Citation
Host distribution and physiological effects of ectocommensal gill barnacle (Octolasmis muelleri) infestation on blue crabs (Callinectes sapidus)

Material Information

Title:
Host distribution and physiological effects of ectocommensal gill barnacle (Octolasmis muelleri) infestation on blue crabs (Callinectes sapidus)
Creator:
Gannon, Andrew Thomas, 1958-
Publication Date:
Language:
English
Physical Description:
viii, 113 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Crabs ( jstor )
Gills ( jstor )
Hemolymph ( jstor )
Infestation ( jstor )
Lactates ( jstor )
Oxygen ( jstor )
Parasite hosts ( jstor )
Swimming ( jstor )
Ventilation systems ( jstor )
Zoology ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1990.
Bibliography:
Includes bibliographical references (leaves 99-112).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Andrew Thomas Gannon.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001638757 ( ALEPH )
AHR3697 ( NOTIS )
24160893 ( OCLC )

Downloads

This item has the following downloads:


Full Text








HOST DISTRIBUTION AND PHYSIOLOGICAL EFFECTS OF
ECTOCOMMENSAL GILL BARNACLE (Octolasmis muelleri)
INFESTATION ON BLUE CRABS (Callinectes sapidus).









By

ANDREW THOMAS GANNON


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1990


























This work is dedicated to my partner
and wife,
Francesca.










ACKNOWLEDGMENTS


Many individuals contributed to the success of this
research. I would like to acknowledge the guidance of my major
professor, Dr. Michele G. Wheatly, who carried out her
responsibilities as mentor above and beyond the call of duty. She
offered unceasing help at all stages of the project including
technical advice and assistance, reading innumerable drafts, and
career counseling and guidance. I would also like to thank the
other members of my supervisory committee: Drs. John Anderson,
David Evans, Carmine Lanciani, William Lindberg and Frank
Maturo, for advice, the loan of equipment, and reasoned criticism.
Charles Jabaly is acknowledged for his photographic and technical
assistance and practical suggestions and John Pipkins for
technical assistance. Numerous graduate students in the zoology
department have assisted in data collection, including Evan
Chipouras, Vincent DeMarco, John Donald, Francesca Gross, Robert
Hueter, Charles Jabaly, Michael Lacy, Frank Lockhart, Cathleen
Norlund, John Payne, Daniel and Molly Pearson, Nikarre Redcoff,
Tes Toop and Kent Vliet. They are all gratefully thanked. Thanks
are also due to Carlos Martinez del Rio, Vincent DeMarco and
Michael Lacy for statistical and computer advice.








This research was financially supported by a Sigma Xi grant
(to ATG), teaching and research assistantships from the
Department of Zoology (to ATG) and Division of Sponsored
Research (to MGW) and NSF grants DCB 8415373 and 8916412 (to
MGW).
I thank my parents and family for their continued
encouragement. Most importantly I thank my dear wife, Francesca
Gross, for her continued emotional, logistical, and editorial
support.







TABLE OF CONTENTS


ACKNOWLEDGMENTS........................................................................................ iii

ABSTRACT ...........................................................................................................vii

GENERAL INTRODUCTION................................................................................... 1
Blue Crab Respiration............................ ..............................2
ctasmis muelleri............................ .... ..................
Host:Gill-Symbiont Relationships.............. ....... ........... 8

CHAPTERS

1 DISTRIBUTION OF Octlasmis muelleri WITHIN THE HOST
GILL CHAMBER AND IN THE BLUE CRAB POPULATION OF
CEDAR KEY, FLORIDA.............................................................. 11
Introduction................................................................................... 11
M ethods................................................................................... .. .....13
Results..........................................................................................15
Discussion.........................................................................................18

2 EFFECTS OF Octolasmis muelleri INFESTATION ON
BLUE CRABS....................................................................................31
Introduction............................ ..................................................... 31
M ethods...............................................................................................34
Results........................................................................................... 38
Discussion.................................................................................40


3 EFFECTS OF Octolasmis muelleri INFESTATION ON
EXERCISING AND RECOVERING BLUE CRABS.....................52
Introduction....................................................................... .........52
Methods......................................................................................56
Results.......................................................................................61
Discussion ..................................................................................65

GENERAL DISCUSSION.....................................................................................89
Organism................................................................................89
Population................................................................................96
Host/Ectocommensal................................................................97
v







LITERATU R E C ITED ............................................................................................ 99

BIO G RA PH ICAL SKETC H .....................................................................................113












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

HOST DISTRIBUTION AND PHYSIOLOGICAL EFFECTS OF
ECTOCOMMENSAL GILL BARNACLE (Octolasmis muelleri)
INFESTATION ON BLUE CRABS (Callinectes sapidus).

By

Andrew Thomas Gannon

December 1990

Chair: Michele G. Wheatly
Major Department: Zoology

The relationship between an ectocommensal gill barnacle,
Octolasmis muelleri, and its host, the blue crab (Callinectes
sapidus), was studied on three levels: population, organism and
model for host/commensal systems. On the population level,
barnacle distribution was evaluated in the Cedar Key, Florida blue
crab population and within the host gill chamber. Of 529 crabs, 40%
were infested, with monthly infestation rates ranging from 17% to
67%. The mean number of barnacles per infested crab was 21.8 with
as many as 432 barnacles on one crab. The barnacles aggregated on
their expected optimal host, namely previously infested adult blue
crabs. They were also most frequent at their expected optimal site
vii












within the host gill chamber, namely the base of the hypobranchial
side of gills 3, 4, 5 and 6. This distribution indicates that 0.
muelleri infestation is common and frequently heavy and suggests
that host and site-within-host selection occurs. At the organism
level, infested blue crabs compensate for the obstruction in their
ventilatory stream by increasing ventilation (1.8 X) and heart rates
(1.4 X) to maintain oxygen consumption at the same level (28 g.mol
kg-1 min1) as uninfested crabs. Moderately infested crabs (10-20
ectocommensals) had small differences in hemolymph pH, oxygen
tension and oxygen content. During exercise most differences
between infested and uninfested crabs disappeared. Greater
arteriovenous differences in hemolymph pH and lactate levels of
infested crabs suggest that they have a greater reliance on the Bohr
effect for oxygen delivery to the tissues, but hemocyanin-02
affinity is preserved at the gills by a counteracting lactate effect.
At the host/ectocommensal level, the barnacle has undergone
selection to choose optimal hosts and attachment sites, and to
minimize detrimental effects to the host. The blue crab has
undergone selection to compensate for environmental stresses, such
as barnacle infestation. In all but extremely heavy infestations the
barnacle has a minor effect on host crabs at rest, during sustained
swimming and during recovery.


viii














GENERAL INTRODUCTION


The blue crab, Callinectes sapidus Rathbun (1896), is a widely
distributed and well-studied swimming crab (Portunidae).
Population levels are large enough to support commercial fisheries
along the Gulf coast and the Eastern seaboard of the United States.
By nature Callinectes is a very active crab, and a high rate of
respiratory gas exchange is central to its metabolism and growth.
Because this crab is relatively long-lived (up to three years as an
adult; Van Engel, 1958), moves long distances (Oesterling, 1982)
and provides a hard substratum in soft bottom estuaries (Williams,
1984), it serves as host to numerous obligate and accidental
commensals, such as the soft coral Leotoaoraia virgulata (Pearse,
1947), the bryozoan, Triticella elonaata (Maturo, 1957), the leech
Myzobdella luaubris (Overstreet, 1982), the sessile barnacle,
Chelonibia spatula, (Van Engel, 1958), the oyster, Crassostrea
virainica, (personal observation) and the tunicate Molgula
manhattensis (Pearse, 1947).
Callinectes sapidus is the favored host of Octolasmis
muelleri (Coker, 1902), an ectocommensal stalked barnacle found







on the gills or in the gill chamber of decapod crustaceans (Humes,
1941). My aim was to examine this host/ectocommensal
relationship. Initially, the distribution of 0. muelleri within the
Gulf coast blue crab population and within the blue crab gill
chamber was investigated. After characterization of the barnacle
distribution, the effects of O. muelleri infestation on
the respiratory physiology of the blue crab host were measured.
Finally, the effects of 0. muelleri infestation on the respiratory
physiology of blue crabs under the natural stress of swimming
were measured. Determination of the magnitude and ways that blue
crab respiration is affected by barnacle infestation is important in
assessing the potential threat to an important commercial
resource, understanding the mechanisms by which the crab (a model
organism for crustacean respiration studies) compensates for
barnacle infestation, and evaluating the benefits and detriments of
the host/ectocommensal relationship.


Blue Crab Respiration


The anatomy and physiology of the respiratory and circulatory
systems of the decapod crustaceans have recently been reviewed by
McLaughlin (1983) and McMahon and Wilkens (1983). In summary,
blue crabs possess eight gills on each side of the body. The gills
are phyllobranch, triangular, wide at the base and narrowing
distally as they arch dorso-posteriomedially. The gills are housed
in the branchial chamber, which is formed as a lateral outgrowth of








the carapace. The carapace curves under to fit tightly against the
lower body wall just above the insertion of the walking appendages.
This joint is tight enough to exclude water. Water flows into the
gill chamber primarily through the Milne-Edwards inhalent opening
at the base of the cheliped. Smaller inhalent holes are found at the
bases of the pereiopods.
As water enters the Milne-Edwards hole it flows posteriorly.
It first enters the branchial chamber under the gills in the
hypobranchial chamber between gills 3 and 4 (Aldridge and
Cameron, 1982). From there the water flows through the gills and,
once it enters the epibranchial chamber, it flows anteriorly exiting
the branchial chamber via the exhalent passage, which is formed by
the endo- and exopodites of the three maxillipeds. The propulsive
force for water movement is the generation of negative pressure in
the branchial chamber by the beat of the scaphognathite (modified
second maxilla) in the exhalent passage (McMahon and Wilkens,
1983).
The blue crab circulatory system, like that of other
crustaceans, is an open system. However, the hemolymph is
contained in vessels throughout much of the body. The force
necessary for hemolymph circulation is provided by the single-
chambered heart. Hemolymph in the pericardial sinus enters the
heart through openings called ostia and exits through the posterior
and anterior aortae. Numerous arteries carry the hemolymph from
the aortae to the various tissues and organs. There are no closed
venous vessels. After passing through the smaller vessels of the







arterial system, hemolymph enters the hemocoel and passes
through discrete channels before collecting in the venous
infrabranchial sinus (McLaughlin, 1982). From here hemolymph
passes through the limb bases and the afferent branchial channels
to perfuse the gill filaments. The flow of the hemolymph in the
gill lamellae is countercurrent to the flow of water in the
branchial chamber (Hughes, Knights and Scammel, 1969). After
leaving the gills via the efferent branchial channels the hemolymph
moves through the branchiopericardial "veins" to reach the
pericardial cavity (McMahon and Wilkens, 1982).
A comprehensive list of respiratory and circulatory
parameters in the blue crab was recently summarized by
Cameron (1986). On a per gram body weight basis, gill surface
area in sapidus (710 mm2 g-1) is much larger than that of
most brachyuran crabs (e. g. U., Sesarma, Ocvpode, etc. from
Gray,1957). This probably reflects the active swimming
lifestyle of the Portunidae. The oxygen consumption rate
(M02 = 85.6 ml kg-1 hr-1) is correspondingly greater than for other
crab species. The ventilation rate (V W) of 111 ml min-1 reflects a
respiratory frequency of 31.7 min-1 given a combined gill chamber
volume of 3.5 ml. The unusually low cost of ventilation (0.02% of
M02) suggests that the water pumping mechanism is highly
efficient.
An unexplained aspect of decapod respiration is the
phenomenon of current reversal in the gill chamber. The
scaphognathite pump reverses the direction of its beating, causing








water to enter the normally exhalent channel, cross the gills and
exit via the Milne-Edwards openings. This may occur 0-50 times
per hour in Callinectes sapidus (Batterton and Cameron, 1978) for
brief periods of around 5 seconds (Hughes et al., 1969). Numerous
functions have been suggested for these reversals, such as
enhanced ventilation of normally poorly ventilated regions of the
gills (Arudpragasam and Naylor, 1964), removal of detritus from
the gills (Hughes et al., 1969) and cleaning of intake filters
(McMahon and Wilkens, 1983). Adequate experimental evidence has
not been presented for a general explanation for the phenomenon.
Frequency of reversals did increase when crabs were exposed to
increased salinity or C02 (Batterton and Cameron, 1978) or to air
(Taylor, Butler and Sherlock, 1973).
Other characteristic features of crustacean respiration are
intermittent cardiac and ventilatory pauses. Crustaceans at rest in
well-oxygenated, undisturbed environments often discontinue
ventilation and heart beat for periods of up to several minutes
(McMahon and Wilkens, 1977). This may be a way of conserving
energy when hemolymph oxygen levels are near maximum (Batterton
and Cameron, 1978).
Although an open circulatory system connotes sluggish
movement of hemolymph through open spaces at low velocity and
low pressure, this is not true for the decapods, particularly active
ones such as blue crabs. Resting heart rate (fH= 89 beats min-1)
and cardiac output (V B = 151 ml kg-1 min-1) for the blue crab can
increase dramatically during exercise. Cardiac stroke volume







(Svc), 1.70 ml kg-lbeat-1 at rest, also increases during exercise
(Booth, McMahon and Pinder, 1982). Although blood flow velocity
has not been measured in blue crabs, other decapods have arterial
flow velocities approaching 10 cm sec-1, and ventricular systolic
pressures of 10-36 Torr (1.3 4.8 kPa) and diastolic pressures of
4-16 Torr (0.5 2.1 kPa; McMahon and Wilkens, 1983). These
characteristics along with the large hemolymph volume
(approximately 30% wet weight; Gleeson and Zubikoff, 1977)
indicate an efficiency comparable to closed circulatory systems of
other aquatic animals of similar activity level (McMahon and
Wilkens, 1983).
Animals have been experimentally manipulated to reduce the
supply of respiratory gases or increase the demand to evaluate the
capabilities of the gas exchange system. The responses of the blue
crab to hypoxia (low 02) and hypercapnia (high C02; Batterton and
Cameron, 1978; Cameron, 1985), as well as exercise (Booth et al.,
1982; Booth, McMahon, deFur and Wilkes, 1984; Milligan et al.,
1989) has been previously examined. In each case blue crabs make
ventilatory and/or circulatory adjustments to maintain 02 delivery
and C02 elimination to and from metabolizing tissues. Hemolymph
pH and lactate levels may change, but because these allosteric
modulators have opposing effects on hemocyanin-02 affinity, 02
delivery and C02 elimination are not compromised (Milligan et al.,
1989). This is an example of enantiostatic regulation (Mangum and
Towle, 1977).











Octolasmis muelleri


Octolasmis is a genus of gooseneck (or stalked) barnacle
(Cirripedia:Thoracica). They attach to the gills of decapod
crustaceans as ectocommensals (Newman, 1967). Octolasmis
muelleri (considered synonymous with Q. lowei by Nilsson-Cantell
1927) adult stages have been found in the gill chamber of numerous
brachyuran crabs (Humes, 1941; Walker, 1974). After internal
fertilization and brooding by the parent (Jeffries and Voris, 1983),
the barnacle goes through six naupliar stages and one cyprid stage
as a free-swimming planktivore, before settling down on a crab
host (Lang, 1976). The adult barnacle, cemented to the gill
lamellae of the host crab, filter feeds on particulate matter in the
ventilatory stream. The barnacle derives no nutrients directly
from the crab and is thought to harm its host only indirectly by
occluding the ventilatory current when infestation levels are great
(Walker, 1974). Therefore the Octolasmis-Callinectes relationship
is generally considered to be a commensalism, in which the
barnacle is benefitted and the crab is unaffected. This belief will
be evaluated in the following chapters.
The barnacle should experience selection pressure to select
optimal (i. e., better ventilated) sites within the host branchial
chamber. In addition the barnacle should select optimal (non-
molting adults) hosts because, during the host molt, it would be







shed with the exoskeleton covering the gills and is not thought
capable of survival outside the host (Walker, 1974). The
possibility of Octolasmis muelleri host and site selection will be
evaluated in Chapter 1. Because the barnacle is dependent on the
host for the continued renewal of ventilatory water, selection
pressure on the barnacle should minimize any detrimental impact
on the host. This will be discussed in Chapters 2 and 3.


Host:Gill-Symbiont Relationships


The distribution of ectoparasites on gills has been studied in
several species of fish (Walkey, Lewis and Dartnall, 1970; Suydam,
1971; Hanek and Fernando, 1978; van den Broek, 1979; Davey, 1980).
Frequently, nonrandom distributions have been discovered, but the
cause of these distributions has not been satisfactorily
demonstrated. Site specificity for the best ventilated parts of the
gill chamber has been attributed to passive dispersal of parasite
larvae in the ventilatory stream (Walkey, Lewis and Dartnall, 1970;
Suydam, 1971; van den Broek, 1979). In fact, Paling (1968)
assumed that parasitic glochidia were distributed passively by the
ventilatory stream of the brown trout Salmo trutta. He used the
parasite distribution to estimate the volumes of water passing
over the parts of the gill chamber. His assumptions were validated
by more sophisticated experiments using marker dyes (Hughes and
Morgan, 1973). Davey (1980) attributed the distribution of male
copepods, Lernanthropus kroveri, on bass gills to passive







distribution, but was unable to explain satisfactorily the
preference of females for the internal hemibranchs of the gills
without invoking active site selection
The effects of endoparasites on fish respiration have been
examined (Lester, 1971; Giles, 1987), but the effects of branchial
ectosymbionts are unstudied. Even less information is available
for crustaceans and their branchial symbionts. The isopod,
Probopyrus andalicola, causes decreased oxygen consumption in
its intermediate host, Acartia tonsa (Anderson, 1975a), and in most
cases in its definitive host, Palaemonetes pugio (Anderson, 1975b).
In the former, the ectoparasitic isopod may reach a greater mass
than the host. In the latter, the isopod has an endoparasitic stage
and an ectoparasitic stage that increases in size until it takes up
the entire host branchial chamber (Anderson, 1990). In both cases
the parasite feeds on host hemolymph.
The Q. muelleri-C. sapidus system differs in several
important ways. This ectocommensal is much smaller than the
host and does not feed on host hemolymph. This allows
measurement of the effect of ectocommensal presence without the
added effects of host hemolymph loss. In this system the host's
compensatory response to a natural obstruction in the ventilatory
stream can be evaluated.
The results of this investigation will be important on three
levels: organism, population and general host/commensal
relationship. On the organismal level it will add to our
understanding of the gas exchange system in the blue crab. On the







10
population level it will provide preliminary information on the
impact of a potentially harmful commensal organism on a
commercially important crab species. Finally, the results of this
study should shed some light on the interaction and possible
coevolution between host/commensal physiological systems.











CHAPTER 1
DISTRIBUTION OF Octolasmis muelleri WITHIN THE
HOST GILL CHAMBER AND IN THE BLUE CRAB
POPULATION OF CEDAR KEY, FLORIDA


Introduction

Adult Octolasmis muelleri live in gill chambers of decapod
crabs, generally attached to the gill lamellae (Humes, 1941). The
adults produce many broods of larvae during warmer months
(Jeffries and Voris, 1983). The larval phase consists of six
naupliar stages that feed on phytoplankton and one nonfeeding
cyprid (Lang, 1976). Under laboratory conditions (24-290 C) the
nauplius to cyprid transition takes 14-18 days (Lang, 1976). The
cyprid stage enters the branchial chamber of a crab on the inhalent
respiratory current and cements its antennules to two adjacent gill
lamellae (Walker, 1974). Metamorphosis to the adult stage then
takes place over the next 20-72 hours (Lang, 1976). Sexual
maturity is reached in the tropical species Octolasmis cor within
two weeks after metamorphosis (Jeffries, Voris, and Yang, 1985);
development may not be as rapid in 0. muelleri in temperate areas.
Because the adult barnacle cannot move once attachment is
complete, selection of the appropriate site within the host gill
11







chamber is critical to the barnacles survival and reproduction.
Because the barnacle is attached to the host exoskeleton, it is
shed when the host molts and ultimately dies (Walker, 1974).
Selection of a host with an intermolt period long enough to allow
barnacle maturation and reproduction is therefore essential. This
study was undertaken to determine the characteristics of natural Q.
muelleri infestations in blue crabs with a view to assessing host
and site selection by the barnacle. In addition, infestation levels in
the blue crab population of the Cedar Key area were evaluated to
examine the possibility that the barnacle has a detrimental impact
on the host population.
The settling cyprid larvae of some symbiotic cirripedes are
thought to respond to host-related chemicals and host breeding
cycles, as well as the stimuli to which free living barnacle cyprids
respond (i.e., chemicals, currents, textures, light, gravity, and
hydrostatic pressure) (Lewis, 1978). The host specificity exhibited
by some of the 10 Octolasmis species found on decapods in the seas
around Singapore (Jeffries, Voris and Yang, 1982) suggests that the
larvae exercise some discrimination in host selection. Jeffries,
Voris and Yang (1989) have found evidence that cyprid larvae of Q.
cor and Q.. angulata aggregate on premolt crabs (Scylla serrata) and
transfer to the newly molted crab for attachment, indicating fine
discrimination of host status and delayed metamorphosis. Cyprid
larvae survived up to 177 days, although their competence for
metamorphosis at that time is unknown (Jeffries et al., 1989).
Similar capabilities in the closely related Q. muelleri would allow







13
selection of optimal hosts and attachment sites within hosts. One
expects that the ideal host is a large adult crab already infested
with 2. muelleri. Such a host would molt infrequently, provide
greater settlement area, be least harmed by the presence of the
barnacle, and contain mating partners. Adult male blue crabs molt
two to three times after reaching maturity (Van Engel, 1958).
Females may molt after reaching maturity (Havens and McConaugha,
1990). One might expect settling barnacles to favor the
hypobranchial side of the gills where water enters the branchial
chamber, particularly in the region of gills 3, 4, 5 and 6, which are
the best ventilated in the crab Carcinus maenas (Hughes et al.,
1969) and presumably also in the blue crab. The hypotheses of
optimal site and host selection will be compared to the null
hypothesis of random settlement.
Whether the host can deter barnacle larvae from settling, or
influence subsequent survival is unknown. For example, the
grooming action of the host epipodites may affect barnacle
survival, especially during and immediately after settlement.
Otherwise molting would appear to be the only host defense against
Octolasmis (Walker, 1974).


Methods


Blue crabs were trapped monthly from June 1987 to May 1988
at Seahorse Key on the Gulf coast of Florida (290 06' N lat., 830 04'
W long.), using plastic coated wire mesh commercial crab traps.







Trapping effort was not equal for each month. Captured crabs were
sexed and their width measured. Because lateral horns were
frequently broken, short width (the distance between the notches
just anterior to the lateral horns) was used as the size
measurement. Although short width is less commonly used than
full width, it more accurately represents the blue crabs' size (Olmi
and Bishop, 1983). Crabs were visually inspected for
ectocommensal carapace barnacles (Chelonibia spatula) and gill
barnacles (. muelleri). Attachment sites were recorded with
respect to gill chamber (right or left), aspect (epibranchial or
hypobranchial), gill number (#1 8, anterior to posterior), and
distance along the gill. For the latter measurement, each gill was
arbitrarily divided into thirds (basal, medial, and distal), which,
because of the triangular nature of the phyllobranch gill, made up
56%, 33% and 11%, respectively, of the gill surface area. Because
the gills are tightly oppressed, the only area available to settling
barnacle larvae is the edges of the gill lamellae facing into the
ventilatory stream, which shall be referred to as the "leading gill
surface area." I measured the gills of four blue crabs with calipers
and the averaged the results to determine the proportion of the
total leading gill surface area made up by each gill.
The commercial traps almost exclusively captured adults. A
seagrass flat 100 m north of the trapping site was dredged in April
1988 and 105 juvenile crabs were captured. This gave the size
distribution of infested crabs from the juvenile stages up to the






15
adult stages. These crabs were evaluated in the same way as were
the trapped adult crabs.




Results
Infestation Summary
The monthly crab catches are given in Table 1-1. Because
trapping effort was not equal in each month, the monthly sample
sizes are not comparable as population estimates. The trapping
appeared heavily biased towards adult male crabs, which made up
81% of the total catch. Catch sizes, sex ratios and infestation
rates fluctuated from month to month with few apparent seasonal
trends. In all months male crabs had a greater or equal infestation
rate than females. The number of amuelleri per infested crab
reached a peak in the spring with the April rate an order of
magnitude greater than other months and the mean (21.7 Q. muelleri
per infested crab). The mean number of Q. muelleri per crab was
inflated by a small number of heavily infested crabs. The overall
median infestation level was 4 barnacles per crab. No obvious age
classes of infesting barnacles existed. Heavily infested crabs
contained barnacles of many different sizes, ranging from freshly
metamorphosed adults (about 1 mm total body length) to large
mature adults (up to 2 cm total body length).







Distribution Among Hosts
The number of barnacles per infested crab host can be seen in
Figure 1-1 as the frequency distribution of 0. muelleri on crabs.
The 318 uninfested crabs are not included in the figure. The
211 infested crabs contained from 1 to 432 barnacles. This
distribution is not significantly different from the negative
binomial distribution (P < 0.01). When the left and right gill
chambers of the host crab are treated as separate entities, the
frequency distribution is similar (fig. 1-2) and again not different
from the negative binomial (P < 0.01).
For most sample months no difference existed between the
mean carapace short width of infested and uninfested crabs (t-
test, P > 0.05). However, the sampled crabs were almost
exclusively adults. Figure 1-3 contains the size distribution of the
infested and uninfested crabs from the April 1988 sample, which
contained 61% juveniles. The mean short width of infested crabs
was 11.6 cm, that of uninfested crabs was 5.3 cm. These means
were compared with a t-test and are significantly different (P <
0.001). None of the juvenile crabs were infested.
The presence of another ectocommensal barnacle, Chelonibia
patula, was observed on a significant number of our sample crabs
(21.5%). The co-occurrence of C. atula and Q.. muelleri is reported
in a contingency table (table 1-2). The Pearson chi-square test for
independence (Feinberg, 1981) of the two infestations shows that
they are not independent (P < 0.001). Crabs that contain one of







these two ectocommensal barnacles are more likely to harbor the
second than crabs not infested with the first.


Distribution Within the Host
Inside the host gill chamber Octolasmis muelleri were found
attached to either side of each of the gills, the hypobranchial gill
chamber wall, the epibranchial gill chamber membrane, the
scaphognathite, and the hypobranchial and epibranchial gill rakers.
The majority of barnacles were found on the hypobranchial side of
the gills (93%), but the epibranchial side was infested only when
the hypobranchial side was heavily infested.
Although the distribution of barnacles along the gill filament
favored the basal third (54%), the proportion of barnacles found on
each third of the gill length (medial 33%, distal 10%) was
equivalent (to the nearest 1%) to the leading surface area made up
by that region of the gill. However, the proportion of Q. muelleri
found on each of the eight gill filaments was not equivalent to the
proportional leading surface area of that gill. This comparison is
shown in Table 1-3. Using the proportion of total leading gill
surface area as the expected proportional share of barnacles for
each gill, a chi-square test indicates that the barnacle distribution
is significantly different from expected (X2 = 155, 7df; P < 0.001).
Fewer barnacles than expected were found on gills 1, 7 and 8. Gills
3, 4 and 6 were more heavily infested than expected.









Discussion


The infestation rate of Octolasmis muelleri in the blue
crabs of Seahorse Key (40%) is not different from that reported
for blue crabs at Grand Isle, Louisiana (37%) by Humes (1941).
Curiously, in the present study, 45% of the males and 20% of the
females were infested, yet Humes (1941) found 19% of the males
and 43% of the females infested. This rate and the number of
barnacles per infested crab (21.8) indicate a very prevalent
symbiont. If these barnacles have a negative effect on the host,
their presence could have a major impact on the .. sapidus
population. The physiological effect of infestation on the host
is explored in Chapters 2 and 3.
The hypothesis that Q. muelleri larvae would select optimal
hosts was first tested by comparing the barnacle distribution to
the negative binomial distribution, a fundamental model
frequently used to describe host-parasite distributions (Williams,
C. B.,1964). It is used here to model the frequency distribution of
parasites on hosts, and the distribution of parasites on host gill
chambers. The negative binomial distribution is theoretically
applicable to this system because a random distribution is not
expected due to variation in host characteristics (age, size, sex,
and habitat), that makes the chance of infestation unequal
(Crofton, 1971). The close fit to the negative binomial and the
low k values (k = .14 and .13 for barnacles/crab and barnacles/gill








chamber, respectively) indicate extreme aggregation (Williams, C.
B., 1964). Barnacles are most likely to be found on previously
infested gill chambers and hosts. This may be due to barnacle
larvae being stimulated to settle by the presence of conspecifics
as has been shown in other barnacle species (Crisp, 1974) or to
certain hosts being more attractive or having greater exposure to
barnacle larvae. The low and similar k values for the host
distribution and gill chamber distribution suggest that both
effects are important. It is likely these effects enhance each
other. It is improbable that Q.. muelleri larvae are reinfesting
their parents host, since they must undergo a 2-3 week
development period as plankton (Lang, 1976).
A truncated form of the negative binomial distribution has
been successfully used to model distributions in which the
parasite incurs mortality in heavily infested hosts (Lanciani and
Boyett, 1980). Hosts with large parasite loads would die and
therefore not be sampled, causing underrepresentation in the
larger parasite load classes. The Q.. muelleri distribution on ..
sapidus exhibits overrepresentation in the larger parasite load
classes Although not conclusive, this suggests that either Q.
muelleri infestation does not affect Q. sapidus mortality or that
the effect is linear (Lanciani and Boyett, 1980).
When samples of adult crabs were compared, no difference
existed between the size (carapace short width) of infested crabs
and uninfested crabs. A large difference between the size of
infested and uninfested crabs was evident only when immature







crabs were considered. Immature crabs are unsuitable hosts
because of their short intermolt period which is less than one
month in the juveniles up to stage 14 (Millikin and Williams,
1984). Barnacles infesting immature crabs may escape detection
due to small body size (Walker, 1974). However, in this study
careful inspection of 105 immature crabs did not reveal any that
harbored Q. muelleri. Infested immature crabs have been observed
only occasionally since this study was completed (unpublished
observations).
Although the ectocommensal carapace barnacle Chelonibia
spatula does not share the microhabitat of Q. muelleri, one might
predict that certain crabs are ideal hosts for both barnacles based
on distribution criteria such as infrequency of host molting,
greater settlement area and host resistance to harmful effects.
The evidence that the two barnacle species tend to select the
same hosts supports this view: however, it is equally possible
that infestation by one barnacle species weakens the crab and
makes it more susceptible to infestation by the other. It is also
likely that the longer the duration since the last crab molt, the
more time it has had to accumulate ectocommensal barnacles of
either species. Less likely is the possibility that the planktonic
larvae of the two barnacle species complete development and
settle in the same localities, infesting crabs there.
Within crab gill chambers, adult Q. muelleri were found
attached to virtually every surface in heavily infested crabs. This
negates the hypothesis of settlement and survival only on







optimally ventilated sites. Infestations of less than 10
Octolasmis were usually confined to the actual gill tissue on the
hypobranchial side. Concentration of the barnacles on the middle
gills agrees with the distribution found for the Beaufort, North
Carolina population by Walker (1974) and Jeffries and Voris
(1983). The basal and medial portions of the hypobranchial side of
gills, 3, 4, 5 and 6, which could be considered the optimal site for
barnacle growth, contained 61.4% of the barnacles sampled. This
area constitutes only 28.6% of the available gill surface area, and
an even smaller proportion of the total surface area used for
attachment (about 5.7%). The observed aggregation of barnacles
could be explained either as site selection by gregarious settling
cyprid larvae, or simply the result of passive distribution in the
mainstream of the crabs ventilatory current.
In summary, aggregation of Octolasmis on the expected
optimal hosts and at the expected optimal sites within the gill
chamber have been demonstrated. This suggests host and site-
within-host selection by barnacle larvae. However, alternate
hypotheses have been advanced to explain the observed distribution
and warrant further investigation.










m


7:
4-


04 (D mt





T- T- T- -






















(' )- 0 0) (D Ca CO









U 0 a LL 2 <
2 1-T WO ZQOuL .2<












Table 1-2. Contingency table for infestation of crabs by
Chelonibia spatula and/or Octolasmis muelleri, (values are for
observed number of crabs/expected number of crabs).
Significantly more crabs are observed with both barnacle
infestations or neither infestation than expected (p < 0.001).


Octolasmis muelleri


+ 63/31.5 19/50.4
Chelonibia oatula
84/115.4 216/184.6


_ __ _



















(r- C)o t r- owcmo
- + C) C\ + C0 CM C\
S ++ + '-















































ooooodod
CMj N CVO m CM


L-
a)
-0


C
oE


. 0









CL 0
x
LU










c0 _

o






C
,-0







=:
"























C

=0
-0-C
VC)












4vu


O
rr

















=cn
a)
cL .


0 (
C: cr)




cn C


= cz

CcY

LL









- (0


-U-)


-C^J


- o



L-

co



C
- o
m


I 1 I 1 1 1 1
L) O O O O
r) r0) CJ Cj -


saouaiJnooo jo jequwnN


O-
It


1

























1--0
-0Ca


o




ca C.,
I-

Q 0)

C .


Cl0
coy
ca


IC





mC~l-0
o
a.,C
0 0.





r- 0)





c _0



U-


eC~i



0)

L








28













-O

-Fi








SL
- .Q
E
-- U)
oa




r U)
(0


Cu
ca











c3


0 0 0 0
r- CO tj- rO

saoueJJnoooo JO aqunN























U)
U)
0
C

toC>



V U)



c ca
Cu0





00
(Dcn co




C





QU)V
03 )
cat~
-tm



cut






N Cu)
C/)r3



.2 Cc

~Cu L-

U)C0
cC










C/)
ca



C) ) CU

cu~



C:







30






It
r'i



In


0

uE



EZ2


IOO

Sco


(n (

r// 0




CM ~L 0 C 0
CC
In





Nc 0u 6w It cu OW t cu
CuN CU N


s8ouaJJiinoo o ioqwnN













CHAPTER 2
EFFECTS OF Octolasmis muelleri
INFESTATION ON BLUE CRABS

Introduction


The respiratory physiology of aquatic decapod crustaceans
has been well-studied (see reviews by Taylor, 1982; McMahon and
Wilkens, 1983; Mangum, 1983; Truchot, 1983; Cameron, 1986).
Experimental methodology has involved changes in the external
respiratory medium such as hyperoxia (Dejours and Beekenkamp,
1977; Sinha and Dejours, 1980; Wheatly, 1987), hypoxia (McMahon,
Burggeren and Wilkens, 1974; Butler, Taylor and McMahon, 1978;
Wheatly and Taylor, 1981) and hypercapnia (Henry, Kormanik and
Cameron, 1981; Cameron, 1985). Respiration of the blue crab,
Callinectes sapidus, has been particularly well studied with
respect to the above environmental stressors as well as molting
(Cameron and Wood, 1985), emersion (Batterton and Cameron, 1978)
and exercise (Booth et al., 1982; Booth et al., 1984). The wide
distribution of this species from fresh water to hypersaline
lagoons and temperate regions to the tropics (Williams, 1984),
confirms what physiological studies suggest, namely an ability to
tolerate a wide range of environmental conditions.
31







Many gill breathers are hosts to parasites and
ectocommensals that could affect respiration. Endoparasitic
cestode larvae (Schistocephalus) cause increased oxygen
consumption in stickleback fish, Gasterosteus aculeatus (Lester,
1971), and stimulate the host to breath more often at the surface
in hypoxic waters (Giles, 1987). Snails infested with larval
trematodes have higher metabolic rates than do uninfested controls
(Duerr, 1967; Vernberg and Vernberg, 1967). Crustacean
endoparasites can also have profound effects on host metabolism.
Blue crabs are hosts to rhizocephalan barnacles such as
Loxothylacus texanus. These endoparasitic barnacles stunt host
growth (Overstreet, 1982) and stimulate male hosts to develop
female secondary sex characteristics (Reinhard, 1956). Baffoni
(1953) however, was unable to show any effect of rhizocephalan
infestation on host metabolic rate.
In all of these examples the parasites feed on host tissue and
make up a significant part of the host weight. They also kill or
severely debilitate the host. The direct effects of parasite
presence on the host are not separable from the effects of
blood/hemolymph depletion, increase in biomass, or parasite
associated disease. In addition, in the first two systems, the
parasite larvae induce host behavior that make the host more
susceptible to predation by the parasites' definitive host (Lester,
1971; Giles, 1987).
The effect of gill parasites on host respiration has been
measured only for the isopod Probopyrus pandalicola. Decreased







oxygen consumption occurs in both its intermediate host, the
copepod Acartia tonsa (Anderson, 1975a), and in most cases, its
definitive host, the shrimp Palaemonetes pugio (Anderson, 1975b).
In the former host the isopod is ectoparasitic and not a gill
parasite. In the latter the female isopod has both an endoparasitic
phase of 1-2 weeks (Anderson, 1990) and a branchial phase in
which it feeds on host hemolymph (Anderson, 1975b). The male is
much smaller and associates with the female in the host branchial
chamber (Anderson, 1990). Significant host mortality occurs in the
early periods of infection, but not when the parasite is in the
branchial stage (Anderson, 1990). This is surprising, given that the
parasite grows to such a size that it distorts the shape of the host
branchial chamber (Anderson, 1975b). The decrease in metabolic
rate of parasitized shrimp is attributed to changes in host lipid
metabolism (Anderson, 1975b). This may be related to the effect
of the parasite on the host reproductive system "parasitic
castration" -inhibition of ovarian maturation and disruption of
development of male secondary sexual characteristics (Beck,
1980). Thus, the effects of the parasite on gas exchange per se are
not separable from the effects caused by feeding on host
hemolymph.
The Octolasmis muelleri Callinectes sapidus system offers
a unique opportunity to examine the effects of a branchial
commensal on host gas exchange including determination of a
possible detrimental effect on the host as well as evaluation of the
host mechanisms of compensation.







The aim of this study was to measure the effects of O.
muelleri infestation on the following parameters of blue crab
respiration: oxygen consumption, heart rate, ventilation rate, and
the hemolymph oxygen tension, oxygen content, carbon dioxide
content, pH, and lactate concentration.


Methods


Animal Maintenance
Adult blue crabs (150 250 g) were collected in commercial
traps at Seahorse Key on the Gulf coast of Florida (29006' N. lat.,
830 04' W long.) from April 28, 88 to September 4, 1988. Less than
30 crabs were maintained at any one time in an 800 I tank of
recirculating filtered seawater (33-36 ppt salinity) at 23-260C on
a 12 hr light:12 hr dark cycle at the University of Florida in
Gainesville. The crabs were fed chopped fish 1-2 times weekly, but
food was withheld 48 hours prior to experimentation. Intermolt
crabs (stage C-4, Johnson, 1980) were given a minimum of one
week to acclimate to these holding conditions before use in
experiments.


Experimental Protocol
Measurements were made on three series of experimental
blue crabs. Each series contained crabs that were naturally
infested by the barnacle, Octolasmis muelleri, and uninfested
control crabs. This was a blind experiment, infestation level could






35
not be determined until the crab was killed. Series A crabs (n = 30)
were used to measure whole-animal respiratory parameters
(oxygen consumption rate, 0 02; heart rate, fH; and ventilation rate,
fSC). Series B crabs (n = 40) were used to measure prebranchial
(venous,v) hemolymph characteristics (pH; oxygen tension, P02;
total carbon dioxide content, CC02; and (L+)-lactate concentration).
Series C crabs (n = 22) were used to determine both prebranchial
and postbranchial (arterial,a) hemolymph characteristics (pH, P02,
oxygen content (CO2) and (L+)-lactate concentration). After
measurements were completed, crabs were killed by freezing and
the gill chambers were opened and visually inspected for the
presence of ectocommensal barnacles (Gannon, 1990; Chapter 1).
The total number of barnacles present in the gill chamber of each
crab was used as an index of infestation level.


Analytical Techniques
Series A crabs were prepared for heart and ventilation rate
recording and placed in a continuous flow respirometer (Taylor,
Butler and AI-Wassia, 1977). Depending on body size, crabs were
placed in either a 1.7 I or 3.8 I cylindrical respirometer that was
placed in a 38 I water bath. Filtered seawater (22-250C, 33-35 ppt
salinity) was pumped through the respirometer at a constant rate
that ranged from 60 to 95 ml min-1. Sampling ports in the inflow
(incurrent) and outflow (excurrent) of the respirometer allowed
simultaneous withdrawal of 1 ml water samples for measurement







of water P02. The P02 was determined using an IL 02 electrode
(20984) thermostatted to 250C and connected to an IL 213 blood
gas analyzer. The M 02 was calculated in glmol kg-1 min-1 using
the following equation:


A PO2 oc02 f
M02 =
m


where A P02 is the difference between incurrent and excurrent
P02 (in kPa), cCO2 is the solubility coefficient (in l.mol 02 ml
water -1 kPa-1; Jones, 1972), f is the flow rate through the
respirometer (in ml H20 min-1), and m is body mass in kg.
The fH and fSC in both branchial chambers were measured
continuously with an impedance conversion technique (Dyer and
Uglow, 1977). In the case of heart rate, two holes were drilled
through the carapace but not penetrating the epidermis on either
side of the heart and the end of a lacquered copper wire (32 gauge)
stripped for 3 mm was inserted into each hole through the
epidermis, to a depth of 4 mm. They were held in place with
cyanoacrylate glue and latex dental dam. These wires led outside
the respirometer to an impedance converter (UFI 2991) and the
output was displayed on a Grass model 79 polygraph. The fSC was
recorded similarly, inserting the recording wire into the exhalent
canal of each branchial chamber and the reference wire onto the
carapace. Crabs were allowed at least 48 hours to recover from the







surgical procedures and to acclimate to the respirometer before
measurements were taken.
Prebranchial hemolymph samples (I ml) of series B and series
C crabs were removed from the infrabranchial sinus by penetrating
the arthrodial membrane at the base of the swimming leg with a
22 gauge needle attached to a chilled syringe. Crabs in series C
were prepared for postbranchial hemolymph sampling by drilling a
hole directly over the heart, through the carapace but not
penetrating the epidermis. The hole was sealed with a I cm2 patch
of latex dental dam and cyanoacrylate glue. The postbranchial
hemolymph sample was withdrawn by puncturing the dental dam
patch with a 22 gauge needle attached to a chilled syringe. These
crabs were give 48 hours to recover from this surgery before
experimentation.
Crabs in series B and C were placed individually in 12 I of
aerated filtered seawater (22-250C and 33-35 ppt salinity) in a
20 I covered container and allowed at least 2 hours to acclimate
before pre- and postbranchial hemolymph samples were taken as
outlined above. For each hemolymph sample from a series B crab,
the P02 of an 880 !l subsample was measured as outlined above for
water samples. The pH of the same subsample was also measured in
the IL 213 blood gas analyzer using an IL pH electrode (20982). The
(L+)-lactate concentration was measured on an 80 pl hemolymph
subsample using a commercial reagent kit (Sigma #826). The CC02

of a 40 pl subsample was measured with a Capnicon automatic







analyzer (Cameron Instruments Company). For each hemolymph
sample from a series C crab, the P02 and pH of a 920 .1 subsample
were measured as described above. The CO2 of an 80 p. subsample
was measured with a Cavitron Lex02con oxygen analyzer.


Statistical Analysis
Values measured for series A and C infested crabs were
compared with those recorded for uninfested crabs using Student's
t-test for independent means (Sokal and Rohlf, 1969). Values
measured for series B uninfested, moderately infested, and heavily
infested crabs were compared using a Model I single classification
ANOVA (Sokal and Rohlf, 1969). Wherever the variances were not
found to be homogeneous with the F-test or the Fmax-test, a t-test
for samples with unequal variance was used (Sokal and Rohlf,
1969). Differences were considered significant at P < 0.05.


Results


Experimental crabs were all of similar size (mean mass =
195.7 37.2 g S. D.). This minimized effects of mass on M 02, fH
and fSC. These values were each plotted against mass on a log:log
scale but no linear relationships were found. This suggests that
the influence of mass was negligible over this narrow range.
Therefore the measured values for fH and fSC were not adjusted for
mass. To facilitate comparison with other species, M 02 was
reported per unit mass.






39
Oxygen consumption rates of infested series A crabs were not
significantly different from those of uninfested crabs (Table 2-1);
however the infested crabs had elevated fH (44%) and fSC (83%).
For the comparisons of prebranchial hemolymph parameters,
series B crabs were divided into three classes based upon intensity
of infestation as follows: uninfested, which includes lightly
infested crabs (from 0 to 6 barnacles), moderately infested (10-20
barnacles) and heavily infested (more than 20 barnacles). These
divisions were based on an analysis of the distribution of Q.
muelleri on 512 blue crabs (see Chapter 1; Gannon, 1990). Four
heavily infested crabs (each containing more than 50 barnacles) did
not survive handling and surgical preparation.
The mean prebranchial hemolymph pH, P02, CC02 and lactate

concentrations of the heavily infested crabs were not significantly
different from those of the uninfested crabs (Table 2-2); however
moderately infested crabs exhibited lower hemolymph pH (0.3 pH
units) and CCO2 (25% reduction) and almost double the P02 of

control crabs. Lactate concentrations were virtually identical in
all groups; however the small sample size in the moderately
infested category precludes statistical comparison.
Pre- and postbranchial hemolymph parameters were measured
for series C crabs. This group contained only uninfested and
heavily infested crabs. Moderately infested crabs did not occur in
this sample. Mean prebranchial and postbranchial hemolymph pH,
PO2 or CO2 values for heavily infested crabs were not significantly






40
different from those values measured in uninfested crabs (Table 2-
3).
Arteriovenous (a-v) differences in hemolymph gas parameters
for series C crabs were calculated for crabs in which samples of
both prebranchial and postbranchial hemolymph had successfully
been obtained (Table 2-4). Because of occasional problems with
hemolymph clotting, we were not successful in measuring all
parameters for every hemolymph sample. Uninfested and heavily
infested crabs were not significantly different with respect to pH,
CO2 and P02 a-v differences.


Discussion


The presence of ectocommensal barnacles on crab gills could
increase the crab's ventilatory dead space in several ways.
Firstly, by cementing several gill platelets together upon
attachment (Walker, 1974), the barnacle may prevent water
circulation and thereby gas exchange between these platelets. As
the barnacle grows, adult cement is secreted and this will fuse
several more platelets (Walker, 1974). This should have a
relatively minor effect due to the large number of platelets present
in the gill chamber (12,400 on average for a 200 g blue crab; Gray,
1957). Secondly, barnacles remove oxygen from the water in the
crab's ventilatory stream for their own metabolism. Although
oxygen consumption rates for .. muelleri have not been measured,
extrapolation from data for other barnacles such as Chthamalus







stellatus. depressus and Balanus perforatus (Hammen, 1972) at
the same experimental temperature of 25C would predict an M 02
of 0.9 1.7 nmol 02 min-1 for each muelleri barnacle, which,
even under heavy infestation, would be negligible relative to the
M 02 of the crab (28 lpmol kg" min-). Thirdly, the barnacle may
create a physical obstruction in the ventilatory stream. The
magnitude of this effect is difficult to estimate. An increase in
ventilator deadspace could lead to a simultaneous increase in
perfusion deadspace because the hemolymph perfusing the poorly
ventilated portion of the gills would not be as well oxygenated.
Control of perfusion by vasoconstriction could prevent this from
occurring, but such controls have not been described in crustaceans
(McMahon and Wilkens, 1983).
A possible long-term effect is that the presence of the
barnacle may inhibit the gill-cleaning action of the epipodites of
the second and third maxillipeds (gill rakers) allowing other
barnacles to attach and debris to build up (Walker, 1974). Many
crustaceans periodically reverse the direction of ventilatory
flow over their gills for several reasons, including removal of
detritus and particulate matter from the gill chamber (McMahon
and Wilkens, 1983). Reversal frequency increases in response to
irritants (Batterton and Cameron, 1978), particulate matter
(Arudpragasam and Naylor, 1964; Berlind, 1977), and hypoxia
(Taylor et al., 1973). During reversed ventilation, oxygen uptake
is not as effective (McDonald, 1977).








Respiratory values recorded here for uninfested crabs are
generally similar to previously reported values for resting blue
crabs (Batterton and Cameron, 1978; Aldridge and Cameron, 1979;
Booth et al., 1982; Booth et al., 1984), although slightly lower M
02 and fH values suggest that the crabs in this study may have
been more "settled". In earlier studies using restrained crabs
fitted with a respiratory mask, mean M 02 was
50 pmol kg-1 min-1 and mean fH was 89 beats min-1 (Booth et al.,

1982) compared to 28 pmol kg- min-1 and 74 beats min-1 in the
present study. However, mean fSC in this study (130 beats min1)
was above that found previously (94 beats min-1 Booth et al.,
1982; 109 beats min"1 Batterton and Cameron, 1978). The
higher fSC may be related to the P02 of the inhalent water, which
was lower in this study (17 kPa, which was further lowered by
mixing with exhalent water in the respiratory chamber) than in
the earlier study (18 kPa Booth et al., 1982). Exact
correspondence between studies is not expected because of the
effects of geographic (Mauro and Mangum, 1982) and seasonal
variation (Weiland and Mangum, 1975), as well as temperature and
salinity (Laird and Haefner, 1976) of acclimation and
experimentation on hemocyanin-oxygen affinity (Mangum, 1983).
In addition different measurement methods for
M02 (flow-through versus closed system respirometry and
masked versus unrestrained animals), may explain small
differences between studies.







It is not surprising that infested crabs maintain M 02 at the
same levels as uninfested crabs. Trout maintain resting M 02 when
up to 30% of their gill surface area has been cauterized (Duthie and
Hughes, 1987). When spiders had their respiratory surface area
halved by experimental manipulation they maintained oxygen
consumption by doubling heart rate (Anderson and Prestwich,
1982).
The elevated fH and fSC rates found in the infested crabs in this
study are greater than values reported for resting blue crabs (fH = 89,
fSC = 94 beats min-1; Booth et al., 1982), but not as great as those
found in exercising blue crabs (fH = 143, fSC = 312 beats min-1;
Booth et al., 1982)
The hemolymph parameters for uninfested controls are also
similar to reported values (Mangum and Weiland, 1975; Booth et al.,
1984). The pH and CC02 hemolymph values in the present study
exhibit similar trends to those found in fH and fSC. Values for
uninfested crabs are similar to those reported in the literature for
resting crabs. Moderately infested crabs have significantly lower
pH and CCO2, but not as low as reported for exercising blue crabs

(Booth et al., 1984). Pre- and postbranchial hemolymph pH values
are not different from each other confirming the findings of
Mangum and Weiland (1975) and Booth et al. (1984). The lactate
values in the present study, although low (1.9 mM), are higher than
reported in resting blue crabs (0.7-1.3 mM; Booth et al., 1982); as
in that study no differences between pre- and postbranchial
hemolymph lactate levels were found.







Variation exists in blue crab hemolymph P02 values in the
literature. Booth et al. (1982) found a large arteriovenous P02
difference due to a high postbranchial value (10.4 kPa) and a low
prebranchial P02 of 1.1 kPa. The present study reports
postbranchial (4.7 kPa) and prebranchial (2.0 kPa) P02 values
similar to Mangum and Weiland (1975). This is puzzling given that
similar techniques were used in all three studies. However, the
more extreme values (Booth et al., 1982) are very close to those
reported for crabs stressed by exercise (Booth et al., 1982) and
were reported as "routine" activity values rather than inactive
"settled" values.
Ventilation volume, V W, and cardiac output, V B, and
therefore gill perfusion volume, are directly related to fSC and fH,
respectively (McMahon and Wilkens, 1983). The linear relationship
between V W and fSC has been estimated (Batterton and Cameron,
1978). The 83% increase in fSC measured in infested crabs
predicts a 69% increase in VW from 128 ml min- to 216 ml min-
1 (for a 200 g crab). The Fick equation relates V W or V B (in ml

min-1 kg-1) to M 02 (in umol kg-1 min-1) and the differences in
oxygen contents between water or hemolymph entering and leaving
the branchial exchanger (in gmol ml H20-1).


M02
VW =
C102 CE02









M02
VB= ___=
Cao2 Cvo2


In these equations C102 and CEO2 are the oxygen contents of the
water entering and exiting the gill chamber, respectively, and Ca02
and Cvo2 the oxygen contents of the arterial and venous hemolymph.
Since M02 remains constant between uninfested and infested
crabs, and V W and V B both increase in infested crabs, then the
C02 differences must decrease in infested crabs. This is true for
Cao2 Cvo2 (Table 4); we do not have data for C102-CE02.
Decreases in C102 CEO2 and Ca02 Cvo2 values indicate that the

effectiveness of oxygen exchange has decreased. Given the
calculated increase in V W and the constancy of M 02 for infested
and uninfested crabs, the Fick equation predicts that C102 CEO2
decreases by 41%. The effectiveness of oxygen extraction from the
ventilatory current (%ExtW):


C102 CEO2
%ExtW = (100)
Cl02


would also decrease by 41% on average in infested crabs.
Increasing the cardiac output would increase the gill
perfusion to compensate for increases in perfusion deadspace.







Cardiac output would be elevated by an increase in fH and stroke
volume. Using mean M 02 values from series A crabs (Table 1),
mean a-v CO2 differences for series C crabs (Table 4) and the
Fick equation, one can calculate a cardiac output (V B) of
354 ml kg1 min-1 in uninfested crabs and 482 ml kg-1 min-1
in heavily infested crabs. These values are high relative to
previously calculated values for resting blue crabs at the same
temperature (Mangum, 1977; deFur and Mangum, 1979), but
comparable (Booth et al., 1982). However, because the
calculation is based on data from two different series of crabs,
the absolute values should be viewed with caution. In relative
terms, the calculated 1.4-fold increase in V B correlates well
with the 1.4-fold increase we measured in fH.
By maintaining 0 02, infested crabs should be able to
maintain hemolymph blood gas variables at the same levels as
maintained in uninfested crabs. The prebranchial hemolymph
parameters suggest that moderately infested crabs were
disturbed (acidosis, elevated P02, and decreased CC02) while

heavily infested crabs were not. These are the same prebranchial
hemolymph characteristics exhibited by blue crabs stressed by
exercise (Booth et al., 1982; Booth et al., 1984). Moderately
infested crabs are more likely to have been recently infested and
may not have adjusted to the presence of barnacles. It is also
possible that only individual crabs that are capable of
compensating for the barnacles presence are able to survive a
heavy infestation. Those crabs that were disturbed by a heavy






47
infestation would die and therefore not be sampled. Moderately
infested individual crabs that are unable to compensate fully
might still survive. Compensation for the barnacle-induced
increase in ventilation and perfusion deadspace involves elevation
of ventilation and perfusion rates as discussed above. However,
increasing perfusion rate via elevated cardiac output would limit
gas exchange in the metabolizing tissues. Successful
compensation would include enhancement of tissue 02 delivery via
modification of hemocyanin oxygen binding characteristics
(Mangum, 1983; Morris, 1990).
The comparison of the pre- and postbranchial hemolymph of
infested and uninfested crabs showed that heavily infested crabs
were able to maintain hemolymph variables at similar levels to
uninfested crabs, confirming the results from the series B crabs.
Although one would expect Octolasmis muelleri to
maximally exploit its host, the barnacle is dependent on the crab's
ventilatory stream and continued survival and would therefore
undergo natural selection to minimize any detrimental effect on
its host. These results confirm that settled, infested crabs do not
show signs of significant disturbance. However, crabs with
massive infestations did not survive experimental handling and
would probably not survive long in nature if stressed. Although
the barnacle is common in Florida blue crabs, the median
infestation level is not heavy (Gannon, 1990), thus it is unlikely
that the barnacle poses a serious threat to the blue crab
population.











Table 2-1. Mean whole-animal respiratory characteristics
of series A Callinectes sapidus, infested experimentall) and
uninfested (controls) with Octolasmis muelleri. Values are
expressed as mean S.E. (number of observations). The asterisk
denotes significant differences between infested crabs and
uninfested controls (P < 0.05).


Uninfested


1102 (pmol kg-1 min-1)




fH (beats min-1)


fsc (beats


min-1)


28.3
3.4
(8)


73.8
11.2
(6)


130.1
26.7
(14)


Infested


28.9
2.6
(14)


106.5 *
8.7
(9)


237.6 *
30.8
(17)


--------~--- ~----~~~~~~~










Table 2-2. Mean prebranchial hemolymph parameters of
series B Callinectes sapidus at three levels of infestation by
Octolasmis muelleri. Values are expressed as mean S. E.
(number of observations). Asterisks denote values that are
significantly different from uninfested (control) crabs. (P < 0.05)

pH PO2 CC02 [La-]
Infestation Level (kPa) (mM) (mM)


Uninfested 7.50 1.96 6.0 1.9
0.05 0.27 0.4 0.1
(16) (14) (16) (21)


Moderate 7.22* 3.23* 4.5* 1.9
0.06 0.59 0.3 0.2
(7) (6) (6) (3)


Heavy 7.52 1.93 6.6 1.9
0.05 0.35 0.6 0.1
(13) (11) (13) (16)










Table 2-3. Mean prebranchial and postbranchial hemolymph
parameters of series C Callinectes sapidus, uninfested (controls)
and heavily infested with Octolasmis muelleri. Values are
expressed as means S.E. (number of observations)


Postbranchial Prebranchial
Infestation pH PO2 C02 pH P02 C02
Level (kPa) (pM) (kPa) (gIM)


Uninfested 7.50 4.71 178 7.56 2.68 71
0.13 0.96 178 0.14 0.68 99
(10) (9) (7) (8) (7) (9)


Heavily 7.42 4.08 114 7.34 2.45 51
infested 0.12 0.87 114 0.11 0.52 75
(10) (8) (10) (10) (10) (9)











Table 2-4. Mean arteriovenous differences for hemolymph
parameters of Callinectes sapidus, uninfested (controls) and
heavily infested with Octolasmis muelleri. Values are expressed
as mean S.E. (number of observations).


pH P02 C02
Infestation Level (kPa) (pM)



Uninfested -0.06 0.31 81
0.17 0.31 +120
(8) (6) (6)



Heavily Infested 0.05 1.64 62
0.16 0.68 75
(9) (7) (8)













CHAPTER 3
EFFECTS OF Octolasmis muelleri
INFESTATION ON EXERCISING
AND RECOVERING BLUE CRABS

Introduction


Previous reports on symbionts of commercially important
species such as the blue crab have focused on crab death and
debilitation (Overstreet, 1978) or transmission of disease to
humans (Moody, 1982). Natural selection generally acts on
symbionts to minimize damage to their host but also to maximize
the benefit they derive from the host. These opposing forces
create an evolutionary dilemma for commensal species. How this
dilemna is resolved is of theoretical importance. The effects of
gill parasites and commensals on crustacean host gas exchange
have been largely ignored. Branchial symbionts could impair host
respiration in several ways: by removing oxygen from the
ventilatory stream, through damaging branchial tissue, through
obstructing the ventilatory stream, and/or inhibiting the
ventilatory pumping mechanism.








The ectocommensal gill barnacle, Octolasmis muelleri
Coker, does not feed on the tissues of its host crab (Walker,
1974). The oxygen uptake of this barnacle is presumed to be
negligible (See Chapter 2) and it does not normally inhibit the
host's pumping appendage, the scaphognathite. However, heavily
infested crabs are more likely to die during handling and aerial
exposure, suggesting that the ectocommensal causes physiological
stress to the host (Gannon and Wheatly, 1988). In the previous
chapter I demonstrated that this barnacle stimulates
hyperventilation and tachycardia in its host Callinectes sapidus,
and in moderate infestations, causes decreased prebranchial
hemolymph pH and P02 and increased CO2. Presumably these

effects arise from obstruction of the host ventilatory stream.
These physiological effects are similar to the typical respiratory
responses to exercise.
The purpose of this phase of the study was to examine in
detail the effects of 2. muelleri infestation on the respiration of
the blue crab during exercise, a natural stress. In nature, blue
crabs are extremely active, swimming at speeds up to
1 m sec-1 (Spirito, 1972), and with well documented long range
swimming migrations (up to 500 km; Oesterling and Adams, 1982).
The effect of exercise on respiration has been well studied in
decapod crustaceans (see reviews by McMahon, 1981; Wilkens,
1981) and particularly in blue crabs (Booth et al., 1982; Booth et
al., 1984; Milligan et al., 1989).








The aerobic and anaerobic capacities of exercising decapods
are comparable to those of lower vertebrates of the same size and
activity level (Booth et al., 1982). Maximal oxygen consumption
rates (McMahon, McDonald and Wood, 1979; Rutledge, 1980; Booth
et al., 1982) are less than those reported for active fish (Brett,
1972) but greater than those reported for sluggish fish (Brett and
Blackburn, 1978; Poulson, 1963). Decapods have been studied
swimming (Booth et al., 1982), tail flipping (Rutledge, 1980),
walking on treadmills (terrestrial; Wheatly, McMahon, Burggren
and Pinder, 1985), and walking on substrate (aquatic; McDonald,
McMahon, and Wood, 1979) with similar results. Generally, during
exercise oxygen transport and delivery are enhanced through
increased oxygen uptake, facilitated by increases in ventilation,
perfusion, and the oxygen tension gradient across the gills
(McMahon, 1981). The hemolymph respiratory pigment
(hemocyanin) assumes a proportionally greater role in oxygen
delivery to the tissues (McMahon et al., 1979). Oxygen
conductance across the gills may also increase (McMahon and
Wilkens, 1983). The level of unused oxygen in the hemolymph
(venous reserve) decreases (Wood and Randall, 1981). The
hemolymph acidosis is predominantly respiratory with a
metabolic component in terrestrial crabs (Smatresk, Preslar and
Cameron, 1979). The decreased pH causes a Bohr shift, which
decreases hemocyanin-oxygen affinity thus facilitating oxygen
delivery to the tissues.
Exercising blue crabs follow the pattern observed in the
decapods but seem better adapted for aerobic exercise (Booth and








McMahon, 1985; Milligan et al., 1989). Swimming blue crabs
increase ventilation, heart rate, and oxygen uptake so drastically
and rapidly that maximum metabolic rate (227 I.mol 02 kg-1 min-1)
is larger than that reported for any other crustacean (McMahon and
Wilkens, 1983). Aerobic metabolic scope measurements for blue
crabs range from 2.6 X (Booth et al., 1982) to 3.4 X (McMahon and
Wilkens, 1983). These values are lower than actual metabolic scope
because the resting values used in these calculations were routine
metabolic rates rather than quiescent rates. If the resting oxygen
consumption rates measured in the present study (Chapter 2) had
been used in these calculations, aerobic metabolic scope would be
4.6 8.1 X.
Blue crabs will swim continuously for over an hour in
experimental conditions (Booth et al., 1982) resulting in a
hemolymph acidosis that is mainly (80%, Booth et al., 1984)
metabolic (i. e. due to metabolic acids in the blood rather than
elevated C02 in the blood) and elevated lactate levels (Booth and
McMahon, 1985). The acidosis effect is limited by the efflux of H+
at the gills (Milligan et al., 1989). Lactate counteracts the effect
of lowered pH on hemocyanin-oxygen affinity (Truchot, 1980,
Booth et al., 1982). Recovery takes several hours (Milligan et al.,
1989).
Because resting blue crabs infested with Octolasmis
muelleri compensate for the barnacles' presence by elevating
ventilation and heart rates (Gannon and Wheatly, 1988, See








Chapter 2), one would expect their ability to further increase
these parameters during exercise to be compromised.


Methods


Animal Maintenance
Adult blue crabs (150 250 g) were collected in commercial
traps at the University of Florida Marine Laboratory at Seahorse
Key on the Gulf coast of Florida (290 06' N. lat., 83004' W. long.)
from December 20, 1988 to October 5, 1989. Crabs were held at
densities of less than 30 in an 800 I tank of recirculating filtered
seawater (33-36 ppt salinity) at 22-260C on a 12 hr light:12 hr
dark cycle at the University of Florida in Gainesville. The crabs
were fed chopped fish 1-2 times weekly, but food was withheld
48 hours prior to experimentation. Intermolt crabs (stage C-4,
Johnson, 1980) were given a minimum of one week to acclimate to
these conditions before use in experiments.


Experimental Protocol
Ventilation rate (fSC), heart rate (fH) and prebranchial
(venous,v) and postbranchial (arterial,a) hemolymph characteristics
(pH; oxygen tension, P02; oxygen content, CO2; and (L+)-lactate
concentration, [La']) were measured in 39 crabs. Hemolymph
samples were withdrawn for analysis from all crabs after at least
24 hours of isolation (resting), at the end of a 15 minute exercise
period, and one hour after recovery under settled conditions. The fSC






57
and fH were recorded for one hour near the end of the resting period
and continuously during the exercise and recovery periods. The
animals sampled included crabs that were naturally infested by the
ectocommensal barnacle Octolasmis muelleri and controls that were
not infested. This was a blind experiment. Infestation level could
only be determined after experimentation. After measurements
were completed, crabs were killed by freezing and the gill chambers
were opened and visually inspected for the presence of Octolasmis
muelleri. The total mass of barnacles present in the gill chamber of
each crab was used as an index of infestation level.


Analytical Techniques
Experimental crabs were placed in a nalgene holding tank
containing 38 I of filtered seawater (33-36 ppt salinity) at 23-
250C. Ventilation rate, fSC, measured as frequency of
scaphognathite beating, and fH were measured using an impedance
conversion technique (Dyer and Uglow, 1977). Each crab was
prepared by drilling two holes through the carapace on either side of
the heart. The stripped end of a lacquered copper wire (32 gauge)
was inserted into each hole to a depth of 4 mm. The wires were held
in place with cyanoacrylate glue and latex dental dam. These wires
were attached to an impedance convertor (UFI 2991) and the output
was recorded on a Grass model 79 polygraph. Scaphognathite rate
was recorded similarly, with a recording wire inserted into the
exhalent canal of each branchial chamber and a reference wire
attached to the carapace directly above each scaphognathite.








Prebranchial hemolymph samples (1 ml) were taken from the
infrabranchial sinus by penetrating the arthrodial membrane at the
base of a swimming leg with a 22 guage needle on a chilled syringe.
Crabs were prepared for postbranchial hemolymph sampling by
drilling a hole through the carapace directly over the heart, through
the carapace but not penetrating the epidermis. This hole was
sealed with a 1 cm2 patch of latex dental dam and cyanoacrylate
glue. The postbranchial hemolymph sample (1 ml) was withdrawn by
puncturing the dental dam patch. The crabs were given 48 hours to
recover from this surgery before experimentation.
The CO2 of an 80 pl subsample of each hemolymph sample was
analyzed in a Lex-02-con oxygen analyzer. The [La-] of an 80 gl
subsample was measured using a commercial reagent kit (Sigma
#826). An 840 p.l subsample was injected into an IL 213 blood gas
analyzer thermostatted to 25C. The P02 of this subsample was
measured with an IL 02 electrode (20984) and the pH was measured
with an IL pH electrode (20982).
After surgery crabs were placed in a harness of plastic coated
baling wire which was looped around the lateral horns of the
carapace and attached to a 25 cm long (1 cm diameter) wooden
dowel. The dowel was attached by a clamp to a wooden pole
suspended over the nalgene holding tank. This arrangement made it
possible to hold the crab either on the floor of the tank or suspended
in the water column with minimal restraint. When crabs were
raised off the floor of the holding tank they would swim
continuously. Infrequently crabs required prodding with another






59
wooden dowel in order to continue swimming. Hemolymph samples
were taken from crabs after 24 hours of isolation on the floor of the
holding tank (resting), after fifteen minutes of swimming in the
water column (exercise), and after one hour of recovery on the floor
of the holding tank (recovery). A period of fifteen minutes was
selected for the exercise period because, in earlier studies on blue
crabs, (Booth et al., 1982, Booth et al., 1984) physiological variables
showed maximal change and reached or approached peak levels in the
first fifteen minutes of exercise.


Data Analysis and Statistics
Experimental crabs were divided into three classes based upon
intensity of infestation: uninfested (0.0 0.020 g of Octolasmis
muelleri in the crab gill chambers), moderately infested (0.020 -
0.100 g of muelleri), and heavily infested (0.100 1.22 g of Q,
muelleri). These divisions were based on an analysis of the
distribution of Q. muelleri on 512 blue crabs (See Chapter 1). Mass
of infesting barnacles was assumed to be a more accurate index of
potential barnacle impact than number of infesting barnacles. In
experiments described in Chapter 2, however, numerous crabs were
examined on a single day and it was impossible to carefully remove
all of the infesting barnacles and weigh them for each crab.
The continuous records of fSC and fH were analyzed by
counting the number of beats in a fifteen second interval at the
beginning of every minute. These values were expressed as beats
min-1 and combined into five minute means. For comparison of






60
crabs at the different infestation levels, the mean frequency of the
last fifteen minutes of the acclimation period was used for the
"resting" value. The mean of the final five minute interval of the
exercise period was used for the "exercise" value and the mean of
the last five minutes interval of the recovery period was considered
the "recovery" value. After variances were found to be homogeneous
with an F-test (Sokal and Rohlf, 1969), heart and ventilation rates
of crabs at the different infestation levels were each compared with
a one-way factorial ANOVA (Winer, 1971). Heart rate and
ventilation rate values during the full one hour recovery period were
analyzed with repeat measures ANOVA (Winer, 1971) to determine if
a significant change occurred in either of these parameters during
the recovery period.
Pre- and postbranchial blood chemistry measurements were
also compared with repeat measures ANOVA to determine
significance of any differences between the rest, exercise and
recovery periods. Prebranchial values were compared to
postbranchial values with paired t-tests to determine if a-v
differences were significant. Hemolymph chemistry data were
reported as mean + S.E. These values were also compared across
infestation levels with a factorial ANOVA. Hemolymph pH values
were converted to concentration (linear scale) before calculation of
means, S.E.s and ANOVAs.











To minimize any effect of mass on heart rate (fH) and
ventilation rate (fSC), I used crabs of similar mass (mean = 249 +
45.2 g SD; range = 128 343 g). However, fH and fSC were plotted
against mass for all crabs and for the crabs at each infestation level
separately and subjected to regression analysis. No linear
relationships were found, indicating that the effect of mass was
minor over this mass range.
At rest, fH for heavily infested crabs was significantly
greater than fH for uninfested crabs factoriall ANOVA; F2,30 = 2.4;
Fisher PLSD; P < 0.05). The heart rates of crabs at the three levels
of infestation (figure 3-1) all increased dramatically during
exercise from resting rates of around 75 100 beats min-1 up to
140 160 beats min-1 remaining at this level throughout the
exercise and recovery periods. This represented a 2.0 X increase for
uninfested crabs and a 1.4 X increase for heavily infested crabs.
Heart rates for the three groups of crabs were not significantly
different through the exercise and recovery periods. At the end of
the one hour recovery period, fH for all three groups of crabs was
not significantly different from fH at the beginning of the recovery
period (repeat measures ANOVA, P > 0.05).
Ventilation rates (fig. 3-2) followed a similar pattern for
resting and exercising crabs. At rest, heavily infested crabs had
significantly greater fSC than moderately infested and uninfested
crabs factoriall ANOVA, F2,29 = 8.3; Fisher PLSD, P < 0.05).






62
Variance in ventilation rates was much greater for exercising crabs
than for resting crabs and differences between infestation levels
were not significant. As exercise began, fSC increased from about
100 beats min-1 to about 300 beats min-1 in all three groups.
Unlike heart rate, ventilation rate began to decrease immediately
after exercise stopped, but as fH, did not reach resting levels by the
end of the defined recovery period. Ventilation rates at the end of
the recovery period were significantly lower than fSC at the onset
of the recovery period for all three groups of crabs (repeat measures
ANOVA; F3,44 = 83.9; P < 0.05).
The frequency of ventilatory pauses (figure 3-3) was
significantly greater for uninfested crabs than moderately or
heavily infested crabs factoriall ANOVA; F2,31 = 3.3; Fisher
PLSD; P < 0.05) at rest. During exercise, ventilatory pauses were
not observed in any crabs. In the recovery period few crabs
exhibited ventilatory pauses and no differences existed between
the groups of crabs.
The pre- and postbranchial hemolymph oxygen contents
(C02) for resting, exercising and recovering crabs at the three
infestation levels (figure 3-4) were compared with a 2-way
repeat measures ANOVA (Winer, 1971). The repeat measures
gave a significant effect (F5,10 = 11.5; P < 0.05). Means were
compared with the Fisher PLSD (Snedecor and Cochran, 1980).
The mean recovery postbranchial value was significantly
greater than the resting and exercising prebranchial means (P <
0.05). This difference was most pronounced in the uninfested








crabs. The C02 values of uninfested, moderately or heavily
infested crabs were not significantly different from each other.
For uninfested crabs the mean C02 a-v difference

increased from a resting value of 0.042 mM to a recovery value
of 0.091 mM. In heavily infested crabs the mean C02 difference

increased from a resting value of 0.079 mM to a recovery value
of 0.22 mM. In moderately infested crabs the mean C02 a-v
difference decreased from 0.092 mM to 0.054 mM. During the
recovery period heavily infested crabs had a significantly
greater a-v difference than moderately and uninfested crabs
factoriall ANOVA; F2,25 = 4.2; Fisher PLSD; P < 0.05).
Because the 2-way repeat measures ANOVA could not
include individuals with a missing measurement in the
calculations (Winer, 1971), and some samples were lost due to
blood clots, this test could not be used for P02 comparisons.
Six separatel-way repeat measures ANOVA were used to
compare pre- and postbranchial hemolymph P02 for crabs at
each infestation level over the rest, exercise and recovery
periods (figure 3-5). Only the difference between resting
prebranchial P02 and recovery prebranchial P02 for uninfested
crabs was significant (repeat measures ANOVA; F2,23 = 3.9; P <
0.05). Comparison of the P02 levels of crabs at the different
infestation levels factoriall ANOVA) were made for pre- and
postbranchial hemolymph at the three experimental periods. No
significant differences were found.








The a-v P02 differences for uninfested and moderately
infested crabs during rest, exercise and recovery were not
significant (paired t-test). Heavily infested crabs had small a-
v differences at rest, but the mean P02 a-v difference for
heavily infested exercised crabs (1.2 kPa) was significantly
greater factoriall ANOVA; F2,23 = 3.9; P < 0.05) than the mean
P02 a-v difference for uninfested exercised crabs (0.25 kPa)
and moderately infested crabs (0.09 kPa).
The trend for hemolymph pH values for all crabs was to
decrease during exercise and increase during recovery, but not
to resting levels (figure 3-6). A two-way repeat measures
ANOVA was used to compare pre- and postbranchial hemolymph
values of resting, exercising and recovering crabs at the three
infestation levels. The repeat measures gave a significant
effect (F5,10 = 6.9; P < 0.05). Mean pre- and postbranchial pH
values during exercise were significantly lower than resting
values (Fisher PLSD; P < 0.05). Samples for several crabs were
lost due to blood clotting. To include these individuals in
comparisons, I used six one-way factorial ANOVA comparisons
of pre- and postbranchial hemolymph pH values for crabs at the
different levels of infestation during rest, exercise and
recovery. No significant differences were found between
infestation levels.
The moderately and heavily infested crabs had a
significantly greater postbranchial hemolymph pH than
prebranchial pH (paired t-test; P < 0.05) during rest, exercise








and recovery. Uninfested crabs had a significant a-v difference
only during rest.
Hemolymph lactate concentrations showed the reverse of
the trend described for pH (figure 3-7). A 2-way repeat
measures ANOVA was used to compare pre- and postbranchial
lactate values of resting, exercising and recovering crabs at the
three infestation levels. Mean lactate increased significantly
during exercise and decreased significantly during recovery, but
not to resting levels (F2,19 = 25.6; P < 0.05). Differences
between pre- and postbranchial lactate were not significant,
with the exception of the recovery values for the heavily
infested crabs (paired t-test; P < 0.05). Differences between
the crabs at the three infestation levels were not significant.




Discussion


The mean heart rate of uninfested crabs at rest (78.4 beats
min-1 5.6 S.E.) agrees with that found earlier for uninfested blue
crabs (73.8 beats min-1 11.2 S.E.) (See Chapter 1). In the prior
study, infested crabs (most of which would be in the heavily
infested category in this study) had an elevated mean resting fH
(106.5 beats min-1 8.7 S.E.) that also agrees with mean resting
fH in the heavily infested crabs in this study (103.6 beats min-1 +
8.7 S.E.).








These fH values for uninfested crabs are lower than those
found by Booth et al. (1982) for resting blue crabs (89 beats min-
9.0 S.E.). However, that study of Florida gulf coast blue crabs
may have included a mix of infested and uninfested blue crabs
since the underside of the gills were not inspected for infesting
barnacles (B. R. McMahon, personal communication) and infestation
levels in the Cedar Key, Florida crab population average 40% (See
Chapter 1). Another reason for an elevated heart rate among the
blue crabs in Booth's study was that they were fitted with a
respiratory mask and were restrained during measurement. Their
resting values are labelled "routine" rather than standard.
Ventilation rates differ from those found by Booth et al.
(1982) in the same way. Resting moderately infested crabs had
the same fSC as resting blue crabs in the earlier study
(93 beats min-1) with uninfested blue crabs having a significantly
lower fSC and heavily infested crabs a significantly higher fSC.
These resting heart and ventilation rates for blue crabs are higher
than those found for similar sized crab species (McMahon and
Wilkens, 1977; McMahon,McDonald and Wood, 1979); however few
of these species are as active as the blue crab (McMahon, 1981).
Crabs at all three infestation levels exhibited an immediate
elevation of heart and ventilation rates to near maximum as
exercise began and maintained elevated levels throughout the
exercise and recovery periods. Booth et al. (1982) found the same
rapid increase, with a steady state half time of about 30 seconds.
Exercise fH and fSC values found by Booth et al. (1982) were








virtually the same as those found in moderately infested crabs in
the present study, and were below values found in uninfested
crabs. Although the exercise period in the earlier study was one
hour (compared with the present exercise period of fifteen
minutes) the peak levels reached and the dynamics of recovery
were similar. Ventilation rate dropped abruptly as exercise
stopped. Heart rate did not decrease significantly but remained
high. Neither rate reached resting values after thirty minutes of
recovery in either study. Even after one hour, recovery was not
complete in the present study.
Although differences in heart rate between the three
infestation levels were not significant, uninfested crabs had
greater mean fH and fSC over all five-minute exercise and
recovery intervals but one. Variance was great during exercise
and recovery, particularly for fSC. Although heavily infested
crabs were hyperventilating at rest, they were able to elevate
fSC during exercise to about the same levels as uninfested
crabs, perhaps because this level (300 350 beats min-1) is
the maximal sustainable rate. Batterton and Cameron (1978)
measured ventilation volume in blue crabs over a large range of
fSC but could not stimulate fSC above 350 beats min-1. Values
of fSC over 300 beats min-1 are more than twice as great as
the values reported for other exercising crabs (McMahon et al.,
1979; Wood and Randall, 1981) or crayfish (Rutledge, 1980;
Booth and McMahon, 1980) indicating the great aerobic exercise
capacity of blue crabs.








Intermittent cardiac and ventilatory pauses are
characteristic of decapod crustaceans at rest in well-oxygenated
undisturbed environments (McDonald et al., 1979; McMahon and
Wilkens, 1977; Batterton and Cameron, 1978). Although
experimental evidence is lacking, these pauses may be a way of
conserving energy when hemolymph oxygen levels are near or
above saturation levels (McMahon and Wilkens, 1977). At rest,
uninfested crabs ceased ventilating more than once every two
minutes. Heavily infested crabs paused in their ventilation only
once every twenty minutes. During exercise oxygen demand
increases and ventilatory pauses were not observed.
Cardiac pauses were more difficult to evaluate. Frequently,
ventilatory and cardiac pauses would occur simultaneously. While
ventilatory pauses might last over a minute, single cardiac
contractions would typically occur intermittently throughout the
ventilatory pause, making calculation of the length or number of
cardiac pauses difficult.
Resting and exercising hemolymph oxygen contents of crabs
did not differ between infestation levels, but mean values were
only about 20% of those found by Booth et al. (1982). They found
CvO2 and CaO2 were not significantly changed after 25 minutes
of exercise. I found the same result in moderately infested crabs.
Uninfested crabs exhibited the same trend as heavily infested
crabs; CaO2 increased with exercise and recovery. Since CvO2 did
not significantly change, the CO2 a-v differences increased, and

the recovery a-v difference was greatest for heavily infested








crabs. This suggests that the metabolizing tissues of heavily
infested crabs are not reducing prebranchial CO2 below the levels
of uninfested crabs, but they are obtaining more oxygen because
the a-v difference is greater.
Resting prebranchial hemolymph oxygen tensions for all
groups of crabs were low, but agree with those reported for
uninfested resting blue crabs in Chapter 2 (Mangum and Weiland,
1975; Booth et al., 1982). Resting postbranchial P02 values
however were about 20-50% less than those reported by Mangum
and Weiland (1975) and Booth et al. (1982). Differences between
post- and prebranchial hemolymph P02 reported by Booth et al.
(1982) were large for crabs at rest (59 torr, 7.9 kPa) and during
exercise (68 torr, 9.1 kPa). In this study, uninfested and
moderately infested crabs had virtually the same P02 for post-
and prebranchial hemolymph during the rest, exercise and recovery
periods. The a-v differences found in the heavily infested crabs
during exercise and recovery are comparable to those reported by
Mangum and Weiland (1975) for resting (AP02 = 2.72 kPa) and
exercising (AP02 = 1.76 kPa) blue crabs.
Post- and prebranchial pH followed the pattern expected for
exercising animals. Both values decreased during exercise and
increased during recovery. Values for uninfested crabs were
similar to those reported for blue crabs at rest and exercise
(Mangum and Weiland, 1975; Booth et al., 1982; Booth and
McMahon, 1985). Moderately infested crabs had lower resting pH
values, but higher exercise values. Recovery values were not








available for other studies, but recovery values here were
between resting and exercise levels for all three groups of crabs,
indicating that recovery was not complete in one hour.
Respiratory acidosis accounted for less than 20% of the
total pH drop in exercising blue crabs (Booth and McMahon, 1981).
Although lactate and H+ are produced in equimolar amounts in
anaerobic glycolysis (Hochachka and Mommsen, 1983), Booth et al.
(1984) calculated a net H+ deficit in the hemolymph of exercising
crabs. However, measured H+ excretion into the external medium
exceeded that predicted from lactate accumulation (Booth et al.,
1984). Here, lactate levels in the hemolymph of resting crabs
were similar to those reported for resting blue crabs (Booth et al.,
1982; Milligan et al., 1989). During exercise, [La-] increased 2-4 X
for crabs at all infestation levels. This is significantly less than
the increases reported for blue crabs after exercise bouts of
fifteen minutes (5 X-Booth et al., 1984), 25 minutes (14 X-Booth
et al., 1982), and thirty minutes of exercise (10 X-Booth and
McMahon, 1985; 15 X-Milligan et al., 1989). In determining lactate
the samples were not buffered with EDTA to prevent interference
by Cu2+ in the hemolymph as recommended by Engel and Jones
(1978). However, this would equally affect all readings,
preserving the ratio between treatments.
In blue crabs, anaerobic metabolism is important to energy
production during the first few minutes of swimming, while
sustained exercise is fueled predominantly by aerobic metabolism
(Booth and McMahon, 1985). In some terrestrial decapods such as








Uca pugilator (Herreid, 1981) and Gecarcinus lateralis (Full and
Herreid, 1984) anaerobic metabolism is important throughout
exercise bouts. Energy expenditure during exercise is difficult to
quantify. Earlier studies of blue crabs used prodding to induce
exercise walking and swimming (Mangum and Weiland, 1975;
Booth et al., 1982; Booth et al., 1984). Intensity of exercise was
not controlled in those studies nor in the present one. The crabs
in this study all swam readily with little prodding once they were
lifted from the substrate. However there was great variation in
the rapidity of swimming leg movement. Subjective evaluation of
swimming intensity did not reveal any correlation with
infestation level. The lower lactate levels found in all three
groups of exercising crabs indicate anaerobic glycolysis was not
used to the same extent as by crabs in earlier studies (Booth et
al., 1982; Booth et al., 1984). Perhaps overall energy expenditures
here were less, resulting in lower lactate production and minimal
disturbance of blood chemistry.
During exercise the decrease in hemolymph pH affects the
hemocyanin-oxygen dissociation curve. Using the Bohr shift
values calculated for blue crab hemolymph by Booth et al. (1982):


A log P50 (torr)

-1.14 =


A pH








I found the difference between post- and prebranchial hemolymph
pH in heavily infested crabs during exercise equivalent to an
increase in P50 of 1.4 torr (0.19 kPa). For moderately infested
and uninfested crabs, the P50 increased 1.7 torr (0.23 kPa) and 0.0
torr respectively.
In blue crabs lactate concentration of the hemolymph
affects P50 independent of pH (Truchot, 1980). The effect of
increased hemolymph lactate on hemocyanin oxygen-affinity was
measured in vivo and in vitro by Booth et al. (1982) as;


P50 (torr) = -5.252 log [La-] + 11.859


Using the mean [La-] found in the post- and prebranchial
hemolymph of heavily infested crabs to calculate P50 values, I
found a change in P50 from postbranchial to prebranchial
hemolymph of -0.85 torr (-0.11 kPa), a negative Bohr shift. For
moderately infested and uninfested crabs, lactate levels would
shift the P50 -0.16 torr (-0.02 kPa) and -0.07 torr (-0.01 kPa)
respectively. Because these pH and [lactate] values and the
equations were taken from different studies and the present study
did not correct for the possible interference of Cu+ (Engel and
Jones, 1978), these absolute values are only approximations.
However, the relative effects on the hemocyanin-oxygen affinity
relationship should hold. Thus, during exercise the pH decrease in
prebranchial hemolymph would tend to shift the oxygen
dissociation curve to the right, reducing oxygen loading at the








gills and increasing oxygen unloading at the tissues. However,
this is opposed by the effect of increased lactate levels, which
would tend to shift the curve to the left by almost the same
amount for heavily infested crabs and by a lesser amount for
moderately infested and uninfested crabs.
At the end of the 1-hour recovery period, neither pH nor [La-]
have reached recovery levels but because of the opposing effects
of these two moderators, the P50 and therefore the position of the
oxygen dissociation curve is relatively unchanged. This is an
example of enantiostasis (Mangum and Towle, 1977). Lactate
produced by anaerobic metabolism counteracts the negative
effects of acidosis on hemocyanin-oxygen affinity (Milligan et al.,
1989). Exercise in the blue crab is highly aerobic (Milligan et al.,
1989) and the lactate effect preserves the "venous reserve" by
maintaining unused oxygen in the prebranchial hemolymph that can
be utilized when the intensity of exercise must be increased
(Booth et al., 1984) or some other environmental stress demands
emergency 02 transport. During exercise, the actual amount of
oxygen available to the tissues is determined by the hemocyanin-
oxygen affinity which is affected by pH and [lactate] (Booth et al.,
1982) as well as organic ion modulators (Morris, 1990). The fact
that prebranchial oxygen content remains relatively unchanged
during rest, exercise and recovery indicates that all groups of
crabs are maintaining a venous reserve. Uninfested crabs had a
significant a-v pH difference only at rest, while the prebranchial
hemolymph pH of moderately and heavily infested crabs was








significantly less than the postbranchial hemolymph pH during
rest, exercise and recovery. This suggests that moderately and
heavily infested crabs relied more on the Bohr effect to deliver
oxygen to their metabolizing tissues.
After 1 hour of recovery, fSC had dropped significantly,
while fH remained elevated. The same relationship was observed
by Booth et al. (1982) and McMahon et al. (1979), although fSC and
fH are usually coordinated in their activity (Wilkens, 1981).
During recovery M 02 dropped at about the same rate as fSC
(McMahon et al., 1979; Booth et al., 1982). This suggests that the
demand for 02 had decreased considerably. A decreased fSC could
still meet the decreased 02 need. However lactate and pH values
had not reached recovery levels at one hour of recovery. Perfusion
rates would need to be maintained at a high level to flush La- and
H+ from the muscle tissues. Excretion of H+ is presumably by
branchial exchange (Booth et al., 1984) while lactate is taken up
and metabolized by tissues that have not been identified (Milligan
et al.,1989).
Blue crabs have a well developed anaerobic capacity (Booth
and McMahon, 1985) and a large aerobic metabolic scope (Booth et
al., 1982). They are highly resistant to fatigue from sustained
swimming (Milligan et al., 1989) maintaining a level of unused
oxygen in their prebranchial hemolymph even after one hour of
continuous swimming (Booth et al., 1982). The presence of the
ectocommensal barnacle, Octolasmis muelleri in the gill chamber
does not cause a major disturbance even during the stress of








exercise. At rest, infested crabs elevate fsc and fH to maintain a
venous reserve and hemolymph variables at the levels of
uninfested crabs, thereby compensating for the physical
obstruction within the ventilatory stream. During sustained
exercise fSC and fH for all crabs approach maximum rates. Oxygen
delivery to the tissues is maintained, but oxygen uptake at the
gills is not compromised due to the effect of lactate
counteracting acidosis.
The physiology of the blue crab is extremely well designed
for sustained swimming (Booth et al., 1982). The enantiostatic
control of its oxygen delivery system (Mangum and Towle, 1977)
makes Octolasmis-infested blue crabs capable of sustained
swimming with minimal disturbance in their blood gas
parameters. Because energy expenditure while
swimming was not quantified, infested crabs may not have been
swimming as fast as were uninfested crabs, and that extremely
rapid escape swimming may be compromised by massive barnacle
infestation. Several crabs with infestation of more than 1.0 g
Octolasmis muelleri did not survive experimental stress, and
probably would not survive long in nature.































V
7C)
Cu

0)

(1C



m




0 C
CO
0)
Ca


o~c


LOC







~L.


o.2
0CD
>

V0
CE

=3
cu
aCT
Ul)-



x
L..
.0

cO


CCS -0
4-o
Cl)














CM

ccJ



cvcc



cc
0) E



E G


'a 0
CI
0
0
cc
C 0 )Q









Lo

cr-
100
CV b




C 000
0








cv,
0







cr.

aa-
(I
0






CV

w


C14
x
LU






w
x
w










0 M 0 0o 0I




(ultw/sloeq) 3-S alai IIJO0 lIOIBUOW





























0)
C









01)

0Cc
40





as T



>~a
cnG)





I.-I






0
C.
00)v



0o



>0
Ct
c'uv
cDC


la)
0).0

C


C





)LO

.0



0
U)J)

CLV


















0
cd o
cu -d
"T "1
oS, "
II It






E
c "^,



E E >

~ -I

-5 t


(ul"u/slBeq) 3S -/+ elJ3 Uo!)Bel|UOA uBelU


79

























0
O.


C
0
E

x
uJ
a-
w










80




50 -- Uninfested n = 12)

----Moderately Infested1 = 13)


40 --H Heavily Infestedn = 8)
+




30




e 20
0



S10
-01






Rest Exercise Recovery


Experimental Period


Figure 3-3. Frequency of pauses in ventilation of blue
crabs at rest, exercise and recovery
at three levels of infestation























Figure 3-4. Mean post- (a) and prebranchial (v) hemolymph
oxygen contents of crabs at rest, exercise and
recovery, at three levels of infestation. Dashed
lines indicate significant (P < 0.05) a-v
differences. Asterisk indicates an a-v difference
that is significantly greater (P < 0.05) than for
other infestation levels.











0.30-



0.20-



0.10-



0.00-


Moderately Infested
(n = 12-15)


Rest,a Rest,v


0.30-



0.20



0.10



0.00
Rest,a Rest,v


Ex,a Ex,v


Rec,a Rec,v


Heavily Infested
(n = 7-10)


Ex,a Ex,v Rec,a Rec,v
Experimental Period


Uninfested
(n = 10-12)





Rest,aRest,v Ex,a Ex,v Rec,a Rec,v


0.30-



0.20-



0.10-



0.00-






















Figure 3-5. Mean post- (a) and prebranchial (v) hemolymph
oxygen tension of crabs at rest, exercise and
recovery, at three levels of infestation. The dashed
line indicates a significant (P < 0.05) a-v
difference. The asterisk indicates an a-v
difference that is significantly greater (P < 0.05)
than for other infestation levels.













- T


T -I-


Rest,a Rest,v


Ex,a Ex,v Rec,a Rec


-r T


Rest,a Rest,v


Ex,a Ex,v


Uninfested
(n = 8-10)





,v








Moderately Infested
(n = 12-15)


Rec,a Rec,v


T


T


Heavily Infested
(n = 7-10)


Rest,a Rest,v


Ex,a Ex,v Rec,a Rec,v
Experimental Period


5.0

4.0-

3.0-

2.0-

1.0-

0.0-
























Figure 3-6. Mean post- (a) and prebranchial (v) hemolymph pH
of crabs at rest, exercise and recovery, at three
levels of infestation. Dashed lines indicate
significant (P < 0.05) a-v differences.











8.01


I "-r-


Uninfested
(n = 9-12)


Rest,a Rest,v


8.0
LU


n. 7.5

E

E 7.0




6.5
Rest,a Rest,v


Ex,a Ex,v


Rec,a Rec,v


Moderately Infested
(n = 12-15)


Ex,a Ex,v Rec,a Rec,v


8.0-


-r-


Heavily Infested
(n = 7-9)


Rest,a Rest,v


Ex,a Ex,v


Rec,a Rec,v


Experimental Period
























Figure 3-7. Mean post- (a) and prebranchial (v) hemolymph
lactate concentration of crabs at rest, exercise and
recovery, at three levels of infestation. The dashed
line indicates a significant (P < 0.05) a-v
difference.















Uninfested
(n = 10-11)


Rest,a Rest,v


Rest,a Rest,v


Ex,a Ex,v


Ex,a Ex,v


Rec,a Rec,v







Moderately Infested

T T (n = 11-13)


Rec,a Rec,v


2








Rest,a Rest,v Ex,a Ex,v

Experimental Period


T T


Heavily Infested
(n = 7-9)


Rec,a Rec,v











GENERAL DISCUSSION


This study has focused on the Octolasmis muelleri/Callinectes
sapidus relationship seeking answers to questions on three levels.
On the organism level, information was collected to evaluate the
likelihood that barnacle larvae select optimal sites and hosts and to
determine the crab's physiological response/compensation to the
barnacles presence. The optimal site and host are those that allow
the highest rate of growth, survival and reproduction. On the
population level, infestation rates were measured to determine if
the barnacle population was large enough to have a major impact on
the Cedar Key, FL crab population. On the host/ectocommensal level,
information from the other two levels was synthesized to evaluate
the selection pressures on the host and symbiont and to determine
how this system differs from other host/symbiont systems.




Organism


Octolasmis muelleri adults aggregated on the bases of the
hypobranchial aspect of gills 3,4,5 and 6, the best ventilated part of
the gill chamber (Hughes et al., 1969). This represents only a small
portion of the available attachment area on the gills (28.6%), and an
89







even smaller portion (5.7%) of the total suitable area. The suitable
area consists of the areas where apparently healthy adult barnacles
were found. This includes both sides of the gills, the branchial
chamber epidermal lining, and the carapace underneath the gills.
Although this suggests site selection, three pertinent assumptions
must be evaluated: 1. the best ventilated site corresponds to the
optimal site. 2. adult distribution reflects larval settlement rather
than post-settlement mortality. 3. cyprid settlement involves
active selection, not passive distribution.


Ventilation and the Optimal Site
The requirements of adult barnacles have not been researched
in detail but must include a minimal level of oxygen (Barnes and
Barnes, 1964), nutrient availability, and the presence of prospective
mates. As for the latter requirement, aggregation of the adults as
demonstrated in Chapter one should suffice. Barnacles are
uncommon among sessile animals in that they have internal
fertilization. Adult Q. muelleri are able to extend their muscular
stalk and obtain a length up to 2.0 cm (personal observation).
Coupled with a long protrusible penis, they should be able to mate
with other barnacles within a radius comprising about the area in
which they were found to aggregate, but not reaching the whole gill
chamber.
With respect to oxygen availability, levels are relatively high
in all parts of the gill chamber but presumably the best ventilated
site, would be where water first enters the gill chamber (Hughes et
al., 1969). Since the blue crab takes only 50% of the oxygen out of







water passing through the gill chamber at rest (Booth et al., 1982),
oxygen availability, is probably adequate,.even in the epibranchial
chamber.
In regard to nutrient requirement, little information is
available but adult blue crabs are omnivorous, cannibalistic, and
detritivorous (Laughlin, 1982) as well as being sloppy eaters. They
shred their food using the maxillipeds and mandibles before
ingesting it (Pyle and Cronin, 1950), often creating a cloud of
particulate matter (personal observation). The intake to their gill
chamber, the Milne-Edwards opening, is at the base of the cheliped
(McMahon and Wilkens, 1983) and therefore in close proximity to the
mouth. Injection of methylene blue dye into the water near the base
of the cheliped showed that particulate matter is swept into the gill
chamber (personal observation). The diet of Q. muelleri adults in
nature is unknown but they have been maintained for several months
in lab cultures on crushed Artemia (Lang, 1976) which is
nutritionally similar to the crustacean food components that make
up a large portion of blue crab gut contents (Darnall, 1959).
Therefore the best ventilated site may also be the optimal
attachment site with regards to nutrient availability.
With respect to negative impacts, Q. muelleri is remarkably
sheltered from predation in the blue crab gill chamber. Little is
known of the relative efficiency of the blue crab gill rakers
(epipodites of second and third maxillipeds (Pyle and Cronin, 1950)),
which clean the surface of the gills. However, it appears that Q.
muelleri avoids removal by attaching to the margins and bases of the







gills rather than directly on the efferent vessel (Walker, 1974).
This would also favor the proposed optimal site.


Adult Distribution and Larval Site Selection
Differential mortality at sites within the gill chamber could
cause adult distribution to be nonrepresentative of barnacle cyprid
attachment site selection. Although this question has not been
addressed directly, previous studies of Q.. muelleri distribution that
included unmetamorphosed attached cyprids, did not report a
difference between cyprid and adult distribution (Walker, 1974;
Jeffries et al., 1983).


Active Selection Rather Than Passive Distribution
The aggregated distribution of barnacles at the best ventilated
site in the gill chamber could be explained by passive distribution in
the ventilatory stream and immediate attachment of larvae to the
first surface they encounter. Barnacle cyprid larvae respond to
surface contour (Wethey, 1986), water flow patterns (Rittschof,
Branscomb and Costlow, 1984), and chemical cues (Larman, Gabbot
and East, 1982) when selecting attachment sites. Cyprids are able
to move against currents by swimming in the slow-moving boundary
layer (Crisp, 1955) or by crawling on the surface (Crisp and Barnes,
1954). Symbiotic barnacle larvae are thought to use substrate
texture cues as well as host chemical cues in settlement (Lewis,
1978). Extracts of host tissues promote settlement in several
symbiotic cirripedes (Crisp and Williams, 1960; Williams, G. B.,
1964; Hayward and Harvey, 1974). The less likely it is that a




Full Text

PAGE 2

+267 ',675,%87,21 $1' 3+<6,2/2*,&$/ ())(&76 2) (&72&200(16$/ *,// %$51$&/( 2FWRODVPLV PXHOOHULO ,1)(67$7,21 21 %/8( &5$%6 &DOOLQHFWHV VDSLGXV7 %\ $1'5(: 7+20$6 *$1121 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 3

7KLV ZRUN LV GHGLFDWHG WR P\ SDUWQHU DQG ZLIH )UDQFHVFD

PAGE 4

$&.12:/('*0(176 0DQ\ LQGLYLGXDOV FRQWULEXWHG WR WKH VXFFHVV RI WKLV UHVHDUFK ZRXOG OLNH WR DFNQRZOHGJH WKH JXLGDQFH RI P\ PDMRU SURIHVVRU 'U 0LFKHOH :KHDWO\ ZKR FDUULHG RXW KHU UHVSRQVLELOLWLHV DV PHQWRU DERYH DQG EH\RQG WKH FDOO RI GXW\ 6KH RIIHUHG XQFHDVLQJ KHOS DW DOO VWDJHV RI WKH SURMHFW LQFOXGLQJ WHFKQLFDO DGYLFH DQG DVVLVWDQFH UHDGLQJ LQQXPHUDEOH GUDIWV DQG FDUHHU FRXQVHOLQJ DQG JXLGDQFH ZRXOG DOVR OLNH WR WKDQN WKH RWKHU PHPEHUV RI P\ VXSHUYLVRU\ FRPPLWWHH 'UV -RKQ $QGHUVRQ 'DYLG (YDQV &DUPLQH /DQFLDQL :LOOLDP /LQGEHUJ DQG )UDQN 0DWXUR IRU DGYLFH WKH ORDQ RI HTXLSPHQW DQG UHDVRQHG FULWLFLVP &KDUOHV -DEDO\ LV DFNQRZOHGJHG IRU KLV SKRWRJUDSKLF DQG WHFKQLFDO DVVLVWDQFH DQG SUDFWLFDO VXJJHVWLRQV DQG -RKQ 3LSNLQV IRU WHFKQLFDO DVVLVWDQFH 1XPHURXV JUDGXDWH VWXGHQWV LQ WKH ]RRORJ\ GHSDUWPHQW KDYH DVVLVWHG LQ GDWD FROOHFWLRQ LQFOXGLQJ (YDQ &KLSRXUDV 9LQFHQW 'H0DUFR -RKQ 'RQDOG )UDQFHVFD *URVV 5REHUW +XHWHU &KDUOHV -DEDO\ 0LFKDHO /DF\ )UDQN /RFNKDUW &DWKOHHQ 1RUOXQG -RKQ 3D\QH 'DQLHO DQG 0ROO\ 3HDUVRQ 1LNDUUH 5HGFRII 7HV 7RRS DQG .HQW 9OLHW 7KH\ DUH DOO JUDWHIXOO\ WKDQNHG 7KDQNV DUH DOVR GXH WR &DUORV 0DUWLQH] GHO 5LR 9LQFHQW 'H0DUFR DQG 0LFKDHO /DF\ IRU VWDWLVWLFDO DQG FRPSXWHU DGYLFH

PAGE 5

7KLV UHVHDUFK ZDV ILQDQFLDOO\ VXSSRUWHG E\ D 6LJPD ;L JUDQW WR $7*f WHDFKLQJ DQG UHVHDUFK DVVLVWDQWVKLSV IURP WKH 'HSDUWPHQW RI =RRORJ\ WR $7*f DQG 'LYLVLRQ RI 6SRQVRUHG 5HVHDUFK WR 0*:f DQG 16) JUDQWV '&% DQG WR 0*:f WKDQN P\ SDUHQWV DQG IDPLO\ IRU WKHLU FRQWLQXHG HQFRXUDJHPHQW 0RVW LPSRUWDQWO\ WKDQN P\ GHDU ZLIH )UDQFHVFD *URVV IRU KHU FRQWLQXHG HPRWLRQDO ORJLVWLFDO DQG HGLWRULDO VXSSRUW

PAGE 6

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 LLL $%675$&7 YLL *(1(5$/ ,1752'8&7,21 %OXH &UDE 5HVSLUDWLRQ 4FWRODVPLV PXHOOHUL +RVW*LOO6\PELRQW 5HODWLRQVKLSV &+$37(56 ',675,%87,21 2) 2FWODVPLV PXHOOHUL :,7+,1 7+( +267 *,// &+$0%(5 $1' ,1 7+( %/8( &5$% 3238/$7,21 2) &('$5 .(< )/25,'$ ,QWURGXFWLRQ 0HWKRGV 5HVXOWV 'LVFXVVLRQ ())(&76 2) 4FWRODVPLV PXHOOHUL ,1)(67$7,21 21 %/8( &5$%6 ,QWURGXFWLRQ 0HWKRGV 5HVXOWV 'LVFXVVLRQ ())(&76 2) 4FWRODVPLV PXHOOHUL ,1)(67$7,21 21 (;(5&,6,1* $1' 5(&29(5,1* %/8( &5$%6 ,QWURGXFWLRQ 0HWKRGV 5HVXOWV 'LVFXVVLRQ *(1(5$/ ',6&866,21 2UJDQLVP 3RSXODWLRQ +RVW(FWRFRPPHQVDO Y

PAGE 7

/,7(5$785( &,7(' %,2*5$3+,&$/ 6.(7&+ Y L

PAGE 8

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ +267 ',675,%87,21 $1' 3+<6,2/2*,&$/ ())(&76 2) (&72&200(16$/ *,// %$51$&/( 4FWRODVPLV PXHOOHUK ,1)(67$7,21 21 %/8( &5$%6 &DOOLQHFWHV VDSLGXVf %\ $QGUHZ 7KRPDV *DQQRQ 'HFHPEHU &KDLU 0LFKHOH :KHDWO\ 0DMRU 'HSDUWPHQW =RRORJ\ 7KH UHODWLRQVKLS EHWZHHQ DQ HFWRFRPPHQVDO JLOO EDUQDFOH 2FWRODVPLV PXHOOHUL DQG LWV KRVW WKH EOXH FUDE &DOOLQHFWHV VDSLGXV/ ZDV VWXGLHG RQ WKUHH OHYHOV SRSXODWLRQ RUJDQLVP DQG PRGHO IRU KRVWFRPPHQVDO V\VWHPV 2Q WKH SRSXODWLRQ OHYHO EDUQDFOH GLVWULEXWLRQ ZDV HYDOXDWHG LQ WKH &HGDU .H\ )ORULGD EOXH FUDE SRSXODWLRQ DQG ZLWKLQ WKH KRVW JLOO FKDPEHU 2I FUDEV b ZHUH LQIHVWHG ZLWK PRQWKO\ LQIHVWDWLRQ UDWHV UDQJLQJ IURP b WR b 7KH PHDQ QXPEHU RI EDUQDFOHV SHU LQIHVWHG FUDE ZDV ZLWK DV PDQ\ DV EDUQDFOHV RQ RQH FUDE 7KH EDUQDFOHV DJJUHJDWHG RQ WKHLU H[SHFWHG RSWLPDO KRVW QDPHO\ SUHYLRXVO\ LQIHVWHG DGXOW EOXH FUDEV 7KH\ ZHUH DOVR PRVW IUHTXHQW DW WKHLU H[SHFWHG RSWLPDO VLWH

PAGE 9

ZLWKLQ WKH KRVW JLOO FKDPEHU QDPHO\ WKH EDVH RI WKH K\SREUDQFKLDO VLGH RI JLOOV DQG 7KLV GLVWULEXWLRQ LQGLFDWHV WKDW 2 UUPHOOHUL LQIHVWDWLRQ LV FRPPRQ DQG IUHTXHQWO\ KHDY\ DQG VXJJHVWV WKDW KRVW DQG VLWHZLWKLQKRVW VHOHFWLRQ RFFXUV $W WKH RUJDQLVP OHYHO LQIHVWHG EOXH FUDEV FRPSHQVDWH IRU WKH REVWUXFWLRQ LQ WKHLU YHQWLODWRU\ VWUHDP E\ LQFUHDVLQJ YHQWLODWLRQ ;f DQG KHDUW UDWHV ;f WR PDLQWDLQ R[\JHQ FRQVXPSWLRQ DW WKH VDPH OHYHO SPRO NJn PLQnf DV XQLQIHVWHG FUDEV 0RGHUDWHO\ LQIHVWHG FUDEV HFWRFRPPHQVDOVf KDG VPDOO GLIIHUHQFHV LQ KHPRO\PSK S+ R[\JHQ WHQVLRQ DQG R[\JHQ FRQWHQW 'XULQJ H[HUFLVH PRVW GLIIHUHQFHV EHWZHHQ LQIHVWHG DQG XQLQIHVWHG FUDEV GLVDSSHDUHG *UHDWHU DUWHULRYHQRXV GLIIHUHQFHV LQ KHPRO\PSK S+ DQG ODFWDWH OHYHOV RI LQIHVWHG FUDEV VXJJHVW WKDW WKH\ KDYH D JUHDWHU UHOLDQFH RQ WKH %RKU HIIHFW IRU R[\JHQ GHOLYHU\ WR WKH WLVVXHV EXW KHPRF\DQLQ DIILQLW\ LV SUHVHUYHG DW WKH JLOOV E\ D FRXQWHUDFWLQJ ODFWDWH HIIHFW $W WKH KRVWHFWRFRPPHQVDO OHYHO WKH EDUQDFOH KDV XQGHUJRQH VHOHFWLRQ WR FKRRVH RSWLPDO KRVWV DQG DWWDFKPHQW VLWHV DQG WR PLQLPL]H GHWULPHQWDO HIIHFWV WR WKH KRVW 7KH EOXH FUDE KDV XQGHUJRQH VHOHFWLRQ WR FRPSHQVDWH IRU HQYLURQPHQWDO VWUHVVHV VXFK DV EDUQDFOH LQIHVWDWLRQ ,Q DOO EXW H[WUHPHO\ KHDY\ LQIHVWDWLRQV WKH EDUQDFOH KDV D PLQRU HIIHFW RQ KRVW FUDEV DW UHVW GXULQJ VXVWDLQHG VZLPPLQJ DQG GXULQJ UHFRYHU\ Y L L L

PAGE 10

*(1(5$/ ,1752'8&7,21 7KH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ f LV D ZLGHO\ GLVWULEXWHG DQG ZHOOVWXGLHG VZLPPLQJ FUDE 3RUWXQLGDHf 3RSXODWLRQ OHYHOV DUH ODUJH HQRXJK WR VXSSRUW FRPPHUFLDO ILVKHULHV DORQJ WKH *XOI FRDVW DQG WKH (DVWHUQ VHDERDUG RI WKH 8QLWHG 6WDWHV %\ QDWXUH &DOOLQHFWHV LV D YHU\ DFWLYH FUDE DQG D KLJK UDWH RI UHVSLUDWRU\ JDV H[FKDQJH LV FHQWUDO WR LWV PHWDEROLVP DQG JURZWK %HFDXVH WKLV FUDE LV UHODWLYHO\ ORQJOLYHG XS WR WKUHH \HDUV DV DQ DGXOW 9DQ (QJHO f PRYHV ORQJ GLVWDQFHV 2HVWHUOLQJ f DQG SURYLGHV D KDUG VXEVWUDWXP LQ VRIW ERWWRP HVWXDULHV :LOOLDPV f LW VHUYHV DV KRVW WR QXPHURXV REOLJDWH DQG DFFLGHQWDO FRPPHQVDOV VXFK DV WKH VRIW FRUDO /HSWRDRUDLD YOUDXODWD 3HDUVH f WKH EU\R]RDQ 7ULWLFHOOD HORQDDWD 0DWXUR f WKH OHHFK 0Y]REGHOOD OXDXEULV 2YHUVWUHHW f WKH VHVVLOH EDUQDFOH &KHORQLELD SDWXOD 9DQ (QJHO f WKH R\VWHU &UDVVRVWUHD YLUDLQLFD SHUVRQDO REVHUYDWLRQf DQG WKH WXQLFDWH 0RODXOD PDQKDWWHQVLV 3HDUVH f &DOOLQHFWHV VDSLGXV LV WKH IDYRUHG KRVW RI 2FWRODVPLV PXHOOHUL &RNHU f DQ HFWRFRPPHQVDO VWDONHG EDUQDFOH IRXQG

PAGE 11

RQ WKH JLOOV RU LQ WKH JLOO FKDPEHU RI GHFDSRG FUXVWDFHDQV +XPHV f 0\ DLP ZDV WR H[DPLQH WKLV KRVWHFWRFRPPHQVDO UHODWLRQVKLS ,QLWLDOO\ WKH GLVWULEXWLRQ RI 2 PXHOOHUL ZLWKLQ WKH *XOI FRDVW EOXH FUDE SRSXODWLRQ DQG ZLWKLQ WKH EOXH FUDE JLOO FKDPEHU ZDV LQYHVWLJDWHG $IWHU FKDUDFWHUL]DWLRQ RI WKH EDUQDFOH GLVWULEXWLRQ WKH HIIHFWV RI 2 PXHOOHUL LQIHVWDWLRQ RQ WKH UHVSLUDWRU\ SK\VLRORJ\ RI WKH EOXH FUDE KRVW ZHUH PHDVXUHG )LQDOO\ WKH HIIHFWV RI 2 PXHOOHUL LQIHVWDWLRQ RQ WKH UHVSLUDWRU\ SK\VLRORJ\ RI EOXH FUDEV XQGHU WKH QDWXUDO VWUHVV RI VZLPPLQJ ZHUH PHDVXUHG 'HWHUPLQDWLRQ RI WKH PDJQLWXGH DQG ZD\V WKDW EOXH FUDE UHVSLUDWLRQ LV DIIHFWHG E\ EDUQDFOH LQIHVWDWLRQ LV LPSRUWDQW LQ DVVHVVLQJ WKH SRWHQWLDO WKUHDW WR DQ LPSRUWDQW FRPPHUFLDO UHVRXUFH XQGHUVWDQGLQJ WKH PHFKDQLVPV E\ ZKLFK WKH FUDE D PRGHO RUJDQLVP IRU FUXVWDFHDQ UHVSLUDWLRQ VWXGLHVf FRPSHQVDWHV IRU EDUQDFOH LQIHVWDWLRQ DQG HYDOXDWLQJ WKH EHQHILWV DQG GHWULPHQWV RI WKH KRVWHFWRFRPPHQVDO UHODWLRQVKLS %OXH &UDE 5HVSLUDWLRQ 7KH DQDWRP\ DQG SK\VLRORJ\ RI WKH UHVSLUDWRU\ DQG FLUFXODWRU\ V\VWHPV RI WKH GHFDSRG FUXVWDFHDQV KDYH UHFHQWO\ EHHQ UHYLHZHG E\ 0F/DXJKOLQ f DQG 0F0DKRQ DQG :LONHQV f ,Q VXPPDU\ EOXH FUDEV SRVVHVV HLJKW JLOOV RQ HDFK VLGH RI WKH ERG\ 7KH JLOOV DUH SK\OOREUDQFK WULDQJXODU ZLGH DW WKH EDVH DQG QDUURZLQJ GLVWDOO\ DV WKH\ DUFK GRUVRSRVWHULRPHGLDOO\ 7KH JLOOV DUH KRXVHG LQ WKH EUDQFKLDO FKDPEHU ZKLFK LV IRUPHG DV D ODWHUDO RXWJURZWK RI

PAGE 12

WKH FDUDSDFH 7KH FDUDSDFH FXUYHV XQGHU WR ILW WLJKWO\ DJDLQVW WKH ORZHU ERG\ ZDOO MXVW DERYH WKH LQVHUWLRQ RI WKH ZDONLQJ DSSHQGDJHV 7KLV MRLQW LV WLJKW HQRXJK WR H[FOXGH ZDWHU :DWHU IORZV LQWR WKH JLOO FKDPEHU SULPDULO\ WKURXJK WKH 0LOQH(GZDUGV LQKDOHQW RSHQLQJ DW WKH EDVH RI WKH FKHOLSHG 6PDOOHU LQKDOHQW KROHV DUH IRXQG DW WKH EDVHV RI WKH SHUHLRSRGV $V ZDWHU HQWHUV WKH 0LOQH(GZDUGV KROH LW IORZV SRVWHULRUO\ ,W ILUVW HQWHUV WKH EUDQFKLDO FKDPEHU XQGHU WKH JLOOV LQ WKH K\SREUDQFKLDO FKDPEHU EHWZHHQ JLOOV DQG $OGULGJH DQG &DPHURQ f )URP WKHUH WKH ZDWHU IORZV WKURXJK WKH JLOOV DQG RQFH LW HQWHUV WKH HSLEUDQFKLDO FKDPEHU LW IORZV DQWHULRUO\ H[LWLQJ WKH EUDQFKLDO FKDPEHU YLD WKH H[KDOHQW SDVVDJH ZKLFK LV IRUPHG E\ WKH HQGR DQG H[RSRGLWHV RI WKH WKUHH PD[LOOLSHGV 7KH SURSXOVLYH IRUFH IRU ZDWHU PRYHPHQW LV WKH JHQHUDWLRQ RI QHJDWLYH SUHVVXUH LQ WKH EUDQFKLDO FKDPEHU E\ WKH EHDW RI WKH VFDSKRJQDWKLWH PRGLILHG VHFRQG PD[LOODf LQ WKH H[KDOHQW SDVVDJH 0F0DKRQ DQG :LONHQV f 7KH EOXH FUDE FLUFXODWRU\ V\VWHP OLNH WKDW RI RWKHU FUXVWDFHDQV LV DQ RSHQ V\VWHP +RZHYHU WKH KHPRO\PSK LV FRQWDLQHG LQ YHVVHOV WKURXJKRXW PXFK RI WKH ERG\ 7KH IRUFH QHFHVVDU\ IRU KHPRO\PSK FLUFXODWLRQ LV SURYLGHG E\ WKH VLQJOH FKDPEHUHG KHDUW +HPRO\PSK LQ WKH SHULFDUGLDO VLQXV HQWHUV WKH KHDUW WKURXJK RSHQLQJV FDOOHG RVWLD DQG H[LWV WKURXJK WKH SRVWHULRU DQG DQWHULRU DRUWDH 1XPHURXV DUWHULHV FDUU\ WKH KHPRO\PSK IURP WKH DRUWDH WR WKH YDULRXV WLVVXHV DQG RUJDQV 7KHUH DUH QR FORVHG YHQRXV YHVVHOV $IWHU SDVVLQJ WKURXJK WKH VPDOOHU YHVVHOV RI WKH

PAGE 13

DUWHULDO V\VWHP KHPRO\PSK HQWHUV WKH KHPRFRHO DQG SDVVHV WKURXJK GLVFUHWH FKDQQHOV EHIRUH FROOHFWLQJ LQ WKH YHQRXV LQIUDEUDQFKLDO VLQXV 0F/DXJKOLQ f )URP KHUH KHPRO\PSK SDVVHV WKURXJK WKH OLPE EDVHV DQG WKH DIIHUHQW EUDQFKLDO FKDQQHOV WR SHUIXVH WKH JLOO ILODPHQWV 7KH IORZ RI WKH KHPRO\PSK LQ WKH JLOO ODPHOODH LV FRXQWHUFXUUHQW WR WKH IORZ RI ZDWHU LQ WKH EUDQFKLDO FKDPEHU +XJKHV .QLJKWV DQG 6FDPPHO f $IWHU OHDYLQJ WKH JLOOV YLD WKH HIIHUHQW EUDQFKLDO FKDQQHOV WKH KHPRO\PSK PRYHV WKURXJK WKH EUDQFKLRSHULFDUGLDO YHLQV WR UHDFK WKH SHULFDUGLDO FDYLW\ 0F0DKRQ DQG :LONHQV f $ FRPSUHKHQVLYH OLVW RI UHVSLUDWRU\ DQG FLUFXODWRU\ SDUDPHWHUV LQ WKH EOXH FUDE ZDV UHFHQWO\ VXPPDUL]HG E\ &DPHURQ f 2Q D SHU JUDP ERG\ ZHLJKW EDVLV JLOO VXUIDFH DUHD LQ & VDSLGXV PP Jnf LV PXFK ODUJHU WKDQ WKDW RI PRVW EUDFK\XUDQ FUDEV H J 8FD 6HVDUPD 2FYSRGH HWF IURP *UD\f 7KLV SUREDEO\ UHIOHFWV WKH DFWLYH VZLPPLQJ OLIHVW\OH RI WKH 3RUWXQLGDH 7KH R[\JHQ FRQVXPSWLRQ UDWH 02 PO NJ KUnf LV FRUUHVSRQGLQJO\ JUHDWHU WKDQ IRU RWKHU FUDE VSHFLHV 7KH YHQWLODWLRQ UDWH 9Zf RI PO PLQ UHIOHFWV D UHVSLUDWRU\ IUHTXHQF\ RI PLQ JLYHQ D FRPELQHG JLOO FKDPEHU YROXPH RI PO 7KH XQXVXDOO\ ORZ FRVW RI YHQWLODWLRQ b RI 02f VXJJHVWV WKDW WKH ZDWHU SXPSLQJ PHFKDQLVP LV KLJKO\ HIILFLHQW $Q XQH[SODLQHG DVSHFW RI GHFDSRG UHVSLUDWLRQ LV WKH SKHQRPHQRQ RI FXUUHQW UHYHUVDO LQ WKH JLOO FKDPEHU 7KH VFDSKRJQDWKLWH SXPS UHYHUVHV WKH GLUHFWLRQ RI LWV EHDWLQJ FDXVLQJ

PAGE 14

ZDWHU WR HQWHU WKH QRUPDOO\ H[KDOHQW FKDQQHO FURVV WKH JLOOV DQG H[LW YLD WKH 0LOQH(GZDUGV RSHQLQJV 7KLV PD\ RFFXU WLPHV SHU KRXU LQ &DOOLQHFWHV VDSLGXV %DWWHUWRQ DQG &DPHURQ f IRU EULHI SHULRGV RI DURXQG VHFRQGV +XJKHV HW DO f 1XPHURXV IXQFWLRQV KDYH EHHQ VXJJHVWHG IRU WKHVH UHYHUVDOV VXFK DV HQKDQFHG YHQWLODWLRQ RI QRUPDOO\ SRRUO\ YHQWLODWHG UHJLRQV RI WKH JLOOV $UXGSUDJDVDP DQG 1D\ORU f UHPRYDO RI GHWULWXV IURP WKH JLOOV +XJKHV HW DO f DQG FOHDQLQJ RI LQWDNH ILOWHUV 0F0DKRQ DQG :LONHQV f $GHTXDWH H[SHULPHQWDO HYLGHQFH KDV QRW EHHQ SUHVHQWHG IRU D JHQHUDO H[SODQWDWLRQ IRU WKH SKHQRPHQRQ )UHTXHQF\ RI UHYHUVDOV GLG LQFUHDVH ZKHQ FUDEV ZHUH H[SRVHG WR LQFUHDVHG VDOLQLW\ RU &2 %DWWHUWRQ DQG &DPHURQ f RU WR DLU 7D\ORU %XWOHU DQG 6KHUORFN f 2WKHU FKDUDFWHULVWLF IHDWXUHV RI FUXVWDFHDQ UHVSLUDWLRQ DUH LQWHUPLWWHQW FDUGLDF DQG YHQWLODWRU\ SDXVHV &UXVWDFHDQV DW UHVW LQ ZHOOR[\JHQDWHG XQGLVWXUEHG HQYLURQPHQWV RIWHQ GLVFRQWLQXH YHQWLODWLRQ DQG KHDUW EHDW IRU SHULRGV RI XS WR VHYHUDO PLQXWHV 0F0DKRQ DQG :LONHQV f 7KLV PD\ EH D ZD\ RI FRQVHUYLQJ HQHUJ\ ZKHQ KHPRO\PSK R[\JHQ OHYHOV DUH QHDU PD[LPXP %DWWHUWRQ DQG &DPHURQ f $OWKRXJK DQ RSHQ FLUFXODWRU\ V\VWHP FRQQRWHV VOXJJLVK PRYHPHQW RI KHPRO\PSK WKURXJK RSHQ VSDFHV DW ORZ YHORFLW\ DQG ORZ SUHVVXUH WKLV LV QRW WUXH IRU WKH GHFDSRGV SDUWLFXODUO\ DFWLYH RQHV VXFK DV EOXH FUDEV 5HVWLQJ KHDUW UDWH I+ EHDWV PLQnf DQG FDUGLDF RXWSXW 9 E PO NJ PLQf IRU WKH EOXH FUDE FDQ LQFUHDVH GUDPDWLFDOO\ GXULQJ H[HUFLVH &DUGLDF VWURNH YROXPH

PAGE 15

6YFf PO NJ EHDW DW UHVW DOVR LQFUHDVHV GXULQJ H[HUFLVH %RRWK 0F0DKRQ DQG 3LQGHU f $OWKRXJK EORRG IORZ YHORFLW\ KDV QRW EHHQ PHDVXUHG LQ EOXH FUDEV RWKHU GHFDSRGV KDYH DUWHULDO IORZ YHORFLWLHV DSSURDFKLQJ FP VHF DQG YHQWULFXODU V\VWROLF SUHVVXUHV RI 7RUU N3Df DQG GLDVWROLF SUHVVXUHV RI 7RUU N3D 0F0DKRQ DQG :LONHQV f 7KHVH FKDUDFWHULVWLFV DORQJ ZLWK WKH ODUJH KHPRO\PSK YROXPH DSSUR[LPDWHO\ b ZHW ZHLJKW *OHHVRQ DQG =XELNRII f LQGLFDWH DQ HIILFLHQF\ FRPSDUDEOH WR FORVHG FLUFXODWRU\ V\VWHPV RI RWKHU DTXDWLF DQLPDOV RI VLPLODU DFWLYLW\ OHYHO 0F0DKRQ DQG :LONHQV f $QLPDOV KDYH EHHQ H[SHULPHQWDOO\ PDQLSXODWHG WR UHGXFH WKH VXSSO\ RI UHVSLUDWRU\ JDVHV RU LQFUHDVH WKH GHPDQG WR HYDOXDWH WKH FDSDELOLWLHV RI WKH JDV H[FKDQJH V\VWHP 7KH UHVSRQVHV RI WKH EOXH FUDE WR K\SR[LD ORZ f DQG K\SHUFDSQLD KLJK &2 %DWWHUWRQ DQG &DPHURQ &DPHURQ f DV ZHOO DV H[HUFLVH %RRWK HW DO %RRWK 0F0DKRQ GH)XU DQG :LONHV 0LOOLJDQ HW DO f KDV EHHQ SUHYLRXVO\ H[DPLQHG ,Q HDFK FDVH EOXH FUDEV PDNH YHQWLODWRU\ DQGRU FLUFXODWRU\ DGMXVWPHQWV WR PDLQWDLQ 2 GHOLYHU\ DQG &2 HOLPLQDWLRQ WR DQG IURP PHWDEROL]LQJ WLVVXHV +HPRO\PSK S+ DQG ODFWDWH OHYHOV PD\ FKDQJH EXW EHFDXVH WKHVH DOORVWHULF PRGXODWRUV KDYH RSSRVLQJ HIIHFWV RQ KHPRF\DQLQ DIILQLW\ 2 GHOLYHU\ DQG &2 HOLPLQDWLRQ DUH QRW FRPSURPLVHG 0LOOLJDQ HW DO f 7KLV LV DQ H[DPSOH RI HQDQWLRVWDWLF UHJXODWLRQ 0DQJXP DQG 7RZOH f

PAGE 16

2FWRODVPLV PXHOOHUL 2FWRODVPLV LV D JHQXV RI JRRVHQHFN RU VWDONHGf EDUQDFOH &LUULSHGLD7KRUDFLFDf 7KH\ DWWDFK WR WKH JLOOV RI GHFDSRG FUXVWDFHDQV DV HFWRFRPPHQVDOV 1HZPDQ f 2FWRODVPLV PXHOOHUL FRQVLGHUHG V\QRQ\PRXV ZLWK 2 ORZHL E\ 1LOVVRQ&DQWHOO f DGXOW VWDJHV KDYH EHHQ IRXQG LQ WKH JLOO FKDPEHU RI QXPHURXV EUDFK\XUDQ FUDEV +XPHV :DONHU f $IWHU LQWHUQDO IHUWLOL]DWLRQ DQG EURRGLQJ E\ WKH SDUHQW -HIIULHV DQG 9RULV f WKH EDUQDFOH JRHV WKURXJK VL[ QDXSOLDU VWDJHV DQG RQH F\SULG VWDJH DV D IUHHVZLPPLQJ SODQNWLYRUH EHIRUH VHWWOLQJ GRZQ RQ D FUDE KRVW /DQJ f 7KH DGXOW EDUQDFOH FHPHQWHG WR WKH JLOO ODPHOODH RI WKH KRVW FUDE ILOWHU IHHGV RQ SDUWLFXODWH PDWWHU LQ WKH YHQWLODWRU\ VWUHDP 7KH EDUQDFOH GHULYHV QR QXWULHQWV GLUHFWO\ IURP WKH FUDE DQG LV WKRXJKW WR KDUP LWV KRVW RQO\ LQGLUHFWO\ E\ RFFOXGLQJ WKH YHQWLODWRU\ FXUUHQW ZKHQ LQIHVWDWLRQ OHYHOV DUH JUHDW :DONHU f 7KHUHIRUH WKH 2FWRODVPLV&DOOLQHFWHV UHODWLRQVKLS LV JHQHUDOO\ FRQVLGHUHG WR EH D FRPPHQVDOLVP LQ ZKLFK WKH EDUQDFOH LV EHQHILWWHG DQG WKH FUDE LV XQDIIHFWHG 7KLV EHOLHI ZLOO EH HYDOXDWHG LQ WKH IROORZLQJ FKDSWHUV 7KH EDUQDFOH VKRXOG H[SHULHQFH VHOHFWLRQ SUHVVXUH WR VHOHFW RSWLPDO L H EHWWHU YHQWLODWHGf VLWHV ZLWKLQ WKH KRVW EUDQFKLDO FKDPEHU ,Q DGGLWLRQ WKH EDUQDFOH VKRXOG VHOHFW RSWLPDO QRQn PROWLQJ DGXOWVf KRVWV EHFDXVH GXULQJ WKH KRVW PROW LW ZRXOG EH

PAGE 17

VKHG ZLWK WKH H[RVNHOHWRQ FRYHULQJ WKH JLOOV DQG LV QRW WKRXJKW FDSDEOH RI VXUYLYDO RXWVLGH WKH KRVW :DONHU f 7KH SRVVLELOLW\ RI 2FWRODVPLV PXHOOHUL KRVW DQG VLWH VHOHFWLRQ ZLOO EH HYDOXDWHG LQ &KDSWHU %HFDXVH WKH EDUQDFOH LV GHSHQGHQW RQ WKH KRVW IRU WKH FRQWLQXHG UHQHZDO RI YHQWLODWRU\ ZDWHU VHOHFWLRQ SUHVVXUH RQ WKH EDUQDFOH VKRXOG PLQLPL]H DQ\ GHWULPHQWDO LPSDFW RQ WKH KRVW 7KLV ZLOO EH GLVFXVVHG LQ &KDSWHUV DQG +RVW*LOO6YPELRQW 5HODWLRQVKLSV 7KH GLVWULEXWLRQ RI HFWRSDUDVLWHV RQ JLOOV KDV EHHQ VWXGLHG LQ VHYHUDO VSHFLHV RI ILVK :DONH\ /HZLV DQG 'DUWQDOO 6X\GDP +DQHN DQG )HUQDQGR YDQ GHQ %URHN 'DYH\ f )UHTXHQWO\ QRQUDQGRP GLVWULEXWLRQV KDYH EHHQ GLVFRYHUHG EXW WKH FDXVH RI WKHVH GLVWULEXWLRQV KDV QRW EHHQ VDWLVIDFWRULO\ GHPRQVWUDWHG 6LWH VSHFLILFLW\ IRU WKH EHVW YHQWLODWHG SDUWV RI WKH JLOO FKDPEHU KDV EHHQ DWWULEXWHG WR SDVVLYH GLVSHUVDO RI SDUDVLWH ODUYDH LQ WKH YHQWLODWRU\ VWUHDP :DONH\ /HZLV DQG 'DUWQDOO 6X\GDP YDQ GHQ %URHN f ,Q IDFW 3DOLQJ f DVVXPHG WKDW SDUDVLWLF JORFKLGLD ZHUH GLVWULEXWHG SDVVLYHO\ E\ WKH YHQWLODWRU\ VWUHDP RI WKH EURZQ WURXW 6DOPR WUXWWD +H XVHG WKH SDUDVLWH GLVWULEXWLRQ WR HVWLPDWH WKH YROXPHV RI ZDWHU SDVVLQJ RYHU WKH SDUWV RI WKH JLOO FKDPEHU +LV DVVXPSWLRQV ZHUH YDOLGDWHG E\ PRUH VRSKLVWLFDWHG H[SHULPHQWV XVLQJ PDUNHU G\HV +XJKHV DQG 0RUJDQ f 'DYH\ f DWWULEXWHG WKH GLVWULEXWLRQ RI PDOH FRSHSRGV /HUQDQWKURSXV NURYHUL RQ EDVV JLOOV WR SDVVLYH

PAGE 18

GLVWULEXWLRQ EXW ZDV XQDEOH WR H[SODLQ VDWLVIDFWRULO\ WKH SUHIHUHQFH RI IHPDOHV IRU WKH LQWHUQDO KHPLEUDQFKV RI WKH JLOOV ZLWKRXW LQYRNLQJ DFWLYH VLWH VHOHFWLRQ 7KH HIIHFWV RI HQGRSDUDVLWHV RQ ILVK UHVSLUDWLRQ KDYH EHHQ H[DPLQHG /HVWHU *LOHV f EXW WKH HIIHFWV RI EUDQFKLDO HFWRV\PELRQWV DUH XQVWXGLHG (YHQ OHVV LQIRUPDWLRQ LV DYDLODEOH IRU FUXVWDFHDQV DQG WKHLU EUDQFKLDO V\PELRQWV 7KH LVRSRG 3URERSYUXV SDQGDOLFROD FDXVHV GHFUHDVHG R[\JHQ FRQVXPSWLRQ LQ LWV LQWHUPHGLDWH KRVW $FDUWLD WRQVD $QGHUVRQ Df DQG LQ PRVW FDVHV LQ LWV GHILQLWLYH KRVW 3DODHPRQHWHV SXJLR $QGHUVRQ Ef ,Q WKH IRUPHU WKH HFWRSDUDVLWLF LVRSRG PD\ UHDFK D JUHDWHU PDVV WKDQ WKH KRVW ,Q WKH ODWWHU WKH LVRSRG KDV DQ HQGRSDUDVLWLF VWDJH DQG DQ HFWRSDUDVLWLF VWDJH WKDW LQFUHDVHV LQ VL]H XQWLO LW WDNHV XS WKH HQWLUH KRVW EUDQFKLDO FKDPEHU $QGHUVRQ f ,Q ERWK FDVHV WKH SDUDVLWH IHHGV RQ KRVW KHPRO\PSK 7KH 2 PXHOOHUL& VDSLGXV V\VWHP GLIIHUV LQ VHYHUDO LPSRUWDQW ZD\V 7KLV HFWRFRPPHQVDO LV PXFK VPDOOHU WKDQ WKH KRVW DQG GRHV QRW IHHG RQ KRVW KHPRO\PSK 7KLV DOORZV PHDVXUHPHQW RI WKH HIIHFW RI HFWRFRPPHQVDO SUHVHQFH ZLWKRXW WKH DGGHG HIIHFWV RI KRVW KHPRO\PSK ORVV ,Q WKLV V\VWHP WKH KRVWnV FRPSHQVDWRU\ UHVSRQVH WR D QDWXUDO REVWUXFWLRQ LQ WKH YHQWLODWRU\ VWUHDP FDQ EH HYDOXDWHG 7KH UHVXOWV RI WKLV LQYHVWLJDWLRQ ZLOO EH LPSRUWDQW RQ WKUHH OHYHOV RUJDQLVP SRSXODWLRQ DQG JHQHUDO KRVWFRPPHQVDO UHODWLRQVKLS 2Q WKH RUJDQLVPDO OHYHO LW ZLOO DGG WR RXU XQGHUVWDQGLQJ RI WKH JDV H[FKDQJH V\VWHP LQ WKH EOXH FUDE 2Q WKH

PAGE 19

SRSXODWLRQ OHYHO LW ZLOO SURYLGH SUHOLPLQDU\ LQIRUPDWLRQ RQ WKH LPSDFW RI D SRWHQWLDOO\ KDUPIXO FRPPHQVDO RUJDQLVP RQ D FRPPHUFLDOO\ LPSRUWDQW FUDE VSHFLHV )LQDOO\ WKH UHVXOWV RI WKLV VWXG\ VKRXOG VKHG VRPH OLJKW RQ WKH LQWHUDFWLRQ DQG SRVVLEOH FRHYROXWLRQ EHWZHHQ KRVWFRPPHQVDO SK\VLRORJLFDO V\VWHPV

PAGE 20

&+$37(5 ',675,%87,21 2) 2FWRODVPLV PXHOOHUL :,7+,1 7+( +267 *,// &+$0%(5 $1' ,1 7+( %/8( &5$% 3238/$7,21 2) &('$5 .(< )/25,'$ ,QWURGXFWLRQ $GXOW 2FWRODVPLV PXHOOHUL OLYH LQ JLOO FKDPEHUV RI GHFDSRG FUDEV JHQHUDOO\ DWWDFKHG WR WKH JLOO ODPHOODH +XPHV f 7KH DGXOWV SURGXFH PDQ\ EURRGV RI ODUYDH GXULQJ ZDUPHU PRQWKV -HIIULHV DQG 9RULV f 7KH ODUYDO SKDVH FRQVLVWV RI VL[ QDXSOLDU VWDJHV WKDW IHHG RQ SK\WRSODQNWRQ DQG RQH QRQIHHGLQJ F\SULG /DQJ f 8QGHU ODERUDWRU\ FRQGLWLRQV r &f WKH QDXSOLXV WR F\SULG WUDQVLWLRQ WDNHV GD\V /DQJ f 7KH F\SULG VWDJH HQWHUV WKH EUDQFKLDO FKDPEHU RI D FUDE RQ WKH LQKDOHQW UHVSLUDWRU\ FXUUHQW DQG FHPHQWV LWV DQWHQQXOHV WR WZR DGMDFHQW JLOO ODPHOODH :DONHU f 0HWDPRUSKRVLV WR WKH DGXOW VWDJH WKHQ WDNHV SODFH RYHU WKH QH[W KRXUV /DQJ f 6H[XDO PDWXULW\ LV UHDFKHG LQ WKH WURSLFDO VSHFLHV 2FWRODVPLV FRU ZLWKLQ WZR ZHHNV DIWHU PHWDPRUSKRVLV -HIIULHV 9RULV DQG
PAGE 21

FKDPEHU LV FULWLFDO WR WKH EDUQDFOHV VXUYLYDO DQG UHSURGXFWLRQ %HFDXVH WKH EDUQDFOH LV DWWDFKHG WR WKH KRVW H[RVNHOHWRQ LW LV VKHG ZKHQ WKH KRVW PROWV DQG XOWLPDWHO\ GLHV :DONHU f 6HOHFWLRQ RI D KRVW ZLWK DQ LQWHUPROW SHULRG ORQJ HQRXJK WR DOORZ EDUQDFOH PDWXUDWLRQ DQG UHSURGXFWLRQ LV WKHUHIRUH HVVHQWLDO 7KLV VWXG\ ZDV XQGHUWDNHQ WR GHWHUPLQH WKH FKDUDFWHULVWLFV RI QDWXUDO 2 PXHOOHUL LQIHVWDWLRQV LQ EOXH FUDEV ZLWK D YLHZ WR DVVHVVLQJ KRVW DQG VLWH VHOHFWLRQ E\ WKH EDUQDFOH ,Q DGGLWLRQ LQIHVWDWLRQ OHYHOV LQ WKH EOXH FUDE SRSXODWLRQ RI WKH &HGDU .H\ DUHD ZHUH HYDOXDWHG WR H[DPLQH WKH SRVVLELOLW\ WKDW WKH EDUQDFOH KDV D GHWULPHQWDO LPSDFW RQ WKH KRVW SRSXODWLRQ 7KH VHWWOLQJ F\SULG ODUYDH RI VRPH V\PELRWLF FLUULSHGHV DUH WKRXJKW WR UHVSRQG WR KRVWUHODWHG FKHPLFDOV DQG KRVW EUHHGLQJ F\FOHV DV ZHOO DV WKH VWLPXOL WR ZKLFK IUHH OLYLQJ EDUQDFOH F\SULGV UHVSRQG LH FKHPLFDOV FXUUHQWV WH[WXUHV OLJKW JUDYLW\ DQG K\GURVWDWLF SUHVVXUHf /HZLV f 7KH KRVW VSHFLILFLW\ H[KLELWHG E\ VRPH RI WKH 4FWRODVPLV VSHFLHV IRXQG RQ GHFDSRGV LQ WKH VHDV DURXQG 6LQJDSRUH -HIIULHV 9RULV DQG
PAGE 22

VHOHFWLRQ RI RSWLPDO KRVWV DQG DWWDFKPHQW VLWHV ZLWKLQ KRVWV 2QH H[SHFWV WKDW WKH LGHDO KRVW LV D ODUJH DGXOW FUDE DOUHDG\ LQIHVWHG ZLWK 4 PXHOOHUL 6XFK D KRVW ZRXOG PROW LQIUHTXHQWO\ SURYLGH JUHDWHU VHWWOHPHQW DUHD EH OHDVW KDUPHG E\ WKH SUHVHQFH RI WKH EDUQDFOH DQG FRQWDLQ PDWLQJ SDUWQHUV $GXOW PDOH EOXH FUDEV PROW WZR WR WKUHH WLPHV DIWHU UHDFKLQJ PDWXULW\ 9DQ (QJHO f )HPDOHV PD\ PROW DIWHU UHDFKLQJ PDWXULW\ +DYHQV DQG 0F&RQDXJKD f 2QH PLJKW H[SHFW VHWWOLQJ EDUQDFOHV WR IDYRU WKH K\SREUDQFKLDO VLGH RI WKH JLOOV ZKHUH ZDWHU HQWHUV WKH EUDQFKLDO FKDPEHU SDUWLFXODUO\ LQ WKH UHJLRQ RI JLOOV DQG ZKLFK DUH WKH EHVW YHQWLODWHG LQ WKH FUDE &DUFLQXV PDHQDV +XJKHV HW DO f DQG SUHVXPDEO\ DOVR LQ WKH EOXH FUDE 7KH K\SRWKHVHV RI RSWLPDO VLWH DQG KRVW VHOHFWLRQ ZLOO EH FRPSDUHG WR WKH QXOO K\SRWKHVLV RI UDQGRP VHWWOHPHQW :KHWKHU WKH KRVW FDQ GHWHU EDUQDFOH ODUYDH IURP VHWWOLQJ RU LQIOXHQFH VXEVHTXHQW VXUYLYDO LV XQNQRZQ )RU H[DPSOH WKH JURRPLQJ DFWLRQ RI WKH KRVW HSLSRGLWHV PD\ DIIHFW EDUQDFOH VXUYLYDO HVSHFLDOO\ GXULQJ DQG LPPHGLDWHO\ DIWHU VHWWOHPHQW 2WKHUZLVH PROWLQJ ZRXOG DSSHDU WR EH WKH RQO\ KRVW GHIHQVH DJDLQVW 2FWRODVPLV :DONHU f 0HWKRGV %OXH FUDEV ZHUH WUDSSHG PRQWKO\ IURP -XQH WR 0D\ DW 6HDKRUVH .H\ RQ WKH *XOI FRDVW RI )ORULGD r n 1 ODW r n : ORQJf XVLQJ SODVWLF FRDWHG ZLUH PHVK FRPPHUFLDO FUDE WUDSV

PAGE 23

7UDSSLQJ HIIRUW ZDV QRW HTXDO IRU HDFK PRQWK &DSWXUHG FUDEV ZHUH VH[HG DQG WKHLU ZLGWK PHDVXUHG %HFDXVH ODWHUDO KRUQV ZHUH IUHTXHQWO\ EURNHQ VKRUW ZLGWK WKH GLVWDQFH EHWZHHQ WKH QRWFKHV MXVW DQWHULRU WR WKH ODWHUDO KRUQVf ZDV XVHG DV WKH VL]H PHDVXUHPHQW $OWKRXJK VKRUW ZLGWK LV OHVV FRPPRQO\ XVHG WKDQ IXOO ZLGWK LW PRUH DFFXUDWHO\ UHSUHVHQWV WKH EOXH FUDEVn VL]H 2OPL DQG %LVKRS f &UDEV ZHUH YLVXDOO\ LQVSHFWHG IRU HFWRFRPPHQVDO FDUDSDFH EDUQDFOHV &KHORQLELD SDWXODO DQG JLOO EDUQDFOHV 2 PXHOOHULf $WWDFKPHQW VLWHV ZHUH UHFRUGHG ZLWK UHVSHFW WR JLOO FKDPEHU ULJKW RU OHIWf DVSHFW HSLEUDQFKLDO RU K\SREUDQFKLDOf JLOO QXPEHU DQWHULRU WR SRVWHULRUf DQG GLVWDQFH DORQJ WKH JLOO )RU WKH ODWWHU PHDVXUHPHQW HDFK JLOO ZDV DUELWUDULO\ GLYLGHG LQWR WKLUGV EDVDO PHGLDO DQG GLVWDOf ZKLFK EHFDXVH RI WKH WULDQJXODU QDWXUH RI WKH SK\OOREUDQFK JLOO PDGH XS b b DQG b UHVSHFWLYHO\ RI WKH JLOO VXUIDFH DUHD %HFDXVH WKH JLOOV DUH WLJKWO\ RSSUHVVHG WKH RQO\ DUHD DYDLODEOH WR VHWWOLQJ EDUQDFOH ODUYDH LV WKH HGJHV RI WKH JLOO ODPHOODH IDFLQJ LQWR WKH YHQWLODWRU\ VWUHDP ZKLFK VKDOO EH UHIHUUHG WR DV WKH OHDGLQJ JLOO VXUIDFH DUHD PHDVXUHG WKH JLOOV RI IRXU EOXH FUDEV ZLWK FDOLSHUV DQG WKH DYHUDJHG WKH UHVXOWV WR GHWHUPLQH WKH SURSRUWLRQ RI WKH WRWDO OHDGLQJ JLOO VXUIDFH DUHD PDGH XS E\ HDFK JLOO 7KH FRPPHUFLDO WUDSV DOPRVW H[FOXVLYHO\ FDSWXUHG DGXOWV $ VHDJUDVV IODW P QRUWK RI WKH WUDSSLQJ VLWH ZDV GUHGJHG LQ $SULO DQG MXYHQLOH FUDEV ZHUH FDSWXUHG 7KLV JDYH WKH VL]H GLVWULEXWLRQ RI LQIHVWHG FUDEV IURP WKH MXYHQLOH VWDJHV XS WR WKH

PAGE 24

DGXOW VWDJHV 7KHVH FUDEV ZHUH HYDOXDWHG ,Q WKH VDPH ZD\ DV ZHUH WKH WUDSSHG DGXOW FUDEV 5HVXOWV ,QIHVWDWLRQ 6XPPDU\ 7KH PRQWKO\ FUDE FDWFKHV DUH JLYHQ LQ 7DEOH %HFDXVH WUDSSLQJ HIIRUW ZDV QRW HTXDO LQ HDFK PRQWK WKH PRQWKO\ VDPSOH VL]HV DUH QRW FRPSDUDEOH DV SRSXODWLRQ HVWLPDWHV 7KH WUDSSLQJ DSSHDUHG KHDYLO\ ELDVHG WRZDUGV DGXOW PDOH FUDEV ZKLFK PDGH XS b RI WKH WRWDO FDWFK &DWFK VL]HV VH[ UDWLRV DQG LQIHVWDWLRQ UDWHV IOXFWXDWHG IURP PRQWK WR PRQWK ZLWK IHZ DSSDUHQW VHDVRQDO WUHQGV ,Q DOO PRQWKV PDOH FUDEV KDG D JUHDWHU RU HTXDO LQIHVWDWLRQ UDWH WKDQ IHPDOHV 7KH QXPEHU RI 2 PXHOOHUL SHU LQIHVWHG FUDE UHDFKHG D SHDN LQ WKH VSULQJ ZLWK WKH $SULO UDWH DQ RUGHU RI PDJQLWXGH JUHDWHU WKDQ RWKHU PRQWKV DQG WKH PHDQ 2 PXHOOHUL SHU LQIHVWHG FUDEf 7KH PHDQ QXPEHU RI 4 PXHOOHUL SHU FUDE ZDV LQIODWHG E\ D VPDOO QXPEHU RI KHDYLO\ LQIHVWHG FUDEV 7KH RYHUDOO PHGLDQ LQIHVWDWLRQ OHYHO ZDV EDUQDFOHV SHU FUDE 1R REYLRXV DJH FODVVHV RI LQIHVWLQJ EDUQDFOHV H[LVWHG +HDYLO\ LQIHVWHG FUDEV FRQWDLQHG EDUQDFOHV RI PDQ\ GLIIHUHQW VL]HV UDQJLQJ IURP IUHVKO\ PHWDPRUSKRVHG DGXOWV DERXW PP WRWDO ERG\ OHQJWKf WR ODUJH PDWXUH DGXOWV XS WR FP WRWDO ERG\ OHQJWKf

PAGE 25

'LVWULEXWLRQ $PRQD +RVWV 7KH QXPEHU RI EDUQDFOHV SHU LQIHVWHG FUDE KRVW FDQ EH VHHQ LQ )LJXUH DV WKH IUHTXHQF\ GLVWULEXWLRQ RI 2 PXHOOHUL RQ FUDEV 7KH XQLQIHVWHG FUDEV DUH QRW LQFOXGHG LQ WKH ILJXUH 7KH LQIHVWHG FUDEV FRQWDLQHG IURP WR EDUQDFOHV 7KLV GLVWULEXWLRQ LV QRW VLJQLILFDQWO\ GLIIHUHQW IURP WKH QHJDWLYH ELQRPLDO GLVWULEXWLRQ 3 f :KHQ WKH OHIW DQG ULJKW JLOO FKDPEHUV RI WKH KRVW FUDE DUH WUHDWHG DV VHSDUDWH HQWLWLHV WKH IUHTXHQF\ GLVWULEXWLRQ LV VLPLODU ILJ f DQG DJDLQ QRW GLIIHUHQW IURP WKH QHJDWLYH ELQRPLDO 3 f )RU PRVW VDPSOH PRQWKV QR GLIIHUHQFH H[LVWHG EHWZHHQ WKH PHDQ FDUDSDFH VKRUW ZLGWK RI LQIHVWHG DQG XQLQIHVWHG FUDEV W WHVW 3 f +RZHYHU WKH VDPSOHG FUDEV ZHUH DOPRVW H[FOXVLYHO\ DGXOWV )LJXUH FRQWDLQV WKH VL]H GLVWULEXWLRQ RI WKH LQIHVWHG DQG XQLQIHVWHG FUDEV IURP WKH $SULO VDPSOH ZKLFK FRQWDLQHG b MXYHQLOHV 7KH PHDQ VKRUW ZLGWK RI LQIHVWHG FUDEV ZDV FP WKDW RI XQLQIHVWHG FUDEV ZDV FP 7KHVH PHDQV ZHUH FRPSDUHG ZLWK D WWHVW DQG DUH VLJQLILFDQWO\ GLIIHUHQW 3 f 1RQH RI WKH MXYHQLOH FUDEV ZHUH LQIHVWHG 7KH SUHVHQFH RI DQRWKHU HFWRFRPPHQVDO EDUQDFOH &KHORQLELD SDWXOD ZDV REVHUYHG RQ D VLJQLILFDQW QXPEHU RI RXU VDPSOH FUDEV bf 7KH FRRFFXUUHQFH RI e SDWXOD DQG 4 PXHOOHUL LV UHSRUWHG LQ D FRQWLQJHQF\ WDEOH WDEOH f 7KH 3HDUVRQ FKLVTXDUH WHVW IRU LQGHSHQGHQFH )HLQEHUJ f RI WKH WZR LQIHVWDWLRQV VKRZV WKDW WKH\ DUH QRW LQGHSHQGHQW 3 f &UDEV WKDW FRQWDLQ RQH RI

PAGE 26

WKHVH WZR HFWRFRPPHQVDO EDUQDFOHV DUH PRUH OLNHO\ WR KDUERU WKH VHFRQG WKDQ FUDEV QRW LQIHVWHG ZLWK WKH ILUVW 'LVWULEXWLRQ :LWKLQ WKH +RVW ,QVLGH WKH KRVW JLOO FKDPEHU 2FWRODVPLV PXHOOHUL ZHUH IRXQG DWWDFKHG WR HLWKHU VLGH RI HDFK RI WKH JLOOV WKH K\SREUDQFKLDO JLOO FKDPEHU ZDOO WKH HSLEUDQFKLDO JLOO FKDPEHU PHPEUDQH WKH VFDSKRJQDWKLWH DQG WKH K\SREUDQFKLDO DQG HSLEUDQFKLDO JLOO UDNHUV 7KH PDMRULW\ RI EDUQDFOHV ZHUH IRXQG RQ WKH K\SREUDQFKLDO VLGH RI WKH JLOOV bf EXW WKH HSLEUDQFKLDO VLGH ZDV LQIHVWHG RQO\ ZKHQ WKH K\SREUDQFKLDO VLGH ZDV KHDYLO\ LQIHVWHG $OWKRXJK WKH GLVWULEXWLRQ RI EDUQDFOHV DORQJ WKH JLOO ILODPHQW IDYRUHG WKH EDVDO WKLUG bf WKH SURSRUWLRQ RI EDUQDFOHV IRXQG RQ HDFK WKLUG RI WKH JLOO OHQJWK PHGLDO b GLVWDO bf ZDV HTXLYDOHQW WR WKH QHDUHVW bf WR WKH OHDGLQJ VXUIDFH DUHD PDGH XS E\ WKDW UHJLRQ RI WKH JLOO +RZHYHU WKH SURSRUWLRQ RI 4B PXHOOHUL IRXQG RQ HDFK RI WKH HLJKW JLOO ILODPHQWV ZDV QRW HTXLYDOHQW WR WKH SURSRUWLRQDO OHDGLQJ VXUIDFH DUHD RI WKDW JLOO 7KLV FRPSDULVRQ LV VKRZQ LQ 7DEOH 8VLQJ WKH SURSRUWLRQ RI WRWDO OHDGLQJ JLOO VXUIDFH DUHD DV WKH H[SHFWHG SURSRUWLRQDO VKDUH RI EDUQDFOHV IRU HDFK JLOO D FKLVTXDUH WHVW LQGLFDWHV WKDW WKH EDUQDFOH GLVWULEXWLRQ LV VLJQLILFDQWO\ GLIIHUHQW IURP H[SHFWHG ; GI 3 f )HZHU EDUQDFOHV WKDQ H[SHFWHG ZHUH IRXQG RQ JLOOV DQG *LOOV DQG ZHUH PRUH KHDYLO\ LQIHVWHG WKDQ H[SHFWHG

PAGE 27

'LVFXVVLRQ 7KH LQIHVWDWLRQ UDWH RI 2FWRODVPLV PXHOOHUL LQ WKH EOXH FUDEV RI 6HDKRUVH .H\ bf LV QRW GLIIHUHQW IURP WKDW UHSRUWHG IRU EOXH FUDEV DW *UDQG ,VOH /RXLVLDQD bf E\ +XPHV f &XULRXVO\ LQ WKH SUHVHQW VWXG\ b RI WKH PDOHV DQG b RI WKH IHPDOHV ZHUH LQIHVWHG \HW +XPHV f IRXQG b RI WKH PDOHV DQG b RI WKH IHPDOHV LQIHVWHG 7KLV UDWH DQG WKH QXPEHU RI EDUQDFOHV SHU LQIHVWHG FUDE f LQGLFDWH D YHU\ SUHYDOHQW V\PELRQW ,I WKHVH EDUQDFOHV KDYH D QHJDWLYH HIIHFW RQ WKH KRVW WKHLU SUHVHQFH FRXOG KDYH D PDMRU LPSDFW RQ WKH e VDSLGXV SRSXODWLRQ 7KH SK\VLRORJLFDO HIIHFW RI LQIHVWDWLRQ RQ WKH KRVW LV H[SORUHG LQ &KDSWHUV DQG 7KH K\SRWKHVLV WKDW 4 PXHOOHUL ODUYDH ZRXOG VHOHFW RSWLPDO KRVWV ZDV ILUVW WHVWHG E\ FRPSDULQJ WKH EDUQDFOH GLVWULEXWLRQ WR WKH QHJDWLYH ELQRPLDO GLVWULEXWLRQ D IXQGDPHQWDO PRGHO IUHTXHQWO\ XVHG WR GHVFULEH KRVWSDUDVLWH GLVWULEXWLRQV :LOOLDPV & %f ,W LV XVHG KHUH WR PRGHO WKH IUHTXHQF\ GLVWULEXWLRQ RI SDUDVLWHV RQ KRVWV DQG WKH GLVWULEXWLRQ RI SDUDVLWHV RQ KRVW JLOO FKDPEHUV 7KH QHJDWLYH ELQRPLDO GLVWULEXWLRQ LV WKHRUHWLFDOO\ DSSOLFDEOH WR WKLV V\VWHP EHFDXVH D UDQGRP GLVWULEXWLRQ LV QRW H[SHFWHG GXH WR YDULDWLRQ LQ KRVW FKDUDFWHULVWLFV DJH VL]H VH[ DQG KDELWDWf WKDW PDNHV WKH FKDQFH RI LQIHVWDWLRQ XQHTXDO &URIWRQ f 7KH FORVH ILW WR WKH QHJDWLYH ELQRPLDO DQG WKH ORZ N YDOXHV N DQG IRU EDUQDFOHVFUDE DQG EDUQDFLHVJLOO

PAGE 28

FKDPEHU UHVSHFWLYHO\f LQGLFDWH H[WUHPH DJJUHJDWLRQ :LOOLDPV & % f %DUQDFOHV DUH PRVW OLNHO\ WR EH IRXQG RQ SUHYLRXVO\ LQIHVWHG JLOO FKDPEHUV DQG KRVWV 7KLV PD\ EH GXH WR EDUQDFOH ODUYDH EHLQJ VWLPXODWHG WR VHWWOH E\ WKH SUHVHQFH RI FRQVSHFLILFV DV KDV EHHQ VKRZQ LQ RWKHU EDUQDFOH VSHFLHV &ULVS f RU WR FHUWDLQ KRVWV EHLQJ PRUH DWWUDFWLYH RU KDYLQJ JUHDWHU H[SRVXUH WR EDUQDFOH ODUYDH 7KH ORZ DQG VLPLODU N YDOXHV IRU WKH KRVW GLVWULEXWLRQ DQG JLOO FKDPEHU GLVWULEXWLRQ VXJJHVW WKDW ERWK HIIHFWV DUH LPSRUWDQW ,W LV OLNHO\ WKHVH HIIHFWV HQKDQFH HDFK RWKHU ,W LV LPSUREDEOH WKDW 4 PXHOOHUL ODUYDH DUH UHLQIHVWLQJ WKHLU SDUHQWV KRVW VLQFH WKH\ PXVW XQGHUJR D ZHHN GHYHORSPHQW SHULRG DV SODQNWRQ /DQJ f $ WUXQFDWHG IRUP RI WKH QHJDWLYH ELQRPLDO GLVWULEXWLRQ KDV EHHQ VXFFHVVIXOO\ XVHG WR PRGHO GLVWULEXWLRQV LQ ZKLFK WKH SDUDVLWH LQFXUV PRUWDOLW\ LQ KHDYLO\ LQIHVWHG KRVWV /DQFLDQL DQG %R\HWW f +RVWV ZLWK ODUJH SDUDVLWH ORDGV ZRXOG GLH DQG WKHUHIRUH QRW EH VDPSOHG FDXVLQJ XQGHUUHSUHVHQWDWLRQ LQ WKH ODUJHU SDUDVLWH ORDG FODVVHV 7KH 4 PXHOOHUL GLVWULEXWLRQ RQ e VDSLGXV H[KLELWV RYHUUHSUHVHQWDWLRQ LQ WKH ODUJHU SDUDVLWH ORDG FODVVHV $OWKRXJK QRW FRQFOXVLYH WKLV VXJJHVWV WKDW HLWKHU 4B PXHOOHUL LQIHVWDWLRQ GRHV QRW DIIHFW 4B VDSLGXV PRUWDOLW\ RU WKDW WKH HIIHFW LV OLQHDU /DQFLDQL DQG %R\HWW f :KHQ VDPSOHV RI DGXOW FUDEV ZHUH FRPSDUHG QR GLIIHUHQFH H[LVWHG EHWZHHQ WKH VL]H FDUDSDFH VKRUW ZLGWKf RI LQIHVWHG FUDEV DQG XQLQIHVWHG FUDEV $ ODUJH GLIIHUHQFH EHWZHHQ WKH VL]H RI LQIHVWHG DQG XQLQIHVWHG FUDEV ZDV HYLGHQW RQO\ ZKHQ LPPDWXUH

PAGE 29

FUDEV ZHUH FRQVLGHUHG ,PPDWXUH FUDEV DUH XQVXLWDEOH KRVWV EHFDXVH RI WKHLU VKRUW LQWHUPROW SHULRG ZKLFK LV OHVV WKDQ RQH PRQWK LQ WKH MXYHQLOHV XS WR VWDJH 0LOOLNLQ DQG :LOOLDPV f %DUQDFOHV LQIHVWLQJ LPPDWXUH FUDEV PD\ HVFDSH GHWHFWLRQ GXH WR VPDOO ERG\ VL]H :DONHU f +RZHYHU LQ WKLV VWXG\ FDUHIXO LQVSHFWLRQ RI LPPDWXUH FUDEV GLG QRW UHYHDO DQ\ WKDW KDUERUHG 4 PXHOOHUL ,QIHVWHG LPPDWXUH FUDEV KDYH EHHQ REVHUYHG RQO\ RFFDVLRQDOO\ VLQFH WKLV VWXG\ ZDV FRPSOHWHG XQSXEOLVKHG REVHUYDWLRQVf $OWKRXJK WKH HFWRFRPPHQVDO FDUDSDFH EDUQDFOH &KHORQLELD SDWXOD GRHV QRW VKDUH WKH PLFURKDELWDW RI 4 PXHOOHUL RQH PLJKW SUHGLFW WKDW FHUWDLQ FUDEV DUH LGHDO KRVWV IRU ERWK EDUQDFOHV EDVHG RQ GLVWULEXWLRQ FULWHULD VXFK DV LQIUHTXHQF\ RI KRVW PROWLQJ JUHDWHU VHWWOHPHQW DUHD DQG KRVW UHVLVWDQFH WR KDUPIXO HIIHFWV 7KH HYLGHQFH WKDW WKH WZR EDUQDFOH VSHFLHV WHQG WR VHOHFW WKH VDPH KRVWV VXSSRUWV WKLV YLHZ KRZHYHU LW LV HTXDOO\ SRVVLEOH WKDW LQIHVWDWLRQ E\ RQH EDUQDFOH VSHFLHV ZHDNHQV WKH FUDE DQG PDNHV LW PRUH VXVFHSWLEOH WR LQIHVWDWLRQ E\ WKH RWKHU ,W LV DOVR OLNHO\ WKDW WKH ORQJHU WKH GXUDWLRQ VLQFH WKH ODVW FUDE PROW WKH PRUH WLPH LW KDV KDG WR DFFXPXODWH HFWRFRPPHQVDO EDUQDFOHV RI HLWKHU VSHFLHV /HVV OLNHO\ LV WKH SRVVLELOLW\ WKDW WKH SODQNWRQLF ODUYDH RI WKH WZR EDUQDFOH VSHFLHV FRPSOHWH GHYHORSPHQW DQG VHWWOH LQ WKH VDPH ORFDOLWLHV LQIHVWLQJ FUDEV WKHUH :LWKLQ FUDE JLOO FKDPEHUV DGXOW 4 PXHOOHUL ZHUH IRXQG DWWDFKHG WR YLUWXDOO\ HYHU\ VXUIDFH LQ KHDYLO\ LQIHVWHG FUDEV 7KLV QHJDWHV WKH K\SRWKHVLV RI VHWWOHPHQW DQG VXUYLYDO RQO\ RQ

PAGE 30

RSWLPDOO\ YHQWLODWHG VLWHV ,QIHVWDWLRQV RI OHVV WKDQ 4FWRODVPLV ZHUH XVXDOO\ FRQILQHG WR WKH DFWXDO JLOO WLVVXH RQ WKH K\SREUDQFKLDO VLGH &RQFHQWUDWLRQ RI WKH EDUQDFOHV RQ WKH PLGGOH JLOOV DJUHHV ZLWK WKH GLVWULEXWLRQ IRXQG IRU WKH %HDXIRUW 1RUWK &DUROLQD SRSXODWLRQ E\ :DONHU f DQG -HIIULHV DQG 9RULV f 7KH EDVDO DQG PHGLDO SRUWLRQV RI WKH K\SREUDQFKLDO VLGH RI JLOOV DQG ZKLFK FRXOG EH FRQVLGHUHG WKH RSWLPDO VLWH IRU EDUQDFOH JURZWK FRQWDLQHG b RI WKH EDUQDFOHV VDPSOHG 7KLV DUHD FRQVWLWXWHV RQO\ b RI WKH DYDLODEOH JLOO VXUIDFH DUHD DQG DQ HYHQ VPDOOHU SURSRUWLRQ RI WKH WRWDO VXUIDFH DUHD XVHG IRU DWWDFKPHQW DERXW bf 7KH REVHUYHG DJJUHJDWLRQ RI EDUQDFOHV FRXOG EH H[SODLQHG HLWKHU DV VLWH VHOHFWLRQ E\ JUHJDULRXV VHWWOLQJ F\SULG ODUYDH RU VLPSO\ WKH UHVXOW RI SDVVLYH GLVWULEXWLRQ LQ WKH PDLQVWUHDP RI WKH FUDEV YHQWLODWRU\ FXUUHQW ,Q VXPPDU\ DJJUHJDWLRQ RI 4FWRODVPLV RQ WKH H[SHFWHG RSWLPDO KRVWV DQG DW WKH H[SHFWHG RSWLPDO VLWHV ZLWKLQ WKH JLOO FKDPEHU KDYH EHHQ GHPRQVWUDWHG 7KLV VXJJHVWV KRVW DQG VLWH ZLWKLQKRVW VHOHFWLRQ E\ EDUQDFOH ODUYDH +RZHYHU DOWHUQDWH K\SRWKHVHV KDYH EHHQ DGYDQFHG WR H[SODLQ WKH REVHUYHG GLVWULEXWLRQ DQG ZDUUDQW IXUWKHU LQYHVWLJDWLRQ

PAGE 31

7DEOH 4FWRODVPLV PXHOOHUL&DOOLQHFWHV VDSLGXV SRSXODWLRQ LQIHVWDWLRQ VXPPDU\ &UDE SRSXODWLRQ ,QIHVWHG FUDEV 1XPEHU RI 4FWRODVPLV 0RQWK 7RWDO 0DOH )HPDOH b RI 7RWDO b0DOH b)HPDOH LQIHVWHG FUDE 0D\ -XQH -XO\ 6HSW 2FW 1RY 'HF )HE 0DU $SU 7RWDO

PAGE 32

7DEOH &RQWLQJHQF\ WDEOH IRU LQIHVWDWLRQ RI FUDEV E\ &KHORQLELD SDWXOD DQGRU 2FWRODVPLV PXHOOHUL YDOXHV DUH IRU REVHUYHG QXPEHU RI FUDEVH[SHFWHG QXPEHU RI FUDEVf 6LJQLILFDQWO\ PRUH FUDEV DUH REVHUYHG ZLWK ERWK EDUQDFOH LQIHVWDWLRQV RU QHLWKHU LQIHVWDWLRQ WKDQ H[SHFWHG S f 2FWRODVPLV PXHOOHUL &KHORQLELD SDWXOD

PAGE 33

7DEOH &RPSDULVRQ RI 2FWRODVPLV PXHOOHUL GLVWULEXWLRQ ZLWK IDFLQJ JLOO VXUIDFH DUHD *LOO QXPEHU 3URSRUWLRQ RI 7RWDO *LOO $UHD ([SHFWHG QXPEHU RI EDUQDFOHV 2EVHUYHG QXPEHU RI EDUQDFOHV 'LIIHUHQFH UR

PAGE 34

)LJXUH )UHTXHQF\ GLVWULEXWLRQ RI 2FWRODVPLV RQ EOXH FUDEV ,QGLYLGXDO FUDEV ZLWK DQG 2FWRODVPLV DUH QRW VKRZQ LQ WKH ILJXUH &RPELQHG GDWD IURP FUDEV

PAGE 35

%DUQDFOHV 3HU &UDE 1XPEHU RI 2FFXUUHQFHV

PAGE 36

)LJXUH )UHTXHQF\ GLVWULEXWLRQ RI 2FWRODVPLV RQ EOXH FUDE JLOO FKDPEHUV ,QGLYLGXDO JLOO FKDPEHUV ZLWK DQG 2FWRODVPLV DUH QRW VKRZQ LQ WKH ILJXUH &RPELQHG GDWD IURP FUDEV

PAGE 37

1XPEHU RI 2FFXUUHQFHV U Ur L f§+ Ur A Uf§-Q 9 %DUQDFOHV 3HU *LOO &KDPEHU UR FR RRW

PAGE 38

)LJXUH 6L]H GLVWULEXWLRQ RI 2FWRODVPLV PXHOOHULLQIHVWHG DQG QRQLQIHVWHG EOXH FUDEV 6L]HV DUH JLYHQ DV FDUDSDFH VKRUW ZLGWKV LQ FP 'DUNHQHG EDUV DUH LQIHVWHG FUDEV &URVVKDWFKHG EDUV DUH QRQLQIHVWHG FUDEV

PAGE 39

1XPEHU RI RFFXUUHQFHV &DUDSDFH 6KRUW :LGWK FPf &2 R

PAGE 40

&+$37(5 ())(&76 2) 2FWRODVPLV PXHOOHUL ,1)(67$7,21 21 %/8( &5$%6 ,QWURGXFWLRQ 7KH UHVSLUDWRU\ SK\VLRORJ\ RI DTXDWLF GHFDSRG FUXVWDFHDQV KDV EHHQ ZHOOVWXGLHG VHH UHYLHZV E\ 7D\ORU 0F0DKRQ DQG :LONHQV 0DQJXP 7UXFKRW &DPHURQ f ([SHULPHQWDO PHWKRGRORJ\ KDV LQYROYHG FKDQJHV LQ WKH H[WHUQDO UHVSLUDWRU\ PHGLXP VXFK DV K\SHUR[LD 'HMRXUV DQG %HHNHQNDPS 6LQKD DQG 'HMRXUV :KHDWO\ f K\SR[LD 0F0DKRQ %XUJJHUHQ DQG :LONHQV %XWOHU 7D\ORU DQG 0F0DKRQ :KHDWO\ DQG 7D\ORU f DQG K\SHUFDSQLD +HQU\ .RUPDQLN DQG &DPHURQ &DPHURQ f 5HVSLUDWLRQ RI WKH EOXH FUDE &DOOLQHFWHV VDSLGXV KDV EHHQ SDUWLFXODUO\ ZHOO VWXGLHG ZLWK UHVSHFW WR WKH DERYH HQYLURQPHQWDO VWUHVVRUV DV ZHOO DV PROWLQJ &DPHURQ DQG :RRG f HPHUVLRQ %DWWHUWRQ DQG &DPHURQ f DQG H[HUFLVH %RRWK HW DO %RRWK HW DO f 7KH ZLGH GLVWULEXWLRQ RI WKLV VSHFLHV IURP IUHVK ZDWHU WR K\SHUVDOLQH ODJRRQV DQG WHPSHUDWH UHJLRQV WR WKH WURSLFV :LOOLDPV f FRQILUPV ZKDW SK\VLRORJLFDO VWXGLHV VXJJHVW QDPHO\ DQ DELOLW\ WR WROHUDWH D ZLGH UDQJH RI HQYLURQPHQWDO FRQGLWLRQV

PAGE 41

0DQ\ JLOO EUHDWKHUV DUH KRVWV WR SDUDVLWHV DQG HFWRFRPPHQVDOV WKDW FRXOG DIIHFW UHVSLUDWLRQ (QGRSDUDVLWLF FHVWRGH ODUYDH 6FKLVWFFHSKDOXVO FDXVH LQFUHDVHG R[\JHQ FRQVXPSWLRQ LQ VWLFNOHEDFN ILVK *DVWHURVWHXV DFXOHDWXV /HVWHU f DQG VWLPXODWH WKH KRVW WR EUHDWK PRUH RIWHQ DW WKH VXUIDFH LQ K\SR[LF ZDWHUV *LOHV f 6QDLOV LQIHVWHG ZLWK ODUYDO WUHPDWRGHV KDYH KLJKHU PHWDEROLF UDWHV WKDQ GR XQLQIHVWHG FRQWUROV 'XHUU 9HUQEHUJ DQG 9HUQEHUJ f &UXVWDFHDQ HQGRSDUDVLWHV FDQ DOVR KDYH SURIRXQG HIIHFWV RQ KRVW PHWDEROLVP %OXH FUDEV DUH KRVWV WR UKL]RFHSKDODQ EDUQDFOHV VXFK DV /R[RWKYODFXV WH[DQXV 7KHVH HQGRSDUDVLWLF EDUQDFOHV VWXQW KRVW JURZWK 2YHUVWUHHW f DQG VWLPXODWH PDOH KRVWV WR GHYHORS IHPDOH VHFRQGDU\ VH[ FKDUDFWHULVWLFV 5HLQKDUG f %DIIRQL f KRZHYHU ZDV XQDEOH WR VKRZ DQ\ HIIHFW RI UKL]RFHSKDODQ LQIHVWDWLRQ RQ KRVW PHWDEROLF UDWH ,Q DOO RI WKHVH H[DPSOHV WKH SDUDVLWHV IHHG RQ KRVW WLVVXH DQG PDNH XS D VLJQLILFDQW SDUW RI WKH KRVW ZHLJKW 7KH\ DOVR NLOO RU VHYHUHO\ GHELOLWDWH WKH KRVW 7KH GLUHFW HIIHFWV RI SDUDVLWH SUHVHQFH RQ WKH KRVW DUH QRW VHSDUDEOH IURP WKH HIIHFWV RI EORRGKHPRO\PSK GHSOHWLRQ LQFUHDVH LQ ELRPDVV RU SDUDVLWH DVVRFLDWHG GLVHDVH ,Q DGGLWLRQ LQ WKH ILUVW WZR V\VWHPV WKH SDUDVLWH ODUYDH LQGXFH KRVW EHKDYLRU WKDW PDNH WKH KRVW PRUH VXVFHSWLEOH WR SUHGDWLRQ E\ WKH SDUDVLWHVn GHILQLWLYH KRVW /HVWHU *LOHV f 7KH HIIHFW RI JLOO SDUDVLWHV RQ KRVW UHVSLUDWLRQ KDV EHHQ PHDVXUHG RQO\ IRU WKH LVRSRG 3URERSYUXV SDQGDOLFROD 'HFUHDVHG

PAGE 42

R[\JHQ FRQVXPSWLRQ RFFXUV LQ ERWK LWV LQWHUPHGLDWH KRVW WKH FRSHSRG $FDUWLD WRQVD $QGHUVRQ Df DQG LQ PRVW FDVHV LWV GHILQLWLYH KRVW WKH VKULPS 3DODHPRQHWHV SXRLR $QGHUVRQ Ef ,Q WKH IRUPHU KRVW WKH LVRSRG LV HFWRSDUDVLWLF DQG QRW D JLOO SDUDVLWH ,Q WKH ODWWHU WKH IHPDOH LVRSRG KDV ERWK DQ HQGRSDUDVLWLF SKDVH RI ZHHNV $QGHUVRQ f DQG D EUDQFKLDO SKDVH LQ ZKLFK LW IHHGV RQ KRVW KHPRO\PSK $QGHUVRQ Ef 7KH PDOH LV PXFK VPDOOHU DQG DVVRFLDWHV ZLWK WKH IHPDOH LQ WKH KRVW EUDQFKLDO FKDPEHU $QGHUVRQ f 6LJQLILFDQW KRVW PRUWDOLW\ RFFXUV LQ WKH HDUO\ SHULRGV RI LQIHFWLRQ EXW QRW ZKHQ WKH SDUDVLWH LV LQ WKH EUDQFKLDO VWDJH $QGHUVRQ f 7KLV LV VXUSULVLQJ JLYHQ WKDW WKH SDUDVLWH JURZV WR VXFK D VL]H WKDW LW GLVWRUWV WKH VKDSH RI WKH KRVW EUDQFKLDO FKDPEHU $QGHUVRQ Ef 7KH GHFUHDVH LQ PHWDEROLF UDWH RI SDUDVLWL]HG VKULPS LV DWWULEXWHG WR FKDQJHV LQ KRVW OLSLG PHWDEROLVP $QGHUVRQ Ef 7KLV PD\ EH UHODWHG WR WKH HIIHFW RI WKH SDUDVLWH RQ WKH KRVW UHSURGXFWLYH V\VWHP SDUDVLWLF FDVWUDWLRQ LQKLELWLRQ RI RYDULDQ PDWXUDWLRQ DQG GLVUXSWLRQ RI GHYHORSPHQW RI PDOH VHFRQGDU\ VH[XDO FKDUDFWHULVWLFV %HFN f 7KXV WKH HIIHFWV RI WKH SDUDVLWH RQ JDV H[FKDQJH SHU VH DUH QRW VHSDUDEOH IURP WKH HIIHFWV FDXVHG E\ IHHGLQJ RQ KRVW KHPRO\PSK 7KH 2FWRODVPLV PXHOOHUL &DOOLQHFWHV VDSLGXV V\VWHP RIIHUV D XQLTXH RSSRUWXQLW\ WR H[DPLQH WKH HIIHFWV RI D EUDQFKLDO FRPPHQVDO RQ KRVW JDV H[FKDQJH LQFOXGLQJ GHWHUPLQDWLRQ RI D SRVVLEOH GHWULPHQWDO HIIHFW RQ WKH KRVW DV ZHOO DV HYDOXDWLRQ RI WKH KRVW PHFKDQLVPV RI FRPSHQVDWLRQ

PAGE 43

7KH DLP RI WKLV VWXG\ ZDV WR PHDVXUH WKH HIIHFWV RI 2 PXHOOHUL LQIHVWDWLRQ RQ WKH IROORZLQJ SDUDPHWHUV RI EOXH FUDE UHVSLUDWLRQ R[\JHQ FRQVXPSWLRQ KHDUW UDWH YHQWLODWLRQ UDWH DQG WKH KHPRO\PSK R[\JHQ WHQVLRQ R[\JHQ FRQWHQW FDUERQ GLR[LGH FRQWHQW S+ DQG ODFWDWH FRQFHQWUDWLRQ 0HWKRGV $QLPDO 0DLQWHQDQFH $GXOW EOXH FUDEV Jf ZHUH FROOHFWHG LQ FRPPHUFLDO WUDSV DW 6HDKRUVH .H\ RQ WKH *XOI FRDVW RI )ORULGD rn 1 ODW r n : ORQJf IURP $SULO WR 6HSWHPEHU /HVV WKDQ FUDEV ZHUH PDLQWDLQHG DW DQ\ RQH WLPH LQ DQ WDQN RI UHFLUFXODWLQJ ILOWHUHG VHDZDWHU SSW VDOLQLW\f DW r& RQ D KU OLJKW KU GDUN F\FOH DW WKH 8QLYHUVLW\ RI )ORULGD LQ *DLQHVYLOOH 7KH FUDEV ZHUH IHG FKRSSHG ILVK WLPHV ZHHNO\ EXW IRRG ZDV ZLWKKHOG KRXUV SULRU WR H[SHULPHQWDWLRQ ,QWHUPROW FUDEV VWDJH & -RKQVRQ f ZHUH JLYHQ D PLQLPXP RI RQH ZHHN WR DFFOLPDWH WR WKHVH KROGLQJ FRQGLWLRQV EHIRUH XVH LQ H[SHULPHQWV ([SHULPHQWDO 3URWRFRO 0HDVXUHPHQWV ZHUH PDGH RQ WKUHH VHULHV RI H[SHULPHQWDO EOXH FUDEV (DFK VHULHV FRQWDLQHG FUDEV WKDW ZHUH QDWXUDOO\ LQIHVWHG E\ WKH EDUQDFOH 2FWRODVPLV PXHOOHUL DQG XQLQIHVWHG FRQWURO FUDEV 7KLV ZDV D EOLQG H[SHULPHQW LQIHVWDWLRQ OHYHO FRXOG

PAGE 44

QRW EH GHWHUPLQHG XQWLO WKH FUDE ZDV NLOOHG 6HULHV $ FUDEV Q f ZHUH XVHG WR PHDVXUH ZKROHDQLPDO UHVSLUDWRU\ SDUDPHWHUV R[\JHQ FRQVXPSWLRQ UDWH 0 2 KHDUW UDWH I+ DQG YHQWLODWLRQ UDWH I6&f 6HULHV % FUDEV Q f ZHUH XVHG WR PHDVXUH SUHEUDQFKLDO YHQRXVYf KHPRO\PSK FKDUDFWHULVWLFV S+ R[\JHQ WHQVLRQ 3 WRWDO FDUERQ GLR[LGH FRQWHQW &Fc DQG /fODFWDWH FRQFHQWUDWLRQf 6HULHV & FUDEV Q f ZHUH XVHG WR GHWHUPLQH ERWK SUHEUDQFKLDO DQG SRVWEUDQFKLDO DUWHULDODf KHPRO\PSK FKDUDFWHULVWLFV S+ 32 R[\JHQ FRQWHQW &f DQG /fODFWDWH FRQFHQWUDWLRQf $IWHU PHDVXUHPHQWV ZHUH FRPSOHWHG FUDEV ZHUH NLOOHG E\ IUHH]LQJ DQG WKH JLOO FKDPEHUV ZHUH RSHQHG DQG YLVXDOO\ LQVSHFWHG IRU WKH SUHVHQFH RI HFWRFRPPHQVDO EDUQDFOHV *DQQRQ &KDSWHU f 7KH WRWDO QXPEHU RI EDUQDFOHV SUHVHQW LQ WKH JLOO FKDPEHU RI HDFK FUDE ZDV XVHG DV DQ LQGH[ RI LQIHVWDWLRQ OHYHO $QDO\WLFDO 7HFKQLTXHV 6HULHV $ FUDEV ZHUH SUHSDUHG IRU KHDUW DQG YHQWLODWLRQ UDWH UHFRUGLQJ DQG SODFHG LQ D FRQWLQXRXV IORZ UHVSLURPHWHU 7D\ORU %XWOHU DQG $O:DVVLD f 'HSHQGLQJ RQ ERG\ VL]H FUDEV ZHUH SODFHG LQ HLWKHU D RU F\OLQGULFDO UHVSLURPHWHU WKDW ZDV SODFHG LQ D ZDWHU EDWK )LOWHUHG VHDZDWHU r& SSW VDOLQLW\f ZDV SXPSHG WKURXJK WKH UHVSLURPHWHU DW D FRQVWDQW UDWH WKDW UDQJHG IURP WR PO PLQn 6DPSOLQJ SRUWV LQ WKH LQIORZ LQFXUUHQWf DQG RXWIORZ H[FXUUHQWf RI WKH UHVSLURPHWHU DOORZHG VLPXOWDQHRXV ZLWKGUDZDO RI PO ZDWHU VDPSOHV IRU PHDVXUHPHQW

PAGE 45

RI ZDWHU 32 7KH 32 ZDV GHWHUPLQHG XVLQJ DQ ,/ 2 HOHFWURGH f WKHUPRVWDWWHG WR r& DQG FRQQHFWHG WR DQ ,/ EORRG f JDV DQDO\]HU 7KH 0 2 ZDV FDOFXODWHG LQ SPRO NJ PLQ XVLQJ WKH IROORZLQJ HTXDWLRQ $ 32 rF&! I 02 P ZKHUH $ 32 LV WKH GLIIHUHQFH EHWZHHQ LQFXUUHQW DQG H[FXUUHQW 32 LQ N3Df F& LV WKH VROXELOLW\ FRHIILFLHQW LQ MLPRO 2 PO ZDWHU N3Df -RQHV f I LV WKH IORZ UDWH WKURXJK WKH UHVSLURPHWHU LQ PO +2 PLQf DQG P LV ERG\ PDVV LQ NJ 7KH I+ DQG IVF LQ ERWK EUDQFKLDO FKDPEHUV ZHUH PHDVXUHG FRQWLQXRXVO\ ZLWK DQ LPSHGDQFH FRQYHUVLRQ WHFKQLTXH '\HU DQG 8JORZ f ,Q WKH FDVH RI KHDUW UDWH WZR KROHV ZHUH GULOOHG WKURXJK WKH FDUDSDFH EXW QRW SHQHWUDWLQJ WKH HSLGHUPLV RQ HLWKHU VLGH RI WKH KHDUW DQG WKH HQG RI D ODFTXHUHG FRSSHU ZLUH JDXJHf VWULSSHG IRU PP ZDV LQVHUWHG LQWR HDFK KROH WKURXJK WKH HSLGHUPLV WR D GHSWK RI PP 7KH\ ZHUH KHOG LQ SODFH ZLWK F\DQRDFU\ODWH JOXH DQG ODWH[ GHQWDO GDP 7KHVH ZLUHV OHG RXWVLGH WKH UHVSLURPHWHU WR DQ LPSHGDQFH FRQYHUWHU 8), f DQG WKH RXWSXW ZDV GLVSOD\HG RQ D *UDVV PRGHO SRO\JUDSK 7KH IVF ZDV UHFRUGHG VLPLODUO\ LQVHUWLQJ WKH UHFRUGLQJ ZLUH LQWR WKH H[KDOHQW FDQDO RI HDFK EUDQFKLDO FKDPEHU DQG WKH UHIHUHQFH ZLUH RQWR WKH FDUDSDFH &UDEV ZHUH DOORZHG DW OHDVW KRXUV WR UHFRYHU IURP WKH

PAGE 46

VXUJLFDO SURFHGXUHV DQG WR DFFOLPDWH WR WKH UHVSLURPHWHU EHIRUH PHDVXUHPHQWV ZHUH WDNHQ 3UHEUDQFKLDO KHPRO\PSK VDPSOHV POf RI VHULHV % DQG VHULHV & FUDEV ZHUH UHPRYHG IURP WKH LQIUDEUDQFKLDO VLQXV E\ SHQHWUDWLQJ WKH DUWKURGLDO PHPEUDQH DW WKH EDVH RI WKH VZLPPLQJ OHJ ZLWK D JDXJH QHHGOH DWWDFKHG WR D FKLOOHG V\ULQJH &UDEV LQ VHULHV & ZHUH SUHSDUHG IRU SRVWEUDQFKLDO KHPRO\PSK VDPSOLQJ E\ GULOOLQJ D KROH GLUHFWO\ RYHU WKH KHDUW WKURXJK WKH FDUDSDFH EXW QRW S SHQHWUDWLQJ WKH HSLGHUPLV 7KH KROH ZDV VHDOHG ZLWK D FP SDWFK RI ODWH[ GHQWDO GDP DQG F\DQRDFU\ODWH JOXH 7KH SRVWEUDQFKLDO KHPRO\PSK VDPSOH ZDV ZLWKGUDZQ E\ SXQFWXULQJ WKH GHQWDO GDP SDWFK ZLWK D JDXJH QHHGOH DWWDFKHG WR D FKLOOHG V\ULQJH 7KHVH FUDEV ZHUH JLYH KRXUV WR UHFRYHU IURP WKLV VXUJHU\ EHIRUH H[SHULPHQWDWLRQ &UDEV LQ VHULHV % DQG & ZHUH SODFHG LQGLYLGXDOO\ LQ RI DHUDWHG ILOWHUHG VHDZDWHU r& DQG SSW VDOLQLW\f LQ D FRYHUHG FRQWDLQHU DQG DOORZHG DW OHDVW KRXUV WR DFFOLPDWH EHIRUH SUH DQG SRVWEUDQFKLDO KHPRO\PSK VDPSOHV ZHUH WDNHQ DV RXWOLQHG DERYH )RU HDFK KHPRO\PSK VDPSOH IURP D VHULHV % FUDE WKH 3 RI DQ SL VXEVDPSOH ZDV PHDVXUHG DV RXWOLQHG DERYH IRU ZDWHU VDPSOHV 7KH S+ RI WKH VDPH VXEVDPSOH ZDV DOVR PHDVXUHG LQ WKH ,/ EORRG JDV DQDO\]HU XVLQJ DQ ,/ S+ HOHFWURGH f 7KH /fODFWDWH FRQFHQWUDWLRQ ZDV PHDVXUHG RQ DQ SL KHPRO\PSK VXEVDPSOH XVLQJ D FRPPHUFLDO UHDJHQW NLW 6LJPD f 7KH && RI D SL VXEVDPSOH ZDV PHDVXUHG ZLWK D &DSQLFRQ DXWRPDWLF

PAGE 47

DQDO\]HU &DPHURQ ,QVWUXPHQWV &RPSDQ\f )RU HDFK KHPRO\PSK VDPSOH IURP D VHUOHV & FUDE WKH 32 DQG S+ RI D SL VXEVDPSOH ZHUH PHDVXUHG DV GHVFULEHG DERYH 7KH & rI DQ SL VXEVDPSOH ZDV PHDVXUHG ZLWK D &DYLWURQ /H[FRQ R[\JHQ DQDO\]HU 6WDWLVWLFDO $QDO\VLV 9DOXHV PHDVXUHG IRU VHULHV $ DQG & LQIHVWHG FUDEV ZHUH FRPSDUHG ZLWK WKRVH UHFRUGHG IRU XQLQIHVWHG FUDEV XVLQJ 6WXGHQWnV WWHVW IRU LQGHSHQGHQW PHDQV 6RNDO DQG 5RKOI f 9DOXHV PHDVXUHG IRU VHULHV % XQLQIHVWHG PRGHUDWHO\ LQIHVWHG DQG KHDYLO\ LQIHVWHG FUDEV ZHUH FRPSDUHG XVLQJ D 0RGHO VLQJOH FODVVLILFDWLRQ $129$ 6RNDO DQG 5RKOI f :KHUHYHU WKH YDULDQFHV ZHUH QRW IRXQG WR EH KRPRJHQHRXV ZLWK WKH )WHVW RU WKH )PD[WHVW D WWHVW IRU VDPSOHV ZLWK XQHTXDO YDULDQFH ZDV XVHG 6RNDO DQG 5RKOI f 'LIIHUHQFHV ZHUH FRQVLGHUHG VLJQLILFDQW DW 3 5HVXOWV ([SHULPHQWDO FUDEV ZHUH DOO RI VLPLODU VL]H PHDQ PDVV s J 6 'f 7KLV PLQLPL]HG HIIHFWV RI PDVV RQ 0 2 I+ DQG IVF 7KHVH YDOXHV ZHUH HDFK SORWWHG DJDLQVW PDVV RQ D ORJORJ VFDOH EXW QR OLQHDU UHODWLRQVKLSV ZHUH IRXQG 7KLV VXJJHVWV WKDW WKH LQIOXHQFH RI PDVV ZDV QHJOLJLEOH RYHU WKLV QDUURZ UDQJH 7KHUHIRUH WKH PHDVXUHG YDOXHV IRU I+ DQG IVF ZHUH QRW DGMXVWHG IRU PDVV 7R IDFLOLWDWH FRPSDULVRQ ZLWK RWKHU VSHFLHV 0 2 ZDV UHSRUWHG SHU XQLW PDVV

PAGE 48

2[\JHQ FRQVXPSWLRQ UDWHV RI LQIHVWHG VHULHV $ FUDEV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW IURP WKRVH RI XQLQIHVWHG FUDEV 7DEOH f KRZHYHU WKH LQIHVWHG FUDEV KDG HOHYDWHG I+ bf DQG IVF bf )RU WKH FRPSDULVRQV RI SUHEUDQFKLDO KHPRO\PSK SDUDPHWHUV VHULHV % FUDEV ZHUH GLYLGHG LQWR WKUHH FODVVHV EDVHG XSRQ LQWHQVLW\ RI LQIHVWDWLRQ DV IROORZV XQLQIHVWHG ZKLFK LQFOXGHV OLJKWO\ LQIHVWHG FUDEV IURP WR EDUQDFOHVf PRGHUDWHO\ LQIHVWHG EDUQDFOHVf DQG KHDYLO\ LQIHVWHG PRUH WKDQ EDUQDFOHVf 7KHVH GLYLVLRQV ZHUH EDVHG RQ DQ DQDO\VLV RI WKH GLVWULEXWLRQ RI 2 PXHOOHUL RQ EOXH FUDEV VHH &KDSWHU *DQQRQ f )RXU KHDYLO\ LQIHVWHG FUDEV HDFK FRQWDLQLQJ PRUH WKDQ EDUQDFOHVf GLG QRW VXUYLYH KDQGOLQJ DQG VXUJLFDO SUHSDUDWLRQ 7KH PHDQ SUHEUDQFKLDO KHPRO\PSK S+ 32 &&2 DQFr ODFWDWH FRQFHQWUDWLRQV RI WKH KHDYLO\ LQIHVWHG FUDEV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW IURP WKRVH RI WKH XQLQIHVWHG FUDEV 7DEOH f KRZHYHU PRGHUDWHO\ LQIHVWHG FUDEV H[KLELWHG ORZHU KHPRO\PSK S+ S+ XQLWVf DQG &&2 b UHGXFWLRQf DQG DOPRVW GRXEOH WKH 32 RI FRQWURO FUDEV /DFWDWH FRQFHQWUDWLRQV ZHUH YLUWXDOO\ LGHQWLFDO LQ DOO JURXSV KRZHYHU WKH VPDOO VDPSOH VL]H LQ WKH PRGHUDWHO\ LQIHVWHG FDWHJRU\ SUHFOXGHV VWDWLVWLFDO FRPSDULVRQ 3UH DQG SRVWEUDQFKLDO KHPRO\PSK SDUDPHWHUV ZHUH PHDVXUHG IRU VHULHV & FUDEV 7KLV JURXS FRQWDLQHG RQO\ XQLQIHVWHG DQG KHDYLO\ LQIHVWHG FUDEV 0RGHUDWHO\ LQIHVWHG FUDEV GLG QRW RFFXU LQ WKLV VDPSOH 0HDQ SUHEUDQFKLDO DQG SRVWEUDQFKLDO KHPRO\PSK S+ 32 RU & YDOXHV IRU KHDYLO\ LQIHVWHG FUDEV ZHUH QRW VLJQLILFDQWO\

PAGE 49

GLIIHUHQW IURP WKRVH YDOXHV PHDVXUHG LQ XQLQIHVWHG FUDEV 7DEOH f f $UWHULRYHQRXV DYf GLIIHUHQFHV LQ KHPRO\PSK JDV SDUDPHWHUV IRU VHULHV & FUDEV ZHUH FDOFXODWHG IRU FUDEV LQ ZKLFK VDPSOHV RI ERWK SUHEUDQFKLDO DQG SRVWEUDQFKLDO KHPRO\PSK KDG VXFFHVVIXOO\ EHHQ REWDLQHG 7DEOH f %HFDXVH RI RFFDVLRQDO SUREOHPV ZLWK KHPRO\PSK FORWWLQJ ZH ZHUH QRW VXFFHVVIXO LQ PHDVXULQJ DOO SDUDPHWHUV IRU HYHU\ KHPRO\PSK VDPSOH 8QLQIHVWHG DQG KHDYLO\ LQIHVWHG FUDEV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW ZLWK UHVSHFW WR S+ & DQG 32 DY GLIIHUHQFHV 'LVFXVVLRQ 7KH SUHVHQFH RI HFWRFRPPHQVDO EDUQDFOHV RQ FUDE JLOOV FRXOG LQFUHDVH WKH FUDEnV YHQWLODWRU\ GHDG VSDFH LQ VHYHUDO ZD\V )LUVWO\ E\ FHPHQWLQJ VHYHUDO JLOO SODWHOHWV WRJHWKHU XSRQ DWWDFKPHQW :DONHU f WKH EDUQDFOH PD\ SUHYHQW ZDWHU FLUFXODWLRQ DQG WKHUHE\ JDV H[FKDQJH EHWZHHQ WKHVH SODWHOHWV $V WKH EDUQDFOH JURZV DGXOW FHPHQW LV VHFUHWHG DQG WKLV ZLOO IXVH VHYHUDO PRUH SODWHOHWV :DONHU f 7KLV VKRXOG KDYH D UHODWLYHO\ PLQRU HIIHFW GXH WR WKH ODUJH QXPEHU RI SODWHOHWV SUHVHQW LQ WKH JLOO FKDPEHU RQ DYHUDJH IRU D J EOXH FUDE *UD\ f 6HFRQGO\ EDUQDFOHV UHPRYH R[\JHQ IURP WKH ZDWHU LQ WKH FUDEnV YHQWLODWRU\ VWUHDP IRU WKHLU RZQ PHWDEROLVP $OWKRXJK R[\JHQ FRQVXPSWLRQ UDWHV IRU 2 PXHOOHUL KDYH QRW EHHQ PHDVXUHG H[WUDSRODWLRQ IURP GDWD IRU RWKHU EDUQDFOHV VXFK DV &KWKDPDOXV

PAGE 50

VWHOODWXV & GHSUHVVXV DQG %DODQXV SHUIRUDWXV +DPPHQ f DW WKH VDPH H[SHULPHQWDO WHPSHUDWXUH RI r& ZRXOG SUHGLFW DQ 0 2 RI QPRO 2 PLQn IRU HDFK 2 PXHOOHUL EDUQDFOH ZKLFK HYHQ XQGHU KHDY\ LQIHVWDWLRQ ZRXOG EH QHJOLJLEOH UHODWLYH WR WKH 0 2 RI WKH FUDE SPRO NJnA PLQnf 7KLUGO\ WKH EDUQDFOH PD\ FUHDWH D SK\VLFDO REVWUXFWLRQ LQ WKH YHQWLODWRU\ VWUHDP 7KH PDJQLWXGH RI WKLV HIIHFW LV GLIILFXOW WR HVWLPDWH $Q LQFUHDVH LQ YHQWLODWRU\ GHDGVSDFH FRXOG OHDG WR D VLPXOWDQHRXV LQFUHDVH LQ SHUIXVLRQ GHDGVSDFH EHFDXVH WKH KHPRO\PSK SHUIXVLQJ WKH SRRUO\ YHQWLODWHG SRUWLRQ RI WKH JLOOV ZRXOG QRW EH DV ZHOO R[\JHQDWHG &RQWURO RI SHUIXVLRQ E\ YDVRFRQVWULFWLRQ FRXOG SUHYHQW WKLV IURP RFFXUULQJ EXW VXFK FRQWUROV KDYH QRW EHHQ GHVFULEHG LQ FUXVWDFHDQV 0F0DKRQ DQG :LONHQV f $ SRVVLEOH ORQJWHUP HIIHFW LV WKDW WKH SUHVHQFH RI WKH EDUQDFOH PD\ LQKLELW WKH JLOOFOHDQLQJ DFWLRQ RI WKH HSLSRGLWHV RI WKH VHFRQG DQG WKLUG PD[LOOLSHGV JLOO UDNHUVf DOORZLQJ RWKHU EDUQDFOHV WR DWWDFK DQG GHEULV WR EXLOG XS :DONHU f 0DQ\ FUXVWDFHDQV SHULRGLFDOO\ UHYHUVH WKH GLUHFWLRQ RI YHQWLODWRU\ IORZ RYHU WKHLU JLOOV IRU VHYHUDO UHDVRQV LQFOXGLQJ UHPRYDO RI GHWULWXV DQG SDUWLFXODWH PDWWHU IURP WKH JLOO FKDPEHU 0F0DKRQ DQG :LONHQV f 5HYHUVDO IUHTXHQF\ LQFUHDVHV LQ UHVSRQVH WR LUULWDQWV %DWWHUWRQ DQG &DPHURQ f SDUWLFXODWH PDWWHU $UXGSUDJDVDP DQG 1D\ORU %HUOLQG f DQG K\SR[LD 7D\ORU HW DO f 'XULQJ UHYHUVHG YHQWLODWLRQ R[\JHQ XSWDNH LV QRW DV HIIHFWLYH 0F'RQDOG f

PAGE 51

5HVSLUDWRU\ YDOXHV UHFRUGHG KHUH IRU XQLQIHVWHG FUDEV DUH JHQHUDOO\ VLPLODU WR SUHYLRXVO\ UHSRUWHG YDOXHV IRU UHVWLQJ EOXH FUDEV %DWWHUWRQ DQG &DPHURQ $OGULGJH DQG &DPHURQ %RRWK HW DO %RRWK HW DO f DOWKRXJK VOLJKWO\ ORZHU 0 DQG I+ YDOXHV VXJJHVW WKDW WKH FUDEV LQ WKLV VWXG\ PD\ KDYH EHHQ PRUH VHWWOHG ,Q HDUOLHU VWXGLHV XVLQJ UHVWUDLQHG FUDEV ILWWHG ZLWK D UHVSLUDWRU\ PDVN PHDQ 0 ZDV SPRO NJn PLQn DQG PHDQ I+ ZDV EHDWV PLQn %RRWK HW DO f FRPSDUHG WR SPRO NJf PLQn DQG EHDWV PLQf LQ WKH SUHVHQW VWXG\ +RZHYHU PHDQ IVF LQ WKLV VWXG\ EHDWV PLQnf ZDV DERYH WKDW IRXQG SUHYLRXVO\ EHDWV PLQf %RRWK HW DO EHDWV PLQ %DWWHUWRQ DQG &DPHURQ f 7KH KLJKHU IVF PD\ EH UHODWHG WR WKH 32 RI WKH LQKDOHQW ZDWHU ZKLFK ZDV ORZHU LQ WKLV VWXG\ N3D ZKLFK ZDV IXUWKHU ORZHUHG E\ PL[LQJ ZLWK H[KDOHQW ZDWHU LQ WKH UHVSLUDWRU\ FKDPEHUf WKDQ LQ WKH HDUOLHU VWXG\ N3D %RRWK HW DO f ([DFW FRUUHVSRQGHQFH EHWZHHQ VWXGLHV LV QRW H[SHFWHG EHFDXVH RI WKH HIIHFWV RI JHRJUDSKLF 0DXUR DQG 0DQJXP f DQG VHDVRQDO YDULDWLRQ :HLODQG DQG 0DQJXP f DV ZHOO DV WHPSHUDWXUH DQG VDOLQLW\ /DLUG DQG +DHIQHU f RI DFFOLPDWLRQ DQG H[SHULPHQWDWLRQ RQ KHPRF\DQLQR[\JHQ DIILQLW\ 0DQJXP f ,Q DGGLWLRQ GLIIHUHQW PHDVXUHPHQW PHWKRGV IRU f 02 IORZWKURXJK YHUVXV FORVHG V\VWHP UHVSLURPHWU\ DQG PDVNHG YHUVXV XQUHVWUDLQHG DQLPDOVf PD\ H[SODLQ VPDOO GLIIHUHQFHV EHWZHHQ VWXGLHV

PAGE 52

,W LV QRW VXUSULVLQJ WKDW LQIHVWHG FUDEV PDLQWDLQ 0 DW WKH VDPH OHYHOV DV XQLQIHVWHG FUDEV 7URXW PDLQWDLQ UHVWLQJ 0 2 ZKHQ XS WR b RI WKHLU JLOO VXUIDFH DUHD KDV EHHQ FDXWHUL]HG 'XWKLH DQG +XJKHV f :KHQ VSLGHUV KDG WKHLU UHVSLUDWRU\ VXUIDFH DUHD KDOYHG E\ H[SHULPHQWDO PDQLSXODWLRQ WKH\ PDLQWDLQHG R[\JHQ FRQVXPSWLRQ E\ GRXEOLQJ KHDUW UDWH $QGHUVRQ DQG 3UHVWZLFK f 7KH HOHYDWHG I+ DQG IVF UDWHV IRXQG LQ WKH LQIHVWHG FUDEV LQ WKLV VWXG\ DUH JUHDWHU WKDQ YDOXHV UHSRUWHG IRU UHVWLQJ EOXH FUDEV I+ I6& EHDWV PLQn %RRWK HW DO f EXW QRW DV JUHDW DV WKRVH IRXQG LQ H[HUFLVLQJ EOXH FUDEV I+ I6& EHDWV PLQn %RRWK HW DO f 7KH KHPRO\PSK SDUDPHWHUV IRU XQLQIHVWHG FRQWUROV DUH DOVR VLPLODU WR UHSRUWHG YDOXHV 0DQJXP DQG :HLODQG %RRWK HW DO f 7KH S+ DQG &&2 KHPRO\PSK YDOXHV LQ WKH SUHVHQW VWXG\ H[KLELW VLPLODU WUHQGV WR WKRVH IRXQG LQ I+ DQG IV& 9DOXHV IRU XQLQIHVWHG FUDEV DUH VLPLODU WR WKRVH UHSRUWHG LQ WKH OLWHUDWXUH IRU UHVWLQJ FUDEV 0RGHUDWHO\ LQIHVWHG FUDEV KDYH VLJQLILFDQWO\ ORZHU S+ DQG && KXW QRW DV ORZ DV UHSRUWHG IRU H[HUFLVLQJ EOXH FUDEV %RRWK HW DO f 3UH DQG SRVWEUDQFKLDO KHPRO\PSK S+ YDOXHV DUH QRW GLIIHUHQW IURP HDFK RWKHU FRQILUPLQJ WKH ILQGLQJV RI 0DQJXP DQG :HLODQG f DQG %RRWK HW DO f 7KH ODFWDWH YDOXHV LQ WKH SUHVHQW VWXG\ DOWKRXJK ORZ P0f DUH KLJKHU WKDQ UHSRUWHG LQ UHVWLQJ EOXH FUDEV P0 %RRWK HW DO f DV LQ WKDW VWXG\ QR GLIIHUHQFHV EHWZHHQ SUH DQG SRVWEUDQFKLDO KHPRO\PSK ODFWDWH OHYHOV ZHUH IRXQG

PAGE 53

9DULDWLRQ H[LVWV LQ EOXH FUDE KHPRO\PSK 32 YDOXHV LQ WKH OLWHUDWXUH %RRWK HW DO f IRXQG D ODUJH DUWHULRYHQRXV 32 GLIIHUHQFH GXH WR D KLJK SRVWEUDQFKLDO YDOXH N3Df DQG D ORZ SUHEUDQFKLDO 32 RI N3D 7KH SUHVHQW VWXG\ UHSRUWV SRVWEUDQFKLDO N3Df DQG SUHEUDQFKLDO N3Df 32 YDOXHV VLPLODU WR 0DQJXP DQG :HLODQG f 7KLV LV SX]]OLQJ JLYHQ WKDW VLPLODU WHFKQLTXHV ZHUH XVHG LQ DOO WKUHH VWXGLHV +RZHYHU WKH PRUH H[WUHPH YDOXHV %RRWK HW DO f DUH YHU\ FORVH WR WKRVH UHSRUWHG IRU FUDEV VWUHVVHG E\ H[HUFLVH %RRWK HW DO f DQG ZHUH UHSRUWHG DV URXWLQH DFWLYLW\ YDOXHV UDWKHU WKDQ LQDFWLYH VHWWOHG YDOXHV 9HQWLODWLRQ YROXPH 9Z DQG FDUGLDF RXWSXW 9E DQG WKHUHIRUH JLOO SHUIXVLRQ YROXPH DUH GLUHFWO\ UHODWHG WR IVF DQG I+ UHVSHFWLYHO\ 0F0DKRQ DQG :LONHQV f 7KH OLQHDU UHODWLRQVKLS EHWZHHQ 9Z DQG IVF KDV EHHQ HVWLPDWHG %DWWHUWRQ DQG &DPHURQ f 7KH b LQFUHDVH LQ IVF PHDVXUHG LQ LQIHVWHG FUDEV f SUHGLFWV D b LQFUHDVH LQ 9 Z IURP PO PLQ WR PO PLQ f f IRU D J FUDEf 7KH )LFN HTXDWLRQ UHODWHV 9Z RU 9% LQ PO PLQ NJf WR 0 2 LQ MLPRO NJn PLQnf DQG WKH GLIIHUHQFHV LQ R[\JHQ FRQWHQWV EHWZHHQ ZDWHU RU KHPRO\PSK HQWHULQJ DQG OHDYLQJ WKH EUDQFKLDO H[FKDQJHU LQ SPRO PO +2nf 0 9: &, n &(

PAGE 54

0 9% &D4 &Y4 ,Q WKHVH HTXDWLRQV &, DQG &( DUH WKH R[\JHQ FRQWHQWV RI WKH ZDWHU HQWHULQJ DQG H[LWLQJ WKH JLOO FKDPEHU UHVSHFWLYHO\ DQG &D DQG &Y WKH R[\JHQ FRQWHQWV RI WKH DUWHULDO DQG YHQRXV KHPRO\PSK 6LQFH 02 UHPDLQV FRQVWDQW EHWZHHQ XQLQIHVWHG DQG LQIHVWHG FUDEV DQG 9Z DQG 9 % ERWK LQFUHDVH LQ LQIHVWHG FUDEV WKHQ WKH & GLIIHUHQFHV PXVW GHFUHDVH LQ LQIHVWHG FUDEV 7KLV LV WUXH IRU &DF! ‘ &Y 7DEOH f ZH GR QRW KDYH GDWD IRU &On&(F! 'HFUHDVHV LQ &, r &( DQFr AD n &Y&! YDLXHV LQGLFDWH WKDW WKH HIIHFWLYHQHVV RI R[\JHQ H[FKDQJH KDV GHFUHDVHG *LYHQ WKH FDOFXODWHG LQFUHDVH LQ 9 Z DQG WKH FRQVWDQF\ RI 0 2 IRU LQIHVWHG DQG XQLQIHVWHG FUDEV WKH )LFN HTXDWLRQ SUHGLFWV WKDW &, &( GHFUHDVHV E\ b 7KH HIIHFWLYHQHVV RI R[\JHQ H[WUDFWLRQ IURP WKH YHQWLODWRU\ FXUUHQW b([W\\f b([W: &, &( f &,2 ZRXOG DOVR GHFUHDVH E\ b RQ DYHUDJH LQ LQIHVWHG FUDEV ,QFUHDVLQJ WKH FDUGLDF RXWSXW ZRXOG LQFUHDVH WKH JLOO SHUIXVLRQ WR FRPSHQVDWH IRU LQFUHDVHV LQ SHUIXVLRQ GHDGVSDFH

PAGE 55

&DUGLDF RXWSXW ZRXOG EH HOHYDWHG E\ DQ LQFUHDVH LQ I+ DQG VWURNH YROXPH 8VLQJ PHDQ 0 2 YDOXHV IURP VHULHV $ FUDEV 7DEOH f PHDQ DY & GLIIHUHQFHV IRU VHULHV & FUDEV 7DEOH f DQG WKH )LFN HTXDWLRQ RQH FDQ FDOFXODWH D FDUGLDF RXWSXW 9Ef RI PO NJ PLQ LQ XQLQIHVWHG FUDEV DQG PO NJ PLQ LQ KHDYLO\ LQIHVWHG FUDEV 7KHVH YDOXHV DUH KLJK UHODWLYH WR SUHYLRXVO\ FDOFXODWHG YDOXHV IRU UHVWLQJ EOXH FUDEV DW WKH VDPH WHPSHUDWXUH 0DQJXP GH)XU DQG 0DQJXP f EXW FRPSDUDEOH %RRWK HW DO f +RZHYHU EHFDXVH WKH FDOFXODWLRQ LV EDVHG RQ GDWD IURP WZR GLIIHUHQW VHULHV RI FUDEV WKH DEVROXWH YDOXHV VKRXOG EH YLHZHG ZLWK FDXWLRQ ,Q UHODWLYH WHUPV WKH FDOFXODWHG IROG LQFUHDVH LQ 9 E FRUUHODWHV ZHOO ZLWK WKH IROG LQFUHDVH ZH PHDVXUHG LQ I+ %\ PDLQWDLQLQJ 0 2 LQIHVWHG FUDEV VKRXOG EH DEOH WR PDLQWDLQ KHPRO\PSK EORRG JDV YDULDEOHV DW WKH VDPH OHYHOV DV PDLQWDLQHG LQ XQLQIHVWHG FUDEV 7KH SUHEUDQFKLDO KHPRO\PSK SDUDPHWHUV VXJJHVW WKDW PRGHUDWHO\ LQIHVWHG FUDEV ZHUH GLVWXUEHG DFLGRVLV HOHYDWHG 32 DQG GHFUHDVHG &&2f ZKLOH KHDYLO\ LQIHVWHG FUDEV ZHUH QRW 7KHVH DUH WKH VDPH SUHEUDQFKLDO KHPRO\PSK FKDUDFWHULVWLFV H[KLELWHG E\ EOXH FUDEV VWUHVVHG E\ H[HUFLVH %RRWK HW DO %RRWK HW DO f 0RGHUDWHO\ LQIHVWHG FUDEV DUH PRUH OLNHO\ WR KDYH EHHQ UHFHQWO\ LQIHVWHG DQG PD\ QRW KDYH DGMXVWHG WR WKH SUHVHQFH RI EDUQDFOHV ,W LV DOVR SRVVLEOH WKDW RQO\ LQGLYLGXDO FUDEV WKDW DUH FDSDEOH RI FRPSHQVDWLQJ IRU WKH EDUQDFOHV SUHVHQFH DUH DEOH WR VXUYLYH D KHDY\ LQIHVWDWLRQ 7KRVH FUDEV WKDW ZHUH GLVWXUEHG E\ D KHDY\

PAGE 56

LQIHVWDWLRQ ZRXOG GLH DQG WKHUHIRUH QRW EH VDPSOHG 0RGHUDWHO\ LQIHVWHG LQGLYLGXDO FUDEV WKDW DUH XQDEOH WR FRPSHQVDWH IXOO\ PLJKW VWLOO VXUYLYH &RPSHQVDWLRQ IRU WKH EDUQDFOHLQGXFHG LQFUHDVH LQ YHQWLODWLRQ DQG SHUIXVLRQ GHDGVSDFH LQYROYHV HOHYDWLRQ RI YHQWLODWLRQ DQG SHUIXVLRQ UDWHV DV GLVFXVVHG DERYH +RZHYHU LQFUHDVLQJ SHUIXVLRQ UDWH YLD HOHYDWHG FDUGLDF RXWSXW ZRXOG OLPLW JDV H[FKDQJH LQ WKH PHWDEROL]LQJ WLVVXHV 6XFFHVVIXO FRPSHQVDWLRQ ZRXOG LQFOXGH HQKDQFHPHQW RI WLVVXH 2 GHOLYHU\ YLD PRGLILFDWLRQ RI KHPRF\DQLQ R[\JHQ ELQGLQJ FKDUDFWHULVWLFV 0DQJXP 0RUULV f 7KH FRPSDULVRQ RI WKH SUH DQG SRVWEUDQFKLDO KHPRO\PSK RI LQIHVWHG DQG XQLQIHVWHG FUDEV VKRZHG WKDW KHDYLO\ LQIHVWHG FUDEV ZHUH DEOH WR PDLQWDLQ KHPRO\PSK YDULDEOHV DW VLPLODU OHYHOV WR XQLQIHVWHG FUDEV FRQILUPLQJ WKH UHVXOWV IURP WKH VHULHV % FUDEV $OWKRXJK RQH ZRXOG H[SHFW 2FWRODVPLV PXHOOHUL WR PD[LPDOO\ H[SORLW LWV KRVW WKH EDUQDFOH LV GHSHQGHQW RQ WKH FUDEnV YHQWLODWRU\ VWUHDP DQG FRQWLQXHG VXUYLYDO DQG ZRXOG WKHUHIRUH XQGHUJR QDWXUDO VHOHFWLRQ WR PLQLPL]H DQ\ GHWULPHQWDO HIIHFW RQ LWV KRVW 7KHVH UHVXOWV FRQILUP WKDW VHWWOHG LQIHVWHG FUDEV GR QRW VKRZ VLJQV RI VLJQLILFDQW GLVWXUEDQFH +RZHYHU FUDEV ZLWK PDVVLYH LQIHVWDWLRQV GLG QRW VXUYLYH H[SHULPHQWDO KDQGOLQJ DQG ZRXOG SUREDEO\ QRW VXUYLYH ORQJ LQ QDWXUH LI VWUHVVHG $OWKRXJK WKH EDUQDFOH LV FRPPRQ LQ )ORULGD EOXH FUDEV WKH PHGLDQ LQIHVWDWLRQ OHYHO LV QRW KHDY\ *DQQRQ f WKXV LW LV XQOLNHO\ WKDW WKH EDUQDFOH SRVHV D VHULRXV WKUHDW WR WKH EOXH FUDE SRSXODWLRQ

PAGE 57

7DEOH 0HDQ ZKROHDQLPDO UHVSLUDWRU\ FKDUDFWHULVWLFV RI VHULHV $ &DOOLQHFWHV VDQLGXV LQIHVWHG H[SHULPHQW£LVf DQG XQLQIHVWHG FRQWUROVf ZLWK 4FWRODVPLV PXHOOHUL 9DOXHV DUH H[SUHVVHG DV PHDQ s 6( QXPEHU RI REVHUYDWLRQVf 7KH DVWHULVN GHQRWHV VLJQLILFDQW GLIIHUHQFHV EHWZHHQ LQIHVWHG FUDEV DQG XQLQIHVWHG FRQWUROV 3 f 8QLQIHVWHG ,QIHVWHG 02 MLPRO NJ PLQnf s s f f IOBO EHDWV PLQf r s s f f IVF EHDWV PLQnf r s s f f

PAGE 58

7DEOH 0HDQ SUHEUDQFKLDO KHPRO\PSK SDUDPHWHUV RI VHULHV % &DOOLQHFWHV VDSLGXV DW WKUHH OHYHOV RI LQIHVWDWLRQ E\ 2FWRODVPLV PXHOOHUL 9DOXHV DUH H[SUHVVHG DV PHDQ s 6 ( QXPEHU RI REVHUYDWLRQVf $VWHULVNV GHQRWH YDOXHV WKDW DUH VLJQLILFDQWO\ GLIIHUHQW IURP XQLQIHVWHG FRQWUROf FUDEV 3 f S+ ,QIHVWDWLRQ /HYHO 3 N3Df && P0f >/D@ P0f 8QLQIHVWHG s s s s f f f f 0RGHUDWH r r r s s s s f f f f +HDY\ s s s s f f f f

PAGE 59

7DEOH 0HDQ SUHEUDQFKLDO DQG SRVWEUDQFKLDO KHPRO\PSK SDUDPHWHUV RI VHULHV & &DOOLQHFWHV VDSLGXV XQLQIHVWHG FRQWUROVf DQG KHDYLO\ LQIHVWHG ZLWK 2FWRODVPLV PXHOOHUL 9DOXHV DUH H[SUHVVHG DV PHDQV s 6( QXPEHU RI REVHUYDWLRQVf ,QIHVWDWLRQ /HYHO 3RVWEUDQFKLDO S+ 3 & N3Df IL0f 3UHEUDQFKLDO S+ 32 N3Df &2 S0f 8QLQIHVWHG s s s s s s f f f f f f +HDYLO\ LQIHVWHG s s s s s s f f f f f f

PAGE 60

7DEOH 0HDQ DUWHULRYHQRXV GLIIHUHQFHV IRU KHPRO\PSK SDUDPHWHUV RI &DOOLQHFWHV VDSLGXV XQLQIHVWHG FRQWUROVf DQG KHDYLO\ LQIHVWHG ZLWK 4FWRODVPLV PXHOOHUL 9DOXHV DUH H[SUHVVHG DV PHDQ s 6( QXPEHU RI REVHUYDWLRQVf ,QIHVWDWLRQ /HYHO S+ 3 N3Df & 2L0f 8QLQIHVWHG s s s f f f +HDYLO\ ,QIHVWHG s s s f f f

PAGE 61

&+$37(5 ())(&76 2) 2FWRODVPLV PXHOOHUL ,1)(67$7,21 21 (;(5&,6,1* $1' 5(&29(5,1* %/8( &5$%6 ,QWURGXFWLRQ 3UHYLRXV UHSRUWV RQ V\PELRQWV RI FRPPHUFLDOO\ LPSRUWDQW VSHFLHV VXFK DV WKH EOXH FUDE KDYH IRFXVHG RQ FUDE GHDWK DQG GHELOLWDWLRQ 2YHUVWUHHW f RU WUDQVPLVVLRQ RI GLVHDVH WR KXPDQV 0RRG\ f 1DWXUDO VHOHFWLRQ JHQHUDOO\ DFWV RQ V\PELRQWV WR PLQLPL]H GDPDJH WR WKHLU KRVW EXW DOVR WR PD[LPL]H WKH EHQHILW WKH\ GHULYH IURP WKH KRVW 7KHVH RSSRVLQJ IRUFHV FUHDWH DQ HYROXWLRQDU\ GLOHPPD IRU FRPPHQVDO VSHFLHV +RZ WKLV GLOHPQD LV UHVROYHG LV RI WKHRUHWLFDO LPSRUWDQFH 7KH HIIHFWV RI JLOO SDUDVLWHV DQG FRPPHQVDOV RQ FUXVWDFHDQ KRVW JDV H[FKDQJH KDYH EHHQ ODUJHO\ LJQRUHG %UDQFKLDO V\PELRQWV FRXOG LPSDLU KRVW UHVSLUDWLRQ LQ VHYHUDO ZD\V E\ UHPRYLQJ R[\JHQ IURP WKH YHQWLODWRU\ VWUHDP WKURXJK GDPDJLQJ EUDQFKLDO WLVVXH WKURXJK REVWUXFWLQJ WKH YHQWLODWRU\ VWUHDP DQGRU LQKLELWLQJ WKH YHQWLODWRU\ SXPSLQJ PHFKDQLVP

PAGE 62

7KH HFWRFRPPHQVDO JLOO EDUQDFOH 2FWRODVPLV PXHOOHUL &RNHU GRHV QRW IHHG RQ WKH WLVVXHV RI LWV KRVW FUDE :DONHU f 7KH R[\JHQ XSWDNH RI WKLV EDUQDFOH LV SUHVXPHG WR EH QHJOLJLEOH 6HH &KDSWHU f DQG LW GRHV QRW QRUPDOO\ LQKLELW WKH KRVWnV SXPSLQJ DSSHQGDJH WKH VFDSKRJQDWKLWH +RZHYHU KHDYLO\ LQIHVWHG FUDEV DUH PRUH OLNHO\ WR GLH GXULQJ KDQGOLQJ DQG DHULDO H[SRVXUH VXJJHVWLQJ WKDW WKH HFWRFRPPHQVDO FDXVHV SK\VLRORJLFDO VWUHVV WR WKH KRVW *DQQRQ DQG :KHDWO\ f ,Q WKH SUHYLRXV FKDSWHU GHPRQVWUDWHG WKDW WKLV EDUQDFOH VWLPXODWHV K\SHUYHQWLODWLRQ DQG WDFK\FDUGLD LQ LWV KRVW &DOOLQHFWHV VDSLGXV DQG LQ PRGHUDWH LQIHVWDWLRQV FDXVHV GHFUHDVHG SUHEUDQFKLDO KHPRO\PSK S+ DQG 3 DQG LQFUHDVHG & 3UHVXPDEO\ WKHVH HIIHFWV DULVH IURP REVWUXFWLRQ RI WKH KRVW YHQWLODWRU\ VWUHDP 7KHVH SK\VLRORJLFDO HIIHFWV DUH VLPLODU WR WKH W\SLFDO UHVSLUDWRU\ UHVSRQVHV WR H[HUFLVH 7KH SXUSRVH RI WKLV SKDVH RI WKH VWXG\ ZDV WR H[DPLQH LQ GHWDLO WKH HIIHFWV RI 4 PXHOOHUL LQIHVWDWLRQ RQ WKH UHVSLUDWLRQ RI WKH EOXH FUDE GXULQJ H[HUFLVH D QDWXUDO VWUHVV ,Q QDWXUH EOXH FUDEV DUH H[WUHPHO\ DFWLYH VZLPPLQJ DW VSHHGV XS WR P VHF 6SLULWR f DQG ZLWK ZHOO GRFXPHQWHG ORQJ UDQJH VZLPPLQJ PLJUDWLRQV XS WR NP 2HVWHUOLQJ DQG $GDPV f 7KH HIIHFW RI H[HUFLVH RQ UHVSLUDWLRQ KDV EHHQ ZHOO VWXGLHG LQ GHFDSRG FUXVWDFHDQV VHH UHYLHZV E\ 0F0DKRQ :LONHQV f DQG SDUWLFXODUO\ LQ EOXH FUDEV %RRWK HW DO %RRWK HW DO 0LOOLJDQ HW DO f

PAGE 63

7KH DHURELF DQG DQDHURELF FDSDFLWLHV RI H[HUFLVLQJ GHFDSRGV DUH FRPSDUDEOH WR WKRVH RI ORZHU YHUWHEUDWHV RI WKH VDPH VL]H DQG DFWLYLW\ OHYHO %RRWK HW DO f 0D[LPDO R[\JHQ FRQVXPSWLRQ UDWHV 0F0DKRQ 0F'RQDOG DQG :RRG 5XWOHGJH %RRWK HW DO f DUH OHVV WKDQ WKRVH UHSRUWHG IRU DFWLYH ILVK %UHWW f EXW JUHDWHU WKDQ WKRVH UHSRUWHG IRU VOXJJLVK ILVK %UHWW DQG %ODFNEXUQ 3RXOVRQ f 'HFDSRGV KDYH EHHQ VWXGLHG VZLPPLQJ %RRWK HW DO f WDLO IOLSSLQJ 5XWOHGJH f ZDONLQJ RQ WUHDGPLOOV WHUUHVWULDO :KHDWO\ 0F0DKRQ %XUJJUHQ DQG 3LQGHU f DQG ZDONLQJ RQ VXEVWUDWH DTXDWLF 0F'RQDOG 0F0DKRQ DQG :RRG f ZLWK VLPLODU UHVXOWV *HQHUDOO\ GXULQJ H[HUFLVH R[\JHQ WUDQVSRUW DQG GHOLYHU\ DUH HQKDQFHG WKURXJK LQFUHDVHG R[\JHQ XSWDNH IDFLOLWDWHG E\ LQFUHDVHV LQ YHQWLODWLRQ SHUIXVLRQ DQG WKH R[\JHQ WHQVLRQ JUDGLHQW DFURVV WKH JLOOV 0F0DKRQ f 7KH KHPRO\PSK UHVSLUDWRU\ SLJPHQW KHPRF\DQLQf DVVXPHV D SURSRUWLRQDOO\ JUHDWHU UROH LQ R[\JHQ GHOLYHU\ WR WKH WLVVXHV 0F0DKRQ HW DO f 2[\JHQ FRQGXFWDQFH DFURVV WKH JLOOV PD\ DOVR LQFUHDVH 0F0DKRQ DQG :LONHQV f 7KH OHYHO RI XQXVHG R[\JHQ LQ WKH KHPRO\PSK YHQRXV UHVHUYHf GHFUHDVHV :RRG DQG 5DQGDOO f 7KH KHPRO\PSK DFLGRVLV LV SUHGRPLQDQWO\ UHVSLUDWRU\ ZLWK D PHWDEROLF FRPSRQHQW LQ WHUUHVWULDO FUDEV 6PDWUHVN 3UHVODU DQG &DPHURQ f 7KH GHFUHDVHG S+ FDXVHV D %RKU VKLIW ZKLFK GHFUHDVHV KHPRF\DQLQR[\JHQ DIILQLW\ WKXV IDFLOLWDWLQJ R[\JHQ GHOLYHU\ WR WKH WLVVXHV ([HUFLVLQJ EOXH FUDEV IROORZ WKH SDWWHUQ REVHUYHG LQ WKH GHFDSRGV EXW VHHP EHWWHU DGDSWHG IRU DHURELF H[HUFLVH %RRWK DQG

PAGE 64

0F0DKRQ 0LOOLJDQ HW DO f 6ZLPPLQJ EOXH FUDEV LQFUHDVH YHQWLODWLRQ KHDUW UDWH DQG R[\JHQ XSWDNH VR GUDVWLFDOO\ DQG UDSLGO\ WKDW PD[LPXP PHWDEROLF UDWH SPRO NJ PLQrf LV ODUJHU WKDQ WKDW UHSRUWHG IRU DQ\ RWKHU FUXVWDFHDQ 0F0DKRQ DQG :LONHQV f $HURELF PHWDEROLF VFRSH PHDVXUHPHQWV IRU EOXH FUDEV UDQJH IURP ; %RRWK HW DO f WR ; 0F0DKRQ DQG :LONHQV f 7KHVH YDOXHV DUH ORZHU WKDQ DFWXDO PHWDEROLF VFRSH EHFDXVH WKH UHVWLQJ YDOXHV XVHG LQ WKHVH FDOFXODWLRQV ZHUH URXWLQH PHWDEROLF UDWHV UDWKHU WKDQ TXLHVFHQW UDWHV ,I WKH UHVWLQJ R[\JHQ FRQVXPSWLRQ UDWHV PHDVXUHG LQ WKH SUHVHQW VWXG\ &KDSWHU f KDG EHHQ XVHG LQ WKHVH FDOFXODWLRQV DHURELF PHWDEROLF VFRSH ZRXOG EH ; %OXH FUDEV ZLOO VZLP FRQWLQXRXVO\ IRU RYHU DQ KRXU LQ H[SHULPHQWDO FRQGLWLRQV %RRWK HW DO f UHVXOWLQJ LQ D KHPRO\PSK DFLGRVLV WKDW LV PDLQO\ b %RRWK HW DO f PHWDEROLF L H GXH WR PHWDEROLF DFLGV LQ WKH EORRG UDWKHU WKDQ HOHYDWHG &2 LQ WKH EORRGf DQG HOHYDWHG ODFWDWH OHYHOV %RRWK DQG 0F0DKRQ f 7KH DFLGRVLV HIIHFW LV OLPLWHG E\ WKH HIIOX[ RI + DW WKH JLOOV 0LOOLJDQ HW DO f /DFWDWH FRXQWHUDFWV WKH HIIHFW RI ORZHUHG S+ RQ KHPRF\DQLQR[\JHQ DIILQLW\ 7UXFKRW %RRWK HW DO f 5HFRYHU\ WDNHV VHYHUDO KRXUV 0LOOLJDQ HW DO f %HFDXVH UHVWLQJ EOXH FUDEV LQIHVWHG ZLWK 2FWRODVPLV PXHOOHUL FRPSHQVDWH IRU WKH EDUQDFOHVn SUHVHQFH E\ HOHYDWLQJ YHQWLODWLRQ DQG KHDUW UDWHV *DQQRQ DQG :KHDWO\ 6HH

PAGE 65

&KDSWHU f RQH ZRXOG H[SHFW WKHLU DELOLW\ WR IXUWKHU LQFUHDVH WKHVH SDUDPHWHUV GXULQJ H[HUFLVH WR EH FRPSURPLVHG 0HWKRGV $QLPDO 0DLQWHQDQFH $GXOW EOXH FUDEV Jf ZHUH FROOHFWHG LQ FRPPHUFLDO WUDSV DW WKH 8QLYHUVLW\ RI )ORULGD 0DULQH /DERUDWRU\ DW 6HDKRUVH .H\ RQ WKH *XOI FRDVW RI )ORULGD r n 1 ODW rn : ORQJf IURP 'HFHPEHU WR 2FWREHU &UDEV ZHUH KHOG DW GHQVLWLHV RI OHVV WKDQ LQ DQ WDQN RI UHFLUFXODWLQJ ILOWHUHG VHDZDWHU SSW VDOLQLW\f DW r& RQ D KU OLJKW KU GDUN F\FOH DW WKH 8QLYHUVLW\ RI )ORULGD LQ *DLQHVYLOOH 7KH FUDEV ZHUH IHG FKRSSHG ILVK WLPHV ZHHNO\ EXW IRRG ZDV ZLWKKHOG KRXUV SULRU WR H[SHULPHQWDWLRQ ,QWHUPROW FUDEV VWDJH & -RKQVRQ f ZHUH JLYHQ D PLQLPXP RI RQH ZHHN WR DFFOLPDWH WR WKHVH FRQGLWLRQV EHIRUH XVH LQ H[SHULPHQWV ([SHULPHQWDO 3URWRFRO 9HQWLODWLRQ UDWH I6&f KHDUW UDWH I+f DQG SUHEUDQFKLDO YHQRXVYf DQG SRVWEUDQFKLDO DUWHULDODf KHPRO\PSK FKDUDFWHULVWLFV S+ R[\JHQ WHQVLRQ 3 R[\JHQ FRQWHQW & DQG /fODFWDWH FRQFHQWUDWLRQ >/Dr@f ZHUH PHDVXUHG LQ FUDEV +HPRO\PSK VDPSOHV ZHUH ZLWKGUDZQ IRU DQDO\VLV IURP DOO FUDEV DIWHU DW OHDVW KRXUV RI LVRODWLRQ UHVWLQJf DW WKH HQG RI D PLQXWH H[HUFLVH SHULRG DQG RQH KRXU DIWHU UHFRYHU\ XQGHU VHWWOHG FRQGLWLRQV 7KH I6&

PAGE 66

DQG I+ ZHUH UHFRUGHG IRU RQH KRXU QHDU WKH HQG RI WKH UHVWLQJ SHULRG DQG FRQWLQXRXVO\ GXULQJ WKH H[HUFLVH DQG UHFRYHU\ SHULRGV 7KH DQLPDOV VDPSOHG LQFOXGHG FUDEV WKDW ZHUH QDWXUDOO\ LQIHVWHG E\ WKH HFWRFRPPHQVDO EDUQDFOH 4FWRODVPLV PXHOOHUL DQG FRQWUROV WKDW ZHUH QRW LQIHVWHG 7KLV ZDV D EOLQG H[SHULPHQW ,QIHVWDWLRQ OHYHO FRXOG RQO\ EH GHWHUPLQHG DIWHU H[SHULPHQWDWLRQ $IWHU PHDVXUHPHQWV ZHUH FRPSOHWHG FUDEV ZHUH NLOOHG E\ IUHH]LQJ DQG WKH JLOO FKDPEHUV ZHUH RSHQHG DQG YLVXDOO\ LQVSHFWHG IRU WKH SUHVHQFH RI 4FWRODVPLV PXHOOHUL 7KH WRWDO PDVV RI EDUQDFOHV SUHVHQW LQ WKH JLOO FKDPEHU RI HDFK FUDE ZDV XVHG DV DQ LQGH[ RI LQIHVWDWLRQ OHYHO $QDO\WLFDO 7HFKQLTXHV ([SHULPHQWDO FUDEV ZHUH SODFHG LQ D QDOJHQHp KROGLQJ WDQN FRQWDLQLQJ RI ILOWHUHG VHDZDWHU SSW VDOLQLW\f DW r& 9HQWLODWLRQ UDWH IVF PHDVXUHG DV IUHTXHQF\ RI VFDSKRJQDWKLWH EHDWLQJ DQG I+ ZHUH PHDVXUHG XVLQJ DQ LPSHGDQFH FRQYHUVLRQ WHFKQLTXH '\HU DQG 8JORZ f (DFK FUDE ZDV SUHSDUHG E\ GULOOLQJ WZR KROHV WKURXJK WKH FDUDSDFH RQ HLWKHU VLGH RI WKH KHDUW 7KH VWULSSHG HQG RI D ODFTXHUHG FRSSHU ZLUH JDXJHf ZDV LQVHUWHG LQWR HDFK KROH WR D GHSWK RI PP 7KH ZLUHV ZHUH KHOG LQ SODFH ZLWK F\DQRDFU\ODWH JOXH DQG ODWH[ GHQWDO GDP 7KHVH ZLUHV ZHUH DWWDFKHG WR DQ LPSHGDQFH FRQYHUWRU 8), f DQG WKH RXWSXW ZDV UHFRUGHG RQ D *UDVV PRGHO SRO\JUDSK 6FDSKRJQDWKLWH UDWH ZDV UHFRUGHG VLPLODUO\ ZLWK D UHFRUGLQJ ZLUH LQVHUWHG LQWR WKH H[KDOHQW FDQDO RI HDFK EUDQFKLDO FKDPEHU DQG D UHIHUHQFH ZLUH DWWDFKHG WR WKH FDUDSDFH GLUHFWO\ DERYH HDFK VFDSKRJQDWKLWH

PAGE 67

3UHEUDQFKLDO KHPRO\PSK VDPSOHV POf ZHUH WDNHQ IURP WKH LQIUDEUDQFKLDL VLQXV E\ SHQHWUDWLQJ WKH DUWKURGLDO PHPEUDQH DW WKH EDVH RI D VZLPPLQJ OHJ ZLWK D JXDJH QHHGOH RQ D FKLOOHG V\ULQJH &UDEV ZHUH SUHSDUHG IRU SRVWEUDQFKLDO KHPRO\PSK VDPSOLQJ E\ GULOOLQJ D KROH WKURXJK WKH FDUDSDFH GLUHFWO\ RYHU WKH KHDUW WKURXJK WKH FDUDSDFH EXW QRW SHQHWUDWLQJ WKH HSLGHUPLV 7KLV KROH ZDV R VHDOHG ZLWK D FP SDWFK RI ODWH[ GHQWDO GDP DQG F\DQRDFU\ODWH JOXH 7KH SRVWEUDQFKLDO KHPRO\PSK VDPSOH POf ZDV ZLWKGUDZQ E\ SXQFWXULQJ WKH GHQWDO GDP SDWFK 7KH FUDEV ZHUH JLYHQ KRXUV WR UHFRYHU IURP WKLV VXUJHU\ EHIRUH H[SHULPHQWDWLRQ 7KH & RI DQ SL VXEVDPSOH RI HDFK KHPRO\PSK VDPSOH ZDV DQDO\]HG LQ D /H[FRQ R[\JHQ DQDO\]HU 7KH >/Df@ RI DQ SL VXEVDPSOH ZDV PHDVXUHG XVLQJ D FRPPHUFLDO UHDJHQW NLW 6LJPD f $Q SL VXEVDPSOH ZDV LQMHFWHG LQWR DQ ,/ EORRG JDV DQDO\]HU WKHUPRVWDWWHG WR r& 7KH 32 RI WKLV VXEVDPSOH ZDV PHDVXUHG ZLWK DQ ,/ 2 HOHFWURGH f DQG WKH S+ ZDV PHDVXUHG ZLWK DQ ,/ S+ HOHFWURGH f $IWHU VXUJHU\ FUDEV ZHUH SODFHG LQ D KDUQHVV RI SODVWLF FRDWHG EDOLQJ ZLUH ZKLFK ZDV ORRSHG DURXQG WKH ODWHUDO KRUQV RI WKH FDUDSDFH DQG DWWDFKHG WR D FP ORQJ FP GLDPHWHUf ZRRGHQ GRZHO 7KH GRZHO ZDV DWWDFKHG E\ D FODPS WR D ZRRGHQ SROH VXVSHQGHG RYHU WKH QDOJHQH KROGLQJ WDQN 7KLV DUUDQJHPHQW PDGH LW SRVVLEOH WR KROG WKH FUDE HLWKHU RQ WKH IORRU RI WKH WDQN RU VXVSHQGHG LQ WKH ZDWHU FROXPQ ZLWK PLQLPDO UHVWUDLQW :KHQ FUDEV ZHUH UDLVHG RII WKH IORRU RI WKH KROGLQJ WDQN WKH\ ZRXOG VZLP FRQWLQXRXVO\ ,QIUHTXHQWO\ FUDEV UHTXLUHG SURGGLQJ ZLWK DQRWKHU

PAGE 68

ZRRGHQ GRZHO LQ RUGHU WR FRQWLQXH VZLPPLQJ +HPRO\PSK VDPSOHV ZHUH WDNHQ IURP FUDEV DIWHU KRXUV RI LVRODWLRQ RQ WKH IORRU RI WKH KROGLQJ WDQN UHVWLQJf DIWHU ILIWHHQ PLQXWHV RI VZLPPLQJ LQ WKH ZDWHU FROXPQ H[HUFLVHf DQG DIWHU RQH KRXU RI UHFRYHU\ RQ WKH IORRU RI WKH KROGLQJ WDQN UHFRYHU\f $ SHULRG RI ILIWHHQ PLQXWHV ZDV VHOHFWHG IRU WKH H[HUFLVH SHULRG EHFDXVH LQ HDUOLHU VWXGLHV RQ EOXH FUDEV %RRWK HW DO %RRWK HW DO f SK\VLRORJLFDO YDULDEOHV VKRZHG PD[LPDO FKDQJH DQG UHDFKHG RU DSSURDFKHG SHDN OHYHOV LQ WKH ILUVW ILIWHHQ PLQXWHV RI H[HUFLVH 'DWD $QDO\VLV DQG 6WDWLVWLFV ([SHULPHQWDO FUDEV ZHUH GLYLGHG LQWR WKUHH FODVVHV EDVHG XSRQ LQWHQVLW\ RI LQIHVWDWLRQ XQLQIHVWHG J RI 2FWRODVPLV PXHOOHUL LQ WKH FUDE JLOO FKDPEHUVf PRGHUDWHO\ LQIHVWHG J RI 2 PXHOOHUL9 DQG KHDYLO\ LQIHVWHG J RI PXHOOHUL7 7KHVH GLYLVLRQV ZHUH EDVHG RQ DQ DQDO\VLV RI WKH GLVWULEXWLRQ RI 2 PXHOOHUL RQ EOXH FUDEV 6HH &KDSWHU f 0DVV RI LQIHVWLQJ EDUQDFOHV ZDV DVVXPHG WR EH D PRUH DFFXUDWH LQGH[ RI SRWHQWLDO EDUQDFOH LPSDFW WKDQ QXPEHU RI LQIHVWLQJ EDUQDFOHV ,Q H[SHULPHQWV GHVFULEHG LQ &KDSWHU KRZHYHU QXPHURXV FUDEV ZHUH H[DPLQHG RQ D VLQJOH GD\ DQG LW ZDV LPSRVVLEOH WR FDUHIXOO\ UHPRYH DOO RI WKH LQIHVWLQJ EDUQDFOHV DQG ZHLJK WKHP IRU HDFK FUDE 7KH FRQWLQXRXV UHFRUGV RI IVF DQG I+ ZHUH DQDO\]HG E\ FRXQWLQJ WKH QXPEHU RI EHDWV LQ D ILIWHHQ VHFRQG LQWHUYDO DW WKH EHJLQQLQJ RI HYHU\ PLQXWH 7KHVH YDOXHV ZHUH H[SUHVVHG DV EHDWV PLQf DQG FRPELQHG LQWR ILYH PLQXWH PHDQV )RU FRPSDULVRQ RI

PAGE 69

FUDEV DW WKH GLIIHUHQW LQIHVWDWLRQ OHYHOV WKH PHDQ IUHTXHQF\ RI WKH ODVW ILIWHHQ PLQXWHV RI WKH DFFOLPDWLRQ SHULRG ZDV XVHG IRU WKH UHVWLQJ YDOXH 7KH PHDQ RI WKH ILQDO ILYH PLQXWH LQWHUYDO RI WKH H[HUFLVH SHULRG ZDV XVHG IRU WKH H[HUFLVH YDOXH DQG WKH PHDQ RI WKH ODVW ILYH PLQXWHV LQWHUYDO RI WKH UHFRYHU\ SHULRG ZDV FRQVLGHUHG WKH UHFRYHU\ YDOXH $IWHU YDULDQFHV ZHUH IRXQG WR EH KRPRJHQHRXV ZLWK DQ )WHVW 6RNDO DQG 5RKOI f KHDUW DQG YHQWLODWLRQ UDWHV RI FUDEV DW WKH GLIIHUHQW LQIHVWDWLRQ OHYHOV ZHUH HDFK FRPSDUHG ZLWK D RQHZD\ IDFWRULDO $129$ :LQHU f +HDUW UDWH DQG YHQWLODWLRQ UDWH YDOXHV GXULQJ WKH IXOO RQH KRXU UHFRYHU\ SHULRG ZHUH DQDO\]HG ZLWK UHSHDW PHDVXUHV $129$ :LQHU f WR GHWHUPLQH LI D VLJQLILFDQW FKDQJH RFFXUUHG LQ HLWKHU RI WKHVH SDUDPHWHUV GXULQJ WKH UHFRYHU\ SHULRG 3UH DQG SRVWEUDQFKLDO EORRG FKHPLVWU\ PHDVXUHPHQWV ZHUH DOVR FRPSDUHG ZLWK UHSHDW PHDVXUHV $129$ WR GHWHUPLQH VLJQLILFDQFH RI DQ\ GLIIHUHQFHV EHWZHHQ WKH UHVW H[HUFLVH DQG UHFRYHU\ SHULRGV 3UHEUDQFKLDO YDOXHV ZHUH FRPSDUHG WR SRVWEUDQFKLDO YDOXHV ZLWK SDLUHG WWHVWV WR GHWHUPLQH LI DY GLIIHUHQFHV ZHUH VLJQLILFDQW +HPRO\PSK FKHPLVWU\ GDWD ZHUH UHSRUWHG DV PHDQ 6( 7KHVH YDOXHV ZHUH DOVR FRPSDUHG DFURVV LQIHVWDWLRQ OHYHOV ZLWK D IDFWRULDO $129$ +HPRO\PSK S+ YDOXHV ZHUH FRQYHUWHG WR FRQFHQWUDWLRQ OLQHDU VFDOHf EHIRUH FDOFXODWLRQ RI PHDQV 6(V DQG $129$V

PAGE 70

5HVXOWV 7R PLQLPL]H DQ\ HIIHFW RI PDVV RQ KHDUW UDWH I+f DQG YHQWLODWLRQ UDWH I6&f XVHG FUDEV RI VLPLODU PDVV PHDQ s J 6' UDQJH Jf +RZHYHU I+ DQG I6& ZHUH SORWWHG DJDLQVW PDVV IRU DOO FUDEV DQG IRU WKH FUDEV DW HDFK LQIHVWDWLRQ OHYHO VHSDUDWHO\ DQG VXEMHFWHG WR UHJUHVVLRQ DQDO\VLV 1R OLQHDU UHODWLRQVKLSV ZHUH IRXQG LQGLFDWLQJ WKDW WKH HIIHFW RI PDVV ZDV PLQRU RYHU WKLV PDVV UDQJH $W UHVW I+ IRU KHDYLO\ LQIHVWHG FUDEV ZDV VLJQLILFDQWO\ JUHDWHU WKDQ I+ IRU XQLQIHVWHG FUDEV IDFWRULDO $129$ ) )LVKHU 3/6' 3 f 7KH KHDUW UDWHV RI FUDEV DW WKH WKUHH OHYHOV RI LQIHVWDWLRQ ILJXUH f DOO LQFUHDVHG GUDPDWLFDOO\ GXULQJ H[HUFLVH IURP UHVWLQJ UDWHV RI DURXQG EHDWV PLQn XS WR EHDWV PLQn UHPDLQLQJ DW WKLV OHYHO WKURXJKRXW WKH H[HUFLVH DQG UHFRYHU\ SHULRGV 7KLV UHSUHVHQWHG D ; LQFUHDVH IRU XQLQIHVWHG FUDEV DQG D ; LQFUHDVH IRU KHDYLO\ LQIHVWHG FUDEV +HDUW UDWHV IRU WKH WKUHH JURXSV RI FUDEV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW WKURXJK WKH H[HUFLVH DQG UHFRYHU\ SHULRGV $W WKH HQG RI WKH RQH KRXU UHFRYHU\ SHULRG I+ IRU DOO WKUHH JURXSV RI FUDEV ZDV QRW VLJQLILFDQWO\ GLIIHUHQW IURP I+ DW WKH EHJLQQLQJ RI WKH UHFRYHU\ SHULRG UHSHDW PHDVXUHV $129$ 3 f 9HQWLODWLRQ UDWHV ILJ f IROORZHG D VLPLODU SDWWHUQ IRU UHVWLQJ DQG H[HUFLVLQJ FUDEV $W UHVW KHDYLO\ LQIHVWHG FUDEV KDG VLJQLILFDQWO\ JUHDWHU I6& WKDQ PRGHUDWHO\ LQIHVWHG DQG XQLQIHVWHG FUDEV IDFWRULDO $129$ ) )LVKHU 3/6' 3 f

PAGE 71

9DULDQFH LQ YHQWLODWLRQ UDWHV ZDV PXFK JUHDWHU IRU H[HUFLVLQJ FUDEV WKDQ IRU UHVWLQJ FUDEV DQG GLIIHUHQFHV EHWZHHQ LQIHVWDWLRQ OHYHOV ZHUH QRW VLJQLILFDQW $V H[HUFLVH EHJDQ IVF LQFUHDVHG IURP DERXW EHDWV PLQn WR DERXW EHDWV PLQn LQ DOO WKUHH JURXSV 8QOLNH KHDUW UDWH YHQWLODWLRQ UDWH EHJDQ WR GHFUHDVH LPPHGLDWHO\ DIWHU H[HUFLVH VWRSSHG EXW DV I+ GLG QRW UHDFK UHVWLQJ OHYHOV E\ WKH HQG RI WKH GHILQHG UHFRYHU\ SHULRG 9HQWLODWLRQ UDWHV DW WKH HQG RI WKH UHFRYHU\ SHULRG ZHUH VLJQLILFDQWO\ ORZHU WKDQ IVF DW WKH RQVHW RI WKH UHFRYHU\ SHULRG IRU DOO WKUHH JURXSV RI FUDEV UHSHDW PHDVXUHV $129$ ) 3 f 7KH IUHTXHQF\ RI YHQWLODWRU\ SDXVHV ILJXUH f ZDV VLJQLILFDQWO\ JUHDWHU IRU XQLQIHVWHG FUDEV WKDQ PRGHUDWHO\ RU KHDYLO\ LQIHVWHG FUDEV IDFWRULDO $129$ ) )LVKHU 3/6' 3 f DW UHVW 'XULQJ H[HUFLVH YHQWLODWRU\ SDXVHV ZHUH QRW REVHUYHG LQ DQ\ FUDEV ,Q WKH UHFRYHU\ SHULRG IHZ FUDEV H[KLELWHG YHQWLODWRU\ SDXVHV DQG QR GLIIHUHQFHV H[LVWHG EHWZHHQ WKH JURXSV RI FUDEV 7KH SUH DQG SRVWEUDQFKLDO KHPRO\PSK R[\JHQ FRQWHQWV &f IrU UHVWnQ H[HUFLVLQJ DQG UHFRYHULQJ FUDEV DW WKH WKUHH LQIHVWDWLRQ OHYHOV ILJXUH f ZHUH FRPSDUHG ZLWK D ZD\ UHSHDW PHDVXUHV $129$ :LQHU f 7KH UHSHDW PHDVXUHV JDYH D VLJQLILFDQW HIIHFW )3 f 0HDQV ZHUH FRPSDUHG ZLWK WKH )LVKHU 3/6' 6QHGHFRU DQG &RFKUDQ f 7KH PHDQ UHFRYHU\ SRVWEUDQFKLDO YDOXH ZDV VLJQLILFDQWO\ JUHDWHU WKDQ WKH UHVWLQJ DQG H[HUFLVLQJ SUHEUDQFKLDO PHDQV 3 f 7KLV GLIIHUHQFH ZDV PRVW SURQRXQFHG LQ WKH XQLQIHVWHG

PAGE 72

FUDEV 7KH & YDOXHV RI XQLQIHVWHG PRGHUDWHO\ RU KHDYLO\ LQIHVWHG FUDEV ZHUH QRW VLJQLILFDQWO\ GLIIHUHQW IURP HDFK RWKHU )RU XQLQIHVWHG FUDEV WKH PHDQ & DnY GLIIHUHQFH LQFUHDVHG IURP D UHVWLQJ YDOXH RI P0 WR D UHFRYHU\ YDOXH RI P0 ,Q KHDYLO\ LQIHVWHG FUDEV WKH PHDQ & GLIIHUHQFH LQFUHDVHG IURP D UHVWLQJ YDOXH RI P0 WR D UHFRYHU\ YDOXH RI P0 ,Q PRGHUDWHO\ LQIHVWHG FUDEV WKH PHDQ & DrY GLIIHUHQFH GHFUHDVHG IURP P0 WR P0 'XULQJ WKH UHFRYHU\ SHULRG KHDYLO\ LQIHVWHG FUDEV KDG D VLJQLILFDQWO\ JUHDWHU DY GLIIHUHQFH WKDQ PRGHUDWHO\ DQG XQLQIHVWHG FUDEV IDFWRULDO $129$ ) )LVKHU 3/6' 3 f %HFDXVH WKH ZD\ UHSHDW PHDVXUHV $129$ FRXOG QRW LQFOXGH LQGLYLGXDOV ZLWK D PLVVLQJ PHDVXUHPHQW LQ WKH FDOFXODWLRQV :LQHU f DQG VRPH VDPSOHV ZHUH ORVW GXH WR EORRG FORWV WKLV WHVW FRXOG QRW EH XVHG IRU 32 FRPSDULVRQV 6L[ VHSDUDWHZD\ UHSHDW PHDVXUHV $129$ ZHUH XVHG WR FRPSDUH SUH DQG SRVWEUDQFKLDO KHPRO\PSK 32 IRU FUDEV DW HDFK LQIHVWDWLRQ OHYHO RYHU WKH UHVW H[HUFLVH DQG UHFRYHU\ SHULRGV ILJXUH f 2QO\ WKH GLIIHUHQFH EHWZHHQ UHVWLQJ SUHEUDQFKLDO 32 DQG UHFRYHU\ SUHEUDQFKLDO 32 IRU XQLQIHVWHG FUDEV ZDV VLJQLILFDQW UHSHDW PHDVXUHV $129$ ) 3 f &RPSDULVRQ RI WKH 32 OHYHOV RI FUDEV DW WKH GLIIHUHQW LQIHVWDWLRQ OHYHOV IDFWRULDO $129$f ZHUH PDGH IRU SUH DQG SRVWEUDQFKLDO KHPRO\PSK DW WKH WKUHH H[SHULPHQWDO SHULRGV 1R VLJQLILFDQW GLIIHUHQFHV ZHUH IRXQG

PAGE 73

7KH DY 32 GLIIHUHQFHV IRU XQLQIHVWHG DQG PRGHUDWHO\ LQIHVWHG FUDEV GXULQJ UHVW H[HUFLVH DQG UHFRYHU\ ZHUH QRW VLJQLILFDQW SDLUHG WWHVWf +HDYLO\ LQIHVWHG FUDEV KDG VPDOO D Y GLIIHUHQFHV DW UHVW EXW WKH PHDQ 32 DY GLIIHUHQFH IRU KHDYLO\ LQIHVWHG H[HUFLVHG FUDEV N3Df ZDV VLJQLILFDQWO\ JUHDWHU IDFWRULDO $129$ ) 3 f WKDQ WKH PHDQ 32 DY GLIIHUHQFH IRU XQLQIHVWHG H[HUFLVHG FUDEV N3Df DQG PRGHUDWHO\ LQIHVWHG FUDEV N3Df 7KH WUHQG IRU KHPRO\PSK S+ YDOXHV IRU DOO FUDEV ZDV WR GHFUHDVH GXULQJ H[HUFLVH DQG LQFUHDVH GXULQJ UHFRYHU\ EXW QRW WR UHVWLQJ OHYHOV ILJXUH f $ WZRZD\ UHSHDW PHDVXUHV $129$ ZDV XVHG WR FRPSDUH SUH DQG SRVWEUDQFKLDO KHPRO\PSK YDOXHV RI UHVWLQJ H[HUFLVLQJ DQG UHFRYHULQJ FUDEV DW WKH WKUHH LQIHVWDWLRQ OHYHOV 7KH UHSHDW PHDVXUHV JDYH D VLJQLILFDQW HIIHFW ) 3 f 0HDQ SUH DQG SRVWEUDQFKLDO S+ YDOXHV GXULQJ H[HUFLVH ZHUH VLJQLILFDQWO\ ORZHU WKDQ UHVWLQJ YDOXHV )LVKHU 3/6' 3 f 6DPSOHV IRU VHYHUDO FUDEV ZHUH ORVW GXH WR EORRG FORWWLQJ 7R LQFOXGH WKHVH LQGLYLGXDOV LQ FRPSDULVRQV XVHG VL[ RQHZD\ IDFWRULDO $129$ FRPSDULVRQV RI SUH DQG SRVWEUDQFKLDO KHPRO\PSK S+ YDOXHV IRU FUDEV DW WKH GLIIHUHQW OHYHOV RI LQIHVWDWLRQ GXULQJ UHVW H[HUFLVH DQG UHFRYHU\ 1R VLJQLILFDQW GLIIHUHQFHV ZHUH IRXQG EHWZHHQ LQIHVWDWLRQ OHYHOV 7KH PRGHUDWHO\ DQG KHDYLO\ LQIHVWHG FUDEV KDG D VLJQLILFDQWO\ JUHDWHU SRVWEUDQFKLDO KHPRO\PSK S+ WKDQ SUHEUDQFKLDO S+ SDLUHG WWHVW 3 f GXULQJ UHVW H[HUFLVH

PAGE 74

DQG UHFRYHU\ 8QLQIHVWHG FUDEV KDG D VLJQLILFDQW DY GLIIHUHQFH RQO\ GXULQJ UHVW +HPRO\PSK ODFWDWH FRQFHQWUDWLRQV VKRZHG WKH UHYHUVH RI WKH WUHQG GHVFULEHG IRU S+ ILJXUH f $ ZD\ UHSHDW PHDVXUHV $129$ ZDV XVHG WR FRPSDUH SUH DQG SRVWEUDQFKLDO ODFWDWH YDOXHV RI UHVWLQJ H[HUFLVLQJ DQG UHFRYHULQJ FUDEV DW WKH WKUHH LQIHVWDWLRQ OHYHOV 0HDQ ODFWDWH LQFUHDVHG VLJQLILFDQWO\ GXULQJ H[HUFLVH DQG GHFUHDVHG VLJQLILFDQWO\ GXULQJ UHFRYHU\ EXW QRW WR UHVWLQJ OHYHOV ) 3 f 'LIIHUHQFHV EHWZHHQ SUH DQG SRVWEUDQFKLDO ODFWDWH ZHUH QRW VLJQLILFDQW ZLWK WKH H[FHSWLRQ RI WKH UHFRYHU\ YDOXHV IRU WKH KHDYLO\ LQIHVWHG FUDEV SDLUHG WWHVW 3 f 'LIIHUHQFHV EHWZHHQ WKH FUDEV DW WKH WKUHH LQIHVWDWLRQ OHYHOV ZHUH QRW VLJQLILFDQW 'LVFXVVLRQ 7KH PHDQ KHDUW UDWH RI XQLQIHVWHG FUDEV DW UHVW EHDWV PLQf s 6(f DJUHHV ZLWK WKDW IRXQG HDUOLHU IRU XQLQIHVWHG EOXH FUDEV EHDWV PLQn s 6(f 6HH &KDSWHU f ,Q WKH SULRU VWXG\ LQIHVWHG FUDEV PRVW RI ZKLFK ZRXOG EH LQ WKH KHDYLO\ LQIHVWHG FDWHJRU\ LQ WKLV VWXG\f KDG DQ HOHYDWHG PHDQ UHVWLQJ I+ EHDWV PLQ s 6(f WKDW DOVR DJUHHV ZLWK PHDQ UHVWLQJ I+ LQ WKH KHDYLO\ LQIHVWHG FUDEV LQ WKLV VWXG\ EHDWV PLQn s 6(f

PAGE 75

7KHVH I+ YDOXHV IRU XQLQIHVWHG FUDEV DUH ORZHU WKDQ WKRVH IRXQG E\ %RRWK HW DO f IRU UHVWLQJ EOXH FUDEV EHDWV PLQn s 6(f +RZHYHU WKDW VWXG\ RI )ORULGD JXOI FRDVW EOXH FUDEV PD\ KDYH LQFOXGHG D PL[ RI LQIHVWHG DQG XQLQIHVWHG EOXH FUDEV VLQFH WKH XQGHUVLGH RI WKH JLOOV ZHUH QRW LQVSHFWHG IRU LQIHVWLQJ EDUQDFOHV % 5 0F0DKRQ SHUVRQDO FRPPXQLFDWLRQf DQG LQIHVWDWLRQ OHYHOV LQ WKH &HGDU .H\ )ORULGD FUDE SRSXODWLRQ DYHUDJH b 6HH &KDSWHU f $QRWKHU UHDVRQ IRU DQ HOHYDWHG KHDUW UDWH DPRQJ WKH EOXH FUDEV LQ %RRWKfV VWXG\ ZDV WKDW WKH\ ZHUH ILWWHG ZLWK D UHVSLUDWRU\ PDVN DQG ZHUH UHVWUDLQHG GXULQJ PHDVXUHPHQW 7KHLU UHVWLQJ YDOXHV DUH ODEHOOHG URXWLQH UDWKHU WKDQ VWDQGDUG 9HQWLODWLRQ UDWHV GLIIHU IURP WKRVH IRXQG E\ %RRWK HW DO f LQ WKH VDPH ZD\ 5HVWLQJ PRGHUDWHO\ LQIHVWHG FUDEV KDG WKH VDPH IVF DV UHVWLQJ EOXH FUDEV LQ WKH HDUOLHU VWXG\ EHDWV PLQnf ZLWK XQLQIHVWHG EOXH FUDEV KDYLQJ D VLJQLILFDQWO\ ORZHU IVF DQG KHDYLO\ LQIHVWHG FUDEV D VLJQLILFDQWO\ KLJKHU IV& 7KHVH UHVWLQJ KHDUW DQG YHQWLODWLRQ UDWHV IRU EOXH FUDEV DUH KLJKHU WKDQ WKRVH IRXQG IRU VLPLODU VL]HG FUDE VSHFLHV 0F0DKRQ DQG :LONHQV 0F0DKRQ0F'RQDOG DQG :RRG f KRZHYHU IHZ RI WKHVH VSHFLHV DUH DV DFWLYH DV WKH EOXH FUDE 0F0DKRQ f &UDEV DW DOO WKUHH LQIHVWDWLRQ OHYHOV H[KLELWHG DQ LPPHGLDWH HOHYDWLRQ RI KHDUW DQG YHQWLODWLRQ UDWHV WR QHDU PD[LPXP DV H[HUFLVH EHJDQ DQG PDLQWDLQHG HOHYDWHG OHYHOV WKURXJKRXW WKH H[HUFLVH DQG UHFRYHU\ SHULRGV %RRWK HW DO f IRXQG WKH VDPH UDSLG LQFUHDVH ZLWK D VWHDG\ VWDWH KDOI WLPH RI DERXW VHFRQGV ([HUFLVH I+ DQG IVF YDOXHV IRXQG E\ %RRWK HW DO f ZHUH

PAGE 76

YLUWXDOO\ WKH VDPH DV WKRVH IRXQG LQ PRGHUDWHO\ LQIHVWHG FUDEV LQ WKH SUHVHQW VWXG\ DQG ZHUH EHORZ YDOXHV IRXQG LQ XQLQIHVWHG FUDEV $OWKRXJK WKH H[HUFLVH SHULRG LQ WKH HDUOLHU VWXG\ ZDV RQH KRXU FRPSDUHG ZLWK WKH SUHVHQW H[HUFLVH SHULRG RI ILIWHHQ PLQXWHVf WKH SHDN OHYHOV UHDFKHG DQG WKH G\QDPLFV RI UHFRYHU\ ZHUH VLPLODU 9HQWLODWLRQ UDWH GURSSHG DEUXSWO\ DV H[HUFLVH VWRSSHG +HDUW UDWH GLG QRW GHFUHDVH VLJQLILFDQWO\ EXW UHPDLQHG KLJK 1HLWKHU UDWH UHDFKHG UHVWLQJ YDOXHV DIWHU WKLUW\ PLQXWHV RI UHFRYHU\ LQ HLWKHU VWXG\ (YHQ DIWHU RQH KRXU UHFRYHU\ ZDV QRW FRPSOHWH LQ WKH SUHVHQW VWXG\ $OWKRXJK GLIIHUHQFHV LQ KHDUW UDWH EHWZHHQ WKH WKUHH LQIHVWDWLRQ OHYHOV ZHUH QRW VLJQLILFDQW XQLQIHVWHG FUDEV KDG JUHDWHU PHDQ I+ DQG IVF RYHU DOO ILYHPLQXWH H[HUFLVH DQG UHFRYHU\ LQWHUYDOV EXW RQH 9DULDQFH ZDV JUHDW GXULQJ H[HUFLVH DQG UHFRYHU\ SDUWLFXODUO\ IRU IV& $OWKRXJK KHDYLO\ LQIHVWHG FUDEV ZHUH K\SHUYHQWLODWLQJ DW UHVW WKH\ ZHUH DEOH WR HOHYDWH I6& GXULQJ H[HUFLVH WR DERXW WKH VDPH OHYHOV DV XQLQIHVWHG FUDEV SHUKDSV EHFDXVH WKLV OHYHO EHDWV PLQnf LV WKH PD[LPDO VXVWDLQDEOH UDWH %DWWHUWRQ DQG &DPHURQ f PHDVXUHG YHQWLODWLRQ YROXPH LQ EOXH FUDEV RYHU D ODUJH UDQJH RI I6& EXW FRXOG QRW VWLPXODWH I6& DERYH EHDWV PLQn 9DOXHV RI IVF RYHU EHDWV PLQn DUH PRUH WKDQ WZLFH DV JUHDW DV WKH YDOXHV UHSRUWHG IRU RWKHU H[HUFLVLQJ FUDEV 0F0DKRQ HW DO :RRG DQG 5DQGDOO f RU FUD\ILVK 5XWOHGJH %RRWK DQG 0F0DKRQ f LQGLFDWLQJ WKH JUHDW DHURELF H[HUFLVH FDSDFLW\ RI EOXH FUDEV

PAGE 77

,QWHUPLWWHQW FDUGLDF DQG YHQWLODWRU\ SDXVHV DUH FKDUDFWHULVWLF RI GHFDSRG FUXVWDFHDQV DW UHVW LQ ZHOOR[\JHQDWHG XQGLVWXUEHG HQYLURQPHQWV 0F'RQDOG HW DO 0F0DKRQ DQG :LONHQV %DWWHUWRQ DQG &DPHURQ f $OWKRXJK H[SHULPHQWDO HYLGHQFH LV ODFNLQJ WKHVH SDXVHV PD\ EH D ZD\ RI FRQVHUYLQJ HQHUJ\ ZKHQ KHPRO\PSK R[\JHQ OHYHOV DUH QHDU RU DERYH VDWXUDWLRQ OHYHOV 0F0DKRQ DQG :LONHQV f $W UHVW XQLQIHVWHG FUDEV FHDVHG YHQWLODWLQJ PRUH WKDQ RQFH HYHU\ WZR PLQXWHV +HDYLO\ LQIHVWHG FUDEV SDXVHG LQ WKHLU YHQWLODWLRQ RQO\ RQFH HYHU\ WZHQW\ PLQXWHV 'XULQJ H[HUFLVH R[\JHQ GHPDQG LQFUHDVHV DQG YHQWLODWRU\ SDXVHV ZHUH QRW REVHUYHG &DUGLDF SDXVHV ZHUH PRUH GLIILFXOW WR HYDOXDWH )UHTXHQWO\ YHQWLODWRU\ DQG FDUGLDF SDXVHV ZRXOG RFFXU VLPXOWDQHRXVO\ :KLOH YHQWLODWRU\ SDXVHV PLJKW ODVW RYHU D PLQXWH VLQJOH FDUGLDF FRQWUDFWLRQV ZRXOG W\SLFDOO\ RFFXU LQWHUPLWWHQWO\ WKURXJKRXW WKH YHQWLODWRU\ SDXVH PDNLQJ FDOFXODWLRQ RI WKH OHQJWK RU QXPEHU RI FDUGLDF SDXVHV GLIILFXOW 5HVWLQJ DQG H[HUFLVLQJ KHPRO\PSK R[\JHQ FRQWHQWV RI FUDEV GLG QRW GLIIHU EHWZHHQ LQIHVWDWLRQ OHYHOV EXW PHDQ YDOXHV ZHUH RQO\ DERXW b RI WKRVH IRXQG E\ %RRWK HW DO f 7KH\ IRXQG &Y DQG &D ZHUH QRW VLQLAFDQW_\ FKDQJHG DIWHU PLQXWHV RI H[HUFLVH IRXQG WKH VDPH UHVXOW LQ PRGHUDWHO\ LQIHVWHG FUDEV 8QLQIHVWHG FUDEV H[KLELWHG WKH VDPH WUHQG DV KHDYLO\ LQIHVWHG FUDEV &D LQFUHDVHG ZLWK H[HUFLVH DQG UHFRYHU\ 6LQFH &Y GLG QRW VLJQLILFDQWO\ FKDQJH WKH & DBY GLIIHUHQFHV LQFUHDVHG DQG WKH UHFRYHU\ DY GLIIHUHQFH ZDV JUHDWHVW IRU KHDYLO\ LQIHVWHG

PAGE 78

FUDEV 7KLV VXJJHVWV WKDW WKH PHWDEROL]LQJ WLVVXHV RI KHDYLO\ LQIHVWHG FUDEV DUH QRW UHGXFLQJ SUHEUDQFKLDO & EHORZ WKH OHYHOV RI XQLQIHVWHG FUDEV EXW WKH\ DUH REWDLQLQJ PRUH R[\JHQ EHFDXVH WKH DY GLIIHUHQFH LV JUHDWHU 5HVWLQJ SUHEUDQFKLDO KHPRO\PSK R[\JHQ WHQVLRQV IRU DOO JURXSV RI FUDEV ZHUH ORZ EXW DJUHH ZLWK WKRVH UHSRUWHG IRU XQLQIHVWHG UHVWLQJ EOXH FUDEV LQ &KDSWHU 0DQJXP DQG :HLODQG %RRWK HW DO f 5HVWLQJ SRVWEUDQFKLDO 32 YDOXHV KRZHYHU ZHUH DERXW b OHVV WKDQ WKRVH UHSRUWHG E\ 0DQJXP DQG :HLODQG f DQG %RRWK HW DO f 'LIIHUHQFHV EHWZHHQ SRVW DQG SUHEUDQFKLDO KHPRO\PSK 32 UHSRUWHG E\ %RRWK HW DO f ZHUH ODUJH IRU FUDEV DW UHVW WRUU N3Df DQG GXULQJ H[HUFLVH WRUU N3Df ,Q WKLV VWXG\ XQLQIHVWHG DQG PRGHUDWHO\ LQIHVWHG FUDEV KDG YLUWXDOO\ WKH VDPH 32 IRU SRVW DQG SUHEUDQFKLDO KHPRO\PSK GXULQJ WKH UHVW H[HUFLVH DQG UHFRYHU\ SHULRGV 7KH DY GLIIHUHQFHV IRXQG LQ WKH KHDYLO\ LQIHVWHG FUDEV GXULQJ H[HUFLVH DQG UHFRYHU\ DUH FRPSDUDEOH WR WKRVH UHSRUWHG E\ 0DQJXP DQG :HLODQG f IRU UHVWLQJ $32 N3Df DQG H[HUFLVLQJ $32 N3Df EOXH FUDEV 3RVW DQG SUHEUDQFKLDO S+ IROORZHG WKH SDWWHUQ H[SHFWHG IRU H[HUFLVLQJ DQLPDOV %RWK YDOXHV GHFUHDVHG GXULQJ H[HUFLVH DQG LQFUHDVHG GXULQJ UHFRYHU\ 9DOXHV IRU XQLQIHVWHG FUDEV ZHUH VLPLODU WR WKRVH UHSRUWHG IRU EOXH FUDEV DW UHVW DQG H[HUFLVH 0DQJXP DQG :HLODQG %RRWK HW DO %RRWK DQG 0F0DKRQ f 0RGHUDWHO\ LQIHVWHG FUDEV KDG ORZHU UHVWLQJ S+ YDOXHV EXW KLJKHU H[HUFLVH YDOXHV 5HFRYHU\ YDOXHV ZHUH QRW

PAGE 79

DYDLODEOH IRU RWKHU VWXGLHV EXW UHFRYHU\ YDOXHV KHUH ZHUH EHWZHHQ UHVWLQJ DQG H[HUFLVH OHYHOV IRU DOO WKUHH JURXSV RI FUDEV LQGLFDWLQJ WKDW UHFRYHU\ ZDV QRW FRPSOHWH LQ RQH KRXU 5HVSLUDWRU\ DFLGRVLV DFFRXQWHG IRU OHVV WKDQ b RI WKH WRWDO S+ GURS LQ H[HUFLVLQJ EOXH FUDEV %RRWK DQG 0F0DKRQ f $OWKRXJK ODFWDWH DQG + DUH SURGXFHG LQ HTXLPRODU DPRXQWV LQ DQDHURELF JO\FRO\VLV +RFKDFKND DQG 0RPPVHQ f %RRWK HW DO f FDOFXODWHG D QHW + GHILFLW LQ WKH KHPRO\PSK RI H[HUFLVLQJ FUDEV +RZHYHU PHDVXUHG + H[FUHWLRQ LQWR WKH H[WHUQDO PHGLXP H[FHHGHG WKDW SUHGLFWHG IURP ODFWDWH DFFXPXODWLRQ %RRWK HW DO f +HUH ODFWDWH OHYHOV LQ WKH KHPRO\PSK RI UHVWLQJ FUDEV ZHUH VLPLODU WR WKRVH UHSRUWHG IRU UHVWLQJ EOXH FUDEV %RRWK HW DO 0LOOLJDQ HW DO f 'XULQJ H[HUFLVH >/Da@ LQFUHDVHG ; IRU FUDEV DW DOO LQIHVWDWLRQ OHYHOV 7KLV LV VLJQLILFDQWO\ OHVV WKDQ WKH LQFUHDVHV UHSRUWHG IRU EOXH FUDEV DIWHU H[HUFLVH ERXWV RI ILIWHHQ PLQXWHV ;%RRWK HW DO f PLQXWHV ;%RRWK HW DO f DQG WKLUW\ PLQXWHV RI H[HUFLVH ;%RRWK DQG 0F0DKRQ ;0LOOLJDQ HW DO f ,Q GHWHUPLQLQJ ODFWDWH WKH VDPSOHV ZHUH QRW EXIIHUHG ZLWK ('7$ WR SUHYHQW LQWHUIHUHQFH E\ &X LQ WKH KHPRO\PSK DV UHFRPPHQGHG E\ (QJHO DQG -RQHV f +RZHYHU WKLV ZRXOG HTXDOO\ DIIHFW DOO UHDGLQJV SUHVHUYLQJ WKH UDWLR EHWZHHQ WUHDWPHQWV ,Q EOXH FUDEV DQDHURELF PHWDEROLVP LV LPSRUWDQW WR HQHUJ\ SURGXFWLRQ GXULQJ WKH ILUVW IHZ PLQXWHV RI VZLPPLQJ ZKLOH VXVWDLQHG H[HUFLVH LV IXHOHG SUHGRPLQDQWO\ E\ DHURELF PHWDEROLVP %RRWK DQG 0F0DKRQ f ,Q VRPH WHUUHVWULDO GHFDSRGV VXFK DV

PAGE 80

8FD SXJLODWRU +HUUHLG f DQG *HFDUFLQXV ODWHUDOLV )XOO DQG +HUUHLG f DQDHURELF PHWDEROLVP LV LPSRUWDQW WKURXJKRXW H[HUFLVH ERXWV (QHUJ\ H[SHQGLWXUH GXULQJ H[HUFLVH LV GLIILFXOW WR TXDQWLI\ (DUOLHU VWXGLHV RI EOXH FUDEV XVHG SURGGLQJ WR LQGXFH H[HUFLVH ZDONLQJ DQG VZLPPLQJ 0DQJXP DQG :HLODQG %RRWK HW DOW %RRWK HW DO f ,QWHQVLW\ RI H[HUFLVH ZDV QRW FRQWUROOHG LQ WKRVH VWXGLHV QRU LQ WKH SUHVHQW RQH 7KH FUDEV LQ WKLV VWXG\ DOO VZDP UHDGLO\ ZLWK OLWWOH SURGGLQJ RQFH WKH\ ZHUH OLIWHG IURP WKH VXEVWUDWH +RZHYHU WKHUH ZDV JUHDW YDULDWLRQ LQ WKH UDSLGLW\ RI VZLPPLQJ OHJ PRYHPHQW 6XEMHFWLYH HYDOXDWLRQ RI VZLPPLQJ LQWHQVLW\ GLG QRW UHYHDO DQ\ FRUUHODWLRQ ZLWK LQIHVWDWLRQ OHYHO 7KH ORZHU ODFWDWH OHYHOV IRXQG LQ DOO WKUHH JURXSV RI H[HUFLVLQJ FUDEV LQGLFDWH DQDHURELF JO\FRO\VLV ZDV QRW XVHG WR WKH VDPH H[WHQW DV E\ FUDEV LQ HDUOLHU VWXGLHV %RRWK HW DO %RRWK HW DO f 3HUKDSV RYHUDOO HQHUJ\ H[SHQGLWXUHV KHUH ZHUH OHVV UHVXOWLQJ LQ ORZHU ODFWDWH SURGXFWLRQ DQG PLQLPDO GLVWXUEDQFH RI EORRG FKHPLVWU\ 'XULQJ H[HUFLVH WKH GHFUHDVH LQ KHPRO\PSK S+ DIIHFWV WKH KHPRF\DQLQR[\JHQ GLVVRFLDWLRQ FXUYH 8VLQJ WKH %RKU VKLIW YDOXHV FDOFXODWHG IRU EOXH FUDE KHPRO\PSK E\ %RRWK HW DO f $ ORJ 3 WRUUf $ S+

PAGE 81

, IRXQG WKH GLIIHUHQFH EHWZHHQ SRVW DQG SUHEUDQFKLDO KHPRO\PSK S+ LQ KHDYLO\ LQIHVWHG FUDEV GXULQJ H[HUFLVH HTXLYDOHQW WR DQ LQFUHDVH LQ 3 RI WRUU N3Df )RU PRGHUDWHO\ LQIHVWHG DQG XQLQIHVWHG FUDEV WKH 3 LQFUHDVHG WRUU N3Df DQG WRUU UHVSHFWLYHO\ ,Q EOXH FUDEV ODFWDWH FRQFHQWUDWLRQ RI WKH KHPRO\PSK DIIHFWV 3 LQGHSHQGHQW RI S+ 7UXFKRW f 7KH HIIHFW RI LQFUHDVHG KHPRO\PSK ODFWDWH RQ KHPRF\DQLQ R[\JHQDIILQLW\ ZDV PHDVXUHG LQ YLYR DQG LQ YLWUR E\ %RRWK HW DO f DV 34 WRUUf ORJ >/Dn@ 8VLQJ WKH PHDQ >/Dn@ IRXQG LQ WKH SRVW DQG SUHEUDQFKLDO KHPRO\PSK RI KHDYLO\ LQIHVWHG FUDEV WR FDOFXODWH 3 YDOXHV IRXQG D FKDQJH LQ 3 IURP SRVWEUDQFKLDO WR SUHEUDQFKLDO KHPRO\PSK RI WRUU N3Df D QHJDWLYH %RKU VKLIW )RU PRGHUDWHO\ LQIHVWHG DQG XQLQIHVWHG FUDEV ODFWDWH OHYHOV ZRXOG VKLIW WKH 3 WRUU N3Df DQG WRUU N3Df UHVSHFWLYHO\ %HFDXVH WKHVH S+ DQG >ODFWDWH@ YDOXHV DQG WKH HTXDWLRQV ZHUH WDNHQ IURP GLIIHUHQW VWXGLHV DQG WKH SUHVHQW VWXG\ GLG QRW FRUUHFW IRU WKH SRVVLEOH LQWHUIHUHQFH RI &X (QJHO DQG -RQHV f WKHVH DEVROXWH YDOXHV DUH RQO\ DSSUR[LPDWLRQV +RZHYHU WKH UHODWLYH HIIHFWV RQ WKH KHPRF\DQLQR[\JHQ DIILQLW\ UHODWLRQVKLS VKRXOG KROG 7KXV GXULQJ H[HUFLVH WKH S+ GHFUHDVH LQ SUHEUDQFKLDO KHPRO\PSK ZRXOG WHQG WR VKLIW WKH R[\JHQ GLVVRFLDWLRQ FXUYH WR WKH ULJKW UHGXFLQJ R[\JHQ ORDGLQJ DW WKH

PAGE 82

JLOOV DQG LQFUHDVLQJ R[\JHQ XQORDGLQJ DW WKH WLVVXHV +RZHYHU WKLV LV RSSRVHG E\ WKH HIIHFW RI LQFUHDVHG ODFWDWH OHYHOV ZKLFK ZRXOG WHQG WR VKLIW WKH FXUYH WR WKH OHIW E\ DOPRVW WKH VDPH DPRXQW IRU KHDYLO\ LQIHVWHG FUDEV DQG E\ D OHVVHU DPRXQW IRU PRGHUDWHO\ LQIHVWHG DQG XQLQIHVWHG FUDEV $W WKH HQG RI WKH KRXU UHFRYHU\ SHULRG QHLWKHU S+ QRU >/Dr@ KDYH UHDFKHG UHFRYHU\ OHYHOV EXW EHFDXVH RI WKH RSSRVLQJ HIIHFWV RI WKHVH WZR PRGHUDWRUV WKH 3 DQG WKHUHIRUH WKH SRVLWLRQ RI WKH R[\JHQ GLVVRFLDWLRQ FXUYH LV UHODWLYHO\ XQFKDQJHG 7KLV LV DQ H[DPSOH RI HQDQWLRVWDVLV 0DQJXP DQG 7RZOH f /DFWDWH SURGXFHG E\ DQDHURELF PHWDEROLVP FRXQWHUDFWV WKH QHJDWLYH HIIHFWV RI DFLGRVLV RQ KHPRF\DQLQR[\JHQ DIILQLW\ 0LOOLJDQ HW DO f ([HUFLVH LQ WKH EOXH FUDE LV KLJKO\ DHURELF 0LOOLJDQ HW DO f DQG WKH ODFWDWH HIIHFW SUHVHUYHV WKH YHQRXV UHVHUYH E\ PDLQWDLQLQJ XQXVHG R[\JHQ LQ WKH SUHEUDQFKLDO KHPRO\PSK WKDW FDQ EH XWLOL]HG ZKHQ WKH LQWHQVLW\ RI H[HUFLVH PXVW EH LQFUHDVHG %RRWK HW DO f RU VRPH RWKHU HQYLURQPHQWDO VWUHVV GHPDQGV HPHUJHQF\ 2 WUDQVSRUW 'XULQJ H[HUFLVH WKH DFWXDO DPRXQW RI R[\JHQ DYDLODEOH WR WKH WLVVXHV LV GHWHUPLQHG E\ WKH KHPRF\DQLQ R[\JHQ DIILQLW\ ZKLFK LV DIIHFWHG E\ S+ DQG >ODFWDWH@ %RRWK HW DO f DV ZHOO DV RUJDQLF LRQ PRGXODWRUV 0RUULV f 7KH IDFW WKDW SUHEUDQFKLDO R[\JHQ FRQWHQW UHPDLQV UHODWLYHO\ XQFKDQJHG GXULQJ UHVW H[HUFLVH DQG UHFRYHU\ LQGLFDWHV WKDW DOO JURXSV RI FUDEV DUH PDLQWDLQLQJ D YHQRXV UHVHUYH 8QLQIHVWHG FUDEV KDG D VLJQLILFDQW DY S+ GLIIHUHQFH RQO\ DW UHVW ZKLOH WKH SUHEUDQFKLDO KHPRO\PSK S+ RI PRGHUDWHO\ DQG KHDYLO\ LQIHVWHG FUDEV ZDV

PAGE 83

VLJQLILFDQWO\ OHVV WKDQ WKH SRVWEUDQFKLDO KHPRO\PSK S+ GXULQJ UHVW H[HUFLVH DQG UHFRYHU\ 7KLV VXJJHVWV WKDW PRGHUDWHO\ DQG KHDYLO\ LQIHVWHG FUDEV UHOLHG PRUH RQ WKH %RKU HIIHFW WR GHOLYHU R[\JHQ WR WKHLU PHWDEROL]LQJ WLVVXHV $IWHU KRXU RI UHFRYHU\ IVF KDG GURSSHG VLJQLILFDQWO\ ZKLOH I+ UHPDLQHG HOHYDWHG 7KH VDPH UHODWLRQVKLS ZDV REVHUYHG E\ %RRWK HW DO f DQG 0F0DKRQ HW DO f DOWKRXJK IVF DQG I+ DUH XVXDOO\ FRRUGLQDWHG LQ WKHLU DFWLYLW\ :LONHQV f 'XULQJ UHFRYHU\ 0 GURSSHG DW DERXW WKH VDPH UDWH DV IVF 0F0DKRQ HW DO %RRWK HW DO f 7KLV VXJJHVWV WKDW WKH GHPDQG IRU 2 KDG GHFUHDVHG FRQVLGHUDEO\ $ GHFUHDVHG IVF FRXOG VWLOO PHHW WKH GHFUHDVHG 2 QHHG +RZHYHU ODFWDWH DQG S+ YDOXHV KDG QRW UHDFKHG UHFRYHU\ OHYHOV DW RQH KRXU RI UHFRYHU\ 3HUIXVLRQ UDWHV ZRXOG QHHG WR EH PDLQWDLQHG DW D KLJK OHYHO WR IOXVK /Df DQG + IURP WKH PXVFOH WLVVXHV ([FUHWLRQ RI + LV SUHVXPDEO\ E\ EUDQFKLDO H[FKDQJH %RRWK HW DO f ZKLOH ODFWDWH LV WDNHQ XS DQG PHWDEROL]HG E\ WLVVXHV WKDW KDYH QRW EHHQ LGHQWLILHG 0LOOLJDQ HW DO f %OXH FUDEV KDYH D ZHOO GHYHORSHG DQDHURELF FDSDFLW\ %RRWK DQG 0F0DKRQ f DQG D ODUJH DHURELF PHWDEROLF VFRSH %RRWK HW DO f 7KH\ DUH KLJKO\ UHVLVWDQW WR IDWLJXH IURP VXVWDLQHG VZLPPLQJ 0LOOLJDQ HW DO f PDLQWDLQLQJ D OHYHO RI XQXVHG R[\JHQ LQ WKHLU SUHEUDQFKLDO KHPRO\PSK HYHQ DIWHU RQH KRXU RI FRQWLQXRXV VZLPPLQJ %RRWK HW DO f 7KH SUHVHQFH RI WKH HFWRFRPPHQVDO EDUQDFOH 2FWRODVPLV PXHOOHUL LQ WKH JLOO FKDPEHU GRHV QRW FDXVH D PDMRU GLVWXUEDQFH HYHQ GXULQJ WKH VWUHVV RI

PAGE 84

H[HUFLVH $W UHVW LQIHVWHG FUDEV HOHYDWH IVF DQG I+ WR PDLQWDLQ D YHQRXV UHVHUYH DQG KHPRO\PSK YDULDEOHV DW WKH OHYHOV RI XQLQIHVWHG FUDEV WKHUHE\ FRPSHQVDWLQJ IRU WKH SK\VLFDO REVWUXFWLRQ ZLWKLQ WKH YHQWLODWRU\ VWUHDP 'XULQJ VXVWDLQHG H[HUFLVH IVF DQG I+ IRU DOO FUDEV DSSURDFK PD[LPXP UDWHV 2[\JHQ GHOLYHU\ WR WKH WLVVXHV LV PDLQWDLQHG EXW R[\JHQ XSWDNH DW WKH JLOOV LV QRW FRPSURPLVHG GXH WR WKH HIIHFW RI ODFWDWH FRXQWHUDFWLQJ DFLGRVLV 7KH SK\VLRORJ\ RI WKH EOXH FUDE LV H[WUHPHO\ ZHOO GHVLJQHG IRU VXVWDLQHG VZLPPLQJ %RRWK HW DO f 7KH HQDQWLRVWDWLF FRQWURO RI LWV R[\JHQ GHOLYHU\ V\VWHP 0DQJXP DQG 7RZOH f PDNHV 2FWRODVPLVLQIHVWHG EOXH FUDEV FDSDEOH RI VXVWDLQHG VZLPPLQJ ZLWK PLQLPDO GLVWXUEDQFH LQ WKHLU EORRG JDV SDUDPHWHUV %HFDXVH HQHUJ\ H[SHQGLWXUH ZKLOH VZLPPLQJ ZDV QRW TXDQWLILHG LQIHVWHG FUDEV PD\ QRW KDYH EHHQ VZLPPLQJ DV IDVW DV ZHUH XQLQIHVWHG FUDEV DQG WKDW H[WUHPHO\ UDSLG HVFDSH VZLPPLQJ PD\ EH FRPSURPLVHG E\ PDVVLYH EDUQDFOH LQIHVWDWLRQ 6HYHUDO FUDEV ZLWK LQIHVWDWLRQ RI PRUH WKDQ J 2FWRODVPLV PXHOOHUL GLG QRW VXUYLYH H[SHULPHQWDO VWUHVV DQG SUREDEO\ ZRXOG QRW VXUYLYH ORQJ LQ QDWXUH

PAGE 85

)LJXUH 0HDQ KHDUW UDWHV RI UHVWLQJ H[HUFLVLQJ DQG UHFRYHULQJ FUDEV DW WKUHH OHYHOV RI LQIHVWDWLRQ ([HUFLVH DQG UHFRYHU\ SHULRGV DUH RI PLQXWH GXUDWLRQ

PAGE 86

0HDQ KHDUW UDWH 6( EHDWVPLQf ([SHULPHQWDO 3HULRG ‘!VM

PAGE 87

)LJXUH 0HDQ YHQWLODWLRQ UDWHV RI UHVWLQJ H[HUFLVLQJ DQG UHFRYHULQJ FUDEV DW WKUHH OHYHOV RI LQIHVWDWLRQ ([HUFLVH DQG UHFRYHU\ SHULRGV DUH RI PLQXWH GXUDWLRQ

PAGE 88

8QLQI PHDQ 0RG PHDQ +HDY\ PHDQ Q f Q f Q f f§L f§ 5HVW ([ ([ 7 7 7 7 7 7 aU 7 ([ 5HF 5HF 5HF 5HF 5HF 5HF 5HF 5HF 5HF 5HF 5HF 5HF ([SHULPHQWDO 3HULRG WR

PAGE 89

0HDQ IUHTXHQF\ RI YHQWLODWRU\ SDXVHV SDXVHVKRXUf ([SHULPHQWDO 3HULRG )LJXUH )UHTXHQF\ RI SDXVHV LQ YHQWLODWLRQ RI EOXH FUDEV DW UHVW H[HUFLVH DQG UHFRYHU\ DW WKUHH OHYHOV RI LQIHVWDWLRQ

PAGE 90

)LJXUH 0HDQ SRVW Df DQG SUHEUDQFKLDO Yf KHPRO\PSK R[\JHQ FRQWHQWV RI FUDEV DW UHVW H[HUFLVH DQG UHFRYHU\ DW WKUHH OHYHOV RI LQIHVWDWLRQ 'DVKHG OLQHV LQGLFDWH VLJQLILFDQW 3 f DY GLIIHUHQFHV $VWHULVN LQGLFDWHV DQ DY GLIIHUHQFH WKDW LV VLJQLILFDQWO\ JUHDWHU 3 f WKDQ IRU RWKHU LQIHVWDWLRQ OHYHOV

PAGE 91

0HDQ 2[\JHQ &RQWHQWV 6( P0f 8QLQIHVWHG Q f ([SHULPHQWDO 3HULRG

PAGE 92

)LJXUH 0HDQ SRVW Df DQG SUHEUDQFKLDO Yf KHPRO\PSK R[\JHQ WHQVLRQ RI FUDEV DW UHVW H[HUFLVH DQG UHFRYHU\ DW WKUHH OHYHOV RI LQIHVWDWLRQ 7KH GDVKHG OLQH LQGLFDWHV D VLJQLILFDQW 3 f DY GLIIHUHQFH 7KH DVWHULVN LQGLFDWHV DQ DY GLIIHUHQFH WKDW LV VLJQLILFDQWO\ JUHDWHU 3 f WKDQ IRU RWKHU LQIHVWDWLRQ OHYHOV

PAGE 93

0HDQ +HPRO\PSK 2[\JHQ 7HQVLRQ 6( N3Df 0RGHUDWHO\ ,QIHVWHG Q f 5HVWD 5HVWY ([D ([Y 5HFD 5HFY 5HVWD 5HVWY ([D ([Y 5HFD 5HFY ([SHULPHQWDO 3HULRG +HDYLO\ Q ,QIHVWHG f

PAGE 94

)LJXUH 0HDQ SRVW Df DQG SUHEUDQFKLDO Yf KHPRL\PSK S+ RI FUDEV DW UHVW H[HUFLVH DQG UHFRYHU\ DW WKUHH OHYHOV RI LQIHVWDWLRQ 'DVKHG OLQHV LQGLFDWH VLJQLILFDQW 3 f DY GLIIHUHQFHV

PAGE 95

0HDQ +HPRO\PSK S+ 6( ,QIHVWHG f L 5HVWD 5HVWY ([D ([Y 5HFD 5HFY ([SHULPHQWDO 3HULRG

PAGE 96

)LJXUH 0HDQ SRVW Df DQG SUHEUDQFKLDO Yf KHPRO\PSK ODFWDWH FRQFHQWUDWLRQ RI FUDEV DW UHVW H[HUFLVH DQG UHFRYHU\ DW WKUHH OHYHOV RI LQIHVWDWLRQ 7KH GDVKHG OLQH LQGLFDWHV D VLJQLILFDQW 3 f DY GLIIHUHQFH

PAGE 97

0HDQ /DFWDWH &RQFHQWUDWLRQ 6( P0f 5HVWD 5HVWY ([D ([Y 5HFD 5HFY +HDYLO\ Q ,QIHVWHG f ([SHULPHQWDO 3HULRG

PAGE 98

*(1(5$/ ',6&866,21 7KLV VWXG\ KDV IRFXVHG RQ WKH 2FWRODVPLV PXHOOHUL&DOOLQHFWHV VDSLGXV UHODWLRQVKLS VHHNLQJ DQVZHUV WR TXHVWLRQV RQ WKUHH OHYHOV 2Q WKH RUJDQLVP OHYHO LQIRUPDWLRQ ZDV FROOHFWHG WR HYDOXDWH WKH OLNHOLKRRG WKDW EDUQDFOH ODUYDH VHOHFW RSWLPDO VLWHV DQG KRVWV DQG WR GHWHUPLQH WKH FUDEnV SK\VLRORJLFDO UHVSRQVHFRPSHQVDWLRQ WR WKH EDUQDFOHV SUHVHQFH 7KH RSWLPDO VLWH DQG KRVW DUH WKRVH WKDW DOORZ WKH KLJKHVW UDWH RI JURZWK VXUYLYDO DQG UHSURGXFWLRQ 2Q WKH SRSXODWLRQ OHYHO LQIHVWDWLRQ UDWHV ZHUH PHDVXUHG WR GHWHUPLQH LI WKH EDUQDFOH SRSXODWLRQ ZDV ODUJH HQRXJK WR KDYH D PDMRU LPSDFW RQ WKH &HGDU .H\ )/ FUDE SRSXODWLRQ 2Q WKH KRVWHFWRFRPPHQVDO OHYHO LQIRUPDWLRQ IURP WKH RWKHU WZR OHYHOV ZDV V\QWKHVL]HG WR HYDOXDWH WKH VHOHFWLRQ SUHVVXUHV RQ WKH KRVW DQG V\PELRQW DQG WR GHWHUPLQH KRZ WKLV V\VWHP GLIIHUV IURP RWKHU KRVWV\PELRQW V\VWHPV 2UJDQLVP 2FWRODVPLV PXHOOHUL DGXOWV DJJUHJDWHG RQ WKH EDVHV RI WKH K\SREUDQFKLDO DVSHFW RI JLOOV DQG WKH EHVW YHQWLODWHG SDUW RI WKH JLOO FKDPEHU +XJKHV HW DO f 7KLV UHSUHVHQWV RQO\ D VPDOO SRUWLRQ RI WKH DYDLODEOH DWWDFKPHQW DUHD RQ WKH JLOOV bf DQG DQ

PAGE 99

HYHQ VPDOOHU SRUWLRQ bf RI WKH WRWDO VXLWDEOH DUHD 7KH VXLWDEOH DUHD FRQVLVWV RI WKH DUHDV ZKHUH DSSDUHQWO\ KHDOWK\ DGXOW EDUQDFOHV ZHUH IRXQG 7KLV LQFOXGHV ERWK VLGHV RI WKH JLOOV WKH EUDQFKLDO FKDPEHU HSLGHUPDO OLQLQJ DQG WKH FDUDSDFH XQGHUQHDWK WKH JLOOV $OWKRXJK WKLV VXJJHVWV VLWH VHOHFWLRQ WKUHH SHUWLQHQW DVVXPSWLRQV PXVW EH HYDOXDWHG WKH EHVW YHQWLODWHG VLWH FRUUHVSRQGV WR WKH RSWLPDO VLWH DGXOW GLVWULEXWLRQ UHIOHFWV ODUYDO VHWWOHPHQW UDWKHU WKDQ SRVWVHWWOHPHQW PRUWDOLW\ F\SULG VHWWOHPHQW LQYROYHV DFWLYH VHOHFWLRQ QRW SDVVLYH GLVWULEXWLRQ 9HQWLODWLRQ DQG WKH 2SWLPDO 6LWH 7KH UHTXLUHPHQWV RI DGXOW EDUQDFOHV KDYH QRW EHHQ UHVHDUFKHG LQ GHWDLO EXW PXVW LQFOXGH D PLQLPDO OHYHO RI R[\JHQ %DUQHV DQG %DUQHV f QXWULHQW DYDLODELOLW\ DQG WKH SUHVHQFH RI SURVSHFWLYH PDWHV $V IRU WKH ODWWHU UHTXLUHPHQW DJJUHJDWLRQ RI WKH DGXOWV DV GHPRQVWUDWHG LQ &KDSWHU RQH VKRXOG VXIILFH %DUQDFOHV DUH XQFRPPRQ DPRQJ VHVVLOH DQLPDOV LQ WKDW WKH\ KDYH LQWHUQDO IHUWLOL]DWLRQ $GXOW 4 PXHOOHUL DUH DEOH WR H[WHQG WKHLU PXVFXODU VWDON DQG REWDLQ D OHQJWK XS WR FP SHUVRQDO REVHUYDWLRQf &RXSOHG ZLWK D ORQJ SURWUXVLEOH SHQLV WKH\ VKRXOG EH DEOH WR PDWH ZLWK RWKHU EDUQDFOHV ZLWKLQ D UDGLXV FRPSULVLQJ DERXW WKH DUHD LQ ZKLFK WKH\ ZHUH IRXQG WR DJJUHJDWH EXW QRW UHDFKLQJ WKH ZKROH JLOO FKDPEHU :LWK UHVSHFW WR R[\JHQ DYDLODELOLW\ OHYHOV DUH UHODWLYHO\ KLJK LQ DOO SDUWV RI WKH JLOO FKDPEHU EXW SUHVXPDEO\ WKH EHVW YHQWLODWHG VLWH ZRXOG EH ZKHUH ZDWHU ILUVW HQWHUV WKH JLOO FKDPEHU +XJKHV HW DO f 6LQFH WKH EOXH FUDE WDNHV RQO\ b RI WKH R[\JHQ RXW RI

PAGE 100

ZDWHU SDVVLQJ WKURXJK WKH JLOO FKDPEHU DW UHVW %RRWK HW DO f R[\JHQ DYDLODELOLW\ LV SUREDEO\ DGHTXDWHHYHQ LQ WKH HSLEUDQFKLDO FKDPEHU ,Q UHJDUG WR QXWULHQW UHTXLUHPHQW OLWWOH LQIRUPDWLRQ LV DYDLODEOH EXW DGXOW EOXH FUDEV DUH RPQLYRURXV FDQQLEDOLVWLF DQG GHWULWLYRURXV /DXJKOLQ f DV ZHOO DV EHLQJ VORSS\ HDWHUV 7KH\ VKUHG WKHLU IRRG XVLQJ WKH PD[LOOLSHGV DQG PDQGLEOHV EHIRUH LQJHVWLQJ LW 3\OH DQG &URQLQ f RIWHQ FUHDWLQJ D FORXG RI SDUWLFXODWH PDWWHU SHUVRQDO REVHUYDWLRQf 7KH LQWDNH WR WKHLU JLOO FKDPEHU WKH 0LOQH(GZDUGV RSHQLQJ LV DW WKH EDVH RI WKH FKHOLSHG 0F0DKRQ DQG :LONHQV f DQG WKHUHIRUH LQ FORVH SUR[LPLW\ WR WKH PRXWK ,QMHFWLRQ RI PHWK\OHQH EOXH G\H LQWR WKH ZDWHU QHDU WKH EDVH RI WKH FKHOLSHG VKRZHG WKDW SDUWLFXODWH PDWWHU LV VZHSW LQWR WKH JLOO FKDPEHU SHUVRQDO REVHUYDWLRQf 7KH GLHW RI 4 PXHOOHUL DGXOWV LQ QDWXUH LV XQNQRZQ EXW WKH\ KDYH EHHQ PDLQWDLQHG IRU VHYHUDO PRQWKV LQ ODE FXOWXUHV RQ FUXVKHG $UWHPLD /DQJ f ZKLFK LV QXWULWLRQDOO\ VLPLODU WR WKH FUXVWDFHDQ IRRG FRPSRQHQWV WKDW PDNH XS D ODUJH SRUWLRQ RI EOXH FUDE JXW FRQWHQWV 'DUQDOO f 7KHUHIRUH WKH EHVW YHQWLODWHG VLWH PD\ DOVR EH WKH RSWLPDO DWWDFKPHQW VLWH ZLWK UHJDUGV WR QXWULHQW DYDLODELOLW\ :LWK UHVSHFW WR QHJDWLYH LPSDFWV 4 PXHOOHUL LV UHPDUNDEO\ VKHOWHUHG IURP SUHGDWLRQ LQ WKH EOXH FUDE JLOO FKDPEHU /LWWOH LV NQRZQ RI WKH UHODWLYH HIILFLHQF\ RI WKH EOXH FUDE JLOO UDNHUV HSLSRGLWHV RI VHFRQG DQG WKLUG PD[LOOLSHGV 3\OH DQG &URQLQ ff ZKLFK FOHDQ WKH VXUIDFH RI WKH JLOOV +RZHYHU LW DSSHDUV WKDW 4 PXHOOHUL DYRLGV UHPRYDO E\ DWWDFKLQJ WR WKH PDUJLQV DQG EDVHV RI WKH

PAGE 101

JLOOV UDWKHU WKDQ GLUHFWO\ RQ WKH HIIHUHQW YHVVHO :DONHU f 7KLV ZRXOG DOVR IDYRU WKH SURSRVHG RSWLPDO VLWH $GXOW 'LVWULEXWLRQ DQG /DUYDO 6LWH 6HOHFWLRQ 'LIIHUHQWLDO PRUWDOLW\ DW VLWHV ZLWKLQ WKH JLOO FKDPEHU FRXOG FDXVH DGXOW GLVWULEXWLRQ WR EH QRQUHSUHVHQWDWLYH RI EDUQDFOH F\SULG DWWDFKPHQW VLWH VHOHFWLRQ $OWKRXJK WKLV TXHVWLRQ KDV QRW EHHQ DGGUHVVHG GLUHFWO\ SUHYLRXV VWXGLHV RI 4 PXHOOHUL GLVWULEXWLRQ WKDW LQFOXGHG XQPHWDPRUSKRVHG DWWDFKHG F\SULGV GLG QRW UHSRUW D GLIIHUHQFH EHWZHHQ F\SULG DQG DGXOW GLVWULEXWLRQ :DONHU -HIIULHV HW DO f $FWLYH 6HOHFWLRQ 5DWKHU 7KDQ 3DVVLYH 'LVWULEXWLRQ 7KH DJJUHJDWHG GLVWULEXWLRQ RI EDUQDFOHV DW WKH EHVW YHQWLODWHG VLWH LQ WKH JLOO FKDPEHU FRXOG EH H[SODLQHG E\ SDVVLYH GLVWULEXWLRQ LQ WKH YHQWLODWRU\ VWUHDP DQG LPPHGLDWH DWWDFKPHQW RI ODUYDH WR WKH ILUVW VXUIDFH WKH\ HQFRXQWHU %DUQDFOH F\SULG ODUYDH UHVSRQG WR VXUIDFH FRQWRXU :HWKH\ f ZDWHU IORZ SDWWHUQV 5LWWVFKRI %UDQVFRPE DQG &RVWORZ f DQG FKHPLFDO FXHV /DUPDQ *DEERW DQG (DVW f ZKHQ VHOHFWLQJ DWWDFKPHQW VLWHV &\SULGV DUH DEOH WR PRYH DJDLQVW FXUUHQWV E\ VZLPPLQJ LQ WKH VORZPRYLQJ ERXQGDU\ OD\HU &ULVS f RU E\ FUDZOLQJ RQ WKH VXUIDFH &ULVS DQG %DUQHV f 6\PELRWLF EDUQDFOH ODUYDH DUH WKRXJKW WR XVH VXEVWUDWH WH[WXUH FXHV DV ZHOO DV KRVW FKHPLFDO FXHV LQ VHWWOHPHQW /HZLV f ([WUDFWV RI KRVW WLVVXHV SURPRWH VHWWOHPHQW LQ VHYHUDO V\PELRWLF FLUULSHGHV &ULVS DQG :LOOLDPV :LOOLDPV % +D\ZDUG DQG +DUYH\ f 7KH OHVV OLNHO\ LW LV WKDW D

PAGE 102

VHWWOLQJ F\SULG ZLOO HQFRXQWHU LWV IXWXUH KDELWDW E\ UDQGRP WKH JUHDWHU LV WKH QHFHVVLW\ IRU D PHFKDQLVP RI UHFRJQLWLRQ /HZLV f &\SULGV RI D V\PELRWLF EDUQDFOH VXFK DV 4 PXHOOHUL DUH XQOLNHO\ WR HQFRXQWHU WKHLU VSHFLDOL]HG DWWDFKPHQW VLWH DW UDQGRP 7KH FDSDELOLW\ RI F\SULGV WR UHVSRQG WR KRVW FKHPLFDO FXHV KDV EHHQ VKRZQ IRU 2FWRODVPLV FRU -HIIULHV HW DO f DQG RWKHU V\PELRWLF VSHFLHV &ULVS DQG :LOOLDPV f +RZHYHU LQ WKH SUHVHQW V\VWHP WKH RSWLPDO VLWH LV WKH EHVW YHQWLODWHG VLWH VR SDVVLYH VHWWOHPHQW DQG RSWLPDO VLWH VHOHFWLRQ FDQQRW EH GLVWLQJXLVKHG EHFDXVH WKH\ SUHGLFW VLPLODU GLVWULEXWLRQV $FWLYH YHUVXV SDVVLYH VHWWOHPHQW FRXOG EH GLVWLQJXLVKHG ZLWK HYLGHQFH WKDW 4 PXHOOHUL F\SULGV VDPSOH PXOWLSOH VLWHV EHIRUH DWWDFKLQJ 6XFK HYLGHQFH FRXOG EH REWDLQHG ZLWK PLFURFLQHPDWRJUDSK\ VWXGLHV ,Q RWKHU VWXGLHV FUDEV KDYH KDG VHFWLRQV RI WKHLU FDUDSDFH UHSODFHG ZLWK WUDQVSDUHQW SODVWLF WR REVHUYH YHQWLODWRU\ FXUUHQWV +XJKHV HW DO f 7KLV SUHSDUDWLRQ ZRXOG ZRUN LQ WKH SUHVHQW FDVH H[FHSW WKDW DOPRVW DOO VHWWOHPHQW RFFXUV LQ WKH K\SREUDQFKLDO FKDPEHU 6HH &KDSWHU f DQG RQO\ WKH HSLEUDQFKLDO FKDPEHU FDQ EH YLHZHG HDVLO\ 8QWLO WKH PHFKDQLVP RI SDVVLYH VHWWOHPHQW LV GLVSURYHG RSWLPDO VLWH VHOHFWLRQ IRU 4 PXHOOHUL ODUYDH FDQQRW EH XQHTXLYRFDOO\ DFFHSWHG +RVW VHOHFWLRQ ZDV VXJJHVWHG E\ WKH SUHYDOHQFH RI LQIHVWDWLRQ LQ WKH SUHGLFWHG RSWLPDO KRVW SUHYLRXVO\ LQIHVWHG ODUJH DGXOW FUDEV 6XFK FUDEV ZRXOG SURYLGH SRWHQWLDO PDWHV PROW LQIUHTXHQWO\ DQG SURYLGH D JUHDWHU YHQWLODWLRQ YROXPH :DONHU f VWDWHV ZLWKRXW SURYLGLQJ HYLGHQFH WKDW 4B PXHOOHUL F\SULGV ZLOO DWWDFK WR FUDEV RI DQ\ DJH KRZHYHU LQ P\ H[SHULHQFH WKH\ DUH UDUHO\ IRXQG LQ

PAGE 103

LPPDWXUH FUDEV 'HYHORSPHQW RI WKH UHODWHG 4 IURP PHWDPRUSKRVLV WR VH[XDO PDWXULW\ WDNHV RQO\ ZHHNV -HIIULHV HW DO f +RZHYHU PDWLQJ UHSURGXFWLRQ DQG EURRGLQJ RI EDUQDFOH ODUYDH WDNH XQNQRZQ DPRXQWV RI WLPH 'HYHORSPHQW LQ 4B PXHOOHUL PD\ QRW EH DV UDSLG DV LQ LWV WURSLFDO FRQJHQHU 6LQFH MXYHQLOH EOXH FUDE LQWHUPROW SHULRGV UDQJH IURP WR ZHHNV DIWHU LQVWDU 0LOOLNLQ DQG :LOOLDPV f WKH\ PLJKW PDNH VXLWDEOH KRVWV +RZHYHU DGXOW 4 PXHOOHUL FDQ OLYH DQG FRQWLQXH WR UHSURGXFH IRU VHYHUDO PRQWKV LQ DQ DGXOW EOXH FUDE WKHUHIRUH VHWWOHPHQW LQ D MXYHQLOH FUDE ZRXOG EH VXERSWLPDO -HIIULHV HW DO f GHPRQVWUDWHG WKDW 4 DQG 4 DQJXODWD F\SULGV FDQ GLIIHUHQWLDWH EHWZHHQ SUHPROW DQG LQWHUPROW FUDEV DQG ZLOO ZDLW IRU HFG\VLV WR RFFXU EHIRUH DWWDFKPHQW $OWKRXJK WKH PHFKDQLVP HQDEOLQJ WKHP WR GR WKLV LV XQNQRZQ LW LV OLNHO\ FKHPLFDO 6LPLODU FKHPLFDO FXHV FRXOG EH XVHG WR GLIIHUHQWLDWH MXYHQLOH EOXH FUDEV IURP DGXOWV DQG FRXOG H[SODLQ WKH b LQIHVWDWLRQ OHYHO LQ DGXOW EOXH FUDEV IRXQG LQ WKLV VWXG\ FRPSDUHG WR WKH b LQIHVWDWLRQ OHYHO LQ MXYHQLOH EOXH FUDEV WKDW KDYH REVHUYHG 7KH RUJDQLVP OHYHO RI WKLV LQYHVWLJDWLRQ DOVR LQFOXGHG WKH UHVSRQVHFRPSHQVDWLRQ RI WKH LQIHVWHG FUDE $W DOO EXW WKH KHDYLHVW LQIHVWDWLRQ OHYHOV WKRVH FUDEV WKDW GLHG IURP H[SHULPHQWDO VWUHVVf DQG DW WKH H[HUFLVH OHYHOV XVHG EDUQDFOH LQIHVWDWLRQ LQGXFHG RQO\ D PLOG GLVWXUEDQFH 7KH JUHDWHU LQFLGHQFH RI PRUWDOLW\ LQ LQIHVWHG FUDEV GXULQJ DHULDO H[SRVXUH KRXUVf DQG WUDQVSRUW IURP WKH VDPSOLQJ VLWH *DQQRQ f DQG WKH GHDWKV RI WKH H[WUHPHO\ KHDYLO\ LQIHVWHG FUDEV GXH WR H[SHULPHQWDO VWUHVV &KDSWHU f VXJJHVW WKDW WKH FUDEnV DELOLW\ WR FRPSHQVDWH LV OLPLWHG DQG WKH

PAGE 104

DSSURSULDWH VWUHVV SUREDEO\ FDQ DJJUDYDWH WKH HIIHFWV RI LQIHVWDWLRQ 7KH PHGLDQ LQIHVWDWLRQ OHYHO 4 PXHOOHUL SHU FUDEf LV ZHOO EHORZ WKHVH OLPLWV 7KH VWUHVV RI VXVWDLQHG VZLPPLQJ LQ WKH EOXH FUDE LV UHODWLYHO\ PLQRU GXH WR WKH FRXQWHUDFWLQJ HIIHFWV RI ODFWDWH DQG + RQ WKH R[\JHQ FRPELQLQJ FKDUDFWHULVWLFV RI KHPRF\DQLQ %RRWK HW DO f WKH XVH RI WKH H[WHUQDO PHGLXP DV D SURWRQ VLQN &DPHURQ 0LOOLJDQ HW DO f DQG WKH ZHOO GHYHORSHG YHQWLODWRU\ DQG FLUFXODWRU\ UHVSRQVH %RRWK HW DO 0F0DKRQ DQG :LONHV f 3HUKDSV D GLIIHUHQW H[SHULPHQWDO VWUHVV VXFK DV DHULDO H[SRVXUH %DWWHUWRQ DQG &DPHURQ f RU UDSLG HVFDSH VZLPPLQJ 6SLULWR f ZRXOG UHYHDO D JUHDWHU HIIHFW RI EDUQDFOH LQIHVWDWLRQ +RZHYHU WKH DELOLW\ RI WKH EOXH FUDE WR FRPSHQVDWH IRU WKHVH VWUHVVHV PLJKW SURYH WR EH HTXDO WR WKDW IRU VXVWDLQHG VZLPPLQJ 7KH FRPSHQVDWRU\ UHVSRQVHV WR EDUQDFOH LQIHVWDWLRQ LQ UHVWLQJ EOXH FUDEV ZHUH K\SHUYHQWLODWLRQ DQG WDFK\FDUGLD 7KH UHVSRQVH ZDV PLQRU UHODWLYH WR WKH FRPSHQVDWRU\ UHVSRQVHV WR H[HUFLVH %RRWK HW DO 0LOOLJDQ HW DO f K\SHUFDSQLD DQG K\SR[LD %DWWHUWRQ DQG &DPHURQ f %HFDXVH EDUQDFOHV ZHUH IRXQG DJJUHJDWHG LQ ODUJH PDWXUH FUDEV WKH SRVVLELOLW\ H[LVWV WKDW WKH FRPSHQVDWRU\ UHVSRQVH VHHQ LV QRW DQ HIIHFW RI LQIHVWDWLRQ EXW UDWKHU D SURSHUW\ RI ODUJH PDWXUH FUDEV +RZHYHU WKH FRQWURO FUDEV LQ WKHVH SK\VLRORJLFDO VWXGLHV &KDSWHUV DQG f ZHUH DOVR ODUJH PDWXUH FUDEV 7KH JUHDWHU WKH HODSVHG WLPH VLQFH D FUDEnV ODVW PROW WKH PRUH OLNHO\ LW LV WR EH LQIHVWHG ZLWK 2 PXHOOHUL RU HFWRFRPPHQVDOV RI DQ\ W\SH :DONHU f +\SHUYHQWLODWLRQ DQG WDFK\FDUGLD PD\ EH FKDUDFWHULVWLF RI FUDEV WKDW DUH ORQJWHUP SRVWPROW 7KH HOHYDWHG KHDUW UDWHV

PAGE 105

UHSRUWHG LQ WKLV VWXG\ KRZHYHU DUH JUHDWHU WKDQ WKRVH IRXQG LQ VHYHUDO VWXGLHV RI PDWXUH LQWHUPROW FUDEV %DWWHUWRQ DQG &DPHURQ %RRWK HW DO f $OWKRXJK LW LV QRW SRVVLEOH WR GHWHUPLQH WKH SRVWPROW GXUDWLRQ LQ D ZLOGFDXJKW FUDE RWKHU UHVHDUFKHUV KDYH XVHG GHJUHH RI FDUDSDFH ZHDU DQG SUHVHQFH RI DOJDH DQG HFWRFRPPHQVDOV DV URXJK LQGLFDWRUV RI SRVWPROW GXUDWLRQ -HIIULHV DQG 9RULV f ,Q P\ H[SHULHQFH WKHVH FKDUDFWHULVWLFV GR QRW VHHP WR EH DFFXUDWH SUHGLFWRUV RI 2 PXHOOHUL LQIHVWDWLRQ LQ 6HDKRUVH .H\ EOXH FUDEV 7KDW WKH FRPSHQVDWRU\ UHVSRQVH REVHUYHG LV GXH RQO\ WR WKH SUHVHQFH RI WKH EDUQDFOH FRXOG RQO\ EH WHVWHG E\ H[SHULPHQWDOO\ LQIHVWLQJ FUDEV LPPHGLDWHO\ DIWHU PROWLQJ DQG PHDVXULQJ WKHLU JDV H[FKDQJH SDUDPHWHUV UHODWLYH WR XQLQIHVWHG LPPHGLDWHO\ SRVWPROW FUDEV ([SHULPHQWDO LQIHVWDWLRQV ZRXOG DOORZ RWKHU DVSHFWV RI WKH DVVRFLDWLRQ WR EH VWXGLHG ([FLVLRQ RI WKH JLOO UDNHUV EHIRUH H[SHULPHQWDO LQIHVWDWLRQ ZRXOG DOORZ GHWHUPLQDWLRQ RI WKHLU UROH LQ SUHYHQWLQJ HFWRFRPPHQVDO HVWDEOLVKPHQW ([SHULPHQWDO LQIHVWDWLRQ ZRXOG DOVR DOORZ PHDVXUHPHQW RI EDUQDFOH GHYHORSPHQW DW GLIIHUHQW VLWHV ZLWKLQ WKH JLOO FKDPEHU SRVVLEO\ FRQILUPLQJ WKH GHVLJQDWLRQ RI WKH EDVH RI WKH PLGGOH JLOOV DV WKH RSWLPDO DWWDFKPHQW VLWH 3RSXODWLRQ 2FWRODVPLV PXHOOHUL LV D FRPPRQ HFWRFRPPHQVDO LQ 6HDKRUVH .H\ EOXH FUDEV b RYHUDOO PHDQ LQIHVWDWLRQ UDWHf DW UDWHV

PAGE 106

FRPSDUDEOH WR /RXLVLDQD EOXH FUDEV +XPHV f 0HGLDQ LQIHVWDWLRQ OHYHOV EDUQDFOHV SHU FUDEf LQGLFDWH WKDW PRVW RI WKH EOXH FUDE SRSXODWLRQ LV QRW VLJQLILFDQWO\ DIIHFWHG 7KH GLIIHUHQFH EHWZHHQ PHGLDQ DQG PHDQ LQIHVWDWLRQ OHYHOV EDUQDFOHVFUDEf UHVXOWV IURP D VPDOO QXPEHU RI PDVVLYH LQIHVWDWLRQV XS WR EDUQDFOHVf WKDW SUREDEO\ GR GHELOLWDWH WKHLU KRVWV +RVW(FWRFRPPHQVDO %HFDXVH WKH PDMRULW\ RI FUDE KRVWV DUH QRW VLJQLILFDQWO\ GLVWXUEHG DW OHDVW LQ WHUPV RI WKH PHDVXUHG SK\VLRORJLFDO SDUDPHWHUV WKLV V\PELRWLF UHODWLRQVKLS DSSHDUV WR EH D WUXH FRPPHQVDOLVP 6HOHFWLRQ SUHVVXUH RQ WKH EDUQDFOH LV OLNHO\ WR PLQLPL]H LPSDFW RQ WKH KRVW EHFDXVH LI WKH KRVW GLHV WKH EDUQDFOH LV XQOLNHO\ WR VXUYLYH :DONHU f 7KHUH LV DOVR VHOHFWLRQ SUHVVXUH RQ WKH FUDE DV KRVW WR FRPSHQVDWH IRU EDUQDFOH SUHVHQFH VXFK WKDW GLVWXUEDQFH LV PLQLPDO EHFDXVH D GHELOLWDWHG KRVW ZLOO EH OHVV VXFFHVVIXO LQ VXUYLYDO DQG UHSURGXFWLRQ 6LQFH ERWK SDUWLHV IDFH VLPLODU VHOHFWLYH SUHVVXUH LW LV QRW VXUSULVLQJ WKDW WKH UHODWLRQVKLS KDV HYROYHG VR WKDW WKH LPSDFW RI LQIHVWDWLRQ LV PLQLPDO 2QFH WKH EDUQDFOH DWWDFKHV WR WKH KRVW LW EHFRPHV GHSHQGHQW RQ LW $OWKRXJK PLQLPL]LQJ LWV LPSDFW RQ WKH KRVW WKH EDUQDFOH DOVR IDFHV VHOHFWLRQ SUHVVXUH WR PD[LPL]H WKH EHQHILWV LW UHFHLYHV IURP WKH KRVW 2QH ZD\ LV WR LQFUHDVH WKH UDWH RI ZDWHU WKH KRVW SDVVHV WKURXJK WKH JLOO FKDPEHU 7KLV SURYLGHV DQ LQFUHDVHG VXSSO\ RI QXWULHQWV R[\JHQ DQG SHUKDSV PRUH SRWHQWLDO PDWHV DV ZHOO DV

PAGE 107

LQFUHDVHG HOLPLQDWLRQ RI ZDVWHV $OWKRXJK D PHFKDQLVP LV XQFOHDU WKLV W\SH RI PRGLILFDWLRQ RI KRVW EHKDYLRU DQG SK\VLRORJ\ ZKLFK LV WHUPHG KRVW UHJXODWLRQ LV FRPPRQ LQ LQVHFW SDUDVLWRLGV 9LQVRQ DQG ,ZDQWVFK f 3DUDVLWRLGLF UHODWLRQVKLSV HYROYH WRZDUGV KRVW UHJXODWLRQ EHFDXVH WKH KRVW LV FDVWUDWHG E\ WKH SDUDVLWRLG 9LQVRQ DQG ,ZDQWVFK f 1DWXUDO VHOHFWLRQ DFWLQJ RQ D QRQUHSURGXFWLYH DQLPDO FDQQRW FDXVH HYROXWLRQDU\ FKDQJH 7KHUHIRUH VHOHFWLRQ LV LQFDSDEOH RI HQDEOLQJ WKH KRVW WR GHWHU SDUDVLWRLG FRQWURO RI LW $OWKRXJK WKLV LV QRW ZKROO\ DSSOLFDEOH WR WKH SUHVHQW FDVH WKH K\SHUYHQWLODWLRQ ; QRUPDO UDWHVf REVHUYHG LQ LQIHVWHG FUDEV LV GLVSURSRUWLRQDWH WR WKH FUDEV FRPSHQVDWRU\ UHVSRQVH LQ RWKHU SDUDPHWHUV ,W ZRXOG EH GLIILFXOW WR GHPRQVWUDWH HFWRFRPPHQVDO VWLPXODWLRQ RI K\SHUYHQWLODWLRQ EH\RQG WKDW QHHGHG IRU FRPSHQVDWLRQ ZLWKRXW D VSHFLILF PHFKDQLVP EXW WKH SRVVLELOLW\ RI KRVW UHJXODWLRQ LV LQWULJXLQJ DQG GHVHUYHV IXUWKHU VWXG\ 6HOHFWLRQ SUHVVXUH RQ WKH FUDE KRVW ZRXOG EH WRZDUGV PLQLPL]LQJ GLVWXUEDQFH GXH WR WKH HFWRFRPPHQVDO ,Q WKH HYHQW WKDW WKH LQIHVWDWLRQ OHYHO LQFUHDVHG WR WKUHDWHQLQJ OHYHOV WKH FUDEnV GHIHQVH ZRXOG EH WR PROW DQG VKHG WKH HFWRFRPPHQVDO EDUQDFOHV ZLWK WKH H[XYLDH :DONHU f

PAGE 108

/LWHUDWXUH &LWHG $OGULGJH -% DQG 1 &DPHURQ &2 H[FKDQJH LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ-RXUQDO RI ([SHULPHQWDO =RRORJ\ $OGULGJH % DQG 1 &DPHURQ *LOO PRUSKRPHWU\ LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ 'HFDSRGD %UDFK\XUDf&UXVWDFHDQD $QGHUVRQ D /DUYDO PHWDEROLVP RI WKH HSLFDULGLDQ LVRSRG SDUDVLWH 3URERSYUXV SDQGDOLFROD DQG PHWDEROLF HIIHFWV RI )/ SDQGDOLFROD RQ LWV FRSHSRG LQWHUPHGLDWH KRVW $FDUWLD WRQVD &RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ $ $QGHUVRQ E 0HWDEROLF UHVSRQVH RI WKH FDULGHDQ VKULPS 3DODHPRQHWHV SXDLR WR LQIHFWLRQ E\ WKH DGXOW HSLEUDQFKLDO LVRSRG SDUDVLWH 3URERSYUXV SDQGDOLFROD&RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ $ $QGHUVRQ 3RVWLQIHFWLRQ PRUWDOLW\ RI 3DODHPRQHWHV VSS 'HFDSRGD3DODHPRQLGDHf IROORZLQJ H[SHULPHQWDO H[SRVXUH WR WKH ERS\ULG LVRSRG 3URERSYUXV SDQGDOLFROD 3DFNDUGf OVRSRGD(SLFDULGHDf-RXUQDO RI &UXVWDFHDQ %LRORJ\ $QGHUVRQ ) DQG 1 3UHVWZLFK 5HVSLUDWRU\ JDV H[FKDQJH LQ VSLGHUV3K\VLRORJLFDO =RRORJ\ $UXGSUDJDVDP DQG ( 1D\ORU *LOO YHQWLODWLRQ DQG WKH UROH RI UHYHUVHG UHVSLUDWRU\ FXUUHQWV LQ &DUFLQXV PDHQDV /f -RXUQDO RI ([SHULPHQWDO %LRORJ\

PAGE 109

$UXGSUDJDVDP DQG ( 1D\ORU 3DWWHUQV RI JLOO YHQWLODWLRQ LQ VRPH GHFDSRG &UXVWDFHD-RXUQDO RI WKH =RRORJLFDO 6RFLHW\ /RQGRQ %DIIRQL 0 0RGLILFD]LRQL PHWDEROLFKH GHOO nHSDWRSDQFUHDV GL &DOOLDQDVVD ODWLFDXGD QHOOD FDVWD]LRQH SDUDVVLWDULD$WWL GHOOD $FFDGHPLD QD]LRQDOH GHL /LQFHL 5HQGLFRQWL &ODVVH GL ILVLFKH PDWHPDWLFKH H QDWXUDOL >@ %DUQHV + DQG 0 %DUQHV 6RPH UHODWLRQV EHWZHHQ WKH KDELWDW EHKDYLRU DQG PHWDROLVP RQ H[SRVXUH WR DLU RI WKH KLJK OHYHO LQWHUWLGDO FLUULSHGH &KWKDPDOXV GHSUHVVXV 3ROOLf +HOJROHQGHU :LVVHQ6FKDILOOLFKH 0HHUVXQWHUV %DWWHUWRQ & 9 DQG 1 &DPHURQ &KDUDFWHULVWLFV RI UHVWLQJ YHQWLODWLRQ DQG UHVSRQVH WR K\SR[LD K\SHUFDSQLD DQG HPHUVLRQ LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ-RXUQDO RI ([SHULPHQWDO =RRORJ\ %HFN 7 (IIHFWV RI DQ LVRSRG FDVWUDWRU 3URERSYUXV SDQGDOLFROD RQ WKH VH[ FKDUDFWHUV RI RQH RI LWV FDULGHDQ VKULPS KRVWV 3DODHPRQHWHV SDOXGR VXV %LRORJLFDO %XOOHWLQ %HKLQG $ 1HXURKRUPRQDO DQG UHIOH[ FRQWURO RI VFDSKRJQDWKLWH EHDWLQJ LQ WKH FUDE &DUFLQXV PDHQDV-RXUQDO RI &RPSDUDWLYH 3K\VLRORJ\ %RRWK & ( DQG % 5 0F0DKRQ 2[\JHQ XSWDNH GXULQJ VZLPPLQJ LQ &DOOLQHFWHV VDRLGXV$PHULFDQ =RRORJLVW %RRWK & ( DQG % 5 0F0DKRQ $FLGEDVH GLVWXUEDQFHV GXULQJ H[HUFLVH LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV3KYVLRORDLVW %RRWK & ( DQG % 5 0F0DKRQ /DFWDWH G\QDPLFV GXULQJ ORFRPRWRU DFWLYLW\ LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV -RXUQDO RI ([SHULPHQWDO %LRORJ\ %RRWK & ( % 5 0F0DKRQ 3 / GH)XU DQG 3 5 + :LONHV $FLGEDVH UHJXODWLRQ GXULQJ H[HUFLVH DQG UHFRYHU\ LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV5HVSLUDWLRQ 3K\VLRORJ\

PAGE 110

%RRWK & ( % 5 0F0DKRQ DQG $ : 3LQGHU 2[\JHQ XSWDNH DQG WKH SRWHQWLDWLQJ HIIHFWV RI LQFUHDVHG KHPRO\PSK ODFWDWH RQ R[\JHQ WUDQVSRUW GXULQJ H[HUFLVH LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV-RXUQDO RI &RPSDUDWLYH 3K\VLRORJ\ %UHWW 5 7KH PHWDEROLF GHPDQG IRU LQ ILVK SDUWLFXODUO\ VDOPRQLGV DQG D FRPSDULVRQ ZLWK RWKHU YHUWHEUDWHV 5HVSLUDWLRQ 3K\VLRORJ\ %UHWW 5 DQG 0 %ODFNEXUQ 0HWDEROLF UDWH DQG HQHUJ\ H[SHQGLWXUH RI WKH VSLQ\ GRJILVK 6DXDOXV DFDQWKLXV-RXUQDO RI WKH )LVKHULHV 5HVHDUFK %RDUG &DQDGD %XWOHU 3 ( : 7D\ORU DQG % 5 0F0DKRQ 5HVSLUDWRU\ DQG FLUFXODWRU\ FKDQJHV LQ WKH OREVWHU +RPDUXV YXOTDULVO GXULQJ ORQJ WHUP H[SRVXUH WR PRGHUDWH K\SR[LD-RXUQDO RI ([SHULPHQWDO %LRORJ\ &DPHURQ 1 &RPSHQVDWLRQ RI K\SHUFDSQLF DFLGRVLV LQ WKH DTXDWLF EOXH FUDE &DOOLQHFWHV VDSLGXV 7KH SUHGRPLQDQFH RI H[WHUQDO VHDZDWHU RYHU FDUDSDFH FDUERQDWH DV WKH SURWRQ VLQN -RXUQDO RI ([SHULPHQWDO %LRORJ\ &DPHURQ 1 $FLGEDVH HTXLOLEULD LQ LQYHUWHEUDWHVLQ 1 +HLVOHU HG $FLGEDVH 5HJXODWLRQ LQ $QLPDOV 3S (OVHYLHU $PVWHUGDP 7KH 1HWKHUODQGV &DPHURQ 1 DQG & 0 :RRG $SSDUHQW + H[FUHWLRQ DQG FDUERQ GLR[LGH G\QDPLFV DFFRPSDQ\LQJ FDUDSDFH PLQHUDOL]DWLRQ LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXVO IROORZLQJ PRXOWLQJ-RXUQDO RI ([SHULPHQWDO %LRORJ\ &RNHU 5 ( 1RWHV RQ D VSHFLHV RI EDUQDFOH 'LFKHODRVLVO SDUDVLWLF RQ WKH JLOOV RI HGLEOH FUDEV8QLWHG 6WDWHV )LVK &RPPLVVLRQ %XOOHWLQ &ULVS 7KH EHKDYLRXU RI EDUQDFOH F\SULGV LQ UHODWLRQ WR ZDWHU PRYHPHQW RYHU D VXUIDFH-RXUQDO RI ([SHULPHQWDO %LRORJ\

PAGE 111

&ULVS )DFWRUV LQIOXHQFLQJ WKH VHWWOHPHQW RI PDULQH LQYHUWHEUDWH ODUYDH-Q 3 7 *UDQW DQG $ 0 0DFNLH HGV &KHPRUHFHSWLRQ LQ 0DULQH 2UJDQLVPV 3S $FDGHPLF 3UHVV /RQGRQ &ULVS DQG + %DUQHV 7KH RULHQWDWLRQ DQG GLVWULEXWLRQ RI EDUQDFOHV DW VHWWOHPHQW ZLWK SDUWLFXODU UHIHUHQFH WR VXUIDFH FRQWRXU-RXUQDO RI $QLPDO (FRORJ\ &ULVS DQG % :LOOLDPV (IIHFWV RI H[WUDFWV IURP IXFRLGV LQ SURPRWLQJ VHWWOHPHQW RI HSLSK\WLF SRO\]RD1DWXUH /RQGRQ &URIWRQ + $ TXDQWLWDWLYH DSSURDFK WR SDUDVLWLVP 3DUDVLWRORJ\ 'DUQHOO 5 0 6WXGLHV RI WKH OLIH KLVWRU\ RI WKH EOXH FUDE &DOOLQHFWHV VDRLGXV 5DWKDEXQf LQ /RXLVLDQD ZDWHUV 7UDQVDFWLRQV RI WKH $PHULFDQ )LVKHULHV 6RFLHW\ 'DYH\ 7 6SDWLDO GLVWULEXWLRQ RI WKH FRSHSRG SDUDVLWH /HUQDQWKURSXV NURYHUL RQ WKH JLOOV RI EDVV 'LFHQWUDUFKXV ODEUD[ /f-RXUQDO RI WKH 0DULQH %LRORJ\ $VVRFLDWLRQ 8 GH)XU 3 / DQG & 3 0DQJXP 7KH HIIHFWV RI HQYLURQPHQWDO YDULDEOHV RQ WKH KHDUW UDWH RI LQYHUWHEUDWHV&RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ $ 'HMRXUV 3 DQG + %HHNHQNDPS &UD\ILVK UHVSLUDWLRQ DV D IXQFWLRQ RI ZDWHU R[\JHQDWLRQ5HVSLUDWLRQ 3K\VLRORJ\ 'XHUU ) &KDQJHV LQ WKH VL]HPHWDEROLF UDWH UHODWLRQVKLS RI /YPQDHD VWDJQDOLV DSSUHVVD 6D\ SURGXFHG E\ GLJHQHWLF WUHPDWRGH SDUDVLWLVP&RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\

PAGE 112

'XWKLH * DQG 0 +XJKHV 7KH HIIHFWV RI UHGXFHG JLOO DUHD DQG K\SR[LD RQ WKH R[\JHQ FRQVXPSWLRQ DQG VZLPPLQJ VSHHG RI UDLQERZ WURXW-RXUQDO RI ([SHULPHQWDO %LRORJ\ '\HU 0 ) DQG 5 ) 8JORZ 2Q D WHFKQLTXH IRU PRQLWRULQJ KHDUW DQG VFDSKRJQDWKLWH DFWLYLW\ LQ 1DWDQWLD-RXUQDO RI ([SHULPHQWDO 0DULQH %LRORJ\ DQG (FRORJ\ (QJHO 3 & DQG % -RQHV &DXVHV DQG HOLPLQDWLRQ RI HUUDWLF EODQNV LQ HQ]\PDWLF PHWDEROLWH DVVD\V LQYROYLQJ WKH XVH RI 1$' LQ DONDOLQH K\GUD]LQH EXIIHUV ,PSURYHG FRQGLWLRQV IRU WKH DVVD\ RI /JOXWDPDWH /ODFWDWH DQG RWKHU PHWDEROLWHV $QDO\WLFDO %LRFKHPLVWU\ )HLQEHUJ 6 ( 7KH $QDO\VLV RI &URVVFODVVLILHG &DWHJRULFDO 'DWD0,7 3UHVV &DPEULGJH 3S )XOO 5 DQG & ) +HUUHLG )LGGOHU FUDE H[HUFLVH 7KH HQHUJHWLF FRVW RI UXQQLQJ VLGHZD\V-RXUQDO RI ([SHULPHQWDO %LRORJ\ *DQQRQ $ 7 'LVWULEXWLRQ RI 2FWRODVPLV PXHOOHUL DQ HFWRFRPPHQVDO JLOO EDUQDFOH RQ WKH EOXH FUDE%XOOHWLQ RI 0DULQH 6FLHQFH *DQQRQ $ 7W DQG 0 :KHDWO\ 3K\VLRORJLFDO HIIHFWV RI DQ HFWRFRPPHQVDO JLOO EDUQDFOH RQ EOXH FUDEV$PHULFDQ =RRORJLVW $ *LOHV 1 $ FRPSDULVRQ RI WKH EHKDYLRXUDO UHVSRQVHV RI SDUDVLWL]HG DQG QRQSDUDVLWL]HG WKUHHVSLQHG VWLFNOHEDFNV *DVWHURVWHXV DFXOHDWXV WR SURJUHVVLYH K\SR[LD-RXUQDO RI )LVK %LROROJ\ *OHHVRQ 5 $ DQG 3 / =XELNRII 7KH GHWHUPLQDWLRQ RI KHPRO\PSK YROXPH LQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV XWLOL]LQJ &WKLRF\DQDWH&RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ $

PAGE 113

*UD\ ( $ FRPSDUDWLDYH VWXG\ RI WKH JLOO DUHD RI FUDEV %LRORJLFDO %XOOHWLQ +DPPHQ & 6 /DFWDWH R[LGDWLRQ LQ WKH XSSHUVKRUH EDUQDFOH &KWKDPDOXV GHSUHVVXV 3ROLf&RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ $ +DQHN DQG & + )HUQDQGR 6SDWLDO GLVWULEXWLRQ RI JLOO SDUDVLWHV RI /HSRPLV DLEERVXV /f DQG $PEORSOLWHV UXSHVWULV 5DIf&DQDGLDQ -RXUQDO RI =RRORJ\ +DYHQV DQG 5 0F&RQDXJKD 0ROWLQJ LQ WKH PDWXUH IHPDOH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ%XOOHWLQ RI 0DULQH 6FLHQFH +D\ZDUG 3 DQG 3 + +DUYH\ 7KH GLVWULEXWLRQ RI VHWWOHG ODUYDH RI WKH EU\R]RDQV $OFYRQLGLXP KLUVXWXP )OHPLQJf DQG $OFYRQLGLXP SROYRXP +DVVDOLf RQ )XFXV VHUUDWXV /-RXUQDO RI WKH 0DULQH %LRORJLFDO $VVRFLDWLRQ 8 +HQU\ 5 3 $ .RUPDQLN DQG 1 &DPHURQ 7KH UROH RI &D& GLVVROXWLRQ DV D VRXUFH RI +&2n IRU EXIIHULQJ K\SHUFDSQLF DFLGRVLV LQ DTXDWLF DQG WHUUHVWULDO GHFDSRG FUXVWDFHDQV-RXUQDO RI ([SHULPHQWDO %LRORJ\ +HUUHLG & ) (QHUJHWLFV RI SHGHVWULDQ DUWKURSRGVLQ & ) +HUULHG DQG & 5 )RXUWQHU HGV /RFRPRWLRQ DQG (QHUJHWLFV RI $UWKURSRGV 3S 3OHQXP 3UHVV 1HZ
PAGE 114

+XJKHV 0 DQG 0 0RUJDQ 7KH VWUXFWXUH RI ILVK JLOOV LQ UHODWLRQ WR WKHLU UHVSLUDWRU\ IXQFWLRQ%LRORJLFDO 5HYLHZV &DPEULGJHf +XPHV $ 1RWHV RQ 2FWRODVPLV PXOOHUL &RNHUf D EDUQDFOH FRPPHQVDO RQ FUDEV7UDQVDFWLRQV RI WKH $PHULFDQ 0LFURVFRSDO 6RFLHW\ -HIIULHV : % DQG + 9RULV 7KH GLVWULEXWLRQ VL]H DQG UHSURGXFWLRQ RI WKH SHGXQFXODWH EDUQDFOH 2FWRODVPLV PXHOOHUL &RNHU f RQ WKH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ f)LHOGLDQD=RRORJ\ &KLFDJR 0XVHXP RI 1DWXUDO +LVWRU\ 1HZ 6HULHV -HIIULHV : % + 9RULV DQG & 0
PAGE 115

/DQFLDQL & $ DQG 0 %R\HWW 'HPRQVWUDWLQJ SDUDVLWLF ZDWHU PLWHLQGXFHG PRUWDOLW\ LQ QDWXUDO KRVW SRSXODWLRQV 3DUDVLWRORJ\ /DQJ : + 7KH ODUYDO GHYHORSPHQW DQG PHWDPRUSKRVLV RI WKH SHGXQFXODWH EDUQDFOH 2FWRODVPLV PXHOOHUL &RNHU f UHDUHG LQ WKH ODERUDWRU\%LRORJLFDO %XOOHWLQ /DUPDQ 9 1 3 $ *DEERW DQG (DVW 3K\VLFRFKHPLFDO SURSHUWLHV RI WKH VHWWOHPHQW IDFWRU SURWHLQV IURP WKH EDUQDFOH %DODQXV EDODQRLGHV&RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ % /DXJKOLQ 5 $ )HHGLQJ KDELWV RI WKH EOXH FUDE &DOOLQHFWHV VDSLGXV 5DWKEXQ LQ WKH $SDODFKLFROD HVWXDU\)ORULGD %XOOHWLQ RI 0DULQH 6FLHQFH /HVWHU 5 7KH LQIOXHQFH RI 6FKLVWRFHSKDOXV SOHURFHUFRLGV RQ WKH UHVSLUDWLRQ RI *DVWHURVWHXV DQG D SRVVLEOH UHVXOWLQJ HIIHFW RQ WKH EHKDYLRU RI WKH ILVK &DQDGLDQ -RXUQDO RI =RRORJ\ /HZLV & $ $ UHYLHZ RI VXEVWUDWXP VHOHFWLRQ LQ IUHHOLYLQJ DQG V\PELRWLF FLUULSHGVLP ) 6 &KLD DQG 0 ( 5LFH HGV 6HWWOHPHQW DQG 0HWDPRUSKRVLV RI 0DULQH ,QYHUWHEUDWH /DUYDH 3S (OVHYLHU 1HZ
PAGE 116

0DWXUR ) 6 -U $ VWXG\ RI WKH EU\R]RD RI %HDXIRUW 1RUWK &DUROLQD DQG YLFLQLW\-RXUQDO RI WKH (OLVKD 0LWFKHOO 6FLHQFH 6RFLHW\ 0DXUR 1 $ DQG & 3 0DQJXP 7KH UROH RI WKH EORRG LQ WKH WHPSHUDWXUH GHSHQGHQFH RI R[LGDWLYH PHWDEROLVP LQ GHFDSRG FUXVWDFHDQV ,, ,QWHUVSHFLILF DGDSWDWLRQV WR ODWLWXGLQDO FKDQJHV-RXUQDO RI ([SHULPHQWDO =RRORJ\ 0F'RQDOG 5HVSLUDWRU\ SK\VLRORJ\ RI WKH FUDE &DQFHU PDJLVWHU3K' 7KHVLV 8QLYHUVLW\ RI &DOJDU\ &DOJDU\ $OEHUWD &DQDGD 0F'RQDOG % 5 0F0DKRQ DQG & 0 :RRG $Q DQDO\VLV RI DFLGEDVH GLVWXUEDQFH LQ WKH KHPRO\PSK IROORZLQJ VWUHQXRXV DFWLYLW\ LQ WKH 'XQJHQHVV FUDE &DQFHU PDDLVWHU -RXUQDO RI ([SHULPHQWDO %LRORJ\ 0F/DXJKOLQ 3 $ ,QWHUQDO DQDWRP\,Q ( %OLVV HG 7KH %LRORJ\ RI &UXVWDFHD YRO ,QWHUQDO DQDWRP\ DQG SK\VLRORJLFDO UHJXODWLRQ 3S $FDGHPLF 3UHVV 1HZ
PAGE 117

0F0DKRQ % 5 DQG / :LONHQV 9HQWLODWLRQ SHUIXVLRQ DQG R[\JHQ XSWDNHKU ( %OLVV HG 7KH %LRORJ\ RI &UXVWDFHD YRO ,QWHUQDO DQDWRP\ DQG SK\VLRORJLFDO UHJXODWLRQ 3S $FDGHPLF 3UHVV 1HZ
PAGE 118

2YHUVWUHHW 5 0 0DULQH 0DODGLHV" :RUPV *HUPV DQG 2WKHU 6\PELRQWV IURP WKH 1RUWKHUQ *XOI RI 0H[LFR0LVVLVVLSSL $ODEDPD 6HD *UDQW &RQVRUWLXP 0$6*3 2FHDQ 6SULQJV 0LVVLVVLSSL 3S 2YHUVWUHHW 5 0 0HWD]RDQ V\PELRQWV RI WKH EOXH FUDELQ : 9 9DQ (QJHO DQG + 0 3HUU\ HGV 3URFHHGLQJV RI WKH %OXH &UDE &ROORTXLXP 2FW 3S *XOI 6WDWHV 0DULQH )LVKHULHV &RPPLVVLRQ %LOR[L 0LVVLVVLSSL 3DOLQJ ( $ PHWKRG RI HVWLPDWLQJ WKH UHODWLYH YROXPHV RI ZDWHU IORZLQJ RYHU WKH GLIIHUHQW JLOOV RI IUHVKZDWHU ILVK -RXUQDO RI ([SHULPHQWDO %LRORJ\ 3HDUVH $ 6 2Q WKH RFFXUUHQFH RI HFWRFRQVRUWHV RQ PDULQH DQLPDOV DW %HDXIRUW 1 &-RXUQDO RI 3DUDVLWRORJ\ 3RXOVRQ 7 / &DYH DGDSWDWLRQV LQ DPEO\RSVLG ILVKHV $PHULFDQ 0LGODQGV 1DWXUDOLVW 3\OH 5 DQG ( &URQLQ 7KH *HQHUDO $QDWRP\ RI WKH %OXH &UDE &DOOLQHFWHV VDSLGXV 5DWKEXQ&KHVDSHDNH %LRORJLFDO /DERUDWRU\ 3XEOLFDWLRQ 6RORPRQnV ,VODQG 0DU\ODQG 3S 5DWKEXQ 0 7KH JHQXV &DOOLQHFWHV3URFHHGLQDV RI ,WKH 8QLWHG 6WDWHV 1DWLRQDO 0XVHXP f 5HLQKDUG ( 3DUDVLWLF FDVWUDWLRQ RI &UXVWDFHD ([SHULPHQWDO 3DUDVLWRORJ\ 5LWWVFKRI ( 6 %UDQVFRPE DQG &RVWORZ 6HWWOHPHQW DQG EHKDYLRXU LQ UHODWLRQ WR IORZ DQG VXUIDFH LQ ODUYDO EDUQDFOHV %DODQXV DUUPKLWULWH 'DUZLQ-RXUQDO RI ([SHULPHQWDO 0DULQH %LRORJ\ DQG (FRORJ\ 5XWOHGJH 3 6 &LUFXODWLRQ DQG R[\JHQ WUDQVSRUW GXULQJ DFWLYLW\ LQ WKH FUD\ILVK 3DFLIDVWDFXV OHQLXVFXOXV $PHULFDQ -RXUQDO RI 3K\VLRORJ\ 5

PAGE 119

6LQKD 1 3 DQG 3 'HMRXUV 9HQWLODWLRQ DQG EORRG DFLGEDVH EDODQFH RI WKH FUD\ILVK DV IXQFWLRQV RI ZDWHU R[\JHQDWLRQ WRUUf &RPSDUDWLYH %LRFKHPLVWU\ DQG 3K\VLRORJ\ $ 6PDWUHVN 1 $ 3UHVODU DQG 1 &DPHURQ 3RVWn H[HUFLVH DFLGEDVH GLVWXUEDQFH LQ *HFDUFLQXV ODWHUDOLV D WHUUHVWULDO FUDE-RXUQDO RI ([SHULPHQWDO =RRORJ\ 6RNDO 5 5 DQG ) 5RKOI %LRPHWU\: + )UHHPDQ DQG &RPSDQ\ 6DQ )UDQFLVFR &DOLIRUQLD 3S 6SLULWR & 3 $Q DQDO\VLV RI WKH VZLPPLQJ EHKDYLRXU LQ WKH SRUWXQLG FUDE &DOOLQHFWHV VDSLGXV0DULQH %HKDYLRU DQG 3K\VLRORJ\ 6X\GDP ( / 7KH PLFURHFRORJ\ RI WKUHH VSHFLHV RI PRQRJHQHWLF WUHPDWRGHV RI ILVKHV IURP WKH %HDXIRUW &DSH +DWWHUDV DUHD3URFHHGLQJV RI WKH +HOPLQWKRORJLFDO 6RFLHW\ RI :DVKLQJWRQ 7D\ORU ( : &RQWURO DQG FRRUGLQDWLRQ RI YHQWLODWLRQ DQG FLUFXODWLRQ LQ FUXVWDFHDQV 5HVSRQVHV WR K\SR[LD DQG H[HUFLVH -RXUQDO RI ([SHULPHQWDO %LRORJ\ 7D\ORU ( : 3 %XWOHU DQG $ $O:DVVLD 7KH HIIHFW RI D GHFUHDVH LQ VDOLQLW\ RQ UHVSLUDWLRQ RVPRUHJXODWLRQ DQG DFWLYLW\ LQ WKH VKRUH FUDE &DUFLQXV PDHQDV /f DW GLIIHUHQW DFFOLPDWLRQ WHPSHUDWXUHV-RXUQDO RI &RPSDUDWLYH 3K\VLRORJ\ 7D\ORU ( : 3 %XWOHU DQG 3 6KHUORFN 7KH UHVSLUDWRU\ DQG FDUGLRYDVFXODU FKDQJHV DVVRFLDWHG ZLWK WKH HPHUVLRQ UHVSRQVH RI &DUFLQXV PDHQDV /f GXULQJ HQYLURQPHQWDO K\SR[LD DW WKUHH GLIIHUHQW WHPSHUDWXUHV -RXUQDO RI &RPSDUDWLYH 3K\VLRORJ\ 7UXFKRW -3 /DFWDWH LQFUHDVHV WKH R[\JHQ DIILQLW\ RI FUDE KHPRF\DQLQ-RXUQDO RI ([SHULPHQWDO =RRORJ\

PAGE 120

7UXFKRW -3 5HJXODWLRQ RI DFLGEDVH EDODQFHLQ ( %OLVV HG 7KH %LRORJ\ RI &UXVWDFHD YRO ,QWHUQDO DQDWRP\ DQG SK\VLRORJLFDO UHJXODWLRQ 3S $FDGHPLF 3UHVV 1HZ
PAGE 121

:KHDWO\ 0 3K\VLRORJLFDO UHVSRQVHV RI WKH URFN FUDE &DQFHU LUURUDWXV 6D\ WR HQYLURQPHQWDO K\SHUR[LD $FLGEDVH UHJXODWLRQ 3K\VLRORJLFDO =RRORJ\ :KHDWO\ 0 % 5 0F0DKRQ : : %XUJJUHQ DQG $ : 3LQGHU $ URWDWLQJ UHVSLURPHWHU WR PRQLWRU YROXQWDU\ DFWLYLW\ DQG DVVRFLDWHG H[FKDQJH RI UHVSLURPHWU\ JDVHV LQ WKH ODQG KHUPLW FUDE &RHQRELWD FRPSUHVVXV/-RXUQDO RI ([SHULPHQWDO %LRORJ\ :KHDWO\ 0 DQG ( : 7D\ORU 7KH HIIHFW RI SURJUHVVLYH K\SR[LD RQ KHDUW UDWH YHQWLODWLRQ UHVSLUDWRU\ JDV H[FKDQJH DQG DFLGEDVH VWDWXV LQ WKH FUD\ILVK $XVWURSRWDPRELXV SDOOLSHV -RXUQDO RI ([SHULPHQWDO %LRORJ\ :LONHQV / 5HVSLUDWRU\ DQG FLUFXODWRU\ FRRUGLQDWLRQ LQ GHFDSRG FUXVWDFHDQV,Q & ) +HUUHLG DQG & 5 )RXUWQHU HGV /RFRPRWLRQ DQG (QHUJHWLFV LQ $UWKURSRGV 3S 3OHQXP 3UHVV 1HZ
PAGE 122

%,2*5$3+,&$/ 6.(7&+ $QGUHZ 7KRPDV *DQQRQ ZDV ERUQ LQ 2NODKRPD &LW\ RQ -XQH +H OLYHG LQ WKH $]RUHV 1HZ
PAGE 123

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0LFKHOH :KHDWO\ &KDLU $VVRFLDWH 3URIHVVRU RI =RRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $VVRFLDWH 3URIHVVRU RI =RRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG + (YDQV 3URIHVVRU RI =RRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ &DUPLQH $ /DQFLDQL 3URIHVVRU RI =RRORJ\

PAGE 124

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI $VVLVWDQW 3URIHVVRU RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI /f 3URIHVVRU nRI =RRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI =RRORJ\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU 'HDQ *UDGXDWH 6FKRRO

PAGE 125

81,9(56,7< 2) )/25LQD LOO LQ PX LQQ /8. OX $ 2 RF R nLnn +,


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E1L4K19PI_DEH6IQ INGEST_TIME 2017-07-31T19:21:11Z PACKAGE AA00003324_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES