Citation
The basement structure, tectonic history, seismicity, and seismic hazard potential of the Floridan Plateau region

Material Information

Title:
The basement structure, tectonic history, seismicity, and seismic hazard potential of the Floridan Plateau region
Creator:
Lord, Kenneth M
Publication Date:
Language:
English
Physical Description:
x, 221 leaves : ill. ; 29 cm.

Subjects

Subjects / Keywords:
Basements ( jstor )
Coastal plains ( jstor )
Earthquakes ( jstor )
Fault zones ( jstor )
Gravitational anomalies ( jstor )
Plateaus ( jstor )
Seismic activity ( jstor )
Tectonics ( jstor )
United States history ( jstor )
Zero ( jstor )
Gulf of Mexico ( local )
Genre:
bibliography ( marcgt )
theses ( marcgt )
non-fiction ( marcgt )

Notes

Thesis:
Thesis (Ph. D.)--University of Florida, 1993.
Bibliography:
Includes bibliographical references (leaves 194-219).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Kenneth M. Lord.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
030326811 ( ALEPH )
AKA9320 ( NOTIS )
30784199 ( OCLC )

Downloads

This item has the following downloads:


Full Text









THE BASEMENT STRUCTURE, TECTONIC HISTORY,
SEISMICITY, AND SEISMIC HAZARD POTENTIAL
OF THE FLORIDAN PLATEAU REGION














By

KENNETH M. LORD


A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY












ACKNOWLEDGMENTS

This project was generously funded by the Florida Power and


Light Corporation.


I am indebted to John Luke, Jerry Burford, Russ


Gouldy, Orin Pearson, and David Chaney, all of F.P. & L,


continuing support and enthusiasm.


for their


Additional support was given


by Walt Schmidt and the Florida Geological Survey


who provided the


drill rig necessary for the installation of the seismograph bases.


Over the past years,


Doug Smith's enthusiasm, professionalism,


and friendship have made all aspects of my graduate studies both


rewarding and enjoyable.


In addition, numerous other people


provided advice, assistance, and encouragement to me during the


course of this project.


Tony Randazzo, Paul Mueller, Neil Opdyke,


Tom Crisman, and Ann Heatherington have each provided me with


valuable guidance and helpful suggestions.


Ray


Thomas spent many


long hours helping me to debug various digital systems.


Joe Smyth


and John Roche of the Florida Division of Recreation and Parks and
Robert Arnberger of the National Park Service each went to a great
deal of trouble to make their facilities available for this project, as
did Wes Greenman and Sam Langley of the Department of
Astronomy.







helped in the difficult tasks of installing and maintaining the
network of seismographs. In addition, lengthy conversations with
Jon Jee proved to be very fruitful. I am grateful to each of these


people for their time, interest, and assistance.














TABLE OF CONTENTS


Page


ACKNOWLEDGMENTS

LIST OF FIGURES ....

ABSTRACT ........


CHAPTERS


INTRODUCTION


Purpose . . 1
Methodology .................................. 4


THE STRUCTURE OF THE FLORIDAN PLATEAU


Introduction . . .
Methods of Investigation . ...
Results and Interpretations. . ...
Summary ..... . .


TECTONIC EVOLUTION OF THE FLORIDAN
PLATEAU ........ .... .. 64

Introduction ................ ......... .. .. ... 64
Regional Tectonic History ......................... 64


SEISMICITY AND STRESS IN THE
SOUTHEASTERN UNITED STATES ...............80


Introduction. ........
Methods ............
T?^Clrt-


. . 80
. . 81
51








5 REGIONAL SEISMOTECTONIC PROVINCES........... 104

Introduction. .. .. .. .. ..104
Background and Methods ........................105
Results . . 111

6 SEISMIC ATTENUATION IN THE
FLORIDA REGION ............................ 123

Introduction .. .. .. .. .. .. 123
Background and Methods.........................124
Test Cases for Intensity-Absorption Method ....... .128
Results from the Florida Region ..................133

7 SEISMIC HAZARD IN FLORIDA. . .139

Introduction... ............... .................139
Methods . . .139
Results . . .143

8 DISCUSSION AND CONCLUSIONS ...................148

Introduction ................................... 148
Discussion . . 148
Conclusions.. .. .. ... ..... ..... ...... .. ... 158

APPENDIX SEISMIC HAZARD PROBABILITIES FOR SITES
IN FLORID A .. ... .. .. ... .. .... 161

REFERENCES CITED ................................... 194

BIOGRAPHICAL SKETCH............................... 220














LIST OF FIGURES


Drill hole locations and basement lithologies within the
study area. . .. .a. .


Geophysical survey locations within the study area ......... 11


Depth-to-basement of the Floridan Plateau.


. .. 12


4. Bouguer anomaly map of the Floridan Plateau region.


. .13


Magnetic anomaly map of the Floridan Plateau region........16

Bouguer anomaly field of the Floridan Plateau downward-


continued to basement level........


. .17


. Bouguer anomaly field of the Floridan Plateau upward-


continued to 10 km.


. .18


Second vertical derivative of the Bouguer anomaly field


of the Floridan Plateau.


. ..19


Map of drill hole distribution and basement lithologies


with the designated features discussed in the text.


. .24


Depth-to-basement map with the designated features
discussed in the text. . ...


Magnetic anomaly field map with the designated features


discussed in the text.


. .26


- S S- a a.


Page


d a Q d q -


I









Upward-continued Bouguer anomaly map with the


designated features discussed in the text.


. .29


Second vertical derivative of the Bouguer anomaly field


with the designated features discussed in the text.

Various previously published configurations for the
Mesozoic structure of the southern and western


Floridan Plateau basement.


. .30


. .46


Pre-Mesozoic lithotectonic features of the Floridan


Plateau basement...


. .60


Mesozoic structural features of the Floridan Plateau


basement.


. .6 1


Hypothesized sequence of events during Alleghenian
closure resulting in the translocation of Gondwanan
terrane fragments along transform faults in the
Floridan Plateau basement. .....


Hypothesized sequence of events during the formation
of the Late Triassic and Jurassic extensional features of


the Floridan Plateau basement.


Epicentral distribution in the southeastern United States
and northwestern Caribbean from historical and


instrumental records.


. .72


. 82


Pre-Mesozoic allochthonous terranes of the


southeastern United States.


. .93


Selected Mesozoic seismotectonic features of the


southeastern United States.


. .95


The University of Florida Seismograph Network.


110


- a









Modified Mercalli intensity isoseismal map for the
northern Kentucky earthquake of 27 July, 1980.


. .. .. .130


. Modified Mercalli intensity isoseismal map for the


central Idaho earthquake of 28 October, 1983.


Modified Mercalli intensity isoseismal map for the 1886


Charleston earthquake.


Modified Mercalli intensity map for the Florida
earthquake of 27 October, 1973...........


137


The SEISRISK III input file for the calculation of
seismic hazard in peninsular Florida using the
format described in Bender and Perkins (1987)......... 141


The distribution of annual probabilities of exceeding


0.08 g inFlorida.


The distribution of annual probabilities of exceeding


0.02 g in Florida.


...... .. .. .. 145


. . 146


..... .... 131


. .134












Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

THE BASEMENT STRUCTURE, TECTONIC HISTORY,
SEISMICITY, AND SEISMIC HAZARD POTENTIAL
OF THE FLORIDAN PLATEAU REGION

By

Kenneth M. Lord


August 1993


Chairman:


Dr. Douglas L. Smith


Major Department:


Geology


This study seeks to reduce subjectivity in probabilistic seismic
hazard assessments in Florida by providing refined characterizations
of the basement structure, tectonic history, regional seismicity, and


seismic attenuation.


Interpretations of digitally filtered gravity


maps supplemented by previously published data reveal a basement
configuration reflecting the probable translocation of fragments of
Gondwanan crust during Alleghenian continental convergence and
the formation of extensional basins along the southwestern half of


the Floridan Plateau during Mesozoic extension.


The Jay Fault zone


may have originally formed as a dextral transform during
cnn ti n Inrcrtl s -lli inn ht wra c clhchloi onlrtl; ooratr\/a1 tar







Fault.


The Jurassic Tampa Basin is larger than previously mapped


and the South Florida Basin region probably consists of 2-3 separate


northwest-trending basins.


The orientations of the Jurassic


extensional basins suggest two episodes of formation, one during the
rotation of the Yucatan block away from the Floridan Plateau and


another during the separation of North and South America.


There is


no evidence of fault reactivation or other tectonic activity on the
Floridan Plateau since the Middle Cretaceous.
This tectonic quiescence is manifested in the unusually low
level of seismic activity on the Floridan Plateau as demonstrated by a
review of regional instrumental and historical records and the
deployment of a network of digital seismographs accompanied by


four years of monitoring.


The nonuniform distribution of regional


seismic activity is probably related to the distribution and
orientations of preexisting mid-crustal faults and to their
propensities for slippage.
Seismic attenuation in Florida appears to be slightly higher


than in the central United States


western United States.


, but significantly lower than the


Although seismic hazard throughout Florida


is extremely low, the greatest probability for damaging ground
motion (> 0.2 g) exists in northwestern Florida and is calculated to be


8.0 x 10-5


/year, indicating a recurrence interval of 12,500 years.


Throughout most of Florida, however, the probability of exceeding
0.2 g is significantly less than 1.0 x 10-5/year, suggesting recurrence













CHAPTER 1
INTRODUCTION


Purpose


Large construction projects, such as dams, bridges, and nuclear


power plants,


are designed to withstand specific maximum levels and


durations of strong ground motion.


The projections of maximum


levels and durations of strong motion are made through the use of


site-specific seismic hazard analyses,


of criteria.


which are based on a number


These criteria include the levels of historical and


instrumental seismicity


the identification and characterization of


seismotectonic sources, expected maximum magnitudes of
earthquakes, and expected resultant ground motion at particular


sites (e.g.,


Yegian, 1979; Johnston, 1981


Reiter, 1990)


Because the


Floridan Plateau has a historically low level of seismic activity and a
rather enigmatic tectonic setting, little of the information needed to
assess or quantify the criteria used for the analysis of seismic hazard
is available.
The most reliable indicators of seismic hazard are the regional


levels of historical and instrumental seismicity


The paucity of


reported seismic events in the historical record suggests that the


--c_- 1


I T -_. L---- -- -A --





2

escarpment, suggests that the historical record may not provide a


reliable measure of seismicity.


In addition, because there has been


no regional network of seismographs until recently, there is little
documentation for the level of instrumental seismicity.
Consequently, neither historical nor instrumental records provide
reliable gauges of seismic activity for use in hazard analyses in
Florida.
Another potential indicator of seismic hazard is the
identification and characterization of seismotectonic sources and
source regions. Seismicity in the eastern United States is generally
attributed to the reactivation of Mesozoic or older faults in a
moderate stress field (Sykes, 1978; Hamilton, 1981; Wentworth and
Mergner-Keefer, 1983; Zoback, 1992); however, the structure of the


Floridan Plateau basement is deeply buried.


The crystalline


basement of the plateau is overlain by Coastal Plain sedimentary
deposits, which range in thickness from about 900 meters in north-
central Florida to over 5000 meters in southern Florida (Wicker and
Smith, 1978). As a result of this thick sedimentary sequence, there
are relatively few drill holes intersecting the basement (Barnett,
1975; Smith, 1982; Chowns and Williams, 1983) and regional
potential field interpretations are difficult (e.g., Oglesby et al., 1973;


Klitgord et al., 1984).


Consequently, current models for the structure


of the Florida basement are necessarily characterized only by
generalizations of large scale features and lithotectonic units, while





3

The amplitude of ground motion at a particular epicentral
distance from a seismic event is dependent not only upon the seismic


moment of the event


, but also upon individual site characteristics


and seismic attenuation. Seismic attenuation in the eastern and
central United States has been studied on a regional level (Nuttli,


1973A; Jones et al.,


1977


Bollinger, 1979; Campbell, 1981


Singh and


Herrmann, 1983), but there have been no independent studies of
attenuation in Florida. Accordingly, Nuttli's (1973A) generalized
attenuation coefficients for the eastern United States are employed in


calculations of seismic hazard in Florida.


However, the Floridan


Plateau has been shown to be an allochthonous terrane with respect


to the North American craton (e.g., Smith, 1982)


. This suggests that


the mechanical response of the plateau may differ from that of the
remainder of the eastern United States, which would invalidate the


use of Nuttli's attenuation coefficients.


As a result, estimations of


expected ground motion in Florida may be invalid.
One consequence of the limitations inherent in the historical
and instrumental records in Florida and the enigmatic nature of the
tectonics and structure of the basement is that the criteria used in
regional seismic hazard analyses (i.e., seismicity, seismotectonic


characterizations


, and seismic attenuation) are poorly documented.


Previous seismic hazard analyses in Florida have assumed, with little
substantiation, that the risk of local seismic activity is negligible and
that Nuttli's eastern United States attenuation coefficients are





4

analyses and to reexamine the tectonic history of the region.
Specifically, the intention is to provide improved characterizations of
the basement structure, tectonic evolution, regional seismicity, and
seismic attenuation in the Floridan Plateau region, and to incorporate
these into an empirical assessment of seismic hazard in Florida.


Methodoloev


Several geophysical methods have been employed and


incorporated into this study.


methods used are discussed in detail.


In each of the following chapters,


The purpose of this section is


to provide a general overview of the sequence of these individual
methods and how each has been utilized in this study.
The first step of the study was to digitize and filter potential-


field data for the entire Floridan Plateau.


The resultant filtered


gravity maps for the Plateau, when interpreted in conjunction with


previously published magnetic,


drill hole, seismic reflection


and


seismic refraction data, permitted an improved resolution of the
locations, sizes, natures, and spatial relationships between the
various crustal blocks and structural features of the plateau


basement.


A tectonic interpretation based on this improved


structural model prompted a general interpretation of the seismic
history of the plateau, and existing seismic reflection studies of the
Cenozoic sedimentary accumulations overlying the basement allowed
a more specific determination of recent levels of seismic activity.







which only encompass the past twenty years in this region.


Because


instrumental coverage in Florida was insufficient, a network of
digital seismographs was established for the purposes of attempting
to detect and characterize any previously unknown local sources of
seismic activity and to characterize the local mechanical response of


the crust to regional events.


The information compiled from these


historical and instrumental sources was then examined within the
context of previously published regional stress field indicators to
develop a lithospheric model for the distribution of earthquakes in
the southeastern United States.
Following this, each of the seismic source provinces in the
southeastern United States, the Caribbean, and the Gulf of Mexico in
which activity could potentially generate significant ground motion


in Florida were identified.


Each province was characterized based on


the compiled earthquake information, the lithospheric models for the
Floridan Plateau and the southeastern United States, and previously


published material.


Included in the characterizations were estimates


of maximum magnitude and recurrence intervals.
Subsequently, a method was developed to estimate a local


value of seismic attenuation in Florida.


This method utilizes


isoseismal maps as a means of approximating the decrease in peak
ground acceleration with distance from an event with a known or


reasonably well-approximated magnitude.


These parameters


(acceleration, distance, and magnitude) are then used to







where attenuation coefficients are well known.


Once validated, the


method was applied to the isoseismal maps from the 1886 Charleston
earthquake and a 1973 earthquake in northeastern Florida in order
to estimate attenuation coefficients for the southeastern Coastal Plain
and Florida.
Finally, the source zone characterizations and estimated
attenuation coefficients were used as input for a probabilistic seismic


hazard assessment for Florida.


This analysis is based on the method


of Cornell (1968), which addresses the effects of all of the possible
earthquakes likely to affect Florida for each site on a grid of sites


around the state.


Based on the distances to each seismic source zone,


recurrence intervals, and seismic attenuation coefficients, a value is
calculated for each site describing the probability that a particular
acceleration will be exceeded at that site within a given time frame.
The resulting grids were contoured to produce probabilistic seismic
hazard maps for Florida.












CHAPTER 2
THE STRUCTURE OF THE FLORIDAN PLATEAU


Introduction


All regional models describing the structural features of the
Floridan basement have been founded primarily on deep drill hole


data from wells penetrating pre-Cretaceous crystalline rock.


Because


of an intrinsic bias in the spatial distribution of these drill holes,
most of the regional models have been limited in scope to peninsular
Florida, rather than to the entire Floridan Plateau. Similarly, more
localized, yet more detailed, structural models based on seismic
reflection profiles tend to be spatially biased towards offshore areas.


As a result, with the notable exception of Klitgord et al. (1984)


there


has been little effort to integrate previously published studies into
an examination of the Floridan Plateau as a singlar feature.
Since the work of Klitgord et al., a number of pertinent
geochemical, geophysical, and drill hole studies have been published
(e.g., Nelson et al., 1985A; Ball et al., 1988; Heatherington et al., 1989;
Dobson, 1990; Heatherington and Mueller, 1991; McBride, 1991);


these have yet to be examined within a regional context.


The


intention in this chapter is to utilize digitally filtered regional
S,- I C 1 .. .. .. .... .-- ... 1 ..l .J. t, I .ta.a.f I...S t.,. .%C





8

Methods of Investigation


A series of digital geophysical and structure contour maps for
the Floridan Plateau were produced for this investigation using the


methods described in Lord (1992)


These maps cover the rectangular


area encompassed by 24 to 31 degrees north latitude and 80 to 86
degrees west longitude. All of the digitizing, digital filtering
operations, and contouring were done on a IBM 386 compatible,
equipped with a Houston Instruments digitizing tablet. Additional
drafting and figure preparation were done on an Apple Macintosh
IIci equipped with a scanner and laser printer. Commercial software
packages employed include Rockware's Digitize, Golden Software's
Surfer, Lotus 1-2-3, Silicon Beach Software's Superpaint, and a series
of potential-field geophysical programs available through the USGS
(Hildenbrand, 1983; Grauch, 1984; Godson and Mall, 1989).
The first step was to produce a detailed depth-to-basement


map for the plateau.


In this study area, basement is defined by the


unconformity between pre-Late Jurassic rocks and younger
sedimentary accumulations of the Coastal Plain. All available drill
hole depth-to-basement data, shown in Figure 1, were plotted on a
grid representing points with a 9.2 km spacing over the study area.


Sources for these data include Barnett (1975), Smith (1982)


and Williams (1983), Schlager et al. (1984),


Chowns


Ball et al. (1988), and


Dobson (1990).
A number of additional depth-to-basement determinations















* U


* r


"N(* .."4 +++
+
.Y "+'


Florida


Platform


* Granitoid Plutonic Rocks


* Diabase


o Felsic Extrusive Rocks
o Metamorphic Rocks
(Amphibolite Grade)


+ Quartzitic Sandstone or Shale


U Quartzitic Sandstone/Shale with Diabase
* Triassic Redbeds with Diabase
x Mafic Extrusive Rocks
E Intercalated Felsic and Mafic Extrusives


iCnwir 1


ritill1 h1 r d nl mn-l n Iltwvt Hlll;r lnn nalic wAnth;inr rho





10

al., 1981; Schlager et al., 1984; Shaub, 1984; Dillon et al., 1985; Nelson


et al., 1985A; Lord, 1987


al., 198
Figure


8


Ball et al., 1988; McNeely, 1988; Mullins et


Winker and Buffler, 1988; Dobson, 1990; McBride, 1991).


2 is a location map compiled from these geophysical surveys.


In those seismic studies in which the original authors had not made
time-depth conversions, drill hole depth data were used to provide


controls for these conversions.


Where this drill hole control is not


available, such as in deeper areas, time-depth conversions are


largely subjective.


These depth determinations were then plotted on


the appropriate points on the grid.


Depth-to-basement values were


interpolated to each remaining point and the grid was subsequently


digitized and contoured.


well.


The final map is shown in Figure 3.


A Bouguer anomaly map of the study area was produced as
This map, which is shown in Figure 4, is essentially a digitized


and recontoured version of that produced by Klitgord et al. (1984),
although an older map by Oglesby et al. (1973) was extensively


utilized as well.


The original Klitgord map was constructed through


the compilation of several different maps from several different
studies and, consequently, there are minor inconsistencies at the


borders between these study areas.


In addition, their map has a


small data-less area extending along the northwestern coast of
peninsular Florida (Klitgord et al., 1984, pg. 7760, fig. 8).
For the purposes of digital filtering, it was desirable to produce
a single, continuous data set for the study area. In order to










































Figure 2.


Geophysical survey locations within the study area.


(Compiled from Antoine and Harding, 1965; Sheridan et al., 1966;











14

introduce some error, it is believed that any such error will be


minimal.


As with the depth-to-basement map, the Bouguer anomaly


map was digitized on a rectangular grid with a 9.2 km spacing, which
was chosen to conform to software limitations while maximizing the


number of data points.


The resulting 6696 data points were then


contoured with a 5 milligal contour interval using the Surfer
software package.
A magnetic anomaly map (Figure 5) was also constructed, using


data from King (1959)


Gough (1967), and Klitgord et al. (1984).


The


data were digitized from these original maps and contoured using a


50 nanotesla contour interval.


Unfortunately, there are relatively


large areas of the plateau for which there are no data.


The digital


filters used in this study employ Fourier synthesis to transform the
data from the space domain to the frequency (or wave number)
domain. As a consequence of Gibbs phenomenon, that is, the error
introduced during Fourier synthesis near a discontinuity, it was
determined that the data-less areas in the magnetic anomaly map
would result in unacceptable errors should the magnetic data set be
digitally filtered. As a result, the use of an unfiltered magnetic
anomaly map for the plateau is considered to be more desirable for
interpretive purposes.
Because this map represents a compilation from a number of
magnetic surveys (e.g., Klitgord et al., 1984), the anomaly values
from different sections of Figure 5 may be derived from several





15

magnetic anomaly patterns presented in Figure 5, there is
undoubtedly some error in the relative magnetic values between any
given area and values in other sections of the map.
The Bouguer anomaly data were digitally filtered using several
methods and a series of maps were created from the filtered data.
These digital filters included a downward continuation (Figure 6), an


upward continuation (Figure 7),
(Figure 8) of the Bouguer anoma


filters are explained below.


and a second vertical derivative
ly field. The purposes of these


In each case, several rows and columns


of extrapolated data were added to each side of the grid to reduce


the near-boundary distortion of Gibbs phenomenon.


These additional


rows and columns were then removed prior to contouring.
The downward continuation of potential-field data was done
from a level to an irregular surface using the method of Grauch


(1984)


. This method is used to approximate the relative values of


gravitational potentials at the basement surface.


to-basement is quite variable,


Because the depth-


ranging from about 850 m to over


6000 m, the removal of resultant depth-related deviations in the
observed field through this method of downward-
continuation might be expected to reveal previously unobserved


trends or features.


In addition, downward continuation has the


effect of sharpening the field,


which better outlines source features


at depth.
The application of downward-continuation filters, either in the



















198


. This necessitates the use of a low-pass filter prior to


performing these operations.
In order to apply this low-pass filter, the gridded data set is
transformed into the frequency, or wave number, domain through


the use of the two-dimensional Fast Fourier transform (or FFT)


. The


FFT is simply an efficient method of calculating the Discrete Fourier


transform (or DFT),


which, in turn, is a digital method of


approximating the continuous Fourier integral function (Cooley and


Tukey


1965


Bergland,


1969)


. The two-dimensional FFT is given by


G(k,I)


m=O0 n


=o g(m,n)


-2ni (


where G(k,l) is the potential-field function, with k and 1 representing

grid point locations in the frequency domain, m and n are integers
representing grid point locations in the space domain, M is the
number of rows, and N is the number of columns (Hildenbrand,


1983)


. Once in the frequency domain, a tapered low-pass filter was


applied; this progressively filtered out wavelengths from 36.8 km to
18.4 km, while wavelengths below 18.4 km (high frequencies) were


totally squelched.


The data set was then transformed back to the


space domain through the application of the inverse FFT (or IFFT).
For the actual downward continuation, the method of Grauch
(1984) utilizes a Taylor series expansion to approximate the


potential-field data, f(z)


at some depth, z, from the observed


Ln)
+ N


,









f(0) +
2


F(z) = F(O) +


The


i2 f(O) +
OL


z value for each grid location was taken from the depth-to-


basement data already described.


This calculation was repeated for


each point on the grid, the added boundary data were removed, and
the resultant data set subsequently contoured (Figure 6).
Another filter applied to the Bouguer anomaly field was an


upward-continuation to an elevation of 10 km.


This has the effect of


removing short-wavelength features of the field, which are often


attributable to shallow crustal sources (Figure 7)


. The upward-


continuation is accomplished by taking the FFT of the data as
described above, giving the Fourier coefficients G(k,1l). As described


by Fuller (1967)


these Fourier coefficients are then multiplied by


H(k,1)


the wave number response of the filter.


H(k,l) is given by


H(k,I)


2rrz(k


where z is the continuation distance.


The application of the IFFT to


the gridded data and the removal of the added boundary data then
permitted the construction of the final upward-continued map.
In a similar manner, a second vertical derivative map was also


produced.


The second vertical derivative effectively removes long-





22

frequency domain and the Fourier coefficients subsequently
multiplied by the wave number response of the filter as given by


H(k,I)


=411


(Fuller, 1967)


Again, the data set was then transformed back into the space domain
using the IFFT, the extra boundary data removed, and the grid
subsequently contoured.


Results and Interoretations


In general, these maps complement and augment the results of


many previous investigations.


The depth-to-basement map


accurately depicts the Peninsular Arch, the expected southward
increase in depth, the series of Mesozoic basins in the southern and
western regions of the plateau, and a small previously undescribed
basin under the northeastern edge of the plateau (Figure 3).
While the differences between the original Bouguer anomaly
map (Figure 4) and the downward-continued map (Figure 6) are
relatively subtle, the downward continuation is preferable as it more
accurately delineates the boundaries of anomaly-producing features.
The upward-continued map (Figure 7) delineates a number of long-
wavelength features that are clearly associated with large scale
crustal features, such as the Mesozoic basins, that have been


previously described, but poorly located and characterized.


On the





23

accumulations of the Florida Platform are relatively homogeneous


with respect to density.
shallow crustal features


Furthermore, it suggests that smaller
, such as plutons, are not particularly


abundant on the plateau, although this does not preclude the
existence of such features with low density contrasts or in the middle
crust.


Pre-Mesozoic Features of the Plateau Basement
The lithologies of the pre-Mesozoic basement terranes of the
northeastern portion of the plateau have been moderately well


characterized.


Basement lithologies from the remaining portions of


the plateau are unresolved; however, more structural detail is


known.


As a result, this section will necessarily be focused on the


pre-Mesozoic lithotectonic terranes of northern peninsular Florida,
while the next section will be focused primarily on the Mesozoic


structural features of western Florida.


In the following discussion,


the location of each of the lithotectonic features or regions within the
study area is designated by a letter on Figures 9-15.


Osceola Granite--reeion A.


The Osceola Granite, previously


known as the Avalon terrane, is the oldest identified terrane in the


plateau basement.


Although described as a granite by convention, it


is better characterized as a relatively undeformed granitoid batholith
composed of a range of felsic lithologies (Milton and Grasty, 1969;


Barnett, 1975; Smith, 1982)


. This granitoid complex underlies the




























been obtained by Dallmeyer et al. (198


7) using 40Ar/39Ar


techniques on a composite biotite sample from several specimens.
Sm-Nd isotopic data for the Osceola Granite are suggestive of a mixed
source containing both Proterozoic and Archean components
(Heatherington et al., 1989).
The 8 drill holes intersecting granite in east-central Florida are
generally centered around a pentagonal negative gravity anomaly


(Figures 9, 13


14--A), although several of these holes are outside the


boundaries of the anomaly.


The magnetic signature of the terrane is


more complex, as the easternmost of the holes are located along a
north-south oriented, elongated positive magnetic anomaly, while
most of the others are located within the confines of a proximal


negative magnetic anomaly (Figure 11--A).


The north-south


oriented boundary between these magnetic features bisects the
negative gravity anomaly.
Barnett (1975) modeled the Osceola Granite as constituting the
block-faulted end cap of the Peninsular Arch, a hypothesized
structural high under north-central Florida. Although the Peninsular
Arch has since been described as an erosional feature (Smith, 1982)
and the Osceola Granite shows little petrologic evidence of
metamorphism (Milton and Grasty, 1969), the possibility of block


faulting remains.


The randomness and variability in depth-to-


basement for the 8 drill holes is suggestive of block-faulting, as is the
variability in both the gravity and magnetic fields in the area





32

suggested by the number of drill holes that have bottomed in
weathered diabase throughout the area (Figure 9).
The contacts between the Osceola Granite and the juxtaposed
terranes are not well constrained. A primary reason for this arises
from the inherently poor resolution of isotopically determined ages
for the North Florida Rhyolite to the north (Mueller and Porch, 1983)
and the St. Lucie Metamorphic Complex to the southeast (Bass, 1969).
As a result, the fundamental age relationships between the three
terranes remain undetermined and age-based inferences concerning
the nature of the contacts between them are ambivalent. A number
of contradictory suggestions have been made.
For example, Chowns and Williams (1983), citing the apparent
concordance in ages between the Osceola Granite and the
amphibolite, suggested that they could comprise a conterminous
terrane. Accordingly, the rhyolitic terrane would then overlie both
the granite and amphibolite, and be separated from them by a thrust
fault or unconformity. Alternatively, Bass (1969) believed that the
St. Lucie amphibolite, by reason of metamorphic grade, must
necessarily be separated from all other Florida basement rocks by a
"fundamental discontinuity." This was supported by the presence of
thin layers of unaltered basaltic rock, granite, and diorite
immediately over the amphibolite, which implies a horizontally
faulted contact (Bass, 1969). Another possibility is that the Osceola
Granite represents an intrusion into an older terrane consisting of the





33

Granite that it is bounded by steeply dipping contacts with the
surrounding lithologies.
Samples from several drill holes show that the Osceola Granite
extends northeastward and northwestward beyond the boundaries
inferred from the potential-field gradients; however, to the south,
other holes penetrate rocks indicating that the steep gradients mark


the boundaries of the terrane (Figures 9, 11, 13--A)


southwestern boundary


Along its


the Osceola Granite appears to be truncated


by the Jay Fault, as has been suggested by Smith (1982).


To the


southeast, the presence of both mafic and felsic extrusive rocks in
drill holes near to those intersecting the Osceola Granite clearly


delineates the boundary, which coincides with steep,


northeast-


trending gravity gradients separating the pentagonal negative


anomaly from a smaller ovoid positive anomaly.


It is unclear


whether the extrusive rocks overlie the granitoid or rather have


been juxtaposed against it.


The eastern boundary of the Osceola


Granite is unresolved, although the steep north-northeast trending
gravity gradient along the eastern side of the pentagonal negative
anomaly suggests that the granitoid may not extend beyond the coast
of peninsular Florida.


St. Lucie Metamorphic Comnlex--reeion B.


A single drill hole


has revealed the presence of an amphibolite grade metaigneous
assemblage at a depth of about 3760 m immediately southeast of the
Osceola Granite, underlying St. Lucie County (Bass, 1969; Milton and







approximate age obtained for the Osceola Granite.


The assemblage is


comprised primarily of amphibolite, with some quartz diorite gneiss


and chlorite schist (Bass, 1969; Thomas et al., 1989).


Although


several names have been applied to this terrane, in this work it will
be referred to as the St. Lucie Metamorphic Complex.
The drill hole is located near the northern edge of an ovoid


east-west oriented negative gravity and magnetic anomaly


. This


anomaly is relatively small


approximately


100 km long by 5


wide


, and may delineate the boundaries of the terrane (Figures 11


and 13


--B).


It is probable that the St. Lucie Complex is bounded to


the southwest by the Jay Fault.


To the north


the terrane extends


only a short distance, as demonstrated by drill holes and inferred


from the gravity and magnetic anomaly.


To the east, the anomaly


extends only to the coast of peninsular Florida and, in an
interpretation of an offshore seismic reflection profile, Sheridan et al.
(1981) found no evidence for the presence of this terrane off the


Florida coast.


As a result, it appears that the St. Lucie Metamorphic


Complex encompasses only a relatively small area and may therefore


be a fault-bounded block.


An alternative possibility is that the


metamorphic rocks represent a roof pendant in the proximal felsic


igneous rocks (P


Mueller, 1993


personal communication).


The metamorphic grade of the assemblage is indicative of
regional activity, which suggests that this small terrane represents


an isolated fragment of a once larger unit (Bass, 1969).


Another





35

Metamorphic Complex and are approximately the same age


(Dallmeyer, 1984).


Based on these similarities and because there are


no other similar metamorphic terranes known in the Gulf of


Mexico/Caribbean region


Schlager et al. (1984) have inferred the


two to be cogenetic.


North Florida Rhvolite--reeion C.


Overlying the Osceola Granite


to the north and west is a terrane of slightly metamorphosed calc-


alkaline rhyolitic to andesitic volcanic rocks.


The upper surface of


this terrane in northeastern Florida dips southeastward and ranges


in depth from about 1180 m to about 1650 m (Smith, 1982).


The


calc-alkaline nature (Mueller and Porch, 1983) and trace element


signatures (Heatherington et al.,


1989) of samples from this terrane


each suggest eruption in an ocean-continent convergent margin


setting.


In attempting to date two separate samples,


one rhyolite


and one andesite, Mueller and Porch (1983) identified disturbed


40Ar/39Ar release patterns from each--despite this,


concordant ages of 412


apparently


15 Ma and 418 9 Ma were obtained.


Although the disturbed release patterns suggest these age
determinations to be minima, stratigraphic relationships suggest a
Late Precambrian to Early Paleozoic age for the terrane (Arden,
1974; Chowns and Williams, 1983).
Few structural inferences have been made about the North


Florida Rhyolite.


From a seismic reflection survey in the Florida


panhandle, Arden (1974) distinguished faulting and gentle folds in





36

the South Georgia Rift, as suggested by Arden (1974) and Klitgord et
al. (1984).
The sublateral extent of this terrane is uncertain. Although the
distribution of drill holes intersecting rhyolite is generally coincident
with an elongated negative gravity and magnetic anomaly (Figures 9


and 13-C)


previous geophysical and drill hole studies suggest that


the terrane continues northward under the Suwannee Basin terrane,
described below, and extends into southern Georgia (Barnett, 1975;


Wicker and Smith, 1978; Chowns and Williams, 1983).


To the south,


two drill holes intersecting rhyolite have been interpreted to indicate
a subcrop of this terrane immediately south of the Osceola Granite


(e.g., Chowns and Williams, 1983


Dallmeyer, 1987)


Several undated


rhyolitic samples have also been obtained from the south-central
portion of the Floridan Plateau in the South Florida Basin; it has been
suggested that these samples are either from horsts of this same
felsic volcanic terrane (Thomas et al., 1989) or from part of a
separate southerly Mesozoic bimodal suite (Barnett, 1975; Mueller


and Porch, 1983)


. To the west, felsic basement rocks have been


encountered in the Florida panhandle area; these rocks are undated,
and have been variously correlated to the North Florida Rhyolite


(Arden, 1974; Thomas et al.,1989),


1975)


the Osceola Granite (Barnett,


and to the Permian (?) granite of the Wiggins Arch in


Mississippi (Smith, 1983).


Suwannee Basin--region D.


Overlying the north Florida igneous







1983; Thomas et al, 1989).


This terrane extends northward into


southern Georgia and westward at least to the Florida panhandle, as
well as southwestward to the Middle Ground Arch in the north-
central region of the plateau (Ball et al., 1983; Dobson and Buffler,


1991)


. The Suwannee Basin has been intersected by numerous drill


holes at depths ranging from 720 m to 1730 m (Smith, 1982) and is
composed of a massive Early Ordovician quartzitic sandstone overlain
by intercalated Middle Ordovician to Middle Devonian sandstones


and shales (Arden, 1974)


. The topographic high of the terrane, in the


north-central portion of peninsular Florida, is an erosional remnant
known as the Peninsular Arch.
The structure of the Suwannee Basin is somewhat better
defined than that of the underlying North Florida Rhyolite, although
the nature of the contact between the two is rather enigmatic. Arden
(1974), from an interpretation of a seismic reflection profile,
interpreted the contact to be a northeast-dipping, Middle to Late
Paleozoic age thrust fault that emplaced the Suwannee Basin over the
volcanics, while others (e.g., Thomas et al., 1989) have suggested the
contact to be an unconformity. Although drilling into the Suwannee
Basin terrane has never penetrated more than about 700 m, gravity
modeling indicates that the eastern Suwannee Basin has a maximum
thickness of about 2500 m (Wicker and Smith, 1978), while seismic
reflection profiles suggest the western Suwannee Basin may be even
thicker (Arden, 1974; Thomas et al., 1989).





38

profile and numerous drill holes have shown the western section to
have been extensively faulted, mildly folded, and intruded by


diabase during the Triassic evolution of the South Georgia Rift.


This


difference has prompted some workers to separate the Suwannee
Basin into two distinct terranes, the East and West Suwannee Basins
(e.g., Klitgord et al., 1983; Ball et al., 1988).
The relatively smooth potential-fields in the region occupied by
the Suwannee Basin terrane are bisected by two linear NE-trending
negative gravity anomalies separated by a distinct, northeast-
trending negative magnetic anomaly and low-amplitude positive


gravity anomaly.


These extend from the northeastemmost Gulf of


Mexico to the eastern Florida-Georgia border (Figures 11 and 1


feature D1)


Based on an onshore, local, high resolution gravity


study, Coleman and Stewart (1982) believed the Suwannee Basin
sedimentary deposits to be underlain by two northeast-trending
Paleozoic (?) troughs coinciding with these linear negative gravity


anomalies.


Offshore, however, Dobson and Buffler (1991) have


interpreted basement faulting in a seismic reflection profile and the
presence of Triassic red beds in proximal drill holes as indicative of a
moderately-sized, northeast-trending Triassic rift basin extending at
least to the northwest Florida coast and coinciding with the central
positive gravity anomaly and the associated negative magnetic


anomaly of feature D1.


The absence of corresponding red beds in


onshore drill holes suggests the possibility that feature D1, although





39

Although the boundary between the Suwannee Basin terrane
and the superimposed Triassic South Georgia Rift is reasonably well
constrained from drill hole data, it is likely that the Suwannee Basin
extends northward and westward under the rift basin and for a


significant distance beyond it.


COCORP seismic reflection profiling


(Nelson et al., 1985A) and gravity modeling (Lord et al., 1992) both
indicate that the Suwannee Basin extends into southern Georgia along
most of its border with Florida, although neither the nature nor the
location of the northern or western boundaries of the terrane have
been resolved.


lay Fault--feature E-E1


. A variety of evidence suggests the


presence of a major crustal boundary, known as the Jay Fault, which


may divide the Floridan Plateau crust.


Northeastern Florida is


generally characterized by northeast-southwest trending gravity and
magnetic anomalies, while those in southwestern Florida are
generally perpendicular to this trend (e.g., King, 1959; Oglesby et al.,
1973; Smith, 1982). Although the boundary between these two
trends is not well defined, it extends through the center of the
plateau in a northwest-southeast direction, close to a landward
extension of the trend of the Bahamas Fracture Zone.
Drill hole evidence and seismic reflection profiles suggest that
the implied extension of the fracture zone also constitutes the
boundaries of several features, including the South Georgia Rift, the
north Florida igneous rocks, and the Suwannee Basin terrane





40

and in the northeastern Gulf of Mexico (Dobson and Buffler, 1991)


suggest normal faulting along this same trace.


Consequently, the Jay


Fault is generally considered to be a morphological extension of the


Jurassic Bahamas Fracture Zone.


The origin, character, and age of this


extension, however, are unresolved (Barnett, 1975; Smith, 1982;
Klitgord et al., 1984; Smith, 1993).
It has been suggested that the Jay Fault is a Jurassic left-lateral
transform that served to connect spreading centers in the Atlantic
and Gulf of Mexico, while bringing several disparate lithotectonic
units into juxtaposition (Klitgord and Schouten, 1980; Smith, 1982;
Klitgord et al., 1984). Using this model as a starting point, several
authors (Smith, 1982; Chowns and Williams, 1983; Whitelaw and
Smith, 1989) have hypothesized an extension of this proposed
transform boundary across the Floridan Plateau and into Alabama,
where it may merge with the Middle Mesozoic Gulf basin marginal
fault zone (Smith, 1983; Klitgord et al., 1984).
Another possibility for the origin of the feature is that it is a
right-lateral feature formed during the Late Paleozoic closure of the
Iapetus Ocean (Smith et al., 1992; Smith, 1993). The premise of this
model is that the Jay Fault originated in two stages. During the
Paleozoic, the boundary was a right-lateral, strike-slip fault that
served to accommodate differential motion within Gondwana during


closure with Laurentia.


Later, during Triassic and Jurassic extension,


the boundary was reactivated as a normal fault.


This would be







panhandle region, also suggested a right-lateral fault model,


although


in this model, the fault formed in response to north-south
compressive stresses during the Jurassic.
Inherent in a third model for the nature of the lithotectonic
boundary across Florida is the implication that the Jay Fault has
never been subject to significant lateral motion (Heatherington et al.,


1989; Heatherington and Mueller


1991).


Results of trace element


analyses of basement rocks from north and south Florida exhibit
similar patterns of high field strength element depletion and large
ion lithophile element enrichment (Heatherington et al., 1989), as
well as similar Nd model ages for the lithosphere from which these


rocks were derived (Heatherington and Mueller, 1991)


. This


suggests that the volcanic suites of north and south Florida may have


been derived from a single contiguous underlying unit.


It is possible,


then, that this geophysically and lithologically inferred fault may not
be a transform that juxtaposed two entirely disparate lithotectonic
units, but rather that it is simply a normal fault zone that
experienced little or no lateral movement (Heatherington and
Mueller, 1991).
The linear nature of the Jay Fault is evident on the depth-to-
basement and upward-continued Bouguer anomaly maps (Figures 10


and 14--E-E1)


. The upward-continued Bouguer anomaly map


strongly suggests that the fault acts as boundaries for the Osceola
Granite (A), the St. Lucie Metamorphic Complex (B), the South Georgia





42

is the Jay Fault linear, but apparently continuous across the Floridan
Plateau as well.

Along the southeastern edge of the plateau, Sheridan's (1981)
seismic reflection profile clearly shows a series of faults with varying
amounts of horizontal offset along the proposed trace of the Jay


Fault.


Hence, the Jay Fault is more accurately described as a zone of


faulting, rather than as a single fault. An abrupt southward increase
in depth-to-basement marks the zone along most of its length. An
exception to this is in the northwestern part of the plateau where the
South Georgia Rift extension intersects the zone. At this point, a
seismic reflection profile (Dobson and Buffler, 1991) indicates the


presence of a single northeastward-dipping master fault.


Thus,


although the Jay Fault zone appears to be continuous and linear, the
nature of the Mesozoic faulting changes along strike.


Mesozoic Features of the Plateau Basement


The Floridan Plateau basement is characterized by a variety of


Mesozoic structural features.


Lithic accumulations associated with


these features (i.e., red beds, hypabyssal rocks, etc.) often obscure
the pre-Mesozoic units of the underlying crust and, as a result, the
pre-Mesozoic nature of the basement under these features is largely


unresolved.


While the general locations of Mesozoic features on the


plateau basement are reasonably well established, specific structural
details and subaerial boundaries are poorly constrained.





43

northeast-striking Jurassic basins and ridges. This series extends to
southern peninsular Florida, where a large Triassic-Jurassic basin
occupies the southern third of the peninsular basement (Klitgord et
al., 1984).


South Georgia Rift--reeion F.


Underlying the north-central


portion of the plateau is a 95 km wide, northeast-trending section of


the Early Mesozoic South Georgia Rift.


The South Georgia Rift is a


large, complex graben system extending from the Florida panhandle


area to eastern Georgia (Daniels et al.,


1983; McBride,


1991).


The


section in Florida overlies the western block-faulted edge of the
Suwannee Basin terrane (Smith, 1982) and has been previously
referred to as the Tallahassee Graben (Smith, 1983) and the


Southwest Georgia Embayment (Barnett, 1975; Miller, 198


. The rift


is filled with arkosic sandstones and mafic igneous rocks with a
maximum thickness of about 1800 m in Florida (Arden, 1974) and it
has been pervasively intruded by diabase sills (Barnett, 1975;


Chowns and Williams, 1983; Smith, 1983).


Milton and Grasty (1969)


acquired three K-Ar ages for samples of diabase sills from northern
Florida. Although these ages are now generally considered to be
suspect, they were found to range from about 180 to 200 Ma.
The onshore boundaries of the South Georgia Rift are
reasonably well constrained from the presence of red beds and
associated hypabyssal rocks encountered in deep drill holes. A
circular negative gravity anomaly with a diameter of about 50 km





44

accumulations of low density salt in the Jurassic Apalachicola
Embayment, which overlies the South Georgia Rift in this area.
The north-central Floridan extension of the Triassic-Early
Jurassic South Georgia Rift system is a moderately complex feature.
The presence of short-wavelength gravity and magnetic anomalies in
the area of the rift (Figures 11 and 15--F) may indicate it to be
comprised of an assemblage of secondary horst and graben


structures (Barnett, 1975


Smith, 1983).


Limited seismic reflection


profiling shows extensive normal faulting in the rift floor and the


surrounding area; however, 1
definitively detected (Arden,


no large secondary horsts have been
1974; Dobson and Buffler, 1991).


Because there are few seismic reflection profiles in the area
and, as shown in Figure 14, the long-wavelength potential-field
signatures associated with the rift have relatively low gradients, the
lateral boundaries of the rift extension are not definitively mapped


or characterized.


Ball et al. (1988), in a seismic reflection profile just


off the coast of the Floridan panhandle, interpreted a northeast-
dipping master fault with about 1400 m of throw to mark its


southwestern terminal boundary


Subsequent reflection work has


shown the offshore extension of the rift system to consist of two


separate grabens,


at least one of which probably extends to the


southwest as far as the Jay Fault zone (Dobson and Buffler, 1991).
Analachicola Embavment/Analachicola Basin-reeions F. G.


Extending from northwest to southeast across the Floridan Plateau





45

the Apalachicola (or Southwest Georgia) Embayment (F) and the
Middle Ground Arch (H), a basement high that may extend


undisturbed across the Jay Fault zone.


These are located to the


northeast of the Jay Fault zone and are part of a series that extends
northwestward and includes the Chattahochee Arch, the Covington
Embayment, the Conecuh Arch and the Wilcox Embayment, all of
which lie out of this study area (e.g., Miller, 1982; Mitchell-Tapping,
1982; Smith, 1983).
On the southwestern side of the Jay Fault zone are the


Apalachicola Basin (G)


also known as the Northeast Gulf Basin, and


the Tampa Basin (I), also known as the St. Petersburg Basin.


are separated by the Middle Ground Arch (H).


These


Continuing to the


southeast, the Sarasota Arch (J), also known as the Pinellas Arch,
separates the Tampa Basin (I) from the South Florida Basin (L) (e.g.,


Klitgord et al.,


1984; Ball et al.,


1988; Winker and Buffler, 1988


Dobson, 1990; Dobson and Buffler, 1991). As shown in Figure 16,
there have been significant variations between previous publications
with regard to the locations, sizes, and spatial relationships of these
various Jurassic features.
The Apalachicola Embayment (F), which is bounded along its
northwestern edge by the Chattahoochee Arch, is a Jurassic basement


trough overlying the Triassic South Georgia Rift.


On the basis of drill


holes and electric logs, Mitchell-Tapping (1982) modeled the
Apalachicola Embayment as a graben flanked by two peripheral








47

discussed circular negative gravity anomaly, there is no definitive
potential-field signature attributable to the Apalachicola Embayment.
The Apalachicola Embayment is contiguous with, and
essentially indistinguishable from, the Apalachicola Basin,except that
the two are separated by a prominent basement hingeline at the
apparent trace of the Jay Fault zone and the Apalachicola basin is


characterized by a much greater depth-to-basement.


Southwest of


the hingeline, dipping intrabasement reflections suggest the presence
of Paleozoic strata with a synclinal structure underlying the


Apalachicola Basin (Dobson, 1990; Dobson and Buffler, 1991).
eastern section of the basin in the study area is marked by a


The


moderate amplitude positive gravity and magnetic anomaly (G)


. The


basin extends southwestward to the plateau escarpment and may
reach a basement depth of 12 km (Buffler and Sawyer, 1985; Buffler,


1989)


. The eastern margin of the basin is marked by a major


bounding fault with a throw of at least 1000 m (Ball et al., 1988).
This fault separates the Apalachicola Basin from the Middle Ground
Arch.


Middle Ground Arch-region H.


Extending across the Jay Fault


zone, adjacent to the Apalachicola Basin, is the Middle Ground Arch.
This is a broad, topographically positive feature that extends from
the southwestern flank of the Peninsular Arch westward to the edge


of the plateau (Figure 10--H)


. The crest of this ridge dips generally


westward and ranges in depth from about 1500 m under peninsular





48

Apalachicola and Tampa Basins immediately west of the Jay Fault
zone, the arch has been classified by some as two separate features--
the Middle Ground Arch to the east and the Southern (or DeSoto)
Platform to the west (Winker and Buffler, 1988; Dobson, 1990;
Dobson and Buffler, 1991).
The Middle Ground Arch is marked by one of the northeast-
trending, long-wavelength, low amplitude negative gravity anomalies
(Figure 14--H) previously mentioned as flanking feature Dl.
Although there are few short-wavelength features in the region,
seismic reflection profiles have shown the crest of the Middle Ground
Arch to have been moderately faulted. As suggested by stratigraphic
perturbations, these faults have horizontal throws on the order of
100 m and became inactive after the Late Jurassic (Ball et al., 1988;
Dobson, 1990). In addition, graben structures and fill associated with
the South Georgia Rift extend along the crest of the northeastern end
of the Middle Ground Arch from peninsular Florida to the Jay Fault
zone (Dobson and Buffler, 1991). An intrabasement igneous
intrusive body, possibly Mesozoic in age, has been identified on
seismic reflection profiles and is marked by an oblong low amplitude
negative gravity anomaly (Figure 15-feature HI) (Ball et al., 1988).
Near the southeastern flank of the Middle Ground Arch, a single drill
hole intersecting Paleozoic siltstones (Ball et al., 1988) signifies a
possible westward extension of the Suwannee Basin terrane.
Martin (1978) suggested that the Middle Ground Arch is simply







Basin implies a significant degree of structural control.


The single


seismic reflection line extending across the southeastern boundary of
the arch, on the other hand, does not show any analogous faulting


(Ball et al., 1988).


In addition, the Bouguer anomaly gradient across


the strike of this southeastern boundary is uniform and relatively


low (Figure 1


. These observations suggest the Tampa Basin-Middle


Ground Arch margin to be a broad transition zone with little
structural control, which reinforces Martin's proposal of formation by
differential subsidence for this particular boundary.
Tampa Basin--region I. Southeast of the Middle Ground Arch is
the Tampa Basin, which is also known as the Florida Elbow Basin
(Pindell, 1985). It is essentially an analogue to, and coeval with, the
Apalachicola Basin. The Tampa Basin extends updip northeastward
from the western edge of the plateau although, unlike most the other
Jurassic features in this series, it has not been previously mapped as
extending eastward as far as the Jay Fault zone (e.g., Klitgord et al.,


1984; Buffler, 1989)


. It reaches a depth-to-basement of at least


5500 m (Figure 10--I) and Dobson and Buffler (1991) have modeled
it to be significantly deeper (greater than 9000 m).
Seismic reflection profiles are characterized by dipping
intrabasement reflections in the basin that, as in the basement of the
Apalachicola Basin, imply an underlying extensively faulted Paleozoic


synclinal structure (Ball et al., 1988; Dobson, 1990).


None of the


three offshore wells intersecting basement in the Tampa Basin,







intercalated with Jurassic diabase (Dobson and Buffler, 1991). In
addition, some of this faulting perturbed the Cretaceous sediments


immediately overlying these igneous rocks.


Thus, it is likely that at


least some of the basement faulting and structure originated during
the Jurassic evolution of the basin, rather than during the Paleozoic.
The Bouguer anomaly signature of the Tampa Basin is quite
distinct (Figure 14--1). It is marked by a 50 mgal long-wavelength
positive gravity anomaly. This positive anomaly averages about 160
km wide and 275 km long, suggesting that the Tampa Basin is
significantly larger than shown on previous basement maps;
however, a corresponding positive magnetic anomaly appears to be


somewhat smaller (Figure 11--I).


As discussed above, the


northwestern boundary of the basin is probably a sloping margin.
That margin appears to crest approximately 40 km south of the
northernmost expression of the gravity anomaly, although shallow
dip interpretations are difficult from the available seismic reflection
profiles.
Pindell (1985) has speculated that a large strike-slip fault, the
Florida Elbow Fault, extends northwestward from the Jay Fault zone,
across the Tampa Basin, and into the northeastern Gulf of Mexico.
Although there is no gravity or seismic evidence for such a fault, the
steep eastward-striking magnetic gradient which bisects the
northern half of the basin may be the result of a structure along that


trend.


The relative absence of short-wavelength gravity anomalies





51

diameter moderate amplitude negative gravity anomalies with
corresponding positive magnetic anomalies may indicate the
presence of mid-crustal intrusive bodies similar to that under the
Middle Ground Arch (Figures 11 and 15--feature II).
The northeastern boundary of the Tampa Basin, as suggested
by the positive gravity anomaly, appears to correspond extremely
well with the presumed trace of the Jay Fault zone (Figure 14). This
places the easternmost section of the Tampa Basin under western
peninsular Florida and shifts the boundary significantly more
northeastward than had been previously modeled, although Ball et
al. (1988) identified a basement monocline only 30 km off the west
coast of Florida that was suggested to be the boundary. In addition
to the positive gravity anomaly, the presence of Jurassic diabase in
several drill holes in the same area of western peninsular Florida
(Figure 9) and a corresponding positive magnetic anomaly (Figure
11) are also suggestive of a northeastward extension of the basin as
far as the Jay Fault zone.
The southeastern boundary of the basin, which separates it
from the Sarasota Arch, is better constrained with respect to location.
Along this boundary, both of the potential-field gradients are
relatively high, which is suggestive of a morphologically distinct
feature. Although not confirmed by seismic data, stratigraphic
correlations from well logs also suggest the presence of a large down-
to-the-north fault or series of faults along this boundary; this fault







Tampa Basin and the South Florida Basin.


It extends from the Jay


Fault zone under peninsular Florida westward possibly to the edge of


the Florida Escarpment (Figure 10--J)


although Klitgord et al. (1984)


have suggested that the arch may be truncated by an extension of


the Cuba Fracture Zone just east of the escarpment.


The depth-to-


basement of the Sarasota Arch averages 4 km and there is little


evidence of any significant dip along the crest.


There have been four


drill holes intersecting basement on the Sarasota Arch--three
bottomed in granitic rocks and one intersected diabase (Figure 9).
Although seismic profiles in the southern quarter of the
Floridan Plateau tend to be poor quality as a consequence of the
depth and the attenuation of seismic energy by the overlying karstic
limestone, a number of vertical faults have been observed on seismic
profiles crossing the Sarasota Arch (Shaub, 1984; Ball et al., 1988).
These faults are small, with throws on the order of 10s of meters,
and, as suggested by perturbations in the overburden, became
inactive by the Early Cretaceous.
Klitgord et al. (1984) interpreted a northeast-trending zone of
circular gravity and magnetic anomalies along the northwest edge of
the Sarasota Arch to be the result of a series of shallow
intrabasement intrusive bodies. Although several short-wavelength
circular negative gravity anomalies exist in this area (Figure 13--
region J), not all of these correlate well with the circular magnetic


anomalies (Figure 11-region J).


Therefore, while two or three of the





53

intrusions, a linear chain spatially associated with the Sarasota Arch
seems improbable.
The Sarasota Arch is marked by a distinct long-wavelength
negative gravity anomaly (Figure 14--J), although there seems to be
no particular associated magnetic signature (Figure 11). As
described above, the northwestern boundary of this negative
anomaly correlates well with the large bounding fault inferred by
Ball et al. (1988). Although the anomaly appears to be partially
truncated near its northeastern boundary, it generally extends
southwestward from the region of the Jay Fault. The southwestern
boundary of the negative anomaly could be interpreted to occur
slightly east of the escarpment; however, a seismic reflection profile
along the crest of the Sarasota Arch (Ball et al., 1988) shows no
evidence for truncation at an extension of the Cuba Fracture Zone. As
a result, it is likely that the southwestern boundary of the arch is
coincident with the Florida Escarpment.
The southeastern boundary of the Sarasota Arch, as interpreted
from a seismic reflection profile near the escarpment, is a
southeastward-dipping, relatively steep, block faulted margin
(Shaub, 1984) that corresponds to the boundary of the negative

gravity anomaly. However, this gravity boundary is not continuous.
As discussed below, a 60 km wide negative gravity anomaly extends
southeastward from the boundary (Figure 14 --feature L4) and is
consistent with the probable presence of a large basement horst





54

recognized a possible basement high along the Florida Escarpment
extending southeastward from the Sarasota Arch. This high, the
Sheffield Arch, was identified from a limited number of profiles with
no deep well control and is, therefore, not well characterized.
There is a positive gravity anomaly oriented generally along
the axis of this proposed arch (Figures 14 and 15 -K). This positive
anomaly is approximately 180 km long and 120 km wide. It has no
concomitant magnetic signature. Although the positive gravity
anomaly could be the result of a morphologically positive feature
such as the Sheffield Arch, all of the other positive basement
features of the Floridan Plateau have been characterized by negative


gravity anomalies.


Consequently, the characterization of a large,


continuous basement high in this area is unresolved.


South Florida Basin--region L.


Underlying southern peninsular


Florida is a Triassic-Jurassic structural feature known as the South


Florida Basin.


Based on a series of two-dimensional gravity profiles,


Wicker and Smith (1978) determined that the basin ranges in depth
from about 3000 m in south-central peninsular Florida to more than


5500 m at the southern edge of the peninsula.


The basin is generally


considered to underlie much of the southern portion of the Floridan
Plateau and to extend to its southern and eastern edges (e.g., Barnett,


1975; Smith, 1983; Klitgord et al., 1984).


The western extent of the


basin and the presence of any significant intrabasinal structures are
unresolved.





55

Triassic alkali basalts and rhyolites (Barnett, 1975; Mueller and


Porch, 1983; Heatherington and Mueller, 1991)


it has been suggested


that the occurrences of rhyolite represent horsts of an underlying
southerly extension of the Late Precambrian-Cambrian North Florida


Rhyolite (Thomas et al., 1989)


Isotopic dating of the rhyolites


(Milton and Grasty, 1969; Barnett, 1975) and the basalts (Milton,


197


Mueller and Porch, 1983) suggest that the two are coeval, with


ages of about 180 Ma.


This supports the model that the basalts and


rhyolites comprise a Mesozoic bimodal suite and almost certainly
discounts the premise that the rhyolites in the region of the South
Florida Basin are part of the North Florida Rhyolite.
There are only a few drill holes intersecting basement within
the South Florida Basin and all of these are in southwestern and


south-central peninsular Florida (Figure 9).


In addition, there is only


one published seismic reflection profile of the basement in the basin
(Figure 2). As a result, the basement model for this area is
necessarily based almost exclusively on potential-field data and is,
therefore, rather speculative.
The northeastern boundary of the South Florida Basin is the Jay


Fault zone.


In their seismic reflection profile along the eastern edge


of the Floridan Plateau, Sheridan et al. (1981) found this boundary to
be a large, down-to-the-south, normal fault with an associated series
of smaller faults at the landward extension of the Bahamas Fracture


Zone.


The boundary is marked by a northwest-trending zone of





56

southern margins of the South Florida Basin are not morphologically
well defined; however, the basin is considered to extend at least as
far as the Florida Escarpment.
Although the entire area bounded by the Jay Fault zone, the
Sarasota Arch, and the Florida Escarpment is commonly considered to
be a singular basin, there are four or five (depending on whether
feature K is included) individual long-wavelength potential-field
features within these bounds (Figures 11 and 14-L1-L4). For
example, the northeastern corner of this region is marked by an
oblong positive gravity and magnetic anomaly oriented along the Jay


Fault zone (LI).


Immediately southeast of this feature is a similarly


oriented negative gravity and magnetic anomaly (L2) which, in turn,
is separated from a second negative gravity anomaly (L3) by a


second positive gravity anomaly (L4)


. This long-wavelength


variability and the shapes of these features suggest the probability
of several northwest-southeast oriented basins within the area
traditionally considered to be the South Florida Basin.
All of the South Florida Basin area drill holes which have
successfully intersected basement have been located proximal to a


negative gravity and magnetic anomaly, specifically, feature L2.
suggests that the anomaly may mark a region characterized by a


relatively shallow basement.


This


In addition, the southern end of


Sheridan's reflection profile, near the southeastern corner of the
plateau, was located on a positive gravity and magnetic anomaly and





57

gravity and magnetic anomalies within the South Florida Basin
denote high depth-to-basement areas, while the negative gravity and
magnetic anomalies are characteristic of shallow basement arches.


Blake Plateau Basin--feature M.


Along the northeastern edge


of the Floridan Plateau is an area that, as suggested by a series of
seismic refraction profiles (Sheridan et al., 1966), is characterized by


an increase in depth-to-basement (Figure 10--M).


This feature may


represent a shallow salient of the Blake Plateau Basin, which is the
southernmost of the four major Jurassic-Early Cretaceous basins of
the eastern United States continental margin (e.g., Grow and


Sheridan, 1982; Dillon et al., 1985).
signature attributable to this salient.


There is no particular gravity
The western boundary of the


main body of the Blake Plateau Basin is located just east of the
eastern continental margin of the Floridan Plateau, slightly out of this
study area. Although the data are limited, there is no evidence that
the salient is fault-bounded. Rather, it appears to have formed
simply by differential subsidence.


Cenozoic Structural Features of the Floridan Plateau
There are only a few reports of Tertiary structural features of


tectonic origin on the Floridan Plateau.


These include small faults


resulting from halokinesis off the panhandle of peninsular Florida
(e.g., Addy and Buffler, 1984; Ball et al., 1988), as well as slump
faults and related features near the western Florida escarpment (e.g.,





58

tectonic origins; however, in each of these cases, subsequent workers
have failed to confirm these origins.
The most predominant of these reported features include
several surficial anticlinal and synclinal structures in northwestern
peninsular Florida and southwestern Georgia. Patterson and Herrick
(1971) summarized the reports of these features, which conflicted
with respect to locations and descriptions in many cases, and
concluded that there is no evidence to support the presence of any
surficial structural feature in this area, with one possible exception.
This exception is a small dome in southwestern Georgia, slightly
outside of this study area, known as the Gordon Anticline. The other
reported features were attributed to the differential erosion and
dissolution of the near-surface Tertiary carbonates.
A Tertiary feature that is regularly mentioned in the literature
is the Ocala Uplift, a reported anticlinal structure in central
peninsular Florida. As in the previous instances, a tectonic origin for
this feature was dismissed by Winston (1976), who attributed the
apparent anticlinal structure of the surficial carbonates as having
been caused by differential erosion and dissolution.
The only other purported Tertiary feature is the Bronson
Graben, described as a small northwest-trending structure in north-
central peninsular Florida with an associated series of surficial
normal faults paralleling it. This was proposed by Vernon (1951) on
the basis of lineations in aerial photographs and discrepancies in drill





59

(1989) to extend Appalachian fault provinces along the length of the


plateau.


Since 1951


, there has been no field recognition of these


features, and it is unlikely that Vernon's observations are indicative


of lithospheric movement during the Tertiary.


It appears, then, that


with the possible exception of the Gordon Anticline, there is no
evidence for any Tertiary structure on the Floridan Plateau
attributable to regional tectonic stress.


Summary


A compiled map of the pre-Mesozoic lithotectonic terranes of


the Florida Plateau basement is shown in Figure 17


In northeastern


peninsular Florida, southern Georgia, and the Florida Panhandle, the
subcrops of Precambrian and Paleozoic rocks apparently represent
isolated pieces of more extensive terranes that were fragmented
during the collision and subsequent separation of Laurentia and


Gondwana.


Although these fragments were not significantly


metamorphosed during this process,


there is evidence allowing the


suggestion of thrust faulting, block faulting, and faulted contacts.
Potential-field gradients, lithologic contrasts, and the limited existing
seismic reflection data suggest that all of the contacts between these
pre-Mesozoic terranes may be faulted, with the possible exception of
the boundary between the Osceola Granite and the North Florida
Rhyolite.
Figure 18 represents a compilation of the Mesozoic structural

















U. -- 0 *********n* -ee e- ** -* **



nne-ae a *'\ ** ---- *. at* n C..
... .... ........ ....T rram .. .... .
----- --- N

..... rn e ... ..
lay Fault -- "'"rt" Fla""
Zo"e a..e--* R- h lite

-- .e


..Undated Felsic/Maflc
i.jExtrusive Rocks


'- St. Lucie
Metamorphic
\k Complex


(I-\
4 (
.,At A
's's' ? S

.,,', ,, ~
1^\ 1 1
- \-\9 \
S-- -


Mesozoic Yolcanic


Complex


Rhyolite and Andesite

Felsic and Mafic Extrusive
Rocks

Sandstone and Shale

Felsic Plutonic Rocks


Amphibolite-Grade
Metamorphic Rocks

Indicates Unknown Boundary

Possi ble Faulted Contact


I1F"








62

plateau. Although the linear nature of the fault zone suggests that it
originated as a strike-slip fault, the present structure of the zone is
independently determined by each of the bordering Mesozoic


extensional features and consequently changes along strike.


In the


southeastern region of the plateau, the fault zone primarily consists


of a series of southwestward-dipping normal faults.


To the


northwest along much of its length, the zone alternates between
accommodating significant vertical offsets at southwestward-dipping
Jurassic basin boundaries and having little or no vertical offset


where intersected by basement arches.


In the northwest, the zone


changes to accommodate the northeastward-dipping normal
bounding faults of the South Georgia Rift.
The southwestward extension of the South Georgia Rift into
Florida resulted in block faulting in the western Suwannee Basin
terrane. Although there is some suggestion of intrarift horst and
graben formation, neither these structures nor the lateral master
bounding faults of the rift extension have been definitively located


or characterized.


There is a small ancillary rift basin (or basins)


southeast of the main rift.


As mentioned above, the southwestern


boundary of the South Georgia Rift is a large northeastward-dipping
normal fault at the Jay Fault zone.
Overlying the South Georgia Rift in this area is the Jurassic
Apalachicola Embayment, which, as suggested in previous studies,


may also be bordered by lateral master faults.


The Apalachicola





63

extensional basins bordering the southwestern side of the Jay Fault
zone.


These basins


, the Apalachicola Basin, the Tampa Basin, and the


South Florida Basin, are separated by two wide basement ridges, the


Middle Ground Arch and the Sarasota Arch.


Each of the basins


with


the probable exception of the northwestern edge of the Tampa Basin,


is fault-bounded along its lateral boundaries.


In addition, it is likely


that each extends from the Jay Fault zone southwestward at least as


far as the Florida Escarpment.


Although there is little corroborating


seismic reflection data for the South Florida Basin, potential-field
signatures suggest the probability that this area is underlain by


several isolated basins


, rather than being a singular feature.


basement low under the northeast edge of the Floridan Plateau is
interpreted to be a subsided landward salient of the Jurassic Blake
Plateau Basin.
With the exception of gravity-induced slump features near the
Floridan Escarpment and small faults in the northeastern Gulf


produced by halokinesis, there is no evidence of any


structural feature on the Floridan Plateau.


Tertiary


There may be a small


anticlinal structure, the Gordon Anticline, in southwestern Georgia
just north of this study area.












CHAPTER 3
TECTONIC EVOLUTION OF THE FLORIDAN PLATEAU


Introduction


As a consequence of the depth of burial of the Floridan Plateau
basement and the lithotectonic complexity of the region, past
interpretations of tectonic history have necessarily been based on an


inadequate knowledge of basement structure.


The intention in this


chapter is to provide a reinterpretation of the tectonic history of the
Floridan Plateau within the context of the new interpretations of
lithologic and structural relationships presented in Chapter 2 and to
incorporate the findings of recently published geochemical,
geophysical, and tectonic studies into this interpretation.


Regional Tectonic History


Pre-Mesozoic


Tectonic reconstructions for the continental blocks) underlying
the Floridan Plateau and the adjacent Bahamas Platform are based
primarily on sparse information from deep drill hole samples and, as
a consequence, the origin of these blocks has been the subject of


some debate.


The Suwannee Basin terrane and, by association, the







assemblages to have Gondwanan affinities (e.g., Cramer, 1971


Pojeta


et al.


,1976)


In addition, paleomagnetic data and ages of detrital


zircons (Opdyke et al.,


1987


Mueller et el.


,1993) are also


inconsistent with a Laurentian origin for this terrane.


As a result, a


correlation between these terranes and Gondwana prior to the
Alleghenian closure of the lapetus Ocean has been reasonably well
established; however, the specific position of the Floridan Plateau
with respect to Gondwana during the Paleozoic has not been
definitively established.
A number of investigations have suggested that the pre-
Mesozoic basement terranes of the northeastern Floridan Plateau


originated along Africa's western margin near Senegal.


These


investigations include continental reconstructions (Bullard et al.,


1965; Wilson, 1966


Dietz et al., 1970; LePichon and Fox, 1971


Pindell and Dewey, 1982; Klitgord et al.,
1983; Van Siclen, 1984; Pindell, 1985; V


1983; Roussell and Liger,
enkatakrishnan and Culver,


1988), paleontological analyses from Florida and Africa (Cramer


1971,1973


Pojeta et al.,


1976),


comparisons of isotopic abundances


and ages


(Dallmeyer, 1987, 1988; Dallmeyer et al.,


1987;


Heatherington et al., 1993), paleomagnetic data (Van der Voo et al.,


1976; Opdyke et al., 1987),


and stratigraphic correlations between


Florida and west Africa (Smith, 1982; Chowns and Williams, 1983).
Although a proposed tectonic history for Florida based on any one of
these lines of evidence would be inconclusive, the cumulative effect





66

There are specific units in western Africa that can be
correlated to their apparent counterparts underlying the Floridan


Plateau.


These units provide the sole record of the pre-Mesozoic


tectonic history of the Floridan Plateau.


The extensive North Florida


Rhyolite of north Florida and south Georgia may be correlated to
similar felsic volcanic rocks which are present throughout the
western margin of Africa (Dillon and Sougy, 1974; Dallmeyer, 1987


Dallmeyer and Villeneuve, 1987


Heatherington et al.,


1993).


Geochemical analyses of the Florida suite suggest emplacement in a


convergent plate margin setting,


with an ocean-continent subduction


environment being the most likely setting (Mueller and Porch, 1983).
The St. Lucie Metamorphic Complex has been correlated to
units of the central Rockelide Orogen in Guinea, proximal to the Bove


Basin (Chowns and Williams


,1983; Dallmeyer and Villeneuve, 198


In addition to similarities in petrology and degree of metamorphism,
both of these metamorphic units appear to have been affected by an
extensive thermotectonic event, Pan-African II, that occurred along
the northwestern margin of Gondwana about 550 Ma ago (Dallmeyer


and Villeneuve, 1987)


In addition, there is no evidence that the St.


Lucie Metamorphic Complex was thermally affected by the


subsequent Caledonian or Hercynian orogenies.


This is consistent


with a central Rockelide origin for the complex, but not with a more
northerly origin, where the adjacent Mauritanides were strongly
deformed during the later orogenies (Roussel et al., 1984), nor with a





67

There are a number of similarities that support the correlation
of the Osceola Granitoid Complex of east central Florida with the Coya


Granite of Senegal, which is exposed in the northern Rockelides.


Both


are post-tectonic, Early Paleozoic plutons with similar petrographic


and petrologic characteristics (Dallmeyer et al.,


1987)


. These


similarities


, as well as numerous continental reconstructions, suggest


that during the Early Paleozoic, the Osceola and Coya Granites were
likely to have formed as part of the series of granitoids emplaced
along Gondwana's northwestern margin during Pan-African II
orogenies (Dillon and Sougy, 1974; Dallmeyer et al., 1987).
The Suwannee Basin Complex of north-central Florida was


deposited in an Early Paleozoic sedimentary basin.


The lower portion


of the sampled sequence of this complex consists of quartz
sandstones overlain by graptolite-bearing black shales, which are


indicative of a restricted marine environment.
stratigraphic and paleontological similarities, t


Based largely on
he Suwannee Basin


was correlated by a number of workers to the Bovy Basin of western


Guinea (Cramer, 1971, 1973


and Williams


Pojeta et al., 1976; Smith, 1982; Chowns


,1983; Venkatakrishnan and Culver, 1988).


Subsequently, a paleomagnetically determined Lower Ordovician
paleolatitude of 49 degrees south (Opdyke et al., 1987) and a
comparison of plateau ages for muscovite (ca. 505 Ma) from both
basins (Dallmeyer, 1987) have provided further support for this


correlation.


These deposits probably represent the disjointed





68

Although the present day basal contact of the Suwannee Basin
terrane is likely to be a simple unconformity, there is some evidence
to suggest that it may instead be a northward-dipping thrust fault.
Although the Suwannee Basin has been only mildly metamorphosed,
seismic reflection profiles suggest the presence of low angle faulting


within the terrane (Arden, 1992,


personal communication) and the


basal contact has the appearance of a ramped thrust fault (Arden,
1974). In addition, thrust faults are common in the central
Rockelides, which are in close proximity to the Bove Basin (e.g.,
Williams and Culver, 1982).
Smith (1993) has postulated that the pre-Mesozoic terranes of
the plateau basement, including the Suwannee Basin, the North
Florida Rhyolite, the Osceola Granite, and the St. Lucie Metamorphic
Complex, were fragmented and repositioned to their present day


configurations during the late stages of AUeghenian closure.


In this


scenario, fragments of these Gondwanan terranes were moved


laterally into their relative positions,


with separate fragments being


translocated into eastern Florida, southeastern Georgia, and
northwestern Florida, along a series of left and right lateral strike-


slip faults.


These strike-slip faults,


including the precursor to the Jay


Fault, formed in response to the differential stresses in Gondwana


resulting from a deformational collision with Laurentia.


The process


is demonstrated in Figure 19, which illustrates the formation of
strike-slip faulting in the Florida basement and the relative















Ala. Ga. S.C.


Laurentia






Iipe p4tu$ 0cen






rGondwana .
I s s
* A *L* i *^ ****** *
a aa an a ,-a .1

a Fea si I t r Usi v"** a- ^a a


r/-- r


SA .a G. S.C.



SLaurentia








a""a""a"a" a"a "". '





*aaa a aaa 5 *a aa a ** A**b*b4
aA A aae aaaa aaa aaaa baa.6
***i.** a*... aa l a'ia a*a
^sM ats 'iTe-isi* WW:iihh *mlitA




A + A A A A A A A ,4k i!'
V*+ A A A A' Al i :0sA l :!i A
e s s ne s s aa'fl'M 1' l'l*!"!-i4!l
A A A A A A A A A A A A A A A A ^*-*~itlp rlt~ll! 'tiEaf
V V ^*"** 4 4 **tl !liIt*!*P'l!* ll *Ealtll i!
M A A A A A A A 4 4ss ei A AiA A AUSA;^ ^ E


Alaurel


Laurel


nt


nt


i S.a C.

ia \


a....aa aaaaa..ab.aa L aL.:
&* *. *ataana aaaaa ara ab *
... **aa ..7... a...a .

:::::::::::::::::::::::::::::::::::::::::::::B:::::


H _______________________________________________________________________


A-.Ga. S-


Laurentia






if
:. *: *. *"JEliM lltfr ilsfS

'e'.t -L A-TAlpA-A

L.. ........ .
t 4 A A A J t i ?i4 lii44ii&-4&il44Ai 44
Laonwanaaa a a Mea ..
A *&* ei Aa*A aa at.
& AAAA A AAA A;- '* '-< fAAAAA *


b a A h* i
MAA~eM AAAAA AAAA A 4 4 M *
AAS6AAAAA AAAA AAA AA A AA
GoAAmAnaA < .
MeA ~ aeg AAMM AA eS a aa a a
Asses.As M~mse ...
AAA~ae AA AAA*A b*A
WwWW AAM4A ..A
AAAAAaA


. I






s, irl a 1



. Plateau ,
..
"i4~ *


__


I





r 11


4 l o





70

There are other lines of evidence that support this scenario. It
is unlikely that the numerous Triassic and Jurassic features of the
plateau basement would share a common linear boundary such as
the Jay Fault zone (Chapter 2), unless this boundary existed as a pre-
existing zone of weakness. The continuity and linearity of this zone
of weakness is strongly suggestive of a long strike-slip fault zone,


which is consistent with Smith's model.


In addition, the


metamorphic Catoche terrane encountered in DSDP holes 150 kms.
west of the Florida Escarpment in the Gulf of Mexico is petrologically
similar to the St. Lucie Metamorphic Complex and displays similar


40Ar/39Ar age spectra (Dallmeyer, 1984)


. Consequently


, it appears


to be another detached fragment of the same Gondwanan source


terrane (Schlager et al.,


1984).


If one accepts a Gondwanan origin for


the Catoche terrane, this necessitates northward to westward net
transport relative to the present orientation of North America for
emplacement of the terrane fragment to the west of the Florida


Plateau.


Because Mesozoic extensional trends suggest only


southeastward transport, then northward to westward movement of
the Catoche terrane must have occurred during or after closure, but
prior to Mesozoic extension in some manner similar to that described
by Smith.
Although significant northward and westward movement along
a series of strike-slip faults is suggested, the amount of lateral offset


along the Jay Fault zone may have been rather limited.


Recent drill





71

Granite and is probably another fragment of the same terrane


(Figure 17)


In addition, Heatherington and Mueller (1991) have


found little evidence for differences in Nd model ages for the
lithospheric components from which the volcanic suite of the South
Florida Basin and the north Florida volcanic rocks were derived.
Each of these suggests that there was not enough net strike-slip
movement along this section of the Jay Fault during the Paleozoic or
Mesozoic to bring separate lithospheric units into juxtaposition.


Mesozoic


Most Late Paleozoic-Early Mesozoic reconstructions of Pangaea
place the continental basements of the Floridan Plateau, the Yucatan,
and the Bahamas Platform in the reentrant at the junctions between


the juxtaposed North American


, South American, and African plates.


With the formation of a Late Triassic interior rift system, North
America began to rift away from Gondwana along the traces of the
Paleozoic continental margins (Van der Voo et al., 1976; Mullins and


Lynts, 1977; Pindell and Dewey
et al., 1984; Van Siclen, 1984).


,1982; Klitgord et al., 1983; Klitgord
The hypothesized sequence of events


on the Floridan Plateau during this period are shown in Figure 20.
A large graben system, the South Georgia Rift, formed across
southern Georgia nearly along the trace of the Alleghenian suture


between Florida and North America (Nelson et al., 1985B).


The


configuration of the rift was largely controlled by the presence of





























































Jurassic


Basin


Jurassic

Triassic


Normal Fault

Normal Fault


Triasic


Continental Rift Basin


Fault Zone (accommodates normal
and lateral motion)


aT Yyi a &lah a _a -v aL a a_ C a. a a 4 a a tie a Ca


T^---- /





73

across the Triassic northern margin of the Yucatan block, as
suggested by the presence of red beds in the Todos Santos Formation
of southern Mexico (Buffler and Sawyer, 1985; Molina-Garza et al.,


1992


geometry


. With a Late Triassic-Early Jurassic shift in the drifting


the South Georgia Rift became an aulacogen and the


Floridan Plateau


, Yucatan, and western Bahamas basements were left


appended to the southeastern margin of North America (Mullins and


Lynts,


1977


Pindell and Dewey, 1982


Smith


1982


Burke et al.,


1984; Klitgord et al.,


1984; Van Siclen, 1984).


Smith (1982) has suggested that this shift in the drifting
geometry was caused by the formation of a Triassic hot spot and
triple junction associated with the opening of the Atlantic Ocean near


the southern tip of Florida.


This model is supported by the ages,


lithologies, and isotopic signatures of the bimodal rhyolitic and


basaltic suite in the South Florida Basin region.


The basalts of this


terrane have yielded 40Ar/39Ar ages of about 190 Ma and trace
elemental analyses have been found to be consistent with a mantle
source, mixing with Precambrian continental lithosphere, and
deposition in an extensional environment (Mueller and Porch, 1983;
Heatherington and Mueller, 1991).
Both the configuration of the Floridan Plateau basement and
recent continental reconstructions suggest that the South Florida
Basin suite is more likely to be associated with the opening of the


Gulf of Mexico, rather than the Atlantic Ocean.


The alternating basins







of the South Florida Basin terrane to the northwest.


In addition, as


suggested by the position of the salient between Africa, North
America, and South America, it is likely that during the Triassic and


Jurassic,


the continental crust of the western Bahamas block was


located immediately to the east of the South Florida Basin terrane


(e.g., Mullins and Lynts,


1977), where it would have effectively


isolated the terrane from the Atlantic oceanic rift zone (Figure 20).
Although these reconstructions suggest that the South Florida Basin
was geographically removed from the Atlantic Ocean and that the
bimodal volcanics were erupted as a consequence of the opening of
the Gulf of Mexico basin, this does not negate a Late Triassic-Early
Jurassic shift in oceanic rifting geometry as a causal mechanism for
the failure of the South Georgia Rift.
A number of Late Triassic reconstructions of the Gulf of Mexico
region indicate that the north-central Gulf region was occupied by
the Yucatan (or Maya) Peninsula block which, as supported by recent
paleomagnetic data (Molina-Garza et al., 1992), later rotated
counterclockwise away from North America during its separation
with South America (e.g., Pindell, 1985; Ross and Scotese, 1988;
Rowley and Pindell, 1989). These reconstructions suffer from a gap
in the northeastern Gulf of Mexico. There have been two general
hypotheses that account for this gap.
One hypothesis is that the gap was occupied by the crustal
blocks now occupying the Florida Straits and the South Florida Basin







Florida during the Late Jurassic.


This displacement would have


occurred along a left-lateral strike-slip fault (the Florida Elbow Fault)
which would necessarily extend across the southwestern quarter of


the Floridan Plateau (Figure 16B)


. The second hypothesis is that any


apparent gaps are accountable entirely to attenuation and subsidence
of continental crust in the eastern gulf during the Jurassic (e.g.,


Buffler and Sawyer, 1985; Dunbar and Sawyer, 1987


Salvador, 1987


Winker and Buffler, 1988).
In contrast to the obvious potential-field signature attributable
to the Jay Fault zone, there is no suggestion of a Florida Elbow Fault
extending across southwestern Florida in either Bouguer anomaly


maps or seismic reflection surveys.


In addition, the Middle Jurassic


basins and arches of the southwestern Floridan Plateau appear to
extend undisturbed across the proposed trace of the Florida Elbow


Fault.


Hence, there is little supporting evidence for this fault or any


similar structure across the southwestern plateau, and the
translocation of the Florida Straits block from the eastern gulf to its
present location by some other path seems unlikely.
Another consideration with respect to the apparent gap is that
the southwestern half of the Floridan Plateau is comprised of
attenuated (i.e., stretched and thinned) continental crust, as
suggested by the prominent extensional basins and the drill holes


intersecting granitic basement (Figure 1).


The depth-to-basement in


the Tampa, Apalachicola, and South Florida Basins demonstrates that





76

and 1.8 (Pindell, 1985). Consequently, the model that attributes an
apparent gap in the northeastern Gulf of Mexico exclusively to the
attenuation and subsidence of continental crust is preferred.
As previously mentioned, restoration of the Jurassic crustal
attenuation of the southwest Floridan Plateau results in the
relocation of the South Florida Basin region into the proximity of the
eastern gulf. Potential-field maps indicate that the South Florida
Basin region is comprised of several separate basins which trend
northwest-southeast, perpendicular to the trend of the other
Mesozoic features of the southern and western Floridan Plateau
(Figure 18). The northwest-southeast orientations of these basins
and their proximity to the Yucatan during the Late Triassic-Early
Jurassic suggests that they may have formed in response to
southwestern extensional stress as the Yucatan block rotated
counterclockwise away from the Floridan Plateau (Figure 20).
Subsequently, as North America and South America continued
to separate, a series of basement horsts and grabens formed around
the periphery of the Gulf of Mexico basin (Pindell and Dewey, 1982;
Burke et al., 1984; Klitgord et al., 1984; Buffler and Sawyer, 1985;
Pindell, 1985; Winker and Buffler, 1988). A few of the horsts in the
southeastern United States, such the Wiggins Arch underlying
southern Alabama and Mississippi, have been proposed to be
stranded blocks left behind by the departing Yucatan block or South
American continent (Smith et al., 1981; Pindell and Dewey, 1982;





77

North American crust (e.g., Pindell, 1985; Ball et al., 1988; Winker
and Buffler, 1988; Dobson and Buffler, 1990; Reitz, 1991).
The Gulf of Mexico existed as a restricted basin from about 165
Ma until about 150 Ma, resulting in the deposition of extensive salt
deposits (Pindell and Dewey, 1982; Salvador, 1987). During this
period, stress in the western Floridan Plateau was reoriented to a
north-south or northwest-southeast extensional regime, as
delineated by the northeast-southwest orientations of the horsts and
salt-containing basins of the southwestern Floridan Plateau. This
shift in the stress regime is likely to have been associated with the
continuing separation of the North American and South American
landmasses.
The mechanisms of relative motion between North and South
America during the Jurassic are not well constrained, partly because
much of the intervening crustal structure was subsequently
destroyed during the eastward migration of the Caribbean plate. It
is probable that the relative motion between the two continents was
accommodated by strike-slip movement along a series of northwest-
southeast or north-south oriented transform faults (Pindell and
Dewey, 1982; Klitgord et al., 1984; Van Siclen, 1984; Pindell, 1985;
Salvador, 1987).
It has been suggested that the Bahamas Fracture Zone/Jay
Fault system acted as an important transform fault in the eastern
Gulf of Mexico during the Jurassic, not only by accommodating







1984)


However, as mentioned, the plateau basement southwest of


the Jay Fault zone appears to be composed entirely of attenuated
continental crust, rather than of stranded individual blocks, as had


been hypothesized.


In addition


, similarities between Nd isotope


signatures of basement samples from north and south Florida imply
little net strike-slip motion along the Jay Fault zone (Heatherington


and Mueller, 1991).


Consequently, while some sinistral motion along


the Jay Fault zone during the Jurassic resulting from crustal
attenuation along its southwestern margin is likely, its proposed
roles as the southern boundary of North American continental crust
and as a major transform boundary seem implausible.
Tensional deformation in the Gulf of Mexico region ceased by


the Late Jurassic (Salvador, 1987)


indicating that the lithotectonic


blocks of the Floridan Plateau had reached their present relative


positions by that time.


A review of existing seismic reflection


profiles reveals no evidence of continued faulting or other
tectonically-induced deformation in the sedimentary column
overlying the Floridan Plateau after the Early Cretaceous, despite the
presence of numerous pre-existing potential zones of weakness.
Thus, as soon as the region became established as a passive margin,
the level of crustal stress on the plateau appears to have diminished
dramatically.





79

of Mexico associated with the collision of Cuba and the Bahamas
during the Early Paleogene has been documented; however, there is
no evidence for any associated tectonic activity or significant
horizontal lithospheric stress on the Floridan Plateau (Pindell, 1985).
Rather, the undisturbed Upper Cretaceous and Tertiary strata on the
plateau document an extended, nearly continuous period of shallow
marine carbonate and plastic deposition which occurred in response
to regional subsidence.












CHAPTER 4
SEISMICITY AND STRESS IN THE
SOUTHEASTERN UNITED STATES

Introduction
Several hypotheses have been developed to explain seismic
activity in the intraplate setting of the eastern United States;
however, specific causal mechanisms and conditions remain
enigmatic. The relative paucity of earthquakes and the tectonic
complexity of the region result in seismic hazard assessments that
are necessarily rather subjective and often the source of debate. An
improved understanding of seismicity and seismic hazard in the
eastern United States is necessary and can best be acquired from the
integration of a variety of observations.
The intention in this chapter is to characterize epicentral
density patterns in the southeastern United States and to provide a
summary of the disparate hypotheses and observations relating to
the seismicity of the region. A further objective is to evaluate
possible causes for the nonuniform distribution of seismicity, with
particular emphasis on the seismotectonic differences between the
active South Carolina-north Georgia seismic zone and the juxtaposed,
yet seismically quiescent south Georgia-Floridan Plateau region.





81

Methods


The characterization of epicentral distribution in the
southeastern United States was accomplished through the integration
of a literature review of historical and instrumental records and the


establishment of a network of digital seismographs in Florida.


seismograph network has been in operation since 1989.


This


In addition,


a review of previously published seismic reflection profiles and an


overview of the tectonic setting,


as discussed in Chapters


2 and 3,


respectively, are used as general indicators of prehistoric seismic
activity for the Floridan Plateau.


Results


Epicentral Distribution in the Southeastern United States
Compilations of historic reports of seismic activity in the
southeastern United States, except for Florida, have been provided


by Bollinger (1973A, 1975)


. In these compilations,


about 800


reported events during the period between 1754 and 1974 are


identified. Of these,


76 reports are from eastern Tennessee, 73 are


from North Carolina, and 451 are from South Carolina, while only 34


are from Georgia and 18 are from Alabama (Figure 21).


Nearly all of


the Georgia and Alabama events occurred in the northern portions of


the states.


The remainder of the reports are from Virginia,


West


Virginia, Maryland, and Kentucky.


Based on this compilation,


Bollinger identified several different seismically active zones in the


















n Florida Historical Events

, Instrumentally Located
Events

+ Historical or Poorly
Located Events


fl* ... n ) I t.ia a a_ 1 41 .a Ia. ai a -


* t 4 4f!L -L *


II II





83

350 kilometers. It covers an area of more than 145,000 square
kilometers and trends perpendicular to the structural grain of the


Appalachians (Bollinger, 1973A,B)


Although epicentral distribution


within this zone is diffuse, it includes Charleston, S.C., where an 1886
event had an estimated body-wave magnitude of 6.8 (Bollinger,


1977


, 1983) and a lengthy aftershock sequence, including more than


300 events during the subsequent 35 year period (Tarr, 1977).
Another zone, the Southern Appalachian seismic zone, extends
from central Alabama northeastward to western Virgina along the
Blue Ridge and Valley and Ridge provinces. It encompasses 162,000
square kilometers and, with respect to epicentral density, is more


active than the South Carolina-Georgia seismic zone.


Eight events


with Modified Mercalli (MM) intensities greater than VI have
occurred in this zone since 1874, including the intensity VIII event
of Giles County, Virginia in 1897.
In addition to the historic reports of seismic activity, epicentral
distribution patterns have also been determined from instrumentally


located events.


During the period from 1977-199 1


the Southeastern


United States Seismological Network (SEUSSN) located 1162 events,
which are also shown in Figure 21 (SEUSSN Contributors, 1992).
These instrumental records generally corroborate the previously
determined epicentral distribution patterns of Bollinger, implying
that the effects of population distribution, local ground response, and
reporting error have not significantly biased the historical record.





84

(1983) identified only 33 reports of earthquakes in Florida; these
reports were later used to construct a seismicity map of the state


(Reagor et al., 1987).


Most of these reports do not represent tectonic


activity in Florida (Smith and Randazzo,


1989; Lord and Smith, 1991).


Rather, many are attributable to events that occurred elsewhere and
others, based on their descriptions, are more likely to have been


blasting, military activities,


or atmospheric phenomena.


The


conclusion of these reviews was that Florida has experienced only 6


possible low-intensity historic events.


A subsequent review of


newspaper reports has revealed that 1 of these 6 possible events (on
21 June 1893) was felt in the Charleston area before being felt in
Florida and, therefore, is not likely to have originated on the Floridan


Plateau.


The remaining 5 possible events are shown on Figure 21.


Instrumental records also support the premise that the
Floridan Plateau, which includes south Georgia, is characterized by an
unusually low level of seismic activity. In fifteen years of operation,
the SEUSSN has never detected an event on the Floridan Plateau. In


addition, during the three years that the state-wide network of

digital seismographs has been in operation, there were no events
located on the plateau and only a single local event was detected.
This was a mb 3.8 event located in the Gulf of Mexico, 340 kilometers


west-southwest of Sarasota, Florida on March 31


1992.


In addition to historical and instrumental records, a review of
existing seismic reflection surveys from around the plateau (Chapter





85

plateau basement appears to have been in a low-seismicity state for
a relatively long period of time.
Consequently, historical records, instrumental records, and
geophysical data each demonstrate a pronounced difference in levels


of seismic activity between proximal regions.


To the north, in the


southern Appalachians and southern Coastal Plain, there is a
moderate to high level of seismic activity, including several historic


large magnitude events.


Immediately to the south, however, there is


an unusually low level of seismic activity, with only occasional low
intensity events. As inferred from Figure 21, the boundary between
these two regions extends approximately east-west across south-
central Georgia and Alabama and is a well-defined example of the
nonuniform nature of seismicity in the southeastern United States.
Several plausible explanations for this nonuniform distribution
of seismicity can be presented, although they are not mutually


exclusive.


The first is that this difference is caused by variability in


the lithospheric stress field, as suggested by Hatcher et al. (1987).
Another possible reason is that there are mechanical differences (i.e.,
lithology or structure) between adjacent zones (Wheeler and


Bollinger, 1984).


This would imply that local seismogenic features


exert primary control over the distribution of seismic activity in the


southeastern United States.


A final possibility is that there is a


systematic variability in the propensities of pre-existing fault zones


to slippage.


This would be attributable to variations in either the





86

Lithospheric Stress in the Southeastern United States
While the stress regime in central and eastern North America
has been established to be primarily northeast-southwest
compressive (Zoback and Zoback, 1980; Zoback, 1992), there have


been a number of contradictory observations.


This suggests the


possibilities of local perturbations in the regional field and/or the
influence of a local stress field. As a result, the sources) of
seismogenic stress in the southeast is still rather speculative.
Stress orientations in the Coastal Plain and southern
Appalachian provinces have been determined from a variety of
sources, such as the orientation of recent faulting (Schafer, 1979;
Zoback and Zoback, 1980; Wentworth and Mergner-Keefer, 1981,
1983), hydrofracturing in deep wells (Zoback and Zoback, 1980), in
situ measurements (Hooker and Johnson, 1969; Zoback et al., 1978),
fault plane solutions (Tarr, 1977; Tarr and Rhea, 1983; Johnston et
al., 1985; Zoback, 1992), borehole elongation (Plumb and Cox, 1987)
and crustal modeling (Kuang et al., 1989; Richardson and Reding,


1991).


Within these provinces, there is general agreement that the


maximum stress is compressional and horizontal.


While most


indicators suggest that the maximum compressional stress direction
is oriented northeast-southwest, many are also indicative of a
northwest-southeast oriented field.
A number of indicators have been used to infer northeast-


southwest compression.


One of these is shallow focal plane solutions





87

addition, Plumb and Cox (1987) measured borehole elongations from
eastern Tennessee to Canada, including a number from west of the
Appalachians, and found nearly their entire study area to be under


northeast-southwest compression.


While Plumb and Cox had no


measurements from the southeastern Coastal Plain, Hooker and
Johnson (1969) measured in situ stresses in 5 boreholes in Georgia,


Virgina, and North Carolina.


Their measurements were inconclusive,


as their orientations ranged from nearly north-south to nearly east-


west.


Focal mechanisms from the southern Appalachians


demonstrate that at depths averaging between 9 and 15 kms, the
basement under the Appalachian detachment is under northeast-


southwest compression (Johnston et al.,


1985).


Using a variety of


indicators, Zoback and Zoback (1989) found the eastern and central
United States to be under a relatively uniform northeast-southwest


compressional field.


More recently, M.L Zoback (1992) found that of


the 32 central and eastern United States earthquakes used in her
investigation, 25 indicated slip compatible with northeast-southwest
compression.
Alternatively, some of the stress field indicators suggest a
component of horizontal compressive stress oriented approximately


northwest-southeast.


Schafer (1979) came to this conclusion while


investigating recent surficial fault motion in the western Valley and
Ridge of eastern Tennessee, as did Wentworth and Mergner-Keefer


(1981


1983) and Prowell (1989) in studies of Cenozoic faulting from





88

characterized the Appalachian and Coastal Plain provinces as being


under northwest-southeast compression.


Finally, Bollinger (1983)


and Wentworth and Mergner-Keefer (1983) both concluded that the
1886 Charleston earthquake was probably a thrust event along a
northeast-trending structure--another indication of northwest-
southeast compression.
Within Florida, stress orientations have been deduced only
from a single report of recent tectonic faulting (Vernon, 1951). In


this account,


Vernon proposes northwest-striking normal faulting in


the west-central portion of the peninsula as a source of aerial photo


lineations and inconsistencies in drill logs.


The report has


subsequently been cited as evidence for northeast-southwest
extensional stress on the Floridan Plateau (York and Oliver, 1976;


Zoback and Zoback, 1980; Prowell, 1983)


No other reports of these


features exist, and no physical recognition of them has been
achieved, although northwest-trending jointing is common in that


area (Beatty


1977)


Accordingly, the orientation of the stress field


under the Floridan Plateau is unknown, although Zoback and Zoback
(1989) indicate that southeastern Georgia and the Atlantic
continental margin off Florida's northeast coast are under north-
northeast to south-southwest compression.
In an attempt to explain the contradictory indicators of stress


direction in the southern Appalachians and Coastal Plain,


York and


Oliver (1976) suggested that seismogenic stresses in the eastern





89

perturbed by the strain release during the 1886 event and has not


yet recovered.


Bollinger (1983) hypothesized that there were two


sets of perpendicular seismogenic features around Charleston, one
northwest-southeast and one northeast-southwest, along which
earthquakes occur without regard to the orientation of the stress


field.


McCartan and Gettings (1991) proposed that young mid-crustal


plutons locally disrupt the stress field by concentrating stress.
Hatcher et al. (1987) suggested that the eastern and central United
States could be divided into a number of individual blocks based on
geophysical signatures and that a southern group of blocks, including
the Floridan Plateau, are decoupled from the regional stress regime.
Although each of these may explain certain observations or
particular local phenomena, none resolves all of the contradictory
observations throughout the eastern United States.
The total stress field at a given site is the sum of regional and


local stresses.


Regional stress, as the name suggests, is that stress


regime which prevails over a large area and is produced by tectonic


effects (e.g., Kuang et al.,


1989)


Local stress is that induced by


surficial topographic relief or shallow crustal features or phenomena.
Remnant stress is that stress remaining in a rock after an applied
stress has been removed (Sbar and Sykes, 1973).
The primary source of regional stress in eastern North America
appears to be ridge-push from the mid-Atlantic ridge (Yang and


Aggarwal, 1979: Zoback and Zoback, 1980; Kuang et al.,


1989; Zoback,





90

resistance to plate motion (Zoback and Zoback, 1980) and lithospheric
stress induced by asthenospheric convective flow (Voight, 1969; Sbar


and Sykes,


1973).


Either of these would also produce a northeast-


southwest maximum compressional stress direction.
The contradictory indicators of stress direction suggest the
possibility of a local stress stress field in the eastern United States.
Several possible sources of local stress have been proposed.
Bollinger (1973B) and Barosh (1981) have suggested isostatic uplift
and flexure as a causal mechanism for compression; however, Brown
(1978) was unable to find a correlation between vertical crustal


movement and seismicity along the eastern seaboard.


In addition


the rebounding Appalachians are the source of the uplift in this
model, then the predicted extensional stress along the crest of the


mountains is not observed (Zoback and Zoback, 1980).


Another


proposed source of local northwest-southeast compressional stress is
gravity-induced backsliding southeastward along the Appalachian


decollement surface (Seeber and Armbruster, 1981).


This model also


predicts extension along the apex of the Appalachians, which is not


observed (Zoback and Zoback, 1980).


Finally, Kuang et al. (1989)


considered the primary sources of local stress to be topographic


relief and density contrasts within the lithosphere.


According to


their model, these would also be likely to induce northwest-
southeast compression.
Seismotectonic Features of the Southeastern United States




Full Text
THE BASEMENT STRUCTURE, TECTONIC HISTORY,
SEISMICITY, AND SEISMIC HAZARD POTENTIAL
OF THE FLORIDAN PLATEAU REGION
By
KENNETH M. LORD
A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA
1993

ACKNOWLEDGMENTS
This project was generously funded by the Florida Power and
Light Corporation. I am indebted to John Luke, Jerry Burford, Russ
Gouldy, Orin Pearson, and David Chaney, all of F.P. & L., for their
continuing support and enthusiasm. Additional support was given
by Walt Schmidt and the Florida Geological Survey, who provided the
drill rig necessary for the installation of the seismograph bases.
Over the past years, Doug Smith's enthusiasm, professionalism,
and friendship have made all aspects of my graduate studies both
rewarding and enjoyable. In addition, numerous other people
provided advice, assistance, and encouragement to me during the
course of this project. Tony Randazzo, Paul Mueller, Neil Opdyke,
Tom Crisman, and Ann Heatherington have each provided me with
valuable guidance and helpful suggestions. Ray Thomas spent many
long hours helping me to debug various digital systems. Joe Smyth
and John Roche of the Florida Division of Recreation and Parks and
Robert Amberger of the National Park Service each went to a great
deal of trouble to make their facilities available for this project, as
did Wes Greenman and Sam Langley of the Department of
Astronomy.
A number of my fellow students, including Tony Bartolini, John
Bellini, Jason Curtis, Kevin Hoyle, Jose Garrido, Kathy Venz, Judy
Wherett, and Doug Wilder, cheerfully volunteered their time and
ii

helped in the difficult tasks of installing and maintaining the
network of seismographs. In addition, lengthy conversations with
Jon Jee proved to be very fruitful. I am grateful to each of these
people for their time, interest, and assistance.

TABLE OF CONTENTS
Page
ACKNOWLEDGMENTS ii
LIST OF FIGURES vi
ABSTRACT ix
CHAPTERS
1 INTRODUCTION 1
Purpose 1
Methodology 4
2 THE STRUCTURE OF THE FLORIDAN PLATEAU 7
Introduction 7
Methods of Investigation 8
Results and Interpretations 22
Summary 59
3 TECTONIC EVOLUTION OF THE FLORIDAN
PLATEAU 64
Introduction 64
Regional Tectonic History 64
4 SEISMICITY AND STRESS IN THE
SOUTHEASTERN UNITED STATES 80
Introduction 80
Methods 81
Results 81
Discussion 97
Summary 102
iv

5 REGIONAL SEISMOTECTONIC PROVINCES 104
Introduction 104
Background and Methods 105
Results Ill
6 SEISMIC ATTENUATION IN THE
FLORIDA REGION 123
Introduction 123
Background and Methods 124
Test Cases for In tensity-Absorption Method 128
Results from the Florida Region 133
7 SEISMIC HAZARD IN FLORIDA 139
Introduction 139
Methods 139
Results 143
8 DISCUSSION AND CONCLUSIONS 148
Introduction 148
Discussion 148
Conclusions 158
APPENDIX SEISMIC HAZARD PROBABILITIES FOR SITES
IN FLORIDA 161
REFERENCES CITED 194
BIOGRAPHICAL SKETCH 220
v

LIST OF FIGURES
Page
1. Drill hole locations and basement lithologies within the
study area 9
2. Geophysical survey locations within the study area 11
3. Depth-to-basement of the Floridan Plateau 12
4. Bouguer anomaly map of the Floridan Plateau region 13
5. Magnetic anomaly map of the Floridan Plateau region 16
6. Bouguer anomaly field of the Floridan Plateau downward-
continued to basement level 17
7. Bouguer anomaly field of the Floridan Plateau upward-
continued to 10 km 18
8. Second vertical derivative of the Bouguer anomaly field
of the Floridan Plateau 19
9. Map of drill hole distribution and basement lithologies
with the designated features discussed in the text 24
10. Depth-to-basement map with the designated features
discussed in the text 25
11. Magnetic anomaly field map with the designated features
discussed in the text 26
12. Bouguer anomaly map with the designated features
discussed in the text 27
13. Downward-continued Bouguer anomaly map with the
designated features discussed in the text 28
vi

14. Upward-continued Bouguer anomaly map with the
designated features discussed in the text 29
15. Second vertical derivative of the Bouguer anomaly field
with the designated features discussed in the text 30
16. Various previously published configurations for the
Mesozoic structure of the southern and western
Floridan Plateau basement 46
17. Pre-Mesozoic lithotectonic features of the Floridan
Plateau basement 60
18. Mesozoic structural features of the Floridan Plateau
basement 61
19. Hypothesized sequence of events during Alleghenian
closure resulting in the translocation of Gondwanan
terrane fragments along transform faults in the
Floridan Plateau basement 69
20. Hypothesized sequence of events during the formation
of the Late Triassic and Jurassic extensional features of
the Floridan Plateau basement 72
21. Epicentral distribution in the southeastern United States
and northwestern Caribbean from historical and
instrumental records 82
22. Pre-Mesozoic allochthonous terranes of the
southeastern United States 93
23. Selected Mesozoic seismotectonic features of the
southeastern United States 95
24. The University of Florida Seismograph Network 110
25. Seismotectonic provinces in which expected earthquakes
could potentially cause significant ground motion in
Florida 112
vii

26. Modified Mercalli intensity isoseismal map for the
northern Kentucky earthquake of 27 July, 1980 130
27. Modified Mercalli intensity isoseismal map for the
central Idaho earthquake of 28 October, 1983 131
28. Modified Mercalli intensity isoseismal map for the 1886
Charleston earthquake 134
29. Modified Mercalli intensity map for the Florida
earthquake of 27 October, 1973 137
30. The SEISRISK III input file for the calculation of
seismic hazard in peninsular Florida using the
format described in Bender and Perkins (1987) 141
31. The distribution of annual probabilities of exceeding
0.08 g in Florida 145
32. The distribution of annual probabilities of exceeding
0.02 g in Florida 146
viii

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy
THE BASEMENT STRUCTURE, TECTONIC HISTORY,
SEISMICITY, AND SEISMIC HAZARD POTENTIAL
OF THE FLORIDAN PLATEAU REGION
By
Kenneth M. Lord
August 1993
Chairman: Dr. Douglas L. Smith
Major Department: Geology
This study seeks to reduce subjectivity in probabilistic seismic
hazard assessments in Florida by providing refined characterizations
of the basement structure, tectonic history, regional seismicity, and
seismic attenuation. Interpretations of digitally filtered gravity
maps supplemented by previously published data reveal a basement
configuration reflecting the probable translocation of fragments of
Gondwanan crust during Alleghenian continental convergence and
the formation of extensional basins along the southwestern half of
the Floridan Plateau during Mesozoic extension. The Jay Fault zone
may have originally formed as a dextral transform during
continental collision, but was subsequently reactivated to
accommodate sinistral and normal movement during the Mesozoic.
There is no evidence for the previously hypothesized Florida Elbow
IX

Fault. The Jurassic Tampa Basin is larger than previously mapped
and the South Florida Basin region probably consists of 2-3 separate
northwest-trending basins. The orientations of the Jurassic
extensional basins suggest two episodes of formation, one during the
rotation of the Yucatan block away from the Floridan Plateau and
another during the separation of North and South America. There is
no evidence of fault reactivation or other tectonic activity on the
Floridan Plateau since the Middle Cretaceous.
This tectonic quiescence is manifested in the unusually low
level of seismic activity on the Floridan Plateau as demonstrated by a
review of regional instrumental and historical records and the
deployment of a network of digital seismographs accompanied by
four years of monitoring. The nonuniform distribution of regional
seismic activity is probably related to the distribution and
orientations of preexisting mid-crustal faults and to their
propensities for slippage.
Seismic attenuation in Florida appears to be slighdy higher
than in the central United States, but significantly lower than the
western United States. Although seismic hazard throughout Florida
is extremely low, the greatest probability for damaging ground
motion (> 0.2 g) exists in northwestern Florida and is calculated to be
8.0 x 10'5/year, indicating a recurrence interval of 12,500 years.
Throughout most of Florida, however, the probability of exceeding
0.2 g is significantly less than 1.0 x 10_5/year, suggesting recurrence
intervals of greater than 100,000 years.
x

CHAPTER 1
INTRODUCTION
Purpose
Large construction projects, such as dams, bridges, and nuclear
power plants, are designed to withstand specific maximum levels and
durations of strong ground motion. The projections of maximum
levels and durations of strong motion are made through the use of
site-specific seismic hazard analyses, which are based on a number
of criteria. These criteria include the levels of historical and
instrumental seismicity, the identification and characterization of
seismo tec tonic sources, expected maximum magnitudes of
earthquakes, and expected resultant ground motion at particular
sites (e.g., Yegian, 1979; Johnston, 1981; Reiter, 1990). Because the
Floridan Plateau has a historically low level of seismic activity and a
rather enigmatic tectonic setting, little of the information needed to
assess or quantify the criteria used for the analysis of seismic hazard
is available.
The most reliable indicators of seismic hazard are the regional
levels of historical and instrumental seismicity. The paucity of
reported seismic events in the historical record suggests that the
Floridan Plateau is tectonically stable. However, the sparse state
population prior to this century, as well as the appreciable distance
between the population centers of Florida and the western Florida
1

2
escarpment, suggests that the historical record may not provide a
reliable measure of seismicity. In addition, because there has been
no regional network of seismographs until recently, there is little
documentation for the level of instrumental seismicity.
Consequently, neither historical nor instrumental records provide
rehable gauges of seismic activity for use in hazard analyses in
Florida.
Another potential indicator of seismic hazard is the
identification and characterization of seismotectonic sources and
source regions. Seismicity in the eastern United States is generally
attributed to the reactivation of Mesozoic or older faults in a
moderate stress field (Sykes, 1978; Hamilton, 1981; Wentworth and
Mergner-Keefer, 1983; Zoback, 1992); however, the structure of the
Floridan Plateau basement is deeply buried. The crystalline
basement of the plateau is overlain by Coastal Plain sedimentaiy
deposits, which range in thickness from about 900 meters in north-
central Florida to over 5000 meters in southern Florida (Wicker and
Smith, 1978). As a result of this thick sedimentary sequence, there
are relatively few drill holes intersecting the basement (Barnett,
1975; Smith, 1982; Chowns and Williams, 1983) and regional
potential field interpretations are difficult (e.g., Oglesby et al., 1973;
Klitgord et al., 1984). Consequently, current models for the structure
of the Florida basement are necessarily characterized only by
generalizations of large scale features and lithotectonic units, while
structural details remain enigmatic. These generalized models
provide little insight into the seismotectonic nature of the Floridan
Plateau.

3
The amplitude of ground motion at a particular epicentral
distance from a seismic event is dependent not only upon the seismic
moment of the event, but also upon individual site characteristics
and seismic attenuation. Seismic attenuation in the eastern and
central United States has been studied on a regional level (Nuttli,
1973A; Jones et al., 1977; Bollinger, 1979; Campbell, 1981; Singh and
Herrmann, 1983), but there have been no independent studies of
attenuation in Florida. Accordingly, Nuttli's (1973A) generalized
attenuation coefficients for the eastern United States are employed in
calculations of seismic hazard in Florida. However, the Floridan
Plateau has been shown to be an allochthonous terrane with respect
to the North American craton (e.g., Smith, 1982). This suggests that
the mechanical response of the plateau may differ from that of the
remainder of the eastern United States, which would invalidate the
use of Nuttli's attenuation coefficients. As a result, estimations of
expected ground motion in Florida may be invalid.
One consequence of the limitations inherent in the historical
and instrumental records in Florida and the enigmatic nature of the
tectonics and structure of the basement is that the criteria used in
regional seismic hazard analyses (i.e., seismicity, seismotectonic
characterizations, and seismic attenuation) are poorly documented.
Previous seismic hazard analyses in Florida have assumed, with little
substantiation, that the risk of local seismic activity is negligible and
that Nuttli's eastern United States attenuation coefficients are
applicable to the Floridan Plateau (e.g., Ebasco, 1988). The purposes
of this study are to utilize a variety of geophysical methods to
further investigate each of the criteria used in seismic hazard

4
analyses and to reexamine the tectonic history of the region.
Specifically, the intention is to provide improved characterizations of
the basement structure, tectonic evolution, regional seismicity, and
seismic attenuation in the Floridan Plateau region, and to incorporate
these into an empirical assessment of seismic hazard in Florida.
Methodology
Several geophysical methods have been employed and
incorporated into this study. In each of the following chapters, the
methods used are discussed in detail. The purpose of this section is
to provide a general overview of the sequence of these individual
methods and how each has been utilized in this study.
The first step of the study was to digitize and filter potential-
field data for the entire Floridan Plateau. The resultant filtered
gravity maps for the Plateau, when interpreted in conjunction with
previously published magnetic, drill hole, seismic reflection, and
seismic refraction data, permitted an improved resolution of the
locations, sizes, natures, and spatial relationships between the
various crustal blocks and structural features of the plateau
basement. A tectonic interpretation based on this improved
structural model prompted a general interpretation of the seismic
history of the plateau, and existing seismic reflection studies of the
Cenozoic sedimentary accumulations overlying the basement allowed
a more specific determination of recent levels of seismic activity.
The next step was to investigate the nature of seismicity in the
southeastern United States. This involved a review of historical
records, particularly those from Florida, and instrumental records,

5
which only encompass the past twenty years in this region. Because
instrumental coverage in Florida was insufficient, a network of
digital seismographs was established for the purposes of attempting
to detect and characterize any previously unknown local sources of
seismic activity and to characterize the local mechanical response of
the crust to regional events. The information compiled from these
historical and instrumental sources was then examined within the
context of previously published regional stress field indicators to
develop a lithospheric model for the distribution of earthquakes in
the southeastern United States.
Following this, each of the seismic source provinces in the
southeastern United States, the Caribbean, and the Gulf of Mexico in
which activity could potentially generate significant ground motion
in Florida were identified. Each province was characterized based on
the compiled earthquake information, the lithospheric models for the
Floridan Plateau and the southeastern United States, and previously
published material. Included in the characterizations were estimates
of maximum magnitude and recurrence intervals.
Subsequently, a method was developed to estimate a local
value of seismic attenuation in Florida. This method utilizes
isoseismal maps as a means of approximating the decrease in peak
ground acceleration with distance from an event with a known or
reasonably well-approximated magnitude. These parameters
(acceleration, distance, and magnitude) are then used to
mathematically derive a value for seismic attenuation. It was
necessary to test and validate this method using isoseismal maps
from various earthquakes in the central and western United States,

6
where attenuation coefficients are well known. Once validated, the
method was applied to the isoseismal maps from the 1886 Charleston
earthquake and a 1973 earthquake in northeastern Florida in order
to estimate attenuation coefficients for the southeastern Coastal Plain
and Florida.
Finally, the source zone characterizations and estimated
attenuation coefficients were used as input for a probabilistic seismic
hazard assessment for Florida. This analysis is based on the method
of Cornell (1968), which addresses the effects of all of the possible
earthquakes likely to affect Florida for each site on a grid of sites
around the state. Based on the distances to each seismic source zone,
recurrence intervals, and seismic attenuation coefficients, a value is
calculated for each site describing the probability that a particular
acceleration will be exceeded at that site within a given time frame.
The resulting grids were contoured to produce probabilistic seismic
hazard maps for Florida.

CHAPTER 2
THE STRUCTURE OF THE FLORIDAN PLATEAU
Introduction
All regional models describing the structural features of the
Floridan basement have been founded primarily on deep drill hole
data from wells penetrating pre-Cretaceous crystalline rock. Because
of an intrinsic bias in the spatial distribution of these drill holes,
most of the regional models have been limited in scope to peninsular
Florida, rather than to the entire Floridan Plateau. Similarly, more
localized, yet more detailed, structural models based on seismic
reflection profiles tend to be spatially biased towards offshore areas.
As a result, with the notable exception of Klitgord et al. (1984), there
has been little effort to integrate previously published studies into
an examination of the Floridan Plateau as a singlar feature.
Since the work of Klitgord et al., a number of pertinent
geochemical, geophysical, and drill hole studies have been published
(e.g., Nelson et al., 1985A; Ball et al., 1988; Heatherington et al., 1989;
Dobson, 1990; Heatherington and Mueller, 1991; McBride, 1991);
these have yet to be examined within a regional context. The
intention in this chapter is to utilize digitally filtered regional
potential-field data as a means of consolidating a large number of
disparate drill hole, geophysical, and geochemical observations into a
single model for the structure and tectonics of the Floridan Plateau.
7

8
Methods of Investigation
A series of digital geophysical and structure contour maps for
the Floridan Plateau were produced for this investigation using the
methods described in Lord (1992). These maps cover the rectangular
area encompassed by 24 to 31 degrees north latitude and 80 to 86
degrees west longitude. All of the digitizing, digital filtering
operations, and contouring were done on a IBM 386 compatible,
equipped with a Houston Instruments digitizing tablet. Additional
drafting and figure preparation were done on an Apple Macintosh
Ilci equipped with a scanner and laser printer. Commercial software
packages employed include Rockware's Digitize, Golden Software's
Surfer, Lotus 1-2-3, Silicon Beach Software's Superpaint, and a series
of potential-field geophysical programs available through the USGS
(Hildenbrand, 1983; Grauch, 1984; Godson and Mall, 1989).
The first step was to produce a detailed depth-to-basement
map for the plateau. In this study area, basement is defined by the
unconformity between pre-Late Jurassic rocks and younger
sedimentary accumulations of the Coastal Plain. All available drill
hole depth-to-basement data, shown in Figure 1, were plotted on a
grid representing points with a 9.2 km spacing over the study area.
Sources for these data include Barnett (1975), Smith (1982), Chowns
and Williams (1983), Schlager et al. (1984), Ball et al. (1988), and
Dobson (1990).
A number of additional depth-to-basement determinations
were then made from previously published seismic reflection,
seismic refraction, and gravity studies (e.g., Antoine and Harding,
1965; Sheridan et al., 1966; Arden, 1974; Mitchum, 1978; Sheridan et

9
o
o
♦ Granitoid Plutonic Rocks
+
* Diabase
Hi
o Felsic Extrusive Rocks
â– 
o Metamorphic Rocks
X
(Amphibolite Grade)
H
Quartzitic Sandstone or Shale
Quartzitic Sandstone/Shale with Diabase
Triassic Redbeds with Diabase
Mafic Extrusive Rocks
Intercalated Felsic and Mafic Extrusives
Figure 1. Drill hole locations and basement lithologies within the
study area. (Compiled from Barnett, 1975; Smith, 1982; Chowns and
Williams, 1983; Schlager et al., 1984; Ball et al., 1988; Dobson, 1990.)

10
al., 1981; Schlager et al., 1984; Shaub, 1984; Dillon et al., 1985; Nelson
et al., 1985A; Lord, 1987; Ball et al., 1988; McNeely, 1988; Mullins et
al., 1988; Winker and Buffler, 1988; Dobson, 1990; McBride, 1991).
Figure 2 is a location map compiled from these geophysical surveys.
In those seismic studies in which the original authors had not made
time-depth conversions, drill hole depth data were used to provide
controls for these conversions. Where this drill hole control is not
available, such as in deeper areas, time-depth conversions are
largely subjective. These depth determinations were then plotted on
the appropriate points on the grid. Depth-to-basement values were
interpolated to each remaining point and the grid was subsequently
digitized and contoured. The final map is shown in Figure 3.
A Bouguer anomaly map of the study area was produced as
well. This map, which is shown in Figure 4, is essentially a digitized
and recontoured version of that produced by Klitgord et al. (1984),
although an older map by Oglesby et al. (1973) was extensively
utilized as well. The original Klitgord map was constructed through
the compilation of several different maps from several different
studies and, consequently, there are minor inconsistencies at the
borders between these study areas. In addition, their map has a
small data-less area extending along the northwestern coast of
peninsular Florida (Klitgord et al., 1984, pg. 7760, fig. 8).
For the purposes of digital filtering, it was desirable to produce
a single, continuous data set for the study area. In order to
accomplish this, it was necessary to eliminate these discrepencies by
extrapolating values across the borders and data-less area, as
apparently was done in the Oglesby map. Although this may

11
Figure 2. Geophysical survey locations within the study area.
(Compiled from Antoine and Harding, 1965; Sheridan et al., 1966;
Arden, 1974; Mitchum, 1978; Sheridan et al., 1981; Schlager et al,
1984; Shaub, 1984; Dillon et al., 1985; Nelson et al., 1985A; Lord,
1987; Bah et al., 1988; McNeely, 1988; Mullins et al., 1988; Winker
and Buffler, 1988; Dobson, 1990; McBride, 1991.)

12
Figure 3. Depth-tobasement of the Floridan Plateau. Contour
interval = 300 meters.

13
Figure 4. Bouguer anomaly map of the Floridan Plateau region.
(Compiled from Oglesby et al., 1973; Klitgord et al., 1984.) Contour
interval = 5 mgals.

14
introduce some error, it is believed that any such error will be
minimal. As with the depth-to-basement map, the Bouguer anomaly
map was digitized on a rectangular grid with a 9.2 km spacing, which
was chosen to conform to software limitations while maximizing the
number of data points. The resulting 6696 data points were then
contoured with a 5 milhgal contour interval using the Surfer
software package.
A magnetic anomaly map (Figure 5) was also constructed, using
data from King (1959), Gough (1967), and Klitgord et al. (1984). The
data were digitized from these original maps and contoured using a
50 nanotesla contour interval. Unfortunately, there are relatively
large areas of the plateau for which there are no data. The digital
filters used in this study employ Fourier synthesis to transform the
data from the space domain to the frequency (or wave number)
domain. As a consequence of Gibbs phenomenon, that is, the error
introduced during Fourier synthesis near a discontinuity, it was
determined that the data-less areas in the magnetic anomaly map
would result in unacceptable errors should the magnetic data set be
digitally filtered. As a result, the use of an unfiltered magnetic
anomaly map for the plateau is considered to be more desirable for
interpretive purposes.
Because this map represents a compilation from a number of
magnetic surveys (e.g., Klitgord et al., 1984), the anomaly values
from different sections of Figure 5 may be derived from several
different base values. While similarities between this map and the
previously published magnetic anomaly maps suggest that this has
not significantly affected the shape or magnitude of the local

15
magnetic anomaly patterns presented in Figure 5, there is
undoubtedly some error in the relative magnetic values between any
given area and values in other sections of the map.
The Bouguer anomaly data were digitally filtered using several
methods and a series of maps were created from the filtered data.
These digital filters included a downward continuation (Figure 6), an
upward continuation (Figure 7), and a second vertical derivative
(Figure 8) of the Bouguer anomaly field. The purposes of these
filters are explained below. In each case, several rows and columns
of extrapolated data were added to each side of the grid to reduce
the near-boundary distortion of Gibbs phenomenon. These additional
rows and columns were then removed prior to contouring.
The downward continuation of potential-field data was done
from a level to an irregular surface using the method of Grauch
(1984). This method is used to approximate the relative values of
gravitational potentials at the basement surface. Because the depth-
to-basement is quite variable, ranging from about 850 m to over
6000 m, the removal of resultant depth-related deviations in the
observed field through this method of downward-
continuation might be expected to reveal previously unobserved
trends or features. In addition, downward continuation has the
effect of sharpening the field, which better outlines source features
at depth.
The application of downward-continuation filters, either in the
frequency or space domains, results in a biased amplification of
higher frequency (or smaller) components relative to lower
frequency (or larger) components (Clarke, 1969; Cordell and Grauch,

16
Figure 5. Magnetic anomaly map of the Floridan Plateau region.
(Compiled from King, 1959; Gough, 1967; Klitgord et al., 1984.)
Contour interval = 50 nT.

17
Figure 6. Bouguer anomaly field of the Floridan Plateau downward-
continued to basement level. Contour interval = 5 mgals.

18
Figure 7. Bouguer anomaly field of the Floridan Plateau upward-
continued to 10 km. Contour interval = 5 mgals.

19
Figure 8. Second vertical derivative of the Bouguer anomaly field of
the Floridan Plateau. Contour interval = 6 mgals.

20
1982). This necessitates the use of a low-pass filter prior to
performing these operations.
In order to apply this low-pass filter, the gridded data set is
transformed into the frequency, or wave number, domain through
the use of the two-dimensional Fast Fourier transform (or FFT). The
FFT is simply an efficient method of calculating the Discrete Fourier
transform (or DFT), which, in turn, is a digital method of
approximating the continuous Fourier integral function (Cooley and
Tukey, 1965; Bergland, 1969). The two-dimensional FFT is given by
G(k,l) =
M-1 N-1
I g(m,n)
m=0 n=0
-2ni (
e
km lin
M + N
where G(k,l) is the potential-field function, with k and 1 representing
grid point locations in the frequency domain, m and n are integers
representing grid point locations in the space domain, M is the
number of rows, and N is the number of columns (Hildenbrand,
1983). Once in the frequency domain, a tapered low-pass filter was
applied; this progressively filtered out wavelengths from 36.8 km to
18.4 km, while wavelengths below 18.4 km (high frequencies) were
totally squelched. The data set was then transformed back to the
space domain through the application of the inverse FFT (or IFFT).
For the actual downward continuation, the method of Grauch
(1984) utilizes a Taylor series expansion to approximate the
potential-field data, f(z), at some depth, z, from the observed
potential-field data, f(0), at a given reference level, z = 0. The Taylor
series, which was calculated to 3 terms, is given by:

21
F(z) = F(0) + z £ f(0) + f ¿2^0) + ...
ce c dz.
The z value for each grid location was taken from the depth-to-
basement data already described. This calculation was repeated for
each point on the grid, the added boundary data were removed, and
the resultant data set subsequently contoured (Figure 6).
Another filter applied to the Bouguer anomaly field was an
upward-continuation to an elevation of 10 km. This has the effect of
removing short-wavelength features of the field, which are often
attributable to shallow crustal sources (Figure 7). The upward-
continuation is accomplished by taking the FFT of the data as
described above, giving the Fourier coefficients G(k,l). As described
by Fuller (1967), these Fourier coefficients are then multiplied by
H(k,l), the wave number response of the filter. H(k,l) is given by
H(k,l) = e2TTz(k2+|2)2
where z is the continuation distance. The application of the IFFT to
the gridded data and the removal of the added boundary data then
permitted the construction of the final upward-continued map.
In a similar manner, a second vertical derivative map was also
produced. The second vertical derivative effectively removes long-
wavelength features from the field while emphasizing those short-
wavelength features usually attributable to shallow crustal sources
(Figure 8). In this instance, the data set was transformed into the

22
frequency domain and the Fourier coefficients subsequently
multiplied by the wave number response of the filter as given by
H(k,l) = 4tt2(I<2+ I2) (Fuller, 1967)
Again, the data set was then transformed back into the space domain
using the IFFT, the extra boundary data removed, and the grid
subsequently contoured.
Results and Interpretations
In general, these maps complement and augment the results of
many previous investigations. The depth-to-basement map
accurately depicts the Peninsular Arch, the expected southward
increase in depth, the series of Mesozoic basins in the southern and
western regions of the plateau, and a small previously undescribed
basin under the northeastern edge of the plateau (Figure 3).
While the differences between the original Bouguer anomaly
map (Figure 4) and the downward-continued map (Figure 6) are
relatively subtle, the downward continuation is preferable as it more
accurately delineates the boundaries of anomaly-producing features.
The upward-continued map (Figure 7) delineates a number of long-
wavelength features that are clearly associated with large scale
crustal features, such as the Mesozoic basins, that have been
previously described, but poorly located and characterized. On the
other hand, the second vertical derivative map (Figure 8) shows
relatively few short-wavelength features on the plateau, and these
are all low amplitude. This suggests that the sedimentary

23
accumulations of the Florida Platform are relatively homogeneous
with respect to density. Furthermore, it suggests that smaller
shallow crustal features, such as plutons, are not particularly
abundant on the plateau, although this does not preclude the
existence of such features with low density contrasts or in the middle
crust.
Pre-Mesozoic Features of the Plateau Basement
The lithologies of the pre-Mesozoic basement terranes of the
northeastern portion of the plateau have been moderately well
characterized. Basement lithologies from the remaining portions of
the plateau are unresolved; however, more structural detail is
known. As a result, this section will necessarily be focused on the
pre-Mesozoic lithotectonic terranes of northern peninsular Florida,
while the next section will be focused primarily on the Mesozoic
structural features of western Florida. In the following discussion,
the location of each of the lithotec tonic features or regions within the
study area is designated by a letter on Figures 9-15.
Osceola Granite-region A. The Osceola Granite, previously
known as the Avalon terrane, is the oldest identified terrane in the
plateau basement. Although described as a granite by convention, it
is better characterized as a relatively undeformed granitoid batholith
composed of a range of felsic lithologies (Milton and Grasty, 1969;
Barnett, 1975; Smith, 1982). This granitoid complex underlies the
east central portion of the plateau at an average depth of about 2100
m (Figure 10). Using Rb/Sr techniques, Bass (1969) dated the
Osceola Granite at about 530 Ma.; a similar age has subsequently

24
Figure 9. Map of drill hole distribution and basement lithologies with
the designated features discussed in the text.

25
Figure 10. Depth-to-basement map with the designated features
discussed in the text.

26
Figure 11. Magnetic anomaly field map with the designated features
discussed in the text.

27
Figure 12. Bouguer anomaly map with the designated features
discussed in the text.

28
Figure 13. Downward-continued Bouguer anomaly map with the
designated features discussed in the text.

29
Figure 14. Upward-continued Bouguer anomaly map with the
designated features discussed in the text.

30
Figure 15. Second vertical derivative of the Bouguer anomaly field
with the designated features discussed in the text.

31
been obtained by Dallmeyer et al. (1987) using 40Ar/39Ar
techniques on a composite biotite sample from several specimens.
Sm-Nd isotopic data for the Osceola Granite are suggestive of a mixed
source containing both Proterozoic and Archean components
(Heatherington et al., 1989).
The 8 drill holes intersecting granite in east-central Florida are
generally centered around a pentagonal negative gravity anomaly
(Figures 9, 13, 14-A), although several of these holes are outside the
boundaries of the anomaly. The magnetic signature of the terrane is
more complex, as the easternmost of the holes are located along a
north-south oriented, elongated positive magnetic anomaly, while
most of the others are located within the confines of a proximal
negative magnetic anomaly (Figure 11--A). The north-south
oriented boundary between these magnetic features bisects the
negative gravity anomaly.
Barnett (1975) modeled the Osceola Granite as constituting the
block-faulted end cap of the Peninsular Arch, a hypothesized
structural high under north-central Florida. Although the Peninsular
Arch has since been described as an erosional feature (Smith, 1982)
and the Osceola Granite shows tittle petrologic evidence of
metamorphism (Milton and Grasty, 1969), the possibility of block
faulting remains. The randomness and variability in depth-to-
basement for the 8 drill holes is suggestive of block-faulting, as is the
variability in both the gravity and magnetic fields in the area
described by those drill holes (Figures 11 and 13). In addition, it
appears that the Osceola Granite has been intruded by diabase, as

32
suggested by the number of drill holes that have bottomed in
weathered diabase throughout the area (Figure 9).
The contacts between the Osceola Granite and the juxtaposed
terranes are not well constrained. A primary reason for this arises
from the inherently poor resolution of isotopically determined ages
for the North Florida Rhyolite to the north (Mueller and Porch, 1983)
and the St. Lucie Metamorphic Complex to the southeast (Bass, 1969).
As a result, the fundamental age relationships between the three
terranes remain undetermined and age-based inferences concerning
the nature of the contacts between them are ambivalent. A number
of contradictory suggestions have been made.
For example, Chowns and Williams (1983), citing the apparent
concordance in ages between the Osceola Granite and the
amphibolite, suggested that they could comprise a conterminous
terrane. Accordingly, the rhyolitic terrane would then overlie both
the granite and amphibolite, and be separated from them by a thrust
fault or unconformity. Alternatively, Bass (1969) believed that the
St. Lucie amphibolite, by reason of metamorphic grade, must
necessarily be separated from all other Florida basement rocks by a
"fundamental discontinuity." This was supported by the presence of
thin layers of unaltered basaltic rock, granite, and diorite
immediately over the amphibolite, which implies a horizontally
faulted contact (Bass, 1969). Another possibility is that the Osceola
Granite represents an intrusion into an older terrane consisting of the
rhyolite and the metamorphic complex (Barnett, 1975). In support
of this latter model, Thomas et al. (1989) inferred from interpreted
steep, circular gravity and magnetic gradients around the Osceola

33
Granite that it is bounded by steeply dipping contacts with the
surrounding lithologies.
Samples from several drill holes show that the Osceola Granite
extends northeastward and northwestward beyond the boundaries
inferred from the potential-field gradients; however, to the south,
other holes penetrate rocks indicating that the steep gradients mark
the boundaries of the terrane (Figures 9, 11, 13--A). Along its
southwestern boundary, the Osceola Granite appears to be truncated
by the Jay Fault, as has been suggested by Smith (1982). To the
southeast, the presence of both mafic and felsic extrusive rocks in
drill holes near to those intersecting the Osceola Granite clearly
delineates the boundary, which coincides with steep, northeast¬
trending gravity gradients separating the pentagonal negative
anomaly from a smaller ovoid positive anomaly. It is unclear
whether the extrusive rocks overlie the granitoid or rather have
been juxtaposed against it. The eastern boundary of the Osceola
Granite is unresolved, although the steep north-northeast trending
gravity gradient along the eastern side of the pentagonal negative
anomaly suggests that the granitoid may not extend beyond the coast
of peninsular Florida.
St. Lucie Metamorphic Complex-region B. A single drill hole
has revealed the presence of an amphibolite grade metaigneous
assemblage at a depth of about 3760 m immediately southeast of the
Osceola Granite, underlying St. Lucie County (Bass, 1969; Milton and
Grasty, 1969; Barnett, 1975; Smith, 1982; Chowns and Williams,
1983; Winston, 1993). Using Rb/Sr techniques, Bass (1969) dated
samples of this assemblage at about 530 Ma, which is also the

34
approximate age obtained for the Osceola Granite. The assemblage is
comprised primarily of amphibolite, with some quartz diorite gneiss
and chlorite schist (Bass, 1969; Thomas et al., 1989). Although
several names have been applied to this terrane, in this work it will
be referred to as the St. Lucie Metamorphic Complex.
The drill hole is located near the northern edge of an ovoid
east-west oriented negative gravity and magnetic anomaly. This
anomaly is relatively small, approximately 100 km long by 55 km
wide, and may delineate the boundaries of the terrane (Figures 11
and 13--B). It is probable that the St. Lucie Complex is bounded to
the southwest by the Jay Fault. To the north, the terrane extends
only a short distance, as demonstrated by drill holes and inferred
from the gravity and magnetic anomaly. To the east, the anomaly
extends only to the coast of peninsular Florida and, in an
interpretation of an offshore seismic reflection profile, Sheridan et al.
(1981) found no evidence for the presence of this terrane off the
Florida coast. As a result, it appears that the St. Lucie Metamorphic
Complex encompasses only a relatively small area and may therefore
be a fault-bounded block. An alternative possibility is that the
metamorphic rocks represent a roof pendant in the proximal felsic
igneous rocks (P. Mueller, 1993, personal communication).
The metamorphic grade of the assemblage is indicative of
regional activity, which suggests that this small terrane represents
an isolated fragment of a once larger unit (Bass, 1969). Another
fragment of this larger unit may be present in the southeastern Gulf
of Mexico. Metamorphic rock samples obtained during DSDP leg 77
on the Catoche Knoll are petrologically similar to the St. Lucie

35
Metamorphic Complex and are approximately the same age
(Dallmeyer, 1984). Based on these similarities and because there are
no other similar metamorphic terranes known in the Gulf of
Mexico/Caribbean region, Schlager et al. (1984) have inferred the
two to be cogenetic.
North Florida Rhvolite-region C. Overlying the Osceola Granite
to the north and west is a terrane of slightly metamorphosed calc-
alkaline rhyolitic to andesitic volcanic rocks. The upper surface of
this terrane in northeastern Florida dips southeastward and ranges
in depth from about 1180 m to about 1650 m (Smith, 1982). The
calc-alkaline nature (Mueller and Porch, 1983) and trace element
signatures (Heatherington et al., 1989) of samples from this terrane
each suggest eruption in an ocean-continent convergent margin
setting. In attempting to date two separate samples, one rhyolite
and one andesite, Mueller and Porch (1983) identified disturbed
40Ar/39Ar release patterns from each--despite this, apparently
concordant ages of 412 ± 15 Ma and 418 ± 9 Ma were obtained.
Although the disturbed release patterns suggest these age
determinations to be minima, stratigraphic relationships suggest a
Late Precambrian to Early Paleozoic age for the terrane (Arden,
1974; Chowns and Williams, 1983).
Few structural inferences have been made about the North
Florida Rhyolite. From a seismic reflection survey in the Florida
panhandle, Arden (1974) distinguished faulting and genfle folds in
the terrane. It is unclear whether these are ubiquitous Paleozoic
features, as inferred by Thomas et al. (1989), or simply localized
Triassic structures associated with the southwestward extension of

36
the South Georgia Rift, as suggested by Arden (1974) and Klitgord et
al. (1984).
The sublateral extent of this terrane is uncertain. Although the
distribution of drill holes intersecting rhyolite is generally coincident
with an elongated negative gravity and magnetic anomaly (Figures 9
and 13--C), previous geophysical and drill hole studies suggest that
the terrane continues northward under the Suwannee Basin terrane,
described below, and extends into southern Georgia (Barnett, 1975;
Wicker and Smith, 1978; Chowns and Williams, 1983). To the south,
two drill holes intersecting rhyolite have been interpreted to indicate
a subcrop of this terrane immediately south of the Osceola Granite
(e.g., Chowns and Williams, 1983; Dallmeyer, 1987). Several undated
rhyolitic samples have also been obtained from the south-central
portion of the Floridan Plateau in the South Florida Basin; it has been
suggested that these samples are either from horsts of this same
felsic volcanic terrane (Thomas et al., 1989) or from part of a
separate southerly Mesozoic bimodal suite (Barnett, 1975; Mueller
and Porch, 1983). To the west, felsic basement rocks have been
encountered in the Florida panhandle area; these rocks are undated,
and have been variously correlated to the North Florida Rhyolite
(Arden, 1974; Thomas et al.,1989), the Osceola Granite (Barnett,
1975), and to the Permian (?) granite of the Wiggins Arch in
Mississippi (Smith, 1983).
Suwannee Basin-region D. Overlying the north Florida igneous
rocks is the Suwannee Basin terrane, which has also been referred to
as the North Florida Basin and the Tallahassee-Suwannee terrane
(Arden, 1974; Barnett, 1975; Smith, 1982; Chowns and Williams,

37
1983; Thomas et al, 1989). This terrane extends northward into
southern Georgia and westward at least to the Florida panhandle, as
well as southwestward to the Middle Ground Arch in the north-
central region of the plateau (Ball et al., 1983; Dobson and Buffler,
1991). The Suwannee Basin has been intersected by numerous drill
holes at depths ranging from 720 m to 1730 m (Smith, 1982) and is
composed of a massive Early Ordovician quartzitic sandstone overlain
by intercalated Middle Ordovician to Middle Devonian sandstones
and shales (Arden, 1974). The topographic high of the terrane, in the
north-central portion of peninsular Florida, is an erosional remnant
known as the Peninsular Arch.
The structure of the Suwannee Basin is somewhat better
defined than that of the underlying North Florida Rhyolite, although
the nature of the contact between the two is rather enigmatic. Arden
(1974), from an interpretation of a seismic reflection profile,
interpreted the contact to be a northeast-dipping, Middle to Late
Paleozoic age thrust fault that emplaced the Suwannee Basin over the
volcanics, while others (e.g., Thomas et al., 1989) have suggested the
contact to be an unconformity. Although drilling into the Suwannee
Basin terrane has never penetrated more than about 700 m, gravity
modeling indicates that the eastern Suwannee Basin has a maximum
thickness of about 2500 m (Wicker and Smith, 1978), while seismic
reflection profiles suggest the western Suwannee Basin may be even
thicker (Arden, 1974; Thomas et al., 1989).
Other structural details of the Suwannee Basin are better
delineated. While the eastern portion appears to be relatively
undeformed with a peneplained upper surface, Arden's seismic

38
profile and numerous drill holes have shown the western section to
have been extensively faulted, mildly folded, and intruded by
diabase during the Triassic evolution of the South Georgia Rift. This
difference has prompted some workers to separate the Suwannee
Basin into two distinct terranes, the East and West Suwannee Basins
(e.g., Klitgord et al., 1983; Ball et al., 1988).
The relatively smooth potential-fields in the region occupied by
the Suwannee Basin terrane are bisected by two linear NE-trending
negative gravity anomalies separated by a distinct, northeast¬
trending negative magnetic anomaly and low-amplitude positive
gravity anomaly. These extend from the northeastemmost Gulf of
Mexico to the eastern Florida-Georgia border (Figures 11 and 13-
feature Dl). Based on an onshore, local, high resolution gravity
study, Coleman and Stewart (1982) believed the Suwannee Basin
sedimentary deposits to be underlain by two northeast-trending
Paleozoic (?) troughs coinciding with these linear negative gravity
anomalies. Offshore, however, Dobson and Buffler (1991) have
interpreted basement faulting in a seismic reflection profile and the
presence of Triassic red beds in proximal drill holes as indicative of a
moderately-sized, northeast-trending Triassic rift basin extending at
least to the northwest Florida coast and coinciding with the central
positive gravity anomaly and the associated negative magnetic
anomaly of feature Dl. The absence of corresponding red beds in
onshore drill holes suggests the possibility that feature Dl, although
relatively continuous, represents the cumulative effects of several
structural features.

39
Although the boundary between the Suwannee Basin terrane
and the superimposed Triassic South Georgia Rift is reasonably well
constrained from drill hole data, it is likely that the Suwannee Basin
extends northward and westward under the rift basin and for a
significant distance beyond it. COCORP seismic reflection profiling
(Nelson et al., 1985A) and gravity modeling (Lord et al., 1992) both
indicate that the Suwannee Basin extends into southern Georgia along
most of its border with Florida, although neither the nature nor the
location of the northern or western boundaries of the terrane have
been resolved.
lav Fault-feature E-E1. A variety of evidence suggests the
presence of a major crustal boundary, known as the Jay Fault, which
may divide the Floridan Plateau crust. Northeastern Florida is
generally characterized by northeast-southwest trending gravity and
magnetic anomalies, while those in southwestern Florida are
generally perpendicular to this trend (e.g., King, 1959; Oglesby et al.,
1973; Smith, 1982). Although the boundary between these two
trends is not well defined, it extends through the center of the
plateau in a northwest-southeast direction, close to a landward
extension of the trend of the Bahamas Fracture Zone.
Drill hole evidence and seismic reflection profiles suggest that
the implied extension of the fracture zone also constitutes the
boundaries of several features, including the South Georgia Rift, the
north Florida igneous rocks, and the Suwannee Basin terrane
(Barnett, 1975; Smith, 1983; Chowns and Williams, 1983; Ball et al.,
1988; Dobson and Buffler, 1991). In addition, seismic reflection
profiles along the eastern edge of the plateau (Sheridan et al., 1981)

40
and in the northeastern Gulf of Mexico (Dobson and Buffler, 1991)
suggest normal faulting along this same trace. Consequently, the Jay
Fault is generally considered to be a morphological extension of the
Jurassic Bahamas Fracture Zone. The origin, character, and age of this
extension, however, are unresolved (Barnett, 1975; Smith, 1982;
Klitgord et al., 1984; Smith, 1993).
It has been suggested that the Jay Fault is a Jurassic left-lateral
transform that served to connect spreading centers in the Atlantic
and Gulf of Mexico, while bringing several disparate lithotectonic
units into juxtaposition (Klitgord and Schouten, 1980; Smith, 1982;
Klitgord et al., 1984). Using this model as a starting point, several
authors (Smith, 1982; Chowns and Williams, 1983; Whitelaw and
Smith, 1989) have hypothesized an extension of this proposed
transform boundary across the Floridan Plateau and into Alabama,
where it may merge with the Middle Mesozoic Gulf basin marginal
fault zone (Smith, 1983; Klitgord et al., 1984).
Another possibility for the origin of the feature is that it is a
right-lateral feature formed during the Late Paleozoic closure of the
Iapetus Ocean (Smith et al., 1992; Smith, 1993). The premise of this
model is that the Jay Fault originated in two stages. During the
Paleozoic, the boundary was a right-lateral, strike-slip fault that
served to accommodate differential motion within Gondwana during
closure with Laurentia. Later, during Triassic and Jurassic extension,
the boundary was reactivated as a normal fault. This would be
consistent with the right-lateral fault model advanced by Barnett
(1975), which was based on the seismic refraction profiles of Antoine
and Harding (1965). Miller (1982), in a study of the structure of the

41
panhandle region, also suggested a right-lateral fault model, although
in this model, the fault formed in response to north-south
compressive stresses during the Jurassic.
Inherent in a third model for the nature of the lithotectonic
boundary across Florida is the implication that the Jay Fault has
never been subject to significant lateral motion (Heatherington et al.,
1989; Heatherington and Mueller, 1991). Results of trace element
analyses of basement rocks from north and south Florida exhibit
similar patterns of high field strength element depletion and large
ion lithophile element enrichment (Heatherington et al., 1989), as
well as similar Nd model ages for the lithosphere from which these
rocks were derived (Heatherington and Mueller, 1991). This
suggests that the volcanic suites of north and south Florida may have
been derived from a single contiguous underlying unit. It is possible,
then, that this geophysically and lithologically inferred fault may not
be a transform that juxtaposed two entirely disparate lithotectonic
units, but rather that it is simply a normal fault zone that
experienced little or no lateral movement (Heatherington and
Mueller, 1991).
The linear nature of the Jay Fault is evident on the depth-to-
basement and upward-continued Bouguer anomaly maps (Figures 10
and 14-E-E1). The upward-continued Bouguer anomaly map
strongly suggests that the fault acts as boundaries for the Osceola
Granite (A), the St. Lucie Metamorphic Complex (B), the South Georgia
Rift (F), the South Florida Basin (L), and several other Jurassic
structural features (H, I, J), which are described below. Thus, not only

42
is the Jay Fault linear, but apparently continuous across the Floridan
Plateau as well.
Along the southeastern edge of the plateau, Sheridan's (1981)
seismic reflection profile clearly shows a series of faults with varying
amounts of horizontal offset along the proposed trace of the Jay
Fault. Hence, the Jay Fault is more accurately described as a zone of
faulting, rather than as a single fault. An abrupt southward increase
in depth-to-basement marks the zone along most of its length. An
exception to this is in the northwestern part of the plateau where the
South Georgia Rift extension intersects the zone. At this point, a
seismic reflection profile (Dobson and Buffler, 1991) indicates the
presence of a single northeastward-dipping master fault. Thus,
although the Jay Fault zone appears to be continuous and linear, the
nature of the Mesozoic faulting changes along strike.
Mesozoic Features of the Plateau Basement
The Floridan Plateau basement is characterized by a variety of
Mesozoic structural features. Lithic accumulations associated with
these features (i.e., red beds, hypabyssal rocks, etc.) often obscure
the pre-Mesozoic units of the underlying crust and, as a result, the
pre-Mesozoic nature of the basement under these features is largely
unresolved. While the general locations of Mesozoic features on the
plateau basement are reasonably well established, specific structural
details and subaerial boundaries are poorly constrained.
Part of a large Triassic continental rift complex extends onto
the plateau along its northern boundary (McBride, 1991). The
western half of the plateau is dominated by an alternating series of

43
northeast-striking Jurassic basins and ridges. This series extends to
southern peninsular Florida, where a large Triassic-Jurassic basin
occupies the southern third of the peninsular basement (Klitgord et
al., 1984).
South Georgia Rift-region F. Underlying the north-central
portion of the plateau is a 95 km wide, northeast-trending section of
the Early Mesozoic South Georgia Rift. The South Georgia Rift is a
large, complex graben system extending from the Florida panhandle
area to eastern Georgia (Daniels et al., 1983; McBride, 1991). The
section in Florida overlies the western block-faulted edge of the
Suwannee Basin terrane (Smith, 1982) and has been previously
referred to as the Tallahassee Graben (Smith, 1983) and the
Southwest Georgia Embayment (Barnett, 1975; Miller, 1982). The rift
is filled with arkosic sandstones and mafic igneous rocks with a
maximum thickness of about 1800 m in Florida (Arden, 1974) and it
has been pervasively intruded by diabase sills (Barnett, 1975;
Chowns and Williams, 1983; Smith, 1983). Milton and Grasty (1969)
acquired three K-Ar ages for samples of diabase sills from northern
Florida. Although these ages are now generally considered to be
suspect, they were found to range from about 180 to 200 Ma.
The onshore boundaries of the South Georgia Rift are
reasonably well constrained from the presence of red beds and
associated hypabyssal rocks encountered in deep drill holes. A
circular negative gravity anomaly with a diameter of about 50 km
(Figure 14—F) generally marks the South Georgia Rift extension,
although this anomaly may alternatively be attributable to

44
accumulations of low density salt in the Jurassic Apalachicola
Embayment, which overlies the South Georgia Rift in this area.
The north-central Floridan extension of the Triassic-Early
Jurassic South Georgia Rift system is a moderately complex feature.
The presence of short-wavelength gravity and magnetic anomalies in
the area of the rift (Figures 11 and 15--F) may indicate it to be
comprised of an assemblage of secondary horst and graben
structures (Barnett, 1975; Smith, 1983). limited seismic reflection
profiling shows extensive normal faulting in the rift floor and the
surrounding area; however, no large secondary horsts have been
definitively detected (Arden, 1974; Dobson and Buffler, 1991).
Because there are few seismic reflection profiles in the area
and, as shown in Figure 14, the long-wavelength potential-field
signatures associated with the rift have relatively low gradients, the
lateral boundaries of the rift extension are not definitively mapped
or characterized. Ball et al. (1988), in a seismic reflection profile just
off the coast of the Floridan panhandle, interpreted a northeast¬
dipping master fault with about 1400 m of throw to mark its
southwestern terminal boundary. Subsequent reflection work has
shown the offshore extension of the rift system to consist of two
separate grabens, at least one of which probably extends to the
southwest as far as the Jay Fault zone (Dobson and Buffler, 1991).
Apalachicola Embavment/Apalachicola Basin-regions F. G.
Extending from northwest to southeast across the Floridan Plateau
are an alternating series of northeast-striking, Late Triassic to Late
Jurassic basement horsts and grabens, a number of which appear to
be bounded by the Jay Fault zone (Figure 10--E-E1). These include

45
the Apalachicola (or Southwest Georgia) Embayment (F) and the
Middle Ground Arch (H), a basement high that may extend
undisturbed across the Jay Fault zone. These are located to the
northeast of the Jay Fault zone and are part of a series that extends
northwestward and includes the Chattahochee Arch, the Covington
Embayment, the Conecuh Arch and the Wilcox Embayment, all of
which he out of this study area (e.g., Miller, 1982; Mitcheh-Tapping,
1982; Smith, 1983).
On the southwestern side of the Jay Fault zone are the
Apalachicola Basin (G), also known as the Northeast Gulf Basin, and
the Tampa Basin (I), also known as the St. Petersburg Basin. These
are separated by the Middle Ground Arch (H). Continuing to the
southeast, the Sarasota Arch (J), also known as the Pinellas Arch,
separates the Tampa Basin (I) from the South Florida Basin (L) (e.g.,
Klitgord et al., 1984; Ball et al., 1988; Winker and Buffler, 1988;
Dobson, 1990; Dobson and Buffler, 1991). As shown in Figure 16,
there have been significant variations between previous publications
with regard to the locations, sizes, and spatial relationships of these
various Jurassic features.
The Apalachicola Embayment (F), which is bounded along its
northwestern edge by the Chattahoochee Arch, is a Jurassic basement
trough overlying the Triassic South Georgia Rift. On the basis of drill
holes and electric logs, Mitchell-Tapping (1982) modeled the
Apalachicola Embayment as a graben flanked by two peripheral
master faults and encompassing a basement high near its
southwestern border. With the possible exception of the previously

46
Figure 16. Various previously published configurations for the
Mesozoic structure of the southern and western Floridan Plateau
basement.

47
discussed circular negative gravity anomaly, there is no definitive
potential-field signature attributable to the Apalachicola Embayment.
The Apalachicola Embayment is contiguous with, and
essentially indistinguishable from, the Apalachicola Basin,except that
the two are separated by a prominent basement hingeline at the
apparent trace of the Jay Fault zone and the Apalachicola basin is
characterized by a much greater depth-to-basement. Southwest of
the hingeline, dipping intrabasement reflections suggest the presence
of Paleozoic strata with a synclinal structure underlying the
Apalachicola Basin (Dobson, 1990; Dobson and Buffler, 1991). The
eastern section of the basin in the study area is marked by a
moderate amplitude positive gravity and magnetic anomaly (G). The
basin extends southwestward to the plateau escarpment and may
reach a basement depth of 12 km (Buffler and Sawyer, 1985; Buffler,
1989). The eastern margin of the basin is marked by a major
bounding fault with a throw of at least 1000 m (Ball et al., 1988).
This fault separates the Apalachicola Basin from the Middle Ground
Arch.
Middle Ground Arch-region H. Extending across the Jay Fault
zone, adjacent to the Apalachicola Basin, is the Middle Ground Arch.
This is a broad, topographically positive feature that extends from
the southwestern flank of the Peninsular Arch westward to the edge
of the plateau (Figure 10--H). The crest of this ridge dips generally
westward and ranges in depth from about 1500 m under peninsular
Florida to about 6000 m at the Florida Escarpment out of the study
area (Dobson and Buffler, 1991). As a consequence of a narrow
saddle in the Middle Ground Arch at the divide between the

48
Apalachicola and Tampa Basins immediately west of the Jay Fault
zone, the arch has been classified by some as two separate features-
the Middle Ground Arch to the east and the Southern (or DeSoto)
Platform to the west (Winker and Buffler, 1988; Dobson, 1990;
Dobson and Buffler, 1991).
The Middle Ground Arch is marked by one of the northeast¬
trending, long-wavelength, low amplitude negative gravity anomalies
(Figure 14--H) previously mentioned as flanking feature Dl.
Although there are few short-wavelength features in the region,
seismic reflection profiles have shown the crest of the Middle Ground
Arch to have been moderately faulted. As suggested by stratigraphic
perturbations, these faults have horizontal throws on the order of
100 m and became inactive after the Late Jurassic (Ball et al., 1988;
Dobson, 1990). In addition, graben structures and fill associated with
the South Georgia Rift extend along the crest of the northeastern end
of the Middle Ground Arch from peninsular Florida to the Jay Fault
zone (Dobson and Buffler, 1991). An intrabasement igneous
intrusive body, possibly Mesozoic in age, has been identified on
seismic reflection profiles and is marked by an oblong low amplitude
negative gravity anomaly (Figure 15-feature HI) (Ball et al., 1988).
Near the southeastern flank of the Middle Ground Arch, a single drill
hole intersecting Paleozoic siltstones (Ball et al., 1988) signifies a
possible westward extension of the Suwannee Basin terrane.
Martin (1978) suggested that the Middle Ground Arch is simply
a residual feature formed by more rapid rates of subsidence to the
north and south; however, the subsequent recognition of the
northwestern bounding fault between the arch and the Apalachicola

49
Basin implies a significant degree of structural control. The single
seismic reflection line extending across the southeastern boundary of
the arch, on the other hand, does not show any analogous faulting
(Ball et al., 1988). In addition, the Bouguer anomaly gradient across
the strike of this southeastern boundary is uniform and relatively
low (Figure 12). These observations suggest the Tampa Basin-Middle
Ground Arch margin to be a broad transition zone with little
structural control, which reinforces Martin's proposal of formation by
differential subsidence for this particular boundary.
Tampa Basin--region I. Southeast of the Middle Ground Arch is
the Tampa Basin, which is also known as the Florida Elbow Basin
(Pindell, 1985). It is essentially an analogue to, and coeval with, the
Apalachicola Basin. The Tampa Basin extends updip northeastward
from the western edge of the plateau although, unlike most the other
Jurassic features in this series, it has not been previously mapped as
extending eastward as far as the Jay Fault zone (e.g., Klitgord et al.,
1984; Buffler, 1989). It reaches a depth-to-basement of at least
5500 m (Figure 10--I) and Dobson and Buffler (1991) have modeled
it to be significantly deeper (greater than 9000 m).
Seismic reflection profiles are characterized by dipping
intrabasement reflections in the basin that, as in the basement of the
Apalachicola Basin, imply an underlying extensively faulted Paleozoic
synclinal structure (Ball et al., 1988; Dobson, 1990). None of the
three offshore wells intersecting basement in the Tampa Basin,
however, have demonstrated the accumulation of any Paleozoic
sediments (Figure 9). Rather, the two westernmost wells bottomed
in granite, while the third bottomed in a rhyolite porphory

50
intercalated with Jurassic diabase (Dobson and Buffler, 1991). In
addition, some of this faulting perturbed the Cretaceous sediments
immediately overlying these igneous rocks. Thus, it is likely that at
least some of the basement faulting and structure originated during
the Jurassic evolution of the basin, rather than during the Paleozoic.
The Bouguer anomaly signature of the Tampa Basin is quite
distinct (Figure 14--I). It is marked by a 50 mgal long-wavelength
positive gravity anomaly. This positive anomaly averages about 160
km wide and 275 km long, suggesting that the Tampa Basin is
significantly larger than shown on previous basement maps;
however, a corresponding positive magnetic anomaly appears to be
somewhat smaller (Figure 11—I). As discussed above, the
northwestern boundary of the basin is probably a sloping margin.
That margin appears to crest approximately 40 km south of the
northernmost expression of the gravity anomaly, although shallow
dip interpretations are difficult from the available seismic reflection
profiles.
Pindell (1985) has speculated that a large strike-slip fault, the
Florida Elbow Fault, extends northwestward from the Jay Fault zone,
across the Tampa Basin, and into the northeastern Gulf of Mexico.
Although there is no gravity or seismic evidence for such a fault, the
steep eastward-striking magnetic gradient which bisects the
northern half of the basin may be the result of a structure along that
trend. The relative absence of short-wavelength gravity anomalies
implies little intrabasinal structure (Figure 15—I), although there is
some short-wavelength variability in the magnetic field immediately
west of the no data zone (Figure 11—I). Two adjoining 25 km

51
diameter moderate amplitude negative gravity anomalies with
corresponding positive magnetic anomalies may indicate the
presence of mid-crustal intrusive bodies similar to that under the
Middle Ground Arch (Figures 11 and 15--feature II).
The northeastern boundary of the Tampa Basin, as suggested
by the positive gravity anomaly, appears to correspond extremely
well with the presumed trace of the Jay Fault zone (Figure 14). This
places the easternmost section of the Tampa Basin under western
peninsular Florida and shifts the boundary significantly more
northeastward than had been previously modeled, although Ball et
al. (1988) identified a basement monocline only 30 km off the west
coast of Florida that was suggested to be the boundary. In addition
to the positive gravity anomaly, the presence of Jurassic diabase in
several drill holes in the same area of western peninsular Florida
(Figure 9) and a corresponding positive magnetic anomaly (Figure
11) are also suggestive of a northeastward extension of the basin as
far as the Jay Fault zone.
The southeastern boundary of the basin, which separates it
from the Sarasota Arch, is better constrained with respect to location.
Along this boundary, both of the potential-field gradients are
relatively high, which is suggestive of a morphologically distinct
feature. Although not confirmed by seismic data, stratigraphic
correlations from well logs also suggest the presence of a large down-
to-the-north fault or series of faults along this boundary; this fault
could have a throw of as much as 2000 m (Ball et al, 1988).
Sarasota Arch--region T. The Sarasota Arch is a 150 km wide,
350 km long, topographically positive feature that separates the

52
Tampa Basin and the South Florida Basin. It extends from the Jay
Fault zone under peninsular Florida westward possibly to the edge of
the Florida Escarpment (Figure 10--J), although Klitgord et al. (1984)
have suggested that the arch may be truncated by an extension of
the Cuba Fracture Zone just east of the escarpment. The depth-to-
basement of the Sarasota Arch averages 4 km and there is little
evidence of any significant dip along the crest. There have been four
drill holes intersecting basement on the Sarasota Arch-three
bottomed in granitic rocks and one intersected diabase (Figure 9).
Although seismic profiles in the southern quarter of the
Floridan Plateau tend to be poor quality as a consequence of the
depth and the attenuation of seismic energy by the overlying karstic
limestone, a number of vertical faults have been observed on seismic
profiles crossing the Sarasota Arch (Shaub, 1984; Ball et al., 1988).
These faults are small, with throws on the order of 10s of meters,
and, as suggested by perturbations in the overburden, became
inactive by the Early Cretaceous.
Klitgord et al. (1984) interpreted a northeast-trending zone of
circular gravity and magnetic anomalies along the northwest edge of
the Sarasota Arch to be the result of a series of shallow
intrabasement intrusive bodies. Although several short-wavelength
circular negative gravity anomalies exist in this area (Figure 13-
region J), not all of these correlate well with the circular magnetic
anomalies (Figure 11—region J). Therefore, while two or three of the
anomalies, particularly the concomitant circular negative gravity
anomalies and positive magnetic features similar to HI and II above,
may be caused by scattered shallow to mid-crustal igneous

53
intrusions, a linear chain spatially associated with the Sarasota Arch
seems improbable.
The Sarasota Arch is marked by a distinct long-wavelength
negative gravity anomaly (Figure 14—J), although there seems to be
no particular associated magnetic signature (Figure 11). As
described above, the northwestern boundary of this negative
anomaly correlates well with the large bounding fault inferred by
Ball et al. (1988). Although the anomaly appears to be partially
truncated near its northeastern boundary, it generally extends
southwestward from the region of the Jay Fault. The southwestern
boundary of the negative anomaly could be interpreted to occur
slightly east of the escarpment; however, a seismic reflection profile
along the crest of the Sarasota Arch (Ball et al., 1988) shows no
evidence for truncation at an extension of the Cuba Fracture Zone. As
a result, it is likely that the southwestern boundary of the arch is
coincident with the Florida Escarpment.
The southeastern boundary of the Sarasota Arch, as interpreted
from a seismic reflection profile near the escarpment, is a
southeastward-dipping, relatively steep, block faulted margin
(Shaub, 1984) that corresponds to the boundary of the negative
gravity anomaly. However, this gravity boundary is not continuous.
As discussed below, a 60 km wide negative gravity anomaly extends
southeastward from the boundary (Figure 14 --feature L4) and is
consistent with the probable presence of a large basement horst
within the South Florida Basin.
Sheffield Arch-region K. From local seismic reflection and
Ocean Bottom Seismometer (OBS) refraction profiles, Shaub (1984)

54
recognized a possible basement high along the Florida Escarpment
extending southeastward from the Sarasota Arch. This high, the
Sheffield Arch, was identified from a limited number of profiles with
no deep well control and is, therefore, not well characterized.
There is a positive gravity anomaly oriented generally along
the axis of this proposed arch (Figures 14 and 15 -K). This positive
anomaly is approximately 180 km long and 120 km wide. It has no
concomitant magnetic signature. Although the positive gravity
anomaly could be the result of a morphologically positive feature
such as the Sheffield Arch, all of the other positive basement
features of the Floridan Plateau have been characterized by negative
gravity anomalies. Consequently, the characterization of a large,
continuous basement high in this area is unresolved.
South Florida Basin-region L. Underlying southern peninsular
Florida is a Triassic-Jurassic structural feature known as the South
Florida Basin. Based on a series of two-dimensional gravity profiles,
Wicker and Smith (1978) determined that the basin ranges in depth
from about 3000 m in south-central peninsular Florida to more than
5500 m at the southern edge of the peninsula. The basin is generally
considered to underlie much of the southern portion of the Floridan
Plateau and to extend to its southern and eastern edges (e.g., Barnett,
1975; Smith, 1983; Klitgord et al., 1984). The western extent of the
basin and the presence of any significant intrabasinal structures are
unresolved.
The South Florida Basin is generally coincident with a lithologic
terrane characterized by the presence of both basalt and rhyolite.
While this terrane is usually considered to be a bimodal suite of

55
Triassic alkali basalts and rhyolites (Barnett, 1975; Mueller and
Porch, 1983; Heatherington and Mueller, 1991), it has been suggested
that the occurrences of rhyolite represent horsts of an underlying
southerly extension of the Late Precambrian-Cambrian North Florida
Rhyolite (Thomas et al., 1989). Isotopic dating of the rhyolites
(Milton and Grasty, 1969; Barnett, 1975) and the basalts (Milton,
1972; Mueller and Porch, 1983) suggest that the two are coeval, with
ages of about 180 Ma. This supports the model that the basalts and
rhyolites comprise a Mesozoic bimodal suite and almost certainly
discounts the premise that the rhyolites in the region of the South
Florida Basin are part of the North Florida Rhyolite.
There are only a few drill holes intersecting basement within
the South Florida Basin and all of these are in southwestern and
south-central peninsular Florida (Figure 9). In addition, there is only
one published seismic reflection profile of the basement in the basin
(Figure 2). As a result, the basement model for this area is
necessarily based almost exclusively on potential-field data and is,
therefore, rather speculative.
The northeastern boundary of the South Florida Basin is the Jay
Fault zone. In their seismic reflection profile along the eastern edge
of the Floridan Plateau, Sheridan et al. (1981) found this boundary to
be a large, down-to-the-south, normal fault with an associated series
of smaller faults at the landward extension of the Bahamas Fracture
Zone. The boundary is marked by a northwest-trending zone of
steep gravity and magnetic gradients (Figures 11 and 14--E-E1). As
described above, the northwestern boundary of the basin area is the
southeastward-dipping faulted margin of the Sarasota Arch. The

56
southern margins of the South Florida Basin are not morphologically
well defined; however, the basin is considered to extend at least as
far as the Florida Escarpment.
Although the entire area bounded by the Jay Fault zone, the
Sarasota Arch, and the Florida Escarpment is commonly considered to
be a singular basin, there are four or five (depending on whether
feature K is included) individual long-wavelength potential-field
features within these bounds (Figures 11 and 14--L1-L4). For
example, the northeastern comer of this region is marked by an
oblong positive gravity and magnetic anomaly oriented along the Jay
Fault zone (LI). Immediately southeast of this feature is a similarly
oriented negative gravity and magnetic anomaly (L2) which, in turn,
is separated from a second negative gravity anomaly (L3) by a
second positive gravity anomaly (L4). This long-wavelength
variability and the shapes of these features suggest the probability
of several northwest-southeast oriented basins within the area
traditionally considered to be the South Florida Basin.
All of the South Florida Basin area drill holes which have
successfully intersected basement have been located proximal to a
negative gravity and magnetic anomaly, specifically, feature L2. This
suggests that the anomaly may mark a region characterized by a
relatively shallow basement. In addition, the southern end of
Sheridan's reflection profile, near the southeastern comer of the
plateau, was located on a positive gravity and magnetic anomaly and
indicated an anomalously high depth-to-basement. Consequently,
consistent with the other features of the Floridan Plateau except
possibly the Sheffield Arch, it appears that the long-wavelength

57
gravity and magnetic anomalies within the South Florida Basin
denote high depth-to-basement areas, while the negative gravity and
magnetic anomalies are characteristic of shallow basement arches.
Blake Plateau Basin-feature M. Along the northeastern edge
of the Floridan Plateau is an area that, as suggested by a series of
seismic refraction profiles (Sheridan et al., 1966), is characterized by
an increase in depth-to-basement (Figure 10—M). This feature may
represent a shallow salient of the Blake Plateau Basin, which is the
southernmost of the four major Jurassic-Early Cretaceous basins of
the eastern United States continental margin (e.g., Grow and
Sheridan, 1982; Dillon et al., 1985). There is no particular gravity
signature attributable to this salient. The western boundary of the
main body of the Blake Plateau Basin is located just east of the
eastern continental margin of the Floridan Plateau, slightly out of this
study area. Although the data are limited, there is no evidence that
the salient is fault-bounded. Rather, it appears to have formed
simply by differential subsidence.
Cenosoic Structural Features of the floridan Plateau
There are only a few reports of Tertiary structural features of
tectonic origin on the Floridan Plateau. These include small faults
resulting from halokinesis off the panhandle of peninsular Florida
(e.g., Addy and Buffler, 1984; Ball et al., 1988), as well as slump
faults and related features near the western Florida escarpment (e.g.,
Mullins et al., 1988; Corso et al., 1989). In addition, there have been
a few purported Tertiary features that were inferred to have had

58
tectonic origins; however, in each of these cases, subsequent workers
have failed to confirm these origins.
The most predominant of these reported features include
several surficial anticlinal and synclinal structures in northwestern
peninsular Florida and southwestern Georgia. Patterson and Herrick
(1971) summarized the reports of these features, which conflicted
with respect to locations and descriptions in many cases, and
concluded that there is no evidence to support the presence of any
surficial structural feature in this area, with one possible exception.
This exception is a small dome in southwestern Georgia, slightly
outside of this study area, known as the Gordon Anticline. The other
reported features were attributed to the differential erosion and
dissolution of the near-surface Tertiary carbonates.
A Tertiary feature that is regularly mentioned in the literature
is the Ocala Uplift, a reported anticlinal structure in central
peninsular Florida. As in the previous instances, a tectonic origin for
this feature was dismissed by Winston (1976), who attributed the
apparent anticlinal structure of the surficial carbonates as having
been caused by differential erosion and dissolution.
The only other purported Tertiary feature is the Bronson
Graben, described as a small northwest-trending structure in north-
central peninsular Florida with an associated series of surficial
normal faults paralleling it. This was proposed by Vernon (1951) on
the basis of lineations in aerial photographs and discrepancies in drill
hole logs. Subsequently, this report was utilized by Zoback and
Zoback (1980) to suggest a northeast-southwest least horizontal
principal stress direction for the Floridan Plateau and by Prowell

59
(1989) to extend Appalachian fault provinces along the length of the
plateau. Since 1951, there has been no field recognition of these
features, and it is unlikely that Vernon's observations are indicative
of lithospheric movement during the Tertiary. It appears, then, that
with the possible exception of the Gordon Anticline, there is no
evidence for any Tertiary structure on the Floridan Plateau
attributable to regional tectonic stress.
Summary
A compiled map of the pre-Mesozoic lithotec tonic terranes of
the Florida Plateau basement is shown in Figure 17. In northeastern
peninsular Florida, southern Georgia, and the Florida Panhandle, the
subcrops of Precambrian and Paleozoic rocks apparently represent
isolated pieces of more extensive terranes that were fragmented
during the collision and subsequent separation of Laurentia and
Gondwana. Although these fragments were not significantly
metamorphosed during this process, there is evidence allowing the
suggestion of thrust faulting, block faulting, and faulted contacts.
Potential-field gradients, lithologic contrasts, and the limited existing
seismic reflection data suggest that all of the contacts between these
pre-Mesozoic terranes may be faulted, with the possible exception of
the boundary between the Osceola Granite and the North Florida
Rhyolite.
Figure 18 represents a compilation of the Mesozoic structural
features of the Floridan Plateau basement. The Jay Fault zone acts as
a boundary for many of the lithotectonic features of the Floridan
Plateau basement and is the predominant structural feature of the

60
?
FT] Rhyolite and Andesite
E3
El
Felsic and Mafic Extrusive
Rocks
Sandstone and Shale
Felsic Plutonic Rocks
_ Amphibolite-Grade
â„¢ Metamorphic Rocks
? Indicates Unknown Boundary
— Possi bl e Fa ul ted Co ntact
Figure 17. Pre-Mesozoic lithotectonic features of the Floridan Plateau
basement.

61
Apalachicola
rMiHHU
Apalachicola :¡:;g^^round
Basin XNs
Jay Fault
Zone
Western
Bahamas
Block
0S3 Jurassic Basin
^ TriassicContinental Rift Basin
,, Unresolved Region
(conflicting geophysical data)
Normal Fault From Reflection/
Refraction Profiles or Well Logs
— Mesozoic Bounding Fault
Possible Bounding Fault
(inferred only from gravity data)
\. Fault Zone (accommodates normal
^ and lateral motion)
Figure 18. Mesozoic structural features of the Floridan Plateau
basement. South Georgia Rift after Dobson and Buffler (1991) and
McBride (1991). Apalachicola Embayment from Mitchell-Tapping
(1982).

62
plateau. Although the linear nature of the fault zone suggests that it
originated as a strike-slip fault, the present structure of the zone is
independently determined by each of the bordering Mesozoic
extensional features and consequently changes along strike. In the
southeastern region of the plateau, the fault zone primarily consists
of a series of southwestward-dipping normal faults. To the
northwest along much of its length, the zone alternates between
accommodating significant vertical offsets at southwestward-dipping
Jurassic basin boundaries and having little or no vertical offset
where intersected by basement arches. In the northwest, the zone
changes to accommodate the northeastward-dipping normal
bounding faults of the South Georgia Rift.
The southwestward extension of the South Georgia Rift into
Florida resulted in block faulting in the western Suwannee Basin
terrane. Although there is some suggestion of intrarift horst and
graben formation, neither these structures nor the lateral master
bounding faults of the rift extension have been definitively located
or characterized. There is a small ancillary rift basin (or basins)
southeast of the main rift. As mentioned above, the southwestern
boundary of the South Georgia Rift is a large northeastward-dipping
normal fault at the Jay Fault zone.
Overlying the South Georgia Rift in this area is the Jurassic
Apalachicola Embayment, which, as suggested in previous studies,
may also be bordered by lateral master faults. The Apalachicola
Embayment extends southwestward across a basement hingeline at
the trace of the Jay Fault zone. It merges with the deeper
Apalachicola Basin, which is one of a series of northeast-striking

63
extensional basins bordering the southwestern side of the Jay Fault
zone.
These basins, the Apalachicola Basin, the Tampa Basin, and the
South Florida Basin, are separated by two wide basement ridges, the
Middle Ground Arch and the Sarasota Arch. Each of the basins, with
the probable exception of the northwestern edge of the Tampa Basin,
is fault-bounded along its lateral boundaries. In addition, it is likely
that each extends from the Jay Fault zone southwestward at least as
far as the Florida Escarpment. Although there is little corroborating
seismic reflection data for the South Florida Basin, potential-field
signatures suggest the probability that this area is underlain by
several isolated basins, rather than being a singular feature. A
basement low under the northeast edge of the Floridan Plateau is
interpreted to be a subsided landward salient of the Jurassic Blake
Plateau Basin.
With the exception of gravity-induced slump features near the
Floridan Escarpment and small faults in the northeastern Gulf
produced by halokinesis, there is no evidence of any Tertiary
structural feature on the Floridan Plateau. There may be a small
anticlinal structure, the Gordon Anticline, in southwestern Georgia
just north of this study area.

CHAPTER 3
TECTONIC EVOLUTION OF THE FLORIDAN PLATEAU
Introduction
As a consequence of the depth of burial of the Floridan Plateau
basement and the lithotectonic complexity of the region, past
interpretations of tectonic history have necessarily been based on an
inadequate knowledge of basement structure. The intention in this
chapter is to provide a reinterpretation of the tectonic history of the
Floridan Plateau within the context of the new interpretations of
lithologic and structural relationships presented in Chapter 2 and to
incorporate the findings of recently published geochemical,
geophysical, and tectonic studies into this interpretation.
Regional Tectonic Histoid
Pre-Mesozoic
Tectonic reconstructions for the continental block(s) underlying
the Floridan Plateau and the adjacent Bahamas Platform are based
primarily on sparse information from deep drill hole samples and, as
a consequence, the origin of these blocks has been the subject of
some debate. The Suwannee Basin terrane and, by association, the
Osceola Granite and St. Lucie Metamorphic Complex, have been
shown to be allochthonous with respect to North America. Several
investigators have found the Paleozoic Suwannee Basin fossil
64

65
assemblages to have Gondwanan affinities (e.g., Cramer, 1971; Pojeta
et al., 1976). In addition, paleomagnetic data and ages of detrital
zircons (Opdyke et al., 1987; Mueller et el., 1993) are also
inconsistent with a Laurentian origin for this terrane. As a result, a
correlation between these terranes and Gondwana prior to the
Alleghenian closure of the Iapetus Ocean has been reasonably well
established; however, the specific position of the Floridan Plateau
with respect to Gondwana during the Paleozoic has not been
definitively established.
A number of investigations have suggested that the pre-
Mesozoic basement terranes of the northeastern Floridan Plateau
originated along Africa's western margin near Senegal. These
investigations include continental reconstructions (Bullard et al.,
1965; Wilson, 1966; Dietz et al., 1970; LePichon and Fox, 1971;
Pindell and Dewey, 1982; Klitgord et al., 1983; Roussell and Liger,
1983; Van Siclen, 1984; Pindell, 1985; Venkatakrishnan and Culver,
1988), paleontological analyses from Florida and Africa (Cramer,
1971, 1973; Pojeta et al., 1976), comparisons of isotopic abundances
and ages (Dallmeyer, 1987, 1988; Dallmeyer et al., 1987;
Heatherington et al., 1993), paleomagnetic data (Van der Voo et al.,
1976; Opdyke et al., 1987), and stratigraphic correlations between
Florida and west Africa (Smith, 1982; Chowns and Williams, 1983).
Although a proposed tectonic history for Florida based on any one of
these lines of evidence would be inconclusive, the cumulative effect
of these independent observations is to provide strong support for a
west African origin.

66
There are specific units in western Africa that can be
correlated to their apparent counterparts underlying the Floridan
Plateau. These units provide the sole record of the pre-Mesozoic
tectonic history of the Floridan Plateau. The extensive North Florida
Rhyolite of north Florida and south Georgia may be correlated to
similar felsic volcanic rocks which are present throughout the
western margin of Africa (Dillon and Sougy, 1974; Dallmeyer, 1987;
Dallmeyer and Villeneuve, 1987; Heatherington et al., 1993).
Geochemical analyses of the Florida suite suggest emplacement in a
convergent plate margin setting, with an ocean-continent subduction
environment being the most likely setting (Mueller and Porch, 1983).
The St. Lucie Metamorphic Complex has been correlated to
units of the central Rockelide Orogen in Guinea, proximal to the Bové
Basin (Chowns and Williams, 1983; Dallmeyer and Villeneuve, 1987).
In addition to similarities in petrology and degree of metamorphism,
both of these metamorphic units appear to have been affected by an
extensive thermotec tonic event, Pan-African II, that occurred along
the northwestern margin of Gondwana about 550 Ma ago (Dallmeyer
and Villeneuve, 1987). In addition, there is no evidence that the St.
Lucie Metamorphic Complex was thermally affected by the
subsequent Caledonian or Hercynian orogenies. This is consistent
with a central Rockelide origin for the complex, but not with a more
northerly origin, where the adjacent Mauritanides were strongly
deformed during the later orogenies (Roussel et al., 1984), nor with a
more southerly origin, where Pan-Africa II had little effect (Williams
and Culver, 1982).

67
There are a number of similarities that support the correlation
of the Osceola Granitoid Complex of east central Florida with the Coya
Granite of Senegal, which is exposed in the northern Rockelides. Both
are post-tectonic, Early Paleozoic plutons with similar petrographic
and petrologic characteristics (Dallmeyer et al., 1987). These
similarities, as well as numerous continental reconstructions, suggest
that during the Early Paleozoic, the Osceola and Coya Granites were
likely to have formed as part of the series of granitoids emplaced
along Gondwana's northwestern margin during Pan-African II
orogenies (Dillon and Sougy, 1974; Dallmeyer et al., 1987).
The Suwannee Basin Complex of north-central Florida was
deposited in an Early Paleozoic sedimentary basin. The lower portion
of the sampled sequence of this complex consists of quartz
sandstones overlain by graptolite-bearing black shales, which are
indicative of a restricted marine environment. Based largely on
stratigraphic and paleontological similarities, the Suwannee Basin
was correlated by a number of workers to the Bové Basin of western
Guinea (Cramer, 1971, 1973; Pojeta et al., 1976; Smith, 1982; Chowns
and Williams, 1983; Venkatakrishnan and Culver, 1988).
Subsequently, a paleomagnetically determined Lower Ordovician
paleolatitude of 49 degrees south (Opdyke et al., 1987) and a
comparison of plateau ages for muscovite (ca. 505 Ma) from both
basins (Dallmeyer, 1987) have provided further support for this
correlation. These deposits probably represent the disjointed
remnants of a single, extensive restricted basin that existed along the
northwestern margin of Gondwana during the Early to Middle
Paleozoic.

68
Although the present day basal contact of the Suwannee Basin
terrane is likely to be a simple unconformity, there is some evidence
to suggest that it may instead be a northward-dipping thrust fault.
Although the Suwannee Basin has been only mildly metamorphosed,
seismic reflection profiles suggest the presence of low angle faulting
within the terrane (Arden, 1992, personal communication) and the
basal contact has the appearance of a ramped thrust fault (Arden,
1974). In addition, thrust faults are common in the central
Rockelides, which are in close proximity to the Bové Basin (e.g.,
Williams and Culver, 1982).
Smith (1993) has postulated that the pre-Mesozoic terranes of
the plateau basement, including the Suwannee Basin, the North
Florida Rhyolite, the Osceola Granite, and the St. Lucie Metamorphic
Complex, were fragmented and repositioned to their present day
configurations during the late stages of Alleghenian closure. In this
scenario, fragments of these Gondwanan terranes were moved
laterally into their relative positions, with separate fragments being
translocated into eastern Florida, southeastern Georgia, and
northwestern Florida, along a series of left and right lateral strike-
slip faults. These strike-slip faults, including the precursor to the Jay
Fault, formed in response to the differential stresses in Gondwana
resulting from a deformational collision with Laurentia. The process
is demonstrated in Figure 19, which illustrates the formation of
strike-slip faulting in the Florida basement and the relative
movement of terrane fragments in response to differential closure
around the Alabama Promontory.

69
■:--V.-: V-- x - -. ®Volci«,c*_„..m
*•**•*•«•••* • • • " *••»««««•!
AAAAAAAAAAAAAAA *AAAAAAAAAAAA
Fei*ic intnmves
*M*MFelsie Intrusives»;-
Figure 19. Hypothesized sequence of events during Alleghenian
closure resulting in the translocation of Gondwanan terrane
fragments along transform faults in the Floridan Plateau basement
(after Smith, 1993).

70
There are other lines of evidence that support this scenerio. It
is unlikely that the numerous Triassic and Jurassic features of the
plateau basement would share a common linear boundary such as
the Jay Fault zone (Chapter 2), unless this boundary existed as a pre¬
existing zone of weakness. The continuity and linearity of this zone
of weakness is strongly suggestive of a long strike-slip fault zone,
which is consistent with Smith's model. In addition, the
metamorphic Catoche terrane encountered in DSDP holes 150 kms.
west of the Florida Escarpment in the Gulf of Mexico is petrologically
similar to the St. Lucie Metamorphic Complex and displays similar
40at/39ar age spectra (Dallmeyer, 1984). Consequently, it appears
to be another detached fragment of the same Gondwanan source
terrane (Schlager et al., 1984). If one accepts a Gondwanan origin for
the Catoche terrane, this necessitates northward to westward net
transport relative to the present orientation of North America for
emplacement of the terrane fragment to the west of the Florida
Plateau. Because Mesozoic extensional trends suggest only
southeastward transport, then northward to westward movement of
the Catoche terrane must have occurred during or after closure, but
prior to Mesozoic extension in some manner similar to that described
by Smith.
Although significant northward and westward movement along
a series of strike-slip faults is suggested, the amount of lateral offset
along the Jay Fault zone may have been rather limited. Recent drill
holes in the western Floridan Plateau have intersected granite (Ball
et al., 1988; Dobson and Buffler, 1991). Although undated, this
granite is located generally across the Jay Fault zone from the Osceola

71
Granite and is probably another fragment of the same terrane
(Figure 17). In addition, Heatherington and Mueller (1991) have
found little evidence for differences in Nd model ages for the
lithospheric components from which the volcanic suite of the South
Florida Basin and the north Florida volcanic rocks were derived.
Each of these suggests that there was not enough net strike-slip
movement along this section of the Jay Fault during the Paleozoic or
Mesozoic to bring separate lithospheric units into juxtaposition.
Mesozoic
Most Late Paleozoic-Early Mesozoic reconstructions of Pangaea
place the continental basements of the Floridan Plateau, the Yucatan,
and the Bahamas Platform in the reentrant at the junctions between
the juxtaposed North American, South American, and African plates.
With the formation of a Late Triassic interior rift system, North
America began to rift away from Gondwana along the traces of the
Paleozoic continental margins (Van der Voo et al., 1976; Mullins and
Lynts, 1977; Pindell and Dewey, 1982; Klitgord et al., 1983; Klitgord
et al., 1984; Van Siclen, 1984). The hypothesized sequence of events
on the Floridan Plateau during this period are shown in Figure 20.
A large graben system, the South Georgia Rift, formed across
southern Georgia nearly along the trace of the Alleghenian suture
between Florida and North America (Nelson et al., 1985B). The
configuration of the rift was largely controlled by the presence of
pre-existing lithotectonic structures, such as the suture, strike-slip
faults, and various crustal blocks (Smith, 1993). The South Georgia
Rift may have been contiguous with a continental rift that extended

72
Late Jurassic
Jurassic Basin
X
Jurassic Normal Fault
X
Triassic Normal Fault
^ Triassic Continental Rift Basin
X
Fault Zone (accommodates normal
and lateral motion)
Figure 20. Hypothesized sequence of events during the formation of
the Late Triassic and Jurassic extensional features of the Floridan
Plateau basement.

73
across the Triassic northern margin of the Yucatan block, as
suggested by the presence of red beds in the Todos Santos Formation
of southern Mexico (Buffler and Sawyer, 1985; Molina-Garza et al.,
1992). With a Late Triassic-Early Jurassic shift in the rifting
geometry, the South Georgia Rift became an aulacogen and the
Floridan Plateau, Yucatan, and western Bahamas basements were left
appended to the southeastern margin of North America (Mullins and
Lynts, 1977; Pindell and Dewey, 1982; Smith, 1982; Burke et al.,
1984; Klitgord et al., 1984; Van Siclen, 1984).
Smith (1982) has suggested that this shift in the rifting
geometry was caused by the formation of a Triassic hot spot and
triple junction associated with the opening of the Atlantic Ocean near
the southern tip of Florida. This model is supported by the ages,
lithologies, and isotopic signatures of the bimodal rhyolitic and
basaltic suite in the South Florida Basin region. The basalts of this
terrane have yielded 40Ar/39Ar ages of about 190 Ma and trace
elemental analyses have been found to be consistent with a mantle
source, mixing with Precambrian continental lithosphere, and
deposition in an extensional environment (Mueller and Porch, 1983;
Heathering ton and Mueller, 1991).
Both the configuration of the Floridan Plateau basement and
recent continental reconstructions suggest that the South Florida
Basin suite is more likely to be associated with the opening of the
Gulf of Mexico, rather than the Atlantic Ocean. The alternating basins
and arches of the southwestern Florida Plateau clearly indicate
crustal attenuation in a southeasterly direction during the Middle
Mesozoic. Restoration of that attenuation necessitates the relocation

74
of the South Florida Basin terrane to the northwest. In addition, as
suggested by the position of the salient between Africa, North
America, and South America, it is likely that during the Triassic and
Jurassic, the continental crust of the western Bahamas block was
located immediately to the east of the South Florida Basin terrane
(e.g., Mullins and Lynts, 1977), where it would have effectively
isolated the terrane from the Atlantic oceanic rift zone (Figure 20).
Although these reconstructions suggest that the South Florida Basin
was geographically removed from the Atlantic Ocean and that the
bimodal volcanics were erupted as a consequence of the opening of
the Gulf of Mexico basin, this does not negate a Late Triassic-Early
Jurassic shift in oceanic rifting geometry as a causal mechanism for
the failure of the South Georgia Rift.
A number of Late Triassic reconstructions of the Gulf of Mexico
region indicate that the north-central Gulf region was occupied by
the Yucatan (or Maya) Peninsula block which, as supported by recent
paleomagnetic data (Molina-Garza et al., 1992), later rotated
counterclockwise away from North America during its separation
with South America (e.g., Pindell, 1985; Ross and Scotese, 1988;
Rowley and Pindell, 1989). These reconstructions suffer from a gap
in the northeastern Gulf of Mexico. There have been two general
hypotheses that account for this gap.
One hypothesis is that the gap was occupied by the crustal
blocks now occupying the Florida Straits and the South Florida Basin
(Pindell, 1985; Ross and Scotese, 1988; Rowley and Pindell, 1989;
Molina-Garza et al., 1992; Bartók, 1993). In this model the blocks
were displaced about 150 km to the southeast with respect to north

75
Florida during the Late Jurassic. This displacement would have
occurred along a left-lateral strike-slip fault (the Florida Elbow Fault)
which would necessarily extend across the southwestern quarter of
the Floridan Plateau (Figure 16B). The second hypothesis is that any
apparent gaps are accountable entirely to attenuation and subsidence
of continental crust in the eastern gulf during the Jurassic (e.g.,
Buffler and Sawyer, 1985; Dunbar and Sawyer, 1987; Salvador, 1987;
Winker and Buffler, 1988).
In contrast to the obvious potential-field signature attributable
to the Jay Fault zone, there is no suggestion of a Florida Elbow Fault
extending across southwestern Florida in either Bouguer anomaly
maps or seismic reflection surveys. In addition, the Middle Jurassic
basins and arches of the southwestern Floridan Plateau appear to
extend undisturbed across the proposed trace of the Florida Elbow
Fault. Hence, there is little supporting evidence for this fault or any
similar structure across the southwestern plateau, and the
translocation of the Florida Straits block from the eastern gulf to its
present location by some other path seems unlikely.
Another consideration with respect to the apparent gap is that
the southwestern half of the Floridan Plateau is comprised of
attenuated (i.e., stretched and thinned) continental crust, as
suggested by the prominent extensional basins and the drill holes
intersecting granitic basement (Figure 1). The depth-to-basement in
the Tampa, Apalachicola, and South Florida Basins demonstrates that
this block of continental crust has been moderately attenuated, with
a beta value (i.e., the ratio of the stretched length to the original
length as suggested by geometric reconstructions) of between 1.2

76
and 1.8 (Pindell, 1985). Consequently, the model that attributes an
apparent gap in the northeastern Gulf of Mexico exclusively to the
attenuation and subsidence of continental crust is preferred.
As previously mentioned, restoration of the Jurassic crustal
attenuation of the southwest Floridan Plateau results in the
relocation of the South Florida Basin region into the proximity of the
eastern gulf. Potential-field maps indicate that the South Florida
Basin region is comprised of several separate basins which trend
northwest-southeast, perpendicular to the trend of the other
Mesozoic features of the southern and western Floridan Plateau
(Figure 18). The northwest-southeast orientations of these basins
and their proximity to the Yucatan during the Late Triassic-Early
Jurassic suggests that they may have formed in response to
southwestern extensional stress as the Yucatan block rotated
counterclockwise away from the Floridan Plateau (Figure 20).
Subsequently, as North America and South America continued
to separate, a series of basement horsts and grabens formed around
the periphery of the Gulf of Mexico basin (Pindell and Dewey, 1982;
Burke et al., 1984; Klitgord et al., 1984; Buffler and Sawyer, 1985;
Pindell, 1985; Winker and Buffler, 1988). A few of the horsts in the
southeastern United States, such the Wiggins Arch underlying
southern Alabama and Mississippi, have been proposed to be
stranded blocks left behind by the departing Yucatan block or South
American continent (Smith et al., 1981; Pindell and Dewey, 1982;
Pindell, 1985; Van Siclen, 1990); however, most are considered to be
the product of differential attenuation of original or transplanted

77
North American crust (e.g., Pindell, 1985; Ball et al., 1988; Winker
and Buffler, 1988; Dobson and Buffler, 1990; Reitz, 1991).
The Gulf of Mexico existed as a restricted basin from about 165
Ma until about 150 Ma, resulting in the deposition of extensive salt
deposits (Pindell and Dewey, 1982; Salvador, 1987). During this
period, stress in the western Floridan Plateau was reoriented to a
north-south or northwest-southeast extensional regime, as
delineated by the northeast-southwest orientations of the horsts and
salt-containing basins of the southwestern Floridan Plateau. This
shift in the stress regime is likely to have been associated with the
continuing separation of the North American and South American
landmasses.
The mechanisms of relative motion between North and South
America during the Jurassic are not well constrained, partly because
much of the intervening crustal structure was subsequently
destroyed during the eastward migration of the Caribbean plate. It
is probable that the relative motion between the two continents was
accommodated by strike-slip movement along a series of northwest-
southeast or north-south oriented transform faults (Pindell and
Dewey, 1982; Klitgord et al., 1984; Van Siclen, 1984; Pindell, 1985;
Salvador, 1987).
It has been suggested that the Bahamas Fracture Zone/Jay
Fault system acted as an important transform fault in the eastern
Gulf of Mexico during the Jurassic, not only by accommodating
significant sinistral displacement associated with the separation of
North and South America, but also by forming the southern edge of
continental North America (Pindell and Dewey, 1982; Klitgord et al.,

78
1984). However, as mentioned, the plateau basement southwest of
the Jay Fault zone appears to be composed entirely of attenuated
continental crust, rather than of stranded individual blocks, as had
been hypothesized. In addition, similarities between Nd isotope
signatures of basement samples from north and south Florida imply
little net strike-slip motion along the Jay Fault zone (Heatherington
and Mueller, 1991). Consequently, while some sinistral motion along
the Jay Fault zone during the Jurassic resulting from crustal
attenuation along its southwestern margin is likely, its proposed
roles as the southern boundary of North American continental crust
and as a major transform boundary seem implausible.
Tensional deformation in the Gulf of Mexico region ceased by
the Late Jurassic (Salvador, 1987), indicating that the lithotectonic
blocks of the Floridan Plateau had reached their present relative
positions by that time. A review of existing seismic reflection
profiles reveals no evidence of continued faulting or other
tectonically-induced deformation in the sedimentary column
overlying the Floridan Plateau after the Early Cretaceous, despite the
presence of numerous pre-existing potential zones of weakness.
Thus, as soon as the region became established as a passive margin,
the level of crustal stress on the plateau appears to have diminished
dramatically.
Cenozoic
In the time since the formation of the basins and arches of the
southwestern Floridan Plateau basement, the entire plateau has been
tectonically quiescent. A period of tectonism in the southeastern Gulf

79
of Mexico associated with the collision of Cuba and the Bahamas
during the Early Paleogene has been documented; however, there is
no evidence for any associated tectonic activity or significant
horizontal lithospheric stress on the Floridan Plateau (Pindell, 1985).
Rather, the undisturbed Upper Cretaceous and Tertiary strata on the
plateau document an extended, nearly continuous period of shallow
marine carbonate and clastic deposition which occurred in response
to regional subsidence.

CHAPTER 4
SEISMICITY AND STRESS IN THE
SOUTHEASTERN UNITED STATES
¡Production
Several hypotheses have been developed to explain seismic
activity in the intraplate setting of the eastern United States;
however, specific causal mechanisms and conditions remain
enigmatic. The relative paucity of earthquakes and the tectonic
complexity of the region result in seismic hazard assessments that
are necessarily rather subjective and often the source of debate. An
improved understanding of seismicity and seismic hazard in the
eastern United States is necessary and can best be acquired from the
integration of a variety of observations.
The intention in this chapter is to characterize epicentral
density patterns in the southeastern United States and to provide a
summary of the disparate hypotheses and observations relating to
the seismicity of the region. A further objective is to evaluate
possible causes for the nonuniform distribution of seismicity, with
particular emphasis on the seismotectonic differences between the
active South Carolina-north Georgia seismic zone and the juxtaposed,
yet seismically quiescent south Georgia-Floridan Plateau region.
80

81
Methods
The characterization of epicentral distribution in the
southeastern United States was accomplished through the integration
of a literature review of historical and instrumental records and the
establishment of a network of digital seismographs in Florida. This
seismograph network has been in operation since 1989. In addition,
a review of previously published seismic reflection profiles and an
overview of the tectonic setting, as discussed in Chapters 2 and 3,
respectively, are used as general indicators of prehistoric seismic
activity for the Floridan Plateau.
Results
Epicentral Distribution in the Southeastern United States
Compilations of historic reports of seismic activity in the
southeastern United States, except for Florida, have been provided
by Bollinger (1973A, 1975). In these compilations, about 800
reported events during the period between 1754 and 1974 are
identified. Of these, 76 reports are from eastern Tennessee, 73 are
from North Carolina, and 451 are from South Carolina, while only 34
are from Georgia and 18 are from Alabama (Figure 21). Nearly all of
the Georgia and Alabama events occurred in the northern portions of
the states. The remainder of the reports are from Virginia, West
Virginia, Maryland, and Kentucky. Based on this compilation,
Bollinger identified several different seismically active zones in the
southeastern United States.
The South Carolina-north Georgia seismic zone extends from
the coasts of South Carolina and Georgia northwestward for about

82
Figure 21. Epicentral distribution in the southeastern United States
and northwestern Caribbean from historical and instrumental
records. Compiled from Bollinger (1973A), Stauder (1982), Sykes et
al. (1982), Mott (1983), Smith and Randazzo (1989) and SEUSSN
Contributors (1992).

83
350 kilometers. It covers an area of more than 145,000 square
kilometers and trends perpendicular to the structural grain of the
Appalachians (Bollinger, 1973A,B). Although epicentral distribution
within this zone is diffuse, it includes Charleston, S.C., where an 1886
event had an estimated body-wave magnitude of 6.8 (Bollinger,
1977, 1983) and a lengthy aftershock sequence, including more than
300 events during the subsequent 35 year period (Tarr, 1977).
Another zone, the Southern Appalachian seismic zone, extends
from central Alabama northeastward to western Virgina along the
Blue Ridge and Valley and Ridge provinces. It encompasses 162,000
square kilometers and, with respect to epicentral density, is more
active than the South Carolina-Georgia seismic zone. Eight events
with Modified Mercalli (MM) intensities greater than VI have
occurred in this zone since 1874, including the intensity VIE event
of Giles County, Virginia in 1897.
In addition to the historic reports of seismic activity, epicentral
distribution patterns have also been determined from instrumentaUy
located events. During the period from 1977-1991, the Southeastern
United States Seismological Network (SEUSSN) located 1162 events,
which are also shown in Figure 21 (SEUSSN Contributors, 1992).
These instrumental records generaUy corroborate the previously
determined epicentral distribution patterns of Bollinger, implying
that the effects of population distribution, local ground response, and
reporting error have not significantly biased the historical record.
In contrast, the south Georgia-Floridan Plateau region is
characterized by an unusuaüy low level of seismic activity. From a
comprehensive review of historical records dating back to 1727, Mott

84
(1983) identified only 33 reports of earthquakes in Florida; these
reports were later used to construct a seismicity map of the state
(Reagor et al., 1987). Most of these reports do not represent tectonic
activity in Florida (Smith and Randazzo, 1989; Lord and Smith, 1991).
Rather, many are attributable to events that occurred elsewhere and
others, based on their descriptions, are more likely to have been
blasting, military activities, or atmospheric phenomena. The
conclusion of these reviews was that Florida has experienced only 6
possible low-intensity historic events. A subsequent review of
newspaper reports has revealed that 1 of these 6 possible events (on
21 June 1893) was felt in the Charleston area before being felt in
Florida and, therefore, is not likely to have originated on the Floridan
Plateau. The remaining 5 possible events are shown on Figure 21.
Instrumental records also support the premise that the
Floridan Plateau, which includes south Georgia, is characterized by an
unusually low level of seismic activity. In fifteen years of operation,
the SEUSSN has never detected an event on the Floridan Plateau. In
addition, during the three years that the state-wide network of
digital seismographs has been in operation, there were no events
located on the plateau and only a single local event was detected.
This was a mt> 3.8 event located in the Gulf of Mexico, 340 kilometers
west-southwest of Sarasota, Florida on March 31, 1992.
In addition to historical and instrumental records, a review of
existing seismic reflection surveys from around the plateau (Chapter
2) shows no evidence of faulting, fault reactivation, or any other
tectonically-induced movement since the Late Cretaceous. Thus, the

85
plateau basement appears to have been in a low-seismicity state for
a relatively long period of time.
Consequently, historical records, instrumental records, and
geophysical data each demonstrate a pronounced difference in levels
of seismic activity between proximal regions. To the north, in the
southern Appalachians and southern Coastal Plain, there is a
moderate to high level of seismic activity, including several historic
large magnitude events. Immediately to the south, however, there is
an unusually low level of seismic activity, with only occasional low
intensity events. As inferred from Figure 21, the boundary between
these two regions extends approximately east-west across south-
central Georgia and Alabama and is a well-defined example of the
nonuniform nature of seismicity in the southeastern United States.
Several plausible explanations for this nonuniform distribution
of seismicity can be presented, although they are not mutually
exclusive. The first is that this difference is caused by variability in
the lithospheric stress field, as suggested by Hatcher et al. (1987).
Another possible reason is that there are mechanical differences (i.e.,
lithology or structure) between adjacent zones (Wheeler and
Bollinger, 1984). This would imply that local seismogenic features
exert primary control over the distribution of seismic activity in the
southeastern United States. A final possibility is that there is a
systematic variability in the propensities of pre-existing fault zones
to slippage. This would be attributable to variations in either the
frictional coefficients or hydrostatic pore pressures (or both) in the
faults (e.g., Zoback, 1992).

86
Lithospheric Stress in the Southeastern United States
While the stress regime in central and eastern North America
has been established to be primarily northeast-southwest
compressive (Zoback and Zoback, 1980; Zoback, 1992), there have
been a number of contradictory observations. This suggests the
possibilities of local perturbations in the regional field and/or the
influence of a local stress field. As a result, the source(s) of
seismogenic stress in the southeast is still rather speculative.
Stress orientations in the Coastal Plain and southern
Appalachian provinces have been determined from a variety of
sources, such as the orientation of recent faulting (Schafer, 1979;
Zoback and Zoback, 1980; Wentworth and Mergner-Keefer, 1981,
1983), hydrofracturing in deep wells (Zoback and Zoback, 1980), in
situ measurements (Hooker and Johnson, 1969; Zoback et al., 1978),
fault plane solutions (Tarr, 1977; Tarr and Rhea, 1983; Johnston et
al., 1985; Zoback, 1992), borehole elongation (Plumb and Cox, 1987)
and crustal modeling (Kuang et al., 1989; Richardson and Reding,
1991). Within these provinces, there is general agreement that the
maximum stress is compressional and horizontal. While most
indicators suggest that the maximum compressional stress direction
is oriented northeast-southwest, many are also indicative of a
northwest-southeast oriented field.
A number of indicators have been used to infer northeast-
southwest compression. One of these is shallow focal plane solutions
in the Charleston area (Tarr, 1977; Tarr and Rhea, 1983). Of the
three composite solutions, two indicate northeast-southwest
compression and one indicates northwest-southeast compression. In

87
addition, Plumb and Cox (1987) measured borehole elongations from
eastern Tennessee to Canada, including a number from west of the
Appalachians, and found nearly their entire study area to be under
northeast-southwest compression. While Plumb and Cox had no
measurements from the southeastern Coastal Plain, Hooker and
Johnson (1969) measured in situ stresses in 5 boreholes in Georgia,
Virgina, and North Carolina. Their measurements were inconclusive,
as their orientations ranged from nearly north-south to nearly east-
west. Focal mechanisms from the southern Appalachians
demonstrate that at depths averaging between 9 and 15 kms, the
basement under the Appalachian detachment is under northeast-
southwest compression (Johnston et al., 1985). Using a variety of
indicators, Zoback and Zoback (1989) found the eastern and central
United States to be under a relatively uniform northeast-southwest
compressional field. More recently, M.L. Zoback (1992) found that of
the 32 central and eastern United States earthquakes used in her
investigation, 25 indicated slip compatible with northeast-southwest
compression.
Alternatively, some of the stress field indicators suggest a
component of horizontal compressive stress oriented approximately
northwest-southeast. Schafer (1979) came to this conclusion while
investigating recent surficial fault motion in the western Valley and
Ridge of eastern Tennessee, as did Wentworth and Mergner-Keefer
(1981, 1983) and Prowell (1989) in studies of Cenozoic faulting from
South Carolina to New England. Based on core hole offsets,
hydrofracture tests, fault orientations, and focal plane solutions,
Zoback et al. (1978) and Zoback and Zoback (1980) had initially

88
characterized the Appalachian and Coastal Plain provinces as being
under northwest-southeast compression. Finally, Bollinger (1983)
and Wentworth and Mergner-Keefer (1983) both concluded that the
1886 Charleston earthquake was probably a thrust event along a
northeast-trending structure—another indication of northwest-
southeast compression.
Within Florida, stress orientations have been deduced only
from a single report of recent tectonic faulting (Vernon, 1951). In
this account, Vernon proposes northwest-striking normal faulting in
the west-central portion of the peninsula as a source of aerial photo
lineations and inconsistencies in drill logs. The report has
subsequently been cited as evidence for northeast-southwest
extensional stress on the Floridan Plateau (York and Oliver, 1976;
Zoback and Zoback, 1980; Prowell, 1983). No other reports of these
features exist, and no physical recognition of them has been
achieved, although northwest-trending jointing is common in that
area (Beatty, 1977). Accordingly, the orientation of the stress field
under the Floridan Plateau is unknown, although Zoback and Zoback
(1989) indicate that southeastern Georgia and the Atlantic
continental margin off Florida's northeast coast are under north-
northeast to south-southwest compression.
In an attempt to explain the contradictory indicators of stress
direction in the southern Appalachians and Coastal Plain, York and
Oliver (1976) suggested that seismogenic stresses in the eastern
United States vary both spatially and temporally. Wentworth and
Mergner-Keefer (1983) suggested that the normal northwest-
southeast compressional regime in the Charleston area had been

89
perturbed by the strain release during the 1886 event and has not
yet recovered. Bollinger (1983) hypothesized that there were two
sets of perpendicular seismogenic features around Charleston, one
northwest-southeast and one northeast-southwest, along which
earthquakes occur without regard to the orientation of the stress
field. McCartan and Gettings (1991) proposed that young mid-crustal
plutons locally disrupt the stress field by concentrating stress.
Hatcher et al. (1987) suggested that the eastern and central United
States could be divided into a number of individual blocks based on
geophysical signatures and that a southern group of blocks, including
the Floridan Plateau, are decoupled from the regional stress regime.
Although each of these may explain certain observations or
particular local phenomena, none resolves all of the contradictory
observations throughout the eastern United States.
The total stress field at a given site is the sum of regional and
local stresses. Regional stress, as the name suggests, is that stress
regime which prevails over a large area and is produced by tectonic
effects (e.g., Kuang et al., 1989). Local stress is that induced by
surficial topographic relief or shallow crustal features or phenomena.
Remnant stress is that stress remaining in a rock after an applied
stress has been removed (Sbar and Sykes, 1973).
The primary source of regional stress in eastern North America
appears to be ridge-push from the mid-Atlantic ridge (Yang and
Aggarwal, 1979: Zoback and Zoback, 1980; Kuang et al., 1989; Zoback,
1992). This mechanism would be expected to produce a northeast-
southwest oriented principal compressional stress direction. Other
viable regional mechanisms of stress production include drag

90
resistance to plate motion (Zoback and Zoback, 1980) and lithospheric
stress induced by asthenospheric convective flow (Voight, 1969; Sbar
and Sykes, 1973). Either of these would also produce a northeast-
southwest maximum compressional stress direction.
The contradictory indicators of stress direction suggest the
possibility of a local stress stress field in the eastern United States.
Several possible sources of local stress have been proposed.
Bollinger (1973B) and Barosh (1981) have suggested isostatic uplift
and flexure as a causal mechanism for compression; however, Brown
(1978) was unable to find a correlation between vertical crustal
movement and seismicity along the eastern seaboard. In addition, if
the rebounding Appalachians are the source of the uplift in this
model, then the predicted extensional stress along the crest of the
mountains is not observed (Zoback and Zoback, 1980). Another
proposed source of local northwest-southeast compressional stress is
gravity-induced backsliding southeastward along the Appalachian
decollement surface (Seeber and Armbruster, 1981). This model also
predicts extension along the apex of the Appalachians, which is not
observed (Zoback and Zoback, 1980). Finally, Kuang et al. (1989)
considered the primary sources of local stress to be topographic
relief and density contrasts within the lithosphere. According to
their model, these would also be likely to induce northwest-
southeast compression.
Seismo tec tonic Features of the Southeastern United States
While variability in the lithospheric stress field is one plausible
mechanism to account for the nonuniform distribution of
earthquakes, another is that there are mechanical differences

91
between adjacent zones (Wheeler and Bollinger, 1984). It is
generally believed that seismic activity in the eastern United States
occurs only along pre-existing faults or similar zones of weakness.
Consequently, a comparison of the seismotectonic features of the
southern Appalachians, the southern Coastal Plain, and the Floridan
Plateau could reveal possible causes for this nonuniform distribution.
The multiphase accretionary history of the Appalachian orogen
during the Paleozoic has been well-established (e.g., Williams and
Hatcher, 1982; Secor et al., 1986). During these phases, the
individual allochthonous terranes of the Appalachians were
overthrust on and accreted to the North American craton during a
long series of compressional events. The Alleghenian continental
collision between Laurentia and Gondwana is particularly important
to this investigation, as it marked the final stage of the Appalachian
orogen and ultimately resulted in the accretion of the Floridan
Plateau basement to North America (e.g., Wilson, 1966; Smith, 1982;
Dallmeyer, 1987).
During Mesozoic rifting, there was a shift from a
transpressional to an extensional regime in the southern
Appalachians (e.g., Klitgord et al., 1983; Manspeizer and deBoer,
1989) which reactivated many pre-existing features (Swanson,
1986). Extensional basins are particularly prevalent under the
Coastal Plain province; however, evidence of Mesozoic extension is
found throughout the southeast (e.g., Swanson, 1986; Heck, 1989;
Manspeizer and deBoer, 1989). Since the Cretaceous, the eastern
United States has been a subsiding passive margin characterized by
little tectonic activity, although there is evidence for widely scattered

92
compressional faulting (York and Oliver, 1976; Wentworth and
Mergner-Keefer, 1983) and local isostatic uplift (Bollinger, 1973B;
Brown, 1978).
The Grenvillian basement underlying this region is composed of
a gneissic complex overlain by a lower Paleozoic metasedimentary
sequence, which was probably deposited along the Iapetan Ocean
continental margin (Cook et al., 1979; Nelson et al., 1987; Hubbard et
al., 1991). Using reprocessed seismic reflection profiles
supplemented by gravity and magnetic data, Hubbard et al. (1991)
identified both thrust and normal faulting within the basal gneissic
complex. These faults are believed to have formed during the
Grenville compressional event (1100 Ma) and the Late Proterozoic-
Early Cambrian extensional opening of the Iapetus Ocean,
respectively. There are also reflection-free zones with corresponding
potential-field anomalies that appear to be late or post-Grenvillian
plutonic bodies. These intrusions appear to be undeformed,
suggesting that the subsequent Paleozoic orogenies had tittle effect
on the underlying basement. In addition, Hubbard et al. identified
extensive thrust faulting in the metasedimentary sequence, as well
as "bright spots" which are suggestive of hydrocarbon accumulation.
The southern boundary of this autochthonous crust
corresponds to the Alleghenian suture zone between the Floridan
Plateau and the Appalachian accreted terranes. The approximate
trace of the suture has been constrained from deep bore hole data
(Chowns and Williams, 1983) and interpretations of COCORP seismic
reflection profiles (Nelson et al., 1985A) as striking approximately
east-west across south-central Georgia (Figure 22), where the

93
Figure 22. Pre-Mesozoic allochthonous terranes of the southeastern
United States. Compiled from Seeber and Armbruster (1981), Smith
(1982), Chowns and Williams (1983), and Thomas et al. (1989).

94
Triassic South Georgia Rift is superimposed over portions of it (e.g.,
McBride, 1991).
The allochthonous Paleozoic terranes of the southern
Appalachian seismic zone are well-exposed and documented; they
are characterized by northeastward-striking thrust faults that sole
into a major southeastward-dipping decollement surface (Cook et al.,
1979; Harris and Bayer, 1979; Williams and Hatcher, 1982; Secor et
al., 1986; Heck, 1989; Horton et al., 1989). In contrast, the Paleozoic
terranes and associated seismotectonic features of the South
Carolina-north Georgia seismic zone and Floridan Plateau are buried
under recent Coastal Plain sedimentary deposits and are not as well
characterized. Similar northeast-trending thrust faults presumably
extend under the Coastal Plain province as far south as the
Alleghenian suture zone.
Mesozoic extensional features related to the openings of the
central Atlantic and Gulf of Mexico are present throughout the
southeastern United States (Figure 23). As shown in Chapter 2, the
basement of the southern and western Floridan Plateau is
characterized by a series of fault-bounded Jurassic extensional basins
formed during the opening of the Gulf of Mexico (Pindell and Dewey,
1982; Klitgord et al., 1984; Ball et al., 1988; Winker and Buffler,
1988). Similarly, numerous fault-bounded Triassic rift basins are
found along the eastern continental margin, such as the Blake Plateau
Basin and Carolina Trough, and underlying the Coastal Plain, such as
the South Georgia Rift and the Florence Basin. In addition, analogous
Triassic rifts, such the Dan River and Culpepper Basins, are also found
in the east-central Appalachians (Klitgord and Behrendt, 1979;

95
1 . South Florid.» Basin
2. Tamp» Basin
3 Appalachicola Basin
4. Blak* Plataau Basin
5. South Georgia Rift
6. Carolina Trough
7. Floranc* Basin
8. Vadesboro-Sandford-
Durham Basin
9. Dan Rivar/DanrilW
Basin
10. Richmond Basin
11. Culpepar-Gettysburg
Basin
12. Baltimora Canyon
Trough
Blake Spur
Fracture Zone
Bahamas Fracture
Zone / Jay Fault
Inferred Recent
Mafic Intrusions
Exposed Mesozoic
Rift Basins
Buried Mesozoic
Rift Basins
200 KM
Figure 23. Selected Mesozoic seismotectonic features of the
southeastern United States. Some features compiled from Klitgord
and Behrendt (1979), Chowns and Williams (1983), Daniels et al.
(1983), and Heck (1989).

96
Daniels et al., 1983; Swanson, 1986; Heck, 1989; Manspeizer and
deBoer, 1989). While there is no evidence for normal faulting as far
west as the southern Appalachian seismic zone, the basements of the
South Carolina-Georgia seismic zone and the Floridan Plateau have
each been extensively faulted.
Other than the isostatic uplift of the Appalachians and the
subsidence along the Coastal Plain and continental margin, there is
little evidence of significant tectonic activity during the Cenozoic,
although Schafer (1979), Wentworth and Mergner-Keefer (1981,
1983), and Prowell (1989) have described a few small reverse faults
scattered throughout the Appalachians and the Coastal Plain. In
addition, based on heat flow and potential-field maps, several
investigators have suggested the presence of potentially seismogenic
Cenozoic, mid-crustal mafic intrusions in the Coastal Plain of South
Carolina (Kane, 1977; Long, 1977; McKeown, 1978; McCartan and
Gettings, 1991). Other than these examples, there are no known
post-Jurassic potentially seismogenic features in the southeastern
United States.
Pore Pressure and Frictional Coefficients
Another possible reason for the nonuniform distribution of
seismicity in the eastern United States is a regional variation in the
potential for movement along pre-existing faults. The potential for
slippage along a fault in a given stress field is a function of two
dependent variables-the coefficient of friction and the hydrostatic
pore pressure. Greater pore pressures and lower coefficients of
friction each increase the probability of slippage. Although there are

97
no direct measurements of these variables in the east, some
characterizations are possible.
In a study of eastern United States earthquakes, Zoback (1992)
assumed an average hydrostatic pore pressure for each fault and
calculated the coefficient of friction required for slippage in the given
stress regime. The variables were then reversed and required pore
pressures were calculated using an assumed coefficient of friction.
She found the range of calculated pore pressures and frictional
coefficients for the majority of events to be well within expected
values. Based on these results, it appears that moderate lateral
variation in either hydrostatic pore pressure or coefficients of
friction (or both) is a plausible mechanism for the nonuniform
distribution of seismic activity in the eastern United States.
Discussion
Based on recent studies of lithospheric stress, seismicity, and
the distribution of autochthonous and allochthonous crustal blocks in
the southeastern United States, it is possible to evaluate some of the
variables that could result in the observed nonuniform distribution
of seismic activity. Most of the seismic activity is probably
attributable to a regional northeast-southwest compressional stress
field (Zoback, 1992). This regional field appears to be relatively
uniform with respect to magnitude and orientation, suggesting no
causal relationship to the nonuniform distribution of earthquakes.
Some focal mechanisms and other shallow crustal indicators of
lithospheric stress are suggestive of northwest-southeast
compression, implying the influence of a shallow local stress field as

98
one possible causal mechanism for the nonuniform earthquake
distribution. Hypothesized mechanisms for the generation of a
northwest-southeast compressional field focus on density contrasts
or topographic influences in the shallow allochthonous terranes
overlying the Appalachian detachment (e.g., Kuang et al., 1989) or on
gravity-induced stress and slippage along the detachment surface
(e.g., Seeber and Armbruster, 1981).
Recent hypocenter determinations suggest that most of the
seismic activity in the southeast occurs below the Appalachian
detachment in the autochthonous Grenvillian basement and is caused
by the regional stress field (e.g., Bollinger et al., 1985; Johnston et al.,
1985; Zoback, 1992). Consequently, while the influence of a shallow
local topographically-induced stress field might account for some of
the observed earthquake distribution, it is probable that this effect is
subordinate to the influence of the regional field.
There has been considerable discussion concerning possible
relationships between the various provinces and terranes of the
Appalachians and the distribution of seismic activity. For example,
Wheeler and Bollinger (1984), while acknowledging the possible role
of faults in the autochthonous basement, also tentatively attributed
the nonuniform distribution of earthquakes in the southeastern
United States to differences between these various allochthonous
terranes. Similarly, Drumheller et al. (1981) divided the eastern U.S
into 5 seismotec tonic regions, which were then correlated to several
Appalachian provinces. The subsequent recognition that most of the
seismic activity in the eastern United States occurs below the
Appalachian decollement, however, affirms that the distribution of

99
earthquakes is largely unrelated to the near-surface, Paleozoic
accreted terranes or seismotectonic features.
Similarly, the distribution of Mesozoic rift basins is unlikely to
be a causal mechanism for the nonuniform distribution of
earthquakes. Not only are these shallow crustal features, but
Mesozoic extensional faulting is pervasive throughout the southeast
and is particularly prevalent under the relatively aseismic Floridan
Plateau. Thus, there is no apparent correlation between the
distribution of Mesozoic extensional faults and the distribution of
earthquakes in either a lateral or horizontal sense.
One hypothesis relating recent seismicity to Mesozoic tectonic
effects is that large events in the eastern United States occur
preferentially along zones of lithospheric weakness near the onshore
ends of Jurassic oceanic transform zones (Sbar and Sykes, 1973;
Sykes, 1978). For example, the hypothesized onshore extension of
the Blake Spur Fracture Zone passes through centers of the South
Carolina-north Georgia and southern Appalachian seismic zones
(Figure 23). Although this fracture zone may extend downward into
the seismically active autochthonous basement, it is probably a near¬
vertical feature that strikes perpendicularly to the prevailing
regional stress field and would therefore be unlikely to experience
movement.
In addition, other parallel fracture zone traces show no
particular seismogenic tendencies. For example, the Bahamas
Fracture Zone probably extends across the Floridan Plateau as the Jay
Fault and connects with the Gulf Basin marginal fault zone (Smith,
1982; Chowns and Williams, 1983; Klitgord et al., 1984; Smith et al.,

100
1992). However, none of the previously mentioned historic events in
Florida occurred near the Jay Fault. In addition, seismic reflection
profiles along the eastern edge of the plateau show no evidence of
displacement in the Cretaceous to Recent sedimentary layers
overlying the fault zone, implying that there has been negligible
Cenozoic movement (e.g., Sheridan et al., 1981). Consequently, it
appears that Jurassic fracture zone traces in the eastern United
States are not seismically unstable in the present stress field, and
other mechanisms or features probably account for the observed
seismic activity along these fracture zone traces.
While variations in the lithospheric stress field and the
distributions of shallow crustal features and terranes do not account
for the observed hypocentral distribution and focal mechanisms, the
distribution of Iapetan faults or other pre-existing seismogenic
features in the autochthonous Grenvillian crust may account for
these observations. There is a growing body of evidence indicating
that most, but not all, of the earthquakes in the eastern United States
occur below the Appalachian detachment (e.g., Zoback, 1992). For
example, while the top of the Grenvillian crust in the southern
Appalachians is about 3 km deep (Hubbard et al., 1991), mean focal
depths in the same area average about 12 km (Bollinger et al., 1985;
Johnston et al., 1985).
In addition, there appears to be a strong spatial correlation
between the observed epicentral distribution and Grenvillian
continental margin. This correlation is particularly pronounced along
the distinct boundary between the seismically active South Carolina-
north Georgia seismic zone and the seismically quiescent Floridan

101
Plateau. This boundary correlates very well to the previously
established trace of the Alleghenian suture zone which, as the
boundary between the thin-skinned Appalachian orogen and the
thick-skinned Floridan Plateau, also marks the southern boundary of
the autochthonous Grenvillian crust (e.g., Harris and Bayer, 1979;
Cook et al., 1981; Ando et al., 1983; Heck, 1989).
Consequently, the spatial relationship between the Late
Proterozoic edge of the North American continent with contemporary
hypocentral distribution promotes the hypothesis that seismic
activity in the eastern United States occurs preferentially along faults
associated with the opening of the Iapetus Ocean. The nonuniform
distribution of seismic activity, then, would be a function of the
distribution of optimally stressed Iapetan faults. The concentration of
these faults along the Grenvillian eastern continental margin could
account for a general decrease in observed seismic activity west of
the Appalachians.
Other characteristics of the crust may also contribute to the
nonuniform distribution of earthquakes. In seismic reflection
profiles, Hubbard et al. (1991) found evidence of plutonic bodies in
the Grenvillian crust, which suggests the possibility that some of the
seismic activity could be due to the presence and distribution of
these bodies. Similarly, Cenozoic mid-crustal plutonic bodies may
account for some of the seismic activity in the Charleston area
(McCartan and Gettings, 1991). Another possibility, as previously
mentioned, is that there could be a lateral variability in the
propensity for fault slippage due to changes in hydrostatic pore
pressure or frictional coefficients.

102
Summary
The nonuniform distribution of seismicity in the southeastern
United States may be the result of several different effects. Based on
the uniform nature of the regional stress field and the spatial
association of most eastern earthquakes with the edge of the
autochthonous Grenvillian crust, it appears likely that seismicity in
the southeast is largely attributable to the reactivation of optimally
stressed Iapetan faults below the Appalachian detachment surface.
Consequently, the nonuniform earthquake distribution primarily
results from the nonuniform distribution or orientation of these
faults.
While this mechanism accounts for much of the observed
earthquake activity, it is certain that some earthquakes are
attributable to other causal mechanisms. There has been some
earthquake activity recorded in the overlying allochthonous
Appalachian terranes, suggesting that the seismogenic effects of the
regional stress field are not entirely limited to the Grenvillian crust.
In addition, some of the shallow crustal focal mechanisms and other
indicators of stress direction suggest the influence of a local
compressional stress field that is perpendicular to the regional field.
This local field or the interaction of the local and regional fields
appears to cause intermittent reactivation of some shallow faults and
may partially account for the observed spatial association between
epicentral distribution and topography in the southern Appalachians.
Other ancillary causal mechanisms for the observed distribution of
seismic activity may include the distribution of seismogenic mid-

103
crustal intrusive bodies and variability in the propensities of fault
zones for slippage.
However, contrary to some previous hypotheses, there appears
to be no significant spatial relationship between the distribution of
earthquakes in the southeast and individual Paleozoic allochthonous
terranes or thrust features. Similarly, there appears to be no
correlation between the locations of Mesozoic extensional basins or
fracture zones and the distribution of earthquakes.

CHAPTER 5
REGIONAL SEISMOTECTONIC PROVINCES
Introduction
Probabilistic seismic hazard analyses in sites characterized by
historically low levels of seismic activity, such as on the Floridan
Plateau, must address the potential for ground motion resulting from
seismic activity in surrounding areas. This is accomplished by
dividing the region into a series of seismotectonic provinces and
quantifying the level of seismic activity within each province. In
addition, it is necessary to establish a regional value for crustal
attenuation which describes the ability of the lithosphere to transmit
seismic energy. Together, these allow an appraisal of the potential for
ground motion at a site resulting from distant earthquakes and are
integral elements in an assessment of seismic hazard.
A seismotectonic province is defined as a geographic region of
some geological, geophysical, or seismological similarity that is
assumed to possess a uniform earthquake potential throughout
(Reiter, 1990). The intention in this chapter is to identify and
provide a characterization of those seismotectonic provinces that
could potentially experience earthquakes large enough to produce
significant ground motion in Florida.
104

105
Background and Methods
A variety of approaches have been used to characterize the
seismo tec tonic provinces of the southeastern United States. While
many have used seismological similarities as the sole means of
delineating the various provinces (i.e., Bollinger, 1973A; Drumheller
et al., 1981), others have attempted to relate patterns of observed
seismicity with known geological provinces or geophysical features
(i.e., Wheeler and Bollinger, 1984; Hatcher et al., 1987). As inferred
by Wheeler and Bollinger (1984) and discussed in Chapter 4,
however, there is not yet enough information available to positively
correlate seismicity with geologic provinces or features in the
southeastern United States.
Another approach has been to use both seismological
similarities and the presence of potentially seismogenic features in
the shallow crust as a means of distinguishing these provinces (i.e.,
Khoury and Chandra, 1989). A problem with this approach is that
potential seismogenic features are ubiquitous in the southeastern
United States, yet few appear to have Cenozoic seismic activity
associated with them (e.g., Chapter 4).
For example, three of the models presented by Khoury and
Chandra include the Florida extension of the South Georgia Rift as a
potential seismic source zone, yet there have been no historical or
instrumental events in this area and seismic reflection profiles of the
undisturbed overburden suggest no seismic activity since the Early
Cretaceous (e.g., Arden, 1974; Nelson et al., 1985A; Dobson and
Buffler, 1991). Furthermore, there has been no demonstrated
association between similar structures and recent seismic activity

106
anywhere in the southeast. Hence, the assignment to southwestern
Georgia and northwestern Florida of an elevated level of seismic
hazard as compared to the numerous other southeastern locations
underlain by Mesozoic extensional features seems unfounded.
Consequently, the utilization of geophysical signatures and
geological information is not yet a practical method for the
identification of seismotectonic provinces in the southeastern United
States. Unfortunately, as discussed by Yegian (1979), historical and
instrumental records encompass only a few hundred years and,
therefore, may not provide a representative distribution of seismic
activity. Nevertheless, the most tenable approach remains to utilize
these seismic records in a judicious manner. The compilation of the
seismic records for the southeastern United States and Caribbean
(e.g., Figure 21) will be used as a foundation for the delineation of
these provinces and the subsequent assessment of seismic hazard in
Florida.
The identification of seismotectonic provinces in the Caribbean
region allows the use of a slightly different approach. This difference
results from the neotectonic setting of the Caribbean plate boundary
and the association of seismic activity with known geologic structures
along this boundary. In these instances, seismotectonic provinces
may be delineated on the basis of both seismological similarities and
geologic setting.
Following the identification of the seismotectonic provinces
proximal to Florida, a characterization of the level of seismic activity
within each of the provinces is necessary. This is accomplished
through the assignment of an appropriate magnitude range and

107
recurrence interval to each province. While the determination of a
maximum credible earthquake for a province in an intraplate region
is largely subjective, a comprehensive review of historic intraplate
earthquakes provides some control (Johnston and Kanter, 1990). For
example, only 3 earthquakes of magnitude eight or above and only
15 earthquakes of magnitude seven or greater have occurred in any
intraplate region during historic times. Johnston and Kanter indicate
that these large magnitude intraplate events appear to be spatially
associated with continental rifts and passive continental margins.
Generally, the maximum credible magnitude is assigned to a
province at some increment above the maximum historic magnitude
(Reiter, 1990). In provinces that have poorly documented historic
records, including the eastern United States, the assignment of a
maximum credible magnitude also takes into consideration the
geologic setting, the level of recent seismic activity, and a reasonable
allowance for error.
The assignment of a minimum magnitude to a seismic source
significandy affects the calculated seismic hazard probabilities for
lower levels of ground motion. There is no standard method of
determining minimum magnitude. As pointed out by Bender and
Campbell (1989), several magnitudes, ranging from m^ (body wave
magnitude) 3.75 to m^ 5.0, have been adopted by various regulatory
agencies and workers for use in the province surrounding the site of
interest. Generally, the minimum magnitude assigned is based on an
estimation of the magnitude of the smallest event occurring in that
province that could be expected to cause damage at the site. Events

108
smaller than this are usually considered to be insignificant with
respect to site specific seismic hazard analyses.
In long-term risk assessments, earthquake recurrence is
commonly assumed to have a Poisson distribution, indicating that
each event is independent of any other event. The recurrence
interval, or the number of earthquakes (Nm) per unit time (usually
one year) for a given magnitude (m), may be approximated by:
log Nm = a - b(m) (Gutenberg and Richter, 1944)
where "a" is a constant which describes the rate of earthquake
activity and "b", the slope of the regression line, indicates the relative
numbers of small and large earthquakes. Hazard assessments
generally employ this equation and the known frequency of smaller
earthquakes in a given province to calculate the recurrence intervals
of large destructive earthquakes. Thus, the value of "b" assumes a
significant role as an indicator of seismic hazard. A typical "b" value
in the eastern United States is about 0.8 (e.g., Bollinger et al., 1989).
The limited historic record necessitates the integration of
historical and instrumental data in seismic hazard investigations,
particularly for the calculation of recurrence intervals. It is often
necessary to estimate magnitudes from historic intensity data.
Although Sibol et al. (1987) derived a magnitude-intensity
relationship specifically for the eastern United States, this
relationship incorporates felt area, which is often not available. The
estimation of magnitude (mb) from intensity (I) is instead based on a

109
relationship derived by Veneziano and Van Dyck (1984) for the
central and eastern U.S. as defined by:
mb = 0.892 + 0.586(1)
The final step, then, in the characterization of the seismotectonic
provinces is to calculate or assign "a" and "b" values to each province
based on earthquake compilations of historic and instrumental data.
As it is not possible to calculate precise values from only a few
historic events, as in Florida, the previously mentioned state-wide
network of seismographs was established in 1989 in order to
characterize the regional level of micro-earthquake activity (Figure
24). This network initially consisted of three stations, each equipped
with three Teledyne S-13 short period seismometers coupled to a
Teledyne PDAS-100 digital recorder. The stations were located at
the University of Florida in Gainesville, in Oscar Scherer State
Recreation Area near Sarasota, and in Everglades National Park at the
southern tip of the state. The base station at Gainesville was also
equipped with three Teledyne BB-13 broadband seismometers and a
Sprengnether SS-80 short period analog seismograph. Subsequently,
the digital base station was moved to Jonesville, which is just west of
Gainesville, and an additional three-component digital station was
established in Wakulla Springs State Park, just south of Tallahassee.
The digital seismographs are event-triggered, rather than being
continuously recorded. The triggering algorithm continuously
monitors the ratio of the amplitude of ground motion over a short
period of time, typically one second, to the amplitude of ground

no
Figure 24. The University of Florida Seismograph Network.

Ill
motion over a long period of time (i.e., background noise). If that
ratio exceeds a level set by the operator within a specified
frequency, the digital recorder is then triggered and records for a set
period of time, usually one to two minutes.
This algorithm is characterized by a decrease in the sensitivity
of the seismograph with an increase in the background noise.
Because most background noise is related to weather conditions and
human activities, it is quite variable. Consequently, it is not possible
to quantify the sensitivities of the seismograph systems. Based on
the amplitude of the signal recorded at Gainesville during a mt> 3.8
event in the Gulf of Mexico in 1992, it is estimated that any event on
the Floridan Plateau with a magnitude greater than 1.5 to 2 would be
detected by the entire network.
Results
In addition to the general background seismicity of the
Floridan Plateau, the Gulf of Mexico, and the Bahamas regions, there
are several distinct seismotectonic provinces in southeastern United
States in which earthquake activity could potentially cause
perceptible ground motion in Florida. These include the Charleston
province, which is enclosed by the Piedmont-Coastal Plain province,
the Southern Appalachians province, and the New Madrid province.
In addition, the Cayman Trough region, which is along the northern
Caribbean plate boundary, may pose a potential seismic threat to
Florida. The boundaries of these seismotectonic provinces are shown
in Figure 25.

112
Figure 25. Seismotectonic provinces in which expected earthquakes
could potentially cause significant ground motion in Florida.

113
The Floridan Plateau/Eastem Gulf/Westem Bahamas Region
As discussed in Chapter 4, the level of historic seismic activity
on the Floridan Plateau, in the eastern half of the Gulf of Mexico, and
in the western Bahamas region is very low. Most of the events are
clustered along the eastern edge of the Floridan Plateau. Although
this clustering has possibly been biased by the population
distribution, it is consistent with the previously observed spatial
association between some passive continental margins and seismic
activity (Johnston and Kan ter, 1990). In deference to the need to be
conservative, the level of seismicity suggested by this local cluster of
events will be used as a regional gauge of seismic activity.
There have been only four instrumentally recorded events
from this region. Two of the five Florida events were recorded at
distant stations and subsequently assigned magnitudes. One was a
m^ 4.0 event south of Orlando, Florida, which was recorded in
Atlanta on Oct. 27, 1973 (Long, 1974). The other, on Nov. 4, 1975
near Daytona Beach, was recorded in Virginia and assigned a
magnitude of mt>Lg 2.9 (Minsch et al., 1975). In addition, there have
been two instrumentally recorded earthquakes in the eastern half of
the Gulf of Mexico. These include the previously mentioned 3.8
event in the eastern Gulf of Mexico on March 31, 1992 and a m^ 3.6
event located about 250 km southeast of New Orleans on Sept. 27,
1992. Each of these was recorded by the University of Florida
Seismological Network and others.
Housner (1969) assigned upper bound magnitudes to regions
based on their tectonic settings. Intraplate regions characterized by
low seismicity, such as Florida, were assigned maximum credible

114
magnitudes of either 4.25 or 4.75. The largest historic event
occurred in northeast Florida or southeastern Georgia on Jan. 13,
1879 and was subsequently estimated to have been an intensity VI
event (Mott, 1983). Using Veneziano and Van Dyck's relationship,
this is approximately equivalent to a magnitude 4.4 earthquake.
Considering the infrequency of earthquake activity, the low intensity
of the largest historic event, the lack of geologic evidence for
earthquakes, and Housner's criteria, it appears unlikely that this
region will experience an event greater than mb 5.0.
As previously mentioned, minimum magnitudes for the areas
immediately surrounding targeted sites have ranged from mb 3.75 to
mb 5.0. Intensities of less than MMI VI are, by definition,
characterized by no structural damage to buildings. An intensity V
event is approximately equivalent to a magnitude 3.8 earthquake;
therefore, this will be the designated minimum magnitude for this
province.
There is an insufficient number of events for the calculation of
"a" and "b" values for this province. The "a" value, as a function of
the rate of earthquake activity, is undoubtedly relatively low.
Typically, "a" values in regions of low seismicity range from 0.8 to
1.3, while an expected "b" value would be in the 0.5 to 0.75 range.
An estimated "a" value of 0.9 and a "b" value of 0.55 yields a
recurrence interval of 70 years for the maximum credible magnitude
event (mb 5.0) and 20 years for a mb 4.0 event. Comparison with the
incidence of historic and instrumental events suggests these values
to be reasonable approximations for the purpose of probabilistic
hazard assessment.

115
Charleston Seismotectonic Province
Liquefaction features, such as sand blows, are only formed
during earthquakes of approximately magnitude 5.8 or greater
(Amick and Gelinas, 1991). In a study of the distribution of
paleoliquefaction features along the entire southeastern Coastal Plain,
Amick and Gelinas (1991) found that these features occur almost
exclusively in the South Carolina Coastal Plain proximal to the city of
Charleston. The one exception was a site located in North Carolina,
near the South Carolina border and relatively close to the other
paleoliquefaction features. Based on this study, it appears that the
Charleston region is characterized by a higher maximum credible
magnitude than the remainder of the southeast and that this region
of elevated activity extends northeastward beyond the area
originally described by Bollinger (1973A).
The geologic evidence for a locally elevated maximum credible
magnitude is consistent with the historic record, as demonstrated by
the m^ 6.7 (estimated) Charleston event of 1886 (e.g., Bollinger,
1977; Bollinger et al., 1989). Housner's (1969) designated upper
bound magnitude for similar tectonic settings is 7.0, while other
estimates of a maximum credible magnitude for the Charleston area
range up to 7.4 (Ebasco, 1988). Although a 7.4 magnitude event is
unlikely to occur in this zone, the assignation of this value as an
upper bound magnitude is compatible with the desired goal of
providing a conservative estimate of seismic hazard in Florida.
A minimum bound earthquake for this zone can be based on
the estimated magnitude of the 1886 Charleston event and its effects
in Florida. The estimated m^ 6.7 earthquake produced effects of MM

116
intensity V (i.e., no damage) in the northern half of the state
(Bollinger, 1977). This suggests that for the purpose of this study, a
designated minimum magnitude for this province should be no
smaller than 6.5.
Recurrence interval estimates for large events in the Charleston
zone based on paleoseismic evidence, such as the liquefaction
features, range from 500 to 2400 years (Talwani and Cox, 1985;
Obermeier et al., 1987; Amick and Gelinas, 1991). This range
probably represents the expected variability in the recurrence
interval with time, which suggests the 500 year estimate to be an
approximate minimum interval between events greater than mb 5.8.
This corresponds very well to the calculation by Bollinger et al.
(1989) of an "a" value of 1.65 and a "b" value of 0.77 for the
Charleston zone, suggesting average recurrence intervals of 650
years for mb 5.8 events and 11,200 years for mb 7.4 events.
Piedmont-Coastal Plain Seismotectonic Province
The Piedmont and Coastal Plain of the southeastern United
States are characterized by a moderate level of seismic activity
which steadily decreases to the east, except in South Carolina and
central Virginia. In a study of magnitude recurrence in the
southeast, Bollinger et al. (1989) distinguished between the Piedmont
and the Coastal Plain geographic provinces for the purposes of their
study. They found the earthquake activity per unit area to be
moderately higher in the Piedmont; however, the "a" and "b" values
calculated for the two geographic provinces were indistinguishable
within their margins of error. Consequently, the Piedmont and
Coastal Plain provinces are virtually identical with respect to

117
recurrence intervals and are considered to be a single seismotectonic
province for the purpose of this study.
There has been only one historic event with a Modified
Mercalli (MM) intensity of greater than VII in this seismotectonic
province—an intensity VII-VIII in the Piedmont of South Carolina in
1913 (Bollinger, 1973A), which is approximately equivalent to a mb
5.3 event. Based on the apparent absence of paleoliquefaction
features along the Coastal Plain (Amick and Gelinas, 1991), it appears
that there have been few large events (mb 5.8 or greater) in the
eastern part of the province for at least several thousand years,
except in the Charleston region. Consequently, a magnitude of mb
6.0 is likely to be a prudent estimate of the maximum credible
earthquake.
There are no known reports of earthquakes occurring in the
Piedmont-Coastal Plain province and being felt in Florida.and the
assignment of a minimum magnitude to this province is therefore
necessarily subjective. There is a 100 km separation between the
zone and the northern border of Florida, which suggests that any
event smaller than approximately mb 5.5 in this province would
cause no damage in Florida.
Although there have been several studies of earthquake
recurrence in this region, Bollinger et al. (1989) incorporates a
comprehensive review of both historic intensity data and
instrumental magnitude determinations. From this review, they
calculated "a" values of about 2.2 and "b" values of 0.80 for the
individual Piedmont and Coastal Plain geographic provinces. The
consolidation of the two geographic provinces into a single

118
seísmo tec tonic province and the subsequent recalculation of
Bollinger's figures yields an "a" value of 2.5, while the "b" value, or
slope of the regression line, remains unchanged at 0.8. This suggests
average recurrence intervals of 32 years for magnitude 5.0 and 200
years for magnitude 6.0 events.
Southern Appalachian Seismotectonic Province
The Southern Appalachian seismotectonic province, which was
originally described by Bollinger (1973A), is well-defined on maps of
earthquake activity (e.g., Figure 21). This province trends
northeastward generally along the topographic apex of the
Appalachian Mountains and extends from east-central Mississippi to
western Virginia. There has been a significant amount of historic
and instrumentally recorded seismic activity along this trend,
including seven events with MM intensities greater than VI and an
intensity VIII event in Giles County, Virgina, in 1897.
The Giles County event was approximately a magnitude 5.6
event and is one of the largest historic earthquakes to have occurred
in the eastern United States. Housner (1969) estimates tectonic
settings similar to the Southern Appalachian seismotectonic province
to be characterized by maximum credible magnitudes of mj-, 7.0. The
estimated magnitude of the Giles County event, which is significantly
less than Housner's approximation, suggests mb 7.0 to be a safe
upper bound magnitude for this province.
As mentioned, the mb 6.7 Charleston earthquake caused no
appreciable damage in Florida. At their closest boundaries, the
Charleston province and Southern Appalachian province are
approximately equidistant from Florida. This suggests that the

119
minimum bound magnitude in the Southern Appalachian province
should be equivalent to that assigned to the Charleston province (m^
6.5).
Based on a compilation of historic and instrumental data,
Bollinger et al. (1989) calculated the recurrence relationship for the
Southern Appalachian seismotectonic province to be approximated
by:
log Nm = 2.67 - 0.82mbLg
These values suggest recurrence intervals of 84 years for magnitude
5.6 events and 1175 years for magnitude 7.0 events. These "a" and
"b" values are very close to those calculated by Chinnery (1979) from
historic intensity data.
New Madrid Seismotectonic Province
In 1811 and 1812, the seismically active Mississippi Valley
area experienced three of the largest historic intraplate earthquakes
ever documented. These large events had epicentral MM intensities
of X-XI, and estimated magnitudes (mb) ranging from 7.1 to 7.4
(Nuttli, 1973B). Although these events affected most of the eastern
United States, they were scarcely felt in northernmost Florida (i.e.,
MM intensity III). Consequently, it would seem that earthquakes in
this province pose little threat to Florida.
Considering the observed magnitudes of these historic events,
it is prudent to assign an unusually large maximum credible
magnitude to this province. As previously mentioned, only three
intraplate earthquakes of magnitude 8 or greater have ever been
documented. This probably constrains the maximum credible

120
magnitude for the New Madrid seismotectonic province to no greater
than about 8.3. As suggested by the minimal effects in Florida
during the 1811-1812 earthquakes, the minimum significant
magnitude for the purposes of this study is mb 7.4.
The magnitude-recurrence relationship for the New Madrid
seismotectonic province was calculated by Nuttli (1974) from historic
and instrumental data. The "a" value was found to be approximately
3.55 and the "b" value was calculated to be approximately 0.87. This
suggests recurrence intervals of 350 years for mb 7.0 events and
4700 years for mb 8.3 events. A later study based on similar data
suggested slightly longer intervals (Johnston and Nava, 1985).
Subsequent paleoliquefaction studies, as summarized by Rodbell and
Schweig (1993), have suggested significantly longer intervals--on the
order of 10,000 years for earthquakes greater than mb 7.0. Thus, it
appears that large earthquakes in the Mississippi Valley may not
recur in accordance with the logarithmic Gutenberg-Richter
relationship. Nevertheless, the use of Nuttli's coefficients provides a
margin of safety and will, therefore, be used in this study.
Cayman Trough Seismotectonic Province
A series of distinct seismotectonic features extends along the
northern Caribbean plate at its boundary with the North American
plate (e.g., Burke et al., 1984; Mann and Burke, 1984; Mattson, 1984).
Although the entire plate boundary system is seismically active, the
Cayman Trough, because of its proximity to Florida, is the only
feature of interest for the purpose of this study. The other features
along the plate boundary are too distant, as suggested by the
relatively low amplitude of ground motion (approximately 300

121
microns at 1.2 Hz) recorded at the Everglades seismograph station
during a relatively large (m^ 6.9) earthquake in southeastern Cuba
on 25 May, 1992.
The Cayman Trough is a distinct, narrow morphological feature
extending from off the north coast of Honduras to just west of
Hispaniola. The seismicity associated with the trough covers a
slightly larger area, as demonstrated in Figure 21 and outlined in
Figure 25. Although the 1992 event was not felt in Florida, a
destructive earthquake of unknown magnitude near southern Cuba
on Jan. 22, 1880 was felt in Key West, suggesting a slight potential
for damage from events in this province.
There have been several compilations of seismic activity along
the northern Caribbean plate margin (e.g., Sykes and Ewing, 1965;
Molnar and Sykes, 1969; Sykes et al., 1982; and Mann and Burke,
1984). These compilations suggest a maximum credible magnitude
in the 7.0 to 7.5 range for the Cayman Trough (Ebasco, 1988). Not
surprisingly, however, the seismic record is rather limited. The
tectonic setting of the trough indicates the potential for significantly
larger events-Housner (1969) suggests m^ 8.5 as a maximum
credible magnitude for zones proximal to a great fault. Based on the
level of ground motion in south Florida during the 1992 earthquake,
the minimum significant earthquake in this province is considered to
be mt, 7.0.
Ebasco (1988), in a site specific seismic hazard assessment,
calculated "a" and "b" values for the Cayman Trough from the
previously mentioned compilations of Caribbean earthquakes. These
values are 4.58 and 0.93, respectively. This indicates recurrence

122
intervals of approximately 85 years for 7.0 events and 2100
years for 8.5 events.

CHAPTER 6
SEISMIC ATTENUATION IN THE FLORIDA REGION
Introduction
Seismic attenuation is defined as a reduction in amplitude or
energy of a transmitted wave with distance. As it is dependent on
the physical characteristics of the transmitting medium, seismic
attenuation in the lithosphere may vary by an order of magnitude or
more from region to region (e.g., Nuttli, 1973A). This spatial
variation accounts for marked differences in the destructive effects
of similarly sized earthquakes in different regions. Thus, a local
characterization of lithospheric attenuation is a significant factor in
accurately assessing seismic hazard at a particular site.
There has been no independent calculation of lithospheric
attenuation in Florida. Consequently, local seismic hazard
assessments have primarily utilized generalized coefficients for the
entire central or eastern United States (e.g., Ebasco, 1988). There is
little to substantiate the assumption that attenuation in Florida is
comparable to attenuation in other parts of the continent. It is
plausible that the allochthonous plateau crust is characterized by
inherently different mechanical properties than other regions of the
United States. In addition, past studies have suggested that thick
sedimentary accumulations, such as in Florida and the Coastal Plain
province, act to strongly attenuate seismic energy (e.g., Mitchell and
123

124
Hwang, 1987; Chapman et al., 1990). Accordingly, the objective in
this chapter is to provide an improved characterization of crustal
attenuation in Florida.
Background and Methods
There are two primary factors that contribute to the
attenuation of seismic signals: geometric spreading and absorption.
While absorption results from several different mechanisms, such as
scattering and dispersion, in practice it is neither feasible nor
necessary to distinguish between these mechanisms.
Local coefficients for absorption (a) are usually calculated from
the decay in amplitude (A) of a seismic signal with distance traveled
(d) as given by:
A(d) = Aor-ne_ad (e.g., Howell, 1990)
where "Aq” is the initial amplitude, "r" is the radius of the wave front
and "n" is the coefficient of geometric spreading (usually 2 for body
waves). Regional values for "a" (also referred to as "y in the
literature) in the United States typically range from 0.001 km-1 to
0.01 km-1, depending on the location and magnitude (e.g., Nuttli,
1980) (Table 1).
Another commonly used term for absorption is "Q!\ the quality
factor. "Q? is related to "a" by:
Q = nf/a v
where "f is the frequency and "v" is the velocity of the wave train.
An example in the range of values for "Q!' (at 1 Hz) in the United

125
Magnitude
Absorption Coefficient
(km'’)
Western United
Central United
mb
M
States
States
4.0
4.4
- -
.007
4.5
4.9
- -
.006
5.0
5.4
.010
.0045
5.5
5.9
.008
.004
6.0
6.7
.007
.003
6.5
7.5
.0065
.0025
7.0
8.3
.006
.0018
Table 1. Absorption coefficients (a) for the western and central
United States (Nuttli, 1980; Campbell, 1981).

126
States is provided by Nuttli (1981), who found "Q!' for Love waves to
range from approximately 200 in southern California, a value
indicative of strong absorption, to approximately 1500 in the central
United States, indicating relatively little absorption. "Q!' in the
eastern United States averages about 900-1000 in the Appalachians,
700-900 along the Atlantic Coastal Plain, and 400-600 in the Gulf
Coastal Plain (Singh and Hermann, 1983; Gupta and McLaughlin,
1987; Chapman and Rogers, 1989).
One potential source of error in using amplitude decay to
determine absorption arises from the phenomenon that higher
frequencies are attenuated more strongly than lower frequencies. In
order to minimize this source of error, signals from local earthquakes
(or local nuclear blasts) are preferentially utilized over more distant
events. This constraint to use local events is countered to some
extent by the need for the signal to travel sufficiently far, generally
more than 100 km, for the effects of absorption to become
significant.
The unique geologic history of the Floridan Plateau suggests
that local values of absorption may differ from those assigned to the
central and eastern United States. Consequently, in addition to
monitoring regional seismic activity, another purpose of the
University of Florida Seismograph Network is to allow a
discrimination of local values for seismic absorption. Unfortunately,
the paucity of local earthquakes and large blasts hinders the process
of determining these values. Nevertheless, certain inferences can be
made from isoseismal maps of large regional earthquakes, from local
ground motion amplitudes resulting from distant events, and from

127
studies of attenuation in areas with similar thick sedimentary
accumulations, such as the southeastern Coastal Plain.
There has been only one earthquake in Florida sufficiently
well-documented to contribute to a local study of attenuaüon-a m^
4.0 event located about 30 km south of Orlando on Oct. 27, 1973. A
Modified Mercalli isoseismal map was subsequently produced by
Long (1974), who found the maximum intensity to have been MM
intensity V. A method was developed to allow the estimation of a
local coefficient of absorption from this isoseismal map.
This method utilizes Campbell's (1981) equation relating peak
ground acceleration (PGA), moment magnitude (M), epicentral
distance in kms (R), and absorption (a) as follows:
PGA = 0.0823e-922M (R + 25.7)-i-27 e~aR
Solving for absorption yields:
a = .922M - ln(PGA/0.0823(R + 25.7)'1-27) / R
In order to estimate "a" from isoseismal maps, it is necessary to
calculate the magnitude and estimate peak ground acceleration at
some distance from the epicenter. The relationship between body-
wave magnitude and peak intensity was discussed in Chapter 4. As
given by Nuttli (1980), moment magnitude (M) is related to body-
wave magnitude (mb) by:
M = 1.64rrib - 3.16 (for mb greater than or equal to 5.59)

128
or
M = 1.02mb + 0.30 (for mb less than 5.59)
The estimation of peak ground acceleration (in m/s2) from MM
intensity (I) was calculated by Gutenberg and Richter (1956) to be:
log10PGA = (I)/3 - 5/2
Essentially, this intensity-absorption method requires the
measurement of the mean radius (R) in kms from the epicenter to a
well-established isoseismal line, usually MM intensity II or III.
Utilizing the mean radius minimizes the biasing effects of differential
site response and population distribution. The peak ground
acceleration at that mean radius may be approximated from the
isoseismal intensity and the Gutenberg-Richter relationship. For
example, MM intensity IV is approximately 0.007 g, MM intensity III
is about 0.003 g, and MM intensity II is about 0.0015 g. Once the
values for magnitude (M), peak ground acceleration (PGA), and radial
distance (R) have been established, Campbell's relationship may be
used to calculate the absorption coefficient.
Test Cases for Intensity-Absorption Method
Before applying this intensity-absorption method in an
assessment of attenuation in Florida, it was necessary to first test it
on earthquakes in regions where absorption coefficients have been
previously calculated using conventional methods; specifically, the
central and western United States. The first test case was the

129
northern Kentucky earthquake of 27 July, 1980. This earthquake
had a magnitude of 5.1, which equates to a moment magnitude
(M) of 5.5 (Minsch et al., 1981). As extrapolated from Table 1, the
expected absorption coefficient at this magnitude in the central
United States is about 0.004 km-1. Figure 26, an isoseismal map of
this earthquake, indicates an approximate average radial distance (R)
of 445 kms from the epicenter to the edge of the area in which the
earthquake was generally felt (MM intensity II). From the
Gutenberg-Richter relationship, the peak ground acceleration (PGA)
at this isoseismal line is 0.0015 g. By Campbell's relationship, this
combination of magnitude, distance, and peak ground acceleration
yields an "a" coefficient of 0.003 km'1, which is essentially
equivalent to the expected value.
The largest test event was a moment magnitude (M) 7.0
earthquake on 28 October, 1983 in central Idaho (Stover, 1987). The
USGS isoseismal map for this earthquake is shown in Figure 27. The
average radial distance (R) to the most distant isoseismal line is
approximately 650 kms. As before, this line represents the distance
to a peak ground acceleration of 0.0015 g (MM intensity n), yielding
an "a" value of 0.003 km-1. As shown in Table 1, this is identical to
Nuttli's expected value.
A number of earthquakes were characterized in this manner-
some examples are shown in Table 2. In the central and west-
central United States, this method produced absorption coefficients
that were reasonably close to the expected values in Table 1 despite
the potential errors resulting from variable local site responses and
population distribution patterns. The calculated absorption

130
Figure 26. Modified Mercalli intensity isoseismal map for the
northern Kentucky earthquake of 27 July, 1980 (from Minsch et al.,
1981).

131
ss» sss:?%r

132
Location
Reference
Nagnitude
(N) Distance (R)
PGA at R
AbsorDtion Coeff.
Expected
Calculated
N. Kentucky
27 July 1980
Hinacti et
al. (1981)
5.5
445 km
.0015 g
.004
.003
S. Illinois
10 Jure 1987
Reagor and
Brewer (1987)
5.6
360 km
.0015 g
.004
.004
S. Illinois
9 Nov. 1968
Gordon et
al. (1970)
5.7
670 km
.0007 g
.004
.003
S. Illinois
15 Hay 1983
Stover (1987)
4.2
260 km
.0007 g
.007
.006
N.W. Hontana
11 Feo. 1984
Stover (1988)
4.9
250 km
.0015 g
.010
.006
E. Wyoming
18 Oct. 1984
Stover (1988)
5.8
325 km
.0015 g
.008
.006
N.E. Wyoming
29 Nay 1984
Stover (1988)
5.4
195 km
.0015 g
.010
.011
Central Idaho
22 Aug. 1984
Stover (1988)
5.4
270 km
.0015 g
.010
.008
Central Idaho
28 Oct. 1983
Stover (1987)
7.0
650 km
.0015 g
.003
.003
W. Idaho
27 Nov. 1977
Stover et
al. (1979)
4.6
97 km
.0015 g
.014
.022
N. Oregon
13 Apr. 1976
Person et
al. (1978)
4.9
130 km
.0015 g
.012
.016
N.W. Washington
16 Nay 1976
Person et
al. (1978)
5.4
155 km
.0015 g
.010
.015
N.W. New Nexico
5 Narch 1977
Simon et
al. (1979)
5.0
130 km
.0015 g
.012
.017
Central Calif.
13 April 1980
Stover et
al. (1981)
4.9
105 km
.0015 g
.012
.022
Central Calif.
25 Nay 1980
Stover et
al. (1981)
6.7
280 km
.0015 g
.007
.010
Central Calif.
25 Octooer 1982
Stover (1985)
5.7
135 km
.0015 g
.009
.021
Central Calif.
23 Jan. 1984
Stover (1988)
5.5
110 km
.003 g
.010
.019
S. California
26 April 1981
Stover et
al. (1982)
5.9
225 km
.0015 g
.008
.011
S. California
15 Jirw 1982
Reagor et
al. (1983)
4.9
115 km
.0015 g
.012
.019
Table 2. Parameters and resultant estimated absorption coefficients
for various earthquakes, as grouped by region. Expected coefficients
are from Table 1 and calculated coefficients were derived using the
methods described in the text.

133
coefficients in California and the Pacific northwest were consistently
higher than the expected regional values. This locally high seismic
attenuation has been previously observed (Nuttli, 1981; Singh and
Hermann, 1983) and probably results from wave scattering in the
heavily fractured lithosphere proximal to the tectonically active plate
boundary (e.g., Pulli and Aki, 1981). Consequently, despite these
locally high values, it appears that all of the results are generally
consistent with previous observations, indicating this to be a viable
method for estimating absorption coefficients from isoseismal maps.
Results from the Florida Region
The calculation of an absorption coefficient for the wavefront
path between the Charleston seismotectonic province and Florida is
vital for accurately assessing seismic hazard in Florida.
Consequently, the intensity-absorption method was applied to the
1886 Charleston earthquake, which is estimated to have been a
magnitude mb 6.7 (M 7.8) event (Bollinger, 1977). Bollinger's MM
intensity isoseismal map is shown in Figure 28.
An absorption coefficient was first calculated in a west to
northwest direction from the epicenter, perpendicular to the
Appalachian regional trend. The average radial distance to a peak
intensity of IV, which equates to a peak ground acceleration of 0.007
g, is approximately 510 kms. These values yield an "a" value of
0.0033 km-1, which is slightly higher than expected values for the
central United States, but significantly lower than comparable
absorption coefficients in the western United States (e.g., Table 1).
For an assumed frequency of 1 Hz and a wavetrain velocity of 3

134
Figure 28. Modified Mercalli intensity isoseismal map for the 1886
Charleston earthquake (from Bollinger, 1977).

135
km/sec, this equates to a Q.value of 317. Although this is
moderately lower than has been obtained in other studies of Q_in the
eastern United States (e.g., Singh and Hermann, 1983; Gupta and
McLaughlin, 1987; Chapman and Rogers, 1989), this is almost
certainly attributable to the high moment of the event and its Coastal
Plain origin.
The absorption coefficient was then calculated in a
southwesterly direction from the epicenter, encompassing the Coastal
Plain region between Charleston and Florida. The average distance to
MM intensity V (PGA 0.015 g) in this direction is 360 kms. This
yields an absorption coefficient of 0.0037 km-1. Alternatively, the
average distance to MM intensity IV (PGA 0.007 g) may also be used.
This is about 580 kms and yields a slighdy lower "a" coefficient,
0.0026 km"1.
The low population density of central Florida (e.g., Femald,
1981) during the 1880's suggests that the intensity IV isoseismal
line is probably less accurate than the intensity V line, which
extended through the more densely populated coastal areas (Figure
28). Thus, the 0.0026 km-1 value is suspect. An average value of
0.0032 km-1 likely represents a conservative value for the purposes
of seismic hazard assessment. Assuming, as before, a frequency of 1
Hz and a wavetrain velocity of 3 km/s, this value equates to a Q. of
327. An absorption coefficient of 0.0032 km"1 for a magnitude (M)
7.8 event is essentially the same as was calculated across the
Appalachian trend and represents a moderately higher attenuation
than in the central United States, but significantly lower than the
average western United States values (Table 1). This corresponds

136
closely to preliminary absorption coefficients calculated from
University of Florida seismograms of recent earthquakes in the
southern Appalachians (Bellini et al., 1993).
The intensity-absorption method was then applied to the the
Oct. 27, 1973, Florida earthquake. This earthquake had an
approximate body-wave magnitude of 4.0 (Long, 1974), which is
equivalent to a moment magnitude (M) of 4.4. An isoseismal map of
this earthquake is shown in Figure 29. The average radial distance
(R) to the MM intensity II (PGA 0.0015 g) isoseismal Une is 130 kms.
This suggests an absorption coefficient of 0.0127 km-1. It should be
noted, however, that Long's magnitude calculation had a possible
error range of 0.6 m^ units, suggesting a potential range of 0.0104
km-1 to 0.0147 km"1 for "a". Even within this range, a comparison
with the equivalent absorption-magnitude values in Table 1 again
suggests a moderately higher attenuation in the Florida region than
in the central United States.
A further apphcation of this method is that minimum
absorption coefficients may be calculated without using isoseismal
maps. For example, the m^ 6.9 (M 8.16) earthquake in southeastern
Cuba on 25 May, 1992 was not felt in Florida. This suggests a
maximum MM intensity of II, or a peak ground acceleration of no
more than 0.0015 g, in southernmost Florida. The epicentral distance
to the southern tip of Florida is approximately 775 kms. Using these
values as M, PGA, and R, respectively, ahows the calculation of a
minimum value for "a". Considering the significant thickness of the
sedimentary accumulations and the presence of the intercedent
Straits of Florida along this wave path, a relatively high absorption

137
Figure 29. Modified Mercalli intensity map for the Florida
earthquake of 27 October, 1973 (after Long, 1974).

138
coefficient would be expected. In this case, the calculated minimum
"a" is 0.0039 km-1.
From Table 1, this value represents an average of the values
from the central and western United States and, as expected, is
moderately higher relative to the other calculated absorption values
in the Florida region. Although this minimum value seems intuitively
reasonable, it is possible that the actual value is significantly higher.
Thus, seismic attenuation on the Floridan Plateau and the
adjacent regions of North America appears to be slightly higher than
attenuation in the central United States, but significantly less than in
the western United States. Despite the allochthonous origin of the
plateau basement, this is consistent with other indicators of
attenuation in the eastern United States. Furthermore, attenuation
along the wave path between the Cayman Trough seismo tec tonic
province and Florida appears to be at least moderately higher than
attenuation in the eastern continental United States, and may be
significantly higher.

CHAPTER 7
SEISMIC HAZARD IN FLORIDA
Introduction
There is a specific sequence of steps necessary for the
probabilistic assessment of seismic hazard at sites with historically
low levels of seismic activity (Cornell, 1968; Yegian, 1979; Reiter,
1990). These steps include characterizations of the tectonic history
and geologic setting of the site (e.g., Chapters 2 and 3), an analysis of
the regional distribution of seismic activity (Chapter 4), the
partitioning of the region into seismotectonic provinces and the
quantification of the potential levels of seismicity in each province
(Chapter 5), and a quantification of seismic attenuation (Chapter 6).
In this chapter, the intention is to present an empirical assessment of
seismic hazard in Florida based on the results given in the previous
chapters.
Methods
The empirical determination of seismic hazard at a given site is
founded on a method suggested by Cornell (1968). This
determination is accomplished by calculating the probability that
earthquake activity from a seismotectonic source or province will
produce a certain acceleration at the site of interest within a given
time period, usually one year. The calculation of this probability
utilizes the magnitude distribution at the source, the distance
139

140
between the source and the site, and the attenuation along the wave
path. It is repeated for each of "N" significant seismotectonic sources
or provinces over a range of accelerations. The probability per year
of exceeding a particular acceleration (P[A > a]) at the site is then the
summation of the individual probabilities calculated for each source
or province as given by:
N
-I *¡(3)
P[A>a] = l-e 1=1
where Xj(a) represents the annual mean number of events
producing an acceleration greater than "a" due to source "i".
There are several programs available for this type of seismic
hazard assessment. The one selected for this study is SEISRISK III,
which was developed by the USGS (Bender and Perkins, 1987). In
order to use SEISRISK III, it is necessary to construct an input file
containing a table of magnitudes, distances, and accelerations for the
calculation of attenuation, as well as source and site locations, and
source magnitude-recurrence characterizations. One of the input
files constructed for this study is shown in Figure 30.
The first significant step in the construction of the input file
was to develop a table relating peak ground accelerations at various
magnitudes and epicentral distances for the Florida region. Because
absorption coefficients in Florida are very close to those in the
remainder of the southeastern Coastal Plain, the isoseismal map for
the mb 6.7 (est.) 1886 Charleston event (Figure 28) was used to
construct the first column of values in the table. Using the methods
described in Chapter 6, the peak acceleration at each of the

141
Peninsular Florida Seismic Hazard
0 0
.99 3 1 50 100
1. 0 .5 0
87.0 28.0 80.0 28.0
87.0 31.15 80.0 25.0 .5982 .6240
1 11 7 11
0
3 5
Fla-Region
6.7
5.5
4.0
80.0
.15
.0345
.007
130.0
.05
.0164
.0015
240.0
.03
.0048
.00026
360.0
.015
.00164
.00003
580.0
.007
.0003
.00001
00 1.00
-1
Char
2 1 1
82.30 33.10
81.30
34.30
81.00 32.10
79.70
33.50
.0001 .0003
.0005
7.40 7.00
6.50
00 1.00
-1
Pied
3 1 1
80.30 37.50
77.00
37.50
82.00 36.00
77.00
36.00
87.00 32.00
79.70
32.00
.0050 .0072
.0125
6.000 5.800
5.500
00 1.00
-1
SApp
2 1 1
82.80 37.50
80.30
37.50
88.50 32.00
87.00
32.00
.0008 .0012
.0022
7.000 6.800
6.500
00 1.00
-1
NMad
2 1 1
87.40 38.00
86.00
38.00
90.30 35.30
88.00
35.30
.0002 .0006
.0013
8.300 7.800
7.400
00 1.00
-1
Caym
2 1 1
86.70 18.50
77.00
20.70
86.70 17.00
77.00
17.00
.0005 .0014
.0040
.0117
8.500 8.000
7.500
7.000
00 1.00
+2
Flor
3 1 1
90.00 32.00
77.00
32.00
90.00 22.00
77.00
22.00
86.00 18.70
77.00
20.70
.0140 .0234
.0389
.0646
5.000 4.600
4.200
3.800
99
Figure 30. The SEISRISK III input file for the calculation of seismic
hazard in peninsular Florida using the format described in Bender
and Perkins (1987).

142
isoseismal lines was estimated and an appropriate distance
measured. Similarly, the isoseismal map for the 1973 Florida
earthquake (Figure 29) was used as well. The limited felt area (the
area covering MM intensity III effects or greater) of this small (m^
4.0) event necessitated the calculation of a peak ground acceleration
at the appropriate distances by using Campbell's relationship
(Chapter 6) and an absorption coefficent of 0.0127 km-1. The table
was completed by calculating accelerations at the appropriate
distances for a hypothetical m^ 5.5 event using an extrapolated
absorption coefficient of 0.005 km-1. The completed table starts on
the 10th line of Figure 30 and is labeled "Fla-Region".
The next significant step in the construction of the input file
was to produce tables characterizing the locations and magnitude-
recurrence relationships of each of the seismotectonic provinces
described in Chapter 5. These tables start on line 16 of Figure 30
with the Charleston seismotectonic province, which is labeled "Char”.
The significant elements in these tables are the longitudes and
latitudes of the comers of the provinces and the recurrence intervals
for the appropriate ranges of magnitudes. These recurrence
intervals were calculated from the individual "a" and "b" values for
each province as assigned in Chapter 5.
The inherent uncertainty concerning source parameters and
propogation paths in any seismic hazard model is addressed by the
introduction of a variable, sigma. In empirical calculations, sigma is
the standard deviation of the natural logarithm of the expected
acceleration at the site of interest. The utilization of this variable is
intended to account for possible errors and consequently, always acts

143
to increase the calculated hazard probability at the site. Bemreuter
et al. (1989) suggested that appropriate values for sigma range from
0.35 to 0.70. Therefore, in this study, sigma was assigned a value of
0.5. Although the probabilities shown in the hazard maps reflect this
value for sigma, probabilities calculated without this margin of error
(sigma = 0.0) were also calculated and are given in the Appendix.
Two separate input files were run—one to cover peninsular
Florida and another for the Florida panhandle region. The seismic
hazard probabilities were calculated on grids with spacings of 67
kms. The output files, with each site's latitude, longitude, and hazard
probabilities over a range of accelerations for sigma = 0.0 and sigma
= 0.5, may be found in the Appendix. The two gridded data sets
were combined for input into Surfer, a contouring program. This
contoured output was subsequently used as the foundation for two
probabilistic seismic hazard maps describing the probabilities of
exceeding accelerations of 0.02 g and 0.08 g, respectively, in the state
of Florida.
Results
For each of the input parameters, values were assigned to
maximumize the calculated seismic hazard probabilities in Florida.
For example, each of the seismotectonic sources were assigned
maximum credible magnitudes significantly greater than the
observed maximum magnitudes. In addition, a single attenuation
function was used. While this attenuation function is probably a
reasonable approximation of attenuation in the southeastern Coastal
Plain, it is almost certainly too low for the oceanic wave path (along

144
which surface waves do not propagate) between Florida and the
Cayman Trough. Consequently, the calculated contribution to seismic
hazard in Florida from activity in the Cayman Trough province is
probably too high. Finally, in those provinces where there are
contradicting indicators of recurrence, such as in the New Madrid
province, the shortest recurrence interval was used.
The probability of exceeding 0.08 g (MM intensity VII) is
greatest in the northwestern comer of Florida (Figure 31). Annual
probabilities range from 2.6 x 10‘4 at this northwestern comer to 6.0
x 10'5 in southern peninsular Florida. This suggests recurrence
intervals for MM intensity VII effects ranging from 3850 years in
northwestern Florida to 16,700 years in southern Florida. Similarly,
the annual probability of exceeding 0.02 g (MM intensity V-VI) is
greatest in northwestern Florida and least in southern Florida (Figure
32). Although the probability distribution is similar, the
probabilities of exceeding 0.02 g are about one order of magnitude
higher. These range from 2.6 x 10-3 along Florida's northwestern
border to 8.0 x 10'4 in southwestern Florida, suggesting recurrence
intervals of 385 years and 1250 years, respectively.
Significant damage (i.e., damage to reasonably well-constructed
buildings) is only likely to result from accelerations greater than 0.2
g. This is approximately equivalent to MM intensity VIII. For very
well-engineered structures, such as nuclear reactor cores, damage is
unlikely by accelerations of less than 0.3 g (e.g., Khoury and Chandra,
1989). The probabilities listed in the output of SEISRISK HI are
given to five decimel places (i.e., the minimum fisted value is 1.0 x
10-5). in northwest comer of the Florida panhandle, the probability

145
Annual Probability of Exceeding 0.08 g
Figure 31. The distribution of annual probabilities of exceeding 0.08
g in Florida.

146
Annual Probability of Exceeding 0.02 g
Figure 32. The distribution of annual probabilities of exceeding 0.02
g in Florida.

147
of exceeding 0.3 g is 2.0 x 10_5/year, however, in the majority of the
state, the probability is less than the minimum value of 1.0 x 10*5
per year. The maximum calculated probability of exceeding 0.2 g,
which is also in the northwestern comer of the panhandle region, is
8.0 x lO'Vyear. For the majority of Florida, the annual probability
of exceeding 0.2 g is less than 1.0 x 10~5.
In assessments of seismic hazard at the Turkey Point and St.
Lucie nuclear power plants in south Florida, Ebasco (1988) found the
annual probability of exceeding 0.3 g to be approximately 1.0 x 10-6
(averaged from both sites). This is an order of magnitude lower than
the previous Nuclear Regulatory Commission (NRC) estimates of 1.2 x
10'5 and below the designated NRC safety level of 1.0 x 10-5 (Khoury
and Chandra, 1989). While the calculated probabilities of exceeding
0.3 g at these sites are too low for the assignment of specific values
using SEISRISK III, it is apparent that, as suggested in the Ebasco
study, the annual probability of exceeding 0.3 g in south Florida is
significandy lower than the average 1.2 x 10'5 value estimated by
the NRC.
Thus, despite the utilization of maximum values for magnitudes
and minimum values for recurrence intervals and attenuation, the
calculated annual probability of significant earthquake damage in
Florida is very low—lower than the minimum value calculated in
SEISRISK III throughout most of the state. The greatest seismic
hazard is in the northwestern comer of the state, where the
recurrence interval for strong ground motion (greater than 0.2 g) is
approximately 12,500 years.

CHAPTER 8
DISCUSSION AND CONCLUSIONS
Introduction
In this study, seismological and potential-field data have been
utilized with a variety of disparate previously published geophysical,
geochemical, geological, and historical information to provide
integrated analyses of the basement structure, potential seismicity,
and seismic attenuation of Florida, as well as the nature and
distribution of seismicity in the southeastern United States and the
northern Caribbean. The purposes for this are to generate an
improved model for the tectonic evolution of the Floridan Plateau
and to allow an empirical assessment of seismic hazard in Florida.
Discussion
The configuration of the lithotectonic units and structural
features characterizing the basement of the Floridan Plateau
documents a complex and active history during much of the
Phanerozoic. The predominant structural feaure of the Floridan
Plateau is the Jay Fault zone, which may be contiguous with the
Bahamas Fracture zone. The fault zone is a continuous and relatively
linear feature that bisects the plateau and acts as a boundary for a
number of basement features and units. In southeastern Florida and
probably along its entire length, the Jay Fault zone consists of a
148

149
parallel series of faults which have served to accommodate a variety
of relative movements.
The Jay Fault zone may have originated as a right-lateral
transform during the Late Paleozoic closure of Gondwana with
Laurentia (Smith, 1993). This origin could account for the presence
of isolated and probable fault-bounded Gondwanan terrane
fragments in northeastern Florida, the truncation of those fragments
along a linear boundary, and the presence of another probable
Gondwanan fragment, the Catoche terrane, in the eastern Gulf of
Mexico.
During the Middle Mesozoic, the Jay Fault zone was reactivated
to accommodate left-lateral motion resulting from differential
attenuation of the crust during the separation of North and South
America and the opening of the Gulf of Mexico. The continental crust
to the southwest of the Jay Fault zone stretched and subsided while
the plateau crust to the northeast of the Jay Fault zone was largely
unaffected. In addition to accomodating the left-lateral motion
which would result from extension along only one edge, the Jay Fault
zone also experienced down-to-the-southwest normal faulting along
some segments as a series of large grabens and half-grabens formed
across the southwestern half of the Floridan Plateau in response to
this crustal extension. Despite the active role of the Jay Fault during
the Jurassic, the continental nature of the crust in the southwestern
half of the plateau suggests that it did not act as the southern
boundary of North America, as has been previously suggested
(KUtgord et al., 1984).

150
In the digitally filtered gravity anomaly maps produced for
this study and in the numerous previously published seismic
reflection profiles reviewed, no evidence was found for the Florida
Elbow Fault. This is a hypothesized transform fault, which would
necessarily extend across the southwestern quarter of the Floridan
Plateau, along which the crustal block presently underlying the
Florida Straits was proposed to have moved out of the eastern Gulf of
Mexico during the Jurassic (Pindell, 1985). Because there is no
evidence for this fault, it is suggested that the eastern Gulf of Mexico
was occupied by continental crust during the Early Mesozoic and that
this crust has been attenuated and subsided. During this process of
attenuation and subsidence, a series of grabens, half-grabens and
horsts formed along the southwestern half of the Floridan Plateau.
There have been several previously proposed configurations
for these horsts and grabens, which now form the basins and arches
of the southwestern plateau basement. These various configurations
are based primarily on seismic reflection profiles, which are
restricted by their two-dimensional nature. The application of an
upward-continuation digital filter to the Bouguer gravity anomaly
field of the plateau reveals that these basins and arches are clearly
delineated by long-wavelength gravity anomaly patterns.
When interpreted in conjunction with previously published
seismic reflection profiles and drill hole information, there are
several significant conclusions that may be derived from these
anomaly patterns. The first is that the Tampa Basin extends
eastward to the Jay Fault zone and is therefore larger than
previously believed. In addition, unlike the boundaries of the other

151
Jurassic features in this series, the northwestern boundary of the
Tampa Basin is a sloping margin that does not appear to be marked
by a bounding fault, which suggests that the basin formed as a half-
graben.
The South Florida Basin region, where there are few seismic
reflection profiles imaging the basement, probably encompasses two
or three separate basins which trend northwestward, perpendicular
to the trends of the Apalachicola Basin, the Middle Ground Arch, the
Tampa Basin, and the Sarasota Arch. The orientations of these
various basins suggest two distinct episodes of crustal attenuation on
the Floridan Plateau, one in which the minimum principal stress
direction was oriented northeast-southwest (present direction) and
one in which the minimum principal stress was oriented northwest-
southeast. It is likely that during the Early Jurassic, the terrane
under south Florida was located more to the northwest, proximal to
the eastern Gulf of Mexico, and it is surmised that the northwest¬
trending basins formed during a period of northeast-southwest
extension as the Yucatan block rotated away from the Floridan
Plateau block. The northeast-trending horsts and grabens
subsequently formed during a period of northwest-southeast
extension as North and South America separated.
Thus, the Paleozoic convergence and Mesozoic divergence of the
continents caused a significant amount of brittle deformation and
translocation of terrane fragments in the Floridan Plateau basement.
Despite the resultant presence of numerous potential zones of crustal
weakness in the basement, the undisturbed sedimentary
accumulations overlying the basement document an extended period

152
of tectonic quiescence. This tectonically quiescent period,
characterized only by subsidence, has persisted since at least the
Middle Cretaceous. The primary significance of this period of
quiescence is the suggestion that the Floridan Plateau is relatively
aseismic. This suggestion is further substantiated by the unusually
low levels of historical and instrumentally recorded seismic activity
in Florida, as discussed below.
A compilation and review of epicentral distribution patterns in
the southeastern United States demonstrates there to be distinct
patterns of earthquake activity. In addition, there appears to be a
well-defined seismotectonic boundary between the moderate-to-high
levels of seismic activity in the southern Appalachians and Coastal
Plain to the north and the unusually low level of seismic activity on
the Floridan Plateau to the south. This seismotectonic boundary
corresponds to the previously proposed trace of the Alleghenian
suture between the Gondwanan terranes underlying Florida and the
accreted terranes of the southern Appalachian orogen (Chowns and
Williams, 1983; Nelson et al., 1985A).
This nonuniform distribution of seismic activity can be used as
a means of interpreting possible causal mechanisms of seismic
activity in the intraplate setting of the southeastern United States.
For example, preferential earthquake activity along pre-existing,
shallow crustal, Mesozoic zones of weakness has been hypothesized
as one possible cause of the nonuniform epicentral distribution in the
eastern United States (e.g., Sbar and Sykes, 1973: Sykes, 1978).
Similar features throughout the basement of the Floridan Plateau

153
show no indication of seismic activity during the Cenozoic, suggesting
that this is probably not a viable hypothesis.
The regional stress field in the eastern United States has
recently been found to be relatively uniform with respect to
magnitude and orientation (Zoback, 1992). Because the nonuniform
distribution of earthquakes is, therefore, unlikely to be related to
changes in the regional stress field, it is probably attributable
primarily to the distribution of optimally oriented and positioned
seismotectonic features. Recent focal plane solutions show the
majority of earthquakes to be caused by the regional stress field and
to occur in the autochthonous Grenvillian basement below the
Appalachian detachment (e.g., Bollinger et al., 1985; Johnston et al.,
1985; Zoback, 1992).
This suggests reactivated Iapetan faults or other pre-existing
features in the Grenvillian crust as primary seismic source zones in
the southeastern United States. The presence of the observed
seismic-aseismic boundary separating the Floridan Plateau from the
remainder of North America supports this model, as this boundary
also marks the southern boundary of Grenvillian crust. Thus, the
observed low level of seismic activity in Florida is probably related
to an absence of similar mid-crustal zones of weakness.
The reactivation of a given pre-existing fault probably depends
on several different factors. The most critical is likely to be the
orientation of the fault with respect to the stress field. Another is
likely to be the propensity for fault slippage, which is affected by
both hydrostatic pore pressure and the frictional coefficient of the
fault. Thus, variations in fault orientation, pore pressure, and

154
frictional coefficients may each affect the distribution of earthquakes
in the southeastern United States as well.
For the purposes of seismic hazard assessment, it is necessary
to divide the region into a number of seismotectonic provinces, each
characterized by a uniform potential for earthquakes throughout.
Although previous attempts have been made to characterize known
shallow crustal geographic or geologic provinces as seismotectonic
provinces, the recent recognition that most of the earthquake activity
in the southeastern United States occurs at mid-crustal depths
negates these attempts. Rather, the characterization of
seismotectonic provinces in this area is most reasonably based only
on observed earthquake distribution patterns.
For the objective of assessing seismic hazard in Florida, five
significant seismotectonic provinces were identified in the
southeastern United States. In addition to the region encompassing
Florida, these include the Charleston province, the Piedmont-Coastal
Plain province, the southern Appalachian province, and the New
Madrid province. In the northern Caribbean, only earthquake
activity in the Cayman Trough province could potentially cause
significant ground motion in Florida.
Recurrence intervals and maximum magnitudes assigned to
most of the provinces were based on tectonic setting, previously
published compilations of earthquake reports, and paleoseismic
evidence. In addition, the seismicity of the Floridan Plateau region
was investigated in greater detail. A critical review of earthquake
reports in Florida (Smith and Randazzo, 1989) suggested only six
possible historical events--all of these were low intensity and one

155
has since been assigned a South Carolinian origin. A review of
reports from the Southeastern United States Seismograph Network
(SEUSSN), which has been operational since 1977, revealed no
evidence of activity on the Florida Plateau and only one event in the
central or eastern Gulf of Mexico.
Although these instrumental and historical reports
demonstrate the low level of seismic activity on the Floridan Plateau,
they may be attributable in part to the distribution of the SEUSSN
seismograph stations, none of which were located in Florida, and to
the low population of Florida prior to this century. Consequently, a
network of digital seismographs was emplaced across Florida in 1989
to allow a specific quantification of microearthquake activity on the
Floridan Plateau, in the eastern Gulf of Mexico, and in the Bahamas.
From 1989 to 1993, the network detected only two events in this
region--both were low magnitude events located in the eastern Gulf
of Mexico.
Based on the review of historical and instrumental records and
the findings of the Florida Seismograph Network, the seismotectonic
province encompassing the Floridan Plateau, the eastern Gulf of
Mexico, and the western Bahamas was assigned a maximum
magnitude of m^ 5.0. There were too few events to allow a
calculation of specific recurrence intervals, so for the purposes of
seismic hazard assessment, they were estimated to be 70 years for a
magnitude 5.0 event and 20 years for a magnitude m^ 4.0 event.
In addition to the characterization of seismotectonic provinces,
it is necessary in any seismic hazard assessment to establish a
regional value for seismic attenuation. This value describes the

156
ability of the lithosphere to transmit seismic energy and is usually
calculated using the wave amplitudes or accelerations resulting from
local earthquakes. As there have been few earthquakes in Florida,
there has been no previous calculation of a local value for seismic
attenuation.
Seismic attenuation results from two effects: geometric
spreading and absorption. Absorption coefficients can vary by about
an order of magnitude from one place to another. A method allowing
the estimation of absorption coefficients using earthquake isoseismal
intensity data was devised using Campbell's (1981) equation relating
magnitude, distance, and acceleration.
This method was used to estimate absorption along the wave
path between South Carolina and Florida using Bollinger's (1977)
isoseismal intensity data for the mb 6.8 (estimated) 1886 Charleston
earthquake. In addition, the method was applied to the isoseismal
intensity data from Long's (1974) study of the m^ 4.0 in central
Florida on Oct. 27, 1973. In both cases, the estimated absorption
coefficients (0.0032 km'1 and 0.0127 km-1, respectively) were
slightly higher than Nuttli's (1980) regional absorption coefficients
for similar magnitude events in the central United States, but lower
than expected equivalent values in the western United States.
The partitioning of the southeastern United States region into
seismotectonic provinces, the quantification of seismic activity in
each province, and the quantification of local values to describe
seismic attenuation allows an empirical assessment of seismic hazard
in Florida. The probabilities of exceeding discrete levels of ground
motion at a grid of sites covering the entire state were calculated

157
using SEISRISK III, a USGS program based on a method proposed by
Cornell (1968) and written by Bender and Perkins (1987).
Although seismic hazard throughout Florida was found to be
extremely low, the greatest probabilities for significant ground
motion were found to exist in the northwestern corner of the state.
These probabilities decrease significantly southward along the axis of
the peninsula. For example, the probability of exceeding 0.2 g, which
is approximately equivalent to MM intensity VIII and the
acceleration above which significant damage starts to occur, is
calculated to be 8.0 x 10*5/year in the northwestern corner of the
state. This indicates a recurrence interval of approximately 12,500
years. Throughout the majority of Florida, however, the probability
of exceeding 0.2 g is significantly less than 1.0 x 10‘5/year,
suggesting recurrence intervals of greater than 100,000 years.
Similarly, the annual probabilities of exceeding 0.08 g (MM intensity
VII) range from 2.6 x 10-4 in the northwestern corner of the state to
6.0 x 10"5 in southern Florida, suggesting recurrence intervals of
3850 years and 16,700 years, respectively.
The undisturbed sedimentary record of the Floridan Plateau,
the intraplate tectonic setting, historical records, and instrumental
monitoring all suggest the region to be tectonically quiescent.
Although small earthquakes are to be expected, there appears to be
little potential for damaging earthquake activity on the plateau. In
addition, the empirical assessment of seismic hazard in Florida
suggests only a minimal annual probability of significant ground
motion in Florida resulting from earthquakes in adjacent provinces.

158
Thus, the overall potential for damaging ground motion in Florida is
considered to be negligible.
Conclusions
This investigation incorporated a diverse variety of information
and, as a consequence, a number of conclusions may be drawn. The
most significant of these conclusions are related to the basement
structure, tectonic history, and seismic hazard of the Floridan
Plateau.
The Late Precambrian-Early Paleozoic terranes underlying the
northeastern portion of the Floridan Plateau probably represent
isolated, fault-bounded fragments of larger terranes. As has been
previously suggested, these fragments likely originated along the
leading edge of Gondwana proximal to the central Rockelide orogen.
The configuration of these fragments, their proximity to each other,
and their apparent truncation by the Jay Fault zone each support
Smith's (1993) hypothesis of translocation and emplacement during
the Late Paleozoic convergence of the continents.
The configuration of the basins and arches underlying the
southwestern half of the Floridan Plateau is clearly delineated by
long-wavelength gravity anomalies. A review of previously
published seismic reflection profiles shows that these basins and
arches formed as grabens and horsts during the Jurassic opening of
the Gulf of Mexico. The Tampa Basin, which formed as a half-graben,
extends further eastward than previously mapped and is bounded on
the east by the Jay Fault zone. Similarly, the South Florida Basin

159
region is also bounded by the Jay Fault zone, but it probably consists
of two or three separate northwest-trending basins.
The northwest trend of these basins is perpendicular to the
trend of the other basins underlying the Floridan Plateau, suggesting
the possibility of two stages of extension during the Jurassic. During
the first stage, it is proposed that a northeast-southwest oriented
extensional stress regime existed during the rotation of the Yucatan
block out of the northern Gulf of Mexico. This resulted in the
formation of northwest-trending basins along the western edge of
the Floridan Plateau block. Subsequently, the stress field shifted to a
northwest-southeast oriented extensional regime as North America
separated from South America. This proposed shift would have
caused southeastward extension along the southwestern half of the
Floridan Plateau, sinistral and normal movement along the Jay Fault
zone, the formation of the northeast-oriented Apalachicola and
Tampa basins, and the translocation of the northwest oriented basins
into the south Florida region.
The sedimentary accumulations overlying the Floridan Plateau
basement show no indication of displacement since the Early to
Middle Cretaceous, suggesting an extended period of tectonic
quiescence. This quiescience is manifested in the unusually low level
of seismic activity in region surrounding the Floridan Plateau. In
contrast, other regions of the southeastern United States are
relatively active. The primary reason for this nonuniform
distribution of seismicity is probably the nonuniform distribution of
appropriately oriented mid-crustal zones of weakness. The other
possible reason is variability in the propensity for fault slippage

160
resulting from variations in hydrostatic pore pressures or frictional
coefficients.
Seismic attenuation on the Floridan Plateau appears to be
equivalent to that in other parts of the southeastern Coastal Plain.
The estimated absorption coefficients were slightly higher than
expected values for the central United States, but less than typical
values in the western United States.
The probability of earthquake damage in Florida, either from
local or distant events, is extremely low. The greatest hazard exists
in the northwest corner of the state, where the annual probability of
exceeding 0.2 g (MM intensity VUI) is only 8.0 x 10'5.

APPENDIX
SEISMIC HAZARD PROBABILITIES
FOR SITES IN FLORIDA

Peninsular Florida Seismic Hazard
isw=0: new run--no previous results included
extreme probaDility 0.990
for exposure times (years) 1 50 ICO
scale factor for ground motion "box" levels= 1.00
coordinates input in decimal degrees
coordinates are printed in decimal degrees
variability in attenuation, sigma= 0.50
grid oriented Darallel to great circle thru ( 87.00, 28.00),( 80.00, 28.00)
corners of grioded area-upper left= 87.00, 31.15
lower right= 80.00, 25.00
longitude increments 0.5982 (decimal degrees)
latitude increment = 0.5982 (decimal degrees)
gndded region contains 11 rows, 11 cols including border 0 rows and cols
for this run begin at row 1 end row 11, begin col 7 end col 11
new coordinates (km) gridded area
upper ieft= 677.85 -9.60; lower nght= 350.50 -333.81
sites are also located on 0 line(s)
attenuation function Fla-Region
magnituoe
dist(km)
6.70
5.50
4.00
80.00
0.15000
0.03450
0.00700
130.00
0.05000
0.01640
0.00150
240.00
0.03000
0.00480
0.00026
360.00
0.01500
0.00164
0.00003
580.00
0.00700
0.00030
0.00001
yrnoc= 1. iprint=-1 for area Char
82.300 33.100 81.300 34.300
81.000 32.100 79.700 33.500
nr of levels of seismicity * 3
Char beta= -1.0217
earthquake rate / year
occurrences1 0.000500 0.000300 0.000100
magnitudes= 6.50 7.00 7.40
Char area= 30369. sq km, rate/sq km= 0.16464E-07 for mags 6.25- 6.75
yrnoc= 1. iprint=-1 for area Pied
80.300 37.500 77.000 37.500
82.000 36.000 77.000 36.000
87.000 32.000 79.700 32.000
nr of levels of seismicity * 3
Pied beta= -1.8388
earthquake rate / year
occurrences* 0.012500 0.007200 0.005000
magnitudes* 5.50 5.80 6.00
Pied area* 316141. sq km, rate/sq km= 0.39539E-07 for mags 5.35- 5.65
yrnoc= 1. iprint=-1 for area SApp
82.800 37.500 80.300 37.500
88.500 32.000 87.000 32.000
nr of levels of seismicity = 3
SApp beta* -2.0205
earthquake rate / year
occurrences* 0.002200 0.001200 0.000800
magnitudes* 6.50 6.80 7.00
SApp area* 111353. sq km, rate/sq km= 0.19757E-07 for mags 6.35- 6.65
yrnoc= 1. iprint=-1 for area NMad
87.400 38.000 86.000 38.000
90.300 35.300 88.000 35.300
nr of levels of seismicity * 3
NMad beta* -1.9330
earthquake rate / year
occurrences* 0.001300 0.000600 0.000200
magnitudes* 7.40 7.80 8.30
NMad area* 50440. sq km, rate/sq km= 0.25773E-07 for mags 7.20- 7.60
yrnoc= 1. iprint*-1 for area Caym
86.700 18.500 77.000 20.700
86.700 17.000 77.000 17.000
nr of levels of seismicity * 4
Caym beta* -2.1466
earthquake rate / year
occurrences* 0.011700 0.004000 0.001400
magnitudes* 7.00 7.50 8.00
0.000500
8.50
Caym area* 301315. sq km, rate/sq km* 0.38830E-07 for mags
6.75- 7.25
yrnoc* 1.
iprint* 2
for area
Flor
' 90.000
32.000
77.000
32.000
90.000
22.000
77.000
22.000
86.000
18.700
77.000
20.700
nr of levels
of seismicity = 4
Flor beta* -1
1.2681
earthquake rate / year
occurrences*
0.064600
0.038900
0.023400
0.014000
magnitudes=
3.80
4.20
4.60
5.00
Flor area* 1760366. sq
km, rate/sq km= 0.36697E-07 fc
162

163
Peninsular Florida Seismic Hazard
site at long 82.812, lat 31.191
shortest dist to fault= 9999.999 icm
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18844
0.00195
97.4
511.6
0.04
0.00152
0.00043
439.4
2308.0
0.06
0.00031
0.00013
1503.6
7897.0
0.08
0.00009
0.00004
4615.1
24239.4
0.10
0.00004
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999 9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma= 0.50
J.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18774
0.00265
71.7
376.8
0.04
0.00187
0.00078
243.8
1280.6
0.06
0.00048
0.00030
629.6
3306.6
0.08
0.00016
0.00014
1381.3
7254.9
0.10
0.00007
0.00007
2742.2
14402.6
0.12
0.00003
0.00004
5103.0
26801.8
0.14
0.00002
0.00002
9075.4
47665.7
0.16
0.00001
0.00001
15591.1
81887.2
0.18
0.00000
0.00001
26036.2
99999.9
0.20
0.00000
0.00000 42475.6
99999.9
0.22
0.00000
0.00000
67910.6
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability variability in atten, sigma=0.50
sol not obtained for time=
sol not obtained for time=
0.990 ext prob = 0.000 for 1 years 0.000 for 1 years
0.990 ext prob * 0.052 for 50 years 0.070 for 50 years
0.990 ext proD = 0.064 for 100 years 0.089 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.113, lat 31.186
shortest dist to faults 9999.999 km
zero attenuation variability variability in atten, sigma= 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18853
0.00187
101.8
534.9
0.02
0.18782
0.00257
73.9
388.4
0.04
0.00138
0.00049
390.7
2052.1
0.04
0.00179
0.00079
241.6
1268.7
0.06
0.00033
0.00015
1242.5
6525.9
0.06
0.00047
0.00032
591.4
3106.4
0.08
0.00009
0.00006
3226.0
16943.4
0.08
0.00017
0.00015
1239.9
6512.0
0.10
0.00006
0.00000
99999.9
99999.9
0.10
0.00007
0.00008
2377.2
12485.5
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00004
0.00004
4308.3
22628.1
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00002
0.00003
7505.8
39421.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00002
12683.5
66615.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00001
0.00001
20896.5
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00001
33704.7
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
53361.8
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
83099.7
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for times
sol not obtained for time=
0.990 ext prob * 0.000 for 1 years
0.990 ext prob = 0.055 for 50 years
0.990 ext prob = 0.069 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in
atten
, sigma=0.50
0.000
for
1 years
0.073
for
50 years
0.093
for
100 years
yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 81.415, lat 31.178
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma= 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18862
0.00179
106.4
558.6
0.02
0.18795
0.00246
77.3
405.8
0.04
0.00125
0.00054
355.2
1865.5
0.04
0.00167
0.00079
240.5
1262.9
0.06
0.00036
0.00018
1072.6
5632.9
0.06
0.00045
0.00034
562.1
2951.7
0.08
0.00011
0.00007
2665.9
14000.8
0.08
0.00017
0.00017
1138.4
5978.4
0.10
0.00007
0.00000
99999.9
99999.9
0.10
0.00008
0.00009
2130.6
11189.6
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00004
0.00005
3794.4
19927.3
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00002
0.00003
6521.2
34247.6
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00002
10896.7
57226.4
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00001
0.00001
17778.8
93369.8
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00001
28424.0
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
44630.1
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
68950.2
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19041 total yearly events 0.19041
zero attenuation variability
sol not obtained for time=
sol not obtained for time=
0.990 ext proo * 0.000 for 1 years
0.990 ext proD * 0.058 for 50 years
0.990 ext prob = 0.072 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigmasQ.50
0.000 for
0.075 for
0.096 for
0.00
1 years
50 years
100 years
0.00

164
Peninsular Florida Seismic Hazard
site at long 80.717, lat 31.166
shortest dist to fault= 9999.999 km
zero attenuation variability variability in atten, sigma= 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18867
0.00174
109.7
576.2
0.02
0.18815
0.00226
84.3
442.7
0.04
0.00119
0.00054
352.2
1849.7
0.04
0.00149
0.00077
248.9
1307.2
0.06
0.00037
0.00018
1088.0
5713.9
0.06
0.00043
0.00033
570.1
2993.9
0.08
0.00010
0.00007
2649.4
13914.7
0.08
0.00017
0.00017
1145.7
6017.3
0.10
0.00007
0.00000
99999.9
99999.9
0.10
0.00008
0.00009
2137.7
11227.0
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00004
0.00005
3800.8
19961.8
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00002
0.00003
6524.6
34267.1
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00002
10890.5
57196.2
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00001
0.00001
17748.6
93214.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00001
28339.5
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
44434.3
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
68540.0
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19041 total yearly events 0.19041
zero attenuation variability
sol not obtained for time=
sol not obtained for time-
0.990 ext prob = 0.000 for 1 years
0.990 ext prob = 0.058 for 50 years
0.990 ext prob = 0.072 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma=0.50
0.000 for 1 years
0.075 for 50 years
0.096 for 100 years
yr val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.020, lat 31.150
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yn
0.02
0.18877
0.00163
116.6
612.3
0.04
0.00114
0.00049
387.5
2035.0
0.06
0.00034
0.00015
1255.0
6591.1
0.08
0.00009
0.00006
3339.6
17539.7
0.10
0.00006
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(vn
0.02
0.18840
0.00200
95.1
499.6
0.04
0.00130
0.00070
273.2
1434.6
0.06
0.00039
0.00030
629.7
3307.1
0.08
0.00015
0.00015
1284.0
6743.4
0.10
0.00007
0.00008
2431.9
12772.6
0.12
0.00003
0.00004
4385.5
23032.8
0.14
0.00002
0.00002
7627.0
40057.2
0.16
0.00001
0.00001
12885.3
67674.2
0.18
0.00001
0.00001
21240.7
99999.9
0.20
0.00000
0.00001
34286.6
99999.9
0.22
0.00000
0.00000
54327.5
99999.9
0.24
0.00000
0.00000
84668.5
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob = 0.000 for 1 years
0.990 ext prob = 0.055 for 50 years
0.990 ext prob * 0.068 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in
atten
, sigma=0.50
0.000
for
1 years
0.071
for
50 years
0.092
for
100 years
0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.816, lat 30.593
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18910
0.00130
146.7
770.6
0.02
0.18866
0.00174
109.2
573.7
0.04
0.00096
0.00034
567.3
2979.7
0.04
0.00121
0.00053
356.1
1870.2
0.06
0.00024
0.00010
2004.0
10524.9
0.06
0.00032
0.00021
891.4
4681.8
0.08
0.00008
0.00001
16472.1
86512.3
0.08
0.00012
0.00010
1951.1
10247.0
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00005
0.00005
3940.5
20695.8
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00003
7536.9
39584.0
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
13836.8
72671.8
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00001
24567.7
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
42383.4
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
71343.2
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000 99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob = 0.048 for 50 years
0.990 ext prob = 0.059 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for
0.062 for
0.079 for
0.00
1 years
50 years
100 years
0.00

165
Peninsular Florida Seismic Hazard
site at long 82.121, lat 30.588
shortest dist to fault= 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yr;
0.02
0.18918
0.00122
156.0
819.6
0.04
0.00085
0.00037
509.2
2674.5
0.06
0.00026
0.00011
1730.1
9086.5
0.08
0.00009
0.00002
8138.2
42743.1
0.10
0.00002
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yr«
0.02
0.18872
0.00168
113.3
594.8
0.04
0.00114
0.00054
354.8
1863.5
0.06
0.00031
0.00023
844.6
4436.1
0.08
0.00012
0.00011
1771.6
9304.9
0.10
0.00005
0.00006
3457.8
18160.8
0.12
0.00003
0.00003
6427.1
33755.8
0.14
0.00001
0.00002
11508.9
60446.2
0.16
0.00001
0.00001
19983.7
99999.9
0.18
0.00000
0.00001
33782.4
99999.9
0.20
0.00000
0.00000
55808.4
99999.9
0.22
0.00000
0.00000
90327.2
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability variability in atten, sigma=0.50
sol not obtained for time*
sol not obtained for time*
0.990 ext prob = 0.000
for
1 years
0.000
for
1
years
0.990 ext proo * 0.050
for
50 years
0.063
for
50
years
0.990 ext prob = 0.061
for
100 years
0.082
for
100
years
ratio 100 vr 0.990 extreme value to 1 vr val
=
0.00
0.00
Peninsular Florida Seismic Hazard
site at long 81.427, lat 30.580
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18920
0.00122
156.5
821.8
0.02
0.18883
0.00158
120.2
631.0
0.04
0.00082
0.00039
483.1
2537.2
0.04
0.00105
0.00054
354.5
1861.8
0.06
0.00027
0.00012
1594.5
8373.9
0.06
0.00030
0.00023
816.6
4288.8
0.08
0.00009
0.00003
6477.6
34018.3
0.08
0.00012
0.00011
1678.6
8815.6
0.10
0.00003
0.00000
99999.9
99999.9
0.10
0.00005
0.00006
3228.9
16957.1
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00003
0.00003
5932.7
31156.6
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00002
10520.8
55252.1
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00001
18114.6
95132.5
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00001
30397.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
49885.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
80257.8
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19041 total yearly events 0.19041
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext prob = 0.051 for 50 years
0.990 ext proo = 0.062 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in
atten
, sigma=0.50
0.000
for
1 years
0.064
for
50 years
0.084
for
100 years
0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.733, lat 30.568
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yn
0.02
0.18920
0.00121
157.7
828.2
0.04
0.00082
0.00039
489.7
2571.8
0.06
0.00027
0.00012
1575.7
8275.7
0.08
0.00009
0.00003
6731.4
35353.3
0.10
0.00003
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs:
0.02
0.18893
0.00148
128.9
676.9
0.04
0.00095
0.00052
364.0
1911.5
0.06
0.00029
0.00023
827.9
4348.1
0.08
0.00012
0.00011
1694.4
8899.2
0.10
0.00005
0.00006
3253.8
17088.7
0.12
0.00003
0.00003
5974.9
31380.2
0.14
0.00001
0.00002
10595.6
55648.2
0.16
0.00001
0.00001
18249.3
95845.2
0.18
0.00000
0.00001
30642.4
99999.9
0.20
0.00000
0.00000
50322.8
99999.9
0.22
0.00000
0.00000
81023.2
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext orob * 0.000 for 1 years
0.990 ext prob * 0.051 for 50 years
0.990 ext proo * 0.063 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for
0.064 for
0.083 for
0.00
1 years
50 years
100 years
0.00

166
Peninsular Florida Seismic Hazard
site at long 80.039, lat 30.553
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18923
0.00117
162.5
853.4
0.02
0.18903
0.00137
138.6
727.9
0.04
0.00081
0.00036
522.7
2745.1
0.04
0.00088
0.00050
384.6
2020.1
0.06
0.00025
0.00011
1725.1
9060.5
0.06
0.00028
0.00022
881.9
4631.8
0.08
0.00009
0.00002
9113.1
47862.4
0.08
0.00011
0.00010
1827.5
9598.0
0.10
0.00002
0.00000
99999.9
99999.9
0.10
0.00005
0.00005
3552.9
18659.3
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00003
6599.9
34663.0
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00002
11829.0
62126.2
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00001
20572.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00001
34854.7
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
57713.5
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
93631.5
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability variability in atten, sjgma=0.50
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years 0.000 for 1 years
0.990 ext proo * 0.050 for 50 years 0.062 for 50 years
0.990 ext prob = 0.061 for 100 years 0.081 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.819, lat 29.995
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18929
0.00111
170.9 897.7
0.04
0.00081
0.00030
629.9 3308.5
0.06
0.00024
0.00006
3076.7 16159.3
0.08
0.00006
0.00001
33173.9 99999.9
0.10
0.00001
0.00000
99999.9 99999.9
0.12
0.00000
0.00000
99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000 99999.9 99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext prob * 0.045 for 50 years
0.990 ext prob * 0.054 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18900
0.00140
136.4
716.3
0.04
0.00094
0.00045
418.9
2200.3
0.06
0.00027
0.00018
1053.9
5535.1
0.08
0.00010
0.00008
2364.6
12420.5
0.10
0.00004
0.00004
4923.0
25856.3
0.12
0.00002
0.00002
9702.1
50956.6
0.14
0.00001
0.00001
18311.6 96174.6
0.16
0.00000
0.00001
33336.0
99999.9
0.18
0.00000
0.00000
58808.1
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.058 for 50 years
0.075 for 100 years
val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.129, lat 29.990
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18930
0.00111
171.9
902.6
0.02
0.18909
0.00132
144.5
759.1
0.04
0.00080
0.00031
620.7
3260.2
0.04
0.00087
0.00045
423.6
2224.9
0.06
0.00023
0.00007
2623.4
13778.2
0.06
0.00027
0.00018
1038.0
5451.8
0.08
0.00007
0.00001
32754.0
99999.9
0.08
0.00010
0.00008
2286.1
12006.6
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00004
0.00004
4690.4
24634.1
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
9138.9
47997.6
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
17094.2
89778.8
0.16
0.00000
0.00000 99999.9
99999.9
0.16
0.00000
0.00001
30899.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
54212.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
92697.3
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.046 for 50 years
0.990 ext prob * 0.055 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.058 for 50 years
0.075 for 100 years
0.00
0.00

167
Peninsular Florida Seismic Hazard
site at long 81.439, lat 29.982
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18929
0.00111
170.9 897.5
0.02
0.18916
0.00125
152.6
801.7
0.04
0.00080
0.00031
605.2 3178.4
0.04
0.00080
0.00045
425.3
2233.9
0.06
0.00024
0.00008
2453.5 12885.8
0.06
0.00026
0.00019
1020.2
5358.0
0.08
0.00007
0.00001
25568.5 99999.9
0.08
0.00010
0.00009
2218.5
11651.5
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00004
0.00004
4508.9
23680.7
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00002
0.00002
8716.3
45778.3
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
16190.9
85035.0
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00001
0.00001
29083.2
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
50736.4
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
86294.0
99999.9
0.22
0.00000
0.00000
99999.9 99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob = 0.046 for 50 years
0.990 ext prob * 0.056 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in
atten
, sigma*0
0.000
for
1 years
0.058
for
50 years
0.076
for
100 years
0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.749, lat 29.970
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18929
0.00111
171.2
899.2
0.04
0.00080
0.00031
606.4
3184.6
0.06
0.00024
0.00008
2489.2
13073.6
0.08
0.00007
0.00001
25571.0
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.046 for 50 years
0.990 ext prop * 0.056 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18920
0.00120
158.4
832.0
0.04
0.00076
0.00044
430.6
2261.4
0.06
0.00026
0.00019
1026.8
5392.7
0.08
0.00010
0.00009
2230.9
11716.6
0.10
0.00004
0.00004
4535.5
23820.8
0.12
0.00002
0.00002
8772.8
46075.1
0.14
0.00001
0.00001
16304.4
85631.9
0.16
0.00001
0.00001
29299.8
99999.9
0.18
0.00000
0.00000
51134.1
99999.9
0.20
0.00000
0.00000
86995.6
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.058 for 50 years
0.076 for 100 years
val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.059, lat 29.955
snortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18930
0.00110
172.9 907.9
0.04
0.00080
0.00031
621.6 3264.4
0.06
0.00024
0.00007
2726.3 14318.7
0.08
0.00006
0.00001
32186.5 99999.9
0.10
0.00001
0.00000
99999.9 99999.9
0.12
0.00000
0.00000
99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.22
0.00000
0.00000 99999.9 99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18922
0.00118
161.0
845.8
0.04
0.00075
0.00043
438.6
2303.6
0.06
0.00025
0.00018
1055.2
5542.0
0.08
0.00010
0.00008
2315.5
12161.3
0.10
0.00004
0.00004
4752.2
24959.2
0.12
0.00002
0.00002
9270.9
48691.5
0.14
0.00001
0.00001
17363.1
91192.2
0.16
0.00000
0.00001
31418.7
99999.9
0.18
0.00000
0.00000
55176.1
99999.9
0.20
0.00000
0.00000
94410.5
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.046 for 50 years
0.990 ext prob * 0.055 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for
0.058 for
0.075 for
0.00
1 years
50 years
100 years
0.00

168
Peninsular Florida Seismic Hazara
site at long 32.823, lat 29.397
snortest dist to fault* 9999.999 Icm
zero attenuation variaoility variability in atten, sigma* 0.50
g.m.
occ/vr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18943
0.00097
196.5
1032.0
0.02
0.18921
0.00119
159.6
838.3
0.04
0.00067
0.00030
629.5
3306.2
0.04
0.00078
0.00041
463.9
2436.6
0.06
0.00025
0.00005
3819.6
20060.7
0.06
0.00024
0.00017
1138.8
5980.9
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00009
0.00008
2537.5
13327.0
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00004
0.00004
5292.5
27796.5
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
10487.9
55083.6
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
19922.7
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00001
36495.3
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
64735.1
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
total yearly events
0.19040
zero attenuation variability
variability in
atten
, sigma*0.50
sol not obtained for time*
sol not obtained for time*
0.990 ext prop * 0.000 for
1 years
0.000
for
1
years
0.990 ext prop = 0.045 for
50 years
0.056
for
S3
years
0.990 ext prob * 0.052 for
100 years
0.073
for
100
years
ratio 100 yr 0.990 extreme value to 1 yr val * 0.00 0.00
Peninsular Florida Seismic Hazara
site at long 82.137, lat 29.392
snortest dist to fault» 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18940
0.00100
189.5
995.4
0.04
0.00070
0.00030
627.8
3297.1
0.06
0.00025
0.00005
3748.8
19688.8
0.08
0.00005
0.00001
33174.6
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18926
0.00114
166.3
873.6
0.04
0.00073
0.00041
462.9
2431.0
0.06
0.00024
0.00017
1127.2
5920.1
0.08
0.00009
0.00008
2510.5
13185.2
0.10
0.00004
0.00004
5238.5
27512.5
0.12
0.00002
0.00002
10384.0
54536.9
0.14
0.00001
0.00001
19726.6
99999.9
0.16
0.00000
0.00001
36133.2
99999.9
0.18
0.00000
0.00000
64092.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.045 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000
0.056
0.073
0.00
for 1 years
for 50 years
for 100 years
0.00
Peninsular Florida Seismic Hazard
site at long 81.451, lat 29.383
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/vr
exc/yr
r(events) r(yrs)
0.02
0.18938
0.00103
185.7
975.2
0.04
0.00072
0.00030
628.6
3301.6
0.06
0.00025
0.00005
3609.4
18956.9
0.08
0.00005
0.00001
33174.4
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) rlyrs
0.02
0.18929
0.00111
170.9
897.4
0.04
0.00070
0.00041
462.5
2429.3
0.06
0.00024
0.00017
1119.8
5881.3
0.08
0.00009
0.00008
2489.1
13072.7
0.10
0.00004
0.00004
5185.6
27234.9
0.12
0.00002
0.00002
10263.5
53904.4
0.14
0.00001
0.00001
19469.6
99999.9
0.16
0.00000
0.00001
35615.7
99999.9
0.18
0.00000
0.00000
63109.1
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sot not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.045 for 50 years
0.990 ext prob * 0.053 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.056 for 50 years
0.073 for 100 years
0.00
0.00

169
Peninsular Florida Seismic Hazard
site at long 80.764, lat 29.372
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18937
0.00103
184.9
971.1
0.02
0.18929
0.00112
170.7
896.7
0.04
0.00073
0.00030
628.9
3303.1
0.04
0.00070
0.00041
461.7
2425.0
0.06
0.00025
0.00005
3612.5
18973.3
0.06
0.00024
0.00017
1118.5
5874.5
0.08
0.00005
0.00001
33174.3
99999.9
0.08
0.00009
0.00008
2487.6
13065.1
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00004
0.00004
5184.6
27229.9
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
10264.2
53908.2
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
19474.1
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00001
35627.7
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
63135.0
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not optained for time*
0.990 ext Drob * 0.000 for 1 years
0.990 ext DroD * 0.045 for 50 years
0.990 ext prob * 0.053 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for 1 years
0.056 for 50 years
0.073 for 100 years
* 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.078, lat 29.357
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18939
0.00101
188.5 990.0
0.02
0.18930
0.00110
172.5
905.9
0.04
0.00071
0.00030
629.1 3304.2
0.04
0.00070
0.00041
466.8
2451.5
0.06
0.00025
0.00005
3744.0 19663.7
0.06
0.00024
0.00017
1129.9
5934.1
0.08
0.00005
0.00001
33174.2 99999.9
0.08
0.00009
0.00008
2513.0
13198.7
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00004
0.00004
5242.0
27531.2
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00002
0.00002
10389.6
54567.1
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
19735.2
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00001
36144.9
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000 64110.6
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000 99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not oDtained for time*
sol not ootained for time*
0.990 ext prod = 0.000 for 1 years
0.990 ext prob * 0.045 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma*0.50
0.000 for 1 years
0.056 for 50 years
0.073 for 100 years
yr val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.827, lat 28.799
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18956
0.00084
226.1
1187.7
0.02
0.18938
0.00102
186.0
977.1
0.04
0.00056
0.00028
671.8
3528.5
0.04
0.00066
0.00037
521.0
2736.5
0.06
0.00023
0.00005
3819.6 20060.7
0.06
0.00021
0.00015
1246.6
6547.2
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00008
0.00007
2729.1
14333.6
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00004
0.00003
5622.3
29529.1
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00002
0.00002
11041.4
57990.4
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
20828.2
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00001
37940.9
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
66993.3
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained tor time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.044 for 50 years
0.990 ext oroo * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
* 0.00
0.000 for
0.054 for
0.071 for
0.I
1 years
50 years
100 years

170
Peninsular Florida Seismic Hazard
site at long 82.144, lat 28.794
snortest oist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/vr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18952
0.00088
217.0
1139.5
0.02
0.18937
0.00103
185.0
971.6
0.04
0.00058
0.00029
646.4
3395.2
0.04
0.00065
0.00038
505.9
2656.8
0.06
0.00024
0.00005
3819.6
20060.7
0.06
0.00022
0.00016
1206.1
6334.5
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00009
0.00007
2644.7
13890.4
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00004
0.00003
5463.4
28694.4
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
10739.5
56510.2
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
20349.6
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00001
37155.8
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
65745.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearvy events 0.19040
zero attenuation variability
total yearly events
variability in
0.19040
atten, sigma*0.50
sol not obtained for time*
sol not ootained for time*
0.990 ext prop * 0.000 for
1 years
0.000
for 1
years
0.990 ext prop * 0.044 for
50 years
0.054
for 50
years
0.990 ext proo * 0.052 for
100 years
0.072
for 100
vears
ratio 100 yr 0.990 extreme value to 1 yr val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 81.462, lat 28.785
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18951
0.00089
213.5
1121.1
0.04
0.00059
0.00030
639.7
3359.8
0.06
0.00025
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000 99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000 99999.9
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext orob * 0.000 for 1 years
0.990 ext Droo * 0.044 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r 0.02
0.18936
0.00104
182.8
960.3
0.04
0.00066
0.00038
499.4
2623.2
0.06
0.00022
0.00016
1192.4
6262.4
0.08
0.00009
0.00007
2618.5
13752.9
0.10
0.00004
0.00004
5416.2
28446.6
0.12
0.00002
0.00002
10677.9
56081.7
0.14
0.00001
0.00001
20213.2
99999.9
0.16
0.00000
0.00001
36934.4
99999.9
0.18
0.00000
0.00000
65396.0
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.055 for 50 years
0.072 for 100 vears
val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.780, lat 28.774
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18951
0.00089
214.2
1125.0
0.02
0.18936
0.00104
183.1
961.9
0.04
0.00059
0.00030
640.4
3363.3
0.04
0.00066
0.00038
500.5
2628.5
0.06
0.00025
0.00005
3819.6
20060.7
0.06
0.00022
0.00016
1194.4
62 73.2
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00009
0.00007
2622.1
13771.8
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00004
0.00004
5422.3
28478.4
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
10687.8
56133.6
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
20229.0
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00001
36959.3
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
65434.4
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo â–  0.000 for 1 years
0.990 ext proo * 0.044 for 50 years
0.990 ext proo * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for
0.055 for
0.072 for
0.00
1 years
50 years
100 years
0.00

171
Peninsular Florida Seismic Hazard
site at long 80.098, lat 28.759
snortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18953
0.00087
218.8
1149.4
0.04
0.00058
0.00029
647.1
3398.4
0.06
0.00024
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000 99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variaoilitv in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18937
0.00103
185.5
974.3
0.04
0.00065
0.00037
507.9
2667.7
0.06
0.00022
0.00016
1210.0
6355.3
0.08
0.00009
0.00007
2651.0
13923.5
0.10
0.00004
0.00003
5473.0
28744.9
0.12
0.00002
0.00002
10774.0
56586.0
0.14
0.00001
0.00001
20371.1
99999.9
0.16
0.00000
0.00001
37187.8
99999.9
0.18
0.00000
0.00000
65792.4
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext Drob * 0.000 for 1 years
0.990 ext prob * 0.044 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000
0.054
0.071
* 0.00
for 1 years
for 50 years
for 100 years
0.00
Peninsular Florida Seismic Hazard
site at long 82.831, lat 28.200
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18965
0.00075
253.1 1329.1
0.02
0.18951
0.00089
212.8
1117.4
0.04
0.00051
0.00025
773.1 4060.4
0.04
0.00057
0.00032
590.6
3102.0
0.06
0.00020
0.00005
3819.6 20060.7
0.06
0.00019
0.00014
1402.6
7366.8
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00007
0.00006
3042.5
15979.4
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00003
0.00003
6205.1
32589.8
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00001
0.00002
12066.6
63374.8
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
22556.1
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
40753.0
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
71441.4
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext proo * 0.043 for 50 years
0.990 ext proo * 0.051 for 100 years
inn %•» n oon uai►« 1 vr v«I
variability in
atten
, sigma*0
0.000
for
1 years
0.051
for
50 years
0.068
for
100 years
= n no o.oo
Peninsular Florida Seismic Hazard
site at long 82.152, lat 28.195
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18963
0.00077
248.4
1304.8
0.02
0.18948
0.00092
207.9
1092.1
0.04
0.00051
0.00026
746.5
3920.8
0.04
0.00059
0.00033
576.2
3026.1
0.06
0.00021
0.00005
3819.6
20060.7
0.06
0.00019
0.00014
1367.4
7181.7
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00008
0.00006
2968.7
15591.7
0.10
0.00001
0.00000 99999.9
99999.9
0.10
0.00003
0.00003
6065.1
31854.3
0.12
0.00000
0.00000 99999.9
99999.9
0.12
0.00002
0.00002
11818.0
62069.2
0.14
0.00000
0.00000 99999.9
99999.9
0.14
0.00001
0.00001
22135.5
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
40067.8
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
70357.7
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.043 for 50 years
0.990 ext prob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.052 for 50 years
0.068 for 100 years
0.00
0.00

172
Peninsular Florida Seismic Hazard
sice at long 81.473, lac 28.187
snortest disc to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18962
0.00078
245.4 1288.7
0.04
0.00052
0.00026
732.7 3848.3
0.06
0.00021
0.00005
3819.6 20060.7
0.08
0.00004
0.00001
33174.1 99999.9
0.10
0.00001
0.00000
99999.9 99999.9
0.12
0.00000
0.00000
99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
J.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18947
0.00093
205.2
1077.9
0.04
0.00059
0.00034
567.9
2982.8
0.06
0.00019
0.00014
1347.8
7073.6
0.08
0.00008
0.00007
2928.2
15379.3
0.10
0.00003
0.00003
5989.0
31454.7
0.12
0.00002
0.00002
11683.4
61362.5
0.14
0.00001
0.00001
21908.2
99999.9
0.16
0.00000
0.00000
39697.6
99999.9
0.18
0.00000
0.00000
69772.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext oroD * 0.000 for 1 years
0.990 ext prod * 0.043 for 50 years
0.990 ext proo * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.00
0.000 for 1 years
0.052 for 50 years
0.069 for 100 years
0.00
Peninsular Florida Seismic Hazard
site at long 80.795, lat 28.176
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18962
0.00078
245.4 1289.0
0.04
0.00052
0.00026
732.7 3848.3
0.06
0.00021
0.00005
3819.6 20060.7
0.08
0.00004
0.00001
33174.1 99999.9
0.10
0.00001
0.00000 99999.9 99999.9
0.12
0.00000
0.00000 99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
variability in atten, sigmas 0.50
J.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18947
0.00093
205.3
1078.2
0.04
0.00059
0.00034
568.0
2983.4
0.06
0.00019
0.00014
1347.9
7079.3
0.08
0.00008
0.00007
2928.4
15380.3
0.10
0.00003
0.00003
5989.2
31456.0
0.12
0.00002
0.00002
11683.8
61364.3
0.14
0.00001
0.00001
21908.7
99999.9
0.16
0.00000
0.00000
39698.2
99999.9
0.18
0.00000
0.00000
69773.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext proo * 0.043 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in
atten
, sigma*0.50
0.000
for
1 years
0.052
for
50 years
0.069
for
100 years
val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.117, lat 28.161
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18963
0.00077
248.9
1307.1
0.02
0.18949
0.00091
208.6
1095.8
0.04
0.00051
0.00025
750.3
3940.5
0.04
0.00058
0.00033
578.1
3036.2
0.06
0.00020
0.00005
3819.6
20060.7
0.06
0.00019
0.00014
1372.1
7206.4
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00007
0.00006
2978.7
15644.3
0.10
0.00001
0.00000 99999.9
99999.9
0.10
0.00003
0.00003
6084.3
31955.4
0.12
0.00000
0.00000 99999.9
99999.9
0.12
0.00002
0.00002
11852.5
62250.5
0.14
0.00000
0.00000 99999.9
99999.9
0.14
0.00001
0.00001
22194.4
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
40164.2
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
70511.0
99999.9
0.20
0.00000
0.00000 99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.043 for 50 years
0.990 ext prob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for
0.051 for
0.068 for
0.00
1 years
50 years
100 years
0.00

173
Peninsular Florida Seismic Hazard
site at long 82.834, lat 27.602
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
>.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18968
0.00072
265.2
1392.9
0.02
0.18958
0.00082
231.9
1218.1
0.04
0.00051
0.00021
898.6
4719.5
0.04
0.00053
0.00029
646.3
3394.2
0.06
0.00016
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1545.0
8114.4
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00007
0.00006
3349.9
17594.2
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6795.6
35691.2
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13117.4
68894.1
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24330.0
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
43630.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
75971.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
variability in
atten
, sigma*0
sol
not obtained for time*
sol
not obtained for time*
0.990 ext prob * 0.000 for
1 years
0.000
for
1
years
0.990 ext prob * 0.041 for
50 years
0.049
for
50
years
0.990 ext prob = 0.050 for
100 years
0.065
for
ICO
years
ratio 100 yr 0.990 extreme value to 1 yr val
* 0.00
0.00
Peninsular Florida Seismic Hazard
site at long 82.160, lat 27.597
snortest dist to fault* 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18968
0.00072
263.2
1382.6
0.04
0.00051
0.00022
876.4
4603.2
0.06
0.00017
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
rievents) r(yrs
0.02
0.18957
0.00083
228.7
1201.3
0.04
0.00053
0.00030
637.0
3345.4
0.06
0.00017
0.00013
1521.0
7988.4
0.08
0.00007
0.00006
3298.1
17322.0
0.10
0.00003
0.00003
6696.5
35170.5
0.12
0.00001
0.00001
12942.1
67973.1
0.14
0.00001
0.00001
24035.9
99999.9
0.16
0.00000
0.00000
43156.7
99999.9
0.18
0.00000
0.00000
75229.6
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext proo * 0.041 for 50 years
0.990 ext prop = 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000
0.049
0.066
* 0.00
for 1 years
for 50 years
for 100 years
0.00
Peninsular Florida Seismic Hazard
site at long 81.485, lat 27.589
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18967
0.00073
262.3
1377.5
0.02
0.18956
0.00084
227.2
1193.1
0.04
0.00051
0.00022
865.8
4547.5
0.04
0.00054
0.00030
632.4
3321.5
0.06
0.00017
0.00005
3819.6
20060.7
0.06
0.00017
0.00013
1509.3
7927.2
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00007
0.00006
3272.9
17189.8
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6648.3
34917.4
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
12856.7
67524.6
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
23892.4
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
42924.9
99999.9
0.18
0.00000
0.00000 99999.9
99999.9
0.18
0.00000
0.00000
74866.1
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.041 for 50 years
0.990 ext prob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.049 for 50 years
0.066 for 100 years
0.00
0.00

174
Peninsular Florida Seismic Hazard
site at long 80.810, lat 27.578
snortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18967
0.00073
262.4
1378.4
0.04
0.00051
0.00022
867.6
4556.7
0.06
0.00017
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variaoility in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) rlyrs
0.02
0.18956
0.00084
227.4
1194.5
0.04
0.00054
0.00030
633.2
3325.5
0.06
0.00017
0.00013
1511.3
7937.4
0.08
0.00007
0.00006
3277.1
17211.7
0.10
0.00003
0.00003
6656.3
34959.5
0.12
0.00001
0.00001
12870.9
67599.2
0.14
0.00001
0.00001
23916.3
99999.9
0.16
0.00000
0.00000
42963.6
99999.9
0.18
0.00000
0.00000
74926.7
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootained for time*
0.990 ext oroo * 0.000 for 1 years
0.990 ext Droo * 0.041 for 50 years
0.990 ext orob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
* 0.00
0.000 for 1 years
0.049 for 50 years
0.066 for 100 years
0.00
Peninsular Florida Seismic Hazard
site at long 80.135, lat 27.563
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/vr
exc/yr
r
0.02
0.18968
0.00072
263.6
1384.7
0.02
0.18957
0.00083
229.4
1204.6
0.04
0.00051
0.00022
880.9
4626.6
0.04
0.00053
0.00030
638.8
3355.2
0.06
0.00017
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1525.8
8013.9
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00007
0.00006
3308.6
17377.1
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6716.6
35276.2
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
12977.7
68160.2
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24095.7
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
43253.3
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
75380.9
99999.9
0.20
0.00000
0.00000 99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
total yearly events
0.19040
zero attenuation variability
variability in
atten, sigma*0.50
sol not obtained for time*
sol not obtained for time*
0.990 ext prod * 0.000 for
1 years
0.000
for 1
years
0.990 ext prod * 0.041 for
50 years
0.049
for 50
years
0.990 ext prob * 0.050 for
100 years
0.066
for 100
years
ratio 100 yr 0.990 extreme value to 1 yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.838, lat 27.004
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7 1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4 4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6 20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000 44491.8
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not obtained for time*
0.990 ext oroo â–  0.000 for 1 years
0.990 ext proo * 0.040 for 50 years
0.990 ext proo * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00
0.00

175
Peninsular Florida Seismic Hazard
site at long 82.167, lat 26.999
snortest dist to fault* 9999.999 Icm
g.m.
zero attenuation
occ/yr exc/yr
variability
r(events) r(yrs)
g.m.
variability in atten, sigma* 0.50
occ/yr exc/yr r(events) r(vrs)
0.02
0.18969
0.00071
268.7
1411.4
0.02
0.18960
0.00080
237.5
1247.6
0.04
0.00051
0.00020
940.4
4939.0
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1588.8
8344.6
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00006
0.00006
3445.0
18093.4
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6977.2
36644.9
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13437.7
70576.2
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24865.4
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
44491.4
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
77314.8
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.
.19040
total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootained for time*
0.990 ext orob * 0.000 for 1 years
0.990 ext orob * 0.040 for 50 years
0.990 ext orob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 81.496, lat 26.991
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.6 1410.9
0.04
0.00051
0.00020
939.2 4932.6
0.06
0.00015
0.00005
3819.6 20060.7
0.08
0.00004
0.00001
33174.1 99999.9
0.10
0.00001
0.00000
99999.9 99999.9
0.12
0.00000
0.00000
99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yri
0.02
0.18960
0.00080
237.4
1246.9
0.04
0.00051
0.00029
662.6
3479.8
0.06
0.00017
0.00012
1587.6
8338.2
0.08
0.00006
0.00006
3442.3
18079.2
0.10
0.00003
0.00003
6972.0
36617.5
0.12
0.00001
0.00001
13428.5
70527.9
0.14
0.00001
0.00001
24850.0
99999.9
0.16
0.00000
0.00000
44466.8
99999.9
0.18
0.00000
0.00000
77276.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not ootained for time*
0.990 ext Droo * 0.000 for 1 years
0.990 ext proo * 0.040 for 50 years
0.990 ext proo * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
* 0.00
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00
Peninsular Florida Seismic Hazard
site at long 80.825, lat 26.979
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
rievents) r(yrs)
0.02
0.18969
0.00071
268.6 1410.8
0.02
0.18960
0.00080
237.4
1246.9
0.04
0.00051
0.00020
939.1 4932.2
0.04
0.00051
0.00029
662.5
3479.7
0.06
0.00015
0.00005
3819.6 20060.7
0.06
0.00017
0.00012
1587.5
8337.8
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00006
0.00006
3442.1
18078.3
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00003
0.00003
6971.7
36615.8
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00001
0.00001
13427.9
70524.9
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24849.1
99999.9
0.16
0.00000
0.00000 99999.9 99999.9
0.16
0.00000
0.00000
44465.2
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
77274.0
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootained tor tune*
0.990 ext proo * 0.000 for 1 years
0.990 ext prob * 0.040 for 50 years
0.990 ext proo * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for
0.048 for
0.065 for
0.00
1 years
50 years
100 years
0.00

176
Peninsular Florida Seismic Hazara
sire at long 80.154, lat 26.965
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.02
0.18960
0.00080
237.5
1247.6
0.04
0.00051
0.00020
940.3
4938.7
0.04
0.00051
0.00029
663.0
3482.0
0.06
0.0C015
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1588.7
8344.3
0.08
0.C0004
0.00001
33174.1
99999.9
0.08
0.00006
0.00006
3444.8
18092.6
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6976.9
36643.4
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13437.2
70573.5
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24864.5
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
44490.0
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
77312.6
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000 99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
variability in
atten
, sigma*0
sol
not obtained for time*
sol
not obtained for time*
0.990 ext prop * 0.000 for
1 years
0.000
for
1 years
0.990 ext prop * 0.040 for
50 years
0.048
for
50 years
0.990 ext prop * 0.050 for
100 years
0.065
for
100 years
ratio 100 yr 0.990 extreme value to 1 yr val
* 0.00
0.00
Peninsular Florida Seismic Hazard
site at long 82.842, lat 26.406
snortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.04
0.00051
0.00020
940.4
4939.1
0.06
0.00015
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000 99999.9
99999.9
0.12
0.00000
0.00000 99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000 99999.9 99999.9
0.20
0.00000
0.00000 99999.9 99999.9
total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not obtained for time*
0.990 ext prod * 0.000 for 1 years
0.990 ext prod * 0.040 for 50 years
0.990 ext prod * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.174, lat 26.401
snortest dist to fault* 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18969
0.00071
268.7
1411.4
0.04
0.00051
0.00020
940.4
4939.1
0.06
0.00015
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not ootained for time*
0.990 ext prop * 0.000 for 1 years
0.990 ext prod * 0.040 for 50 years
0.990 ext prob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00
0.00

177
Peninsular Florida Seismic Hazard
site at long 81.507, lat 26.393
snortest dist to fault* 9999.999 km
zero attenuation variability
l.m.
occ/yr
exc/yr
r(events) r 0.02
0.18969
0.00071
268.7
1411.4
0.04
0.00051
0.00020
940.4
4939.1
0.06
0.00015
0.00005
3819.6
20060.7
0.08
0.00004
0.30001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained tor time*
sol not obtained for time*
0.990 ext oroo * 0.000 for 1 years
0.990 ext crob = 0.040 for 50 years
0.990 ext orob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
G.048 for 50 years
0.065 for 100 years
val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.839, lat 26.381
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
nevents) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7 1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4 4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6 20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000 44491.8
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not ootained for time*
0.990 ext oroo * 0.000 for 1 years
0.990 ext Droo * 0.040 for 50 years
0.990 ext oroo * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.172, lat 26.367
shortest dist to fault* 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.04
0.00051
0.00020
940.4
4939.1
0.06
0.00015
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9 99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) rtyrs
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000 44491.8
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootained for time*
0.990 ext oroo * 0.000 for 1 years
0.990 ext proo * 0.040 for 50 years
0.990 ext prob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00
0.00

178
Peninsular Florida Seismic Hazard
site at long 82.845, lat 25.808
shortest aist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4
4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000 99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time-
sol not obtained for time-
0.990 ext orob * 0.000 for 1 years
0.990 ext prob * 0.040 for 50 years
0.990 ext orob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.181, lat 25.803
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7 1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4 4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6 20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability variability in atten, sigma*0.50
sol not obtained for time-
sol not obtained for time-
0.990 ext orob * 0.000 for 1 years 0.000 for 1 years
0.990 ext orob * 0.040 for 50 years 0.048 for 50 years
0.990 ext proo * 0.050 for 100 years 0.065 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 81.518, lat 25.795
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7 1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4 4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6 20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1 99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9 99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000 99999.9 99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000 99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time-
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.040 for 50 years
0.990 ext prob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00
0.00

179
Peninsular Florida Seismic Mazara
site at long 80.854, I at 25.783
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.04
0.00051
0.00020
940.4
4939.1
0.06
0.00015
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootained for time*
0.990 ext oroo * 0.000 for 1 years
0.990 ext prod * 0.040 for 50 years
0.990 ext prob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
* 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.190, lat 25.769
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4
4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
total yearly events
0.19040
zero attenuation variability
variability in
atten, sigma*0.50
sol
sol
not ootained for time*
not ootained for time*
0.990 ext proo * 0.000 for
1 years
0.000
for 1
years
0.990 ext proo * 0.040 for
50 years
0.048
for 50
years
0.990 ext proo * 0.050 for
100 years
0.065
for 100
years
ratio 100 yr 0.990 extreme value to 1 yr val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 82.849, lat 25.209
shortest dist to fault* 9999.999 km
zero attenuation variaoility variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4
4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext proo â–  0.040 for 50 years
0.990 ext proO * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
0.00
0.00

180
Peninsular Florida Seismic Hazara
site at long 82.189, lat 25.205
shortest aist to fault= 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.04
0.00051
0.00020
940.4
4939.1
0.06
0.00015
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext orob * 0.000 for 1 years
0.990 ext Drob * 0.040 for 50 years
0.990 ext proc * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.048 for 50 years
0.065 for 100 years
val = 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 81.528, lat 25.197
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
rievents) r(yrs)
0.02
0.18969
0.00071
268.7
1411.4
0.02
0.18960
0.00080
237.6
1247.6
0.04
0.00051
0.00020
940.4
4939.1
0.04
0.00051
0.00029
663.0
3482.2
0.06
0.00015
0.00005
3819.6
20060.7
0.06
0.00017
0.00012
1588.8
8344.7
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00006
0.00006
3445.0
18093.6
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6977.3
36645.3
0.12
0.00000
0.00000
99999.9 99999.9
0.12
0.00001
0.00001
13437.8
70576.9
0.14
0.00000
0.00000
99999.9 99999.9
0.14
0.00001
0.00001
24865.6
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
44491.8
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
77315.3
99999.9
0.20
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
total yearly events
0.19040
zero attenuation variability
variability in
atten, sigma*0.50
sol
sol
not obtained for time*
not obtained for time*
0.990 ext prob * 0.000 for
1 years
0.000
for 1
years
0.990 ext prob * 0.040 for
50 years
0.048
for 50
years
0.990 ext orob * 0.050 for
100 years
0.065
for 100
years
ratio 100 yr 0.990 extreme value to 1 yr val * 0.00 0.00
Peninsular Florida Seismic Hazard
site at long 80.868, lat 25.185
shortest dist to fault* 9999.999 km
zero attenuation variability
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18968
0.00072
265.5
1394.4
0.04
0.00051
0.00021
901.9
4736.8
0.06
0.00016
0.00005
3617.5
18999.3
0.08
0.00004
0.00001
22336.2
99999.9
0.10
0.00001
0.00000
67834.5
99999.9
0.12
0.00000
0.00000
68369.9
99999.9
0.14
0.00000
0.00000
68369.9
99999.9
0.16
0.00000
0.00000
68369.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18959
0.00081
233.8
1228.0
0.04
0.00052
0.00029
647.2
3399.2
0.06
0.00017
0.00012
1527.7
8023.5
0.08
0.00007
0.00006
3233.9
16984.9
0.10
0.00003
0.00003
6302.6
33101.8
0.12
0.00001
0.00002
11449.8
60135.7
0.14
0.00001
0.00001
19510.7
99999.9
0.16
0.00000
0.00001
31323.2
99999.9
0.18
0.00000
0.00000
47610.3
99999.9
0.20
0.00000
0.00000
68954.2
99999.9
0.22
0.00000
0.00000
95821.7
99999.9
0.24
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.041 for 50 years
0.990 ext prob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for
0.049 for
0.066 for
0.00
1 years
50 years
100 years
0.00

181
Peninsular Florida Seismic Hazard
site at long 80.208, lat 25.171
shortest dist to fault* 9999.999 km
zero attenuation variaDility variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/vr
r(events) r(yrs)
0.02
0.18963
0.00077
245.7 1290.4
0.02
0.18949
0.C0C91
209.1
1098.0
0.04
0.00051
0.00027
708.0 3718.5
0.04
0.00057
0.00034
554.8
2913.3
0.06
0.00020
0.00007
2672.3 14035.0
0.06
0.00019
0.00016
1212.4
6367.6
0.08
0.00004
0.00003
7015.2 36844.7
0.08
0.00007
0.00008
2292.4
12040.2
0.10
0.00001
0.00002
8887.4 46677.7
0.10
0.00003
0.00005
3827.0
20099.9
0.12
0.00000
0.00002
8896.6 46725.6
0.12
0.00002
0.00003
5756.1
30231.4
0.14
0.00000
0.00002
8896.6 46725.6
0.14
0.00001
0.00002
7997.1
42001.7
0.16
0.00000
0.00002
8896.6 46725.6
0.16
0.00001
0.00002
10516.1
55231.5
0.18
0.00002
0.00001
33806.9 99999.9
0.18
0.00000
0.00001
13342.1
70074.3
0.20
0.00000
0.00001
33806.9 99999.9
0.20
0.00000
0.00001
16551.4
86929.7
0.22
0.00000
0.00001
33806.9 99999.9
0.22
0.00000
0.00001
20244.0
99999.9
0.24
0.00000
0.00001
33806.9 99999.9
0.24
0.00000
0.00001
24535.4
99999.9
0.26
0.00000
0.00001
33806.9 99999.9
0.26
0.00000
0.00001
29553.9
99999.9
0.28
0.00001
0.00000
99999.9 99999.9
0.28
0.00000
0.00001
35434.1
99999.9
0.30
0.00000
0.00000
99999.9 99999.9
0.30
0.00000
0.00000
42342.2
99999.9
0.32
0.00000
0.00000
99999.9 99999.9
0.32
0.00000
0.00000
50456.5
99999.9
0.34
0.00000
0.00000
99999.9 99999.9
0.34
0.00000
0.00000
59979.3
99999.9
0.36
0.00000
0.00000
99999.9 99999.9
0.36
0.00000
0.00000
71140.3
99999.9
0.38
0.00000
0.00000
99999.9 99999.9
0.38
0.00000
0.00000
84201.0
99999.9
0.40
0.00000
0.00000
99999.9 99999.9
0.40
0.00000
0.00000
99458.7
99999.9
0.42
0.00000
0.00000
99999.9 99999.9
0.42
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variaDility
variability in
atten, sigma=0.50
SOI
sol
not ootainea for time*
not obtained for time*
0.990 ext proD * 0.000 for
1 years
0.000
for 1
years
0.990 ext proo = 0.044 for
50 years
0.054
for 50
years
0.990 ext prop * 0.055 for
100 years
0.074
for 100
years
ratio 100 yr 0.990 extreme value to 1 yr val
* 0.00
0.00

182
Florida Panhandle Seismic Hazard
isw=Q: new run*-no previous results included
extreme orooability 0.990
for exDOSure times (years) 1 50 100
scale factor for ground motion "box" levels* 1.00
coordinates input in decimal degrees
coordinates are printed in oecimal aegrees
variability in attenuation, sigma* 0.50
grid oriented parallel to great circle thru ( 87.00, 28.00),( 80.00, 28.00)
corners of gnooed area-uooer left* 87.00, 31.15
lower right* 80.00, 25.00
longitude increment* 0.5982 (decimal degrees)
latitude increment * 0.5982 (decimal degrees)
gridded region contains 11 rows, 11 cols including border 0 rows and cols
for this run begin at row 1 end row 4, begin col 1 end col 7
new coordinates (km) gridded area
upper left* 677.85 -9.60; lower right* 350.50 -333.81
sites are also located on 0 line(s)
attenuation function Fla-Region
magnitude
dist(km)
6.70
5.50
4.00
80.00
0.15000
0.03450
0.00700
130.00
0.05000
0.01640
0.00150
240.00
0.03000
0.00480
0.00026
360.00
0.01500
0.00164
0.00003
580.00
0.00700
0.00030
0.00001
yrnoc* 1. iprint=-1 for area Char
82.30033.100 81.300 34.300
81.000 32.100 79.700 33.500
nr of levels of seismicity * 3
Char beta* *1.0217
earthquake rate / year
occurrences* 0.000500 0.000300 0.000100
magnitudes* 6.50 7.00 7.40
Char area* 30369. sq km, rate/sq km* 0.16464E-07 for mags
6.25- 6.75
yrnoc* 1. iprint*-1 for area Pied
80.300 37.500 77.000 37.500
82.000 36.000 77.000 36.000
87.000 32.000 79.700 32.000
nr of levels of seismicity * 3
Pied beta* -1.8388
earthquake rate / year
occurrences* 0.012500 0.007200 0.005000
magnitudes* 5.50 5.80 6.00
Pied area* 316141. sq km, rate/sq km* 0.39539E-07 for mags
5.35- 5.65
yrnoc* 1. iprint*-1 for area SAop
82.800 37.500 80.300 37.500
88.500 32.000 87.000 32.000
nr of levels of seismicity * 3
SApp beta* -2.0205
earthquake rate / year
occurrences* 0.002200 0.001200 0.000800
magnitudes* 6.50 6.80 7.00
SApp area* 111353. sq km, rate/sq km* 0.19757E-07 for mags 6.35- 6.65
yrnoc* 1. iprint=-1 for area WMad
87.400 38.000 86.000 38.000
90.300 35.300 38.000 35.300
nr of levels of seismicity = 3
NMad beta* -1.9330
earthquake rate / year
occurrences* 0.001300 0.000600 0.000200
magnitudes* 7.40 7.80 8.30
NMad area* 50440. sq km, rate/sq km* 0.25773E-07 for mags 7.20- 7.60
yrnoc* 1. iprint*-1 for area Caym
86.700 18.500 77.000 20.700
86.700 17.000 77.000 17.000
nr of levels of seismicity * 4
Caym beta* -2.1466
earthquake rate / year
occurrences* 0.011700 0.004000 0.001400 0.000500
magnitudes* 7.00 7.50 8.00 8.50
Caym area* 301315. sq km, rate/sq km* 0.38830E-07 for mags 6.75- 7.25
yrnoc* 1.
iprint* 2
for area
Flor
90.000
32.000
77.000
32.000
90.000
22.000
77.000
22.000
86.000
18.700
77.000
20.700
nr of levels of seismicity * 4
Flor beta* -1.2681
earthquake rate / year
occurrences* 0.064600 0.038900
0.023400
0.014000
magnitubes*
3.80
4.20
4.60
5.00
Flor area* 1760366. sq km, rate/sq km* 0.36697E-07 for mags 3.60- 4.00

183
Florida Panhandle Seismic Hazard
site at long 87.000, lat 31.150
shortest dist to fault® 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18754
0.00286
66.6
349.7
0.02
0.18733
0.00307
62.0
325.8
0.04
0.00141
0.00145
131.0
688.0
0.04
0.00159
0.00148
128.4
674.6
0.06
0.00102
0.00044
437.5
2297.9
0.06
0.00067
0.00081
234.4
1231.3
0.08
0.00011
0.00033
580.9
3050.9
0.08
0.00032
0.00049
386.0
2027.5
0.10
0.00002
0.00031
610.0
3203.9
0.10
0.00017
0.00033
584.5
3069.7
0.12
0.00023
0.00008
2441.5
12823.0
0.12
0.00010
0.00023
831.0
4364.5
0.14
0.00000
0.00008
2474.6
12997.0
0.14
0.00006
0.00017
1129.2
5930.9
0.16
0.00000
0.00008
2479.8
13024.2
0.16
0.00004
0.00013
1485.5
7801.9
0.18
0.00000
0.00008
2479.8
13024.2
0.18
0.00003
0.00010
1908.5
10023.9
0.20
0.00000
0.00008
2479.8
13024.2
0.20
0.00002
0.00008
2409.9
12656.9
0.22
0.00000
0.00008
2479.8
13024.2
0.22
0.00002
0.00006
3003.6
15775.1
0.24
0.00008
0.00000
99999.9
99999.9
0.24
0.00001
0.00005
3706.7
19468.1
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00001
0.00004
4539.7
23842.7
0.28
0.00000
0.00000
99999.9
99999.9
0.28
0.00001
0.00003
5525.8
29022.3
0.30
0.00000
0.00000
99999.9
99999.9
0.30
0.00001
0.00003
6693.8
35156.5
0.32
0.00000
0.00000
99999.9
99999.9
0.32
0.00000
0.00002
8076.2
42417.1
0.34
0.00000
0.00000
99999.9
99999.9
0.34
0.00000
0.00002
9711.1
51003.8
0.36
0.00000
0.00000
99999.9
99999.9
0.36
0.00000
0.00002
11642.6
61147.9 .
0.38
0.00000
0.00000
99999.9
99999.9
0.38
0.00000
0.00001
13921.5
73117.4
0.40
0.00000
0.00000
99999.9
99999.9
0.40
0.00000
0.00001
16607.0
87221.7
0.42
0.00000
0.00000
99999.9
99999.9
0.42
0.00000
0.00001
19766.8
99999.9
0.44
0.00000
0.00000
99999.9
99999.9
0.44
0.00000
0.00001
23479.2
99999.9
0.46
0.00000
0.00000
99999.9
99999.9
0.46
0.00000
0.00001
27834.1
99999.9
0.48
0.00000
0.00000
99999.9
99999.9
0.48
0.00000
0.00001
32927.4
99999.9
0.50
0.00000
0.00000
99999.9
99999.9
0.50
0.00000
0.00000
38882.6
99999.9
0.52
0.00000
0.00000
99999.9
99999.9
0.52
0.00000
0.00000
45834.2
99999.9
0.54
0.00000
0.00000
99999.9
99999.9
0.54
0.00000
0.00000
53935.8
99999.9
0.56
0.00000
0.00000
99999.9
99999.9
0.56
0.00000
0.00000
63363.0
99999.9
0.58
0.00000
0.00000
99999.9
99999.9
0.58
0.00000
0.00000
74315.5
99999.9
0.60
0.00000
0.00000
99999.9
99999.9
0.60
0.00000
0.00000
87020.5
99999.9
0.62
0.00000
0.00000
99999.9
99999.9
0.62
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
variability in
atten, sigma=0
sol
sol
not obtained for time*
not obtained for time*
0.990 ext proo * 0.000 for
1 years
0.000
for 1
years
0.990 ext prob * 0.106 for
50 years
0.129
for 50
years
0.990 ext prob * 0.116 for
100 years
0.179
for 100
years
rat in inn vr 0.990 extreme value to 1 vr val
= 0.00
0.00
Florida Panhandle Seismic Hazard
site at long 86.302, lat 31.165
shortest
g.m.
dist to fault* 9999.999 km
zero attenuation variability
occ/yr exc/yr r(events) r(yrs)
g.m.
variabili
occ/yr
ty in atten, sigma* 0.50
exc/yr r(events) rivrs
0.02
0.18745
0.00295
64.6
339.2
0.02
0.18716
0.00324
58.8 308.8
0.04
0.00174
0.00121
157.5
827.3
0.04
0.00186
0.00138
138.0 725.0
0.06
0.00091
0.00030
637.3
3347.2
0.06
0.00069
0.00069
277.3 1456.3
0.08
0.00007
0.00023
838.4
4403.5
0.08
0.00030
0.00039
488.0 2562.9
0.10
0.00001
0.00022
862.8
4531.3
0.10
0.00014
0.00025
771.9 4054.2
0.12
0.00017
0.00006
3451.4
18127.2
0.12
0.00008
0.00017
1127.8 5923.4
0.14
0.00000
0.00006
3451.4
18127.2
0.14
0.00005
0.00012
1557.3 8179.1
0.16
0.00000
0.00006
3451.4
18127.2
0.16
0.00003
0.00009
2067.0 10855.9
0.18
0.00000
0.00006
3451.4
18127.2
0.18
0.00002
0.00007
2668.0 14012.7
0.20
0.00000
0.00006
3451.4
18127.2
0.20
0.00001
0.00006
3376.3 17732.6
0.22
0.00000
0.00006
3451.4
18127.2
0.22
0.00001
0.00005
4211.6 22119.8
0.24
0.00006
0.00000
99999.9
99999.9
0.24
0.00001
0.00004
5198.1 27300.7
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00001
0.00003
6364.3 33426.0
0.28
0.00000
0.00000
99999.9 99999.9
0.28
0.00001
0.00002
7742.8 40666.0
0.30
0.00000
0.00000 99999.9
99999.9
0.30
0.00000
0.00002
9374.0 49233.1
0.32
0.00000
0.00000
99999.9 99999.9
0.32
0.00000
0.00002
11303.6 59367.4
0.34
0.00000
0.00000
99999.9 99999.9
0.34
0.00000
0.00001
13584.6 71347.8
0.36
0.00000
0.00000
99999.9
99999.9
0.36
0.00000
0.00001
16278.6 85496.9
0.38
0.00000
0.00000
99999.9
99999.9
0.38
0.00000
0.00001
19456.7 99999.9
0.40
0.00000
0.00000
99999.9
99999.9
0.40
0.00000
0.00001
23201.0 99999.9
0.42
0.00000
0.00000
99999.9
99999.9
0.42
0.00000
0.00001
27606.1 99999.9
0.44
0.00000
0.00000
99999.9
99999.9
0.44
0.00000
0.00001
32781.1 99999.9
0.46
0.00000
0.00000
99999.9
99999.9
0.46
0.00000
0.00000
38851.3 99999.9
0.48
0.00000
0.00000
99999.9
99999.9
0.48
0.00000
0.00000
45948.0 99999.9
0.50
0.00000
0.00000
99999.9
99999.9
0.50
0.00000
0.00000
54244.9 99999.9
0.52
0.00000
0.00000
99999.9
99999.9
0.52
0.00000
0.00000
63929.3 99999.9
0.54
0.00000
0.00000
99999.9
99999.9
0.54
0.00000
0.00000
75215.2 99999.9
0.56
0.00000
0.00000
99999.9
99999.9
0.56
0.00000
0.00000
88346.8 99999.9
0.58
0.00000
0.00000
99999.9
99999.9
0.58
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.101 for 50 years
0.990 ext prob * 0.111 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr vai
variability in atten, sigma=0.50
0.000 for 1 years
0.111 for 50 years
0.154 for 100 years
0.00
0.00

184
Florida Pannandle Seismic Hazard
site at long 85.604, lat 31.177
shortest dist to fault* 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18763
0.00277
68.8
361.5
0.04
0.00190
0.00086
220.1
1156.2
0.06
0.00069
0.00017
1119.5
5880.0
0.08
0.00004
0.00013
1520.5
7985.8
0.10
0.00001
0.00012
1593.2
8367.9
0.12
0.00009
0.00003
6374.1
33477.7
0.14
0.00000
0.00003
6374.1
33477.7
0.16
0.00000
0.00003
6374.1
33477.7
0.18
0.00000
0.00003
6374.1
33477.7
0.20
0.00000
0.00003
6374.1
33477.7
0.22
0.00000
0.00003
6374.1
33477.7
0.24
0.00003
0.00000
99999.9
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
0.28
0.00000
0.00000
99999.9
99999.9
0.30
0.00000
0.00000
99999.9
99999.9
0.32
0.00000
0.00000
99999.9
99999.9
0.34
0.00000
0.00000
99999.9
99999.9
0.36
0.00000
0.00000
99999.9
99999.9
0.38
0.00000
0.00000
99999.9
99999.9
0.40
0.00000
0.00000
99999.9
99999.9
0.42
0.00000
0.00000
99999.9
99999.9
0.44
0.00000
0.00000
99999.9
99999.9
0.46
0.00000
0.00000
99999.9
99999.9
0.48
0.00000
0.00000
99999.9
99999.9
0.50
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
soi not obtained for time*
sol not ootatned for time*
0.990 ext oroo * 0.000 for 1 years
0.990 ext oroo * 0.058 for 50 years
0.990 ext prob * 0.102 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma* 0.50
|.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18721
0.00319
59.6
313.2
0.04
0.00202
0.00117
162.7
854.7
0.06
0.00065
0.00052
368.7
1936.7
0.08
0.00025
0.00027
713.1
3745.4
0.10
0.00011
0.00016
1211.6
6363.7
0.12
0.00005
0.00010
1864.0
9790.0
0.14
0.00003
0.00007
2667.5
14009.7
0.16
0.00002
0.00005
3626.6
19047.4
0.18
0.00001
0.00004
4756.7
24982.7
0.20
0.00001
0.00003
6084.2
31954.7
0.22
0.00001
0.00002
7644.3
40148.8
0.24
0.00000
0.00002
9481.4
49797.1
0.26
0.00000
0.00002
11648.4
61178.7
0.28
0.00000
0.00001
14203.5
74598.4
0.30
0.00000
0.00001
17223.8
90461.3
0.32
0.00000
0.00001
20794.0
99999.9
0.34
0.00000
0.00001
25012.3
99999.9
0.36
0.00000
0.00001
29992.7
99999.9
0.38
0.00000
0.00001
35866.7
99999.9
0.40
0.00000
0.00000
42786.3
99999.9
0.42
0.00000
0.00000
50926.7
99999.9
0.44
0.00000
0.00000
60489.8
99999.9
0.46
0.00000
0.00000
71707.4
99999.9
0.48
0.00000
0.00000
84813.1
99999.9
0.50
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma=0.50
0.000 for 1 years
0.091 for 50 years
0.121 for 100 years
val * 0.00 0.00
Florida Pannandle Seismic Hazard
site at long 84.906, lat 31.186
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18793
0.00247
77.2
405.4
0.02
0.18739
0.00301
63.2
331.9
0.04
0.00196
0.00051
374.5
1966.8
0.04
0.00208
0.00093
204.6
1074.5
0.06
0.00042
0.00009
2143.7
11259.1
0.06
0.00058
0.00035
540.4
2838.1
0.08
0.00004
0.00004
4332.5
22755.0
0.08
0.00019
0.00016
1201.7
6311.6
0.10
0.00001
0.00004
4980.5
26158.3
0.10
0.00008
0.00008
2318.2
12175.5
0.12
0.00003
0.00001
19933.5
99999.9
0.12
0.00003
0.00005
3985.5
20932.1
0.14
0.00000
0.00001
19933.5
99999.9
0.14
0.00002
0.00003
6253.8
32845.6
0.16
0.00000
0.00001
19933.5
99999.9
0.16
0.00001
0.00002
9143.3
48021.6
0.18
0.00000
0.00001
19933.5
99999.9
0.18
0.00001
0.00002
12671.8
66553.6
0.20
0.00000
0.00001
19933.5
99999.9
0.20
0.00000
0.00001
16886.6
88690.3
0.22
0.00000
0.00001
19933.5
99999.9
0.22
0.00000
0.00001
21866.8
99999.9
0.24
0.00001
0.00000
99999.9
99999.9
0.24
0.00000
0.00001
27729.4
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00001
34628.5
99999.9
0.28
0.00000
0.00000
99999.9
99999.9
0.28
0.00000
0.00000
42711.5
99999.9
0.30
0.00000
0.00000
99999.9
99999.9
0.30
0.00000
0.00000
52241.3
99999.9
0.32
0.00000
0.00000
99999.9
99999.9
0.32
0.00000
0.00000
63481.6
99999.9
0.34
0.00000
0.00000
99999.9
99999.9
0.34
0.00000
0.00000
76740.5
99999.9
0.36
0.00000
0.00000
99999.9
99999.9
0.36
0.00000
0.00000
92375.2
99999.9
0.38
0.00000
0.00000
99999.9
99999.9
0.38
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext Droo * 0.000 for 1 years
0.990 ext prob * 0.051 for 50 years
0.990 ext oroo * 0.059 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for
0.074 for
0.094 for
0.00
1 years
50 years
100 years
0.00

florida Pannandle Seismic Hazara
site at long 84.208, lat 31.191
snortest dist to fault* 9999.999 km
in
oo
O UKf-r-MOlANCKOOO
l/> X
MrjSMNsICO&OOV
M ~ r-MOON^
¡J w
?£
srgr-oBjKOsjcooa
.r-ogKfMOKwcO&
U'Ovi(\jm^«No(>Nfro
- NKNOOmS(>(>ft
•-Mooinnosao
'•NtAlOOO
.*-t"0*-inN»-»-ooo •
â–º OON.f\J*-00000000
-fVJOOOOOOOOOO
JOOOOOOOOOOO
<00000000000
It
OOOOOOOOOOO M
- CK^'-O'ONrrOOO
- «-inom^-Ooooooo .
O >K-r\jooooooooo <
« '''-OOOOOOOOOOOO
- o»-oooooooooo :
-
fl> OOOOOOOOOOOO I
•ooooooooooo n
£ -
o o o o
;3§
OCO^OO-OOOO
orvjOrNjN-tO'Oaoo-
gtoeoNvíKiNirtx
flo-iot-togo»»*
fiOKtlflOM-fl jfr-l
*- cm ki •© <► o-
oíM'Okicm*-*-oo •
^^oooooogo
300000000
300000000
OOOOOOO VI
X o o o
— t>«po'0'0K>.-»-ooo i
-- ti^i'-oooooor
a >n-*-oooooooc
m 'vooooooooooc
■*- u«-oooooooooc_ ,
ooooooooodooc
> •
p
N^OOONsl-OBOfSI X
•0000»-r-»-^rNN
•ooooooooooo•
-f^inooo-OO-O-OOOO
orvjo-oo-oo-oo
(.^ifMf^r-OOOOOOOO
. X «-• KIOOOOOOOOO
i ".cmoooooooooo
OOOOOOOOOOOO
• KOOOOOOOOOOO
I O
I OOOOOOOOOOO »->
•Orgmf'-.-oooooo >
1 t-rvjoOIMOOOOOOOO (I
I xeg*-ooooooooo
^¿OOOOOOOOOOO X
I 0^-0000000000 —
â– 
I OOOOOOOOOOOO •
^â– OQOOr-r-^r-r-fgfM.
•OOOOOOOOOOOI
- O O W
IT* O
" s
> O O O O
* m o 4 in c.
gggoSo;
- - - O o o O
ILL» M N O-
: o o <>
°°So
•U'
O ^ w v w
l *J â–  X X K O
•J K 4^ 4* It ft» O
M88ooo-
8 codo Z>
«-•OOOiOOOOOOOO
oinr-oooooooo
cmoooooooooo
OOOOOOOOOOOO
KOOOOOOOOOOO
1 • • (0
OOOOOOOOOOOW
á-o CM C
58§
O i/I â– O (> (MO <
* O O O <
O O <-
_ O o < .
OOOOOOOOO—
—
- *> oooooooooooo a
*
rM J oeOONvj-omOfM
•0000*-»-r-r-»-fS|N--
• •
OOOOOOOOOOOW
5 ?
-O •
a c i_ i_ >
- o o o
i ---V
> ooo I
N * O --Í •O «-
•— - - O O O ft»
M W W
JkLI I N»
coo $â– 
888d
S J|o aQC
L ■ • K K K O
•» W 4- « «I •> O
N88ooo"
w O
8 8ooo P
a
o o
I > •- Kl O' •- CM Kl
(IN vifMOJvIO
•« m>omk r-
. (- •- (M m
tcssc
oino-i
O m -O (M
»- fM n|
•ssggggg
â–  K o o o o o o
> oooooooooooo v* X
^ M W
— «»S(0-OM<1
- b h ° °
O >-K- r- o o O O
o o o o
o o o o
o o o o
o o o o
O O Í
o o >
ooo
o o
o o X
• 0000000000000 k
> •
o
cm <3 a) o ru vj -oeooojvt X
^OOOOr-^r-r-r-(\jrgfM
•ooooooooooooa
• « m
ooo
XXX
gss
ooo
L'OOOviO‘OOOOO‘0-0
k k k
a « a
ooo
sis
o cm
o in
o o
Ú
— — ~ o o o o
•n
o •-
•
s88
.. .g.
8 8 8o
a o a •_
:zm,
?g
o o o *■»

186
Florida Panhandle Seismic Hazard
sice at long 86.980, lat 30.552
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18866
0.00174
109.3
574.2
0.02
0.18847
0.00193
98.7
518.3
0.04
0.00120
0.00054
354.0
1859.2
0.04
0.00120
0.00072
262.8
1380.1
0.06
0.00043
0.00011
1692.9
8891.4
0.06
0.00040
0.00032
594.9
3124.5
0.08
0.00004
0.00007
2785.6
14630.3
0.08
0.00016
0.00016
1165.4
6120.6
0.10
0.00001
0.00006
3039.9
15965.9
0.10
0.00007
0.00009
2022.5
10622.4
0.12
0.00005
0.00002
12163.9
63885.8
0.12
0.00003
0.00006
3187.7
16742.0
0.14
0.00000
0.00002
12163.9
63885.8
0.14
0.00002
0.00004
4667.7
24515.2
0.16
0.00000
0.00002
12163.9
63885.8
0.16
0.00001
0.00003
6471.8
33990.4
0.18
0.00000
0.00002
12163.9
63885.8
0.18
0.00001
0.00002
8622.8
ui
03
CO
0.20
0.00000
0.00002
12163.9
63885.8
0.20
0.00001
0.00002
11163.8
58633.2
0.22
0.00000
0.00002
12163.9
63885.8
0.22
0.00000
0.00001
14156.1
74349.1
0.24
0.00002
0.00000
99999.9
99999.9
0.24
0.00000
0.00001
17679.9
92856.6
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00001
21834.1
99999.9
0.28
0.00000
0.00000
99999.9
99999.9
0.28
0.00000
0.00001
26726.8
99999.9
0.30
0.00000
0.00000
99999.9
99999.9
0.30
0.00000
0.00001
32505.5
99999.9
0.32
0.00000
0.00000
99999.9
99999.9
0.32
0.00000
0.00000
39331.7
99999.9
0.34
0.00000
0.00000
99999.9
99999.9
0.34
0.00000
0.00000
47393.1
99999.9
0.36
0.00000
0.00000
99999.9
99999.9
0.36
0.00000
0.00000
56907.1
99999.9
0.38
0.00000
0.00000
99999.9
99999.9
0.38
0.00000
0.00000
68125.0
99999.9
0.40
0.00000
0.00000
99999.9
99999.9
0.40
0.00000
0.00000
81337.6
99999.9
0.42
0.00000
0.00000
99999.9
99999.9
0.42
0.00000
0.00000
96879.5
99999.9
0.44
0.00000
0.00000
99999.9
99999.9
0.44
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext prob * 0.053 for 50 years
0.990 ext prop * 0.065 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma*0.50
0.000 for 1 years
0.074 for 50 years
0.098 for 100 years
yr val = 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 86.286, lat 30.567
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18871
0.00169
112.4
590.1
0.02
0.18839
0.00201
94.5
496.5
0.04
0.00125
0.00045
423.7
2225.3
0.04
0.00134
0.00068
280.7
1474.1
0.06
0.00037
0.00008
2533.5
13306.1
0.06
0.00041
0.00027
697.4
3662.7
0.08
0.00004
0.00003
6133.2
32212.4
0.08
0.00015
0.00013
1506.7
7913.2
0.10
0.00001
0.00003
7517.8
39484.3
0.10
0.00006
0.00007
2901.7
15239.8
0.12
0.00002
0.00001
30097.4
99999.9
0.12
0.00003
0.00004
5069.1
26623.4
0.14
0.00000
0.00001
30097.4
99999.9
0.14
0.00001
0.00002
8152.2
42816.4
0.16
0.00000
0.00001
30097.4
99999.9
0.16
0.00001
0.00002
12239.3
64282.1
0.18
0.00000
0.00001
30097.4
99999.9
0.18
0.00000
0.00001
17383.6
91300.3
0.20
0.00000
0.00001
30097.4
99999.9
0.20
0.00000
0.00001
23651.5
99999.9
0.22
0.00000
0.00001
30097.4
99999.9
0.22
0.00000
0.00001
31142.9
99999.9
0.24
0.00001
0.00000
99999.9
99999.9
0.24
0.00000
0.00000
40011.3
99999.9
0.26
0.00000
0.00000
99999.9
99999.9
0.26
0.00000
0.00000
50470.1
99999.9
0.28
0.00000
0.00000
99999.9
99999.9
0.28
0.00000
0.00000
62734.3
99999.9
0.30
0.00000
0.00000
99999.9
99999.9
0.30
0.00000
0.00000
77185.5
99999.9
0.32
0.00000
0.00000
99999.9
99999.9
0.32
0.00000
0.00000
94217.7
99999.9
0.34
0.00000
0.00000
99999.9
99999.9
0.34
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained tor time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.049 for 50 years
0.990 ext prob * 0.057 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for
0.068 for
0.087 for
0.00
1 years
50 years
100 years
0.00

187
Florida Panhandle Seismic Hazard
site at long 85.592, lat 30.579
snortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18883
0.00157
121.1
636.0
0.04
0.00122
0.00035
544.6
2860.4
0.06
0.00030
0.00005
3686.7
19362.8
0.08
0.00004
0.00001
25265.4
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18843
0.00197
96.5
507.0
0.04
0.00137
0.00061
314.4
1651.2
0.06
0.00038
0.00022
847.5
4451.4
0.08
0.00013
0.00009
2007.0
10541.1
0.10
0.CG005
0.00004
4330.3
22743.2
0.12
0.00002
0.00002
8700.0
45693.3
0.14
0.00001
0.00001
16485.9
86585.6
0.16
0.00001
0.00001
29685.4
99999 9
0.18
0.00000
0.00000
51010.3
99999.9
0.20
0.00000
0.00000
84009.2
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not ootained for time*
sol not ootainea for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext proo * 0.046 for 50 years
0.990 ext proo * 0.053 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in
atten
, sigma*0.50
0.000
for
1 years
0.063
for
50 years
0.079
for
100 years
yr val * 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 84.898, lat 30.588
snortest dist to fault* 9999.999 km
zero attenuation variaoility
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18888
0.00152
125.4
658.7
0.04
0.00120
0.00031
604.5
3174.7
0.06
0.00027
0.00005
3819.6 20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variaoility in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18845
0.00195
97.7
513.0
0.04
0.00137
0.00058
329.8
1732.0
0.06
0.00037
0.00021
905.2
4754.0
0.08
0.00012
0.00009
2171.6
11405.3
0.10
0.00005
0.00004
4744.5
24918.4
0.12
0.00002
0.00002
9683.0
50855.9
0.14
0.00001
0.00001
18754.4
98499.8
0.16
0.00000
0.00001
34816.0
99999.9
0.18
0.00000
0.00000
62339.9
99999.9
0.20 0.00000 0.00000 99999.9
total yearly events 0.19040
99999.9
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext proo * 0.045 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.00
0.000
0.061
0.077
for 1 years
for 50 years
for 100 years
0.00
Florida Panhandle Seismic Hazard
site at long 84.204, lat 30.593
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18893
0.00148
129.0 677.6
0.04
0.00117
0.00030
627.7 3296.5
0.06
0.00025
0.00005
3681.9 19337.2
0.08
0.00005
0.00001
33174.7 99999.9
0.10
0.00001
0.00000
99999.9 99999.9
0.12
0.00000
0.00000 99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yr<
0.02
0.18852
0.00188
101.1
530.9
0.04
0.00133
0.00056
342.0
1796.3
0.06
0.00035
0.00020
933.5
4903.0
0.08
0.00012
0.00009
2227.9
11700.9
0.10
0.00005
0.00004
4842.7
25434.1
0.12
0.00002
0.00002
9836.4
51660.7
0.14
0.00001
0.00001
18969.3
99627.1
0.16
0.00000
0.00001
35080.4
99999.9
0.18
0.00000
0.00000
62610.2
99999.9
0.20 0.00000 0.00000 99999.9
total yearly events 0.19040
99999.9
zero attenuation variability
sol not obtained for time*
sol not ootained for time*
0.990 ext proo â–  0.000 for 1 years
0.990 ext pro© * 0.045 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.00
0.000 for
0.060 for
0.076 for
0.00
1 years
50 years
100 years

188
Florida Panhandle Seismic Hazara
site at long 83.510, lat 30.595
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18898
0.00142
133.9
703.3
0.02
0.18857
0.00182
104.4
548.1
0.04
0.00112
0.00030
630.1
3309.1
0.04
0.00128
0.00054
349.5
1835.8
0.06
0.00023
0.00008
2534.6
13312.1
0.06
0.00034
0.00021
924.8
4857.2
0.08
0.00007
0.00001
33173.9
99999.9
0.08
0.00012
0.00009
2129.4
11183.7
0.10
0.00001
0.00000
99999 9
99999.9
0.10
0.00005
0.00004
4477.4
23516.0
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
8841.6
46437.4
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
16661.8
87510.1
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00001
30244.4
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
53189.1
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
91086.1
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
variability in
atten
, sigma*0
sol
not ootained for time*
sol
not obtained for time*
0.990 ext prob * 0.000 for
1 years
0.000
for
1
years
0.990 ext prob * 0.046 for
50 years
0.061
for
50
years
0.990 ext prob * 0.056 for
100 years
0.077
for
100
years
ratio 100 yr 0.990 extreme value to 1 yr val
= 0.00
0.00
Florida Panhandle Seismic Hazard
site at long 82.816, lat 30.593
snortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18910
0.00130
146.7
770.6
0.02
0.18866
0.00174
109.2
573.7
0.04
0.00096
0.00034
567.3
2979.7
0.04
0.00121
0.00053
356.1
1870.2
0.06
0.00024
0.00010
2004.0
10524.9
0.06
0.00032
0.00021
891.4
4681.8
0.08
0.00008
0.00001
16472.1
86512.3
0.08
0.00012
0.00010
1951.1
10247.0
0.10
0.00001
0.00000 99999.9
99999.9
0.10
0.00005
0.00005
3940.5
20695.8
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00003
7536.9
39584.0
0.14
0.30000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
13836.8
72671.8
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00001
0.00001
24567.7
99999.9
0.18
0.00000
0.00000
99999 9
99999.9
0.18
0.00000
0.00000
42383.4
99999.9
0.20
0.00000
0.00000 99999.9
99999.9
0.20
0.00000
0.00000
71343.2
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
0.22
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
total yearly events
0.19040
zero attenuation variability
variability in
atten
, sigma=0.50
sol not ootained for time*
sol not ootained for time*
0.990 ext orob * 0.000 for
1 years
0.000
for
1 years
0.990 ext prob = 0.048 for
50 years
0.062
for
50 years
0.990 ext prob * 0.059 for
100 years
0.079
for
100 years
ratio 100 yr 0.990 extreme value to 1 yr val = 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 86.960, lat 29.954
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18924
0.00116
163.4
858.4
0.02
0.18901
0.00139
137.0
719.3
0.04
0.00093
0.00024
800.7
4205.2
0.04
0.00095
0.00044
436.3
2291.4
0.06
0.00019
0.00005
3819.6
20060.7
0.06
0.00027
0.00016
1169.2
6141.0
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00009
0.00007
2741.8
14400.3
0.10
0.00001
0.00000 99999.9
99999.9
0.10
0.00004
0.00003
5853.4
30742.9
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00002
0.00002
11687.2
61382.5
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
22188.3
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
40463.6
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
71332.4
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040 total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not ootained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.042 for 50 years
0.990 ext prob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000 for 1 years
0.056 for 50 years
0.071 for 100 years
0.00
0.00

189
Florida Panhandle Seismic Hazard
site at long 86.270, lac 29.969
snortest disc to fault* 9999.999 tern
zero attenuation variaDility
j.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18920
0.00120
158.2
830.7
0.04
0.00096
0.00025
767.8
4032.7
0.06
0.00020
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000 99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time»
sol not obtained for time»
0.990 ext orob = 0.000 for 1 years
0.990 ext Droo » 0.043 for 50 years
0.990 ext orob » 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma» 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18892
0.00148
128.5
674.8
0.04
0.00103
0.00046
417.8
2194.4
0.06
0.00029
0.00017
1127.1
5919.4
0.08
0.00010
0.00007
2653.3
13935.5
0.10
0.00004
0.00003
5684.1
29853.5
0.12
0.00002
0.00002
11385.2
59796.4
0.14
0.00001
0.00001
21677.4
99999.9
0.16
0.00000
0.00000
39633.3
99999.9
0.18
0.00000
0.00000
70022.3
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma=0.50
0.000 for 1 years
0.056 for 50 years
0.072 for 100 years
val » 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 85.580, lat 29.981
shortest dist to fault» 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18923
0.00117
162.9
855.4
0.04
0.00091
0.00026
726.8
3817.4
0.06
0.00021
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000 99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000 99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained tor time*
sol not obtained for time*
0.990 ext prob » 0.000 for 1 years
0.990 ext orob = 0.043 for 50 years
0.990 ext proo » 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18890
0.00150
126.9
066.3
0.04
0.00104
0.00046
416.2
2185.9
0.06
0.00029
0.00017
1112.7
5844.3
0.08
0.00010
0.00007
2599.9
13655.1
0.10
0.00004
0.00003
5549.3
29145.4
0.12
0.00002
0.00002
11104.4
58321.4
0.14
0.00001
0.00001
21153.8
99999.9
0.16
0.00000
0.00000
38725.2
99999.9
0.18
0.00000
0.00000
68519.8
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.057 for 50 years
0.073 for 100 years
val * 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 84.890, lat 29.990
shortest dist to fault* 9999.999 km
zero attenuation variability
J.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18923
0.00117
162.3
852.4
0.04
0.00088
0.00029
660.4
3468.7
0.06
0.00024
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000 99999.9
99999.9
0.20
0.00000
0.00000 99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18890
0.00150
126.6
665.0
0.04
0.00103
0.00047
406.1
2132.7
0.06
0.00029
0.00018
1065.9
5598.5
0.08
0.00010
0.00008
2469.1
12967.8
0.10
0.00004
0.00004
5259.0
27621.0
0.12
0.00002
0.00002
10538.4
55348.6
0.14
0.00001
0.00001
20135.5
99999.9
0.16
0.00000
0.00001
36993.2
99999.9
0.18
0.00000
0.00000 65696.4
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext orob * 0.044 for 50 years
0.990 ext prob * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for
0.058 for
0.074 for
0.00
1 years
50 years
100 years
0.00

Florida Pannandie Seismic Hazard
sice ac long 84.200, lac 29.995
o*-»-f'-oeooooo
g VI
OOOOOOOOOO VI
— O NO
— «- o o r\j
o *-
o •
I o o
OsIN»
•- o o c
o o o c
o o o c
o o o c
o o <
o o <
o o <
J •-
3 o o x —
ooooooooo c
J-i >0(0 0 >
o
(-ooin^-ooooooo
: xrvjrooooooooo
> '-'-OOOOOOOOO
- uoooooooooo
â– * XOOOOOOOOOO
3
J OOOOOOOOOO 4»
) oio -i
JO>NO
i >o o o
SCO O u
I u »- o o
*- o
_ o o
o o o
o o o
o o o
VI VI V)
U C l_
aaram
41 4* 4>
X X X
•OOOOOOOOOO «
M
LCOrvi^O-OOO-OOO-
- C K in-O fvj <> (MM> O'O ■—
Q >WOO-ip»»^»ao ZJ
o o o o >
0 0 0 0 4*
o o o o
o o o O V
OOOO —
toooooooooooa
I 4* 0»
X
OJ -t -O eo O (M v| >o CO o
I •OOOO'-'— '-•“'-(M —
I e a
> -OOOOOOOOOO 4»
> omiMC
N It O^m L
5 II^S
- - - O O O 41
W M K
9 O
2 «- u M u mo-
coo 5-
2”~ 8 8 8c!
â–  a flQL
o - - 4» 4* 4*
u a <0 X K K o
«I p i i no
M 8 oopo"-
4- 4* & O £ O
2 2 o o o z
to
o o
> l io r-ini/mmoooo
• — oomrvirooo-o-o-o-
> *- O i f\j eg r\j ro Q O- <> I -» NinN-OKl»d-o>>
)V) — oj u> 5- & 5- 5-
^•0O»-K(MsiO*-('JO
* >'-orj-i>0'Ooo^
«irooifl»-(M'Ono
— -Í O r- N -fl r-
■ »- «-ÍMU300--0
I >-» -j'-oOooo
^ ooooooo
ooooooooo
KOOOOOOOO
OOOOOOOOOO V)
O (0 4
o u-> h-
o o o
- L{K>Nf ÓOOOC
2 2°°oooc
« '-«OOOOOOOC
— O'-OOOOOOOC
> £ ■-
^OOOOOOOOOOI
Nsj'Ocoarvjsi'O
JOOOO'-»-*-'-
•oooooooo
OOO X
»- ra
o o a
t-oiiiirto-o-o-oo-o-o-
0 0 0 4*
m>0-0(M>0
s t
)0100>0
- o K» fM«n
• rsi ir> vj oo
f\j i/> r\i
r- «VJ
: o o oo o
) com-ikinp* *0(0 0>
I'-w-iNO'-noJo
- 'JOMOSMMogfr-l
»-n-i o oo m 3 jy o
*- K» <>> O»
* «- o
» >4
>* •—
: uo
3r- o Ó
OOO
OOOO
OOOO
Nfr-oo •
o o o o o o
o o o o o
o o o o o
o o o o o
X OOOOOOOOOOI
«A V) (A
Ccu
10 to to
«» 4» 41
§5C
OOO
>00000 >
3 0 0 0 0 0 4»
3 0 0 0 0 0
300000X
«0 OOOOOOOOOOO I
joS§2
3 0 0 0 0
o o o o o a
l. K m M a (MMM3- O'O-
wsgc
-V o U
“2 3:
4IOQ O
«/» • >4-
fM
• oo o
—* 4*
8 -
a o> VI
Í 85
. . -5 o o o o c
-'-ooooooc
JOOOOOOOC
OOOOOOOOOO<
. - -3 O O O c
> O O O O O c
3 O O O O O C
> O O O c
• xo c
O U o o o c
c o • • • • - —
4» ooooooooooo a
a —
SI I
4» 4» 4>
ü°°
5||
o â– *-
tss
“88
” 5
a
OOO
OlA4 I
"ást
• • X
O O O 41
M M M
888¿
ecu
o o a c
*2 4*.???
sw t
— 4» C
C 4. o
O — SZ
— «/>«/*
•OOOOOOOOOO 4*
88
0 0 0 4*

191
Florida Panhandle Seismic Hazard
site at long 86.941, lat 29.356
shortest dist to fault* 9999.999 km
zero attenuation variability variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs)
g.m.
occ/yr
exc/yr
rievents) r(yrs)
0.02
0.18945
0.00095
201.1
1056.1
0.02
0.18924
0.00116
164.5
863.8
0.04
0.00074
0.00020
940.4
4939.1
0.04
0.00080
0.00036
526.6
2765.7
0.06
0.00015
0.00005
3819.6
20060.7
0.06
0.00022
0.00014
1383.0
7263.8
0.08
0.00004
0.00001
33174.1
99999.9
0.08
0.00008
0.00006
3169.3
16645.5
0.10
0.00001
0.00000
99999.9
99999.9
0.10
0.00003
0.00003
6627.6
34809.1
0.12
0.00000
0.00000
99999.9
99999.9
0.12
0.00001
0.00001
13005.0
68303.4
0.14
0.00000
0.00000
99999.9
99999.9
0.14
0.00001
0.00001
24337.6
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
43857.0
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
76554.0
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
total yearly events
0.19040
zero attenuation variability
variability in
atten, sigma=0.50
sol
sol
not obtained for time*
not obtained for time*
0.990 ext prob « 0.000 for
1 years
0.000
for 1
years
0.990 ext prob * 0.040 for
50 years
0.052
for 50
years
0.990 ext prob * 0.050 for
100 years
0.068
for 100
years
ratio 100 yr 0.990 extreme value to 1 yr val * 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 86.255, lat 29.371
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18946
0.00094
201.7 1059.4
0.04
0.00074
0.00021
918.3 4822.9
0.06
0.00016
0.00005
3819.6 20060.7
0.08
0.00004
0.00001
33174.1 99999.9
0.10
0.00001
0.00000
99999.9 99999.9
0.12
0.00000
0.00000
99999.9 99999.9
0.14
0.00000
0.00000
99999.9 99999.9
0.16
0.00000
0.00000
99999.9 99999.9
0.18
0.00000
0.00000
99999.9 99999.9
0.20
0.00000
0.00000
99999.9 99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.040 for 50 years
0.990 ext prob * 0.050 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma* 0.50
g.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18922
0.00118
161.6
848.5
0.04
0.00081
0.00037
521.3
2737.8
0.06
0.00023
0.00014
1368.3
7186.4
0.08
0.00008
0.00006
3132.5
16452.0
0.10
0.00003
0.00003
6549.9
34401.0
0.12
0.00001
0.00001
12859.1
67537.5
0.14
0.00001
0.00001
24084.2
99999.9
0.16
0.00000
0.00000
43440.1
99999.9
0.18
0.00000
0.00000
75890.8
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma*0.50
0.000 for 1 years
0.052 for 50 years
0.068 for 100 years
0.00 0.00
Florida Panhandle Seismic Hazard
site at long 85.569, lat 29.383
shortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18945
0.00095
201.2
1056.5
0.04
0.00071
0.00024
809.7
4252.8
0.06
0.00019
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18918
0.00122
156.1
819.9
0.04
0.00084
0.00038
499.0
2620.6
0.06
0.00023
0.00015
1290.0
6775.1
0.08
0.00008
0.00006
2931.3
15395.7
0.10
0.00003
0.00003
6126.3
32176.2
0.12
0.00002
0.00002
12066.0
63371.6
0.14
0.00001
0.00001
22705.3
99999.9
0.16
0.00000
0.00000
41162.7
99999.9
0.18
0.00000
0.00000
72265.6
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext prob * 0.000 for 1 years
0.990 ext prob * 0.042 for 50 years
0.990 ext prob * 0.051 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.000
0.053
0.069
* 0.00
for 1 years
for 50 years
for 100 years
0.00

192
florida Pannandle Seismic Hazard
site at long 84.882, lat 29.392
snortest dist to faults 9999.999 km
zero attenuation variaoility
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18946
0.00094
203.0
1066.0
0.04
0.0C068
0.00026
732.1
3845.0
0.06
0.00021
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000 99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained tor time*
sol not ootained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext prob * 0.043 for 50 years
0.990 ext prob = 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18917
0.00123
154.3
810.6
0.04
0.00084
0.00039
485.8
2551.3
0.06
0.00024
0.00015
1234.6
6^84.2
0.08
0.00009
0.00007
2781.6
14609.5
0.10
0.00004
0.00003
5802.9
30477.6
0.12
0.00002
0.00002
11448.9
60131.0
0.14
0.00001
0.00001
21615.3
99999.9
0.16
0.00000
0.00000
39336.3
99999.9
0.18
0.00000
0.00000
69323.8
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma=0.50
0.000 for 1 years
0.054 for 50 years
0.071 for 100 years
val = 0.00 0.00
Florida Panhandle Seismic Hazard
site at long 84.196, lat 29.397
snortest dist to fault* 9999.999 km
zero attenuation variability
j.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18946
0.00094
201.9
1060.2
0.04
0.00066
0.00028
673.6
3537.6
0.06
0.00023
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18916
0.00124
154.0
8C8.9
0.04
0.00083
0.00040
473.1
2484.7
0.06
0.00024
0.00016
1184.0
6218.3
0.08
0.00009
0.00007
2651.2
13924.4
0.10
0.00004
0.00003
5527.5
29030.9
0.12
0.00002
0.00002
10927.5
57392.6
0.14
0.00001
0.00001
20695.0
99999.9
0.16
0.00000
0.00001
37790.9
99999.9
0.18
0.00000
0.00000
66826.6
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo â–  0.000 for 1 years
0.990 ext prob * 0.044 for 50 years
0.990 ext proo * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma*0.50
0.00
0.000 for 1 years
0.055 for 50 years
0.072 for 100 years
0.00
Florida Panhandle Seismic Hazard
site at long 83.510, lat 29.398
snortest dist to fault* 9999.999 km
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18945
0.00095
200.8
1054.6
0.04
0.00065
0.00030
630.9
3313.8
0.06
0.00025
0.00005
3819.6
20060.7
0.08
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma* 0.50
j.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18916
0.00124
153.4
805.6
0.04
0.00083
0.00041
462.1
2426.9
0.06
0.00025
0.00017
1143.2
6004.1
0.08
0.00009
0.00007
2548.9
13387.0
0.10
0.00004
0.00004
5312.9
27903.7
0.12
0.00002
0.00002
10521.0
55257.2
0.14
0.00001
0.00001
19974.5
99999.9
0.16
0.00000
0.00001
36575.3
99999.9
0.18
0.00000
0.00000 64851.0
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtained for time*
sol not obtained for time*
0.990 ext proo * 0.000 for 1 years
0.990 ext prop * 0.045 for 50 years
0.990 ext proo * 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1 yr val
variability in atten, sigma=0.50
0.000 for 1 years
0.056 for 50 years
0.073 for 100 years
0.00
0.00

193
Floriaa Pannandie Seismic Mazara
sice at long 32.823, lac 29.397
snortest aist to fault* 9999.999 1cm
zero attenuation variability
g.m.
occ/yr
exc/yr
r(events) r(yrs)
0.02
0.18943
0.00097
196.5
1032.0
0.04
0.00067
0.00030
629.5
3306.2
0.06
0.00025
0.00005
3819.6
20060.7
0.03
0.00004
0.00001
33174.1
99999.9
0.10
0.00001
0.00000
99999.9
99999.9
0.12
0.00000
0.00000
99999.9
99999.9
0.14
0.00000
0.00000
99999.9
99999.9
0.16
0.00000
0.00000
99999.9
99999.9
0.18
0.00000
0.00000
99999.9
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
zero attenuation variability
sol not obtaineb tor time*
sol not obtained for time*
0.990 ext oroo * 0.000 for years
0.990 ext orob * 0.045 for 50 years
0.990 ext oroo = 0.052 for 100 years
ratio 100 yr 0.990 extreme value to 1
variability in atten, sigma* 0.50
J.m.
occ/yr
exc/yr
r(events) r(yrs
0.02
0.18921
0.00119
159.6
838.3
0.04
0.00078
0.00041
463.9
2436.6
0.06
0.00C24
0.00017
1138.8
5980.9
0.08
0.00009
0.00008
2537.5
13327.0
0.10
0.00004
0.00004
5292.5
27796.5
0.12
0.00002
0.00002
10487.9
55083.6
0.14
0.00001
0.00001
19922.7
99999.9
0.16
0.00000
0.00001
36495.3
99999.9
0.18
0.00000
0.00000
64735.1
99999.9
0.20
0.00000
0.00000
99999.9
99999.9
total yearly events 0.19040
variability in atten, sigma=0.50
0.000 for 1 years
0.056 for 50 years
0.073 for 100 years
val * 0.00 0.00

REFERENCES CITED
Addy, S. K. and R. T. Buffler, 1984, Seismic stratigraphy of
shelf and slope, northeastern Gulf of Mexico: American
Association of Petroleum Geologists Bulletin, v. 68, p.
1782-1789.
Amick, D. and R. Gelinas, 1991, The search for evidence of
large prehistoric earthquakes along the Atlantic seaboard:
Science, v. 251, p. 655-658.
Ando, C. J., F. A. Cook, J. E. Oliver, L. D. Brown and S. Kaufman,
1983, Crustal geometry of the Appalachian orogen from
seismic reflection studies: in Hatcher, R.D., H. Williams
and I. Zeitz, eds., Contributions to the Tectonics and
Geophysics of Mountain Chains, Geological Society of
America Memoir 158 p. 83-101.
Antoine, J. W. and J. L. Harding, 1965, Structure beneath
continental shelf, northeastern Gulf of Mexico: American
Association of Petroleum Geologists Bulletin, v. 49, p.
157-171.
Applin, P. L., 1951, Preliminary report on buried pre-Mesozoic
rocks in Florida and adjacent states: U.S. Geol. Surv. Circ.
91, 28 p.
Arden, D. D., 1974, Geology of the Suwannee Basin interpreted
from geophysical profiles: Transactions of the Gulf Coast
Association of Geological Societies, v. 24, p. 223-230.
Ball, M. M., R. G. Martin, R. Q, Foote and A. V. Applegate, 1988,
Structure and stratigraphy of the western Florida shelf.
U.S. Geol. Surv. Open-File Rpt. 88-439, 60 p.
194

195
Barnett, R. S., 1975, Basement structure of Florida and its
tectonic implications: Transactions of the Gulf Coast
Association of Geological Societies, v. 25, p. 122-142.
Barosh, P. J., 1981, Cause of seismicity in the eastern United
States: A preliminary appraisal: in Beavers, J.A., ed.,
Earthquakes and Earthquake Engineering: the Eastern
United States, Ann Arbor Science Publishers, Inc., Ann
Arbor, Mich., p. 397-417.
Bartók, P., 1993, Prebreakup geology of the Gulf of Mexico-
Caribbean: its relation to Triassic and Jurassic rift systems
of the region: Tectonics, v. 12, no. 2, p. 441-459.
Bass, M. N., 1969, Petrography and ages of crystalline
basement rocks of Florida—some extrapolations:
American Association of Petroleum Geologists Mem. 11,
p. 283-310.
Beatty, G. F., 1977, The study of lineaments and fracture traces
and correlation to springs along the Suwannee River from
Mayo, Florida to Branford, Florida : M.S. thesis, Univ. of
Florida, Gainesville, Fla., 90 p.
Behrendt, J. C., J. Schlee, J. M. Robb and M. K. Silverstein, 1974,
Structure of the continental margin of Liberia, west
Africa: Geological Society of America Bulletin, v. 85, p.
1143-1158.
Bellini, J. J., T. J. Bartolini, K. M. Lord and D. L. Smith, 1993,
Seismic attenuation in Florida (abst.): Geological Society of
America Abstracts with Programs, v. 25, no. 4, p. 3.
Bender, B. and K. Campbell, 1989, A note on the selection of
minimum magnitude for use in seismic hazard analysis:
Bulletin of the Seismological Society of America, v. 79, p.
199-204.
Bender, B. and D. M. Perkins, 1987, SEISR1SK III: A computer
program for seismic hazard estimation : U.S. Geol. Surv.
Bulletin 1772, 48 p.

196
Bergland, G. D., 1969, A guided tour of the fast Fourier
transform: IEEE Spectrum, v. 6, p. 41-52.
Bemreuter, D. L, J. B. Savy, R. W. Mensing and J. C. Chen, 1989,
Seismic hazard characterization of 69 nuclear power plant
sites east of the Rocky Mountains : U.S. Nuclear
Regulatory Commission NUREG/CR-5250.
Bollinger, G. A., 1973A, Seismicity of the southeastern United
States: Bulletin of the Seismological Society of America, v.
63, p. 1785-1808.
Bollinger, G. A., 1973B, Seismicity and crustal uplift in the
southeastern United States: American Journal of Science,
v. 273-A, p. 396-408.
Bollinger, G. A., 1975, A catalog of southeastern United States
earthquakes, 1754 through 1974 : Virginia Polytechnic
Institute and State University, Blacksburg, Va., 68 p.
Bollinger, G. A., 1977, Reinterpretation of the intensity data for
the 1886 Charleston, South Carolina, earthquake: in
Rankin, D.W., ed., Studies Related to the Charleston, South
Carolina, Earthquake of 1886-A Prehminary Report, U.S.
Geol. Surv. Prof. Paper 1028B, p. 17-32.
Bollinger, G. A., 1979, Attenuation of the Lg phase and the
determination of in the southeastern United States:
Bulletin of the Seismological Society of America, v. 69, p.
45-63.
Bollinger, G. A., 1983, Speculations on the nature of seismicity
at Charleston, South Carolina: in Gohn, G.S., ed., Studies
Related to the Charleston, South Carolina Earthquake of
1886-Tectonics and Seismicity, U.S. Geol. Surv. Prof.
Paper 1313, p.Tl-Tll.
Bollinger, G. A., M. C. Chapman, M. S. Sibol and J. K. Costain,
1985, An analysis of earthquake focal depths in the
southeastern U.S.: Geophysical Research Letters, v. 12, p.
785-788.

197
Bollinger, G. A., F. C. Davison, M. S. Sibol and J. B. Birch, 1989,
Magnitude recurrence relations for the southeastern
United States and its subdivisions: Journal of Geophysical
Research, v. 94, p. 2857-2873.
Brown, L. D., 1978, Recent vertical crustal movement along the
east coast of the United States: Tectonophysics, v. 44, p.
205-231.
Buffler, R. T., 1989, Distribution of crust, distribution of salt,
and the early evolution of the Gulf of Mexico basin: in
Gulf Coast Section of the Society of Economic
Paleontologists and Mineralogists Foundation Tenth
Annual Research Conference Program and Abstracts, p.
25-27.
Buffler, R. T. and D. S. Sawyer, 1985, Distribution of crust and
early history, Gulf of Mexico basin: Transactions of the
Gulf Coast Association of Geological Societies, v. 35, p.
333-344.
Bullard, E., J. E. Everett and A. G. Smith, 1965, The fit of the
continents around the Atlantic: Symposium on
Continental Drift, Royal Soc. of London Phil. Trans., ser A.
258, p. 941-966.
Burke, K., C. Cooper, J. F. Dewey, P. Mann and J. L. Pindell, 1984,
Caribbean tectonics and relative plate motions: in Bonini,
W.E., R.B. Hargraves and R. Shagam, eds., The Caribbean-
South American Plate Boundary and Regional Tectonics,
Geological Society of America Mem. 162, p. 31-63.
Campbell, K. W., 1981, A ground motion model for the central
United States based on near-source acceleration data: in
Beavers, J.E., ed., Earthquakes and Earthquake
Engineering: The Eastern United States, Ann Arbor
Science Publishers, Inc., Ann Arbor, Mich., p. 213-232.
Chapman, M. C., G. A. Bollinger, M. S. Sibol and D. E. Stephenson,
1990, The influence of the Coastal Plain sedimentary
wedge on strong ground motions from the 1886
Charleston, South Carolina, earthquake: Earthquake
Spectra, v. 6, p. 617-640.

198
Chapman, M. C. and M. J. B. Rogers, 1989, Coda Q.in the
southern Appalachians: Geophysical Research Letters, v.
16, p. 531-534.
Chinnery, M. A., 1979, A comparison of the seismicity of three
regions of the eastern U.S.: Bulletin of the Seismological
Society of America, v. 69, p. 757-772.
Chowns, T. M. and C. T. Williams, 1983, Pre-Cretaceous rocks
beneath the Georgia coastal plain-regional implications:
in Gohn, G.S., ed., Studies Related to the Charleston, South
Carolina Earthquake of 1886-Tectonics and Seismicity,
U.S. Geol. Surv. Prof. Paper 1313, p. L1-L42.
Clarke, G. K. C., 1969, Optimum second-derivative and
downward-continuation filters: Geophysics, v. 34, p. 424-
437.
Coleman, N. M. and M. T. Stewart, 1982, Basement structure in
northwest peninsular Florida: Transactions of the Gulf
Coast Association of Geological Societies, v. 32, p. 153-
156.
Cook, F. A., D. S. Albaugh, L. D. Brown, S. Kaufman, J. E. Oliver
and R. D. Hatcher Jr., 1979, Thin-skinned tectonics in the
crystalline southern Appalachians; COCORP seismic-
reflection profiling of the Blue Ridge and Piedmont:
Geology, v. 7, p. 563-567.
Cook, F. A., L D. Brown, S. Kaufman, J. E. Oliver, and T. A.
Peterson, 1981, COCORP seismic profiling of the
Appalachian orogen beneath the Coastal Plain of Georgia:
Geological Society of America Bulletin, v. 92, p. 738-748.
Cooke, C. W. and A. C. Munyan, 1938, Stratigraphy of the
coastal plain of Georgia: American Association of
Petroleum Geologists Bulletin, v. 22, p. 789-793.
Cooley, J. W. and J. W. Tukey, 1965, An algorithm for the
machine calculation of complex Fourier series:
Mathematics of Computing, v. 19, p. 297-301.

199
Cordell, L and V. J. S. Grauch, 1982, Reconciliation of the
discrete and integral Fourier transforms: Geophysics, v.
47, p. 237-243.
Cornell, C. A., 1968, Engineering seismic risk analysis: Bulletin
of the Seismological Society of America, v. 58, p. 1583-
1606.
Corso, W., J. A. Austin and R. T. Buffler, 1989, The Early
Cretaceous platform off northwest Florida: Controls on
morphologic development of carbonate margins: Marine
Geology, v. 86, p. 1-14.
Cramer, F. H., 1971, Position of the north Florida Lower
Paleozoic block in Silurian time, phytoplankton evidence:
Journal of Geophysical Research, v. 67, p. 4754-4757.
Cramer, F. H., 1973, Middle and Upper Silurian chitinozoan
succession in Florida subsurface: Journal of Paleontology,
v. 47, p. 278-288.
Dallmeyer, R. D., 1984, ^Ar/^Ar ages from a pre-Mesozoic
crystalline basement penetrated at holes 537 and 538A
of the Deep Sea Drilling Project Leg 77, southeastern Gulf
of Mexico: tectonic implications: Initial Reports of the
Deep Sea Drilling Project, Leg 77, U.S. Govt. Printing Office,
Washington, D.C., p. 497-503.
Dallmeyer, R. D., 1987, ^Ar/^Ar age of detrital muscovite
within Lower Ordovician sandstone in the Coastal Plain
basement of Florida-implications for west African
terrane linkages: Geology, v. 15, p. 998-1001.
Dallmeyer, R. D., 1988, A tectonic linkage between the
Rockelide orogen (Sierra Leone) and the St. Lucie
metamorphic complex in the Florida subsurface: Journal
of Geology, v. 89, p. 183-195.
Dallmeyer, R. D., M. Caen-Vachette and M. Villeneuve, 1987,
Emplacement age of post-tec tonic granites in southern
Guinea (west Africa) and the peninsular Florida
subsurface: implications for origins of southern

200
Appalachian exotic terranes: Geological Society of
America Bulletin, v. 99, p. 87-93.
Dallmeyer, R. D. and M. Villeneuve, 1987, ^Ar/ ^Ar mineral
age record of polyphase tectonothermal evolution in the
southern Mauritanide orogen, southeastern Senegal:
Geological Society of America Bulletin, v. 98, p. 602-611.
Daniels, D. L, I. Zeitz and P. Popenoe, 1983, Distribution of
subsurface Lower Mesozoic rocks in the southeastern
United States, as interpreted from regional aeromagnetic
and gravity maps: in Gohn, G.S., ed., Studies Related to
the Charleston, South Carolina Earthquake of 1886-
Tectonics and Seismicity, U.S. Geol. Surv. Prof. Paper
1313, p. K1-K23.
Dietz, R. S. and J. C. Holden, 1970, Reconstruction of Pangaea:
Breakup and dispersion of continents, Permian to present:
Journal of Geophysical Research, v. 75, p. 4939-4956.
Dillon, W. P., C. K. Pauli and L. E. Gilbert, 1985, History of the
Atlantic continental margin off Florida: The Blake Plateau
basin: in Poag, C.W., ed., Geologic Evolution of the United
States Atlantic Margin, Van Nostrand Reinhold Co., Inc.,
New York, p. 189-215.
Dillon, W. P. and J. M. A. Sougy, 1974, Geology of west African
and Canary and Cape Verde Islands: in Naim, A.E.M. and
F.G. Stehli, eds., Ocean Basins and Margins: The North
Atlantic, Plenum Press, New York, p. 315-390.
Dobson, L. M., 1990, Seismic stratigraphy and geologic history
of Jurassic rocks, northeastern Gulf of Mexico: M.A.
thesis, Univ. of Texas, Austin, Tx., 166 p.
Dobson, L. and R. T. Buffler, 1991, Basement rocks and
structure, northeast Gulf of Mexico: Transactions of the
Gulf Coast Association of Geological Societies, v. 41, p.
191-206.
Drumheller, J. C., M. C. Chapman, R. M. White and L. T. Long,
1981, Delineation of seismotectonic regions in the
southeastern United States: in Beavers, J.E., ed.,

201
Earthquakes and Earthquake Engineering: the Eastern
United States, Ann Arbor Science Publishers, Inc., Ann
Arbor, Mich., p. 457-469.
Dunbar, J. A. and D. S. Sawyer, 1987, Implications of
continental crust extension for plate tectonics: An
example from the Gulf of Mexico: Tectonics, v. 6, p. 739-
755.
Ebasco Services, Inc., 1988, Probabilistic seismic hazard
evaluation: St. Lucie and Turkey Point nuclear power
plant sites: Florida Power and Light Co. Rpt., Juno Beach,
Fla., 430 p.
Evans, M. A., 1979, Fractures in oriented Devonian shale cores
from the Appalachian Basin :, M.S. thesis, West Virginia
University, Morgantown, W.Va.
Femald, E. A., ed., 1981, Atlas of Florida: The Florida State
University Foundation, Inc., Tallahassee, Ha., 275 p.
Fuller, B. D., 1967, Two-dimensional frequency analysis and
design of grid operators: Mining Geophysics, Society of
Exploration Geophysicists, Tulsa, Okla., p. 658-708.
Godson, R. H. and M. R. Mall, 1989, Potential-field geophysical
programs for IBM compatible computers: U.S. Geological
Survey Open-File Rpt. 89-197-A, 23 p.
Gordon, D. W., T. J. Bennett, R. B. Herrmann, and A. M. Rogers,
1970, The south-central Illinois earthquake of November
9, 1968: macroseismic studies: Bulletin of the
Seismological Society of America, v. 60, p. 953-971.
Gough, D. L, 1967, Magnetic anomalies and crustal structure in
eastern Gulf of Mexico: American Association of
Petroleum Geologists Bulletin, v. 51, p. 200-211.
Grauch, V. J. S., 1984, TAYLOR: A FORTRAN program using
Taylor series expansion level-surface or surface-level
continuation of potential-held data : U.S. Geological
Survey Open-File Rpt. 84-501, 31 p.

202
Grow, J. A. and R. E. Sheridan, 1982, Adandc continental
margin of the United States: in Palmer, A.R., ed.,
Persectives in Regional Geological Synthesis, Geological
Society of America DNAG Sp. Pub. 1, Boulder, Col., p. 143-
156.
Gupta, I. N. and K. L. McLaughlin, 1987, Attenuation of ground
motion in the eastern United States: Bulletin of the
Seismological Society of America, v. 77, p. 366-383.
Gutenberg, B. and C. F. Richter, 1944, Frequency of
earthquakes in California: Bulletin of the Seismological
Society of America, v. 34, p. 185-188.
Gutenberg, B. and C. F. Richter, 1956, Earthquake magnitude,
intensity, energy, and acceleration: Bulletin of the
Seismological Society of America, v. 46, p. 105-145.
Hamilton, R. M., 1981, Geologic origin of eastern U.S. seismicity:
in Beavers, J.E., ed., Earthquakes and Earthquake
Engineering: The Eastern United States, Ann Arbor
Science Publishers, Inc., Ann Arbor, Mich., p. 3-23.
Harris, L. D. and K. C. Bayer, 1979, Sequential development of
the Appalachian orogen above a master decollement-a
hypothesis: Geology, v. 7, p. 568-572.
Hatcher, R. D., 1989, Tectonic synthesis of the U.S.
Appalachians: in Hatcher, R.D., W.A. Thomas and G.W.
Viele, eds., The Appalachian-Ouachita Orogen in the
United States, Geological Society of America, v. F-2, p.
511-536.
Hatcher, R. D., I. Zietz and J. J. Litehiser, 1987, Crustal
subdivisions of the eastern and central United States and
a seismic boundary hypothesis for eastern seismicity:
Geology, v. 15, p. 528-532.
Heatherington, A. L. and P. A. Mueller, 1991, Geochemical
evidence for Triassic rifting in southwestern Florida:
Tectonophysics, v. 188, p. 291-302.

203
Heatherington, A. L, P. A. Mueller, and R. D. Dallmeyer, 1993,
Geochemical provenance of Florida basement components
(abst.): Geological Society of America Abstracts with
Programs, v. 25, no. 4, p. 22.
Heatherington, A. L, P. A. Mueller and K. A. D'Arcy, 1989,
Geochemical constraints on the evolution of the Florida
basement (abst.): Geological Society of America Abstracts
with Programs, v. 21, p. A164.
Heck, F. R., 1989, Mesozoic extension in the southern
Appalachians: Geology, v. 17, p. 711-714.
Hildenbrand, T. G., 1983, FFTFIL: A filtering program based on
two-dimensional Fourier analysis of geophysical data :
U.S. Geological Survey Open-File Rpt. 83-237, 59 p.
Hooker, V. E. and C. F. Johnson, 1969, Near-surface horizontal
stresses, including the effects of rock anisotropy: U.S.
Bureau of Mines Rept .of Inv. 7224, 29 p.
Horton, J. W., A. A. Drake and D. W. Rankin, 1989,
Tectonostradgraphic terranes and their Paleozoic
boundaries in the central and southern Appalachians:
Geological Society of America Spec. Paper 230, p. 213-
245.
Housner, G. W., 1969, Engineering estimates of ground shaking
and maximum earthquake magnitude: in The Fourth
World Conference on Earthquake Engineering, p. 1-27.
Howell, B. F., 1990, An Introduction to Seismological Research:
Cambridge University Press, Cambridge, England, 193 p.
Hubbard, S. S., C. Coruh and J. K. Costain, 1991, Paleozoic and
Grenvillian structures in the southern Appalachians:
Extended interpretations of seismic reflection data:
Tectonics, v. 10, p. 141-170.
Johnston, A. C., 1981, On the use of the frequency-magnitude
relation in earthquake risk assessment: in Beavers, J.E.,
ed., Earthquakes and Earthquake Engineering: The

204
Eastern United States, Ann Arbor Science Publishers, Inc.,
Ann Arbor, Mich., p. 161-181.
Johnston, A. C. and L. R. Kanter, 1990, Earthquakes in stable
continental crust: Scientific American, v. 262, p. 68-75.
Johnston, A. C. and S. J. Nava, 1985, Recurrence rates and
probability estimates for the New Madrid seismic zone:
Journal of Geophysical Research, v. 90, p. 6737-6753.
Johnston, A. C., D. J. Reinbold and S. I. Brewer, 1985,
Seismotectonics of the southern Appalachians: Bulletin of
the Seismological Society of America, v. 75, p. 291-312.
Jones, F. B., L. T. Long and J. H. McKee, 1977, Study of the
attenuation and azimuthal dependence of seismic-wave
propagation in the southeastern United States: Bulletin of
the Seismological Society of America, v. 67, p. 1503-1513.
Kane, M. F., 1977, Correlation of major eastern earthquake
centers with mafic/ultramafic basement masses: in
Rankin, D.W., ed., Studies Related to the Charleston, South
Carolina Earthquake of 1886--A Preliminary Report, U.S.
Geol. Surv. Prof. Paper 1028-0, p. 01-06.
Khoury, S. G. and U. Chandra, 1989, Probabilistic seismic
hazard results for sites in a region of low seismicity: in
Stepp, J.C., ed., Second symposium on current issues
related to nuclear power plant structures, equipment, and
piping with emphasis on resolution of seismic issues in
low-seismicity regions, Electric Power Research Institute,
Palo Alto, Cal., p. 1-75 to 1-98.
King, E. R., 1959, Regional magnetic map of Florida: American
Association of Petroleum Geologists Bulletin, v. 43, p.
2844-2854.
Klitgord, K. D. and J. C. Behrendt, 1979, Basin structure of the
U.S. Atlantic margin: Geological and Geophysical
Investigations of Continental Margins, American
Association of Petroleum Geologists Mem. 29, p. 85-112.

205
Klitgord, K. D., W. P. Dillon and P. Popenoe, 1983, Mesozoic
tectonics of the southeastern United States coastal plain
and continental margin: in Gohn, G.S., ed., Studies Related
to the Charleston, South Carolina Earthquake of 1886-
Tectonics and Seismicity, U.S. Geol. Surv. Prof. Paper
1313, p. P1-P15.
Klitgord, K. D., P. Popenoe and H. Schouten, 1984, Florida: A
Jurassic transform plate boundary: Journal of Geophysical
Research, v. 89, p. 7753-7772.
Klitgord, K. D. and H. Schouten, 1980, Mesozoic evolution of the
Atlantic, Caribbean, and Gulf of Mexico: in Pilger, R.J., ed.,
Symposium on the Origin of the Gulf of Mexico and the
Early Opening of the Central North Atlantic, Louisiana
State University, Baton Rouge, La., p. 100-101.
Kuang, J., L. T. Long and J. Mareschal, 1989, Intraplate
seismicity and stress in the southeastern United States:
Tectonophysics, v. 170, p. 29-42.
Le Pichón, X. and P. J. Fox, 1971, Marginal offsets, fracture
zones, and the early opening of the North Adantic:
Journal of Geophysical Research, v. 76, p. 6294-6208.
Long, L. T., 1974, The Florida earthquake of October 27, 1973:
Earthquake Notes, v. 45, p. 37-42.
Long, L. T., 1977, Regionizadon of the South Carolina seismic
zone (abst.): EOS, Transactions of the American
Geophysical Union, v. 58, p. 432.
Long, L. T. and R. P. Lowell, 1973, Thermal model for some
continental margin sedimentary basins and uplift zones:
Geology, v. 1, p. 87-88.
Lord, K. M., 1987, The tectonic evaluation of a gravity survey
along the eastern Coastal Plain of Georgia : M.S. thesis,
Univ. of Florida, Gainesville, Fla., 48 p.
Lord, K. M., 1992, A methodology for the rapid coproduction of
digitally filtered potential-field and structural contour

206
maps (abst.): Geological Society of America Abstracts with
Programs, v. 24, no. 2, p. 26.
Lord, K. M., P. A. McNeely, and D. L. Smith, 1992, A Bouguer
gravity investigation of the lithotectonics and structure of
the South Georgia Rift and adjacent areas (abst.): EOS,
Transactions of the American Geophysical Union, 1992
Spring meeting, v. 72, p. 289.
Lord, K. M. and D. L. Smith, 1991, The Floridan Plateau:
Evidence for a uniquely stable basement (abst.):
Geological Society of America Abstracts with Programs, v.
23, no. 1, p. 60.
Mann, P. and K. Burke, 1984, Neotectonics of the Caribbean:
Reviews of Geophysics and Space Physics, v. 22, p. 309-
362.
Manspeizer, W. and J. deBoer, 1989, Rift basins: in Hatcher,
R.D., W.A. Thomas and G.W. Viele, eds., The Appalachian-
Ouachita Orogen in the United States, v. F-2, Geological
Society of America, Boulder, Col., p. 319-333.
Martin, R. G., 1978, Northern and eastern Gulf of Mexico
continental margin: stratigraphic and structural
framework: in Bouma, A.H., G.T. Moore and J.M. Coleman,
eds., Framework, Facies, and Oil-Trapping Characteristics
of the Upper Continental Margin, American Association of
Petroleum Geologists, Tulsa, Okla., p. 21-42.
Mattson, P. H., 1984, Caribbean structural breaks and plate
movements: in Bonini, W.E., R.B. Hargraves and R.
Shagam, eds., The Caribbean-South American Plate
Boundary and Regional Tectonics, Geological Society of
America Memoir 162, p. 131-151.
McBride, J. H., 1991, Constraints on the structure and tectonic
development of the Early Mesozoic South Georgia Rift,
southeastern United States; seismic reflection data
processing and interpretation: Tectonics, v. 10, p. 1065-
1083.

207
McCartan, L. and M. E. Gettings, 1991, Possible relationship
between seismicity and warm intrusive bodies in the
Charleston, South Carolina and New Madrid, Missouri
areas: U.S. Geol. Surv. Bull. 1953, 18 p.
McClain, M. E. and E. Y. Karr, 1989, The Florida basement: Diary
of a turbulent past: The Compass, v. 66, p. 52-58.
McKeown, F. A., 1978, Hypothesis: many earthquakes in the
central and eastern United States are causally related to
mafic intrusive bodies: U.S. Geological Survey Journal of
Research, v. 6, p. 41-50.
McNeely, P. A., 1988, A Bouguer gravity survey and computer
model of north Florida and south Georgia: M.S. thesis,
Univ. of Florida, Gainesville, Fla., 86 p.
Miller, J. A., 1982, Structural control of Jurassic sedimentation
in Alabama and Florida: American Association of
Petroleum Geologists Bulletin, v. 66, p. 1289-1301.
Milton, C., 1972, Igneous and metamorphic basement rocks of
Florida: Fla. Bur. Geol. Bull. 55, 125 p.
Milton, C. and R. Grasty, 1969, Basement rocks of Florida and
Georgia: American Association of Petroleum Geologists
Bulletin, v. 53, p. 2483-2493.
Minsch, J. H., C. W. Stover, W. J. Person and R. B. Simon, 1975,
Earthquakes in the United States, October-December,
1975: U.S. Geol. Surv. Circ. 749D, 27 p.
Minsch, J. H., C. W. Stover, B. G. Reagor and P. K. Smith, 1981,
Earthquakes in the United States, July-September, 1980:
U.S. Geol. Surv. Circ. 853C, 42 p.
Mitchell, B. J. and H. J. Hwang, 1987, Effect of low Q.sediments
and crustal Q.on Lg attenuation in the United States:
Bulletin of the Seismological Society of America, v. 77, p.
1197-1210.
Mitchell-Tapping, H. J., 1982, Exploration analysis of the
Jurassic Apalachicola Embayment of Florida: Transactions

208
of the Gulf Coast Association of Geological Societies, v. 32,
p. 413-425.
Mitchum, R. M, 1978, Seismic stratigraphic investigation of
west Florida slope, Gulf of Mexico: in Bouma, A.H., G.T.
Moore and J.M. Coleman, eds., Framework, Facies, and Oil-
Trapping Characteristics of the Upper Continental Margin,
American Association of Petroleum Geologists Tulsa,
Okla., p. 193-223.
Molina-Garza, R. S., R. Van der Voo and J. Urrutia-Fucugauchi,
1992, Paleomagnetism of the Chiapas Massif, southern
Mexico: Evidence for rotation of the Maya Block and
implications for the opening of the Gulf of Mexico:
Geological Society of America Bulletin, v. 104, p. 1156-
1168.
Molnar, P. and L. R. Sykes, 1969, Tectonics of the Caribbean
and Middle America regions from focal mechanisms and
seismicity: Geological Society of America Bulletin, v. 80, p.
1639-1684.
Mott, C. J., 1983, Earthquake history of Florida: 1727 to 1981:
Florida Scientist, v. 46, p. 116-120.
Mueller, P. A., A. Heatherington, A. Nutman, I. Williams, and J.
Wooden, 1993, Probable provenance of Precambrian
zircons extracted from an Ordovician sandstone from the
Suwannee Basin (abst.): Geological Society of America
Abstracts with Programs, v. 25, no. 4, p. 58.
Mueller, P. A. and J. Porch, 1983, Tectonic implications of
Paleozoic and Mesozoic igneous rocks in the subsurface of
peninsular Florida: Transactions of the Gulf Coast
Association of Geological Societies, v. 33, p. 169-174.
Mullins, H. T., A. F. Gardulski, A. C. Hiñe, A. J. Melillo, S. W. Wise
and J. Applegate, 1988, Three-dimensional sedimentary
framework of the carbonate ramp slope of central west
Florida: A sequential seismic stratigraphic perspective:
Geological Society of America Bulletin, v. 100, p. 514-533.

209
Mullins, H. T. and G. W. Lynts, 1977, Origin of the northwest
Bahama Platform: Review and interpretation: Bulletin of
the Seismological Society of America, v. 88, p. 1447-1461.
Nelson, K. D., J. A. Amow, M. Giguere and S. Schamel, 1987,
Normal-fault boundary of an Appalachian basement
massif?: Results of COCORP profiling across the Pine
Mountain belt in western Georgia: Geology, v. 15, p. 832-
836.
Nelson, K. D., J. A. Amow, J. H. McBride, J. H. Willemin, J. Huang,
L. Zheng, J. E. Oliver, L. D. Brown and S. Kaufman, 1985A,
New COCORP profiling in the southeastern United States.
Part I: Late Paleozoic suture and Mesozoic rift basin:
Geology, v. 13, p. 714-718.
Nelson, K. D., J. H. McBride, J. A. Amow, J. E. Oliver, L. D. Brown
and S. Kaufman, 1985B, New COCORP profiling in the
southeastern United States. Part II: Brunswick and east
coast magnetic anomalies, opening of the north Atlantic:
Geology, v. 13, p. 718-721.
Nuttli, O. W., 1973A, Seismic wave attenuation and magnitude
relations for eastern North America: Journal of
Geophysical Research, v. 78, p. 876-885.
Nuttli, O. W., 1973B, The Mississippi Valley earthquakes of
1811 and 1812--Intensities, ground motion, and
magnitudes: Bulletin of the Seismological Society of
America, v. 63, p. 227-248.
Nuttli, O. W., 1974, Magnitude-recurrence relation for central
Mississippi Valley earthquakes: Bulletin of the
Seismological Society of America, v. 64, p. 1189-1207.
Nuttli, O. W., 1980, The relations of sustained maximum
ground acceleration and velocity to earthquake intensity
and magnitude: in State-of-the-Art for Assessing
Earthquake Hazards in the United States, U.S. Army
Engineer Waterways Experiment Station, Mise. Paper S-
73-1, Vicksburg, Miss.

210
Nuttli, O. W., 1981, Similarities and differences between
western and eastern United States earthquakes, and their
consequences for earthquake engineering: in Beavers,
J.E., ed., Earthquakes and Earthquake Engineering: The
Eastern United States, Ann Arbor Science Publishers,Inc.,
Ann Arbor, Mich., p. 25-51.
Obermeier, S. F., R. E. Weems and R. B. Jacobson, 1987,
Earthquake-induced liquefaction features in the coastal
South Carolina region: U.S. Geol. Surv. Open-File Rpt. 87-
504, 20 p.
Oglesby, W. R., M. M. Ball and S. Chaki, 1973, Bouguer anomaly
map of Florida and adjoining continental shelves: Fla.
Bur. Geol. Map Series 57.
Opdyke, N. D., D. S. Jones, B. J. MacFadden, D. L. Smith, P. A.
Mueller and R. D. Schuster, 1987, Florida as an exotic
terrane: Paleomagnetic and geochronologic investigation
of lower Paleozoic rocks from the subsurface of Florida:
Geology, v. 15, p. 900-903.
Opdyke, N. D., D. P. Spangler, D. L Smith, D. S. Jones and R. C.
Lindquist, 1984, Origin of the epeirogenic uplift of
Pliocene-Pleistocene beach ridges in Florida and
development of the Florida karst: Geology, v. 12, p. 226-
228.
Patterson, S. H. and S. M. Herrick, 1971, Chattahoochee
Anticline, Apalachicola Embayment, Gulf Trough, and
related structural features, southwestern Georgia, fact or
fiction?: Ga. Geol. Surv. Inf. Circ. 41, 16 p.
Person, W. J., R. B. Simon, C. W. Stover and J. H. Minsch, 1978,
Earthquakes in the United States, April-June, 1976 : U.S.
Geol. Surv. Circ. 766B, 27 p.
Pindell, J. L., 1985, Alleghenian reconstruction and subsequent
evolution of the Gulf of Mexico, Bahamas, and proto-
Caribbean: Tectonics, v. 4, p. 1-39.

211
Pindell, J. and J. F. Dewey, 1982, Permo-Triassic reconstruction
of western Pangea and the evolution of the Gulf of
Mexico/Caribbean region: Tectonics, v. 1, p. 179-211.
Plumb, R. A. and J. W. Cox, 1987, Stress directions in eastern
North America determined to 4.5 km from borehole
elongation measurements: Journal of Geophysical
Research, v. 92, p. 4805-4816.
Pojeta, J., J. Kriz and J. M. Berden, 1976, Silurian-Devonian
pelecypods and Paleozoic stratigraphy of subsurface
rocks in Florida and Georgia and related Silurian
pelecypods from BoUvia and Turkey: U.S. Geol. Surv. Prof.
Paper 879, 32 p.
Prowell, D. C., 1983, Index of faults of Cretaceous and Cenozoic
age in the eastern United States: U.S. Geol. Surv., Mise.
Field Studies Map MF-1269.
Prowell, D. C, 1989, Cretaceous and Cenozoic tectonism in the
Appalachians of the eastern United States: in Hatcher,
R.D., Jr., WA Thomas and G.W. Viele, eds., The
Appalachian-Ouachita Orogen in the United States, v. F-2,
Geological Society of America, Boulder, Col., p. 362-374.
Pulli, J. J. and K. Aki, 1981, Attenuation of seismic waves in the
lithosphere: comparison of active and stable areas: in
Beavers, JA., ed., Earthquakes and Earthquake
Engineering: The Eastern United States, Ann Arbor
Science Publishers, Inc., Ann Arbor, Mich., p. 129-141.
Reagor, G. and L. R. Brewer, 1987, Preliminary isoseismal map
and intensity distribution for the southern Illinois
earthquake of 10 June 1987: U.S. Geol. Surv. Open-File
Rpt. 87-578, 3 p.
Reagor, B. G., C. W. Stover and S. T. Algermissen, 1987,
Seismicity map of the state of Florida: U.S. Geological
Survey, Mise. Field Studies Map MF-1056.
Reagor, B. G., C. W. Stover, J. H. Minsch and L. R. Brewer, 1983,
Earthquakes in the United States, April-June, 1982 : U.S.
Geol. Surv. Circ. 896B, 28 p.

212
Reiter, L, 1990, Earthquake Hazard Analysis: Issues and
Insights: Columbia University Press, New York, 254 p.
Reitz, B. K., 1991,.. Reinterpretation of the origin of the Gulf of
Mexico based on data from the northwestern Florida shelf
(abst.): Geological Society of America Abstracts with
Programs, v. 23, no.l, p. 121.
Richardson, R. M. and L. M. Reding, 1991, North American plate
dynamics: Journal of Geophysical Research, v. 96, p.
12201-12223.
Rodbell, D. T. and E. S. Schweig, 1993, The record of seismically
induced liquefaction on late Quaternary terraces in
northwestern Tennessee: Bulletin of the Seismological
Society of America, v. 83, p. 269-278.
Ross, M. I. and C. R. Scotese, 1988, A hierarchical tectonic
model of the Gulf of Mexico and Caribbean region:
Tectonophysics, v. 155, p. 139-168.
Roussel, J., J. P. LeCorche, J. F. Ponsard, J. Sougy, and M.
Villeneuve, 1984, Panafrican to Hercynian deformation
in the Mauritanides and tectonic significance of gravity
anomalies: Tectonophysics, v. 109, p. 41-51.
Roussel, J. and J. L. Liger, 1983, A review of deep structure and
ocean-continent transition in the Senegal Basin (west
Africa): Tectonophysics, v. 91, p. 183-211.
Rowley, D. B. and J. L. Pindell, 1989, End Paleozoic-Early
Mesozoic western Pangean reconstruction and its
implications for the distribution of Precambrian and
Paleozoic rocks around meso-America: Precambrian
Research, v. 42, p. 411-444.
Salvador, A., 1987, Late Triassic-Jurassic paleogeography and
origin of Gulf of Mexico basin: American Association of
Petroleum Geologists Bulletin, v. 71, p. 419-451.
Sbar, M. L. and L. R. Sykes, 1973, Contemporary compressive
stress and seismicity in eastern North America: an

213
example of intra-plate tectonics: Geological Society of
America Bulletin, v. 84, p. 1861-1882.
Schafer, K., 1979, Recent thrusting in the Appalachians: Nature,
v. 280, p. 223-226.
Schlager, W., R. T. Buffler, D. Angstadt and R. Phair, 1984,
Geologic history of the southeastern Gulf of Mexico: in
Initial Reports of the Deep Sea Drilling Project, Leg 77,
U.S. Govt. Printing Office, Washington, D.C., p. 715-738.
Secor, D. T., A. W. Snoke and R. D. Dallmeyer, 1986, Character of
the Alleghenian orogeny in the southern Appalachians:
part in. Regional tectonic relations: Geological Society of
America Bulletin, v. 97, p. 1345-1353.
Seeber, L. and J. G. Armbruster, 1981, The 1886 Charleston,
South Carolina earthquake and the Appalachian
detachment: Journal of Geophysical Research, v. 86, p.
7874-7894.
SEUSSN Contributors, 1992, Seismicity of the southeastern
United States, Bulletin 26 : Sibol, M.S., GA. Bollinger, and
E.C. Mathena, eds., Virginia Polytechnic Institute and
State University, Blacksburg, Va., 81 p.
Shaub, F. J., 1984, The internal framework of the southwestern
Florida bank: Transactions of the Gulf Coast Association of
Geological Societies, v. 34, p. 237-245.
Sheridan, R. E., J. T. Crosby, G. M. Bryan and P. L. Stoffa, 1981,
Stratigraphy and structure of Blake Plateau, northern
Florida Straits, and northern Bahamas Platform from
multichannel seismic reflection data: American
Association of Petroleum Geologists Bulletin, v. 65, p.
2571-2593.
Sheridan, R. E., C. L. Drake, J. E. Nafe and J. Hennion, 1966,
Seismic refraction study of continental margin east of
Florida: American Association of Petroleum Geologists
Bulletin, v. 50, p. 1972-1991.

214
Sibol, M. S., G. A. Bollinger and J. B. Birch, 1987, Estimation of
magnitudes in central and eastern North America using
intensity and felt area: Bulletin of the Seismological
Society of America, v. 77, p. 1635-1654.
Simon, R. B., C. W. Stover and B. G. Reagor, 1979, Earthquakes
in the United States, January-March, 1977: U.S. Geol.
Suiv. Circ. 788A, 31 p.
Singh, S. and R. B. Herrmann, 1983, Regionalization of crustal
coda Q_in the continental United States: Journal of
Geophysical Research, v. 88, p. 527-538.
Smith, D. L, 1982, Review of the tectonic history of the Florida
basement: Tectonophysics, v. 88, p. 1-22.
Smith, D. L, 1983, Basement model for the panhandle of
Florida: Transactions of the Gulf Coast Association of
Geological Societies, v. 33, p. 203-208.
Smith, D. L, 1993, Role of continental closure in the
distribution of Florida basement features: in Pindell, J.L.,
ed., Mesozoic and Early Cenozoic Development of the Gulf
of Mexico and Caribbean Region, Soc. Econ. Pal. and Min.
Foundation-Gulf Coast Section 13 th Annual Research
Conference Proceedings, p. 1-8.
Smith, D. L, W. T. Dees, and D. W. Harrelson, 1981, Geothermal
conditions and their implications for basement tectonics
in the Gulf Coast Margin: Transactions of the Gulf Coast
Association of Geological Societies, v. 31, p. 181-190.
Smith, D. L., A. L. Heatherington and P. A. Mueller, 1992,
Configuration and geochemistry of Triassic basins in
Florida: Basement controls (abst.): Geological Society of
America Abstracts with Programs, v. 24, no. 2, p. 65.
Smith, D. L. and A. F. Randazzo, 1989, History of seismological
activity in Florida: Evidence of a uniquely stable
basement: in Stepp, J.C., ed., Second Symposium on
Current Issues Related to Nuclear Power Plant Structures,
Equipment, and Piping with Emphasis on Resolution of

215
Seismic Issues in Low-Seismicity Regions, Electric Power
Research Institute, Palo Alto, Ca., p. 2-37 to 2-58.
Stauder, W., 1982, Present-day seismicity and identification of
active faults in the New Madrid seismic zone: in
McKeown, F.A. and L.C. Parkiser, eds., Investigations of
the New Madrid, Missouri, Earthquake Region, U.S. Geol.
Surv. Prof. Paper 1236C, p. 21-30.
Stover, C. W., 1985, United States Earthquakes, 1982 : U.S.
Geol. Surv. Bull. 1655, 141 p.
Stover, C. W., 1986, Seismicity map of the conterminous United
States and adjacent areas, 1975-1984: U.S. Geol. Surv.
Map GP 984.
Stover, C. W., 1987, United States Earthquakes, 1983 : U.S.
Geol. Surv. Bull. 1698, 196 p.
Stover, C. W., 1988, United States Earthquakes, 1984 : U.S.
Geol. Surv. Bull. 1862, 179 p.
Stover, C. W., J. H. Minsch, P. K. Dunbar and B. G. Reagor, 1982,
Earthquakes in the United States, April-June, 1981 : U.S.
Geol. Surv. Circ. 87 IB, 33 p.
Stover, C. W., J. H. Minsch and R. B. Simon, 1979, Earthquakes
in the United States, October-December, 1977: U.S. Geol.
Surv. Circ. 788D, 35 p.
Stover, C. W., J. H. Minsch, P. K. Smith and W. J. Person, 1981,
Earthquakes in the United States, April-June, 1980: U.S.
Geol. Surv. Circ. 853B, 53 p.
Swanson, M. T., 1986, Preexisting fault control for Mesozoic
basin formation in eastern North America: Geology, v. 14,
p. 419-422.
Sykes, L. R., 1978, Intraplate seismicity, reactivation of
preexisting zones of weakness, alkaline magmatism, and
other tectonism postdating continental fragmentation:
Reviews of Geophysics and Space Physics, v. 16, p. 621-
688.

216
Sykes, L. R. and M. Ewing, 1965, The seismicity of the
Caribbean region: Journal of Geophysical Research, v. 70,
p. 5065-5074.
Sykes, L R., W. R. McCann and A. L. Kafka, 1982, Motion of
Caribbean plate during last 7 million years and
implications for earlier Cenozoic movements: Journal of
Geophysical Research, v. 87, p. 10656-10676.
Talwani, P. and J. Cox, 1985, Paleoseismic evidence for
recurrence of earthquakes near Charleston, South
Carolina: Science, v. 229, p. 379-381.
Tarr, A. C., 1977, Recent seismicity near Charleston, South
Carolina and its relationship to the August 31, 1886
earthquake: in Rankin, D.W., ed., Studies Related to the
Charleston, South Carolina Earthquake of 1886-A
Preliminary Report, U.S. Geol. Surv. Prof. Paper 1028B, p.
43-57.
Tarr, A. C. and S. Rhea, 1983, Seismicity near Charleston, South
Carolina, March 1973 to December 1979: in Gohn, G.S.,
ed., Studies Related to the Charleston, South Carolina
Earthquake of 1886-Tectonics and Seismicity, U.S. Geol.
Surv. Prof. Paper 1313, p. R1-R17.
Thomas, W. A., T. M. Chowns, D. L. Daniels, T. L. Neathery, L.
Glover and R. J. Gleason, 1989, The subsurface
Appalachians beneath the Atlantic and Gulf coastal plains:
in Hatcher, R.D., WA. Thomas and G.W. Viele, eds., The
Appalachian-Ouachita Orogen in the United States, v. F-2,
Geological Society of America, Boulder, Col., p. 445-458.
Van der Voo, R., 1988, Paleozoic paleogeography of North
America, Gondwana, and intervening displaced terranes:
comparisons of paleomagnedsm with paleoclimatology
and biogeographical patterns: Geological Society of
America Bulletin, v. 100, p. 311-324.
Van der Voo, R., F. J. Mauk and R. B. French, 1976, Permian-
Triassic continental configurations and the origin of the
Gulf of Mexico: Geology, v. 4, p. 177-180.

217
Van Siclen, D. C., 1984, Early opening of initially-closed Gulf of
Mexico and central North Atlantic: Transactions of the
Gulf Coast Association of Geological Societies, v. 34, p.
265-275.
Van Siclen, D. C., 1990, Evolution of pre-Jurassic basement
beneath northern Gulf of Mexico Coastal Plain:
Transactions of the Gulf Coast Association of Geological
Societies, v. 40, p. 839-850.
Veneziano, D. and J. Van Dyck, 1984, Magnitude conversion for
the estimation of recurrence laws: in Seismic Hazard
Methodology for Nuclear Facilities in the Eastern U.S.,
Electric Power Research Institute, Palo Alto, Ca., Appendix
A.
Venkatakrishan, R. and S. J. Culver, 1988, Plate boundaries in
Africa and their implications for Pangean continental fit:
Geology, v. 16, p. 322-325.
Vernon, R. O., 1951, Geology of Levy and Citrus Counties,
Florida: Fla. Geol. Surv. Bull. 33, 256 p.
Voight, B., 1969, Evolution of North Atlantic Ocean: Relevance
of rock-pressure measurements: North Atlantic-Geology
and Continental Drift, American Association of Petroleum
Geologists Memoir 12, p. 955-962.
Wentworth, C. M. and M. Mergner-Keefer, 1981, Reverse
faulting along the eastern seaboard and the potential for
large earthquakes: in Beavers, J.A., ed., Earthquakes and
Earthquake Engineering-Eastern United States, Ann
Arbor Science Publishers, Inc., Ann Arbor, Mich., p. 109-
128.
Wentworth, C. M. and M. Mergner-Keefer, 1983, Regenerate
faults of small Cenozoic offset-probable earthquake
sources in the southeastern United States: in Gohn, G., ed.,
Studies Related to the Charleston, South Carolina
Earthquake of 1886-Tectonics and Seismicity, U.S. Geol.
Surv. Prof. Paper 1313, p. S1-S20.

218
Wheeler, R. L. and G. A. Bollinger, 1984, Seismicity and suspect
terranes in the southeastern United States: Geology, v. 12,
p. 323-326.
Whitelaw, J. L and D. L. Smith, 1989, Geophysical depiction of
the Jay Fault in panhandle Florida (abst.): Geological
Society of America Abstracts with Programs, v. 21, p. 65.
Wicker, R. A. and D. L. Smith, 1978, Re-evaluating the Florida
basement: Transactions of the Gulf Coast Association of
Geological Societies, v. 28, p. 681-687.
Williams, H. R. and Culver, S. J., 1982, The Rockelides of west
Africa-Pan-African aulacogen or back-arc basin?:
Precambrian Research, v. 18, p. 261-273.
Williams, H. and R. D. Hatcher, 1982, Suspect terranes and the
accretionary history of the Appalachian orogen: Geology,
v. 10, p. 530-536.
Wilson, J. T., 1966, Did the Atlantic close and then re-open?:
Nature, v. 211, p. 676-681.
Winker, C. D. and R. T. Buffler, 1988, Paleogeographic evolution
of early deep-water Gulf of Mexico and margins, Jurassic
to Middle Cretaceous (Comanchean): American
Association of Petroleum Geologists Bulletin, v. 72, p.
318-346.
Winston, G. O., 1976, Florida's Ocala Uplift is not an uplift:
American Association of Petroleum Geologists Bulletin, v.
60, p. 992-994.
Winston, G. O., 1993, The west African Mauritanid
metamorphic suite of Proterozoic age in the subsurface of
peninsular Florida and environs (abst.): Geological Society
of America Abstracts with Programs, v. 25, no.4, p. 78.
Yang, J. R. and Y. P. Aggarwal, 1979, Intraplate stresses near
Atlantic type passive continental margins (abst.): EOS,
Transactions of the American Geophysical Union, v. 60, p.
308.

219
Yegian, M. K., 1979, Probabilistic seismic hazard analysis: in
State-of-the-art for assessing earthquake hazards in the
United States, U.S. Army Engineer Waterways Experiment
Station Mise. Paper S-73-1, Vicksburg, Miss., 130 p.
York, J. E. and J. E. Oliver, 1976, Cretaceous and Cenozoic
faulting in eastern North America: Geological Society of
America Bulletin, v. 87, p. 1105-1114.
Zoback, M. L, 1992, Stress field constraints on intraplate
seismicity in eastern North America: Journal of
Geophysical Research, v. 97, p. 11761-11782.
Zoback, M. D., J. H. Healy, J. C. Roller, G. S. Gohn and B. B. Higgins,
1978, Normal faulting and in situ stress in the South
Carolina coastal plain near Charleston: Geology, v. 6, p.
147-152.
Zoback, M. L and M. D. Zoback, 1980, State of stress in the
conterminous United States: Journal of Geophysical
Research, v. 85, p. 6113-6156.
Zoback, M. L. and M. D. Zoback, 1989, Tectonic stress field of
the conterminous United States: in Pakiser, L C. and W.
D. Mooney, eds., Geophysical Framework of the
Continental United States, Geological Society of America
Memoir 172, p. 523-539.

BIOGRAPHICAL SKETCH
Kenneth Lord was bom into what most would consider to be a
typical American family, complete with one brother, two sisters, one
dog, one station wagon, and a house in suburban Pittsburgh.
Although the house near Pittsburgh was eventually abandoned for
others in New Jersey and suburban Philadelphia, the other factors
(including the dog and the station wagon) remained constant until
Mr. Lord left to attend the University of Miami, where he began
working towards degrees in anthropology and geology.
As a sophomore, Mr. Lord began working for the University of
Miami police department and was soon offered the opportunity to
attend the Broward Police Academy. After graduating as class
valedictorian, Mr. Lord returned to the University of Miami, where
he worked full-time and attended school full-time. Following
graduation from Miami, he worked for a time for the police
department in Plantation, Florida, and subsequently enrolled in the
graduate program at the University of Florida.
Although Mr. Lord chose geophysics as an academic
specialization, he also worked for E. I. DuPont de Nemours and Co.
doing mineral exploration and hydrogeologic assessments. After
finishing his thesis, titled "The Tectonic Evaluation of a Gravity
Survey Along the Eastern Coastal Plain of Georgia," Mr. Lord
220

221
continued working for DuPont for a short time and then returned to
the University of Florida to work on a doctorate degree.
Mr. Lord's plans include attending law school at Cornell
University, where he intends to specialize in environmental and
natural resources law. They do not include either a dog or a station
wagon.

I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.
Douglas L Smith, Chair
Professor of Geology
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.
Thomas L. Crisman
Professor of Environmental
Engineering Sciences
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.
At Mu/ ¡¿—-
Paul A. Mueller
Professor of Geology
I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.
Neil D. Opdyke
Professor of Geology

I certify that I have read this study and that in my opinion it
conforms to acceptable standards of scholarly presentation and is
fully adequate, in scope and quality, as a dissertation for the degree
of Doctor of Philosophy.
Anthony F. Randazzo
Professor of Geology
This dissertation was submitted to the Graduate Faculty of the
Department of Geology in the College of Liberal Arts and Sciences and
to the Graduate School and was accepted as partial fulfillment of the
requirements for the degree of Doctor of Philosophy.
August, 1993
Dean, Graduate School

UNIVERSITY OF FLORIDA
3 1262 08554 0598




PAGE 1

7+( %$6(0(17 6758&785( 7(&721,& +,6725< 6(,60,&,7< $1' 6(,60,& +$=$5' 327(17,$/ 2) 7+( )/25,'$1 3/$7($8 5(*,21 %\ .(11(7+ 0 /25' $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( 6&+22/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 7+( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$& .12:/('*1,(176 7KLV SURMHFW ZDV JHQHURXVO\ IXQGHG E\ WKH )ORULGD 3RZHU DQG /LJKW &RUSRUDWLRQ DP LQGHEWHG WR -RKQ /XNH -HUU\ %XUIRUG 5XVV *RXOG\ 2ULQ 3HDUVRQ DQG 'DYLG &KDQH\ DOO RI )3 t / IRU WKHLU FRQWLQXLQJ VXSSRUW DQG HQWKXVLDVP $GGLWLRQDO VXSSRUW ZDV JLYHQ E\ :DOW 6FKPLGW DQG WKH )ORULGD *HRORJLFDO 6XUYH\ ZKR SURYLGHG WKH GULOO ULJ QHFHVVDU\ IRU WKH LQVWDOODWLRQ RI WKH VHLVPRJUDSK EDVHV 2YHU WKH SDVW \HDUV 'RXJ 6PLWKnV HQWKXVLDVP SURIHVVLRQDOLVP DQG IULHQGVKLS KDYH PDGH DOO DVSHFWV RI P\ JUDGXDWH VWXGLHV ERWK UHZDUGLQJ DQG HQMR\DEOH ,Q DGGLWLRQ QXPHURXV RWKHU SHRSOH SURYLGHG DGYLFH DVVLVWDQFH DQG HQFRXUDJHPHQW WR PH GXULQJ WKH FRXUVH RI WKLV SURMHFW 7RQ\ 5DQGD]]R 3DXO 0XHOOHU 1HLO 2SG\NH 7RP &ULVPDQ DQG $QQ +HDWKHULQJWRQ KDYH HDFK SURYLGHG PH ZLWK YDOXDEOH JXLGDQFH DQG KHOSIXO VXJJHVWLRQV 5D\ 7KRPDV VSHQW PDQ\ ORQJ KRXUV KHOSLQJ PH WR GHEXJ YDULRXV GLJLWDO V\VWHPV -RH 6P\WK DQG -RKQ 5RFKH RI WKH )ORULGD 'LYLVLRQ RI 5HFUHDWLRQ DQG 3DUNV DQG 5REHUW $PEHUJHU RI WKH 1DWLRQDO 3DUN 6HUYLFH HDFK ZHQW WR D JUHDW GHDO RI WURXEOH WR PDNH WKHLU IDFLOLWLHV DYDLODEOH IRU WKLV SURMHFW DV GLG :HV *UHHQPDQ DQG 6DP /DQJOH\ RI WKH 'HSDUWPHQW RI $VWURQRP\ $ QXPEHU RI P\ IHOORZ VWXGHQWV LQFOXGLQJ 7RQ\ %DUWROLQL -RKQ %HOOLQL -DVRQ &XUWLV .HYLQ +R\OH -RVH *DUULGR .DWK\ 9HQ] -XG\ :KHUHWW DQG 'RXJ :LOGHU FKHHUIXOO\ YROXQWHHUHG WKHLU WLPH DQG X

PAGE 3

KHOSHG LQ WKH GLIILFXOW WDVNV RI LQVWDOOLQJ DQG PDLQWDLQLQJ WKH QHWZRUN RI VHLVPRJUDSKV ,Q DGGLWLRQ OHQJWK\ FRQYHUVDWLRQV ZLWK -RQ -HH SURYHG WR EH YHU\ IUXLWIXO DP JUDWHIXO WR HDFK RI WKHVH SHRSOH IRU WKHLU WLPH LQWHUHVW DQG DVVLVWDQFH

PAGE 4

7$%/( 2) &217(176 $&.12:/('*0(176 Q /,67 2) ),*85(6 YL $%675$&7 L[ &+$37(56 ,1752'8&7,21 3XUSRVH 0HWKRGRORJ\ 7+( 6758&785( 2) 7+( )/25,'$1 3/$7($8 ,QWURGXF WLRQ 0HWKRGV RI ,QYHVWLJDWLRQ 5HVXOWV DQG ,QWHUSUHWDWLRQV 6XPPDU\ 7(&721,& (92/87,21 2) 7+( )/25,'$1 3/$7($8 ,QWURGXFWLRQ 5HJLRQDO 7HFWRQLF +LVWRU\ 6(,60,&,7< $1' 675(66 ,1 7+( 6287+($67(51 81,7(' 67$7(6 ,QWURGXFWLRQ 0HWKRGV 5HVXOWV 'LVFXVVLRQ 6XPPDU\ LY

PAGE 5

5(*,21$/ 6(,6027(&721,& 3529,1&(6 ,QWURGXFWLRQ %DFNJURXQG DQG 0HWKRGV 5HVXOWV ,OO 6(,60,& $77(18$7,21 ,1 7+( )/25,'$ 5(*,21 ,QWURGXFWLRQ %DFNJURXQG DQG 0HWKRGV 7HVW &DVHV IRU ,Q WHQVLW\$EVRUSWLRQ 0HWKRG 5HVXOWV IURP WKH )ORULGD 5HJLRQ 6(,60,& +$=$5' ,1 )/25,'$ ,QWURGXFWLRQ 0HWKRGV 5HVXOWV ',6&866,21 $1' &21&/86,216 ,QWURGXFWLRQ 'LVFXVVLRQ &RQFOXVLRQV $33(1',; 6(,60,& +$=$5' 352%$%,/,7,(6 )25 6,7(6 ,1 )/25,'$ 5()(5(1&(6 &,7(' %,2*5$3+,&$/ 6.(7&+ Y

PAGE 6

/,67 2) ),*85(6 'ULOO KROH ORFDWLRQV DQG EDVHPHQW OLWKRORJLHV ZLWKLQ WKH VWXG\ DUHD *HRSK\VLFDO VXUYH\ ORFDWLRQV ZLWKLQ WKH VWXG\ DUHD 'HSWKWREDVHPHQW RI WKH )ORULGDQ 3ODWHDX %RXJXHU DQRPDO\ PDS RI WKH )ORULGDQ 3ODWHDX UHJLRQ 0DJQHWLF DQRPDO\ PDS RI WKH )ORULGDQ 3ODWHDX UHJLRQ %RXJXHU DQRPDO\ ILHOG RI WKH )ORULGDQ 3ODWHDX GRZQZDUG FRQWLQXHG WR EDVHPHQW OHYHO %RXJXHU DQRPDO\ ILHOG RI WKH )ORULGDQ 3ODWHDX XSZDUG FRQWLQXHG WR NP 6HFRQG YHUWLFDO GHULYDWLYH RI WKH %RXJXHU DQRPDO\ ILHOG RI WKH )ORULGDQ 3ODWHDX 0DS RI GULOO KROH GLVWULEXWLRQ DQG EDVHPHQW OLWKRORJLHV ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W 'HSWKWREDVHPHQW PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W 0DJQHWLF DQRPDO\ ILHOG PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W %RXJXHU DQRPDO\ PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W 'RZQZDUGFRQWLQXHG %RXJXHU DQRPDO\ PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W YL

PAGE 7

8SZDUGFRQWLQXHG %RXJXHU DQRPDO\ PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W 6HFRQG YHUWLFDO GHULYDWLYH RI WKH %RXJXHU DQRPDO\ ILHOG ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W 9DULRXV SUHYLRXVO\ SXEOLVKHG FRQILJXUDWLRQV IRU WKH 0HVR]RLF VWUXFWXUH RI WKH VRXWKHUQ DQG ZHVWHUQ )ORULGDQ 3ODWHDX EDVHPHQW 3UH0HVR]RLF OLWKRWHFWRQLF IHDWXUHV RI WKH )ORULGDQ 3ODWHDX EDVHPHQW 0HVR]RLF VWUXFWXUDO IHDWXUHV RI WKH )ORULGDQ 3ODWHDX EDVHPHQW +\SRWKHVL]HG VHTXHQFH RI HYHQWV GXULQJ $OOHJKHQLDQ FORVXUH UHVXOWLQJ LQ WKH WUDQVORFDWLRQ RI *RQGZDQDQ WHUUDQH IUDJPHQWV DORQJ WUDQVIRUP IDXOWV LQ WKH )ORULGDQ 3ODWHDX EDVHPHQW +\SRWKHVL]HG VHTXHQFH RI HYHQWV GXULQJ WKH IRUPDWLRQ RI WKH /DWH 7ULDVVLF DQG -XUDVVLF H[WHQVLRQDO IHDWXUHV RI WKH )ORULGDQ 3ODWHDX EDVHPHQW (SLFHQWUDO GLVWULEXWLRQ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG QRUWKZHVWHUQ &DULEEHDQ IURP KLVWRULFDO DQG LQVWUXPHQWDO UHFRUGV 3UH0HVR]RLF DOORFKWKRQRXV WHUUDQHV RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 6HOHFWHG 0HVR]RLF VHLVPRWHFWRQLF IHDWXUHV RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 7KH 8QLYHUVLW\ RI )ORULGD 6HLVPRJUDSK 1HWZRUN 6HLVPRWHFWRQLF SURYLQFHV LQ ZKLFK H[SHFWHG HDUWKTXDNHV FRXOG SRWHQWLDOO\ FDXVH VLJQLILFDQW JURXQG PRWLRQ LQ )ORULGD YLL

PAGE 8

0RGLILHG 0HUFDOOL LQWHQVLW\ LVRVHLVPDO PDS IRU WKH QRUWKHUQ .HQWXFN\ HDUWKTXDNH RI -XO\ 0RGLILHG 0HUFDOOL LQWHQVLW\ LVRVHLVPDO PDS IRU WKH FHQWUDO ,GDKR HDUWKTXDNH RI 2FWREHU 0RGLILHG 0HUFDOOL LQWHQVLW\ LVRVHLVPDO PDS IRU WKH &KDUOHVWRQ HDUWKTXDNH 0RGLILHG 0HUFDOOL LQWHQVLW\ PDS IRU WKH )ORULGD HDUWKTXDNH RI 2FWREHU 7KH 6(,65,6. ,,, LQSXW ILOH IRU WKH FDOFXODWLRQ RI VHLVPLF KD]DUG LQ SHQLQVXODU )ORULGD XVLQJ WKH IRUPDW GHVFULEHG LQ %HQGHU DQG 3HUNLQV f 7KH GLVWULEXWLRQ RI DQQXDO SUREDELOLWLHV RI H[FHHGLQJ J LQ )ORULGD 7KH GLVWULEXWLRQ RI DQQXDO SUREDELOLWLHV RI H[FHHGLQJ J LQ )ORULGD f f f 9OOO

PAGE 9

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH 6FKRRO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 7+( %$6(0(17 6758&785( 7(&721,& +,6725< 6(,60,&,7< $1' 6(,60,& +$=$5' 327(17,$/ 2) 7+( )/25,'$1 3/$7($8 5(*,21 %\ .HQQHWK 0 /RUG $XJXVW &KDLUPDQ 'U 'RXJODV / 6PLWK 0DMRU 'HSDUWPHQW *HRORJ\ 7KLV VWXG\ VHHNV WR UHGXFH VXEMHFWLYLW\ LQ SUREDELOLVWLF VHLVPLF KD]DUG DVVHVVPHQWV LQ )ORULGD E\ SURYLGLQJ UHILQHG FKDUDFWHUL]DWLRQV RI WKH EDVHPHQW VWUXFWXUH WHFWRQLF KLVWRU\ UHJLRQDO VHLVPLFLW\ DQG VHLVPLF DWWHQXDWLRQ ,QWHUSUHWDWLRQV RI GLJLWDOO\ ILOWHUHG JUDYLW\ PDSV VXSSOHPHQWHG E\ SUHYLRXVO\ SXEOLVKHG GDWD UHYHDO D EDVHPHQW FRQILJXUDWLRQ UHIOHFWLQJ WKH SUREDEOH WUDQVORFDWLRQ RI IUDJPHQWV RI *RQGZDQDQ FUXVW GXULQJ $OOHJKHQLDQ FRQWLQHQWDO FRQYHUJHQFH DQG WKH IRUPDWLRQ RI H[WHQVLRQDO EDVLQV DORQJ WKH VRXWKZHVWHUQ KDOI RI WKH )ORULGDQ 3ODWHDX GXULQJ 0HVR]RLF H[WHQVLRQ 7KH -D\ )DXOW ]RQH PD\ KDYH RULJLQDOO\ IRUPHG DV D GH[WUDO WUDQVIRUP GXULQJ FRQWLQHQWDO FROOLVLRQ EXW ZDV VXEVHTXHQWO\ UHDFWLYDWHG WR DFFRPPRGDWH VLQLVWUDO DQG QRUPDO PRYHPHQW GXULQJ WKH 0HVR]RLF 7KHUH LV QR HYLGHQFH IRU WKH SUHYLRXVO\ K\SRWKHVL]HG )ORULGD (OERZ ,;

PAGE 10

)DXOW 7KH -XUDVVLF 7DPSD %DVLQ LV ODUJHU WKDQ SUHYLRXVO\ PDSSHG DQG WKH 6RXWK )ORULGD %DVLQ UHJLRQ SUREDEO\ FRQVLVWV RI VHSDUDWH QRUWKZHVWWUHQGLQJ EDVLQV 7KH RULHQWDWLRQV RI WKH -XUDVVLF H[WHQVLRQDO EDVLQV VXJJHVW WZR HSLVRGHV RI IRUPDWLRQ RQH GXULQJ WKH URWDWLRQ RI WKH
PAGE 11

&+$37(5 ,1752'8&7,21 /DUJH FRQVWUXFWLRQ SURMHFWV VXFK DV GDPV EULGJHV DQG QXFOHDU SRZHU SODQWV DUH GHVLJQHG WR ZLWKVWDQG VSHFLILF PD[LPXP OHYHOV DQG GXUDWLRQV RI VWURQJ JURXQG PRWLRQ 7KH SURMHFWLRQV RI PD[LPXP OHYHOV DQG GXUDWLRQV RI VWURQJ PRWLRQ DUH PDGH WKURXJK WKH XVH RI VLWHVSHFLILF VHLVPLF KD]DUG DQDO\VHV ZKLFK DUH EDVHG RQ D QXPEHU RI FULWHULD 7KHVH FULWHULD LQFOXGH WKH OHYHOV RI KLVWRULFDO DQG LQVWUXPHQWDO VHLVPLFLW\ WKH LGHQWLILFDWLRQ DQG FKDUDFWHUL]DWLRQ RI VHLVPR WHF WRQLF VRXUFHV H[SHFWHG PD[LPXP PDJQLWXGHV RI HDUWKTXDNHV DQG H[SHFWHG UHVXOWDQW JURXQG PRWLRQ DW SDUWLFXODU VLWHV HJ
PAGE 12

HVFDUSPHQW VXJJHVWV WKDW WKH KLVWRULFDO UHFRUG PD\ QRW SURYLGH D UHOLDEOH PHDVXUH RI VHLVPLFLW\ ,Q DGGLWLRQ EHFDXVH WKHUH KDV EHHQ QR UHJLRQDO QHWZRUN RI VHLVPRJUDSKV XQWLO UHFHQWO\ WKHUH LV OLWWOH GRFXPHQWDWLRQ IRU WKH OHYHO RI LQVWUXPHQWDO VHLVPLFLW\ &RQVHTXHQWO\ QHLWKHU KLVWRULFDO QRU LQVWUXPHQWDO UHFRUGV SURYLGH UHKDEOH JDXJHV RI VHLVPLF DFWLYLW\ IRU XVH LQ KD]DUG DQDO\VHV LQ )ORULGD $QRWKHU SRWHQWLDO LQGLFDWRU RI VHLVPLF KD]DUG LV WKH LGHQWLILFDWLRQ DQG FKDUDFWHUL]DWLRQ RI VHLVPRWHFWRQLF VRXUFHV DQG VRXUFH UHJLRQV 6HLVPLFLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV LV JHQHUDOO\ DWWULEXWHG WR WKH UHDFWLYDWLRQ RI 0HVR]RLF RU ROGHU IDXOWV LQ D PRGHUDWH VWUHVV ILHOG 6\NHV +DPLOWRQ :HQWZRUWK DQG 0HUJQHU.HHIHU =REDFN f KRZHYHU WKH VWUXFWXUH RI WKH )ORULGDQ 3ODWHDX EDVHPHQW LV GHHSO\ EXULHG 7KH FU\VWDOOLQH EDVHPHQW RI WKH SODWHDX LV RYHUODLQ E\ &RDVWDO 3ODLQ VHGLPHQWDL\ GHSRVLWV ZKLFK UDQJH LQ WKLFNQHVV IURP DERXW PHWHUV LQ QRUWK FHQWUDO )ORULGD WR RYHU PHWHUV LQ VRXWKHUQ )ORULGD :LFNHU DQG 6PLWK f $V D UHVXOW RI WKLV WKLFN VHGLPHQWDU\ VHTXHQFH WKHUH DUH UHODWLYHO\ IHZ GULOO KROHV LQWHUVHFWLQJ WKH EDVHPHQW %DUQHWW 6PLWK &KRZQV DQG :LOOLDPV f DQG UHJLRQDO SRWHQWLDO ILHOG LQWHUSUHWDWLRQV DUH GLIILFXOW HJ 2JOHVE\ HW DO .OLWJRUG HW DO f &RQVHTXHQWO\ FXUUHQW PRGHOV IRU WKH VWUXFWXUH RI WKH )ORULGD EDVHPHQW DUH QHFHVVDULO\ FKDUDFWHUL]HG RQO\ E\ JHQHUDOL]DWLRQV RI ODUJH VFDOH IHDWXUHV DQG OLWKRWHFWRQLF XQLWV ZKLOH VWUXFWXUDO GHWDLOV UHPDLQ HQLJPDWLF 7KHVH JHQHUDOL]HG PRGHOV SURYLGH OLWWOH LQVLJKW LQWR WKH VHLVPRWHFWRQLF QDWXUH RI WKH )ORULGDQ 3ODWHDX

PAGE 13

7KH DPSOLWXGH RI JURXQG PRWLRQ DW D SDUWLFXODU HSLFHQWUDO GLVWDQFH IURP D VHLVPLF HYHQW LV GHSHQGHQW QRW RQO\ XSRQ WKH VHLVPLF PRPHQW RI WKH HYHQW EXW DOVR XSRQ LQGLYLGXDO VLWH FKDUDFWHULVWLFV DQG VHLVPLF DWWHQXDWLRQ 6HLVPLF DWWHQXDWLRQ LQ WKH HDVWHUQ DQG FHQWUDO 8QLWHG 6WDWHV KDV EHHQ VWXGLHG RQ D UHJLRQDO OHYHO 1XWWOL $ -RQHV HW DO %ROOLQJHU &DPSEHOO 6LQJK DQG +HUUPDQQ f EXW WKHUH KDYH EHHQ QR LQGHSHQGHQW VWXGLHV RI DWWHQXDWLRQ LQ )ORULGD $FFRUGLQJO\ 1XWWOLnV $f JHQHUDOL]HG DWWHQXDWLRQ FRHIILFLHQWV IRU WKH HDVWHUQ 8QLWHG 6WDWHV DUH HPSOR\HG LQ FDOFXODWLRQV RI VHLVPLF KD]DUG LQ )ORULGD +RZHYHU WKH )ORULGDQ 3ODWHDX KDV EHHQ VKRZQ WR EH DQ DOORFKWKRQRXV WHUUDQH ZLWK UHVSHFW WR WKH 1RUWK $PHULFDQ FUDWRQ HJ 6PLWK f 7KLV VXJJHVWV WKDW WKH PHFKDQLFDO UHVSRQVH RI WKH SODWHDX PD\ GLIIHU IURP WKDW RI WKH UHPDLQGHU RI WKH HDVWHUQ 8QLWHG 6WDWHV ZKLFK ZRXOG LQYDOLGDWH WKH XVH RI 1XWWOLnV DWWHQXDWLRQ FRHIILFLHQWV $V D UHVXOW HVWLPDWLRQV RI H[SHFWHG JURXQG PRWLRQ LQ )ORULGD PD\ EH LQYDOLG 2QH FRQVHTXHQFH RI WKH OLPLWDWLRQV LQKHUHQW LQ WKH KLVWRULFDO DQG LQVWUXPHQWDO UHFRUGV LQ )ORULGD DQG WKH HQLJPDWLF QDWXUH RI WKH WHFWRQLFV DQG VWUXFWXUH RI WKH EDVHPHQW LV WKDW WKH FULWHULD XVHG LQ UHJLRQDO VHLVPLF KD]DUG DQDO\VHV LH VHLVPLFLW\ VHLVPRWHFWRQLF FKDUDFWHUL]DWLRQV DQG VHLVPLF DWWHQXDWLRQf DUH SRRUO\ GRFXPHQWHG 3UHYLRXV VHLVPLF KD]DUG DQDO\VHV LQ )ORULGD KDYH DVVXPHG ZLWK OLWWOH VXEVWDQWLDWLRQ WKDW WKH ULVN RI ORFDO VHLVPLF DFWLYLW\ LV QHJOLJLEOH DQG WKDW 1XWWOLnV HDVWHUQ 8QLWHG 6WDWHV DWWHQXDWLRQ FRHIILFLHQWV DUH DSSOLFDEOH WR WKH )ORULGDQ 3ODWHDX HJ (EDVFR f 7KH SXUSRVHV RI WKLV VWXG\ DUH WR XWLOL]H D YDULHW\ RI JHRSK\VLFDO PHWKRGV WR IXUWKHU LQYHVWLJDWH HDFK RI WKH FULWHULD XVHG LQ VHLVPLF KD]DUG

PAGE 14

DQDO\VHV DQG WR UHH[DPLQH WKH WHFWRQLF KLVWRU\ RI WKH UHJLRQ 6SHFLILFDOO\ WKH LQWHQWLRQ LV WR SURYLGH LPSURYHG FKDUDFWHUL]DWLRQV RI WKH EDVHPHQW VWUXFWXUH WHFWRQLF HYROXWLRQ UHJLRQDO VHLVPLFLW\ DQG VHLVPLF DWWHQXDWLRQ LQ WKH )ORULGDQ 3ODWHDX UHJLRQ DQG WR LQFRUSRUDWH WKHVH LQWR DQ HPSLULFDO DVVHVVPHQW RI VHLVPLF KD]DUG LQ )ORULGD 6HYHUDO JHRSK\VLFDO PHWKRGV KDYH EHHQ HPSOR\HG DQG LQFRUSRUDWHG LQWR WKLV VWXG\ ,Q HDFK RI WKH IROORZLQJ FKDSWHUV WKH PHWKRGV XVHG DUH GLVFXVVHG LQ GHWDLO 7KH SXUSRVH RI WKLV VHFWLRQ LV WR SURYLGH D JHQHUDO RYHUYLHZ RI WKH VHTXHQFH RI WKHVH LQGLYLGXDO PHWKRGV DQG KRZ HDFK KDV EHHQ XWLOL]HG LQ WKLV VWXG\ 7KH ILUVW VWHS RI WKH VWXG\ ZDV WR GLJLWL]H DQG ILOWHU SRWHQWLDO ILHOG GDWD IRU WKH HQWLUH )ORULGDQ 3ODWHDX 7KH UHVXOWDQW ILOWHUHG JUDYLW\ PDSV IRU WKH 3ODWHDX ZKHQ LQWHUSUHWHG LQ FRQMXQFWLRQ ZLWK SUHYLRXVO\ SXEOLVKHG PDJQHWLF GULOO KROH VHLVPLF UHIOHFWLRQ DQG VHLVPLF UHIUDFWLRQ GDWD SHUPLWWHG DQ LPSURYHG UHVROXWLRQ RI WKH ORFDWLRQV VL]HV QDWXUHV DQG VSDWLDO UHODWLRQVKLSV EHWZHHQ WKH YDULRXV FUXVWDO EORFNV DQG VWUXFWXUDO IHDWXUHV RI WKH SODWHDX EDVHPHQW $ WHFWRQLF LQWHUSUHWDWLRQ EDVHG RQ WKLV LPSURYHG VWUXFWXUDO PRGHO SURPSWHG D JHQHUDO LQWHUSUHWDWLRQ RI WKH VHLVPLF KLVWRU\ RI WKH SODWHDX DQG H[LVWLQJ VHLVPLF UHIOHFWLRQ VWXGLHV RI WKH &HQR]RLF VHGLPHQWDU\ DFFXPXODWLRQV RYHUO\LQJ WKH EDVHPHQW DOORZHG D PRUH VSHFLILF GHWHUPLQDWLRQ RI UHFHQW OHYHOV RI VHLVPLF DFWLYLW\ 7KH QH[W VWHS ZDV WR LQYHVWLJDWH WKH QDWXUH RI VHLVPLFLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 7KLV LQYROYHG D UHYLHZ RI KLVWRULFDO UHFRUGV SDUWLFXODUO\ WKRVH IURP )ORULGD DQG LQVWUXPHQWDO UHFRUGV

PAGE 15

ZKLFK RQO\ HQFRPSDVV WKH SDVW WZHQW\ \HDUV LQ WKLV UHJLRQ %HFDXVH LQVWUXPHQWDO FRYHUDJH LQ )ORULGD ZDV LQVXIILFLHQW D QHWZRUN RI GLJLWDO VHLVPRJUDSKV ZDV HVWDEOLVKHG IRU WKH SXUSRVHV RI DWWHPSWLQJ WR GHWHFW DQG FKDUDFWHUL]H DQ\ SUHYLRXVO\ XQNQRZQ ORFDO VRXUFHV RI VHLVPLF DFWLYLW\ DQG WR FKDUDFWHUL]H WKH ORFDO PHFKDQLFDO UHVSRQVH RI WKH FUXVW WR UHJLRQDO HYHQWV 7KH LQIRUPDWLRQ FRPSLOHG IURP WKHVH KLVWRULFDO DQG LQVWUXPHQWDO VRXUFHV ZDV WKHQ H[DPLQHG ZLWKLQ WKH FRQWH[W RI SUHYLRXVO\ SXEOLVKHG UHJLRQDO VWUHVV ILHOG LQGLFDWRUV WR GHYHORS D OLWKRVSKHULF PRGHO IRU WKH GLVWULEXWLRQ RI HDUWKTXDNHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV )ROORZLQJ WKLV HDFK RI WKH VHLVPLF VRXUFH SURYLQFHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV WKH &DULEEHDQ DQG WKH *XOI RI 0H[LFR LQ ZKLFK DFWLYLW\ FRXOG SRWHQWLDOO\ JHQHUDWH VLJQLILFDQW JURXQG PRWLRQ LQ )ORULGD ZHUH LGHQWLILHG (DFK SURYLQFH ZDV FKDUDFWHUL]HG EDVHG RQ WKH FRPSLOHG HDUWKTXDNH LQIRUPDWLRQ WKH OLWKRVSKHULF PRGHOV IRU WKH )ORULGDQ 3ODWHDX DQG WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG SUHYLRXVO\ SXEOLVKHG PDWHULDO ,QFOXGHG LQ WKH FKDUDFWHUL]DWLRQV ZHUH HVWLPDWHV RI PD[LPXP PDJQLWXGH DQG UHFXUUHQFH LQWHUYDOV 6XEVHTXHQWO\ D PHWKRG ZDV GHYHORSHG WR HVWLPDWH D ORFDO YDOXH RI VHLVPLF DWWHQXDWLRQ LQ )ORULGD 7KLV PHWKRG XWLOL]HV LVRVHLVPDO PDSV DV D PHDQV RI DSSUR[LPDWLQJ WKH GHFUHDVH LQ SHDN JURXQG DFFHOHUDWLRQ ZLWK GLVWDQFH IURP DQ HYHQW ZLWK D NQRZQ RU UHDVRQDEO\ ZHOODSSUR[LPDWHG PDJQLWXGH 7KHVH SDUDPHWHUV DFFHOHUDWLRQ GLVWDQFH DQG PDJQLWXGHf DUH WKHQ XVHG WR PDWKHPDWLFDOO\ GHULYH D YDOXH IRU VHLVPLF DWWHQXDWLRQ ,W ZDV QHFHVVDU\ WR WHVW DQG YDOLGDWH WKLV PHWKRG XVLQJ LVRVHLVPDO PDSV IURP YDULRXV HDUWKTXDNHV LQ WKH FHQWUDO DQG ZHVWHUQ 8QLWHG 6WDWHV

PAGE 16

ZKHUH DWWHQXDWLRQ FRHIILFLHQWV DUH ZHOO NQRZQ 2QFH YDOLGDWHG WKH PHWKRG ZDV DSSOLHG WR WKH LVRVHLVPDO PDSV IURP WKH &KDUOHVWRQ HDUWKTXDNH DQG D HDUWKTXDNH LQ QRUWKHDVWHUQ )ORULGD LQ RUGHU WR HVWLPDWH DWWHQXDWLRQ FRHIILFLHQWV IRU WKH VRXWKHDVWHUQ &RDVWDO 3ODLQ DQG )ORULGD )LQDOO\ WKH VRXUFH ]RQH FKDUDFWHUL]DWLRQV DQG HVWLPDWHG DWWHQXDWLRQ FRHIILFLHQWV ZHUH XVHG DV LQSXW IRU D SUREDELOLVWLF VHLVPLF KD]DUG DVVHVVPHQW IRU )ORULGD 7KLV DQDO\VLV LV EDVHG RQ WKH PHWKRG RI &RUQHOO f ZKLFK DGGUHVVHV WKH HIIHFWV RI DOO RI WKH SRVVLEOH HDUWKTXDNHV OLNHO\ WR DIIHFW )ORULGD IRU HDFK VLWH RQ D JULG RI VLWHV DURXQG WKH VWDWH %DVHG RQ WKH GLVWDQFHV WR HDFK VHLVPLF VRXUFH ]RQH UHFXUUHQFH LQWHUYDOV DQG VHLVPLF DWWHQXDWLRQ FRHIILFLHQWV D YDOXH LV FDOFXODWHG IRU HDFK VLWH GHVFULELQJ WKH SUREDELOLW\ WKDW D SDUWLFXODU DFFHOHUDWLRQ ZLOO EH H[FHHGHG DW WKDW VLWH ZLWKLQ D JLYHQ WLPH IUDPH 7KH UHVXOWLQJ JULGV ZHUH FRQWRXUHG WR SURGXFH SUREDELOLVWLF VHLVPLF KD]DUG PDSV IRU )ORULGD

PAGE 17

&+$37(5 7+( 6758&785( 2) 7+( )/25,'$1 3/$7($8 $OO UHJLRQDO PRGHOV GHVFULELQJ WKH VWUXFWXUDO IHDWXUHV RI WKH )ORULGDQ EDVHPHQW KDYH EHHQ IRXQGHG SULPDULO\ RQ GHHS GULOO KROH GDWD IURP ZHOOV SHQHWUDWLQJ SUH&UHWDFHRXV FU\VWDOOLQH URFN %HFDXVH RI DQ LQWULQVLF ELDV LQ WKH VSDWLDO GLVWULEXWLRQ RI WKHVH GULOO KROHV PRVW RI WKH UHJLRQDO PRGHOV KDYH EHHQ OLPLWHG LQ VFRSH WR SHQLQVXODU )ORULGD UDWKHU WKDQ WR WKH HQWLUH )ORULGDQ 3ODWHDX 6LPLODUO\ PRUH ORFDOL]HG \HW PRUH GHWDLOHG VWUXFWXUDO PRGHOV EDVHG RQ VHLVPLF UHIOHFWLRQ SURILOHV WHQG WR EH VSDWLDOO\ ELDVHG WRZDUGV RIIVKRUH DUHDV $V D UHVXOW ZLWK WKH QRWDEOH H[FHSWLRQ RI .OLWJRUG HW DO f WKHUH KDV EHHQ OLWWOH HIIRUW WR LQWHJUDWH SUHYLRXVO\ SXEOLVKHG VWXGLHV LQWR DQ H[DPLQDWLRQ RI WKH )ORULGDQ 3ODWHDX DV D VLQJODU IHDWXUH 6LQFH WKH ZRUN RI .OLWJRUG HW DO D QXPEHU RI SHUWLQHQW JHRFKHPLFDO JHRSK\VLFDO DQG GULOO KROH VWXGLHV KDYH EHHQ SXEOLVKHG HJ 1HOVRQ HW DO $ %DOO HW DO +HDWKHULQJWRQ HW DO 'REVRQ +HDWKHULQJWRQ DQG 0XHOOHU 0F%ULGH f WKHVH KDYH \HW WR EH H[DPLQHG ZLWKLQ D UHJLRQDO FRQWH[W 7KH LQWHQWLRQ LQ WKLV FKDSWHU LV WR XWLOL]H GLJLWDOO\ ILOWHUHG UHJLRQDO SRWHQWLDOILHOG GDWD DV D PHDQV RI FRQVROLGDWLQJ D ODUJH QXPEHU RI GLVSDUDWH GULOO KROH JHRSK\VLFDO DQG JHRFKHPLFDO REVHUYDWLRQV LQWR D VLQJOH PRGHO IRU WKH VWUXFWXUH DQG WHFWRQLFV RI WKH )ORULGDQ 3ODWHDX

PAGE 18

$ VHULHV RI GLJLWDO JHRSK\VLFDO DQG VWUXFWXUH FRQWRXU PDSV IRU WKH )ORULGDQ 3ODWHDX ZHUH SURGXFHG IRU WKLV LQYHVWLJDWLRQ XVLQJ WKH PHWKRGV GHVFULEHG LQ /RUG f 7KHVH PDSV FRYHU WKH UHFWDQJXODU DUHD HQFRPSDVVHG E\ WR GHJUHHV QRUWK ODWLWXGH DQG WR GHJUHHV ZHVW ORQJLWXGH $OO RI WKH GLJLWL]LQJ GLJLWDO ILOWHULQJ RSHUDWLRQV DQG FRQWRXULQJ ZHUH GRQH RQ D ,%0 FRPSDWLEOH HTXLSSHG ZLWK D +RXVWRQ ,QVWUXPHQWV GLJLWL]LQJ WDEOHW $GGLWLRQDO GUDIWLQJ DQG ILJXUH SUHSDUDWLRQ ZHUH GRQH RQ DQ $SSOH 0DFLQWRVK ,OFL HTXLSSHG ZLWK D VFDQQHU DQG ODVHU SULQWHU &RPPHUFLDO VRIWZDUH SDFNDJHV HPSOR\HG LQFOXGH 5RFNZDUHnV 'LJLWL]H *ROGHQ 6RIWZDUHnV 6XUIHU /RWXV 6LOLFRQ %HDFK 6RIWZDUHnV 6XSHUSDLQW DQG D VHULHV RI SRWHQWLDOILHOG JHRSK\VLFDO SURJUDPV DYDLODEOH WKURXJK WKH 86*6 +LOGHQEUDQG *UDXFK *RGVRQ DQG 0DOO f 7KH ILUVW VWHS ZDV WR SURGXFH D GHWDLOHG GHSWKWREDVHPHQW PDS IRU WKH SODWHDX ,Q WKLV VWXG\ DUHD EDVHPHQW LV GHILQHG E\ WKH XQFRQIRUPLW\ EHWZHHQ SUH/DWH -XUDVVLF URFNV DQG \RXQJHU VHGLPHQWDU\ DFFXPXODWLRQV RI WKH &RDVWDO 3ODLQ $OO DYDLODEOH GULOO KROH GHSWKWREDVHPHQW GDWD VKRZQ LQ )LJXUH ZHUH SORWWHG RQ D JULG UHSUHVHQWLQJ SRLQWV ZLWK D NP VSDFLQJ RYHU WKH VWXG\ DUHD 6RXUFHV IRU WKHVH GDWD LQFOXGH %DUQHWW f 6PLWK f &KRZQV DQG :LOOLDPV f 6FKODJHU HW DO f %DOO HW DO f DQG 'REVRQ f $ QXPEHU RI DGGLWLRQDO GHSWKWREDVHPHQW GHWHUPLQDWLRQV ZHUH WKHQ PDGH IURP SUHYLRXVO\ SXEOLVKHG VHLVPLF UHIOHFWLRQ VHLVPLF UHIUDFWLRQ DQG JUDYLW\ VWXGLHV HJ $QWRLQH DQG +DUGLQJ 6KHULGDQ HW DO $UGHQ 0LWFKXP 6KHULGDQ HW

PAGE 19

A *UDQLWRLG 3OXWRQLF 5RFNV r 'LDEDVH R )HOVLF ([WUXVLYH 5RFNV R 0HWDPRUSKLF 5RFNV $PSKLEROLWH *UDGHf 4XDUW]LWLF 6DQGVWRQH RU 6KDOH + 4XDUW]LWLF 6DQGVWRQH6KDOH ZLWK 'LDEDVH ‘ 7ULDVVLF 5HGEHGV ZLWK 'LDEDVH [ 0DILF ([WUXVLYH 5RFNV + ,QWHUFDODWHG )HOVLF DQG 0DILF ([WUXVLYHV )LJXUH 'ULOO KROH ORFDWLRQV DQG EDVHPHQW OLWKRORJLHV ZLWKLQ WKH VWXG\ DUHD &RPSLOHG IURP %DUQHWW 6PLWK &KRZQV DQG :LOOLDPV 6FKODJHU HW DO %DOO HW DO 'REVRQ f

PAGE 20

DO 6FKODJHU HW DO 6KDXE 'LOORQ HW DO 1HOVRQ HW DO $ /RUG %DOO HW DO 0F1HHO\ 0XOOLQV HW DO :LQNHU DQG %XIIOHU 'REVRQ 0F%ULGH f )LJXUH LV D ORFDWLRQ PDS FRPSLOHG IURP WKHVH JHRSK\VLFDO VXUYH\V ,Q WKRVH VHLVPLF VWXGLHV LQ ZKLFK WKH RULJLQDO DXWKRUV KDG QRW PDGH WLPHGHSWK FRQYHUVLRQV GULOO KROH GHSWK GDWD ZHUH XVHG WR SURYLGH FRQWUROV IRU WKHVH FRQYHUVLRQV :KHUH WKLV GULOO KROH FRQWURO LV QRW DYDLODEOH VXFK DV LQ GHHSHU DUHDV WLPHGHSWK FRQYHUVLRQV DUH ODUJHO\ VXEMHFWLYH 7KHVH GHSWK GHWHUPLQDWLRQV ZHUH WKHQ SORWWHG RQ WKH DSSURSULDWH SRLQWV RQ WKH JULG 'HSWKWREDVHPHQW YDOXHV ZHUH LQWHUSRODWHG WR HDFK UHPDLQLQJ SRLQW DQG WKH JULG ZDV VXEVHTXHQWO\ GLJLWL]HG DQG FRQWRXUHG 7KH ILQDO PDS LV VKRZQ LQ )LJXUH $ %RXJXHU DQRPDO\ PDS RI WKH VWXG\ DUHD ZDV SURGXFHG DV ZHOO 7KLV PDS ZKLFK LV VKRZQ LQ )LJXUH LV HVVHQWLDOO\ D GLJLWL]HG DQG UHFRQWRXUHG YHUVLRQ RI WKDW SURGXFHG E\ .OLWJRUG HW DO f DOWKRXJK DQ ROGHU PDS E\ 2JOHVE\ HW DO f ZDV H[WHQVLYHO\ XWLOL]HG DV ZHOO 7KH RULJLQDO .OLWJRUG PDS ZDV FRQVWUXFWHG WKURXJK WKH FRPSLODWLRQ RI VHYHUDO GLIIHUHQW PDSV IURP VHYHUDO GLIIHUHQW VWXGLHV DQG FRQVHTXHQWO\ WKHUH DUH PLQRU LQFRQVLVWHQFLHV DW WKH ERUGHUV EHWZHHQ WKHVH VWXG\ DUHDV ,Q DGGLWLRQ WKHLU PDS KDV D VPDOO GDWDOHVV DUHD H[WHQGLQJ DORQJ WKH QRUWKZHVWHUQ FRDVW RI SHQLQVXODU )ORULGD .OLWJRUG HW DO SJ ILJ f )RU WKH SXUSRVHV RI GLJLWDO ILOWHULQJ LW ZDV GHVLUDEOH WR SURGXFH D VLQJOH FRQWLQXRXV GDWD VHW IRU WKH VWXG\ DUHD ,Q RUGHU WR DFFRPSOLVK WKLV LW ZDV QHFHVVDU\ WR HOLPLQDWH WKHVH GLVFUHSHQFLHV E\ H[WUDSRODWLQJ YDOXHV DFURVV WKH ERUGHUV DQG GDWDOHVV DUHD DV DSSDUHQWO\ ZDV GRQH LQ WKH 2JOHVE\ PDS $OWKRXJK WKLV PD\

PAGE 21

6HLVPLF 5HIOHFWLRQ 6XUYH\ 6HLVPLF 5HIOHFWLRQ DQG *UDYLW\ 6XUYH\V 6HLVPLF 5HIUDFWLRQ 6XUYH\ )LJXUH *HRSK\VLFDO VXUYH\ ORFDWLRQV ZLWKLQ WKH VWXG\ DUHD &RPSLOHG IURP $QWRLQH DQG +DUGLQJ 6KHULGDQ HW DO $UGHQ 0LWFKXP 6KHULGDQ HW DO 6FKODJHU HW DO 6KDXE 'LOORQ HW DO 1HOVRQ HW DO $ /RUG %DK HW DO 0F1HHO\ 0XOOLQV HW DO :LQNHU DQG %XIIOHU 'REVRQ 0F%ULGH f

PAGE 22

)LJXUH 'HSWKWREDVHPHQW RI WKH )ORULGDQ 3ODWHDX &RQWRXU LQWHUYDO PHWHUV

PAGE 23

)LJXUH %RXJXHU DQRPDO\ PDS RI WKH )ORULGDQ 3ODWHDX UHJLRQ &RPSLOHG IURP 2JOHVE\ HW DO .OLWJRUG HW DO f &RQWRXU LQWHUYDO PJDOV

PAGE 24

LQWURGXFH VRPH HUURU LW LV EHOLHYHG WKDW DQ\ VXFK HUURU ZLOO EH PLQLPDO $V ZLWK WKH GHSWKWREDVHPHQW PDS WKH %RXJXHU DQRPDO\ PDS ZDV GLJLWL]HG RQ D UHFWDQJXODU JULG ZLWK D NP VSDFLQJ ZKLFK ZDV FKRVHQ WR FRQIRUP WR VRIWZDUH OLPLWDWLRQV ZKLOH PD[LPL]LQJ WKH QXPEHU RI GDWD SRLQWV 7KH UHVXOWLQJ GDWD SRLQWV ZHUH WKHQ FRQWRXUHG ZLWK D PLOKJDO FRQWRXU LQWHUYDO XVLQJ WKH 6XUIHU VRIWZDUH SDFNDJH $ PDJQHWLF DQRPDO\ PDS )LJXUH f ZDV DOVR FRQVWUXFWHG XVLQJ GDWD IURP .LQJ f *RXJK f DQG .OLWJRUG HW DO f 7KH GDWD ZHUH GLJLWL]HG IURP WKHVH RULJLQDO PDSV DQG FRQWRXUHG XVLQJ D QDQRWHVOD FRQWRXU LQWHUYDO 8QIRUWXQDWHO\ WKHUH DUH UHODWLYHO\ ODUJH DUHDV RI WKH SODWHDX IRU ZKLFK WKHUH DUH QR GDWD 7KH GLJLWDO ILOWHUV XVHG LQ WKLV VWXG\ HPSOR\ )RXULHU V\QWKHVLV WR WUDQVIRUP WKH GDWD IURP WKH VSDFH GRPDLQ WR WKH IUHTXHQF\ RU ZDYH QXPEHUf GRPDLQ $V D FRQVHTXHQFH RI *LEEV SKHQRPHQRQ WKDW LV WKH HUURU LQWURGXFHG GXULQJ )RXULHU V\QWKHVLV QHDU D GLVFRQWLQXLW\ LW ZDV GHWHUPLQHG WKDW WKH GDWDOHVV DUHDV LQ WKH PDJQHWLF DQRPDO\ PDS ZRXOG UHVXOW LQ XQDFFHSWDEOH HUURUV VKRXOG WKH PDJQHWLF GDWD VHW EH GLJLWDOO\ ILOWHUHG $V D UHVXOW WKH XVH RI DQ XQILOWHUHG PDJQHWLF DQRPDO\ PDS IRU WKH SODWHDX LV FRQVLGHUHG WR EH PRUH GHVLUDEOH IRU LQWHUSUHWLYH SXUSRVHV %HFDXVH WKLV PDS UHSUHVHQWV D FRPSLODWLRQ IURP D QXPEHU RI PDJQHWLF VXUYH\V HJ .OLWJRUG HW DO f WKH DQRPDO\ YDOXHV IURP GLIIHUHQW VHFWLRQV RI )LJXUH PD\ EH GHULYHG IURP VHYHUDO GLIIHUHQW EDVH YDOXHV :KLOH VLPLODULWLHV EHWZHHQ WKLV PDS DQG WKH SUHYLRXVO\ SXEOLVKHG PDJQHWLF DQRPDO\ PDSV VXJJHVW WKDW WKLV KDV QRW VLJQLILFDQWO\ DIIHFWHG WKH VKDSH RU PDJQLWXGH RI WKH ORFDO

PAGE 25

PDJQHWLF DQRPDO\ SDWWHUQV SUHVHQWHG LQ )LJXUH WKHUH LV XQGRXEWHGO\ VRPH HUURU LQ WKH UHODWLYH PDJQHWLF YDOXHV EHWZHHQ DQ\ JLYHQ DUHD DQG YDOXHV LQ RWKHU VHFWLRQV RI WKH PDS 7KH %RXJXHU DQRPDO\ GDWD ZHUH GLJLWDOO\ ILOWHUHG XVLQJ VHYHUDO PHWKRGV DQG D VHULHV RI PDSV ZHUH FUHDWHG IURP WKH ILOWHUHG GDWD 7KHVH GLJLWDO ILOWHUV LQFOXGHG D GRZQZDUG FRQWLQXDWLRQ )LJXUH f DQ XSZDUG FRQWLQXDWLRQ )LJXUH f DQG D VHFRQG YHUWLFDO GHULYDWLYH )LJXUH f RI WKH %RXJXHU DQRPDO\ ILHOG 7KH SXUSRVHV RI WKHVH ILOWHUV DUH H[SODLQHG EHORZ ,Q HDFK FDVH VHYHUDO URZV DQG FROXPQV RI H[WUDSRODWHG GDWD ZHUH DGGHG WR HDFK VLGH RI WKH JULG WR UHGXFH WKH QHDUERXQGDU\ GLVWRUWLRQ RI *LEEV SKHQRPHQRQ 7KHVH DGGLWLRQDO URZV DQG FROXPQV ZHUH WKHQ UHPRYHG SULRU WR FRQWRXULQJ 7KH GRZQZDUG FRQWLQXDWLRQ RI SRWHQWLDOILHOG GDWD ZDV GRQH IURP D OHYHO WR DQ LUUHJXODU VXUIDFH XVLQJ WKH PHWKRG RI *UDXFK f 7KLV PHWKRG LV XVHG WR DSSUR[LPDWH WKH UHODWLYH YDOXHV RI JUDYLWDWLRQDO SRWHQWLDOV DW WKH EDVHPHQW VXUIDFH %HFDXVH WKH GHSWK WREDVHPHQW LV TXLWH YDULDEOH UDQJLQJ IURP DERXW P WR RYHU P WKH UHPRYDO RI UHVXOWDQW GHSWKUHODWHG GHYLDWLRQV LQ WKH REVHUYHG ILHOG WKURXJK WKLV PHWKRG RI GRZQZDUG FRQWLQXDWLRQ PLJKW EH H[SHFWHG WR UHYHDO SUHYLRXVO\ XQREVHUYHG WUHQGV RU IHDWXUHV ,Q DGGLWLRQ GRZQZDUG FRQWLQXDWLRQ KDV WKH HIIHFW RI VKDUSHQLQJ WKH ILHOG ZKLFK EHWWHU RXWOLQHV VRXUFH IHDWXUHV DW GHSWK 7KH DSSOLFDWLRQ RI GRZQZDUGFRQWLQXDWLRQ ILOWHUV HLWKHU LQ WKH IUHTXHQF\ RU VSDFH GRPDLQV UHVXOWV LQ D ELDVHG DPSOLILFDWLRQ RI KLJKHU IUHTXHQF\ RU VPDOOHUf FRPSRQHQWV UHODWLYH WR ORZHU IUHTXHQF\ RU ODUJHUf FRPSRQHQWV &ODUNH &RUGHOO DQG *UDXFK

PAGE 26

)LJXUH 0DJQHWLF DQRPDO\ PDS RI WKH )ORULGDQ 3ODWHDX UHJLRQ &RPSLOHG IURP .LQJ *RXJK .OLWJRUG HW DO f &RQWRXU LQWHUYDO Q7

PAGE 27

)LJXUH %RXJXHU DQRPDO\ ILHOG RI WKH )ORULGDQ 3ODWHDX GRZQZDUG FRQWLQXHG WR EDVHPHQW OHYHO &RQWRXU LQWHUYDO PJDOV

PAGE 28

)LJXUH %RXJXHU DQRPDO\ ILHOG RI WKH )ORULGDQ 3ODWHDX XSZDUG FRQWLQXHG WR NP &RQWRXU LQWHUYDO PJDOV

PAGE 29

)LJXUH 6HFRQG YHUWLFDO GHULYDWLYH RI WKH %RXJXHU DQRPDO\ ILHOG RI WKH )ORULGDQ 3ODWHDX &RQWRXU LQWHUYDO PJDOV

PAGE 30

f 7KLV QHFHVVLWDWHV WKH XVH RI D ORZSDVV ILOWHU SULRU WR SHUIRUPLQJ WKHVH RSHUDWLRQV ,Q RUGHU WR DSSO\ WKLV ORZSDVV ILOWHU WKH JULGGHG GDWD VHW LV WUDQVIRUPHG LQWR WKH IUHTXHQF\ RU ZDYH QXPEHU GRPDLQ WKURXJK WKH XVH RI WKH WZRGLPHQVLRQDO )DVW )RXULHU WUDQVIRUP RU ))7f 7KH ))7 LV VLPSO\ DQ HIILFLHQW PHWKRG RI FDOFXODWLQJ WKH 'LVFUHWH )RXULHU WUDQVIRUP RU ')7f ZKLFK LQ WXUQ LV D GLJLWDO PHWKRG RI DSSUR[LPDWLQJ WKH FRQWLQXRXV )RXULHU LQWHJUDO IXQFWLRQ &RROH\ DQG 7XNH\ %HUJODQG f 7KH WZRGLPHQVLRQDO ))7 LV JLYHQ E\ 0 1 BQL NP *NOf , JPQf H P P Q ZKHUH *NOf LV WKH SRWHQWLDOILHOG IXQFWLRQ ZLWK N DQG UHSUHVHQWLQJ JULG SRLQW ORFDWLRQV LQ WKH IUHTXHQF\ GRPDLQ P DQG Q DUH LQWHJHUV UHSUHVHQWLQJ JULG SRLQW ORFDWLRQV LQ WKH VSDFH GRPDLQ 0 LV WKH QXPEHU RI URZV DQG 1 LV WKH QXPEHU RI FROXPQV +LOGHQEUDQG f 2QFH LQ WKH IUHTXHQF\ GRPDLQ D WDSHUHG ORZSDVV ILOWHU ZDV DSSOLHG WKLV SURJUHVVLYHO\ ILOWHUHG RXW ZDYHOHQJWKV IURP NP WR NP ZKLOH ZDYHOHQJWKV EHORZ NP KLJK IUHTXHQFLHVf ZHUH WRWDOO\ VTXHOFKHG 7KH GDWD VHW ZDV WKHQ WUDQVIRUPHG EDFN WR WKH VSDFH GRPDLQ WKURXJK WKH DSSOLFDWLRQ RI WKH LQYHUVH ))7 RU ,))7f )RU WKH DFWXDO GRZQZDUG FRQWLQXDWLRQ WKH PHWKRG RI *UDXFK f XWLOL]HV D 7D\ORU VHULHV H[SDQVLRQ WR DSSUR[LPDWH WKH SRWHQWLDOILHOG GDWD I]f DW VRPH GHSWK ] IURP WKH REVHUYHG SRWHQWLDOILHOG GDWD If DW D JLYHQ UHIHUHQFH OHYHO ] 7KH 7D\ORU VHULHV ZKLFK ZDV FDOFXODWHG WR WHUPV LV JLYHQ E\

PAGE 31

)]f )f ] e If I ].2f FH GD 7KH ] YDOXH IRU HDFK JULG ORFDWLRQ ZDV WDNHQ IURP WKH GHSWKWR EDVHPHQW GDWD DOUHDG\ GHVFULEHG 7KLV FDOFXODWLRQ ZDV UHSHDWHG IRU HDFK SRLQW RQ WKH JULG WKH DGGHG ERXQGDU\ GDWD ZHUH UHPRYHG DQG WKH UHVXOWDQW GDWD VHW VXEVHTXHQWO\ FRQWRXUHG )LJXUH f $QRWKHU ILOWHU DSSOLHG WR WKH %RXJXHU DQRPDO\ ILHOG ZDV DQ XSZDUGFRQWLQXDWLRQ WR DQ HOHYDWLRQ RI NP 7KLV KDV WKH HIIHFW RI UHPRYLQJ VKRUWZDYHOHQJ WK IHDWXUHV RI WKH ILHOG ZKLFK DUH RIWHQ DWWULEXWDEOH WR VKDOORZ FUXVWDO VRXUFHV )LJXUH f 7KH XSZDUG FRQWLQXDWLRQ LV DFFRPSOLVKHG E\ WDNLQJ WKH ))7 RI WKH GDWD DV GHVFULEHG DERYH JLYLQJ WKH )RXULHU FRHIILFLHQWV *NOf $V GHVFULEHG E\ )XOOHU f WKHVH )RXULHU FRHIILFLHQWV DUH WKHQ PXOWLSOLHG E\ +NOf WKH ZDYH QXPEHU UHVSRQVH RI WKH ILOWHU +NOf LV JLYHQ E\ +NOf H7,]N_f ZKHUH ] LV WKH FRQWLQXDWLRQ GLVWDQFH 7KH DSSOLFDWLRQ RI WKH ,))7 WR WKH JULGGHG GDWD DQG WKH UHPRYDO RI WKH DGGHG ERXQGDU\ GDWD WKHQ SHUPLWWHG WKH FRQVWUXFWLRQ RI WKH ILQDO XSZDUGFRQWLQXHG PDS ,Q D VLPLODU PDQQHU D VHFRQG YHUWLFDO GHULYDWLYH PDS ZDV DOVR SURGXFHG 7KH VHFRQG YHUWLFDO GHULYDWLYH HIIHFWLYHO\ UHPRYHV ORQJ ZDYHOHQJWK IHDWXUHV IURP WKH ILHOG ZKLOH HPSKDVL]LQJ WKRVH VKRUW ZDYHOHQJWK IHDWXUHV XVXDOO\ DWWULEXWDEOH WR VKDOORZ FUXVWDO VRXUFHV )LJXUH f ,Q WKLV LQVWDQFH WKH GDWD VHW ZDV WUDQVIRUPHG LQWR WKH

PAGE 32

IUHTXHQF\ GRPDLQ DQG WKH )RXULHU FRHIILFLHQWV VXEVHTXHQWO\ PXOWLSOLHG E\ WKH ZDYH QXPEHU UHVSRQVH RI WKH ILOWHU DV JLYHQ E\ +NOf 77N ,f )XOOHU f $JDLQ WKH GDWD VHW ZDV WKHQ WUDQVIRUPHG EDFN LQWR WKH VSDFH GRPDLQ XVLQJ WKH ,))7 WKH H[WUD ERXQGDU\ GDWD UHPRYHG DQG WKH JULG VXEVHTXHQWO\ FRQWRXUHG ,Q JHQHUDO WKHVH PDSV FRPSOHPHQW DQG DXJPHQW WKH UHVXOWV RI PDQ\ SUHYLRXV LQYHVWLJDWLRQV 7KH GHSWKWREDVHPHQW PDS DFFXUDWHO\ GHSLFWV WKH 3HQLQVXODU $UFK WKH H[SHFWHG VRXWKZDUG LQFUHDVH LQ GHSWK WKH VHULHV RI 0HVR]RLF EDVLQV LQ WKH VRXWKHUQ DQG ZHVWHUQ UHJLRQV RI WKH SODWHDX DQG D VPDOO SUHYLRXVO\ XQGHVFULEHG EDVLQ XQGHU WKH QRUWKHDVWHUQ HGJH RI WKH SODWHDX )LJXUH f :KLOH WKH GLIIHUHQFHV EHWZHHQ WKH RULJLQDO %RXJXHU DQRPDO\ PDS )LJXUH f DQG WKH GRZQZDUGFRQWLQXHG PDS )LJXUH f DUH UHODWLYHO\ VXEWOH WKH GRZQZDUG FRQWLQXDWLRQ LV SUHIHUDEOH DV LW PRUH DFFXUDWHO\ GHOLQHDWHV WKH ERXQGDULHV RI DQRPDO\SURGXFLQJ IHDWXUHV 7KH XSZDUGFRQWLQXHG PDS )LJXUH f GHOLQHDWHV D QXPEHU RI ORQJ ZDYHOHQJWK IHDWXUHV WKDW DUH FOHDUO\ DVVRFLDWHG ZLWK ODUJH VFDOH FUXVWDO IHDWXUHV VXFK DV WKH 0HVR]RLF EDVLQV WKDW KDYH EHHQ SUHYLRXVO\ GHVFULEHG EXW SRRUO\ ORFDWHG DQG FKDUDFWHUL]HG 2Q WKH RWKHU KDQG WKH VHFRQG YHUWLFDO GHULYDWLYH PDS )LJXUH f VKRZV UHODWLYHO\ IHZ VKRUWZDYHOHQJWK IHDWXUHV RQ WKH SODWHDX DQG WKHVH DUH DOO ORZ DPSOLWXGH 7KLV VXJJHVWV WKDW WKH VHGLPHQWDU\

PAGE 33

DFFXPXODWLRQV RI WKH )ORULGD 3ODWIRUP DUH UHODWLYHO\ KRPRJHQHRXV ZLWK UHVSHFW WR GHQVLW\ )XUWKHUPRUH LW VXJJHVWV WKDW VPDOOHU VKDOORZ FUXVWDO IHDWXUHV VXFK DV SOXWRQV DUH QRW SDUWLFXODUO\ DEXQGDQW RQ WKH SODWHDX DOWKRXJK WKLV GRHV QRW SUHFOXGH WKH H[LVWHQFH RI VXFK IHDWXUHV ZLWK ORZ GHQVLW\ FRQWUDVWV RU LQ WKH PLGGOH FUXVW 7KH OLWKRORJLHV RI WKH SUH0HVR]RLF EDVHPHQW WHUUDQHV RI WKH QRUWKHDVWHUQ SRUWLRQ RI WKH SODWHDX KDYH EHHQ PRGHUDWHO\ ZHOO FKDUDFWHUL]HG %DVHPHQW OLWKRORJLHV IURP WKH UHPDLQLQJ SRUWLRQV RI WKH SODWHDX DUH XQUHVROYHG KRZHYHU PRUH VWUXFWXUDO GHWDLO LV NQRZQ $V D UHVXOW WKLV VHFWLRQ ZLOO QHFHVVDULO\ EH IRFXVHG RQ WKH SUH0HVR]RLF OLWKRWHFWRQLF WHUUDQHV RI QRUWKHUQ SHQLQVXODU )ORULGD ZKLOH WKH QH[W VHFWLRQ ZLOO EH IRFXVHG SULPDULO\ RQ WKH 0HVR]RLF VWUXFWXUDO IHDWXUHV RI ZHVWHUQ )ORULGD ,Q WKH IROORZLQJ GLVFXVVLRQ WKH ORFDWLRQ RI HDFK RI WKH OLWKRWHF WRQLF IHDWXUHV RU UHJLRQV ZLWKLQ WKH VWXG\ DUHD LV GHVLJQDWHG E\ D OHWWHU RQ )LJXUHV 2VFHROD *UDQLWHUHJLRQ $ 7KH 2VFHROD *UDQLWH SUHYLRXVO\ NQRZQ DV WKH $YDORQ WHUUDQH LV WKH ROGHVW LGHQWLILHG WHUUDQH LQ WKH SODWHDX EDVHPHQW $OWKRXJK GHVFULEHG DV D JUDQLWH E\ FRQYHQWLRQ LW LV EHWWHU FKDUDFWHUL]HG DV D UHODWLYHO\ XQGHIRUPHG JUDQLWRLG EDWKROLWK FRPSRVHG RI D UDQJH RI IHOVLF OLWKRORJLHV 0LOWRQ DQG *UDVW\ %DUQHWW 6PLWK f 7KLV JUDQLWRLG FRPSOH[ XQGHUOLHV WKH HDVW FHQWUDO SRUWLRQ RI WKH SODWHDX DW DQ DYHUDJH GHSWK RI DERXW P )LJXUH f 8VLQJ 5E6U WHFKQLTXHV %DVV f GDWHG WKH 2VFHROD *UDQLWH DW DERXW 0D D VLPLODU DJH KDV VXEVHTXHQWO\

PAGE 34

)LJXUH 0DS RI GULOO KROH GLVWULEXWLRQ DQG EDVHPHQW OLWKRORJLHV ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 35

)LJXUH 'HSWKWREDVHPHQW PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 36

)LJXUH 0DJQHWLF DQRPDO\ ILHOG PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 37

)LJXUH %RXJXHU DQRPDO\ PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 38

)LJXUH 'RZQZDUGFRQWLQXHG %RXJXHU DQRPDO\ PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 39

)LJXUH 8SZDUGFRQWLQXHG %RXJXHU DQRPDO\ PDS ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 40

)LJXUH 6HFRQG YHUWLFDO GHULYDWLYH RI WKH %RXJXHU DQRPDO\ ILHOG ZLWK WKH GHVLJQDWHG IHDWXUHV GLVFXVVHG LQ WKH WH[W

PAGE 41

EHHQ REWDLQHG E\ 'DOOPH\HU HW DO f XVLQJ $U$U WHFKQLTXHV RQ D FRPSRVLWH ELRWLWH VDPSOH IURP VHYHUDO VSHFLPHQV 6P1G LVRWRSLF GDWD IRU WKH 2VFHROD *UDQLWH DUH VXJJHVWLYH RI D PL[HG VRXUFH FRQWDLQLQJ ERWK 3URWHUR]RLF DQG $UFKHDQ FRPSRQHQWV +HDWKHULQJWRQ HW DO f 7KH GULOO KROHV LQWHUVHFWLQJ JUDQLWH LQ HDVWFHQWUDO )ORULGD DUH JHQHUDOO\ FHQWHUHG DURXQG D SHQWDJRQDO QHJDWLYH JUDYLW\ DQRPDO\ )LJXUHV $f DOWKRXJK VHYHUDO RI WKHVH KROHV DUH RXWVLGH WKH ERXQGDULHV RI WKH DQRPDO\ 7KH PDJQHWLF VLJQDWXUH RI WKH WHUUDQH LV PRUH FRPSOH[ DV WKH HDVWHUQPRVW RI WKH KROHV DUH ORFDWHG DORQJ D QRUWKVRXWK RULHQWHG HORQJDWHG SRVLWLYH PDJQHWLF DQRPDO\ ZKLOH PRVW RI WKH RWKHUV DUH ORFDWHG ZLWKLQ WKH FRQILQHV RI D SUR[LPDO QHJDWLYH PDJQHWLF DQRPDO\ )LJXUH $f 7KH QRUWKVRXWK RULHQWHG ERXQGDU\ EHWZHHQ WKHVH PDJQHWLF IHDWXUHV ELVHFWV WKH QHJDWLYH JUDYLW\ DQRPDO\ %DUQHWW f PRGHOHG WKH 2VFHROD *UDQLWH DV FRQVWLWXWLQJ WKH EORFNIDXOWHG HQG FDS RI WKH 3HQLQVXODU $UFK D K\SRWKHVL]HG VWUXFWXUDO KLJK XQGHU QRUWKFHQWUDO )ORULGD $OWKRXJK WKH 3HQLQVXODU $UFK KDV VLQFH EHHQ GHVFULEHG DV DQ HURVLRQDO IHDWXUH 6PLWK f DQG WKH 2VFHROD *UDQLWH VKRZV WLWWOH SHWURORJLF HYLGHQFH RI PHWDPRUSKLVP 0LOWRQ DQG *UDVW\ f WKH SRVVLELOLW\ RI EORFN IDXOWLQJ UHPDLQV 7KH UDQGRPQHVV DQG YDULDELOLW\ LQ GHSWKWR EDVHPHQW IRU WKH GULOO KROHV LV VXJJHVWLYH RI EORFNIDXOWLQJ DV LV WKH YDULDELOLW\ LQ ERWK WKH JUDYLW\ DQG PDJQHWLF ILHOGV LQ WKH DUHD GHVFULEHG E\ WKRVH GULOO KROHV )LJXUHV DQG f ,Q DGGLWLRQ LW DSSHDUV WKDW WKH 2VFHROD *UDQLWH KDV EHHQ LQWUXGHG E\ GLDEDVH DV

PAGE 42

VXJJHVWHG E\ WKH QXPEHU RI GULOO KROHV WKDW KDYH ERWWRPHG LQ ZHDWKHUHG GLDEDVH WKURXJKRXW WKH DUHD )LJXUH f 7KH FRQWDFWV EHWZHHQ WKH 2VFHROD *UDQLWH DQG WKH MX[WDSRVHG WHUUDQHV DUH QRW ZHOO FRQVWUDLQHG $ SULPDU\ UHDVRQ IRU WKLV DULVHV IURP WKH LQKHUHQWO\ SRRU UHVROXWLRQ RI LVRWRSLFDOO\ GHWHUPLQHG DJHV IRU WKH 1RUWK )ORULGD 5K\ROLWH WR WKH QRUWK 0XHOOHU DQG 3RUFK f DQG WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ WR WKH VRXWKHDVW %DVV f $V D UHVXOW WKH IXQGDPHQWDO DJH UHODWLRQVKLSV EHWZHHQ WKH WKUHH WHUUDQHV UHPDLQ XQGHWHUPLQHG DQG DJHEDVHG LQIHUHQFHV FRQFHUQLQJ WKH QDWXUH RI WKH FRQWDFWV EHWZHHQ WKHP DUH DPELYDOHQW $ QXPEHU RI FRQWUDGLFWRU\ VXJJHVWLRQV KDYH EHHQ PDGH )RU H[DPSOH &KRZQV DQG :LOOLDPV f FLWLQJ WKH DSSDUHQW FRQFRUGDQFH LQ DJHV EHWZHHQ WKH 2VFHROD *UDQLWH DQG WKH DPSKLEROLWH VXJJHVWHG WKDW WKH\ FRXOG FRPSULVH D FRQWHUPLQRXV WHUUDQH $FFRUGLQJO\ WKH UK\ROLWLF WHUUDQH ZRXOG WKHQ RYHUOLH ERWK WKH JUDQLWH DQG DPSKLEROLWH DQG EH VHSDUDWHG IURP WKHP E\ D WKUXVW IDXOW RU XQFRQIRUPLW\ $OWHUQDWLYHO\ %DVV f EHOLHYHG WKDW WKH 6W /XFLH DPSKLEROLWH E\ UHDVRQ RI PHWDPRUSKLF JUDGH PXVW QHFHVVDULO\ EH VHSDUDWHG IURP DOO RWKHU )ORULGD EDVHPHQW URFNV E\ D IXQGDPHQWDO GLVFRQWLQXLW\ 7KLV ZDV VXSSRUWHG E\ WKH SUHVHQFH RI WKLQ OD\HUV RI XQDOWHUHG EDVDOWLF URFN JUDQLWH DQG GLRULWH LPPHGLDWHO\ RYHU WKH DPSKLEROLWH ZKLFK LPSOLHV D KRUL]RQWDOO\ IDXOWHG FRQWDFW %DVV f $QRWKHU SRVVLELOLW\ LV WKDW WKH 2VFHROD *UDQLWH UHSUHVHQWV DQ LQWUXVLRQ LQWR DQ ROGHU WHUUDQH FRQVLVWLQJ RI WKH UK\ROLWH DQG WKH PHWDPRUSKLF FRPSOH[ %DUQHWW f ,Q VXSSRUW RI WKLV ODWWHU PRGHO 7KRPDV HW DO f LQIHUUHG IURP LQWHUSUHWHG VWHHS FLUFXODU JUDYLW\ DQG PDJQHWLF JUDGLHQWV DURXQG WKH 2VFHROD

PAGE 43

*UDQLWH WKDW LW LV ERXQGHG E\ VWHHSO\ GLSSLQJ FRQWDFWV ZLWK WKH VXUURXQGLQJ OLWKRORJLHV 6DPSOHV IURP VHYHUDO GULOO KROHV VKRZ WKDW WKH 2VFHROD *UDQLWH H[WHQGV QRUWKHDVWZDUG DQG QRUWKZHVWZDUG EH\RQG WKH ERXQGDULHV LQIHUUHG IURP WKH SRWHQWLDOILHOG JUDGLHQWV KRZHYHU WR WKH VRXWK RWKHU KROHV SHQHWUDWH URFNV LQGLFDWLQJ WKDW WKH VWHHS JUDGLHQWV PDUN WKH ERXQGDULHV RI WKH WHUUDQH )LJXUHV $f $ORQJ LWV VRXWKZHVWHUQ ERXQGDU\ WKH 2VFHROD *UDQLWH DSSHDUV WR EH WUXQFDWHG E\ WKH -D\ )DXOW DV KDV EHHQ VXJJHVWHG E\ 6PLWK f 7R WKH VRXWKHDVW WKH SUHVHQFH RI ERWK PDILF DQG IHOVLF H[WUXVLYH URFNV LQ GULOO KROHV QHDU WR WKRVH LQWHUVHFWLQJ WKH 2VFHROD *UDQLWH FOHDUO\ GHOLQHDWHV WKH ERXQGDU\ ZKLFK FRLQFLGHV ZLWK VWHHS QRUWKHDVWn WUHQGLQJ JUDYLW\ JUDGLHQWV VHSDUDWLQJ WKH SHQWDJRQDO QHJDWLYH DQRPDO\ IURP D VPDOOHU RYRLG SRVLWLYH DQRPDO\ ,W LV XQFOHDU ZKHWKHU WKH H[WUXVLYH URFNV RYHUOLH WKH JUDQLWRLG RU UDWKHU KDYH EHHQ MX[WDSRVHG DJDLQVW LW 7KH HDVWHUQ ERXQGDU\ RI WKH 2VFHROD *UDQLWH LV XQUHVROYHG DOWKRXJK WKH VWHHS QRUWKQRUWKHDVW WUHQGLQJ JUDYLW\ JUDGLHQW DORQJ WKH HDVWHUQ VLGH RI WKH SHQWDJRQDO QHJDWLYH DQRPDO\ VXJJHVWV WKDW WKH JUDQLWRLG PD\ QRW H[WHQG EH\RQG WKH FRDVW RI SHQLQVXODU )ORULGD $ VLQJOH GULOO KROH KDV UHYHDOHG WKH SUHVHQFH RI DQ DPSKLEROLWH JUDGH PHWDLJQHRXV DVVHPEODJH DW D GHSWK RI DERXW P LPPHGLDWHO\ VRXWKHDVW RI WKH 2VFHROD *UDQLWH XQGHUO\LQJ 6W /XFLH &RXQW\ %DVV 0LOWRQ DQG *UDVW\ %DUQHWW 6PLWK &KRZQV DQG :LOOLDPV :LQVWRQ f 8VLQJ 5E6U WHFKQLTXHV %DVV f GDWHG VDPSOHV RI WKLV DVVHPEODJH DW DERXW 0D ZKLFK LV DOVR WKH

PAGE 44

DSSUR[LPDWH DJH REWDLQHG IRU WKH 2VFHROD *UDQLWH 7KH DVVHPEODJH LV FRPSULVHG SULPDULO\ RI DPSKLEROLWH ZLWK VRPH TXDUW] GLRULWH JQHLVV DQG FKORULWH VFKLVW %DVV 7KRPDV HW DO f $OWKRXJK VHYHUDO QDPHV KDYH EHHQ DSSOLHG WR WKLV WHUUDQH LQ WKLV ZRUN LW ZLOO EH UHIHUUHG WR DV WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ 7KH GULOO KROH LV ORFDWHG QHDU WKH QRUWKHUQ HGJH RI DQ RYRLG HDVWZHVW RULHQWHG QHJDWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ 7KLV DQRPDO\ LV UHODWLYHO\ VPDOO DSSUR[LPDWHO\ NP ORQJ E\ NP ZLGH DQG PD\ GHOLQHDWH WKH ERXQGDULHV RI WKH WHUUDQH )LJXUHV DQG %f ,W LV SUREDEOH WKDW WKH 6W /XFLH &RPSOH[ LV ERXQGHG WR WKH VRXWKZHVW E\ WKH -D\ )DXOW 7R WKH QRUWK WKH WHUUDQH H[WHQGV RQO\ D VKRUW GLVWDQFH DV GHPRQVWUDWHG E\ GULOO KROHV DQG LQIHUUHG IURP WKH JUDYLW\ DQG PDJQHWLF DQRPDO\ 7R WKH HDVW WKH DQRPDO\ H[WHQGV RQO\ WR WKH FRDVW RI SHQLQVXODU )ORULGD DQG LQ DQ LQWHUSUHWDWLRQ RI DQ RIIVKRUH VHLVPLF UHIOHFWLRQ SURILOH 6KHULGDQ HW DO f IRXQG QR HYLGHQFH IRU WKH SUHVHQFH RI WKLV WHUUDQH RII WKH )ORULGD FRDVW $V D UHVXOW LW DSSHDUV WKDW WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ HQFRPSDVVHV RQO\ D UHODWLYHO\ VPDOO DUHD DQG PD\ WKHUHIRUH EH D IDXOWERXQGHG EORFN $Q DOWHUQDWLYH SRVVLELOLW\ LV WKDW WKH PHWDPRUSKLF URFNV UHSUHVHQW D URRI SHQGDQW LQ WKH SUR[LPDO IHOVLF LJQHRXV URFNV 3 0XHOOHU SHUVRQDO FRPPXQLFDWLRQf 7KH PHWDPRUSKLF JUDGH RI WKH DVVHPEODJH LV LQGLFDWLYH RI UHJLRQDO DFWLYLW\ ZKLFK VXJJHVWV WKDW WKLV VPDOO WHUUDQH UHSUHVHQWV DQ LVRODWHG IUDJPHQW RI D RQFH ODUJHU XQLW %DVV f $QRWKHU IUDJPHQW RI WKLV ODUJHU XQLW PD\ EH SUHVHQW LQ WKH VRXWKHDVWHUQ *XOI RI 0H[LFR 0HWDPRUSKLF URFN VDPSOHV REWDLQHG GXULQJ '6'3 OHJ RQ WKH &DWRFKH .QROO DUH SHWURORJLFDOO\ VLPLODU WR WKH 6W /XFLH

PAGE 45

0HWDPRUSKLF &RPSOH[ DQG DUH DSSUR[LPDWHO\ WKH VDPH DJH 'DOOPH\HU f %DVHG RQ WKHVH VLPLODULWLHV DQG EHFDXVH WKHUH DUH QR RWKHU VLPLODU PHWDPRUSKLF WHUUDQHV NQRZQ LQ WKH *XOI RI 0H[LFR&DULEEHDQ UHJLRQ 6FKODJHU HW DO f KDYH LQIHUUHG WKH WZR WR EH FRJHQHWLF 1RUWK )ORULGD 5KYROLWHf§UHJLRQ & 2YHUO\LQJ WKH 2VFHROD *UDQLWH WR WKH QRUWK DQG ZHVW LV D WHUUDQH RI VOLJKWO\ PHWDPRUSKRVHG FDOF DONDOLQH UK\ROLWLF WR DQGHVLWLF YROFDQLF URFNV 7KH XSSHU VXUIDFH RI WKLV WHUUDQH LQ QRUWKHDVWHUQ )ORULGD GLSV VRXWKHDVWZDUG DQG UDQJHV LQ GHSWK IURP DERXW P WR DERXW P 6PLWK f 7KH FDOFDONDOLQH QDWXUH 0XHOOHU DQG 3RUFK f DQG WUDFH HOHPHQW VLJQDWXUHV +HDWKHULQJWRQ HW DO f RI VDPSOHV IURP WKLV WHUUDQH HDFK VXJJHVW HUXSWLRQ LQ DQ RFHDQFRQWLQHQW FRQYHUJHQW PDUJLQ VHWWLQJ ,Q DWWHPSWLQJ WR GDWH WZR VHSDUDWH VDPSOHV RQH UK\ROLWH DQG RQH DQGHVLWH 0XHOOHU DQG 3RUFK f LGHQWLILHG GLVWXUEHG $U$U UHOHDVH SDWWHUQV IURP HDFKGHVSLWH WKLV DSSDUHQWO\ FRQFRUGDQW DJHV RI s 0D DQG s 0D ZHUH REWDLQHG $OWKRXJK WKH GLVWXUEHG UHOHDVH SDWWHUQV VXJJHVW WKHVH DJH GHWHUPLQDWLRQV WR EH PLQLPD VWUDWLJUDSKLF UHODWLRQVKLSV VXJJHVW D /DWH 3UHFDPEULDQ WR (DUO\ 3DOHR]RLF DJH IRU WKH WHUUDQH $UGHQ &KRZQV DQG :LOOLDPV f )HZ VWUXFWXUDO LQIHUHQFHV KDYH EHHQ PDGH DERXW WKH 1RUWK )ORULGD 5K\ROLWH )URP D VHLVPLF UHIOHFWLRQ VXUYH\ LQ WKH )ORULGD SDQKDQGOH $UGHQ f GLVWLQJXLVKHG IDXOWLQJ DQG JHQIOH IROGV LQ WKH WHUUDQH ,W LV XQFOHDU ZKHWKHU WKHVH DUH XELTXLWRXV 3DOHR]RLF IHDWXUHV DV LQIHUUHG E\ 7KRPDV HW DO f RU VLPSO\ ORFDOL]HG 7ULDVVLF VWUXFWXUHV DVVRFLDWHG ZLWK WKH VRXWKZHVWZDUG H[WHQVLRQ RI

PAGE 46

WKH 6RXWK *HRUJLD 5LIW DV VXJJHVWHG E\ $UGHQ f DQG .OLWJRUG HW DO f 7KH VXEODWHUDO H[WHQW RI WKLV WHUUDQH LV XQFHUWDLQ $OWKRXJK WKH GLVWULEXWLRQ RI GULOO KROHV LQWHUVHFWLQJ UK\ROLWH LV JHQHUDOO\ FRLQFLGHQW ZLWK DQ HORQJDWHG QHJDWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ )LJXUHV DQG &f SUHYLRXV JHRSK\VLFDO DQG GULOO KROH VWXGLHV VXJJHVW WKDW WKH WHUUDQH FRQWLQXHV QRUWKZDUG XQGHU WKH 6XZDQQHH %DVLQ WHUUDQH GHVFULEHG EHORZ DQG H[WHQGV LQWR VRXWKHUQ *HRUJLD %DUQHWW :LFNHU DQG 6PLWK &KRZQV DQG :LOOLDPV f 7R WKH VRXWK WZR GULOO KROHV LQWHUVHFWLQJ UK\ROLWH KDYH EHHQ LQWHUSUHWHG WR LQGLFDWH D VXEFURS RI WKLV WHUUDQH LPPHGLDWHO\ VRXWK RI WKH 2VFHROD *UDQLWH HJ &KRZQV DQG :LOOLDPV 'DOOPH\HU f 6HYHUDO XQGDWHG UK\ROLWLF VDPSOHV KDYH DOVR EHHQ REWDLQHG IURP WKH VRXWKFHQWUDO SRUWLRQ RI WKH )ORULGDQ 3ODWHDX LQ WKH 6RXWK )ORULGD %DVLQ LW KDV EHHQ VXJJHVWHG WKDW WKHVH VDPSOHV DUH HLWKHU IURP KRUVWV RI WKLV VDPH IHOVLF YROFDQLF WHUUDQH 7KRPDV HW DO f RU IURP SDUW RI D VHSDUDWH VRXWKHUO\ 0HVR]RLF ELPRGDO VXLWH %DUQHWW 0XHOOHU DQG 3RUFK f 7R WKH ZHVW IHOVLF EDVHPHQW URFNV KDYH EHHQ HQFRXQWHUHG LQ WKH )ORULGD SDQKDQGOH DUHD WKHVH URFNV DUH XQGDWHG DQG KDYH EHHQ YDULRXVO\ FRUUHODWHG WR WKH 1RUWK )ORULGD 5K\ROLWH $UGHQ 7KRPDV HW DOf WKH 2VFHROD *UDQLWH %DUQHWW f DQG WR WKH 3HUPLDQ "f JUDQLWH RI WKH :LJJLQV $UFK LQ 0LVVLVVLSSL 6PLWK f 6XZDQQHH %DVLQUHJLRQ 2YHUO\LQJ WKH QRUWK )ORULGD LJQHRXV URFNV LV WKH 6XZDQQHH %DVLQ WHUUDQH ZKLFK KDV DOVR EHHQ UHIHUUHG WR DV WKH 1RUWK )ORULGD %DVLQ DQG WKH 7DOODKDVVHH6XZDQQHH WHUUDQH $UGHQ %DUQHWW 6PLWK &KRZQV DQG :LOOLDPV

PAGE 47

7KRPDV HW DO f 7KLV WHUUDQH H[WHQGV QRUWKZDUG LQWR VRXWKHUQ *HRUJLD DQG ZHVWZDUG DW OHDVW WR WKH )ORULGD SDQKDQGOH DV ZHOO DV VRXWKZHVWZDUG WR WKH 0LGGOH *URXQG $UFK LQ WKH QRUWK FHQWUDO UHJLRQ RI WKH SODWHDX %DOO HW DO 'REVRQ DQG %XIIOHU f 7KH 6XZDQQHH %DVLQ KDV EHHQ LQWHUVHFWHG E\ QXPHURXV GULOO KROHV DW GHSWKV UDQJLQJ IURP P WR P 6PLWK f DQG LV FRPSRVHG RI D PDVVLYH (DUO\ 2UGRYLFLDQ TXDUW]LWLF VDQGVWRQH RYHUODLQ E\ LQWHUFDODWHG 0LGGOH 2UGRYLFLDQ WR 0LGGOH 'HYRQLDQ VDQGVWRQHV DQG VKDOHV $UGHQ f 7KH WRSRJUDSKLF KLJK RI WKH WHUUDQH LQ WKH QRUWKFHQWUDO SRUWLRQ RI SHQLQVXODU )ORULGD LV DQ HURVLRQDO UHPQDQW NQRZQ DV WKH 3HQLQVXODU $UFK 7KH VWUXFWXUH RI WKH 6XZDQQHH %DVLQ LV VRPHZKDW EHWWHU GHILQHG WKDQ WKDW RI WKH XQGHUO\LQJ 1RUWK )ORULGD 5K\ROLWH DOWKRXJK WKH QDWXUH RI WKH FRQWDFW EHWZHHQ WKH WZR LV UDWKHU HQLJPDWLF $UGHQ f IURP DQ LQWHUSUHWDWLRQ RI D VHLVPLF UHIOHFWLRQ SURILOH LQWHUSUHWHG WKH FRQWDFW WR EH D QRUWKHDVWGLSSLQJ 0LGGOH WR /DWH 3DOHR]RLF DJH WKUXVW IDXOW WKDW HPSODFHG WKH 6XZDQQHH %DVLQ RYHU WKH YROFDQLFV ZKLOH RWKHUV HJ 7KRPDV HW DO f KDYH VXJJHVWHG WKH FRQWDFW WR EH DQ XQFRQIRUPLW\ $OWKRXJK GULOOLQJ LQWR WKH 6XZDQQHH %DVLQ WHUUDQH KDV QHYHU SHQHWUDWHG PRUH WKDQ DERXW P JUDYLW\ PRGHOLQJ LQGLFDWHV WKDW WKH HDVWHUQ 6XZDQQHH %DVLQ KDV D PD[LPXP WKLFNQHVV RI DERXW P :LFNHU DQG 6PLWK f ZKLOH VHLVPLF UHIOHFWLRQ SURILOHV VXJJHVW WKH ZHVWHUQ 6XZDQQHH %DVLQ PD\ EH HYHQ WKLFNHU $UGHQ 7KRPDV HW DO f 2WKHU VWUXFWXUDO GHWDLOV RI WKH 6XZDQQHH %DVLQ DUH EHWWHU GHOLQHDWHG :KLOH WKH HDVWHUQ SRUWLRQ DSSHDUV WR EH UHODWLYHO\ XQGHIRUPHG ZLWK D SHQHSODLQHG XSSHU VXUIDFH $UGHQnV VHLVPLF

PAGE 48

SURILOH DQG QXPHURXV GULOO KROHV KDYH VKRZQ WKH ZHVWHUQ VHFWLRQ WR KDYH EHHQ H[WHQVLYHO\ IDXOWHG PLOGO\ IROGHG DQG LQWUXGHG E\ GLDEDVH GXULQJ WKH 7ULDVVLF HYROXWLRQ RI WKH 6RXWK *HRUJLD 5LIW 7KLV GLIIHUHQFH KDV SURPSWHG VRPH ZRUNHUV WR VHSDUDWH WKH 6XZDQQHH %DVLQ LQWR WZR GLVWLQFW WHUUDQHV WKH (DVW DQG :HVW 6XZDQQHH %DVLQV HJ .OLWJRUG HW DO %DOO HW DO f 7KH UHODWLYHO\ VPRRWK SRWHQWLDOILHOGV LQ WKH UHJLRQ RFFXSLHG E\ WKH 6XZDQQHH %DVLQ WHUUDQH DUH ELVHFWHG E\ WZR OLQHDU 1(WUHQGLQJ QHJDWLYH JUDYLW\ DQRPDOLHV VHSDUDWHG E\ D GLVWLQFW QRUWKHDVWn WUHQGLQJ QHJDWLYH PDJQHWLF DQRPDO\ DQG ORZDPSOLWXGH SRVLWLYH JUDYLW\ DQRPDO\ 7KHVH H[WHQG IURP WKH QRUWKHDVWHPPRVW *XOI RI 0H[LFR WR WKH HDVWHUQ )ORULGD*HRUJLD ERUGHU )LJXUHV DQG IHDWXUH 'Of %DVHG RQ DQ RQVKRUH ORFDO KLJK UHVROXWLRQ JUDYLW\ VWXG\ &ROHPDQ DQG 6WHZDUW f EHOLHYHG WKH 6XZDQQHH %DVLQ VHGLPHQWDU\ GHSRVLWV WR EH XQGHUODLQ E\ WZR QRUWKHDVWWUHQGLQJ 3DOHR]RLF "f WURXJKV FRLQFLGLQJ ZLWK WKHVH OLQHDU QHJDWLYH JUDYLW\ DQRPDOLHV 2IIVKRUH KRZHYHU 'REVRQ DQG %XIIOHU f KDYH LQWHUSUHWHG EDVHPHQW IDXOWLQJ LQ D VHLVPLF UHIOHFWLRQ SURILOH DQG WKH SUHVHQFH RI 7ULDVVLF UHG EHGV LQ SUR[LPDO GULOO KROHV DV LQGLFDWLYH RI D PRGHUDWHO\VL]HG QRUWKHDVWWUHQGLQJ 7ULDVVLF ULIW EDVLQ H[WHQGLQJ DW OHDVW WR WKH QRUWKZHVW )ORULGD FRDVW DQG FRLQFLGLQJ ZLWK WKH FHQWUDO SRVLWLYH JUDYLW\ DQRPDO\ DQG WKH DVVRFLDWHG QHJDWLYH PDJQHWLF DQRPDO\ RI IHDWXUH 7KH DEVHQFH RI FRUUHVSRQGLQJ UHG EHGV LQ RQVKRUH GULOO KROHV VXJJHVWV WKH SRVVLELOLW\ WKDW IHDWXUH 'O DOWKRXJK UHODWLYHO\ FRQWLQXRXV UHSUHVHQWV WKH FXPXODWLYH HIIHFWV RI VHYHUDO VWUXFWXUDO IHDWXUHV

PAGE 49

$OWKRXJK WKH ERXQGDU\ EHWZHHQ WKH 6XZDQQHH %DVLQ WHUUDQH DQG WKH VXSHULPSRVHG 7ULDVVLF 6RXWK *HRUJLD 5LIW LV UHDVRQDEO\ ZHOO FRQVWUDLQHG IURP GULOO KROH GDWD LW LV OLNHO\ WKDW WKH 6XZDQQHH %DVLQ H[WHQGV QRUWKZDUG DQG ZHVWZDUG XQGHU WKH ULIW EDVLQ DQG IRU D VLJQLILFDQW GLVWDQFH EH\RQG LW &2&253 VHLVPLF UHIOHFWLRQ SURILOLQJ 1HOVRQ HW DO $f DQG JUDYLW\ PRGHOLQJ /RUG HW DO f ERWK LQGLFDWH WKDW WKH 6XZDQQHH %DVLQ H[WHQGV LQWR VRXWKHUQ *HRUJLD DORQJ PRVW RI LWV ERUGHU ZLWK )ORULGD DOWKRXJK QHLWKHU WKH QDWXUH QRU WKH ORFDWLRQ RI WKH QRUWKHUQ RU ZHVWHUQ ERXQGDULHV RI WKH WHUUDQH KDYH EHHQ UHVROYHG $ YDULHW\ RI HYLGHQFH VXJJHVWV WKH SUHVHQFH RI D PDMRU FUXVWDO ERXQGDU\ NQRZQ DV WKH -D\ )DXOW ZKLFK PD\ GLYLGH WKH )ORULGDQ 3ODWHDX FUXVW 1RUWKHDVWHUQ )ORULGD LV JHQHUDOO\ FKDUDFWHUL]HG E\ QRUWKHDVWVRXWKZHVW WUHQGLQJ JUDYLW\ DQG PDJQHWLF DQRPDOLHV ZKLOH WKRVH LQ VRXWKZHVWHUQ )ORULGD DUH JHQHUDOO\ SHUSHQGLFXODU WR WKLV WUHQG HJ .LQJ 2JOHVE\ HW DO 6PLWK f $OWKRXJK WKH ERXQGDU\ EHWZHHQ WKHVH WZR WUHQGV LV QRW ZHOO GHILQHG LW H[WHQGV WKURXJK WKH FHQWHU RI WKH SODWHDX LQ D QRUWKZHVWVRXWKHDVW GLUHFWLRQ FORVH WR D ODQGZDUG H[WHQVLRQ RI WKH WUHQG RI WKH %DKDPDV )UDFWXUH =RQH 'ULOO KROH HYLGHQFH DQG VHLVPLF UHIOHFWLRQ SURILOHV VXJJHVW WKDW WKH LPSOLHG H[WHQVLRQ RI WKH IUDFWXUH ]RQH DOVR FRQVWLWXWHV WKH ERXQGDULHV RI VHYHUDO IHDWXUHV LQFOXGLQJ WKH 6RXWK *HRUJLD 5LIW WKH QRUWK )ORULGD LJQHRXV URFNV DQG WKH 6XZDQQHH %DVLQ WHUUDQH %DUQHWW 6PLWK &KRZQV DQG :LOOLDPV %DOO HW DO 'REVRQ DQG %XIIOHU f ,Q DGGLWLRQ VHLVPLF UHIOHFWLRQ SURILOHV DORQJ WKH HDVWHUQ HGJH RI WKH SODWHDX 6KHULGDQ HW DO f

PAGE 50

DQG LQ WKH QRUWKHDVWHUQ *XOI RI 0H[LFR 'REVRQ DQG %XIIOHU f VXJJHVW QRUPDO IDXOWLQJ DORQJ WKLV VDPH WUDFH &RQVHTXHQWO\ WKH -D\ )DXOW LV JHQHUDOO\ FRQVLGHUHG WR EH D PRUSKRORJLFDO H[WHQVLRQ RI WKH -XUDVVLF %DKDPDV )UDFWXUH =RQH 7KH RULJLQ FKDUDFWHU DQG DJH RI WKLV H[WHQVLRQ KRZHYHU DUH XQUHVROYHG %DUQHWW 6PLWK .OLWJRUG HW DO 6PLWK f ,W KDV EHHQ VXJJHVWHG WKDW WKH -D\ )DXOW LV D -XUDVVLF OHIWODWHUDO WUDQVIRUP WKDW VHUYHG WR FRQQHFW VSUHDGLQJ FHQWHUV LQ WKH $WODQWLF DQG *XOI RI 0H[LFR ZKLOH EULQJLQJ VHYHUDO GLVSDUDWH OLWKRWHFWRQLF XQLWV LQWR MX[WDSRVLWLRQ .OLWJRUG DQG 6FKRXWHQ 6PLWK .OLWJRUG HW DO f 8VLQJ WKLV PRGHO DV D VWDUWLQJ SRLQW VHYHUDO DXWKRUV 6PLWK &KRZQV DQG :LOOLDPV :KLWHODZ DQG 6PLWK f KDYH K\SRWKHVL]HG DQ H[WHQVLRQ RI WKLV SURSRVHG WUDQVIRUP ERXQGDU\ DFURVV WKH )ORULGDQ 3ODWHDX DQG LQWR $ODEDPD ZKHUH LW PD\ PHUJH ZLWK WKH 0LGGOH 0HVR]RLF *XOI EDVLQ PDUJLQDO IDXOW ]RQH 6PLWK .OLWJRUG HW DO f $QRWKHU SRVVLELOLW\ IRU WKH RULJLQ RI WKH IHDWXUH LV WKDW LW LV D ULJKWODWHUDO IHDWXUH IRUPHG GXULQJ WKH /DWH 3DOHR]RLF FORVXUH RI WKH ,DSHWXV 2FHDQ 6PLWK HW DO 6PLWK f 7KH SUHPLVH RI WKLV PRGHO LV WKDW WKH -D\ )DXOW RULJLQDWHG LQ WZR VWDJHV 'XULQJ WKH 3DOHR]RLF WKH ERXQGDU\ ZDV D ULJKWODWHUDO VWULNHVOLS IDXOW WKDW VHUYHG WR DFFRPPRGDWH GLIIHUHQWLDO PRWLRQ ZLWKLQ *RQGZDQD GXULQJ FORVXUH ZLWK /DXUHQWLD /DWHU GXULQJ 7ULDVVLF DQG -XUDVVLF H[WHQVLRQ WKH ERXQGDU\ ZDV UHDFWLYDWHG DV D QRUPDO IDXOW 7KLV ZRXOG EH FRQVLVWHQW ZLWK WKH ULJKWODWHUDO IDXOW PRGHO DGYDQFHG E\ %DUQHWW f ZKLFK ZDV EDVHG RQ WKH VHLVPLF UHIUDFWLRQ SURILOHV RI $QWRLQH DQG +DUGLQJ f 0LOOHU f LQ D VWXG\ RI WKH VWUXFWXUH RI WKH

PAGE 51

SDQKDQGOH UHJLRQ DOVR VXJJHVWHG D ULJKWODWHUDO IDXOW PRGHO DOWKRXJK LQ WKLV PRGHO WKH IDXOW IRUPHG LQ UHVSRQVH WR QRUWKVRXWK FRPSUHVVLYH VWUHVVHV GXULQJ WKH -XUDVVLF ,QKHUHQW LQ D WKLUG PRGHO IRU WKH QDWXUH RI WKH OLWKRWHFWRQLF ERXQGDU\ DFURVV )ORULGD LV WKH LPSOLFDWLRQ WKDW WKH -D\ )DXOW KDV QHYHU EHHQ VXEMHFW WR VLJQLILFDQW ODWHUDO PRWLRQ +HDWKHULQJWRQ HW DO +HDWKHULQJWRQ DQG 0XHOOHU f 5HVXOWV RI WUDFH HOHPHQW DQDO\VHV RI EDVHPHQW URFNV IURP QRUWK DQG VRXWK )ORULGD H[KLELW VLPLODU SDWWHUQV RI KLJK ILHOG VWUHQJWK HOHPHQW GHSOHWLRQ DQG ODUJH LRQ OLWKRSKLOH HOHPHQW HQULFKPHQW +HDWKHULQJWRQ HW DO f DV ZHOO DV VLPLODU 1G PRGHO DJHV IRU WKH OLWKRVSKHUH IURP ZKLFK WKHVH URFNV ZHUH GHULYHG +HDWKHULQJWRQ DQG 0XHOOHU f 7KLV VXJJHVWV WKDW WKH YROFDQLF VXLWHV RI QRUWK DQG VRXWK )ORULGD PD\ KDYH EHHQ GHULYHG IURP D VLQJOH FRQWLJXRXV XQGHUO\LQJ XQLW ,W LV SRVVLEOH WKHQ WKDW WKLV JHRSK\VLFDOO\ DQG OLWKRORJLFDOO\ LQIHUUHG IDXOW PD\ QRW EH D WUDQVIRUP WKDW MX[WDSRVHG WZR HQWLUHO\ GLVSDUDWH OLWKRWHFWRQLF XQLWV EXW UDWKHU WKDW LW LV VLPSO\ D QRUPDO IDXOW ]RQH WKDW H[SHULHQFHG OLWWOH RU QR ODWHUDO PRYHPHQW +HDWKHULQJWRQ DQG 0XHOOHU f 7KH OLQHDU QDWXUH RI WKH -D\ )DXOW LV HYLGHQW RQ WKH GHSWKWR EDVHPHQW DQG XSZDUGFRQWLQXHG %RXJXHU DQRPDO\ PDSV )LJXUHV DQG ((f 7KH XSZDUGFRQWLQXHG %RXJXHU DQRPDO\ PDS VWURQJO\ VXJJHVWV WKDW WKH IDXOW DFWV DV ERXQGDULHV IRU WKH 2VFHROD *UDQLWH $f WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ %f WKH 6RXWK *HRUJLD 5LIW )f WKH 6RXWK )ORULGD %DVLQ /f DQG VHYHUDO RWKHU -XUDVVLF VWUXFWXUDO IHDWXUHV + -f ZKLFK DUH GHVFULEHG EHORZ 7KXV QRW RQO\

PAGE 52

LV WKH -D\ )DXOW OLQHDU EXW DSSDUHQWO\ FRQWLQXRXV DFURVV WKH )ORULGDQ 3ODWHDX DV ZHOO $ORQJ WKH VRXWKHDVWHUQ HGJH RI WKH SODWHDX 6KHULGDQnV f VHLVPLF UHIOHFWLRQ SURILOH FOHDUO\ VKRZV D VHULHV RI IDXOWV ZLWK YDU\LQJ DPRXQWV RI KRUL]RQWDO RIIVHW DORQJ WKH SURSRVHG WUDFH RI WKH -D\ )DXOW +HQFH WKH -D\ )DXOW LV PRUH DFFXUDWHO\ GHVFULEHG DV D ]RQH RI IDXOWLQJ UDWKHU WKDQ DV D VLQJOH IDXOW $Q DEUXSW VRXWKZDUG LQFUHDVH LQ GHSWKWREDVHPHQW PDUNV WKH ]RQH DORQJ PRVW RI LWV OHQJWK $Q H[FHSWLRQ WR WKLV LV LQ WKH QRUWKZHVWHUQ SDUW RI WKH SODWHDX ZKHUH WKH 6RXWK *HRUJLD 5LIW H[WHQVLRQ LQWHUVHFWV WKH ]RQH $W WKLV SRLQW D VHLVPLF UHIOHFWLRQ SURILOH 'REVRQ DQG %XIIOHU f LQGLFDWHV WKH SUHVHQFH RI D VLQJOH QRUWKHDVWZDUGGLSSLQJ PDVWHU IDXOW 7KXV DOWKRXJK WKH -D\ )DXOW ]RQH DSSHDUV WR EH FRQWLQXRXV DQG OLQHDU WKH QDWXUH RI WKH 0HVR]RLF IDXOWLQJ FKDQJHV DORQJ VWULNH 7KH )ORULGDQ 3ODWHDX EDVHPHQW LV FKDUDFWHUL]HG E\ D YDULHW\ RI 0HVR]RLF VWUXFWXUDO IHDWXUHV /LWKLF DFFXPXODWLRQV DVVRFLDWHG ZLWK WKHVH IHDWXUHV LH UHG EHGV K\SDE\VVDO URFNV HWFf RIWHQ REVFXUH WKH SUH0HVR]RLF XQLWV RI WKH XQGHUO\LQJ FUXVW DQG DV D UHVXOW WKH SUH0HVR]RLF QDWXUH RI WKH EDVHPHQW XQGHU WKHVH IHDWXUHV LV ODUJHO\ XQUHVROYHG :KLOH WKH JHQHUDO ORFDWLRQV RI 0HVR]RLF IHDWXUHV RQ WKH SODWHDX EDVHPHQW DUH UHDVRQDEO\ ZHOO HVWDEOLVKHG VSHFLILF VWUXFWXUDO GHWDLOV DQG VXEDHULDO ERXQGDULHV DUH SRRUO\ FRQVWUDLQHG 3DUW RI D ODUJH 7ULDVVLF FRQWLQHQWDO ULIW FRPSOH[ H[WHQGV RQWR WKH SODWHDX DORQJ LWV QRUWKHUQ ERXQGDU\ 0F%ULGH f 7KH ZHVWHUQ KDOI RI WKH SODWHDX LV GRPLQDWHG E\ DQ DOWHUQDWLQJ VHULHV RI

PAGE 53

QRUWKHDVWVWULNLQJ -XUDVVLF EDVLQV DQG ULGJHV 7KLV VHULHV H[WHQGV WR VRXWKHUQ SHQLQVXODU )ORULGD ZKHUH D ODUJH 7ULDVVLF-XUDVVLF EDVLQ RFFXSLHV WKH VRXWKHUQ WKLUG RI WKH SHQLQVXODU EDVHPHQW .OLWJRUG HW DO f 6RXWK *HRUJLD 5LIWUHJLRQ ) 8QGHUO\LQJ WKH QRUWKFHQWUDO SRUWLRQ RI WKH SODWHDX LV D NP ZLGH QRUWKHDVWWUHQGLQJ VHFWLRQ RI WKH (DUO\ 0HVR]RLF 6RXWK *HRUJLD 5LIW 7KH 6RXWK *HRUJLD 5LIW LV D ODUJH FRPSOH[ JUDEHQ V\VWHP H[WHQGLQJ IURP WKH )ORULGD SDQKDQGOH DUHD WR HDVWHUQ *HRUJLD 'DQLHOV HW DO 0F%ULGH f 7KH VHFWLRQ LQ )ORULGD RYHUOLHV WKH ZHVWHUQ EORFNIDXOWHG HGJH RI WKH 6XZDQQHH %DVLQ WHUUDQH 6PLWK f DQG KDV EHHQ SUHYLRXVO\ UHIHUUHG WR DV WKH 7DOODKDVVHH *UDEHQ 6PLWK f DQG WKH 6RXWKZHVW *HRUJLD (PED\PHQW %DUQHWW 0LOOHU f 7KH ULIW LV ILOOHG ZLWK DUNRVLF VDQGVWRQHV DQG PDILF LJQHRXV URFNV ZLWK D PD[LPXP WKLFNQHVV RI DERXW P LQ )ORULGD $UGHQ f DQG LW KDV EHHQ SHUYDVLYHO\ LQWUXGHG E\ GLDEDVH VLOOV %DUQHWW &KRZQV DQG :LOOLDPV 6PLWK f 0LOWRQ DQG *UDVW\ f DFTXLUHG WKUHH .$U DJHV IRU VDPSOHV RI GLDEDVH VLOOV IURP QRUWKHUQ )ORULGD $OWKRXJK WKHVH DJHV DUH QRZ JHQHUDOO\ FRQVLGHUHG WR EH VXVSHFW WKH\ ZHUH IRXQG WR UDQJH IURP DERXW WR 0D 7KH RQVKRUH ERXQGDULHV RI WKH 6RXWK *HRUJLD 5LIW DUH UHDVRQDEO\ ZHOO FRQVWUDLQHG IURP WKH SUHVHQFH RI UHG EHGV DQG DVVRFLDWHG K\SDE\VVDO URFNV HQFRXQWHUHG LQ GHHS GULOO KROHV $ FLUFXODU QHJDWLYH JUDYLW\ DQRPDO\ ZLWK D GLDPHWHU RI DERXW NP )LJXUH f§)f JHQHUDOO\ PDUNV WKH 6RXWK *HRUJLD 5LIW H[WHQVLRQ DOWKRXJK WKLV DQRPDO\ PD\ DOWHUQDWLYHO\ EH DWWULEXWDEOH WR

PAGE 54

DFFXPXODWLRQV RI ORZ GHQVLW\ VDOW LQ WKH -XUDVVLF $SDODFKLFROD (PED\PHQW ZKLFK RYHUOLHV WKH 6RXWK *HRUJLD 5LIW LQ WKLV DUHD 7KH QRUWKFHQWUDO )ORULGDQ H[WHQVLRQ RI WKH 7ULDVVLF(DUO\ -XUDVVLF 6RXWK *HRUJLD 5LIW V\VWHP LV D PRGHUDWHO\ FRPSOH[ IHDWXUH 7KH SUHVHQFH RI VKRUWZDYHOHQJWK JUDYLW\ DQG PDJQHWLF DQRPDOLHV LQ WKH DUHD RI WKH ULIW )LJXUHV DQG )f PD\ LQGLFDWH LW WR EH FRPSULVHG RI DQ DVVHPEODJH RI VHFRQGDU\ KRUVW DQG JUDEHQ VWUXFWXUHV %DUQHWW 6PLWK f OLPLWHG VHLVPLF UHIOHFWLRQ SURILOLQJ VKRZV H[WHQVLYH QRUPDO IDXOWLQJ LQ WKH ULIW IORRU DQG WKH VXUURXQGLQJ DUHD KRZHYHU QR ODUJH VHFRQGDU\ KRUVWV KDYH EHHQ GHILQLWLYHO\ GHWHFWHG $UGHQ 'REVRQ DQG %XIIOHU f %HFDXVH WKHUH DUH IHZ VHLVPLF UHIOHFWLRQ SURILOHV LQ WKH DUHD DQG DV VKRZQ LQ )LJXUH WKH ORQJZDYHOHQJWK SRWHQWLDOILHOG VLJQDWXUHV DVVRFLDWHG ZLWK WKH ULIW KDYH UHODWLYHO\ ORZ JUDGLHQWV WKH ODWHUDO ERXQGDULHV RI WKH ULIW H[WHQVLRQ DUH QRW GHILQLWLYHO\ PDSSHG RU FKDUDFWHUL]HG %DOO HW DO f LQ D VHLVPLF UHIOHFWLRQ SURILOH MXVW RII WKH FRDVW RI WKH )ORULGDQ SDQKDQGOH LQWHUSUHWHG D QRUWKHDVWn GLSSLQJ PDVWHU IDXOW ZLWK DERXW P RI WKURZ WR PDUN LWV VRXWKZHVWHUQ WHUPLQDO ERXQGDU\ 6XEVHTXHQW UHIOHFWLRQ ZRUN KDV VKRZQ WKH RIIVKRUH H[WHQVLRQ RI WKH ULIW V\VWHP WR FRQVLVW RI WZR VHSDUDWH JUDEHQV DW OHDVW RQH RI ZKLFK SUREDEO\ H[WHQGV WR WKH VRXWKZHVW DV IDU DV WKH -D\ )DXOW ]RQH 'REVRQ DQG %XIIOHU f ([WHQGLQJ IURP QRUWKZHVW WR VRXWKHDVW DFURVV WKH )ORULGDQ 3ODWHDX DUH DQ DOWHUQDWLQJ VHULHV RI QRUWKHDVWVWULNLQJ /DWH 7ULDVVLF WR /DWH -XUDVVLF EDVHPHQW KRUVWV DQG JUDEHQV D QXPEHU RI ZKLFK DSSHDU WR EH ERXQGHG E\ WKH -D\ )DXOW ]RQH )LJXUH ((f 7KHVH LQFOXGH

PAGE 55

WKH $SDODFKLFROD RU 6RXWKZHVW *HRUJLDf (PED\PHQW )f DQG WKH 0LGGOH *URXQG $UFK +f D EDVHPHQW KLJK WKDW PD\ H[WHQG XQGLVWXUEHG DFURVV WKH -D\ )DXOW ]RQH 7KHVH DUH ORFDWHG WR WKH QRUWKHDVW RI WKH -D\ )DXOW ]RQH DQG DUH SDUW RI D VHULHV WKDW H[WHQGV QRUWKZHVWZDUG DQG LQFOXGHV WKH &KDWWDKRFKHH $UFK WKH &RYLQJWRQ (PED\PHQW WKH &RQHFXK $UFK DQG WKH :LOFR[ (PED\PHQW DOO RI ZKLFK KH RXW RI WKLV VWXG\ DUHD HJ 0LOOHU 0LWFKHK7DSSLQJ 6PLWK f 2Q WKH VRXWKZHVWHUQ VLGH RI WKH -D\ )DXOW ]RQH DUH WKH $SDODFKLFROD %DVLQ *f DOVR NQRZQ DV WKH 1RUWKHDVW *XOI %DVLQ DQG WKH 7DPSD %DVLQ ,f DOVR NQRZQ DV WKH 6W 3HWHUVEXUJ %DVLQ 7KHVH DUH VHSDUDWHG E\ WKH 0LGGOH *URXQG $UFK +f &RQWLQXLQJ WR WKH VRXWKHDVW WKH 6DUDVRWD $UFK -f DOVR NQRZQ DV WKH 3LQHOODV $UFK VHSDUDWHV WKH 7DPSD %DVLQ ,f IURP WKH 6RXWK )ORULGD %DVLQ /f HJ .OLWJRUG HW DO %DOO HW DO :LQNHU DQG %XIIOHU 'REVRQ 'REVRQ DQG %XIIOHU f $V VKRZQ LQ )LJXUH WKHUH KDYH EHHQ VLJQLILFDQW YDULDWLRQV EHWZHHQ SUHYLRXV SXEOLFDWLRQV ZLWK UHJDUG WR WKH ORFDWLRQV VL]HV DQG VSDWLDO UHODWLRQVKLSV RI WKHVH YDULRXV -XUDVVLF IHDWXUHV 7KH $SDODFKLFROD (PED\PHQW )f ZKLFK LV ERXQGHG DORQJ LWV QRUWKZHVWHUQ HGJH E\ WKH &KDWWDKRRFKHH $UFK LV D -XUDVVLF EDVHPHQW WURXJK RYHUO\LQJ WKH 7ULDVVLF 6RXWK *HRUJLD 5LIW 2Q WKH EDVLV RI GULOO KROHV DQG HOHFWULF ORJV 0LWFKHOO7DSSLQJ f PRGHOHG WKH $SDODFKLFROD (PED\PHQW DV D JUDEHQ IODQNHG E\ WZR SHULSKHUDO PDVWHU IDXOWV DQG HQFRPSDVVLQJ D EDVHPHQW KLJK QHDU LWV VRXWKZHVWHUQ ERUGHU :LWK WKH SRVVLEOH H[FHSWLRQ RI WKH SUHYLRXVO\

PAGE 56

IO +IWHU .OLWJRUG HW DO f $SD8FKLFROL & $IWHU %XIIOHU DQG 6DZ\HU f % $IWHU 3LQGHOO f $IWHU 6KDXE f )LJXUH 9DULRXV SUHYLRXVO\ SXEOLVKHG FRQILJXUDWLRQV IRU WKH 0HVR]RLF VWUXFWXUH RI WKH VRXWKHUQ DQG ZHVWHUQ )ORULGDQ 3ODWHDX EDVHPHQW

PAGE 57

GLVFXVVHG FLUFXODU QHJDWLYH JUDYLW\ DQRPDO\ WKHUH LV QR GHILQLWLYH SRWHQWLDOILHOG VLJQDWXUH DWWULEXWDEOH WR WKH $SDODFKLFROD (PED\PHQW 7KH $SDODFKLFROD (PED\PHQW LV FRQWLJXRXV ZLWK DQG HVVHQWLDOO\ LQGLVWLQJXLVKDEOH IURP WKH $SDODFKLFROD %DVLQH[FHSW WKDW WKH WZR DUH VHSDUDWHG E\ D SURPLQHQW EDVHPHQW KLQJHOLQH DW WKH DSSDUHQW WUDFH RI WKH -D\ )DXOW ]RQH DQG WKH $SDODFKLFROD EDVLQ LV FKDUDFWHUL]HG E\ D PXFK JUHDWHU GHSWKWREDVHPHQW 6RXWKZHVW RI WKH KLQJHOLQH GLSSLQJ LQWUDEDVHPHQW UHIOHFWLRQV VXJJHVW WKH SUHVHQFH RI 3DOHR]RLF VWUDWD ZLWK D V\QFOLQDO VWUXFWXUH XQGHUO\LQJ WKH $SDODFKLFROD %DVLQ 'REVRQ 'REVRQ DQG %XIIOHU f 7KH HDVWHUQ VHFWLRQ RI WKH EDVLQ LQ WKH VWXG\ DUHD LV PDUNHG E\ D PRGHUDWH DPSOLWXGH SRVLWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ *f 7KH EDVLQ H[WHQGV VRXWKZHVWZDUG WR WKH SODWHDX HVFDUSPHQW DQG PD\ UHDFK D EDVHPHQW GHSWK RI NP %XIIOHU DQG 6DZ\HU %XIIOHU f 7KH HDVWHUQ PDUJLQ RI WKH EDVLQ LV PDUNHG E\ D PDMRU ERXQGLQJ IDXOW ZLWK D WKURZ RI DW OHDVW P %DOO HW DO f 7KLV IDXOW VHSDUDWHV WKH $SDODFKLFROD %DVLQ IURP WKH 0LGGOH *URXQG $UFK 0LGGOH *URXQG $UFKUHJLRQ + ([WHQGLQJ DFURVV WKH -D\ )DXOW ]RQH DGMDFHQW WR WKH $SDODFKLFROD %DVLQ LV WKH 0LGGOH *URXQG $UFK 7KLV LV D EURDG WRSRJUDSKLFDOO\ SRVLWLYH IHDWXUH WKDW H[WHQGV IURP WKH VRXWKZHVWHUQ IODQN RI WKH 3HQLQVXODU $UFK ZHVWZDUG WR WKH HGJH RI WKH SODWHDX )LJXUH +f 7KH FUHVW RI WKLV ULGJH GLSV JHQHUDOO\ ZHVWZDUG DQG UDQJHV LQ GHSWK IURP DERXW P XQGHU SHQLQVXODU )ORULGD WR DERXW P DW WKH )ORULGD (VFDUSPHQW RXW RI WKH VWXG\ DUHD 'REVRQ DQG %XIIOHU f $V D FRQVHTXHQFH RI D QDUURZ VDGGOH LQ WKH 0LGGOH *URXQG $UFK DW WKH GLYLGH EHWZHHQ WKH

PAGE 58

$SDODFKLFROD DQG 7DPSD %DVLQV LPPHGLDWHO\ ZHVW RI WKH -D\ )DXOW ]RQH WKH DUFK KDV EHHQ FODVVLILHG E\ VRPH DV WZR VHSDUDWH IHDWXUHV WKH 0LGGOH *URXQG $UFK WR WKH HDVW DQG WKH 6RXWKHUQ RU 'H6RWRf 3ODWIRUP WR WKH ZHVW :LQNHU DQG %XIIOHU 'REVRQ 'REVRQ DQG %XIIOHU f 7KH 0LGGOH *URXQG $UFK LV PDUNHG E\ RQH RI WKH QRUWKHDVWn WUHQGLQJ ORQJZDYHOHQJWK ORZ DPSOLWXGH QHJDWLYH JUDYLW\ DQRPDOLHV )LJXUH +f SUHYLRXVO\ PHQWLRQHG DV IODQNLQJ IHDWXUH 'O $OWKRXJK WKHUH DUH IHZ VKRUWZDYHOHQJWK IHDWXUHV LQ WKH UHJLRQ VHLVPLF UHIOHFWLRQ SURILOHV KDYH VKRZQ WKH FUHVW RI WKH 0LGGOH *URXQG $UFK WR KDYH EHHQ PRGHUDWHO\ IDXOWHG $V VXJJHVWHG E\ VWUDWLJUDSKLF SHUWXUEDWLRQV WKHVH IDXOWV KDYH KRUL]RQWDO WKURZV RQ WKH RUGHU RI P DQG EHFDPH LQDFWLYH DIWHU WKH /DWH -XUDVVLF %DOO HW DO 'REVRQ f ,Q DGGLWLRQ JUDEHQ VWUXFWXUHV DQG ILOO DVVRFLDWHG ZLWK WKH 6RXWK *HRUJLD 5LIW H[WHQG DORQJ WKH FUHVW RI WKH QRUWKHDVWHUQ HQG RI WKH 0LGGOH *URXQG $UFK IURP SHQLQVXODU )ORULGD WR WKH -D\ )DXOW ]RQH 'REVRQ DQG %XIIOHU f $Q LQWUDEDVHPHQW LJQHRXV LQWUXVLYH ERG\ SRVVLEO\ 0HVR]RLF LQ DJH KDV EHHQ LGHQWLILHG RQ VHLVPLF UHIOHFWLRQ SURILOHV DQG LV PDUNHG E\ DQ REORQJ ORZ DPSOLWXGH QHJDWLYH JUDYLW\ DQRPDO\ )LJXUH IHDWXUH +,f %DOO HW DO f 1HDU WKH VRXWKHDVWHUQ IODQN RI WKH 0LGGOH *URXQG $UFK D VLQJOH GULOO KROH LQWHUVHFWLQJ 3DOHR]RLF VLOWVWRQHV %DOO HW DO f VLJQLILHV D SRVVLEOH ZHVWZDUG H[WHQVLRQ RI WKH 6XZDQQHH %DVLQ WHUUDQH 0DUWLQ f VXJJHVWHG WKDW WKH 0LGGOH *URXQG $UFK LV VLPSO\ D UHVLGXDO IHDWXUH IRUPHG E\ PRUH UDSLG UDWHV RI VXEVLGHQFH WR WKH QRUWK DQG VRXWK KRZHYHU WKH VXEVHTXHQW UHFRJQLWLRQ RI WKH QRUWKZHVWHUQ ERXQGLQJ IDXOW EHWZHHQ WKH DUFK DQG WKH $SDODFKLFROD

PAGE 59

%DVLQ LPSOLHV D VLJQLILFDQW GHJUHH RI VWUXFWXUDO FRQWURO 7KH VLQJOH VHLVPLF UHIOHFWLRQ OLQH H[WHQGLQJ DFURVV WKH VRXWKHDVWHUQ ERXQGDU\ RI WKH DUFK RQ WKH RWKHU KDQG GRHV QRW VKRZ DQ\ DQDORJRXV IDXOWLQJ %DOO HW DO f ,Q DGGLWLRQ WKH %RXJXHU DQRPDO\ JUDGLHQW DFURVV WKH VWULNH RI WKLV VRXWKHDVWHUQ ERXQGDU\ LV XQLIRUP DQG UHODWLYHO\ ORZ )LJXUH f 7KHVH REVHUYDWLRQV VXJJHVW WKH 7DPSD %DVLQ0LGGOH *URXQG $UFK PDUJLQ WR EH D EURDG WUDQVLWLRQ ]RQH ZLWK OLWWOH VWUXFWXUDO FRQWURO ZKLFK UHLQIRUFHV 0DUWLQnV SURSRVDO RI IRUPDWLRQ E\ GLIIHUHQWLDO VXEVLGHQFH IRU WKLV SDUWLFXODU ERXQGDU\ 7DPSD %DVLQUHJLRQ 6RXWKHDVW RI WKH 0LGGOH *URXQG $UFK LV WKH 7DPSD %DVLQ ZKLFK LV DOVR NQRZQ DV WKH )ORULGD (OERZ %DVLQ 3LQGHOO f ,W LV HVVHQWLDOO\ DQ DQDORJXH WR DQG FRHYDO ZLWK WKH $SDODFKLFROD %DVLQ 7KH 7DPSD %DVLQ H[WHQGV XSGLS QRUWKHDVWZDUG IURP WKH ZHVWHUQ HGJH RI WKH SODWHDX DOWKRXJK XQOLNH PRVW WKH RWKHU -XUDVVLF IHDWXUHV LQ WKLV VHULHV LW KDV QRW EHHQ SUHYLRXVO\ PDSSHG DV H[WHQGLQJ HDVWZDUG DV IDU DV WKH -D\ )DXOW ]RQH HJ .OLWJRUG HW DO %XIIOHU f ,W UHDFKHV D GHSWKWREDVHPHQW RI DW OHDVW P )LJXUH ,f DQG 'REVRQ DQG %XIIOHU f KDYH PRGHOHG LW WR EH VLJQLILFDQWO\ GHHSHU JUHDWHU WKDQ Pf 6HLVPLF UHIOHFWLRQ SURILOHV DUH FKDUDFWHUL]HG E\ GLSSLQJ LQWUDEDVHPHQW UHIOHFWLRQV LQ WKH EDVLQ WKDW DV LQ WKH EDVHPHQW RI WKH $SDODFKLFROD %DVLQ LPSO\ DQ XQGHUO\LQJ H[WHQVLYHO\ IDXOWHG 3DOHR]RLF V\QFOLQDO VWUXFWXUH %DOO HW DO 'REVRQ f 1RQH RI WKH WKUHH RIIVKRUH ZHOOV LQWHUVHFWLQJ EDVHPHQW LQ WKH 7DPSD %DVLQ KRZHYHU KDYH GHPRQVWUDWHG WKH DFFXPXODWLRQ RI DQ\ 3DOHR]RLF VHGLPHQWV )LJXUH f 5DWKHU WKH WZR ZHVWHUQPRVW ZHOOV ERWWRPHG LQ JUDQLWH ZKLOH WKH WKLUG ERWWRPHG LQ D UK\ROLWH SRUSKRU\

PAGE 60

LQWHUFDODWHG ZLWK -XUDVVLF GLDEDVH 'REVRQ DQG %XIIOHU f ,Q DGGLWLRQ VRPH RI WKLV IDXOWLQJ SHUWXUEHG WKH &UHWDFHRXV VHGLPHQWV LPPHGLDWHO\ RYHUO\LQJ WKHVH LJQHRXV URFNV 7KXV LW LV OLNHO\ WKDW DW OHDVW VRPH RI WKH EDVHPHQW IDXOWLQJ DQG VWUXFWXUH RULJLQDWHG GXULQJ WKH -XUDVVLF HYROXWLRQ RI WKH EDVLQ UDWKHU WKDQ GXULQJ WKH 3DOHR]RLF 7KH %RXJXHU DQRPDO\ VLJQDWXUH RI WKH 7DPSD %DVLQ LV TXLWH GLVWLQFW )LJXUH ,f ,W LV PDUNHG E\ D PJDO ORQJZDYHOHQJWK SRVLWLYH JUDYLW\ DQRPDO\ 7KLV SRVLWLYH DQRPDO\ DYHUDJHV DERXW NP ZLGH DQG NP ORQJ VXJJHVWLQJ WKDW WKH 7DPSD %DVLQ LV VLJQLILFDQWO\ ODUJHU WKDQ VKRZQ RQ SUHYLRXV EDVHPHQW PDSV KRZHYHU D FRUUHVSRQGLQJ SRVLWLYH PDJQHWLF DQRPDO\ DSSHDUV WR EH VRPHZKDW VPDOOHU )LJXUH f§,f $V GLVFXVVHG DERYH WKH QRUWKZHVWHUQ ERXQGDU\ RI WKH EDVLQ LV SUREDEO\ D VORSLQJ PDUJLQ 7KDW PDUJLQ DSSHDUV WR FUHVW DSSUR[LPDWHO\ NP VRXWK RI WKH QRUWKHUQPRVW H[SUHVVLRQ RI WKH JUDYLW\ DQRPDO\ DOWKRXJK VKDOORZ GLS LQWHUSUHWDWLRQV DUH GLIILFXOW IURP WKH DYDLODEOH VHLVPLF UHIOHFWLRQ SURILOHV 3LQGHOO f KDV VSHFXODWHG WKDW D ODUJH VWULNHVOLS IDXOW WKH )ORULGD (OERZ )DXOW H[WHQGV QRUWKZHVWZDUG IURP WKH -D\ )DXOW ]RQH DFURVV WKH 7DPSD %DVLQ DQG LQWR WKH QRUWKHDVWHUQ *XOI RI 0H[LFR $OWKRXJK WKHUH LV QR JUDYLW\ RU VHLVPLF HYLGHQFH IRU VXFK D IDXOW WKH VWHHS HDVWZDUGVWULNLQJ PDJQHWLF JUDGLHQW ZKLFK ELVHFWV WKH QRUWKHUQ KDOI RI WKH EDVLQ PD\ EH WKH UHVXOW RI D VWUXFWXUH DORQJ WKDW WUHQG 7KH UHODWLYH DEVHQFH RI VKRUWZDYHOHQJWK JUDYLW\ DQRPDOLHV LPSOLHV OLWWOH LQWUDEDVLQDO VWUXFWXUH )LJXUH f§,f DOWKRXJK WKHUH LV VRPH VKRUWZDYHOHQJWK YDULDELOLW\ LQ WKH PDJQHWLF ILHOG LPPHGLDWHO\ ZHVW RI WKH QR GDWD ]RQH )LJXUH f§,f 7ZR DGMRLQLQJ NP

PAGE 61

GLDPHWHU PRGHUDWH DPSOLWXGH QHJDWLYH JUDYLW\ DQRPDOLHV ZLWK FRUUHVSRQGLQJ SRVLWLYH PDJQHWLF DQRPDOLHV PD\ LQGLFDWH WKH SUHVHQFH RI PLGFUXVWDO LQWUXVLYH ERGLHV VLPLODU WR WKDW XQGHU WKH 0LGGOH *URXQG $UFK )LJXUHV DQG IHDWXUH ,,f 7KH QRUWKHDVWHUQ ERXQGDU\ RI WKH 7DPSD %DVLQ DV VXJJHVWHG E\ WKH SRVLWLYH JUDYLW\ DQRPDO\ DSSHDUV WR FRUUHVSRQG H[WUHPHO\ ZHOO ZLWK WKH SUHVXPHG WUDFH RI WKH -D\ )DXOW ]RQH )LJXUH f 7KLV SODFHV WKH HDVWHUQPRVW VHFWLRQ RI WKH 7DPSD %DVLQ XQGHU ZHVWHUQ SHQLQVXODU )ORULGD DQG VKLIWV WKH ERXQGDU\ VLJQLILFDQWO\ PRUH QRUWKHDVWZDUG WKDQ KDG EHHQ SUHYLRXVO\ PRGHOHG DOWKRXJK %DOO HW DO f LGHQWLILHG D EDVHPHQW PRQRFOLQH RQO\ NP RII WKH ZHVW FRDVW RI )ORULGD WKDW ZDV VXJJHVWHG WR EH WKH ERXQGDU\ ,Q DGGLWLRQ WR WKH SRVLWLYH JUDYLW\ DQRPDO\ WKH SUHVHQFH RI -XUDVVLF GLDEDVH LQ VHYHUDO GULOO KROHV LQ WKH VDPH DUHD RI ZHVWHUQ SHQLQVXODU )ORULGD )LJXUH f DQG D FRUUHVSRQGLQJ SRVLWLYH PDJQHWLF DQRPDO\ )LJXUH f DUH DOVR VXJJHVWLYH RI D QRUWKHDVWZDUG H[WHQVLRQ RI WKH EDVLQ DV IDU DV WKH -D\ )DXOW ]RQH 7KH VRXWKHDVWHUQ ERXQGDU\ RI WKH EDVLQ ZKLFK VHSDUDWHV LW IURP WKH 6DUDVRWD $UFK LV EHWWHU FRQVWUDLQHG ZLWK UHVSHFW WR ORFDWLRQ $ORQJ WKLV ERXQGDU\ ERWK RI WKH SRWHQWLDOILHOG JUDGLHQWV DUH UHODWLYHO\ KLJK ZKLFK LV VXJJHVWLYH RI D PRUSKRORJLFDOO\ GLVWLQFW IHDWXUH $OWKRXJK QRW FRQILUPHG E\ VHLVPLF GDWD VWUDWLJUDSKLF FRUUHODWLRQV IURP ZHOO ORJV DOVR VXJJHVW WKH SUHVHQFH RI D ODUJH GRZQ WRWKHQRUWK IDXOW RU VHULHV RI IDXOWV DORQJ WKLV ERXQGDU\ WKLV IDXOW FRXOG KDYH D WKURZ RI DV PXFK DV P %DOO HW DO f 6DUDVRWD $UFKUHJLRQ 7 7KH 6DUDVRWD $UFK LV D NP ZLGH NP ORQJ WRSRJUDSKLFDOO\ SRVLWLYH IHDWXUH WKDW VHSDUDWHV WKH

PAGE 62

7DPSD %DVLQ DQG WKH 6RXWK )ORULGD %DVLQ ,W H[WHQGV IURP WKH -D\ )DXOW ]RQH XQGHU SHQLQVXODU )ORULGD ZHVWZDUG SRVVLEO\ WR WKH HGJH RI WKH )ORULGD (VFDUSPHQW )LJXUH -f DOWKRXJK .OLWJRUG HW DO f KDYH VXJJHVWHG WKDW WKH DUFK PD\ EH WUXQFDWHG E\ DQ H[WHQVLRQ RI WKH &XED )UDFWXUH =RQH MXVW HDVW RI WKH HVFDUSPHQW 7KH GHSWKWR EDVHPHQW RI WKH 6DUDVRWD $UFK DYHUDJHV NP DQG WKHUH LV OLWWOH HYLGHQFH RI DQ\ VLJQLILFDQW GLS DORQJ WKH FUHVW 7KHUH KDYH EHHQ IRXU GULOO KROHV LQWHUVHFWLQJ EDVHPHQW RQ WKH 6DUDVRWD $UFKWKUHH ERWWRPHG LQ JUDQLWLF URFNV DQG RQH LQWHUVHFWHG GLDEDVH )LJXUH f $OWKRXJK VHLVPLF SURILOHV LQ WKH VRXWKHUQ TXDUWHU RI WKH )ORULGDQ 3ODWHDX WHQG WR EH SRRU TXDOLW\ DV D FRQVHTXHQFH RI WKH GHSWK DQG WKH DWWHQXDWLRQ RI VHLVPLF HQHUJ\ E\ WKH RYHUO\LQJ NDUVWLF OLPHVWRQH D QXPEHU RI YHUWLFDO IDXOWV KDYH EHHQ REVHUYHG RQ VHLVPLF SURILOHV FURVVLQJ WKH 6DUDVRWD $UFK 6KDXE %DOO HW DO f 7KHVH IDXOWV DUH VPDOO ZLWK WKURZV RQ WKH RUGHU RI V RI PHWHUV DQG DV VXJJHVWHG E\ SHUWXUEDWLRQV LQ WKH RYHUEXUGHQ EHFDPH LQDFWLYH E\ WKH (DUO\ &UHWDFHRXV .OLWJRUG HW DO f LQWHUSUHWHG D QRUWKHDVWWUHQGLQJ ]RQH RI FLUFXODU JUDYLW\ DQG PDJQHWLF DQRPDOLHV DORQJ WKH QRUWKZHVW HGJH RI WKH 6DUDVRWD $UFK WR EH WKH UHVXOW RI D VHULHV RI VKDOORZ LQWUDEDVHPHQW LQWUXVLYH ERGLHV $OWKRXJK VHYHUDO VKRUWZDYHOHQJWK FLUFXODU QHJDWLYH JUDYLW\ DQRPDOLHV H[LVW LQ WKLV DUHD )LJXUH UHJLRQ -f QRW DOO RI WKHVH FRUUHODWH ZHOO ZLWK WKH FLUFXODU PDJQHWLF DQRPDOLHV )LJXUH f§UHJLRQ -f 7KHUHIRUH ZKLOH WZR RU WKUHH RI WKH DQRPDOLHV SDUWLFXODUO\ WKH FRQFRPLWDQW FLUFXODU QHJDWLYH JUDYLW\ DQRPDOLHV DQG SRVLWLYH PDJQHWLF IHDWXUHV VLPLODU WR +, DQG ,, DERYH PD\ EH FDXVHG E\ VFDWWHUHG VKDOORZ WR PLGFUXVWDO LJQHRXV

PAGE 63

LQWUXVLRQV D OLQHDU FKDLQ VSDWLDOO\ DVVRFLDWHG ZLWK WKH 6DUDVRWD $UFK VHHPV LPSUREDEOH 7KH 6DUDVRWD $UFK LV PDUNHG E\ D GLVWLQFW ORQJZDYHOHQJWK QHJDWLYH JUDYLW\ DQRPDO\ )LJXUH f§-f DOWKRXJK WKHUH VHHPV WR EH QR SDUWLFXODU DVVRFLDWHG PDJQHWLF VLJQDWXUH )LJXUH f $V GHVFULEHG DERYH WKH QRUWKZHVWHUQ ERXQGDU\ RI WKLV QHJDWLYH DQRPDO\ FRUUHODWHV ZHOO ZLWK WKH ODUJH ERXQGLQJ IDXOW LQIHUUHG E\ %DOO HW DO f $OWKRXJK WKH DQRPDO\ DSSHDUV WR EH SDUWLDOO\ WUXQFDWHG QHDU LWV QRUWKHDVWHUQ ERXQGDU\ LW JHQHUDOO\ H[WHQGV VRXWKZHVWZDUG IURP WKH UHJLRQ RI WKH -D\ )DXOW 7KH VRXWKZHVWHUQ ERXQGDU\ RI WKH QHJDWLYH DQRPDO\ FRXOG EH LQWHUSUHWHG WR RFFXU VOLJKWO\ HDVW RI WKH HVFDUSPHQW KRZHYHU D VHLVPLF UHIOHFWLRQ SURILOH DORQJ WKH FUHVW RI WKH 6DUDVRWD $UFK %DOO HW DO f VKRZV QR HYLGHQFH IRU WUXQFDWLRQ DW DQ H[WHQVLRQ RI WKH &XED )UDFWXUH =RQH $V D UHVXOW LW LV OLNHO\ WKDW WKH VRXWKZHVWHUQ ERXQGDU\ RI WKH DUFK LV FRLQFLGHQW ZLWK WKH )ORULGD (VFDUSPHQW 7KH VRXWKHDVWHUQ ERXQGDU\ RI WKH 6DUDVRWD $UFK DV LQWHUSUHWHG IURP D VHLVPLF UHIOHFWLRQ SURILOH QHDU WKH HVFDUSPHQW LV D VRXWKHDVWZDUGGLSSLQJ UHODWLYHO\ VWHHS EORFN IDXOWHG PDUJLQ 6KDXE f WKDW FRUUHVSRQGV WR WKH ERXQGDU\ RI WKH QHJDWLYH JUDYLW\ DQRPDO\ +RZHYHU WKLV JUDYLW\ ERXQGDU\ LV QRW FRQWLQXRXV $V GLVFXVVHG EHORZ D NP ZLGH QHJDWLYH JUDYLW\ DQRPDO\ H[WHQGV VRXWKHDVWZDUG IURP WKH ERXQGDU\ )LJXUH IHDWXUH /f DQG LV FRQVLVWHQW ZLWK WKH SUREDEOH SUHVHQFH RI D ODUJH EDVHPHQW KRUVW ZLWKLQ WKH 6RXWK )ORULGD %DVLQ 6KHIILHOG $UFKUHJLRQ )URP ORFDO VHLVPLF UHIOHFWLRQ DQG 2FHDQ %RWWRP 6HLVPRPHWHU 2%6f UHIUDFWLRQ SURILOHV 6KDXE f

PAGE 64

UHFRJQL]HG D SRVVLEOH EDVHPHQW KLJK DORQJ WKH )ORULGD (VFDUSPHQW H[WHQGLQJ VRXWKHDVWZDUG IURP WKH 6DUDVRWD $UFK 7KLV KLJK WKH 6KHIILHOG $UFK ZDV LGHQWLILHG IURP D OLPLWHG QXPEHU RI SURILOHV ZLWK QR GHHS ZHOO FRQWURO DQG LV WKHUHIRUH QRW ZHOO FKDUDFWHUL]HG 7KHUH LV D SRVLWLYH JUDYLW\ DQRPDO\ RULHQWHG JHQHUDOO\ DORQJ WKH D[LV RI WKLV SURSRVHG DUFK )LJXUHV DQG .f 7KLV SRVLWLYH DQRPDO\ LV DSSUR[LPDWHO\ NP ORQJ DQG NP ZLGH ,W KDV QR FRQFRPLWDQW PDJQHWLF VLJQDWXUH $OWKRXJK WKH SRVLWLYH JUDYLW\ DQRPDO\ FRXOG EH WKH UHVXOW RI D PRUSKRORJLFDOO\ SRVLWLYH IHDWXUH VXFK DV WKH 6KHIILHOG $UFK DOO RI WKH RWKHU SRVLWLYH EDVHPHQW IHDWXUHV RI WKH )ORULGDQ 3ODWHDX KDYH EHHQ FKDUDFWHUL]HG E\ QHJDWLYH JUDYLW\ DQRPDOLHV &RQVHTXHQWO\ WKH FKDUDFWHUL]DWLRQ RI D ODUJH FRQWLQXRXV EDVHPHQW KLJK LQ WKLV DUHD LV XQUHVROYHG 6RXWK )ORULGD %DVLQUHJLRQ / 8QGHUO\LQJ VRXWKHUQ SHQLQVXODU )ORULGD LV D 7ULDVVLF-XUDVVLF VWUXFWXUDO IHDWXUH NQRZQ DV WKH 6RXWK )ORULGD %DVLQ %DVHG RQ D VHULHV RI WZRGLPHQVLRQDO JUDYLW\ SURILOHV :LFNHU DQG 6PLWK f GHWHUPLQHG WKDW WKH EDVLQ UDQJHV LQ GHSWK IURP DERXW P LQ VRXWKFHQWUDO SHQLQVXODU )ORULGD WR PRUH WKDQ P DW WKH VRXWKHUQ HGJH RI WKH SHQLQVXOD 7KH EDVLQ LV JHQHUDOO\ FRQVLGHUHG WR XQGHUOLH PXFK RI WKH VRXWKHUQ SRUWLRQ RI WKH )ORULGDQ 3ODWHDX DQG WR H[WHQG WR LWV VRXWKHUQ DQG HDVWHUQ HGJHV HJ %DUQHWW 6PLWK .OLWJRUG HW DO f 7KH ZHVWHUQ H[WHQW RI WKH EDVLQ DQG WKH SUHVHQFH RI DQ\ VLJQLILFDQW LQWUDEDVLQDO VWUXFWXUHV DUH XQUHVROYHG 7KH 6RXWK )ORULGD %DVLQ LV JHQHUDOO\ FRLQFLGHQW ZLWK D OLWKRORJLF WHUUDQH FKDUDFWHUL]HG E\ WKH SUHVHQFH RI ERWK EDVDOW DQG UK\ROLWH :KLOH WKLV WHUUDQH LV XVXDOO\ FRQVLGHUHG WR EH D ELPRGDO VXLWH RI

PAGE 65

7ULDVVLF DONDOL EDVDOWV DQG UK\ROLWHV %DUQHWW 0XHOOHU DQG 3RUFK +HDWKHULQJWRQ DQG 0XHOOHU f LW KDV EHHQ VXJJHVWHG WKDW WKH RFFXUUHQFHV RI UK\ROLWH UHSUHVHQW KRUVWV RI DQ XQGHUO\LQJ VRXWKHUO\ H[WHQVLRQ RI WKH /DWH 3UHFDPEULDQ&DPEULDQ 1RUWK )ORULGD 5K\ROLWH 7KRPDV HW DO f ,VRWRSLF GDWLQJ RI WKH UK\ROLWHV 0LOWRQ DQG *UDVW\ %DUQHWW f DQG WKH EDVDOWV 0LOWRQ 0XHOOHU DQG 3RUFK f VXJJHVW WKDW WKH WZR DUH FRHYDO ZLWK DJHV RI DERXW 0D 7KLV VXSSRUWV WKH PRGHO WKDW WKH EDVDOWV DQG UK\ROLWHV FRPSULVH D 0HVR]RLF ELPRGDO VXLWH DQG DOPRVW FHUWDLQO\ GLVFRXQWV WKH SUHPLVH WKDW WKH UK\ROLWHV LQ WKH UHJLRQ RI WKH 6RXWK )ORULGD %DVLQ DUH SDUW RI WKH 1RUWK )ORULGD 5K\ROLWH 7KHUH DUH RQO\ D IHZ GULOO KROHV LQWHUVHFWLQJ EDVHPHQW ZLWKLQ WKH 6RXWK )ORULGD %DVLQ DQG DOO RI WKHVH DUH LQ VRXWKZHVWHUQ DQG VRXWKFHQWUDO SHQLQVXODU )ORULGD )LJXUH f ,Q DGGLWLRQ WKHUH LV RQO\ RQH SXEOLVKHG VHLVPLF UHIOHFWLRQ SURILOH RI WKH EDVHPHQW LQ WKH EDVLQ )LJXUH f $V D UHVXOW WKH EDVHPHQW PRGHO IRU WKLV DUHD LV QHFHVVDULO\ EDVHG DOPRVW H[FOXVLYHO\ RQ SRWHQWLDOILHOG GDWD DQG LV WKHUHIRUH UDWKHU VSHFXODWLYH 7KH QRUWKHDVWHUQ ERXQGDU\ RI WKH 6RXWK )ORULGD %DVLQ LV WKH -D\ )DXOW ]RQH ,Q WKHLU VHLVPLF UHIOHFWLRQ SURILOH DORQJ WKH HDVWHUQ HGJH RI WKH )ORULGDQ 3ODWHDX 6KHULGDQ HW DO f IRXQG WKLV ERXQGDU\ WR EH D ODUJH GRZQWRWKHVRXWK QRUPDO IDXOW ZLWK DQ DVVRFLDWHG VHULHV RI VPDOOHU IDXOWV DW WKH ODQGZDUG H[WHQVLRQ RI WKH %DKDPDV )UDFWXUH =RQH 7KH ERXQGDU\ LV PDUNHG E\ D QRUWKZHVWWUHQGLQJ ]RQH RI VWHHS JUDYLW\ DQG PDJQHWLF JUDGLHQWV )LJXUHV DQG ((f $V GHVFULEHG DERYH WKH QRUWKZHVWHUQ ERXQGDU\ RI WKH EDVLQ DUHD LV WKH VRXWKHDVWZDUGGLSSLQJ IDXOWHG PDUJLQ RI WKH 6DUDVRWD $UFK 7KH

PAGE 66

VRXWKHUQ PDUJLQV RI WKH 6RXWK )ORULGD %DVLQ DUH QRW PRUSKRORJLFDOO\ ZHOO GHILQHG KRZHYHU WKH EDVLQ LV FRQVLGHUHG WR H[WHQG DW OHDVW DV IDU DV WKH )ORULGD (VFDUSPHQW $OWKRXJK WKH HQWLUH DUHD ERXQGHG E\ WKH -D\ )DXOW ]RQH WKH 6DUDVRWD $UFK DQG WKH )ORULGD (VFDUSPHQW LV FRPPRQO\ FRQVLGHUHG WR EH D VLQJXODU EDVLQ WKHUH DUH IRXU RU ILYH GHSHQGLQJ RQ ZKHWKHU IHDWXUH LV LQFOXGHGf LQGLYLGXDO ORQJZDYHOHQJWK SRWHQWLDOILHOG IHDWXUHV ZLWKLQ WKHVH ERXQGV )LJXUHV DQG //f )RU H[DPSOH WKH QRUWKHDVWHUQ FRPHU RI WKLV UHJLRQ LV PDUNHG E\ DQ REORQJ SRVLWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ RULHQWHG DORQJ WKH -D\ )DXOW ]RQH /,f ,PPHGLDWHO\ VRXWKHDVW RI WKLV IHDWXUH LV D VLPLODUO\ RULHQWHG QHJDWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ /f ZKLFK LQ WXUQ LV VHSDUDWHG IURP D VHFRQG QHJDWLYH JUDYLW\ DQRPDO\ /f E\ D VHFRQG SRVLWLYH JUDYLW\ DQRPDO\ /f 7KLV ORQJZDYHOHQJWK YDULDELOLW\ DQG WKH VKDSHV RI WKHVH IHDWXUHV VXJJHVW WKH SUREDELOLW\ RI VHYHUDO QRUWKZHVWVRXWKHDVW RULHQWHG EDVLQV ZLWKLQ WKH DUHD WUDGLWLRQDOO\ FRQVLGHUHG WR EH WKH 6RXWK )ORULGD %DVLQ $OO RI WKH 6RXWK )ORULGD %DVLQ DUHD GULOO KROHV ZKLFK KDYH VXFFHVVIXOO\ LQWHUVHFWHG EDVHPHQW KDYH EHHQ ORFDWHG SUR[LPDO WR D QHJDWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ VSHFLILFDOO\ IHDWXUH / 7KLV VXJJHVWV WKDW WKH DQRPDO\ PD\ PDUN D UHJLRQ FKDUDFWHUL]HG E\ D UHODWLYHO\ VKDOORZ EDVHPHQW ,Q DGGLWLRQ WKH VRXWKHUQ HQG RI 6KHULGDQnV UHIOHFWLRQ SURILOH QHDU WKH VRXWKHDVWHUQ FRPHU RI WKH SODWHDX ZDV ORFDWHG RQ D SRVLWLYH JUDYLW\ DQG PDJQHWLF DQRPDO\ DQG LQGLFDWHG DQ DQRPDORXVO\ KLJK GHSWKWREDVHPHQW &RQVHTXHQWO\ FRQVLVWHQW ZLWK WKH RWKHU IHDWXUHV RI WKH )ORULGDQ 3ODWHDX H[FHSW SRVVLEO\ WKH 6KHIILHOG $UFK LW DSSHDUV WKDW WKH ORQJZDYHOHQJWK

PAGE 67

JUDYLW\ DQG PDJQHWLF DQRPDOLHV ZLWKLQ WKH 6RXWK )ORULGD %DVLQ GHQRWH KLJK GHSWKWREDVHPHQW DUHDV ZKLOH WKH QHJDWLYH JUDYLW\ DQG PDJQHWLF DQRPDOLHV DUH FKDUDFWHULVWLF RI VKDOORZ EDVHPHQW DUFKHV %ODNH 3ODWHDX %DVLQIHDWXUH 0 $ORQJ WKH QRUWKHDVWHUQ HGJH RI WKH )ORULGDQ 3ODWHDX LV DQ DUHD WKDW DV VXJJHVWHG E\ D VHULHV RI VHLVPLF UHIUDFWLRQ SURILOHV 6KHULGDQ HW DO f LV FKDUDFWHUL]HG E\ DQ LQFUHDVH LQ GHSWKWREDVHPHQW )LJXUH f§0f 7KLV IHDWXUH PD\ UHSUHVHQW D VKDOORZ VDOLHQW RI WKH %ODNH 3ODWHDX %DVLQ ZKLFK LV WKH VRXWKHUQPRVW RI WKH IRXU PDMRU -XUDVVLF(DUO\ &UHWDFHRXV EDVLQV RI WKH HDVWHUQ 8QLWHG 6WDWHV FRQWLQHQWDO PDUJLQ HJ *URZ DQG 6KHULGDQ 'LOORQ HW DO f 7KHUH LV QR SDUWLFXODU JUDYLW\ VLJQDWXUH DWWULEXWDEOH WR WKLV VDOLHQW 7KH ZHVWHUQ ERXQGDU\ RI WKH PDLQ ERG\ RI WKH %ODNH 3ODWHDX %DVLQ LV ORFDWHG MXVW HDVW RI WKH HDVWHUQ FRQWLQHQWDO PDUJLQ RI WKH )ORULGDQ 3ODWHDX VOLJKWO\ RXW RI WKLV VWXG\ DUHD $OWKRXJK WKH GDWD DUH OLPLWHG WKHUH LV QR HYLGHQFH WKDW WKH VDOLHQW LV IDXOWERXQGHG 5DWKHU LW DSSHDUV WR KDYH IRUPHG VLPSO\ E\ GLIIHUHQWLDO VXEVLGHQFH 7KHUH DUH RQO\ D IHZ UHSRUWV RI 7HUWLDU\ VWUXFWXUDO IHDWXUHV RI WHFWRQLF RULJLQ RQ WKH )ORULGDQ 3ODWHDX 7KHVH LQFOXGH VPDOO IDXOWV UHVXOWLQJ IURP KDORNLQHVLV RII WKH SDQKDQGOH RI SHQLQVXODU )ORULGD HJ $GG\ DQG %XIIOHU %DOO HW DO f DV ZHOO DV VOXPS IDXOWV DQG UHODWHG IHDWXUHV QHDU WKH ZHVWHUQ )ORULGD HVFDUSPHQW HJ 0XOOLQV HW DO &RUVR HW DO f ,Q DGGLWLRQ WKHUH KDYH EHHQ D IHZ SXUSRUWHG 7HUWLDU\ IHDWXUHV WKDW ZHUH LQIHUUHG WR KDYH KDG

PAGE 68

WHFWRQLF RULJLQV KRZHYHU LQ HDFK RI WKHVH FDVHV VXEVHTXHQW ZRUNHUV KDYH IDLOHG WR FRQILUP WKHVH RULJLQV 7KH PRVW SUHGRPLQDQW RI WKHVH UHSRUWHG IHDWXUHV LQFOXGH VHYHUDO VXUILFLDO DQWLFOLQDO DQG V\QFOLQDO VWUXFWXUHV LQ QRUWKZHVWHUQ SHQLQVXODU )ORULGD DQG VRXWKZHVWHUQ *HRUJLD 3DWWHUVRQ DQG +HUULFN f VXPPDUL]HG WKH UHSRUWV RI WKHVH IHDWXUHV ZKLFK FRQIOLFWHG ZLWK UHVSHFW WR ORFDWLRQV DQG GHVFULSWLRQV LQ PDQ\ FDVHV DQG FRQFOXGHG WKDW WKHUH LV QR HYLGHQFH WR VXSSRUW WKH SUHVHQFH RI DQ\ VXUILFLDO VWUXFWXUDO IHDWXUH LQ WKLV DUHD ZLWK RQH SRVVLEOH H[FHSWLRQ 7KLV H[FHSWLRQ LV D VPDOO GRPH LQ VRXWKZHVWHUQ *HRUJLD VOLJKWO\ RXWVLGH RI WKLV VWXG\ DUHD NQRZQ DV WKH *RUGRQ $QWLFOLQH 7KH RWKHU UHSRUWHG IHDWXUHV ZHUH DWWULEXWHG WR WKH GLIIHUHQWLDO HURVLRQ DQG GLVVROXWLRQ RI WKH QHDUVXUIDFH 7HUWLDU\ FDUERQDWHV $ 7HUWLDU\ IHDWXUH WKDW LV UHJXODUO\ PHQWLRQHG LQ WKH OLWHUDWXUH LV WKH 2FDOD 8SOLIW D UHSRUWHG DQWLFOLQDO VWUXFWXUH LQ FHQWUDO SHQLQVXODU )ORULGD $V LQ WKH SUHYLRXV LQVWDQFHV D WHFWRQLF RULJLQ IRU WKLV IHDWXUH ZDV GLVPLVVHG E\ :LQVWRQ f ZKR DWWULEXWHG WKH DSSDUHQW DQWLFOLQDO VWUXFWXUH RI WKH VXUILFLDO FDUERQDWHV DV KDYLQJ EHHQ FDXVHG E\ GLIIHUHQWLDO HURVLRQ DQG GLVVROXWLRQ 7KH RQO\ RWKHU SXUSRUWHG 7HUWLDU\ IHDWXUH LV WKH %URQVRQ *UDEHQ GHVFULEHG DV D VPDOO QRUWKZHVWWUHQGLQJ VWUXFWXUH LQ QRUWK FHQWUDO SHQLQVXODU )ORULGD ZLWK DQ DVVRFLDWHG VHULHV RI VXUILFLDO QRUPDO IDXOWV SDUDOOHOLQJ LW 7KLV ZDV SURSRVHG E\ 9HUQRQ f RQ WKH EDVLV RI OLQHDWLRQV LQ DHULDO SKRWRJUDSKV DQG GLVFUHSDQFLHV LQ GULOO KROH ORJV 6XEVHTXHQWO\ WKLV UHSRUW ZDV XWLOL]HG E\ =REDFN DQG =REDFN f WR VXJJHVW D QRUWKHDVWVRXWKZHVW OHDVW KRUL]RQWDO SULQFLSDO VWUHVV GLUHFWLRQ IRU WKH )ORULGDQ 3ODWHDX DQG E\ 3URZHOO

PAGE 69

f WR H[WHQG $SSDODFKLDQ IDXOW SURYLQFHV DORQJ WKH OHQJWK RI WKH SODWHDX 6LQFH WKHUH KDV EHHQ QR ILHOG UHFRJQLWLRQ RI WKHVH IHDWXUHV DQG LW LV XQOLNHO\ WKDW 9HUQRQnV REVHUYDWLRQV DUH LQGLFDWLYH RI OLWKRVSKHULF PRYHPHQW GXULQJ WKH 7HUWLDU\ ,W DSSHDUV WKHQ WKDW ZLWK WKH SRVVLEOH H[FHSWLRQ RI WKH *RUGRQ $QWLFOLQH WKHUH LV QR HYLGHQFH IRU DQ\ 7HUWLDU\ VWUXFWXUH RQ WKH )ORULGDQ 3ODWHDX DWWULEXWDEOH WR UHJLRQDO WHFWRQLF VWUHVV $ FRPSLOHG PDS RI WKH SUH0HVR]RLF OLWKRWHF WRQLF WHUUDQHV RI WKH )ORULGD 3ODWHDX EDVHPHQW LV VKRZQ LQ )LJXUH ,Q QRUWKHDVWHUQ SHQLQVXODU )ORULGD VRXWKHUQ *HRUJLD DQG WKH )ORULGD 3DQKDQGOH WKH VXEFURSV RI 3UHFDPEULDQ DQG 3DOHR]RLF URFNV DSSDUHQWO\ UHSUHVHQW LVRODWHG SLHFHV RI PRUH H[WHQVLYH WHUUDQHV WKDW ZHUH IUDJPHQWHG GXULQJ WKH FROOLVLRQ DQG VXEVHTXHQW VHSDUDWLRQ RI /DXUHQWLD DQG *RQGZDQD $OWKRXJK WKHVH IUDJPHQWV ZHUH QRW VLJQLILFDQWO\ PHWDPRUSKRVHG GXULQJ WKLV SURFHVV WKHUH LV HYLGHQFH DOORZLQJ WKH VXJJHVWLRQ RI WKUXVW IDXOWLQJ EORFN IDXOWLQJ DQG IDXOWHG FRQWDFWV 3RWHQWLDOILHOG JUDGLHQWV OLWKRORJLF FRQWUDVWV DQG WKH OLPLWHG H[LVWLQJ VHLVPLF UHIOHFWLRQ GDWD VXJJHVW WKDW DOO RI WKH FRQWDFWV EHWZHHQ WKHVH SUH0HVR]RLF WHUUDQHV PD\ EH IDXOWHG ZLWK WKH SRVVLEOH H[FHSWLRQ RI WKH ERXQGDU\ EHWZHHQ WKH 2VFHROD *UDQLWH DQG WKH 1RUWK )ORULGD 5K\ROLWH )LJXUH UHSUHVHQWV D FRPSLODWLRQ RI WKH 0HVR]RLF VWUXFWXUDO IHDWXUHV RI WKH )ORULGDQ 3ODWHDX EDVHPHQW 7KH -D\ )DXOW ]RQH DFWV DV D ERXQGDU\ IRU PDQ\ RI WKH OLWKRWHFWRQLF IHDWXUHV RI WKH )ORULGDQ 3ODWHDX EDVHPHQW DQG LV WKH SUHGRPLQDQW VWUXFWXUDO IHDWXUH RI WKH

PAGE 70

,6XZDQQHH %DVLQ 7HUUDQH ; -D\ )DXOW ;U Af 1R UW K ), D ?? 9B999$9“/9P ;Ar$9L f m f =RQH A‘YY0Y 5K\ROLWH f f f 2VFHRO D *UDQLWH 8QGDWHG )HO VLF0DILF b ; r ; ; ;;; ; ; ; ;;; b ; ; ; ; ; ; ; ; ; ; ; ;; [[[[[[[[[ [[[[[[[ ; ; ; ; ; ; n ; A n;; [ [ [ [ r r ; ; \r([WUXVLYH 5RFNV A+rLOVFOOFOV ? 9 fff f \ f \ Z f f ? ffffA $ $ f f JW /XFH 0HWDPRURKLF &RPSOH[ 0HVR]RLF
PAGE 71

$SDODFKLFROD (PED\ PHQW e 6RXWK *HRUJLD g : + 9 9 9 U f§ LL fff‘fffi ;n f f $W f f f f 5LIW f f f f f f f f f f f B B 0LGGOH $SDODFKLFROD %DVLQ $UFK?Y f f f f f f f f f f f f f 7DPSD %DVLQ f f W f f f I m f f f f f f f f f f f ffffff f f f f f f f f f f f f f f U f f f f f f f f f f f P f f m f f f f f f f L f W f f f f 6DUDVRWD $UFK f f f f f f fm f f N f f f f f f f f f W 6RXWK )ORULGD %DVLQ "[e 5HJLRQ U f f f f f f f f f f f A$7 f L f f f f f f f ffffffffff -D\ )DXOW =RQH ‘ W[?[ f :HVWHUQ 9 %DKDPDV nffY %ORFN -XUDVVLF %DVLQ 7ULDVVLF&RQWLQHQWDO 5LIW %DVLQ 8QUHVROYHG 5HJLRQ FRQIOLFWLQJ JHRSK\VLFDO GDWDf 1RUPDO )DXOW )URP 5HIOHFWLRQ 5HIUDFWLRQ 3URILOHV RU :HOO /RJV 0HVR]RLF %RXQGLQJ )DXOW 3RVVLEOH %RXQGLQJ )DXOW LQIHUUHG RQO\ IURP JUDYLW\ GDWDf ?Y )DXOW =RQH DFFRPPRGDWHV QRUPDO DQG ODWHUDO PRWLRQf )LJXUH 0HVR]RLF VWUXFWXUDO IHDWXUHV RI WKH )ORULGDQ 3ODWHDX EDVHPHQW 6RXWK *HRUJLD 5LIW DIWHU 'REVRQ DQG %XIIOHU f DQG 0F%ULGH f $SDODFKLFROD (PED\PHQW IURP 0LWFKHOO7DSSLQJ f

PAGE 72

SODWHDX $OWKRXJK WKH OLQHDU QDWXUH RI WKH IDXOW ]RQH VXJJHVWV WKDW LW RULJLQDWHG DV D VWULNHVOLS IDXOW WKH SUHVHQW VWUXFWXUH RI WKH ]RQH LV LQGHSHQGHQWO\ GHWHUPLQHG E\ HDFK RI WKH ERUGHULQJ 0HVR]RLF H[WHQVLRQDO IHDWXUHV DQG FRQVHTXHQWO\ FKDQJHV DORQJ VWULNH ,Q WKH VRXWKHDVWHUQ UHJLRQ RI WKH SODWHDX WKH IDXOW ]RQH SULPDULO\ FRQVLVWV RI D VHULHV RI VRXWKZHVWZDUGGLSSLQJ QRUPDO IDXOWV 7R WKH QRUWKZHVW DORQJ PXFK RI LWV OHQJWK WKH ]RQH DOWHUQDWHV EHWZHHQ DFFRPPRGDWLQJ VLJQLILFDQW YHUWLFDO RIIVHWV DW VRXWKZHVWZDUGGLSSLQJ -XUDVVLF EDVLQ ERXQGDULHV DQG KDYLQJ OLWWOH RU QR YHUWLFDO RIIVHW ZKHUH LQWHUVHFWHG E\ EDVHPHQW DUFKHV ,Q WKH QRUWKZHVW WKH ]RQH FKDQJHV WR DFFRPPRGDWH WKH QRUWKHDVWZDUGGLSSLQJ QRUPDO ERXQGLQJ IDXOWV RI WKH 6RXWK *HRUJLD 5LIW 7KH VRXWKZHVWZDUG H[WHQVLRQ RI WKH 6RXWK *HRUJLD 5LIW LQWR )ORULGD UHVXOWHG LQ EORFN IDXOWLQJ LQ WKH ZHVWHUQ 6XZDQQHH %DVLQ WHUUDQH $OWKRXJK WKHUH LV VRPH VXJJHVWLRQ RI LQWUDULIW KRUVW DQG JUDEHQ IRUPDWLRQ QHLWKHU WKHVH VWUXFWXUHV QRU WKH ODWHUDO PDVWHU ERXQGLQJ IDXOWV RI WKH ULIW H[WHQVLRQ KDYH EHHQ GHILQLWLYHO\ ORFDWHG RU FKDUDFWHUL]HG 7KHUH LV D VPDOO DQFLOODU\ ULIW EDVLQ RU EDVLQVf VRXWKHDVW RI WKH PDLQ ULIW $V PHQWLRQHG DERYH WKH VRXWKZHVWHUQ ERXQGDU\ RI WKH 6RXWK *HRUJLD 5LIW LV D ODUJH QRUWKHDVWZDUGGLSSLQJ QRUPDO IDXOW DW WKH -D\ )DXOW ]RQH 2YHUO\LQJ WKH 6RXWK *HRUJLD 5LIW LQ WKLV DUHD LV WKH -XUDVVLF $SDODFKLFROD (PED\PHQW ZKLFK DV VXJJHVWHG LQ SUHYLRXV VWXGLHV PD\ DOVR EH ERUGHUHG E\ ODWHUDO PDVWHU IDXOWV 7KH $SDODFKLFROD (PED\PHQW H[WHQGV VRXWKZHVWZDUG DFURVV D EDVHPHQW KLQJHOLQH DW WKH WUDFH RI WKH -D\ )DXOW ]RQH ,W PHUJHV ZLWK WKH GHHSHU $SDODFKLFROD %DVLQ ZKLFK LV RQH RI D VHULHV RI QRUWKHDVWVWULNLQJ

PAGE 73

H[WHQVLRQDO EDVLQV ERUGHULQJ WKH VRXWKZHVWHUQ VLGH RI WKH -D\ )DXOW ]RQH 7KHVH EDVLQV WKH $SDODFKLFROD %DVLQ WKH 7DPSD %DVLQ DQG WKH 6RXWK )ORULGD %DVLQ DUH VHSDUDWHG E\ WZR ZLGH EDVHPHQW ULGJHV WKH 0LGGOH *URXQG $UFK DQG WKH 6DUDVRWD $UFK (DFK RI WKH EDVLQV ZLWK WKH SUREDEOH H[FHSWLRQ RI WKH QRUWKZHVWHUQ HGJH RI WKH 7DPSD %DVLQ LV IDXOWERXQGHG DORQJ LWV ODWHUDO ERXQGDULHV ,Q DGGLWLRQ LW LV OLNHO\ WKDW HDFK H[WHQGV IURP WKH -D\ )DXOW ]RQH VRXWKZHVWZDUG DW OHDVW DV IDU DV WKH )ORULGD (VFDUSPHQW $OWKRXJK WKHUH LV OLWWOH FRUURERUDWLQJ VHLVPLF UHIOHFWLRQ GDWD IRU WKH 6RXWK )ORULGD %DVLQ SRWHQWLDOILHOG VLJQDWXUHV VXJJHVW WKH SUREDELOLW\ WKDW WKLV DUHD LV XQGHUODLQ E\ VHYHUDO LVRODWHG EDVLQV UDWKHU WKDQ EHLQJ D VLQJXODU IHDWXUH $ EDVHPHQW ORZ XQGHU WKH QRUWKHDVW HGJH RI WKH )ORULGDQ 3ODWHDX LV LQWHUSUHWHG WR EH D VXEVLGHG ODQGZDUG VDOLHQW RI WKH -XUDVVLF %ODNH 3ODWHDX %DVLQ :LWK WKH H[FHSWLRQ RI JUDYLW\LQGXFHG VOXPS IHDWXUHV QHDU WKH )ORULGDQ (VFDUSPHQW DQG VPDOO IDXOWV LQ WKH QRUWKHDVWHUQ *XOI SURGXFHG E\ KDORNLQHVLV WKHUH LV QR HYLGHQFH RI DQ\ 7HUWLDU\ VWUXFWXUDO IHDWXUH RQ WKH )ORULGDQ 3ODWHDX 7KHUH PD\ EH D VPDOO DQWLFOLQDO VWUXFWXUH WKH *RUGRQ $QWLFOLQH LQ VRXWKZHVWHUQ *HRUJLD MXVW QRUWK RI WKLV VWXG\ DUHD

PAGE 74

&+$37(5 7(&721,& (92/87,21 2) 7+( )/25,'$1 3/$7($8 $V D FRQVHTXHQFH RI WKH GHSWK RI EXULDO RI WKH )ORULGDQ 3ODWHDX EDVHPHQW DQG WKH OLWKRWHFWRQLF FRPSOH[LW\ RI WKH UHJLRQ SDVW LQWHUSUHWDWLRQV RI WHFWRQLF KLVWRU\ KDYH QHFHVVDULO\ EHHQ EDVHG RQ DQ LQDGHTXDWH NQRZOHGJH RI EDVHPHQW VWUXFWXUH 7KH LQWHQWLRQ LQ WKLV FKDSWHU LV WR SURYLGH D UHLQWHUSUHWDWLRQ RI WKH WHFWRQLF KLVWRU\ RI WKH )ORULGDQ 3ODWHDX ZLWKLQ WKH FRQWH[W RI WKH QHZ LQWHUSUHWDWLRQV RI OLWKRORJLF DQG VWUXFWXUDO UHODWLRQVKLSV SUHVHQWHG LQ &KDSWHU DQG WR LQFRUSRUDWH WKH ILQGLQJV RI UHFHQWO\ SXEOLVKHG JHRFKHPLFDO JHRSK\VLFDO DQG WHFWRQLF VWXGLHV LQWR WKLV LQWHUSUHWDWLRQ 7HFWRQLF UHFRQVWUXFWLRQV IRU WKH FRQWLQHQWDO EORFNVf XQGHUO\LQJ WKH )ORULGDQ 3ODWHDX DQG WKH DGMDFHQW %DKDPDV 3ODWIRUP DUH EDVHG SULPDULO\ RQ VSDUVH LQIRUPDWLRQ IURP GHHS GULOO KROH VDPSOHV DQG DV D FRQVHTXHQFH WKH RULJLQ RI WKHVH EORFNV KDV EHHQ WKH VXEMHFW RI VRPH GHEDWH 7KH 6XZDQQHH %DVLQ WHUUDQH DQG E\ DVVRFLDWLRQ WKH 2VFHROD *UDQLWH DQG 6W /XFLH 0HWDPRUSKLF &RPSOH[ KDYH EHHQ VKRZQ WR EH DOORFKWKRQRXV ZLWK UHVSHFW WR 1RUWK $PHULFD 6HYHUDO LQYHVWLJDWRUV KDYH IRXQG WKH 3DOHR]RLF 6XZDQQHH %DVLQ IRVVLO

PAGE 75

DVVHPEODJHV WR KDYH *RQGZDQDQ DIILQLWLHV HJ &UDPHU 3RMHWD HW DO f ,Q DGGLWLRQ SDOHRPDJQHWLF GDWD DQG DJHV RI GHWULWDO ]LUFRQV 2SG\NH HW DO 0XHOOHU HW HO f DUH DOVR LQFRQVLVWHQW ZLWK D /DXUHQWLDQ RULJLQ IRU WKLV WHUUDQH $V D UHVXOW D FRUUHODWLRQ EHWZHHQ WKHVH WHUUDQHV DQG *RQGZDQD SULRU WR WKH $OOHJKHQLDQ FORVXUH RI WKH ,DSHWXV 2FHDQ KDV EHHQ UHDVRQDEO\ ZHOO HVWDEOLVKHG KRZHYHU WKH VSHFLILF SRVLWLRQ RI WKH )ORULGDQ 3ODWHDX ZLWK UHVSHFW WR *RQGZDQD GXULQJ WKH 3DOHR]RLF KDV QRW EHHQ GHILQLWLYHO\ HVWDEOLVKHG $ QXPEHU RI LQYHVWLJDWLRQV KDYH VXJJHVWHG WKDW WKH SUH 0HVR]RLF EDVHPHQW WHUUDQHV RI WKH QRUWKHDVWHUQ )ORULGDQ 3ODWHDX RULJLQDWHG DORQJ $IULFDnV ZHVWHUQ PDUJLQ QHDU 6HQHJDO 7KHVH LQYHVWLJDWLRQV LQFOXGH FRQWLQHQWDO UHFRQVWUXFWLRQV %XOODUG HW DO :LOVRQ 'LHW] HW DO /H3LFKRQ DQG )R[ 3LQGHOO DQG 'HZH\ .OLWJRUG HW DO 5RXVVHOO DQG /LJHU 9DQ 6LFOHQ 3LQGHOO 9HQNDWDNULVKQDQ DQG &XOYHU f SDOHRQWRORJLFDO DQDO\VHV IURP )ORULGD DQG $IULFD &UDPHU 3RMHWD HW DO f FRPSDULVRQV RI LVRWRSLF DEXQGDQFHV DQG DJHV 'DOOPH\HU 'DOOPH\HU HW DO +HDWKHULQJWRQ HW DO f SDOHRPDJQHWLF GDWD 9DQ GHU 9RR HW DO 2SG\NH HW DO f DQG VWUDWLJUDSKLF FRUUHODWLRQV EHWZHHQ )ORULGD DQG ZHVW $IULFD 6PLWK &KRZQV DQG :LOOLDPV f $OWKRXJK D SURSRVHG WHFWRQLF KLVWRU\ IRU )ORULGD EDVHG RQ DQ\ RQH RI WKHVH OLQHV RI HYLGHQFH ZRXOG EH LQFRQFOXVLYH WKH FXPXODWLYH HIIHFW RI WKHVH LQGHSHQGHQW REVHUYDWLRQV LV WR SURYLGH VWURQJ VXSSRUW IRU D ZHVW $IULFDQ RULJLQ

PAGE 76

7KHUH DUH VSHFLILF XQLWV LQ ZHVWHUQ $IULFD WKDW FDQ EH FRUUHODWHG WR WKHLU DSSDUHQW FRXQWHUSDUWV XQGHUO\LQJ WKH )ORULGDQ 3ODWHDX 7KHVH XQLWV SURYLGH WKH VROH UHFRUG RI WKH SUH0HVR]RLF WHFWRQLF KLVWRU\ RI WKH )ORULGDQ 3ODWHDX 7KH H[WHQVLYH 1RUWK )ORULGD 5K\ROLWH RI QRUWK )ORULGD DQG VRXWK *HRUJLD PD\ EH FRUUHODWHG WR VLPLODU IHOVLF YROFDQLF URFNV ZKLFK DUH SUHVHQW WKURXJKRXW WKH ZHVWHUQ PDUJLQ RI $IULFD 'LOORQ DQG 6RXJ\ 'DOOPH\HU 'DOOPH\HU DQG 9LOOHQHXYH +HDWKHULQJWRQ HW DO f *HRFKHPLFDO DQDO\VHV RI WKH )ORULGD VXLWH VXJJHVW HPSODFHPHQW LQ D FRQYHUJHQW SODWH PDUJLQ VHWWLQJ ZLWK DQ RFHDQFRQWLQHQW VXEGXFWLRQ HQYLURQPHQW EHLQJ WKH PRVW OLNHO\ VHWWLQJ 0XHOOHU DQG 3RUFK f 7KH 6W /XFLH 0HWDPRUSKLF &RPSOH[ KDV EHHQ FRUUHODWHG WR XQLWV RI WKH FHQWUDO 5RFNHOLGH 2URJHQ LQ *XLQHD SUR[LPDO WR WKH %RY %DVLQ &KRZQV DQG :LOOLDPV 'DOOPH\HU DQG 9LOOHQHXYH f ,Q DGGLWLRQ WR VLPLODULWLHV LQ SHWURORJ\ DQG GHJUHH RI PHWDPRUSKLVP ERWK RI WKHVH PHWDPRUSKLF XQLWV DSSHDU WR KDYH EHHQ DIIHFWHG E\ DQ H[WHQVLYH WKHUPRWHF WRQLF HYHQW 3DQ$IULFDQ ,, WKDW RFFXUUHG DORQJ WKH QRUWKZHVWHUQ PDUJLQ RI *RQGZDQD DERXW 0D DJR 'DOOPH\HU DQG 9LOOHQHXYH f ,Q DGGLWLRQ WKHUH LV QR HYLGHQFH WKDW WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ ZDV WKHUPDOO\ DIIHFWHG E\ WKH VXEVHTXHQW &DOHGRQLDQ RU +HUF\QLDQ RURJHQLHV 7KLV LV FRQVLVWHQW ZLWK D FHQWUDO 5RFNHOLGH RULJLQ IRU WKH FRPSOH[ EXW QRW ZLWK D PRUH QRUWKHUO\ RULJLQ ZKHUH WKH DGMDFHQW 0DXULWDQLGHV ZHUH VWURQJO\ GHIRUPHG GXULQJ WKH ODWHU RURJHQLHV 5RXVVHO HW DO f QRU ZLWK D PRUH VRXWKHUO\ RULJLQ ZKHUH 3DQ$IULFD ,, KDG OLWWOH HIIHFW :LOOLDPV DQG &XOYHU f

PAGE 77

7KHUH DUH D QXPEHU RI VLPLODULWLHV WKDW VXSSRUW WKH FRUUHODWLRQ RI WKH 2VFHROD *UDQLWRLG &RPSOH[ RI HDVW FHQWUDO )ORULGD ZLWK WKH &R\D *UDQLWH RI 6HQHJDO ZKLFK LV H[SRVHG LQ WKH QRUWKHUQ 5RFNHOLGHV %RWK DUH SRVWWHFWRQLF (DUO\ 3DOHR]RLF SOXWRQV ZLWK VLPLODU SHWURJUDSKLF DQG SHWURORJLF FKDUDFWHULVWLFV 'DOOPH\HU HW DO f 7KHVH VLPLODULWLHV DV ZHOO DV QXPHURXV FRQWLQHQWDO UHFRQVWUXFWLRQV VXJJHVW WKDW GXULQJ WKH (DUO\ 3DOHR]RLF WKH 2VFHROD DQG &R\D *UDQLWHV ZHUH OLNHO\ WR KDYH IRUPHG DV SDUW RI WKH VHULHV RI JUDQLWRLGV HPSODFHG DORQJ *RQGZDQDnV QRUWKZHVWHUQ PDUJLQ GXULQJ 3DQ$IULFDQ ,, RURJHQLHV 'LOORQ DQG 6RXJ\ 'DOOPH\HU HW DO f 7KH 6XZDQQHH %DVLQ &RPSOH[ RI QRUWKFHQWUDO )ORULGD ZDV GHSRVLWHG LQ DQ (DUO\ 3DOHR]RLF VHGLPHQWDU\ EDVLQ 7KH ORZHU SRUWLRQ RI WKH VDPSOHG VHTXHQFH RI WKLV FRPSOH[ FRQVLVWV RI TXDUW] VDQGVWRQHV RYHUODLQ E\ JUDSWROLWHEHDULQJ EODFN VKDOHV ZKLFK DUH LQGLFDWLYH RI D UHVWULFWHG PDULQH HQYLURQPHQW %DVHG ODUJHO\ RQ VWUDWLJUDSKLF DQG SDOHRQWRORJLFDO VLPLODULWLHV WKH 6XZDQQHH %DVLQ ZDV FRUUHODWHG E\ D QXPEHU RI ZRUNHUV WR WKH %RY %DVLQ RI ZHVWHUQ *XLQHD &UDPHU 3RMHWD HW DO 6PLWK &KRZQV DQG :LOOLDPV 9HQNDWDNULVKQDQ DQG &XOYHU f 6XEVHTXHQWO\ D SDOHRPDJQHWLFDOO\ GHWHUPLQHG /RZHU 2UGRYLFLDQ SDOHRODWLWXGH RI GHJUHHV VRXWK 2SG\NH HW DO f DQG D FRPSDULVRQ RI SODWHDX DJHV IRU PXVFRYLWH FD 0Df IURP ERWK EDVLQV 'DOOPH\HU f KDYH SURYLGHG IXUWKHU VXSSRUW IRU WKLV FRUUHODWLRQ 7KHVH GHSRVLWV SUREDEO\ UHSUHVHQW WKH GLVMRLQWHG UHPQDQWV RI D VLQJOH H[WHQVLYH UHVWULFWHG EDVLQ WKDW H[LVWHG DORQJ WKH QRUWKZHVWHUQ PDUJLQ RI *RQGZDQD GXULQJ WKH (DUO\ WR 0LGGOH 3DOHR]RLF

PAGE 78

$OWKRXJK WKH SUHVHQW GD\ EDVDO FRQWDFW RI WKH 6XZDQQHH %DVLQ WHUUDQH LV OLNHO\ WR EH D VLPSOH XQFRQIRUPLW\ WKHUH LV VRPH HYLGHQFH WR VXJJHVW WKDW LW PD\ LQVWHDG EH D QRUWKZDUGGLSSLQJ WKUXVW IDXOW $OWKRXJK WKH 6XZDQQHH %DVLQ KDV EHHQ RQO\ PLOGO\ PHWDPRUSKRVHG VHLVPLF UHIOHFWLRQ SURILOHV VXJJHVW WKH SUHVHQFH RI ORZ DQJOH IDXOWLQJ ZLWKLQ WKH WHUUDQH $UGHQ SHUVRQDO FRPPXQLFDWLRQf DQG WKH EDVDO FRQWDFW KDV WKH DSSHDUDQFH RI D UDPSHG WKUXVW IDXOW $UGHQ f ,Q DGGLWLRQ WKUXVW IDXOWV DUH FRPPRQ LQ WKH FHQWUDO 5RFNHOLGHV ZKLFK DUH LQ FORVH SUR[LPLW\ WR WKH %RY %DVLQ HJ :LOOLDPV DQG &XOYHU f 6PLWK f KDV SRVWXODWHG WKDW WKH SUH0HVR]RLF WHUUDQHV RI WKH SODWHDX EDVHPHQW LQFOXGLQJ WKH 6XZDQQHH %DVLQ WKH 1RUWK )ORULGD 5K\ROLWH WKH 2VFHROD *UDQLWH DQG WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ ZHUH IUDJPHQWHG DQG UHSRVLWLRQHG WR WKHLU SUHVHQW GD\ FRQILJXUDWLRQV GXULQJ WKH ODWH VWDJHV RI $OOHJKHQLDQ FORVXUH ,Q WKLV VFHQDULR IUDJPHQWV RI WKHVH *RQGZDQDQ WHUUDQHV ZHUH PRYHG ODWHUDOO\ LQWR WKHLU UHODWLYH SRVLWLRQV ZLWK VHSDUDWH IUDJPHQWV EHLQJ WUDQVORFDWHG LQWR HDVWHUQ )ORULGD VRXWKHDVWHUQ *HRUJLD DQG QRUWKZHVWHUQ )ORULGD DORQJ D VHULHV RI OHIW DQG ULJKW ODWHUDO VWULNH VOLS IDXOWV 7KHVH VWULNHVOLS IDXOWV LQFOXGLQJ WKH SUHFXUVRU WR WKH -D\ )DXOW IRUPHG LQ UHVSRQVH WR WKH GLIIHUHQWLDO VWUHVVHV LQ *RQGZDQD UHVXOWLQJ IURP D GHIRUPDWLRQDO FROOLVLRQ ZLWK /DXUHQGD 7KH SURFHVV LV GHPRQVWUDWHG LQ )LJXUH ZKLFK LOOXVWUDWHV WKH IRUPDWLRQ RI VWULNHVOLS IDXOWLQJ LQ WKH )ORULGD EDVHPHQW DQG WKH UHODWLYH PRYHPHQW RI WHUUDQH IUDJPHQWV LQ UHVSRQVH WR GLIIHUHQWLDO FORVXUH DURXQG WKH $ODEDPD 3URPRQWRU\

PAGE 79

)LJXUH +\SRWKHVL]HG VHTXHQFH RI HYHQWV GXULQJ $OOHJKHQLDQ FORVXUH UHVXOWLQJ LQ WKH WUDQVORFDWLRQ RI *RQGZDQDQ WHUUDQH IUDJPHQWV DORQJ WUDQVIRUP IDXOWV LQ WKH )ORULGDQ 3ODWHDX EDVHPHQW DIWHU 6PLWK f

PAGE 80

7KHUH DUH RWKHU OLQHV RI HYLGHQFH WKDW VXSSRUW WKLV VFHQHULR ,W LV XQOLNHO\ WKDW WKH QXPHURXV 7ULDVVLF DQG -XUDVVLF IHDWXUHV RI WKH SODWHDX EDVHPHQW ZRXOG VKDUH D FRPPRQ OLQHDU ERXQGDU\ VXFK DV WKH -D\ )DXOW ]RQH &KDSWHU f XQOHVV WKLV ERXQGDU\ H[LVWHG DV D SUHn H[LVWLQJ ]RQH RI ZHDNQHVV 7KH FRQWLQXLW\ DQG OLQHDULW\ RI WKLV ]RQH RI ZHDNQHVV LV VWURQJO\ VXJJHVWLYH RI D ORQJ VWULNHVOLS IDXOW ]RQH ZKLFK LV FRQVLVWHQW ZLWK 6PLWKnV PRGHO ,Q DGGLWLRQ WKH PHWDPRUSKLF &DWRFKH WHUUDQH HQFRXQWHUHG LQ '6'3 KROHV NPV ZHVW RI WKH )ORULGD (VFDUSPHQW LQ WKH *XOI RI 0H[LFR LV SHWURORJLFDOO\ VLPLODU WR WKH 6W /XFLH 0HWDPRUSKLF &RPSOH[ DQG GLVSOD\V VLPLODU $WDW DJH VSHFWUD 'DOOPH\HU f &RQVHTXHQWO\ LW DSSHDUV WR EH DQRWKHU GHWDFKHG IUDJPHQW RI WKH VDPH *RQGZDQDQ VRXUFH WHUUDQH 6FKODJHU HW DO f ,I RQH DFFHSWV D *RQGZDQDQ RULJLQ IRU WKH &DWRFKH WHUUDQH WKLV QHFHVVLWDWHV QRUWKZDUG WR ZHVWZDUG QHW WUDQVSRUW UHODWLYH WR WKH SUHVHQW RULHQWDWLRQ RI 1RUWK $PHULFD IRU HPSODFHPHQW RI WKH WHUUDQH IUDJPHQW WR WKH ZHVW RI WKH )ORULGD 3ODWHDX %HFDXVH 0HVR]RLF H[WHQVLRQDO WUHQGV VXJJHVW RQO\ VRXWKHDVWZDUG WUDQVSRUW WKHQ QRUWKZDUG WR ZHVWZDUG PRYHPHQW RI WKH &DWRFKH WHUUDQH PXVW KDYH RFFXUUHG GXULQJ RU DIWHU FORVXUH EXW SULRU WR 0HVR]RLF H[WHQVLRQ LQ VRPH PDQQHU VLPLODU WR WKDW GHVFULEHG E\ 6PLWK $OWKRXJK VLJQLILFDQW QRUWKZDUG DQG ZHVWZDUG PRYHPHQW DORQJ D VHULHV RI VWULNHVOLS IDXOWV LV VXJJHVWHG WKH DPRXQW RI ODWHUDO RIIVHW DORQJ WKH -D\ )DXOW ]RQH PD\ KDYH EHHQ UDWKHU OLPLWHG 5HFHQW GULOO KROHV LQ WKH ZHVWHUQ )ORULGDQ 3ODWHDX KDYH LQWHUVHFWHG JUDQLWH %DOO HW DO 'REVRQ DQG %XIIOHU f $OWKRXJK XQGDWHG WKLV JUDQLWH LV ORFDWHG JHQHUDOO\ DFURVV WKH -D\ )DXOW ]RQH IURP WKH 2VFHROD

PAGE 81

*UDQLWH DQG LV SUREDEO\ DQRWKHU IUDJPHQW RI WKH VDPH WHUUDQH )LJXUH f ,Q DGGLWLRQ +HDWKHULQJWRQ DQG 0XHOOHU f KDYH IRXQG OLWWOH HYLGHQFH IRU GLIIHUHQFHV LQ 1G PRGHO DJHV IRU WKH OLWKRVSKHULF FRPSRQHQWV IURP ZKLFK WKH YROFDQLF VXLWH RI WKH 6RXWK )ORULGD %DVLQ DQG WKH QRUWK )ORULGD YROFDQLF URFNV ZHUH GHULYHG (DFK RI WKHVH VXJJHVWV WKDW WKHUH ZDV QRW HQRXJK QHW VWULNHVOLS PRYHPHQW DORQJ WKLV VHFWLRQ RI WKH -D\ )DXOW GXULQJ WKH 3DOHR]RLF RU 0HVR]RLF WR EULQJ VHSDUDWH OLWKRVSKHULF XQLWV LQWR MX[WDSRVLWLRQ 0RVW /DWH 3DOHR]RLF(DUO\ 0HVR]RLF UHFRQVWUXFWLRQV RI 3DQJDHD SODFH WKH FRQWLQHQWDO EDVHPHQWV RI WKH )ORULGDQ 3ODWHDX WKH
PAGE 82

L ?? "fr :HVWHUQ %ORFN rn) /DWH 0LGGOH -XUDVVLF &DOORXWDQO V 6RXWK $PHULFDQ 3ODWR ‘f f§ } b‘
PAGE 83

DFURVV WKH 7ULDVVLF QRUWKHUQ PDUJLQ RI WKH
PAGE 84

RI WKH 6RXWK )ORULGD %DVLQ WHUUDQH WR WKH QRUWKZHVW ,Q DGGLWLRQ DV VXJJHVWHG E\ WKH SRVLWLRQ RI WKH VDOLHQW EHWZHHQ $IULFD 1RUWK $PHULFD DQG 6RXWK $PHULFD LW LV OLNHO\ WKDW GXULQJ WKH 7ULDVVLF DQG -XUDVVLF WKH FRQWLQHQWDO FUXVW RI WKH ZHVWHUQ %DKDPDV EORFN ZDV ORFDWHG LPPHGLDWHO\ WR WKH HDVW RI WKH 6RXWK )ORULGD %DVLQ WHUUDQH HJ 0XOOLQV DQG /\QWV f ZKHUH LW ZRXOG KDYH HIIHFWLYHO\ LVRODWHG WKH WHUUDQH IURP WKH $WODQWLF RFHDQLF ULIW ]RQH )LJXUH f $OWKRXJK WKHVH UHFRQVWUXFWLRQV VXJJHVW WKDW WKH 6RXWK )ORULGD %DVLQ ZDV JHRJUDSKLFDOO\ UHPRYHG IURP WKH $WODQWLF 2FHDQ DQG WKDW WKH ELPRGDO YROFDQLFV ZHUH HUXSWHG DV D FRQVHTXHQFH RI WKH RSHQLQJ RI WKH *XOI RI 0H[LFR EDVLQ WKLV GRHV QRW QHJDWH D /DWH 7ULDVVLF(DUO\ -XUDVVLF VKLIW LQ RFHDQLF ULIWLQJ JHRPHWU\ DV D FDXVDO PHFKDQLVP IRU WKH IDLOXUH RI WKH 6RXWK *HRUJLD 5LIW $ QXPEHU RI /DWH 7ULDVVLF UHFRQVWUXFWLRQV RI WKH *XOI RI 0H[LFR UHJLRQ LQGLFDWH WKDW WKH QRUWKFHQWUDO *XOI UHJLRQ ZDV RFFXSLHG E\ WKH
PAGE 85

)ORULGD GXULQJ WKH /DWH -XUDVVLF 7KLV GLVSODFHPHQW ZRXOG KDYH RFFXUUHG DORQJ D OHIWODWHUDO VWULNHVOLS IDXOW WKH )ORULGD (OERZ )DXOWf ZKLFK ZRXOG QHFHVVDULO\ H[WHQG DFURVV WKH VRXWKZHVWHUQ TXDUWHU RI WKH )ORULGDQ 3ODWHDX )LJXUH %f 7KH VHFRQG K\SRWKHVLV LV WKDW DQ\ DSSDUHQW JDSV DUH DFFRXQWDEOH HQWLUHO\ WR DWWHQXDWLRQ DQG VXEVLGHQFH RI FRQWLQHQWDO FUXVW LQ WKH HDVWHUQ JXOI GXULQJ WKH -XUDVVLF HJ %XIIOHU DQG 6DZ\HU 'XQEDU DQG 6DZ\HU 6DOYDGRU :LQNHU DQG %XIIOHU f ,Q FRQWUDVW WR WKH REYLRXV SRWHQWLDOILHOG VLJQDWXUH DWWULEXWDEOH WR WKH -D\ )DXOW ]RQH WKHUH LV QR VXJJHVWLRQ RI D )ORULGD (OERZ )DXOW H[WHQGLQJ DFURVV VRXWKZHVWHUQ )ORULGD LQ HLWKHU %RXJXHU DQRPDO\ PDSV RU VHLVPLF UHIOHFWLRQ VXUYH\V ,Q DGGLWLRQ WKH 0LGGOH -XUDVVLF EDVLQV DQG DUFKHV RI WKH VRXWKZHVWHUQ )ORULGDQ 3ODWHDX DSSHDU WR H[WHQG XQGLVWXUEHG DFURVV WKH SURSRVHG WUDFH RI WKH )ORULGD (OERZ )DXOW +HQFH WKHUH LV OLWWOH VXSSRUWLQJ HYLGHQFH IRU WKLV IDXOW RU DQ\ VLPLODU VWUXFWXUH DFURVV WKH VRXWKZHVWHUQ SODWHDX DQG WKH WUDQVORFDWLRQ RI WKH )ORULGD 6WUDLWV EORFN IURP WKH HDVWHUQ JXOI WR LWV SUHVHQW ORFDWLRQ E\ VRPH RWKHU SDWK VHHPV XQOLNHO\ $QRWKHU FRQVLGHUDWLRQ ZLWK UHVSHFW WR WKH DSSDUHQW JDS LV WKDW WKH VRXWKZHVWHUQ KDOI RI WKH )ORULGDQ 3ODWHDX LV FRPSULVHG RI DWWHQXDWHG LH VWUHWFKHG DQG WKLQQHGf FRQWLQHQWDO FUXVW DV VXJJHVWHG E\ WKH SURPLQHQW H[WHQVLRQDO EDVLQV DQG WKH GULOO KROHV LQWHUVHFWLQJ JUDQLWLF EDVHPHQW )LJXUH f 7KH GHSWKWREDVHPHQW LQ WKH 7DPSD $SDODFKLFROD DQG 6RXWK )ORULGD %DVLQV GHPRQVWUDWHV WKDW WKLV EORFN RI FRQWLQHQWDO FUXVW KDV EHHQ PRGHUDWHO\ DWWHQXDWHG ZLWK D EHWD YDOXH LH WKH UDWLR RI WKH VWUHWFKHG OHQJWK WR WKH RULJLQDO OHQJWK DV VXJJHVWHG E\ JHRPHWULF UHFRQVWUXFWLRQVf RI EHWZHHQ

PAGE 86

DQG 3LQGHOO f &RQVHTXHQWO\ WKH PRGHO WKDW DWWULEXWHV DQ DSSDUHQW JDS LQ WKH QRUWKHDVWHUQ *XOI RI 0H[LFR H[FOXVLYHO\ WR WKH DWWHQXDWLRQ DQG VXEVLGHQFH RI FRQWLQHQWDO FUXVW LV SUHIHUUHG $V SUHYLRXVO\ PHQWLRQHG UHVWRUDWLRQ RI WKH -XUDVVLF FUXVWDO DWWHQXDWLRQ RI WKH VRXWKZHVW )ORULGDQ 3ODWHDX UHVXOWV LQ WKH UHORFDWLRQ RI WKH 6RXWK )ORULGD %DVLQ UHJLRQ LQWR WKH SUR[LPLW\ RI WKH HDVWHUQ JXOI 3RWHQWLDOILHOG PDSV LQGLFDWH WKDW WKH 6RXWK )ORULGD %DVLQ UHJLRQ LV FRPSULVHG RI VHYHUDO VHSDUDWH EDVLQV ZKLFK WUHQG QRUWKZHVWVRXWKHDVW SHUSHQGLFXODU WR WKH WUHQG RI WKH RWKHU 0HVR]RLF IHDWXUHV RI WKH VRXWKHUQ DQG ZHVWHUQ )ORULGDQ 3ODWHDX )LJXUH f 7KH QRUWKZHVWVRXWKHDVW RULHQWDWLRQV RI WKHVH EDVLQV DQG WKHLU SUR[LPLW\ WR WKH
PAGE 87

1RUWK $PHULFDQ FUXVW HJ 3LQGHOO %DOO HW DO :LQNHU DQG %XIIOHU 'REVRQ DQG %XIIOHU 5HLW] f 7KH *XOI RI 0H[LFR H[LVWHG DV D UHVWULFWHG EDVLQ IURP DERXW 0D XQWLO DERXW 0D UHVXOWLQJ LQ WKH GHSRVLWLRQ RI H[WHQVLYH VDOW GHSRVLWV 3LQGHOO DQG 'HZH\ 6DOYDGRU f 'XULQJ WKLV SHULRG VWUHVV LQ WKH ZHVWHUQ )ORULGDQ 3ODWHDX ZDV UHRULHQWHG WR D QRUWKVRXWK RU QRUWKZHVWVRXWKHDVW H[WHQVLRQDO UHJLPH DV GHOLQHDWHG E\ WKH QRUWKHDVWVRXWKZHVW RULHQWDWLRQV RI WKH KRUVWV DQG VDOWFRQWDLQLQJ EDVLQV RI WKH VRXWKZHVWHUQ )ORULGDQ 3ODWHDX 7KLV VKLIW LQ WKH VWUHVV UHJLPH LV OLNHO\ WR KDYH EHHQ DVVRFLDWHG ZLWK WKH FRQWLQXLQJ VHSDUDWLRQ RI WKH 1RUWK $PHULFDQ DQG 6RXWK $PHULFDQ ODQGPDVVHV 7KH PHFKDQLVPV RI UHODWLYH PRWLRQ EHWZHHQ 1RUWK DQG 6RXWK $PHULFD GXULQJ WKH -XUDVVLF DUH QRW ZHOO FRQVWUDLQHG SDUWO\ EHFDXVH PXFK RI WKH LQWHUYHQLQJ FUXVWDO VWUXFWXUH ZDV VXEVHTXHQWO\ GHVWUR\HG GXULQJ WKH HDVWZDUG PLJUDWLRQ RI WKH &DULEEHDQ SODWH ,W LV SUREDEOH WKDW WKH UHODWLYH PRWLRQ EHWZHHQ WKH WZR FRQWLQHQWV ZDV DFFRPPRGDWHG E\ VWULNHVOLS PRYHPHQW DORQJ D VHULHV RI QRUWKZHVW VRXWKHDVW RU QRUWKVRXWK RULHQWHG WUDQVIRUP IDXOWV 3LQGHOO DQG 'HZH\ .OLWJRUG HW DO 9DQ 6LFOHQ 3LQGHOO 6DOYDGRU f ,W KDV EHHQ VXJJHVWHG WKDW WKH %DKDPDV )UDFWXUH =RQH-D\ )DXOW V\VWHP DFWHG DV DQ LPSRUWDQW WUDQVIRUP IDXOW LQ WKH HDVWHUQ *XOI RI 0H[LFR GXULQJ WKH -XUDVVLF QRW RQO\ E\ DFFRPPRGDWLQJ VLJQLILFDQW VLQLVWUDO GLVSODFHPHQW DVVRFLDWHG ZLWK WKH VHSDUDWLRQ RI 1RUWK DQG 6RXWK $PHULFD EXW DOVR E\ IRUPLQJ WKH VRXWKHUQ HGJH RI FRQWLQHQWDO 1RUWK $PHULFD 3LQGHOO DQG 'HZH\ .OLWJRUG HW DO

PAGE 88

f +RZHYHU DV PHQWLRQHG WKH SODWHDX EDVHPHQW VRXWKZHVW RI WKH -D\ )DXOW ]RQH DSSHDUV WR EH FRPSRVHG HQWLUHO\ RI DWWHQXDWHG FRQWLQHQWDO FUXVW UDWKHU WKDQ RI VWUDQGHG LQGLYLGXDO EORFNV DV KDG EHHQ K\SRWKHVL]HG ,Q DGGLWLRQ VLPLODULWLHV EHWZHHQ 1G LVRWRSH VLJQDWXUHV RI EDVHPHQW VDPSOHV IURP QRUWK DQG VRXWK )ORULGD LPSO\ OLWWOH QHW VWULNHVOLS PRWLRQ DORQJ WKH -D\ )DXOW ]RQH +HDWKHULQJWRQ DQG 0XHOOHU f &RQVHTXHQWO\ ZKLOH VRPH VLQLVWUDO PRWLRQ DORQJ WKH -D\ )DXOW ]RQH GXULQJ WKH -XUDVVLF UHVXOWLQJ IURP FUXVWDO DWWHQXDWLRQ DORQJ LWV VRXWKZHVWHUQ PDUJLQ LV OLNHO\ LWV SURSRVHG UROHV DV WKH VRXWKHUQ ERXQGDU\ RI 1RUWK $PHULFDQ FRQWLQHQWDO FUXVW DQG DV D PDMRU WUDQVIRUP ERXQGDU\ VHHP LPSODXVLEOH 7HQVLRQDO GHIRUPDWLRQ LQ WKH *XOI RI 0H[LFR UHJLRQ FHDVHG E\ WKH /DWH -XUDVVLF 6DOYDGRU f LQGLFDWLQJ WKDW WKH OLWKRWHFWRQLF EORFNV RI WKH )ORULGDQ 3ODWHDX KDG UHDFKHG WKHLU SUHVHQW UHODWLYH SRVLWLRQV E\ WKDW WLPH $ UHYLHZ RI H[LVWLQJ VHLVPLF UHIOHFWLRQ SURILOHV UHYHDOV QR HYLGHQFH RI FRQWLQXHG IDXOWLQJ RU RWKHU WHFWRQLFDOO\LQGXFHG GHIRUPDWLRQ LQ WKH VHGLPHQWDU\ FROXPQ RYHUO\LQJ WKH )ORULGDQ 3ODWHDX DIWHU WKH (DUO\ &UHWDFHRXV GHVSLWH WKH SUHVHQFH RI QXPHURXV SUHH[LVWLQJ SRWHQWLDO ]RQHV RI ZHDNQHVV 7KXV DV VRRQ DV WKH UHJLRQ EHFDPH HVWDEOLVKHG DV D SDVVLYH PDUJLQ WKH OHYHO RI FUXVWDO VWUHVV RQ WKH SODWHDX DSSHDUV WR KDYH GLPLQLVKHG GUDPDWLFDOO\ ,Q WKH WLPH VLQFH WKH IRUPDWLRQ RI WKH EDVLQV DQG DUFKHV RI WKH VRXWKZHVWHUQ )ORULGDQ 3ODWHDX EDVHPHQW WKH HQWLUH SODWHDX KDV EHHQ WHFWRQLFDOO\ TXLHVFHQW $ SHULRG RI WHFWRQLVP LQ WKH VRXWKHDVWHUQ *XOI

PAGE 89

RI 0H[LFR DVVRFLDWHG ZLWK WKH FROOLVLRQ RI &XED DQG WKH %DKDPDV GXULQJ WKH (DUO\ 3DOHRJHQH KDV EHHQ GRFXPHQWHG KRZHYHU WKHUH LV QR HYLGHQFH IRU DQ\ DVVRFLDWHG WHFWRQLF DFWLYLW\ RU VLJQLILFDQW KRUL]RQWDO OLWKRVSKHULF VWUHVV RQ WKH )ORULGDQ 3ODWHDX 3LQGHOO f 5DWKHU WKH XQGLVWXUEHG 8SSHU &UHWDFHRXV DQG 7HUWLDU\ VWUDWD RQ WKH SODWHDX GRFXPHQW DQ H[WHQGHG QHDUO\ FRQWLQXRXV SHULRG RI VKDOORZ PDULQH FDUERQDWH DQG FODVWLF GHSRVLWLRQ ZKLFK RFFXUUHG LQ UHVSRQVH WR UHJLRQDO VXEVLGHQFH

PAGE 90

&+$37(5 6(,60,&,7< $1' 675(66 ,1 7+( 6287+($67(51 81,7(' 67$7(6 6HYHUDO K\SRWKHVHV KDYH EHHQ GHYHORSHG WR H[SODLQ VHLVPLF DFWLYLW\ LQ WKH LQWUDSODWH VHWWLQJ RI WKH HDVWHUQ 8QLWHG 6WDWHV KRZHYHU VSHFLILF FDXVDO PHFKDQLVPV DQG FRQGLWLRQV UHPDLQ HQLJPDWLF 7KH UHODWLYH SDXFLW\ RI HDUWKTXDNHV DQG WKH WHFWRQLF FRPSOH[LW\ RI WKH UHJLRQ UHVXOW LQ VHLVPLF KD]DUG DVVHVVPHQWV WKDW DUH QHFHVVDULO\ UDWKHU VXEMHFWLYH DQG RIWHQ WKH VRXUFH RI GHEDWH $Q LPSURYHG XQGHUVWDQGLQJ RI VHLVPLFLW\ DQG VHLVPLF KD]DUG LQ WKH HDVWHUQ 8QLWHG 6WDWHV LV QHFHVVDU\ DQG FDQ EHVW EH DFTXLUHG IURP WKH LQWHJUDWLRQ RI D YDULHW\ RI REVHUYDWLRQV 7KH LQWHQWLRQ LQ WKLV FKDSWHU LV WR FKDUDFWHUL]H HSLFHQWUDO GHQVLW\ SDWWHUQV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG WR SURYLGH D VXPPDU\ RI WKH GLVSDUDWH K\SRWKHVHV DQG REVHUYDWLRQV UHODWLQJ WR WKH VHLVPLFLW\ RI WKH UHJLRQ $ IXUWKHU REMHFWLYH LV WR HYDOXDWH SRVVLEOH FDXVHV IRU WKH QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLFLW\ ZLWK SDUWLFXODU HPSKDVLV RQ WKH VHLVPRWHFWRQLF GLIIHUHQFHV EHWZHHQ WKH DFWLYH 6RXWK &DUROLQDQRUWK *HRUJLD VHLVPLF ]RQH DQG WKH MX[WDSRVHG \HW VHLVPLFDOO\ TXLHVFHQW VRXWK *HRUJLD)ORULGDQ 3ODWHDX UHJLRQ

PAGE 91

7KH FKDUDFWHUL]DWLRQ RI HSLFHQWUDO GLVWULEXWLRQ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV ZDV DFFRPSOLVKHG WKURXJK WKH LQWHJUDWLRQ RI D OLWHUDWXUH UHYLHZ RI KLVWRULFDO DQG LQVWUXPHQWDO UHFRUGV DQG WKH HVWDEOLVKPHQW RI D QHWZRUN RI GLJLWDO VHLVPRJUDSKV LQ )ORULGD 7KLV VHLVPRJUDSK QHWZRUN KDV EHHQ LQ RSHUDWLRQ VLQFH ,Q DGGLWLRQ D UHYLHZ RI SUHYLRXVO\ SXEOLVKHG VHLVPLF UHIOHFWLRQ SURILOHV DQG DQ RYHUYLHZ RI WKH WHFWRQLF VHWWLQJ DV GLVFXVVHG LQ &KDSWHUV DQG UHVSHFWLYHO\ DUH XVHG DV JHQHUDO LQGLFDWRUV RI SUHKLVWRULF VHLVPLF DFWLYLW\ IRU WKH )ORULGDQ 3ODWHDX 5HVXOWV &RPSLODWLRQV RI KLVWRULF UHSRUWV RI VHLVPLF DFWLYLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV H[FHSW IRU )ORULGD KDYH EHHQ SURYLGHG E\ %ROOLQJHU $ f ,Q WKHVH FRPSLODWLRQV DERXW UHSRUWHG HYHQWV GXULQJ WKH SHULRG EHWZHHQ DQG DUH LGHQWLILHG 2I WKHVH UHSRUWV DUH IURP HDVWHUQ 7HQQHVVHH DUH IURP 1RUWK &DUROLQD DQG DUH IURP 6RXWK &DUROLQD ZKLOH RQO\ DUH IURP *HRUJLD DQG DUH IURP $ODEDPD )LJXUH f 1HDUO\ DOO RI WKH *HRUJLD DQG $ODEDPD HYHQWV RFFXUUHG LQ WKH QRUWKHUQ SRUWLRQV RI WKH VWDWHV 7KH UHPDLQGHU RI WKH UHSRUWV DUH IURP 9LUJLQLD :HVW 9LUJLQLD 0DU\ODQG DQG .HQWXFN\ %DVHG RQ WKLV FRPSLODWLRQ %ROOLQJHU LGHQWLILHG VHYHUDO GLIIHUHQW VHLVPLFDOO\ DFWLYH ]RQHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 7KH 6RXWK &DUROLQDQRUWK *HRUJLD VHLVPLF ]RQH H[WHQGV IURP WKH FRDVWV RI 6RXWK &DUROLQD DQG *HRUJLD QRUWKZHVWZDUG IRU DERXW

PAGE 92

3Y_ NVVP 9LP fDP fm\YYYr LQ U R &2 LQ RR R 26 )LJXUH (SLFHQWUDO GLVWULEXWLRQ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG QRUWKZHVWHUQ &DULEEHDQ IURP KLVWRULFDO DQG LQVWUXPHQWDO UHFRUGV &RPSLOHG IURP %ROOLQJHU $f 6WDXGHU f 6\NHV HW DO f 0RWW f 6PLWK DQG 5DQGD]]R f DQG 6(8661 &RQWULEXWRUV f

PAGE 93

NLORPHWHUV ,W FRYHUV DQ DUHD RI PRUH WKDQ VTXDUH NLORPHWHUV DQG WUHQGV SHUSHQGLFXODU WR WKH VWUXFWXUDO JUDLQ RI WKH $SSDODFKLDQV %ROOLQJHU $%f $OWKRXJK HSLFHQWUDO GLVWULEXWLRQ ZLWKLQ WKLV ]RQH LV GLIIXVH LW LQFOXGHV &KDUOHVWRQ 6& ZKHUH DQ HYHQW KDG DQ HVWLPDWHG ERG\ZDYH PDJQLWXGH RI %ROOLQJHU f DQG D OHQJWK\ DIWHUVKRFN VHTXHQFH LQFOXGLQJ PRUH WKDQ HYHQWV GXULQJ WKH VXEVHTXHQW \HDU SHULRG 7DUU f $QRWKHU ]RQH WKH 6RXWKHUQ $SSDODFKLDQ VHLVPLF ]RQH H[WHQGV IURP FHQWUDO $ODEDPD QRUWKHDVWZDUG WR ZHVWHUQ 9LUJLQD DORQJ WKH %OXH 5LGJH DQG 9DOOH\ DQG 5LGJH SURYLQFHV ,W HQFRPSDVVHV VTXDUH NLORPHWHUV DQG ZLWK UHVSHFW WR HSLFHQWUDO GHQVLW\ LV PRUH DFWLYH WKDQ WKH 6RXWK &DUROLQD*HRUJLD VHLVPLF ]RQH (LJKW HYHQWV ZLWK 0RGLILHG 0HUFDOOL 00f LQWHQVLWLHV JUHDWHU WKDQ 9, KDYH RFFXUUHG LQ WKLV ]RQH VLQFH LQFOXGLQJ WKH LQWHQVLW\ 9,( HYHQW RI *LOHV &RXQW\ 9LUJLQLD LQ ,Q DGGLWLRQ WR WKH KLVWRULF UHSRUWV RI VHLVPLF DFWLYLW\ HSLFHQWUDO GLVWULEXWLRQ SDWWHUQV KDYH DOVR EHHQ GHWHUPLQHG IURP LQVWUXPHQWD8\ ORFDWHG HYHQWV 'XULQJ WKH SHULRG IURP WKH 6RXWKHDVWHUQ 8QLWHG 6WDWHV 6HLVPRORJLFDO 1HWZRUN 6(8661f ORFDWHG HYHQWV ZKLFK DUH DOVR VKRZQ LQ )LJXUH 6(8661 &RQWULEXWRUV f 7KHVH LQVWUXPHQWDO UHFRUGV JHQHUD8\ FRUURERUDWH WKH SUHYLRXVO\ GHWHUPLQHG HSLFHQWUDO GLVWULEXWLRQ SDWWHUQV RI %ROOLQJHU LPSO\LQJ WKDW WKH HIIHFWV RI SRSXODWLRQ GLVWULEXWLRQ ORFDO JURXQG UHVSRQVH DQG UHSRUWLQJ HUURU KDYH QRW VLJQLILFDQWO\ ELDVHG WKH KLVWRULFDO UHFRUG ,Q FRQWUDVW WKH VRXWK *HRUJLD)ORULGDQ 3ODWHDX UHJLRQ LV FKDUDFWHUL]HG E\ DQ XQXVXD\ ORZ OHYHO RI VHLVPLF DFWLYLW\ )URP D FRPSUHKHQVLYH UHYLHZ RI KLVWRULFDO UHFRUGV GDWLQJ EDFN WR 0RWW

PAGE 94

f LGHQWLILHG RQO\ UHSRUWV RI HDUWKTXDNHV LQ )ORULGD WKHVH UHSRUWV ZHUH ODWHU XVHG WR FRQVWUXFW D VHLVPLFLW\ PDS RI WKH VWDWH 5HDJRU HW DO f 0RVW RI WKHVH UHSRUWV GR QRW UHSUHVHQW WHFWRQLF DFWLYLW\ LQ )ORULGD 6PLWK DQG 5DQGD]]R /RUG DQG 6PLWK f 5DWKHU PDQ\ DUH DWWULEXWDEOH WR HYHQWV WKDW RFFXUUHG HOVHZKHUH DQG RWKHUV EDVHG RQ WKHLU GHVFULSWLRQV DUH PRUH OLNHO\ WR KDYH EHHQ EODVWLQJ PLOLWDU\ DFWLYLWLHV RU DWPRVSKHULF SKHQRPHQD 7KH FRQFOXVLRQ RI WKHVH UHYLHZV ZDV WKDW )ORULGD KDV H[SHULHQFHG RQO\ SRVVLEOH ORZLQWHQVLW\ KLVWRULF HYHQWV $ VXEVHTXHQW UHYLHZ RI QHZVSDSHU UHSRUWV KDV UHYHDOHG WKDW RI WKHVH SRVVLEOH HYHQWV RQ -XQH f ZDV IHOW LQ WKH &KDUOHVWRQ DUHD EHIRUH EHLQJ IHOW LQ )ORULGD DQG WKHUHIRUH LV QRW OLNHO\ WR KDYH RULJLQDWHG RQ WKH )ORULGDQ 3ODWHDX 7KH UHPDLQLQJ SRVVLEOH HYHQWV DUH VKRZQ RQ )LJXUH ,QVWUXPHQWDO UHFRUGV DOVR VXSSRUW WKH SUHPLVH WKDW WKH )ORULGDQ 3ODWHDX ZKLFK LQFOXGHV VRXWK *HRUJLD LV FKDUDFWHUL]HG E\ DQ XQXVXDOO\ ORZ OHYHO RI VHLVPLF DFWLYLW\ ,Q ILIWHHQ \HDUV RI RSHUDWLRQ WKH 6(8661 KDV QHYHU GHWHFWHG DQ HYHQW RQ WKH )ORULGDQ 3ODWHDX ,Q DGGLWLRQ GXULQJ WKH WKUHH \HDUV WKDW WKH VWDWHZLGH QHWZRUN RI GLJLWDO VHLVPRJUDSKV KDV EHHQ LQ RSHUDWLRQ WKHUH ZHUH QR HYHQWV ORFDWHG RQ WKH SODWHDX DQG RQO\ D VLQJOH ORFDO HYHQW ZDV GHWHFWHG 7KLV ZDV D PA HYHQW ORFDWHG LQ WKH *XOI RI 0H[LFR NLORPHWHUV ZHVWVRXWKZHVW RI 6DUDVRWD )ORULGD RQ 0DUFK ,Q DGGLWLRQ WR KLVWRULFDO DQG LQVWUXPHQWDO UHFRUGV D UHYLHZ RI H[LVWLQJ VHLVPLF UHIOHFWLRQ VXUYH\V IURP DURXQG WKH SODWHDX &KDSWHU f VKRZV QR HYLGHQFH RI IDXOWLQJ IDXOW UHDFWLYDWLRQ RU DQ\ RWKHU WHFWRQLFDOO\LQGXFHG PRYHPHQW VLQFH WKH /DWH &UHWDFHRXV 7KXV WKH

PAGE 95

SODWHDX EDVHPHQW DSSHDUV WR KDYH EHHQ LQ D ORZVHLVPLFLW\ VWDWH IRU D UHODWLYHO\ ORQJ SHULRG RI WLPH &RQVHTXHQWO\ KLVWRULFDO UHFRUGV LQVWUXPHQWDO UHFRUGV DQG JHRSK\VLFDO GDWD HDFK GHPRQVWUDWH D SURQRXQFHG GLIIHUHQFH LQ OHYHOV RI VHLVPLF DFWLYLW\ EHWZHHQ SUR[LPDO UHJLRQV 7R WKH QRUWK LQ WKH VRXWKHUQ $SSDODFKLDQV DQG VRXWKHUQ &RDVWDO 3ODLQ WKHUH LV D PRGHUDWH WR KLJK OHYHO RI VHLVPLF DFWLYLW\ LQFOXGLQJ VHYHUDO KLVWRULF ODUJH PDJQLWXGH HYHQWV ,PPHGLDWHO\ WR WKH VRXWK KRZHYHU WKHUH LV DQ XQXVXDOO\ ORZ OHYHO RI VHLVPLF DFWLYLW\ ZLWK RQO\ RFFDVLRQDO ORZ LQWHQVLW\ HYHQWV $V LQIHUUHG IURP )LJXUH WKH ERXQGDU\ EHWZHHQ WKHVH WZR UHJLRQV H[WHQGV DSSUR[LPDWHO\ HDVWZHVW DFURVV VRXWK FHQWUDO *HRUJLD DQG $ODEDPD DQG LV D ZHOOGHILQHG H[DPSOH RI WKH QRQXQLIRUP QDWXUH RI VHLVPLFLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 6HYHUDO SODXVLEOH H[SODQDWLRQV IRU WKLV QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLFLW\ FDQ EH SUHVHQWHG DOWKRXJK WKH\ DUH QRW PXWXDOO\ H[FOXVLYH 7KH ILUVW LV WKDW WKLV GLIIHUHQFH LV FDXVHG E\ YDULDELOLW\ LQ WKH OLWKRVSKHULF VWUHVV ILHOG DV VXJJHVWHG E\ +DWFKHU HW DO f $QRWKHU SRVVLEOH UHDVRQ LV WKDW WKHUH DUH PHFKDQLFDO GLIIHUHQFHV LH OLWKRORJ\ RU VWUXFWXUHf EHWZHHQ DGMDFHQW ]RQHV :KHHOHU DQG %ROOLQJHU f 7KLV ZRXOG LPSO\ WKDW ORFDO VHLVPRJHQLF IHDWXUHV H[HUW SULPDU\ FRQWURO RYHU WKH GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV $ ILQDO SRVVLELOLW\ LV WKDW WKHUH LV D V\VWHPDWLF YDULDELOLW\ LQ WKH SURSHQVLWLHV RI SUHH[LVWLQJ IDXOW ]RQHV WR VOLSSDJH 7KLV ZRXOG EH DWWULEXWDEOH WR YDULDWLRQV LQ HLWKHU WKH IULFWLRQDO FRHIILFLHQWV RU K\GURVWDWLF SRUH SUHVVXUHV RU ERWKf LQ WKH IDXOWV HJ =REDFN f

PAGE 96

:KLOH WKH VWUHVV UHJLPH LQ FHQWUDO DQG HDVWHUQ 1RUWK $PHULFD KDV EHHQ HVWDEOLVKHG WR EH SULPDULO\ QRUWKHDVWVRXWKZHVW FRPSUHVVLYH =REDFN DQG =REDFN =REDFN f WKHUH KDYH EHHQ D QXPEHU RI FRQWUDGLFWRU\ REVHUYDWLRQV 7KLV VXJJHVWV WKH SRVVLELOLWLHV RI ORFDO SHUWXUEDWLRQV LQ WKH UHJLRQDO ILHOG DQGRU WKH LQIOXHQFH RI D ORFDO VWUHVV ILHOG $V D UHVXOW WKH VRXUFHVf RI VHLVPRJHQLF VWUHVV LQ WKH VRXWKHDVW LV VWLOO UDWKHU VSHFXODWLYH 6WUHVV RULHQWDWLRQV LQ WKH &RDVWDO 3ODLQ DQG VRXWKHUQ $SSDODFKLDQ SURYLQFHV KDYH EHHQ GHWHUPLQHG IURP D YDULHW\ RI VRXUFHV VXFK DV WKH RULHQWDWLRQ RI UHFHQW IDXOWLQJ 6FKDIHU =REDFN DQG =REDFN :HQWZRUWK DQG 0HUJQHU.HHIHU f K\GURIUDFWXULQJ LQ GHHS ZHOOV =REDFN DQG =REDFN f LQ VLWX PHDVXUHPHQWV +RRNHU DQG -RKQVRQ =REDFN HW DO f IDXOW SODQH VROXWLRQV 7DUU 7DUU DQG 5KHD -RKQVWRQ HW DO =REDFN f ERUHKROH HORQJDWLRQ 3OXPE DQG &R[ f DQG FUXVWDO PRGHOLQJ .XDQJ HW DO 5LFKDUGVRQ DQG 5HGLQJ f :LWKLQ WKHVH SURYLQFHV WKHUH LV JHQHUDO DJUHHPHQW WKDW WKH PD[LPXP VWUHVV LV FRPSUHVVLRQDO DQG KRUL]RQWDO :KLOH PRVW LQGLFDWRUV VXJJHVW WKDW WKH PD[LPXP FRPSUHVVLRQDO VWUHVV GLUHFWLRQ LV RULHQWHG QRUWKHDVWVRXWKZHVW PDQ\ DUH DOVR LQGLFDWLYH RI D QRUWKZHVWVRXWKHDVW RULHQWHG ILHOG $ QXPEHU RI LQGLFDWRUV KDYH EHHQ XVHG WR LQIHU QRUWKHDVW VRXWKZHVW FRPSUHVVLRQ 2QH RI WKHVH LV VKDOORZ IRFDO SODQH VROXWLRQV LQ WKH &KDUOHVWRQ DUHD 7DUU 7DUU DQG 5KHD f 2I WKH WKUHH FRPSRVLWH VROXWLRQV WZR LQGLFDWH QRUWKHDVWVRXWKZHVW FRPSUHVVLRQ DQG RQH LQGLFDWHV QRUWKZHVWVRXWKHDVW FRPSUHVVLRQ ,Q

PAGE 97

DGGLWLRQ 3OXPE DQG &R[ f PHDVXUHG ERUHKROH HORQJDWLRQV IURP HDVWHUQ 7HQQHVVHH WR &DQDGD LQFOXGLQJ D QXPEHU IURP ZHVW RI WKH $SSDODFKLDQV DQG IRXQG QHDUO\ WKHLU HQWLUH VWXG\ DUHD WR EH XQGHU QRUWKHDVWVRXWKZHVW FRPSUHVVLRQ :KLOH 3OXPE DQG &R[ KDG QR PHDVXUHPHQWV IURP WKH VRXWKHDVWHUQ &RDVWDO 3ODLQ +RRNHU DQG -RKQVRQ f PHDVXUHG LQ VLWX VWUHVVHV LQ ERUHKROHV LQ *HRUJLD 9LUJLQD DQG 1RUWK &DUROLQD 7KHLU PHDVXUHPHQWV ZHUH LQFRQFOXVLYH DV WKHLU RULHQWDWLRQV UDQJHG IURP QHDUO\ QRUWKVRXWK WR QHDUO\ HDVW ZHVW )RFDO PHFKDQLVPV IURP WKH VRXWKHUQ $SSDODFKLDQV GHPRQVWUDWH WKDW DW GHSWKV DYHUDJLQJ EHWZHHQ DQG NPV WKH EDVHPHQW XQGHU WKH $SSDODFKLDQ GHWDFKPHQW LV XQGHU QRUWKHDVW VRXWKZHVW FRPSUHVVLRQ -RKQVWRQ HW DO f 8VLQJ D YDULHW\ RI LQGLFDWRUV =REDFN DQG =REDFN f IRXQG WKH HDVWHUQ DQG FHQWUDO 8QLWHG 6WDWHV WR EH XQGHU D UHODWLYHO\ XQLIRUP QRUWKHDVWVRXWKZHVW FRPSUHVVLRQDO ILHOG 0RUH UHFHQWO\ 0/ =REDFN f IRXQG WKDW RI WKH FHQWUDO DQG HDVWHUQ 8QLWHG 6WDWHV HDUWKTXDNHV XVHG LQ KHU LQYHVWLJDWLRQ LQGLFDWHG VOLS FRPSDWLEOH ZLWK QRUWKHDVWVRXWKZHVW FRPSUHVVLRQ $OWHUQDWLYHO\ VRPH RI WKH VWUHVV ILHOG LQGLFDWRUV VXJJHVW D FRPSRQHQW RI KRUL]RQWDO FRPSUHVVLYH VWUHVV RULHQWHG DSSUR[LPDWHO\ QRUWKZHVWVRXWKHDVW 6FKDIHU f FDPH WR WKLV FRQFOXVLRQ ZKLOH LQYHVWLJDWLQJ UHFHQW VXUILFLDO IDXOW PRWLRQ LQ WKH ZHVWHUQ 9DOOH\ DQG 5LGJH RI HDVWHUQ 7HQQHVVHH DV GLG :HQWZRUWK DQG 0HUJQHU.HHIHU f DQG 3URZHOO f LQ VWXGLHV RI &HQR]RLF IDXOWLQJ IURP 6RXWK &DUROLQD WR 1HZ (QJODQG %DVHG RQ FRUH KROH RIIVHWV K\GURIUDFWXUH WHVWV IDXOW RULHQWDWLRQV DQG IRFDO SODQH VROXWLRQV =REDFN HW DO f DQG =REDFN DQG =REDFN f KDG LQLWLDOO\

PAGE 98

FKDUDFWHUL]HG WKH $SSDODFKLDQ DQG &RDVWDO 3ODLQ SURYLQFHV DV EHLQJ XQGHU QRUWKZHVWVRXWKHDVW FRPSUHVVLRQ )LQDOO\ %ROOLQJHU f DQG :HQWZRUWK DQG 0HUJQHU.HHIHU f ERWK FRQFOXGHG WKDW WKH &KDUOHVWRQ HDUWKTXDNH ZDV SUREDEO\ D WKUXVW HYHQW DORQJ D QRUWKHDVWWUHQGLQJ VWUXFWXUHf§DQRWKHU LQGLFDWLRQ RI QRUWKZHVW VRXWKHDVW FRPSUHVVLRQ :LWKLQ )ORULGD VWUHVV RULHQWDWLRQV KDYH EHHQ GHGXFHG RQO\ IURP D VLQJOH UHSRUW RI UHFHQW WHFWRQLF IDXOWLQJ 9HUQRQ f ,Q WKLV DFFRXQW 9HUQRQ SURSRVHV QRUWKZHVWVWULNLQJ QRUPDO IDXOWLQJ LQ WKH ZHVWFHQWUDO SRUWLRQ RI WKH SHQLQVXOD DV D VRXUFH RI DHULDO SKRWR OLQHDWLRQV DQG LQFRQVLVWHQFLHV LQ GULOO ORJV 7KH UHSRUW KDV VXEVHTXHQWO\ EHHQ FLWHG DV HYLGHQFH IRU QRUWKHDVWVRXWKZHVW H[WHQVLRQDO VWUHVV RQ WKH )ORULGDQ 3ODWHDX
PAGE 99

SHUWXUEHG E\ WKH VWUDLQ UHOHDVH GXULQJ WKH HYHQW DQG KDV QRW \HW UHFRYHUHG %ROOLQJHU f K\SRWKHVL]HG WKDW WKHUH ZHUH WZR VHWV RI SHUSHQGLFXODU VHLVPRJHQLF IHDWXUHV DURXQG &KDUOHVWRQ RQH QRUWKZHVWVRXWKHDVW DQG RQH QRUWKHDVWVRXWKZHVW DORQJ ZKLFK HDUWKTXDNHV RFFXU ZLWKRXW UHJDUG WR WKH RULHQWDWLRQ RI WKH VWUHVV ILHOG 0F&DUWDQ DQG *HWWLQJV f SURSRVHG WKDW \RXQJ PLGFUXVWDO SOXWRQV ORFDOO\ GLVUXSW WKH VWUHVV ILHOG E\ FRQFHQWUDWLQJ VWUHVV +DWFKHU HW DO f VXJJHVWHG WKDW WKH HDVWHUQ DQG FHQWUDO 8QLWHG 6WDWHV FRXOG EH GLYLGHG LQWR D QXPEHU RI LQGLYLGXDO EORFNV EDVHG RQ JHRSK\VLFDO VLJQDWXUHV DQG WKDW D VRXWKHUQ JURXS RI EORFNV LQFOXGLQJ WKH )ORULGDQ 3ODWHDX DUH GHFRXSOHG IURP WKH UHJLRQDO VWUHVV UHJLPH $OWKRXJK HDFK RI WKHVH PD\ H[SODLQ FHUWDLQ REVHUYDWLRQV RU SDUWLFXODU ORFDO SKHQRPHQD QRQH UHVROYHV DOO RI WKH FRQWUDGLFWRU\ REVHUYDWLRQV WKURXJKRXW WKH HDVWHUQ 8QLWHG 6WDWHV 7KH WRWDO VWUHVV ILHOG DW D JLYHQ VLWH LV WKH VXP RI UHJLRQDO DQG ORFDO VWUHVVHV 5HJLRQDO VWUHVV DV WKH QDPH VXJJHVWV LV WKDW VWUHVV UHJLPH ZKLFK SUHYDLOV RYHU D ODUJH DUHD DQG LV SURGXFHG E\ WHFWRQLF HIIHFWV HJ .XDQJ HW DO f /RFDO VWUHVV LV WKDW LQGXFHG E\ VXUILFLDO WRSRJUDSKLF UHOLHI RU VKDOORZ FUXVWDO IHDWXUHV RU SKHQRPHQD 5HPQDQW VWUHVV LV WKDW VWUHVV UHPDLQLQJ LQ D URFN DIWHU DQ DSSOLHG VWUHVV KDV EHHQ UHPRYHG 6EDU DQG 6\NHV f 7KH SULPDU\ VRXUFH RI UHJLRQDO VWUHVV LQ HDVWHUQ 1RUWK $PHULFD DSSHDUV WR EH ULGJHSXVK IURP WKH PLG$WODQWLF ULGJH
PAGE 100

UHVLVWDQFH WR SODWH PRWLRQ =REDFN DQG =REDFN f DQG OLWKRVSKHULF VWUHVV LQGXFHG E\ DVWKHQRVSKHULF FRQYHFWLYH IORZ 9RLJKW 6EDU DQG 6\NHV f (LWKHU RI WKHVH ZRXOG DOVR SURGXFH D QRUWKHDVW VRXWKZHVW PD[LPXP FRPSUHVVLRQDO VWUHVV GLUHFWLRQ 7KH FRQWUDGLFWRU\ LQGLFDWRUV RI VWUHVV GLUHFWLRQ VXJJHVW WKH SRVVLELOLW\ RI D ORFDO VWUHVV VWUHVV ILHOG LQ WKH HDVWHUQ 8QLWHG 6WDWHV 6HYHUDO SRVVLEOH VRXUFHV RI ORFDO VWUHVV KDYH EHHQ SURSRVHG %ROOLQJHU %f DQG %DURVK f KDYH VXJJHVWHG LVRVWDWLF XSOLIW DQG IOH[XUH DV D FDXVDO PHFKDQLVP IRU FRPSUHVVLRQ KRZHYHU %URZQ f ZDV XQDEOH WR ILQG D FRUUHODWLRQ EHWZHHQ YHUWLFDO FUXVWDO PRYHPHQW DQG VHLVPLFLW\ DORQJ WKH HDVWHUQ VHDERDUG ,Q DGGLWLRQ LI WKH UHERXQGLQJ $SSDODFKLDQV DUH WKH VRXUFH RI WKH XSOLIW LQ WKLV PRGHO WKHQ WKH SUHGLFWHG H[WHQVLRQDO VWUHVV DORQJ WKH FUHVW RI WKH PRXQWDLQV LV QRW REVHUYHG =REDFN DQG =REDFN f $QRWKHU SURSRVHG VRXUFH RI ORFDO QRUWKZHVWVRXWKHDVW FRPSUHVVLRQDO VWUHVV LV JUDYLW\LQGXFHG EDFNVOLGLQJ VRXWKHDVWZDUG DORQJ WKH $SSDODFKLDQ GHFROOHPHQW VXUIDFH 6HHEHU DQG $UPEUXVWHU f 7KLV PRGHO DOVR SUHGLFWV H[WHQVLRQ DORQJ WKH DSH[ RI WKH $SSDODFKLDQV ZKLFK LV QRW REVHUYHG =REDFN DQG =REDFN f )LQDOO\ .XDQJ HW DO f FRQVLGHUHG WKH SULPDU\ VRXUFHV RI ORFDO VWUHVV WR EH WRSRJUDSKLF UHOLHI DQG GHQVLW\ FRQWUDVWV ZLWKLQ WKH OLWKRVSKHUH $FFRUGLQJ WR WKHLU PRGHO WKHVH ZRXOG DOVR EH OLNHO\ WR LQGXFH QRUWKZHVW VRXWKHDVW FRPSUHVVLRQ S f B f S U L S L W f L S :KLOH YDULDELOLW\ LQ WKH OLWKRVSKHULF VWUHVV ILHOG LV RQH SODXVLEOH PHFKDQLVP WR DFFRXQW IRU WKH QRQXQLIRUP GLVWULEXWLRQ RI HDUWKTXDNHV DQRWKHU LV WKDW WKHUH DUH PHFKDQLFDO GLIIHUHQFHV

PAGE 101

EHWZHHQ DGMDFHQW ]RQHV :KHHOHU DQG %ROOLQJHU f ,W LV JHQHUDOO\ EHOLHYHG WKDW VHLVPLF DFWLYLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV RFFXUV RQO\ DORQJ SUHH[LVWLQJ IDXOWV RU VLPLODU ]RQHV RI ZHDNQHVV &RQVHTXHQWO\ D FRPSDULVRQ RI WKH VHLVPRWHFWRQLF IHDWXUHV RI WKH VRXWKHUQ $SSDODFKLDQV WKH VRXWKHUQ &RDVWDO 3ODLQ DQG WKH )ORULGDQ 3ODWHDX FRXOG UHYHDO SRVVLEOH FDXVHV IRU WKLV QRQXQLIRUP GLVWULEXWLRQ 7KH PXOWLSKDVH DFFUHWLRQDU\ KLVWRU\ RI WKH $SSDODFKLDQ RURJHQ GXULQJ WKH 3DOHR]RLF KDV EHHQ ZHOOHVWDEOLVKHG HJ :LOOLDPV DQG +DWFKHU 6HFRU HW DO f 'XULQJ WKHVH SKDVHV WKH LQGLYLGXDO DOORFKWKRQRXV WHUUDQHV RI WKH $SSDODFKLDQV ZHUH RYHUWKUXVW RQ DQG DFFUHWHG WR WKH 1RUWK $PHULFDQ FUDWRQ GXULQJ D ORQJ VHULHV RI FRPSUHVVLRQDO HYHQWV 7KH $OOHJKHQLDQ FRQWLQHQWDO FROOLVLRQ EHWZHHQ /DXUHQWLD DQG *RQGZDQD LV SDUWLFXODUO\ LPSRUWDQW WR WKLV LQYHVWLJDWLRQ DV LW PDUNHG WKH ILQDO VWDJH RI WKH $SSDODFKLDQ RURJHQ DQG XOWLPDWHO\ UHVXOWHG LQ WKH DFFUHWLRQ RI WKH )ORULGDQ 3ODWHDX EDVHPHQW WR 1RUWK $PHULFD HJ :LOVRQ 6PLWK 'DOOPH\HU f 'XULQJ 0HVR]RLF ULIWLQJ WKHUH ZDV D VKLIW IURP D WUDQVSUHVVLRQDO WR DQ H[WHQVLRQDO UHJLPH LQ WKH VRXWKHUQ $SSDODFKLDQV HJ .OLWJRUG HW DO 0DQVSHL]HU DQG GH%RHU f ZKLFK UHDFWLYDWHG PDQ\ SUHH[LVWLQJ IHDWXUHV 6ZDQVRQ f ([WHQVLRQDO EDVLQV DUH SDUWLFXODUO\ SUHYDOHQW XQGHU WKH &RDVWDO 3ODLQ SURYLQFH KRZHYHU HYLGHQFH RI 0HVR]RLF H[WHQVLRQ LV IRXQG WKURXJKRXW WKH VRXWKHDVW HJ 6ZDQVRQ +HFN 0DQVSHL]HU DQG GH%RHU f 6LQFH WKH &UHWDFHRXV WKH HDVWHUQ 8QLWHG 6WDWHV KDV EHHQ D VXEVLGLQJ SDVVLYH PDUJLQ FKDUDFWHUL]HG E\ OLWWOH WHFWRQLF DFWLYLW\ DOWKRXJK WKHUH LV HYLGHQFH IRU ZLGHO\ VFDWWHUHG

PAGE 102

FRPSUHVVLRQDO IDXOWLQJ
PAGE 103

$ $ f $ $ £ /DXUHQWLD f D f fff fffffff, `fffffffffffffffff $ $ A A L f $ f A% XHAE9G IQRLWLL U /0 6.Y AALHDPRQA6ODWHG A3L +QS fnfffff‘n r 88& r r ? D r $ $ $ 9 LL %HOW m ,I fffffffB I \VVVVMAr r r r A AcULOV A $ $ $ $ $ $ 9  nme9O-/fAJ( $ HJ KH QO D Q V XW X UH ]R QH 6XZDQQHH1 )OD 5KXROLWH f 7H U UD QH _pU n9M£I9 2VFHROD *UDQLWRLG 6W /XFLH 0HWDPRUSKLFD )ORULGDQ 3ODWHDX f f f f f ‘ f r f W99 6 )ORULGD 9ROF£QLFD f f f .0 )LJXUH 3UH0HVR]RLF DOORFKWKRQRXV WHUUDQHV RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV &RPSLOHG IURP 6HHEHU DQG $UPEUXVWHU f 6PLWK f &KRZQV DQG :LOOLDPV f DQG 7KRPDV HW DO f

PAGE 104

7ULDVVLF 6RXWK *HRUJLD 5LIW LV VXSHULPSRVHG RYHU SRUWLRQV RI LW HJ 0F%ULGH f 7KH DOORFKWKRQRXV 3DOHR]RLF WHUUDQHV RI WKH VRXWKHUQ $SSDODFKLDQ VHLVPLF ]RQH DUH ZHOOH[SRVHG DQG GRFXPHQWHG WKH\ DUH FKDUDFWHUL]HG E\ QRUWKHDVWZDUGVWULNLQJ WKUXVW IDXOWV WKDW VROH LQWR D PDMRU VRXWKHDVWZDUGGLSSLQJ GHFROOHPHQW VXUIDFH &RRN HW DO +DUULV DQG %D\HU :LOOLDPV DQG +DWFKHU 6HFRU HW DO +HFN +RUWRQ HW DO f ,Q FRQWUDVW WKH 3DOHR]RLF WHUUDQHV DQG DVVRFLDWHG VHLVPRWHFWRQLF IHDWXUHV RI WKH 6RXWK &DUROLQDQRUWK *HRUJLD VHLVPLF ]RQH DQG )ORULGDQ 3ODWHDX DUH EXULHG XQGHU UHFHQW &RDVWDO 3ODLQ VHGLPHQWDU\ GHSRVLWV DQG DUH QRW DV ZHOO FKDUDFWHUL]HG 6LPLODU QRUWKHDVWWUHQGLQJ WKUXVW IDXOWV SUHVXPDEO\ H[WHQG XQGHU WKH &RDVWDO 3ODLQ SURYLQFH DV IDU VRXWK DV WKH $OOHJKHQLDQ VXWXUH ]RQH 0HVR]RLF H[WHQVLRQDO IHDWXUHV UHODWHG WR WKH RSHQLQJV RI WKH FHQWUDO $WODQWLF DQG *XOI RI 0H[LFR DUH SUHVHQW WKURXJKRXW WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV )LJXUH f $V VKRZQ LQ &KDSWHU WKH EDVHPHQW RI WKH VRXWKHUQ DQG ZHVWHUQ )ORULGDQ 3ODWHDX LV FKDUDFWHUL]HG E\ D VHULHV RI IDXOWERXQGHG -XUDVVLF H[WHQVLRQDO EDVLQV IRUPHG GXULQJ WKH RSHQLQJ RI WKH *XOI RI 0H[LFR 3LQGHOO DQG 'HZH\ .OLWJRUG HW DO %DOO HW DO :LQNHU DQG %XIIOHU f 6LPLODUO\ QXPHURXV IDXOWERXQGHG 7ULDVVLF ULIW EDVLQV DUH IRXQG DORQJ WKH HDVWHUQ FRQWLQHQWDO PDUJLQ VXFK DV WKH %ODNH 3ODWHDX %DVLQ DQG &DUROLQD 7URXJK DQG XQGHUO\LQJ WKH &RDVWDO 3ODLQ VXFK DV WKH 6RXWK *HRUJLD 5LIW DQG WKH )ORUHQFH %DVLQ ,Q DGGLWLRQ DQDORJRXV 7ULDVVLF ULIWV VXFK WKH 'DQ 5LYHU DQG &XOSHSSHU %DVLQV DUH DOVR IRXQG LQ WKH HDVWFHQWUDO $SSDODFKLDQV .OLWJRUG DQG %HKUHQGW

PAGE 105

fffffffL f OL ff f f $OOHJKHQLDQ VXWXUH ]RQH DSSUR[L PDWH!Lm f ff f f ; f ff ‘ Lrr f f f f f nNt 6 f L f ffffff ffffffff V f f !ffff $ ffffff^ ffffff ff f fm f m LV f m LLc KL MVUL f f LL 66 fLW LO Lrn 6RXWK )ORULGD %DVLQ 7DPSD %DVLQ $SSDODFKLFROD %DVLQ %ODNr 3ODWHDX %DVLQ 6RXWK *HRUJLD 5LIW &DUROLQD 7URXJK )ORUHQFH %DVLQ 9DGHVERUR6DQGIRUG 'XUKDP %DVP 'DQ 5LYHU'DQYLOOH %DVLQ 5LFKPRQG %DVLQ &XOSHSHU*HWW\VEXUJ %DVLQ %DOWLPRUH &DQJRQ 7URXJK %ODNH 6SXU )UDFWXUH =RQH %DKDPDV )UDFWXUH =RQH -DJ )DXOW fL" ,QIHUUHG 5HFHQW 0DILF ,QWUXVLRQV ([SRVHG 0HVR]RLF 5LIW %DVLQV %XULHG 0HVR]RLF 5L IW %DVL QV .0 )LJXUH 6HOHFWHG 0HVR]RLF VHLVPRWHFWRQLF IHDWXUHV RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 6RPH IHDWXUHV FRPSLOHG IURP .OLWJRUG DQG %HKUHQGW f &KRZQV DQG :LOOLDPV f 'DQLHOV HW DO f DQG +HFN f

PAGE 106

'DQLHOV HW DO 6ZDQVRQ +HFN 0DQVSHL]HU DQG GH%RHU f :KLOH WKHUH LV QR HYLGHQFH IRU QRUPDO IDXOWLQJ DV IDU ZHVW DV WKH VRXWKHUQ $SSDODFKLDQ VHLVPLF ]RQH WKH EDVHPHQWV RI WKH 6RXWK &DUROLQD*HRUJLD VHLVPLF ]RQH DQG WKH )ORULGDQ 3ODWHDX KDYH HDFK EHHQ H[WHQVLYHO\ IDXOWHG 2WKHU WKDQ WKH LVRVWDWLF XSOLIW RI WKH $SSDODFKLDQV DQG WKH VXEVLGHQFH DORQJ WKH &RDVWDO 3ODLQ DQG FRQWLQHQWDO PDUJLQ WKHUH LV OLWWOH HYLGHQFH RI VLJQLILFDQW WHFWRQLF DFWLYLW\ GXULQJ WKH &HQR]RLF DOWKRXJK 6FKDIHU f :HQWZRUWK DQG 0HUJQHU.HHIHU f DQG 3URZHOO f KDYH GHVFULEHG D IHZ VPDOO UHYHUVH IDXOWV VFDWWHUHG WKURXJKRXW WKH $SSDODFKLDQV DQG WKH &RDVWDO 3ODLQ ,Q DGGLWLRQ EDVHG RQ KHDW IORZ DQG SRWHQWLDOILHOG PDSV VHYHUDO LQYHVWLJDWRUV KDYH VXJJHVWHG WKH SUHVHQFH RI SRWHQWLDOO\ VHLVPRJHQLF &HQR]RLF PLGFUXVWDO PDILF LQWUXVLRQV LQ WKH &RDVWDO 3ODLQ RI 6RXWK &DUROLQD .DQH /RQJ 0F.HRZQ 0F&DUWDQ DQG *HWWLQJV f 2WKHU WKDQ WKHVH H[DPSOHV WKHUH DUH QR NQRZQ SRVW-XUDVVLF SRWHQWLDOO\ VHLVPRJHQLF IHDWXUHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV $QRWKHU SRVVLEOH UHDVRQ IRU WKH QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLFLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV LV D UHJLRQDO YDULDWLRQ LQ WKH SRWHQWLDO IRU PRYHPHQW DORQJ SUHH[LVWLQJ IDXOWV 7KH SRWHQWLDO IRU VOLSSDJH DORQJ D IDXOW LQ D JLYHQ VWUHVV ILHOG LV D IXQFWLRQ RI WZR GHSHQGHQW YDULDEOHVWKH FRHIILFLHQW RI IULFWLRQ DQG WKH K\GURVWDWLF SRUH SUHVVXUH *UHDWHU SRUH SUHVVXUHV DQG ORZHU FRHIILFLHQWV RI IULFWLRQ HDFK LQFUHDVH WKH SUREDELOLW\ RI VOLSSDJH $OWKRXJK WKHUH DUH

PAGE 107

QR GLUHFW PHDVXUHPHQWV RI WKHVH YDULDEOHV LQ WKH HDVW VRPH FKDUDFWHUL]DWLRQV DUH SRVVLEOH ,Q D VWXG\ RI HDVWHUQ 8QLWHG 6WDWHV HDUWKTXDNHV =REDFN f DVVXPHG DQ DYHUDJH K\GURVWDWLF SRUH SUHVVXUH IRU HDFK IDXOW DQG FDOFXODWHG WKH FRHIILFLHQW RI IULFWLRQ UHTXLUHG IRU VOLSSDJH LQ WKH JLYHQ VWUHVV UHJLPH 7KH YDULDEOHV ZHUH WKHQ UHYHUVHG DQG UHTXLUHG SRUH SUHVVXUHV ZHUH FDOFXODWHG XVLQJ DQ DVVXPHG FRHIILFLHQW RI IULFWLRQ 6KH IRXQG WKH UDQJH RI FDOFXODWHG SRUH SUHVVXUHV DQG IULFWLRQDO FRHIILFLHQWV IRU WKH PDMRULW\ RI HYHQWV WR EH ZHOO ZLWKLQ H[SHFWHG YDOXHV %DVHG RQ WKHVH UHVXOWV LW DSSHDUV WKDW PRGHUDWH ODWHUDO YDULDWLRQ LQ HLWKHU K\GURVWDWLF SRUH SUHVVXUH RU FRHIILFLHQWV RI IULFWLRQ RU ERWKf LV D SODXVLEOH PHFKDQLVP IRU WKH QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV %DVHG RQ UHFHQW VWXGLHV RI OLWKRVSKHULF VWUHVV VHLVPLFLW\ DQG WKH GLVWULEXWLRQ RI DXWRFKWKRQRXV DQG DOORFKWKRQRXV FUXVWDO EORFNV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV LW LV SRVVLEOH WR HYDOXDWH VRPH RI WKH YDULDEOHV WKDW FRXOG UHVXOW LQ WKH REVHUYHG QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ 0RVW RI WKH VHLVPLF DFWLYLW\ LV SUREDEO\ DWWULEXWDEOH WR D UHJLRQDO QRUWKHDVWVRXWKZHVW FRPSUHVVLRQDO VWUHVV ILHOG =REDFN f 7KLV UHJLRQDO ILHOG DSSHDUV WR EH UHODWLYHO\ XQLIRUP ZLWK UHVSHFW WR PDJQLWXGH DQG RULHQWDWLRQ VXJJHVWLQJ QR FDXVDO UHODWLRQVKLS WR WKH QRQXQLIRUP GLVWULEXWLRQ RI HDUWKTXDNHV 6RPH IRFDO PHFKDQLVPV DQG RWKHU VKDOORZ FUXVWDO LQGLFDWRUV RI OLWKRVSKHULF VWUHVV DUH VXJJHVWLYH RI QRUWKZHVWVRXWKHDVW FRPSUHVVLRQ LPSO\LQJ WKH LQIOXHQFH RI D VKDOORZ ORFDO VWUHVV ILHOG DV

PAGE 108

RQH SRVVLEOH FDXVDO PHFKDQLVP IRU WKH QRQXQLIRUP HDUWKTXDNH GLVWULEXWLRQ +\SRWKHVL]HG PHFKDQLVPV IRU WKH JHQHUDWLRQ RI D QRUWKZHVWVRXWKHDVW FRPSUHVVLRQDO ILHOG IRFXV RQ GHQVLW\ FRQWUDVWV RU WRSRJUDSKLF LQIOXHQFHV LQ WKH VKDOORZ DOORFKWKRQRXV WHUUDQHV RYHUO\LQJ WKH $SSDODFKLDQ GHWDFKPHQW HJ .XDQJ HW DO f RU RQ JUDYLW\LQGXFHG VWUHVV DQG VOLSSDJH DORQJ WKH GHWDFKPHQW VXUIDFH HJ 6HHEHU DQG $UPEUXVWHU f 5HFHQW K\SRFHQWHU GHWHUPLQDWLRQV VXJJHVW WKDW PRVW RI WKH VHLVPLF DFWLYLW\ LQ WKH VRXWKHDVW RFFXUV EHORZ WKH $SSDODFKLDQ GHWDFKPHQW LQ WKH DXWRFKWKRQRXV *UHQYLOOLDQ EDVHPHQW DQG LV FDXVHG E\ WKH UHJLRQDO VWUHVV ILHOG HJ %ROOLQJHU HW DO -RKQVWRQ HW DO =REDFN f &RQVHTXHQWO\ ZKLOH WKH LQIOXHQFH RI D VKDOORZ ORFDO WRSRJUDSKLFDOO\LQGXFHG VWUHVV ILHOG PLJKW DFFRXQW IRU VRPH RI WKH REVHUYHG HDUWKTXDNH GLVWULEXWLRQ LW LV SUREDEOH WKDW WKLV HIIHFW LV VXERUGLQDWH WR WKH LQIOXHQFH RI WKH UHJLRQDO ILHOG 7KHUH KDV EHHQ FRQVLGHUDEOH GLVFXVVLRQ FRQFHUQLQJ SRVVLEOH UHODWLRQVKLSV EHWZHHQ WKH YDULRXV SURYLQFHV DQG WHUUDQHV RI WKH $SSDODFKLDQV DQG WKH GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ )RU H[DPSOH :KHHOHU DQG %ROOLQJHU f ZKLOH DFNQRZOHGJLQJ WKH SRVVLEOH UROH RI IDXOWV LQ WKH DXWRFKWKRQRXV EDVHPHQW DOVR WHQWDWLYHO\ DWWULEXWHG WKH QRQXQLIRUP GLVWULEXWLRQ RI HDUWKTXDNHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV WR GLIIHUHQFHV EHWZHHQ WKHVH YDULRXV DOORFKWKRQRXV WHUUDQHV 6LPLODUO\ 'UXPKHOOHU HW DO f GLYLGHG WKH HDVWHUQ 86 LQWR VHLVPRWHF WRQLF UHJLRQV ZKLFK ZHUH WKHQ FRUUHODWHG WR VHYHUDO $SSDODFKLDQ SURYLQFHV 7KH VXEVHTXHQW UHFRJQLWLRQ WKDW PRVW RI WKH VHLVPLF DFWLYLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV RFFXUV EHORZ WKH $SSDODFKLDQ GHFROOHPHQW KRZHYHU DIILUPV WKDW WKH GLVWULEXWLRQ RI

PAGE 109

HDUWKTXDNHV LV ODUJHO\ XQUHODWHG WR WKH QHDUVXUIDFH 3DOHR]RLF DFFUHWHG WHUUDQHV RU VHLVPRWHFWRQLF IHDWXUHV 6LPLODUO\ WKH GLVWULEXWLRQ RI 0HVR]RLF ULIW EDVLQV LV XQOLNHO\ WR EH D FDXVDO PHFKDQLVP IRU WKH QRQXQLIRUP GLVWULEXWLRQ RI HDUWKTXDNHV 1RW RQO\ DUH WKHVH VKDOORZ FUXVWDO IHDWXUHV EXW 0HVR]RLF H[WHQVLRQDO IDXOWLQJ LV SHUYDVLYH WKURXJKRXW WKH VRXWKHDVW DQG LV SDUWLFXODUO\ SUHYDOHQW XQGHU WKH UHODWLYHO\ DVHLVPLF )ORULGDQ 3ODWHDX 7KXV WKHUH LV QR DSSDUHQW FRUUHODWLRQ EHWZHHQ WKH GLVWULEXWLRQ RI 0HVR]RLF H[WHQVLRQDO IDXOWV DQG WKH GLVWULEXWLRQ RI HDUWKTXDNHV LQ HLWKHU D ODWHUDO RU KRUL]RQWDO VHQVH 2QH K\SRWKHVLV UHODWLQJ UHFHQW VHLVPLFLW\ WR 0HVR]RLF WHFWRQLF HIIHFWV LV WKDW ODUJH HYHQWV LQ WKH HDVWHUQ 8QLWHG 6WDWHV RFFXU SUHIHUHQWLDOO\ DORQJ ]RQHV RI OLWKRVSKHULF ZHDNQHVV QHDU WKH RQVKRUH HQGV RI -XUDVVLF RFHDQLF WUDQVIRUP ]RQHV 6EDU DQG 6\NHV 6\NHV f )RU H[DPSOH WKH K\SRWKHVL]HG RQVKRUH H[WHQVLRQ RI WKH %ODNH 6SXU )UDFWXUH =RQH SDVVHV WKURXJK FHQWHUV RI WKH 6RXWK &DUROLQDQRUWK *HRUJLD DQG VRXWKHUQ $SSDODFKLDQ VHLVPLF ]RQHV )LJXUH f $OWKRXJK WKLV IUDFWXUH ]RQH PD\ H[WHQG GRZQZDUG LQWR WKH VHLVPLFDOO\ DFWLYH DXWRFKWKRQRXV EDVHPHQW LW LV SUREDEO\ D QHDUn YHUWLFDO IHDWXUH WKDW VWULNHV SHUSHQGLFXODUO\ WR WKH SUHYDLOLQJ UHJLRQDO VWUHVV ILHOG DQG ZRXOG WKHUHIRUH EH XQOLNHO\ WR H[SHULHQFH PRYHPHQW ,Q DGGLWLRQ RWKHU SDUDOOHO IUDFWXUH ]RQH WUDFHV VKRZ QR SDUWLFXODU VHLVPRJHQLF WHQGHQFLHV )RU H[DPSOH WKH %DKDPDV )UDFWXUH =RQH SUREDEO\ H[WHQGV DFURVV WKH )ORULGDQ 3ODWHDX DV WKH -D\ )DXOW DQG FRQQHFWV ZLWK WKH *XOI %DVLQ PDUJLQDO IDXOW ]RQH 6PLWK &KRZQV DQG :LOOLDPV .OLWJRUG HW DO 6PLWK HW DO

PAGE 110

f +RZHYHU QRQH RI WKH SUHYLRXVO\ PHQWLRQHG KLVWRULF HYHQWV LQ )ORULGD RFFXUUHG QHDU WKH -D\ )DXOW ,Q DGGLWLRQ VHLVPLF UHIOHFWLRQ SURILOHV DORQJ WKH HDVWHUQ HGJH RI WKH SODWHDX VKRZ QR HYLGHQFH RI GLVSODFHPHQW LQ WKH &UHWDFHRXV WR 5HFHQW VHGLPHQWDU\ OD\HUV RYHUO\LQJ WKH IDXOW ]RQH LPSO\LQJ WKDW WKHUH KDV EHHQ QHJOLJLEOH &HQR]RLF PRYHPHQW HJ 6KHULGDQ HW DO f &RQVHTXHQWO\ LW DSSHDUV WKDW -XUDVVLF IUDFWXUH ]RQH WUDFHV LQ WKH HDVWHUQ 8QLWHG 6WDWHV DUH QRW VHLVPLFDOO\ XQVWDEOH LQ WKH SUHVHQW VWUHVV ILHOG DQG RWKHU PHFKDQLVPV RU IHDWXUHV SUREDEO\ DFFRXQW IRU WKH REVHUYHG VHLVPLF DFWLYLW\ DORQJ WKHVH IUDFWXUH ]RQH WUDFHV :KLOH YDULDWLRQV LQ WKH OLWKRVSKHULF VWUHVV ILHOG DQG WKH GLVWULEXWLRQV RI VKDOORZ FUXVWDO IHDWXUHV DQG WHUUDQHV GR QRW DFFRXQW IRU WKH REVHUYHG K\SRFHQWUDO GLVWULEXWLRQ DQG IRFDO PHFKDQLVPV WKH GLVWULEXWLRQ RI ,DSHWDQ IDXOWV RU RWKHU SUHH[LVWLQJ VHLVPRJHQLF IHDWXUHV LQ WKH DXWRFKWKRQRXV *UHQYLOOLDQ FUXVW PD\ DFFRXQW IRU WKHVH REVHUYDWLRQV 7KHUH LV D JURZLQJ ERG\ RI HYLGHQFH LQGLFDWLQJ WKDW PRVW EXW QRW DOO RI WKH HDUWKTXDNHV LQ WKH HDVWHUQ 8QLWHG 6WDWHV RFFXU EHORZ WKH $SSDODFKLDQ GHWDFKPHQW HJ =REDFN f )RU H[DPSOH ZKLOH WKH WRS RI WKH *UHQYLOOLDQ FUXVW LQ WKH VRXWKHUQ $SSDODFKLDQV LV DERXW NP GHHS +XEEDUG HW DO f PHDQ IRFDO GHSWKV LQ WKH VDPH DUHD DYHUDJH DERXW NP %ROOLQJHU HW DO -RKQVWRQ HW DO f ,Q DGGLWLRQ WKHUH DSSHDUV WR EH D VWURQJ VSDWLDO FRUUHODWLRQ EHWZHHQ WKH REVHUYHG HSLFHQWUDO GLVWULEXWLRQ DQG *UHQYLOOLDQ FRQWLQHQWDO PDUJLQ 7KLV FRUUHODWLRQ LV SDUWLFXODUO\ SURQRXQFHG DORQJ WKH GLVWLQFW ERXQGDU\ EHWZHHQ WKH VHLVPLFDOO\ DFWLYH 6RXWK &DUROLQD QRUWK *HRUJLD VHLVPLF ]RQH DQG WKH VHLVPLFDOO\ TXLHVFHQW )ORULGDQ

PAGE 111

3ODWHDX 7KLV ERXQGDU\ FRUUHODWHV YHU\ ZHOO WR WKH SUHYLRXVO\ HVWDEOLVKHG WUDFH RI WKH $OOHJKHQLDQ VXWXUH ]RQH ZKLFK DV WKH ERXQGDU\ EHWZHHQ WKH WKLQVNLQQHG $SSDODFKLDQ RURJHQ DQG WKH WKLFNVNLQQHG )ORULGDQ 3ODWHDX DOVR PDUNV WKH VRXWKHUQ ERXQGDU\ RI WKH DXWRFKWKRQRXV *UHQYLOOLDQ FUXVW HJ +DUULV DQG %D\HU &RRN HW DO $QGR HW DO +HFN f &RQVHTXHQWO\ WKH VSDWLDO UHODWLRQVKLS EHWZHHQ WKH /DWH 3URWHUR]RLF HGJH RI WKH 1RUWK $PHULFDQ FRQWLQHQW ZLWK FRQWHPSRUDU\ K\SRFHQWUDO GLVWULEXWLRQ SURPRWHV WKH K\SRWKHVLV WKDW VHLVPLF DFWLYLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV RFFXUV SUHIHUHQWLDOO\ DORQJ IDXOWV DVVRFLDWHG ZLWK WKH RSHQLQJ RI WKH ,DSHWXV 2FHDQ 7KH QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ WKHQ ZRXOG EH D IXQFWLRQ RI WKH GLVWULEXWLRQ RI RSWLPDOO\ VWUHVVHG ,DSHWDQ IDXOWV 7KH FRQFHQWUDWLRQ RI WKHVH IDXOWV DORQJ WKH *UHQYLOOLDQ HDVWHUQ FRQWLQHQWDO PDUJLQ FRXOG DFFRXQW IRU D JHQHUDO GHFUHDVH LQ REVHUYHG VHLVPLF DFWLYLW\ ZHVW RI WKH $SSDODFKLDQV 2WKHU FKDUDFWHULVWLFV RI WKH FUXVW PD\ DOVR FRQWULEXWH WR WKH QRQXQLIRUP GLVWULEXWLRQ RI HDUWKTXDNHV ,Q VHLVPLF UHIOHFWLRQ SURILOHV +XEEDUG HW DO f IRXQG HYLGHQFH RI SOXWRQLF ERGLHV LQ WKH *UHQYLOOLDQ FUXVW ZKLFK VXJJHVWV WKH SRVVLELOLW\ WKDW VRPH RI WKH VHLVPLF DFWLYLW\ FRXOG EH GXH WR WKH SUHVHQFH DQG GLVWULEXWLRQ RI WKHVH ERGLHV 6LPLODUO\ &HQR]RLF PLGFUXVWDO SOXWRQLF ERGLHV PD\ DFFRXQW IRU VRPH RI WKH VHLVPLF DFWLYLW\ LQ WKH &KDUOHVWRQ DUHD 0F&DUWDQ DQG *HWWLQJV f $QRWKHU SRVVLELOLW\ DV SUHYLRXVO\ PHQWLRQHG LV WKDW WKHUH FRXOG EH D ODWHUDO YDULDELOLW\ LQ WKH SURSHQVLW\ IRU IDXOW VOLSSDJH GXH WR FKDQJHV LQ K\GURVWDWLF SRUH SUHVVXUH RU IULFWLRQDO FRHIILFLHQWV

PAGE 112

7KH QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLFLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV PD\ EH WKH UHVXOW RI VHYHUDO GLIIHUHQW HIIHFWV %DVHG RQ WKH XQLIRUP QDWXUH RI WKH UHJLRQDO VWUHVV ILHOG DQG WKH VSDWLDO DVVRFLDWLRQ RI PRVW HDVWHUQ HDUWKTXDNHV ZLWK WKH HGJH RI WKH DXWRFKWKRQRXV *UHQYLOOLDQ FUXVW LW DSSHDUV OLNHO\ WKDW VHLVPLFLW\ LQ WKH VRXWKHDVW LV ODUJHO\ DWWULEXWDEOH WR WKH UHDFWLYDWLRQ RI RSWLPDOO\ VWUHVVHG ,DSHWDQ IDXOWV EHORZ WKH $SSDODFKLDQ GHWDFKPHQW VXUIDFH &RQVHTXHQWO\ WKH QRQXQLIRUP HDUWKTXDNH GLVWULEXWLRQ SULPDULO\ UHVXOWV IURP WKH QRQXQLIRUP GLVWULEXWLRQ RU RULHQWDWLRQ RI WKHVH IDXOWV :KLOH WKLV PHFKDQLVP DFFRXQWV IRU PXFK RI WKH REVHUYHG HDUWKTXDNH DFWLYLW\ LW LV FHUWDLQ WKDW VRPH HDUWKTXDNHV DUH DWWULEXWDEOH WR RWKHU FDXVDO PHFKDQLVPV 7KHUH KDV EHHQ VRPH HDUWKTXDNH DFWLYLW\ UHFRUGHG LQ WKH RYHUO\LQJ DOORFKWKRQRXV $SSDODFKLDQ WHUUDQHV VXJJHVWLQJ WKDW WKH VHLVPRJHQLF HIIHFWV RI WKH UHJLRQDO VWUHVV ILHOG DUH QRW HQWLUHO\ OLPLWHG WR WKH *UHQYLOOLDQ FUXVW ,Q DGGLWLRQ VRPH RI WKH VKDOORZ FUXVWDO IRFDO PHFKDQLVPV DQG RWKHU LQGLFDWRUV RI VWUHVV GLUHFWLRQ VXJJHVW WKH LQIOXHQFH RI D ORFDO FRPSUHVVLRQDO VWUHVV ILHOG WKDW LV SHUSHQGLFXODU WR WKH UHJLRQDO ILHOG 7KLV ORFDO ILHOG RU WKH LQWHUDFWLRQ RI WKH ORFDO DQG UHJLRQDO ILHOGV DSSHDUV WR FDXVH LQWHUPLWWHQW UHDFWLYDWLRQ RI VRPH VKDOORZ IDXOWV DQG PD\ SDUWLDOO\ DFFRXQW IRU WKH REVHUYHG VSDWLDO DVVRFLDWLRQ EHWZHHQ HSLFHQWUDO GLVWULEXWLRQ DQG WRSRJUDSK\ LQ WKH VRXWKHUQ $SSDODFKLDQV 2WKHU DQFLOODU\ FDXVDO PHFKDQLVPV IRU WKH REVHUYHG GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ PD\ LQFOXGH WKH GLVWULEXWLRQ RI VHLVPRJHQLF PLG

PAGE 113

FUXVWDO LQWUXVLYH ERGLHV DQG YDULDELOLW\ LQ WKH SURSHQVLWLHV RI IDXOW ]RQHV IRU VOLSSDJH +RZHYHU FRQWUDU\ WR VRPH SUHYLRXV K\SRWKHVHV WKHUH DSSHDUV WR EH QR VLJQLILFDQW VSDWLDO UHODWLRQVKLS EHWZHHQ WKH GLVWULEXWLRQ RI HDUWKTXDNHV LQ WKH VRXWKHDVW DQG LQGLYLGXDO 3DOHR]RLF DOORFKWKRQRXV WHUUDQHV RU WKUXVW IHDWXUHV 6LPLODUO\ WKHUH DSSHDUV WR EH QR FRUUHODWLRQ EHWZHHQ WKH ORFDWLRQV RI 0HVR]RLF H[WHQVLRQDO EDVLQV RU IUDFWXUH ]RQHV DQG WKH GLVWULEXWLRQ RI HDUWKTXDNHV

PAGE 114

&+$37(5 5(*,21$/ 6(,6027(&721,& 3529,1&(6 3UREDELOLVWLF VHLVPLF KD]DUG DQDO\VHV LQ VLWHV FKDUDFWHUL]HG E\ KLVWRULFDOO\ ORZ OHYHOV RI VHLVPLF DFWLYLW\ VXFK DV RQ WKH )ORULGDQ 3ODWHDX PXVW DGGUHVV WKH SRWHQWLDO IRU JURXQG PRWLRQ UHVXOWLQJ IURP VHLVPLF DFWLYLW\ LQ VXUURXQGLQJ DUHDV 7KLV LV DFFRPSOLVKHG E\ GLYLGLQJ WKH UHJLRQ LQWR D VHULHV RI VHLVPRWHFWRQLF SURYLQFHV DQG TXDQWLI\LQJ WKH OHYHO RI VHLVPLF DFWLYLW\ ZLWKLQ HDFK SURYLQFH ,Q DGGLWLRQ LW LV QHFHVVDU\ WR HVWDEOLVK D UHJLRQDO YDOXH IRU FUXVWDO DWWHQXDWLRQ ZKLFK GHVFULEHV WKH DELOLW\ RI WKH OLWKRVSKHUH WR WUDQVPLW VHLVPLF HQHUJ\ 7RJHWKHU WKHVH DOORZ DQ DSSUDLVDO RI WKH SRWHQWLDO IRU JURXQG PRWLRQ DW D VLWH UHVXOWLQJ IURP GLVWDQW HDUWKTXDNHV DQG DUH LQWHJUDO HOHPHQWV LQ DQ DVVHVVPHQW RI VHLVPLF KD]DUG $ VHLVPRWHFWRQLF SURYLQFH LV GHILQHG DV D JHRJUDSKLF UHJLRQ RI VRPH JHRORJLFDO JHRSK\VLFDO RU VHLVPRORJLFDO VLPLODULW\ WKDW LV DVVXPHG WR SRVVHVV D XQLIRUP HDUWKTXDNH SRWHQWLDO WKURXJKRXW 5HLWHU f 7KH LQWHQWLRQ LQ WKLV FKDSWHU LV WR LGHQWLI\ DQG SURYLGH D FKDUDFWHUL]DWLRQ RI WKRVH VHLVPRWHFWRQLF SURYLQFHV WKDW FRXOG SRWHQWLDOO\ H[SHULHQFH HDUWKTXDNHV ODUJH HQRXJK WR SURGXFH VLJQLILFDQW JURXQG PRWLRQ LQ )ORULGD

PAGE 115

$ YDULHW\ RI DSSURDFKHV KDYH EHHQ XVHG WR FKDUDFWHUL]H WKH VHLVPR WHF WRQLF SURYLQFHV RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV :KLOH PDQ\ KDYH XVHG VHLVPRORJLFDO VLPLODULWLHV DV WKH VROH PHDQV RI GHOLQHDWLQJ WKH YDULRXV SURYLQFHV LH %ROOLQJHU $ 'UXPKHOOHU HW DO f RWKHUV KDYH DWWHPSWHG WR UHODWH SDWWHUQV RI REVHUYHG VHLVPLFLW\ ZLWK NQRZQ JHRORJLFDO SURYLQFHV RU JHRSK\VLFDO IHDWXUHV LH :KHHOHU DQG %ROOLQJHU +DWFKHU HW DO f $V LQIHUUHG E\ :KHHOHU DQG %ROOLQJHU f DQG GLVFXVVHG LQ &KDSWHU KRZHYHU WKHUH LV QRW \HW HQRXJK LQIRUPDWLRQ DYDLODEOH WR SRVLWLYHO\ FRUUHODWH VHLVPLFLW\ ZLWK JHRORJLF SURYLQFHV RU IHDWXUHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV $QRWKHU DSSURDFK KDV EHHQ WR XVH ERWK VHLVPRORJLFDO VLPLODULWLHV DQG WKH SUHVHQFH RI SRWHQWLDOO\ VHLVPRJHQLF IHDWXUHV LQ WKH VKDOORZ FUXVW DV D PHDQV RI GLVWLQJXLVKLQJ WKHVH SURYLQFHV LH .KRXU\ DQG &KDQGUD f $ SUREOHP ZLWK WKLV DSSURDFK LV WKDW SRWHQWLDO VHLVPRJHQLF IHDWXUHV DUH XELTXLWRXV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV \HW IHZ DSSHDU WR KDYH &HQR]RLF VHLVPLF DFWLYLW\ DVVRFLDWHG ZLWK WKHP HJ &KDSWHU f )RU H[DPSOH WKUHH RI WKH PRGHOV SUHVHQWHG E\ .KRXU\ DQG &KDQGUD LQFOXGH WKH )ORULGD H[WHQVLRQ RI WKH 6RXWK *HRUJLD 5LIW DV D SRWHQWLDO VHLVPLF VRXUFH ]RQH \HW WKHUH KDYH EHHQ QR KLVWRULFDO RU LQVWUXPHQWDO HYHQWV LQ WKLV DUHD DQG VHLVPLF UHIOHFWLRQ SURILOHV RI WKH XQGLVWXUEHG RYHUEXUGHQ VXJJHVW QR VHLVPLF DFWLYLW\ VLQFH WKH (DUO\ &UHWDFHRXV HJ $UGHQ 1HOVRQ HW DO $ 'REVRQ DQG %XIIOHU f )XUWKHUPRUH WKHUH KDV EHHQ QR GHPRQVWUDWHG DVVRFLDWLRQ EHWZHHQ VLPLODU VWUXFWXUHV DQG UHFHQW VHLVPLF DFWLYLW\

PAGE 116

DQ\ZKHUH LQ WKH VRXWKHDVW +HQFH WKH DVVLJQPHQW WR VRXWKZHVWHUQ *HRUJLD DQG QRUWKZHVWHUQ )ORULGD RI DQ HOHYDWHG OHYHO RI VHLVPLF KD]DUG DV FRPSDUHG WR WKH QXPHURXV RWKHU VRXWKHDVWHUQ ORFDWLRQV XQGHUODLQ E\ 0HVR]RLF H[WHQVLRQDO IHDWXUHV VHHPV XQIRXQGHG &RQVHTXHQWO\ WKH XWLOL]DWLRQ RI JHRSK\VLFDO VLJQDWXUHV DQG JHRORJLFDO LQIRUPDWLRQ LV QRW \HW D SUDFWLFDO PHWKRG IRU WKH LGHQWLILFDWLRQ RI VHLVPRWHFWRQLF SURYLQFHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 8QIRUWXQDWHO\ DV GLVFXVVHG E\
PAGE 117

UHFXUUHQFH LQWHUYDO WR HDFK SURYLQFH :KLOH WKH GHWHUPLQDWLRQ RI D PD[LPXP FUHGLEOH HDUWKTXDNH IRU D SURYLQFH LQ DQ LQWUDSODWH UHJLRQ LV ODUJHO\ VXEMHFWLYH D FRPSUHKHQVLYH UHYLHZ RI KLVWRULF LQWUDSODWH HDUWKTXDNHV SURYLGHV VRPH FRQWURO -RKQVWRQ DQG .DQWHU f )RU H[DPSOH RQO\ HDUWKTXDNHV RI PDJQLWXGH HLJKW RU DERYH DQG RQO\ HDUWKTXDNHV RI PDJQLWXGH VHYHQ RU JUHDWHU KDYH RFFXUUHG LQ DQ\ LQWUDSODWH UHJLRQ GXULQJ KLVWRULF WLPHV -RKQVWRQ DQG .DQWHU LQGLFDWH WKDW WKHVH ODUJH PDJQLWXGH LQWUDSODWH HYHQWV DSSHDU WR EH VSDWLDOO\ DVVRFLDWHG ZLWK FRQWLQHQWDO ULIWV DQG SDVVLYH FRQWLQHQWDO PDUJLQV *HQHUDOO\ WKH PD[LPXP FUHGLEOH PDJQLWXGH LV DVVLJQHG WR D SURYLQFH DW VRPH LQFUHPHQW DERYH WKH PD[LPXP KLVWRULF PDJQLWXGH 5HLWHU f ,Q SURYLQFHV WKDW KDYH SRRUO\ GRFXPHQWHG KLVWRULF UHFRUGV LQFOXGLQJ WKH HDVWHUQ 8QLWHG 6WDWHV WKH DVVLJQPHQW RI D PD[LPXP FUHGLEOH PDJQLWXGH DOVR WDNHV LQWR FRQVLGHUDWLRQ WKH JHRORJLF VHWWLQJ WKH OHYHO RI UHFHQW VHLVPLF DFWLYLW\ DQG D UHDVRQDEOH DOORZDQFH IRU HUURU 7KH DVVLJQPHQW RI D PLQLPXP PDJQLWXGH WR D VHLVPLF VRXUFH VLJQLILFDQ\ DIIHFWV WKH FDOFXODWHG VHLVPLF KD]DUG SUREDELOLWLHV IRU ORZHU OHYHOV RI JURXQG PRWLRQ 7KHUH LV QR VWDQGDUG PHWKRG RI GHWHUPLQLQJ PLQLPXP PDJQLWXGH $V SRLQWHG RXW E\ %HQGHU DQG &DPSEHOO f VHYHUDO PDJQLWXGHV UDQJLQJ IURP PA ERG\ ZDYH PDJQLWXGHf WR PA KDYH EHHQ DGRSWHG E\ YDULRXV UHJXODWRU\ DJHQFLHV DQG ZRUNHUV IRU XVH LQ WKH SURYLQFH VXUURXQGLQJ WKH VLWH RI LQWHUHVW *HQHUDOO\ WKH PLQLPXP PDJQLWXGH DVVLJQHG LV EDVHG RQ DQ HVWLPDWLRQ RI WKH PDJQLWXGH RI WKH VPDOOHVW HYHQW RFFXUULQJ LQ WKDW SURYLQFH WKDW FRXOG EH H[SHFWHG WR FDXVH GDPDJH DW WKH VLWH (YHQWV

PAGE 118

VPDOOHU WKDQ WKLV DUH XVXDOO\ FRQVLGHUHG WR EH LQVLJQLILFDQW ZLWK UHVSHFW WR VLWH VSHFLILF VHLVPLF KD]DUG DQDO\VHV ,Q ORQJWHUP ULVN DVVHVVPHQWV HDUWKTXDNH UHFXUUHQFH LV FRPPRQO\ DVVXPHG WR KDYH D 3RLVVRQ GLVWULEXWLRQ LQGLFDWLQJ WKDW HDFK HYHQW LV LQGHSHQGHQW RI DQ\ RWKHU HYHQW 7KH UHFXUUHQFH LQWHUYDO RU WKH QXPEHU RI HDUWKTXDNHV 1Pf SHU XQLW WLPH XVXDOO\ RQH \HDUf IRU D JLYHQ PDJQLWXGH Pf PD\ EH DSSUR[LPDWHG E\ ORJ 1P D EPf *XWHQEHUJ DQG 5LFKWHU f ZKHUH D LV D FRQVWDQW ZKLFK GHVFULEHV WKH UDWH RI HDUWKTXDNH DFWLYLW\ DQG E WKH VORSH RI WKH UHJUHVVLRQ OLQH LQGLFDWHV WKH UHODWLYH QXPEHUV RI VPDOO DQG ODUJH HDUWKTXDNHV +D]DUG DVVHVVPHQWV JHQHUDOO\ HPSOR\ WKLV HTXDWLRQ DQG WKH NQRZQ IUHTXHQF\ RI VPDOOHU HDUWKTXDNHV LQ D JLYHQ SURYLQFH WR FDOFXODWH WKH UHFXUUHQFH LQWHUYDOV RI ODUJH GHVWUXFWLYH HDUWKTXDNHV 7KXV WKH YDOXH RI E DVVXPHV D VLJQLILFDQW UROH DV DQ LQGLFDWRU RI VHLVPLF KD]DUG $ W\SLFDO E YDOXH LQ WKH HDVWHUQ 8QLWHG 6WDWHV LV DERXW HJ %ROOLQJHU HW DO f 7KH OLPLWHG KLVWRULF UHFRUG QHFHVVLWDWHV WKH LQWHJUDWLRQ RI KLVWRULFDO DQG LQVWUXPHQWDO GDWD LQ VHLVPLF KD]DUG LQYHVWLJDWLRQV SDUWLFXODUO\ IRU WKH FDOFXODWLRQ RI UHFXUUHQFH LQWHUYDOV ,W LV RIWHQ QHFHVVDU\ WR HVWLPDWH PDJQLWXGHV IURP KLVWRULF LQWHQVLW\ GDWD $OWKRXJK 6LERO HW DO f GHULYHG D PDJQLWXGHLQWHQVLW\ UHODWLRQVKLS VSHFLILFDOO\ IRU WKH HDVWHUQ 8QLWHG 6WDWHV WKLV UHODWLRQVKLS LQFRUSRUDWHV IHOW DUHD ZKLFK LV RIWHQ QRW DYDLODEOH 7KH HVWLPDWLRQ RI PDJQLWXGH PAf IURP LQWHQVLW\ ,f LV LQVWHDG EDVHG RQ D

PAGE 119

UHODWLRQVKLS GHULYHG E\ 9HQH]LDQR DQG 9DQ '\FN f IRU WKH FHQWUDO DQG HDVWHUQ 86 DV GHILQHG E\ PE f 7KH ILQDO VWHS WKHQ LQ WKH FKDUDFWHUL]DWLRQ RI WKH VHLVPRWHFWRQLF SURYLQFHV LV WR FDOFXODWH RU DVVLJQ D DQG E YDOXHV WR HDFK SURYLQFH EDVHG RQ HDUWKTXDNH FRPSLODWLRQV RI KLVWRULF DQG LQVWUXPHQWDO GDWD $V LW LV QRW SRVVLEOH WR FDOFXODWH SUHFLVH YDOXHV IURP RQO\ D IHZ KLVWRULF HYHQWV DV LQ )ORULGD WKH SUHYLRXVO\ PHQWLRQHG VWDWHZLGH QHWZRUN RI VHLVPRJUDSKV ZDV HVWDEOLVKHG LQ LQ RUGHU WR FKDUDFWHUL]H WKH UHJLRQDO OHYHO RI PLFURHDUWKTXDNH DFWLYLW\ )LJXUH f 7KLV QHWZRUN LQLWLDOO\ FRQVLVWHG RI WKUHH VWDWLRQV HDFK HTXLSSHG ZLWK WKUHH 7HOHG\QH 6 VKRUW SHULRG VHLVPRPHWHUV FRXSOHG WR D 7HOHG\QH 3'$6 GLJLWDO UHFRUGHU 7KH VWDWLRQV ZHUH ORFDWHG DW WKH 8QLYHUVLW\ RI )ORULGD LQ *DLQHVYLOOH LQ 2VFDU 6FKHUHU 6WDWH 5HFUHDWLRQ $UHD QHDU 6DUDVRWD DQG LQ (YHUJODGHV 1DWLRQDO 3DUN DW WKH VRXWKHUQ WLS RI WKH VWDWH 7KH EDVH VWDWLRQ DW *DLQHVYLOOH ZDV DOVR HTXLSSHG ZLWK WKUHH 7HOHG\QH %% EURDGEDQG VHLVPRPHWHUV DQG D 6SUHQJQHWKHU 66 VKRUW SHULRG DQDORJ VHLVPRJUDSK 6XEVHTXHQWO\ WKH GLJLWDO EDVH VWDWLRQ ZDV PRYHG WR -RQHVYLOOH ZKLFK LV MXVW ZHVW RI *DLQHVYLOOH DQG DQ DGGLWLRQDO WKUHHFRPSRQHQW GLJLWDO VWDWLRQ ZDV HVWDEOLVKHG LQ :DNXOOD 6SULQJV 6WDWH 3DUN MXVW VRXWK RI 7DOODKDVVHH 7KH GLJLWDO VHLVPRJUDSKV DUH HYHQWWULJJHUHG UDWKHU WKDQ EHLQJ FRQWLQXRXVO\ UHFRUGHG 7KH WULJJHULQJ DOJRULWKP FRQWLQXRXVO\ PRQLWRUV WKH UDWLR RI WKH DPSOLWXGH RI JURXQG PRWLRQ RYHU D VKRUW SHULRG RI WLPH W\SLFDOO\ RQH VHFRQG WR WKH DPSOLWXGH RI JURXQG

PAGE 120

8QLXHUVLW\ RI )ORULGD 6HLVPRJUDSK 1HWZRUN 6WDWLRQ /RFDWLRQV /DW 1f /RQJ ,'f (OHX L (XHUJODGHV p n r *DLQHVYLOOH r n p -RQHVXLOOH rn r r 6DUDVRWD r f r :DNXOOD 6SULQJV r f r 6DUDWHWD (YHUJODGHr )LJXUH 7KH 8QLYHUVLW\ RI )ORULGD 6HLVPRJUDSK 1HWZRUN

PAGE 121

,OO PRWLRQ RYHU D ORQJ SHULRG RI WLPH LH EDFNJURXQG QRLVHf ,I WKDW UDWLR H[FHHGV D OHYHO VHW E\ WKH RSHUDWRU ZLWKLQ D VSHFLILHG IUHTXHQF\ WKH GLJLWDO UHFRUGHU LV WKHQ WULJJHUHG DQG UHFRUGV IRU D VHW SHULRG RI WLPH XVXDOO\ RQH WR WZR PLQXWHV 7KLV DOJRULWKP LV FKDUDFWHUL]HG E\ D GHFUHDVH LQ WKH VHQVLWLYLW\ RI WKH VHLVPRJUDSK ZLWK DQ LQFUHDVH LQ WKH EDFNJURXQG QRLVH %HFDXVH PRVW EDFNJURXQG QRLVH LV UHODWHG WR ZHDWKHU FRQGLWLRQV DQG KXPDQ DFWLYLWLHV LW LV TXLWH YDULDEOH &RQVHTXHQWO\ LW LV QRW SRVVLEOH WR TXDQWLI\ WKH VHQVLWLYLWLHV RI WKH VHLVPRJUDSK V\VWHPV %DVHG RQ WKH DPSOLWXGH RI WKH VLJQDO UHFRUGHG DW *DLQHVYLOOH GXULQJ D PW! HYHQW LQ WKH *XOI RI 0H[LFR LQ LW LV HVWLPDWHG WKDW DQ\ HYHQW RQ WKH )ORULGDQ 3ODWHDX ZLWK D PDJQLWXGH JUHDWHU WKDQ WR ZRXOG EH GHWHFWHG E\ WKH HQWLUH QHWZRUN 5HVXOWV ,Q DGGLWLRQ WR WKH JHQHUDO EDFNJURXQG VHLVPLFLW\ RI WKH )ORULGDQ 3ODWHDX WKH *XOI RI 0H[LFR DQG WKH %DKDPDV UHJLRQV WKHUH DUH VHYHUDO GLVWLQFW VHLVPRWHFWRQLF SURYLQFHV LQ VRXWKHDVWHUQ 8QLWHG 6WDWHV LQ ZKLFK HDUWKTXDNH DFWLYLW\ FRXOG SRWHQWLDOO\ FDXVH SHUFHSWLEOH JURXQG PRWLRQ LQ )ORULGD 7KHVH LQFOXGH WKH &KDUOHVWRQ SURYLQFH ZKLFK LV HQFORVHG E\ WKH 3LHGPRQW&RDVWDO 3ODLQ SURYLQFH WKH 6RXWKHUQ $SSDODFKLDQV SURYLQFH DQG WKH 1HZ 0DGULG SURYLQFH ,Q DGGLWLRQ WKH &D\PDQ 7URXJK UHJLRQ ZKLFK LV DORQJ WKH QRUWKHUQ &DULEEHDQ SODWH ERXQGDU\ PD\ SRVH D SRWHQWLDO VHLVPLF WKUHDW WR )ORULGD 7KH ERXQGDULHV RI WKHVH VHLVPRWHFWRQLF SURYLQFHV DUH VKRZQ LQ )LJXUH

PAGE 122

f f f 1HXL 0DGULG 3URXLQF !fff‘ ffff !n ffffff f f f L ffffffff f f f f 6RXWKHUQ 3LHGPRQW &RDVWDO 3ODLQ 3URXLQFH f f f f r f f f ffffffffffff SSDODFKMDQ 3URXLQFH fmff fffffffff fffffffffffffffffff, ffffmffffffffffffffffff ff$rffffffAfffffffffff f rA fffffff rffffffffffffffff }mmm} fm mmmfffffffffffff fffffffffff$rfffffffffffiAffffffffffffffffffffffffffffffffAf f fffffffffff AP fffffffffffffffffffffffffffffffffffffffffffffff f $ f f f 000m$2Wm00}Or0r $0}$$$$$$$$$$$0$m0$$$$$$$$$$I$$$$$$$$$ $ $$$$ $$$$$$$ $$$$$$$$$m$$$I$$$$IW$W$II0$$$$$$ mffmfffffffffff0$2W00 f mffff $$$$$, $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$0$$$$$$$$ $$$$ $$$$$$$$$$}$$$$$$$$$$$$$$$$$$$0$$$$$$$ fi$$$$$$$$$I$$$$$$W$W$$$W$$$L &KDUOHVWRQ V ,$ $0, 3URX fffffff f fffff fff fffffW r1 p r1 p p p r1 p p r1 r1 r1 f n 0,00,0000,00000WW0000+O0 f ff$$$$$$$$$$$$$$r f f fffff fffffffffffffffffffAfffffffffffff} 0mW+0$0$WW$$$0,0$,m$0$0_$$$$m_$$$m$$$$$000$ ff f fffffffffffffffffff$fmfff f ffff f0_m0$8m_}00mmmm0m0mmmmW0m0000m00 fffffffffffffm rffr1Afffr1r1prpp$$n p r1 r1 r1 fffffffffffffffffffW ffffffffffffffffffffffffffffmmm fffffffffffffffffffffffffffffff fffffffffffffffffffffffffmm}mm Imf$$$$$$$$$$$$$$0$,$$,$$$$$$$$$$$$$,WW$$$$$$$$$$$$$$$$$$$$IO ,Wr$Lr$r$$fffrffffffffffffffff f fffffff$0$0$0 $0$$0$,$,$$$$$00, fffffffff ffffffff ff m } r f r0O f f f f A 0 b } ffffn $ f mrrr_,0,, fffffffffffffffffff 0 fffff ff$ƒ$$WIO$,$0W0}m$$0$$$00 O00 $$$$$,I$$$I$$$$IW,$ Y m fmf f n D f P r f ffr f PP A f f Pffffffffffffffffffffffffffffffffff 6666666 f L0L f f f f V f6IIIfffffO r 6O r f fffffffff3 }f f f $$$$$$$$$ m f f f Wr fLIIIffffffff$m$m f f fffffffffffffffffff f f ffff (DVWHUQ *XOI )ORULGD :HVWHUQ %DKDPDV f ff 0 $ $ $ f}$$$$W$$$$$$$$$ rrmm ffffff ffffffffffffffff f ffffffffff0 $$$ ffffffff 6UVO 3URXLQFH nffffff $ ffm f D f f n rfffffffffffffffffffffff f f f f $$mm,r$$0$0 ,$ f ffff fffffffffffffffffff f, ffffffffff, !f ff f n fffffffff fff$, f f f f f f f ‘ f f f $ $ f f ff f f8_ %r nffff r f f f f ffffffffffffffffW f f f n fffffff fffffff ffffffffffffffffffffffffffffffnfffffffffffffffffffff, fffffffffmmL f ffffffffffffff m AAA M ffffffffffffffffffffffffff } f f f f f f f f rrWO ff$$$$$$$mmrrm^ }$L$m$ }mmffffffffffffffffffffff f$$mrmm0 ffffffffffffffffffffffffffffffffffffffff ,$00,000 fff$ $0660 \r ff } f f f ff  $ fff, ffffr fffffffffffffff, A A A A Z A A Z A A A A A f W$ ,$ ff fff, f r0 mm66rL fffff fff 9ffffff rAA ,n L f f ? f ffffffn B B f $$ ‘ffff MP fff fff‘ ffffffff6p frrr fffffffffffff f$6 m66 $ffffff $rfffffff ffffffffffffff ffffffffffffff fffffffffff m f ff60---n fffffffffffffffff fffffff 0m00,00 fAfffffffn fff P f f f f f f ff r f, f f f ffffffffffffffffff, L "7 -,-=2ffffffffffffffffffff f f f &D\PDQ 7URXJK 3URXLQFH f !fffffm fAffffffffff f f V f 6 f f f W f m f f m m f $$, f f )LJXUH 6HVPR WHF WRQLF SURYLQFHV LQ ZKLFK H[SHFWHG HDUWKTXDNHV FRXOG SRWHQWLDOO\ FDXVH VLJQLILFDQW JURXQG PRWLRQ LQ )ORULGD

PAGE 123

$V GLVFXVVHG LQ &KDSWHU WKH OHYHO RI KLVWRULF VHLVPLF DFWLYLW\ RQ WKH )ORULGDQ 3ODWHDX LQ WKH HDVWHUQ KDOI RI WKH *XOI RI 0H[LFR DQG LQ WKH ZHVWHUQ %DKDPDV UHJLRQ LV YHU\ ORZ 0RVW RI WKH HYHQWV DUH FOXVWHUHG DORQJ WKH HDVWHUQ HGJH RI WKH )ORULGDQ 3ODWHDX $OWKRXJK WKLV FOXVWHULQJ KDV SRVVLEO\ EHHQ ELDVHG E\ WKH SRSXODWLRQ GLVWULEXWLRQ LW LV FRQVLVWHQW ZLWK WKH SUHYLRXVO\ REVHUYHG VSDWLDO DVVRFLDWLRQ EHWZHHQ VRPH SDVVLYH FRQWLQHQWDO PDUJLQV DQG VHLVPLF DFWLYLW\ -RKQVWRQ DQG .DQ WHU f ,Q GHIHUHQFH WR WKH QHHG WR EH FRQVHUYDWLYH WKH OHYHO RI VHLVPLFLW\ VXJJHVWHG E\ WKLV ORFDO FOXVWHU RI HYHQWV ZLOO EH XVHG DV D UHJLRQDO JDXJH RI VHLVPLF DFWLYLW\ 7KHUH KDYH EHHQ RQO\ IRXU LQVWUXPHQWDOO\ UHFRUGHG HYHQWV IURP WKLV UHJLRQ 7ZR RI WKH ILYH )ORULGD HYHQWV ZHUH UHFRUGHG DW GLVWDQW VWDWLRQV DQG VXEVHTXHQWO\ DVVLJQHG PDJQLWXGHV 2QH ZDV D PA HYHQW VRXWK RI 2UODQGR )ORULGD ZKLFK ZDV UHFRUGHG LQ $WODQWD RQ 2FW /RQJ f 7KH RWKHU RQ 1RY QHDU 'D\WRQD %HDFK ZDV UHFRUGHG LQ 9LUJLQLD DQG DVVLJQHG D PDJQLWXGH RI PA/J 0LQVFK HW DO f ,Q DGGLWLRQ WKHUH KDYH EHHQ WZR LQVWUXPHQWDOO\ UHFRUGHG HDUWKTXDNHV LQ WKH HDVWHUQ KDOI RI WKH *XOI RI 0H[LFR 7KHVH LQFOXGH WKH SUHYLRXVO\ PHQWLRQHG PE HYHQW LQ WKH HDVWHUQ *XOI RI 0H[LFR RQ 0DUFK DQG D PE HYHQW ORFDWHG DERXW NP VRXWKHDVW RI 1HZ 2UOHDQV RQ 6HSW (DFK RI WKHVH ZDV UHFRUGHG E\ WKH 8QLYHUVLW\ RI )ORULGD 6HLVPRORJLFDO 1HWZRUN DQG RWKHUV +RXVQHU f DVVLJQHG XSSHU ERXQG PDJQLWXGHV WR UHJLRQV EDVHG RQ WKHLU WHFWRQLF VHWWLQJV ,QWUDSODWH UHJLRQV FKDUDFWHUL]HG E\ ORZ VHLVPLFLW\ VXFK DV )ORULGD ZHUH DVVLJQHG PD[LPXP FUHGLEOH

PAGE 124

PDJQLWXGHV RI HLWKHU RU 7KH ODUJHVW KLVWRULF HYHQW RFFXUUHG LQ QRUWKHDVW )ORULGD RU VRXWKHDVWHUQ *HRUJLD RQ -DQ DQG ZDV VXEVHTXHQWO\ HVWLPDWHG WR KDYH EHHQ DQ LQWHQVLW\ 9, HYHQW 0RWW f 8VLQJ 9HQH]LDQR DQG 9DQ '\FNnV UHODWLRQVKLS WKLV LV DSSUR[LPDWHO\ HTXLYDOHQW WR D PDJQLWXGH HDUWKTXDNH &RQVLGHULQJ WKH LQIUHTXHQF\ RI HDUWKTXDNH DFWLYLW\ WKH ORZ LQWHQVLW\ RI WKH ODUJHVW KLVWRULF HYHQW WKH ODFN RI JHRORJLF HYLGHQFH IRU HDUWKTXDNHV DQG +RXVQHUnV FULWHULD LW DSSHDUV XQOLNHO\ WKDW WKLV UHJLRQ ZLOO H[SHULHQFH DQ HYHQW JUHDWHU WKDQ PE $V SUHYLRXVO\ PHQWLRQHG PLQLPXP PDJQLWXGHV IRU WKH DUHDV LPPHGLDWHO\ VXUURXQGLQJ WDUJHWHG VLWHV KDYH UDQJHG IURP PA WR PE ,QWHQVLWLHV RI OHVV WKDQ 00, 9, DUH E\ GHILQLWLRQ FKDUDFWHUL]HG E\ QR VWUXFWXUDO GDPDJH WR EXLOGLQJV $Q LQWHQVLW\ 9 HYHQW LV DSSUR[LPDWHO\ HTXLYDOHQW WR D PDJQLWXGH HDUWKTXDNH WKHUHIRUH WKLV ZLOO EH WKH GHVLJQDWHG PLQLPXP PDJQLWXGH IRU WKLV SURYLQFH 7KHUH LV DQ LQVXIILFLHQW QXPEHU RI HYHQWV IRU WKH FDOFXODWLRQ RI D DQG E YDOXHV IRU WKLV SURYLQFH 7KH D YDOXH DV D IXQFWLRQ RI WKH UDWH RI HDUWKTXDNH DFWLYLW\ LV XQGRXEWHGO\ UHODWLYHO\ ORZ 7\SLFDOO\ D YDOXHV LQ UHJLRQV RI ORZ VHLVPLFLW\ UDQJH IURP WR ZKLOH DQ H[SHFWHG E YDOXH ZRXOG EH LQ WKH WR UDQJH $Q HVWLPDWHG D YDOXH RI DQG D E YDOXH RI \LHOGV D UHFXUUHQFH LQWHUYDO RI \HDUV IRU WKH PD[LPXP FUHGLEOH PDJQLWXGH HYHQW PE f DQG \HDUV IRU D PE HYHQW &RPSDULVRQ ZLWK WKH LQFLGHQFH RI KLVWRULF DQG LQVWUXPHQWDO HYHQWV VXJJHVWV WKHVH YDOXHV WR EH UHDVRQDEOH DSSUR[LPDWLRQV IRU WKH SXUSRVH RI SUREDELOLVWLF KD]DUG DVVHVVPHQW

PAGE 125

/LTXHIDFWLRQ IHDWXUHV VXFK DV VDQG EORZV DUH RQO\ IRUPHG GXULQJ HDUWKTXDNHV RI DSSUR[LPDWHO\ PDJQLWXGH RU JUHDWHU $PLFN DQG *HOLQDV f ,Q D VWXG\ RI WKH GLVWULEXWLRQ RI SDOHROLTXHIDFWLRQ IHDWXUHV DORQJ WKH HQWLUH VRXWKHDVWHUQ &RDVWDO 3ODLQ $PLFN DQG *HOLQDV f IRXQG WKDW WKHVH IHDWXUHV RFFXU DOPRVW H[FOXVLYHO\ LQ WKH 6RXWK &DUROLQD &RDVWDO 3ODLQ SUR[LPDO WR WKH FLW\ RI &KDUOHVWRQ 7KH RQH H[FHSWLRQ ZDV D VLWH ORFDWHG LQ 1RUWK &DUROLQD QHDU WKH 6RXWK &DUROLQD ERUGHU DQG UHODWLYHO\ FORVH WR WKH RWKHU SDOHROLTXHIDFWLRQ IHDWXUHV %DVHG RQ WKLV VWXG\ LW DSSHDUV WKDW WKH &KDUOHVWRQ UHJLRQ LV FKDUDFWHUL]HG E\ D KLJKHU PD[LPXP FUHGLEOH PDJQLWXGH WKDQ WKH UHPDLQGHU RI WKH VRXWKHDVW DQG WKDW WKLV UHJLRQ RI HOHYDWHG DFWLYLW\ H[WHQGV QRUWKHDVWZDUG EH\RQG WKH DUHD RULJLQDOO\ GHVFULEHG E\ %ROOLQJHU $f 7KH JHRORJLF HYLGHQFH IRU D ORFDOO\ HOHYDWHG PD[LPXP FUHGLEOH PDJQLWXGH LV FRQVLVWHQW ZLWK WKH KLVWRULF UHFRUG DV GHPRQVWUDWHG E\ WKH PA HVWLPDWHGf &KDUOHVWRQ HYHQW RI HJ %ROOLQJHU %ROOLQJHU HW DO f +RXVQHUnV f GHVLJQDWHG XSSHU ERXQG PDJQLWXGH IRU VLPLODU WHFWRQLF VHWWLQJV LV ZKLOH RWKHU HVWLPDWHV RI D PD[LPXP FUHGLEOH PDJQLWXGH IRU WKH &KDUOHVWRQ DUHD UDQJH XS WR (EDVFR f $OWKRXJK D PDJQLWXGH HYHQW LV XQOLNHO\ WR RFFXU LQ WKLV ]RQH WKH DVVLJQDWLRQ RI WKLV YDOXH DV DQ XSSHU ERXQG PDJQLWXGH LV FRPSDWLEOH ZLWK WKH GHVLUHG JRDO RI SURYLGLQJ D FRQVHUYDWLYH HVWLPDWH RI VHLVPLF KD]DUG LQ )ORULGD $ PLQLPXP ERXQG HDUWKTXDNH IRU WKLV ]RQH FDQ EH EDVHG RQ WKH HVWLPDWHG PDJQLWXGH RI WKH &KDUOHVWRQ HYHQW DQG LWV HIIHFWV LQ )ORULGD 7KH HVWLPDWHG PA HDUWKTXDNH SURGXFHG HIIHFWV RI 00

PAGE 126

LQWHQVLW\ 9 LH QR GDPDJHf LQ WKH QRUWKHUQ KDOI RI WKH VWDWH %ROOLQJHU f 7KLV VXJJHVWV WKDW IRU WKH SXUSRVH RI WKLV VWXG\ D GHVLJQDWHG PLQLPXP PDJQLWXGH IRU WKLV SURYLQFH VKRXOG EH QR VPDOOHU WKDQ 5HFXUUHQFH LQWHUYDO HVWLPDWHV IRU ODUJH HYHQWV LQ WKH &KDUOHVWRQ ]RQH EDVHG RQ SDOHRVHLVPLF HYLGHQFH VXFK DV WKH OLTXHIDFWLRQ IHDWXUHV UDQJH IURP WR \HDUV 7DOZDQL DQG &R[ 2EHUPHLHU HW DO $PLFN DQG *HOLQDV f 7KLV UDQJH SUREDEO\ UHSUHVHQWV WKH H[SHFWHG YDULDELOLW\ LQ WKH UHFXUUHQFH LQWHUYDO ZLWK WLPH ZKLFK VXJJHVWV WKH \HDU HVWLPDWH WR EH DQ DSSUR[LPDWH PLQLPXP LQWHUYDO EHWZHHQ HYHQWV JUHDWHU WKDQ PA 7KLV FRUUHVSRQGV YHU\ ZHOO WR WKH FDOFXODWLRQ E\ %ROOLQJHU HW DO f RI DQ D YDOXH RI DQG D E YDOXH RI IRU WKH &KDUOHVWRQ ]RQH VXJJHVWLQJ DYHUDJH UHFXUUHQFH LQWHUYDOV RI \HDUV IRU PW! HYHQWV DQG \HDUV IRU PA HYHQWV 7KH 3LHGPRQW DQG &RDVWDO 3ODLQ RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DUH FKDUDFWHUL]HG E\ D PRGHUDWH OHYHO RI VHLVPLF DFWLYLW\ ZKLFK VWHDGLO\ GHFUHDVHV WR WKH HDVW H[FHSW LQ 6RXWK &DUROLQD DQG FHQWUDO 9LUJLQLD ,Q D VWXG\ RI PDJQLWXGH UHFXUUHQFH LQ WKH VRXWKHDVW %ROOLQJHU HW DO f GLVWLQJXLVKHG EHWZHHQ WKH 3LHGPRQW DQG WKH &RDVWDO 3ODLQ JHRJUDSKLF SURYLQFHV IRU WKH SXUSRVHV RI WKHLU VWXG\ 7KH\ IRXQG WKH HDUWKTXDNH DFWLYLW\ SHU XQLW DUHD WR EH PRGHUDWHO\ KLJKHU LQ WKH 3LHGPRQW KRZHYHU WKH D DQG E YDOXHV FDOFXODWHG IRU WKH WZR JHRJUDSKLF SURYLQFHV ZHUH LQGLVWLQJXLVKDEOH ZLWKLQ WKHLU PDUJLQV RI HUURU &RQVHTXHQWO\ WKH 3LHGPRQW DQG &RDVWDO 3ODLQ SURYLQFHV DUH YLUWXDOO\ LGHQWLFDO ZLWK UHVSHFW WR

PAGE 127

UHFXUUHQFH LQWHUYDOV DQG DUH FRQVLGHUHG WR EH D VLQJOH VHLVPR WHF WRQLF SURYLQFH IRU WKH SXUSRVH RI WKLV VWXG\ 7KHUH KDV EHHQ RQO\ RQH KLVWRULF HYHQW ZLWK D 0RGLILHG 0HUFDOOL 00f LQWHQVLW\ RI JUHDWHU WKDQ 9,, LQ WKLV VHLVPRWHFWRQLF SURYLQFHf§DQ LQWHQVLW\ 9,,9,,, LQ WKH 3LHGPRQW RI 6RXWK &DUROLQD LQ %ROOLQJHU $f ZKLFK LV DSSUR[LPDWHO\ HTXLYDOHQW WR D PE HYHQW %DVHG RQ WKH DSSDUHQW DEVHQFH RI SDOHROLTXHIDFWLRQ IHDWXUHV DORQJ WKH &RDVWDO 3ODLQ $PLFN DQG *HOLQDV f LW DSSHDUV WKDW WKHUH KDYH EHHQ IHZ ODUJH HYHQWV PE RU JUHDWHUf LQ WKH HDVWHUQ SDUW RI WKH SURYLQFH IRU DW OHDVW VHYHUDO WKRXVDQG \HDUV H[FHSW LQ WKH &KDUOHVWRQ UHJLRQ &RQVHTXHQWO\ D PDJQLWXGH RI PE LV OLNHO\ WR EH D SUXGHQW HVWLPDWH RI WKH PD[LPXP FUHGLEOH HDUWKTXDNH 7KHUH DUH QR NQRZQ UHSRUWV RI HDUWKTXDNHV RFFXUULQJ LQ WKH 3LHGPRQW&RDVWDO 3ODLQ SURYLQFH DQG EHLQJ IHOW LQ )ORULGDDQG WKH DVVLJQPHQW RI D PLQLPXP PDJQLWXGH WR WKLV SURYLQFH LV WKHUHIRUH QHFHVVDULO\ VXEMHFWLYH 7KHUH LV D NP VHSDUDWLRQ EHWZHHQ WKH ]RQH DQG WKH QRUWKHUQ ERUGHU RI )ORULGD ZKLFK VXJJHVWV WKDW DQ\ HYHQW VPDOOHU WKDQ DSSUR[LPDWHO\ PE LQ WKLV SURYLQFH ZRXOG FDXVH QR GDPDJH LQ )ORULGD $OWKRXJK WKHUH KDYH EHHQ VHYHUDO VWXGLHV RI HDUWKTXDNH UHFXUUHQFH LQ WKLV UHJLRQ %ROOLQJHU HW DO f LQFRUSRUDWHV D FRPSUHKHQVLYH UHYLHZ RI ERWK KLVWRULF LQWHQVLW\ GDWD DQG LQVWUXPHQWDO PDJQLWXGH GHWHUPLQDWLRQV )URP WKLV UHYLHZ WKH\ FDOFXODWHG D YDOXHV RI DERXW DQG E YDOXHV RI IRU WKH LQGLYLGXDO 3LHGPRQW DQG &RDVWDO 3ODLQ JHRJUDSKLF SURYLQFHV 7KH FRQVROLGDWLRQ RI WKH WZR JHRJUDSKLF SURYLQFHV LQWR D VLQJOH

PAGE 128

VHVPR WHF WRQLF SURYLQFH DQG WKH VXEVHTXHQW UHFDOFXODWLRQ RI %ROOLQJHUnV ILJXUHV \LHOGV DQ D YDOXH RI ZKLOH WKH E YDOXH RU VORSH RI WKH UHJUHVVLRQ OLQH UHPDLQV XQFKDQJHG DW 7KLV VXJJHVWV DYHUDJH UHFXUUHQFH LQWHUYDOV RI \HDUV IRU PDJQLWXGH DQG \HDUV IRU PDJQLWXGH HYHQWV 7KH 6RXWKHUQ $SSDODFKLDQ VHLVPRWHFWRQLF SURYLQFH ZKLFK ZDV RULJLQDOO\ GHVFULEHG E\ %ROOLQJHU $f LV ZHOOGHILQHG RQ PDSV RI HDUWKTXDNH DFWLYLW\ HJ )LJXUH f 7KLV SURYLQFH WUHQGV QRUWKHDVWZDUG JHQHUDOO\ DORQJ WKH WRSRJUDSKLF DSH[ RI WKH $SSDODFKLDQ 0RXQWDLQV DQG H[WHQGV IURP HDVWFHQWUDO 0LVVLVVLSSL WR ZHVWHUQ 9LUJLQLD 7KHUH KDV EHHQ D VLJQLILFDQW DPRXQW RI KLVWRULF DQG LQVWUXPHQWDOO\ UHFRUGHG VHLVPLF DFWLYLW\ DORQJ WKLV WUHQG LQFOXGLQJ VHYHQ HYHQWV ZLWK 00 LQWHQVLWLHV JUHDWHU WKDQ 9, DQG DQ LQWHQVLW\ 9,,, HYHQW LQ *LOHV &RXQW\ 9LUJLQD LQ 7KH *LOHV &RXQW\ HYHQW ZDV DSSUR[LPDWHO\ D PDJQLWXGH HYHQW DQG LV RQH RI WKH ODUJHVW KLVWRULF HDUWKTXDNHV WR KDYH RFFXUUHG LQ WKH HDVWHUQ 8QLWHG 6WDWHV +RXVQHU f HVWLPDWHV WHFWRQLF VHWWLQJV VLPLODU WR WKH 6RXWKHUQ $SSDODFKLDQ VHLVPRWHF WRQLF SURYLQFH WR EH FKDUDFWHUL]HG E\ PD[LPXP FUHGLEOH PDJQLWXGHV RI PM 7KH HVWLPDWHG PDJQLWXGH RI WKH *LOHV &RXQW\ HYHQW ZKLFK LV VLJQLILFDQWO\ OHVV WKDQ +RXVQHUnV DSSUR[LPDWLRQ VXJJHVWV PA WR EH D VDIH XSSHU ERXQG PDJQLWXGH IRU WKLV SURYLQFH $V PHQWLRQHG WKH PA &KDUOHVWRQ HDUWKTXDNH FDXVHG QR DSSUHFLDEOH GDPDJH LQ )ORULGD $W WKHLU FORVHVW ERXQGDULHV WKH &KDUOHVWRQ SURYLQFH DQG 6RXWKHUQ $SSDODFKLDQ SURYLQFH DUH DSSUR[LPDWHO\ HTXLGLVWDQW IURP )ORULGD 7KLV VXJJHVWV WKDW WKH

PAGE 129

PLQLPXP ERXQG PDJQLWXGH LQ WKH 6RXWKHUQ $SSDODFKLDQ SURYLQFH VKRXOG EH HTXLYDOHQW WR WKDW DVVLJQHG WR WKH &KDUOHVWRQ SURYLQFH PE f %DVHG RQ D FRPSLODWLRQ RI KLVWRULF DQG LQVWUXPHQWDO GDWD %ROOLQJHU HW DO f FDOFXODWHG WKH UHFXUUHQFH UHODWLRQVKLS IRU WKH 6RXWKHUQ $SSDODFKLDQ VHLVPRWHFWRQLF SURYLQFH WR EH DSSUR[LPDWHG E\ ORJ 1P PELBJ 7KHVH YDOXHV VXJJHVW UHFXUUHQFH LQWHUYDOV RI \HDUV IRU PDJQLWXGH HYHQWV DQG \HDUV IRU PDJQLWXGH HYHQWV 7KHVH D DQG E YDOXHV DUH YHU\ FORVH WR WKRVH FDOFXODWHG E\ &KLQQHU\ f IURP KLVWRULF LQWHQVLW\ GDWD ,Q DQG WKH VHLVPLFDOO\ DFWLYH 0LVVLVVLSSL 9DOOH\ DUHD H[SHULHQFHG WKUHH RI WKH ODUJHVW KLVWRULF LQWUDSODWH HDUWKTXDNHV HYHU GRFXPHQWHG 7KHVH ODUJH HYHQWV KDG HSLFHQWUDO 00 LQWHQVLWLHV RI ;;, DQG HVWLPDWHG PDJQLWXGHV PEf UDQJLQJ IURP WR 1XWWOL %f $OWKRXJK WKHVH HYHQWV DIIHFWHG PRVW RI WKH HDVWHUQ 8QLWHG 6WDWHV WKH\ ZHUH VFDUFHO\ IHOW LQ QRUWKHUQPRVW )ORULGD LH 00 LQWHQVLW\ ,,,f &RQVHTXHQWO\ LW ZRXOG VHHP WKDW HDUWKTXDNHV LQ WKLV SURYLQFH SRVH OLWWOH WKUHDW WR )ORULGD &RQVLGHULQJ WKH REVHUYHG PDJQLWXGHV RI WKHVH KLVWRULF HYHQWV LW LV SUXGHQW WR DVVLJQ DQ XQXVXDOO\ ODUJH PD[LPXP FUHGLEOH PDJQLWXGH WR WKLV SURYLQFH $V SUHYLRXVO\ PHQWLRQHG RQO\ WKUHH LQWUDSODWH HDUWKTXDNHV RI PDJQLWXGH RU JUHDWHU KDYH HYHU EHHQ GRFXPHQWHG 7KLV SUREDEO\ FRQVWUDLQV WKH PD[LPXP FUHGLEOH

PAGE 130

PDJQLWXGH IRU WKH 1HZ 0DGULG VHLVPRWHFWRQLF SURYLQFH WR QR JUHDWHU WKDQ DERXW PE $V VXJJHVWHG E\ WKH PLQLPDO HIIHFWV LQ )ORULGD GXULQJ WKH HDUWKTXDNHV WKH PLQLPXP VLJQLILFDQW PDJQLWXGH IRU WKH SXUSRVHV RI WKLV VWXG\ LV PE 7KH PDJQLWXGHUHFXUUHQFH UHODWLRQVKLS IRU WKH 1HZ 0DGULG VHLVPRWHFWRQLF SURYLQFH ZDV FDOFXODWHG E\ 1XWWOL f IURP KLVWRULF DQG LQVWUXPHQWDO GDWD 7KH D YDOXH ZDV IRXQG WR EH DSSUR[LPDWHO\ DQG WKH E YDOXH ZDV FDOFXODWHG WR EH DSSUR[LPDWHO\ 7KLV VXJJHVWV UHFXUUHQFH LQWHUYDOV RI \HDUV IRU PE HYHQWV DQG \HDUV IRU PE HYHQWV $ ODWHU VWXG\ EDVHG RQ VLPLODU GDWD VXJJHVWHG VOLJKWO\ ORQJHU LQWHUYDOV -RKQVWRQ DQG 1DYD f 6XEVHTXHQW SDOHROLTXHIDFWLRQ VWXGLHV DV VXPPDUL]HG E\ 5RGEHOO DQG 6FKZHLJ f KDYH VXJJHVWHG VLJQLILFDQWO\ ORQJHU LQWHUYDOVRQ WKH RUGHU RI \HDUV IRU HDUWKTXDNHV JUHDWHU WKDQ PE 7KXV LW DSSHDUV WKDW ODUJH HDUWKTXDNHV LQ WKH 0LVVLVVLSSL 9DOOH\ PD\ QRW UHFXU LQ DFFRUGDQFH ZLWK WKH ORJDULWKPLF *XWHQEHUJ5LFKWHU UHODWLRQVKLS 1HYHUWKHOHVV WKH XVH RI 1XWWOLnV FRHIILFLHQWV SURYLGHV D PDUJLQ RI VDIHW\ DQG ZLOO WKHUHIRUH EH XVHG LQ WKLV VWXG\ $ VHULHV RI GLVWLQFW VHLVPRWHFWRQLF IHDWXUHV H[WHQGV DORQJ WKH QRUWKHUQ &DULEEHDQ SODWH DW LWV ERXQGDU\ ZLWK WKH 1RUWK $PHULFDQ SODWH HJ %XUNH HW DO 0DQQ DQG %XUNH 0DWWVRQ f $OWKRXJK WKH HQWLUH SODWH ERXQGDU\ V\VWHP LV VHLVPLFDOO\ DFWLYH WKH &D\PDQ 7URXJK EHFDXVH RI LWV SUR[LPLW\ WR )ORULGD LV WKH RQO\ IHDWXUH RI LQWHUHVW IRU WKH SXUSRVH RI WKLV VWXG\ 7KH RWKHU IHDWXUHV DORQJ WKH SODWH ERXQGDU\ DUH WRR GLVWDQW DV VXJJHVWHG E\ WKH UHODWLYHO\ ORZ DPSOLWXGH RI JURXQG PRWLRQ DSSUR[LPDWHO\

PAGE 131

PLFURQV DW +]f UHFRUGHG DW WKH (YHUJODGHV VHLVPRJUDSK VWDWLRQ GXULQJ D UHODWLYHO\ ODUJH PE f HDUWKTXDNH LQ VRXWKHDVWHUQ &XED RQ 0D\ 7KH &D\PDQ 7URXJK LV D GLVWLQFW QDUURZ PRUSKRORJLFDO IHDWXUH H[WHQGLQJ IURP RII WKH QRUWK FRDVW RI +RQGXUDV WR MXVW ZHVW RI +LVSDQLROD 7KH VHLVPLFLW\ DVVRFLDWHG ZLWK WKH WURXJK FRYHUV D VOLJKWO\ ODUJHU DUHD DV GHPRQVWUDWHG LQ )LJXUH DQG RXWOLQHG LQ )LJXUH $OWKRXJK WKH HYHQW ZDV QRW IHOW LQ )ORULGD D GHVWUXFWLYH HDUWKTXDNH RI XQNQRZQ PDJQLWXGH QHDU VRXWKHUQ &XED RQ -DQ ZDV IHOW LQ .H\ :HVW VXJJHVWLQJ D VOLJKW SRWHQWLDO IRU GDPDJH IURP HYHQWV LQ WKLV SURYLQFH 7KHUH KDYH EHHQ VHYHUDO FRPSLODWLRQV RI VHLVPLF DFWLYLW\ DORQJ WKH QRUWKHUQ &DULEEHDQ SODWH PDUJLQ HJ 6\NHV DQG (ZLQJ 0ROQDU DQG 6\NHV 6\NHV HW DO DQG 0DQQ DQG %XUNH f 7KHVH FRPSLODWLRQV VXJJHVW D PD[LPXP FUHGLEOH PDJQLWXGH LQ WKH WR UDQJH IRU WKH &D\PDQ 7URXJK (EDVFR f 1RW VXUSULVLQJO\ KRZHYHU WKH VHLVPLF UHFRUG LV UDWKHU OLPLWHG 7KH WHFWRQLF VHWWLQJ RI WKH WURXJK LQGLFDWHV WKH SRWHQWLDO IRU VLJQLILFDQWO\ ODUJHU HYHQWV+RXVQHU f VXJJHVWV PE DV D PD[LPXP FUHGLEOH PDJQLWXGH IRU ]RQHV SUR[LPDO WR D JUHDW IDXOW %DVHG RQ WKH OHYHO RI JURXQG PRWLRQ LQ VRXWK )ORULGD GXULQJ WKH HDUWKTXDNH WKH PLQLPXP VLJQLILFDQW HDUWKTXDNH LQ WKLV SURYLQFH LV FRQVLGHUHG WR EH PE (EDVFR f LQ D VLWH VSHFLILF VHLVPLF KD]DUG DVVHVVPHQW FDOFXODWHG D DQG E YDOXHV IRU WKH &D\PDQ 7URXJK IURP WKH SUHYLRXVO\ PHQWLRQHG FRPSLODWLRQV RI &DULEEHDQ HDUWKTXDNHV 7KHVH YDOXHV DUH DQG UHVSHFWLYHO\ 7KLV LQGLFDWHV UHFXUUHQFH

PAGE 132

LQWHUYDOV RI DSSUR[LPDWHO\ \HDUV IRU HYHQWV DQG \HDUV IRU HYHQWV

PAGE 133

&+$37(5 6(,60,& $77(18$7,21 ,1 7+( )/25,'$ 5(*,21 6HLVPLF DWWHQXDWLRQ LV GHILQHG DV D UHGXFWLRQ LQ DPSOLWXGH RU HQHUJ\ RI D WUDQVPLWWHG ZDYH ZLWK GLVWDQFH $V LW LV GHSHQGHQW RQ WKH SK\VLFDO FKDUDFWHULVWLFV RI WKH WUDQVPLWWLQJ PHGLXP VHLVPLF DWWHQXDWLRQ LQ WKH OLWKRVSKHUH PD\ YDU\ E\ DQ RUGHU RI PDJQLWXGH RU PRUH IURP UHJLRQ WR UHJLRQ HJ 1XWWOL $f 7KLV VSDWLDO YDULDWLRQ DFFRXQWV IRU PDUNHG GLIIHUHQFHV LQ WKH GHVWUXFWLYH HIIHFWV RI VLPLODUO\ VL]HG HDUWKTXDNHV LQ GLIIHUHQW UHJLRQV 7KXV D ORFDO FKDUDFWHUL]DWLRQ RI OLWKRVSKHULF DWWHQXDWLRQ LV D VLJQLILFDQW IDFWRU LQ DFFXUDWHO\ DVVHVVLQJ VHLVPLF KD]DUG DW D SDUWLFXODU VLWH 7KHUH KDV EHHQ QR LQGHSHQGHQW FDOFXODWLRQ RI OLWKRVSKHULF DWWHQXDWLRQ LQ )ORULGD &RQVHTXHQWO\ ORFDO VHLVPLF KD]DUG DVVHVVPHQWV KDYH SULPDULO\ XWLOL]HG JHQHUDOL]HG FRHIILFLHQWV IRU WKH HQWLUH FHQWUDO RU HDVWHUQ 8QLWHG 6WDWHV HJ (EDVFR f 7KHUH LV OLWWOH WR VXEVWDQWLDWH WKH DVVXPSWLRQ WKDW DWWHQXDWLRQ LQ )ORULGD LV FRPSDUDEOH WR DWWHQXDWLRQ LQ RWKHU SDUWV RI WKH FRQWLQHQW ,W LV SODXVLEOH WKDW WKH DOORFKWKRQRXV SODWHDX FUXVW LV FKDUDFWHUL]HG E\ LQKHUHQWO\ GLIIHUHQW PHFKDQLFDO SURSHUWLHV WKDQ RWKHU UHJLRQV RI WKH 8QLWHG 6WDWHV ,Q DGGLWLRQ SDVW VWXGLHV KDYH VXJJHVWHG WKDW WKLFN VHGLPHQWDU\ DFFXPXODWLRQV VXFK DV LQ )ORULGD DQG WKH &RDVWDO 3ODLQ SURYLQFH DFW WR VWURQJO\ DWWHQXDWH VHLVPLF HQHUJ\ HJ 0LWFKHOO DQG

PAGE 134

+ZDQJ &KDSPDQ HW DO f $FFRUGLQJO\ WKH REMHFWLYH LQ WKLV FKDSWHU LV WR SURYLGH DQ LPSURYHG FKDUDFWHUL]DWLRQ RI FUXVWDO DWWHQXDWLRQ LQ )ORULGD 7KHUH DUH WZR SULPDU\ IDFWRUV WKDW FRQWULEXWH WR WKH DWWHQXDWLRQ RI VHLVPLF VLJQDOV JHRPHWULF VSUHDGLQJ DQG DEVRUSWLRQ :KLOH DEVRUSWLRQ UHVXOWV IURP VHYHUDO GLIIHUHQW PHFKDQLVPV VXFK DV VFDWWHULQJ DQG GLVSHUVLRQ LQ SUDFWLFH LW LV QHLWKHU IHDVLEOH QRU QHFHVVDU\ WR GLVWLQJXLVK EHWZHHQ WKHVH PHFKDQLVPV /RFDO FRHIILFLHQWV IRU DEVRUSWLRQ Df DUH XVXDOO\ FDOFXODWHG IURP WKH GHFD\ LQ DPSOLWXGH $f RI D VHLVPLF VLJQDO ZLWK GLVWDQFH WUDYHOHG Gf DV JLYHQ E\ $Gf $RUQHBDG HJ +RZHOO f ZKHUH $T LV WKH LQLWLDO DPSOLWXGH U LV WKH UDGLXV RI WKH ZDYH IURQW DQG Q LV WKH FRHIILFLHQW RI JHRPHWULF VSUHDGLQJ XVXDOO\ IRU ERG\ ZDYHVf 5HJLRQDO YDOXHV IRU D DOVR UHIHUUHG WR DV \ LQ WKH OLWHUDWXUHf LQ WKH 8QLWHG 6WDWHV W\SLFDOO\ UDQJH IURP NP WR NP GHSHQGLQJ RQ WKH ORFDWLRQ DQG PDJQLWXGH HJ 1XWWOL f 7DEOH f $QRWKHU FRPPRQO\ XVHG WHUP IRU DEVRUSWLRQ LV 4? WKH TXDOLW\ IDFWRU 4" LV UHODWHG WR D E\ 4 QID Y ZKHUH In LV WKH IUHTXHQF\ DQG Y LV WKH YHORFLW\ RI WKH ZDYH WUDLQ $Q H[DPSOH LQ WKH UDQJH RI YDOXHV IRU 4n DW +]f LQ WKH 8QLWHG

PAGE 135

7DEOH $EVRUSWLRQ FRHIILFLHQWV Df IRU WKH ZHVWHUQ DQG FHQWUDO 8QLWHG 6WDWHV 1XWWOL &DPSEHOO f

PAGE 136

6WDWHV LV SURYLGHG E\ 1XWWOL f ZKR IRXQG 4n IRU /RYH ZDYHV WR UDQJH IURP DSSUR[LPDWHO\ LQ VRXWKHUQ &DOLIRUQLD D YDOXH LQGLFDWLYH RI VWURQJ DEVRUSWLRQ WR DSSUR[LPDWHO\ LQ WKH FHQWUDO 8QLWHG 6WDWHV LQGLFDWLQJ UHODWLYHO\ OLWWOH DEVRUSWLRQ 4n LQ WKH HDVWHUQ 8QLWHG 6WDWHV DYHUDJHV DERXW LQ WKH $SSDODFKLDQV DORQJ WKH $WODQWLF &RDVWDO 3ODLQ DQG LQ WKH *XOI &RDVWDO 3ODLQ 6LQJK DQG +HUPDQQ *XSWD DQG 0F/DXJKOLQ &KDSPDQ DQG 5RJHUV f 2QH SRWHQWLDO VRXUFH RI HUURU LQ XVLQJ DPSOLWXGH GHFD\ WR GHWHUPLQH DEVRUSWLRQ DULVHV IURP WKH SKHQRPHQRQ WKDW KLJKHU IUHTXHQFLHV DUH DWWHQXDWHG PRUH VWURQJO\ WKDQ ORZHU IUHTXHQFLHV ,Q RUGHU WR PLQLPL]H WKLV VRXUFH RI HUURU VLJQDOV IURP ORFDO HDUWKTXDNHV RU ORFDO QXFOHDU EODVWVf DUH SUHIHUHQWLDOO\ XWLOL]HG RYHU PRUH GLVWDQW HYHQWV 7KLV FRQVWUDLQW WR XVH ORFDO HYHQWV LV FRXQWHUHG WR VRPH H[WHQW E\ WKH QHHG IRU WKH VLJQDO WR WUDYHO VXIILFLHQWO\ IDU JHQHUDOO\ PRUH WKDQ NP IRU WKH HIIHFWV RI DEVRUSWLRQ WR EHFRPH VLJQLILFDQW 7KH XQLTXH JHRORJLF KLVWRU\ RI WKH )ORULGDQ 3ODWHDX VXJJHVWV WKDW ORFDO YDOXHV RI DEVRUSWLRQ PD\ GLIIHU IURP WKRVH DVVLJQHG WR WKH FHQWUDO DQG HDVWHUQ 8QLWHG 6WDWHV &RQVHTXHQWO\ LQ DGGLWLRQ WR PRQLWRULQJ UHJLRQDO VHLVPLF DFWLYLW\ DQRWKHU SXUSRVH RI WKH 8QLYHUVLW\ RI )ORULGD 6HLVPRJUDSK 1HWZRUN LV WR DOORZ D GLVFULPLQDWLRQ RI ORFDO YDOXHV IRU VHLVPLF DEVRUSWLRQ 8QIRUWXQDWHO\ WKH SDXFLW\ RI ORFDO HDUWKTXDNHV DQG ODUJH EODVWV KLQGHUV WKH SURFHVV RI GHWHUPLQLQJ WKHVH YDOXHV 1HYHUWKHOHVV FHUWDLQ LQIHUHQFHV FDQ EH PDGH IURP LVRVHLVPDO PDSV RI ODUJH UHJLRQDO HDUWKTXDNHV IURP ORFDO JURXQG PRWLRQ DPSOLWXGHV UHVXOWLQJ IURP GLVWDQW HYHQWV DQG IURP

PAGE 137

VWXGLHV RI DWWHQXDWLRQ LQ DUHDV ZLWK VLPLODU WKLFN VHGLPHQWDU\ DFFXPXODWLRQV VXFK DV WKH VRXWKHDVWHUQ &RDVWDO 3ODLQ 7KHUH KDV EHHQ RQO\ RQH HDUWKTXDNH LQ )ORULGD VXIILFLHQWO\ ZHOOGRFXPHQWHG WR FRQWULEXWH WR D ORFDO VWXG\ RI DWWHQXDRQD PA HYHQW ORFDWHG DERXW NP VRXWK RI 2UODQGR RQ 2FW $ 0RGLILHG 0HUFDOOL LVRVHLVPDO PDS ZDV VXEVHTXHQWO\ SURGXFHG E\ /RQJ f ZKR IRXQG WKH PD[LPXP LQWHQVLW\ WR KDYH EHHQ 00 LQWHQVLW\ 9 $ PHWKRG ZDV GHYHORSHG WR DOORZ WKH HVWLPDWLRQ RI D ORFDO FRHIILFLHQW RI DEVRUSWLRQ IURP WKLV LVRVHLVPDO PDS 7KLV PHWKRG XWLOL]HV &DPSEHOOnV f HTXDWLRQ UHODWLQJ SHDN JURXQG DFFHOHUDWLRQ 3*$f PRPHQW PDJQLWXGH 0f HSLFHQWUDO GLVWDQFH LQ NPV 5f DQG DEVRUSWLRQ Df DV IROORZV 3*$ H0 U fO HaD5 6ROYLQJ IRU DEVRUSWLRQ \LHOGV D 0 OQ3*$5 fn/f 5 ,Q RUGHU WR HVWLPDWH D IURP LVRVHLVPDO PDSV LW LV QHFHVVDU\ WR FDOFXODWH WKH PDJQLWXGH DQG HVWLPDWH SHDN JURXQG DFFHOHUDWLRQ DW VRPH GLVWDQFH IURP WKH HSLFHQWHU 7KH UHODWLRQVKLS EHWZHHQ ERG\ ZDYH PDJQLWXGH DQG SHDN LQWHQVLW\ ZDV GLVFXVVHG LQ &KDSWHU $V JLYHQ E\ 1XWWOL f PRPHQW PDJQLWXGH 0f LV UHODWHG WR ERG\ ZDYH PDJQLWXGH PAf E\ 0 UULE IRU PE JUHDWHU WKDQ RU HTXDO WR f

PAGE 138

RU 0 PE IRU PE OHVV WKDQ f 7KH HVWLPDWLRQ RI SHDN JURXQG DFFHOHUDWLRQ LQ PVf IURP 00 LQWHQVLW\ ,f ZDV FDOFXODWHG E\ *XWHQEHUJ DQG 5LFKWHU f WR EH ORJL3*$ ,f r (VVHQWLDOO\ WKLV LQWHQVLW\DEVRUSWLRQ PHWKRG UHTXLUHV WKH PHDVXUHPHQW RI WKH PHDQ UDGLXV 5f LQ NPV IURP WKH HSLFHQWHU WR D ZHOOHVWDEOLVKHG LVRVHLVPDO OLQH XVXDOO\ 00 LQWHQVLW\ ,, RU ,,, 8WLOL]LQJ WKH PHDQ UDGLXV PLQLPL]HV WKH ELDVLQJ HIIHFWV RI GLIIHUHQWLDO VLWH UHVSRQVH DQG SRSXODWLRQ GLVWULEXWLRQ 7KH SHDN JURXQG DFFHOHUDWLRQ DW WKDW PHDQ UDGLXV PD\ EH DSSUR[LPDWHG IURP WKH LVRVHLVPDO LQWHQVLW\ DQG WKH *XWHQEHUJ5LFKWHU UHODWLRQVKLS )RU H[DPSOH 00 LQWHQVLW\ ,9 LV DSSUR[LPDWHO\ J 00 LQWHQVLW\ ,,, LV DERXW J DQG 00 LQWHQVLW\ ,, LV DERXW J 2QFH WKH YDOXHV IRU PDJQLWXGH 0f SHDN JURXQG DFFHOHUDWLRQ 3*$f DQG UDGLDO GLVWDQFH 5f KDYH EHHQ HVWDEOLVKHG &DPSEHOOnV UHODWLRQVKLS PD\ EH XVHG WR FDOFXODWH WKH DEVRUSWLRQ FRHIILFLHQW %HIRUH DSSO\LQJ WKLV LQWHQVLW\DEVRUSWLRQ PHWKRG LQ DQ DVVHVVPHQW RI DWWHQXDWLRQ LQ )ORULGD LW ZDV QHFHVVDU\ WR ILUVW WHVW LW RQ HDUWKTXDNHV LQ UHJLRQV ZKHUH DEVRUSWLRQ FRHIILFLHQWV KDYH EHHQ SUHYLRXVO\ FDOFXODWHG XVLQJ FRQYHQWLRQDO PHWKRGV VSHFLILFDOO\ WKH FHQWUDO DQG ZHVWHUQ 8QLWHG 6WDWHV 7KH ILUVW WHVW FDVH ZDV WKH

PAGE 139

QRUWKHUQ .HQWXFN\ HDUWKTXDNH RI -XO\ 7KLV HDUWKTXDNH KDG D PDJQLWXGH RI ZKLFK HTXDWHV WR D PRPHQW PDJQLWXGH 0f RI 0LQVFK HW DO f $V H[WUDSRODWHG IURP 7DEOH WKH H[SHFWHG DEVRUSWLRQ FRHIILFLHQW DW WKLV PDJQLWXGH LQ WKH FHQWUDO 8QLWHG 6WDWHV LV DERXW NP )LJXUH DQ LVRVHLVPDO PDS RI WKLV HDUWKTXDNH LQGLFDWHV DQ DSSUR[LPDWH DYHUDJH UDGLDO GLVWDQFH 5f RI NPV IURP WKH HSLFHQWHU WR WKH HGJH RI WKH DUHD LQ ZKLFK WKH HDUWKTXDNH ZDV JHQHUDOO\ IHOW 00 LQWHQVLW\ ,,f )URP WKH *XWHQEHUJ5LFKWHU UHODWLRQVKLS WKH SHDN JURXQG DFFHOHUDWLRQ 3*$f DW WKLV LVRVHLVPDO OLQH LV J %\ &DPSEHOOnV UHODWLRQVKLS WKLV FRPELQDWLRQ RI PDJQLWXGH GLVWDQFH DQG SHDN JURXQG DFFHOHUDWLRQ \LHOGV DQ D FRHIILFLHQW RI NPn ZKLFK LV HVVHQWLDOO\ HTXLYDOHQW WR WKH H[SHFWHG YDOXH 7KH ODUJHVW WHVW HYHQW ZDV D PRPHQW PDJQLWXGH 0f HDUWKTXDNH RQ 2FWREHU LQ FHQWUDO ,GDKR 6WRYHU f 7KH 86*6 LVRVHLVPDO PDS IRU WKLV HDUWKTXDNH LV VKRZQ LQ )LJXUH 7KH DYHUDJH UDGLDO GLVWDQFH 5f WR WKH PRVW GLVWDQW LVRVHLVPDO OLQH LV DSSUR[LPDWHO\ NPV $V EHIRUH WKLV OLQH UHSUHVHQWV WKH GLVWDQFH WR D SHDN JURXQG DFFHOHUDWLRQ RI J 00 LQWHQVLW\ Qf \LHOGLQJ DQ D YDOXH RI NP $V VKRZQ LQ 7DEOH WKLV LV LGHQWLFDO WR 1XWWOLnV H[SHFWHG YDOXH $ QXPEHU RI HDUWKTXDNHV ZHUH FKDUDFWHUL]HG LQ WKLV PDQQHU VRPH H[DPSOHV DUH VKRZQ LQ 7DEOH ,Q WKH FHQWUDO DQG ZHVW FHQWUDO 8QLWHG 6WDWHV WKLV PHWKRG SURGXFHG DEVRUSWLRQ FRHIILFLHQWV WKDW ZHUH UHDVRQDEO\ FORVH WR WKH H[SHFWHG YDOXHV LQ 7DEOH GHVSLWH WKH SRWHQWLDO HUURUV UHVXOWLQJ IURP YDULDEOH ORFDO VLWH UHVSRQVHV DQG SRSXODWLRQ GLVWULEXWLRQ SDWWHUQV 7KH FDOFXODWHG DEVRUSWLRQ

PAGE 140

r D n D D W H[SODQDWLRQ R r (SLFHQWHU U )HOW DW LQWHQVLW\ 7 ? f m, L ? 1RW IHOW NP :,6&216,1 0,&+,*$1 L 7RURQWR ? r m f &KWFRJR L ,//,12,6 ,1',$1$r M f L <25. I r L 3(116
PAGE 141

OO,9 7 rrUUWVQ 9 r } K? , f ,,, :$6WrAFURV ,,,,, PLOFRV &D;M!TK 0 f f m } n OO,9 c Q V f L V , ?L f f f A/%RUU$O ‘ f f f f f n2IIr ,&r ;3O$$$IO2r f f f f f f fr 66N$7,A$1 f 6, } A &$1$'$ ,1L7(' } -r f L OO,9 f r M r 9, X L }L ,% n ? f ,; ? ? L 9, r OO,9 V $2 $ 0217$1$ f f f 6 ff f f f f 8,20,0 0 200;} IURP 6WRYHU f PD3 IRU WKH FHQWUDO

PAGE 142

/RFDWLRQ 5HIHUHQFH +DJQLWXGH +f 'LVWDQFH 5f 3*$ DW 5 $EVRU'WLRQ ([SHFWHG &RHII &DOFXODWHG 1 .HQWXFN\ -XO\ 0LQDFQ HW DO f NP J 6 ,OOLQRLV -LQH 5HDJRU DQG %UHZHU f NP J 6 ,OOLQRLV 1RY *RUGRQ HW DO f NP J 6 ,OOLQRLV +D\ 6WRYHU f NP J 1: +RQWDQD )HR 6WRYHU f NP J ( :\RPLQJ 2FW 6WRYHU f NP J 1( :\RPLQJ 1D\ 6WRYHU f NP J &HQWUDO ,GDKR $XJ 6WRYHU f NP J &HQWUDO ,GDKR 6WRYHU f NP D 2FW : ,GDKR WLRY 6WRYHU HW DO f NP J 1 2UHJRQ $SU 3HUVRQ HW DO f NP J 1: :DVKLQJWRQ +D\ 3HUVRQ HW DO f NP J 1: 1HZ 0H[LFR 0DUFK 6LPRQ HW DO f NP J &HQWUDO &DOLI $SULO 6WRYHU HW DO f NP J &HQWUDO &DOLI 0D\ 6WRYHU HW DO f NP J &HQWUDO &DOLI 6WRYHU f NP J 2FWREHU &HQWUDO &DOLI 6WRYHU f NP J -DQ 6 &DOLIRUQLD $SULO 6WRYHU HW DO f NP J 6 &DOLIRUQLD -XQH 5HDJRU HW DO f NP J 7DEOH 3DUDPHWHUV DQG UHVXOWDQW HVWLPDWHG DEVRUSWLRQ FRHIILFLHQWV IRU YDULRXV HDUWKTXDNHV DV JURXSHG E\ UHJLRQ ([SHFWHG FRHIILFLHQWV DUH IURP 7DEOH DQG FDOFXODWHG FRHIILFLHQWV ZHUH GHULYHG XVLQJ WKH PHWKRGV GHVFULEHG LQ WKH WH[W

PAGE 143

FRHIILFLHQWV LQ &DOLIRUQLD DQG WKH 3DFLILF QRUWKZHVW ZHUH FRQVLVWHQWO\ KLJKHU WKDQ WKH H[SHFWHG UHJLRQDO YDOXHV 7KLV ORFDOO\ KLJK VHLVPLF DWWHQXDWLRQ KDV EHHQ SUHYLRXVO\ REVHUYHG 1XWWOL 6LQJK DQG +HUPDQQ f DQG SUREDEO\ UHVXOWV IURP ZDYH VFDWWHULQJ LQ WKH KHDYLO\ IUDFWXUHG OLWKRVSKHUH SUR[LPDO WR WKH WHFWRQLFDOO\ DFWLYH SODWH ERXQGDU\ HJ 3XOOL DQG $NL f &RQVHTXHQWO\ GHVSLWH WKHVH ORFDOO\ KLJK YDOXHV LW DSSHDUV WKDW DOO RI WKH UHVXOWV DUH JHQHUDOO\ FRQVLVWHQW ZLWK SUHYLRXV REVHUYDWLRQV LQGLFDWLQJ WKLV WR EH D YLDEOH PHWKRG IRU HVWLPDWLQJ DEVRUSWLRQ FRHIILFLHQWV IURP LVRVHLVPDO PDSV 7KH FDOFXODWLRQ RI DQ DEVRUSWLRQ FRHIILFLHQW IRU WKH ZDYHIURQW SDWK EHWZHHQ WKH &KDUOHVWRQ VHLVPR WHF WRQLF SURYLQFH DQG )ORULGD LV YLWDO IRU DFFXUDWHO\ DVVHVVLQJ VHLVPLF KD]DUG LQ )ORULGD &RQVHTXHQWO\ WKH LQWHQVLW\DEVRUSWLRQ PHWKRG ZDV DSSOLHG WR WKH &KDUOHVWRQ HDUWKTXDNH ZKLFK LV HVWLPDWHG WR KDYH EHHQ D PDJQLWXGH PE 0 f HYHQW %ROOLQJHU f %ROOLQJHUnV 00 LQWHQVLW\ LVRVHLVPDO PDS LV VKRZQ LQ )LJXUH $Q DEVRUSWLRQ FRHIILFLHQW ZDV ILUVW FDOFXODWHG LQ D ZHVW WR QRUWKZHVW GLUHFWLRQ IURP WKH HSLFHQWHU SHUSHQGLFXODU WR WKH $SSDODFKLDQ UHJLRQDO WUHQG 7KH DYHUDJH UDGLDO GLVWDQFH WR D SHDN LQWHQVLW\ RI ,9 ZKLFK HTXDWHV WR D SHDN JURXQG DFFHOHUDWLRQ RI J LV DSSUR[LPDWHO\ NPV 7KHVH YDOXHV \LHOG DQ D YDOXH RI NP ZKLFK LV VOLJKWO\ KLJKHU WKDQ H[SHFWHG YDOXHV IRU WKH FHQWUDO 8QLWHG 6WDWHV EXW VLJQLILFDQWO\ ORZHU WKDQ FRPSDUDEOH DEVRUSWLRQ FRHIILFLHQWV LQ WKH ZHVWHUQ 8QLWHG 6WDWHV HJ 7DEOH f )RU DQ DVVXPHG IUHTXHQF\ RI +] DQG D ZDYHWUDLQ YHORFLW\ RI

PAGE 144

)LJXUH 0RGLILHG 0HUFDOOL LQWHQVLW\ LVRVHLVPDO PDS IRU WKH &KDUOHVWRQ HDUWKTXDNH IURP %ROOLQJHU f

PAGE 145

NPVHF WKLV HTXDWHV WR D 4YDOXH RI $OWKRXJK WKLV LV PRGHUDWHO\ ORZHU WKDQ KDV EHHQ REWDLQHG LQ RWKHU VWXGLHV RI 4BLQ WKH HDVWHUQ 8QLWHG 6WDWHV HJ 6LQJK DQG +HUPDQQ *XSWD DQG 0F/DXJKOLQ &KDSPDQ DQG 5RJHUV f WKLV LV DOPRVW FHUWDLQO\ DWWULEXWDEOH WR WKH KLJK PRPHQW RI WKH HYHQW DQG LWV &RDVWDO 3ODLQ RULJLQ 7KH DEVRUSWLRQ FRHIILFLHQW ZDV WKHQ FDOFXODWHG LQ D VRXWKZHVWHUO\ GLUHFWLRQ IURP WKH HSLFHQWHU HQFRPSDVVLQJ WKH &RDVWDO 3ODLQ UHJLRQ EHWZHHQ &KDUOHVWRQ DQG )ORULGD 7KH DYHUDJH GLVWDQFH WR 00 LQWHQVLW\ 9 3*$ Jf LQ WKLV GLUHFWLRQ LV NPV 7KLV \LHOGV DQ DEVRUSWLRQ FRHIILFLHQW RI NP $OWHUQDWLYHO\ WKH DYHUDJH GLVWDQFH WR 00 LQWHQVLW\ ,9 3*$ Jf PD\ DOVR EH XVHG 7KLV LV DERXW NPV DQG \LHOGV D VOLJKG\ ORZHU D FRHIILFLHQW NPn 7KH ORZ SRSXODWLRQ GHQVLW\ RI FHQWUDO )ORULGD HJ )HPDOG f GXULQJ WKH nV VXJJHVWV WKDW WKH LQWHQVLW\ ,9 LVRVHLVPDO OLQH LV SUREDEO\ OHVV DFFXUDWH WKDQ WKH LQWHQVLW\ 9 OLQH ZKLFK H[WHQGHG WKURXJK WKH PRUH GHQVHO\ SRSXODWHG FRDVWDO DUHDV )LJXUH f 7KXV WKH NP YDOXH LV VXVSHFW $Q DYHUDJH YDOXH RI NP OLNHO\ UHSUHVHQWV D FRQVHUYDWLYH YDOXH IRU WKH SXUSRVHV RI VHLVPLF KD]DUG DVVHVVPHQW $VVXPLQJ DV EHIRUH D IUHTXHQF\ RI +] DQG D ZDYHWUDLQ YHORFLW\ RI NPV WKLV YDOXH HTXDWHV WR D 4 RI $Q DEVRUSWLRQ FRHIILFLHQW RI NPn IRU D PDJQLWXGH 0f HYHQW LV HVVHQWLDOO\ WKH VDPH DV ZDV FDOFXODWHG DFURVV WKH $SSDODFKLDQ WUHQG DQG UHSUHVHQWV D PRGHUDWHO\ KLJKHU DWWHQXDWLRQ WKDQ LQ WKH FHQWUDO 8QLWHG 6WDWHV EXW VLJQLILFDQWO\ ORZHU WKDQ WKH DYHUDJH ZHVWHUQ 8QLWHG 6WDWHV YDOXHV 7DEOH f 7KLV FRUUHVSRQGV

PAGE 146

FORVHO\ WR SUHOLPLQDU\ DEVRUSWLRQ FRHIILFLHQWV FDOFXODWHG IURP 8QLYHUVLW\ RI )ORULGD VHLVPRJUDPV RI UHFHQW HDUWKTXDNHV LQ WKH VRXWKHUQ $SSDODFKLDQV %HOOLQL HW DO f 7KH LQWHQVLW\DEVRUSWLRQ PHWKRG ZDV WKHQ DSSOLHG WR WKH WKH 2FW )ORULGD HDUWKTXDNH 7KLV HDUWKTXDNH KDG DQ DSSUR[LPDWH ERG\ZDYH PDJQLWXGH RI /RQJ f ZKLFK LV HTXLYDOHQW WR D PRPHQW PDJQLWXGH 0f RI $Q LVRVHLVPDO PDS RI WKLV HDUWKTXDNH LV VKRZQ LQ )LJXUH 7KH DYHUDJH UDGLDO GLVWDQFH 5f WR WKH 00 LQWHQVLW\ ,, 3*$ Jf LVRVHLVPDO 8QH LV NPV 7KLV VXJJHVWV DQ DEVRUSWLRQ FRHIILFLHQW RI NP ,W VKRXOG EH QRWHG KRZHYHU WKDW /RQJnV PDJQLWXGH FDOFXODWLRQ KDG D SRVVLEOH HUURU UDQJH RI PA XQLWV VXJJHVWLQJ D SRWHQWLDO UDQJH RI NP WR NP IRU D (YHQ ZLWKLQ WKLV UDQJH D FRPSDULVRQ ZLWK WKH HTXLYDOHQW DEVRUSWLRQPDJQLWXGH YDOXHV LQ 7DEOH DJDLQ VXJJHVWV D PRGHUDWHO\ KLJKHU DWWHQXDWLRQ LQ WKH )ORULGD UHJLRQ WKDQ LQ WKH FHQWUDO 8QLWHG 6WDWHV $ IXUWKHU DSSOLFDWLRQ RI WKLV PHWKRG LV WKDW PLQLPXP DEVRUSWLRQ FRHIILFLHQWV PD\ EH FDOFXODWHG ZLWKRXW XVLQJ LVRVHLVPDO PDSV )RU H[DPSOH WKH PA 0 f HDUWKTXDNH LQ VRXWKHDVWHUQ &XED RQ 0D\ ZDV QRW IHOW LQ )ORULGD 7KLV VXJJHVWV D PD[LPXP 00 LQWHQVLW\ RI ,, RU D SHDN JURXQG DFFHOHUDWLRQ RI QR PRUH WKDQ J LQ VRXWKHUQPRVW )ORULGD 7KH HSLFHQWUDO GLVWDQFH WR WKH VRXWKHUQ WLS RI )ORULGD LV DSSUR[LPDWHO\ NPV 8VLQJ WKHVH YDOXHV DV 0 3*$ DQG 5 UHVSHFWLYHO\ DOORZV WKH FDOFXODWLRQ RI D PLQLPXP YDOXH IRU D &RQVLGHULQJ WKH VLJQLILFDQW WKLFNQHVV RI WKH VHGLPHQWDU\ DFFXPXODWLRQV DQG WKH SUHVHQFH RI WKH LQWHUFHGHQW 6WUDLWV RI )ORULGD DORQJ WKLV ZDYH SDWK D UHODWLYHO\ KLJK DEVRUSWLRQ

PAGE 147

-DFNVRQYLOOH NLORPHWHUV AD\WRQD rrr r %HDFK D W f n7LWXVYLOOH r 2UODQGR \ 7DPSDm m0HOERXUQH ? < f )LJXUH 0RGLILHG 0HUFDOOL LQWHQVLW\ PDS IRU WKH )ORULGD HDUWKTXDNH RI 2FWREHU DIWHU /RQJ f

PAGE 148

FRHIILFLHQW ZRXOG EH H[SHFWHG ,Q WKLV FDVH WKH FDOFXODWHG PLQLPXP D LV NPO )URP 7DEOH WKLV YDOXH UHSUHVHQWV DQ DYHUDJH RI WKH YDOXHV IURP WKH FHQWUDO DQG ZHVWHUQ 8QLWHG 6WDWHV DQG DV H[SHFWHG LV PRGHUDWHO\ KLJKHU UHODWLYH WR WKH RWKHU FDOFXODWHG DEVRUSWLRQ YDOXHV LQ WKH )ORULGD UHJLRQ $OWKRXJK WKLV PLQLPXP YDOXH VHHPV LQWXLWLYHO\ UHDVRQDEOH LW LV SRVVLEOH WKDW WKH DFWXDO YDOXH LV VLJQLILFDQWO\ KLJKHU 7KXV VHLVPLF DWWHQXDWLRQ RQ WKH )ORULGDQ 3ODWHDX DQG WKH DGMDFHQW UHJLRQV RI 1RUWK $PHULFD DSSHDUV WR EH VOLJKWO\ KLJKHU WKDQ DWWHQXDWLRQ LQ WKH FHQWUDO 8QLWHG 6WDWHV EXW VLJQLILFDQWO\ OHVV WKDQ LQ WKH ZHVWHUQ 8QLWHG 6WDWHV 'HVSLWH WKH DOORFKWKRQRXV RULJLQ RI WKH SODWHDX EDVHPHQW WKLV LV FRQVLVWHQW ZLWK RWKHU LQGLFDWRUV RI DWWHQXDWLRQ LQ WKH HDVWHUQ 8QLWHG 6WDWHV )XUWKHUPRUH DWWHQXDWLRQ DORQJ WKH ZDYH SDWK EHWZHHQ WKH &D\PDQ 7URXJK VHLVPR WHF WRQLF SURYLQFH DQG )ORULGD DSSHDUV WR EH DW OHDVW PRGHUDWHO\ KLJKHU WKDQ DWWHQXDWLRQ LQ WKH HDVWHUQ FRQWLQHQWDO 8QLWHG 6WDWHV DQG PD\ EH VLJQLILFDQWO\ KLJKHU

PAGE 149

&+$37(5 6(,60,& +$=$5' ,1 )/25,'$ 7KHUH LV D VSHFLILF VHTXHQFH RI VWHSV QHFHVVDU\ IRU WKH SUREDELOLVWLF DVVHVVPHQW RI VHLVPLF KD]DUG DW VLWHV ZLWK KLVWRULFDOO\ ORZ OHYHOV RI VHLVPLF DFWLYLW\ &RUQHOO
PAGE 150

EHWZHHQ WKH VRXUFH DQG WKH VLWH DQG WKH DWWHQXDWLRQ DORQJ WKH ZDYH SDWK ,W LV UHSHDWHG IRU HDFK RI 1 VLJQLILFDQW VHLVPRWHF WRQLF VRXUFHV RU SURYLQFHV RYHU D UDQJH RI DFFHOHUDWLRQV 7KH SUREDELOLW\ SHU \HDU RI H[FHHGLQJ D SDUWLFXODU DFFHOHUDWLRQ 3>$ D@f DW WKH VLWH LV WKHQ WKH VXPPDWLRQ RI WKH LQGLYLGXDO SUREDELOLWLHV FDOFXODWHG IRU HDFK VRXUFH RU SURYLQFH DV JLYHQ E\ 1 rcDf 3>$!D@ OH ZKHUH $MDf UHSUHVHQWV WKH DQQXDO PHDQ QXPEHU RI HYHQWV SURGXFLQJ DQ DFFHOHUDWLRQ JUHDWHU WKDQ D GXH WR VRXUFH L 7KHUH DUH VHYHUDO SURJUDPV DYDLODEOH IRU WKLV W\SH RI VHLVPLF KD]DUG DVVHVVPHQW 7KH RQH VHOHFWHG IRU WKLV VWXG\ LV 6(,65,6. ,,, ZKLFK ZDV GHYHORSHG E\ WKH 86*6 %HQGHU DQG 3HUNLQV f ,Q RUGHU WR XVH 6(,65,6. ,,, LW LV QHFHVVDU\ WR FRQVWUXFW DQ LQSXW ILOH FRQWDLQLQJ D WDEOH RI PDJQLWXGHV GLVWDQFHV DQG DFFHOHUDWLRQV IRU WKH FDOFXODWLRQ RI DWWHQXDWLRQ DV ZHOO DV VRXUFH DQG VLWH ORFDWLRQV DQG VRXUFH PDJQLWXGHUHFXUUHQFH FKDUDFWHUL]DWLRQV 2QH RI WKH LQSXW ILOHV FRQVWUXFWHG IRU WKLV VWXG\ LV VKRZQ LQ )LJXUH 7KH ILUVW VLJQLILFDQW VWHS LQ WKH FRQVWUXFWLRQ RI WKH LQSXW ILOH ZDV WR GHYHORS D WDEOH UHODWLQJ SHDN JURXQG DFFHOHUDWLRQV DW YDULRXV PDJQLWXGHV DQG HSLFHQWUDO GLVWDQFHV IRU WKH )ORULGD UHJLRQ %HFDXVH DEVRUSWLRQ FRHIILFLHQWV LQ )ORULGD DUH YHU\ FORVH WR WKRVH LQ WKH UHPDLQGHU RI WKH VRXWKHDVWHUQ &RDVWDO 3ODLQ WKH LVRVHLVPDO PDS IRU WKH PE HVWf &KDUOHVWRQ HYHQW )LJXUH f ZDV XVHG WR FRQVWUXFW WKH ILUVW FROXPQ RI YDOXHV LQ WKH WDEOH 8VLQJ WKH PHWKRGV GHVFULEHG LQ &KDSWHU WKH SHDN DFFHOHUDWLRQ DW HDFK RI WKH

PAGE 151

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG )OD5HJLRQ &KDU 3L HG 6$SS 10DG &D\P ‘r‘ )ORU )LJXUH 7KH 6(,65,6. ,,, LQSXW ILOH IRU WKH FDOFXODWLRQ RI VHLVPLF KD]DUG LQ SHQLQVXODU )ORULGD XVLQJ WKH IRUPDW GHVFULEHG LQ %HQGHU DQG 3HUNLQV f

PAGE 152

LVRVHLVPDO OLQHV ZDV HVWLPDWHG DQG DQ DSSURSULDWH GLVWDQFH PHDVXUHG 6LPLODUO\ WKH LVRVHLVPDO PDS IRU WKH )ORULGD HDUWKTXDNH )LJXUH f ZDV XVHG DV ZHOO 7KH OLPLWHG IHOW DUHD WKH DUHD FRYHULQJ 00 LQWHQVLW\ ,,, HIIHFWV RU JUHDWHUf RI WKLV VPDOO PA f HYHQW QHFHVVLWDWHG WKH FDOFXODWLRQ RI D SHDN JURXQG DFFHOHUDWLRQ DW WKH DSSURSULDWH GLVWDQFHV E\ XVLQJ &DPSEHOOnV UHODWLRQVKLS &KDSWHU f DQG DQ DEVRUSWLRQ FRHIILFHQW RI NP 7KH WDEOH ZDV FRPSOHWHG E\ FDOFXODWLQJ DFFHOHUDWLRQV DW WKH DSSURSULDWH GLVWDQFHV IRU D K\SRWKHWLFDO PA HYHQW XVLQJ DQ H[WUDSRODWHG DEVRUSWLRQ FRHIILFLHQW RI NP 7KH FRPSOHWHG WDEOH VWDUWV RQ WKH WK OLQH RI )LJXUH DQG LV ODEHOHG )OD5HJLRQ 7KH QH[W VLJQLILFDQW VWHS LQ WKH FRQVWUXFWLRQ RI WKH LQSXW ILOH ZDV WR SURGXFH WDEOHV FKDUDFWHUL]LQJ WKH ORFDWLRQV DQG PDJQLWXGH UHFXUUHQFH UHODWLRQVKLSV RI HDFK RI WKH VHLVPRWHFWRQLF SURYLQFHV GHVFULEHG LQ &KDSWHU 7KHVH WDEOHV VWDUW RQ OLQH RI )LJXUH ZLWK WKH &KDUOHVWRQ VHLVPRWHFWRQLF SURYLQFH ZKLFK LV ODEHOHG &KDU 7KH VLJQLILFDQW HOHPHQWV LQ WKHVH WDEOHV DUH WKH ORQJLWXGHV DQG ODWLWXGHV RI WKH FRPHUV RI WKH SURYLQFHV DQG WKH UHFXUUHQFH LQWHUYDOV IRU WKH DSSURSULDWH UDQJHV RI PDJQLWXGHV 7KHVH UHFXUUHQFH LQWHUYDOV ZHUH FDOFXODWHG IURP WKH LQGLYLGXDO D DQG E YDOXHV IRU HDFK SURYLQFH DV DVVLJQHG LQ &KDSWHU 7KH LQKHUHQW XQFHUWDLQW\ FRQFHUQLQJ VRXUFH SDUDPHWHUV DQG SURSRJDWLRQ SDWKV LQ DQ\ VHLVPLF KD]DUG PRGHO LV DGGUHVVHG E\ WKH LQWURGXFWLRQ RI D YDULDEOH VLJPD ,Q HPSLULFDO FDOFXODWLRQV VLJPD LV WKH VWDQGDUG GHYLDWLRQ RI WKH QDWXUDO ORJDULWKP RI WKH H[SHFWHG DFFHOHUDWLRQ DW WKH VLWH RI LQWHUHVW 7KH XWLOL]DWLRQ RI WKLV YDULDEOH LV LQWHQGHG WR DFFRXQW IRU SRVVLEOH HUURUV DQG FRQVHTXHQWO\ DOZD\V DFWV

PAGE 153

WR LQFUHDVH WKH FDOFXODWHG KD]DUG SUREDELOLW\ DW WKH VLWH %HPUHXWHU HW DO f VXJJHVWHG WKDW DSSURSULDWH YDOXHV IRU VLJPD UDQJH IURP WR 7KHUHIRUH LQ WKLV VWXG\ VLJPD ZDV DVVLJQHG D YDOXH RI $OWKRXJK WKH SUREDELOLWLHV VKRZQ LQ WKH KD]DUG PDSV UHIOHFW WKLV YDOXH IRU VLJPD SUREDELOLWLHV FDOFXODWHG ZLWKRXW WKLV PDUJLQ RI HUURU VLJPD f ZHUH DOVR FDOFXODWHG DQG DUH JLYHQ LQ WKH $SSHQGL[ 7ZR VHSDUDWH LQSXW ILOHV ZHUH UXQf§RQH WR FRYHU SHQLQVXODU )ORULGD DQG DQRWKHU IRU WKH )ORULGD SDQKDQGOH UHJLRQ 7KH VHLVPLF KD]DUG SUREDELOLWLHV ZHUH FDOFXODWHG RQ JULGV ZLWK VSDFLQJV RI NPV 7KH RXWSXW ILOHV ZLWK HDFK VLWHnV ODWLWXGH ORQJLWXGH DQG KD]DUG SUREDELOLWLHV RYHU D UDQJH RI DFFHOHUDWLRQV IRU VLJPD DQG VLJPD PD\ EH IRXQG LQ WKH $SSHQGL[ 7KH WZR JULGGHG GDWD VHWV ZHUH FRPELQHG IRU LQSXW LQWR 6XUIHU D FRQWRXULQJ SURJUDP 7KLV FRQWRXUHG RXWSXW ZDV VXEVHTXHQWO\ XVHG DV WKH IRXQGDWLRQ IRU WZR SUREDELOLVWLF VHLVPLF KD]DUG PDSV GHVFULELQJ WKH SUREDELOLWLHV RI H[FHHGLQJ DFFHOHUDWLRQV RI J DQG J UHVSHFWLYHO\ LQ WKH VWDWH RI )ORULGD 5HVXOWV )RU HDFK RI WKH LQSXW SDUDPHWHUV YDOXHV ZHUH DVVLJQHG WR PD[LPXPL]H WKH FDOFXODWHG VHLVPLF KD]DUG SUREDELOLWLHV LQ )ORULGD )RU H[DPSOH HDFK RI WKH VHLVPR WHF WRQLF VRXUFHV ZHUH DVVLJQHG PD[LPXP FUHGLEOH PDJQLWXGHV VLJQLILFDQWO\ JUHDWHU WKDQ WKH REVHUYHG PD[LPXP PDJQLWXGHV ,Q DGGLWLRQ D VLQJOH DWWHQXDWLRQ IXQFWLRQ ZDV XVHG :KLOH WKLV DWWHQXDWLRQ IXQFWLRQ LV SUREDEO\ D UHDVRQDEOH DSSUR[LPDWLRQ RI DWWHQXDWLRQ LQ WKH VRXWKHDVWHUQ &RDVWDO 3ODLQ LW LV DOPRVW FHUWDLQO\ WRR ORZ IRU WKH RFHDQLF ZDYH SDWK DORQJ

PAGE 154

ZKLFK VXUIDFH ZDYHV GR QRW SURSDJDWHf EHWZHHQ )ORULGD DQG WKH &D\PDQ 7URXJK &RQVHTXHQWO\ WKH FDOFXODWHG FRQWULEXWLRQ WR VHLVPLF KD]DUG LQ )ORULGD IURP DFWLYLW\ LQ WKH &D\PDQ 7URXJK SURYLQFH LV SUREDEO\ WRR KLJK )LQDOO\ LQ WKRVH SURYLQFHV ZKHUH WKHUH DUH FRQWUDGLFWLQJ LQGLFDWRUV RI UHFXUUHQFH VXFK DV LQ WKH 1HZ 0DGULG SURYLQFH WKH VKRUWHVW UHFXUUHQFH LQWHUYDO ZDV XVHG 7KH SUREDELOLW\ RI H[FHHGLQJ J 00 LQWHQVLW\ 9,,f LV JUHDWHVW LQ WKH QRUWKZHVWHUQ FRPHU RI )ORULGD )LJXUH f $QQXDO SUREDELOLWLHV UDQJH IURP [ f DW WKLV QRUWKZHVWHUQ FRPHU WR [ n LQ VRXWKHUQ SHQLQVXODU )ORULGD 7KLV VXJJHVWV UHFXUUHQFH LQWHUYDOV IRU 00 LQWHQVLW\ 9,, HIIHFWV UDQJLQJ IURP \HDUV LQ QRUWKZHVWHUQ )ORULGD WR \HDUV LQ VRXWKHUQ )ORULGD 6LPLODUO\ WKH DQQXDO SUREDELOLW\ RI H[FHHGLQJ J 00 LQWHQVLW\ 99,f LV JUHDWHVW LQ QRUWKZHVWHUQ )ORULGD DQG OHDVW LQ VRXWKHUQ )ORULGD )LJXUH f $OWKRXJK WKH SUREDELOLW\ GLVWULEXWLRQ LV VLPLODU WKH SUREDELOLWLHV RI H[FHHGLQJ J DUH DERXW RQH RUGHU RI PDJQLWXGH KLJKHU 7KHVH UDQJH IURP [ DORQJ )ORULGDnV QRUWKZHVWHUQ ERUGHU WR [ n LQ VRXWKZHVWHUQ )ORULGD VXJJHVWLQJ UHFXUUHQFH LQWHUYDOV RI \HDUV DQG \HDUV UHVSHFWLYHO\ 6LJQLILFDQW GDPDJH LH GDPDJH WR UHDVRQDEO\ ZHOOFRQVWUXFWHG EXLOGLQJVf LV RQO\ OLNHO\ WR UHVXOW IURP DFFHOHUDWLRQV JUHDWHU WKDQ J 7KLV LV DSSUR[LPDWHO\ HTXLYDOHQW WR 00 LQWHQVLW\ 9,,, )RU YHU\ ZHOOHQJLQHHUHG VWUXFWXUHV VXFK DV QXFOHDU UHDFWRU FRUHV GDPDJH LV XQOLNHO\ E\ DFFHOHUDWLRQV RI OHVV WKDQ J HJ .KRXU\ DQG &KDQGUD f 7KH SUREDELOLWLHV OLVWHG LQ WKH RXWSXW RI 6(,65,6. +, DUH JLYHQ WR ILYH GHFLPHO SODFHV LH WKH PLQLPXP ILVWHG YDOXH LV [ f LQ QRUWKZHVW FRPHU RI WKH )ORULGD SDQKDQGOH WKH SUREDELOLW\

PAGE 155

$QQXDO 3UREDELOLW\ RI ([FHHGLQJ J )LJXUH 7KH GLVWULEXWLRQ RI DQQXDO SUREDELOLWLHV RI H[FHHGLQJ J LQ )ORULGD

PAGE 156

$QQXDO 3UREDELOLW\ RI ([FHHGLQJ J )LJXUH 7KH GLVWULEXWLRQ RI DQQXDO SUREDELOLWLHV RI H[FHHGLQJ J LQ )ORULGD

PAGE 157

RI H[FHHGLQJ J LV [ B\HDU KRZHYHU LQ WKH PDMRULW\ RI WKH VWDWH WKH SUREDELOLW\ LV OHVV WKDQ WKH PLQLPXP YDOXH RI [ r SHU \HDU 7KH PD[LPXP FDOFXODWHG SUREDELOLW\ RI H[FHHGLQJ J ZKLFK LV DOVR LQ WKH QRUWKZHVWHUQ FRPHU RI WKH SDQKDQGOH UHJLRQ LV [ n\HDU )RU WKH PDMRULW\ RI )ORULGD WKH DQQXDO SUREDELOLW\ RI H[FHHGLQJ J LV OHVV WKDQ [ a ,Q DVVHVVPHQWV RI VHLVPLF KD]DUG DW WKH 7XUNH\ 3RLQW DQG 6W /XFLH QXFOHDU SRZHU SODQWV LQ VRXWK )ORULGD (EDVFR f IRXQG WKH DQQXDO SUREDELOLW\ RI H[FHHGLQJ J WR EH DSSUR[LPDWHO\ [ DYHUDJHG IURP ERWK VLWHVf 7KLV LV DQ RUGHU RI PDJQLWXGH ORZHU WKDQ WKH SUHYLRXV 1XFOHDU 5HJXODWRU\ &RPPLVVLRQ 15&f HVWLPDWHV RI [ r DQG EHORZ WKH GHVLJQDWHG 15& VDIHW\ OHYHO RI [ .KRXU\ DQG &KDQGUD f :KLOH WKH FDOFXODWHG SUREDELOLWLHV RI H[FHHGLQJ J DW WKHVH VLWHV DUH WRR ORZ IRU WKH DVVLJQPHQW RI VSHFLILF YDOXHV XVLQJ 6(,65,6. ,,, LW LV DSSDUHQW WKDW DV VXJJHVWHG LQ WKH (EDVFR VWXG\ WKH DQQXDO SUREDELOLW\ RI H[FHHGLQJ J LQ VRXWK )ORULGD LV VLJQLILFDQG\ ORZHU WKDQ WKH DYHUDJH [ YDOXH HVWLPDWHG E\ WKH 15& 7KXV GHVSLWH WKH XWLOL]DWLRQ RI PD[LPXP YDOXHV IRU PDJQLWXGHV DQG PLQLPXP YDOXHV IRU UHFXUUHQFH LQWHUYDOV DQG DWWHQXDWLRQ WKH FDOFXODWHG DQQXDO SUREDELOLW\ RI VLJQLILFDQW HDUWKTXDNH GDPDJH LQ )ORULGD LV YHU\ ORZf§ORZHU WKDQ WKH PLQLPXP YDOXH FDOFXODWHG LQ 6(,65,6. ,,, WKURXJKRXW PRVW RI WKH VWDWH 7KH JUHDWHVW VHLVPLF KD]DUG LV LQ WKH QRUWKZHVWHUQ FRPHU RI WKH VWDWH ZKHUH WKH UHFXUUHQFH LQWHUYDO IRU VWURQJ JURXQG PRWLRQ JUHDWHU WKDQ Jf LV DSSUR[LPDWHO\ \HDUV

PAGE 158

&+$37(5 ',6&866,21 $1' &21&/86,216 ,Q WKLV VWXG\ VHLVPRORJLFDO DQG SRWHQWLDOILHOG GDWD KDYH EHHQ XWLOL]HG ZLWK D YDULHW\ RI GLVSDUDWH SUHYLRXVO\ SXEOLVKHG JHRSK\VLFDO JHRFKHPLFDO JHRORJLFDO DQG KLVWRULFDO LQIRUPDWLRQ WR SURYLGH LQWHJUDWHG DQDO\VHV RI WKH EDVHPHQW VWUXFWXUH SRWHQWLDO VHLVPLFLW\ DQG VHLVPLF DWWHQXDWLRQ RI )ORULGD DV ZHOO DV WKH QDWXUH DQG GLVWULEXWLRQ RI VHLVPLFLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG WKH QRUWKHUQ &DULEEHDQ 7KH SXUSRVHV IRU WKLV DUH WR JHQHUDWH DQ LPSURYHG PRGHO IRU WKH WHFWRQLF HYROXWLRQ RI WKH )ORULGDQ 3ODWHDX DQG WR DOORZ DQ HPSLULFDO DVVHVVPHQW RI VHLVPLF KD]DUG LQ )ORULGD 7KH FRQILJXUDWLRQ RI WKH OLWKRWHFWRQLF XQLWV DQG VWUXFWXUDO IHDWXUHV FKDUDFWHUL]LQJ WKH EDVHPHQW RI WKH )ORULGDQ 3ODWHDX GRFXPHQWV D FRPSOH[ DQG DFWLYH KLVWRU\ GXULQJ PXFK RI WKH 3KDQHUR]RLF 7KH SUHGRPLQDQW VWUXFWXUDO IHDXUH RI WKH )ORULGDQ 3ODWHDX LV WKH -D\ )DXOW ]RQH ZKLFK PD\ EH FRQWLJXRXV ZLWK WKH %DKDPDV )UDFWXUH ]RQH 7KH IDXOW ]RQH LV D FRQWLQXRXV DQG UHODWLYHO\ OLQHDU IHDWXUH WKDW ELVHFWV WKH SODWHDX DQG DFWV DV D ERXQGDU\ IRU D QXPEHU RI EDVHPHQW IHDWXUHV DQG XQLWV ,Q VRXWKHDVWHUQ )ORULGD DQG SUREDEO\ DORQJ LWV HQWLUH OHQJWK WKH -D\ )DXOW ]RQH FRQVLVWV RI D

PAGE 159

SDUDOOHO VHULHV RI IDXOWV ZKLFK KDYH VHUYHG WR DFFRPPRGDWH D YDULHW\ RI UHODWLYH PRYHPHQWV 7KH -D\ )DXOW ]RQH PD\ KDYH RULJLQDWHG DV D ULJKWODWHUDO WUDQVIRUP GXULQJ WKH /DWH 3DOHR]RLF FORVXUH RI *RQGZDQD ZLWK /DXUHQWLD 6PLWK f 7KLV RULJLQ FRXOG DFFRXQW IRU WKH SUHVHQFH RI LVRODWHG DQG SUREDEOH IDXOWERXQGHG *RQGZDQDQ WHUUDQH IUDJPHQWV LQ QRUWKHDVWHUQ )ORULGD WKH WUXQFDWLRQ RI WKRVH IUDJPHQWV DORQJ D OLQHDU ERXQGDU\ DQG WKH SUHVHQFH RI DQRWKHU SUREDEOH *RQGZDQDQ IUDJPHQW WKH &DWRFKH WHUUDQH LQ WKH HDVWHUQ *XOI RI 0H[LFR 'XULQJ WKH 0LGGOH 0HVR]RLF WKH -D\ )DXOW ]RQH ZDV UHDFWLYDWHG WR DFFRPPRGDWH OHIWODWHUDO PRWLRQ UHVXOWLQJ IURP GLIIHUHQWLDO DWWHQXDWLRQ RI WKH FUXVW GXULQJ WKH VHSDUDWLRQ RI 1RUWK DQG 6RXWK $PHULFD DQG WKH RSHQLQJ RI WKH *XOI RI 0H[LFR 7KH FRQWLQHQWDO FUXVW WR WKH VRXWKZHVW RI WKH -D\ )DXOW ]RQH VWUHWFKHG DQG VXEVLGHG ZKLOH WKH SODWHDX FUXVW WR WKH QRUWKHDVW RI WKH -D\ )DXOW ]RQH ZDV ODUJHO\ XQDIIHFWHG ,Q DGGLWLRQ WR DFFRPRGDWLQJ WKH OHIWODWHUDO PRWLRQ ZKLFK ZRXOG UHVXOW IURP H[WHQVLRQ DORQJ RQO\ RQH HGJH WKH -D\ )DXOW ]RQH DOVR H[SHULHQFHG GRZQWRWKHVRXWKZHVW QRUPDO IDXOWLQJ DORQJ VRPH VHJPHQWV DV D VHULHV RI ODUJH JUDEHQV DQG KDOIJUDEHQV IRUPHG DFURVV WKH VRXWKZHVWHUQ KDOI RI WKH )ORULGDQ 3ODWHDX LQ UHVSRQVH WR WKLV FUXVWDO H[WHQVLRQ 'HVSLWH WKH DFWLYH UROH RI WKH -D\ )DXOW GXULQJ WKH -XUDVVLF WKH FRQWLQHQWDO QDWXUH RI WKH FUXVW LQ WKH VRXWKZHVWHUQ KDOI RI WKH SODWHDX VXJJHVWV WKDW LW GLG QRW DFW DV WKH VRXWKHUQ ERXQGDU\ RI 1RUWK $PHULFD DV KDV EHHQ SUHYLRXVO\ VXJJHVWHG .8WJRUG HW DO f

PAGE 160

,Q WKH GLJLWDOO\ ILOWHUHG JUDYLW\ DQRPDO\ PDSV SURGXFHG IRU WKLV VWXG\ DQG LQ WKH QXPHURXV SUHYLRXVO\ SXEOLVKHG VHLVPLF UHIOHFWLRQ SURILOHV UHYLHZHG QR HYLGHQFH ZDV IRXQG IRU WKH )ORULGD (OERZ )DXOW 7KLV LV D K\SRWKHVL]HG WUDQVIRUP IDXOW ZKLFK ZRXOG QHFHVVDULO\ H[WHQG DFURVV WKH VRXWKZHVWHUQ TXDUWHU RI WKH )ORULGDQ 3ODWHDX DORQJ ZKLFK WKH FUXVWDO EORFN SUHVHQWO\ XQGHUO\LQJ WKH )ORULGD 6WUDLWV ZDV SURSRVHG WR KDYH PRYHG RXW RI WKH HDVWHUQ *XOI RI 0H[LFR GXULQJ WKH -XUDVVLF 3LQGHOO f %HFDXVH WKHUH LV QR HYLGHQFH IRU WKLV IDXOW LW LV VXJJHVWHG WKDW WKH HDVWHUQ *XOI RI 0H[LFR ZDV RFFXSLHG E\ FRQWLQHQWDO FUXVW GXULQJ WKH (DUO\ 0HVR]RLF DQG WKDW WKLV FUXVW KDV EHHQ DWWHQXDWHG DQG VXEVLGHG 'XULQJ WKLV SURFHVV RI DWWHQXDWLRQ DQG VXEVLGHQFH D VHULHV RI JUDEHQV KDOIJUDEHQV DQG KRUVWV IRUPHG DORQJ WKH VRXWKZHVWHUQ KDOI RI WKH )ORULGDQ 3ODWHDX 7KHUH KDYH EHHQ VHYHUDO SUHYLRXVO\ SURSRVHG FRQILJXUDWLRQV IRU WKHVH KRUVWV DQG JUDEHQV ZKLFK QRZ IRUP WKH EDVLQV DQG DUFKHV RI WKH VRXWKZHVWHUQ SODWHDX EDVHPHQW 7KHVH YDULRXV FRQILJXUDWLRQV DUH EDVHG SULPDULO\ RQ VHLVPLF UHIOHFWLRQ SURILOHV ZKLFK DUH UHVWULFWHG E\ WKHLU WZRGLPHQVLRQDO QDWXUH 7KH DSSOLFDWLRQ RI DQ XSZDUGFRQWLQXDWLRQ GLJLWDO ILOWHU WR WKH %RXJXHU JUDYLW\ DQRPDO\ ILHOG RI WKH SODWHDX UHYHDOV WKDW WKHVH EDVLQV DQG DUFKHV DUH FOHDUO\ GHOLQHDWHG E\ ORQJZDYHOHQJWK JUDYLW\ DQRPDO\ SDWWHUQV :KHQ LQWHUSUHWHG LQ FRQMXQFWLRQ ZLWK SUHYLRXVO\ SXEOLVKHG VHLVPLF UHIOHFWLRQ SURILOHV DQG GULOO KROH LQIRUPDWLRQ WKHUH DUH VHYHUDO VLJQLILFDQW FRQFOXVLRQV WKDW PD\ EH GHULYHG IURP WKHVH DQRPDO\ SDWWHUQV 7KH ILUVW LV WKDW WKH 7DPSD %DVLQ H[WHQGV HDVWZDUG WR WKH -D\ )DXOW ]RQH DQG LV WKHUHIRUH ODUJHU WKDQ SUHYLRXVO\ EHOLHYHG ,Q DGGLWLRQ XQOLNH WKH ERXQGDULHV RI WKH RWKHU

PAGE 161

-XUDVVLF IHDWXUHV LQ WKLV VHULHV WKH QRUWKZHVWHUQ ERXQGDU\ RI WKH 7DPSD %DVLQ LV D VORSLQJ PDUJLQ WKDW GRHV QRW DSSHDU WR EH PDUNHG E\ D ERXQGLQJ IDXOW ZKLFK VXJJHVWV WKDW WKH EDVLQ IRUPHG DV D KDOI JUDEHQ 7KH 6RXWK )ORULGD %DVLQ UHJLRQ ZKHUH WKHUH DUH IHZ VHLVPLF UHIOHFWLRQ SURILOHV LPDJLQJ WKH EDVHPHQW SUREDEO\ HQFRPSDVVHV WZR RU WKUHH VHSDUDWH EDVLQV ZKLFK WUHQG QRUWKZHVWZDUG SHUSHQGLFXODU WR WKH WUHQGV RI WKH $SDODFKLFROD %DVLQ WKH 0LGGOH *URXQG $UFK WKH 7DPSD %DVLQ DQG WKH 6DUDVRWD $UFK 7KH RULHQWDWLRQV RI WKHVH YDULRXV EDVLQV VXJJHVW WZR GLVWLQFW HSLVRGHV RI FUXVWDO DWWHQXDWLRQ RQ WKH )ORULGDQ 3ODWHDX RQH LQ ZKLFK WKH PLQLPXP SULQFLSDO VWUHVV GLUHFWLRQ ZDV RULHQWHG QRUWKHDVWVRXWKZHVW SUHVHQW GLUHFWLRQf DQG RQH LQ ZKLFK WKH PLQLPXP SULQFLSDO VWUHVV ZDV RULHQWHG QRUWKZHVW VRXWKHDVW ,W LV OLNHO\ WKDW GXULQJ WKH (DUO\ -XUDVVLF WKH WHUUDQH XQGHU VRXWK )ORULGD ZDV ORFDWHG PRUH WR WKH QRUWKZHVW SUR[LPDO WR WKH HDVWHUQ *XOI RI 0H[LFR DQG LW LV VXUPLVHG WKDW WKH QRUWKZHVWn WUHQGLQJ EDVLQV IRUPHG GXULQJ D SHULRG RI QRUWKHDVWVRXWKZHVW H[WHQVLRQ DV WKH
PAGE 162

RI WHFWRQLF TXLHVFHQFH 7KLV WHFWRQLFDOO\ TXLHVFHQW SHULRG FKDUDFWHUL]HG RQO\ E\ VXEVLGHQFH KDV SHUVLVWHG VLQFH DW OHDVW WKH 0LGGOH &UHWDFHRXV 7KH SULPDU\ VLJQLILFDQFH RI WKLV SHULRG RI TXLHVFHQFH LV WKH VXJJHVWLRQ WKDW WKH )ORULGDQ 3ODWHDX LV UHODWLYHO\ DVHLVPLF 7KLV VXJJHVWLRQ LV IXUWKHU VXEVWDQWLDWHG E\ WKH XQXVXDOO\ ORZ OHYHOV RI KLVWRULFDO DQG LQ VWUX PHQ WDOO\ UHFRUGHG VHLVPLF DFWLYLW\ LQ )ORULGD DV GLVFXVVHG EHORZ $ FRPSLODWLRQ DQG UHYLHZ RI HSLFHQWUDO GLVWULEXWLRQ SDWWHUQV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV GHPRQVWUDWHV WKHUH WR EH GLVWLQFW SDWWHUQV RI HDUWKTXDNH DFWLYLW\ ,Q DGGLWLRQ WKHUH DSSHDUV WR EH D ZHOOGHILQHG VHLVPRWHFWRQLF ERXQGDU\ EHWZHHQ WKH PRGHUDWHWRKLJK OHYHOV RI VHLVPLF DFWLYLW\ LQ WKH VRXWKHUQ $SSDODFKLDQV DQG &RDVWDO 3ODLQ WR WKH QRUWK DQG WKH XQXVXDOO\ ORZ OHYHO RI VHLVPLF DFWLYLW\ RQ WKH 5RQGDQ 3ODWHDX WR WKH VRXWK 7KLV VHLVPRWHF WRQLF ERXQGDU\ FRUUHVSRQGV WR WKH SUHYLRXVO\ SURSRVHG WUDFH RI WKH $OOHJKHQLDQ VXWXUH EHWZHHQ WKH *RQGZDQDQ WHUUDQHV XQGHUO\LQJ )ORULGD DQG WKH DFFUHWHG WHUUDQHV RI WKH VRXWKHUQ $SSDODFKLDQ RURJHQ &KRZQV DQG :LOOLDPV 1HOVRQ HW DO $f 7KLV QRQXQLIRUP GLVWULEXWLRQ RI VHLVPLF DFWLYLW\ FDQ EH XVHG DV D PHDQV RI LQWHUSUHWLQJ SRVVLEOH FDXVDO PHFKDQLVPV RI VHLVPLF DFWLYLW\ LQ WKH LQWUDSODWH VHWWLQJ RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV )RU H[DPSOH SUHIHUHQWLDO HDUWKTXDNH DFWLYLW\ DORQJ SUHH[LVWLQJ VKDOORZ FUXVWDO 0HVR]RLF ]RQHV RI ZHDNQHVV KDV EHHQ K\SRWKHVL]HG DV RQH SRVVLEOH FDXVH RI WKH QRQXQLIRUP HSLFHQWUDO GLVWULEXWLRQ LQ WKH HDVWHUQ 8QLWHG 6WDWHV HJ 6EDU DQG 6\NHV 6\NHV f 6LPLODU IHDWXUHV WKURXJKRXW WKH EDVHPHQW RI WKH )ORULGDQ 3ODWHDX

PAGE 163

VKRZ QR LQGLFDWLRQ RI VHLVPLF DFWLYLW\ GXULQJ WKH &HQR]RLF VXJJHVWLQJ WKDW WKLV LV SUREDEO\ QRW D YLDEOH K\SRWKHVLV 7KH UHJLRQDO VWUHVV ILHOG LQ WKH HDVWHUQ 8QLWHG 6WDWHV KDV UHFHQWO\ EHHQ IRXQG WR EH UHODWLYHO\ XQLIRUP ZLWK UHVSHFW WR PDJQLWXGH DQG RULHQWDWLRQ =REDFN f %HFDXVH WKH QRQXQLIRUP GLVWULEXWLRQ RI HDUWKTXDNHV LV WKHUHIRUH XQOLNHO\ WR EH UHODWHG WR FKDQJHV LQ WKH UHJLRQDO VWUHVV ILHOG LW LV SUREDEO\ DWWULEXWDEOH SULPDULO\ WR WKH GLVWULEXWLRQ RI RSWLPDOO\ RULHQWHG DQG SRVLWLRQHG VHLVPRWHFWRQLF IHDWXUHV 5HFHQW IRFDO SODQH VROXWLRQV VKRZ WKH PDMRULW\ RI HDUWKTXDNHV WR EH FDXVHG E\ WKH UHJLRQDO VWUHVV ILHOG DQG WR RFFXU LQ WKH DXWRFKWKRQRXV *UHQYLOOLDQ EDVHPHQW EHORZ WKH $SSDODFKLDQ GHWDFKPHQW HJ %ROOLQJHU HW DO -RKQVWRQ HW DO =REDFN f 7KLV VXJJHVWV UHDFWLYDWHG ,DSHWDQ IDXOWV RU RWKHU SUHH[LVWLQJ IHDWXUHV LQ WKH *UHQYLOOLDQ FUXVW DV SULPDU\ VHLVPLF VRXUFH ]RQHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 7KH SUHVHQFH RI WKH REVHUYHG VHLVPLFDVHLVPLF ERXQGDU\ VHSDUDWLQJ WKH )ORULGDQ 3ODWHDX IURP WKH UHPDLQGHU RI 1RUWK $PHULFD VXSSRUWV WKLV PRGHO DV WKLV ERXQGDU\ DOVR PDUNV WKH VRXWKHUQ ERXQGDU\ RI *UHQYLOOLDQ FUXVW 7KXV WKH REVHUYHG ORZ OHYHO RI VHLVPLF DFWLYLW\ LQ )ORULGD LV SUREDEO\ UHODWHG WR DQ DEVHQFH RI VLPLODU PLGFUXVWDO ]RQHV RI ZHDNQHVV 7KH UHDFWLYDWLRQ RI D JLYHQ SUHH[LVWLQJ IDXOW SUREDEO\ GHSHQGV RQ VHYHUDO GLIIHUHQW IDFWRUV 7KH PRVW FULWLFDO LV OLNHO\ WR EH WKH RULHQWDWLRQ RI WKH IDXOW ZLWK UHVSHFW WR WKH VWUHVV ILHOG $QRWKHU LV OLNHO\ WR EH WKH SURSHQVLW\ IRU IDXOW VOLSSDJH ZKLFK LV DIIHFWHG E\ ERWK K\GURVWDWLF SRUH SUHVVXUH DQG WKH IULFWLRQDO FRHIILFLHQW RI WKH IDXOW 7KXV YDULDWLRQV LQ IDXOW RULHQWDWLRQ SRUH SUHVVXUH DQG

PAGE 164

IULFWLRQDO FRHIILFLHQWV PD\ HDFK DIIHFW WKH GLVWULEXWLRQ RI HDUWKTXDNHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DV ZHOO )RU WKH SXUSRVHV RI VHLVPLF KD]DUG DVVHVVPHQW LW LV QHFHVVDU\ WR GLYLGH WKH UHJLRQ LQWR D QXPEHU RI VHLVPRWHFWRQLF SURYLQFHV HDFK FKDUDFWHUL]HG E\ D XQLIRUP SRWHQWLDO IRU HDUWKTXDNHV WKURXJKRXW $OWKRXJK SUHYLRXV DWWHPSWV KDYH EHHQ PDGH WR FKDUDFWHUL]H NQRZQ VKDOORZ FUXVWDO JHRJUDSKLF RU JHRORJLF SURYLQFHV DV VHLVPR WHF WRQLF SURYLQFHV WKH UHFHQW UHFRJQLWLRQ WKDW PRVW RI WKH HDUWKTXDNH DFWLYLW\ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV RFFXUV DW PLGFUXVWDO GHSWKV QHJDWHV WKHVH DWWHPSWV 5DWKHU WKH FKDUDFWHUL]DWLRQ RI VHLVPRWHFWRQLF SURYLQFHV LQ WKLV DUHD LV PRVW UHDVRQDEO\ EDVHG RQO\ RQ REVHUYHG HDUWKTXDNH GLVWULEXWLRQ SDWWHUQV )RU WKH REMHFWLYH RI DVVHVVLQJ VHLVPLF KD]DUG LQ )ORULGD ILYH VLJQLILFDQW VHLVPRWHFWRQLF SURYLQFHV ZHUH LGHQWLILHG LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV ,Q DGGLWLRQ WR WKH UHJLRQ HQFRPSDVVLQJ )ORULGD WKHVH LQFOXGH WKH &KDUOHVWRQ SURYLQFH WKH 3LHGPRQW&RDVWDO 3ODLQ SURYLQFH WKH VRXWKHUQ $SSDODFKLDQ SURYLQFH DQG WKH 1HZ 0DGULG SURYLQFH ,Q WKH QRUWKHUQ &DULEEHDQ RQO\ HDUWKTXDNH DFWLYLW\ LQ WKH &D\PDQ 7URXJK SURYLQFH FRXOG SRWHQWLDOO\ FDXVH VLJQLILFDQW JURXQG PRWLRQ LQ )ORULGD 5HFXUUHQFH LQWHUYDOV DQG PD[LPXP PDJQLWXGHV DVVLJQHG WR PRVW RI WKH SURYLQFHV ZHUH EDVHG RQ WHFWRQLF VHWWLQJ SUHYLRXVO\ SXEOLVKHG FRPSLODWLRQV RI HDUWKTXDNH UHSRUWV DQG SDOHRVHLVPLF HYLGHQFH ,Q DGGLWLRQ WKH VHLVPLFLW\ RI WKH )ORULGDQ 3ODWHDX UHJLRQ ZDV LQYHVWLJDWHG LQ JUHDWHU GHWDLO $ FULWLFDO UHYLHZ RI HDUWKTXDNH UHSRUWV LQ )ORULGD 6PLWK DQG 5DQGD]]R f VXJJHVWHG RQO\ VL[ SRVVLEOH KLVWRULFDO HYHQWVDOO RI WKHVH ZHUH ORZ LQWHQVLW\ DQG RQH

PAGE 165

KDV VLQFH EHHQ DVVLJQHG D 6RXWK &DUROLQLDQ RULJLQ $ UHYLHZ RI UHSRUWV IURP WKH 6RXWKHDVWHUQ 8QLWHG 6WDWHV 6HLVPRJUDSK 1HWZRUN 6(8661f ZKLFK KDV EHHQ RSHUDWLRQDO VLQFH UHYHDOHG QR HYLGHQFH RI DFWLYLW\ RQ WKH )ORULGD 3ODWHDX DQG RQO\ RQH HYHQW LQ WKH FHQWUDO RU HDVWHUQ *XOI RI 0H[LFR $OWKRXJK WKHVH LQVWUXPHQWDO DQG KLVWRULFDO UHSRUWV GHPRQVWUDWH WKH ORZ OHYHO RI VHLVPLF DFWLYLW\ RQ WKH )ORULGDQ 3ODWHDX WKH\ PD\ EH DWWULEXWDEOH LQ SDUW WR WKH GLVWULEXWLRQ RI WKH 6(8661 VHLVPRJUDSK VWDWLRQV QRQH RI ZKLFK ZHUH ORFDWHG LQ )ORULGD DQG WR WKH ORZ SRSXODWLRQ RI )ORULGD SULRU WR WKLV FHQWXU\ &RQVHTXHQWO\ D QHWZRUN RI GLJLWDO VHLVPRJUDSKV ZDV HPSODFHG DFURVV )ORULGD LQ WR DOORZ D VSHFLILF TXDQWLILFDWLRQ RI PLFURHDUWKTXDNH DFWLYLW\ RQ WKH )ORULGDQ 3ODWHDX LQ WKH HDVWHUQ *XOI RI 0H[LFR DQG LQ WKH %DKDPDV )URP WR WKH QHWZRUN GHWHFWHG RQO\ WZR HYHQWV LQ WKLV UHJLRQERWK ZHUH ORZ PDJQLWXGH HYHQWV ORFDWHG LQ WKH HDVWHUQ *XOI RI 0H[LFR %DVHG RQ WKH UHYLHZ RI KLVWRULFDO DQG LQVWUXPHQWDO UHFRUGV DQG WKH ILQGLQJV RI WKH )ORULGD 6HLVPRJUDSK 1HWZRUN WKH VHLVPR WHF WRQLF SURYLQFH HQFRPSDVVLQJ WKH )ORULGDQ 3ODWHDX WKH HDVWHUQ *XOI RI 0H[LFR DQG WKH ZHVWHUQ %DKDPDV ZDV DVVLJQHG D PD[LPXP PDJQLWXGH RI 7KHUH ZHUH WRR IHZ HYHQWV WR DOORZ D FDOFXODWLRQ RI VSHFLILF UHFXUUHQFH LQWHUYDOV VR IRU WKH SXUSRVHV RI VHLVPLF KD]DUG DVVHVVPHQW WKH\ ZHUH HVWLPDWHG WR EH \HDUV IRU D PDJQLWXGH PA HYHQW DQG \HDUV IRU D PDJQLWXGH PE HYHQW ,Q DGGLWLRQ WR WKH FKDUDFWHUL]DWLRQ RI VHLVPR WHF WRQLF SURYLQFHV LW LV QHFHVVDU\ LQ DQ\ VHLVPLF KD]DUG DVVHVVPHQW WR HVWDEOLVK D UHJLRQDO YDOXH IRU VHLVPLF DWWHQXDWLRQ 7KLV YDOXH GHVFULEHV WKH

PAGE 166

DELOLW\ RI WKH OLWKRVSKHUH WR WUDQVPLW VHLVPLF HQHUJ\ DQG LV XVXDOO\ FDOFXODWHG XVLQJ WKH ZDYH DPSOLWXGHV RU DFFHOHUDWLRQV UHVXOWLQJ IURP ORFDO HDUWKTXDNHV $V WKHUH KDYH EHHQ IHZ HDUWKTXDNHV LQ )ORULGD WKHUH KDV EHHQ QR SUHYLRXV FDOFXODWLRQ RI D ORFDO YDOXH IRU VHLVPLF DWWHQXDWLRQ 6HLVPLF DWWHQXDWLRQ UHVXOWV IURP WZR HIIHFWV JHRPHWULF VSUHDGLQJ DQG DEVRUSWLRQ $EVRUSWLRQ FRHIILFLHQWV FDQ YDU\ E\ DERXW DQ RUGHU RI PDJQLWXGH IURP RQH SODFH WR DQRWKHU $ PHWKRG DOORZLQJ WKH HVWLPDWLRQ RI DEVRUSWLRQ FRHIILFLHQWV XVLQJ HDUWKTXDNH LVRVHLVPDO LQWHQVLW\ GDWD ZDV GHYLVHG XVLQJ &DPSEHOOnV f HTXDWLRQ UHODWLQJ PDJQLWXGH GLVWDQFH DQG DFFHOHUDWLRQ 7KLV PHWKRG ZDV XVHG WR HVWLPDWH DEVRUSWLRQ DORQJ WKH ZDYH SDWK EHWZHHQ 6RXWK &DUROLQD DQG )ORULGD XVLQJ %ROOLQJHUnV f LVRVHLVPDO LQWHQVLW\ GDWD IRU WKH PE HVWLPDWHGf &KDUOHVWRQ HDUWKTXDNH ,Q DGGLWLRQ WKH PHWKRG ZDV DSSOLHG WR WKH LVRVHLVPDO LQWHQVLW\ GDWD IURP /RQJnV f VWXG\ RI WKH PE LQ FHQWUDO )ORULGD RQ 2FW ,Q ERWK FDVHV WKH HVWLPDWHG DEVRUSWLRQ FRHIILFLHQWV NP DQG NP UHVSHFWLYHO\f ZHUH VOLJKWO\ KLJKHU WKDQ 1XWWOLnV f UHJLRQDO DEVRUSWLRQ FRHIILFLHQWV IRU VLPLODU PDJQLWXGH HYHQWV LQ WKH FHQWUDO 8QLWHG 6WDWHV EXW ORZHU WKDQ H[SHFWHG HTXLYDOHQW YDOXHV LQ WKH ZHVWHUQ 8QLWHG 6WDWHV 7KH SDUWLWLRQLQJ RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV UHJLRQ LQWR VHLVPRWHFWRQLF SURYLQFHV WKH TXDQWLILFDWLRQ RI VHLVPLF DFWLYLW\ LQ HDFK SURYLQFH DQG WKH TXDQWLILFDWLRQ RI ORFDO YDOXHV WR GHVFULEH VHLVPLF DWWHQXDWLRQ DOORZV DQ HPSLULFDO DVVHVVPHQW RI VHLVPLF KD]DUG LQ )ORULGD 7KH SUREDELOLWLHV RI H[FHHGLQJ GLVFUHWH OHYHOV RI JURXQG PRWLRQ DW D JULG RI VLWHV FRYHULQJ WKH HQWLUH VWDWH ZHUH FDOFXODWHG

PAGE 167

XVLQJ 6(,65,6. ,,, D 86*6 SURJUDP EDVHG RQ D PHWKRG SURSRVHG E\ &RUQHOO f DQG ZULWWHQ E\ %HQGHU DQG 3HUNLQV f $OWKRXJK VHLVPLF KD]DUG WKURXJKRXW )ORULGD ZDV IRXQG WR EH H[WUHPHO\ ORZ WKH JUHDWHVW SUREDELOLWLHV IRU VLJQLILFDQW JURXQG PRWLRQ ZHUH IRXQG WR H[LVW LQ WKH QRUWKZHVWHUQ FRPHU RI WKH VWDWH 7KHVH SUREDELOLWLHV GHFUHDVH VLJQLILFDQWO\ VRXWKZDUG DORQJ WKH D[LV RI WKH SHQLQVXOD )RU H[DPSOH WKH SUREDELOLW\ RI H[FHHGLQJ J ZKLFK LV DSSUR[LPDWHO\ HTXLYDOHQW WR 00 LQWHQVLW\ 9,,, DQG WKH DFFHOHUDWLRQ DERYH ZKLFK VLJQLILFDQW GDPDJH VWDUWV WR RFFXU LV FDOFXODWHG WR EH [ O2n9\HDU LQ WKH QRUWKZHVWHUQ FRPHU RI WKH VWDWH 7KLV LQGLFDWHV D UHFXUUHQFH LQWHUYDO RI DSSUR[LPDWHO\ \HDUV 7KURXJKRXW WKH PDMRULW\ RI )ORULGD KRZHYHU WKH SUREDELOLW\ RI H[FHHGLQJ J LV VLJQLILFDQWO\ OHVV WKDQ [ r\HDU VXJJHVWLQJ UHFXUUHQFH LQWHUYDOV RI JUHDWHU WKDQ \HDUV 6LPLODUO\ WKH DQQXDO SUREDELOLWLHV RI H[FHHGLQJ J 00 LQWHQVLW\ 9,,f UDQJH IURP [ LQ WKH QRUWKZHVWHUQ FRPHU RI WKH VWDWH WR [ a LQ VRXWKHUQ )ORULGD VXJJHVWLQJ UHFXUUHQFH LQWHUYDOV RI \HDUV DQG \HDUV UHVSHFWLYHO\ 7KH XQGLVWXUEHG VHGLPHQWDU\ UHFRUG RI WKH )ORULGDQ 3ODWHDX WKH LQWUDSODWH WHFWRQLF VHWWLQJ KLVWRULFDO UHFRUGV DQG LQVWUXPHQWDO PRQLWRULQJ DOO VXJJHVW WKH UHJLRQ WR EH WHFWRQLFDOO\ TXLHVFHQW $OWKRXJK VPDOO HDUWKTXDNHV DUH WR EH H[SHFWHG WKHUH DSSHDUV WR EH OLWWOH SRWHQWLDO IRU GDPDJLQJ HDUWKTXDNH DFWLYLW\ RQ WKH SODWHDX ,Q DGGLWLRQ WKH HPSLULFDO DVVHVVPHQW RI VHLVPLF KD]DUG LQ )ORULGD VXJJHVWV RQO\ D PLQLPDO DQQXDO SUREDELOLW\ RI VLJQLILFDQW JURXQG PRWLRQ LQ )ORULGD UHVXOWLQJ IURP HDUWKTXDNHV LQ DGMDFHQW SURYLQFHV

PAGE 168

7KXV WKH RYHUDOO SRWHQWLDO IRU GDPDJLQJ JURXQG PRWLRQ LQ )ORULGD LV FRQVLGHUHG WR EH QHJOLJLEOH 7KLV LQYHVWLJDWLRQ LQFRUSRUDWHG D GLYHUVH YDULHW\ RI LQIRUPDWLRQ DQG DV D FRQVHTXHQFH D QXPEHU RI FRQFOXVLRQV PD\ EH GUDZQ 7KH PRVW VLJQLILFDQW RI WKHVH FRQFOXVLRQV DUH UHODWHG WR WKH EDVHPHQW VWUXFWXUH WHFWRQLF KLVWRU\ DQG VHLVPLF KD]DUG RI WKH )ORULGDQ 3ODWHDX 7KH /DWH 3UHFDPEULDQ(DUO\ 3DOHR]RLF WHUUDQHV XQGHUO\LQJ WKH QRUWKHDVWHUQ SRUWLRQ RI WKH )ORULGDQ 3ODWHDX SUREDEO\ UHSUHVHQW LVRODWHG IDXOWERXQGHG IUDJPHQWV RI ODUJHU WHUUDQHV $V KDV EHHQ SUHYLRXVO\ VXJJHVWHG WKHVH IUDJPHQWV OLNHO\ RULJLQDWHG DORQJ WKH OHDGLQJ HGJH RI *RQGZDQD SUR[LPDO WR WKH FHQWUDO 5RFNHOLGH RURJHQ 7KH FRQILJXUDWLRQ RI WKHVH IUDJPHQWV WKHLU SUR[LPLW\ WR HDFK RWKHU DQG WKHLU DSSDUHQW WUXQFDWLRQ E\ WKH -D\ )DXOW ]RQH HDFK VXSSRUW 6PLWKnV f K\SRWKHVLV RI WUDQVORFDWLRQ DQG HPSODFHPHQW GXULQJ WKH /DWH 3DOHR]RLF FRQYHUJHQFH RI WKH FRQWLQHQWV 7KH FRQILJXUDWLRQ RI WKH EDVLQV DQG DUFKHV XQGHUO\LQJ WKH VRXWKZHVWHUQ KDOI RI WKH )ORULGDQ 3ODWHDX LV FOHDUO\ GHOLQHDWHG E\ ORQJZDYHOHQJWK JUDYLW\ DQRPDOLHV $ UHYLHZ RI SUHYLRXVO\ SXEOLVKHG VHLVPLF UHIOHFWLRQ SURILOHV VKRZV WKDW WKHVH EDVLQV DQG DUFKHV IRUPHG DV JUDEHQV DQG KRUVWV GXULQJ WKH -XUDVVLF RSHQLQJ RI WKH *XOI RI 0H[LFR 7KH 7DPSD %DVLQ ZKLFK IRUPHG DV D KDOIJUDEHQ H[WHQGV IXUWKHU HDVWZDUG WKDQ SUHYLRXVO\ PDSSHG DQG LV ERXQGHG RQ WKH HDVW E\ WKH -D\ )DXOW ]RQH 6LPLODUO\ WKH 6RXWK )ORULGD %DVLQ

PAGE 169

UHJLRQ LV DOVR ERXQGHG E\ WKH -D\ )DXOW ]RQH EXW LW SUREDEO\ FRQVLVWV RI WZR RU WKUHH VHSDUDWH QRUWKZHVWWUHQGLQJ EDVLQV 7KH QRUWKZHVW WUHQG RI WKHVH EDVLQV LV SHUSHQGLFXODU WR WKH WUHQG RI WKH RWKHU EDVLQV XQGHUO\LQJ WKH )ORULGDQ 3ODWHDX VXJJHVWLQJ WKH SRVVLELOLW\ RI WZR VWDJHV RI H[WHQVLRQ GXULQJ WKH -XUDVVLF 'XULQJ WKH ILUVW VWDJH LW LV SURSRVHG WKDW D QRUWKHDVWVRXWKZHVW RULHQWHG H[WHQVLRQDO VWUHVV UHJLPH H[LVWHG GXULQJ WKH URWDWLRQ RI WKH
PAGE 170

UHVXOWLQJ IURP YDULDWLRQV LQ K\GURVWDWLF SRUH SUHVVXUHV RU IULFWLRQDO FRHIILFLHQWV 6HLVPLF DWWHQXDWLRQ RQ WKH )ORULGDQ 3ODWHDX DSSHDUV WR EH HTXLYDOHQW WR WKDW LQ RWKHU SDUWV RI WKH VRXWKHDVWHUQ &RDVWDO 3ODLQ 7KH HVWLPDWHG DEVRUSWLRQ FRHIILFLHQWV ZHUH VOLJKWO\ KLJKHU WKDQ H[SHFWHG YDOXHV IRU WKH FHQWUDO 8QLWHG 6WDWHV EXW OHVV WKDQ W\SLFDO YDOXHV LQ WKH ZHVWHUQ 8QLWHG 6WDWHV 7KH SUREDELOLW\ RI HDUWKTXDNH GDPDJH LQ )ORULGD HLWKHU IURP ORFDO RU GLVWDQW HYHQWV LV H[WUHPHO\ ORZ 7KH JUHDWHVW KD]DUG H[LVWV LQ WKH QRUWKZHVW FRUQHU RI WKH VWDWH ZKHUH WKH DQQXDO SUREDELOLW\ RI H[FHHGLQJ J 00 LQWHQVLW\ 9,,,f LV RQO\ [

PAGE 171

$33(1',; 6(,60,& +$=$5' 352%$%,/,7,(6 )25 6,7(6 ,1 )/25,'$

PAGE 172

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG LVZ QHZ UXQQR SUHYLRXV UHVXOWV LQFOXGHG H[WUHPH SUREDSLOLW\ IRU H[SRVXUH WLPHV \HDUVf ,&2 VFDOH IDFWRU IRU JURXQG PRWLRQ ER[ OHYHOV FRRUGLQDWHV LQSXW LQ GHFLPDO GHJUHHV FRRUGLQDWHV DUH 'ULQWHG LQ GHFLPDO GHJUHHV YDULDELOLW\ LQ DWWHQXDWLRQ VLJPD JULG RULHQWHG 'DUDOOHO WR JUHDW FLUFOH WKUX f f FRUQHUV RI JULGGHG DUHDXSSHU OHIW ORZHU ULJKW ORQJLWXGH LQFUHPHQWV GHFLPDO GHJUHHVf ODWLWXGH LQFUHPHQW GHFLPDO GHJUHHVf JULGGHG UHJLRQ FRQWDLQV URZV FROV LQFOXGLQJ SRUFHU IRU WKLV UXQ EHJLQ DW URZ HQG URZ EHJLQ FRO HQG QHZ FRRUGLQDWHV NPf JULGGHG DUHD XSRHU OHIW ORZHU QJKW URZV DQG FROV FRO VLWHV DUH DOVR ORFDWHG RQ OLQHVf DWWHQXDWLRQ IXQFWLRQ )OD5HJLRQ PDJQLWXFH GLVWNPf \UQRF LSULQWV IRU DUHD &KDU QU RI OHYHOV RI VHLVPLFLW\ &KDU EHWD HDUWKTXDNH UDWH \HDU RFFXUUHQFHV PDJQLWXGHV &KDU DUHD VT NP UDWHVT NP ( IRU \UQRF LSULQW IRU DUHD 3LHG QU RI OHYHOV RI VHLVPLFLW\ 3LHG EHWD HDUWKGXDNH UDWH \HDU RFFXUUHQFHVV PDJQLWXGHV 3LHG DUHD VT NP UDWHVT NP ( IRU \UQRF LSULQW IRU DUHD 6$SS QU RI OHYHOV RI VHLVPLFLW\ 6$SR EHWD L HDUWKTXDNH UDWH \HDU RFFXUUHQFHV PDJQLWXGHV 6$SS DUHD VT NP UDWHVT NP ( IRU \UQRF LSULQWV IRU DUHD 10DG QU RI OHYHOV RI VHLVPLFLW\ V 10DG EHWD ‘ HDUWKTXDNH UDWH \HDU RFFXUUHQFHVV PDJQLWXGHV 10DG DUHD VT NP UDWHVT NP ( IRU \UQRF LSULQWV IRU DUHD &D\P QU RI OHYHOV RI VHLVPLFLW\ V &D\P EHWD HDUWKTXDNH UDWH \HDU RFFXUUHQFHVV PDJQLWXGHV &D\P DUHD VT NP UDWHVT NPV ( IRU \UQRF LSULQW IRU DUHD )ORU n QU RI OHYHOV RI VHLVPLFLW\ )ORU EHWD HDUWKTXDNH UDWH \HDU RFFXUUHQFHVr PDJQLWXDHVr )ORU DUHD VT NP UDWHVT NP ( IRU PDJV

PAGE 173

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr ,FP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf 22&222 WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPD VRO VRO QRW REWDLQHG IRU WLPHr QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUD VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD r IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 174

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOW NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPD JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPH VRO QRW REWDLQHG IRU WLPHr H[W SURE IRU \HDUV H[W SURE r IRU \HDUV H[W SURE IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOW NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf UYU WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV VRO VRO ]HUR DWWHQXDWLRQ YDULDELOLW\ QRW REWDLQHG IRU WLPHr QRW REWDLQHG IRU H[W SURE r H[W SURE H[W SURE r W LPH IRU IRU IRU UDWLR \U H[WUHPH YDOXH WR \HDUV \HDUV \HDUV YDULDELOLW\ LQ DWWHQ VLJPD \U YDO IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf f 9 f IF9 Y ZZZZZ : Z Z Z Z P Z WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE IRU \HDUV H[W SURE IRU \HDUV H[W SURE IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 175

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOW NP ]HUR DWWHQXDWLRQ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV YDULDELOLW\ UHYHQWVf U\UVf YDULDELOLW\ JP RFF\U WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPD H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPH VRO QRW REWDLQHG IRU WLPHr H[W SURE IRU \HDUV H[W SUR' r IRU \HDUV H[W SURE IRU \HDUV UDWLR YU H[WUHPH YDOXH WR YU YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPD VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURS r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W SURS IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH L WR \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 176

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURR r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDRLOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP JPr ]HUR DWWHQXDWLRQ RFF\U H[F\U YDULDELOLW\ UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf 28 WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO r 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ LJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 177

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf & WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W RURE IRU \HDUV H[W SURS r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURS r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr r IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP JP ]HUR DWWHQXDWLRQ n RFF\U H[F\U YDULDELOLW\ UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO r

PAGE 178

3HQLQVXODU )ORULGD 6HLVPLF +D]DUD VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YHULDRWOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf W WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'UR' r IRU \HDUV H[W SURE IRU \HDUV H[W 'URE IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUD VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDSLOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf JP WRWDO \HDUO\ HYHQWV WRWDO \L YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURG r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFFYU H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr P RFF\U H[F\U UHYHQWVf UL\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 179

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ f QX RFF\U H[F\U UHYHQWVf U\UV RRRRR RRRRR WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UV RRRRR RRRRR RRRRR RRRRR WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W 'URE r IRU \HDUV H[W RURR r IRU \HDUV H[W 'URE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD r IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U ,,, H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W RURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf RRRRR R RRRRR R :9W9 f 7 9WWWW f 9 JP YDULDELOLW\ RFF\U 22222 WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPDr H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG WRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr r IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 180

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW RLVW WR IDXOW} NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULD'LOLWY LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUL\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W SURE r IRU \HDUV IRU \HDUV H[W SURS r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW RLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\U VRO QRW REWDLQHG IRU VRO QRW REWDLQHG IRU H[W SURE r H[W 'URR r H[W SURG r UDWLR \U H[WUHPH YDOXH WR WRWDO \HDUO\ HYHQWV LRQ YDULDELOLW\ LPHr LPHr YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV IRU \HDUV IRU \HDUV IRU \HDUV \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U WRWDO \HDUO\ HYHQWV H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURG r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 181

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDRLOLWY LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFFYU H[F\U UHYHQWVf UYUVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ t ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP WRWDO RFF\U H[F\U \HDUO\ HYHQWV UHYHQW Vf U\UVf JP YDQDEL O L W\ RFF\U WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPDr H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W SURS r IRU \HDUV H[W SURS r IRU \HDUV f fffD $2 LQL 2 22Q DY W UDPD YDO LXD W Q A YU YIWL YDULDELOLW\ LQ DWWHQ VLJPDr QRQ IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W RURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 182

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr LP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W RURR r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf JP YDULDELOLW\ LQ DW RFF\U H[F\U WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV WHQ VLJPDr UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U WRWDO \HDUO\ HYHQWV H[F\U ULHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 183

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP f +, ]HUR DWWHQXDWLRQ RFF\U H[F\U YDQDEL O L W\ UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr FFF\U H[F\U UHYHQWVf U\UVf RRRRR RRRRR WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDRLOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'URE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W RURE IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf RRRRR R RRRRR R JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU H[W SURR r IRU H[W RURR r IRU UDWLR \U H[WUHPH YDOXH WR \HDUV \HDUV \HDUV \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr r f L IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ U ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U RRRRR RRRRR RRRRR H[F\U RRRRR RRRRR RRRRR RRRRR RRRRR WRWDO \HDUO\ HYHQWV UHYHQW Vf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf RRRRR RRRRR RRRRR WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDRLOLW\ VRO QRW REWDLQHG IRU WLPH VRO QRW REWDLQHG IRU WLPH H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 184

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr ,FP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr P RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W 'URR r IRU \HDUV H[W 'URR r IRU \HDUV H[W RURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr YDULDELOLW\ LQ DWWHQ VLJPDr H[W SURR r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO r 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RRD RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U WRWDO \HDUO\ HYHQWV H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'URR m IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 185

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP JP ]HUR DWWHQXDWLRQ RFF\U H[F\U YDULDELOLW\ UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf UYUVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG WRU WLPHr VRO QRW REWDLQHG WRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf A A \Y<
PAGE 186

3HQLQVXODU )ORULGD 6HLVPLF 0D]DUD VXH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDQDGLOLW\ f IOX RFF\U H[F\U UHYHQWVf U\U & RRRRR JP YDULDELOLW\ RFF\U WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPDr H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'URR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf 22222 4 RRRRR R ZYZ7 YZYWf \ RRRRR R RRRRR R YDULDELOLW\ LQ DWWHQ VLJPDr f 7O f RFF\U H[F\U UHYHQWVf U\UV RRRRR RRRRR RRRRR RRRRR WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURG r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDO r 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP JP ]HUR DWWHQXDWLRQ RFF\U H[F\U RRRRR RRRRR RRRRR RRRRR RRRRR WRWDO \HDUO\ HYHQWV YDULDELOLW\ UHYHQWVf U\UVf RRRRR R RRRRR R \\\\\\ YZZ\ YDULDELOLW\ JP RFF\U WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPDr H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 187

3HQLQVXODU )ORULGD 6HLVPLF +D]DUD VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOW} NP ]HUR DWWHQXDWLRQ YDULDELOLW\ P RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPH} VRO QRW REWDLQHG IRU WLPHr H[W RURR IRU \HDUV H[W RURR r IRU \HDUV H[W 'URE r IRU \HDUV YDULDELOLW\ LQ DWWHQ VLJPD} f UQ RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ P RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W 'URR r IRU \HDUV H[W RURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr LP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV \U YDO } 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ LP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPD} f ,%r RFF\U H[F\U UHYHQWVf Q\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURG r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 188

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W EURE r IRU \HDUV H[W SURE r IRU \HDUV H[W RURE r IRU f \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr r IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf L L L RRRRR R RRRRR R RRRRRF L RRRRR L RRRRR RRRRR WRWDO \HDUO\ HYHQWV 0 WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPH H[W RURR r IRU \HDUV H[W RURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDO r 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf H[F\U ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'URS r IRU \HDUV H[W RURR r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 189

3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ _P RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV n ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'URE r IRU \HDUV H[W SURE r IRU \HDUV H[W RURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr r IRU IRU IRU \HDUV \HDUV \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ f ,7f f RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf f f f f f f f WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW RRWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ P RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 190

3HQLQVXODU )ORULGD 6HLVPLF +D]DUD VLWH DW ORQJ ODW VKRUWHVW DLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDQDRLOLW\ _P RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURE r IRU \HDUV H[W RURR r IRU \HDUV H[W 'URR r IRU  \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr P RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDO 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr f P RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W RURR r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO r 3HQLQVXODU )ORULGD 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURE r IRU \HDUV H[W SURS r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 191

O 2 /2&2n2I1-2 AI1PURU22222222222 A f Y&2Q1 2&K UUUYLR 2 /2}m2AA.f20.122.f22I9-2I1-22 Q AUUJ2I?-22In-LQ2n2A2AADRD J LD UI1M.f!QQ6L2A2Atf&K&0! AAIO2AA2UIUUA2ADUUJA.OI226D !R!LUYMI1M6n2.n2UVM}!LLQ.fnLUVLrRF!2UD L2}QU0?LQDr!OLR!LQL$.LY_LQ.1L2LQ f AF?LLU}U?MUVMRR.F!LLA0LQI?-PLQYL.L[LI!UUJ[I & W U1U2LQ62.fn221L2nLQ?-2!UYLA WL IUI0UVLUVM.!!LLQZ!.2D 0 r U 3r /UY_A.f11UUUIQU2222222 f m !RN!rRRRRRRRRRRRRRRRRRRR A222222222222222222222 FRRRRRRRRRRRRRRRRRRRRRR .222222222222222222222 W} f f f f 222222222222222222222 ?$ f§ 2.2AI2&0UZ2222222222222 e fMU F Qr PrRRRRRRRRRRRRRRRRRR R Wf m A f§ 8U / 2222222222222222222222 L W I0YARFRRUYMYI!RFRRI?MAn2FRRUYMYI!RFRRUYM f RRRRAWU UUI1MUYMUVMUJUYMQ.f.f.f.f!L A f222222222222222222222 WR I7! S R S r$ LAARIAUArRrRYRRRRRRRRRRRRRR A mLQ !M 6 MXQLQ F&KUURA.UVMUVLUYM &VL6RDLA.6N !AA.!YWr!nmn 3r L$ U .f rL ALUAAAA r rD r rD r r X fA!L$m1LQVRn+fnn!nnDDAAAAFAAR mf }YAR.ZFJRRRRRRRRtDAttrF!rYW mUVMIU ZI?M.RRRfWRmFQF2F2HRF2RRtttDDt P FF FP FR FR FR WR UR N! P UR r } r tr &! r R 3 /6...O111I1-UUUUU222222222 X F !.?-2222222222222222222 f, R 2222222222222222222222 ( 0 2222222222222222222222 ,$ f 3 3 .222222222222222222222 f§ : ,7f $ W 2 222222222222222222222 Sr F & f A WO 6R S IrR!WrUYLU FR R S LnRPUVLRRRRRRRRRRRRRRRRRR WL Sr m W A2222222222222222222222 2 S 2 2222222222222222222222 : f§ &! L$ / X & f§ W2222222222222222222222 WR 2 1 m / f§ S 1n2F221YWn2&22I1-!Ln2&22I?-An2&22U\:08f fraUUUUI?MU?-I?-&9M&?_..r.!.fU2Y_Yr mR WL ( L$ 3 222222222222222222222 Sr &2/ 2L R U 3 2 3 e P P D .76 R f, e WR m! Wf OO / / / m WR WR LQ R W W f 2LQ. W$ W$ / / / m W W W ! 2 2 LQ 2 R WR / / / A cI R!LLQ R 1 Q R!LLQ / 6‹JrAr6 R R R WL & / 0 + + 2r 22 A P r R R R G P D 4 D W B F F 2 U S S S / ,4 ; 2 2 0 3 ,, ,, 22 0 2 R Sr 0 t e R R R R f f f F F R R R Sr R R .$ L$

PAGE 192

)ORULGD 3DQKDQGOH 6HLVPLF +D]DUG LVZ 4 QHZ UXQQR 'UHYLRXV UHVXOWV LQFOXGHG H[WUHPH SUREDELOLW\ IRU H['26XUH WLPHV \HDUVf VFDOH IDFWRU IRU JURXQG PRWLRQ ER[ OHYHOVr FRRUGLQDWHV LQSXW LQ GHFLPDO GHJUHHV FRRUGLQDWHV DUH SULQWHG LQ GHFLPDO GHJUHHV YDULDELOLW\ LQ DWWHQXDWLRQ VLJPDr JULG RULHQWHG SDUDOOHO WR JUHDW FLUFOH WKUX f f FRUQHUV RI JULRRHG DUHDXSRHU OHIWr ORZHU ULJKWr ORQJLWXGH LQFUHPHQWr GHFLPDO GHJUHHVf ODWLWXGH LQFUHPHQW r GHFLPDO GHJUHHVf JULGGHG UHJLRQ FRQWDLQV URZV FROV LQFOXGLQJ ERUGHU URZV DQG FROV IRU WKLV UXQ RHJLQ DW URZ HQG URZ EHJLQ FRO HQG FRO QHZ FRRUGLQDWHV 2FPf JULGGHG DUHD XSSHU OHIWr ORZHU ULJKWr VLWHV DUH DOVR ORFDWHG RQ OLQHVf DWWHQXDWLRQ IXQFWLRQ )OD5HJLRQ PDJQLWXGH GLVWNPf \UQRFr LSULQW IRU DUHD &KDU QU RI OHYHOV RI VHLVPLFLW\ r &KDU EHWDr HDUWKRXDLFH UDWH \HDU RFFXUUHQFHVr PDJQLWXGHVr &KDU DUHDr VT NP UDWHVT .Pr ( IRU PDJV \UQRFr LSULQWr IRU DUHD 3LHG QU RI OHYHOV RI VHLVPLFLW\ r 3LHG EHWDr HDUWKTXDNH UDWH \HDU RFFXUUHQFHVr PDJQLWXGHVr 3LHG DUHDr VT NP UDWHVT NPr ( IRU PDJV \UQRFr LRULQWr IRU DUHD 6$RR QU RI OHYHOV RI VHLVPLFLW\ r 6$SS EHWDr HDUWKTXDNH UDWH \HDU RFFXUUHQFHVr PDJQLWXGHVr 6$SS DUHDr VT NP UDWHVT NPr ( IRU PDJV \UQRFr LSULQWr IRU DUHD 10DG QU RI OHYHOV RI VHLVPLFLW\ 10DG EHWDr HDUWKTXDNH UDWH \HDU RFFXUUHQFHVr PDJQLWXGHVr 10DG DUHDr VT NP UDWHVT NPr ( IRU PDJV \UQRFr LSULQWr IRU DUHD &D\P QU RI OHYHOV RI VHLVPLFLW\ r &D\P EHWDr HDUWKTXDNH UDWH \HDU RFFXUUHQFHVr PDJQLWXGHVr &D\P DUHDr VT NP UDWHVT NPr ( IRU PDJV \UQRFr LSULQWr IRU DUHD )ORU QU RI OHYHOV RI VHLVPLFLW\ )ORU EHWDr HDUWKTXDNH UDWH \HDU RFFXUUHQFHVr PDJQLWXGHVr )ORU DUHDr VT NP UDWHVT NPr ( IRU PDJV

PAGE 193

)ORULGD 3DQQDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf RFRRRR WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W SURR r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV PQ YU H[WUHPH YDOXH WR \U YDL )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW JP GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ RFF\U H[F\U UHYHQWVf U\UVf JP YDULDELOL RFF\U W\ LQ DWWHQ VLJPDr H[FYU UHYHQWVf UOYUV n WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURS r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDL YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 194

)ORULGD 3DPDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDRLOLWY f UQ f RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV JP YDQD'L W\ RFF\U WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPDr H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRL QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W RURR r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV \U YDO )ORULGD 3DQQDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U rm H[F\U WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W RURR r IRU \HDUV H[W 'URR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 195

)ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr f UQ f RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV f UQ RFFYU H[F\U UHYHQWVf UF\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHR IRU WLPHr H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDO )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[FYU f f f f WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U WRWDO \HDUO\ HYHQWV H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD f f IRU \HDUV IRU \HDUV IRU \HDUV )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf UL\UV WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURG r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 196

)ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf & WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDO )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr f +,r RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\U ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURG r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 197

)ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf UL\UV &* WRWDO \HDUO\ HYHQWV VRO QRW RRWDLQHG IRU VRO QRW RRWDLQHD IRU H[W SURR r H[W SURR r H[W SURR r UDWLR \U H[WUHPH YDOXH WR WRWDO \HDUO\ HYHQWV LRQ YDULDELOLW\ LPHr LPHr YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV IRU \HDUV IRU \HDUV IRU \HDUV \U YDO )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDQDRLOLW\ YDULDRWOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV H[W SURS r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W SURR ‘ IRU \HDUV H[W SURR r IRU \HDUV H[W SURS r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 198

)ORULGD 3DQKDQGOH 6HLVPLF +D]DUD VLWH DW ORQJ ODW VKRUWHVW DLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFFYU H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV VRW VRO ]HUR DWWHQXDWLRQ YDULDELOLW\ QRW REWDLQHG IRU WLPHr QRW REWDLQHG IRU WLPHr YDULDELOLW\ LQ DWWHQ VLJPD H[W SURE IRU \HDUV IRU \HDUV H[W EURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO )ORULGD 3DQQDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW DLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ JP RFF\U H[F\U WRWDO \HDUO\ HYHQWV YDULDELOLW\ UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPD VRO VRO QRW REWDLQHG IRU WLPHr QRW RRWDLQHG IRU WLPHr H[W EURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP 8 RFF\U H[F\U UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 199

)ORULGD 3DQKDQGOH 6HLVPLF 0D]DUD VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPD VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W 'UR' IRU \HDUV IRU \HDUV H[W RURR r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO r )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDQDRLOLW\ JP RFF\U H[F\U UWHYHQWVf U\UVf , f f JP YDQDEL W\ RFF\U WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV LQ DWWHQ VLJPDr H[F\U UHYHQWVf U\UVf ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP JP ]HUR DWWHQXDWLRQ YDULDELOLW\ RFF\U H[F\U UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf RWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU H[W SURE r H[W RURR r H[W SURS r YDULDELOLW\ LQ DWWHQ VLJPDr WLPHr IRU IRU IRU UDWLR \U H[WUHPH YDOXH WR \HDUV \HDUV \HDUV \U YDO IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 200

)ORULGD 3HQQDQGLH 6HLVPLF +D]DUG 6LWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr WHUQ ]HUR DWWHQXDWLRQ YDQDRLOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf & WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W RURR r IRU \HDUV IRU \HDUV f f H[W RURR r IRU \HDUV IRU \HDUV H[W SURR r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO r )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDRLOLW\ YDQDRLOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf Z f ZZZZZ : ZZZZY ZZZZZ 7 ZZZZZUQZ 9 f : : f ::9:9 96::::: 77777 WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ JP RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPH VRO QRW REWDLQHG IRU WLPHr H[W RURR r IRU \HDUV H[W RURR r IRU \HDUV H[W RURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR YDULDRLOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV \U YDL

PAGE 201

)ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDQDRLOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPD VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV IRU \HDUV H[W SURE r IRU \HDUV IRU \HDUV ‘ f H[W SURE r IRU \HDUV IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr JP RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf UYUVf WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ YDULDELOLW\ LQ DWWHQ VLJPDr f IIO f RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf UW\UV m2 f LQ &VM WDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV

PAGE 202

IORULGD 3DQQDQROH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VKRUWHVW GLVW WR IDXOWV NP ]HUR DWWHQXDWLRQ YDULDRXLW\ JP RFF\U H[F\U UHYHQWVf U\UVf & WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPD LP RFF\U H[F\U UHYHQWVf U\UV A WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW RRWDLQHG IRU WLPHr H[W SURE r IRU \HDUV H[W 'URR r IRU \HDUV H[W SURE r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU \HDUV IRU \HDUV IRU \HDUV )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDULDELOLW\ f +, RFF\U H[F\U UHYHQWVf U\UVf WRWDO \HDUO\ HYHQWV YDULDELOLW\ LQ DWWHQ VLJPDr f QLD RFF\U H[F\U UHYHQWVf U\UV & WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR ‘ IRU \HDUV H[W SURE r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPDr IRU \HDUV IRU \HDUV IRU \HDUV )ORULGD 3DQKDQGOH 6HLVPLF +D]DUG VLWH DW ORQJ ODW VQRUWHVW GLVW WR IDXOWr NP ]HUR DWWHQXDWLRQ ‘ RFF\U H[F\U YDULDELOLW\ UHYHQWVf U\UVf JP YDULDELOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UV WRWDO \HDUO\ HYHQWV WRWDO \HDUO\ HYHQWV ]HUR DWWHQXDWLRQ YDULDELOLW\ VRO QRW REWDLQHG IRU WLPHr VRO QRW REWDLQHG IRU WLPHr H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV H[W SURR r IRU \HDUV UDWLR \U H[WUHPH YDOXH WR \U YDO YDULDELOLW\ LQ DWWHQ VLJPD IRU IRU IRU \HDUV \HDUV \HDUV

PAGE 203

FORQDD 3DQQDQDLH 6HLVPLF +D]DUD VLWH DW ORQJ ODW VQRUWHVW 2LVW WR IDXOWr NP ]HUR DWWHQXDWLRQ YDUWD'LLLWY YDULD'LOLW\ LQ DWWHQ VLJPDr RFF\U H[F\U UHYHQWVf U\UVf JP RFF\U H[F\U UHYHQWVf U\UV f222VAn2222n2 226m2. UR &2 FYM R F2 Q 2 .O1 2 UVML!.f. P fI1-LQ 2&2LQL22..fI D f2.LURRF2UYL2UR UU. R R WR Q £Ui£RRRRRR P RRRRRRRR RRRRRRRRR F RRRRRRRRR f§ 222222222 3, 0 3 %Y_1U e Z .UYL2222222! 222222222 } R 222222222 F 3, 3, 3, WO W } ! f§ R 2 LU! 2 R R R R e& R R R RRRRRRRRR L D YWn2&22I1-YW2&22 ; 2G2UUIUII1,, RVMUARRRRRRDr PnRADRRRRD AA .,22222222 222222222 222222222 22222222 2222222223 UAP[IRRRRR 6I1-2222222 W! 22222222 222222222! 222222222 RRRRRRRRRP UVM 2 I0 n, 2 &2 2 f UVM 22222222223r 3, SL SL / L / Q LR D mL mL ! R R LQ 2 f§ R R R / 2 r! &VM L 0 2 1I LQ 6LW"pp f§ R R R S S L L 0 0 0 R R V m 6 4 8 R 2 A ‘r S S S / f m . 2 R R ]V LIL

PAGE 204

5()(5(1&(6 &,7(' $GG\ 6 DQG 5 7 %XIIOHU 6HLVPLF VWUDWLJUDSK\ RI VKHOI DQG VORSH QRUWKHDVWHUQ *XOI RI 0H[LFR $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S $PLFN DQG 5 *HOLQDV 7KH VHDUFK IRU HYLGHQFH RI ODUJH SUHKLVWRULF HDUWKTXDNHV DORQJ WKH $WODQWLF VHDERDUG 6FLHQFH Y S $QGR & ) $ &RRN ( 2OLYHU / %URZQ DQG 6 .DXIPDQ &UXVWDO JHRPHWU\ RI WKH $SSDODFKLDQ RURJHQ IURP VHLVPLF UHIOHFWLRQ VWXGLHV LQ +DWFKHU 5' + :LOOLDPV DQG =HLW] HGV &RQWULEXWLRQV WR WKH 7HFWRQLFV DQG *HRSK\VLFV RI 0RXQWDLQ &KDLQV *HRORJLFDO 6RFLHW\ RI $PHULFD 0HPRLU S $QWRLQH : DQG / +DUGLQJ 6WUXFWXUH EHQHDWK FRQWLQHQWDO VKHOI QRUWKHDVWHUQ *XOI RI 0H[LFR $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S $SSOLQ 3 / 3UHOLPLQDU\ UHSRUW RQ EXULHG SUH0HVR]RLF URFNV LQ )ORULGD DQG DGMDFHQW VWDWHV 86 *HRO 6XUY &LUF S $UGHQ ' *HRORJ\ RI WKH 6XZDQQHH %DVLQ LQWHUSUHWHG IURP JHRSK\VLFDO SURILOHV 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S %DOO 0 0 5 0DUWLQ 5 4 )RRWH DQG $ 9 $SSOHJDWH 6WUXFWXUH DQG VWUDWLJUDSK\ RI WKH ZHVWHUQ )ORULGD VKHOI 86 *HRO 6XUY 2SHQ)LOH 5SW S

PAGE 205

%DUQHWW 5 6 %DVHPHQW VWUXFWXUH RI )ORULGD DQG LWV WHFWRQLF LPSOLFDWLRQV 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S %DURVK 3 &DXVH RI VHLVPLFLW\ LQ WKH HDVWHUQ 8QLWHG 6WDWHV $ SUHOLPLQDU\ DSSUDLVDO LQ %HDYHUV -$ HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ WKH (DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S %DUWN 3 3UHEUHDNXS JHRORJ\ RI WKH *XOI RI 0H[LFR &DULEEHDQ LWV UHODWLRQ WR 7ULDVVLF DQG -XUDVVLF ULIW V\VWHPV RI WKH UHJLRQ 7HFWRQLFV Y QR S %DVV 0 1 3HWURJUDSK\ DQG DJHV RI FU\VWDOOLQH EDVHPHQW URFNV RI )ORULGDf§VRPH H[WUDSRODWLRQV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 0HP S %HDWW\ ) 7KH VWXG\ RI OLQHDPHQWV DQG IUDFWXUH WUDFHV DQG FRUUHODWLRQ WR VSULQJV DORQJ WKH 6XZDQQHH 5LYHU IURP 0D\R )ORULGD WR %UDQIRUG )ORULGD 06 WKHVLV 8QLY RI )ORULGD *DLQHVYLOOH )OD S %HKUHQGW & 6FKOHH 0 5REE DQG 0 6LOYHUVWHLQ 6WUXFWXUH RI WKH FRQWLQHQWDO PDUJLQ RI /LEHULD ZHVW $IULFD *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S %HOOLQL 7 %DUWROLQL 0 /RUG DQG / 6PLWK 6HLVPLF DWWHQXDWLRQ LQ )ORULGD DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S %HQGHU % DQG &DPSEHOO $ QRWH RQ WKH VHOHFWLRQ RI PLQLPXP PDJQLWXGH IRU XVH LQ VHLVPLF KD]DUG DQDO\VLV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S %HQGHU % DQG 0 3HUNLQV 6(,656. ,,, $ FRPSXWHU SURJUDP IRU VHLVPLF KD]DUG HVWLPDWLRQ 86 *HRO 6XUY %XOOHWLQ S

PAGE 206

%HUJ ODQG $ JXLGHG WRXU RI WKH IDVW )RXULHU WUDQVIRUP ,((( 6SHFWUXP Y S %HPUHXWHU / % 6DY\ 5 : 0HQVLQJ DQG & &KHQ 6HLVPLF KD]DUG FKDUDFWHUL]DWLRQ RI QXFOHDU SRZHU SODQW VLWHV HDVW RI WKH 5RFN\ 0RXQWDLQV 86 1XFOHDU 5HJXODWRU\ &RPPLVVLRQ 185(*&5 %ROOLQJHU $ $ 6HLVPLFLW\ RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S %ROOLQJHU $ % 6HLVPLFLW\ DQG FUXVWDO XSOLIW LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV $PHULFDQ -RXUQDO RI 6FLHQFH Y $ S %ROOLQJHU $ $ FDWDORJ RI VRXWKHDVWHUQ 8QLWHG 6WDWHV HDUWKTXDNHV WKURXJK 9LUJLQLD 3RO\WHFKQLF ,QVWLWXWH DQG 6WDWH 8QLYHUVLW\ %ODFNVEXUJ 9D S %ROOLQJHU $ 5HLQWHUSUHWDWLRQ RI WKH LQWHQVLW\ GDWD IRU WKH &KDUOHVWRQ 6RXWK &DUROLQD HDUWKTXDNH LQ 5DQNLQ ': HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI $ 3UHKPLQDU\ 5HSRUW 86 *HRO 6XUY 3URI 3DSHU % S %ROOLQJHU $ $WWHQXDWLRQ RI WKH /J SKDVH DQG WKH GHWHUPLQDWLRQ RI LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S %ROOLQJHU $ 6SHFXODWLRQV RQ WKH QDWXUH RI VHLVPLFLW\ DW &KDUOHVWRQ 6RXWK &DUROLQD LQ *RKQ *6 HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI 7HFWRQLFV DQG 6HLVPLFLW\ 86 *HRO 6XUY 3URI 3DSHU S7O7OO %ROOLQJHU $ 0 & &KDSPDQ 0 6 6LERO DQG &RVWDLQ $Q DQDO\VLV RI HDUWKTXDNH IRFDO GHSWKV LQ WKH VRXWKHDVWHUQ 86 *HRSK\VLFDO 5HVHDUFK /HWWHUV Y S

PAGE 207

%ROOLQJHU $ ) & 'DYLVRQ 0 6 6LERO DQG % %LUFK 0DJQLWXGH UHFXUUHQFH UHODWLRQV IRU WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DQG LWV VXEGLYLVLRQV -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S %URZQ / 5HFHQW YHUWLFDO FUXVWDO PRYHPHQW DORQJ WKH HDVW FRDVW RI WKH 8QLWHG 6WDWHV 7HFWRQRSK\VLFV Y S %XIIOHU 5 7 'LVWULEXWLRQ RI FUXVW GLVWULEXWLRQ RI VDOW DQG WKH HDUO\ HYROXWLRQ RI WKH *XOI RI 0H[LFR EDVLQ LQ *XOI &RDVW 6HFWLRQ RI WKH 6RFLHW\ RI (FRQRPLF 3DOHRQWRORJLVWV DQG 0LQHUDORJLVWV )RXQGDWLRQ 7HQWK $QQXDO 5HVHDUFK &RQIHUHQFH 3URJUDP DQG $EVWUDFWV S %XIIOHU 5 7 DQG 6 6DZ\HU 'LVWULEXWLRQ RI FUXVW DQG HDUO\ KLVWRU\ *XOI RI 0H[LFR EDVLQ 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S %XOODUG ( ( (YHUHWW DQG $ 6PLWK 7KH ILW RI WKH FRQWLQHQWV DURXQG WKH $WODQWLF 6\PSRVLXP RQ &RQWLQHQWDO 'ULIW 5R\DO 6RF RI /RQGRQ 3KLO 7UDQV VHU $ S %XUNH & &RRSHU ) 'HZH\ 3 0DQQ DQG / 3LQGHOO &DULEEHDQ WHFWRQLFV DQG UHODWLYH SODWH PRWLRQV LQ %RQLQL :( 5% +DUJUDYHV DQG 5 6KDJDP HGV 7KH &DULEEHDQ 6RXWK $PHULFDQ 3ODWH %RXQGDU\ DQG 5HJLRQDO 7HFWRQLFV *HRORJLFDO 6RFLHW\ RI $PHULFD 0HP S &DPSEHOO : $ JURXQG PRWLRQ PRGHO IRU WKH FHQWUDO 8QLWHG 6WDWHV EDVHG RQ QHDUVRXUFH DFFHOHUDWLRQ GDWD LQ %HDYHUV -( HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ 7KH (DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S &KDSPDQ 0 & $ %ROOLQJHU 0 6 6LERO DQG ( 6WHSKHQVRQ 7KH LQIOXHQFH RI WKH &RDVWDO 3ODLQ VHGLPHQWDU\ ZHGJH RQ VWURQJ JURXQG PRWLRQV IURP WKH &KDUOHVWRQ 6RXWK &DUROLQD HDUWKTXDNH (DUWKTXDNH 6SHFWUD Y S

PAGE 208

&KDSPDQ 0 & DQG 0 % 5RJHUV &RGD 4LQ WKH VRXWKHUQ $SSDODFKLDQV *HRSK\VLFDO 5HVHDUFK /HWWHUV Y S &KLQQHU\ 0 $ $ FRPSDULVRQ RI WKH VHLVPLFLW\ RI WKUHH UHJLRQV RI WKH HDVWHUQ 86 %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S &KRZQV 7 0 DQG & 7 :LOOLDPV 3UH&UHWDFHRXV URFNV EHQHDWK WKH *HRUJLD FRDVWDO SODLQUHJLRQDO LPSOLFDWLRQV LQ *RKQ *6 HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI 7HFWRQLFV DQG 6HLVPLFLW\ 86 *HRO 6XUY 3URI 3DSHU S // &ODUNH & 2SWLPXP VHFRQGGHULYDWLYH DQG GRZQZDUGFRQWLQXDWLRQ ILOWHUV *HRSK\VLFV Y S &ROHPDQ 1 0 DQG 0 7 6WHZDUW %DVHPHQW VWUXFWXUH LQ QRUWKZHVW SHQLQVXODU )ORULGD 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S &RRN ) $ 6 $OEDXJK / %URZQ 6 .DXIPDQ ( 2OLYHU DQG 5 +DWFKHU -U 7KLQVNLQQHG WHFWRQLFV LQ WKH FU\VWDOOLQH VRXWKHUQ $SSDODFKLDQV &2&253 VHLVPLF UHIOHFWLRQ SURILOLQJ RI WKH %OXH 5LGJH DQG 3LHGPRQW *HRORJ\ Y S &RRN ) $ / %URZQ 6 .DXIPDQ ( 2OLYHU DQG 7 $ 3HWHUVRQ &2&253 VHLVPLF SURILOLQJ RI WKH $SSDODFKLDQ RURJHQ EHQHDWK WKH &RDVWDO 3ODLQ RI *HRUJLD *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S &RRNH & : DQG $ & 0XQ\DQ 6WUDWLJUDSK\ RI WKH FRDVWDO SODLQ RI *HRUJLD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S &RROH\ : DQG : 7XNH\ $Q DOJRULWKP IRU WKH PDFKLQH FDOFXODWLRQ RI FRPSOH[ )RXULHU VHULHV 0DWKHPDWLFV RI &RPSXWLQJ Y S

PAGE 209

&RUGHOO / DQG 9 6 *UDXFK 5HFRQFLOLDWLRQ RI WKH GLVFUHWH DQG LQWHJUDO )RXULHU WUDQVIRUPV *HRSK\VLFV Y S &RUQHOO & $ (QJLQHHULQJ VHLVPLF ULVN DQDO\VLV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S &RUVR : $ $XVWLQ DQG 5 7 %XIIOHU 7KH (DUO\ &UHWDFHRXV SODWIRUP RII QRUWKZHVW )ORULGD &RQWUROV RQ PRUSKRORJLF GHYHORSPHQW RI FDUERQDWH PDUJLQV 0DULQH *HRORJ\ Y S &UDPHU ) + 3RVLWLRQ RI WKH QRUWK )ORULGD /RZHU 3DOHR]RLF EORFN LQ 6LOXULDQ WLPH SK\WRSODQNWRQ HYLGHQFH -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S &UDPHU ) + 0LGGOH DQG 8SSHU 6LOXULDQ FKLWLQR]RDQ VXFFHVVLRQ LQ )ORULGD VXEVXUIDFH -RXUQDO RI 3DOHRQWRORJ\ Y S 'DOOPH\HU 5 AA$UAA$U DJHV IURP D SUH0HVR]RLF FU\VWDOOLQH EDVHPHQW SHQHWUDWHG DW KROHV DQG $ RI WKH 'HHS 6HD 'ULOOLQJ 3URMHFW /HJ VRXWKHDVWHUQ *XOI RI 0H[LFR WHFWRQLF LPSOLFDWLRQV ,QLWLDO 5HSRUWV RI WKH 'HHS 6HD 'ULOOLQJ 3URMHFW /HJ 86 *RYW 3ULQWLQJ 2IILFH :DVKLQJWRQ '& S 'DOOPH\HU 5 A$UA$U DJH RI GHWULWDO PXVFRYLWH ZLWKLQ /RZHU 2UGRYLFLDQ VDQGVWRQH LQ WKH &RDVWDO 3ODLQ EDVHPHQW RI )ORULGDLPSOLFDWLRQV IRU ZHVW $IULFDQ WHUUDQH OLQNDJHV *HRORJ\ Y S 'DOOPH\HU 5 $ WHFWRQLF OLQNDJH EHWZHHQ WKH 5RFNHOLGH RURJHQ 6LHUUD /HRQHf DQG WKH 6W /XFLH PHWDPRUSKLF FRPSOH[ LQ WKH )ORULGD VXEVXUIDFH -RXUQDO RI *HRORJ\ Y S 'DOOPH\HU 5 0 &DHQ9DFKHWWH DQG 0 9LOOHQHXYH (PSODFHPHQW DJH RI SRVWWHF WRQLF JUDQLWHV LQ VRXWKHUQ *XLQHD ZHVW $IULFDf DQG WKH SHQLQVXODU )ORULGD VXEVXUIDFH LPSOLFDWLRQV IRU RULJLQV RI VRXWKHUQ

PAGE 210

$SSDODFKLDQ H[RWLF WHUUDQHV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 'DOOPH\HU 5 DQG 0 9LOOHQHXYH $U DW PLQHUDO DJH UHFRUG RI SRO\SKDVH WHFWRQRWKHUPDO HYROXWLRQ LQ WKH VRXWKHUQ 0DXULWDQLGH RURJHQ VRXWKHDVWHUQ 6HQHJDO *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 'DQLHOV / =HLW] DQG 3 3RSHQRH 'LVWULEXWLRQ RI VXEVXUIDFH /RZHU 0HVR]RLF URFNV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV DV LQWHUSUHWHG IURP UHJLRQDO DHURPDJQHWLF DQG JUDYLW\ PDSV LQ *RKQ *6 HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI 7HFWRQLFV DQG 6HLVPLFLW\ 86 *HRO 6XUY 3URI 3DSHU S .. 'LHW] 5 6 DQG & +ROGHQ 5HFRQVWUXFWLRQ RI 3DQJDHD %UHDNXS DQG GLVSHUVLRQ RI FRQWLQHQWV 3HUPLDQ WR SUHVHQW -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 'LOORQ : 3 & 3DXOL DQG / ( *LOEHUW +LVWRU\ RI WKH $WODQWLF FRQWLQHQWDO PDUJLQ RII )ORULGD 7KH %ODNH 3ODWHDX EDVLQ LQ 3RDJ &: HG *HRORJLF (YROXWLRQ RI WKH 8QLWHG 6WDWHV $WODQWLF 0DUJLQ 9DQ 1RVWUDQG 5HLQKROG &R ,QF 1HZ
PAGE 211

(DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ WKH (DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S 'XQEDU $ DQG 6 6DZ\HU ,PSOLFDWLRQV RI FRQWLQHQWDO FUXVW H[WHQVLRQ IRU SODWH WHFWRQLFV $Q H[DPSOH IURP WKH *XOI RI 0H[LFR 7HFWRQLFV Y S (EDVFR 6HUYLFHV ,QF 3UREDELOLVWLF VHLVPLF KD]DUG HYDOXDWLRQ 6W /XFLH DQG 7XUNH\ 3RLQW QXFOHDU SRZHU SODQW VLWHV )ORULGD 3RZHU DQG /LJKW &R 5SW -XQR %HDFK )OD S (YDQV 0 $ )UDFWXUHV LQ RULHQWHG 'HYRQLDQ VKDOH FRUHV IURP WKH $SSDODFKLDQ %DVLQ 06 WKHVLV :HVW 9LUJLQLD 8QLYHUVLW\ 0RUJDQWRZQ :9D )HPDOG ( $ HG $WODV RI )ORULGD 7KH )ORULGD 6WDWH 8QLYHUVLW\ )RXQGDWLRQ ,QF 7DOODKDVVHH +D S )XOOHU % 7ZRGLPHQVLRQDO IUHTXHQF\ DQDO\VLV DQG GHVLJQ RI JULG RSHUDWRUV 0LQLQJ *HRSK\VLFV 6RFLHW\ RI ([SORUDWLRQ *HRSK\VLFLVWV 7XOVD 2NOD S *RGVRQ 5 + DQG 0 5 0DOO 3RWHQWLDOILHOG JHRSK\VLFDO SURJUDPV IRU ,%0 FRPSDWLEOH FRPSXWHUV 86 *HRORJLFDO 6XUYH\ 2SHQ)LOH 5SW $ S *RUGRQ : 7 %HQQHWW 5 % +HUUPDQQ DQG $ 0 5RJHUV 7KH VRXWKFHQWUDO ,OOLQRLV HDUWKTXDNH RI 1RYHPEHU PDFURVHLVPLF VWXGLHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S *RXJK / 0DJQHWLF DQRPDOLHV DQG FUXVWDO VWUXFWXUH LQ HDVWHUQ *XOI RI 0H[LFR $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S *UDXFK 9 6 7$
PAGE 212

*URZ $ DQG 5 ( 6KHULGDQ $GDQGF FRQWLQHQWDO PDUJLQ RI WKH 8QLWHG 6WDWHV LQ 3DOPHU $5 HG 3HUVHFWLYHV LQ 5HJLRQDO *HRORJLFDO 6\QWKHVLV *HRORJLFDO 6RFLHW\ RI $PHULFD '1$* 6S 3XE %RXOGHU &RO S *XSWD 1 DQG / 0F/DXJKOLQ $WWHQXDWLRQ RI JURXQG PRWLRQ LQ WKH HDVWHUQ 8QLWHG 6WDWHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S *XWHQEHUJ % DQG & ) 5LFKWHU )UHTXHQF\ RI HDUWKTXDNHV LQ &DOLIRUQLD %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S *XWHQEHUJ % DQG & ) 5LFKWHU (DUWKTXDNH PDJQLWXGH LQWHQVLW\ HQHUJ\ DQG DFFHOHUDWLRQ %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S +DPLOWRQ 5 0 *HRORJLF RULJLQ RI HDVWHUQ 86 VHLVPLFLW\ LQ %HDYHUV -( HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ 7KH (DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S +DUULV / DQG & %D\HU 6HTXHQWLDO GHYHORSPHQW RI WKH $SSDODFKLDQ RURJHQ DERYH D PDVWHU GHFROOHPHQWD K\SRWKHVLV *HRORJ\ Y S +DWFKHU 5 7HFWRQLF V\QWKHVLV RI WKH 86 $SSDODFKLDQV LQ +DWFKHU 5' :$ 7KRPDV DQG *: 9LHOH HGV 7KH $SSDODFKLDQ2XDFKLWD 2URJHQ LQ WKH 8QLWHG 6WDWHV *HRORJLFDO 6RFLHW\ RI $PHULFD Y ) S +DWFKHU 5 =LHW] DQG /LWHKLVHU &UXVWDO VXEGLYLVLRQV RI WKH HDVWHUQ DQG FHQWUDO 8QLWHG 6WDWHV DQG D VHLVPLF ERXQGDU\ K\SRWKHVLV IRU HDVWHUQ VHLVPLFLW\ *HRORJ\ Y S +HDWKHULQJWRQ $ / DQG 3 $ 0XHOOHU *HRFKHPLFDO HYLGHQFH IRU 7ULDVVLF ULIWLQJ LQ VRXWKZHVWHUQ )ORULGD 7HFWRQRSK\VLFV Y S

PAGE 213

+HDWKHULQJWRQ $ / 3 $ 0XHOOHU DQG 5 'DOOPH\HU *HRFKHPLFDO SURYHQDQFH RI )ORULGD EDVHPHQW FRPSRQHQWV DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S +HDWKHULQJ WRQ $ / 3 $ 0XHOOHU DQG $ 'n$UF\ *HRFKHPLFDO FRQVWUDLQWV RQ WKH HYROXWLRQ RI WKH )ORULGD EDVHPHQW DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y S $ +HFN ) 5 0HVR]RLF H[WHQVLRQ LQ WKH VRXWKHUQ $SSDODFKLDQV *HRORJ\ Y S +LOGHQEUDQG 7 ))7),/ $ ILOWHULQJ SURJUDP EDVHG RQ WZRGLPHQVLRQDO )RXULHU DQDO\VLV RI JHRSK\VLFDO GDWD 86 *HRORJLFDO 6XUYH\ 2SHQ)LOH 5SW S +RRNHU 9 ( DQG & ) -RKQVRQ 1HDUVXUIDFH KRUL]RQWDO VWUHVVHV LQFOXGLQJ WKH HIIHFWV RI URFN DQLVRWURS\ 86 %XUHDX RI 0LQHV 5HSW RI ,QY S +RUWRQ : $ $ 'UDNH DQG : 5DQNLQ 7HFWRQRVWUDGJUDSKLF WHUUDQHV DQG WKHLU 3DOHR]RLF ERXQGDULHV LQ WKH FHQWUDO DQG VRXWKHUQ $SSDODFKLDQV *HRORJLFDO 6RFLHW\ RI $PHULFD 6SHF 3DSHU S +RXVQHU : (QJLQHHULQJ HVWLPDWHV RI JURXQG VKDNLQJ DQG PD[LPXP HDUWKTXDNH PDJQLWXGH LQ 7KH )RXUWK :RUOG &RQIHUHQFH RQ (DUWKTXDNH (QJLQHHULQJ S +RZHOO % ) $Q ,QWURGXFWLRQ WR 6HLVPRORJLFDO 5HVHDUFK &DPEULGJH 8QLYHUVLW\ 3UHVV &DPEULGJH (QJODQG S +XEEDUG 6 6 & &RUXK DQG &RVWDLQ 3DOHR]RLF DQG *UHQYLOOLDQ VWUXFWXUHV LQ WKH VRXWKHUQ $SSDODFKLDQV ([WHQGHG LQWHUSUHWDWLRQV RI VHLVPLF UHIOHFWLRQ GDWD 7HFWRQLFV Y S -RKQVWRQ $ & 2Q WKH XVH RI WKH IUHTXHQF\PDJQLWXGH UHODWLRQ LQ HDUWKTXDNH ULVN DVVHVVPHQW LQ %HDYHUV -( HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ 7KH

PAGE 214

(DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S -RKQVWRQ $ & DQG / 5 .DQWHU (DUWKTXDNHV LQ VWDEOH FRQWLQHQWDO FUXVW 6FLHQWLILF $PHULFDQ Y S -RKQVWRQ $ & DQG 6 1DYD 5HFXUUHQFH UDWHV DQG SUREDELOLW\ HVWLPDWHV IRU WKH 1HZ 0DGULG VHLVPLF ]RQH -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S -RKQVWRQ $ & 5HLQEROG DQG 6 %UHZHU 6HLVPRWHFWRQLFV RI WKH VRXWKHUQ $SSDODFKLDQV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S -RQHV ) % / 7 /RQJ DQG + 0F.HH 6WXG\ RI WKH DWWHQXDWLRQ DQG D]LPXWKDO GHSHQGHQFH RI VHLVPLFZDYH SURSDJDWLRQ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S .DQH 0 ) &RUUHODWLRQ RI PDMRU HDVWHUQ HDUWKTXDNH FHQWHUV ZLWK PDILFXOWUDPDILF EDVHPHQW PDVVHV LQ 5DQNLQ ': HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI $ 3UHOLPLQDU\ 5HSRUW 86 *HRO 6XUY 3URI 3DSHU S .KRXU\ 6 DQG 8 &KDQGUD 3UREDELOLVWLF VHLVPLF KD]DUG UHVXOWV IRU VLWHV LQ D UHJLRQ RI ORZ VHLVPLFLW\ LQ 6WHSS -& HG 6HFRQG V\PSRVLXP RQ FXUUHQW LVVXHV UHODWHG WR QXFOHDU SRZHU SODQW VWUXFWXUHV HTXLSPHQW DQG SLSLQJ ZLWK HPSKDVLV RQ UHVROXWLRQ RI VHLVPLF LVVXHV LQ ORZVHLVPLFLW\ UHJLRQV (OHFWULF 3RZHU 5HVHDUFK ,QVWLWXWH 3DOR $OWR &DO S WR .LQJ ( 5 5HJLRQDO PDJQHWLF PDS RI )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S .OLWJRUG DQG & %HKUHQGW %DVLQ VWUXFWXUH RI WKH 86 $WODQWLF PDUJLQ *HRORJLFDO DQG *HRSK\VLFDO ,QYHVWLJDWLRQV RI &RQWLQHQWDO 0DUJLQV $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 0HP S

PAGE 215

.OLWJRUG : 3 'LOORQ DQG 3 3RSHQRH 0HVR]RLF WHFWRQLFV RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV FRDVWDO SODLQ DQG FRQWLQHQWDO PDUJLQ LQ *RKQ *6 HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI 7HFWRQLFV DQG 6HLVPLFLW\ 86 *HRO 6XUY 3URI 3DSHU S 33 .OLWJRUG 3 3RSHQRH DQG + 6FKRXWHQ )ORULGD $ -XUDVVLF WUDQVIRUP SODWH ERXQGDU\ -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S .OLWJRUG DQG + 6FKRXWHQ 0HVR]RLF HYROXWLRQ RI WKH $WODQWLF &DULEEHDQ DQG *XOI RI 0H[LFR LQ 3LOJHU 5HG 6\PSRVLXP RQ WKH 2ULJLQ RI WKH *XOI RI 0H[LFR DQG WKH (DUO\ 2SHQLQJ RI WKH &HQWUDO 1RUWK $WODQWLF /RXLVLDQD 6WDWH 8QLYHUVLW\ %DWRQ 5RXJH /D S .XDQJ / 7 /RQJ DQG 0DUHVFKDO ,QWUDSODWH VHLVPLFLW\ DQG VWUHVV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 7HFWRQRSK\VLFV Y S /H 3LFKQ ; DQG 3 )R[ 0DUJLQDO RIIVHWV IUDFWXUH ]RQHV DQG WKH HDUO\ RSHQLQJ RI WKH 1RUWK $GDQWLF -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S /RQJ / 7 7KH )ORULGD HDUWKTXDNH RI 2FWREHU (DUWKTXDNH 1RWHV Y S /RQJ / 7 5HJLRQL]DWLRQ RI WKH 6RXWK &DUROLQD VHLVPLF ]RQH DEVWf (26 7UDQVDFWLRQV RI WKH $PHULFDQ *HRSK\VLFDO 8QLRQ Y S /RQJ / 7 DQG 5 3 /RZHOO 7KHUPDO PRGHO IRU VRPH FRQWLQHQWDO PDUJLQ VHGLPHQWDU\ EDVLQV DQG XSOLIW ]RQHV *HRORJ\ Y S /RUG 0 7KH WHFWRQLF HYDOXDWLRQ RI D JUDYLW\ VXUYH\ DORQJ WKH HDVWHUQ &RDVWDO 3ODLQ RI *HRUJLD 06 WKHVLV 8QLY RI )ORULGD *DLQHVYLOOH )OD S /RUG 0 $ PHWKRGRORJ\ IRU WKH UDSLG FRSURGXFWLRQ RI GLJLWDOO\ ILOWHUHG SRWHQWLDOILHOG DQG VWUXFWXUDO FRQWRXU

PAGE 216

PDSV DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S /RUG 0 3 $ 0F1HHO\ DQG / 6PLWK $ %RXJXHU JUDYLW\ LQYHVWLJDWLRQ RI WKH OLWKR WHF WRQLFV DQG VWUXFWXUH RI WKH 6RXWK *HRUJLD 5LIW DQG DGMDFHQW DUHDV DEVWf (26 7UDQVDFWLRQV RI WKH $PHULFDQ *HRSK\VLFDO 8QLRQ 6SULQJ PHHWLQJ Y S /RUG 0 DQG / 6PLWK 7KH )ORULGDQ 3ODWHDX (YLGHQFH IRU D XQLTXHO\ VWDEOH EDVHPHQW DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S 0DQQ 3 DQG %XUNH 1HRWHFWRQLFV RI WKH &DULEEHDQ 5HYLHZV RI *HRSK\VLFV DQG 6SDFH 3K\VLFV Y S 0DQVSHL]HU : DQG GH%RHU 5LIW EDVLQV LQ +DWFKHU 5' :$ 7KRPDV DQG *: 9LHOH HGV 7KH $SSDODFKLDQ 2XDFKLWD 2URJHQ LQ WKH 8QLWHG 6WDWHV Y ) *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RO S 0DUWLQ 5 1RUWKHUQ DQG HDVWHUQ *XOI RI 0H[LFR FRQWLQHQWDO PDUJLQ VWUDWLJUDSKLF DQG VWUXFWXUDO IUDPHZRUN LQ %RXPD $+ *7 0RRUH DQG -0 &ROHPDQ HGV )UDPHZRUN )DFLHV DQG 2LO7UDSSLQJ &KDUDFWHULVWLFV RI WKH 8SSHU &RQWLQHQWDO 0DUJLQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 7XOVD 2NOD S 0DWWVRQ 3 + &DULEEHDQ VWUXFWXUDO EUHDNV DQG SODWH PRYHPHQWV LQ %RQLQL :( 5% +DUJUDYHV DQG 5 6KDJDP HGV 7KH &DULEEHDQ6RXWK $PHULFDQ 3ODWH %RXQGDU\ DQG 5HJLRQDO 7HFWRQLFV *HRORJLFDO 6RFLHW\ RI $PHULFD 0HPRLU S 0F%ULGH + &RQVWUDLQWV RQ WKH VWUXFWXUH DQG WHFWRQLF GHYHORSPHQW RI WKH (DUO\ 0HVR]RLF 6RXWK *HRUJLD 5LIW VRXWKHDVWHUQ 8QLWHG 6WDWHV VHLVPLF UHIOHFWLRQ GDWD SURFHVVLQJ DQG LQWHUSUHWDWLRQ 7HFWRQLFV Y S

PAGE 217

0F&DUWDQ / DQG 0 ( *HWWLQJV 3RVVLEOH UHODWLRQVKLS EHWZHHQ VHLVPLFLW\ DQG ZDUP LQWUXVLYH ERGLHV LQ WKH &KDUOHVWRQ 6RXWK &DUROLQD DQG 1HZ 0DGULG 0LVVRXUL DUHDV 86 *HRO 6XUY %XOO S 0F&ODLQ 0 ( DQG ( < .DUU 7KH )ORULGD EDVHPHQW 'LDU\ RI D WXUEXOHQW SDVW 7KH &RPSDVV Y S 0F.HRZQ ) $ +\SRWKHVLV PDQ\ HDUWKTXDNHV LQ WKH FHQWUDO DQG HDVWHUQ 8QLWHG 6WDWHV DUH FDXVDOO\ UHODWHG WR PDILF LQWUXVLYH ERGLHV 86 *HRORJLFDO 6XUYH\ -RXUQDO RI 5HVHDUFK Y S 0F1HHO\ 3 $ $ %RXJXHU JUDYLW\ VXUYH\ DQG FRPSXWHU PRGHO RI QRUWK )ORULGD DQG VRXWK *HRUJLD 06 WKHVLV 8QLY RI )ORULGD *DLQHVYLOOH )OD S 0LOOHU $ 6WUXFWXUDO FRQWURO RI -XUDVVLF VHGLPHQWDWLRQ LQ $ODEDPD DQG )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S 0LOWRQ & ,JQHRXV DQG PHWDPRUSKLF EDVHPHQW URFNV RI )ORULGD )OD %XU *HRO %XOO S 0LOWRQ & DQG 5 *UDVW\ %DVHPHQW URFNV RI )ORULGD DQG *HRUJLD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S 0LQVFK + & : 6WRYHU : 3HUVRQ DQG 5 % 6LPRQ (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV 2FWREHU'HFHPEHU 86 *HRO 6XUY &LUF S 0LQVFK + & : 6WRYHU % 5HDJRU DQG 3 6PLWK (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV -XO\6HSWHPEHU 86 *HRO 6XUY &LUF & S 0LWFKHOO % DQG + +ZDQJ (IIHFW RI ORZ 4VHGLPHQWV DQG FUXVWDO 4RQ /J DWWHQXDWLRQ LQ WKH 8QLWHG 6WDWHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S 0LWFKHOO7DSSLQJ + ([SORUDWLRQ DQDO\VLV RI WKH -XUDVVLF $SDODFKLFROD (PED\PHQW RI )ORULGD 7UDQVDFWLRQV

PAGE 218

RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 0LWFKXP 5 0 6HLVPLF VWUDWLJUDSKLF LQYHVWLJDWLRQ RI ZHVW )ORULGD VORSH *XOI RI 0H[LFR LQ %RXPD $+ *7 0RRUH DQG -0 &ROHPDQ HGV )UDPHZRUN )DFLHV DQG 2LO 7UDSSLQJ &KDUDFWHULVWLFV RI WKH 8SSHU &RQWLQHQWDO 0DUJLQ $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 7XOVD 2NOD S 0ROLQD*DU]D 5 6 5 9DQ GHU 9RR DQG 8UUXWLD)XFXJDXFKL 3DOHRPDJQHWLVP RI WKH &KLDSDV 0DVVLI VRXWKHUQ 0H[LFR (YLGHQFH IRU URWDWLRQ RI WKH 0D\D %ORFN DQG LPSOLFDWLRQV IRU WKH RSHQLQJ RI WKH *XOI RI 0H[LFR *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 0ROQDU 3 DQG / 5 6\NHV 7HFWRQLFV RI WKH &DULEEHDQ DQG 0LGGOH $PHULFD UHJLRQV IURP IRFDO PHFKDQLVPV DQG VHLVPLFLW\ *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 0RWW & (DUWKTXDNH KLVWRU\ RI )ORULGD WR )ORULGD 6FLHQWLVW Y S 0XHOOHU 3 $ $ +HDWKHULQJWRQ $ 1XWPDQ :LOOLDPV DQG :RRGHQ 3UREDEOH SURYHQDQFH RI 3UHFDPEULDQ ]LUFRQV H[WUDFWHG IURP DQ 2UGRYLFLDQ VDQGVWRQH IURP WKH 6XZDQQHH %DVLQ DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S 0XHOOHU 3 $ DQG 3RUFK 7HFWRQLF LPSOLFDWLRQV RI 3DOHR]RLF DQG 0HVR]RLF LJQHRXV URFNV LQ WKH VXEVXUIDFH RI SHQLQVXODU )ORULGD 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 0XOOLQV + 7 $ ) *DUGXOVNL $ & +LH $ 0HOLOOR 6 : :LVH DQG $SSOHJDWH 7KUHHGLPHQVLRQDO VHGLPHQWDU\ IUDPHZRUN RI WKH FDUERQDWH UDPS VORSH RI FHQWUDO ZHVW )ORULGD $ VHTXHQWLDO VHLVPLF VWUDWLJUDSKLF SHUVSHFWLYH *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S

PAGE 219

0XOOLQV + 7 DQG : /\QWV 2ULJLQ RI WKH QRUWKZHVW %DKDPD 3ODWIRUP 5HYLHZ DQG LQWHUSUHWDWLRQ %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S 1HOVRQ $ $PRZ 0 *LJXHUH DQG 6 6FKDPHO 1RUPDOIDXOW ERXQGDU\ RI DQ $SSDODFKLDQ EDVHPHQW PDVVLI" 5HVXOWV RI &2&253 SURILOLQJ DFURVV WKH 3LQH 0RXQWDLQ EHOW LQ ZHVWHUQ *HRUJLD *HRORJ\ Y S 1HOVRQ $ $PRZ + 0F%ULGH + :LOOHPLQ +XDQJ / =KHQJ ( 2OLYHU / %URZQ DQG 6 .DXIPDQ $ 1HZ &2&253 SURILOLQJ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 3DUW /DWH 3DOHR]RLF VXWXUH DQG 0HVR]RLF ULIW EDVLQ *HRORJ\ Y S 1HOVRQ + 0F%ULGH $ $PRZ ( 2OLYHU / %URZQ DQG 6 .DXIPDQ % 1HZ &2&253 SURILOLQJ LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV 3DUW ,, %UXQVZLFN DQG HDVW FRDVW PDJQHWLF DQRPDOLHV RSHQLQJ RI WKH QRUWK $WODQWLF *HRORJ\ Y S 1XWWOL 2 : $ 6HLVPLF ZDYH DWWHQXDWLRQ DQG PDJQLWXGH UHODWLRQV IRU HDVWHUQ 1RUWK $PHULFD -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 1XWWOL 2 : % 7KH 0LVVLVVLSSL 9DOOH\ HDUWKTXDNHV RI DQG ,QWHQVLWLHV JURXQG PRWLRQ DQG PDJQLWXGHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S 1XWWOL 2 : 0DJQLWXGHUHFXUUHQFH UHODWLRQ IRU FHQWUDO 0LVVLVVLSSL 9DOOH\ HDUWKTXDNHV %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S 1XWWOL 2 : 7KH UHODWLRQV RI VXVWDLQHG PD[LPXP JURXQG DFFHOHUDWLRQ DQG YHORFLW\ WR HDUWKTXDNH LQWHQVLW\ DQG PDJQLWXGH LQ 6WDWHRIWKH$UW IRU $VVHVVLQJ (DUWKTXDNH +D]DUGV LQ WKH 8QLWHG 6WDWHV 86 $UP\ (QJLQHHU :DWHUZD\V ([SHULPHQW 6WDWLRQ 0LVH 3DSHU 6 9LFNVEXUJ 0LVV

PAGE 220

1XWWOL 2 : 6LPLODULWLHV DQG GLIIHUHQFHV EHWZHHQ ZHVWHUQ DQG HDVWHUQ 8QLWHG 6WDWHV HDUWKTXDNHV DQG WKHLU FRQVHTXHQFHV IRU HDUWKTXDNH HQJLQHHULQJ LQ %HDYHUV -( HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ 7KH (DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV,QF $QQ $UERU 0LFK S 2EHUPHLHU 6 ) 5 ( :HHPV DQG 5 % -DFREVRQ (DUWKTXDNHLQGXFHG OLTXHIDFWLRQ IHDWXUHV LQ WKH FRDVWDO 6RXWK &DUROLQD UHJLRQ 86 *HRO 6XUY 2SHQ)LOH 5SW S 2JOHVE\ : 5 0 0 %DOO DQG 6 &KDNL %RXJXHU DQRPDO\ PDS RI )ORULGD DQG DGMRLQLQJ FRQWLQHQWDO VKHOYHV )OD %XU *HRO 0DS 6HULHV 2SG\NH 1 ' 6 -RQHV % 0DF)DGGHQ / 6PLWK 3 $ 0XHOOHU DQG 5 6FKXVWHU )ORULGD DV DQ H[RWLF WHUUDQH 3DOHRPDJQHWLF DQG JHRFKURQRORJLF LQYHVWLJDWLRQ RI ORZHU 3DOHR]RLF URFNV IURP WKH VXEVXUIDFH RI )ORULGD *HRORJ\ Y S 2SG\NH 1 ' 3 6SDQJOHU / 6PLWK 6 -RQHV DQG 5 & /LQGTXLVW 2ULJLQ RI WKH HSHLURJHQLF XSOLIW RI 3OLRFHQH3OHLVWRFHQH EHDFK ULGJHV LQ )ORULGD DQG GHYHORSPHQW RI WKH )ORULGD NDUVW *HRORJ\ Y S 3DWWHUVRQ 6 + DQG 6 0 +HUULFN &KDWWDKRRFKHH $QWLFOLQH $SDODFKLFROD (PED\PHQW *XOI 7URXJK DQG UHODWHG VWUXFWXUDO IHDWXUHV VRXWKZHVWHUQ *HRUJLD IDFW RU ILFWLRQ" *D *HRO 6XUY ,QI &LUF S 3HUVRQ : 5 % 6LPRQ & : 6WRYHU DQG + 0LQVFK (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV $SULO-XQH 86 *HRO 6XUY &LUF % S 3LQGHOO / $OOHJKHQLDQ UHFRQVWUXFWLRQ DQG VXEVHTXHQW HYROXWLRQ RI WKH *XOI RI 0H[LFR %DKDPDV DQG SURWR &DULEEHDQ 7HFWRQLFV Y S

PAGE 221

3LQGHOO DQG ) 'HZH\ 3HUPR7ULDVVLF UHFRQVWUXFWLRQ RI ZHVWHUQ 3DQJHD DQG WKH HYROXWLRQ RI WKH *XOI RI 0H[LFR&DULEEHDQ UHJLRQ 7HFWRQLFV Y S 3OXPE 5 $ DQG : &R[ 6WUHVV GLUHFWLRQV LQ HDVWHUQ 1RUWK $PHULFD GHWHUPLQHG WR NP IURP ERUHKROH HORQJDWLRQ PHDVXUHPHQWV -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 3RMHWD .UL] DQG 0 %HUGHQ 6LOXULDQ'HYRQLDQ SHOHF\SRGV DQG 3DOHR]RLF VWUDWLJUDSK\ RI VXEVXUIDFH URFNV LQ )ORULGD DQG *HRUJLD DQG UHODWHG 6LOXULDQ SHOHF\SRGV IURP %ROLYLD DQG 7XUNH\ 86 *HRO 6XUY 3URI 3DSHU S 3URZHOO & ,QGH[ RI IDXOWV RI &UHWDFHRXV DQG &HQR]RLF DJH LQ WKH HDVWHUQ 8QLWHG 6WDWHV 86 *HRO 6XUY 0LVH )LHOG 6WXGLHV 0DS 0) 3URZHOO & &UHWDFHRXV DQG &HQR]RLF WHFWRQLVP LQ WKH $SSDODFKLDQV RI WKH HDVWHUQ 8QLWHG 6WDWHV LQ +DWFKHU 5' -U :$ 7KRPDV DQG *: 9LHOH HGV 7KH $SSDODFKLDQ2XDFKLWD 2URJHQ LQ WKH 8QLWHG 6WDWHV Y ) *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RO S 3XOOL DQG $NL $WWHQXDWLRQ RI VHLVPLF ZDYHV LQ WKH OLWKRVSKHUH FRPSDULVRQ RI DFWLYH DQG VWDEOH DUHDV LQ %HDYHUV -$ HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ 7KH (DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S 5HDJRU DQG / 5 %UHZHU 3UHOLPLQDU\ LVRVHLVPDO PDS DQG LQWHQVLW\ GLVWULEXWLRQ IRU WKH VRXWKHUQ ,OOLQRLV HDUWKTXDNH RI -XQH 86 *HRO 6XUY 2SHQ)LOH 5SW S 5HDJRU % & : 6WRYHU DQG 6 7 $OJHUPLVVHQ 6HLVPLFLW\ PDS RI WKH VWDWH RI )ORULGD 86 *HRORJLFDO 6XUYH\ 0LVH )LHOG 6WXGLHV 0DS 0) 5HDJRU % & : 6WRYHU + 0LQVFK DQG / 5 %UHZHU (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV $SULO-XQH 86 *HRO 6XUY &LUF % S

PAGE 222

5HLWHU / (DUWKTXDNH +D]DUG $QDO\VLV ,VVXHV DQG ,QVLJKWV &ROXPELD 8QLYHUVLW\ 3UHVV 1HZ
PAGE 223

H[DPSOH RI LQWUDSODWH WHFWRQLFV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 6FKDIHU 5HFHQW WKUXVWLQJ LQ WKH $SSDODFKLDQV 1DWXUH Y S 6FKODJHU : 5 7 %XIIOHU $QJVWDGW DQG 5 3KDLU *HRORJLF KLVWRU\ RI WKH VRXWKHDVWHUQ *XOI RI 0H[LFR LQ ,QLWLDO 5HSRUWV RI WKH 'HHS 6HD 'ULOOLQJ 3URMHFW /HJ 86 *RYW 3ULQWLQJ 2IILFH :DVKLQJWRQ '& S 6HFRU 7 $ : 6QRNH DQG 5 'DOOPH\HU &KDUDFWHU RI WKH $OOHJKHQLDQ RURJHQ\ LQ WKH VRXWKHUQ $SSDODFKLDQV SDUW LQ 5HJLRQDO WHFWRQLF UHODWLRQV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 6HHEHU / DQG $UPEUXVWHU 7KH &KDUOHVWRQ 6RXWK &DUROLQD HDUWKTXDNH DQG WKH $SSDODFKLDQ GHWDFKPHQW -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 6(8661 &RQWULEXWRUV 6HLVPLFLW\ RI WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV %XOOHWLQ 6LERO 06 *$ %ROOLQJHU DQG (& 0DWKHQD HGV 9LUJLQLD 3RO\WHFKQLF ,QVWLWXWH DQG 6WDWH 8QLYHUVLW\ %ODFNVEXUJ 9D S 6KDXE ) 7KH LQWHUQDO IUDPHZRUN RI WKH VRXWKZHVWHUQ )ORULGD EDQN 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 6KHULGDQ 5 ( 7 &URVE\ 0 %U\DQ DQG 3 / 6WRIID 6WUDWLJUDSK\ DQG VWUXFWXUH RI %ODNH 3ODWHDX QRUWKHUQ )ORULGD 6WUDLWV DQG QRUWKHUQ %DKDPDV 3ODWIRUP IURP PXOWLFKDQQHO VHLVPLF UHIOHFWLRQ GDWD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S 6KHULGDQ 5 ( & / 'UDNH ( 1DIH DQG +HQQLRQ 6HLVPLF UHIUDFWLRQ VWXG\ RI FRQWLQHQWDO PDUJLQ HDVW RI )ORULGD $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S

PAGE 224

6LERO 0 6 $ %ROOLQJHU DQG % %LUFK (VWLPDWLRQ RI PDJQLWXGHV LQ FHQWUDO DQG HDVWHUQ 1RUWK $PHULFD XVLQJ LQWHQVLW\ DQG IHOW DUHD %XOOHWLQ RI WKH 6HLVPRORJLFDO 6RFLHW\ RI $PHULFD Y S 6LPRQ 5 % & : 6WRYHU DQG % 5HDJRU (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV -DQXDU\0DUFK 86 *HRO 6XUY &LUF $ S 6LQJK 6 DQG 5 % +HUUPDQQ 5HJLRQDOL]DWLRQ RI FUXVWDO FRGD 4BLQ WKH FRQWLQHQWDO 8QLWHG 6WDWHV -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 6PLWK / 5HYLHZ RI WKH WHFWRQLF KLVWRU\ RI WKH )ORULGD EDVHPHQW 7HFWRQRSK\VLFV Y S 6PLWK / %DVHPHQW PRGHO IRU WKH SDQKDQGOH RI )ORULGD 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 6PLWK / 5ROH RI FRQWLQHQWDO FORVXUH LQ WKH GLVWULEXWLRQ RI )ORULGD EDVHPHQW IHDWXUHV LQ 3LQGHOO -/ HG 0HVR]RLF DQG (DUO\ &HQR]RLF 'HYHORSPHQW RI WKH *XOI RI 0H[LFR DQG &DULEEHDQ 5HJLRQ 6RF (FRQ 3DO DQG 0LQ )RXQGDWLRQ*XOI &RDVW 6HFWLRQ WK $QQXDO 5HVHDUFK &RQIHUHQFH 3URFHHGLQJV S 6PLWK / : 7 'HHV DQG : +DUUHOVRQ *HRWKHUPDO FRQGLWLRQV DQG WKHLU LPSOLFDWLRQV IRU EDVHPHQW WHFWRQLFV LQ WKH *XOI &RDVW 0DUJLQ 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 6PLWK / $ / +HDWKHULQJWRQ DQG 3 $ 0XHOOHU &RQILJXUDWLRQ DQG JHRFKHPLVWU\ RI 7ULDVVLF EDVLQV LQ )ORULGD %DVHPHQW FRQWUROV DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S 6PLWK / DQG $ ) 5DQGD]]R +LVWRU\ RI VHLVPRORJLFDO DFWLYLW\ LQ )ORULGD (YLGHQFH RI D XQLTXHO\ VWDEOH EDVHPHQW LQ 6WHSS -& HG 6HFRQG 6\PSRVLXP RQ &XUUHQW ,VVXHV 5HODWHG WR 1XFOHDU 3RZHU 3ODQW 6WUXFWXUHV (TXLSPHQW DQG 3LSLQJ ZLWK (PSKDVLV RQ 5HVROXWLRQ RI

PAGE 225

6HLVPLF ,VVXHV LQ /RZ6HLVPLFLW\ 5HJLRQV (OHFWULF 3RZHU 5HVHDUFK ,QVWLWXWH 3DOR $OWR &D S WR 6WDXGHU : 3UHVHQWGD\ VHLVPLFLW\ DQG LGHQWLILFDWLRQ RI DFWLYH IDXOWV LQ WKH 1HZ 0DGULG VHLVPLF ]RQH LQ 0F.HRZQ )$ DQG /& 3DUNLVHU HGV ,QYHVWLJDWLRQV RI WKH 1HZ 0DGULG 0LVVRXUL (DUWKTXDNH 5HJLRQ 86 *HRO 6XUY 3URI 3DSHU & S 6WRYHU & : 8QLWHG 6WDWHV (DUWKTXDNHV 86 *HRO 6XUY %XOO S 6WRYHU & : 6HLVPLFLW\ PDS RI WKH FRQWHUPLQRXV 8QLWHG 6WDWHV DQG DGMDFHQW DUHDV 86 *HRO 6XUY 0DS *3 6WRYHU & : 8QLWHG 6WDWHV (DUWKTXDNHV 86 *HRO 6XUY %XOO S 6WRYHU & : 8QLWHG 6WDWHV (DUWKTXDNHV 86 *HRO 6XUY %XOO S 6WRYHU & : + 0LQVFK 3 'XQEDU DQG % 5HDJRU (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV $SULO-XQH 86 *HRO 6XUY &LUF ,% S 6WRYHU & : + 0LQVFK DQG 5 % 6LPRQ (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV 2FWREHU'HFHPEHU 86 *HRO 6XUY &LUF S 6WRYHU & : + 0LQVFK 3 6PLWK DQG : 3HUVRQ (DUWKTXDNHV LQ WKH 8QLWHG 6WDWHV $SULO-XQH 86 *HRO 6XUY &LUF % S 6ZDQVRQ 0 7 3UHH[LVWLQJ IDXOW FRQWURO IRU 0HVR]RLF EDVLQ IRUPDWLRQ LQ HDVWHUQ 1RUWK $PHULFD *HRORJ\ Y S 6\NHV / 5 ,QWUDSODWH VHLVPLFLW\ UHDFWLYDWLRQ RI SUHH[LVWLQJ ]RQHV RI ZHDNQHVV DONDOLQH PDJPDWLVP DQG RWKHU WHFWRQLVP SRVWGDWLQJ FRQWLQHQWDO IUDJPHQWDWLRQ 5HYLHZV RI *HRSK\VLFV DQG 6SDFH 3K\VLFV Y S

PAGE 226

6\NHV / 5 DQG 0 (ZLQJ 7KH VHLVPLFLW\ RI WKH &DULEEHDQ UHJLRQ -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 6\NHV / 5 : 5 0F&DQQ DQG $ / .DIND 0RWLRQ RI &DULEEHDQ SODWH GXULQJ ODVW PLOOLRQ \HDUV DQG LPSOLFDWLRQV IRU HDUOLHU &HQR]RLF PRYHPHQWV -RXUQDO RI *HRSK\VLFDO 5HVHDUFK Y S 7DOZDQL 3 DQG &R[ 3DOHRVHLVPLF HYLGHQFH IRU UHFXUUHQFH RI HDUWKTXDNHV QHDU &KDUOHVWRQ 6RXWK &DUROLQD 6FLHQFH Y S 7DUU $ & 5HFHQW VHLVPLFLW\ QHDU &KDUOHVWRQ 6RXWK &DUROLQD DQG LWV UHODWLRQVKLS WR WKH $XJXVW HDUWKTXDNH LQ 5DQNLQ ': HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI $ 3UHOLPLQDU\ 5HSRUW 86 *HRO 6XUY 3URI 3DSHU % S 7DUU $ & DQG 6 5KHD 6HLVPLFLW\ QHDU &KDUOHVWRQ 6RXWK &DUROLQD 0DUFK WR 'HFHPEHU LQ *RKQ *6 HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI f§7HFWRQLFV DQG 6HLVPLFLW\ 86 *HRO 6XUY 3URI 3DSHU S 55 7KRPDV : $ 7 0 &KRZQV / 'DQLHOV 7 / 1HDWKHU\ / *ORYHU DQG 5 *OHDVRQ 7KH VXEVXUIDFH $SSDODFKLDQV EHQHDWK WKH $WODQWLF DQG *XOI FRDVWDO SODLQV LQ +DWFKHU 5' :$ 7KRPDV DQG *: 9LHOH HGV 7KH $SSDODFKLDQ2XDFKLWD 2URJHQ LQ WKH 8QLWHG 6WDWHV Y ) *HRORJLFDO 6RFLHW\ RI $PHULFD %RXOGHU &RO S 9DQ GHU 9RR 5 3DOHR]RLF SDOHRJHRJUDSK\ RI 1RUWK $PHULFD *RQGZDQD DQG LQWHUYHQLQJ GLVSODFHG WHUUDQHV FRPSDULVRQV RI SDOHRPDJQHWLVP ZLWK SDOHRFOLPDWRORJ\ DQG ELRJHRJUDSKLFDO SDWWHUQV *HRORJLFDO 6RFLHW\ RI $PHULFD %XOOHWLQ Y S 9DQ GHU 9RR 5 ) 0DXN DQG 5 % )UHQFK 3HUPLDQ 7ULDVVLF FRQWLQHQWDO FRQILJXUDWLRQV DQG WKH RULJLQ RI WKH *XOI RI 0H[LFR *HRORJ\ Y S

PAGE 227

9DQ 6LFOHQ & (DUO\ RSHQLQJ RI LQLWLDOO\FORVHG *XOI RI 0H[LFR DQG FHQWUDO 1RUWK $WODQWLF 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 9DQ 6LFOHQ & (YROXWLRQ RI SUH-XUDVVLF EDVHPHQW EHQHDWK QRUWKHUQ *XOI RI 0H[LFR &RDVWDO 3ODLQ 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S 9HQH]LDQR DQG 9DQ '\FN 0DJQLWXGH FRQYHUVLRQ IRU WKH HVWLPDWLRQ RI UHFXUUHQFH ODZV LQ 6HLVPLF +D]DUG 0HWKRGRORJ\ IRU 1XFOHDU )DFLOLWLHV LQ WKH (DVWHUQ 86 (OHFWULF 3RZHU 5HVHDUFK ,QVWLWXWH 3DOR $OWR &D $SSHQGL[ $ 9HQNDWDNULVKDQ 5 DQG 6 &XOYHU 3ODWH ERXQGDULHV LQ $IULFD DQG WKHLU LPSOLFDWLRQV IRU 3DQJHDQ FRQWLQHQWDO ILW *HRORJ\ Y S 9HUQRQ 5 2 *HRORJ\ RI /HY\ DQG &LWUXV &RXQWLHV )ORULGD )OD *HRO 6XUY %XOO S 9RLJKW % (YROXWLRQ RI 1RUWK $WODQWLF 2FHDQ 5HOHYDQFH RI URFNSUHVVXUH PHDVXUHPHQWV 1RUWK $WODQWLF*HRORJ\ DQG &RQWLQHQWDO 'ULIW $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV 0HPRLU S :HQWZRUWK & 0 DQG 0 0HUJQHU.HHIHU 5HYHUVH IDXOWLQJ DORQJ WKH HDVWHUQ VHDERDUG DQG WKH SRWHQWLDO IRU ODUJH HDUWKTXDNHV LQ %HDYHUV -$ HG (DUWKTXDNHV DQG (DUWKTXDNH (QJLQHHULQJ(DVWHUQ 8QLWHG 6WDWHV $QQ $UERU 6FLHQFH 3XEOLVKHUV ,QF $QQ $UERU 0LFK S :HQWZRUWK & 0 DQG 0 0HUJQHU.HHIHU 5HJHQHUDWH IDXOWV RI VPDOO &HQR]RLF RIIVHWSUREDEOH HDUWKTXDNH VRXUFHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV LQ *RKQ HG 6WXGLHV 5HODWHG WR WKH &KDUOHVWRQ 6RXWK &DUROLQD (DUWKTXDNH RI 7HFWRQLFV DQG 6HLVPLFLW\ 86 *HRO 6XUY 3URI 3DSHU S 66

PAGE 228

:KHHOHU 5 / DQG $ %ROOLQJHU 6HLVPLFLW\ DQG VXVSHFW WHUUDQHV LQ WKH VRXWKHDVWHUQ 8QLWHG 6WDWHV *HRORJ\ Y S :KLWHODZ / DQG / 6PLWK *HRSK\VLFDO GHSLFWLRQ RI WKH -D\ )DXOW LQ SDQKDQGOH )ORULGD DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y S :LFNHU 5 $ DQG / 6PLWK 5HHYDOXDWLQJ WKH )ORULGD EDVHPHQW 7UDQVDFWLRQV RI WKH *XOI &RDVW $VVRFLDWLRQ RI *HRORJLFDO 6RFLHWLHV Y S :LOOLDPV + 5 DQG &XOYHU 6 7KH 5RFNHOLGHV RI ZHVW $IULFD3DQ$IULFDQ DXODFRJHQ RU EDFNDUF EDVLQ" 3UHFDPEULDQ 5HVHDUFK Y S :LOOLDPV + DQG 5 +DWFKHU 6XVSHFW WHUUDQHV DQG WKH DFFUHWLRQDU\ KLVWRU\ RI WKH $SSDODFKLDQ RURJHQ *HRORJ\ Y S :LOVRQ 7 'LG WKH $WODQWLF FORVH DQG WKHQ UHRSHQ" 1DWXUH Y S :LQNHU & DQG 5 7 %XIIOHU 3DOHRJHRJUDSKLF HYROXWLRQ RI HDUO\ GHHSZDWHU *XOI RI 0H[LFR DQG PDUJLQV -XUDVVLF WR 0LGGOH &UHWDFHRXV &RPDQFKHDQf $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S :LQVWRQ 2 )ORULGDnV 2FDOD 8SOLIW LV QRW DQ XSOLIW $PHULFDQ $VVRFLDWLRQ RI 3HWUROHXP *HRORJLVWV %XOOHWLQ Y S :LQVWRQ 2 7KH ZHVW $IULFDQ 0DXULWDQLG PHWDPRUSKLF VXLWH RI 3URWHUR]RLF DJH LQ WKH VXEVXUIDFH RI SHQLQVXODU )ORULGD DQG HQYLURQV DEVWf *HRORJLFDO 6RFLHW\ RI $PHULFD $EVWUDFWV ZLWK 3URJUDPV Y QR S
PAGE 229


PAGE 230

%,2*5$3+,&$/ 6.(7&+ .HQQHWK /RUG ZDV ERP LQWR ZKDW PRVW ZRXOG FRQVLGHU WR EH D W\SLFDO $PHULFDQ IDPLO\ FRPSOHWH ZLWK RQH EURWKHU WZR VLVWHUV RQH GRJ RQH VWDWLRQ ZDJRQ DQG D KRXVH LQ VXEXUEDQ 3LWWVEXUJK $OWKRXJK WKH KRXVH QHDU 3LWWVEXUJK ZDV HYHQWXDOO\ DEDQGRQHG IRU RWKHUV LQ 1HZ -HUVH\ DQG VXEXUEDQ 3KLODGHOSKLD WKH RWKHU IDFWRUV LQFOXGLQJ WKH GRJ DQG WKH VWDWLRQ ZDJRQf UHPDLQHG FRQVWDQW XQWLO 0U /RUG OHIW WR DWWHQG WKH 8QLYHUVLW\ RI 0LDPL ZKHUH KH EHJDQ ZRUNLQJ WRZDUGV GHJUHHV LQ DQWKURSRORJ\ DQG JHRORJ\ $V D VRSKRPRUH 0U /RUG EHJDQ ZRUNLQJ IRU WKH 8QLYHUVLW\ RI 0LDPL SROLFH GHSDUWPHQW DQG ZDV VRRQ RIIHUHG WKH RSSRUWXQLW\ WR DWWHQG WKH %URZDUG 3ROLFH $FDGHP\ $IWHU JUDGXDWLQJ DV FODVV YDOHGLFWRULDQ 0U /RUG UHWXUQHG WR WKH 8QLYHUVLW\ RI 0LDPL ZKHUH KH ZRUNHG IXOOWLPH DQG DWWHQGHG VFKRRO IXOOWLPH )ROORZLQJ JUDGXDWLRQ IURP 0LDPL KH ZRUNHG IRU D WLPH IRU WKH SROLFH GHSDUWPHQW LQ 3ODQWDWLRQ )ORULGD DQG VXEVHTXHQWO\ HQUROOHG LQ WKH JUDGXDWH SURJUDP DW WKH 8QLYHUVLW\ RI )ORULGD $OWKRXJK 0U /RUG FKRVH JHRSK\VLFV DV DQ DFDGHPLF VSHFLDOL]DWLRQ KH DOVR ZRUNHG IRU ( 'X3RQW GH 1HPRXUV DQG &R GRLQJ PLQHUDO H[SORUDWLRQ DQG K\GURJHRORJLF DVVHVVPHQWV $IWHU ILQLVKLQJ KLV WKHVLV WLWOHG 7KH 7HFWRQLF (YDOXDWLRQ RI D *UDYLW\ 6XUYH\ $ORQJ WKH (DVWHUQ &RDVWDO 3ODLQ RI *HRUJLD 0U /RUG

PAGE 231

FRQWLQXHG ZRUNLQJ IRU 'X3RQW IRU D VKRUW WLPH DQG WKHQ UHWXUQHG WR WKH 8QLYHUVLW\ RI )ORULGD WR ZRUN RQ D GRFWRUDWH GHJUHH 0U /RUGnV SODQV LQFOXGH DWWHQGLQJ ODZ VFKRRO DW &RUQHOO 8QLYHUVLW\ ZKHUH KH LQWHQGV WR VSHFLDOL]H LQ HQYLURQPHQWDO DQG QDWXUDO UHVRXUFHV ODZ 7KH\ GR QRW LQFOXGH HLWKHU D GRJ RU D VWDWLRQ ZDJRQ

PAGE 232

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ IU\ 'RXJODV / 6PLWK &KDLU 3URIHVVRU RI *HRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 7KRPDV / &ULVPDQ 3URIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ 6FLHQFHV FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 3DXO $ 0XHOOHU 3URIHVVRU RI *HRORJ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $ 1HLO 2SG\NH 3URIHVVRU RI *HRORJ\

PAGE 233

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $QWKRQ\ ) 5DQGD]]R 3URIHVVRU RI *HRORJ\ 7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH 'HSDUWPHQW RI *HRORJ\ LQ WKH &ROOHJH RI /LEHUDO $UWV DQG 6FLHQFHV DQG WR WKH *UDGXDWH 6FKRRO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $XJXVW 'HDQ *UDGXDWH 6FKRRO

PAGE 234

81,9(56,7< 2) )/25,'$


xml version 1.0 encoding UTF-8
REPORT xmlns http:www.fcla.edudlsmddaitss xmlns:xsi http:www.w3.org2001XMLSchema-instance xsi:schemaLocation http:www.fcla.edudlsmddaitssdaitssReport.xsd
INGEST IEID E69UD7XL0_RVRTNP INGEST_TIME 2017-07-12T21:05:05Z PACKAGE AA00003247_00001
AGREEMENT_INFO ACCOUNT UF PROJECT UFDC
FILES