Citation
Fluid oscillations and enhanced heat transfer in a parallel plate channel bounded by end reservoirs maintained at different temperature

Material Information

Title:
Fluid oscillations and enhanced heat transfer in a parallel plate channel bounded by end reservoirs maintained at different temperature
Creator:
Zhao, Alex X., 1949-
Publication Date:
Language:
English
Physical Description:
xviii, 120 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Analytics ( jstor )
Cross flow ( jstor )
Geometric lines ( jstor )
Heat transfer ( jstor )
Oscillating flow ( jstor )
Oscillation ( jstor )
Pistons ( jstor )
Temperature distribution ( jstor )
Temperature gradients ( jstor )
Velocity ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 116-118).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Alex X. Zhao.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001683420 ( ALEPH )
AHZ5391 ( NOTIS )
25034727 ( OCLC )

Downloads

This item has the following downloads:


Full Text









FLUID OSCILLATIONS AND ENHANCED HEAT TRANSFER
IN A PARALLEL PLATE CHANNEL BOUNDED BY END RESERVOIRS
MAINTAINED AT DIFFERENT TEMPERATURE








BY

ALEX X. ZHAO


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY




UNIVERSITY OF FLORIDA


1990























To my parents and my beloved motherland












ACKNOWLEDGEMENTS


The successful completion of this dissertation would have been impossible if

it had not been for the assistance and help I received from numerous people. First

mention must be made for the academic guidance and financial support made

possible by my graduate adviser Dr. Ulrich H. Kurzweg. He, with his strong

background and extensive knowledge in fluid mechanics, heat transfer and applied

mathematics, gave me clear guidance in maintaining the correct research direction.

What I learned from him are not only the relevant knowledge in those fields but also

the skills needed to conduct scientific research. Two other persons who helped me

significantly in the dissertation were Dr. Wei Shyy and Dr. Ranga Narayanan.

Several fruitful discussions with Dr. Shyy helped me to construct the numerical

procedure used successfully and more efficiently for the time periodic problems in

this dissertation. The experience of working with Dr. Narayanan put me in contact

with many interesting topics in fluid mechanics, heat transfer and numerical analysis,

which made my understanding of the enhancement of heat transfer problem

considered here much more clear. I am thankful to the other and former members

of my supervisory committee, Dr. E Rune. Lindgren, Dr. Joseph L. Hammack, Dr.

Chia-Shun Yih, Dr. Edward K. Walsh and Dr. Tom I-P. Shih, for their time and

effort.







Thanks are also expressed here to the Department of Aerospace Engineering,

Mechanics and Engineering Science and the Department of Chemical Engineering

of the University of Florida for their financial assistance in allowing me to pursue my

educational goals within this lovely country. I am also grateful to the early support

of this work by National Science Foundation through the grant CBT-8611254 and the

allocation of 95 Service Units for this study on the CRAY/YMP supercomputer in

the Pittsburgh Supercomputing Center.

I would also like to thank my wife Wei Zhu for being here with me in a

"foreign" country and working hard to help support the family. Without her help, I

would not have been able to successfully complete my education. I also wish to

express gratitude to my wonderful office mate Bill Harter. Through many discussions

with him, I learned a lot about PC computers, about the English language, about

American customs and etc. Finally I wish to thank myself for putting in four hard

working years on this dissertation effort.












TABLE OF CONTENTS


page


ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

NOMENCLATURE

ABSTRACT


CHAPTERS


I INTRODUCTION ...................................... 1
1.1 Background ...................................... 1
1.2 Literature Review .................................... 5
1.3 Analytical Solutions Within the Connecting Channel ........ 9

II MATHEMATICAL MODEL .............................. 24
2.1 Geometric Configurations ........... .................. 24
2.2 Governing Equations and Boundary Conditions ............. 28

III NUMERICAL TECHNIQUE EMPLOYED ..................... 32
3.1 Grid and Transformation of Governing Equations ......... 33
3.2 A Brief Derivation of the Associated Finite Difference
Equations and Boundary Conditions ..................... 38
3.3 Calculation Procedure .............................. 43
3.4 A Vectorized Line Group Method for Solving
the System of Algebraic Equations ...................... 47

IV RESULTS AND DISCUSSION ............................. 55
4.1 Validation of the Results ............................. 56
4.2 Velocity Field ...................................... 70
4.3 Temperature and Heat Transfer Coefficient ............... 88


...................................... iii

..................... ................ vii

................... ................... xii


..................................... xvii
...................................... xvii







V CONCLUDING REMARKS


.............................. 106


APPENDIX THE VELOCITY-PRESSURE CORRECTION .............. 110

REFERENCES ................................................ 116











LIST OF FIGURES


Figure M

Fig. 1-1 Heat transfer in a parallel plate channel: (a) pure conduction;
(b) enhancement by oscillating flows. .... 3

Fig. 1-2 A schematic of the Thermal Pump (U.S. Patent No. 4590993).
5

Fig. 1-3 Geometric configuration for the analytic solution of flow
oscillations and the associated heat transfer in parallel plate
channels. .... 10

Fig. 1-4 Analytic solution of the dimensionless velocity of oscillating
flow in a parallel plate channel as a function of dimensionless
transverse position at different oscillation phases ot: (a) a=1;
(b) a=10. .... 12

Fig. 1-5 Analytic solution of the dimensionless temperature distribution
in oscillating flow in a parallel plate channel and its walls as a
function of dimensionless transverse position at different
oscillation phases wt: (a) a=1; (b) a=10. .... 14

Fig. 1-6 Analytic solution of the dimensionless time averaged effective
thermal diffusivity enhanced by oscillating flow in a parallel
plate channel as a function of Womersley number a at
different Prandlt numbers: (a) e=2 (conducting walls with
a = =1); (b) e=l (insulating walls). .... 16

Fig. 1-7 Analytic solution of dimensionless time averaged effective
thermal diffusivity enhanced by oscillating flow in a parallel
plate channel at e=2 (conducting walls) as a function of
Womersley number a for several different liquid-solid
combinations. .... 19






Fig. 1-8 Analytic solution of dimensionless time averaged effective
thermal diffusivity enhanced by oscillating flow as a function of
cladding thickness for liquid lithium in a parallel plate channel
with stainless steel walls. .... 19

Fig. 1-9 Analytic solution of heat transferred by an oscillating flow of
water in a parallel plate channel with glass walls for different
a: (a) time averaged value as a function of dimensionless
transverse position; (b) cross section integrated value as a
function of oscillation phase. .... 20

Fig. 2-1 Configurations of the thermal pump used in the numerical
investigation: (a) conduction model; (b) cross flow model. .... 23

Fig. 3-1 The correspondence of blocks between the physical domain
and the computational domain: (a) grid in the physical domain
at ot=0; (b) time independent and uniform grid in the
computational domain; (c) grid in the physical domain at
wt=180o. .... 32

Fig. 3-2 The movable and non-uniform grid in the physical domain: (a)
at=0; (b) at=90; (c) wt=180. .... 33

Fig. 3-3 The staggered grid in the computational domain. .... 36

Fig. 3-4 Typical cells for the velocity component U: (a) an interior cell;
(b) a boundary cell with its south wall at the domain boundary. .... 38

Fig. 3-5 Flowchart for determining the time periodic velocity
components U, V and pressure P. .... 42

Fig. 3-6 Flowchart for solving the time periodic temperature
distribution based on the calculated velocity. .... 45

Fig. 3-7 Flowchart for the Line-By-Line iteration method for solving the
associated system of algebraic equations. Dashed lines
represent the innermost DO loops. ... 48

Fig. 3-8 Flowchart for the Vectorized Line Group iteration method for
solving the associated system of algebraic equations. Dashed
lines represent the innermost DO loops. .... 50







Fig. 4-1 Stream line patterns for Case No.6 calculated with different
number of grid points: (a) grid 91x71; (b) grid 121x101.
Increment between neighboring lines is A r=20 in non-
dimensional units. .... 54

Fig. 4-2 Non-dimensional velocity component U for Case No.5 at the
middle of the connecting channel as a function of oscillation
phase wt: solid line numerical result; dashed line analytic
solution. .... 57

Fig. 4-3 Non-dimensional temperature T for Case No.5 at the middle of
the connecting channel as a function of oscillation phase ft:
solid line numerical result; dashed line analytic solution. .... 57

Fig. 4-4 Non-dimensional velocity component U for Case No.5 at the
middle of the connecting channel as a function of non-
dimensional position y at several oscillation phases: (a)
analytic solution; (b) numerical result. .... 60

Fig. 4-5 Non-dimensional temperature T for Case No.5 at the middle of
the connecting channel as a function of non-dimensional
position y at several oscillation phases: (a) analytic solution;
(b) numerical result. .... 61

Fig. 4-6 Non-dimensional velocity component U for Case No.6 at the
middle of the connecting channel as a function of non-
dimensional position y at several oscillation phases: (a)
analytic solution; (b) numerical result. .... 62

Fig. 4-7 Non-dimensional x direction pressure gradient for Case No.5 at
the middle of connecting channel as a function of oscillation
phase ft: solid line numerical result; dashed line analytic
solution. .... 64

Fig. 4-8 Stream line pattern for Case No.3 at oscillation phases of
interval A(ot) =150 in the lower half cycle 0tot<1800. .... 66

Fig. 4-9 Temporal approach to the final time periodic state of the non-
dimensional velocity component U(x,O, ot) for Case No.3 at
three different locations: (a) x=-152; (b) x=-175; (c) x=-190. .... 69

Fig. 4-10 Stream line pattern for Case No.4 at oscillation intervals of
A(ot) =15 in the lower half cycle Oscot <180. .... 70







Fig. 4-11 Stream line pattern for Case No.6 at oscillation intervals of
A(ct) =150 in the lower half cycle 00 t<1800. .... 71

Fig. 4-12 Non-dimensional pressure distribution along the x axis in Case
No.6 at oscillation intervals of A(wt) =450 over the whole cycle
0" cot<3600. .... 73

Fig. 4-13 Stream line pattern for Case No.6 at the oscillation intervals of
A(at) =450 over the whole period 00Oat<3600. .... 74

Fig. 4-14 Stream line pattern for Case No.1 at the oscillation intervals of
A(ct) =150 in the lower half cycle 00-t<1800. .... 76

Fig. 4-15 Stream line pattern for Case No.8 in the right reservoir at
oscillation intervals of A(at)=900 over the whole period
0at <360. .... 78

Fig. 4-16 Stream line pattern for Case No.9 at oscillation intervals of
A (ot) =15 over the lower half period 00
Fig. 4-17 Stream line pattern for Case No.10 at oscillation intervals of
A (t) = 150 in the lower half cycle 00s t <1800. .... 80

Fig. 4-18 Temperature contours for Case No.3 at oscillation intervals of
A (at) =150 in the lower half cycle 00 t <180. .... 83

Fig. 4-19 Non-dimensional temperature profile for Case No.3 along the
vertical line x=-153 in the left reservoir: (a) at several
oscillation phases; (b) time averaged. .... 85

Fig. 4-20 Temperature contours for Case No.4 at oscillation intervals of
A(act) =150 in the lower half cycle 00ot<1800. .... 86

Fig. 4-21 Non-dimensional temperature profile for Case No.4 along the
vertical line x=-153 in the left reservoir: (a) at several
oscillation phases; (b) time averaged. .... 87

Fig. 4-22 Temperature contours for Case No.6 at oscillation intervals of
A(ot) =150 in the lower half cycle 0o
Fig. 4-23 Non-dimensional temperature profile for Case No.6 along the
vertical line x=-153 in the left reservoir: (a) at several
oscillation phases; (b) time averaged. .... 89







Fig. 4-24 Temperature contours for Case No.9 at oscillation intervals of
A(at) =150 in the lower half cycle 0t <1800. .... 91

Fig. 4-25 Non-dimensional temperature profile for Case No.9 along the
vertical line x=-153 in the left reservoir: (a) at several
oscillation phases; (b) time averaged. .... 92

Fig. 4-26 Temperature contours for Case No.10 at oscillation intervals of
A (t) = 150 in the lower half cycle 00ot <1800. .... 93

Fig. 4-27 Non-dimensional temperature profile for Case No.10 along the
vertical line x=-153 in the left reservoir: (a) at several
oscillation phases; (b) time averaged. .... 94













LIST OF TABLES


The list of ten cases studied in the numerical investigation.

Heat transfer coefficients for several cases in the study.


... 51

... 95


Table 4-1

Table 4-2












NOMENCLATURE


a the half width of the connecting channel

A coefficients in the Finite Difference Equations

Ao the cross section area of the connecting channel

b the distance from the channel center line to the wall center line in the

analytic solution or the half width of the end reservoir in the numerical study

c time averaged length of the end reservoir

Cp specific heat of working fluid

D molecular mass diffusivity of working fluid

h, heat transfer coefficient from the analytic solution

h, heat transfer coefficient from the numerical results

L channel length

P pressure

Pr Prandtl number

q local instantaneous axial heat flux in the channel

Q total time averaged heat rate in the channel

r, the ratio of tidal displacement to channel length

Re Reynolds number based on the maximum of piston velocity and reservoir half

width







RHS

S

Sc

T

T,

Tc

T,



u

U

Up

v

V

Vc

x

6x

y

6y


terms on the Right Hand Side of the associated system of algebraic equations

source term in the Finite Difference Equations

Schmidt number

temperature

high temperature specified at hot end for supplying heat

low temperature specified at cold end for removing heat

the approximate time averaged temperature in right reservoir from the

numerical results

velocity component in axial (x) direction at the walls of U cells

velocity component in axial (x) direction

maximum piston velocity

velocity component in transverse (y) direction at the walls of U cells

velocity component in transverse (y) direction

cross flow velocity

axial coordinate in the physical domain

x direction size of a grid cell in the physical domain

transverse coordinate in the physical domain

y direction size of a grid cell in the physical domain







a Womersley number

p stretching parameter for generating non-uniform grid

y time averaged axial temperature gradient (constant)

6i variable time step size in calculation

6 B basic time step size in calculation

Ax tidal displacement

e the ratio of total channel half width (including the thickness of solid wall) to

the channel half width filled by fluid in the analytic solutions or general

convergence criterion in the numerical calculations

qe convergence criterion for the Velocity-Pressure correction

ep convergence criterion for the final time periodic states

r1 transverse coordinate in the computational domain

0 magnitude of the sinusoidal pressure gradient applied in the analytic solutions

K molecular thermal diffusivity of working fluid

Keff effective thermal diffusivity by oscillating flow

p the ratio of fluid-to-solid (wall) thermal conductivities

v kinematic viscosity of working fluid

t axial coordinate in the computational domain

p density of working fluid

a the ratio of fluid-to-solid (wall) thermal diffusivities in analytic solutions or

general convergence indicator in numerical calculations

Ca convergence indicator for Velocity-Pressure correction







a, convergence indicator for the final time periodic state

r time in the computational domain


ir stream function of the oscillating flow field

o angular frequency of the oscillation






Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment
of the Requirements for the Degree of Doctor of Philosophy


FLUID OSCILLATIONS AND HEAT TRANSFER
IN A PARALLEL PLATE CHANNEL BOUNDED BY END RESERVOIRS
MAINTAINED AT DIFFERENT TEMPERATURE


by

Alex X. Zhao

December 1990

Chairman: Ulrich H. Kurzweg
Major Department: Aerospace Engineering, Mechanics,
and Engineering Science


Existing analytic and experimental studies have shown that sinusoidal

oscillations of a viscous fluid within open ended conduits connected to reservoirs can

enhance the thermal diffusivity between the hot fluid and cold fluid in the opposite

end reservoirs by some four orders of magnitude in excess of that possible in the

absence of oscillation. The heat transfer coefficients achieved in this process can be

very high and can readily exceed those possible via heat pipes, yet involve no net

convective mass exchange.

A numerical investigation of laminar oscillating flows of incompressible

viscous fluid and the associated enhanced heat transfer in a 2D parallel plate channel

bounded by rectangular end reservoirs which have sinusoidally oscillating piston

boundaries and are maintained at different temperatures forms the topic of the

present dissertation.


xvii






A modification of the widely used SIMPLE algorithm, termed SIMPLE-TP

(for Time Periodic), has been developed to take time periodicity and boundary

movements into account. The method has been successfully applied to the present

time periodic flow and heat transfer problem.

Two different models of heat supply and removal, namely, conduction through

the reservoir walls and convection by cross flow, were considered in this study.

Several case studies involving different combinations of Womersley number, tidal

displacement, length of reservoirs and cross flow velocities were carried out. The

numerical results obtained were compared with analytic solutions where such

comparisons were possible.

It was found that the velocity field in each reservoir is characterized by a high

velocity jet emanating from the channel end during a portion of the oscillation cycle

and that one or more counterrotating vortex(es) or vortex pair(s) exist during the

whole oscillation cycle as long as the Reynolds number, based on the maximum

piston velocity and reservoir width, is large enough. The tidal displacement and cross

flow velocity have a strong effect on the flow patterns in the reservoir and the

reservoir temperature field is mainly determined by the temperature boundary

conditions and less so by the velocity field. High oscillation frequencies coupled with

a large tidal displacement and a relatively large cross flow velocity are found to yield

large enhancements of heat transfer. Heat transfer coefficient as high as 1.8x106

W/m2K can readily be achieved when using water as the working fluid.


xviii












CHAPTER I

INTRODUCTION



1.1 Background

For a sinusoidal oscillatory fluid flow over a flat solid surface, the influence

of the no-slip condition on the solid surface penetrates an approximate distance of

2v_/&c into the fluid, where v is the kinematic viscosity of the fluid and a is the

angular frequency of the flow oscillation. For an oscillatory flow inside a flat plate

channel, this is still true as long as the channel half width, a, is greater than the

penetration distance. Under this condition, the fluid flow can be considered to

consist of two parts, the boundary layers and the core region, which are shown in Fig.

1-1(b).

If a property of the fluid, namely, concentration or temperature, is maintained

at different values at the two ends of the channel, a very strong transport from the

high side to low side will occur. Some theoretical and experimental studies have

shown that the effective coefficient for the transport can be much larger than the

values which characterize the transport without oscillation. The reason for the

enhancement of the transport is that both the area over which the exchange takes

place and the property gradient across the area are increased significantly over the

values existing in the absence of oscillations.

1






2
Consider the case where the temperature of the liquid is different at the two

ends of the channel. Here the heat transfer from the hot end to the cool end can

be enhanced by a flow oscillation in the axial direction. The time averaged heat

transferred axially, without a accompanying mass exchange, can be expressed as

= -AopCpKg (1,1)

where Kef, p and Cp stand for the effective thermal diffusivity, fluid density and

specific heat, respectively, Ao is the channel cross section, and y is the time averaged

axial temperature gradient which is maintained as a constant.

For pure molecular conduction, Kfe simply is the molecular thermal diffusivity

, Ao is equal to 2a when the channel depth is equal to one, as is shown in Fig. 1-

l(a), and the amount of heat transferred per unit depth will be

Qc = -2apCpKY (1,2)

With oscillations, it is necessary to examine the heat transfer process in some

detail since it becomes a time dependent problem. During the axial fluid oscillation

towards the colder side, hot liquid is brought into the core region and moved in

contact with the cooled boundary layers, which in the previous half stroke are in

contact with cooler liquid in the core region. The colder boundary layers will absorb

heat from the hot liquid core and heat up. During the next half stroke the oscillation

is towards the hot side, and cold liquid is brought into contact with the heated

boundary layers. The boundary layers then release heat to the cool core region and

thus become cool again. These two steps of heat transfer in oscillating flows at








(a)











(b)


Heat transfer in a parallel plate channel: (a) pure conduction; (b)
enhancement by oscillating flows.


I
2a Th Tc







2v/w





T
/ c

boundary layers



2a core region Tc

Th


Fig. 1-1







4

Prandtl number 1, for which the thicknesses of momentum and thermal boundary

layers are equal, are shown in Fig. 1-1(b) with the dotted areas representing the cold

fluid. The exchange process is repeated during subsequent oscillation cycles. This

leads to a time periodic problem. Because the heat exchange happens between the

boundary layers and core region, the effective heat transfer surface become much

larger than Ao and can be expressed in terms of a quantity Ax named the tidal

displacement (equal to twice the cross section averaged axial amplitude of the

sinusoidal oscillations). The temperature gradient in the normal of interface between

the boundary layers and core region is also much larger than y and is a function of

time and position. By averaging over the whole oscillation period and channel cross

section, the heat transferred per unit depth from the hot end to the cool end now can

be written as

S= -2apCp, fy (1,3)

where now the effective thermal diffusivity Krg is a function of a, v, <, Ax and some

other factors. Krf can be much larger than K provided a good choice for those

factors is made. Note that there will be no net convection between the two ends

when Ax is kept at a fraction of the channel length, and the process thus can be

considered to be free of mass exchange between the channel ends under proper

conditions (explained in Section 1.3).

If the concentration is maintained at different values at the ends of the

channel, an enhanced axial mass diffusion will occur for appropriate conditions, thus

producing an effective diffusivity much larger than the molecular diffusivity. In







5
recent years, these phenomena have received considerable research attention from

engineers and scientists because of their potential practical applications such as for

nuclear reactor cooling and for gas separation, etc.

A typical device for enhancing heat transfer by oscillating flows, termed the

Thermal Pump, is shown in Fig. 1-2. This represents essentially US Patent No.

4590993 held by U. Kurzweg1 and the University of Florida. This dissertation will

be concerned with a numerical investigation of the laminar flows of incompressible

fluids and the associated heat transfer in a 2D version of the thermal pump when

sinusoidally moving piston boundaries are located in the end reservoirs. The

connecting channel will consist of a single flat plate channel formed by two parallel

plates separated by a fixed distance of 2a.



1.2 Literature Review

The phenomenon of transport enhancement of contaminants was initially

studied by Taylor2(1953) and Aris3(1956) in their investigations of axial dispersion

in steady flows within capillary tubes. Their results indicated that a significant

increase in axial contaminant dispersion will occur in steady laminar flows. Similar

effects were found to exist for oscillating flows by Bowden4 in 1965. Harris and

Goren5(1967) studied, both analytically and experimentally, the mass transfer

through a long tube connecting two reservoirs maintained at different but constant

concentrations by oscillating the flow in the tube and found that the increase of mass

transfer rates is a function of the Womersley number a =a o/v the tidal























Cooler Fluid Out


Heat Transport


Channels


Hot Fluid In Hotter Fluid Out


A schematic of the Thermal Pump (U.S. Patent No. 4590993)1.


Left End
Chamber


Right End
Chamber


Oscillator


Cold Fluid In


Fig. 1-2






7

displacement Ax and the Schmidt number v/D. Rice and Eagleton6(1970) conducted

a similar study to that of Harris5 and found that the mass transfer increase is pro-

portional to the square of tidal displacement Ax. In 1975, Chatwin7 showed theo-

retically that the effective diffusion coefficient in oscillating flows is a harmonic

function of time with a period equal to one half that of the imposed time dependent

pressure gradient. Further theoretical studies by Watsons(1983) and experiments by

Joshi et al.9(1983) gave similar results. Kurzweg and Jaeger"0(1986) first showed

the existence of a tuning effect in enhanced gas dispersion in oscillating flows. All

these studies prove that a contaminant will spread axially in oscillating laminar pipe

flow at rates as much as five orders of magnitude higher than those achievable by

pure molecular diffusion in the absence of oscillations.

The same enhancement in oscillating flow for heat transfer was discovered by

Kurzweg in 1983 in view of the mathematical similarity between the governing

equations for heat conduction and mass diffusion. The equations for contaminant

diffusion with superimposed oscillating flow are mathematically nearly identical to

the equation of heat conduction, with the only major differences being the boundary

conditions and the use of the Prandtl number Pr= v/I instead of the Schmidt number

Sc=D/c. He solved the governing equations for enhanced axial heat transfer in

oscillating flows in a tube of infinite length for low value of CftPr and found the

effective conductivity can readily reach values three orders of magnitude greater than

normal heat conductivity. This information was published in 198511. Kurzweg and

Zhao'2(1984) conducted some experiments to measure the effective axial heat con-







8
duction rates through a capillary bundle connecting two fluid reservoirs maintained

at different temperatures and found very good agreement with theoretical

predictions. Two other papers by Kurzweg(1985)13(1986)14 explained the tuning

effect in the enhancement of heat transfer in detail. In May of 1986, a U.S. patent

was granted to the University of Florida and Professor U. Kurzweg1 on this process.

Zhang15 performed some numerical studies on tubes of finite length with some

portions of their walls or ends maintained at different temperatures and concluded

that the highest rates of heat transfer predicted earlier can only be reached when the

amount of heat supplied and removed from the tube ends is large enough.

Otherwise a heat "bottle neck" will occur and the temperature gradient in the axial

direction of the tube will be reduced considerably. Kaviany's16 recent study on heat

transfer by oscillating flows in tubes bounded by two end reservoirs maintained at

different temperatures verified, both theoretically and experimentally, the results

obtained by Kurzweg and Zhao12.

It should be noted that most of theoretical studies to this point, both analytic

and numerical, have considered only the tube or connecting channel without any

attention to the flow behavior and heat transfer process occurring in the two end

reservoirs which generally have much larger cross section than the connecting

conduit. Kaviany16 has made some calculations on this flow using a very simplified

model of the end chambers. Durst et al.17(1989) did some numerical studies on the

transient laminar flow over a sharp pipe expansion driven by a piston in the wide end

moving as a rectangular function of time starting from an initial rest condition and







9
compared the numerical result with their experimental data18. Neither of them

considered the temperature distribution and their results for velocity can not be

directly used in the analysis of the thermal pump process because of the

simplification made in former and the different velocity conditions used in the latter.

The motivation for this dissertation research was to obtain a clearer under-

standing of the flow and temperature patterns inside of the end reservoirs of a

thermal pump in order to lend further guidance for the practical construction and the

usage of thermal pumps. Also, associated with this study, a proper numerical

procedure based on the SIMPLE algorithm was developed for the simulation of heat

transfer in time periodic flows of viscous incompressible fluids with moving

boundaries.





1.3 Analytic Solutions Within the Connecting Channel

The numerical investigations presented in the chapters II through V can be

considered as an extension of the analytic work done by Kurzweg13, which gave

solutions of the momentum and energy equations in a parallel plate channel of

infinite length. The numerical results in the connecting channel for the more

complicated geometry with end reservoirs should approximate those analytic solutions

when the connecting channel length becomes much longer than the tidal displace-

ment. Thus, it is essential to first briefly evaluate the existing analytic solutions in







10

order to later make a comparison with the numerical results to be obtained wherever

such a comparison is possible.

The configuration dealt with in Ref. 13 is shown in Fig. 1-3. It consists of a

set of channels filled with a viscous fluid and connected to chambers at x = The

individual channels of width 2a each are confined between thermally conducting walls
aP
of width 2(b-a) each and a time periodic pressure gradient a = Oe'"' and a
aT
constant axial temperature gradient = Y are superimposed. The velocity of the

oscillating flow in the central channel generated by the pressure gradient is given by


1 cosh(-Ta y/a)
cosh(ri a)
U(y,t) = REAL Ii Ax cosh(ITa) e (1,4)

2 1 tanh(v-a)



where y is the coordinate perpendicular to the channel axis as shown in Fig. 1-3, W

is the angular frequency of the time periodic pressure gradient, a = a / v the

Womersley number, with v representing fluid kinematic viscosity, and Ax the tidal

displacement for the maximum cross stream averaged axial excursion of fluid

elements during one oscillation cycle. The vertical bars indicate the absolute value

of the quantity shown.

The relation between the magnitude of the axial pressure gradient and the

tidal displacement can be expressed as



















K>


I I


f
Periodic
velocity profile


b


Thermally conducting
fluid


T.
x


Geometric configuration for the analytic solution of flow oscillations
and the associated heat transfer in parallel plate channels.


2(b-a)

LA
\10\1~x


ic
ie
t


Fig. 1-3


r





K~



a~a


solid thermal
conductor



Period
pressure
gradier



--


i










S: P 02,&x

2 1 tanh(-a) (1,5)



In practice, the channel half width a, the tidal displacement Ax, and the

oscillation frequency o as well as the properties of the working fluid are easy to

control. Hence, either they or a combination of some of them, in particular the

Womersley number, are used as the control parameter for this heat transfer problem.

A numerical evaluation of the non-dimensional velocity, normalized by CoAx,

as a function of non-dimensional transverse position in the y direction at different

oscillation phases for a=1 and a=10 is shown in Fig. 1-4(a) and (b), respectively.

It is clear that the velocity profile varies considerably with change in Womersley

number a, from an essentially parabolic shape at very low a to one having a nearly

constant velocity core connected to thin boundary layers of thickness 6 = ~/2 v /

at the walls for large a.

By assuming


T(x,y,t) = y(x + REAL[ag(y)ei"t] (1,6)


,the cross-section dependent portion of the temperature perturbation gly) in the

fluid and g,(y) in solid walls have the forms13










(a)


0.5


0.0


-0.5


-1.0 1 1 I 1 '
-0.8 -0.6 -0.4 -0.2 0.0
U/cAx


(b)


0.5


N 0.0 -


-0.5


-1.0 L
-0.8



Fig. 1-4 An
par
pos


0.2 0.4 0.6 0.8


-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
U/WAx


alytic solution of the dimensionless velocity of oscillating flow in a
rallel plate channel as a function of dimensionless transverse
sition at different oscillation phases ct: (a) a=1; (b) a=10.










1 a2pr 1 cosh(-a y/a) + H cosh(Vi-Pa y/a)
gf (y) _-[ cosh(V a) cosh(ia) (1,7)

2aa2(Pr-1) 1 tanh( iJa)
hx 4i-a



g Y) 1 H cosh[V7 -Pr a(e-y/a)]
2a2(Pr-1) 1 tanh(Ta) cosh[VTaPr a (e-1)] (1,8)
2a a2Pr 1) tanh(fa) v '0/
Ax Fa


with


H = 11"Pr tanh(F- a) + -Ytanh[VaPr a(e -1)] (1,9)
p tanh(Ti Pr a) + fV- tanh[V/i a Pr a(e -1)]

where i =kf/k, is the ratio of fluid-to-solid (wall) thermal conductivities, o= r/Kr

is the ratio of thermal diffusivities, and e=b/a.

The non-dimensional temperature profiles T/yAx versusy/a for p = a=1 and

e=2 but different Womersley number a are shown in Fig. 1-5(a) and (b). One

observes an appreciable penetration of the temperature variation into the solid wall

at a=l, but almost no penetration occurs for a=10. This is to be expected in view

of the fact that the typical penetration distance into a solid of an oscillating

temperature field is proportional to the inverse square root of the oscillation

frequency (i.e. skin effect). Note that the frequency ratio at a=1 to that at a=10 is

one hundred for the same channel width and the same fluid.











(a) 2.0
a= 1
wall = 1 -
a=1
Pr=1
1.0 channel 10 -
150 60
a I / 300 / t=0 120 90-
S0.0 -
> 210 180 30
270

-1.0 240 330
wall

-2.0
-0.4 -0.2 0.0 0.2 0.4
T/yAx



(b) 2.0 i i I '

-wall I= 1 -
a=1
Pr= I -
-channel
30 60 90 120
0- ut=O 150
S- 330A 180
30 270 240 210

-1.0
wall

-2.0
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8
T/yAx

Fig. 1-5 Analytic solution of the dimensionless temperature distribution in
oscillating flow in a parallel plate channel and its walls as a function
of dimensionless transverse position at different oscillation phases (t:
(a) a=I; (b) a=10.







16
Neglecting axial conduction in both the wall and the fluid, the local and

instantaneous axial heat flux can be expressed as

4(y,t) = p C U(y,t) T(0,y,t) (1,10)

The time averaged total heat flow rate, then, will be obtained by integrating

this quantity over the channel width and the oscillation period, i.e.

C 2 n +a
_= p f U(y,t) T(0,y,t)d dd(t) (1,11)
2 o -a

By means of Equations of (1,3), (1,4) and (1,7), and after some rather lengthy

but straight forward manipulations, the effective thermal diffusivity of the oscillation

flow is found to be



Pr[(1 -H)I + (1-H)1] + (I-m H) + (1-mH)
eff2 (1,12)
16 a2 (Pr2 1) 1 tanh(tfa)
d0x2 VXa


where

I = F/ca tanh(v-Ta) (1,13)

m = VPr a tanh(Vi7Pr a) (1,14)

with the bar indicating the complex conjugate of the function shown and H being

defined by equation (1,9).







17
Two graphs of the non-dimensional rff/a x2, as a function of Womersley

number for different Prandtl numbers, are presented in Fig. 1-6(a) and (b). The first

one, (a), for e=2 representing the case of wall thickness being the same as channel

width and the second one corresponding to insulating walls which is mathematically

equivalent to the case of conducting walls with zero thickness. The curves shown are

seen to have a single maximum point which shifts to lower values of a as Pr is

increased. This is termed the tuning effect because the peak indicates the value of

channel width at which the heat transfer is optimized. These tuning points corre-

spond to the condition where the thermal diffusion time from channel axis to the

walls is approximately equal to half of the oscillation period. The observed drop off

in the peak value of r!C/alx2 for very small Prandtl number in the insulating case

is attributed to the inability to store much heat in the boundary layers which become

quite thin for fluids with small kinematic viscosity v such as in liquid metals.

Note that the second set of curves, Fig. 1-6(b), also present information for

the enhanced axial mass diffusion by oscillating flows since insulating walls give the

same boundary conditions as those for diffusional mass transfer and both of them

come from the same type of equations with the only difference being the use of

Prandtl number for heat transfer but the Schmidt number for mass transfer. One

finds that the peak value of rgff/Ax2 for Pr=l is about 102 in the vicinity of a =3

while the corresponding value for the effective mass diffusivity for Schmidt number

1000 at the same Womersley number falls down to 5x10-s by considering the curve

for Pr=103 as a curve for mass transfer for a Sc=10 fluid. Since most liquids have











(a)
e=b/a=2 (conducting walls)
10 -

10 -a Pr=10 /



< 10 -4
10

10 IT 3
10


10-3 10 -a 10 -' 1 10 10 z 10 S
a



(b) 1
(b ) i n1 -- i iiiii|-l i ,i,,. ii 1'" 1 ii i i l "
Se=b/a=l (insulating walls)
10 -1

10 -

< 10- Pr= 103
3 10
100-

10 -4

10

10 10 10 1 10 10 2 10 3
O(


Fig. 1-6 Analytic solution of the dimensionless time averaged effective thermal
diffusivity enhanced by oscillating flow in a parallel plate channel as
a function of Womersley number a at different Prandit numbers: (a)
e=2 (conducting walls with a=p ==1); (b) e=1 (insulating walls).







19
a large value for the ratio of Schmidt number to Prandtl number (about 1000 to 1

for water, for example), a really large increase in heat transfer with a negligible

enhancement of diffusional mass transfer can be achieved, and thus, the process of

heat transfer by thermal pumping in liquids can be considered as essentially free of

mass transfer provided the connecting channel length is longer than the tidal

displacement. Note that this same observations does not follow for gases where

Schmidt number and Prandtl number are approximately the same.

The tuning curves of effective thermal diffusivity for several different liquid-

solid combinations in configurations of equal wall and channel thickness (e=2) are

shown in Fig. 1-7. There is no major difference in the maximum Ki, among these

different material combinations and all curves give a maximum ratio of Kff to oAx2

of about 0.05. It is clear that the effective maximum thermal diffusivity at the peak

of the tuning curves is directly proportional to the frequency of the fluid oscillation

and to the square of the tidal displacement. This means that in the optimization pro-

cedure for a thermal pump, o and Ax should be made as large as possible. The

channel width a, then, should be determined from the valve of a corresponding to

the maximum effective thermal diffusivity and the kinematic viscosity v of the

working fluid. For example, at wo=2xr rad/s in the water-glass combination, the

optimum charmel half width will be a =2mm for optimum heat transfer.

The effect of wall thickness on the heat transfer process in the thermal pump

is shown in Fig. 1-8, where a plot of ./foAx2e versus e for several values of a2Pr

for the liquid-solid combination of liquid lithium and stainless steel are presented.












10 -a
10-1 C

10-2
Lx
3

10 -'

10-

10 -6
10 -3


Fig. 1-7





0.025


0.020


0.015


3 0.010


0.005


0.000



Fig. 1-8


10 -a 10 -1 1 10 10 2


10


a
Analytic solution of dimensionless time averaged effective thermal
diffusivity enhanced by oscillating flow in a parallel plate channel at
e=2 (conducting walls) as a function of Womersley number a for
several different liquid-solid combinations.


2 3 4 5


Analytic solution of dimensionless time averaged effective thermal
diffusivity enhanced by oscillating flow as a function of cladding
thickness for liquid lithium in a parallel plate channel with stainless
steel walls.






21

These curves show that an e=2 geometry, corresponding to equal wall thickness and

channel width, is about optimum when an appreciable fraction of the heat can be

stored in the bounding walls. The reason for normalizing Kef by the extra factor e

is to take into account the fact that the walls take away a fraction 1/e of the cross

sectional area of the thermal pump available for the fluid oscillations.

Integration of the local insantaneous heat flux over the oscillation period

yields the time averaged axial heat flux distribution over the cross section, while an

integration over the channel width yields the instantaneous axial heat flow through

the whole channel as a function of time. Fig. 1-9(a) and (b) show the behavior of

the two partially integrated, non-dimensional products of U(y,t) and T(0,y,t) for the

case of a water-glass combination with e=2. From (a) one observes that the largest

value of UT/yoAx2 occurs for a=1 which is near the tuning point for this particular

condition. Note the much smaller values at a=0.1 and a=10 which occur at de-

tuned conditions. The flux transport becomes confined to the vicinity of the walls as

the Womersley number becomes large. Fig. 1-9(b) shows that the thermal flux is

time periodic at a frequency twice that of the fluid oscillations and that only near

tuning conditions is the positive flux not essentially canceled by the negative heat

flux.

In the following chapter, Chapter II, the geometry for which this numerical

study was performed will be explained in detail. The assumptions and the mathemat-

ical models used to present two different physical situations will also be shown there.

Chapter II will focus on the numerical method employed including a brief derivation











(a) 1.0 -
0.8
0.6
0.4
0.2
"' 0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-0.02


(b)


0.5


-0.5


-1.0


Fig. 1-9


0.00 0.02 0.04 0.06
UT/7yAx2


60 120 180 240 300


0.08


360


Ct


Analytic solution of heat transferred by an oscillating flow of water in
a parallel plate channel with glass walls for different a: (a) time
averaged value as a function of dimensionless transverse position; (b)
cross section integrated value as a function of oscillation phase.







23
of the associated Finite Difference Equations. The results obtained from the numeri-

cal investigation will be presented in Chapter IV, with some comparisons of the

results with analytic solutions discussed in the present section. Concluding remarks

will be found in Chapter V. Some materials useful for a clearer understanding of the

Velocity-Pressure correction in the SIMPLE algorithm are summarized in Appendix.












CHAPTER II

MATHEMATICAL MODEL



The mathematical model for the numerical study presented in this dissertation

is explained in this chapter. First, the geometric configurations for which the

numerical investigation were performed are described. Then, the governing

equations to be solved and boundary conditions assigned are given.



2.1 Geometric Configurations

Two different configurations based upon the thermal pump geometry shown

in Fig. 1-2 were chosen for the present numerical study. These are shown in Fig. 2-1.

Some simplifications were introduced for the purpose of computational convenience.

Note also that, to more clearly show details, the axial-transverse ratio of the

configurations shown is different from their true value used in the calculations as

discussed in Chapter IV. Both configurations essentially consist of a 2D parallel

plate channel of width 2a and length L connected to two 2D rectangular end reser-

voirs of width 2b and time averaged length c. There is a piston moving back and

forth sinusoidally in the axial direction in each of the reservoirs. Choosing a rectan-

gular shape for the reservoirs allows calculations in Cartesian coordinates, although

a coordinate transformation is still necessary because of the moving boundaries.

24









(a) x=-(c+-L). fcosW1


Th insulating Tc
I 1 I I


X= (c+-L+ ACOS(A
2-\r 2b-Z


b


----- tttttttt" tttttttt-
Th Tc



Fig. 2-1 Configurations of the thermal pump used in the numerical
investigation: (a) conduction model; (b) cross flow model.


(b) x=-(C+L)- 1,coswtt






26

The coordinate system used in the physical domain is also shown in Fig. 2-1.

The origin is set at the center point in both axial and transverse directions. The axis

of the connecting channel and reservoirs was chosen as the x axis and then they axis

is in transverse direction. Based on this coordinate system, the positions of the

moving boundaries (piston surfaces) can be expressed as


XL, = -(c + ) Acos(Ot) (2,1)
2 2b


x, = (c + ) cos(ot) (2,2)
2 2b

for the left and right pistons, respectively. Note that the piston movements are in

phase in order to satisfy the law of mass conservation for the assumed incompressible

working fluid entirely filling the channel and reservoirs.

The first configuration, shown in Fig. 2-1(a) and named the conduction model

because of the way that heat is supplied and removed from the end reservoirs, is a

closed system for mass transfer. All walls except the piston surfaces are stationary.

The channel side walls are thermally insulating as indicated by the oblique shading

lines, while the reservoir side walls including the piston surfaces are conducting and

maintained at different temperature at the opposite sides displayed by the blank (for

cold at T,) and black (for hot at T,) regions. The configuration is symmetrical about

the horizontal center line corresponding to the x axis. This symmetry allows the

calculation to be undertaken in only the upper half of the domain as long as suitable

boundary conditions are applied at the center line.






27
The second configuration is shown in Fig. 2-1(b). It uses fluid cross flow to

add and remove heat from the end reservoirs and is termed the cross flow model.

It is assumed that the cross flow enters and exits the reservoirs at a constant but

small velocity V, perpendicular to the reservoir side walls. All walls including the

piston surfaces are insulating in this model. The cross flow is maintained at different

temperatures on the opposite sides as they come into the system. The thermal

conduction at the cross flow exits (i.e. transpiration) is excluded in the numerical

study since it is negligible compared with the heat carried by the flow. This configu-

ration no longer produces symmetric flows about the center horizontal line and the

computation thus has to be done over the entire flow domain.

A very useful characteristic for both configurations is that all information

needed to describe the flow and heat transfer in one oscillation phase step can be

readily obtained from the solution at another phase step one half period earlier as

soon as the flow pattern and temperature distribution in whole physical domain have

reached a final time periodic state. Time periodic conditions existing in the right end

reservoir at a fixed phase point in the oscillation cycle will correspond to those found

in the left reservoir half an oscillation cycle later. Furthermore, if temperature is

normalized so that the given temperatures Th and T, in opposite reservoirs are the

negative of each other, the temperature distribution at wt=1800 are the same as that

in the reflected image of the geometry at wt= 0 except for a sign change. The same

thing happens for every pair of solutions at wt and ot+1800. It is because of this time

symmetry that the computations need be taken over only the range of O"stsl800,







28

which significantly reduced the CPU time and storage required in the numerical

investigation.



2.2 Governing Equations and Boundary Conditions

The general assumptions in this study are following.

a) The working fluid is a homogeneous, Newtonian fluid;

b) The working fluid is incompressible

-constant density;

c) The working fluid has constant material properties

-constant viscosity,

-constant thermal diffusivity,

-constant thermal conductivity;

d) All body forces are negligible;

e) The viscous heating term in the energy equation is negligible;

f) The flow is laminar.

As shown in Section 1.3, liquid is a suitable working fluid in the thermal pump

for heat transfer without mass exchange. The incompressible fluid assumption is

valid for most liquids. The main advantage of the constant material properties

assumption is the ability to separate velocity and pressure solution from the tempera-

ture solution. It was found that in order to reach the time periodic state, the number

of oscillation periods needed for temperature is much more than that for velocity,

while the CPU time used for solving velocity and pressure distribution in each period







29
is much longer than that for temperature. Calculating velocity and temperature

separately did save considerable CPU time.

The dependent variables to be solved for are the x component of velocity, U,

the y component of velocity, V, the pressure P and the temperature T. They and the

independent variables x, y and time t are nondimensionalized as follows.

x* x y t* =t (2,3)
-= .. y- =_ = (2,3)
a a


U* U V* VP' (2,4)
wa wa p o2a2


ST- (Th + T)/2
T* (2,5)
(T T,)/2

where the quantities with are dimensionless and

a -half width of the channel;

W -angular frequency of the piston movement;

p -fluid density;

Th -temperature at the hot end;

Tc -temperature at the cold end.

After nondimensionalization, the governing equations read


V + V = 0 (2,6)


U, + (UU)x + (VU)y = -Px + (1/a2) (U + U )


(2,7)










V, + (UV) + (WV) = -P + (1/a2) (V, + V) (2,8)



T, + (UT)~ + (VT), = (1/Pra2) (T,, + T) (2,9)


where the subscripts indicate partial derivatives and

Pr= v/K Prandlt number;

a= a / v Womersley number;

Note that a conservation form of the governing equations is used here. All

quantities in the equations are dimensionless and the non-dimensional mark has

been omitted for simplicity. This notation, in which dimensionless quantities are

termed without superscript *, will be used from this point through the end of the

dissertation except where the quantity mentioned needs to be expressed in dimen-

sional form.

In view of the geometry explained in Section 2.1 and the non-dimensiona-

lization shown above, the boundary conditions can be mathematically expressed as

follows:

Velocity:

1) U 0 at the stationary walls; (2,10)
= V 0

2) {U = -sin t
2b at the piston surfaces; (2,11)

V= 0










3) u=0

V
a


at the cross flow entrance;


au
ay


4)


along the symmetry line y = 0.


(2,12)





(2,13)


V= 0


Temperature:


1) aT
an


2) T =+1


3) T =-1



4) 0

ere in Eq. (2,12) is
where VF in Eq. (2,12) is


at the insulating walls and symmetry line y =0; (2,14)


at the hot walls and hot cross flow entrance; (2,15)


at the cold walls and cold cross flow entrance; (2,16)



at the cross flow exits. (2,17)


dimensional and in Eq. (2,14) indicates that the partial
iT


derivative normal to the walls.












CHAPTER III

NUMERICAL TECHNIQUE EMPLOYED



The governing equations (2,6)-(2,9) with the boundary conditions (2,10)-(2,17)

specified in the physical domain, which have been presented in Chapter II, have to

be solved numerically and thus require a suitable numerical method. The existing

Semi-Implicit Method for Pressure Linked Equations (SIMPLE) of Patankar19 and

of Patankar and Spalding20 is one such method available for dealing with heat

transfer problems in incompressible viscous flows, but it needs to be modified here

by taking into account time periodicity and boundary movement, which are present

in the fluid oscillation and associated heat transfer problems investigated in this

dissertation. Such a consideration leads to the extended SIMPLE algorithm, termed

SIMPLE-TP (for Time Periodic), developed in this investigation and to be described

in some detail in this chapter. First, the coordinate systems in both the physical

domain and computational domain and the transformation of the governing equations

from the former to latter are described. Second, a brief derivation of the Finite

Difference Equations and the treatment of boundary conditions are presented. In

Section 3.3, an overview of the numerical iteration procedure SIMPLE-TP is given.

Finally, a Vectorized Line Group algorithm for solving the associated system of

algebraic equations also developed in this investigation is presented.







33
3.1 Grid and Transformation of Governing Equations

It is most convenient to transfer the time periodic physical domain to a time

independent computational domain. In other words, the grid system in the physical

domain which is movable and non-uniform needs to be mapped to a grid system in

the computational domain which is fixed and has even spacing in order to allow the

numerical calculations to be carry out properly. For the physical domain geometry

shown in Fig. 2-1, it is found convenient to break both of the domains into three

subregions when making the mapping. The two grid systems and their block corre-

spondence are shown in Fig. 3-1.

The grid in the physical domain at three different phases of piston movement

are shown in Fig. 3-2. One can observe from this figure that the grid is fixed for the

middle blocks corresponding to the connecting channel, but movable in the other two

blocks representing the end reservoirs of the thermal pump. The grid spacing in the

area of each reservoir near the connecting channel, where a cross flow can also enter

or leave the reservoir in they direction, is also independent of time. This subdivision

is of advantage for specifying the boundary conditions correctly and easily when using

cross flow. Note that the same grid structure was used for all cases in both con-

duction and cross flow models in order to allow a good comparison, even if it is not

necessary for the former. The grid points in the rest of the area of the reservoirs

move like an accordion in the x direction because of the piston oscillation. The y

components of the grids were established at the beginning of each run, while the x

components of the grids had to be generated at each time step.









(a)













(b)













(c)









Fig. 3-1 The correspondence of blocks between the physical domain and the
computational domain: (a) grid in the physical domain at ot=0; (b)
time independent and uniform grid in the computational domain; (c)
grid in the physical domain at ot=180.










(a)










(b)











(c)











Fig. 3-2 The movable and non-uniform grid in the physical domain:
(a) =t=00; (b) at=900; (c) ot=1800






36
In all the three subregions, the grid points are non-uniformly spaced such that

those regions near the walls and at the edge of the jet region at y=1 where large

velocity and/or temperature gradients are expected to exist have higher grid density.

In order to generate the non-uniform grid spacing, the stretching function found in

the book by Anderson21 was used. It has the form



(<+1) -(p-1)

(p +12 .-1 (3,1)




,where X and x are the position of grid points before and after stretching; 0 is the

stretching parameter which controls the stretching strength. P is different in diffe-

rent subregions and in different directions. The values of P's in the same direction

for different subregions were chosen so that the grid size nearest the dividing line

between subregions were equal.

The relationship between the coordinates (x,y,t) in physical domain and

(,, rl, r) in computational domain can be expressed as

= ((x,t)
n =1 (y) (3,2)
r=t

Under the condition that the product of the Jacobian and its inverse are equal to

unity, as is required for one to one mapping, the following expressions hold.











=1 1 x x (3,3)
x y7 xt


By means of these, the governing equations (2,6)-(2,9) in the physical domain

can, after some chain rule manipulations, be rewritten in terms of 4, r7 and r as


1- + -V, = 0 (3,4)
x Y7



x 1 1 t P 1 1 U (3,5)
U7-JU + (UU),+(VU), = Pg+-4-! U]+i-Uj



x 1 + (3,6)
x x y



T-XTT+(U), () 1 1 1+- (3,7)
x X y j. Pra2 x t x Ex P "y


Note that there is a new source term appearing in each of the momentum and

energy equations which represents the effect of the grid movement in the physical

domain.






38
3.2 A Brief Derivation of the Associated
Finite Difference Equations and Boundary Conditions

As in the SIMPLE algorithm, the same staggered grid, as shown in Fig. 3-3,

was also used in the SIMPLE-TP. The pressure and temperature are calculated at

the grid cell center designated by o's while the velocity components U and V are

determined at the center of the cell walls indicated by arrows. By means of this

staggered grid configuration, the checkerboard pressure effect introduced for non-

staggered grids can be eliminated and thus allows the Velocity-Pressure correction

to converge easily. In SIMPLE, a control volume approach was used to derive the

Finite Difference Equations (FDE's) in this grid configuration, and a derivation,

based on a stationary grid in the physical domain can, be found in the book by

Patankar19. The derivation of the FDE's in the present SIMPLE-TP followed the

same procedure, but some modifications had to be made since it was carried out in

the computational domain. A brief derivation of the x momentum equation is

presented below as an example of the derivation applied in the SIMPLE-TP.

The notation used here is the same as that of Patankar19 and is shown in Fig.

3-4. The location of U where the differential equation is going to be discretized is

designated by "P" while the location of its four neighboring Us are indicated by

"E"(East), "W'(West), "N"(North) and "S"(South), respectively. The four centers of

cell walls are marked by "e", "w", "n", and "s" also, but in lower case, according to

their directions away from the cell's center. Note that the position indices are placed

on the position of superscripts in order to differ from the partial derivatives which

are expressed by subscripts in the governing equations.
















j+l -1


0


I I -
-- 0 -- 0 0 --0 -

- t t t t -

o- 0 -- o -0



o 0 0
L ---


-I b


The staggered grid in the computational domain.


I I I I I


Fig. 3-3

















-9-


O

- O0


L--


-* O


n


P


1 i i+1


(b)


i-1 i i+1


Typical cells for the velocity component U: (a) an interior cell; (b) a
boundary cell with its south wall at the domain boundary.


0 -t-


j+1










j-
j-




j-l-


-a-


-r0-
" O -


Fig. 3-4


I I 1


I ) I 1 1 1 1


t






41
The equation (3,5) can be rewritten as


xhy Ur yrU + y PE + Y7 UU + x, V o- (3,8)


An integration of this equation over the grid cell S f6r and the time step Sr yields

6X6Y(UP'UO) L6Y(xPXO)(Ue-u) + 6y(Pe-PW)
6r ST
\ r (3,9)
U r U U U,
+ Sy uU- E uU- L] + Sx6vU- vU- = 0
a 2X: C 2X a } 2y


,where all U's have their values at the current time step except Uo which takes the

value of UP at the previous time step. The u and v here represent the velocity

components in the current time step also, but have their values at the previous itera-

tion and thus will go into the coefficients A's or source term S. It is in this way that

the nonlinear Navier-Stokes equations can be solved as linear equations in each step

of the iteration.

Note that the IUs are never located at the centers of the cell walls, thus the

U's with lowercase superscripts have to be replaced by those with uppercase super-

scripts (see Fig. 3-4(a)). The, so-called, hybrid scheme, which is a combination of

central differencing and upwind schemes described in detail by Patankar19, was used

for the convective and diffusion terms. Linear interpolation was used for the

replacement in other terms. Because of the staggered grid, PC and P" are available

without any further action.

The finally obtained FDE for U looks like









APUP =AEUE +AWUW +ANUN +ASUS +AOUO +Sc (3,10)

Where


AE = by 0, 1 uel + MAX(-u e,0) (3,11)
S a 2(XE -X P) 2


A by 0, 1 lul + MAX( u',) (3,12)
AW= y[ (, a2(XP-x W) 2



AN = 6x M 1 lvn + MAX(-v n,0) (3,13)
A a2( N y ) 2 )



Sa2y P -y S) 2


Ao Sxby (3,15)
8'

AP =AE +Aw N A N +As +A (3,16)


Sc = Y x o)(ue UW) (3,17)

Linear interpolation was also needed here to obtain the values of u and v at the

centers of the cell walls.

At the cells, which have one wall and sometimes two coinciding with the

domain boundary, the neighboring velocity component will locate at the center of the






43

cell wall. In Fig. 3-4(b), one of the boundary cells having its south wall coinciding

with the domain boundary is shown as an example. For all of the boundary cells,

proper adjustments to the right hand side in some of the equations (3,11)-(3,17) were

taken according to the geometry and boundary conditions specified. Particularly for

the boundary cell shown in Fig. 3-4(b), one has


As = 0, 1 -vI + MAX( v,0) (3,18)
x 2( P s) 2 1



The changes made in the superscript of yS and v' come from the change of the

location of Us. Equation (3,10) for this boundary cell should be changed also since

US here is known from the boundary conditions.

The derivation of all other FDE's and the treatment of other boundary cells

are straight forward and follow the same procedure explained above. More detail

and some discussion about the discretization scheme can be found in Ref. 19.





3.3 Calculation Procedure

Because of the assumptions of constant density and temperature independent

viscosity, the energy equation does not couple with the continuity and momentum

equations. This simplifies the problem. In this investigation, the velocity and

pressure field was first obtained without involving any temperature consideration.

The energy equation was then solved and the temperature distribution determined







44

based on the calculated velocity field. It was found that the temperature converges

much slower than the velocity does, which showed that a big saving in CPU time was

accomplished by being able to solve for velocity and temperature separately.

A flowchart for solving for U, V and P is shown in Fig. 3-5. The calculation

procedure was begun from an initial condition which was for all cases in this investi-

gation as that of the fluid at rest and the pressure uniform everywhere in the entire

physical domain. In the meantime, the dimensionless time rk=1 was assigned as zero

and a basic time step size rB was defined. Starting from this point, U, V and P at

tk+1= rk+ r were determined based on the grid generated in the physical domain

for this time step by means of the standard SIMPLE algorithm. In the iteration

process, the values for the dependent variables either at the previous time step or

those existing at the same rk but in the previous oscillation period, depending on

which was closer, were chosen as the initial guesses. Typically after stepping off

several oscillation cycles, the values at the same t in the previous cycle gave the most

rapid convergence.

The maximum ratio of the residue at each grid cell which came from substitu-

ting the non-converged velocity into the continuity equation (3,4) to the product of

the local velocity and the cell boundary size was used as a convergence indicator cc.

Whenever the value of a, was less than a prescribed small value e, the solution was

considered to have converged and one could proceed to the next time step. It was

found that sometimes the Velocity-Pressure correction was unable to achieve conver-

gence and the value of a, oscillated around a constant value larger than e, after


















































Fig. 3-5 Flowchart for determining the time periodic velocity components U, V
and pressure P.







46

several time steps, from the initial conditions or from a converged solution, were

taken. Under this situation, convergence could be reestablished by a continual

halving of the time step increments bt until they were sufficiently small. Once

convergence was again obtained, an attempt of doubling tb was taken in order to

use as large a time step size as possible.

After the time had been stepped off to r = t, a check for the convergence to

the final expected time periodic state was undertaken. This consisted of essentially

determining the quantities


1 imax ]max

a = imamax '=1 i=l (3,19)
(U j

i mamax i=1 j=1

and



mx max max

SYmaax i=1 j=1 (v(2=o)


ima max i=1 j=1

which represent the difference between the values of the velocity components at fixed

spatial position between period n and n+1. Note that the symmetric conditions

about the vertical center line have to be used in these formulas too. It was

considered that the periodic solution had been reached when both of them were less







47

than a given small value ep. If the solution was not periodic under the criteria

mentioned above, another cycle of calculation would be started by setting z = 0 and

6-r= 6rB.

An almost identical procedure was followed for determining the temperature

distribution based on the velocity obtained (see Fig. 3-6). The major difference here

from that for calculating U, V and P was that there were no iterations corresponding

to the Velocity-Pressure correction in each time step, thus the variable time step size

was not needed for T. Since the calculation for temperature was associated with the

final time periodic velocity even at the beginning of each run, there were no initial

conditions existing in this situation. A linear temperature distribution in the t

direction and uniform in rn direction was used as the initial guess at r = 0 of the first

period.





3.4 A Vectorized Line Group Method
for Solving the System of Algebraic Equations


The method for solving the associated system of algebraic equations always

play an important role in any overall numerical method for multi-dimensional flow

and heat transfer problems. A Line-By-Line iteration method (also called Successive

Line Relaxation method) is commonly used in the SIMPLE algorithm for 2D or 3D

problems. In this method, one picks a grid line, say in the t direction, and assumes

that the dependent variable at its neighboring lines (i.e. the '1 direction neighbors















































Fig. 3-6 Flowchart for solving the time periodic temperature distribution based
on the calculated velocity.







49

of the points on the chosen line) are known from the last iteration. By doing this,

a system of simultaneous equations with a tridiagnal coefficient matrix is formed,

which reads


A -A 0

-A A -A
3j 3j 3j




0 ... ...
O -- .. ...
o


0
-*- *" 0
0



W P E
-A A1M -AJ
-AIM-2j AIM-2j -AIM-2
w P
.... AIM-_ij AM-1j.


where A's are coefficients,
right hand side which can be expressed as


RHS2,

RHS3,


=W + N +A S +AO 0 -OC
= A2 (P+A2 2jP1+l 2j*P2j-1+A2 92j+S2

-N +AS ,0+ 0 ,+SC
3j *(P3jtl 3j* 3j-1 + 3j *3j +3j


(3,22)


RHSM-2j = AIM-2j* IM-2j++AIM-2j* qIM-2j- +AIM-2j*(IM-2j+SIM -2j

RHSIM J (PIMj l*' M2 N
RHSIM-lj = AAIM-,. pQMj+A It-lj* (IM-1j.+
AS -j ,0 0 o C
IM-lj ffIM-lj-I'llM-1j +A lM-l +jM-1j


This kind of system of algebraic equations can be solved by means of the Thomas

algorithm, a direct elimination method (see Anderson21). The forming and solving


(p2j

(p3j





(PIM-2j

(PIM-ljj


RHS2j

RHSzj





RHSIM-j

RHSIM-


(3,21)


> =







50

procedure, then, was used for all lines in the same direction (the E direction in our

example) and repeated until there was no significant changes in the dependent vari-

ables. The Line-By-Line method is widely preferred because it takes the advantages

of direct and iteration methods together to gain a fast convergence and good accu-

racy for the Velocity-Pressure correction iterations. More discussion concerning the

details of this method can be found in Ref. 19.

The above described method, however, is not suitable for vectorized calcula-

tions possible with supercomputers such as the CRAY and other newer machines.

Roughly speaking, vectorized calculation requires that there is no dependency

between the calculation operations in any pair of DO loop indices within the inner-

most DO loops. Once this requirement is satisfied, the calculations are performed

almost in parallel and the CPU time used is reduced accordingly (see Grenzsch22).

A flowchart for the Line-By-Line method with lines in Z direction is shown in Fig.

3-7. There are two innermost DO loops which are marked by the dashed lines in the

flowchart and both have "i" as their indices according to the line direction. It is easy

to see that Aj depends on A j, RHSi, is calculated from RHSi., in the first inner-

most DO loop and that (ij is obtained from (pi,j in the second innermost DO loop,

and that this procedure does not meet the requirement for a vectorized calculation.

A Vectorized Line Group method was developed in this study to overcome

the difficulties mentioned above especially since it was clear that the computations

for time periodic problems involve a great number of time steps, and thus some

attention have to be paid to the reduction of the CPU time used. Also a super-
















































Fig. 3-7 Flowchart for the Line-By-Line iteration method for solving the
associated system of algebraic equations. Dashed lines represent the
innermost DO loops.






52

computer resource (CRAY/YMP), employing vectorized processor, was available for

this study through the Pittsburgh Supercomputing Center.

By use of this new vectorized method, all lines in one direction, the f

direction for example, were divided into two groups (one for the even and the other

for the odd numbered lines) which lead to two groups of simultaneous algebraic

equations and a corresponding two sets of tridiagnal matrixes in the same way as in

the Line-By-Line method. The Thomas algorithm could then be applied to each line

in one group at the same time and the calculation could be vectorized. By altering

to update the dependent variable for the two groups, a converged solution could be

obtained some three times faster than that obtained by the Line-By-Line method.

The flowchart of the Vectorized Line Group method is shown in Fig. 3-8.

There are three innermost DO loops marked by dashed lines, in which the first and

third are corresponding to the innermost DO loops in the Line-By-Line method

shown in Fig.3-7. The dependencies between the pairs ofA's, RHS's and (p's are still

on the subscripts "i", the same as that in the Line-By-Line method, because the same

line direction is chosen. However, the indices of the innermost DO loops are "j",

which is not the same as that in the Line-By-Line method. It is because of this

difference that the requirement of vectorized calculation is satisfied. The only

drawback of the Vectorized Line Group method is that it requires a rectangular

computational domain. Fortunately this is achievable for most anticipated problems,

when using domain subdivisions.















































Fig. 3-8 Flowchart for the Vectorized Line Group iteration method for solving
the associated system of algebraic equations. Dashed lines represent
the innermost DO loops.







54
When the Vectorized Line Group method was applied to one of the three

subdomains shown in Fig. 3-1, the values of the dependent variables from previous

iteration in the neighboring subdomain were used as the boundary condition along

the interface boundary between the two subdomains. The same treatment was

undertaken for the all three subdomains. Since the solving procedure is iterative, the

continuity condition at such boundaries is insured by updating the values of depen-

dent variables there alteratively.











CHAPTER IV


RESULTS AND DISCUSSION



Ten cases with different values on the control parameters were investigated

in this numerical study. Those parameter values are listed in Table 4-1.


Table 4-1. The list of 10 cases studied in the numerical investigation.
Case b c Ax rs a Up Re V(
No. (cm) (cm) (cm) (cm/s) (cm/s)
1 2 5 0.4 0.013 0.5 0.003 1 0
2 2 5 5 0.167 1 0.125 50 0
3 2 5 6 0.2 3 1.35 540 0
4 2 5 20 0.667 3 4.5 1,800 0
5 2 5 6 0.2 10 15. 6,000 0
6 2 5 20 0.667 10 50. 20,000 0
7 2 5 40 1.333 10 100. 40,000 0
8 0.6 10 6 0.2 3 4.5 540 0
9 2 5 20 0.667 10 50. 20,000 1
10 2 5 20 0.667 10 50. 20,000 10


Note that the connecting channel has half width a = 0.1cm and length L = 30cm

for all cases. The working fluid in this study is assumed to be water with a kinematic







56

viscosity of v=0.01cm2/s, density p=lg/cm3, specific heat C,= 4.18J/gK, and Prandtl

number Pr=1 (corresponding to water at high temperature). The zero cross flow

(Vc=0) represents the conduction model, and Re= a2Ax/a is the corresponding

Reynolds number based on the maximum piston velocity Up= oaAx/2b and the

reservoir half width b, but expressed in terms of Womersley number a, tidal

displacement Ax and the channel half width a through the requirement of mass

conservation and the definition of Womersley number.

The numerical solutions of the governing equations described in Chapter II

obtained by use of the SIMPLE-TP algorithm explained in Chapter III for the ten

cases and some discussion about several interesting phenomena found from those

results will be presented in this chapter with some work done to validate the

numerical results at the beginning. Note that all dependent variables, the velocity

components U, V, the stream function 0i, which is calculated from U, V, the pressure

P, the Temperature T, as well as the independent variables x, y shown in the figures

of this chapter are dimensionless quantities which are non-dimensionalized by the

method shown in equations (2,1)-(2,3), although the marker is omitted as

mentioned in section 2.2.



4.1 Validation of Results

In any numerical process involving calculation by computers, errors always

arise. It is because of this that some estimate of the magnitude of these quantities

is included in all numerical studies.






57

Since the purpose of this dissertation is to obtain a qualitative guidance to the

usage of the thermal pump technique and no detailed experimental data for the time

periodic velocity patterns and temperature profiles in such configuration exist with

which to compare the numerical data, only a qualitative error analysis is carried out.

That is, to demonstrate that the numerical results obtained are qualitatively close to

the true solution of the governing equations for the specified boundary conditions.

The number of grid points chosen is very important for numerical studies of

heat transfer in fluid flows. If a few grid points are taken, the results will be unable

to display the correct structure of the velocity pattern and temperature profile. A

large number of grid points, on the other hand, will need too much computing time,

which may either waste the computer resources or require such long calculations that

they can not be handled by present computers. For time periodic problems, it is

more desirable to use a small number grid points or, in other words, a large grid cell

size because generally a smaller time step size is required for a smaller grid cell size

in order to achieve convergence. If the time step size is very small, the number of

necessary time steps per oscillating cycle will become very large, and thus an

extremely large number of the total time steps will be needed since several

oscillation cycles are required in order to reach the final time periodic state.

A relatively low number of 91x71 non-uniform grid points were used in this

numerical investigation. Fig. 4-1 compares the stream line patterns for Case No.6 at

several different oscillation phases for 91x71 grid points (left part of the figure) and

121 x01 grid points (right part). The procedure used to obtain the stream lines from













































grid: 91x71 grid: 121x101


Fig. 4-1 Stream line patterns for Case No.6 calculated with different number of
grid points: (a) grid 91x71; (b) grid 121x101. Increment between
neighboring lines is A or=20 in non-dimensional units.






59
the numerically calculated velocity components will be explained in the next section.

There is some difference between the two flow patterns but it is not significant. The

changes from one to the other are only in detail and the basic structure of the flows

does not change. The dimensionless basic time step size 6 r is ir/360 for the grid

system 91x71 with several halvings occurring from the basic size to Cr/1440 only in

the first oscillation cycle (see Section 3.3), while the smaller basic time increment

6 B= ir/1440 was needed for the 121x101 grid in order to get a converged solution.

The CPU time used for the latter is more than 4 times of that for the former for the

same convergence criterion. The slight changes in flow structure and the big saving

in calculation time lead to the decision to choose the sparser grid structure of 91x71

in the calculations for other cases.

The value of e, which is the criterion on the convergence indicator oc of the

Velocity-Pressure correction, is set at 3%. A typical number of Velocity-Pressure

corrections required at each time step in the SIMPLE-TP technique for Case No.6

is 11 for this setting in most oscillation cycles except the first one. In the first cycle,

especially in the early part of the cycle, it needs more Velocity-Pressure iterations to

obtain a converged solution for e =3%. The criteria for reaching the final time

periodic state was taken as 1% for the velocity and as 0.01% for the temperature.

Twelve oscillation cycles were typically needed for velocity convergence, while 200

cycles were required for temperature. There were three other criteria needed for

solving the system of algebraic equations associated with velocity, pressure and

temperature. The domain averaged ratio of the difference between calculated







60

dependent variables from two successive iterations to the values of the dependent

variables obtained from the current iteration was chosen as a convergence indicator.

The criteria for velocity, pressure and temperature were 1xlO4, 1x10l, and 1x10"

respectively. For velocity and temperature, less than 10 iterations were needed to

meet the criteria but usually more than 300 iterations were needed to have the

pressure converged. The numbers of iterations needed to satisfy these criteria

settings varied slightly from case to case for the different values of parameters listed

in Table 4-1. 3.5 hours of CPU time on a CRAY/YMP at the Pittsburgh Super-

computing Center was typically required for obtaining the velocity and pressure

values for Case No.6 using the 91x71 grid under the above converge criteria. An

extra 0.5 hour was needed to find the corresponding temperature field.

As shown in Section 1.3, there are closed form solutions for the velocity and

temperature profiles in oscillating flow in a parallel plate channel connected to end

reservoirs at x= + The flow is 1D in the axial direction and the variations of both

velocity and temperature along the transverse direction are independent of x. Note

that the ratio of the tidal displacement to the channel length, r,, in this situation is

always zero for whatever value of Ax except infinity. When the end reservoirs are at

a finite distance x= L/2, and thus r, is non-zero, a distortion of the velocity and

temperature profiles from what they are for infinite channel length will occur and the

above x independence will disappear. The distortion and the x dependence increase

when rL becomes large and under these conditions the solutions have to be obtained

numerically. On the other hand, when r, is small, the distortion should be small and






61
the numerical results for velocity profile and temperature distribution at the middle

of channel should be close to the analytic solution for the channel of infinite length

as long as other conditions are the same and, of course, the numerical results have

converged. Based on this point, a comparison of numerical results obtained in the

middle of connecting channel for the case of small r, with the analytic solution

under the same a and same insulating wall conditions for temperature will show

whether the numerical solutions are correct or not.

The first comparison involves the curves, shown in Fig. 4-2 and Fig. 4-3, for

the velocity component U and temperature T in Case No.5 versus the oscillation

phase ot for an entire oscillation cycle after the time periodic state has been reached.

The numerical results were taken at the position x= y=0.819 in the dimensionless

coordinate system shown in Fig. 2-1. A 5 phase shift was introduced in comparing

the analytic solutions with the numerical results in order to allow the best com-

parison. This phase shift comes from the difference of phase accounting methods in

the two solutions: the analytic solutions are based on the oscillation phase of the

pressure gradient, while the numerical results are based on the phase of the piston

oscillation.

The analytic solution is valid only for a channel of infinite length. A uniform

in space but time sinusoidal pressure gradient exists for this very simple geometry.

The analytic solving procedure starts from introducing this pressure gradient into the

Navier-Stokes equation (see Section 1.3), from which all time periodic solutions are

obtained. The phases of all other quantities, velocity, temperature etc., are delimited























40

30

20

i 10

CO 0
o
T -10

S -20

-30

-40 '" 1
0 60 120 180 240 300 360
ut


Fig. 4-2 Non-dimensional velocity component U for Case No.5 at the middle of
the connecting channel as a function of oscillation phase solid line numerical result; dashed line analytic solution.






63















0.15

0.10

S0.05

'0 0.00
Ci
S-0.05

-0.10

-0.15 l""" i l tii l lll ll n r
0 60 120 180 240 300 360
wt


Fig. 4-3 Non-dimensional temperature T for Case No.5 at the middle of the
connecting channel as a function of oscillation phase solid line numerical result; dashed line analytic solution.






64

from this pressure gradient template. For a geometry of finite channel length, the

pressure gradient is no longer uniform in the entire domain, but uniform in the

region far from the ends when rL is small enough, and thus can not be introduced

a prior at the beginning of the calculation. Instead, its behavior comes part of the

numerical results. The numerical solving procedure begins by giving the movement

of pistons, their position and velocity, in end reservoirs and thus the oscillation phase

of the piston oscillation becomes the basic template. The two templates do not

coincide with each other. In other words, the nearly uniform and time periodic

pressure gradient in the middle of connecting channel generated by oscillation of the

pistons in end reservoirs does not have the same phase as that of piston movement.

Introducing a phase shift is necessary for the best comparison.

One observes from the two figures (4-2 and 4-3) that the numerical results

(solid lines) match the analytic solutions (dashed lines) very well over most parts of

oscillation cycle. By comparing the corresponding zero points of the curves in these

two figures, one finds a 87, not a 90, phase delay of the temperature curves from

those of velocity. It is this difference of 30 in phase delay that makes the net heat

transfer in axial direction possible without an accompanying net mass transfer along

the axis. In the region near the x axis (center line), the phase delay is 90 so that

there is no net heat flux along the axis there (see the curve for a =10 in Fig. 1-9(a)).

However, for a=3, which is near the maximum point in Kff curve (see Fig. 1-6), the

phase delay between temperature and velocity is 750 at the x axis where the

difference from 900 is as much as 15.






65

The second comparison was made for the curves of velocity component U and

temperature T versus y. Fig. 4-4 and Fig. 4-5 show these curves at several oscillation

phases for Case No.5 with rL=0.2. The same phase shift was introduced when

comparing the analytic curves with numerical results. The curves in (a) come from

the analytic solutions (Eq. (1,4) and Eq. (1,6)), while those in (b) are from the

numerical results at x=0. One sees that the shape of the curves are essentially

identical except for the kinks produced by the finite grid point structure used in the

numerical calculations. The velocity curves for Case No.6 are presented in Fig. 4-6.

The curves are still almost the same in the region near the channel walls, but there

are larger differences between the numerical and analytic solutions near the center

line. Since rL=0.67 in this case, it makes sense that large differences should exist

in this case as explained above.

A comparison of curves of pressure gradient for Case No.5 versus oscillation

phase between numerical results atx=0 and that used for analytic solutions is shown

in Fig. 4-7. The dashed line again represents the analytic pressure gradient and the

same phase shift as above was introduced. The behavior of the numerical pressure

gradient does match the analytic one but there is an error larger than that for

velocity and temperature shown in Fig. 4-2 and 4-3, especially near the points at

which the pistons change their movement direction. It was found that this error

could not be reduced by reducing the grid size and/or time step size. Some

simplification is made in the SIMPLE algorithm when the pressure correction

equation is established from the continuity equation (explained in the Appendix, see











(a)


0.5 -


S0.0 -


-0.5


-1.0
-50 -40 -30 -20 -10 0
U(y,At)


(b)


10 20 30 40 50


0.5


0.0


-0.5


-1.0




Fig. 4-4


-50 -40 -30 -20 -10 0 10
U(O,y,wt)


20 30 40 50


Non-dimensional velocity component U for Case No.5 at the middle of
the connecting channel as a function of non-dimensional position y at
several oscillation phases: (a) analytic solution; (b) numerical result.











(a) 1.0
-analytic

0.5
ctt=0 30 60 90 120 150 180

> 0.0


-0.5


-1.0
-0.2 -0.1 -0.0 0.1 0.2
T(y,wt)



(b) 1.o
numerical

0.5 t-t=0 30 60 90 120 150 180


> 0.0 -


-0.5


-1.0
-0.2 -0.1 -0.0 0.1 0.2
T(O,y,wt)


Fig. 4-5 Non-dimensional temperature T for Case No.5 at the middle of the
connecting channel as a function of non-dimensional position y at
several oscillation phases: (a) analytic solution; (b) numerical result.











(a)


0.5


> 0.0


-0.5


- 1.0 ... .. ..
-50 -40 -30 -20 -10 0 10 20 30 40 50
U(y,wt)


(b)


0.5


> 0.0


-0.5


-1.0 -
-50



Fig. 4-6 Nc
the
sev


-40 -30 -20 -10 0 10
U(O,y,wt)


20 30 40 50


n-dimensional velocity component U for Case No.6 at the middle of
connecting channel as a function of non-dimensional position y at
reral oscillation phases: (a) analytic solution; (b) numerical result.





69
















5 0 I i i i i I i i i i l


25 _


x 0



-25


5 0 I I I I I I I I I I I I I I I I I I
0 90 180 270 360
ot


Fig. 4-7 Non-dimensional x direction pressure gradient for Case No.5 at the
middle of connecting channel as a function of oscillation phase solid line numerical result; dashed line analytic solution.






70
also reference 19). This simplifi-cation does not affect obtaining a good pressure

field for steady flows but may introduce more errors for unsteady and especially for

oscillatory flows.





4.2 Velocity Field

It was found that the velocity field under the conditions considered in this

study can not be well presented by the normal ways, i.e. by drawing arrows at several

points in the physical domain with length proportional to the speed and in the

velocity direction at that particular location, because of the complexity of the

oscillation flows and the large differences in speed at different locations within the

end reservoirs. Therefore, plotting the isovalue lines of the time varying stream

function, the stream lines, was chosen as the mode of velocity field presentation.

From the definition of stream function r(xy,t)


U(x,y,t) = a(x,y,t) V(x,y,t) = (x,y,t) (4,1)
ay x

,the value of the stream function (xy,t) at a particular point (xy,t) can be calculated

from r(xOyOt), the value of stream function at its neighboring point (xyet). The

following formula will do this.

(xo,y,)Y (xyt)
*(x,y,t) = *(xo,yo,t) + f U(x, Y y,t)dy f V(XO,y,t)dx (4,2)
(xoyor) (x,,yt)







71
Because of the staggered grid, the values of stream function are easily obtained at

the covers of grid cells without any interpolation (see Fig. 3-3).

The spacing between the streamline isovalues is equal to a constant which may

vary from case to case. This method of representing a time dependent flow field

allows one to take advantage of the fact that the absolute value of the instantaneous

streamfunction gradient is equal to flow speed and hence that regions of high stream-

line concentration (i.e. darkened regions) corresponding to parts of the flow field

having high velocity. The velocity is always in the tangential direction of the stream

lines, and the solid curves represent counterclockwise rotation, the dotted curves zero

rotation and the dashed curves clockwise rotation.

The stream lines in the end reservoirs at the oscillation phases of 150 intervals

for Case No.3 are presented in Fig. 4-8. Only the flow patterns at the phases in

lower half period Oast < 1800 are shown here. The flow profile at any point in upper

half period 180awt <3600 can be found by reflecting the picture at the corresponding

1800 earlier phase about the vertical center line (i.e. y axis). The constant interval

between two neighboring lines is 5 non-dimensional units.

It is observed that as the piston in the left reservoir moves toward the

connecting channel starting from its extreme position of x = -c- at at=0, there
2b
is essentially one large vortex pair present with the flow along the horizontal center

line (i.e. x axis) toward the piston surface. A weaker and smaller second vortex pair

of opposite rotation sense sits in the covers nearest the channel end. Flow is seen

leaving the left reservoir starting at about wt=300 and continuing on to about
















































Fig. 4-8 Stream line pattern for Case No.3 at oscillation phases of interval
A(wt) =15" in the lower half cycle *00ot<180*.






73

ot=1500 mainly via a side flow into the connecting channel. In the right reservoir,

one can see a distinct high velocity jet emanating from the connecting channel and

moving across the entire reservoir along the x axis. It begins at about at =30, the

same time as flow starts leaving the left reservoir, continues flowing along the

channel exit until at least ot=165. The jet collides with the right piston surface at

around ot =210 and disappears at ct =285. The images of these pictures are present

in the left reservoir at ot=300 and wt=1050, respectively. The origin for this high

velocity pulse is clearly the inability for the liquid entering the reservoir during the

suction stage to accommodate itself to the wider cross section of the reservoir as it

would if the Reynolds number were low enough so that flow separa-tion at the

entrance would not occur (see Case No.1 in Fig. 4-14). The appearance of a velocity

jet during the intake portion of the piston stroke has also been noted in the related

experimental work by Durst23 as well as by Kurzweg, Lindgren and Lothrop2. Note

that the large counter rotating vortex pair filling most of the reservoirs remains

during the entire oscillation cycle and its rotating sense is always such that fluid

motion along the x axis is always from the end of connecting channel and toward the

moving pistons, no matter what oscillation phase one is in. The smaller second

vortex pair also exists during the entire oscillation cycle, although it is much weaker

than the primary one. There is third vortex pair showing up in Fig. 4-8. It is

generated near the flow separation point near the channel end in the right reservoir

at about ot=450, shortly after the velocity jet starts, pushed toward the receding

piston by the velocity jet and finally joins the large vortex pair at about ot=135C.







74

The numerical development of the non-dimensional velocity component U at

three different locations along the x axis within the left reservoir under the conditions

corresponding to Case No. 3 are plotted in Fig. 4-9 with (a) at a position of 2a from

the channel end, (b) at 25a, and (c) at 40a. It shows that except at the position

nearest the connecting channel end, the velocity remains negative throughout the

oscillation cycle and is thus always moving the liquid toward the piston surface. The

sharp velocity spikes seen correspond to the periodic velocity jets crossing the

reservoir which are shown in the right reservoirs of Fig. 4-8 since they exist in the left

reservoir during the upper half period 1800 Mt <3600. The time delay in the velocity

peak between the non-dimensional position x =-2 and x =-25 is 0.0875 seconds and

thus indicates a velocity pulse traveling at 26.3cm/s which is only slightly less than

the rms axial velocity of 27cm/s in the channel but considerably larger than the

piston face velocity at the same instant.

The stream lines for Case No.4 and Case No.6 are shown in Fig. 4-10 and 4-

11, respectively, using the same format as that in Fig. 4-8 but employing 20 non-

dimensional units of interval in the isovalues of r. Similar to the results shown in

Fig. 4-8, there are three vortex pairs, two remaining during the entire oscillation cycle

and one existing in a portion of the cycle, and also a velocity jet in both cases.

For Case No.4(Fig. 4-10), the jet within the right reservoir begins at wt=30,

the same as in Case No.3, but collides with the piston surface at about ot=900, much

earlier than the wt =210 value of Case No.3, and disappears at about at=180, also

earlier than the wt=2850 result in Case No.3. The third vortex pair starts at about









a) 10

0

.-10 -

-20

-30

-40

-50 I
0 720 1440 2160



b) ,o



3 -10
0 -
n -20

S-30-

-40

-50
0 720 1440 2160
wt

C) 10

0

3 -10

0 -20 -
'
-30

-40

-50
0 720 1440 2160
wt

Fig. 4-9 Temporal approach to the final time periodic state of the non-
dimensional velocity component U(x,Ot) for Case No.3 at three
different locations: (a) x=-152; (b) x=-175; (c) x=-190.






















.ot=30






I!,-I i ? i



1 aOt=5600




oJ-13<75}
^^^-r'L ^ t


Fig. 4-10 Stream line pattern for Case No.4 at oscillation intervals of A (et) =15"
in the lower half cycle 00a












































Fig. 4-11 Stream line pattern of Case No.6 at oscillation intervals of A(wt) =15
in the lower half cycle 0*ot<180.







78

tot=30, almost at the same time as when the jet pulse begins and a little earlier than

at ot= 45 in Case No.3, and joins the big vortex pair at tf= 750, which is also much

earlier than wt=1500 phase point in Case No.3. The only difference between the

conditions in Case No.3 and Case No.4 is the different values of the tidal displace-

ment Ax. Case No.4 has Ax=20cm, or 10/3 times more than that in Case No.3, which

means there is a larger rms velocity in the channel for Case No.4. It is the faster

fluid movement in channel which produces the faster jet and associated shorter

appearance of the third vortex pair.

Comparing the stream lines of Case No.6 with those in Case No.4, one can not

find as large a difference as that between the stream lines of Case No.3 and Case

No.4. Note that Case No.6 has a=10 and Case No.4 has a=3, which is the only

difference between the two cases and means that the oscillation in Case No.6 is 10/3

times faster than that in Case No.4 since the fluid viscosity and channel width do not

change. The above observation reveals the fact that Womersley number no longer

has a large effect on the flow profile in the end reservoirs for large b/a ratio like its

influence on the axial velocity distributions within the connecting channel (see

Section 1.3). Instead, the tidal displacement Ax has more influence on the flow

profile in reservoirs than Womersley number does. Actually, significant changes in

the reservoir flow patterns are characterized by the Reynolds number, as will be

shown below.

Fig. 4-12 presents the pressure distribution for Case No.6 along the x axis at

several oscillation phases over the whole period O0sot<3600, and Fig. 4-13 shows the






79

corresponding stream lines at the same phase points. The pressure in most parts of

the channel is seen to vary linearly with x for most of the oscillation phases except

those near ot = 900 and wt = 270 when the pistons' movement changes from accelera-

tion into deceleration. The linear pressure distribution in the channel corresponds

to the expected constant pressure gradient there, and as used in the analytic solutions

(see Section 1.3). Examining these last two figures, one finds that the largest

pressure drop occurs at the channel end during that time when the fluid enters into

the channel through that end and when the velocity jet exists from the other end.

It is apparent that the pressure drop existing at one end of the connecting channel

provides the necessary power to form the jet flow at another end. The two ends alter

their roles as the pistons change their directions of motion. The magnitude of the

pressure gradient found in the channel agrees well with the analytic solution given

by Eq. (1,5) for the same values of parameters.

Stream lines with a spacing interval of 0.05 units for Case No.1 are presented

in Fig. 4-14. The corresponding Reynolds number in this case has the low value of

1, which is small enough to avoid flow separations in the case of steady flow over a

step. For a part of the oscillation cycle (about half), when the pistons move essen-

tially in one direction, no separations exists also in this oscillating flow situation. The

fact that flow separation does occur over rest of the oscillation cycle even for such

low Reynolds number is easily understood by noticing that this part of oscillation

period is around the points at which the pistons' motion changes its direction. The

flow pattern in Case No.l, in which both the existing vortex pairs and flow jet have

















0

X


-1


0
a0
X

0--


-250 -150 -0 50 150 250
-250 150 -50 50 1,50 250


0

x


-1


-250 -150 -60 50 150 250


0

-1 0

a -I


-z
-2 L I 1 1 i I
-250 -150 -50 50 160 250

X


2


1

0

x


-1


-250 -150 -50 50 150 250

X


2


1

0

x 0

a -1


I I


-250 -10 -60 50 10
-250 -150 -60 50 150 250


cat=135"

1-









-2-
-250 -150 -60 50 150 250


-50 -0 -0 50 150 50
-250 -150 -60 50 150 250


t=315

I


0
x

-14



-2 -
-250 -150 -60 50 150 250


Fig. 4-12 Non-dimensional pressure distribution along the x axis in Case No.6 at

oscillation intervals of A(ot) =45* over the whole cycle 0 art<3600.


r
ot=45' I
I
1\ I
I
I \ I
I \ I
I \ I
I \I
I


i I
I ot=225'
I
I
I
I / I
I / I
I I
I
I/ (


I ot=9O"



I I


I I

II I


nI I


I co270" I




I



I i


I I


^I I


[


e I I I


i
ot=O" I
I
i
i

I \ I
I
f
f I
I \I


ot=180'
I /,
I /(
I / (
I / I
I / 1
I / I
I / I
r/ I
I/ I


J


I


J


I























ii i:r- x=2250


----NI;,--


Fig. 4-13 Stream line pattern for Case No.6 at the oscillation intervals of
d4(t) =45* over the whole period 0*at<360*




























Ca=t=105 IAIII 9-W, -


-1.9

ot= 120(



-1.8<11<0


-fl450

-31.411<


()t=600


(ol=750

81 9

(ft=1500



-1 .3

Fig. 4-14 Stream line pattern for Case No.1 at the oscillation intervals of

A (t) = 150 in the lower half cycle Ostot <1800.


, -r--r c= 15 0
-'--- c2>


-0.6<%VO


01=900

r;

-r?~y

I


wt=1 350

-1H "as0.


--- I


- -


....._ __..~.i.~~-~I ~I~CPTPTTS~i~FCSLE


~S~IP~ i~DCIE~EIC~PZPPPPZ~


-L


Il;~prpi-in~-PEPm~liirr~ ~PTPPLV~----------




Full Text

PAGE 1

A+L + 6649 : 9 : 78

PAGE 2

)/8,' 26&,//$7,216 $1' (1+$1&(' +($7 75$16)(5 ,1 $ 3$5$//(/ 3/$7( &+$11(/ %281'(' %< (1' 5(6(592,56 0$,17$,1(' $7 ',))(5(17 7(03(5$785( %< $/(; ; =+$2 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

7R P\ SDUHQWV DQG P\ EHORYHG PRWKHUODQG

PAGE 4

$&.12:/('*(0(176 7KH VXFFHVVIXO FRPSOHWLRQ RI WKLV GLVVHUWDWLRQ ZRXOG KDYH EHHQ LPSRVVLEOH LI LW KDG QRW EHHQ IRU WKH DVVLVWDQFH DQG KHOS UHFHLYHG IURP QXPHURXV SHRSOH )LUVW PHQWLRQ PXVW EH PDGH IRU WKH DFDGHPLF JXLGDQFH DQG ILQDQFLDO VXSSRUW PDGH SRVVLEOH E\ P\ JUDGXDWH DGYLVHU 'U 8OULFK + .XU]ZHJ +H ZLWK KLV VWURQJ EDFNJURXQG DQG H[WHQVLYH NQRZOHGJH LQ IOXLG PHFKDQLFV KHDW WUDQVIHU DQG DSSOLHG PDWKHPDWLFV JDYH PH FOHDU JXLGDQFH LQ PDLQWDLQLQJ WKH FRUUHFW UHVHDUFK GLUHFWLRQ :KDW OHDUQHG IURP KLP DUH QRW RQO\ WKH UHOHYDQW NQRZOHGJH LQ WKRVH ILHOGV EXW DOVR WKH VNLOOV QHHGHG WR FRQGXFW VFLHQWLILF UHVHDUFK 7ZR RWKHU SHUVRQV ZKR KHOSHG PH VLJQLILFDQWO\ LQ WKH GLVVHUWDWLRQ ZHUH 'U :HL 6K\\ DQG 'U 5DQJD 1DUD\DQDQ 6HYHUDO IUXLWIXO GLVFXVVLRQV ZLWK 'U 6K\\ KHOSHG PH WR FRQVWUXFW WKH QXPHULFDO SURFHGXUH XVHG VXFFHVVIXOO\ DQG PRUH HIILFLHQWO\ IRU WKH WLPH SHULRGLF SUREOHPV LQ WKLV GLVVHUWDWLRQ 7KH H[SHULHQFH RI ZRUNLQJ ZLWK 'U 1DUD\DQDQ SXW PH LQ FRQWDFW ZLWK PDQ\ LQWHUHVWLQJ WRSLFV LQ IOXLG PHFKDQLFV KHDW WUDQVIHU DQG QXPHULFDO DQDO\VLV ZKLFK PDGH P\ XQGHUVWDQGLQJ RI WKH HQKDQFHPHQW RI KHDW WUDQVIHU SUREOHP FRQVLGHUHG KHUH PXFK PRUH FOHDU DP WKDQNIXO WR WKH RWKHU DQG IRUPHU PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH 'U ( 5XQH /LQGJUHQ 'U -RVHSK / +DPPDFN 'U &KLD6KXQ
PAGE 5

7KDQNV DUH DOVR H[SUHVVHG KHUH WR WKH 'HSDUWPHQW RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH DQG WKH 'HSDUWPHQW RI &KHPLFDO (QJLQHHULQJ RI WKH 8QLYHUVLW\ RI )ORULGD IRU WKHLU ILQDQFLDO DVVLVWDQFH LQ DOORZLQJ PH WR SXUVXH P\ HGXFDWLRQDO JRDOV ZLWKLQ WKLV ORYHO\ FRXQWU\ DP DOVR JUDWHIXO WR WKH HDUO\ VXSSRUW RI WKLV ZRUN E\ 1DWLRQDO 6FLHQFH )RXQGDWLRQ WKURXJK WKH JUDQW &%7 DQG WKH DOORFDWLRQ RI 6HUYLFH 8QLWV IRU WKLV VWXG\ RQ WKH &5$<<03 VXSHUFRPSXWHU LQ WKH 3LWWVEXUJK 6XSHUFRPSXWLQJ &HQWHU ZRXOG DOVR OLNH WR WKDQN P\ ZLIH :HL =KX IRU EHLQJ KHUH ZLWK PH LQ D IRUHLJQ FRXQWU\ DQG ZRUNLQJ KDUG WR KHOS VXSSRUW WKH IDPLO\ :LWKRXW KHU KHOS ZRXOG QRW KDYH EHHQ DEOH WR VXFFHVVIXOO\ FRPSOHWH P\ HGXFDWLRQ DOVR ZLVK WR H[SUHVV JUDWLWXGH WR P\ ZRQGHUIXO RIILFH PDWH %LOO +DUWHU 7KURXJK PDQ\ GLVFXVVLRQV ZLWK KLP OHDUQHG D ORW DERXW 3& FRPSXWHUV DERXW WKH (QJOLVK ODQJXDJH DERXW $PHULFDQ FXVWRPV DQG HWF )LQDOO\ ZLVK WR WKDQN P\VHOI IRU SXWWLQJ LQ IRXU KDUG ZRUNLQJ \HDUV RQ WKLV GLVVHUWDWLRQ HIIRUW ,9

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*(0(176 LLL /,67 2) ),*85(6 YLL /,67 2) 7$%/(6 [LL 120(1&/$785( [LLL $%675$&7 [YLL &+$37(56 ,1752'8&7,21 %DFNJURXQG /LWHUDWXUH 5HYLHZ $QDO\WLFDO 6ROXWLRQV :LWKLQ WKH &RQQHFWLQJ &KDQQHO ,, 0$7+(0$7,&$/ 02'(/ *HRPHWULF &RQILJXUDWLRQV *RYHUQLQJ (TXDWLRQV DQG %RXQGDU\ &RQGLWLRQV ,,, 180(5,&$/ 7(&+1,48( (03/2<(' *ULG DQG 7UDQVIRUPDWLRQ RI *RYHUQLQJ (TXDWLRQV $ %ULHI 'HULYDWLRQ RI WKH $VVRFLDWHG )LQLWH 'LIIHUHQFH (TXDWLRQV DQG %RXQGDU\ &RQGLWLRQV &DOFXODWLRQ 3URFHGXUH $ 9HFWRUL]HG /LQH *URXS 0HWKRG IRU 6ROYLQJ WKH 6\VWHP RI $OJHEUDLF (TXDWLRQV ,9 5(68/76 $1' ',6&866,21 9DOLGDWLRQ RI WKH 5HVXOWV 9HORFLW\ )LHOG 7HPSHUDWXUH DQG +HDW 7UDQVIHU &RHIILFLHQW Y

PAGE 7

9 &21&/8',1* 5(0$5.6 $33(1',; 7+( 9(/2&,7<35(6685( &255(&7,21 5()(5(1&(6 YL

PAGE 8

/,67 2) ),*85(6 )LJXUH )LJ )LJ )LJ )LJ )LJ )LJ )LJ +HDW WUDQVIHU LQ D SDUDOOHO SODWH FKDQQHO Df SXUH FRQGXFWLRQ Ef HQKDQFHPHQW E\ RVFLOODWLQJ IORZV $ VFKHPDWLF RI WKH 7KHUPDO 3XPS 86 3DWHQW 1R f *HRPHWULF FRQILJXUDWLRQ IRU WKH DQDO\WLF VROXWLRQ RI IORZ RVFLOODWLRQV DQG WKH DVVRFLDWHG KHDW WUDQVIHU LQ SDUDOOHO SODWH FKDQQHOV $QDO\WLF VROXWLRQ RI WKH GLPHQVLRQOHVV YHORFLW\ RI RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DV D IXQFWLRQ RI GLPHQVLRQOHVV WUDQVYHUVH SRVLWLRQ DW GLIIHUHQW RVFLOODWLRQ SKDVHV FRW Df D O? Ef D $QDO\WLF VROXWLRQ RI WKH GLPHQVLRQOHVV WHPSHUDWXUH GLVWULEXWLRQ LQ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DQG LWV ZDOOV DV D IXQFWLRQ RI GLPHQVLRQOHVV WUDQVYHUVH SRVLWLRQ DW GLIIHUHQW RVFLOODWLRQ SKDVHV FRW Df D O Ef D $QDO\WLF VROXWLRQ RI WKH GLPHQVLRQOHVV WLPH DYHUDJHG HIIHFWLYH WKHUPDO GLIIXVLYLW\ HQKDQFHG E\ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DV D IXQFWLRQ RI :RPHUVOH\ QXPEHU D DW GLIIHUHQW 3UDQGOW QXPEHUV Df H FRQGXFWLQJ ZDOOV ZLWK D I[ Of? Ef H O LQVXODWLQJ ZDOOVf $QDO\WLF VROXWLRQ RI GLPHQVLRQOHVV WLPH DYHUDJHG HIIHFWLYH WKHUPDO GLIIXVLYLW\ HQKDQFHG E\ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DW H FRQGXFWLQJ ZDOOVf DV D IXQFWLRQ RI :RPHUVOH\ QXPEHU D IRU VHYHUDO GLIIHUHQW OLTXLGVROLG FRPELQDWLRQV

PAGE 9

)LJ $QDO\WLF VROXWLRQ RI GLPHQVLRQOHVV WLPH DYHUDJHG HIIHFWLYH WKHUPDO GLIIXVLYLW\ HQKDQFHG E\ RVFLOODWLQJ IORZ DV D IXQFWLRQ RI FODGGLQJ WKLFNQHVV IRU OLTXLG OLWKLXP LQ D SDUDOOHO SODWH FKDQQHO ZLWK VWDLQOHVV VWHHO ZDOOV )LJ $QDO\WLF VROXWLRQ RI KHDW WUDQVIHUUHG E\ DQ RVFLOODWLQJ IORZ RI ZDWHU LQ D SDUDOOHO SODWH FKDQQHO ZLWK JODVV ZDOOV IRU GLIIHUHQW D Df WLPH DYHUDJHG YDOXH DV D IXQFWLRQ RI GLPHQVLRQOHVV WUDQVYHUVH SRVLWLRQ Ef FURVV VHFWLRQ LQWHJUDWHG YDOXH DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH )LJ &RQILJXUDWLRQV RI WKH WKHUPDO SXPS XVHG LQ WKH QXPHULFDO LQYHVWLJDWLRQ Df FRQGXFWLRQ PRGHO Ef FURVV IORZ PRGHO )LJ 7KH FRUUHVSRQGHQFH RI EORFNV EHWZHHQ WKH SK\VLFDO GRPDLQ DQG WKH FRPSXWDWLRQDO GRPDLQ Df JULG LQ WKH SK\VLFDO GRPDLQ DW RW r? Ef WLPH LQGHSHQGHQW DQG XQLIRUP JULG LQ WKH FRPSXWDWLRQDO GRPDLQ Ff JULG LQ WKH SK\VLFDO GRPDLQ DW RW r )LJ 7KH PRYDEOH DQG QRQXQLIRUP JULG LQ WKH SK\VLFDO GRPDLQ Df DW r Ef DW r Ff DW r )LJ 7KH VWDJJHUHG JULG LQ WKH FRPSXWDWLRQDO GRPDLQ )LJ 7\SLFDO FHOOV IRU WKH YHORFLW\ FRPSRQHQW 8 Df DQ LQWHULRU FHOO Ef D ERXQGDU\ FHOO ZLWK LWV VRXWK ZDOO DW WKH GRPDLQ ERXQGDU\ )LJ )ORZFKDUW IRU GHWHUPLQLQJ WKH WLPH SHULRGLF YHORFLW\ FRPSRQHQWV 8 9 DQG SUHVVXUH 3 )LJ )ORZFKDUW IRU VROYLQJ WKH WLPH SHULRGLF WHPSHUDWXUH GLVWULEXWLRQ EDVHG RQ WKH FDOFXODWHG YHORFLW\ )LJ )ORZFKDUW IRU WKH /LQH%\/LQH LWHUDWLRQ PHWKRG IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV 'DVKHG OLQHV UHSUHVHQW WKH LQQHUPRVW '2 ORRSV )LJ )ORZFKDUW IRU WKH 9HFWRUL]HG /LQH *URXS LWHUDWLRQ PHWKRG IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV 'DVKHG OLQHV UHSUHVHQW WKH LQQHUPRVW '2 ORRSV YP

PAGE 10

)LJ 6WUHDP OLQH SDWWHUQV IRU &DVH 1R FDOFXODWHG ZLWK GLIIHUHQW QXPEHU RI JULG SRLQWV Df JULG [? Ef JULG [ ,QFUHPHQW EHWZHHQ QHLJKERULQJ OLQHV LV $LU LQ QRQ GLPHQVLRQDO XQLWV )LJ 1RQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH FRW VROLG OLQH QXPHULFDO UHVXOW GDVKHG OLQH DQDO\WLF VROXWLRQ )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH 7 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH FRW VROLG OLQH QXPHULFDO UHVXOW GDVKHG OLQH DQDO\WLF VROXWLRQ )LJ 1RQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI QRQ GLPHQVLRQDO SRVLWLRQ \ DW VHYHUDO RVFLOODWLRQ SKDVHV Df DQDO\WLF VROXWLRQ Ef QXPHULFDO UHVXOW )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH 7 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI QRQGLPHQVLRQDO SRVLWLRQ \ DW VHYHUDO RVFLOODWLRQ SKDVHV Df DQDO\WLF VROXWLRQ Ef QXPHULFDO UHVXOW )LJ 1RQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI QRQ GLPHQVLRQDO SRVLWLRQ \ DW VHYHUDO RVFLOODWLRQ SKDVHV Df DQDO\WLF VROXWLRQ Ef QXPHULFDO UHVXOW )LJ 1RQGLPHQVLRQDO [ GLUHFWLRQ SUHVVXUH JUDGLHQW IRU &DVH 1R DW WKH PLGGOH RI FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH FRI VROLG OLQH QXPHULFDO UHVXOW GDVKHG OLQH DQDO\WLF VROXWLRQ )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ SKDVHV RI LQWHUYDO $FRWf r LQ WKH ORZHU KDOI F\FOH rARWr )LJ 7HPSRUDO DSSURDFK WR WKH ILQDO WLPH SHULRGLF VWDWH RI WKH QRQ GLPHQVLRQDO YHORFLW\ FRPSRQHQW 8[FRWf IRU &DVH 1R DW WKUHH GLIIHUHQW ORFDWLRQV Df [ ? Ef[ Ff[ )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r LQ WKH ORZHU KDOI F\FOH rARWr ,;

PAGE 11

)LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RfWf r LQ WKH ORZHU KDOI F\FOH rARfWr )LJ 1RQGLPHQVLRQDO SUHVVXUH GLVWULEXWLRQ DORQJ WKH [ D[LV LQ &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $FRWf r RYHU WKH ZKROH F\FOH rLD!Wr )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW WKH RVFLOODWLRQ LQWHUYDOV RI $RfWf r RYHU WKH ZKROH SHULRG rARWr )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1RO DW WKH RVFLOODWLRQ LQWHUYDOV RI $RfWf r LQ WKH ORZHU KDOI F\FOH rARWr )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R LQ WKH ULJKW UHVHUYRLU DW RVFLOODWLRQ LQWHUYDOV RI $RWf r RYHU WKH ZKROH SHULRG rLR!Wr )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RfWf r RYHU WKH ORZHU KDOI SHULRG rRWr )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r LQ WKH ORZHU KDOI F\FOH r]RfWr )LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $Wf r LQ WKH ORZHU KDOI F\FOH r]R!Wr )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG )LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r LQ WKH ORZHU KDOI F\FOH rARWr )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG )LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r LQ WKH ORZHU KDOI F\FOH rAR!Wr )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG ;

PAGE 12

)LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RfWf r LQ WKH ORZHU KDOI F\FOH rAR!Wr )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG )LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWfr LQ WKH ORZHU KDOI F\FOH rARWr )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG [L

PAGE 13

/,67 2) 7$%/(6 7DEOH 7KH OLVW RI WHQ FDVHV VWXGLHG LQ WKH QXPHULFDO LQYHVWLJDWLRQ 7DEOH +HDW WUDQVIHU FRHIILFLHQWV IRU VHYHUDO FDVHV LQ WKH VWXG\ [LL

PAGE 14

120(1&/$785( D WKH KDOI ZLGWK RI WKH FRQQHFWLQJ FKDQQHO $ FRHIILFLHQWV LQ WKH )LQLWH 'LIIHUHQFH (TXDWLRQV $ WKH FURVV VHFWLRQ DUHD RI WKH FRQQHFWLQJ FKDQQHO E WKH GLVWDQFH IURP WKH FKDQQHO FHQWHU OLQH WR WKH ZDOO FHQWHU OLQH LQ WKH DQDO\WLF VROXWLRQ RU WKH KDOI ZLGWK RI WKH HQG UHVHUYRLU LQ WKH QXPHULFDO VWXG\ F WLPH DYHUDJHG OHQJWK RI WKH HQG UHVHUYRLU &S VSHFLILF KHDW RI ZRUNLQJ IOXLG PROHFXODU PDVV GLIIXVLYLW\ RI ZRUNLQJ IOXLG KD KHDW WUDQVIHU FRHIILFLHQW IURP WKH DQDO\WLF VROXWLRQ KQ KHDW WUDQVIHU FRHIILFLHQW IURP WKH QXPHULFDO UHVXOWV / FKDQQHO OHQJWK 3 SUHVVXUH 3U 3UDQGWO QXPEHU T ORFDO LQVWDQWDQHRXV D[LDO KHDW IOX[ LQ WKH FKDQQHO 4 WRWDO WLPH DYHUDJHG KHDW UDWH LQ WKH FKDQQHO U[/ WKH UDWLR RI WLGDO GLVSODFHPHQW WR FKDQQHO OHQJWK 5H 5H\QROGV QXPEHU EDVHG RQ WKH PD[LPXP RI SLVWRQ YHORFLW\ DQG UHVHUYRLU KDOI ZLGWK [LLL

PAGE 15

5+6 WHUPV RQ WKH "LJKW +DQG 6LGH RI WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV 6 VRXUFH WHUP LQ WKH )LQLWH 'LIIHUHQFH (TXDWLRQV 6F 6FKPLGW QXPEHU 7 WHPSHUDWXUH 7K KLJK WHPSHUDWXUH VSHFLILHG DW KRW HQG IRU VXSSO\LQJ KHDW 7F ORZ WHPSHUDWXUH VSHFLILHG DW FROG HQG IRU UHPRYLQJ KHDW 7 WKH DSSUR[LPDWH WLPH DYHUDJHG WHPSHUDWXUH LQ ULJKW UHVHUYRLU IURP WKH QXPHULFDO UHVXOWV X YHORFLW\ FRPSRQHQW LQ D[LDO [f GLUHFWLRQ DW WKH ZDOOV RI 8 FHOOV 8 YHORFLW\ FRPSRQHQW LQ D[LDO [f GLUHFWLRQ 8S PD[LPXP SLVWRQ YHORFLW\ Y YHORFLW\ FRPSRQHQW LQ WUDQVYHUVH \f GLUHFWLRQ DW WKH ZDOOV RI 8 FHOOV 9 YHORFLW\ FRPSRQHQW LQ WUDQVYHUVH \f GLUHFWLRQ 9F FURVV IORZ YHORFLW\ [ D[LDO FRRUGLQDWH LQ WKH SK\VLFDO GRPDLQ [ [ GLUHFWLRQ VL]H RI D JULG FHOO LQ WKH SK\VLFDO GRPDLQ \ WUDQVYHUVH FRRUGLQDWH LQ WKH SK\VLFDO GRPDLQ \ \ GLUHFWLRQ VL]H RI D JULG FHOO LQ WKH SK\VLFDO GRPDLQ [LY

PAGE 16

D :RPHUVOH\ QXPEHU 3 VWUHWFKLQJ SDUDPHWHU IRU JHQHUDWLQJ QRQXQLIRUP JULG < WLPH DYHUDJHG D[LDO WHPSHUDWXUH JUDGLHQW FRQVWDQWf W YDULDEOH WLPH VWHS VL]H LQ FDOFXODWLRQ EDVLF WLPH VWHS VL]H LQ FDOFXODWLRQ $[ WLGDO GLVSODFHPHQW H WKH UDWLR RI WRWDO FKDQQHO KDOI ZLGWK LQFOXGLQJ WKH WKLFNQHVV RI VROLG ZDOOf WR WKH FKDQQHO KDOI ZLGWK ILOOHG E\ IOXLG LQ WKH DQDO\WLF VROXWLRQV RU JHQHUDO FRQYHUJHQFH FULWHULRQ LQ WKH QXPHULFDO FDOFXODWLRQV HF FRQYHUJHQFH FULWHULRQ IRU WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ HS FRQYHUJHQFH FULWHULRQ IRU WKH ILQDO WLPH SHULRGLF VWDWHV S WUDQVYHUVH FRRUGLQDWH LQ WKH FRPSXWDWLRQDO GRPDLQ k PDJQLWXGH RI WKH VLQXVRLGDO SUHVVXUH JUDGLHQW DSSOLHG LQ WKH DQDO\WLF VROXWLRQV N PROHFXODU WKHUPDO GLIIXVLYLW\ RI ZRUNLQJ IOXLG .FII HIIHFWLYH WKHUPDO GLIIXVLYLW\ E\ RVFLOODWLQJ IORZ 3 WKH UDWLR RI IOXLGWRVROLG ZDOOf WKHUPDO FRQGXFWLYLWLHV Y NLQHPDWLF YLVFRVLW\ RI ZRUNLQJ IOXLG L D[LDO FRRUGLQDWH LQ WKH FRPSXWDWLRQDO GRPDLQ S GHQVLW\ RI ZRUNLQJ IOXLG R WKH UDWLR RI IOXLGWRVROLG ZDOOf WKHUPDO GLIIXVLYLWLHV LQ DQDO\WLF VROXWLRQV RU JHQHUDO FRQYHUJHQFH LQGLFDWRU LQ QXPHULFDO FDOFXODWLRQV DF FRQYHUJHQFH LQGLFDWRU IRU 9HORFLW\3UHVVXUH FRUUHFWLRQ [Y

PAGE 17

RS FRQYHUJHQFH LQGLFDWRU IRU WKH ILQDO WLPH SHULRGLF VWDWH W WLPH LQ WKH FRPSXWDWLRQDO GRPDLQ S JHQHUDO GHSHQGHQW YDULDEOH LQ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV L_L VWUHDP IXQFWLRQ RI WKH RVFLOODWLQJ IORZ ILHOG f DQJXODU IUHTXHQF\ RI WKH RVFLOODWLRQ [YL

PAGE 18

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ )/8,' 26&,//$7,216 $1' +($7 75$16)(5 ,1 $ 3$5$//(/ 3/$7( &+$11(/ %281'(' %< (1' 5(6(592,56 0$,17$,1(' $7 ',))(5(17 7(03(5$785( E\ $OH[ ; =KDR 'HFHPEHU &KDLUPDQ 8OULFK + .XU]ZHJ 0DMRU 'HSDUWPHQW $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH ([LVWLQJ DQDO\WLF DQG H[SHULPHQWDO VWXGLHV KDYH VKRZQ WKDW VLQXVRLGDO RVFLOODWLRQV RI D YLVFRXV IOXLG ZLWKLQ RSHQ HQGHG FRQGXLWV FRQQHFWHG WR UHVHUYRLUV FDQ HQKDQFH WKH WKHUPDO GLIIXVLYLW\ EHWZHHQ WKH KRW IOXLG DQG FROG IOXLG LQ WKH RSSRVLWH HQG UHVHUYRLUV E\ VRPH IRXU RUGHUV RI PDJQLWXGH LQ H[FHVV RI WKDW SRVVLEOH LQ WKH DEVHQFH RI RVFLOODWLRQ 7KH KHDW WUDQVIHU FRHIILFLHQWV DFKLHYHG LQ WKLV SURFHVV FDQ EH YHU\ KLJK DQG FDQ UHDGLO\ H[FHHG WKRVH SRVVLEOH YLD KHDW SLSHV \HW LQYROYH QR QHW FRQYHFWLYH PDVV H[FKDQJH $ QXPHULFDO LQYHVWLJDWLRQ RI ODPLQDU RVFLOODWLQJ IORZV RI LQFRPSUHVVLEOH YLVFRXV IOXLG DQG WKH DVVRFLDWHG HQKDQFHG KHDW WUDQVIHU LQ D SDUDOOHO SODWH FKDQQHO ERXQGHG E\ UHFWDQJXODU HQG UHVHUYRLUV ZKLFK KDYH VLQXVRLGDOO\ RVFLOODWLQJ SLVWRQ ERXQGDULHV DQG DUH PDLQWDLQHG DW GLIIHUHQW WHPSHUDWXUHV IRUPV WKH WRSLF RI WKH SUHVHQW GLVVHUWDWLRQ ;9,,

PAGE 19

$ PRGLILFDWLRQ RI WKH ZLGHO\ XVHG 6,03/( DOJRULWKP WHUPHG 6,03/(73 IRU 7LPH 3HULRGLFf KDV EHHQ GHYHORSHG WR WDNH WLPH SHULRGLFLW\ DQG ERXQGDU\ PRYHPHQWV LQWR DFFRXQW 7KH PHWKRG KDV EHHQ VXFFHVVIXOO\ DSSOLHG WR WKH SUHVHQW WLPH SHULRGLF IORZ DQG KHDW WUDQVIHU SUREOHP 7ZR GLIIHUHQW PRGHOV RI KHDW VXSSO\ DQG UHPRYDO QDPHO\ FRQGXFWLRQ WKURXJK WKH UHVHUYRLU ZDOOV DQG FRQYHFWLRQ E\ FURVV IORZ ZHUH FRQVLGHUHG LQ WKLV VWXG\ 6HYHUDO FDVH VWXGLHV LQYROYLQJ GLIIHUHQW FRPELQDWLRQV RI :RPHUVOH\ QXPEHU WLGDO GLVSODFHPHQW OHQJWK RI UHVHUYRLUV DQG FURVV IORZ YHORFLWLHV ZHUH FDUULHG RXW 7KH QXPHULFDO UHVXOWV REWDLQHG ZHUH FRPSDUHG ZLWK DQDO\WLF VROXWLRQV ZKHUH VXFK FRPSDULVRQV ZHUH SRVVLEOH ,W ZDV IRXQG WKDW WKH YHORFLW\ ILHOG LQ HDFK UHVHUYRLU LV FKDUDFWHUL]HG E\ D KLJK YHORFLW\ MHW HPDQDWLQJ IURP WKH FKDQQHO HQG GXULQJ D SRUWLRQ RI WKH RVFLOODWLRQ F\FOH DQG WKDW RQH RU PRUH FRXQWHUURWDWLQJ YRUWH[HVf RU YRUWH[ SDLUVf H[LVW GXULQJ WKH ZKROH RVFLOODWLRQ F\FOH DV ORQJ DV WKH 5H\QROGV QXPEHU EDVHG RQ WKH PD[LPXP SLVWRQ YHORFLW\ DQG UHVHUYRLU ZLGWK LV ODUJH HQRXJK 7KH WLGDO GLVSODFHPHQW DQG FURVV IORZ YHORFLW\ KDYH D VWURQJ HIIHFW RQ WKH IORZ SDWWHUQV LQ WKH UHVHUYRLU DQG WKH UHVHUYRLU WHPSHUDWXUH ILHOG LV PDLQO\ GHWHUPLQHG E\ WKH WHPSHUDWXUH ERXQGDU\ FRQGLWLRQV DQG OHVV VR E\ WKH YHORFLW\ ILHOG +LJK RVFLOODWLRQ IUHTXHQFLHV FRXSOHG ZLWK D ODUJH WLGDO GLVSODFHPHQW DQG D UHODWLYHO\ ODUJH FURVV IORZ YHORFLW\ DUH IRXQG WR \LHOG ODUJH HQKDQFHPHQWV RI KHDW WUDQVIHU +HDW WUDQVIHU FRHIILFLHQW DV KLJK DV [R :QU. FDQ UHDGLO\ EH DFKLHYHG ZKHQ XVLQJ ZDWHU DV WKH ZRUNLQJ IOXLG [YL

PAGE 20

&+$37(5 ,1752'8&7,21 %DFNJURXQG )RU D VLQXVRLGDO RVFLOODWRU\ IOXLG IORZ RYHU D IODW VROLG VXUIDFH WKH LQIOXHQFH RI WKH QRVOLS FRQGLWLRQ RQ WKH VROLG VXUIDFH SHQHWUDWHV DQ DSSUR[LPDWH GLVWDQFH RI ?YR! LQWR WKH IOXLG ZKHUH Y LV WKH NLQHPDWLF YLVFRVLW\ RI WKH IOXLG DQG R! LV WKH DQJXODU IUHTXHQF\ RI WKH IORZ RVFLOODWLRQ )RU DQ RVFLOODWRU\ IORZ LQVLGH D IODW SODWH FKDQQHO WKLV LV VWLOO WUXH DV ORQJ DV WKH FKDQQHO KDOI ZLGWK D LV JUHDWHU WKDQ WKH SHQHWUDWLRQ GLVWDQFH 8QGHU WKLV FRQGLWLRQ WKH IOXLG IORZ FDQ EH FRQVLGHUHG WR FRQVLVW RI WZR SDUWV WKH ERXQGDU\ OD\HUV DQG WKH FRUH UHJLRQ ZKLFK DUH VKRZQ LQ )LJ OOEf ,I D SURSHUW\ RI WKH IOXLG QDPHO\ FRQFHQWUDWLRQ RU WHPSHUDWXUH LV PDLQWDLQHG DW GLIIHUHQW YDOXHV DW WKH WZR HQGV RI WKH FKDQQHO D YHU\ VWURQJ WUDQVSRUW IURP WKH KLJK VLGH WR ORZ VLGH ZLOO RFFXU 6RPH WKHRUHWLFDO DQG H[SHULPHQWDO VWXGLHV KDYH VKRZQ WKDW WKH HIIHFWLYH FRHIILFLHQW IRU WKH WUDQVSRUW FDQ EH PXFK ODUJHU WKDQ WKH YDOXHV ZKLFK FKDUDFWHUL]H WKH WUDQVSRUW ZLWKRXW RVFLOODWLRQ 7KH UHDVRQ IRU WKH HQKDQFHPHQW RI WKH WUDQVSRUW LV WKDW ERWK WKH DUHD RYHU ZKLFK WKH H[FKDQJH WDNHV SODFH DQG WKH SURSHUW\ JUDGLHQW DFURVV WKH DUHD DUH LQFUHDVHG VLJQLILFDQWO\ RYHU WKH YDOXHV H[LVWLQJ LQ WKH DEVHQFH RI RVFLOODWLRQV

PAGE 21

&RQVLGHU WKH FDVH ZKHUH WKH WHPSHUDWXUH RI WKH OLTXLG LV GLIIHUHQW DW WKH WZR HQGV RI WKH FKDQQHO +HUH WKH KHDW WUDQVIHU IURP WKH KRW HQG WR WKH FRRO HQG FDQ EH HQKDQFHG E\ D IORZ RVFLOODWLRQ LQ WKH D[LDO GLUHFWLRQ 7KH WLPH DYHUDJHG KHDW WUDQVIHUUHG D[LDOO\ ZLWKRXW D DFFRPSDQ\LQJ PDVV H[FKDQJH FDQ EH H[SUHVVHG DV 4 a$R3&S.HII9 f ZKHUH .HII S DQG &S VWDQG IRU WKH HIIHFWLYH WKHUPDO GLIIXVLYLW\ IOXLG GHQVLW\ DQG VSHFLILF KHDW UHVSHFWLYHO\ $ LV WKH FKDQQHO FURVV VHFWLRQ DQG \ LV WKH WLPH DYHUDJHG D[LDO WHPSHUDWXUH JUDGLHQW ZKLFK LV PDLQWDLQHG DV D FRQVWDQW )RU SXUH PROHFXODU FRQGXFWLRQ WFHII VLPSO\ LV WKH PROHFXODU WKHUPDO GLIIXVLYLW\ N $ LV HTXDO WR D ZKHQ WKH FKDQQHO GHSWK LV HTXDO WR RQH DV LV VKRZQ LQ )LJ Df DQG WKH DPRXQW RI KHDW WUDQVIHUUHG SHU XQLW GHSWK ZLOO EH 4F a D S&S.\ 2rf :LWK RVFLOODWLRQV LW LV QHFHVVDU\ WR H[DPLQH WKH KHDW WUDQVIHU SURFHVV LQ VRPH GHWDLO VLQFH LW EHFRPHV D WLPH GHSHQGHQW SUREOHP 'XULQJ WKH D[LDO IOXLG RVFLOODWLRQ WRZDUGV WKH FROGHU VLGH KRW OLTXLG LV EURXJKW LQWR WKH FRUH UHJLRQ DQG PRYHG LQ FRQWDFW ZLWK WKH FRROHG ERXQGDU\ OD\HUV ZKLFK LQ WKH SUHYLRXV KDOI VWURNH DUH LQ FRQWDFW ZLWK FRROHU OLTXLG LQ WKH FRUH UHJLRQ 7KH FROGHU ERXQGDU\ OD\HUV ZLOO DEVRUE KHDW IURP WKH KRW OLTXLG FRUH DQG KHDW XS 'XULQJ WKH QH[W KDOI VWURNH WKH RVFLOODWLRQ LV WRZDUGV WKH KRW VLGH DQG FROG OLTXLG LV EURXJKW LQWR FRQWDFW ZLWK WKH KHDWHG ERXQGDU\ OD\HUV 7KH ERXQGDU\ OD\HUV WKHQ UHOHDVH KHDW WR WKH FRRO FRUH UHJLRQ DQG WKXV EHFRPH FRRO DJDLQ 7KHVH WZR VWHSV RI KHDW WUDQVIHU LQ RVFLOODWLQJ IORZV DW

PAGE 22

Df nn D ? n6r n D FRUH UHJLRQ 7 7K ‘n )LJ +HDW WUDQVIHU LQ D SDUDOOHO SODWH FKDQQHO Df SXUH FRQGXFWLRQ Ef HQKDQFHPHQW E\ RVFLOODWLQJ IORZV

PAGE 23

3UDQGWO QXPEHU IRU ZKLFK WKH WKLFNQHVVHV RI PRPHQWXP DQG WKHUPDO ERXQGDU\ OD\HUV DUH HTXDO DUH VKRZQ LQ )LJ OOEf ZLWK WKH GRWWHG DUHDV UHSUHVHQWLQJ WKH FROG IOXLG 7KH H[FKDQJH SURFHVV LV UHSHDWHG GXULQJ VXEVHTXHQW RVFLOODWLRQ F\FOHV 7KLV OHDGV WR D WLPH SHULRGLF SUREOHP %HFDXVH WKH KHDW H[FKDQJH KDSSHQV EHWZHHQ WKH ERXQGDU\ OD\HUV DQG FRUH UHJLRQ WKH HIIHFWLYH KHDW WUDQVIHU VXUIDFH EHFRPH PXFK ODUJHU WKDQ $ DQG FDQ EH H[SUHVVHG LQ WHUPV RI D TXDQWLW\ $[ QDPHG WKH WLGDO GLVSODFHPHQW HTXDO WR WZLFH WKH FURVV VHFWLRQ DYHUDJHG D[LDO DPSOLWXGH RI WKH VLQXVRLGDO RVFLOODWLRQVf 7KH WHPSHUDWXUH JUDGLHQW LQ WKH QRUPDO RI LQWHUIDFH EHWZHHQ WKH ERXQGDU\ OD\HUV DQG FRUH UHJLRQ LV DOVR PXFK ODUJHU WKDQ \ DQG LV D IXQFWLRQ RI WLPH DQG SRVLWLRQ %\ DYHUDJLQJ RYHU WKH ZKROH RVFLOODWLRQ SHULRG DQG FKDQQHO FURVV VHFWLRQ WKH KHDW WUDQVIHUUHG SHU XQLW GHSWK IURP WKH KRW HQG WR WKH FRRO HQG QRZ FDQ EH ZULWWHQ DV 4 DS&S.HII\ !f ZKHUH QRZ WKH HIIHFWLYH WKHUPDO GLIIXVLYLW\ .HII LV D IXQFWLRQ RI D Y R $[ DQG VRPH RWKHU IDFWRUV .HII FDQ EH PXFK ODUJHU WKDQ N SURYLGHG D JRRG FKRLFH IRU WKRVH IDFWRUV LV PDGH 1RWH WKDW WKHUH ZLOO EH QR QHW FRQYHFWLRQ EHWZHHQ WKH WZR HQGV ZKHQ $[ LV NHSW DW D IUDFWLRQ RI WKH FKDQQHO OHQJWK DQG WKH SURFHVV WKXV FDQ EH FRQVLGHUHG WR EH IUHH RI PDVV H[FKDQJH EHWZHHQ WKH FKDQQHO HQGV XQGHU SURSHU FRQGLWLRQV H[SODLQHG LQ 6HFWLRQ f ,I WKH FRQFHQWUDWLRQ LV PDLQWDLQHG DW GLIIHUHQW YDOXHV DW WKH HQGV RI WKH FKDQQHO DQ HQKDQFHG D[LDO PDVV GLIIXVLRQ ZLOO RFFXU IRU DSSURSULDWH FRQGLWLRQV WKXV SURGXFLQJ DQ HIIHFWLYH GLIIXVLYLW\ PXFK ODUJHU WKDQ WKH PROHFXODU GLIIXVLYLW\ ,Q

PAGE 24

UHFHQW \HDUV WKHVH SKHQRPHQD KDYH UHFHLYHG FRQVLGHUDEOH UHVHDUFK DWWHQWLRQ IURP HQJLQHHUV DQG VFLHQWLVWV EHFDXVH RI WKHLU SRWHQWLDO SUDFWLFDO DSSOLFDWLRQV VXFK DV IRU QXFOHDU UHDFWRU FRROLQJV DQG IRU JDV VHSDUDWLRQ HWF $ W\SLFDO GHYLFH IRU HQKDQFLQJ KHDW WUDQVIHU E\ RVFLOODWLQJ IORZV WHUPHG WKH 7KHUPDO 3XPS LV VKRZQ LQ )LJ 7KLV UHSUHVHQWV HVVHQWLDOO\ 86 3DWHQW 1R KHOG E\ 8 .XU]ZHJ DQG WKH 8QLYHUVLW\ RI )ORULGD 7KLV GLVVHUWDWLRQ ZLOO EH FRQFHUQHG ZLWK D QXPHULFDO LQYHVWLJDWLRQ RI WKH ODPLQDU IORZV RI LQFRPSUHVVLEOH IOXLGV DQG WKH DVVRFLDWHG KHDW WUDQVIHU LQ D YHUVLRQ RI WKH WKHUPDO SXPS ZKHQ VLQXVRLGDOO\ PRYLQJ SLVWRQ ERXQGDULHV DUH ORFDWHG LQ WKH HQG UHVHUYRLUV 7KH FRQQHFWLQJ FKDQQHO ZLOO FRQVLVW RI D VLQJOH IODW SODWH FKDQQHO IRUPHG E\ WZR SDUDOOHO SODWHV VHSDUDWHG E\ D IL[HG GLVWDQFH RI D /LWHUDWXUH 5HYLHZ 7KH SKHQRPHQRQ RI WUDQVSRUW HQKDQFHPHQW RI FRQWDPLQDQWV ZDV LQLWLDOO\ VWXGLHG E\ 7D\ORUA f DQG $ULVf LQ WKHLU LQYHVWLJDWLRQV RI D[LDO GLVSHUVLRQ LQ VWHDG\ IORZV ZLWKLQ FDSLOODU\ WXEHV 7KHLU UHVXOWV LQGLFDWHG WKDW D VLJQLILFDQW LQFUHDVH LQ D[LDO FRQWDPLQDQW GLVSHUVLRQ ZLOO RFFXU LQ VWHDG\ ODPLQDU IORZV 6LPLODU HIIHFWV ZHUH IRXQG WR H[LVW IRU RVFLOODWLQJ IORZV E\ %RZGHQ LQ +DUULV DQG *RUHQf VWXGLHG ERWK DQDO\WLFDOO\ DQG H[SHULPHQWDOO\ WKH PDVV WUDQVIHU WKURXJK D ORQJ WXEH FRQQHFWLQJ WZR UHVHUYRLUV PDLQWDLQHG DW GLIIHUHQW EXW FRQVWDQW FRQFHQWUDWLRQV E\ RVFLOODWLQJ WKH IORZ LQ WKH WXEH DQG IRXQG WKDW WKH LQFUHDVH RI PDVV WUDQVIHU UDWHV LV D IXQFWLRQ RI WKH :RPHUVOH\ QXPEHU D D?RY WKH WLGDO

PAGE 25

)LJ $ VFKHPDWLF RI WKH 7KHUPDO 3XPS 86 3DWHQW 1R f

PAGE 26

GLVSODFHPHQW $[ DQG WKH 6FKPLGW QXPEHU Y' 5LFH DQG (DJOHWRQf FRQGXFWHG D VLPLODU VWXG\ WR WKDW RI +DUULV DQG IRXQG WKDW WKH PDVV WUDQVIHU LQFUHDVH LV SURn SRUWLRQDO WR WKH VTXDUH RI WLGDO GLVSODFHPHQW $[ ,Q &KDWZLQ VKRZHG WKHRn UHWLFDOO\ WKDW WKH HIIHFWLYH GLIIXVLRQ FRHIILFLHQW LQ RVFLOODWLQJ IORZV LV D KDUPRQLF IXQFWLRQ RI WLPH ZLWK D SHULRG HTXDO WR RQH KDOI WKDW RI WKH LPSRVHG WLPH GHSHQGHQW SUHVVXUH JUDGLHQW )XUWKHU WKHRUHWLFDO VWXGLHV E\ :DWVRQf DQG H[SHULPHQWV E\ -RVKL HW DOf JDYH VLPLODU UHVXOWV .XU]ZHJ DQG -DHJHUf ILUVW VKRZHG WKH H[LVWHQFH RI D WXQLQJ HIIHFW LQ HQKDQFHG JDV GLVSHUVLRQ LQ RVFLOODWLQJ IORZV $OO WKHVH VWXGLHV SURYH WKDW D FRQWDPLQDQW ZLOO VSUHDG D[LDOO\ LQ RVFLOODWLQJ ODPLQDU SLSH IORZ DW UDWHV DV PXFK DV ILYH RUGHUV RI PDJQLWXGH KLJKHU WKDQ WKRVH DFKLHYDEOH E\ SXUH PROHFXODU GLIIXVLRQ LQ WKH DEVHQFH RI RVFLOODWLRQV 7KH VDPH HQKDQFHPHQW LQ RVFLOODWLQJ IORZ IRU KHDW WUDQVIHU ZDV GLVFRYHUHG E\ .XU]ZHJ LQ LQ YLHZ RI WKH PDWKHPDWLFDO VLPLODULW\ EHWZHHQ WKH JRYHUQLQJ HTXDWLRQV IRU KHDW FRQGXFWLRQ DQG PDVV GLIIXVLRQ 7KH HTXDWLRQV IRU FRQWDPLQDQW GLIIXVLRQ ZLWK VXSHULPSRVHG RVFLOODWLQJ IORZ DUH PDWKHPDWLFDOO\ QHDUO\ LGHQWLFDO WR WKH HTXDWLRQ RI KHDW FRQGXFWLRQ ZLWK WKH RQO\ PDMRU GLIIHUHQFHV EHLQJ WKH ERXQGDU\ FRQGLWLRQV DQG WKH XVH RI WKH 3UDQGWO QXPEHU 3U YN LQVWHDG RI WKH 6FKPLGW QXPEHU 6F 'N +H VROYHG WKH JRYHUQLQJ HTXDWLRQV IRU HQKDQFHG D[LDO KHDW WUDQVIHU LQ RVFLOODWLQJ IORZV LQ D WXEH RI LQILQLWH OHQJWK IRU ORZ YDOXH RI D3U DQG IRXQG WKH HIIHFWLYH FRQGXFWLYLW\ FDQ UHDGLO\ UHDFK YDOXHV WKUHH RUGHUV RI PDJQLWXGH JUHDWHU WKDQ QRUPDO KHDW FRQGXFWLYLW\ 7KLV LQIRUPDWLRQ ZDV SXEOLVKHG LQ .XU]ZHJ DQG =KDRf FRQGXFWHG VRPH H[SHULPHQWV WR PHDVXUH WKH HIIHFWLYH D[LDO KHDW FRQ

PAGE 27

GXFWLRQ UDWHV WKURXJK D FDSLOODU\ EXQGOH FRQQHFWLQJ WZR IOXLG UHVHUYRLUV PDLQWDLQHG DW GLIIHUHQW WHPSHUDWXUHV DQG IRXQG YHU\ JRRG DJUHHPHQW ZLWK WKHRUHWLFDO SUHGLFWLRQV 7ZR RWKHU SDSHUV E\ .XU]ZHJff H[SODLQHG WKH WXQLQJ HIIHFW LQ WKH HQKDQFHPHQW RI KHDW WUDQVIHU LQ GHWDLO ,Q 0D\ RI D 86 SDWHQW ZDV JUDQWHG WR WKH 8QLYHUVLW\ RI )ORULGD DQG 3URIHVVRU 8 .XU]ZHJ RQ WKLV SURFHVV =KDQJ SHUIRUPHG VRPH QXPHULFDO VWXGLHV RQ WXEHV RI ILQLWH OHQJWK ZLWK VRPH SRUWLRQV RI WKHLU ZDOOV RU HQGV PDLQWDLQHG DW GLIIHUHQW WHPSHUDWXUHV DQG FRQFOXGHG WKDW WKH KLJKHVW UDWHV RI KHDW WUDQVIHU SUHGLFWHG HDUOLHU FDQ RQO\ EH UHDFKHG ZKHQ WKH DPRXQW RI KHDW VXSSOLHG DQG UHPRYHG IURP WKH WXEH HQGV LV ODUJH HQRXJK 2WKHUZLVH D KHDW ERWWOH QHFN ZLOO RFFXU DQG WKH WHPSHUDWXUH JUDGLHQW LQ WKH D[LDO GLUHFWLRQ RI WKH WXEH ZLOO EH UHGXFHG FRQVLGHUDEO\ .DYLDQ\fV UHFHQW VWXG\ RQ KHDW WUDQVIHU E\ RVFLOODWLQJ IORZV LQ WXEHV ERXQGHG E\ WZR HQG UHVHUYRLUV PDLQWDLQHG DW GLIIHUHQW WHPSHUDWXUHV YHULILHG ERWK WKHRUHWLFDOO\ DQG H[SHULPHQWDOO\ WKH UHVXOWV REWDLQHG E\ .XU]ZHJ DQG =KDR ,W VKRXOG EH QRWHG WKDW PRVW RI WKHRUHWLFDO VWXGLHV WR WKLV SRLQW ERWK DQDO\WLF DQG QXPHULFDO KDYH FRQVLGHUHG RQO\ WKH WXEH RU FRQQHFWLQJ FKDQQHO ZLWKRXW DQ\ DWWHQWLRQ WR WKH IORZ EHKDYLRU DQG KHDW WUDQVIHU SURFHVV RFFXUULQJ LQ WKH WZR HQG UHVHUYRLUV ZKLFK JHQHUDOO\ KDYH PXFK ODUJHU FURVV VHFWLRQ WKDQ WKH FRQQHFWLQJ FRQGXLW .DYLDQ\ KDV PDGH VRPH FDOFXODWLRQV RQ WKLV IORZ XVLQJ D YHU\ VLPSOLILHG PRGHO RI WKH HQG FKDPEHUV 'XUVW HW DOf GLG VRPH QXPHULFDO VWXGLHV RQ WKH WUDQVLHQW ODPLQDU IORZ RYHU D VKDUS SLSH H[SDQVLRQ GULYHQ E\ D SLVWRQ LQ WKH ZLGH HQG PRYLQJ DV D UHFWDQJXODU IXQFWLRQ RI WLPH VWDUWLQJ IURP DQ LQLWLDO UHVW FRQGLWLRQ DQG

PAGE 28

FRPSDUHG WKH QXPHULFDO UHVXOW ZLWK WKHLU H[SHULPHQWDO GDWD 1HLWKHU RI WKHP FRQVLGHUHG WKH WHPSHUDWXUH GLVWULEXWLRQ DQG WKHLU UHVXOWV IRU YHORFLW\ FDQ QRW EH GLUHFWO\ XVHG LQ WKH DQDO\VLV RI WKH WKHUPDO SXPS SURFHVV EHFDXVH RI WKH VLPSOLILFDWLRQ PDGH LQ IRUPHU DQG WKH GLIIHUHQW YHORFLW\ FRQGLWLRQV XVHG LQ WKH ODWWHU 7KH PRWLYDWLRQ IRU WKLV GLVVHUWDWLRQ UHVHDUFK ZDV WR REWDLQ D FOHDUHU XQGHUn VWDQGLQJ RI WKH IORZ DQG WHPSHUDWXUH SDWWHUQV LQVLGH RI WKH HQG UHVHUYRLUV RI D WKHUPDO SXPS LQ RUGHU WR OHQG IXUWKHU JXLGDQFH IRU WKH SUDFWLFDO FRQVWUXFWLRQ DQG WKH XVDJH RI WKHUPDO SXPSV $OVR DVVRFLDWHG ZLWK WKLV VWXG\ D SURSHU QXPHULFDO SURFHGXUH EDVHG RQ WKH 6,03/( DOJRULWKP ZDV GHYHORSHG IRU WKH VLPXODWLRQ RI KHDW WUDQVIHU LQ WLPH SHULRGLF IORZV RI YLVFRXV LQFRPSUHVVLEOH IOXLGV ZLWK PRYLQJ ERXQGDULHV $QDO\WLF 6ROXWLRQV :LWKLQ WKH &RQQHFWLQJ &KDQQHO 7KH QXPHULFDO LQYHVWLJDWLRQV SUHVHQWHG LQ WKH FKDSWHUV ,, WKURXJK 9 FDQ EH FRQVLGHUHG DV DQ H[WHQVLRQ RI WKH DQDO\WLF ZRUN GRQH E\ .XU]ZHJ ZKLFK JDYH VROXWLRQV RI WKH PRPHQWXP DQG HQHUJ\ HTXDWLRQV LQ D SDUDOOHO SODWH FKDQQHO RI LQILQLWH OHQJWK 7KH QXPHULFDO UHVXOWV LQ WKH FRQQHFWLQJ FKDQQHO IRU WKH PRUH FRPSOLFDWHG JHRPHWU\ ZLWK HQG UHVHUYRLUV VKRXOG DSSUR[LPDWH WKRVH DQDO\WLF VROXWLRQV ZKHQ WKH FRQQHFWLQJ FKDQQHO OHQJWK EHFRPHV PXFK ORQJHU WKDQ WKH WLGDO GLVSODFHn PHQW 7KXV LW LV HVVHQWLDO WR ILUVW EULHIO\ HYDOXDWH WKH H[LVWLQJ DQDO\WLF VROXWLRQV LQ

PAGE 29

RUGHU WR ODWHU PDNH D FRPSDULVRQ ZLWK WKH QXPHULFDO UHVXOWV WR EH REWDLQHG ZKHUHYHU VXFK D FRPSDULVRQ LV SRVVLEOH 7KH FRQILJXUDWLRQ GHDOW ZLWK LQ 5HI LV VKRZQ LQ )LJ ,W FRQVLVWV RI D VHW RI FKDQQHOV ILOOHG ZLWK D YLVFRXV IOXLG DQG FRQQHFWHG WR FKDPEHUV DW [ s m! 7KH LQGLYLGXDO FKDQQHOV RI ZLGWK D HDFK DUH FRQILQHG EHWZHHQ WKHUPDOO\ FRQGXFWLQJ ZDOOV G3 RI ZLGWK EDf HDFK DQG D WLPH SHULRGLF SUHVVXUH JUDGLHQW f§ pHXO DQG D G7 FRQVWDQW D[LDO WHPSHUDWXUH JUDGLHQW f§ < DUH VXSHULPSRVHG 7KH YHORFLW\ RI WKH RVFLOODWLQJ IORZ LQ WKH FHQWUDO FKDQQHO JHQHUDWHG E\ WKH SUHVVXUH JUDGLHQW LV JLYHQ E\ 8\Wf 5($/ f *! $[ B FRVK?7D \Df FRVK ?>7 Df B WDQK\aDf \IL D f ZKHUH \ LV WKH FRRUGLQDWH SHUSHQGLFXODU WR WKH FKDQQHO D[LV DV VKRZQ LQ )LJ R LV WKH DQJXODU IUHTXHQF\ RI WKH WLPH SHULRGLF SUHVVXUH JUDGLHQW f D XY WKH :RPHUVOH\ QXPEHU ZLWK Y UHSUHVHQWLQJ IOXLG NLQHPDWLF YLVFRVLW\ DQG $[ WKH WLGDO GLVSODFHPHQW IRU WKH PD[LPXP FURVV VWUHDP DYHUDJHG D[LDO H[FXUVLRQ RI IOXLG HOHPHQWV GXULQJ RQH RVFLOODWLRQ F\FOH 7KH YHUWLFDO EDUV LQGLFDWH WKH DEVROXWH YDOXH RI WKH TXDQWLW\ VKRZQ 7KH UHODWLRQ EHWZHHQ WKH PDJQLWXGH RI WKH D[LDO SUHVVXUH JUDGLHQW DQG WKH WLGDO GLVSODFHPHQW FDQ EH H[SUHVVHG DV

PAGE 30

)LJ *HRPHWULF FRQILJXUDWLRQ IRU WKH DQDO\WLF VROXWLRQ RI IORZ RVFLOODWLRQV DQG WKH DVVRFLDWHG KHDW WUDQVIHU LQ SDUDOOHO SODWH FKDQQHOV

PAGE 31

f ? WDQK7Df ?>L D ,Q SUDFWLFH WKH FKDQQHO KDOI ZLGWK D WKH WLGDO GLVSODFHPHQW $[ DQG WKH RVFLOODWLRQ IUHTXHQF\ \ DV ZHOO DV WKH SURSHUWLHV RI WKH ZRUNLQJ IOXLG DUH HDV\ WR FRQWURO +HQFH HLWKHU WKH\ RU D FRPELQDWLRQ RI VRPH RI WKHP LQ SDUWLFXODU WKH :RPHUVOH\ QXPEHU DUH XVHG DV WKH FRQWURO SDUDPHWHU IRU WKLV KHDW WUDQVIHU SUREOHP $ QXPHULFDO HYDOXDWLRQ RI WKH QRQGLPHQVLRQDO YHORFLW\ QRUPDOL]HG E\ R$[ DV D IXQFWLRQ RI QRQGLPHQVLRQDO WUDQVYHUVH SRVLWLRQ LQ WKH \ GLUHFWLRQ DW GLIIHUHQW RVFLOODWLRQ SKDVHV IRU D DQG D LV VKRZQ LQ )LJ ODf DQG Ef UHVSHFWLYHO\ ,W LV FOHDU WKDW WKH YHORFLW\ SURILOH YDULHV FRQVLGHUDEO\ ZLWK FKDQJH LQ :RPHUVOH\ QXPEHU D IURP DQ HVVHQWLDOO\ SDUDEROLF VKDSH DW YHU\ ORZ D WR RQH KDYLQJ D QHDUO\ FRQVWDQW YHORFLW\ FRUH FRQQHFWHG WR WKLQ ERXQGDU\ OD\HUV RI WKLFNQHVV ?c Y J! DW WKH ZDOOV IRU ODUJH D %\ DVVXPLQJ 7[\Wf \ ,r 5($/>DJ\fHnn@ M ff WKH FURVVVHFWLRQ GHSHQGHQW SRUWLRQ RI WKH WHPSHUDWXUH SHUWXUEDWLRQ J\f LQ WKH IOXLG DQG JV\f LQ VROLG ZDOOV KDYH WKH IRUPV

PAGE 32

8FM$[ 8FM$[ )LJ $QDO\WLF VROXWLRQ RI WKH GLPHQVLRQOHVV YHORFLW\ RI RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DV D IXQFWLRQ RI GLPHQVLRQOHVV WUDQVYHUVH SRVLWLRQ DW GLIIHUHQW RVFLOODWLRQ SKDVHV FRW Df D O? Ef D

PAGE 33

JIL\f D3U M FRVK ?c7D\Df FRVK\7 Df MBM FRVK?3U D \Df FRVKY3U Df D D 3U f $[ WDQK7 Df \IL D f JV\f + D D 3U f WDQK?=7 Df $[ ?>7 D FRVK>? D 3U DH\Df@ FRVK>D3U DHOf@ f ZLWK B S ?3U WDQK?=a Df ?D WDQK>AL D 3U DHOf@ A A S WDQK? L 3U Df ?c D WDQK9L D 3U DHOf@ ZKHUH IL NMNV LV WKH UDWLR RI IOXLGWRVROLG ZDOOf WKHUPDO FRQGXFWLYLWLHV R NANV LV WKH UDWLR RI WKHUPDO GLIIXVLYLWLHV DQG H ED 7KH QRQGLPHQVLRQDO WHPSHUDWXUH SURILOHV 7\$[ YHUVXV\D IRU Q R O DQG H EXW GLIIHUHQW :RPHUVOH\ QXPEHU D DUH VKRZQ LQ )LJ ODf DQG Ef 2QH REVHUYHV DQ DSSUHFLDEOH SHQHWUDWLRQ RI WKH WHPSHUDWXUH YDULDWLRQ LQWR WKH VROLG ZDOO DW D O EXW DOPRVW QR SHQHWUDWLRQ RFFXUV IRU D 7KLV LV WR EH H[SHFWHG LQ YLHZ RI WKH IDFW WKDW WKH W\SLFDO SHQHWUDWLRQ GLVWDQFH LQWR D VROLG RI DQ RVFLOODWLQJ WHPSHUDWXUH ILHOG LV SURSRUWLRQDO WR WKH LQYHUVH VTXDUH URRW RI WKH RVFLOODWLRQ IUHTXHQF\ LH VNLQ HIIHFWf 1RWH WKDW WKH IUHTXHQF\ UDWLR DW D O WR WKDW DW D LV RQH KXQGUHG IRU WKH VDPH FKDQQHO ZLGWK DQG WKH VDPH IOXLG

PAGE 34

7\$[ 7\$[ )LJ $QDO\WLF VROXWLRQ RI WKH GLPHQVLRQOHVV WHPSHUDWXUH GLVWULEXWLRQ LQ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DQG LWV ZDOOV DV D IXQFWLRQ RI GLPHQVLRQOHVV WUDQVYHUVH SRVLWLRQ DW GLIIHUHQW RVFLOODWLRQ SKDVHV XW Df D O? Ef D

PAGE 35

1HJOHFWLQJ D[LDO FRQGXFWLRQ LQ ERWK WKH ZDOO DQG WKH IOXLG WKH ORFDO DQG LQVWDQWDQHRXV D[LDO KHDW IOX[ FDQ EH H[SUHVVHG DV T\Wf 3 &S 8\Wf 7\Wf f 7KH WLPH DYHUDJHG WRWDO KHDW IORZ UDWH WKHQ ZLOO EH REWDLQHG E\ LQWHJUDWLQJ WKLV TXDQWLW\ RYHU WKH FKDQQHO ZLGWK DQG WKH RVFLOODWLRQ SHULRG LH S(O Q 8\Wf7\WfG\ D f %\ PHDQV RI (TXDWLRQV RI f f DQG f DQG DIWHU VRPH UDWKHU OHQJWK\ EXW VWUDLJKW IRUZDUG PDQLSXODWLRQV WKH HIIHFWLYH WKHUPDO GLIIXVLYLW\ RI WKH RVFLOODWLRQ IORZ LV IRXQG WR EH N a HII 3U > + f +f@ ^OP +f OP +f D 3U f RM$MF M B WDQK?7Df ?7 D ZKHUH ?-7D WDQK7Df P A L 3U D WDQKA 3U Df f f f ZLWK WKH EDU LQGLFDWLQJ WKH FRPSOH[ FRQMXJDWH RI WKH IXQFWLRQ VKRZQ DQG + EHLQJ GHILQHG E\ HTXDWLRQ f

PAGE 36

7ZR JUDSKV RI WKH QRQGLPHQVLRQDO NAY$[ DV D IXQFWLRQ RI :RPHUVOH\ QXPEHU IRU GLIIHUHQW 3UDQGWO QXPEHUV DUH SUHVHQWHG LQ )LJ ODf DQG Ef 7KH ILUVW RQH Df IRU H UHSUHVHQWLQJ WKH FDVH RI ZDOO WKLFNQHVV EHLQJ WKH VDPH DV FKDQQHO ZLGWK DQG WKH VHFRQG RQH FRUUHVSRQGLQJ WR LQVXODWLQJ ZDOOV ZKLFK LV PDWKHPDWLFDOO\ HTXLYDOHQW WR WKH FDVH RI FRQGXFWLQJ ZDOOV ZLWK ]HUR WKLFNQHVV 7KH FXUYHV VKRZQ DUH VHHQ WR KDYH D VLQJOH PD[LPXP SRLQW ZKLFK VKLIWV WR ORZHU YDOXHV RI D DV 3U LV LQFUHDVHG 7KLV LV WHUPHG WKH WXQLQJ HIIHFW EHFDXVH WKH SHDN LQGLFDWHV WKH YDOXH RI FKDQQHO ZLGWK DW ZKLFK WKH KHDW WUDQVIHU LV RSWLPL]HG 7KHVH WXQLQJ SRLQWV FRUUHn VSRQG WR WKH FRQGLWLRQ ZKHUH WKH WKHUPDO GLIIXVLRQ WLPH IURP FKDQQHO D[LV WR WKH ZDOOV LV DSSUR[LPDWHO\ HTXDO WR KDOI RI WKH RVFLOODWLRQ SHULRG 7KH REVHUYHG GURS RII LQ WKH SHDN YDOXH RI NAFM$[ IRU YHU\ VPDOO 3UDQGWO QXPEHU LQ WKH LQVXODWLQJ FDVH LV DWWULEXWHG WR WKH LQDELOLW\ WR VWRUH PXFK KHDW LQ WKH ERXQGDU\ OD\HUV ZKLFK EHFRPH TXLWH WKLQ IRU IOXLGV ZLWK VPDOO NLQHPDWLF YLVFRVLW\ Y VXFK DV LQ OLTXLG PHWDOV 1RWH WKDW WKH VHFRQG VHW RI FXUYHV )LJ OEf DOVR SUHVHQW LQIRUPDWLRQ IRU WKH HQKDQFHG D[LDO PDVV GLIIXVLRQ E\ RVFLOODWLQJ IORZV VLQFH LQVXODWLQJ ZDOOV JLYH WKH VDPH ERXQGDU\ FRQGLWLRQV DV WKRVH IRU GLIIXVLRQDO PDVV WUDQVIHU DQG ERWK RI WKHP FRPH IURP WKH VDPH W\SH RI HTXDWLRQV ZLWK WKH RQO\ GLIIHUHQFH EHLQJ WKH XVH RI 3UDQGWO QXPEHU IRU KHDW WUDQVIHU EXW WKH 6FKPLGW QXPEHU IRU PDVV WUDQVIHU 2QH ILQGV WKDW WKH SHDN YDOXH RI .HIIR$[U IRU 3U O LV DERXW ,3 LQ WKH YLFLQLW\ RI D ZKLOH WKH FRUUHVSRQGLQJ YDOXH IRU WKH HIIHFWLYH PDVV GLIIXVLYLW\ IRU 6FKPLGW QXPEHU DW WKH VDPH :RPHUVOH\ QXPEHU IDOOV GRZQ WR [O3 E\ FRQVLGHULQJ WKH FXUYH IRU 3U DV D FXUYH IRU PDVV WUDQVIHU IRU D 6F IOXLG 6LQFH PRVW OLTXLGV KDYH

PAGE 37

D )LJ $QDO\WLF VROXWLRQ RI WKH GLPHQVLRQOHVV WLPH DYHUDJHG HIIHFWLYH WKHUPDO GLIIXVLYLW\ HQKDQFHG E\ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DV D IXQFWLRQ RI :RPHUVOH\ QXPEHU D DW GLIIHUHQW 3UDQGOW QXPEHUV Df H FRQGXFWLQJ ZDOOV ZLWK D Q Of Ef HO LQVXODWLQJ ZDOOVf

PAGE 38

D ODUJH YDOXH IRU WKH UDWLR RI 6FKPLGW QXPEHU WR 3UDQGWO QXPEHU DERXW WR IRU ZDWHU IRU H[DPSOHf D UHDOO\ ODUJH LQFUHDVH LQ KHDW WUDQVIHU ZLWK D QHJOLJLEOH HQKDQFHPHQW RI GLIIXVLRQDO PDVV WUDQVIHU FDQ EH DFKLHYHG DQG WKXV WKH SURFHVV RI KHDW WUDQVIHU E\ WKHUPDO SXPSLQJ LQ OLTXLGV FDQ EH FRQVLGHUHG DV HVVHQWLDOO\ IUHH RI PDVV WUDQVIHU SURYLGHG WKH FRQQHFWLQJ FKDQQHO OHQJWK LV ORQJHU WKDQ WKH WLGDO GLVSODFHPHQW 1RWH WKDW WKLV VDPH REVHUYDWLRQV GRHV QRW IROORZ IRU JDVHV ZKHUH 6FKPLGW QXPEHU DQG 3UDQGWO QXPEHU DUH DSSUR[LPDWHO\ WKH VDPH 7KH WXQLQJ FXUYHV RI HIIHFWLYH WKHUPDO GLIIXVLYLW\ IRU VHYHUDO GLIIHUHQW OLTXLG VROLG FRPELQDWLRQV LQ FRQILJXUDWLRQV RI HTXDO ZDOO DQG FKDQQHO WKLFNQHVV H f DUH VKRZQ LQ )LJ 7KHUH LV QR PDMRU GLIIHUHQFH LQ WKH PD[LPXP DPRQJ WKHVH GLIIHUHQW PDWHULDO FRPELQDWLRQV DQG DOO FXUYHV JLYH D PD[LPXP UDWLR RI .HII WR R!$[ RI DERXW ,W LV FOHDU WKDW WKH HIIHFWLYH PD[LPXP WKHUPDO GLIIXVLYLW\ DW WKH SHDN RI WKH WXQLQJ FXUYHV LV GLUHFWO\ SURSRUWLRQDO WR WKH IUHTXHQF\ RI WKH IOXLG RVFLOODWLRQ DQG WR WKH VTXDUH RI WKH WLGDO GLVSODFHPHQW 7KLV PHDQV WKDW LQ WKH RSWLPL]DWLRQ SURn FHGXUH IRU D WKHUPDO SXPS DQG $[ VKRXOG EH PDGH DV ODUJH DV SRVVLEOH 7KH FKDQQHO ZLGWK D WKHQ VKRXOG EH GHWHUPLQHG IURP WKH YDOYH RI D FRUUHVSRQGLQJ WR WKH PD[LPXP HIIHFWLYH WKHUPDO GLIIXVLYLW\ DQG WKH NLQHPDWLF YLVFRVLW\ Y RI WKH ZRUNLQJ IOXLG )RU H[DPSOH DW Rf Q UDGV LQ WKH ZDWHUJODVV FRPELQDWLRQ WKH RSWLPXP FKDQQHO KDOI ZLGWK ZLOO EH D PP IRU RSWLPXP KHDW WUDQVIHU 7KH HIIHFW RI ZDOO WKLFNQHVV RQ WKH KHDW WUDQVIHU SURFHVV LQ WKH WKHUPDO SXPS LV VKRZQ LQ )LJ ZKHUH D SORW RI .HIIDf$[H YHUVXV H IRU VHYHUDO YDOXHV RI FU3U IRU WKH OLTXLGVROLG FRPELQDWLRQ RI OLTXLG OLWKLXP DQG VWDLQOHVV VWHHO DUH SUHVHQWHG

PAGE 39

D )LJ $QDO\WLF VROXWLRQ RI GLPHQVLRQOHVV WLPH DYHUDJHG HIIHFWLYH WKHUPDO GLIIXVLYLW\ HQKDQFHG E\ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO DW H FRQGXFWLQJ ZDOOVf DV D IXQFWLRQ RI :RPHUVOH\ QXPEHU D IRU VHYHUDO GLIIHUHQW OLTXLGVROLG FRPELQDWLRQV H )LJ $QDO\WLF VROXWLRQ RI GLPHQVLRQOHVV WLPH DYHUDJHG HIIHFWLYH WKHUPDO GLIIXVLYLW\ HQKDQFHG E\ RVFLOODWLQJ IORZ DV D IXQFWLRQ RI FODGGLQJ WKLFNQHVV IRU OLTXLG OLWKLXP LQ D SDUDOOHO SODWH FKDQQHO ZLWK VWDLQOHVV VWHHO ZDOOV

PAGE 40

7KHVH FXUYHV VKRZ WKDW DQ H JHRPHWU\ FRUUHVSRQGLQJ WR HTXDO ZDOO WKLFNQHVV DQG FKDQQHO ZLGWK LV DERXW RSWLPXP ZKHQ DQ DSSUHFLDEOH IUDFWLRQ RI WKH KHDW FDQ EH VWRUHG LQ WKH ERXQGLQJ ZDOOV 7KH UHDVRQ IRU QRUPDOL]LQJ .HII E\ WKH H[WUD IDFWRU H LV WR WDNH LQWR DFFRXQW WKH IDFW WKDW WKH ZDOOV WDNH DZD\ D IUDFWLRQ H RI WKH FURVV VHFWLRQDO DUHD RI WKH WKHUPDO SXPS DYDLODEOH IRU WKH IOXLG RVFLOODWLRQV ,QWHJUDWLRQ RI WKH ORFDO LQVWDQWDQHRXV KHDW IOX[ RYHU WKH RVFLOODWLRQ SHULRG \LHOGV WKH WLPH DYHUDJHG D[LDO KHDW IOX[ GLVWULEXWLRQ RYHU WKH FURVV VHFWLRQ ZKLOH DQ LQWHJUDWLRQ RYHU WKH FKDQQHO ZLGWK \LHOGV WKH LQVWDQWDQHRXV D[LDO KHDW IORZ WKURXJK WKH ZKROH FKDQQHO DV D IXQFWLRQ RI WLPH )LJ ODf DQG Ef VKRZ WKH EHKDYLRU RI WKH WZR SDUWLDOO\ LQWHJUDWHG QRQGLPHQVLRQDO SURGXFWV RI 8\Wf DQG 7\Wf IRU WKH FDVH RI D ZDWHUJODVV FRPELQDWLRQ ZLWK H )URP Df RQH REVHUYHV WKDW WKH ODUJHVW YDOXH RI 87\R$[ RFFXUV IRU D O ZKLFK LV QHDU WKH WXQLQJ SRLQW IRU WKLV SDUWLFXODU FRQGLWLRQ 1RWH WKH PXFK VPDOOHU YDOXHV DW D DQG D ZKLFK RFFXU DW GHn WXQHG FRQGLWLRQV 7KH IOX[ WUDQVSRUW EHFRPHV FRQILQHG WR WKH YLFLQLW\ RI WKH ZDOOV DV WKH :RPHUVOH\ QXPEHU EHFRPHV ODUJH )LJ OEf VKRZV WKDW WKH WKHUPDO IOX[ LV WLPH SHULRGLF DW D IUHTXHQF\ WZLFH WKDW RI WKH IOXLG RVFLOODWLRQV DQG WKDW RQO\ QHDU WXQLQJ FRQGLWLRQV LV WKH SRVLWLYH IOX[ QRW HVVHQWLDOO\ FDQFHOHG E\ WKH QHJDWLYH KHDW IOX[ ,Q WKH IROORZLQJ FKDSWHU &KDSWHU ,, WKH JHRPHWU\ IRU ZKLFK WKLV QXPHULFDO VWXG\ ZDV SHUIRUPHG ZLOO EH H[SODLQHG LQ GHWDLO 7KH DVVXPSWLRQV DQG WKH PDWKHPDWn LFDO PRGHOV XVHG WR SUHVHQW WZR GLIIHUHQW SK\VLFDO VLWXDWLRQV ZLOO DOVR EH VKRZQ WKHUH &KDSWHU ,,, ZLOO IRFXV RQ WKH QXPHULFDO PHWKRG HPSOR\HG LQFOXGLQJ D EULHI GHULYDWLRQ

PAGE 41

87\FM$[ 87\FM$[ FXW )LJ $QDO\WLF VROXWLRQ RI KHDW WUDQVIHUUHG E\ DQ RVFLOODWLQJ IORZ RI ZDWHU LQ D SDUDOOHO SODWH FKDQQHO ZLWK JODVV ZDOOV IRU GLIIHUHQW D Df WLPH DYHUDJHG YDOXH DV D IXQFWLRQ RI GLPHQVLRQOHVV WUDQVYHUVH SRVLWLRQ Ef FURVV VHFWLRQ LQWHJUDWHG YDOXH DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH

PAGE 42

RI WKH DVVRFLDWHG )LQLWH 'LIIHUHQFH (TXDWLRQV 7KH UHVXOWV REWDLQHG IURP WKH QXPHULn FDO LQYHVWLJDWLRQ ZLOO EH SUHVHQWHG LQ &KDSWHU ,9 ZLWK VRPH FRPSDULVRQV RI WKH UHVXOWV ZLWK DQDO\WLF VROXWLRQV GLVFXVVHG LQ WKH SUHVHQW VHFWLRQ &RQFOXGLQJ UHPDUNV ZLOO EH IRXQG LQ &KDSWHU 9 6RPH PDWHULDOV XVHIXO IRU D FOHDUHU XQGHUVWDQGLQJ RI WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ LQ WKH 6,03/( DOJRULWKP DUH VXPPDUL]HG LQ $SSHQGL[

PAGE 43

&+$37(5 ,, 0$7+(0$7,&$/ 02'(/ 7KH PDWKHPDWLFDO PRGHO IRU WKH QXPHULFDO VWXG\ SUHVHQWHG LQ WKLV GLVVHUWDWLRQ LV H[SODLQHG LQ WKLV FKDSWHU )LUVW WKH JHRPHWULF FRQILJXUDWLRQV IRU ZKLFK WKH QXPHULFDO LQYHVWLJDWLRQ ZHUH SHUIRUPHG DUH GHVFULEHG 7KHQ WKH JRYHUQLQJ HTXDWLRQV WR EH VROYHG DQG ERXQGDU\ FRQGLWLRQV DVVLJQHG DUH JLYHQ *HRPHWULF &RQILJXUDWLRQV 7ZR GLIIHUHQW FRQILJXUDWLRQV EDVHG XSRQ WKH WKHUPDO SXPS JHRPHWU\ VKRZQ LQ )LJ ZHUH FKRVHQ IRU WKH SUHVHQW QXPHULFDO VWXG\ 7KHVH DUH VKRZQ LQ )LJ 6RPH VLPSOLILFDWLRQV ZHUH LQWURGXFHG IRU WKH SXUSRVH RI FRPSXWDWLRQDO FRQYHQLHQFH 1RWH DOVR WKDW WR PRUH FOHDUO\ VKRZ GHWDLOV WKH D[LDOWUDQVYHUVH UDWLR RI WKH FRQILJXUDWLRQV VKRZQ LV GLIIHUHQW IURP WKHLU WUXH YDOXH XVHG LQ WKH FDOFXODWLRQV DV GLVFXVVHG LQ &KDSWHU ,9 %RWK FRQILJXUDWLRQV HVVHQWLDOO\ FRQVLVW RI D SDUDOOHO SODWH FKDQQHO RI ZLGWK D DQG OHQJWK / FRQQHFWHG WR WZR UHFWDQJXODU HQG UHVHUn YRLUV RI ZLGWK E DQG WLPH DYHUDJHG OHQJWK F 7KHUH LV D SLVWRQ PRYLQJ EDFN DQG IRUWK VLQXVRLGDOO\ LQ WKH D[LDO GLUHFWLRQ LQ HDFK RI WKH UHVHUYRLUV &KRRVLQJ D UHFWDQn JXODU VKDSH IRU WKH UHVHUYRLUV DOORZV FDOFXODWLRQV LQ &DUWHVLDQ FRRUGLQDWHV DOWKRXJK D FRRUGLQDWH WUDQVIRUPDWLRQ LV VWLOO QHFHVVDU\ EHFDXVH RI WKH PRYLQJ ERXQGDULHV

PAGE 44

)LJ &RQILJXUDWLRQV RI WKH WKHUPDO SXPS XVHG LQ WKH QXPHULFDO LQYHVWLJDWLRQ Df FRQGXFWLRQ PRGHO Ef FURVV IORZ PRGHO

PAGE 45

7KH FRRUGLQDWH V\VWHP XVHG LQ WKH SK\VLFDO GRPDLQ LV DOVR VKRZQ LQ )LJ 7KH RULJLQ LV VHW DW WKH FHQWHU SRLQW LQ ERWK D[LDO DQG WUDQVYHUVH GLUHFWLRQV 7KH D[LV RI WKH FRQQHFWLQJ FKDQQHO DQG UHVHUYRLUV ZDV FKRVHQ DV WKHr D[LV DQG WKHQ WKH\ D[LV LV LQ WUDQVYHUVH GLUHFWLRQ %DVHG RQ WKLV FRRUGLQDWH V\VWHP WKH SRVLWLRQV RI WKH PRYLQJ ERXQGDULHV SLVWRQ VXUIDFHVf FDQ EH H[SUHVVHG DV f F f§ f f§ FRVLLfWf E f IRU WKH OHIW DQG ULJKW SLVWRQV UHVSHFWLYHO\ 1RWH WKDW WKH SLVWRQ PRYHPHQWV DUH LQ SKDVH LQ RUGHU WR VDWLVI\ WKH ODZ RI PDVV FRQVHUYDWLRQ IRU WKH DVVXPHG LQFRPSUHVVLEOH ZRUNLQJ IOXLG HQWLUHO\ ILOOLQJ WKH FKDQQHO DQG UHVHUYRLUV 7KH ILUVW FRQILJXUDWLRQ VKRZQ LQ )LJ ODf DQG QDPHG WKH FRQGXFWLRQ PRGHO EHFDXVH RI WKH ZD\ WKDW KHDW LV VXSSOLHG DQG UHPRYHG IURP WKH HQG UHVHUYRLUV LV D FORVHG V\VWHP IRU PDVV WUDQVIHU $OO ZDOOV H[FHSW WKH SLVWRQ VXUIDFHV DUH VWDWLRQDU\ 7KH FKDQQHO VLGH ZDOOV DUH WKHUPDOO\ LQVXODWLQJ DV LQGLFDWHG E\ WKH REOLTXH VKDGLQJ OLQHV ZKLOH WKH UHVHUYRLU VLGH ZDOOV LQFOXGLQJ WKH SLVWRQ VXUIDFHV DUH FRQGXFWLQJ DQG PDLQWDLQHG DW GLIIHUHQW WHPSHUDWXUH DW WKH RSSRVLWH VLGHV GLVSOD\HG E\ WKH EODQN IRU FROG DW 7Ff DQG EODFN IRU KRW DW 7Kf UHJLRQV 7KH FRQILJXUDWLRQ LV V\PPHWULFDO DERXW WKH KRUL]RQWDO FHQWHU OLQH FRUUHVSRQGLQJ WR WKH [ D[LV 7KLV V\PPHWU\ DOORZV WKH FDOFXODWLRQ WR EH XQGHUWDNHQ LQ RQO\ WKH XSSHU KDOI RI WKH GRPDLQ DV ORQJ DV VXLWDEOH ERXQGDU\ FRQGLWLRQV DUH DSSOLHG DW WKH FHQWHU OLQH

PAGE 46

7KH VHFRQG FRQILJXUDWLRQ LV VKRZQ LQ )LJ Ef ,W XVHV IOXLG FURVV IORZ WR DGG DQG UHPRYH KHDW IURP WKH HQG UHVHUYRLUV DQG LV WHUPHG WKH FURVV IORZ PRGHO ,W LV DVVXPHG WKDW WKH FURVV IORZ HQWHUV DQG H[LWV WKH UHVHUYRLUV DW D FRQVWDQW EXW VPDOO YHORFLW\ 9F SHUSHQGLFXODU WR WKH UHVHUYRLU VLGH ZDOOV $OO ZDOOV LQFOXGLQJ WKH SLVWRQ VXUIDFHV DUH LQVXODWLQJ LQ WKLV PRGHO 7KH FURVV IORZ LV PDLQWDLQHG DW GLIIHUHQW WHPSHUDWXUHV RQ WKH RSSRVLWH VLGHV DV WKH\ FRPH LQWR WKH V\VWHP 7KH WKHUPDO FRQGXFWLRQ DW WKH FURVV IORZ H[LWV LH WUDQVSLUDWLRQf LV H[FOXGHG LQ WKH QXPHULFDO VWXG\ VLQFH LW LV QHJOLJLEOH FRPSDUHG ZLWK WKH KHDW FDUULHG E\ WKH IORZ 7KLV FRQILJXn UDWLRQ QR ORQJHU SURGXFHV V\PPHWULF IORZV DERXW WKH FHQWHU KRUL]RQWDO OLQH DQG WKH FRPSXWDWLRQ WKXV KDV WR EH GRQH RYHU WKH HQWLUH IORZ GRPDLQ $ YHU\ XVHIXO FKDUDFWHULVWLF IRU ERWK FRQILJXUDWLRQV LV WKDW DOO LQIRUPDWLRQ QHHGHG WR GHVFULEH WKH IORZ DQG KHDW WUDQVIHU LQ RQH RVFLOODWLRQ SKDVH VWHS FDQ EH UHDGLO\ REWDLQHG IURP WKH VROXWLRQ DW DQRWKHU SKDVH VWHS RQH KDOI SHULRG HDUOLHU DV VRRQ DV WKH IORZ SDWWHUQ DQG WHPSHUDWXUH GLVWULEXWLRQ LQ ZKROH SK\VLFDO GRPDLQ KDYH UHDFKHG D ILQDO WLPH SHULRGLF VWDWH 7LPH SHULRGLF FRQGLWLRQV H[LVWLQJ LQ WKH ULJKW HQG UHVHUYRLU DW D IL[HG SKDVH SRLQW LQ WKH RVFLOODWLRQ F\FOH ZLOO FRUUHVSRQG WR WKRVH IRXQG LQ WKH OHIW UHVHUYRLU KDOI DQ RVFLOODWLRQ F\FOH ODWHU )XUWKHUPRUH LI WHPSHUDWXUH LV QRUPDOL]HG VR WKDW WKH JLYHQ WHPSHUDWXUHV 7K DQG 7F LQ RSSRVLWH UHVHUYRLUV DUH WKH QHJDWLYH RI HDFK RWKHU WKH WHPSHUDWXUH GLVWULEXWLRQ DW RW rD7H WKH VDPH DV WKDW LQ WKH UHIOHFWHG LPDJH RI WKH JHRPHWU\ DW DfW r H[FHSW IRU D VLJQ FKDQJH 7KH VDPH WKLQJ KDSSHQV IRU HYHU\ SDLU RI VROXWLRQV DW RW DQG D!W r ,W LV EHFDXVH RI WKLV WLPH V\PPHWU\ WKDW WKH FRPSXWDWLRQV QHHG EH WDNHQ RYHU RQO\ WKH UDQJH RI rRWAOr

PAGE 47

ZKLFK VLJQLILFDQWO\ UHGXFHG WKH &38 WLPH DQG VWRUDJH UHTXLUHG LQ WKH QXPHULFDO LQYHVWLJDWLRQ *RYHUQLQJ (TXDWLRQV DQG %RXQGDU\ &RQGLWLRQV 7KH JHQHUDO DVVXPSWLRQV LQ WKLV VWXG\ DUH IROORZLQJ Df 7KH ZRUNLQJ IOXLG LV D KRPRJHQHRXV 1HZWRQLDQ IOXLG Ef 7KH ZRUNLQJ IOXLG LV LQFRPSUHVVLEOH FRQVWDQW GHQVLW\ Ff 7KH ZRUNLQJ IOXLG KDV FRQVWDQW PDWHULDO SURSHUWLHV FRQVWDQW YLVFRVLW\ FRQVWDQW WKHUPDO GLIIXVLYLW\ FRQVWDQW WKHUPDO FRQGXFWLYLW\ Gf $OO ERG\ IRUFHV DUH QHJOLJLEOH Hf 7KH YLVFRXV KHDWLQJ WHUP LQ WKH HQHUJ\ HTXDWLRQ LV QHJOLJLEOH If 7KH IORZ LV ODPLQDU $V VKRZQ LQ 6HFWLRQ OLTXLG LV D VXLWDEOH ZRUNLQJ IOXLG LQ WKH WKHUPDO SXPS IRU KHDW WUDQVIHU ZLWKRXW PDVV H[FKDQJH 7KH LQFRPSUHVVLEOH IOXLG DVVXPSWLRQ LV YDOLG IRU PRVW OLTXLGV 7KH PDLQ DGYDQWDJH RI WKH FRQVWDQW PDWHULDO SURSHUWLHV DVVXPSWLRQ LV WKH DELOLW\ WR VHSDUDWH YHORFLW\ DQG SUHVVXUH VROXWLRQ IURP WKH WHPSHUDn WXUH VROXWLRQ ,W ZDV IRXQG WKDW LQ RUGHU WR UHDFK WKH WLPH SHULRGLF VWDWH WKH QXPEHU RI RVFLOODWLRQ SHULRGV QHHGHG IRU WHPSHUDWXUH LV PXFK PRUH WKDQ WKDW IRU YHORFLW\ ZKLOH WKH &38 WLPH XVHG IRU VROYLQJ YHORFLW\ DQG SUHVVXUH GLVWULEXWLRQ LQ HDFK SHULRG

PAGE 48

LV PXFK ORQJHU WKDQ WKDW IRU WHPSHUDWXUH &DOFXODWLQJ YHORFLW\ DQG WHPSHUDWXUH VHSDUDWHO\ GLG VDYH FRQVLGHUDEOH &38 WLPH 7KH GHSHQGHQW YDULDEOHV WR EH VROYHG IRU DUH WKH [ FRPSRQHQW RI YHORFLW\ 8 WKH\ FRPSRQHQW RI YHORFLW\ 9 WKH SUHVVXUH 3 DQG WKH WHPSHUDWXUH 7 7KH\ DQG WKH LQGHSHQGHQW YDULDEOHV [ \ DQG WLPH W DUH QRQGLPHQVLRQDOL]HG DV IROORZV [r L \r f§ Wr FRU f D D OD OD 3r 3 SLD f 7 77K 7Ff 7K7Ff ZKHUH WKH TXDQWLWLHV ZLWK r DUH GLPHQVLRQOHVV DQG D KDOI ZLGWK RI WKH FKDQQHO FR DQJXODU IUHTXHQF\ RI WKH SLVWRQ PRYHPHQW S IOXLG GHQVLW\ 7K WHPSHUDWXUH DW WKH KRW HQG 7F WHPSHUDWXUH DW WKH FROG HQG $IWHU QRQGLPHQVLRQDOL]DWLRQ WKH JRYHUQLQJ HTXDWLRQV UHDG f 8[ 9\ f 8W 88f; 98f\ 3[ Df ^8MD 8\\f f

PAGE 49

9 89f; \9f m a3\ pf <[[ 9\\f f 87? 97f\ ^O3UDrf7f 7ff f ZKHUH WKH VXEVFULSWV LQGLFDWH SDUWLDO GHULYDWLYHV DQG 3UY. 3UDQGOW QXPEHU D D ?c Rf Y :RPHUVOH\ QXPEHU 1RWH WKDW D FRQVHUYDWLRQ IRUP RI WKH JRYHUQLQJ HTXDWLRQV LV XVHG KHUH $OO TXDQWLWLHV LQ WKH HTXDWLRQV DUH GLPHQVLRQOHVV DQG WKH QRQGLPHQVLRQDO PDUN r KDV EHHQ RPLWWHG IRU VLPSOLFLW\ 7KLV QRWDWLRQ LQ ZKLFK GLPHQVLRQOHVV TXDQWLWLHV DUH WHUPHG ZLWKRXW VXSHUVFULSW r ZLOO EH XVHG IURP WKLV SRLQW WKURXJK WKH HQG RI WKH GLVVHUWDWLRQ H[FHSW ZKHUH WKH TXDQWLW\ PHQWLRQHG QHHGV WR EH H[SUHVVHG LQ GLPHQn VLRQDO IRUP ,Q YLHZ RI WKH JHRPHWU\ H[SODLQHG LQ 6HFWLRQ DQG WKH QRQGLPHQVLRQD OL]DWLRQ VKRZQ DERYH WKH ERXQGDU\ FRQGLWLRQV FDQ EH PDWKHPDWLFDOO\ H[SUHVVHG DV IROORZV 9HORFLW\ 8 DW WKH VWDWLRQDU\ ZDOOV f 9 f DW WKH SLVWRQ VXUIDFHV f E 9

PAGE 50

f f 8 2 FRD D\ 9 R DW WKH FURVV IORZ HQWUDQFH f DORQJ WKH V\PPHWU\ OLQH \ f 7HPSHUDWXUH f f§ GQ f 7 f 7 O f f§ G\ DW WKH LQVXODWLQJ ZDOOV DQG V\PPHWU\ OLQH\ f DW WKH KRW ZDOOV DQG KRW FURVV IORZ HQWUDQFH f DW WKH FROG ZDOOV DQG FROG FURVV IORZ HQWUDQFH f DW WKH FURVV IORZ H[LWV f ZKHUH 9F LQ (T f LV GLPHQVLRQDO DQG f§ LQ (T f LQGLFDWHV WKDW WKH SDUWLDO GHULYDWLYH QRUPDO WR WKH ZDOOV

PAGE 51

&+$37(5 ,,, 180(5,&$/ 7(&+1,48( (03/2<(' 7KH JRYHUQLQJ HTXDWLRQV ff ZLWK WKH ERXQGDU\ FRQGLWLRQV ff VSHFLILHG LQ WKH SK\VLFDO GRPDLQ ZKLFK KDYH EHHQ SUHVHQWHG LQ &KDSWHU ,, KDYH WR EH VROYHG QXPHULFDOO\ DQG WKXV UHTXLUH D VXLWDEOH QXPHULFDO PHWKRG 7KH H[LVWLQJ 6HPL,PSOLFLW 0HWKRG IRU 3UHVVXUH /LQNHG (TXDWLRQV 6,03/(f RI 3DWDQNDU DQG RI 3DWDQNDU DQG 6SDOGLQJ LV RQH VXFK PHWKRG DYDLODEOH IRU GHDOLQJ ZLWK KHDW WUDQVIHU SUREOHPV LQ LQFRPSUHVVLEOH YLVFRXV IORZV EXW LW QHHGV WR EH PRGLILHG KHUH E\ WDNLQJ LQWR DFFRXQW WLPH SHULRGLFLW\ DQG ERXQGDU\ PRYHPHQW ZKLFK DUH SUHVHQW LQ WKH IOXLG RVFLOODWLRQ DQG DVVRFLDWHG KHDW WUDQVIHU SUREOHPV LQYHVWLJDWHG LQ WKLV GLVVHUWDWLRQ 6XFK D FRQVLGHUDWLRQ OHDGV WR WKH H[WHQGHG 6,03/( DOJRULWKP WHUPHG 6,03/(73 IRU 7LPH 3HULRGLFf GHYHORSHG LQ WKLV LQYHVWLJDWLRQ DQG WR EH GHVFULEHG LQ VRPH GHWDLO LQ WKLV FKDSWHU )LUVW WKH FRRUGLQDWH V\VWHPV LQ ERWK WKH SK\VLFDO GRPDLQ DQG FRPSXWDWLRQDO GRPDLQ DQG WKH WUDQVIRUPDWLRQ RI WKH JRYHUQLQJ HTXDWLRQV IURP WKH IRUPHU WR ODWWHU DUH GHVFULEHG 6HFRQG D EULHI GHULYDWLRQ RI WKH )LQLWH 'LIIHUHQFH (TXDWLRQV DQG WKH WUHDWPHQW RI ERXQGDU\ FRQGLWLRQV DUH SUHVHQWHG ,Q 6HFWLRQ DQ RYHUYLHZ RI WKH QXPHULFDO LWHUDWLRQ SURFHGXUH 6,03/(73 LV JLYHQ )LQDOO\ D 9HFWRUL]HG /LQH *URXS DOJRULWKP IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV DOVR GHYHORSHG LQ WKLV LQYHVWLJDWLRQ LV SUHVHQWHG

PAGE 52

*ULG DQG 7UDQVIRUPDWLRQ RI *RYHUQLQJ (TXDWLRQV ,W LV PRVW FRQYHQLHQW WR WUDQVIHU WKH WLPH SHULRGLF SK\VLFDO GRPDLQ WR D WLPH LQGHSHQGHQW FRPSXWDWLRQDO GRPDLQ ,Q RWKHU ZRUGV WKH JULG V\VWHP LQ WKH SK\VLFDO GRPDLQ ZKLFK LV PRYDEOH DQG QRQXQLIRUP QHHGV WR EH PDSSHG WR D JULG V\VWHP LQ WKH FRPSXWDWLRQDO GRPDLQ ZKLFK LV IL[HG DQG KDV HYHQ VSDFLQJ LQ RUGHU WR DOORZ WKH QXPHULFDO FDOFXODWLRQV WR EH FDUU\ RXW SURSHUO\ )RU WKH SK\VLFDO GRPDLQ JHRPHWU\ VKRZQ LQ )LJ LW LV IRXQG FRQYHQLHQW WR EUHDN ERWK RI WKH GRPDLQV LQWR WKUHH VXEUHJLRQV ZKHQ PDNLQJ WKH PDSSLQJ 7KH WZR JULG V\VWHPV DQG WKHLU EORFN FRUUHn VSRQGHQFH DUH VKRZQ LQ )LJ 7KH JULG LQ WKH SK\VLFDO GRPDLQ DW WKUHH GLIIHUHQW SKDVHV RI SLVWRQ PRYHPHQW DUH VKRZQ LQ )LJ 2QH FDQ REVHUYH IURP WKLV ILJXUH WKDW WKH JULG LV IL[HG IRU WKH PLGGOH EORFNV FRUUHVSRQGLQJ WR WKH FRQQHFWLQJ FKDQQHO EXW PRYDEOH LQ WKH RWKHU WZR EORFNV UHSUHVHQWLQJ WKH HQG UHVHUYRLUV RI WKH WKHUPDO SXPS 7KH JULG VSDFLQJ LQ WKH DUHD RI HDFK UHVHUYRLU QHDU WKH FRQQHFWLQJ FKDQQHO ZKHUH D FURVV IORZ FDQ DOVR HQWHU RU OHDYH WKH UHVHUYRLU LQ WKH\ GLUHFWLRQ LV DOVR LQGHSHQGHQW RI WLPH 7KLV VXEGLYLVLRQ LV RI DGYDQWDJH IRU VSHFLI\LQJ WKH ERXQGDU\ FRQGLWLRQV FRUUHFWO\ DQG HDVLO\ ZKHQ XVLQJ FURVV IORZ 1RWH WKDW WKH VDPH JULG VWUXFWXUH ZDV XVHG IRU DOO FDVHV LQ ERWK FRQn GXFWLRQ DQG FURVV IORZ PRGHOV LQ RUGHU WR DOORZ D JRRG FRPSDULVRQ HYHQ LI LW LV QRW QHFHVVDU\ IRU WKH IRUPHU 7KH JULG SRLQWV LQ WKH UHVW RI WKH DUHD RI WKH UHVHUYRLUV PRYH OLNH DQ DFFRUGLRQ LQ WKH [ GLUHFWLRQ EHFDXVH RI WKH SLVWRQ RVFLOODWLRQ 7KH \ FRPSRQHQWV RI WKH JULGV ZHUH HVWDEOLVKHG DW WKH EHJLQQLQJ RI HDFK UXQ ZKLOH WKH [ FRPSRQHQWV RI WKH JULGV KDG WR EH JHQHUDWHG DW HDFK WLPH VWHS

PAGE 53

)LJ 7KH FRUUHVSRQGHQFH RI EORFNV EHWZHHQ WKH SK\VLFDO GRPDLQ DQG WKH FRPSXWDWLRQDO GRPDLQ Df JULG LQ WKH SK\VLFDO GRPDLQ DW RW r? Ef WLPH LQGHSHQGHQW DQG XQLIRUP JULG LQ WKH FRPSXWDWLRQDO GRPDLQ Ff JULG LQ WKH SK\VLFDO GRPDLQ DW RW r

PAGE 54

)LJ 7KH PRYDEOH DQG QRQXQLIRUP JULG LQ WKH SK\VLFDO GRPDLQ Df RW r Ef RW r? Ff RW

PAGE 55

,Q DOO WKH WKUHH VXEUHJLRQV WKH JULG SRLQWV DUH QRQXQLIRUPO\ VSDFHG VXFK WKDW WKRVH UHJLRQV QHDU WKH ZDOOV DQG DW WKH HGJH RI WKH MHW UHJLRQ DW \ O ZKHUH ODUJH YHORFLW\ DQGRU WHPSHUDWXUH JUDGLHQWV DUH H[SHFWHG WR H[LVW KDYH KLJKHU JULG GHQVLW\ ,Q RUGHU WR JHQHUDWH WKH QRQXQLIRUP JULG VSDFLQJ WKH VWUHWFKLQJ IXQFWLRQ IRXQG LQ WKH ERRN E\ $QGHUVRQ ZDV XVHG ,W KDV WKH IRUP f ISQrn f§f§ L ZKHUH [ DQG [ DUH WKH SRVLWLRQ RI JULG SRLQWV EHIRUH DQG DIWHU VWUHWFKLQJ 3 LV WKH VWUHWFKLQJ SDUDPHWHU ZKLFK FRQWUROV WKH VWUHWFKLQJ VWUHQJWK S LV GLIIHUHQW LQ GLIIHn UHQW VXEUHJLRQV DQG LQ GLIIHUHQW GLUHFWLRQV 7KH YDOXHV RI 3fV LQ WKH VDPH GLUHFWLRQ IRU GLIIHUHQW VXEUHJLRQV ZHUH FKRVHQ VR WKDW WKH JULG VL]H QHDUHVW WKH GLYLGLQJ OLQH EHWZHHQ VXEUHJLRQV ZHUH HTXDO 7KH UHODWLRQVKLS EHWZHHQ WKH FRRUGLQDWHV [\Wf LQ SK\VLFDO GRPDLQ DQG e Lf Uf LQ FRPSXWDWLRQDO GRPDLQ FDQ EH H[SUHVVHG DV Q Q\f f 8QGHU WKH FRQGLWLRQ WKDW WKH SURGXFW RI WKH -DFRELDQ DQG LWV LQYHUVH DUH HTXDO WR XQLW\ DV LV UHTXLUHG IRU RQH WR RQH PDSSLQJ WKH IROORZLQJ H[SUHVVLRQV KROG

PAGE 56

O[ [O 9 f§ \c f %\ PHDQV RI WKHVH WKH JRYHUQLQJ HTXDWLRQV ff LQ WKH SK\VLFDO GRPDLQ FDQ DIWHU VRPH FKDLQ UXOH PDQLSXODWLRQV EH UHZULWWHQ LQ WHUPV RI e DQG U DV f§8I f§9Y \ f r E\9 rr A ;I ;a D 8F \ f ,Q 9 9 [ [W D .U ? \\ 9B ;7 f§UeB/L [e re 3UR [O> B7 \Y f f f f 1RWH WKDW WKHUH LV D QHZ VRXUFH WHUP DSSHDULQJ LQ HDFK RI WKH PRPHQWXP DQG HQHUJ\ HTXDWLRQV ZKLFK UHSUHVHQWV WKH HIIHFW RI WKH JULG PRYHPHQW LQ WKH SK\VLFDO GRPDLQ

PAGE 57

$ %ULHI 'HULYDWLRQ RI WKH $VVRFLDWHG )LQLWH 'LIIHUHQFH (TXDWLRQV DQG %RXQGDU\ &RQGLWLRQV $V LQ WKH 6,03/( DOJRULWKP WKH VDPH VWDJJHUHG JULG DV VKRZQ LQ )LJ ZDV DOVR XVHG LQ WKH 6,03/(73 7KH SUHVVXUH DQG WHPSHUDWXUH DUH FDOFXODWHG DW WKH JULG FHOO FHQWHU GHVLJQDWHG E\ RfV ZKLOH WKH YHORFLW\ FRPSRQHQWV 8 DQG 9 DUH GHWHUPLQHG DW WKH FHQWHU RI WKH FHOO ZDOOV LQGLFDWHG E\ DUURZV %\ PHDQV RI WKLV VWDJJHUHG JULG FRQILJXUDWLRQ WKH FKHFNHUERDUG SUHVVXUH HIIHFW LQWURGXFHG IRU QRQ VWDJJHUHG JULGV FDQ EH HOLPLQDWHG DQG WKXV DOORZV WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ WR FRQYHUJH HDVLO\ ,Q 6,03/( D FRQWURO YROXPH DSSURDFK ZDV XVHG WR GHULYH WKH )LQLWH 'LIIHUHQFH (TXDWLRQV )'(fVf LQ WKLV JULG FRQILJXUDWLRQ DQG D GHULYDWLRQ EDVHG RQ D VWDWLRQDU\ JULG LQ WKH SK\VLFDO GRPDLQ FDQ EH IRXQG LQ WKH ERRN E\ 3DWDQNDU 7KH GHULYDWLRQ RI WKH )'(fV LQ WKH SUHVHQW 6,03/(73 IROORZHG WKH VDPH SURFHGXUH EXW VRPH PRGLILFDWLRQV KDG WR EH PDGH VLQFH LW ZDV FDUULHG RXW LQ WKH FRPSXWDWLRQDO GRPDLQ $ EULHI GHULYDWLRQ RI WKH [ PRPHQWXP HTXDWLRQ LV SUHVHQWHG EHORZ DV DQ H[DPSOH RI WKH GHULYDWLRQ DSSOLHG LQ WKH 6,03/(73 7KH QRWDWLRQ XVHG KHUH LV WKH VDPH DV WKDW RI 3DWDQNDU DQG LV VKRZQ LQ )LJ 7KH ORFDWLRQ RI 8 ZKHUH WKH GLIIHUHQWLDO HTXDWLRQ LV JRLQJ WR EH GLVFUHWL]HG LV GHVLJQDWHG E\ 3 ZKLOH WKH ORFDWLRQ RI LWV IRXU QHLJKERULQJ ,7V DUH LQGLFDWHG E\ e(DVWf ,):HVWf n:n1RUWKf DQG 6RXWKf UHVSHFWLYHO\ 7KH IRXU FHQWHUV RI FHOO ZDOOV DUH PDUNHG E\ H Z 9 DQG V DOVR EXW LQ ORZHU FDVH DFFRUGLQJ WR WKHLU GLUHFWLRQV DZD\ IURP WKH FHOOfV FHQWHU 1RWH WKDW WKH SRVLWLRQ LQGLFHV DUH SODFHG RQ WKH SRVLWLRQ RI VXSHUVFULSWV LQ RUGHU WR GLIIHU IURP WKH SDUWLDO GHULYDWLYHV ZKLFK DUH H[SUHVVHG E\ VXEVFULSWV LQ WKH JRYHUQLQJ HTXDWLRQV

PAGE 58

)LJ 7KH VWDJJHUHG JULG LQ WKH FRPSXWDWLRQDO GRPDLQ

PAGE 59

Df Ef )LJ 7\SLFDO FHOOV IRU WKH YHORFLW\ FRPSRQHQW 8 Df DQ LQWHULRU FHOO Ef D ERXQGDU\ FHOO ZLWK LWV VRXWK ZDOO DW WKH GRPDLQ ERXQGDU\

PAGE 60

7KH HTXDWLRQ f FDQ EH UHZULWWHQ DV [tW3U YUXL \L \r XX XFf Da[W [ 98 -8? 2nf nY f $Q LQWHJUDWLRQ RI WKLV HTXDWLRQ RYHU WKH JULG FHOO 6e6Uf DQG WKH WLPH VWHS 6W \LHOGV [6\8S8rf O/[S[rf^XHXZf 6\3H3Zf 6W 6W 6\ 8U X8 O D[ H 8O X8 ?Z D[W ; ?Q ?8f§/ D\Y ?6 f ZKHUH DOO 8V KDYH WKHLU YDOXHV DW WKH FXUUHQW WLPH VWHS H[FHSW 8r ZKLFK WDNHV WKH YDOXH RI 8S DW WKH SUHYLRXV WLPH VWHS 7KH X DQG Y KHUH UHSUHVHQW WKH YHORFLW\ FRPSRQHQWV LQ WKH FXUUHQW WLPH VWHS DOVR EXW KDYH WKHLU YDOXHV DW WKH SUHYLRXV LWHUDn WLRQ DQG WKXV ZLOO JR LQWR WKH FRHIILFLHQWV !OfV RU VRXUFH WHUP 6 ,W LV LQ WKLV ZD\ WKDW WKH QRQOLQHDU 1DYLHU6WRNHV HTXDWLRQV FDQ EH VROYHG DV OLQHDU HTXDWLRQV LQ HDFK VWHS RI WKH LWHUDWLRQ 1RWH WKDW WKH 8V DUH QHYHU ORFDWHG DW WKH FHQWHUV RI WKH FHOO ZDOOV WKXV WKH 8V ZLWK ORZHUFDVH VXSHUVFULSWV KDYH WR EH UHSODFHG E\ WKRVH ZLWK XSSHUFDVH VXSHUn VFULSWV VHH )LJ Dff 7KH VRFDOOHG K\EULG VFKHPH ZKLFK LV D FRPELQDWLRQ RI FHQWUDO GLIIHUHQFLQJ DQG XSZLQG VFKHPHV GHVFULEHG LQ GHWDLO E\ 3DWDQNDU ZDV XVHG IRU WKH FRQYHFWLYH DQG GLIIXVLRQ WHUPV /LQHDU LQWHUSRODWLRQ ZDV XVHG IRU WKH UHSODFHPHQW LQ RWKHU WHUPV %HFDXVH RI WKH VWDJJHUHG JULG 3F DQG 3Z DUH DYDLODEOH ZLWKRXW DQ\ IXUWKHU DFWLRQ 7KH ILQDOO\ REWDLQHG )'( IRU 8 ORRNV OLNH

PAGE 61

$S 8S $H 8H $Z 8Z $1 81 $V 8V $r 8r 6F ff :KHUH $ ( E\ 0$; $Z E\ 0$; $1 E[ 0$; $V E[ 0$; .O D?[([Sf ?XZ? D[S[Zf YQ I D\1\Sf 9fO D\S\Vf 0$;P Hf 0$; X +nf 0$;Y Qf 0$; YVf f f f f $R B 6[E\ E [ f $ S f§ $ H $ A $ Q $ V $ R f W\WFn f}f W f /LQHDU LQWHUSRODWLRQ ZDV DOVR QHHGHG KHUH WR REWDLQ WKH YDOXHV RI X DQG Y DW WKH FHQWHUV RI WKH FHOO ZDOOV $W WKH FHOOV ZKLFK KDYH RQH ZDOO DQG VRPHWLPHV WZR FRLQFLGLQJ ZLWK WKH GRPDLQ ERXQGDU\ WKH QHLJKERULQJ YHORFLW\ FRPSRQHQW ZLOO ORFDWH DW WKH FHQWHU RI WKH

PAGE 62

FHOO ZDOO ,Q )LJ Ef RQH RI WKH ERXQGDU\ FHOOV KDYLQJ LWV VRXWK ZDOO FRLQFLGLQJ ZLWK WKH GRPDLQ ERXQGDU\ LV VKRZQ DV DQ H[DPSOH )RU DOO RI WKH ERXQGDU\ FHOOV SURSHU DGMXVWPHQWV WR WKH ULJKW KDQG VLGH LQ VRPH RI WKH HTXDWLRQV ff ZHUH WDNHQ DFFRUGLQJ WR WKH JHRPHWU\ DQG ERXQGDU\ FRQGLWLRQV VSHFLILHG 3DUWLFXODUO\ IRU WKH ERXQGDU\ FHOO VKRZQ LQ )LJ Ef RQH KDV $ V [ 0$; ? k L Lf§r L ; Z 0$; Yf O r\)\Vf M f 7KH FKDQJHV PDGH LQ WKH VXSHUVFULSW RI \ DQG 9V FRPH IURP WKH FKDQJH RI WKH ORFDWLRQ RI ,,V (TXDWLRQ f IRU WKLV ERXQGDU\ FHOO VKRXOG EH FKDQJHG DOVR VLQFH 8V KHUH LV NQRZQ IURP WKH ERXQGDU\ FRQGLWLRQV 7KH GHULYDWLRQ RI DOO RWKHU )'(fV DQG WKH WUHDWPHQW RI RWKHU ERXQGDU\ FHOOV DUH VWUDLJKW IRUZDUG DQG IROORZ WKH VDPH SURFHGXUH H[SODLQHG DERYH 0RUH GHWDLO DQG VRPH GLVFXVVLRQ DERXW WKH GLVFUHWL]DWLRQ VFKHPH FDQ EH IRXQG LQ 5HI &DOFXODWLRQ 3URFHGXUH %HFDXVH RI WKH DVVXPSWLRQV RI FRQVWDQW GHQVLW\ DQG WHPSHUDWXUH LQGHSHQGHQW YLVFRVLW\ WKH HQHUJ\ HTXDWLRQ GRHV QRW FRXSOH ZLWK WKH FRQWLQXLW\ DQG PRPHQWXP HTXDWLRQV 7KLV VLPSOLILHV WKH SUREOHP ,Q WKLV LQYHVWLJDWLRQ WKH YHORFLW\ DQG SUHVVXUH ILHOG ZDV ILUVW REWDLQHG ZLWKRXW LQYROYLQJ DQ\ WHPSHUDWXUH FRQVLGHUDWLRQ 7KH HQHUJ\ HTXDWLRQ ZDV WKHQ VROYHG DQG WKH WHPSHUDWXUH GLVWULEXWLRQ GHWHUPLQHG

PAGE 63

EDVHG RQ WKH FDOFXODWHG YHORFLW\ ILHOG ,W ZDV IRXQG WKDW WKH WHPSHUDWXUH FRQYHUJHV PXFK VORZHU WKDQ WKH YHORFLW\ GRHV ZKLFK VKRZHG WKDW D ELJ VDYLQJ LQ &38 WLPH ZDV DFFRPSOLVKHG E\ EHLQJ DEOH WR VROYH IRU YHORFLW\ DQG WHPSHUDWXUH VHSDUDWHO\ $ IORZFKDUW IRU VROYLQJ IRU 8 9 DQG 3 LV VKRZQ LQ )LJ 7KH FDOFXODWLRQ SURFHGXUH ZDV EHJXQ IURP DQ LQLWLDO FRQGLWLRQ ZKLFK ZDV IRU DOO FDVHV LQ WKLV LQYHVWLn JDWLRQ DV WKDW RI WKH IOXLG DW UHVW DQG WKH SUHVVXUH XQLIRUP HYHU\ZKHUH LQ WKH HQWLUH SK\VLFDO GRPDLQ ,Q WKH PHDQWLPH WKH GLPHQVLRQOHVV WLPH YN ZDV DVVLJQHG DV ]HUR DQG D EDVLF WLPH VWHS VL]H WE ZDV GHILQHG 6WDUWLQJ IURP WKLV SRLQW 8 9 DQG 3 DW UNL YN 6W ZHUH GHWHUPLQHG EDVHG RQ WKH JULG JHQHUDWHG LQ WKH SK\VLFDO GRPDLQ IRU WKLV WLPH VWHS E\ PHDQV RI WKH VWDQGDUG 6,03/( DOJRULWKP ,Q WKH LWHUDWLRQ SURFHVV WKH YDOXHV IRU WKH GHSHQGHQW YDULDEOHV HLWKHU DW WKH SUHYLRXV WLPH VWHS RU WKRVH H[LVWLQJ DW WKH VDPH UN EXW LQ WKH SUHYLRXV RVFLOODWLRQ SHULRG GHSHQGLQJ RQ ZKLFK ZDV FORVHU ZHUH FKRVHQ DV WKH LQLWLDO JXHVVHV 7\SLFDOO\ DIWHU VWHSSLQJ RII VHYHUDO RVFLOODWLRQ F\FOHV WKH YDOXHV DW WKH VDPH W LQ WKH SUHYLRXV F\FOH JDYH WKH PRVW UDSLG FRQYHUJHQFH 7KH PD[LPXP UDWLR RI WKH UHVLGXH DW HDFK JULG FHOO ZKLFK FDPH IURP VXEVWLWXn WLQJ WKH QRQFRQYHUJHG YHORFLW\ LQWR WKH FRQWLQXLW\ HTXDWLRQ f WR WKH SURGXFW RI WKH ORFDO YHORFLW\ DQG WKH FHOO ERXQGDU\ VL]H ZDV XVHG DV D FRQYHUJHQFH LQGLFDWRU RF :KHQHYHU WKH YDOXH RI RF ZDV OHVV WKDQ D SUHVFULEHG VPDOO YDOXH HF WKH VROXWLRQ ZDV FRQVLGHUHG WR KDYH FRQYHUJHG DQG RQH FRXOG SURFHHG WR WKH QH[W WLPH VWHS ,W ZDV IRXQG WKDW VRPHWLPHV WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ ZDV XQDEOH WR DFKLHYH FRQYHUn JHQFH DQG WKH YDOXH RI RF RVFLOODWHG DURXQG D FRQVWDQW YDOXH ODUJHU WKDQ HF DIWHU

PAGE 64

)LJ )ORZFKDUW IRU GHWHUPLQLQJ WKH WLPH SHULRGLF YHORFLW\ FRPSRQHQWV 8 9 DQG SUHVVXUH 3

PAGE 65

VHYHUDO WLPH VWHSV IURP WKH LQLWLDO FRQGLWLRQV RU IURP D FRQYHUJHG VROXWLRQ ZHUH WDNHQ 8QGHU WKLV VLWXDWLRQ FRQYHUJHQFH FRXOG EH UHHVWDEOLVKHG E\ D FRQWLQXDO KDOYLQJ RI WKH WLPH VWHS LQFUHPHQWV F XQWLO WKH\ ZHUH VXIILFLHQWO\ VPDOO 2QFH FRQYHUJHQFH ZDV DJDLQ REWDLQHG DQ DWWHPSW RI GRXEOLQJ W ZDV WDNHQ LQ RUGHU WR XVH DV ODUJH D WLPH VWHS VL]H DV SRVVLEOH $IWHU WKH WLPH KDG EHHQ VWHSSHG RII WR W Q D FKHFN IRU WKH FRQYHUJHQFH WR WKH ILQDO H[SHFWHG WLPH SHULRGLF VWDWH ZDV XQGHUWDNHQ 7KLV FRQVLVWHG RI HVVHQWLDOO\ GHWHUPLQLQJ WKH TXDQWLWLHV SY 1 r PD[ PD[ U ( ( .UR r XA APDG PD[ Ma 1 PD[ nPD[ a ( ( 3: O PDG PD[ M f DQG 1 APD[ L M A APD[m9f§f 1 f PD[ PD[ A PD[ Uf§ ( ( .Yf ff O PDG PD[ n ZKLFK UHSUHVHQW WKH GLIIHUHQFH EHWZHHQ WKH YDOXHV RI WKH YHORFLW\ FRPSRQHQWV DW IL[HG VSDWLDO SRVLWLRQ EHWZHHQ SHULRG Q DQG Q 1RWH WKDW WKH V\PPHWULF FRQGLWLRQV DERXW WKH YHUWLFDO FHQWHU OLQH KDYH WR EH XVHG LQ WKHVH IRUPXODV WRR ,W ZDV FRQVLGHUHG WKDW WKH SHULRGLF VROXWLRQ KDG EHHQ UHDFKHG ZKHQ ERWK RI WKHP ZHUH OHVV

PAGE 66

WKDQ D JLYHQ VPDOO YDOXH HS ,I WKH VROXWLRQ ZDV QRW SHULRGLF XQGHU WKH FULWHULD PHQWLRQHG DERYH DQRWKHU F\FOH RI FDOFXODWLRQ ZRXOG EH VWDUWHG E\ VHWWLQJ Wc DQG Y WE $Q DOPRVW LGHQWLFDO SURFHGXUH ZDV IROORZHG IRU GHWHUPLQLQJ WKH WHPSHUDWXUH GLVWULEXWLRQ EDVHG RQ WKH YHORFLW\ REWDLQHG VHH )LJ f 7KH PDMRU GLIIHUHQFH KHUH IURP WKDW IRU FDOFXODWLQJ 8 9 DQG 3 ZDV WKDW WKHUH ZHUH QR LWHUDWLRQV FRUUHVSRQGLQJ WR WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ LQ HDFK WLPH VWHS WKXV WKH YDULDEOH WLPH VWHS VL]H ZDV QRW QHHGHG IRU 7 6LQFH WKH FDOFXODWLRQ IRU WHPSHUDWXUH ZDV DVVRFLDWHG ZLWK WKH ILQDO WLPH SHULRGLF YHORFLW\ HYHQ DW WKH EHJLQQLQJ RI HDFK UXQ WKHUH ZHUH QR LQLWLDO FRQGLWLRQV H[LVWLQJ LQ WKLV VLWXDWLRQ $ OLQHDU WHPSHUDWXUH GLVWULEXWLRQ LQ WKH ? GLUHFWLRQ DQG XQLIRUP LQ U? GLUHFWLRQ ZDV XVHG DV WKH LQLWLDO JXHVV DW Y RI WKH ILUVW SHULRG $ 9HFWRUL]HG /LQH *URXS 0HWKRG IRU 6ROYLQJ WKH 6\VWHP RI $OJHEUDLF (TXDWLRQV 7KH PHWKRG IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV DOZD\V SOD\ DQ LPSRUWDQW UROH LQ DQ\ RYHUDOO QXPHULFDO PHWKRG IRU PXOWLGLPHQVLRQDO IORZ DQG KHDW WUDQVIHU SUREOHPV $ /LQH%\/LQH LWHUDWLRQ PHWKRG DOVR FDOOHG 6XFFHVVLYH /LQH 5HOD[DWLRQ PHWKRGf LV FRPPRQO\ XVHG LQ WKH 6,03/( DOJRULWKP IRU RU SUREOHPV ,Q WKLV PHWKRG RQH SLFNV D JULG OLQH VD\ LQ WKH e GLUHFWLRQ DQG DVVXPHV WKDW WKH GHSHQGHQW YDULDEOH DW LWV QHLJKERULQJ OLQHV LH WKH UM GLUHFWLRQ QHLJKERUV

PAGE 67

)LJ )ORZFKDUW IRU VROYLQJ WKH WLPH SHULRGLF WHPSHUDWXUH GLVWULEXWLRQ EDVHG RQ WKH FDOFXODWHG YHORFLW\

PAGE 68

RI WKH SRLQWV RQ WKH FKRVHQ OLQHf DUH NQRZQ IURP WKH ODVW LWHUDWLRQ %\ GRLQJ WKLV D V\VWHP RI VLPXOWDQHRXV HTXDWLRQV ZLWK D WULGLDJQDO FRHIILFLHQW PDWUL[ LV IRUPHG ZKLFK UHDGV 5+6\ ‘ DH $L 5+6\ r : 3 $-0M $,0M DH $,0M rc0M :6,0B\ $ : $3 A ,0OM :6L0\ ZKHUH \fV DUH FRHIILFLHQWV SfV DUH GHSHQGHQW YDULDEOHV DQG 5+6fV DUH WHUPV RQ WKH ULJKW KDQG VLGH ZKLFK FDQ EH H[SUHVVHG DV 5+6f an5+6\ : 1 6 $ 2 2 F & $\ r3OM$Mr3\ $\rI!\B$\r3\6\ $ 1 $ 6 $ 2 2 F& $M r $Mr 3MO $M r 3M6M f 5+6M0BM $0B\ r $,0M r APM?$,0M r A,0MA,0M 5+6,0\ a $ $,0 M r :0OM $,0M r 90OM 6c0OM 7KLV NLQG RI V\VWHP RI DOJHEUDLF HTXDWLRQV FDQ EH VROYHG E\ PHDQV RI WKH 7KRPDV DOJRULWKP D GLUHFW HOLPLQDWLRQ PHWKRG VHH $QGHUVRQf 7KH IRUPLQJ DQG VROYLQJ

PAGE 69

SURFHGXUH WKHQ ZDV XVHG IRU DOO OLQHV LQ WKH VDPH GLUHFWLRQ WKH L GLUHFWLRQ LQ RXU H[DPSOHf DQG UHSHDWHG XQWLO WKHUH ZDV QR VLJQLILFDQW FKDQJHV LQ WKH GHSHQGHQW YDULn DEOHV 7KH /LQH%\/LQH PHWKRG LV ZLGHO\ SUHIHUUHG EHFDXVH LW WDNHV WKH DGYDQWDJHV RI GLUHFW DQG LWHUDWLRQ PHWKRGV WRJHWKHU WR JDLQ D IDVW FRQYHUJHQFH DQG JRRG DFFXn UDF\ IRU WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ LWHUDWLRQV 0RUH GLVFXVVLRQ FRQFHUQLQJ WKH GHWDLOV RI WKLV PHWKRG FDQ EH IRXQG LQ 5HI 7KH DERYH GHVFULEHG PHWKRG KRZHYHU LV QRW VXLWDEOH IRU YHFWRUL]HG FDOFXODn WLRQV SRVVLEOH ZLWK VXSHUFRPSXWHUV VXFK DV WKH &5$< DQG RWKHU QHZHU PDFKLQHV 5RXJKO\ VSHDNLQJ YHFWRUL]HG FDOFXODWLRQ UHTXLUHV WKDW WKHUH LV QR GHSHQGHQF\ EHWZHHQ WKH FDOFXODWLRQ RSHUDWLRQV LQ DQ\ SDLU RI '2 ORRS LQGLFHV ZLWKLQ WKH LQQHUn PRVW '2 ORRSV 2QFH WKLV UHTXLUHPHQW LV VDWLVILHG WKH FDOFXODWLRQV DUH SHUIRUPHG DOPRVW LQ SDUDOOHO DQG WKH &38 WLPH XVHG LV UHGXFHG DFFRUGLQJO\ VHH *UHQ]VFKf $ IORZFKDUW IRU WKH /LQH%\/LQH PHWKRG ZLWK OLQHV LQ e GLUHFWLRQ LV VKRZQ LQ )LJ 7KHUH DUH WZR LQQHUPRVW '2 ORRSV ZKLFK DUH PDUNHG E\ WKH GDVKHG OLQHV LQ WKH IORZFKDUW DQG ERWK KDYH L DV WKHLU LQGLFHV DFFRUGLQJ WR WKH OLQH GLUHFWLRQ ,W LV HDV\ WR VHH WKDW A GHSHQGV RQ rrA 5+68@ LV FDOFXODWHG IURP 5+6O$ M LQ WKH ILUVW LQQHUn PRVW '2 ORRS DQG WKDW SM LV REWDLQHG IURP SLOM LQ WKH VHFRQG LQQHUPRVW '2 ORRS DQG WKDW WKLV SURFHGXUH GRHV QRW PHHW WKH UHTXLUHPHQW IRU D YHFWRUL]HG FDOFXODWLRQ $ 9HFWRUL]HG /LQH *URXS PHWKRG ZDV GHYHORSHG LQ WKLV VWXG\ WR RYHUFRPH WKH GLIILFXOWLHV PHQWLRQHG DERYH HVSHFLDOO\ VLQFH LW ZDV FOHDU WKDW WKH FRPSXWDWLRQV IRU WLPH SHULRGLF SUREOHPV LQYROYH D JUHDW QXPEHU RI WLPH VWHSV DQG WKXV VRPH DWWHQWLRQ KDYH WR EH SDLG WR WKH UHGXFWLRQ RI WKH &38 WLPH XVHG $OVR D VXSHU

PAGE 70

VWDUWf 7 A L $J $J ‘ ALM _LM 5+6 J 5+6 J 5+6 0r $ r $ nX S 3>0586 ,0A 0L L 3Jf§5+6 J $Jr ILLM f $J )LJ )ORZFKDUW IRU WKH /LQH%\/LQH LWHUDWLRQ PHWKRG IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV 'DVKHG OLQHV UHSUHVHQW WKH LQQHUPRVW '2 ORRSV

PAGE 71

FRPSXWHU UHVRXUFH &5$<<03f HPSOR\LQJ YHFWRUL]HG SURFHVVRU ZDV DYDLODEOH IRU WKLV VWXG\ WKURXJK WKH 3LWWVEXUJK 6XSHUFRPSXWLQJ &HQWHU %\ XVH RI WKLV QHZ YHFWRUL]HG PHWKRG DOO OLQHV LQ RQH GLUHFWLRQ WKH L GLUHFWLRQ IRU H[DPSOH ZHUH GLYLGHG LQWR WZR JURXSV RQH IRU WKH HYHQ DQG WKH RWKHU IRU WKH RGG QXPEHUHG OLQHVf ZKLFK OHDG WR WZR JURXSV RI VLPXOWDQHRXV DOJHEUDLF HTXDWLRQV DQG D FRUUHVSRQGLQJ WZR VHWV RI WULGLDJQDO PDWUL[HV LQ WKH VDPH ZD\ DV LQ WKH /LQH%\/LQH PHWKRG 7KH 7KRPDV DOJRULWKP FRXOG WKHQ EH DSSOLHG WR HDFK OLQH LQ RQH JURXS DW WKH VDPH WLPH DQG WKH FDOFXODWLRQ FRXOG EH YHFWRUL]HG %\ DOWHULQJ WR XSGDWH WKH GHSHQGHQW YDULDEOH IRU WKH WZR JURXSV D FRQYHUJHG VROXWLRQ FRXOG EH REWDLQHG VRPH WKUHH WLPHV IDVWHU WKDQ WKDW REWDLQHG E\ WKH /LQH%\/LQH PHWKRG 7KH IORZFKDUW RI WKH 9HFWRUL]HG /LQH *URXS PHWKRG LV VKRZQ LQ )LJ 7KHUH DUH WKUHH LQQHUPRVW '2 ORRSV PDUNHG E\ GDVKHG OLQHV LQ ZKLFK WKH ILUVW DQG WKLUG DUH FRUUHVSRQGLQJ WR WKH LQQHUPRVW '2 ORRSV LQ WKH /LQH%\/LQH PHWKRG VKRZQ LQ )LJ 7KH GHSHQGHQFLHV EHWZHHQ WKH SDLUV RI$fV 5+6fV DQG SfV DUH VWLOO RQ WKH VXEVFULSWV L WKH VDPH DV WKDW LQ WKH /LQH%\/LQH PHWKRG EHFDXVH WKH VDPH OLQH GLUHFWLRQ LV FKRVHQ +RZHYHU WKH LQGLFHV RI WKH LQQHUPRVW '2 ORRSV DUH M ZKLFK LV QRW WKH VDPH DV WKDW LQ WKH /LQH%\/LQH PHWKRG ,W LV EHFDXVH RI WKLV GLIIHUHQFH WKDW WKH UHTXLUHPHQW RI YHFWRUL]HG FDOFXODWLRQ LV VDWLVILHG 7KH RQO\ GUDZEDFN RI WKH 9HFWRUL]HG /LQH *URXS PHWKRG LV WKDW LW UHTXLUHV D UHFWDQJXODU FRPSXWDWLRQDO GRPDLQ )RUWXQDWHO\ WKLV LV DFKLHYDEOH IRU PRVW DQWLFLSDWHG SUREOHPV ZKHQ XVLQJ GRPDLQ VXEGLYLVLRQV

PAGE 72

JURXS 1RO -6 -( -0 L O +( f$Jf§$_-L_JrMJ\__M 5+6A 5+6A5+6Ar $=M $UfM 7 YI A DQM $ -$, M 7 N\ JURXS 1R -6 -( -0 L L U M f§ -6 9 r:J 7 M M I! -(A! )LJ )ORZFKDUW IRU WKH 9HFWRUL]HG /LQH *URXS LWHUDWLRQ PHWKRG IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV 'DVKHG OLQHV UHSUHVHQW WKH LQQHUPRVW '2 ORRSV

PAGE 73

:KHQ WKH 9HFWRUL]HG /LQH *URXS PHWKRG ZDV DSSOLHG WR RQH RI WKH WKUHH VXEGRPDLQV VKRZQ LQ )LJ WKH YDOXHV RI WKH GHSHQGHQW YDULDEOHV IURP SUHYLRXV LWHUDWLRQ LQ WKH QHLJKERULQJ VXEGRPDLQ ZHUH XVHG DV WKH ERXQGDU\ FRQGLWLRQ DORQJ WKH LQWHUIDFH ERXQGDU\ EHWZHHQ WKH WZR VXEGRPDLQV 7KH VDPH WUHDWPHQW ZDV XQGHUWDNHQ IRU WKH DOO WKUHH VXEGRPDLQV 6LQFH WKH VROYLQJ SURFHGXUH LV LWHUDWLYH WKH FRQWLQXLW\ FRQGLWLRQ DW VXFK ERXQGDULHV LV LQVXUHG E\ XSGDWLQJ WKH YDOXHV RI GHSHQn GHQW YDULDEOHV WKHUH DOWHUDWLYHO\

PAGE 74

&+$37(5 ,9 5(68/76 $1' ',6&866,21 7HQ FDVHV ZLWK GLIIHUHQW YDOXHV RQ WKH FRQWURO SDUDPHWHUV ZHUH LQYHVWLJDWHG LQ WKLV QXPHULFDO VWXG\ 7KRVH SDUDPHWHU YDOXHV DUH OLVWHG LQ 7DEOH 7DEOH 7KH OLVW RI FDVHV VWXGLHG LQ WKH QXPHULFDO LQYHVWLJDWLRQ &DVH 1R E FPf F FPf $[ FPf U[/ D X3 FPVf 5H FPVf 1RWH WKDW WKH FRQQHFWLQJ FKDQQHO KDV KDOI ZLGWK D OFP DQG OHQJWK / FP IRU DOO FDVHV 7KH ZRUNLQJ IOXLG LQ WKLV VWXG\ LV DVVXPHG WR EH ZDWHU ZLWK D NLQHPDWLF

PAGE 75

YLVFRVLW\ RI Y FPV GHQVLW\ S OJFP VSHFLILF KHDW &S -J. DQG 3UDQGWO QXPEHU 3U O FRUUHVSRQGLQJ WR ZDWHU DW KLJK WHPSHUDWXUHf 7KH ]HUR FURVV IORZ 9F f UHSUHVHQWV WKH FRQGXFWLRQ PRGHO DQG 5H D$[D LV WKH FRUUHVSRQGLQJ 5H\QROGV QXPEHU EDVHG RQ WKH PD[LPXP SLVWRQ YHORFLW\ 8S RD$[E DQG WKH UHVHUYRLU KDOI ZLGWK E EXW H[SUHVVHG LQ WHUPV RI :RPHUVOH\ QXPEHU D WLGDO GLVSODFHPHQW $[ DQG WKH FKDQQHO KDOI ZLGWK D WKURXJK WKH UHTXLUHPHQW RI PDVV FRQVHUYDWLRQ DQG WKH GHILQLWLRQ RI :RPHUVOH\ QXPEHU 7KH QXPHULFDO VROXWLRQV RI WKH JRYHUQLQJ HTXDWLRQV GHVFULEHG LQ &KDSWHU ,, REWDLQHG E\ XVH RI WKH 6,03/(73 DOJRULWKP H[SODLQHG LQ &KDSWHU ,,, IRU WKH WHQ FDVHV DQG VRPH GLVFXVVLRQ DERXW VHYHUDO LQWHUHVWLQJ SKHQRPHQD IRXQG IURP WKRVH UHVXOWV ZLOO EH SUHVHQWHG LQ WKLV FKDSWHU ZLWK VRPH ZRUN GRQH WR YDOLGDWH WKH QXPHULFDO UHVXOWV DW WKH EHJLQQLQJ 1RWH WKDW DOO GHSHQGHQW YDULDEOHV WKH YHORFLW\ FRPSRQHQWV 8 9 WKH VWUHDP IXQFWLRQ LIU ZKLFK LV FDOFXODWHG IURP 8 9 WKH SUHVVXUH 3 WKH 7HPSHUDWXUH 7 DV ZHOO DV WKH LQGHSHQGHQW YDULDEOHV [ \ VKRZQ LQ WKH ILJXUHV RI WKLV FKDSWHU DUH GLPHQVLRQOHVV TXDQWLWLHV ZKLFK DUH QRQGLPHQVLRQDOL]HG E\ WKH PHWKRG VKRZQ LQ HTXDWLRQV Off DOWKRXJK WKH PDUNHU r LV RPLWWHG DV PHQWLRQHG LQ VHFWLRQ 9DOLGDWLRQ RI 5HVXOWV ,Q DQ\ QXPHULFDO SURFHVV LQYROYLQJ FDOFXODWLRQ E\ FRPSXWHUV HUURUV DOZD\V DULVH ,W LV EHFDXVH RI WKLV WKDW VRPH HVWLPDWH RI WKH PDJQLWXGH RI WKHVH TXDQWLWLHV LV LQFOXGHG LQ DOO QXPHULFDO VWXGLHV

PAGE 76

6LQFH WKH SXUSRVH RI WKLV GLVVHUWDWLRQ LV WR REWDLQ D TXDOLWDWLYH JXLGDQFH WR WKH XVDJH RI WKH WKHUPDO SXPS WHFKQLTXH DQG QR GHWDLOHG H[SHULPHQWDO GDWD IRU WKH WLPH SHULRGLF YHORFLW\ SDWWHUQV DQG WHPSHUDWXUH SURILOHV LQ VXFK FRQILJXUDWLRQ H[LVW ZLWK ZKLFK WR FRPSDUH WKH QXPHULFDO GDWD RQO\ D TXDOLWDWLYH HUURU DQDO\VLV LV FDUULHG RXW 7KDW LV WR GHPRQVWUDWH WKDW WKH QXPHULFDO UHVXOWV REWDLQHG DUH TXDOLWDWLYHO\ FORVH WR WKH WUXH VROXWLRQ RI WKH JRYHUQLQJ HTXDWLRQV IRU WKH VSHFLILHG ERXQGDU\ FRQGLWLRQV 7KH QXPEHU RI JULG SRLQWV FKRVHQ LV YHU\ LPSRUWDQW IRU QXPHULFDO VWXGLHV RI KHDW WUDQVIHU LQ IOXLG IORZV ,I D IHZ JULG SRLQWV DUH WDNHQ WKH UHVXOWV ZLOO EH XQDEOH WR GLVSOD\ WKH FRUUHFW VWUXFWXUH RI WKH YHORFLW\ SDWWHUQ DQG WHPSHUDWXUH SURILOH $ ODUJH QXPEHU RI JULG SRLQWV RQ WKH RWKHU KDQG ZLOO QHHG WRR PXFK FRPSXWLQJ WLPH ZKLFK PD\ HLWKHU ZDVWH WKH FRPSXWHU UHVRXUFHV RU UHTXLUH VXFK ORQJ FDOFXODWLRQV WKDW WKH\ FDQ QRW EH KDQGOHG E\ SUHVHQW FRPSXWHUV )RU WLPH SHULRGLF SUREOHPV LW LV PRUH GHVLUDEOH WR XVH D VPDOO QXPEHU JULG SRLQWV RU LQ RWKHU ZRUGV D ODUJH JULG FHOO VL]H EHFDXVH JHQHUDOO\ D VPDOOHU WLPH VWHS VL]H LV UHTXLUHG IRU D VPDOOHU JULG FHOO VL]H LQ RUGHU WR DFKLHYH FRQYHUJHQFH ,I WKH WLPH VWHS VL]H LV YHU\ VPDOO WKH QXPEHU RI QHFHVVDU\ WLPH VWHSV SHU RVFLOODWLQJ F\FOH ZLOO EHFRPH YHU\ ODUJH DQG WKXV DQ H[WUHPHO\ ODUJH QXPEHU RI WKH WRWDO WLPH VWHSV ZLOO EH QHHGHG VLQFH VHYHUDO RVFLOODWLRQ F\FOHV DUH UHTXLUHG LQ RUGHU WR UHDFK WKH ILQDO WLPH SHULRGLF VWDWH $ UHODWLYHO\ ORZ QXPEHU RI [ QRQXQLIRUP JULG SRLQWV ZHUH XVHG LQ WKLV QXPHULFDO LQYHVWLJDWLRQ )LJ FRPSDUHV WKH VWUHDP OLQH SDWWHUQV IRU &DVH 1R DW VHYHUDO GLIIHUHQW RVFLOODWLRQ SKDVHV IRU [ JULG SRLQWV OHIW SDUW RI WKH ILJXUHf DQG [O2O JULG SRLQWV ULJKW SDUWf 7KH SURFHGXUH XVHG WR REWDLQ WKH VWUHDP OLQHV IURP

PAGE 77

JULG [ )LJ 6WUHDP OLQH SDWWHUQV IRU &DVH 1R FDOFXODWHG ZLWK GLIIHUHQW QXPEHU RI JULG SRLQWV Df JULG [? Ef JULG [ ,QFUHPHQW EHWZHHQ QHLJKERULQJ OLQHV LV $LcU LQ QRQGLPHQVLRQDO XQLWV

PAGE 78

WKH QXPHULFDOO\ FDOFXODWHG YHORFLW\ FRPSRQHQWV ZLOO EH H[SODLQHG LQ WKH QH[W VHFWLRQ 7KHUH LV VRPH GLIIHUHQFH EHWZHHQ WKH WZR IORZ SDWWHUQV EXW LW LV QRW VLJQLILFDQW 7KH FKDQJHV IURP RQH WR WKH RWKHU DUH RQO\ LQ GHWDLO DQG WKH EDVLF VWUXFWXUH RI WKH IORZV GRHV QRW FKDQJH 7KH GLPHQVLRQOHVV EDVLF WLPH VWHS VL]H WE LV WF IRU WKH JULG V\VWHP [ ZLWK VHYHUDO KDOYLQJV RFFXUULQJ IURP WKH EDVLF VL]H WR Q RQO\ LQ WKH ILUVW RVFLOODWLRQ F\FOH VHH 6HFWLRQ f ZKLOH WKH VPDOOHU EDVLF WLPH LQFUHPHQW WE N ZDV QHHGHG IRU WKH [ JULG LQ RUGHU WR JHW D FRQYHUJHG VROXWLRQ 7KH &38 WLPH XVHG IRU WKH ODWWHU LV PRUH WKDQ WLPHV RI WKDW IRU WKH IRUPHU IRU WKH VDPH FRQYHUJHQFH FULWHULRQ 7KH VOLJKW FKDQJHV LQ IORZ VWUXFWXUH DQG WKH ELJ VDYLQJ LQ FDOFXODWLRQ WLPH OHDG WR WKH GHFLVLRQ WR FKRRVH WKH VSDUVHU JULG VWUXFWXUH RI [ LQ WKH FDOFXODWLRQV IRU RWKHU FDVHV 7KH YDOXH RI HF ZKLFK LV WKH FULWHULRQ RQ WKH FRQYHUJHQFH LQGLFDWRU RF RI WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ LV VHW DW b $ W\SLFDO QXPEHU RI 9HORFLW\3UHVVXUH FRUUHFWLRQV UHTXLUHG DW HDFK WLPH VWHS LQ WKH 6,03/(73 WHFKQLTXH IRU &DVH 1R LV IRU WKLV VHWWLQJ LQ PRVW RVFLOODWLRQ F\FOHV H[FHSW WKH ILUVW RQH ,Q WKH ILUVW F\FOH HVSHFLDOO\ LQ WKH HDUO\ SDUW RI WKH F\FOH LW QHHGV PRUH 9HORFLW\3UHVVXUH LWHUDWLRQV WR REWDLQ D FRQYHUJHG VROXWLRQ IRU HF b 7KH FULWHULD IRU UHDFKLQJ WKH ILQDO WLPH SHULRGLF VWDWH ZDV WDNHQ DV b IRU WKH YHORFLW\ DQG DV b IRU WKH WHPSHUDWXUH 7ZHOYH RVFLOODWLRQ F\FOHV ZHUH W\SLFDOO\ QHHGHG IRU YHORFLW\ FRQYHUJHQFH ZKLOH F\FOHV ZHUH UHTXLUHG IRU WHPSHUDWXUH 7KHUH ZHUH WKUHH RWKHU FULWHULD QHHGHG IRU VROYLQJ WKH V\VWHP RI DOJHEUDLF HTXDWLRQV DVVRFLDWHG ZLWK YHORFLW\ SUHVVXUH DQG WHPSHUDWXUH 7KH GRPDLQ DYHUDJHG UDWLR RI WKH GLIIHUHQFH EHWZHHQ FDOFXODWHG

PAGE 79

GHSHQGHQW YDULDEOHV IURP WZR VXFFHVVLYH LWHUDWLRQV WR WKH YDOXHV RI WKH GHSHQGHQW YDULDEOHV REWDLQHG IURP WKH FXUUHQW LWHUDWLRQ ZDV FKRVHQ DV D FRQYHUJHQFH LQGLFDWRU 7KH FULWHULD IRU YHORFLW\ SUHVVXUH DQG WHPSHUDWXUH ZHUH O[OIU O[O 2n DQG [ 7 UHVSHFWLYHO\ )RU YHORFLW\ DQG WHPSHUDWXUH OHVV WKDQ LWHUDWLRQV ZHUH QHHGHG WR PHHW WKH FULWHULD EXW XVXDOO\ PRUH WKDQ LWHUDWLRQV ZHUH QHHGHG WR KDYH WKH SUHVVXUH FRQYHUJHG 7KH QXPEHUV RI LWHUDWLRQV QHHGHG WR VDWLVI\ WKHVH FULWHULD VHWWLQJV YDULHG VOLJKWO\ IURP FDVH WR FDVH IRU WKH GLIIHUHQW YDOXHV RI SDUDPHWHUV OLVWHG LQ 7DEOH KRXUV RI &38 WLPH RQ D &5$<<03 DW WKH 3LWWVEXUJK 6XSHUn FRPSXWLQJ &HQWHU ZDV W\SLFDOO\ UHTXLUHG IRU REWDLQLQJ WKH YHORFLW\ DQG SUHVVXUH YDOXHV IRU &DVH 1R XVLQJ WKH [ JULG XQGHU WKH DERYH FRQYHUJH FULWHULD $Q H[WUD KRXU ZDV QHHGHG WR ILQG WKH FRUUHVSRQGLQJ WHPSHUDWXUH ILHOG $V VKRZQ LQ 6HFWLRQ WKHUH DUH FORVHG IRUP VROXWLRQV IRU WKH YHORFLW\ DQG WHPSHUDWXUH SURILOHV LQ RVFLOODWLQJ IORZ LQ D SDUDOOHO SODWH FKDQQHO FRQQHFWHG WR HQG UHVHUYRLUV DW [ s m! 7KH IORZ LV ,' LQ WKH D[LDO GLUHFWLRQ DQG WKH YDULDWLRQV RI ERWK YHORFLW\ DQG WHPSHUDWXUH DORQJ WKH WUDQVYHUVH GLUHFWLRQ DUH LQGHSHQGHQW RI [ 1RWH WKDW WKH UDWLR RI WKH WLGDO GLVSODFHPHQW WR WKH FKDQQHO OHQJWK U[/ LQ WKLV VLWXDWLRQ LV DOZD\V ]HUR IRU ZKDWHYHU YDOXH RI $[ H[FHSW LQILQLW\ :KHQ WKH HQG UHVHUYRLUV DUH DW D ILQLWH GLVWDQFH [ s/ DQG WKXV U[/ LV QRQ]HUR D GLVWRUWLRQ RI WKH YHORFLW\ DQG WHPSHUDWXUH SURILOHV IURP ZKDW WKH\ DUH IRU LQILQLWH FKDQQHO OHQJWK ZLOO RFFXU DQG WKH DERYH [ LQGHSHQGHQFH ZLOO GLVDSSHDU 7KH GLVWRUWLRQ DQG WKH [ GHSHQGHQFH LQFUHDVH ZKHQ U[/ EHFRPHV ODUJH DQG XQGHU WKHVH FRQGLWLRQV WKH VROXWLRQV KDYH WR EH REWDLQHG QXPHULFDOO\ 2Q WKH RWKHU KDQG ZKHQ U[/ LV VPDOO WKH GLVWRUWLRQ VKRXOG EH VPDOO DQG

PAGE 80

WKH QXPHULFDO UHVXOWV IRU YHORFLW\ SURILOH DQG WHPSHUDWXUH GLVWULEXWLRQ DW WKH PLGGOH RI FKDQQHO VKRXOG EH FORVH WR WKH DQDO\WLF VROXWLRQ IRU WKH FKDQQHO RI LQILQLWH OHQJWK DV ORQJ DV RWKHU FRQGLWLRQV DUH WKH VDPH DQG RI FRXUVH WKH QXPHULFDO UHVXOWV KDYH FRQYHUJHG %DVHG RQ WKLV SRLQW D FRPSDULVRQ RI QXPHULFDO UHVXOWV REWDLQHG LQ WKH PLGGOH RI FRQQHFWLQJ FKDQQHO IRU WKH FDVH RI VPDOO U[/ ZLWK WKH DQDO\WLF VROXWLRQ XQGHU WKH VDPH D DQG VDPH LQVXODWLQJ ZDOO FRQGLWLRQV IRU WHPSHUDWXUH ZLOO VKRZ ZKHWKHU WKH QXPHULFDO VROXWLRQV DUH FRUUHFW RU QRW 7KH ILUVW FRPSDULVRQ LQYROYHV WKH FXUYHV VKRZQ LQ )LJ DQG )LJ IRU WKH YHORFLW\ FRPSRQHQW 8 DQG WHPSHUDWXUH 7 LQ &DVH 1R YHUVXV WKH RVFLOODWLRQ SKDVH RW IRU DQ HQWLUH RVFLOODWLRQ F\FOH DIWHU WKH WLPH SHULRGLF VWDWH KDV EHHQ UHDFKHG 7KH QXPHULFDO UHVXOWV ZHUH WDNHQ DW WKH SRVLWLRQ [ \ LQ WKH GLPHQVLRQOHVV FRRUGLQDWH V\VWHP VKRZQ LQ )LJ $ r SKDVH VKLIW ZDV LQWURGXFHG LQ FRPSDULQJ WKH DQDO\WLF VROXWLRQV ZLWK WKH QXPHULFDO UHVXOWV LQ RUGHU WR DOORZ WKH EHVW FRPn SDULVRQ 7KLV SKDVH VKLIW FRPHV IURP WKH GLIIHUHQFH RI SKDVH DFFRXQWLQJ PHWKRGV LQ WKH WZR VROXWLRQV WKH DQDO\WLF VROXWLRQV DUH EDVHG RQ WKH RVFLOODWLRQ SKDVH RI WKH SUHVVXUH JUDGLHQW ZKLOH WKH QXPHULFDO UHVXOWV DUH EDVHG RQ WKH SKDVH RI WKH SLVWRQ RVFLOODWLRQ 7KH DQDO\WLF VROXWLRQ LV YDOLG RQO\ IRU D FKDQQHO RI LQILQLWH OHQJWK $ XQLIRUP LQ VSDFH EXW WLPH VLQXVRLGDO SUHVVXUH JUDGLHQW H[LVWV IRU WKLV YHU\ VLPSOH JHRPHWU\ 7KH DQDO\WLF VROYLQJ SURFHGXUH VWDUWV IURP LQWURGXFLQJ WKLV SUHVVXUH JUDGLHQW LQWR WKH 1DYLHU6WRNHV HTXDWLRQ VHH 6HFWLRQ f IURP ZKLFK DOO WLPH SHULRGLF VROXWLRQV DUH REWDLQHG 7KH SKDVHV RI DOO RWKHU TXDQWLWLHV YHORFLW\ WHPSHUDWXUH HWF DUH GHOLPLWHG

PAGE 81

&XW )LJ 1RQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH -W VROLG OLQH QXPHULFDO UHVXOW GDVKHG OLQH DQDO\WLF VROXWLRQ

PAGE 82

7ZWf )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH 7 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH FRW VROLG OLQH QXPHULFDO UHVXOW GDVKHG OLQH DQDO\WLF VROXWLRQ

PAGE 83

IURP WKLV SUHVVXUH JUDGLHQW WHPSODWH )RU D JHRPHWU\ RI ILQLWH FKDQQHO OHQJWK WKH SUHVVXUH JUDGLHQW LV QR ORQJHU XQLIRUP LQ WKH HQWLUH GRPDLQ EXW XQLIRUP LQ WKH UHJLRQ IDU IURP WKH HQGV ZKHQ U[/ LV VPDOO HQRXJK DQG WKXV FDQ QRW EH LQWURGXFHG D SULRUL DW WKH EHJLQQLQJ RI WKH FDOFXODWLRQ ,QVWHDG LWV EHKDYLRU FRPHV SDUW RI WKH QXPHULFDO UHVXOWV 7KH QXPHULFDO VROYLQJ SURFHGXUH EHJLQV E\ JLYLQJ WKH PRYHPHQW RI SLVWRQV WKHLU SRVLWLRQ DQG YHORFLW\ LQ HQG UHVHUYRLUV DQG WKXV WKH RVFLOODWLRQ SKDVH RI WKH SLVWRQ RVFLOODWLRQ EHFRPHV WKH EDVLF WHPSODWH 7KH WZR WHPSODWHV GR QRW FRLQFLGH ZLWK HDFK RWKHU ,Q RWKHU ZRUGV WKH QHDUO\ XQLIRUP DQG WLPH SHULRGLF SUHVVXUH JUDGLHQW LQ WKH PLGGOH RI FRQQHFWLQJ FKDQQHO JHQHUDWHG E\ RVFLOODWLRQ RI WKH SLVWRQV LQ HQG UHVHUYRLUV GRHV QRW KDYH WKH VDPH SKDVH DV WKDW RI SLVWRQ PRYHPHQW ,QWURGXFLQJ D SKDVH VKLIW LV QHFHVVDU\ IRU WKH EHVW FRPSDULVRQ 2QH REVHUYHV IURP WKH WZR ILJXUHV DQG f WKDW WKH QXPHULFDO UHVXOWV VROLG OLQHVf PDWFK WKH DQDO\WLF VROXWLRQV GDVKHG OLQHVf YHU\ ZHOO RYHU PRVW SDUWV RI RVFLOODWLRQ F\FOH %\ FRPSDULQJ WKH FRUUHVSRQGLQJ ]HUR SRLQWV RI WKH FXUYHV LQ WKHVH WZR ILJXUHV RQH ILQGV D r QRW D r SKDVH GHOD\ RI WKH WHPSHUDWXUH FXUYHV IURP WKRVH RI YHORFLW\ ,W LV WKLV GLIIHUHQFH RI r LQ SKDVH GHOD\ WKDW PDNHV WKH QHW KHDW WUDQVIHU LQ D[LDO GLUHFWLRQ SRVVLEOH ZLWKRXW DQ DFFRPSDQ\LQJ QHW PDVV WUDQVIHU DORQJ WKH D[LV ,Q WKH UHJLRQ QHDU WKH [ D[LV FHQWHU OLQHf WKH SKDVH GHOD\ LV r VR WKDW WKHUH LV QR QHW KHDW IOX[ DORQJ WKH D[LV WKHUH VHH WKH FXUYH IRU D LQ )LJ ODff +RZHYHU IRU D ZKLFK LV QHDU WKH PD[LPXP SRLQW LQ .HII FXUYH VHH )LJ f WKH SKDVH GHOD\ EHWZHHQ WHPSHUDWXUH DQG YHORFLW\ LV r DW WKH [ D[LV ZKHUH WKH GLIIHUHQFH IURP r LV DV PXFK DV r

PAGE 84

7KH VHFRQG FRPSDULVRQ ZDV PDGH IRU WKH FXUYHV RI YHORFLW\ FRPSRQHQW 8 DQG WHPSHUDWXUH 7 YHUVXV \ )LJ DQG )LJ VKRZ WKHVH FXUYHV DW VHYHUDO RVFLOODWLRQ SKDVHV IRU &DVH 1R ZLWK U[/ 7KH VDPH SKDVH VKLIW ZDV LQWURGXFHG ZKHQ FRPSDULQJ WKH DQDO\WLF FXUYHV ZLWK QXPHULFDO UHVXOWV 7KH FXUYHV LQ Df FRPH IURP WKH DQDO\WLF VROXWLRQV (T f DQG (T ff ZKLOH WKRVH LQ Ef DUH IURP WKH QXPHULFDO UHVXOWV DW [ 2QH VHHV WKDW WKH VKDSH RI WKH FXUYHV DUH HVVHQWLDOO\ LGHQWLFDO H[FHSW IRU WKH NLQNV SURGXFHG E\ WKH ILQLWH JULG SRLQW VWUXFWXUH XVHG LQ WKH QXPHULFDO FDOFXODWLRQV 7KH YHORFLW\ FXUYHV IRU &DVH 1R DUH SUHVHQWHG LQ )LJ 7KH FXUYHV DUH VWLOO DOPRVW WKH VDPH LQ WKH UHJLRQ QHDU WKH FKDQQHO ZDOOV EXW WKHUH DUH ODUJHU GLIIHUHQFHV EHWZHHQ WKH QXPHULFDO DQG DQDO\WLF VROXWLRQV QHDU WKH FHQWHU OLQH 6LQFH U[/ LQ WKLV FDVH LW PDNHV VHQVH WKDW ODUJH GLIIHUHQFHV VKRXOG H[LVW LQ WKLV FDVH DV H[SODLQHG DERYH $ FRPSDULVRQ RI FXUYHV RI SUHVVXUH JUDGLHQW IRU &DVH 1R YHUVXV RVFLOODWLRQ SKDVH EHWZHHQ QXPHULFDO UHVXOWV DW [ DQG WKDW XVHG IRU DQDO\WLF VROXWLRQV LV VKRZQ LQ )LJ 7KH GDVKHG OLQH DJDLQ UHSUHVHQWV WKH DQDO\WLF SUHVVXUH JUDGLHQW DQG WKH VDPH SKDVH VKLIW DV DERYH ZDV LQWURGXFHG 7KH EHKDYLRU RI WKH QXPHULFDO SUHVVXUH JUDGLHQW GRHV PDWFK WKH DQDO\WLF RQH EXW WKHUH LV DQ HUURU ODUJHU WKDQ WKDW IRU YHORFLW\ DQG WHPSHUDWXUH VKRZQ LQ )LJ DQG HVSHFLDOO\ QHDU WKH SRLQWV DW ZKLFK WKH SLVWRQV FKDQJH WKHLU PRYHPHQW GLUHFWLRQ ,W ZDV IRXQG WKDW WKLV HUURU FRXOG QRW EH UHGXFHG E\ UHGXFLQJ WKH JULG VL]H DQGRU WLPH VWHS VL]H 6RPH VLPSOLILFDWLRQ LV PDGH LQ WKH 6,03/( DOJRULWKP ZKHQ WKH SUHVVXUH FRUUHFWLRQ HTXDWLRQ LV HVWDEOLVKHG IURP WKH FRQWLQXLW\ HTXDWLRQ H[SODLQHG LQ WKH $SSHQGL[ VHH

PAGE 85

8\FMWf 8\FMWf )LJ 1RQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI QRQGLPHQVLRQDO SRVLWLRQ \ DW VHYHUDO RVFLOODWLRQ SKDVHV Df DQDO\WLF VROXWLRQ Ef QXPHULFDO UHVXOW

PAGE 86

7\FMWf 7\FMWf )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH 7 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI QRQGLPHQVLRQDO SRVLWLRQ \ DW VHYHUDO RVFLOODWLRQ SKDVHV Df DQDO\WLF VROXWLRQ Ef QXPHULFDO UHVXOW

PAGE 87

8\FMWf 8\FMWf )LJ 1RQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 IRU &DVH 1R DW WKH PLGGOH RI WKH FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI QRQGLPHQVLRQDO SRVLWLRQ \ DW VHYHUDO RVFLOODWLRQ SKDVHV Df DQDO\WLF VROXWLRQ Ef QXPHULFDO UHVXOW

PAGE 88

2 FXW )LJ 1RQ GLPHQVLRQDO [ GLUHFWLRQ SUHVVXUH JUDGLHQW IRU &DVH 1R DW WKH PLGGOH RI FRQQHFWLQJ FKDQQHO DV D IXQFWLRQ RI RVFLOODWLRQ SKDVH YW VROLG OLQH QXPHULFDO UHVXOW GDVKHG OLQH DQDO\WLF VROXWLRQ

PAGE 89

DOVR UHIHUHQFH f 7KLV VLPSOLILFDWLRQ GRHV QRW DIIHFW REWDLQLQJ D JRRG SUHVVXUH ILHOG IRU VWHDG\ IORZV EXW PD\ LQWURGXFH PRUH HUURUV IRU XQVWHDG\ DQG HVSHFLDOO\ IRU RVFLOODWRU\ IORZV 9HORFLW\ )LHOG ,W ZDV IRXQG WKDW WKH YHORFLW\ ILHOG XQGHU WKH FRQGLWLRQV FRQVLGHUHG LQ WKLV VWXG\ FDQ QRW EH ZHOO SUHVHQWHG E\ WKH QRUPDO ZD\V LH E\ GUDZLQJ DUURZV DW VHYHUDO SRLQWV LQ WKH SK\VLFDO GRPDLQ ZLWK OHQJWK SURSRUWLRQDO WR WKH VSHHG DQG LQ WKH YHORFLW\ GLUHFWLRQ DW WKDW SDUWLFXODU ORFDWLRQ EHFDXVH RI WKH FRPSOH[LW\ RI WKH RVFLOODWLRQ IORZV DQG WKH ODUJH GLIIHUHQFHV LQ VSHHG DW GLIIHUHQW ORFDWLRQV ZLWKLQ WKH HQG UHVHUYRLUV 7KHUHIRUH SORWWLQJ WKH LVRYDOXH OLQHV RI WKH WLPH YDU\LQJ VWUHDP IXQFWLRQ WKH VWUHDP OLQHV ZDV FKRVHQ DV WKH PRGH RI YHORFLW\ ILHOG SUHVHQWDWLRQ )URP WKH GHILQLWLRQ RI VWUHDP IXQFWLRQ LMU[\Wf 8[\Wf GW[\ DY 9[\ D[ f WKH YDOXH RI WKH VWUHDP IXQFWLRQ LU[\Wf DW D SDUWLFXODU SRLQW [\Wf FDQ EH FDOFXODWHG IURP LOUL[A\AWf WKH YDOXH RI VWUHDP IXQFWLRQ DW LWV QHLJKERULQJ SRLQW [A\AWf 7KH IROORZLQJ IRUPXOD ZLOO GR WKLV : L.r\ L.90f X[RfAa\N 9AO\WWfG[ !f :R! ‘:f2

PAGE 90

%HFDXVH RI WKH VWDJJHUHG JULG WKH YDOXHV RI VWUHDP IXQFWLRQ DUH HDVLO\ REWDLQHG DW WKH FRUQHUV RI JULG FHOOV ZLWKRXW DQ\ LQWHUSRODWLRQ VHH )LJ f 7KH VSDFLQJ EHWZHHQ WKH VWUHDPOLQH LVRYDOXHV LV HTXDO WR D FRQVWDQW ZKLFK PD\ YDU\ IURP FDVH WR FDVH 7KLV PHWKRG RI UHSUHVHQWLQJ D WLPH GHSHQGHQW IORZ ILHOG DOORZV RQH WR WDNH DGYDQWDJH RI WKH IDFW WKDW WKH DEVROXWH YDOXH RI WKH LQVWDQWDQHRXV VWUHDPIXQFWLRQ JUDGLHQW LV HTXDO WR IORZ VSHHG DQG KHQFH WKDW UHJLRQV RI KLJK VWUHDPn OLQH FRQFHQWUDWLRQ LH GDUNHQHG UHJLRQVf FRUUHVSRQGLQJ WR SDUWV RI WKH IORZ ILHOG KDYLQJ KLJK YHORFLW\ 7KH YHORFLW\ LV DOZD\V LQ WKH WDQJHQWLDO GLUHFWLRQ RI WKH VWUHDP OLQHV DQG WKH VROLG FXUYHV UHSUHVHQW FRXQWHUFORFNZLVH URWDWLRQ WKH GRWWHG FXUYHV ]HUR URWDWLRQ DQG WKH GDVKHG FXUYHV FORFNZLVH URWDWLRQ 7KH VWUHDP OLQHV LQ WKH HQG UHVHUYRLUV DW WKH RVFLOODWLRQ SKDVHV RI r LQWHUYDOV IRU &DVH 1R DUH SUHVHQWHG LQ )LJ 2QO\ WKH IORZ SDWWHUQV DW WKH SKDVHV LQ ORZHU KDOI SHULRG rRWr DUH VKRZQ KHUH 7KH IORZ SURILOH DW DQ\ SRLQW LQ XSSHU KDOI SHULRG r RfW r FDQ EH IRXQG E\ UHIOHFWLQJ WKH SLFWXUH DW WKH FRUUHVSRQGLQJ r HDUOLHU SKDVH DERXW WKH YHUWLFDO FHQWHU OLQH LH \ D[LVf 7KH FRQVWDQW LQWHUYDO EHWZHHQ WZR QHLJKERULQJ OLQHV LV QRQGLPHQVLRQDO XQLWV ,W LV REVHUYHG WKDW DV WKH SLVWRQ LQ WKH OHIW UHVHUYRLU PRYHV WRZDUG WKH $\ FRQQHFWLQJ FKDQQHO VWDUWLQJ IURP LWV H[WUHPH SRVLWLRQ RI [ Ff§ DW RW r WKHUH LV HVVHQWLDOO\ RQH ODUJH YRUWH[ SDLU SUHVHQW ZLWK WKH IORZ DORQJ WKH KRUL]RQWDO FHQWHU OLQH LH [ D[LVf WRZDUG WKH SLVWRQ VXUIDFH $ ZHDNHU DQG VPDOOHU VHFRQG YRUWH[ SDLU RI RSSRVLWH URWDWLRQ VHQVH VLWV LQ WKH FRUQHUV QHDUHVW WKH FKDQQHO HQG )ORZ LV VHHQ OHDYLQJ WKH OHIW UHVHUYRLU VWDUWLQJ DW DERXW FRW r DQG FRQWLQXLQJ RQ WR DERXW

PAGE 91

f§n FRW r ‹JJc L6S Y &a 0H c61IHVHIHVM£ A nf AADUULn U FeAAOI r LRr frnr P6NL fW r Y %__SM a\ 7AIJLL rAbWnnn O ‘e+LJJ7IA3DLDI9 WDM )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ SKDVHV RI LQWHUYDO $RfWf r LQ WKH ORZHU KDOI F\FOH rFRWr

PAGE 92

RfW r PDLQO\ YLD D VLGH IORZ LQWR WKH FRQQHFWLQJ FKDQQHO ,Q WKH ULJKW UHVHUYRLU RQH FDQ VHH D GLVWLQFW KLJK YHORFLW\ MHW HPDQDWLQJ IURP WKH FRQQHFWLQJ FKDQQHO DQG PRYLQJ DFURVV WKH HQWLUH UHVHUYRLU DORQJ WKH [ D[LV ,W EHJLQV DW DERXW RW r WKH VDPH WLPH DV IORZ VWDUWV OHDYLQJ WKH OHIW UHVHUYRLU FRQWLQXHV IORZLQJ DORQJ WKH FKDQQHO H[LW XQWLO DW OHDVW RW r 7KH MHW FROOLGHV ZLWK WKH ULJKW SLVWRQ VXUIDFH DW DURXQG RW r DQG GLVDSSHDUV DW RW r 7KH LPDJHV RI WKHVH SLFWXUHV DUH SUHVHQW LQ WKH OHIW UHVHUYRLU DW DfW r DQG RfW r UHVSHFWLYHO\ 7KH RULJLQ IRU WKLV KLJK YHORFLW\ SXOVH LV FOHDUO\ WKH LQDELOLW\ IRU WKH OLTXLG HQWHULQJ WKH UHVHUYRLU GXULQJ WKH VXFWLRQ VWDJH WR DFFRPPRGDWH LWVHOI WR WKH ZLGHU FURVV VHFWLRQ RI WKH UHVHUYRLU DV LW ZRXOG LI WKH 5H\QROGV QXPEHU ZHUH ORZ HQRXJK VR WKDW IORZ VHSDUDWLRQ DW WKH HQWUDQFH ZRXOG QRW RFFXU VHH &DVH 1RO LQ )LJ f 7KH DSSHDUDQFH RI D YHORFLW\ MHW GXULQJ WKH LQWDNH SRUWLRQ RI WKH SLVWRQ VWURNH KDV DOVR EHHQ QRWHG LQ WKH UHODWHG H[SHULPHQWDO ZRUN E\ 'XUVW DV ZHOO DV E\ .XU]ZHJ /LQGJUHQ DQG /RWKURS 1RWH WKDW WKH ODUJH FRXQWHU URWDWLQJ YRUWH[ SDLU ILOOLQJ PRVW RI WKH UHVHUYRLUV UHPDLQV GXULQJ WKH HQWLUH RVFLOODWLRQ F\FOH DQG LWV URWDWLQJ VHQVH LV DOZD\V VXFK WKDW IOXLG PRWLRQ DORQJ WKH [ D[LV LV DOZD\V IURP WKH HQG RI FRQQHFWLQJ FKDQQHO DQG WRZDUG WKH PRYLQJ SLVWRQV QR PDWWHU ZKDW RVFLOODWLRQ SKDVH RQH LV LQ 7KH VPDOOHU VHFRQG YRUWH[ SDLU DOVR H[LVWV GXULQJ WKH HQWLUH RVFLOODWLRQ F\FOH DOWKRXJK LW LV PXFK ZHDNHU WKDQ WKH SULPDU\ RQH 7KHUH LV WKLUG YRUWH[ SDLU VKRZLQJ XS LQ )LJ ,W LV JHQHUDWHG QHDU WKH IORZ VHSDUDWLRQ SRLQW QHDU WKH FKDQQHO HQG LQ WKH ULJKW UHVHUYRLU DW DERXW RW r VKRUWO\ DIWHU WKH YHORFLW\ MHW VWDUWV SXVKHG WRZDUG WKH UHFHGLQJ SLVWRQ E\ WKH YHORFLW\ MHW DQG ILQDOO\ MRLQV WKH ODUJH YRUWH[ SDLU DW DERXW D!W F

PAGE 93

7KH QXPHULFDO GHYHORSPHQW RI WKH QRQGLPHQVLRQDO YHORFLW\ FRPSRQHQW 8 DW WKUHH GLIIHUHQW ORFDWLRQV DORQJ WKH [ D[LV ZLWKLQ WKH OHIW UHVHUYRLU XQGHU WKH FRQGLWLRQV FRUUHVSRQGLQJ WR &DVH 1R DUH SORWWHG LQ )LJ ZLWK Df DW D SRVLWLRQ RI D IURP WKH FKDQQHO HQG Ef DW D DQG Ff DW D ,W VKRZV WKDW H[FHSW DW WKH SRVLWLRQ QHDUHVW WKH FRQQHFWLQJ FKDQQHO HQG WKH YHORFLW\ UHPDLQV QHJDWLYH WKURXJKRXW WKH RVFLOODWLRQ F\FOH DQG LV WKXV DOZD\V PRYLQJ WKH OLTXLG WRZDUG WKH SLVWRQ VXUIDFH 7KH VKDUS YHORFLW\ VSLNHV VHHQ FRUUHVSRQG WR WKH SHULRGLF YHORFLW\ MHWV FURVVLQJ WKH UHVHUYRLU ZKLFK DUH VKRZQ LQ WKH ULJKW UHVHUYRLUV RI )LJ VLQFH WKH\ H[LVW LQ WKH OHIW UHVHUYRLU GXULQJ WKH XSSHU KDOI SHULRG r]RWr 7KH WLPH GHOD\ LQ WKH YHORFLW\ SHDN EHWZHHQ WKH QRQGLPHQVLRQDO SRVLWLRQ [ DQG [ LV VHFRQGV DQG WKXV LQGLFDWHV D YHORFLW\ SXOVH WUDYHOLQJ DW FPV ZKLFK LV RQO\ VOLJKWO\ OHVV WKDQ WKH UPV D[LDO YHORFLW\ RI FPV LQ WKH FKDQQHO EXW FRQVLGHUDEO\ ODUJHU WKDQ WKH SLVWRQ IDFH YHORFLW\ DW WKH VDPH LQVWDQW 7KH VWUHDP OLQHV IRU &DVH 1R DQG &DVH 1R DUH VKRZQ LQ )LJ DQG UHVSHFWLYHO\ XVLQJ WKH VDPH IRUPDW DV WKDW LQ )LJ EXW HPSOR\LQJ QRQ GLPHQVLRQDO XQLWV RI LQWHUYDO LQ WKH LVRYDOXHV RI LU 6LPLODU WR WKH UHVXOWV VKRZQ LQ )LJ WKHUH DUH WKUHH YRUWH[ SDLUV WZR UHPDLQLQJ GXULQJ WKH HQWLUH RVFLOODWLRQ F\FOH DQG RQH H[LVWLQJ LQ D SRUWLRQ RI WKH F\FOH DQG DOVR D YHORFLW\ MHW LQ ERWK FDVHV )RU &DVH 1R)LJ f WKH MHW ZLWKLQ WKH ULJKW UHVHUYRLU EHJLQV DW RfW r WKH VDPH DV LQ &DVH 1R EXW FROOLGHV ZLWK WKH SLVWRQ VXUIDFH DW DERXW RW r PXFK HDUOLHU WKDQ WKH RW r YDOXH RI &DVH 1R DQG GLVDSSHDUV DW DERXW RWr DOVR HDUOLHU WKDQ WKH RfW r UHVXOW LQ &DVH 1R 7KH WKLUG YRUWH[ SDLU VWDUWV DW DERXW

PAGE 94

ZW )LJ 7HPSRUDO DSSURDFK WR WKH ILQDO WLPH SHULRGLF VWDWH RI WKH QRQ GLPHQVLRQDO YHORFLW\ FRPSRQHQW 8[FRWf IRU &DVH 1R DW WKUHH GLIIHUHQW ORFDWLRQV Df[ ? Efr Ff [

PAGE 95

FRW r :%0 (/ f\ ? n$& RnL9 f§ &L LLn fW r ,K+nrKV I2Ann fW r \ ? 9?? P r ?_ OO66U ?\O WHOOS iL FRW r acA LMMMIH L \ R[ r AL Y FRL r __i3e fY LNVef9 &2W r 9&! 7f§ra" KN )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf LQ WKH ORZHU KDOI F\FOH rARWr

PAGE 96

n ‘! ?QQQ ??? O M R[ r OOILWIS f\ &7V !UUUUQA 3iJ3t R[ r \ &L La 7n3n I FRW r -JOL \ r9 A n n }W Y f§n???Y&&tL0 08n r r f§IW6J6D%L &7 \ AnLA6666 6A66ZO nf§f! YVIHIVDDLZO JL60LLLM9LLL R[ r D D D20 m\ f§ &a6A f§A( WV6e}VAU 6W&R6 .6 JUA\\ R[ r mf f§&? L LiePN R[ r \ _Mi_ IHVSLN WW r *66OO R[ r J-I%6 \ mA 00/ \ nnFALG )LJ 6WUHDP OLQH SDWWHUQ RI &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf LQ WKH ORZHU KDOI F\FOH rLRWr

PAGE 97

FRWr DOPRVW DW WKH VDPH WLPH DV ZKHQ WKH MHW SXOVH EHJLQV DQG D OLWWOH HDUOLHU WKDQ DW FRW r LQ &DVH 1R DQG MRLQV WKH ELJ YRUWH[ SDLU DW FRW r ZKLFK LV DOVR PXFK HDUOLHU WKDQ FRW r SKDVH SRLQW LQ &DVH 1R 7KH RQO\ GLIIHUHQFH EHWZHHQ WKH FRQGLWLRQV LQ &DVH 1R DQG &DVH 1R LV WKH GLIIHUHQW YDOXHV RI WKH WLGDO GLVSODFHn PHQW $[ &DVH 1R KDV $[ FP RU WLPHV PRUH WKDQ WKDW LQ &DVH 1R ZKLFK PHDQV WKHUH LV D ODUJHU UPV YHORFLW\ LQ WKH FKDQQHO IRU &DVH 1R ,W LV WKH IDVWHU IOXLG PRYHPHQW LQ FKDQQHO ZKLFK SURGXFHV WKH IDVWHU MHW DQG DVVRFLDWHG VKRUWHU DSSHDUDQFH RI WKH WKLUG YRUWH[ SDLU &RPSDULQJ WKH VWUHDP OLQHV RI &DVH 1R ZLWK WKRVH LQ &DVH 1R RQH FDQ QRW ILQG DV ODUJH D GLIIHUHQFH DV WKDW EHWZHHQ WKH VWUHDP OLQHV RI &DVH 1R DQG &DVH 1R 1RWH WKDW &DVH 1R KDV D DQG &DVH 1R KDV D ZKLFK LV WKH RQO\ GLIIHUHQFH EHWZHHQ WKH WZR FDVHV DQG PHDQV WKDW WKH RVFLOODWLRQ LQ &DVH 1R LV WLPHV IDVWHU WKDQ WKDW LQ &DVH 1R VLQFH WKH IOXLG YLVFRVLW\ DQG FKDQQHO ZLGWK GR QRW FKDQJH 7KH DERYH REVHUYDWLRQ UHYHDOV WKH IDFW WKDW :RPHUVOH\ QXPEHU QR ORQJHU KDV D ODUJH HIIHFW RQ WKH IORZ SURILOH LQ WKH HQG UHVHUYRLUV IRU ODUJH ED UDWLR OLNH LWV LQIOXHQFH RQ WKH D[LDO YHORFLW\ GLVWULEXWLRQV ZLWKLQ WKH FRQQHFWLQJ FKDQQHO VHH 6HFWLRQ f ,QVWHDG WKH WLGDO GLVSODFHPHQW $[ KDV PRUH LQIOXHQFH RQ WKH IORZ SURILOH LQ UHVHUYRLUV WKDQ :RPHUVOH\ QXPEHU GRHV $FWXDOO\ VLJQLILFDQW FKDQJHV LQ WKH UHVHUYRLU IORZ SDWWHUQV DUH FKDUDFWHUL]HG E\ WKH 5H\QROGV QXPEHU DV ZLOO EH VKRZQ EHORZ )LJ SUHVHQWV WKH SUHVVXUH GLVWULEXWLRQ IRU &DVH 1R DORQJ WKH [ D[LV DW VHYHUDO RVFLOODWLRQ SKDVHV RYHU WKH ZKROH SHULRG rAFRWr DQG )LJ VKRZV WKH

PAGE 98

FRUUHVSRQGLQJ VWUHDP OLQHV DW WKH VDPH SKDVH SRLQWV 7KH SUHVVXUH LQ PRVW SDUWV RI WKH FKDQQHO LV VHHQ WR YDU\ OLQHDUO\ ZLWK [ IRU PRVW RI WKH RVFLOODWLRQ SKDVHV H[FHSW WKRVH QHDU RW r DQG RfW r ZKHQ WKH SLVWRQVf PRYHPHQW FKDQJHV IURP DFFHOHUDn WLRQ LQWR GHFHOHUDWLRQ 7KH OLQHDU SUHVVXUH GLVWULEXWLRQ LQ WKH FKDQQHO FRUUHVSRQGV WR WKH H[SHFWHG FRQVWDQW SUHVVXUH JUDGLHQW WKHUH DQG DV XVHG LQ WKH DQDO\WLF VROXWLRQV VHH 6HFWLRQ f ([DPLQLQJ WKHVH ODVW WZR ILJXUHV RQH ILQGV WKDW WKH ODUJHVW SUHVVXUH GURS RFFXUV DW WKH FKDQQHO HQG GXULQJ WKDW WLPH ZKHQ WKH IOXLG HQWHUV LQWR WKH FKDQQHO WKURXJK WKDW HQG DQG ZKHQ WKH YHORFLW\ MHW H[LVWV IURP WKH RWKHU HQG ,W LV DSSDUHQW WKDW WKH SUHVVXUH GURS H[LVWLQJ DW RQH HQG RI WKH FRQQHFWLQJ FKDQQHO SURYLGHV WKH QHFHVVDU\ SRZHU WR IRUP WKH MHW IORZ DW DQRWKHU HQG 7KH WZR HQGV DOWHU WKHLU UROHV DV WKH SLVWRQV FKDQJH WKHLU GLUHFWLRQV RI PRWLRQ 7KH PDJQLWXGH RI WKH SUHVVXUH JUDGLHQW IRXQG LQ WKH FKDQQHO DJUHHV ZHOO ZLWK WKH DQDO\WLF VROXWLRQ JLYHQ E\ (T f IRU WKH VDPH YDOXHV RI SDUDPHWHUV 6WUHDP OLQHV ZLWK D VSDFLQJ LQWHUYDO RI XQLWV IRU &DVH 1RO DUH SUHVHQWHG LQ )LJ 7KH FRUUHVSRQGLQJ 5H\QROGV QXPEHU LQ WKLV FDVH KDV WKH ORZ YDOXH RI ZKLFK LV VPDOO HQRXJK WR DYRLG IORZ VHSDUDWLRQV LQ WKH FDVH RI VWHDG\ IORZ RYHU D VWHS )RU D SDUW RI WKH RVFLOODWLRQ F\FOH DERXW KDOIf ZKHQ WKH SLVWRQV PRYH HVVHQn WLDOO\ LQ RQH GLUHFWLRQ QR VHSDUDWLRQV H[LVWV DOVR LQ WKLV RVFLOODWLQJ IORZ VLWXDWLRQ 7KH IDFW WKDW IORZ VHSDUDWLRQ GRHV RFFXU RYHU UHVW RI WKH RVFLOODWLRQ F\FOH HYHQ IRU VXFK ORZ 5H\QROGV QXPEHU LV HDVLO\ XQGHUVWRRG E\ QRWLFLQJ WKDW WKLV SDUW RI RVFLOODWLRQ SHULRG LV DURXQG WKH SRLQWV DW ZKLFK WKH SLVWRQVf PRWLRQ FKDQJHV LWV GLUHFWLRQ 7KH IORZ SDWWHUQ LQ &DVH 1RO LQ ZKLFK ERWK WKH H[LVWLQJ YRUWH[ SDLUV DQG IORZ MHW KDYH

PAGE 99

[ S [O2 S [O2 S [ )LJ 1RQGLPHQVLRQDO SUHVVXUH GLVWULEXWLRQ DORQJ WKH [ D[LV LQ &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r RYHU WKH ZKROH F\FOH rADfWr

PAGE 100

)LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW WKH RVFLOODWLRQ LQWHUYDOV RI $RWf r RYHU WKH ZKROH SHULRG rARWr

PAGE 101

)LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1RO DW WKH RVFLOODWLRQ LQWHUYDOV RI $D!Wf r LQ WKH ORZHU KDOI F\FOH r]FRW r

PAGE 102

GLVDSSHDUHG LV WRWDOO\ GLIIHUHQW IURP &DVH 1R 1R DQG 1R GLVFXVVHG HDUOLHU 7KLV FOHDUO\ VKRZV 5H\QROGV QXPEHU GHSHQGHQW IORZ SDWWHUQV 7R GHWHUPLQH WKH FULWLFDO SRLQW DW ZKLFK WKH IORZ SDWWHUQ FKDQJHV IURP WKH W\SH RI &DVH 1RO WR WKDW RI &DVH 1R LV QRW LQFOXGHG LQ WKH GLVVHUWDWLRQ WRSLFV EXW LW FDQ EH IRXQG IURP WKH QXPHULFDO UHVXOWV WKDW WKH SRLQW LV EHORZ 5H RU $[D EHFDXVH WKH VWUHDP OLQHV IRU &DVH 1R QRW VKRZQf KDYH WKH VDPH VKDSH DV WKRVH RI &DVH 1R 7KH VWUHDP OLQHV LQ WKH ULJKW UHVHUYRLU DW IRXU RVFLOODWLRQ SKDVHV VHSDUDWHG E\ DQ LQWHUYDO RI $RfWf r IRU &DVH 1R ZLWK ORQJHU DQG QDUURZHU UHVHUYRLUV DUH VKRZQ LQ )LJ 7KH LQWHUYDO IRU WKH HTXDOO\ VSDFHG LVRYDOXHV RI LIU LV QRQ GLPHQVLRQDO XQLWV ,W LV FHUWDLQ WKDW YRUWH[ SDLU UHPDLQ GXULQJ WKH PRVW SDUWV RI RVFLOODWLRQ F\FOH VLQFH WKH FRUUHVSRQGLQJ 5H\QROGV QXPEHU KHUH LV WKH VDPH DV WKDW IRU &DVH 1R 7ZR DOPRVW HTXDOO\ ODUJH EXW QRW HTXDOO\ VWURQJ YRUWH[ SDLUV DUH REVHUYHG DQG LW LV VHHQ WKDW WKH IOXLG MHW QR ORQJHU LPSLQJHV RQ WKH SLVWRQ VXUIDFH $ TXDOLWDWLYH H[SODQDWLRQ IRU WKH PXOWLSOH YRUWH[ SDLU SDWWHUQ REVHUYHG LV WKDW WKH IOXLG MHW IRUPHG DW WKH FKDQQHO HQG FDQ IURP FRQWLQXLW\ FRQVLGHUDWLRQV SHQHWUDWH WKH UHVHUYRLU GXULQJ WKH RVFLOODWLRQ F\FOH E\ QR PRUH WKDQ WKH WLGDO GLVSODFHPHQW RI WKH IOXLG HOHPHQWV ZLWKLQ WKH FRQQHFWLQJ FKDQQHO ,Q WKH SUHVHQW FDVH WKLV GLVWDQFH LV FP ZKLFK LV OHVV WKDQ WKH UHVHUYRLU OHQJWK RI FP EXW DERXW HTXDO WR WKH ILUVW YRUWH[ SDLU D[LDO OHQJWK &DVH 1R ZDV WKH RQO\ VLWXDWLRQ LQ WKLV VWXG\ LQ ZKLFK RQH ILQGV PRUH WKDQ RQH HTXDOO\ ODUJH YRUWH[ SDLUV H[LVWLQJ GXULQJ PRVW SDUWV RI WKH RVFLOODWLRQ F\FOH $OO RWKHU FDVHV GR QRW KDYH WKLV VLQFH HLWKHU WKH UHVHUYRLU OHQJWK LV VKRUW FRPSDUHG ZLWK WKH WLGDO GLVSODFHPHQW RU WKH 5H\QROGV QXPEHU LV WRR ORZ

PAGE 103

FRW r )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R6 LQ WKH ULJKW UHVHUYRLU DW RVFLOODWLRQ LQWHUYDOV RI $RWf r RYHU WKH ZKROH SHULRG r]DfWr

PAGE 104

%RWK &DVH 1RO DQG &DVH 1R DUH QRW JRRG IRU WKH HQKDQFHPHQW RI KHDW WUDQVIHU E\ RVFLOODWLQJ IORZ EXW WKH\ KHOS PDNH D FOHDU XQGHUVWDQGLQJ RI WKH IORZ SDWWHUQV &DVH 1R DQG &DVH 1R SUHVHQW WKH FURVV IORZ PRGHO 6WUHDP OLQHV UHSUHVHQWLQJ WKHVH FDVHV DUH VKRZQ LQ )LJ DQG XVLQJ WKH VDPH XQLIRUP VSDFHG LVRYDOXHV RI LIU DV WKRVH LQ )LJ 7KH ZHDN FURVV IORZ FDVH &DVH 1R H[KLELWV D IORZ SURILOH ZKLFK ORRNV OLNH D VPDOO GLVWRUWLRQ VXSHUSRVHG RQ WKH IORZV RI &DVH 1R 7KLV LV H[SHFWHG VLQFH WKH FURVV IORZ YHORFLW\ KHUH LV UHODWLYHO\ VPDOO 'HVSLWH RI WKH ZHDN FURVV IORZ YHORFLW\ WKH V\PPHWU\ RI WKH IORZV DERXW WKH KRUL]RQWDO FHQWHU OLQH [ D[LVf GLVDSSHDUV 7KHUH VWLOO LV D ODUJH YRUWH[ SDLU DOWKRXJK WKH WZR VLGHV RI WKH YRUWH[ SDLU QR ORQJHU DOZD\V KDYH VDPH VL]H EXW WKH\ UHPDLQ GXULQJ WKH HQWLUH RVFLOODWLRQ F\FOH 7KH ZHDNHU DQG VPDOOHU YRUWH[ SDLU QR ORQJHU DOZD\V H[LVWV RYHU WKH HQWLUH RVFLOODWLRQ F\FOH 7KH RQH QHDU WKH FURVV IORZ HQWUDQFH GLVDSSHDUV IRU VRPH YDOXHV RI RW ZKLOH WKH RWKHU DOZD\V H[LVWV 7KHUH LV QR WKLUG YRUWH[ SDLU IRXQG ,QVWHDG D VLQJOH YRUWH[ LV JHQHUDWHG QHDU WKH FKDQQHO HQG RQ WKDW VLGH RI WKH IOXLG MHW QHDUHVW WKH FURVV IORZ H[LW ,W EHJLQV DW RW r DQG MRLQV WKH ODUJH YRUWH[ DW DERXW RfW r WKH VDPH DV WKDW LQ &DVH 1R 7KH IORZ MHW VWDUWV DW RfW r DQG GLVDSSHDUV DURXQG D!W r DOVR WKH VDPH DV WKDW LQ &DVH 1R EXW QHYHU WRXFKHV WKH SLVWRQ VXUIDFH EHFDXVH RI PRUH UHVLVWDQFH IURP WKH FURVV IORZ ,W LV QR ORQJHU VWULFWO\ DORQJ WKH KRUL]RQWDO FHQWHU OLQH EXW LV EHQW WRZDUG WKH FURVV IORZ H[LW DW WKH EHJLQQLQJ DQG ERZHG EDFN EHIRUH YDQLVKLQJ

PAGE 105

M FRW r Z%ZOI fY Uf§ If§f r r r 6LW FRW r fY Rp6!f 7L} 7 7 7 DOO6 FRW r D DWP 9 A6LO2O 6aAenn\ ))) U Wf§ L_JS__ &W r Y\ X r U Wf§ 7 7 FRW r OOOA Y } nY9? UUnn L L FRW r \ JO_JI )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RfWf r RYHU WKH ORZHU KDOI SHULRG rLR!Wr

PAGE 106

FRW r WL8O \ I9W\IF=nOt8;ItV L ,nV c%DO r \ $I3LOO O0$nf2LOfOO AALn ODf§ W r \ PPP 6\LO L )LJ 6WUHDP OLQH SDWWHUQ IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $ FRWf LQ WKH ORZHU KDOI F\FOH rLRWr

PAGE 107

7KH UHVHUYRLU VWUHDP OLQH SDWWHUQ FRUUHVSRQGLQJ WR &DVH 1R KRZHYHU LV VLJQLILFDQWO\ GLIIHUHQW IURP WKDW LQ &DVH 1R 7KHUH QR ORQJHU H[LVWV D SDLU RI YRUWLFHV LQ WKH HQG UHVHUYRLUV ,QVWHDG WKH ODUJH FRXQWHUURWDWLQJ YRUWH[ SDLU RI &DVH 1R LV UHSODFHG E\ D VLQJOH ODUJH YRUWH[ ZKLFK ILOOV DOPRVW WKH HQWLUH UHVHUYRLU RYHU WKH HQWLUH RVFLOODWLRQ F\FOH $ YHU\ ZHDN YRUWH[ RFFXUV DW WKH FRUQHU QHDU WKH FURVV IORZ HQWUDQFH EXW GRHV QRW UHPDLQ IRU WKH HQWLUH RVFLOODWLRQ F\FOH 2QO\ RQH YRUWH[ LV JHQHUDWHG E\ WKH IORZ MHW WKH VDPH DV WKDW LQ &DVH 1R EXW LW GRHV QRW MRLQ WKH ODUJH YRUWH[ DV KDSSHQV LQ &DVH 1R DQG DOVR LQ &DVH 1R ,W GRHV QRW H[LVWLQJ GXULQJ WKH ZKROH F\FOH 7KH YHORFLW\ MHW LV DOZD\V EHQW WRZDUG WKH FURVV IORZ H[LW DQG QHYHU SHQHWUDWHV KDOI RI WKH UHVHUYRLU OHQJWK EHFDXVH RI WKH SUHVHQFH RI WKH VWURQJ FURVV IORZ 7KH SRUWLRQ RI WKH RVFLOODWLRQ F\FOH GXULQJ ZKLFK WKH MHW SXOVH VKRZV XS UHPDLQV IURP FRW r WR FRW r WKH VDPH DV LQ &DVH 1R DQG &DVH 1R 7KH EHKDYLRU RI WKH YHORFLW\ MHW LQ &DVH 1R DQG &DVH 1R KDV VRPH VLPLODULWLHV ZLWK WKDW HQFRXQWHUHG LQ IOXLGLF GHYLFHV ZKHUH WKH GLUHFWLRQ RI WKH PDLQ IORZ MHW LV FRQWUROOHG E\ WKH PDJQLWXGH DQG GLUHFWLRQ RI D FURVV IORZ 7HPSHUDWXUH DQG +HDW 7UDQVIHU &RHIILFLHQWV 7KH DVVRFLDWHG WHPSHUDWXUH GLVWULEXWLRQV DQG KHDW WUDQVIHU FRHIILFLHQWV IRU WKH WKHUPDO SXPS FRQILJXUDWLRQV SUHVHQWHG E\ &DVHV 1R 1R 1R 1R DQG 1R ZHUH GHWHUPLQHG QXPHULFDOO\

PAGE 108

)LJ VKRZV WKH HTXDOO\ VSDFHG WHPSHUDWXUH FRQWRXUV IRU &DVH 1R DW SKDVH LQWHUYDOV $RfWf r RYHU WKH ORZHU KDOI SHULRG rD!Wr 6LPLODU WR WKH SURFHVV XVHG IRU YHORFLW\ WKH WHPSHUDWXUH FRQWRXUV DW YDU\LQJ RVFLOODWLRQ SKDVHV RYHU WKH XSSHU KDOI SHULRG r]RW r FDQ EH IRXQG E\ LPDJLQJ WKH FRUUHVSRQGLQJ SLFWXUH DERXW WKH \ D[LV 7KH LVRWKHUPV VKRZQ DUH DW QRQGLPHQVLRQDO LQWHUYDO RI WHPSHUDWXUH XQLWV ZLWK WKH PD[LPXP GLPHQVLRQOHVV WHPSHUDWXUH GLIIHUHQFH JLYHQ DV 7KXV RQH FDQ UHDOL]H WKDW WKH WHPSHUDWXUHV LQ WKH HQG UHVHUYRLUV DUH IDLUO\ XQLIRUP /DUJHU WHPSHUDWXUH JUDGLHQWV RFFXU RQO\ QHDU WKH UHVHUYRLU ZDOOV LQFOXGLQJ WKH SLVWRQ VXUIDFH DQG DORQJ WKH UHVHUYRLU FHQWHU OLQH $ WKHUPDO MHW LV REVHUYHG WR EH DVVRFLDWHG ZLWK WKH IOXLG MHW H[LWLQJ IURP WKH FRQQHFWLQJ FKDQQHO 7KH WKHUPDO MHW ODVWV DV ORQJ DV WKH YHORFLW\ MHW GRHV EXW WKHUH LV D SKDVH GHOD\ EHWZHHQ WKHP DV DOUHDG\ GLVFXVVHG LQ 6HFWLRQ 1RWH WKH LPSLQJHPHQW RI WKH WKHUPDO MHW RQWR WKH SLVWRQ VXUIDFH FDQ OHDG WR D YHU\ KLJK KHDW H[FKDQJH DW WKH SLVWRQ VXUIDFH 7KH IOXLG PRWLRQ SURGXFHV D JRRG PL[LQJ RI WKH WHPSHUDWXUH LQ WKH UHVHUYRLUV ZLWK WKH SUHn GRPLQDQW FRQGXFWLYH KHDW LQWHUFKDQJH EHWZHHQ WKH UHVHUYRLU IOXLG DQG WKH RVFLOODWLQJ IORZ LQ WKH FRQQHFWLQJ FKDQQHO RFFXUULQJ DFURVV WKH MHW LQWHUIDFH 7KH QRQ GLPHQVLRQDO WHPSHUDWXUH SURILOHV DORQJ WKH OLQH LQ WKH\ GLUHFWLRQ DW[ ZKLFK LV ORFDWHG LQ WKH OHIW UHVHUYRLU FORVH WR WKH FKDQQHO HQG DUH SUHVHQWHG LQ )LJ ZKHUH Df VKRZV WKH WHPSHUDWXUH DW $R!Wf r LQWHUYDOV VWDUWLQJ IURP RfW r DQG Ef JLYHV WKH WLPH DYHUDJHG YDOXH RI 7 ,W LV VHHQ WKDW WKHUH LV QR ELJ WHPSHUDWXUH FKDQJH ZLWK WLPH DORQJ PRVW SDUWV RI WKH OLQH H[FHSW QHDU WKH FHQWHU OLQH ZKHUH WKH SXOVH MHW RFFXUV 7KHUH DUH WZR ODUJH WHPSHUDWXUH GURSV DORQJ WKH OLQH RQH DW WKH

PAGE 109

FRW r 'Rn L? L ??? D / / G[ r I \nn& L 6 L c E-6FG n & c R[ r f M U A FU M -PP LLLLK ? 7LY! M 4 / A )LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r LQ WKH ORZHU KDOI F\FOH rLRWr

PAGE 110

7 7 )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH[ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG

PAGE 111

UHVHUYRLU ZDOOV DQG RQH QHDU WKH FHQWHU OLQH )URP )LJ LW LV FOHDU WKDW WHPSHUDWXUH FXUYHV DORQJ WKH\ GLUHFWLRQ OLQHV DW PRVW SRVLWLRQV RI [ FRQVWDQW ZLWKLQ ERWK OHIW DQG ULJKW UHVHUYRLUV KDYH WKH VDPH EHKDYLRU DV WKRVH VKRZQ LQ )LJ )LJV DQG )LJV DUH TXLWH VLPLODU WR )LJV IRU &DVH 1R DQG &DVH 1R UHVSHFWLYHO\ )URP WKH WHPSHUDWXUH FRQWRXUV RQH ILQGV WKDW WKH\ ORRN DOPRVW LGHQWLFDO WR &DVH 1R LH IDLUO\ XQLIRUP RYHU PRVW RI WKH UHVHUYRLUV ZLWK KLJK JUDGLHQWV DW ZDOOV DQG FHQWHU OLQH DQG D MHW SXOVH IURP WKH FKDQQHO WR SLVWRQ VXUIDFH 7KH WKHUPDO MHWV LQ &DVH 1R DQG &DVH 1R VWDUW HDUOLHU WUDYHO IDVWHU DQG ODVW ORQJHU WKDQ WKH WKHUPDO MHW GRHV LQ &DVH 1R ,Q WKHVH WZR FDVHV WKH WKHUPDO MHWV ODVW IURP FRW r WR FRW r IRU &DVH 1R DQG IURP FRW r WR FRW r IRU &DVH 1R ZKLOH WKH FRUUHVSRQGLQJ IOXLG MHWV ODVW IURP FRW r WR FRW r LQ ERWK FDVHV 7KLV SKHQRPHQRQ IXUWKHU VKRZV WKDW WKH KHDW H[FKDQJH EHWZHHQ WKH UHVHUYRLU IOXLG DQG WKH HQWHULQJ IORZ IURP FRQQHFWLQJ FKDQQHO LV GRPLQDWHG E\ FRQGXFWLRQ ZKLFK LQWURGXFHV WKH SKDVH ODJV DQG DOVR QHHGV D ORQJHU WLPH WR FRPSOHWH )URP )LJ Df DQG Df RQH REVHUYHV WKDW WKH YDULDWLRQ RI WHPSHUDWXUH ZLWK WLPH LV VWLOO VPDOO LQ WKH PRVW DUHDV RI WKH UHVHUYRLUV H[FHSW QHDU WKH FHQWHU OLQH DQG WKDW WKH WZR ODUJH WHPSHUDWXUH GURSV DORQJ WKH YHUWLFDO OLQH RFFXU DW WKH UHVHUYRLU ZDOOV DQG QHDU WKH FHQWHU OLQH 7HPSHUDWXUH ILHOGV LQ WKH WZR FDVHV IRU WKH FURVV IORZ PRGHO DUH SUHVHQWHG LQ WKH VDPH ZD\ DV WKRVH IRU WKH FRQGXFWLRQ PRGHO )LJ DQG FRUUHVSRQG WR &DVH 1R DQG )LJ DQG WR &DVH 1R

PAGE 112

)LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf r LQ WKH ORZHU KDOI F\FOH rLRWr

PAGE 113

7 7 )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG

PAGE 114

)LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RfWf LQ WKH ORZHU KDOI F\FOH rrRWr

PAGE 115

7 7 )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG

PAGE 116

U r U f§ R[ r WLL f§ R[ r n f " R FRW r ? 7 7 F R[ r UY 2fW r VUPP 4(& < 7 R[ r ‘nY /6N UUU R[ r rrYM FL + L f" f ‘" Ua0 R[ f ) nf§e DM R[ r DWPUUU r f§Bf§f§ E UUU X f n n W r ? ‘P L:rA L L fYY f c ? rf§ A RW r n 7 ‘ r: FRW r ;7 /6 LZWL 6%, O [L )LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RWf @r LQ WKH ORZHU KDOI F\FOH rLRW

PAGE 117

7 7 )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG

PAGE 118

)LJ 7HPSHUDWXUH FRQWRXUV IRU &DVH 1R DW RVFLOODWLRQ LQWHUYDOV RI $RfWf r LQ WKH ORZHU KDOI F\FOH rARfWO6r

PAGE 119

7 7 )LJ 1RQGLPHQVLRQDO WHPSHUDWXUH SURILOH IRU &DVH 1R DORQJ WKH YHUWLFDO OLQH [ LQ WKH OHIW UHVHUYRLU Df DW VHYHUDO RVFLOODWLRQ SKDVHV Ef WLPH DYHUDJHG

PAGE 120

7KH WHPSHUDWXUH GLVWULEXWLRQ LQ &DVH 1R LV YHU\ XQLIRUP LQ PRVW RI WKH HQG UHVHUYRLUV H[FHSW DW WKH FURVV IORZ HQWUDQFH DQG QHDU WKH WKHUPDO SXOVH 7KH DYHUDJH WHPSHUDWXUH RYHU WKH HQWLUH UHVHUYRLU KDV WKH DSSUR[LPDWH YDOXH DW WKH RXWIORZ VHFWLRQ RI WKH FURVV IORZ DQG LV DOVR QHDUO\ HTXDO WR WKH YDOXH DW WKH FKDQQHO HQG ,W LV VKRZQ E\ )LJ WKDW WKH FURVV IORZ KDV D ELJ WHPSHUDWXUH GURS ZKHQ ILUVW HQWHULQJ WKH UHVHUYRLU WKHQ KDV DOPRVW QR FKDQJH XQWLO UXQQLQJ LQWR WKH WKHUPDO MHW JHWV DQRWKHU WHPSHUDWXUH GURS IURP WKH MHW DQG PDLQWDLQV WKH QHZ WHPSHUDWXUH YDOXH XQWLO H[LWLQJ WKURXJK WKH RSSRVLWH ZDOO )RU WKH FURVV IORZ PRGHO WKH WHPSHUDWXUH DORQJ RWKHU YHUWLFDO OLQHV LV DOVR DOPRVW FRQVWDQW DV FDQ EH ILJXUHG RXW E\ H[DPLQLQJ )LJ 7KH WHPSHUDWXUH ILHOG VKRZQ LQ )LJ IRU &DVH 1R KDV DOPRVW WKH VDPH FKDUDFWHULVWLFV DV WKDW IRU &DVH 1R ZLWK D IHZ GLIIHUHQFHV 2QH GLIIHUHQFH LV WKH ORZHU XQLIRUPQHVV RI WKH WHPSHUDWXUH LQ WKH UHVHUYRLUV DQG DQRWKHU LV WKDW D KLJK WHPSHUDWXUH JUDGLHQW H[LVWV DW WKH FURVV IORZ HQWUDQFH LQWR WKH UHVHUYRLU %RWK RI WKHVH FKDQJHV FRPH IURP WKH KLJK YHORFLW\ RI WKH FURVV IORZ LQ &DVH 1R ,W LV EHFDXVH RI WKLV KLJK YHORFLW\ WKDW WKH FURVV IORZ LQ &DVH 1R NHHSV LWV RULJLQDO WHPSHUDWXUH IRU D OLWWOH GLVWDQFH DIWHU LW FRPHV LQWR WKH UHVHUYRLU ,W WKHQ VWDUWV WKH VDPH SURFHGXUH IRU WHPSHUDWXUH YDULDWLRQ DV WKDW RI WKH FURVV IORZ LQ &DVH 1R 7KHVH DUH DOVR SUHVHQWHG LQ )LJ 1RWH WKDW WKH FURVV IORZ YHORFLW\ 9F FPV LQ &DVH 1R 7KLV LV VWLOO TXLWH VPDOO FRPSDUHG WR WKH YDOXH FPV PLV D[LDO YHORFLW\ YDOXH H[LVWLQJ LQ WKH FKDQQHO

PAGE 121

2QH VHHV D WRWDOO\ GLIIHUHQW WHPSHUDWXUH ILHOG IRU &DVH 1R LQ )LJ IURP WKDW RI &DVH 1R LQ )LJ DOWKRXJK WKH YHORFLW\ ILHOGV IRU WKH WZR FDVHV DUH FORVH WR HDFK RWKHU VHH )LJ DQG f 2Q WKH RWKHU KDQG YHU\ FORVH WHPSHUDWXUH ILHOGV DUH IRXQG IRU &DVH 1R DQG &DVH 1R ZKLFK KDYH D WRWDOO\ GLIIHUHQW YHORFLW\ ILHOG VHH )LJ DQG f 7KLV SKHQRPHQRQ VKRZV WKDW WKH WHPSHUDWXUH GLVn WULEXWLRQ LQ WKH HQG UHVHUYRLUV LV PDLQO\ DIIHFWHG E\ WKH WHPSHUDWXUH ERXQGDU\ FRQGLWLRQV DQG OHVV E\ WKH YHORFLW\ ILHOG :LWK WKH YHORFLW\ DQG WHPSHUDWXUH ILHOGV RQ KDQG RQH FDQ FDOFXODWH WKH KHDW WUDQVIHUU UDWH WKURXJK WKH FKDQQHO E\ WKH VDPH ZD\ DV XVHG IRU DQDO\WLF VROXWLRQ ,Q SDUWLFXODU RQH KDV 4 rD I!&S7K7Ff 7& LF -r 8\Wf7\WfG\ GMVWf f ZKHUH 8 7 DQG \ DUH VWLOO QRQGLPHQVLRQDO EXW 4 LV GLPHQVLRQDO DQG H[SUHVVHG LQ :DWWV 7KH KHDW WUDQVIHU FRHIILFLHQW EHWZHHQ WKH FRQQHFWLQJ FKDQQHO HQGV ZLOO WKHQ EH REWDLQHG E\ K 4 D7K7Ff f 7KH QXPHULFDO KHDW WUDQVIHU FRHIILFLHQWV GHILQHG E\ KQ REWDLQHG IURP WKH QXPHULFDO UHVXOWV RI &DVHV 1R DQG DUH OLVWHG LQ 7DEOH KD WKHUH LV WKH KHDW WUDQVIHU FRHIILFLHQW FDOFXODWHG DFFRUGLQJ WR WKH YDOXHV RI HIIHFWLYH WKHUPDO

PAGE 122

GLIIXVLYLW\ .Jr IURP WKH DQDO\WLF VROXWLRQ GLVFXVVHG LQ 6HFWLRQ DQG WKH FRUUHVSRQGLQJ YDOXHV RI SDUDPHWHUV XVHG LQ WKH QXPHULFDO LQYHVWLJDWLRQ 7KH FRUUHVSRQGLQJ DQJXODU IUHTXHQF\ X WKH WLGDO GLVSODFHPHQW $[ DQG DSSUR[LPDWH QRQ GLPHQVLRQDO PHDQ WHPSHUDWXUH 7 LQ WKH OHIW UHVHUYRLU DUH DOVR OLVWHG LQ WKH WDEOH IRU FRQYHQLHQFH RI GLVFXVVLRQ 7DEOH +HDW WUDQVIHU FRHIILFLHQWV IRU WKH VHYHUDO FDVHV LQ WKH VWXG\ &DVH 1R KQ :FP .f KD :FP .f Rf UDGVf $[ FPf 7 7KH GDWD LQ 7DEOH VKRZ WKDW WKH KHDW WUDQVIHU FRHIILFLHQWV DFKLHYDEOH E\ RVFLOODWLQJ IORZV LQ WKHUPDO SXPS IRU PRVW RI WKHVH FDVHV DUH LQ WKH RUGHU RI V :DWWV SHU VTXDUH PHWHUV SHU GHJUHH ZKLFK LV D YDOXH RQO\ SRVVLEOH LQ FRQYHFWLYH KHDW WUDQVIHU ZKHQ XVLQJ SKDVH FKDQJHV DQG LV WKH VDPH RUGHU DV WKDW SRVVLEOH YLD KHDW SLSHV 7KH &DVH 1R SURGXFHV DQ HYHQ ODUJHU YDOXH RI KQ E\ D IDFWRU RI WHQ WKXV PDNLQJ LW SRVVLEOH LQ WKLV FDVH WR WUDQVIHU PRUH KHDW WKDQ YLD KHDW SLSHV ,W LV H[SHFWHG WKDW WKH KLJKHU WKH WLGDO GLVSODFHPHQW $[ WKH ODUJHU ZLOO EH WKH KHDW WUDQVIHU FRHIILFLHQW +RZHYHU KQ LV QR ORQJHU H[DFWO\ SURSRUWLRQDO WR $[f IRU

PAGE 123

IL[HG R DV LV KD VHH GDWD IRU &DVH 1R DQG &DVH 1Rf EHFDXVH RI WKH QRQ]HUR YDOXHV RI U[/ WKHUH ,W LV DOVR EHFDXVH RI WKH QRW YHU\ VPDOO YDOXH RI U[/ WKDW WKH \ GLUHFWLRQ YHORFLW\ FRPSRQHQW 9 GRHV QRW WRWDOO\ YDQLVK 7KLV FDXVHV PRUH KHDW H[FKDQJH EHWZHHQ WKH FRUH UHJLRQ DQG WKH ERXQGDU\ OD\HUV DQG WKHUHIRUH SURGXFHV D KLJKHU YDOXH RI KHDW WUDQVIHU FRHIILFLHQW KQ WKDQ IRU KD LQ HDFK RI WKH FDVHV FRQVLGHUHG +DYLQJ H[DPLQHG WKH KQ DQG 7 LQ WKUHH FDVHV RI WKH FRQGXFWLRQ PRGHO RQH ILQGV WKDW ORZHU KHDW WUDQVIHU FRHIILFLHQW FRUUHVSRQGV WR KLJKHU PHDQ WHPSHUDWXUH LQ WKH ULJKW UHVHUYRLU DQG YLFH YHUVD %HFDXVH WKH KHDW WUDQVIHUUHG WKURXJK WKH FRQn QHFWLQJ FKDQQHO LV VXSSOLHG LQWR WKH V\VWHP E\ FRQGXFWLRQ DFURVV WKH UHVHUYRLU ZDOOV ZKLFK LV GHSHQGHQW RQ WKH WHPSHUDWXUH GURS IURP WKH ZDOOV WR WKH IOXLG D ORZHU PHDQ WHPSHUDWXUH LQ WKH ULJKW UHVHUYRLU IOXLG LV QHFHVVDU\ LQ RUGHU WR DEVRUE HQRXJK KHDW IURP WKH ZDOOV DW IL[HG WHPSHUDWXUH DQG WKHQ WR WUDQVIHU LW WR WKH RWKHU UHVHUYRLU 1RWH WKDW WKH ODUJHVW WHPSHUDWXUH GURS LQ WKH WKUHH FDVHV LV b RI WKH KDOI WRWDO GURS IRU WKH HQWLUH V\VWHP 7KLV LV QRW VR ELJ WKDW DQ REYLRXV ERWWOH QHFN IRU KHDW WUDQVIHU H[LVWV DW WKH UHVHUYRLU ZDOOV 7KH UHDVRQ IRU WKLV LV WKDW WKH VL]H RI WKH UHVHUYRLU ZDOOV LV ODUJH HQRXJK WR SURYLGH WKH UHTXLUHG DUHD IRU VXSSO\LQJ HQRXJK KHDW 7KH UHTXLUHPHQW IRU ODUJH VL]H UHVHUYRLUV GRHV QRW H[LVW LQ WKH FURVV IORZ PRGHO EHFDXVH RI WKH GLIIHUHQW ZD\ RI KHDW VXSSO\ QDPHO\ FRQYHFWLRQ E\ FURVV IORZV ,QVWHDG D ODUJH HQRXJK FURVV IORZ YHORFLW\ 9F LV QHFHVVDU\ LQ RUGHU WR SURYLGH HQRXJK KHDW )RU WRR VPDOO D YDOXH RI 9F LW LV VWLOO SRVVLEOH WKDW WKHUH LV D ERWWOH QHFN LQ

PAGE 124

WKLV PRGHO DV KDSSHQV LQ &DVH 1R ZKHUH WKH WHPSHUDWXUH GURS DW WKH FURVV IORZ HQWUDQFH LV b RI WKH KDOI WHPSHUDWXUH GLIIHUHQFH IRU WKH ZKROH V\VWHP DQG WKHUHIRUH WKH DPRXQW RI KHDW WUDQVIHUUHG LV HYHQ VPDOOHU WKDQ WKDW LQ &DVH 1R 2Q WKH RWKHU KDQG LI WKH SXUSRVH IRU XVLQJ WKH WKHUPDO SXPS LV WR FRRO WKH OLTXLG FRPLQJ LQWR WKH ULJKW UHVHUYRLU WKH FRQGLWLRQV LQ &DVH 1R JLYH D JRRG H[DPSOH &DVH 1R KDV WKH KLJKHVW KHDW WUDQVIHU FRHIILFLHQW DPRQJ DOO WKH FDVHV LQ WKLV VWXG\ ZKLFK PHDQV WKDW D FRPELQDWLRQ RI KLJK ODUJH $[ DQG ODUJH 9F LQ D FURVV IORZ PRGHO LV WKH SUHIHUUHG PRGHO RI KHDW WUDQVIHU HQKDQFHPHQW E\ RVFLOODWLQJ IORZV LQ D WKHUPDO SXPS

PAGE 125

&+$37(5 9 &21&/8',1* 5(0$5.6 7KH HQKDQFHPHQW RI KHDW WUDQVIHU LV DQ ROG WRSLF IRU HQJLQHHUV DQG VFLHQWLVWV VSHFLDOO\ LQ WKH WKHUPDO VFLHQFHV ,Q UHFHQW \HDUV QXPHULFDO VLPXODWLRQ KDV EHFRPH PRUH DQG PRUH SRSXODU DV D UHVHDUFK WRRO IRU VHHNLQJ QHZ PHWKRGV WR HQKDQFH KHDW WUDQVIHU ,Q WKLV GLVVHUWDWLRQ D QXPHULFDO VLPXODWLRQ RI D VLPSOLILHG 7KHUPDO 3XPS PRGHO IRU HQKDQFLQJ KHDW WUDQVIHU ZDV FDUULHG RXW 6RPH LQWHUHVWLQJ SKHQRPHQD ZHUH GLVFRYHUHG IURP WKH QXPHULFDO UHVXOWV 7KH YHORFLW\ ILHOG LQ HDFK UHVHUYRLU ZDV IRXQG WR EH FKDUDFWHUL]HG E\ D KLJK YHORFLW\ MHW SXOVH HPDQDWLQJ IURP WKH FKDQQHO HQG GXULQJ D SRUWLRQ RI WKH RVFLOODWLRQ F\FOH VWDUWLQJ ZKHQ WKH SLVWRQ UHFHGHV IURP WKH FKDQQHO HQG DQG RQH RU PRUH GHSHQGLQJ RQ WKH UDWLR RI WLGDO GLVSODFHPHQW DQG WKH UHVHUYRLU OHQJWK FRXQWHUURWDWLQJ YRUWH[ SDLUVf H[LVWLQJ GXULQJ WKH ZKROH RVFLOODWLRQ F\FOH DV ORQJ DV WKH 5H\QROGV QXPEHU EDVHG RQ WKH PD[LPXP RI SLVWRQ YHORFLW\ DQG UHVHUYRLU KDOI ZLGWK LV ODUJH HQRXJK DQG WKH FURVV IORZ YHORFLW\ LV VPDOO HQRXJK )RU YHU\ VPDOO 5H\QROGV QXPEHU WKH MHW SXOVH GLVDSSHDUV WRWDOO\ DQG RQO\ RQH YRUWH[ SDLU VKRZV XS LQ WKH UHVHUYRLUV QHDU WKH FKDQQHO H[LWV GXULQJ WKDW SRUWLRQ RI WKH RVFLOODWLQJ F\FOH ZKHQ WKH SLVWRQV FKDQJH WKHLU PRYHPHQW GLUHFWLRQ 8QGHU WKH FRQGLWLRQV RI ODUJH FURVV IORZ YHORFLW\ WKH IOXLG MHW VWLOO H[LVWV EXW LV EHQW LQ WKH GLUHFWLRQ RI WKH FURVV IORZ D VLQJOH ODUJH YRUWH[ H[LVWV

PAGE 126

GXULQJ WKH ZKROH F\FOH DQG D VPDOO RQH FDQ EH IRXQG RQO\ GXULQJ SDUW RI WKH F\FOH ,W LV DOVR VKRZQ IURP WKH SUHVHQWHG FRPSXWHU JUDSKLFV RI WKH VWUHDP OLQHV WKDW WKH FKDQJH RI :RPHUVOH\ QXPEHU GRHV QRW DIIHFW WKH IORZ SDWWHUQ LQ UHVHUYRLU DV PXFK DV LW GRHV LQ WKH FKDQQHO EXW WKDW WKH FKDQJH LQ WLGDO GLVSODFHPHQW HVWDEOLVKHG E\ FKDQJLQJ WKH SLVWRQ GLVSODFHPHQW DQG DOVR D FKDQJH LQ FURVV IORZ YHORFLW\ KDYH D VWURQJ DIIHFW RQ UHVHUYRLU IORZ VWUXFWXUH 7HPSHUDWXUH SURILOHV ZHUH DOVR REWDLQHG IRU VHYHUDO FDVHV 2QH ILQGV WKDW WKH WHPSHUDWXUH LQ WKH HQG UHVHUYRLUV LV IDLUO\ XQLIRUP DQG WKDW D WKHUPDO MHW DVVRFLDWHG ZLWK WKH YHORFLW\ MHW H[LWV LQ WKH UHVHUYRLU GXULQJ SDUW RI WKH RVFLOODWLRQ F\FOH ,Q WKH FDVH RI FRQVWDQW WHPSHUDWXUH DORQJ WKH UHVHUYRLU ZDOOV DQG SLVWRQ VXUIDFH FRQGXFWLRQ PRGHOf ODUJH WHPSHUDWXUH JUDGLHQWV H[LVW QHDU WKH ZDOO DQG FHQWHU OLQH ZKLOH LQ WKH FDVH RI FURVV IORZ D KLJK WHPSHUDWXUH JUDGLHQW H[LVWV LQ WKH UHJLRQ QHDU WKH FURVV IORZ HQWUDQFHV 7KH WHPSHUDWXUH GLVWULEXWLRQ LQ WKH HQG UHVHUYRLUV PDLQO\ GHSHQGV RQ WKH WHPSHUDWXUH ERXQGDU\ FRQGLWLRQV LQVWHDG RI WKH YHORFLW\ ILHOG DVVRFLDWHG ZLWK LW +HDW WUDQVIHU FRHIILFLHQWV EHWZHHQ WKH FKDQQHO HQGV ZHUH GHWHUPLQHG XVLQJ ZDWHU DV WKH ZRUNLQJ IOXLG ,W ZDV IRXQG WKDW LQ PRVW FDVHV LQYHVWLJDWHG WKH KHDW WUDQVIHU FRHIILFLHQWV UHDFK WKH RUGHU RI :DWWV SHU VTXDUH PHWHU SHU GHJUHH DQG WKH KLJKHVW YDOXHV ZDV DV PXFK DV [R :P LQ WKH FURVV IORZ PRGHO ZKLFK LV VXSHULRU WR WKH KHDW WUDQVIHU FRHIILFLHQW DFKLHYDEOH ZLWK KHDW SLSHV 7KH KLJK RVFLOODWLRQ IUHTXHQF\ FRPELQHG ZLWK ODUJH WLGDO GLVSODFHPHQW ZLOO SURGXFH PRUH KHDW WUDQVIHUUHG WKURXJK WKH FRQQHFWLQJ FKDQQHO EXW UHTXLUHV D ODUJH UHVHUYRLU VL]H

PAGE 127

FRPSDUHG WR WKH FKDQQHO ZLGWK LQ WKH FRQGXFWLRQ PRGHO RU D ODUJH FURVV IORZ YHORFLW\ WR VXSSO\ HQRXJK KHDW LQ WKH FURVV IORZ PRGHO $ JRRG XQGHUVWDQGLQJ RI WKH IORZ VWUXFWXUH DQG WHPSHUDWXUH GLVWULEXWLRQ LQ WKH HQG UHVHUYRLUV REWDLQHG IURP WKH QXPHULFDO UHVXOWV SURYLGHV PRUH LQIRUPDWLRQ RQ WKH XVH RI VLQXVRLGDO RVFLOODWLQJ IORZV IRU WKH HQKDQFHPHQW RI KHDW WUDQVIHU 7KH LQIRUPDWLRQ PD\ DOVR ILQG DSSOLFDWLRQV IRU IORZ VWXGLHV RQ LQWHUQDO FRPEXVWLRQ HQJLQHV DQG GLVSODFHPHQW SXPSV RU RWKHU UHODWHG FRQILJXUDWLRQV 0HDQZKLOH D PRGLILFDWLRQ RI WKH ZLGHO\ XVHG 6HPL,PSOLFLW 0HWKRG IRU 3UHVVXUH /LQNHG (TXDWLRQV 6,03/(f ZKLFK KDV EHHQ WHUPHG 6,03/(73 IRU 7LPH 3HULRGLFf ZDV PDGH WR WDNH WKH WLPH SHULRGLFLW\ DQG ERXQGDU\ PRYHPHQWV LQWR DFFRXQW 9DULDEOH WLPH VWHS VL]HV DUH XVHG LQ WKH 6,03/(73 IRU LGHQWLFDO FRQn YHUJHQFH LQ HDFK WLPH VWHS 7ZR W\SHV RI LQLWLDO JXHVVHV IRU LWHUDWLYHO\ VROYLQJ WKH 1DYLHU6WRNHV HTXDWLRQV DUH XVHG GHSHQGLQJ RQ ZKLFK LV FORVHU WR WKH ILQDO SHULRGLF YHORFLW\ DQG SUHVVXUH ILHOG $ 9HFWRUL]HG /LQH *URXS PHWKRG IRU VROYLQJ WKH DVVRFLDWHG V\VWHP RI DOJHEUDLF HTXDWLRQV ZDV GHYHORSHG DQG XVHG LQ FRQMXQFWLRQ ZLWK D PXOWLEORFN DOJRULWKP WR VSHHG XS WKH FDOFXODWLRQV RQ D &5$<<03 VXSHUn FRPSXWHU ,W ZDV IRXQG WKDW WKH 6,03/(73 LV VXFFHVVIXO IRU WKH WLPH SHULRGLF IORZ DQG KHDW WUDQVIHU SUREOHPV FRQVLGHUHG LQ WKLV GLVVHUWDWLRQ DQG WKHUH VKRXOG EH QR PDMRU GLIILFXOW\ LQ H[WHQGLQJ WKH SUHVHQW PHWKRG WR SUREOHPV DQGRU WR RWKHU PHWKRGV UHODWHG WR WKH 6,03/( DOJRULWKP DV ZHOO DV WKH RWKHU GLVFUHWL]LQJ VFKHPHV )XUWKHU UHVHDUFK WRSLFV LQ WKH VLPXODWLRQ RI WKHUPDO SXPS SURFHVVHV DQG UHODWHG SK\VLFDO SKHQRPHQD VKRXOG LQFOXGH WXUEXOHQFH PRGHOLQJ WHPSHUDWXUH

PAGE 128

GHSHQGHQW YLVFRVLW\ QRQUHFWDQJXODU UHVHUYRLUV DQG PXOWLFKDQQHO FRQQHFWLRQV 7KH H[WHQVLRQ WR WKH GHYHORSPHQW RI QXPHULFDO PHWKRGV IRU RWKHU PRUH FRPSOLFDWHG WLPH SHULRGLF UHFLUFXODWLQJ IORZV RI LQFRPSUHVVLEOH YLVFRXV IOXLGV ZRXOG ILUVW UHTXLUH DQ LQFUHDVH LQ WKH DFFXUDF\ RI FDOFXODWLRQV IRU WKH LQVWDQWDQHRXV SUHVVXUH ILHOG 8VLQJ 6,03/(5 LQVWHDG RI 6,03/( PD\ LPSURYH WKH FDOFXODWLRQ RWKHUZLVH LW ZLOO EH QHFHVVDU\ WR PDNH D GLUHFW FRQQHFWLRQ EHWZHHQ WKH SUHVVXUH ILHOGV LQ WZR VXFFHVVLYH WLPH VWHSV 7KH FDOFXODWLRQV LQYROYLQJ SUHVVXUH FRUUHFWLRQV FRQYHUJH PXFK PRUH VORZO\ WKDQ HLWKHU YHORFLW\ RU WHPSHUDWXUH $Q DSSOLFDWLRQ RI PXOWLJULG WHFKQLTXHV PD\ KHOS VSHHG XS VXFK FDOFXODWLRQV

PAGE 129

$33(1',; 7+( 9(/2&,7<35(6685( &255(&7,21 7KH LQFRPSUHVVLEOH IOXLG DVVXPSWLRQ WKDW WKH IOXLG GHQVLW\ LV LQGHSHQGHQW RI SUHVVXUH LV FRPPRQO\ XVHG LQ WKH WKHRUHWLFDO VWXG\ RI IORZ DQG KHDW WUDQVIHU SUREOHPV LQYROYLQJ OLTXLGV ,W ERWK ZHOO UHSUHVHQWV WKH UHDO SURSHUW\ RI OLTXLGV DQG DOVR PXFK VLPSOLILHV WKH JRYHUQLQJ HTXDWLRQV 7KH GLPHQVLRQDO JRYHUQLQJ HTXDWLRQV XQGHU WKH DOO DVVXPSWLRQV PHQWLRQHG LQ 6HFWLRQ UHDG 8[ 9\ $Of 8 88f; 98? S[ 9 8f 8f $f 9W 89f; ).fA Y .f 9$f 7W 87f; )7fA 7A 7\\f $f 7KHUH DUH IRXU HTXDWLRQV FRUUHVSRQGLQJ WR IRXU XQNQRZQV VR WKDW WKH V\VWHP RI HTXDWLRQV LV FRPSOHWH 1RWH WKDW KHUH SUHVVXUH 3 UHSODFHV GHQVLW\ S WR EHFRPH WKH GHSHQGHQW YDULDEOH JRYHUQHG E\ WKH FRQWLQXLW\ HTXDWLRQ EXW LW GRHV QRW DSSHDU LQ WKH FRQWLQXLW\ HTXDWLRQ 7KH UHODWLRQVKLS EHWZHHQ SUHVVXUH DQG YHORFLW\ LQ

PAGE 130

,OO LQFRPSUHVVLEOH IORZV FDQ EH H[SUHVVHG VR WKDW RQO\ WKH SUHVVXUH ILHOG ZKLFK VDWLVILHV WKH JLYHQ ERXQGDU\ FRQGLWLRQV ERWK IRU LWVHOI DQG IRU YHORFLW\ ZLOO SURGXFH D FRUUHFW YHORFLW\ ILHOG ZKLFK VDWLVILHV QRW RQO\ WKH ERXQGDU\ FRQGLWLRQV EXW DOVR WKH FRQWLQXLW\ HTXDWLRQ %DVHG RQ WKLV FRQFHSW D 9HORFLW\3UHVVXUH FRUUHFWLRQ SURFHGXUH ZDV FRQVWUXFWHG LQ WKH 6,03/( DOJRULWKP DV IROORZV f $ JXHVV IRU WKH SUHVVXUH GLVWULEXWLRQ LV VXEVWLWXWHG LQWR WKH PRPHQWXP HTXDWLRQV $f DQG $f DQG WKH FRUUHVSRQGLQJ YHORFLW\ FRPSRQHQWV DUH VROYHG RXW XQGHU WKH YHORFLW\ ERXQGDU\ FRQGLWLRQV JLYHQ f ,Q JHQHUDO WKH UHVXOWDQW YHORFLW\ ILHOG GRHV QRW VDWLVI\ WKH FRQWLQXLW\ HTXDWLRQ $Of VLQFH WKH JXHVVHG SUHVVXUH LV XVXDOO\ LQFRUUHFW 7KHUH ZLOO EH VRPH LQIRUPDWLRQ DERXW ZKHUH DQG KRZ WKH LQFRUUHFW VFDOHU SUHVVXUH ILHOG VKRXOG EH FKDQJHG ZKLFK LV LQFOXGHG LQ WKH UHVLGXDO REWDLQHG E\ VXEVWLWXWLQJ WKH LQFRUUHFW YHORFLW\ LQWR WKH FRQWLQXLW\ HTXDWLRQ %\ XVH RI WKH SUHVVXUH FRUUHFWLRQ HTXDWLRQ FRPLQJ IURP WKH UHVLGXDO WKH DPRXQW RI UHTXLUHG SUHVVXUH FRUUHFWLRQ LV FDOFXODWHG f 7KH REWDLQHG SUHVVXUH FRUUHFWLRQ LV XVHG WR FRUUHFW ERWK JXHVVHG SUHVVXUH DQG LQFRUUHFW YHORFLW\ f 7KH FRUUHFWHG SUHVVXUH LV FRQVLGHUHG DV D QHZ JXHVV IRU WKH FRUUHFW SUHVVXUH ILHOG DQG LV SXW LQWR WKH PRPHQWXP HTXDWLRQV

PAGE 131

f 7KHVH IRXU VWHSV DUH UHSHDWHG PDQ\ WLPHV XQWLO D YHORFLW\ ILHOG VDWLVI\LQJ WKH FRQWLQXLW\ HTXDWLRQ LV IRXQG 7KH FRUUHVSRQGLQJ SUHVVXUH ILHOG LV WKHQ FRQVLGHUHG WKH FRUUHFW SUHVVXUH ,Q GHULYLQJ WKH SUHVVXUH FRUUHFWLRQ HTXDWLRQ RQH LQWURGXFHV $f 3 3r 3 $f 8 8r 8 $f 9 9r 9 ZKHUH 3 8 DQG 9 DUH WKH FRUUHFW SUHVVXUH DQG YHORFLW\ FRPSRQHQWV VDWLVI\LQJ WKH PRPHQWXP DQG FRQWLQXLW\ HTXDWLRQV WKH TXDQWLWLHV ZLWK r DUH HLWKHU WKH JXHVVHG RU WKH LPSHUIHFW SUHVVXUH DQG YHORFLW\ DQG WKH TXDQWLWLHV ZLWK a DUH WKH DPRXQW RI FRUUHFWLRQV 7KH GLVFUHWL]HG PRPHQWXP HTXDWLRQV IRU WKH FRUUHFW SUHVVXUH DQG YHORFLW\ FRPSRQHQWV DUH $S8S A %93: 3Hf 6Y $f $f DSYS EYSSff r VU

PAGE 132

ZKHUH WKH VXPPDWLRQ LV WDNHQ IRU DOO QHLJKERUV DQG 6Y 6Y DUH VRXUFH WHUPV ZKLFK GR QRW FRQWDLQ WKH SUHVVXUH ,I WKH JXHVVHG SUHVVXUH LV HPSOR\HG WKH GLVFUHWL]HG HTXDWLRQV ZLOO EH DIY <$X r EXSSf r VX $ f DSY <$\ r %\S !! Vf $ f 6XEWUDFWLQJ HTXDWLRQ $f IURP $f $OOf HTXDWLRQV $f $f DQG $f RQH KDV IURP $f DQG XVLQJ $33 <$S r%83:3Wf $ f $S3S ($. r 5U3 3$ f $ IXUWKHU DVVXPSWLRQ WKDW WKH FRUUHFWLRQ DW WKH SRLQW LV LQGHSHQGHQW RI WKH FRUUHFWLRQ DW LWV QHLJKERULQJ SRLQWV LV PDGH KHUH WR VLPSOLI\ HTXDWLRQV $ f DQG $ f 7KLV VKRZV WKDW %s3Z3Lf &3f3f $ f $S aUAV3Qf '363Qf $S $ f 7KH GLVFUHWL]HG FRQWLQXLW\ HTXDWLRQ UHDGV

PAGE 133

8H 8$\ + 9Q 9Vf $[ $f RU IURP $f $f DQG $ff > .f $\ Y 9cf $[rW -$\ r )f )Vf$[ $f 8VLQJ HTXDWLRQ $ f DQG $ f DQG PDNLQJ WKH QHFHVVDU\ DGMXVWPHQWV RQ WKH VXEVFULSWV DFFRUGLQJ WR WKH ORFDWLRQ RI SUHVVXUH DQG YHORFLW\ FRPSRQHQWV VKRZQ LQ )LJ WKH HTXDWLRQ IRU SUHVVXUH FRUUHFWLRQ DW D W\SLFDO LQWHULRU SUHVVXUH FHOO ZLOO EH IRXQG DV $S3S $S3( $A3 Z $M-r1 $-rV 5(6 $f ZKHUH $H &H?\ $ f $Z 4$Y $f $1 'Qr; $f $V 'V$[ $f

PAGE 134

$S $( $Z $Q $V $f 5(6 OX .f $\ Y 9cf $[ @ $f 0RUH LQIRUPDWLRQ DERXW WKH 9HORFLW\3UHVVXUH FRUUHFWLRQ SURFHGXUH FDQ EH IRXQG LQ WKH ERRN E\ 3DWDQNDU

PAGE 135

5()(5(1&( .XU]ZHJ 8 + (OHDW 7UDQVIHU 'HYLFH IRU WKH 7UDQVSRUW RI /DUJH &RQGXFWLRQ )OX[ :LWKRXW 1HW 0DVV 7UDQVIHU 86 3DWHQW 7D\ORU 'LVSHUVLRQ RI 6ROXEOH 0DWWHU LQ 6ROYHQWV )ORZLQJ 6ORZO\ 7KURXJK D 7XEH 3URF 5R\ 6RF $ SS $ULV 5 2Q WKH 'LVSHUVLRQ RI D 6ROXWH LQ D )OXLG )ORZLQJ WKURXJK D 7XEH 3URF 5R\ 6RF $ SS %RZGHQ ) +RUL]RQWDO 0L[LQJ LQ WKH 6HD GXH WR D 6KHDULQJ &XUUHQW )OXLG 0HFK SS +DUULV + DQG *RUHQ 6 / $[LDO 'LIIXVLRQ LQ D &\OLQGHU ZLWK 3XOVHG )ORZ &KHP (QJ 6FLHQFH SS 5LFH 5 DQG (DJOHWRQ / & 0DVV 7UDQVIHU 3URGXFHG E\ /DPLQDU )ORZ 2VFLOODWLRQV &DQDGLDQ &KHP (QJ SS &KDWZLQ 3 & 2Q WKH /RQJLWXGLQDO 'LVSHUVLRQ RI 3DVVLYH &RQWDPLQDQW LQ 2VFLOODWRU\ )ORZV LQ 7XEHV )OXLG 0HFK SS :DVWRQ ( 'LIIXVLRQ LQ 2VFLOODWRU\ 3LSH )ORZ )OXLG 0HFK SS -RVKL & + .DPP 5 'UD]HQ 0 DQG 6OXWVN\ $ 6 $Q ([SHULPHQWDO 6WXG\ RI *DV ([FKDQJH LQ /DPLQDU 2VFLOODWRU\ )ORZV )OXLG 0HFK SS .XU]ZHJ 8 + DQG -DHJHU 0 7XUQLQJ (IIHFW LQ (QKDQFHG *DV 'LVSHUVLRQ 8QGHU 2VFLOODWRU\ &RQGLWLRQV 3K\V )OXLGV SS .XU]ZHJ 8 + (QKDQFHG +HDW &RQGXFWLRQ LQ )OXLGV 6XEMHFWHG WR 6LQXVRLGDO 2VFLOODWLRQV +HDW 7UDQVIHU SS

PAGE 136

.XU]ZHJ 8 + DQG =KDR / +HDW 7UDQVIHU E\ +LJK )UHTXHQF\ 2VFLOODn WLRQV D 1HZ +\GURG\QDPLFV 7HFKQLTXH IRU $FKLHYLQJ /DUJH (IIHFWLYH $[LDO &RQGXFWLYLWLHV 3K\V )OXLGV SS .XU]ZHJ 8 + (QKDQFHG +HDW &RQGXFWLRQ LQ 2VFLOODWLQJ 9LVFRVH )ORZV :LWKLQ 3DUDOOHO 3ODWH &KDQQHOV )OXLG 0HFK SS .XU]ZHJ 8 + 7HPSRUDO DQG 6SDWLDO 'LVWULEXWLRQ RI +HDW )OX[ LQ 2VFLOODWLQJ )ORZ 6XEMHFWHG WR DQ $[LDO 7HPSHUDWXUH *UDGLHQW ,QW +HDW 0DVV 7UDQV SS =KDQJ 7LPH'HSHQGHQW (QKDQFHG +HDW 7UDQVIHU LQ 2VFLOODWLQJ 3LSH )ORZ 3K' 'LVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD .DYLDQ\ 0 (QKDQFHG 7KHUPDO 'LIIXVLRQ LQ 2VFLOODWLQJ )ORZV LQ D &DSLOODU\ +HDW ([FKDQJHU +HDW 7UDQVIHU WR DSSHDU 'XUVW ) 3HULF 0 6FKHXHUHU DQG 6WUROO + 1XPHULFDO 6WXG\ RI /DPLQDU 8QVWHDG\ 3LVWRQ&\OLQGHU )ORZV )LQLWH $SSUR[LPDWLRQV LQ )OXLG 0HFKDQLFV ,, )ULHGU 9LHZHJ t 6RKQ %UDXQVFKZHLJ SS 'XUVW ) 3HULHUD & ) DQG 6FKHXHUHU &DOFXODWLRQV DQG ([SHULPHQWDO ,QYHVWLJDWLRQV RI WKH /DPLQDU 8QVWHDG\ )ORZ LQ D 3LSH ([SDQVLRQ )LQLWH $SSUR[LPDWLRQV LQ )OXLG 0HFKDQLFV )ULHGU 9LHZHJ t 6RKQ %UDXQVFKZHLJ SS 3DWDQNDU 6 9 1XPHULFDO +HDW 7UDQVIHU DQG )OXLG )ORZ +HPLVSKHUH :DVKLQJWRQ '& 3DWDQNDU 6 9 DQG 6SDOGLQJ % $ &DOFXODWLRQ 3URFHGXUH IRU +HDW 0DVV DQG 0RPHQWXP 7UDQVIHU LQ 7KUHH 'LPHQVLRQDO 3DUDEROLF )ORZV ,QW +HDW DQG 0DVV 7UDQV SS $QGHUVRQ $ 7DQQHKLOO 7 & DQG 3OHWFKHU 5 + &RPSXWDWLRQDO )OXLG 0HFKDQLFV DQG +HDW 7UDQVIHU +HPLVSKHUH :DVKLQJWRQ '& *HQW]VFK : 9HFWRUL]DWLRQ RI &RPSXWHU 3URJUDPV ZLWK $SSOLFDWLRQV WR &RPSXWDWLRQDO )OXLG '\QDPLFV )ULHGU 9LHZHJ t 6RKQ %UDXQVFKZHLJ 'XUVW ) 0D[ZRUWK\ 7 DQG 3HUHLUD F I 3LVWRQ'ULYHQ 8QVWHDG\ 6HSDUDWLRQ DW D 6XGGHQ ([SDQVLRQ LQ D 7XEH )ORZ 9LVXDOL]DWLRQ DQG /'$ 0HDVXUHPHQWV 3K\ )OXLGV $ SS

PAGE 137

.XU]ZHJ 8 + /LQGJUHQ ( 5 DQG /RWKURS % 2QVHW RI 7XUEXOHQFH LQ 2VFLOODWLQJ )ORZ DW /RZ :RPHUVOH\ 1XPEHU 3K\ )OXLGV $ SS %HOVWHUOLQJ & $ )OXLGLF 6\VWHPV 'HVLJQ :LOH\,QWHUVFLHQFH 1HZ
PAGE 138

%,2*5$3+,&$/ 6.(7&+ $OH[ ; =KDR ZDV ERUQ RQ 6HSWHPEHU LQ %HLMLQJ 7KH 3HRSOHfV 5HSXEOLF RI &KLQD ,Q KH PRYHG WR 7LDQMLQ WKH WKLUG ELJJHVW FLW\ LQ &KLQD DQG WKHUH VSHQW PRVW RI \HDUV EHIRUH KH FDPH WR WKH 8QLWHG 6WDWHV %HFDXVH RI WKH FXOWXUDO UHYROXWLRQ PRYHPHQW LQ &KLQD IURP WR KH PLVVHG FROOHJH HGXFDWLRQ IRU WHQ \HDUV EXW IRUWXQDWHO\ LQ ZKHQ KH ZDV \HDUV ROG ZDV DGPLWWHG WR 7LDQMLQ 8QLYHUVLW\ WKH ROGHVW XQLYHUVLW\ LQ &KLQD WR WKHLU DSSOLHG SK\VLFV SURJUDP :LWK D *3$ RI KH JUDGXDWHG IURP WKH 'HSDUWPHQW RI %DVLF 6FLHQFHV ZLWK D %DFKHORU RI 6FLHQFH GHJUHH LQ )HEUXDU\ DQG REWDLQHG D IDFXOW\ SRVLWLRQ LQ WKH 'HSDUWPHQW RI 7KHUPRSK\VLFV DW WKH VDPH XQLYHUVLW\ 6LQFH WKHQ KH KDV WDXJKW FRXUVHV LQ HQJLQHHULQJ WKHUPRG\QDPLFV KHDW WUDQVIHU DQG VRPH RWKHU WRSLFV DQG DOVR GLG VRPH UHVHDUFK RQ VRODU HQHUJ\ DQG RSWLFDO PHDVXUHPHQWV RI WKH WHPSHUDWXUH ILHOG DW VROLG VXUIDFHV ,Q -XQH RI KH ZDV VHOHFWHG E\ 7LDQMLQ 8QLYHUVLW\ WR VWXG\ IRU DQ DGYDQFHG GHJUHH DEURDG DQG FDPH WR WKH 8QLWHG 6WDWHV +H HQWHUHG WKH PDVWHUfV GHJUHH SURJUDP LQ WKH 'HSDUWPHQW RI 0HFKDQLFDO (QJLQHHn ULQJ DW WKH 8QLYHUVLW\ RI )ORULGD LQ -DQXDU\ DQG WUDQVIHUUHG WR WKH 'HSDUWPHQW RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH LQ $XJXVW RI WKDW \HDU ,W ZDV DW WKDW WLPH WKDW KH VWDUWHG WKH UHVHDUFK RQ HQKDQFHPHQW RI KHDW WUDQVIHU E\ RVFLOODWLQJ IORZV XQGHU WKH JXLGDQFH RI 'U 8OULFK + .XU]ZHJ 0U =KDR

PAGE 139

UHFHLYHG KLV 0DVWHU RI 6FLHQFH LQ HQJLQHHULQJ VFLHQFHV LQ $XJXVW RI EHFDPH D 3K' FDQGLGDWH LQ 0D\ RI DQG LV H[SHFWHG WR UHFHLYH WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ LQ WKH ODWH VXPPHU RI +H LV PDUULHG WR :HL =KX DQG KDV RQH VRQ /LFKHQJ =KDR

PAGE 140

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ;$ O Y9F; YZ/ZI \ 8OULFK + .XU]ZHJ &KDLUPDQ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ( 5XQH /LQGJUHQ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ ? n n :HL 6K\\ A ‘ $VVRFLDWH 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH

PAGE 141

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 9 5DQJDQDWKDQ 1DUD\DQDQ $VVRFLDWH 3URIHVVRU RI &KHPLFDO (QJLQHHULQJ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ 0DGHO\Q 0 /RFNKDUW 'HDQ *UDGXDWH 6FKRRO

PAGE 142

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E5M7OFECS_25LME8 INGEST_TIME 2017-07-12T20:57:45Z PACKAGE AA00003339_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES