,V ,QGXFLEOH DQG &RQWDLQV 1LFNHO %LRFKLP HW %LRSK\V $FWD

PAGE 127

/ f 'DYLV %'LVF (OHFWURSKRUHVLV,, 0HWKRG DQG $SSOLn FDWLRQ WR +XPDQ 6HUXP 3URWHLQV $QQDO 1< $FDG 6FL / f (JHUHU 3 + *XQWKHU DQG + 6LPRQ 2Q WKH +\GURJHQ 'HXWHULXP ([FKDQJH 5HDFWLRQ &DWDO\]HG E\ WKH 6ROXEOH +\GURJHQDVH IURP $OFDOLJHQHV HXWURSKXV + LQ WKH )UHH DQG ,PPRELOL]HG 6WDWH %LRFKLP HW %LRSK\V $FWD f (JHUHU 3 DQG + 6LPRQ ,VRWURSLF DQG .LQHWLF 6WXGLHV DQG ,QIOXHQFH RI 'LFRXPDURO RQ WKH 6ROXEOH +\GURJHQDVH IURP $OFDOLJHQHV HXWURSKXV + %LRFKLP HW %LRSK\V $FWD f )DUNDV $ / )DUNDV DQG
PAGE 128

f *RQHQQH $ DQG 5 (UQVW 6ROXELOL]DWLRQ RI 0HPEUDQH 3URWHLQV 6XOIREHWDLQHV 1RYHO =ZLWWHULRQLF 6XUIDFWDQWV $QDO %LRFKHP f *RPHO 7( DQG 5/ 8IIHQ )HUPHQWDWLYH 0HWDEROLVP RI 3\UXYDWH E\ 5RGRVSLULOLXP UXEUXP DIWHU $QDHURELF *URZWK LQ 'DUNQHVV %DFWHULRO f *UDI (* DQG 5. 7KDXHU +\GURJHQDVH IURP 0HWKDQREDFWHULXP WKHUPRDXWRWURSKLFXUQ D 1LFNHO&RQWDLQLQJ (Q]\PH )(06 /HWW f *UDKDP $ 7KH 2UJDQL]DWLRQ RI +\GURJHQDVH LQ WKH &\WRSODVPLF 0HPEUDQH RI (VFKHULFKLD FROL %LRFKHP f *UDKDP $ DQG '+ %R[HU $UUDQJHPHQW RI 5HVSLUDWRU\ 1LWUDWH 5HGXFWDVH LQ WKH &\WRSODVPLF 0HPEUDQH RI (VFKHULFKLD FROL )(%6 /HWW f *UDKDP $ '+ %R[HU %$ +DGGRFN 0$0 %HUWKHORW DQG 5: -RQHV ,PPXQRFKHPLFDO $QDO\VLV RI WKH 0HPEUDQH %RXQG +\GURJHQDVH RI (VFKHULFKLD FROL )(%6 /HWW f *UDQGH +$9 %HUNHO$UWV %UHJK .9 .LMN DQG & 9HHJHU .LQHWLF 3URSHUWLHV RI +\GURJHQDVH ,VRn ODWHG IURP 'HVXOIRYLEULR YXOJDULV +LOGHQERURXJKf (XU %LRFKHP f *UDQGH +:5 'XQKDP % $YHULOO .9 'LMN DQG 5+ 6DQGV (OHFWURQ 3DUDPDJQHWLF 5HVRQDQFH DQG 2WKHU 3URSHUWLHV RI +\GURJHQDVH ,VRODWHG IURP 'HVXOIRYLEULR YXOJDULV +LOGHQERURXJKf DQG 0HJDVSKDHUD HOVGHQLL (XU %LRFKHP f *UD\ &7 DQG + *HVW %LRORJLFDO )RUPDWLRQ RI 0ROHFXODU +\GURJHQ 6FLHQFH f *UHHQ '( DQG /+ 6WLFNODQG 6WXGLHV RQ 5HYHUVLEOH 'HK\GURJHQDVH 6\VWHPV %LRFKHP f +DGGRFN %$ DQG &: -RQHV %DFWHULDO 5HVSLUDWLRQ %DFWHULRO 5HY

PAGE 129

f +DOOHQEHFN 3& DQG -5 %HQHPDQQ &KDUDFWHUL]Dn WLRQ DQG 3XULILFDWLRQ RI WKH 5HYHUVLEOH +\GURJHQDVH RI $QDEDHQD F\OLQGULFD )(%6 /HWW f +DUGHQ $ 7KH &KHPLFDO $FWLRQ RI %DFLOOXV FROL FRPPXQLV DQG 6LPLODU 2UJDQLVPV RQ &DUERK\GUDWHV DQG $OOLHG &RPSRXQGV &KHP 6RF f +DWFKLNLDQ (& 0 %UXVFKL DQG -/ *DOO &KDUDFn WHUL]DWLRQ RI WKH 3HULSODVPLF +\GURJHQDVH IURP 'HVXOIRYLEULR JLJDV %LRFKHP DQG %LRSK\V 5HV &RPP f +HHULNKXL]HQ + 63$OEUHFKW % 7HQ%ULQN /( 7ZLVW DQG (& 6ODWHU 3XULILFDWLRQ DQG 6RPH 3URSHUWLHV RI WKH 6ROXEOH 3DUW RI +\GURJHQDVH IURP &KURPDWLXP YLQRVXP LQ +\GURJHQDVHV 7KHLU &DWDO\WLF $FWLYLW\ 6WUXFWXUH DQG )XQFWLRQ HG 6FKOHJHO +* DQG 6FKQHLGHU ( *ROW]H .* *RWWLQJHQ f +HQGULFN -/ DQG $6PLWK 6L]H DQG &KDUJH ,VRPHU 6HSDUDWLRQ DQG (VWLPDWLRQ RI 0ROHFXODU :HLJKWV RI 3URWHLQV E\ 'LVF *HO (OHFWURSKRUHVLV $UFK RI %LRFKHP %LRSK\V f -RNRE\ :% (Q]\PH 3XULILFDWLRQ DQG 5HODWHG 7HFKn QLTXHV 0HWKRGV LQ (Q]\PRORJ\ 9RO ;;,, HG -DNRE\ :% $FDG 3UHVV 1HZ
PAGE 130

f .HOO\ %& &0 0H\HU & *DQG\ DQG 30 9LJQDLV +\GURJHQ 5HF\FOLQJ E\ 5KRGRSVHXGRPRQDV FDSVXODWD )(%6 /HWW A f .LQJ 7( DQG 52 0RUULV 'HWHUPLQDWLRQ RI $FLG /DELOH 6XOILGH DQG 6XOSK\GU\O *URXSV 0HWKRGV LQ (Q]\PRORJ\ HG (DVWEURRN 5: DQG 0$ 3XOOPDQ $FDG 3UHVV 1HZ
PAGE 131

f /DPEHUW *5 DQG *' 6PLWK 7KH +\GURJHQ 0HWDEROLVP RI &\DQREDFWHULD %OXH*UHHQ $OJDHf %LRO 5HY f /HH -+ 3 3DWHO 3 6DQNDU DQG .7 6KDQPXJDP ,VRODWLRQ DQG &KDUDFWHUL]DWLRQ RI 0XWDQW 6WUDLQV RI (VFKHULFKLD FROL $OWHUHG LQ + 0HWDEROLVP %DFWHULRO f /HJDOO '9 'HUYDUWDQLDQ ( 6SLONHU -3 /HH DQG +' 3HFN -U (YLGHQFH IRU WKH ,QYROYHPHQW RI 1RQ+HPH ,URQ LQ WKH $FWLYH 6LWH RI +\GURJHQDVH IURP 'HVXOIRYLEULR YXOJDULV %LRFKLP HW %LRSK\V $FWD f /ODPD 0-/ 6HUUD .. 5DR DQG '2 +DOO ,VRODWLRQ RI 7ZR +\GURJHQDVH $FWLYLWLHV LQ &KURPDWLXP (XU %LRFKHP f /RYHQEHUJ : %% %XFKDQDQ DQG -& 5DELQRZLW] 6WXGLHV RQ WKH &KHPLFDO 1DWXUH RI &ORVWULGLDO )HUUHGR[LQ %LRO &KHP f 0DF\ + .XOOD DQG *RWWVFKDON +a'HSHQGHQW $QDHURELF *URZWK RI (VFKHULFKLD FROL RQ /0DODWH 6XFFLQDWH )RUPDWLRQ %DFWHULRO f 0D\KHZ 6* & 'LMN DQG +0 YDQ GHU :HVWHQ 3URn SHUWLHV RI +\GURJHQDVHV IURP WKH $QDHURELF %DFWHULD 0HJDVSKDHUD HOVGHQLL DQG 'HVXOIRYLEULR YXOJDU LV +LOGHQ ERURXJKf LQ +\GURJHQDVHV 7KHLU &DWDO\WLF $FWLYLW\ 6WUXFWXUH DQG )XQFWLRQ HG 6FKOHJHO +* DQG 6FKQHLGHU ( *ROW]H .* *RWWLQJHQ f 0F.HOODU 5& DQG *' 6SURWW 6ROXELOL]DWLRQ DQG 3URSHUWLHV RI D 3DUWLFXODWH +\GURJHQDVH IURP 0HWKDQREDFWHULXP 6WUDLQ *5 %DFWHULRO f 0RUULVVH\ -+ 6LOYHU 6WDLQ IRU 3URWHLQV LQ 3RO\n DFU\ODPLGH *HOV $ 0RGLILHG 3URFHGXUH ZLWK (QKDQFHG 8QLIRUP 6HQVLWLYLW\ $QDO %LRFKHP f 0RUWHQVRQ /( 1LWURJHQ )L[DWLRQ 5ROH RI )HUUHGR[LQ LQ $QDHURELF 0HWDEROLVP $QQ 5HY RI 0LFURELRO f§

PAGE 132

f 0RUWHQVRQ /( +\GURJHQDVH ,Q 0LFURELDO ,URQ 0HWDEROLVP HG -% 1HLODQGV $FDG 3UHVV f 0RUWHQVRQ /( 3XULILFDWLRQ DQG 3URSHUWLHV RI +\GURJHQDVH IURP &ORVWULGLXP SDVWHXULDQXP 0HWKRGV LQ (Q]\PRORJ\ 9RO /,,, HG 6 )OHLVFKHU DQG / 3DFNHU $FDG 3UHVV 1HZ
PAGE 133

f 3UREVW DQG +* 6FKOHJHO 5HVSLUDWRU\ &RPSRQHQWV DQG 2[LGDVH $FWLYLWLHV LQ $OFDOLJHQHV HXWURSKXV %LRFKLP HW %LRSK\V $FWD f 5DR .. ,1 *RJRWRY DQG '2 +DOO +\GURJHQ (YROXWLRQ E\ &KORURSODVW+\GURJHQDVH 6\VWHPV ,PSURYHPHQWV DQG $GGLWLRQDO 2EVHUYDWLRQV %LRFKLPLH f 5DR .. 3 0RUULV DQG '2 +DOO +\GURJHQ (YROXn WLRQ IURP :DWHU E\ D &KORURSODVW+\GURJHQDVH 6\VWHP ,Q +\GURJHQDVH 7KHLU &DWDO\WLF $FWLYLW\ 6WUXFWXUH DQG )XQFn WLRQ HG 6FKOHJHO +* DQG 6FKQHLGHU ( *ROW]H .* *RWWLQJHQ f 6DQNDU 3 -+ /HH DQG .7 6KDQPXJDP &ORQLQJ RI +\GURJHQDVH *HQHV DQG )LQH 6WUXFWXUH $QDO\VLV RI DQ 2SHURQ (VVHQWLDO IRU + 0HWDEROLVP LQ (VFKHULFKLD FROL %DFWHULRO f 6FKLQN % 0HPEUDQH %RXQG +\GURJHQDVH IURP $OFDOLn JHQHV HXWURSKXV %LRFKHPLFDO DQG ,PPXQRORJLFDO &KDUDFWHUL]Dn WLRQ RI WKH 6ROXELOL]HG DQG 3XULILHG (Q]\PH ,Q +\GURJHQDVHV 7KHLU &DWDO\WLF $FWLYLW\ 6WUXFWXUH DQG )XQFWLRQ HG 6FKOHJHO +* DQG 6FKQHLGHU ( *ROW]H .* *RWWLQJHQ f 6FKLQN % DQG +* 6FKOHJHO +\GURJHQ 0HWDEROLVP LQ $HURELF +\GURJHQ2[LGL]LQJ %DFWHULD %LRFKLPLH f 6FKLQN % DQG +* 6FKOHJHO 7KH 0HPEUDQH%RXQG +\GURJHQDVH RI $OFDOLJHQHV HXWURSKXV %LRFKLP HW %LRSK\V DFWD f 6FKQHLGHU DQG +* 6FKOHJHO 3XULILFDWLRQ DQG 3URSHUWLHV RI 6ROXEOH +\GURJHQDVH IURP $OFDOLJHQHV HXWURSKXV + %LRFKLP HW %LRSK\V $FWD f 6FKQHLGHU DQG +* 6FKOHJHO /RFDOL]DWLRQ DQG 6WDELOLW\ RI +\GURJHQDVHV IURP $HURELF +\GURJHQ %DFWHULD $UFK 0LFURELRO f 6FKRHQPDNHU *6 /) 2OWPDQQ DQG $+ 6WRXWKDPHU 3XULILFDWLRQ DQG 3URSHUWLHV RI WKH 0HPEUDQH%RXQG +\GURJHQDVH IURP 3URWHXV PLUDELOLV %LRFKLP HW %LRSK\V $FWD

PAGE 134

f 6LP ( DQG % 6LP +\GURG\QDPLF 3DUDPHWHUV RI WKH 'HWHUJHQW6ROXELOLVHG +\GURJHQDVH IURP 3DUDFRFFXV GHQLWUL ILFDQV (XU %LRFKHP f 6LP ( DQG 30 9LJQDLV +\GURJHQDVH $FWLYLW\ LQ 3DUDFRFFXV GHQLWULILFDQV 3DUWLDO 3XULILFDWLRQ DQG ,QWHUn DFWLRQ ZLWK WKH (OHFWURQ 7UDQVSRUW &KDLQ %LRFKLPLH f 6LP ( DQG 30 9LJQDLV &RPSDULVRQ RI WKH 0HPEUDQH%RXQG DQG 'HWHUJHQW6ROXELOLVHG +\GURJHQDVH IURP 3DUDFRFFXV GHQLWULILFDQV %LRFKLP HW %LRSK\V $FWD f 6WHSKHQVRQ 0 DQG /+ 6WLFNODQG +\GURJHQDVH $ %DFWHULDO (Q]\PH $FWLYDWLQJ 0ROHFXODU +\GURJHQ %LRFKLPLH f 7DLW 5& $QGHUVHQ &DQJHORVL DQG .7 6KDQPXJDP +\GURJHQDVH *HQHV ,Q 7UHQGV LQ WKH %LRORJ\ RI )HUPHQWDWLRQV IRU )XHOV DQG &KHPLFDOV HG $ +ROODHQGHU HW DO 3OHQXP 3UHVV 1HZ
PAGE 135

f 9DOHQWLQH 5& /( 0RUWHQVRQ DQG -( &DUQDKDQ 7KH +\GURJHQDVH 6\VWHP RI &ORVWULGLXP SDVWHXULDQXP %LRO &KHP f 9DQ GH :HVWHQ 6* 0D\KHZ DQG & 9HHJHU 6HSDUDn WLRQ RI +\GURJHQDVH IURP ,QWDFW &HOOV RI 'HVXOIRYLEULR YXOJDULV )(%6 /HWW f 9DQ GHU :HUI $1 DQG
PAGE 136

f
PAGE 137

%,2*5$3+,&$/ 6.(7&+ 3UDPDWKHVK 6 3DWHO ZDV ERUQ LQ %RPED\ ,QGLD RQ -DQXDU\ ,Q %RPED\ KH DWWHQGHG .KDU (QJOLVK 3ULPDU\ 6FKRRO DQG JUDGXDWHG IURP 6W (OLDV +LJK 6FKRRO LQ +H WKHQ DWWHQGHG WKH 8QLYHUVLW\ RI %RPED\ ZKHUH KH UHFHLYHG KLV %DFKHORU RI 6FLHQFH GHJUHH LQ PLFURELRORJ\ LQ 'XULQJ KH ZDV HPSOR\HG E\ 63$1 'LDJQRVWLFV %RPED\ ,QGLD ,Q KH DUULYHG LQ WKH 8QLWHG 6WDWHV RI $PHULFD DQG DWWHQGHG 6RXWKHUQ ,OOLQRLV 8QLYHUVLW\ (GZDUGYLOOH ,OOLQRLV ZKHUH KH UHFHLYHG WKH GHJUHH 0DVWHU RI 6FLHQFH LQ ,Q KH HQUROOHG LQ WKH 3K' SURJUDP LQ WKH 'HSDUWPHQW RI 0LFURELRORJ\ DQG &HOO 6FLHQFH DW WKH 8QLYHUVLW\ RI )ORULGD

PAGE 138

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI 0LFURELRORJ\ DQG &HOO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI %LRFKHPLVWU\ DQG 0ROHFXODU %LRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHSRU RI 0LFURELRORJ\ DQG &HO 6FLHQFH

PAGE 139

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ UD\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'U 3 L /DLSLVA $VVRFLDWH 3URIHVV $VVRFLDWH 3URIHVVRU RI %LRFKHPLVWU\ DQG 0ROHFXODU %LRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'U 3 + 6PLWK 3URIHVVRU RI 0LFURELRORJ\ DQG &HOO 6FLHQFH

PAGE 140

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ R WKH &ROOHJH RI $JULFXOWXUH DQG WR WKU *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 141

81,9(56,7< 2) )/25,'$

PAGE 142

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EPOQ9M70U_3BE9UH INGEST_TIME 2017-07-13T15:12:09Z PACKAGE AA00003406_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES