Citation
Heterogeneous hierarchical modeling for knowledge-based autonomous systems

Material Information

Title:
Heterogeneous hierarchical modeling for knowledge-based autonomous systems
Creator:
Miller, Victor Todd
Publication Date:
Language:
English
Physical Description:
v, 98 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Induced substructures ( jstor )
Markov models ( jstor )
Model theory ( jstor )
Modeling ( jstor )
Multilevel models ( jstor )
Petri nets ( jstor )
Reasoning ( jstor )
Simulations ( jstor )
Symbolism ( jstor )
Systems theory ( jstor )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1993.
Bibliography:
Includes bibliographical references (leaves 93-97).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Victor Todd Miller.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
001934031 ( ALEPH )
AKB0113 ( NOTIS )
30811418 ( OCLC )

Downloads

This item has the following downloads:


Full Text











HETEROGENEOUS HIERARCHICAL MODELING FOR
KNOWLEDGE-BASED AUTONOMOUS SYSTEMS

















By

VICTOR TODD MILLER


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE
UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY


















TABLE OF CONTENTS


page


ABSTRACT


CHAPTERS

1 INTRODUCTION .. ...........

Heterogeneous Hierarchical Modeling .. .
Motivation for Research in HH Modeling .. .. ............... ..


Contribution


Related Work and Topics
Outline .

BASIC CONCEPTS ....


Modeling and Simulation Concepts. .
Formalism Classifications. .
Hybrid Model Theory . .
General System Theory . .
Basic Modeling Paradigm . .


Definitions


Time Domains
Named Sets .


3 FORMALISMS

Graph Theory
Finite State Mac
Markov System
Petri Nets ...


Queuing Ne


two


:..nes......... ................
* S 4 9 9 4 9 5 9 5 9 9 9 9 9 S 9 9 9 9 5 9 S 9 9 S S 4 4 4 4 5 4 9 S



s .* .. .. .. 9 .. 5 4 4 9 9

:hines . .
s . *


Control Theory ..


4 HYBRID MODEL THEORY


Model Structure


State Modeling ...
Parallel Modeling
Selective Modeling

HYBRID ANALYSIS


. S 9 5 9 9 4 9
* 9 5 4 5 9 5 9


* 4 4 9 4
* 9 4 5


S S S 9 9 4 4 4 4 9 9 5 4 9 4 9 5 9 9 5 S S 9 9 5 9 4 9 9 9 9 5 9 5 9 4 5
9 5 9 9 9 9 9 9 9 5 S S 9 5 5 9 5 9 9 9 9 9 9 9 9 9 9 4 5 9 9 9 5 4 5 9 5 9 9 5 9










6 CONCLUSIONS AND SUMMARY


. 88


C conclusions .... 88
Sum m ary . 90


REFERENCES


BIOGRAPHICAL SKETCH









Abstract of Dissertation Presented to the Graduate School of the University of Florida in
Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy


HETEROGENEOUS HIERARCHICAL MODELING FOR
KNOWLEDGE-BASED AUTONOMOUS SYSTEMS




By

VICTOR TODD MILLER


August 1993




Chairman: Paul A. Fishwick
Major Department: Computer and Information Sciences

High autonomy systems generally require the use of multiple modeling formalisms and

multiple levels of abstraction in order to describe their dynamic characteristics accurately and

efficiently. It is often necessary to integrate several modeling formalisms if there is a need to


reason about, simulate or analyze a system. Additionally, during


development, the use of a


hierarchical representation helps to organize the models more intelligently. Heterogeneous

hierarchical modeling is a method which supports multiple representations and hierarchical

development of knowledge-based autonomous system simulations.

In this context, hybrid model theory is developed as a theoretical representation which

provides the necessary formality to meet the requirements of heterogeneous hierarchical

modeling. Hybrid model theory is an alternative approach to combined discrete-continuous

multimodel theories and subsumes most of the concepts in combined discrete-continuous system

simulation. Hybrid model theory supports a new concept in heterogeneous hierarchical modeling

called intramndel coordination. Intramodel coordination is a method in which the components of









coordination is a method in which two models can only interact through input and output.


Furthermore, a hybrid model is a declarative representation of a system.


By restricting the form


of this representation, a hybrid model contains the data necessary information for a computer

environment to perform symbolic, numerical and interpretative analysis automatically without

additional effort from the user.















CHAPTER 1
INTRODUCTION


Heterogeneous Hierarchical Modeling

An essential part of any system description is the development of a model. Ideally, the model

represents the behavior of the system under investigation at some level of abstraction. In the

context of simulation, the process of developing this model is generally called simulation

modeling or simulation methodology. The extent of the modeling process itself varies not only


from individual to individual, but also from paradigm to paradigm.


This work focuses on the


issues of the modeling process in computer (digital) simulation. The domain is limited to systems

for traditional engineering purposes. The processes and formalisms for biological, social and

self-evolving systems may or may not be applicable to this discussion.

In this context, hybrid model theory is developed as a theoretical representation which


provides the necessary formality to meet


the requirements of heterogeneous hierarchical


modeling. Hybrid model theory is an alternative approach to combined discrete-continuous

multimodel theories and subsumes most of the concepts in combined discrete-continuous system

simulation. Hybrid model theory supports a new concept in heterogeneous hierarchical modeling

called intramodel coordination. Intramodel coordination is a method in which the components of


a model can be coordinated with other models.


In this manner, hybrid model theory extends the


notion of intermodel coordination in combined discrete-continuous system simulation. Intermodel

coordination is a method in which two models can only interact through input and output.


Furthermore, a hybrid model is a declarative representation of a system.


By restricting the form





2



The term modeling will be defined as a formalism and its associated methodology (if one

exists). In simulation, most modeling techniques are low- to mid-level paradigms. At most, these

techniques are stages in some potential methodology [Fis89b]. In the last decade, however,

expanding the techniques of simulation methodology has received great attention [Cel82, Elz89,

Pui89]. Additionally, new paradigms with associated methodologies have emerged and have been

implemented [Nan87, Zei90].

One of the most import concepts to manifest itself from the research in simulation

methodologies is the idea of a hierarchical model. Hierarchies have been used in highly abstract

modeling environments [Cel92, Zei90], at the formalism level [Gor90] and at the numerical level

[Syd82]. A hierarchical model is a model which has several different levels of representations and

abstractions. These levels are related to each other by a hierarchy. The types of hierarchies most

commonly used in simulation are structural, conceptual, and class hierarchies. A structural model

decomposes the model into levels which resemble the actual system. Usually this requires that the

system has well established physical attributes. A conceptual model may or may not have a

decomposition similar to the system, but always has components which do not have physical

counterparts in the system. These decompositions resemble the approach used in software

engineering. A class model decomposition resembles the approach used in object-oriented

programming. (The object-oriented class hierarchy actually originated from SIMULA 67, a

language designed for discrete simulation [Bir79].) In a class hierarchy, the model is not

decomposed hierarchically, but the objects used to described the model are created hierarchically.

A hierarchy is used to classify objects into types. It is important to distinguish the classifying

of domain models as opposed to the classification of the formalisms used to describe domain

models. A hierarchy which classifies vehicles (objects like truck, car, motorcycle, Buick, Honda,

etc.) organizes the domain of vehicles. A hierarchy which classifies formalisms (state, functional,





3



Another important concept which has emerged in simulation modeling is the use of multiple


formalisms within one model [Pag89, Fis91 b]


With the increased interest in hierarchical


modeling, the need to represent efficiently each level of a knowledge-based autonomous system

model (KAS model) has become important for many reasons. Some modeling formalisms capture

certain aspects of system behavior better than others (developmental efficiency). Other modeling

formalisms may provide the means to discern important features that are not evident in other

formalisms (conceptual efficiency). The use and benefits of multiple models types has been

investigated in theories such as multifaceted modeling [Zei84] and heterogeneous interlevel

refinement [Fis91a].

The general concept of heterogeneous modeling draws upon research in multimodels,

combined models, multifaceted models, homomorphic models, and abstract models. One of the

ways of advancing the field of simulation requires improving the available modeling methods.

Heterogeneous hierarchical modeling improves methods by aiding in the

development, maintenance, simulation, and conceptualization of KAS models. It does this by

providing a variety of succinct formalisms and the techniques for integrating them.


Submodeling


the process of either refining a model or specifying several alternative


models for a model. Refining a model requires adding detail, for instance, refining a Petri net into

a queuing model. Refinement of a model introduces subtleties of components of the model.

Specifying alternatives for a model requires that only one alternative model be active at a time

[Ore91]. Submodeling can require homomorphic behavior [Zei84, Sev91] between different

levels of abstraction. Additionally, multiple formalisms include multiple types of simulation and

integrating the taxonomy of models [Ore89b]. For example, Priihofer has integrated the

representation of continuous and discrete event models in the same simulation environment

[Pri91 a, Prii91b].





4



modeling (HH modeling) allows an investigator to develop a model in a top-down fashion. The

benefits of top-down design have been well established in many disciplines. The hierarchy not

only aids the investigator in development and conceptualization of the model, but serves as a

history of the development process itself. The history of a model's development may play an

important role in the evolution or engineering of the model.

In any modeling environment, the investigator must have the maximum available flexibility

in development while ensuring that inconsistencies within the model do not arise. Because

checking for inconsistencies in large and multiple models can be tedious and complex, it seems

natural to conclude that the development of methods for automating a HH modeling process will

be useful. Two of the major inconsistencies in HH modeling methodologies are compatibility

between levels of the model and compatibility among different types of models.

The number and type of formalisms in an HH modeling environment should provide the


investigator with a sufficient range of


choices


(Petri nets, Markov systems, etc.).


Of course, no


modeling system will be perfect for every domain, but the interactions among a sufficient

number of formalisms should give the investigator a flexible environment which can be applied

to a very general domain.

Currently, many of the hierarchical systems allow only one type of formalism, for instance,

hierarchical Petri nets or state machines. Many of the multimodel systems, such as GPSS [Sch91]

or SIMAN [Peg90], allow only one level of abstraction. Combining hierarchies and

heterogeneous models has just recently received attention in the literature [Fis91b]. A generalized

and formal theory of HH modeling has yet to be developed. The motivation for the development

of HH modeling is derived from several different sources. The contribution it can make to the

modeling process in general has been speculated but not confirmed. This work is a direct result of

these issues.





5



increased use and availability of programs that do symbolic mathematics, it is becoming

increasingly easier to automate symbolic analysis (especially of well-known modeling


formalisms).


Numerical techniques refer to traditional computational simulation methods and


numerical approximation. Interpretation methods are those that are related to the field of artificial


intelligence and knowledge engineering.


These range from fuzzy or quantitative simulation


[Fis91b] up to and including logic methods and semantic networks. In general, hybrid analysis

(symbolic, numeric, and interpretative) requires different model specification strategies and

processes for each type of analysis. This duplicates a substantial amount of effort on the part of

the investigator. It also makes it impossible for information gained in one type of analysis to help

or guide a technique in another type of analysis (unless the investigator transmits "by hand" this


information from one modeling formalism


to the other).


A legitimate approach to HH modeling is to develop a new modeling formalism which is

oriented toward KAS models. In order to provide insights into the complex behavior of KAS

models through simulation and reasoning methods, efficient and succinct representations must be

used to describe all aspects of behavior which are pertinent to the investigator. It is unlikely that

one modeling formalism would provide such a representation. This assertion is based upon the

pragmatics of model building. Specific modeling formalisms are used by investigators because

they are convenient to use, have preferable attributes, or fulfill some pragmatic requirement

[Rot90]. There are clearly two dilemmas to investigators of KAS systems. First, since pragmatic

issues are dictated by the investigator's preferences and convenience, and pragmatic issues vary

within different sections of large complex systems, a single modeling formalism locks the

investigator into a method which is neither preferable nor convenient.


The second dilemma concerns the trade-offs between convenience and generality


example, queuing networks may be efficient for modeling arrival/departure behavior, but not





6




modeling formalisms. Additionally, simulation languages have traditionally lacked symbolic and

interpretative analysis methods. In short, the more general a formalism becomes, the less efficient

it is to use.


With this in mind, an HH modeling


theory which is based on coordination of existing


modeling formalisms is an attractive alternative to developing an all-encompassing, completely

generalized, single formalism. Since modeling formalisms such as queuing networks and finite

state machines have proven to be powerful methods, but limited to specific domains, a

coordination of these modeling formalisms, which keeps the representational power of each

formalism intact, should foster more complete investigations of complex high autonomy systems.


Furthermore, by coordinating established modeling formalisms,


the learning curve needed to


understand the theory is reduced. HH modeling can be accomplished by letting the investigator

use an appropriate modeling formalism to describe a particular component of the system and then


allowing a coordination of this formalism with


models that describe other system components.


The investigator may also need to reimplement subcomponents of a particular model as new

information is gained during development and analysis (perhaps with a different modeling

formalism). Efficiency and succinctness are supplied by the mathematical formalism whereas the


coordination of several formalisms increases


the generality.


Motivation for Research in HH modeling

There are several research issues which motivate the development of heterogeneous

hierarchical modeling. Among these issues, the most basic, yet very important, is advancing the


field of simulation. Oren


[Ore89a, pg. 30()] writes,


Since use of models is essential in simulation, advancements can be achieved
hv Prnlnrin ~ nclvnnmp in marlni-hn>~ed tmnncent su.ch ns:" morleling formalisms:





7



By using multiple models, HH modeling expands the notion of a modeling formalism.

Research in multiple models is not new. However, it is still in the early stages of development and

requires further exploration. Combining multiple models within a complex hierarchical structure

adds new problems and complicates current problems of multiple model research.

The hierarchical modeling process is related to research in model-based management and

modeling environments as described by Oren. The hierarchy serves to manage the development

and structure of the model. The top-down approach commonly used with hierarchical models

helps to prescribe management methods. Furthermore, a hierarchy describes the traversal path a

modeling environment might use. Any environment which aids the investigator by allowing

perusal of the model structure can use the natural structure of the hierarchy to guide the

investigator.

One of the most important motivations for research in HH modeling is the contribution it

makes to knowledge-based simulation [Fis91 a] and qualitative simulation [Fis9lb, Kui89]. In

knowledge-based simulation, information about the model is used to aid the investigator by

suggesting alternative formalisms, answer questions about the model, increase semantic

relationships between parts of a model, and help develop intelligent agent and goal-directed

systems.

HH modeling establishes formal relationships and clarifies the semantic relationships

between different levels of abstractions in a model and different types of formalisms. For

instance, a continuous model which has well-defined system states can be described by a state

machine at the top level of a hierarchy and difference equations at the bottom level [Fis91b]. The

formal relationships of HH modeling ensure correctness of the model. The hierarchy clusters

information which is useful in grouping behavior, and the type of model specifies semantics about

the particular level. A knowledge-based simulation and environment requires such information in





8



An important part of research in qualitative simulation is the ability to ask questions that


require varying degrees of specification. An investigator may be


interested in symbolic


information in one question (will the ball bounce and if so, will it bounce high) or numerical

information in other questions (how many times will it bounce and how long will it take to stop).

These questions require different levels of abstraction and different levels of implementation. A

hierarchical model provides, by its very nature, different levels of abstraction with corresponding

formalisms capable of providing data appropriate for that level of abstraction. Similar to the

motivation for knowledge-based simulation, HH modeling development helps to establish a

foundation for qualitative simulation.


Contribution


The motivations in the previous section identify two general contributions. First, by

developing formal and semantic relationships between different types of formalisms, HH

modeling contributes to research in expert systems and knowledge-based simulation. Second, by

developing the formal relationships between abstract levels in hierarchical models, HH modeling

contributes to research in qualitative simulation. Although these two contributions are important,


they are not direct contributions to the state-of-the-art simulation environment.


HH modeling will


form a solid foundation for knowledge-based simulation systems.

The direct contributions HH modeling can offer to state-of-the-art simulation environments

are as follows:

Most simulation environments and libraries offer an investigator multiple models from

which to choose. However, they do not help the investigator use them. How different


models in the same simulation may interact


is left up to the investigator. No facilities to


check for inconsistencies among interacting formalisms are provided.





9




* Changing simulation models as new data are collected or new constraints are added can

significantly alter flat models. The hierarchy of HH modeling serves to isolate

independent parts of a model and therefore make them easier to maintain.

* The hierarchy of formal models allows for incomplete models to be

simulated. This gives the investigator feedback early in the simulation development

phase.

* HH modeling provides a mechanism to ask questions not only about the results of the

simulation, but about the model being simulated. Additionally, the level of complexity of

the question dictates the level of abstraction used in the simulation, and the level of

ambiguity of the results of a simulation dictates the level of abstraction used to answer

the question.

* A generalized theory will make additional formalisms easier to include.

* HH modeling allows formalisms to interact with each other instead of combining different

formalisms into one. The complexity of modeling a large system is therefore broken up

not only hierarchically but also conceptually.



Related Work and Tonics


There are three fields of study which are indirectly related to the work presented in this

research. These fields are artificial intelligence, software engineering, and knowledge-based

simulation. The exact relationship is probably a matter of philosophical debate. However, the

cross-fertilization of ideas between these fields is prevalent through out the literature [Fis92].


Within AI, the work in qualitative reasoning


Bob86] is directly related to HH modeling.


Qualitative reasoning, in general,


is any type of


formalism which is an abstraction of algebraic





10



theory [For86] are used to answer a variety of questions about a model at several different levels

of abstraction. States in QP theory are based on equation limits. In Kuipers's paper, a qualitative

graph of data flow with constraints is used to reason about incomplete systems. Qualitative

simulation (QS) [Kui86] is used as the reasoning formalism. States in QS are based on specified

landmark values.


Knowledge representation (KR) is loosely related to this work. Typically


static relationships between objects. Frames


KR focuses on


Hay79], semantic nets [Fin79], inheritance [Eth83]


and logic [Moo82] all play roles in reasoning about static properties.


Although temporal


reasoning research is done in AI, for example Allen's work [A1183, A1184], dynamic properties

about system state is confined to qualitative reasoning. Reasoning and questioning are considered

synonymous in this work. Therefore, when a question is posed to obtain properties of a model,

reasoning is taking place.

In software engineering (SE) the use of formalisms to describe operational behavior is


common and is found in literature explaining SE fundamentals [Ghe91]. Object-oriented

programming is also an important modeling topic in SE [Har89]. This emanates from software


maintainability and reuse issues in which object hierarchies tend to assist. A good representative


of the related work in SE is the new


book by Rumbaugh et al. [Rum91].


Rumbaugh's


methodology uses objected-oriented concepts to define static properties which are very much like

semantic nets in AI. The dynamic properties of a software project are described using state and

process modeling techniques. Although this methodology is not formal (theoretically or


computationally), it is a thorough embodiment of


process modeling.


Within simulation research, any topic which uses object-oriented concepts or AI concepts is

related to this work. Expert systems to analyze output, suggest models, or analyze sensitivity need

to be able to ask questions (reason) about models and be assured that the answers have a sound









All these areas of research have at least one thing in common: they must refer to abstract

properties about complex models. Yet, the formal theory of abstract, hierarchical, or


heterogeneous models is relatively unexplored.


Sevinc [Sev91, pg. 1118] recognizes


this when


referring to model abstraction. He states,


No complete theories of model abstraction exist, nor does any sufficiently general
procedure. The field, with only less than a half a dozen published articles, is wide open.


There is a distinction here which must be made. Sevinc refers to the simplification of a

preexisting model. HH modeling is just the opposite, the refinement of a more detailed model


from an abstract model.


However, the theory used to describe homomorphic behavior as


described by Sevinc should be independent of the development methodology.


Directly relating to this work is research by Zeigler [Zei76], Wymore [Wym86


and Sevinc


[Sev91]. These works consider homomorphisms, or derivations thereof, as the basis for model

abstraction. In particular Zeigler's work in discrete event system (DEVS) [Zei84][Zei90] and

Priihofer's continuous-discrete system [Prii91a] were considered as a starting point for this work.

Three important differences should be pointed out. First, HH modeling extends this research to


nondeterministic formalisms. Second,


hierarchies of model formalisms dominated this work.


Zeigler's and Priihofer's hierarchies center around the specific domain in question. These


hierarchies are formed by coupling models together.


Without the lower level models, no


simulation can be preformed. In HH modeling, the goal is to simulate incomplete abstract models

which generalize some, for the present, unknown behavior. Third, HH modeling allows a top-

down and bottom-up approach to developing models whereas DEVS is a bottom-up approach.

Almost without saying, this work is a spin-off of Fishwick's research, so much so that it

would be impossible to enumerate. However, the relationship between SE, AI, and simulation





12



Outline


In Chapter


the underlying modeling paradigm is introduced. A basic introduction to


modeling, simulation, and system theory also is given. This provides a review of the basic

concepts that are used in later chapters. Also, notation and meanings of important terms are

defined. General system theory (GST) will be the foundation upon which a theory of HH


modeling is developed.


However, the GST definition does not have sufficient structure for what


is called component coordination (GST does handle model coordination and was therefore a

good starting point). Also, GST does not clearly integrate with domain independent knowledge-

based reasoning techniques. Therefore, in order to support HH modeling, GST has been extended

by including connectivity and abstraction concepts.

In Chapter 3, the formalisms chosen to represent modeling types, their use in simulation,

their basic theoretical foundations, and their system description are presented. Specifically, five


formalisms will be discussed:


automata theory


, Markov systems, Petri nets, queuing networks,


and control theory.


With these five formalisms, a sufficient spectrum of formalism types will be


available to model a complex environment. However, these types are conceptually different

enough to provide nontrivial problems in their integration within a unified framework.

Chapter 4 presents the modeling paradigm developed to support HH modeling. The modeling

paradigm is called hybrid model theory. This presentation includes a formal characterization.

Hybrid model theory is a direct attempt to simultaneously embrace two themes which are directly

related to HH modeling. First, it expands, clarifies, and establishes a solid mathematical

foundation for the notion of heterogeneous refinement as introduced in Fishwick and Zeigler

[Fis92]. Second, hybrid model theory furnishes a premise for hybrid analysis of a system

represented by a heterogeneous refinement model. Some minor modifications of the formalisms


presented in Chapter


2 are made. This allows for the coordination between formalisms. The









In Chapter


the benefits that HH modeling using hybrid model theory provide are


demonstrated by the modeling of an automated flexible manufacturing system (AFMS).

Traditional formalisms such as Petri nets, Markov systems, and block diagrams are used to create


a heterogeneous hierarchical model efficiently.


The symbolic and interpretative analysis


methods are emphasized in this chapter. The numerical analysis is discussed briefly.

A conclusion and a summary are presented in Chapter 6. This includes the problems and


shortcomings of hybrid model theory.


Additionally, a brief discussion on how hybrid model


theory provides a foundation for hybrid analysis is presented.















CHAPTER


BASIC CONCEPTS



Modeling and Simulation Concepts

There are different definitions for many of the general terms used in modeling and simulation.

The definitions presented in this section may or may not be similar to common interpretations


(although most are very similar).


It is particularly crucial that the scope of the definitions


presented be understood. For instance, a description of a model typically implies that the model

has a time base [Wym77, Zei76]. The interpretation of a time base can vary between formalisms

(e.g., between Petri nets and control theory). When using different types of models together, the

meaning and scope of time must be expanded to accommodate an appropriate range of usages.

The most basic and most difficult term to define is model. For the purposes of discussion, a

model is a representation or reproduction of a concept or physical object. The representation

must have a formal description, that is, well-defined terms, entities, and operations on those

entities. It may appear that representations which are only well defined unjustly restrict the


numbers and types of models. However, as will be demonstrated later,


a heterogeneous


hierarchical model must maintain a mapping between levels of abstraction. Therefore, a


representation must be well defined. Consequently,


a well-defined representation is also called a


formalism.

Mathematically, such a lose definition of a model is unusable. Therefore, a recursive

definition of a model based on a system will be given. However, only a conceptual description is


given herep This definition will h& rnfinl (fi e


will rlefind~ n in Chantpr 4 Civen n finiteo ot nf









1. An atomic system


A structured collection of atomic systems


3. A structured collection of models.

The specifications of "structured collection" are given in Chapter 4. The above definition differs

from traditional model definitions in systems theory. Here, all models must be built upon a finite

set of atomic models (a finite set of primitives). Note this is different from a finite set of model

types or classes.

As stated in the introduction, modeling will be defined as a formalism and its associated

methodology. However, no commitment to either prescribed methodology (e.g., top-down or

bottom-up) is adopted in the theory presented in Chapter 4. The emphasis is on a top-down

methodology, but this is for exemplification purposes only. The process of development is

undefined in terms of how is it performed. What is to be done in the development process is quite

clear; a model is to be created. As previously implied, the ability to model hierarchically (top-

down or bottom-up) provides a mechanism for a methodology, but does not force a methodology

to use that mechanism in any prescribed way.

The term simulation means not only the prevalent processes such as queuing networks,

Markov chains, etc., but also processes such as expert systems. Conceptually, an expert system is

a simulation of a thought process. Expert systems have well-defined entities and a well-defined


operation (rules and an inference engine).


Rothenberg discusses this issue in greater depth and in


a more general sense in "Artificial Intelligence and Simulation" [Rot90].


Knowledge-based


simulation (KB Simulation) will be used to refer to the simultaneous activities of analysis,

simulation, and interpretation of dynamic models. This definition is generally consistent with

current literature on KB simulation [Fis91a].

A diagram of the relationship among some of the terms introduced is depicted in Figure










processed by either a human or a computer.


The symbolic analysis of models can be aided by the


computer. Likewise, techniques in AI have begun to automate the qualitative interpretation of

models [Fis91b]. The problem with simultaneous analysis, simulation, and interpretation arises in


the formal representation of different models.


Heterogeneous hierarchical modeling is a theory in


which all three types of activity are supported.


Figure


2.2 shows the representation of these


combined activities.


modelling


modelling


modelling


Figure


modelling


Figure


analysis --


simulation


interpretation


Traditional Modeling


KB Simulation


2.2 Hybrid Modeling


Two important aspects of modeling which are not explicit issues of this work are validation


and verification.


Validating a model with a system ensures that the model represents the system's


behavior to an adequate degree of accuracy.


Verifying the model with the computer/human


ensures that the formalisms are processed correctly. Although it is quite probable that the

development of HH modeling will impact validation and verification, they are not discussed


model


model
C





17



The relationship between system and model is further refined by establishing a conceptual


view of a system (Figure 2.3). A system exists in an environment.


The boundary between a


system and an environment determines what is to be modeled. In simulation modeling, the

environment has no representation and the system is represented by the model. The interaction

between a system and the environment at the boundary is represented in a simulation modeling by

input to or output from the model.


Input/Output


Figure


2.3 Conceptual View of a System


A system may be considered to be in one of several states at any given time. Typically, this is

conceived of as a set of variables with each unique set of assignments to those variables being a

state. A static system does not change with time while a dynamic system changes with time.

Alternatively, a static system can be viewed as a dynamic system at a particular point in time. If a

system has a unique set of outputs for each set of inputs, then the system is said to be

deterministic. If the output of a system cannot be precisely predicted (or is random), then the

system is said to be stochastic. Simulation generally deals with dynamic systems. However, KB

simulations may include static systems.

An event occurs in dynamic systems when the system changes state. If the system is changing

c'tntn~rr yntin^, t ioli, n',ar t a t, 3t f tt IT rrnntininim cxlti t ctnn Q ct c /hic'h rhianT nnnlu tt


Environment
System
SBoundary
A





18





Formalism Classifications


There are two general classifications of formalisms that will be modeled in Chapter 4: state


(operational, declarative) and functional (process,


procedural). Together these general


classifications cover a large number of specific formalisms. A state formalism represents states as

entities. A simulation progresses as the model moves from one state to another regardless of


whether time is elapsing. Figure


4 shows an example of a state model.


Figure


The three entities (sl-3) in Figure


.4 Typica


2.4 repress


State Model Diagram



ent system states. An arrow represents moving


from one state to another


Each state is exclusive of each other (although some formalisms may


allow parallelism). An example of a state model might be the states of a drilling machine:

working, turned-off, or under-repair.










A functional formalism is depicted in Figure


2.5. This is very similar to a data flow diagram.


Each block represents a mapping (fl-4 in Figure 2.5) which transforms input to output. The state


of the system is represented by the collection of internal states of each block.


The arrows


represent data transfers from one block to another.

An example of a functional system would be an electrical circuit. Each block represents a

component: resister, capacitor, etc. The data transferred is the current (electrons). It should be

noted that functional systems are commonly used as parallel models; this is complementary to

state systems which are commonly sequential.



Hybrid Model Theory


Hybrid model theory is a direct attempt to simultaneously embrace two themes which are

directly related to HH modeling. First, it expands, clarifies and establishes a solid mathematical

foundation for the notion of heterogeneous refinement as introduced in Fishwick and Zeigler


[Fis92].


In Fishwick and Zeigler's presentation, the concept of heterogeneous refinement was


described as a method which helps bridge the gap between AI and simulation models in a formal

manner. However, the refinement process was carried out "by hand." Hybrid model theory

expands the concept and provides a foundation that allows heterogeneous refinement to be

automated. Second, and most important, hybrid model theory furnishes a premise for hybrid

analysis of a system represented by a refined multimodel. The extent of hybrid model theory

encompasses a single model. This is an augmentation to theories, such as general system

theory, which deal with classes of models.

It should be noted that hybrid model theory is a foundation which allows HH modeling to be


implemented. There are certainly other approaches.


However, hybrid model theory is an


rnnrnorh rnnrh liltn r-nninl rr thrnir\7 All nrh(r!frlnn1inla 1'lnol'!o)p '!iIn he deccrihpd hv mrnniler





20



will use hybrid model theory as a formalism. Hybrid model theory is used to explain,


mathematically,


the commonalities and differences between modeling formalisms.


With this


foundation, the coordination of different formalisms such as Petri nets and block diagrams can be

substantiated since the relationship between them has been formally established.



General System Theory


There are several different ways each formalism can be represented (presented in the next


chapter). This produces a large permutation of


coordination techniques. General system theory


will be used as a starting point towards developing a common representation for the formalisms

which are presented in this work. This section only introduces the mathematical foundation of

systems theory for background and informational purposes. Most of the material described here


is derived from Wymore's


A system is a 6-tuple


book [Wym77].

= (T, I, S, A, B, 8), where


T is the time base,


is a nonempty set called the input,


S is a nonempty set called the system states,
A is an admissible set of input functions f: T


a set of functions f: S


is a function f: Ax T


-> S called the Behavior, and
> B called the transition function.


The time base, T, is typically the reals (91) or the integers (3).


When T


= 91, the system is said


to be a continuous system. When T = 3, the system is said to be a discrete system.


The system


can be considered to be like a function invocation, when the input set A along with a time t is


given.


The set of system states (S) varies greatly from formalism to formalism; however, it





21




The admissible input functions represent the class of input schedules or input histories. Given

a time segment t, a function in A gives the input presented to the system. This implies that the

inputs to the system must be predetermined in order to analyze the system. The behavior

functions (B) define the class of system sequences (discrete systems) or trajectories (continuous

systems). The transition function generates a behavior function for a given input function and a

time segment. Given an input function, initial conditions, and a transition function, the behavior

of the system is completely deterministic.

The relationships between systems theory and the simulation concepts described in the last

section are fairly clear. A simulation model is a super-set of a system. Both a model and a system

have inputs, states, and behavior. One can extend a system structure to include output by adding

the following definitions


is a nonempty set called the output and


is a function f: S x T


-- O called the output function.


A major distinction between a simulation model and a (classical) system is that a simulation

model can be nondeterministic. However, in an abstract sense, there is a close correspondence

between model and system. For example, in Figure 2.4, the state model consists of states with


arcs labeling transitions from state to state.


={sl,


In systems theory, the model in Figure 2.4 is


s2, s3} and


6 (A, t)(sl)


6 (A, t)(s2)


=sl;


(A, t)(s2)


=s3;


6 (A, t)(s3) = s2.


Similarly, in Figure


stem can be derived b


letting S be the cross product of the


functions (H Fi) and 6 (A, T) be the set of equations. Fishwick [Fis91b] presents a similar





22


Basic Modeling Paradigm

In the next chapter, the basic mathematical foundation of the formalisms used in this work is

presented. Although one can find theoretical extensions of these formalisms in the modeling

literature, this is nothing more than an attempt to combine formalisms (multimodels). This

research uses an alternative approach. Instead of forcing a formalism to include other theoretical

and semantic aspects, each formalism remains as close to its simplest or most common form, and

a method is developed in which these different simple formalisms can be used together.

The foundation for this approach is based on three premises. First, the formalisms in their

simplest state are well understood: Why develop or extend (yet another) formalism that is not

well known when two well-known formalisms already exist? Second, researchers and

investigators already use these formalisms. Not only are the formalisms understood but they are

used frequently. Third, and most important, combining different aspects of different formalisms

increases complexity at one level of conceptualization. By keeping each formalism separate, and

introducing a simple way to interconnect them, the complexity has been separated into distinct

parts. Consequently, inefficiencies in implementation may exist. However, efficiency in modeling

can be improved. An underlying assumption here is that human time is more valuable than

computer time. The compilation of a model (implementation) can be carried out by the computer

whereas (at the moment) modeling is done by humans.


The distinction between a formalism and a theory is defined as a difference in generality.


formalism (Petri net,


state machine) has relatively clear semantics pertaining to its use and


dynamic properties. A theory (system theory, computation theory) is a more generalized

mathematical system which usually can describe any known formalism. Because of the

generality, automated analysis is typically infeasible.

Five common modeling formalisms are used as representatives of different modeling





23




model formalisms. The diagrammatic aspects of each specific modeling approach is preserved.

There is no attempt to homogenize modeling or to force all models to look like either data flow

diagrams or state transition networks. All model types have an equivalent graph or network

representation. This is necessary in order to support knowledge-based reasoning methods


(interpretation). However,


this has not reduced the effectiveness of the theory presented since


many modeling formalisms have graph or network equivalents.

More specifically, the proposed paradigm requires that a formalism be represented by a

directed graph. Arcs (edges) which lead out of a node are output arcs and arcs leading into a node

are input arcs. Nodes in the graph represent either computational or storage models. As with

most theories of modeling, there are two basic types of models: atomic and structured. However,

in hybrid model theory a state machine, Petri net, etc., are not atomic models but structured

models. In hybrid model theory, structured models are made up of at least two hierarchical levels.


The first level is called a controller model. As will be shown, for a


variety of formalisms only


three controller models are necessary. The second level in the hierarchy is made up of atomic

models called component models. This split-level approach to models is demonstrated in Figure

2.6.


I I





24


As can be seen from Figure 2.6, data (or control) input and output are directed into the

controller model. The component models (nodes in the graph) may or may not have data input

and output. Depending on the type of controller, edges in the graph will either indicate control

flow or data flow. This dual functionality has been captured in the controller model's

interpretation of its components. Only under direction of the controller model is data input and

output passed down to and up from the component models. This, at first, gives the impression of

being very inefficient. However, when the model is compiled for numerical analysis(simulation),

this inefficiency can be removed if and only if there has been no submodeling. When using

interpretation techniques, this split-level method allows for more generalized knowledge. When

analyzing the model symbolically, it allows combined results from different types of symbolic

analysis. Chapter 4 introduces hybrid model theory in terms of numerical analysis (simulation).

Chapter 5 shows by example how symbolic and interpretation analysis can be performed.

Formalisms are classified based upon three attributes: 1) how they use time, 2) the type of

data they use, and 3) the type of controller. Hybrid model theory supports four types of

controllers: parallel, state, selective, and group. All four of these controllers contain the

connectivity of the components they control (the graph). A parallel-controller model controls

component models in which all components are active simultaneously. Edges between the

components are interpreted by the controller as data paths. Formalisms which have this type of


controller are block diagrams,


confluence graphs, bond graphs, and neural networks.


A state-


controller model controls components in which only one component can be active. The controller,

under direction of the components, keeps track of the current active component. Edges between

the components are interpreted by the controller as control paths. Formalisms which have state

controllers are Markov systems and state machines. The selective controller is the most complex.

This controller controls two types of component models: functions and storage. A selective





25



by the controller as data flow. Formalisms which use selective controllers are Petri nets, queuing

networks, and expert systems. A group controller is a parallel controller in which the components

are structured models. The group controller allows hybrid model theory to encompass traditional

model coordination (coupling) and will only be briefly discussed.

The type of data which may be used by a formalism has two general attributes: value and

time. Each of these attributes may be either continuous or discrete. This expands the typical

continuous versus discrete concept of a signal in system theory. A discrete signal is too

ambiguous of a categorization when combining symbolic analytical techniques and for

interpretation techniques of different formalisms. It must be known whether a signal is discrete

(continuous) over its values and over time.

The third element which classifies a formalism is the way in which time is used. There have

already been significant advances in combined discrete-event and continuous model simulation


through the use of time bases [Pra91a]. This


forms the foundation for hybrid model theory.


However, the time description is extended to include elements necessary for symbolic and

interpretation methods. This extension is called a time domain. The concept of a time base which

is used in system theory becomes one of five elements used in a time domain, the most important

of which is the time map function. The time map of a time domain is a function from the reals

into the time base of the model. This allows coordination of all models with a common time base.

Each model is responsible for mapping the common clock into local time. This concept, along

with local model states, allows hybrid model theory to be easily translated into a distributed

simulation when numerical analysis is required. Thus, there is no main event queue during

numerical analysis (simulation). All events are stored locally in a model and coordinated by a

common clock.

The other elements of a time domain relate information concerning the semantics of the time





26




a change in the internal state. The delta time signifies the minimum time required for a model to

change its internal state. The magnitude function maps a time from the time base into the integers.

This function permits a model to specify significant magnitude changes in time.


Figure


2.7 Intermodel Coordination


Intermodel coordination is another term for model coupling


Zei84, Wym77]. Because hybrid


model theory has incorporated system theory, this type of coordination will not be extensively

explained. Model coupling can be found in most system theory literature. From Figure 2.7, it

should be clear that complex models of varying types can be coordinated through their data input

and output. A collection of these models can then he grouped into a new model. An important

advantage in hybrid model theory is that the intermodel coordination need not be static. That is,

during execution or analysis, since the controller model contains the connectivity along with the

functionality, the couplings can be dynamic; the controller can manipulate the connectivity of its

components. This may become useful in certain types of neural network formalisms, for instance,

nc txuzohtrc hlltti;wn naiirrnc nTvn henmp1 7-7r


Group Controller Model




state machine Petri net






queuing net





27



quite different from intermodel coordination where, for instance, the output of a state machine is

the input to a block diagram. In intramodel coordination, for example, a state component in a


state machine controller model is replaced by a block diagram model [Fis92].


The controller


model of a state machine essentially keeps track of several component models. Whether these


components are simple state models which are based on conditions (input


'a', etc.) or complex


models such as block diagrams is inconsequential to the controller. The only requirement is that

the communication between the controller and its components be standardized in a formal

protocol. The same type of argument holds true for parallel, group and selective controllers. In

Chapter 4, the theoretical details of controller-component intra model coordination are presented.



Definitions


Before continuing into more formal concepts, a few basic definitions and their designations

are introduced. The meanings are generally well known, but it is essential that the interpretation

of the designations used be clear. Therefore, they are presented here instead of being put into a

key of symbols.


The unique symbols used are self, true, false


, 0, and t. The empty set 0 and the booleans


true and fails have their usual meanings. The


mbol


self is used to designate a symbolic


reference to an entity which uses it. The symbol self is further explained in Chapter 4 where it

has a special meaning in hybrid model theory. The symbol t is used to represent the notion of

undefined (general math), null (programming), empty-string (automata), transient state (circuits),

and bottom (programming theory). Depending on the domain, the appropriate term is used.

As a standard throughout this work the following notation is used. The only notable

difference is that all function invocations are designated by square brackets [].








< > structured set and named set
li cross product over i sets



Additionally, the following special sets are defined.


Z Integers u { t }


Z+ nonnegative Integers


Reals


u {t


u {t}


Booleans {true, false} u


Model


u {t


Two points are important here. First, all these sets are unioned with the undefined symbol


Because these sets are usually used to specify values of variables, any variable in any model


can be assigned the undefined value t.


Time Domains


The standard system theory notion of a time base will be used to specify the range of time


values used by models in hybrid model theory.


A time base is a structure consisting of a set and


two operators: addition and comparison. The addition operator and the set must be an abelian

group. The comparison operator and the set must form a linear order which is preserved under the

addition operator.


Time Base
an abelian group


< > a linear order preserved under +












Time Base


Group


= identity, operator t + t


inverse t


Linear Order t


A time domain is built upon a time base. During the interpretation of a model, information

about how the time is used by the model must be present. The time domain will serve this

purpose. A time domain is a named set (a special kind of structure introduced shortly) which

consists of five elements: time base, delta time, zero time, time map, and a magnitude function.

A time domain TD is structured set such that


Time base


small time in T,


.e., a significant change


in time


t e T such that everything < t is considered zero


time mapping t -> T


magnitude function


T -> S such that m[zero]


The use of a time domain can be exemplified by the following two examples. Although the time

base is the same, there are significant differences in how time affects human and computer

systems.


Human Time


Computer Time


T= Tc


T= Tq~










= identity


t[] = identity


= integer[r/10*zero ]


= integer [r/2*zero]


The zero time stipulates what times are to be considered as instantaneous. That is, in times

less than zero the system cannot react to input. Note that this is different from the delta time dt.

The delta time indicates what times are significant in changes in state. For instance, it is assumed

that a human can sense things in 10 milliseconds but cannot react until 100 milliseconds.

Likewise, in a picosecond, changes in transistors are important, but a cpu reacts only in

nanoseconds (i.e., memory accesses).

The time mapping is used to relate all time domains to T3 This will be further discussed in


Chapter 4. The magnitude function is used to

example, for a time period of 0.9 seconds, th


gnify a constant state between systems. For


,e human magnitude function m[0.9] = 0 while the


computer magnitude function m[0.9]


= 45()x1()6


. For all practical purposes, in a time period of


0.9 seconds, a computer system can assume a human system is constant. The magnitude

comparison can be used to circumscribe the system when any of the three types of analysis

(symbolic, numerical, interpretation) are required.



Named Sets


In system theory, a convenient representation of


assignment is represented by a structured set


[Zei76, Zei84]. In this work, these sets are referred to as named sets. Formally, a named set is a


structure


, R, A> with


S a set (entities)

\I nrtlaraAt cat /n'r'mnnfaaro\'





31




A useful accessing function called a projection allows the values of parameters to be obtained

from the named set. It is defined from the entities into the range of a value set Vi. Formally, a

projection is defined as


projv


:S ->Ryvi


As an example consider the assignment of a person's age and sex. A named structure is

defined by the following


= {Tom, Jane}


age, sex


(age,


, 130]), (sex, { male, female})


A = { (Tom, (23, male) ), (Jane,(21, female)) }.



A projection function on the age parameter and an application of the function is given by


proj age


(tom, 23)


,(Jane, 21 )


proj [ageTom]
age


=23.


The projection function will be abbreviated in this work with the dot notation similar to typical

programming languages.


Tom.age


represents


projage
age


Tom]





32



considered to be a predicate, then the Prolog style predicate sex[Tom, male] and the equation


Tom.sex = male can be considered equivalent.


When reviewing example models which used


graphical formalisms, it was found that labeling arcs and nodes with text was always performed.

This is extremely valuable to humans during the development of a model. There was also a

tendency to be fairly consistent with the usage of verbs and nouns on arcs and nodes. Since the

interpretation of nodes and arcs in these formalisms is relatively straightforward (i.e., arcs and

nodes have relatively well-defined semantics in each of the formalisms), the text is included as

part of hybrid model theory by using named sets.
















CHAPTER


FORMALISMS



Graph Theory

The formalisms presented in this chapter all have graphical equivalents. Since the graphs


and the mathematical theory correspond to each other,


the most convenient form will be used in


the explication. In some of the formalisms, there is little or no distinction between graph and

theory.

Although graph theory is typically not used as a modeling formalism, most formalisms use


graphs as pictorial representations or equivalents.


In a general sense, a graph of a system is an


abstraction. It shows states, components, transitions, data flow, causality, etc. In most cases it

does not show computational or analytical properties. Therefore, it is a simplification of a system.

Graphs are so useful as a modeling tool for humans that it would be imprudent to dismiss

graph theory as a primitive theoretical modeling tool. It is assumed in this work that the structure

of a graph is the defining factor for its usefulness as opposed to some physiological or

psychological characteristic such as it is visual or pleasing to work with. Additionally, there are

many analytical properties of graphs that are useful: spanning trees, articulation points, etc.

All formalisms used in this paper use directed multigraph representations. The directed

property is used to indicate transition in state formalisms or data flow in procedural formalisms.

The multi property is used to represent alternative next states in state formalisms and multiple

data flow in procedural formalisms. Formally, a graph is a set of vertices V and set of edges











T is empty,


A is{


B is a set with one element D defined as {(vl, n)


: vle V and n


: (v1,v)e E} }, and


is &(a,t)


=D for all a A, t


This system starts in some nondetermined state, changes the current state nondeterministically by

following some edge, and stops if it reaches a vertex with no edge leading out.

The graphical representation of a procedural formalism can be described by a system, but is is

so simplistic (one state and no behavior) that it would be senseless to give the definition. Most

derivations of system theories (outside of AI) are structured for analytical purposes at the very


lowest level of abstraction (i.e., statistics).


However, the graph of a system does represent


information about the system causality, and yet it is rarely represented within traditional

analytical techniques.


Finite


Machines


Automata theory will be used to describe state machines.


Differences will be pointed out


when they occur. The typical use of automata theory is to model computational processes or


analyze grammars. Most theoretical


information in this section is derived from


[Hop79].


The main objects of a finite state automata (FSA)


are state, input, and transition. Given a


particular state and input, the transition function dictates the next state. Automata transfer state

until a final state is reached. A push down automaton (PDA) uses a stack which is a last-in-first-






35




Figure 3.1 shows a typical PDA. The arc from sl to s3 with label a/x indicates a transfer from


state sl to state s3 when input a is given and the element on the stack top is x.


condition for a FSA or PDA is the start state. It is


The initial


part of the FSA or PDA's formal description.


Unlike a system in system theory, an FSA or PDA has final states. This implies (and is most

often the case) that the FSA or PDA will eventually stop when given valid input. However, in the


most general automata, turning machines, tills can not be guaranteed.


If the labels of a PDA are


extend to a/ B, where 1 is a string of symbols, then the automaton is called a context finite state

automata (CFSA). The context is 13. The context can be used to store a history of the prior states

or input. A CFSA can essentially examine the history of itself when deciding the next state.


Figure 3.1 Example PDA.



An FSA is very similar to a discrete system. Only the definition is given here, but a similar


definition and proof can be found in the literature


[Wym76].


Given an FSA


g, so, F),


where Q is the set of states,


is the input alphabet, Q2 is the transition function, so is the initial


state, and F is the final states, an equivalent system is Z


A, B, 6), where


is 3,

is Q,

isQ,


= (Q,


= (T, I,






36



A system theory description of a PDA requires that the states be defined as Q x D*, where D

is the stack alphabet. The next state function is similarly changed.

Automata can be extend to encompass the property of nondeterminism. This is similar to but


distinct from the notion of random or stochastic process. A nondeterministic


FSA (NDFSA)


allows for multiple transitions to be valid at the same time. Likewise, a nondeterministic PDA


(NDPDA) or a CFSA (NDCFSA) allows


multiple valid transitions. Although it has been shown


that FSAs are equivalent to NDFSAs and CFSAs are equivalent to NDCFSAs, the

nondeterministic counterparts are usually more concise descriptions and are used more often.

There are many analytical properties about automata, especially FSAs and PDAs. Many of

these properties analyze the class of languages that an automaton accepts. These properties are

useful in the discussion of grammars, but they have not appeared in any literature relating to


system theory and signals.


The main interest in automata in system theory literature has been for


control purposes and not for validating correct sequences of input.

The stack of a PDA or the context of a CFSA allows the system to have a memory. This is a

very distinct concept from any other formalism in this chapter and from classical system theory.

Although the notion of memory and internal state are highly related formally, the difference in

meaning can play a major role when attempting to interpret the system.

Time is a notion easily integrated within automata. However, there is a difficulty when


multiple formalisms are used. In a system representation of an automata, time is actually used to

number or sequence the input. This works for descriptive purposes, but when integrating this with

a continuous system where the time is S9, there is still no specific identifiable relationship.


The notion of steady state, which is important in system theory and several of the other


formalisms in this chapter, is not pertinent for any of the automata.


A nonterminating automaton


I 1 I. I.






37


Markov Systems


A Markov system represents a stochastic process.


It is a state representation. The transitions


in a Markov system are stochastic. Each transition probability is based on the assumption that any

past or future state is conditionally independent given the present state.


Formally, a Markov system is a pair,


= (S, T) where


S is a finite set of states, and

Tis a function f:S x S [0.0, 1.0] called the conditional probability.


The conditional probability


, s) represents the probability of the next state sj given the


current state si. In probability theory this is T(si


= p(next state


current state = si). It is


required of the function T that


for each state si


Xk T(si


This stipulates that the probability of the next state transitions add up to one. Figure


3.2 shows a


simple Markov system with the transition probabilities on the arcs.

A sequence of states si ... sk is called a Markov chain. The initial state of a Markov chain can

be given in several ways. The conditionally probability function T(si,sk) is usually represented as


matrix M. An entry in row i and column k is the probability T(si


, sk). It can be shown that the


probability of being in state sk in the chain si ... sk is (si)(M)i,k where n is the length of the

chain, M" is the nth product of M with itself and 6(si) is the initial probability of si [Cly90].


p1=1.0

p2=0.4


(1-p2)


-.






38

If there exists an n such that no entry in the matrix Mn is zero, then the Markov system is


called regular.


In a regular Markov system it is possible to go from a state to any other state in no


more than n transitions. It can be shown that the limit


as n--oo will reach steady state


equilibrium probabilities. If SS(si) is the steady state equilibrium and (Mn),j is the entry row

and column j of the matrix Mn, then formally,


for any i,


Limn--4 (Mn)i,j = SS(si).


In comparison to system theory, there are several apparent differences between the two

types of systems. A Markov system has no input. The environment can not affect the state of a

Markov system. If it could, then many of the analytical properties would be unsound.

Additionally, the initial state of a Markov system is nondeterministic. In the context of other

formalisms, a way to specify the initial state must developed. For instance, if a Markov system is

a submodel of a state within an FSA, then when that FSA state becomes active, the Markov


system must be initialized. This can be nondeterministic; however,


a deterministic method could


also be devised.

Since a Markov system has distinct states, it can be classified as a discrete-event model. An

event in a Markov system is the selection of a transition. As a separate formalism, this does not

complicate a system theoretic description of the Markov system. When using several formalisms

together, this does create a problem. The events of different formalisms must be related to each

other in some manner. Unfortunately, there is no time associated with transitions in a Markov


system.


If a state in a Markov system is submodeled with a formalism which explicitly uses time,


then how do the other Markov states events relate to this submodel?

A Markov system does not have a transition function. It is possible to develop one similar to a
Ty^ -'-1 T~W- A_ ^-* ^- L. t.. 1. 'l A- *-,^ .1 ..... .d-,^_ A / -.tn t nnn A n n-1 r- 1-.- -t-.--l *i ~* /t






39


equilibrium probabilities of a Markov system are considered to be the defining factor in

describing that system.


Petri Nets


Petri nets are typically used to model concurrent systems in which the objects of the system

must have synchronized behavior. Additionally, Petri nets can be used to model resource

allocation systems. The source for the information about Petri nets in this section is derived form

Peterson's book [Pet81].


There are three main objects in Petri nets: places, transitions, and tokens.


Places and


transitions alternate nodes in a graph (see Figure 3.3). A transition moves a token in an input

place to an output place. This movement is called tiring the transition. These attributes categorize

a Petri net graph as a bipartite directed multigraph. The state of a Petri net is the number of tokens

in each place. There is no time associated with Petri nets. Transitions fire, nondeterministically,

transferring tokens form place to place. After a transition has had a chance to fire, the Petri net is

said to be in a new state.


tokens

place 1
trans


Figure 3.3 E



A Petri net is defined formally as a 4-tuple,


place 2


place 3


ition


sample Petri Net


= (P,T, I, O) where


P is a finite set of places,






40





Since P is a finite set, it is clear that P is not a set but a bag (a set which allows duplicate

values). Since a transition can have multiple arcs to the same output place, multiple copies of


places are allowed in the sets In(t) or Out(t).

just as easy to represent a bag {a,a,b,b,b,c} as


Theories of bags have been studied; however, it is


(a,2), (b,3), (c,1)}. In any case, the function


#(In(tj), pi) retrieves the number of arcs from place pi to transition tj and #(Out(tj), pj) retrieves

the number of arcs from transition tj to place pi.


A marking m:P


-- 3n for a Petri net is a n-tuple where n


= cardinality of P (IPI). A Petri net


with 5 places and a marking m=(1,3,1,5,4) has 1 token in place 1, 3 tokens in place


place 3, etc. The function m(pi) retrieves the marking for place pi (i.e.,


1 token in


above m(p2)


Markings in Petri nets and states in systems are equivalent.


Given a marked Petri net Z with marking m, a transition t in


for all pi


Z is said to be enabled if


#(In(t), Pi) <= m(pi).


A enabled transition means that the transition can get a token from each input place for each

arc. For example, if there are two arcs from a place to a transition, then there must be as least two

tokens in that place in order for the above condition to be met for that place. When a transition

fires, the tokens are removed from the places. If two transitions require the same token from a

place in order to fire, then only one will fire if there are not enough tokens for both transitions.

The choice in this case is arbitrary (nondelerministic).

The next state of a Petri net is defined if at least one transition can fire. Otherwise the Petri


net is blocked. Given a Petri net


a marking m, and a transition t, the next state f(m,t) is


formally defined as






41


There are several differences between a Petri net formalism and systems theory. A Petri net

has no input. When using a Petri net, an initial marking mo is given and next states are reached by

firing transitions. The initial marking is a state not an input. Therefore, the environment can not

effect the state of a Petri net.

Since a Petri net has distinct states, it can be classified as a discrete-event formalism. An

event in a Petri net is the firing of a transition. However, there is no time associated with these

events. As an independent formalism, this does not complicate a system theoretic description of a

Petri net. When using multiple formalisms together, this does create a problem.

The events of different formalisms must be related to each other in some manner. An obvious

choice would be to use time. With state machines, Markov systems, and Petri nets combined, the

concept of time being related to state transitions (events) seems appropriate, but not the only

possibility.

The transition functions of Petri nets and systems are similar. The behavior functions of a

system roughly correspond to the sequences of allowable states. Since Petri nets are

nondeterministic, the requirement that the system behavior be functions must be relaxed; a

system's behavior is a set of relationships.

There are several important analytical characteristics which are important in Petri net theory.

All of these have definitions, but only the concepts will be presented here. The reachability of a


Petri net is a set of markings which are reachable


from some


initial marking. This set is


designated as R(Z, mO). Safeness of a Petri net with a given initial marking is defined when all

places have 0 or 1 token. A place is k-safe (k-bounded) if the number of tokens never exceeds k


for some given initial marking.


A marked Petri net which has a transition that can never fire is


said to be in deadlock. The transition (or transitions) is said to be dead. Transitions which can

potentially fire are called live.






42


networks are process oriented. There are three main objects in queuing networks: populations,

queues, and servers. For analytical purposes queuing networks are conveniently represented by

attributes of these objects. The notation is m/n/o/p/q where m is the interarrival time distribution,

n is the service time distribution, o is the number of parallel servers, p is the system capacity, and

q is the queue discipline. The theoretical material in this section is derived from [Ban84] and


[Gra80


server 1


arrivals


queue


server


Figure 3.4 Simple Queuing Network



Figure 3.4 shows a simple queuing network. The arrivals node represents the calling

population. This could represent customers at a bank, palettes in a factory, cars at a traffic light,

or calls at a telephone exchange. An arrival from the population is called a customer. The arrival

rate of customers depends on the population type. A finite population has a limited number of


customers. Therefore, the arrival rate is


influenced by the number of customers currently in the


system. The arrival rate of customers for an infinite population is described by a distribution


(usually the Poisson distribution).


When customers arrive in the system they are queued (wait in


line) until a server is available. In Figure 3.4 there are two server nodes. Each node represents 1

server. The service time for each server may be constant or random. Common random service

times are represented by the exponential, gamma, and normal distributions.

The queue node in Figure 3.4 appears to be a first-in-first-out (FIFO) line. This is a

consequence of the graphical portrayal and not a true depiction of the queue's discipline. The






43


the queue. It is also possible for customers to leave the system if they wait to long or change

queues in a multiqueue system.

A queuing network with a Poisson arrival distribution has an exponential interarrival time

[Gra80]. If the service time for the servers in Figure 3.4 is exponential, the arrival rate is

exponential, the queue's capacity is 5, and discipline is LIFO, then the notation used to represent

the system is M/M/2/5/LIFO (where M stands for an exponential distribution). However, a

complex system with multiple populations, queues and servers cannot be described with this

notation. Most real world models are so complex that no attempt is made to a use concise


notation;


instead, the graphical representation is used.


There have been many analytical properties developed for simple queuing networks. Since

the variety of networks is very broad, each network type has different theoretical derivations.

There are, however, common properties among the different types of networks. The distributions

used to describe the arrival and service times are examples. Because the analysis is so varied,

only a verbal definition of the most useful properties is presented.


The expected time in the system is the average time a customer spends


in the system. The


time a customer is in the system is comprised of the time in queues and the time being served.

Although it is typical to keep the expected time in the system as small as possible, the ratio of

time waiting to time in the system is more important (especially to a customer). The expected

number of customers in the system is important for determining queue capacities or the number of

servers required. It is undesirable to have customers balk because queues are to small or to have

servers idle because there are to many servers. The expected queue length and server utilization

are measurements which help in deciding the system's type as described above. The throughput

of a system measures the number of customers served per unit time. Many times, the objectives of


a queuing system are opposed to each other; for instance,


to maximize throughput and utilization






44

most complex of which is to change the queuing discipline (as opposed to changing the number

of servers or increasing the capacity of a queue). This has lead to a multitude of queue disciplines.

Additionally, more realistic parameters have been introduced (balking, changing lines) or more

complex networks. Because these are very difficult (if not impossible) to analyze, numerical

approximations have become a norm in the analysis of complex queuing networks.


The computational


methods used in queuing networks are usually extensions to the above


material. For example, customer attributes, resources and macro models are available in many of

the commercial packages such as GPSS [Sch91] and SIMAN [Peg90]. Additionally, more

sophisticated packages have animation, such as CINEMA [Kal91], or graphical entry methods,

TESS [Sta87]. Despite this, the basic tenets for these system have evolved out of queuing theory.

In terms of system theory, a queuing network is a discrete-event, nondeterministic process.


The state of which can be described by a tuple.


Each server and queue have a position in the


tuple. For instance, a 2 queue, 2 server network is described by (ql

are the number of customers in the queue. The servers sl and s2 ar

The time base is S9 and there is no input into the system. The beha'


, q2, l, s2) where qi and q2


e either idle (0) or busy (1).


vior can only be described in


terms of steady state.


Control Theory


Control theory is based on linear system theory. The types of systems modeled in control

theory are continuous systems. Therefore, a direct description using the systems approach is

easily obtained. The system description is not presented in this section, but can be found in many

books [Wym77, Zei86, Dor86]. What is of interest is the cause-effect relationship embodied in

control theory. Although classical control theory does not include these relationships directly,

other methods, such as bond graphs [Tho75], have shown that the cause-effect relationship plays












Vi cT*


Figure


Typically


3.5 (a) Low Pass Circuit (b) Block Diagram


linear systems are described with the aid of block diagrams. Figure 3.5 exemplifies


the cause-effect relationship of a low pass RC circuit (integrating circuit). Using Control theory,

the transfer function Vo(s) / Vi(s) can be obtained. The input voltage vi(t) and the output voltage

Vo(t) are


= i(t)R + 1/C i(t) dt


1/C Ji(t) dt.


The Laplace transforms are


Vi(s)


=I(s)R + 1/(Cs) I(s)


and Vo(s)


1/(Cs) I(s).


Solving for I(s) in the equation for Vo(s) and substituting into the equation for Vi(s), the transfer

function is



Vo(s)/ Vi(s)= 1/(RCs + 1).



The transfer function in the form of a block diagram is shown in Figure 3.5. The block G is


G = 1/(RCs)






46

output voltage becomes constant after some finite time. This is exactly what a low pass circuit

does under constant voltage. The qualitative cause-effect relationship was deduced in a domain

independent manner. This type of reasoning is the focus of both AI research [Bob86] and

knowledge-based simulation [Fis91b].

The state of the low pass circuit in classical systems theory could be represented by the tuple

(vi(t),Vo(t)). Intuitively, however, there are two states of the circuit when the input voltage is

constant: the transient state (when the capacitor is charging) and the steady state. Control theory


does not encompass this abstract notion of state. However, the block diagram's


graph indicates


indirectly the existence of these states.

Although control theory has a simple description in systems theory, integrating continuous

formalisms with discrete formalisms requires resolving the time base. There are only two possible

resolutions: discretize the continuous system or assign time values to the discrete system.

A linear system is an important concept in control theory. In Petri nets and state machines


linearity is not discussed (at least not in the literature found to this date).


A linear system exhibits


two essential properties: superposition and homogeneity. Given a system that with input x(t)

produces output y(t) and with input w(t) produces output z(t), if input x(t) + w(t) produces output

y(t) + w(t), then the system has the superposition property. If input Bx(t) produces output By(t),

where B is a constant, then the system has the property of homogeneity.

Control theory, along with the other lbur formalisms presented in this chapter, all have a

system theoretic description. In the next chapter, a theory will be introduced which provides the

foundation for a consistent and cohesive mechanism to describe these formalisms and will permit

them to be used in a hierarchical organization.
















CHAPTER 4
HYBRID MODEL THEORY



Model Structure


Hybrid model theory is a combination of general system theory (GST), named sets, and graph

theory. The combination of GST and named sets is also used in multifaceted modeling [Zei84]. In


a sense, one could argue that hybrid model theory is a derivation of GST.


Mathematically, this


may be correct. However, there are significant differences of which those familiar with GST


should be aware.


These differences arose from the requirements needed for HH modeling .


First, hybrid model theory is not to be used by the investigator. It is not a modeling

formalism. It is a generalized formalism that is not as conceptually efficient as formalisms such

as Petri nets, queuing networks, and block diagrams. Second, although building bottom-up is

possible, hybrid model theory emphasizes a top-down approach to constructing a model. The

idea behind hybrid model theory is to take a model which is partially correct in describing a

system's behavior and refine only those components which do not correspond with observed data


or system specifications.

under development. HH


Third, hybrid model theory focuses on the analysis of a single system


modeling and hybrid model theory are meant to provide the foundation


for a computer environment which allows for the creation and investigation of system models,


not the classification, identification, comparison and retrieval


of already constructed and


understood system models. Hybrid model theory deals with the alteration and investigation of

incomplete or incorrect models.









H :Component






: Edge


:Input


: Output


a22'' .>

X2' -**>





: State


<...>


t : Time Domain


<(T,+,<), zero, delta, map[], magnitude[]>


p : Initialize function

8: Transition function

: Output Function


(T,C,Q)

(T,C,Q)

(T,C,Q)


-> 0

->

-> 1.


The symbols


< and > indicate the use of named sets, and elements in these sets can be


accessed as described in Chapter


The component set (H) of a model always has the special


symbol self as a member. This symbol is used to indicate a reference to a submodel (if one

exists). For most atomic models the self symbol is the only member of the component set. In

structured models, the component set contains the models which are supervised by the controller


model. The edge set (A) of an atomic model is empty. In structured models,


between component models is identified with the edge set. An edge ao


the connectivity


A is a named set of the


form , where to and from are models in the component set (H) and type is either


t (undefined)


, a standard data type (91, 3) or a model. Together, the components and edges


describe the graph of the model and either what type of data is passed between the components or

how control is transferred among the components.


In Chapter


a brief description of intermodel coordination (coupling) was represented in


hybrid model theory. From the definition above, it can be seen that a structured model, which has

components that are also structured models, represents intermodel coordination. The root model is


, "1, .... >






49


coordinate the atomic models (state, parallel, and selective controllers) have a very different form

and semantics from the group controller that coordinates a set of structured models. It is the

distinct form of controllers that allows heterogeneous refinement.

The input (X) and output ('I) also have the form . These sets signify the data

or control information used by different types of models. For models in which the input has not

yet been specified, the from model will be equal to t (undefined). The same definition also

applies for a model's output. The only difference between inputs and outputs are that inputs are

signals (functions over time) and outputs are values. The state (8) named set is used for a variety

of purposes. It is very similar to local memory in computational definitions. It can contain any

other type of named set (including a model). However, for analytical purposes, the state set

should contain only constants or functions of time.


The time domain of a model was discussed in Chapter


2. It is only noted here that the time


domain of a model can be null. However, it is intended that models which do not have the notion

of time in the clock sense include notions of time in the computational sense. That is, if a model is

not measured in seconds, but has a definite sequence of computation, then the model should use

an integer time domain. Each integer X+ 1 represents the next computational step.

The last three elements of a model are functions. Typically, these are used to compute the

new state and output trajectories over a time interval. Because hybrid model theory is centered

around simulation concepts, these functions have been conceptually altered. It is assumed that all

three functions use two times: the current time (a global variable) and an input time (given at

function invocation). These times are used to calculate the state or output at the input time. The

current input and state are also assumed to be part of the input to these functions. Trajectories are

created by symbolic methods which take a model as input or created through numerical

techniques. Additionally, it should be emphasized that these functions are declared, not






5(0




The initialization function (3) is necessary since models can be dynamic. At any time during

analysis, a model can become active. This not only allows for the modeling of systems which

may lie dormant, but more importantly, it models systems which have multiple descriptions over

time. A piecewise continuous system is an example of a primitive multidescription system. In this


work, the state oriented formalisms implement the piecewise concept.


For data flow models


(differential equation models), the initialization function (P) sets the initial conditions.

The transition (6) function is intended to be used when a model is active. Although, as can be

seen from the description, it could be used to initialize a model. The initialization and transition

functions were derived so that the concept of state, transition and initialization could be separated.

Again, this is necessary in symbolic and interpretation methods. If the transition function uses

stochastic or nondeterministic relationships, then mathematically the term functions incorrect;

however, for purposes of this discussion, the term function will be used in a similar manner to

that used in programming languages.

For the same reason (and tradition), the output function (X) is also kept separate from the

other functions. One of the optimizations for numerical analysis is the integration of these

functions so that only one call to the model produces the total behavior. This integration is

possible in hybrid model theory because there are only four controller models and each type of

controller has the same form of transition and output functions.


Controller Model
Supermodel


Component Models


mI


wA


Controller Model
submodel


I-I






51




There are two rules which capture the manner in which atomic components of a structured


model can be coordinated with other models


(intramodel coordination). This is a pseudo formal


definition ofintramodel coordination in hybrid model theory.


Figure 8 shows how the


coordination is accomplished. The rules can be stated as follows.



1. A component (node) in a model can have its operation's output delayed or altered by


another model called the submodel.


The component model, when activated, initializes the


submodel and waits for a signal of completion, which then deactivates the submodel.



2. A component (node) in a model can have its operation replaced by another model;

however, the I/O and control of the submodel must be the same, the model is continuous over

the analysis.


The types of controllers which interact with


when submodeling.


each other dictate which of these rules applies


The higher level model in submodeling is called a supermodel. Like most


model formalisms, the arrows in Figure 8 signify control and data flow between model types. The

rule which applies depends only on the supermodel involved. For instance, if the supermodel is a

state controller, then rule 1 above applies, for a parallel supermodel only rule 2 applies and for a

selection supermodel rule 1 applies.



State Modeling

A state controller model manages a finite set of components. The edges represent control flow

between the components. The state controller model is responsible for the input and output to the






52


However, each Markov state can supply an output at any given time as described in Chapter 3.

The input to a Markov state is only used by the submodel (if one exists).

A state machine can be represented in the same manner as a Markov system. The only

difference is in the internal state of the state models. Hence, in order to describe state formalisms,

three models are needed: two atomic models and one structured model. Specifically, these are a

finite state atomic model, a Markov state atomic model and the state controller structured model.

The atomic models are defined first; then, the state controller is defined.

A finite state atomic model is defined as


H :Component





:Edge


: Input


: Output




: State





t : Time Domain


<(T,+,<), zero, delta, map[], magnitude[]>


: Initialize function


(T,X,O)


->


Transition function


(T,X,) ->


: Output Function


(T,X,O)


-> 4-.


Almost all atomic models have only the symbol self as a member of the component set and

have no edges. The input is identical to the supermodel's input (X). Although atomic models can

be used by themselves, it is intended that all atomic models be part of a controller model. The

state (0) of a finite state model consists of the next state and a function defined as


X2' ">






53


machine has a single table. Given the current input, the next state is looked up in the table. In

hybrid model theory, each state has its own table. This is necessary for intramodel coordination.

The output types of the state model are the same as the controller model's output.


The other sets of a state model are fairly


domain of the state model's controller model.


simple. The time domain typically matches the time

The output function can be any function from the


input, time and state into the outputs ', given the above conditions. The transfer function uses the

table to formulate the next state as


8[T,X,0] = <0.Table, O.Table[map[t],x]>.


A Markov state model is the same a state model except for the table function. A finite state

model table function might have entries of the logical form "if inputi = 4.0) then nextState =


self." A Markov state model would have entries of the logical form "if (currentProb


< 0.3) and


(currentProb


> 0.5) then nextState


= self." The currentProb variable is a state variable generated


by the controller model at specific time intervals.

In order to coordinate the atomic models, a state controller must maintain all the information

necessary to change state and must direct input and output to and from the state models it

controls. A state controller is defined as


H :Component




, 1 .... >


: Edge




: Input


:Output




: State





t : Time Domain


<(T,+,<), zero, delta, map[], magnitude[]>






54




The component set contains the state models. The edge set contains the arcs indicating the control

flow from one state to another. The edge set represents a declarative form of the table functions

for all the states (components) of the model. The input can be any type of signal as typically

defined in system theory. The state controller has only one internal variable in the state set (O).

This is the nextState model. The initialization function gives the starting state. The transition and

output functions both have very similar forms. For instance, the transition function Tr[r,x,O] is

defined as


Tr[z,x,0]


= RTr[currentTime, t, ,06] where


RTr[tl,T,x,e]=


if (map[t 1 ]


<= map[T] ) RTr[tl+dt, t, X<0.currentState.Tr[tl+dt,X,6].nextState>]


else <0>.


The Tr[]


function is actually a pair of functions. The Tr[


function sets up the conditions for


the recursive function RTr[]. The RTr[] function recurses on itself while tl


< T. On each recursion


tl is incremented by dt, the delta time of the model. Therefore, numerically, the transition

function is a while loop which continues from the current time until the end time by increments of

dt. During each loop the current state model's transition function is invoked. It returns the next

state for that time period. This continues until the state at the end time (t) is returned. Also, note

that the times are converted by the time domain function map[t 1].

The output function Out[T,x,6] has the exact same form as the transition function except the

the outputs are retrieved and the ROut[] function is invocated; that is,


-. ,-%


_ A -






55





For computational purposes, the transition and output functions can be combined. This

function is designated as Comp[]. For a state controllers, the following pseudo code demonstrates

the computation of the next state and output at time z, given the current time is declared in the

variable currentTime.


initialize();


tempTime


While


= currentTime;


(tempTime


output = currentState.Comp[tempTime, input].output;


currentState


= currentState.Comp[tempTime, input]. nextState;


tempTime = tempTime +deltaT;


The current state's Comp[] function is invocated to determine the current output and the next

state. This controller works for any type of state model. For state machines, the state model


encapsulated the behavior of


state machines. For Markov systems, the Markov state model


encapsulated the behavior of the Markov system. However, the basic features which make all

state formalisms similar is captured in the state controller model.

From these definitions, intramodel coordination can easily be formulated for state formalisms.

Any model type that has input and output which match the state model can be used as a

component in the state controller model. The same is also true for a Markov system. The only

constraint is given by rule 1 stated in the first section. It is repeated here and modified to suit

state modeling.



1. A state model in a state controller model can have its operation's output delayed or altered







56


Each state in a state machine can have a submodel (a refinement of the state model). The state

model is an abstraction of the submodel. When the state become active, the submodel computes

the current output. However, the decision as to what is the next state is still controlled by the state

model.


input < 0.0


greater


input >= 0.0


Figure 4.3


Simple State Machine.


As an Example, the operational definition of the state machine in Figure 4.3 is given. There is

one input and one output signal.


stateMachinelstartTime, endTime, input]


currentState = less;
tempTime = startTime;
while (tempTime < endTime)
{switch (currentState) {


case


output = 0;


if (input


>= 0.0) currentState


= greater;


break;
case greater: output = 1;


if (input


< 0.0) currentState


= less;


break;


tempTime


= tempTime + deltaT


return output;


I







57



definition. Thus, it is a completely automated procedure. If the less state had a submodel, then the

only difference would be the assignment of the output. Instead of "output = 0," an invocation of

the submodel would be called as "output = subModel[tempTime, tempTime+deltaT, input]." The

submodel could be, for instance, another state controller.



0.4
One0Z
Zero


0.3 0.6


Figure 4.4 Markov System


The operational definition of a Markov system is very similar. There is one input and one

output signal. In Figure 4.4 a simple Markov system that outputs zero in stateZero and one in

stateOne is shown. The operational definition is as follows:


markovSystem[startTime, endTime, input] {
currentProb = random[];


tempTime


= startTime;


currentProb = random[];
while (tempTime < endTime)


{ switch (currentState)


case Zero:


output = 1;


if between(currentProb, 0.0, 0.4) currentState = One;
break;


case One:


output =


if between(currentProb, ().(),().3)


currentState


Zero;


break;


P







58


Parallel Modeling

A parallel controller model manages component models which operate in parallel. The edges

of a parallel controller model represent data flow. This is similar to a data flow diagram; however,


data flow is typically sequential.


A parallel controller can model sequential data flow, but there


would be transient states between changes in output.

A parallel controller is essentially the same modeling paradigm as general system theory.

Hybrid model theory ensures that this paradigm can be integrated with heterogeneous model

types in a hierarchical manner. Additionally, the parallel controller concept is a generalization of

parallel data flow models just as a state controller was a generalization of state models. The


component models which a parallel controller model manages are functional models. There are,

for each modeling formalism, only a finite number of functional models. In data block diagrams

(control theory) there are 5 types: integral, derivative, summation, generic, and multiply.

The definition of the functional models is trivial. However, as an example, the definition of

an integral function is given here.

An integral model is defined as


H :Component





:Edge


:Input


>


: Output


>


: State


>


t : Time Domain

B: Initialize function


<(T%+,_ )

P[x,X,0] =


, zero, delta, map[], magnitude[]>

, k a constant


: Transition function


8[T,X,8]
^ tI-'/


= <(x.input[T


C'r /


* deltaT) + 8[T-deltaT,x,0]>


I f 1--A--.- I t ... E+ nf A I#1 PA LA I --- NI/ 4 At Ll I 1


1 l,,a,,l '1 la pt .,II llJl" i ~ ~ lil'






59


current point in time. The initialization function initializes the integration sum. The transition and

output function are essentially identical. The output of the current integration is the sum used for

the next integration step. Although it appears that this is only a numerical approximation to

integration, the transition and output functions are used only for simulation and reasoning

methods. Symbolic routines do not need to use the transition function. A symbolic routine only

needs to identify the type of atomic model. In Chapter 5, an example is given which demonstrates

this point. A special case of this is the generic functional atomic model which can be used to

model functions such as sin(), cos(), exp(), etc.

The parallel controller manages all the data input and output between the functional atomic

models in its component set. The edge set dictates the input/output relationships. A parallel

controller can be defined as


H Component


: Edge


:Input









: Output




: State


<, , ...> for each edge


t : Time Domain

p: Initialize function

6: Transition function

X: Output Function


<(Tg,+,<), zero, delta, map[], magnitude[]>

Init[T,X,e] = <, , ...> for each edge

Tr[t,x,6]

Out[T,x,9].


The component set contains the functional models (the nodes in the graph of the block diagram).

The edge set contains the connectivity. The state set has an entry for each edge. The form of the


, ...>


,T1i, ....>






60()


implementation of the parallel controller, these temporary variables are eliminated. The

initialization function produces the initial inputs and outputs by initializing the state set.

The transition function Tr[] takes the current state and invokes the functional components

transition functions to produce the next state. The definition of TR[] is


Tr[T,X,e]


= RTr[currentTime, T, X7,] where


RTr[tl,t,x,0] =


<= t) R2Tr[H,tl,',x,0 ]


else <6>


R2Tr[H,tl,'t,X,0]


= RTr[H,(tl+deltaT),t,X, 0']


where 0' =


and si


= <.r l1.next, H.i 1.Tr[tl,0.r 1.last, H.ri


This transition function is similar to the transition function for state controllers.


The first


function is recursive and handles the increments in time, just as in the state controller model. The

second function constructs at each time increment the current input and output of the functional


atomic models.


The new state 0' is constructed in this manner. Each entry of the state 0' is an


invocation of the functional components. The output function is constructed the same way;

however, instead of producing a new state, the current output is produced.

Intramodel coordination is accomplished exactly the same way as in the state controller. This

is the objective of hybrid model theory. Any functional component of the parallel controller can

be submodeled. However, only the generic atomic models need to be refined since the others

perform specific functions. As with the state controller, any model which has the same input and


output of the generic functional model can be used


in place of the generic model. For


instance, a






61



There is one difference between the coordination of the state controller and the parallel


controller. With the parallel controller rule


as stated in section one, is used. This is,


2. a functional model in a parallel model can have its operation replaced by another model;
however, the I/O and control of the submodel must be the same, the model is continuous over
the analysis.


output


Figure 4.5 Block Diagram



As with the state controller, an operational definition of the parallel controller is given for an

example. Figure 4.5 is a simple block diagram tbr the equation output = It cos(input) dt. The

operational definition for this is



blockDiagram[startTime, endTime, input] {
initialize[];
tempTime = startTime;
while (tempTime < endTime)

{


al.next = cos(input);
output = integral[tempTime, tempTime+dettaT, al.last]


al.last = al.next;


tempTime


= tempTime + deltaT;


};return output;
return output;


COS






62


any instance in time would be calculated by the submodel. In addition, the form of the operational

definition for the state controller and the parallel controller are very similar. This is a result of

hybrid model theory.



Selective Modeling

The selective controller is the most complicated type of controller. The selective controller is

also a parallel controller, but there are two distinct types of atomic models, and there is a


nondeterministic choice of allocating data.


The two atomic models are functional and storage.


For example, the places in a Petri net are storage models and the transitions are functional. In a

queuing network, the queues are storage and the servers are functional. In hybrid model theory,

the concept and behavior of a Petri net or a Queuing network remains identical to traditional

definitions; nonetheless, in order to use these modeling formalisms in a theory which incorporates

signals, the theoretical definition is more complex than it would need to be in a homogenous

modeling theory. In symbolic analysis this is not a concern; however, in a simulation, when the

signals are not part of the model, the computation should be optimized.

In hybrid model theory, a Petri net can be modeled very much like a queuing network.

Therefore, only a full definition of queuing networks is developed. By describing the differences

between the operation of the component models, a description of Petri nets is derived from the

queuing network definition.

The two atomic models, queue and server, are developed first; then, the selective controller is

defined. An atomic model which represent a queue is a storage model. The input and output of a

queue represent the placing of an entity in the queue and the retrieval of an entity from a queue.

The arcs in a queuing network are data flow. All storage models are passive in hybrid model


thpnrv


A palprtive cnntroller dnes not operate on them. A storage component (aueue) is only









H:Component





:Edge


X :Input




: Output




: State





T : Time Domain

S: Initialize function


Transition function


<(Tt ,+,), zero, delta, map[], magnitude[]>

p3[t,x,0] = k is an integer

Tr[T,X,0]

Out[T,X,0].


: Output Function


The initialization function initializes the number of entities in the queue. This is represented


by an integer count. The transition function Tr[]


changes the queue depending on the input.


input to the queue is a binary signal based on triggers. When the type signal is positive an entity


is added to the list. When the signal is negative the output signal


generated goes positive (if


count


> 0). This signifies that an entity is being transferred to a server.


In this sense, the queue


model operates very much like a digital counter or like a discrete integrator.

A server model is equated with a digital delay unit. When all input entities are obtained, the


server delays a random amount of time before transferring entities to queues.


A server atomic


model can be defined as


H Component





:Edge


:Input


1, X2, ...>


: Output




: State


,..>, <, ...>>


,Z>>






64


The state set of the server model has two main entries: time and state. The state can either be

idle or busy. When the state is busy, the time signifies when the server is to become idle again.

The entry signifies that the server requires ni entities from queue quei in order to

change from the idle to the busy state. If the queue is an output queue, then ni stipulates the


number of entities to put in the output queue.


Tr[tx,x,]


The transition function Tr[] for a server is defined


= RTr[currentTime, t, 9X,] where


RTr[tl,t,X,0] =


if(map[tl]


<= map[T] ) RTr[t+dt, t, t, state[t 1,,0] ]


else

where


t,Z,0] =


if (8.state


= idle)


then if (inputAvail[0])) ,..>, <, ...>>


else if (0.time


> t) putQueues[e]; <(.(), idle, <,..>, <,...>>.


If the state of a server is idle and the inputs are available, then the server becomes busy and

new a service time is computed (calcDistTime[j). The inputAvail[] function tests all the input

queues for the server. If the server is busy and the current service time is greater than current

time, then the server is made idle and the function putQueues[] places entities in the output

queues. Although the output function Out[] of a server can be any computable function, in hybrid

model theory it is assumed to be a constant.


The selective controller model


essentially


has one operation. It manages when a server is










H :Component


: Edge


: Input




X2 *>


: Output


: State





T : Time Domain

p : Initialize function

8: Transition function

X: Output Function


<(T,+,<), zero, delta, map[], magnitude[]>

p[rx,,9] =

Tr[T,x,0]

Out[T,x,0].


The state of the selective controller is an unordered list which contains the functional models


(servers) of the component set


C. The initialization function produces the initial list. As with state


controllers and parallel controllers, the output function and the transition function of a selective

controller are very similar. The transition function Tr[] is defined as


Tr[,x,,0]


= RTr[currentTime, T, ,06] where


RTr[tl .Tx,, ] =

if(map[tl] <= map[T] ) RTr[t l,,x ,]

else <0>

where


state[t 1,T,X,0]


= For all si e 0.list


The transition function again consists of one recursive function and one computational

function. The recursive function increments the time. The computational function state[]


,711,....>







si.e))


active((si.Tr[t i, tl+deltaT,






66



transition (the time variable in the server's state O). At each time quantum in a simulation, the

servers are checked to find out if their next event time has occurred.

The output function of a selective controller model is a sequence of invocations of the

functional models output functions. Therefore, only one functional model (server) can supply an

output. This does not preclude one server from suppling more than one output. It should be noted

that the time domains of a selective controller and its servers must be the same. Otherwise, there

would be errors in allocation of entities among servers.



buffer server


server


Figure 4.6


Queuing Network


An illustration of the selective controller is given by identifying the operational definition of

the queuing network in Figure 4.6. There is one input and one output signal. This definition is


QueueNetwork[startTime, endTime, input]


initialize ];
tempTime = startTime;


while (tempTime


< endTime)


{parbegin
{if(active(serverl)) serverl.Tr[tempTime, tempTime + deltaT, input]
if (active(server2)) server2.Tr[tempTime, tempTime + deltaT, input]
}
output = serverl.Out[tempTime, tempTime + deltaT, input]


stillActive(server 1)
stillActive(server2)
tempTime = tempTime + deltaT






67

The operational definition also makes the intramodel coordination clear. When the output

function of a server is invoked, if the server was submodeled, then the submodel would be

invoked instead of the server model as defined above. For instance, if the server had a block


diagram submodel, then the server's output would be computed from the block diagram.


only requires that the block diagram submodel have the same input and output specifications as a

server model.

A Petri net is a specialized queuing network where the queues are places and the servers are

transitions. The inputAvail[O] function is based on an "and" conditional instead of an "or"

conditional. The transitions are typically modeled with a constant firing time (called the service

time in queuing networks). The places of a Petri net act like unordered queues. If the time domain

of a Petri net is TD5 and the transitions have a firing time of 1 unit, then the behavior of a Petri

net in hybrid model theory has the same behavior as the Petri nets as defined in Chapter 3;

however, the elapsed time in hybrid model theory for selective controllers does not signify the

number of transitions fired.

















CHAPTER


HYBRID ANALYSIS



KAS Modeling

The following discussion is based on the process an investigator might go through in an


attempt to model an automated flexible manufacturing system (AFMS).


demonstrate how an investigator can select

three tasks outlined in Figure 2.1 of Chap


This scenario will


formalisms to suit the pragmatic issues at hand. The


ter 2 are demonstrated with this example.


An AFMS was chosen as the domain because of the complexity involved in modeling the

many aspects of such a system. Primarily, an AFMS is a system consisting of several work cells

and a transit system. A computer system acts as the controller for the entire system (i.e.,

scheduling operations, resolving conflicts). Each work cell is a logical unit consisting of a set of

machines or robots. Within a work cell, many different types of operations may occur, for

example, milling, drilling, pressing or assembly. Machines and robots operate on parts (these

may simply be raw materials). Parts which will be assembled together or require similar

operations are said to be in the same family. The general sequence of events in the AFMS entails

transporting parts to a work cell, performing specific operations and transporting parts back to a

storage area. The complexity is associated with the control of this system. This involves


scheduling operations, allocating machine and transport resources,


buffering intermediate parts


and final assemblies and decisions as to when parts are to be manufactured to meet current or






69

indicate the path of the transport system. The machining work cell has several machines which

prepare parts for assembly or further machining (although it is possible to machine parts as part

of an assembly). The assembly work cell consists of several robots which put the parts together.

In this example, the main transport system is an automatic guided vehicle system (AGV). The

AGVs retrieve and store pallets. The pallets are removed from storage at a loading dock and put

onto an AGV. The AGV transports the pallets to unloading docks at the work cell and transports

finished parts back to storage or other docks.


Materials


Storage


- Load / Unload docks


Figure 5.1


- Example AFMS Floor Plan


Conveyor


Loading


Figure 5.2


Machining Work Cell Floor Plan


Figure 5.2 shows the machining work cell in more detail. There are 6 machines in this work

cell (R1-R6). The work cell has its own transport system (a conveyor). The conveyor transports







70


Each machine can perform any number of operations. All that is required is that the


appropriate tool be available. The tooling carousal


continually transports tools around the work


cell so that when a machine needs a tool, the machine can remove it from the carousal.

Scheduling and resource allocation play a major part in the efficiency of the work cell.

The assembly work cell is similar to the machining work cell except that an assembly cell

has robots instead of machines (robots being slightly more dextrous than machines). Figure 5.3 is


an example of the layout of a robot's work area.


When a robot is scheduled to assemble parts, the


parts must either be in the robot's buffer, on the robot's assembly platform or on a pallet on the

conveyor. Once an assembly is made, it can be transferred to a pallet or the buffer.


Tool Carousel


Buffer


Figure


) Robot


Robot Cell Floor Plan


_Material
Pallet |Dock
- --- K-,- I


Part Of


Unload


Has a


Type Of


Tool
SCarousel
fUses


Cell Dok C ell Robot
SIDock cCO I I_ a L .Is TypeOf
Load I Type O VLJ Has a I t is in I Type 0


Figure 5.4


Partial Concept Model of AFMS


Figure 5.4 shows how a semantic model of part of the real system would be organized. This is


essentially a concept model in SE [Rum91 ] or a semantic net in Al [Fin79].


The automatic


Machine
Cell






71





Heterogeneous Hierarchical Modeling

The current emphasis in industry today on total quality management (TQM) and design for

manufacturing has reemphasized the need to model very large diverse systems. Instead of

modeling a factory floor, for instance, the emphasis on TQM requires the model of a AFMS to

include economics, consumer demand, product distribution, etc. With this in mind, the context of


an AFMS similar to the above example is modeled in this


section. Figure 5.5 demonstrates a


simple, initial model of the highest level of abstraction. As this modeled is refined, it will become

clear why this model is abstract. There are three main interacting subsystems: a producer, a

consumer and a pricer. The initial goal of the investigator will be to minimize the size of the

storage while still meeting consumer demand. Although not explicitly shown, the time domain for


this model has significant measures of time in terms of days.


The pricer function includes


modeling marketing policies decisions such as trade promotions. The consumer function includes

modeling behavior such as brand loyalty. The main emphasis in this example is on the producer

function.

The producer function uses the current size of the storage as the only influence on the

production rate (dP/dt). Because consumer demand (dD/dt) can fluctuate, the factory usually


buffers a certain number of units of the product.


The allowable size of the storage buffer has a


minimum and a maximum size (Min, Max). The time domain for this model also has significant

measures of time in terms of days. In order make maximum use of resources, there will be three

different states of the producer function (factory) depending on the state of the storage. In Figure

5.6, the factory is modeled as a state machine. The three states indicate whether current


production is below, above or within the specified buffer limits.


The two names producer and













Price


Figure 5.5 Block Diagram of a Product Price


Figure 5.6 State Machine of Factory (Producer)


In each state of the factory, the number of machines and people allocated may or may not

vary (analysis will determine this). In the shutdown state, the production rate (dP/dt) is assigned

zero (output function at any time t equals 0.0, Shutdown., [t] = <0.0>). The production rate in the


Parallel Controller Type: Block Diagram Product Price
State =
Input =
Output =
Producer
dP/dt L_-J

Y Pricer P
R=0O Chang Size Pr
Storage
dD/dt I---______-

Consumer










An important influence on the robot's


ability to meet this demand is the down time of each


robot; the normal state, therefore, is a combination of four states: both robots working, both

robots down and 2 states with one robot down. An effective way to model this situation is with a

Markov system. Figure 5.7 depicts the down time model. Notice that the input and output of the

Markov controller model include the input and output of the state machine. This is required by

hybrid model theory. Although the input to the Markov system is not used by the component

models, it can be "passed down" to submodels of the individual Markov states. The time domain

for this model has significant measures of time in terms of hours.


Size


dP/dt


Figure


5.7 Down Time Markov Model of Robots


Parallel Controller
State =


Input =


Type: Queue Network


Production Floor





Output =


Robot


Pallet


Pallet
Departure


Queue


State Controller Type: Markov System Down Time
State =
Input =
Output =

Both Down
... 1.0
0.25

Both Up / 0.5 5
rtf- ^ ..... Robot 2 Down

0.5\ 1.0 /

0.25 -rj 0.5
Robot 1 Down


Size


dP/dt






74




The models of the both up, Robot2 down, and Robotl down state can be effectively modeled


with queuing networks. This is exemplified by showing the both up state in Figure 5.8.


This is a


simple two server, first-come-first serve queuing network (specifically a M/M/2/o

/FIFO/system). Again notice the input and output to the queuing network controller model. It

must include the input and output of the Markov state supermodel even though queuing networks


do not have external data input and output.


The time domain for this model has significant


measures of time in terms of minutes.

It is important to understand that the input and output do not alter the production floor

queuing network. The output (dP/dt) can only be derived from a property of the queuing network.

The input (Size) can be used to derive the output (dP/dt) or passed down to submodels. The

derivation of the production rate does not interfere with the behavior of the queuing network. The

same idea holds for all the models which have been already been constructed. The derivations are

coordinated with the behavior: they do not replace any behavior or alter any behavior of the

formalism being modeled.

It is assumed that the current model description is sufficient to describe the production rate

(dP/dt); therefore, in order to have a complete model, the output of the queuing network must be

the production rate. The production rate in this case is the departure rate of the pallets. Figure 5.9

shows the departure component model and how the output is supplied. The other component

models in the queuing network cannot supply output to the production rate (Chapter 4).


Type: Atomic (queue)


Pallet Departure
State =
Input =
Output =


[t, X, 8]


(X.input[t deltaT]


-X.input[t]/deltaT)






75



If the investigator did not supply the connection between the pallet departure node and the

production rate (dP/dt) of the controller model, then numerical analysis could not be performed.

However, in symbolic and interpretation analysis, the model could still be effectively used by

inventing a symbol for the production rate.



Hybrid Analysis

The benefits of hybrid model theory can now be demonstrated by taking advantage of the

clear semantics and symbolic methods of the formalisms used. The process of modeling the

AFMS in the last section is not just a graphical interface method for a simulation language (like


TESS [Sta87] is for GPSS).


efficiently,


Although graphical interfaces provide significant increases in


it is the implicit semantics of the formalisms which when combined with hybrid


model theory, allow the whole to be greater than the sum of its parts. An HH model is really a

single representation which allows for all three types of analysis.

The numerical analysis (model simulation) of a hierarchical model is very straight forward.

Each of the formalisms which was used has a well defined numerical method. With hybrid model

theory, the input and output relationship between models and the manner in which each model

handles time has been formally defined. Intramodel coordination is accomplished by formally

describing a model with two levels: controller and components. The transition and output


functions specify the computation to be performed at each step for each model.


The time period


is supplied as an input to the simulation. Each model's delta time is examined to determine the

minimum time slice required for the simulation. Those models whose delta times are greater than

the simulations time period are considered to be static systems. The operational definitions in

Chapter 4 are, for all practical purposes, a compilation of hybrid models into numerical analysis






76


hierarchical model, but does not require a complete conceptual model (by numerical values fuzzy

numbers are also valid [Zad75]). It would be convenient if the system could set up default initial

conditions for the investigator; however, this is not the purpose of HH modeling or hybrid model

theory. The importance and benefits of automatically setting up the simulation is not

deemphasized, but this research is limited to efficiently creating heterogeneous hierarchical


models and supporting hybrid analysis techniques.


If this can be accomplished, the ability to


integrate information from symbolic, numerical, and interpretation sources will promote the

automation of the more complex tasks such as setting up simulation runs and approximating

submodels.



Symbolic Analysis

Many symbolic analysis routines are specific to individual formalisms; there are, however,

some simple general routines which might be useful in very large systems. The singularity of

these routines does not prevent a categorization of symbolic routines. For example, if steady state

analysis of a model is required, any formalism which can potentially obtain steady state

information must define a steadyState[] symbolic analysis function. Formalisms such as block

diagrams, Markov systems, and queuing networks could derive the traditional attributes

associated with the notion of steady state. Formalisms such as state machines and Petri nets have

no traditional notion of steady state. In the context of hybrid symbolic analysis, the routine

steadyState[] for state machines and Petri nets must still be provided, but, at the very least, they

only need to formulate a symbolic value to represent the steady state. The need for this will be

demonstrated in the next section.


In the AFMS model


presented in the last section, one of few numerical results from symbolic


analysis which can be obtained by a single formalism is the steady state of the down time model.









= SS(si)


where SS(si) is the Steady State probability for each state i


Mi,j is a matrix representing the probability of going from state


i to state j.


The steady state SS(si) can be represented by the creation of a vector within the system


(downTimeProbabilities = [0.133, 0.2, 0


.533,


0.133]). Here, the first element is the steady state


probability of being in the both up state, the second element is the steady state probability of

being in the Robot 1 down state, etc.

A purely symbolic result for several attributes of interest can also be obtained from the

queuing network. Because the network was defined as a M/M/2/,o /FIFO system, the expected

number of pallets in the model is as follows [Gra80].


Lpalette =


(C- 1)!(Ctt


2]PO


C-1

I


<
L4s


1


(2)


(Cu -C


where C


the number of servers


the arrival rate


L = the service rate



The most interesting results of symbolic analysis result when a model is required to obtain

information that is not part of its semantics. For example, suppose the expected number of






78

the expected number of pallets. The submodel is a Markov system. It also can not determine the

expected number of pallets with symbolic methods. If its components submodels could find this


information, then the result of the Markov model


would be the steady state vector SS (down time


probabilities) times a vector of the individual expected number of pallets for each of the four

states si (the dot product). This is


Normal

Lpallet [1


= down time probabilities *


Lpallet [],


S3, S4


= [s1,


Normal = prob[both up] (s


1) + prob[Robot2 down ](s2) + prob[Robotl down] (s3) +


prob[both down


The individual Markov state symbolic routines are then called to derive the expected number

of pallets. The three state that were not submodeled (Robot2 down, Roboti down, both down)


also cannot find the expected number of pallets; therefore, they return a symbolic result.


queuing network submodel can return a result as previously shown. This symbolic result is

returned to the Markov system model of the factory. The Markov system then returns the result to

the normal state. The final result would be


Normal = 0.133 (Lpallet) + 0.


where Lpalleti


(Lpallet1) + 0.533 (Lpallet2) + 0.133 (Lpallet3)


= unknown, for i= 1-3 and


Lpallet0


PO


/ c \I


/\\






79


The necessity for all models to handle routines like steadyState[] and expectedNumberOf[l] is


demonstrated by this


last example. Even thought a routine can not find a property, it must be able


to construct a result if the component submodels exist or it must return a symbolic result for its

supermodel to use in the construction of a result. This recursive technique is based on intramodel


coordination (submodeling). Additionally,


the combination of the type of data needed


(continuous time, value) and model state (steady state, single point in time, specific time period,

specific condition) dictates how a modeling formalism must respond. For instance, the expected

number of pallets is a steady state attribute; therefore, models must respond accordingly. On the


other hand, if the production rate (dP/dt) when (Size


> Min) was of interest, then each model


would be required to construct the result for a continuous time, discrete value variable under the

specific conditions (Size > Min). The question would be recursively asked of each submodel.

Those controller models which could not construct a result either because the component models

were not submodeled or because the question was not appropriate would return a symbolic result.

For questions which resulted in unsatisfactory answers (too many "invented" symbols),

numerical analysis would be a possible next step. For example, in the both down state of the

Markov system, the production rate should be zero since neither robot is working. It is not

expected of the symbolic routines to find this answer. A numerical analysis would implicitly find

this result. With a more complete model, the interpretation (next section) could deduce such

information from knowledge that the production rate (dP/dt) and pallets are numerically related

(Figure 5.9).

The results of the symbolic analysis could be used to help set up the boundaries under which


the numerical analysis operated. For example,


in the above analysis of Lnormal, the simulation of


the model to find a refined answer (a specific distribution) would not require a simulation of the

queuing network system. This could be replaced by an appropriate distribution determined by the






80



Interpretation


Correct interpretation depends on using a consistent set of labels on the graphs of the models.

At first, this may seem too restrictive; however, if one realizes that the model is a fact base, then

the model is really a special derivative of a semantic net that describes the dynamics of the system

under investigation. Each formalism has several consistent naming schemes which can be

compiled into a consistent fact base. The knowledge base is a set of rules which are derived from

controller's transition function and the semantics of each individual formalisms. These are called

formalism rules. For instance, qualitative reasoning methods [Bob86] form part of the knowledge

base for block diagrams.

Together with the fact base, the knowledge base can interpret the model. A pseudo Prolog

representation is used to present the interpretation process. It is assumed that the interpretation

process uses a goal directed deduction algorithm (also one which allows for truth maintenance).

However, other knowledge representations are certainly feasible. It is also assumed that a natural

language parser (NLP) converts questions into the pseudo Prolog format. With the availability of

an online dictionary and thesaurus which can find plurals from single nouns, identify parts of

speech, check grammar, and provide synonyms, such a system is certainly attainable (also, with

the availability of parser support such as LEX and YACC). The NLP will be far from perfect, but

it would release the investigator from being required to understand the syntax of Prolog.

Additionally, it is an intricate part of a domain independent, generic knowledge base. This issue is

discussed as the interpretation process is presented.

One of the simplest types of formalism semantics to demonstrate is that of a state controller.

There are two consistent labelings:






81


Along with the node labels, the type of phrase which describes the submodeled component


and controller model is needed.


The factory submodel of the producer model (Figures 5.5 and


5.6), has a sequence of noun labels (normal, overtime, shutdown) describing a noun phrase

(producer). Here, the noun labels are interpreted as the states of the producer. These

interpretations depend only on the types of phrases used (only 2 in the current research: noun and

verb) and the type of controller used (only four). A cross product of these produces a finite set of


interpretations for state model nodes.


From the models in Figures 5.5 and 5.6, a computer


environment could automatically build the following simple facts:



stateOtIproducer, normal],

stateOf[producer, shutdown] and

stateOtIproducer, overtime].



It is assumed that the predicate stateOf is used in the generic knowledge base rules. For

example, the following rule attempts to find the conditions necessary for C (if any) to go from one

state X to another state Y by using the stateOf predicate:


nextState[M,


Y, C]:-


stateOf [M, X], state()f[M, Y], trace[M,


As can be seen form the first rule, if both states are in the same model, the trace[] predicate is

called with the model and the two states as input and expected to determine, depending on the

type of model, the conditions necessary to go from state X to state Y. A simple test for the trace


could be to call a traceState[


predicate which follows all paths in a state model:











The notVisited[] predicate avoids infinite loops and


"0" represents concatenation. If this failed,


the trace[] function can use methods such and constraint propagation and qualitative simulation to

derive an answer (if possible) for the nextState[]. Note that the NextState[] facts can be derived

directly from knowledge about formalisms (the hybrid model). From Figures 5.6 and 5.7, the

following can be derived:


NextState[overtime, normal


, (Size

NextState[both up, Robot 1 down, Stochastic (0.25)].



These predicates are very primitive, but they can be used to build more sophisticated

predicates. The nextState[] and trace[] predicates can be used to build an activeStates[M, C]

predicate which finds all the states of model M that could be active under the conditions C. For

instance, as can be seen in Figure 5.6 the function invocation


activeState[ factory, (Size < Max), state?]

returns


state = normal, state



That is, when the Size <


= shutdown.


Max in the factory model, both the normal and shutdown states models


could be active.

How each type of controller uses the notion of state and how states are relate between

supermodel and submodel would obviously need more rules than listed here. Again, it is

emphasized that the goal is to efficiently build models and allow a set of formalism rules to


operate on the model with only the minimum possible effort of the investigator.


No attempt is


1 -_ A. -_ -^ ^ -_^ ^--_ ^' ^ .- --.l*A'. ^,- n '\ ,---.r> -^- -I: ,^.-,n 'TT^ -T. n lrr h!^ ^ J^ r^C 41^S i ^^t l L /^ n + -r /^






83


Another illustration of interpretation can be demonstrated with consistent labels used on the

queuing network presented in Figure 5.8. Some of the rules for labeling are as follows:



1. arrival and departure nodes use the same noun phrase and

2. servers are either all nouns or all verb phrases.



Figure 5.8 shows that pallets are the entities which arrive and depart in the queuing network.

If parts were the entities that arrive and assemblies were the entities that departed (certainly a

feasible arrangement), then static information would be required which related the two (possibly

in the form of a semantic network). The static information would stipulate, for instance, that an


assembly is made of parts (madeOf[assembly, parts]).


Combining semantic nets and


mathematical formalism like queuing networks in the context of HH modeling is discussed in

Miller [Mi1192].

Simple state information can be derived from the semantics of the queues and servers labeled


with nouns. A few facts from Figure


state[M, empty]


5.8 are listed here:


Not (stateOtipallet Queue, in-use]),


state[M, idle] : -

stateOf[M, empty]

stateOf[M, in-use]


Not (stateOf[Robo


type[M, Queue],

type[M, Queue],


1, busy]),

state[M,empty],

state[M,in-use],


type[pallet queue, Queue] and


traceState[M, X, Y, C]:


- type[M, Queue], (X


= empty), (Y


= in use), (C


= arrives[M, data]).


Even though the the queuing network is a selective model and not a state model, State






84


is easily traced to

C = arrives[pallet Queue, pallet].



The generic use of terms like busy, waiting, empty, and in-use in the fact base does limit the

domain of the generic knowledge base. For instance, an investigator might ask "Is Robotl


active?". It would appear that the internal form would be stateOf[Robotl, active].


However, the


NLP, through the use of a online thesaurus/dictionary, can easily translate this into

stateOf[Robotl, busy]. All that is required is that the NLP have a list of words that the

interpretation system can use. The NLP simply translates into the appropriate words. This frees

the interpretation system and its rules from being domain specific. For example, in a bank


queuing network the question might be "Is the teller working?"


Because the words active and


working are both synonyms for the word busy, the translation is trivial.

The use of an NLP to do this translation is not an afterthought in hybrid model theory and is

extremely important for knowledge-based access to dynamic models. Hybrid model theory was

developed around the concept of "as much domain independence as possible with as many


analytical methods available."


It was found that


formalisms like Petri nets had well-defined


dynamic semantics, but had no easy way to relate the semantics to specific domains. Knowledge-

base techniques tended to be domain specific, but had no easy way to build up the complex

dynamic operations of the systems to be modeled. By using a few simple rules to ensure

consistent labels, using named structures as an operational part of hybrid model theory (not just a

convenience) and taking advantage of the online thesaurus/dictionaries, an investigator can

quickly construct a model that had well defined formal properties and can be used by a domain

independent knowledge base.

The thesaurus/dictionary acts as the semantic knowledge base which translates questions






85


model theory (intramodel coordination in particular). The names of the relationships between

domain objects are derived by using the semantics of the formalisms and by the use of consistent


labeling.


The fact base is a set of primitive facts and rules compiled from the model. When


combined with the generic knowledge base, a very large domain specific knowledge base can

automatically and quickly be created (compiled) from an HH model.

To further demonstrate how interpretation can be used, the trace of a more difficult question


is present(

factory".



dP/dt


ed.


The question is What is the production rate (dP/dt) in the normal state of the


The following internal forms can automatically be generated:



== "production rate",


modelcontext == normal and

goal[ dP/dt, modelContext].



Here, it is assumed that questions are ultimately put in the form of a goal. The predicate for

this is goal [variable*, context], where variable* means any number of variables and the context

is a description of the system current state. The information that the normal state is in the factory

model is useless in the current model because only one state in the entire system is labeled as

"normal."

One of the first conclusions an interpretation environment can easily make is that of the time


period over which the context holds. This is one of the uses of the model'


time domain. It can be


concluded that the factory model is constant for the time in the question since a single state of the

factory is of interest and the magnitude function shows a significant difference in time


(normal.T.magnitude[hours]


= factory.T.magnitude[hours] << price. '.magnitude[days]).


It can now be shown how the interpreter attempts to formulate the answer to the question.






86




If the normal state model was not submodeled the interpreter could return the value set up by

the investigator. If there was no specified value, then "undefined" (t) could be returned. However,

since the normal state model is submodeled, the interpreter (via a rule) redirects the question to


the Markov system submodel. This i

In the Markov system in Figure


is represented as markovFind[variables, Model].


the Robot 1 down, Robot2 down, and both down states


did not relate the production rate dP/dt to the output of the model, the interpreter has to determine

whether there is or is not output from these states. The requirement that all data be specified as

continuous(discrete) over value and time now comes into play. Because the production rate

(dP/dt) is continuous time and discrete value and the controller is a state controller, the interpreter

can deduce that all states output to the variable dP/dt. Therefore, it can "invent" symbolic names

for the unspecified values from these states. For example, in the Roboti down state, the


interpreter would construct the symbol "Robot


down dP/dt." Recall, that for numerical analysis,


these missing values would have to be supplied in order for compilation to be completed.

The interpreter, currently within the markovFind[] rule set, can derive the following list of

assignments:


state dP/dt


= [pallet departure, Robot 1 down dP/dt, Robot2 down dP/dt, both down dP/dt],


down time probabilities


pallet departure


= [0.133, 0.2, 0.53


= down time probabilities


0.133] and


* state dP/dt.


The state dP/dt variable


a temporary set up by the interpreter. The last three entries


(Roboti down dP/dt, Robot2 down dP/dt, both down dP/dt) in the state dP/dt vector were derived


by the interpreter


as stipulated in the last paragraph. The pallet departure entry was derived from






87

used in symbolic analysis and is made possible by intramodel coordination. Because the queuing

network model is a parallel controller, the interpreter knows that there is only one collective state.

If the pallet departure model was not connected to the output dP/dt of the queuing network, then

the interpreter would have "invented" a symbolic value; however, because of the connection, the

interpreter knows that the pallet departure is the only source for the production rate dP/dt.

The "pallet departure = down time probabilities state dP/dt" expression is derived from

assumptions about Markov systems. The "down time probabilities" is symbolically derived at as

shown in the last section. Notice, that the assumptions made by the interpreter are really rules

which apply to controllers. The rules presented so far as can be stated as follows:


1. if (output type


= continuous time, discrete value) and (controller = state)


then (all states must supply output),

2. if (output type = continuous time, discrete value) and (controller = parallel)


then (find submodel with output) or (invent a name for output)


3. if (output type = continuous time) and (model is Markov system)

then (output = findProbabilityVector()* vector [individual state outputs]).



These rules demonstrate how hybrid model theory allows knowledge about different


formalisms to be generalized. If


then rule


a new formalism which uses a parallel controller were added,


above would still apply. It also demonstrates how one analytical form can help


another. Here, symbolic analysis was used to aid in the interpretation (the findProbabilityVector()

function invocation).
















CHAPTER 6
CONCLUSIONS AND SUMMARY



Conclusions


There are several problems which may or may not reduce the effectiveness of hybrid model


theory.


Although other formalism can be used, only


five formalisms have been explored. Some


formalisms theoretically fit within hybrid model theory, but they do not fit not conceptually. For

instance, in back-propagation neural networks, nodes (neurons) traditionally do not have

meaning. Only a few types of neural networks, such as those which use policies like harmony


theory, have meaningful nodes; therefore,


significance.


labeling a back-propagation neural network has no


However, submodeling a neuron may have significance.


In general, labeling nodes requires some extra effort. It is certainly much easier than starting

a knowledge base from scratch: It is also better than having no knowledge base at all. The fact

base will only be sufficient for complex questions if enough detail has been modeled.

Additionally, because the fact-base is developed strictly from formalisms which are based on

time, only dynamic information can be derived. Some simple typeOf and partOf information can


be found from the hierarchy. For example, in the AFMS the Roboti was part of the factory

(partOtIfactory, Robot 1]). This is not enough information to ask questions about physical


structure or the geometry of the system (i.e., Will any of the AGV


collide?).


In KAS models, the


physical location of objects will change over time. It is reasonable to expect that in some systems

the physical relationships between objects over time is the information which is sought by the









example, a symbolic method can help a numeric method. In general,


the knowledge base will


also have to include information pertaining to the relationship between properties derived from

the analytical methods. This was expected, but the approach can be highly individualized.


Adopting a particular methodology may not be desirable.


Committing to a method which


stipulates a specific sequence of the principles may not have been the most appropriate method,

but it may be unavoidable if multiple sources of information are to be utilized.

Another problem is the selection of the initial model. Because the main emphasis may be on


systems about which very little was known,


the initial choice of a model could not easily be


determined (e.g., state versus parallel). Therefore, it might be necessary to include an abstract

formalism in hybrid model theory. This would let the investigator begin to describe objects,


relationships, and data without committing to a specific


approach. When the investigator does


commit to an initial approach, the abstract formalism (really just a hierarchical graph) serves only

to group together the underlying models. The abstract model has no dynamic description or useful

analytical properties; However, the graph can be used to compile simple facts for the knowledge

base.

In selective controller formalisms, the tokens (Petri nets) or customers (queuing network)

might represent objects which an investigator would like to model. There is currently no clean

way to describe formally the interaction between these objects and the selective controller model.

The investigator must program the interaction by hand. One of the goals of hybrid model theory is

to remove this type of ad-hoc or informal coordination.

A hybrid model represents a structural or conceptual hierarchy. Class hierarchies do not

conform to the paradigm enforced by hybrid model theory. In some cases, especially when

building libraries of models, the structural approach is not suitable; for example, when a tIpeOf

hierarchy is needed. Hybrid model theory only permits partOf hierarchies.






90()


intermodel coordination, each pair of formalisms would require a distinct coordination protocol

and would require formalism specific knowledge.

Hybrid model theory is based on formalisms (Petri nets, queuing nets, etc.) which are used in

many fields and understood by many researchers. This places hybrid model theory in a unique

position within modeling theories. It has extended the potential of formal modeling methods

without changing the way investigators currently use modeling methods and without significantly

increasing the complexity involved in modeling.



Summary


Heterogeneous Hierarchical modeling is a general term used to describe any method which

supports the construction of models in a hierarchical manner with the use of multiple model types.


The method must


also support the use of symbolic, numeric, and interpretative analysis methods.


Hybrid model theory is a theoretical representation which provides the necessary formality to

meet the requirements of HH modeling. This is accomplished by coordinating existing modeling

formalisms instead of trying to take a single formalism and generalize it.

In hybrid model theory, an investigator can easily construct a model by iterative refinement.

Each level in the hierarchy increases the detail and accuracy of the model's behavior. Because

each level in the hierarchy is more abstract than lower levels, a hierarchical model provides an

information structure compatible with knowledge base reasoning methods; however, each level,

even the most abstract ones, are modeled using formalisms which have well known symbolic and

numeric properties. Consequently, a partial or abstract model can still be analyzed. The hierarchy

also supports developmental and conceptual efficiency for the model builder by allowing for

structured, top-down development.

The most effective mechanism for cultivating developmental and conceptual efficiency is






91


behavior currently being modeled can be coordinated with models of other parts of the system

regardless of the formalisms used to describe them.

Hybrid model theory conceptually separates formalisms into two levels: controller models


and component models.


Three of the three types of controllers were discussed: state, parallel, and


selective model controllers. These three controller types support intramodel coordination.


of the three model controllers manages a set of component models.


Each


For example, a Petri net is a


selective controller that manages place and transition component models. By creating two levels,

three goals of HH modeling have been realized. First, a component can be submodeled

(coordinated) with another completely different type of formalism (represented by another

controller model). Second, knowledge about controllers can be generalized. This simplifies the

inclusion of additional types of formalisms. Third, intramodel coordination provides a structured

way for hybrid symbolic and numeric analytical methods to be used in conjunction with each

other.

Hybrid analysis also includes traditional Al and knowledge base methods. By taking

advantage of natural language text attached to the nodes and arcs of the model's graph, a fact base

compiled from this text can be combined with a generalized knowledge base. The investigator

needs only to follow a few simple consistency rules regarding the form of the text. The compiled

knowledge base can then serve as a front-end in a computer environment and as a source of new

information by the use of reasoning techniques.

A hybrid model is a declarative representation of a system. The component, edge, and state

set contain the necessary information for symbolic analysis. The state set, transition function and

output function contain the information required for numerical analysis (simulation). The use of

named sets and projection functions allows the automatic compilation of a knowledge base.

In this context, hybrid model theory is a theoretical representation which provides the






92


new concept in heterogeneous hierarchical modeling called intramodel coordination. Intramodel

coordination is a method in which the components of a model can be coordinated with other


models.


In this manner, hybrid model theory extends the notion of intermodel coordination in


combined discrete-continuous system simulation. Intermodel coordination is a method in which

two models can only interact through input and output. Furthermore, a hybrid model is a


declarative representation of a system.


By restricting the form of this representation, a hybrid


model contains the data necessary information for a computer environment to perform symbolic,

numerical and interpretative analysis automatically without additional effort from the user.















REFERENCES


A1183


Allen J.F.,


"Maintaining Knowledge about Temporal Intervals," Communications of


the ACM, 26(11), pp. 832-843, 1983.


A1184


Allen J.F.,"Towards a General Theory of Action and Time,"


Artificial Intelligence,


23(2), pp. 123-154, 1984.


Ban84


Banks J.,


and J.S. Carson


Discrete-Event


System


Simulation,


Prentice-Hall,


Englewood Cliffs, New Jersey, 1984.


Bir79


Birtwistle


G. M., Discrete event modelling on simula,


Springer-Verlag, New


York,


New York, 1987.


Bob86


Bobrow


Oualitative


Reasoning


about


Physical


Systems,


Press,


Cambridge, Massachusetts,


Cel82


1986.


Cellier F.E. (ed), Progress in Modellin2 and Simulation, Academic Press, London,


England, 1982.


Ce192


Cellier F.E,


"Hierarchical non-linear bond graphs: a unified methodology for


modeling complex physical systems," Simulation, 58 (4), pp. 230-248, 1992.


Cly90


Clymer J.R., Systems Analysis Using Simulation and Markov Models, Prentice-Hall,


Inc., Englewood Cliffs, New Jersey, Chapter 4,


Dor86


1990.


Dorf R.C., Modern Control Svtems, fourth edition, Addison-Wesley Publishing Co.,


Reading, Massachusetts, 1986.


Elz89


Elzas M.S.,


T.I. Oren and B.P. Zeigler (eds), Modelling and simulation methodology :


knowledge systems'


paradi ms, North-Holland, Amsterdam, 1989.


Eth83


Etherington


D.W.,


Reiter,


Inheritance


Hierarchies


Exceptions,"


Proceedings of the National Conference on Artificial Intelligence,


Washington


D.C., pp.104-108, 1983.









Fis89a


Fishwick P.A.,


"Studying how Models Evolve: An Emphasis on Simulation Model


Engineering,"


Wildberger


In Advances


(eds),


Simulation


AI and Simulation,


Series


20(1),


R. Uttasingh
International,


A.M.


San Diego,


California, pp. 74-79,


1989.


Fis89b


Fishwick P.A.,


"Toward an Integrated Approach to Simulation Model Engineering,"


International Journal of General Systems, 17(1), pp. 254-287


1989.


Fis91a


Fishwick P.A and R.B. Modjeski (eds),


Knowledge-Based Simulation, Advances in


Simulation 4, Springer-Verlag, New York, 1991.


Fis91b


Fishwick P.A. and P.A. Luker (eds), Oualitative Simulation Modelling and Analysis.


Advances in Simulation


Springer-Verlag, New York, 1991.


Fis92


Fishwick P. A., and


B.P. Zeigler,


Multimodel Methodology


Qualitative


Model Engineering,"


2(1), pp. 254-287


ACM Transactions on Modelling and Computer Simulation,


1992.


For86


Forbus K.D.


, "Qualitative Process Theory," In


Qualitative


Reasoning about Physical


Systems,


D.G. Bobrow


(ed), MIT Press, Cambridge, Massachusetts, pp. 85-168,


1986.


For90


Forbus K.D, and B. Falkenhainer,


"Self-Explanatory Simulations: An Integration of


Qualitative


Quantitative


Knowledge,"


Proceedings


National


Conference on Artificial Intelligence, pp. 380-387


1990.


Ghe91


Ghezzi C., M. Jazayeri, and D.


Mandrioli, Fundamentals of Software Engineering.


Prentice-Hall, Englewood Cliffs, NJ, 1991.


Gor90


Gorden R.F., E.A. MacNair, K.J Gorden, and J.F. Kuose,


"Hierarchical Modeling in a


Graphical


Simulation


System,"


Winter


Simulation


Conference,


International, San Diego, California, pp.


499-503.


Gra80


Graybeal,


and U.W


Pooch,


Simulation:


Principles and Methods,


Winthrop


Publishers, Inc.,


Cambridge, Massachusetts, 1980.


Har89


Harrison W.H, J.J. Shilling, and P.F. Sweeney,


"Good News, Bad News: Experience


Building


a Software


Development


Environment


Using


the Object-Oriented


Paradigm," OOPSLA


Conference Proceedings,


special issue of SIGPLAN


Notices, 24(10), pp.


, Oct, 1989.










Hop79


Hopcroft J.E., and Ullman J.D.,


introduction to Automata


Theory. Languages. and


Computation, Addison-Wesley Publishing Co., 1979.


Kal91


Kalasky


Simulation


and D.A.


Davis,


Conference,


"Computer
International


Animation


CINEMA,"


, San Diego, California, pp.


Winter
122-127.


1991.


Kui86


Kuipers


"Commonsense


Reasoning


about Causality:


Deriving


Behavior


Structure,"


In Qualitative Reasoning about Physical Systems,


Bobrow D.G (ed),


MIT Press, Cambridge Massachusetts, pp. 169-203,


1986.


Kui89


Kuipers


"Qualitative


Reasoning:


Modeling


and Simulation


Incomplete


Knowledge," Automatica, 25(4), pp. 571-585, 1989.


Mil92


Miller V.T., and P.A. Fishwick,


Applications in Al


"Reasoning with Heterogenous Hierarchical Models,


Orlando, Florida,


April 1992.


Moo82


Moore R.C.,


"The Role of Logic


in Knowledge Representation and Commonsense


Reasoning," Proceedings of the


National Conference on Artificial


Intelligence,


Pittsburgh, Pennsylvania, pp. 428-433, 1982.


Myc84


Mycroft A., and R.A. O'Keefe,


"A Polymorphic


Type System for Prolog,"


Artificial


Intelligence, 23(3), pp.


295-3()7, 198X4.


Nan87


Nance


Conical


Methodology:


A Framework


for Simulation


Model


Development," In Methodology and Validation, O.


Baki (ed), Simulation Series


19(1), pp. 38-43, 1987.


Ore89a


Oren T.I.,


"Bases for Advanced Simulation: Paradigms for the Future,"


simulation
Amsterdam,


methodology


: knowledge


systems'


paradigm ms,


Modelling and


North-Holland,


Chapter 1.2, 1989.


Ore89b


Oren T.I.,


"Simulation Models:


Taxonomy," In: Encyclopedia of Systems and Control,


M. Singh (ed.), Pergamon Press, New York, New York, 1989.


Ore91


Oren


"Dynamic


Templates and Semantic Rules for


Simulation Advisors and


Certifiers,"


Knowledge-Based Simulation, Advances in Simulation 4, Springer-


Verlag, New York, Chapter 4, 1991.


Pag89


Page,


S.E. Berson,


W. C. Cheng, and R.R. Monte,


"An Object-Oriented


Mn'rellino Pnvirmnment "


(()PSI .A


n, 7


Conference Prmceedin.s sneeial igssiue of


D.R.,


R.E.,


T.W.,Jr.,




Full Text
Package Processing Log
.logFileName { font-size:x-large; text-align:center; font-weight:bold; font-family:Arial }
.logEntry { color:black; font-family:Arial; font-size:15px; }
.errorLogEntry { color:red; font-family:Arial; font-size:15px; }
.completedLogEntry { color:blue; font-family:Arial; font-size:15px; }
Package Processing Log
8/15/2011 12:14:20 PM Error Log for AA00003248_00001 processed at: 8/15/2011 12:14:20 PM
8/15/2011 12:14:20 PM -
8/15/2011 12:14:20 PM There are more than one METS file!
8/15/2011 12:14:20 PM -



PAGE 1

+(7(52*(1(286 +,(5$5&+,&$/ 02'(/,1* )25 .12:/('*(%$6(' $872120286 6<67(06 %\ 9,&725 72'' 0,//(5 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

7$%/( 2) &217(176 $%675$&7 &+$37(56 ,1752'8&7,21 +HWHURJHQHRXV +LHUDUFKLFDO 0RGHOLQJ 0RWLYDWLRQ IRU 5HVHDUFK LQ ++ 0RGHOLQJ &RQWULEXWLRQ 5HODWHG :RUN DQG 7RSLFV 2XWOLQH %$6,& &21&(376 0RGHOLQJ DQG 6LPXODWLRQ &RQFHSWV )RUPDOLVP &ODVVLILFDWLRQV +\EULG 0RGHO 7KHRU\ *HQHUDO 6\VWHP 7KHRU\ %DVLF 0RGHOLQJ 3DUDGLJP 'HILQLWLRQV 7LPH 'RPDLQV 1DPHG 6HWV )250$/,606 *UDSK 7KHRU\ )LQLWH 6WDWH 0DFKLQHV 0DUNRY 6\VWHPV 3HWUL 1HWV 4XHXLQJ 1HWZRUNV &RQWURO 7KHRU\ +<%5,' 02'(/ 7+(25< 0RGHO 6WUXFWXUH 6WDWH 0RGHOLQJ 3DUDOOHO 0RGHOLQJ 6HOHFWLYH 0RGHOLQJ +<%5,' $1$/<6,6 .$6 0RGHOLQJ $ +HWHURJHQHRXV +LHUDUFKLFDO 0RGHOLQJ +\EULG $QDO\VLV 6\PEROLF $QDO\VLV ,QWHUSUHWDWLRQ SDJH LY OL

PAGE 3

&21&/86,216 $1' 6800$5< &RQFOXVLRQV 6XPPDU\ 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ LQ

PAGE 4

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ +(7(52*(1(286 +,(5$5&+,&$/ 02'(/,1* )25 .12:/('*(%$6(' $872120286 6<67(06 %\ 9,&725 72'' 0,//(5 $XJXVW &KDLUPDQ 3DXO $ )LVKZLFN 0DMRU 'HSDUWPHQW &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV +LJK DXWRQRP\ V\VWHPV JHQHUDOO\ UHTXLUH WKH XVH RI PXOWLSOH PRGHOLQJ IRUPDOLVPV DQG PXOWLSOH OHYHOV RI DEVWUDFWLRQ LQ RUGHU WR GHVFULEH WKHLU G\QDPLF FKDUDFWHULVWLFV DFFXUDWHO\ DQG HIILFLHQWO\ ,W LV RIWHQ QHFHVVDU\ WR LQWHJUDWH VHYHUDO PRGHOLQJ IRUPDOLVPV LI WKHUH LV D QHHG WR UHDVRQ DERXW VLPXODWH RU DQDO\]H D V\VWHP $GGLWLRQDOO\ GXULQJ GHYHORSPHQW WKH XVH RI D KLHUDUFKLFDO UHSUHVHQWDWLRQ KHOSV WR RUJDQL]H WKH PRGHOV PRUH LQWHOOLJHQWO\ +HWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ LV D PHWKRG ZKLFK VXSSRUWV PXOWLSOH UHSUHVHQWDWLRQV DQG KLHUDUFKLFDO GHYHORSPHQW RI NQRZOHGJHEDVHG DXWRQRPRXV V\VWHP VLPXODWLRQV ,Q WKLV FRQWH[W K\EULG PRGHO WKHRU\ LV GHYHORSHG DV D WKHRUHWLFDO UHSUHVHQWDWLRQ ZKLFK SURYLGHV WKH QHFHVVDU\ IRUPDOLW\ WR PHHW WKH UHTXLUHPHQWV RI KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ +\EULG PRGHO WKHRU\ LV DQ DOWHUQDWLYH DSSURDFK WR FRPELQHG GLVFUHWHFRQWLQXRXV PXOWLPRGHO WKHRULHV DQG VXEVXPHV PRVW RI WKH FRQFHSWV LQ FRPELQHG GLVFUHWHFRQWLQXRXV V\VWHP VLPXODWLRQ +\EULG PRGHO WKHRU\ VXSSRUWV D QHZ FRQFHSW LQ KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ FDOOHG LQWUDPRGHO FRRUGLQDWLRQ ,QWUDPRGHO FRRUGLQDWLRQ LV D PHWKRG LQ ZKLFK WKH FRPSRQHQWV RI D PRGHO FDQ EH FRRUGLQDWHG ZLWK RWKHU PRGHOV ,Q WKLV PDQQHU K\EULG PRGHO WKHRU\ H[WHQGV WKH QRWLRQ RI LQWHUPRGHO FRRUGLQDWLRQ LQ FRPELQHG GLVFUHWHFRQWLQXRXV V\VWHP VLPXODWLRQ ,QWHUPRGHO ,9

PAGE 5

FRRUGLQDWLRQ LV D PHWKRG LQ ZKLFK WZR PRGHOV FDQ RQO\ LQWHUDFW WKURXJK LQSXW DQG RXWSXW )XUWKHUPRUH D K\EULG PRGHO LV D GHFODUDWLYH UHSUHVHQWDWLRQ RI D V\VWHP %\ UHVWULFWLQJ WKH IRUP RI WKLV UHSUHVHQWDWLRQ D K\EULG PRGHO FRQWDLQV WKH GDWD QHFHVVDU\ LQIRUPDWLRQ IRU D FRPSXWHU HQYLURQPHQW WR SHUIRUP V\PEROLF QXPHULFDO DQG LQWHUSUHWDWLYH DQDO\VLV DXWRPDWLFDOO\ ZLWKRXW DGGLWLRQDO HIIRUW IURP WKH XVHU Y

PAGE 6

&+$37(5 ,1752'8&7,21 +HWHURJHQHRXV +LHUDUFKLFDO 0RGHOLQJ $Q HVVHQWLDO SDUW RI DQ\ V\VWHP GHVFULSWLRQ LV WKH GHYHORSPHQW RI D PRGHO ,GHDOO\ WKH PRGHO UHSUHVHQWV WKH EHKDYLRU RI WKH V\VWHP XQGHU LQYHVWLJDWLRQ DW VRPH OHYHO RI DEVWUDFWLRQ ,Q WKH FRQWH[W RI VLPXODWLRQ WKH SURFHVV RI GHYHORSLQJ WKLV PRGHO LV JHQHUDOO\ FDOOHG VLPXODWLRQ PRGHOLQJ RU VLPXODWLRQ PHWKRGRORJ\ 7KH H[WHQW RI WKH PRGHOLQJ SURFHVV LWVHOI YDULHV QRW RQO\ IURP LQGLYLGXDO WR LQGLYLGXDO EXW DOVR IURP SDUDGLJP WR SDUDGLJP 7KLV ZRUN IRFXVHV RQ WKH LVVXHV RI WKH PRGHOLQJ SURFHVV LQ FRPSXWHU GLJLWDOf VLPXODWLRQ 7KH GRPDLQ LV OLPLWHG WR V\VWHPV IRU WUDGLWLRQDO HQJLQHHULQJ SXUSRVHV 7KH SURFHVVHV DQG IRUPDOLVPV IRU ELRORJLFDO VRFLDO DQG VHOIHYROYLQJ V\VWHPV PD\ RU PD\ QRW EH DSSOLFDEOH WR WKLV GLVFXVVLRQ ,Q WKLV FRQWH[W K\EULG PRGHO WKHRU\ LV GHYHORSHG DV D WKHRUHWLFDO UHSUHVHQWDWLRQ ZKLFK SURYLGHV WKH QHFHVVDU\ IRUPDOLW\ WR PHHW WKH UHTXLUHPHQWV RI KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ +\EULG PRGHO WKHRU\ LV DQ DOWHUQDWLYH DSSURDFK WR FRPELQHG GLVFUHWHFRQWLQXRXV PXOWLPRGHO WKHRULHV DQG VXEVXPHV PRVW RI WKH FRQFHSWV LQ FRPELQHG GLVFUHWHFRQWLQXRXV V\VWHP VLPXODWLRQ +\EULG PRGHO WKHRU\ VXSSRUWV D QHZ FRQFHSW LQ KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ FDOOHG LQWUDPRGHO FRRUGLQDWLRQ ,QWUDPRGHO FRRUGLQDWLRQ LV D PHWKRG LQ ZKLFK WKH FRPSRQHQWV RI D PRGHO FDQ EH FRRUGLQDWHG ZLWK RWKHU PRGHOV ,Q WOLLV PDQQHU K\EULG PRGHO WKHRU\ H[WHQGV WKH QRWLRQ RI LQWHUPRGHO FRRUGLQDWLRQ LQ FRPELQHG GLVFUHWHFRQWLQXRXV V\VWHP VLPXODWLRQ ,QWHUPRGHO FRRUGLQDWLRQ LV D PHWKRG LQ ZKLFK WZR PRGHOV FDQ RQO\ LQWHUDFW WKURXJK LQSXW DQG RXWSXW )XUWKHUPRUH D K\EULG PRGHO LV D GHFODUDWLYH UHSUHVHQWDWLRQ RI D V\VWHP %\ UHVWULFWLQJ WKH IRUP RI WKLV UHSUHVHQWDWLRQ D K\EULG PRGHO FRQWDLQV WKH GDWD QHFHVVDU\ LQIRUPDWLRQ IRU D FRPSXWHU HQYLURQPHQW WR SHUIRUP V\PEROLF QXPHULFDO DQG LQWHUSUHWDWLYH DQDO\VLV DXWRPDWLFDOO\ ZLWKRXW DGGLWLRQDO HIIRUW IURP WKH XVHU

PAGE 7

7KH WHUP PRGHOLQJ ZLOO EH GHILQHG DV D IRUPDOLVP DQG LWV DVVRFLDWHG PHWKRGRORJ\ LI RQH H[LVWVf ,Q VLPXODWLRQ PRVW PRGHOLQJ WHFKQLTXHV DUH ORZ WR PLGOHYHO SDUDGLJPV $W PRVW WKHVH WHFKQLTXHV DUH VWDJHV LQ VRPH SRWHQWLDO PHWKRGRORJ\ >)LVE@ ,Q WKH ODVW GHFDGH KRZHYHU H[SDQGLQJ WKH WHFKQLTXHV RI VLPXODWLRQ PHWKRGRORJ\ KDV UHFHLYHG JUHDW DWWHQWLRQ >&HO (O] 3XL@ $GGLWLRQDOO\ QHZ SDUDGLJPV ZLWK DVVRFLDWHG PHWKRGRORJLHV KDYH HPHUJHG DQG KDYH EHHQ LPSOHPHQWHG >1DQ =HL@ 2QH RI WKH PRVW LPSRUW FRQFHSWV WR PDQLIHVW LWVHOI IURP WKH UHVHDUFK LQ VLPXODWLRQ PHWKRGRORJLHV LV WKH LGHD RI D KLHUDUFKLFDO PRGHO +LHUDUFKLHV KDYH EHHQ XVHG LQ KLJKO\ DEVWUDFW PRGHOLQJ HQYLURQPHQWV >&HO =HL@ DW WKH IRUPDOLVP OHYHO >*RU@ DQG DW WKH QXPHULFDO OHYHO >6\G@ $ KLHUDUFKLFDO PRGHO LV D PRGHO ZKLFK KDV VHYHUDO GLIIHUHQW OHYHOV RI UHSUHVHQWDWLRQV DQG DEVWUDFWLRQV 7KHVH OHYHOV DUH UHODWHG WR HDFK RWKHU E\ D KLHUDUFK\ 7KH W\SHV RI KLHUDUFKLHV PRVW FRPPRQO\ XVHG LQ VLPXODWLRQ DUH VWUXFWXUDO FRQFHSWXDO DQG FODVV KLHUDUFKLHV $ VWUXFWXUDO PRGHO GHFRPSRVHV WKH PRGHO LQWR OHYHOV ZKLFK UHVHPEOH WKH DFWXDO V\VWHP 8VXDOO\ WKLV UHTXLUHV WKDW WKH V\VWHP KDV ZHOO HVWDEOLVKHG SK\VLFDO DWWULEXWHV $ FRQFHSWXDO PRGHO PD\ RU PD\ QRW KDYH D GHFRPSRVLWLRQ VLPLODU WR WKH V\VWHP EXW DOZD\V KDV FRPSRQHQWV ZKLFK GR QRW KDYH SK\VLFDO FRXQWHUSDUWV LQ WKH V\VWHP 7KHVH GHFRPSRVLWLRQV UHVHPEOH WKH DSSURDFK XVHG LQ VRIWZDUH HQJLQHHULQJ $ FODVV PRGHO GHFRPSRVLWLRQ UHVHPEOHV WKH DSSURDFK XVHG LQ REMHFWRULHQWHG SURJUDPPLQJ 7KH REMHFWRULHQWHG FODVV KLHUDUFK\ DFWXDOO\ RULJLQDWHG IURP 6,08/$ D ODQJXDJH GHVLJQHG IRU GLVFUHWH VLPXODWLRQ >%LU@f ,Q D FODVV KLHUDUFK\ WKH PRGHO LV QRW GHFRPSRVHG KLHUDUFKLFDOO\ EXW WKH REMHFWV XVHG WR GHVFULEHG WKH PRGHO DUH FUHDWHG KLHUDUFKLFDOO\ $ KLHUDUFK\ LV XVHG WR FODVVLI\ REMHFWV LQWR W\SHV ,W LV LPSRUWDQW WR GLVWLQJXLVK WKH FODVVLI\LQJ RI GRPDLQ PRGHOV DV RSSRVHG WR WKH FODVVLILFDWLRQ RI WKH IRUPDOLVPV XVHG WR GHVFULEH GRPDLQ PRGHOV $ KLHUDUFK\ ZKLFK FODVVLILHV YHKLFOHV REMHFWV OLNH WUXFN FDU PRWRUF\FOH %XLFN +RQGD HWFf RUJDQL]HV WKH GRPDLQ RI YHKLFOHV $ OULHUDUFK\ ZKLFK FODVVLILHV IRUPDOLVPV VWDWH IXQFWLRQDO SURFHVV 3HWUL QHW FRQWURO WKHRU\ VHPDQWLF QHWV H[SHUW V\VWHP HWFf RUJDQL]HV WKH GRPDLQ RI IRUPDOLVPV ZKLFK DUH XVHG WR GHVFULEH RWKHU GRPDLQV ,Q WKLV GLVFXVVLRQ ERWK KLHUDUFKLHV DUH XVHG WR RUJDQL]H FRQFHSWV

PAGE 8

$QRWKHU LPSRUWDQW FRQFHSW ZKLFK KDV HPHUJHG LQ VLPXODWLRQ PRGHOLQJ LV WKH XVH RI PXOWLSOH IRUPDOLVPV ZLWKLQ RQH PRGHO >3DJ )LVE@ :LWK WKH LQFUHDVHG LQWHUHVW LQ KLHUDUFKLFDO PRGHOLQJ WKH QHHG WR UHSUHVHQW HIILFLHQWO\ HDFK OHYHO RI D NQRZOHGJHEDVHG DXWRQRPRXV V\VWHP PRGHO .$6 PRGHOf KDV EHFRPH LPSRUWDQW IRU PDQ\ UHDVRQV 6RPH PRGHOLQJ IRUPDOLVPV FDSWXUH FHUWDLQ DVSHFWV RI V\VWHP EHKDYLRU EHWWHU WKDQ RWKHUV GHYHORSPHQWDO HIILFLHQF\f 2WKHU PRGHOLQJ IRUPDOLVPV PD\ SURYLGH WKH PHDQV WR GLVFHUQ LPSRUWDQW IHDWXUHV WKDW DUH QRW HYLGHQW LQ RWKHU IRUPDOLVPV FRQFHSWXDO HIILFLHQF\f 7KH XVH DQG EHQHILWV RI PXOWLSOH PRGHOV W\SHV KDV EHHQ LQYHVWLJDWHG LQ WKHRULHV VXFK DV PXOWLIDFHWHG PRGHOLQJ >=HL@ DQG KHWHURJHQHRXV LQWHUOHYHO UHILQHPHQW >)LVD@ 7KH JHQHUDO FRQFHSW RI KHWHURJHQHRXV PRGHOLQJ GUDZV XSRQ UHVHDUFK LQ PXOWLPRGHOV FRPELQHG PRGHOV PXOWLIDFHWHG PRGHOV KRPRPRUSKLF PRGHOV DQG DEVWUDFW PRGHOV 2QH RI WKH ZD\V RI DGYDQFLQJ WKH ILHOG RI VLPXODWLRQ UHTXLUHV LPSURYLQJ WKH DYDLODEOH PRGHOLQJ PHWKRGV +HWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ LPSURYHV PHWKRGV E\ DLGLQJ LQ WKH GHYHORSPHQW PDLQWHQDQFH VLPXODWLRQ DQG FRQFHSWXDOL]DWLRQ RI .$6 PRGHOV ,W GRHV WKLV E\ SURYLGLQJ D YDULHW\ RI VXFFLQFW IRUPDOLVPV DQG WKH WHFKQLTXHV IRU LQWHJUDWLQJ WKHP 6XEPRGHOLQJ LV WKH SURFHVV RI HLWKHU UHILQLQJ D PRGHO RU VSHFLI\LQJ VHYHUDO DOWHUQDWLYH PRGHOV IRU D PRGHO 5HILQLQJ D PRGHO UHTXLUHV DGGLQJ GHWDLO IRU LQVWDQFH UHILQLQJ D 3HWUL QHW LQWR D TXHXLQJ PRGHO 5HILQHPHQW RI D PRGHO LQWURGXFHV VXEWOHWLHV RI FRPSRQHQWV RI WKH PRGHO 6SHFLI\LQJ DOWHUQDWLYHV IRU D PRGHO UHTXLUHV WKDW RQO\ RQH DOWHUQDWLYH PRGHO EH DFWLYH DW D WLPH f f >2UH@ 6XEPRGHOLQJ FDQ UHTXLUH KRPRPRUSKLF EHKDYLRU >=HL 6HY@ EHWZHHQ GLIIHUHQW OHYHOV RI DEVWUDFWLRQ $GGLWLRQDOO\ PXOWLSOH IRUPDOLVPV LQFOXGH PXOWLSOH W\SHV RI VLPXODWLRQ DQG LQWHJUDWLQJ WKH WD[RQRP\ RI PRGHOV >2UHE@ )RU H[DPSOH 3UDKRIHU KDV LQWHJUDWHG WKH UHSUHVHQWDWLRQ RI FRQWLQXRXV DQG GLVFUHWH HYHQW PRGHOV LQ WKH VDPH VLPXODWLRQ HQYLURQPHQW >3ULL D 3ULLE@ +HWHURJHQHRXV KLHUDUFKLFDO PRGHOLQH LV D PRGHOLQJ SURFHVV ZKLFK VXSSRUWV PXOWLSOH IRUPDOLVPV DQG VXSSRUWV KLHUDUFKLFDO GHYHORSPHQW DV GHVFULEHG DERYH 0RGHO HYROXWLRQ DQG HQJLQHHULQJ >)LVD@ DUH QDWXUDO DWWULEXWHV RI VXFK D SURFHVV +HWHURJHQHRXV KLHUDUFKLFDO

PAGE 9

PRGHOLQJ ++ PRGHOLQJf DOORZV DQ LQYHVWLJDWRU WR GHYHORS D PRGHO LQ D WRSGRZQ IDVKLRQ 7KH EHQHILWV RI WRSGRZQ GHVLJQ KDYH EHHQ ZHOO HVWDEOLVKHG LQ PDQ\ GLVFLSOLQHV 7KH KLHUDUFK\ QRW RQO\ DLGV WKH LQYHVWLJDWRU LQ GHYHORSPHQW DQG FRQFHSWXDOL]DWLRQ RI WKH PRGHO EXW VHUYHV DV D KLVWRU\ RI WKH GHYHORSPHQW SURFHVV LWVHOI 7KH KLVWRU\ RI D PRGHOfV GHYHORSPHQW PD\ SOD\ DQ LPSRUWDQW UROH LQ WKH HYROXWLRQ RU HQJLQHHULQJ RI WKH PRGHO ,Q DQ\ PRGHOLQJ HQYLURQPHQW WKH LQYHVWLJDWRU PXVW KDYH WKH PD[LPXP DYDLODEOH IOH[LELOLW\ LQ GHYHORSPHQW ZKLOH HQVXULQJ WKDW LQFRQVLVWHQFLHV ZLWKLQ WKH PRGHO GR QRW DULVH %HFDXVH FKHFNLQJ IRU LQFRQVLVWHQFLHV LQ ODUJH DQG PXOWLSOH PRGHOV FDQ EH WHGLRXV DQG FRPSOH[ LW VHHPV QDWXUDO WR FRQFOXGH WKDW WKH GHYHORSPHQW RI PHWKRGV IRU DXWRPDWLQJ D ++ PRGHOLQJ SURFHVV ZLOO EH XVHIXO 7ZR RI WKH PDMRU LQFRQVLVWHQFLHV LQ ++ PRGHOLQJ PHWKRGRORJLHV DUH FRPSDWLELOLW\ EHWZHHQ OHYHOV RI WKH PRGHO DQG FRPSDWLELOLW\ DPRQJ GLIIHUHQW W\SHV RI PRGHOV 7KH QXPEHU DQG W\SH RI IRUPDOLVPV LQ DQ ++ PRGHOLQJ HQYLURQPHQW VKRXOG SURYLGH WKH LQYHVWLJDWRU ZLWK D VXIILFLHQW UDQJH RI FKRLFHV 3HWUL QHWV 0DUNRY V\VWHPV HWFf 2I FRXUVH QR PRGHOLQJ V\VWHP ZLOO EH SHUIHFW IRU HYHU\ GRPDLQ EXW WKH LQWHUDFWLRQV DPRQJ D VXIILFLHQW QXPEHU RI IRUPDOLVPV VKRXOG JLYH WKH LQYHVWLJDWRU D IOH[LEOH HQYLURQPHQW ZKLFK FDQ EH DSSOLHG WR D YHU\ JHQHUDO GRPDLQ &XUUHQWO\ PDQ\ RI WKH KLHUDUFKLFDO V\VWHPV DOORZ RQO\ RQH W\SH RI IRUPDOLVP IRU LQVWDQFH KLHUDUFKLFDO 3HWUL QHWV RU VWDWH PDFKLQHV 0DQ\ RI WKH PXOWLPRGHO V\VWHPV VXFK DV *366 >6FK@ RU 6,0$1 >3HJ@ DOORZ RQO\ RQH OHYHO RI DEVWUDFWLRQ &RPELQLQJ KLHUDUFKLHV DQG KHWHURJHQHRXV PRGHOV KDV MXVW UHFHQWO\ UHFHLYHG DWWHQWLRQ LQ WKH OLWHUDWXUH >)LVE@ $ JHQHUDOL]HG DQG IRUPDO WKHRU\ RI ++ PRGHOLQJ KDV \HW WR EH GHYHORSHG 7KH PRWLYDWLRQ IRU WKH GHYHORSPHQW RI ++ PRGHOLQJ LV GHULYHG IURP VHYHUDO GLIIHUHQW VRXUFHV 7KH FRQWULEXWLRQ LW FDQ PDNH WR WKH PRGHOLQJ SURFHVV LQ JHQHUDO KDV EHHQ VSHFXODWHG EXW QRW FRQILUPHG 7KLV ZRUN LV D GLUHFW UHVXOW RI WKHVH LVVXHV $ JURZLQJ EXW VWLOO XQGHUUHSUHVHQWHG WRSLF LQ PRGHOLQJ UHVHDUFK LV WKH DELOLW\ WR DQDO\]H D VLQJOH PRGHO XVLQJ V\PEROLF QXPHULFDO DQG LQWHUSUHWDWLYH WHFKQLTXHV 6\PEROLF WHFKQLTXHV DUH PDWKHPDWLFDO SURFHGXUHV ZKLFK LQYROYH PDQLSXODWLQJ DOJHEUDLF RU GLIIHUHQWLDO HTXDWLRQV :LWK WKH

PAGE 10

LQFUHDVHG XVH DQG DYDLODELOLW\ RI SURJUDPV WKDW GR V\PEROLF PDWKHPDWLFV LW LV EHFRPLQJ LQFUHDVLQJO\ HDVLHU WR DXWRPDWH V\PEROLF DQDO\VLV HVSHFLDOO\ RI ZHOONQRZQ PRGHOLQJ IRUPDOLVPVf 1XPHULFDO WHFKQLTXHV UHIHU WR WUDGLWLRQDO FRPSXWDWLRQDO VLPXODWLRQ PHWKRGV DQG QXPHULFDO DSSUR[LPDWLRQ ,QWHUSUHWDWLRQ PHWKRGV DUH WKRVH WKDW DUH UHODWHG WR WKH ILHOG RI DUWLILFLDO LQWHOOLJHQFH DQG NQRZOHGJH HQJLQHHULQJ 7KHVH UDQJH IURP IX]]\ RU TXDQWLWDWLYH VLPXODWLRQ >)LVE@ XS WR DQG LQFOXGLQJ ORJLF PHWKRGV DQG VHPDQWLF QHWZRUNV ,Q JHQHUDO K\EULG DQDO\VLV V\PEROLF QXPHULF DQG LQWHUSUHWDWLYHf UHTXLUHV GLIIHUHQW PRGHO VSHFLILFDWLRQ VWUDWHJLHV DQG SURFHVVHV IRU HDFK W\SH RI DQDO\VLV 7KLV GXSOLFDWHV D VXEVWDQWLDO DPRXQW RI HIIRUW RQ WKH SDUW RI WKH LQYHVWLJDWRU ,W DOVR PDNHV LW LPSRVVLEOH IRU LQIRUPDWLRQ JDLQHG LQ RQH W\SH RI DQDO\VLV WR KHOS RU JXLGH D WHFKQLTXH LQ DQRWKHU W\SH RI DQDO\VLV XQOHVV WKH LQYHVWLJDWRU WUDQVPLWV E\ KDQG WKLV LQIRUPDWLRQ IURP RQH PRGHOLQJ IRUPDOLVP WR WKH RWKHUf $ OHJLWLPDWH DSSURDFK WR ++ PRGHOLQJ LV WR GHYHORS D QHZ PRGHOLQJ IRUPDOLVP ZKLFK LV RULHQWHG WRZDUG .$6 PRGHOV ,Q RUGHU WR SURYLGH LQVLJKWV LQWR WKH FRPSOH[ EHKDYLRU RI .$6 PRGHOV WKURXJK VLPXODWLRQ DQG UHDVRQLQJ PHWKRGV HIILFLHQW DQG VXFFLQFW UHSUHVHQWDWLRQV PXVW EH XVHG WR GHVFULEH DOO DVSHFWV RI EHKDYLRU ZKLFK DUH SHUWLQHQW WR WKH LQYHVWLJDWRU ,W LV XQOLNHO\ WKDW RQH PRGHOLQJ IRUPDOLVP ZRXOG SURYLGH VXFK D UHSUHVHQWDWLRQ 7KLV DVVHUWLRQ LV EDVHG XSRQ WKH SUDJPDWLFV RI PRGHO EXLOGLQJ 6SHFLILF PRGHOLQJ IRUPDOLVPV DUH XVHG E\ LQYHVWLJDWRUV EHFDXVH WKH\ DUH FRQYHQLHQW WR XVH KDYH SUHIHUDEOH DWWULEXWHV RU IXOILOO VRPH SUDJPDWLF UHTXLUHPHQW >5RW@ 7WHUH DUH FOHDUO\ WZR GLOHPPDV WR LQYHVWLJDWRUV RI .$6 V\VWHPV )LUVW VLQFH SUDJPDWLF LVVXHV DUH GLFWDWHG E\ WKH LQYHVWLJDWRUfV SUHIHUHQFHV DQG FRQYHQLHQFH DQG SUDJPDWLF LVVXHV YDU\ ZLWKLQ GLIIHUHQW VHFWLRQV RI ODUJH FRPSOH[ V\VWHPV D VLQJOH PRGHOLQJ IRUPDOLVP ORFNV WKH LQYHVWLJDWRU LQWR D PHWKRG ZKLFK LV QHLWKHU SUHIHUDEOH QRU FRQYHQLHQW 7KH VHFRQG GLOHPPD FRQFHUQV WKH WUDGHRIIV EHWZHHQ FRQYHQLHQFH DQG JHQHUDOLW\ )RU H[DPSOH TXHXLQJ QHWZRUNV PD\ EH HIILFLHQW IRU PRGHOLQJ DUULYDOGHSDUWXUH EHKDYLRU EXW QRW JHQHUDO HQRXJK IRU WKH PRGHOLQJ RI FRPSOH[ .$6 PRGHOV 6LPLODUO\ VLPXODWLRQ ODQJXDJHV VXFK DV *366 DUH JHQHUDO HQRXJK WR EH XVHG IRU DOPRVW DOO W\SHV RI VLPXODWLRQ EXW ODFN WKH GHYHORSPHQWDO HIILFLHQF\ FRQFHSWXDO HIILFLHQF\ DQG FRQYHQLHQFH RI PDWKHPDWLFDOEDVHG

PAGE 11

PRGHOLQJ IRUPDOLVPV $GGLWLRQDOO\ VLPXODWLRQ ODQJXDJHV KDYH WUDGLWLRQDOO\ ODFNHG V\PEROLF DQG LQWHUSUHWDWLYH DQDO\VLV PHWKRGV ,Q VKRUW WKH PRUH JHQHUDO D IRUPDOLVP EHFRPHV WKH OHVV HIILFLHQW LW LV WR XVH :LWK WKLV LQ PLQG DQ ++ PRGHOLQJ WKHRU\ ZKLFK LV EDVHG RQ FRRUGLQDWLRQ RI H[LVWLQJ PRGHOLQJ IRUPDOLVPV LV DQ DWWUDFWLYH DOWHUQDWLYH WR GHYHORSLQJ DQ DOOHQFRPSDVVLQJ FRPSOHWHO\ JHQHUDOL]HG VLQJOH IRUPDOLVP 6LQFH PRGHOLQJ IRUPDOLVPV VXFK DV TXHXLQJ QHWZRUNV DQG ILQLWH VWDWH PDFKLQHV KDYH SURYHQ WR EH SRZHUIXO PHWKRGV EXW OLPLWHG WR VSHFLILF GRPDLQV D FRRUGLQDWLRQ RI WKHVH PRGHOLQJ IRUPDOLVPV ZKLFK NHHSV WKH UHSUHVHQWDWLRQDO SRZHU RI HDFK IRUPDOLVP LQWDFW VKRXOG IRVWHU PRUH FRPSOHWH LQYHVWLJDWLRQV RI FRPSOH[ KLJK DXWRQRP\ V\VWHPV )XUWKHUPRUH E\ FRRUGLQDWLQJ HVWDEOLVKHG PRGHOLQJ IRUPDOLVPV WKH OHDUQLQJ FXUYH QHHGHG WR XQGHUVWDQG WKH WKHRU\ LV UHGXFHG ++ PRGHOLQJ FDQ EH DFFRPSOLVKHG E\ OHWWLQJ WKH LQYHVWLJDWRU XVH DQ DSSURSULDWH PRGHOLQJ IRUPDOLVP WR GHVFULEH D SDUWLFXODU FRPSRQHQW RI WKH V\VWHP DQG WKHQ DOORZLQJ D FRRUGLQDWLRQ RI WKLV IRUPDOLVP ZLWK PRGHOV WKDW GHVFULEH RWKHU V\VWHP FRPSRQHQWV 7KH LQYHVWLJDWRU PD\ DOVR QHHG WR UHLPSOHPHQW VXEFRPSRQHQWV RI D SDUWLFXODU PRGHO DV QHZ LQIRUPDWLRQ LV JDLQHG GXULQJ GHYHORSPHQW DQG DQDO\VLV SHUKDSV ZLWK D GLIIHUHQW PRGHOLQJ IRUPDOLVPf (IILFLHQF\ DQG VXFFLQFWQHVV DUH VXSSOLHG E\ WKH PDWKHPDWLFDO IRUPDOLVP ZKHUHDV WKH FRRUGLQDWLRQ RI VHYHUDO IRUPDOLVPV LQFUHDVHV WKH JHQHUDOLW\ 0RWLYDWLRQ ORU 5HVHDUFK LQ ++ PRGHOLQJ 7KHUH DUH VHYHUDO UHVHDUFK LVVXHV ZKLFK PRWLYDWH WKH GHYHORSPHQW RI KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ $PRQJ WKHVH LVVXHV WKH PRVW EDVLF \HW YHU\ LPSRUWDQW LV DGYDQFLQJ WKH f f f f ILHOG RI VLPXODWLRQ 2UHQ >2UHD SJ @ ZULWHV 6LQFH XVH RI PRGHOV LV HVVHQWLDO LQ VLPXODWLRQ DGYDQFHPHQWV FDQ EH DFKLHYHG E\ H[SORULQJ DGYDQFHV LQ PRGHOEDVHG FRQFHSWV VXFK DV PRGHOLQJ IRUPDOLVPV PRGHOLQJ HQYLURQPHQWV PRGHOEDVHG PDQDJHPHQW DQG V\PEROLF SURFHVVLQJ RI PRGHOV

PAGE 12

%\ XVLQJ PXOWLSOH PRGHOV ++ PRGHOLQJ H[SDQGV WKH QRWLRQ RI D PRGHOLQJ IRUPDOLVP 5HVHDUFK LQ PXOWLSOH PRGHOV LV QRW QHZ +RZHYHU LW LV VWLOO LQ WKH HDUO\ VWDJHV RI GHYHORSPHQW DQG UHTXLUHV IXUWKHU H[SORUDWLRQ &RPELQLQJ PXOWLSOH PRGHOV ZLWKLQ D FRPSOH[ KLHUDUFKLFDO VWUXFWXUH DGGV QHZ SUREOHPV DQG FRPSOLFDWHV FXUUHQW SUREOHPV RI PXOWLSOH PRGHO UHVHDUFK 7KH KLHUDUFKLFDO PRGHOLQJ SURFHVV LV UHODWHG WR UHVHDUFK LQ PRGHOEDVHG PDQDJHPHQW DQG f f PRGHOLQJ HQYLURQPHQWV DV GHVFULEHG E\ 2UHQ 7KH KLHUDUFK\ VHUYHV WR PDQDJH WKH GHYHORSPHQW DQG VWUXFWXUH RI WKH PRGHO 7KH WRSGRZQ DSSURDFK FRPPRQO\ XVHG ZLWK KLHUDUFKLFDO PRGHOV KHOSV WR SUHVFULEH PDQDJHPHQW PHWKRGV )XUWKHUPRUH D KLHUDUFK\ GHVFULEHV WKH WUDYHUVDO SDWK D PRGHOLQJ HQYLURQPHQW PLJKW XVH $Q\ HQYLURQPHQW ZKLFK DLGV WKH LQYHVWLJDWRU E\ DOORZLQJ SHUXVDO RI WKH PRGHO VWUXFWXUH FDQ XVH WKH QDWXUDO VWUXFWXUH RI WKH KLHUDUFK\ WR JXLGH WKH LQYHVWLJDWRU 2QH RI WKH PRVW LPSRUWDQW PRWLYDWLRQV IRU UHVHDUFK LQ ++ PRGHOLQJ LV WKH FRQWULEXWLRQ LW PDNHV WR NQRZOHGJHEDVHG VLPXODWLRQ >)LV D@ DQG TXDOLWDWLYH VLPXODWLRQ >)LVOE .XL@ ,Q NQRZOHGJHEDVHG VLPXODWLRQ LQIRUPDWLRQ DERXW WKH PRGHO LV XVHG WR DLG WKH LQYHVWLJDWRU E\ VXJJHVWLQJ DOWHUQDWLYH IRUPDOLVPV DQVZHU TXHVWLRQV DERXW WKH PRGHO LQFUHDVH VHPDQWLF UHODWLRQVKLSV EHWZHHQ SDUWV RI D PRGHO DQG KHOS GHYHORS LQWHOOLJHQW DJHQW DQG JRDOGLUHFWHG V\VWHPV ++ PRGHOLQJ HVWDEOLVKHV IRUPDO UHODWLRQVKLSV DQG FODULILHV WKH VHPDQWLF UHODWLRQVKLSV EHWZHHQ GLIIHUHQW OHYHOV RI DEVWUDFWLRQV LQ D PRGHO DQG GLIIHUHQW W\SHV RI IRUPDOLVPV )RU LQVWDQFH D FRQWLQXRXV PRGHO ZKLFK KDV ZHOOGHILQHG V\VWHP VWDWHV FDQ EH GHVFULEHG E\ D VWDWH PDFKLQH DW WKH WRS OHYHO RI D KLHUDUFK\ DQG GLIIHUHQFH HTXDWLRQV DW WKH ERWWRP OHYHO >)LVE@ 7KH IRUPDO UHODWLRQVKLSV RI ++ PRGHOLQJ HQVXUH FRUUHFWQHVV RI WKH PRGHO 7KH KLHUDUFK\ FOXVWHUV LQIRUPDWLRQ ZKLFK LV XVHIXO LQ JURXSLQJ EHKDYLRU DQG WKH W\SH RI PRGHO VSHFLILHV VHPDQWLFV DERXW WKH SDUWLFXODU OHYHO $ NQRZOHGJHEDVHG VLPXODWLRQ DQG HQYLURQPHQW UHTXLUHV VXFK LQIRUPDWLRQ LQ RUGHU WR VXJJHVW LPSURYHPHQWV JXLGH VHPDQWLF GHYHORSPHQW RU DQDO\]H DXWRQRPRXV GHFLVLRQn PDNLQJ PRGHOV 7KHUHIRUH D VWURQJ PRWLYDWLRQ IRU GHYHORSLQJ ++ PRGHOLQJ LV WR KHOS HVWDEOLVK D IRXQGDWLRQ IRU NQRZOHGJHEDVHG VLPXODWLRQ

PAGE 13

V $Q LPSRUWDQW SDUW RI UHVHDUFK LQ TXDOLWDWLYH VLPXODWLRQ LV WKH DELOLW\ WR DVN TXHVWLRQV WKDW UHTXLUH YDU\LQJ GHJUHHV RI VSHFLILFDWLRQ $Q LQYHVWLJDWRU PD\ EH LQWHUHVWHG LQ V\PEROLF LQIRUPDWLRQ LQ RQH TXHVWLRQ ZLOO WKH EDOO ERXQFH DQG LI VR ZLOO LW ERXQFH KLJKf RU QXPHULFDO LQIRUPDWLRQ LQ RWKHU TXHVWLRQV KRZ PDQ\ WLPHV ZLOO LW ERXQFH DQG KRZ ORQJ ZLOO LW WDNH WR VWRSf 7KHVH TXHVWLRQV UHTXLUH GLIIHUHQW OHYHOV RI DEVWUDFWLRQ DQG GLIIHUHQW OHYHOV RI LPSOHPHQWDWLRQ $ KLHUDUFKLFDO PRGHO SURYLGHV E\ LWV YHU\ QDWXUH GLIIHUHQW OHYHOV RI DEVWUDFWLRQ ZLWK FRUUHVSRQGLQJ IRUPDOLVPV FDSDEOH RI SURYLGLQJ GDWD DSSURSULDWH IRU WKDW OHYHO RI DEVWUDFWLRQ 6LPLODU WR WKH PRWLYDWLRQ IRU NQRZOHGJHEDVHG VLPXODWLRQ ++ PRGHOLQJ GHYHORSPHQW KHOSV WR HVWDEOLVK D IRXQGDWLRQ IRU TXDOLWDWLYH VLPXODWLRQ &RQWULEXWLRQ 7KH PRWLYDWLRQV LQ WKH SUHYLRXV VHFWLRQ LGHQWLI\ WZR JHQHUDO FRQWULEXWLRQV )LUVW E\ GHYHORSLQJ IRUPDO DQG VHPDQWLF UHODWLRQVKLSV EHWZHHQ GLIIHUHQW W\SHV RI IRUPDOLVPV ++ PRGHOLQJ FRQWULEXWHV WR UHVHDUFK LQ H[SHUW V\VWHPV DQG NQRZOHGJHEDVHG VLPXODWLRQ 6HFRQG E\ GHYHORSLQJ WKH IRUPDO UHODWLRQVKLSV EHWZHHQ DEVWUDFW OHYHOV LQ KLHUDUFKLFDO PRGHOV ++ PRGHOLQJ FRQWULEXWHV WR UHVHDUFK LQ TXDOLWDWLYH VLPXODWLRQ $OWKRXJK WKHVH WZR FRQWULEXWLRQV DUH LPSRUWDQW WKH\ DUH QRW GLUHFW FRQWULEXWLRQV WR WKH VWDWHRIWKHDUW VLPXODWLRQ HQYLURQPHQW ++ PRGHOLQJ ZLOO IRUP D VROLG IRXQGDWLRQ IRU NQRZOHGJHEDVHG VLPXODWLRQ V\VWHPV 7KH GLUHFW FRQWULEXWLRQV ++ PRGHOLQJ FDQ RIIHU WR VWDWHRIWKHDUW VLPXODWLRQ HQYLURQPHQWV DUH DV IROORZV 0RVW VLPXODWLRQ HQYLURQPHQWV DQG OLEUDULHV RIIHU DQ LQYHVWLJDWRU PXOWLSOH PRGHOV IURP ZKLFK WR FKRRVH +RZHYHU WKH\ GR QRW KHOS WKH LQYHVWLJDWRU XVH WKHP +RZ GLIIHUHQW PRGHOV LQ WKH VDPH VLPXODWLRQ PD\ LQWHUDFW LV OHIW XS WR WKH LQYHVWLJDWRU 1R IDFLOLWLHV WR FKHFN IRU LQFRQVLVWHQFLHV DPRQJ LQWHUDFWLQJ IRUPDOLVPV DUH SURYLGHG 'HVLJQLQJ VLPXODWLRQ PRGHOV LV FXUUHQWO\ SHUIRUPHG LQ DQ DGKRF PDQQHU ++ PRGHOLQJ SURYLGHV D VWUXFWXUHG ZD\ WR FUHDWH PRGHOV HIILFLHQWO\ LQ D WRSGRZQ IDVKLRQ

PAGE 14

&KDQJLQJ VLPXODWLRQ PRGHOV DV QHZ GDWD DUH FROOHFWHG RU QHZ FRQVWUDLQWV DUH DGGHG FDQ VLJQLILFDQWO\ DOWHU ILDW PRGHOV 7KH KLHUDUFK\ RI ++ PRGHOLQJ VHUYHV WR LVRODWH LQGHSHQGHQW SDUWV RI D PRGHO DQG WKHUHIRUH PDNH WKHP HDVLHU WR PDLQWDLQ 7KH KLHUDUFK\ RI IRUPDO PRGHOV DOORZV IRU LQFRPSOHWH PRGHOV WR EH VLPXODWHG 7KLV JLYHV WKH LQYHVWLJDWRU IHHGEDFN HDUO\ LQ WKH VLPXODWLRQ GHYHORSPHQW SKDVH ++ PRGHOLQJ SURYLGHV D PHFKDQLVP WR DVN TXHVWLRQV QRW RQO\ DERXW WKH UHVXOWV RI WKH VLPXODWLRQ EXW DERXW WKH PRGHO EHLQJ VLPXODWHG $GGLWLRQDOO\ WKH OHYHO RI FRPSOH[LW\ RI WKH TXHVWLRQ GLFWDWHV WKH OHYHO RI DEVWUDFWLRQ XVHG LQ WKH VLPXODWLRQ DQG WKH OHYHO RI DPELJXLW\ RI WKH UHVXOWV RI D VLPXODWLRQ GLFWDWHV WKH OHYHO RI DEVWUDFWLRQ XVHG WR DQVZHU WKH TXHVWLRQ $ JHQHUDOL]HG WKHRU\ ZLOO PDNH DGGLWLRQDO IRUPDOLVPV HDVLHU WR LQFOXGH ++ PRGHOLQJ DOORZV IRUPDOLVPV WR LQWHUDFW ZLWK HDFK RWKHU LQVWHDG RI FRPELQLQJ GLIIHUHQW IRUPDOLVPV LQWR RQH 7KH FRPSOH[LW\ RI PRGHOLQJ D ODUJH V\VWHP LV WKHUHIRUH EURNHQ XS QRW RQO\ KLHUDUFKLFDOO\ EXW DOVR FRQFHSWXDOO\ 5HODWHG :RUN DQG 7RSLFV 7KHUH DUH WKUHH ILHOGV RI VWXG\ ZKLFK DUH LQGLUHFWO\ UHODWHG WR WKH ZRUN SUHVHQWHG LQ WKLV UHVHDUFK 7KHVH ILHOGV DUH DUWLILFLDO LQWHOOLJHQFH VRIWZDUH HQJLQHHULQJ DQG NQRZOHGJHEDVHG VLPXODWLRQ 7KH H[DFW UHODWLRQVKLS LV SUREDEO\ D PDWWHU RI SKLORVRSKLFDO GHEDWH +RZHYHU WKH FURVVIHUWLOL]DWLRQ RI LGHDV EHWZHHQ WKHVH ILHOGV LV SUHYDOHQW WKURXJK RXW WKH OLWHUDWXUH >)LV@ :LWKLQ $, WKH ZRUN LQ TXDOLWDWLYH UHDVRQLQJ >%RE@ LV GLUHFWO\ UHODWHG WR ++ PRGHOLQJ 4XDOLWDWLYH UHDVRQLQJ LQ JHQHUDO LV DQ\ W\SH RI IRUPDOLVP ZKLFK LV DQ DEVWUDFWLRQ RI DOJHEUDLF RU GLIIHUHQFH HTXDWLRQV 7KH UHFHQW ZRUN RI )RUEXV DQG )DONHQKDLQHU >)RU@ DQG .XLSHUV >.XL@ LV D JRRG UHSUHVHQWDWLYH RI WKH UHODWLRQVKLS EHWZHHQ ++ PRGHOLQJ DQG TXDOLWDWLYH UHDVRQLQJ ,Q )RUEXVfV SDSHU VHOIH[SODQDWRU\ VLPXODWLRQV EDVHG RQ TXDOLWDWLYH SURFHVV 43f

PAGE 15

WKHRU\ >)RU@ DUH XVHG WR DQVZHU D YDULHW\ RI TXHVWLRQV DERXW D PRGHO DW VHYHUDO GLIIHUHQW OHYHOV RI DEVWUDFWLRQ 6WDWHV LQ 43 WKHRU\ DUH EDVHG RQ HTXDWLRQ OLPLWV ,Q .XLSHUVfV SDSHU D TXDOLWDWLYH JUDSK RI GDWD IORZ ZLWK FRQVWUDLQWV LV XVHG WR UHDVRQ DERXW LQFRPSOHWH V\VWHPV 4XDOLWDWLYH VLPXODWLRQ 46f >.XL@ LV XVHG DV WKH UHDVRQLQJ IRUPDOLVP 6WDWHV LQ 46 DUH EDVHG RQ VSHFLILHG ODQGPDUN YDOXHV .QRZOHGJH UHSUHVHQWDWLRQ .5f LV ORRVHO\ UHODWHG WR WKLV ZRUN 7\SLFDOO\ .5 IRFXVHV RQ VWDWLF UHODWLRQVKLSV EHWZHHQ REMHFWV )UDPHV >+D\@ VHPDQWLF QHWV >)LQ@ LQKHULWDQFH >(WK@ DQG ORJLF >0RR@ DOO SOD\ UROHV LQ UHDVRQLQJ DERXW VWDWLF SURSHUWLHV $OWKRXJK WHPSRUDO UHDVRQLQJ UHVHDUFK LV GRQH LQ $, IRU H[DPSOH $OOHQfV ZRUN >$ $@ G\QDPLF SURSHUWLHV DERXW V\VWHP VWDWH LV FRQILQHG WR TXDOLWDWLYH UHDVRQLQJ 5HDVRQLQJ DQG TXHVWLRQLQJ DUH FRQVLGHUHG V\QRQ\PRXV LQ WKLV ZRUN 7KHUHIRUH ZKHQ D TXHVWLRQ LV SRVHG WR REWDLQ SURSHUWLHV RI D PRGHO UHDVRQLQJ LV WDNLQJ SODFH ,Q VRIWZDUH HQJLQHHULQJ 6(f WKH XVH RI IRUPDOLVPV WR GHVFULEH RSHUDWLRQDO EHKDYLRU LV FRPPRQ DQG LV IRXQG LQ OLWHUDWXUH H[SODLQLQJ 6( IXQGDPHQWDOV >*KH@ 2EMHFWRULHQWHG SURJUDPPLQJ LV DOVR DQ LPSRUWDQW PRGHOLQJ WRSLF LQ 6( >+DUM 7KLV HPDQDWHV IURP VRIWZDUH PDLQWDLQDELOLW\ DQG UHXVH LVVXHV LQ ZKLFK REMHFW KLHUDUFKLHV WHQG WR DVVLVW $ JRRG UHSUHVHQWDWLYH RI WKH UHODWHG ZRUN LQ 6( LV WKH QHZ ERRN E\ 5XPEDXJK HW DO >5XP@ 5XPEDXJKfV PHWKRGRORJ\ XVHV REMHFWHGRULHQWHG FRQFHSWV WR GHILQH VWDWLF SURSHUWLHV ZKLFK DUH YHU\ PXFK OLNH VHPDQWLF QHWV LQ $, 7KH G\QDPLF SURSHUWLHV RI D VRIWZDUH SURMHFW DUH GHVFULEHG XVLQJ VWDWH DQG SURFHVV PRGHOLQJ WHFKQLTXHV $OWKRXJK WKLV PHWKRGRORJ\ LV QRW IRUPDO WKHRUHWLFDOO\ RU FRPSXWDWLRQDOO\f LW LV D WKRURXJK HPERGLPHQW RI SURFHVV PRGHOLQJ :LWKLQ VLPXODWLRQ UHVHDUFK DQ\ WRSLF ZKLFK XVHV REMHFWRULHQWHG FRQFHSWV RU $, FRQFHSWV LV UHODWHG WR WKLV ZRUN ([SHUW V\VWHPV WR DQDO\]H RXWSXW VXJJHVW PRGHOV RU DQDO\]H VHQVLWLYLW\ QHHG WR EH DEOH WR DVN TXHVWLRQV UHDVRQf DERXW PRGHOV DQG EH DVVXUHG WKDW WKH DQVZHUV KDYH D VRXQG IRXQGDWLRQ ,QWHJUDWHG VRIWZDUH HQYLURQPHQWV ZKLFK KHOS DQ LQYHVWLJDWRU FRQVWUXFW PRGHOV PXVW EH DEOH WR DVN TXHVWLRQV UHDVRQf DERXW PRGHOV DQG EH DVVXUHG WKDW WKH DQVZHUV KDYH D VRXQG IRXQGDWLRQ

PAGE 16

$OO WKHVH DUHDV RI UHVHDUFK KDYH DW OHDVW RQH WLOLQJ LQ FRPPRQ WKH\ PXVW UHIHU WR DEVWUDFW SURSHUWLHV DERXW FRPSOH[ PRGHOV 6HY SJ @ UHFRJQL]HV WKLV ZKHQ UHIHUULQJ WR PRGHO DEVWUDFWLRQ +H VWDWHV 1R FRPSOHWH WKHRULHV RI PRGHO DEVWUDFWLRQ H[LVW QRU GRHV DQ\ VXIILFLHQWO\ JHQHUDO SURFHGXUH 7KH ILHOG ZLWK RQO\ OHVV WKDQ D KDOI D GR]HQ SXEOLVKHG DUWLFOHV LV ZLGH RSHQ 7KHUH LV D GLVWLQFWLRQ KHUH ZKLFK PXVW EH PDGH 6HYLQF UHIHUV WR WKH VLPSOLILFDWLRQ RI D SUHH[LVWLQJ PRGHO ++ PRGHOLQJ LV MXVW WKH RSSRVLWH WKH UHILQHPHQW RI D PRUH GHWDLOHG PRGHO IURP DQ DEVWUDFW PRGHO +RZHYHU WKH WKHRU\ XVHG WR GHVFULEH KRPRPRUSKLF EHKDYLRU DV GHVFULEHG E\ 6HYLQF VKRXOG EH LQGHSHQGHQW RI WKH GHYHORSPHQW PHWKRGRORJ\ 'LUHFWO\ UHODWLQJ WR WKLV ZRUN LV UHVHDUFK E\ =HLJOHU >=HL@ :\PRUH >:\P@ DQG 6HYLQF >6HY@ 7KHVH ZRUNV FRQVLGHU KRPRPRUSKLVPV RU GHULYDWLRQV WKHUHRI DV WKH EDVLV IRU PRGHO DEVWUDFWLRQ ,Q SDUWLFXODU =HLJOHUfV ZRUN LQ GLVFUHWH HYHQW V\VWHP '(96f >=HL@>=HL@ DQG 3UDKRIHUfV FRQWLQXRXVGLVFUHWH V\VWHP >3ULLD@ ZHUH FRQVLGHUHG DV D VWDUWLQJ SRLQW IRU WKLV ZRUN 7KUHH LPSRUWDQW GLIIHUHQFHV VKRXOG EH SRLQWHG RXW )LUVW ++ PRGHOLQJ H[WHQGV WKLV UHVHDUFK WR QRQGHWHUPLQLVWLF IRUPDOLVPV 6HFRQG KLHUDUFKLHV RI PRGHO IRUPDOLVPV GRPLQDWHG WKLV ZRUN =HLJOHUfV DQG 3UDKRIHUfV KLHUDUFKLHV FHQWHU DURXQG WKH VSHFLILF GRPDLQ LQ TXHVWLRQ 7KHVH KLHUDUFKLHV DUH IRUPHG E\ FRXSOLQJ PRGHOV WRJHWKHU :LWKRXW WKH ORZHU OHYHO PRGHOV QR VLPXODWLRQ FDQ EH SUHIRUPHG ,Q ++ PRGHOLQJ WKH JRDO LV WR VLPXODWH LQFRPSOHWH DEVWUDFW PRGHOV ZKLFK JHQHUDOL]H VRPH IRU WKH SUHVHQW XQNQRZQ EHKDYLRU 7KLUG ++ PRGHOLQJ DOORZV D WRS GRZQ DQG ERWWRPXS DSSURDFK WR GHYHORSLQJ PRGHOV ZKHUHDV '(96 LV D ERWWRPXS DSSURDFK $OPRVW ZLWKRXW VD\LQJ WKLV ZRUN LV D VSLQRII RI )LVKZLFNfV UHVHDUFK VR PXFK VR WKDW LW ZRXOG EH LPSRVVLEOH WR HQXPHUDWH +RZHYHU WKH UHODWLRQVKLS EHWZHHQ 6( $, DQG VLPXODWLRQ >)LVE@ DQG KHWHURJHQHRXV PRGHOV >)LV@ DUH RI SDUWLFXODU LPSRUWDQFH

PAGE 17

2XWOLQH ,Q &KDSWHU WKH XQGHUO\LQJ PRGHOLQJ SDUDGLJP LV LQWURGXFHG $ EDVLF LQWURGXFWLRQ WR PRGHOLQJ VLPXODWLRQ DQG V\VWHP WKHRU\ DOVR LV JLYHQ 7KLV SURYLGHV D UHYLHZ RI WKH EDVLF FRQFHSWV WKDW DUH XVHG LQ ODWHU FKDSWHUV $OVR QRWDWLRQ DQG PHDQLQJV RI LPSRUWDQW WHUPV DUH GHILQHG *HQHUDO V\VWHP WKHRU\ *67f ZLOO EH WKH IRXQGDWLRQ XSRQ ZKLFK D WKHRU\ RI ++ PRGHOLQJ LV GHYHORSHG +RZHYHU WKH *67 GHILQLWLRQ GRHV QRW KDYH VXIILFLHQW VWUXFWXUH IRU ZKDW LV FDOOHG FRPSRQHQW FRRUGLQDWLRQ *67 GRHV KDQGOH PRGHO FRRUGLQDWLRQ DQG ZDV WKHUHIRUH D JRRG VWDUWLQJ SRLQWf $OVR *67 GRHV QRW FOHDUO\ LQWHJUDWH ZLWK GRPDLQ LQGHSHQGHQW NQRZOHGJH EDVHG UHDVRQLQJ WHFKQLTXHV 7KHUHIRUH LQ RUGHU WR VXSSRUW ++ PRGHOLQJ *67 KDV EHHQ H[WHQGHG E\ LQFOXGLQJ FRQQHFWLYLW\ DQG DEVWUDFWLRQ FRQFHSWV ,Q &KDSWHU WKH IRUPDOLVPV FKRVHQ WR UHSUHVHQW PRGHOLQJ W\SHV WKHLU XVH LQ VLPXODWLRQ WKHLU EDVLF WKHRUHWLFDO IRXQGDWLRQV DQG WKHLU V\VWHP GHVFULSWLRQ DUH SUHVHQWHG 6SHFLILFDOO\ ILYH IRUPDOLVPV ZLOO EH GLVFXVVHG DXWRPDWD WKHRU\ 0DUNRY V\VWHPV 3HWUL QHWV TXHXLQJ QHWZRUNV DQG FRQWURO WKHRU\ :LWK WKHVH ILYH IRUPDOLVPV D VXIILFLHQW VSHFWUXP RI IRUPDOLVP W\SHV ZLOO EH DYDLODEOH WR PRGHO D FRPSOH[ HQYLURQPHQW +RZHYHU WKHVH W\SHV DUH FRQFHSWXDOO\ GLIIHUHQW HQRXJK WR SURYLGH QRQWULYLDO SUREOHPV LQ WKHLU LQWHJUDWLRQ ZLWKLQ D XQLILHG IUDPHZRUN &KDSWHU SUHVHQWV WKH PRGHOLQJ SDUDGLJP GHYHORSHG WR VXSSRUW ++ PRGHOLQJ 7KH PRGHOLQJ SDUDGLJP LV FDOOHG K\EULG PRGHO WKHRU\ 7KLV SUHVHQWDWLRQ LQFOXGHV D IRUPDO FKDUDFWHUL]DWLRQ +\EULG PRGHO WKHRU\ LV D GLUHFW DWWHPSW WR VLPXOWDQHRXVO\ HPEUDFH WZR WKHPHV ZKLFK DUH GLUHFWO\ UHODWHG WR ++ PRGHOLQJ )LUVW LW H[SDQGV FODULILHV DQG HVWDEOLVKHV D VROLG PDWKHPDWLFDO IRXQGDWLRQ IRU WKH QRWLRQ RI KHWHURJHQHRXV UHILQHPHQW DV LQWURGXFHG LQ )LVKZLFN DQG =HLJOHU >)LV@ 6HFRQG K\EULG PRGHO WKHRU\ IXUQLVKHV D SUHPLVH IRU K\EULG DQDO\VLV RI D V\VWHP UHSUHVHQWHG E\ D KHWHURJHQHRXV UHILQHPHQW PRGHO 6RPH PLQRU PRGLILFDWLRQV RI WKH IRUPDOLVPV SUHVHQWHG LQ &KDSWHU DUH PDGH 7LQV DOORZV IRU WKH FRRUGLQDWLRQ EHWZHHQ IRUPDOLVPV 7KH PRGLILFDWLRQV ZLOO QRW DOWHU WKH EHKDYLRU RI WKH IRUPDOLVPV ,Q VRPH FDVHV KRZHYHU WKH FRPSXWDWLRQDO SRZHU RI WKH IRUPDOLVPV PD\ LQFUHDVH

PAGE 18

,Q &KDSWHU WKH EHQHILWV WKDW ++ PRGHOLQJ XVLQJ K\EULG PRGHO WKHRU\ SURYLGH DUH GHPRQVWUDWHG E\ WKH PRGHOLQJ RI DQ DXWRPDWHG WOH[LEOH PDQXIDFWXULQJ V\VWHP $)06f 7UDGLWLRQDO IRUPDOLVPV VXFK DV 3HWUL QHWV 0DUNRY V\VWHPV DQG EORFN GLDJUDPV DUH XVHG WR FUHDWH D KHWHURJHQHRXV KLHUDUFKLFDO PRGHO HIILFLHQWO\ 7KH V\PEROLF DQG LQWHUSUHWDWLYH DQDO\VLV PHWKRGV DUH HPSKDVL]HG LQ WKLV FKDSWHU 7KH QXPHULFDO DQDO\VLV LV GLVFXVVHG EULHIO\ $ FRQFOXVLRQ DQG D VXPPDU\ DUH SUHVHQWHG LQ &KDSWHU 7KLV LQFOXGHV WKH SUREOHPV DQG VKRUWFRPLQJV RI K\EULG PRGHO WKHRU\ $GGLWLRQDOO\ D EULHI GLVFXVVLRQ RQ KRZ K\EULG PRGHO WKHRU\ SURYLGHV D IRXQGDWLRQ IRU K\EULG DQDO\VLV LV SUHVHQWHG

PAGE 19

&+$37(5 %$6,& &21&(376 0RGHOLQJ DQG 6LPXODWLRQ &RQFHSWV 7KHUH DUH GLIIHUHQW GHILQLWLRQV IRU PDQ\ RI WKH JHQHUDO WHUPV XVHG LQ PRGHOLQJ DQG VLPXODWLRQ 7KH GHILQLWLRQV SUHVHQWHG LQ WKLV VHFWLRQ PD\ RU PD\ QRW EH VLPLODU WR FRPPRQ LQWHUSUHWDWLRQV DOWKRXJK PRVW DUH YHU\ VLPLODUf ,W LV SDUWLFXODUO\ FUXFLDO WKDW WKH VFRSH RI WKH GHILQLWLRQV SUHVHQWHG EH XQGHUVWRRG )RU LQVWDQFH D GHVFULSWLRQ RI D PRGHO W\SLFDOO\ LPSOLHV WKDW WKH PRGHO KDV D WLPH EDVH >:\P =HL@ 7KH LQWHUSUHWDWLRQ RI D WLPH EDVH FDQ YDU\ EHWZHHQ IRUPDOLVPV HJ EHWZHHQ 3HWUL QHWV DQG FRQWURO WKHRU\f :KHQ XVLQJ GLIIHUHQW W\SHV RI PRGHOV WRJHWKHU WKH PHDQLQJ DQG VFRSH RI WLPH PXVW EH H[SDQGHG WR DFFRPPRGDWH DQ DSSURSULDWH UDQJH RI XVDJHV 7KH PRVW EDVLF DQG PRVW GLIILFXOW WHUP WR GHILQH LV PRGHO )RU WKH SXUSRVHV RI GLVFXVVLRQ D PRGHO LV D UHSUHVHQWDWLRQ RU UHSURGXFWLRQ RI D FRQFHSW RU SK\VLFDO REMHFW 7KH UHSUHVHQWDWLRQ PXVW KDYH D IRUPDO GHVFULSWLRQ WKDW LV ZHOOGHILQHG WHUPV HQWLWLHV DQG RSHUDWLRQV RQ WKRVH HQWLWLHV ,W PD\ DSSHDU WKDW UHSUHVHQWDWLRQV ZKLFK DUH RQO\ ZHOO GHILQHG XQMXVWO\ UHVWULFW WKH QXPEHUV DQG W\SHV RI PRGHOV +RZHYHU DV ZLOO EH GHPRQVWUDWHG ODWHU D KHWHURJHQHRXV KLHUDUFKLFDO PRGHO PXVW PDLQWDLQ D PDSSLQJ EHWZHHQ OHYHOV RI DEVWUDFWLRQ 7KHUHIRUH D UHSUHVHQWDWLRQ PXVW EH ZHOO GHILQHG &RQVHTXHQWO\ D ZHOOGHILQHG UHSUHVHQWDWLRQ LV DOVR FDOOHG D IRUPDOLVP 0DWKHPDWLFDOO\ VXFK D ORVH GHILQLWLRQ RI D PRGHO LV XQXVDEOH 7KHUHIRUH D UHFXUVLYH GHILQLWLRQ RI D PRGHO EDVHG RQ D V\VWHP ZLOO EH JLYHQ +RZHYHU RQO\ D FRQFHSWXDO GHVFULSWLRQ LV JLYHQ KHUH 7KLV GHILQLWLRQ ZLOO EH UHILQHG LH ZHOO GHILQHGf LQ &KDSWHU *LYHQ D ILQLWH VHW RI SULPLWLYH DWRPLFf V\VWHPV D PRGHO LV GHILQHG DV

PAGE 20

$Q DWRPLF V\VWHP $ VWUXFWXUHG FROOHFWLRQ RI DWRPLF V\VWHPV $ VWUXFWXUHG FROOHFWLRQ RI PRGHOV 7KH VSHFLILFDWLRQV RI VWUXFWXUHG FROOHFWLRQ DUH JLYHQ LQ &KDSWHU 7KH DERYH GHILQLWLRQ GLIIHUV IURP WUDGLWLRQDO PRGHO GHILQLWLRQV LQ V\VWHPV WKHRU\ +HUH DOO PRGHOV PXVW EH EXLOW XSRQ D ILQLWH VHW RI DWRPLF PRGHOV D ILQLWH VHW RI SULPLWLYHVf 1RWH WKLV LV GLIIHUHQW IURP D ILQLWH VHW RI PRGHO W\SHV RU FODVVHV $V VWDWHG LQ WKH LQWURGXFWLRQ PRGHOLQJ ZLOO EH GHILQHG DV D IRUPDOLVP DQG LWV DVVRFLDWHG PHWKRGRORJ\ +RZHYHU QR FRPPLWPHQW WR HLWKHU SUHVFULEHG PHWKRGRORJ\ HJ WRSGRZQ RU ERWWRPXSf LV DGRSWHG LQ WKH WKHRU\ SUHVHQWHG LQ &KDSWHU 7KH HPSKDVLV LV RQ D WRSGRZQ PHWKRGRORJ\ EXW WKLV LV IRU H[HPSOLILFDWLRQ SXUSRVHV RQO\ 7KH SURFHVV RI GHYHORSPHQW LV XQGHILQHG LQ WHUPV RI KRZ LV LW SHUIRUPHG :KDW LV WR EH GRQH LQ WKH GHYHORSPHQW SURFHVV LV TXLWH FOHDU D PRGHO LV WR EH FUHDWHG $V SUHYLRXVO\ LPSOLHG WKH DELOLW\ WR PRGHO KLHUDUFKLFDOO\ WRS GRZQ RU ERWWRPXSf SURYLGHV D PHFKDQLVP IRU D PHWKRGRORJ\ EXW GRHV QRW IRUFH D PHWKRGRORJ\ WR XVH WKDW PHFKDQLVP LQ DQ\ SUHVFULEHG ZD\ 7KH WHUP VLPXODWLRQ PHDQV QRW RQO\ WKH SUHYDOHQW SURFHVVHV VXFK DV TXHXLQJ QHWZRUNV 0DUNRY FKDLQV HWF EXW DOVR SURFHVVHV VXFK DV H[SHUW V\VWHPV &RQFHSWXDOO\ DQ H[SHUW V\VWHP LV D VLPXODWLRQ RI D WKRXJKW SURFHVV ([SHUW V\VWHPV KDYH ZHOOGHILQHG HQWLWLHV DQG D ZHOOGHILQHG RSHUDWLRQ UXOHV DQG DQ LQIHUHQFH HQJLQHf 5RWKHQEHUJ GLVFXVVHV WKLV LVVXH LQ JUHDWHU GHSWK DQG LQ D PRUH JHQHUDO VHQVH LQ $UWLILFLDO ,QWHOOLJHQFH DQG 6LPXODWLRQ >5RW@ .QRZOHGJHEDVHG VLPXODWLRQ .% 6LPXODWLRQf ZLOO EH XVHG WR UHIHU WR WKH VLPXOWDQHRXV DFWLYLWLHV RI DQDO\VLV VLPXODWLRQ DQG LQWHUSUHWDWLRQ RI G\QDPLF PRGHOV 7KLV GHILQLWLRQ LV JHQHUDOO\ FRQVLVWHQW ZLWK FXUUHQW OLWHUDWXUH RQ .% VLPXODWLRQ >)LVD@ $ GLDJUDP RI WKH UHODWLRQVKLS DPRQJ VRPH RI WKH WHUPV LQWURGXFHG LV GHSLFWHG LQ )LJXUH 7KLV W\SH RI FRQILJXUDWLRQ LV WKRURXJKO\ GLVFXVVHG LQ =HLJOHUfV ERRN >=HL@ $ V\VWHP LV UHSUHVHQWHG E\ D PRGHO 7KH PRGHO LV FRQVWUXFWHG WKURXJK D PRGHOLQJ PHWKRGRORJ\ DQG

PAGE 21

SURFHVVHG E\ HLWKHU D KXPDQ RU D FRPSXWHU 7KH V\PEROLF DQDO\VLV RI PRGHOV FDQ EH DLGHG E\ WKH FRPSXWHU /LNHZLVH WHFKQLTXHV LQ $, KDYH EHJXQ WR DXWRPDWH WKH TXDOLWDWLYH LQWHUSUHWDWLRQ RI PRGHOV >)LVE@ 7KH SUREOHP ZLWK VLPXOWDQHRXV DQDO\VLV VLPXODWLRQ DQG LQWHUSUHWDWLRQ DULVHV LQ WKH IRUPDO UHSUHVHQWDWLRQ RI GLIIHUHQW PRGHOV +HWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ LV D WKHRU\ LQ ZKLFK DOO WKUHH W\SHV RI DFWLYLW\ DUH VXSSRUWHG )LJXUH VKRZV WKH UHSUHVHQWDWLRQ RI WKHVH FRPELQHG DFWLYLWLHV PRGHOOLQJ PRGHOOLQJ PRGHOOLQJ PRGHO $ PRGHO % PRGHO & DQDO\VLV VLPXODWLRQ LQWHUSUHWDWLRQ KXPDQ FRPSXWHU f§ )LJXUH 7UDGLWLRQDO 0RGHOLQJ PRGHOOLQJ .% 6LPXODWLRQ FRPSXWHU )LJXUH +\EULG 0RGHOLQJ 7ZR LPSRUWDQW DVSHFWV RI PRGHOLQJ ZKLFK DUH QRW H[SOLFLW LVVXHV RI WKLV ZRUN DUH YDOLGDWLRQ DQG YHULILFDWLRQ 9DOLGDWLQJ D PRGHO ZLWK D V\VWHP HQVXUHV WKDW WKH PRGHO UHSUHVHQWV WKH V\VWHP EHKDYLRU WR DQ DGHTXDWH GHJUHH RI DFFXUDF\ 9HULI\LQJ WKH PRGHO ZLWK WKH FRPSXWHUKXPDQ HQVXUHV WKDW WKH IRUPDOLVPV DUH SURFHVVHG FRUUHFWO\ $OWKRXJK LW LV TXLWH SUREDEOH WKDW WKH GHYHORSPHQW RI ++ PRGHOLQJ ZLOO LPSDFW YDOLGDWLRQ DQG YHULILFDWLRQ WKH\ DUH QRW GLVFXVVHG H[SOLFLWO\

PAGE 22

7KH UHODWLRQVKLS EHWZHHQ V\VWHP DQG PRGHO LV IXUWKHU UHILQHG E\ HVWDEOLVKLQJ D FRQFHSWXDO YLHZ RI D V\VWHP )LJXUH f $ V\VWHP H[LVWV LQ DQ HQYLURQPHQW 7KH ERXQGDU\ EHWZHHQ D V\VWHP DQG DQ HQYLURQPHQW GHWHUPLQHV ZKDW LV WR EH PRGHOHG ,Q VLPXODWLRQ PRGHOLQJ WKH HQYLURQPHQW KDV QR UHSUHVHQWDWLRQ DQG WKH V\VWHP LV UHSUHVHQWHG E\ WKH PRGHO 7KH LQWHUDFWLRQ EHWZHHQ D V\VWHP DQG WKH HQYLURQPHQW DW WKH ERXQGDU\ LV UHSUHVHQWHG LQ D VLPXODWLRQ PRGHOLQJ E\ LQSXW WR RU RXWSXW IURP WKH PRGHO (QYLURQPHQW 6\VWHP A 5QQQ+DU\ L ,QSXW2XWSXW < )LJXUH &RQFHSWXDO 9LHZ RI D 6\VWHP $ V\VWHP PD\ EH FRQVLGHUHG WR EH LQ RQH RI VHYHUDO VWDWHV DW DQ\ JLYHQ WLPH 7\SLFDOO\ WKLV LV FRQFHLYHG RI DV D VHW RI YDULDEOHV ZLWK HDFK XQLTXH VHW RI DVVLJQPHQWV WR WKRVH YDULDEOHV EHLQJ D VWDWH $ VWDWLF V\VWHP GRHV QRW FKDQJH ZLWK WLPH ZKLOH D G\QDPLF V\VWHP FKDQJHV ZLWK WLPH $OWHUQDWLYHO\ D VWDWLF V\VWHP FDQ EH YLHZHG DV D G\QDPLF V\VWHP DW D SDUWLFXODU SRLQW LQ WLPH ,I D V\VWHP KDV D XQLTXH VHW RI RXWSXWV IRU HDFK VHW RI LQSXWV WKHQ WKH V\VWHP LV VDLG WR EH GHWHUPLQLVWLF ,I WKH RXWSXW RI D V\VWHP FDQQRW EH SUHFLVHO\ SUHGLFWHG RU LV UDQGRPf WKHQ WKH V\VWHP LV VDLG WR EH VWRFKDVWLF 6LPXODWLRQ JHQHUDOO\ GHDOV ZLWK G\QDPLF V\VWHPV +RZHYHU .% VLPXODWLRQV PD\ LQFOXGH VWDWLF V\VWHPV $Q HYHQW RFFXUV LQ G\QDPLF V\VWHPV ZKHQ WKH V\VWHP FKDQJHV VWDWH ,I WKH V\VWHP LV FKDQJLQJ VWDWH FRQWLQXRXVO\ RYHU WLPH WKHQ LW LV D FRQWLQXRXV V\VWHP 6\VWHPV ZKLFK FKDQJH RQO\ DW VSHFLILF SRLQWV LQ WLPH DUH GLVFUHWHHYHQW V\VWHPV 6LPLODU GHILQLWLRQV FDQ EH IRXQG LQ %DQNfV ERRN RQ GLVFUHWHHYHQW VLPXODWLRQ >%DQ-

PAGE 23

,; )RUPDOLVP &ODVVLILFDWLRQV 7KHUH DUH WZR JHQHUDO FODVVLILFDWLRQV RI IRUPDOLVPV WKDW ZLOO EH PRGHOHG LQ &KDSWHU VWDWH RSHUDWLRQDO GHFODUDWLYHf DQG IXQFWLRQDO SURFHVV SURFHGXUDOf 7RJHWKHU WKHVH JHQHUDO FODVVLILFDWLRQV FRYHU D ODUJH QXPEHU RI VSHFLILF IRUPDOLVPV $ VWDWH IRUPDOLVP UHSUHVHQWV VWDWHV DV HQWLWLHV $ VLPXODWLRQ SURJUHVVHV DV WKH PRGHO PRYHV IURP RQH VWDWH WR DQRWKHU UHJDUGOHVV RI ZKHWKHU WLPH LV HODSVLQJ )LJXUH VKRZV DQ H[DPSOH RI D VWDWH PRGHO )LJXUH 7\SLFDO 6WDWH 0RGHO 'LDJUDP 7KH WKUHH HQWLWLHV VLf LQ )LJXUH UHSUHVHQW V\VWHP VWDWHV $Q DUURZ UHSUHVHQWV PRYLQJ IURP RQH VWDWH WR DQRWKHU (DFK VWDWH LV H[FOXVLYH RI HDFK RWKHU DOWKRXJK VRPH IRUPDOLVPV PD\ DOORZ SDUDOOHOLVPf $Q H[DPSOH RI D VWDWH PRGHO PLJKW EH WKH VWDWHV RI D GULOOLQJ PDFKLQH ZRUNLQJ WXUQHGRII RU XQGHUUHSDLU )LJXUH 7\SLFDO )XQFWLRQDO 0RGHO 'LDJUDP

PAGE 24

$ IXQFWLRQDO IRUPDOLVP LV GHSLFWHG LQ )LJXUH 7KLV LV YHU\ VLPLODU WR D GDWD IORZ GLDJUDP (DFK EORFN UHSUHVHQWV D PDSSLQJ I LQ )LJXUH f ZKLFK WUDQVIRUPV LQSXW WR RXWSXW 7KH VWDWH RI WKH V\VWHP LV UHSUHVHQWHG E\ WKH FROOHFWLRQ RI LQWHUQDO VWDWHV RI HDFK EORFN 7KH DUURZV UHSUHVHQW GDWD WUDQVIHUV IURP RQH EORFN WR DQRWKHU $Q H[DPSOH RI D IXQFWLRQDO V\VWHP ZRXOG EH DQ HOHFWULFDO FLUFXLW (DFK EORFN UHSUHVHQWV D FRPSRQHQW UHVLVWHU FDSDFLWRU HWF 7KH GDWD WUDQVIHUUHG LV WKH FXUUHQW HOHFWURQVf ,W VKRXOG EH QRWHG WKDW IXQFWLRQDO V\VWHPV DUH FRPPRQO\ XVHG DV SDUDOOHO PRGHOV WKLV LV FRPSOHPHQWDU\ WR VWDWH V\VWHPV ZKLFK DUH FRPPRQO\ VHTXHQWLDO )OYKULG 0RGHO 7KHRU\ +\EULG PRGHO WKHRU\ LV D GLUHFW DWWHPSW WR VLPXOWDQHRXVO\ HPEUDFH WZR WKHPHV ZKLFK DUH GLUHFWO\ UHODWHG WR ++ PRGHOLQJ )LUVW LW H[SDQGV FODULILHV DQG HVWDEOLVKHV D VROLG PDWKHPDWLFDO IRXQGDWLRQ IRU WKH QRWLRQ RI KHWHURJHQHRXV UHILQHPHQW DV LQWURGXFHG LQ )LVKZLFN DQG =HLJOHU >)LV@ ,Q )LVKZLFN DQG =HLJOHUfV SUHVHQWDWLRQ WKH FRQFHSW RI KHWHURJHQHRXV UHILQHPHQW ZDV GHVFULEHG DV D PHWKRG ZKLFK KHOSV EULGJH WKH JDS EHWZHHQ $, DQG VLPXODWLRQ PRGHOV LQ D IRUPDO PDQQHU +RZHYHU WKH UHILQHPHQW SURFHVV ZDV FDUULHG RXW E\ KDQG +\EULG PRGHO WKHRU\ H[SDQGV WKH FRQFHSW DQG SURYLGHV D IRXQGDWLRQ WKDW DOORZV KHWHURJHQHRXV UHILQHPHQW WR EH DXWRPDWHG 6HFRQG DQG PRVW LPSRUWDQW K\EULG PRGHO WKHRU\ IXUQLVKHV D SUHPLVH IRU K\EULG DQDO\VLV RI D V\VWHP UHSUHVHQWHG E\ D UHILQHG PXOWLPRGHO 7KH H[WHQW RI K\EULG PRGHO WKHRU\ HQFRPSDVVHV D VLQJOH PRGHO 7KLV LV DQ DXJPHQWDWLRQ WR WKHRULHV VXFK DV JHQHUDO V\VWHP WKHRU\ ZKLFK GHDO ZLWK FODVVHV RI PRGHOV ,W VKRXOG EH QRWHG WKDW K\EULG PRGHO WKHRU\ LV D IRXQGDWLRQ ZKLFK DOORZV ++ PRGHOLQJ WR EH LPSOHPHQWHG 7KHUH DUH FHUWDLQO\ RWKHU DSSURDFKHV +RZHYHU K\EULG PRGHO WKHRU\ LV DQ DSSURDFK PXFK OLNH FRPSLOHU WKHRU\ $OO SURJUDPPLQJ ODQJXDJHV FDQ EH GHVFULEHG E\ FRPSLOHU WKHRU\ \HW WKHUH DUH PDQ\ GLIIHUHQW W\SHV RI SURJUDPPLQJ ODQJXDJHV ZKLFK VXLW GLIIHUHQW SXUSRVHV 7KH LQWHQWLRQ ZLWK K\EULG PRGHO WKHRU\ LV VLPLODU LW LV QRW H[SHFWHG WKDW LQYHVWLJDWRUV

PAGE 25

ZLOO XVH K\EULG PRGHO WKHRU\ DV D IRUPDOLVP +\EULG PRGHO WKHRU\ LV XVHG WR H[SODLQ PDWKHPDWLFDOO\ WKH FRPPRQDOLWLHV DQG GLIIHUHQFHV EHWZHHQ PRGHOLQJ IRUPDOLVPV :LWK WKLV IRXQGDWLRQ WKH FRRUGLQDWLRQ RI GLIIHUHQW IRUPDOLVPV VXFK DV 3HWUL QHWV DQG EORFN GLDJUDPV FDQ EH VXEVWDQWLDWHG VLQFH WKH UHODWLRQVKLS EHWZHHQ WKHP KDV EHHQ IRUPDOO\ HVWDEOLVKHG *HQHUDO 6\VWHP 7KHRU\ 7KHUH DUH VHYHUDO GLIIHUHQW ZD\V HDFK IRUPDOLVP FDQ EH UHSUHVHQWHG SUHVHQWHG LQ WKH QH[W FKDSWHUf 7KLV SURGXFHV D ODUJH SHUPXWDWLRQ RI FRRUGLQDWLRQ WHFKQLTXHV *HQHUDO V\VWHP WKHRU\ ZLOO EH XVHG DV D VWDUWLQJ SRLQW WRZDUGV GHYHORSLQJ D FRPPRQ UHSUHVHQWDWLRQ IRU WKH IRUPDOLVPV ZKLFK DUH SUHVHQWHG LQ WKLV ZRUN 7KLV VHFWLRQ RQO\ LQWURGXFHV WKH PDWKHPDWLFDO IRXQGDWLRQ RI V\VWHPV WKHRU\ IRU EDFNJURXQG DQG LQIRUPDWLRQDO SXUSRVHV 0RVW RI WKH PDWHULDO GHVFULEHG KHUH LV GHULYHG IURP :\PRUHfV ERRN >:\P@ $ V\VWHP LV D WXSOH = 7 6 $ % f ZKHUH 7 LV WKH WLPH EDVH LV D QRQHPSW\ VHW FDOOHG WKH LQSXW 6 LV D QRQHPSW\ VHW FDOOHG WKH V\VWHP VWDWHV $ LV DQ DGPLVVLEOH VHW RI LQSXW IXQFWLRQV I 7 f§! % LV D VHW RI IXQFWLRQV I 6 } 6 FDOOHG WKH %HKDYLRU DQG LV D IXQFWLRQ I $ [ 7 f§! % FDOOHG WKH WUDQVLWLRQ IXQFWLRQ 7KH WLPH EDVH 7 LV W\SLFDOO\ WKH UHDOV Wf RU WKH LQWHJHUV f :KHQ 7  WKH V\VWHP LV VDLG WR EH D FRQWLQXRXV V\VWHP :KHQ 7 WKH V\VWHP LV VDLG WR EH D GLVFUHWH V\VWHP 7KH V\VWHP FDQ EH FRQVLGHUHG WR EH OLNH D IXQFWLRQ LQYRFDWLRQ ZKHQ WKH LQSXW VHW $ DORQJ ZLWK D WLPH W LV JLYHQ 7KH VHW RI V\VWHP VWDWHV 6f YDULHV JUHDWO\ IURP IRUPDOLVP WR IRUPDOLVP KRZHYHU LW XVXDOO\ KDV WKH VWUXFWXUH RI DQ QWXSOH RU YHFWRU )RU LQVWDQFH WKH VWDWHV RI D VWDWH PDFKLQH DUH XVXDOO\ UHSUHVHQWHG E\ D WXSOH VLPSOH VHWf DQG WKH VWDWHV RI D FRQWLQXRXV V\VWHP DUH W\SLFDOO\ UHSUHVHQWHG E\ D YHFWRU VSDFH RQ D ILHOG VXFK DV YQf

PAGE 26

7KH DGPLVVLEOH LQSXW IXQFWLRQV UHSUHVHQW WKH FODVV RI LQSXW VFKHGXOHV RU LQSXW KLVWRULHV *LYHQ D WLPH VHJPHQW W D IXQFWLRQ LQ $ JLYHV WKH LQSXW SUHVHQWHG WR WKH V\VWHP 7KLV LPSOLHV WKDW WKH LQSXWV WR WKH V\VWHP PXVW EH SUHGHWHUPLQHG LQ RUGHU WR DQDO\]H WKH V\VWHP 7KH EHKDYLRU IXQFWLRQV %f GHILQH WKH FODVV RI V\VWHP VHTXHQFHV GLVFUHWH V\VWHPVf RU WUDMHFWRULHV FRQWLQXRXV V\VWHPVf 7KH WUDQVLWLRQ IXQFWLRQ JHQHUDWHV D EHKDYLRU IXQFWLRQ IRU D JLYHQ LQSXW IXQFWLRQ DQG D WLPH VHJPHQW *LYHQ DQ LQSXW IXQFWLRQ LQLWLDO FRQGLWLRQV DQG D WUDQVLWLRQ IXQFWLRQ WKH EHKDYLRU RI WKH V\VWHP LV FRPSOHWHO\ GHWHUPLQLVWLF 7KH UHODWLRQVKLSV EHWZHHQ V\VWHPV WKHRU\ DQG WKH VLPXODWLRQ FRQFHSWV GHVFULEHG LQ WKH ODVW VHFWLRQ DUH IDLUO\ FOHDU $ VLPXODWLRQ PRGHO LV D VXSHUVHW RI D V\VWHP %RWK D PRGHO DQG D V\VWHP KDYH LQSXWV VWDWHV DQG EHKDYLRU 2QH FDQ H[WHQG D V\VWHP VWUXFWXUH WR LQFOXGH RXWSXW E\ DGGLQJ WKH IROORZLQJ GHILQLWLRQV 2 LV D QRQHPSW\ VHW FDOOHG WKH RXWSXW DQG ; LV D IXQFWLRQ I 6 [ 7 f§} 2 FDOOHG WKH RXWSXW IXQFWLRQ $ PDMRU GLVWLQFWLRQ EHWZHHQ D VLPXODWLRQ PRGHO DQG D FODVVLFDOf V\VWHP LV WKDW D VLPXODWLRQ PRGHO FDQ EH QRQGHWHUPLQLVWLF +RZHYHU LQ DQ DEVWUDFW VHQVH WKHUH LV D FORVH FRUUHVSRQGHQFH EHWZHHQ PRGHO DQG V\VWHP )RU H[DPSOH LQ )LJXUH WKH VWDWH PRGHO FRQVLVWV RI VWDWHV ZLWK DUFV ODEHOLQJ WUDQVLWLRQV IURP VWDWH WR VWDWH ,Q V\VWHPV WKHRU\ WKH PRGHO LQ )LJXUH LV 6 ^VLVV` DQG $ WfVOf V $ WfVf VL $ WfVf V $ WfVf V 6LPLODUO\ LQ )LJXUH D V\VWHP FDQ EH GHULYHG E\ OHWWLQJ 6 EH WKH FURVV SURGXFW RI WKH IXQFWLRQV ,7 )Mf DQG $ 7f EH WKH VHW RI HTXDWLRQV )LVKZLFN >)LVE@ SUHVHQWV D VLPLODU GHVFULSWLRQ RI VLPXODWLRQ PRGHOLQJ ZLWK V\VWHPV WKHRU\

PAGE 27

%DVLF 0RGHOLQJ 3DUDGLJP ,Q WKH QH[W FKDSWHU WKH EDVLF PDWKHPDWLFDO IRXQGDWLRQ RI WKH IRUPDOLVPV XVHG LQ WKLV ZRUN LV SUHVHQWHG $OWKRXJK RQH FDQ ILQG WKHRUHWLFDO H[WHQVLRQV RI WKHVH IRUPDOLVPV LQ WKH PRGHOLQJ OLWHUDWXUH WKLV LV QRWKLQJ PRUH WKDQ DQ DWWHPSW WR FRPELQH IRUPDOLVPV PXOWLPRGHOVf 7KLV UHVHDUFK XVHV DQ DOWHUQDWLYH DSSURDFK ,QVWHDG RI IRUFLQJ D IRUPDOLVP WR LQFOXGH RWKHU WKHRUHWLFDO DQG VHPDQWLF DVSHFWV HDFK IRUPDOLVP UHPDLQV DV FORVH WR LWV VLPSOHVW RU PRVW FRPPRQ IRUP DQG D PHWKRG LV GHYHORSHG LQ ZKLFK WKHVH GLIIHUHQW VLPSOH IRUPDOLVPV FDQ EH XVHG WRJHWKHU 7KH IRXQGDWLRQ IRU WKLV DSSURDFK LV EDVHG RQ WKUHH SUHPLVHV )LUVW WKH IRUPDOLVPV LQ WKHLU VLPSOHVW VWDWH DUH ZHOO XQGHUVWRRG :K\ GHYHORS RU H[WHQG \HW DQRWKHUf IRUPDOLVP WKDW LV QRW ZHOO NQRZQ ZKHQ WZR ZHOONQRZQ IRUPDOLVPV DOUHDG\ H[LVW" 6HFRQG UHVHDUFKHUV DQG LQYHVWLJDWRUV DOUHDG\ XVH WKHVH IRUPDOLVPV 1RW RQO\ DUH WKH IRUPDOLVPV XQGHUVWRRG EXW WKH\ DUH XVHG IUHTXHQWO\ 7KLUG DQG PRVW LPSRUWDQW FRPELQLQJ GLIIHUHQW DVSHFWV RI GLIIHUHQW IRUPDOLVPV LQFUHDVHV FRPSOH[LW\ DW RQH OHYHO RI FRQFHSWXDOL]DWLRQ %\ NHHSLQJ HDFK IRUPDOLVP VHSDUDWH DQG LQWURGXFLQJ D VLPSOH ZD\ WR LQWHUFRQQHFW WKHP WKH FRPSOH[LW\ KDV EHHQ VHSDUDWHG LQWR GLVWLQFW SDUWV &RQVHTXHQWO\ LQHIILFLHQFLHV LQ LPSOHPHQWDWLRQ PD\ H[LVW +RZHYHU HIILFLHQF\ LQ PRGHOLQJ FDQ EH LPSURYHG $Q XQGHUO\LQJ DVVXPSWLRQ KHUH LV WKDW KXPDQ WLPH LV PRUH YDOXDEOH WKDQ FRPSXWHU WLPH 7KH FRPSLODWLRQ RI D PRGHO LPSOHPHQWDWLRQf FDQ EH FDUULHG RXW E\ WKH FRPSXWHU ZKHUHDV DW WKH PRPHQWf PRGHOLQJ LV GRQH E\ KXPDQV 7KH GLVWLQFWLRQ EHWZHHQ D IRUPDOLVP DQG D WKHRU\ LV GHILQHG DV D GLIIHUHQFH LQ JHQHUDOLW\ $ IRUPDOLVP 3HWUL QHW VWDWH PDFKLQHf KDV UHODWLYHO\ FOHDU VHPDQWLFV SHUWDLQLQJ WR LWV XVH DQG G\QDPLF SURSHUWLHV $ WKHRU\ V\VWHP WKHRU\ FRPSXWDWLRQ WKHRU\f LV D PRUH JHQHUDOL]HG PDWKHPDWLFDO V\VWHP ZKLFK XVXDOO\ FDQ GHVFULEH DQ\ NQRZQ IRUPDOLVP %HFDXVH RI WKH JHQHUDOLW\ DXWRPDWHG DQDO\VLV LV W\SLFDOO\ LQIHDVLEOH )LYH FRPPRQ PRGHOLQJ IRUPDOLVPV DUH XVHG DV UHSUHVHQWDWLYHV RI GLIIHUHQW PRGHOLQJ WHFKQLTXHV 7KHVH IDOO LQWR WKH WZR JHQHUDO FODVVHV DERYH VWDWH PRGHOV RU IXQFWLRQDO PRGHOV 6WDWH PDFKLQHV DQG 0DUNRY V\VWHPV ZHUH FKRVHQ DV H[DPSOHV RI VWDWH PRGHO IRUPDOLVPV 4XHXLQJ QHWZRUNV 3HWUL QHWV DQG EORFN GLDJUDPV FRQWURO WKHRU\f ZHUH FKRVHQ WR UHSUHVHQW IXQFWLRQDO

PAGE 28

PRGHO IRUPDOLVPV 7KH GLDJUDPPDWLF DVSHFWV RI HDFK VSHFLILF PRGHOLQJ DSSURDFK LV SUHVHUYHG 7KHUH LV QR DWWHPSW WR KRPRJHQL]H PRGHOLQJ RU WR IRUFH DOO PRGHOV WR ORRN OLNH HLWKHU GDWD IORZ GLDJUDPV RU VWDWH WUDQVLWLRQ QHWZRUNV $OO PRGHO W\SHV KDYH DQ HTXLYDOHQW JUDSK RU QHWZRUN UHSUHVHQWDWLRQ 7KLV LV QHFHVVDU\ LQ RUGHU WR VXSSRUW NQRZOHGJHEDVHG UHDVRQLQJ PHWKRGV LQWHUSUHWDWLRQf +RZHYHU WKLV KDV QRW UHGXFHG WKH HIIHFWLYHQHVV RI WKH WKHRU\ SUHVHQWHG VLQFH PDQ\ PRGHOLQJ IRUPDOLVPV KDYH JUDSK RU QHWZRUN HTXLYDOHQWV 0RUH VSHFLILFDOO\ WKH SURSRVHG SDUDGLJP UHTXLUHV WKDW D IRUPDOLVP EH UHSUHVHQWHG E\ D GLUHFWHG JUDSK $UFV HGJHVf ZKLFK OHDG RXW RI D QRGH DUH RXWSXW DUFV DQG DUFV OHDGLQJ LQWR D QRGH DUH LQSXW DUFV 1RGHV LQ WKH JUDSK UHSUHVHQW HLWKHU FRPSXWDWLRQDO RU VWRUDJH PRGHOV $V ZLWK PRVW WKHRULHV RI PRGHOLQJ WKHUH DUH WZR EDVLF W\SHV RI PRGHOV DWRPLF DQG VWUXFWXUHG +RZHYHU LQ K\EULG PRGHO WKHRU\ D VWDWH PDFKLQH 3HWUL QHW HWF DUH QRW DWRPLF PRGHOV EXW VWUXFWXUHG PRGHOV ,Q K\EULG PRGHO WKHRU\ VWUXFWXUHG PRGHOV DUH PDGH XS RI DW OHDVW WZR KLHUDUFKLFDO OHYHOV 7KH ILUVW OHYHO LV FDOOHG D FRQWUROOHU PRGHO $V ZLOO EH VKRZQ IRU D YDULHW\ RI IRUPDOLVPV RQO\ WKUHH FRQWUROOHU PRGHOV DUH QHFHVVDU\ 7KH VHFRQG OHYHO LQ WKH KLHUDUFK\ LV PDGH XS RI DWRPLF PRGHOV FDOOHG FRPSRQHQW PRGHOV 7KLV VSOLWOHYHO DSSURDFK WR PRGHOV LV GHPRQVWUDWHG LQ )LJXUH &RPSRQHQW 0RGHO &RPSRQHQW 0RGHO &RPSRQHQW 0RGHO )LJXUH 7ZR /HYHO 5HSUHVHQWDWLRQ RI D 0RGHO )RUPDOLVP

PAGE 29

$V FDQ EH VHHQ IURP )LJXUH GDWD RU FRQWUROf LQSXW DQG RXWSXW DUH GLUHFWHG LQWR WKH FRQWUROOHU PRGHO 7KH FRPSRQHQW PRGHOV QRGHV LQ WKH JUDSKf PD\ RU PD\ QRW KDYH GDWD LQSXW DQG RXWSXW 'HSHQGLQJ RQ WKH W\SH RI FRQWUROOHU HGJHV LQ WKH JUDSK ZLOO HLWKHU LQGLFDWH FRQWURO IORZ RU GDWD IORZ 7KLV GXDO IXQFWLRQDOLW\ KDV EHHQ FDSWXUHG LQ WKH FRQWUROOHU PRGHOfV LQWHUSUHWDWLRQ RI LWV FRPSRQHQWV 2QO\ XQGHU GLUHFWLRQ RI WKH FRQWUROOHU PRGHO LV GDWD LQSXW DQG RXWSXW SDVVHG GRZQ WR DQG XS IURP WKH FRPSRQHQW PRGHOV 7KLV DW ILUVW JLYHV WKH LPSUHVVLRQ RI EHLQJ YHU\ LQHIILFLHQW +RZHYHU ZKHQ WKH PRGHO LV FRPSLOHG IRU QXPHULFDO DQDO\VLVVLPXODWLRQf WKLV LQHIILFLHQF\ FDQ EH UHPRYHG LI DQG RQO\ LI WKHUH KDV EHHQ QR VXEPRGHOLQJ :KHQ XVLQJ LQWHUSUHWDWLRQ WHFKQLTXHV WKLV VSOLWOHYHO PHWKRG DOORZV IRU PRUH JHQHUDOL]HG NQRZOHGJH :KHQ DQDO\]LQJ WKH PRGHO V\PEROLFDOO\ LW DOORZV FRPELQHG UHVXOWV IURP GLIIHUHQW W\SHV RI V\PEROLF DQDO\VLV &KDSWHU LQWURGXFHV K\EULG PRGHO WKHRU\ LQ WHUPV RI QXPHULFDO DQDO\VLV VLPXODWLRQf &KDSWHU VKRZV E\ H[DPSOH KRZ V\PEROLF DQG LQWHUSUHWDWLRQ DQDO\VLV FDQ EH SHUIRUPHG )RUPDOLVPV DUH FODVVLILHG EDVHG XSRQ WKUHH DWWULEXWHV f KRZ WKH\ XVH WLPH f WKH W\SH RI GDWD WKH\ XVH DQG f WKH W\SH RI FRQWUROOHU +\EULG PRGHO WKHRU\ VXSSRUWV IRXU W\SHV RI FRQWUROOHUV SDUDOOHO VWDWH VHOHFWLYH DQG JURXS $OO IRXU RI WKHVH FRQWUROOHUV FRQWDLQ WKH FRQQHFWLYLW\ RI WKH FRPSRQHQWV WKH\ FRQWURO WKH JUDSKf $ SDUDOOHOFRQWUROOHU PRGHO FRQWUROV FRPSRQHQW PRGHOV LQ ZKLFK DOO FRPSRQHQWV DUH DFWLYH VLPXOWDQHRXVO\ (GJHV EHWZHHQ WKH FRPSRQHQWV DUH LQWHUSUHWHG E\ WKH FRQWUROOHU DV GDWD SDWKV )RUPDOLVPV ZKLFK KDYH WKLV W\SH RI FRQWUROOHU DUH EORFN GLDJUDPV FRQIOXHQFH JUDSKV ERQG JUDSKV DQG QHXUDO QHWZRUNV $ VWDWH FRQWUROOHU PRGHO FRQWUROV FRPSRQHQWV LQ ZKLFK RQO\ RQH FRPSRQHQW FDQ EH DFWLYH 7KH FRQWUROOHU XQGHU GLUHFWLRQ RI WKH FRPSRQHQWV NHHSV WUDFN RI WKH FXUUHQW DFWLYH FRPSRQHQW (GJHV EHWZHHQ WKH FRPSRQHQWV DUH LQWHUSUHWHG E\ WKH FRQWUROOHU DV FRQWURO SDWKV )RUPDOLVPV ZKLFK KDYH VWDWH FRQWUROOHUV DUH 0DUNRY V\VWHPV DQG VWDWH PDFKLQHV 7KH VHOHFWLYH FRQWUROOHU LV WKH PRVW FRPSOH[ 7KLV FRQWUROOHU FRQWUROV WZR W\SHV RI FRPSRQHQW PRGHOV IXQFWLRQV DQG VWRUDJH $ VHOHFWLYH FRQWUROOHU ILUVW GHWHUPLQHV ZKLFK IXQFWLRQ FRPSRQHQWV FDQ EH DFWLYDWHG DQG WKHQ QRQGHWHUPLQLVWLFDOO\ FKRRVHV RQH RI WKHP WR DFWLYDWH 7KH IXQFWLRQ FRPSRQHQWV PD\ XVH DQ\ RI WKH VWRUDJH FRPSRQHQWV IRU GDWD LQSXW DQG RXWSXW (GJHV EHWZHHQ WKH FRPSRQHQWV DUH LQWHUSUHWHG

PAGE 30

E\ WKH FRQWUROOHU DV GDWD IORZ )RUPDOLVPV ZKLFK XVH VHOHFWLYH FRQWUROOHUV DUH 3HWUL QHWV TXHXLQJ QHWZRUNV DQG H[SHUW V\VWHPV $ JURXS FRQWUROOHU LV D SDUDOOHO FRQWUROOHU LQ ZKLFK WKH FRPSRQHQWV DUH VWUXFWXUHG PRGHOV 7KH JURXS FRQWUROOHU DOORZV K\EULG PRGHO WKHRU\ WR HQFRPSDVV WUDGLWLRQDO PRGHO FRRUGLQDWLRQ FRXSOLQJf DQG ZLOO RQO\ EH EULHIO\ GLVFXVVHG 7KH W\SH RI GDWD ZKLFK PD\ EH XVHG E\ D IRUPDOLVP KDV WZR JHQHUDO DWWULEXWHV YDOXH DQG WLPH (DFK RI WKHVH DWWULEXWHV PD\ EH HLWKHU FRQWLQXRXV RU GLVFUHWH 7KLV H[SDQGV WKH W\SLFDO FRQWLQXRXV YHUVXV GLVFUHWH FRQFHSW RI D VLJQDO LQ V\VWHP WKHRU\ $ GLVFUHWH VLJQDO LV WRR DPELJXRXV RI D FDWHJRUL]DWLRQ ZKHQ FRPELQLQJ V\PEROLF DQDO\WLFDO WHFKQLTXHV DQG IRU LQWHUSUHWDWLRQ WHFKQLTXHV RI GLIIHUHQW IRUPDOLVPV ,W PXVW EH NQRZQ ZKHWKHU D VLJQDO LV GLVFUHWH FRQWLQXRXVf RYHU LWV YDOXHV DQG RYHU WLPH 7KH WKLUG HOHPHQW ZKLFK FODVVLILHV D IRUPDOLVP LV WKH ZD\ LQ ZKLFK WLPH LV XVHG 7KHUH KDYH DOUHDG\ EHHQ VLJQLILFDQW DGYDQFHV LQ FRPELQHG GLVFUHWHHYHQW DQG FRQWLQXRXV PRGHO VLPXODWLRQ WKURXJK WKH XVH RI WLPH EDVHV >3UDD@ 7KLV IRUPV WKH IRXQGDWLRQ IRU K\EULG PRGHO WKHRU\ +RZHYHU WKH WLPH GHVFULSWLRQ LV H[WHQGHG WR LQFOXGH HOHPHQWV QHFHVVDU\ IRU V\PEROLF DQG LQWHUSUHWDWLRQ PHWKRGV 7KLV H[WHQVLRQ LV FDOOHG D WLPH GRPDLQ 7KH FRQFHSW RI D WLPH EDVH ZKLFK LV XVHG LQ V\VWHP WKHRU\ EHFRPHV RQH RI ILYH HOHPHQWV XVHG LQ D WLPH GRPDLQ WKH PRVW LPSRUWDQW RI ZKLFK LV WKH WLPH PDS IXQFWLRQ 7KH WLPH PDS RI D WLPH GRPDLQ LV D IXQFWLRQ IURP WKH UHDOV LQWR WKH WLPH EDVH RI WKH PRGHO 7KLV DOORZV FRRUGLQDWLRQ RI DOO PRGHOV ZLWK D FRPPRQ WLPH EDVH (DFK PRGHO LV UHVSRQVLEOH IRU PDSSLQJ WKH FRPPRQ FORFN LQWR ORFDO WLPH 7KLV FRQFHSW DORQJ ZLWK ORFDO PRGHO VWDWHV DOORZV K\EULG PRGHO WKHRU\ WR EH HDVLO\ WUDQVODWHG LQWR D GLVWULEXWHG VLPXODWLRQ ZKHQ QXPHULFDO DQDO\VLV LV UHTXLUHG 7KXV WKHUH LV QR PDLQ HYHQW TXHXH GXULQJ QXPHULFDO DQDO\VLV VLPXODWLRQf $OO HYHQWV DUH VWRUHG ORFDOO\ LQ D PRGHO DQG FRRUGLQDWHG E\ D FRPPRQ FORFN 7KH RWKHU HOHPHQWV RI D WLPH GRPDLQ UHODWH LQIRUPDWLRQ FRQFHUQLQJ WKH VHPDQWLFV RI WKH WLPH EDVH &XUUHQWO\ WKHUH DUH WKUHH HOHPHQWV D ]HUR SRLQW D GHOWD WLPH DQG D PDJQLWXGH IXQFWLRQ 7LUH ]HUR SRLQW VLJQLILHV WKH PLQLPXP WLPH UHTXLUHG IRU D PRGHO WR FKDQJH DQ RXWSXW VLJQDO JLYHQ

PAGE 31

D FKDQJH LQ WKH LQWHUQDO VWDWH 7KH GHOWD WLPH VLJQLILHV WKH PLQLPXP WLPH UHTXLUHG IRU D PRGHO WR FKDQJH LWV LQWHUQDO VWDWH 7KH PDJQLWXGH IXQFWLRQ PDSV D WLPH IURP WKH WLPH EDVH LQWR WKH LQWHJHUV 7KLV IXQFWLRQ SHUPLWV D PRGHO WR VSHFLI\ VLJQLILFDQW PDJQLWXGH FKDQJHV LQ WLPH )LJXUH ,QWHUPRGHO &RRUGLQDWLRQ ,QWHUPRGHO FRRUGLQDWLRQ LV DQRWKHU WHUP IRU PRGHO FRXSOLQJ >=HL :\P@ %HFDXVH K\EULG PRGHO WKHRU\ KDV LQFRUSRUDWHG V\VWHP WKHRU\ WKLV W\SH RI FRRUGLQDWLRQ ZLOO QRW EH H[WHQVLYHO\ H[SODLQHG 0RGHO FRXSOLQJ FDQ EH IRXQG LQ PRVW V\VWHP WKHRU\ OLWHUDWXUH )URP )LJXUH LW VKRXOG EH FOHDU WKDW FRPSOH[ PRGHOV RI YDU\LQJ W\SHV FDQ EH FRRUGLQDWHG WKURXJK WKHLU GDWD LQSXW DQG RXWSXW $ FROOHFWLRQ RI WKHVH PRGHOV FDQ WKHQ EH JURXSHG LQWR D QHZ PRGHO $Q LPSRUWDQW DGYDQWDJH LQ K\EULG PRGHO WKHRU\ LV WKDW WKH LQWHUPRGHO FRRUGLQDWLRQ QHHG QRW EH VWDWLF 7KDW LV GXULQJ H[HFXWLRQ RU DQDO\VLV VLQFH WKH FRQWUROOHU PRGHO FRQWDLQV WKH FRQQHFWLYLW\ DORQJ ZLWK WKH IXQFWLRQDOLW\ WKH FRXSOLQJV FDQ EH G\QDPLF WKH FRQWUROOHU FDQ PDQLSXODWH WKH FRQQHFWLYLW\ RI LWV FRPSRQHQWV 7KLV PD\ EHFRPH XVHIXO LQ FHUWDLQ W\SHV RI QHXUDO QHWZRUN IRUPDOLVPV IRU LQVWDQFH DV ZHLJKWV EHWZHHQ QHXURQV PD\ EHFRPH ]HUR ,QWUDPRGHO FRRUGLQDWLRQ LQYROYHV WKH UHSODFHPHQW RI D FRPSRQHQW PRGHO ZLWK D QHZ VWUXFWXUHG PRGHO 7KH PRGHO KLHUDUFK\ LV WKHUHIRUH D VWUXFWXUDO RU FRQFHSWXDO KLHUDUFK\ 7KLV LV

PAGE 32

TXLWH GLIIHUHQW IURP LQWHUPRGHO FRRUGLQDWLRQ ZKHUH IRU LQVWDQFH WKH RXWSXW RI D VWDWH PDFKLQH LV WKH LQSXW WR D EORFN GLDJUDP ,Q LQWUDPRGHO FRRUGLQDWLRQ IRU H[DPSOH D VWDWH FRPSRQHQW LQ D VWDWH PDFKLQH FRQWUROOHU PRGHO LV UHSODFHG E\ D EORFN GLDJUDP PRGHO >)LV@ 7KH FRQWUROOHU PRGHO RI D VWDWH PDFKLQH HVVHQWLDOO\ NHHSV WUDFN RI VHYHUDO FRPSRQHQW PRGHOV :KHWKHU WKHVH FRPSRQHQWV DUH VLPSOH VWDWH PRGHOV ZKLFK DUH EDVHG RQ FRQGLWLRQV LQSXW fDf HWFf RU FRPSOH[ PRGHOV VXFK DV EORFN GLDJUDPV LV LQFRQVHTXHQWLDO WR WKH FRQWUROOHU 7KH RQO\ UHTXLUHPHQW LV WKDW WKH FRPPXQLFDWLRQ EHWZHHQ WKH FRQWUROOHU DQG LWV FRPSRQHQWV EH VWDQGDUGL]HG LQ D IRUPDO SURWRFRO 7KH VDPH W\SH RI DUJXPHQW KROGV WUXH IRU SDUDOOHO JURXS DQG VHOHFWLYH FRQWUROOHUV ,Q &KDSWHU WKH WKHRUHWLFDO GHWDLOV RI FRQWUROOHUFRPSRQHQW LQWUD PRGHO FRRUGLQDWLRQ DUH SUHVHQWHG 'HILQLWLRQV %HIRUH FRQWLQXLQJ LQWR PRUH IRUPDO FRQFHSWV D IHZ EDVLF GHILQLWLRQV DQG WKHLU GHVLJQDWLRQV DUH LQWURGXFHG 7KH PHDQLQJV DUH JHQHUDOO\ ZHOO NQRZQ EXW LW LV HVVHQWLDO WKDW WKH LQWHUSUHWDWLRQ RI WKH GHVLJQDWLRQV XVHG EH FOHDU 7KHUHIRUH WKH\ DUH SUHVHQWHG KHUH LQVWHDG RI EHLQJ SXW LQWR D NH\ RI V\PEROV 7KH XQLTXH V\PEROV XVHG DUH VHOI WUXH IDOVH DQG W 7KH HPSW\ VHW DQG WKH ERROHDQV WUXH DQG IDOVH KDYH WKHLU XVXDO PHDQLQJV 7KH V\PERO VHOI LV XVHG WR GHVLJQDWH D V\PEROLF UHIHUHQFH WR DQ HQWLW\ ZKLFK XVHV LW 7KH V\PERO VHOI LV IXUWKHU H[SODLQHG LQ &KDSWHU ZKHUH LW KDV D VSHFLDO PHDQLQJ LQ K\EULG PRGHO WKHRU\ 7KH V\PERO W LV XVHG WR UHSUHVHQW WKH QRWLRQ RI XQGHILQHG JHQHUDO PDWKf QXOO SURJUDPPLQJf HPSW\VWULQJ DXWRPDWDf WUDQVLHQW VWDWH FLUFXLWVf DQG ERWWRP SURJUDPPLQJ WKHRU\f 'HSHQGLQJ RQ WKH GRPDLQ WKH DSSURSULDWH WHUP LV XVHG $V D VWDQGDUG WKURXJKRXW WKLV ZRUN WKH IROORZLQJ QRWDWLRQ LV XVHG 7KH RQO\ QRWDEOH GLIIHUHQFH LV WKDW DOO IXQFWLRQ LQYRFDWLRQV DUH GHVLJQDWHG E\ VTXDUH EUDFNHWV >@ > @ IXQFWLRQ DSSOLFDWLRQ I > L @ ^ ` JHQHUDO VHW f RUGHUHG VHW VHTXHQFH

PAGE 33

; VWUXFWXUHG VHW DQG QDPHG VHW QL FURVV SURGXFW RYHU L VHWV $GGLWLRQDOO\ WKH IROORZLQJ VSHFLDO VHWV DUH GHILQHG = ,QWHJHUV X ^W` 1 =QRQQHJDWLYH ,QWHJHUV X ^W` 5 5HDOV X ^W` % %RROHDQV ^WUXH IDOVH` X ^W` 0 0RGHO X ^W` 7ZR SRLQWV DUH LPSRUWDQW KHUH )LUVW DOO WKHVH VHWV DUH XQLRQHG ZLWK WKH XQGHILQHG V\PERO ^W` %HFDXVH WKHVH VHWV DUH XVXDOO\ XVHG WR VSHFLI\ YDOXHV RI YDULDEOHV DQ\ YDULDEOH LQ DQ\ PRGHO FDQ EH DVVLJQHG WKH XQGHILQHG YDOXH W 7LPH 'RPDLQV 7KH VWDQGDUG V\VWHP WKHRU\ QRWLRQ RI D WLPH EDVH ZLOO EH XVHG WR VSHFLI\ WKH UDQJH RI WLPH YDOXHV XVHG E\ PRGHOV LQ K\EULG PRGHO WKHRU\ $ WLPH EDVH LV D VWUXFWXUH FRQVLVWLQJ RI D VHW DQG WZR RSHUDWRUV DGGLWLRQ DQG FRPSDULVRQ 7KH DGGLWLRQ RSHUDWRU DQG WKH VHW PXVW EH DQ DEHOLDQ JURXS 7KH FRPSDULVRQ RSHUDWRU DQG WKH VHW PXVW IRUP D OLQHDU RUGHU ZKLFK LV SUHVHUYHG XQGHU WKH DGGLWLRQ RSHUDWRU 7LPH %DVH 7 7! DQ DEHOLDQ JURXS 7 D OLQHDU RUGHU SUHVHUYHG XQGHU 7\SLFDO WLPH EDVHV DUH WKH UHDOV DQG LQWHJHUV ZLWK DQG GHILQHG DSSURSULDWHO\ 7KHVH WLPH EDVHV DUH DEEUHYLDWHG E\ 7JM DQG 7J :KHQ D PRGHO RU IRUPDOLVP KDV QR WLPH EDVH WKH QXOO WLPH EDVH FDQ EH XVHG ,W LV GHILQHG DV 7

PAGE 34

1XOO 7LPH %DVH 7 ^W` *URXS W LGHQWLW\ RSHUDWRU W W W LQYHUVH W Wn /LQHDU 2UGHU W A W $ WLPH GRPDLQ LV EXLOW XSRQ D WLPH EDVH 'XULQJ WKH LQWHUSUHWDWLRQ RI D PRGHO LQIRUPDWLRQ DERXW KRZ WKH WLPH LV XVHG E\ WKH PRGHO PXVW EH SUHVHQW 7KH WLPH GRPDLQ ZLOO VHUYH WKLV SXUSRVH $ WLPH GRPDLQ LV D QDPHG VHW D VSHFLDO NLQG RI VWUXFWXUH LQWURGXFHG VKRUWO\f ZKLFK FRQVLVWV RI ILYH HOHPHQWV WLPH EDVH GHOWD WLPH ]HUR WLPH WLPH PDS DQG D PDJQLWXGH IXQFWLRQ $ WLPH GRPDLQ 7' LV VWUXFWXUHG VHW 7 GW ]HUR W P! VXFK WKDW 7 7LPH EDVH GW VPDOO WLPH LQ 7 LH D VLJQLILFDQW FKDQJH LQ WLPH ]HUR W J 7 VXFK WKDW HYHU\WKLQJ W LV FRQVLGHUHG ]HUR W>@ WLPH PDSSLQJ 7 P>@ PDJQLWXGH IXQFWLRQ 7 VXFK WKDW P>]HUR@ 7KH XVH RI D WLPH GRPDLQ FDQ EH H[HPSOLILHG E\ WKH IROORZLQJ WZR H[DPSOHV $OWKRXJK WKH WLPH EDVH LV WKH VDPH WKHUH DUH VLJQLILFDQW GLIIHUHQFHV LQ KRZ WLPH DIIHFWV KXPDQ DQG FRPSXWHU V\VWHPV +XPDQ 7LPH W W GW PLOOLVHFRQG ]HUR PLOOLVHFRQGV &RPSXWHU 7LPH 7 7L GW SLFRVHFRQG ]HUR QDQRVHFRQG

PAGE 35

W>@ LGHQWLW\ W>@ LGHQWLW\ P>U@ LQWHJHU>Ur]HUR @ P>U@ LQWHJHU >Ur]HUR@ 7KH ]HUR WLPH VWLSXODWHV ZKDW WLPHV DUH WR EH FRQVLGHUHG DV LQVWDQWDQHRXV 7KDW LV LQ WLPHV OHVV WKDQ ]HUR WKH V\VWHP FDQQRW UHDFW WR LQSXW 1RWH WKDW WKLV LV GLIIHUHQW IURP WKH GHOWD WLPH GW 7KH GHOWD WLPH LQGLFDWHV ZKDW WLPHV DUH VLJQLILFDQW LQ FKDQJHV LQ VWDWH )RU LQVWDQFH LW LV DVVXPHG WKDW D KXPDQ FDQ VHQVH WKLQJV LQ PLOOLVHFRQGV EXW FDQQRW UHDFW XQWLO PLOOLVHFRQGV /LNHZLVH LQ D SLFRVHFRQG FKDQJHV LQ WUDQVLVWRUV DUH LPSRUWDQW EXW D FSX UHDFWV RQO\ LQ QDQRVHFRQGV LH PHPRU\ DFFHVVHVf 7KH WLPH PDSSLQJ LV XVHG WR UHODWH DOO WLPH GRPDLQV WR 7FU 7KLV ZLOO EH IXUWKHU GLVFXVVHG LQ &KDSWHU 7KH PDJQLWXGH IXQFWLRQ LV XVHG WR VLJQLI\ D FRQVWDQW VWDWH EHWZHHQ V\VWHPV )RU H[DPSOH IRU D WLPH SHULRG RI VHFRQGV WKH KXPDQ PDJQLWXGH IXQFWLRQ P>@ ZKLOH WKH FRPSXWHU PDJQLWXGH IXQFWLRQ P>@ [f )RU DOO SUDFWLFDO SXUSRVHV LQ D WLPH SHULRG RI VHFRQGV D FRPSXWHU V\VWHP FDQ DVVXPH D KXPDQ V\VWHP LV FRQVWDQW 7KH PDJQLWXGH FRPSDULVRQ FDQ EH XVHG WR FLUFXPVFULEH WKH V\VWHP ZKHQ DQ\ RI WKH WKUHH W\SHV RI DQDO\VLV V\PEROLF QXPHULFDO LQWHUSUHWDWLRQf DUH UHTXLUHG 1DPHG 6HWV ,Q V\VWHP WKHRU\ D FRQYHQLHQW UHSUHVHQWDWLRQ RI DVVLJQPHQW LV UHSUHVHQWHG E\ D VWUXFWXUHG VHW >=HL =HL@ ,Q WKLV ZRUN WKHVH VHWV DUH UHIHUUHG WR DV QDPHG VHWV )RUPDOO\ D QDPHG VHW LV D VWUXFWXUH 6 9 5 $! ZLWK 6 D VHW HQWLWLHVf 9 RUGHUHG VHW SDUDPHWHUVf 5 LQGH[HG VHW 9 LV WKH LQGH[f 5 LV WKH UDQJH $ DVVLJQPHQW $ 6 Qc 5Y

PAGE 36

$ XVHIXO DFFHVVLQJ IXQFWLRQ FDOOHG D SURMHFWLRQ DOORZV WKH YDOXHV RI SDUDPHWHUV WR EH REWDLQHG IURP WKH QDPHG VHW ,W LV GHILQHG IURP WKH HQWLWLHV LQWR WKH UDQJH RI D YDOXH VHW 9L )RUPDOO\ D SURMHFWLRQ LV GHILQHG DV SURM 6 !59 ‘ -9L YL $V DQ H[DPSOH FRQVLGHU WKH DVVLJQPHQW RI D SHUVRQfV DJH DQG VH[ $ QDPHG VWUXFWXUH LV GHILQHG E\ WKH IROORZLQJ 6 ^7RP -DQH` 9 ^DJH VH[` 5 ^ DJH > `f VH[^PDOH IHPDOH`f ` $ ^ 7RP PDOHff -DQH IHPDOHff ` $ SURMHFWLRQ IXQFWLRQ RQ WKH DJH SDUDPHWHU DQG DQ DSSOLFDWLRQ RI WKH IXQFWLRQ LV JLYHQ E\ SUrMfRS ^ WRP f -DQH f` DJH SURMDJH>7RP@ n 7KH SURMHFWLRQ IXQFWLRQ ZLOO EH DEEUHYLDWHG LQ WKLV ZRUN ZLWK WKH GRW QRWDWLRQ VLPLODU WR W\SLFDO SURJUDPPLQJ ODQJXDJHV 7RPDJH UHSUHVHQWV SURM >7RP@ r DJH 7KH FRQFHSWXDO DQG SUDJPDWLF FRQYHQLHQFH RI QDPHG VHWV LV WKH EDVLV RI EXLOGLQJ D IDFW EDVH IRU D NQRZOHGJHEDVHG V\VWHP LQ K\EULG PRGHO WKHRU\ )RU H[DPSOH LI WKH SURMHFWLRQ IXQFWLRQ LV

PAGE 37

FRQVLGHUHG WR EH D SUHGLFDWH WKHQ WKH 3URORJ VW\OH SUHGLFDWH VH[>7RP PDOH@ DQG WKH HTXDWLRQ 7RPVH[ PDOH FDQ EH FRQVLGHUHG HTXLYDOHQW :KHQ UHYLHZLQJ H[DPSOH PRGHOV ZKLFK XVHG JUDSKLFDO IRUPDOLVPV LW ZDV IRXQG WKDW ODEHOLQJ DUFV DQG QRGHV ZLWK WH[W ZDV DOZD\V SHUIRUPHG 7KLV LV H[WUHPHO\ YDOXDEOH WR KXPDQV GXULQJ WKH GHYHORSPHQW RI D PRGHO 7KHUH ZDV DOVR D WHQGHQF\ WR EH IDLUO\ FRQVLVWHQW ZLWK WKH XVDJH RI YHUEV DQG QRXQV RQ DUFV DQG QRGHV 6LQFH WKH LQWHUSUHWDWLRQ RI QRGHV DQG DUFV LQ WKHVH IRUPDOLVPV LV UHODWLYHO\ VWUDLJKWIRUZDUG LH DUFV DQG QRGHV KDYH UHODWLYHO\ ZHOOGHILQHG VHPDQWLFV LQ HDFK RI WKH IRUPDOLVPVf WKH WH[W LV LQFOXGHG DV SDUW RI K\EULG PRGHO WKHRU\ E\ XVLQJ QDPHG VHWV

PAGE 38

&+$37(5 )250$/,606 *UDSK 7KHRU\ 7KH IRUPDOLVPV SUHVHQWHG LQ WKLV FKDSWHU DOO KDYH JUDSKLFDO HTXLYDOHQWV 6LQFH WKH JUDSKV DQG WKH PDWKHPDWLFDO WKHRU\ FRUUHVSRQG WR HDFK RWKHU WKH PRVW FRQYHQLHQW IRUP ZLOO EH XVHG LQ WKH H[SOLFDWLRQ ,Q VRPH RI WKH IRUPDOLVPV WKHUH LV OLWWOH RU QR GLVWLQFWLRQ EHWZHHQ JUDSK DQG WKHRU\ $OWKRXJK JUDSK WKHRU\ LV W\SLFDOO\ QRW XVHG DV D PRGHOLQJ IRUPDOLVP PRVW IRUPDOLVPV XVH JUDSKV DV SLFWRULDO UHSUHVHQWDWLRQV RU HTXLYDOHQWV ,Q D JHQHUDO VHQVH D JUDSK RI D V\VWHP LV DQ DEVWUDFWLRQ ,W VKRZV VWDWHV FRPSRQHQWV WUDQVLWLRQV GDWD IORZ FDXVDOLW\ HWF ,Q PRVW FDVHV LW GRHV QRW VKRZ FRPSXWDWLRQDO RU DQDO\WLFDO SURSHUWLHV 7KHUHIRUH LW LV D VLPSOLILFDWLRQ RI D V\VWHP *UDSKV DUH VR XVHIXO DV D PRGHOLQJ WRRO IRU KXPDQV WKDW LW ZRXOG EH LPSUXGHQW WR GLVPLVV JUDSK WKHRU\ DV D SULPLWLYH WKHRUHWLFDO PRGHOLQJ WRRO ,W LV DVVXPHG LQ WKLV ZRUN WKDW WKH VWUXFWXUH RI D JUDSK LV WKH GHILQLQJ IDFWRU IRU LWV XVHIXOQHVV DV RSSRVHG WR VRPH SK\VLRORJLFDO RU SV\FKRORJLFDO FKDUDFWHULVWLF VXFK DV LW LV YLVXDO RU SOHDVLQJ WR ZRUN ZLWK $GGLWLRQDOO\ WKHUH DUH PDQ\ DQDO\WLFDO SURSHUWLHV RI JUDSKV WKDW DUH XVHIXO VSDQQLQJ WUHHV DUWLFXODWLRQ SRLQWV HWF $OO IRUPDOLVPV XVHG LQ WOULV SDSHU XVH GLUHFWHG PXOWL JUDSK UHSUHVHQWDWLRQV 7KH GLUHFWHG SURSHUW\ LV XVHG WR LQGLFDWH WUDQVLWLRQ LQ VWDWH IRUPDOLVPV RU GDWD IORZ LQ SURFHGXUDO IRUPDOLVPV 7KH PXOWL SURSHUW\ LV XVHG WR UHSUHVHQW DOWHUQDWLYH QH[W VWDWHV LQ VWDWH IRUPDOLVPV DQG PXOWLSOH GDWD IORZ LQ SURFHGXUDO IRUPDOLVPV )RUPDOO\ D JUDSK LV D VHW RI YHUWLFHV 9 DQG VHW RI HGJHV (F9[9 $ QRQGHWHUPLQLVWLF V\VWHP FDQ HDVLO\ EH GHILQHG IRU VWDWH IRUPDOLVPV LQ ZKLFK 9 LV WKH VHW RI VWDWHV 7KLV LV JLYHQ D JUDSK 9 (f WKHQ D V\VWHP = 7 6 $ % f ZKHUH

PAGE 39

7 LV HPSW\ LV ^^`` 6 LV 9 $ LV ^^`` % LV D VHW ZLWK RQH HOHPHQW GHILQHG DV ^YO Qf YLH 9 DQG Q ^Y YOYfH (`` DQG LV DWf IRU DOO D H $ W H 7 7KLV V\VWHP VWDUWV LQ VRPH QRQGHWHUPLQHG VWDWH FKDQJHV WKH FXUUHQW VWDWH QRQGHWHUPLQLVWLFDOO\ E\ IROORZLQJ VRPH HGJH DQG VWRSV LI LW UHDFKHV D YHUWH[ ZLWK QR HGJH OHDGLQJ RXW 7KH JUDSKLFDO UHSUHVHQWDWLRQ RI D SURFHGXUDO IRUPDOLVP FDQ EH GHVFULEHG E\ D V\VWHP EXW LV LV VR VLPSOLVWLF RQH VWDWH DQG QR EHKDYLRUf WKDW LW ZRXOG EH VHQVHOHVV WR JLYH WKH GHILQLWLRQ 0RVW GHULYDWLRQV RI V\VWHP WKHRULHV RXWVLGH RI $,f DUH VWUXFWXUHG IRU DQDO\WLFDO SXUSRVHV DW WKH YHU\ ORZHVW OHYHO RI DEVWUDFWLRQ LH VWDWLVWLFVf +RZHYHU WKH JUDSK RI D V\VWHP GRHV UHSUHVHQW LQIRUPDWLRQ DERXW WKH V\VWHP FDXVDOLW\ DQG \HW LW LV UDUHO\ UHSUHVHQWHG ZLWKLQ WUDGLWLRQDO DQDO\WLFDO WHFKQLTXHV )LQLWH 0DFKLQHV $XWRPDWD WKHRU\ ZLOO EH XVHG WR GHVFULEH VWDWH PDFKLQHV 'LIIHUHQFHV ZLOO EH SRLQWHG RXW ZKHQ WKH\ RFFXU 7KH W\SLFDO XVH RI DXWRPDWD WKHRU\ LV WR PRGHO FRPSXWDWLRQDO SURFHVVHV RU DQDO\]H JUDPPDUV 0RVW WKHRUHWLFDO LQIRUPDWLRQ LQ WKLV VHFWLRQ LV GHULYHG IURP >+RS@ 7KH PDLQ REMHFWV RI D ILQLWH VWDWH DXWRPDWD )6$f DUH VWDWH LQSXW DQG WUDQVLWLRQ *LYHQ D SDUWLFXODU VWDWH DQG LQSXW WKH WUDQVLWLRQ IXQFWLRQ GLFWDWHV WKH QH[W VWDWH $XWRPDWD WUDQVIHU VWDWH XQWLO D ILQDO VWDWH LV UHDFKHG $ SXVK GRZQ DXWRPDWRQ 3'$f XVHV D VWDFN ZKLFK LV D ODVWLQILUVW RXW VWRUDJH GHYLFH ZLWK XQOLPLWHG FDSDFLW\ $ 3'$ WUDQVIHUV IURP VWDWH WR VWDWH JLYHQ WKH FXUUHQW VWDWH FXUUHQW LQSXW DQG WKH HOHPHQW RQ WRS RI WKH VWDFN 7KH QH[W VWDWH LQFOXGHV WKH GHILQLWLRQ RI D QHZ VWDFN WRS

PAGE 40

)LJXUH VKRZV D W\SLFDO 3'$ 7KH DUF IURP VL WR V ZLWK ODEHO D[ LQGLFDWHV D WUDQVIHU IURP VWDWH VL WR VWDWH V ZKHQ LQSXW D LV JLYHQ DQG WKH HOHPHQW RQ WKH VWDFN WRS LV [ 7KH LQLWLDO FRQGLWLRQ IRU D )6$ RU 3'$ LV WKH VWDUW VWDWH ,W LV SDUW RI WKH )6$ RU 3'$fV IRUPDO GHVFULSWLRQ 8QOLNH D V\VWHP LQ V\VWHP WKHRU\ DQ )6$ RU 3'$ KDV ILQDO VWDWHV 7KLV LPSOLHV DQG LV PRVW RIWHQ WKH FDVHf WKDW WKH )6$ RU 3'$ ZLOO HYHQWXDOO\ VWRS ZKHQ JLYHQ YDOLG LQSXW +RZHYHU LQ WKH PRVW JHQHUDO DXWRPDWD KLULQJ PDFKLQHV WLQV FDQ QRW EH JXDUDQWHHG ,I WKH ODEHOV RI D 3'$ DUH H[WHQG WR D % ZKHUH LV D VWULQJ RI V\PEROV WKHQ WKH DXWRPDWRQ LV FDOOHG D FRQWH[W ILQLWH VWDWH DXWRPDWD &)6$f 7KH FRQWH[W LV % 7KH FRQWH[W FDQ EH XVHG WR VWRUH D KLVWRU\ RI WKH SULRU VWDWHV RU LQSXW $ &)6$ FDQ HVVHQWLDOO\ H[DPLQH WKH KLVWRU\ RI LWVHOI ZKHQ GHFLGLQJ WKH QH[W VWDWH )LJXUH ([DPSOH 3'$ $Q )6$ LV YHU\ VLPLODU WR D GLVFUHWH V\VWHP 2QO\ WKH GHILQLWLRQ LV JLYHQ KHUH EXW D VLPLODU GHILQLWLRQ DQG SURRI FDQ EH IRXQG LQ WKH OLWHUDWXUH >:\P@ *LYHQ DQ )6$ 4 = e V )f ZKHUH 4 LV WKH VHW RI VWDWHV = LV WKH LQSXW DOSKDEHW e LV WKH WUDQVLWLRQ IXQFWLRQ V LV WKH LQLWLDO VWDWH DQG ) LV WKH ILQDO VWDWHV DQ HTXLYDOHQW V\VWHP LV = 7 6 $ % f ZKHUH 7 LV LV 6 LV 4 $ LV DOO IXQFWLRQV LQ =Q Q H DQ\ VHTXHQFH RI V\PEROV IURP =f % LV ^e` DQG LV DWf e IRU D H $ WH

PAGE 41

$ V\VWHP WKHRU\ GHVFULSWLRQ RI D 3'$ UHTXLUHV WKDW WKH VWDWHV EH GHILQHG DV 4 [ 'r ZKHUH LV WKH VWDFN DOSKDEHW 7KH QH[W VWDWH IXQFWLRQ LV VLPLODUO\ FKDQJHG $XWRPDWD FDQ EH H[WHQG WR HQFRPSDVV WKH SURSHUW\ RI QRQGHWHUPLQLVP 7KLV LV VLPLODU WR EXW GLVWLQFW IURP WKH QRWLRQ RI UDQGRP RU VWRFKDVWLF SURFHVV $ QRQGHWHUPLQLVWLF )6$ 1')6$f DOORZV IRU PXOWLSOH WUDQVLWLRQV WR EH YDOLG DW WKH VDPH WLPH /LNHZLVH D QRQGHWHUPLQLVWLF 3'$ 1'3'$f RU D &)6$ 1'&)6$f DOORZV PXOWLSOH YDOLG WUDQVLWLRQV $OWKRXJK LW KDV EHHQ VKRZQ WKDW )6$V DUH HTXLYDOHQW WR 1')6$V DQG &)6$V DUH HTXLYDOHQW WR 1'&)6$V WKH QRQGHWHUPLQLVWLF FRXQWHUSDUWV DUH XVXDOO\ PRUH FRQFLVH GHVFULSWLRQV DQG DUH XVHG PRUH RIWHQ 7KHUH DUH PDQ\ DQDO\WLFDO SURSHUWLHV DERXW DXWRPDWD HVSHFLDOO\ )6$V DQG 3'$V 0DQ\ RI WKHVH SURSHUWLHV DQDO\]H WKH FODVV RI ODQJXDJHV WKDW DQ DXWRPDWRQ DFFHSWV 7KHVH SURSHUWLHV DUH XVHIXO LQ WKH GLVFXVVLRQ RI JUDPPDUV EXW WKH\ KDYH QRW DSSHDUHG LQ DQ\ OLWHUDWXUH UHODWLQJ WR V\VWHP WKHRU\ DQG VLJQDOV 7KH PDLQ LQWHUHVW LQ DXWRPDWD LQ V\VWHP WKHRU\ OLWHUDWXUH KDV EHHQ IRU FRQWURO SXUSRVHV DQG QRW IRU YDOLGDWLQJ FRUUHFW VHTXHQFHV RI LQSXW 7KH VWDFN RI D 3'$ RU WKH FRQWH[W RI D &)6$ DOORZV WKH V\VWHP WR KDYH D PHPRU\ 7KLV LV D YHU\ GLVWLQFW FRQFHSW IURP DQ\ RWKHU IRUPDOLVP LQ WKLV FKDSWHU DQG IURP FODVVLFDO V\VWHP WKHRU\ $OWKRXJK WKH QRWLRQ RI PHPRU\ DQG LQWHUQDO VWDWH DUH KLJKO\ UHODWHG IRUPDOO\ WKH GLIIHUHQFH LQ PHDQLQJ FDQ SOD\ D PDMRU UROH ZKHQ DWWHPSWLQJ WR LQWHUSUHW WKH V\VWHP 7LPH LV D QRWLRQ HDVLO\ LQWHJUDWHG ZLWKLQ DXWRPDWD +RZHYHU WKHUH LV D GLIILFXOW\ ZKHQ PXOWLSOH IRUPDOLVPV DUH XVHG ,Q D V\VWHP UHSUHVHQWDWLRQ RI DQ DXWRPDWD WLPH LV DFWXDOO\ XVHG WR QXPEHU RU VHTXHQFH WKH LQSXW 7KLV ZRUNV IRU GHVFULSWLYH SXUSRVHV EXW ZKHQ LQWHJUDWLQJ WKLV ZLWK D FRQWLQXRXV V\VWHP ZKHUH WKH WLPH LV  WKHUH LV VWLOO QR VSHFLILF LGHQWLILDEOH UHODWLRQVKLS 7KH QRWLRQ RI VWHDG\ VWDWH ZKLFK LV LPSRUWDQW LQ V\VWHP WKHRU\ DQG VHYHUDO RI WKH RWKHU IRUPDOLVPV LQ WKLV FKDSWHU LV QRW SHUWLQHQW IRU DQ\ RI WKH DXWRPDWD $ QRQWHUPLQDWLQJ DXWRPDWRQ LV XQGHVLUDEOH )RU VRPH IRUPDOLVPV WR EH SUHVHQWHG ODWHUf QRQWHUPLQDWLQJ EHKDYLRU LV HVVHQWLDO IRU PDQ\ DQDO\WLFDO SURSHUWLHV 7KLV GRHV QRW LQYROYH PDQ\ WKHRUHWLFDO GLIILFXOWLHV EXW LQWURGXFHV GLVSDUDWH LPDJHV RI WKH SXUSRVH RI D V\VWHP FRQVWUXFWHG IURP PXOWLSOH IRUPDOLVPV

PAGE 42

0DUNRY 6\VWHPV $ 0DUNRY V\VWHP UHSUHVHQWV D VWRFKDVWLF SURFHVV ,W LV D VWDWH UHSUHVHQWDWLRQ 7KH WUDQVLWLRQV LQ D 0DUNRY V\VWHP DUH VWRFKDVWLF (DFK WUDQVLWLRQ SUREDELOLW\ LV EDVHG RQ WKH DVVXPSWLRQ WKDW DQ\ SDVW RU IXWXUH VWDWH LV FRQGLWLRQDOO\ LQGHSHQGHQW JLYHQ WKH SUHVHQW VWDWH )RUPDOO\ D 0DUNRY V\VWHP LV D SDLU = 6 7f ZKHUH 6 LV D ILQLWH VHW RI VWDWHV DQG 7 LV D IXQFWLRQ I6 [ 6 f§! > @ FDOOHG WKH FRQGLWLRQDO SUREDELOLW\ 7KH FRQGLWLRQDO SUREDELOLW\ 7Vc VS UHSUHVHQWV WKH SUREDELOLW\ RI WKH QH[W VWDWH VM JLYHQ WKH FXUUHQW VWDWH Vc ,Q SUREDELOLW\ WKHRU\ WKLV LV 7Vc VS SQH[W VWDWH VM FXUUHQW VWDWH Vcf ,W LV UHTXLUHG RI WKH IXQFWLRQ 7 WKDW IRU HDFK VWDWH Vc 7Vc VAf 7KLV VWLSXODWHV WKDW WKH SUREDELOLW\ RI WKH QH[W VWDWH WUDQVLWLRQV DGG XS WR RQH )LJXUH VKRZV D VLPSOH 0DUNRY V\VWHP ZLWK WKH WUDQVLWLRQ SUREDELOLWLHV RQ WKH DUFV $ VHTXHQFH RI VWDWHV 6M VA LV FDOOHG D 0DUNRY FKDLQ 7KH LQLWLDO VWDWH RI D 0DUNRY FKDLQ FDQ EH JLYHQ LQ VHYHUDO ZD\V 7KH FRQGLWLRQDOO\ SUREDELOLW\ IXQFWLRQ 7WVSVAf LV XVXDOO\ UHSUHVHQWHG DV PDWUL[ 0 $Q HQWU\ LQ URZ L DQG FROXPQ N LV WKH SUREDELOLW\ 7Vc VAf ,W FDQ EH VKRZQ WKDW WKH SUREDELOLW\ RI EHLQJ LQ VWDWH VA LQ WKH FKDLQ Vc VM LV 6Mf0QfM ZKHUH Q LV WKH OHQJWK RI WKH FKDLQ 0Q LV WKH QWK SURGXFW RI 0 ZLWK LWVHOI DQG 6Mf LV WKH LQLWLDO SUREDELOLW\ RI Vc >&O\@ )LJXUH 0DUNRY 6\VWHP

PAGE 43

,I WKHUH H[LVWV DQ Q VXFK WKDW QR HQWU\ LQ WKH PDWUL[ 0Q LV ]HUR WKHQ WKH 0DUNRY V\VWHP LV FDOOHG UHJXODU ,Q D UHJXODU 0DUNRY V\VWHP LW LV SRVVLEOH WR JR IURP D VWDWH WR DQ\ RWKHU VWDWH LQ QR PRUH WKDQ Q WUDQVLWLRQV ,W FDQ EH VKRZQ WKDW WKH OLPLW DV Qf§!rr ZLOO UHDFK VWHDG\ VWDWH HTXLOLEULXP SUREDELOLWLHV ,I 666Mf LV WKH VWHDG\ VWDWH HTXLOLEULXP DQG 0QfM M LV WKH HQWU\ URZ L DQG FROXPQ M RI WKH PDWUL[ 0Q WKHQ IRUPDOO\ IRU DQ\ L /LPAA 0Qfc M 666Mf ,Q FRPSDULVRQ WR V\VWHP WKHRU\ WKHUH DUH VHYHUDO DSSDUHQW GLIIHUHQFHV EHWZHHQ WKH WZR W\SHV RI V\VWHPV $ 0DUNRY V\VWHP KDV QR LQSXW 7KH HQYLURQPHQW FDQ QRW DIIHFW WKH VWDWH RI D 0DUNRY V\VWHP ,I LW FRXOG WKHQ PDQ\ RI WKH DQDO\WLFDO SURSHUWLHV ZRXOG EH XQVRXQG $GGLWLRQDOO\ WKH LQLWLDO VWDWH RI D 0DUNRY V\VWHP LV QRQGHWHUPLQLVWLF ,Q WKH FRQWH[W RI RWKHU IRUPDOLVPV D ZD\ WR VSHFLI\ WKH LQLWLDO VWDWH PXVW GHYHORSHG )RU LQVWDQFH LI D 0DUNRY V\VWHP LV D VXEPRGHO RI D VWDWH ZLWKLQ DQ )6$ WKHQ ZKHQ WKDW )6$ VWDWH EHFRPHV DFWLYH WKH 0DUNRY V\VWHP PXVW EH LQLWLDOL]HG 7KLV FDQ EH QRQGHWHUPLQLVWLF KRZHYHU D GHWHUPLQLVWLF PHWKRG FRXOG DOVR EH GHYLVHG 6LQFH D 0DUNRY V\VWHP KDV GLVWLQFW VWDWHV LW FDQ EH FODVVLILHG DV D GLVFUHWHHYHQW PRGHO $Q HYHQW LQ D 0DUNRY V\VWHP LV WKH VHOHFWLRQ RI D WUDQVLWLRQ $V D VHSDUDWH IRUPDOLVP WKLV GRHV QRW FRPSOLFDWH D V\VWHP WKHRUHWLF GHVFULSWLRQ RI WKH 0DUNRY V\VWHP :KHQ XVLQJ VHYHUDO IRUPDOLVPV WRJHWKHU WKLV GRHV FUHDWH D SUREOHP 7KH HYHQWV RI GLIIHUHQW IRUPDOLVPV PXVW EH UHODWHG WR HDFK RWKHU LQ VRPH PDQQHU 8QIRUWXQDWHO\ WKHUH LV QR WLPH DVVRFLDWHG ZLWK WUDQVLWLRQV LQ D 0DUNRY V\VWHP ,I D VWDWH LQ D 0DUNRY V\VWHP LV VXEPRGHOHG ZLWK D IRUPDOLVP ZKLFK H[SOLFLWO\ XVHV WLPH WKHQ KRZ GR WKH RWKHU 0DUNRY VWDWHV HYHQWV UHODWH WR WKLV VXEPRGHO" $ 0DUNRY V\VWHP GRHV QRW KDYH D WUDQVLWLRQ IXQFWLRQ ,W LV SRVVLEOH WR GHYHORS RQH VLPLODU WR D 1')6$ +RZHYHU D ZD\ WR DVVLJQ D SUREDELOLW\ WR WKH QH[W VWDWH EDVHG RQ WKH FRQGLWLRQDO SUREDELOLW\ LQVWHDG RI WKH LQSXW PXVW EH GHYHORSHG 7KH EHKDYLRU IXQFWLRQV RI D 0DUNRY V\VWHP FRUUHVSRQG WR DOO SRVVLEOH ILQLWH SDWKV WKURXJK WKH JUDSK (DFK RI WKHVH SDWKV KDV D SUREDELOLW\ DVVRFLDWHG ZLWK LW 7\SLFDOO\ WKH VWHDG\ VWDWH

PAGE 44

HTXLOLEULXP SUREDELOLWLHV RI D 0DUNRY V\VWHP DUH FRQVLGHUHG WR EH WKH GHILQLQJ IDFWRU LQ GHVFULELQJ WKDW V\VWHP 3HWUL 1HWV 3HWUL QHWV DUH W\SLFDOO\ XVHG WR PRGHO FRQFXUUHQW V\VWHPV LQ ZKLFK WKH REMHFWV RI WKH V\VWHP PXVW KDYH V\QFKURQL]HG EHKDYLRU $GGLWLRQDOO\ 3HWUL QHWV FDQ EH XVHG WR PRGHO UHVRXUFH DOORFDWLRQ V\VWHPV 7LUH VRXUFH IRU WKH LQIRUPDWLRQ DERXW 3HWUL QHWV LQ WKLV VHFWLRQ LV GHULYHG IRUP 3HWHUVRQfV ERRN >3HW@ 7KHUH DUH WKUHH PDLQ REMHFWV LQ 3HWUL QHWV SODFHV WUDQVLWLRQV DQG WRNHQV 3ODFHV DQG WUDQVLWLRQV DOWHUQDWH QRGHV LQ D JUDSK VHH )LJXUH f $ WUDQVLWLRQ PRYHV D WRNHQ LQ DQ LQSXW SODFH WR DQ RXWSXW SODFH 7KLV PRYHPHQW LV FDOOHG ILULQJ WKH WUDQVLWLRQ 7KHVH DWWULEXWHV FDWHJRUL]H D 3HWUL QHW JUDSK DV D ELSDUWLWH GLUHFWHG PXOWLJUDSK 7KH VWDWH RI D 3HWUL QHW LV WKH QXPEHU RI WRNHQV LQ HDFK SODFH 7KHUH LV QR WLPH DVVRFLDWHG ZLWK 3HWUL QHWV 7UDQVLWLRQV ILUH QRQGHWHUPLQLVWLFDOO\ WUDQVIHUULQJ WRNHQV IRUP SODFH WR SODFH $OWHU D WUDQVLWLRQ KDV KDG D FKDQFH WR ILUH WKH 3HWUL QHW LV VDLG WR EH LQ D QHZ VWDWH SODFH SODFH )LJXUH ([DPSOH 3HWUL 1HW $ 3HWUL QHW LV GHILQHG IRUPDOO\ DV D WXSOH = 37 2f ZKHUH 3 LV D ILQLWH VHW RI SODFHV 7 LV D ILQLWH VHW RI WUDQVLWLRQV ,Q LV D IXQFWLRQ 7 f§!3rr FDOOHG WKH LQSXW IXQFWLRQ DQG 2XW LV D IXQFWLRQ 7 f§! 3rr FDOOHG WKH RXWSXW IXQFWLRQ

PAGE 45

6LQFH 3 LV D ILQLWH VHW LW LV FOHDU WKDW 3rr LV QRW D VHW EXW D EDJ D VHW ZKLFK DOORZV GXSOLFDWH YDOXHVf 6LQFH D WUDQVLWLRQ FDQ KDYH PXOWLSOH DUFV WR WKH VDPH RXWSXW SODFH PXOWLSOH FRSLHV RI SODFHV DUH DOORZHG LQ WKH VHWV ,QWf RU 2XWWf 7KHRULHV RI EDJV KDYH EHHQ VWXGLHG KRZHYHU LW LV MXVW DV HDV\ WR UHSUHVHQW D EDJ ^DDEEEF` DV WKH VHW ^Df Ef FOf` ,Q DQ\ FDVH WKH IXQFWLRQ ,QWMf SMf UHWULHYHV WKH QXPEHU RI DUFV IURP SODFH Sc WR WUDQVLWLRQ WM DQG 2XWWMf Scf UHWULHYHV WKH QXPEHU RI DUFV IURP WUDQVLWLRQ WM WR SODFH SM $ PDUNLQJ P3 f§! Q IRU D 3HWUL QHW LV D QWXSOH ZKHUH Q FDUGLQDOLW\ RI 3 ,3f $ 3HWUL QHW ZLWK SODFHV DQG D PDUNLQJ P OOf KDV WRNHQ LQ SODFH WRNHQV LQ SODFH WRNHQ LQ SODFH HWF 7KH IXQFWLRQ PSMf UHWULHYHV WKH PDUNLQJ IRU SODFH SL LH DERYH PSf f 0DUNLQJV LQ 3HWUL QHWV DQG VWDWHV LQ V\VWHPV DUH HTXLYDOHQW *LYHQ D PDUNHG 3HWUL QHW = ZLWK PDUNLQJ P D WUDQVLWLRQ W LQ = LV VDLG WR EH HQDEOHG LI IRU DOO SL ,QWf Scf PScf $ HQDEOHG WUDQVLWLRQ PHDQV WKDW WKH WUDQVLWLRQ FDQ JHW D WRNHQ IURP HDFK LQSXW SODFH IRU HDFK DUF )RU H[DPSOH LI WKHUH DUH WZR DUFV IURP D SODFH WR D WUDQVLWLRQ WKHQ WKHUH PXVW EH DV OHDVW WZR WRNHQV LQ WKDW SODFH LQ RUGHU IRU WKH DERYH FRQGLWLRQ WR EH PHW IRU WKDW SODFH :KHQ D WUDQVLWLRQ ILUHV WKH WRNHQV DUH UHPRYHG IURP WKH SODFHV ,I WZR WUDQVLWLRQV UHTXLUH WKH VDPH WRNHQ IURP D SODFH LQ RUGHU WR ILUH WKHQ RQO\ RQH ZLOO ILUH LI WKHUH DUH QRW HQRXJK WRNHQV IRU ERWK WUDQVLWLRQV 7KH FKRLFH LQ WKLV FDVH LV DUELWUDU\ QRQGHWHUPLQLVWLFf 7KH QH[W VWDWH RI D 3HWUL QHW LV GHILQHG LI DW OHDVW RQH WUDQVLWLRQ FDQ ILUH 2WKHUZLVH WKH 3HWUL QHW LV EORFNHG *LYHQ D 3HWUL QHW = D PDUNLQJ P DQG D WUDQVLWLRQ W WKH QH[W VWDWH PWf LV IRUPDOO\ GHILQHG DV PWf Pf ZKHUH Pf3Mf PSMf ,QWf Scf 2XWWf SMf

PAGE 46

7KHUH DUH VHYHUDO GLIIHUHQFHV EHWZHHQ D 3HWUL QHW IRUPDOLVP DQG V\VWHPV WKHRU\ $ 3HWUL QHW KDV QR LQSXW :KHQ XVLQJ D 3HWUL QHW DQ LQLWLDO PDUNLQJ QL4 LV JLYHQ DQG QH[W VWDWHV DUH UHDFKHG E\ ILULQJ WUDQVLWLRQV 7KH LQLWLDO PDUNLQJ LV D VWDWH QRW DQ LQSXW 7KHUHIRUH WKH HQYLURQPHQW FDQ QRW HIIHFW WKH VWDWH RI D 3HWUL QHW 6LQFH D 3HWUL QHW KDV GLVWLQFW VWDWHV LW FDQ EH FODVVLILHG DV D GLVFUHWHHYHQW IRUPDOLVP $Q HYHQW LQ D 3HWUL QHW LV WKH ILULQJ RI D WUDQVLWLRQ +RZHYHU WKHUH LV QR WLPH DVVRFLDWHG ZLWK WKHVH HYHQWV $V DQ LQGHSHQGHQW IRUPDOLVP WKLV GRHV QRW FRPSOLFDWH D V\VWHP WKHRUHWLF GHVFULSWLRQ RI D 3HWUL QHW :KHQ XVLQJ PXOWLSOH IRUPDOLVPV WRJHWKHU WKLV GRHV FUHDWH D SUREOHP 7KH HYHQWV RI GLIIHUHQW IRUPDOLVPV PXVW EH UHODWHG WR HDFK RWKHU LQ VRPH PDQQHU $Q REYLRXV FKRLFH ZRXOG EH WR XVH WLPH :LWK VWDWH PDFKLQHV 0DUNRY V\VWHPV DQG 3HWUL QHWV FRPELQHG WKH FRQFHSW RI WLPH EHLQJ UHODWHG WR VWDWH WUDQVLWLRQV HYHQWVf VHHPV DSSURSULDWH EXW QRW WKH RQO\ SRVVLELOLW\ 7KH WUDQVLWLRQ IXQFWLRQV RI 3HWUL QHWV DQG V\VWHPV DUH VLPLODU 7KH EHKDYLRU IXQFWLRQV RI D V\VWHP URXJKO\ FRUUHVSRQG WR WKH VHTXHQFHV RI DOORZDEOH VWDWHV 6LQFH 3HWUL QHWV DUH QRQGHWHUPLQLVWLF WKH UHTXLUHPHQW WKDW WKH V\VWHP EHKDYLRU EH IXQFWLRQV PXVW EH UHOD[HG D V\VWHPfV EHKDYLRU LV D VHW RI UHODWLRQVKLSV 7KHUH DUH VHYHUDO LPSRUWDQW DQDO\WLFDO FKDUDFWHULVWLFV ZKLFK DUH LPSRUWDQW LQ 3HWUL QHW WKHRU\ $OO RI WKHVH KDYH GHILQLWLRQV EXW RQO\ WKH FRQFHSWV ZLOO EH SUHVHQWHG KHUH 7KH UHDFKDELOLW\ RI D 3HWUL QHW LV D VHW RI PDUNLQJV ZKLFK DUH UHDFKDEOH IURP VRPH LQLWLDO PDUNLQJ 7KLV VHW LV GHVLJQDWHG DV 5= PJf 6DIHQHVV RI D 3HWUL QHW ZLWOL D JLYHQ LQLWLDO PDUNLQJ LV GHILQHG ZKHQ DOO SODFHV KDYH RU WRNHQ $ SODFH LV NVDIH NERXQGHGf LI WKH QXPEHU RI WRNHQV QHYHU H[FHHGV N IRU VRPH JLYHQ LQLWLDO PDUNLQJ $ PDUNHG 3HWUL QHW ZKLFK KDV D WUDQVLWLRQ WKDW FDQ QHYHU ILUH LV VDLG WR EH LQ GHDGORFN 7KH WUDQVLWLRQ RU WUDQVLWLRQVf LV VDLG WR EH GHDG 7UDQVLWLRQV ZKLFK FDQ SRWHQWLDOO\ ILUH DUH FDOOHG OLYH 4XHXLQJ 1HWZRUNV 2QH RI WKH PRVW FRPPRQ WHFKQLTXHV XVHG LQ VLPXODWLRQ LV TXHXLQJ WKHRU\ ,W LV XVHG WR PRGHO ZDLWLQJ OLQHV %DQNV RU JURFHU\ VWRUHV DUH W\SLFDO H[DPSOHV RI TXHXLQJ V\VWHPV 4XHXLQJ

PAGE 47

QHWZRUNV DUH SURFHVV RULHQWHG 7KHUH DUH WKUHH PDLQ REMHFWV LQ TXHXLQJ QHWZRUNV SRSXODWLRQV TXHXHV DQG VHUYHUV )RU DQDO\WLFDO SXUSRVHV TXHXLQJ QHWZRUNV DUH FRQYHQLHQWO\ UHSUHVHQWHG E\ DWWULEXWHV RI WKHVH REMHFWV 7KH QRWDWLRQ LV PQRST ZKHUH P LV WKH LQWHUDUULYDO WLPH GLVWULEXWLRQ Q LV WKH VHUYLFH WLPH GLVWULEXWLRQ R LV WKH QXPEHU RI SDUDOOHO VHUYHUV S LV WKH V\VWHP FDSDFLW\ DQG T LV WKH TXHXH GLVFLSOLQH 7KH WKHRUHWLFDO PDWHULDO LQ WKLV VHFWLRQ LV GHULYHG IURP >%DQ@ DQG >*UD62M VHUYHU DUULYDOV TXHXH VHUYHU )LJXUH 6LPSOH 4XHXLQJ 1HWZRUN )LJXUH VKRZV D VLPSOH TXHXLQJ QHWZRUN 7KH DUULYDOV QRGH UHSUHVHQWV WKH FDOOLQJ SRSXODWLRQ 7KLV FRXOG UHSUHVHQW FXVWRPHUV DW D EDQN SDOHWWHV LQ D IDFWRU\ FDUV DW D WUDIILF ILJKW RU FDOOV DW D WHOHSKRQH H[FKDQJH $Q DUULYDO IURP WKH SRSXODWLRQ LV FDOOHG D FXVWRPHU 7KH DUULYDO UDWH RI FXVWRPHUV GHSHQGV RQ WKH SRSXODWLRQ W\SH $ ILQLWH SRSXODWLRQ KDV D OLPLWHG QXPEHU RI FXVWRPHUV 7KHUHIRUH WKH DUULYDO UDWH LV LQIOXHQFHG E\ WKH QXPEHU RI FXVWRPHUV FXUUHQWO\ LQ WKH V\VWHP 7KH DUULYDO UDWH RI FXVWRPHUV IRU DQ LQILQLWH SRSXODWLRQ LV GHVFULEHG E\ D GLVWULEXWLRQ XVXDOO\ WKH 3RLVVRQ GLVWULEXWLRQf :KHQ FXVWRPHUV DUULYH LQ WKH V\VWHP WKH\ DUH TXHXHG ZDLW LQ ILQHf XQWLO D VHUYHU LV DYDLODEOH ,Q )LJXUH WKHUH DUH WZR VHUYHU QRGHV (DFK QRGH UHSUHVHQWV VHUYHU 7KH VHUYLFH WLPH IRU HDFK VHUYHU PD\ EH FRQVWDQW RU UDQGRP &RPPRQ UDQGRP VHUYLFH WLPHV DUH UHSUHVHQWHG E\ WKH H[SRQHQWLDO JDPPD DQG QRUPDO GLVWULEXWLRQV 7KH TXHXH QRGH LQ )LJXUH DSSHDUV WR EH D ILUVWLQILUVWRXW ),)2f ILQH 7KLV LV D FRQVHTXHQFH RI WKH JUDSKLFDO SRUWUD\DO DQG QRW D WUXH GHSLFWLRQ RI WKH TXHXHfV GLVFLSOLQH 7KH VDPH JUDSKLFDO GHVFULSWLRQ PD\ UHSUHVHQW D ),)2 ODVWLQILUVWRXW /,)2f SULRULW\ 35,f RU DQ\ RWKHU TXHXH GLVFLSOLQH 7KH FDSDFLW\ RI D TXHXH LV WKH VSDFH DYDLODEOH LQ WKH TXHXH ,I WKH TXHXHfV FDSDFLW\ LV H[FHHGHG WKHQ WKH V\VWHP EDONV DUULYLQJ FXVWRPHUV OHDYH WKH V\VWHP ZLWKRXW HQWHULQJ

PAGE 48

WKH TXHXH ,W LV DOVR SRVVLEOH IRU FXVWRPHUV WR OHDYH WKH V\VWHP LI WKH\ ZDLW WR ORQJ RU FKDQJH TXHXHV LQ D PXOWLTXHXH V\VWHP $ TXHXLQJ QHWZRUN ZLWK D 3RLVVRQ DUULYDO GLVWULEXWLRQ KDV DQ H[SRQHQWLDO LQWHUDUULYDO WLPH >*UD@ ,I WKH VHUYLFH WLPH IRU WKH VHUYHUV LQ )LJXUH LV H[SRQHQWLDO WKH DUULYDO UDWH LV H[SRQHQWLDO WKH TXHXHfV FDSDFLW\ LV DQG GLVFLSOLQH LV /,)2 WKHQ WKH QRWDWLRQ XVHG WR UHSUHVHQW WKH V\VWHP LV 00/,)2 ZKHUH 0 VWDQGV IRU DQ H[SRQHQWLDO GLVWULEXWLRQf +RZHYHU D FRPSOH[ V\VWHP ZLWK PXOWLSOH SRSXODWLRQV TXHXHV DQG VHUYHUV FDQQRW EH GHVFULEHG ZLWK WKLV QRWDWLRQ 0RVW UHDO ZRUOG PRGHOV DUH VR FRPSOH[ WKDW QR DWWHPSW LV PDGH WR D XVH FRQFLVH QRWDWLRQ LQVWHDG WKH JUDSKLFDO UHSUHVHQWDWLRQ LV XVHG 7KHUH KDYH EHHQ PDQ\ DQDO\WLFDO SURSHUWLHV GHYHORSHG IRU VLPSOH TXHXLQJ QHWZRUNV 6LQFH WKH YDULHW\ RI QHWZRUNV LV YHU\ EURDG HDFK QHWZRUN W\SH KDV GLIIHUHQW WKHRUHWLFDO GHULYDWLRQV 7KHUH DUH KRZHYHU FRPPRQ SURSHUWLHV DPRQJ WKH GLIIHUHQW W\SHV RI QHWZRUNV 7KH GLVWULEXWLRQV XVHG WR GHVFULEH WKH DUULYDO DQG VHUYLFH WLPHV DUH H[DPSOHV %HFDXVH WKH DQDO\VLV LV VR YDULHG RQO\ D YHUEDO GHILQLWLRQ RI WKH PRVW XVHIXO SURSHUWLHV LV SUHVHQWHG 7KH H[SHFWHG WLPH LQ WKH V\VWHP LV WKH DYHUDJH WLPH D FXVWRPHU VSHQGV LQ WKH V\VWHP 7KH WLPH D FXVWRPHU LV LQ WKH V\VWHP LV FRPSULVHG RI WKH WLPH LQ TXHXHV DQG WKH WLPH EHLQJ VHUYHG $OWKRXJK LW LV W\SLFDO WR NHHS WKH H[SHFWHG WLPH LQ WKH V\VWHP DV VPDOO DV SRVVLEOH WKH UDWLR RI WLPH ZDLWLQJ WR WLPH LQ WKH V\VWHP LV PRUH LPSRUWDQW HVSHFLDOO\ WR D FXVWRPHUf 7KH H[SHFWHG QXPEHU RI FXVWRPHUV LQ WKH V\VWHP LV LPSRUWDQW IRU GHWHUPLQLQJ TXHXH FDSDFLWLHV RU WKH QXPEHU RI VHUYHUV UHTXLUHG ,W LV XQGHVLUDEOH WR KDYH FXVWRPHUV EDON EHFDXVH TXHXHV DUH WR VPDOO RU WR KDYH VHUYHUV LGOH EHFDXVH WKHUH DUH WR PDQ\ VHUYHUV 7KH H[SHFWHG TXHXH OHQJWK DQG VHUYHU XWLOL]DWLRQ DUH PHDVXUHPHQWV ZKLFK KHOS LQ GHFLGLQJ WKH V\VWHPfV W\SH DV GHVFULEHG DERYH 7KH WKURXJKSXW RI D V\VWHP PHDVXUHV WKH QXPEHU RI FXVWRPHUV VHUYHG SHU XQLW WLPH 0DQ\ WLPHV WKH REMHFWLYHV RI D TXHXLQJ V\VWHP DUH RSSRVHG WR HDFK RWKHU IRU LQVWDQFH WR PD[LPL]H WKURXJKSXW DQG XWLOL]DWLRQ ZKLOH PLQLPL]LQJ ZDLWLQJ DQG VHUYLFH WLPHV :KHQ D SDUWLFXODU TXHXLQJ QHWZRUN IDLOV WR PHHW WKH UHTXLUHPHQWV RI D SRSXODWLRQ GHWHUPLQHG E\ RQH RU PRUH RI WKH DERYH PHDVXUHPHQWVf DOWHUQDWLYH W\SHV RI QHWZRUNV DUH LQYHVWLJDWHG 7KH

PAGE 49

PRVW FRPSOH[ RI ZKLFK LV WR FKDQJH WKH TXHXLQJ GLVFLSOLQH DV RSSRVHG WR FKDQJLQJ WKH QXPEHU RI VHUYHUV RU LQFUHDVLQJ WKH FDSDFLW\ RI D TXHXHf 7OLLV KDV OHDG WR D PXOWLWXGH RI TXHXH GLVFLSOLQHV $GGLWLRQDOO\ PRUH UHDOLVWLF SDUDPHWHUV KDYH EHHQ LQWURGXFHG EDONLQJ FKDQJLQJ OLQHVf RU PRUH FRPSOH[ QHWZRUNV %HFDXVH WKHVH DUH YHU\ GLIILFXOW LI QRW LPSRVVLEOHf WR DQDO\]H QXPHULFDO DSSUR[LPDWLRQV KDYH EHFRPH D QRUP LQ WKH DQDO\VLV RI FRPSOH[ TXHXLQJ QHWZRUNV 7KH FRPSXWDWLRQDO PHWKRGV XVHG LQ TXHXLQJ QHWZRUNV DUH XVXDOO\ H[WHQVLRQV WR WKH DERYH PDWHULDO )RU H[DPSOH FXVWRPHU DWWULEXWHV UHVRXUFHV DQG PDFUR PRGHOV DUH DYDLODEOH LQ PDQ\ RI WKH FRPPHUFLDO SDFNDJHV VXFK DV *366 >6FK@ DQG 6,0$1 >3HJ@ $GGLWLRQDOO\ PRUH VRSKLVWLFDWHG SDFNDJHV KDYH DQLPDWLRQ VXFK DV &,1(0$ >.DO@ RU JUDSKLFDO HQWU\ PHWKRGV 7(66 >6WD@ 'HVSLWH WOLLV WKH EDVLF WHQHWV IRU WKHVH V\VWHP KDYH HYROYHG RXW RI TXHXLQJ WKHRU\ ,Q WHUPV RI V\VWHP WKHRU\ D TXHXLQJ QHWZRUN LV D GLVFUHWHHYHQW QRQGHWHUPLQLVWLF SURFHVV 7KH VWDWH RI ZKLFK FDQ EH GHVFULEHG E\ D WXSOH (DFK VHUYHU DQG TXHXH KDYH D SRVLWLRQ LQ WKH WXSOH )RU LQVWDQFH D TXHXH VHUYHU QHWZRUN LV GHVFULEHG E\ Tc T VM 6f ZKHUH TM DQG T DUH WKH QXPEHU RI FXVWRPHUV LQ WKH TXHXH 7KH VHUYHUV VM DQG 6 DUH HLWKHU LGOH f RU EXV\ f 7KH WLPH EDVH LV ? DQG WKHUH LV QR LQSXW LQWR WKH V\VWHP 7KH EHKDYLRU FDQ RQO\ EH GHVFULEHG LQ WHUPV RI VWHDG\ VWDWH &RQWURO 7KHRU\ &RQWURO WKHRU\ LV EDVHG RQ OLQHDU V\VWHP WKHRU\ 7KH W\SHV RI V\VWHPV PRGHOHG LQ FRQWURO WKHRU\ DUH FRQWLQXRXV V\VWHPV 7KHUHIRUH D GLUHFW GHVFULSWLRQ XVLQJ WKH V\VWHPV DSSURDFK LV HDVLO\ REWDLQHG 7KH V\VWHP GHVFULSWLRQ LV QRW SUHVHQWHG LQ WKLV VHFWLRQ EXW FDQ EH IRXQG LQ PDQ\ ERRNV >:\P =HL 'RU@ :KDW LV RI LQWHUHVW LV WKH FDXVHHIIHFW UHODWLRQVKLS HPERGLHG LQ FRQWURO WKHRU\ $OWKRXJK FODVVLFDO FRQWURO WKHRU\ GRHV QRW LQFOXGH WKHVH UHODWLRQVKLSV GLUHFWO\ RWKHU PHWKRGV VXFK DV ERQG JUDSKV >7KR@ KDYH VKRZQ WKDW WKH FDXVHHIIHFW UHODWLRQVKLS SOD\V D UROH LQ WKH GHVLJQHUfV FRQFHSWLRQ RI WKH V\VWHP

PAGE 50

9L )LJXUH Df /RZ 3DVV &LUFXLW Ef %ORFN 'LDJUDP 7\SLFDOO\ OLQHDU V\VWHPV DUH GHVFULEHG ZLWK WKH DLG RI EORFN GLDJUDPV )LJXUH H[HPSOLILHV WKH FDXVHHIIHFW UHODWLRQVKLS RI D ORZ SDVV 5& FLUFXLW LQWHJUDWLQJ FLUFXLWf 8VLQJ &RQWURO WKHRU\ WKH WUDQVIHU IXQFWLRQ 9Vf 9cVf FDQ EH REWDLQHG 7KH LQSXW YROWDJH YcWf DQG WKH RXWSXW YROWDJH YWf DUH 9MWf LWf5 & MLWf GW DQG YWf & M LWf GW 7KH /DSODFH WUDQVIRUPV DUH 9MVf ,Vf5 O&Vf ,Vf DQG 9Vf O&Vf ,Vf 6ROYLQJ IRU ,Vf LQ WKH HTXDWLRQ IRU 9Vf DQG VXEVWLWXWLQJ LQWR WKH HTXDWLRQ IRU 9MVf WKH WUDQVIHU IXQFWLRQ LV 9Vf9MVf O5&V f 7KH WUDQVIHU IXQFWLRQ LQ WKH IRUP RI D EORFN GLDJUDP LV VKRZQ LQ )LJXUH 7KH EORFN LV DQ LQWHJUDWLQJ EORFN 7KH GLDJUDP LQGLFDWHV WKH TXDOLWDWLYH IXQFWLRQLQJ RI WKH FLUFXLW $W WLPH W WKH IHHGEDFN RI WKH RXWSXW YROWDJH LV VXEWUDFWHG ZLWK WKH LQSXW YROWDJH DQG WKHQ LQWHJUDWHG WR \LHOG WKH RXWSXW YROWDJH DW WLPH WGW ,I WKH LQSXW YROWDJH LV FRQVWDQW WKHQ LW LV HDVLO\ GHGXFHG WKDW WKH

PAGE 51

RXWSXW YROWDJH EHFRPHV FRQVWDQW DIWHU VRPH ILQLWH WLPH 7KLV LV H[DFWO\ ZKDW D ORZ SDVV FLUFXLW GRHV XQGHU FRQVWDQW YROWDJH 7KH TXDOLWDWLYH FDXVHHIIHFW UHODWLRQVKLS ZDV GHGXFHG LQ D GRPDLQ LQGHSHQGHQW PDQQHU 7KLV W\SH RI UHDVRQLQJ LV WKH IRFXV RI ERWK $, UHVHDUFK >%RE@ DQG NQRZOHGJHEDVHG VLPXODWLRQ >)LV E@ 7KH VWDWH RI WKH ORZ SDVV FLUFXLW LQ FODVVLFDO V\VWHPV WKHRU\ FRXOG EH UHSUHVHQWHG E\ WKH WXSOH YLWfYWff ,QWXLWLYHO\ KRZHYHU WKHUH DUH WZR VWDWHV RI WLUH FLUFXLW ZKHQ WKH LQSXW YROWDJH LV FRQVWDQW WKH WUDQVLHQW VWDWH ZKHQ WKH FDSDFLWRU LV FKDUJLQJf DQG WKH VWHDG\ VWDWH &RQWURO WKHRU\ GRHV QRW HQFRPSDVV WKLV DEVWUDFW QRWLRQ RI VWDWH +RZHYHU WKH EORFN GLDJUDPfV JUDSK LQGLFDWHV LQGLUHFWO\ WKH H[LVWHQFH RI WKHVH VWDWHV $OWKRXJK FRQWURO WKHRU\ KDV D VLPSOH GHVFULSWLRQ LQ V\VWHPV WKHRU\ LQWHJUDWLQJ FRQWLQXRXV IRUPDOLVPV ZLWK GLVFUHWH IRUPDOLVPV UHTXLUHV UHVROYLQJ WKH WLPH EDVH 7KHUH DUH RQO\ WZR SRVVLEOH UHVROXWLRQV GLVFUHWL]H WKH FRQWLQXRXV V\VWHP RU DVVLJQ WLPH YDOXHV WR WKH GLVFUHWH V\VWHP $ OLQHDU V\VWHP LV DQ LPSRUWDQW FRQFHSW LQ FRQWURO WKHRU\ ,Q 3HWUL QHWV DQG VWDWH PDFKLQHV OLQHDULW\ LV QRW GLVFXVVHG DW OHDVW QRW LQ WKH OLWHUDWXUH IRXQG WR WKLV GDWHf $ OLQHDU V\VWHP H[KLELWV WZR HVVHQWLDO SURSHUWLHV VXSHUSRVLWLRQ DQG KRPRJHQHLW\ *LYHQ D V\VWHP WKDW ZLWK LQSXW [Wf SURGXFHV RXWSXW \Wf DQG ZLWK LQSXW ZWf SURGXFHV RXWSXW ]Wf LI LQSXW [Wf ZWf SURGXFHV RXWSXW \Wf ZWf WKHQ WKH V\VWHP KDV WKH VXSHUSRVLWLRQ SURSHUW\ ,I LQSXW %[Wf SURGXFHV RXWSXW %\Wf ZKHUH % LV D FRQVWDQW WKHQ WKH V\VWHP OLDV WKH SURSHUW\ RI KRPRJHQHLW\ &RQWURO WKHRU\ DORQJ ZLWK WKH RWKHU IRXU IRUPDOLVPV SUHVHQWHG LQ WKLV FKDSWHU DOO KDYH D V\VWHP WKHRUHWLF GHVFULSWLRQ ,Q WKH QH[W FKDSWHU D WKHRU\ ZLOO EH LQWURGXFHG ZKLFK SURYLGHV WKH IRXQGDWLRQ IRU D FRQVLVWHQW DQG FRKHVLYH PHFKDQLVP WR GHVFULEH WKHVH IRUPDOLVPV DQG ZLOO SHUPLW WKHP WR EH XVHG LQ D KLHUDUFKLFDO RUJDQL]DWLRQ

PAGE 52

&+$37(5 +<%5,' 02'(/ 7+(25< 0RGHO 6WUXFWXUH +\EULG PRGHO WKHRU\ LV D FRPELQDWLRQ RI JHQHUDO V\VWHP WKHRU\ *67f QDPHG VHWV DQG JUDSK WKHRU\ 7KH FRPELQDWLRQ RI *67 DQG QDPHG VHWV LV DOVR XVHG LQ PXOWLIDFHWHG PRGHOLQJ >=HL@ ,Q D VHQVH RQH FRXOG DUJXH WKDW K\EULG PRGHO WKHRU\ LV D GHULYDWLRQ RI *67 0DWKHPDWLFDOO\ WKLV PD\ EH FRUUHFW +RZHYHU WKHUH DUH VLJQLILFDQW GLIIHUHQFHV RI ZKLFK WKRVH IDPLOLDU ZLWK *67 VKRXOG EH DZDUH 7UHVH GLIIHUHQFHV DURVH IURP WKH UHTXLUHPHQWV QHHGHG IRU ++ PRGHOLQJ )LUVW K\EULG PRGHO WKHRU\ LV QRW WR EH XVHG E\ WKH LQYHVWLJDWRU ,W LV QRW D PRGHOLQJ IRUPDOLVP ,W LV D JHQHUDOL]HG IRUPDOLVP WKDW LV QRW DV FRQFHSWXDOO\ HIILFLHQW DV IRUPDOLVPV VXFK DV 3HWUL QHWV TXHXLQJ QHWZRUNV DQG EORFN GLDJUDPV 6HFRQG DOWKRXJK EXLOGLQJ ERWWRPXS LV SRVVLEOH K\EULG PRGHO WKHRU\ HPSKDVL]HV D WRSGRZQ DSSURDFK WR FRQVWUXFWLQJ D PRGHO 7KH LGHD EHKLQG K\EULG PRGHO WKHRU\ LV WR WDNH D PRGHO ZKLFK LV SDUWLDOO\ FRUUHFW LQ GHVFULELQJ D V\VWHPfV EHKDYLRU DQG UHILQH RQO\ WKRVH FRPSRQHQWV ZKLFK GR QRW FRUUHVSRQG ZLWK REVHUYHG GDWD RU V\VWHP VSHFLILFDWLRQV 7KLUG K\EULG PRGHO WKHRU\ IRFXVHV RQ WKH DQDO\VLV RI D VLQJOH V\VWHP XQGHU GHYHORSPHQW ++ PRGHOLQJ DQG K\EULG PRGHO WKHRU\ DUH PHDQW WR SURYLGH WKH IRXQGDWLRQ IRU D FRPSXWHU HQYLURQPHQW ZKLFK DOORZV IRU WKH FUHDWLRQ DQG LQYHVWLJDWLRQ RI V\VWHP PRGHOV QRW WKH FODVVLILFDWLRQ LGHQWLILFDWLRQ FRPSDULVRQ DQG UHWULHYDO RI DOUHDG\ FRQVWUXFWHG DQG XQGHUVWRRG V\VWHP PRGHOV +\EULG PRGHO WKHRU\ GHDOV ZLWK WKH DOWHUDWLRQ DQG LQYHVWLJDWLRQ RI LQFRPSOHWH RU LQFRUUHFW PRGHOV :LWK WKLV LQ PLQG WKH GHILQLWLRQ RI D PRGHO LQ K\EULG PRGHO WKHRU\ LV LQWURGXFHG $ PRGHO 0 LV D QDPHG VHW VXFK WKDW 0 + $ ; g [ S $! DQG

PAGE 53

. + &RPSRQHQW $ & 4 f f f f 9 $ (GJH 2& M &; ; ,QSXW =S bf fff! 7 2XWSXW ?fM \f 6WDWH [ 7LPH 'RPDLQ 7f ]HUR GHOWD PDS>@ PDJQLWXGH>@! 3 ,QLWLDOL]H IXQFWLRQ 7&4f 7UDQVLWLRQ IXQFWLRQ 7&4f $ 2XWSXW )XQFWLRQ 7&4f \ 7KH V\PEROV DQG LQGLFDWH WKH XVH RI QDPHG VHWV DQG HOHPHQWV LQ WKHVH VHWV FDQ EH DFFHVVHG DV GHVFULEHG LQ &KDSWHU 7KH FRPSRQHQW VHW +f RI D PRGHO DOZD\V KDV WKH VSHFLDO V\PERO VHOI DV D PHPEHU 7KLV V\PERO LV XVHG WR LQGLFDWH D UHIHUHQFH WR D VXEPRGHO LI RQH H[LVWVf )RU PRVW DWRPLF PRGHOV WKH VHOI V\PERO LV WKH RQO\ PHPEHU RI WKH FRPSRQHQW VHW ,Q VWUXFWXUHG PRGHOV WKH FRPSRQHQW VHW FRQWDLQV WKH PRGHOV ZKLFK DUH VXSHUYLVHG E\ WKH FRQWUROOHU PRGHO 7KH HGJH VHW $f RI DQ DWRPLF PRGHO LV HPSW\ ,Q VWUXFWXUHG PRGHOV WKH FRQQHFWLYLW\ EHWZHHQ FRPSRQHQW PRGHOV LV LGHQWLILHG ZLWK WKH HGJH VHW $Q HGJH D H $ LV D QDPHG VHW RI WKH IRUP WR IURP W\SH! ZKHUH WR DQG IURP DUH PRGHOV LQ WKH FRPSRQHQW VHW +f DQG W\SH LV HLWKHU W XQGHILQHGf D VWDQGDUG GDWD W\SH W f RU D PRGHO 7RJHWKHU WKH FRPSRQHQWV DQG HGJHV GHVFULEH WKH JUDSK RI WKH PRGHO DQG HLWKHU ZKDW W\SH RI GDWD LV SDVVHG EHWZHHQ WKH FRPSRQHQWV RU KRZ FRQWURO LV WUDQVIHUUHG DPRQJ WKH FRPSRQHQWV ,Q &KDSWHU D EULHI GHVFULSWLRQ RI LQWHUPRGHO FRRUGLQDWLRQ FRXSOLQJf ZDV UHSUHVHQWHG LQ K\EULG PRGHO WKHRU\ )URP WKH GHILQLWLRQ DERYH LW FDQ EH VHHQ WKDW D VWUXFWXUHG PRGHO ZKLFK KDV FRPSRQHQWV WKDW DUH DOVR VWUXFWXUHG PRGHOV UHSUHVHQWV LQWHUPRGHO FRRUGLQDWLRQ 7KH URRW PRGHO LV D JURXS FRQWUROOHU PRGHO ,W FRQWUROV WKH SDUDOOHO RSHUDWLRQ RI VWUXFWXUHG PRGHOV ,Q LQWUDPRGHO FRRUGLQDWLRQ D VWUXFWXUHG PRGHO FRRUGLQDWHV DWRPLF PRGHOV 7KH GLVWLQFWLRQ EHWZHHQ LQWHU DQG LQWUDPRGHO FRRUGLQDWLRQ DSSHDUV WR EH MXVW FRQFHSWXDO KRZHYHU WKH VWUXFWXUHG PRGHOV WKDW

PAGE 54

FRRUGLQDWH WKH DWRPLF PRGHOV VWDWH SDUDOOHO DQG VHOHFWLYH FRQWUROOHUVf KDYH D YHU\ GLIIHUHQW IRUP DQG VHPDQWLFV IURP WKH JURXS FRQWUROOHU WKDW FRRUGLQDWHV D VHW RI VWUXFWXUHG PRGHOV ,W LV WKH GLVWLQFW IRUP RI FRQWUROOHUV WKDW DOORZV KHWHURJHQHRXV UHILQHPHQW 7KH LQSXW ;f DQG RXWSXW 2)f DOVR KDYH WKH IRUP WR IURP W\SH! 7KHVH VHWV VLJQLI\ WKH GDWD RU FRQWURO LQIRUPDWLRQ XVHG E\ GLIIHUHQW W\SHV RI PRGHOV )RU PRGHOV LQ ZKLFK WKH LQSXW KDV QRW \HW EHHQ VSHFLILHG WKH IURP PRGHO ZLOO EH HTXDO WR W XQGHILQHGf 7KH VDPH GHILQLWLRQ DOVR DSSOLHV IRU D PRGHOfV RXWSXW 7KH RQO\ GLIIHUHQFH EHWZHHQ LQSXWV DQG RXWSXWV DUH WKDW LQSXWV DUH VLJQDOV IXQFWLRQV RYHU WLPHf DQG RXWSXWV DUH YDOXHV 7KH VWDWH f QDPHG VHW LV XVHG IRU D YDULHW\ RI SXUSRVHV ,W LV YHU\ VLPLODU WR ORFDO PHPRU\ LQ FRPSXWDWLRQDO GHILQLWLRQV ,W FDQ FRQWDLQ DQ\ RWKHU W\SH RI QDPHG VHW LQFOXGLQJ D PRGHOf +RZHYHU IRU DQDO\WLFDO SXUSRVHV WKH VWDWH VHW VKRXOG FRQWDLQ RQO\ FRQVWDQWV RU IXQFWLRQV RI WLPH 7KH WLPH GRPDLQ RI D PRGHO ZDV GLVFXVVHG LQ &KDSWHU ,W LV RQO\ QRWHG KHUH WKDW WKH WLPH GRPDLQ RI D PRGHO FDQ EH QXOO +RZHYHU LW LV LQWHQGHG WKDW PRGHOV ZKLFK GR QRW KDYH WKH QRWLRQ RI WLPH LQ WKH FORFN VHQVH LQFOXGH QRWLRQV RI WLPH LQ WKH FRPSXWDWLRQDO VHQVH 7KDW LV LI D PRGHO LV QRW PHDVXUHG LQ VHFRQGV EXW KDV D GHILQLWH VHTXHQFH RI FRPSXWDWLRQ WKHQ WKH PRGHO VKRXOG XVH DQ LQWHJHU WLPH GRPDLQ (DFK LQWHJHU ; UHSUHVHQWV WKH QH[W FRPSXWDWLRQDO VWHS 7KH ODVW WKUHH HOHPHQWV RI D PRGHO DUH IXQFWLRQV 7\SLFDOO\ WKHVH DUH XVHG WR FRPSXWH WKH QHZ VWDWH DQG RXWSXW WUDMHFWRULHV RYHU D WLPH LQWHUYDO %HFDXVH K\EULG PRGHO WKHRU\ LV FHQWHUHG DURXQG VLPXODWLRQ FRQFHSWV WKHVH IXQFWLRQV KDYH EHHQ FRQFHSWXDOO\ DOWHUHG ,W LV DVVXPHG WKDW DOO WKUHH IXQFWLRQV XVH WZR WLPHV WKH FXUUHQW WLPH D JOREDO YDULDEOHf DQG DQ LQSXW WLPH JLYHQ DW IXQFWLRQ LQYRFDWLRQf 7KHVH WLPHV DUH XVHG WR FDOFXODWH WKH VWDWH RU RXWSXW DW WKH LQSXW WLPH 7KH FXUUHQW LQSXW DQG VWDWH DUH DOVR DVVXPHG WR EH SDUW RI WKH LQSXW WR WKHVH IXQFWLRQV 7UDMHFWRULHV DUH FUHDWHG E\ V\PEROLF PHWKRGV ZKLFK WDNH D PRGHO DV LQSXW RU FUHDWHG WKURXJK QXPHULFDO WHFKQLTXHV $GGLWLRQDOO\ LW VKRXOG EH HPSKDVL]HG WKDW WKHVH IXQFWLRQV DUH GHFODUHG QRW SUHFRPSLOHG :KHQ QXPHULFDO DQDO\VLV VLPXODWLRQf LV QHHGHG WKH GHFODUDWLYH PRGHO FDQ EH FRPSLOHG DQG RSWLPL]HG XQOHVV DQ LQWHUSUHWDWLYH ODQJXDJH OLNH /,63 RU DQ REMHFWRULHQWHG ODQJXDJH LV XVHGf

PAGE 55

7OLH LQLWLDOL]DWLRQ IXQFWLRQ 3f LV QHFHVVDU\ VLQFH PRGHOV FDQ EH G\QDPLF $W DQ\ WLPH GXULQJ DQDO\VLV D PRGHO FDQ EHFRPH DFWLYH 7LQV QRW RQO\ DOORZV IRU WKH PRGHOLQJ RI V\VWHPV ZKLFK PD\ OLH GRUPDQW EXW PRUH LPSRUWDQWO\ LW PRGHOV V\VWHPV ZKLFK KDYH PXOWLSOH GHVFULSWLRQV RYHU WLPH $ SLHFHZLVH FRQWLQXRXV V\VWHP LV DQ H[DPSOH RI D SULPLWLYH PXOWLGHVFULSWLRQ V\VWHP ,Q WKLV ZRUN WKH VWDWH RULHQWHG IRUPDOLVPV LPSOHPHQW WKH SLHFHZLVH FRQFHSW )RU GDWD IORZ PRGHOV GLIIHUHQWLDO HTXDWLRQ PRGHOVf WKH LQLWLDOL]DWLRQ IXQFWLRQ 3f VHWV WKH LQLWLDO FRQGLWLRQV 7KH WUDQVLWLRQ f IXQFWLRQ LV LQWHQGHG WR EH XVHG ZKHQ D PRGHO LV DFWLYH $OWKRXJK DV FDQ EH VHHQ IURP WKH GHVFULSWLRQ LW FRXOG EH XVHG WR LQLWLDOL]H D PRGHO 7KH LQLWLDOL]DWLRQ DQG WUDQVLWLRQ IXQFWLRQV ZHUH GHULYHG VR WKDW WKH FRQFHSW RI VWDWH WUDQVLWLRQ DQG LQLWLDOL]DWLRQ FRXOG EH VHSDUDWHG $JDLQ WKLV LV QHFHVVDU\ LQ V\PEROLF DQG LQWHUSUHWDWLRQ PHWKRGV ,I WKH WUDQVLWLRQ IXQFWLRQ XVHV VWRFKDVWLF RU QRQGHWHUPLQLVWLF UHODWLRQVKLSV WKHQ PDWKHPDWLFDOO\ WKH WHUP IXQFWLRQ LV LQFRUUHFW KRZHYHU IRU SXUSRVHV RI WKLV GLVFXVVLRQ WKH WHUP IXQFWLRQ ZLOO EH XVHG LQ D VLPLODU PDQQHU WR WKDW XVHG LQ SURJUDPPLQJ ODQJXDJHV )RU WKH VDPH UHDVRQ DQG WUDGLWLRQf WKH RXWSXW IXQFWLRQ $f LV DOVR NHSW VHSDUDWH IURP WKH RWKHU IXQFWLRQV 2QH RI WKH RSWLPL]DWLRQV IRU QXPHULFDO DQDO\VLV LV WKH LQWHJUDWLRQ RI WKHVH IXQFWLRQV VR WKDW RQO\ RQH FDOO WR WKH PRGHO SURGXFHV WKH WRWDO EHKDYLRU 7KLV LQWHJUDWLRQ LV SRVVLEOH LQ K\EULG PRGHO WKHRU\ EHFDXVH WKHUH DUH RQO\ IRXU FRQWUROOHU PRGHOV DQG HDFK W\SH RI FRQWUROOHU KDV WKH VDPH IRUP RI WUDQVLWLRQ DQG RXWSXW IXQFWLRQV &RQWUROOHU 0RGHO 6XSHUPRGHO &RPSRQHQW 0RGHOV &RQWUROOHU 0RGHO VXEPRGHO &RPSRQHQW 0RGHOV )LJXUH 6LJQDO )ORZ LQ ,QWUDPRGHO &RRUGLQDWLRQ

PAGE 56

7KHUH DUH WZR UXOHV ZKLFK FDSWXUH WKH PDQQHU LQ ZKLFK DWRPLF FRPSRQHQWV RI D VWUXFWXUHG PRGHO FDQ EH FRRUGLQDWHG ZLWK RWKHU PRGHOV LQWUDPRGHO FRRUGLQDWLRQf 7KLV LV D SVHXGR IRUPDO GHILQLWLRQ RI LQWUDPRGHO FRRUGLQDWLRQ LQ K\EULG PRGHO WKHRU\ )LJXUH VKRZV KRZ WKH FRRUGLQDWLRQ LV DFFRPSOLVKHG 7KH UXOHV FDQ EH VWDWHG DV IROORZV $ FRPSRQHQW QRGHf LQ D PRGHO FDQ KDYH LWV RSHUDWLRQfV RXWSXW GHOD\HG RU DOWHUHG E\ DQRWKHU PRGHO FDOOHG WKH VXEPRGHO 7KH FRPSRQHQW PRGHO ZKHQ DFWLYDWHG LQLWLDOL]HV WKH VXEPRGHO DQG ZDLWV IRU D VLJQDO RI FRPSOHWLRQ ZKLFK WKHQ GHDFWLYDWHV WKH VXEPRGHO $ FRPSRQHQW QRGHf LQ D PRGHO FDQ KDYH LWV RSHUDWLRQ UHSODFHG E\ DQRWKHU PRGHO KRZHYHU WKH ,2 DQG FRQWURO RI WKH VXEPRGHO PXVW EH WKH VDPH WKH PRGHO LV FRQWLQXRXV RYHU WKH DQDO\VLV 7KH W\SHV RI FRQWUROOHUV ZKLFK LQWHUDFW ZLWK HDFK RWKHU GLFWDWH ZKLFK RI WKHVH UXOHV DSSOLHV ZKHQ VXEPRGHOLQJ 7KH KLJKHU OHYHO PRGHO LQ VXEPRGHOLQJ LV FDOOHG D VXSHUPRGHO /LNH PRVW PRGHO IRUPDOLVPV WKH DUURZV LQ )LJXUH VLJQLI\ FRQWURO DQG GDWD IORZ EHWZHHQ PRGHO W\SHV 7KH UXOH ZKLFK DSSOLHV GHSHQGV RQO\ RQ WKH VXSHUPRGHO LQYROYHG )RU LQVWDQFH LI WKH VXSHUPRGHO LV D VWDWH FRQWUROOHU WKHQ UXOH DERYH DSSOLHV IRU D SDUDOOHO VXSHUPRGHO RQO\ UXOH DSSOLHV DQG IRU D VHOHFWLRQ VXSHUPRGHO UXOH DSSOLHV 6WDWH 0RGHOLQJ $ VWDWH FRQWUROOHU PRGHO PDQDJHV D ILQLWH VHW RI FRPSRQHQWV 7KH HGJHV UHSUHVHQW FRQWURO IORZ EHWZHHQ WKH FRPSRQHQWV 7KH VWDWH FRQWUROOHU PRGHO LV UHVSRQVLEOH IRU WKH LQSXW DQG RXWSXW WR WKH FXUUHQW VWDWH PRGHO $ VWDWH PRGHO UHSUHVHQWV WKH LQGLYLGXDO FRPSRQHQWV )RU H[DPSOH LQ D 0DUNRY V\VWHP WKH VWDWH FRQWUROOHU LV WKH FRQWUROOHU PRGHO DQG WKH VWDWH PRGHOV DUH WKH FRPSRQHQW PRGHOV RI WKH FRQWUROOHU PRGHO 7KH FRPSRQHQWV RI D 0DUNRY V\VWHP GR QRW XVH LQSXW

PAGE 57

+RZHYHU HDFK 0DUNRY VWDWH FDQ VXSSO\ DQ RXWSXW DW DQ\ JLYHQ WLPH DV GHVFULEHG LQ &KDSWHU 7KH LQSXW WR D 0DUNRY VWDWH LV RQO\ XVHG E\ WKH VXEPRGHO LI RQH H[LVWVf $ VWDWH PDFKLQH FDQ EH UHSUHVHQWHG LQ WKH VDPH PDQQHU DV D 0DUNRY V\VWHP 7KH RQO\ GLIIHUHQFH LV LQ WKH LQWHUQDO VWDWH RI WKH VWDWH PRGHOV +HQFH LQ RUGHU WR GHVFULEH VWDWH IRUPDOLVPV WKUHH PRGHOV DUH QHHGHG WZR DWRPLF PRGHOV DQG RQH VWUXFWXUHG PRGHO 6SHFLILFDOO\ WKHVH DUH D ILQLWH VWDWH DWRPLF PRGHO D 0DUNRY VWDWH DWRPLF PRGHO DQG WKH VWDWH FRQWUROOHU VWUXFWXUHG PRGHO 7KH DWRPLF PRGHOV DUH GHILQHG ILUVW WKHQ WKH VWDWH FRQWUROOHU LV GHILQHG $ ILQLWH VWDWH DWRPLF PRGHO LV GHILQHG DV + n&RPSRQHQW VHOI! $ (GJH ;,QSXW ;S rf 7 2XWSXW 9S ?_ 6WDWH 7DEOH QH[W6WDWH! [ 7LPH 'RPDLQ 7f ]HUR GHOWD PDS>@ PDJQLWXGH>@! 3 ,QLWLDOL]H IXQFWLRQ 7;f 7DEOH LQLWLDO6WDWH! 7UDQVLWLRQ IXQFWLRQ 7;f 7DEOH QH[W6WDWH! ; 2XWSXW )XQFWLRQ 7;f 7 $OPRVW DOO DWRPLF PRGHOV KDYH RQO\ WKH V\PERO VHOI DV D PHPEHU RI WKH FRPSRQHQW VHW DQG KDYH QR HGJHV 7KH LQSXW LV LGHQWLFDO WR WKH VXSHUPRGHOfV LQSXW ;f $OWKRXJK DWRPLF PRGHOV FDQ EH XVHG E\ WKHPVHOYHV LW LV LQWHQGHG WKDW DOO DWRPLF PRGHOV EH SDUW RI D FRQWUROOHU PRGHO 7KH VWDWH f RI D ILQLWH VWDWH PRGHO FRQVLVWV RI WKH QH[W VWDWH DQG D IXQFWLRQ GHILQHG DV 7DEOH[;f 6 ZKHUH 6 LV WKH &RPSRQHQW VHW RI WKH VWDWH FRQWUROOHU PRGHO 7KXV WKH WDEOH LV D IXQFWLRQ ZKLFK UHWXUQV WKH QH[W VWDWH PRGHO RI WKH FRQWUROOHU PRGHO JLYHQ WKH FXUUHQW LQSXW DQG WLPH 7KH IXQFWLRQ WDNHV WKH IRUP RI LIWKHQ VWDWHPHQWV 7\SLFDOO\ D ILQLWH VWDWH

PAGE 58

PDFKLQH KDV D VLQJOH WDEOH *LYHQ WKH FXUUHQW LQSXW WKH QH[W VWDWH LV ORRNHG XS LQ WKH WDEOH ,Q K\EULG PRGHO WKHRU\ HDFK VWDWH KDV LWV RZQ WDEOH 7KLV LV QHFHVVDU\ IRU LQWUDPRGHO FRRUGLQDWLRQ 7KH RXWSXW W\SHV RI WKH VWDWH PRGHO DUH WKH VDPH DV WKH FRQWUROOHU PRGHOfV RXWSXW 7KH RWKHU VHWV RI D VWDWH PRGHO DUH IDLUO\ VLPSOH 7KH WLPH GRPDLQ W\SLFDOO\ PDWFKHV WKH WLPH GRPDLQ RI WKH VWDWH PRGHOfV FRQWUROOHU PRGHO 7KH RXWSXW IXQFWLRQ FDQ EH DQ\ IXQFWLRQ IURP WKH LQSXW WLPH DQG VWDWH LQWR WKH RXWSXWV g JLYHQ WKH DERYH FRQGLWLRQV 7KH WUDQVIHU IXQFWLRQ XVHV WKH WDEOH WR IRUPXODWH WKH QH[W VWDWH DV >W[@ 7DEOH 7DEOH>PDS>[@[@! $ 0DUNRY VWDWH PRGHO LV WKH VDPH D VWDWH PRGHO H[FHSW IRU WKH WDEOH IXQFWLRQ $ ILQLWH VWDWH PRGHO WDEOH IXQFWLRQ PLJKW KDYH HQWULHV RI WKH ORJLFDO IRUP LI LQSXWO f WKHQ QH[W6WDWH VHOI $ 0DUNRY VWDWH PRGHO ZRXOG KDYH HQWULHV RI WKH ORJLFDO IRUP LI FXUUHQW3URE f DQG FXUUHQW3URE f WKHQ QH[W6WDWH VHOI 7KH FXUUHQW3URE YDULDEOH LV D VWDWH YDULDEOH JHQHUDWHG E\ WKH FRQWUROOHU PRGHO DW VSHFLILF WLPH LQWHUYDOV ,Q RUGHU WR FRRUGLQDWH WKH DWRPLF PRGHOV D VWDWH FRQWUROOHU PXVW PDLQWDLQ DOO WKH LQIRUPDWLRQ QHFHVVDU\ WR FKDQJH VWDWH DQG PXVW GLUHFW LQSXW DQG RXWSXW WR DQG IURP WKH VWDWH PRGHOV LW FRQWUROV $ VWDWH FRQWUROOHU LV GHILQHG DV + &RPSRQHQW VHOI U_ M $ (GJH &_ 2& ; ,QSXW &S ;f 7 2XWSXW ??I M ??IM 6WDWH FXUUHQW6WDWH! W 7LPH 'RPDLQ 7f ]HUR GHOWD PDS>@ PDJQLWXGH>@! 3 ,QLWLDOL]H IXQFWLRQ 7[*f Qc! 7UDQVLWLRQ IXQFWLRQ 7U>[[@ ; 2XWSXW )XQFWLRQ 2XW>;<@

PAGE 59

7KH FRPSRQHQW VHW FRQWDLQV WKH VWDWH PRGHOV 7KH HGJH VHW FRQWDLQV WKH DUFV LQGLFDWLQJ WKH FRQWURO IORZ IURP RQH VWDWH WR DQRWKHU 7KH HGJH VHW UHSUHVHQWV D GHFODUDWLYH IRUP RI WKH WDEOH IXQFWLRQV IRU DOO WKH VWDWHV FRPSRQHQWVf RI WKH PRGHO 7KH LQSXW FDQ EH DQ\ W\SH RI VLJQDO DV W\SLFDOO\ GHILQHG LQ V\VWHP WKHRU\ 7KH VWDWH FRQWUROOHU KDV RQO\ RQH LQWHUQDO YDULDEOH LQ WKH VWDWH VHW f 7KLV LV WKH QH[W6WDWH PRGHO 7KH LQLWLDOL]DWLRQ IXQFWLRQ JLYHV WKH VWDUWLQJ VWDWH 7KH WUDQVLWLRQ DQG RXWSXW IXQFWLRQV ERWK KDYH YHU\ VLPLODU IRUPV )RU LQVWDQFH WKH WUDQVLWLRQ IXQFWLRQ 7U>[[@ LV GHILQHG DV 7U>W[@ 57U>FXUUHQW7LPH [ b@ ZKHUH 57U>WO[[@ LI PDS>W @ PDS>[@ f 57U>WOGW[ [FXUUHQW6WDWH7U> GWb@QH[W6WDWH!@ HOVH 7KH 7U>@ IXQFWLRQ LV DFWXDOO\ D SDLU RI IXQFWLRQV 7KH 7U>@ IXQFWLRQ VHWV XS WKH FRQGLWLRQV IRU WKH UHFXUVLYH IXQFWLRQ 57U>@ 7KH 57U>@ IXQFWLRQ UHFXUVHV RQ LWVHOI ZKLOH WO [ 2Q HDFK UHFXUVLRQ WO LV LQFUHPHQWHG E\ GW WKH GHOWD WLPH RI WKH PRGHO 7KHUHIRUH QXPHULFDOO\ WKH WUDQVLWLRQ IXQFWLRQ LV D ZKLOH ORRS ZKLFK FRQWLQXHV IURP WKH FXUUHQW WLPH XQWLO WKH HQG WLPH E\ LQFUHPHQWV RI GW 'XULQJ HDFK ORRS WKH FXUUHQW VWDWH PRGHOfV WUDQVLWLRQ IXQFWLRQ LV LQYRNHG ,W UHWXUQV WKH QH[W VWDWH IRU WKDW WLPH SHULRG 7KLV FRQWLQXHV XQWLO WKH VWDWH DW WKH HQG WLPH [f LV UHWXUQHG $OVR QRWH WKDW WKH WLPHV DUH FRQYHUWHG E\ WKH WLPH GRPDLQ IXQFWLRQ PDS>WO @ 7KH RXWSXW IXQFWLRQ 2XW>[[@ KDV WKH H[DFW VDPH IRUP DV WKH WUDQVLWLRQ IXQFWLRQ H[FHSW WKH WKH RXWSXWV DUH UHWULHYHG DQG WKH 52XW>@ IXQFWLRQ LV LQYRFDWHG WKDW LV 2XW>[[@ 52XW>FXUUHQW7LPH [ b@ ZKHUH 52XW>WO[[@ LI PDS>WO@ PDS>[@ f 52XW>WOGW [ FXUUHQW6WDWH2XW>WOGW[@QH[W6WDWH!@ HOVH FXUUHQW6WDWH2XW>WO[@

PAGE 60

)RU FRPSXWDWLRQDO SXUSRVHV WKH WUDQVLWLRQ DQG RXWSXW IXQFWLRQV FDQ EH FRPELQHG 7KLV IXQFWLRQ LV GHVLJQDWHG DV &RPS>@ )RU D VWDWH FRQWUROOHUV WKH IROORZLQJ SVHXGR FRGH GHPRQVWUDWHV WKH FRPSXWDWLRQ RI WKH QH[W VWDWH DQG RXWSXW DW WLPH [ JLYHQ WKH FXUUHQW WLPH LV GHFODUHG LQ WKH YDULDEOH FXUUHQW7LPH LQLWLDOL]H2 WHPS7LPH FXUUHQW7LPH :KLOH WHPS7LPH [f RXWSXW FXUUHQW6WDWH&RPSIWHPS7LPH LQSXW@RXWSXW FXUUHQW6WDWH FXUUHQW6WDWH&RPS>WHPS7LPH LQSXW@ QH[W6WDWH WHPS7LPH WHPS7LPH GHOWD7 7KH FXUUHQW VWDWHfV &RPS>@ IXQFWLRQ LV LQYRFDWHG WR GHWHUPLQH WKH FXUUHQW RXWSXW DQG WKH QH[W VWDWH 7KLV FRQWUROOHU ZRUNV IRU DQ\ W\SH RI VWDWH PRGHO )RU VWDWH PDFKLQHV WKH VWDWH PRGHO HQFDSVXODWHG WKH EHKDYLRU RI VWDWH PDFKLQHV )RU 0DUNRY V\VWHPV WKH 0DUNRY VWDWH PRGHO HQFDSVXODWHG WKH EHKDYLRU RI WKH 0DUNRY V\VWHP +RZHYHU WKH EDVLF IHDWXUHV ZKLFK PDNH DOO VWDWH IRUPDOLVPV VLPLODU LV FDSWXUHG LQ WKH VWDWH FRQWUROOHU PRGHO )URP WKHVH GHILQLWLRQV LQWUDPRGHO FRRUGLQDWLRQ FDQ HDVLO\ EH IRUPXODWHG IRU VWDWH IRUPDOLVPV $Q\ PRGHO W\SH WKDW KDV LQSXW DQG RXWSXW ZKLFK PDWFK WKH VWDWH PRGHO FDQ EH XVHG DV D FRPSRQHQW LQ WKH VWDWH FRQWUROOHU PRGHO 7KH VDPH LV DOVR WUXH IRU D 0DUNRY V\VWHP 7KH RQO\ FRQVWUDLQW LV JLYHQ E\ UXOH VWDWHG LQ WKH ILUVW VHFWLRQ ,W LV UHSHDWHG KHUH DQG PRGLILHG WR VXLW VWDWH PRGHOLQJ $ VWDWH PRGHO LQ D VWDWH FRQWUROOHU PRGHO FDQ KDYH LWV RSHUDWLRQfV RXWSXW GHOD\HG RU DOWHUHG E\ DQRWKHU PRGHO FDOOHG WKH VXEPRGHO 7KH VWDWH PRGHO ZKHQ DFWLYDWHG LQLWLDOL]HV WKH VXEPRGHO DQG ZDLWV IRU D VLJQDO RI FRPSOHWLRQ ZKLFK WKHQ GHDFWLYDWHV WKH VXEPRGHO

PAGE 61

(DFK VWDWH LQ D VWDWH PDFKLQH FDQ KDYH D VXEPRGHO D UHILQHPHQW RI WKH VWDWH PRGHOf 7KH VWDWH PRGHO LV DQ DEVWUDFWLRQ RI WKH VXEPRGHO :KHQ WKH VWDWH EHFRPH DFWLYH WKH VXEPRGHO FRPSXWHV WKH FXUUHQW RXWSXW +RZHYHU WKH GHFLVLRQ DV WR ZKDW LV WKH QH[W VWDWH LV VWLOO FRQWUROOHG E\ WKH VWDWH PRGHO JUHDWHU )LJXUH 6LPSOH 6WDWH 0DFKLQH $V DQ ([DPSOH WKH RSHUDWLRQDO GHILQLWLRQ RI WKH VWDWH PDFKLQH LQ )LJXUH LV JLYHQ 7KHUH LV RQH LQSXW DQG RQH RXWSXW VLJQDO VWDWH0DFKLQH>VWDUW7LPH HQG7LPH LQSXW@ ^ FXUUHQW6WDWH OHVV WHPS7LPH VWDUW7LPH ZKLOH WHPS7LPH HQG7LPHf ^VZLWFK FXUUHQW6WDWHf ^ FDVH OHVV RXWSXW LI LQSXW f FXUUHQW6WDWH JUHDWHU EUHDN FDVH JUHDWHU RXWSXW LI LQSXW f FXUUHQW6WDWH OHVV EUHDN ` WHPS7LPH WHPS7LPH GHOWD7 ` UHWXUQ RXWSXW ,I WKH LQSXW LV OHVV WKDW ]HUR WKH RXWSXW LV ]HUR ,I WKH LQSXW LV JUHDWHU WKDQ RU HTXDO WR ]HUR WKH RXWSXW LV ,W LV UHHPSKDVL]HG WKDW WKH RSHUDWLRQDO GHILQLWLRQ LV FRPSLOHG VWULFWO\ IURP WKH PRGHO

PAGE 62

GHILQLWLRQ 7KXV LW LV D FRPSOHWHO\ DXWRPDWHG SURFHGXUH ,I WKH OHVV VWDWH KDG D VXEPRGHO WKHQ WKH RQO\ GLIIHUHQFH ZRXOG EH WKH DVVLJQPHQW RI WKH RXWSXW ,QVWHDG RI RXWSXW DQ LQYRFDWLRQ RI WKH VXEPRGHO ZRXOG EH FDOOHG DV RXWSXW VXE0RGHO>WHPS7LPH WHPS7LPHGHOWD7 LQSXW@ 7KH VXEPRGHO FRXOG EH IRU LQVWDQFH DQRWKHU VWDWH FRQWUROOHU )LJXUH 0DUNRY 6\VWHP RXWSXW VLJQDO ,Q )LJXUH D VLPSOH 0DUNRY V\VWHP WKDW RXWSXWV ]HUR LQ VWDWH=HUR DQG RQH LQ VWDWH2QH LV VKRZQ 7KH RSHUDWLRQDO GHILQLWLRQ LV DV IROORZV PDUNRY6\VWHP>VWDUW7LPH HQG7LPH LQSXW@ ^ FXUUHQW3URE UDQGRP>@ WHPS7LPH VWDUW7LPH FXUUHQW3URE UDQGRP>@ ZKLOH WHPS7LPH HQG7LPHf ^VZLWFK FXUUHQW6WDWHf ^ FDVH =HUR RXWSXW LI EHWZHHQFXUUHQW3URE ff f FXUUHQW6WDWH 2QH EUHDN FDVH 2QH RXWSXW LI EHWZHHQFXUUHQW3URE f FXUUHQW6WDWH =HUR EUHDN ` WHPS7LPH WHPS7LPH GHOWD7 FXUUHQW3URE UDQGRP >@ ` UHWXUQ RXWSXW`

PAGE 63

3DUDOOHO 0RGHOLQJ $ SDUDOOHO FRQWUROOHU PRGHO PDQDJHV FRPSRQHQW PRGHOV ZKLFK RSHUDWH LQ SDUDOOHO 7KH HGJHV RI D SDUDOOHO FRQWUROOHU PRGHO UHSUHVHQW GDWD +RZ 7KLV LV VLPLODU WR D GDWD IORZ GLDJUDP KRZHYHU GDWD IORZ LV W\SLFDOO\ VHTXHQWLDO $ SDUDOOHO FRQWUROOHU FDQ PRGHO VHTXHQWLDO GDWD IORZ EXW WKHUH ZRXOG EH WUDQVLHQW VWDWHV EHWZHHQ FKDQJHV LQ RXWSXW $ SDUDOOHO FRQWUROOHU LV HVVHQWLDOO\ WKH VDPH PRGHOLQJ SDUDGLJP DV JHQHUDO V\VWHP WKHRU\ +\EULG PRGHO WKHRU\ HQVXUHV WKDW WLOOV SDUDGLJP FDQ EH LQWHJUDWHG ZLWK KHWHURJHQHRXV PRGHO W\SHV LQ D KLHUDUFKLFDO PDQQHU $GGLWLRQDOO\ WKH SDUDOOHO FRQWUROOHU FRQFHSW LV D JHQHUDOL]DWLRQ RI SDUDOOHO GDWD IORZ PRGHOV MXVW DV D VWDWH FRQWUROOHU ZDV D JHQHUDOL]DWLRQ RI VWDWH PRGHOV 7KH FRPSRQHQW PRGHOV ZKLFK D SDUDOOHO FRQWUROOHU PRGHO PDQDJHV DUH IXQFWLRQDO PRGHOV 7KHUH DUH IRU HDFK PRGHOLQJ IRUPDOLVP RQO\ D ILQLWH QXPEHU RI IXQFWLRQDO PRGHOV ,Q GDWD EORFN GLDJUDPV FRQWURO WKHRU\f WKHUH DUH W\SHV LQWHJUDO GHULYDWLYH VXPPDWLRQ JHQHULF DQG PXOWLSO\ 7KH GHILQLWLRQ RI WKH IXQFWLRQDO PRGHOV LV WULYLDO +RZHYHU DV DQ H[DPSOH WKH GHILQLWLRQ RI DQ LQWHJUDO IXQFWLRQ LV JLYHQ KHUH $Q LQWHJUDO PRGHO LV GHILQHG DV + &RPSRQHQW $ (GJH ; ,QSXW 7 2XWSXW 6WDWH [ 7LPH 'RPDLQ ,QLWLDOL]H IXQFWLRQ 7UDQVLWLRQ IXQFWLRQ ; 2XWSXW )XQFWLRQ VHOI! LQSXW WRIIRP5} RXWSXW WR IURP 5!! VXP 5!! 7Af ]HUR GHOWD PDS>@ PDJQLWXGH>@! 3>[[@ N! N D FRQVWDQW >W[@ [LQSXW>[@ r GHOWD7f >[GHOWD7[@! !>W[@ >W@VXP %HFDXVH DQ LQWHJUDO PRGHO LV DWRPLF WKH FRPSRQHQW VHW RQO\ FRQWDLQV VHOI DQG WKH HGJH VHW LV HPSW\ 7KHUH LV RQH LQSXW DQG RQH RXWSXW 7KH VWDWH FRQWDLQV WKH VXP RI WKH LQWHJUDWLRQ XS WR WKH

PAGE 64

FXUUHQW SRLQW LQ WLPH 7KH LQLWLDOL]DWLRQ IXQFWLRQ LQLWLDOL]HV WKH LQWHJUDWLRQ VXP 7KH WUDQVLWLRQ DQG RXWSXW IXQFWLRQ DUH HVVHQWLDOO\ LGHQWLFDO 7KH RXWSXW RI WKH FXUUHQW LQWHJUDWLRQ LV WKH VXP XVHG IRU WKH QH[W LQWHJUDWLRQ VWHS $OWKRXJK LW DSSHDUV WKDW WKLV LV RQO\ D QXPHULFDO DSSUR[LPDWLRQ WR LQWHJUDWLRQ WKH WUDQVLWLRQ DQG RXWSXW IXQFWLRQV DUH XVHG RQO\ IRU VLPXODWLRQ DQG UHDVRQLQJ PHWKRGV 6\PEROLF URXWLQHV GR QRW QHHG WR XVH WKH WUDQVLWLRQ IXQFWLRQ $ V\PEROLF URXWLQH RQO\ QHHGV WR LGHQWLI\ WKH W\SH RI DWRPLF PRGHO ,Q &KDSWHU DQ H[DPSOH LV JLYHQ ZKLFK GHPRQVWUDWHV WKLV SRLQW $ VSHFLDO FDVH RI WKLV LV WKH JHQHULF IXQFWLRQDO DWRPLF PRGHO ZKLFK FDQ EH XVHG WR PRGHO IXQFWLRQV VXFK DV VLQf FRVf H[Sf HWF 7KH SDUDOOHO FRQWUROOHU PDQDJHV DOO WKH GDWD LQSXW DQG RXWSXW EHWZHHQ WKH IXQFWLRQDO DWRPLF PRGHOV LQ LWV FRPSRQHQW VHW 7KH HGJH VHW GLFWDWHV WKH LQSXWRXWSXW UHODWLRQVKLSV $ SDUDOOHO FRQWUROOHU FDQ EH GHILQHG DV + &RPSRQHQW $ (GJH ; ,QSXW 7 2XWSXW 6WDWH [ 7LPH 'RPDLQ 3 ,QLWLDOL]H IXQFWLRQ 7UDQVLWLRQ IXQFWLRQ ; 2XWSXW )XQFWLRQ VHOI S M W M 2& ;S ; fff! +M ?M mODVW QH[W! ODVWQH[W! IRU HDFK HGJH 7bf! ]HUR GHOWD PDS>@ PDJQLWXGH>@! ,QLW>[[@ mODVW QH[W! FODVWQH[W! IRU HDFK HGJH 7U>[[@ 2XW>[[@ 7KH FRPSRQHQW VHW FRQWDLQV WKH IXQFWLRQDO PRGHOV WKH QRGHV LQ WKH JUDSK RI WKH EORFN GLDJUDPf 7KH HGJH VHW FRQWDLQV WKH FRQQHFWLYLW\ 7KH VWDWH VHW KDV DQ HQWU\ IRU HDFK HGJH 7KH IRUP RI WKH HQWU\ LV FODVW QH[W! &RQFHSWXDOO\ DW HDFK LQVWDQFH LQ WLPH WKH RXWSXW IURP HDFK IXQFWLRQDO FRPSRQHQW LV VWRUHG LQ WKH SDUDOOHO FRQWUROOHU VWDWH 7LUH LQSXW IRU HDFK IXQFWLRQDO FRPSRQHQW LV DOVR UHWULHYHG IURP WKH SDUDOOHO FRQWUROOHU VWDWH VHW 2SWLPDOO\ IRU LQVWDQFH LQ DQ QXPHULFDO

PAGE 65

LPSOHPHQWDWLRQ RI WKH SDUDOOHO FRQWUROOHU WKHVH WHPSRUDU\ YDULDEOHV DUH HOLPLQDWHG 7KH LQLWLDOL]DWLRQ IXQFWLRQ SURGXFHV WKH LQLWLDO LQSXWV DQG RXWSXWV E\ LQLWLDOL]LQJ WKH VWDWH VHW 7KH WUDQVLWLRQ IXQFWLRQ 7U>@ WDNHV WKH FXUUHQW VWDWH DQG LQYRNHV WKH IXQFWLRQDO FRPSRQHQWV WUDQVLWLRQ IXQFWLRQV WR SURGXFH WKH QH[W VWDWH 7KH GHILQLWLRQ RI 75>@ LV 7U>[[@ 57U>FXUUHQW7LPH [ b@ ZKHUH 57U>WO[[@ LIWO [f57U>+WO[[@ HOVH 57U>+WO[[@ 57U>+WOGHOWD7f[[ f@ ZKHUH f Vc 6! DQG 6M U_ cQH[W +Uf M7U>WOUf cODVW +U_ c -! 7KLV WUDQVLWLRQ IXQFWLRQ LV VLPLODU WR WKH WUDQVLWLRQ IXQFWLRQ IRU VWDWH FRQWUROOHUV 7KH ILUVW IXQFWLRQ LV UHFXUVLYH DQG KDQGOHV WKH LQFUHPHQWV LQ WLPH MXVW DV LQ WKH VWDWH FRQWUROOHU PRGHO 7KH VHFRQG IXQFWLRQ FRQVWUXFWV DW HDFK WLPH LQFUHPHQW WKH FXUUHQW LQSXW DQG RXWSXW RI WKH IXQFWLRQDO DWRPLF PRGHOV 7KH QHZ VWDWH f LV FRQVWUXFWHG LQ WKLV PDQQHU (DFK HQWU\ RI WKH VWDWH f LV DQ LQYRFDWLRQ RI WKH IXQFWLRQDO FRPSRQHQWV 7KH RXWSXW IXQFWLRQ LV FRQVWUXFWHG WKH VDPH ZD\ KRZHYHU LQVWHDG RI SURGXFLQJ D QHZ VWDWH WKH FXUUHQW RXWSXW LV SURGXFHG ,QWUDPRGHO FRRUGLQDWLRQ LV DFFRPSOLVKHG H[DFWO\ WKH VDPH ZD\ DV LQ WKH VWDWH FRQWUROOHU 7KLV LV WKH REMHFWLYH RI K\EULG PRGHO WKHRU\ $Q\ IXQFWLRQDO FRPSRQHQW RI WKH SDUDOOHO FRQWUROOHU FDQ EH VXEPRGHOHG +RZHYHU RQO\ WKH JHQHULF DWRPLF PRGHOV QHHG WR EH UHILQHG VLQFH WKH RWKHUV SHUIRUP VSHFLILF IXQFWLRQV $V ZLWK WKH VWDWH FRQWUROOHU DQ\ PRGHO ZKLFK KDV WKH VDPH LQSXW DQG RXWSXW RI WKH JHQHULF IXQFWLRQDO PRGHO FDQ EH XVHG LQ SODFH RI WKH JHQHULF PRGHO )RU LQVWDQFH D VWDWH PDFKLQH FDQ FRPSXWH WKH LQSXWRXWSXW UHODWLRQVKLS RI D JHQHULF IXQFWLRQ LQ D EORFN GLDJUDP 7KH SDUDOOHO FRQWUROOHU RI WKH EORFN GLDJUDP ZRXOG VWLOO RSHUDWH WKH VDPH +HQFH WKH VWDWH PDFKLQH KDV EHHQ FRRUGLQDWHG ZLWK D FRPSRQHQW LQ WKH EORFN GLDJUDP

PAGE 66

7KHUH LV RQH GLIIHUHQFH EHWZHHQ WKH FRRUGLQDWLRQ RI WKH VWDWH FRQWUROOHU DQG WKH SDUDOOHO FRQWUROOHU :LWK WKH SDUDOOHO FRQWUROOHU UXOH DV VWDWHG LQ VHFWLRQ RQH LV XVHG 7KLV LV D IXQFWLRQDO PRGHO LQ D SDUDOOHO PRGHO FDQ KDYH LWV RSHUDWLRQ UHSODFHG E\ DQRWKHU PRGHO KRZHYHU WKH ,2 DQG FRQWURO RI WKH VXEPRGHO PXVW EH WKH VDPH WKH PRGHO LV FRQWLQXRXV RYHU WKH DQDO\VLV LQSXW &26 D RXWSXW )LJXUH %ORFN 'LDJUDP $V ZLWK WKH VWDWH FRQWUROOHU DQ RSHUDWLRQDO GHILQLWLRQ RI WKH SDUDOOHO FRQWUROOHU LV JLYHQ IRU DQ H[DPSOH )LJXUH LV D VLPSOH EORFN GLDJUDP IRU WKH HTXDWLRQ RXWSXW FRVLQSXWf GW 7KH RSHUDWLRQDO GHILQLWLRQ IRU WKLV LV EORFN'LDJUDP>VWDUW7LPH HQG7LPH LQSXW@ ^ LQLWLDOL]H>@ WHPS7LPH VWDUW7LPH ZKLOH WHPS7LPH HQG7LPHf ^ DOQH[W FRVLQSXWf RXWSXW LQWHJUDO >WHPS7LPH WHPS7LPHGHWWD7 D ODVW@ DO ODVW DOQH[W WHPS7LPH WHPS7LPH GHOWD7 ` UHWXUQ RXWSXW ` )URP WKH RSHUDWLRQDO GHILQLWLRQ WKH LQWUDPRGHO FRRUGLQDWLRQ FDQ EH FOHDUO\ GHPRQVWUDWHG ,I WKH FRVLQH IXQFWLRQDO EORFN ZHUH VXEPRGHOHG ZLWK DQRWKHU PRGHO WKH DOQH[W VWDWH YDULDEOH DW

PAGE 67

DQ\ LQVWDQFH LQ WLPH ZRXOG EH FDOFXODWHG E\ WKH VXEPRGHO ,Q DGGLWLRQ WKH IRUP RI WKH RSHUDWLRQDO GHILQLWLRQ IRU WKH VWDWH FRQWUROOHU DQG WKH SDUDOOHO FRQWUROOHU DUH YHU\ VLPLODU 7KLV LV D UHVXOW RI K\EULG PRGHO WKHRU\ 6HOHFWLYH 0RGHOLQJ 7KH VHOHFWLYH FRQWUROOHU LV WKH PRVW FRPSOLFDWHG W\SH RI FRQWUROOHU 7KH VHOHFWLYH FRQWUROOHU LV DOVR D SDUDOOHO FRQWUROOHU EXW WKHUH DUH WZR GLVWLQFW W\SHV RI DWRPLF PRGHOV DQG WKHUH LV D QRQGHWHUPLQLVWLF FKRLFH RI DOORFDWLQJ GDWD 7KH WZR DWRPLF PRGHOV DUH IXQFWLRQDO DQG VWRUDJH )RU H[DPSOH WKH SODFHV LQ D 3HWUL QHW DUH VWRUDJH PRGHOV DQG WKH WUDQVLWLRQV DUH IXQFWLRQDO ,Q D TXHXLQJ QHWZRUN WKH TXHXHV DUH VWRUDJH DQG WKH VHUYHUV DUH IXQFWLRQDO ,Q K\EULG PRGHO WKHRU\ WKH FRQFHSW DQG EHKDYLRU RI D 3HWUL QHW RU D 4XHXLQJ QHWZRUN UHPDLQV LGHQWLFDO WR WUDGLWLRQDO GHILQLWLRQV QRQHWKHOHVV LQ RUGHU WR XVH WKHVH PRGHOLQJ IRUPDOLVPV LQ D WKHRU\ ZKLFK LQFRUSRUDWHV VLJQDOV WKH WKHRUHWLFDO GHILQLWLRQ LV PRUH FRPSOH[ WKDQ LW ZRXOG QHHG WR EH LQ D KRPRJHQRXV PRGHOLQJ WKHRU\ ,Q V\PEROLF DQDO\VLV WKLV LV QRW D FRQFHUQ KRZHYHU LQ D VLPXODWLRQ ZKHQ WKH VLJQDOV DUH QRW SDUW RI WKH PRGHO WKH FRPSXWDWLRQ VKRXOG EH RSWLPL]HG ,Q K\EULG PRGHO WKHRU\ D 3HWUL QHW FDQ EH PRGHOHG YHU\ PXFK OLNH D TXHXLQJ QHWZRUN 7KHUHIRUH RQO\ D IXOO GHILQLWLRQ RI TXHXLQJ QHWZRUNV LV GHYHORSHG %\ GHVFULELQJ WKH GLIIHUHQFHV EHWZHHQ WKH RSHUDWLRQ RI WKH FRPSRQHQW PRGHOV D GHVFULSWLRQ RI 3HWUL QHWV LV GHULYHG IURP WKH TXHXLQJ QHWZRUN GHILQLWLRQ 7KH WZR DWRPLF PRGHOV TXHXH DQG VHUYHU DUH GHYHORSHG ILUVW WKHQ WKH VHOHFWLYH FRQWUROOHU LV GHILQHG $Q DWRPLF PRGHO ZKLFK UHSUHVHQW D TXHXH LV D VWRUDJH PRGHO 7KH LQSXW DQG RXWSXW RI D TXHXH UHSUHVHQW WKH SODFLQJ RI DQ HQWLW\ LQ WKH TXHXH DQG WKH UHWULHYDO RI DQ HQWLW\ IURP D TXHXH 7KH DUFV LQ D TXHXLQJ QHWZRUN DUH GDWD IORZ $OO VWRUDJH PRGHOV DUH SDVVLYH LQ K\EULG PRGHO WKHRU\ $ VHOHFWLYH FRQWUROOHU GRHV QRW RSHUDWH RQ WKHP $ VWRUDJH FRPSRQHQW TXHXHf LV RQO\ RSHUDWHG RQ E\ D IXQFWLRQDO PRGHO D VHUYHUf 7LUH TXHXH DWRPLF PRGHO IRU D ),)2 TXHXH LV GHILQHG DV

PAGE 68

+ &RPSRQHQW $ (GJH ; ,QSXW r 2XWSXW 6WDWH [ 7LPH 'RPDLQ 3 ,QLWLDOL]H IXQFWLRQ 7UDQVLWLRQ IXQFWLRQ ; 2XWSXW )XQFWLRQ VHOI! W\SH WW 1} HQWLW\ WW=!! FRXQW! 7Mf ]HUR GHOWD PDS>@ PDJQLWXGH>@! 3>[[@ N! N LV DQ LQWHJHU 7U>[[@ 2XW>7[@ 7KH LQLWLDOL]DWLRQ IXQFWLRQ LQLWLDOL]HV WKH QXPEHU RI HQWLWLHV LQ WKH TXHXH 7KLV LV UHSUHVHQWHG E\ DQ LQWHJHU FRXQW 7KH WUDQVLWLRQ IXQFWLRQ 7U>@ FKDQJHV WKH TXHXH GHSHQGLQJ RQ WKH LQSXW 7KH LQSXW WR WKH TXHXH LV D ELQDU\ VLJQDO EDVHG RQ WULJJHUV :KHQ WKH W\SH VLJQDO LV SRVLWLYH DQ HQWLW\ LV DGGHG WR WKH OLVW :KHQ WKH VLJQDO LV QHJDWLYH WKH RXWSXW VLJQDO JHQHUDWHG JRHV SRVLWLYH LI FRXQW f 7KLV VLJQLILHV WKDW DQ HQWLW\ LV EHLQJ WUDQVIHUUHG WR D VHUYHU ,Q WKLV VHQVH WKH TXHXH PRGHO RSHUDWHV YHU\ PXFK OLNH D GLJLWDO FRXQWHU RU OLNH D GLVFUHWH LQWHJUDWRU $ VHUYHU PRGHO LV HTXDWHG ZLWK D GLJLWDO GHOD\ XQLW :KHQ DOO LQSXW HQWLWLHV DUH REWDLQHG WKH VHUYHU GHOD\V D UDQGRP DPRXQW RI WLPH EHIRUH WUDQVIHUULQJ HQWLWLHV WR TXHXHV $ VHUYHU DWRPLF PRGHO FDQ EH GHILQHG DV + &RPSRQHQW VHOI! $ (GJH ;,QSXW ;O; 7 2XWSXW \O ?_ 6WDWH WLPH VWDWH mTXHM QM!! TXHQ!} [ 7LPH 'RPDLQ 7ef ]HUR GHOWD PDSf PDJQLWXGHf! 3 ,QLWLDOL]H IXQFWLRQ 3>[[@ LGOH mTXHS QM!! TXHQ! 7UDQVLWLRQ IXQFWLRQ 7U>[[@ ; 2XWSXW )XQFWLRQ 2XW>[[@

PAGE 69

7KH VWDWH VHW RI WKH VHUYHU PRGHO KDV WZR PDLQ HQWULHV WLPH DQG VWDWH 7KH VWDWH FDQ HLWKHU EH LGOH RU EXV\ :KHQ WKH VWDWH LV EXV\ WKH WLPH VLJQLILHV ZKHQ WKH VHUYHU LV WR EHFRPH LGOH DJDLQ 7KH TXHM Qc! HQWU\ VLJQLILHV WKDW WKH VHUYHU UHTXLUHV Qc HQWLWLHV IURP TXHXH TXHM LQ RUGHU WR FKDQJH IURP WKH LGOH WR WKH EXV\ VWDWH ,I WKH TXHXH LV DQ RXWSXW TXHXH WKHQ Qc VWLSXODWHV WKH QXPEHU RI HQWLWLHV WR SXW LQ WKH RXWSXW TXHXH 7KH WUDQVLWLRQ IXQFWLRQ 7U>@ IRU D VHUYHU LV GHILQHG DV 7U>[b@ 57U>FXUUHQW7LPH [ ;@ ZKHUH 57U>WO[[@ LI PDS>W @ PDS>[@ f 57U>WGW [ VWDWH>W b@ @ HOVH ZKHUH VWDWH >[[@ LI kVWDWH LGOH f WKHQ LI LQSXW$YDLO>@ff FDOF'LVW7LPH>@ [ EXV\ mTXHM QM!! TXHQ!} HOVH LI kWLPH [f SXW4XHXHV>@ ff LGOH mTXHM QM!! TXHQ!} ,I WKH VWDWH RI D VHUYHU LV LGOH DQG WKH LQSXWV DUH DYDLODEOH WKHQ WKH VHUYHU EHFRPHV EXV\ DQG QHZ D VHUYLFH WLPH LV FRPSXWHG FDOF'LVW7LPH>@f 7KH LQSXW$YDLO>@ IXQFWLRQ WHVWV DOO WKH LQSXW TXHXHV IRU WKH VHUYHU ,I WKH VHUYHU LV EXV\ DQG WKH FXUUHQW VHUYLFH WLPH LV JUHDWHU WKDQ FXUUHQW WLPH WKHQ WKH VHUYHU LV PDGH LGOH DQG WKH IXQFWLRQ SXW4XHXHV>@ SODFHV HQWLWLHV LQ WKH RXWSXW TXHXHV $OWKRXJK WKH RXWSXW IXQFWLRQ 2XW >@ RI D VHUYHU FDQ EH DQ\ FRPSXWDEOH IXQFWLRQ LQ K\EULG PRGHO WKHRU\ LW LV DVVXPHG WR EH D FRQVWDQW 7KH VHOHFWLYH FRQWUROOHU PRGHO HVVHQWLDOO\ KDV RQH RSHUDWLRQ ,W PDQDJHV ZKHQ D VHUYHU LV DOORZHG WR REWDLQ HQWLWLHV IURP VWRUDJH 7KLV GHFLVLRQ PXVW EH PDGH QRQGHWHUPLQLVWLFDOO\ $ VHOHFWLYH FRQWUROOHU FDQ EH GHILQHG DV

PAGE 70

+ &RPSRQHQW VHOI U_ M $ (GJH F[L r ff! ; ,QSXW ;S ; fff! r 2XWSXW 9S 9_ 6WDWH OLVW! [ 7LPH 'RPDLQ 7f ]HUR GHOWD PDS>@ PDJQLWXGH>@! 3 ,QLWLDOL]H IXQFWLRQ 3W[[@ L VW! 7UDQVLWLRQ IXQFWLRQ 7U>[b@ ; 2XWSXW )XQFWLRQ 2XW>[[@ 7KH VWDWH RI WKH VHOHFWLYH FRQWUROOHU LV DQ XQRUGHUHG OLVW ZKLFK FRQWDLQV WKH IXQFWLRQDO PRGHOV VHUYHUVf RI WKH FRPSRQHQW VHW & 7KH LQLWLDOL]DWLRQ IXQFWLRQ SURGXFHV WKH LQLWLDO OLVW $V ZLWK VWDWH FRQWUROOHUV DQG SDUDOOHO FRQWUROOHUV WKH RXWSXW IXQFWLRQ DQG WKH WUDQVLWLRQ IXQFWLRQ RI D VHOHFWLYH FRQWUROOHU DUH YHU\ VLPLODU 7KH WUDQVLWLRQ IXQFWLRQ 7U>@ LV GHILQHG DV 7U>[[@ 57UMFXUUHQW7LPH [ b@ ZKHUH 57U>WO[[@ LI PDS>W @ PDS>[@ f 57U>WO[[ VWDWH>W [[@!@ HOVH ZKHUH VWDWH>WO[[@ )RU DOO VcH LVW DFWLYHVc7U>WO WOGHOWD7 ; Vcff 7KH WUDQVLWLRQ IXQFWLRQ DJDLQ FRQVLVWV RI RQH UHFXUVLYH IXQFWLRQ DQG RQH FRPSXWDWLRQDO IXQFWLRQ 7KH UHFXUVLYH IXQFWLRQ LQFUHPHQWV WKH WLPH 7KH FRPSXWDWLRQDO IXQFWLRQ VWDWH>@ QRQGHWHUPLQLVWLFDOO\ LQYRNHV DOO WKH IXQFWLRQDO PRGHOV VHUYHUVf RQH DW D WLPH 7KH JHQHUDO DSSURDFK WR WKLV GHILQLWLRQ LV H[DFWO\ WKH VDPH DV KRZ D TXHXLQJ QHWZRUN RU 3HWUL QHW ZRXOG QRQGHWHUPLQLVWLFDOO\ FKRRVH VHUYHUV RU WUDQVLWLRQV 7KH HYHQW LV VWRUHG ORFDOO\ E\ HDFK VHUYHU RU

PAGE 71

WUDQVLWLRQ WKH WLPH YDULDEOH LQ WKH VHUYHUfV VWDWH f $W HDFK WLPH TXDQWXP LQ D VLPXODWLRQ WKH VHUYHUV DUH FKHFNHG WR ILQG RXW LI WKHLU QH[W HYHQW WLPH KDV RFFXUUHG 7KH RXWSXW IXQFWLRQ RI D VHOHFWLYH FRQWUROOHU PRGHO LV D VHTXHQFH RI LQYRFDWLRQV RI WKH IXQFWLRQDO PRGHOV RXWSXW IXQFWLRQV 7KHUHIRUH RQO\ RQH IXQFWLRQDO PRGHO VHUYHUf FDQ VXSSO\ DQ RXWSXW 7KLV GRHV QRW SUHFOXGH RQH VHUYHU IURP VXSSOLQJ PRUH WKDQ RQH RXWSXW ,W VKRXOG EH QRWHG WKDW WKH WLPH GRPDLQV RI D VHOHFWLYH FRQWUROOHU DQG LWV VHUYHUV PXVW EH WKH VDPH 2WKHUZLVH WKHUH ZRXOG EH HUURUV LQ DOORFDWLRQ RI HQWLWLHV DPRQJ VHUYHUV EXIIHU )LJXUH 4XHXLQJ 1HWZRUN $Q LOOXVWUDWLRQ RI WKH VHOHFWLYH FRQWUROOHU LV JLYHQ E\ LGHQWLI\LQJ WKH RSHUDWLRQDO GHILQLWLRQ RI WKH TXHXLQJ QHWZRUN LQ )LJXUH 7KHUH LV RQH LQSXW DQG RQH RXWSXW VLJQDO 7KLV GHILQLWLRQ LV 4XHXH1HWZRUN>VWDUW7LPH HQG7LPH LQSXW@ ^ LQLWLDOL]H>@ WHPS7LPH VWDUW7LPH ZKLOH WHPS7LPH HQG7LPHf SDUEHJLQ ^LI DFWLYHVHUYHUOff VHUYHUO7U>WHPS7LPH WHPS7LPH GHOWD7 LQSXW@ LI DFWLYHVHUYHUff VHUYHU7U>WHPS7LPH WHPS7LPH GHOWD7 LQSXW@ RXWSXW VHUYHUO2XW>WHPS7LPH WHPS7LPH GHOWD7 LQSXW@ VWLOO$FWLYHVHUYHUOf VWLOO $FWLYHVHUYHUf WHPS7LPH WHPS7LPH GHOWD7 ` UHWXUQ RXWSXW `f

PAGE 72

7OLH RSHUDWLRQDO GHILQLWLRQ DOVR PDNHV WKH LQWUDPRGHO FRRUGLQDWLRQ FOHDU :KHQ WKH RXWSXW IXQFWLRQ RI D VHUYHU LV LQYRNHG LI WKH VHUYHU ZDV VXEPRGHOHG WKHQ WKH VXEPRGHO ZRXOG EH LQYRNHG LQVWHDG RI WKH VHUYHU PRGHO DV GHILQHG DERYH )RU LQVWDQFH LI WKH VHUYHU KDG D EORFN GLDJUDP VXEPRGHO WKHQ WKH VHUYHUfV RXWSXW ZRXOG EH FRPSXWHG IURP WKH EORFN GLDJUDP 7KLV RQO\ UHTXLUHV WKDW WKH EORFN GLDJUDP VXEPRGHO KDYH WKH VDPH LQSXW DQG RXWSXW VSHFLILFDWLRQV DV D VHUYHU PRGHO $ 3HWUL QHW LV D VSHFLDOL]HG TXHXLQJ QHWZRUN ZKHUH WKH TXHXHV DUH SODFHV DQG WKH VHUYHUV DUH WUDQVLWLRQV 7KH LQSXW$YDLO>@ IXQFWLRQ LV EDVHG RQ DQ DQG FRQGLWLRQDO LQVWHDG RI DQ RU FRQGLWLRQDO 7KH WUDQVLWLRQV DUH W\SLFDOO\ PRGHOHG ZLWK D FRQVWDQW ILULQJ WLPH FDOOHG WKH VHUYLFH WLPH LQ TXHXLQJ QHWZRUNVf 7KH SODFHV RI D 3HWUL QHW DFW OLNH XQRUGHUHG TXHXHV ,I WKH WLPH GRPDLQ RI D 3HWUL QHW LV 7' DQG WKH WUDQVLWLRQV KDYH D ILULQJ WLPH RI XQLW WKHQ WKH EHKDYLRU RI D 3HWUL QHW LQ K\EULG PRGHO WKHRU\ KDV WKH VDPH EHKDYLRU DV WKH 3HWUL QHWV DV GHILQHG LQ &KDSWHU KRZHYHU WKH HODSVHG WLPH LQ K\EULG PRGHO WKHRU\ IRU VHOHFWLYH FRQWUROOHUV GRHV QRW VLJQLI\ WKH QXPEHU RI WUDQVLWLRQV ILUHG

PAGE 73

&+$37(5 +<%5,' $1$/<6,6 .$6 0RGHOLQJ 7KH IROORZLQJ GLVFXVVLRQ LV EDVHG RQ LKH SURFHVV DQ LQYHVWLJDWRU PLJKW JR WKURXJK LQ DQ DWWHPSW WR PRGHO DQ DXWRPDWHG IOH[LEOH PDQXIDFWXULQJ V\VWHP $)06f 7KLV VFHQDULR ZLOO GHPRQVWUDWH KRZ DQ LQYHVWLJDWRU FDQ VHOHFW IRUPDOLVPV WR VXLW WKH SUDJPDWLF LVVXHV DW KDQG 7KH WKUHH WDVNV RXWOLQHG LQ )LJXUH RI &KDSWHU DUH GHPRQVWUDWHG ZLWK WKLV H[DPSOH $Q $)06 ZDV FKRVHQ DV WKH GRPDLQ EHFDXVH RI WKH FRPSOH[LW\ LQYROYHG LQ PRGHOLQJ WKH PDQ\ DVSHFWV RI VXFK D V\VWHP 3ULPDULO\ DQ $)06 LV D V\VWHP FRQVLVWLQJ RI VHYHUDO ZRUN FHOOV DQG D WUDQVLW V\VWHP $ FRPSXWHU V\VWHP DFWV DV WKH FRQWUROOHU IRU WKH HQWLUH V\VWHP LH VFKHGXOLQJ RSHUDWLRQV UHVROYLQJ FRQIOLFWVf (DFK ZRUN FHOO LV D ORJLFDO XQLW FRQVLVWLQJ RI D VHW RI PDFKLQHV RU URERWV :LWKLQ D ZRUN FHOO PDQ\ GLIIHUHQW W\SHV RI RSHUDWLRQV PD\ RFFXU IRU H[DPSOH PLOOLQJ GULOOLQJ SUHVVLQJ RU DVVHPEO\ 0DFKLQHV DQG URERWV RSHUDWH RQ SDUWV WKHVH PD\ VLPSO\ EH UDZ PDWHULDOVf 3DUWV ZKLFK ZLOO EH DVVHPEOHG WRJHWKHU RU UHTXLUH VLPLODU RSHUDWLRQV DUH VDLG WR EH LQ WKH VDPH IDPLO\ 7KH JHQHUDO VHTXHQFH RI HYHQWV LQ WKH $)06 HQWDLOV WUDQVSRUWLQJ SDUWV WR D ZRUN FHOO SHUIRUPLQJ VSHFLILF RSHUDWLRQV DQG WUDQVSRUWLQJ SDUWV EDFN WR D VWRUDJH DUHD 7KH FRPSOH[LW\ LV DVVRFLDWHG ZLWK WKH FRQWURO RI WKLV V\VWHP 7KLV LQYROYHV VFKHGXOLQJ RSHUDWLRQV DOORFDWLQJ PDFKLQH DQG WUDQVSRUW UHVRXUFHV EXIIHULQJ LQWHUPHGLDWH SDUWV DQG ILQDO DVVHPEOLHV DQG GHFLVLRQV DV WR ZKHQ SDUWV DUH WR EH PDQXIDFWXUHG WR PHHW FXUUHQW RU SURMHFWHG GHPDQGV $V D VSHFLILF H[DPSOH )LJXUH VKRZV D W\SLFDO OD\RXW RI DQ $)06 7KHUH DUH WZR PDLQ ZRUN FHOOV LQ WKLV H[DPSOH WKH PDFKLQLQJ ZRUN FHOO DQG WKH DVVHPEO\ ZRUN FHOO 7KH DUURZV ;

PAGE 74

LQGLFDWH WKH SDWK RI WKH WUDQVSRUW V\VWHP 7KH PDFKLQLQJ ZRUN FHOO KDV VHYHUDO PDFKLQHV ZKLFK SUHSDUH SDUWV IRU DVVHPEO\ RU IXUWKHU PDFKLQLQJ DOWKRXJK LW LV SRVVLEOH WR PDFKLQH SDUWV DV SDUW RI DQ DVVHPEO\f 7LUH DVVHPEO\ ZRUN FHOO FRQVLVWV RI VHYHUDO URERWV ZKLFK SXW WKH SDUWV WRJHWKHU ,Q WKLV H[DPSOH WKH PDLQ WUDQVSRUW V\VWHP LV DQ DXWRPDWLF JXLGHG YHKLFOH V\VWHP $*9f 7KH $*9V UHWULHYH DQG VWRUH SDOOHWV 7KH SDOOHWV DUH UHPRYHG IURP VWRUDJH DW D ORDGLQJ GRFN DQG SXW RQWR DQ $*9 7KH $*9 WUDQVSRUWV WLUH SDOOHWV WR XQORDGLQJ GRFNV DW WKH ZRUN FHOO DQG WUDQVSRUWV ILQLVKHG SDUWV EDFN WR VWRUDJH RU RWKHU GRFNV /RDG 8QORDG GRFNV )LJXUH ([DPSOH $)06 )ORRU 3ODQ &RQYH\RU /RDGLQJ )LJXUH 0DFKLQLQJ :RUN &HOO )ORRU 3ODQ )LJXUH VKRZV WKH PDFKLQLQJ ZRUN FHOO LQ PRUH GHWDLO 7KHUH DUH PDFKLQHV LQ WKLV ZRUN FHOO 55f 7KH ZRUN FHOO KDV LWV RZQ WUDQVSRUW V\VWHP D FRQYH\RUf 7KH FRQYH\RU WUDQVSRUWV SDOOHWV DURXQG WKH ZRUN FHOO VR WKDW D PDFKLQH FDQ UHPRYH D SDUW ZRUN RQ LW DQG SXW WKH SDUW EDFN RQ D SDOOHW :KHQ D SDOOHW KDV DOO LWV SDUWV FRPSOHWHG LW FDQ WKHQ KH SLFNHG XS E\ DQ $*9 RU VWRUHG LQ D EXIIHU DW WKH ORDGLQJ GRFN IRU ODWHU SLFN XS

PAGE 75

(DFK PDFKLQH FDQ SHUIRUP DQ\ QXPEHU RI RSHUDWLRQV $OO WKDW LV UHTXLUHG LV WKDW WKH DSSURSULDWH WRRO EH DYDLODEOH 7KH WRROLQJ FDURXVDO FRQWLQXDOO\ WUDQVSRUWV WRROV DURXQG WKH ZRUN FHOO VR WKDW ZKHQ D PDFKLQH QHHGV D WRRO WKH PDFKLQH FDQ UHPRYH LW IURP WKH FDURXVDO 6FKHGXOLQJ DQG UHVRXUFH DOORFDWLRQ SOD\ D PDMRU SDUW LQ WKH HIILFLHQF\ RI WKH ZRUN FHOO 7KH DVVHPEO\ ZRUN FHOO LV VLPLODU WR WKH PDFKLQLQJ ZRUN FHOO H[FHSW WKDW DQ DVVHPEO\ FHOO KDV URERWV LQVWHDG RI PDFKLQHV URERWV EHLQJ VOLJKWO\ PRUH GH[WURXV WKDQ PDFKLQHVf )LJXUH LV DQ H[DPSOH RI WKH OD\RXW RI D URERWfV ZRUN DUHD :KHQ D URERW LV VFKHGXOHG WR DVVHPEOH SDUWV WKH SDUWV PXVW HLWKHU EH LQ WKH URERWfV EXIIHU RQ WKH URERWfV DVVHPEO\ SODWIRUP RU RQ D SDOOHW RQ WKH FRQYH\RU 2QFH DQ DVVHPEO\ LV PDGH LW FDQ EH WUDQVIHUUHG WR D SDOOHW RU WKH EXIIHU 7RRO &DURXVHO %XIIHU 5RERW )LJXUH 5RERW &HOO )ORRU 3ODQ 'RFN &HOO A 5RERW 0DFKLQH +DV D ,V LQ 7\SH 2I )LJXUH 3DUWLDO &RQFHSW 0RGHO RI $(06 )LJXUH VKRZV KRZ D VHPDQWLF PRGHO RI SDUW RI WKH UHDO V\VWHP ZRXOG EH RUJDQL]HG 7KLV LV HVVHQWLDOO\ D FRQFHSW PRGHO LQ 6( >5XP @ RU D VHPDQWLF QHW LQ $, >)LQ@ 7KH DXWRPDWLF FRQYHUVLRQ RI WKLV PRGHO WR DQ H[HFXWDEOH PRGHO LV QRW SDUW RI WKLV UHVHDUFK KRZHYHU RQFH D G\QDPLF PRGHO LV EXLOW WKHUH DUH TXHVWLRQV WKDW FDQ EH DQVZHUHG ZKLFK DUH QRW REWDLQDEOH E\ WKH VWDWLF PRGHO

PAGE 76

+LHUDUFKLFDO 0RGHOLQJ 7KH FXUUHQW HPSKDVLV LQ LQGXVWU\ WRGD\ RQ WRWDO TXDOLW\ PDQDJHPHQW 740f DQG GHVLJQ IRU PDQXIDFWXULQJ KDV UHHPSKDVL]HG WKH QHHG WR PRGHO YHU\ ODUJH GLYHUVH V\VWHPV ,QVWHDG RI PRGHOLQJ D IDFWRU\ IORRU IRU LQVWDQFH WKH HPSKDVLV RQ 740 UHTXLUHV WKH PRGHO RI D $706 WR LQFOXGH HFRQRPLFV FRQVXPHU GHPDQG SURGXFW GLVWULEXWLRQ HWF :LWK WKLV LQ PLQG WKH FRQWH[W RI DQ $706 VLPLODU WR WKH DERYH H[DPSOH LV PRGHOHG LQ WKLV VHFWLRQ )LJXUH GHPRQVWUDWHV D VLPSOH LQLWLDO PRGHO RI WKH KLJKHVW OHYHO RI DEVWUDFWLRQ $V WKLV PRGHOHG LV UHILQHG LW ZLOO EHFRPH FOHDU ZK\ WKLV PRGHO LV DEVWUDFW 7KHUH DUH WKUHH PDLQ LQWHUDFWLQJ VXEV\VWHPV D SURGXFHU D FRQVXPHU DQG D SULFHU 7KH LQLWLDO JRDO RI WKH LQYHVWLJDWRU ZLOO EH WR PLQLPL]H WKH VL]H RI WKH VWRUDJH ZKLOH VWLOO PHHWLQJ FRQVXPHU GHPDQG $OWKRXJK QRW H[SOLFLWO\ VKRZQ WKH WLPH GRPDLQ IRU WKLV PRGHO KDV VLJQLILFDQW PHDVXUHV RI WLPH LQ WHUPV RI GD\V 7KH SULFHU IXQFWLRQ LQFOXGHV PRGHOLQJ PDUNHWLQJ SROLFLHV GHFLVLRQV VXFK DV WUDGH SURPRWLRQV 7KH FRQVXPHU IXQFWLRQ LQFOXGHV PRGHOLQJ EHKDYLRU VXFK DV EUDQG OR\DOW\ 7KH PDLQ HPSKDVLV LQ WKLV H[DPSOH LV RQ WKH SURGXFHU IXQFWLRQ 7KH SURGXFHU IXQFWLRQ XVHV WKH FXUUHQW VL]H RI WKH VWRUDJH DV WKH RQO\ LQIOXHQFH RQ WKH SURGXFWLRQ UDWH G3GWf %HFDXVH FRQVXPHU GHPDQG G'GWf FDQ IOXFWXDWH WKH IDFWRU\ XVXDOO\ EXIIHUV D FHUWDLQ QXPEHU RI XQLWV RI WKH SURGXFW 7KH DOORZDEOH VL]H RI WKH VWRUDJH EXIIHU KDV D PLQLPXP DQG D PD[LPXP VL]H 0LQ 0D[f 7KH WLPH GRPDLQ IRU WKLV PRGHO DOVR KDV VLJQLILFDQW PHDVXUHV RI WLPH LQ WHUPV RI GD\V ,Q RUGHU PDNH PD[LPXP XVH RI UHVRXUFHV WKHUH ZLOO EH WKUHH GLIIHUHQW VWDWHV RI WKH SURGXFHU IXQFWLRQ IDFWRU\f GHSHQGLQJ RQ WKH VWDWH RI WKH VWRUDJH ,Q )LJXUH WKH IDFWRU\ LV PRGHOHG DV D VWDWH PDFKLQH 7KH WKUHH VWDWHV LQGLFDWH ZKHWKHU FXUUHQW SURGXFWLRQ LV EHORZ DERYH RU ZLWKLQ WKH VSHFLILHG EXIIHU OLPLWV 7KH WZR QDPHV SURGXFHU DQG IDFWRU\ DFWXDOO\ UHIHU WR WKH VDPH IXQFWLRQDO PRGHO DQG FDQ XVXDOO\ EH XVHG LQWHUFKDQJHDEO\ SURGXFHU LV WKH QDPH RI FRPSRQHQW PRGHO DQG IDFWRU\ LV WKH QDPH RI WKH VXEPRGHO 7KLV DOORZV WKH LQYHVWLJDWRU WR QDPH D IXQFWLRQDO PRGHO GHSHQGLQJ RQ WKH FRQWH[W LQ ZKLFK LW LV UHIHUHQFHG

PAGE 77

)LJXUH %ORFN 'LDJUDP RI D 3URGXFW 3ULFH )LJXUH 6WDWH 0DFKLQH RI )DFWRU\ 3URGXFHUf ,Q HDFK VWDWH RI WKH IDFWRU\ WKH QXPEHU RI PDFKLQHV DQG SHRSOH DOORFDWHG PD\ RU PD\ QRW YDU\ DQDO\VLV ZLOO GHWHUPLQH WKLVf ,Q WKH VKXWGRZQ VWDWH WKH SURGXFWLRQ UDWH G3GWf LV DVVLJQHG ]HUR RXWSXW IXQFWLRQ DW DQ\ WLPH W HTXDOV ff 6KXWGRZQ$IW@ !f 7KH SURGXFWLRQ UDWH LQ WKH RYHUWLPH VWDWH LV OHIW XQGHILQHG 2YHU7LPH$>W@ Wf ,Q WKH 1RUPDO VWDWH WKH SURGXFWLRQ UDWH HTXDOV WKH UDWH RI GHPDQG VHW E\ LQLWLDO PDUNHWLQJ VWXGLHV ,W LV GHFLGHG WKDW WZR URERW DVVHPEOHUV DUH QHHGHG WR PHHW WKLV GHPDQG

PAGE 78

$Q LPSRUWDQW LQIOXHQFH RQ WKH URERWfV DELOLW\ WR PHHW WLOOV GHPDQG LV WKH GRZQ WLPH RI HDFK URERW WKH QRUPDO VWDWH WKHUHIRUH LV D FRPELQDWLRQ RI IRXU VWDWHV ERWK URERWV ZRUNLQJ ERWK URERWV GRZQ DQG VWDWHV ZLWK RQH URERW GRZQ $Q HIIHFWLYH ZD\ WR PRGHO WKLV VLWXDWLRQ LV ZLWK D 0DUNRY V\VWHP )LJXUH GHSLFWV WKH GRZQ WLPH PRGHO 1RWLFH WKDW WKH LQSXW DQG RXWSXW RI WKH 0DUNRY FRQWUROOHU PRGHO LQFOXGH WKH LQSXW DQG RXWSXW RI WKH VWDWH PDFKLQH 7KLV LV UHTXLUHG E\ K\EULG PRGHO WKHRU\ $OWKRXJK WKH LQSXW WR WKH 0DUNRY V\VWHP LV QRW XVHG E\ WKH FRPSRQHQW PRGHOV LW FDQ EH SDVVHG GRZQ WR VXEPRGHOV RI WKH LQGLYLGXDO 0DUNRY VWDWHV 7KH WLPH GRPDLQ IRU WKLV PRGHO KDV VLJQLILFDQW PHDVXUHV RI WLPH LQ WHUPV RI KRXUV )LJXUH 'RZQ 7LPH 0DUNRY 0RGHO RI 5RERWV 3DUDOOHO &RQWUROOHU 7\SH 4XHXH 1HWZRUN 6WDWH 18//! ,QSXW 6L]H! 2XWSXW G3GW! 3URGXFWLRQ )ORRU 5RERW 3DOOHW $UULYDO S 3DOOHW Z 'HSDUWXUH 3 R 4XHXH S 5RERW G3GO )LJXUH 3URGXFWLRQ )ORRU 4XHXLQJ 1HWZRUN

PAGE 79

7KH PRGHOV RI WKH ERWK XS 5RERW GRZQ DQG 5RERWO GRZQ VWDWH FDQ EH HIIHFWLYHO\ PRGHOHG ZLWK TXHXLQJ QHWZRUNV 7KLV LV H[HPSOLILHG E\ VKRZLQJ WKH ERWK XS VWDWH LQ )LJXUH 7KLV LV D VLPSOH WZR VHUYHU ILUVWFRPHILUVW VHUYH TXHXLQJ QHWZRUN VSHFLILFDOO\ D 00 rr ),)2V\VWHPf $JDLQ QRWLFH WKH LQSXW DQG RXWSXW WR WKH TXHXLQJ QHWZRUN FRQWUROOHU PRGHO ,W PXVW LQFOXGH WKH LQSXW DQG RXWSXW RI WKH 0DUNRY VWDWH VXSHUPRGHO HYHQ WKRXJK TXHXLQJ QHWZRUNV GR QRW KDYH H[WHUQDO GDWD LQSXW DQG RXWSXW 7KH WLPH GRPDLQ IRU WKLV PRGHO KDV VLJQLILFDQW PHDVXUHV RI WLPH LQ WHUPV RI PLQXWHV ,W LV LPSRUWDQW WR XQGHUVWDQG WKDW WKH LQSXW DQG RXWSXW GR QRW DOWHU WKH SURGXFWLRQ IORRU TXHXLQJ QHWZRUN 7KH RXWSXW G3GWf FDQ RQO\ EH GHULYHG IURP D SURSHUW\ RI WKH TXHXLQJ QHWZRUN 7KH LQSXW 6L]Hf FDQ EH XVHG WR GHULYH WKH RXWSXW G3GWf RU SDVVHG GRZQ WR VXEPRGHOV 7KH GHULYDWLRQ RI WKH SURGXFWLRQ UDWH GRHV QRW LQWHUIHUH ZLWK WKH EHKDYLRU RI WKH TXHXLQJ QHWZRUN 7KH VDPH LGHD KROGV IRU DOO WKH PRGHOV ZKLFK KDYH EHHQ DOUHDG\ EHHQ FRQVWUXFWHG 7KH GHULYDWLRQV DUH FRRUGLQDWHG ZLWK WKH EHKDYLRU WKH\ GR QRW UHSODFH DQ\ EHKDYLRU RU DOWHU DQ\ EHKDYLRU RI WKH IRUPDOLVP EHLQJ PRGHOHG ,W LV DVVXPHG WKDW WKH FXUUHQW PRGHO GHVFULSWLRQ LV VXIILFLHQW WR GHVFULEH WKH SURGXFWLRQ UDWH G3GWf WKHUHIRUH LQ RUGHU WR KDYH D FRPSOHWH PRGHO WKH RXWSXW RI WKH TXHXLQJ QHWZRUN PXVW EH WKH SURGXFWLRQ UDWH 7KH SURGXFWLRQ UDWH LQ WKLV FDVH LV WKH GHSDUWXUH UDWH RI WKH SDOOHWV )LJXUH VKRZV WKH GHSDUWXUH FRPSRQHQW PRGHO DQG KRZ WKH RXWSXW LV VXSSOLHG 7KH RWKHU FRPSRQHQW PRGHOV LQ WKH TXHXLQJ QHWZRUN FDQQRW VXSSO\ RXWSXW WR WKH SURGXFWLRQ UDWH &KDSWHU f 3DOOHW 'HSDUWXUH 7\SH $WRPLF TXHXHf 6WDWH FRXQW! ,QSXW LQSXW! 2XWSXW G3GW! $>[ [ @ ;LQSXW>[ GHOWD7@ ;LQSXW>[@ GHOWD7f )LJXUH 'HSDUWXUH 0RGHO RI SDOOHW

PAGE 80

,I WKH LQYHVWLJDWRU GLG QRW VXSSO\ WKH FRQQHFWLRQ EHWZHHQ WKH SDOOHW GHSDUWXUH QRGH DQG WKH SURGXFWLRQ UDWH G3GWf RI WKH FRQWUROOHU PRGHO WKHQ QXPHULFDO DQDO\VLV FRXOG QRW EH SHUIRUPHG +RZHYHU LQ V\PEROLF DQG LQWHUSUHWDWLRQ DQDO\VLV WKH PRGHO FRXOG VWLOO EH HIIHFWLYHO\ XVHG E\ LQYHQWLQJ D V\PERO IRU WKH SURGXFWLRQ UDWH +\EULG $QDO\VLV 7KH EHQHILWV RI K\EULG PRGHO WKHRU\ FDQ QRZ EH GHPRQVWUDWHG E\ WDNLQJ DGYDQWDJH RI WKH FOHDU VHPDQWLFV DQG V\PEROLF PHWKRGV RI WKH IRUPDOLVPV XVHG 7KH SURFHVV RI PRGHOLQJ WKH $)06 LQ WKH ODVW VHFWLRQ LV QRW MXVW D JUDSKLFDO LQWHUIDFH PHWKRG IRU D VLPXODWLRQ ODQJXDJH OLNH 7(66 >6WD@ LV IRU *366f $OWKRXJK JUDSKLFDO LQWHUIDFHV SURYLGH VLJQLILFDQW LQFUHDVHV LQ HIILFLHQWO\ LW LV WKH LPSOLFLW VHPDQWLFV RI WKH IRUPDOLVPV ZKLFK ZKHQ FRPELQHG ZLWK K\EULG PRGHO WKHRU\ DOORZ WKH ZKROH WR EH JUHDWHU WKDQ WKH VXP RI LWV SDUWV $Q ++ PRGHO LV UHDOO\ D VLQJOH UHSUHVHQWDWLRQ ZKLFK DOORZV IRU DOO WKUHH W\SHV RI DQDO\VLV 7KH QXPHULFDO DQDO\VLV PRGHO VLPXODWLRQf RI D KLHUDUFKLFDO PRGHO LV YHU\ VWUDLJKW IRUZDUG (DFK RI WKH IRUPDOLVPV ZKLFK ZDV XVHG KDV D ZHOO GHILQHG QXPHULFDO PHWKRG :LWK K\EULG PRGHO WKHRU\ WKH LQSXW DQG RXWSXW UHODWLRQVKLS EHWZHHQ PRGHOV DQG WKH PDQQHU LQ ZKLFK HDFK PRGHO KDQGOHV WLPH KDV EHHQ IRUPDOO\ GHILQHG ,QWUDPRGHO FRRUGLQDWLRQ LV DFFRPSOLVKHG E\ IRUPDOO\ GHVFULELQJ D PRGHO ZLWK WZR OHYHOV FRQWUROOHU DQG FRPSRQHQWV 7KH WUDQVLWLRQ DQG RXWSXW IXQFWLRQV VSHFLI\ WKH FRPSXWDWLRQ WR EH SHUIRUPHG DW HDFK VWHS IRU HDFK PRGHO 7KH WLPH SHULRG LV VXSSOLHG DV DQ LQSXW WR WKH VLPXODWLRQ (DFK PRGHOfV GHOWD WLPH LV H[DPLQHG WR GHWHUPLQH WKH PLQLPXP WLPH VOLFH UHTXLUHG IRU WKH VLPXODWLRQ 7KRVH PRGHOV ZKRVH GHOWD WLPHV DUH JUHDWHU WKDQ WKH VLPXODWLRQV WLPH SHULRG DUH FRQVLGHUHG WR EH VWDWLF V\VWHPV 7KH RSHUDWLRQDO GHILQLWLRQV LQ &KDSWHU DUH IRU DOO SUDFWLFDO SXUSRVHV D FRPSLODWLRQ RI K\EULG PRGHOV LQWR QXPHULFDO DQDO\VLV PRGHOV 7R SHUIRUP D QXPHULFDO DQDO\VLV WKH HQWLUH PRGHO PXVW EH FKHFNHG IRU FRPSOHWHQHVV FRPSLOHGf 7KH FRPSLOHU UHTXLUHV GHIDXOW YDOXHV IRU YDULDEOHV DW WKH OHDI PRGHOV LQ WKH

PAGE 81

KLHUDUFKLFDO PRGHO EXW GRHV QRW UHTXLUH D FRPSOHWH FRQFHSWXDO PRGHO E\ QXPHULFDO YDOXHV IX]]\ QXPEHUV DUH DOVR YDOLG >=DG@f ,W ZRXOG EH FRQYHQLHQW LI WKH V\VWHP FRXOG VHW XS GHIDXOW LQLWLDO FRQGLWLRQV IRU WKH LQYHVWLJDWRU KRZHYHU WKLV LV QRW WKH SXUSRVH RI ++ PRGHOLQJ RU K\EULG PRGHO WKHRU\ 7KH LPSRUWDQFH DQG EHQHILWV RI DXWRPDWLFDOO\ VHWWLQJ XS WKH VLPXODWLRQ LV QRW GHHPSKDVL]HG EXW WKLV UHVHDUFK LV OLPLWHG WR HIILFLHQWO\ FUHDWLQJ KHWHURJHQHRXV KLHUDUFKLFDO PRGHOV DQG VXSSRUWLQJ K\EULG DQDO\VLV WHFKQLTXHV ,I WLQV FDQ EH DFFRPSOLVKHG WKH DELOLW\ WR LQWHJUDWH LQIRUPDWLRQ IURP V\PEROLF QXPHULFDO DQG LQWHUSUHWDWLRQ VRXUFHV ZLOO SURPRWH WKH DXWRPDWLRQ RI WKH PRUH FRPSOH[ WDVNV VXFK DV VHWWLQJ XS VLPXODWLRQ UXQV DQG DSSUR[LPDWLQJ VXEPRGHOV 6\PEROLF $QDO\VLV 0DQ\ V\PEROLF DQDO\VLV URXWLQHV DUH VSHFLILF WR LQGLYLGXDO IRUPDOLVPV WKHUH DUH KRZHYHU VRPH VLPSOH JHQHUDO URXWLQHV ZKLFK PLJKW EH XVHIXO LQ YHU\ ODUJH V\VWHPV 7KH VLQJXODULW\ RI WKHVH URXWLQHV GRHV QRW SUHYHQW D FDWHJRUL]DWLRQ RI V\PEROLF URXWLQHV )RU H[DPSOH LI VWHDG\ VWDWH DQDO\VLV RI D PRGHO LV UHTXLUHG DQ\ IRUPDOLVP ZKLFK FDQ SRWHQWLDOO\ REWDLQ VWHDG\ VWDWH LQIRUPDWLRQ PXVW GHILQH D VWHDG\6WDWH>@ V\PEROLF DQDO\VLV IXQFWLRQ )RUPDOLVPV VXFK DV EORFN GLDJUDPV 0DUNRY V\VWHPV DQG TXHXLQJ QHWZRUNV FRXOG GHULYH WKH WUDGLWLRQDO DWWULEXWHV DVVRFLDWHG ZLWK WKH QRWLRQ RI VWHDG\ VWDWH )RUPDOLVPV VXFK DV VWDWH PDFKLQHV DQG 3HWUL QHWV KDYH QR WUDGLWLRQDO QRWLRQ RI VWHDG\ VWDWH ,Q WKH FRQWH[W RI K\EULG V\PEROLF DQDO\VLV WKH URXWLQH VWHDG\6WDWH>@ IRU VWDWH PDFKLQHV DQG 3HWUL QHWV PXVW VWLOO EH SURYLGHG EXW DW WKH YHU\ OHDVW WKH\ RQO\ QHHG WR IRUPXODWH D V\PEROLF YDOXH WR UHSUHVHQW WKH VWHDG\ VWDWH 7KH QHHG IRU WKLV ZLOO EH GHPRQVWUDWHG LQ WKH QH[W VHFWLRQ ,Q WKH $)06 PRGHO SUHVHQWHG LQ WKH ODVW VHFWLRQ RQH RI IHZ QXPHULFDO UHVXOWV IURP V\PEROLF DQDO\VLV ZKLFK FDQ EH REWDLQHG E\ D VLQJOH IRUPDOLVP LV WKH VWHDG\ VWDWH RI WKH GRZQ WLPH PRGHO %HFDXVH WKH GRZQ WLPH PRGHO LV D UHJXODU 0DUNRY V\VWHP WKH VWHDG\ VWDWH HTXLOLEULXP SUREDELOLWLHV RI HDFK VWDWH FDQ EH IRXQG 7KLV LV

PAGE 82

/LQLQJ 0QfLM 666Lf ZKHUH 666Mf LV WKH 6WHDG\ 6WDWH SUREDELOLW\ IRU HDFK VWDWH L 0M M LV D PDWUL[ UHSUHVHQWLQJ WKH SUREDELOLW\ RI JRLQJ IURP VWDWH L WR VWDWH M 7KH VWHDG\ VWDWH 66VLf FDQ EH UHSUHVHQWHG E\ WKH FUHDWLRQ RI D YHFWRU ZLWKLQ WKH V\VWHP GRZQ7LPH3UREDELOLWLHV > @f +HUH WKH ILUVW HOHPHQW LV WKH VWHDG\ VWDWH SUREDELOLW\ RI EHLQJ LQ WKH ERWK XS VWDWH WKH VHFRQG HOHPHQW LV WKH VWHDG\ VWDWH SUREDELOLW\ RI EHLQJ LQ WKH 5RERW GRZQ VWDWH HWF $ SXUHO\ V\PEROLF UHVXOW IRU VHYHUDO DWWULEXWHV RI LQWHUHVW FDQ DOVR EH REWDLQHG IURP WKH TXHXLQJ QHWZRUN %HFDXVH WKH QHWZRUN ZDV GHILQHG DV D 00$} ),)2 V\VWHP WKH H[SHFWHG QXPEHU RI SDOOHWV LQ WKH PRGHO LV DV IROORZV >*UD62@ SDOHWWH [ r U IWn r -S A f FWfL&S [f ZKHUH & WKH QXPEHU RI VHUYHUV ; WKH DUULYDO UDWH S WKH VHUYLFH UDWH 7KH PRVW LQWHUHVWLQJ UHVXOWV RI V\PEROLF DQDO\VLV UHVXOW ZKHQ D PRGHO LV UHTXLUHG WR REWDLQ LQIRUPDWLRQ WKDW LV QRW SDUW RI LWV VHPDQWLFV )RU H[DPSOH VXSSRVH WKH H[SHFWHG QXPEHU RI SDOOHWV LQ WKH QRUPDO VWDWH RI WKH IDFWRU\ PRGHO RI )LJXUH LV QHHGHG LH :KDW LV /QRUPDO "ff 7KH QRUPDO VWDWH PRGHO FDQ QRW ILQG WKLV LQIRUPDWLRQ ZLWK V\PEROLF PHWKRGV KRZHYHU EHFDXVH WKHUH LV D VXEPRGHO WKH QRUPDO VWDWH V\PEROLF URXWLQH FDOOV WKH VXEPRGHO V\PEROLF URXWLQH WR ILQG

PAGE 83

; WKH H[SHFWHG QXPEHU RI SDOOHWV 7KH VXEPRGHO LV D 0DUNRY V\VWHP ,W DOVR FDQ QRW GHWHUPLQH WKH H[SHFWHG QXPEHU RI SDOOHWV ZLWK V\PEROLF PHWKRGV ,I LWV FRPSRQHQWV VXEPRGHOV FRXOG ILQG WKLV LQIRUPDWLRQ WKHQ WKH UHVXOW RI WKH 0DUNRY PRGHO ZRXOG EH WKH VWHDG\ VWDWH YHFWRU 66 GRZQ WLPH SUREDELOLWLHVf WLPHV D YHFWRU RI WKH LQGLYLGXDO H[SHFWHG QXPEHU RI SDOOHWV IRU HDFK RI WKH IRXU VWDWHV 6M WKH GRW SURGXFWf 7KLV LV AQRUPDO GRZQ WLPH SUREDELOLWLHV r /SDXHW >@ /SDOOHW >@ >VLV V VT @ RU AQRUPDO 3UrE>ERWK XS@ VMf SURE>5RERW GRZQ @Vf SURE>5RERWO GRZQ@ 6f SURE>ERWK GRZQ .6f 7KH LQGLYLGXDO 0DUNRY VWDWH V\PEROLF URXWLQHV DUH WKHQ FDOOHG WR GHULYH WKH H[SHFWHG QXPEHU RI SDOOHWV 7KH WKUHH VWDWH WKDW ZHUH QRW VXEPRGHOHG 5RERW GRZQ 5RERWO GRZQ ERWK GRZQf DOVR FDQQRW ILQG WKH H[SHFWHG QXPEHU RI SDOOHWV WKHUHIRUH WKH\ UHWXUQ D V\PEROLF UHVXOW 7KH TXHXLQJ QHWZRUN VXEPRGHO FDQ UHWXUQ D UHVXOW DV SUHYLRXVO\ VKRZQ 7KLV V\PEROLF UHVXOW LV UHWXUQHG WR WKH 0DUNRY V\VWHP PRGHO RI WKH IDFWRU\ 7KH 0DUNRY V\VWHP WKHQ UHWXUQV WKH UHVXOW WR WKH QRUPDO VWDWH 7KH ILQDO UHVXOW ZRXOG EH AQRUPDO /SDOOHWfO /SDLLHWMf /SDLLHWf /SD@@HAf ZKHUH /SDOOHW M XQNQRZQ IRU L DQG N Jf NJ Q Nf ZKHUH $ WKH DUULYDO UDWH S WKH VHUYLFH UDWH

PAGE 84

7KH QHFHVVLW\ IRU DOO PRGHOV WR KDQGOH URXWLQHV OLNH VWHDG\6WDWH>@ DQG H[SHFWHG1XPEHU2I>@ LV GHPRQVWUDWHG E\ WKLV ODVW H[DPSOH (YHQ WKRXJKW D URXWLQH FDQ QRW ILQG D SURSHUW\ LW PXVW EH DEOH WR FRQVWUXFW D UHVXOW LI WKH FRPSRQHQW VXEPRGHOV H[LVW RU LW PXVW UHWXUQ D V\PEROLF UHVXOW IRU LWV VXSHUPRGHO WR XVH LQ WKH FRQVWUXFWLRQ RI D UHVXOW 7KLV UHFXUVLYH WHFKQLTXH LV EDVHG RQ LQWUDPRGHO FRRUGLQDWLRQ VXEPRGHOLQJf $GGLWLRQDOO\ WKH FRPELQDWLRQ RI WKH W\SH RI GDWD QHHGHG FRQWLQXRXV WLPH YDOXHf DQG PRGHO VWDWH VWHDG\ VWDWH VLQJOH SRLQW LQ WLPH VSHFLILF WLPH SHULRG VSHFLILF FRQGLWLRQf GLFWDWHV KRZ D PRGHOLQJ IRUPDOLVP PXVW UHVSRQG )RU LQVWDQFH WKH H[SHFWHG QXPEHU RI SDOOHWV LV D VWHDG\ VWDWH DWWULEXWH WKHUHIRUH PRGHOV PXVW UHVSRQG DFFRUGLQJO\ 2Q WKH RWKHU KDQG LI WKH SURGXFWLRQ UDWH G3GWf ZKHQ 6L]H 0LQf ZDV RI LQWHUHVW WKHQ HDFK PRGHO ZRXOG EH UHTXLUHG WR FRQVWUXFW WKH UHVXOW IRU D FRQWLQXRXV WLPH GLVFUHWH YDOXH YDULDEOH XQGHU WKH VSHFLILF FRQGLWLRQV 6L]H 0LQf 7KH TXHVWLRQ ZRXOG EH UHFXUVLYHO\ DVNHG RI HDFK VXEPRGHO 7KRVH FRQWUROOHU PRGHOV ZKLFK FRXOG QRW FRQVWUXFW D UHVXOW HLWKHU EHFDXVH WKH FRPSRQHQW PRGHOV ZHUH QRW VXEPRGHOHG RU EHFDXVH WKH TXHVWLRQ ZDV QRW DSSURSULDWH ZRXOG UHWXUQ D V\PEROLF UHVXOW )RU TXHVWLRQV ZKLFK UHVXOWHG LQ XQVDWLVIDFWRU\ DQVZHUV WRR PDQ\ LQYHQWHG V\PEROVf QXPHULFDO DQDO\VLV ZRXOG EH D SRVVLEOH QH[W VWHS )RU H[DPSOH LQ WKH ERWK GRZQ VWDWH RI WKH 0DUNRY V\VWHP WKH SURGXFWLRQ UDWH VKRXOG EH ]HUR VLQFH QHLWKHU URERW LV ZRUNLQJ ,W LV QRW H[SHFWHG RI WKH V\PEROLF URXWLQHV WR ILQG WKLV DQVZHU $ QXPHULFDO DQDO\VLV ZRXOG LPSOLFLWO\ ILQG WKLV UHVXOW :LWK D PRUH FRPSOHWH PRGHO WKH LQWHUSUHWDWLRQ QH[W VHFWLRQf FRXOG GHGXFH VXFK LQIRUPDWLRQ IURP NQRZOHGJH WKDW WKH SURGXFWLRQ UDWH G3GWf DQG SDOOHWV DUH QXPHULFDOO\ UHODWHG )LJXUH f 7KH UHVXOWV RI WKH V\PEROLF DQDO\VLV FRXOG EH XVHG WR KHOS VHW XS WKH ERXQGDULHV XQGHU ZKLFK WKH QXPHULFDO DQDO\VLV RSHUDWHG )RU H[DPSOH LQ WKH DERYH DQDO\VLV RI /QRUPDOr WKH VLPXODWLRQ RI WKH PRGHO WR ILQG D UHILQHG DQVZHU D VSHFLILF GLVWULEXWLRQf ZRXOG QRW UHTXLUH D VLPXODWLRQ RI WKH TXHXLQJ QHWZRUN V\VWHP 7KLV FRXOG EH UHSODFHG E\ DQ DSSURSULDWH GLVWULEXWLRQ GHWHUPLQHG E\ WKH UHVXOW RI WKH ERWK XS VWDWH /SDQHWf 7KXV LW ZRXOG UHGXFH WKH WLPH QHFHVVDU\ WR REWDLQ WKH FRPSXWDWLRQDO UHVXOWV

PAGE 85

VR ,QWHUSUHWDWLRQ &RUUHFW LQWHUSUHWDWLRQ GHSHQGV RQ XVLQJ D FRQVLVWHQW VHW RI ODEHOV RQ WKH JUDSKV RI WKH PRGHOV $W ILUVW WKLV PD\ VHHP WRR UHVWULFWLYH KRZHYHU LI RQH UHDOL]HV WKDW WKH PRGHO LV D IDFW EDVH WKHQ WKH PRGHO LV UHDOO\ D VSHFLDO GHULYDWLYH RI D VHPDQWLF QHW WKDW GHVFULEHV WKH G\QDPLFV RI WKH V\VWHP XQGHU LQYHVWLJDWLRQ (DFK IRUPDOLVP KDV VHYHUDO FRQVLVWHQW QDPLQJ VFKHPHV ZKLFK FDQ EH FRPSLOHG LQWR D FRQVLVWHQW IDFW EDVH 7KH NQRZOHGJH EDVH LV D VHW RI UXOHV ZKLFK DUH GHULYHG IURP FRQWUROOHUfV WUDQVLWLRQ IXQFWLRQ DQG WKH VHPDQWLFV RI HDFK LQGLYLGXDO IRUPDOLVPV 7KHVH DUH FDOOHG IRUPDOLVP 5LOHV )RU LQVWDQFH TXDOLWDWLYH UHDVRQLQJ PHWKRGV >%RE@ IRUP SDUW RI WKH NQRZOHGJH EDVH IRU EORFN GLDJUDPV 7RJHWKHU ZLWK WKH IDFW EDVH WKH NQRZOHGJH EDVH FDQ LQWHUSUHW WKH PRGHO $ SVHXGR 3URORJ UHSUHVHQWDWLRQ LV XVHG WR SUHVHQW WKH LQWHUSUHWDWLRQ SURFHVV ,W LV DVVXPHG WKDW WKH LQWHUSUHWDWLRQ SURFHVV XVHV D JRDO GLUHFWHG GHGXFWLRQ DOJRULWKP DOVR RQH ZKLFK DOORZV IRU WUXWK PDLQWHQDQFHf +RZHYHU RWKHU NQRZOHGJH UHSUHVHQWDWLRQV DUH FHUWDLQO\ IHDVLEOH ,W LV DOVR DVVXPHG WKDW D QDWXUDO ODQJXDJH SDUVHU 1/3f FRQYHUWV TXHVWLRQV LQWR WKH SVHXGR 3URORJ IRUPDW :LWK WKH DYDLODELOLW\ RI DQ RQOLQH GLFWLRQDU\ DQG WKHVDXUXV ZKLFK FDQ ILQG SOXUDOV IURP VLQJOH QRXQV LGHQWLI\ SDUWV RI VSHHFK FKHFN JUDPPDU DQG SURYLGH V\QRQ\PV VXFK D V\VWHP LV FHUWDLQO\ DWWDLQDEOH DOVR ZLWK WKH DYDLODELOLW\ RI SDUVHU VXSSRUW VXFK DV /(; DQG <$&&f 7KH 1/3 ZLOO EH IDU IURP SHUIHFW EXW LW ZRXOG UHOHDVH WKH LQYHVWLJDWRU IURP EHLQJ UHTXLUHG WR XQGHUVWDQG WKH V\QWD[ RI 3URORJ $GGLWLRQDOO\ LW LV DQ LQWULFDWH SDUW RI D GRPDLQ LQGHSHQGHQW JHQHULF NQRZOHGJH EDVH 7KLV LVVXH LV GLVFXVVHG DV WKH LQWHUSUHWDWLRQ SURFHVV LV SUHVHQWHG 2QH RI WKH VLPSOHVW W\SHV RI IRUPDOLVP VHPDQWLFV WR GHPRQVWUDWH LV WKDW RI D VWDWH FRQWUROOHU 7KHUH DUH WZR FRQVLVWHQW ODEHOLQJV $OO QRGHV DUH ODEHOHG ZLWK QRXQ SKUDVHV )LJXUH f $OO QRGHV DUH ODEHOHG ZLWK YHUE SKUDVHV

PAGE 86

+, $ORQJ ZLWK WKH QRGH ODEHOV WKH W\SH RI SKUDVH ZKLFK GHVFULEHV WKH VXEPRGHOHG FRPSRQHQW DQG FRQWUROOHU PRGHO LV QHHGHG 7LUH IDFWRU\ VXEPRGHO RI WKH SURGXFHU PRGHO )LJXUHV DQG f KDV D VHTXHQFH RI QRXQ ODEHOV QRUPDO RYHUWLPH VKXWGRZQf GHVFULELQJ D QRXQ SKUDVH SURGXFHUf +HUH WKH QRXQ ODEHOV DUH LQWHUSUHWHG DV WKH VWDWHV RI WKH SURGXFHU 7KHVH LQWHUSUHWDWLRQV GHSHQG RQO\ RQ WKH W\SHV RI SKUDVHV XVHG RQO\ LQ WKH FXUUHQW UHVHDUFK QRXQ DQG YHUEf DQG WKH W\SH RI FRQWUROOHU XVHG RQO\ IRXUf $ FURVV SURGXFW RI WKHVH SURGXFHV D ILQLWH VHW RI LQWHUSUHWDWLRQV IRU VWDWH PRGHO QRGHV )URP WKH PRGHOV LQ )LJXUHV DQG D FRPSXWHU HQYLURQPHQW FRXOG DXWRPDWLFDOO\ EXLOG WKH IROORZLQJ VLPSOH IDFWV VWDWH2ILSURGXFHU QRUPDO@ VWDWH2IOSURGXFHU VKXWGRZQ@ DQG VWDWH2ILSURGXFHU RYHUWLPH@ ,W LV DVVXPHG WKDW WKH SUHGLFDWH VWDWH2I LV XVHG LQ WKH JHQHULF NQRZOHGJH EDVH UXOHV )RU H[DPSOH WKH IROORZLQJ UXOH DWWHPSWV WR ILQG WKH FRQGLWLRQV QHFHVVDU\ IRU & LI DQ\f WR JR IURP RQH VWDWH ; WR DQRWKHU VWDWH < E\ XVLQJ WKH VWDWH2I SUHGLFDWH QH[W6WDWH>0 ; < &@ VWDWH2I >0 ;@ VWDWHfI>0 <@ WUDFH>0 ; < &@ $V FDQ EH VHHQ IRUP WKH ILUVW UXOH LI ERWOL VWDWHV DUH LQ WKH VDPH PRGHO WKH WUDFH>@ SUHGLFDWH LV FDOOHG ZLWK WKH PRGHO DQG WKH WZR VWDWHV DV LQSXW DQG H[SHFWHG WR GHWHUPLQH GHSHQGLQJ RQ WKH W\SH RI PRGHO WKH FRQGLWLRQV QHFHVVDU\ WR JR IURP VWDWH ; WR VWDWH < $ VLPSOH WHVW IRU WKH WUDFH FRXOG EH WR FDOO D WUDFH6WDWH>@ SUHGLFDWH ZKLFK IROORZV DOO SDWKV LQ D VWDWH PRGHO WUDFH6WDWH>0 ; < &&f@ W\SH>0 6WDWH@ QH[W6WDWH>0 ; = &O@ QRW9LVLWHG>; =@ WUDFH6WDWH>0 ;=f < &@ DQG WUDFH6WDWH>0 ; < &@ 1H[W6WDWH>; < &@

PAGE 87

; 7KH QRW9LVLWHG>@ SUHGLFDWH DYRLGV LQILQLWH ORRSV DQG f UHSUHVHQWV FRQFDWHQDWLRQ ,I WKLV IDLOHG WKH WUDFH>@ IXQFWLRQ FDQ XVH PHWKRGV VXFK DQG FRQVWUDLQW SURSDJDWLRQ DQG TXDOLWDWLYH VLPXODWLRQ WR GHULYH DQ DQVZHU LI SRVVLEOHf IRU WKH QH[W6WDWH>@ 1RWH WKDW WKH 1H[W6WDWH>@ IDFWV FDQ EH GHULYHG GLUHFWO\ IURP NQRZOHGJH DERXW IRUPDOLVPV WKH K\EULG PRGHOf )URP )LJXUHV DQG WKH IROORZLQJ FDQ EH GHULYHG 1H[W6WDWHIRYHUWLPH QRUPDO 6L]H0LQf@ DQG 1H[W6WDWH>ERWK XS 5RERW GRZQ 6WRFKDVWLF f@ 7KHVH SUHGLFDWHV DUH YHU\ SULPLWLYH EXW WKH\ FDQ EH XVHG WR EXLOG PRUH VRSKLVWLFDWHG SUHGLFDWHV 7KH QH[W6WDWH>@ DQG WUDFH>@ SUHGLFDWHV FDQ EH XVHG WR EXLOG DQ DFWLYH6WDWHV>0 &@ SUHGLFDWH ZKLFK ILQGV DOO WKH VWDWHV RI PRGHO 0 WKDW FRXOG EH DFWLYH XQGHU WKH FRQGLWLRQV & )RU LQVWDQFH DV FDQ EH VHHQ LQ )LJXUH WKH IXQFWLRQ LQYRFDWLRQ DFWLYH6WDWH> IDFWRU\ 6L]H 0D[f VWDWH"@ UHWXUQV VWDWH QRUPDO VWDWH VKXWGRZQ 7KDW LV ZKHQ WKH 6L]H 0D[ LQ WKH IDFWRU\ PRGHO ERWK WKH QRUPDO DQG VKXWGRZQ VWDWHV PRGHOV FRXOG EH DFWLYH +RZ HDFK W\SH RI FRQWUROOHU XVHV WKH QRWLRQ RI VWDWH DQG KRZ VWDWHV DUH UHODWH EHWZHHQ VXSHUPRGHO DQG VXEPRGHO ZRXOG REYLRXVO\ QHHG PRUH UXOHV WKDQ OLVWHG KHUH $JDLQ LW LV HPSKDVL]HG WKDW WKH JRDO LV WR HIILFLHQWO\ EXLOG PRGHOV DQG DOORZ D VHW RI IRUPDOLVP UXOHV WR RSHUDWH RQ WKH PRGHO ZLWK RQO\ WKH PLQLPXP SRVVLEOH HIIRUW RI WKH LQYHVWLJDWRU 1R DWWHPSW LV EHLQJ PDGH WR SUHVHQW D FRQFLVH VHW RI IRUPDOLVP UXOHV 7KH REMHFWLYH RI WKLV VHFWLRQ LV WR VKRZ WKDW WKH LPSOLFLW VHPDQWLFV RI WKH IRUPDOLVP DQG K\EULG PRGHO WKHRU\ DSSOLHG LQ D KLHUDUFKLFDO IDVKLRQ DOORZ IRU TXLFN DQG HIILFLHQW PRGHO GHYHORSPHQW E\ WKH LQYHVWLJDWRU DQG DXWRPDWLFDOO\ SURYLGH IDFW EDVHV XVHG LQ LQWHUSUHWDWLRQ

PAGE 88

$QRWKHU LOOXVWUDWLRQ RI LQWHUSUHWDWLRQ FDQ EH GHPRQVWUDWHG ZLWK FRQVLVWHQW ODEHOV XVHG RQ WKH TXHXLQJ QHWZRUN SUHVHQWHG LQ )LJXUH 6RPH RI WKH UXOHV IRU ODEHOLQJ DUH DV IROORZV DUULYDO DQG GHSDUWXUH QRGHV XVH WKH VDPH QRXQ SKUDVH DQG VHUYHUV DUH HLWKHU DOO QRXQV RU DOO YHUE SKUDVHV )LJXUH VKRZV WKDW SDOOHWV DUH WKH HQWLWLHV ZKLFK DUULYH DQG GHSDUW LQ WKH TXHXLQJ QHWZRUN ,I SDUWV ZHUH WKH HQWLWLHV WKDW DUULYH DQG DVVHPEOLHV ZHUH WKH HQWLWLHV WKDW GHSDUWHG FHUWDLQO\ D IHDVLEOH DUUDQJHPHQWf WKHQ VWDWLF LQIRUPDWLRQ ZRXOG EH UHTXLUHG ZKLFK UHODWHG WKH WZR SRVVLEO\ LQ WKH IRUP RI D VHPDQWLF QHWZRUNf 7LUH VWDWLF LQIRUPDWLRQ ZRXOG VWLSXODWH IRU LQVWDQFH WKDW DQ DVVHPEO\ LV PDGH RI SDUWV PDGH2IODVVHPEO\ SDUWV@f &RPELQLQJ VHPDQWLF QHWV DQG PDWKHPDWLFDO IRUPDOLVP OLNH TXHXLQJ QHWZRUNV LQ WKH FRQWH[W RI ++ PRGHOLQJ LV GLVFXVVHG LQ 0LOOHU >0@ 6LPSOH VWDWH LQIRUPDWLRQ FDQ EH GHULYHG IURP WKH VHPDQWLFV RI WKH TXHXHV DQG VHUYHUV ODEHOHG ZLWK QRXQV $ IHZ IDFWV IURP )LJXUH DUH OLVWHG KHUH VWDWH>0 HPSW\@ 1RW VWDWH2I>SDOOHW 4XHXH LQXVH@f VWDWH>0 LGOH@ 1RW VWDWH2I>5RERW EXV\@f VWDWH2I>0 HPSW\@ W\SH>0 4XHXH@ VWDWH>0HPSW\@ VWDWH2I>0 LQXVH@ W\SH>0 4XHXH@ VWDWH>0LQXVH@ W\SH>SDOOHW TXHXH 4XHXH@ DQG WUDFH6WDWH>0 ; < &@ W\SH>0 4XHXH@ ; HPSW\f < LQ XVHf & DUULYHV>0 GDWD@f (YHQ WKRXJK WKH WKH TXHXLQJ QHWZRUN LV D VHOHFWLYH PRGHO DQG QRW D VWDWH PRGHO 6WDWH LQIRUPDWLRQ FDQ VWLOO EH GHGXFHG )RU LQVWDQFH WKH TXHVWLRQ QH[W6WDWH>SDOOHW 4XHXH HPSW\ LQ XVH &@

PAGE 89

LV HDVLO\ WUDFHG WR & DUULYHV>SDOOHW 4XHXH SDOOHW@ 7KH JHQHULF XVH RI WHUPV OLNH EXV\ ZDLWLQJ HPSW\ DQG LQXVH LQ WKH IDFW EDVH GRHV OLPLW WKH GRPDLQ RI WKH JHQHULF NQRZOHGJH EDVH )RU LQVWDQFH DQ LQYHVWLJDWRU PLJKW DVN ,V 5RERWO DFWLYH" ,W ZRXOG DSSHDU WKDW WKH LQWHUQDO IRUP ZRXOG EH VWDWH2I>5RERWO DFWLYH@ +RZHYHU WKH 1/3 WKURXJK WKH XVH RI D RQOLQH WKHVDXUXVGLFWLRQDU\ FDQ HDVLO\ WUDQVODWH WKLV LQWR VWDWH2IO5RERWO EXV\@ $OO WKDW LV UHTXLUHG LV WKDW WKH 1/3 KDYH D OLVW RI ZRUGV WKDW WKH LQWHUSUHWDWLRQ V\VWHP FDQ XVH 7KH 1/3 VLPSO\ WUDQVODWHV LQWR WKH DSSURSULDWH ZRUGV 7KLV IUHHV WKH LQWHUSUHWDWLRQ V\VWHP DQG LWV UXOHV IURP EHLQJ GRPDLQ VSHFLILF )RU H[DPSOH LQ D EDQN TXHXLQJ QHWZRUN WKH TXHVWLRQ PLJKW EH ,V WKH WHOOHU ZRUNLQJ" %HFDXVH WKH ZRUGV DFWLYH DQG ZRUNLQJ DUH ERWK V\QRQ\PV IRU WKH ZRUG EXV\ WKH WUDQVODWLRQ LV WULYLDO 7KH XVH RI DQ 1/3 WR GR WKLV WUDQVODWLRQ LV QRW DQ DIWHUWKRXJKW LQ K\EULG PRGHO WKHRU\ DQG LV H[WUHPHO\ LPSRUWDQW IRU NQRZOHGJHEDVHG DFFHVV WR G\QDPLF PRGHOV +\EULG PRGHO WKHRU\ ZDV GHYHORSHG DURXQG WKH FRQFHSW RI DV PXFK GRPDLQ LQGHSHQGHQFH DV SRVVLEOH ZLWK DV PDQ\ DQDO\WLFDO PHWKRGV DYDLODEOH ,W ZDV IRXQG WKDW IRUPDOLVPV OLNH 3HWUL QHWV KDG ZHOOGHILQHG G\QDPLF VHPDQWLFV EXW KDG QR HDV\ ZD\ WR UHODWH WKH VHPDQWLFV WR VSHFLILF GRPDLQV .QRZOHGJHn EDVH WHFKQLTXHV WHQGHG WR EH GRPDLQ VSHFLILF EXW KDG QR HDV\ ZD\ WR EXLOG XS WKH FRPSOH[ G\QDPLF RSHUDWLRQV RI WKH V\VWHPV WR EH PRGHOHG %\ XVLQJ D IHZ VLPSOH UXOHV WR HQVXUH FRQVLVWHQW ODEHOV XVLQJ QDPHG VWUXFWXUHV DV DQ RSHUDWLRQDO SDUW RI K\EULG PRGHO WKHRU\ QRW MXVW D FRQYHQLHQFHf DQG WDNLQJ DGYDQWDJH RI WKH RQOLQH WKHVDXUXVGLFWLRQDULHV DQ LQYHVWLJDWRU FDQ TXLFNO\ FRQVWUXFW D PRGHO WKDW KDG ZHOO GHILQHG IRUPDO SURSHUWLHV DQG FDQ EH XVHG E\ D GRPDLQ LQGHSHQGHQW NQRZOHGJH EDVH 7KH WKHVDXUXVGLFWLRQDU\ DFWV DV WKH VHPDQWLF NQRZOHGJH EDVH ZKLFK WUDQVODWHV TXHVWLRQV EHWZHHQ WKH VSHFLILF GRPDLQV DQG WKH JHQHULF NQRZOHGJH EDVH 7KH GRPDLQ REMHFWV SDOOHW URERWf LQ WKH NQRZOHGJH EDVH DUH GHULYHG IURP WKH QDPHG VHWV RI WKH PRGHO 7KH UHODWLRQVKLSV EHWZHHQ WKH REMHFWV LV ZRUNLQJ LV EXV\f DUH GHULYHG IURP WKH VHPDQWLFV RI WKH IRUPDOLVPV DQG K\EULG

PAGE 90

PRGHO WKHRU\ LQWUDPRGHO FRRUGLQDWLRQ LQ SDUWLFXODUf 7KH QDPHV RI WKH UHODWLRQVKLSV EHWZHHQ GRPDLQ REMHFWV DUH GHULYHG E\ XVLQJ WKH VHPDQWLFV RI WKH IRUPDOLVPV DQG E\ WKH XVH RI FRQVLVWHQW ODEHOLQJ 7KH IDFW EDVH LV D VHW RI SULPLWLYH IDFWV DQG UXOHV FRPSLOHG IURP WKH PRGHO :KHQ FRPELQHG ZLWK WKH JHQHULF NQRZOHGJH EDVH D YHU\ ODUJH GRPDLQ VSHFLILF NQRZOHGJH EDVH FDQ DXWRPDWLFDOO\ DQG TXLFNO\ EH FUHDWHG FRPSLOHGf IURP DQ ++ PRGHO 7R IXUWKHU GHPRQVWUDWH KRZ LQWHUSUHWDWLRQ FDQ EH XVHG WKH WUDFH RI D PRUH GLIILFXOW TXHVWLRQ LV SUHVHQWHG 7KH TXHVWLRQ LV :KDW LV WKH SURGXFWLRQ UDWH G3GWf LQ WKH QRUPDO VWDWH RI WKH IDFWRU\ 7KH IROORZLQJ LQWHUQDO IRUPV FDQ DXWRPDWLFDOO\ EH JHQHUDWHG G3GW SURGXFWLRQ UDWH PRGHOFRQWH[W QRUPDO DQG JRDO> G3GW PRGHO&RQWH[W@ +HUH LW LV DVVXPHG WKDW TXHVWLRQV DUH XOWLPDWHO\ SXW LQ WKH IRUP RI D JRDO 7KH SUHGLFDWH IRU WKLV LV JRDO >YDULDEOHr FRQWH[W@ ZKHUH YDULDEOHr PHDQV DQ\ QXPEHU RI YDULDEOHV DQG WKH FRQWH[W LV D GHVFULSWLRQ RI WKH V\VWHP FXUUHQW VWDWH 7KH LQIRUPDWLRQ WKDW WKH QRUPDO VWDWH LV LQ WKH IDFWRU\ PRGHO LV XVHOHVV LQ WKH FXUUHQW PRGHO EHFDXVH RQO\ RQH VWDWH LQ WKH HQWLUH V\VWHP LV ODEHOHG DV QRUPDO 2QH RI WKH ILUVW FRQFOXVLRQV DQ LQWHUSUHWDWLRQ HQYLURQPHQW FDQ HDVLO\ PDNH LV WKDW RI WKH WLPH SHULRG RYHU ZKLFK WKH FRQWH[W KROGV 7KLV LV RQH RI WKH XVHV RI WKH PRGHOfV WLPH GRPDLQ ,W FDQ EH FRQFOXGHG WKDW WKH IDFWRU\ PRGHO LV FRQVWDQW IRU WKH WLPH LQ WKH TXHVWLRQ VLQFH D VLQJOH VWDWH RI WKH IDFWRU\ LV RI LQWHUHVW DQG WKH PDJQLWXGH IXQFWLRQ VKRZV D VLJQLILFDQW GLIIHUHQFH LQ WLPH QRUPDO7PDJQLWXGH>KRXUV@ IDFWRU\[PDJQLWXGH>KRXUV@ m SULFH7PDJQLWXGH>GD\V@f ,W FDQ QRZ EH VKRZQ KRZ WKH LQWHUSUHWHU DWWHPSWV WR IRUPXODWH WLUH DQVZHU WR WKH TXHVWLRQ 2QFH WKH JRDO SUHGLFDWH LV GHULYHG WKH LQWHUSUHWHU FDQ GLUHFW WKH TXHVWLRQ WR WKH PRGHO&RQWH[W ,Q WKLV H[DPSOH WKH NQRZOHGJH EDVH IRU WKH QRUPDO PRGHO D VWDWHf LV DVNHG WR ILQG G3GW 7KLV LV UHSUHVHQWHG DV VWDWH)LQG>YDULDEOHV 0RGHO@

PAGE 91

,I WKH QRUPDO VWDWH PRGHO ZDV QRW VXEPRGHOHG WKH LQWHUSUHWHU FRXOG UHWXUQ WKH YDOXH VHW XS E\ WKH LQYHVWLJDWRU ,I WKHUH ZDV QR VSHFLILHG YDOXH WKHQ XQGHILQHG Wf FRXOG EH UHWXUQHG +RZHYHU VLQFH WKH QRUPDO VWDWH PRGHO LV VXEPRGHOHG WKH LQWHUSUHWHU YLD D UXOHf UHGLUHFWV WKH TXHVWLRQ WR WKH 0DUNRY V\VWHP VXEPRGHO 7KLV LV UHSUHVHQWHG DV PDUNRY)LQG>YDULDEOHV 0RGHO@ ,Q WKH 0DUNRY V\VWHP LQ )LJXUH WKH 5RERW GRZQ 5RERW GRZQ DQG ERWK GRZQ VWDWHV GLG QRW UHODWH WKH SURGXFWLRQ UDWH G3GW WR WKH RXWSXW RI WKH PRGHO WKH LQWHUSUHWHU KDV WR GHWHUPLQH ZKHWKHU WKHUH LV RU LV QRW RXWSXW IURP WKHVH VWDWHV 7KH UHTXLUHPHQW WKDW DOO GDWD EH VSHFLILHG DV FRQWLQXRXVGLVFUHWHf RYHU YDOXH DQG WLPH QRZ FRPHV LQWR SOD\ %HFDXVH WKH SURGXFWLRQ UDWH G3GWf LV FRQWLQXRXV WLPH DQG GLVFUHWH YDOXH DQG WKH FRQWUROOHU LV D VWDWH FRQWUROOHU WKH LQWHUSUHWHU FDQ GHGXFH WKDW DOO VWDWHV RXWSXW WR WKH YDULDEOH G3GW 7KHUHIRUH LW FDQ LQYHQW V\PEROLF QDPHV IRU WKH XQVSHFLILHG YDOXHV IURP WKHVH VWDWHV )RU H[DPSOH LQ WKH 5RERW GRZQ VWDWH WKH LQWHUSUHWHU ZRXOG FRQVWUXFW WKH V\PERO 5RERW GRZQ G3GW 5HFDOO WKDW IRU QXPHULFDO DQDO\VLV WKHVH PLVVLQJ YDOXHV ZRXOG KDYH WR EH VXSSOLHG LQ RUGHU IRU FRPSLODWLRQ WR EH FRPSOHWHG 7KH LQWHUSUHWHU FXUUHQWO\ ZLWKLQ WKH PDUNRY)LQG>@ UXOH VHW FDQ GHULYH WKH IROORZLQJ OLVW RI DVVLJQPHQWV VWDWH G3GW >SDOOHW GHSDUWXUH 5RERW GRZQ G3GW 5RERW GRZQ G3GW ERWK GRZQ G3GW@ GRZQ WLPH SUREDELOLWLHV > @ DQG SDOOHW GHSDUWXUH GRZQ WLPH SUREDELOLWLHV r VWDWH G3GW 7KH VWDWH G3GW YDULDEOH LV D WHPSRUDU\ VHW XS E\ WKH LQWHUSUHWHU 7KH ODVW WKUHH HQWULHV 5RERWO GRZQ G3GW 5RERW GRZQ G3GW ERWK GRZQ G3GWf LQ WKH VWDWH G3GW YHFWRU ZHUH GHULYHG E\ WKH LQWHUSUHWHU DV VWLSXODWHG LQ WKH ODVW SDUDJUDSK 7KH SDOOHW GHSDUWXUH HQWU\ ZDV GHULYHG IURP WKH TXHXLQJ QHWZRUN PRGHO 7KH LQWHUSUHWHU UHGLUHFWHG WKH ILQG SUHGLFDWH IRUP WKH ERWK XS VWDWH PRGHO WR WKH SURGXFWLRQ IORRU TXHXLQJ QHWZRUN VXEPRGHO YLD D SUHGLFDWH VXFK DV TXHQHW)LQG>YDULDEOH 0RGHO@ 7KLV UHFXUVLYH WHFKQLTXH LV YHU\ VLPLODU WR WKH UHFXUVLYH WHFKQLTXH

PAGE 92

XVHG LQ V\PEROLF DQDO\VLV DQG LV PDGH SRVVLEOH E\ LQWUDPRGHO FRRUGLQDWLRQ %HFDXVH WKH TXHXLQJ QHWZRUN PRGHO LV D SDUDOOHO FRQWUROOHU WKH LQWHUSUHWHU NQRZV WKDW WKHUH LV RQO\ RQH FROOHFWLYH VWDWH ,I WKH SDOOHW GHSDUWXUH PRGHO ZDV QRW FRQQHFWHG WR WKH RXWSXW G3GW RI WKH TXHXLQJ QHWZRUN WKHQ WKH LQWHUSUHWHU ZRXOG KDYH LQYHQWHG D V\PEROLF YDOXH KRZHYHU EHFDXVH RI WKH FRQQHFWLRQ WKH LQWHUSUHWHU NQRZV WKDW WKH SDOOHW GHSDUWXUH LV WKH RQO\ VRXUFH IRU WKH SURGXFWLRQ UDWH G3GW 7KH SDOOHW GHSDUWXUH GRZQ WLPH SUREDELOLWLHV r VWDWH G3GW H[SUHVVLRQ LV GHULYHG IURP DVVXPSWLRQV DERXW 0DUNRY V\VWHPV 7KH GRZQ WLPH SUREDELOLWLHV LV V\PEROLFDOO\ GHULYHG DW DV VKRZQ LQ WKH ODVW VHFWLRQ 1RWLFH WKDW WKH DVVXPSWLRQV PDGH E\ WKH LQWHUSUHWHU DUH UHDOO\ UXOHV ZKLFK DSSO\ WR FRQWUROOHUV 7KH UXOHV SUHVHQWHG VR IDU DV FDQ EH VWDWHG DV IROORZV LI RXWSXW W\SH FRQWLQXRXV WLPH GLVFUHWH YDOXHf DQG FRQWUROOHU VWDWHf WKHQ DOO VWDWHV PXVW VXSSO\ RXWSXWf LI RXWSXW W\SH FRQWLQXRXV WLPH GLVFUHWH YDOXHf DQG FRQWUROOHU SDUDOOHOf WKHQ ILQG VXEPRGHO ZLWK RXWSXWf RU LQYHQW D QDPH IRU RXWSXWf DQG LI RXWSXW W\SH FRQWLQXRXV WLPHf DQG PRGHO LV 0DUNRY V\VWHPf WKHQ RXWSXW ILQG3UREDELOLW\9HFWRUfr YHFWRU >LQGLYLGXDO VWDWH RXWSXWV@f 7KHVH UXOHV GHPRQVWUDWH KRZ K\EULG PRGHO WKHRU\ DOORZV NQRZOHGJH DERXW GLIIHUHQW IRUPDOLVPV WR EH JHQHUDOL]HG ,I D QHZ IRUPDOLVP ZKLFK XVHV D SDUDOOHO FRQWUROOHU ZHUH DGGHG WKHQ UXOH DERYH ZRXOG VWLOO DSSO\ ,W DOVR GHPRQVWUDWHV KRZ RQH DQDO\WLFDO IRUP FDQ KHOS DQRWKHU +HUH V\PEROLF DQDO\VLV ZDV XVHG WR DLG LQ WKH LQWHUSUHWDWLRQ WKH ILQG3UREDELOLW\9HFWRUf IXQFWLRQ LQYRFDWLRQf

PAGE 93

&+$37(5 &21&/86,216 $1' 6800$5< &RQFOXVLRQV 7KHUH DUH VHYHUDO SUREOHPV ZKLFK PD\ RU PD\ QRW UHGXFH WKH HIIHFWLYHQHVV RI K\EULG PRGHO WKHRU\ $OWKRXJK RWKHU IRUPDOLVP FDQ EH XVHG RQO\ ILYH IRUPDOLVPV KDYH EHHQ H[SORUHG 6RPH IRUPDOLVPV WKHRUHWLFDOO\ ILW ZLWKLQ K\EULG PRGHO WKHRU\ EXW WKH\ GR QRW ILW QRW FRQFHSWXDOO\ )RU LQVWDQFH LQ EDFNSURSDJDWLRQ QHXUDO QHWZRUNV QRGHV QHXURQVf WUDGLWLRQDOO\ GR QRW KDYH PHDQLQJ 2QO\ D IHZ W\SHV RI QHXUDO QHWZRUNV VXFK DV WKRVH ZKLFK XVH SROLFLHV OLNH KDUPRQ\ WKHRU\ KDYH PHDQLQJIXO QRGHV WKHUHIRUH ODEHOLQJ D EDFNSURSDJDWLRQ QHXUDO QHWZRUN KDV QR VLJQLILFDQFH +RZHYHU VXEPRGHOLQJ D QHXURQ PD\ KDYH VLJQLILFDQFH ,Q JHQHUDO ODEHOLQJ QRGHV UHTXLUHV VRPH H[WUD HIIRUW ,W LV FHUWDLQO\ PXFK HDVLHU WKDQ VWDUWLQJ D NQRZOHGJH EDVH IURP VFUDWFK ,W LV DOVR EHWWHU WKDQ KDYLQJ QR NQRZOHGJH EDVH DW DOO 7KH IDFW EDVH ZLOO RQO\ EH VXIILFLHQW IRU FRPSOH[ TXHVWLRQV LI HQRXJK GHWDLO KDV EHHQ PRGHOHG $GGLWLRQDOO\ EHFDXVH WKH IDFWEDVH LV GHYHORSHG VWULFWO\ IURP IRUPDOLVPV ZKLFK DUH EDVHG RQ WLPH RQO\ G\QDPLF LQIRUPDWLRQ FDQ EH GHULYHG 6RPH VLPSOH WYSH2I DQG SDUW2I LQIRUPDWLRQ FDQ EH IRXQG IURP WKH KLHUDUFK\ )RU H[DPSOH LQ WKH $)06 WKH 5RERWO ZDV SDUW RI WKH IDFWRU\ SDUW2ILIDFWRU\ 5RERW @f 7KLV LV QRW HQRXJK LQIRUPDWLRQ WR DVN TXHVWLRQV DERXW SK\VLFDO VWUXFWXUH RU WKH JHRPHWU\ RI WKH V\VWHP LH :LOO DQ\ RI WKH $* 9V FROOLGH"f ,Q .$6 PRGHOV WKH SK\VLFDO ORFDWLRQ RI REMHFWV ZLOO FKDQJH RYHU WLPH ,W LV UHDVRQDEOH WR H[SHFW WKDW LQ VRPH V\VWHPV WKH SK\VLFDO UHODWLRQVKLSV EHWZHHQ REMHFWV RYHU WLPH LV WKH LQIRUPDWLRQ ZKLFK LV VRXJKW E\ WKH LQYHVWLJDWRU ,Q K\EULG PRGHO WKHRU\ WKHUH LV QR FOHDU PHDQV WR FRRUGLQDWH JHRPHWULF IRUPDOLVPV $QRWKHU SUREOHP LV WKH UHODWLRQVKLS EHWZHHQ GLIIHUHQW V\PEROLF DQDO\WLFDO PHWKRGV (DFK URXWLQH ZRUNV LQGLYLGXDOO\ ,Q VRPH FDVHV LW LV DSSDUHQW KRZ RQH PHWKRG FDQ KHOS DQRWKHU IRU

PAGE 94

H[DPSOH D V\PEROLF PHWKRG FDQ KHOS D QXPHULF PHWKRG ,Q JHQHUDO WKH NQRZOHGJH EDVH ZLOO DOVR KDYH WR LQFOXGH LQIRUPDWLRQ SHUWDLQLQJ WR WKH UHODWLRQVKLS EHWZHHQ SURSHUWLHV GHULYHG IURP WKH DQDO\WLFDO PHWKRGV 7KLV ZDV H[SHFWHG EXW WKH DSSURDFK FDQ EH KLJKO\ LQGLYLGXDOL]HG $GRSWLQJ D SDUWLFXODU PHWKRGRORJ\ PD\ QRW EH GHVLUDEOH &RPPLWWLQJ WR D PHWKRG ZKLFK VWLSXODWHV D VSHFLILF VHTXHQFH RI WKH SULQFLSOHV PD\ QRW KDYH EHHQ WKH PRVW DSSURSULDWH PHWKRG EXW LW PD\ EH XQDYRLGDEOH LI PXOWLSOH VRXUFHV RI LQIRUPDWLRQ DUH WR EH XWLOL]HG $QRWKHU SUREOHP LV WKH VHOHFWLRQ RI WKH LQLWLDO PRGHO %HFDXVH WKH PDLQ HPSKDVLV PD\ EH RQ V\VWHPV DERXW ZKLFK YHU\ OLWWOH ZDV NQRZQ WKH LQLWLDO FKRLFH RI D PRGHO FRXOG QRW HDVLO\ EH GHWHUPLQHG HJ VWDWH YHUVXV SDUDOOHOf 7KHUHIRUH LW PLJKW EH QHFHVVDU\ WR LQFOXGH DQ DEVWUDFW IRUPDOLVP LQ K\EULG PRGHO WKHRU\ 7KLV ZRXOG OHW WKH LQYHVWLJDWRU EHJLQ WR GHVFULEH REMHFWV UHODWLRQVKLSV DQG GDWD ZLWKRXW FRPPLWWLQJ WR D VSHFLILF DSSURDFK :KHQ WKH LQYHVWLJDWRU GRHV FRPPLW WR DQ LQLWLDO DSSURDFK WKH DEVWUDFW IRUPDOLVP UHDOO\ MXVW D KLHUDUFKLFDO JUDSKf VHUYHV RQO\ WR JURXS WRJHWKHU WKH XQGHUO\LQJ PRGHOV 7KH DEVWUDFW PRGHO KDV QR G\QDPLF GHVFULSWLRQ RU XVHIXO DQDO\WLFDO SURSHUWLHV +RZHYHU WKH JUDSK FDQ EH XVHG WR FRPSLOH VLPSOH IDFWV IRU WKH NQRZOHGJH EDVH ,Q VHOHFWLYH FRQWUROOHU IRUPDOLVPV WKH WRNHQV 3HWUL QHWVf RU FXVWRPHUV TXHXLQJ QHWZRUNf PLJKW UHSUHVHQW REMHFWV ZKLFK DQ LQYHVWLJDWRU ZRXOG OLNH WR PRGHO 7KHUH LV FXUUHQWO\ QR FOHDQ ZD\ WR GHVFULEH IRUPDOO\ WKH LQWHUDFWLRQ EHWZHHQ WKHVH REMHFWV DQG WKH VHOHFWLYH FRQWUROOHU PRGHO 7KH LQYHVWLJDWRU PXVW SURJUDP WKH LQWHUDFWLRQ E\ KDQG 2QH RI WKH JRDOV RI K\EULG PRGHO WKHRU\ LV WR UHPRYH WKLV W\SH RI DGKRF RU LQIRUPDO FRRUGLQDWLRQ $ K\EULG PRGHO UHSUHVHQWV D VWUXFWXUDO RU FRQFHSWXDO KLHUDUFK\ &ODVV KLHUDUFKLHV GR QRW FRQIRUP WR WKH SDUDGLJP HQIRUFHG E\ K\EULG PRGHO WKHRU\ ,Q VRPH FDVHV HVSHFLDOO\ ZKHQ EXLOGLQJ OLEUDULHV RI PRGHOV WKH VWUXFWXUDO DSSURDFK LV QRW VXLWDEOH IRU H[DPSOH ZKHQ D WYSH2I KLHUDUFK\ LV QHHGHG +\EULG PRGHO WKHRU\ RQO\ SHUPLWV SDUW 2I KLHUDUFKLHV :LWK K\EULG PRGHO WKHRU\ WKHUH LV DW OHDVW D IRUPDO IRXQGDWLRQ XSRQ ZKLFK WKHVH SUREOHPV FDQ EH IRUPXODWHG :LWKRXW D VWDQGDUG WKHRU\ WKHUH LV QR ZD\ WR DQDO\]H V\PEROLFDOO\ RU QXPHULFDOO\ D PRGHO LQ D JHQHUDO PDQQHU :LWKRXW D VWDQGDUG WKHRU\ LQ HLWKHU LQWUD RU

PAGE 95

LQWHUPRGHO FRRUGLQDWLRQ HDFK SDLU RI IRUPDOLVPV ZRXOG UHTXLUH D GLVWLQFW FRRUGLQDWLRQ SURWRFRO DQG ZRXOG UHTXLUH IRUPDOLVP VSHFLILF NQRZOHGJH +\EULG PRGHO WKHRU\ LV EDVHG RQ IRUPDOLVPV 3HWUL QHWV TXHXLQJ QHWV HWFf ZKLFK DUH XVHG LQ PDQ\ ILHOGV DQG XQGHUVWRRG E\ PDQ\ UHVHDUFKHUV 7OLLV SODFHV K\EULG PRGHO WKHRU\ LQ D XQLTXH SRVLWLRQ ZLWKLQ PRGHOLQJ WKHRULHV ,W KDV H[WHQGHG WKH SRWHQWLDO RI IRUPDO PRGHOLQJ PHWKRGV ZLWKRXW FKDQJLQJ WKH ZD\ LQYHVWLJDWRUV FXUUHQWO\ XVH PRGHOLQJ PHWKRGV DQG ZLWKRXW VLJQLILFDQWO\ LQFUHDVLQJ WKH FRPSOH[LW\ LQYROYHG LQ PRGHOLQJ 6XPPDU\ +HWHURJHQHRXV +LHUDUFKLFDO PRGHOLQJ LV D JHQHUDO WHUP XVHG WR GHVFULEH DQ\ PHWKRG ZKLFK VXSSRUWV WKH FRQVWUXFWLRQ RI PRGHOV LQ D KLHUDUFKLFDO PDQQHU ZLWK WKH XVH RI PXOWLSOH PRGHO W\SHV 7KH PHWKRG PXVW DOVR VXSSRUW WKH XVH RI V\PEROLF QXPHULF DQG LQWHUSUHWDWLYH DQDO\VLV PHWKRGV +\EULG PRGHO WKHRU\ LV D WKHRUHWLFDO UHSUHVHQWDWLRQ ZKLFK SURYLGHV WKH QHFHVVDU\ IRUPDOLW\ WR PHHW WKH UHTXLUHPHQWV RI ++ PRGHOLQJ 7KLV LV DFFRPSOLVKHG E\ FRRUGLQDWLQJ H[LVWLQJ PRGHOLQJ IRUPDOLVPV LQVWHDG RI WU\LQJ WR WDNH D VLQJOH IRUPDOLVP DQG JHQHUDOL]H LW ,Q K\EULG PRGHO WKHRU\ DQ LQYHVWLJDWRU FDQ HDVLO\ FRQVWUXFW D PRGHO E\ LWHUDWLYH UHILQHPHQW (DFK OHYHO LQ WKH KLHUDUFK\ LQFUHDVHV WKH GHWDLO DQG DFFXUDF\ RI WLUH PRGHOfV EHKDYLRU %HFDXVH HDFK OHYHO LQ WKH KLHUDUFK\ LV PRUH DEVWUDFW WKDQ ORZHU OHYHOV D KLHUDUFKLFDO PRGHO SURYLGHV DQ LQIRUPDWLRQ VWUXFWXUH FRPSDWLEOH ZLWK NQRZOHGJH EDVH UHDVRQLQJ PHWKRGV KRZHYHU HDFK OHYHO HYHQ WKH PRVW DEVWUDFW RQHV DUH PRGHOHG XVLQJ IRUPDOLVPV ZKLFK KDYH ZHOO NQRZQ V\PEROLF DQG QXPHULF SURSHUWLHV &RQVHTXHQWO\ D SDUWLDO RU DEVWUDFW PRGHO FDQ VWLOO EH DQDO\]HG 7KH KLHUDUFK\ DOVR VXSSRUWV GHYHORSPHQWDO DQG FRQFHSWXDO HIILFLHQF\ IRU WKH PRGHO EXLOGHU E\ DOORZLQJ IRU VWUXFWXUHG WRSGRZQ GHYHORSPHQW 7KH PRVW HIIHFWLYH PHFKDQLVP IRU FXOWLYDWLQJ GHYHORSPHQWDO DQG FRQFHSWXDO HIILFLHQF\ LV DFKLHYHG E\ FRRUGLQDWLQJ KHWHURJHQHRXV PRGHO W\SHV $W DQ\ OHYHO LQ WKH KLHUDUFK\ DQ LQYHVWLJDWRU FDQ XVH D IRUPDOLVP ZKLFK PHHWV KLVKHU FXUUHQW IXQFWLRQDO DQG SUDJPDWLF QHHGV ,Q K\EULG PRGHO WKHRU\ WKH PRGHOLQJ IRUPDOLVP ZKLFK FDSWXUHV WKH HVVHQWLDO FKDUDFWHULVWLFV RI WKH

PAGE 96

EHKDYLRU FXUUHQWO\ EHLQJ PRGHOHG FDQ EH FRRUGLQDWHG ZLWK PRGHOV RI RWKHU SDUWV RI WKH V\VWHP UHJDUGOHVV RI WKH IRUPDOLVPV XVHG WR GHVFULEH WKHP +\EULG PRGHO WKHRU\ FRQFHSWXDOO\ VHSDUDWHV IRUPDOLVPV LQWR WZR OHYHOV FRQWUROOHU PRGHOV DQG FRPSRQHQW PRGHOV 7KUHH RI WKH WOLUHH W\SHV RI FRQWUROOHUV ZHUH GLVFXVVHG VWDWH SDUDOOHO DQG VHOHFWLYH PRGHO FRQWUROOHUV 7KHVH WOLUHH FRQWUROOHU W\SHV VXSSRUW LQWUDPRGHO FRRUGLQDWLRQ (DFK RI WKH WKUHH PRGHO FRQWUROOHUV PDQDJHV D VHW RI FRPSRQHQW PRGHOV )RU H[DPSOH D 3HWUL QHW LV D VHOHFWLYH FRQWUROOHU WKDW PDQDJHV SODFH DQG WUDQVLWLRQ FRPSRQHQW PRGHOV %\ FUHDWLQJ WZR OHYHOV WKUHH JRDOV RI ++ PRGHOLQJ KDYH EHHQ UHDOL]HG )LUVW D FRPSRQHQW FDQ EH VXEPRGHOHG FRRUGLQDWHGf ZLWK DQRWKHU FRPSOHWHO\ GLIIHUHQW W\SH RI IRUPDOLVP UHSUHVHQWHG E\ DQRWKHU FRQWUROOHU PRGHOf 6HFRQG NQRZOHGJH DERXW FRQWUROOHUV FDQ EH JHQHUDOL]HG 7KLV VLPSOLILHV WKH LQFOXVLRQ RI DGGLWLRQDO W\SHV RI IRUPDOLVPV 7KLUG LQWUDPRGHO FRRUGLQDWLRQ SURYLGHV D VWUXFWXUHG ZD\ IRU K\EULG V\PEROLF DQG QXPHULF DQDO\WLFDO PHWKRGV WR EH XVHG LQ FRQMXQFWLRQ ZLWK HDFK RWKHU +\EULG DQDO\VLV DOVR LQFOXGHV WUDGLWLRQDO $, DQG NQRZOHGJH EDVH PHWKRGV %\ WDNLQJ DGYDQWDJH RI QDWXUDO ODQJXDJH WH[W DWWDFKHG WR WKH QRGHV DQG DUFV RI WKH PRGHOfV JUDSK D IDFW EDVH FRPSLOHG IURP WKLV WH[W FDQ EH FRPELQHG ZLWK D JHQHUDOL]HG NQRZOHGJH EDVH 7KH LQYHVWLJDWRU QHHGV RQO\ WR IROORZ D IHZ VLPSOH FRQVLVWHQF\ UXOHV UHJDUGLQJ WKH IRUP RI WKH WH[W 7KH FRPSLOHG NQRZOHGJH EDVH FDQ WKHQ VHUYH DV D IURQWHQG LQ D FRPSXWHU HQYLURQPHQW DQG DV D VRXUFH RI QHZ LQIRUPDWLRQ E\ WKH XVH RI UHDVRQLQJ WHFKQLTXHV $ K\EULG PRGHO LV D GHFODUDWLYH UHSUHVHQWDWLRQ RI D V\VWHP 7KH FRPSRQHQW HGJH DQG VWDWH VHW FRQWDLQ WKH QHFHVVDU\ LQIRUPDWLRQ IRU V\PEROLF DQDO\VLV 7KH VWDWH VHW WUDQVLWLRQ IXQFWLRQ DQG RXWSXW IXQFWLRQ FRQWDLQ WKH LQIRUPDWLRQ UHTXLUHG IRU QXPHULFDO DQDO\VLV VLPXODWLRQf 7KH XVH RI QDPHG VHWV DQG SURMHFWLRQ IXQFWLRQV DOORZV WKH DXWRPDWLF FRPSLODWLRQ RI D NQRZOHGJH EDVH ,Q WKLV FRQWH[W K\EULG PRGHO WKHRU\ LV D WKHRUHWLFDO UHSUHVHQWDWLRQ ZKLFK SURYLGHV WKH QHFHVVDU\ IRUPDOLW\ WR PHHW WKH UHTXLUHPHQWV RI KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ +\EULG PRGHO WKHRU\ LV DQ DOWHUQDWLYH DSSURDFK WR FRPELQHG GLVFUHWHFRQWLQXRXV PXOWLPRGHO WKHRULHV DQG VXEVXPHV PRVW RI WKH FRQFHSWV LQ FRPELQHG GLVFUHWHFRQWLQXRXV V\VWHP VLPXODWLRQ ,W VXSSRUWV D

PAGE 97

QHZ FRQFHSW LQ KHWHURJHQHRXV KLHUDUFKLFDO PRGHOLQJ FDOOHG LQWUDPRGHO FRRUGLQDWLRQ ,QWUDPRGHO FRRUGLQDWLRQ LV D PHWKRG LQ ZKLFK WKH FRPSRQHQWV RI D PRGHO FDQ EH FRRUGLQDWHG ZLWK RWKHU PRGHOV ,Q WKLV PDQQHU K\EULG PRGHO WKHRU\ H[WHQGV WKH QRWLRQ RI LQWHUPRGHO FRRUGLQDWLRQ LQ FRPELQHG GLVFUHWHFRQWLQXRXV V\VWHP VLPXODWLRQ ,QWHUPRGHO FRRUGLQDWLRQ LV D PHWKRG LQ ZKLFK WZR PRGHOV FDQ RQO\ LQWHUDFW WKURXJK LQSXW DQG RXWSXW )XUWKHUPRUH D K\EULG PRGHO LV D GHFODUDWLYH UHSUHVHQWDWLRQ RI D V\VWHP %\ UHVWULFWLQJ WKH IRUP RI WKLV UHSUHVHQWDWLRQ D K\EULG PRGHO FRQWDLQV WKH GDWD QHFHVVDU\ LQIRUPDWLRQ IRU D FRPSXWHU HQYLURQPHQW WR SHUIRUP V\PEROLF QXPHULFDO DQG LQWHUSUHWDWLYH DQDO\VLV DXWRPDWLFDOO\ ZLWKRXW DGGLWLRQDO HIIRUW IURP WKH XVHU

PAGE 98

5()(5(1&(6 $ $OOHQ -) 0DLQWDLQLQJ .QRZOHGJH DERXW 7HPSRUDO ,QWHUYDOV &RPPXQLFDWLRQV RI WKH $&0 f SS $ $OOHQ -)7RZDUGV D *HQHUDO 7KHRU\ RI $FWLRQ DQG 7LPH $UWLILFLDO ,QWHOOLJHQFH f SS %DQ %DQNV DQG -6 &DUVRQ ,, 'LVFUHWH(YHQW 6\VWHP 6LPXODWLRQ 3UHQWLFH+DOO (QJOHZRRG &OLIIV 1HZ -HUVH\ %LU %LUWZLVWOH 0 'LVFUHWH HYHQW PRGHOOLQJ RQ VLPXOD 6SULQJHU9HULDJ 1HZ
PAGE 99

)LVD )LVKZLFN 3$ 6WXG\LQJ KRZ 0RGHOV (YROYH $Q (PSKDVLV RQ 6LPXODWLRQ 0RGHO (QJLQHHULQJ ,Q $GYDQFHV LQ $ DQG 6LPXODWLRQ 5 8WWDVLQJK DQG $0 :LOGEHUJHU HGVf 6LPXODWLRQ 6HULHV f 6&6 ,QWHUQDWLRQDO 6DQ 'LHJR &DOLIRUQLD SS )LVE )LVKZLFN 3$ 7RZDUG DQ ,QWHJUDWHG $SSURDFK WR 6LPXODWLRQ 0RGHO (QJLQHHULQJ ,QWHUQDWLRQDO -RXUQDO RI *HQHUDO 6\VWHPV f SS )LVD )LVKZLFN 3$ DQG 5% 0RGMHVNL HGVf .QRZOHGJH%DVHG 6LPXODWLRQ $GYDQFHV LQ 6LPXODWLRQ 6SULQJHU9HUODJ 1HZ
PAGE 100

+RS .DO .XL .XL 0LO 0RR 0\F 1DQ 2UHD 2UHE 2UH 3DJ 3HJ +RSFURIW -( DQG 8OOPDQ -' ,QWURGXFWLRQ WR $XWRPDWD 7KHRU\ /DQJXDJHV DQG &RPSXWDWLRQ $GGLVRQ:HVOH\ 3XEOLVKLQJ &R .DODVN\ '5 DQG '$ 'DYLV &RPSXWHU $QLPDWLRQ ZLWK &,1(0$ :LQWHU 6LPXODWLRQ &RQIHUHQFH 6&6 ,QWHUQDWLRQDO 6DQ 'LHJR &DOLIRUQLD SS .XLSHUV % &RPPRQVHQVH 5HDVRQLQJ DERXW &DXVDOLW\ 'HULYLQJ %HKDYLRU IURP 6WUXFWXUH ,Q 4XDOLWDWLYH 5HDVRQLQJ DERXW 3K\VLFDO 6\VWHPV %REURZ '* HGf 0,7 3UHVV &DPEULGJH 0DVVDFKXVHWWV SS .XLSHUV %f 4XDOLWDWLYH 5HDVRQLQJ 0RGHOLQJ DQG 6LPXODWLRQ ZLWK ,QFRPSOHWH .QRZOHGJH $XWRP£WLFD f SS 0LOOHU 97 DQG 3$ )LVKZLFN 5HDVRQLQJ ZLWOL +HWHURJHQRXV +LHUDUFKLFDO 0RGHOV $SSOLFDWLRQV LQ $, ; 2UODQGR )ORULGD $SULO 0RRUH 5& 7KH 5ROH RI /RJLF LQ .QRZOHGJH 5HSUHVHQWDWLRQ DQG &RPPRQVHQVH 5HDVRQLQJ 3URFHHGLQJV RI WKH 1DWLRQDO &RQIHUHQFH RQ $UWLILFLDO ,QWHOOLJHQFH 3LWWVEXUJK 3HQQV\OYDQLD SS 0\FURIW $ DQG 5$ 2f.HHIH $ 3RO\PRUSKLF 7\SH 6\VWHP IRU 3URORJ $UWLILFLDO ,QWHOOLJHQFH f SS 1DQFH 5( 7KH &RQLFDO 0HWKRGRORJ\ $ )UDPHZRUN IRU 6LPXODWLRQ 0RGHO 'HYHORSPHQW ,Q 0HWKRGRORJ\ DQG 9DOLGDWLRQ 2 %DNL HGf 6LPXODWLRQ 6HULHV f SS 2UHQ 7, %DVHV IRU $GYDQFHG 6LPXODWLRQ 3DUDGLJPV IRU WKH )XWXUH 0RGHOOLQJ DQG VLPXODWLRQ PHWKRGRORJ\ NQRZOHGJH V\VWHPVf SDUDGLJPV 1RUWK+ROODQG $PVWHUGDP &KDSWHU 2UHQ 7, 6LPXODWLRQ 0RGHOV 7D[RQRP\ ,Q (QF\FORSHGLD RI 6\VWHPV DQG &RQWURO 0 6LQJK HGf 3HUJDPRQ 3UHVV 1HZ
PAGE 101

3HW 3HWHUVRQ -/ 3HWUL 1HW 7KHRU\ DQG WKH 0RGHOOLQH RI 6\VWHPV 3UHQWLFH+DOO ,QF (QJOHZRRG &OLIIV 1HZ -HUVH\ 3ULLD 3UDKRIHU + 6\VWHP 7KHRUHWLF )RXQGDWLRQV IRU &RPELQHG 'LVFUHWH&RQWLQXRXV 6\VWHP 6LPXODWLRQ 'RNWRU GHU WHFKQLVFKHQ :LVVHQVFKDIWHQ 'HSW RI 6\VWHPV 7KHRU\ DQG ,QIRUPDWLRQ (QJLQHHULQJ -RKDQQHV .HSOHU 8QLYHUVLW\ /LQ] $XVWULD 3ULLE 3UDKRIHU + 6\VWHPV 7KHRUHWLF )RUPDOLVPV IRU &RPELQHG 'LVFUHWH &RQWLQXRXV 6\VWHP 6LPXODWLRQ ,QWHUQDWLRQDO -RXUQDO RI *HQHUDO 6\VWHPV f SS 3XL 3XLJMDQHU 5 DQG 3RWLHU HGVf 0RGHOOLQJ 7HFKQLTXHV DQG 7RROV IRU &RPSXWHU 3HUIRUPDQFH (YDOXDWLRQ 3OHQXP 3UHVV 1HZ
PAGE 102

:\P =DG =HL =HL =HL :\PRUH $: $ 0DWKHPDWLFDO 7KHRU\ RI 6\VWHP 'HVLJQ 6$1'6 7XVFDQ $UL]RQD =DGHK /$ )X 7DQDND DQG 0 6KLPXUD )X]]\ 6HWV DQG WKHLU $SSOLFDWLRQ WR &RJQLWLYH DQG 'HFLVLRQ 3URFHVVHV $FDGHPLF 3UHVV 1HZ
PAGE 103

%,2*5$3+,&$/ 6.(7&+ 7RGG 0LOOHU UHFHLYHG KLV $VVRFLDWH RI $UWV GHJUHH LQ DUFKLWHFWXUH LQ IURP WKH 8QLYHUVLW\ RI )ORULGD ,Q KH UHFHLYHG D %DFKHORU RI 6FLHQFH GHJUHH LQ FRPSXWHU DQG LQIRUPDWLRQ VFLHQFHV WKURXJK WKH &ROOHJH RI %XVLQHVV $GPLQLVWUDWLRQ DW WKH 8QLYHUVLW\ RI )ORULGD ,Q KH UHFHLYHG D PDVWHUfV GHJUHH LQ FRPSXWHU HQJLQHHULQJ WKURXJK WKH &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV 'HSDUWPHQW DW WKH 8QLYHUVLW\ RI )ORULGD 7KH FRPSOHWLRQ RI WKLV GLVVHUWDWLRQ ZLOO UHVXOW LQ D ORQJDZDLWHG 3K' LQ FRPSXWHU VFLHQFH WKURXJK WKH (QJLQHHULQJ &ROOHJH DW WKH 8QLYHUVLW\ RI )ORULGD

PAGE 104

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3DXO $ )LVKZLFN &KDLUPDQ $VVRFLDWH 3URIHVVRU RI &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3URIHVVRU RI $HURVSDFH (QJLQHHULQJ 0HFKDQLFV DQG (QJLQHHULQJ 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ +RZDUG : %HFN $VVLVWDQW 3URIHVVRU RI $JULFXOWXUDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 5LFKDUG ( 1HZPDQ:ROIH $VVLVWDQW 3URIHVVRU RI &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV

PAGE 105

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ /L 0LQ )X $VVLVWDQW 3URIHVVRU RI &RPSXWHU DQG ,QIRUPDWLRQ 6FLHQFHV 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW :LQIUHG 0 3KLOOLSV 'HDQ &ROOHJH RI (QJLQHHULQJ 0DGHO\Q 0 /RFNKDUW 'HDQ *UDGXDWH 6FKRRO

PAGE 106

81,9(56,7< 2) )/25,'$ 0LO 00


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID EGUANS1M3_ZATYUL INGEST_TIME 2012-02-17T16:56:26Z PACKAGE AA00003248_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES