Citation
The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys

Material Information

Title:
The influence of chromium on structure and mechanical properties of B2 nickel aluminide alloys
Creator:
Cotton, James Dean, 1961-
Publication Date:
Language:
English
Physical Description:
vi, 151 leaves : ; 29 cm.

Subjects

Subjects / Keywords:
Alloys ( jstor )
Aluminum ( jstor )
Atoms ( jstor )
Chromium ( jstor )
Ductility ( jstor )
Edge dislocations ( jstor )
Intermetallics ( jstor )
Nickel ( jstor )
Precipitates ( jstor )
Yield strength ( jstor )
Chrom ( swd )
Mechanische Eigenschaft ( swd )
Nickelaluminide ( swd )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1991.
Bibliography:
Includes bibliographical references (leaves 140-150).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by James Dean Cotton.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001709815 ( ALEPH )
AJC2100 ( NOTIS )
25541190 ( OCLC )
Classification:
ZM 3200 ( rvk )

Downloads

This item has the following downloads:


Full Text











THE INFLUENCE OF CHROMIUM ON STRUCTURE AND
MECHANICAL PROPERTIES OF B2 NICKEL ALUMINIDE ALLOYS














BY


JAMES DEAN COTTON


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY



UNIVERSITY OF FLORIDA


1991














ACKNOWLEDGEMENTS


Few individuals achieve the distinction of a Doctor of Philosophy degree without

the emotional, technical, and financial support of others; I am happy to recognize my own.
First, I thank my parents for their unwavering support of my goals. In addition, I have a

number of friends in Seattle who encouraged me to attempt this degree, in spite of my own

doubts. I particularly remember the encouragement of Steve Spear, Melanie Zerbe, and

Dave House. The companionship of the following people at the University of Washington

and the University of Florida will also be fondly recalled: Dick Kennish (those "required"

weekly ski trips), Kenji Kojima and the UW Intramural Volleyball Champions of 1988-

89, and Andy Duncan and Mark Weaver (who can quit drinking coffee anytime they want

to). The following NASA LRC employees were invaluable sources of of technical and/or

recreational advice: Randy Bowman, Ivan Locci, Mike Nathal, Bob Miner and Hugh

Gray. Thanks also go to Mark Behbehani for his excellent assistance in mechanical testing.

I especially acknowledge the technical guidance, suggestions and friendship of Ron Noebe.

Of course, the financial support of the University of Washington, the University of Florida,

DARPA and NASA are graciously acknowledged.

I have the utmost respect and gratitude for Professor Mike Kaufman, who always
had the insight to ask of me more than I felt capable of, and thereby helped me to grow

immensely. His passion for understanding (and ability to locate funding) has been an

inspiration.

Finally, the love and support of my wife, Maria, are recognized. The patience and
tolerance she has demonstrated, the counsel she has offered, and the good and bad times

we have shared during this period of our life, have been an important part of this goal.















TABLE OF CONTENTS



ACKNOWLEDGMENTS........................ ....................................................... ii

ABSTRACT ................................................................................................................ v

CHAPTERS

1 INTRODUCTION................................................................................. 1

Background............................................................................................... 1
Approach................................................................................................... ...... 3

2 REVIEW OF THE LITERATURE............................................................ 4

Nickel-Aluminum Phase Equilibria....................................... ................ 4
Structure of NiAl......................................................................................... 5
Mechanical Properties of NiAl.................................................................. 6
Deformation and Fracture........................................................................... 16
Ternary Alloying Effects on Plastic Deformation...................................... 25

3 EXPERIMENTAL PROCEDURE....................................... ............... 37

Materials.................................................................................................... 37
Optical Microscopy................................................................................... 39
Mechanical Property Testing................................................................... 41
Transmission Electron Microscopy......................................................... 44
X-ray Diffraction Analysis...................................................................... 47

4 RESULTS.................................................................................................. 48

Alloy Compositions............................................... ................................. 48
Optical Microscopy................................................................................... 48
Mechanical Properties...................................................................................... 51
Transmission Electron Microscopy................................... .................. 70

5 DISCUSSION.............. .......... .............. ................................. .............. 105

Microstructural Evolution................................................................................ 105
Dislocation Configuration and Slip.................................................................... 108
Composition-Structure-Property Relationships.......................................... 113
Site Preference of Chromium.......................................................................... 132



iii









6 SUMMARY AND CONCLUSIONS................................................................ 134

APPENDICES

A TRUE STRESS-TRUE STRAIN CURVES.................................................... 136

B RAW BURGERS VECTOR ANALYSIS DATA...................................... 138

REFERENCES.................................................................................................... 140

BIOGRAPHICAL SKETCH...................................................................................... 151















Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy


THE INFLUENCE OF CHROMIUM ON STRUCTURE AND
MECHANICAL PROPERTIES OF B2 NICKEL ALUMINIDE ALLOYS

By

James Dean Cotton

December, 1991



Chairman: Michael J. Kaufman
Major Department: Materials Science and Engineering


Major obstacles to the use of NiAl-base alloys and composites are low ductility and

toughness. These shortcomings result, in part at least, from a lack of sufficient slip

systems to accommodate plastic deformation of polycrystalline material (the von Mises

Criterion). It has been reported that minor additions of chromium to polycrystalline NiAl

cause the predominant slip system to shift from the usual <001>{110} to <111>{112}. If

this is true, then a major step toward increasing ductility in this compound may be realized.

The purpose of the present study was to verify this phenomenon, characterize it with

respect to chromium level and nickel-to-aluminum ratio, and correlate any change in slip

system with microstructure and mechanical properties. Compression and tensile

specimens were prepared from alloys containing 0 to 5 at.% chromium and 45 to 55 at. %

aluminum. Following about one percent strain, TEM foils were produced and the slip

systems determined using the g-b-0 invisibility criterion. Contrary to the previous results,

chromium was found to have no effect on the preferred slip system in of any of the alloys










studied. Possible reasons for the inconsistency of the current results with previous work

are considered. Composition-structure-property relationships are discerned for the alloys,

and good correlations are demonstrated in terms of conventional strengthening models for

metallic systems.













CHAPTER 1
INTRODUCTION


Background

A class of materials termed "intermetallics" has been the subject of an increasing

amount of study for the past decade. There are several reasons for this interest, most of

which revolve around a need for stable high-temperature ("high" with respect to most

metals) materials. The intermetallics are considered to occupy a position somewhere

between metals and ceramics, due to a significant covalent contribution to the overall

bonding of the compound which lends thermal stability. This often causes an intermetallic

to have a melting point above one, or both, of its pure constituent elements. In addition,

intermetallics often exhibit, relative to most pure metals, higher room temperature strength,

higher moduli and lower thermal expansion coefficients. Thermal and electrical

conductivities can exceed competing metallic alloys, due to the increased rigidity of the

structure. However, the same covalent component which creates such attractive properties

will, by nature, also reduce the ability of the material to undergo plastic deformation by

dislocation motion. Thus, the ductility and toughness of intermetallic compounds are

usually low compared with metals. This latter deficiency has been a major obstacle in the

development of intermetallics and is the reason for the current study.

One very important application for intermetallics is high-temperature components

of advanced turbine engines, such as blades and vanes [1, 2]. For such applications, B2

nickel aluminide (NiAl) is a material of choice and the next logical step in materials

evolution beyond current superalloys. Nickel aluminide has a high melting point (300K

above superalloys), a low density (75 percent that of superalloys or Ni3AI), a high thermal









conductivity (as much as eight times that of superalloys), a wide solubility range, good

processability, and is inexpensive [3].

In spite of these advantages, NiAl is brittle and rarely attains a tensile ductility in

excess of 2 percent at room temperature [4, 5, 6, 7, 8]. Room-temperature plastic

deformation in NiAl occurs predominantly by dislocation glide on the <100>(011}

systems [9, 10, 11], of which only three are independent [12]. According to the von Mises

Criterion [13], a minimum of five independent deformation mechanisms are required for

arbitrary deformation of any three-dimensional body. This requirement restricts plastic

flow in polycrystalline NiAl, as each grain must undergo arbitrary deformation to maintain

shape compatibility with the adjacent grains, and is at least one reason why it is not ductile.

However, if other slip systems could be activated, such as those which operate in body-

centered-cubic metals (<111>{0OT1 ), then sufficient slip systems would be available and a

major obstacle to ductility and toughness will have been removed.

One avenue to activating other slip systems that has been suggested is through

ternary alloying [14, 15, 16]. In fact, Law and Blackburn [15] reported in 1985 that the

addition of five atom percent chromium to NiAl caused the primary Burgers vector to

change from <100> to <111>. However, no increase in tensile ductility was observed.

This result is intriguing and several questions are obvious. If the Burgers vector was truly

altered and sufficient slip systems were available, then what other factor is restricting

plastic flow? Are there other compositions in this ternary system which may demonstrate

similar behavior? The primary question, fundamental to any scientific study is, "Are the

results reproducible?" As of the time of this writing, there have been no other studies

which confirm the effect of chromium on plastic flow in polycrystalline NiAl. Thus, the

objective of the current study is to examine, in a systematic fashion, the effect of chromium

on slip and mechanical properties in NiAl.












Since Law and Blackburn [15] initially studied cast alloys, and the room

temperature solubility of chromium in NiAl is less than two atom percent [17, 18], the

chromium content of the alloys in the current study was varied from zero to five atom

percent (0, 1, 2, 5). To examine the effects of stoichiometry, the aluminum content was

also varied, from 45 to 55 percent. A set of 15 alloys within this composition range was

cast and homogenized, including one exactly at the composition reported to exhibit <111>

slip [15]. To study processing effects and improve specimen integrity, five of the

compositions (binary stoichiometric NiAl and four aluminum-lean ternaries) were also

produced in extruded form. Both the cast and the extruded alloys were utilized for an

overall survey of Burgers vectors in this system. In addition, the relationships between

composition, processing, dislocation type and mechanical properties were examined. The

greater microstructural integrity of the extrusions allowed the determination of tensile

properties as well as brittle-to-ductile-transition-temperatures.














CHAPTER 2
REVIEW OF THE LITERATURE


This review covers topics germane to understanding the chemical and structural

factors controlling plastic deformation in NiAl under ambient conditions. The primary

topics are phase equilibria, mechanical behavior, deformation and fracture, and alloying

effects. The latter topic deals with the effect of ternary additions on slip behavior and

mechanical properties and is mainly confined to single phase alloys of the B2 structure.


Nickel-Aluminum Phase Equilibria

The binary nickel-aluminum phase diagram is shown in Figure 2-1. Five

intermetallic phases are present in this system. Of the five, the compound NiAl exhibits

the highest melting point, 1911K. Nickel aluminide also displays an unusually wide range

of solubility, an indication of high stability, spanning more than 20 atomic percent (all

compositions will be given in atomic percent) at 14000C. Deviations from stoichiometry

are accommodated by the substitution of nickel atoms onto aluminum sites in nickel-rich

compositions (antisite defects) and by the formation of vacancies on the nickel sites in

aluminum-rich compositions [19]. The inability of aluminum atoms to occupy the nickel

sites is usually explained by the larger atomic size of aluminum atoms. Vacancies are

formed because the overall alloy composition can only be maintained by the elimination of

a proportionate number of nickel atoms. These antisite and vacancy point defects have

been shown to locally order such that no defect has a similar defect as a first neighbor [20]

which leads to clusters of Ni2Al and Ni2A13, respectively [21].










Structure of NiAl

Beta NiAl crystallizes in the CsCI (B2) structure, in which one atom type resides at

the center position of a cubic unit cell and the other at the covers, thus comprising an

ordered body-centered cubic (BCC) lattice [23]. The structure is shown in Figure 2-2.

1800 i

1600


1400

1200

1000

800

600

300


10 20 30 40 50 60
Atomic Percent Ni


70 80 90 100
Ni


Figure 2-1. Binary Phase Diagram for Nickel-Aluminum System [22]





Ni 0


Figure 2-2. NiAl B2 Structure









This compound is a congruently melting Hume-Rothery phase with an electron-to-

atom ratio of 1.5, similar to CuZn, and is strongly ordered [24]. In addition, there is

evidence that short-range order exists in the melt [25]. This strong tendency to order is

indicative of a high ordering energy and a preference for bonding between aluminum and

nickel atoms. X-ray and electron structure factor measurements [26, 27, 28, 29] provide

evidence of a high degree of bond directionality, indicating electron concentration in <111>

directions between first-neighbor aluminum-nickel pairs and a mixture of both metallic and

covalent bonding. This large attraction between aluminum and nickel atoms accounts for

many of the unusual properties of NiAl.


Mechanical Properties of NiAl

Polycrystalline


Strength and Ductility. Room-temperature mechanical properties of NiAl in

tension and compression are summarized in Tables 2-1 and 2-2, respectively.

The earliest report on the mechanical properties of NiAl is that of Wachtell [30],

which gives a room-temperature modulus-of-rupture for powder-processed material of

735 MPa, with nil ductility. This value is high compared to more recent reports and is

likely a result of impurities introduced by powder processing. Later work by Maxwell and

Grala [6, 31, 32] reported a much lower fracture strength for cast material, about 100 MPa,

and zero ductility also. The first report of ambient temperature ductility in NiAl was by

Rozner and Wasilewski [33], who measured about 4 percent elongation and a yield

strength of 179 MPa in cast and extruded material. Quite recent studies have essentially

confirmed the ambient ductility as being about 1-2 percent, while the yield strength varies,

depending on the actual study, from 115 to 235 MPa, with a mean value of 167 MPa [4, 7,

33, 34, 35, 36, 37]. The differences in strength may result from variations in interstitial

content, such as carbon (a common impurity in nickel) [35] or stoichiometry. The grain









size has been shown experimentally to have little effect on either the yield or fracture

strengths of stoichiometric NiAl at ambient temperatures [36, 37], although fracture

mechanical models predict otherwise [34, 38, 39, 40, 41]. The possible effect of grain size

on mechanical properties is discussed in further depth below.


Table 2-1. Room-Temperature Tensile Properties of Polycrystalline NiAl

TYS UTS Max. Grain Size Processing
Reference Year (MPa) (MPa) Strain (%) (pm) Al (At.%) Method
[30] 1952 --- 738 0 -40 -50 PM, HP
[32] 1957 --- 103 0 -200 -50 cast
[33] 1966 179 207 4 no data 50.5 cast, extr.
[4] 1989 235 324 2.5 10-16 50.3 cast, extr.
[49] 1989 --- 283 0 33 50.6 PM, extr.
[35] 1990 154 228 2 30 -50 cast, extr.
[36] 1990 115 220 2.3 13 -50 cast, extr.
[34] 1991 220 400 0-1 5 -50 PM, extr.
[68] 1991 --- 350 0 10 50.6 PM, extr.


Table 2-2. Room-Temperature Compressive Properties of Polycrystalline NiAl


Note the correlation in Table 2-1 between ductility and processing by extrusion.

This correlation has been proposed to be due to a <111> fiber texture brought about by the

extrusion process and the retention of a mobile dislocation substructure [4]. As with many

metals, grains reorient during extrusion such that softer directions are aligned with the

extrusion axis; a portion of this texture is retained following recrystallization. When test

specimens are machined from the extrusions, the stress axis coincides with the extrusion

axis and thus the soft orientation. This will tend to allow a lower yield stress and, for a

given fracture stress, slightly higher ductility. In addition, higher ductility is apparent for








cast and extruded material compared with consolidated powder, which may be a result of

contamination acquired during powder processing. Any contaminant phases may operate

as critical flaws in the consolidated product.

Hardness. The room-temperature hardness of stoichiometric and near-
stoichiometric NiAl is in the range 250 320 kgmm-2 (Vickers hardness), depending upon

the exact composition and impurity content [6, 23, 42, 43, 44, 45, 46, 47].

Effect of Temperature. A substantial amount of data exists for the mechanical

properties of NiAl as a function of temperature [6, 7, 23, 32, 33, 34, 48, 49], the most

extensive of which are that of Rozner and Wasilewski (tension) and Pascoe and Newey

(compression) [7, 33].

Stoichiometric NiAl displays a smooth decrease in yield strength with increasing

test temperature and shows no indication of the strength anomaly sometimes observed in

B2 compounds [50], Figure 2-3. The figure is adapted from Vedula and Khadikar [51]

and represents the combined data of several investigators [4, 33, 34, 49], which agree quite

well. The yield strength of polycrystalline NiAl is low, about 170 MPa (25 ksi) at room

temperature, which makes it comparable to moderately strong aluminum alloys.

Similar to BCC metals, NiAI exhibits a transition from brittle to ductile behavior

with increasing temperature, as illustrated in Figure 2-4 for several different studies. A

Brittle-to-Ductile-Transition-Temperature (BDTT) may be determined for polycrystalline,

stoichiometric NiAl to be about 600K (0.3 Tm), since the results indicating higher BDTTs

may be due to nonstoichiometric material or impurity effects, both of which raise the

tensile strength further above the fracture stress. It is quite interesting to note that the

BDTT is lower for more recent studies, probably an effect of cleanliness (interstitial

elements) or better compositional control. Other extrinsic effects which may limit apparent

ductility (raise the BDTT) include defects in powder-processed material, surface roughness

and misaligned tensile specimens. In addition, increasing the strain rate (typically at 104/s)

has the effect of raising the BDTT about 50K for each order of magnitude [34, 52].








300


200 1


100 -


200


400 600 800 1000 1200 1400


Test Temperature (K)

Figure 2-3. Tensile Yield Strength of Polycrystalline NiAl as a Function of Temperature.
Adapted from Vedula and Khadikar [51]


0 200 400 600 800 1000


1200 1400


Test Temperature (K)

Figure 2-4. Ductility (Tension) of Polycrystalline NiAl as a Function of Temperature
[32,33,34,49].


IF









The collective ultimate tensile and fracture strength data of several investigators are

plotted below in Figures 2-5 and 2-6. The behavior in compression is roughly regular,

with approximately a 100 MPa increase in fracture strength for each 100K decrease in

temperature. In contrast, the tensile fracture strengths show considerable variability and

disagreement between studies below 1000K. This is probably due to differences in the

defect size and population, as fracture strength is inversely related to maximum defect size.

Although comparison between tensile and compressive fracture strengths is not strictly

valid, it can be immediately seen from these plots that the large discrepancy is more

pronounced at temperatures below 875K. This is likely due to the intervention of fracture

in tension, which occurs at a lower stress than plastic deformation when at lower

temperatures. In compression, although cracks form, they propagate in a stable fashion,

and deformation can continue to greater strains without complete failure [34].


300

250

200

U 150

100

B 50


0 200 400 600 800 1000 1200 1400

Test Temperature (K)

Figure 2-5. Ultimate Tensile Strength of Polycrystalline NiAl as a Function of
Temperature [6, 32, 34, 49]












1200

1000 Pascoe and Newey


800 A
AA A

600
0 -Ball and Smallman
400

200


0 200 400 600 800 1000 1200 1400

Test Temperature (K)

Figure 2-6. Fracture Strength in Compression of Polycrystalline NiAl as a Function of
Temperature [7, 48]


Effect of Stoichiometry. The stoichiometry of the NiAl compound has been

shown to have a marked effect on the mechanical properties. Exact stoichiometry, i.e.

Ni/Al = 1, is associated with a maximum in ductility and a minimum in strength and

hardness. Westbrook [23] first indicated this effect by microhardness testing of arc-melted

buttons, Figure 2-7, and associated this behavior with the defect structures proposed by

Bradley and Taylor [19]. Nickel-rich compositions are hardened relative to stoichiometric

compositions by the presence of nickel atoms on aluminum sublattice sites (antisite

defects) while aluminum-rich compositions are hardened to a greater extent by the

occurrence of vacancies on the nickel sublattice. This behavior also extends to yield

strength, which shows a minimum at the stoichiometric composition, Figure 2-8 [51].









800


600



400



200,


45 50 55 60 65

Atomic Percent Ni

Figure 2-7. Hardness of NiAl as a Function of Stoichiometry and Temperature [23]


700
573 K
0 Tensile and
Compression Data

500


S 400

vacancy
300 antisite defects
200 defects

200 -


100 I I I '
45 47 49 51 53 55

Atomic Percent Al

Figure 2-8. Effect of Stoichiometry on Yield Strength of Polycrystalline NiAl [51]


298


El



, ,


Cu u


1073K


K









There have been studies which appear to indicate that mechanical property maxima
and minima occur for slightly aluminum-rich compositions [33, 51]. However, the
difficulty in the exact determination of aluminum content (usually + 1.0 atom percent) and
the occurrence of physical property inflections at the exact stoichiometric composition [53,
54] indicate otherwise.
Effect of Grain Size. Based on early work by Cottrell [55], Schulson [39]
suggested there may be a critical grain size, dc, below which semi-brittle materials may
exhibit tensile elongation. He derived the following expression:



dc =
IYK kG



where KIc is the plane strain fracture toughness, Y is a geometrical parameter (order of 1),
and Ky and oo are the empirical Hall-Petch parameters. In this model, large grains are

considered to develop larger stress concentrations at grain boundaries than small grains,
due to the greater pileup of dislocations at the boundary. Assuming that the stresses to
propagate slip across a boundary and to nucleate a microcrack are similar, larger grains
should propagate cracks at a lower applied stress. Experimental verification of this concept
was later reported by the same author [40, 41] for cast and extruded Ni-49A1. This alloy
was extruded at a low temperature to retain a fine recrystallized grain structure, and
subsequent annealing treatments were imposed to attain a range of grain diameters, from 5
to 140 pm. Tensile tests at temperatures ranging from 293 to 873K indicated the existence
of a critical grain size, which was about 20 gpm at 673K, Figure 2-9. However, the room-
temperature ductility remained at about 2 percent, even at the finest grain size of 5 gm.

This would seem to indicate the critical grain size for Ni-49A1 at room temperature is
somewhat less than 5 pgm. This is supported by the work of Noebe et al. [34] who, using a









critical J-integral model developed by Chan [38], indicated that the critical grain size for
NiAl was about 1 uim, and that only 5 percent elongation can be expected for a grain size of

0.1 im. Further work by Nagpal and Baker [36] with cast and extruded Ni-50A1 found no

dependence of yield strength on grain size at 300K and, although finer grain sizes did

produce greater elongation, only 2.3 percent was achieved for the finest size studied (13
im). Quite recent results by Baker et al. [37] for Ni-45, -48 and -50A1 again found little

dependence of yield strength on grain size for Ni-50Al, but an increasing dependence with

deviation from stoichiometry. Since these tests were conducted in compression, no

ductility was reported.


50 100

Grain Diameter (microns)


150


Figure 2-9. Effect of Grain Size on Ductility of Ni-49A1 [40]


There are current efforts to produce NiAl with a grain size less than 5 microns,
utilizing special processing such as mechanical alloying plus extrusion to achieve a 1 p.m

grain size, and inert gas condensation to develop a 10 nm ("nanocrystalline") grain size [43,

56]. No tensile properties have been reported as yet for these materials.










Single Crystals

Yield Strength. The 0.2 percent offset yield strength for single crystal NiAl in
several orientations is shown in Table 2-3 with data from several studies [7, 48, 57, 58, 59,

60]. A marked anisotropy in the yield strength is apparent, in spite of the differences

between studies, and the typical strength of [100] (hard) oriented crystals is six times that

of [111] (soft) oriented crystals. Such a large orientation dependence is a direct result of

the preferred slip systems which are, in turn, a result of the directional bonding of NiAl.

Despite the known elastic anisotropy of B2 compounds [61], there is little relationship

between the elastic and plastic properties in this respect. For example, both NiAl and

CuZn are B2 compounds and have Zener anisotropy factors of 3.28 and 4.95, respectively.

However, because of the relatively larger metallic component of the bonding in CuZn, its
yield strength ratio Cl[l00]/[111] ~ 0.5, versus 6 for NiAl [61]. Thus, the character of the

bonding has a large effect in determining the properties of B2 compounds [62, 63, 64].


Table 2-3. Yield Strengths (MPa) of Single Crystal NiAl in Several Orientations at 300K

Reference [001] [011] [111] [001/[l11] [001]/[011]
[56] 1050 297 145 7.2 3.5
[57] 981 294 147 6.7 3.3
[7] 1246 245 --- --- 5.1
[18] 1385 195 --- --- 7.1
[59] --- 217 264 5.25 ---
[48] 497 120 --- --- 4.1


Table 2-4. Ductility and Strain to Fracture Data for Single Crystal NiAl

Crystal Tensile Ductility (%) Compressive Strain
Orientation (300 K) to Fracture (300 K) BDTT (K)
[001] 0 0.03 to > 0.15 575-675
[011] 0.5 to 2.5 0.10 to > 0.50 475
[111] 0.5 to 2.5 0.12 to 0.17 475
[123] 0.7 0.06 to 0.36 450









Ductility. Contrary to the behavior of many metals, single crystals of NiAl display
very limited ductility in tension at room temperature, although considerable strain to

fracture is possible in compression. Measurable tensile ductility has not been observed in

the "hard" [001] orientation. Some results of several single crystal studies [52, 59, 60, 65]

are summarized in Table 2-4. Interestingly, superplastic-like behavior has been observed

in [110] oriented crystals at 700K and 10-4s-1 strain rate in which 200 percent elongation

was achieved and "knife edge" fractures occurred [52].

These data bring to light a major concern, that the Peierls stress is very near to the

fracture stress at low temperatures where thermal activation contributes only minimally to

dislocation motion. Thus, the only way to increase the intrinsic toughness may be to

decrease bond covalency and the degree of ordering, preferably without detracting

significantly from the melting point or density.


Deformation and Fracture

The previous section was intended to give the reader an introduction to the

mechanical behavior of NiAl at room temperature. The large anisotropy of the mechanical

properties is a direct result of the operative slip systems and their relative difficulty of

activation. This section on deformation and fracture will attempt to explain some of the

controlling factors which determine the operative slip systems and their implications with

respect to strength, ductility and fracture.


Plastic Deformation and Slip Systems

Plastic deformation, in the strict sense for crystalline materials, takes place by the

motion of dislocations along particular directions and planes. For NiAl at ambient

conditions there have been several studies, using both transmission electron microscopy

(TEM) and surface slip trace analysis (SSTA), which have determined the operative slip








system to be <001>{ 110) for most cases [8, 9, 10, 57, 59, 60, 66, 67, 68, 69]. These are
shown in Table 2-5. There are two special cases where the slip system differs. [100]
oriented crystals, which have (ideally) no resolved shear stress on any <001>{110}
system, may slip on <111> 110), <111>[112}, or <110>(1TO) [10, 59, 67, 68]. [110]
oriented crystals appear to slip on {100) planes, which have a higher Schmid factor than
{ 110) in this orientation [57, 60, 66, 68]. Only one detailed study of room-temperature
deformed polycrystalline material (extruded powder) was noted, that of Bowman et al. [69].
Since extruded NiAl is known to develop a <111> fiber texture during extrusion [8, 42,
51], it might be expected that slip on the 100) plane would be quite rare, since in [111]
single crystals slip occurs on the {110) plane.

Table 2-5. Observed Slip Systems in NiAl Deformed at 300K

Reference Slip System Method Crystal Orientation
[56] <001>(110) SSTA [111]
[7] <001>{110) SSTA [111]
[67] <001>1110} TEM [111]
[59] <001>{110} TEM [111]
[48] <001>{110) TEM [110]
[56] <001>{100) SSTA [110]
[7] <001>{100} SSTA [110]
[67] <001>{ 100) TEM [110]
[59] <001>{100) TEM [110]
[67] <011>(OT1} TEM [100]
[10] <111>{???) TEM [100]
[66] <111>{110) TEM [100]
[8] <001>{???} TEM polycrystalline
[68] <001>{110) TEM polycrystalline

The operation of <001> slip is not common to all B2 compounds; in a number of
others, such as FeAl or CuZn, <111> slip is preferred [61]. The question of what factors
are important in determining the slip system in B2 compounds was initially examined by
Rachinger and Cottrell [64] who noted that highly ordered compounds of primarily ionic
bonding displayed <001> slip while those with largely metallic bonding displayed <111>









slip. According to [64], perfect [111] or [011] dislocations, if present, should dissociate

into unit dislocations according to


a[11l] ---> a[011] + a[100]

a[011] ---> a[010] + a[001]


According to Frank's rule (the elastic energy of a dislocation is proportional to the
square of the Burgers vector, Eel a gib2), there is no reduction in elastic energy in the above

reactions. Therefore, any imposed stress with a component containing a unit dislocation

will cause that component to move independently and dissociate the original dislocation.

For <111> slip to occur, dissociation according to


a[lll] ---> a/2[111] + a/2[111]


must take place. This reaction is accompanied by a reduction in elastic energy. The

resulting antiphase boundary (APB) which must form between the two partial dislocations

prevents <100> or <110> slip as long as the separation is significant, say the length of the

Burgers vector. This model allows an estimate of a critical APB energy, above which

<100> slip occurs, and below which <111> slip occurs, by the formula


Yc = aL.b


where, g. is the shear modulus, ao. is the theoretical shear strength (a 1/30), and b is the

Burgers vector. With typical values, ye is about 250 ergs/cm2. By the nearest neighbor

approximation, this equates to an ordering energy of about -0.06 eV, which may be

considered the critical ordering energy separating the two slip behaviors. Rachinger and

Cottrell found reasonable agreement with experiment for the compounds investigated;









however, Ball and Smallman [9] indicated that the above approach did not accurately

predict the slip systems for NiAl or AuZn. Using the Bragg-Williams approximation for

ordering energy, kTc4, and assuming that disordering occurs at the melting point of the

compound, they calculated an ordering energy for NiAl of -0.04 eV. Since this value is

less than the "critical" value determined by Rachinger and Cottrell, NiAl is predicted to

exhibit <111> slip, which is incorrect. Therefore, Ball and Smallman addressed the

problem of slip system prediction by using anisotropic elasticity theory to calculate the

elastic energy and relative mobility of several dislocation configurations. Configurations

with the lowest energy and highest mobility are expected to be most likely to operate. The

elastic energy per unit length of dislocation, E, was determined by


E = kb2 n(r
4;r r0)



where r and ro are the outer and inner cutoff radii, b is the Burgers vector and k is a

function of the elastic moduli and the line direction of the dislocation. The mobility*, S,

was estimated by


4S=e( -2ir
b b


where C is the dislocation width. C/b was estimated by


kd
b 2cb


* "Mobility" is a misnomer, since higher values of S are considered less mobile [62].








where c is the shear modulus in the slip direction and d is the spacing between glide planes.

That is, mobility increases with glide plane smoothness and ease of shear. Some results of

Ball and Smallman's calculations are presented in Table 2-6.


Table 2-6. Elastic Energy and Mobility of Several Dislocation Configurations

(hkll character E (ergs/cm)/104 S
111 T10 screw/edge 13.9/29.3 0.98/0.42
110 1TO screw/edge 10.3/15.3 0.32/0.06
100 011 screw/edge 9.3/8.8 0.46/0.51
100 010 screw/edge 9.3/7.7 0.67/0.71


From these results it is obvious that dislocations with <100> Burgers vectors are of

the lowest elastic energy and are therefore the most favorable to form. The <100>{011)

and <100>{010) systems are competitive in this respect, although <100>{011) appears to

be the more mobile of the two, and due to multiplication processes may be present in larger

proportions. Regardless of slip plane, the <100> dislocations of edge or mixed [70]

orientation are predicted to form more easily than the screw orientation. Slip by a/2

partial dislocations have not been considered in the above calculations because, as shown

by both Ball and Smallman [9] and later by Potter [63], the total energy of such

dislocations is still greater than that of the unit <100> dislocations due to the APB fault

energy.

It is worth pointing out that all the early workers mentioned above [9, 63, 64]

assumed the critical temperature for disordering (Tc) to be equal to the melting point (Tm)

in determining the APB and ordering energy. Although this assumption seems reasonable,

since long range order obviously cannot be maintained in a liquid, there is good reason to

consider otherwise. First, from a thermodynamic point of view, the onset of melting only

indicates that the liquid has a lower free energy than the solid, not that disordering is

imminent. Second, there is experimental evidence [25] that some degree of short range









order is maintained in the liquid well above the melting point. Finally, the APB energy for

NiAl calculated by Potter [63] based on Tc = Tm for faulting on <111>{ 110) was 223

ergs/cm2. This is at strong variance with values determined both experimentally by TEM

analysis [71] (at least 500 ergs/cm2) and by first principles calculations [28, 72] (800

ergs/cm2). Thus, NiAl is much less the "borderline" case of <100> slip than originally

thought.

Lautenschlager et al. [62] also examined the problem of slip system prediction in

CsCI type compounds. They studied the effect of the atom size ratio, RA/RB, as well as the

bonding type and crystal orientation (with respect to applied stress), on the observed slip

system. Using a hard-sphere model, they determined that RA/RB has a strong effect on the

slip plane roughness as much better packing can be achieved when RA/RB tends toward

0.732. For example, the perpendicular displacement of the glide plane during <100>(011)

slip is 0.159a for RA/RB= 0.732 and 0.293a for RA = RB; for <111>{011) slip these

values are 0.209a and 0.063a, respectively. Therefore, <111> slip is promoted when RA

and RB are similar. The effect of bonding type (ionic, covalent or metallic) was observed

to promote <111> slip when metallic bonding dominates and <001> otherwise. Crystal

orientation, relative to the applied stress, affects the preferred slip system according to

Schmid factor considerations, and thereby promotes <111> Burgers vectors in general.

The orientation effect is illustrated in Figure 2-10, after Lautenschlager [62].

For compounds such as NiAl, according to Lautenschlager et al., the bonding and

orientation factors tend to cancel one another, and relegate the slip system choice to the

RA/RB ratio. The estimation of the amount of local strain at the glide plane by a hard

sphere model for each slip system provides criteria for predicting the most likely system to

operate. By this approach, compounds with RA/RB tending to 1.000 will prefer <111>

slip and those with RA/RB tending to 0.732 will prefer <100> slip, with the critical RA/RB

ratio being about 0.95. For NiAl, RA/RB was estimated to be 0.847, which predicts

<100>{011), the experimentally observed system. Of course, accurate determination of









RA/RB for any intermetallic compound is difficult, as it depends on the known values for
the atomic radii and the degree of charge depletion or accumulation. Further, the charge
distribution has no requirement of sphericity, particularly in cases of strong, directional
bonding. In fact, close examination of atom positions during <100>{011) slip of CsCl
compounds reveals that this type of slip tends to maximize the continuous contact between
unlike atoms.


(101) {112)
<111> 0 <





<111> <101




(101) (001)
<0102 <010




Figure 2-10. Influence of Crystal Orientation on B2 Slip Systems. Each slip system is
favored in the shaded regions. After Lautenschlager et al. [62].

Implications of von Mises Criterion

The sole operation of <100>{011) slip can produce only three independent slip
systems [12]. This number is insufficient to allow general plastic flow in a polycrystalline
body, as five independent systems are required to produce the arbitrary shape change of
each grain to maintain contact with adjacent grains [13]. Therefore, even though the critical
resolved shear stress (CRSS) for <100>{011) slip is reasonably low [57], compressive









deformations as small as 1 percent have been shown to produce visible grain boundary

fissures due to poor slip transfer to adjacent grains [69]. In tension, these fissures provide

an easy path for intergranular fracture. This process is illustrated schematically in Figure

2-11. The lack of sufficient slip systems in NiAl has prompted research [14, 15, 16, 73] to

alter the primary slip system from <100>{011) to <111>{110), which has the required

number of independent slip systems.

The combined operation of two slip system families can also provide five

independent slip systems, when they cannot individually [74]. For example, combined

operation of <100>{011) (three systems) and <110>{1TO} (two systems) produces five

independent systems. This provides an alternative for satisfying the von Mises criterion

without <111> slip, which would otherwise require a significant reduction in ordering

energy.


intergranular
crack forms A


Figure 2-11. Effect of Insufficient Number of Independent Slip Systems on Plastic
Deformation in Polycrystals










Fracture of NiAl

The tensile fracture mode of polycrystalline NiAl is intergranular (IG) at the

stoichiometric composition [4, 49] and transgranular (TG) in off-stoichiometric

compositions [15]. As described above, IG fracture in NiAl is a natural result of plastic

flow on three independent slip systems with no other deformation mechanisms. This is

due to a shape incompatibility between adjacent grains and the creation of IG cracks which

coalesce and lead to catastrophic IG failure. However, for certain crack plane/grain

boundary orientations, it is not unreasonable that TG failure (cleavage) will be favored.

The TG failure in off-stoichiometric compositions is probably due to the difficulty of

dislocation motion past constitutional point defects. The preferred TG cleavage plane has

been reported to be (110) in stoichiometric NiAl [75].

Other arguments have been put forth to explain the presence of IG fracture in

stoichiometric NiAl. The effect of certain embrittling agents, such as phosphorus or sulfur,

which segregate to grain boundaries, is well-documented in ferrous metallurgy literature

and has been considered to explain IG fracture in NiAl. Westbrook [76] investigated the

effect of oxygen and/or nitrogen on the grain boundary hardness of AgMg and NiAl and

concluded that these interstitials segregated to the grain boundary regions and increased the

BDTT. However, more recent work by Zeller et al. [77] and George et al. [35] utilizing

scanning Auger microscopy (SAM) has shown that grain boundaries in binary NiAl are

free of any segregated impurities, including carbon, oxygen, boron or sulphur. This has

been interpreted [35] as an indication that the grain boundaries in NiAl are intrinsically

weak. In contrast, grain boundary structure simulations [78] seem to indicate that the

boundaries should not be intrinsically brittle, provided there are no excess aluminum atoms

at the boundary. Since off-stoichiometric NiAl alloys tend to fracture in a TG mode [15], it

appears that grain boundaries are as strong as the bulk. Therefore, one would conclude that









the grain boundaries in NiAl are not intrinsically (structurally) weak, but become the site of

Griffith defects when slip is activated.


Ternary Alloying Effects on Plastic Deformation

This section reviews the effects of ternary alloying additions to NiAl on plastic

deformation and mechanical properties. Primarily single phase B2 alloys are considered.

For convenience, microalloying (less than one atomic percent) and macroalloying additions

are discussed separately.


Microalloying Additions


Boron. Boron has been found to prevent grain boundary fracture in Ni3Al and to

induce ductility in doing so. Based on this work, boron was also added to NiAl in hopes

of achieving the same result [15, 35]. Law and Blackburn [15] added 0.25 percent boron

to stoichiometric NiAl in both cast/extruded and powder/extruded forms and found no

increase in ductility. In fact, the BDTT was elevated nearly 200K by the boron additions.

The fracture mode was reported to shift from IG to TG, although whether this was due to

an increase in grain boundary cohesiveness or the lack of plastic flow due to solid solution

strengthening is not known. In a later study, George and Liu [35] added 30, 100 and 300

wppm (parts per million by weight) to cast and extruded NiAl alloys and compared them
with binary NiAl. They found that boron did not impart any ductility to NiAl, although the

fracture mode was reported to be TG with as little as 30 wppm while the percent elongation

remained about two percent. George and Liu explained the change in fracture mode as

being due to grain boundary strengthening by the boron, and did indeed find a significant

segregation of boron to the grain boundaries. The boron additions also dramatically

increased the strength of the alloys, about 4500 MPa/atomic percent boron. Similar

ductility between the binary and NiAl+30 wppm alloys seems to indicate that the change in









fracture mode was due to a grain boundary effect and not simple yield strength elevation

(lack of plastic flow). Strengthening of the grain boundaries by boron would make IG

cracking more difficult, but would not necessarily facilitate slip transferral to adjacent

grains or activate additional slip systems. Thus, NiAl with 30 wppm boron probably has

smaller Griffith defects due to unaccommodated slip at the grain boundary. If the grain

boundaries are truly strengthened, further cracking should take place along cleavage planes

to produce the observed TG fractures. That is, the observation of grain boundary

strengthening by boron addition does not imply that the boundaries are inherently brittle.

Carbon. Carbon is a common impurity in most commercial purity elemental nickel

and, therefore, is probably present in nearly all NiAl alloys to some degree. George and

Liu [35] intentionally added 300 wppm carbon to "high purity" NiAl and noted a strength

increase similar to that of boron; no tensile elongation was measurable. The fracture mode

for the carbon-containing alloy was IG and SAM analysis of the grain boundary surfaces

showed that carbon does not segregate to the grain boundaries. (Recent re-analysis [79] of

the published fractographs for this alloy by point counting has shown it to be mostly TG.)

Beryllium. In the same study, George and Liu also measured the effect of adding

500 wppm beryllium to NiAl. This alloy exhibited about 3 percent tensile elongation at

room temperature and a slightly elevated yield strength (-15 percent greater than binary

NiAl). Fracture occurred by IG separation and no beryllium appeared to segregate to the

grain boundaries, which indicates that beryllium has little effect upon slip in NiAl aside

from a small solid solution hardening effect.

Chromium. Zirconium and Titanium. These elements are known to be effective

"getters" for interstitial elements such as carbon or oxygen. Field et al.. [18] added 0.05

and 0.2 atomic percent chromium to [001] oriented single crystals in an effort to measure

the effect of chromium on dislocation type and character during compressive deformation.

The chromium appeared to promote <111> slip relative to the binary; however, no APBs

in the <111> dislocations were visible by TEM and thus no significant reductions in the









APB energy were apparent. As shown above, <111> slip in binary NiAI is the preferred

slip system in this orientation in the absence of kinking, regardless of the presence of

chromium, which makes any conclusions concerning slip somewhat tentative. It was

suggested by Field et al. [18] that the ease of <111> dislocation activation was due to a

gettering effect of the chromium, since Cr7C3 carbide precipitates were observed during

TEM examination. To further investigate this effect, another NiAl alloy containing 0.45

percent Ti and 0.05 percent Zr (two very potent carbon scavengers) was prepared. This

alloy behaved similarly to the chromium-containing alloys, although much greater

strengthening was observed, perhaps due to the larger size of the Zr atoms. No solute

softening was apparent, which may indicate a lack of gettering since the elements

responsible for solid solution strengthening are removed from solution to form carbides.

Therefore, the enhanced <111> activation was considered to be due to "differential

proportional hardening," a general strengthening of all slip systems which decreases the

relative differences in strength.

Zirconium was added to polycrystalline (cast and extruded) NiAl in a study by

Bowman et al. [69] at the 0.05 percent (500 ppm) level. In this study, Zr was found to

elevate the BDTT by about 300K and increase the strength significantly. No tensile

ductility was observed and the fracture mode in the Zr-doped alloys was a combination of

IG and TG. Extensive TEM examination determined that the operative slip system in both

binary and Zr-containing alloys was <001>{ 110). Therefore, Zr appears to have no effect

on the operative slip system in NiAl.

Iron. Gallium and Molybdenum. A recent study by Darolia [3] indicated that 0.25

percent Fe increases the tensile ductility of [110] single crystals from two to nearly six

percent at room temperature. Similar effects of 0.1 percent Ga and Mo were also

measured, in which the ductilities were 4.5 and 2 percent, respectively. As shown in Table

2-4, typically one to two percent tensile elongation is measured in single crystals of NiAl in

this orientation, which by comparison makes the results of Darolia quite striking. Since the









beneficial effect of these elements disappears at higher alloying levels, the mechanisms)

responsible is unknown at this time. However, since the slip system remains unchanged

from <001>{ 110) [80] it is possible that the solute atoms assist in dislocation nucleation.

This effect would likely increase the homogeneity of slip and therefore distribute

deformation more evenly throughout the crystal instead of to confined slip bands.

Macroalloying Additions

To effect a change in the basic plastic deformation behavior of NiAl by adding a

ternary addition, the addition must be readily soluble. The phase equilibria of a number of

elements may be conveniently grouped according to the ternary element's position in the

periodic table, Figure 2-12.




Sc Ti V M Fe Ni Z

Y Z %T c u P

LaH Ta W O IrHT Pt

SAl-Ni-X ternary phase(s)
NiAl-X pseudobinary eutectic
1 High solubility in NiAl and/or forms B2 aluminide

Figure 2-12. Portion of Periodic Table of the Elements Illustrating General Alloying
Behavior of Ternary Additions to NiAl


The elements in Groups IIIB, IVB and VB scandiumm, titanium, vanadium,

yttrium, zirconium, niobium, lanthanum, hafnium and tantalum) form at least one ternary

intermetallic compound with nickel and aluminum, usually the Heusler phase, Ni2AlX,

and are usually of limited solubility [81, 82, 83, 84, 85, 86, 87, 88]. Elements in Group

VIIB (chromium, molybdenum, tungsten), and also rhenium, form "pseudobinary"









eutectic systems with NiAl and also have limited solubility in NiAl [16, 17, 84, 89, 90,91,

92]. Vanadium also forms a pseudobinary eutectic with NiAl [84, 93], and is unique in

that it is the only element known to fit into the first and second categories. The

pseudobinary eutectic systems allow two phase equilibrium between NiAl and the BCC

element and have potential for in situ ductile phase reinforcement. In fact, considerable

research has gone into the development of directionally solidified pseudobinary eutectics

such as NiAl-Cr and NiAl-Mo in which rods of alpha-Cr or alpha-Mo are distributed in a
P-NiAl matrix [94]. The Group VIII elements (plus manganese and copper) display large

solubility in NiAl and their B2 aluminides are often isostructural [73, 88, 95, 96, 97, 98,

99, 100, 101, 102]. This latter category offers considerable alloying potential.

Ion. Several studies have been conducted on single phase ternary NiAl+Fe alloys

[15, 73, 103, 104, 105, 106, 107]. Iron additions are perhaps the most intuitively obvious,

since FeAl can be ductile at room temperature, exhibits <111> slip [108], and is

isostructural with NiAl [100]. Law and Blackburn [15] added from 10 to 30 percent iron

to NiAl alloys containing a constant 48.5 percent aluminum and concluded the alloys were

too brittle for further testing based on cracks observed during machining. Patrick et al. [73]

produced a series of ternary alloys along the compositional tie-line from Ni-40A1 to Fe-

40A1, deformed them in compression at room temperature, and analyzed the dislocations

by TEM. Their results indicated that more than 30 percent iron was necessary to effect a

change in Burgers vector from <100> to <111>. In 1984, Inoue et al [107] reported a

tensile ductility of five percent for single phase Ni-30A1-20Fe wire produced by rapid
solidification processing (RSP). RSP induced a martensitic reaction, B2 -4 L20, and a

very fine grain size of 4 microns. In the same study, Ni-30A1-30Fe processed in the same

manner exhibited nil ductility. Two recent studies [103, 106] of Ni-30A1-20Fe
demonstrated that cast and extruded material with a 25 pm grain size has essentially zero

ductility and slips by the motion of <100> dislocations. In contrast, Kostrubanic et al.

[104, 105] has shown that the addition of a fine dispersion of Y203 particles to Ni-35A1-









20Fe RSP ribbon by mechanical alloying and hot pressing can produce ambient toughness

values as high as 34 MPa/m0-5, as determined by four-point bending of notched specimens

(ASTM E399). This is a substantial improvement over binary stoichiometric NiAl which

has a toughness of about 6-8 MPa/m0-5 [74, 98] and was considered to be due to the very

fine grain size and induced plastic flow [105].

Chromium. Manganese and Gallium. During the course of a study of the effect of

alloying on the microstructure and mechanical properties of cast polycrystalline NiAl-base

alloys, Law and Blackburn [15] noted four compositions which were damage-tolerant

enough to withstand electrostatic discharge machining (EDM) without extensive cracking:

Ni-48.5A1, Ni-48.5A1-5Cr, Ni-44A1-5Mn and Ni-48A1-0.5Ga. After deforming

compression specimens of these alloys to about 2 percent strain at room temperature, TEM

analysis was conducted. Both the chromium- and manganese-containing alloys were

determined to contain dislocations with <111> Burgers vectors. Slip in Ni-48.5A1-5Cr

was reported to occur on (112) planes within well-defined slip bands among spherical

alpha-chromium precipitates. These dislocations were reportedly of screw character and

were arranged in dipoles within the bands. In Ni-44A1-5Mn, <111>{112) slip was

reported although the dislocations were not confined to slip bands. In this case, the

dislocations were primarily edge in nature. Analysis of the binary and gallium-containing

alloys deformed at 300K revealed only <100>{01 1) slip. Some of the results of Law and

Blackburn are summarized in Table 2-7. In spite of the reported change in slip system for

the chromium- and manganese-containing alloys, no tensile ductility was apparent at 300K.

The low mobility of <111> dislocations was offered as a possible explanation for this lack

of ductility.

In a related study [16], directionally-solidified Ni-43A1-5Cr was also reported to

exhibit <111> slip. However, since the growth direction of the ingot was [101], as was as

the compression axis of the machined specimens, the resolved shear stress on the

<100>{011) systems were low compared with those on the <111>{ 112) systems. In this









manner, <100> slip was discouraged by at least a factor of two, based on Schmid factor

comparisons of the two most favored <100> and <111> containing systems. Although it

can be argued that <111> slip was made less difficult (recall that a factor of six was noted

above for binary NiAl), no actual preference for <111> slip over <100> slip was

demonstrated.


Table 2-7. TEM Results of Law and Blackburn [15] for Polycrystalline NiAl-base Ternary
Alloys Deformed at 300K

Composition (at.%) Slip System Character
Ni-48.5A1 <001>{ 110) edge
Ni-48Al-0.5Ga <001>{110) edge
Ni-46.1Al-2.4Ga <001>{ 110) edge
Ni-48.5A1-5.2Cr { 1T2 screw
Ni-43.7A1-4.9Mn {1T2} edge


Field et al [18] evaluated the effect of chromium additions on slip systems and

mechanical properties in [100] oriented single crystals at room-temperature. As noted

above, [100] oriented crystals slip by <111> dislocations in binary NiAl in the absence of

kinking. In Ni-49A1-6Cr and Ni-48A1-2Cr alloys, substantial precipitation of alpha-

chromium was observed. Chromium and NiAl have very similar lattice parameters, and

fine-scale solid state precipitation produces semicoherent interfaces which contain

interfacial nets of dislocations to accommodate the strain [109, 110]. These nets appear to

be of two types, square and hexagonal. Walter and Cline [109] determined the square nets

to consist of orthogonal <100> dislocations. Field et al. [18] showed the hexagonal nets to

consist of <100> and 1/2<111> dislocations and speculated that these arrays may serve as

sources for <111> dislocations. Although <111> dislocations were observed in the

microstructure, no conclusive evidence was apparent to support this idea. Further

investigation of the slip bands of <111> dislocations indicated they were being generated

from Cr7C3 precipitates, which have an orientation relationship with the matrix of









[100]ppt II [011]matrix

(001)ppt II (11)matrix


This implied that <111> dislocations were more easily generated at the

carbide/matrix interface than other sources, but says little about true alteration of the slip

system from that observed in binary NiAl. The occurrence of the Cr7C3 phase is curious,

since Cr23C6 is the carbide phase in equilibrium with alpha-chromium in a binary system

[111]. This may be due to the relative ease of nucleation of the Cr7C3 phase for the above

orientation relationship. In the same study, the results of alloys containing lower levels of

chromium indicated that a general solid solution strengthening makes <111> slip relatively

more favorable than in the binary. No definitive evidence of the preference of <100> slip

over <111> slip in any orientation other than [100] was shown.

Other Elements. In addition to those already mentioned, Law and Blackburn [15]

also examined the effects of additions of cobalt, beryllium, titanium, niobium, tantalum,

silicon, vanadium and zirconium. However, none of the ternary alloys containing these

additions was reported to demonstrate any ductility at room temperature, nor were any

detailed examinations of slip phenomena performed. Darolia et al. [14] studied the effect

of up to 10 percent vanadium, substituted for aluminum, on the slip and mechanical

properties in [100] oriented single crystals. They determined that vanadium causes

significant solid solution hardening and also noted the presence of Ni2AlV (Heusler, L21)

precipitates which are expected to produce further strengthening. None of the alloys

exhibited measurable room-temperature ductility and TEM analysis revealed only <100>

dislocations.









Prediction of Alloying Effects on Plastic Deformation of NiAl

Generally, two approaches to predicting the effect of alloying on plastic
deformation have been utilized, semi-empirical and theoretical. Both acknowledge the high

ordering energy of NiAl, which is directly related to the high APB energy. These high

energies promote nickel-aluminum bonds and likewise resist like-pair bonds, which is the

reason for the difficulty of <111> { 110) slip and ultimately, the reason for the operation of

only three independent slip systems. These approaches endeavor to make <111> slip

easier by substituting elements on the B2 NiAl lattice which will lower the ordering energy

of the compound.

Phenomenological Approaches. The calculated and measured ordering energies for

a number of B2 aluminides show a steady reduction in magnitude [112, 113]


NiAl > CoAl > FeAl > MnAl > CrAl > VAl


Therefore, it is logical to add elements such as vanadium, chromium or manganese to

NiAl, substituted for nickel, to try to promote <111> slip. The relationship between

ordering energy (or heat of formation) and slip system has been demonstrated by Cotton et

al. [114], in which lower ordering energies correspond to <111> slip while higher ordering

energies correspond to <100> slip, Figure 2-13. Another semi-empirical approach is to

choose atoms for substitution based on their respective size and alter the mean atomic radii

ratio (RNi/RAI). Then, as described by Lautenschlager et al. [62], when RNi/RA1 tends to

1.000, <111> slip will be preferred. For instance, aluminum is a much larger atom than

nickel. To bring RNi/RAI nearer to 1.000, one should substitute larger atoms for nickel.

Law and Blackburn [15] considered both of these approaches in devising their alloying

schemes. In the latter case, they added Be for aluminum in an attempt to bring the mean









RNi/RAI nearer to 1.000. As already noted, none of the alloys investigated by Law and

Blackburn displayed any measurable tensile ductility at room temperature, probably

because of solid solution hardening.

Theoretical-Computational Approaches. Quite recently, first-principles calculations

based on interatomic potentials, combined with the use of high-speed supercomputers,

have allowed the a priori determination of material properties. Calculations for materials

for which some properties are already known, such as NiAl, allow a check for accuracy.

Hong and Freeman [29, 72, 115] employed all-electron self-consistent total-energy linear-

muffin-tin-orbital calculations using a super cell approach to determine the 1/2<111>{ 110)

and 1/2<111>{ 112) APB energies for binary and ternary NiAl alloys. For binary

stoichiometric NiAl they calculated energies of about 800 mJm-2 for both cases, a result

which is consistent with the experimental results of Vessyiere and Noebe [71] The

substitution of chromium for aluminum, or vanadium for nickel, is predicted to decrease

the calculated APB energy to 250 mJm-2. However, the supercell models employed in

these calculations assumed 17 percent solubility; as already mentioned, the solubilities for

these elements are quite low (less than two percent at 300K). Fu and Yoo [28] also

determined the <111>{ 110] APB energy for binary NiAl using total energy calculations

and arrived at a value of 810 mJm-2. Similar to Hong and Freeman, they also suggested

that substitutions of less electropositive 3d transition elements for aluminum would

decrease the APB energy. In unpublished work, Hahn and Vedula [116] examined the

effect of substitution of a large number of ternary elements on the calculated ordering

energy, using the pseudopotential method. Their results indicated that the substitution of

rhenium, vanadium or silicon for nickel should decrease the ordering energy of NiAl.

The phenomenological and theoretical models discussed above ignore the effect of

solid solution hardening. For a substitutional element to effect a basic change in the

bonding of NiAl, it is reasonable that substantial amounts must be soluble, based on the

information shown in Figure 2-13. As a first approximation, a rule-of-mixtures may be









applied to estimate the amount of solute required to place the alloyed NiAl compound

within the region of <111> slip. This line of reasoning would require at least half the

nickel to be replaced with another transition element, a substantial amount. If such

additions cause the yield strength to be increased above the fracture strength by solid

solution hardening before the ordering energy is effectively decreased, the alloy will not be

able to undergo any significant deformation prior to fracture and their purpose will be

defeated.


S<111> slip NiA
NiAl
O <100> slip O
A metastable
PdIn
60 0 CoAl
0


----------------^ -----
FeAl

AuZn
V MnAl O
VAl A
20 CrAl A AgMg
A NiZn
CuZn
AgCd AgZn
I I -- .


In (disorder parameter)



Figure 2-13. Relationship Between Heat of Formation, Degree of Disorder and Observed
Slip System at 300K. Note that higher order and larger heats of formation correspond to
<100> slip [114].


Another important factor which has not been considered in current theoretical

models is site preference of the ternary addition. If the alloying addition is substituted





36


compositionally for a particular site (say nickel), but instead prefers the other site (say

aluminum), then the intended effect has not been realized. Further, such a case would lead

to nickel vacancies and the associated hardening. Therefore, not only must the

substitutional addition decrease the ordering energy, it must be adequately soluble, an

impotent hardener, and exhibit the proper site preference in the NiAl lattice.














CHAPTER 3
EXPERIMENTAL PROCEDURE


The materials used in this study were obtained in several forms: homogenized arc-

melted (HAM) castings, as-arc-melted (AM) castings, extruded vacuum-induction-melted

(XVIM) castings and extruded atomized powder (XAP). The different production

methods are described separately below. The experimental work was performed while in

residence at the NASA Lewis Research Center (LRC) in Cleveland, Ohio. Compositions

are given in atomic percent, e.g. Ni-45A1-5Cr indicates 45 atomic percent aluminum, 5

atomic percent chromium and 50 atomic percent Ni.


Materials


HAM and AM Castings


The nominal and analyzed compositions of the 15 castings used in this study are

plotted in Figure 3-1. The castings were produced by nonconsumable arc melting 0.070 kg

of constituent elements (99.95 percent nickel, 99.999 percent aluminum, 99.99 percent

chromium, by weight) in a water-cooled copper bowl under argon to produce buttons,

Figure 3-2, and then inverting and remelting twice more to insure homogeneity.

Subsequent weighing of the buttons indicated weight losses were generally less than 0.1

percent. The buttons were cast into a copper mold of approximate dimensions 50 mm x

13 mm x 13 mm to produce somewhat rectangular castings with a small "buttonhead" to

reduce pipe shrinkage. The castings were subsequently homogenized by heating under

slow-flowing commercial purity argon for 24 hours at 14000C, utilizing heating and

cooling rates of 5K per minute. The AM castings were analyzed in the as-cast state.









XVIM and XAP Extrusions

Five compositions were produced by this processing route, to coincide with five of
the HAM casting compositions. 1 kg charges of constituent elements were melted together
under vacuum by induction heating to produce 0.15 m by 0.05 m diameter castings. One
composition, Ni-45Al-5Cr, was vacuum atomized to produce powder by Homogeneous
Metals, Inc. The castings and resulting atomized powder were enclosed in 1018 steel cans
by tungsten-inert-gas welding which were subsequently evacuated and sealed by electron
beam welding. Each canned alloy was heated at 11270C for four hours prior to extrusion
in a Loewy vertical hydraulic 340 ton press at an extrusion ratio of 16:1.


Al Arc Melted and Drop Cast
55 0 + 1400'C/24 Hours
0 Pratt & Whitney Alloy 40
O Vacuum Induction Cast and
Extruded
LO Extruded Powder Alloy



Al-rich
%A1 .... % Cr





SNi/Al=1
Ni-rich V

45 M 10
Ni 55 50 45 Cr
%Ni


Figure 3-1. Ternary Diagram of Alloy Compositions in Current Study









Prior to further investigation, the extrusions were cut into 0.05 m lengths and the

steel can removed chemically by immersion in an aqueous solution of 50 percent nitric acid

with a small amount of sulfuric acid for 1 hour at room temperature.


Other Materials

During the course of the investigation it was necessary to obtain some alloys

which, although not an intrinsic part of the original study, were necessary to resolve

particular questions. These include the following: (1) a portion of a vacuum-induction-

melted Ni-48.5A1-4.2Cr casting produced at United Technologies Pratt and Whitney

which was originally investigated in reference [15] (courtesy Dr. S. Russell); (2) three

NiAl single crystals in [100], [111] and [123] orientations from LRC (courtesy

R.D. Noebe) for microhardness determination only; (3) HAM Ni-43A1 and Ni-43A1-5Cr

castings in response to discussions with D.B. Miracle and his work referenced in [16]; (4)

two series of five HAM castings containing 0, 0.25, 0.50, 0.75 and 1 atomic percent

chromium (Ni/Al ratio = 1), to establish the effect of constituent nickel reported to contain

very low interstitial levels (high-purity nickel provided courtesy of Dr. S. Chumley, Ames

Research Laboratory, Ames, Iowa) and (5) seven other additional HAM castings for

microhardness determination only, to establish trends indicated by the original 15

compositions described above.


Optical Microscopy

Transverse cross-sections of the castings and extrusions were removed by abrasive

wheel cutting for optical metallographic analysis and microhardness testing. The slices

were metallographically prepared used standard mounting and grinding procedures,
polished through 0.05 pmn alumina media and then etched with saturated molybdic acid















A I I I 1-1-A I I I I I
U

S


Figure 3-2. Arc-Melted Button and Casting of Binary NiAl









(0.100 kg MoO3, 50 ml HF and 150 ml H20) to reveal the microstructure. Light optical

micrographs were recorded for each alloy, with the exception of the binary stoichiometric

Ni-50A1 due to its extreme resistance to etching. Both bright field (BF) and differential

interference contrast (DIC) were used to illuminate particular microstructural features.


Mechanical Property Testing

Compression Testing


Castings. The body of each casting was sent to Ultracut, Inc., West Palm Beach,

Florida, for electrostatic discharge machining (EDM) of cylindrical compression test

specimens, Figure 3-3 and 3-4. Approximately 16 compression specimens were obtained

from each casting, with the exception of Ni-52Al-lCr from which none could reliably be

produced due to its extreme brittleness. The compression specimens were specified to be

6.0 + 0.1 mm in length by 3.0 + 0.01 mm diameter, as this is a convenient diameter for

subsequent TEM specimen preparation. Following EDMing, a longitudinal burr remained

on each compression specimen, as well as a gray oxide. The burr was removed by lightly

grinding on 400 grit SiC paper; the specimen ends were briefly abraded to remove the

oxide layer. Parallelism of the ends was checked during specimen measurement by

placing the specimen in a micrometer and examining for light visibility between the

specimen and micrometer platens.

Extrusions. Compression specimens of identical dimensions were produced from

the extrusions by centerless grinding to final dimensions. This method produces a

smoother surface than that associated with EDMing. Thus, the properties derived from the

extrusions were more reproducible than those of the castings for a given alloy.

Compression tests were conducted primarily to introduce a small amount of

deformation into the alloys for the purpose of dislocation analysis. Since preliminary









Casting


25















3mm +-
0.05 mm






Rod


- 15 mm


~ 15 mm


3 mm +-
0.05 mm



6 mm +- ends must be flat
0.1 mm i and parallel to
within 1 degree



Specimen


Figure 3-3. Schematic Drawing of Compression Test Specimens





























Figure 3-4. Electrostatic Discharge Machined Compression Specimens


research indicated that strains in excess of about one percent produce dislocation densities

too high for individual dislocation analysis, the deformation strain was generally limited to

0.5 percent. In addition, at least four tests to failure were conducted for each cast and

homogenized composition to allow determination of 0.2 percent offset yield (CYS) and
ultimate compressive strengths (UCS) and strain-to-fracture (Ep). All tests were conducted

at a temperature of 300K in an Instron load frame, at a chart speed of 2.117 x 10-4 m per

sec (0.5 inches per minute) and a crosshead speed of 8.47x10-7 m per sec (0.002 inches

per minute). The nominal strain rate was 10-4 m/m. Boron nitride was used to lubricate

the specimen ends prior to each test and preload of approximately 10 kg was applied before

initiating crosshead travel. Following each test, the strain in each specimen designated for

TEM specimens was measured directly from the reduction in length by micrometer. In

specimens intended for mechanical property determination only, failure was considered to

have occurred upon observation of the first discontinuity in the load-displacement curve,









regardless of any subsequent increase in load. The test was usually terminated after

observation of the second load drop. In data reduction, only engineering stress and strain

were reported, due to the small strains-to-failure generally observed.


Tensile Testing

Buttonhead type tensile specimens of dimensions shown in Figure 3-5 were

machined from the extrusions by centerless grinding and electropolishing to remove

surface defects. The same Instron load frame used for the above compression specimens

was used for testing and the data were reduced in similar fashion. In addition, limited

elevated temperature tests were conducted to determine the brittle-to-ductile-transition-

temperature (BDTT) of each of the five extrusion alloys.


Microhardness Testing

All microhardness determinations were conducted on a Buehler Micromet II

microhardness testing machine using a Vickers indenter. The indenter load was chosen to

be 0.5 kg, with a load duration of 15 s. Prior to each testing session the machine was

calibrated using standard hardness test blocks of hardened steel. Specimens were

metallographically prepared prior to testing and either 10 or 15 indentations were made in

each, sampling at least five different grains. Each indentation was optically examined for

cracking or subsurface defects prior to measurement; any such defective indentations were

ignored. The resulting compilation of hardness values were averaged for each alloy.


Transmission Electron Microscopy (TEM)


Specimen Preparation


Compression specimens were sliced into disks 300 pgm thick with a low-speed

Buehler saw using 250 pmn thick SiC blades with water as a lubricant and then wet ground









by hand on 600 grit SiC paper to approximately 150 gtm in thickness. Each disk was then

jet-polished to perforation in a solution of 62 ml perchloric acid, 100 ml butyl cellusolve,

137 ml H20 and 700 ml ethanol, at 0C, 32 V and 150 mA using a Struers TENUPOL-3

polishing unit. The pumping speed of the jets was as slow as possible to minimize

bending damage in the thin area.


Microstructural Characterization and Dislocation Analysis

All observations were made on a JEOL 100C transmission electron microscope

(TEM) operated at an accelerating voltage of 120 kV on a double-tilt stage allowing + 600

and + 300 tilts. Both extruded and cast material were studied by TEM. Representative

micrographs were recorded and the presence of second phases were noted and identified

using electron diffraction analysis. In addition, the association of dislocations with

particular microstructural features, such as grain boundaries and precipitates, was noted.

The Burgers vectors of dislocations was determined by the "invisibility criterion" (zero

contrast) as described by Hirsch, Howie and Whelan [116] by recording bright field

images of dislocations illuminated by various diffracting vectors. In general, 25 to 100

dislocations could be imaged in one field of view at 20,000 to 50,000 magnifications (X).

Enlarged prints were produced from the images which allowed the determination of the

slip vector for a large number of dislocations within a given grain. For most compositions,

at least three different grains were analyzed in foils from at least two different specimens to

achieve a representative sample of Burgers vectors and help eliminate errors in analysis and

orientation effects. Because of the elastic anisotropy in NiAl and extended dilation around

the edge components of dislocations, some residual contrast sometimes remained in spite

of satisfying the invisibility criterion. With practice, it was possible to identify the visibility

conditions with little ambiguity. To insure the accuracy of the analyses, typically six

different imaging conditions were recorded, as opposed to the minimum of three. Selected









specimens were analyzed in further detail to determine dislocation line direction, character

and slip plane, in addition to Burgers vector, by appropriate stereographic techniques [10].


TOTAL LENGTH IS NOT
FAIRING MUST CRITICAL. STOCK IS
MEET 3.2 DIA AT ALREADY CUT TO
POINT OF LENGTH. NO FURTHER
TANGENCY WITH CUTTING NECESSARY
NO UNDERCUT


6.50
NOMINAL
DIA REF

_L


3.2 DIA + 0.08 -
DIA MUST NOT
VARY OVER 0.013
FOR 30 LENGTH


GRIND TO MAKE
BOTH ENDS ROUND

5.08 TYP


NOTE


1. ALL DIAMETERS MUST BE CONCENTRIC AND TRUE
WITHIN 0.013

2. V UNLESS OTHERWISE NOTED

3. MATERIAL IS EXTREMELY BRITTLE. HANDLE AND
MACHINE WITH CAUTION

4. ALL DIMENSIONS IN MILLIMETERS


Figure 3-5. Tensile Test Specimen Produced from Extrusions by Centerless Grinding










ALCHEMI


A determination of the site preference of chromium on the B2 NiAl lattice was

made by axial Atom Location by Channelling Enhanced Microanalysis (ALCHEMI) [117,

118], via the TEM, of extruded Ni-49.5Al-lCr along the [110] zone axis. This alloy was

chosen because the chromium was entirely in solid solution and thus, interference from

alpha-chromium precipitates could not occur. The technique is described in detail by Otten

[117], however, it basically consists of acquiring X-ray spectra while the electron beam is

aimed exactly along the [110] crystal axis (the [100] direction would do just as well). The

resulting spectrum is compared with another spectrum acquired slightly off (about two

degrees) the [110] axis along a high index direction. Because of the tendency for a

standing electron wave to develop in the [110] direction, columns of atoms of one type,

e.g. nickel, will be excited to a greater degree than the other, in this case, aluminum, and

this will be reflected in the x-ray spectrum relative to the off-axis analysis. If chromium

displays a site preference, its peak intensity will be augmented or diminished according to

the degree of site preference.


X-ray Diffraction Analysis (XRD)

The lattice parameters of the alloys were determined by XRD on a Scintag PAD V

diffractometer with powders produced by crushing samples of the castings. Copper Ka

radiation was used. Because of the similarity in the lattice parameters of the B2 and A2

phases in the two-phase alloys, deconvolution of the peaks was not always possible and

may have influenced the results.














CHAPTER 4
RESULTS

The results of the experiments described in the previous section are presented

below in similar order. Justification for the particular experiments chosen and critical

evaluation of the data are reserved for the discussion.


Alloy Compositions

The nominal and analyzed compositions of the materials in this study are

summarized in Tables 4-1, 4-2 and 4-3. Table 4-1 pertains only to HAM castings with the

exception of Ni-48.5A1-5.2Cr, which was also studied in the AM state. The analyzed

compositions of the castings appeared to indicate higher aluminum contents and slightly

lower nickel and chromium contents than intended. However, based on the very small

casting weight losses measured, and the fact that the aluminum content appears to have

increased (unlikely), it is probable that the chemical analysis is in error and the nominal

compositions are reasonable measures of the true compositions. The extrusion

compositions appear very near to their nominal compositions, Table 4-2.


Optical Microscopy

Representative light optical micrographs of the castings and extrusions are

presented below in Figures 4-1 through 4-10 and 4-11 through 4-15, respectively.


HAM Microstructures


The structures of the cast and homogenized binary alloys, Ni-48A1, Ni-50A1 and

Ni-52A1, were single phase and coarse grained, as shown in Figures 4-1 and 4-2. While









Ni-50A1 appeared to cast well and contained few defects, the other two binary alloys

contained a large number of cracks which were usually intergranular. Alloys containing

one percent chromium were generally single phase (Figure 4-3), with occasional fine

precipitation. Based on available ternary phase diagrams, any second phase precipitation in

this system is expected to be alpha-chromium. Both XRD and TEM analysis confirmed

this to be true, as discussed below. Alloy Ni-48A1-2Cr was very similar to the one percent

chromium alloys, as shown in Figure 4-4. These alloys also displayed a significant degree

of cracking and shrinkage pores. In contrast to Ni-48A1-2Cr, Figures 4-5 and 4-6 show

the microstructures of Ni-49A1-2Cr and Ni-50A1-2Cr to contain fine, intragranular

precipitation. The precipitates in these alloys were often aligned in smoothly curving arcs.

The precipitation in Ni-50A1-2Cr appeared to be of a slightly larger mean size than that in

the Ni-49A1-2Cr. The precipitation in the alloys containing five percent chromium was

marginally coarser than in the alloys containing two percent chromium, and was less

homogeneously distributed, Figures 4-7 through 4-9. The alignment of precipitates was

less pronounced in the Ni-45A1-5Cr and Ni-47.5A1-5Cr alloys, but was well-developed in

the Ni-50A1-5Cr alloy. In these latter alloys, the grain boundaries were often delineated by

allotriomorphs and a surrounding precipitate free zone, Figure 4-9. The microstructure of

the Ni-48.5A1-5.2Cr alloy was very similar to Ni-50A1-5Cr and is shown in Figure 4-10.


XVIM and XAP Microstructures


The optical microstructures of the extrusions are shown in Figures 4-11 through 4-

15. The binary Ni-50AI and the Ni-49.5Al-lCr alloys both contain fully recrystallized

structures of fairly equiaxed grains which have undergone dynamic recrystallization and

grain growth. The Ni-49A1-2Cr and Ni-48A1-2Cr alloys are similar, but have retained

partially recrystallized regions containing fine subgrains and a generally finer structure.

The highest chromium alloy, Ni-45A1-5Cr, displayed the finest grain structure and was









fully recrystallized. In all the chromium-containing alloys, stringers of second phase could

be discerned extending in the extrusion direction.


Table 4-1. Nominal and Analyzed Compositions (Atomic Percent or Wppm) of Cast and
Homogenized Alloys in Current Study


Nominal


Analyzed


% % % % % % % wpm ppmpp %Wt.
Alloy # Ni Al Cr Ni Al Cr Fe Cu C N 0 Loss
1 52 48 0 51.3 48.7 na nd nd 60 nd 74 -0.11
2 50 50 0 48.8 51.2 na nd nd 58 nd 76 -0.07
3 48 52 0 47.0 53.0 na nd nd 48 nd 60 -0.09
4 52 47 1 51.0 48.2 0.83 nd nd 50 nd 87 -0.19
5 50 49 1 48.7 50.4 0.90 nd nd 58 nd 46 -0.18
6 49.5 49.5 1 48.6 50.5 0.82 nd nd 56 nd 59 -0.32
7 49 50 1 48.2 51.0 0.82 nd nd 57 nd 25 -0.22
8 47 52 1 45.4 53.7 0.89 nd nd 56 nd 27 -0.17
9 50 48 2 48.8 49.5 1.7 nd nd 57 nd 36 -0.20
10 49 49 2 48.1 50.3 1.6 nd nd 50 35 86 -0.14
11 48 50 2 47.0 51.3 1.7 nd nd 64 31 56 -0.41
12 50 45 5 49.7 46.1 4.2 nd nd 59 10 97 -0.33
13 47.5 47.5 5 46.5 49.4 4.1 nd nd 55 nd 43 -0.20
14 45 50 5 44.1 51.7 4.7 nd nd 116 138 148 -0.24
15 46.2 48.5 5.2 44.2 50.2 4.7 0.84 nd 240 31 45 na

nd = not detected (less than 0.2 wppm)
na = not analyzed


Table 4-2. Nominal and Analyzed Compositions (Atomic Percent or Wppm) of Extruded
Alloys in Current Study


q


^-^-^-^^-^- ^-_>__-_ __--_ ^-_- S a^_-_---^
Extrusion Billet % % % % % % % wppm wpp wppm
# T Ni Al Cr Ni Al Cr Fe C N O
L-2692 VIM Cast 50 50 0 50.2 49.8 na na 82 nd 42
L-2661 VIM Cast 49.5 49.5 1 49.7 49.3 0.94 na 110 na 35
L-2663 VIM Cast 49 49 2 49.2 49.9 1.9 na 79 na 38
L-2659 VIM Cast 50 48 2 50.1 48.0 1.9 na 70 na 42
L-2614 Powder 50 45 5 50.9 44.6 4.4 0.08 21 nd 120


nd = not detected (less than 0.2 wppm)
na = not analyzed


___ __


Nominal


Analyzed








Table 4-3. Compositions of Additional Alloys (Atomic Percent or Wppm)
I -


-...--- ---
Alloy % % % % % % % ppm pp ppm
Identification Ni Al Cr Ni Al Cr Fe C N O
P&W Alloy 40 47.3 48.5 4.2 47.2 48.7 4.0 0.09 94 8 24
[100] NiAl SC 50 50 0 na na na na na na na
[111] NiAl SC 50 50 0 na na na na na na na
[123] NiAl SC 50 50 0 na na na na na na na
Ni-43A1 57 43 0 57.0 42.9 0 0.09 58 58 116
Ni-43A1-5Cr 52 43 5 52.4 43.6 3.94 nd 56 125 116
CP NiAl 50 50 0 na na na na 60 42 111
CP NiAl+0.25Cr 49.88 49.88 0.25 na na na na na na na
CP NiAl+0.50Cr 49.75 49.75 0.50 na na na na na na na
CP NiAl+0.75Cr 49.63 49.63 0.75 na na na na na na na
CP NiAl+1.0Cr 49.50 49.50 1.0 na na na na na na na
HP NiAl 50 50 0 na na na na 56 nd 116
HP NiAl+0.25Cr 49.88 49.88 0.25 na na na na na na na
HP NiAl+0.50Cr 49.75 49.75 0.50 na na na na na na na
HP NiAl+0.75Cr 49.63 49.63 0.75 na na na na na na na
HP NiAl+1.OCr 49.50 49.50 1.0 na na na na na na na
Ni-49.25Al-1.5Cr 49.25 49.25 1.5 na na na na na na na
Ni-48.25Al-3.5Cr 48.25 48.25 3.5 na na na na na na na
Ni-51.5Al-2.5Cr 46 51.5 2.5 na na na na na na na
Ni-46Al-2.5Cr 51.5 46 2.5 na na na na na na na
Ni-46.5Al-3.5Cr 50 46.5 3.5 na na na na na na na
Ni-50A1-3.5Cr 46.5 50 3.5 na na na na na na na
Ni-46A1 54 46 0 na na na na na na na

nd = not detected (less than 0.2 wppm)
na = not analyzed



Mechanical Properties



Compression Tests


HAM Castings. The room-temperature compression test results are given in Table

4-4 and Figure 4-16. Typical stress-strain curves are shown in Appendix A. Because of

the error involved in measuring the mechanical properties of cast material due to the large

grain size (relative to specimen size) and casting inhomogeneities, comparisons should be


Nominal


Analyzed









made with caution. However, several observations may be made. First, compositions for

which the nickel-to-aluminum ratio is unity correspond to a minimum in strength,

regardless of chromium content. Second, substantial strengthening (about three times)

occurs between zero and one percent chromium for all three series of alloys. An

interesting result in Figure 16b is that chromium, when substituted at low levels for nickel,

hardens NiAl in a manner similar to nickel in the binary alloy. Finally, alloys with

chromium levels beyond one percent demonstrate almost no additional strengthening when

the nickel-to-aluminum ratio is one, and moderate strengthening otherwise.


Table 4-4. Results of Compression Tests of HAM Castings at 300K (error = std. dev.)

Alloy 0.2% CYS (MPa) UCS (MPa) Plastic Strain (%) # tests
Ni-48A1 462 + 25 527 +34 0.4 + 0.3 8
Ni-S50A 148 + 29 468 171 12 + 10 8
Ni-52A1 834+ 186 867 238 0.35 0.2 7
Ni-47A1-1Cr 543 72 606 + 64 0.73 + 0.4 8
Ni-49Al-lCr 450 + 56 534 + 68 0.5 + 0.2 9
Ni-49.5Al-1Cr 403 + 100 457 +70 0.9 + 0.8 9
Ni-50AI-1Cr 461 +97 514 + 92 0.5 + 0.4 8
Ni-52A1-1Cr no data 246 no data 2
Ni-48A1-2Cr 461 49 500 49 0.5 + 0.2 8
Ni-49A1-2Cr 440 +42 560 + 49 0.7 + 0.3 9
Ni-50Al-2Cr 571 + 81 599 + 69 1.0 + 0.8 8
Ni-45A1-5Cr 753 + 69 870 + 63 0.6 + 0.1 8
Ni-47.5A1-5Cr 453 +68 608 +9 1.3 + 1.5 7
Ni-50Al-5Cr 816+ 151 885 + 94 0.2 + 0.3 7


Extrusions. The compressive yield strengths for the XVIM and XAP extrusions

are given below in Table 4-5. Values for strain-to-failure and fracture strength were not

recorded for the extrusions. Plotting the yield strengths of the castings versus the

extrusions for identical alloy compositions, Figure 4-17, shows that the relative differences

in strength between alloys is consistent for both processing routes, although the extruded

material is generally about 40 MPa stronger.






























Figure 4-1. Optical Microstructure of Ni-48A1 HAM Casting


Figure 4-2. Optical Microstructure of Ni-52A1 HAM Casting







































y '*25um"


Figure 4-3. Optical Microstructure ofNi-49Al-Cr Casting

Figure 4-3. Optical Microstructure of Ni-49AI-1Cr HAM Castig0


Figure 4-4. Optical Microstructure of Ni-48A1-2Cr HAM Casting


. ..... 7 -


,,



.
..~.






























Figure 4-5. Optical Microstructure of Ni-49A1-2Cr HAM Casting


Figure 4-6. Optical Microstructure of Ni-50A1-2Cr HAM Casting














S ," ..". ''"** ..* *.-

'*. ..* *
'. .. .*. .

"* ".-' .. *", ,' -
.'. ., .. -
a .' *. .
** *. '' *

*'i .. .* s.-
S. .

S* .*.. .. .. 1 0
o ." ". .. -
,

SV .i *. r*
.. -.
S* *, J *
SI M"

Ii' *- : .
'1 *
*;. "S. : i
.. .. ". -.
.... .. S. .


",*. ... ".. *...






*'
,S *S
















*igue *4 "tc Mi 'o -"u' oN 47A
.*~ -. ... *.a



Figure 4-7. Optical Microstructure of Ni-45A1-5Cr HAM Casting







5-,. s. .-" "3"


*..*** M.. -
,, W ,' ''" ':.t. i

.:1* .- '. .



%S :: .



.. 5> ; ..0 .1 .s. ., +,.- su






Figure 4-8. Optical Microstructure of Ni-47.5A1-5Cr HAM Casting


























:Lg *qr -: c* .
S..


..I O ~. ~,,
4AP



r r


Figure 4-9. Optical Microstructure of Ni-50A1-5Cr HAM Casting


B-4"

a
*9*
9. 8 9 *


,. 8
* .1.

'0
S


C-
-e
0I
a


V

4*..


4b .0


, .
9 4. '. .




r*. Ia' ar
~~a *r


0




* *C



-~' .
:


-,


~ .9
*
8'I P
8o


E r *


N 0 *-w0

C *v 11 IdI l
p ~ r .. -.-.--


Figure 4-10. Optical Microstructure of Ni-48.5A1-5.2Cr HAM Casting


a* 9


0


*~
9
0,


$- ..~
ar~
U

4
*'
at




















































Figure 4-11. Optical Microstructure of Ni-50A1 XVIM Extrusion (a) Longitudinal; (b)
Transverse























I


(b)

Figure 4-12. Optical Microstructure of Ni-49.5A1-1Cr XVIM Extrusion (a) Longitudinal;
(b) Transverse


AOL'




















































Figure 4-13. Optical Microstructure of Ni-48A1-2Cr XVIM Extrusion (a) Longitudinal; (b)
Transverse



















































(b)

Figure 4-14. Optical Microstructure of Ni-49A1-2Cr XVIM Extrusion (a) Longitudinal; (b)
Transverse

















































(b)

Figure 4-15. Optical Microstructure of Ni-45A1-5Cr XVIM Extrusion (a) Longitudinal; (b)
Transverse





63


1000
13 Cr for Al
A Cr for Ni
800 0 Ni/A1=1


S600


S 400 *


200

I S I I I*
0 1 2 3 4 5 6

Atom Percent Chromium
(a)


1200

1000

800- 15% Cr


S 600" 2

q 400
o 1% Cr/

200 0% Cr

0 I I I I
44 46 48 50 52 54

Atomic Percent Al
(b)

Figure 4-16. 0.2 Percent Compressive Yield Strength at 300K of HAM Castings as a
Function of (a) Chromium Content; (b) Aluminum Content










Table 4-5. Compressive Yield Strengths of Extruded NiAl+Cr Alloys at 300K

Alloy 0.2% CYS (MPa) # Tests
Ni-50AI 189 +6 5
Ni-49.5A1-1Cr 441 + 16 4
Ni-48A1-2Cr 530 +7 4
Ni-49A1-2Cr 559 + 13 4
Ni-45A1-5Cr 818 +9 7


1000


800


600


400


200


200 400 600

Cast and Homogenized 0.2% CYS (MPa)


800


Figure 4-17. Relationship Between Compressive Yield Strengths of HAM Cast and
Extruded NiAl+Cr Alloys

Tensile Tests

The yield strengths and elongations as a function of test temperature are plotted in

Figure 4-18. As in the compressive yield strengths of the HAM cast alloys, the addition of

chromium augments the room-temperature tensile strength of the extrusions about three-

fold. Less than 0.2 percent elongation was obtained for the other chromium-containing

alloys below about 700K. In general, increasing the chromium level both raises the yield









strength and increases the dependence of strength on temperature. The elongations as a

function of temperature indicate that chromium elevates the BDTT about 150K relative to

binary stoichiometric NiAl. Comparison of the tensile ductilities for Ni-49.5Al-lCr and

Ni-49A1-2Cr indicates the nickel-to-aluminum ratio has a stronger influence on the BDTT

than does the chromium content. This influence is suggested because the nickel-to-

aluminum ratio for these two alloys is equal to one while their chromium contents differ by

a factor of two; yet their BDTTs are both about 750K. Ni-48A1-2Cr and (nickel-to-

aluminum ratio equal to 1.04) and Ni-45Al-5Cr (nickel-to-aluminum ratio equal to 1.11)

display respectively higher BDTTs than Ni-49.5A1-1Cr and Ni-49A1-2Cr.


Microhardness Tests

The measurement of microhardness was considered an alternative route to

estimating yield strength variations for a number of extra compositions beyond the original

15 alloys. A reasonably good relationship between microhardness and yield strength was

initially established, as shown in Figure 4-19.

The Vickers microhardness as a function of chromium content is plotted in Figure

4-20 in three curves representing substitutions for nickel only, aluminum only, and evenly

for both. The hardening response at chromium levels below one percent is very flat and

similar for all three substitutional schemes, roughly 265 kg/mm2. At about one percent

chromium the hardness increases sharply for all three curves, the most marked change

occurring when chromium is substituted for nickel and the least marked when chromium

is substituted for both elements. Beyond one percent chromium the curves separate, with

the smallest degree of hardening occurring when chromium is substituted equally for both

nickel and aluminum, and the greatest degree of hardening occurring when substituted for

nickel. Comparison of the hardness and compressive yield strength values of the HAM









castings, Figures 4-20 and 4-16, shows that yield strength is more sensitive to property

changes than hardness.

The flat hardening response at chromium levels below one percent prompted a

study of the effect of interstitial purity levels on the hardness of low-chromium nickel

aluminide alloys. The hardness of two series of alloys containing from zero to one percent

chromium, all other variables being the same, are plotted in Figure 4-21 as a function of

chromium content. This data indicates the source of constituent nickel used to cast the

nickel aluminide alloys has a strong influence on the hardness, and probably other

mechanical properties as well. A student's t test was performed to check for the statistical

significance of the difference between the means of the hardness of the two binary alloys.

They were found to be significantly different to at least 99 percent confidence.

Interestingly, this apparent dependence on purity was not reflected in the interstitial

analyses shown in Table 4-3, except in regard to nitrogen content, an unlikely contaminant.

600

500
i49A12Cr
400
CO t Ni45A15Cr
300


200 Ni Ni49.5AllCr

100 Ni48A12Cr


200 400 600 800 1000 1200

Test Temperature (K)

Figure 4-18. Tensile Properties of Extruded Alloys as a Function of Test Temperature
(a) 0.2% Tensile Yield Strength








80

70

60
e Ni50AI
S50 Ni49.5AllCr
S 40 Ni48AI2Cr
o 304

H 20
E 20 Ni45Al5Cr

10 Ni49A12Cr


200 400 600 800 1000 1200

Test Temperature (K)

Figure 4-18--continued. (b) Tensile Elongation




1000


800 -


600

U 0
S400


200
CYS = 700.8 + 3.57Hv
RA2 = 0.889

200 300 400 500

Vickers Microhardness (kg/mm2)


Figure 4-19. Relationship Between Microhardness and CYS for HAM Cast Alloys

























0.01 0.02 0.03 0.04

Atom Fraction Chromium


0.05 0.06


Figure 4-20. Vickers Microhardness of Cast and Homogenized NiAl+Cr Alloys as a
Function of Chromium Content


Further analysis of the as-received constituent nickel did not reveal any significant

differences in interstitial or metallic impurity content. These results are in Table 4-6.


Table 4-6. Chemical Analysis of As-Received Nickel Shot (Wppm)


NASA- LRC


LECO


Nickel Ni Al Fe Cu Si C N O C N O S
Commercial bal nd nd <0.2 <0.1 97 <10 56 69 <2 57 <2
Purified bal nd nd <0.2 <0.1 84 <10 47 76 <2 42 <1

nd indicates less than 0.05 wppm


The hardness dependence upon aluminum content at constant chromium levels is

plotted in Figure 4-22 for the cast and homogenized alloys. The expected hardness

minimum at the stoichiometric composition is obvious in the binary alloy, but less


500

450

400

350

300

250


200'
0.00









pronounced in the ternary alloys which demonstrate less of an increase for nickel-rich

compositions. This is especially true of the one percent chromium alloys.

A better understanding of the overall dependence of hardness upon composition

may be achieved by a three-dimensional (3D) plot of the hardness surface as a function of

aluminum and chromium content. Such a plot is shown in Figure 4-23. The 3D plot

makes it clear that hardness minima reside along a "valley" in which the nickel-to-

aluminum ratio is equal to one. It is also shown that aluminum-rich compositions are

substantially harder than nickel-rich compositions, regardless of chromium content. A

small minimum in hardness appears to occur at the Ni-49A1-2Cr composition, however,

this minimum probably falls within the data scatter.


300


290


280


270


260


250


240 '
0.0


0.2 0.4 0.6 0.8 1.0


Atom Percent Chromium

Figure 4-21. Comparison of Hardening Responses of Low-Chromium NiAl+Cr Alloys
Produced from Commercial Purity and High Purity Nickel Sources.









500
S0O%Cr
Ct o 1%Cr
A 2%Cr
3.5%Cr
N U 5%Cr
400




S 300
I)



200 '
44 46 48 50 52 54

Atom Percent Aluminum

Figure 4-22. Vickers Microhardness of Cast and Homogenized NiAl+Cr Alloys as a
Function of Aluminum Content


Transmission Electron Microscopy



HAM and AM Castings


Typical microstructures are shown in Figures 4-24 through 4-36, while Figure 4-37

shows the microstructure of Pratt and Whitney alloy 40. All the cast alloys contained very

large grains (hundreds or thousands of microns) such that few grain boundaries were

encountered during TEM analysis. Prior to room temperature deformation, very few

dislocations were found. The deformed binary alloys were single phase, with only Ni-

50A1 containing significant numbers of dislocations which were determined to be of

<100> Burgers vectors. These dislocations were generally homogeneously distributed

after 0.3 percent deformation, and appeared to be in the form of elongated loops or short

segments. The short segments often contained one sharp bend which separated otherwise

straight lengths. An example dislocation structure of Ni-50A1 is shown in Figure 4-24.

















i....'" .~' ~~ "'i-. ....... ..



..... 358
et

S81" .


















Figure 4-23. Three-Dimensional Plot of Mficrohardness of Cast and Homogenized
NiAl+Cr Alloys as a Function of Composition
i /
.oe e,. tss,.
i/ee~ l/h II l'r'2-.,
-" o: c
`Ys-. .h
9 "" ...













Figure 4-23. Three-Dimensional Plot of Microhardness of Cast and Homogenized
NiAI+Cr Alloys as a Function of Composition









Alloys Ni-47Al-lCr and Ni-49Al-lCr were single phase. The extreme brittleness

of Ni-47Al-lCr prevented sufficient deformation to produce a workable dislocation

density. Ni-49Al-1Cr, on the other hand, contained a moderate number of dislocations and

tangles, similar to Ni-50Al. Ni-50Al-lCr contained spherical precipitates of alpha-

chromium of approximately 10 nm diameter. Occasionally, rods of alpha-chromium were

encountered of similar diameter. Both forms of precipitation were usually associated with

what appeared to be prismatically punched dislocation loops and associated loose tangles at

the precipitate/matrix interface. In the matrix, bent dislocation segments were observed

along with very small dislocation loops. The vast majority of dislocations analyzed

contained <100> Burgers vectors. An example of this microstructure and the

accompanying dislocation analysis are shown in Figure 4-25.

Ni-48A1-2Cr, Ni-49A1-2Cr and Ni-50A1-2Cr all contained spherical precipitates of

alpha-chromium, as shown in Figures 4-26 through 4-28. The precipitation in Ni-48A1-

2Cr appeared to be of a narrow size distribution centered around 100 nm, while the

precipitation in the latter two alloys tended to be bimodal, either 25 or 250 nm in diameter.

In some regions, a rod-like form of alpha-chromium was encountered. Larger precipitates

were often associated with dislocation tangles, Figures 4-27 and 4-28, while the smaller

precipitates appeared to pin matrix dislocations, Figure 4-26. The "double-arced" strain

contrast displayed by the precipitates in Figures 4-27a and 4-28a indicates the precipitates

are coherent. As for the above alloys, sharply bent dislocation segments were often

observed within the matrix, and in the Ni-48A1-2Cr and Ni-49A1-2Cr alloys, dislocation

loops were noted. All the dislocations analyzed in these alloys contained <100> Burgers

vectors. Such an analysis is shown in Figure 4-26.

The alloys containing five percent chromium, Ni-45A1-5Cr, Ni-47.5A1-5Cr and Ni-

50A1-5Cr, exhibited substantial precipitation of alpha-chromium particles, Figures 4-29

through 4-33. Precipitation in the first two alloys was generally bimodal in size, with the

finer precipitation of about 10 to 25 nm diameter and coarser precipitation of about 250 nm









diameter. While the finer precipitates were spherical, the coarser precipitates were often

irregular in morphology and were probably partially dissolved interdendritic chromium

resulting from incomplete homogenization (Figure 4-31). The alpha-chromium

precipitates in Ni-50Al-5Cr tended to be one of three different sizes: (1) fine, aligned

spheres (about 15 nm in diameter), (2) small spheres or rods (about 200 nm in diameter)

containing interfacial dislocation networks, and (3) large, aligned second phases of

approximately square cross section with rounded edges which were also associated with

interfacial misfit dislocation networks (about 1200 nm in width), Figure 4-32. The

orientation relationship between the precipitates and the matrix was determined to be cube-

on-cube, i.e., <100>a(001) a // <100>p{001) p, Figure 4-33. Pinning of matrix

dislocations by the finest precipitates was observed for all three alloys. In every case, the

Burgers vector of the dislocations was determined to be of the <100> type, an example of

which is shown for Ni-47.5A1-5Cr in Figure 4-30.

TEM analysis of the Ni-48.5A1-5.2Cr alloys was performed for both the AM and

HAM castings, and also for the material obtained from Pratt and Whitney. Although this

alloy was reported to contain 5.2 percent chromium [16], documentation obtained with the

alloy indicated it contained 4.2 percent chromium, as confirmed by chemical analysis in

Table 4-3. The AM Ni-48.5A1-5.2Cr alloy microstructure is shown in Figures 4-34 and 4-

35, and indicates that substantial segregation occurred during solidification. Figure 4-34

shows interdendritic alpha-chromium in the form of small, dense particles; identification

by convergent beam electron diffraction analysis showed these to be Cr23C6 carbides.

Away from the interdendritic regions, alpha-chromium precipitation was observed to

consist of a relatively homogeneous dispersion of fine, spherical particles, Figure 4-35.

Plastic deformation in these regions occurs in the form of concentrated slip bands of

<100> dislocations; no dislocations with <111> Burgers vectors were found.

Upon homogenization, the interdendritic alpha-chromium was eliminated and a

precipitate dispersion of a wide size distribution is produced (1 to 500 nm diameter), as









shown in Figure 4-36. These precipitates are spherical and are occasionally aligned into

short rows. Dislocation networks decorate the precipitate/matrix interface for the larger

precipitates, which are sometimes also the site of loose tangles. All precipitates appear to

participate in dislocation pinning. Unlike the AM castings, no slip bands were observed

after deformation. As in other alloys previously mentioned, most of the matrix

dislocations have the peculiar sharp bend separating otherwise straight lengths.

Figure 4-37 shows the microstructure of the Pratt and Whitney alloy (Ni-48.5A1-

4.2Cr). The precipitation in this alloy was very dense, of a wide size distribution, and was

often aligned into closely-packed rows. The microstructural homogeneity was intermediate

to the AM and HAM Ni-48.5A1-5.2Cr structures, Figures 4-34 to 4-36. No slip bands

were observed, although dislocation tangles tended to concentrate along the rows of larger

precipitates. Otherwise, the dislocation distribution was homogeneous. Some dislocation

loops were also observed. The majority of the dislocations produced by 300K deformation

were of the <100> type, contrary to published results on this material [15, 16].


Microstructures of XVIM and XAP Extrusions

In general, the extruded microstructures were fine-grained, typically 10 to 20 pm in

diameter, and displayed a <111> fiber texture which was evident during analysis of the

TEM foils. In other respects the structures differed as described below.

Ni-50AI. The as-extruded microstructures were generally featureless with the

exception of a moderately low density of <100> dislocations, Figure 4-38a. Most of these

dislocations consisted of short segments containing two straight lengths connected by a

sharp bend, as observed in the cast and homogenized material. Occasionally, small

elongated loops or partial loops were noted. Room-temperature plastic deformation (0.55

percent) increased the dislocation density, causing loose tangles, Figure 4-39; the same









sharply bent configurations were observed as above. The vast majority of the dislocations

analyzed contained <100> Burgers vectors, usually on (011) planes.

Ni-49.5Al-1Cr. This alloy was similar to the binary in the as-extruded state. No

second phase was observed and the dislocation density was relatively low. Upon room-

temperature deformation (0.6 percent), marked differences were noted in comparison to the

binary. As shown in Figures 4-40 and 4-41, deformation occurred primarily by the

propagation of concentrated slip bands with <100> Burgers vectors emanating from the

grain boundaries. These slip bands were usually planar and quite straight, however, the

intersection of two bands sometimes caused deviation, as indicated by the curved slip band

in Figure 4-41. Figure 4-40 provides evidence that the slip bands are nucleated at grain

boundaries (not merely terminating there) by the observation of half-loops extending from

the grain boundary at the initiation site of the slip bands. Dense slip bands, such as shown

in Figure 4-40, contained a considerable number of small dislocation loops with <100>

Burgers vectors. It was not clear whether the bands propagated by dislocation

multiplication or by the glide of mobile dislocations.

Ni-48A1-2Cr and Ni-49A1-2Cr. These two alloys were essentially identical in their

microstructures and dislocation substructure. Dense, homogeneous precipitation of 25 nm

diameter alpha-chromium particles were observed throughout the microstructures. Larger

Cr23C6 carbides were also commonly observed (about one or two per grain) and appeared

to serve as nucleation sites for slip bands of <100> dislocations during extrusion, as shown

in Figures 4-42 and 4-43. When deformed at room temperature, numerous parallel slip

bands were observed to nucleate at grain boundaries and extend into the grain centers,

Figures 4-44 and 4-45. Small dislocation loops, 10 to 20 nm in diameter, were usually

associated with all but the most diffuse slip bands, and appeared to be Orowan type loops

surrounding the fine precipitates. A typical Burgers vector analysis of the matrix

dislocations is shown in Figure 4-46 for Ni-48A1-2Cr.









Ni-45Al-5Cr. The as-extruded microstructure of this alloy is shown in Figure 4-47.

The alpha-chromium precipitation appears to be of a higher volume fraction, although the

typical precipitate diameter is similar to the other alloys. The dislocation density is low,

with few dislocation interactions visible. The sharp bending of short segments, obvious in

other alloys, is less prominent in this alloy. Room temperature deformation (about 0.6

percent) significantly increases the dislocation density, Figure 4-48. However, the

deformation appears more homogeneous compared to the other alloys, with few slip

bands. Dislocation pinning by the precipitates is observed, as are dislocation loops, which

occasionally surrounded the precipitates. Nearly all dislocations analyzed contained <100>

Burgers vectors.


Chromium Solubility and Site Preference in NiAl


Based on the above results, the solubility of chromium in NiAl for the given

processing conditions may be determined. A portion of the ternary nickel-aluminum-

chromium diagram is presented in Figure 4-49 with the trace of the solvus surface

indicated based on the microstructural results of the ternary alloys. This diagram indicates

that the solubility of chromium is higher for nickel-rich alloys. ALCHEMI results, taken

with the extruded Ni-49.5Al-lCr alloy along the [110] zone axis, support the

microstructural data by indicating a strong preference of chromium for the aluminum site

in NiAl. These results are plotted in Figure 4-50, which shows the intensity of the primary

K-alpha X-ray peaks as a function of deviation angle of the zone axis from the primary

beam. Since the chromium peak intensity tends to mimic the aluminum peak intensity, i.e.

it decreases with increasing deviation angle, a strong site preference for aluminum is

shown. It is not known whether nickel vacancies are created by this site preference for

alloys in which the combined chromium and aluminum contents exceed the nickel content.





















































Figure 4-24. Bright Field TEM Micrograph of <100> Dislocations in HAM Cast Ni-50A1
Deformed 0.3 Percent at 300K





















































Figure 4-25. TEM Dislocation Analysis Indicating <100> Dislocations in HAM Cast
Ni-50A1-1Cr Deformed 0.3 Percent at 300K





















































Figure 4-26. TEM Dislocation Analysis Indicating <100> Dislocations in HAM Cast
Ni-48Al-2Cr Deformed 0.6 Percent at 300K
















































(b)

Figure 4-27. TEM Microstructure of HAM Cast Ni-49A1-2Cr Deformed 0.6 Percent at
300K (a) Large Precipitates; (b) <100> Dislocations




















































(b)

Figure 4-28. Bright Field TEM Micrographs of HAM Cast Ni-50A1-2Cr Deformed 0.2
Percent at 300K


7)7-r-














(a)













(b)













(c)








Figure 4-29. TEM Microstructure of HAM Cast Ni-45A1-5 Chromium Deformed 0.3
Percent at 300K (a) Slip Bands; (b) Fine Precipitates and Dislocation Loops; (c) Coarser
Precipitates






















































Figure 4-30. TEM Dislocation Analysis Indicating <100> Dislocations in HAM Cast
Ni-47.5A1-5Cr Deformed 0.3 Percent at 300K





















































Figure 4-31. Bright Field TEM Micrographs of Large, Irregular Alpha-Chromium Phase
and Fine Precipitation in HAM Cast Ni-47.5Al-5Cr Deformed 0.3 Percent at 300K

















































(b)

Figure 4-32. Bright Field TEM Micrographs of HAM Cast Ni-50A1-5Cr Deformed 0.35
Percent at 300K (a) Pinning of <100> Dislocations by Precipitates; (b) Interfacial
Dislocation Nets at Larger Alpha-Chromium Particles






















































Figure 4-33. Bright Field TEM Micrographs Showing Orientation Relationship Between
B2 Matrix and A2 (BCC) Alpha-Chromium Precipitates in HAM Cast Ni-50A1-5Cr
Deformed 0.35 Percent at 300K




















































Figure 4-34. Bright Field TEM Micrographs of AM Cast Ni-48.5A1-5.2Cr Deformed 0.2
Percent at 300K. Note alpha-chromium dendrites and Cr23C6 precipitates.






















































Figure 4-35. Bright Field TEM Micrographs of Slip Bands Containing <100> Dislocations
in AM Cast Ni-48.5A1-5.2 Chromium Deformed 0.2 Percent at 300K


(pw,






















































Figure 4-36. Bright Field TEM Micrograph of HAM Cast Ni-48.5A1-5.2Cr Deformed 0.3
Percent at 300K. Note the wide distribution of precipitate diameters.





















































Figure 4-37. Bright Field TEM Micrographs of HAM Cast Ni-48.5A1-5.2Cr Deformed
0.8 Percent at 300K (a) Homogeneously Distributed <100> Dislocations; (b) Precipitation
































Figure 4-38. Bright Field TEM Micrograph of As-Extruded XVIM Ni-50A1


Figure 4-39. Bright Field TEM Micrograph of XVIM Ni-50A1 Deformed 0.6 Percent at
300K
































Figure 4-40. Bright Field TEM Micrograph of XVIM Ni-49.5Al-1Cr Deformed 0.6
Percent at 300K. Slip bands consist of <100> dislocations.


Figure 4-41. Bright Field TEM Micrograph of XVIM Ni-49.5A1- Cr Deformed 0.6
Percent at 300K. Note curvature of slip band at intersection.
































Figure 4-42. Bright Field TEM Micrograph of As-Extruded XVIM Ni-49A1-2Cr


Figure 4-43. Bright Field TEM Micrograph of As-Extruded XVIM Ni-48A1-2Cr.
































Figure 4-44. Bright Field TEM Micrograph of XVIM Ni-48A1-2Cr Deformed 0.7 Percent
at 300K


Figure 4-45. Bright Field TEM Micrograph of XVIM Ni-49A1-2Cr Deformed 0.1 Percent
at 300K Showing the Intersection of Two Slip Bands of <100> Dislocations




Full Text

PAGE 1

7+( ,1)/8(1&( 2) &+520,80 21 6758&785( $1' 0(&+$1,&$/ 3523(57,(6 2) % 1,&.(/ $/80,1,'( $//2<6 %< -$0(6 '($1 &27721 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*(0(176 )HZ LQGLYLGXDOV DFKLHYH WKH GLVWLQFWLRQ RI D 'RFWRU RI 3KLORVRSK\ GHJUHH ZLWKRXW WKH HPRWLRQDO WHFKQLFDO DQG ILQDQFLDO VXSSRUW RI RWKHUV DP KDSS\ WR UHFRJQL]H P\ RZQ )LUVW WKDQN P\ SDUHQWV IRU WKHLU XQZDYHULQJ VXSSRUW RI P\ JRDOV ,Q DGGLWLRQ KDYH D QXPEHU RI IULHQGV LQ 6HDWWOH ZKR HQFRXUDJHG PH WR DWWHPSW WKLV GHJUHH LQ VSLWH RI P\ RZQ GRXEWV SDUWLFXODUO\ UHPHPEHU WKH HQFRXUDJHPHQW RI 6WHYH 6SHDU 0HODQLH =HUEH DQG 'DYH +RXVH 7KH FRPSDQLRQVKLS RI WKH IROORZLQJ SHRSOH DW WKH 8QLYHUVLW\ RI :DVKLQJWRQ DQG WKH 8QLYHUVLW\ RI )ORULGD ZLOO DOVR EH IRQGO\ UHFDOOHG 'LFN .HQQLVK WKRVH UHTXLUHG ZHHNO\ VNL WULSVf .HQML .RMLPD DQG WKH 8: ,QWUDPXUDO 9ROOH\EDOO &KDPSLRQV RI DQG $QG\ 'XQFDQ DQG 0DUN :HDYHU ZKR FDQ TXLW GULQNLQJ FRIIHH DQ\WLPH WKH\ ZDQW WRf 7KH IROORZLQJ 1$6$ /5& HPSOR\HHV ZHUH LQYDOXDEOH VRXUFHV RI RI WHFKQLFDO DQGRU UHFUHDWLRQDO DGYLFH 5DQG\ %RZPDQ ,YDQ /RFFL 0LNH 1DWKDO %RE 0LQHU DQG +XJK *UD\ 7KDQNV DOVR JR WR 0DUN %HKEHKDQL IRU KLV H[FHOOHQW DVVLVWDQFH LQ PHFKDQLFDO WHVWLQJ HVSHFLDOO\ DFNQRZOHGJH WKH WHFKQLFDO JXLGDQFH VXJJHVWLRQV DQG IULHQGVKLS RI 5RQ 1RH EH 2I FRXUVH WKH ILQDQFLDO VXSSRUW RI WKH 8QLYHUVLW\ RI :DVKLQJWRQ WKH 8QLYHUVLW\ RI )ORULGD '$53$ DQG 1$6$ DUH JUDFLRXVO\ DFNQRZOHGJHG KDYH WKH XWPRVW UHVSHFW DQG JUDWLWXGH IRU 3URIHVVRU 0LNH .DXIPDQ ZKR DOZD\V KDG WKH LQVLJKW WR DVN RI PH PRUH WKDQ IHOW FDSDEOH RI DQG WKHUHE\ KHOSHG PH WR JURZ LPPHQVHO\ +LV SDVVLRQ IRU XQGHUVWDQGLQJ DQG DELOLW\ WR ORFDWH IXQGLQJf KDV EHHQ DQ LQVSLUDWLRQ )LQDOO\ WKH ORYH DQG VXSSRUW RI P\ ZLIH 0DULD DUH UHFRJQL]HG 7KH SDWLHQFH DQG WROHUDQFH VKH KDV GHPRQVWUDWHG WKH FRXQVHO VKH KDV RIIHUHG DQG WKH JRRG DQG EDG WLPHV ZH KDYH VKDUHG GXULQJ WKLV SHULRG RI RXU OLIH KDYH EHHQ DQ LPSRUWDQW SDUW RI WKLV JRDO

PAGE 3

7$%/( 2) &217(176 SDJH $&.12:/('*0(176 $%675$&7 Y &+$37(56 ,1752'8&7,21 %DFNJURXQG $SSURDFK 5(9,(: 2) 7+( /,7(5$785( 1LFNHO$OXPLQXP 3KDVH (TXLOLEULD 6WUXFWXUH RI 1L$O 0HFKDQLFDO 3URSHUWLHV RI 1L$O 'HIRUPDWLRQ DQG )UDFWXUH 7HUQDU\ $OOR\LQJ (IIHFWV RQ 3ODVWLF 'HIRUPDWLRQ (;3(5,0(17$/ 352&('85( 0DWHULDOV 2SWLFDO 0LFURVFRS\ 0HFKDQLFDO 3URSHUW\ 7HVWLQJ 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ ;UD\ 'LIIUDFWLRQ $QDO\VLV 5(68/76 $OOR\ &RPSRVLWLRQV 2SWLFDO 0LFURVFRS\ 0HFKDQLFDO 3URSHUWLHV 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ ',6&866,21 0LFURVWUXFWXUDO (YROXWLRQ 'LVORFDWLRQ &RQILJXUDWLRQ DQG 6OLS &RPSRVLWLRQ6WUXFWXUH3URSHUW\ 5HODWLRQVKLSV 6LWH 3UHIHUHQFH RI &KURPLXP LLL

PAGE 4

6800$5< $1' &21&/86,216 $33(1',&(6 $ 758( 675(66758( 675$,1 &859(6 % 5$: %85*(56 9(&725 $1$/<6,6 '$7$ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( ,1)/8(1&( 2) &+520,80 21 6758&785( $1' 0(&+$1,&$/ 3523(57,(6 2) % 1,&.(/ $/80,1,'( $//2<6 %\ -DPHV 'HDQ &RWWRQ 'HFHPEHU &KDLUPDQ 0LFKDHO .DXIPDQ 0DMRU 'HSDUWPHQW 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ 0DMRU REVWDFOHV WR WKH XVH RI 1L$OEDVH DOOR\V DQG FRPSRVLWHV DUH ORZ GXFWLOLW\ DQG WRXJKQHVV 7KHVH VKRUWFRPLQJV UHVXOW LQ SDUW DW OHDVW IURP D ODFN RI VXIILFLHQW VOLS V\VWHPV WR DFFRPPRGDWH SODVWLF GHIRUPDWLRQ RI SRO\FU\VWDOOLQH PDWHULDO WKH YRQ 0LVHV &ULWHULRQf ,W KDV EHHQ UHSRUWHG WKDW PLQRU DGGLWLRQV RI FKURPLXP WR SRO\FU\VWDOOLQH 1L$O FDXVH WKH SUHGRPLQDQW VOLS V\VWHP WR VKLIW IURP WKH XVXDO !^ ` WR !^ ` ,I WKLV LV WUXH WKHQ D PDMRU VWHS WRZDUG LQFUHDVLQJ GXFWLOLW\ LQ WKLV FRPSRXQG PD\ EH UHDOL]HG 7KH SXUSRVH RI WKH SUHVHQW VWXG\ ZDV WR YHULI\ WKLV SKHQRPHQRQ FKDUDFWHUL]H LW ZLWK UHVSHFW WR FKURPLXP OHYHO DQG QLFNHOWRDOXPLQXP UDWLR DQG FRUUHODWH DQ\ FKDQJH LQ VOLS V\VWHP ZLWK PLFURVWUXFWXUH DQG PHFKDQLFDO SURSHUWLHV &RPSUHVVLRQ DQG WHQVLOH VSHFLPHQV ZHUH SUHSDUHG IURP DOOR\V FRQWDLQLQJ WR DWb FKURPLXP DQG WR DW b DOXPLQXP )ROORZLQJ DERXW RQH SHUFHQW VWUDLQ 7(0 IRLOV ZHUH SURGXFHG DQG WKH VOLS V\VWHPV GHWHUPLQHG XVLQJ WKH JE LQYLVLELOLW\ FULWHULRQ &RQWUDU\ WR WKH SUHYLRXV UHVXOWV FKURPLXP ZDV IRXQG WR KDYH QR HIIHFW RQ WKH SUHIHUUHG VOLS V\VWHP LQ RI DQ\ RI WKH DOOR\V Y

PAGE 6

VWXGLHG 3RVVLEOH UHDVRQV IRU WKH LQFRQVLVWHQF\ RI WKH FXUUHQW UHVXOWV ZLWK SUHYLRXV ZRUN DUH FRQVLGHUHG &RPSRVLWLRQVWUXFWXUHSURSHUW\ UHODWLRQVKLSV DUH GLVFHUQHG IRU WKH DOOR\V DQG JRRG FRUUHODWLRQV DUH GHPRQVWUDWHG LQ WHUPV RI FRQYHQWLRQDO VWUHQJWKHQLQJ PRGHOV IRU PHWDOOLF V\VWHPV YL

PAGE 7

&+$37(5 ,1752'8&7,21 %DFNJURXQG $ FODVV RI PDWHULDOV WHUPHG LQWHUPHWDOOLFV KDV EHHQ WKH VXEMHFW RI DQ LQFUHDVLQJ DPRXQW RI VWXG\ IRU WKH SDVW GHFDGH 7KHUH DUH VHYHUDO UHDVRQV IRU WKLV LQWHUHVW PRVW RI ZKLFK UHYROYH DURXQG D QHHG IRU VWDEOH KLJKWHPSHUDWXUH KLJK ZLWK UHVSHFW WR PRVW PHWDOVf PDWHULDOV 7KH LQWHUPHWDOOLFV DUH FRQVLGHUHG WR RFFXS\ D SRVLWLRQ VRPHZKHUH EHWZHHQ PHWDOV DQG FHUDPLFV GXH WR D VLJQLILFDQW FRYDOHQW FRQWULEXWLRQ WR WKH RYHUDOO ERQGLQJ RI WKH FRPSRXQG ZKLFK OHQGV WKHUPDO VWDELOLW\ 7KLV RIWHQ FDXVHV DQ LQWHUPHWDOOLF WR KDYH D PHOWLQJ SRLQW DERYH RQH RU ERWK RI LWV SXUH FRQVWLWXHQW HOHPHQWV ,Q DGGLWLRQ LQWHUPHWDOOLFV RIWHQ H[KLELW UHODWLYH WR PRVW SXUH PHWDOV KLJKHU URRP WHPSHUDWXUH VWUHQJWK KLJKHU PRGXOL DQG ORZHU WKHUPDO H[SDQVLRQ FRHIILFLHQWV 7KHUPDO DQG HOHFWULFDO FRQGXFWLYLWLHV FDQ H[FHHG FRPSHWLQJ PHWDOOLF DOOR\V GXH WR WKH LQFUHDVHG ULJLGLW\ RI WKH VWUXFWXUH +RZHYHU WKH VDPH FRYDOHQW FRPSRQHQW ZKLFK FUHDWHV VXFK DWWUDFWLYH SURSHUWLHV ZLOO E\ QDWXUH DOVR UHGXFH WKH DELOLW\ RI WKH PDWHULDO WR XQGHUJR SODVWLF GHIRUPDWLRQ E\ GLVORFDWLRQ PRWLRQ 7KXV WKH GXFWLOLW\ DQG WRXJKQHVV RI LQWHUPHWDOOLF FRPSRXQGV DUH XVXDOO\ ORZ FRPSDUHG ZLWK PHWDOV 7KLV ODWWHU GHILFLHQF\ KDV EHHQ D PDMRU REVWDFOH LQ WKH GHYHORSPHQW RI LQWHUPHWDOOLFV DQG LV WKH UHDVRQ IRU WKH FXUUHQW VWXG\ 2QH YHU\ LPSRUWDQW DSSOLFDWLRQ IRU LQWHUPHWDOOLFV LV KLJKWHPSHUDWXUH FRPSRQHQWV RI DGYDQFHG WXUELQH HQJLQHV VXFK DV EODGHV DQG YDQHV >@ )RU VXFK DSSOLFDWLRQV % QLFNHO DOXPLQLGH 1L$Of LV D PDWHULDO RI FKRLFH DQG WKH QH[W ORJLFDO VWHS LQ PDWHULDOV HYROXWLRQ EH\RQG FXUUHQW VXSHUDOOR\V 1LFNHO DOXPLQLGH KDV D KLJK PHOWLQJ SRLQW DERYH VXSHUDOOR\Vf D ORZ GHQVLW\ SHUFHQW WKDW RI VXSHUDOOR\V RU 1$,f D KLJK WKHUPDO

PAGE 8

FRQGXFWLYLW\ DV PXFK DV HLJKW WLPHV WKDW RI VXSHUDOOR\Vf D ZLGH VROXELOLW\ UDQJH JRRG SURFHVVDELOLW\ DQG LV LQH[SHQVLYH >@ ,Q VSLWH RI WKHVH DGYDQWDJHV 1L$O LV EULWWOH DQG UDUHO\ DWWDLQV D WHQVLOH GXFWLOLW\ LQ H[FHVV RI SHUFHQW DW URRP WHPSHUDWXUH > @ 5RRPWHPSHUDWXUH SODVWLF GHIRUPDWLRQ LQ 1L$O RFFXUV SUHGRPLQDQWO\ E\ GLVORFDWLRQ JOLGH RQ WKH ^` V\VWHPV > @ RI ZKLFK RQO\ WKUHH DUH LQGHSHQGHQW >@ $FFRUGLQJ WR WKH YRQ 0LVHV &ULWHULRQ >@ D PLQLPXP RI ILYH LQGHSHQGHQW GHIRUPDWLRQ PHFKDQLVPV DUH UHTXLUHG IRU DUELWUDU\ GHIRUPDWLRQ RI DQ\ WKUHHGLPHQVLRQDO ERG\ 7KLV UHTXLUHPHQW UHVWULFWV SODVWLF IORZ LQ SRO\FU\VWDOOLQH 1L$O DV HDFK JUDLQ PXVW XQGHUJR DUELWUDU\ GHIRUPDWLRQ WR PDLQWDLQ VKDSH FRPSDWLELOLW\ ZLWK WKH DGMDFHQW JUDLQV DQG LV DW OHDVW RQH UHDVRQ ZK\ LW LV QRW GXFWLOH +RZHYHU LI RWKHU VOLS V\VWHPV FRXOG EH DFWLYDWHG VXFK DV WKRVH ZKLFK RSHUDWH LQ ERG\ FHQWHUHGFXELF PHWDOV !^7`f WKHQ VXIILFLHQW VOLS V\VWHPV ZRXOG EH DYDLODEOH DQG D PDMRU REVWDFOH WR GXFWLOLW\ DQG WRXJKQHVV ZLOO KDYH EHHQ UHPRYHG 2QH DYHQXH WR DFWLYDWLQJ RWKHU VOLS V\VWHPV WKDW KDV EHHQ VXJJHVWHG LV WKURXJK WHUQDU\ DOOR\LQJ > @ ,Q IDFW /DZ DQG %ODFNEXUQ >@ UHSRUWHG LQ WKDW WKH DGGLWLRQ RI ILYH DWRP SHUFHQW FKURPLXP WR 1L$O FDXVHG WKH SULPDU\ %XUJHUV YHFWRU WR FKDQJH IURP WR +RZHYHU QR LQFUHDVH LQ WHQVLOH GXFWLOLW\ ZDV REVHUYHG 7KLV UHVXOW LV LQWULJXLQJ DQG VHYHUDO TXHVWLRQV DUH REYLRXV ,I WKH %XUJHUV YHFWRU ZDV WUXO\ DOWHUHG DQG VXIILFLHQW VOLS V\VWHPV ZHUH DYDLODEOH WKHQ ZKDW RWKHU IDFWRU LV UHVWULFWLQJ SODVWLF IORZ" $UH WKHUH RWKHU FRPSRVLWLRQV LQ WKLV WHUQDU\ V\VWHP ZKLFK PD\ GHPRQVWUDWH VLPLODU EHKDYLRU" 7KH SULPDU\ TXHVWLRQ IXQGDPHQWDO WR DQ\ VFLHQWLILF VWXG\ LV $UH WKH UHVXOWV UHSURGXFLEOH" $V RI WKH WLPH RI WKLV ZULWLQJ WKHUH KDYH EHHQ QR RWKHU VWXGLHV ZKLFK FRQILUP WKH HIIHFW RI FKURPLXP RQ SODVWLF IORZ LQ SRO\FU\VWDOOLQH 1L$O 7KXV WKH REMHFWLYH RI WKH FXUUHQW VWXG\ LV WR H[DPLQH LQ D V\VWHPDWLF IDVKLRQ WKH HIIHFW RI FKURPLXP RQ VOLS DQG PHFKDQLFDO SURSHUWLHV LQ 1L$O

PAGE 9

$SSURDFK 6LQFH /DZ DQG %ODFNEXUQ >@ LQLWLDOO\ VWXGLHG FDVW DOOR\V DQG WKH URRP WHPSHUDWXUH VROXELOLW\ RI FKURPLXP LQ 1L$O LV OHVV WKDQ WZR DWRP SHUFHQW > @ WKH FKURPLXP FRQWHQW RI WKH DOOR\V LQ WKH FXUUHQW VWXG\ ZDV YDULHG IURP ]HUR WR ILYH DWRP SHUFHQW f 7R H[DPLQH WKH HIIHFWV RI VWRLFKLRPHWU\ WKH DOXPLQXP FRQWHQW ZDV DOVR YDULHG IURP WR SHUFHQW $ VHW RI DOOR\V ZLWKLQ WKLV FRPSRVLWLRQ UDQJH ZDV FDVW DQG KRPRJHQL]HG LQFOXGLQJ RQH H[DFWO\ DW WKH FRPSRVLWLRQ UHSRUWHG WR H[KLELW VOLS >@ 7R VWXG\ SURFHVVLQJ HIIHFWV DQG LPSURYH VSHFLPHQ LQWHJULW\ ILYH RI WKH FRPSRVLWLRQV ELQDU\ VWRLFKLRPHWULF 1L$O DQG IRXU DOXPLQXPOHDQ WHUQDULHVf ZHUH DOVR SURGXFHG LQ H[WUXGHG IRUP %RWK WKH FDVW DQG WKH H[WUXGHG DOOR\V ZHUH XWLOL]HG IRU DQ RYHUDOO VXUYH\ RI %XUJHUV YHFWRUV LQ WKLV V\VWHP ,Q DGGLWLRQ WKH UHODWLRQVKLSV EHWZHHQ FRPSRVLWLRQ SURFHVVLQJ GLVORFDWLRQ W\SH DQG PHFKDQLFDO SURSHUWLHV ZHUH H[DPLQHG 7KH JUHDWHU PLFURVWUXFWXUDO LQWHJULW\ RI WKH H[WUXVLRQV DOORZHG WKH GHWHUPLQDWLRQ RI WHQVLOH SURSHUWLHV DV ZHOO DV EULWWOHWRGXFWLOHWUDQVLWLRQWHPSHUDWXUHV

PAGE 10

&+$37(5 5(9,(: 2) 7+( /,7(5$785( 7KLV UHYLHZ FRYHUV WRSLFV JHUPDQH WR XQGHUVWDQGLQJ WKH FKHPLFDO DQG VWUXFWXUDO IDFWRUV FRQWUROOLQJ SODVWLF GHIRUPDWLRQ LQ 1L$O XQGHU DPELHQW FRQGLWLRQV 7KH SULPDU\ WRSLFV DUH SKDVH HTXLOLEULD PHFKDQLFDO EHKDYLRU GHIRUPDWLRQ DQG IUDFWXUH DQG DOOR\LQJ HIIHFWV 7KH ODWWHU WRSLF GHDOV ZLWK WKH HIIHFW RI WHUQDU\ DGGLWLRQV RQ VOLS EHKDYLRU DQG PHFKDQLFDO SURSHUWLHV DQG LV PDLQO\ FRQILQHG WR VLQJOH SKDVH DOOR\V RI WKH % VWUXFWXUH 1LFNHO$OXPLQXP 3KDVH (TXLOLEULD 7KH ELQDU\ QLFNHODOXPLQXP SKDVH GLDJUDP LV VKRZQ LQ )LJXUH )LYH LQWHUPHWDOOLF SKDVHV DUH SUHVHQW LQ WKLV V\VWHP 2I WKH ILYH WKH FRPSRXQG 1L$O H[KLELWV WKH KLJKHVW PHOWLQJ SRLQW ,. 1LFNHO DOXPLQLGH DOVR GLVSOD\V DQ XQXVXDOO\ ZLGH UDQJH RI VROXELOLW\ DQ LQGLFDWLRQ RI KLJK VWDELOLW\ VSDQQLQJ PRUH WKDQ DWRPLF SHUFHQW DOO FRPSRVLWLRQV ZLOO EH JLYHQ LQ DWRPLF SHUFHQWf DW r& 'HYLDWLRQV IURP VWRLFKLRPHWU\ DUH DFFRPPRGDWHG E\ WKH VXEVWLWXWLRQ RI QLFNHO DWRPV RQWR DOXPLQXP VLWHV LQ QLFNHOULFK FRPSRVLWLRQV DQWLVLWH GHIHFWVf DQG E\ WKH IRUPDWLRQ RI YDFDQFLHV RQ WKH QLFNHO VLWHV LQ DOXPLQXPULFK FRPSRVLWLRQV >@ 7KH LQDELOLW\ RI DOXPLQXP DWRPV WR RFFXS\ WKH QLFNHO VLWHV LV XVXDOO\ H[SODLQHG E\ WKH ODUJHU DWRPLF VL]H RI DOXPLQXP DWRPV 9DFDQFLHV DUH IRUPHG EHFDXVH WKH RYHUDOO DOOR\ FRPSRVLWLRQ FDQ RQO\ EH PDLQWDLQHG E\ WKH HOLPLQDWLRQ RI D SURSRUWLRQDWH QXPEHU RI QLFNHO DWRPV 7KHVH DQWLVLWH DQG YDFDQF\ SRLQW GHIHFWV KDYH EHHQ VKRZQ WR ORFDOO\ RUGHU VXFK WKDW QR GHIHFW KDV D VLPLODU GHIHFW DV D ILUVW QHLJKERU >@ ZKLFK OHDGV WR FOXVWHUV RI 1$, DQG 1$, UHVSHFWLYHO\ >@

PAGE 11

6WUXFWXUH RI 1L$O %HWD 1L$O FU\VWDOOL]HV LQ WKH &V&O %f VWUXFWXUH LQ ZKLFK RQH DWRP W\SH UHVLGHV DW WKH FHQWHU SRVLWLRQ RI D FXELF XQLW FHOO DQG WKH RWKHU DW WKH FRPHUV WKXV FRPSULVLQJ DQ RUGHUHG ERG\FHQWHUHG FXELF %&&f ODWWLFH >@ 7KH VWUXFWXUH LV VKRZQ LQ )LJXUH )LJXUH %LQDU\ 3KDVH 'LDJUDP IRU 1LFNHO$OXPLQXP 6\VWHP >@ )LJXUH 1L$O % 6WUXFWXUH

PAGE 12

7KLV FRPSRXQG LV D FRQJUXHQWO\ PHOWLQJ +XPH5RWKHU\ SKDVH ZLWK DQ HOHFWURQWR DWRP UDWLR RI VLPLODU WR &X=Q DQG LV VWURQJO\ RUGHUHG >@ ,Q DGGLWLRQ WKHUH LV HYLGHQFH WKDW VKRUWUDQJH RUGHU H[LVWV LQ WKH PHOW >@ 7KLV VWURQJ WHQGHQF\ WR RUGHU LV LQGLFDWLYH RI D KLJK RUGHULQJ HQHUJ\ DQG D SUHIHUHQFH IRU ERQGLQJ EHWZHHQ DOXPLQXP DQG QLFNHO DWRPV ;UD\ DQG HOHFWURQ VWUXFWXUH IDFWRU PHDVXUHPHQWV > @ SURYLGH HYLGHQFH RI D KLJK GHJUHH RI ERQG GLUHFWLRQDOLW\ LQGLFDWLQJ HOHFWURQ FRQFHQWUDWLRQ LQ GLUHFWLRQV EHWZHHQ ILUVWQHLJKERU DOXPLQXPQLFNHO SDLUV DQG D PL[WXUH RI ERWK PHWDOOLF DQG FRYDOHQW ERQGLQJ 7KLV ODUJH DWWUDFWLRQ EHWZHHQ DOXPLQXP DQG QLFNHO DWRPV DFFRXQWV IRU PDQ\ RI WKH XQXVXDO SURSHUWLHV RI 1L$O 0HFKDQLFDO 3URSHUWLHV RI 1L$O 3ROYFU\VWDOOLQH 6WUHQJWK DQG 'XFWLOLW\ 5RRPWHPSHUDWXUH PHFKDQLFDO SURSHUWLHV RI 1L$O LQ WHQVLRQ DQG FRPSUHVVLRQ DUH VXPPDUL]HG LQ 7DEOHV DQG UHVSHFWLYHO\ 7KH HDUOLHVW UHSRUW RQ WKH PHFKDQLFDO SURSHUWLHV RI 1L$O LV WKDW RI :DFKWHOO >@ ZKLFK JLYHV D URRPWHPSHUDWXUH PRGXOXVRIUXSWXUH IRU SRZGHUSURFHVVHG PDWHULDO RI 03D ZLWK QLO GXFWLOLW\ 7KLV YDOXH LV KLJK FRPSDUHG WR PRUH UHFHQW UHSRUWV DQG LV OLNHO\ D UHVXOW RI LPSXULWLHV LQWURGXFHG E\ SRZGHU SURFHVVLQJ /DWHU ZRUN E\ 0D[ZHOO DQG *UDOD > @ UHSRUWHG D PXFK ORZHU IUDFWXUH VWUHQJWK IRU FDVW PDWHULDO DERXW 03D DQG ]HUR GXFWLOLW\ DOVR 7KH ILUVW UHSRUW RI DPELHQW WHPSHUDWXUH GXFWLOLW\ LQ 1L$O ZDV E\ 5R]QHU DQG :DVLOHZVNL >@ ZKR PHDVXUHG DERXW SHUFHQW HORQJDWLRQ DQG D \LHOG VWUHQJWK RI 03D LQ FDVW DQG H[WUXGHG PDWHULDO 4XLWH UHFHQW VWXGLHV KDYH HVVHQWLDOO\ FRQILUPHG WKH DPELHQW GXFWLOLW\ DV EHLQJ DERXW SHUFHQW ZKLOH WKH \LHOG VWUHQJWK YDULHV GHSHQGLQJ RQ WKH DFWXDO VWXG\ IURP WR 03D ZLWK D PHDQ YDOXH RI 03D > @ 7KH GLIIHUHQFHV LQ VWUHQJWK PD\ UHVXOW IURP YDULDWLRQV LQ LQWHUVWLWLDO FRQWHQW VXFK DV FDUERQ D FRPPRQ LPSXULW\ LQ QLFNHOf >@ RU VWRLFKLRPHWU\ 7KH JUDLQ

PAGE 13

VL]H KDV EHHQ VKRZQ H[SHULPHQWDOO\ WR KDYH OLWWOH HIIHFW RQ HLWKHU WKH \LHOG RU IUDFWXUH VWUHQJWKV RI VWRLFKLRPHWULF 1L$O DW DPELHQW WHPSHUDWXUHV > @ DOWKRXJK IUDFWXUH PHFKDQLFDO PRGHOV SUHGLFW RWKHUZLVH > @ 7KH SRVVLEOH HIIHFW RI JUDLQ VL]H RQ PHFKDQLFDO SURSHUWLHV LV GLVFXVVHG LQ IXUWKHU GHSWK EHORZ 7DEOH 5RRP7HPSHUDWXUH 7HQVLOH 3URSHUWLHV RI 3RO\FU\VWDOOLQH 1L$O 5HIHUHQFH f§ O /L R 30 +3 >@ f§ FDVW >@ QR GDWD FDVW H[WU > FDVW H[WU >@ f§ 30 H[WU >@ FDVW H[WU >@ FDVW H[WU >@ 30 H[WU >@ f§ 30 H[WU 7DEOH 5RRP7HPSHUDWXUH &RPSUHVVLYH 3URSHUWLHV RI 3RO\FU\VWDOOLQH 1L$O 5HIHUHQFH @ FDVW H[WU >@ f§ L 2 FDVW H[WU 1RWH WKH FRUUHODWLRQ LQ 7DEOH EHWZHHQ GXFWLOLW\ DQG SURFHVVLQJ E\ H[WUXVLRQ 7KLV FRUUHODWLRQ KDV EHHQ SURSRVHG WR EH GXH WR D ILEHU WH[WXUH EURXJKW DERXW E\ WKH H[WUXVLRQ SURFHVV DQG WKH UHWHQWLRQ RI D PRELOH GLVORFDWLRQ VXEVWUXFWXUH >@ $V ZLWK PDQ\ PHWDOV JUDLQV UHRULHQW GXULQJ H[WUXVLRQ VXFK WKDW VRIWHU GLUHFWLRQV DUH DOLJQHG ZLWK WKH H[WUXVLRQ D[LV D SRUWLRQ RI WKLV WH[WXUH LV UHWDLQHG IROORZLQJ UHFU\VWDOOL]DWLRQ :KHQ WHVW VSHFLPHQV DUH PDFKLQHG IURP WKH H[WUXVLRQV WKH VWUHVV D[LV FRLQFLGHV ZLWK WKH H[WUXVLRQ D[LV DQG WKXV WKH VRIW RULHQWDWLRQ 7KLV ZLOO WHQG WR DOORZ D ORZHU \LHOG VWUHVV DQG IRU D JLYHQ IUDFWXUH VWUHVV VOLJKWO\ KLJKHU GXFWLOLW\ ,Q DGGLWLRQ KLJKHU GXFWLOLW\ LV DSSDUHQW IRU

PAGE 14

FDVW DQG H[WUXGHG PDWHULDO FRPSDUHG ZLWK FRQVROLGDWHG SRZGHU ZKLFK PD\ EH D UHVXOW RI FRQWDPLQDWLRQ DFTXLUHG GXULQJ SRZGHU SURFHVVLQJ $Q\ FRQWDPLQDQW SKDVHV PD\ RSHUDWH DV FULWLFDO IODZV LQ WKH FRQVROLGDWHG SURGXFW +DUGQHVV 7KH URRPWHPSHUDWXUH KDUGQHVV RI VWRLFKLRPHWULF DQG QHDU VWRLFKLRPHWULF 1L$O LV LQ WKH UDQJH NJPPr 9LFNHUV KDUGQHVVf GHSHQGLQJ XSRQ WKH H[DFW FRPSRVLWLRQ DQG LPSXULW\ FRQWHQW > @ (IIHFW RI 7HPSHUDWXUH $ VXEVWDQWLDO DPRXQW RI GDWD H[LVWV IRU WKH PHFKDQLFDO SURSHUWLHV RI 1L$O DV D IXQFWLRQ RI WHPSHUDWXUH > @ WKH PRVW H[WHQVLYH RI ZKLFK DUH WKDW RI 5R]QHU DQG :DVLOHZVNL WHQVLRQf DQG 3DVFRH DQG 1HZH\ FRPSUHVVLRQf > @ 6WRLFKLRPHWULF 1L$O GLVSOD\V D VPRRWK GHFUHDVH LQ \LHOG VWUHQJWK ZLWK LQFUHDVLQJ WHVW WHPSHUDWXUH DQG VKRZV QR LQGLFDWLRQ RI WKH VWUHQJWK DQRPDO\ VRPHWLPHV REVHUYHG LQ % FRPSRXQGV >@ )LJXUH 7KH ILJXUH LV DGDSWHG IURP 9HGXOD DQG .KDGLNDU >@ DQG UHSUHVHQWV WKH FRPELQHG GDWD RI VHYHUDO LQYHVWLJDWRUV > @ ZKLFK DJUHH TXLWH ZHOO 7KH \LHOG VWUHQJWK RI SRO\FU\VWDOOLQH 1L$O LV ORZ DERXW 03D NVLf DW URRP WHPSHUDWXUH ZKLFK PDNHV LW FRPSDUDEOH WR PRGHUDWHO\ VWURQJ DOXPLQXP DOOR\V 6LPLODU WR %&& PHWDOV 1L$O H[KLELWV D WUDQVLWLRQ IURP EULWWOH WR GXFWLOH EHKDYLRU ZLWK LQFUHDVLQJ WHPSHUDWXUH DV LOOXVWUDWHG LQ )LJXUH IRU VHYHUDO GLIIHUHQW VWXGLHV $ %ULWWOHWR'XFWLOH7UDQVLWLRQ7HPSHUDWXUH %'77f PD\ EH GHWHUPLQHG IRU SRO\FU\VWDOOLQH VWRLFKLRPHWULF 1L$O WR EH DERXW 7Pf VLQFH WKH UHVXOWV LQGLFDWLQJ KLJKHU %'77V PD\ EH GXH WR QRQVWRLFKLRPHWULF PDWHULDO RU LPSXULW\ HIIHFWV ERWK RI ZKLFK UDLVH WKH WHQVLOH VWUHQJWK IXUWKHU DERYH WKH IUDFWXUH VWUHVV ,W LV TXLWH LQWHUHVWLQJ WR QRWH WKDW WKH %'77 LV ORZHU IRU PRUH UHFHQW VWXGLHV SUREDEO\ DQ HIIHFW RI FOHDQOLQHVV LQWHUVWLWLDO HOHPHQWVf RU EHWWHU FRPSRVLWLRQDO FRQWURO 2WKHU H[WULQVLF HIIHFWV ZKLFK PD\ OLPLW DSSDUHQW GXFWLOLW\ UDLVH WKH %'77f LQFOXGH GHIHFWV LQ SRZGHUSURFHVVHG PDWHULDO VXUIDFH URXJKQHVV DQG PLVDOLJQHG WHQVLOH VSHFLPHQV ,Q DGGLWLRQ LQFUHDVLQJ WKH VWUDLQ UDWH W\SLFDOO\ DW O+Vf KDV WKH HIIHFW RI UDLVLQJ WKH %'77 DERXW IRU HDFK RUGHU RI PDJQLWXGH > @

PAGE 15

D e V F V FR e F e )LJXUH 7HQVLOH @ )LJXUH 'XFWLOLW\ 7HQVLRQf RI 3RO\FU\VWDOOLQH 1L$O DV D )XQFWLRQ RI 7HPSHUDWXUH >@

PAGE 16

7KH FROOHFWLYH XOWLPDWH WHQVLOH DQG IUDFWXUH VWUHQJWK GDWD RI VHYHUDO LQYHVWLJDWRUV DUH SORWWHG EHORZ LQ )LJXUHV DQG 7KH EHKDYLRU LQ FRPSUHVVLRQ LV URXJKO\ UHJXODU ZLWK DSSUR[LPDWHO\ D 03D LQFUHDVH LQ IUDFWXUH VWUHQJWK IRU HDFK GHFUHDVH LQ WHPSHUDWXUH ,Q FRQWUDVW WKH WHQVLOH IUDFWXUH VWUHQJWKV VKRZ FRQVLGHUDEOH YDULDELOLW\ DQG GLVDJUHHPHQW EHWZHHQ VWXGLHV EHORZ 7KLV LV SUREDEO\ GXH WR GLIIHUHQFHV LQ WKH GHIHFW VL]H DQG SRSXODWLRQ DV IUDFWXUH VWUHQJWK LV LQYHUVHO\ UHODWHG WR PD[LPXP GHIHFW VL]H $OWKRXJK FRPSDULVRQ EHWZHHQ WHQVLOH DQG FRPSUHVVLYH IUDFWXUH VWUHQJWKV LV QRW VWULFWO\ YDOLG LW FDQ EH LPPHGLDWHO\ VHHQ IURP WKHVH SORWV WKDW WKH ODUJH GLVFUHSDQF\ LV PRUH SURQRXQFHG DW WHPSHUDWXUHV EHORZ 7KLV LV OLNHO\ GXH WR WKH LQWHUYHQWLRQ RI IUDFWXUH LQ WHQVLRQ ZKLFK RFFXUV DW D ORZHU VWUHVV WKDQ SODVWLF GHIRUPDWLRQ ZKHQ DW ORZHU WHPSHUDWXUHV ,Q FRPSUHVVLRQ DOWKRXJK FUDFNV IRUP WKH\ SURSDJDWH LQ D VWDEOH IDVKLRQ DQG GHIRUPDWLRQ FDQ FRQWLQXH WR JUHDWHU VWUDLQV ZLWKRXW FRPSOHWH IDLOXUH >@ r 7HVW 7HPSHUDWXUH .f )LJXUH 8OWLPDWH 7HQVLOH 6WUHQJWK RI 3RO\FU\VWDOOLQH 1L$O DV D )XQFWLRQ RI 7HPSHUDWXUH > @

PAGE 17

FG J V 6 & IL R E )LJXUH )UDFWXUH 6WUHQJWK LQ &RPSUHVVLRQ RI 3RO\FU\VWDOOLQH 1L$O DV D )XQFWLRQ RI 7HPSHUDWXUH >@ (IIHFW RI 6WRLFKLRPHWU\ 7KH VWRLFKLRPHWU\ RI WKH 1L$O FRPSRXQG KDV EHHQ VKRZQ WR KDYH D PDUNHG HIIHFW RQ WKH PHFKDQLFDO SURSHUWLHV ([DFW VWRLFKLRPHWU\ LH 1L$O LV DVVRFLDWHG ZLWK D PD[LPXP LQ GXFWLOLW\ DQG D PLQLPXP LQ VWUHQJWK DQG KDUGQHVV :HVWEURRN >@ ILUVW LQGLFDWHG WKLV HIIHFW E\ PLFURKDUGQHVV WHVWLQJ RI DUFPHOWHG EXWWRQV )LJXUH DQG DVVRFLDWHG WKLV EHKDYLRU ZLWK WKH GHIHFW VWUXFWXUHV SURSRVHG E\ %UDGOH\ DQG 7D\ORU >@ 1LFNHOULFK FRPSRVLWLRQV DUH KDUGHQHG UHODWLYH WR VWRLFKLRPHWULF FRPSRVLWLRQV E\ WKH SUHVHQFH RI QLFNHO DWRPV RQ DOXPLQXP VXEODWWLFH VLWHV DQWLVLWH GHIHFWVf ZKLOH DOXPLQXPULFK FRPSRVLWLRQV DUH KDUGHQHG WR D JUHDWHU H[WHQW E\ WKH RFFXUUHQFH RI YDFDQFLHV RQ WKH QLFNHO VXEODWWLFH 7KLV EHKDYLRU DOVR H[WHQGV WR \LHOG VWUHQJWK ZKLFK VKRZV D PLQLPXP DW WKH VWRLFKLRPHWULF FRPSRVLWLRQ )LJXUH >@

PAGE 18

9LFNHUV +DUGQHVV NJPP f )LJXUH +DUGQHVV RI 1L$O DV D )XQFWLRQ RI 6WRLFKLRPHWU\ DQG 7HPSHUDWXUH >@ &/ V nf§Z & f§r F 8 WO F e )LJXUH (IIHFW RI 6WRLFKLRPHWU\ RQ @

PAGE 19

7KHUH KDYH EHHQ VWXGLHV ZKLFK DSSHDU WR LQGLFDWH WKDW PHFKDQLFDO SURSHUW\ PD[LPD DQG PLQLPD RFFXU IRU VOLJKWO\ DOXPLQXPULFK FRPSRVLWLRQV > @ +RZHYHU WKH GLIILFXOW\ LQ WKH H[DFW GHWHUPLQDWLRQ RI DOXPLQXP FRQWHQW XVXDOO\ s DWRP SHUFHQWf DQG WKH RFFXUUHQFH RI SK\VLFDO SURSHUW\ LQIOHFWLRQV DW WKH H[DFW VWRLFKLRPHWULF FRPSRVLWLRQ > @ LQGLFDWH RWKHUZLVH (IIHFW RI *UDLQ 6L]H %DVHG RQ HDUO\ ZRUN E\ &RWWUHOO >@ 6FKXOVRQ >@ VXJJHVWHG WKHUH PD\ EH D FULWLFDO JUDLQ VL]H GF EHORZ ZKLFK VHPLEULWWOH PDWHULDOV PD\ H[KLELW WHQVLOH HORQJDWLRQ +H GHULYHG WKH IROORZLQJ H[SUHVVLRQ ZKHUH .MF LV WKH SODQH VWUDLQ IUDFWXUH WRXJKQHVV < LV D JHRPHWULFDO SDUDPHWHU RUGHU RI f DQG .\ DQG R DUH WKH HPSLULFDO +DOO3HWFK SDUDPHWHUV ,Q WKLV PRGHO ODUJH JUDLQV DUH FRQVLGHUHG WR GHYHORS ODUJHU VWUHVV FRQFHQWUDWLRQV DW JUDLQ ERXQGDULHV WKDQ VPDOO JUDLQV GXH WR WKH JUHDWHU SLOHXS RI GLVORFDWLRQV DW WKH ERXQGDU\ $VVXPLQJ WKDW WKH VWUHVVHV WR SURSDJDWH VOLS DFURVV D ERXQGDU\ DQG WR QXFOHDWH D PLFURFUDFN DUH VLPLODU ODUJHU JUDLQV VKRXOG SURSDJDWH FUDFNV DW D ORZHU DSSOLHG VWUHVV ([SHULPHQWDO YHULILFDWLRQ RI WKLV FRQFHSW ZDV ODWHU UHSRUWHG E\ WKH VDPH DXWKRU > @ IRU FDVW DQG H[WUXGHG 1$ 7KLV DOOR\ ZDV H[WUXGHG DW D ORZ WHPSHUDWXUH WR UHWDLQ D ILQH UHFU\VWDOOL]HG JUDLQ VWUXFWXUH DQG VXEVHTXHQW DQQHDOLQJ WUHDWPHQWV ZHUH LPSRVHG WR DWWDLQ D UDQJH RI JUDLQ GLDPHWHUV IURP WR SP 7HQVLOH WHVWV DW WHPSHUDWXUHV UDQJLQJ IURP WR LQGLFDWHG WKH H[LVWHQFH RI D FULWLFDO JUDLQ VL]H ZKLFK ZDV DERXW SP DW )LJXUH +RZHYHU WKH URRP WHPSHUDWXUH GXFWLOLW\ UHPDLQHG DW DERXW SHUFHQW HYHQ DW WKH ILQHVW JUDLQ VL]H RI SP 7KLV ZRXOG VHHP WR LQGLFDWH WKH FULWLFDO JUDLQ VL]H IRU 1$ DW URRP WHPSHUDWXUH LV VRPHZKDW OHVV WKDQ SP 7KLV LV VXSSRUWHG E\ WKH ZRUN RI 1RHEH HW DO >@ ZKR XVLQJ D

PAGE 20

FULWLFDO -LQWHJUDO PRGHO GHYHORSHG E\ &KDQ >@ LQGLFDWHG WKDW WKH FULWLFDO JUDLQ VL]H IRU 1L$O ZDV DERXW _LP DQG WKDW RQO\ SHUFHQW HORQJDWLRQ FDQ EH H[SHFWHG IRU D JUDLQ VL]H RI _LP )XUWKHU ZRUN E\ 1DJSDO DQG %DNHU >@ ZLWK FDVW DQG H[WUXGHG 1$ IRXQG QR GHSHQGHQFH RI \LHOG VWUHQJWK RQ JUDLQ VL]H DW DQG DOWKRXJK ILQHU JUDLQ VL]HV GLG SURGXFH JUHDWHU HORQJDWLRQ RQO\ SHUFHQW ZDV DFKLHYHG IRU WKH ILQHVW VL]H VWXGLHG _LPf 4XLWH UHFHQW UHVXOWV E\ %DNHU HW DO >@ IRU 1L DQG $ DJDLQ IRXQG OLWWOH GHSHQGHQFH RI \LHOG VWUHQJWK RQ JUDLQ VL]H IRU 1$ EXW DQ LQFUHDVLQJ GHSHQGHQFH ZLWK GHYLDWLRQ IURP VWRLFKLRPHWU\ 6LQFH WKHVH WHVWV ZHUH FRQGXFWHG LQ FRPSUHVVLRQ QR GXFWLOLW\ ZDV UHSRUWHG )LJXUH (IIHFW RI *UDLQ 6L]H RQ 'XFWLOLW\ RI 1$ >@ 7KHUH DUH FXUUHQW HIIRUWV WR SURGXFH 1L$O ZLWK D JUDLQ VL]H OHVV WKDQ PLFURQV XWLOL]LQJ VSHFLDO SURFHVVLQJ VXFK DV PHFKDQLFDO DOOR\LQJ SOXV H[WUXVLRQ WR DFKLHYH D SP JUDLQ VL]H DQG LQHUW JDV FRQGHQVDWLRQ WR GHYHORS D QP QDQRFU\VWDOOLQHf JUDLQ VL]H > @ 1R WHQVLOH SURSHUWLHV KDYH EHHQ UHSRUWHG DV \HW IRU WKHVH PDWHULDOV

PAGE 21

6LQJOH &U\VWDOV @ $ PDUNHG DQLVRWURS\ LQ WKH \LHOG VWUHQJWK LV DSSDUHQW LQ VSLWH RI WKH GLIIHUHQFHV EHWZHHQ VWXGLHV DQG WKH W\SLFDO VWUHQJWK RI >@ KDUGf RULHQWHG FU\VWDOV LV VL[ WLPHV WKDW RI >@ VRIWf RULHQWHG FU\VWDOV 6XFK D ODUJH RULHQWDWLRQ GHSHQGHQFH LV D GLUHFW UHVXOW RI WKH SUHIHUUHG VOLS V\VWHPV ZKLFK DUH LQ WXUQ D UHVXOW RI WKH GLUHFWLRQDO ERQGLQJ RI 1L$O 'HVSLWH WKH NQRZQ HODVWLF DQLVRWURS\ RI % FRPSRXQGV >@ WKHUH LV OLWWOH UHODWLRQVKLS EHWZHHQ WKH HODVWLF DQG SODVWLF SURSHUWLHV LQ WKLV UHVSHFW )RU H[DPSOH ERWK 1L$O DQG &X=Q DUH % FRPSRXQGV DQG KDYH =HQHU DQLVRWURS\ IDFWRUV RI DQG UHVSHFWLYHO\ +RZHYHU EHFDXVH RI WKH UHODWLYHO\ ODUJHU PHWDOOLF FRPSRQHQW RI WKH ERQGLQJ LQ &X=Q LWV \LHOG VWUHQJWK UDWLR 2>L@$r>LLL@ a YHUVXV IRU 1L$O >@ 7KXV WKH FKDUDFWHU RI WKH ERQGLQJ KDV D ODUJH HIIHFW LQ GHWHUPLQLQJ WKH SURSHUWLHV RI % FRPSRXQGV > @ 7DEOH @ >@ > >0@ >0 >@ >@ >@ f§ f§ > f§ f§ >@ f§ f§ L >@ f§ f§ 7DEOH 'XFWLOLW\ DQG 6WUDLQ WR )UDFWXUH 'DWD IRU 6LQJOH &U\VWDO 1L$O &U\VWDO 2ULHQWDWLRQ 7HQVLOH 'XFWLOLW\ bf .f &RPSUHVVLYH 6WUDLQ WR )UDFWXUH .f %'77 .f >@ WR >@ WR WR >@ WR WR >@ WR

PAGE 22

'XFWLOLW\ &RQWUDU\ WR WKH EHKDYLRU RI PDQ\ PHWDOV VLQJOH FU\VWDOV RI 1L$O GLVSOD\ YHU\ OLPLWHG GXFWLOLW\ LQ WHQVLRQ DW URRP WHPSHUDWXUH DOWKRXJK FRQVLGHUDEOH VWUDLQ WR IUDFWXUH LV SRVVLEOH LQ FRPSUHVVLRQ 0HDVXUDEOH WHQVLOH GXFWLOLW\ KDV QRW EHHQ REVHUYHG LQ WKH KDUG >@ RULHQWDWLRQ 6RPH UHVXOWV RI VHYHUDO VLQJOH FU\VWDO VWXGLHV > @ DUH VXPPDUL]HG LQ 7DEOH ,QWHUHVWLQJO\ VXSHUSODVWLFOLNH EHKDYLRU KDV EHHQ REVHUYHG LQ >@ RULHQWHG FU\VWDOV DW DQG aV VWUDLQ UDWH LQ ZKLFK SHUFHQW HORQJDWLRQ ZDV DFKLHYHG DQG NQLIH HGJH IUDFWXUHV RFFXUUHG >@ 7KHVH GDWD EULQJ WR OLJKW D PDMRU FRQFHUQ WKDW WKH 3HLHUOV VWUHVV LV YHU\ QHDU WR WKH IUDFWXUH VWUHVV DW ORZ WHPSHUDWXUHV ZKHUH WKHUPDO DFWLYDWLRQ FRQWULEXWHV RQO\ PLQLPDOO\ WR GLVORFDWLRQ PRWLRQ 7KXV WKH RQO\ ZD\ WR LQFUHDVH WKH LQWULQVLF WRXJKQHVV PD\ EH WR GHFUHDVH ERQG FRYDOHQF\ DQG WKH GHJUHH RI RUGHULQJ SUHIHUDEO\ ZLWKRXW GHWUDFWLQJ VLJQLILFDQWO\ IURP WKH PHOWLQJ SRLQW RU GHQVLW\ 'HIRUPDWLRQ DQG )UDFWXUH 7KH SUHYLRXV VHFWLRQ ZDV LQWHQGHG WR JLYH WKH UHDGHU DQ LQWURGXFWLRQ WR WKH PHFKDQLFDO EHKDYLRU RI 1L$O DW URRP WHPSHUDWXUH 7KH ODUJH DQLVRWURS\ RI WKH PHFKDQLFDO SURSHUWLHV LV D GLUHFW UHVXOW RI WKH RSHUDWLYH VOLS V\VWHPV DQG WKHLU UHODWLYH GLIILFXOW\ RI DFWLYDWLRQ 7KLV VHFWLRQ RQ GHIRUPDWLRQ DQG IUDFWXUH ZLOO DWWHPSW WR H[SODLQ VRPH RI WKH FRQWUROOLQJ IDFWRUV ZKLFK GHWHUPLQH WKH RSHUDWLYH VOLS V\VWHPV DQG WKHLU LPSOLFDWLRQV ZLWK UHVSHFW WR VWUHQJWK GXFWLOLW\ DQG IUDFWXUH 3ODVWLF 'HIRUPDWLRQ DQG 6OLS 6\VWHPV 3ODVWLF GHIRUPDWLRQ LQ WKH VWULFW VHQVH IRU FU\VWDOOLQH PDWHULDOV WDNHV SODFH E\ WKH PRWLRQ RI GLVORFDWLRQV DORQJ SDUWLFXODU GLUHFWLRQV DQG SODQHV )RU 1L$O DW DPELHQW FRQGLWLRQV WKHUH KDYH EHHQ VHYHUDO VWXGLHV XVLQJ ERWK WUDQVPLVVLRQ HOHFWURQ PLFURVFRS\ 7(0f DQG VXUIDFH VOLS WUDFH DQDO\VLV 667$f ZKLFK KDYH GHWHUPLQHG WKH RSHUDWLYH VOLS

PAGE 23

V\VWHP WR EH !^ ` IRU PRVW FDVHV > @ 7KHVH DUH VKRZQ LQ 7DEOH 7KHUH DUH WZR VSHFLDO FDVHV ZKHUH WKH VOLS V\VWHP GLIIHUV >@ RULHQWHG FU\VWDOV ZKLFK KDYH LGHDOO\f QR UHVROYHG VKHDU VWUHVV RQ DQ\ ^` V\VWHP PD\ VOLS RQ !^ @ !^ ` RU !^ ` > @ >@ RULHQWHG FU\VWDOV DSSHDU WR VOLS RQ ^` SODQHV ZKLFK KDYH D KLJKHU 6FKPLG IDFWRU WKDQ >@ LQ WKLV RULHQWDWLRQ > @ 2QO\ RQH GHWDLOHG VWXG\ RI URRPWHPSHUDWXUH GHIRUPHG SRO\FU\VWDOOLQH PDWHULDO H[WUXGHG SRZGHUf ZDV QRWHG WKDW RI %RZPDQ HW DO >@ 6LQFH H[WUXGHG 1L$O LV NQRZQ WR GHYHORS D ILEHU WH[WXUH GXULQJ H[WUXVLRQ > @ LW PLJKW EH H[SHFWHG WKDW VOLS RQ WKH ^` SODQH ZRXOG EH TXLWH UDUH VLQFH LQ >@ VLQJOH FU\VWDOV VOLS RFFXUV RQ WKH ^` SODQH 7DEOH 2EVHUYHG 6OLS 6\VWHPV LQ 1L$O 'HIRUPHG DW 5HIHUHQFH 6OLS 6\VWHP 0HWKRG &U\VWDO 2ULHQWDWLRQ > !^` 667$ >@ >@ !^` 667$ >+,@ >@ !^` 7(0 > >@ !^` 7(0 >+,@ >@ !^` 7(0 >@ >@ !^` 667$ >+2@ >@ !^` 667$ >+2@ >@ !^` 7(0 >@ ‘ >@ !^` 7(0 >+2@ > !^7` 7(0 >@ >@ !^"""` 7(0 >@ >@ !^` 7(0 >@ >@ !^"""` 7(0 SRO\FU\VWDOOLQH >@ !^` 7(0 SRO\FU\VWDOOLQH 7KH RSHUDWLRQ RI VOLS LV QRW FRPPRQ WR DOO % FRPSRXQGV LQ D QXPEHU RI RWKHUV VXFK DV )H$O RU &X=Q VOLS LV SUHIHUUHG >@ 7KH TXHVWLRQ RI ZKDW IDFWRUV DUH LPSRUWDQW LQ GHWHUPLQLQJ WKH VOLS V\VWHP LQ % FRPSRXQGV ZDV LQLWLDOO\ H[DPLQHG E\ 5DFKLQJHU DQG &RWWUHOO >@ ZKR QRWHG WKDW KLJKO\ RUGHUHG FRPSRXQGV RI SULPDULO\ LRQLF ERQGLQJ GLVSOD\HG VOLS ZKLOH WKRVH ZLWK ODUJHO\ PHWDOOLF ERQGLQJ GLVSOD\HG !

PAGE 24

VOLS $FFRUGLQJ WR >@ SHUIHFW >@ RU >2LO@ GLVORFDWLRQV LI SUHVHQW VKRXOG GLVVRFLDWH LQWR XQLW GLVORFDWLRQV DFFRUGLQJ WR D> @ f§! D>@ D>@ D>@ f§! D>@ D>@ $FFRUGLQJ WR )UDQNnV UXOH WKH HODVWLF HQHUJ\ RI D GLVORFDWLRQ LV SURSRUWLRQDO WR WKH VTXDUH RI WKH %XUJHUV YHFWRU (HL D SEf WKHUH LV QR UHGXFWLRQ LQ HODVWLF HQHUJ\ LQ WKH DERYH UHDFWLRQV 7KHUHIRUH DQ\ LPSRVHG VWUHVV ZLWK D FRPSRQHQW FRQWDLQLQJ D XQLW GLVORFDWLRQ ZLOO FDXVH WKDW FRPSRQHQW WR PRYH LQGHSHQGHQWO\ DQG GLVVRFLDWH WKH RULJLQDO GLVORFDWLRQ )RU VOLS WR RFFXU GLVVRFLDWLRQ DFFRUGLQJ WR D>O @ f§! D>O @ D>OOO@ PXVW WDNH SODFH 7KLV UHDFWLRQ LV DFFRPSDQLHG E\ D UHGXFWLRQ LQ HODVWLF HQHUJ\ 7KH UHVXOWLQJ DQWLSKDVH ERXQGDU\ $3%f ZKLFK PXVW IRUP EHWZHHQ WKH WZR SDUWLDO GLVORFDWLRQV SUHYHQWV RU VOLS DV ORQJ DV WKH VHSDUDWLRQ LV VLJQLILFDQW VD\ WKH OHQJWK RI WKH %XUJHUV YHFWRU 7KLV PRGHO DOORZV DQ HVWLPDWH RI D FULWLFDO $3% HQHUJ\ DERYH ZKLFK VOLS RFFXUV DQG EHORZ ZKLFK VOLS RFFXUV E\ WKH IRUPXOD
PAGE 25

KRZHYHU %DOO DQG 6PDOOPDQ >@ LQGLFDWHG WKDW WKH DERYH DSSURDFK GLG QRW DFFXUDWHO\ SUHGLFW WKH VOLS V\VWHPV IRU 1L$O RU $X=Q 8VLQJ WKH %UDJJ:LOOLDPV DSSUR[LPDWLRQ IRU RUGHULQJ HQHUJ\ N7F DQG DVVXPLQJ WKDW GLVRUGHULQJ RFFXUV DW WKH PHOWLQJ SRLQW RI WKH FRPSRXQG WKH\ FDOFXODWHG DQ RUGHULQJ HQHUJ\ IRU 1L$O RI H9 6LQFH WKLV YDOXH LV OHVV WKDQ WKH FULWLFDO YDOXH GHWHUPLQHG E\ 5DFKLQJHU DQG &RWWUHOO 1L$O LV SUHGLFWHG WR H[KLELW VOLS ZKLFK LV LQFRUUHFW 7KHUHIRUH %DOO DQG 6PDOOPDQ DGGUHVVHG WKH SUREOHP RI VOLS V\VWHP SUHGLFWLRQ E\ XVLQJ DQLVRWURSLF HODVWLFLW\ WKHRU\ WR FDOFXODWH WKH HODVWLF HQHUJ\ DQG UHODWLYH PRELOLW\ RI VHYHUDO GLVORFDWLRQ FRQILJXUDWLRQV &RQILJXUDWLRQV ZLWK WKH ORZHVW HQHUJ\ DQG KLJKHVW PRELOLW\ DUH H[SHFWHG WR EH PRVW OLNHO\ WR RSHUDWH 7KH HODVWLF HQHUJ\ SHU XQLW OHQJWK RI GLVORFDWLRQ ( ZDV GHWHUPLQHG E\ ZKHUH U DQG U DUH WKH RXWHU DQG LQQHU FXWRII UDGLL E LV WKH %XUJHUV YHFWRU DQG N LV D IXQFWLRQ RI WKH HODVWLF PRGXOL DQG WKH OLQH GLUHFWLRQ RI WKH GLVORFDWLRQ 7KH PRELOLW\r 6 ZDV HVWLPDWHG E\ ZKHUH & LV WKH GLVORFDWLRQ ZLGWK -E ZDV HVWLPDWHG E\ F B NG E FE r 0 0RELOLW\ LV D PLVQRPHU VLQFH KLJKHU YDOXHV RI 6 DUH FRQVLGHUHG OHVV PRELOH >@

PAGE 26

ZKHUH F LV WKH VKHDU PRGXOXV LQ WKH VOLS GLUHFWLRQ DQG G LV WKH VSDFLQJ EHWZHHQ JOLGH SODQHV 7KDW LV PRELOLW\ LQFUHDVHV ZLWK JOLGH SODQH VPRRWKQHVV DQG HDVH RI VKHDU 6RPH UHVXOWV RI %DOO DQG 6PDOOPDQnV FDOFXODWLRQV DUH SUHVHQWHG LQ 7DEOH 7DEOH (ODVWLF (QHUJ\ DQG 0RELOLW\ RI 6HYHUDO 'LVORFDWLRQ &RQILJXUDWLRQV XYZ! ^KNO` FKDUDFWHU ( HUJVFPf V QR VFUHZHGJH 7 VFUHZHGJH 2LO VFUHZHGJH VFUHZHGJH )URP WKHVH UHVXOWV LW LV REYLRXV WKDW GLVORFDWLRQV ZLWK %XUJHUV YHFWRUV DUH RI WKH ORZHVW HODVWLF HQHUJ\ DQG DUH WKHUHIRUH WKH PRVW IDYRUDEOH WR IRUP 7KH !^` DQG !^` V\VWHPV DUH FRPSHWLWLYH LQ WKLV UHVSHFW DOWKRXJK !^` DSSHDUV WR EH WKH PRUH PRELOH RI WKH WZR DQG GXH WR PXOWLSOLFDWLRQ SURFHVVHV PD\ EH SUHVHQW LQ ODUJHU SURSRUWLRQV 5HJDUGOHVV RI VOLS SODQH WKH GLVORFDWLRQV RI HGJH RU PL[HG >@ RULHQWDWLRQ DUH SUHGLFWHG WR IRUP PRUH HDVLO\ WKDQ WKH VFUHZ RULHQWDWLRQ 6OLS E\ DO SDUWLDO GLVORFDWLRQV KDYH QRW EHHQ FRQVLGHUHG LQ WKH DERYH FDOFXODWLRQV EHFDXVH DV VKRZQ E\ ERWK %DOO DQG 6PDOOPDQ >@ DQG ODWHU E\ 3RWWHU >@ WKH WRWDO HQHUJ\ RI VXFK GLVORFDWLRQV LV VWLOO JUHDWHU WKDQ WKDW RI WKH XQLW GLVORFDWLRQV GXH WR WKH $3% IDXOW HQHUJ\ ,W LV ZRUWK SRLQWLQJ RXW WKDW DOO WKH HDUO\ ZRUNHUV PHQWLRQHG DERYH > @ DVVXPHG WKH FULWLFDO WHPSHUDWXUH IRU GLVRUGHULQJ 7Ff WR EH HTXDO WR WKH PHOWLQJ SRLQW 7Pf LQ GHWHUPLQLQJ WKH $3% DQG RUGHULQJ HQHUJ\ $OWKRXJK WKLV DVVXPSWLRQ VHHPV UHDVRQDEOH VLQFH ORQJ UDQJH RUGHU REYLRXVO\ FDQQRW EH PDLQWDLQHG LQ D OLTXLG WKHUH LV JRRG UHDVRQ WR FRQVLGHU RWKHUZLVH )LUVW IURP D WKHUPRG\QDPLF SRLQW RI YLHZ WKH RQVHW RI PHOWLQJ RQO\ LQGLFDWHV WKDW WKH OLTXLG KDV D ORZHU IUHH HQHUJ\ WKDQ WKH VROLG QRW WKDW GLVRUGHULQJ LV LPPLQHQW 6HFRQG WKHUH LV H[SHULPHQWDO HYLGHQFH >@ WKDW VRPH GHJUHH RI VKRUW UDQJH

PAGE 27

RUGHU LV PDLQWDLQHG LQ WKH OLTXLG ZHOO DERYH WKH PHOWLQJ SRLQW )LQDOO\ WKH $3% HQHUJ\ IRU 1L$O FDOFXODWHG E\ 3RWWHU >@ EDVHG RQ 7F 7P IRU IDXOWLQJ RQ !^ ` ZDV HUJVFP 7KLV LV DW VWURQJ YDULDQFH ZLWK YDOXHV GHWHUPLQHG ERWK H[SHULPHQWDOO\ E\ 7(0 DQDO\VLV >@ DW OHDVW HUJVFPf DQG E\ ILUVW SULQFLSOHV FDOFXODWLRQV > @ HUJVFPf 7KXV 1L$O LV PXFK OHVV WKH ERUGHUOLQH FDVH RI VOLS WKDQ RULJLQDOO\ WKRXJKW /DXWHQVFKODJHU HW DO >@ DOVR H[DPLQHG WKH SUREOHP RI VOLS V\VWHP SUHGLFWLRQ LQ &V&O W\SH FRPSRXQGV 7KH\ VWXGLHG WKH HIIHFW RI WKH DWRP VL]H UDWLR 5D5E DV ZHOO DV WKH ERQGLQJ W\SH DQG FU\VWDO RULHQWDWLRQ ZLWK UHVSHFW WR DSSOLHG VWUHVVf RQ WKH REVHUYHG VOLS V\VWHP 8VLQJ D KDUGVSKHUH PRGHO WKH\ GHWHUPLQHG WKDW 5D5E KDV D VWURQJ HIIHFW RQ WKH VOLS SODQH URXJKQHVV DV PXFK EHWWHU SDFNLQJ FDQ EH DFKLHYHG ZKHQ 5D5E WHQGV WRZDUG )RU H[DPSOH WKH SHUSHQGLFXODU GLVSODFHPHQW RI WKH JOLGH SODQH GXULQJ >` VOLS LV D IRU 5D5E DQG D IRU 5D 5E IRU !^` VOLS WKHVH YDOXHV DUH D DQG D UHVSHFWLYHO\ 7KHUHIRUH VOLS LV SURPRWHG ZKHQ 5D DQG 5E DUH VLPLODU 7KH HIIHFW RI ERQGLQJ W\SH LRQLF FRYDOHQW RU PHWDOOLFf ZDV REVHUYHG WR SURPRWH VOLS ZKHQ PHWDOOLF ERQGLQJ GRPLQDWHV DQG RWKHUZLVH &U\VWDO RULHQWDWLRQ UHODWLYH WR WKH DSSOLHG VWUHVV DIIHFWV WKH SUHIHUUHG VOLS V\VWHP DFFRUGLQJ WR 6FKPLG IDFWRU FRQVLGHUDWLRQV DQG WKHUHE\ SURPRWHV %XUJHUV YHFWRUV LQ JHQHUDO 7KH RULHQWDWLRQ HIIHFW LV LOOXVWUDWHG LQ )LJXUH DIWHU /DXWHQVFKODJHU >@ )RU FRPSRXQGV VXFK DV 1L$O DFFRUGLQJ WR /DXWHQVFKODJHU HW DO WKH ERQGLQJ DQG RULHQWDWLRQ IDFWRUV WHQG WR FDQFHO RQH DQRWKHU DQG UHOHJDWH WKH VOLS V\VWHP FKRLFH WR WKH 5D5E UDWLR 7KH HVWLPDWLRQ RI WKH DPRXQW RI ORFDO VWUDLQ DW WKH JOLGH SODQH E\ D KDUG VSKHUH PRGHO IRU HDFK VOLS V\VWHP SURYLGHV FULWHULD IRU SUHGLFWLQJ WKH PRVW OLNHO\ V\VWHP WR RSHUDWH %\ WKLV DSSURDFK FRPSRXQGV ZLWK 5D5E WHQGLQJ WR ZLOO SUHIHU VOLS DQG WKRVH ZLWK 5D5E WHQGLQJ WR ZLOO SUHIHU VOLS ZLWK WKH FULWLFDO 5D5E UDWLR EHLQJ DERXW )RU 1L$O 5D5E ZDV HVWLPDWHG WR EH ZKLFK SUHGLFWV !^` WKH H[SHULPHQWDOO\ REVHUYHG V\VWHP 2I FRXUVH DFFXUDWH GHWHUPLQDWLRQ RI

PAGE 28

5D5E IRU DQ\ LQWHUPHWDOOLF FRPSRXQG LV GLIILFXOW DV LW GHSHQGV RQ WKH NQRZQ YDOXHV IRU WKH DWRPLF UDGLL DQG WKH GHJUHH RI FKDUJH GHSOHWLRQ RU DFFXPXODWLRQ )XUWKHU WKH FKDUJH GLVWULEXWLRQ KDV QR UHTXLUHPHQW RI VSKHULFLW\ SDUWLFXODUO\ LQ FDVHV RI VWURQJ GLUHFWLRQDO ERQGLQJ ,Q IDFW FORVH H[DPLQDWLRQ RI DWRP SRVLWLRQV GXULQJ !^` VOLS RI &V&O FRPSRXQGV UHYHDOV WKDW WKLV W\SH RI VOLS WHQGV WR PD[LPL]H WKH FRQWLQXRXV FRQWDFW EHWZHHQ XQOLNH DWRPV )LJXUH ,QIOXHQFH RI &U\VWDO 2ULHQWDWLRQ RQ % 6OLS 6\VWHPV (DFK VOLS V\VWHP LV IDYRUHG LQ WKH VKDGHG UHJLRQV $IWHU /DXWHQVFKODJHU HW DO >@ ,PSOLFDWLRQV RI YRQ 0LVHV &ULWHULRQ 7KH VROH RSHUDWLRQ RI !^` VOLS FDQ SURGXFH RQO\ WKUHH LQGHSHQGHQW VOLS V\VWHPV >@ 7KLV QXPEHU LV LQVXIILFLHQW WR DOORZ JHQHUDO SODVWLF IORZ LQ D SRO\FU\VWDOOLQH ERG\ DV ILYH LQGHSHQGHQW V\VWHPV DUH UHTXLUHG WR SURGXFH WKH DUELWUDU\ VKDSH FKDQJH RI HDFK JUDLQ WR PDLQWDLQ FRQWDFW ZLWK DGMDFHQW JUDLQV >@ 7KHUHIRUH HYHQ WKRXJK WKH FULWLFDO UHVROYHG VKHDU VWUHVV &566f IRU !>` VOLS LV UHDVRQDEO\ ORZ >@ FRPSUHVVLYH

PAGE 29

GHIRUPDWLRQV DV VPDOO DV SHUFHQW KDYH EHHQ VKRZQ WR SURGXFH YLVLEOH JUDLQ ERXQGDU\ ILVVXUHV GXH WR SRRU VOLS WUDQVIHU WR DGMDFHQW JUDLQV >@ ,Q WHQVLRQ WKHVH ILVVXUHV SURYLGH DQ HDV\ SDWK IRU LQWHUJUDQXODU IUDFWXUH 7KLV SURFHVV LV LOOXVWUDWHG VFKHPDWLFDOO\ LQ )LJXUH 7KH ODFN RI VXIILFLHQW VOLS V\VWHPV LQ 1L$O KDV SURPSWHG UHVHDUFK > @ WR DOWHU WKH SULPDU\ VOLS V\VWHP IURP !^@ WR !^ ` ZKLFK KDV WKH UHTXLUHG QXPEHU RI LQGHSHQGHQW VOLS V\VWHPV 7KH FRPELQHG RSHUDWLRQ RI WZR VOLS V\VWHP IDPLOLHV FDQ DOVR SURYLGH ILYH LQGHSHQGHQW VOLS V\VWHPV ZKHQ WKH\ FDQQRW LQGLYLGXDOO\ >@ )RU H[DPSOH FRPELQHG RSHUDWLRQ RI !^@ WKUHH V\VWHPVf DQG !^O7@ WZR V\VWHPVf SURGXFHV ILYH LQGHSHQGHQW V\VWHPV 7KLV SURYLGHV DQ DOWHUQDWLYH IRU VDWLVI\LQJ WKH YRQ 0LVHV FULWHULRQ ZLWKRXW VOLS ZKLFK ZRXOG RWKHUZLVH UHTXLUH D VLJQLILFDQW UHGXFWLRQ LQ RUGHULQJ HQHUJ\ )LJXUH (IIHFW RI ,QVXIILFLHQW 1XPEHU RI ,QGHSHQGHQW 6OLS 6\VWHPV RQ 3ODVWLF 'HIRUPDWLRQ LQ 3RO\FU\VWDOV

PAGE 30

)UDFWXUH RI 1L$O 7KH WHQVLOH IUDFWXUH PRGH RI SRO\FU\VWDOOLQH 1L$O LV LQWHUJUDQXODU ,*f DW WKH VWRLFKLRPHWULF FRPSRVLWLRQ > @ DQG WUDQVJUDQXODU 7*f LQ RIIVWRLFKLRPHWULF FRPSRVLWLRQV >@ $V GHVFULEHG DERYH ,* IUDFWXUH LQ 1L$O LV D QDWXUDO UHVXOW RI SODVWLF IORZ RQ WKUHH LQGHSHQGHQW VOLS V\VWHPV ZLWK QR RWKHU GHIRUPDWLRQ PHFKDQLVPV 7KLV LV GXH WR D VKDSH LQFRPSDWLELOLW\ EHWZHHQ DGMDFHQW JUDLQV DQG WKH FUHDWLRQ RI ,* FUDFNV ZKLFK FRDOHVFH DQG OHDG WR FDWDVWURSKLF ,* IDLOXUH +RZHYHU IRU FHUWDLQ FUDFN SODQHJUDLQ ERXQGDU\ RULHQWDWLRQV LW LV QRW XQUHDVRQDEOH WKDW 7* IDLOXUH FOHDYDJHf ZLOO EH IDYRUHG 7KH 7* IDLOXUH LQ RIIVWRLFKLRPHWULF FRPSRVLWLRQV LV SUREDEO\ GXH WR WKH GLIILFXOW\ RI GLVORFDWLRQ PRWLRQ SDVW FRQVWLWXWLRQDO SRLQW GHIHFWV 7KH SUHIHUUHG 7* FOHDYDJH SODQH KDV EHHQ UHSRUWHG WR EH ^` LQ VWRLFKLRPHWULF 1L$O >@ 2WKHU DUJXPHQWV KDYH EHHQ SXW IRUWK WR H[SODLQ WKH SUHVHQFH RI ,* IUDFWXUH LQ VWRLFKLRPHWULF 1L$O 7KH HIIHFW RI FHUWDLQ HPEULWWOLQJ DJHQWV VXFK DV SKRVSKRUXV RU VXOIXU ZKLFK VHJUHJDWH WR JUDLQ ERXQGDULHV LV ZHOOGRFXPHQWHG LQ IHUURXV PHWDOOXUJ\ OLWHUDWXUH DQG KDV EHHQ FRQVLGHUHG WR H[SODLQ ,* IUDFWXUH LQ 1L$O :HVWEURRN >@ LQYHVWLJDWHG WKH HIIHFW RI R[\JHQ DQGRU QLWURJHQ RQ WKH JUDLQ ERXQGDU\ KDUGQHVV RI $J0J DQG 1L$O DQG FRQFOXGHG WKDW WKHVH LQWHUVWLWLDOV VHJUHJDWHG WR WKH JUDLQ ERXQGDU\ UHJLRQV DQG LQFUHDVHG WKH %'77 +RZHYHU PRUH UHFHQW ZRUN E\ =HOOHU HW DO >@ DQG *HRUJH HW DO >@ XWLOL]LQJ VFDQQLQJ $XJHU PLFURVFRS\ 6$0f KDV VKRZQ WKDW JUDLQ ERXQGDULHV LQ ELQDU\ 1L$O DUH IUHH RI DQ\ VHJUHJDWHG LPSXULWLHV LQFOXGLQJ FDUERQ R[\JHQ ERURQ RU VXOSKXU 7KLV KDV EHHQ LQWHUSUHWHG >@ DV DQ LQGLFDWLRQ WKDW WKH JUDLQ ERXQGDULHV LQ 1L$O DUH LQWULQVLFDOO\ ZHDN ,Q FRQWUDVW JUDLQ ERXQGDU\ VWUXFWXUH VLPXODWLRQV >@ VHHP WR LQGLFDWH WKDW WKH ERXQGDULHV VKRXOG QRW EH LQWULQVLFDOO\ EULWWOH SURYLGHG WKHUH DUH QR H[FHVV DOXPLQXP DWRPV DW WKH ERXQGDU\ 6LQFH RIIVWRLFKLRPHWULF 1L$O DOOR\V WHQG WR IUDFWXUH LQ D 7* PRGH >@ LW DSSHDUV WKDW JUDLQ ERXQGDULHV DUH DV VWURQJ DV WKH EXON 7KHUHIRUH RQH ZRXOG FRQFOXGH WKDW

PAGE 31

WKH JUDLQ ERXQGDULHV LQ 1L$O DUH QRW LQWULQVLFDOO\ VWUXFWXUDOO\f ZHDN EXW EHFRPH WKH VLWH RI *ULIILWK GHIHFWV ZKHQ VOLS LV DFWLYDWHG 7HUQDU\ $OOR\LQJ (IIHFWV RQ 3ODVWLF 'HIRUPDWLRQ 7KLV VHFWLRQ UHYLHZV WKH HIIHFWV RI WHUQDU\ DOOR\LQJ DGGLWLRQV WR 1L$O RQ SODVWLF GHIRUPDWLRQ DQG PHFKDQLFDO SURSHUWLHV 3ULPDULO\ VLQJOH SKDVH % DOOR\V DUH FRQVLGHUHG )RU FRQYHQLHQFH PLFURDOOR\LQJ OHVV WKDQ RQH DWRPLF SHUFHQWf DQG PDFURDOOR\LQJ DGGLWLRQV DUH GLVFXVVHG VHSDUDWHO\ 0LFURDOORYLQJ $GGLWLRQV %RURQ %RURQ KDV EHHQ IRXQG WR SUHYHQW JUDLQ ERXQGDU\ IUDFWXUH LQ 1$, DQG WR LQGXFH GXFWLOLW\ LQ GRLQJ VR %DVHG RQ WKLV ZRUN ERURQ ZDV DOVR DGGHG WR 1L$O LQ KRSHV RI DFKLHYLQJ WKH VDPH UHVXOW > @ /DZ DQG %ODFNEXUQ >@ DGGHG SHUFHQW ERURQ WR VWRLFKLRPHWULF 1L$O LQ ERWK FDVWH[WUXGHG DQG SRZGHUH[WUXGHG IRUPV DQG IRXQG QR LQFUHDVH LQ GXFWLOLW\ ,Q IDFW WKH %'77 ZDV HOHYDWHG QHDUO\ E\ WKH ERURQ DGGLWLRQV 7KH IUDFWXUH PRGH ZDV UHSRUWHG WR VKLIW IURP ,* WR 7* DOWKRXJK ZKHWKHU WKLV ZDV GXH WR DQ LQFUHDVH LQ JUDLQ ERXQGDU\ FRKHVLYHQHVV RU WKH ODFN RI SODVWLF IORZ GXH WR VROLG VROXWLRQ VWUHQJWKHQLQJ LV QRW NQRZQ ,Q D ODWHU VWXG\ *HRUJH DQG /LX >@ DGGHG DQG ZSSP SDUWV SHU PLOOLRQ E\ ZHLJKWf WR FDVW DQG H[WUXGHG 1L$O DOOR\V DQG FRPSDUHG WKHP ZLWK ELQDU\ 1L$O 7KH\ IRXQG WKDW ERURQ GLG QRW LPSDUW DQ\ GXFWLOLW\ WR 1L$O DOWKRXJK WKH IUDFWXUH PRGH ZDV UHSRUWHG WR EH 7* ZLWK DV OLWWOH DV ZSSP ZKLOH WKH SHUFHQW HORQJDWLRQ UHPDLQHG DERXW WZR SHUFHQW *HRUJH DQG /LX H[SODLQHG WKH FKDQJH LQ IUDFWXUH PRGH DV EHLQJ GXH WR JUDLQ ERXQGDU\ VWUHQJWKHQLQJ E\ WKH ERURQ DQG GLG LQGHHG ILQG D VLJQLILFDQW VHJUHJDWLRQ RI ERURQ WR WKH JUDLQ ERXQGDULHV 7KH ERURQ DGGLWLRQV DOVR GUDPDWLFDOO\ LQFUHDVHG WKH VWUHQJWK RI WKH DOOR\V DERXW 03DDWRPLF SHUFHQW ERURQ 6LPLODU GXFWLOLW\ EHWZHHQ WKH ELQDU\ DQG 1L$O ZSSP DOOR\V VHHPV WR LQGLFDWH WKDW WKH FKDQJH LQ

PAGE 32

IUDFWXUH PRGH ZDV GXH WR D JUDLQ ERXQGDU\ HIIHFW DQG QRW VLPSOH \LHOG VWUHQJWK HOHYDWLRQ ODFN RI SODVWLF IORZf 6WUHQJWKHQLQJ RI WKH JUDLQ ERXQGDULHV E\ ERURQ ZRXOG PDNH ,* FUDFNLQJ PRUH GLIILFXOW EXW ZRXOG QRW QHFHVVDULO\ IDFLOLWDWH VOLS WUDQVIHUUDO WR DGMDFHQW JUDLQV RU DFWLYDWH DGGLWLRQDO VOLS V\VWHPV 7KXV 1L$O ZLWK ZSSP ERURQ SUREDEO\ KDV VPDOOHU *ULIILWK GHIHFWV GXH WR XQDFFRPPRGDWHG VOLS DW WKH JUDLQ ERXQGDU\ ,I WKH JUDLQ ERXQGDULHV DUH WUXO\ VWUHQJWKHQHG IXUWKHU FUDFNLQJ VKRXOG WDNH SODFH DORQJ FOHDYDJH SODQHV WR SURGXFH WKH REVHUYHG 7* IUDFWXUHV 7KDW LV WKH REVHUYDWLRQ RI JUDLQ ERXQGDU\ VWUHQJWKHQLQJ E\ ERURQ DGGLWLRQ GRHV QRW LPSO\ WKDW WKH ERXQGDULHV DUH LQKHUHQWO\ EULWWOH &DUERQ &DUERQ LV D FRPPRQ LPSXULW\ LQ PRVW FRPPHUFLDO SXULW\ HOHPHQWDO QLFNHO DQG WKHUHIRUH LV SUREDEO\ SUHVHQW LQ QHDUO\ DOO 1L$O DOOR\V WR VRPH GHJUHH *HRUJH DQG /LX >@ LQWHQWLRQDOO\ DGGHG ZSSP FDUERQ WR KLJK SXULW\ 1L$O DQG QRWHG D VWUHQJWK LQFUHDVH VLPLODU WR WKDW RI ERURQ QR WHQVLOH HORQJDWLRQ ZDV PHDVXUDEOH 7KH IUDFWXUH PRGH IRU WKH FDUERQFRQWDLQLQJ DOOR\ ZDV ,* DQG 6$0 DQDO\VLV RI WKH JUDLQ ERXQGDU\ VXUIDFHV VKRZHG WKDW FDUERQ GRHV QRW VHJUHJDWH WR WKH JUDLQ ERXQGDULHV 5HFHQW UHDQDO\VLV >@ RI WKH SXEOLVKHG IUDFWRJUDSKV IRU WKLV DOOR\ E\ SRLQW FRXQWLQJ KDV VKRZQ LW WR EH PRVWO\ 7*f %HU\OOLXP ,Q WKH VDPH VWXG\ *HRUJH DQG /LX DOVR PHDVXUHG WKH HIIHFW RI DGGLQJ ZSSP EHU\OOLXP WR 1L$O 7KLV DOOR\ H[KLELWHG DERXW SHUFHQW WHQVLOH HORQJDWLRQ DW URRP WHPSHUDWXUH DQG D VOLJKWO\ HOHYDWHG \LHOG VWUHQJWK f§ SHUFHQW JUHDWHU WKDQ ELQDU\ 1L$Of )UDFWXUH RFFXUUHG E\ ,* VHSDUDWLRQ DQG QR EHU\OOLXP DSSHDUHG WR VHJUHJDWH WR WKH JUDLQ ERXQGDULHV ZKLFK LQGLFDWHV WKDW EHU\OOLXP KDV OLWWOH HIIHFW XSRQ VOLS LQ 1L$O DVLGH IURP D VPDOO VROLG VROXWLRQ KDUGHQLQJ HIIHFW &KURPLXP =LUFRQLXP DQG 7LWDQLXP 7KHVH HOHPHQWV DUH NQRZQ WR EH HIIHFWLYH JHWWHUV IRU LQWHUVWLWLDO HOHPHQWV VXFK DV FDUERQ RU R[\JHQ )LHOG HW DO >@ DGGHG DQG DWRPLF SHUFHQW FKURPLXP WR >@ RULHQWHG VLQJOH FU\VWDOV LQ DQ HIIRUW WR PHDVXUH WKH HIIHFW RI FKURPLXP RQ GLVORFDWLRQ W\SH DQG FKDUDFWHU GXULQJ FRPSUHVVLYH GHIRUPDWLRQ 7KH FKURPLXP DSSHDUHG WR SURPRWH VOLS UHODWLYH WR WKH ELQDU\ KRZHYHU QR $3%V LQ WKH GLVORFDWLRQV ZHUH YLVLEOH E\ 7(0 DQG WKXV QR VLJQLILFDQW UHGXFWLRQV LQ WKH

PAGE 33

$3% HQHUJ\ ZHUH DSSDUHQW $V VKRZQ DERYH VOLS LQ ELQDU\ 1L$O LV WKH SUHIHUUHG VOLS V\VWHP LQ WKLV RULHQWDWLRQ LQ WKH DEVHQFH RI NLQNLQJ UHJDUGOHVV RI WKH SUHVHQFH RI FKURPLXP ZKLFK PDNHV DQ\ FRQFOXVLRQV FRQFHUQLQJ VOLS VRPHZKDW WHQWDWLYH ,W ZDV VXJJHVWHG E\ )LHOG HW DO >@ WKDW WKH HDVH RI GLVORFDWLRQ DFWLYDWLRQ ZDV GXH WR D JHWWHULQJ HIIHFW RI WKH FKURPLXP VLQFH 2& FDUELGH SUHFLSLWDWHV ZHUH REVHUYHG GXULQJ 7(0 H[DPLQDWLRQ 7R IXUWKHU LQYHVWLJDWH WKLV HIIHFW DQRWKHU 1L$O DOOR\ FRQWDLQLQJ SHUFHQW 7L DQG SHUFHQW =U WZR YHU\ SRWHQW FDUERQ VFDYHQJHUVf ZDV SUHSDUHG 7KLV DOOR\ EHKDYHG VLPLODUO\ WR WKH FKURPLXPFRQWDLQLQJ DOOR\V DOWKRXJK PXFK JUHDWHU VWUHQJWKHQLQJ ZDV REVHUYHG SHUKDSV GXH WR WKH ODUJHU VL]H RI WKH =U DWRPV 1R VROXWH VRIWHQLQJ ZDV DSSDUHQW ZKLFK PD\ LQGLFDWH D ODFN RI JHWWHULQJ VLQFH WKH HOHPHQWV UHVSRQVLEOH IRU VROLG VROXWLRQ VWUHQJWKHQLQJ DUH UHPRYHG IURP VROXWLRQ WR IRUP FDUELGHV 7KHUHIRUH WKH HQKDQFHG DFWLYDWLRQ ZDV FRQVLGHUHG WR EH GXH WR GLIIHUHQWLDO SURSRUWLRQDO KDUGHQLQJ D JHQHUDO VWUHQJWKHQLQJ RI DOO VOLS V\VWHPV ZKLFK GHFUHDVHV WKH UHODWLYH GLIIHUHQFHV LQ VWUHQJWK =LUFRQLXP ZDV DGGHG WR SRO\FU\VWDOOLQH FDVW DQG H[WUXGHGf 1L$O LQ D VWXG\ E\ %RZPDQ HW DO >@ DW WKH SHUFHQW SSPf OHYHO ,Q WKLV VWXG\ =U ZDV IRXQG WR HOHYDWH WKH %'77 E\ DERXW DQG LQFUHDVH WKH VWUHQJWK VLJQLILFDQWO\ 1R WHQVLOH GXFWLOLW\ ZDV REVHUYHG DQG WKH IUDFWXUH PRGH LQ WKH =UGRSHG DOOR\V ZDV D FRPELQDWLRQ RI ,* DQG 7* ([WHQVLYH 7(0 H[DPLQDWLRQ GHWHUPLQHG WKDW WKH RSHUDWLYH VOLS V\VWHP LQ ERWK ELQDU\ DQG =UFRQWDLQLQJ DOOR\V ZDV !^ ` 7KHUHIRUH =U DSSHDUV WR KDYH QR HIIHFW RQ WKH RSHUDWLYH VOLS V\VWHP LQ 1L$O ,URQ *DOOLXP DQG 0RO\EGHQXP $ UHFHQW VWXG\ E\ 'DUROLD >@ LQGLFDWHG WKDW SHUFHQW )H LQFUHDVHV WKH WHQVLOH GXFWLOLW\ RI >@ VLQJOH FU\VWDOV IURP WZR WR QHDUO\ VL[ SHUFHQW DW URRP WHPSHUDWXUH 6LPLODU HIIHFWV RI SHUFHQW *D DQG 0R ZHUH DOVR PHDVXUHG LQ ZKLFK WKH GXFWLOLWLHV ZHUH DQG SHUFHQW UHVSHFWLYHO\ $V VKRZQ LQ 7DEOH W\SLFDOO\ RQH WR WZR SHUFHQW WHQVLOH HORQJDWLRQ LV PHDVXUHG LQ VLQJOH FU\VWDOV RI 1L$O LQ WKLV RULHQWDWLRQ ZKLFK E\ FRPSDULVRQ PDNHV WKH UHVXOWV RI 'DUROLD TXLWH VWULNLQJ 6LQFH WKH

PAGE 34

EHQHILFLDO HIIHFW RI WKHVH HOHPHQWV GLVDSSHDUV DW KLJKHU DOOR\LQJ OHYHOV WKH PHFKDQLVPVf UHVSRQVLEOH LV XQNQRZQ DW WKLV WLPH +RZHYHU VLQFH WKH VOLS V\VWHP UHPDLQV XQFKDQJHG IURP !^ ` >@ LW LV SRVVLEOH WKDW WKH VROXWH DWRPV DVVLVW LQ GLVORFDWLRQ QXFOHDWLRQ 7KLV HIIHFW ZRXOG OLNHO\ LQFUHDVH WKH KRPRJHQHLW\ RI VOLS DQG WKHUHIRUH GLVWULEXWH GHIRUPDWLRQ PRUH HYHQO\ WKURXJKRXW WKH FU\VWDO LQVWHDG RI WR FRQILQHG VOLS EDQGV 0DFURDOORYLQJ $GGLWLRQV 7R HIIHFW D FKDQJH LQ WKH EDVLF SODVWLF GHIRUPDWLRQ EHKDYLRU RI 1L$O E\ DGGLQJ D WHUQDU\ DGGLWLRQ WKH DGGLWLRQ PXVW EH UHDGLO\ VROXEOH 7KH SKDVH HTXLOLEULD RI D QXPEHU RI HOHPHQWV PD\ EH FRQYHQLHQWO\ JURXSHG DFFRUGLQJ WR WKH WHUQDU\ HOHPHQWnV SRVLWLRQ LQ WKH SHULRGLF WDEOH )LJXUH +,% ,9% 9% 9,% 9,,% L 9,,, ,% ,,% 6FMLO 7L L ????? 9A ??????? ::: B Z? &UAL PPP 0U 3_ cZ;M;Z 1L  &X L =Q aM $O1L; WHUQDU\ SKDVHVf >A@ 1L$O; SVHXGRELQDU\ HXWHFWLF ,+ +LJK VROXELOLW\ LQ 1L$O DQGRU IRUPV % DOXPLQLGH )LJXUH 3RUWLRQ RI 3HULRGLF 7DEOH RI WKH (OHPHQWV ,OOXVWUDWLQJ *HQHUDO $OOR\LQJ %HKDYLRU RI 7HUQDU\ $GGLWLRQV WR 1L$O 7KH HOHPHQWV LQ *URXSV ,,,% ,9% DQG 9% VFDQGLXP WLWDQLXP YDQDGLXP \WWULXP ]LUFRQLXP QLRELXP ODQWKDQXP KDIQLXP DQG WDQWDOXPf IRUP DW OHDVW RQH WHUQDU\ LQWHUPHWDOOLF FRPSRXQG ZLWK QLFNHO DQG DOXPLQXP XVXDOO\ WKH +HXVOHU SKDVH 1$,; DQG DUH XVXDOO\ RI OLPLWHG VROXELOLW\ > @ (OHPHQWV LQ *URXS 9,,% FKURPLXP PRO\EGHQXP WXQJVWHQf DQG DOVR UKHQLXP IRUP SVHXGRELQDU\

PAGE 35

HXWHFWLF V\VWHPV ZLWK 1L$O DQG DOVR KDYH OLPLWHG VROXELOLW\ LQ 1L$O > @ 9DQDGLXP DOVR IRUPV D SVHXGRELQDU\ HXWHFWLF ZLWK 1L$O > @ DQG LV XQLTXH LQ WKDW LW LV WKH RQO\ HOHPHQW NQRZQ WR ILW LQWR WKH ILUVW DQG VHFRQG FDWHJRULHV 7KH SVHXGRELQDU\ HXWHFWLF V\VWHPV DOORZ WZR SKDVH HTXLOLEULXP EHWZHHQ 1L$O DQG WKH %&& HOHPHQW DQG KDYH SRWHQWLDO IRU LQ VLWX GXFWLOH SKDVH UHLQIRUFHPHQW ,Q IDFW FRQVLGHUDEOH UHVHDUFK KDV JRQH LQWR WKH GHYHORSPHQW RI GLUHFWLRQDOO\ VROLGLILHG SVHXGRELQDU\ HXWHFWLFV VXFK DV 1L$O&U DQG 1L$O0R LQ ZKLFK URGV RI DOSKD&U RU DOSKD0R DUH GLVWULEXWHG LQ D 1L$O PDWUL[ >@ 7KH *URXS 9,,, HOHPHQWV SOXV PDQJDQHVH DQG FRSSHUf GLVSOD\ ODUJH VROXELOLW\ LQ 1L$O DQG WKHLU % DOXPLQLGHV DUH RIWHQ LVRVWUXFWXUDO > @ 7KLV ODWWHU FDWHJRU\ RIIHUV FRQVLGHUDEOH DOOR\LQJ SRWHQWLDO ,URQ 6HYHUDO VWXGLHV KDYH EHHQ FRQGXFWHG RQ VLQJOH SKDVH WHUQDU\ 1L$O)H DOOR\V >@ ,URQ DGGLWLRQV DUH SHUKDSV WKH PRVW LQWXLWLYHO\ REYLRXV VLQFH )H$O FDQ EH GXFWLOH DW URRP WHPSHUDWXUH H[KLELWV VOLS >@ DQG LV LVRVWUXFWXUDO ZLWK 1L$O >@ /DZ DQG %ODFNEXUQ >@ DGGHG IURP WR SHUFHQW LURQ WR 1L$O DOOR\V FRQWDLQLQJ D FRQVWDQW SHUFHQW DOXPLQXP DQG FRQFOXGHG WKH DOOR\V ZHUH WRR EULWWOH IRU IXUWKHU WHVWLQJ EDVHG RQ FUDFNV REVHUYHG GXULQJ PDFKLQLQJ 3DWULFN HW DO >@ SURGXFHG D VHULHV RI WHUQDU\ DOOR\V DORQJ WKH FRPSRVLWLRQDO WLHOLQH IURP 1$ WR )H $ GHIRUPHG WKHP LQ FRPSUHVVLRQ DW URRP WHPSHUDWXUH DQG DQDO\]HG WKH GLVORFDWLRQV E\ 7(0 7KHLU UHVXOWV LQGLFDWHG WKDW PRUH WKDQ SHUFHQW LURQ ZDV QHFHVVDU\ WR HIIHFW D FKDQJH LQ %XUJHUV YHFWRU IURP WR ,Q ,QRXH HW DO >@ UHSRUWHG D WHQVLOH GXFWLOLW\ RI ILYH SHUFHQW IRU VLQJOH SKDVH 1L$O)H ZLUH SURGXFHG E\ UDSLG VROLGLILFDWLRQ SURFHVVLQJ 563f 563 LQGXFHG D PDUWHQVLWLF UHDFWLRQ % f§} /R DQG D YHU\ ILQH JUDLQ VL]H RI PLFURQV ,Q WKH VDPH VWXG\ 1L$O)H SURFHVVHG LQ WKH VDPH PDQQHU H[KLELWHG QLO GXFWLOLW\ 7ZR UHFHQW VWXGLHV > @ RI 1L$O)H GHPRQVWUDWHG WKDW FDVW DQG H[WUXGHG PDWHULDO ZLWK D LP JUDLQ VL]H KDV HVVHQWLDOO\ ]HUR GXFWLOLW\ DQG VOLSV E\ WKH PRWLRQ RI GLVORFDWLRQV ,Q FRQWUDVW .RVWUXEDQLF HW DO > @ KDV VKRZQ WKDW WKH DGGLWLRQ RI D ILQH GLVSHUVLRQ RI <2 SDUWLFOHV WR 1$

PAGE 36

)H 563 ULEERQ E\ PHFKDQLFDO DOOR\LQJ DQG KRW SUHVVLQJ FDQ SURGXFH DPELHQW WRXJKQHVV YDOXHV DV KLJK DV 03DP DV GHWHUPLQHG E\ IRXUSRLQW EHQGLQJ RI QRWFKHG VSHFLPHQV $670 (f 7KLV LV D VXEVWDQWLDO LPSURYHPHQW RYHU ELQDU\ VWRLFKLRPHWULF 1L$O ZKLFK KDV D WRXJKQHVV RI DERXW 03DP > @ DQG ZDV FRQVLGHUHG WR EH GXH WR WKH YHU\ ILQH JUDLQ VL]H DQG LQGXFHG SODVWLF IORZ >@ &KURPLXP 0DQJDQHVH DQG *DOOLXP 'XULQJ WKH FRXUVH RI D VWXG\ RI WKH HIIHFW RI DOOR\LQJ RQ WKH PLFURVWUXFWXUH DQG PHFKDQLFDO SURSHUWLHV RI FDVW SRO\FU\VWDOOLQH 1L$OEDVH DOOR\V /DZ DQG %ODFNEXUQ >@ QRWHG IRXU FRPSRVLWLRQV ZKLFK ZHUH GDPDJHWROHUDQW HQRXJK WR ZLWKVWDQG HOHFWURVWDWLF GLVFKDUJH PDFKLQLQJ ('0f ZLWKRXW H[WHQVLYH FUDFNLQJ 1$ 1L$O&U 1L$O0Q DQG 1L$O*D $IWHU GHIRUPLQJ FRPSUHVVLRQ VSHFLPHQV RI WKHVH DOOR\V WR DERXW SHUFHQW VWUDLQ DW URRP WHPSHUDWXUH 7(0 DQDO\VLV ZDV FRQGXFWHG %RWK WKH FKURPLXP DQG PDQJDQHVHFRQWDLQLQJ DOOR\V ZHUH GHWHUPLQHG WR FRQWDLQ GLVORFDWLRQV ZLWK %XUJHUV YHFWRUV 6OLS LQ 1L$O&U ZDV UHSRUWHG WR RFFXU RQ ^` SODQHV ZLWKLQ ZHOOGHILQHG VOLS EDQGV DPRQJ VSKHULFDO DOSKDFKURPLXP SUHFLSLWDWHV 7KHVH GLVORFDWLRQV ZHUH UHSRUWHGO\ RI VFUHZ FKDUDFWHU DQG ZHUH DUUDQJHG LQ GLSROHV ZLWKLQ WKH EDQGV ,Q 1L$O0Q !^@ VOLS ZDV UHSRUWHG DOWKRXJK WKH GLVORFDWLRQV ZHUH QRW FRQILQHG WR VOLS EDQGV ,Q WKLV FDVH WKH GLVORFDWLRQV ZHUH SULPDULO\ HGJH LQ QDWXUH $QDO\VLV RI WKH ELQDU\ DQG JDOOLXPFRQWDLQLQJ DOOR\V GHIRUPHG DW UHYHDOHG RQO\ !>` VOLS 6RPH RI WKH UHVXOWV RI /DZ DQG %ODFNEXUQ DUH VXPPDUL]HG LQ 7DEOH ,Q VSLWH RI WKH UHSRUWHG FKDQJH LQ VOLS V\VWHP IRU WKH FKURPLXP DQG PDQJDQHVHFRQWDLQLQJ DOOR\V QR WHQVLOH GXFWLOLW\ ZDV DSSDUHQW DW 7KH ORZ PRELOLW\ RI GLVORFDWLRQV ZDV RIIHUHG DV D SRVVLEOH H[SODQDWLRQ IRU WKLV ODFN RI GXFWLOLW\ ,Q D UHODWHG VWXG\ >@ GLUHFWLRQDOO\VROLGLILHG 1L$O&U ZDV DOVR UHSRUWHG WR H[KLELW VOLS +RZHYHU VLQFH WKH JURZWK GLUHFWLRQ RI WKH LQJRW ZDV >@ DV ZDV DV WKH FRPSUHVVLRQ D[LV RI WKH PDFKLQHG VSHFLPHQV WKH UHVROYHG VKHDU VWUHVV RQ WKH !^` V\VWHPV ZHUH ORZ FRPSDUHG ZLWK WKRVH RQ WKH !^ ` V\VWHPV ,Q WKLV

PAGE 37

PDQQHU VOLS ZDV GLVFRXUDJHG E\ DW OHDVW D IDFWRU RI WZR EDVHG RQ 6FKPLG IDFWRU FRPSDULVRQV RI WKH WZR PRVW IDYRUHG DQG FRQWDLQLQJ V\VWHPV $OWKRXJK LW FDQ EH DUJXHG WKDW VOLS ZDV PDGH OHVV GLIILFXOW UHFDOO WKDW D IDFWRU RI VL[ ZDV QRWHG DERYH IRU ELQDU\ 1L$Of QR DFWXDO SUHIHUHQFH IRU VOLS RYHU VOLS ZDV GHPRQVWUDWHG 7DEOH 7(0 5HVXOWV RI /DZ DQG %ODFNEXUQ >@ IRU 3RO\FU\VWDOOLQH 1L$OEDVH 7HUQDU\ $OOR\V 'HIRUPHG DW &RPSRVLWLRQ DWbf 6OLS 6\VWHP &KDUDFWHU 1$ !^` HGJH 1L$O*D !^` HGJH 1L$O*D !^` HGJH 1L$O&U 7O!^` VFUHZ 1L$O0Q 7O!^` HGJH )LHOG HW DO >@ HYDOXDWHG WKH HIIHFW RI FKURPLXP DGGLWLRQV RQ VOLS V\VWHPV DQG PHFKDQLFDO SURSHUWLHV LQ >@ RULHQWHG VLQJOH FU\VWDOV DW URRPWHPSHUDWXUH $V QRWHG DERYH >@ RULHQWHG FU\VWDOV VOLS E\ GLVORFDWLRQV LQ ELQDU\ 1L$O LQ WKH DEVHQFH RI NLQNLQJ ,Q 1L$O&U DQG 1L$O&U DOOR\V VXEVWDQWLDO SUHFLSLWDWLRQ RI DOSKD FKURPLXP ZDV REVHUYHG &KURPLXP DQG 1L$O KDYH YHU\ VLPLODU ODWWLFH SDUDPHWHUV DQG ILQHVFDOH VROLG VWDWH SUHFLSLWDWLRQ SURGXFHV VHPLFRKHUHQW LQWHUIDFHV ZKLFK FRQWDLQ LQWHUIDFLDO QHWV RI GLVORFDWLRQV WR DFFRPPRGDWH WKH VWUDLQ > @ 7KHVH QHWV DSSHDU WR EH RI WZR W\SHV VTXDUH DQG KH[DJRQDO :DOWHU DQG &OLQH >@ GHWHUPLQHG WKH VTXDUH QHWV WR FRQVLVW RI RUWKRJRQDO GLVORFDWLRQV )LHOG HW DO >@ VKRZHG WKH KH[DJRQDO QHWV WR FRQVLVW RI DQG GLVORFDWLRQV DQG VSHFXODWHG WKDW WKHVH DUUD\V PD\ VHUYH DV VRXUFHV IRU GLVORFDWLRQV $OWKRXJK GLVORFDWLRQV ZHUH REVHUYHG LQ WKH PLFURVWUXFWXUH QR FRQFOXVLYH HYLGHQFH ZDV DSSDUHQW WR VXSSRUW WKLV LGHD )XUWKHU LQYHVWLJDWLRQ RI WKH VOLS EDQGV RI GLVORFDWLRQV LQGLFDWHG WKH\ ZHUH EHLQJ JHQHUDWHG IURP *& SUHFLSLWDWHV ZKLFK KDYH DQ RULHQWDWLRQ UHODWLRQVKLS ZLWK WKH PDWUL[ RI

PAGE 38

>@SSW ,, >2OO-PDWUL[ 22OfSSW ,, OO7fPDWUL[ 7KLV LPSOLHG WKDW GLVORFDWLRQV ZHUH PRUH HDVLO\ JHQHUDWHG DW WKH FDUELGHPDWUL[ LQWHUIDFH WKDQ RWKHU VRXUFHV EXW VD\V OLWWOH DERXW WUXH DOWHUDWLRQ RI WKH VOLS V\VWHP IURP WKDW REVHUYHG LQ ELQDU\ 1L$O 7KH RFFXUUHQFH RI WKH 2& SKDVH LV FXULRXV VLQFH &U& LV WKH FDUELGH SKDVH LQ HTXLOLEULXP ZLWK DOSKDFKURPLXP LQ D ELQDU\ V\VWHP >@ 7KLV PD\ EH GXH WR WKH UHODWLYH HDVH RI QXFOHDWLRQ RI WKH 2& SKDVH IRU WKH DERYH RULHQWDWLRQ UHODWLRQVKLS ,Q WKH VDPH VWXG\ WKH UHVXOWV RI DOOR\V FRQWDLQLQJ ORZHU OHYHOV RI FKURPLXP LQGLFDWHG WKDW D JHQHUDO VROLG VROXWLRQ VWUHQJWKHQLQJ PDNHV VOLS UHODWLYHO\ PRUH IDYRUDEOH WKDQ LQ WKH ELQDU\ 1R GHILQLWLYH HYLGHQFH RI WKH SUHIHUHQFH RI VOLS RYHU VOLS LQ DQ\ RULHQWDWLRQ RWKHU WKDQ >@ ZDV VKRZQ 2WKHU (OHPHQWV ,Q DGGLWLRQ WR WKRVH DOUHDG\ PHQWLRQHG /DZ DQG %ODFNEXUQ >@ DOVR H[DPLQHG WKH HIIHFWV RI DGGLWLRQV RI FREDOW EHU\OOLXP WLWDQLXP QLRELXP WDQWDOXP VLOLFRQ YDQDGLXP DQG ]LUFRQLXP +RZHYHU QRQH RI WKH WHUQDU\ DOOR\V FRQWDLQLQJ WKHVH DGGLWLRQV ZDV UHSRUWHG WR GHPRQVWUDWH DQ\ GXFWLOLW\ DW URRP WHPSHUDWXUH QRU ZHUH DQ\ GHWDLOHG H[DPLQDWLRQV RI VOLS SKHQRPHQD SHUIRUPHG 'DUROLD HW DO >@ VWXGLHG WKH HIIHFW RI XS WR SHUFHQW YDQDGLXP VXEVWLWXWHG IRU DOXPLQXP RQ WKH VOLS DQG PHFKDQLFDO SURSHUWLHV LQ >@ RULHQWHG VLQJOH FU\VWDOV 7KH\ GHWHUPLQHG WKDW YDQDGLXP FDXVHV VLJQLILFDQW VROLG VROXWLRQ KDUGHQLQJ DQG DOVR QRWHG WKH SUHVHQFH RI 1$,9 +HXVOHU /Lf SUHFLSLWDWHV ZKLFK DUH H[SHFWHG WR SURGXFH IXUWKHU VWUHQJWKHQLQJ 1RQH RI WKH DOOR\V H[KLELWHG PHDVXUDEOH URRPWHPSHUDWXUH GXFWLOLW\ DQG 7(0 DQDO\VLV UHYHDOHG RQO\ GLVORFDWLRQV

PAGE 39

3UHGLFWLRQ RI $OOR\LQJ (IIHFWV RQ 3ODVWLF 'HIRUPDWLRQ RI 1L$, *HQHUDOO\ WZR DSSURDFKHV WR SUHGLFWLQJ WKH HIIHFW RI DOOR\LQJ RQ SODVWLF GHIRUPDWLRQ KDYH EHHQ XWLOL]HG VHPLHPSLULFDO DQG WKHRUHWLFDO %RWK DFNQRZOHGJH WKH KLJK RUGHULQJ HQHUJ\ RI 1L$, ZKLFK LV GLUHFWO\ UHODWHG WR WKH KLJK $3% HQHUJ\ 7KHVH KLJK HQHUJLHV SURPRWH QLFNHODOXPLQXP ERQGV DQG OLNHZLVH UHVLVW OLNHSDLU ERQGV ZKLFK LV WKH UHDVRQ IRU WKH GLIILFXOW\ RI !^` VOLS DQG XOWLPDWHO\ WKH UHDVRQ IRU WKH RSHUDWLRQ RI RQO\ WKUHH LQGHSHQGHQW VOLS V\VWHPV 7KHVH DSSURDFKHV HQGHDYRU WR PDNH VOLS HDVLHU E\ VXEVWLWXWLQJ HOHPHQWV RQ WKH % 1L$, ODWWLFH ZKLFK ZLOO ORZHU WKH RUGHULQJ HQHUJ\ RI WKH FRPSRXQG 3KHQRPHQRORJLFDO $SSURDFKHV 7KH FDOFXODWHG DQG PHDVXUHG RUGHULQJ HQHUJLHV IRU D QXPEHU RI % DOXPLQLGHV VKRZ D VWHDG\ UHGXFWLRQ LQ PDJQLWXGH > @ 1L$, &R$O )H$O 0Q$O &U$O 9$ 7KHUHIRUH LW LV ORJLFDO WR DGG HOHPHQWV VXFK DV YDQDGLXP FKURPLXP RU PDQJDQHVH WR 1L$, VXEVWLWXWHG IRU QLFNHO WR WU\ WR SURPRWH VOLS 7KH UHODWLRQVKLS EHWZHHQ RUGHULQJ HQHUJ\ RU KHDW RI IRUPDWLRQf DQG VOLS V\VWHP KDV EHHQ GHPRQVWUDWHG E\ &RWWRQ HW DO >@ LQ ZKLFK ORZHU RUGHULQJ HQHUJLHV FRUUHVSRQG WR VOLS ZKLOH KLJKHU RUGHULQJ HQHUJLHV FRUUHVSRQG WR VOLS )LJXUH $QRWKHU VHPLHPSLULFDO DSSURDFK LV WR FKRRVH DWRPV IRU VXEVWLWXWLRQ EDVHG RQ WKHLU UHVSHFWLYH VL]H DQG DOWHU WKH PHDQ DWRPLF UDGLL UDWLR 5QL5DLf 7KHQ DV GHVFULEHG E\ /DXWHQVFKODJHU HW DO >@ ZKHQ 5Q5DL WHQGV WR VOLS ZLOO EH SUHIHUUHG )RU LQVWDQFH DOXPLQXP LV D PXFK ODUJHU DWRP WKDQ QLFNHO 7R EULQJ 5Q5DL QHDUHU WR RQH VKRXOG VXEVWLWXWH ODUJHU DWRPV IRU QLFNHO /DZ DQG %ODFNEXUQ >@ FRQVLGHUHG ERWK RI WKHVH DSSURDFKHV LQ GHYLVLQJ WKHLU DOOR\LQJ VFKHPHV ,Q WKH ODWWHU FDVH WKH\ DGGHG %H IRU DOXPLQXP LQ DQ DWWHPSW WR EULQJ WKH PHDQ

PAGE 40

5Q5DL QHDUHU WR $V DOUHDG\ QRWHG QRQH RI WKH DOOR\V LQYHVWLJDWHG E\ /DZ DQG %ODFNEXUQ GLVSOD\HG DQ\ PHDVXUDEOH WHQVLOH GXFWLOLW\ DW URRP WHPSHUDWXUH SUREDEO\ EHFDXVH RI VROLG VROXWLRQ KDUGHQLQJ 7KHRUHWLFDO&RPSXWDWLRQDO $SSURDFKHV 4XLWH UHFHQWO\ ILUVWSULQFLSOHV FDOFXODWLRQV EDVHG RQ LQWHUDWRPLF SRWHQWLDOV FRPELQHG ZLWK WKH XVH RI KLJKVSHHG VXSHUFRPSXWHUV KDYH DOORZHG WKH D SULRUL GHWHUPLQDWLRQ RI PDWHULDO SURSHUWLHV &DOFXODWLRQV IRU PDWHULDOV IRU ZKLFK VRPH SURSHUWLHV DUH DOUHDG\ NQRZQ VXFK DV 1L$O DOORZ D FKHFN IRU DFFXUDF\ +RQJ DQG )UHHPDQ > @ HPSOR\HG DOOHOHFWURQ VHOIFRQVLVWHQW WRWDOHQHUJ\ OLQHDU PXIILQWLQRUELWDO FDOFXODWLRQV XVLQJ D VXSHU FHOO DSSURDFK WR GHWHUPLQH WKH !^ ` DQG !^@ $3% HQHUJLHV IRU ELQDU\ DQG WHUQDU\ 1L$O DOOR\V )RU ELQDU\ VWRLFKLRPHWULF 1L$O WKH\ FDOFXODWHG HQHUJLHV RI DERXW P-QU IRU ERWK FDVHV D UHVXOW ZKLFK LV FRQVLVWHQW ZLWK WKH H[SHULPHQWDO UHVXOWV RI 9HVV\LHUH DQG 1RHEH >@ 7KH VXEVWLWXWLRQ RI FKURPLXP IRU DOXPLQXP RU YDQDGLXP IRU QLFNHO LV SUHGLFWHG WR GHFUHDVH WKH FDOFXODWHG $3% HQHUJ\ WR P-QU +RZHYHU WKH VXSHUFHOO PRGHOV HPSOR\HG LQ WKHVH FDOFXODWLRQV DVVXPHG SHUFHQW VROXELOLW\ DV DOUHDG\ PHQWLRQHG WKH VROXELOLWLHV IRU WKHVH HOHPHQWV DUH TXLWH ORZ OHVV WKDQ WZR SHUFHQW DW .f )X DQG @ DOVR GHWHUPLQHG WKH !^ @ $3% HQHUJ\ IRU ELQDU\ 1L$O XVLQJ WRWDO HQHUJ\ FDOFXODWLRQV DQG DUULYHG DW D YDOXH RI P-UUU 6LPLODU WR +RQJ DQG )UHHPDQ WKH\ DOVR VXJJHVWHG WKDW VXEVWLWXWLRQV RI OHVV HOHFWURSRVLWLYH G WUDQVLWLRQ HOHPHQWV IRU DOXPLQXP ZRXOG GHFUHDVH WKH $3% HQHUJ\ ,Q XQSXEOLVKHG ZRUN +DKQ DQG 9HGXOD >@ H[DPLQHG WKH HIIHFW RI VXEVWLWXWLRQ RI D ODUJH QXPEHU RI WHUQDU\ HOHPHQWV RQ WKH FDOFXODWHG RUGHULQJ HQHUJ\ XVLQJ WKH SVHXGRSRWHQWLDO PHWKRG 7KHLU UHVXOWV LQGLFDWHG WKDW WKH VXEVWLWXWLRQ RI UKHQLXP YDQDGLXP RU VLOLFRQ IRU QLFNHO VKRXOG GHFUHDVH WKH RUGHULQJ HQHUJ\ RI 1L$O 7KH SKHQRPHQRORJLFDO DQG WKHRUHWLFDO PRGHOV GLVFXVVHG DERYH LJQRUH WKH HIIHFW RI VROLG VROXWLRQ KDUGHQLQJ )RU D VXEVWLWXWLRQDO HOHPHQW WR HIIHFW D EDVLF FKDQJH LQ WKH ERQGLQJ RI 1L$O LW LV UHDVRQDEOH WKDW VXEVWDQWLDO DPRXQWV PXVW EH VROXEOH EDVHG RQ WKH LQIRUPDWLRQ VKRZQ LQ )LJXUH $V D ILUVW DSSUR[LPDWLRQ D UXOHRIPL[WXUHV PD\ EH

PAGE 41

DSSOLHG WR HVWLPDWH WKH DPRXQW RI VROXWH UHTXLUHG WR SODFH WKH DOOR\HG 1L$O FRPSRXQG ZLWKLQ WKH UHJLRQ RI VOLS 7KLV OLQH RI UHDVRQLQJ ZRXOG UHTXLUH DW OHDVW KDOI WKH QLFNHO WR EH UHSODFHG ZLWK DQRWKHU WUDQVLWLRQ HOHPHQW D VXEVWDQWLDO DPRXQW ,I VXFK DGGLWLRQV FDXVH WKH \LHOG VWUHQJWK WR EH LQFUHDVHG DERYH WKH IUDFWXUH VWUHQJWK E\ VROLG VROXWLRQ KDUGHQLQJ EHIRUH WKH RUGHULQJ HQHUJ\ LV HIIHFWLYHO\ GHFUHDVHG WKH DOOR\ ZLOO QRW EH DEOH WR XQGHUJR DQ\ VLJQLILFDQW GHIRUPDWLRQ SULRU WR IUDFWXUH DQG WKHLU SXUSRVH ZLOO EH GHIHDWHG e R ff§r FG MLMf nZn F R ‘rf§} D e 2 ‘rf§r [ ,Q GLVRUGHU SDUDPHWHUf )LJXUH 5HODWLRQVKLS %HWZHHQ +HDW RI )RUPDWLRQ 'HJUHH RI 'LVRUGHU DQG 2EVHUYHG 6OLS 6\VWHP DW 1RWH WKDW KLJKHU RUGHU DQG ODUJHU KHDWV RI IRUPDWLRQ FRUUHVSRQG WR VOLS >@ $QRWKHU LPSRUWDQW IDFWRU ZKLFK KDV QRW EHHQ FRQVLGHUHG LQ FXUUHQW WKHRUHWLFDO PRGHOV LV VLWH SUHIHUHQFH RI WKH WHUQDU\ DGGLWLRQ ,I WKH DOOR\LQJ DGGLWLRQ LV VXEVWLWXWHG

PAGE 42

FRPSRVLWLRQDOO\ IRU D SDUWLFXODU VLWH VD\ QLFNHOf EXW LQVWHDG SUHIHUV WKH RWKHU VLWH VD\ DOXPLQXPf WKHQ WKH LQWHQGHG HIIHFW KDV QRW EHHQ UHDOL]HG )XUWKHU VXFK D FDVH ZRXOG OHDG WR QLFNHO YDFDQFLHV DQG WKH DVVRFLDWHG KDUGHQLQJ 7KHUHIRUH QRW RQO\ PXVW WKH VXEVWLWXWLRQDO DGGLWLRQ GHFUHDVH WKH RUGHULQJ HQHUJ\ LW PXVW EH DGHTXDWHO\ VROXEOH DQ LPSRWHQW KDUGHQHU DQG H[KLELW WKH SURSHU VLWH SUHIHUHQFH LQ WKH 1L$O ODWWLFH

PAGE 43

&+$37(5 (;3(5,0(17$/ 352&('85( 7KH PDWHULDOV XVHG LQ WKLV VWXG\ ZHUH REWDLQHG LQ VHYHUDO IRUPV KRPRJHQL]HG DUF PHOWHG +$0f FDVWLQJV DVDUFPHOWHG $0f FDVWLQJV H[WUXGHG YDFXXPLQGXFWLRQPHOWHG ;9,0f FDVWLQJV DQG H[WUXGHG DWRPL]HG SRZGHU ;$3f 7KH GLIIHUHQW SURGXFWLRQ PHWKRGV DUH GHVFULEHG VHSDUDWHO\ EHORZ 7KH H[SHULPHQWDO ZRUN ZDV SHUIRUPHG ZKLOH LQ UHVLGHQFH DW WKH 1$6$ /HZLV 5HVHDUFK &HQWHU /5&f LQ &OHYHODQG 2KLR &RPSRVLWLRQV DUH JLYHQ LQ DWRPLF SHUFHQW HJ 1L$O&U LQGLFDWHV DWRPLF SHUFHQW DOXPLQXP DWRPLF SHUFHQW FKURPLXP DQG DWRPLF SHUFHQW 1L 0DWHULDOV +$0 DQG $0 &DVWLQJV 7KH QRPLQDO DQG DQDO\]HG FRPSRVLWLRQV RI WKH FDVWLQJV XVHG LQ WKLV VWXG\ DUH SORWWHG LQ )LJXUH 7KH FDVWLQJV ZHUH SURGXFHG E\ QRQFRQVXPDEOH DUF PHOWLQJ NJ RI FRQVWLWXHQW HOHPHQWV SHUFHQW QLFNHO SHUFHQW DOXPLQXP SHUFHQW FKURPLXP E\ ZHLJKWf LQ D ZDWHUFRROHG FRSSHU ERZO XQGHU DUJRQ WR SURGXFH EXWWRQV )LJXUH DQG WKHQ LQYHUWLQJ DQG UHPHOWLQJ WZLFH PRUH WR LQVXUH KRPRJHQHLW\ 6XEVHTXHQW ZHLJKLQJ RI WKH EXWWRQV LQGLFDWHG ZHLJKW ORVVHV ZHUH JHQHUDOO\ OHVV WKDQ SHUFHQW 7KH EXWWRQV ZHUH FDVW LQWR D FRSSHU PROG RI DSSUR[LPDWH GLPHQVLRQV PP [ PP [ PP WR SURGXFH VRPHZKDW UHFWDQJXODU FDVWLQJV ZLWK D VPDOO EXWWRQKHDG WR UHGXFH SLSH VKULQNDJH 7KH FDVWLQJV ZHUH VXEVHTXHQWO\ KRPRJHQL]HG E\ KHDWLQJ XQGHU VORZIORZLQJ FRPPHUFLDO SXULW\ DUJRQ IRU KRXUV DW r& XWLOL]LQJ KHDWLQJ DQG FRROLQJ UDWHV RI SHU PLQXWH 7KH $0 FDVWLQJV ZHUH DQDO\]HG LQ WKH DVFDVW VWDWH

PAGE 44

;9,0 DQG ;$3 ([WUXVLRQV )LYH FRPSRVLWLRQV ZHUH SURGXFHG E\ WKLV SURFHVVLQJ URXWH WR FRLQFLGH ZLWK ILYH RI WKH +$0 FDVWLQJ FRPSRVLWLRQV NJ FKDUJHV RI FRQVWLWXHQW HOHPHQWV ZHUH PHOWHG WRJHWKHU XQGHU YDFXXP E\ LQGXFWLRQ KHDWLQJ WR SURGXFH P E\ P GLDPHWHU FDVWLQJV 2QH FRPSRVLWLRQ 1L$O&U ZDV YDFXXP DWRPL]HG WR SURGXFH SRZGHU E\ +RPRJHQHRXV 0HWDOV ,QF 7KH FDVWLQJV DQG UHVXOWLQJ DWRPL]HG SRZGHU ZHUH HQFORVHG LQ VWHHO FDQV E\ WXQJVWHQLQHUWJDV ZHOGLQJ ZKLFK ZHUH VXEVHTXHQWO\ HYDFXDWHG DQG VHDOHG E\ HOHFWURQ EHDP ZHOGLQJ (DFK FDQQHG DOOR\ ZDV KHDWHG DW r& IRU IRXU KRXUV SULRU WR H[WUXVLRQ LQ D /RHZ\ YHUWLFDO K\GUDXOLF WRQ SUHVV DW DQ H[WUXVLRQ UDWLR RI ‘ $UF 0HOWHG DQG 'URS &DVW r& +RXUV Q 3UDWW t :KLWQH\ $OOR\ 2 9DFXXP ,QGXFWLRQ &DVW DQG ([WUXGHG , ([WUXGHG 3RZGHU $OOR\ )LJXUH 7HUQDU\ 'LDJUDP RI $OOR\ &RPSRVLWLRQV LQ &XUUHQW 6WXG\

PAGE 45

3ULRU WR IXUWKHU LQYHVWLJDWLRQ WKH H[WUXVLRQV ZHUH FXW LQWR P OHQJWKV DQG WKH VWHHO FDQ UHPRYHG FKHPLFDOO\ E\ LPPHUVLRQ LQ DQ DTXHRXV VROXWLRQ RI SHUFHQW QLWULF DFLG ZLWK D VPDOO DPRXQW RI VXOIXULF DFLG IRU KRXU DW URRP WHPSHUDWXUH 2WKHU 0DWHULDOV 'XULQJ WKH FRXUVH RI WKH LQYHVWLJDWLRQ LW ZDV QHFHVVDU\ WR REWDLQ VRPH DOOR\V ZKLFK DOWKRXJK QRW DQ LQWULQVLF SDUW RI WKH RULJLQDO VWXG\ ZHUH QHFHVVDU\ WR UHVROYH SDUWLFXODU TXHVWLRQV 7KHVH LQFOXGH WKH IROORZLQJ f D SRUWLRQ RI D YDFXXPLQGXFWLRQ PHOWHG 1L$O&U FDVWLQJ SURGXFHG DW 8QLWHG 7HFKQRORJLHV 3UDWW DQG :KLWQH\ ZKLFK ZDV RULJLQDOO\ LQYHVWLJDWHG LQ UHIHUHQFH >@ FRXUWHV\ 'U 6 5XVVHOOf f WKUHH 1L$O VLQJOH FU\VWDOV LQ >@ >@ DQG >@ RULHQWDWLRQV IURP /5& FRXUWHV\ 5' 1RHEHf IRU PLFURKDUGQHVV GHWHUPLQDWLRQ RQO\ f +$0 1$ DQG 1L$O&U FDVWLQJV LQ UHVSRQVH WR GLVFXVVLRQV ZLWK '% 0LUDFOH DQG KLV ZRUN UHIHUHQFHG LQ >@ f WZR VHULHV RI ILYH +$0 FDVWLQJV FRQWDLQLQJ DQG DWRPLF SHUFHQW FKURPLXP 1L$O UDWLR f WR HVWDEOLVK WKH HIIHFW RI FRQVWLWXHQW QLFNHO UHSRUWHG WR FRQWDLQ YHU\ ORZ LQWHUVWLWLDO OHYHOV KLJKSXULW\ QLFNHO SURYLGHG FRXUWHV\ RI 'U 6 &KXPOH\ $PHV 5HVHDUFK /DERUDWRU\ $PHV ,RZDf DQG f VHYHQ RWKHU DGGLWLRQDO +$0 FDVWLQJV IRU PLFURKDUGQHVV GHWHUPLQDWLRQ RQO\ WR HVWDEOLVK WUHQGV LQGLFDWHG E\ WKH RULJLQDO FRPSRVLWLRQV GHVFULEHG DERYH 2SWLFDO 0LFURVFRS\ 7UDQVYHUVH FURVVVHFWLRQV RI WKH FDVWLQJV DQG H[WUXVLRQV ZHUH UHPRYHG E\ DEUDVLYH ZKHHO FXWWLQJ IRU RSWLFDO PHWDOORJUDSKLF DQDO\VLV DQG PLFURKDUGQHVV WHVWLQJ 7KH VOLFHV ZHUH PHWDOORJUDSKLFDOO\ SUHSDUHG XVHG VWDQGDUG PRXQWLQJ DQG JULQGLQJ SURFHGXUHV SROLVKHG WKURXJK SP DOXPLQD PHGLD DQG WKHQ HWFKHG ZLWK VDWXUDWHG PRO\EGLF DFLG

PAGE 46

)LJXUH $UF0HOWHG %XWWRQ DQG &DVWLQJ RI %LQDU\ 1L$O

PAGE 47

NJ 02 PO +) DQG PO +2f WR UHYHDO WKH PLFURVWUXFWXUH /LJKW RSWLFDO PLFURJUDSKV ZHUH UHFRUGHG IRU HDFK DOOR\ ZLWK WKH H[FHSWLRQ RI WKH ELQDU\ VWRLFKLRPHWULF 1$ GXH WR LWV H[WUHPH UHVLVWDQFH WR HWFKLQJ %RWK EULJKW ILHOG %)f DQG GLIIHUHQWLDO LQWHUIHUHQFH FRQWUDVW ',&f ZHUH XVHG WR LOOXPLQDWH SDUWLFXODU PLFURVWUXFWXUDO IHDWXUHV 0HFKDQLFDO 3URSHUW\ 7HVWLQJ &RPSUHVVLRQ 7HVWLQJ &DVWLQJV 7KH ERG\ RI HDFK FDVWLQJ ZDV VHQW WR 8OWUDFXW ,QF :HVW 3DOP %HDFK )ORULGD IRU HOHFWURVWDWLF GLVFKDUJH PDFKLQLQJ ('0f RI F\OLQGULFDO FRPSUHVVLRQ WHVW VSHFLPHQV )LJXUH DQG $SSUR[LPDWHO\ FRPSUHVVLRQ VSHFLPHQV ZHUH REWDLQHG IURP HDFK FDVWLQJ ZLWK WKH H[FHSWLRQ RI 1L$OO&U IURP ZKLFK QRQH FRXOG UHOLDEO\ EH SURGXFHG GXH WR LWV H[WUHPH EULWWOHQHVV 7KH FRPSUHVVLRQ VSHFLPHQV ZHUH VSHFLILHG WR EH PP LQ OHQJWK E\ PP GLDPHWHU DV WKLV LV D FRQYHQLHQW GLDPHWHU IRU VXEVHTXHQW 7(0 VSHFLPHQ SUHSDUDWLRQ )ROORZLQJ ('0LQJ D ORQJLWXGLQDO EXUU UHPDLQHG RQ HDFK FRPSUHVVLRQ VSHFLPHQ DV ZHOO DV D JUD\ R[LGH 7KH EXUU ZDV UHPRYHG E\ OLJKWO\ JULQGLQJ RQ JULW 6L& SDSHU WKH VSHFLPHQ HQGV ZHUH EULHIO\ DEUDGHG WR UHPRYH WKH R[LGH OD\HU 3DUDOOHOLVP RI WKH HQGV ZDV FKHFNHG GXULQJ VSHFLPHQ PHDVXUHPHQW E\ SODFLQJ WKH VSHFLPHQ LQ D PLFURPHWHU DQG H[DPLQLQJ IRU OLJKW YLVLELOLW\ EHWZHHQ WKH VSHFLPHQ DQG PLFURPHWHU SODWHQV ([WUXVLRQV &RPSUHVVLRQ VSHFLPHQV RI LGHQWLFDO GLPHQVLRQV ZHUH SURGXFHG IURP WKH H[WUXVLRQV E\ FHQWHUOHVV JULQGLQJ WR ILQDO GLPHQVLRQV 7KLV PHWKRG SURGXFHV D VPRRWKHU VXUIDFH WKDQ WKDW DVVRFLDWHG ZLWK ('0LQJ 7KXV WKH SURSHUWLHV GHULYHG IURP WKH H[WUXVLRQV ZHUH PRUH UHSURGXFLEOH WKDQ WKRVH RI WKH FDVWLQJV IRU D JLYHQ DOOR\ &RPSUHVVLRQ WHVWV ZHUH FRQGXFWHG SULPDULO\ WR LQWURGXFH D VPDOO DPRXQW RI GHIRUPDWLRQ LQWR WKH DOOR\V IRU WKH SXUSRVH RI GLVORFDWLRQ DQDO\VLV 6LQFH SUHOLPLQDU\

PAGE 48

5RG PP PP PP PP HQGV PXVW EH IODW DQG SDUDOOHO WR ZLWKLQ GHJUHH 6SHFLPHQ )LJXUH 6FKHPDWLF 'UDZLQJ RI &RPSUHVVLRQ 7HVW 6SHFLPHQV

PAGE 49

)LJXUH (OHFWURVWDWLF 'LVFKDUJH 0DFKLQHG &RPSUHVVLRQ 6SHFLPHQV UHVHDUFK LQGLFDWHG WKDW VWUDLQV LQ H[FHVV RI DERXW RQH SHUFHQW SURGXFH GLVORFDWLRQ GHQVLWLHV WRR KLJK IRU LQGLYLGXDO GLVORFDWLRQ DQDO\VLV WKH GHIRUPDWLRQ VWUDLQ ZDV JHQHUDOO\ OLPLWHG WR SHUFHQW ,Q DGGLWLRQ DW OHDVW IRXU WHVWV WR IDLOXUH ZHUH FRQGXFWHG IRU HDFK FDVW DQG KRPRJHQL]HG FRPSRVLWLRQ WR DOORZ GHWHUPLQDWLRQ RI SHUFHQW RIIVHW \LHOG &<6f DQG XOWLPDWH FRPSUHVVLYH VWUHQJWKV 8&6f DQG VWUDLQWRIUDFWXUH HSf $OO WHVWV ZHUH FRQGXFWHG DW D WHPSHUDWXUH RI LQ DQ ,QVWURQ ORDG IUDPH DW D FKDUW VSHHG RI [ P SHU VHF LQFKHV SHU PLQXWHf DQG D FURVVKHDG VSHHG RI [O P SHU VHF LQFKHV SHU PLQXWHf 7KH QRPLQDO VWUDLQ UDWH ZDV a PP %RURQ QLWULGH ZDV XVHG WR OXEULFDWH WKH VSHFLPHQ HQGV SULRU WR HDFK WHVW DQG SUHORDG RI DSSUR[LPDWHO\ NJ ZDV DSSOLHG EHIRUH LQLWLDWLQJ FURVVKHDG WUDYHO )ROORZLQJ HDFK WHVW WKH VWUDLQ LQ HDFK VSHFLPHQ GHVLJQDWHG IRU 7(0 VSHFLPHQV ZDV PHDVXUHG GLUHFWO\ IURP WKH UHGXFWLRQ LQ OHQJWK E\ PLFURPHWHU ,Q VSHFLPHQV LQWHQGHG IRU PHFKDQLFDO SURSHUW\ GHWHUPLQDWLRQ RQO\ IDLOXUH ZDV FRQVLGHUHG WR KDYH RFFXUUHG XSRQ REVHUYDWLRQ RI WKH ILUVW GLVFRQWLQXLW\ LQ WKH ORDGGLVSODFHPHQW FXUYH

PAGE 50

UHJDUGOHVV RI DQ\ VXEVHTXHQW LQFUHDVH LQ ORDG 7KH WHVW ZDV XVXDOO\ WHUPLQDWHG DIWHU REVHUYDWLRQ RI WKH VHFRQG ORDG GURS ,Q GDWD UHGXFWLRQ RQO\ HQJLQHHULQJ VWUHVV DQG VWUDLQ ZHUH UHSRUWHG GXH WR WKH VPDOO VWUDLQVWRIDLOXUH JHQHUDOO\ REVHUYHG 7HQVLOH 7HVWLQJ %XWWRQKHDG W\SH WHQVLOH VSHFLPHQV RI GLPHQVLRQV VKRZQ LQ )LJXUH ZHUH PDFKLQHG IURP WKH H[WUXVLRQV E\ FHQWHUOHVV JULQGLQJ DQG HOHFWURSROLVKLQJ WR UHPRYH VXUIDFH GHIHFWV 7KH VDPH ,QVWURQ ORDG IUDPH XVHG IRU WKH DERYH FRPSUHVVLRQ VSHFLPHQV ZDV XVHG IRU WHVWLQJ DQG WKH GDWD ZHUH UHGXFHG LQ VLPLODU IDVKLRQ ,Q DGGLWLRQ OLPLWHG HOHYDWHG WHPSHUDWXUH WHVWV ZHUH FRQGXFWHG WR GHWHUPLQH WKH EULWWOHWRGXFWLOHWUDQVLWLRQ WHPSHUDWXUH %'77f RI HDFK RI WKH ILYH H[WUXVLRQ DOOR\V 0LFURKDUGQHVV 7HVWLQJ $OO PLFURKDUGQHVV GHWHUPLQDWLRQV ZHUH FRQGXFWHG RQ D %XHKOHU 0LFURPHW ,, PLFURKDUGQHVV WHVWLQJ PDFKLQH XVLQJ D 9LFNHUV LQGHQWHU 7KH LQGHQWHU ORDG ZDV FKRVHQ WR EH NJ ZLWK D ORDG GXUDWLRQ RI V 3ULRU WR HDFK WHVWLQJ VHVVLRQ WKH PDFKLQH ZDV FDOLEUDWHG XVLQJ VWDQGDUG KDUGQHVV WHVW EORFNV RI KDUGHQHG VWHHO 6SHFLPHQV ZHUH PHWDOORJUDSKLFDOO\ SUHSDUHG SULRU WR WHVWLQJ DQG HLWKHU RU LQGHQWDWLRQV ZHUH PDGH LQ HDFK VDPSOLQJ DW OHDVW ILYH GLIIHUHQW JUDLQV (DFK LQGHQWDWLRQ ZDV RSWLFDOO\ H[DPLQHG IRU FUDFNLQJ RU VXEVXUIDFH GHIHFWV SULRU WR PHDVXUHPHQW DQ\ VXFK GHIHFWLYH LQGHQWDWLRQV ZHUH LJQRUHG 7KH UHVXOWLQJ FRPSLODWLRQ RI KDUGQHVV YDOXHV ZHUH DYHUDJHG IRU HDFK DOOR\ 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ 7(0f 6SHFLPHQ 3UHSDUDWLRQ &RPSUHVVLRQ VSHFLPHQV ZHUH VOLFHG LQWR GLVNV SP WKLFN ZLWK D ORZVSHHG %XHKOHU VDZ XVLQJ _LP WKLFN 6L& EODGHV ZLWK ZDWHU DV D OXEULFDQW DQG WKHQ ZHW JURXQG

PAGE 51

E\ KDQG RQ JULW 6L& SDSHU WR DSSUR[LPDWHO\ SP LQ WKLFNQHVV (DFK GLVN ZDV WKHQ MHWSROLVKHG WR SHUIRUDWLRQ LQ D VROXWLRQ RI PO SHUFKORULF DFLG PO EXW\O FHOOXVROYH PO +2 DQG PO HWKDQRO DW r& 9 DQG P$ XVLQJ D 6WUXHUV 7(1832/ SROLVKLQJ XQLW 7KH SXPSLQJ VSHHG RI WKH MHWV ZDV DV VORZ DV SRVVLEOH WR PLQLPL]H EHQGLQJ GDPDJH LQ WKH WKLQ DUHD 0LFURVWUXFWXUDO &KDUDFWHUL]DWLRQ DQG 'LVORFDWLRQ $QDO\VLV $OO REVHUYDWLRQV ZHUH PDGH RQ D -(2/ & WUDQVPLVVLRQ HOHFWURQ PLFURVFRSH 7(0f RSHUDWHG DW DQ DFFHOHUDWLQJ YROWDJH RI N9 RQ D GRXEOHWLOW VWDJH DOORZLQJ r DQG s r WLOWV %RWK H[WUXGHG DQG FDVW PDWHULDO ZHUH VWXGLHG E\ 7(0 5HSUHVHQWDWLYH PLFURJUDSKV ZHUH UHFRUGHG DQG WKH SUHVHQFH RI VHFRQG SKDVHV ZHUH QRWHG DQG LGHQWLILHG XVLQJ HOHFWURQ GLIIUDFWLRQ DQDO\VLV ,Q DGGLWLRQ WKH DVVRFLDWLRQ RI GLVORFDWLRQV ZLWK SDUWLFXODU PLFURVWUXFWXUDO IHDWXUHV VXFK DV JUDLQ ERXQGDULHV DQG SUHFLSLWDWHV ZDV QRWHG 7KH %XUJHUV YHFWRUV RI GLVORFDWLRQV ZDV GHWHUPLQHG E\ WKH LQYLVLELOLW\ FULWHULRQ ]HUR FRQWUDVWf DV GHVFULEHG E\ +LUVFK +RZLH DQG :KHODQ >@ E\ UHFRUGLQJ EULJKW ILHOG LPDJHV RI GLVORFDWLRQV LOOXPLQDWHG E\ YDULRXV GLIIUDFWLQJ YHFWRUV ,Q JHQHUDO WR GLVORFDWLRQV FRXOG EH LPDJHG LQ RQH ILHOG RI YLHZ DW WR PDJQLILFDWLRQV ;f (QODUJHG SULQWV ZHUH SURGXFHG IURP WKH LPDJHV ZKLFK DOORZHG WKH GHWHUPLQDWLRQ RI WKH VOLS YHFWRU IRU D ODUJH QXPEHU RI GLVORFDWLRQV ZLWKLQ D JLYHQ JUDLQ )RU PRVW FRPSRVLWLRQV DW OHDVW WKUHH GLIIHUHQW JUDLQV ZHUH DQDO\]HG LQ IRLOV IURP DW OHDVW WZR GLIIHUHQW VSHFLPHQV WR DFKLHYH D UHSUHVHQWDWLYH VDPSOH RI %XUJHUV YHFWRUV DQG KHOS HOLPLQDWH HUURUV LQ DQDO\VLV DQG RULHQWDWLRQ HIIHFWV %HFDXVH RI WKH HODVWLF DQLVRWURS\ LQ 1L$O DQG H[WHQGHG GLODWLRQ DURXQG WKH HGJH FRPSRQHQWV RI GLVORFDWLRQV VRPH UHVLGXDO FRQWUDVW VRPHWLPHV UHPDLQHG LQ VSLWH RI VDWLVI\LQJ WKH LQYLVLELOLW\ FULWHULRQ :LWK SUDFWLFH LW ZDV SRVVLEOH WR LGHQWLI\ WKH YLVLELOLW\ FRQGLWLRQV ZLWK OLWWOH DPELJXLW\ 7R LQVXUH WKH DFFXUDF\ RI WKH DQDO\VHV W\SLFDOO\ VL[ GLIIHUHQW LPDJLQJ FRQGLWLRQV ZHUH UHFRUGHG DV RSSRVHG WR WKH PLQLPXP RI WKUHH 6HOHFWHG

PAGE 52

VSHFLPHQV ZHUH DQDO\]HG LQ IXUWKHU GHWDLO WR GHWHUPLQH GLVORFDWLRQ OLQH GLUHFWLRQ FKDUDFWHU DQG VOLS SODQH LQ DGGLWLRQ WR %XUJHUV YHFWRU E\ DSSURSULDWH VWHUHRJUDSKLF WHFKQLTXHV >@ )$,5,1* 0867 0((7 ',$ $7 32,17 2) 7$1*(1&< :,7+ 12 81'(5&87 ',$ f ',$ 0867 127 9$5< 29(5 )25 /(1*7+ 727$/ /(1*7+ ,6 127 &5,7,&$/ 672&. ,6 $/5($'< &87 72 /(1*7+ 12 )857+(5 &877,1* 1(&(66$5< 120,1$/ ',$ 5() L 7 *5,1' 72 0$.( %27+ (1'6 5281' 5 7<3 127( $// ',$0(7(56 0867 %( &21&(175,& $1' 758( :,7+,1 9 81/(66 27+(5:,6( 127(' 0$7(5,$/ ,6 (;75(0(/< %5,77/( +$1'/( $1' 0$&+,1( :,7+ &$87,21 $// ',0(16,216 ,1 0,//,0(7(56 )LJXUH 7HQVLOH 7HVW 6SHFLPHQ 3URGXFHG IURP ([WUXVLRQV E\ &HQWHUOHVV *ULQGLQJ

PAGE 53

$/&+.0 $ GHWHUPLQDWLRQ RI WKH VLWH SUHIHUHQFH RI FKURPLXP RQ WKH % 1L$O ODWWLFH ZDV PDGH E\ D[LDO $WRP /RFDWLRQ E\ &KDQQHOOLQJ (QKDQFHG 0LFURDQDO\VLV $/&+(0,f > @ YLD WKH 7(0 RI H[WUXGHG 1L$OO&U DORQJ WKH >@ ]RQH D[LV 7KLV DOOR\ ZDV FKRVHQ EHFDXVH WKH FKURPLXP ZDV HQWLUHO\ LQ VROLG VROXWLRQ DQG WKXV LQWHUIHUHQFH IURP DOSKDFKURPLXP SUHFLSLWDWHV FRXOG QRW RFFXU 7KH WHFKQLTXH LV GHVFULEHG LQ GHWDLO E\ 2WWHQ >@ KRZHYHU LW EDVLFDOO\ FRQVLVWV RI DFTXLULQJ ;UD\ VSHFWUD ZKLOH WKH HOHFWURQ EHDP LV DLPHG H[DFWO\ DORQJ WKH >@ FU\VWDO D[LV WKH >@ GLUHFWLRQ ZRXOG GR MXVW DV ZHOOf 7KH UHVXOWLQJ VSHFWUXP LV FRPSDUHG ZLWK DQRWKHU VSHFWUXP DFTXLUHG VOLJKWO\ RII DERXW WZR GHJUHHVf WKH >@ D[LV DORQJ D KLJK LQGH[ GLUHFWLRQ %HFDXVH RI WKH WHQGHQF\ IRU D VWDQGLQJ HOHFWURQ ZDYH WR GHYHORS LQ WKH >@ GLUHFWLRQ FROXPQV RI DWRPV RI RQH W\SH HJ QLFNHO ZLOO EH H[FLWHG WR D JUHDWHU GHJUHH WKDQ WKH RWKHU LQ WKLV FDVH DOXPLQXP DQG WKLV ZLOO EH UHIOHFWHG LQ WKH [UD\ VSHFWUXP UHODWLYH WR WKH RIID[LV DQDO\VLV ,I FKURPLXP GLVSOD\V D VLWH SUHIHUHQFH LWV SHDN LQWHQVLW\ ZLOO EH DXJPHQWHG RU GLPLQLVKHG DFFRUGLQJ WR WKH GHJUHH RI VLWH SUHIHUHQFH ;UD\ 'LIIUDFWLRQ $QDO\VLV ;5'f 7KH ODWWLFH SDUDPHWHUV RI WKH DOOR\V ZHUH GHWHUPLQHG E\ ;5' RQ D 6FLQWDJ 3$' 9 GLIIUDFWRPHWHU ZLWK SRZGHUV SURGXFHG E\ FUXVKLQJ VDPSOHV RI WKH FDVWLQJV &RSSHU .D UDGLDWLRQ ZDV XVHG %HFDXVH RI WKH VLPLODULW\ LQ WKH ODWWLFH SDUDPHWHUV RI WKH % DQG $ SKDVHV LQ WKH WZRSKDVH DOOR\V GHFRQYROXWLRQ RI WKH SHDNV ZDV QRW DOZD\V SRVVLEOH DQG PD\ KDYH LQIOXHQFHG WKH UHVXOWV

PAGE 54

&+$37(5 5(68/76 7KH UHVXOWV RI WKH H[SHULPHQWV GHVFULEHG LQ WKH SUHYLRXV VHFWLRQ DUH SUHVHQWHG EHORZ LQ VLPLODU RUGHU -XVWLILFDWLRQ IRU WKH SDUWLFXODU H[SHULPHQWV FKRVHQ DQG FULWLFDO HYDOXDWLRQ RI WKH GDWD DUH UHVHUYHG IRU WKH GLVFXVVLRQ $OOR\ &RPSRVLWLRQV 7KH QRPLQDO DQG DQDO\]HG FRPSRVLWLRQV RI WKH PDWHULDOV LQ WKLV VWXG\ DUH VXPPDUL]HG LQ 7DEOHV DQG 7DEOH SHUWDLQV RQO\ WR +$0 FDVWLQJV ZLWK WKH H[FHSWLRQ RI 1L$O&U ZKLFK ZDV DOVR VWXGLHG LQ WKH $0 VWDWH 7KH DQDO\]HG FRPSRVLWLRQV RI WKH FDVWLQJV DSSHDUHG WR LQGLFDWH KLJKHU DOXPLQXP FRQWHQWV DQG VOLJKWO\ ORZHU QLFNHO DQG FKURPLXP FRQWHQWV WKDQ LQWHQGHG +RZHYHU EDVHG RQ WKH YHU\ VPDOO FDVWLQJ ZHLJKW ORVVHV PHDVXUHG DQG WKH IDFW WKDW WKH DOXPLQXP FRQWHQW DSSHDUV WR KDYH LQFUHDVHG XQOLNHO\f LW LV SUREDEOH WKDW WKH FKHPLFDO DQDO\VLV LV LQ HUURU DQG WKH QRPLQDO FRPSRVLWLRQV DUH UHDVRQDEOH PHDVXUHV RI WKH WUXH FRPSRVLWLRQV 7KH H[WUXVLRQ FRPSRVLWLRQV DSSHDU YHU\ QHDU WR WKHLU QRPLQDO FRPSRVLWLRQV 7DEOH 2SWLFDO 0LFURVFRS\ 5HSUHVHQWDWLYH OLJKW RSWLFDO PLFURJUDSKV RI WKH FDVWLQJV DQG H[WUXVLRQV DUH SUHVHQWHG EHORZ LQ )LJXUHV WKURXJK DQG WKURXJK UHVSHFWLYHO\ +$0 0LFURVWUXFWXUHV 7KH VWUXFWXUHV RI WKH FDVW DQG KRPRJHQL]HG ELQDU\ DOOR\V 1$ 1$ DQG 1$ ZHUH VLQJOH SKDVH DQG FRDUVH JUDLQHG DV VKRZQ LQ )LJXUHV DQG :KLOH

PAGE 55

1$ DSSHDUHG WR FDVW ZHOO DQG FRQWDLQHG IHZ GHIHFWV WKH RWKHU WZR ELQDU\ DOOR\V FRQWDLQHG D ODUJH QXPEHU RI FUDFNV ZKLFK ZHUH XVXDOO\ LQWHUJUDQXODU $OOR\V FRQWDLQLQJ RQH SHUFHQW FKURPLXP ZHUH JHQHUDOO\ VLQJOH SKDVH )LJXUH f ZLWK RFFDVLRQDO ILQH SUHFLSLWDWLRQ %DVHG RQ DYDLODEOH WHUQDU\ SKDVH GLDJUDPV DQ\ VHFRQG SKDVH SUHFLSLWDWLRQ LQ WKLV V\VWHP LV H[SHFWHG WR EH DOSKDFKURPLXP %RWK ;5' DQG 7(0 DQDO\VLV FRQILUPHG WKLV WR EH WUXH DV GLVFXVVHG EHORZ $OOR\ 1L$O&U ZDV YHU\ VLPLODU WR WKH RQH SHUFHQW FKURPLXP DOOR\V DV VKRZQ LQ )LJXUH 7KHVH DOOR\V DOVR GLVSOD\HG D VLJQLILFDQW GHJUHH RI FUDFNLQJ DQG VKULQNDJH SRUHV ,Q FRQWUDVW WR 1L$O&U )LJXUHV DQG VKRZ WKH PLFURVWUXFWXUHV RI 1L$O&U DQG 1L$O&U WR FRQWDLQ ILQH LQWUDJUDQXODU SUHFLSLWDWLRQ 7KH SUHFLSLWDWHV LQ WKHVH DOOR\V ZHUH RIWHQ DOLJQHG LQ VPRRWKO\ FXUYLQJ DUFV 7KH SUHFLSLWDWLRQ LQ 1L$O&U DSSHDUHG WR EH RI D VOLJKWO\ ODUJHU PHDQ VL]H WKDQ WKDW LQ WKH 1L$O&U 7KH SUHFLSLWDWLRQ LQ WKH DOOR\V FRQWDLQLQJ ILYH SHUFHQW FKURPLXP ZDV PDUJLQDOO\ FRDUVHU WKDQ LQ WKH DOOR\V FRQWDLQLQJ WZR SHUFHQW FKURPLXP DQG ZDV OHVV KRPRJHQHRXVO\ GLVWULEXWHG )LJXUHV WKURXJK 7KH DOLJQPHQW RI SUHFLSLWDWHV ZDV OHVV SURQRXQFHG LQ WKH 1L$O&U DQG 1L$O&U DOOR\V EXW ZDV ZHOOGHYHORSHG LQ WKH 1L$O&U DOOR\ ,Q WKHVH ODWWHU DOOR\V WKH JUDLQ ERXQGDULHV ZHUH RIWHQ GHOLQHDWHG E\ DOORWULRPRUSKV DQG D VXUURXQGLQJ SUHFLSLWDWH IUHH ]RQH )LJXUH 7KH PLFURVWUXFWXUH RI WKH 1L$O&U DOOR\ ZDV YHU\ VLPLODU WR 1L$O&U DQG LV VKRZQ LQ )LJXUH ;9,0 DQG ;$3 0LFURVWUXFWXUHV 7KH RSWLFDO PLFURVWUXFWXUHV RI WKH H[WUXVLRQV DUH VKRZQ LQ )LJXUHV WKURXJK 7KH ELQDU\ 1$ DQG WKH 1L$OO&U DOOR\V ERWK FRQWDLQ IXOO\ UHFU\VWDOOL]HG VWUXFWXUHV RI IDLUO\ HTXLD[HG JUDLQV ZKLFK KDYH XQGHUJRQH G\QDPLF UHFU\VWDOOL]DWLRQ DQG JUDLQ JURZWK 7KH 1L$O&U DQG 1L$O&U DOOR\V DUH VLPLODU EXW KDYH UHWDLQHG SDUWLDOO\ UHFU\VWDOOL]HG UHJLRQV FRQWDLQLQJ ILQH VXEJUDLQV DQG D JHQHUDOO\ ILQHU VWUXFWXUH 7KH KLJKHVW FKURPLXP DOOR\ 1L$O&U GLVSOD\HG WKH ILQHVW JUDLQ VWUXFWXUH DQG ZDV

PAGE 56

IXOO\ UHFU\VWDOOL]HG ,Q DOO WKH FKURPLXPFRQWDLQLQJ DOOR\V VWULQJHUV RI VHFRQG SKDVH FRXOG EH GLVFHUQHG H[WHQGLQJ LQ WKH H[WUXVLRQ GLUHFWLRQ 7DEOH 1RPLQDO DQG $QDO\]HG &RPSRVLWLRQV $WRPLF 3HUFHQW RU :SSPf RI &DVW DQG +RPRJHQL]HG $OOR\V LQ &XUUHQW 6WXG\ 1RPLQDO $QDO\]HG b b b b b b b b ZSSP ZSSP ZSSP b :W $OOR\ 1L $ &U 1L $ &U )H &X & 1 2 /RVV QD QG QG QG QD QG QG QG QD QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QG QD QG QRW GHWHFWHG OHVV WKDQ ZSSPf QD QRW DQDO\]HG 7DEOH 1RPLQDO DQG $QDO\]HG &RPSRVLWLRQV $WRPLF 3HUFHQW RU :SSPf RI ([WUXGHG $OOR\V LQ &XUUHQW 6WXG\ ,6 RPLQDO $QDO\]HG ([WUXVLRQ %LOOHW b b b b b b b ZSSP ZSSP ZSSP 7\SH 1L $ &U 1L $ &U )H & 1 2 / 9,0 &DVW QD QD QG / 9,0 &DVW QD QD / 9,0 &DVW QD QD / 9,0 &DVW QD QD / 3RZGHU QG QG QRW GHWHFWHG OHVV WKDQ ZSSPf QD QRW DQDO\]HG

PAGE 57

7DEOH &RPSRVLWLRQV RI $GGLWLRQDO $OOR\V $WRPLF 3HUFHQW RU :SSPf 1RPLQDO $QDO\]HG $OOR\ b b b b b b b ZSSP ZSSP ZSSP ,GHQWLILFDWLRQ 1L $ &U 1L $ &U )H & 1 2 3t: $OOR\ >@ 1L$O 6& QD QD QD QD QD QD QD >@ 1L$O 6& QD QD QD QD QD QD QD >@ 1L$O 6& QD QD QD QD QD QD QD 1$ 1L$O&U QG &3 1L$O QD QD QD QD &3 1L$O&U QD QD QD QD QD QD QD &3 1$* QD QD QD QD QD QD QD &3 1L$O&U QD QD QD QD QD QD QD &3 1L$OO2&U QD QD QD QD QD QD QD +3 1L$O QD QD QD QD QG +3 1L$O&U QD QD QD QD QD QD QD +3 1L$O&U QD QD QD QD QD QD QD +3 1L$O&U QD QD QD QD QD QD QD +3 1L$OO2&U QD QD QD QD QD QD QD 1L$OO&U QD QD QD QD QD QD QD 1L$O&U QD QD QD QD QD QD QD 1L$O&U QD QD QD QD QD QD QD 1L$O&U QD QD QD QD QD QD QD 1L$O&U QD QD QD QD QD QD QD 1L$O&U QD QD QD QD QD QD QD 1$ QD QD QD QD QD QD QD QG QRW GHWHFWHG OHVV WKDQ ZSSPf QD QRW DQDO\]HG 0HFKDQLFDO 3URSHUWLHV &RPSUHVVLRQ 7HVWV +$0 &DVWLQJV 7KH URRPWHPSHUDWXUH FRPSUHVVLRQ WHVW UHVXOWV DUH JLYHQ LQ 7DEOH DQG )LJXUH 7\SLFDO VWUHVVVWUDLQ FXUYHV DUH VKRZQ LQ $SSHQGL[ $ %HFDXVH RI WKH HUURU LQYROYHG LQ PHDVXULQJ WKH PHFKDQLFDO SURSHUWLHV RI FDVW PDWHULDO GXH WR WKH ODUJH JUDLQ VL]H UHODWLYH WR VSHFLPHQ VL]Hf DQG FDVWLQJ LQKRPRJHQHLWLHV FRPSDULVRQV VKRXOG EH

PAGE 58

PDGH ZLWK FDXWLRQ +RZHYHU VHYHUDO REVHUYDWLRQV PD\ EH PDGH )LUVW FRPSRVLWLRQV IRU ZKLFK WKH QLFNHOWRDOXPLQXP UDWLR LV XQLW\ FRUUHVSRQG WR D PLQLPXP LQ VWUHQJWK UHJDUGOHVV RI FKURPLXP FRQWHQW 6HFRQG VXEVWDQWLDO VWUHQJWKHQLQJ DERXW WKUHH WLPHVf RFFXUV EHWZHHQ ]HUR DQG RQH SHUFHQW FKURPLXP IRU DOO WKUHH VHULHV RI DOOR\V $Q LQWHUHVWLQJ UHVXOW LQ )LJXUH E LV WKDW FKURPLXP ZKHQ VXEVWLWXWHG DW ORZ OHYHOV IRU QLFNHO KDUGHQV 1L$O LQ D PDQQHU VLPLODU WR QLFNHO LQ WKH ELQDU\ DOOR\ )LQDOO\ DOOR\V ZLWK FKURPLXP OHYHOV EH\RQG RQH SHUFHQW GHPRQVWUDWH DOPRVW QR DGGLWLRQDO VWUHQJWKHQLQJ ZKHQ WKH QLFNHOWRDOXPLQXP UDWLR LV RQH DQG PRGHUDWH VWUHQJWKHQLQJ RWKHUZLVH 7DEOH 5HVXOWV RI &RPSUHVVLRQ 7HVWV RI +$0 &DVWLQJV DW HUURU VWG GHYf $OOR\ b &<6 03Df 8&6 03Df 3ODVWLF 6WUDLQ bf WHVWV 1$ s s s 1$ s s s 1$ s s s 1L$OO&U s s s 1L$OO&U s s s 1L$OO&U s s s 1L$OO&U s s s 1L$OO&U QR GDWD QR GDWD 1L$O&U s s s 1L$O&U s s s 1L$O&U s s s 1L$O&U s s s 1L$O&U s s s 1L$O&U s s s ([WUXVLRQV 7KH FRPSUHVVLYH \LHOG VWUHQJWKV IRU WKH ;9,0 DQG ;$3 H[WUXVLRQV DUH JLYHQ EHORZ LQ 7DEOH 9DOXHV IRU VWUDLQWRIDLOXUH DQG IUDFWXUH VWUHQJWK ZHUH QRW UHFRUGHG IRU WKH H[WUXVLRQV 3ORWWLQJ WKH \LHOG VWUHQJWKV RI WKH FDVWLQJV YHUVXV WKH H[WUXVLRQV IRU LGHQWLFDO DOOR\ FRPSRVLWLRQV )LJXUH VKRZV WKDW WKH UHODWLYH GLIIHUHQFHV LQ VWUHQJWK EHWZHHQ DOOR\V LV FRQVLVWHQW IRU ERWK SURFHVVLQJ URXWHV DOWKRXJK WKH H[WUXGHG PDWHULDO LV JHQHUDOO\ DERXW 03D VWURQJHU

PAGE 59

)LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1$ +$0 &DVWLQJ )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1$ +$0 &DVWLQJ

PAGE 60

)LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$OO&U +$0 &DVWLQJ )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ

PAGE 61

)LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ

PAGE 62

)LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ

PAGE 63

f f, )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ r f r frf !U n m frL R r U r r R mr ? f ‘ nf r?rO ‘ f f mf A ff ff f f f nY R f f rf r? m" f r L: f Bf 72 >-P )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U +$0 &DVWLQJ

PAGE 64

Ef )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1$;9(0 ([WUXVLRQ Df /RQJLWXGLQDO Ef 7UDQVYHUVH

PAGE 65

Df )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$OO&U ;9/0 ([WUXVLRQ Df /RQJLWXGLQDO Ef 7UDQVYHUVH

PAGE 66

)LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U ;9(0 ([WUXVLRQ Df /RQJLWXGLQDO Ef 7UDQVYHUVH

PAGE 67

)LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U ;9,0 ([WUXVLRQ Df /RQJLWXGLQDO Ef 7UDQVYHUVH

PAGE 68

Ef )LJXUH 2SWLFDO 0LFURVWUXFWXUH RI 1L$O&U ;9,0 ([WUXVLRQ Df /RQJLWXGLQDO Ef 7UDQVYHUVH

PAGE 69

b &<6 03Df b &<6 03Df Df $WRPLF 3HUFHQW $ Ef )LJXUH 3HUFHQW &RPSUHVVLYH
PAGE 70

7DEOH &RPSUHVVLYH
PAGE 71

VWUHQJWK DQG LQFUHDVHV WKH GHSHQGHQFH RI VWUHQJWK RQ WHPSHUDWXUH 7KH HORQJDWLRQV DV D IXQFWLRQ RI WHPSHUDWXUH LQGLFDWH WKDW FKURPLXP HOHYDWHV WKH %'77 DERXW UHODWLYH WR ELQDU\ VWRLFKLRPHWULF 1L$O &RPSDULVRQ RI WKH WHQVLOH GXFWLOLWLHV IRU 1L$OO&U DQG 1L$O&U LQGLFDWHV WKH QLFNHOWRDOXPLQXP UDWLR KDV D VWURQJHU LQIOXHQFH RQ WKH %'77 WKDQ GRHV WKH FKURPLXP FRQWHQW 7KLV LQIOXHQFH LV VXJJHVWHG EHFDXVH WKH QLFNHOWR DOXPLQXP UDWLR IRU WKHVH WZR DOOR\V LV HTXDO WR RQH ZKLOH WKHLU FKURPLXP FRQWHQWV GLIIHU E\ D IDFWRU RI WZR \HW WKHLU %'77V DUH ERWK DERXW 1L$O&U DQG QLFNHOWR DOXPLQXP UDWLR HTXDO WR f DQG 1L$O&U QLFNHOWRDOXPLQXP UDWLR HTXDO WR f GLVSOD\ UHVSHFWLYHO\ KLJKHU %'77V WKDQ 1L$OO&U DQG 1L$O&U 0LFURKDUGQHVV 7HVWV 7KH PHDVXUHPHQW RI PLFURKDUGQHVV ZDV FRQVLGHUHG DQ DOWHUQDWLYH URXWH WR HVWLPDWLQJ \LHOG VWUHQJWK YDULDWLRQV IRU D QXPEHU RI H[WUD FRPSRVLWLRQV EH\RQG WKH RULJLQDO DOOR\V $ UHDVRQDEO\ JRRG UHODWLRQVKLS EHWZHHQ PLFURKDUGQHVV DQG \LHOG VWUHQJWK ZDV LQLWLDOO\ HVWDEOLVKHG DV VKRZQ LQ )LJXUH 7KH 9LFNHUV PLFURKDUGQHVV DV D IXQFWLRQ RI FKURPLXP FRQWHQW LV SORWWHG LQ )LJXUH LQ WKUHH FXUYHV UHSUHVHQWLQJ VXEVWLWXWLRQV IRU QLFNHO RQO\ DOXPLQXP RQO\ DQG HYHQO\ IRU ERWK 7KH KDUGHQLQJ UHVSRQVH DW FKURPLXP OHYHOV EHORZ RQH SHUFHQW LV YHU\ IODW DQG VLPLODU IRU DOO WKUHH VXEVWLWXWLRQDO VFKHPHV URXJKO\ NJPP $W DERXW RQH SHUFHQW FKURPLXP WKH KDUGQHVV LQFUHDVHV VKDUSO\ IRU DOO WKUHH FXUYHV WKH PRVW PDUNHG FKDQJH RFFXUULQJ ZKHQ FKURPLXP LV VXEVWLWXWHG IRU QLFNHO DQG WKH OHDVW PDUNHG ZKHQ FKURPLXP LV VXEVWLWXWHG IRU ERWK HOHPHQWV %H\RQG RQH SHUFHQW FKURPLXP WKH FXUYHV VHSDUDWH ZLWK WKH VPDOOHVW GHJUHH RI KDUGHQLQJ RFFXUULQJ ZKHQ FKURPLXP LV VXEVWLWXWHG HTXDOO\ IRU ERWK QLFNHO DQG DOXPLQXP DQG WKH JUHDWHVW GHJUHH RI KDUGHQLQJ RFFXUULQJ ZKHQ VXEVWLWXWHG IRU QLFNHO &RPSDULVRQ RI WKH KDUGQHVV DQG FRPSUHVVLYH \LHOG VWUHQJWK YDOXHV RI WKH +$0

PAGE 72

FDVWLQJV )LJXUHV DQG VKRZV WKDW \LHOG VWUHQJWK LV PRUH VHQVLWLYH WR SURSHUW\ FKDQJHV WKDQ KDUGQHVV 7KH IODW KDUGHQLQJ UHVSRQVH DW FKURPLXP OHYHOV EHORZ RQH SHUFHQW SURPSWHG D VWXG\ RI WKH HIIHFW RI LQWHUVWLWLDO SXULW\ OHYHOV RQ WKH KDUGQHVV RI ORZFKURPLXP QLFNHO DOXPLQLGH DOOR\V 7KH KDUGQHVV RI WZR VHULHV RI DOOR\V FRQWDLQLQJ IURP ]HUR WR RQH SHUFHQW FKURPLXP DOO RWKHU YDULDEOHV EHLQJ WKH VDPH DUH SORWWHG LQ )LJXUH DV D IXQFWLRQ RI FKURPLXP FRQWHQW 7KLV GDWD LQGLFDWHV WKH VRXUFH RI FRQVWLWXHQW QLFNHO XVHG WR FDVW WKH QLFNHO DOXPLQLGH DOOR\V KDV D VWURQJ LQIOXHQFH RQ WKH KDUGQHVV DQG SUREDEO\ RWKHU PHFKDQLFDO SURSHUWLHV DV ZHOO $ VWXGHQWnV W WHVW ZDV SHUIRUPHG WR FKHFN IRU WKH VWDWLVWLFDO VLJQLILFDQFH RI WKH GLIIHUHQFH EHWZHHQ WKH PHDQV RI WKH KDUGQHVV RI WKH WZR ELQDU\ DOOR\V 7KH\ ZHUH IRXQG WR EH VLJQLILFDQWO\ GLIIHUHQW WR DW OHDVW SHUFHQW FRQILGHQFH ,QWHUHVWLQJO\ WKLV DSSDUHQW GHSHQGHQFH RQ SXULW\ ZDV QRW UHIOHFWHG LQ WKH LQWHUVWLWLDO DQDO\VHV VKRZQ LQ 7DEOH H[FHSW LQ UHJDUG WR QLWURJHQ FRQWHQW DQ XQOLNHO\ FRQWDPLQDQW D -6 rf§r EIL & 6 RQ f L+ f + F + 1 G )LJXUH 7HQVLOH 3URSHUWLHV RI ([WUXGHG $OOR\V DV D )XQFWLRQ RI 7HVW 7HPSHUDWXUH Df b 7HQVLOH
PAGE 73

7HQVLOH (ORQJDWLRQ bf )LJXUH FRQWLQXHG Ef 7HQVLOH (ORQJDWLRQ 9LFNHUV 0LFURKDUGQHVV NJPPf )LJXUH 5HODWLRQVKLS %HWZHHQ 0LFURKDUGQHVV DQG &<6 IRU +$0 &DVW $OOR\V

PAGE 74

)LJXUH 9LFNHUV 0LFURKDUGQHVV RI &DVW DQG +RPRJHQL]HG 1L$O&U $OOR\V DV D )XQFWLRQ RI &KURPLXP &RQWHQW )XUWKHU DQDO\VLV RI WKH DVUHFHLYHG FRQVWLWXHQW QLFNHO GLG QRW UHYHDO DQ\ VLJQLILFDQW GLIIHUHQFHV LQ LQWHUVWLWLDO RU PHWDOOLF LPSXULW\ FRQWHQW 7KHVH UHVXOWV DUH LQ 7DEOH 7DEOH &KHPLFDO $QDO\VLV RI $V5HFHLYHG 1LFNHO 6KRW :SSPf 1$6$ /5& /(&2 1LFNHO 1L $O )H &X 6L & 1 & 1 2 6 &RPPHUFLDO EDO QG QG 3XULILHG EDO QG QG QG LQGLFDWHV OHVV WKDQ ZSSP 7KH KDUGQHVV GHSHQGHQFH XSRQ DOXPLQXP FRQWHQW DW FRQVWDQW FKURPLXP OHYHOV LV SORWWHG LQ )LJXUH IRU WKH FDVW DQG KRPRJHQL]HG DOOR\V 7KH H[SHFWHG KDUGQHVV PLQLPXP DW WKH VWRLFKLRPHWULF FRPSRVLWLRQ LV REYLRXV LQ WKH ELQDU\ DOOR\ EXW OHVV

PAGE 75

SURQRXQFHG LQ WKH WHUQDU\ DOOR\V ZKLFK GHPRQVWUDWH OHVV RI DQ LQFUHDVH IRU QLFNHOULFK FRPSRVLWLRQV 7KLV LV HVSHFLDOO\ WUXH RI WKH RQH SHUFHQW FKURPLXP DOOR\V $ EHWWHU XQGHUVWDQGLQJ RI WKH RYHUDOO GHSHQGHQFH RI KDUGQHVV XSRQ FRPSRVLWLRQ PD\ EH DFKLHYHG E\ D WKUHHGLPHQVLRQDO 'f SORW RI WKH KDUGQHVV VXUIDFH DV D IXQFWLRQ RI DOXPLQXP DQG FKURPLXP FRQWHQW 6XFK D SORW LV VKRZQ LQ )LJXUH 7KH SORW PDNHV LW FOHDU WKDW KDUGQHVV PLQLPD UHVLGH DORQJ D YDOOH\ LQ ZKLFK WKH QLFNHOWR DOXPLQXP UDWLR LV HTXDO WR RQH ,W LV DOVR VKRZQ WKDW DOXPLQXPULFK FRPSRVLWLRQV DUH VXEVWDQWLDOO\ KDUGHU WKDQ QLFNHOULFK FRPSRVLWLRQV UHJDUGOHVV RI FKURPLXP FRQWHQW $ VPDOO PLQLPXP LQ KDUGQHVV DSSHDUV WR RFFXU DW WKH 1L$O&U FRPSRVLWLRQ KRZHYHU WKLV PLQLPXP SUREDEO\ IDOOV ZLWKLQ WKH GDWD VFDWWHU )LJXUH &RPSDULVRQ RI +DUGHQLQJ 5HVSRQVHV RI /RZ&KURPLXP 1L$O&U $OOR\V 3URGXFHG IURP &RPPHUFLDO 3XULW\ DQG +LJK 3XULW\ 1LFNHO 6RXUFHV

PAGE 76

)LJXUH 9LFNHUV 0LFURKDUGQHVV RI &DVW DQG +RPRJHQL]HG 1L$O&U $OOR\V DV D )XQFWLRQ RI $OXPLQXP &RQWHQW 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ +$0 DQG $0 &DVWLQJV 7\SLFDO PLFURVWUXFWXUHV DUH VKRZQ LQ )LJXUHV WKURXJK ZKLOH )LJXUH VKRZV WKH PLFURVWUXFWXUH RI 3UDWW DQG :KLWQH\ DOOR\ $OO WKH FDVW DOOR\V FRQWDLQHG YHU\ ODUJH JUDLQV KXQGUHGV RU WKRXVDQGV RI PLFURQVf VXFK WKDW IHZ JUDLQ ERXQGDULHV ZHUH HQFRXQWHUHG GXULQJ 7(0 DQDO\VLV 3ULRU WR URRP WHPSHUDWXUH GHIRUPDWLRQ YHU\ IHZ GLVORFDWLRQV ZHUH IRXQG 7KH GHIRUPHG ELQDU\ DOOR\V ZHUH VLQJOH SKDVH ZLWK RQO\ 1L $ FRQWDLQLQJ VLJQLILFDQW QXPEHUV RI GLVORFDWLRQV ZKLFK ZHUH GHWHUPLQHG WR EH RI %XUJHUV YHFWRUV 7KHVH GLVORFDWLRQV ZHUH JHQHUDOO\ KRPRJHQHRXVO\ GLVWULEXWHG DIWHU SHUFHQW GHIRUPDWLRQ DQG DSSHDUHG WR EH LQ WKH IRUP RI HORQJDWHG ORRSV RU VKRUW VHJPHQWV 7KH VKRUW VHJPHQWV RIWHQ FRQWDLQHG RQH VKDUS EHQG ZKLFK VHSDUDWHG RWKHUZLVH VWUDLJKW OHQJWKV $Q H[DPSOH GLVORFDWLRQ VWUXFWXUH RI 1$ LV VKRZQ LQ )LJXUH

PAGE 77

)LJXUH 7KUHH'LPHQVLRQDO 3ORW RI 0LFURKDUGQHVV RI &DVW DQG +RPRJHQL]HG 1L$O&U $OOR\V DV D )XQFWLRQ RI &RPSRVLWLRQ :IWHUV +DUGQH

PAGE 78

$OOR\V 1L$OO&U DQG 1L$OO&U ZHUH VLQJOH SKDVH 7KH H[WUHPH EULWWOHQHVV RI 1L$OO&U SUHYHQWHG VXIILFLHQW GHIRUPDWLRQ WR SURGXFH D ZRUNDEOH GLVORFDWLRQ GHQVLW\ 1L$OO&U RQ WKH RWKHU KDQG FRQWDLQHG D PRGHUDWH QXPEHU RI GLVORFDWLRQV DQG WDQJOHV VLPLODU WR 1$ 1L$OO&U FRQWDLQHG VSKHULFDO SUHFLSLWDWHV RI DOSKD FKURPLXP RI DSSUR[LPDWHO\ QP GLDPHWHU 2FFDVLRQDOO\ URGV RI DOSKDFKURPLXP ZHUH HQFRXQWHUHG RI VLPLODU GLDPHWHU %RWK IRUPV RI SUHFLSLWDWLRQ ZHUH XVXDOO\ DVVRFLDWHG ZLWK ZKDW DSSHDUHG WR EH SULVPDWLFDOO\ SXQFKHG GLVORFDWLRQ ORRSV DQG DVVRFLDWHG ORRVH WDQJOHV DW WKH SUHFLSLWDWHPDWUL[ LQWHUIDFH ,Q WKH PDWUL[ EHQW GLVORFDWLRQ VHJPHQWV ZHUH REVHUYHG DORQJ ZLWK YHU\ VPDOO GLVORFDWLRQ ORRSV 7KH YDVW PDMRULW\ RI GLVORFDWLRQV DQDO\]HG FRQWDLQHG %XUJHUV YHFWRUV $Q H[DPSOH RI WKLV PLFURVWUXFWXUH DQG WKH DFFRPSDQ\LQJ GLVORFDWLRQ DQDO\VLV DUH VKRZQ LQ )LJXUH 1L$O&U 1L$O&U DQG 1L$O&U DOO FRQWDLQHG VSKHULFDO SUHFLSLWDWHV RI DOSKDFKURPLXP DV VKRZQ LQ )LJXUHV WKURXJK 7KH SUHFLSLWDWLRQ LQ 1$ &U DSSHDUHG WR EH RI D QDUURZ VL]H GLVWULEXWLRQ FHQWHUHG DURXQG QP ZKLOH WKH SUHFLSLWDWLRQ LQ WKH ODWWHU WZR DOOR\V WHQGHG WR EH ELPRGDO HLWKHU RU QP LQ GLDPHWHU ,Q VRPH UHJLRQV D URGOLNH IRUP RI DOSKDFKURPLXP ZDV HQFRXQWHUHG /DUJHU SUHFLSLWDWHV ZHUH RIWHQ DVVRFLDWHG ZLWK GLVORFDWLRQ WDQJOHV )LJXUHV DQG ZKLOH WKH VPDOOHU SUHFLSLWDWHV DSSHDUHG WR SLQ PDWUL[ GLVORFDWLRQV )LJXUH 7KH GRXEOHDUFHG VWUDLQ FRQWUDVW GLVSOD\HG E\ WKH SUHFLSLWDWHV LQ )LJXUHV D DQG D LQGLFDWHV WKH SUHFLSLWDWHV DUH FRKHUHQW $V IRU WKH DERYH DOOR\V VKDUSO\ EHQW GLVORFDWLRQ VHJPHQWV ZHUH RIWHQ REVHUYHG ZLWKLQ WKH PDWUL[ DQG LQ WKH 1L$O&U DQG 1L$O&U DOOR\V GLVORFDWLRQ ORRSV ZHUH QRWHG $OO WKH GLVORFDWLRQV DQDO\]HG LQ WKHVH DOOR\V FRQWDLQHG %XUJHUV YHFWRUV 6XFK DQ DQDO\VLV LV VKRZQ LQ )LJXUH 7KH DOOR\V FRQWDLQLQJ ILYH SHUFHQW FKURPLXP 1L$O&U 1L$O&U DQG 1L $O&U H[KLELWHG VXEVWDQWLDO SUHFLSLWDWLRQ RI DOSKDFKURPLXP SDUWLFOHV )LJXUHV WKURXJK 3UHFLSLWDWLRQ LQ WKH ILUVW WZR DOOR\V ZDV JHQHUDOO\ ELPRGDO LQ VL]H ZLWK WKH ILQHU SUHFLSLWDWLRQ RI DERXW WR QP GLDPHWHU DQG FRDUVHU SUHFLSLWDWLRQ RI DERXW QP

PAGE 79

GLDPHWHU :KLOH WKH ILQHU SUHFLSLWDWHV ZHUH VSKHULFDO WKH FRDUVHU SUHFLSLWDWHV ZHUH RIWHQ LUUHJXODU LQ PRUSKRORJ\ DQG ZHUH SUREDEO\ SDUWLDOO\ GLVVROYHG LQWHUGHQGULWLF FKURPLXP UHVXOWLQJ IURP LQFRPSOHWH KRPRJHQL]DWLRQ )LJXUH f 7KH DOSKDFKURPLXP SUHFLSLWDWHV LQ 1L$O&U WHQGHG WR EH RQH RI WKUHH GLIIHUHQW VL]HV f ILQH DOLJQHG VSKHUHV DERXW QP LQ GLDPHWHUf f VPDOO VSKHUHV RU URGV DERXW QP LQ GLDPHWHUf FRQWDLQLQJ LQWHUIDFLDO GLVORFDWLRQ QHWZRUNV DQG f ODUJH DOLJQHG VHFRQG SKDVHV RI DSSUR[LPDWHO\ VTXDUH FURVV VHFWLRQ ZLWK URXQGHG HGJHV ZKLFK ZHUH DOVR DVVRFLDWHG ZLWK LQWHUIDFLDO PLVILW GLVORFDWLRQ QHWZRUNV DERXW QP LQ ZLGWKf )LJXUH 7KH RULHQWDWLRQ UHODWLRQVKLS EHWZHHQ WKH SUHFLSLWDWHV DQG WKH PDWUL[ ZDV GHWHUPLQHG WR EH FXEH RQFXEH LH !RW^ -RW !S^ `S )LJXUH 3LQQLQJ RI PDWUL[ GLVORFDWLRQV E\ WKH ILQHVW SUHFLSLWDWHV ZDV REVHUYHG IRU DOO WKUHH DOOR\V ,Q HYHU\ FDVH WKH %XUJHUV YHFWRU RI WKH GLVORFDWLRQV ZDV GHWHUPLQHG WR EH RI WKH W\SH DQ H[DPSOH RI ZKLFK LV VKRZQ IRU 1L$O&U LQ )LJXUH 7(0 DQDO\VLV RI WKH 1L$O&U DOOR\V ZDV SHUIRUPHG IRU ERWK WKH $0 DQG +$0 FDVWLQJV DQG DOVR IRU WKH PDWHULDO REWDLQHG IURP 3UDWW DQG :KLWQH\ $OWKRXJK WKLV DOOR\ ZDV UHSRUWHG WR FRQWDLQ SHUFHQW FKURPLXP >@ GRFXPHQWDWLRQ REWDLQHG ZLWK WKH DOOR\ LQGLFDWHG LW FRQWDLQHG SHUFHQW FKURPLXP DV FRQILUPHG E\ FKHPLFDO DQDO\VLV LQ 7DEOH 7KH $0 1L$O&U DOOR\ PLFURVWUXFWXUH LV VKRZQ LQ )LJXUHV DQG DQG LQGLFDWHV WKDW VXEVWDQWLDO VHJUHJDWLRQ RFFXUUHG GXULQJ VROLGLILFDWLRQ )LJXUH VKRZV LQWHUGHQGULWLF DOSKDFKURPLXP LQ WKH IRUP RI VPDOO GHQVH SDUWLFOHV LGHQWLILFDWLRQ E\ FRQYHUJHQW EHDP HOHFWURQ GLIIUDFWLRQ DQDO\VLV VKRZHG WKHVH WR EH &U& FDUELGHV $ZD\ IURP WKH LQWHUGHQGULWLF UHJLRQV DOSKDFKURPLXP SUHFLSLWDWLRQ ZDV REVHUYHG WR FRQVLVW RI D UHODWLYHO\ KRPRJHQHRXV GLVSHUVLRQ RI ILQH VSKHULFDO SDUWLFOHV )LJXUH 3ODVWLF GHIRUPDWLRQ LQ WKHVH UHJLRQV RFFXUV LQ WKH IRUP RI FRQFHQWUDWHG VOLS EDQGV RI GLVORFDWLRQV QR GLVORFDWLRQV ZLWK %XUJHUV YHFWRUV ZHUH IRXQG 8SRQ KRPRJHQL]DWLRQ WKH LQWHUGHQGULWLF DOSKDFKURPLXP ZDV HOLPLQDWHG DQG D SUHFLSLWDWH GLVSHUVLRQ RI D ZLGH VL]H GLVWULEXWLRQ LV SURGXFHG WR QP GLDPHWHUf DV

PAGE 80

VKRZQ LQ )LJXUH 7KHVH SUHFLSLWDWHV DUH VSKHULFDO DQG DUH RFFDVLRQDOO\ DOLJQHG LQWR VKRUW URZV 'LVORFDWLRQ QHWZRUNV GHFRUDWH WKH SUHFLSLWDWHPDWUL[ LQWHUIDFH IRU WKH ODUJHU SUHFLSLWDWHV ZKLFK DUH VRPHWLPHV DOVR WKH VLWH RI ORRVH WDQJOHV $OO SUHFLSLWDWHV DSSHDU WR SDUWLFLSDWH LQ GLVORFDWLRQ SLQQLQJ 8QOLNH WKH $0 FDVWLQJV QR VOLS EDQGV ZHUH REVHUYHG DIWHU GHIRUPDWLRQ $V LQ RWKHU DOOR\V SUHYLRXVO\ PHQWLRQHG PRVW RI WKH PDWUL[ GLVORFDWLRQV KDYH WKH SHFXOLDU VKDUS EHQG VHSDUDWLQJ RWKHUZLVH VWUDLJKW OHQJWKV )LJXUH VKRZV WKH PLFURVWUXFWXUH RI WKH 3UDWW DQG :KLWQH\ DOOR\ 1$ &Uf 7KH SUHFLSLWDWLRQ LQ WKLV DOOR\ ZDV YHU\ GHQVH RI D ZLGH VL]H GLVWULEXWLRQ DQG ZDV RIWHQ DOLJQHG LQWR FORVHO\SDFNHG URZV 7KH PLFURVWUXFWXUDO KRPRJHQHLW\ ZDV LQWHUPHGLDWH WR WKH $0 DQG +$0 1L$O&U VWUXFWXUHV )LJXUHV WR 1R VOLS EDQGV ZHUH REVHUYHG DOWKRXJK GLVORFDWLRQ WDQJOHV WHQGHG WR FRQFHQWUDWH DORQJ WKH URZV RI ODUJHU SUHFLSLWDWHV 2WKHUZLVH WKH GLVORFDWLRQ GLVWULEXWLRQ ZDV KRPRJHQHRXV 6RPH GLVORFDWLRQ ORRSV ZHUH DOVR REVHUYHG 7KH PDMRULW\ RI WKH GLVORFDWLRQV SURGXFHG E\ GHIRUPDWLRQ ZHUH RI WKH W\SH FRQWUDU\ WR SXEOLVKHG UHVXOWV RQ WKLV PDWHULDO > @ 0LFURVWUXFWXUHV RI ;9,0 DQG ;$3 ([WUXVLRQV ,Q JHQHUDO WKH H[WUXGHG PLFURVWUXFWXUHV ZHUH ILQHJUDLQHG W\SLFDOO\ WR SP LQ GLDPHWHU DQG GLVSOD\HG D ILEHU WH[WXUH ZKLFK ZDV HYLGHQW GXULQJ DQDO\VLV RI WKH 7(0 IRLOV ,Q RWKHU UHVSHFWV WKH VWUXFWXUHV GLIIHUHG DV GHVFULEHG EHORZ 1$ 7KH DVH[WUXGHG PLFURVWUXFWXUHV ZHUH JHQHUDOO\ IHDWXUHOHVV ZLWK WKH H[FHSWLRQ RI D PRGHUDWHO\ ORZ GHQVLW\ RI GLVORFDWLRQV )LJXUH D 0RVW RI WKHVH GLVORFDWLRQV FRQVLVWHG RI VKRUW VHJPHQWV FRQWDLQLQJ WZR VWUDLJKW OHQJWKV FRQQHFWHG E\ D VKDUS EHQG DV REVHUYHG LQ WKH FDVW DQG KRPRJHQL]HG PDWHULDO 2FFDVLRQDOO\ VPDOO HORQJDWHG ORRSV RU SDUWLDO ORRSV ZHUH QRWHG 5RRPWHPSHUDWXUH SODVWLF GHIRUPDWLRQ SHUFHQWf LQFUHDVHG WKH GLVORFDWLRQ GHQVLW\ FDXVLQJ ORRVH WDQJOHV )LJXUH WKH VDPH

PAGE 81

VKDUSO\ EHQW FRQILJXUDWLRQV ZHUH REVHUYHG DV DERYH 7KH YDVW PDMRULW\ RI WKH GLVORFDWLRQV DQDO\]HG FRQWDLQHG %XUJHUV YHFWRUV XVXDOO\ RQ ^` SODQHV 1L$OO&U 7KLV DOOR\ ZDV VLPLODU WR WKH ELQDU\ LQ WKH DVH[WUXGHG VWDWH 1R VHFRQG SKDVH ZDV REVHUYHG DQG WKH GLVORFDWLRQ GHQVLW\ ZDV UHODWLYHO\ ORZ 8SRQ URRP WHPSHUDWXUH GHIRUPDWLRQ SHUFHQWf PDUNHG GLIIHUHQFHV ZHUH QRWHG LQ FRPSDULVRQ WR WKH ELQDU\ $V VKRZQ LQ )LJXUHV DQG GHIRUPDWLRQ RFFXUUHG SULPDULO\ E\ WKH SURSDJDWLRQ RI FRQFHQWUDWHG VOLS EDQGV ZLWK %XUJHUV YHFWRUV HPDQDWLQJ IURP WKH JUDLQ ERXQGDULHV 7KHVH VOLS EDQGV ZHUH XVXDOO\ SODQDU DQG TXLWH VWUDLJKW KRZHYHU WKH LQWHUVHFWLRQ RI WZR EDQGV VRPHWLPHV FDXVHG GHYLDWLRQ DV LQGLFDWHG E\ WKH FXUYHG VOLS EDQG LQ )LJXUH )LJXUH SURYLGHV HYLGHQFH WKDW WKH VOLS EDQGV DUH QXFOHDWHG DW JUDLQ ERXQGDULHV QRW PHUHO\ WHUPLQDWLQJ WKHUHf E\ WKH REVHUYDWLRQ RI KDOIORRSV H[WHQGLQJ IURP WKH JUDLQ ERXQGDU\ DW WKH LQLWLDWLRQ VLWH RI WKH VOLS EDQGV 'HQVH VOLS EDQGV VXFK DV VKRZQ LQ )LJXUH FRQWDLQHG D FRQVLGHUDEOH QXPEHU RI VPDOO GLVORFDWLRQ ORRSV ZLWK %XUJHUV YHFWRUV ,W ZDV QRW FOHDU ZKHWKHU WKH EDQGV SURSDJDWHG E\ GLVORFDWLRQ PXOWLSOLFDWLRQ RU E\ WKH JOLGH RI PRELOH GLVORFDWLRQV 1L$O&U DQG 1L$O&U 7KHVH WZR DOOR\V ZHUH HVVHQWLDOO\ LGHQWLFDO LQ WKHLU PLFURVWUXFWXUHV DQG GLVORFDWLRQ VXEVWUXFWXUH 'HQVH KRPRJHQHRXV SUHFLSLWDWLRQ RI QP GLDPHWHU DOSKDFKURPLXP SDUWLFOHV ZHUH REVHUYHG WKURXJKRXW WKH PLFURVWUXFWXUHV /DUJHU 2& FDUELGHV ZHUH DOVR FRPPRQO\ REVHUYHG DERXW RQH RU WZR SHU JUDLQf DQG DSSHDUHG WR VHUYH DV QXFOHDWLRQ VLWHV IRU VOLS EDQGV RI GLVORFDWLRQV GXULQJ H[WUXVLRQ DV VKRZQ LQ )LJXUHV DQG :KHQ GHIRUPHG DW URRP WHPSHUDWXUH QXPHURXV SDUDOOHO VOLS EDQGV ZHUH REVHUYHG WR QXFOHDWH DW JUDLQ ERXQGDULHV DQG H[WHQG LQWR WKH JUDLQ FHQWHUV )LJXUHV DQG 6PDOO GLVORFDWLRQ ORRSV WR QP LQ GLDPHWHU ZHUH XVXDOO\ DVVRFLDWHG ZLWK DOO EXW WKH PRVW GLIIXVH VOLS EDQGV DQG DSSHDUHG WR EH 2URZDQ W\SH ORRSV VXUURXQGLQJ WKH ILQH SUHFLSLWDWHV $ W\SLFDO %XUJHUV YHFWRU DQDO\VLV RI WKH PDWUL[ GLVORFDWLRQV LV VKRZQ LQ )LJXUH IRU 1L$O&U

PAGE 82

1L$O&U 7KH DVH[WUXGHG PLFURVWUXFWXUH RI WKLV DOOR\ LV VKRZQ LQ )LJXUH 7KH DOSKDFKURPLXP SUHFLSLWDWLRQ DSSHDUV WR EH RI D KLJKHU YROXPH IUDFWLRQ DOWKRXJK WKH W\SLFDO SUHFLSLWDWH GLDPHWHU LV VLPLODU WR WKH RWKHU DOOR\V 7KH GLVORFDWLRQ GHQVLW\ LV ORZ ZLWK IHZ GLVORFDWLRQ LQWHUDFWLRQV YLVLEOH 7KH VKDUS EHQGLQJ RI VKRUW VHJPHQWV REYLRXV LQ RWKHU DOOR\V LV OHVV SURPLQHQW LQ WKLV DOOR\ 5RRP WHPSHUDWXUH GHIRUPDWLRQ DERXW SHUFHQWf VLJQLILFDQWO\ LQFUHDVHV WKH GLVORFDWLRQ GHQVLW\ )LJXUH +RZHYHU WKH GHIRUPDWLRQ DSSHDUV PRUH KRPRJHQHRXV FRPSDUHG WR WKH RWKHU DOOR\V ZLWK IHZ VOLS EDQGV 'LVORFDWLRQ SLQQLQJ E\ WKH SUHFLSLWDWHV LV REVHUYHG DV DUH GLVORFDWLRQ ORRSV ZKLFK RFFDVLRQDOO\ VXUURXQGHG WKH SUHFLSLWDWHV 1HDUO\ DOO GLVORFDWLRQV DQDO\]HG FRQWDLQHG %XUJHUV YHFWRUV &KURPLXP 6ROXELOLW\ DQG 6LWH 3UHIHUHQFH LQ 1L$O %DVHG RQ WKH DERYH UHVXOWV WKH VROXELOLW\ RI FKURPLXP LQ 1L$O IRU WKH JLYHQ SURFHVVLQJ FRQGLWLRQV PD\ EH GHWHUPLQHG $ SRUWLRQ RI WKH WHUQDU\ QLFNHODOXPLQXP FKURPLXP GLDJUDP LV SUHVHQWHG LQ )LJXUH ZLWK WKH WUDFH RI WKH VROYXV VXUIDFH LQGLFDWHG EDVHG RQ WKH PLFURVWUXFWXUDO UHVXOWV RI WKH WHUQDU\ DOOR\V 7KLV GLDJUDP LQGLFDWHV WKDW WKH VROXELOLW\ RI FKURPLXP LV KLJKHU IRU QLFNHOULFK DOOR\V $/&+(0, UHVXOWV WDNHQ ZLWK WKH H[WUXGHG 1L$OO&U DOOR\ DORQJ WKH >@ ]RQH D[LV VXSSRUW WKH PLFURVWUXFWXUDO GDWD E\ LQGLFDWLQJ D VWURQJ SUHIHUHQFH RI FKURPLXP IRU WKH DOXPLQXP VLWH LQ 1L$O 7KHVH UHVXOWV DUH SORWWHG LQ )LJXUH ZKLFK VKRZV WKH LQWHQVLW\ RI WKH SULPDU\ .DOSKD ;UD\ SHDNV DV D IXQFWLRQ RI GHYLDWLRQ DQJOH RI WKH ]RQH D[LV IURP WKH SULPDU\ EHDP 6LQFH WKH FKURPLXP SHDN LQWHQVLW\ WHQGV WR PLPLF WKH DOXPLQXP SHDN LQWHQVLW\ LH LW GHFUHDVHV ZLWK LQFUHDVLQJ GHYLDWLRQ DQJOH D VWURQJ VLWH SUHIHUHQFH IRU DOXPLQXP LV VKRZQ ,W LV QRW NQRZQ ZKHWKHU QLFNHO YDFDQFLHV DUH FUHDWHG E\ WKLV VLWH SUHIHUHQFH IRU DOOR\V LQ ZKLFK WKH FRPELQHG FKURPLXP DQG DOXPLQXP FRQWHQWV H[FHHG WKH QLFNHO FRQWHQW

PAGE 83

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI 'LVORFDWLRQV LQ +$0 &DVW 1$ 'HIRUPHG 3HUFHQW DW .

PAGE 84

)LJXUH 7(0 'LVORFDWLRQ $QDO\VLV ,QGLFDWLQJ 'LVORFDWLRQV LQ +$0 &DVW 1L$OO&U 'HIRUPHG 3HUFHQW DW .

PAGE 85

)LJXUH 7(0 'LVORFDWLRQ $QDO\VLV ,QGLFDWLQJ 'LVORFDWLRQV LQ +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW .

PAGE 86

Df Ef )LJXUH 7(0 0LFURVWUXFWXUH RI +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW Df /DUJH 3UHFLSLWDWHV Ef 'LVORFDWLRQV

PAGE 87

Df Ef )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW .

PAGE 88

)LJXUH 7(0 0LFURVWUXFWXUH RI +$0 &DVW 1$ &KURPLXP 'HIRUPHG 3HUFHQW DW Df 6OLS %DQGV Ef )LQH 3UHFLSLWDWHV DQG 'LVORFDWLRQ /RRSV Ff &RDUVHU 3UHFLSLWDWHV

PAGE 89

)LJXUH 7(0 'LVORFDWLRQ $QDO\VLV ,QGLFDWLQJ 'LVORFDWLRQV LQ +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW .

PAGE 90

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI /DUJH ,UUHJXODU $OSKD&KURPLXP 3KDVH DQG )LQH 3UHFLSLWDWLRQ LQ +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW .

PAGE 91

Df )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW Df 3LQQLQJ RI 'LVORFDWLRQV E\ 3UHFLSLWDWHV Ef ,QWHUIDFLDO 'LVORFDWLRQ 1HWV DW /DUJHU $OSKD&KURPLXP 3DUWLFOHV

PAGE 92

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV 6KRZLQJ 2ULHQWDWLRQ 5HODWLRQVKLS %HWZHHQ % 0DWUL[ DQG $ %&&f $OSKD&KURPLXP 3UHFLSLWDWHV LQ +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW !‘m f

PAGE 93

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI $0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW 1RWH DOSKDFKURPLXP GHQGULWHV DQG &7& SUHFLSLWDWHV

PAGE 94

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI 6OLS %DQGV &RQWDLQLQJ 'LVORFDWLRQV LQ $0 &DVW 1$ &KURPLXP 'HIRUPHG 3HUFHQW DW .

PAGE 95

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW 1RWH WKH ZLGH GLVWULEXWLRQ RI SUHFLSLWDWH GLDPHWHUV

PAGE 96

Df Ef )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI +$0 &DVW 1L$O&U 'HIRUPHG 3HUFHQW DW Df +RPRJHQHRXVO\ 'LVWULEXWHG 'LVORFDWLRQV Ef 3UHFLSLWDWLRQ

PAGE 97

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI $V([WUXGHG ;9,0 1$ )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI ;9,0 1$ 'HIRUPHG 3HUFHQW DW .

PAGE 98

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI ;9,0 1L$OO&U 'HIRUPHG 3HUFHQW DW 6OLS EDQGV FRQVLVW RI GLVORFDWLRQV )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI ;9,0 1$ O&U 'HIRUPHG 3HUFHQW DW 1RWH FXUYDWXUH RI VOLS EDQG DW LQWHUVHFWLRQ

PAGE 99

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI $V([WUXGHG ;9,0 1L$O&U )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI $V([WUXGHG ;9,0 1L$O&U

PAGE 100

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI ;9,0 1L$O&U 'HIRUPHG 3HUFHQW DW )LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI ;9,0 1L$O&U 'HIRUPHG 3HUFHQW DW 6KRZLQJ WKH ,QWHUVHFWLRQ RI 7ZR 6OLS %DQGV RI 'LVORFDWLRQV

PAGE 101

)LJXUH 7(0 'LVORFDWLRQ $QDO\VLV RI ;9,0 1L$O&U 'HIRUPHG 3HUFHQW DW $OO %XUJHUV YHFWRUV ZHUH GHWHUPLQHG WR EH !

PAGE 102

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSK RI $V([WUXGHG ;$3 1L$O&U

PAGE 103

)LJXUH %ULJKW )LHOG 7(0 0LFURJUDSKV RI ;$3 1L$O&U 'HIRUPHG 3HUFHQW DW Df +RPRJHQHRXVO\ GLVWULEXWHG GLVORFDWLRQV Ef 3UHFLSLWDWLRQ

PAGE 104

&KURPLXP 6ROXELOLW\ DQG 6LWH 3UHIHUHQFH LQ 1L$, %DVHG RQ WKH DERYH UHVXOWV WKH VROXELOLW\ RI FKURPLXP LQ 1L$, IRU WKH JLYHQ SURFHVVLQJ FRQGLWLRQV PD\ EH GHWHUPLQHG $ SRUWLRQ RI WKH WHUQDU\ QLFNHODOXPLQXP FKURPLXP GLDJUDP LV SUHVHQWHG LQ )LJXUH ZLWK WKH WUDFH RI WKH VROYXV VXUIDFH LQGLFDWHG EDVHG RQ WKH PLFURVWUXFWXUDO UHVXOWV RI WKH WHUQDU\ DOOR\V 7KLV GLDJUDP LQGLFDWHV WKDW WKH VROXELOLW\ RI FKURPLXP LV KLJKHU IRU QLFNHOULFK DOOR\V $/&+(0, UHVXOWV WDNHQ ZLWK WKH H[WUXGHG 1L$OO&U DOOR\ DORQJ WKH >@ ]RQH D[LV VXSSRUW WKH PLFURVWUXFWXUDO GDWD E\ LQGLFDWLQJ D VWURQJ SUHIHUHQFH RI FKURPLXP IRU WKH DOXPLQXP VLWH LQ 1L$, 7KHVH UHVXOWV DUH SORWWHG LQ )LJXUH ZKLFK VKRZV WKH LQWHQVLW\ RI WKH SULPDU\ .DOSKD ;UD\ SHDNV DV D IXQFWLRQ RI GHYLDWLRQ DQJOH RI WKH ]RQH D[LV IURP WKH SULPDU\ EHDP 6LQFH WKH FKURPLXP SHDN LQWHQVLW\ WHQGV WR PLPLF WKH DOXPLQXP SHDN LQWHQVLW\ LH LW GHFUHDVHV ZLWK LQFUHDVLQJ GHYLDWLRQ DQJOH D VWURQJ VLWH SUHIHUHQFH IRU DOXPLQXP LV VKRZQ ,W LV QRW NQRZQ ZKHWKHU QLFNHO YDFDQFLHV DUH FUHDWHG E\ WKH WKLV VLWH SUHIHUHQFH IRU DOOR\V LQ ZKLFK WKH FRPELQHG FKURPLXP DQG DOXPLQXP FRQWHQWV H[FHHG WKH QLFNHO FRQWHQW

PAGE 105

$, ‘ $UF 0HOWHG DQG 'URS &DVW r & +RXUV 3UDWW t :KLWQH\ $OOR\ 2 9DFXXP ,QGXFWLRQ &DVW DQG ([WUXGHG (+ ([WUXGHG 3RZGHU $OOR\ $ &U )LJXUH 3RUWLRQ RI 7HUQDU\ 1L$O&U 7HUQDU\ 3KDVH 'LDJUDP 'HULYHG IURP &XUUHQW 6WXG\ 7KH GRWWHG OLQH FRUUHVSRQGV WR WKH VROXELOLW\ RI FKURPLXP LQ 1L$O

PAGE 106

'LVORFDWLRQ $QDO\VLV 7KH %XUJHUV YHFWRUV RI DERXW GLVORFDWLRQV ZHUH DQDO\]HG 7KH UDZ GDWD LV JLYHQ LQ $SSHQGL[ % 7KH UHVXOWV LQGLFDWH D SUHGRPLQDQFH RI %XUJHUV YHFWRUV IRU DOO DOOR\ FRPSRVLWLRQV DQG FRQGLWLRQV LQYHVWLJDWHG 9HU\ IHZ GLVORFDWLRQV ZHUH QRWHG OHVV WKDQ RQH SHUFHQW RYHUDOOf 6OLJKWO\ PRUH GLVORFDWLRQV DSSUR[LPDWHO\ IRXU SHUFHQW RYHUDOOf ZHUH REVHUYHG KRZHYHU WKHVH ZHUH SULPDULO\ LQ WKH H[WUXVLRQV ,I WKH H[WUXVLRQV DUH FRQVLGHUHG VHSDUDWHO\ DERXW WR SHUFHQW RI WKH GLVORFDWLRQV ZHUH !V IRU HLWKHU DVH[WUXGHG RU GHIRUPHG PDWHULDO 'HWDLOHG DQDO\VHV VXPPDUL]HG LQ 7DEOH LQGLFDWHG WKDW WKH SUHGRPLQDQW VOLS SODQH ZDV ^2LO` KHQFH WKH VOLS V\VWHP ZDV XVXDOO\ RI WKH W\SH !^` $Q H[DPSOH DQDO\VLV LV VKRZQ LQ )LJXUH +RZHYHU LW ZDV QRW XQFRPPRQ WR ILQG VOLS RQ FXEH SODQHV LH !^` $QDO\VLV RI GLVORFDWLRQV DOVR LQGLFDWHG D ^` VOLS SODQH )LJXUH 'LVORFDWLRQ OLQH GLUHFWLRQV WHQGHG WR EH QHDU RU EHWZHHQ DQG W\SH GLUHFWLRQV 7KLV SURGXFHG GLVORFDWLRQV RI QRPLQDOO\ HGJH RU PL[HG FKDUDFWHU ZLWK W\SLFDO OLQHVOLS YHFWRU DQJOHV RI WR GHJUHHV ,Q QR FDVH ZHUH DQ\ SXUH VFUHZ GLVORFDWLRQV QRWHG $OWKRXJK WKH GLVORFDWLRQV ZHUH DOVR RI HGJH RU QHDUHGJH FKDUDFWHU WKHLU OLQH GLUHFWLRQV WHQGHG WR EH DORQJ ;UD\ 'LIIIDFWRPHWU\ 7KH ODWWLFH SDUDPHWHUV GHULYHG IURP WKH ;UD\ GLIIUDFWRPHWHU WUDFHV IRU % 1L$O LQ HDFK DOOR\ DUH VKRZQ LQ 7DEOH DORQJ ZLWK WKH VWDQGDUG GHYLDWLRQ DV DQ HVWLPDWLRQ RI WKH HUURU 1L$O&U 1L$O&U DQG 1L$O&U DOVR GLVSOD\HG H[WUD SHDNV FRUUHVSRQGLQJ WR %&& FKURPLXP WKH ODWWLFH SDUDPHWHUV RI WKLV SKDVH DUH DOVR JLYHQ LQ 7DEOH $ QXPEHU RI WKH SHDNV IURP WKH RWKHU WHUQDU\ DOOR\V GLVSOD\HG VNHZHG

PAGE 107

VKRXOGHUV ZKLFK SUREDEO\ FRUUHVSRQGHG WR WKH %&& SKDVH EXW WKH ORZ YROXPH IUDFWLRQV DQG SHDN FRQYROXWLRQ ZLWK WKH % 1L$O SUHYHQWHG PHDVXUHPHQW RI WKH ODWWLFH SDUDPHWHU $V D UHVXOW WKH ODWWLFH SDUDPHWHUV RI WKH % SKDVH GHULYHG IURP WKH WHUQDU\ DOOR\V FRQWDLQLQJ SUHFLSLWDWHV DUH SUREDEO\ VXEMHFW WR VRPH HUURU +RZHYHU GDWD IURP WKH ELQDU\ DOOR\V DQG WKH WHUQDU\ DOOR\V FRQWDLQLQJ FKURPLXP VROHO\ LQ VROLG VROXWLRQ DUH IHOW WR EH UHDVRQDEO\ DFFXUDWH 7KHVH YDOXHV DUH SORWWHG LQ )LJXUH YHUVXV DOXPLQXP FRQWHQW )URP WKLV ILJXUH LV VHHQ WKDW WKH ODWWLFH SDUDPHWHU LV PD[LPL]HG DW DOXPLQXP FRQWHQWV QHDU SHUFHQW ,W LV DOVR FOHDU WKDW FKURPLXP DV VXEVWLWXWHG KHUH KDV OLWWOH HIIHFW RQ WKH ODWWLFH SDUDPHWHU RI WKH 1L$O SKDVH ,Q HIIHFW FKURPLXP DGGLWLRQV EHORZ WKH VROXELOLW\ OLPLW EHKDYH DV DOXPLQXP DGGLWLRQV LQ DJUHHPHQW ZLWK WKH 7(0 $/&+(0, Df

PAGE 108

272f 722f )LJXUH 6WHUHRJUDSKLF 3URMHFWLRQ 6KRZLQJ 6OLS 3ODQH $QDO\VLV RI D 'LVORFDWLRQ LQ 1L$O&U 'HIRUPHG 3HUFHQW DW .

PAGE 109

272f 'LUHFWLRQ )LJXUH 6WHUHRJUDSKLF 3URMHFWLRQ 6KRZLQJ 6OLS 3ODQH $QDO\VLV RI D 'LVORFDWLRQ LQ $V([WUXGHG 1L$O&U

PAGE 110

7DEOH 5HVXOWV RI 'HWDLOHG $QDO\VLV RI 6HYHUDO 'LVORFDWLRQV LQ 6HOHFWHG 1L$O&U $OOR\V $OOR\ &RPSRVLWLRQ 3URFHVVLQJ 0HWKRG $QDO\VLV 1XPEHU 6OLS 6\VWHP &KDUDFWHU GHJUHHVf /LQH 'LUHFWLRQ 1$ DV H[WUXGHG >f PL[HG f QHDU >@ 1$ DV H[WUXGHG >f HGJHf QHDU >@ 1$ DV H[WUXGHG >f PL[HG f QHDU >1$ DV H[WUXGHG >f PL[HG f QHDU >@ 1$ H[WU b & >f PL[HG f QHDU >@ 1$ H[WU b >f PL[HG f QHDU >@ 1$ H[WU b 7 >f PL[HG f QHDU >@ 1L$OO&U H[WU b >f PL[HG f QHDU>@ 1L$OO&U H[WU b >f PL[HG f QHDU>@ 1L$OO&U H[WU b >f PL[HG f QHDU >2LO@ 1L$O&U H[WU b >f PL[HG f QHDU >@ 1L$O&U H[WU b >f PL[HG f QHDU >@ 1L$O&U H[WU b >f PL[HG f QHDU >@ 1L$O&U DV H[WUXGHG % >f HGJHf QHDU >@ 1L$O&U DV H[WUXGHG ) >f PL[HG f QHDU >@ 1L$O&U DV H[WUXGHG $ >f PL[HG f QHDU >@ 1L$O&U H[WU b >f PL[HG f QHDU>@ 1L$O&U H[WU b >f PL[HG f QHDU > 72@ 1L$O&U H[WU b >f PL[HG f QHDU >7@ 1L$O&U H[WU b OE >f HGJHf QHDU >O72@ 1L$O&U DV H[WUXGHG > 72 f PL[HG f QHDU >@ 1L$O&U DV H[WUXGHG >f HGJHf QHDU >27O@ 1L$O&U DV H[WUXGHG >f PL[HG f QHDU >@ 1L$O&U DV H[WUXGHG >f PL[HG f QHDU >@

PAGE 111

/DWWLFH 3DUDPHWHU ƒf 7DEOH /DWWLFH 3DUDPHWHUV RI +$0 &DVW 1L$O DQG 1L$O&U $OOR\ 3KDVHV $OOR\ 1L$O ƒf D&U ƒf 1$ s f§ 1$ s f§ 1$ s L 1L$OO&U s f§ 1L$OO&U s f§ 1L$OO&U s f§ 1L$OO&U s f§ 1L$OO&U s f§ 1L$O&U s f§ 1L$O&U s s 1L$O&U s f§ 1L$O&U s f§ 1L$O&U s f§ 1L$O&U s s 1L$O&U s s ` 1$ 1L$OO&U 1$ $ 1L$OO&U 1L$OO&U 1$ $WRP 3HUFHQW $OXPLQXP )LJXUH /DWWLFH 3DUDPHWHUV RI %LQDU\ 1L$O DQG 7HUQDU\ 1L$O&U 6LQJOH 3KDVH $OOR\V DV D )XQFWLRQ RI $OXPLQXP &RQWHQW

PAGE 112

&+$37(5 ',6&866,21 7KH GLYHUVH SURSHUWLHV H[KLELWHG E\ WKH DOOR\V LQ WKLV VWXG\ PHULW FORVH HYDOXDWLRQ RI WKH LQWHUSOD\ EHWZHHQ FRPSRVLWLRQ SURFHVVLQJ DQG PLFURVWUXFWXUH 0LFURVWUXFWXUDO HYROXWLRQ RI WKH YDULRXV DOOR\V LV H[DPLQHG ILUVW WR GHVFULEH WKH HQYLURQPHQW WKURXJK ZKLFK GLVORFDWLRQV PXVW WUDYHO WR SURGXFH SODVWLF GHIRUPDWLRQ 7KH VOLS V\VWHPV ZKLFK KDYH EHHQ GHWHUPLQHG ZLOO WKHQ EH GLVFXVVHGf§HVSHFLDOO\ LQ OLJKW RI WKH ODFN RI %XUJHUV YHFWRUV ZKLFK ZHUH H[SHFWHG EDVHG RQ SUHYLRXV UHVHDUFK )LQDOO\ WKH UHVXOWLQJ PHFKDQLFDO SURSHUWLHV ZLOO EH UDWLRQDOL]HG LQ WHUPV RI WKH YDULRXV VWUHQJWKHQLQJ PHFKDQLVPV 0LFURVWUXFWXUDO (YROXWLRQ ,I RQH WDNHV D YHUWLFDO VOLFH WKURXJK WKH QLFNHODOXPLQXPFKURPLXP SKDVH GLDJUDP IURP 1L$O WR SXUH FKURPLXP D SVHXGRELQDU\ HXWHFWLF GLDJUDP LV REWDLQHG 7KLV GLDJUDP LV SUHVHQWHG LQ )LJXUH %\ WKLV GHILQLWLRQ WKH QLFNHOWRDOXPLQXP UDWLR LV HTXDO WR RQH IRU WKH DOOR\V UHSUHVHQWHG E\ WKLV ILJXUH +RZHYHU IRU WKH SXUSRVHV RI XQGHUVWDQGLQJ WKH VROLGLILFDWLRQ VHTXHQFHV WKLV GLDJUDP FDQ EH JHQHUDOO\ DSSOLHG WR DOO WKH DOOR\V LQ WKLV VWXG\ 'XH WR WKH UHWURJUDGH VROYXV WUDFH LW FDQ EH VHHQ WKDW DOOR\V FRQWDLQLQJ OHVV WKDQ DERXW WHQ DWRPLF SHUFHQW FKURPLXP ZLOO SUHFLSLWDWH DOSKDFKURPLXP IROORZLQJ VROLGLILFDWLRQ ,Q SUDFWLFH WKH IDVW FRROLQJ DVVRFLDWHG ZLWK DUF PHOWLQJ SUHYHQWV HTXLOLEULXP IURP EHLQJ DWWDLQHG OHDGLQJ WR FRULQJ DQG FKURPLXPULFK LQWHUGHQGULWLF OLTXLG ,Q WKLV PDQQHU WKH DV FDVW PLFURVWUXFWXUHV DUH H[SHFWHG WR FRQWDLQ LQWHUGHQGULWLF DOSKDFKURPLXP 1L$O&U HXWHFWLF DQG 1L$O GHQGULWHV ZKLFK FRQWDLQ DOSKDFKURPLXP SUHFLSLWDWHV RI YDU\LQJ VL]H GLVWULEXWLRQ

PAGE 113

&U )LJXUH 1L$O&U 3VHXGRELQDU\ 3KDVH 'LDJUDP >@ 7KLV LQWHUSUHWDWLRQ RI PLFURVWUXFWXUDO HYROXWLRQ LV GHPRQVWUDWHG E\ WKH DVFDVW PLFURVWUXFWXUH RI 1L$O&U VKRZQ LQ )LJXUH 7KH JUDGLHQW LQ FKURPLXP FRQWHQW LV LQGLFDWHG E\ WKH GHFUHDVLQJ YROXPH IUDFWLRQ DQG VFDOH RI SUHFLSLWDWLRQ OHDGLQJ DZD\ IURP WKH LQWHUGHQGULWLF UHJLRQ 8SRQ KRPRJHQL]DWLRQ DW r& DOO WKH FRPSRVLWLRQV LQ WKLV VWXG\ VKRXOG EH VLQJOH SKDVH SULRU WR FRROLQJ 7KH VDPH LV WUXH RI WKH H[WUXVLRQV VLQFH H[WUXVLRQ ZDV FRQGXFWHG DW DERXW r& +LJKHU FKURPLXP FRQWHQWV DUH H[SHFWHG WR OHDG WR D ODUJHU VL]H GLVWULEXWLRQ RI DOSKDFKURPLXP SUHFLSLWDWHV VLQFH SUHFLSLWDWLRQ RFFXUV RYHU D ZLGH

PAGE 114

WHPSHUDWXUH UDQJH $OOR\V FRQWDLQLQJ OHVV FKURPLXP VXFK DV 1L$O&U ZRXOG QRW EH H[SHFWHG WR SUHFLSLWDWH XQWLO D UHODWLYHO\ ORZ WHPSHUDWXUH VD\ DERXW r& ,Q WKLV FDVH WKH GLIIXVLRQ GLVWDQFHV DUH VPDOO DQG SUHFLSLWDWLRQ RFFXUV RYHU D PXFK VPDOOHU WHPSHUDWXUH UDQJH WKDQ LQ PRUH FKURPLXPULFK DOOR\V WKHUHIRUH WKH SUHFLSLWDWH GLDPHWHU DQG VL]H GLVWULEXWLRQ DUH H[SHFWHG WR EH VPDOO ,Q DOO DOOR\V KHWHURJHQHRXV QXFOHDWLRQ VLWHV VXFK DV JUDLQ ERXQGDULHV SURGXFH ODUJHU SUHFLSLWDWHV DQG DUH VXUURXQGHG E\ WKH H[SHFWHG SUHFLSLWDWHIUHH]RQH $OWKRXJK WKLV GHVFULSWLRQ FDQ DFFRXQW LQ JHQHUDO IRU WKH PLFURVWUXFWXUHV REVHUYHG WKHUH DUH VRPH GHWDLOHG DVSHFWV RI WKH PLFURVWUXFWXUHV ZKLFK DUH ZRUWK\ RI IXUWKHU GLVFXVVLRQ 7KH PDUNHG DOLJQPHQW RI WKH SUHFLSLWDWHV LQWR URZV GHVHUYHV FRPPHQW 7KLV EHKDYLRU LV PRVW SURQRXQFHG LQ DOXPLQXPULFK DOOR\V VXFK DV 1L$O&U )LJXUH 7KH DOLJQPHQW LQGLFDWHV WKDW DOWKRXJK PXFK RI WKH SULRU LQWHUGHQGULWLF DOSKDFKURPLXP ZDV GLVVROYHG GXULQJ KRPRJHQL]DWLRQ WKH ORFDO FRQFHQWUDWLRQ JUDGLHQW ZDV QRW HOLPLQDWHG 2Q FRROLQJ EHORZ WKH VSHFLILF VROYXV WHPSHUDWXUH IRU HDFK UHJLRQ DOSKDFKURPLXP UHSUHFLSLWDWHG DV GLVFUHWH SDUWLFOHV 7KDW WKH DOLJQHG URZV H[KLELW RUWKRJRQDO EUDQFKLQJ UHLQIRUFHV WKLV H[SODQDWLRQ VLQFH WKH JURZWK RI 1L$O&U URGOLNH HXWHFWLF LV NQRZQ WR SURFHHG LQ GLUHFWLRQV ZLWK D FXEHRQFXEH RULHQWDWLRQ UHODWLRQVKLS >@ $Q DOWHUQDWLYH H[SODQDWLRQ IRU WKH SUHFLSLWDWH DOLJQPHQW LV KHWHURJHQHRXV QXFOHDWLRQ XSRQ VRPH OLQHDU GHIHFW VXFK DV D GLVORFDWLRQ RU SHUKDSV VXEJUDLQV +RZHYHU WKH REVHUYHG URZ GLPHQVLRQV DQG WKH ODFN RI VXSSRUWLQJ 7(0 REVHUYDWLRQV PDNH VXFK H[SODQDWLRQV XQOLNHO\ $QRWKHU SRLQW RI GLVFXVVLRQ LV WKH REVHUYDWLRQ RI t& FDUELGHV HPEHGGHG ZLWKLQ WKH LQWHUGHQGULWLF DOSKDFKURPLXP RI WKH $0 1L$O&U 7KLV SDUWLFXODU DOOR\ ZDV SURGXFHG LQ DQ HDUOLHU EDWFK RI FDVWLQJV XVLQJ GLIIHUHQW VWDUWLQJ PDWHULDOV IURP WKH RWKHU +$0 DOOR\V $V VKRZQ LQ 7DEOH WKH FDUERQ OHYHO PHDVXUHG LQ WKLV DOOR\ ZDV W\SLFDOO\ IRXU WLPHV WKDW RI WKH RWKHU DOOR\V ,Q DGGLWLRQ LURQ FRQWDPLQDWLRQ ZDV QRWHG $OWKRXJK WKH VRXUFH RI WKHVH LPSXULWLHV ZDV QRW GHWHUPLQHG LW DSSHDUV WKDW WKH FKURPLXP KDG D

PAGE 115

VWURQJ WHQGHQF\ WR JHWWHU WKLV FDUERQ LQ WKH OLTXLG VWDWH DQG FDXVH LW WR FRQFHQWUDWH LQ WKH LQWHUGHQGULWLF UHJLRQV RI WKH $0 FDVWLQJ 2Q VROLGLILFDWLRQ 4& PD\ IRUP IURP WKH UHPDLQLQJ VROXWHULFK OLTXLG RU SRVVLEO\ E\ VROLG VWDWH SUHFLSLWDWLRQ ZLWKLQ WKH LQWHUGHQGULWLF DOSKDFKURPLXP 'LVORFDWLRQ &RQILJXUDWLRQV DQG 6OLS 7KLV VHFWLRQ DGGUHVVHV WKH HIIHFWV WKDW FKURPLXP DSSHDUV WR KDYH XSRQ WKH VOLS SURFHVV 7KH REVHUYHG %XUJHUV YHFWRUV DQG VOLS V\VWHPV DUH UDWLRQDOL]HG ILUVW IROORZHG E\ D GLVFXVVLRQ RI WKH HQKDQFHG VOLS EDQG DQG ORRS IRUPDWLRQ LQ WKH FKURPLXPFRQWDLQLQJ DOOR\V )LQDOO\ WKH LQWHUIDFH VWUXFWXUH EHWZHHQ WKH SUHFLSLWDWHV DQG WKH PDWUL[ LV H[DPLQHG 2EVHUYHG 6OLS 6\VWHPV 7KH SUHGRPLQDQFH RI !^f DQG !^` VOLS V\VWHPV LQ WKLV VWXG\ LV LQWHUHVWLQJ VLQFH WKH HDUOLHU UHVXOWV RI /DZ DQG %ODFNEXUQ >@ UHSRUWHG !^ ` VOLS LQ FDVW 1L$O&U 7KH RQO\ RWKHU UHIHUHQFHV WR VOLS LQ FKURPLXPPRGLILHG 1L$O DOOR\V GHDOW ZLWK HLWKHU GLUHFWLRQDOO\VROLGLILHG PDWHULDO ZLWK D RULHQWDWLRQ >@ RU VLQJOH FU\VWDOV >@ ,Q ERWK FDVHV WHVWLQJ ZDV FRQGXFWHG LQ WKH KDUG RULHQWDWLRQ ZKLFK KDV EHHQ VKRZQ WR SURPRWH VOLS HYHQ LQ ELQDU\ 1L$O GXH WR WKH ODFN RI UHVROYHG VKHDU VWUHVV XSRQ DQ\ RI WKH XVXDO !^` RU !^` VOLS V\VWHPV 7KHUHIRUH WKH RQO\ DSSOLFDEOH UHIHUHQFH RQ WKH HIIHFW RI FKURPLXP LQ DOWHULQJ WKH SULPDU\ VOLS PRGH RI 1L$O LV WKDW RI /DZ DQG %ODFNEXUQ >@ 7KHUH DUH IHZ H[SODQDWLRQV WR DFFRXQW IRU WKH LQFRQVLVWHQF\ RI WKH FXUUHQW UHVXOWV DQG WKRVH RI /DZ DQG %ODFNEXUQnV >@ 2QH LV WKDW WKH SDUWLFXODU JUDLQ ZKLFK ZDV DQDO\]HG E\ /DZ DQG %ODFNEXUQ ZDV E\ FKDQFH RULHQWHG LQ D KDUG RULHQWDWLRQ UHODWLYH WR WKH SULPDU\ FRPSUHVVLYH VWUHVV 7KLV ZRXOG SURPRWH VOLS DV GHVFULEHG LQ WKH VLQJOH FU\VWDO VWXGLHV 1R DFFRXQW ZDV JLYHQ E\ /DZ DQG %ODFNEXUQ RI WKH QXPEHU RI JUDLQV RU

PAGE 116

VSHFLPHQV ZKLFK ZHUH DQDO\]HG QRU RI WKH JUDLQ RULHQWDWLRQ VR LW LV GLIILFXOW WR DVFULEH DQ\ GHJUHH RI VWDWLVWLFDO VLJQLILFDQFH WR WKHLU ZRUN )XUWKHU VLQFH WKHLU SXEOLVKHG UHSRUWV VKRZ RQO\ D VLQJOH EULJKW ILHOG LPDJH LH QR LQYLVLELOLW\ FRQGLWLRQV WKHLU FRQFOXVLRQV FDQQRW EH YHULILHG EDVHG RQ WKH SUHVHQWHG GDWD ,I WKH UHVXOWV RI WKH SUHVHQW ZRUN DUH FRQVLGHUHG LQGHSHQGHQWO\ WKH VROH RSHUDWLRQ RI WKH %XUJHUV YHFWRUV LV QRW XQH[SHFWHG $V VKRZQ LQ )LJXUH WKH VROXELOLW\ RI FKURPLXP LQ 1L$O LV OHVV WKDQ WZR DWRPLF SHUFHQW 7KLV LV FRQVLGHUDEO\ OHVV WKDQ WKH DPRXQW SUHGLFWHG WR UHGXFH WKH $3%( VXFK WKDW VOLS LV SURPRWHG EDVHG RQ WKHRUHWLFDO SUHGLFDWLRQV >@ DQG DOVR RQ WKH UHVXOWV RI LURQ DGGLWLRQV LQ RWKHU ZRUN >@ 7KH REVHUYHG VOLS SODQH RQ ZKLFK VOLS WRRN SODFH LQ ELQDU\ 1$ ZDV XVXDOO\ >2LO@ KRZHYHU VOLS RQ WKH ^` SODQHV ZDV RIWHQ REVHUYHG &RPSDULVRQ RI WKH 6FKPLG IDFWRUV IRU !^` DQG !^` VOLS ZKHQ WKH FRPSUHVVLRQ D[LV LV >@ WKH XVXDO ILEHU WH[WXUH IRU WKH H[WUXVLRQVf LQGLFDWHV WKH ^` SODQHV DUH IDYRUHG E\ DERXW SHUFHQW 7DEOH +RZHYHU ZKHQ WKH VWUHVV D[LV WHQGV WRZDUGV WKH WZR VOLS SODQHV EHFRPH FRPSHWLWLYH 7KLV PD\ EH WKH UHDVRQ IRU WKH RSHUDWLRQ HLWKHU VOLS SODQH QRWHG LQ WKH UHVXOWV 7KH ORZ VROXELOLW\ RI FKURPLXP RQO\ DOORZV DERXW WZR RU WKUHH DOXPLQXP VLWHV LQ D KXQGUHG WR EH RFFXSLHG DQG URXJKO\ FRPSHWLWLYH SURFHVVHV VXFK DV VOLS RQ HLWKHU ^` RU ^` SODQHV VKRXOG QRW EH DIIHFWHG 7DEOH 7KHRUHWLFDO 6FKPLG )DFWRUV IRU 6OLS RQ ^` RU ^` LQ %LQDU\ 1L$O 6WUHVV $[LV !^@ !^@ c >@ >+2@ 7KH SUHVHQFH RI GLVORFDWLRQV LQ VRPH RI WKH VSHFLPHQV LQGLFDWHV WKDW GLVORFDWLRQV ZLWK WKHVH %XUJHUV YHFWRUV PD\ SOD\ D UROH LQ SODVWLF GHIRUPDWLRQ 7KH IDFW WKDW WKH PDMRULW\ RI WKH !nV GHWHFWHG ZHUH LQ H[WUXGHG PDWHULDO VXJJHVWV WKDW WKH\ PD\ EH UHPQDQWV RI WKH HOHYDWHG WHPSHUDWXUH GHIRUPDWLRQ ,Q VXSSRUW UHFHQW ZRUN E\ 0LUDFOH

PAGE 117

>@ KDV VXJJHVWHG WKDW WKH DFWLYDWLRQ RI GLVORFDWLRQV PD\ EH UHVSRQVLEOH IRU WKH %'77 LQ 1L$O ,I VR WKHQ WKH SHUFHQWDJH RI GLVORFDWLRQV ZKLFK KDYH %XUJHUV YHFWRUV VKRXOG EH JUHDWHU LQ WKH DVH[WUXGHG FRQGLWLRQ WKDQ ZKHQ GHIRUPHG DW URRP WHPSHUDWXUH 6LPSOH FDOFXODWLRQ RI WKHVH SHUFHQWDJHV EDVHG RQ WKH GDWD LQ $SSHQGL[ % VKRZV DERXW SHUFHQW !nV LQ WKH GHIRUPHG +$0 FDVW PDWHULDO DERXW SHUFHQW IRU WKH DVH[WUXGHG PDWHULDO DQG DERXW SHUFHQW IRU WKH H[WUXGHG DQG URRPWHPSHUDWXUH GHIRUPHG PDWHULDO 6LQFH WKLV GLIIHUHQFH LV QRW H[WUHPH LW DSSHDUV XQOLNHO\ WKDW WKH GLVORFDWLRQV DUH UHWDLQHG IURP HOHYDWHG WHPSHUDWXUH GHIRUPDWLRQ DQG DUH SURGXFHG DW URRP WHPSHUDWXUH ,W LV DOVR SRVVLEOH WKDW WKH GLVORFDWLRQV DUH UHDFWLRQ SURGXFWV EHWZHHQ GLIIHUHQW GLVORFDWLRQV JOLGLQJ LQ WKH VDPH JUDLQ $ ODUJH QXPEHU RI WKH DQDO\VHV LQ WKLV VWXG\ \LHOGHG WZR DQG VRPHWLPHV WKUHH GLIIHUHQW %XUJHUV YHFWRUV LQ D VLQJOH JUDLQ $OWKRXJK DQG GLVORFDWLRQV LQ 1L$O VKRXOG VSRQWDQHRXVO\ GHFRPSRVH LQWR WKHLU DVVRFLDWHG GLVORFDWLRQV DFFRUGLQJ WR HODVWLF HQHUJ\ FRQVLGHUDWLRQV >@ WKH FRPELQDWLRQ UHDFWLRQ PD\ EH SRVVLEOH XQGHU VWUHVV >@ ,Q VXFK FDVH GHFRPSRVLWLRQ PD\ QRW RFFXU DW ORZ WHPSHUDWXUHV GXH WR LQVXIILFLHQW WKHUPDO DFWLYDWLRQ 7KH VOLS SODQH GHWHUPLQHG IRU WKH GLVORFDWLRQV LV >@ ,QWHUHVWLQJO\ WKLV VOLS V\VWHP \LHOGV WZR LQGHSHQGHQW VOLS V\VWHPV ZKLFK DUH FRPSOHWHO\ LQGHSHQGHQW RI WKH WKUHH VOLS V\VWHPV SURGXFHG E\ WKH SULPDU\ ^` V\VWHP IRU D WRWDO RI ILYH LQGHSHQGHQW V\VWHPV >@ )LYH LQGHSHQGHQW VOLS V\VWHPV VDWLVI\ WKH YRQ 0LVHV FULWHULRQ IRU DUELWUDU\ GHIRUPDWLRQ RI D SRO\FU\VWDOOLQH PDWHULDO DQG VKRXOG DOORZ VRPH PHDVXUH RI SODVWLF GHIRUPDWLRQ SURYLGHG RWKHU EDUULHUV WR VOLS DUH DEVHQW 6XFK D FRQFOXVLRQ LV FRQWLQJHQW XSRQ VHYHUDO WKLQJV KRZHYHU )LUVW WKHUH PXVW EH VXIILFLHQW QXPEHUV RI WKH !^O7@ GLVORFDWLRQV DQG WKH\ PXVW EH DEOH WR QXFOHDWH HDVLO\ LH EH HQHUJHWLFDOO\ VWDEOH 6HFRQG WKH\ PXVW EH VXIILFLHQWO\ PRELOH 7KH UHVXOWV VKRZQ LQ 7DEOH IURP %DOO DQG 6PDOOPDQnV FDOFXODWLRQV VKRZ WKDW GLVORFDWLRQV ZLWK %XUJHUV YHFWRUV VKRXOG EH UHODWLYHO\ PRELOH FRPSDUHG WR WKH XVXDO !V UHJDUGOHVV RI ZKHWKHU WKH\ DUH

PAGE 118

,OO RI VFUHZ RU HGJH FKDUDFWHU 3UHVXPDEO\ GLVORFDWLRQV RI PL[HG FKDUDFWHU ZLOO KDYH D PRELOLW\ LQWHUPHGLDWH WR HLWKHU HGJH RU VFUHZ 7KH HODVWLF HQHUJ\ RI WKH GLVORFDWLRQV GHSHQGV ODUJHO\ XSRQ WKH GLVORFDWLRQ FKDUDFWHU ZLWK WKRVH RI SXUH VFUHZ FKDUDFWHU EHLQJ DERXW SHUFHQW JUHDWHU WKDQ HGJH GLVORFDWLRQV DQG DERXW SHUFHQW JUHDWHU WKDQ VFUHZV 7KXV VFUHZ GLVORFDWLRQV PLJKW EH VRPHZKDW FRPSHWLWLYH ZLWK HGJH GLVORFDWLRQV 7R WDNH DGYDQWDJH RI WKH DGGLWLRQDO VOLS V\VWHPV SURYLGHG E\ GLVORFDWLRQV WKH\ PXVW QRW RQO\ EH PRELOH ZLWKLQ WKH RSHUDWLYH JOLGH SODQH EXW PXVW EH DEOH WR H[SDQG XQHQFXPEHUHG E\ OLQH FRQVWUDLQWV VXFK DV QRGDO OLQNV ZLWK WKH SDUHQW GLVORFDWLRQV 7KLV VLWXDWLRQ LV LOOXVWUDWHG LQ )LJXUH ,Q WKLV VFKHPDWLF D >@ GLVORFDWLRQ LV SURGXFHG E\ WKH FRPELQDWLRQ UHDFWLRQ RI WZR GLVORFDWLRQV )RU JOLGH RI WKH >@ GLVORFDWLRQ WR RFFXU LW PXVW IRUP D KDOIORRS H[WHQGLQJ DZD\ IURP WKH SDUHQW GLVORFDWLRQV 6LQFH WKH HQHUJ\ RI WKH KDOIORRS LV LQYHUVHO\ SURSRUWLRQDO WR LWV UDGLXV LW ZLOO H[HUW D IRUFH XSRQ WKH WZR QRGHV LQ DQ DWWHPSW WR OHQJWKHQ ZKLFK LV XOWLPDWHO\ RSSRVHG E\ WKH H[WHUQDO VWUHVVHV RQ WKH FU\VWDO 7KLV ZLOO SURGXFH DQ HTXLOLEULXP VWDWH LQ ZKLFK JOLGH RI WKH GLVORFDWLRQ LV HIIHFWLYHO\ KLQGHUHG 7R VXPPDUL]H WKH PHUH SUHVHQFH RI GLVORFDWLRQV LV LQVXIILFLHQW WR PDNH WKHP DYDLODEOH IRU JHQHUDO GHIRUPDWLRQ LI LQGHHG WKH\ DUH RQO\ UHDFWLRQ SURGXFWV RI GLVORFDWLRQV /RFDOL]HG 6OLS DQG 'LVORFDWLRQ /RRSV /RFDOL]HG GHIRUPDWLRQ LQ WKH IRUP RI VOLS EDQGV LV JHQHUDOO\ D UHVXOW RI FURVVVOLS GLIILFXOW\ ,Q WKH FDVH RI 1L$O WKH VWURQJ SUHIHUHQFH IRU ^` RU !^` VOLS VKRXOG WHQG WR FRQILQH VOLS WR WKH PRVW KLJKO\ VWUHVVHG V\VWHP ZLWK OLWWOH RSSRUWXQLW\ IRU GHYLDWLRQ RQWR DOWHUQDWLYH V\VWHPV IRU D JLYHQ VWUHVV VWDWH 7KH WHQGHQF\ IRU GLVORFDWLRQV WR DVVXPH DQ HGJHOLNH RULHQWDWLRQ ZLOO DOVR PDNH FURVVVOLS PRUH GLIILFXOW DQG VR SURPRWH ORFDOL]HG VOLS

PAGE 119

2QH HIIHFW RI WKH FKURPLXP DGGLWLRQ ZDV WR LQFUHDVH WKH SURSHQVLW\ IRU ORFDOL]HG GHIRUPDWLRQ LQ WKH IRUP RI VOLS EDQGV HPDQDWLQJ IURP JUDLQ ERXQGDULHV 6RPH H[DPSOHV DUH VKRZQ LQ )LJXUHV DQG ,Q VSLWH RI WKH H[SHFWHG EHKDYLRU EDVHG RQ D NQRZOHGJH RI WKH DOORZHG VOLS V\VWHPV ELQDU\ 1L$O RQO\ RFFDVLRQDOO\ GLVSOD\HG WKLV WHQGHQF\ DQG WKHQ RQO\ LQ D GLIIXVH PDQQHU ZKLOH 1L$OO&U 1L$O&U DQG 1L $O&U FRQWDLQHG ZHOOGHYHORSHG VOLS EDQGV 7KH VRXUFH RI WKH VOLS EDQGV LV REYLRXVO\ WKH JUDLQ ERXQGDULHV ZKLFK PD\ LQGLFDWH D FKDQJH LQ FRPSRVLWLRQ RU VWUXFWXUH DW WKH JUDLQ ERXQGDULHV GXH WR FKURPLXP $QRWKHU FDXVH RI FRQILQHG VOLS LV D OLPLWHG QXPEHU RI GLVORFDWLRQ VRXUFHV ,Q WKH FDVH RI WKH +$0 FDVWLQJV WKH FRPSUHVVLRQ WHVWV DUH HVVHQWLDOO\ WKRVH RI ELFU\VWDOV GXH WR WKH ODUJH JUDLQ VL]H 6LQFH JUDLQ ERXQGDULHV DUH FRPPRQ GLVORFDWLRQ QXFOHDWLRQ VLWHV VXFK D ODUJH JUDLQ VL]H PLJKW EH H[SHFWHG WR FDXVH ORFDOL]HG VOLS +RZHYHU WKH H[WUXVLRQV DOVR GLVSOD\ ORFDOL]HG VOLS GHVSLWH WKHLU ILQH JUDLQ VL]H 7KHUHIRUH LW DSSHDUV WKDW WKH LQFUHDVHG ORFDOL]HG VOLS LV GXH WR FKURPLXP LQ VROXWLRQ 3UHVXPDEO\ FKURPLXP LQ VROLG VROXWLRQ VRPHKRZ HQKDQFHV GLVORFDWLRQ QXFOHDWLRQ 6OLS EDQGV PD\ DOVR UHVXOW IURP WKH GHYHORSPHQW RI D SUHIHUUHG VOLS SDWK WKURXJK D QXPEHU RI VKHDUDEOH REVWDFOHV LQ WKH VWUXFWXUH VXFK DV SUHFLSLWDWHV 6LQFH WKH WHQGHQF\ IRU VOLS EDQGV ZDV QRWHG IRU DOOR\V ERWK ZLWK DQG ZLWKRXW SUHFLSLWDWLRQ WKLV FDQQRW EH WKH FDXVH LQ WKH SUHVHQW FDVH 9HGXOD >@ KDV VXJJHVWHG WKDW VXEVWLWXWLRQDO VROXWHV PD\ DWWUDFW SRLQW GHIHFWV ZKLFK DUH QRUPDOO\ GLVSHUVHG WKURXJKRXW WKH VWUXFWXUH DQG FUHDWH GHIHFW FOXVWHUV ZKLFK IXQFWLRQ OLNH SUHFLSLWDWHV ([SHULPHQWDO FRQILUPDWLRQ RI WKH SKHQRPHQRQ KDV QRW EHHQ SURGXFHG KRZHYHU LI WKH FOXVWHUV DUH DVVXPHG WR EH SUHVHQW DQG DUH VKHDUDEOH E\ SUHFLSLWDWHV WKH WHQGHQF\ IRU FRQFHQWUDWHG VOLS LQ WKH WHUQDULHV PLJKW EH H[SODLQHG &ORVH VFUXWLQ\ RI WKH VXEVWUXFWXUH ZLWKLQ WKH FRQFHQWUDWHG VOLS EDQGV RI WKH SUHFLSLWDWHFRQWDLQLQJ DOOR\V DOVR UHYHDOV D QXPEHU RI VPDOO GLVORFDWLRQ ORRSV ZLWK %XUJHUV YHFWRUV VXUURXQGLQJ D QXPEHU RI WKH DOSKDFKURPLXP SUHFLSLWDWHV 7KHVH DSSHDU WR EH 2URZDQ ORRSV LQGLFDWLQJ WKH SUHFLSLWDWHV DUH QRW VKHDUHG E\ WKH GLVORFDWLRQV

PAGE 120

&RPSRVLWLRQ6WUXFWXUH3URSHUWY 5HODWLRQVKLSV 7KH PHFKDQLFDO EHKDYLRU RI WKH DOOR\V LQ WKLV VWXG\ LV H[DPLQHG EHORZ ZLWK HPSKDVLV XSRQ WKH URRPWHPSHUDWXUH PHFKDQLFDO SURSHUWLHV 7KH VWUHQJWKHQLQJ PHFKDQLVPV DUH FRQVLGHUHG LQ WHUPV RI WKH YDULRXV VROLG VROXWLRQ GHIHFWV ZKLFK DUH SRVVLEOH LQ WKLV V\VWHP DV ZHOO DV SUHFLSLWDWLRQ JUDLQ VL]H DQG RULHQWDWLRQ FRQWULEXWLRQV ,Q DGGLWLRQ WKH GLUHFW DQG LQGLUHFW HIIHFWV RI WUDPS LQWHUVWLWLDO HOHPHQWV DUH GLVFXVVHG )LJXUH 5HDFWLRQ RI 7ZR 'LVORFDWLRQV WR )RUP D 'LVORFDWLRQ 6XEVWLWXWLRQDO 6FKHPHV 7KH PDMRULW\ RI WKH DOOR\V LQ WKLV VWXG\ KDYH EHHQ DOOR\HG ZLWK FKURPLXP LQ RQH RI WKUHH V\VWHPDWLF ZD\V VXEVWLWXWLRQ VROHO\ IRU DOXPLQXP VXEVWLWXWLRQ VROHO\ IRU QLFNHO DQG

PAGE 121

HTXDO VXEVWLWXWLRQ IRU ERWK QLFNHO DQG DOXPLQXP 6HH )LJXUH f ,Q WKLV PDQQHU LW ZDV KRSHG WKDW WKH HIIHFW RI VLWH RFFXSDWLRQ PLJKW EH XQGHUVWRRG +RZHYHU WR LVRODWH WKH SXUH VROLG VROXWLRQ HIIHFW RI FKURPLXP RQ WKH PHFKDQLFDO SURSHUWLHV FRQVLGHUDWLRQ PXVW EH JLYHQ WR WKH LQGLUHFW HIIHFWV RI WKH DSSDUHQW VXEVWLWXWLRQDO VFKHPH )RU H[DPSOH WKH $/&+(0, UHVXOWV LQGLFDWH WKDW FKURPLXP KDV D SUHIHUHQFH IRU WKH DOXPLQXP VLWH LQ 1L$O ZKHQ VXEVWLWXWHG HYHQO\ 7KLV EHKDYLRU PD\ FDXVH FKURPLXP WR EHKDYH OLNH DQ DOXPLQXP DWRP HIIHFWLYHO\ FUHDWLQJ D VXUSOXV RI DOXPLQXP VLWHV LQ WKH VWUXFWXUH ,W ZDV QRWHG LQ WKH OLWHUDWXUH UHYLHZ WKDW DOXPLQXP DWRPV GR QRW UHVLGH RQ QLFNHO VLWHV 7KXV LQ 1L$OO&U WKH FKURPLXP DWRPV LQFUHDVH WKH QXPEHU RI DOXPLQXP VLWHV ,W LV XQFOHDU ZKHWKHU VWURQJ VLWH RFFXSDWLRQ FDQ EULQJ DERXW DQ HTXDO QXPEHU RI YDFDQF\ GHIHFWV RQ WKH QLFNHO VXEODWWLFH DQG WKH DVVRFLDWHG KLJK KDUGHQLQJ REVHUYHG IRU DOXPLQXPULFK ELQDU\ DOOR\V 7KLV HIIHFW LV LOOXVWUDWHG LQ )LJXUH ,Q DOO OLNHOLKRRG WKH DGGLWLRQ RI D WHUQDU\ VROXWH VXFK DV FKURPLXP WR 1L$O FDXVHV HTXLOLEULXP FRQFHQWUDWLRQV RI WKH YDULRXV FRQVWLWXWLRQDO SRLQW GHIHFWV WR EH HVWDEOLVKHG ,Q VLPSOHVW IRUP WKHVH GHIHFWV DUH QLFNHO RQ DQ DOXPLQXP VLWH FKURPLXP RQ D QLFNHO VLWH FKURPLXP RQ DQ DOXPLQXP VLWH DQG D QLFNHO YDFDQF\ $ JRRG H[DPSOH LV WKH VXEVWLWXWLRQ RI FKURPLXP IRU QLFNHO ZKLOH WKH DOXPLQXP FRQFHQWUDWLRQ LV SHUFHQW 6LQFH FKURPLXP SUHIHUV WKH DOXPLQXP VLWH LW VKRXOG LQFUHDVH WKH QXPEHU DOXPLQXP VLWHV DQG WKHUHIRUH LQFUHDVH WKH QXPEHU RI QLFNHO VLWH YDFDQFLHV DFFRUGLQJO\ ,I DOO WKH FKURPLXP DGGHG GRHV QRW UHVLGH RQ DOXPLQXP VLWHV WKHQ VRPH FKURPLXP ZLOO UHVLGH RQ QLFNHO VLWHV DOVR $GGLWLRQV RI FKURPLXP EH\RQG WKH VROXELOLW\ OLPLW LQ IXUWKHU RYHUDOO VXEVWLWXWLRQ IRU HLWKHU DOXPLQXP RU QLFNHO ZLOO QRW RQO\ FDXVH DOSKDFKURPLXP SUHFLSLWDWLRQ EXW ZLOO LQGXFH RWKHU W\SHV RI GHIHFW KDUGHQLQJ RI WKH 1L$O SKDVH 7KLV GHIHFW KDUGHQLQJ PD\ EH GXH WR QLFNHO VXEVWLWXWLRQ RQ DOXPLQXP VLWHV RU YDFDQF\ KDUGHQLQJ DV GHVFULEHG LQ WKH UHYLHZ )RU H[DPSOH LQ WKH 1L$O&U DOOR\ DOWKRXJK FKURPLXP LV VXEVWLWXWHG FRPSOHWHO\ IRU DOXPLQXP LQ WKH RYHUDOO DOOR\ FRPSRVLWLRQ LWV OLPLWHG VROXELOLW\ FDXVHV WKH

PAGE 122

FRPSRVLWLRQ WR OLH RQ D GLIIHUHQW WLHOLQH LQ WKH WZRSKDVH UHJLRQ RI WKH WHUQDU\ LVRWKHUP ZKLFK OHDGV WR D QLFNHOULFK % SKDVH 7KLV HIIHFW LV DOVR LOOXVWUDWHG LQ )LJXUH 6WUHQJWKHQLQJ 0HFKDQLVPV 6ROLG 6ROXWLRQ 6WUHQJWKHQLQJ &XUUHQWO\ WKHUH DUH QR NQRZQ WKHRULHV RI VROLG VROXWLRQ KDUGHQLQJ ZKLFK FDQ EH DSSOLHG WR LQWHUPHWDOOLF FRPSRXQGV DV DFNQRZOHGJHG LQ D UHFHQW UHYLHZ E\ 'LPLGXN DQG 5DR >@ +RZHYHU VHYHUDO JHQHUDO VWDWHPHQWV FDQ EH PDGH f ,QWHUPHWDOOLF FRPSRXQGV DUH VXEMHFW WR VROLG VROXWLRQ KDUGHQLQJ ERWK VXEVWLWXWLRQDO DQG LQWHUVWLWLDO f 7KH KDUGHQLQJ PHFKDQLVPV DUH PRUH FRPSOH[ WKDQ LQ PHWDOOLF VROXWLRQV f 6XEVWLWXWLRQDO HOHPHQWV LQ 1L$O DOOR\V DW OHDVW DSSHDU WR KDUGHQ ZLWK D OLQHDU GHSHQGHQFH RQ DWRPLF FRQFHQWUDWLRQ > @ 7KLV ILQDO SRLQW LV LQ DJUHHPHQW ZLWK WKH UHVXOWV RI 7DNHXFKL >@ RQ VROXWH DGGLWLRQV WR %&& LURQ 7KHUH DUH VHYHUDO VRXUFHV RI VROLG VROXWLRQ KDUGHQLQJ LQ WKH DOOR\V RI WKH FXUUHQW VWXG\ VRPH RI ZKLFK DUH UHODWHG DV DOUHDG\ VXJJHVWHG )LUVW RI DOO YDULDWLRQ RI WKH QLFNHO WRDOXPLQXP UDWLR ZLWKLQ WKH % FRPSRXQG FDQ OHDG WR HLWKHU DQWLVLWH RU YDFDQF\ KDUGHQLQJ 9DFDQF\ KDUGHQLQJ LV FRQVLGHUHG WR EH D VROLG VROXWLRQ KDUGHQLQJ PHFKDQLVP HYHQ WKRXJK LW LQYROYHV WKH UHPRYDO RI DWRPV VLQFH WKH UHVXOWLQJ VWUDLQ ILHOG VKRXOG EHKDYH OLNH D VPDOO VXEVWLWXWLRQDO DWRP 1LFNHOULFK FRPSRXQGV PD\ DOVR EH FRQVLGHUHG WR EH VROXWLRQ KDUGHQHG VLQFH WKH H[FHVV QLFNHO DWRPV DUH DFFRPPRGDWHG VXEVWLWXWLRQDOO\ RQ WKH DOXPLQXP VLWHV $ WHUQDU\ DGGLWLRQ VXFK DV FKURPLXP LV D WKLUG VRXUFH RI VROLG VROXWLRQ KDUGHQLQJ +RZHYHU KDUGHQLQJ SURGXFHG E\ FKURPLXP VXEVWLWXWLRQ IRU DOXPLQXP PD\ SURGXFH D GLIIHUHQW KDUGHQLQJ LQFUHPHQW WKDQ IRU QLFNHO $OWKRXJK WKH $/&+(0, UHVXOWV LQGLFDWHG FKURPLXP RFFXSLHV WKH DOXPLQXP VLWH LQ 1L$OO&U VRPH VLWH RFFXSDQF\ IRU WKH QLFNHO VLWH PD\ EH SRVVLEOH ZKHQ VXEVWLWXWHG IXOO\ IRU QLFNHOf $ ILQDO VRXUFH RI VROLG VROXWLRQ VWUHQJWKHQLQJ LV WKDW GXH WR WKH SUHVHQFH RI LQWHUVWLWLDO HOHPHQWV LQ SDUWLFXODU FDUERQ DQGRU R[\JHQ 7KH FKHPLFDO DQDO\VHV VKRZQ LQ 7DEOHV DQG LQGLFDWH WKH

PAGE 123

SUHVHQFH RI ERWK RI WKHVH HOHPHQWV DW OHYHOV YDU\LQJ IURP WR ZSSP 6LQFH RQO\ ZSSP FDUERQ KDV EHHQ VKRZQ WR FRPSOHWHO\ HPEULWWOH 1L$O >@ LW LV OLNHO\ WKDW FDUERQ DQG R[\JHQ ERWK FRQWULEXWH WR WKH IORZ VWUHVV LQ WKH SUHVHQW DOOR\V LI WKH\ DUH QRW VXIILFLHQWO\ UHPRYHG E\ D JHWWHULQJ UHDFWLRQ 7KH KDUGHQLQJ HIIHFW GXH WR LQWHUVWLWLDO HOHPHQWV LV GLIILFXOW WR HVWDEOLVK FRQFOXVLYHO\ 7KH GDWD LQ )LJXUH VXJJHVW WKDW ZKHQ FKURPLXP LV DGGHG WR KLJK SXULW\ 1L$O D W\SLFDO OLQHDU KDUGHQLQJ UHVSRQVH LV REVHUYHG :KHQ FKURPLXP LV DGGHG WR FRPPHUFLDO SXULW\ 1L$O WKH UHVSRQVH LV IODW XS WR DERXW RQH SHUFHQW VXJJHVWLQJ WKDW WKH FKURPLXP LV EHLQJ UHPRYHG IURP VROXWLRQ E\ WKH IRUPDWLRQ RI FDUELGHV RU R[LGHV 7KLV PDUNHG GLIIHUHQFH LQ EHKDYLRU EHWZHHQ WKH 1L$O&U DOOR\V SURGXFHG IURP WZR GLIIHUHQW QLFNHO VRXUFHV LV QRW HDVLO\ H[SODLQHG E\ WKH FKHPLFDO DQDO\VHV VKRZQ LQ 7DEOH $FFRUGLQJ WR WKH DQDO\VHV FRQGXFWHG DW 1$6$ /5& WKH GLIIHUHQFHV LQ LQWHUVWLWLDO FRQWHQW EHWZHHQ WKH WZR QLFNHO VRXUFHV DUH RQO\ PDUJLQDO DQG SUREDEO\ ZLWKLQ WKH PHDVXUHPHQW HUURU $ VHFRQG DQDO\VLV FRQGXFWHG DW /(&2 DOVR GHWHUPLQHG RQO\ D PDUJLQDO GLIIHUHQFH EHWZHHQ WKH R[\JHQ FRQWHQWV RI WKH WZR PDWHULDOV ,Q OLJKW RI WKH REYLRXV GLIIHUHQFHV LQ KDUGQHVV EHWZHHQ WKH WZR VHULHV RI DOOR\V LW LV ORJLFDO WR DVVXPH WKDW WKH LQWHUVWLWLDO OHYHOV DUH VXIILFLHQWO\ GLIIHUHQW WR DFFRXQW IRU WKHLU EHKDYLRU LQ VSLWH RI WKH GLIILFXOW\ LQ PHDVXULQJ WKHP :KLOH DQ DSSOLFDEOH WKHRU\ RI VROLG VROXWLRQ KDUGHQLQJ LQ LQWHUPHWDOOLF DOOR\V LV QRW SUHVHQWO\ DYDLODEOH VRPH RI WKH LPSRUWDQW IDFWRUV ZKLFK KDYH EHHQ VXJJHVWHG WR RFFXU LQ PHWDOOLF DOOR\V PD\ EH H[DPLQHG KHUH LQ D SUHOLPLQDU\ DWWHPSW WR H[SODLQ VROXWLRQ KDUGHQLQJ EHKDYLRU 7KH PRVW LPSRUWDQW RI WKHVH DUH WKH DWRPLF VL]H HIIHFW DQG WKH PRGXOXV HIIHFW

PAGE 124

)LJXUH ,QGLUHFW (IIHFWV RI &KURPLXP RQ WKH +DUGQHVV RI WKH % 3KDVH 'XH WR 6LWH 3UHIHUHQFH DQG /LPLWHG 6ROXELOLW\ IRU WKH &DVH RI &KURPLXP 6XEVWLWXWHG IRU $OXPLQXP

PAGE 125

0RWW DQG 1DEDUUR >@ HVWLPDWHG WKH PLVILW VWUDLQ HD RI D VROXWH DWRP WR EH HD ODfGDGFf ZKHUH D LV WKH ODWWLFH SDUDPHWHU DQG F LV WKH FRQFHQWUDWLRQ RI WKH VROXWH VSHFLHV ,QWHJUDWLRQ RI WKLV VWUDLQ RYHU WKH VSKHULFDO YROXPH IURP RQH VROXWH DWRP KDOIZD\ WR DQRWKHU LQGLFDWHG WKDW WKH VWUHVV WR LQGXFH VOLS WKURXJK D UDQGRP DUUD\ UHTXLUHV D VWUHVV RI R _LHDF ZKHUH L LV WKH VKHDU PRGXOXV RI WKH ODWWLFH DQG F LV WKH DWRPLF FRQFHQWUDWLRQ RI WKH VROXWH VSHFLHV 7KXV D OLQHDU GHSHQGHQFH XSRQ FRQFHQWUDWLRQ LV GHULYHG +RZHYHU WKHUH DUH LQDGHTXDFLHV LQ ERWK WKHRU\ DQG DSSOLFDWLRQ RI 0RWW DQG 1DEDUURnV HTXDWLRQ LQ FRQVLGHULQJ LQWHUPHWDOOLFV 3ULPDULO\ WKH SUHVHQFH RI ODUJHO\ FRYDOHQW ERQGLQJ SUHFOXGHV WKH DVVXPSWLRQ RI D VSKHULFDO VWUHVV VWDWH DURXQG HDFK VROXWH DWRP DOWKRXJK WKLV LV D JRRG DVVXPSWLRQ IRU PHWDOV )XUWKHU D ORFDO FKDQJH LQ WKH FKDUDFWHU RI WKH ERQGLQJ FDQQRW EH UXOHG RXW DOWKRXJK LW PLJKW EH DQWLFLSDWHG WKDW WKLV ZRXOG UHTXLUH UDWKHU ODUJH VROXWH DGGLWLRQV $QRWKHU SUREOHP FRQFHUQV WKH ODFN RI DFFRXQWLQJ IRU VSHFLILF VLWH VXEVWLWXWLRQ LQ WKH % ODWWLFH 7KHUH LV OLWWOH GRXEW WKDW VROXWH VXEVWLWXWHG IRU QLFNHO ZLOO SURGXFH GLIIHUHQW KDUGHQLQJ WKDQ ZKHQ VXEVWLWXWHG IRU DOXPLQXP 7KLV KDV DOUHDG\ EHHQ GHPRQVWUDWHG LQ 1L$O DOOR\V FRQWDLQLQJ FRSSHU LQ VROXWLRQ LQ ZKLFK VXEVWLWXWLRQ IRU DOXPLQXP \LHOGV D ORZHU KDUGHQLQJ UDWH WKDQ VXEVWLWXWLRQ IRU QLFNHO >@ $ IXUWKHU FRPSOLFDWLRQ LV WKH LQWHUDFWLYH HIIHFWV RI WKH DGGLWLRQ RI D WKLUG HOHPHQW WR D ELQDU\ FRPSRXQG 7KH SUHVHQFH RI FKURPLXP PD\ LQGXFH RWKHU NLQGV RI SRLQW GHIHFWV ZKLFK PD\ KDYH D VWURQJ HIIHFW RQ WKH REVHUYHG KDUGHQLQJ EHKDYLRU DQG PXVW EH DFFRXQWHG IRU

PAGE 126

)OHLVFKHU >@ SRLQWHG RXW DQRWKHU HODVWLF FRQWULEXWLRQ WR WKH VWUHVV VWDWH LPSRVHG E\ VROXWH DWRPV QDPHO\ WKH PRGXOXV HIIHFW HJ ,Q WKLV FDVH WKH ORFDO FKDQJH RI WKH PRGXOXV GXH WR WKH VROXWH DWRP LV DFFRXQWHG IRU DQG DVVXPHG WR PRGLI\ WKH DWRPLF VL]H HIIHFW 7KH PRGXOXV HIIHFW ZDV HVWLPDWHG E\ O_LfGSGFf ZKHUH _L LV WKH PRGXOXV RI WKH DOOR\ 7KH TXDQWLW\ GMLGF ZDV HVWLPDWHG IURP WKH PDFURVFRSLF SURSHUWLHV RI WKH SXUH PDWUL[ DQG EXON SXUH VROXWH 2QH GLIILFXOW\ KHUH LQ DSSOLFDWLRQ WR LQWHUPHWDOOLF FRPSRXQGV LV ZKHWKHU WR FRQVLGHU WKH VROXWH VSHFLHV DV D PHWDOOLF DWRP RU DV SDUW RI DQ LQWHUPHWDOOLF VSHFLHV HJ D FKURPLXPQLFNHO SDLU %DVHG RQ LGHDV VLPLODU WR WKRVH RI 0RWW DQG 1DEDUUR >@ )OHLVFKHU SXW IRUWK WKH IROORZLQJ H[SUHVVLRQ IRU WKH LQFUHDVH LQ WKH IORZ VWUHVV GXH WR VROLG VROXWLRQ KDUGHQLQJ D >/( ZKHUH HV LV D IXQFWLRQ RI ERWK DQG (D $OWKRXJK KH IRXQG UHDVRQDEOH DJUHHPHQW RI WKLV PRGHO ZLWK H[SHULPHQWDO UHVXOWV RI LQWHUVWLWLDOO\ KDUGHQHG DOOR\V PDQ\ VXEVWLWXWLRQDOO\ KDUGHQHG DOOR\V H[KLELWHG D OLQHDU GHSHQGHQFH RQ FRQFHQWUDWLRQ )OHLVFKHU DOVR VXJJHVWHG WKDW HOHFWULFDO DQG FKHPLFDO LQWHUDFWLRQV EHWZHHQ WKH VROXWH VSHFLHV DQG WKH GLVORFDWLRQ PD\ EH LPSRUWDQW DOWKRXJK WKHVH ZHUH QRW LQFRUSRUDWHG LQWR KLV PRGHOV )LQDOO\ 6X]XNL GHYHORSHG D VROXWLRQ KDUGHQLQJ PRGHO IRU %&& PHWDOV EDVHG RQ WKHUPDOO\DFWLYDWHG NLQN PRWLRQ DORQJ VFUHZ GLVORFDWLRQV DQG WKHLU LQWHUDFWLRQV ZLWK VROXWH VSHFLHV WR FUHDWH VXSHUMRJV $OWKRXJK WKHUH KDV EHHQ QR HYLGHQFH WKDW WKHVH SURFHVVHV DUH LPSRUWDQW LQ 1L$O KH DOVR SUHGLFWHG D QHDU OLQHDU GHSHQGHQFH RI IORZ VWUHQJWK RQ VROXWH FRQFHQWUDWLRQ

PAGE 127

7KXV VWDWHG WKHUH LV D WHQWDWLYH EDVLV IRU H[SHFWLQJ D OLQHDU FRPSRVLWLRQ GHSHQGHQFH LQ VROXWH VWUHQJWKHQHG 1L$O DOOR\V ZKLFK LV VXSSRUWHG E\ WKH H[SHULPHQWDO REVHUYDWLRQV 7R UHSUHVHQW WKH YDULRXV FRQWULEXWLRQV HPSLULFDO HTXDWLRQV RI WKH WKH IRUP RV .V F PD\ EH ZULWWHQ ZKHUH DV LV WKH FRQWULEXWLRQ RI WKH VROXWH VSHFLHV V WR WKH \LHOG VWUHQJWK DQG .V LV WKH HPSLULFDOO\ GHWHUPLQHG KDUGHQLQJ UDWH %DVHG RQ WKH GDWD LQ 7DEOH DQG WKDW RI *HRUJH DQG /LX >@ FDUERQ GDWDf WKH KDUGHQLQJ EHKDYLRU FDQ EH VXPPDUL]HG 7KH DWRPLF UDGLXV IRU QLFNHO LV DVVXPHG WR EH WKDW LQ WKH 1L$O FRPSRXQG EDVHG RQ /DXWHQVFKODJHUnV FDOFXODWLRQ >@ IRU FKURPLXP LW LV DVVXPHG WR EH LQWHUPHGLDWH WR WKDW RI QLFNHO DQG DOXPLQXP LQ WKH FRPSRXQG WKH PHDQf 7KH VL]H RI WKH QLFNHO YDFDQF\ ZDV GHWHUPLQHG WR EH DERXW ƒ E\ H[WUDSRODWLRQ RI ODWWLFH SDUDPHWHU GDWD >@ RI WKH ELQDU\ FRPSRXQG WR SHUFHQW DOXPLQXP 7KH UDGLL RI FDUERQ DQG R[\JHQ ZHUH WDNHQ IURP WDEXODWHG YDOXHV >@ 7DEOH 6ROLG 6ROXWLRQ +DUGHQLQJ &RQVWDQWV IRU 6HYHUDO 6ROXWHV LQ 1L$O 1L IRU $Of 1L 9DFDQF\ &U IRU $Of &U IRU ERWKf &DUERQ 2[\JHQ .V 03DDWbf $WRP 5DGLXV ƒf 7KH SORW LQ )LJXUH VKRZV WKH HIIHFW RI WKH VROXWH DWRP VL]H RQ WKH VROLG VROXWLRQ KDUGHQLQJ UDWH 7KLV SORW LQGLFDWHV D PLQLPXP DW DERXW ƒ ZKLFK LV FRLQFLGHQWDOO\ WKH PHDQ DWRPLF UDGLXV IRU ELQDU\ 1L$O EDVHG RQ D ODWWLFH SDUDPHWHU RI ƒ 7KH IDFW WKDW DWRP VL]HV ODUJHU RU VPDOOHU WKDQ WKLV YDOXH LQGLFDWHV VROXWH DWRP VL]H WR EH LPSRUWDQW LQ VROLG VROXWLRQ KDUGHQLQJ RI 1L$O DOWKRXJK RWKHU IDFWRU VXFK DV PRGXOXV RU HOHFWURQLF VWUXFWXUH DUH DOVR LPSRUWDQW >@

PAGE 128

e V & 0 $WRP 5DGLXV ƒf )LJXUH 5HODWLRQVKLS %HWZHHQ 6ROXWH $WRP 6L]H DQG +DUGHQLQJ 5DWH LQ 1L$O $OOR\V 3UHFLSLWDWLRQ +DUGHQLQJ $OOR\V ZKLFK FRQWDLQ FKURPLXP OHYHOV EH\RQG WKH VROXELOLW\ OLPLW DUH VXEMHFW WR SUHFLSLWDWLRQ KDUGHQLQJ E\ DOSKDFKURPLXP SUHFLSLWDWHV 'XH WR WKH UHWURJUDGH QDWXUH RI WKH VROYXV VXUIDFH PXFK RI WKH SUHFLSLWDWLRQ LV YHU\ ILQH DERXW QP LQ GLDPHWHUf DQG HLWKHU FRKHUHQW RU VHPLFRKHUHQW 1R VKHDUHG SDUWLFOHV ZHUH REVHUYHG GXULQJ 7(0 FKDUDFWHUL]DWLRQ ZKLOH D QXPEHU ZHUH REVHUYHG WR EH VXUURXQGHG E\ GLVORFDWLRQ ORRSV XVXDOO\ ZKHQ O\LQJ ZLWKLQ D VOLS EDQG 7KHVH ORRSV ZHUH WDNHQ WR EH 2URZDQ ORRSV ZKLFK ZHUH SURGXFHG E\ WKH SDVVDJH RI D GLVORFDWLRQ 7KH ODFN RI REVHUYDWLRQ RI PRUH WKDQ RQH ORRS DURXQG DQ\ JLYHQ SUHFLSLWDWH LV SUREDEO\ D UHVXOW RI WKH VPDOO VWUDLQV LPSRVHG 7KLV REVHUYDWLRQ LV FRQWUDU\ WR WKH EHKDYLRU RI PRVW SUHFLSLWDWLRQ KDUGHQHG PHWDOV LQ ZKLFK FRKHUHQW SDUWLFOHV DUH XVXDOO\ VKHDUHG DQG QRW E\SDVVHG E\ ORRS IRUPDWLRQ >@ 2QH UHDVRQ ZK\ WKH SUHFLSLWDWHV DUH QRW VKHDUHG PD\ EH WKDW WKH FXEHRQ FXEH RULHQWDWLRQ UHODWLRQVKLS ZLWK WKH PDWUL[ GLFWDWHV D FKDQJH LQ VOLS YHFWRU ZLWKLQ WKH

PAGE 129

SUHFLSLWDWH &RKHUHQF\ PLVILW VWUDLQV LQWHUIDFLDO GLVORFDWLRQV DQG WKH KLJK 3HLHUOV VWUHVV RI FKURPLXP DOVR UDLVH WKH HIIHFWLYH SDUWLFOH VWUHQJWK 7KH DOOR\V GHVFULEHG KHUH DUH DPHQDEOH WR FXUUHQW PRGHOV RI SUHFLSLWDWLRQ VWUHQJWKHQLQJ 7KH IROORZLQJ GHYHORSPHQW LV EDVHG RQ WKDW GHVFULEHG E\ *HUROG >@ &RQVLGHU WKH LQWHUDFWLRQ RI D VLQJOH GLVORFDWLRQ ZLWK D OLQHDU DUUD\ RI SDUWLFOHV ,I 2URZDQ ORRSLQJ RFFXUV WKHQ WKH IRUFH H[HUWHG E\ D VLQJOH SDUWLFOH VKRXOG DW OHDVW HTXDO WKH FRPELQHG OLQH WHQVLRQ RI WKH GLVORFDWLRQ DV LW ORRSV DURXQG WKH SDUWLFOH 7KDW LV $[ E ; 7 ZKHUH $W LV WKH H[WUD VKHDU VWUHVV H[HUWHG E\ WKH SUHFLSLWDWH RQ WKH GLVORFDWLRQ E LV WKH %XUJHUV YHFWRU ; LV WKH PHDQ LQWHUSDUWLFOH GLVWDQFH DQG 7 LV WKH OLQH WHQVLRQ RI WKH GLVORFDWLRQ 6WULFWO\ VSHDNLQJ WKH VWUHVV RQO\ DFWV RQ WKH IUHH GLVWDQFH EHWZHHQ WKH SDUWLFOHV VR WKH SDUWLFOH GLDPHWHU G PXVW EH VXEWUDFWHG IURP ; 6ROYLQJ IRU $W ZH QRZ KDYH $[ 7EIWGf 7KH OLQH WHQVLRQ RI WKH GLVORFDWLRQ GHSHQGV RQ WKH OLQH HQHUJ\ ZKLFK LQ WXUQ LV D IXQFWLRQ RI WKH GLVORFDWLRQ RULHQWDWLRQ RU FKDUDFWHU %DVHG RQ WKH 7(0 REVHUYDWLRQV WKH GLVORFDWLRQ FKDUDFWHU LV HLWKHU HGJH RU PL[HG )RU VLPSOLFLW\ SXUH HGJH GLVORFDWLRQV DUH DVVXPHG WR EH WKH FKDUDFWHU GLVSOD\HG SULRU WR ZKHQ D SDUWLFOH LV HQFRXQWHUHG 8SRQ EHQGLQJ D IXOO GHJUHHV DURXQG WKH SDUWLFOH WKH FKDUDFWHU EHFRPHV VFUHZ LQ ZKLFK FDVH WKH OLQH WHQVLRQ DQG OLQH HQHUJ\ DUH HTXDO DQG PD\ EH GHILQHG DV 7 (V TEWf OQILRULf

PAGE 130

ZKHUH S LV WKH VKHDU PRGXOXV RI WKH PDWUL[ DQG U DQG Uc DUH WKH RXWHU DQG LQQHU FXWRII UDGLL RI WKH HODVWLF VWUDLQ ILHOG RI WKH GLVORFDWLRQ UHVSHFWLYHO\ $ UHDVRQDEOH HVWLPDWH IRU Uc LV E ZKLOH U PD\ EH DSSUR[LPDWHG E\ G DV VKRZQ E\ $VKE\ >@ 7KH SDUWLFOH GLDPHWHU LV DQ DSSURSULDWH HVWLPDWH EHFDXVH WKH DWWUDFWLRQ RI WKH RSSRVLWHO\ VLJQHG VFUHZ FRPSRQHQWV DURXQG WKH SDUWLFOH ZLOO LQFUHDVH WKH OLQH WHQVLRQ 6XEVWLWXWLRQ \LHOGV WKH IROORZLQJ IRU WKH LQFUHDVH LQ VKHDU VWUHQJWK GXH WR WKH SDUWLFOH $[ OLE MF$Gff ,Q f AE %\ DVVXPLQJ D UDQGRP DUUD\ RI SDUWLFOHV DQG DSSO\LQJ EDVLF VWHUHRORJLFDO SULQFLSOHV $ PD\ EH DSSUR[LPDWHG E\ GIS ZKHUH IS LV WKH YROXPH IUDFWLRQ RI SDUWLFOHV LQ WKH PLFURVWUXFWXUH ,Q WXUQ IS PD\ EH GHWHUPLQHG GLUHFWO\ IURP WKH SVHXGRELQDU\ 1L$O&U SKDVH GLDJUDP )LJXUH f EDVHG RQ WKH FRQFHQWUDWLRQ RI FKURPLXP F DFFRUGLQJ WR WKH OHYHU UXOH LH IS F f f 7KHUHIRUH WKH LQFUHDVH LQ \LHOG VWUHQJWK GXH WR SUHFLSLWDWLRQ KDUGHQLQJ LQ WKH 1L$O&U V\VWHP PD\ EH UHSUHVHQWHG E\ $2S ASIF@OQEf 9F f :KHQ DSSURSULDWH YDOXHV RI 03Df DQG E QPf >@ DUH LQVHUWHG WKH VWUHQJWKHQLQJ LQFUHPHQWV IRU YDULRXV PHDQ SUHFLSLWDWH GLDPHWHUV DV D IXQFWLRQ RI FKURPLXP FRQFHQWUDWLRQ PD\ EH SUHGLFWHG DV VKRZQ LQ )LJXUH

PAGE 131

7KLV PRGHO LQGLFDWHV WKDW IRU QP SUHFLSLWDWHV WKH VWUHQJWKHQLQJ GXH WR SUHFLSLWDWLRQ VKRXOG EH UHODWLYHO\ VPDOO DERXW 03D IRU SHUFHQW FKURPLXP &RPSDULVRQ RI WKLV HVWLPDWH WR WKH DFWXDO YDOXH VKRZQ E\ WKH \LHOG VWUHQJWK SORW LQ )LJXUH LQGLFDWHV YHU\ JRRG DJUHHPHQW ZLWK WKH WKHRU\ 7KH PRGHO PD\ EH IXUWKHU LQFUHDVHG LQ DFFXUDF\ LI WKH IXOO VL]H GLVWULEXWLRQ RI SUHFLSLWDWHV LV WDNHQ LQWR DFFRXQW VLQFH KLJKHU FKURPLXP FRQWHQWV VKRXOG SURGXFH D VL]H GLVWULEXWLRQ ZKLFK LV VNHZHG WR ODUJHU GLDPHWHUV 2I FRXUVH FRQFHQWUDWLRQV LQ H[FHVV RI WKH PD[LPXP VROXELOLW\ OLPLW PLJKW EH H[SHFWHG WR GHYHORS GLIIHUHQW W\SHV RI PLFURVWUXFWXUHV LQ ZKLFK FDVH WKH PRGHO ORVHV YDOLGLW\ +RZHYHU IRU WKH DOOR\V XQGHU LQYHVWLJDWLRQ LW VKRXOG EH DQ DGHTXDWH UHSUHVHQWDWLRQ F e e -6 W A FX E RQ Z 03D G A 03D G ‘ 03D G R 03D G LI RR kkkRkrkr kRRRRRRR krk $WRP )UDFWLRQ )LJXUH 7KHRUHWLFDO 6WUHQJWKHQLQJ ,QFUHPHQW 'XH WR $OSKD&KURPLXP 3UHFLSLWDWLRQ LQ 1L$O DV D )XQFWLRQ RI &KURPLXP &RQWHQW DQG 0HDQ 3UHFLSLWDWH 'LDPHWHU *UDLQ 5HILQHPHQW 6WUHQJWKHQLQJ )LJXUH ZKLFK FRPSDUHV WKH &<6 RI H[WUXVLRQV DQG FDVWLQJV RI LGHQWLFDO FRPSRVLWLRQ LQGLFDWHV D QHDU FRQVWDQW VWUHQJWK GLIIHUHQWLDO RI WKH H[WUXVLRQV RYHU WKH FDVWLQJV RI WR 03D $VLGH IURP WH[WXUH

PAGE 132

GLIIHUHQFHV GLVFXVVHG EHORZf WKH SULPDU\ PLFURVWUXFWXUDO GLIIHUHQFH EHWZHHQ WKH H[WUXVLRQV DQG FDVWLQJV LV JUDLQ VL]H W\SLFDOO\ DQG SP UHVSHFWLYHO\ 5HFHQW ZRUN > @ KDV VKRZQ WKDW WKH \LHOG VWUHQJWK RI 1$ KDV OLWWOH GHSHQGHQFH RQ JUDLQ VL]H ZKLOH RIIVWRLFKLRPHWULF DOOR\V VXFK DV 1$ H[KLELW D VWURQJHU GHSHQGHQFH 7KH +DOO 3HWFK HTXDWLRQV GHWHUPLQHG E\ %DNHU HW DO >@ DUH 1$ *\ 03Df G 1$ *\ 03Df Gn 1$ *\ 03Df Gn 1$ *\ 03Df Gf ZKHUH G LV WKH JUDLQ VL]H LQ PLFURQV $SSO\LQJ WKH DSSURSULDWH HTXDWLRQ WR WKH 1$ DOOR\V LQ WKH FXUUHQW VWXG\ D VWUHQJWK GLIIHUHQWLDO RI DERXW 03D LV SUHGLFWHG ZKLFK LV UHDVRQDEO\ FORVH WR WKDW VKRZQ LQ )LJXUH +RZHYHU WKH RWKHU DOOR\V SDUWLFXODUO\ 1L $O&U DQG 1L$O&U DUH H[SHFWHG WR EHKDYH LQ D IDVKLRQ VLPLODU WR RII VWRLFKLRPHWULF ELQDU\ DOOR\V DQG WKHUHIRUH H[KLELW D PXFK JUHDWHU HIIHFW RI JUDLQ VL]H )RU H[DPSOH 1L$O&U FRQWDLQV DERXW RQH SHUFHQW FKURPLXP LQ VROXWLRQ UHVLGLQJ RQ WKH DOXPLQXP VLWHV 7KHUHIRUH WKH EHWD SKDVH FRQVLVWV RI DERXW SHUFHQW DOXPLQXP DQG FKURPLXPf VLWHV DQG SHUFHQW QLFNHO VLWHV $SSO\LQJ WKH +DOO3HWFK HTXDWLRQ IRU 1$ SUHGLFWV D VWUHQJWK GLIIHUHQWLDO GXH WR JUDLQ VL]H RI 03D ZKHUHDV WKH PHDVXUHG GLIIHUHQWLDO ZDV RQO\ 03D 6LPLODU DQDO\VLV RI 1L$O&U SUHGLFWV D GLIIHUHQWLDO LQ H[FHVV RI 03D LQ FRQWUDVW WR WKH PHDVXUHG GLIIHUHQFH RI 03D 7KHVH GHSDUWXUHV IURP WKH SUHGLFWHG EHKDYLRU IRU RIIVWRLFKLRPHWULF ELQDU\ 1L$O VXJJHVW WKDW WKH SUHVHQFH RI FKURPLXP LQ VROLG VROXWLRQ GHFUHDVHV WKH +DOO3HWFK VORSH 6LQFH WKH +DOO3HWFK VORSH LV D PHDVXUH RI WKH GLIILFXOW\ RI VOLS WUDQVPLWWDO DFURVV JUDLQ ERXQGDULHV LW PD\ EH WKDW FKURPLXP HQKDQFHV WKLV SURFHVV ,QGHHG WKH 7(0 REVHUYDWLRQV VXSSRUW WKLV QRWLRQ VLQFH WKH QXFOHDWLRQ RI FRQFHQWUDWHG VOLS EDQGV DW WKH JUDLQ ERXQGDULHV DSSHDUV HDVLHU LQ WKH WHUQDU\ DOOR\V ([DFWO\ KRZ WKLV PD\ EH DFFRPSOLVKHG LV

PAGE 133

RSHQ WR VSHFXODWLRQ %DNHU HW DO >@ VXJJHVWHG WKDW D UHGXFHG VORSH LV DVVRFLDWHG ZLWK FRQVWLWXWLRQDO GLVRUGHULQJ DW WKH JUDLQ ERXQGDULHV EDVHG RQ UHFHQW UHVHDUFK RI 1$, ,I VR WKLV ZRXOG EH FRQVLVWHQW ZLWK WKHRUHWLFDO SUHGLFWLRQV > @ RI WKH HIIHFW RI FKURPLXP RQ RUGHULQJ LQ 1L$O VLQFH LW LV ORJLFDO WKDW WKH FKURPLXP ZRXOG KDYH WR EH FRQFHQWUDWHG DW WKH ERXQGDU\ WR FDXVH VXFK DQ HIIHFW +RZHYHU RQJRLQJ UHVHDUFK DW WKH 1$6$ /HZLV 5HVHDUFK &HQWHU >@ KDV GHWHUPLQHG E\ VFDQQLQJ $XJHU PLFURVFRS\ WKDW FKURPLXP GRHV QRW VHJUHJDWH WR WKH JUDLQ ERXQGDULHV LQ 1L$O $QRWKHU OLNHO\ H[SODQDWLRQ LV WKDW FKURPLXP UHPRYHV LQWHUVWLWLDO VROXWH IURP WKH 1L$O PDWUL[ DQG JUDLQ ERXQGDULHV ,W LV QRW XQUHDVRQDEOH WR DVVXPH WKDW LQWHUVWLWLDO HOHPHQWV ZRXOG FRQFHQWUDWH DW WKH PRUH UHOD[HG HQYLURQPHQW RI D JUDLQ ERXQGDU\ DQG KLQGHU VOLS DFFRPPRGDWLRQ DQG WUDQVPLWWDO GXULQJ SODVWLF GHIRUPDWLRQ 7KH DGGLWLRQ RI FKURPLXP FDQ HIIHFWLYHO\ UHGXFH WKH LQWHUVWLWLDO FRQFHQWUDWLRQ LQ VROLG VROXWLRQ E\ VROXWH FOXVWHULQJ DQG E\ WKH IRUPDWLRQ RI DOSKD FKURPLXP DQG &U& FDUELGH SUHFLSLWDWHV $ ILQDO SRVVLELOLW\ LV WKDW FKURPLXP VRPHKRZ DIIHFWV WKH HTXLOLEULXP SRLQW GHIHFW SRSXODWLRQ LQ D PDQQHU ZKLFK SURPRWHV VOLS QXFOHDWLRQ DQGRU WUDQVPLWWDO 7KLV QRWLRQ LV FXUUHQWO\ UHFHLYLQJ FRQVLGHUDWLRQ E\ UHVHDUFKHUV DW *HQHUDO (OHFWULF $LUFUDIW (QJLQHV LQ UHVSRQVH WR WKH UHFHQW UHVXOWV RI YHU\ ORZ OHYHOV RI LURQ DGGLWLRQV WR 1L$O >@ 7H[WXUH (IIHFWV 7KH PDUNHG HIIHFW RI VLQJOH FU\VWDO RULHQWDWLRQ RQ PHFKDQLFDO SURSHUWLHV LQ ELQDU\ 1L$O KDV DOUHDG\ EHHQ UHIHUUHG WR LQ WKH UHYLHZ 7KLV DQLVRWURS\ LV DOVR LPSRUWDQW LQ SRO\FU\VWDOV 7KH GHYHORSPHQW RI D ILEHU WH[WXUH LQ WKH H[WUXVLRQV SODFHV WKH DYHUDJH FU\VWDO LQ D VRIW RULHQWDWLRQ WKLV FDXVHV WKH SRO\FU\VWDOOLQH DJJUHJDWH WR JHQHUDOO\ EH VRIWHU WKDQ D ]HURWH[WXUH VSHFLPHQ VXFK DV D FDVWLQJ 7KLV HIIHFW ZDV RI VRPH FRQFHUQ GXULQJ KDUGQHVV WHVWLQJ RI WKH SRO\FU\VWDOOLQH VSHFLPHQV VLQFH FHUWDLQ JUDLQV GLVSOD\HG XQXVXDOO\ ORZ RU KLJK KDUGQHVV YDOXHV 7R HVWDEOLVK WKLV RFFXUUHQFH DV DQ RULHQWDWLRQ HIIHFW DQG QRW H[SHULPHQWDO HUURU WKH PLFURKDUGQHVVHV RI 1L$O VLQJOH FU\VWDOV RI >@ >@ >@ RULHQWDWLRQV ZHUH PHDVXUHG 7KH 9LFNHUV KDUGQHVV YDOXHV ZHUH s s DQG UHVSHFWLYHO\ GHPRQVWUDWLQJ WKH HIIHFW RI RULHQWDWLRQ 8OWLPDWHO\

PAGE 134

WKH HIIHFW RI WKH ILEHU WH[WXUH LV WR GHFUHDVH WKH VWUHQJWK DQG LQFUHDVH WKH GXFWLOLW\ LQ WKLV GLUHFWLRQ DOWKRXJK WKH H[WHQW ZRXOG GHSHQG XSRQ WKH GHJUHH RI WH[WXUH &RPELQDWLRQ RI 6WUHQJWKHQLQH 0HFKDQLVPV 7KH \LHOG VWUHQJWK R\ KDV EHHQ VKRZQ WR FRQVLVW RI FRQWULEXWLRQV IURP VHYHUDO VRXUFHV WKH LQWULQVLF ODWWLFH UHVLVWDQFH DU VROLG VROXWLRQ VWUHQJWKHQLQJ GXH WR QLFNHO RQ DOXPLQXP VLWHV JQ VROLG VROXWLRQ VWUHQJWKHQLQJ GXH WR YDFDQFLHV RQ QLFNHO VLWHV JY VROLG VROXWLRQ VWUHQJWKHQLQJ GXH WR FKURPLXP RQ QLFNHO VLWHV F-FU1LL VROLG VROXWLRQ VWUHQJWKHQLQJ GXH WR FKURPLXP RQ DOXPLQXP VLWHV *FU$E VROLG VROXWLRQ VWUHQJWKHQLQJ GXH WR LQWHUVWLWLDO HOHPHQWV *c SUHFLSLWDWLRQ KDUGHQLQJ GXH WR DOSKDFKURPLXP SUHFLSLWDWLRQ *S DQG JUDLQ UHILQHPHQW VWUHQJWKHQLQJ *JV 7KH HIIHFWV RI WH[WXUH DUH QRW FRQVLGHUHG KHUH 7KDW LV 2\ *U 21L *Y 2&U1L r&U$O 2L *S *JV 7KH YDULDWLRQV LQ KDUGQHVV DQG \LHOG VWUHQJWK DV D IXQFWLRQ RI FKURPLXP FRQWHQW )LJXUHV DQG f FDQ EH ODUJHO\ DFFRXQWHG IRU E\ WKLV PRGHO 7KH SORW IRU HDFK DOOR\ VHULHV LV VFKHPDWLFDOO\ UHSUHVHQWHG LQ )LJXUH LQ ZKLFK WKH UHJLRQV $ % DQG & DUH GHVLJQDWHG WR EH UHJLRQV RI VLJQLILFDQWO\ GLIIHUHQW W\SHV RI KDUGHQLQJ +DUGHQLQJ LQ UHJLRQ $ LV DVVXPHG WR EH UDWKHU IODW GXH WR WKH JHWWHULQJ HIIHFW RI FKURPLXP IRU LQWHUVWLWLDO HOHPHQWV ,Q IDFW FKURPLXP ZLOO HIIHFWLYHO\ UHGXFH WKH FDUERQ OHYHO WR DW OHDVW n ZSSP >@ EDVHG RQ ELQDU\ HTXLOLEULD GDWD EHWZHHQ FDUERQ DQG FKURPLXP 7KH VLPXOWDQHRXV UHPRYDO RI FKURPLXP IURP VROLG VROXWLRQ ZLOO UHGXFH VROLG VROXWLRQ KDUGHQLQJ IURP FKURPLXP LQ UHJLRQ $ KRZHYHU LI FKURPLXP KDV EHHQ SXUSRVHO\ VXEVWLWXWHG IRU HLWKHU QLFNHO RU DOXPLQXP WKH DVVRFLDWHG UHGXFWLRQ RI WKHVH HOHPHQWV ZLOO SURGXFH WKHLU RZQ VWUHQJWK FRQWULEXWLRQ ,I WKH KDUGHQLQJ EHKDYLRU GXH WR LQWHUVWLWLDO FRQWHQW LV FRQVLGHUHG WR EH UHSUHVHQWHG E\ )LJXUH LW PD\ EH DVVXPHG WKDW OLWWOH FKURPLXP DFWXDOO\ HQWHUV VROLG VROXWLRQ XQWLO WKH OHYHO LV LQ H[FHVV RI SHUFHQW ZKLFK PDUNV WKH ERXQGDU\ EHWZHHQ UHJLRQV $ DQG % ,I DOO WKH FKURPLXP SULRU WR WKLV OHYHO LV SUHVHQW DV &U& WKLV HTXDWHV

PAGE 135

WR DQ LQLWLDO PDWUL[ FDUERQ OHYHO RI DERXW DSSP ZSSPf ZKLFK LV VRPHZKDW KLJKHU WKDQ WKDW LQGLFDWHG E\ WKH FKHPLFDO DQDO\VHV $WRP 3HUFHQW &KURPLXP )LJXUH 6FKHPDWLF 3ORW RI WKH 9DULDWLRQ RI +DUGQHVV
PAGE 136

DQWLVLWH RU YDFDQF\ GHIHFWV $V LQ WKH ELQDU\ FRPSRXQG DOXPLQXPULFK DOOR\V DUH DVVXPHG WR KDUGHQ E\ YDFDQFLHV EH\RQG WKH VROXELOLW\ OLPLW DQG QLFNHOULFK DOOR\V WR KDUGHQ E\ DQWLVLWH GHIHFWV %\ WKLV XQGHUVWDQGLQJ WKH DSSDUHQW KDUGHQLQJ LQWURGXFHG E\ FKURPLXP DGGLWLRQV EH\RQG WKH VROXELOLW\ OLPLW LV DFWXDOO\ GXH WR VROLG VROXWLRQ KDUGHQLQJ E\ QLFNHO DQG YDFDQF\ SRLQW GHIHFWV VLQFH SUHFLSLWDWLRQ KDUGHQLQJ KDV EHHQ VKRZQ WR KDYH OLWWOH HIIHFW VHH )LJXUH f )RU VLPSOH FRPSDULVRQ DVVXPLQJ QR LQWHUDFWLYH HIIHFWV EH\RQG WKRVH PHQWLRQHG WKH URRPWHPSHUDWXUH \LHOG VWUHQJWK YDULDWLRQ ZLWK FKURPLXP FRQWHQW PD\ EH SUHGLFWHG E\ WKLV HPSLULFDOWKHRUHWLFDO PRGHO 7KH SUHGLFWHG YDULDWLRQ IRU HDFK DOOR\ VHULHV LV VKRZQ LQ )LJXUH 7KH SRLQWV VKRZQ IRU HDFK FXUYH FRUUHVSRQG WR WKH NQRZQ LQIOHFWLRQV LQ EHKDYLRU EDVHG RQ WKH GDWD LQ )LJXUHV DQG DQG WKH VROXELOLW\ OLPLW RI FKURPLXP 7KH EHKDYLRU EHWZHHQ HDFK SORWWHG SRLQW LV DVVXPHG WR EH OLQHDU %\ FRPSDULVRQ ZLWK )LJXUHV DQG LW FDQ EH VHHQ WKDW WKHUH LV JHQHUDO DJUHHPHQW ZLWK WKH DFWXDO \LHOG VWUHQJWKV RI WKH FDVW DOOR\V 7KH DOOR\V IRU ZKLFK 1L$O O DUH WKH ORZHVW LQ VWUHQJWK ZLWK WKH &U$O DOOR\V WKH QH[W KLJKHVW DQG WKH &U1L DOOR\V WKH VWURQJHVW +RZHYHU WKHUH DUH VRPH GLIIHUHQFHV EHWZHHQ WKH FDOFXODWHG DQG H[SHULPHQWDO EHKDYLRU %\ H[DPLQLQJ WKHVH GLIIHUHQFHV LW LV HQGHDYRUHG WR XQGHUVWDQG ZKDW DGGLWLRQDO RU LQWHUDFWLYH PHFKDQLVPV PD\ EH LPSRUWDQW RU ZKDW DVVXPSWLRQV PD\ EH LQ HUURU 7KH PRVW REYLRXV GLIIHUHQFH LV WKH PDJQLWXGH RI VWUHQJWKHQLQJ GXH WR DQWLVLWH DQG YDFDQF\ GHIHFWV EH\RQG WKH VROXELOLW\ OLPLW LQ ZKLFK WKH SUHGLFWHG VWUHQJWK LQFUHPHQWV DUH DERXW WZLFH WKH DFWXDO 7KLV VXJJHVWV WKDW WKH VROLG VROXWLRQ KDUGHQLQJ GXH WR DQWLVLWH GHIHFWV DQG LQ SDUWLFXODU GXH WR YDFDQF\ GHIHFWV LV VXEVWDQWLDOO\ OHVV WKDQ WKDW LQ ELQDU\ DOOR\V 7KH UHDVRQ IRU WKH UHGXFHG KDUGHQLQJ PD\ EH WKDW FKURPLXP LQ VROXWLRQ DOWHUV WKH SRLQW GHIHFW FRQILJXUDWLRQV LQ VXFK D ZD\ DV WR DOORZ HDVLHU VOLS f§ VXFK DV YDFDQF\ FRQJUHJDWLRQ DURXQG VROXWH DWRPV 7KH VHFRQG SKDVH SUHFLSLWDWLRQ PD\ DOVR GHFUHDVH WKH \LHOG VWUHVV E\ LQFUHDVLQJ WKH QXPEHU RI GLVORFDWLRQ VRXUFHV VHPLFRKHUHQW PDWUL[SUHFLSLWDWH LQWHUIDFHV IRU LQVWDQFHf

PAGE 137

)LJXUH 3UHGLFWHG 'HSHQGHQFH RI
PAGE 138

UHODWLRQVKLSV EHWZHHQ FRPSRVLWLRQ PLFURVWUXFWXUH DQG SURSHUWLHV LQ WKHVH DOOR\V 7KH SULPDU\ VKRUWFRPLQJ LQ XQGHUVWDQGLQJ FRQFHUQV WKH UROH RI FKURPLXP LQ DIIHFWLQJ WKH W\SHV DQG FRQFHQWUDWLRQV RI SRLQW GHIHFWV ZKLFK LV EH\RQG WKH VFRSH RI WKH FXUUHQW VWXG\ 7KLV EHKDYLRU LV FRQVLVWHQW ZLWK WKH UHVXOWV RI RWKHU UHVHDUFKHUV > @ DQG LV D OLNHO\ WRSLF IRU IXWXUH ZRUN (OHYDWHG 7HPSHUDWXUH 3URSHUWLHV 7KH HOHYDWHG WHPSHUDWXUH \LHOG VWUHQJWKV RI WKH H[WUXGHG DOOR\V )LJXUH D GHSHQGHG VWURQJO\ XSRQ WHVW WHPSHUDWXUH ZLWK LQFUHDVLQJ VORSH GRG7 IRU KLJKHU FKURPLXP OHYHOV 7KLV PD\ EH XQGHUVWRRG E\ QRWLQJ WKDW WKH URRPWHPSHUDWXUH VWUHQJWK LQFUHDVHG LQ DFFRUGDQFH ZLWK WKH DUJXPHQWV DOUHDG\ VWDWHG IRU WKH +$0 FDVW DOOR\V DERYH 7KDW LV VROLG VROXWLRQ VWUHQJWKHQLQJ E\ FKURPLXP QLFNHO RU YDFDQFLHV LV SULPDULO\ UHVSRQVLEOH IRU WKH VWUHQJWK YDULDWLRQV ZLWK FRPSRVLWLRQ DVLGH IURP LQWHUVWLWLDO LPSXULWLHV )XUWKHU WKH VORSHV FRUUHODWH ZLWK WKH QLFNHOWRDOXPLQXP UDWLR )RU H[DPSOH WKH FXUYHV IRU 1L$O&U DQG 1L$OO&U DUH DSSUR[LPDWHO\ SDUDOOHO DQG ERWK RI WKHLU QLFNHOWR DOXPLQXP UDWLRV DUH HTXDO WR XQLW\ 7KH 1L$O&U DQG 1L$O&U VORSHV VFDOH ZLWK GHYLDWLRQ RI WKHLU QLFNHOWRDOXPLQXP UDWLRV IURP XQLW\ 6LQFH WKH HOHYDWHG WHPSHUDWXUH SURSHUWLHV DUH FRQWUROOHG LQ ODUJH SDUW E\ GLIIXVLRQDVVLVWHG SURFHVVHV WKLV FRUUHVSRQGHQFH LV ORJLFDO DV RIIVWRLFKLRPHWULF ELQDU\ 1L$O DOOR\V DUH NQRZQ WR GLVSOD\ HQKDQFHG GLIIXVLYLW\ UHODWLYH WR WKH VWRLFKLRPHWULF FRPSRXQG >@ 7KH HORQJDWLRQV DV D IXQFWLRQ RI WHVW WHPSHUDWXUH )LJXUH LQGLFDWH WKDW FKURPLXP LQ VROLG VROXWLRQ HOHYDWHV WKH %'77 DERXW UHODWLYH WR ELQDU\ 1L$O $V IRU WKH \LHOG VWUHQJWK FRPSDULVRQ RI WKH FXUYHV IRU 1L$O&U DQG 1L$OO&U LQGLFDWHV WKDW WKH QLFNHOWRDOXPLQXP UDWLR LV WKH SULPDU\ IDFWRU FRQWUROOLQJ WKH %'77 7KHVH DOOR\V H[KLELW WKH ORZHVW %'77 RI WKH WHUQDU\ DOOR\V ZKLOH LQFUHDVLQJ GHYLDWLRQ IURP WKLV UDWLR

PAGE 139

WHQGV WR HOHYDWH WKH WUDQVLWLRQ WHPSHUDWXUH 7KLV LV FRQVLVWHQW ZLWK 9HGXODnV >@ UHVXOWV IRU ELQDU\ 1L$O DOOR\V 7KH HOHYDWLRQ RI WKH %'77 GXH WR WKH SUHVHQFH RI FKURPLXP LQ VROLG VROXWLRQ LV UDWLRQDOL]HG LQ WHUPV RI WKH GLIIHUHQFH LQ WKH UHVSRQVH RI WKH \LHOG DQG IUDFWXUH VWUHQJWKV WR DOOR\LQJ $V VKRZQ DERYH WKH \LHOG VWUHQJWK GHSHQGV VWURQJO\ XSRQ DOOR\LQJ OHYHOV EHFDXVH WKH QDWXUH RI SODVWLF GHIRUPDWLRQ E\ VOLS GLFWDWHV D VWURQJ LQWHUDFWLRQ EHWZHHQ WKH GLVORFDWLRQ DQG VROXWH DWRP ,Q FRQWUDVW WKH IUDFWXUH VWUHQJWK LV PRUH D IXQFWLRQ RI WKH LQWULQVLF ERQGLQJ LQ WKH FRPSRXQG f§ D SURSHUW\ ZKLFK LV PXFK PRUH GLIILFXOW WR DIIHFW 6LWH 3UHIHUHQFH RI &KURPLXP 7KH SUHIHUHQFH RI FKURPLXP IRU WKH DOXPLQXP VLWH LQ WKH 1L$O VWUXFWXUH LV LQWULJXLQJ VLQFH ERWK FKURPLXP DQG QLFNHO DUH WUDQVLWLRQ PHWDOV DQG PD\ EH FRQVLGHUHG HOHFWURQLFDOO\ VLPLODU ,Q DGGLWLRQ WKH\ DUH RI VLPLODU DWRPLF VL]H ERWK EHLQJ VPDOOHU WKDQ DOXPLQXP 7KHVH IDFWRUV PLJKW OHDG RQH WR H[SHFW WKDW FKURPLXP ZRXOG VXEVWLWXWH IRU QLFNHO UDWKHU WKDQ DOXPLQXP +RZHYHU VRPH LQVLJKW LV JDLQHG ZKHQ WKH PRVW FRPPRQ YDOHQFHV RI VHYHUDO WUDQVLWLRQ HOHPHQWV DUH H[DPLQHG DV VXPPDUL]HG LQ 7DEOH 7KH FRUUHODWLRQ EHWZHHQ WKH VXEVWLWXWLRQ EHKDYLRU RI HOHPHQWV RI OLNH YDOHQFH VWURQJO\ VXJJHVWV WKDW WKH DOOR\LQJ EHKDYLRU LV FRQWUROOHG E\ HOHFWURQLF IDFWRUV VXFK DV WKH ORFDO FKDUJH LQ WKH VWUXFWXUH UDWKHU WKDQ E\ DWRPLF VL]H 7KLV EHKDYLRU LV DQDORJRXV WR RQH RI WKH +XPH5RWKHU\ UXOHV ZKLFK VWDWHV WKDW JRRG VROXELOLW\ EHWZHHQ WZR HOHPHQWV UHTXLUHV WKHP WR EH RI VLPLODU YDOHQFH LQ DGGLWLRQ WR RWKHU UHTXLUHPHQWV )URP DQRWKHU YLHZSRLQW WKH ZLGH VHSDUDWLRQ RI QLFNHO DQG DOXPLQXP LQ WKH SHULRGLF WDEOH VXJJHVWV WKDW VRPH GHJUHH RI LRQLFLW\ PD\ H[LVW LQ WKHLU ELQDU\ FRPSRXQGV ,Q VXSSRUW )X DQG @ KDYH FDOFXODWHG WKDW D VLJQLILFDQW GHJUHH RI FKDUJH WUDQVIHU IURP DOXPLQXP WR QLFNHO VKRXOG EH SUHVHQW ,I VR WKHQ WKH ORFDO DWRPLF FKDUJH VKRXOG YDU\ SHULRGLFDOO\ ZLWKLQ WKH VWUXFWXUH

PAGE 140

SURYLGLQJ VLWHV RI JUHDWHU DQG OHVVHU QHJDWLYLW\ ZKLFK DUH RQO\ DSSURSULDWH IRU HOHPHQWV ZKLFK GLVWXUE WKH UHVRQDQFH WKH OHDVW 7DEOH &RPPRQ 9DOHQFH DQG 1L$O 6XEVWLWXWLRQ %HKDYLRU RI 6HYHUDO 7UDQVLWLRQ 0HWDOV (OHPHQW &RPPRQ 9DOHQFH .QRZQ 6XEVWLWXWLRQ 1L f§ $ f§ 9 $ &U $ 0Q 1L )H 1LRU$O &R 1L &X 1LRU$O *D $

PAGE 141

&+$37(5 6800$5< $1' &21&/86,216 7KH HIIHFWV RI FKURPLXP DGGLWLRQV RQ WKH GLVORFDWLRQ VXEVWUXFWXUH PLFURVWUXFWXUH DQG PHFKDQLFDO SURSHUWLHV RI 1L$OEDVH DOOR\V KDYH EHHQ FKDUDFWHUL]HG 7KH SULPDU\ SXUSRVH RI WKH LQYHVWLJDWLRQ ZDV WR YHULI\ DQG XQGHUVWDQG WKH UHSRUWHG DELOLW\ RI WKH FKURPLXP DGGLWLRQV WR DOWHU WKH SULPDU\ VOLS V\VWHP LQ 1L$O GXULQJ URRPWHPSHUDWXUH GHIRUPDWLRQ $ WKRURXJK VWXG\ RI D ZLGH UDQJH RI FRPSRVLWLRQV DQG GLIIHUHQW SURFHVVLQJ PHWKRGV KDV LQGLFDWHG WKDW FKURPLXP KDV QR HIIHFW RQ WKH RSHUDWLYH VOLS V\VWHP LQ 1L$O +RZHYHU D VPDOO SHUFHQWDJH RI FKURPLXP LQ VROLG VROXWLRQ GRHV DSSHDU WR DIIHFW WKH QDWXUH RI SODVWLF GHIRUPDWLRQ E\ SURPRWLQJ PRUH ORFDOL]HG VOLS UHODWLYH WR VWRLFKLRPHWULF ELQDU\ 1L$O $ GHILQLWLYH FDXVH IRU WKLV HIIHFW ZDV QRW LGHQWLILHG 7KH PHFKDQLFDO EHKDYLRU RI WKH YDULRXV DOOR\V ZDV FRQVLGHUHG LQ WHUPV RI VROXWLRQ KDUGHQLQJ SUHFLSLWDWLRQ KDUGHQLQJ DQG JUDLQ UHILQHPHQW WKHRULHV 9DFDQF\ DQG DQWLVLWH SRLQW GHIHFWV LQWURGXFHG E\ GHYLDWLRQ RI WKH QLFNHOWRDOXPLQXP UDWLR IURP XQLW\ ZHUH FRQVLGHUHG WR VWUHQJWKHQ WKH DOOR\ E\ VROLG VROXWLRQ KDUGHQLQJ DQG FRQIRUPHG WR WKH REVHUYHG GHSHQGHQFH RI KDUGHQLQJ UDWH XSRQ DWRPLF VROXWH VL]H 7KH UROH RI LQWHUVWLWLDO HOHPHQWV LQ SDUWLFXODU FDUERQ LV EHOLHYHG WR EH YHU\ LPSRUWDQW DQG ZDV FRQVLGHUHG LQ HOXFLGDWLQJ WKH HIIHFW RI FKURPLXP LQ VROLG VROXWLRQ 3UHFLSLWDWLRQ KDUGHQLQJ GXH WR WKH SUHVHQFH RI DOSKDFKURPLXP SUHFLSLWDWHV DQG JUDLQ UHILQHPHQW SURGXFHG VWUHQJWKHQLQJ LQFUHPHQWV ZKLFK FRXOG EH SUHGLFWHG EDVHG RQ DFFHSWHG WKHRULHV IRU PHWDOOLF V\VWHPV 7KH \LHOG VWUHQJWK YDULDWLRQ ZLWK FKURPLXP FRQWHQW ZDV PRGHOHG EDVHG RQ WKHVH DSSURDFKHV DQG IRXQG WR JHQHUDOO\ DJUHH ZLWK H[SHULPHQWDO YDULDWLRQV 7KH PDMRU GLVFUHSDQF\ EHWZHHQ SUHGLFWHG DQG REVHUYHG EHKDYLRU VXJJHVWV WKDW FKURPLXP PD\ UHGXFH WKH GHJUHH RI DQWLVLWH

PAGE 142

DQG YDFDQF\ KDUGHQLQJ XVXDOO\ REVHUYHG LQ WKH ELQDU\ FRPSRXQG SHUKDSV E\ VRPH W\SH RI GHIHFW JHWWHULQJ SURFHVV %DVHG RQ WKH UHVXOWV RI WKLV LQYHVWLJDWLRQ WKH IROORZLQJ FRQFOXVLRQV DUH SXW IRUWK 7KH DGGLWLRQ RI FKURPLXP WR 1L$O GRHV QRW DIIHFW WKH RFFXUUHQFH RI WKH SULPDU\ %XUJHUV YHFWRU +RZHYHU LW GRHV SURPRWH PRUH ORFDOL]HG VOLS SHUKDSV E\ DOWHULQJ WKH SRLQW GHIHFW GLVWULEXWLRQ 3URFHVVLQJ WR SURGXFH D ILQHU JUDLQ VL]H PDUJLQDOO\ LQFUHDVHV WKH QXPEHU RI GLVORFDWLRQV ZLWK %XUJHUV YHFWRUV DSSDUHQWO\ GXH WR UHDFWLRQV EHWZHHQ GLIIHUHQW XQLW GLVORFDWLRQV ZLWKLQ WKH VDPH JUDLQ $OWKRXJK WKH SUHVHQFH RI ERWK RI WKHVH %XUJHUV YHFWRUV PD\ VDWLVI\ WKH YRQ 0LVHV FULWHULRQ WKH RFFXUUHQFH DQG PRELOLW\ RI WKH GLVORFDWLRQV ZLWK %XUJHUV YHFWRUV DUH FRQVLGHUHG UHVWULFWHG E\ WKH UHTXLUHPHQW RI D UHDFWLRQ LH WKH\ DUH QRW LQGHSHQGHQWO\ QXFOHDWHG 6ROLG VROXWLRQ KDUGHQLQJ E\ YDULRXV SRLQW GHIHFWV LV D PDMRU VRXUFH RI VWUHQJWKHQLQJ LQ 1L$OEDVH DOOR\V 7KH GHJUHH RI KDUGHQLQJ LV D IXQFWLRQ RI WKH GHIHFW VL]H ZLWKLQ WKH FRPSRXQG 7KH VWUHQJWKHQLQJ LQFUHPHQW GXH WR SUHFLSLWDWLRQ RI DOSKDFKURPLXP LV DPHQDEOH WR WUHDWPHQW E\ FODVVLFDO WKHRU\ IRU PHWDOOLF PDWHULDOV 6LWH SUHIHUHQFH RI VXEVWLWXWLRQDO VROXWH DWRPV RQ WKH 1L$O ODWWLFH FRUUHODWHV ZHOO ZLWK WKH FRPPRQ YDOHQFH RI WKH VROXWH 7KDW LV HOHPHQWV ZLWK D YDOHQFH RI WZR XVXDOO\ SUHIHU WKH QLFNHO VLWH ZKLOH HOHPHQWV ZLWK D YDOHQFH RI WKUHH VXFK DV FKURPLXP SUHIHU WKH DOXPLQXP VLWH

PAGE 143

$33(1',; $ 758( 675(66758( 675$,1 &859(6 6KRZQ EHORZ DUH FRPSUHVVLYH WUXH VWUHVVWUXH VWUDLQ GDWD IRU 1$ 1$ O&U DQG 1L$O&U LQ ERWK FDVW DQG KRPRJHQL]HG DQG FDVW DQG H[WUXGHG FRQGLWLRQV 7KHVH FXUYHV DUH W\SLFDO IRU XQDOOR\HG VWRLFKLRPHWULF 1L$O VLQJOH SKDVH WHUQDU\ 1L$O FRQWDLQLQJ FKURPLXP DQG 1L$O FRQWDLQLQJ DOSKDFKURPLXP SUHFLSLWDWLRQ 7UXH 6WUDLQ )LJXUH $O 7UXH 6WUHVV7UXH 6WUDLQ &XUYHV IRU 1$

PAGE 144

7UXH 6WUDLQ )LJXUH $ 7UXH 6WUHVV7UXH 6WUDLQ &XUYHV IRU 1L$OO&U )LJXUH $ 7UXH 6WUHVV7UXH 6WUDLQ &XUYHV IRU 1L$O&U

PAGE 145

$33(1',; % 5$: %85*(56 9(&725 $1$/<6,6 '$7$ 7DEXODWHG EHORZ DUH WKH UDZ GDWD GHULYHG IURP WKH GLVORFDWLRQ %XUJHUV YHFWRU DQDO\VHV RI WKH YDULRXV DOOR\V LQ WKLV VWXG\ (DFK URZ FRUUHVSRQGV WR D VLQJOH VHW RI 7(0 SODWHV IURP ZKLFK DERXW WR GLVORFDWLRQV ZHUH DQDO\]HG 7KH VSHFLILF QXPEHUV RI HDFK %XUJHUV YHFWRU W\SH DUH LQ WKH ILIWK VL[WK DQG VHYHQWK FROXPQV ,Q VRPH LQVWDQFHV DOO GLVORFDWLRQV LQ D VLQJOH DUHD LPDJHG LQ DQ LGHQWLFDO IDVKLRQ KDG WKH VDPH %XUJHUV YHFWRUf DOWKRXJK WKH GLVORFDWLRQ ZDV WRR KLJK IRU DQ DFFXUDWH FRXQW 7KHVH ZHUH DFFRXQWHG IRU E\ DVVXPLQJ WKDW DW OHDVW GLVORFDWLRQV ZHUH YLVLEOH LQ WKH ILHOG RI YLHZ DQG DUH UHFRUGHG EHORZ DV VXFK $OOR\ &RQG b 'HI )LOP ! 'LVWULEXWLRQ 1L$&U +$0 GHQVH EDQGV 1L$&U +$0 KRPRJ GLIIXVH DOO 1L$&U +$0 PRG GHQVLW\ KRPRJ 1L$&U ;$3 SSWV SLQQLQJ GLVO 1$* ;$3 KRPRJHQHRXV 1L$&U ;$3 KRPRJ PRGH GHQVLW\ 1L$&U ;$3 KRPRJ GLIIXVH VOLS EDQGV 1L$&U +$0 KRPRJ 1L$&U +$0 KRPRJ DOO 1L$&U +$0 PRG GHQVLW\ KRPRJ 1L$OO&U +$0 KRPRJ VSDUVH 1L$&U $0 ! VOLS EDQGV 1L$&U $0 VOLS EDQGV 1L$&U $0 VOLS EDQGV 1L$&U $0 GLIIXVH VOLS EDQGV 1L$&U +$0 KRPRJ 1$ +$0 VSDUVH KRPRJ 1L$&U +$0 KRPRJ DOO 1L$&U +$0 PRG GHQVLW\ KRPRJ 1L$&U ;9,0 KRPRJ VSDUVH 1L$&U ;9,0 GLIIXVH VOLS EDQGV 1L$&U ;9,0 VOLS EDQGV KRPRJ 1L$&U ;9,0 GLIIXVH EDQGV KRPRJ 1L$&U ;9,0 PRG GHQVH GLIIXVH EDQGV 1L$OO&U +$0 KRPRJ 1L$OO&U ;9,0 ! VOLS EDQGV 1L$OO&U ;9,0 GLIIXVH VOLS EDQGV

PAGE 146

$OOR\ 1L$OO&U 1L$OO&U 1L$OO&U 1L$OO&U 1L$OO&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 1$ 1$ 1$ 1$ 1$ 1$ 1$ 1$ 1$ 1$ 1$ 1L$OO&U 1L$OO&U 1L$OO&U 1L$&U 1L$&U 1L$&U 1L$&U 1L$&U 3t: DOOR\ $33(1',; %f§&RQWLQXHG &RQG b 'HI )LOP ! 'LVWULEXWLRQ ;9,0 VOLS EDQGV ;9,0 VOLS EDQGV KRPRJ ;9,0 PRG GHQVLW\ VOLS EDQGV KRPRJ ;9,0 PRG GHQVH KRPRJ +$0 VOLS EDQGV KRPRJ +$0 GLIIXVH VOLS EDQGV +$0 GLIIXVH VOLS EDQGV +$0 PRG GHQVLW\ KRPRJ +$0 PRG GHQVLW\ KRPRJ ;9,0 VSDUVH KRPRJ ;9,0 VSDUVH VOLS EDQGV ;9,0 GLIIXVH VOLS EDQGV WHQVLOH VW FXW ;9,0 GLIIXVH VOLS EDQGV WHQVLOH QG FXW ;9,0 VOLS EDQGV ;9,0 PRG GHQVH VOLS EDQGV ;9,0 GHQVH ;9,0 GHQVH ;9,0 +$0 GLIIXVH EDQGV +$0 GLIIXVH EDQGV +$0 GLIIXVH EDQGV ;9,0 KRPRJ VKDUSO\ EHQW ORZ GHQVLW\ ;9,0 KRPRJ VKDUSO\ EHQW ORZ GHQVLW\ ;9,0 KRPRJ VKDUSO\ EHQW ORZ GHQVLW\ ;9,0 KRPRJ ;9,0 EDQGV KRPRJ QR ORRSV EHQW ;9,0 URXJK EDQGV KRPRJ ;9,0 URXJK EDQGV KRPRJ ;9,0 KRPRJ +$0 KRPRJ +$0 KRPRJ +$0 KRPRJ +$0 KRPRJ +$0 PRG GHQVLW\ KRPRJ WDQJOHV +$0 VSDUVH KRPRJ GLVO QHWV RQ SSWV +$0 VSDUVH KRPRJ GLVOORRSV QHWV +$0 VSDUVH KRPRJ DOO $0 KLJK GHQVLW\ KRPJ SSW ORRSV

PAGE 147

5()(5(1&(6 $, 7DXE DQG 5/ )OHLVFKHU ,QWHUPHWDOOLF &RPSRXQGV IRU +LJK 7HPSHUDWXUH 6WUXFWXUDO 8VH 6FLHQFH YRO SS 5( 7UHVVOHU -5 +HOOPDQQ DQG +7 +DKQ $GYDQFHG +LJK 7HPSHUDWXUH &RPSRVLWH 0DWHULDOV IRU (QJLQH $SSOLFDWLRQV 5HSRUW 1R &$0 7KH &HQWHU IRU $GYDQFHG 0DWHULDOV 3HQQV\OYDQLD 6WDWH 8QLYHUVLW\ :DONHU %XLOGLQJ 'HF 5 'DUROLD 1L$O $OOR\V IRU +LJK7HPSHUDWXUH 6WUXFWXUDO $SSOLFDWLRQV -20 YRO SS .+ +DKQ DQG 9HGXOD 5RRP 7HPSHUDWXUH 7HQVLOH 'XFWLOLW\ LQ 3RO\FU\VWDOOLQH % 1L$O 6FULSWD 0HWDOO YRO SS %DNHU DQG 35 0XQURH ,PSURYLQJ ,QWHUPHWDOOLF 'XFWLOLW\ DQG 7RXJKQHVV -20 YRO SS (0 *UDOD ,QYHVWLJDWLRQ RI WKH 1L$O 3KDVH RI 1LFNHO$OXPLQXP $OOR\V 5HSRUW 1R 71 1DWLRQDO $GYLVRU\ &RPPLWWHH IRU $HURQDXWLFV &OHYHODQG 2KLR -DQ 57 3DVFRH DQG &:$ 1HZH\ 7KH 0HFKDQLFDO %HKDYLRXU RI WKH ,QWHUPHGLDWH 3KDVH 1L$O 0HWDO 6FL YRO SS 9HGXOD .+ +DKQ DQG % %RXORJQH 5RRP 7HPSHUDWXUH 7HQVLOH 'XFWLOLW\ LQ 3RO\FU\VWDOOLQH % 1L$O LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS $ %DOO DQG 5( 6PDOOPDQ 7KH 2SHUDWLYH 6OLS 6\VWHP DQG *HQHUDO 3ODVWLFLW\ RI1L$OQ $FWD 0HWDOO YRO SS 0+ /RUHWWR DQG 5:DVLOHZVNL 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ RI 3ODVWLFDOO\ 'HIRUPHG 6LQJOH &U\VWDOV RI 1L$O LQ 7KH 6WUHQJWK RI 0HWDOV DQG $OOR\V $PHULFDQ 6RFLHW\ IRU 0HWDOV 0HWDOV 3DUN 2KLR SS 57 3DVFRH DQG &:$ 1HZH\ 'HIRUPDWLRQ 3URFHVVHV LQ WKH ,QWHUPHGLDWH 3KDVH 1L$O 0HWDO 6FL YRO SS *: *URYHV DQG $ .HOO\ ,QGHSHQGHQW 6OLS 6\VWHPV LQ &U\VWDOV 3KLO 0DJ YRO SS

PAGE 148

5 9RQ 0LVHV 0HFKDQLFV RI 3ODVWLF )RUP &KDQJH RI &U\VWDOV = $QJHZ 0DWK 0HFK YRO SS 5 'DUROLD ') /DKUPDQ 5' )LHOG DQG $)UHHPDQ $OOR\ 0RGHOLQJ DQG ([SHULPHQWDO &RUUHODWLRQ IRU 'XFWLOLW\ (QKDQFHPHQW LQ 1L$O LQ +LJK 7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS && /DZ DQG 0%ODFNEXUQ 5DSLGO\ 6ROLGLILHG /LJKWZHLJKW 'XUDEOH 'LVN 0DWHULDO 5HSRUW 1R ('*3' )5 8QLWHG 7HFKQRORJLHV &RUS 3UDWW DQG :KLWQH\ *URXS 6HS '% 0LUDFOH 6 5XVVHOO DQG && /DZ 6OLS 6\VWHP 0RGLILFDWLRQ LQ 1L$O LQ +LJK 7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS 60 0HUFKDQW DQG 05 1RWLV $ 5HYLHZ &RQVWLWXWLRQ RI WKH $O&U1L 6\VWHP 0DWHU 6FL (QJ YRO SS 5' )LHOG ') /DKUPDQ DQG 5 'DUROLD 7KH (IIHFW RI $OOR\LQJ RQ 6OLS 6\VWHPV LQ >@ 2ULHQWHG 1L$O 6LQJOH &U\VWDOV $FWD 0HWDOO WR EH SXEOLVKHG $%UDGOH\ DQG $ 7D\ORU $Q ;5D\ $QDO\VLV RI WKH 1LFNHO$OXPLQLXP 6\VWHP 3URF 5R\ 6RF /RQGRQ 8. YRO $ SS 3 *HRUJRSRXORV DQG -% &RKHQ 7KH 'HIHFW $UUDQJHPHQW LQ 1RQ 6WRLFKLRPHWULFf 3n1L$O $FWD 0HWDOO YRO SS +& /LX ( &KDQJH DQG 7( 0LWFKHOO ,QYHVWLJDWLRQV RI 'HIHFWLYH 1L$O E\ 7UDQVPLVVLRQ (OHFWURQ 0LFURVFRS\ LQ WK $QQ 3URF (OHFWURQ 0LFURVFRS\ 6RF $PHU *: %DLOH\ HG $WODQWD *HRUJLD SS 7% 0DVVDOVNL %LQDU\ $OOR\ 3KDVH 'LDJUDPV $PHULFDQ 6RFLHW\ IRU 0HWDOV 0HWDOV 3DUN 2KLR SS -+ :HVWEURRN 7HPSHUDWXUH 'HSHQGHQFH RI +DUGQHVV RI WKH (TXL $WRPLF ,URQ *URXS $OXPLQLGHV (OHFWURFKHP 6RF YRO SS )%UHPHU 0 %H\VV ( .DUWKDXV $ +HOOZLJ 6FKREHU 7 -0 :HOWHU DQG : + ([SHULPHQWDO $QDO\VLV RI WKH 1L$O 3KDVH 'LDJUDP &U\VW *URZWK YRO SS 06 3HWUXVKHYVNLL (6 /HYLQ DQG 39 *HOnG 9LVFRVLW\ DQG ,QWHUDWRPLF ,QWHUDFWLRQ (QHUJ\ LQ 1LFNHO$OXPLQLXP 0HOWV 5XVV RI 3K\V &KHP YRO SS 0&RRSHU 7KH (OHFWURQ 'LVWULEXWLRQ LQ WKH 3KDVHV &R$O DQG 1L$O 3KLO 0DJ YRO SS

PAGE 149

$* )R[ DQG 0$ 7DEEHUQRU 7KH %RQGLQJ &KDUJH 'HQVLW\ RI 3n1L$O $FWD 0HWDOO YRO SS &/ )X DQG 0+
PAGE 150

(0 6FKXOVRQ 7KH (IIHFWV RI *UDLQ 6L]H RQ WKH )ORZ DQG )UDFWXUH RI /RQJ5DQJH 2UGHUHG $OOR\V LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V && .RFK &7 /LX DQG 16 6WRORII HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS %DNHU 7KH 6WUXFWXUH DQG 3URSHUWLHV RI *UDLQ %RXQGDULHV LQ % 2UGHUHG $OOR\V 5HSRUW 1R *UDQW 1R '()*(5 'DUWPRXWK &ROOHJH 7KD\HU 6FKRRO RI (QJLQHHULQJ +DQRYHU 1+ $SULO 5 %RKQ 7 +DXEROG 5 %LUULQJHU DQG + *OHLWHU 1DQRFU\VWDOOLQH ,QWHUPHWDOOLF &RPSRXQGV $Q $SSURDFK WR 'XFWLOLW\" 6FULSWD 0HWDOO 0DWHU YRO SS 0 'ROODU 3 1DVK 6 '\PHN DQG 6+ZDQJ 0LFURVWUXFWXUH 3ODVWLF 'HIRUPDWLRQ DQG 0HFKDQLFDO 3URSHUWLHV RI 0HFKDQLFDOO\ $OOR\HG 1/$ DQG 1L$O %DVHG $OOR\V 5HSRUW 1R ,OOLQRLV ,QVWLWXWH RI 7HFKQRORJ\ 0HWDOOXUJLFDO DQG 0DWHULDOV (QJLQHHULQJ 'HSDUWPHQW ,,7 &HQWHU &KLFDJR ,/ $SULO 6 ,VKL\DPD 0 (WR + +RVRGD 7 0LVKLPD DQG 7 6X]XNL (IIHFW RI 1RQ6WRLFKLRPHWU\ DQG 7HUQDU\ $GGLWLRQV RQ WKH 0HFKDQLFDO 3URSHUWLHV LQ 1L$O DW (OHYDWHG 7HPSHUDWXUH LQ 3URF RI ,QWHU 6\PS RQ ,QWHUPHWDOOLF &RPSRXQGV 6WUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV -,0,6 2 ,]XPL HGV -DSDQ ,QVWLWXWH RI 0HWDOV 6HQGDL -DSDQ SS :$ .D\VVHU 5 /DDJ -& 0XUUD\ DQG *( 3HW]RZ ,PSURYHPHQW RI 301L$O E\ 7L DQG 1E $GGLWLRQV ,QWHU 3RZGHU 0HWDOO YRO SS 6DVDNL 0 0RULQDJD DQG 1
PAGE 151

') /DKUPDQ 5' )LHOG DQG 5 'DUROLD 7KH (IIHFW RI 6WUDLQ 5DWH RQ WKH 0HFKDQLFDO 3URSHUWLHV RI 6LQJOH &U\VWDO 1L$O LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,9 /$ -RKQVRQ '3 3RSH DQG -2 6WLHJOHU HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS + -DFREL % 9DVVRV DQG +(QJHOO (OHFWULFDO 3URSHUWLHV RI 3KDVH 1L$O 3K\V &KHP 6ROLGV YRO SS + -DFREL DQG 5 6WDKO 2SWLFDO 3URSHUWLHV RI 7HUQDU\ (OHFWURQ 3KDVHV EDVHG RQ 1L$O 3K\V &KHP 6ROLGV YRO SS $+ &RWWUHOO 7KHRU\ RI %ULWWOH )UDFWXUH LQ 6WHHO DQG 6LPLODU 0HWDOV 7UDQV 0HWDOO 6RF $,0( YRO SS 6+ZDQJ 3 1DVK 0 'ROODU DQG 6 '\PHN 0LFURVWUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV RI 0HFKDQLFDOO\ $OOR\HG 1L$O LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,9 /$ -RKVRQ '3 3RSH DQG -2 6WLHJOHU HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS 5:DVLOHZVNL 65 %XWOHU DQG -( +DQORQ 3ODVWLF 'HIRUPDWLRQ RI 6LQJOH&U\VWDO 1L$O 7UDQV 0HWDOO 6RF $,0( YRO SS (0 6DYLWVNLL *6 %XUNKDQRY DQG ,0 =DOLYLQ 6WUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV RI 1L$O &RPSRXQG LQ 3RO\FU\VWDOOLQH DQG 0RQRFU\VWDOOLQH 6WDWHV YRO SS 5' )LHOG ') /DKUPDQ DQG 5 'DUROLD 6OLS 6\VWHPV LQ >@ 2ULHQWHG 1L$O 6LQJOH &U\VWDOV $FWD 0HWDOO WR EH SXEOLVKHG 5' )LHOG ') /DKUPDQ DQG 5 'DUROLD 5RRP 7HPSHUDWXUH 'HIRUPDWLRQ LQ 6RIW 2ULHQWDWLRQ 1L$O 6LQJOH &U\VWDOV LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,9 /$ -RKQVRQ '3 3RSH DQG -2 6WLHJOHU HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS %DNHU DQG 35 0XQURH 3URSHUWLHV RI % &RPSRXQGV LQ +LJK 7HPSHUDWXUH $OXPLQLGHV DQG ,QWHUPHWDOOLFV 6+ 6KDQJ &7 /LX '3 3RSH DQG -2 6WLHJOHU (GV 7KH 0LQHUDOV 0HWDOV t 0DWHULDOV 6RFLHW\ SS (3 /DXWHQVFKODJHU 7 +XJKHV DQG -2 %ULWWDLQ 6OLS LQ +DUG6SKHUH &V&O 0RGHOV $FWD 0HWDOO YRO SS ', 3RWWHU 3UHGLFWLRQ RI WKH 2SHUDWLYH 6OLS 6\VWHP LQ &V&O 7\SH &RPSRXQGV XVLQJ $QLVRWURSLF (ODVWLFLW\ 7KHRU\ 0DWHU 6FL (QJ YRO SS :$ 5DFKLQJHU DQG $+ &RWWUHOO 6OLS LQ &U\VWDOV RI WKH &DHVLXP &KORULGH 7\SH $FWD 0HWDOO YRO SS

PAGE 152

5' 1RHEH 55 %RZPDQ -7 .LP DQG 5 *EDOD 7KH 3RWHQWLDO IRU 'XFWLOLW\ (QKDQFHPHQW IURP 6XUIDFH DQG ,QWHUIDFH 'LVORFDWLRQ 6RXUFHV LQ 1L$O LQ +LJK 7HPSHUDWXUH $OXPLQLGHV DQG ,QWHUPHWDOOLFV 6+ :KDQJ &7 /LX '3 3RSH DQG -2 6WLHJOHU (GV 7KH 0LQHUDOV 0HWDOV t 0DWHULDOV 6RFLHW\ :DUUHQGDOH 3HQQV\OYDQLD SS 57 3DVFRH DQG &:$ 1HZH\ 'HIRUPDWLRQ 0RGHV RI WKH ,QWHUPHGLDWH 3KDVH 1L$O 3K\V 6WDWH 6RO YRO SS 0+ /RUHWWR DQG 5:DVLOHZVNL 6OLS 6\VWHPV LQ 1L$O 6LQJOH &U\VWDOV DW DQG 3KLO 0DJ YRO SS *0 5RZH ,QJUDP DQG 35 6WUXWW 7KH 2SHUDWLYH *OLGH 6\VWHPV LQ 1L$O GXULQJ +LJK 7HPSHUDWXUH 'HIRUPDWLRQV LQ 7ZHQW\1LQWK $QQXDO 0HHWLQJ RI WKH (OHFWURQ 0LFURVFRS\ 6RFLHW\ RI $PHULFD &$UFHQHDX[ HGV &ODLWRUnV 3XEOLVKLQJ 'LYLVLRQ %DWRQ 5RXJH /RXLVLDQD SS 55 %RZPDQ 5' 1RHEH 69 5DM DQG ,( /RFFL &RUUHODWLRQ RI 'HIRUPDWLRQ 0HFKDQLVPV ZLWK WKH 7HQVLOH DQG &RPSUHVVLYH %HKDYLRU RI 1L$O DQG 1L$O=Uf ,QWHPHWDOOLF $OOR\V 0HWDOO 7UDQV $ LQ SUHVV (3 %XVVR <3 /LX )$ 0F&OLQWRFN DQG 60 $OOHQ 6WDEOH &RQILJXUDWLRQV RI 'LVORFDWLRQV LQ +RPRJHQL]HG 1LFNHODOXPLQLGH 6LQJOH &U\VWDOV 3KLO 0DJ $ WR EH SXEOLVKHG 3 9H\VVLHUH DQG 5 1RHEH :HDN%HDP 6WXG\ RI 6XSHUODWWLFH 'LVORFDWLRQV LQ 1L$O 3KLO 0DJ /HW LQ SUHVV 7 +RQJ DQG $)UHHPDQ (IIHFW RI $QWLSKDVH %RXQGDULHV RQ WKH (OHFWURQLF 6WUXFWXUH DQG %RQGLQJ &KDUDFWHU RI ,QWHUPHWDOOLF 6\VWHPV 1L$O 3K\V 5HY % YRO SS '. 3DWULFN .0 &KDQJ '% 0LUDFOH DQG +$ /LSVLWW %XUJHUV 9HFWRU 7UDQVLWLRQ LQ )H$O1L $OOR\V LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,9 /$ -RKQVRQ '3 3RSH DQG -2 6WLHJOHU HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS -' &RWWRQ 0.DXIPDQ DQG 5' 1RHEH $ 6LPSOLILHG 0HWKRG IRU 'HWHUPLQLQJ WKH 1XPEHU RI ,QGHSHQGHQW 6OLS 6\VWHPV LQ &U\VWDOV 6FULSWD 0HWDOO 0DWHU YRO SS .0 &KDQJ 5 'DUROLD DQG +$ /LSVLWW )UDFWXUH RI % $OXPLQLGH 6LQJOH &U\VWDOV LQ +LJK 7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,9 HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS -+ :HVWEURRN DQG '/ :RRG $ 6RXUFH RI *UDLQ%RXQGDU\ (PEULWOHPHQW LQ ,QWHUPHWDOOLFV ,QVW 0HWDOV YRO SS

PAGE 153

09 =HOOHU 5' 1RHEH DQG ,( /RFFL *UDLQ %RXQGDU\ 6HJUHJDWLRQ 6WXGLHV RI 1L$O DQG 1L$O=Uf 8VLQJ $XJHU (OHFWURQ 6SHFWURVFRS\ LQ UG +,7(03 5HYLHZ HGV 1$6$ /HZLV 5HVHDUFK &HQWHU &OHYHODQG 2KLR SDSHU 3HWWRQ DQG )DUNDV *UDLQ %RXQGDU\ 6WUXFWXUH 6LPXODWLRQV LQ % 2UGHUHG 1L$O 6FULSWD 0HWDOO YRO SS 5' 1RHEH DQG -' &RWWRQ XQSXEOLVKHG UHVHDUFK 5 'DUROLD *HQHUDO (OHFWULF $LUFUDIW (QJLQHV &LQFLQQDWL 2+ XQSXEOLVKHG UHVHDUFK 5' )LHOG 5 'DUROLD DQG ') /DKUPDQ 3UHFLSLWDWLRQ LQ 1L$O1L$O7L $OOR\V 6FULSWD 0HWDOO YRO SS 9HGXOD 9 3DWKDUH $VODQLGLV DQG 5+ 7LWUDQ $OOR\V %DVHG 2Q 1L$O IRU +LJK 7HPSHUDWXUH $SSOLFDWLRQV LQ +LJK 7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS 0 7DNH\DPD DQG &7 /LX 0LFURVWUXFWXUHV DQG 0HFKDQLFDO 3URSHUWLHV RI 1L$O1L$O+I $OOR\V 0DWHU 5HV YRO SS 9$ 5DPDQ DQG 6FKXEHUW 2Q WKH &U\VWDO 6WUXFWXUH RI 6RPH $OOR\ 3KDVHV 5HODWHG WR 7/$ ,,, ,QYHVWLJDWLRQ LQ 6HYHUDO 71L$O DQG 7&X$O $OOR\ 6\VWHPV 77UDQVLWLRQ (OHPHQWf = 0HWDOONGH YRO SS 3: 3HOOHJULQL DQG -+XWWD ,QYHVWLJDWLRQV RI 3KDVH 5HODWLRQV DQG (XWHFWLF 'LUHFWLRQDO 6ROLGLILFDWLRQ RQ WKH 1L$O9 -RLQ &U\V *URZWK YRO SS 3 1DVK DQG :: /LDQJ 3KDVH (TXLOLEULD LQ WKH 1L$O7L 6\VWHP DW 0HWDO 7UDQV $ YRO $ SS 3* 1DVK 9 9HMLQV DQG :: /LDQJ 7KH $O1L7L $OXPLQXP1LFNHO 7LWDQLXPf 6\VWHP %XOOHWLQ RI $OOR\ 3KDVH 'LDJUDPV YRO SS 3 9LOODUV DQG /' &DOYHUW 3HDUVRQnV +DQGERRN RI &U\VWDOORJUDSKLF 'DWD IRU ,QWHUPHWDOOLF 3KDVHV $PHULFDQ 6RFLHW\ IRU 0HWDOV 0HWDOV 3DUN 2KLR 35 6XEUDPDQLDQ 0* 0HQGLUDWWD '% 0LUDFOH DQG '0 'LPLGXN 0LFURVWUXFWXUHV DQG 0HFKDQLFDO 3URSHUWLHV RI 1L$O0R ,Q6LWX (XWHFWLF &RPSRVLWHV LQ ,QWHUPHWDOOLF 0DWUL[ &RPSRVLWHV '/ $QWRQ 3/ 0DUWLQ '% 0LUDFOH DQG 5 0F0HHNLQJ HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS ( 6WRYHU (IIHFWV RI $OOR\LQJ DQG 'HIRUPDWLRQ 3URFHVVLQJ RQ 0HFKDQLFDO %HKDYLRU RI 1L$O 3DUW 9,, 9ROXPH ,, 5HSRUW 1R :$'& 7'5 *HQHUDO (OHFWULF &RPSDQ\ 6HSWHPEHU

PAGE 154

'3 0DVRQ '& 9DQ $NHQ DQG -* :HEEHU 0LFURVWUXFWXUDO 6WXGLHV RI 1L$O DQG D5H &RPSRVLWHV 3URGXFHG E\ (XWHFWLF 6ROLGLILFDWLRQ LQ ,QWHUPHWDOOLF 0DWUL[ &RPSRVLWHV '/ $QWRQ 3/ 0DUWLQ '% 0LUDFOH DQG 5 0F0HHNLQJ HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS ,( /RFFL 5' 1RHEH -$ 0RVHU '6 /HH DQG 0 1DWKDO 3URFHVVLQJ DQG 0LFURVWUXFWXUH RI 0HOW 6SXQ 1L$O $OOR\V LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS -' &RWWRQ 0.DXIPDQ DQG 5' 1RHEH &RQVWLWXWLRQ RI 3VHXGRELQDU\ +\SRHXWHFWLF 31L$O D9 $OOR\V 6FULSWD 0HWDOO HW 0DWHU YRO SS 5' 1RHEH )5LW]HUW $ 0LVUD DQG 5 *LEDOD 3URVSHFWV IRU 'XFWLOLW\ DQG 7RXJKQHVV (QKDQFHPHQW RI 1L$O E\ 'XFWLOH 3KDVH 5HLQIRUFHPHQW 5HSRUW 1R 1$6$ /HZLV 5HVHDUFK &HQWHU &OHYHODQG 2KLR -XO\ :2 $OH[DQGHU &RSSHU5LFK 1LFNHO$OXPLQLXP&RSSHU $OOR\V 3DUW ,,f§7KH &RQVWLWXWLRQ RI WKH &RSSHU1LFNHO5LFK $OOR\V ,QVW RI 0HWDOV YRO SS :3 $OOHQ -& )ROH\ 5) &RRSHU DQG -+ 3HUHSH]NR 'HFRPSRVLWLRQ 5HDFWLRQV DQG 7RXJKHQLQJ LQ 1L$O&X $OOR\V LQ ,QWHUPHWDOOLF 0DWUL[ &RPSRVLWHV '/ $QWRQ 3/ 0DUWLQ '% 0LUDFOH DQG 5 0F0HHNLQJ HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS &5 $XVWLQ DQG $0XUSK\ 7KH 7HUQDU\ 6\VWHP RI &RSSHU $OXPLQLXP1LFNHO ,QVW 0HWDO YRO SS -XQJ DQG 6DXWKRII &UHHS %HKDYLRXU RI WKH ,QWHUPHWDOOLF % 3KDVH 1L)Hf$O ZLWK 6WUHQJWKHQLQJ 6RIW 3UHFLSLWDWHV = 0HWDOONGH YRO SS 6DXWKRII 0HFKDQLFDO 3URSHUWLHV RI ,QWHUPHWDOOLFV DW +LJK 7HPSHUDWXUHV LQ +LJK 7HPSHUDWXUH $OXPLQLGHV t ,QWHUPHWDOOLFV 6+ :KDQJ &7 /LX &7 3RSH DQG -2 6WLHJOHU HGV 7KH 0LQHUDOV 0HWDOV t 0DWHULDOV 6RFLHW\ :DUUHQGDOH 3HQQV\OYDQLD SS 9* 5LYOLQ DQG *9 5D\QRU 3KDVH (TXLOLEULD LQ ,URQ 7HUQDU\ $OOR\V &ULWLFDO (YDOXDWLRQ RI &RQVWLWXWLRQ RI $OXPLQLXP,URQ1LFNHO 6\VWHP ,QW 0HW 5HY YRO SS '5 3DQN 09 1DWKDO DQG '$ .RVV 'HIRUPDWLRQ %HKDYLRU RI 1L$O %DVHG $OOR\V &RQWDLQLQJ ,URQ &REDOW DQG +DIQLXP LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS '&KDNUDEDUWL 3KDVH 6WDELOLW\ LQ 7HUQDU\ 6\VWHPV RI 7UDQVLWLRQ (OHPHQWV ZLWK $OXPLQXP 0HWDOO 7UDQV % YRO % SS

PAGE 155

, %DNHU 3 1DJSDO 6 *XKD DQG -$ +RUWRQ 7(0 ,Q6LWX 6WUDLQLQJ RI % &RPSRXQGV LQ 3URF ,QWHU 6\PS RQ ,QWHUPHWDOOLF &RPSRXQGV 6WUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV -,0,6 2 ,]XPL HGV -DSDQ ,QVWLWXWH RI 0HWDOV 6HQGDL -DSDQ SS .RVWUXEDQLF '$ .RVV ,( /RFFL DQG 0 1DWKDO 2Q ,PSURYLQJ WKH )UDFWXUH 7RXJKQHVV RI D 1L$O%DVHG $OOR\ E\ 0HFKDQLFDO $OOR\LQJ LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLFV ,9 /$ -RKQVRQ '3 3RSH DQG -2 6WLHJOHU HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS -0 .RVWUXEDQLF 7KH ,QIOXHQFH RI 3URFHVVLQJ DQG 7KHUPDO +LVWRU\ RQ WKH 3URSHUWLHV RI 1L$O%DVHG $OOR\V &RQWDLQLQJ ,URQ 06 7KHVLV 3HQQV\OYDQLD 6WDWH 8QLYHUVLW\ 6 *XKD 35 0XQURH DQG %DNHU ,PSURYLQJ WKH /RZ 7HPSHUDWXUH 'XFWLOLW\ RI 1L$O LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS $ ,QRXH 7 0DVXPRWR DQG + 7RPLRND 0LFURVWUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV RI 5DSLGO\ 4XHQFKHG / DQG / /, $OOR\V LQ 1L$O)H DQG 1L$O&R 6\VWHPV 0DW 6FL YRO SS 0$ &ULPS DQG 9HGXOD 5RRP7HPSHUDWXUH 'HIRUPDWLRQ RI 6LQJOH &U\VWDO % )H$O $OOR\V WKH (IIHFW RI 6WRLFKLRPHWU\ DQG &RROLQJ 5DWH 3KLO 0DJ $ YRO SS -/ :DOWHU +( &OLQH DQG () .RFK ,QWHUIDFH 'LVORFDWLRQV LQ 'LUHFWLRQDOO\ 6ROLGLILHG 1L$O&U (XWHFWLF 7UDQV 706$,0( YRO SS +( &OLQH -/ :DOWHU () .RFK DQG /0 2VLND 7KH 9DULDWLRQ RI ,QWHUIDFH 'LVORFDWLRQ 1HWZRUNV ZLWK /DWWLFH 0LVPDWFK LQ (XWHFWLF $OOR\V $FWD 0HWDOO YRO SS 0HWDOV +DQGERRN WK $PHULFDQ 6RFLHW\ IRU 0HWDOV 0HWDOV 3DUN 2KLR SS & 0XOOHU : %ODX DQG 3 =LHVFKH /RFDO 3DUWLDO '26 DQG ([SHULPHQWDO $O 6SHFWUD RI 7UDQVLWLRQ 0HWDO $OXPLQLGHV 3K\V 6WDW 6RO Ef YRO SS 0 (WWHQEHUJ ./ .RPDUHN DQG ( 0LOOHU 7KHUPRG\QDPLF 3URSHUWLHV DQG 2UGHULQJ LQ 3G$O 0HWDOO 7UDQV YRO SS -' &RWWRQ 0.DXIPDQ 5' 1RHEH DQG 0 %HKEHKDQL 7KH 3RWHQWLDO IRU 5RRP 7HPSHUDWXUH 'XFWLOLW\ LQ 3RO\FU\VWDOOLQH 1L$O 7KURXJK 6OLS 6\VWHP 0RGLILFDWLRQ E\ 0DFURDOOR\LQJ LQ +,7(03 ,9 1$6$ /HZLV 5HVHDUFK &HQWHU &OHYHODQG 2KLR SDSHU

PAGE 156

7 +RQJ DQG $)UHHPDQ (OHFWURQLF 6WUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV RI ,QWHUPHWDOOLFV $3% (QHUJLHV LQ 1L$O%DVHG 6\VWHPV LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,,, &7 /LX $, 7DXE 16 6WRORII DQG && .RFK HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS .+ +DKQ DQG 9HGXOD 2UGHULQJ (QHUJLHV RI %LQDU\ DQG 7HUQDU\ $OOR\V %DVHG RQ % 1L$O 3K\V 6WDW 6ROLG WR EH SXEOLVKHG 3% +LUVFK $ +RZLH DQG 0:KHODQ $ .LQHPDWLFDO 7KHRU\ RI 'LIIUDFWLRQ &RQWUDVW RI (OHFWURQ 7UDQVPLVVLRQ 0LFURVFRSH ,PDJHV RI 'LVORFDWLRQV DQG 2WKHU 'HIHFWV 3KLO 7UDQV 5R\DO 6RF YRO $ SS 07 2WWHQ $ 3UDFWLFDO *XLGH WR $/&+(0, 3+,/,36 (OHFWURQ 2SWLFV %XOOHWLQ YRO SS 7DIWS DQG -&+ 6SHQFH &U\VWDO 6LWH /RFDWLRQ RI ,URQ DQG 7UDFH (OHPHQWV LQ D 0DJQHVLXP,URQ 2OLYLQH E\ D 1HZ &U\VWDOORJUDSKLF 7HFKQLTXH 6FLHQFH YRO SS '% 0LUDFOH 'HIRUPDWLRQ LQ 1L$O %LFU\VWDOV $FWD 0HWDOO 0DWHU YRO SS '0 'LPLGXN DQG 6 5DR 'HIRUPDWLRQ 0HFKDQLVPV DQG 6ROLG6ROXWLRQ 6WUHQJWKHQLQJ LQ 2UGHUHG $OOR\V LQ +LJK7HPSHUDWXUH 2UGHUHG ,QWHUPHWDOOLF $OOR\V ,9 /$ -RKQVRQ '3 3RSH DQG -2 6WLHJOHU HGV 0DWHULDOV 5HVHDUFK 6RFLHW\ 3LWWVEXUJK 3HQQV\OYDQLD SS 6 7DNHXFKL 6ROLG6ROXWLRQ 6WUHQJWKHQLQJ LQ 6LQJOH &U\VWDOV RI ,URQ $OOR\V 3K\V 6RF -DSDQ YRO QR SS 1) 0RWW DQG )51 1DEDUUR 'LVORFDWLRQ 7KHRU\ DQG 7UDQVLHQW &UHHS LQ 6WUHQJWK RI 6ROLGV HGV 7KH 3K\VLFDO 6RFLHW\ SS 5/ )OHLVFKHU 6ROLG6ROXWLRQ +DUGHQLQJ LQ 7KH 6WUHQJWKHQLQJ RI 0HWDOV 3HFNQHU (GV 5HLQKROG 3XEOLVKLQJ &RUS 1HZ
PAGE 157

(3 /DXWHQVFKODJHU 7& 7LVRQH DQG -2 %ULWWDLQ (OHFWURQ 7UDQVPLVVLRQ 0LFURVFRS\ RI 1L$O 3K\V 6WDW 6RO YRO SS -3RXEHDX DQG %LJRW 'HWHUPLQDWLRQ GH OD 6ROXELOLWH GX &DUERQH 'DQV OH &KURPH 3DU 0HVXUH GH OD 5HVLVWLYLWH (OHFWULTXH D %DVVH 7HPSHUDWXUH $FWD 0HWDOO YRO SS 5 'DUROLD ') /DKUPDQ 5' )LHOG -5 'REEV .0 &KDQJ (+ *ROGPDQ DQG '* .RQLW]HU 2YHUYLHZ RI 1L$O $OOR\V IRU +LJK 7HPSHUDWXUH 6WUXFWXUDO $SSOLFDWLRQV LQ 1$72 $GYDQFHG 5HVHDUFK :RUNVKRS RQ ,QWHUPHWDOOLF &RPSRXQGV &7 /LX 5: &DKQ DQG 6DXWKRII HGV .OXZHU 3XEOLVKLQJ &R 7KH 1HWKHUODQGV SUHSULQW

PAGE 158

%,2*5$3+,&$/ 6.(7&+ -DPHV 'HDQ &RWWRQ ZDV ERP RQ 6HSWHPEHU LQ +RXVWRQ 0LVVRXUL 86$ +H DWWHQGHG /LFNLQJ +LJK 6FKRRO LQ /LFNLQJ 0LVVRXUL IURP ZKLFK KH JUDGXDWHG LQ +LV %6 GHJUHH ZDV HDUQHG DW WKH 8QLYHUVLW\ RI 0LVVRXUL5ROOD LQ ZKHUH KH PDMRUHG LQ PHWDOOXUJLFDO HQJLQHHULQJ :KLOH DQ XQGHUJUDGXDWH KH ZDV D FRRSHUDWLYH VWXGHQW HPSOR\HH DW &DWHUSLOODU 7UDFWRU &RPSDQ\ LQ 3HRULD ,OOLQRLV DQG D VXPPHU VWXGHQW KLUH DW *HQHUDO 0RWRUV LQ 6DJLQDZ 0LFKLJDQ +H HQWHUHG JUDGXDWH VFKRRO DW &RORUDGR 6FKRRO RI 0LQHV LQ *ROGHQ &RORUDGR ZKHUH KH FRPSOHWHG KLV 06 LQ PHWDOOXUJLFDO HQJLQHHULQJ LQ +LV 06 WKHVLV ZDV HQWLWOHG 7KH (IIHFWV RI 6WHHO &RPSRVLWLRQ DQG 7UHDWPHQW RQ 3UHFLSLWDWLRQ 7UDQVIRUPDWLRQ 3URGXFW 0LFURVWUXFWXUH DQG 0HFKDQLFDO 3URSHUWLHV RI 9DQDGLXP%HDULQJ 0LFURDOOR\HG 6WHHOV )ROORZLQJ RQH \HDU ZLWK .DLVHU $OXPLQXP DQG &KHPLFDOV &RUS LQ 3OHDVDQWRQ &DOLIRUQLD DQG WZR \HDUV ZLWK %RHLQJ $HURVSDFH LQ 6HDWWOH :DVKLQJWRQ KH DJDLQ HQWHUHG JUDGXDWH VFKRRO DW WKH 8QLYHUVLW\ RI :DVKLQJWRQ 6HDWWOH $IWHU PRQWKV DW WKH 8QLYHUVLW\ RI :DVKLQJWRQ KH WUDQVIHUUHG WR WKH 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH 7KH VXPPHU RI ZDV VSHQW DW WKH 6KHIILHOG 6FKRRO RI 0DWHULDOV LQ 6KHIILHOG (QJODQG XQGHU WKH (OHFWURFKHPLFDO 6RFLHW\nV )0 %HFNHWW $ZDUG )HOORZVKLS +H FRPSOHWHG KLV 3K' DW WKH 8QLYHUVLW\ RI )ORULGD LQ ZLWK WKH ILQDO \HDU VSHQW LQ UHVLGHQFH DW WKH 1$6$ /HZLV 5HVHDUFK &HQWHU LQ &OHYHODQG 2KLR +H KDV SXEOLVKHG VHYHQ WHFKQLFDO SDSHUV VLQFH ILYH RI ZKLFK ZHUH FRDXWKRUHG ZLWK KLV 3K' DGYLVRU 7KH WRSLFV RI WKHVH SXEOLFDWLRQV LQFOXGH UDSLG VROLGLILFDWLRQ SKDVH HTXLOLEULD DQG FRUURVLRQ

PAGE 159

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 0LFKDHNI .D\IPDQ &KDLUPDQ $VVRFLDWH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7! $EEDVFKLDQ 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ )HUHVKWDK (EUDKLPL $VVRFLDWH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\2 f 6WHYHQn( 1DJOHU $VVRFLDWH 3URIHVVRU RI 3K\VLFV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ (OOLV 9HULQN -U 'LVWLQJXLVKHG 6HUYLFH 3URIHVVRU RI 0DWHULDOV 6FLHQFH DQG (QJLQHHULQJ

PAGE 160

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ 0DGHO\Q 0 /RFNKDUW 'HDQ *UDGXDWH 6FKRRO

PAGE 161

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EWLMOBH28_7RCQ7J INGEST_TIME 2017-07-12T20:54:30Z PACKAGE AA00003293_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES